]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
brlocks/lglocks: turn into functions
[people/ms/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
1da177e4
LT
15#include <linux/namei.h>
16#include <linux/security.h>
73cd49ec 17#include <linux/idr.h>
d10577a8
AV
18#include <linux/acct.h> /* acct_auto_close_mnt */
19#include <linux/ramfs.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
07b20889 23#include "pnode.h"
948730b0 24#include "internal.h"
1da177e4 25
13f14b4d
ED
26#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27#define HASH_SIZE (1UL << HASH_SHIFT)
28
5addc5dd 29static int event;
73cd49ec 30static DEFINE_IDA(mnt_id_ida);
719f5d7f 31static DEFINE_IDA(mnt_group_ida);
99b7db7b 32static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
33static int mnt_id_start = 0;
34static int mnt_group_start = 1;
1da177e4 35
fa3536cc 36static struct list_head *mount_hashtable __read_mostly;
e18b890b 37static struct kmem_cache *mnt_cache __read_mostly;
390c6843 38static struct rw_semaphore namespace_sem;
1da177e4 39
f87fd4c2 40/* /sys/fs */
00d26666
GKH
41struct kobject *fs_kobj;
42EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 43
99b7db7b
NP
44/*
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
48 *
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
51 */
52DEFINE_BRLOCK(vfsmount_lock);
53
1da177e4
LT
54static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55{
b58fed8b
RP
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
1da177e4
LT
60}
61
3d733633
DH
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
99b7db7b
NP
64/*
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
67 */
b105e270 68static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
69{
70 int res;
71
72retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 74 spin_lock(&mnt_id_lock);
15169fe7 75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 76 if (!res)
15169fe7 77 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 78 spin_unlock(&mnt_id_lock);
73cd49ec
MS
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83}
84
b105e270 85static void mnt_free_id(struct mount *mnt)
73cd49ec 86{
15169fe7 87 int id = mnt->mnt_id;
99b7db7b 88 spin_lock(&mnt_id_lock);
f21f6220
AV
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
99b7db7b 92 spin_unlock(&mnt_id_lock);
73cd49ec
MS
93}
94
719f5d7f
MS
95/*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
4b8b21f4 100static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 101{
f21f6220
AV
102 int res;
103
719f5d7f
MS
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
f21f6220
AV
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
15169fe7 109 &mnt->mnt_group_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
112
113 return res;
719f5d7f
MS
114}
115
116/*
117 * Release a peer group ID
118 */
4b8b21f4 119void mnt_release_group_id(struct mount *mnt)
719f5d7f 120{
15169fe7 121 int id = mnt->mnt_group_id;
f21f6220
AV
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
15169fe7 125 mnt->mnt_group_id = 0;
719f5d7f
MS
126}
127
b3e19d92
NP
128/*
129 * vfsmount lock must be held for read
130 */
83adc753 131static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
132{
133#ifdef CONFIG_SMP
68e8a9fe 134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
135#else
136 preempt_disable();
68e8a9fe 137 mnt->mnt_count += n;
b3e19d92
NP
138 preempt_enable();
139#endif
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for write
144 */
83adc753 145unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
f03c6599 148 unsigned int count = 0;
b3e19d92
NP
149 int cpu;
150
151 for_each_possible_cpu(cpu) {
68e8a9fe 152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
153 }
154
155 return count;
156#else
68e8a9fe 157 return mnt->mnt_count;
b3e19d92
NP
158#endif
159}
160
b105e270 161static struct mount *alloc_vfsmnt(const char *name)
1da177e4 162{
c63181e6
AV
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
73cd49ec
MS
165 int err;
166
c63181e6 167 err = mnt_alloc_id(mnt);
88b38782
LZ
168 if (err)
169 goto out_free_cache;
170
171 if (name) {
c63181e6
AV
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
88b38782 174 goto out_free_id;
73cd49ec
MS
175 }
176
b3e19d92 177#ifdef CONFIG_SMP
c63181e6
AV
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
b3e19d92
NP
180 goto out_free_devname;
181
c63181e6 182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 183#else
c63181e6
AV
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
b3e19d92
NP
186#endif
187
c63181e6
AV
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
196#ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 198#endif
1da177e4 199 }
c63181e6 200 return mnt;
88b38782 201
d3ef3d73
NP
202#ifdef CONFIG_SMP
203out_free_devname:
c63181e6 204 kfree(mnt->mnt_devname);
d3ef3d73 205#endif
88b38782 206out_free_id:
c63181e6 207 mnt_free_id(mnt);
88b38782 208out_free_cache:
c63181e6 209 kmem_cache_free(mnt_cache, mnt);
88b38782 210 return NULL;
1da177e4
LT
211}
212
3d733633
DH
213/*
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
220 */
221/*
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
224 *
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
231 */
232int __mnt_is_readonly(struct vfsmount *mnt)
233{
2e4b7fcd
DH
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
3d733633
DH
239}
240EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241
83adc753 242static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
243{
244#ifdef CONFIG_SMP
68e8a9fe 245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 246#else
68e8a9fe 247 mnt->mnt_writers++;
d3ef3d73
NP
248#endif
249}
3d733633 250
83adc753 251static inline void mnt_dec_writers(struct mount *mnt)
3d733633 252{
d3ef3d73 253#ifdef CONFIG_SMP
68e8a9fe 254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 255#else
68e8a9fe 256 mnt->mnt_writers--;
d3ef3d73 257#endif
3d733633 258}
3d733633 259
83adc753 260static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 261{
d3ef3d73
NP
262#ifdef CONFIG_SMP
263 unsigned int count = 0;
3d733633 264 int cpu;
3d733633
DH
265
266 for_each_possible_cpu(cpu) {
68e8a9fe 267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 268 }
3d733633 269
d3ef3d73
NP
270 return count;
271#else
272 return mnt->mnt_writers;
273#endif
3d733633
DH
274}
275
4ed5e82f
MS
276static int mnt_is_readonly(struct vfsmount *mnt)
277{
278 if (mnt->mnt_sb->s_readonly_remount)
279 return 1;
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 smp_rmb();
282 return __mnt_is_readonly(mnt);
283}
284
8366025e
DH
285/*
286 * Most r/o checks on a fs are for operations that take
287 * discrete amounts of time, like a write() or unlink().
288 * We must keep track of when those operations start
289 * (for permission checks) and when they end, so that
290 * we can determine when writes are able to occur to
291 * a filesystem.
292 */
293/**
294 * mnt_want_write - get write access to a mount
83adc753 295 * @m: the mount on which to take a write
8366025e
DH
296 *
297 * This tells the low-level filesystem that a write is
298 * about to be performed to it, and makes sure that
299 * writes are allowed before returning success. When
300 * the write operation is finished, mnt_drop_write()
301 * must be called. This is effectively a refcount.
302 */
83adc753 303int mnt_want_write(struct vfsmount *m)
8366025e 304{
83adc753 305 struct mount *mnt = real_mount(m);
3d733633 306 int ret = 0;
3d733633 307
d3ef3d73 308 preempt_disable();
c6653a83 309 mnt_inc_writers(mnt);
d3ef3d73 310 /*
c6653a83 311 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
83adc753 316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73
NP
317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
4ed5e82f 324 if (mnt_is_readonly(m)) {
c6653a83 325 mnt_dec_writers(mnt);
3d733633 326 ret = -EROFS;
3d733633 327 }
d3ef3d73 328 preempt_enable();
3d733633 329 return ret;
8366025e
DH
330}
331EXPORT_SYMBOL_GPL(mnt_want_write);
332
96029c4e
NP
333/**
334 * mnt_clone_write - get write access to a mount
335 * @mnt: the mount on which to take a write
336 *
337 * This is effectively like mnt_want_write, except
338 * it must only be used to take an extra write reference
339 * on a mountpoint that we already know has a write reference
340 * on it. This allows some optimisation.
341 *
342 * After finished, mnt_drop_write must be called as usual to
343 * drop the reference.
344 */
345int mnt_clone_write(struct vfsmount *mnt)
346{
347 /* superblock may be r/o */
348 if (__mnt_is_readonly(mnt))
349 return -EROFS;
350 preempt_disable();
83adc753 351 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
352 preempt_enable();
353 return 0;
354}
355EXPORT_SYMBOL_GPL(mnt_clone_write);
356
357/**
358 * mnt_want_write_file - get write access to a file's mount
359 * @file: the file who's mount on which to take a write
360 *
361 * This is like mnt_want_write, but it takes a file and can
362 * do some optimisations if the file is open for write already
363 */
364int mnt_want_write_file(struct file *file)
365{
2d8dd38a
OH
366 struct inode *inode = file->f_dentry->d_inode;
367 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e
NP
368 return mnt_want_write(file->f_path.mnt);
369 else
370 return mnt_clone_write(file->f_path.mnt);
371}
372EXPORT_SYMBOL_GPL(mnt_want_write_file);
373
8366025e
DH
374/**
375 * mnt_drop_write - give up write access to a mount
376 * @mnt: the mount on which to give up write access
377 *
378 * Tells the low-level filesystem that we are done
379 * performing writes to it. Must be matched with
380 * mnt_want_write() call above.
381 */
382void mnt_drop_write(struct vfsmount *mnt)
383{
d3ef3d73 384 preempt_disable();
83adc753 385 mnt_dec_writers(real_mount(mnt));
d3ef3d73 386 preempt_enable();
8366025e
DH
387}
388EXPORT_SYMBOL_GPL(mnt_drop_write);
389
2a79f17e
AV
390void mnt_drop_write_file(struct file *file)
391{
392 mnt_drop_write(file->f_path.mnt);
393}
394EXPORT_SYMBOL(mnt_drop_write_file);
395
83adc753 396static int mnt_make_readonly(struct mount *mnt)
8366025e 397{
3d733633
DH
398 int ret = 0;
399
99b7db7b 400 br_write_lock(vfsmount_lock);
83adc753 401 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 402 /*
d3ef3d73
NP
403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 * should be visible before we do.
3d733633 405 */
d3ef3d73
NP
406 smp_mb();
407
3d733633 408 /*
d3ef3d73
NP
409 * With writers on hold, if this value is zero, then there are
410 * definitely no active writers (although held writers may subsequently
411 * increment the count, they'll have to wait, and decrement it after
412 * seeing MNT_READONLY).
413 *
414 * It is OK to have counter incremented on one CPU and decremented on
415 * another: the sum will add up correctly. The danger would be when we
416 * sum up each counter, if we read a counter before it is incremented,
417 * but then read another CPU's count which it has been subsequently
418 * decremented from -- we would see more decrements than we should.
419 * MNT_WRITE_HOLD protects against this scenario, because
420 * mnt_want_write first increments count, then smp_mb, then spins on
421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 * we're counting up here.
3d733633 423 */
c6653a83 424 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
425 ret = -EBUSY;
426 else
83adc753 427 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
428 /*
429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 * that become unheld will see MNT_READONLY.
431 */
432 smp_wmb();
83adc753 433 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 434 br_write_unlock(vfsmount_lock);
3d733633 435 return ret;
8366025e 436}
8366025e 437
83adc753 438static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 439{
99b7db7b 440 br_write_lock(vfsmount_lock);
83adc753 441 mnt->mnt.mnt_flags &= ~MNT_READONLY;
99b7db7b 442 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
443}
444
4ed5e82f
MS
445int sb_prepare_remount_readonly(struct super_block *sb)
446{
447 struct mount *mnt;
448 int err = 0;
449
8e8b8796
MS
450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
451 if (atomic_long_read(&sb->s_remove_count))
452 return -EBUSY;
453
4ed5e82f
MS
454 br_write_lock(vfsmount_lock);
455 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
458 smp_mb();
459 if (mnt_get_writers(mnt) > 0) {
460 err = -EBUSY;
461 break;
462 }
463 }
464 }
8e8b8796
MS
465 if (!err && atomic_long_read(&sb->s_remove_count))
466 err = -EBUSY;
467
4ed5e82f
MS
468 if (!err) {
469 sb->s_readonly_remount = 1;
470 smp_wmb();
471 }
472 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
475 }
476 br_write_unlock(vfsmount_lock);
477
478 return err;
479}
480
b105e270 481static void free_vfsmnt(struct mount *mnt)
1da177e4 482{
52ba1621 483 kfree(mnt->mnt_devname);
73cd49ec 484 mnt_free_id(mnt);
d3ef3d73 485#ifdef CONFIG_SMP
68e8a9fe 486 free_percpu(mnt->mnt_pcp);
d3ef3d73 487#endif
b105e270 488 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
489}
490
491/*
a05964f3
RP
492 * find the first or last mount at @dentry on vfsmount @mnt depending on
493 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 494 * vfsmount_lock must be held for read or write.
1da177e4 495 */
c7105365 496struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 497 int dir)
1da177e4 498{
b58fed8b
RP
499 struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 struct list_head *tmp = head;
c7105365 501 struct mount *p, *found = NULL;
1da177e4 502
1da177e4 503 for (;;) {
a05964f3 504 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
505 p = NULL;
506 if (tmp == head)
507 break;
1b8e5564 508 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 509 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 510 found = p;
1da177e4
LT
511 break;
512 }
513 }
1da177e4
LT
514 return found;
515}
516
a05964f3
RP
517/*
518 * lookup_mnt increments the ref count before returning
519 * the vfsmount struct.
520 */
1c755af4 521struct vfsmount *lookup_mnt(struct path *path)
a05964f3 522{
c7105365 523 struct mount *child_mnt;
99b7db7b
NP
524
525 br_read_lock(vfsmount_lock);
c7105365
AV
526 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
527 if (child_mnt) {
528 mnt_add_count(child_mnt, 1);
529 br_read_unlock(vfsmount_lock);
530 return &child_mnt->mnt;
531 } else {
532 br_read_unlock(vfsmount_lock);
533 return NULL;
534 }
a05964f3
RP
535}
536
143c8c91 537static inline int check_mnt(struct mount *mnt)
1da177e4 538{
6b3286ed 539 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
540}
541
99b7db7b
NP
542/*
543 * vfsmount lock must be held for write
544 */
6b3286ed 545static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
546{
547 if (ns) {
548 ns->event = ++event;
549 wake_up_interruptible(&ns->poll);
550 }
551}
552
99b7db7b
NP
553/*
554 * vfsmount lock must be held for write
555 */
6b3286ed 556static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
557{
558 if (ns && ns->event != event) {
559 ns->event = event;
560 wake_up_interruptible(&ns->poll);
561 }
562}
563
5f57cbcc
NP
564/*
565 * Clear dentry's mounted state if it has no remaining mounts.
566 * vfsmount_lock must be held for write.
567 */
aa0a4cf0 568static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
569{
570 unsigned u;
571
572 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 573 struct mount *p;
5f57cbcc 574
1b8e5564 575 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 576 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
577 return;
578 }
579 }
580 spin_lock(&dentry->d_lock);
581 dentry->d_flags &= ~DCACHE_MOUNTED;
582 spin_unlock(&dentry->d_lock);
583}
584
99b7db7b
NP
585/*
586 * vfsmount lock must be held for write
587 */
419148da
AV
588static void detach_mnt(struct mount *mnt, struct path *old_path)
589{
a73324da 590 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
591 old_path->mnt = &mnt->mnt_parent->mnt;
592 mnt->mnt_parent = mnt;
a73324da 593 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 594 list_del_init(&mnt->mnt_child);
1b8e5564 595 list_del_init(&mnt->mnt_hash);
aa0a4cf0 596 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
597}
598
99b7db7b
NP
599/*
600 * vfsmount lock must be held for write
601 */
14cf1fa8 602void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 603 struct mount *child_mnt)
b90fa9ae 604{
3a2393d7 605 mnt_add_count(mnt, 1); /* essentially, that's mntget */
a73324da 606 child_mnt->mnt_mountpoint = dget(dentry);
3a2393d7 607 child_mnt->mnt_parent = mnt;
5f57cbcc
NP
608 spin_lock(&dentry->d_lock);
609 dentry->d_flags |= DCACHE_MOUNTED;
610 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
611}
612
99b7db7b
NP
613/*
614 * vfsmount lock must be held for write
615 */
419148da 616static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 617{
14cf1fa8 618 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 619 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 620 hash(path->mnt, path->dentry));
6b41d536 621 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
622}
623
83adc753 624static inline void __mnt_make_longterm(struct mount *mnt)
7e3d0eb0
AV
625{
626#ifdef CONFIG_SMP
68e8a9fe 627 atomic_inc(&mnt->mnt_longterm);
7e3d0eb0
AV
628#endif
629}
630
631/* needs vfsmount lock for write */
83adc753 632static inline void __mnt_make_shortterm(struct mount *mnt)
7e3d0eb0
AV
633{
634#ifdef CONFIG_SMP
68e8a9fe 635 atomic_dec(&mnt->mnt_longterm);
7e3d0eb0
AV
636#endif
637}
638
b90fa9ae 639/*
99b7db7b 640 * vfsmount lock must be held for write
b90fa9ae 641 */
4b2619a5 642static void commit_tree(struct mount *mnt)
b90fa9ae 643{
0714a533 644 struct mount *parent = mnt->mnt_parent;
83adc753 645 struct mount *m;
b90fa9ae 646 LIST_HEAD(head);
143c8c91 647 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 648
0714a533 649 BUG_ON(parent == mnt);
b90fa9ae 650
1a4eeaf2
AV
651 list_add_tail(&head, &mnt->mnt_list);
652 list_for_each_entry(m, &head, mnt_list) {
143c8c91 653 m->mnt_ns = n;
7e3d0eb0 654 __mnt_make_longterm(m);
f03c6599
AV
655 }
656
b90fa9ae
RP
657 list_splice(&head, n->list.prev);
658
1b8e5564 659 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 660 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 661 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 662 touch_mnt_namespace(n);
1da177e4
LT
663}
664
909b0a88 665static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 666{
6b41d536
AV
667 struct list_head *next = p->mnt_mounts.next;
668 if (next == &p->mnt_mounts) {
1da177e4 669 while (1) {
909b0a88 670 if (p == root)
1da177e4 671 return NULL;
6b41d536
AV
672 next = p->mnt_child.next;
673 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 674 break;
0714a533 675 p = p->mnt_parent;
1da177e4
LT
676 }
677 }
6b41d536 678 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
679}
680
315fc83e 681static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 682{
6b41d536
AV
683 struct list_head *prev = p->mnt_mounts.prev;
684 while (prev != &p->mnt_mounts) {
685 p = list_entry(prev, struct mount, mnt_child);
686 prev = p->mnt_mounts.prev;
9676f0c6
RP
687 }
688 return p;
689}
690
9d412a43
AV
691struct vfsmount *
692vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
693{
b105e270 694 struct mount *mnt;
9d412a43
AV
695 struct dentry *root;
696
697 if (!type)
698 return ERR_PTR(-ENODEV);
699
700 mnt = alloc_vfsmnt(name);
701 if (!mnt)
702 return ERR_PTR(-ENOMEM);
703
704 if (flags & MS_KERNMOUNT)
b105e270 705 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
706
707 root = mount_fs(type, flags, name, data);
708 if (IS_ERR(root)) {
709 free_vfsmnt(mnt);
710 return ERR_CAST(root);
711 }
712
b105e270
AV
713 mnt->mnt.mnt_root = root;
714 mnt->mnt.mnt_sb = root->d_sb;
a73324da 715 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 716 mnt->mnt_parent = mnt;
39f7c4db
MS
717 br_write_lock(vfsmount_lock);
718 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719 br_write_unlock(vfsmount_lock);
b105e270 720 return &mnt->mnt;
9d412a43
AV
721}
722EXPORT_SYMBOL_GPL(vfs_kern_mount);
723
87129cc0 724static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 725 int flag)
1da177e4 726{
87129cc0 727 struct super_block *sb = old->mnt.mnt_sb;
52ba1621 728 struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
1da177e4
LT
729
730 if (mnt) {
719f5d7f 731 if (flag & (CL_SLAVE | CL_PRIVATE))
15169fe7 732 mnt->mnt_group_id = 0; /* not a peer of original */
719f5d7f 733 else
15169fe7 734 mnt->mnt_group_id = old->mnt_group_id;
719f5d7f 735
15169fe7 736 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
b105e270 737 int err = mnt_alloc_group_id(mnt);
719f5d7f
MS
738 if (err)
739 goto out_free;
740 }
741
87129cc0 742 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
1da177e4 743 atomic_inc(&sb->s_active);
b105e270
AV
744 mnt->mnt.mnt_sb = sb;
745 mnt->mnt.mnt_root = dget(root);
a73324da 746 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 747 mnt->mnt_parent = mnt;
39f7c4db
MS
748 br_write_lock(vfsmount_lock);
749 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
750 br_write_unlock(vfsmount_lock);
b90fa9ae 751
5afe0022 752 if (flag & CL_SLAVE) {
6776db3d 753 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
32301920 754 mnt->mnt_master = old;
fc7be130 755 CLEAR_MNT_SHARED(mnt);
8aec0809 756 } else if (!(flag & CL_PRIVATE)) {
fc7be130 757 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
6776db3d 758 list_add(&mnt->mnt_share, &old->mnt_share);
d10e8def 759 if (IS_MNT_SLAVE(old))
6776db3d 760 list_add(&mnt->mnt_slave, &old->mnt_slave);
d10e8def 761 mnt->mnt_master = old->mnt_master;
5afe0022 762 }
b90fa9ae 763 if (flag & CL_MAKE_SHARED)
0f0afb1d 764 set_mnt_shared(mnt);
1da177e4
LT
765
766 /* stick the duplicate mount on the same expiry list
767 * as the original if that was on one */
36341f64 768 if (flag & CL_EXPIRE) {
6776db3d
AV
769 if (!list_empty(&old->mnt_expire))
770 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 771 }
1da177e4 772 }
cb338d06 773 return mnt;
719f5d7f
MS
774
775 out_free:
776 free_vfsmnt(mnt);
777 return NULL;
1da177e4
LT
778}
779
83adc753 780static inline void mntfree(struct mount *mnt)
1da177e4 781{
83adc753
AV
782 struct vfsmount *m = &mnt->mnt;
783 struct super_block *sb = m->mnt_sb;
b3e19d92 784
3d733633
DH
785 /*
786 * This probably indicates that somebody messed
787 * up a mnt_want/drop_write() pair. If this
788 * happens, the filesystem was probably unable
789 * to make r/w->r/o transitions.
790 */
d3ef3d73 791 /*
b3e19d92
NP
792 * The locking used to deal with mnt_count decrement provides barriers,
793 * so mnt_get_writers() below is safe.
d3ef3d73 794 */
c6653a83 795 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
796 fsnotify_vfsmount_delete(m);
797 dput(m->mnt_root);
798 free_vfsmnt(mnt);
1da177e4
LT
799 deactivate_super(sb);
800}
801
900148dc 802static void mntput_no_expire(struct mount *mnt)
b3e19d92 803{
b3e19d92 804put_again:
f03c6599
AV
805#ifdef CONFIG_SMP
806 br_read_lock(vfsmount_lock);
68e8a9fe 807 if (likely(atomic_read(&mnt->mnt_longterm))) {
aa9c0e07 808 mnt_add_count(mnt, -1);
b3e19d92 809 br_read_unlock(vfsmount_lock);
f03c6599 810 return;
b3e19d92 811 }
f03c6599 812 br_read_unlock(vfsmount_lock);
b3e19d92 813
99b7db7b 814 br_write_lock(vfsmount_lock);
aa9c0e07 815 mnt_add_count(mnt, -1);
b3e19d92 816 if (mnt_get_count(mnt)) {
99b7db7b
NP
817 br_write_unlock(vfsmount_lock);
818 return;
819 }
b3e19d92 820#else
aa9c0e07 821 mnt_add_count(mnt, -1);
b3e19d92 822 if (likely(mnt_get_count(mnt)))
99b7db7b 823 return;
b3e19d92 824 br_write_lock(vfsmount_lock);
f03c6599 825#endif
863d684f
AV
826 if (unlikely(mnt->mnt_pinned)) {
827 mnt_add_count(mnt, mnt->mnt_pinned + 1);
828 mnt->mnt_pinned = 0;
b3e19d92 829 br_write_unlock(vfsmount_lock);
900148dc 830 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 831 goto put_again;
7b7b1ace 832 }
39f7c4db 833 list_del(&mnt->mnt_instance);
99b7db7b 834 br_write_unlock(vfsmount_lock);
b3e19d92
NP
835 mntfree(mnt);
836}
b3e19d92
NP
837
838void mntput(struct vfsmount *mnt)
839{
840 if (mnt) {
863d684f 841 struct mount *m = real_mount(mnt);
b3e19d92 842 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
843 if (unlikely(m->mnt_expiry_mark))
844 m->mnt_expiry_mark = 0;
845 mntput_no_expire(m);
b3e19d92
NP
846 }
847}
848EXPORT_SYMBOL(mntput);
849
850struct vfsmount *mntget(struct vfsmount *mnt)
851{
852 if (mnt)
83adc753 853 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
854 return mnt;
855}
856EXPORT_SYMBOL(mntget);
857
7b7b1ace
AV
858void mnt_pin(struct vfsmount *mnt)
859{
99b7db7b 860 br_write_lock(vfsmount_lock);
863d684f 861 real_mount(mnt)->mnt_pinned++;
99b7db7b 862 br_write_unlock(vfsmount_lock);
7b7b1ace 863}
7b7b1ace
AV
864EXPORT_SYMBOL(mnt_pin);
865
863d684f 866void mnt_unpin(struct vfsmount *m)
7b7b1ace 867{
863d684f 868 struct mount *mnt = real_mount(m);
99b7db7b 869 br_write_lock(vfsmount_lock);
7b7b1ace 870 if (mnt->mnt_pinned) {
863d684f 871 mnt_add_count(mnt, 1);
7b7b1ace
AV
872 mnt->mnt_pinned--;
873 }
99b7db7b 874 br_write_unlock(vfsmount_lock);
7b7b1ace 875}
7b7b1ace 876EXPORT_SYMBOL(mnt_unpin);
1da177e4 877
b3b304a2
MS
878static inline void mangle(struct seq_file *m, const char *s)
879{
880 seq_escape(m, s, " \t\n\\");
881}
882
883/*
884 * Simple .show_options callback for filesystems which don't want to
885 * implement more complex mount option showing.
886 *
887 * See also save_mount_options().
888 */
34c80b1d 889int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 890{
2a32cebd
AV
891 const char *options;
892
893 rcu_read_lock();
34c80b1d 894 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
895
896 if (options != NULL && options[0]) {
897 seq_putc(m, ',');
898 mangle(m, options);
899 }
2a32cebd 900 rcu_read_unlock();
b3b304a2
MS
901
902 return 0;
903}
904EXPORT_SYMBOL(generic_show_options);
905
906/*
907 * If filesystem uses generic_show_options(), this function should be
908 * called from the fill_super() callback.
909 *
910 * The .remount_fs callback usually needs to be handled in a special
911 * way, to make sure, that previous options are not overwritten if the
912 * remount fails.
913 *
914 * Also note, that if the filesystem's .remount_fs function doesn't
915 * reset all options to their default value, but changes only newly
916 * given options, then the displayed options will not reflect reality
917 * any more.
918 */
919void save_mount_options(struct super_block *sb, char *options)
920{
2a32cebd
AV
921 BUG_ON(sb->s_options);
922 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
923}
924EXPORT_SYMBOL(save_mount_options);
925
2a32cebd
AV
926void replace_mount_options(struct super_block *sb, char *options)
927{
928 char *old = sb->s_options;
929 rcu_assign_pointer(sb->s_options, options);
930 if (old) {
931 synchronize_rcu();
932 kfree(old);
933 }
934}
935EXPORT_SYMBOL(replace_mount_options);
936
a1a2c409 937#ifdef CONFIG_PROC_FS
0226f492 938/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
939static void *m_start(struct seq_file *m, loff_t *pos)
940{
0226f492 941 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
1da177e4 942
390c6843 943 down_read(&namespace_sem);
a1a2c409 944 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
945}
946
947static void *m_next(struct seq_file *m, void *v, loff_t *pos)
948{
0226f492 949 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
b0765fb8 950
a1a2c409 951 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
952}
953
954static void m_stop(struct seq_file *m, void *v)
955{
390c6843 956 up_read(&namespace_sem);
1da177e4
LT
957}
958
0226f492 959static int m_show(struct seq_file *m, void *v)
2d4d4864 960{
0226f492 961 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
1a4eeaf2 962 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 963 return p->show(m, &r->mnt);
1da177e4
LT
964}
965
a1a2c409 966const struct seq_operations mounts_op = {
1da177e4
LT
967 .start = m_start,
968 .next = m_next,
969 .stop = m_stop,
0226f492 970 .show = m_show,
b4629fe2 971};
a1a2c409 972#endif /* CONFIG_PROC_FS */
b4629fe2 973
1da177e4
LT
974/**
975 * may_umount_tree - check if a mount tree is busy
976 * @mnt: root of mount tree
977 *
978 * This is called to check if a tree of mounts has any
979 * open files, pwds, chroots or sub mounts that are
980 * busy.
981 */
909b0a88 982int may_umount_tree(struct vfsmount *m)
1da177e4 983{
909b0a88 984 struct mount *mnt = real_mount(m);
36341f64
RP
985 int actual_refs = 0;
986 int minimum_refs = 0;
315fc83e 987 struct mount *p;
909b0a88 988 BUG_ON(!m);
1da177e4 989
b3e19d92
NP
990 /* write lock needed for mnt_get_count */
991 br_write_lock(vfsmount_lock);
909b0a88 992 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 993 actual_refs += mnt_get_count(p);
1da177e4 994 minimum_refs += 2;
1da177e4 995 }
b3e19d92 996 br_write_unlock(vfsmount_lock);
1da177e4
LT
997
998 if (actual_refs > minimum_refs)
e3474a8e 999 return 0;
1da177e4 1000
e3474a8e 1001 return 1;
1da177e4
LT
1002}
1003
1004EXPORT_SYMBOL(may_umount_tree);
1005
1006/**
1007 * may_umount - check if a mount point is busy
1008 * @mnt: root of mount
1009 *
1010 * This is called to check if a mount point has any
1011 * open files, pwds, chroots or sub mounts. If the
1012 * mount has sub mounts this will return busy
1013 * regardless of whether the sub mounts are busy.
1014 *
1015 * Doesn't take quota and stuff into account. IOW, in some cases it will
1016 * give false negatives. The main reason why it's here is that we need
1017 * a non-destructive way to look for easily umountable filesystems.
1018 */
1019int may_umount(struct vfsmount *mnt)
1020{
e3474a8e 1021 int ret = 1;
8ad08d8a 1022 down_read(&namespace_sem);
b3e19d92 1023 br_write_lock(vfsmount_lock);
1ab59738 1024 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1025 ret = 0;
b3e19d92 1026 br_write_unlock(vfsmount_lock);
8ad08d8a 1027 up_read(&namespace_sem);
a05964f3 1028 return ret;
1da177e4
LT
1029}
1030
1031EXPORT_SYMBOL(may_umount);
1032
b90fa9ae 1033void release_mounts(struct list_head *head)
70fbcdf4 1034{
d5e50f74 1035 struct mount *mnt;
bf066c7d 1036 while (!list_empty(head)) {
1b8e5564
AV
1037 mnt = list_first_entry(head, struct mount, mnt_hash);
1038 list_del_init(&mnt->mnt_hash);
676da58d 1039 if (mnt_has_parent(mnt)) {
70fbcdf4 1040 struct dentry *dentry;
863d684f 1041 struct mount *m;
99b7db7b
NP
1042
1043 br_write_lock(vfsmount_lock);
a73324da 1044 dentry = mnt->mnt_mountpoint;
863d684f 1045 m = mnt->mnt_parent;
a73324da 1046 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1047 mnt->mnt_parent = mnt;
7c4b93d8 1048 m->mnt_ghosts--;
99b7db7b 1049 br_write_unlock(vfsmount_lock);
70fbcdf4 1050 dput(dentry);
863d684f 1051 mntput(&m->mnt);
70fbcdf4 1052 }
d5e50f74 1053 mntput(&mnt->mnt);
70fbcdf4
RP
1054 }
1055}
1056
99b7db7b
NP
1057/*
1058 * vfsmount lock must be held for write
1059 * namespace_sem must be held for write
1060 */
761d5c38 1061void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1062{
7b8a53fd 1063 LIST_HEAD(tmp_list);
315fc83e 1064 struct mount *p;
1da177e4 1065
909b0a88 1066 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1067 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1068
a05964f3 1069 if (propagate)
7b8a53fd 1070 propagate_umount(&tmp_list);
a05964f3 1071
1b8e5564 1072 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1073 list_del_init(&p->mnt_expire);
1a4eeaf2 1074 list_del_init(&p->mnt_list);
143c8c91
AV
1075 __touch_mnt_namespace(p->mnt_ns);
1076 p->mnt_ns = NULL;
83adc753 1077 __mnt_make_shortterm(p);
6b41d536 1078 list_del_init(&p->mnt_child);
676da58d 1079 if (mnt_has_parent(p)) {
863d684f 1080 p->mnt_parent->mnt_ghosts++;
a73324da 1081 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1082 }
0f0afb1d 1083 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1084 }
7b8a53fd 1085 list_splice(&tmp_list, kill);
1da177e4
LT
1086}
1087
692afc31 1088static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1089
1ab59738 1090static int do_umount(struct mount *mnt, int flags)
1da177e4 1091{
1ab59738 1092 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1093 int retval;
70fbcdf4 1094 LIST_HEAD(umount_list);
1da177e4 1095
1ab59738 1096 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1097 if (retval)
1098 return retval;
1099
1100 /*
1101 * Allow userspace to request a mountpoint be expired rather than
1102 * unmounting unconditionally. Unmount only happens if:
1103 * (1) the mark is already set (the mark is cleared by mntput())
1104 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1105 */
1106 if (flags & MNT_EXPIRE) {
1ab59738 1107 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1108 flags & (MNT_FORCE | MNT_DETACH))
1109 return -EINVAL;
1110
b3e19d92
NP
1111 /*
1112 * probably don't strictly need the lock here if we examined
1113 * all race cases, but it's a slowpath.
1114 */
1115 br_write_lock(vfsmount_lock);
83adc753 1116 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1117 br_write_unlock(vfsmount_lock);
1da177e4 1118 return -EBUSY;
b3e19d92
NP
1119 }
1120 br_write_unlock(vfsmount_lock);
1da177e4 1121
863d684f 1122 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1123 return -EAGAIN;
1124 }
1125
1126 /*
1127 * If we may have to abort operations to get out of this
1128 * mount, and they will themselves hold resources we must
1129 * allow the fs to do things. In the Unix tradition of
1130 * 'Gee thats tricky lets do it in userspace' the umount_begin
1131 * might fail to complete on the first run through as other tasks
1132 * must return, and the like. Thats for the mount program to worry
1133 * about for the moment.
1134 */
1135
42faad99 1136 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1137 sb->s_op->umount_begin(sb);
42faad99 1138 }
1da177e4
LT
1139
1140 /*
1141 * No sense to grab the lock for this test, but test itself looks
1142 * somewhat bogus. Suggestions for better replacement?
1143 * Ho-hum... In principle, we might treat that as umount + switch
1144 * to rootfs. GC would eventually take care of the old vfsmount.
1145 * Actually it makes sense, especially if rootfs would contain a
1146 * /reboot - static binary that would close all descriptors and
1147 * call reboot(9). Then init(8) could umount root and exec /reboot.
1148 */
1ab59738 1149 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1150 /*
1151 * Special case for "unmounting" root ...
1152 * we just try to remount it readonly.
1153 */
1154 down_write(&sb->s_umount);
4aa98cf7 1155 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1156 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1157 up_write(&sb->s_umount);
1158 return retval;
1159 }
1160
390c6843 1161 down_write(&namespace_sem);
99b7db7b 1162 br_write_lock(vfsmount_lock);
5addc5dd 1163 event++;
1da177e4 1164
c35038be 1165 if (!(flags & MNT_DETACH))
1ab59738 1166 shrink_submounts(mnt, &umount_list);
c35038be 1167
1da177e4 1168 retval = -EBUSY;
a05964f3 1169 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1170 if (!list_empty(&mnt->mnt_list))
1ab59738 1171 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1172 retval = 0;
1173 }
99b7db7b 1174 br_write_unlock(vfsmount_lock);
390c6843 1175 up_write(&namespace_sem);
70fbcdf4 1176 release_mounts(&umount_list);
1da177e4
LT
1177 return retval;
1178}
1179
1180/*
1181 * Now umount can handle mount points as well as block devices.
1182 * This is important for filesystems which use unnamed block devices.
1183 *
1184 * We now support a flag for forced unmount like the other 'big iron'
1185 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1186 */
1187
bdc480e3 1188SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1189{
2d8f3038 1190 struct path path;
900148dc 1191 struct mount *mnt;
1da177e4 1192 int retval;
db1f05bb 1193 int lookup_flags = 0;
1da177e4 1194
db1f05bb
MS
1195 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1196 return -EINVAL;
1197
1198 if (!(flags & UMOUNT_NOFOLLOW))
1199 lookup_flags |= LOOKUP_FOLLOW;
1200
1201 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1202 if (retval)
1203 goto out;
900148dc 1204 mnt = real_mount(path.mnt);
1da177e4 1205 retval = -EINVAL;
2d8f3038 1206 if (path.dentry != path.mnt->mnt_root)
1da177e4 1207 goto dput_and_out;
143c8c91 1208 if (!check_mnt(mnt))
1da177e4
LT
1209 goto dput_and_out;
1210
1211 retval = -EPERM;
1212 if (!capable(CAP_SYS_ADMIN))
1213 goto dput_and_out;
1214
900148dc 1215 retval = do_umount(mnt, flags);
1da177e4 1216dput_and_out:
429731b1 1217 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1218 dput(path.dentry);
900148dc 1219 mntput_no_expire(mnt);
1da177e4
LT
1220out:
1221 return retval;
1222}
1223
1224#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1225
1226/*
b58fed8b 1227 * The 2.0 compatible umount. No flags.
1da177e4 1228 */
bdc480e3 1229SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1230{
b58fed8b 1231 return sys_umount(name, 0);
1da177e4
LT
1232}
1233
1234#endif
1235
2d92ab3c 1236static int mount_is_safe(struct path *path)
1da177e4
LT
1237{
1238 if (capable(CAP_SYS_ADMIN))
1239 return 0;
1240 return -EPERM;
1241#ifdef notyet
2d92ab3c 1242 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1243 return -EPERM;
2d92ab3c 1244 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1245 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1246 return -EPERM;
1247 }
2d92ab3c 1248 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1249 return -EPERM;
1250 return 0;
1251#endif
1252}
1253
87129cc0 1254struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1255 int flag)
1da177e4 1256{
a73324da 1257 struct mount *res, *p, *q, *r;
1a390689 1258 struct path path;
1da177e4 1259
fc7be130 1260 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
9676f0c6
RP
1261 return NULL;
1262
36341f64 1263 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1264 if (!q)
1265 goto Enomem;
a73324da 1266 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1267
1268 p = mnt;
6b41d536 1269 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1270 struct mount *s;
7ec02ef1 1271 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1272 continue;
1273
909b0a88 1274 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1275 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1276 s = skip_mnt_tree(s);
1277 continue;
1278 }
0714a533
AV
1279 while (p != s->mnt_parent) {
1280 p = p->mnt_parent;
1281 q = q->mnt_parent;
1da177e4 1282 }
87129cc0 1283 p = s;
cb338d06 1284 path.mnt = &q->mnt;
a73324da 1285 path.dentry = p->mnt_mountpoint;
87129cc0 1286 q = clone_mnt(p, p->mnt.mnt_root, flag);
1da177e4
LT
1287 if (!q)
1288 goto Enomem;
99b7db7b 1289 br_write_lock(vfsmount_lock);
1a4eeaf2 1290 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1291 attach_mnt(q, &path);
99b7db7b 1292 br_write_unlock(vfsmount_lock);
1da177e4
LT
1293 }
1294 }
1295 return res;
b58fed8b 1296Enomem:
1da177e4 1297 if (res) {
70fbcdf4 1298 LIST_HEAD(umount_list);
99b7db7b 1299 br_write_lock(vfsmount_lock);
761d5c38 1300 umount_tree(res, 0, &umount_list);
99b7db7b 1301 br_write_unlock(vfsmount_lock);
70fbcdf4 1302 release_mounts(&umount_list);
1da177e4
LT
1303 }
1304 return NULL;
1305}
1306
589ff870 1307struct vfsmount *collect_mounts(struct path *path)
8aec0809 1308{
cb338d06 1309 struct mount *tree;
1a60a280 1310 down_write(&namespace_sem);
87129cc0
AV
1311 tree = copy_tree(real_mount(path->mnt), path->dentry,
1312 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1313 up_write(&namespace_sem);
cb338d06 1314 return tree ? &tree->mnt : NULL;
8aec0809
AV
1315}
1316
1317void drop_collected_mounts(struct vfsmount *mnt)
1318{
1319 LIST_HEAD(umount_list);
1a60a280 1320 down_write(&namespace_sem);
99b7db7b 1321 br_write_lock(vfsmount_lock);
761d5c38 1322 umount_tree(real_mount(mnt), 0, &umount_list);
99b7db7b 1323 br_write_unlock(vfsmount_lock);
1a60a280 1324 up_write(&namespace_sem);
8aec0809
AV
1325 release_mounts(&umount_list);
1326}
1327
1f707137
AV
1328int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1329 struct vfsmount *root)
1330{
1a4eeaf2 1331 struct mount *mnt;
1f707137
AV
1332 int res = f(root, arg);
1333 if (res)
1334 return res;
1a4eeaf2
AV
1335 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1336 res = f(&mnt->mnt, arg);
1f707137
AV
1337 if (res)
1338 return res;
1339 }
1340 return 0;
1341}
1342
4b8b21f4 1343static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1344{
315fc83e 1345 struct mount *p;
719f5d7f 1346
909b0a88 1347 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1348 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1349 mnt_release_group_id(p);
719f5d7f
MS
1350 }
1351}
1352
4b8b21f4 1353static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1354{
315fc83e 1355 struct mount *p;
719f5d7f 1356
909b0a88 1357 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1358 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1359 int err = mnt_alloc_group_id(p);
719f5d7f 1360 if (err) {
4b8b21f4 1361 cleanup_group_ids(mnt, p);
719f5d7f
MS
1362 return err;
1363 }
1364 }
1365 }
1366
1367 return 0;
1368}
1369
b90fa9ae
RP
1370/*
1371 * @source_mnt : mount tree to be attached
21444403
RP
1372 * @nd : place the mount tree @source_mnt is attached
1373 * @parent_nd : if non-null, detach the source_mnt from its parent and
1374 * store the parent mount and mountpoint dentry.
1375 * (done when source_mnt is moved)
b90fa9ae
RP
1376 *
1377 * NOTE: in the table below explains the semantics when a source mount
1378 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1379 * ---------------------------------------------------------------------------
1380 * | BIND MOUNT OPERATION |
1381 * |**************************************************************************
1382 * | source-->| shared | private | slave | unbindable |
1383 * | dest | | | | |
1384 * | | | | | | |
1385 * | v | | | | |
1386 * |**************************************************************************
1387 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1388 * | | | | | |
1389 * |non-shared| shared (+) | private | slave (*) | invalid |
1390 * ***************************************************************************
b90fa9ae
RP
1391 * A bind operation clones the source mount and mounts the clone on the
1392 * destination mount.
1393 *
1394 * (++) the cloned mount is propagated to all the mounts in the propagation
1395 * tree of the destination mount and the cloned mount is added to
1396 * the peer group of the source mount.
1397 * (+) the cloned mount is created under the destination mount and is marked
1398 * as shared. The cloned mount is added to the peer group of the source
1399 * mount.
5afe0022
RP
1400 * (+++) the mount is propagated to all the mounts in the propagation tree
1401 * of the destination mount and the cloned mount is made slave
1402 * of the same master as that of the source mount. The cloned mount
1403 * is marked as 'shared and slave'.
1404 * (*) the cloned mount is made a slave of the same master as that of the
1405 * source mount.
1406 *
9676f0c6
RP
1407 * ---------------------------------------------------------------------------
1408 * | MOVE MOUNT OPERATION |
1409 * |**************************************************************************
1410 * | source-->| shared | private | slave | unbindable |
1411 * | dest | | | | |
1412 * | | | | | | |
1413 * | v | | | | |
1414 * |**************************************************************************
1415 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1416 * | | | | | |
1417 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1418 * ***************************************************************************
5afe0022
RP
1419 *
1420 * (+) the mount is moved to the destination. And is then propagated to
1421 * all the mounts in the propagation tree of the destination mount.
21444403 1422 * (+*) the mount is moved to the destination.
5afe0022
RP
1423 * (+++) the mount is moved to the destination and is then propagated to
1424 * all the mounts belonging to the destination mount's propagation tree.
1425 * the mount is marked as 'shared and slave'.
1426 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1427 *
1428 * if the source mount is a tree, the operations explained above is
1429 * applied to each mount in the tree.
1430 * Must be called without spinlocks held, since this function can sleep
1431 * in allocations.
1432 */
0fb54e50 1433static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1434 struct path *path, struct path *parent_path)
b90fa9ae
RP
1435{
1436 LIST_HEAD(tree_list);
a8d56d8e 1437 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1438 struct dentry *dest_dentry = path->dentry;
315fc83e 1439 struct mount *child, *p;
719f5d7f 1440 int err;
b90fa9ae 1441
fc7be130 1442 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1443 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1444 if (err)
1445 goto out;
1446 }
a8d56d8e 1447 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1448 if (err)
1449 goto out_cleanup_ids;
b90fa9ae 1450
99b7db7b 1451 br_write_lock(vfsmount_lock);
df1a1ad2 1452
fc7be130 1453 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1454 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1455 set_mnt_shared(p);
b90fa9ae 1456 }
1a390689 1457 if (parent_path) {
0fb54e50
AV
1458 detach_mnt(source_mnt, parent_path);
1459 attach_mnt(source_mnt, path);
143c8c91 1460 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1461 } else {
14cf1fa8 1462 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1463 commit_tree(source_mnt);
21444403 1464 }
b90fa9ae 1465
1b8e5564
AV
1466 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1467 list_del_init(&child->mnt_hash);
4b2619a5 1468 commit_tree(child);
b90fa9ae 1469 }
99b7db7b
NP
1470 br_write_unlock(vfsmount_lock);
1471
b90fa9ae 1472 return 0;
719f5d7f
MS
1473
1474 out_cleanup_ids:
fc7be130 1475 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1476 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1477 out:
1478 return err;
b90fa9ae
RP
1479}
1480
b12cea91
AV
1481static int lock_mount(struct path *path)
1482{
1483 struct vfsmount *mnt;
1484retry:
1485 mutex_lock(&path->dentry->d_inode->i_mutex);
1486 if (unlikely(cant_mount(path->dentry))) {
1487 mutex_unlock(&path->dentry->d_inode->i_mutex);
1488 return -ENOENT;
1489 }
1490 down_write(&namespace_sem);
1491 mnt = lookup_mnt(path);
1492 if (likely(!mnt))
1493 return 0;
1494 up_write(&namespace_sem);
1495 mutex_unlock(&path->dentry->d_inode->i_mutex);
1496 path_put(path);
1497 path->mnt = mnt;
1498 path->dentry = dget(mnt->mnt_root);
1499 goto retry;
1500}
1501
1502static void unlock_mount(struct path *path)
1503{
1504 up_write(&namespace_sem);
1505 mutex_unlock(&path->dentry->d_inode->i_mutex);
1506}
1507
95bc5f25 1508static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1509{
95bc5f25 1510 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1511 return -EINVAL;
1512
8c3ee42e 1513 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1514 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1515 return -ENOTDIR;
1516
b12cea91
AV
1517 if (d_unlinked(path->dentry))
1518 return -ENOENT;
1da177e4 1519
95bc5f25 1520 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1521}
1522
7a2e8a8f
VA
1523/*
1524 * Sanity check the flags to change_mnt_propagation.
1525 */
1526
1527static int flags_to_propagation_type(int flags)
1528{
7c6e984d 1529 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1530
1531 /* Fail if any non-propagation flags are set */
1532 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1533 return 0;
1534 /* Only one propagation flag should be set */
1535 if (!is_power_of_2(type))
1536 return 0;
1537 return type;
1538}
1539
07b20889
RP
1540/*
1541 * recursively change the type of the mountpoint.
1542 */
0a0d8a46 1543static int do_change_type(struct path *path, int flag)
07b20889 1544{
315fc83e 1545 struct mount *m;
4b8b21f4 1546 struct mount *mnt = real_mount(path->mnt);
07b20889 1547 int recurse = flag & MS_REC;
7a2e8a8f 1548 int type;
719f5d7f 1549 int err = 0;
07b20889 1550
ee6f9582
MS
1551 if (!capable(CAP_SYS_ADMIN))
1552 return -EPERM;
1553
2d92ab3c 1554 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1555 return -EINVAL;
1556
7a2e8a8f
VA
1557 type = flags_to_propagation_type(flag);
1558 if (!type)
1559 return -EINVAL;
1560
07b20889 1561 down_write(&namespace_sem);
719f5d7f
MS
1562 if (type == MS_SHARED) {
1563 err = invent_group_ids(mnt, recurse);
1564 if (err)
1565 goto out_unlock;
1566 }
1567
99b7db7b 1568 br_write_lock(vfsmount_lock);
909b0a88 1569 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1570 change_mnt_propagation(m, type);
99b7db7b 1571 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1572
1573 out_unlock:
07b20889 1574 up_write(&namespace_sem);
719f5d7f 1575 return err;
07b20889
RP
1576}
1577
1da177e4
LT
1578/*
1579 * do loopback mount.
1580 */
0a0d8a46 1581static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1582 int recurse)
1da177e4 1583{
b12cea91 1584 LIST_HEAD(umount_list);
2d92ab3c 1585 struct path old_path;
87129cc0 1586 struct mount *mnt = NULL, *old;
2d92ab3c 1587 int err = mount_is_safe(path);
1da177e4
LT
1588 if (err)
1589 return err;
1590 if (!old_name || !*old_name)
1591 return -EINVAL;
815d405c 1592 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1593 if (err)
1594 return err;
1595
b12cea91
AV
1596 err = lock_mount(path);
1597 if (err)
1598 goto out;
1599
87129cc0
AV
1600 old = real_mount(old_path.mnt);
1601
1da177e4 1602 err = -EINVAL;
fc7be130 1603 if (IS_MNT_UNBINDABLE(old))
b12cea91 1604 goto out2;
9676f0c6 1605
143c8c91 1606 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1607 goto out2;
1da177e4 1608
ccd48bc7
AV
1609 err = -ENOMEM;
1610 if (recurse)
87129cc0 1611 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1612 else
87129cc0 1613 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7
AV
1614
1615 if (!mnt)
b12cea91 1616 goto out2;
ccd48bc7 1617
95bc5f25 1618 err = graft_tree(mnt, path);
ccd48bc7 1619 if (err) {
99b7db7b 1620 br_write_lock(vfsmount_lock);
761d5c38 1621 umount_tree(mnt, 0, &umount_list);
99b7db7b 1622 br_write_unlock(vfsmount_lock);
5b83d2c5 1623 }
b12cea91
AV
1624out2:
1625 unlock_mount(path);
1626 release_mounts(&umount_list);
ccd48bc7 1627out:
2d92ab3c 1628 path_put(&old_path);
1da177e4
LT
1629 return err;
1630}
1631
2e4b7fcd
DH
1632static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1633{
1634 int error = 0;
1635 int readonly_request = 0;
1636
1637 if (ms_flags & MS_RDONLY)
1638 readonly_request = 1;
1639 if (readonly_request == __mnt_is_readonly(mnt))
1640 return 0;
1641
1642 if (readonly_request)
83adc753 1643 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1644 else
83adc753 1645 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1646 return error;
1647}
1648
1da177e4
LT
1649/*
1650 * change filesystem flags. dir should be a physical root of filesystem.
1651 * If you've mounted a non-root directory somewhere and want to do remount
1652 * on it - tough luck.
1653 */
0a0d8a46 1654static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1655 void *data)
1656{
1657 int err;
2d92ab3c 1658 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1659 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1660
1661 if (!capable(CAP_SYS_ADMIN))
1662 return -EPERM;
1663
143c8c91 1664 if (!check_mnt(mnt))
1da177e4
LT
1665 return -EINVAL;
1666
2d92ab3c 1667 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1668 return -EINVAL;
1669
ff36fe2c
EP
1670 err = security_sb_remount(sb, data);
1671 if (err)
1672 return err;
1673
1da177e4 1674 down_write(&sb->s_umount);
2e4b7fcd 1675 if (flags & MS_BIND)
2d92ab3c 1676 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1677 else
2e4b7fcd 1678 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1679 if (!err) {
99b7db7b 1680 br_write_lock(vfsmount_lock);
143c8c91
AV
1681 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1682 mnt->mnt.mnt_flags = mnt_flags;
99b7db7b 1683 br_write_unlock(vfsmount_lock);
7b43a79f 1684 }
1da177e4 1685 up_write(&sb->s_umount);
0e55a7cc 1686 if (!err) {
99b7db7b 1687 br_write_lock(vfsmount_lock);
143c8c91 1688 touch_mnt_namespace(mnt->mnt_ns);
99b7db7b 1689 br_write_unlock(vfsmount_lock);
0e55a7cc 1690 }
1da177e4
LT
1691 return err;
1692}
1693
cbbe362c 1694static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1695{
315fc83e 1696 struct mount *p;
909b0a88 1697 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1698 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1699 return 1;
1700 }
1701 return 0;
1702}
1703
0a0d8a46 1704static int do_move_mount(struct path *path, char *old_name)
1da177e4 1705{
2d92ab3c 1706 struct path old_path, parent_path;
676da58d 1707 struct mount *p;
0fb54e50 1708 struct mount *old;
1da177e4
LT
1709 int err = 0;
1710 if (!capable(CAP_SYS_ADMIN))
1711 return -EPERM;
1712 if (!old_name || !*old_name)
1713 return -EINVAL;
2d92ab3c 1714 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1715 if (err)
1716 return err;
1717
b12cea91 1718 err = lock_mount(path);
cc53ce53
DH
1719 if (err < 0)
1720 goto out;
1721
143c8c91 1722 old = real_mount(old_path.mnt);
fc7be130 1723 p = real_mount(path->mnt);
143c8c91 1724
1da177e4 1725 err = -EINVAL;
fc7be130 1726 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1727 goto out1;
1728
f3da392e 1729 if (d_unlinked(path->dentry))
21444403 1730 goto out1;
1da177e4
LT
1731
1732 err = -EINVAL;
2d92ab3c 1733 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1734 goto out1;
1da177e4 1735
676da58d 1736 if (!mnt_has_parent(old))
21444403 1737 goto out1;
1da177e4 1738
2d92ab3c
AV
1739 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1740 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1741 goto out1;
1742 /*
1743 * Don't move a mount residing in a shared parent.
1744 */
fc7be130 1745 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1746 goto out1;
9676f0c6
RP
1747 /*
1748 * Don't move a mount tree containing unbindable mounts to a destination
1749 * mount which is shared.
1750 */
fc7be130 1751 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1752 goto out1;
1da177e4 1753 err = -ELOOP;
fc7be130 1754 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1755 if (p == old)
21444403 1756 goto out1;
1da177e4 1757
0fb54e50 1758 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1759 if (err)
21444403 1760 goto out1;
1da177e4
LT
1761
1762 /* if the mount is moved, it should no longer be expire
1763 * automatically */
6776db3d 1764 list_del_init(&old->mnt_expire);
1da177e4 1765out1:
b12cea91 1766 unlock_mount(path);
1da177e4 1767out:
1da177e4 1768 if (!err)
1a390689 1769 path_put(&parent_path);
2d92ab3c 1770 path_put(&old_path);
1da177e4
LT
1771 return err;
1772}
1773
9d412a43
AV
1774static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1775{
1776 int err;
1777 const char *subtype = strchr(fstype, '.');
1778 if (subtype) {
1779 subtype++;
1780 err = -EINVAL;
1781 if (!subtype[0])
1782 goto err;
1783 } else
1784 subtype = "";
1785
1786 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1787 err = -ENOMEM;
1788 if (!mnt->mnt_sb->s_subtype)
1789 goto err;
1790 return mnt;
1791
1792 err:
1793 mntput(mnt);
1794 return ERR_PTR(err);
1795}
1796
79e801a9 1797static struct vfsmount *
9d412a43
AV
1798do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1799{
1800 struct file_system_type *type = get_fs_type(fstype);
1801 struct vfsmount *mnt;
1802 if (!type)
1803 return ERR_PTR(-ENODEV);
1804 mnt = vfs_kern_mount(type, flags, name, data);
1805 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1806 !mnt->mnt_sb->s_subtype)
1807 mnt = fs_set_subtype(mnt, fstype);
1808 put_filesystem(type);
1809 return mnt;
1810}
9d412a43
AV
1811
1812/*
1813 * add a mount into a namespace's mount tree
1814 */
95bc5f25 1815static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1816{
1817 int err;
1818
1819 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1820
b12cea91
AV
1821 err = lock_mount(path);
1822 if (err)
1823 return err;
9d412a43
AV
1824
1825 err = -EINVAL;
143c8c91 1826 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
9d412a43
AV
1827 goto unlock;
1828
1829 /* Refuse the same filesystem on the same mount point */
1830 err = -EBUSY;
95bc5f25 1831 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1832 path->mnt->mnt_root == path->dentry)
1833 goto unlock;
1834
1835 err = -EINVAL;
95bc5f25 1836 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1837 goto unlock;
1838
95bc5f25 1839 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
1840 err = graft_tree(newmnt, path);
1841
1842unlock:
b12cea91 1843 unlock_mount(path);
9d412a43
AV
1844 return err;
1845}
b1e75df4 1846
1da177e4
LT
1847/*
1848 * create a new mount for userspace and request it to be added into the
1849 * namespace's tree
1850 */
0a0d8a46 1851static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1852 int mnt_flags, char *name, void *data)
1853{
1854 struct vfsmount *mnt;
15f9a3f3 1855 int err;
1da177e4 1856
eca6f534 1857 if (!type)
1da177e4
LT
1858 return -EINVAL;
1859
1860 /* we need capabilities... */
1861 if (!capable(CAP_SYS_ADMIN))
1862 return -EPERM;
1863
1864 mnt = do_kern_mount(type, flags, name, data);
1865 if (IS_ERR(mnt))
1866 return PTR_ERR(mnt);
1867
95bc5f25 1868 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1869 if (err)
1870 mntput(mnt);
1871 return err;
1da177e4
LT
1872}
1873
19a167af
AV
1874int finish_automount(struct vfsmount *m, struct path *path)
1875{
6776db3d 1876 struct mount *mnt = real_mount(m);
19a167af
AV
1877 int err;
1878 /* The new mount record should have at least 2 refs to prevent it being
1879 * expired before we get a chance to add it
1880 */
6776db3d 1881 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
1882
1883 if (m->mnt_sb == path->mnt->mnt_sb &&
1884 m->mnt_root == path->dentry) {
b1e75df4
AV
1885 err = -ELOOP;
1886 goto fail;
19a167af
AV
1887 }
1888
95bc5f25 1889 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1890 if (!err)
1891 return 0;
1892fail:
1893 /* remove m from any expiration list it may be on */
6776db3d 1894 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4
AV
1895 down_write(&namespace_sem);
1896 br_write_lock(vfsmount_lock);
6776db3d 1897 list_del_init(&mnt->mnt_expire);
b1e75df4
AV
1898 br_write_unlock(vfsmount_lock);
1899 up_write(&namespace_sem);
19a167af 1900 }
b1e75df4
AV
1901 mntput(m);
1902 mntput(m);
19a167af
AV
1903 return err;
1904}
1905
ea5b778a
DH
1906/**
1907 * mnt_set_expiry - Put a mount on an expiration list
1908 * @mnt: The mount to list.
1909 * @expiry_list: The list to add the mount to.
1910 */
1911void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1912{
1913 down_write(&namespace_sem);
1914 br_write_lock(vfsmount_lock);
1915
6776db3d 1916 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a
DH
1917
1918 br_write_unlock(vfsmount_lock);
1919 up_write(&namespace_sem);
1920}
1921EXPORT_SYMBOL(mnt_set_expiry);
1922
1da177e4
LT
1923/*
1924 * process a list of expirable mountpoints with the intent of discarding any
1925 * mountpoints that aren't in use and haven't been touched since last we came
1926 * here
1927 */
1928void mark_mounts_for_expiry(struct list_head *mounts)
1929{
761d5c38 1930 struct mount *mnt, *next;
1da177e4 1931 LIST_HEAD(graveyard);
bcc5c7d2 1932 LIST_HEAD(umounts);
1da177e4
LT
1933
1934 if (list_empty(mounts))
1935 return;
1936
bcc5c7d2 1937 down_write(&namespace_sem);
99b7db7b 1938 br_write_lock(vfsmount_lock);
1da177e4
LT
1939
1940 /* extract from the expiration list every vfsmount that matches the
1941 * following criteria:
1942 * - only referenced by its parent vfsmount
1943 * - still marked for expiry (marked on the last call here; marks are
1944 * cleared by mntput())
1945 */
6776db3d 1946 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 1947 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 1948 propagate_mount_busy(mnt, 1))
1da177e4 1949 continue;
6776db3d 1950 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1951 }
bcc5c7d2 1952 while (!list_empty(&graveyard)) {
6776db3d 1953 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 1954 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
1955 umount_tree(mnt, 1, &umounts);
1956 }
99b7db7b 1957 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
1958 up_write(&namespace_sem);
1959
1960 release_mounts(&umounts);
5528f911
TM
1961}
1962
1963EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1964
1965/*
1966 * Ripoff of 'select_parent()'
1967 *
1968 * search the list of submounts for a given mountpoint, and move any
1969 * shrinkable submounts to the 'graveyard' list.
1970 */
692afc31 1971static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 1972{
692afc31 1973 struct mount *this_parent = parent;
5528f911
TM
1974 struct list_head *next;
1975 int found = 0;
1976
1977repeat:
6b41d536 1978 next = this_parent->mnt_mounts.next;
5528f911 1979resume:
6b41d536 1980 while (next != &this_parent->mnt_mounts) {
5528f911 1981 struct list_head *tmp = next;
6b41d536 1982 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
1983
1984 next = tmp->next;
692afc31 1985 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 1986 continue;
5528f911
TM
1987 /*
1988 * Descend a level if the d_mounts list is non-empty.
1989 */
6b41d536 1990 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
1991 this_parent = mnt;
1992 goto repeat;
1993 }
1da177e4 1994
1ab59738 1995 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 1996 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
1997 found++;
1998 }
1da177e4 1999 }
5528f911
TM
2000 /*
2001 * All done at this level ... ascend and resume the search
2002 */
2003 if (this_parent != parent) {
6b41d536 2004 next = this_parent->mnt_child.next;
0714a533 2005 this_parent = this_parent->mnt_parent;
5528f911
TM
2006 goto resume;
2007 }
2008 return found;
2009}
2010
2011/*
2012 * process a list of expirable mountpoints with the intent of discarding any
2013 * submounts of a specific parent mountpoint
99b7db7b
NP
2014 *
2015 * vfsmount_lock must be held for write
5528f911 2016 */
692afc31 2017static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2018{
2019 LIST_HEAD(graveyard);
761d5c38 2020 struct mount *m;
5528f911 2021
5528f911 2022 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2023 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2024 while (!list_empty(&graveyard)) {
761d5c38 2025 m = list_first_entry(&graveyard, struct mount,
6776db3d 2026 mnt_expire);
143c8c91 2027 touch_mnt_namespace(m->mnt_ns);
afef80b3 2028 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2029 }
2030 }
1da177e4
LT
2031}
2032
1da177e4
LT
2033/*
2034 * Some copy_from_user() implementations do not return the exact number of
2035 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2036 * Note that this function differs from copy_from_user() in that it will oops
2037 * on bad values of `to', rather than returning a short copy.
2038 */
b58fed8b
RP
2039static long exact_copy_from_user(void *to, const void __user * from,
2040 unsigned long n)
1da177e4
LT
2041{
2042 char *t = to;
2043 const char __user *f = from;
2044 char c;
2045
2046 if (!access_ok(VERIFY_READ, from, n))
2047 return n;
2048
2049 while (n) {
2050 if (__get_user(c, f)) {
2051 memset(t, 0, n);
2052 break;
2053 }
2054 *t++ = c;
2055 f++;
2056 n--;
2057 }
2058 return n;
2059}
2060
b58fed8b 2061int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2062{
2063 int i;
2064 unsigned long page;
2065 unsigned long size;
b58fed8b 2066
1da177e4
LT
2067 *where = 0;
2068 if (!data)
2069 return 0;
2070
2071 if (!(page = __get_free_page(GFP_KERNEL)))
2072 return -ENOMEM;
2073
2074 /* We only care that *some* data at the address the user
2075 * gave us is valid. Just in case, we'll zero
2076 * the remainder of the page.
2077 */
2078 /* copy_from_user cannot cross TASK_SIZE ! */
2079 size = TASK_SIZE - (unsigned long)data;
2080 if (size > PAGE_SIZE)
2081 size = PAGE_SIZE;
2082
2083 i = size - exact_copy_from_user((void *)page, data, size);
2084 if (!i) {
b58fed8b 2085 free_page(page);
1da177e4
LT
2086 return -EFAULT;
2087 }
2088 if (i != PAGE_SIZE)
2089 memset((char *)page + i, 0, PAGE_SIZE - i);
2090 *where = page;
2091 return 0;
2092}
2093
eca6f534
VN
2094int copy_mount_string(const void __user *data, char **where)
2095{
2096 char *tmp;
2097
2098 if (!data) {
2099 *where = NULL;
2100 return 0;
2101 }
2102
2103 tmp = strndup_user(data, PAGE_SIZE);
2104 if (IS_ERR(tmp))
2105 return PTR_ERR(tmp);
2106
2107 *where = tmp;
2108 return 0;
2109}
2110
1da177e4
LT
2111/*
2112 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2113 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2114 *
2115 * data is a (void *) that can point to any structure up to
2116 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2117 * information (or be NULL).
2118 *
2119 * Pre-0.97 versions of mount() didn't have a flags word.
2120 * When the flags word was introduced its top half was required
2121 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2122 * Therefore, if this magic number is present, it carries no information
2123 * and must be discarded.
2124 */
b58fed8b 2125long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2126 unsigned long flags, void *data_page)
2127{
2d92ab3c 2128 struct path path;
1da177e4
LT
2129 int retval = 0;
2130 int mnt_flags = 0;
2131
2132 /* Discard magic */
2133 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2134 flags &= ~MS_MGC_MSK;
2135
2136 /* Basic sanity checks */
2137
2138 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2139 return -EINVAL;
1da177e4
LT
2140
2141 if (data_page)
2142 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2143
a27ab9f2
TH
2144 /* ... and get the mountpoint */
2145 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2146 if (retval)
2147 return retval;
2148
2149 retval = security_sb_mount(dev_name, &path,
2150 type_page, flags, data_page);
2151 if (retval)
2152 goto dput_out;
2153
613cbe3d
AK
2154 /* Default to relatime unless overriden */
2155 if (!(flags & MS_NOATIME))
2156 mnt_flags |= MNT_RELATIME;
0a1c01c9 2157
1da177e4
LT
2158 /* Separate the per-mountpoint flags */
2159 if (flags & MS_NOSUID)
2160 mnt_flags |= MNT_NOSUID;
2161 if (flags & MS_NODEV)
2162 mnt_flags |= MNT_NODEV;
2163 if (flags & MS_NOEXEC)
2164 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2165 if (flags & MS_NOATIME)
2166 mnt_flags |= MNT_NOATIME;
2167 if (flags & MS_NODIRATIME)
2168 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2169 if (flags & MS_STRICTATIME)
2170 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2171 if (flags & MS_RDONLY)
2172 mnt_flags |= MNT_READONLY;
fc33a7bb 2173
7a4dec53 2174 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2175 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2176 MS_STRICTATIME);
1da177e4 2177
1da177e4 2178 if (flags & MS_REMOUNT)
2d92ab3c 2179 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2180 data_page);
2181 else if (flags & MS_BIND)
2d92ab3c 2182 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2183 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2184 retval = do_change_type(&path, flags);
1da177e4 2185 else if (flags & MS_MOVE)
2d92ab3c 2186 retval = do_move_mount(&path, dev_name);
1da177e4 2187 else
2d92ab3c 2188 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2189 dev_name, data_page);
2190dput_out:
2d92ab3c 2191 path_put(&path);
1da177e4
LT
2192 return retval;
2193}
2194
cf8d2c11
TM
2195static struct mnt_namespace *alloc_mnt_ns(void)
2196{
2197 struct mnt_namespace *new_ns;
2198
2199 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2200 if (!new_ns)
2201 return ERR_PTR(-ENOMEM);
2202 atomic_set(&new_ns->count, 1);
2203 new_ns->root = NULL;
2204 INIT_LIST_HEAD(&new_ns->list);
2205 init_waitqueue_head(&new_ns->poll);
2206 new_ns->event = 0;
2207 return new_ns;
2208}
2209
f03c6599
AV
2210void mnt_make_longterm(struct vfsmount *mnt)
2211{
83adc753 2212 __mnt_make_longterm(real_mount(mnt));
f03c6599
AV
2213}
2214
83adc753 2215void mnt_make_shortterm(struct vfsmount *m)
f03c6599 2216{
7e3d0eb0 2217#ifdef CONFIG_SMP
83adc753 2218 struct mount *mnt = real_mount(m);
68e8a9fe 2219 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
f03c6599
AV
2220 return;
2221 br_write_lock(vfsmount_lock);
68e8a9fe 2222 atomic_dec(&mnt->mnt_longterm);
f03c6599 2223 br_write_unlock(vfsmount_lock);
7e3d0eb0 2224#endif
f03c6599
AV
2225}
2226
741a2951
JD
2227/*
2228 * Allocate a new namespace structure and populate it with contents
2229 * copied from the namespace of the passed in task structure.
2230 */
e3222c4e 2231static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2232 struct fs_struct *fs)
1da177e4 2233{
6b3286ed 2234 struct mnt_namespace *new_ns;
7f2da1e7 2235 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2236 struct mount *p, *q;
be08d6d2 2237 struct mount *old = mnt_ns->root;
cb338d06 2238 struct mount *new;
1da177e4 2239
cf8d2c11
TM
2240 new_ns = alloc_mnt_ns();
2241 if (IS_ERR(new_ns))
2242 return new_ns;
1da177e4 2243
390c6843 2244 down_write(&namespace_sem);
1da177e4 2245 /* First pass: copy the tree topology */
909b0a88 2246 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
cb338d06 2247 if (!new) {
390c6843 2248 up_write(&namespace_sem);
1da177e4 2249 kfree(new_ns);
5cc4a034 2250 return ERR_PTR(-ENOMEM);
1da177e4 2251 }
be08d6d2 2252 new_ns->root = new;
99b7db7b 2253 br_write_lock(vfsmount_lock);
1a4eeaf2 2254 list_add_tail(&new_ns->list, &new->mnt_list);
99b7db7b 2255 br_write_unlock(vfsmount_lock);
1da177e4
LT
2256
2257 /*
2258 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2259 * as belonging to new namespace. We have already acquired a private
2260 * fs_struct, so tsk->fs->lock is not needed.
2261 */
909b0a88 2262 p = old;
cb338d06 2263 q = new;
1da177e4 2264 while (p) {
143c8c91 2265 q->mnt_ns = new_ns;
83adc753 2266 __mnt_make_longterm(q);
1da177e4 2267 if (fs) {
315fc83e
AV
2268 if (&p->mnt == fs->root.mnt) {
2269 fs->root.mnt = mntget(&q->mnt);
83adc753 2270 __mnt_make_longterm(q);
315fc83e
AV
2271 mnt_make_shortterm(&p->mnt);
2272 rootmnt = &p->mnt;
1da177e4 2273 }
315fc83e
AV
2274 if (&p->mnt == fs->pwd.mnt) {
2275 fs->pwd.mnt = mntget(&q->mnt);
83adc753 2276 __mnt_make_longterm(q);
315fc83e
AV
2277 mnt_make_shortterm(&p->mnt);
2278 pwdmnt = &p->mnt;
1da177e4 2279 }
1da177e4 2280 }
909b0a88
AV
2281 p = next_mnt(p, old);
2282 q = next_mnt(q, new);
1da177e4 2283 }
390c6843 2284 up_write(&namespace_sem);
1da177e4 2285
1da177e4 2286 if (rootmnt)
f03c6599 2287 mntput(rootmnt);
1da177e4 2288 if (pwdmnt)
f03c6599 2289 mntput(pwdmnt);
1da177e4 2290
741a2951
JD
2291 return new_ns;
2292}
2293
213dd266 2294struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2295 struct fs_struct *new_fs)
741a2951 2296{
6b3286ed 2297 struct mnt_namespace *new_ns;
741a2951 2298
e3222c4e 2299 BUG_ON(!ns);
6b3286ed 2300 get_mnt_ns(ns);
741a2951
JD
2301
2302 if (!(flags & CLONE_NEWNS))
e3222c4e 2303 return ns;
741a2951 2304
e3222c4e 2305 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2306
6b3286ed 2307 put_mnt_ns(ns);
e3222c4e 2308 return new_ns;
1da177e4
LT
2309}
2310
cf8d2c11
TM
2311/**
2312 * create_mnt_ns - creates a private namespace and adds a root filesystem
2313 * @mnt: pointer to the new root filesystem mountpoint
2314 */
1a4eeaf2 2315static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2316{
1a4eeaf2 2317 struct mnt_namespace *new_ns = alloc_mnt_ns();
cf8d2c11 2318 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2319 struct mount *mnt = real_mount(m);
2320 mnt->mnt_ns = new_ns;
2321 __mnt_make_longterm(mnt);
be08d6d2 2322 new_ns->root = mnt;
1a4eeaf2 2323 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2324 } else {
1a4eeaf2 2325 mntput(m);
cf8d2c11
TM
2326 }
2327 return new_ns;
2328}
cf8d2c11 2329
ea441d11
AV
2330struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2331{
2332 struct mnt_namespace *ns;
d31da0f0 2333 struct super_block *s;
ea441d11
AV
2334 struct path path;
2335 int err;
2336
2337 ns = create_mnt_ns(mnt);
2338 if (IS_ERR(ns))
2339 return ERR_CAST(ns);
2340
2341 err = vfs_path_lookup(mnt->mnt_root, mnt,
2342 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2343
2344 put_mnt_ns(ns);
2345
2346 if (err)
2347 return ERR_PTR(err);
2348
2349 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2350 s = path.mnt->mnt_sb;
2351 atomic_inc(&s->s_active);
ea441d11
AV
2352 mntput(path.mnt);
2353 /* lock the sucker */
d31da0f0 2354 down_write(&s->s_umount);
ea441d11
AV
2355 /* ... and return the root of (sub)tree on it */
2356 return path.dentry;
2357}
2358EXPORT_SYMBOL(mount_subtree);
2359
bdc480e3
HC
2360SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2361 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2362{
eca6f534
VN
2363 int ret;
2364 char *kernel_type;
2365 char *kernel_dir;
2366 char *kernel_dev;
1da177e4 2367 unsigned long data_page;
1da177e4 2368
eca6f534
VN
2369 ret = copy_mount_string(type, &kernel_type);
2370 if (ret < 0)
2371 goto out_type;
1da177e4 2372
eca6f534
VN
2373 kernel_dir = getname(dir_name);
2374 if (IS_ERR(kernel_dir)) {
2375 ret = PTR_ERR(kernel_dir);
2376 goto out_dir;
2377 }
1da177e4 2378
eca6f534
VN
2379 ret = copy_mount_string(dev_name, &kernel_dev);
2380 if (ret < 0)
2381 goto out_dev;
1da177e4 2382
eca6f534
VN
2383 ret = copy_mount_options(data, &data_page);
2384 if (ret < 0)
2385 goto out_data;
1da177e4 2386
eca6f534
VN
2387 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2388 (void *) data_page);
1da177e4 2389
eca6f534
VN
2390 free_page(data_page);
2391out_data:
2392 kfree(kernel_dev);
2393out_dev:
2394 putname(kernel_dir);
2395out_dir:
2396 kfree(kernel_type);
2397out_type:
2398 return ret;
1da177e4
LT
2399}
2400
afac7cba
AV
2401/*
2402 * Return true if path is reachable from root
2403 *
2404 * namespace_sem or vfsmount_lock is held
2405 */
643822b4 2406bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2407 const struct path *root)
2408{
643822b4 2409 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2410 dentry = mnt->mnt_mountpoint;
0714a533 2411 mnt = mnt->mnt_parent;
afac7cba 2412 }
643822b4 2413 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2414}
2415
2416int path_is_under(struct path *path1, struct path *path2)
2417{
2418 int res;
2419 br_read_lock(vfsmount_lock);
643822b4 2420 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
afac7cba
AV
2421 br_read_unlock(vfsmount_lock);
2422 return res;
2423}
2424EXPORT_SYMBOL(path_is_under);
2425
1da177e4
LT
2426/*
2427 * pivot_root Semantics:
2428 * Moves the root file system of the current process to the directory put_old,
2429 * makes new_root as the new root file system of the current process, and sets
2430 * root/cwd of all processes which had them on the current root to new_root.
2431 *
2432 * Restrictions:
2433 * The new_root and put_old must be directories, and must not be on the
2434 * same file system as the current process root. The put_old must be
2435 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2436 * pointed to by put_old must yield the same directory as new_root. No other
2437 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2438 *
4a0d11fa
NB
2439 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2440 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2441 * in this situation.
2442 *
1da177e4
LT
2443 * Notes:
2444 * - we don't move root/cwd if they are not at the root (reason: if something
2445 * cared enough to change them, it's probably wrong to force them elsewhere)
2446 * - it's okay to pick a root that isn't the root of a file system, e.g.
2447 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2448 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2449 * first.
2450 */
3480b257
HC
2451SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2452 const char __user *, put_old)
1da177e4 2453{
2d8f3038 2454 struct path new, old, parent_path, root_parent, root;
419148da 2455 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2456 int error;
2457
2458 if (!capable(CAP_SYS_ADMIN))
2459 return -EPERM;
2460
2d8f3038 2461 error = user_path_dir(new_root, &new);
1da177e4
LT
2462 if (error)
2463 goto out0;
1da177e4 2464
2d8f3038 2465 error = user_path_dir(put_old, &old);
1da177e4
LT
2466 if (error)
2467 goto out1;
2468
2d8f3038 2469 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2470 if (error)
2471 goto out2;
1da177e4 2472
f7ad3c6b 2473 get_fs_root(current->fs, &root);
b12cea91
AV
2474 error = lock_mount(&old);
2475 if (error)
2476 goto out3;
2477
1da177e4 2478 error = -EINVAL;
419148da
AV
2479 new_mnt = real_mount(new.mnt);
2480 root_mnt = real_mount(root.mnt);
fc7be130
AV
2481 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2482 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2483 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2484 goto out4;
143c8c91 2485 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2486 goto out4;
1da177e4 2487 error = -ENOENT;
f3da392e 2488 if (d_unlinked(new.dentry))
b12cea91 2489 goto out4;
f3da392e 2490 if (d_unlinked(old.dentry))
b12cea91 2491 goto out4;
1da177e4 2492 error = -EBUSY;
2d8f3038
AV
2493 if (new.mnt == root.mnt ||
2494 old.mnt == root.mnt)
b12cea91 2495 goto out4; /* loop, on the same file system */
1da177e4 2496 error = -EINVAL;
8c3ee42e 2497 if (root.mnt->mnt_root != root.dentry)
b12cea91 2498 goto out4; /* not a mountpoint */
676da58d 2499 if (!mnt_has_parent(root_mnt))
b12cea91 2500 goto out4; /* not attached */
2d8f3038 2501 if (new.mnt->mnt_root != new.dentry)
b12cea91 2502 goto out4; /* not a mountpoint */
676da58d 2503 if (!mnt_has_parent(new_mnt))
b12cea91 2504 goto out4; /* not attached */
4ac91378 2505 /* make sure we can reach put_old from new_root */
643822b4 2506 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2507 goto out4;
27cb1572 2508 br_write_lock(vfsmount_lock);
419148da
AV
2509 detach_mnt(new_mnt, &parent_path);
2510 detach_mnt(root_mnt, &root_parent);
4ac91378 2511 /* mount old root on put_old */
419148da 2512 attach_mnt(root_mnt, &old);
4ac91378 2513 /* mount new_root on / */
419148da 2514 attach_mnt(new_mnt, &root_parent);
6b3286ed 2515 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2516 br_write_unlock(vfsmount_lock);
2d8f3038 2517 chroot_fs_refs(&root, &new);
1da177e4 2518 error = 0;
b12cea91
AV
2519out4:
2520 unlock_mount(&old);
2521 if (!error) {
2522 path_put(&root_parent);
2523 path_put(&parent_path);
2524 }
2525out3:
8c3ee42e 2526 path_put(&root);
b12cea91 2527out2:
2d8f3038 2528 path_put(&old);
1da177e4 2529out1:
2d8f3038 2530 path_put(&new);
1da177e4 2531out0:
1da177e4 2532 return error;
1da177e4
LT
2533}
2534
2535static void __init init_mount_tree(void)
2536{
2537 struct vfsmount *mnt;
6b3286ed 2538 struct mnt_namespace *ns;
ac748a09 2539 struct path root;
1da177e4
LT
2540
2541 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2542 if (IS_ERR(mnt))
2543 panic("Can't create rootfs");
b3e19d92 2544
3b22edc5
TM
2545 ns = create_mnt_ns(mnt);
2546 if (IS_ERR(ns))
1da177e4 2547 panic("Can't allocate initial namespace");
6b3286ed
KK
2548
2549 init_task.nsproxy->mnt_ns = ns;
2550 get_mnt_ns(ns);
2551
be08d6d2
AV
2552 root.mnt = mnt;
2553 root.dentry = mnt->mnt_root;
ac748a09
JB
2554
2555 set_fs_pwd(current->fs, &root);
2556 set_fs_root(current->fs, &root);
1da177e4
LT
2557}
2558
74bf17cf 2559void __init mnt_init(void)
1da177e4 2560{
13f14b4d 2561 unsigned u;
15a67dd8 2562 int err;
1da177e4 2563
390c6843
RP
2564 init_rwsem(&namespace_sem);
2565
7d6fec45 2566 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2567 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2568
b58fed8b 2569 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2570
2571 if (!mount_hashtable)
2572 panic("Failed to allocate mount hash table\n");
2573
80cdc6da 2574 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2575
2576 for (u = 0; u < HASH_SIZE; u++)
2577 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2578
99b7db7b
NP
2579 br_lock_init(vfsmount_lock);
2580
15a67dd8
RD
2581 err = sysfs_init();
2582 if (err)
2583 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2584 __func__, err);
00d26666
GKH
2585 fs_kobj = kobject_create_and_add("fs", NULL);
2586 if (!fs_kobj)
8e24eea7 2587 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2588 init_rootfs();
2589 init_mount_tree();
2590}
2591
616511d0 2592void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2593{
70fbcdf4 2594 LIST_HEAD(umount_list);
616511d0 2595
d498b25a 2596 if (!atomic_dec_and_test(&ns->count))
616511d0 2597 return;
390c6843 2598 down_write(&namespace_sem);
99b7db7b 2599 br_write_lock(vfsmount_lock);
be08d6d2 2600 umount_tree(ns->root, 0, &umount_list);
99b7db7b 2601 br_write_unlock(vfsmount_lock);
390c6843 2602 up_write(&namespace_sem);
70fbcdf4 2603 release_mounts(&umount_list);
6b3286ed 2604 kfree(ns);
1da177e4 2605}
9d412a43
AV
2606
2607struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2608{
423e0ab0
TC
2609 struct vfsmount *mnt;
2610 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2611 if (!IS_ERR(mnt)) {
2612 /*
2613 * it is a longterm mount, don't release mnt until
2614 * we unmount before file sys is unregistered
2615 */
2616 mnt_make_longterm(mnt);
2617 }
2618 return mnt;
9d412a43
AV
2619}
2620EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2621
2622void kern_unmount(struct vfsmount *mnt)
2623{
2624 /* release long term mount so mount point can be released */
2625 if (!IS_ERR_OR_NULL(mnt)) {
2626 mnt_make_shortterm(mnt);
2627 mntput(mnt);
2628 }
2629}
2630EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2631
2632bool our_mnt(struct vfsmount *mnt)
2633{
143c8c91 2634 return check_mnt(real_mount(mnt));
02125a82 2635}