]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/fec_mxc.c
i.mx6q: mx6qarm2: Enable the usboh3 clock
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
0b23fb36
IY
1/*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <malloc.h>
26#include <net.h>
27#include <miiphy.h>
28#include "fec_mxc.h"
29
30#include <asm/arch/clock.h>
31#include <asm/arch/imx-regs.h>
32#include <asm/io.h>
33#include <asm/errno.h>
34
35DECLARE_GLOBAL_DATA_PTR;
36
37#ifndef CONFIG_MII
38#error "CONFIG_MII has to be defined!"
39#endif
40
392b8502
MV
41#ifndef CONFIG_FEC_XCV_TYPE
42#define CONFIG_FEC_XCV_TYPE MII100
43#endif
44
be7e87e2
MV
45/*
46 * The i.MX28 operates with packets in big endian. We need to swap them before
47 * sending and after receiving.
48 */
49#ifdef CONFIG_MX28
50#define CONFIG_FEC_MXC_SWAP_PACKET
51#endif
52
0b23fb36
IY
53#undef DEBUG
54
55struct nbuf {
56 uint8_t data[1500]; /**< actual data */
57 int length; /**< actual length */
58 int used; /**< buffer in use or not */
59 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
60};
61
be7e87e2
MV
62#ifdef CONFIG_FEC_MXC_SWAP_PACKET
63static void swap_packet(uint32_t *packet, int length)
64{
65 int i;
66
67 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
68 packet[i] = __swab32(packet[i]);
69}
70#endif
71
72/*
73 * The i.MX28 has two ethernet interfaces, but they are not equal.
74 * Only the first one can access the MDIO bus.
75 */
76#ifdef CONFIG_MX28
77static inline struct ethernet_regs *fec_miiphy_fec_to_eth(struct fec_priv *fec)
78{
79 return (struct ethernet_regs *)MXS_ENET0_BASE;
80}
81#else
82static inline struct ethernet_regs *fec_miiphy_fec_to_eth(struct fec_priv *fec)
83{
84 return fec->eth;
85}
86#endif
87
0b23fb36
IY
88/*
89 * MII-interface related functions
90 */
5700bb63 91static int fec_miiphy_read(const char *dev, uint8_t phyAddr, uint8_t regAddr,
0b23fb36
IY
92 uint16_t *retVal)
93{
94 struct eth_device *edev = eth_get_dev_by_name(dev);
95 struct fec_priv *fec = (struct fec_priv *)edev->priv;
be7e87e2 96 struct ethernet_regs *eth = fec_miiphy_fec_to_eth(fec);
0b23fb36
IY
97
98 uint32_t reg; /* convenient holder for the PHY register */
99 uint32_t phy; /* convenient holder for the PHY */
100 uint32_t start;
101
102 /*
103 * reading from any PHY's register is done by properly
104 * programming the FEC's MII data register.
105 */
d133b881 106 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
107 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
108 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
109
110 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 111 phy | reg, &eth->mii_data);
0b23fb36
IY
112
113 /*
114 * wait for the related interrupt
115 */
a60d1e5b 116 start = get_timer(0);
d133b881 117 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
118 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
119 printf("Read MDIO failed...\n");
120 return -1;
121 }
122 }
123
124 /*
125 * clear mii interrupt bit
126 */
d133b881 127 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
128
129 /*
130 * it's now safe to read the PHY's register
131 */
d133b881 132 *retVal = readl(&eth->mii_data);
0b23fb36
IY
133 debug("fec_miiphy_read: phy: %02x reg:%02x val:%#x\n", phyAddr,
134 regAddr, *retVal);
135 return 0;
136}
137
4294b248
SB
138static void fec_mii_setspeed(struct fec_priv *fec)
139{
140 /*
141 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
142 * and do not drop the Preamble.
143 */
144 writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
145 &fec->eth->mii_speed);
eda959f3 146 debug("fec_init: mii_speed %08x\n",
879cf261 147 readl(&fec->eth->mii_speed));
4294b248 148}
5700bb63 149static int fec_miiphy_write(const char *dev, uint8_t phyAddr, uint8_t regAddr,
0b23fb36
IY
150 uint16_t data)
151{
152 struct eth_device *edev = eth_get_dev_by_name(dev);
153 struct fec_priv *fec = (struct fec_priv *)edev->priv;
be7e87e2 154 struct ethernet_regs *eth = fec_miiphy_fec_to_eth(fec);
0b23fb36
IY
155
156 uint32_t reg; /* convenient holder for the PHY register */
157 uint32_t phy; /* convenient holder for the PHY */
158 uint32_t start;
159
160 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
161 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
162
163 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 164 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36
IY
165
166 /*
167 * wait for the MII interrupt
168 */
a60d1e5b 169 start = get_timer(0);
d133b881 170 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
171 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
172 printf("Write MDIO failed...\n");
173 return -1;
174 }
175 }
176
177 /*
178 * clear MII interrupt bit
179 */
d133b881 180 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
181 debug("fec_miiphy_write: phy: %02x reg:%02x val:%#x\n", phyAddr,
182 regAddr, data);
183
184 return 0;
185}
186
187static int miiphy_restart_aneg(struct eth_device *dev)
188{
9e27e9dc 189 struct fec_priv *fec = (struct fec_priv *)dev->priv;
2e5f4421 190 int ret = 0;
9e27e9dc 191
0b23fb36
IY
192 /*
193 * Wake up from sleep if necessary
194 * Reset PHY, then delay 300ns
195 */
cb17b92d 196#ifdef CONFIG_MX27
9e27e9dc 197 miiphy_write(dev->name, fec->phy_id, MII_DCOUNTER, 0x00FF);
cb17b92d 198#endif
9e27e9dc 199 miiphy_write(dev->name, fec->phy_id, MII_BMCR,
8ef583a0 200 BMCR_RESET);
0b23fb36
IY
201 udelay(1000);
202
203 /*
204 * Set the auto-negotiation advertisement register bits
205 */
9e27e9dc 206 miiphy_write(dev->name, fec->phy_id, MII_ADVERTISE,
8ef583a0
MF
207 LPA_100FULL | LPA_100HALF | LPA_10FULL |
208 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
9e27e9dc 209 miiphy_write(dev->name, fec->phy_id, MII_BMCR,
8ef583a0 210 BMCR_ANENABLE | BMCR_ANRESTART);
2e5f4421
MV
211
212 if (fec->mii_postcall)
213 ret = fec->mii_postcall(fec->phy_id);
214
215 return ret;
0b23fb36
IY
216}
217
218static int miiphy_wait_aneg(struct eth_device *dev)
219{
220 uint32_t start;
221 uint16_t status;
9e27e9dc 222 struct fec_priv *fec = (struct fec_priv *)dev->priv;
0b23fb36
IY
223
224 /*
225 * Wait for AN completion
226 */
a60d1e5b 227 start = get_timer(0);
0b23fb36
IY
228 do {
229 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
230 printf("%s: Autonegotiation timeout\n", dev->name);
231 return -1;
232 }
233
9e27e9dc 234 if (miiphy_read(dev->name, fec->phy_id,
8ef583a0 235 MII_BMSR, &status)) {
0b23fb36
IY
236 printf("%s: Autonegotiation failed. status: 0x%04x\n",
237 dev->name, status);
238 return -1;
239 }
8ef583a0 240 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
241
242 return 0;
243}
244static int fec_rx_task_enable(struct fec_priv *fec)
245{
246 writel(1 << 24, &fec->eth->r_des_active);
247 return 0;
248}
249
250static int fec_rx_task_disable(struct fec_priv *fec)
251{
252 return 0;
253}
254
255static int fec_tx_task_enable(struct fec_priv *fec)
256{
257 writel(1 << 24, &fec->eth->x_des_active);
258 return 0;
259}
260
261static int fec_tx_task_disable(struct fec_priv *fec)
262{
263 return 0;
264}
265
266/**
267 * Initialize receive task's buffer descriptors
268 * @param[in] fec all we know about the device yet
269 * @param[in] count receive buffer count to be allocated
270 * @param[in] size size of each receive buffer
271 * @return 0 on success
272 *
273 * For this task we need additional memory for the data buffers. And each
274 * data buffer requires some alignment. Thy must be aligned to a specific
275 * boundary each (DB_DATA_ALIGNMENT).
276 */
277static int fec_rbd_init(struct fec_priv *fec, int count, int size)
278{
279 int ix;
280 uint32_t p = 0;
281
282 /* reserve data memory and consider alignment */
651ef90f
M
283 if (fec->rdb_ptr == NULL)
284 fec->rdb_ptr = malloc(size * count + DB_DATA_ALIGNMENT);
0b23fb36
IY
285 p = (uint32_t)fec->rdb_ptr;
286 if (!p) {
4294b248 287 puts("fec_mxc: not enough malloc memory\n");
0b23fb36
IY
288 return -ENOMEM;
289 }
290 memset((void *)p, 0, size * count + DB_DATA_ALIGNMENT);
291 p += DB_DATA_ALIGNMENT-1;
292 p &= ~(DB_DATA_ALIGNMENT-1);
293
294 for (ix = 0; ix < count; ix++) {
295 writel(p, &fec->rbd_base[ix].data_pointer);
296 p += size;
297 writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
298 writew(0, &fec->rbd_base[ix].data_length);
299 }
300 /*
301 * mark the last RBD to close the ring
302 */
303 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
304 fec->rbd_index = 0;
305
306 return 0;
307}
308
309/**
310 * Initialize transmit task's buffer descriptors
311 * @param[in] fec all we know about the device yet
312 *
313 * Transmit buffers are created externally. We only have to init the BDs here.\n
314 * Note: There is a race condition in the hardware. When only one BD is in
315 * use it must be marked with the WRAP bit to use it for every transmitt.
316 * This bit in combination with the READY bit results into double transmit
317 * of each data buffer. It seems the state machine checks READY earlier then
318 * resetting it after the first transfer.
319 * Using two BDs solves this issue.
320 */
321static void fec_tbd_init(struct fec_priv *fec)
322{
323 writew(0x0000, &fec->tbd_base[0].status);
324 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
325 fec->tbd_index = 0;
326}
327
328/**
329 * Mark the given read buffer descriptor as free
330 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
331 * @param[in] pRbd buffer descriptor to mark free again
332 */
333static void fec_rbd_clean(int last, struct fec_bd *pRbd)
334{
335 /*
336 * Reset buffer descriptor as empty
337 */
338 if (last)
339 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
340 else
341 writew(FEC_RBD_EMPTY, &pRbd->status);
342 /*
343 * no data in it
344 */
345 writew(0, &pRbd->data_length);
346}
347
348static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
349{
565e39c5 350 imx_get_mac_from_fuse(mac);
2e236bf2 351 return !is_valid_ether_addr(mac);
0b23fb36
IY
352}
353
4294b248 354static int fec_set_hwaddr(struct eth_device *dev)
0b23fb36 355{
4294b248 356 uchar *mac = dev->enetaddr;
0b23fb36
IY
357 struct fec_priv *fec = (struct fec_priv *)dev->priv;
358
359 writel(0, &fec->eth->iaddr1);
360 writel(0, &fec->eth->iaddr2);
361 writel(0, &fec->eth->gaddr1);
362 writel(0, &fec->eth->gaddr2);
363
364 /*
365 * Set physical address
366 */
367 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
368 &fec->eth->paddr1);
369 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
370
371 return 0;
372}
373
374/**
375 * Start the FEC engine
376 * @param[in] dev Our device to handle
377 */
378static int fec_open(struct eth_device *edev)
379{
380 struct fec_priv *fec = (struct fec_priv *)edev->priv;
381
382 debug("fec_open: fec_open(dev)\n");
383 /* full-duplex, heartbeat disabled */
384 writel(1 << 2, &fec->eth->x_cntrl);
385 fec->rbd_index = 0;
386
2ef2b950
JL
387#if defined(CONFIG_MX6Q)
388 /* Enable ENET HW endian SWAP */
389 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
390 &fec->eth->ecntrl);
391 /* Enable ENET store and forward mode */
392 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
393 &fec->eth->x_wmrk);
394#endif
0b23fb36
IY
395 /*
396 * Enable FEC-Lite controller
397 */
cb17b92d
JR
398 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
399 &fec->eth->ecntrl);
96912453 400#if defined(CONFIG_MX25) || defined(CONFIG_MX53)
740d6ae5
JR
401 udelay(100);
402 /*
403 * setup the MII gasket for RMII mode
404 */
405
406 /* disable the gasket */
407 writew(0, &fec->eth->miigsk_enr);
408
409 /* wait for the gasket to be disabled */
410 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
411 udelay(2);
412
413 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
414 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
415
416 /* re-enable the gasket */
417 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
418
419 /* wait until MII gasket is ready */
420 int max_loops = 10;
421 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
422 if (--max_loops <= 0) {
423 printf("WAIT for MII Gasket ready timed out\n");
424 break;
425 }
426 }
427#endif
0b23fb36
IY
428
429 miiphy_wait_aneg(edev);
9e27e9dc
MV
430 miiphy_speed(edev->name, fec->phy_id);
431 miiphy_duplex(edev->name, fec->phy_id);
0b23fb36
IY
432
433 /*
434 * Enable SmartDMA receive task
435 */
436 fec_rx_task_enable(fec);
437
438 udelay(100000);
439 return 0;
440}
441
442static int fec_init(struct eth_device *dev, bd_t* bd)
443{
444 uint32_t base;
445 struct fec_priv *fec = (struct fec_priv *)dev->priv;
9e27e9dc 446 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
9eb3770b 447 uint32_t rcntrl;
9e27e9dc 448 int i;
0b23fb36 449
e9319f11
JR
450 /* Initialize MAC address */
451 fec_set_hwaddr(dev);
452
0b23fb36
IY
453 /*
454 * reserve memory for both buffer descriptor chains at once
455 * Datasheet forces the startaddress of each chain is 16 byte
456 * aligned
457 */
651ef90f
M
458 if (fec->base_ptr == NULL)
459 fec->base_ptr = malloc((2 + FEC_RBD_NUM) *
460 sizeof(struct fec_bd) + DB_ALIGNMENT);
0b23fb36
IY
461 base = (uint32_t)fec->base_ptr;
462 if (!base) {
4294b248 463 puts("fec_mxc: not enough malloc memory\n");
0b23fb36
IY
464 return -ENOMEM;
465 }
466 memset((void *)base, 0, (2 + FEC_RBD_NUM) *
467 sizeof(struct fec_bd) + DB_ALIGNMENT);
468 base += (DB_ALIGNMENT-1);
469 base &= ~(DB_ALIGNMENT-1);
470
471 fec->rbd_base = (struct fec_bd *)base;
472
473 base += FEC_RBD_NUM * sizeof(struct fec_bd);
474
475 fec->tbd_base = (struct fec_bd *)base;
476
477 /*
478 * Set interrupt mask register
479 */
480 writel(0x00000000, &fec->eth->imask);
481
482 /*
483 * Clear FEC-Lite interrupt event register(IEVENT)
484 */
485 writel(0xffffffff, &fec->eth->ievent);
486
487
488 /*
489 * Set FEC-Lite receive control register(R_CNTRL):
490 */
4294b248 491
9eb3770b
MV
492 /* Start with frame length = 1518, common for all modes. */
493 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
494 if (fec->xcv_type == SEVENWIRE)
495 rcntrl |= FEC_RCNTRL_FCE;
2ef2b950
JL
496 else if (fec->xcv_type == RGMII)
497 rcntrl |= FEC_RCNTRL_RGMII;
a50a90c9
MV
498 else if (fec->xcv_type == RMII)
499 rcntrl |= FEC_RCNTRL_RMII;
9eb3770b
MV
500 else /* MII mode */
501 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
502
503 writel(rcntrl, &fec->eth->r_cntrl);
504
505 if (fec->xcv_type == MII10 || fec->xcv_type == MII100)
4294b248 506 fec_mii_setspeed(fec);
9eb3770b 507
0b23fb36
IY
508 /*
509 * Set Opcode/Pause Duration Register
510 */
511 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
512 writel(0x2, &fec->eth->x_wmrk);
513 /*
514 * Set multicast address filter
515 */
516 writel(0x00000000, &fec->eth->gaddr1);
517 writel(0x00000000, &fec->eth->gaddr2);
518
519
520 /* clear MIB RAM */
9e27e9dc
MV
521 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
522 writel(0, i);
0b23fb36
IY
523
524 /* FIFO receive start register */
525 writel(0x520, &fec->eth->r_fstart);
526
527 /* size and address of each buffer */
528 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
529 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
530 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
531
532 /*
533 * Initialize RxBD/TxBD rings
534 */
535 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
536 free(fec->base_ptr);
c179a289 537 fec->base_ptr = NULL;
0b23fb36
IY
538 return -ENOMEM;
539 }
540 fec_tbd_init(fec);
541
542
543 if (fec->xcv_type != SEVENWIRE)
544 miiphy_restart_aneg(dev);
545
546 fec_open(dev);
547 return 0;
548}
549
550/**
551 * Halt the FEC engine
552 * @param[in] dev Our device to handle
553 */
554static void fec_halt(struct eth_device *dev)
555{
9e27e9dc 556 struct fec_priv *fec = (struct fec_priv *)dev->priv;
0b23fb36
IY
557 int counter = 0xffff;
558
559 /*
560 * issue graceful stop command to the FEC transmitter if necessary
561 */
cb17b92d 562 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
0b23fb36
IY
563 &fec->eth->x_cntrl);
564
565 debug("eth_halt: wait for stop regs\n");
566 /*
567 * wait for graceful stop to register
568 */
569 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 570 udelay(1);
0b23fb36
IY
571
572 /*
573 * Disable SmartDMA tasks
574 */
575 fec_tx_task_disable(fec);
576 fec_rx_task_disable(fec);
577
578 /*
579 * Disable the Ethernet Controller
580 * Note: this will also reset the BD index counter!
581 */
740d6ae5
JR
582 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
583 &fec->eth->ecntrl);
0b23fb36
IY
584 fec->rbd_index = 0;
585 fec->tbd_index = 0;
0b23fb36
IY
586 debug("eth_halt: done\n");
587}
588
589/**
590 * Transmit one frame
591 * @param[in] dev Our ethernet device to handle
592 * @param[in] packet Pointer to the data to be transmitted
593 * @param[in] length Data count in bytes
594 * @return 0 on success
595 */
596static int fec_send(struct eth_device *dev, volatile void* packet, int length)
597{
598 unsigned int status;
599
600 /*
601 * This routine transmits one frame. This routine only accepts
602 * 6-byte Ethernet addresses.
603 */
604 struct fec_priv *fec = (struct fec_priv *)dev->priv;
605
606 /*
607 * Check for valid length of data.
608 */
609 if ((length > 1500) || (length <= 0)) {
4294b248 610 printf("Payload (%d) too large\n", length);
0b23fb36
IY
611 return -1;
612 }
613
614 /*
615 * Setup the transmit buffer
616 * Note: We are always using the first buffer for transmission,
617 * the second will be empty and only used to stop the DMA engine
618 */
be7e87e2
MV
619#ifdef CONFIG_FEC_MXC_SWAP_PACKET
620 swap_packet((uint32_t *)packet, length);
621#endif
0b23fb36
IY
622 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
623 writel((uint32_t)packet, &fec->tbd_base[fec->tbd_index].data_pointer);
624 /*
625 * update BD's status now
626 * This block:
627 * - is always the last in a chain (means no chain)
628 * - should transmitt the CRC
629 * - might be the last BD in the list, so the address counter should
630 * wrap (-> keep the WRAP flag)
631 */
632 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
633 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
634 writew(status, &fec->tbd_base[fec->tbd_index].status);
635
636 /*
637 * Enable SmartDMA transmit task
638 */
639 fec_tx_task_enable(fec);
640
641 /*
642 * wait until frame is sent .
643 */
644 while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
cb17b92d 645 udelay(1);
0b23fb36
IY
646 }
647 debug("fec_send: status 0x%x index %d\n",
648 readw(&fec->tbd_base[fec->tbd_index].status),
649 fec->tbd_index);
650 /* for next transmission use the other buffer */
651 if (fec->tbd_index)
652 fec->tbd_index = 0;
653 else
654 fec->tbd_index = 1;
655
656 return 0;
657}
658
659/**
660 * Pull one frame from the card
661 * @param[in] dev Our ethernet device to handle
662 * @return Length of packet read
663 */
664static int fec_recv(struct eth_device *dev)
665{
666 struct fec_priv *fec = (struct fec_priv *)dev->priv;
667 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
668 unsigned long ievent;
669 int frame_length, len = 0;
670 struct nbuf *frame;
671 uint16_t bd_status;
672 uchar buff[FEC_MAX_PKT_SIZE];
673
674 /*
675 * Check if any critical events have happened
676 */
677 ievent = readl(&fec->eth->ievent);
678 writel(ievent, &fec->eth->ievent);
eda959f3 679 debug("fec_recv: ievent 0x%lx\n", ievent);
0b23fb36
IY
680 if (ievent & FEC_IEVENT_BABR) {
681 fec_halt(dev);
682 fec_init(dev, fec->bd);
683 printf("some error: 0x%08lx\n", ievent);
684 return 0;
685 }
686 if (ievent & FEC_IEVENT_HBERR) {
687 /* Heartbeat error */
688 writel(0x00000001 | readl(&fec->eth->x_cntrl),
689 &fec->eth->x_cntrl);
690 }
691 if (ievent & FEC_IEVENT_GRA) {
692 /* Graceful stop complete */
693 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
694 fec_halt(dev);
695 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
696 &fec->eth->x_cntrl);
697 fec_init(dev, fec->bd);
698 }
699 }
700
701 /*
702 * ensure reading the right buffer status
703 */
704 bd_status = readw(&rbd->status);
705 debug("fec_recv: status 0x%x\n", bd_status);
706
707 if (!(bd_status & FEC_RBD_EMPTY)) {
708 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
709 ((readw(&rbd->data_length) - 4) > 14)) {
710 /*
711 * Get buffer address and size
712 */
713 frame = (struct nbuf *)readl(&rbd->data_pointer);
714 frame_length = readw(&rbd->data_length) - 4;
715 /*
716 * Fill the buffer and pass it to upper layers
717 */
be7e87e2
MV
718#ifdef CONFIG_FEC_MXC_SWAP_PACKET
719 swap_packet((uint32_t *)frame->data, frame_length);
720#endif
0b23fb36
IY
721 memcpy(buff, frame->data, frame_length);
722 NetReceive(buff, frame_length);
723 len = frame_length;
724 } else {
725 if (bd_status & FEC_RBD_ERR)
726 printf("error frame: 0x%08lx 0x%08x\n",
727 (ulong)rbd->data_pointer,
728 bd_status);
729 }
730 /*
731 * free the current buffer, restart the engine
732 * and move forward to the next buffer
733 */
734 fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
735 fec_rx_task_enable(fec);
736 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
737 }
738 debug("fec_recv: stop\n");
739
740 return len;
741}
742
9e27e9dc 743static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
0b23fb36 744{
0b23fb36 745 struct eth_device *edev;
9e27e9dc 746 struct fec_priv *fec;
0b23fb36 747 unsigned char ethaddr[6];
e382fb48
MV
748 uint32_t start;
749 int ret = 0;
0b23fb36
IY
750
751 /* create and fill edev struct */
752 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
753 if (!edev) {
9e27e9dc 754 puts("fec_mxc: not enough malloc memory for eth_device\n");
e382fb48
MV
755 ret = -ENOMEM;
756 goto err1;
9e27e9dc
MV
757 }
758
759 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
760 if (!fec) {
761 puts("fec_mxc: not enough malloc memory for fec_priv\n");
e382fb48
MV
762 ret = -ENOMEM;
763 goto err2;
0b23fb36 764 }
9e27e9dc 765
de0b9576 766 memset(edev, 0, sizeof(*edev));
9e27e9dc
MV
767 memset(fec, 0, sizeof(*fec));
768
0b23fb36
IY
769 edev->priv = fec;
770 edev->init = fec_init;
771 edev->send = fec_send;
772 edev->recv = fec_recv;
773 edev->halt = fec_halt;
fb57ec97 774 edev->write_hwaddr = fec_set_hwaddr;
0b23fb36 775
9e27e9dc 776 fec->eth = (struct ethernet_regs *)base_addr;
0b23fb36
IY
777 fec->bd = bd;
778
392b8502 779 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
0b23fb36
IY
780
781 /* Reset chip. */
cb17b92d 782 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
e382fb48
MV
783 start = get_timer(0);
784 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
785 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
786 printf("FEC MXC: Timeout reseting chip\n");
787 goto err3;
788 }
0b23fb36 789 udelay(10);
e382fb48 790 }
0b23fb36
IY
791
792 /*
793 * Set interrupt mask register
794 */
795 writel(0x00000000, &fec->eth->imask);
796
797 /*
798 * Clear FEC-Lite interrupt event register(IEVENT)
799 */
800 writel(0xffffffff, &fec->eth->ievent);
801
802 /*
803 * Set FEC-Lite receive control register(R_CNTRL):
804 */
805 /*
806 * Frame length=1518; MII mode;
807 */
9eb3770b
MV
808 writel((PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT) | FEC_RCNTRL_FCE |
809 FEC_RCNTRL_MII_MODE, &fec->eth->r_cntrl);
4294b248 810 fec_mii_setspeed(fec);
0b23fb36 811
9e27e9dc
MV
812 if (dev_id == -1) {
813 sprintf(edev->name, "FEC");
814 fec->dev_id = 0;
815 } else {
816 sprintf(edev->name, "FEC%i", dev_id);
817 fec->dev_id = dev_id;
818 }
819 fec->phy_id = phy_id;
0b23fb36
IY
820
821 miiphy_register(edev->name, fec_miiphy_read, fec_miiphy_write);
822
823 eth_register(edev);
824
4294b248 825 if (fec_get_hwaddr(edev, ethaddr) == 0) {
17fb268c 826 debug("got MAC address from fuse: %pM\n", ethaddr);
4294b248 827 memcpy(edev->enetaddr, ethaddr, 6);
0b23fb36 828 }
0b23fb36 829
e382fb48
MV
830 return ret;
831
832err3:
833 free(fec);
834err2:
835 free(edev);
836err1:
837 return ret;
0b23fb36
IY
838}
839
9e27e9dc 840#ifndef CONFIG_FEC_MXC_MULTI
0b23fb36
IY
841int fecmxc_initialize(bd_t *bd)
842{
843 int lout = 1;
844
845 debug("eth_init: fec_probe(bd)\n");
9e27e9dc
MV
846 lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
847
848 return lout;
849}
850#endif
851
852int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
853{
854 int lout = 1;
855
856 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
857 lout = fec_probe(bd, dev_id, phy_id, addr);
0b23fb36
IY
858
859 return lout;
860}
2e5f4421
MV
861
862int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
863{
864 struct fec_priv *fec = (struct fec_priv *)dev->priv;
865 fec->mii_postcall = cb;
866 return 0;
867}