]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
[binutils, ARM, 7/16] New BFX and BFLX instruction for Armv8.1-M Mainline
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
69c9e028 305#ifdef OBJ_ELF
823d2571
TG
306static const arm_feature_set fpu_vfp_fp16 =
307 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
308static const arm_feature_set fpu_neon_ext_fma =
309 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 310#endif
823d2571
TG
311static const arm_feature_set fpu_vfp_ext_fma =
312 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 313static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 314 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 315static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 316 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 317static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 319static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 320 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 321static const arm_feature_set crc_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 323static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 324 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
325static const arm_feature_set fpu_neon_ext_dotprod =
326 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 327
33a392fb 328static int mfloat_abi_opt = -1;
4d354d8b
TP
329/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
330 directive. */
331static arm_feature_set selected_arch = ARM_ARCH_NONE;
332/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
333 directive. */
334static arm_feature_set selected_ext = ARM_ARCH_NONE;
335/* Feature bits selected by the last -mcpu/-march or by the combination of the
336 last .cpu/.arch directive .arch_extension directives since that
337 directive. */
e74cfd16 338static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
339/* FPU feature bits selected by the last -mfpu or .fpu directive. */
340static arm_feature_set selected_fpu = FPU_NONE;
341/* Feature bits selected by the last .object_arch directive. */
342static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 343/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 344static char selected_cpu_name[20];
8d67f500 345
aacf0b33
KT
346extern FLONUM_TYPE generic_floating_point_number;
347
8d67f500
NC
348/* Return if no cpu was selected on command-line. */
349static bfd_boolean
350no_cpu_selected (void)
351{
823d2571 352 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
353}
354
7cc69913 355#ifdef OBJ_ELF
deeaaff8
DJ
356# ifdef EABI_DEFAULT
357static int meabi_flags = EABI_DEFAULT;
358# else
d507cf36 359static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 360# endif
e1da3f5b 361
ee3c0378
AS
362static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
363
e1da3f5b 364bfd_boolean
5f4273c7 365arm_is_eabi (void)
e1da3f5b
PB
366{
367 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
368}
7cc69913 369#endif
b99bd4ef 370
b99bd4ef 371#ifdef OBJ_ELF
c19d1205 372/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
373symbolS * GOT_symbol;
374#endif
375
b99bd4ef
NC
376/* 0: assemble for ARM,
377 1: assemble for Thumb,
378 2: assemble for Thumb even though target CPU does not support thumb
379 instructions. */
380static int thumb_mode = 0;
8dc2430f
NC
381/* A value distinct from the possible values for thumb_mode that we
382 can use to record whether thumb_mode has been copied into the
383 tc_frag_data field of a frag. */
384#define MODE_RECORDED (1 << 4)
b99bd4ef 385
e07e6e58
NC
386/* Specifies the intrinsic IT insn behavior mode. */
387enum implicit_it_mode
388{
389 IMPLICIT_IT_MODE_NEVER = 0x00,
390 IMPLICIT_IT_MODE_ARM = 0x01,
391 IMPLICIT_IT_MODE_THUMB = 0x02,
392 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
393};
394static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
395
c19d1205
ZW
396/* If unified_syntax is true, we are processing the new unified
397 ARM/Thumb syntax. Important differences from the old ARM mode:
398
399 - Immediate operands do not require a # prefix.
400 - Conditional affixes always appear at the end of the
401 instruction. (For backward compatibility, those instructions
402 that formerly had them in the middle, continue to accept them
403 there.)
404 - The IT instruction may appear, and if it does is validated
405 against subsequent conditional affixes. It does not generate
406 machine code.
407
408 Important differences from the old Thumb mode:
409
410 - Immediate operands do not require a # prefix.
411 - Most of the V6T2 instructions are only available in unified mode.
412 - The .N and .W suffixes are recognized and honored (it is an error
413 if they cannot be honored).
414 - All instructions set the flags if and only if they have an 's' affix.
415 - Conditional affixes may be used. They are validated against
416 preceding IT instructions. Unlike ARM mode, you cannot use a
417 conditional affix except in the scope of an IT instruction. */
418
419static bfd_boolean unified_syntax = FALSE;
b99bd4ef 420
bacebabc
RM
421/* An immediate operand can start with #, and ld*, st*, pld operands
422 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
423 before a [, which can appear as the first operand for pld.
424 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
425const char arm_symbol_chars[] = "#[]{}";
bacebabc 426
5287ad62
JB
427enum neon_el_type
428{
dcbf9037 429 NT_invtype,
5287ad62
JB
430 NT_untyped,
431 NT_integer,
432 NT_float,
433 NT_poly,
434 NT_signed,
dcbf9037 435 NT_unsigned
5287ad62
JB
436};
437
438struct neon_type_el
439{
440 enum neon_el_type type;
441 unsigned size;
442};
443
444#define NEON_MAX_TYPE_ELS 4
445
446struct neon_type
447{
448 struct neon_type_el el[NEON_MAX_TYPE_ELS];
449 unsigned elems;
450};
451
e07e6e58
NC
452enum it_instruction_type
453{
454 OUTSIDE_IT_INSN,
455 INSIDE_IT_INSN,
456 INSIDE_IT_LAST_INSN,
457 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 458 if inside, should be the last one. */
e07e6e58 459 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 460 i.e. BKPT and NOP. */
e07e6e58
NC
461 IT_INSN /* The IT insn has been parsed. */
462};
463
ad6cec43
MGD
464/* The maximum number of operands we need. */
465#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 466#define ARM_IT_MAX_RELOCS 3
ad6cec43 467
b99bd4ef
NC
468struct arm_it
469{
c19d1205 470 const char * error;
b99bd4ef 471 unsigned long instruction;
c19d1205
ZW
472 int size;
473 int size_req;
474 int cond;
037e8744
JB
475 /* "uncond_value" is set to the value in place of the conditional field in
476 unconditional versions of the instruction, or -1 if nothing is
477 appropriate. */
478 int uncond_value;
5287ad62 479 struct neon_type vectype;
88714cb8
DG
480 /* This does not indicate an actual NEON instruction, only that
481 the mnemonic accepts neon-style type suffixes. */
482 int is_neon;
0110f2b8
PB
483 /* Set to the opcode if the instruction needs relaxation.
484 Zero if the instruction is not relaxed. */
485 unsigned long relax;
b99bd4ef
NC
486 struct
487 {
488 bfd_reloc_code_real_type type;
c19d1205
ZW
489 expressionS exp;
490 int pc_rel;
e2b0ab59 491 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 492
e07e6e58
NC
493 enum it_instruction_type it_insn_type;
494
c19d1205
ZW
495 struct
496 {
497 unsigned reg;
ca3f61f7 498 signed int imm;
dcbf9037 499 struct neon_type_el vectype;
ca3f61f7
NC
500 unsigned present : 1; /* Operand present. */
501 unsigned isreg : 1; /* Operand was a register. */
502 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
503 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
504 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 505 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
506 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
507 instructions. This allows us to disambiguate ARM <-> vector insns. */
508 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 509 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 510 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 511 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
512 unsigned hasreloc : 1; /* Operand has relocation suffix. */
513 unsigned writeback : 1; /* Operand has trailing ! */
514 unsigned preind : 1; /* Preindexed address. */
515 unsigned postind : 1; /* Postindexed address. */
516 unsigned negative : 1; /* Index register was negated. */
517 unsigned shifted : 1; /* Shift applied to operation. */
518 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 519 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
520};
521
c19d1205 522static struct arm_it inst;
b99bd4ef
NC
523
524#define NUM_FLOAT_VALS 8
525
05d2d07e 526const char * fp_const[] =
b99bd4ef
NC
527{
528 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
529};
530
c19d1205 531/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
532#define MAX_LITTLENUMS 6
533
534LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
535
536#define FAIL (-1)
537#define SUCCESS (0)
538
539#define SUFF_S 1
540#define SUFF_D 2
541#define SUFF_E 3
542#define SUFF_P 4
543
c19d1205
ZW
544#define CP_T_X 0x00008000
545#define CP_T_Y 0x00400000
b99bd4ef 546
c19d1205
ZW
547#define CONDS_BIT 0x00100000
548#define LOAD_BIT 0x00100000
b99bd4ef
NC
549
550#define DOUBLE_LOAD_FLAG 0x00000001
551
552struct asm_cond
553{
d3ce72d0 554 const char * template_name;
c921be7d 555 unsigned long value;
b99bd4ef
NC
556};
557
c19d1205 558#define COND_ALWAYS 0xE
b99bd4ef 559
b99bd4ef
NC
560struct asm_psr
561{
d3ce72d0 562 const char * template_name;
c921be7d 563 unsigned long field;
b99bd4ef
NC
564};
565
62b3e311
PB
566struct asm_barrier_opt
567{
e797f7e0
MGD
568 const char * template_name;
569 unsigned long value;
570 const arm_feature_set arch;
62b3e311
PB
571};
572
2d2255b5 573/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
574#define SPSR_BIT (1 << 22)
575
c19d1205
ZW
576/* The individual PSR flag bits. */
577#define PSR_c (1 << 16)
578#define PSR_x (1 << 17)
579#define PSR_s (1 << 18)
580#define PSR_f (1 << 19)
b99bd4ef 581
c19d1205 582struct reloc_entry
bfae80f2 583{
0198d5e6 584 const char * name;
c921be7d 585 bfd_reloc_code_real_type reloc;
bfae80f2
RE
586};
587
5287ad62 588enum vfp_reg_pos
bfae80f2 589{
5287ad62
JB
590 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
591 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
592};
593
594enum vfp_ldstm_type
595{
596 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
597};
598
dcbf9037
JB
599/* Bits for DEFINED field in neon_typed_alias. */
600#define NTA_HASTYPE 1
601#define NTA_HASINDEX 2
602
603struct neon_typed_alias
604{
c921be7d
NC
605 unsigned char defined;
606 unsigned char index;
607 struct neon_type_el eltype;
dcbf9037
JB
608};
609
c19d1205 610/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
611 architecture extensions' registers. Each entry should have an error message
612 in reg_expected_msgs below. */
c19d1205 613enum arm_reg_type
bfae80f2 614{
c19d1205
ZW
615 REG_TYPE_RN,
616 REG_TYPE_CP,
617 REG_TYPE_CN,
618 REG_TYPE_FN,
619 REG_TYPE_VFS,
620 REG_TYPE_VFD,
5287ad62 621 REG_TYPE_NQ,
037e8744 622 REG_TYPE_VFSD,
5287ad62 623 REG_TYPE_NDQ,
dec41383 624 REG_TYPE_NSD,
037e8744 625 REG_TYPE_NSDQ,
c19d1205
ZW
626 REG_TYPE_VFC,
627 REG_TYPE_MVF,
628 REG_TYPE_MVD,
629 REG_TYPE_MVFX,
630 REG_TYPE_MVDX,
631 REG_TYPE_MVAX,
632 REG_TYPE_DSPSC,
633 REG_TYPE_MMXWR,
634 REG_TYPE_MMXWC,
635 REG_TYPE_MMXWCG,
636 REG_TYPE_XSCALE,
90ec0d68 637 REG_TYPE_RNB
bfae80f2
RE
638};
639
dcbf9037
JB
640/* Structure for a hash table entry for a register.
641 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
642 information which states whether a vector type or index is specified (for a
643 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
644struct reg_entry
645{
c921be7d 646 const char * name;
90ec0d68 647 unsigned int number;
c921be7d
NC
648 unsigned char type;
649 unsigned char builtin;
650 struct neon_typed_alias * neon;
6c43fab6
RE
651};
652
c19d1205 653/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 654const char * const reg_expected_msgs[] =
c19d1205 655{
5aa75429
TP
656 [REG_TYPE_RN] = N_("ARM register expected"),
657 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
658 [REG_TYPE_CN] = N_("co-processor register expected"),
659 [REG_TYPE_FN] = N_("FPA register expected"),
660 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
661 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
662 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
663 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
664 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
665 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
666 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
667 " expected"),
668 [REG_TYPE_VFC] = N_("VFP system register expected"),
669 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
670 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
671 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
672 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
673 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
674 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
675 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
676 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
677 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
678 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
679 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
680};
681
c19d1205 682/* Some well known registers that we refer to directly elsewhere. */
bd340a04 683#define REG_R12 12
c19d1205
ZW
684#define REG_SP 13
685#define REG_LR 14
686#define REG_PC 15
404ff6b5 687
b99bd4ef
NC
688/* ARM instructions take 4bytes in the object file, Thumb instructions
689 take 2: */
c19d1205 690#define INSN_SIZE 4
b99bd4ef
NC
691
692struct asm_opcode
693{
694 /* Basic string to match. */
d3ce72d0 695 const char * template_name;
c19d1205
ZW
696
697 /* Parameters to instruction. */
5be8be5d 698 unsigned int operands[8];
c19d1205
ZW
699
700 /* Conditional tag - see opcode_lookup. */
701 unsigned int tag : 4;
b99bd4ef
NC
702
703 /* Basic instruction code. */
c19d1205 704 unsigned int avalue : 28;
b99bd4ef 705
c19d1205
ZW
706 /* Thumb-format instruction code. */
707 unsigned int tvalue;
b99bd4ef 708
90e4755a 709 /* Which architecture variant provides this instruction. */
c921be7d
NC
710 const arm_feature_set * avariant;
711 const arm_feature_set * tvariant;
c19d1205
ZW
712
713 /* Function to call to encode instruction in ARM format. */
714 void (* aencode) (void);
b99bd4ef 715
c19d1205
ZW
716 /* Function to call to encode instruction in Thumb format. */
717 void (* tencode) (void);
b99bd4ef
NC
718};
719
a737bd4d
NC
720/* Defines for various bits that we will want to toggle. */
721#define INST_IMMEDIATE 0x02000000
722#define OFFSET_REG 0x02000000
c19d1205 723#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
724#define SHIFT_BY_REG 0x00000010
725#define PRE_INDEX 0x01000000
726#define INDEX_UP 0x00800000
727#define WRITE_BACK 0x00200000
728#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 729#define CPSI_MMOD 0x00020000
90e4755a 730
a737bd4d
NC
731#define LITERAL_MASK 0xf000f000
732#define OPCODE_MASK 0xfe1fffff
733#define V4_STR_BIT 0x00000020
8335d6aa 734#define VLDR_VMOV_SAME 0x0040f000
90e4755a 735
efd81785
PB
736#define T2_SUBS_PC_LR 0xf3de8f00
737
a737bd4d 738#define DATA_OP_SHIFT 21
bada4342 739#define SBIT_SHIFT 20
90e4755a 740
ef8d22e6
PB
741#define T2_OPCODE_MASK 0xfe1fffff
742#define T2_DATA_OP_SHIFT 21
bada4342 743#define T2_SBIT_SHIFT 20
ef8d22e6 744
6530b175
NC
745#define A_COND_MASK 0xf0000000
746#define A_PUSH_POP_OP_MASK 0x0fff0000
747
748/* Opcodes for pushing/poping registers to/from the stack. */
749#define A1_OPCODE_PUSH 0x092d0000
750#define A2_OPCODE_PUSH 0x052d0004
751#define A2_OPCODE_POP 0x049d0004
752
a737bd4d
NC
753/* Codes to distinguish the arithmetic instructions. */
754#define OPCODE_AND 0
755#define OPCODE_EOR 1
756#define OPCODE_SUB 2
757#define OPCODE_RSB 3
758#define OPCODE_ADD 4
759#define OPCODE_ADC 5
760#define OPCODE_SBC 6
761#define OPCODE_RSC 7
762#define OPCODE_TST 8
763#define OPCODE_TEQ 9
764#define OPCODE_CMP 10
765#define OPCODE_CMN 11
766#define OPCODE_ORR 12
767#define OPCODE_MOV 13
768#define OPCODE_BIC 14
769#define OPCODE_MVN 15
90e4755a 770
ef8d22e6
PB
771#define T2_OPCODE_AND 0
772#define T2_OPCODE_BIC 1
773#define T2_OPCODE_ORR 2
774#define T2_OPCODE_ORN 3
775#define T2_OPCODE_EOR 4
776#define T2_OPCODE_ADD 8
777#define T2_OPCODE_ADC 10
778#define T2_OPCODE_SBC 11
779#define T2_OPCODE_SUB 13
780#define T2_OPCODE_RSB 14
781
a737bd4d
NC
782#define T_OPCODE_MUL 0x4340
783#define T_OPCODE_TST 0x4200
784#define T_OPCODE_CMN 0x42c0
785#define T_OPCODE_NEG 0x4240
786#define T_OPCODE_MVN 0x43c0
90e4755a 787
a737bd4d
NC
788#define T_OPCODE_ADD_R3 0x1800
789#define T_OPCODE_SUB_R3 0x1a00
790#define T_OPCODE_ADD_HI 0x4400
791#define T_OPCODE_ADD_ST 0xb000
792#define T_OPCODE_SUB_ST 0xb080
793#define T_OPCODE_ADD_SP 0xa800
794#define T_OPCODE_ADD_PC 0xa000
795#define T_OPCODE_ADD_I8 0x3000
796#define T_OPCODE_SUB_I8 0x3800
797#define T_OPCODE_ADD_I3 0x1c00
798#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 799
a737bd4d
NC
800#define T_OPCODE_ASR_R 0x4100
801#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
802#define T_OPCODE_LSR_R 0x40c0
803#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
804#define T_OPCODE_ASR_I 0x1000
805#define T_OPCODE_LSL_I 0x0000
806#define T_OPCODE_LSR_I 0x0800
b99bd4ef 807
a737bd4d
NC
808#define T_OPCODE_MOV_I8 0x2000
809#define T_OPCODE_CMP_I8 0x2800
810#define T_OPCODE_CMP_LR 0x4280
811#define T_OPCODE_MOV_HR 0x4600
812#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 813
a737bd4d
NC
814#define T_OPCODE_LDR_PC 0x4800
815#define T_OPCODE_LDR_SP 0x9800
816#define T_OPCODE_STR_SP 0x9000
817#define T_OPCODE_LDR_IW 0x6800
818#define T_OPCODE_STR_IW 0x6000
819#define T_OPCODE_LDR_IH 0x8800
820#define T_OPCODE_STR_IH 0x8000
821#define T_OPCODE_LDR_IB 0x7800
822#define T_OPCODE_STR_IB 0x7000
823#define T_OPCODE_LDR_RW 0x5800
824#define T_OPCODE_STR_RW 0x5000
825#define T_OPCODE_LDR_RH 0x5a00
826#define T_OPCODE_STR_RH 0x5200
827#define T_OPCODE_LDR_RB 0x5c00
828#define T_OPCODE_STR_RB 0x5400
c9b604bd 829
a737bd4d
NC
830#define T_OPCODE_PUSH 0xb400
831#define T_OPCODE_POP 0xbc00
b99bd4ef 832
2fc8bdac 833#define T_OPCODE_BRANCH 0xe000
b99bd4ef 834
a737bd4d 835#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 836#define THUMB_PP_PC_LR 0x0100
c19d1205 837#define THUMB_LOAD_BIT 0x0800
53365c0d 838#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
839
840#define BAD_ARGS _("bad arguments to instruction")
fdfde340 841#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
842#define BAD_PC _("r15 not allowed here")
843#define BAD_COND _("instruction cannot be conditional")
844#define BAD_OVERLAP _("registers may not be the same")
845#define BAD_HIREG _("lo register required")
846#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 847#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5 848#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 849#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 850#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 851#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
852#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
853#define BAD_IT_COND _("incorrect condition in IT block")
854#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 855#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
856#define BAD_PC_ADDRESSING \
857 _("cannot use register index with PC-relative addressing")
858#define BAD_PC_WRITEBACK \
859 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
860#define BAD_RANGE _("branch out of range")
861#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 862#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 863#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
c19d1205 864
c921be7d
NC
865static struct hash_control * arm_ops_hsh;
866static struct hash_control * arm_cond_hsh;
867static struct hash_control * arm_shift_hsh;
868static struct hash_control * arm_psr_hsh;
869static struct hash_control * arm_v7m_psr_hsh;
870static struct hash_control * arm_reg_hsh;
871static struct hash_control * arm_reloc_hsh;
872static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 873
b99bd4ef
NC
874/* Stuff needed to resolve the label ambiguity
875 As:
876 ...
877 label: <insn>
878 may differ from:
879 ...
880 label:
5f4273c7 881 <insn> */
b99bd4ef
NC
882
883symbolS * last_label_seen;
b34976b6 884static int label_is_thumb_function_name = FALSE;
e07e6e58 885
3d0c9500
NC
886/* Literal pool structure. Held on a per-section
887 and per-sub-section basis. */
a737bd4d 888
c19d1205 889#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 890typedef struct literal_pool
b99bd4ef 891{
c921be7d
NC
892 expressionS literals [MAX_LITERAL_POOL_SIZE];
893 unsigned int next_free_entry;
894 unsigned int id;
895 symbolS * symbol;
896 segT section;
897 subsegT sub_section;
a8040cf2
NC
898#ifdef OBJ_ELF
899 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
900#endif
c921be7d 901 struct literal_pool * next;
8335d6aa 902 unsigned int alignment;
3d0c9500 903} literal_pool;
b99bd4ef 904
3d0c9500
NC
905/* Pointer to a linked list of literal pools. */
906literal_pool * list_of_pools = NULL;
e27ec89e 907
2e6976a8
DG
908typedef enum asmfunc_states
909{
910 OUTSIDE_ASMFUNC,
911 WAITING_ASMFUNC_NAME,
912 WAITING_ENDASMFUNC
913} asmfunc_states;
914
915static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
916
e07e6e58
NC
917#ifdef OBJ_ELF
918# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
919#else
920static struct current_it now_it;
921#endif
922
923static inline int
924now_it_compatible (int cond)
925{
926 return (cond & ~1) == (now_it.cc & ~1);
927}
928
929static inline int
930conditional_insn (void)
931{
932 return inst.cond != COND_ALWAYS;
933}
934
935static int in_it_block (void);
936
937static int handle_it_state (void);
938
939static void force_automatic_it_block_close (void);
940
c921be7d
NC
941static void it_fsm_post_encode (void);
942
e07e6e58
NC
943#define set_it_insn_type(type) \
944 do \
945 { \
946 inst.it_insn_type = type; \
947 if (handle_it_state () == FAIL) \
477330fc 948 return; \
e07e6e58
NC
949 } \
950 while (0)
951
c921be7d
NC
952#define set_it_insn_type_nonvoid(type, failret) \
953 do \
954 { \
955 inst.it_insn_type = type; \
956 if (handle_it_state () == FAIL) \
477330fc 957 return failret; \
c921be7d
NC
958 } \
959 while(0)
960
e07e6e58
NC
961#define set_it_insn_type_last() \
962 do \
963 { \
964 if (inst.cond == COND_ALWAYS) \
477330fc 965 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 966 else \
477330fc 967 set_it_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
968 } \
969 while (0)
970
c19d1205 971/* Pure syntax. */
b99bd4ef 972
c19d1205
ZW
973/* This array holds the chars that always start a comment. If the
974 pre-processor is disabled, these aren't very useful. */
2e6976a8 975char arm_comment_chars[] = "@";
3d0c9500 976
c19d1205
ZW
977/* This array holds the chars that only start a comment at the beginning of
978 a line. If the line seems to have the form '# 123 filename'
979 .line and .file directives will appear in the pre-processed output. */
980/* Note that input_file.c hand checks for '#' at the beginning of the
981 first line of the input file. This is because the compiler outputs
982 #NO_APP at the beginning of its output. */
983/* Also note that comments like this one will always work. */
984const char line_comment_chars[] = "#";
3d0c9500 985
2e6976a8 986char arm_line_separator_chars[] = ";";
b99bd4ef 987
c19d1205
ZW
988/* Chars that can be used to separate mant
989 from exp in floating point numbers. */
990const char EXP_CHARS[] = "eE";
3d0c9500 991
c19d1205
ZW
992/* Chars that mean this number is a floating point constant. */
993/* As in 0f12.456 */
994/* or 0d1.2345e12 */
b99bd4ef 995
c19d1205 996const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 997
c19d1205
ZW
998/* Prefix characters that indicate the start of an immediate
999 value. */
1000#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1001
c19d1205
ZW
1002/* Separator character handling. */
1003
1004#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1005
1006static inline int
1007skip_past_char (char ** str, char c)
1008{
8ab8155f
NC
1009 /* PR gas/14987: Allow for whitespace before the expected character. */
1010 skip_whitespace (*str);
427d0db6 1011
c19d1205
ZW
1012 if (**str == c)
1013 {
1014 (*str)++;
1015 return SUCCESS;
3d0c9500 1016 }
c19d1205
ZW
1017 else
1018 return FAIL;
1019}
c921be7d 1020
c19d1205 1021#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1022
c19d1205
ZW
1023/* Arithmetic expressions (possibly involving symbols). */
1024
1025/* Return TRUE if anything in the expression is a bignum. */
1026
0198d5e6 1027static bfd_boolean
c19d1205
ZW
1028walk_no_bignums (symbolS * sp)
1029{
1030 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1031 return TRUE;
c19d1205
ZW
1032
1033 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1034 {
c19d1205
ZW
1035 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1036 || (symbol_get_value_expression (sp)->X_op_symbol
1037 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1038 }
1039
0198d5e6 1040 return FALSE;
3d0c9500
NC
1041}
1042
0198d5e6 1043static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1044
1045/* Third argument to my_get_expression. */
1046#define GE_NO_PREFIX 0
1047#define GE_IMM_PREFIX 1
1048#define GE_OPT_PREFIX 2
5287ad62
JB
1049/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1050 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1051#define GE_OPT_PREFIX_BIG 3
a737bd4d 1052
b99bd4ef 1053static int
c19d1205 1054my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1055{
c19d1205 1056 char * save_in;
b99bd4ef 1057
c19d1205
ZW
1058 /* In unified syntax, all prefixes are optional. */
1059 if (unified_syntax)
5287ad62 1060 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1061 : GE_OPT_PREFIX;
b99bd4ef 1062
c19d1205 1063 switch (prefix_mode)
b99bd4ef 1064 {
c19d1205
ZW
1065 case GE_NO_PREFIX: break;
1066 case GE_IMM_PREFIX:
1067 if (!is_immediate_prefix (**str))
1068 {
1069 inst.error = _("immediate expression requires a # prefix");
1070 return FAIL;
1071 }
1072 (*str)++;
1073 break;
1074 case GE_OPT_PREFIX:
5287ad62 1075 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1076 if (is_immediate_prefix (**str))
1077 (*str)++;
1078 break;
0198d5e6
TC
1079 default:
1080 abort ();
c19d1205 1081 }
b99bd4ef 1082
c19d1205 1083 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1084
c19d1205
ZW
1085 save_in = input_line_pointer;
1086 input_line_pointer = *str;
0198d5e6 1087 in_my_get_expression = TRUE;
2ac93be7 1088 expression (ep);
0198d5e6 1089 in_my_get_expression = FALSE;
c19d1205 1090
f86adc07 1091 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1092 {
f86adc07 1093 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1094 *str = input_line_pointer;
1095 input_line_pointer = save_in;
1096 if (inst.error == NULL)
f86adc07
NS
1097 inst.error = (ep->X_op == O_absent
1098 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1099 return 1;
1100 }
b99bd4ef 1101
c19d1205
ZW
1102 /* Get rid of any bignums now, so that we don't generate an error for which
1103 we can't establish a line number later on. Big numbers are never valid
1104 in instructions, which is where this routine is always called. */
5287ad62
JB
1105 if (prefix_mode != GE_OPT_PREFIX_BIG
1106 && (ep->X_op == O_big
477330fc 1107 || (ep->X_add_symbol
5287ad62 1108 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1109 || (ep->X_op_symbol
5287ad62 1110 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1111 {
1112 inst.error = _("invalid constant");
1113 *str = input_line_pointer;
1114 input_line_pointer = save_in;
1115 return 1;
1116 }
b99bd4ef 1117
c19d1205
ZW
1118 *str = input_line_pointer;
1119 input_line_pointer = save_in;
0198d5e6 1120 return SUCCESS;
b99bd4ef
NC
1121}
1122
c19d1205
ZW
1123/* Turn a string in input_line_pointer into a floating point constant
1124 of type TYPE, and store the appropriate bytes in *LITP. The number
1125 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1126 returned, or NULL on OK.
b99bd4ef 1127
c19d1205
ZW
1128 Note that fp constants aren't represent in the normal way on the ARM.
1129 In big endian mode, things are as expected. However, in little endian
1130 mode fp constants are big-endian word-wise, and little-endian byte-wise
1131 within the words. For example, (double) 1.1 in big endian mode is
1132 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1133 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1134
c19d1205 1135 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1136
6d4af3c2 1137const char *
c19d1205
ZW
1138md_atof (int type, char * litP, int * sizeP)
1139{
1140 int prec;
1141 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1142 char *t;
1143 int i;
b99bd4ef 1144
c19d1205
ZW
1145 switch (type)
1146 {
1147 case 'f':
1148 case 'F':
1149 case 's':
1150 case 'S':
1151 prec = 2;
1152 break;
b99bd4ef 1153
c19d1205
ZW
1154 case 'd':
1155 case 'D':
1156 case 'r':
1157 case 'R':
1158 prec = 4;
1159 break;
b99bd4ef 1160
c19d1205
ZW
1161 case 'x':
1162 case 'X':
499ac353 1163 prec = 5;
c19d1205 1164 break;
b99bd4ef 1165
c19d1205
ZW
1166 case 'p':
1167 case 'P':
499ac353 1168 prec = 5;
c19d1205 1169 break;
a737bd4d 1170
c19d1205
ZW
1171 default:
1172 *sizeP = 0;
499ac353 1173 return _("Unrecognized or unsupported floating point constant");
c19d1205 1174 }
b99bd4ef 1175
c19d1205
ZW
1176 t = atof_ieee (input_line_pointer, type, words);
1177 if (t)
1178 input_line_pointer = t;
499ac353 1179 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1180
c19d1205
ZW
1181 if (target_big_endian)
1182 {
1183 for (i = 0; i < prec; i++)
1184 {
499ac353
NC
1185 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1186 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1187 }
1188 }
1189 else
1190 {
e74cfd16 1191 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1192 for (i = prec - 1; i >= 0; i--)
1193 {
499ac353
NC
1194 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1195 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1196 }
1197 else
1198 /* For a 4 byte float the order of elements in `words' is 1 0.
1199 For an 8 byte float the order is 1 0 3 2. */
1200 for (i = 0; i < prec; i += 2)
1201 {
499ac353
NC
1202 md_number_to_chars (litP, (valueT) words[i + 1],
1203 sizeof (LITTLENUM_TYPE));
1204 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1205 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1206 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1207 }
1208 }
b99bd4ef 1209
499ac353 1210 return NULL;
c19d1205 1211}
b99bd4ef 1212
c19d1205
ZW
1213/* We handle all bad expressions here, so that we can report the faulty
1214 instruction in the error message. */
0198d5e6 1215
c19d1205 1216void
91d6fa6a 1217md_operand (expressionS * exp)
c19d1205
ZW
1218{
1219 if (in_my_get_expression)
91d6fa6a 1220 exp->X_op = O_illegal;
b99bd4ef
NC
1221}
1222
c19d1205 1223/* Immediate values. */
b99bd4ef 1224
0198d5e6 1225#ifdef OBJ_ELF
c19d1205
ZW
1226/* Generic immediate-value read function for use in directives.
1227 Accepts anything that 'expression' can fold to a constant.
1228 *val receives the number. */
0198d5e6 1229
c19d1205
ZW
1230static int
1231immediate_for_directive (int *val)
b99bd4ef 1232{
c19d1205
ZW
1233 expressionS exp;
1234 exp.X_op = O_illegal;
b99bd4ef 1235
c19d1205
ZW
1236 if (is_immediate_prefix (*input_line_pointer))
1237 {
1238 input_line_pointer++;
1239 expression (&exp);
1240 }
b99bd4ef 1241
c19d1205
ZW
1242 if (exp.X_op != O_constant)
1243 {
1244 as_bad (_("expected #constant"));
1245 ignore_rest_of_line ();
1246 return FAIL;
1247 }
1248 *val = exp.X_add_number;
1249 return SUCCESS;
b99bd4ef 1250}
c19d1205 1251#endif
b99bd4ef 1252
c19d1205 1253/* Register parsing. */
b99bd4ef 1254
c19d1205
ZW
1255/* Generic register parser. CCP points to what should be the
1256 beginning of a register name. If it is indeed a valid register
1257 name, advance CCP over it and return the reg_entry structure;
1258 otherwise return NULL. Does not issue diagnostics. */
1259
1260static struct reg_entry *
1261arm_reg_parse_multi (char **ccp)
b99bd4ef 1262{
c19d1205
ZW
1263 char *start = *ccp;
1264 char *p;
1265 struct reg_entry *reg;
b99bd4ef 1266
477330fc
RM
1267 skip_whitespace (start);
1268
c19d1205
ZW
1269#ifdef REGISTER_PREFIX
1270 if (*start != REGISTER_PREFIX)
01cfc07f 1271 return NULL;
c19d1205
ZW
1272 start++;
1273#endif
1274#ifdef OPTIONAL_REGISTER_PREFIX
1275 if (*start == OPTIONAL_REGISTER_PREFIX)
1276 start++;
1277#endif
b99bd4ef 1278
c19d1205
ZW
1279 p = start;
1280 if (!ISALPHA (*p) || !is_name_beginner (*p))
1281 return NULL;
b99bd4ef 1282
c19d1205
ZW
1283 do
1284 p++;
1285 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1286
1287 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1288
1289 if (!reg)
1290 return NULL;
1291
1292 *ccp = p;
1293 return reg;
b99bd4ef
NC
1294}
1295
1296static int
dcbf9037 1297arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1298 enum arm_reg_type type)
b99bd4ef 1299{
c19d1205
ZW
1300 /* Alternative syntaxes are accepted for a few register classes. */
1301 switch (type)
1302 {
1303 case REG_TYPE_MVF:
1304 case REG_TYPE_MVD:
1305 case REG_TYPE_MVFX:
1306 case REG_TYPE_MVDX:
1307 /* Generic coprocessor register names are allowed for these. */
79134647 1308 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1309 return reg->number;
1310 break;
69b97547 1311
c19d1205
ZW
1312 case REG_TYPE_CP:
1313 /* For backward compatibility, a bare number is valid here. */
1314 {
1315 unsigned long processor = strtoul (start, ccp, 10);
1316 if (*ccp != start && processor <= 15)
1317 return processor;
1318 }
1a0670f3 1319 /* Fall through. */
6057a28f 1320
c19d1205
ZW
1321 case REG_TYPE_MMXWC:
1322 /* WC includes WCG. ??? I'm not sure this is true for all
1323 instructions that take WC registers. */
79134647 1324 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1325 return reg->number;
6057a28f 1326 break;
c19d1205 1327
6057a28f 1328 default:
c19d1205 1329 break;
6057a28f
NC
1330 }
1331
dcbf9037
JB
1332 return FAIL;
1333}
1334
1335/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1336 return value is the register number or FAIL. */
1337
1338static int
1339arm_reg_parse (char **ccp, enum arm_reg_type type)
1340{
1341 char *start = *ccp;
1342 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1343 int ret;
1344
1345 /* Do not allow a scalar (reg+index) to parse as a register. */
1346 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1347 return FAIL;
1348
1349 if (reg && reg->type == type)
1350 return reg->number;
1351
1352 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1353 return ret;
1354
c19d1205
ZW
1355 *ccp = start;
1356 return FAIL;
1357}
69b97547 1358
dcbf9037
JB
1359/* Parse a Neon type specifier. *STR should point at the leading '.'
1360 character. Does no verification at this stage that the type fits the opcode
1361 properly. E.g.,
1362
1363 .i32.i32.s16
1364 .s32.f32
1365 .u16
1366
1367 Can all be legally parsed by this function.
1368
1369 Fills in neon_type struct pointer with parsed information, and updates STR
1370 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1371 type, FAIL if not. */
1372
1373static int
1374parse_neon_type (struct neon_type *type, char **str)
1375{
1376 char *ptr = *str;
1377
1378 if (type)
1379 type->elems = 0;
1380
1381 while (type->elems < NEON_MAX_TYPE_ELS)
1382 {
1383 enum neon_el_type thistype = NT_untyped;
1384 unsigned thissize = -1u;
1385
1386 if (*ptr != '.')
1387 break;
1388
1389 ptr++;
1390
1391 /* Just a size without an explicit type. */
1392 if (ISDIGIT (*ptr))
1393 goto parsesize;
1394
1395 switch (TOLOWER (*ptr))
1396 {
1397 case 'i': thistype = NT_integer; break;
1398 case 'f': thistype = NT_float; break;
1399 case 'p': thistype = NT_poly; break;
1400 case 's': thistype = NT_signed; break;
1401 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1402 case 'd':
1403 thistype = NT_float;
1404 thissize = 64;
1405 ptr++;
1406 goto done;
dcbf9037
JB
1407 default:
1408 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1409 return FAIL;
1410 }
1411
1412 ptr++;
1413
1414 /* .f is an abbreviation for .f32. */
1415 if (thistype == NT_float && !ISDIGIT (*ptr))
1416 thissize = 32;
1417 else
1418 {
1419 parsesize:
1420 thissize = strtoul (ptr, &ptr, 10);
1421
1422 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1423 && thissize != 64)
1424 {
1425 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1426 return FAIL;
1427 }
1428 }
1429
037e8744 1430 done:
dcbf9037 1431 if (type)
477330fc
RM
1432 {
1433 type->el[type->elems].type = thistype;
dcbf9037
JB
1434 type->el[type->elems].size = thissize;
1435 type->elems++;
1436 }
1437 }
1438
1439 /* Empty/missing type is not a successful parse. */
1440 if (type->elems == 0)
1441 return FAIL;
1442
1443 *str = ptr;
1444
1445 return SUCCESS;
1446}
1447
1448/* Errors may be set multiple times during parsing or bit encoding
1449 (particularly in the Neon bits), but usually the earliest error which is set
1450 will be the most meaningful. Avoid overwriting it with later (cascading)
1451 errors by calling this function. */
1452
1453static void
1454first_error (const char *err)
1455{
1456 if (!inst.error)
1457 inst.error = err;
1458}
1459
1460/* Parse a single type, e.g. ".s32", leading period included. */
1461static int
1462parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1463{
1464 char *str = *ccp;
1465 struct neon_type optype;
1466
1467 if (*str == '.')
1468 {
1469 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1470 {
1471 if (optype.elems == 1)
1472 *vectype = optype.el[0];
1473 else
1474 {
1475 first_error (_("only one type should be specified for operand"));
1476 return FAIL;
1477 }
1478 }
dcbf9037 1479 else
477330fc
RM
1480 {
1481 first_error (_("vector type expected"));
1482 return FAIL;
1483 }
dcbf9037
JB
1484 }
1485 else
1486 return FAIL;
5f4273c7 1487
dcbf9037 1488 *ccp = str;
5f4273c7 1489
dcbf9037
JB
1490 return SUCCESS;
1491}
1492
1493/* Special meanings for indices (which have a range of 0-7), which will fit into
1494 a 4-bit integer. */
1495
1496#define NEON_ALL_LANES 15
1497#define NEON_INTERLEAVE_LANES 14
1498
1499/* Parse either a register or a scalar, with an optional type. Return the
1500 register number, and optionally fill in the actual type of the register
1501 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1502 type/index information in *TYPEINFO. */
1503
1504static int
1505parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1506 enum arm_reg_type *rtype,
1507 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1508{
1509 char *str = *ccp;
1510 struct reg_entry *reg = arm_reg_parse_multi (&str);
1511 struct neon_typed_alias atype;
1512 struct neon_type_el parsetype;
1513
1514 atype.defined = 0;
1515 atype.index = -1;
1516 atype.eltype.type = NT_invtype;
1517 atype.eltype.size = -1;
1518
1519 /* Try alternate syntax for some types of register. Note these are mutually
1520 exclusive with the Neon syntax extensions. */
1521 if (reg == NULL)
1522 {
1523 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1524 if (altreg != FAIL)
477330fc 1525 *ccp = str;
dcbf9037 1526 if (typeinfo)
477330fc 1527 *typeinfo = atype;
dcbf9037
JB
1528 return altreg;
1529 }
1530
037e8744
JB
1531 /* Undo polymorphism when a set of register types may be accepted. */
1532 if ((type == REG_TYPE_NDQ
1533 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1534 || (type == REG_TYPE_VFSD
477330fc 1535 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1536 || (type == REG_TYPE_NSDQ
477330fc
RM
1537 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1538 || reg->type == REG_TYPE_NQ))
dec41383
JW
1539 || (type == REG_TYPE_NSD
1540 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1541 || (type == REG_TYPE_MMXWC
1542 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1543 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1544
1545 if (type != reg->type)
1546 return FAIL;
1547
1548 if (reg->neon)
1549 atype = *reg->neon;
5f4273c7 1550
dcbf9037
JB
1551 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1552 {
1553 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1554 {
1555 first_error (_("can't redefine type for operand"));
1556 return FAIL;
1557 }
dcbf9037
JB
1558 atype.defined |= NTA_HASTYPE;
1559 atype.eltype = parsetype;
1560 }
5f4273c7 1561
dcbf9037
JB
1562 if (skip_past_char (&str, '[') == SUCCESS)
1563 {
dec41383
JW
1564 if (type != REG_TYPE_VFD
1565 && !(type == REG_TYPE_VFS
1566 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2)))
477330fc
RM
1567 {
1568 first_error (_("only D registers may be indexed"));
1569 return FAIL;
1570 }
5f4273c7 1571
dcbf9037 1572 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1573 {
1574 first_error (_("can't change index for operand"));
1575 return FAIL;
1576 }
dcbf9037
JB
1577
1578 atype.defined |= NTA_HASINDEX;
1579
1580 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1581 atype.index = NEON_ALL_LANES;
dcbf9037 1582 else
477330fc
RM
1583 {
1584 expressionS exp;
dcbf9037 1585
477330fc 1586 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1587
477330fc
RM
1588 if (exp.X_op != O_constant)
1589 {
1590 first_error (_("constant expression required"));
1591 return FAIL;
1592 }
dcbf9037 1593
477330fc
RM
1594 if (skip_past_char (&str, ']') == FAIL)
1595 return FAIL;
dcbf9037 1596
477330fc
RM
1597 atype.index = exp.X_add_number;
1598 }
dcbf9037 1599 }
5f4273c7 1600
dcbf9037
JB
1601 if (typeinfo)
1602 *typeinfo = atype;
5f4273c7 1603
dcbf9037
JB
1604 if (rtype)
1605 *rtype = type;
5f4273c7 1606
dcbf9037 1607 *ccp = str;
5f4273c7 1608
dcbf9037
JB
1609 return reg->number;
1610}
1611
1612/* Like arm_reg_parse, but allow allow the following extra features:
1613 - If RTYPE is non-zero, return the (possibly restricted) type of the
1614 register (e.g. Neon double or quad reg when either has been requested).
1615 - If this is a Neon vector type with additional type information, fill
1616 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1617 This function will fault on encountering a scalar. */
dcbf9037
JB
1618
1619static int
1620arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1621 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1622{
1623 struct neon_typed_alias atype;
1624 char *str = *ccp;
1625 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1626
1627 if (reg == FAIL)
1628 return FAIL;
1629
0855e32b
NS
1630 /* Do not allow regname(... to parse as a register. */
1631 if (*str == '(')
1632 return FAIL;
1633
dcbf9037
JB
1634 /* Do not allow a scalar (reg+index) to parse as a register. */
1635 if ((atype.defined & NTA_HASINDEX) != 0)
1636 {
1637 first_error (_("register operand expected, but got scalar"));
1638 return FAIL;
1639 }
1640
1641 if (vectype)
1642 *vectype = atype.eltype;
1643
1644 *ccp = str;
1645
1646 return reg;
1647}
1648
1649#define NEON_SCALAR_REG(X) ((X) >> 4)
1650#define NEON_SCALAR_INDEX(X) ((X) & 15)
1651
5287ad62
JB
1652/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1653 have enough information to be able to do a good job bounds-checking. So, we
1654 just do easy checks here, and do further checks later. */
1655
1656static int
dcbf9037 1657parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1658{
dcbf9037 1659 int reg;
5287ad62 1660 char *str = *ccp;
dcbf9037 1661 struct neon_typed_alias atype;
dec41383
JW
1662 enum arm_reg_type reg_type = REG_TYPE_VFD;
1663
1664 if (elsize == 4)
1665 reg_type = REG_TYPE_VFS;
5f4273c7 1666
dec41383 1667 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1668
dcbf9037 1669 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1670 return FAIL;
5f4273c7 1671
dcbf9037 1672 if (atype.index == NEON_ALL_LANES)
5287ad62 1673 {
dcbf9037 1674 first_error (_("scalar must have an index"));
5287ad62
JB
1675 return FAIL;
1676 }
dcbf9037 1677 else if (atype.index >= 64 / elsize)
5287ad62 1678 {
dcbf9037 1679 first_error (_("scalar index out of range"));
5287ad62
JB
1680 return FAIL;
1681 }
5f4273c7 1682
dcbf9037
JB
1683 if (type)
1684 *type = atype.eltype;
5f4273c7 1685
5287ad62 1686 *ccp = str;
5f4273c7 1687
dcbf9037 1688 return reg * 16 + atype.index;
5287ad62
JB
1689}
1690
c19d1205 1691/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1692
c19d1205
ZW
1693static long
1694parse_reg_list (char ** strp)
1695{
1696 char * str = * strp;
1697 long range = 0;
1698 int another_range;
a737bd4d 1699
c19d1205
ZW
1700 /* We come back here if we get ranges concatenated by '+' or '|'. */
1701 do
6057a28f 1702 {
477330fc
RM
1703 skip_whitespace (str);
1704
c19d1205 1705 another_range = 0;
a737bd4d 1706
c19d1205
ZW
1707 if (*str == '{')
1708 {
1709 int in_range = 0;
1710 int cur_reg = -1;
a737bd4d 1711
c19d1205
ZW
1712 str++;
1713 do
1714 {
1715 int reg;
6057a28f 1716
dcbf9037 1717 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1718 {
dcbf9037 1719 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1720 return FAIL;
1721 }
a737bd4d 1722
c19d1205
ZW
1723 if (in_range)
1724 {
1725 int i;
a737bd4d 1726
c19d1205
ZW
1727 if (reg <= cur_reg)
1728 {
dcbf9037 1729 first_error (_("bad range in register list"));
c19d1205
ZW
1730 return FAIL;
1731 }
40a18ebd 1732
c19d1205
ZW
1733 for (i = cur_reg + 1; i < reg; i++)
1734 {
1735 if (range & (1 << i))
1736 as_tsktsk
1737 (_("Warning: duplicated register (r%d) in register list"),
1738 i);
1739 else
1740 range |= 1 << i;
1741 }
1742 in_range = 0;
1743 }
a737bd4d 1744
c19d1205
ZW
1745 if (range & (1 << reg))
1746 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1747 reg);
1748 else if (reg <= cur_reg)
1749 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1750
c19d1205
ZW
1751 range |= 1 << reg;
1752 cur_reg = reg;
1753 }
1754 while (skip_past_comma (&str) != FAIL
1755 || (in_range = 1, *str++ == '-'));
1756 str--;
a737bd4d 1757
d996d970 1758 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1759 {
dcbf9037 1760 first_error (_("missing `}'"));
c19d1205
ZW
1761 return FAIL;
1762 }
1763 }
1764 else
1765 {
91d6fa6a 1766 expressionS exp;
40a18ebd 1767
91d6fa6a 1768 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1769 return FAIL;
40a18ebd 1770
91d6fa6a 1771 if (exp.X_op == O_constant)
c19d1205 1772 {
91d6fa6a
NC
1773 if (exp.X_add_number
1774 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1775 {
1776 inst.error = _("invalid register mask");
1777 return FAIL;
1778 }
a737bd4d 1779
91d6fa6a 1780 if ((range & exp.X_add_number) != 0)
c19d1205 1781 {
91d6fa6a 1782 int regno = range & exp.X_add_number;
a737bd4d 1783
c19d1205
ZW
1784 regno &= -regno;
1785 regno = (1 << regno) - 1;
1786 as_tsktsk
1787 (_("Warning: duplicated register (r%d) in register list"),
1788 regno);
1789 }
a737bd4d 1790
91d6fa6a 1791 range |= exp.X_add_number;
c19d1205
ZW
1792 }
1793 else
1794 {
e2b0ab59 1795 if (inst.relocs[0].type != 0)
c19d1205
ZW
1796 {
1797 inst.error = _("expression too complex");
1798 return FAIL;
1799 }
a737bd4d 1800
e2b0ab59
AV
1801 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1802 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1803 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1804 }
1805 }
a737bd4d 1806
c19d1205
ZW
1807 if (*str == '|' || *str == '+')
1808 {
1809 str++;
1810 another_range = 1;
1811 }
a737bd4d 1812 }
c19d1205 1813 while (another_range);
a737bd4d 1814
c19d1205
ZW
1815 *strp = str;
1816 return range;
a737bd4d
NC
1817}
1818
5287ad62
JB
1819/* Types of registers in a list. */
1820
1821enum reg_list_els
1822{
1823 REGLIST_VFP_S,
1824 REGLIST_VFP_D,
1825 REGLIST_NEON_D
1826};
1827
c19d1205
ZW
1828/* Parse a VFP register list. If the string is invalid return FAIL.
1829 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1830 register. Parses registers of type ETYPE.
1831 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1832 - Q registers can be used to specify pairs of D registers
1833 - { } can be omitted from around a singleton register list
477330fc
RM
1834 FIXME: This is not implemented, as it would require backtracking in
1835 some cases, e.g.:
1836 vtbl.8 d3,d4,d5
1837 This could be done (the meaning isn't really ambiguous), but doesn't
1838 fit in well with the current parsing framework.
dcbf9037
JB
1839 - 32 D registers may be used (also true for VFPv3).
1840 FIXME: Types are ignored in these register lists, which is probably a
1841 bug. */
6057a28f 1842
c19d1205 1843static int
037e8744 1844parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1845{
037e8744 1846 char *str = *ccp;
c19d1205
ZW
1847 int base_reg;
1848 int new_base;
21d799b5 1849 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1850 int max_regs = 0;
c19d1205
ZW
1851 int count = 0;
1852 int warned = 0;
1853 unsigned long mask = 0;
a737bd4d 1854 int i;
6057a28f 1855
477330fc 1856 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
1857 {
1858 inst.error = _("expecting {");
1859 return FAIL;
1860 }
6057a28f 1861
5287ad62 1862 switch (etype)
c19d1205 1863 {
5287ad62 1864 case REGLIST_VFP_S:
c19d1205
ZW
1865 regtype = REG_TYPE_VFS;
1866 max_regs = 32;
5287ad62 1867 break;
5f4273c7 1868
5287ad62
JB
1869 case REGLIST_VFP_D:
1870 regtype = REG_TYPE_VFD;
b7fc2769 1871 break;
5f4273c7 1872
b7fc2769
JB
1873 case REGLIST_NEON_D:
1874 regtype = REG_TYPE_NDQ;
1875 break;
1876 }
1877
1878 if (etype != REGLIST_VFP_S)
1879 {
b1cc4aeb
PB
1880 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1881 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
1882 {
1883 max_regs = 32;
1884 if (thumb_mode)
1885 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1886 fpu_vfp_ext_d32);
1887 else
1888 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1889 fpu_vfp_ext_d32);
1890 }
5287ad62 1891 else
477330fc 1892 max_regs = 16;
c19d1205 1893 }
6057a28f 1894
c19d1205 1895 base_reg = max_regs;
a737bd4d 1896
c19d1205
ZW
1897 do
1898 {
5287ad62 1899 int setmask = 1, addregs = 1;
dcbf9037 1900
037e8744 1901 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1902
c19d1205 1903 if (new_base == FAIL)
a737bd4d 1904 {
dcbf9037 1905 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1906 return FAIL;
1907 }
5f4273c7 1908
b7fc2769 1909 if (new_base >= max_regs)
477330fc
RM
1910 {
1911 first_error (_("register out of range in list"));
1912 return FAIL;
1913 }
5f4273c7 1914
5287ad62
JB
1915 /* Note: a value of 2 * n is returned for the register Q<n>. */
1916 if (regtype == REG_TYPE_NQ)
477330fc
RM
1917 {
1918 setmask = 3;
1919 addregs = 2;
1920 }
5287ad62 1921
c19d1205
ZW
1922 if (new_base < base_reg)
1923 base_reg = new_base;
a737bd4d 1924
5287ad62 1925 if (mask & (setmask << new_base))
c19d1205 1926 {
dcbf9037 1927 first_error (_("invalid register list"));
c19d1205 1928 return FAIL;
a737bd4d 1929 }
a737bd4d 1930
c19d1205
ZW
1931 if ((mask >> new_base) != 0 && ! warned)
1932 {
1933 as_tsktsk (_("register list not in ascending order"));
1934 warned = 1;
1935 }
0bbf2aa4 1936
5287ad62
JB
1937 mask |= setmask << new_base;
1938 count += addregs;
0bbf2aa4 1939
037e8744 1940 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1941 {
1942 int high_range;
0bbf2aa4 1943
037e8744 1944 str++;
0bbf2aa4 1945
037e8744 1946 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 1947 == FAIL)
c19d1205
ZW
1948 {
1949 inst.error = gettext (reg_expected_msgs[regtype]);
1950 return FAIL;
1951 }
0bbf2aa4 1952
477330fc
RM
1953 if (high_range >= max_regs)
1954 {
1955 first_error (_("register out of range in list"));
1956 return FAIL;
1957 }
b7fc2769 1958
477330fc
RM
1959 if (regtype == REG_TYPE_NQ)
1960 high_range = high_range + 1;
5287ad62 1961
c19d1205
ZW
1962 if (high_range <= new_base)
1963 {
1964 inst.error = _("register range not in ascending order");
1965 return FAIL;
1966 }
0bbf2aa4 1967
5287ad62 1968 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1969 {
5287ad62 1970 if (mask & (setmask << new_base))
0bbf2aa4 1971 {
c19d1205
ZW
1972 inst.error = _("invalid register list");
1973 return FAIL;
0bbf2aa4 1974 }
c19d1205 1975
5287ad62
JB
1976 mask |= setmask << new_base;
1977 count += addregs;
0bbf2aa4 1978 }
0bbf2aa4 1979 }
0bbf2aa4 1980 }
037e8744 1981 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1982
037e8744 1983 str++;
0bbf2aa4 1984
c19d1205
ZW
1985 /* Sanity check -- should have raised a parse error above. */
1986 if (count == 0 || count > max_regs)
1987 abort ();
1988
1989 *pbase = base_reg;
1990
1991 /* Final test -- the registers must be consecutive. */
1992 mask >>= base_reg;
1993 for (i = 0; i < count; i++)
1994 {
1995 if ((mask & (1u << i)) == 0)
1996 {
1997 inst.error = _("non-contiguous register range");
1998 return FAIL;
1999 }
2000 }
2001
037e8744
JB
2002 *ccp = str;
2003
c19d1205 2004 return count;
b99bd4ef
NC
2005}
2006
dcbf9037
JB
2007/* True if two alias types are the same. */
2008
c921be7d 2009static bfd_boolean
dcbf9037
JB
2010neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2011{
2012 if (!a && !b)
c921be7d 2013 return TRUE;
5f4273c7 2014
dcbf9037 2015 if (!a || !b)
c921be7d 2016 return FALSE;
dcbf9037
JB
2017
2018 if (a->defined != b->defined)
c921be7d 2019 return FALSE;
5f4273c7 2020
dcbf9037
JB
2021 if ((a->defined & NTA_HASTYPE) != 0
2022 && (a->eltype.type != b->eltype.type
477330fc 2023 || a->eltype.size != b->eltype.size))
c921be7d 2024 return FALSE;
dcbf9037
JB
2025
2026 if ((a->defined & NTA_HASINDEX) != 0
2027 && (a->index != b->index))
c921be7d 2028 return FALSE;
5f4273c7 2029
c921be7d 2030 return TRUE;
dcbf9037
JB
2031}
2032
5287ad62
JB
2033/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2034 The base register is put in *PBASE.
dcbf9037 2035 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2036 the return value.
2037 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2038 Bits [6:5] encode the list length (minus one).
2039 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2040
5287ad62 2041#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2042#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2043#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2044
2045static int
dcbf9037 2046parse_neon_el_struct_list (char **str, unsigned *pbase,
477330fc 2047 struct neon_type_el *eltype)
5287ad62
JB
2048{
2049 char *ptr = *str;
2050 int base_reg = -1;
2051 int reg_incr = -1;
2052 int count = 0;
2053 int lane = -1;
2054 int leading_brace = 0;
2055 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
2056 const char *const incr_error = _("register stride must be 1 or 2");
2057 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2058 struct neon_typed_alias firsttype;
f85d59c3
KT
2059 firsttype.defined = 0;
2060 firsttype.eltype.type = NT_invtype;
2061 firsttype.eltype.size = -1;
2062 firsttype.index = -1;
5f4273c7 2063
5287ad62
JB
2064 if (skip_past_char (&ptr, '{') == SUCCESS)
2065 leading_brace = 1;
5f4273c7 2066
5287ad62
JB
2067 do
2068 {
dcbf9037
JB
2069 struct neon_typed_alias atype;
2070 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2071
5287ad62 2072 if (getreg == FAIL)
477330fc
RM
2073 {
2074 first_error (_(reg_expected_msgs[rtype]));
2075 return FAIL;
2076 }
5f4273c7 2077
5287ad62 2078 if (base_reg == -1)
477330fc
RM
2079 {
2080 base_reg = getreg;
2081 if (rtype == REG_TYPE_NQ)
2082 {
2083 reg_incr = 1;
2084 }
2085 firsttype = atype;
2086 }
5287ad62 2087 else if (reg_incr == -1)
477330fc
RM
2088 {
2089 reg_incr = getreg - base_reg;
2090 if (reg_incr < 1 || reg_incr > 2)
2091 {
2092 first_error (_(incr_error));
2093 return FAIL;
2094 }
2095 }
5287ad62 2096 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2097 {
2098 first_error (_(incr_error));
2099 return FAIL;
2100 }
dcbf9037 2101
c921be7d 2102 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2103 {
2104 first_error (_(type_error));
2105 return FAIL;
2106 }
5f4273c7 2107
5287ad62 2108 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2109 modes. */
5287ad62 2110 if (ptr[0] == '-')
477330fc
RM
2111 {
2112 struct neon_typed_alias htype;
2113 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2114 if (lane == -1)
2115 lane = NEON_INTERLEAVE_LANES;
2116 else if (lane != NEON_INTERLEAVE_LANES)
2117 {
2118 first_error (_(type_error));
2119 return FAIL;
2120 }
2121 if (reg_incr == -1)
2122 reg_incr = 1;
2123 else if (reg_incr != 1)
2124 {
2125 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2126 return FAIL;
2127 }
2128 ptr++;
2129 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2130 if (hireg == FAIL)
2131 {
2132 first_error (_(reg_expected_msgs[rtype]));
2133 return FAIL;
2134 }
2135 if (! neon_alias_types_same (&htype, &firsttype))
2136 {
2137 first_error (_(type_error));
2138 return FAIL;
2139 }
2140 count += hireg + dregs - getreg;
2141 continue;
2142 }
5f4273c7 2143
5287ad62
JB
2144 /* If we're using Q registers, we can't use [] or [n] syntax. */
2145 if (rtype == REG_TYPE_NQ)
477330fc
RM
2146 {
2147 count += 2;
2148 continue;
2149 }
5f4273c7 2150
dcbf9037 2151 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2152 {
2153 if (lane == -1)
2154 lane = atype.index;
2155 else if (lane != atype.index)
2156 {
2157 first_error (_(type_error));
2158 return FAIL;
2159 }
2160 }
5287ad62 2161 else if (lane == -1)
477330fc 2162 lane = NEON_INTERLEAVE_LANES;
5287ad62 2163 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2164 {
2165 first_error (_(type_error));
2166 return FAIL;
2167 }
5287ad62
JB
2168 count++;
2169 }
2170 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2171
5287ad62
JB
2172 /* No lane set by [x]. We must be interleaving structures. */
2173 if (lane == -1)
2174 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2175
5287ad62
JB
2176 /* Sanity check. */
2177 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2178 || (count > 1 && reg_incr == -1))
2179 {
dcbf9037 2180 first_error (_("error parsing element/structure list"));
5287ad62
JB
2181 return FAIL;
2182 }
2183
2184 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2185 {
dcbf9037 2186 first_error (_("expected }"));
5287ad62
JB
2187 return FAIL;
2188 }
5f4273c7 2189
5287ad62
JB
2190 if (reg_incr == -1)
2191 reg_incr = 1;
2192
dcbf9037
JB
2193 if (eltype)
2194 *eltype = firsttype.eltype;
2195
5287ad62
JB
2196 *pbase = base_reg;
2197 *str = ptr;
5f4273c7 2198
5287ad62
JB
2199 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2200}
2201
c19d1205
ZW
2202/* Parse an explicit relocation suffix on an expression. This is
2203 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2204 arm_reloc_hsh contains no entries, so this function can only
2205 succeed if there is no () after the word. Returns -1 on error,
2206 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2207
c19d1205
ZW
2208static int
2209parse_reloc (char **str)
b99bd4ef 2210{
c19d1205
ZW
2211 struct reloc_entry *r;
2212 char *p, *q;
b99bd4ef 2213
c19d1205
ZW
2214 if (**str != '(')
2215 return BFD_RELOC_UNUSED;
b99bd4ef 2216
c19d1205
ZW
2217 p = *str + 1;
2218 q = p;
2219
2220 while (*q && *q != ')' && *q != ',')
2221 q++;
2222 if (*q != ')')
2223 return -1;
2224
21d799b5
NC
2225 if ((r = (struct reloc_entry *)
2226 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2227 return -1;
2228
2229 *str = q + 1;
2230 return r->reloc;
b99bd4ef
NC
2231}
2232
c19d1205
ZW
2233/* Directives: register aliases. */
2234
dcbf9037 2235static struct reg_entry *
90ec0d68 2236insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2237{
d3ce72d0 2238 struct reg_entry *new_reg;
c19d1205 2239 const char *name;
b99bd4ef 2240
d3ce72d0 2241 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2242 {
d3ce72d0 2243 if (new_reg->builtin)
c19d1205 2244 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2245
c19d1205
ZW
2246 /* Only warn about a redefinition if it's not defined as the
2247 same register. */
d3ce72d0 2248 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2249 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2250
d929913e 2251 return NULL;
c19d1205 2252 }
b99bd4ef 2253
c19d1205 2254 name = xstrdup (str);
325801bd 2255 new_reg = XNEW (struct reg_entry);
b99bd4ef 2256
d3ce72d0
NC
2257 new_reg->name = name;
2258 new_reg->number = number;
2259 new_reg->type = type;
2260 new_reg->builtin = FALSE;
2261 new_reg->neon = NULL;
b99bd4ef 2262
d3ce72d0 2263 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2264 abort ();
5f4273c7 2265
d3ce72d0 2266 return new_reg;
dcbf9037
JB
2267}
2268
2269static void
2270insert_neon_reg_alias (char *str, int number, int type,
477330fc 2271 struct neon_typed_alias *atype)
dcbf9037
JB
2272{
2273 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2274
dcbf9037
JB
2275 if (!reg)
2276 {
2277 first_error (_("attempt to redefine typed alias"));
2278 return;
2279 }
5f4273c7 2280
dcbf9037
JB
2281 if (atype)
2282 {
325801bd 2283 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2284 *reg->neon = *atype;
2285 }
c19d1205 2286}
b99bd4ef 2287
c19d1205 2288/* Look for the .req directive. This is of the form:
b99bd4ef 2289
c19d1205 2290 new_register_name .req existing_register_name
b99bd4ef 2291
c19d1205 2292 If we find one, or if it looks sufficiently like one that we want to
d929913e 2293 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2294
d929913e 2295static bfd_boolean
c19d1205
ZW
2296create_register_alias (char * newname, char *p)
2297{
2298 struct reg_entry *old;
2299 char *oldname, *nbuf;
2300 size_t nlen;
b99bd4ef 2301
c19d1205
ZW
2302 /* The input scrubber ensures that whitespace after the mnemonic is
2303 collapsed to single spaces. */
2304 oldname = p;
2305 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2306 return FALSE;
b99bd4ef 2307
c19d1205
ZW
2308 oldname += 6;
2309 if (*oldname == '\0')
d929913e 2310 return FALSE;
b99bd4ef 2311
21d799b5 2312 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2313 if (!old)
b99bd4ef 2314 {
c19d1205 2315 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2316 return TRUE;
b99bd4ef
NC
2317 }
2318
c19d1205
ZW
2319 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2320 the desired alias name, and p points to its end. If not, then
2321 the desired alias name is in the global original_case_string. */
2322#ifdef TC_CASE_SENSITIVE
2323 nlen = p - newname;
2324#else
2325 newname = original_case_string;
2326 nlen = strlen (newname);
2327#endif
b99bd4ef 2328
29a2809e 2329 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2330
c19d1205
ZW
2331 /* Create aliases under the new name as stated; an all-lowercase
2332 version of the new name; and an all-uppercase version of the new
2333 name. */
d929913e
NC
2334 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2335 {
2336 for (p = nbuf; *p; p++)
2337 *p = TOUPPER (*p);
c19d1205 2338
d929913e
NC
2339 if (strncmp (nbuf, newname, nlen))
2340 {
2341 /* If this attempt to create an additional alias fails, do not bother
2342 trying to create the all-lower case alias. We will fail and issue
2343 a second, duplicate error message. This situation arises when the
2344 programmer does something like:
2345 foo .req r0
2346 Foo .req r1
2347 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2348 the artificial FOO alias because it has already been created by the
d929913e
NC
2349 first .req. */
2350 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2351 {
2352 free (nbuf);
2353 return TRUE;
2354 }
d929913e 2355 }
c19d1205 2356
d929913e
NC
2357 for (p = nbuf; *p; p++)
2358 *p = TOLOWER (*p);
c19d1205 2359
d929913e
NC
2360 if (strncmp (nbuf, newname, nlen))
2361 insert_reg_alias (nbuf, old->number, old->type);
2362 }
c19d1205 2363
e1fa0163 2364 free (nbuf);
d929913e 2365 return TRUE;
b99bd4ef
NC
2366}
2367
dcbf9037
JB
2368/* Create a Neon typed/indexed register alias using directives, e.g.:
2369 X .dn d5.s32[1]
2370 Y .qn 6.s16
2371 Z .dn d7
2372 T .dn Z[0]
2373 These typed registers can be used instead of the types specified after the
2374 Neon mnemonic, so long as all operands given have types. Types can also be
2375 specified directly, e.g.:
5f4273c7 2376 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2377
c921be7d 2378static bfd_boolean
dcbf9037
JB
2379create_neon_reg_alias (char *newname, char *p)
2380{
2381 enum arm_reg_type basetype;
2382 struct reg_entry *basereg;
2383 struct reg_entry mybasereg;
2384 struct neon_type ntype;
2385 struct neon_typed_alias typeinfo;
12d6b0b7 2386 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2387 int namelen;
5f4273c7 2388
dcbf9037
JB
2389 typeinfo.defined = 0;
2390 typeinfo.eltype.type = NT_invtype;
2391 typeinfo.eltype.size = -1;
2392 typeinfo.index = -1;
5f4273c7 2393
dcbf9037 2394 nameend = p;
5f4273c7 2395
dcbf9037
JB
2396 if (strncmp (p, " .dn ", 5) == 0)
2397 basetype = REG_TYPE_VFD;
2398 else if (strncmp (p, " .qn ", 5) == 0)
2399 basetype = REG_TYPE_NQ;
2400 else
c921be7d 2401 return FALSE;
5f4273c7 2402
dcbf9037 2403 p += 5;
5f4273c7 2404
dcbf9037 2405 if (*p == '\0')
c921be7d 2406 return FALSE;
5f4273c7 2407
dcbf9037
JB
2408 basereg = arm_reg_parse_multi (&p);
2409
2410 if (basereg && basereg->type != basetype)
2411 {
2412 as_bad (_("bad type for register"));
c921be7d 2413 return FALSE;
dcbf9037
JB
2414 }
2415
2416 if (basereg == NULL)
2417 {
2418 expressionS exp;
2419 /* Try parsing as an integer. */
2420 my_get_expression (&exp, &p, GE_NO_PREFIX);
2421 if (exp.X_op != O_constant)
477330fc
RM
2422 {
2423 as_bad (_("expression must be constant"));
2424 return FALSE;
2425 }
dcbf9037
JB
2426 basereg = &mybasereg;
2427 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2428 : exp.X_add_number;
dcbf9037
JB
2429 basereg->neon = 0;
2430 }
2431
2432 if (basereg->neon)
2433 typeinfo = *basereg->neon;
2434
2435 if (parse_neon_type (&ntype, &p) == SUCCESS)
2436 {
2437 /* We got a type. */
2438 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2439 {
2440 as_bad (_("can't redefine the type of a register alias"));
2441 return FALSE;
2442 }
5f4273c7 2443
dcbf9037
JB
2444 typeinfo.defined |= NTA_HASTYPE;
2445 if (ntype.elems != 1)
477330fc
RM
2446 {
2447 as_bad (_("you must specify a single type only"));
2448 return FALSE;
2449 }
dcbf9037
JB
2450 typeinfo.eltype = ntype.el[0];
2451 }
5f4273c7 2452
dcbf9037
JB
2453 if (skip_past_char (&p, '[') == SUCCESS)
2454 {
2455 expressionS exp;
2456 /* We got a scalar index. */
5f4273c7 2457
dcbf9037 2458 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2459 {
2460 as_bad (_("can't redefine the index of a scalar alias"));
2461 return FALSE;
2462 }
5f4273c7 2463
dcbf9037 2464 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2465
dcbf9037 2466 if (exp.X_op != O_constant)
477330fc
RM
2467 {
2468 as_bad (_("scalar index must be constant"));
2469 return FALSE;
2470 }
5f4273c7 2471
dcbf9037
JB
2472 typeinfo.defined |= NTA_HASINDEX;
2473 typeinfo.index = exp.X_add_number;
5f4273c7 2474
dcbf9037 2475 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2476 {
2477 as_bad (_("expecting ]"));
2478 return FALSE;
2479 }
dcbf9037
JB
2480 }
2481
15735687
NS
2482 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2483 the desired alias name, and p points to its end. If not, then
2484 the desired alias name is in the global original_case_string. */
2485#ifdef TC_CASE_SENSITIVE
dcbf9037 2486 namelen = nameend - newname;
15735687
NS
2487#else
2488 newname = original_case_string;
2489 namelen = strlen (newname);
2490#endif
2491
29a2809e 2492 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2493
dcbf9037 2494 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2495 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2496
dcbf9037
JB
2497 /* Insert name in all uppercase. */
2498 for (p = namebuf; *p; p++)
2499 *p = TOUPPER (*p);
5f4273c7 2500
dcbf9037
JB
2501 if (strncmp (namebuf, newname, namelen))
2502 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2503 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2504
dcbf9037
JB
2505 /* Insert name in all lowercase. */
2506 for (p = namebuf; *p; p++)
2507 *p = TOLOWER (*p);
5f4273c7 2508
dcbf9037
JB
2509 if (strncmp (namebuf, newname, namelen))
2510 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2511 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2512
e1fa0163 2513 free (namebuf);
c921be7d 2514 return TRUE;
dcbf9037
JB
2515}
2516
c19d1205
ZW
2517/* Should never be called, as .req goes between the alias and the
2518 register name, not at the beginning of the line. */
c921be7d 2519
b99bd4ef 2520static void
c19d1205 2521s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2522{
c19d1205
ZW
2523 as_bad (_("invalid syntax for .req directive"));
2524}
b99bd4ef 2525
dcbf9037
JB
2526static void
2527s_dn (int a ATTRIBUTE_UNUSED)
2528{
2529 as_bad (_("invalid syntax for .dn directive"));
2530}
2531
2532static void
2533s_qn (int a ATTRIBUTE_UNUSED)
2534{
2535 as_bad (_("invalid syntax for .qn directive"));
2536}
2537
c19d1205
ZW
2538/* The .unreq directive deletes an alias which was previously defined
2539 by .req. For example:
b99bd4ef 2540
c19d1205
ZW
2541 my_alias .req r11
2542 .unreq my_alias */
b99bd4ef
NC
2543
2544static void
c19d1205 2545s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2546{
c19d1205
ZW
2547 char * name;
2548 char saved_char;
b99bd4ef 2549
c19d1205
ZW
2550 name = input_line_pointer;
2551
2552 while (*input_line_pointer != 0
2553 && *input_line_pointer != ' '
2554 && *input_line_pointer != '\n')
2555 ++input_line_pointer;
2556
2557 saved_char = *input_line_pointer;
2558 *input_line_pointer = 0;
2559
2560 if (!*name)
2561 as_bad (_("invalid syntax for .unreq directive"));
2562 else
2563 {
21d799b5 2564 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2565 name);
c19d1205
ZW
2566
2567 if (!reg)
2568 as_bad (_("unknown register alias '%s'"), name);
2569 else if (reg->builtin)
a1727c1a 2570 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2571 name);
2572 else
2573 {
d929913e
NC
2574 char * p;
2575 char * nbuf;
2576
db0bc284 2577 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2578 free ((char *) reg->name);
477330fc
RM
2579 if (reg->neon)
2580 free (reg->neon);
c19d1205 2581 free (reg);
d929913e
NC
2582
2583 /* Also locate the all upper case and all lower case versions.
2584 Do not complain if we cannot find one or the other as it
2585 was probably deleted above. */
5f4273c7 2586
d929913e
NC
2587 nbuf = strdup (name);
2588 for (p = nbuf; *p; p++)
2589 *p = TOUPPER (*p);
21d799b5 2590 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2591 if (reg)
2592 {
db0bc284 2593 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2594 free ((char *) reg->name);
2595 if (reg->neon)
2596 free (reg->neon);
2597 free (reg);
2598 }
2599
2600 for (p = nbuf; *p; p++)
2601 *p = TOLOWER (*p);
21d799b5 2602 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2603 if (reg)
2604 {
db0bc284 2605 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2606 free ((char *) reg->name);
2607 if (reg->neon)
2608 free (reg->neon);
2609 free (reg);
2610 }
2611
2612 free (nbuf);
c19d1205
ZW
2613 }
2614 }
b99bd4ef 2615
c19d1205 2616 *input_line_pointer = saved_char;
b99bd4ef
NC
2617 demand_empty_rest_of_line ();
2618}
2619
c19d1205
ZW
2620/* Directives: Instruction set selection. */
2621
2622#ifdef OBJ_ELF
2623/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2624 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2625 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2626 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2627
cd000bff
DJ
2628/* Create a new mapping symbol for the transition to STATE. */
2629
2630static void
2631make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2632{
a737bd4d 2633 symbolS * symbolP;
c19d1205
ZW
2634 const char * symname;
2635 int type;
b99bd4ef 2636
c19d1205 2637 switch (state)
b99bd4ef 2638 {
c19d1205
ZW
2639 case MAP_DATA:
2640 symname = "$d";
2641 type = BSF_NO_FLAGS;
2642 break;
2643 case MAP_ARM:
2644 symname = "$a";
2645 type = BSF_NO_FLAGS;
2646 break;
2647 case MAP_THUMB:
2648 symname = "$t";
2649 type = BSF_NO_FLAGS;
2650 break;
c19d1205
ZW
2651 default:
2652 abort ();
2653 }
2654
cd000bff 2655 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2656 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2657
2658 switch (state)
2659 {
2660 case MAP_ARM:
2661 THUMB_SET_FUNC (symbolP, 0);
2662 ARM_SET_THUMB (symbolP, 0);
2663 ARM_SET_INTERWORK (symbolP, support_interwork);
2664 break;
2665
2666 case MAP_THUMB:
2667 THUMB_SET_FUNC (symbolP, 1);
2668 ARM_SET_THUMB (symbolP, 1);
2669 ARM_SET_INTERWORK (symbolP, support_interwork);
2670 break;
2671
2672 case MAP_DATA:
2673 default:
cd000bff
DJ
2674 break;
2675 }
2676
2677 /* Save the mapping symbols for future reference. Also check that
2678 we do not place two mapping symbols at the same offset within a
2679 frag. We'll handle overlap between frags in
2de7820f
JZ
2680 check_mapping_symbols.
2681
2682 If .fill or other data filling directive generates zero sized data,
2683 the mapping symbol for the following code will have the same value
2684 as the one generated for the data filling directive. In this case,
2685 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2686 if (value == 0)
2687 {
2de7820f
JZ
2688 if (frag->tc_frag_data.first_map != NULL)
2689 {
2690 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2691 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2692 }
cd000bff
DJ
2693 frag->tc_frag_data.first_map = symbolP;
2694 }
2695 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2696 {
2697 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2698 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2699 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2700 }
cd000bff
DJ
2701 frag->tc_frag_data.last_map = symbolP;
2702}
2703
2704/* We must sometimes convert a region marked as code to data during
2705 code alignment, if an odd number of bytes have to be padded. The
2706 code mapping symbol is pushed to an aligned address. */
2707
2708static void
2709insert_data_mapping_symbol (enum mstate state,
2710 valueT value, fragS *frag, offsetT bytes)
2711{
2712 /* If there was already a mapping symbol, remove it. */
2713 if (frag->tc_frag_data.last_map != NULL
2714 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2715 {
2716 symbolS *symp = frag->tc_frag_data.last_map;
2717
2718 if (value == 0)
2719 {
2720 know (frag->tc_frag_data.first_map == symp);
2721 frag->tc_frag_data.first_map = NULL;
2722 }
2723 frag->tc_frag_data.last_map = NULL;
2724 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2725 }
cd000bff
DJ
2726
2727 make_mapping_symbol (MAP_DATA, value, frag);
2728 make_mapping_symbol (state, value + bytes, frag);
2729}
2730
2731static void mapping_state_2 (enum mstate state, int max_chars);
2732
2733/* Set the mapping state to STATE. Only call this when about to
2734 emit some STATE bytes to the file. */
2735
4e9aaefb 2736#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2737void
2738mapping_state (enum mstate state)
2739{
940b5ce0
DJ
2740 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2741
cd000bff
DJ
2742 if (mapstate == state)
2743 /* The mapping symbol has already been emitted.
2744 There is nothing else to do. */
2745 return;
49c62a33
NC
2746
2747 if (state == MAP_ARM || state == MAP_THUMB)
2748 /* PR gas/12931
2749 All ARM instructions require 4-byte alignment.
2750 (Almost) all Thumb instructions require 2-byte alignment.
2751
2752 When emitting instructions into any section, mark the section
2753 appropriately.
2754
2755 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2756 but themselves require 2-byte alignment; this applies to some
33eaf5de 2757 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2758 literal pool generation or an explicit .align >=2, both of
2759 which will cause the section to me marked with sufficient
2760 alignment. Thus, we don't handle those cases here. */
2761 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2762
2763 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2764 /* This case will be evaluated later. */
cd000bff 2765 return;
cd000bff
DJ
2766
2767 mapping_state_2 (state, 0);
cd000bff
DJ
2768}
2769
2770/* Same as mapping_state, but MAX_CHARS bytes have already been
2771 allocated. Put the mapping symbol that far back. */
2772
2773static void
2774mapping_state_2 (enum mstate state, int max_chars)
2775{
940b5ce0
DJ
2776 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2777
2778 if (!SEG_NORMAL (now_seg))
2779 return;
2780
cd000bff
DJ
2781 if (mapstate == state)
2782 /* The mapping symbol has already been emitted.
2783 There is nothing else to do. */
2784 return;
2785
4e9aaefb
SA
2786 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2787 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2788 {
2789 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2790 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2791
2792 if (add_symbol)
2793 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2794 }
2795
cd000bff
DJ
2796 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2797 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2798}
4e9aaefb 2799#undef TRANSITION
c19d1205 2800#else
d3106081
NS
2801#define mapping_state(x) ((void)0)
2802#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2803#endif
2804
2805/* Find the real, Thumb encoded start of a Thumb function. */
2806
4343666d 2807#ifdef OBJ_COFF
c19d1205
ZW
2808static symbolS *
2809find_real_start (symbolS * symbolP)
2810{
2811 char * real_start;
2812 const char * name = S_GET_NAME (symbolP);
2813 symbolS * new_target;
2814
2815 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2816#define STUB_NAME ".real_start_of"
2817
2818 if (name == NULL)
2819 abort ();
2820
37f6032b
ZW
2821 /* The compiler may generate BL instructions to local labels because
2822 it needs to perform a branch to a far away location. These labels
2823 do not have a corresponding ".real_start_of" label. We check
2824 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2825 the ".real_start_of" convention for nonlocal branches. */
2826 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2827 return symbolP;
2828
e1fa0163 2829 real_start = concat (STUB_NAME, name, NULL);
c19d1205 2830 new_target = symbol_find (real_start);
e1fa0163 2831 free (real_start);
c19d1205
ZW
2832
2833 if (new_target == NULL)
2834 {
bd3ba5d1 2835 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2836 new_target = symbolP;
2837 }
2838
c19d1205
ZW
2839 return new_target;
2840}
4343666d 2841#endif
c19d1205
ZW
2842
2843static void
2844opcode_select (int width)
2845{
2846 switch (width)
2847 {
2848 case 16:
2849 if (! thumb_mode)
2850 {
e74cfd16 2851 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2852 as_bad (_("selected processor does not support THUMB opcodes"));
2853
2854 thumb_mode = 1;
2855 /* No need to force the alignment, since we will have been
2856 coming from ARM mode, which is word-aligned. */
2857 record_alignment (now_seg, 1);
2858 }
c19d1205
ZW
2859 break;
2860
2861 case 32:
2862 if (thumb_mode)
2863 {
e74cfd16 2864 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2865 as_bad (_("selected processor does not support ARM opcodes"));
2866
2867 thumb_mode = 0;
2868
2869 if (!need_pass_2)
2870 frag_align (2, 0, 0);
2871
2872 record_alignment (now_seg, 1);
2873 }
c19d1205
ZW
2874 break;
2875
2876 default:
2877 as_bad (_("invalid instruction size selected (%d)"), width);
2878 }
2879}
2880
2881static void
2882s_arm (int ignore ATTRIBUTE_UNUSED)
2883{
2884 opcode_select (32);
2885 demand_empty_rest_of_line ();
2886}
2887
2888static void
2889s_thumb (int ignore ATTRIBUTE_UNUSED)
2890{
2891 opcode_select (16);
2892 demand_empty_rest_of_line ();
2893}
2894
2895static void
2896s_code (int unused ATTRIBUTE_UNUSED)
2897{
2898 int temp;
2899
2900 temp = get_absolute_expression ();
2901 switch (temp)
2902 {
2903 case 16:
2904 case 32:
2905 opcode_select (temp);
2906 break;
2907
2908 default:
2909 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2910 }
2911}
2912
2913static void
2914s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2915{
2916 /* If we are not already in thumb mode go into it, EVEN if
2917 the target processor does not support thumb instructions.
2918 This is used by gcc/config/arm/lib1funcs.asm for example
2919 to compile interworking support functions even if the
2920 target processor should not support interworking. */
2921 if (! thumb_mode)
2922 {
2923 thumb_mode = 2;
2924 record_alignment (now_seg, 1);
2925 }
2926
2927 demand_empty_rest_of_line ();
2928}
2929
2930static void
2931s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2932{
2933 s_thumb (0);
2934
2935 /* The following label is the name/address of the start of a Thumb function.
2936 We need to know this for the interworking support. */
2937 label_is_thumb_function_name = TRUE;
2938}
2939
2940/* Perform a .set directive, but also mark the alias as
2941 being a thumb function. */
2942
2943static void
2944s_thumb_set (int equiv)
2945{
2946 /* XXX the following is a duplicate of the code for s_set() in read.c
2947 We cannot just call that code as we need to get at the symbol that
2948 is created. */
2949 char * name;
2950 char delim;
2951 char * end_name;
2952 symbolS * symbolP;
2953
2954 /* Especial apologies for the random logic:
2955 This just grew, and could be parsed much more simply!
2956 Dean - in haste. */
d02603dc 2957 delim = get_symbol_name (& name);
c19d1205 2958 end_name = input_line_pointer;
d02603dc 2959 (void) restore_line_pointer (delim);
c19d1205
ZW
2960
2961 if (*input_line_pointer != ',')
2962 {
2963 *end_name = 0;
2964 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2965 *end_name = delim;
2966 ignore_rest_of_line ();
2967 return;
2968 }
2969
2970 input_line_pointer++;
2971 *end_name = 0;
2972
2973 if (name[0] == '.' && name[1] == '\0')
2974 {
2975 /* XXX - this should not happen to .thumb_set. */
2976 abort ();
2977 }
2978
2979 if ((symbolP = symbol_find (name)) == NULL
2980 && (symbolP = md_undefined_symbol (name)) == NULL)
2981 {
2982#ifndef NO_LISTING
2983 /* When doing symbol listings, play games with dummy fragments living
2984 outside the normal fragment chain to record the file and line info
c19d1205 2985 for this symbol. */
b99bd4ef
NC
2986 if (listing & LISTING_SYMBOLS)
2987 {
2988 extern struct list_info_struct * listing_tail;
21d799b5 2989 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2990
2991 memset (dummy_frag, 0, sizeof (fragS));
2992 dummy_frag->fr_type = rs_fill;
2993 dummy_frag->line = listing_tail;
2994 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2995 dummy_frag->fr_symbol = symbolP;
2996 }
2997 else
2998#endif
2999 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3000
3001#ifdef OBJ_COFF
3002 /* "set" symbols are local unless otherwise specified. */
3003 SF_SET_LOCAL (symbolP);
3004#endif /* OBJ_COFF */
3005 } /* Make a new symbol. */
3006
3007 symbol_table_insert (symbolP);
3008
3009 * end_name = delim;
3010
3011 if (equiv
3012 && S_IS_DEFINED (symbolP)
3013 && S_GET_SEGMENT (symbolP) != reg_section)
3014 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3015
3016 pseudo_set (symbolP);
3017
3018 demand_empty_rest_of_line ();
3019
c19d1205 3020 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3021
3022 THUMB_SET_FUNC (symbolP, 1);
3023 ARM_SET_THUMB (symbolP, 1);
3024#if defined OBJ_ELF || defined OBJ_COFF
3025 ARM_SET_INTERWORK (symbolP, support_interwork);
3026#endif
3027}
3028
c19d1205 3029/* Directives: Mode selection. */
b99bd4ef 3030
c19d1205
ZW
3031/* .syntax [unified|divided] - choose the new unified syntax
3032 (same for Arm and Thumb encoding, modulo slight differences in what
3033 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3034static void
c19d1205 3035s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3036{
c19d1205
ZW
3037 char *name, delim;
3038
d02603dc 3039 delim = get_symbol_name (& name);
c19d1205
ZW
3040
3041 if (!strcasecmp (name, "unified"))
3042 unified_syntax = TRUE;
3043 else if (!strcasecmp (name, "divided"))
3044 unified_syntax = FALSE;
3045 else
3046 {
3047 as_bad (_("unrecognized syntax mode \"%s\""), name);
3048 return;
3049 }
d02603dc 3050 (void) restore_line_pointer (delim);
b99bd4ef
NC
3051 demand_empty_rest_of_line ();
3052}
3053
c19d1205
ZW
3054/* Directives: sectioning and alignment. */
3055
c19d1205
ZW
3056static void
3057s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3058{
c19d1205
ZW
3059 /* We don't support putting frags in the BSS segment, we fake it by
3060 marking in_bss, then looking at s_skip for clues. */
3061 subseg_set (bss_section, 0);
3062 demand_empty_rest_of_line ();
cd000bff
DJ
3063
3064#ifdef md_elf_section_change_hook
3065 md_elf_section_change_hook ();
3066#endif
c19d1205 3067}
b99bd4ef 3068
c19d1205
ZW
3069static void
3070s_even (int ignore ATTRIBUTE_UNUSED)
3071{
3072 /* Never make frag if expect extra pass. */
3073 if (!need_pass_2)
3074 frag_align (1, 0, 0);
b99bd4ef 3075
c19d1205 3076 record_alignment (now_seg, 1);
b99bd4ef 3077
c19d1205 3078 demand_empty_rest_of_line ();
b99bd4ef
NC
3079}
3080
2e6976a8
DG
3081/* Directives: CodeComposer Studio. */
3082
3083/* .ref (for CodeComposer Studio syntax only). */
3084static void
3085s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3086{
3087 if (codecomposer_syntax)
3088 ignore_rest_of_line ();
3089 else
3090 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3091}
3092
3093/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3094 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3095static void
3096asmfunc_debug (const char * name)
3097{
3098 static const char * last_name = NULL;
3099
3100 if (name != NULL)
3101 {
3102 gas_assert (last_name == NULL);
3103 last_name = name;
3104
3105 if (debug_type == DEBUG_STABS)
3106 stabs_generate_asm_func (name, name);
3107 }
3108 else
3109 {
3110 gas_assert (last_name != NULL);
3111
3112 if (debug_type == DEBUG_STABS)
3113 stabs_generate_asm_endfunc (last_name, last_name);
3114
3115 last_name = NULL;
3116 }
3117}
3118
3119static void
3120s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3121{
3122 if (codecomposer_syntax)
3123 {
3124 switch (asmfunc_state)
3125 {
3126 case OUTSIDE_ASMFUNC:
3127 asmfunc_state = WAITING_ASMFUNC_NAME;
3128 break;
3129
3130 case WAITING_ASMFUNC_NAME:
3131 as_bad (_(".asmfunc repeated."));
3132 break;
3133
3134 case WAITING_ENDASMFUNC:
3135 as_bad (_(".asmfunc without function."));
3136 break;
3137 }
3138 demand_empty_rest_of_line ();
3139 }
3140 else
3141 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3142}
3143
3144static void
3145s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3146{
3147 if (codecomposer_syntax)
3148 {
3149 switch (asmfunc_state)
3150 {
3151 case OUTSIDE_ASMFUNC:
3152 as_bad (_(".endasmfunc without a .asmfunc."));
3153 break;
3154
3155 case WAITING_ASMFUNC_NAME:
3156 as_bad (_(".endasmfunc without function."));
3157 break;
3158
3159 case WAITING_ENDASMFUNC:
3160 asmfunc_state = OUTSIDE_ASMFUNC;
3161 asmfunc_debug (NULL);
3162 break;
3163 }
3164 demand_empty_rest_of_line ();
3165 }
3166 else
3167 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3168}
3169
3170static void
3171s_ccs_def (int name)
3172{
3173 if (codecomposer_syntax)
3174 s_globl (name);
3175 else
3176 as_bad (_(".def pseudo-op only available with -mccs flag."));
3177}
3178
c19d1205 3179/* Directives: Literal pools. */
a737bd4d 3180
c19d1205
ZW
3181static literal_pool *
3182find_literal_pool (void)
a737bd4d 3183{
c19d1205 3184 literal_pool * pool;
a737bd4d 3185
c19d1205 3186 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3187 {
c19d1205
ZW
3188 if (pool->section == now_seg
3189 && pool->sub_section == now_subseg)
3190 break;
a737bd4d
NC
3191 }
3192
c19d1205 3193 return pool;
a737bd4d
NC
3194}
3195
c19d1205
ZW
3196static literal_pool *
3197find_or_make_literal_pool (void)
a737bd4d 3198{
c19d1205
ZW
3199 /* Next literal pool ID number. */
3200 static unsigned int latest_pool_num = 1;
3201 literal_pool * pool;
a737bd4d 3202
c19d1205 3203 pool = find_literal_pool ();
a737bd4d 3204
c19d1205 3205 if (pool == NULL)
a737bd4d 3206 {
c19d1205 3207 /* Create a new pool. */
325801bd 3208 pool = XNEW (literal_pool);
c19d1205
ZW
3209 if (! pool)
3210 return NULL;
a737bd4d 3211
c19d1205
ZW
3212 pool->next_free_entry = 0;
3213 pool->section = now_seg;
3214 pool->sub_section = now_subseg;
3215 pool->next = list_of_pools;
3216 pool->symbol = NULL;
8335d6aa 3217 pool->alignment = 2;
c19d1205
ZW
3218
3219 /* Add it to the list. */
3220 list_of_pools = pool;
a737bd4d 3221 }
a737bd4d 3222
c19d1205
ZW
3223 /* New pools, and emptied pools, will have a NULL symbol. */
3224 if (pool->symbol == NULL)
a737bd4d 3225 {
c19d1205
ZW
3226 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3227 (valueT) 0, &zero_address_frag);
3228 pool->id = latest_pool_num ++;
a737bd4d
NC
3229 }
3230
c19d1205
ZW
3231 /* Done. */
3232 return pool;
a737bd4d
NC
3233}
3234
c19d1205 3235/* Add the literal in the global 'inst'
5f4273c7 3236 structure to the relevant literal pool. */
b99bd4ef
NC
3237
3238static int
8335d6aa 3239add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3240{
8335d6aa
JW
3241#define PADDING_SLOT 0x1
3242#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3243 literal_pool * pool;
8335d6aa
JW
3244 unsigned int entry, pool_size = 0;
3245 bfd_boolean padding_slot_p = FALSE;
e56c722b 3246 unsigned imm1 = 0;
8335d6aa
JW
3247 unsigned imm2 = 0;
3248
3249 if (nbytes == 8)
3250 {
3251 imm1 = inst.operands[1].imm;
3252 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3253 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3254 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3255 if (target_big_endian)
3256 {
3257 imm1 = imm2;
3258 imm2 = inst.operands[1].imm;
3259 }
3260 }
b99bd4ef 3261
c19d1205
ZW
3262 pool = find_or_make_literal_pool ();
3263
3264 /* Check if this literal value is already in the pool. */
3265 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3266 {
8335d6aa
JW
3267 if (nbytes == 4)
3268 {
e2b0ab59
AV
3269 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3270 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3271 && (pool->literals[entry].X_add_number
e2b0ab59 3272 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3273 && (pool->literals[entry].X_md == nbytes)
3274 && (pool->literals[entry].X_unsigned
e2b0ab59 3275 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3276 break;
3277
e2b0ab59
AV
3278 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3279 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3280 && (pool->literals[entry].X_add_number
e2b0ab59 3281 == inst.relocs[0].exp.X_add_number)
8335d6aa 3282 && (pool->literals[entry].X_add_symbol
e2b0ab59 3283 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3284 && (pool->literals[entry].X_op_symbol
e2b0ab59 3285 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3286 && (pool->literals[entry].X_md == nbytes))
3287 break;
3288 }
3289 else if ((nbytes == 8)
3290 && !(pool_size & 0x7)
3291 && ((entry + 1) != pool->next_free_entry)
3292 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3293 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3294 && (pool->literals[entry].X_unsigned
e2b0ab59 3295 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3296 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3297 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3298 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3299 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3300 break;
3301
8335d6aa
JW
3302 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3303 if (padding_slot_p && (nbytes == 4))
c19d1205 3304 break;
8335d6aa
JW
3305
3306 pool_size += 4;
b99bd4ef
NC
3307 }
3308
c19d1205
ZW
3309 /* Do we need to create a new entry? */
3310 if (entry == pool->next_free_entry)
3311 {
3312 if (entry >= MAX_LITERAL_POOL_SIZE)
3313 {
3314 inst.error = _("literal pool overflow");
3315 return FAIL;
3316 }
3317
8335d6aa
JW
3318 if (nbytes == 8)
3319 {
3320 /* For 8-byte entries, we align to an 8-byte boundary,
3321 and split it into two 4-byte entries, because on 32-bit
3322 host, 8-byte constants are treated as big num, thus
3323 saved in "generic_bignum" which will be overwritten
3324 by later assignments.
3325
3326 We also need to make sure there is enough space for
3327 the split.
3328
3329 We also check to make sure the literal operand is a
3330 constant number. */
e2b0ab59
AV
3331 if (!(inst.relocs[0].exp.X_op == O_constant
3332 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3333 {
3334 inst.error = _("invalid type for literal pool");
3335 return FAIL;
3336 }
3337 else if (pool_size & 0x7)
3338 {
3339 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3340 {
3341 inst.error = _("literal pool overflow");
3342 return FAIL;
3343 }
3344
e2b0ab59 3345 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3346 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3347 pool->literals[entry].X_add_number = 0;
3348 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3349 pool->next_free_entry += 1;
3350 pool_size += 4;
3351 }
3352 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3353 {
3354 inst.error = _("literal pool overflow");
3355 return FAIL;
3356 }
3357
e2b0ab59 3358 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3359 pool->literals[entry].X_op = O_constant;
3360 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3361 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3362 pool->literals[entry++].X_md = 4;
e2b0ab59 3363 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3364 pool->literals[entry].X_op = O_constant;
3365 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3366 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3367 pool->literals[entry].X_md = 4;
3368 pool->alignment = 3;
3369 pool->next_free_entry += 1;
3370 }
3371 else
3372 {
e2b0ab59 3373 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3374 pool->literals[entry].X_md = 4;
3375 }
3376
a8040cf2
NC
3377#ifdef OBJ_ELF
3378 /* PR ld/12974: Record the location of the first source line to reference
3379 this entry in the literal pool. If it turns out during linking that the
3380 symbol does not exist we will be able to give an accurate line number for
3381 the (first use of the) missing reference. */
3382 if (debug_type == DEBUG_DWARF2)
3383 dwarf2_where (pool->locs + entry);
3384#endif
c19d1205
ZW
3385 pool->next_free_entry += 1;
3386 }
8335d6aa
JW
3387 else if (padding_slot_p)
3388 {
e2b0ab59 3389 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3390 pool->literals[entry].X_md = nbytes;
3391 }
b99bd4ef 3392
e2b0ab59
AV
3393 inst.relocs[0].exp.X_op = O_symbol;
3394 inst.relocs[0].exp.X_add_number = pool_size;
3395 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3396
c19d1205 3397 return SUCCESS;
b99bd4ef
NC
3398}
3399
2e6976a8 3400bfd_boolean
2e57ce7b 3401tc_start_label_without_colon (void)
2e6976a8
DG
3402{
3403 bfd_boolean ret = TRUE;
3404
3405 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3406 {
2e57ce7b 3407 const char *label = input_line_pointer;
2e6976a8
DG
3408
3409 while (!is_end_of_line[(int) label[-1]])
3410 --label;
3411
3412 if (*label == '.')
3413 {
3414 as_bad (_("Invalid label '%s'"), label);
3415 ret = FALSE;
3416 }
3417
3418 asmfunc_debug (label);
3419
3420 asmfunc_state = WAITING_ENDASMFUNC;
3421 }
3422
3423 return ret;
3424}
3425
c19d1205 3426/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3427 a later date assign it a value. That's what these functions do. */
e16bb312 3428
c19d1205
ZW
3429static void
3430symbol_locate (symbolS * symbolP,
3431 const char * name, /* It is copied, the caller can modify. */
3432 segT segment, /* Segment identifier (SEG_<something>). */
3433 valueT valu, /* Symbol value. */
3434 fragS * frag) /* Associated fragment. */
3435{
e57e6ddc 3436 size_t name_length;
c19d1205 3437 char * preserved_copy_of_name;
e16bb312 3438
c19d1205
ZW
3439 name_length = strlen (name) + 1; /* +1 for \0. */
3440 obstack_grow (&notes, name, name_length);
21d799b5 3441 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3442
c19d1205
ZW
3443#ifdef tc_canonicalize_symbol_name
3444 preserved_copy_of_name =
3445 tc_canonicalize_symbol_name (preserved_copy_of_name);
3446#endif
b99bd4ef 3447
c19d1205 3448 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3449
c19d1205
ZW
3450 S_SET_SEGMENT (symbolP, segment);
3451 S_SET_VALUE (symbolP, valu);
3452 symbol_clear_list_pointers (symbolP);
b99bd4ef 3453
c19d1205 3454 symbol_set_frag (symbolP, frag);
b99bd4ef 3455
c19d1205
ZW
3456 /* Link to end of symbol chain. */
3457 {
3458 extern int symbol_table_frozen;
b99bd4ef 3459
c19d1205
ZW
3460 if (symbol_table_frozen)
3461 abort ();
3462 }
b99bd4ef 3463
c19d1205 3464 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3465
c19d1205 3466 obj_symbol_new_hook (symbolP);
b99bd4ef 3467
c19d1205
ZW
3468#ifdef tc_symbol_new_hook
3469 tc_symbol_new_hook (symbolP);
3470#endif
3471
3472#ifdef DEBUG_SYMS
3473 verify_symbol_chain (symbol_rootP, symbol_lastP);
3474#endif /* DEBUG_SYMS */
b99bd4ef
NC
3475}
3476
c19d1205
ZW
3477static void
3478s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3479{
c19d1205
ZW
3480 unsigned int entry;
3481 literal_pool * pool;
3482 char sym_name[20];
b99bd4ef 3483
c19d1205
ZW
3484 pool = find_literal_pool ();
3485 if (pool == NULL
3486 || pool->symbol == NULL
3487 || pool->next_free_entry == 0)
3488 return;
b99bd4ef 3489
c19d1205
ZW
3490 /* Align pool as you have word accesses.
3491 Only make a frag if we have to. */
3492 if (!need_pass_2)
8335d6aa 3493 frag_align (pool->alignment, 0, 0);
b99bd4ef 3494
c19d1205 3495 record_alignment (now_seg, 2);
b99bd4ef 3496
aaca88ef 3497#ifdef OBJ_ELF
47fc6e36
WN
3498 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3499 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3500#endif
c19d1205 3501 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3502
c19d1205
ZW
3503 symbol_locate (pool->symbol, sym_name, now_seg,
3504 (valueT) frag_now_fix (), frag_now);
3505 symbol_table_insert (pool->symbol);
b99bd4ef 3506
c19d1205 3507 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3508
c19d1205
ZW
3509#if defined OBJ_COFF || defined OBJ_ELF
3510 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3511#endif
6c43fab6 3512
c19d1205 3513 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3514 {
3515#ifdef OBJ_ELF
3516 if (debug_type == DEBUG_DWARF2)
3517 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3518#endif
3519 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3520 emit_expr (&(pool->literals[entry]),
3521 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3522 }
b99bd4ef 3523
c19d1205
ZW
3524 /* Mark the pool as empty. */
3525 pool->next_free_entry = 0;
3526 pool->symbol = NULL;
b99bd4ef
NC
3527}
3528
c19d1205
ZW
3529#ifdef OBJ_ELF
3530/* Forward declarations for functions below, in the MD interface
3531 section. */
3532static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3533static valueT create_unwind_entry (int);
3534static void start_unwind_section (const segT, int);
3535static void add_unwind_opcode (valueT, int);
3536static void flush_pending_unwind (void);
b99bd4ef 3537
c19d1205 3538/* Directives: Data. */
b99bd4ef 3539
c19d1205
ZW
3540static void
3541s_arm_elf_cons (int nbytes)
3542{
3543 expressionS exp;
b99bd4ef 3544
c19d1205
ZW
3545#ifdef md_flush_pending_output
3546 md_flush_pending_output ();
3547#endif
b99bd4ef 3548
c19d1205 3549 if (is_it_end_of_statement ())
b99bd4ef 3550 {
c19d1205
ZW
3551 demand_empty_rest_of_line ();
3552 return;
b99bd4ef
NC
3553 }
3554
c19d1205
ZW
3555#ifdef md_cons_align
3556 md_cons_align (nbytes);
3557#endif
b99bd4ef 3558
c19d1205
ZW
3559 mapping_state (MAP_DATA);
3560 do
b99bd4ef 3561 {
c19d1205
ZW
3562 int reloc;
3563 char *base = input_line_pointer;
b99bd4ef 3564
c19d1205 3565 expression (& exp);
b99bd4ef 3566
c19d1205
ZW
3567 if (exp.X_op != O_symbol)
3568 emit_expr (&exp, (unsigned int) nbytes);
3569 else
3570 {
3571 char *before_reloc = input_line_pointer;
3572 reloc = parse_reloc (&input_line_pointer);
3573 if (reloc == -1)
3574 {
3575 as_bad (_("unrecognized relocation suffix"));
3576 ignore_rest_of_line ();
3577 return;
3578 }
3579 else if (reloc == BFD_RELOC_UNUSED)
3580 emit_expr (&exp, (unsigned int) nbytes);
3581 else
3582 {
21d799b5 3583 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3584 bfd_reloc_type_lookup (stdoutput,
3585 (bfd_reloc_code_real_type) reloc);
c19d1205 3586 int size = bfd_get_reloc_size (howto);
b99bd4ef 3587
2fc8bdac
ZW
3588 if (reloc == BFD_RELOC_ARM_PLT32)
3589 {
3590 as_bad (_("(plt) is only valid on branch targets"));
3591 reloc = BFD_RELOC_UNUSED;
3592 size = 0;
3593 }
3594
c19d1205 3595 if (size > nbytes)
992a06ee
AM
3596 as_bad (ngettext ("%s relocations do not fit in %d byte",
3597 "%s relocations do not fit in %d bytes",
3598 nbytes),
c19d1205
ZW
3599 howto->name, nbytes);
3600 else
3601 {
3602 /* We've parsed an expression stopping at O_symbol.
3603 But there may be more expression left now that we
3604 have parsed the relocation marker. Parse it again.
3605 XXX Surely there is a cleaner way to do this. */
3606 char *p = input_line_pointer;
3607 int offset;
325801bd 3608 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3609
c19d1205
ZW
3610 memcpy (save_buf, base, input_line_pointer - base);
3611 memmove (base + (input_line_pointer - before_reloc),
3612 base, before_reloc - base);
3613
3614 input_line_pointer = base + (input_line_pointer-before_reloc);
3615 expression (&exp);
3616 memcpy (base, save_buf, p - base);
3617
3618 offset = nbytes - size;
4b1a927e
AM
3619 p = frag_more (nbytes);
3620 memset (p, 0, nbytes);
c19d1205 3621 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3622 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3623 free (save_buf);
c19d1205
ZW
3624 }
3625 }
3626 }
b99bd4ef 3627 }
c19d1205 3628 while (*input_line_pointer++ == ',');
b99bd4ef 3629
c19d1205
ZW
3630 /* Put terminator back into stream. */
3631 input_line_pointer --;
3632 demand_empty_rest_of_line ();
b99bd4ef
NC
3633}
3634
c921be7d
NC
3635/* Emit an expression containing a 32-bit thumb instruction.
3636 Implementation based on put_thumb32_insn. */
3637
3638static void
3639emit_thumb32_expr (expressionS * exp)
3640{
3641 expressionS exp_high = *exp;
3642
3643 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3644 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3645 exp->X_add_number &= 0xffff;
3646 emit_expr (exp, (unsigned int) THUMB_SIZE);
3647}
3648
3649/* Guess the instruction size based on the opcode. */
3650
3651static int
3652thumb_insn_size (int opcode)
3653{
3654 if ((unsigned int) opcode < 0xe800u)
3655 return 2;
3656 else if ((unsigned int) opcode >= 0xe8000000u)
3657 return 4;
3658 else
3659 return 0;
3660}
3661
3662static bfd_boolean
3663emit_insn (expressionS *exp, int nbytes)
3664{
3665 int size = 0;
3666
3667 if (exp->X_op == O_constant)
3668 {
3669 size = nbytes;
3670
3671 if (size == 0)
3672 size = thumb_insn_size (exp->X_add_number);
3673
3674 if (size != 0)
3675 {
3676 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3677 {
3678 as_bad (_(".inst.n operand too big. "\
3679 "Use .inst.w instead"));
3680 size = 0;
3681 }
3682 else
3683 {
3684 if (now_it.state == AUTOMATIC_IT_BLOCK)
3685 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3686 else
3687 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3688
3689 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3690 emit_thumb32_expr (exp);
3691 else
3692 emit_expr (exp, (unsigned int) size);
3693
3694 it_fsm_post_encode ();
3695 }
3696 }
3697 else
3698 as_bad (_("cannot determine Thumb instruction size. " \
3699 "Use .inst.n/.inst.w instead"));
3700 }
3701 else
3702 as_bad (_("constant expression required"));
3703
3704 return (size != 0);
3705}
3706
3707/* Like s_arm_elf_cons but do not use md_cons_align and
3708 set the mapping state to MAP_ARM/MAP_THUMB. */
3709
3710static void
3711s_arm_elf_inst (int nbytes)
3712{
3713 if (is_it_end_of_statement ())
3714 {
3715 demand_empty_rest_of_line ();
3716 return;
3717 }
3718
3719 /* Calling mapping_state () here will not change ARM/THUMB,
3720 but will ensure not to be in DATA state. */
3721
3722 if (thumb_mode)
3723 mapping_state (MAP_THUMB);
3724 else
3725 {
3726 if (nbytes != 0)
3727 {
3728 as_bad (_("width suffixes are invalid in ARM mode"));
3729 ignore_rest_of_line ();
3730 return;
3731 }
3732
3733 nbytes = 4;
3734
3735 mapping_state (MAP_ARM);
3736 }
3737
3738 do
3739 {
3740 expressionS exp;
3741
3742 expression (& exp);
3743
3744 if (! emit_insn (& exp, nbytes))
3745 {
3746 ignore_rest_of_line ();
3747 return;
3748 }
3749 }
3750 while (*input_line_pointer++ == ',');
3751
3752 /* Put terminator back into stream. */
3753 input_line_pointer --;
3754 demand_empty_rest_of_line ();
3755}
b99bd4ef 3756
c19d1205 3757/* Parse a .rel31 directive. */
b99bd4ef 3758
c19d1205
ZW
3759static void
3760s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3761{
3762 expressionS exp;
3763 char *p;
3764 valueT highbit;
b99bd4ef 3765
c19d1205
ZW
3766 highbit = 0;
3767 if (*input_line_pointer == '1')
3768 highbit = 0x80000000;
3769 else if (*input_line_pointer != '0')
3770 as_bad (_("expected 0 or 1"));
b99bd4ef 3771
c19d1205
ZW
3772 input_line_pointer++;
3773 if (*input_line_pointer != ',')
3774 as_bad (_("missing comma"));
3775 input_line_pointer++;
b99bd4ef 3776
c19d1205
ZW
3777#ifdef md_flush_pending_output
3778 md_flush_pending_output ();
3779#endif
b99bd4ef 3780
c19d1205
ZW
3781#ifdef md_cons_align
3782 md_cons_align (4);
3783#endif
b99bd4ef 3784
c19d1205 3785 mapping_state (MAP_DATA);
b99bd4ef 3786
c19d1205 3787 expression (&exp);
b99bd4ef 3788
c19d1205
ZW
3789 p = frag_more (4);
3790 md_number_to_chars (p, highbit, 4);
3791 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3792 BFD_RELOC_ARM_PREL31);
b99bd4ef 3793
c19d1205 3794 demand_empty_rest_of_line ();
b99bd4ef
NC
3795}
3796
c19d1205 3797/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3798
c19d1205 3799/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3800
c19d1205
ZW
3801static void
3802s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3803{
3804 demand_empty_rest_of_line ();
921e5f0a
PB
3805 if (unwind.proc_start)
3806 {
c921be7d 3807 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3808 return;
3809 }
3810
c19d1205
ZW
3811 /* Mark the start of the function. */
3812 unwind.proc_start = expr_build_dot ();
b99bd4ef 3813
c19d1205
ZW
3814 /* Reset the rest of the unwind info. */
3815 unwind.opcode_count = 0;
3816 unwind.table_entry = NULL;
3817 unwind.personality_routine = NULL;
3818 unwind.personality_index = -1;
3819 unwind.frame_size = 0;
3820 unwind.fp_offset = 0;
fdfde340 3821 unwind.fp_reg = REG_SP;
c19d1205
ZW
3822 unwind.fp_used = 0;
3823 unwind.sp_restored = 0;
3824}
b99bd4ef 3825
b99bd4ef 3826
c19d1205
ZW
3827/* Parse a handlerdata directive. Creates the exception handling table entry
3828 for the function. */
b99bd4ef 3829
c19d1205
ZW
3830static void
3831s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3832{
3833 demand_empty_rest_of_line ();
921e5f0a 3834 if (!unwind.proc_start)
c921be7d 3835 as_bad (MISSING_FNSTART);
921e5f0a 3836
c19d1205 3837 if (unwind.table_entry)
6decc662 3838 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3839
c19d1205
ZW
3840 create_unwind_entry (1);
3841}
a737bd4d 3842
c19d1205 3843/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3844
c19d1205
ZW
3845static void
3846s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3847{
3848 long where;
3849 char *ptr;
3850 valueT val;
940b5ce0 3851 unsigned int marked_pr_dependency;
f02232aa 3852
c19d1205 3853 demand_empty_rest_of_line ();
f02232aa 3854
921e5f0a
PB
3855 if (!unwind.proc_start)
3856 {
c921be7d 3857 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3858 return;
3859 }
3860
c19d1205
ZW
3861 /* Add eh table entry. */
3862 if (unwind.table_entry == NULL)
3863 val = create_unwind_entry (0);
3864 else
3865 val = 0;
f02232aa 3866
c19d1205
ZW
3867 /* Add index table entry. This is two words. */
3868 start_unwind_section (unwind.saved_seg, 1);
3869 frag_align (2, 0, 0);
3870 record_alignment (now_seg, 2);
b99bd4ef 3871
c19d1205 3872 ptr = frag_more (8);
5011093d 3873 memset (ptr, 0, 8);
c19d1205 3874 where = frag_now_fix () - 8;
f02232aa 3875
c19d1205
ZW
3876 /* Self relative offset of the function start. */
3877 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3878 BFD_RELOC_ARM_PREL31);
f02232aa 3879
c19d1205
ZW
3880 /* Indicate dependency on EHABI-defined personality routines to the
3881 linker, if it hasn't been done already. */
940b5ce0
DJ
3882 marked_pr_dependency
3883 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3884 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3885 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3886 {
5f4273c7
NC
3887 static const char *const name[] =
3888 {
3889 "__aeabi_unwind_cpp_pr0",
3890 "__aeabi_unwind_cpp_pr1",
3891 "__aeabi_unwind_cpp_pr2"
3892 };
c19d1205
ZW
3893 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3894 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3895 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3896 |= 1 << unwind.personality_index;
c19d1205 3897 }
f02232aa 3898
c19d1205
ZW
3899 if (val)
3900 /* Inline exception table entry. */
3901 md_number_to_chars (ptr + 4, val, 4);
3902 else
3903 /* Self relative offset of the table entry. */
3904 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3905 BFD_RELOC_ARM_PREL31);
f02232aa 3906
c19d1205
ZW
3907 /* Restore the original section. */
3908 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3909
3910 unwind.proc_start = NULL;
c19d1205 3911}
f02232aa 3912
f02232aa 3913
c19d1205 3914/* Parse an unwind_cantunwind directive. */
b99bd4ef 3915
c19d1205
ZW
3916static void
3917s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3918{
3919 demand_empty_rest_of_line ();
921e5f0a 3920 if (!unwind.proc_start)
c921be7d 3921 as_bad (MISSING_FNSTART);
921e5f0a 3922
c19d1205
ZW
3923 if (unwind.personality_routine || unwind.personality_index != -1)
3924 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3925
c19d1205
ZW
3926 unwind.personality_index = -2;
3927}
b99bd4ef 3928
b99bd4ef 3929
c19d1205 3930/* Parse a personalityindex directive. */
b99bd4ef 3931
c19d1205
ZW
3932static void
3933s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3934{
3935 expressionS exp;
b99bd4ef 3936
921e5f0a 3937 if (!unwind.proc_start)
c921be7d 3938 as_bad (MISSING_FNSTART);
921e5f0a 3939
c19d1205
ZW
3940 if (unwind.personality_routine || unwind.personality_index != -1)
3941 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3942
c19d1205 3943 expression (&exp);
b99bd4ef 3944
c19d1205
ZW
3945 if (exp.X_op != O_constant
3946 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3947 {
c19d1205
ZW
3948 as_bad (_("bad personality routine number"));
3949 ignore_rest_of_line ();
3950 return;
b99bd4ef
NC
3951 }
3952
c19d1205 3953 unwind.personality_index = exp.X_add_number;
b99bd4ef 3954
c19d1205
ZW
3955 demand_empty_rest_of_line ();
3956}
e16bb312 3957
e16bb312 3958
c19d1205 3959/* Parse a personality directive. */
e16bb312 3960
c19d1205
ZW
3961static void
3962s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3963{
3964 char *name, *p, c;
a737bd4d 3965
921e5f0a 3966 if (!unwind.proc_start)
c921be7d 3967 as_bad (MISSING_FNSTART);
921e5f0a 3968
c19d1205
ZW
3969 if (unwind.personality_routine || unwind.personality_index != -1)
3970 as_bad (_("duplicate .personality directive"));
a737bd4d 3971
d02603dc 3972 c = get_symbol_name (& name);
c19d1205 3973 p = input_line_pointer;
d02603dc
NC
3974 if (c == '"')
3975 ++ input_line_pointer;
c19d1205
ZW
3976 unwind.personality_routine = symbol_find_or_make (name);
3977 *p = c;
3978 demand_empty_rest_of_line ();
3979}
e16bb312 3980
e16bb312 3981
c19d1205 3982/* Parse a directive saving core registers. */
e16bb312 3983
c19d1205
ZW
3984static void
3985s_arm_unwind_save_core (void)
e16bb312 3986{
c19d1205
ZW
3987 valueT op;
3988 long range;
3989 int n;
e16bb312 3990
c19d1205
ZW
3991 range = parse_reg_list (&input_line_pointer);
3992 if (range == FAIL)
e16bb312 3993 {
c19d1205
ZW
3994 as_bad (_("expected register list"));
3995 ignore_rest_of_line ();
3996 return;
3997 }
e16bb312 3998
c19d1205 3999 demand_empty_rest_of_line ();
e16bb312 4000
c19d1205
ZW
4001 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4002 into .unwind_save {..., sp...}. We aren't bothered about the value of
4003 ip because it is clobbered by calls. */
4004 if (unwind.sp_restored && unwind.fp_reg == 12
4005 && (range & 0x3000) == 0x1000)
4006 {
4007 unwind.opcode_count--;
4008 unwind.sp_restored = 0;
4009 range = (range | 0x2000) & ~0x1000;
4010 unwind.pending_offset = 0;
4011 }
e16bb312 4012
01ae4198
DJ
4013 /* Pop r4-r15. */
4014 if (range & 0xfff0)
c19d1205 4015 {
01ae4198
DJ
4016 /* See if we can use the short opcodes. These pop a block of up to 8
4017 registers starting with r4, plus maybe r14. */
4018 for (n = 0; n < 8; n++)
4019 {
4020 /* Break at the first non-saved register. */
4021 if ((range & (1 << (n + 4))) == 0)
4022 break;
4023 }
4024 /* See if there are any other bits set. */
4025 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4026 {
4027 /* Use the long form. */
4028 op = 0x8000 | ((range >> 4) & 0xfff);
4029 add_unwind_opcode (op, 2);
4030 }
0dd132b6 4031 else
01ae4198
DJ
4032 {
4033 /* Use the short form. */
4034 if (range & 0x4000)
4035 op = 0xa8; /* Pop r14. */
4036 else
4037 op = 0xa0; /* Do not pop r14. */
4038 op |= (n - 1);
4039 add_unwind_opcode (op, 1);
4040 }
c19d1205 4041 }
0dd132b6 4042
c19d1205
ZW
4043 /* Pop r0-r3. */
4044 if (range & 0xf)
4045 {
4046 op = 0xb100 | (range & 0xf);
4047 add_unwind_opcode (op, 2);
0dd132b6
NC
4048 }
4049
c19d1205
ZW
4050 /* Record the number of bytes pushed. */
4051 for (n = 0; n < 16; n++)
4052 {
4053 if (range & (1 << n))
4054 unwind.frame_size += 4;
4055 }
0dd132b6
NC
4056}
4057
c19d1205
ZW
4058
4059/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4060
4061static void
c19d1205 4062s_arm_unwind_save_fpa (int reg)
b99bd4ef 4063{
c19d1205
ZW
4064 expressionS exp;
4065 int num_regs;
4066 valueT op;
b99bd4ef 4067
c19d1205
ZW
4068 /* Get Number of registers to transfer. */
4069 if (skip_past_comma (&input_line_pointer) != FAIL)
4070 expression (&exp);
4071 else
4072 exp.X_op = O_illegal;
b99bd4ef 4073
c19d1205 4074 if (exp.X_op != O_constant)
b99bd4ef 4075 {
c19d1205
ZW
4076 as_bad (_("expected , <constant>"));
4077 ignore_rest_of_line ();
b99bd4ef
NC
4078 return;
4079 }
4080
c19d1205
ZW
4081 num_regs = exp.X_add_number;
4082
4083 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4084 {
c19d1205
ZW
4085 as_bad (_("number of registers must be in the range [1:4]"));
4086 ignore_rest_of_line ();
b99bd4ef
NC
4087 return;
4088 }
4089
c19d1205 4090 demand_empty_rest_of_line ();
b99bd4ef 4091
c19d1205
ZW
4092 if (reg == 4)
4093 {
4094 /* Short form. */
4095 op = 0xb4 | (num_regs - 1);
4096 add_unwind_opcode (op, 1);
4097 }
b99bd4ef
NC
4098 else
4099 {
c19d1205
ZW
4100 /* Long form. */
4101 op = 0xc800 | (reg << 4) | (num_regs - 1);
4102 add_unwind_opcode (op, 2);
b99bd4ef 4103 }
c19d1205 4104 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4105}
4106
c19d1205 4107
fa073d69
MS
4108/* Parse a directive saving VFP registers for ARMv6 and above. */
4109
4110static void
4111s_arm_unwind_save_vfp_armv6 (void)
4112{
4113 int count;
4114 unsigned int start;
4115 valueT op;
4116 int num_vfpv3_regs = 0;
4117 int num_regs_below_16;
4118
4119 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4120 if (count == FAIL)
4121 {
4122 as_bad (_("expected register list"));
4123 ignore_rest_of_line ();
4124 return;
4125 }
4126
4127 demand_empty_rest_of_line ();
4128
4129 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4130 than FSTMX/FLDMX-style ones). */
4131
4132 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4133 if (start >= 16)
4134 num_vfpv3_regs = count;
4135 else if (start + count > 16)
4136 num_vfpv3_regs = start + count - 16;
4137
4138 if (num_vfpv3_regs > 0)
4139 {
4140 int start_offset = start > 16 ? start - 16 : 0;
4141 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4142 add_unwind_opcode (op, 2);
4143 }
4144
4145 /* Generate opcode for registers numbered in the range 0 .. 15. */
4146 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4147 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4148 if (num_regs_below_16 > 0)
4149 {
4150 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4151 add_unwind_opcode (op, 2);
4152 }
4153
4154 unwind.frame_size += count * 8;
4155}
4156
4157
4158/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4159
4160static void
c19d1205 4161s_arm_unwind_save_vfp (void)
b99bd4ef 4162{
c19d1205 4163 int count;
ca3f61f7 4164 unsigned int reg;
c19d1205 4165 valueT op;
b99bd4ef 4166
5287ad62 4167 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 4168 if (count == FAIL)
b99bd4ef 4169 {
c19d1205
ZW
4170 as_bad (_("expected register list"));
4171 ignore_rest_of_line ();
b99bd4ef
NC
4172 return;
4173 }
4174
c19d1205 4175 demand_empty_rest_of_line ();
b99bd4ef 4176
c19d1205 4177 if (reg == 8)
b99bd4ef 4178 {
c19d1205
ZW
4179 /* Short form. */
4180 op = 0xb8 | (count - 1);
4181 add_unwind_opcode (op, 1);
b99bd4ef 4182 }
c19d1205 4183 else
b99bd4ef 4184 {
c19d1205
ZW
4185 /* Long form. */
4186 op = 0xb300 | (reg << 4) | (count - 1);
4187 add_unwind_opcode (op, 2);
b99bd4ef 4188 }
c19d1205
ZW
4189 unwind.frame_size += count * 8 + 4;
4190}
b99bd4ef 4191
b99bd4ef 4192
c19d1205
ZW
4193/* Parse a directive saving iWMMXt data registers. */
4194
4195static void
4196s_arm_unwind_save_mmxwr (void)
4197{
4198 int reg;
4199 int hi_reg;
4200 int i;
4201 unsigned mask = 0;
4202 valueT op;
b99bd4ef 4203
c19d1205
ZW
4204 if (*input_line_pointer == '{')
4205 input_line_pointer++;
b99bd4ef 4206
c19d1205 4207 do
b99bd4ef 4208 {
dcbf9037 4209 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4210
c19d1205 4211 if (reg == FAIL)
b99bd4ef 4212 {
9b7132d3 4213 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4214 goto error;
b99bd4ef
NC
4215 }
4216
c19d1205
ZW
4217 if (mask >> reg)
4218 as_tsktsk (_("register list not in ascending order"));
4219 mask |= 1 << reg;
b99bd4ef 4220
c19d1205
ZW
4221 if (*input_line_pointer == '-')
4222 {
4223 input_line_pointer++;
dcbf9037 4224 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4225 if (hi_reg == FAIL)
4226 {
9b7132d3 4227 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4228 goto error;
4229 }
4230 else if (reg >= hi_reg)
4231 {
4232 as_bad (_("bad register range"));
4233 goto error;
4234 }
4235 for (; reg < hi_reg; reg++)
4236 mask |= 1 << reg;
4237 }
4238 }
4239 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4240
d996d970 4241 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4242
c19d1205 4243 demand_empty_rest_of_line ();
b99bd4ef 4244
708587a4 4245 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4246 the list. */
4247 flush_pending_unwind ();
b99bd4ef 4248
c19d1205 4249 for (i = 0; i < 16; i++)
b99bd4ef 4250 {
c19d1205
ZW
4251 if (mask & (1 << i))
4252 unwind.frame_size += 8;
b99bd4ef
NC
4253 }
4254
c19d1205
ZW
4255 /* Attempt to combine with a previous opcode. We do this because gcc
4256 likes to output separate unwind directives for a single block of
4257 registers. */
4258 if (unwind.opcode_count > 0)
b99bd4ef 4259 {
c19d1205
ZW
4260 i = unwind.opcodes[unwind.opcode_count - 1];
4261 if ((i & 0xf8) == 0xc0)
4262 {
4263 i &= 7;
4264 /* Only merge if the blocks are contiguous. */
4265 if (i < 6)
4266 {
4267 if ((mask & 0xfe00) == (1 << 9))
4268 {
4269 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4270 unwind.opcode_count--;
4271 }
4272 }
4273 else if (i == 6 && unwind.opcode_count >= 2)
4274 {
4275 i = unwind.opcodes[unwind.opcode_count - 2];
4276 reg = i >> 4;
4277 i &= 0xf;
b99bd4ef 4278
c19d1205
ZW
4279 op = 0xffff << (reg - 1);
4280 if (reg > 0
87a1fd79 4281 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4282 {
4283 op = (1 << (reg + i + 1)) - 1;
4284 op &= ~((1 << reg) - 1);
4285 mask |= op;
4286 unwind.opcode_count -= 2;
4287 }
4288 }
4289 }
b99bd4ef
NC
4290 }
4291
c19d1205
ZW
4292 hi_reg = 15;
4293 /* We want to generate opcodes in the order the registers have been
4294 saved, ie. descending order. */
4295 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4296 {
c19d1205
ZW
4297 /* Save registers in blocks. */
4298 if (reg < 0
4299 || !(mask & (1 << reg)))
4300 {
4301 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4302 preceding block. */
c19d1205
ZW
4303 if (reg != hi_reg)
4304 {
4305 if (reg == 9)
4306 {
4307 /* Short form. */
4308 op = 0xc0 | (hi_reg - 10);
4309 add_unwind_opcode (op, 1);
4310 }
4311 else
4312 {
4313 /* Long form. */
4314 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4315 add_unwind_opcode (op, 2);
4316 }
4317 }
4318 hi_reg = reg - 1;
4319 }
b99bd4ef
NC
4320 }
4321
c19d1205
ZW
4322 return;
4323error:
4324 ignore_rest_of_line ();
b99bd4ef
NC
4325}
4326
4327static void
c19d1205 4328s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4329{
c19d1205
ZW
4330 int reg;
4331 int hi_reg;
4332 unsigned mask = 0;
4333 valueT op;
b99bd4ef 4334
c19d1205
ZW
4335 if (*input_line_pointer == '{')
4336 input_line_pointer++;
b99bd4ef 4337
477330fc
RM
4338 skip_whitespace (input_line_pointer);
4339
c19d1205 4340 do
b99bd4ef 4341 {
dcbf9037 4342 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4343
c19d1205
ZW
4344 if (reg == FAIL)
4345 {
9b7132d3 4346 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4347 goto error;
4348 }
b99bd4ef 4349
c19d1205
ZW
4350 reg -= 8;
4351 if (mask >> reg)
4352 as_tsktsk (_("register list not in ascending order"));
4353 mask |= 1 << reg;
b99bd4ef 4354
c19d1205
ZW
4355 if (*input_line_pointer == '-')
4356 {
4357 input_line_pointer++;
dcbf9037 4358 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4359 if (hi_reg == FAIL)
4360 {
9b7132d3 4361 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4362 goto error;
4363 }
4364 else if (reg >= hi_reg)
4365 {
4366 as_bad (_("bad register range"));
4367 goto error;
4368 }
4369 for (; reg < hi_reg; reg++)
4370 mask |= 1 << reg;
4371 }
b99bd4ef 4372 }
c19d1205 4373 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4374
d996d970 4375 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4376
c19d1205
ZW
4377 demand_empty_rest_of_line ();
4378
708587a4 4379 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4380 the list. */
4381 flush_pending_unwind ();
b99bd4ef 4382
c19d1205 4383 for (reg = 0; reg < 16; reg++)
b99bd4ef 4384 {
c19d1205
ZW
4385 if (mask & (1 << reg))
4386 unwind.frame_size += 4;
b99bd4ef 4387 }
c19d1205
ZW
4388 op = 0xc700 | mask;
4389 add_unwind_opcode (op, 2);
4390 return;
4391error:
4392 ignore_rest_of_line ();
b99bd4ef
NC
4393}
4394
c19d1205 4395
fa073d69
MS
4396/* Parse an unwind_save directive.
4397 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4398
b99bd4ef 4399static void
fa073d69 4400s_arm_unwind_save (int arch_v6)
b99bd4ef 4401{
c19d1205
ZW
4402 char *peek;
4403 struct reg_entry *reg;
4404 bfd_boolean had_brace = FALSE;
b99bd4ef 4405
921e5f0a 4406 if (!unwind.proc_start)
c921be7d 4407 as_bad (MISSING_FNSTART);
921e5f0a 4408
c19d1205
ZW
4409 /* Figure out what sort of save we have. */
4410 peek = input_line_pointer;
b99bd4ef 4411
c19d1205 4412 if (*peek == '{')
b99bd4ef 4413 {
c19d1205
ZW
4414 had_brace = TRUE;
4415 peek++;
b99bd4ef
NC
4416 }
4417
c19d1205 4418 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4419
c19d1205 4420 if (!reg)
b99bd4ef 4421 {
c19d1205
ZW
4422 as_bad (_("register expected"));
4423 ignore_rest_of_line ();
b99bd4ef
NC
4424 return;
4425 }
4426
c19d1205 4427 switch (reg->type)
b99bd4ef 4428 {
c19d1205
ZW
4429 case REG_TYPE_FN:
4430 if (had_brace)
4431 {
4432 as_bad (_("FPA .unwind_save does not take a register list"));
4433 ignore_rest_of_line ();
4434 return;
4435 }
93ac2687 4436 input_line_pointer = peek;
c19d1205 4437 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4438 return;
c19d1205 4439
1f5afe1c
NC
4440 case REG_TYPE_RN:
4441 s_arm_unwind_save_core ();
4442 return;
4443
fa073d69
MS
4444 case REG_TYPE_VFD:
4445 if (arch_v6)
477330fc 4446 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4447 else
477330fc 4448 s_arm_unwind_save_vfp ();
fa073d69 4449 return;
1f5afe1c
NC
4450
4451 case REG_TYPE_MMXWR:
4452 s_arm_unwind_save_mmxwr ();
4453 return;
4454
4455 case REG_TYPE_MMXWCG:
4456 s_arm_unwind_save_mmxwcg ();
4457 return;
c19d1205
ZW
4458
4459 default:
4460 as_bad (_(".unwind_save does not support this kind of register"));
4461 ignore_rest_of_line ();
b99bd4ef 4462 }
c19d1205 4463}
b99bd4ef 4464
b99bd4ef 4465
c19d1205
ZW
4466/* Parse an unwind_movsp directive. */
4467
4468static void
4469s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4470{
4471 int reg;
4472 valueT op;
4fa3602b 4473 int offset;
c19d1205 4474
921e5f0a 4475 if (!unwind.proc_start)
c921be7d 4476 as_bad (MISSING_FNSTART);
921e5f0a 4477
dcbf9037 4478 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4479 if (reg == FAIL)
b99bd4ef 4480 {
9b7132d3 4481 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4482 ignore_rest_of_line ();
b99bd4ef
NC
4483 return;
4484 }
4fa3602b
PB
4485
4486 /* Optional constant. */
4487 if (skip_past_comma (&input_line_pointer) != FAIL)
4488 {
4489 if (immediate_for_directive (&offset) == FAIL)
4490 return;
4491 }
4492 else
4493 offset = 0;
4494
c19d1205 4495 demand_empty_rest_of_line ();
b99bd4ef 4496
c19d1205 4497 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4498 {
c19d1205 4499 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4500 return;
4501 }
4502
c19d1205
ZW
4503 if (unwind.fp_reg != REG_SP)
4504 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4505
c19d1205
ZW
4506 /* Generate opcode to restore the value. */
4507 op = 0x90 | reg;
4508 add_unwind_opcode (op, 1);
4509
4510 /* Record the information for later. */
4511 unwind.fp_reg = reg;
4fa3602b 4512 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4513 unwind.sp_restored = 1;
b05fe5cf
ZW
4514}
4515
c19d1205
ZW
4516/* Parse an unwind_pad directive. */
4517
b05fe5cf 4518static void
c19d1205 4519s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4520{
c19d1205 4521 int offset;
b05fe5cf 4522
921e5f0a 4523 if (!unwind.proc_start)
c921be7d 4524 as_bad (MISSING_FNSTART);
921e5f0a 4525
c19d1205
ZW
4526 if (immediate_for_directive (&offset) == FAIL)
4527 return;
b99bd4ef 4528
c19d1205
ZW
4529 if (offset & 3)
4530 {
4531 as_bad (_("stack increment must be multiple of 4"));
4532 ignore_rest_of_line ();
4533 return;
4534 }
b99bd4ef 4535
c19d1205
ZW
4536 /* Don't generate any opcodes, just record the details for later. */
4537 unwind.frame_size += offset;
4538 unwind.pending_offset += offset;
4539
4540 demand_empty_rest_of_line ();
4541}
4542
4543/* Parse an unwind_setfp directive. */
4544
4545static void
4546s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4547{
c19d1205
ZW
4548 int sp_reg;
4549 int fp_reg;
4550 int offset;
4551
921e5f0a 4552 if (!unwind.proc_start)
c921be7d 4553 as_bad (MISSING_FNSTART);
921e5f0a 4554
dcbf9037 4555 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4556 if (skip_past_comma (&input_line_pointer) == FAIL)
4557 sp_reg = FAIL;
4558 else
dcbf9037 4559 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4560
c19d1205
ZW
4561 if (fp_reg == FAIL || sp_reg == FAIL)
4562 {
4563 as_bad (_("expected <reg>, <reg>"));
4564 ignore_rest_of_line ();
4565 return;
4566 }
b99bd4ef 4567
c19d1205
ZW
4568 /* Optional constant. */
4569 if (skip_past_comma (&input_line_pointer) != FAIL)
4570 {
4571 if (immediate_for_directive (&offset) == FAIL)
4572 return;
4573 }
4574 else
4575 offset = 0;
a737bd4d 4576
c19d1205 4577 demand_empty_rest_of_line ();
a737bd4d 4578
fdfde340 4579 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4580 {
c19d1205
ZW
4581 as_bad (_("register must be either sp or set by a previous"
4582 "unwind_movsp directive"));
4583 return;
a737bd4d
NC
4584 }
4585
c19d1205
ZW
4586 /* Don't generate any opcodes, just record the information for later. */
4587 unwind.fp_reg = fp_reg;
4588 unwind.fp_used = 1;
fdfde340 4589 if (sp_reg == REG_SP)
c19d1205
ZW
4590 unwind.fp_offset = unwind.frame_size - offset;
4591 else
4592 unwind.fp_offset -= offset;
a737bd4d
NC
4593}
4594
c19d1205
ZW
4595/* Parse an unwind_raw directive. */
4596
4597static void
4598s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4599{
c19d1205 4600 expressionS exp;
708587a4 4601 /* This is an arbitrary limit. */
c19d1205
ZW
4602 unsigned char op[16];
4603 int count;
a737bd4d 4604
921e5f0a 4605 if (!unwind.proc_start)
c921be7d 4606 as_bad (MISSING_FNSTART);
921e5f0a 4607
c19d1205
ZW
4608 expression (&exp);
4609 if (exp.X_op == O_constant
4610 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4611 {
c19d1205
ZW
4612 unwind.frame_size += exp.X_add_number;
4613 expression (&exp);
4614 }
4615 else
4616 exp.X_op = O_illegal;
a737bd4d 4617
c19d1205
ZW
4618 if (exp.X_op != O_constant)
4619 {
4620 as_bad (_("expected <offset>, <opcode>"));
4621 ignore_rest_of_line ();
4622 return;
4623 }
a737bd4d 4624
c19d1205 4625 count = 0;
a737bd4d 4626
c19d1205
ZW
4627 /* Parse the opcode. */
4628 for (;;)
4629 {
4630 if (count >= 16)
4631 {
4632 as_bad (_("unwind opcode too long"));
4633 ignore_rest_of_line ();
a737bd4d 4634 }
c19d1205 4635 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4636 {
c19d1205
ZW
4637 as_bad (_("invalid unwind opcode"));
4638 ignore_rest_of_line ();
4639 return;
a737bd4d 4640 }
c19d1205 4641 op[count++] = exp.X_add_number;
a737bd4d 4642
c19d1205
ZW
4643 /* Parse the next byte. */
4644 if (skip_past_comma (&input_line_pointer) == FAIL)
4645 break;
a737bd4d 4646
c19d1205
ZW
4647 expression (&exp);
4648 }
b99bd4ef 4649
c19d1205
ZW
4650 /* Add the opcode bytes in reverse order. */
4651 while (count--)
4652 add_unwind_opcode (op[count], 1);
b99bd4ef 4653
c19d1205 4654 demand_empty_rest_of_line ();
b99bd4ef 4655}
ee065d83
PB
4656
4657
4658/* Parse a .eabi_attribute directive. */
4659
4660static void
4661s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4662{
0420f52b 4663 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378
AS
4664
4665 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4666 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4667}
4668
0855e32b
NS
4669/* Emit a tls fix for the symbol. */
4670
4671static void
4672s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4673{
4674 char *p;
4675 expressionS exp;
4676#ifdef md_flush_pending_output
4677 md_flush_pending_output ();
4678#endif
4679
4680#ifdef md_cons_align
4681 md_cons_align (4);
4682#endif
4683
4684 /* Since we're just labelling the code, there's no need to define a
4685 mapping symbol. */
4686 expression (&exp);
4687 p = obstack_next_free (&frchain_now->frch_obstack);
4688 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4689 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4690 : BFD_RELOC_ARM_TLS_DESCSEQ);
4691}
cdf9ccec 4692#endif /* OBJ_ELF */
0855e32b 4693
ee065d83 4694static void s_arm_arch (int);
7a1d4c38 4695static void s_arm_object_arch (int);
ee065d83
PB
4696static void s_arm_cpu (int);
4697static void s_arm_fpu (int);
69133863 4698static void s_arm_arch_extension (int);
b99bd4ef 4699
f0927246
NC
4700#ifdef TE_PE
4701
4702static void
5f4273c7 4703pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4704{
4705 expressionS exp;
4706
4707 do
4708 {
4709 expression (&exp);
4710 if (exp.X_op == O_symbol)
4711 exp.X_op = O_secrel;
4712
4713 emit_expr (&exp, 4);
4714 }
4715 while (*input_line_pointer++ == ',');
4716
4717 input_line_pointer--;
4718 demand_empty_rest_of_line ();
4719}
4720#endif /* TE_PE */
4721
c19d1205
ZW
4722/* This table describes all the machine specific pseudo-ops the assembler
4723 has to support. The fields are:
4724 pseudo-op name without dot
4725 function to call to execute this pseudo-op
4726 Integer arg to pass to the function. */
b99bd4ef 4727
c19d1205 4728const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4729{
c19d1205
ZW
4730 /* Never called because '.req' does not start a line. */
4731 { "req", s_req, 0 },
dcbf9037
JB
4732 /* Following two are likewise never called. */
4733 { "dn", s_dn, 0 },
4734 { "qn", s_qn, 0 },
c19d1205
ZW
4735 { "unreq", s_unreq, 0 },
4736 { "bss", s_bss, 0 },
db2ed2e0 4737 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4738 { "arm", s_arm, 0 },
4739 { "thumb", s_thumb, 0 },
4740 { "code", s_code, 0 },
4741 { "force_thumb", s_force_thumb, 0 },
4742 { "thumb_func", s_thumb_func, 0 },
4743 { "thumb_set", s_thumb_set, 0 },
4744 { "even", s_even, 0 },
4745 { "ltorg", s_ltorg, 0 },
4746 { "pool", s_ltorg, 0 },
4747 { "syntax", s_syntax, 0 },
8463be01
PB
4748 { "cpu", s_arm_cpu, 0 },
4749 { "arch", s_arm_arch, 0 },
7a1d4c38 4750 { "object_arch", s_arm_object_arch, 0 },
8463be01 4751 { "fpu", s_arm_fpu, 0 },
69133863 4752 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4753#ifdef OBJ_ELF
c921be7d
NC
4754 { "word", s_arm_elf_cons, 4 },
4755 { "long", s_arm_elf_cons, 4 },
4756 { "inst.n", s_arm_elf_inst, 2 },
4757 { "inst.w", s_arm_elf_inst, 4 },
4758 { "inst", s_arm_elf_inst, 0 },
4759 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4760 { "fnstart", s_arm_unwind_fnstart, 0 },
4761 { "fnend", s_arm_unwind_fnend, 0 },
4762 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4763 { "personality", s_arm_unwind_personality, 0 },
4764 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4765 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4766 { "save", s_arm_unwind_save, 0 },
fa073d69 4767 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4768 { "movsp", s_arm_unwind_movsp, 0 },
4769 { "pad", s_arm_unwind_pad, 0 },
4770 { "setfp", s_arm_unwind_setfp, 0 },
4771 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4772 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4773 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4774#else
4775 { "word", cons, 4},
f0927246
NC
4776
4777 /* These are used for dwarf. */
4778 {"2byte", cons, 2},
4779 {"4byte", cons, 4},
4780 {"8byte", cons, 8},
4781 /* These are used for dwarf2. */
68d20676 4782 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4783 { "loc", dwarf2_directive_loc, 0 },
4784 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4785#endif
4786 { "extend", float_cons, 'x' },
4787 { "ldouble", float_cons, 'x' },
4788 { "packed", float_cons, 'p' },
f0927246
NC
4789#ifdef TE_PE
4790 {"secrel32", pe_directive_secrel, 0},
4791#endif
2e6976a8
DG
4792
4793 /* These are for compatibility with CodeComposer Studio. */
4794 {"ref", s_ccs_ref, 0},
4795 {"def", s_ccs_def, 0},
4796 {"asmfunc", s_ccs_asmfunc, 0},
4797 {"endasmfunc", s_ccs_endasmfunc, 0},
4798
c19d1205
ZW
4799 { 0, 0, 0 }
4800};
4801\f
4802/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4803
c19d1205
ZW
4804/* Generic immediate-value read function for use in insn parsing.
4805 STR points to the beginning of the immediate (the leading #);
4806 VAL receives the value; if the value is outside [MIN, MAX]
4807 issue an error. PREFIX_OPT is true if the immediate prefix is
4808 optional. */
b99bd4ef 4809
c19d1205
ZW
4810static int
4811parse_immediate (char **str, int *val, int min, int max,
4812 bfd_boolean prefix_opt)
4813{
4814 expressionS exp;
0198d5e6 4815
c19d1205
ZW
4816 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4817 if (exp.X_op != O_constant)
b99bd4ef 4818 {
c19d1205
ZW
4819 inst.error = _("constant expression required");
4820 return FAIL;
4821 }
b99bd4ef 4822
c19d1205
ZW
4823 if (exp.X_add_number < min || exp.X_add_number > max)
4824 {
4825 inst.error = _("immediate value out of range");
4826 return FAIL;
4827 }
b99bd4ef 4828
c19d1205
ZW
4829 *val = exp.X_add_number;
4830 return SUCCESS;
4831}
b99bd4ef 4832
5287ad62 4833/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4834 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4835 instructions. Puts the result directly in inst.operands[i]. */
4836
4837static int
8335d6aa
JW
4838parse_big_immediate (char **str, int i, expressionS *in_exp,
4839 bfd_boolean allow_symbol_p)
5287ad62
JB
4840{
4841 expressionS exp;
8335d6aa 4842 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
4843 char *ptr = *str;
4844
8335d6aa 4845 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 4846
8335d6aa 4847 if (exp_p->X_op == O_constant)
036dc3f7 4848 {
8335d6aa 4849 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
4850 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4851 O_constant. We have to be careful not to break compilation for
4852 32-bit X_add_number, though. */
8335d6aa 4853 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 4854 {
8335d6aa
JW
4855 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4856 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4857 & 0xffffffff);
036dc3f7
PB
4858 inst.operands[i].regisimm = 1;
4859 }
4860 }
8335d6aa
JW
4861 else if (exp_p->X_op == O_big
4862 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
4863 {
4864 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4865
5287ad62 4866 /* Bignums have their least significant bits in
477330fc
RM
4867 generic_bignum[0]. Make sure we put 32 bits in imm and
4868 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4869 gas_assert (parts != 0);
95b75c01
NC
4870
4871 /* Make sure that the number is not too big.
4872 PR 11972: Bignums can now be sign-extended to the
4873 size of a .octa so check that the out of range bits
4874 are all zero or all one. */
8335d6aa 4875 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
4876 {
4877 LITTLENUM_TYPE m = -1;
4878
4879 if (generic_bignum[parts * 2] != 0
4880 && generic_bignum[parts * 2] != m)
4881 return FAIL;
4882
8335d6aa 4883 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
4884 if (generic_bignum[j] != generic_bignum[j-1])
4885 return FAIL;
4886 }
4887
5287ad62
JB
4888 inst.operands[i].imm = 0;
4889 for (j = 0; j < parts; j++, idx++)
477330fc
RM
4890 inst.operands[i].imm |= generic_bignum[idx]
4891 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
4892 inst.operands[i].reg = 0;
4893 for (j = 0; j < parts; j++, idx++)
477330fc
RM
4894 inst.operands[i].reg |= generic_bignum[idx]
4895 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
4896 inst.operands[i].regisimm = 1;
4897 }
8335d6aa 4898 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 4899 return FAIL;
5f4273c7 4900
5287ad62
JB
4901 *str = ptr;
4902
4903 return SUCCESS;
4904}
4905
c19d1205
ZW
4906/* Returns the pseudo-register number of an FPA immediate constant,
4907 or FAIL if there isn't a valid constant here. */
b99bd4ef 4908
c19d1205
ZW
4909static int
4910parse_fpa_immediate (char ** str)
4911{
4912 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4913 char * save_in;
4914 expressionS exp;
4915 int i;
4916 int j;
b99bd4ef 4917
c19d1205
ZW
4918 /* First try and match exact strings, this is to guarantee
4919 that some formats will work even for cross assembly. */
b99bd4ef 4920
c19d1205
ZW
4921 for (i = 0; fp_const[i]; i++)
4922 {
4923 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4924 {
c19d1205 4925 char *start = *str;
b99bd4ef 4926
c19d1205
ZW
4927 *str += strlen (fp_const[i]);
4928 if (is_end_of_line[(unsigned char) **str])
4929 return i + 8;
4930 *str = start;
4931 }
4932 }
b99bd4ef 4933
c19d1205
ZW
4934 /* Just because we didn't get a match doesn't mean that the constant
4935 isn't valid, just that it is in a format that we don't
4936 automatically recognize. Try parsing it with the standard
4937 expression routines. */
b99bd4ef 4938
c19d1205 4939 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4940
c19d1205
ZW
4941 /* Look for a raw floating point number. */
4942 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4943 && is_end_of_line[(unsigned char) *save_in])
4944 {
4945 for (i = 0; i < NUM_FLOAT_VALS; i++)
4946 {
4947 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4948 {
c19d1205
ZW
4949 if (words[j] != fp_values[i][j])
4950 break;
b99bd4ef
NC
4951 }
4952
c19d1205 4953 if (j == MAX_LITTLENUMS)
b99bd4ef 4954 {
c19d1205
ZW
4955 *str = save_in;
4956 return i + 8;
b99bd4ef
NC
4957 }
4958 }
4959 }
b99bd4ef 4960
c19d1205
ZW
4961 /* Try and parse a more complex expression, this will probably fail
4962 unless the code uses a floating point prefix (eg "0f"). */
4963 save_in = input_line_pointer;
4964 input_line_pointer = *str;
4965 if (expression (&exp) == absolute_section
4966 && exp.X_op == O_big
4967 && exp.X_add_number < 0)
4968 {
4969 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4970 Ditto for 15. */
ba592044
AM
4971#define X_PRECISION 5
4972#define E_PRECISION 15L
4973 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
4974 {
4975 for (i = 0; i < NUM_FLOAT_VALS; i++)
4976 {
4977 for (j = 0; j < MAX_LITTLENUMS; j++)
4978 {
4979 if (words[j] != fp_values[i][j])
4980 break;
4981 }
b99bd4ef 4982
c19d1205
ZW
4983 if (j == MAX_LITTLENUMS)
4984 {
4985 *str = input_line_pointer;
4986 input_line_pointer = save_in;
4987 return i + 8;
4988 }
4989 }
4990 }
b99bd4ef
NC
4991 }
4992
c19d1205
ZW
4993 *str = input_line_pointer;
4994 input_line_pointer = save_in;
4995 inst.error = _("invalid FPA immediate expression");
4996 return FAIL;
b99bd4ef
NC
4997}
4998
136da414
JB
4999/* Returns 1 if a number has "quarter-precision" float format
5000 0baBbbbbbc defgh000 00000000 00000000. */
5001
5002static int
5003is_quarter_float (unsigned imm)
5004{
5005 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5006 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5007}
5008
aacf0b33
KT
5009
5010/* Detect the presence of a floating point or integer zero constant,
5011 i.e. #0.0 or #0. */
5012
5013static bfd_boolean
5014parse_ifimm_zero (char **in)
5015{
5016 int error_code;
5017
5018 if (!is_immediate_prefix (**in))
3c6452ae
TP
5019 {
5020 /* In unified syntax, all prefixes are optional. */
5021 if (!unified_syntax)
5022 return FALSE;
5023 }
5024 else
5025 ++*in;
0900a05b
JW
5026
5027 /* Accept #0x0 as a synonym for #0. */
5028 if (strncmp (*in, "0x", 2) == 0)
5029 {
5030 int val;
5031 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5032 return FALSE;
5033 return TRUE;
5034 }
5035
aacf0b33
KT
5036 error_code = atof_generic (in, ".", EXP_CHARS,
5037 &generic_floating_point_number);
5038
5039 if (!error_code
5040 && generic_floating_point_number.sign == '+'
5041 && (generic_floating_point_number.low
5042 > generic_floating_point_number.leader))
5043 return TRUE;
5044
5045 return FALSE;
5046}
5047
136da414
JB
5048/* Parse an 8-bit "quarter-precision" floating point number of the form:
5049 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5050 The zero and minus-zero cases need special handling, since they can't be
5051 encoded in the "quarter-precision" float format, but can nonetheless be
5052 loaded as integer constants. */
136da414
JB
5053
5054static unsigned
5055parse_qfloat_immediate (char **ccp, int *immed)
5056{
5057 char *str = *ccp;
c96612cc 5058 char *fpnum;
136da414 5059 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5060 int found_fpchar = 0;
5f4273c7 5061
136da414 5062 skip_past_char (&str, '#');
5f4273c7 5063
c96612cc
JB
5064 /* We must not accidentally parse an integer as a floating-point number. Make
5065 sure that the value we parse is not an integer by checking for special
5066 characters '.' or 'e'.
5067 FIXME: This is a horrible hack, but doing better is tricky because type
5068 information isn't in a very usable state at parse time. */
5069 fpnum = str;
5070 skip_whitespace (fpnum);
5071
5072 if (strncmp (fpnum, "0x", 2) == 0)
5073 return FAIL;
5074 else
5075 {
5076 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5077 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5078 {
5079 found_fpchar = 1;
5080 break;
5081 }
c96612cc
JB
5082
5083 if (!found_fpchar)
477330fc 5084 return FAIL;
c96612cc 5085 }
5f4273c7 5086
136da414
JB
5087 if ((str = atof_ieee (str, 's', words)) != NULL)
5088 {
5089 unsigned fpword = 0;
5090 int i;
5f4273c7 5091
136da414
JB
5092 /* Our FP word must be 32 bits (single-precision FP). */
5093 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5094 {
5095 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5096 fpword |= words[i];
5097 }
5f4273c7 5098
c96612cc 5099 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5100 *immed = fpword;
136da414 5101 else
477330fc 5102 return FAIL;
136da414
JB
5103
5104 *ccp = str;
5f4273c7 5105
136da414
JB
5106 return SUCCESS;
5107 }
5f4273c7 5108
136da414
JB
5109 return FAIL;
5110}
5111
c19d1205
ZW
5112/* Shift operands. */
5113enum shift_kind
b99bd4ef 5114{
c19d1205
ZW
5115 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5116};
b99bd4ef 5117
c19d1205
ZW
5118struct asm_shift_name
5119{
5120 const char *name;
5121 enum shift_kind kind;
5122};
b99bd4ef 5123
c19d1205
ZW
5124/* Third argument to parse_shift. */
5125enum parse_shift_mode
5126{
5127 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5128 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5129 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5130 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5131 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5132};
b99bd4ef 5133
c19d1205
ZW
5134/* Parse a <shift> specifier on an ARM data processing instruction.
5135 This has three forms:
b99bd4ef 5136
c19d1205
ZW
5137 (LSL|LSR|ASL|ASR|ROR) Rs
5138 (LSL|LSR|ASL|ASR|ROR) #imm
5139 RRX
b99bd4ef 5140
c19d1205
ZW
5141 Note that ASL is assimilated to LSL in the instruction encoding, and
5142 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5143
c19d1205
ZW
5144static int
5145parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5146{
c19d1205
ZW
5147 const struct asm_shift_name *shift_name;
5148 enum shift_kind shift;
5149 char *s = *str;
5150 char *p = s;
5151 int reg;
b99bd4ef 5152
c19d1205
ZW
5153 for (p = *str; ISALPHA (*p); p++)
5154 ;
b99bd4ef 5155
c19d1205 5156 if (p == *str)
b99bd4ef 5157 {
c19d1205
ZW
5158 inst.error = _("shift expression expected");
5159 return FAIL;
b99bd4ef
NC
5160 }
5161
21d799b5 5162 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5163 p - *str);
c19d1205
ZW
5164
5165 if (shift_name == NULL)
b99bd4ef 5166 {
c19d1205
ZW
5167 inst.error = _("shift expression expected");
5168 return FAIL;
b99bd4ef
NC
5169 }
5170
c19d1205 5171 shift = shift_name->kind;
b99bd4ef 5172
c19d1205
ZW
5173 switch (mode)
5174 {
5175 case NO_SHIFT_RESTRICT:
5176 case SHIFT_IMMEDIATE: break;
b99bd4ef 5177
c19d1205
ZW
5178 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5179 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5180 {
5181 inst.error = _("'LSL' or 'ASR' required");
5182 return FAIL;
5183 }
5184 break;
b99bd4ef 5185
c19d1205
ZW
5186 case SHIFT_LSL_IMMEDIATE:
5187 if (shift != SHIFT_LSL)
5188 {
5189 inst.error = _("'LSL' required");
5190 return FAIL;
5191 }
5192 break;
b99bd4ef 5193
c19d1205
ZW
5194 case SHIFT_ASR_IMMEDIATE:
5195 if (shift != SHIFT_ASR)
5196 {
5197 inst.error = _("'ASR' required");
5198 return FAIL;
5199 }
5200 break;
b99bd4ef 5201
c19d1205
ZW
5202 default: abort ();
5203 }
b99bd4ef 5204
c19d1205
ZW
5205 if (shift != SHIFT_RRX)
5206 {
5207 /* Whitespace can appear here if the next thing is a bare digit. */
5208 skip_whitespace (p);
b99bd4ef 5209
c19d1205 5210 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5211 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5212 {
5213 inst.operands[i].imm = reg;
5214 inst.operands[i].immisreg = 1;
5215 }
e2b0ab59 5216 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5217 return FAIL;
5218 }
5219 inst.operands[i].shift_kind = shift;
5220 inst.operands[i].shifted = 1;
5221 *str = p;
5222 return SUCCESS;
b99bd4ef
NC
5223}
5224
c19d1205 5225/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5226
c19d1205
ZW
5227 #<immediate>
5228 #<immediate>, <rotate>
5229 <Rm>
5230 <Rm>, <shift>
b99bd4ef 5231
c19d1205
ZW
5232 where <shift> is defined by parse_shift above, and <rotate> is a
5233 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5234 is deferred to md_apply_fix. */
b99bd4ef 5235
c19d1205
ZW
5236static int
5237parse_shifter_operand (char **str, int i)
5238{
5239 int value;
91d6fa6a 5240 expressionS exp;
b99bd4ef 5241
dcbf9037 5242 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5243 {
5244 inst.operands[i].reg = value;
5245 inst.operands[i].isreg = 1;
b99bd4ef 5246
c19d1205 5247 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5248 inst.relocs[0].exp.X_op = O_constant;
5249 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5250
c19d1205
ZW
5251 if (skip_past_comma (str) == FAIL)
5252 return SUCCESS;
b99bd4ef 5253
c19d1205
ZW
5254 /* Shift operation on register. */
5255 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5256 }
5257
e2b0ab59 5258 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5259 return FAIL;
b99bd4ef 5260
c19d1205 5261 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5262 {
c19d1205 5263 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5264 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5265 return FAIL;
b99bd4ef 5266
e2b0ab59 5267 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5268 {
5269 inst.error = _("constant expression expected");
5270 return FAIL;
5271 }
b99bd4ef 5272
91d6fa6a 5273 value = exp.X_add_number;
c19d1205
ZW
5274 if (value < 0 || value > 30 || value % 2 != 0)
5275 {
5276 inst.error = _("invalid rotation");
5277 return FAIL;
5278 }
e2b0ab59
AV
5279 if (inst.relocs[0].exp.X_add_number < 0
5280 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5281 {
5282 inst.error = _("invalid constant");
5283 return FAIL;
5284 }
09d92015 5285
a415b1cd 5286 /* Encode as specified. */
e2b0ab59 5287 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5288 return SUCCESS;
09d92015
MM
5289 }
5290
e2b0ab59
AV
5291 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5292 inst.relocs[0].pc_rel = 0;
c19d1205 5293 return SUCCESS;
09d92015
MM
5294}
5295
4962c51a
MS
5296/* Group relocation information. Each entry in the table contains the
5297 textual name of the relocation as may appear in assembler source
5298 and must end with a colon.
5299 Along with this textual name are the relocation codes to be used if
5300 the corresponding instruction is an ALU instruction (ADD or SUB only),
5301 an LDR, an LDRS, or an LDC. */
5302
5303struct group_reloc_table_entry
5304{
5305 const char *name;
5306 int alu_code;
5307 int ldr_code;
5308 int ldrs_code;
5309 int ldc_code;
5310};
5311
5312typedef enum
5313{
5314 /* Varieties of non-ALU group relocation. */
5315
5316 GROUP_LDR,
5317 GROUP_LDRS,
5318 GROUP_LDC
5319} group_reloc_type;
5320
5321static struct group_reloc_table_entry group_reloc_table[] =
5322 { /* Program counter relative: */
5323 { "pc_g0_nc",
5324 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5325 0, /* LDR */
5326 0, /* LDRS */
5327 0 }, /* LDC */
5328 { "pc_g0",
5329 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5330 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5331 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5332 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5333 { "pc_g1_nc",
5334 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5335 0, /* LDR */
5336 0, /* LDRS */
5337 0 }, /* LDC */
5338 { "pc_g1",
5339 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5340 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5341 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5342 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5343 { "pc_g2",
5344 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5345 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5346 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5347 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5348 /* Section base relative */
5349 { "sb_g0_nc",
5350 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5351 0, /* LDR */
5352 0, /* LDRS */
5353 0 }, /* LDC */
5354 { "sb_g0",
5355 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5356 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5357 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5358 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5359 { "sb_g1_nc",
5360 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5361 0, /* LDR */
5362 0, /* LDRS */
5363 0 }, /* LDC */
5364 { "sb_g1",
5365 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5366 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5367 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5368 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5369 { "sb_g2",
5370 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5371 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5372 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5373 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5374 /* Absolute thumb alu relocations. */
5375 { "lower0_7",
5376 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5377 0, /* LDR. */
5378 0, /* LDRS. */
5379 0 }, /* LDC. */
5380 { "lower8_15",
5381 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5382 0, /* LDR. */
5383 0, /* LDRS. */
5384 0 }, /* LDC. */
5385 { "upper0_7",
5386 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5387 0, /* LDR. */
5388 0, /* LDRS. */
5389 0 }, /* LDC. */
5390 { "upper8_15",
5391 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5392 0, /* LDR. */
5393 0, /* LDRS. */
5394 0 } }; /* LDC. */
4962c51a
MS
5395
5396/* Given the address of a pointer pointing to the textual name of a group
5397 relocation as may appear in assembler source, attempt to find its details
5398 in group_reloc_table. The pointer will be updated to the character after
5399 the trailing colon. On failure, FAIL will be returned; SUCCESS
5400 otherwise. On success, *entry will be updated to point at the relevant
5401 group_reloc_table entry. */
5402
5403static int
5404find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5405{
5406 unsigned int i;
5407 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5408 {
5409 int length = strlen (group_reloc_table[i].name);
5410
5f4273c7
NC
5411 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5412 && (*str)[length] == ':')
477330fc
RM
5413 {
5414 *out = &group_reloc_table[i];
5415 *str += (length + 1);
5416 return SUCCESS;
5417 }
4962c51a
MS
5418 }
5419
5420 return FAIL;
5421}
5422
5423/* Parse a <shifter_operand> for an ARM data processing instruction
5424 (as for parse_shifter_operand) where group relocations are allowed:
5425
5426 #<immediate>
5427 #<immediate>, <rotate>
5428 #:<group_reloc>:<expression>
5429 <Rm>
5430 <Rm>, <shift>
5431
5432 where <group_reloc> is one of the strings defined in group_reloc_table.
5433 The hashes are optional.
5434
5435 Everything else is as for parse_shifter_operand. */
5436
5437static parse_operand_result
5438parse_shifter_operand_group_reloc (char **str, int i)
5439{
5440 /* Determine if we have the sequence of characters #: or just :
5441 coming next. If we do, then we check for a group relocation.
5442 If we don't, punt the whole lot to parse_shifter_operand. */
5443
5444 if (((*str)[0] == '#' && (*str)[1] == ':')
5445 || (*str)[0] == ':')
5446 {
5447 struct group_reloc_table_entry *entry;
5448
5449 if ((*str)[0] == '#')
477330fc 5450 (*str) += 2;
4962c51a 5451 else
477330fc 5452 (*str)++;
4962c51a
MS
5453
5454 /* Try to parse a group relocation. Anything else is an error. */
5455 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5456 {
5457 inst.error = _("unknown group relocation");
5458 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5459 }
4962c51a
MS
5460
5461 /* We now have the group relocation table entry corresponding to
477330fc 5462 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5463 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5464 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5465
5466 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5467 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5468 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5469
5470 return PARSE_OPERAND_SUCCESS;
5471 }
5472 else
5473 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5474 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5475
5476 /* Never reached. */
5477}
5478
8e560766
MGD
5479/* Parse a Neon alignment expression. Information is written to
5480 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5481
8e560766
MGD
5482 align .imm = align << 8, .immisalign=1, .preind=0 */
5483static parse_operand_result
5484parse_neon_alignment (char **str, int i)
5485{
5486 char *p = *str;
5487 expressionS exp;
5488
5489 my_get_expression (&exp, &p, GE_NO_PREFIX);
5490
5491 if (exp.X_op != O_constant)
5492 {
5493 inst.error = _("alignment must be constant");
5494 return PARSE_OPERAND_FAIL;
5495 }
5496
5497 inst.operands[i].imm = exp.X_add_number << 8;
5498 inst.operands[i].immisalign = 1;
5499 /* Alignments are not pre-indexes. */
5500 inst.operands[i].preind = 0;
5501
5502 *str = p;
5503 return PARSE_OPERAND_SUCCESS;
5504}
5505
c19d1205 5506/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5507 to inst.operands[i] and/or inst.relocs[0].
09d92015 5508
c19d1205 5509 Preindexed addressing (.preind=1):
09d92015 5510
e2b0ab59 5511 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5512 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5513 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5514 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5515
c19d1205 5516 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5517
c19d1205 5518 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5519
e2b0ab59 5520 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5521 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5522 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5523 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5524
c19d1205 5525 Unindexed addressing (.preind=0, .postind=0):
09d92015 5526
c19d1205 5527 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5528
c19d1205 5529 Other:
09d92015 5530
c19d1205 5531 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5532 =immediate .isreg=0 .relocs[0].exp=immediate
5533 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5534
c19d1205 5535 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5536 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5537
4962c51a
MS
5538static parse_operand_result
5539parse_address_main (char **str, int i, int group_relocations,
477330fc 5540 group_reloc_type group_type)
09d92015 5541{
c19d1205
ZW
5542 char *p = *str;
5543 int reg;
09d92015 5544
c19d1205 5545 if (skip_past_char (&p, '[') == FAIL)
09d92015 5546 {
c19d1205
ZW
5547 if (skip_past_char (&p, '=') == FAIL)
5548 {
974da60d 5549 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5550 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5551 inst.operands[i].reg = REG_PC;
5552 inst.operands[i].isreg = 1;
5553 inst.operands[i].preind = 1;
09d92015 5554
e2b0ab59 5555 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5556 return PARSE_OPERAND_FAIL;
5557 }
e2b0ab59 5558 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5559 /*allow_symbol_p=*/TRUE))
4962c51a 5560 return PARSE_OPERAND_FAIL;
09d92015 5561
c19d1205 5562 *str = p;
4962c51a 5563 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5564 }
5565
8ab8155f
NC
5566 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5567 skip_whitespace (p);
5568
dcbf9037 5569 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5570 {
c19d1205 5571 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5572 return PARSE_OPERAND_FAIL;
09d92015 5573 }
c19d1205
ZW
5574 inst.operands[i].reg = reg;
5575 inst.operands[i].isreg = 1;
09d92015 5576
c19d1205 5577 if (skip_past_comma (&p) == SUCCESS)
09d92015 5578 {
c19d1205 5579 inst.operands[i].preind = 1;
09d92015 5580
c19d1205
ZW
5581 if (*p == '+') p++;
5582 else if (*p == '-') p++, inst.operands[i].negative = 1;
5583
dcbf9037 5584 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5585 {
c19d1205
ZW
5586 inst.operands[i].imm = reg;
5587 inst.operands[i].immisreg = 1;
5588
5589 if (skip_past_comma (&p) == SUCCESS)
5590 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5591 return PARSE_OPERAND_FAIL;
c19d1205 5592 }
5287ad62 5593 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5594 {
5595 /* FIXME: '@' should be used here, but it's filtered out by generic
5596 code before we get to see it here. This may be subject to
5597 change. */
5598 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5599
8e560766
MGD
5600 if (result != PARSE_OPERAND_SUCCESS)
5601 return result;
5602 }
c19d1205
ZW
5603 else
5604 {
5605 if (inst.operands[i].negative)
5606 {
5607 inst.operands[i].negative = 0;
5608 p--;
5609 }
4962c51a 5610
5f4273c7
NC
5611 if (group_relocations
5612 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5613 {
5614 struct group_reloc_table_entry *entry;
5615
477330fc
RM
5616 /* Skip over the #: or : sequence. */
5617 if (*p == '#')
5618 p += 2;
5619 else
5620 p++;
4962c51a
MS
5621
5622 /* Try to parse a group relocation. Anything else is an
477330fc 5623 error. */
4962c51a
MS
5624 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5625 {
5626 inst.error = _("unknown group relocation");
5627 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5628 }
5629
5630 /* We now have the group relocation table entry corresponding to
5631 the name in the assembler source. Next, we parse the
477330fc 5632 expression. */
e2b0ab59 5633 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5634 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5635
5636 /* Record the relocation type. */
477330fc
RM
5637 switch (group_type)
5638 {
5639 case GROUP_LDR:
e2b0ab59
AV
5640 inst.relocs[0].type
5641 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5642 break;
4962c51a 5643
477330fc 5644 case GROUP_LDRS:
e2b0ab59
AV
5645 inst.relocs[0].type
5646 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5647 break;
4962c51a 5648
477330fc 5649 case GROUP_LDC:
e2b0ab59
AV
5650 inst.relocs[0].type
5651 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5652 break;
4962c51a 5653
477330fc
RM
5654 default:
5655 gas_assert (0);
5656 }
4962c51a 5657
e2b0ab59 5658 if (inst.relocs[0].type == 0)
4962c51a
MS
5659 {
5660 inst.error = _("this group relocation is not allowed on this instruction");
5661 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5662 }
477330fc
RM
5663 }
5664 else
26d97720
NS
5665 {
5666 char *q = p;
0198d5e6 5667
e2b0ab59 5668 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5669 return PARSE_OPERAND_FAIL;
5670 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5671 if (inst.relocs[0].exp.X_op == O_constant
5672 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5673 {
5674 skip_whitespace (q);
5675 if (*q == '#')
5676 {
5677 q++;
5678 skip_whitespace (q);
5679 }
5680 if (*q == '-')
5681 inst.operands[i].negative = 1;
5682 }
5683 }
09d92015
MM
5684 }
5685 }
8e560766
MGD
5686 else if (skip_past_char (&p, ':') == SUCCESS)
5687 {
5688 /* FIXME: '@' should be used here, but it's filtered out by generic code
5689 before we get to see it here. This may be subject to change. */
5690 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5691
8e560766
MGD
5692 if (result != PARSE_OPERAND_SUCCESS)
5693 return result;
5694 }
09d92015 5695
c19d1205 5696 if (skip_past_char (&p, ']') == FAIL)
09d92015 5697 {
c19d1205 5698 inst.error = _("']' expected");
4962c51a 5699 return PARSE_OPERAND_FAIL;
09d92015
MM
5700 }
5701
c19d1205
ZW
5702 if (skip_past_char (&p, '!') == SUCCESS)
5703 inst.operands[i].writeback = 1;
09d92015 5704
c19d1205 5705 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5706 {
c19d1205
ZW
5707 if (skip_past_char (&p, '{') == SUCCESS)
5708 {
5709 /* [Rn], {expr} - unindexed, with option */
5710 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5711 0, 255, TRUE) == FAIL)
4962c51a 5712 return PARSE_OPERAND_FAIL;
09d92015 5713
c19d1205
ZW
5714 if (skip_past_char (&p, '}') == FAIL)
5715 {
5716 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5717 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5718 }
5719 if (inst.operands[i].preind)
5720 {
5721 inst.error = _("cannot combine index with option");
4962c51a 5722 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5723 }
5724 *str = p;
4962c51a 5725 return PARSE_OPERAND_SUCCESS;
09d92015 5726 }
c19d1205
ZW
5727 else
5728 {
5729 inst.operands[i].postind = 1;
5730 inst.operands[i].writeback = 1;
09d92015 5731
c19d1205
ZW
5732 if (inst.operands[i].preind)
5733 {
5734 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5735 return PARSE_OPERAND_FAIL;
c19d1205 5736 }
09d92015 5737
c19d1205
ZW
5738 if (*p == '+') p++;
5739 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5740
dcbf9037 5741 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5742 {
477330fc
RM
5743 /* We might be using the immediate for alignment already. If we
5744 are, OR the register number into the low-order bits. */
5745 if (inst.operands[i].immisalign)
5746 inst.operands[i].imm |= reg;
5747 else
5748 inst.operands[i].imm = reg;
c19d1205 5749 inst.operands[i].immisreg = 1;
a737bd4d 5750
c19d1205
ZW
5751 if (skip_past_comma (&p) == SUCCESS)
5752 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5753 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5754 }
5755 else
5756 {
26d97720 5757 char *q = p;
0198d5e6 5758
c19d1205
ZW
5759 if (inst.operands[i].negative)
5760 {
5761 inst.operands[i].negative = 0;
5762 p--;
5763 }
e2b0ab59 5764 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 5765 return PARSE_OPERAND_FAIL;
26d97720 5766 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5767 if (inst.relocs[0].exp.X_op == O_constant
5768 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5769 {
5770 skip_whitespace (q);
5771 if (*q == '#')
5772 {
5773 q++;
5774 skip_whitespace (q);
5775 }
5776 if (*q == '-')
5777 inst.operands[i].negative = 1;
5778 }
c19d1205
ZW
5779 }
5780 }
a737bd4d
NC
5781 }
5782
c19d1205
ZW
5783 /* If at this point neither .preind nor .postind is set, we have a
5784 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5785 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5786 {
5787 inst.operands[i].preind = 1;
e2b0ab59
AV
5788 inst.relocs[0].exp.X_op = O_constant;
5789 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
5790 }
5791 *str = p;
4962c51a
MS
5792 return PARSE_OPERAND_SUCCESS;
5793}
5794
5795static int
5796parse_address (char **str, int i)
5797{
21d799b5 5798 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 5799 ? SUCCESS : FAIL;
4962c51a
MS
5800}
5801
5802static parse_operand_result
5803parse_address_group_reloc (char **str, int i, group_reloc_type type)
5804{
5805 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5806}
5807
b6895b4f
PB
5808/* Parse an operand for a MOVW or MOVT instruction. */
5809static int
5810parse_half (char **str)
5811{
5812 char * p;
5f4273c7 5813
b6895b4f
PB
5814 p = *str;
5815 skip_past_char (&p, '#');
5f4273c7 5816 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 5817 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 5818 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 5819 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 5820
e2b0ab59 5821 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
5822 {
5823 p += 9;
5f4273c7 5824 skip_whitespace (p);
b6895b4f
PB
5825 }
5826
e2b0ab59 5827 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
5828 return FAIL;
5829
e2b0ab59 5830 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 5831 {
e2b0ab59 5832 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
5833 {
5834 inst.error = _("constant expression expected");
5835 return FAIL;
5836 }
e2b0ab59
AV
5837 if (inst.relocs[0].exp.X_add_number < 0
5838 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
5839 {
5840 inst.error = _("immediate value out of range");
5841 return FAIL;
5842 }
5843 }
5844 *str = p;
5845 return SUCCESS;
5846}
5847
c19d1205 5848/* Miscellaneous. */
a737bd4d 5849
c19d1205
ZW
5850/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5851 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5852static int
d2cd1205 5853parse_psr (char **str, bfd_boolean lhs)
09d92015 5854{
c19d1205
ZW
5855 char *p;
5856 unsigned long psr_field;
62b3e311
PB
5857 const struct asm_psr *psr;
5858 char *start;
d2cd1205 5859 bfd_boolean is_apsr = FALSE;
ac7f631b 5860 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5861
a4482bb6
NC
5862 /* PR gas/12698: If the user has specified -march=all then m_profile will
5863 be TRUE, but we want to ignore it in this case as we are building for any
5864 CPU type, including non-m variants. */
823d2571 5865 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
5866 m_profile = FALSE;
5867
c19d1205
ZW
5868 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5869 feature for ease of use and backwards compatibility. */
5870 p = *str;
62b3e311 5871 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5872 {
5873 if (m_profile)
5874 goto unsupported_psr;
fa94de6b 5875
d2cd1205
JB
5876 psr_field = SPSR_BIT;
5877 }
5878 else if (strncasecmp (p, "CPSR", 4) == 0)
5879 {
5880 if (m_profile)
5881 goto unsupported_psr;
5882
5883 psr_field = 0;
5884 }
5885 else if (strncasecmp (p, "APSR", 4) == 0)
5886 {
5887 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5888 and ARMv7-R architecture CPUs. */
5889 is_apsr = TRUE;
5890 psr_field = 0;
5891 }
5892 else if (m_profile)
62b3e311
PB
5893 {
5894 start = p;
5895 do
5896 p++;
5897 while (ISALNUM (*p) || *p == '_');
5898
d2cd1205
JB
5899 if (strncasecmp (start, "iapsr", 5) == 0
5900 || strncasecmp (start, "eapsr", 5) == 0
5901 || strncasecmp (start, "xpsr", 4) == 0
5902 || strncasecmp (start, "psr", 3) == 0)
5903 p = start + strcspn (start, "rR") + 1;
5904
21d799b5 5905 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 5906 p - start);
d2cd1205 5907
62b3e311
PB
5908 if (!psr)
5909 return FAIL;
09d92015 5910
d2cd1205
JB
5911 /* If APSR is being written, a bitfield may be specified. Note that
5912 APSR itself is handled above. */
5913 if (psr->field <= 3)
5914 {
5915 psr_field = psr->field;
5916 is_apsr = TRUE;
5917 goto check_suffix;
5918 }
5919
62b3e311 5920 *str = p;
d2cd1205
JB
5921 /* M-profile MSR instructions have the mask field set to "10", except
5922 *PSR variants which modify APSR, which may use a different mask (and
5923 have been handled already). Do that by setting the PSR_f field
5924 here. */
5925 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5926 }
d2cd1205
JB
5927 else
5928 goto unsupported_psr;
09d92015 5929
62b3e311 5930 p += 4;
d2cd1205 5931check_suffix:
c19d1205
ZW
5932 if (*p == '_')
5933 {
5934 /* A suffix follows. */
c19d1205
ZW
5935 p++;
5936 start = p;
a737bd4d 5937
c19d1205
ZW
5938 do
5939 p++;
5940 while (ISALNUM (*p) || *p == '_');
a737bd4d 5941
d2cd1205
JB
5942 if (is_apsr)
5943 {
5944 /* APSR uses a notation for bits, rather than fields. */
5945 unsigned int nzcvq_bits = 0;
5946 unsigned int g_bit = 0;
5947 char *bit;
fa94de6b 5948
d2cd1205
JB
5949 for (bit = start; bit != p; bit++)
5950 {
5951 switch (TOLOWER (*bit))
477330fc 5952 {
d2cd1205
JB
5953 case 'n':
5954 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5955 break;
5956
5957 case 'z':
5958 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5959 break;
5960
5961 case 'c':
5962 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5963 break;
5964
5965 case 'v':
5966 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5967 break;
fa94de6b 5968
d2cd1205
JB
5969 case 'q':
5970 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5971 break;
fa94de6b 5972
d2cd1205
JB
5973 case 'g':
5974 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5975 break;
fa94de6b 5976
d2cd1205
JB
5977 default:
5978 inst.error = _("unexpected bit specified after APSR");
5979 return FAIL;
5980 }
5981 }
fa94de6b 5982
d2cd1205
JB
5983 if (nzcvq_bits == 0x1f)
5984 psr_field |= PSR_f;
fa94de6b 5985
d2cd1205
JB
5986 if (g_bit == 0x1)
5987 {
5988 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 5989 {
d2cd1205
JB
5990 inst.error = _("selected processor does not "
5991 "support DSP extension");
5992 return FAIL;
5993 }
5994
5995 psr_field |= PSR_s;
5996 }
fa94de6b 5997
d2cd1205
JB
5998 if ((nzcvq_bits & 0x20) != 0
5999 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6000 || (g_bit & 0x2) != 0)
6001 {
6002 inst.error = _("bad bitmask specified after APSR");
6003 return FAIL;
6004 }
6005 }
6006 else
477330fc 6007 {
d2cd1205 6008 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6009 p - start);
d2cd1205 6010 if (!psr)
477330fc 6011 goto error;
a737bd4d 6012
d2cd1205
JB
6013 psr_field |= psr->field;
6014 }
a737bd4d 6015 }
c19d1205 6016 else
a737bd4d 6017 {
c19d1205
ZW
6018 if (ISALNUM (*p))
6019 goto error; /* Garbage after "[CS]PSR". */
6020
d2cd1205 6021 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6022 is deprecated, but allow it anyway. */
d2cd1205
JB
6023 if (is_apsr && lhs)
6024 {
6025 psr_field |= PSR_f;
6026 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6027 "deprecated"));
6028 }
6029 else if (!m_profile)
6030 /* These bits are never right for M-profile devices: don't set them
6031 (only code paths which read/write APSR reach here). */
6032 psr_field |= (PSR_c | PSR_f);
a737bd4d 6033 }
c19d1205
ZW
6034 *str = p;
6035 return psr_field;
a737bd4d 6036
d2cd1205
JB
6037 unsupported_psr:
6038 inst.error = _("selected processor does not support requested special "
6039 "purpose register");
6040 return FAIL;
6041
c19d1205
ZW
6042 error:
6043 inst.error = _("flag for {c}psr instruction expected");
6044 return FAIL;
a737bd4d
NC
6045}
6046
c19d1205
ZW
6047/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6048 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6049
c19d1205
ZW
6050static int
6051parse_cps_flags (char **str)
a737bd4d 6052{
c19d1205
ZW
6053 int val = 0;
6054 int saw_a_flag = 0;
6055 char *s = *str;
a737bd4d 6056
c19d1205
ZW
6057 for (;;)
6058 switch (*s++)
6059 {
6060 case '\0': case ',':
6061 goto done;
a737bd4d 6062
c19d1205
ZW
6063 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6064 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6065 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6066
c19d1205
ZW
6067 default:
6068 inst.error = _("unrecognized CPS flag");
6069 return FAIL;
6070 }
a737bd4d 6071
c19d1205
ZW
6072 done:
6073 if (saw_a_flag == 0)
a737bd4d 6074 {
c19d1205
ZW
6075 inst.error = _("missing CPS flags");
6076 return FAIL;
a737bd4d 6077 }
a737bd4d 6078
c19d1205
ZW
6079 *str = s - 1;
6080 return val;
a737bd4d
NC
6081}
6082
c19d1205
ZW
6083/* Parse an endian specifier ("BE" or "LE", case insensitive);
6084 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6085
6086static int
c19d1205 6087parse_endian_specifier (char **str)
a737bd4d 6088{
c19d1205
ZW
6089 int little_endian;
6090 char *s = *str;
a737bd4d 6091
c19d1205
ZW
6092 if (strncasecmp (s, "BE", 2))
6093 little_endian = 0;
6094 else if (strncasecmp (s, "LE", 2))
6095 little_endian = 1;
6096 else
a737bd4d 6097 {
c19d1205 6098 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6099 return FAIL;
6100 }
6101
c19d1205 6102 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6103 {
c19d1205 6104 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6105 return FAIL;
6106 }
6107
c19d1205
ZW
6108 *str = s + 2;
6109 return little_endian;
6110}
a737bd4d 6111
c19d1205
ZW
6112/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6113 value suitable for poking into the rotate field of an sxt or sxta
6114 instruction, or FAIL on error. */
6115
6116static int
6117parse_ror (char **str)
6118{
6119 int rot;
6120 char *s = *str;
6121
6122 if (strncasecmp (s, "ROR", 3) == 0)
6123 s += 3;
6124 else
a737bd4d 6125 {
c19d1205 6126 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6127 return FAIL;
6128 }
c19d1205
ZW
6129
6130 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6131 return FAIL;
6132
6133 switch (rot)
a737bd4d 6134 {
c19d1205
ZW
6135 case 0: *str = s; return 0x0;
6136 case 8: *str = s; return 0x1;
6137 case 16: *str = s; return 0x2;
6138 case 24: *str = s; return 0x3;
6139
6140 default:
6141 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6142 return FAIL;
6143 }
c19d1205 6144}
a737bd4d 6145
c19d1205
ZW
6146/* Parse a conditional code (from conds[] below). The value returned is in the
6147 range 0 .. 14, or FAIL. */
6148static int
6149parse_cond (char **str)
6150{
c462b453 6151 char *q;
c19d1205 6152 const struct asm_cond *c;
c462b453
PB
6153 int n;
6154 /* Condition codes are always 2 characters, so matching up to
6155 3 characters is sufficient. */
6156 char cond[3];
a737bd4d 6157
c462b453
PB
6158 q = *str;
6159 n = 0;
6160 while (ISALPHA (*q) && n < 3)
6161 {
e07e6e58 6162 cond[n] = TOLOWER (*q);
c462b453
PB
6163 q++;
6164 n++;
6165 }
a737bd4d 6166
21d799b5 6167 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6168 if (!c)
a737bd4d 6169 {
c19d1205 6170 inst.error = _("condition required");
a737bd4d
NC
6171 return FAIL;
6172 }
6173
c19d1205
ZW
6174 *str = q;
6175 return c->value;
6176}
6177
643afb90
MW
6178/* Record a use of the given feature. */
6179static void
6180record_feature_use (const arm_feature_set *feature)
6181{
6182 if (thumb_mode)
6183 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6184 else
6185 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6186}
6187
4d354d8b
TP
6188/* If the given feature is currently allowed, mark it as used and return TRUE.
6189 Return FALSE otherwise. */
e797f7e0
MGD
6190static bfd_boolean
6191mark_feature_used (const arm_feature_set *feature)
6192{
4d354d8b 6193 /* Ensure the option is currently allowed. */
e797f7e0
MGD
6194 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6195 return FALSE;
6196
4d354d8b 6197 /* Add the appropriate architecture feature for the barrier option used. */
643afb90 6198 record_feature_use (feature);
e797f7e0
MGD
6199
6200 return TRUE;
6201}
6202
62b3e311
PB
6203/* Parse an option for a barrier instruction. Returns the encoding for the
6204 option, or FAIL. */
6205static int
6206parse_barrier (char **str)
6207{
6208 char *p, *q;
6209 const struct asm_barrier_opt *o;
6210
6211 p = q = *str;
6212 while (ISALPHA (*q))
6213 q++;
6214
21d799b5 6215 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6216 q - p);
62b3e311
PB
6217 if (!o)
6218 return FAIL;
6219
e797f7e0
MGD
6220 if (!mark_feature_used (&o->arch))
6221 return FAIL;
6222
62b3e311
PB
6223 *str = q;
6224 return o->value;
6225}
6226
92e90b6e
PB
6227/* Parse the operands of a table branch instruction. Similar to a memory
6228 operand. */
6229static int
6230parse_tb (char **str)
6231{
6232 char * p = *str;
6233 int reg;
6234
6235 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6236 {
6237 inst.error = _("'[' expected");
6238 return FAIL;
6239 }
92e90b6e 6240
dcbf9037 6241 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6242 {
6243 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6244 return FAIL;
6245 }
6246 inst.operands[0].reg = reg;
6247
6248 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6249 {
6250 inst.error = _("',' expected");
6251 return FAIL;
6252 }
5f4273c7 6253
dcbf9037 6254 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6255 {
6256 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6257 return FAIL;
6258 }
6259 inst.operands[0].imm = reg;
6260
6261 if (skip_past_comma (&p) == SUCCESS)
6262 {
6263 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6264 return FAIL;
e2b0ab59 6265 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6266 {
6267 inst.error = _("invalid shift");
6268 return FAIL;
6269 }
6270 inst.operands[0].shifted = 1;
6271 }
6272
6273 if (skip_past_char (&p, ']') == FAIL)
6274 {
6275 inst.error = _("']' expected");
6276 return FAIL;
6277 }
6278 *str = p;
6279 return SUCCESS;
6280}
6281
5287ad62
JB
6282/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6283 information on the types the operands can take and how they are encoded.
037e8744
JB
6284 Up to four operands may be read; this function handles setting the
6285 ".present" field for each read operand itself.
5287ad62
JB
6286 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6287 else returns FAIL. */
6288
6289static int
6290parse_neon_mov (char **str, int *which_operand)
6291{
6292 int i = *which_operand, val;
6293 enum arm_reg_type rtype;
6294 char *ptr = *str;
dcbf9037 6295 struct neon_type_el optype;
5f4273c7 6296
dcbf9037 6297 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
6298 {
6299 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6300 inst.operands[i].reg = val;
6301 inst.operands[i].isscalar = 1;
dcbf9037 6302 inst.operands[i].vectype = optype;
5287ad62
JB
6303 inst.operands[i++].present = 1;
6304
6305 if (skip_past_comma (&ptr) == FAIL)
477330fc 6306 goto wanted_comma;
5f4273c7 6307
dcbf9037 6308 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6309 goto wanted_arm;
5f4273c7 6310
5287ad62
JB
6311 inst.operands[i].reg = val;
6312 inst.operands[i].isreg = 1;
6313 inst.operands[i].present = 1;
6314 }
037e8744 6315 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
477330fc 6316 != FAIL)
5287ad62
JB
6317 {
6318 /* Cases 0, 1, 2, 3, 5 (D only). */
6319 if (skip_past_comma (&ptr) == FAIL)
477330fc 6320 goto wanted_comma;
5f4273c7 6321
5287ad62
JB
6322 inst.operands[i].reg = val;
6323 inst.operands[i].isreg = 1;
6324 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6325 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6326 inst.operands[i].isvec = 1;
dcbf9037 6327 inst.operands[i].vectype = optype;
5287ad62
JB
6328 inst.operands[i++].present = 1;
6329
dcbf9037 6330 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6331 {
6332 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6333 Case 13: VMOV <Sd>, <Rm> */
6334 inst.operands[i].reg = val;
6335 inst.operands[i].isreg = 1;
6336 inst.operands[i].present = 1;
6337
6338 if (rtype == REG_TYPE_NQ)
6339 {
6340 first_error (_("can't use Neon quad register here"));
6341 return FAIL;
6342 }
6343 else if (rtype != REG_TYPE_VFS)
6344 {
6345 i++;
6346 if (skip_past_comma (&ptr) == FAIL)
6347 goto wanted_comma;
6348 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6349 goto wanted_arm;
6350 inst.operands[i].reg = val;
6351 inst.operands[i].isreg = 1;
6352 inst.operands[i].present = 1;
6353 }
6354 }
037e8744 6355 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6356 &optype)) != FAIL)
6357 {
6358 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6359 Case 1: VMOV<c><q> <Dd>, <Dm>
6360 Case 8: VMOV.F32 <Sd>, <Sm>
6361 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6362
6363 inst.operands[i].reg = val;
6364 inst.operands[i].isreg = 1;
6365 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6366 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6367 inst.operands[i].isvec = 1;
6368 inst.operands[i].vectype = optype;
6369 inst.operands[i].present = 1;
6370
6371 if (skip_past_comma (&ptr) == SUCCESS)
6372 {
6373 /* Case 15. */
6374 i++;
6375
6376 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6377 goto wanted_arm;
6378
6379 inst.operands[i].reg = val;
6380 inst.operands[i].isreg = 1;
6381 inst.operands[i++].present = 1;
6382
6383 if (skip_past_comma (&ptr) == FAIL)
6384 goto wanted_comma;
6385
6386 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6387 goto wanted_arm;
6388
6389 inst.operands[i].reg = val;
6390 inst.operands[i].isreg = 1;
6391 inst.operands[i].present = 1;
6392 }
6393 }
4641781c 6394 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6395 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6396 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6397 Case 10: VMOV.F32 <Sd>, #<imm>
6398 Case 11: VMOV.F64 <Dd>, #<imm> */
6399 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6400 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6401 == SUCCESS)
477330fc
RM
6402 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6403 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6404 ;
5287ad62 6405 else
477330fc
RM
6406 {
6407 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6408 return FAIL;
6409 }
5287ad62 6410 }
dcbf9037 6411 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
6412 {
6413 /* Cases 6, 7. */
6414 inst.operands[i].reg = val;
6415 inst.operands[i].isreg = 1;
6416 inst.operands[i++].present = 1;
5f4273c7 6417
5287ad62 6418 if (skip_past_comma (&ptr) == FAIL)
477330fc 6419 goto wanted_comma;
5f4273c7 6420
dcbf9037 6421 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
477330fc
RM
6422 {
6423 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6424 inst.operands[i].reg = val;
6425 inst.operands[i].isscalar = 1;
6426 inst.operands[i].present = 1;
6427 inst.operands[i].vectype = optype;
6428 }
dcbf9037 6429 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6430 {
6431 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6432 inst.operands[i].reg = val;
6433 inst.operands[i].isreg = 1;
6434 inst.operands[i++].present = 1;
6435
6436 if (skip_past_comma (&ptr) == FAIL)
6437 goto wanted_comma;
6438
6439 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6440 == FAIL)
6441 {
6442 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6443 return FAIL;
6444 }
6445
6446 inst.operands[i].reg = val;
6447 inst.operands[i].isreg = 1;
6448 inst.operands[i].isvec = 1;
6449 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6450 inst.operands[i].vectype = optype;
6451 inst.operands[i].present = 1;
6452
6453 if (rtype == REG_TYPE_VFS)
6454 {
6455 /* Case 14. */
6456 i++;
6457 if (skip_past_comma (&ptr) == FAIL)
6458 goto wanted_comma;
6459 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6460 &optype)) == FAIL)
6461 {
6462 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6463 return FAIL;
6464 }
6465 inst.operands[i].reg = val;
6466 inst.operands[i].isreg = 1;
6467 inst.operands[i].isvec = 1;
6468 inst.operands[i].issingle = 1;
6469 inst.operands[i].vectype = optype;
6470 inst.operands[i].present = 1;
6471 }
6472 }
037e8744 6473 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6474 != FAIL)
6475 {
6476 /* Case 13. */
6477 inst.operands[i].reg = val;
6478 inst.operands[i].isreg = 1;
6479 inst.operands[i].isvec = 1;
6480 inst.operands[i].issingle = 1;
6481 inst.operands[i].vectype = optype;
6482 inst.operands[i].present = 1;
6483 }
5287ad62
JB
6484 }
6485 else
6486 {
dcbf9037 6487 first_error (_("parse error"));
5287ad62
JB
6488 return FAIL;
6489 }
6490
6491 /* Successfully parsed the operands. Update args. */
6492 *which_operand = i;
6493 *str = ptr;
6494 return SUCCESS;
6495
5f4273c7 6496 wanted_comma:
dcbf9037 6497 first_error (_("expected comma"));
5287ad62 6498 return FAIL;
5f4273c7
NC
6499
6500 wanted_arm:
dcbf9037 6501 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6502 return FAIL;
5287ad62
JB
6503}
6504
5be8be5d
DG
6505/* Use this macro when the operand constraints are different
6506 for ARM and THUMB (e.g. ldrd). */
6507#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6508 ((arm_operand) | ((thumb_operand) << 16))
6509
c19d1205
ZW
6510/* Matcher codes for parse_operands. */
6511enum operand_parse_code
6512{
6513 OP_stop, /* end of line */
6514
6515 OP_RR, /* ARM register */
6516 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6517 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6518 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6519 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6520 optional trailing ! */
c19d1205
ZW
6521 OP_RRw, /* ARM register, not r15, optional trailing ! */
6522 OP_RCP, /* Coprocessor number */
6523 OP_RCN, /* Coprocessor register */
6524 OP_RF, /* FPA register */
6525 OP_RVS, /* VFP single precision register */
5287ad62
JB
6526 OP_RVD, /* VFP double precision register (0..15) */
6527 OP_RND, /* Neon double precision register (0..31) */
6528 OP_RNQ, /* Neon quad precision register */
037e8744 6529 OP_RVSD, /* VFP single or double precision register */
dec41383 6530 OP_RNSD, /* Neon single or double precision register */
5287ad62 6531 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6532 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6533 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6534 OP_RVC, /* VFP control register */
6535 OP_RMF, /* Maverick F register */
6536 OP_RMD, /* Maverick D register */
6537 OP_RMFX, /* Maverick FX register */
6538 OP_RMDX, /* Maverick DX register */
6539 OP_RMAX, /* Maverick AX register */
6540 OP_RMDS, /* Maverick DSPSC register */
6541 OP_RIWR, /* iWMMXt wR register */
6542 OP_RIWC, /* iWMMXt wC register */
6543 OP_RIWG, /* iWMMXt wCG register */
6544 OP_RXA, /* XScale accumulator register */
6545
6546 OP_REGLST, /* ARM register list */
6547 OP_VRSLST, /* VFP single-precision register list */
6548 OP_VRDLST, /* VFP double-precision register list */
037e8744 6549 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6550 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6551 OP_NSTRLST, /* Neon element/structure list */
6552
5287ad62 6553 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6554 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6555 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
5287ad62 6556 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6557 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6558 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6559 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6560 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6561 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6562 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6563 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6564 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6565
6566 OP_I0, /* immediate zero */
c19d1205
ZW
6567 OP_I7, /* immediate value 0 .. 7 */
6568 OP_I15, /* 0 .. 15 */
6569 OP_I16, /* 1 .. 16 */
5287ad62 6570 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6571 OP_I31, /* 0 .. 31 */
6572 OP_I31w, /* 0 .. 31, optional trailing ! */
6573 OP_I32, /* 1 .. 32 */
5287ad62
JB
6574 OP_I32z, /* 0 .. 32 */
6575 OP_I63, /* 0 .. 63 */
c19d1205 6576 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6577 OP_I64, /* 1 .. 64 */
6578 OP_I64z, /* 0 .. 64 */
c19d1205 6579 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6580
6581 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6582 OP_I7b, /* 0 .. 7 */
6583 OP_I15b, /* 0 .. 15 */
6584 OP_I31b, /* 0 .. 31 */
6585
6586 OP_SH, /* shifter operand */
4962c51a 6587 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6588 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6589 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6590 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6591 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6592 OP_EXP, /* arbitrary expression */
6593 OP_EXPi, /* same, with optional immediate prefix */
6594 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 6595 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 6596 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6597 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6598 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
6599
6600 OP_CPSF, /* CPS flags */
6601 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6602 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6603 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6604 OP_COND, /* conditional code */
92e90b6e 6605 OP_TB, /* Table branch. */
c19d1205 6606
037e8744
JB
6607 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6608
c19d1205 6609 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 6610 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
6611 OP_RR_EXi, /* ARM register or expression with imm prefix */
6612 OP_RF_IF, /* FPA register or immediate */
6613 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6614 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6615
6616 /* Optional operands. */
6617 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6618 OP_oI31b, /* 0 .. 31 */
5287ad62 6619 OP_oI32b, /* 1 .. 32 */
5f1af56b 6620 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6621 OP_oIffffb, /* 0 .. 65535 */
6622 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6623
6624 OP_oRR, /* ARM register */
6625 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6626 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6627 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6628 OP_oRND, /* Optional Neon double precision register */
6629 OP_oRNQ, /* Optional Neon quad precision register */
6630 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6631 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6632 OP_oSHll, /* LSL immediate */
6633 OP_oSHar, /* ASR immediate */
6634 OP_oSHllar, /* LSL or ASR immediate */
6635 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6636 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6637
5be8be5d
DG
6638 /* Some pre-defined mixed (ARM/THUMB) operands. */
6639 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6640 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6641 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6642
c19d1205
ZW
6643 OP_FIRST_OPTIONAL = OP_oI7b
6644};
a737bd4d 6645
c19d1205
ZW
6646/* Generic instruction operand parser. This does no encoding and no
6647 semantic validation; it merely squirrels values away in the inst
6648 structure. Returns SUCCESS or FAIL depending on whether the
6649 specified grammar matched. */
6650static int
5be8be5d 6651parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6652{
5be8be5d 6653 unsigned const int *upat = pattern;
c19d1205
ZW
6654 char *backtrack_pos = 0;
6655 const char *backtrack_error = 0;
99aad254 6656 int i, val = 0, backtrack_index = 0;
5287ad62 6657 enum arm_reg_type rtype;
4962c51a 6658 parse_operand_result result;
5be8be5d 6659 unsigned int op_parse_code;
c19d1205 6660
e07e6e58
NC
6661#define po_char_or_fail(chr) \
6662 do \
6663 { \
6664 if (skip_past_char (&str, chr) == FAIL) \
477330fc 6665 goto bad_args; \
e07e6e58
NC
6666 } \
6667 while (0)
c19d1205 6668
e07e6e58
NC
6669#define po_reg_or_fail(regtype) \
6670 do \
dcbf9037 6671 { \
e07e6e58 6672 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 6673 & inst.operands[i].vectype); \
e07e6e58 6674 if (val == FAIL) \
477330fc
RM
6675 { \
6676 first_error (_(reg_expected_msgs[regtype])); \
6677 goto failure; \
6678 } \
e07e6e58
NC
6679 inst.operands[i].reg = val; \
6680 inst.operands[i].isreg = 1; \
6681 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6682 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6683 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
6684 || rtype == REG_TYPE_VFD \
6685 || rtype == REG_TYPE_NQ); \
dcbf9037 6686 } \
e07e6e58
NC
6687 while (0)
6688
6689#define po_reg_or_goto(regtype, label) \
6690 do \
6691 { \
6692 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6693 & inst.operands[i].vectype); \
6694 if (val == FAIL) \
6695 goto label; \
dcbf9037 6696 \
e07e6e58
NC
6697 inst.operands[i].reg = val; \
6698 inst.operands[i].isreg = 1; \
6699 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6700 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6701 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 6702 || rtype == REG_TYPE_VFD \
e07e6e58
NC
6703 || rtype == REG_TYPE_NQ); \
6704 } \
6705 while (0)
6706
6707#define po_imm_or_fail(min, max, popt) \
6708 do \
6709 { \
6710 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6711 goto failure; \
6712 inst.operands[i].imm = val; \
6713 } \
6714 while (0)
6715
6716#define po_scalar_or_goto(elsz, label) \
6717 do \
6718 { \
6719 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6720 if (val == FAIL) \
6721 goto label; \
6722 inst.operands[i].reg = val; \
6723 inst.operands[i].isscalar = 1; \
6724 } \
6725 while (0)
6726
6727#define po_misc_or_fail(expr) \
6728 do \
6729 { \
6730 if (expr) \
6731 goto failure; \
6732 } \
6733 while (0)
6734
6735#define po_misc_or_fail_no_backtrack(expr) \
6736 do \
6737 { \
6738 result = expr; \
6739 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6740 backtrack_pos = 0; \
6741 if (result != PARSE_OPERAND_SUCCESS) \
6742 goto failure; \
6743 } \
6744 while (0)
4962c51a 6745
52e7f43d
RE
6746#define po_barrier_or_imm(str) \
6747 do \
6748 { \
6749 val = parse_barrier (&str); \
ccb84d65
JB
6750 if (val == FAIL && ! ISALPHA (*str)) \
6751 goto immediate; \
6752 if (val == FAIL \
6753 /* ISB can only take SY as an option. */ \
6754 || ((inst.instruction & 0xf0) == 0x60 \
6755 && val != 0xf)) \
52e7f43d 6756 { \
ccb84d65
JB
6757 inst.error = _("invalid barrier type"); \
6758 backtrack_pos = 0; \
6759 goto failure; \
52e7f43d
RE
6760 } \
6761 } \
6762 while (0)
6763
c19d1205
ZW
6764 skip_whitespace (str);
6765
6766 for (i = 0; upat[i] != OP_stop; i++)
6767 {
5be8be5d
DG
6768 op_parse_code = upat[i];
6769 if (op_parse_code >= 1<<16)
6770 op_parse_code = thumb ? (op_parse_code >> 16)
6771 : (op_parse_code & ((1<<16)-1));
6772
6773 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6774 {
6775 /* Remember where we are in case we need to backtrack. */
9c2799c2 6776 gas_assert (!backtrack_pos);
c19d1205
ZW
6777 backtrack_pos = str;
6778 backtrack_error = inst.error;
6779 backtrack_index = i;
6780 }
6781
b6702015 6782 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6783 po_char_or_fail (',');
6784
5be8be5d 6785 switch (op_parse_code)
c19d1205
ZW
6786 {
6787 /* Registers */
6788 case OP_oRRnpc:
5be8be5d 6789 case OP_oRRnpcsp:
c19d1205 6790 case OP_RRnpc:
5be8be5d 6791 case OP_RRnpcsp:
c19d1205
ZW
6792 case OP_oRR:
6793 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6794 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6795 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6796 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6797 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6798 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 6799 case OP_oRND:
5287ad62 6800 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6801 case OP_RVC:
6802 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6803 break;
6804 /* Also accept generic coprocessor regs for unknown registers. */
6805 coproc_reg:
6806 po_reg_or_fail (REG_TYPE_CN);
6807 break;
c19d1205
ZW
6808 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6809 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6810 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6811 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6812 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6813 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6814 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6815 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6816 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6817 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 6818 case OP_oRNQ:
5287ad62 6819 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 6820 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
477330fc 6821 case OP_oRNDQ:
5287ad62 6822 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
477330fc
RM
6823 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6824 case OP_oRNSDQ:
6825 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6826
6827 /* Neon scalar. Using an element size of 8 means that some invalid
6828 scalars are accepted here, so deal with those in later code. */
6829 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6830
6831 case OP_RNDQ_I0:
6832 {
6833 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6834 break;
6835 try_imm0:
6836 po_imm_or_fail (0, 0, TRUE);
6837 }
6838 break;
6839
6840 case OP_RVSD_I0:
6841 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6842 break;
6843
aacf0b33
KT
6844 case OP_RSVD_FI0:
6845 {
6846 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6847 break;
6848 try_ifimm0:
6849 if (parse_ifimm_zero (&str))
6850 inst.operands[i].imm = 0;
6851 else
6852 {
6853 inst.error
6854 = _("only floating point zero is allowed as immediate value");
6855 goto failure;
6856 }
6857 }
6858 break;
6859
477330fc
RM
6860 case OP_RR_RNSC:
6861 {
6862 po_scalar_or_goto (8, try_rr);
6863 break;
6864 try_rr:
6865 po_reg_or_fail (REG_TYPE_RN);
6866 }
6867 break;
6868
6869 case OP_RNSDQ_RNSC:
6870 {
6871 po_scalar_or_goto (8, try_nsdq);
6872 break;
6873 try_nsdq:
6874 po_reg_or_fail (REG_TYPE_NSDQ);
6875 }
6876 break;
6877
dec41383
JW
6878 case OP_RNSD_RNSC:
6879 {
6880 po_scalar_or_goto (8, try_s_scalar);
6881 break;
6882 try_s_scalar:
6883 po_scalar_or_goto (4, try_nsd);
6884 break;
6885 try_nsd:
6886 po_reg_or_fail (REG_TYPE_NSD);
6887 }
6888 break;
6889
477330fc
RM
6890 case OP_RNDQ_RNSC:
6891 {
6892 po_scalar_or_goto (8, try_ndq);
6893 break;
6894 try_ndq:
6895 po_reg_or_fail (REG_TYPE_NDQ);
6896 }
6897 break;
6898
6899 case OP_RND_RNSC:
6900 {
6901 po_scalar_or_goto (8, try_vfd);
6902 break;
6903 try_vfd:
6904 po_reg_or_fail (REG_TYPE_VFD);
6905 }
6906 break;
6907
6908 case OP_VMOV:
6909 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6910 not careful then bad things might happen. */
6911 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6912 break;
6913
6914 case OP_RNDQ_Ibig:
6915 {
6916 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6917 break;
6918 try_immbig:
6919 /* There's a possibility of getting a 64-bit immediate here, so
6920 we need special handling. */
8335d6aa
JW
6921 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6922 == FAIL)
477330fc
RM
6923 {
6924 inst.error = _("immediate value is out of range");
6925 goto failure;
6926 }
6927 }
6928 break;
6929
6930 case OP_RNDQ_I63b:
6931 {
6932 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6933 break;
6934 try_shimm:
6935 po_imm_or_fail (0, 63, TRUE);
6936 }
6937 break;
c19d1205
ZW
6938
6939 case OP_RRnpcb:
6940 po_char_or_fail ('[');
6941 po_reg_or_fail (REG_TYPE_RN);
6942 po_char_or_fail (']');
6943 break;
a737bd4d 6944
55881a11 6945 case OP_RRnpctw:
c19d1205 6946 case OP_RRw:
b6702015 6947 case OP_oRRw:
c19d1205
ZW
6948 po_reg_or_fail (REG_TYPE_RN);
6949 if (skip_past_char (&str, '!') == SUCCESS)
6950 inst.operands[i].writeback = 1;
6951 break;
6952
6953 /* Immediates */
6954 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6955 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6956 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 6957 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6958 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6959 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 6960 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6961 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
6962 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6963 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6964 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6965 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6966
6967 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6968 case OP_oI7b:
6969 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6970 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6971 case OP_oI31b:
6972 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
6973 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6974 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6975 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6976
6977 /* Immediate variants */
6978 case OP_oI255c:
6979 po_char_or_fail ('{');
6980 po_imm_or_fail (0, 255, TRUE);
6981 po_char_or_fail ('}');
6982 break;
6983
6984 case OP_I31w:
6985 /* The expression parser chokes on a trailing !, so we have
6986 to find it first and zap it. */
6987 {
6988 char *s = str;
6989 while (*s && *s != ',')
6990 s++;
6991 if (s[-1] == '!')
6992 {
6993 s[-1] = '\0';
6994 inst.operands[i].writeback = 1;
6995 }
6996 po_imm_or_fail (0, 31, TRUE);
6997 if (str == s - 1)
6998 str = s;
6999 }
7000 break;
7001
7002 /* Expressions */
7003 case OP_EXPi: EXPi:
e2b0ab59 7004 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7005 GE_OPT_PREFIX));
7006 break;
7007
7008 case OP_EXP:
e2b0ab59 7009 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7010 GE_NO_PREFIX));
7011 break;
7012
7013 case OP_EXPr: EXPr:
e2b0ab59 7014 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7015 GE_NO_PREFIX));
e2b0ab59 7016 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7017 {
c19d1205
ZW
7018 val = parse_reloc (&str);
7019 if (val == -1)
7020 {
7021 inst.error = _("unrecognized relocation suffix");
7022 goto failure;
7023 }
7024 else if (val != BFD_RELOC_UNUSED)
7025 {
7026 inst.operands[i].imm = val;
7027 inst.operands[i].hasreloc = 1;
7028 }
a737bd4d 7029 }
c19d1205 7030 break;
a737bd4d 7031
e2b0ab59
AV
7032 case OP_EXPs:
7033 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7034 GE_NO_PREFIX));
7035 if (inst.relocs[i].exp.X_op == O_symbol)
7036 {
7037 inst.operands[i].hasreloc = 1;
7038 }
7039 else if (inst.relocs[i].exp.X_op == O_constant)
7040 {
7041 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7042 inst.operands[i].hasreloc = 0;
7043 }
7044 break;
7045
b6895b4f
PB
7046 /* Operand for MOVW or MOVT. */
7047 case OP_HALF:
7048 po_misc_or_fail (parse_half (&str));
7049 break;
7050
e07e6e58 7051 /* Register or expression. */
c19d1205
ZW
7052 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7053 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7054
e07e6e58 7055 /* Register or immediate. */
c19d1205
ZW
7056 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7057 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7058
c19d1205
ZW
7059 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7060 IF:
7061 if (!is_immediate_prefix (*str))
7062 goto bad_args;
7063 str++;
7064 val = parse_fpa_immediate (&str);
7065 if (val == FAIL)
7066 goto failure;
7067 /* FPA immediates are encoded as registers 8-15.
7068 parse_fpa_immediate has already applied the offset. */
7069 inst.operands[i].reg = val;
7070 inst.operands[i].isreg = 1;
7071 break;
09d92015 7072
2d447fca
JM
7073 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7074 I32z: po_imm_or_fail (0, 32, FALSE); break;
7075
e07e6e58 7076 /* Two kinds of register. */
c19d1205
ZW
7077 case OP_RIWR_RIWC:
7078 {
7079 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7080 if (!rege
7081 || (rege->type != REG_TYPE_MMXWR
7082 && rege->type != REG_TYPE_MMXWC
7083 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7084 {
7085 inst.error = _("iWMMXt data or control register expected");
7086 goto failure;
7087 }
7088 inst.operands[i].reg = rege->number;
7089 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7090 }
7091 break;
09d92015 7092
41adaa5c
JM
7093 case OP_RIWC_RIWG:
7094 {
7095 struct reg_entry *rege = arm_reg_parse_multi (&str);
7096 if (!rege
7097 || (rege->type != REG_TYPE_MMXWC
7098 && rege->type != REG_TYPE_MMXWCG))
7099 {
7100 inst.error = _("iWMMXt control register expected");
7101 goto failure;
7102 }
7103 inst.operands[i].reg = rege->number;
7104 inst.operands[i].isreg = 1;
7105 }
7106 break;
7107
c19d1205
ZW
7108 /* Misc */
7109 case OP_CPSF: val = parse_cps_flags (&str); break;
7110 case OP_ENDI: val = parse_endian_specifier (&str); break;
7111 case OP_oROR: val = parse_ror (&str); break;
c19d1205 7112 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7113 case OP_oBARRIER_I15:
7114 po_barrier_or_imm (str); break;
7115 immediate:
7116 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7117 goto failure;
52e7f43d 7118 break;
c19d1205 7119
fa94de6b 7120 case OP_wPSR:
d2cd1205 7121 case OP_rPSR:
90ec0d68
MGD
7122 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7123 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7124 {
7125 inst.error = _("Banked registers are not available with this "
7126 "architecture.");
7127 goto failure;
7128 }
7129 break;
d2cd1205
JB
7130 try_psr:
7131 val = parse_psr (&str, op_parse_code == OP_wPSR);
7132 break;
037e8744 7133
477330fc
RM
7134 case OP_APSR_RR:
7135 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7136 break;
7137 try_apsr:
7138 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7139 instruction). */
7140 if (strncasecmp (str, "APSR_", 5) == 0)
7141 {
7142 unsigned found = 0;
7143 str += 5;
7144 while (found < 15)
7145 switch (*str++)
7146 {
7147 case 'c': found = (found & 1) ? 16 : found | 1; break;
7148 case 'n': found = (found & 2) ? 16 : found | 2; break;
7149 case 'z': found = (found & 4) ? 16 : found | 4; break;
7150 case 'v': found = (found & 8) ? 16 : found | 8; break;
7151 default: found = 16;
7152 }
7153 if (found != 15)
7154 goto failure;
7155 inst.operands[i].isvec = 1;
f7c21dc7
NC
7156 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7157 inst.operands[i].reg = REG_PC;
477330fc
RM
7158 }
7159 else
7160 goto failure;
7161 break;
037e8744 7162
92e90b6e
PB
7163 case OP_TB:
7164 po_misc_or_fail (parse_tb (&str));
7165 break;
7166
e07e6e58 7167 /* Register lists. */
c19d1205
ZW
7168 case OP_REGLST:
7169 val = parse_reg_list (&str);
7170 if (*str == '^')
7171 {
5e0d7f77 7172 inst.operands[i].writeback = 1;
c19d1205
ZW
7173 str++;
7174 }
7175 break;
09d92015 7176
c19d1205 7177 case OP_VRSLST:
5287ad62 7178 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 7179 break;
09d92015 7180
c19d1205 7181 case OP_VRDLST:
5287ad62 7182 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 7183 break;
a737bd4d 7184
477330fc
RM
7185 case OP_VRSDLST:
7186 /* Allow Q registers too. */
7187 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7188 REGLIST_NEON_D);
7189 if (val == FAIL)
7190 {
7191 inst.error = NULL;
7192 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7193 REGLIST_VFP_S);
7194 inst.operands[i].issingle = 1;
7195 }
7196 break;
7197
7198 case OP_NRDLST:
7199 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7200 REGLIST_NEON_D);
7201 break;
5287ad62
JB
7202
7203 case OP_NSTRLST:
477330fc
RM
7204 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7205 &inst.operands[i].vectype);
7206 break;
5287ad62 7207
c19d1205
ZW
7208 /* Addressing modes */
7209 case OP_ADDR:
7210 po_misc_or_fail (parse_address (&str, i));
7211 break;
09d92015 7212
4962c51a
MS
7213 case OP_ADDRGLDR:
7214 po_misc_or_fail_no_backtrack (
477330fc 7215 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7216 break;
7217
7218 case OP_ADDRGLDRS:
7219 po_misc_or_fail_no_backtrack (
477330fc 7220 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7221 break;
7222
7223 case OP_ADDRGLDC:
7224 po_misc_or_fail_no_backtrack (
477330fc 7225 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7226 break;
7227
c19d1205
ZW
7228 case OP_SH:
7229 po_misc_or_fail (parse_shifter_operand (&str, i));
7230 break;
09d92015 7231
4962c51a
MS
7232 case OP_SHG:
7233 po_misc_or_fail_no_backtrack (
477330fc 7234 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7235 break;
7236
c19d1205
ZW
7237 case OP_oSHll:
7238 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7239 break;
09d92015 7240
c19d1205
ZW
7241 case OP_oSHar:
7242 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7243 break;
09d92015 7244
c19d1205
ZW
7245 case OP_oSHllar:
7246 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7247 break;
09d92015 7248
c19d1205 7249 default:
5be8be5d 7250 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7251 }
09d92015 7252
c19d1205
ZW
7253 /* Various value-based sanity checks and shared operations. We
7254 do not signal immediate failures for the register constraints;
7255 this allows a syntax error to take precedence. */
5be8be5d 7256 switch (op_parse_code)
c19d1205
ZW
7257 {
7258 case OP_oRRnpc:
7259 case OP_RRnpc:
7260 case OP_RRnpcb:
7261 case OP_RRw:
b6702015 7262 case OP_oRRw:
c19d1205
ZW
7263 case OP_RRnpc_I0:
7264 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7265 inst.error = BAD_PC;
7266 break;
09d92015 7267
5be8be5d
DG
7268 case OP_oRRnpcsp:
7269 case OP_RRnpcsp:
7270 if (inst.operands[i].isreg)
7271 {
7272 if (inst.operands[i].reg == REG_PC)
7273 inst.error = BAD_PC;
5c8ed6a4
JW
7274 else if (inst.operands[i].reg == REG_SP
7275 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7276 relaxed since ARMv8-A. */
7277 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7278 {
7279 gas_assert (thumb);
7280 inst.error = BAD_SP;
7281 }
5be8be5d
DG
7282 }
7283 break;
7284
55881a11 7285 case OP_RRnpctw:
fa94de6b
RM
7286 if (inst.operands[i].isreg
7287 && inst.operands[i].reg == REG_PC
55881a11
MGD
7288 && (inst.operands[i].writeback || thumb))
7289 inst.error = BAD_PC;
7290 break;
7291
c19d1205
ZW
7292 case OP_CPSF:
7293 case OP_ENDI:
7294 case OP_oROR:
d2cd1205
JB
7295 case OP_wPSR:
7296 case OP_rPSR:
c19d1205 7297 case OP_COND:
52e7f43d 7298 case OP_oBARRIER_I15:
c19d1205
ZW
7299 case OP_REGLST:
7300 case OP_VRSLST:
7301 case OP_VRDLST:
477330fc
RM
7302 case OP_VRSDLST:
7303 case OP_NRDLST:
7304 case OP_NSTRLST:
c19d1205
ZW
7305 if (val == FAIL)
7306 goto failure;
7307 inst.operands[i].imm = val;
7308 break;
a737bd4d 7309
c19d1205
ZW
7310 default:
7311 break;
7312 }
09d92015 7313
c19d1205
ZW
7314 /* If we get here, this operand was successfully parsed. */
7315 inst.operands[i].present = 1;
7316 continue;
09d92015 7317
c19d1205 7318 bad_args:
09d92015 7319 inst.error = BAD_ARGS;
c19d1205
ZW
7320
7321 failure:
7322 if (!backtrack_pos)
d252fdde
PB
7323 {
7324 /* The parse routine should already have set inst.error, but set a
5f4273c7 7325 default here just in case. */
d252fdde
PB
7326 if (!inst.error)
7327 inst.error = _("syntax error");
7328 return FAIL;
7329 }
c19d1205
ZW
7330
7331 /* Do not backtrack over a trailing optional argument that
7332 absorbed some text. We will only fail again, with the
7333 'garbage following instruction' error message, which is
7334 probably less helpful than the current one. */
7335 if (backtrack_index == i && backtrack_pos != str
7336 && upat[i+1] == OP_stop)
d252fdde
PB
7337 {
7338 if (!inst.error)
7339 inst.error = _("syntax error");
7340 return FAIL;
7341 }
c19d1205
ZW
7342
7343 /* Try again, skipping the optional argument at backtrack_pos. */
7344 str = backtrack_pos;
7345 inst.error = backtrack_error;
7346 inst.operands[backtrack_index].present = 0;
7347 i = backtrack_index;
7348 backtrack_pos = 0;
09d92015 7349 }
09d92015 7350
c19d1205
ZW
7351 /* Check that we have parsed all the arguments. */
7352 if (*str != '\0' && !inst.error)
7353 inst.error = _("garbage following instruction");
09d92015 7354
c19d1205 7355 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7356}
7357
c19d1205
ZW
7358#undef po_char_or_fail
7359#undef po_reg_or_fail
7360#undef po_reg_or_goto
7361#undef po_imm_or_fail
5287ad62 7362#undef po_scalar_or_fail
52e7f43d 7363#undef po_barrier_or_imm
e07e6e58 7364
c19d1205 7365/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7366#define constraint(expr, err) \
7367 do \
c19d1205 7368 { \
e07e6e58
NC
7369 if (expr) \
7370 { \
7371 inst.error = err; \
7372 return; \
7373 } \
c19d1205 7374 } \
e07e6e58 7375 while (0)
c19d1205 7376
fdfde340
JM
7377/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7378 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7379 is the BadReg predicate in ARM's Thumb-2 documentation.
7380
7381 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7382 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7383#define reject_bad_reg(reg) \
7384 do \
7385 if (reg == REG_PC) \
7386 { \
7387 inst.error = BAD_PC; \
7388 return; \
7389 } \
7390 else if (reg == REG_SP \
7391 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7392 { \
7393 inst.error = BAD_SP; \
7394 return; \
7395 } \
fdfde340
JM
7396 while (0)
7397
94206790
MM
7398/* If REG is R13 (the stack pointer), warn that its use is
7399 deprecated. */
7400#define warn_deprecated_sp(reg) \
7401 do \
7402 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7403 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7404 while (0)
7405
c19d1205
ZW
7406/* Functions for operand encoding. ARM, then Thumb. */
7407
d840c081 7408#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7409
9db2f6b4
RL
7410/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7411
7412 The only binary encoding difference is the Coprocessor number. Coprocessor
7413 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7414 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7415 exists for Single-Precision operation. */
7416
7417static void
7418do_scalar_fp16_v82_encode (void)
7419{
7420 if (inst.cond != COND_ALWAYS)
7421 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7422 " the behaviour is UNPREDICTABLE"));
7423 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7424 _(BAD_FP16));
7425
7426 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7427 mark_feature_used (&arm_ext_fp16);
7428}
7429
c19d1205
ZW
7430/* If VAL can be encoded in the immediate field of an ARM instruction,
7431 return the encoded form. Otherwise, return FAIL. */
7432
7433static unsigned int
7434encode_arm_immediate (unsigned int val)
09d92015 7435{
c19d1205
ZW
7436 unsigned int a, i;
7437
4f1d6205
L
7438 if (val <= 0xff)
7439 return val;
7440
7441 for (i = 2; i < 32; i += 2)
c19d1205
ZW
7442 if ((a = rotate_left (val, i)) <= 0xff)
7443 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7444
7445 return FAIL;
09d92015
MM
7446}
7447
c19d1205
ZW
7448/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7449 return the encoded form. Otherwise, return FAIL. */
7450static unsigned int
7451encode_thumb32_immediate (unsigned int val)
09d92015 7452{
c19d1205 7453 unsigned int a, i;
09d92015 7454
9c3c69f2 7455 if (val <= 0xff)
c19d1205 7456 return val;
a737bd4d 7457
9c3c69f2 7458 for (i = 1; i <= 24; i++)
09d92015 7459 {
9c3c69f2
PB
7460 a = val >> i;
7461 if ((val & ~(0xff << i)) == 0)
7462 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 7463 }
a737bd4d 7464
c19d1205
ZW
7465 a = val & 0xff;
7466 if (val == ((a << 16) | a))
7467 return 0x100 | a;
7468 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7469 return 0x300 | a;
09d92015 7470
c19d1205
ZW
7471 a = val & 0xff00;
7472 if (val == ((a << 16) | a))
7473 return 0x200 | (a >> 8);
a737bd4d 7474
c19d1205 7475 return FAIL;
09d92015 7476}
5287ad62 7477/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
7478
7479static void
5287ad62
JB
7480encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7481{
7482 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7483 && reg > 15)
7484 {
b1cc4aeb 7485 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
7486 {
7487 if (thumb_mode)
7488 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7489 fpu_vfp_ext_d32);
7490 else
7491 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7492 fpu_vfp_ext_d32);
7493 }
5287ad62 7494 else
477330fc
RM
7495 {
7496 first_error (_("D register out of range for selected VFP version"));
7497 return;
7498 }
5287ad62
JB
7499 }
7500
c19d1205 7501 switch (pos)
09d92015 7502 {
c19d1205
ZW
7503 case VFP_REG_Sd:
7504 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7505 break;
7506
7507 case VFP_REG_Sn:
7508 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7509 break;
7510
7511 case VFP_REG_Sm:
7512 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7513 break;
7514
5287ad62
JB
7515 case VFP_REG_Dd:
7516 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7517 break;
5f4273c7 7518
5287ad62
JB
7519 case VFP_REG_Dn:
7520 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7521 break;
5f4273c7 7522
5287ad62
JB
7523 case VFP_REG_Dm:
7524 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7525 break;
7526
c19d1205
ZW
7527 default:
7528 abort ();
09d92015 7529 }
09d92015
MM
7530}
7531
c19d1205 7532/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 7533 if any, is handled by md_apply_fix. */
09d92015 7534static void
c19d1205 7535encode_arm_shift (int i)
09d92015 7536{
008a97ef
RL
7537 /* register-shifted register. */
7538 if (inst.operands[i].immisreg)
7539 {
bf355b69
MR
7540 int op_index;
7541 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 7542 {
5689c942
RL
7543 /* Check the operand only when it's presented. In pre-UAL syntax,
7544 if the destination register is the same as the first operand, two
7545 register form of the instruction can be used. */
bf355b69
MR
7546 if (inst.operands[op_index].present && inst.operands[op_index].isreg
7547 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
7548 as_warn (UNPRED_REG ("r15"));
7549 }
7550
7551 if (inst.operands[i].imm == REG_PC)
7552 as_warn (UNPRED_REG ("r15"));
7553 }
7554
c19d1205
ZW
7555 if (inst.operands[i].shift_kind == SHIFT_RRX)
7556 inst.instruction |= SHIFT_ROR << 5;
7557 else
09d92015 7558 {
c19d1205
ZW
7559 inst.instruction |= inst.operands[i].shift_kind << 5;
7560 if (inst.operands[i].immisreg)
7561 {
7562 inst.instruction |= SHIFT_BY_REG;
7563 inst.instruction |= inst.operands[i].imm << 8;
7564 }
7565 else
e2b0ab59 7566 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7567 }
c19d1205 7568}
09d92015 7569
c19d1205
ZW
7570static void
7571encode_arm_shifter_operand (int i)
7572{
7573 if (inst.operands[i].isreg)
09d92015 7574 {
c19d1205
ZW
7575 inst.instruction |= inst.operands[i].reg;
7576 encode_arm_shift (i);
09d92015 7577 }
c19d1205 7578 else
a415b1cd
JB
7579 {
7580 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 7581 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
7582 inst.instruction |= inst.operands[i].imm;
7583 }
09d92015
MM
7584}
7585
c19d1205 7586/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7587static void
c19d1205 7588encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7589{
2b2f5df9
NC
7590 /* PR 14260:
7591 Generate an error if the operand is not a register. */
7592 constraint (!inst.operands[i].isreg,
7593 _("Instruction does not support =N addresses"));
7594
c19d1205 7595 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7596
c19d1205 7597 if (inst.operands[i].preind)
09d92015 7598 {
c19d1205
ZW
7599 if (is_t)
7600 {
7601 inst.error = _("instruction does not accept preindexed addressing");
7602 return;
7603 }
7604 inst.instruction |= PRE_INDEX;
7605 if (inst.operands[i].writeback)
7606 inst.instruction |= WRITE_BACK;
09d92015 7607
c19d1205
ZW
7608 }
7609 else if (inst.operands[i].postind)
7610 {
9c2799c2 7611 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7612 if (is_t)
7613 inst.instruction |= WRITE_BACK;
7614 }
7615 else /* unindexed - only for coprocessor */
09d92015 7616 {
c19d1205 7617 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7618 return;
7619 }
7620
c19d1205
ZW
7621 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7622 && (((inst.instruction & 0x000f0000) >> 16)
7623 == ((inst.instruction & 0x0000f000) >> 12)))
7624 as_warn ((inst.instruction & LOAD_BIT)
7625 ? _("destination register same as write-back base")
7626 : _("source register same as write-back base"));
09d92015
MM
7627}
7628
c19d1205
ZW
7629/* inst.operands[i] was set up by parse_address. Encode it into an
7630 ARM-format mode 2 load or store instruction. If is_t is true,
7631 reject forms that cannot be used with a T instruction (i.e. not
7632 post-indexed). */
a737bd4d 7633static void
c19d1205 7634encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7635{
5be8be5d
DG
7636 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7637
c19d1205 7638 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7639
c19d1205 7640 if (inst.operands[i].immisreg)
09d92015 7641 {
5be8be5d
DG
7642 constraint ((inst.operands[i].imm == REG_PC
7643 || (is_pc && inst.operands[i].writeback)),
7644 BAD_PC_ADDRESSING);
c19d1205
ZW
7645 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7646 inst.instruction |= inst.operands[i].imm;
7647 if (!inst.operands[i].negative)
7648 inst.instruction |= INDEX_UP;
7649 if (inst.operands[i].shifted)
7650 {
7651 if (inst.operands[i].shift_kind == SHIFT_RRX)
7652 inst.instruction |= SHIFT_ROR << 5;
7653 else
7654 {
7655 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 7656 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
7657 }
7658 }
09d92015 7659 }
e2b0ab59 7660 else /* immediate offset in inst.relocs[0] */
09d92015 7661 {
e2b0ab59 7662 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
7663 {
7664 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7665
7666 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7667 cannot use PC in addressing.
7668 PC cannot be used in writeback addressing, either. */
7669 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7670 BAD_PC_ADDRESSING);
23a10334 7671
dc5ec521 7672 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7673 if (warn_on_deprecated
7674 && !is_load
7675 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 7676 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7677 }
7678
e2b0ab59 7679 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
7680 {
7681 /* Prefer + for zero encoded value. */
7682 if (!inst.operands[i].negative)
7683 inst.instruction |= INDEX_UP;
e2b0ab59 7684 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 7685 }
09d92015 7686 }
09d92015
MM
7687}
7688
c19d1205
ZW
7689/* inst.operands[i] was set up by parse_address. Encode it into an
7690 ARM-format mode 3 load or store instruction. Reject forms that
7691 cannot be used with such instructions. If is_t is true, reject
7692 forms that cannot be used with a T instruction (i.e. not
7693 post-indexed). */
7694static void
7695encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7696{
c19d1205 7697 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7698 {
c19d1205
ZW
7699 inst.error = _("instruction does not accept scaled register index");
7700 return;
09d92015 7701 }
a737bd4d 7702
c19d1205 7703 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7704
c19d1205
ZW
7705 if (inst.operands[i].immisreg)
7706 {
5be8be5d 7707 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 7708 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 7709 BAD_PC_ADDRESSING);
eb9f3f00
JB
7710 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7711 BAD_PC_WRITEBACK);
c19d1205
ZW
7712 inst.instruction |= inst.operands[i].imm;
7713 if (!inst.operands[i].negative)
7714 inst.instruction |= INDEX_UP;
7715 }
e2b0ab59 7716 else /* immediate offset in inst.relocs[0] */
c19d1205 7717 {
e2b0ab59 7718 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
7719 && inst.operands[i].writeback),
7720 BAD_PC_WRITEBACK);
c19d1205 7721 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 7722 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
7723 {
7724 /* Prefer + for zero encoded value. */
7725 if (!inst.operands[i].negative)
7726 inst.instruction |= INDEX_UP;
7727
e2b0ab59 7728 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 7729 }
c19d1205 7730 }
a737bd4d
NC
7731}
7732
8335d6aa
JW
7733/* Write immediate bits [7:0] to the following locations:
7734
7735 |28/24|23 19|18 16|15 4|3 0|
7736 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7737
7738 This function is used by VMOV/VMVN/VORR/VBIC. */
7739
7740static void
7741neon_write_immbits (unsigned immbits)
7742{
7743 inst.instruction |= immbits & 0xf;
7744 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7745 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7746}
7747
7748/* Invert low-order SIZE bits of XHI:XLO. */
7749
7750static void
7751neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7752{
7753 unsigned immlo = xlo ? *xlo : 0;
7754 unsigned immhi = xhi ? *xhi : 0;
7755
7756 switch (size)
7757 {
7758 case 8:
7759 immlo = (~immlo) & 0xff;
7760 break;
7761
7762 case 16:
7763 immlo = (~immlo) & 0xffff;
7764 break;
7765
7766 case 64:
7767 immhi = (~immhi) & 0xffffffff;
7768 /* fall through. */
7769
7770 case 32:
7771 immlo = (~immlo) & 0xffffffff;
7772 break;
7773
7774 default:
7775 abort ();
7776 }
7777
7778 if (xlo)
7779 *xlo = immlo;
7780
7781 if (xhi)
7782 *xhi = immhi;
7783}
7784
7785/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7786 A, B, C, D. */
09d92015 7787
c19d1205 7788static int
8335d6aa 7789neon_bits_same_in_bytes (unsigned imm)
09d92015 7790{
8335d6aa
JW
7791 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7792 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7793 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7794 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7795}
a737bd4d 7796
8335d6aa 7797/* For immediate of above form, return 0bABCD. */
09d92015 7798
8335d6aa
JW
7799static unsigned
7800neon_squash_bits (unsigned imm)
7801{
7802 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7803 | ((imm & 0x01000000) >> 21);
7804}
7805
7806/* Compress quarter-float representation to 0b...000 abcdefgh. */
7807
7808static unsigned
7809neon_qfloat_bits (unsigned imm)
7810{
7811 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7812}
7813
7814/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7815 the instruction. *OP is passed as the initial value of the op field, and
7816 may be set to a different value depending on the constant (i.e.
7817 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7818 MVN). If the immediate looks like a repeated pattern then also
7819 try smaller element sizes. */
7820
7821static int
7822neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7823 unsigned *immbits, int *op, int size,
7824 enum neon_el_type type)
7825{
7826 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7827 float. */
7828 if (type == NT_float && !float_p)
7829 return FAIL;
7830
7831 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 7832 {
8335d6aa
JW
7833 if (size != 32 || *op == 1)
7834 return FAIL;
7835 *immbits = neon_qfloat_bits (immlo);
7836 return 0xf;
7837 }
7838
7839 if (size == 64)
7840 {
7841 if (neon_bits_same_in_bytes (immhi)
7842 && neon_bits_same_in_bytes (immlo))
c19d1205 7843 {
8335d6aa
JW
7844 if (*op == 1)
7845 return FAIL;
7846 *immbits = (neon_squash_bits (immhi) << 4)
7847 | neon_squash_bits (immlo);
7848 *op = 1;
7849 return 0xe;
c19d1205 7850 }
a737bd4d 7851
8335d6aa
JW
7852 if (immhi != immlo)
7853 return FAIL;
7854 }
a737bd4d 7855
8335d6aa 7856 if (size >= 32)
09d92015 7857 {
8335d6aa 7858 if (immlo == (immlo & 0x000000ff))
c19d1205 7859 {
8335d6aa
JW
7860 *immbits = immlo;
7861 return 0x0;
c19d1205 7862 }
8335d6aa 7863 else if (immlo == (immlo & 0x0000ff00))
c19d1205 7864 {
8335d6aa
JW
7865 *immbits = immlo >> 8;
7866 return 0x2;
c19d1205 7867 }
8335d6aa
JW
7868 else if (immlo == (immlo & 0x00ff0000))
7869 {
7870 *immbits = immlo >> 16;
7871 return 0x4;
7872 }
7873 else if (immlo == (immlo & 0xff000000))
7874 {
7875 *immbits = immlo >> 24;
7876 return 0x6;
7877 }
7878 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7879 {
7880 *immbits = (immlo >> 8) & 0xff;
7881 return 0xc;
7882 }
7883 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7884 {
7885 *immbits = (immlo >> 16) & 0xff;
7886 return 0xd;
7887 }
7888
7889 if ((immlo & 0xffff) != (immlo >> 16))
7890 return FAIL;
7891 immlo &= 0xffff;
09d92015 7892 }
a737bd4d 7893
8335d6aa 7894 if (size >= 16)
4962c51a 7895 {
8335d6aa
JW
7896 if (immlo == (immlo & 0x000000ff))
7897 {
7898 *immbits = immlo;
7899 return 0x8;
7900 }
7901 else if (immlo == (immlo & 0x0000ff00))
7902 {
7903 *immbits = immlo >> 8;
7904 return 0xa;
7905 }
7906
7907 if ((immlo & 0xff) != (immlo >> 8))
7908 return FAIL;
7909 immlo &= 0xff;
4962c51a
MS
7910 }
7911
8335d6aa
JW
7912 if (immlo == (immlo & 0x000000ff))
7913 {
7914 /* Don't allow MVN with 8-bit immediate. */
7915 if (*op == 1)
7916 return FAIL;
7917 *immbits = immlo;
7918 return 0xe;
7919 }
26d97720 7920
8335d6aa 7921 return FAIL;
c19d1205 7922}
a737bd4d 7923
5fc177c8 7924#if defined BFD_HOST_64_BIT
ba592044
AM
7925/* Returns TRUE if double precision value V may be cast
7926 to single precision without loss of accuracy. */
7927
7928static bfd_boolean
5fc177c8 7929is_double_a_single (bfd_int64_t v)
ba592044 7930{
5fc177c8 7931 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 7932 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
7933
7934 return (exp == 0 || exp == 0x7FF
7935 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7936 && (mantissa & 0x1FFFFFFFl) == 0;
7937}
7938
3739860c 7939/* Returns a double precision value casted to single precision
ba592044
AM
7940 (ignoring the least significant bits in exponent and mantissa). */
7941
7942static int
5fc177c8 7943double_to_single (bfd_int64_t v)
ba592044
AM
7944{
7945 int sign = (int) ((v >> 63) & 1l);
5fc177c8 7946 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 7947 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
7948
7949 if (exp == 0x7FF)
7950 exp = 0xFF;
7951 else
7952 {
7953 exp = exp - 1023 + 127;
7954 if (exp >= 0xFF)
7955 {
7956 /* Infinity. */
7957 exp = 0x7F;
7958 mantissa = 0;
7959 }
7960 else if (exp < 0)
7961 {
7962 /* No denormalized numbers. */
7963 exp = 0;
7964 mantissa = 0;
7965 }
7966 }
7967 mantissa >>= 29;
7968 return (sign << 31) | (exp << 23) | mantissa;
7969}
5fc177c8 7970#endif /* BFD_HOST_64_BIT */
ba592044 7971
8335d6aa
JW
7972enum lit_type
7973{
7974 CONST_THUMB,
7975 CONST_ARM,
7976 CONST_VEC
7977};
7978
ba592044
AM
7979static void do_vfp_nsyn_opcode (const char *);
7980
e2b0ab59 7981/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
7982 Determine whether it can be performed with a move instruction; if
7983 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7984 return TRUE; if it can't, convert inst.instruction to a literal-pool
7985 load and return FALSE. If this is not a valid thing to do in the
7986 current context, set inst.error and return TRUE.
a737bd4d 7987
c19d1205
ZW
7988 inst.operands[i] describes the destination register. */
7989
c921be7d 7990static bfd_boolean
8335d6aa 7991move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 7992{
53365c0d 7993 unsigned long tbit;
8335d6aa
JW
7994 bfd_boolean thumb_p = (t == CONST_THUMB);
7995 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
7996
7997 if (thumb_p)
7998 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7999 else
8000 tbit = LOAD_BIT;
8001
8002 if ((inst.instruction & tbit) == 0)
09d92015 8003 {
c19d1205 8004 inst.error = _("invalid pseudo operation");
c921be7d 8005 return TRUE;
09d92015 8006 }
ba592044 8007
e2b0ab59
AV
8008 if (inst.relocs[0].exp.X_op != O_constant
8009 && inst.relocs[0].exp.X_op != O_symbol
8010 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8011 {
8012 inst.error = _("constant expression expected");
c921be7d 8013 return TRUE;
09d92015 8014 }
ba592044 8015
e2b0ab59
AV
8016 if (inst.relocs[0].exp.X_op == O_constant
8017 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8018 {
5fc177c8
NC
8019#if defined BFD_HOST_64_BIT
8020 bfd_int64_t v;
8021#else
ba592044 8022 offsetT v;
5fc177c8 8023#endif
e2b0ab59 8024 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8025 {
ba592044
AM
8026 LITTLENUM_TYPE w[X_PRECISION];
8027 LITTLENUM_TYPE * l;
8028
e2b0ab59 8029 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8030 {
ba592044
AM
8031 gen_to_words (w, X_PRECISION, E_PRECISION);
8032 l = w;
8033 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8034 }
ba592044
AM
8035 else
8036 l = generic_bignum;
3739860c 8037
5fc177c8
NC
8038#if defined BFD_HOST_64_BIT
8039 v =
8040 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8041 << LITTLENUM_NUMBER_OF_BITS)
8042 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8043 << LITTLENUM_NUMBER_OF_BITS)
8044 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8045 << LITTLENUM_NUMBER_OF_BITS)
8046 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8047#else
ba592044
AM
8048 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8049 | (l[0] & LITTLENUM_MASK);
5fc177c8 8050#endif
8335d6aa 8051 }
ba592044 8052 else
e2b0ab59 8053 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8054
8055 if (!inst.operands[i].issingle)
8335d6aa 8056 {
12569877 8057 if (thumb_p)
8335d6aa 8058 {
53445554
TP
8059 /* LDR should not use lead in a flag-setting instruction being
8060 chosen so we do not check whether movs can be used. */
12569877 8061
53445554 8062 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8063 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8064 && inst.operands[i].reg != 13
8065 && inst.operands[i].reg != 15)
12569877 8066 {
fc289b0a
TP
8067 /* Check if on thumb2 it can be done with a mov.w, mvn or
8068 movw instruction. */
12569877
AM
8069 unsigned int newimm;
8070 bfd_boolean isNegated;
8071
8072 newimm = encode_thumb32_immediate (v);
8073 if (newimm != (unsigned int) FAIL)
8074 isNegated = FALSE;
8075 else
8076 {
582cfe03 8077 newimm = encode_thumb32_immediate (~v);
12569877
AM
8078 if (newimm != (unsigned int) FAIL)
8079 isNegated = TRUE;
8080 }
8081
fc289b0a
TP
8082 /* The number can be loaded with a mov.w or mvn
8083 instruction. */
ff8646ee
TP
8084 if (newimm != (unsigned int) FAIL
8085 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8086 {
fc289b0a 8087 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8088 | (inst.operands[i].reg << 8));
fc289b0a 8089 /* Change to MOVN. */
582cfe03 8090 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8091 inst.instruction |= (newimm & 0x800) << 15;
8092 inst.instruction |= (newimm & 0x700) << 4;
8093 inst.instruction |= (newimm & 0x0ff);
8094 return TRUE;
8095 }
fc289b0a 8096 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8097 else if ((v & ~0xFFFF) == 0
8098 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8099 {
582cfe03 8100 int imm = v & 0xFFFF;
12569877 8101
582cfe03 8102 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8103 inst.instruction |= (inst.operands[i].reg << 8);
8104 inst.instruction |= (imm & 0xf000) << 4;
8105 inst.instruction |= (imm & 0x0800) << 15;
8106 inst.instruction |= (imm & 0x0700) << 4;
8107 inst.instruction |= (imm & 0x00ff);
8108 return TRUE;
8109 }
8110 }
8335d6aa 8111 }
12569877 8112 else if (arm_p)
ba592044
AM
8113 {
8114 int value = encode_arm_immediate (v);
12569877 8115
ba592044
AM
8116 if (value != FAIL)
8117 {
8118 /* This can be done with a mov instruction. */
8119 inst.instruction &= LITERAL_MASK;
8120 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8121 inst.instruction |= value & 0xfff;
8122 return TRUE;
8123 }
8335d6aa 8124
ba592044
AM
8125 value = encode_arm_immediate (~ v);
8126 if (value != FAIL)
8127 {
8128 /* This can be done with a mvn instruction. */
8129 inst.instruction &= LITERAL_MASK;
8130 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8131 inst.instruction |= value & 0xfff;
8132 return TRUE;
8133 }
8134 }
934c2632 8135 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8136 {
ba592044
AM
8137 int op = 0;
8138 unsigned immbits = 0;
8139 unsigned immlo = inst.operands[1].imm;
8140 unsigned immhi = inst.operands[1].regisimm
8141 ? inst.operands[1].reg
e2b0ab59 8142 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8143 ? 0
8144 : ((bfd_int64_t)((int) immlo)) >> 32;
8145 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8146 &op, 64, NT_invtype);
8147
8148 if (cmode == FAIL)
8149 {
8150 neon_invert_size (&immlo, &immhi, 64);
8151 op = !op;
8152 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8153 &op, 64, NT_invtype);
8154 }
8155
8156 if (cmode != FAIL)
8157 {
8158 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8159 | (1 << 23)
8160 | (cmode << 8)
8161 | (op << 5)
8162 | (1 << 4);
8163
8164 /* Fill other bits in vmov encoding for both thumb and arm. */
8165 if (thumb_mode)
eff0bc54 8166 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8167 else
eff0bc54 8168 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8169 neon_write_immbits (immbits);
8170 return TRUE;
8171 }
8335d6aa
JW
8172 }
8173 }
8335d6aa 8174
ba592044
AM
8175 if (t == CONST_VEC)
8176 {
8177 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8178 if (inst.operands[i].issingle
8179 && is_quarter_float (inst.operands[1].imm)
8180 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8181 {
ba592044
AM
8182 inst.operands[1].imm =
8183 neon_qfloat_bits (v);
8184 do_vfp_nsyn_opcode ("fconsts");
8185 return TRUE;
8335d6aa 8186 }
5fc177c8
NC
8187
8188 /* If our host does not support a 64-bit type then we cannot perform
8189 the following optimization. This mean that there will be a
8190 discrepancy between the output produced by an assembler built for
8191 a 32-bit-only host and the output produced from a 64-bit host, but
8192 this cannot be helped. */
8193#if defined BFD_HOST_64_BIT
ba592044
AM
8194 else if (!inst.operands[1].issingle
8195 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8196 {
ba592044
AM
8197 if (is_double_a_single (v)
8198 && is_quarter_float (double_to_single (v)))
8199 {
8200 inst.operands[1].imm =
8201 neon_qfloat_bits (double_to_single (v));
8202 do_vfp_nsyn_opcode ("fconstd");
8203 return TRUE;
8204 }
8335d6aa 8205 }
5fc177c8 8206#endif
8335d6aa
JW
8207 }
8208 }
8209
8210 if (add_to_lit_pool ((!inst.operands[i].isvec
8211 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8212 return TRUE;
8213
8214 inst.operands[1].reg = REG_PC;
8215 inst.operands[1].isreg = 1;
8216 inst.operands[1].preind = 1;
e2b0ab59
AV
8217 inst.relocs[0].pc_rel = 1;
8218 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8219 ? BFD_RELOC_ARM_THUMB_OFFSET
8220 : (mode_3
8221 ? BFD_RELOC_ARM_HWLITERAL
8222 : BFD_RELOC_ARM_LITERAL));
8223 return FALSE;
8224}
8225
8226/* inst.operands[i] was set up by parse_address. Encode it into an
8227 ARM-format instruction. Reject all forms which cannot be encoded
8228 into a coprocessor load/store instruction. If wb_ok is false,
8229 reject use of writeback; if unind_ok is false, reject use of
8230 unindexed addressing. If reloc_override is not 0, use it instead
8231 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8232 (in which case it is preserved). */
8233
8234static int
8235encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8236{
8237 if (!inst.operands[i].isreg)
8238 {
99b2a2dd
NC
8239 /* PR 18256 */
8240 if (! inst.operands[0].isvec)
8241 {
8242 inst.error = _("invalid co-processor operand");
8243 return FAIL;
8244 }
8335d6aa
JW
8245 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8246 return SUCCESS;
8247 }
8248
8249 inst.instruction |= inst.operands[i].reg << 16;
8250
8251 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8252
8253 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8254 {
8255 gas_assert (!inst.operands[i].writeback);
8256 if (!unind_ok)
8257 {
8258 inst.error = _("instruction does not support unindexed addressing");
8259 return FAIL;
8260 }
8261 inst.instruction |= inst.operands[i].imm;
8262 inst.instruction |= INDEX_UP;
8263 return SUCCESS;
8264 }
8265
8266 if (inst.operands[i].preind)
8267 inst.instruction |= PRE_INDEX;
8268
8269 if (inst.operands[i].writeback)
09d92015 8270 {
8335d6aa 8271 if (inst.operands[i].reg == REG_PC)
c19d1205 8272 {
8335d6aa
JW
8273 inst.error = _("pc may not be used with write-back");
8274 return FAIL;
c19d1205 8275 }
8335d6aa 8276 if (!wb_ok)
c19d1205 8277 {
8335d6aa
JW
8278 inst.error = _("instruction does not support writeback");
8279 return FAIL;
c19d1205 8280 }
8335d6aa 8281 inst.instruction |= WRITE_BACK;
09d92015
MM
8282 }
8283
8335d6aa 8284 if (reloc_override)
e2b0ab59
AV
8285 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8286 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8287 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8288 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8289 {
8335d6aa 8290 if (thumb_mode)
e2b0ab59 8291 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8292 else
e2b0ab59 8293 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8294 }
8335d6aa
JW
8295
8296 /* Prefer + for zero encoded value. */
8297 if (!inst.operands[i].negative)
8298 inst.instruction |= INDEX_UP;
8299
8300 return SUCCESS;
09d92015
MM
8301}
8302
5f4273c7 8303/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8304 First some generics; their names are taken from the conventional
8305 bit positions for register arguments in ARM format instructions. */
09d92015 8306
a737bd4d 8307static void
c19d1205 8308do_noargs (void)
09d92015 8309{
c19d1205 8310}
a737bd4d 8311
c19d1205
ZW
8312static void
8313do_rd (void)
8314{
8315 inst.instruction |= inst.operands[0].reg << 12;
8316}
a737bd4d 8317
16a1fa25
TP
8318static void
8319do_rn (void)
8320{
8321 inst.instruction |= inst.operands[0].reg << 16;
8322}
8323
c19d1205
ZW
8324static void
8325do_rd_rm (void)
8326{
8327 inst.instruction |= inst.operands[0].reg << 12;
8328 inst.instruction |= inst.operands[1].reg;
8329}
09d92015 8330
9eb6c0f1
MGD
8331static void
8332do_rm_rn (void)
8333{
8334 inst.instruction |= inst.operands[0].reg;
8335 inst.instruction |= inst.operands[1].reg << 16;
8336}
8337
c19d1205
ZW
8338static void
8339do_rd_rn (void)
8340{
8341 inst.instruction |= inst.operands[0].reg << 12;
8342 inst.instruction |= inst.operands[1].reg << 16;
8343}
a737bd4d 8344
c19d1205
ZW
8345static void
8346do_rn_rd (void)
8347{
8348 inst.instruction |= inst.operands[0].reg << 16;
8349 inst.instruction |= inst.operands[1].reg << 12;
8350}
09d92015 8351
4ed7ed8d
TP
8352static void
8353do_tt (void)
8354{
8355 inst.instruction |= inst.operands[0].reg << 8;
8356 inst.instruction |= inst.operands[1].reg << 16;
8357}
8358
59d09be6
MGD
8359static bfd_boolean
8360check_obsolete (const arm_feature_set *feature, const char *msg)
8361{
8362 if (ARM_CPU_IS_ANY (cpu_variant))
8363 {
5c3696f8 8364 as_tsktsk ("%s", msg);
59d09be6
MGD
8365 return TRUE;
8366 }
8367 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8368 {
8369 as_bad ("%s", msg);
8370 return TRUE;
8371 }
8372
8373 return FALSE;
8374}
8375
c19d1205
ZW
8376static void
8377do_rd_rm_rn (void)
8378{
9a64e435 8379 unsigned Rn = inst.operands[2].reg;
708587a4 8380 /* Enforce restrictions on SWP instruction. */
9a64e435 8381 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8382 {
8383 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8384 _("Rn must not overlap other operands"));
8385
59d09be6
MGD
8386 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8387 */
8388 if (!check_obsolete (&arm_ext_v8,
8389 _("swp{b} use is obsoleted for ARMv8 and later"))
8390 && warn_on_deprecated
8391 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8392 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8393 }
59d09be6 8394
c19d1205
ZW
8395 inst.instruction |= inst.operands[0].reg << 12;
8396 inst.instruction |= inst.operands[1].reg;
9a64e435 8397 inst.instruction |= Rn << 16;
c19d1205 8398}
09d92015 8399
c19d1205
ZW
8400static void
8401do_rd_rn_rm (void)
8402{
8403 inst.instruction |= inst.operands[0].reg << 12;
8404 inst.instruction |= inst.operands[1].reg << 16;
8405 inst.instruction |= inst.operands[2].reg;
8406}
a737bd4d 8407
c19d1205
ZW
8408static void
8409do_rm_rd_rn (void)
8410{
5be8be5d 8411 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8412 constraint (((inst.relocs[0].exp.X_op != O_constant
8413 && inst.relocs[0].exp.X_op != O_illegal)
8414 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8415 BAD_ADDR_MODE);
c19d1205
ZW
8416 inst.instruction |= inst.operands[0].reg;
8417 inst.instruction |= inst.operands[1].reg << 12;
8418 inst.instruction |= inst.operands[2].reg << 16;
8419}
09d92015 8420
c19d1205
ZW
8421static void
8422do_imm0 (void)
8423{
8424 inst.instruction |= inst.operands[0].imm;
8425}
09d92015 8426
c19d1205
ZW
8427static void
8428do_rd_cpaddr (void)
8429{
8430 inst.instruction |= inst.operands[0].reg << 12;
8431 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8432}
a737bd4d 8433
c19d1205
ZW
8434/* ARM instructions, in alphabetical order by function name (except
8435 that wrapper functions appear immediately after the function they
8436 wrap). */
09d92015 8437
c19d1205
ZW
8438/* This is a pseudo-op of the form "adr rd, label" to be converted
8439 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
8440
8441static void
c19d1205 8442do_adr (void)
09d92015 8443{
c19d1205 8444 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8445
c19d1205
ZW
8446 /* Frag hacking will turn this into a sub instruction if the offset turns
8447 out to be negative. */
e2b0ab59
AV
8448 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
8449 inst.relocs[0].pc_rel = 1;
8450 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 8451
fc6141f0 8452 if (support_interwork
e2b0ab59
AV
8453 && inst.relocs[0].exp.X_op == O_symbol
8454 && inst.relocs[0].exp.X_add_symbol != NULL
8455 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
8456 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
8457 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 8458}
b99bd4ef 8459
c19d1205
ZW
8460/* This is a pseudo-op of the form "adrl rd, label" to be converted
8461 into a relative address of the form:
8462 add rd, pc, #low(label-.-8)"
8463 add rd, rd, #high(label-.-8)" */
b99bd4ef 8464
c19d1205
ZW
8465static void
8466do_adrl (void)
8467{
8468 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8469
c19d1205
ZW
8470 /* Frag hacking will turn this into a sub instruction if the offset turns
8471 out to be negative. */
e2b0ab59
AV
8472 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8473 inst.relocs[0].pc_rel = 1;
c19d1205 8474 inst.size = INSN_SIZE * 2;
e2b0ab59 8475 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 8476
fc6141f0 8477 if (support_interwork
e2b0ab59
AV
8478 && inst.relocs[0].exp.X_op == O_symbol
8479 && inst.relocs[0].exp.X_add_symbol != NULL
8480 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
8481 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
8482 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
8483}
8484
b99bd4ef 8485static void
c19d1205 8486do_arit (void)
b99bd4ef 8487{
e2b0ab59
AV
8488 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8489 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 8490 THUMB1_RELOC_ONLY);
c19d1205
ZW
8491 if (!inst.operands[1].present)
8492 inst.operands[1].reg = inst.operands[0].reg;
8493 inst.instruction |= inst.operands[0].reg << 12;
8494 inst.instruction |= inst.operands[1].reg << 16;
8495 encode_arm_shifter_operand (2);
8496}
b99bd4ef 8497
62b3e311
PB
8498static void
8499do_barrier (void)
8500{
8501 if (inst.operands[0].present)
ccb84d65 8502 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
8503 else
8504 inst.instruction |= 0xf;
8505}
8506
c19d1205
ZW
8507static void
8508do_bfc (void)
8509{
8510 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8511 constraint (msb > 32, _("bit-field extends past end of register"));
8512 /* The instruction encoding stores the LSB and MSB,
8513 not the LSB and width. */
8514 inst.instruction |= inst.operands[0].reg << 12;
8515 inst.instruction |= inst.operands[1].imm << 7;
8516 inst.instruction |= (msb - 1) << 16;
8517}
b99bd4ef 8518
c19d1205
ZW
8519static void
8520do_bfi (void)
8521{
8522 unsigned int msb;
b99bd4ef 8523
c19d1205
ZW
8524 /* #0 in second position is alternative syntax for bfc, which is
8525 the same instruction but with REG_PC in the Rm field. */
8526 if (!inst.operands[1].isreg)
8527 inst.operands[1].reg = REG_PC;
b99bd4ef 8528
c19d1205
ZW
8529 msb = inst.operands[2].imm + inst.operands[3].imm;
8530 constraint (msb > 32, _("bit-field extends past end of register"));
8531 /* The instruction encoding stores the LSB and MSB,
8532 not the LSB and width. */
8533 inst.instruction |= inst.operands[0].reg << 12;
8534 inst.instruction |= inst.operands[1].reg;
8535 inst.instruction |= inst.operands[2].imm << 7;
8536 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
8537}
8538
b99bd4ef 8539static void
c19d1205 8540do_bfx (void)
b99bd4ef 8541{
c19d1205
ZW
8542 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8543 _("bit-field extends past end of register"));
8544 inst.instruction |= inst.operands[0].reg << 12;
8545 inst.instruction |= inst.operands[1].reg;
8546 inst.instruction |= inst.operands[2].imm << 7;
8547 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8548}
09d92015 8549
c19d1205
ZW
8550/* ARM V5 breakpoint instruction (argument parse)
8551 BKPT <16 bit unsigned immediate>
8552 Instruction is not conditional.
8553 The bit pattern given in insns[] has the COND_ALWAYS condition,
8554 and it is an error if the caller tried to override that. */
b99bd4ef 8555
c19d1205
ZW
8556static void
8557do_bkpt (void)
8558{
8559 /* Top 12 of 16 bits to bits 19:8. */
8560 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 8561
c19d1205
ZW
8562 /* Bottom 4 of 16 bits to bits 3:0. */
8563 inst.instruction |= inst.operands[0].imm & 0xf;
8564}
09d92015 8565
c19d1205
ZW
8566static void
8567encode_branch (int default_reloc)
8568{
8569 if (inst.operands[0].hasreloc)
8570 {
0855e32b
NS
8571 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8572 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8573 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 8574 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
8575 ? BFD_RELOC_ARM_PLT32
8576 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 8577 }
b99bd4ef 8578 else
e2b0ab59
AV
8579 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
8580 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
8581}
8582
b99bd4ef 8583static void
c19d1205 8584do_branch (void)
b99bd4ef 8585{
39b41c9c
PB
8586#ifdef OBJ_ELF
8587 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8588 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8589 else
8590#endif
8591 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8592}
8593
8594static void
8595do_bl (void)
8596{
8597#ifdef OBJ_ELF
8598 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8599 {
8600 if (inst.cond == COND_ALWAYS)
8601 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8602 else
8603 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8604 }
8605 else
8606#endif
8607 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 8608}
b99bd4ef 8609
c19d1205
ZW
8610/* ARM V5 branch-link-exchange instruction (argument parse)
8611 BLX <target_addr> ie BLX(1)
8612 BLX{<condition>} <Rm> ie BLX(2)
8613 Unfortunately, there are two different opcodes for this mnemonic.
8614 So, the insns[].value is not used, and the code here zaps values
8615 into inst.instruction.
8616 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 8617
c19d1205
ZW
8618static void
8619do_blx (void)
8620{
8621 if (inst.operands[0].isreg)
b99bd4ef 8622 {
c19d1205
ZW
8623 /* Arg is a register; the opcode provided by insns[] is correct.
8624 It is not illegal to do "blx pc", just useless. */
8625 if (inst.operands[0].reg == REG_PC)
8626 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 8627
c19d1205
ZW
8628 inst.instruction |= inst.operands[0].reg;
8629 }
8630 else
b99bd4ef 8631 {
c19d1205 8632 /* Arg is an address; this instruction cannot be executed
267bf995
RR
8633 conditionally, and the opcode must be adjusted.
8634 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8635 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 8636 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 8637 inst.instruction = 0xfa000000;
267bf995 8638 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 8639 }
c19d1205
ZW
8640}
8641
8642static void
8643do_bx (void)
8644{
845b51d6
PB
8645 bfd_boolean want_reloc;
8646
c19d1205
ZW
8647 if (inst.operands[0].reg == REG_PC)
8648 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 8649
c19d1205 8650 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
8651 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8652 it is for ARMv4t or earlier. */
8653 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
8654 if (!ARM_FEATURE_ZERO (selected_object_arch)
8655 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
8656 want_reloc = TRUE;
8657
5ad34203 8658#ifdef OBJ_ELF
845b51d6 8659 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 8660#endif
584206db 8661 want_reloc = FALSE;
845b51d6
PB
8662
8663 if (want_reloc)
e2b0ab59 8664 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
8665}
8666
c19d1205
ZW
8667
8668/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
8669
8670static void
c19d1205 8671do_bxj (void)
a737bd4d 8672{
c19d1205
ZW
8673 if (inst.operands[0].reg == REG_PC)
8674 as_tsktsk (_("use of r15 in bxj is not really useful"));
8675
8676 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
8677}
8678
c19d1205
ZW
8679/* Co-processor data operation:
8680 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8681 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8682static void
8683do_cdp (void)
8684{
8685 inst.instruction |= inst.operands[0].reg << 8;
8686 inst.instruction |= inst.operands[1].imm << 20;
8687 inst.instruction |= inst.operands[2].reg << 12;
8688 inst.instruction |= inst.operands[3].reg << 16;
8689 inst.instruction |= inst.operands[4].reg;
8690 inst.instruction |= inst.operands[5].imm << 5;
8691}
a737bd4d
NC
8692
8693static void
c19d1205 8694do_cmp (void)
a737bd4d 8695{
c19d1205
ZW
8696 inst.instruction |= inst.operands[0].reg << 16;
8697 encode_arm_shifter_operand (1);
a737bd4d
NC
8698}
8699
c19d1205
ZW
8700/* Transfer between coprocessor and ARM registers.
8701 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8702 MRC2
8703 MCR{cond}
8704 MCR2
8705
8706 No special properties. */
09d92015 8707
dcbd0d71
MGD
8708struct deprecated_coproc_regs_s
8709{
8710 unsigned cp;
8711 int opc1;
8712 unsigned crn;
8713 unsigned crm;
8714 int opc2;
8715 arm_feature_set deprecated;
8716 arm_feature_set obsoleted;
8717 const char *dep_msg;
8718 const char *obs_msg;
8719};
8720
8721#define DEPR_ACCESS_V8 \
8722 N_("This coprocessor register access is deprecated in ARMv8")
8723
8724/* Table of all deprecated coprocessor registers. */
8725static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8726{
8727 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 8728 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8729 DEPR_ACCESS_V8, NULL},
8730 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 8731 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8732 DEPR_ACCESS_V8, NULL},
8733 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 8734 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8735 DEPR_ACCESS_V8, NULL},
8736 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 8737 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8738 DEPR_ACCESS_V8, NULL},
8739 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 8740 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8741 DEPR_ACCESS_V8, NULL},
8742};
8743
8744#undef DEPR_ACCESS_V8
8745
8746static const size_t deprecated_coproc_reg_count =
8747 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8748
09d92015 8749static void
c19d1205 8750do_co_reg (void)
09d92015 8751{
fdfde340 8752 unsigned Rd;
dcbd0d71 8753 size_t i;
fdfde340
JM
8754
8755 Rd = inst.operands[2].reg;
8756 if (thumb_mode)
8757 {
8758 if (inst.instruction == 0xee000010
8759 || inst.instruction == 0xfe000010)
8760 /* MCR, MCR2 */
8761 reject_bad_reg (Rd);
5c8ed6a4 8762 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
8763 /* MRC, MRC2 */
8764 constraint (Rd == REG_SP, BAD_SP);
8765 }
8766 else
8767 {
8768 /* MCR */
8769 if (inst.instruction == 0xe000010)
8770 constraint (Rd == REG_PC, BAD_PC);
8771 }
8772
dcbd0d71
MGD
8773 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8774 {
8775 const struct deprecated_coproc_regs_s *r =
8776 deprecated_coproc_regs + i;
8777
8778 if (inst.operands[0].reg == r->cp
8779 && inst.operands[1].imm == r->opc1
8780 && inst.operands[3].reg == r->crn
8781 && inst.operands[4].reg == r->crm
8782 && inst.operands[5].imm == r->opc2)
8783 {
b10bf8c5 8784 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 8785 && warn_on_deprecated
dcbd0d71 8786 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 8787 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
8788 }
8789 }
fdfde340 8790
c19d1205
ZW
8791 inst.instruction |= inst.operands[0].reg << 8;
8792 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 8793 inst.instruction |= Rd << 12;
c19d1205
ZW
8794 inst.instruction |= inst.operands[3].reg << 16;
8795 inst.instruction |= inst.operands[4].reg;
8796 inst.instruction |= inst.operands[5].imm << 5;
8797}
09d92015 8798
c19d1205
ZW
8799/* Transfer between coprocessor register and pair of ARM registers.
8800 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8801 MCRR2
8802 MRRC{cond}
8803 MRRC2
b99bd4ef 8804
c19d1205 8805 Two XScale instructions are special cases of these:
09d92015 8806
c19d1205
ZW
8807 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8808 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 8809
5f4273c7 8810 Result unpredictable if Rd or Rn is R15. */
a737bd4d 8811
c19d1205
ZW
8812static void
8813do_co_reg2c (void)
8814{
fdfde340
JM
8815 unsigned Rd, Rn;
8816
8817 Rd = inst.operands[2].reg;
8818 Rn = inst.operands[3].reg;
8819
8820 if (thumb_mode)
8821 {
8822 reject_bad_reg (Rd);
8823 reject_bad_reg (Rn);
8824 }
8825 else
8826 {
8827 constraint (Rd == REG_PC, BAD_PC);
8828 constraint (Rn == REG_PC, BAD_PC);
8829 }
8830
873f10f0
TC
8831 /* Only check the MRRC{2} variants. */
8832 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
8833 {
8834 /* If Rd == Rn, error that the operation is
8835 unpredictable (example MRRC p3,#1,r1,r1,c4). */
8836 constraint (Rd == Rn, BAD_OVERLAP);
8837 }
8838
c19d1205
ZW
8839 inst.instruction |= inst.operands[0].reg << 8;
8840 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
8841 inst.instruction |= Rd << 12;
8842 inst.instruction |= Rn << 16;
c19d1205 8843 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
8844}
8845
c19d1205
ZW
8846static void
8847do_cpsi (void)
8848{
8849 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
8850 if (inst.operands[1].present)
8851 {
8852 inst.instruction |= CPSI_MMOD;
8853 inst.instruction |= inst.operands[1].imm;
8854 }
c19d1205 8855}
b99bd4ef 8856
62b3e311
PB
8857static void
8858do_dbg (void)
8859{
8860 inst.instruction |= inst.operands[0].imm;
8861}
8862
eea54501
MGD
8863static void
8864do_div (void)
8865{
8866 unsigned Rd, Rn, Rm;
8867
8868 Rd = inst.operands[0].reg;
8869 Rn = (inst.operands[1].present
8870 ? inst.operands[1].reg : Rd);
8871 Rm = inst.operands[2].reg;
8872
8873 constraint ((Rd == REG_PC), BAD_PC);
8874 constraint ((Rn == REG_PC), BAD_PC);
8875 constraint ((Rm == REG_PC), BAD_PC);
8876
8877 inst.instruction |= Rd << 16;
8878 inst.instruction |= Rn << 0;
8879 inst.instruction |= Rm << 8;
8880}
8881
b99bd4ef 8882static void
c19d1205 8883do_it (void)
b99bd4ef 8884{
c19d1205 8885 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
8886 process it to do the validation as if in
8887 thumb mode, just in case the code gets
8888 assembled for thumb using the unified syntax. */
8889
c19d1205 8890 inst.size = 0;
e07e6e58
NC
8891 if (unified_syntax)
8892 {
8893 set_it_insn_type (IT_INSN);
8894 now_it.mask = (inst.instruction & 0xf) | 0x10;
8895 now_it.cc = inst.operands[0].imm;
8896 }
09d92015 8897}
b99bd4ef 8898
6530b175
NC
8899/* If there is only one register in the register list,
8900 then return its register number. Otherwise return -1. */
8901static int
8902only_one_reg_in_list (int range)
8903{
8904 int i = ffs (range) - 1;
8905 return (i > 15 || range != (1 << i)) ? -1 : i;
8906}
8907
09d92015 8908static void
6530b175 8909encode_ldmstm(int from_push_pop_mnem)
ea6ef066 8910{
c19d1205
ZW
8911 int base_reg = inst.operands[0].reg;
8912 int range = inst.operands[1].imm;
6530b175 8913 int one_reg;
ea6ef066 8914
c19d1205
ZW
8915 inst.instruction |= base_reg << 16;
8916 inst.instruction |= range;
ea6ef066 8917
c19d1205
ZW
8918 if (inst.operands[1].writeback)
8919 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 8920
c19d1205 8921 if (inst.operands[0].writeback)
ea6ef066 8922 {
c19d1205
ZW
8923 inst.instruction |= WRITE_BACK;
8924 /* Check for unpredictable uses of writeback. */
8925 if (inst.instruction & LOAD_BIT)
09d92015 8926 {
c19d1205
ZW
8927 /* Not allowed in LDM type 2. */
8928 if ((inst.instruction & LDM_TYPE_2_OR_3)
8929 && ((range & (1 << REG_PC)) == 0))
8930 as_warn (_("writeback of base register is UNPREDICTABLE"));
8931 /* Only allowed if base reg not in list for other types. */
8932 else if (range & (1 << base_reg))
8933 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8934 }
8935 else /* STM. */
8936 {
8937 /* Not allowed for type 2. */
8938 if (inst.instruction & LDM_TYPE_2_OR_3)
8939 as_warn (_("writeback of base register is UNPREDICTABLE"));
8940 /* Only allowed if base reg not in list, or first in list. */
8941 else if ((range & (1 << base_reg))
8942 && (range & ((1 << base_reg) - 1)))
8943 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 8944 }
ea6ef066 8945 }
6530b175
NC
8946
8947 /* If PUSH/POP has only one register, then use the A2 encoding. */
8948 one_reg = only_one_reg_in_list (range);
8949 if (from_push_pop_mnem && one_reg >= 0)
8950 {
8951 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8952
4f588891
NC
8953 if (is_push && one_reg == 13 /* SP */)
8954 /* PR 22483: The A2 encoding cannot be used when
8955 pushing the stack pointer as this is UNPREDICTABLE. */
8956 return;
8957
6530b175
NC
8958 inst.instruction &= A_COND_MASK;
8959 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8960 inst.instruction |= one_reg << 12;
8961 }
8962}
8963
8964static void
8965do_ldmstm (void)
8966{
8967 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
8968}
8969
c19d1205
ZW
8970/* ARMv5TE load-consecutive (argument parse)
8971 Mode is like LDRH.
8972
8973 LDRccD R, mode
8974 STRccD R, mode. */
8975
a737bd4d 8976static void
c19d1205 8977do_ldrd (void)
a737bd4d 8978{
c19d1205 8979 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 8980 _("first transfer register must be even"));
c19d1205
ZW
8981 constraint (inst.operands[1].present
8982 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 8983 _("can only transfer two consecutive registers"));
c19d1205
ZW
8984 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8985 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 8986
c19d1205
ZW
8987 if (!inst.operands[1].present)
8988 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 8989
c56791bb
RE
8990 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8991 register and the first register written; we have to diagnose
8992 overlap between the base and the second register written here. */
ea6ef066 8993
c56791bb
RE
8994 if (inst.operands[2].reg == inst.operands[1].reg
8995 && (inst.operands[2].writeback || inst.operands[2].postind))
8996 as_warn (_("base register written back, and overlaps "
8997 "second transfer register"));
b05fe5cf 8998
c56791bb
RE
8999 if (!(inst.instruction & V4_STR_BIT))
9000 {
c19d1205 9001 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9002 destination (even if not write-back). */
9003 if (inst.operands[2].immisreg
9004 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9005 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9006 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9007 }
c19d1205
ZW
9008 inst.instruction |= inst.operands[0].reg << 12;
9009 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9010}
9011
9012static void
c19d1205 9013do_ldrex (void)
b05fe5cf 9014{
c19d1205
ZW
9015 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9016 || inst.operands[1].postind || inst.operands[1].writeback
9017 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9018 || inst.operands[1].negative
9019 /* This can arise if the programmer has written
9020 strex rN, rM, foo
9021 or if they have mistakenly used a register name as the last
9022 operand, eg:
9023 strex rN, rM, rX
9024 It is very difficult to distinguish between these two cases
9025 because "rX" might actually be a label. ie the register
9026 name has been occluded by a symbol of the same name. So we
9027 just generate a general 'bad addressing mode' type error
9028 message and leave it up to the programmer to discover the
9029 true cause and fix their mistake. */
9030 || (inst.operands[1].reg == REG_PC),
9031 BAD_ADDR_MODE);
b05fe5cf 9032
e2b0ab59
AV
9033 constraint (inst.relocs[0].exp.X_op != O_constant
9034 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9035 _("offset must be zero in ARM encoding"));
b05fe5cf 9036
5be8be5d
DG
9037 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9038
c19d1205
ZW
9039 inst.instruction |= inst.operands[0].reg << 12;
9040 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9041 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9042}
9043
9044static void
c19d1205 9045do_ldrexd (void)
b05fe5cf 9046{
c19d1205
ZW
9047 constraint (inst.operands[0].reg % 2 != 0,
9048 _("even register required"));
9049 constraint (inst.operands[1].present
9050 && inst.operands[1].reg != inst.operands[0].reg + 1,
9051 _("can only load two consecutive registers"));
9052 /* If op 1 were present and equal to PC, this function wouldn't
9053 have been called in the first place. */
9054 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9055
c19d1205
ZW
9056 inst.instruction |= inst.operands[0].reg << 12;
9057 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9058}
9059
1be5fd2e
NC
9060/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9061 which is not a multiple of four is UNPREDICTABLE. */
9062static void
9063check_ldr_r15_aligned (void)
9064{
9065 constraint (!(inst.operands[1].immisreg)
9066 && (inst.operands[0].reg == REG_PC
9067 && inst.operands[1].reg == REG_PC
e2b0ab59 9068 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9069 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9070}
9071
b05fe5cf 9072static void
c19d1205 9073do_ldst (void)
b05fe5cf 9074{
c19d1205
ZW
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 if (!inst.operands[1].isreg)
8335d6aa 9077 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9078 return;
c19d1205 9079 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9080 check_ldr_r15_aligned ();
b05fe5cf
ZW
9081}
9082
9083static void
c19d1205 9084do_ldstt (void)
b05fe5cf 9085{
c19d1205
ZW
9086 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9087 reject [Rn,...]. */
9088 if (inst.operands[1].preind)
b05fe5cf 9089 {
e2b0ab59
AV
9090 constraint (inst.relocs[0].exp.X_op != O_constant
9091 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9092 _("this instruction requires a post-indexed address"));
b05fe5cf 9093
c19d1205
ZW
9094 inst.operands[1].preind = 0;
9095 inst.operands[1].postind = 1;
9096 inst.operands[1].writeback = 1;
b05fe5cf 9097 }
c19d1205
ZW
9098 inst.instruction |= inst.operands[0].reg << 12;
9099 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9100}
b05fe5cf 9101
c19d1205 9102/* Halfword and signed-byte load/store operations. */
b05fe5cf 9103
c19d1205
ZW
9104static void
9105do_ldstv4 (void)
9106{
ff4a8d2b 9107 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9108 inst.instruction |= inst.operands[0].reg << 12;
9109 if (!inst.operands[1].isreg)
8335d6aa 9110 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9111 return;
c19d1205 9112 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9113}
9114
9115static void
c19d1205 9116do_ldsttv4 (void)
b05fe5cf 9117{
c19d1205
ZW
9118 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9119 reject [Rn,...]. */
9120 if (inst.operands[1].preind)
b05fe5cf 9121 {
e2b0ab59
AV
9122 constraint (inst.relocs[0].exp.X_op != O_constant
9123 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9124 _("this instruction requires a post-indexed address"));
b05fe5cf 9125
c19d1205
ZW
9126 inst.operands[1].preind = 0;
9127 inst.operands[1].postind = 1;
9128 inst.operands[1].writeback = 1;
b05fe5cf 9129 }
c19d1205
ZW
9130 inst.instruction |= inst.operands[0].reg << 12;
9131 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9132}
b05fe5cf 9133
c19d1205
ZW
9134/* Co-processor register load/store.
9135 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9136static void
9137do_lstc (void)
9138{
9139 inst.instruction |= inst.operands[0].reg << 8;
9140 inst.instruction |= inst.operands[1].reg << 12;
9141 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9142}
9143
b05fe5cf 9144static void
c19d1205 9145do_mlas (void)
b05fe5cf 9146{
8fb9d7b9 9147 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9148 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9149 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9150 && !(inst.instruction & 0x00400000))
8fb9d7b9 9151 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9152
c19d1205
ZW
9153 inst.instruction |= inst.operands[0].reg << 16;
9154 inst.instruction |= inst.operands[1].reg;
9155 inst.instruction |= inst.operands[2].reg << 8;
9156 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9157}
b05fe5cf 9158
c19d1205
ZW
9159static void
9160do_mov (void)
9161{
e2b0ab59
AV
9162 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9163 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9164 THUMB1_RELOC_ONLY);
c19d1205
ZW
9165 inst.instruction |= inst.operands[0].reg << 12;
9166 encode_arm_shifter_operand (1);
9167}
b05fe5cf 9168
c19d1205
ZW
9169/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9170static void
9171do_mov16 (void)
9172{
b6895b4f
PB
9173 bfd_vma imm;
9174 bfd_boolean top;
9175
9176 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9177 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9178 _(":lower16: not allowed in this instruction"));
e2b0ab59 9179 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9180 _(":upper16: not allowed in this instruction"));
c19d1205 9181 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9182 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9183 {
e2b0ab59 9184 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9185 /* The value is in two pieces: 0:11, 16:19. */
9186 inst.instruction |= (imm & 0x00000fff);
9187 inst.instruction |= (imm & 0x0000f000) << 4;
9188 }
b05fe5cf 9189}
b99bd4ef 9190
037e8744
JB
9191static int
9192do_vfp_nsyn_mrs (void)
9193{
9194 if (inst.operands[0].isvec)
9195 {
9196 if (inst.operands[1].reg != 1)
477330fc 9197 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9198 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9199 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9200 do_vfp_nsyn_opcode ("fmstat");
9201 }
9202 else if (inst.operands[1].isvec)
9203 do_vfp_nsyn_opcode ("fmrx");
9204 else
9205 return FAIL;
5f4273c7 9206
037e8744
JB
9207 return SUCCESS;
9208}
9209
9210static int
9211do_vfp_nsyn_msr (void)
9212{
9213 if (inst.operands[0].isvec)
9214 do_vfp_nsyn_opcode ("fmxr");
9215 else
9216 return FAIL;
9217
9218 return SUCCESS;
9219}
9220
f7c21dc7
NC
9221static void
9222do_vmrs (void)
9223{
9224 unsigned Rt = inst.operands[0].reg;
fa94de6b 9225
16d02dc9 9226 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9227 {
9228 inst.error = BAD_SP;
9229 return;
9230 }
9231
40c7d507
RR
9232 /* MVFR2 is only valid at ARMv8-A. */
9233 if (inst.operands[1].reg == 5)
9234 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9235 _(BAD_FPU));
9236
f7c21dc7 9237 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9238 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9239 {
9240 inst.error = BAD_PC;
9241 return;
9242 }
9243
16d02dc9
JB
9244 /* If we get through parsing the register name, we just insert the number
9245 generated into the instruction without further validation. */
9246 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9247 inst.instruction |= (Rt << 12);
9248}
9249
9250static void
9251do_vmsr (void)
9252{
9253 unsigned Rt = inst.operands[1].reg;
fa94de6b 9254
f7c21dc7
NC
9255 if (thumb_mode)
9256 reject_bad_reg (Rt);
9257 else if (Rt == REG_PC)
9258 {
9259 inst.error = BAD_PC;
9260 return;
9261 }
9262
40c7d507
RR
9263 /* MVFR2 is only valid for ARMv8-A. */
9264 if (inst.operands[0].reg == 5)
9265 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9266 _(BAD_FPU));
9267
16d02dc9
JB
9268 /* If we get through parsing the register name, we just insert the number
9269 generated into the instruction without further validation. */
9270 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9271 inst.instruction |= (Rt << 12);
9272}
9273
b99bd4ef 9274static void
c19d1205 9275do_mrs (void)
b99bd4ef 9276{
90ec0d68
MGD
9277 unsigned br;
9278
037e8744
JB
9279 if (do_vfp_nsyn_mrs () == SUCCESS)
9280 return;
9281
ff4a8d2b 9282 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9283 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9284
9285 if (inst.operands[1].isreg)
9286 {
9287 br = inst.operands[1].reg;
806ab1c0 9288 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9289 as_bad (_("bad register for mrs"));
9290 }
9291 else
9292 {
9293 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9294 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9295 != (PSR_c|PSR_f),
d2cd1205 9296 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9297 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9298 }
9299
9300 inst.instruction |= br;
c19d1205 9301}
b99bd4ef 9302
c19d1205
ZW
9303/* Two possible forms:
9304 "{C|S}PSR_<field>, Rm",
9305 "{C|S}PSR_f, #expression". */
b99bd4ef 9306
c19d1205
ZW
9307static void
9308do_msr (void)
9309{
037e8744
JB
9310 if (do_vfp_nsyn_msr () == SUCCESS)
9311 return;
9312
c19d1205
ZW
9313 inst.instruction |= inst.operands[0].imm;
9314 if (inst.operands[1].isreg)
9315 inst.instruction |= inst.operands[1].reg;
9316 else
b99bd4ef 9317 {
c19d1205 9318 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9319 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9320 inst.relocs[0].pc_rel = 0;
b99bd4ef 9321 }
b99bd4ef
NC
9322}
9323
c19d1205
ZW
9324static void
9325do_mul (void)
a737bd4d 9326{
ff4a8d2b
NC
9327 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9328
c19d1205
ZW
9329 if (!inst.operands[2].present)
9330 inst.operands[2].reg = inst.operands[0].reg;
9331 inst.instruction |= inst.operands[0].reg << 16;
9332 inst.instruction |= inst.operands[1].reg;
9333 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9334
8fb9d7b9
MS
9335 if (inst.operands[0].reg == inst.operands[1].reg
9336 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9337 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9338}
9339
c19d1205
ZW
9340/* Long Multiply Parser
9341 UMULL RdLo, RdHi, Rm, Rs
9342 SMULL RdLo, RdHi, Rm, Rs
9343 UMLAL RdLo, RdHi, Rm, Rs
9344 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9345
9346static void
c19d1205 9347do_mull (void)
b99bd4ef 9348{
c19d1205
ZW
9349 inst.instruction |= inst.operands[0].reg << 12;
9350 inst.instruction |= inst.operands[1].reg << 16;
9351 inst.instruction |= inst.operands[2].reg;
9352 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9353
682b27ad
PB
9354 /* rdhi and rdlo must be different. */
9355 if (inst.operands[0].reg == inst.operands[1].reg)
9356 as_tsktsk (_("rdhi and rdlo must be different"));
9357
9358 /* rdhi, rdlo and rm must all be different before armv6. */
9359 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9360 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9361 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9362 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9363}
b99bd4ef 9364
c19d1205
ZW
9365static void
9366do_nop (void)
9367{
e7495e45
NS
9368 if (inst.operands[0].present
9369 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9370 {
9371 /* Architectural NOP hints are CPSR sets with no bits selected. */
9372 inst.instruction &= 0xf0000000;
e7495e45
NS
9373 inst.instruction |= 0x0320f000;
9374 if (inst.operands[0].present)
9375 inst.instruction |= inst.operands[0].imm;
c19d1205 9376 }
b99bd4ef
NC
9377}
9378
c19d1205
ZW
9379/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9380 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9381 Condition defaults to COND_ALWAYS.
9382 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9383
9384static void
c19d1205 9385do_pkhbt (void)
b99bd4ef 9386{
c19d1205
ZW
9387 inst.instruction |= inst.operands[0].reg << 12;
9388 inst.instruction |= inst.operands[1].reg << 16;
9389 inst.instruction |= inst.operands[2].reg;
9390 if (inst.operands[3].present)
9391 encode_arm_shift (3);
9392}
b99bd4ef 9393
c19d1205 9394/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9395
c19d1205
ZW
9396static void
9397do_pkhtb (void)
9398{
9399 if (!inst.operands[3].present)
b99bd4ef 9400 {
c19d1205
ZW
9401 /* If the shift specifier is omitted, turn the instruction
9402 into pkhbt rd, rm, rn. */
9403 inst.instruction &= 0xfff00010;
9404 inst.instruction |= inst.operands[0].reg << 12;
9405 inst.instruction |= inst.operands[1].reg;
9406 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9407 }
9408 else
9409 {
c19d1205
ZW
9410 inst.instruction |= inst.operands[0].reg << 12;
9411 inst.instruction |= inst.operands[1].reg << 16;
9412 inst.instruction |= inst.operands[2].reg;
9413 encode_arm_shift (3);
b99bd4ef
NC
9414 }
9415}
9416
c19d1205 9417/* ARMv5TE: Preload-Cache
60e5ef9f 9418 MP Extensions: Preload for write
c19d1205 9419
60e5ef9f 9420 PLD(W) <addr_mode>
c19d1205
ZW
9421
9422 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9423
9424static void
c19d1205 9425do_pld (void)
b99bd4ef 9426{
c19d1205
ZW
9427 constraint (!inst.operands[0].isreg,
9428 _("'[' expected after PLD mnemonic"));
9429 constraint (inst.operands[0].postind,
9430 _("post-indexed expression used in preload instruction"));
9431 constraint (inst.operands[0].writeback,
9432 _("writeback used in preload instruction"));
9433 constraint (!inst.operands[0].preind,
9434 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
9435 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9436}
b99bd4ef 9437
62b3e311
PB
9438/* ARMv7: PLI <addr_mode> */
9439static void
9440do_pli (void)
9441{
9442 constraint (!inst.operands[0].isreg,
9443 _("'[' expected after PLI mnemonic"));
9444 constraint (inst.operands[0].postind,
9445 _("post-indexed expression used in preload instruction"));
9446 constraint (inst.operands[0].writeback,
9447 _("writeback used in preload instruction"));
9448 constraint (!inst.operands[0].preind,
9449 _("unindexed addressing used in preload instruction"));
9450 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9451 inst.instruction &= ~PRE_INDEX;
9452}
9453
c19d1205
ZW
9454static void
9455do_push_pop (void)
9456{
5e0d7f77
MP
9457 constraint (inst.operands[0].writeback,
9458 _("push/pop do not support {reglist}^"));
c19d1205
ZW
9459 inst.operands[1] = inst.operands[0];
9460 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9461 inst.operands[0].isreg = 1;
9462 inst.operands[0].writeback = 1;
9463 inst.operands[0].reg = REG_SP;
6530b175 9464 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 9465}
b99bd4ef 9466
c19d1205
ZW
9467/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9468 word at the specified address and the following word
9469 respectively.
9470 Unconditionally executed.
9471 Error if Rn is R15. */
b99bd4ef 9472
c19d1205
ZW
9473static void
9474do_rfe (void)
9475{
9476 inst.instruction |= inst.operands[0].reg << 16;
9477 if (inst.operands[0].writeback)
9478 inst.instruction |= WRITE_BACK;
9479}
b99bd4ef 9480
c19d1205 9481/* ARM V6 ssat (argument parse). */
b99bd4ef 9482
c19d1205
ZW
9483static void
9484do_ssat (void)
9485{
9486 inst.instruction |= inst.operands[0].reg << 12;
9487 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9488 inst.instruction |= inst.operands[2].reg;
b99bd4ef 9489
c19d1205
ZW
9490 if (inst.operands[3].present)
9491 encode_arm_shift (3);
b99bd4ef
NC
9492}
9493
c19d1205 9494/* ARM V6 usat (argument parse). */
b99bd4ef
NC
9495
9496static void
c19d1205 9497do_usat (void)
b99bd4ef 9498{
c19d1205
ZW
9499 inst.instruction |= inst.operands[0].reg << 12;
9500 inst.instruction |= inst.operands[1].imm << 16;
9501 inst.instruction |= inst.operands[2].reg;
b99bd4ef 9502
c19d1205
ZW
9503 if (inst.operands[3].present)
9504 encode_arm_shift (3);
b99bd4ef
NC
9505}
9506
c19d1205 9507/* ARM V6 ssat16 (argument parse). */
09d92015
MM
9508
9509static void
c19d1205 9510do_ssat16 (void)
09d92015 9511{
c19d1205
ZW
9512 inst.instruction |= inst.operands[0].reg << 12;
9513 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9514 inst.instruction |= inst.operands[2].reg;
09d92015
MM
9515}
9516
c19d1205
ZW
9517static void
9518do_usat16 (void)
a737bd4d 9519{
c19d1205
ZW
9520 inst.instruction |= inst.operands[0].reg << 12;
9521 inst.instruction |= inst.operands[1].imm << 16;
9522 inst.instruction |= inst.operands[2].reg;
9523}
a737bd4d 9524
c19d1205
ZW
9525/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9526 preserving the other bits.
a737bd4d 9527
c19d1205
ZW
9528 setend <endian_specifier>, where <endian_specifier> is either
9529 BE or LE. */
a737bd4d 9530
c19d1205
ZW
9531static void
9532do_setend (void)
9533{
12e37cbc
MGD
9534 if (warn_on_deprecated
9535 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 9536 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 9537
c19d1205
ZW
9538 if (inst.operands[0].imm)
9539 inst.instruction |= 0x200;
a737bd4d
NC
9540}
9541
9542static void
c19d1205 9543do_shift (void)
a737bd4d 9544{
c19d1205
ZW
9545 unsigned int Rm = (inst.operands[1].present
9546 ? inst.operands[1].reg
9547 : inst.operands[0].reg);
a737bd4d 9548
c19d1205
ZW
9549 inst.instruction |= inst.operands[0].reg << 12;
9550 inst.instruction |= Rm;
9551 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 9552 {
c19d1205
ZW
9553 inst.instruction |= inst.operands[2].reg << 8;
9554 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
9555 /* PR 12854: Error on extraneous shifts. */
9556 constraint (inst.operands[2].shifted,
9557 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
9558 }
9559 else
e2b0ab59 9560 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
9561}
9562
09d92015 9563static void
3eb17e6b 9564do_smc (void)
09d92015 9565{
e2b0ab59
AV
9566 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
9567 inst.relocs[0].pc_rel = 0;
09d92015
MM
9568}
9569
90ec0d68
MGD
9570static void
9571do_hvc (void)
9572{
e2b0ab59
AV
9573 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
9574 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
9575}
9576
09d92015 9577static void
c19d1205 9578do_swi (void)
09d92015 9579{
e2b0ab59
AV
9580 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
9581 inst.relocs[0].pc_rel = 0;
09d92015
MM
9582}
9583
ddfded2f
MW
9584static void
9585do_setpan (void)
9586{
9587 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9588 _("selected processor does not support SETPAN instruction"));
9589
9590 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9591}
9592
9593static void
9594do_t_setpan (void)
9595{
9596 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9597 _("selected processor does not support SETPAN instruction"));
9598
9599 inst.instruction |= (inst.operands[0].imm << 3);
9600}
9601
c19d1205
ZW
9602/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9603 SMLAxy{cond} Rd,Rm,Rs,Rn
9604 SMLAWy{cond} Rd,Rm,Rs,Rn
9605 Error if any register is R15. */
e16bb312 9606
c19d1205
ZW
9607static void
9608do_smla (void)
e16bb312 9609{
c19d1205
ZW
9610 inst.instruction |= inst.operands[0].reg << 16;
9611 inst.instruction |= inst.operands[1].reg;
9612 inst.instruction |= inst.operands[2].reg << 8;
9613 inst.instruction |= inst.operands[3].reg << 12;
9614}
a737bd4d 9615
c19d1205
ZW
9616/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9617 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9618 Error if any register is R15.
9619 Warning if Rdlo == Rdhi. */
a737bd4d 9620
c19d1205
ZW
9621static void
9622do_smlal (void)
9623{
9624 inst.instruction |= inst.operands[0].reg << 12;
9625 inst.instruction |= inst.operands[1].reg << 16;
9626 inst.instruction |= inst.operands[2].reg;
9627 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 9628
c19d1205
ZW
9629 if (inst.operands[0].reg == inst.operands[1].reg)
9630 as_tsktsk (_("rdhi and rdlo must be different"));
9631}
a737bd4d 9632
c19d1205
ZW
9633/* ARM V5E (El Segundo) signed-multiply (argument parse)
9634 SMULxy{cond} Rd,Rm,Rs
9635 Error if any register is R15. */
a737bd4d 9636
c19d1205
ZW
9637static void
9638do_smul (void)
9639{
9640 inst.instruction |= inst.operands[0].reg << 16;
9641 inst.instruction |= inst.operands[1].reg;
9642 inst.instruction |= inst.operands[2].reg << 8;
9643}
a737bd4d 9644
b6702015
PB
9645/* ARM V6 srs (argument parse). The variable fields in the encoding are
9646 the same for both ARM and Thumb-2. */
a737bd4d 9647
c19d1205
ZW
9648static void
9649do_srs (void)
9650{
b6702015
PB
9651 int reg;
9652
9653 if (inst.operands[0].present)
9654 {
9655 reg = inst.operands[0].reg;
fdfde340 9656 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
9657 }
9658 else
fdfde340 9659 reg = REG_SP;
b6702015
PB
9660
9661 inst.instruction |= reg << 16;
9662 inst.instruction |= inst.operands[1].imm;
9663 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
9664 inst.instruction |= WRITE_BACK;
9665}
a737bd4d 9666
c19d1205 9667/* ARM V6 strex (argument parse). */
a737bd4d 9668
c19d1205
ZW
9669static void
9670do_strex (void)
9671{
9672 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9673 || inst.operands[2].postind || inst.operands[2].writeback
9674 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
9675 || inst.operands[2].negative
9676 /* See comment in do_ldrex(). */
9677 || (inst.operands[2].reg == REG_PC),
9678 BAD_ADDR_MODE);
a737bd4d 9679
c19d1205
ZW
9680 constraint (inst.operands[0].reg == inst.operands[1].reg
9681 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 9682
e2b0ab59
AV
9683 constraint (inst.relocs[0].exp.X_op != O_constant
9684 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9685 _("offset must be zero in ARM encoding"));
a737bd4d 9686
c19d1205
ZW
9687 inst.instruction |= inst.operands[0].reg << 12;
9688 inst.instruction |= inst.operands[1].reg;
9689 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 9690 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
9691}
9692
877807f8
NC
9693static void
9694do_t_strexbh (void)
9695{
9696 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9697 || inst.operands[2].postind || inst.operands[2].writeback
9698 || inst.operands[2].immisreg || inst.operands[2].shifted
9699 || inst.operands[2].negative,
9700 BAD_ADDR_MODE);
9701
9702 constraint (inst.operands[0].reg == inst.operands[1].reg
9703 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9704
9705 do_rm_rd_rn ();
9706}
9707
e16bb312 9708static void
c19d1205 9709do_strexd (void)
e16bb312 9710{
c19d1205
ZW
9711 constraint (inst.operands[1].reg % 2 != 0,
9712 _("even register required"));
9713 constraint (inst.operands[2].present
9714 && inst.operands[2].reg != inst.operands[1].reg + 1,
9715 _("can only store two consecutive registers"));
9716 /* If op 2 were present and equal to PC, this function wouldn't
9717 have been called in the first place. */
9718 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 9719
c19d1205
ZW
9720 constraint (inst.operands[0].reg == inst.operands[1].reg
9721 || inst.operands[0].reg == inst.operands[1].reg + 1
9722 || inst.operands[0].reg == inst.operands[3].reg,
9723 BAD_OVERLAP);
e16bb312 9724
c19d1205
ZW
9725 inst.instruction |= inst.operands[0].reg << 12;
9726 inst.instruction |= inst.operands[1].reg;
9727 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
9728}
9729
9eb6c0f1
MGD
9730/* ARM V8 STRL. */
9731static void
4b8c8c02 9732do_stlex (void)
9eb6c0f1
MGD
9733{
9734 constraint (inst.operands[0].reg == inst.operands[1].reg
9735 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9736
9737 do_rd_rm_rn ();
9738}
9739
9740static void
4b8c8c02 9741do_t_stlex (void)
9eb6c0f1
MGD
9742{
9743 constraint (inst.operands[0].reg == inst.operands[1].reg
9744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9745
9746 do_rm_rd_rn ();
9747}
9748
c19d1205
ZW
9749/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9750 extends it to 32-bits, and adds the result to a value in another
9751 register. You can specify a rotation by 0, 8, 16, or 24 bits
9752 before extracting the 16-bit value.
9753 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9754 Condition defaults to COND_ALWAYS.
9755 Error if any register uses R15. */
9756
e16bb312 9757static void
c19d1205 9758do_sxtah (void)
e16bb312 9759{
c19d1205
ZW
9760 inst.instruction |= inst.operands[0].reg << 12;
9761 inst.instruction |= inst.operands[1].reg << 16;
9762 inst.instruction |= inst.operands[2].reg;
9763 inst.instruction |= inst.operands[3].imm << 10;
9764}
e16bb312 9765
c19d1205 9766/* ARM V6 SXTH.
e16bb312 9767
c19d1205
ZW
9768 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9769 Condition defaults to COND_ALWAYS.
9770 Error if any register uses R15. */
e16bb312
NC
9771
9772static void
c19d1205 9773do_sxth (void)
e16bb312 9774{
c19d1205
ZW
9775 inst.instruction |= inst.operands[0].reg << 12;
9776 inst.instruction |= inst.operands[1].reg;
9777 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 9778}
c19d1205
ZW
9779\f
9780/* VFP instructions. In a logical order: SP variant first, monad
9781 before dyad, arithmetic then move then load/store. */
e16bb312
NC
9782
9783static void
c19d1205 9784do_vfp_sp_monadic (void)
e16bb312 9785{
5287ad62
JB
9786 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9787 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
9788}
9789
9790static void
c19d1205 9791do_vfp_sp_dyadic (void)
e16bb312 9792{
5287ad62
JB
9793 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9794 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9795 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
9796}
9797
9798static void
c19d1205 9799do_vfp_sp_compare_z (void)
e16bb312 9800{
5287ad62 9801 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
9802}
9803
9804static void
c19d1205 9805do_vfp_dp_sp_cvt (void)
e16bb312 9806{
5287ad62
JB
9807 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9808 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
9809}
9810
9811static void
c19d1205 9812do_vfp_sp_dp_cvt (void)
e16bb312 9813{
5287ad62
JB
9814 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9815 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
9816}
9817
9818static void
c19d1205 9819do_vfp_reg_from_sp (void)
e16bb312 9820{
c19d1205 9821 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 9822 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
9823}
9824
9825static void
c19d1205 9826do_vfp_reg2_from_sp2 (void)
e16bb312 9827{
c19d1205
ZW
9828 constraint (inst.operands[2].imm != 2,
9829 _("only two consecutive VFP SP registers allowed here"));
9830 inst.instruction |= inst.operands[0].reg << 12;
9831 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 9832 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
9833}
9834
9835static void
c19d1205 9836do_vfp_sp_from_reg (void)
e16bb312 9837{
5287ad62 9838 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 9839 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
9840}
9841
9842static void
c19d1205 9843do_vfp_sp2_from_reg2 (void)
e16bb312 9844{
c19d1205
ZW
9845 constraint (inst.operands[0].imm != 2,
9846 _("only two consecutive VFP SP registers allowed here"));
5287ad62 9847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
9848 inst.instruction |= inst.operands[1].reg << 12;
9849 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
9850}
9851
9852static void
c19d1205 9853do_vfp_sp_ldst (void)
e16bb312 9854{
5287ad62 9855 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 9856 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
9857}
9858
9859static void
c19d1205 9860do_vfp_dp_ldst (void)
e16bb312 9861{
5287ad62 9862 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 9863 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
9864}
9865
c19d1205 9866
e16bb312 9867static void
c19d1205 9868vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 9869{
c19d1205
ZW
9870 if (inst.operands[0].writeback)
9871 inst.instruction |= WRITE_BACK;
9872 else
9873 constraint (ldstm_type != VFP_LDSTMIA,
9874 _("this addressing mode requires base-register writeback"));
9875 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 9876 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 9877 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
9878}
9879
9880static void
c19d1205 9881vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 9882{
c19d1205 9883 int count;
e16bb312 9884
c19d1205
ZW
9885 if (inst.operands[0].writeback)
9886 inst.instruction |= WRITE_BACK;
9887 else
9888 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9889 _("this addressing mode requires base-register writeback"));
e16bb312 9890
c19d1205 9891 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 9892 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 9893
c19d1205
ZW
9894 count = inst.operands[1].imm << 1;
9895 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9896 count += 1;
e16bb312 9897
c19d1205 9898 inst.instruction |= count;
e16bb312
NC
9899}
9900
9901static void
c19d1205 9902do_vfp_sp_ldstmia (void)
e16bb312 9903{
c19d1205 9904 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
9905}
9906
9907static void
c19d1205 9908do_vfp_sp_ldstmdb (void)
e16bb312 9909{
c19d1205 9910 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
9911}
9912
9913static void
c19d1205 9914do_vfp_dp_ldstmia (void)
e16bb312 9915{
c19d1205 9916 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
9917}
9918
9919static void
c19d1205 9920do_vfp_dp_ldstmdb (void)
e16bb312 9921{
c19d1205 9922 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
9923}
9924
9925static void
c19d1205 9926do_vfp_xp_ldstmia (void)
e16bb312 9927{
c19d1205
ZW
9928 vfp_dp_ldstm (VFP_LDSTMIAX);
9929}
e16bb312 9930
c19d1205
ZW
9931static void
9932do_vfp_xp_ldstmdb (void)
9933{
9934 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 9935}
5287ad62
JB
9936
9937static void
9938do_vfp_dp_rd_rm (void)
9939{
9940 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9941 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9942}
9943
9944static void
9945do_vfp_dp_rn_rd (void)
9946{
9947 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9948 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9949}
9950
9951static void
9952do_vfp_dp_rd_rn (void)
9953{
9954 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9955 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9956}
9957
9958static void
9959do_vfp_dp_rd_rn_rm (void)
9960{
9961 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9962 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9963 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9964}
9965
9966static void
9967do_vfp_dp_rd (void)
9968{
9969 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9970}
9971
9972static void
9973do_vfp_dp_rm_rd_rn (void)
9974{
9975 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9976 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9977 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9978}
9979
9980/* VFPv3 instructions. */
9981static void
9982do_vfp_sp_const (void)
9983{
9984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
9985 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9986 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9987}
9988
9989static void
9990do_vfp_dp_const (void)
9991{
9992 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
9993 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9994 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9995}
9996
9997static void
9998vfp_conv (int srcsize)
9999{
5f1af56b
MGD
10000 int immbits = srcsize - inst.operands[1].imm;
10001
fa94de6b
RM
10002 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10003 {
5f1af56b 10004 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10005 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10006 inst.error = _("immediate value out of range, expected range [0, 16]");
10007 return;
10008 }
fa94de6b 10009 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10010 {
10011 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10012 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10013 inst.error = _("immediate value out of range, expected range [1, 32]");
10014 return;
10015 }
10016
5287ad62
JB
10017 inst.instruction |= (immbits & 1) << 5;
10018 inst.instruction |= (immbits >> 1);
10019}
10020
10021static void
10022do_vfp_sp_conv_16 (void)
10023{
10024 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10025 vfp_conv (16);
10026}
10027
10028static void
10029do_vfp_dp_conv_16 (void)
10030{
10031 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10032 vfp_conv (16);
10033}
10034
10035static void
10036do_vfp_sp_conv_32 (void)
10037{
10038 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10039 vfp_conv (32);
10040}
10041
10042static void
10043do_vfp_dp_conv_32 (void)
10044{
10045 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10046 vfp_conv (32);
10047}
c19d1205
ZW
10048\f
10049/* FPA instructions. Also in a logical order. */
e16bb312 10050
c19d1205
ZW
10051static void
10052do_fpa_cmp (void)
10053{
10054 inst.instruction |= inst.operands[0].reg << 16;
10055 inst.instruction |= inst.operands[1].reg;
10056}
b99bd4ef
NC
10057
10058static void
c19d1205 10059do_fpa_ldmstm (void)
b99bd4ef 10060{
c19d1205
ZW
10061 inst.instruction |= inst.operands[0].reg << 12;
10062 switch (inst.operands[1].imm)
10063 {
10064 case 1: inst.instruction |= CP_T_X; break;
10065 case 2: inst.instruction |= CP_T_Y; break;
10066 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10067 case 4: break;
10068 default: abort ();
10069 }
b99bd4ef 10070
c19d1205
ZW
10071 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10072 {
10073 /* The instruction specified "ea" or "fd", so we can only accept
10074 [Rn]{!}. The instruction does not really support stacking or
10075 unstacking, so we have to emulate these by setting appropriate
10076 bits and offsets. */
e2b0ab59
AV
10077 constraint (inst.relocs[0].exp.X_op != O_constant
10078 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10079 _("this instruction does not support indexing"));
b99bd4ef 10080
c19d1205 10081 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10082 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10083
c19d1205 10084 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10085 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10086
c19d1205
ZW
10087 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10088 {
10089 inst.operands[2].preind = 0;
10090 inst.operands[2].postind = 1;
10091 }
10092 }
b99bd4ef 10093
c19d1205 10094 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10095}
c19d1205
ZW
10096\f
10097/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10098
c19d1205
ZW
10099static void
10100do_iwmmxt_tandorc (void)
10101{
10102 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10103}
b99bd4ef 10104
c19d1205
ZW
10105static void
10106do_iwmmxt_textrc (void)
10107{
10108 inst.instruction |= inst.operands[0].reg << 12;
10109 inst.instruction |= inst.operands[1].imm;
10110}
b99bd4ef
NC
10111
10112static void
c19d1205 10113do_iwmmxt_textrm (void)
b99bd4ef 10114{
c19d1205
ZW
10115 inst.instruction |= inst.operands[0].reg << 12;
10116 inst.instruction |= inst.operands[1].reg << 16;
10117 inst.instruction |= inst.operands[2].imm;
10118}
b99bd4ef 10119
c19d1205
ZW
10120static void
10121do_iwmmxt_tinsr (void)
10122{
10123 inst.instruction |= inst.operands[0].reg << 16;
10124 inst.instruction |= inst.operands[1].reg << 12;
10125 inst.instruction |= inst.operands[2].imm;
10126}
b99bd4ef 10127
c19d1205
ZW
10128static void
10129do_iwmmxt_tmia (void)
10130{
10131 inst.instruction |= inst.operands[0].reg << 5;
10132 inst.instruction |= inst.operands[1].reg;
10133 inst.instruction |= inst.operands[2].reg << 12;
10134}
b99bd4ef 10135
c19d1205
ZW
10136static void
10137do_iwmmxt_waligni (void)
10138{
10139 inst.instruction |= inst.operands[0].reg << 12;
10140 inst.instruction |= inst.operands[1].reg << 16;
10141 inst.instruction |= inst.operands[2].reg;
10142 inst.instruction |= inst.operands[3].imm << 20;
10143}
b99bd4ef 10144
2d447fca
JM
10145static void
10146do_iwmmxt_wmerge (void)
10147{
10148 inst.instruction |= inst.operands[0].reg << 12;
10149 inst.instruction |= inst.operands[1].reg << 16;
10150 inst.instruction |= inst.operands[2].reg;
10151 inst.instruction |= inst.operands[3].imm << 21;
10152}
10153
c19d1205
ZW
10154static void
10155do_iwmmxt_wmov (void)
10156{
10157 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10158 inst.instruction |= inst.operands[0].reg << 12;
10159 inst.instruction |= inst.operands[1].reg << 16;
10160 inst.instruction |= inst.operands[1].reg;
10161}
b99bd4ef 10162
c19d1205
ZW
10163static void
10164do_iwmmxt_wldstbh (void)
10165{
8f06b2d8 10166 int reloc;
c19d1205 10167 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10168 if (thumb_mode)
10169 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10170 else
10171 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10172 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10173}
10174
c19d1205
ZW
10175static void
10176do_iwmmxt_wldstw (void)
10177{
10178 /* RIWR_RIWC clears .isreg for a control register. */
10179 if (!inst.operands[0].isreg)
10180 {
10181 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10182 inst.instruction |= 0xf0000000;
10183 }
b99bd4ef 10184
c19d1205
ZW
10185 inst.instruction |= inst.operands[0].reg << 12;
10186 encode_arm_cp_address (1, TRUE, TRUE, 0);
10187}
b99bd4ef
NC
10188
10189static void
c19d1205 10190do_iwmmxt_wldstd (void)
b99bd4ef 10191{
c19d1205 10192 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10193 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10194 && inst.operands[1].immisreg)
10195 {
10196 inst.instruction &= ~0x1a000ff;
eff0bc54 10197 inst.instruction |= (0xfU << 28);
2d447fca
JM
10198 if (inst.operands[1].preind)
10199 inst.instruction |= PRE_INDEX;
10200 if (!inst.operands[1].negative)
10201 inst.instruction |= INDEX_UP;
10202 if (inst.operands[1].writeback)
10203 inst.instruction |= WRITE_BACK;
10204 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10205 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10206 inst.instruction |= inst.operands[1].imm;
10207 }
10208 else
10209 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10210}
b99bd4ef 10211
c19d1205
ZW
10212static void
10213do_iwmmxt_wshufh (void)
10214{
10215 inst.instruction |= inst.operands[0].reg << 12;
10216 inst.instruction |= inst.operands[1].reg << 16;
10217 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10218 inst.instruction |= (inst.operands[2].imm & 0x0f);
10219}
b99bd4ef 10220
c19d1205
ZW
10221static void
10222do_iwmmxt_wzero (void)
10223{
10224 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10225 inst.instruction |= inst.operands[0].reg;
10226 inst.instruction |= inst.operands[0].reg << 12;
10227 inst.instruction |= inst.operands[0].reg << 16;
10228}
2d447fca
JM
10229
10230static void
10231do_iwmmxt_wrwrwr_or_imm5 (void)
10232{
10233 if (inst.operands[2].isreg)
10234 do_rd_rn_rm ();
10235 else {
10236 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10237 _("immediate operand requires iWMMXt2"));
10238 do_rd_rn ();
10239 if (inst.operands[2].imm == 0)
10240 {
10241 switch ((inst.instruction >> 20) & 0xf)
10242 {
10243 case 4:
10244 case 5:
10245 case 6:
5f4273c7 10246 case 7:
2d447fca
JM
10247 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10248 inst.operands[2].imm = 16;
10249 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10250 break;
10251 case 8:
10252 case 9:
10253 case 10:
10254 case 11:
10255 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10256 inst.operands[2].imm = 32;
10257 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10258 break;
10259 case 12:
10260 case 13:
10261 case 14:
10262 case 15:
10263 {
10264 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10265 unsigned long wrn;
10266 wrn = (inst.instruction >> 16) & 0xf;
10267 inst.instruction &= 0xff0fff0f;
10268 inst.instruction |= wrn;
10269 /* Bail out here; the instruction is now assembled. */
10270 return;
10271 }
10272 }
10273 }
10274 /* Map 32 -> 0, etc. */
10275 inst.operands[2].imm &= 0x1f;
eff0bc54 10276 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10277 }
10278}
c19d1205
ZW
10279\f
10280/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10281 operations first, then control, shift, and load/store. */
b99bd4ef 10282
c19d1205 10283/* Insns like "foo X,Y,Z". */
b99bd4ef 10284
c19d1205
ZW
10285static void
10286do_mav_triple (void)
10287{
10288 inst.instruction |= inst.operands[0].reg << 16;
10289 inst.instruction |= inst.operands[1].reg;
10290 inst.instruction |= inst.operands[2].reg << 12;
10291}
b99bd4ef 10292
c19d1205
ZW
10293/* Insns like "foo W,X,Y,Z".
10294 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10295
c19d1205
ZW
10296static void
10297do_mav_quad (void)
10298{
10299 inst.instruction |= inst.operands[0].reg << 5;
10300 inst.instruction |= inst.operands[1].reg << 12;
10301 inst.instruction |= inst.operands[2].reg << 16;
10302 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10303}
10304
c19d1205
ZW
10305/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10306static void
10307do_mav_dspsc (void)
a737bd4d 10308{
c19d1205
ZW
10309 inst.instruction |= inst.operands[1].reg << 12;
10310}
a737bd4d 10311
c19d1205
ZW
10312/* Maverick shift immediate instructions.
10313 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10314 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10315
c19d1205
ZW
10316static void
10317do_mav_shift (void)
10318{
10319 int imm = inst.operands[2].imm;
a737bd4d 10320
c19d1205
ZW
10321 inst.instruction |= inst.operands[0].reg << 12;
10322 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10323
c19d1205
ZW
10324 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10325 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10326 Bit 4 should be 0. */
10327 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10328
c19d1205
ZW
10329 inst.instruction |= imm;
10330}
10331\f
10332/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10333
c19d1205
ZW
10334/* Xscale multiply-accumulate (argument parse)
10335 MIAcc acc0,Rm,Rs
10336 MIAPHcc acc0,Rm,Rs
10337 MIAxycc acc0,Rm,Rs. */
a737bd4d 10338
c19d1205
ZW
10339static void
10340do_xsc_mia (void)
10341{
10342 inst.instruction |= inst.operands[1].reg;
10343 inst.instruction |= inst.operands[2].reg << 12;
10344}
a737bd4d 10345
c19d1205 10346/* Xscale move-accumulator-register (argument parse)
a737bd4d 10347
c19d1205 10348 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10349
c19d1205
ZW
10350static void
10351do_xsc_mar (void)
10352{
10353 inst.instruction |= inst.operands[1].reg << 12;
10354 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10355}
10356
c19d1205 10357/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10358
c19d1205 10359 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10360
10361static void
c19d1205 10362do_xsc_mra (void)
b99bd4ef 10363{
c19d1205
ZW
10364 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10365 inst.instruction |= inst.operands[0].reg << 12;
10366 inst.instruction |= inst.operands[1].reg << 16;
10367}
10368\f
10369/* Encoding functions relevant only to Thumb. */
b99bd4ef 10370
c19d1205
ZW
10371/* inst.operands[i] is a shifted-register operand; encode
10372 it into inst.instruction in the format used by Thumb32. */
10373
10374static void
10375encode_thumb32_shifted_operand (int i)
10376{
e2b0ab59 10377 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10378 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10379
9c3c69f2
PB
10380 constraint (inst.operands[i].immisreg,
10381 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10382 inst.instruction |= inst.operands[i].reg;
10383 if (shift == SHIFT_RRX)
10384 inst.instruction |= SHIFT_ROR << 4;
10385 else
b99bd4ef 10386 {
e2b0ab59 10387 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10388 _("expression too complex"));
10389
10390 constraint (value > 32
10391 || (value == 32 && (shift == SHIFT_LSL
10392 || shift == SHIFT_ROR)),
10393 _("shift expression is too large"));
10394
10395 if (value == 0)
10396 shift = SHIFT_LSL;
10397 else if (value == 32)
10398 value = 0;
10399
10400 inst.instruction |= shift << 4;
10401 inst.instruction |= (value & 0x1c) << 10;
10402 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10403 }
c19d1205 10404}
b99bd4ef 10405
b99bd4ef 10406
c19d1205
ZW
10407/* inst.operands[i] was set up by parse_address. Encode it into a
10408 Thumb32 format load or store instruction. Reject forms that cannot
10409 be used with such instructions. If is_t is true, reject forms that
10410 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
10411 that cannot be used with a D instruction. If it is a store insn,
10412 reject PC in Rn. */
b99bd4ef 10413
c19d1205
ZW
10414static void
10415encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10416{
5be8be5d 10417 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
10418
10419 constraint (!inst.operands[i].isreg,
53365c0d 10420 _("Instruction does not support =N addresses"));
b99bd4ef 10421
c19d1205
ZW
10422 inst.instruction |= inst.operands[i].reg << 16;
10423 if (inst.operands[i].immisreg)
b99bd4ef 10424 {
5be8be5d 10425 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
10426 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10427 constraint (inst.operands[i].negative,
10428 _("Thumb does not support negative register indexing"));
10429 constraint (inst.operands[i].postind,
10430 _("Thumb does not support register post-indexing"));
10431 constraint (inst.operands[i].writeback,
10432 _("Thumb does not support register indexing with writeback"));
10433 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10434 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 10435
f40d1643 10436 inst.instruction |= inst.operands[i].imm;
c19d1205 10437 if (inst.operands[i].shifted)
b99bd4ef 10438 {
e2b0ab59 10439 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 10440 _("expression too complex"));
e2b0ab59
AV
10441 constraint (inst.relocs[0].exp.X_add_number < 0
10442 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 10443 _("shift out of range"));
e2b0ab59 10444 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 10445 }
e2b0ab59 10446 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
10447 }
10448 else if (inst.operands[i].preind)
10449 {
5be8be5d 10450 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 10451 constraint (is_t && inst.operands[i].writeback,
c19d1205 10452 _("cannot use writeback with this instruction"));
4755303e
WN
10453 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10454 BAD_PC_ADDRESSING);
c19d1205
ZW
10455
10456 if (is_d)
10457 {
10458 inst.instruction |= 0x01000000;
10459 if (inst.operands[i].writeback)
10460 inst.instruction |= 0x00200000;
b99bd4ef 10461 }
c19d1205 10462 else
b99bd4ef 10463 {
c19d1205
ZW
10464 inst.instruction |= 0x00000c00;
10465 if (inst.operands[i].writeback)
10466 inst.instruction |= 0x00000100;
b99bd4ef 10467 }
e2b0ab59 10468 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 10469 }
c19d1205 10470 else if (inst.operands[i].postind)
b99bd4ef 10471 {
9c2799c2 10472 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
10473 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10474 constraint (is_t, _("cannot use post-indexing with this instruction"));
10475
10476 if (is_d)
10477 inst.instruction |= 0x00200000;
10478 else
10479 inst.instruction |= 0x00000900;
e2b0ab59 10480 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
10481 }
10482 else /* unindexed - only for coprocessor */
10483 inst.error = _("instruction does not accept unindexed addressing");
10484}
10485
10486/* Table of Thumb instructions which exist in both 16- and 32-bit
10487 encodings (the latter only in post-V6T2 cores). The index is the
10488 value used in the insns table below. When there is more than one
10489 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
10490 holds variant (1).
10491 Also contains several pseudo-instructions used during relaxation. */
c19d1205 10492#define T16_32_TAB \
21d799b5
NC
10493 X(_adc, 4140, eb400000), \
10494 X(_adcs, 4140, eb500000), \
10495 X(_add, 1c00, eb000000), \
10496 X(_adds, 1c00, eb100000), \
10497 X(_addi, 0000, f1000000), \
10498 X(_addis, 0000, f1100000), \
10499 X(_add_pc,000f, f20f0000), \
10500 X(_add_sp,000d, f10d0000), \
10501 X(_adr, 000f, f20f0000), \
10502 X(_and, 4000, ea000000), \
10503 X(_ands, 4000, ea100000), \
10504 X(_asr, 1000, fa40f000), \
10505 X(_asrs, 1000, fa50f000), \
10506 X(_b, e000, f000b000), \
10507 X(_bcond, d000, f0008000), \
4389b29a 10508 X(_bf, 0000, f040e001), \
f1c7f421
AV
10509 X(_bfx, 0000, f060e001), \
10510 X(_bflx, 0000, f070e001), \
21d799b5
NC
10511 X(_bic, 4380, ea200000), \
10512 X(_bics, 4380, ea300000), \
10513 X(_cmn, 42c0, eb100f00), \
10514 X(_cmp, 2800, ebb00f00), \
10515 X(_cpsie, b660, f3af8400), \
10516 X(_cpsid, b670, f3af8600), \
10517 X(_cpy, 4600, ea4f0000), \
10518 X(_dec_sp,80dd, f1ad0d00), \
10519 X(_eor, 4040, ea800000), \
10520 X(_eors, 4040, ea900000), \
10521 X(_inc_sp,00dd, f10d0d00), \
10522 X(_ldmia, c800, e8900000), \
10523 X(_ldr, 6800, f8500000), \
10524 X(_ldrb, 7800, f8100000), \
10525 X(_ldrh, 8800, f8300000), \
10526 X(_ldrsb, 5600, f9100000), \
10527 X(_ldrsh, 5e00, f9300000), \
10528 X(_ldr_pc,4800, f85f0000), \
10529 X(_ldr_pc2,4800, f85f0000), \
10530 X(_ldr_sp,9800, f85d0000), \
10531 X(_lsl, 0000, fa00f000), \
10532 X(_lsls, 0000, fa10f000), \
10533 X(_lsr, 0800, fa20f000), \
10534 X(_lsrs, 0800, fa30f000), \
10535 X(_mov, 2000, ea4f0000), \
10536 X(_movs, 2000, ea5f0000), \
10537 X(_mul, 4340, fb00f000), \
10538 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10539 X(_mvn, 43c0, ea6f0000), \
10540 X(_mvns, 43c0, ea7f0000), \
10541 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10542 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10543 X(_orr, 4300, ea400000), \
10544 X(_orrs, 4300, ea500000), \
10545 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10546 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10547 X(_rev, ba00, fa90f080), \
10548 X(_rev16, ba40, fa90f090), \
10549 X(_revsh, bac0, fa90f0b0), \
10550 X(_ror, 41c0, fa60f000), \
10551 X(_rors, 41c0, fa70f000), \
10552 X(_sbc, 4180, eb600000), \
10553 X(_sbcs, 4180, eb700000), \
10554 X(_stmia, c000, e8800000), \
10555 X(_str, 6000, f8400000), \
10556 X(_strb, 7000, f8000000), \
10557 X(_strh, 8000, f8200000), \
10558 X(_str_sp,9000, f84d0000), \
10559 X(_sub, 1e00, eba00000), \
10560 X(_subs, 1e00, ebb00000), \
10561 X(_subi, 8000, f1a00000), \
10562 X(_subis, 8000, f1b00000), \
10563 X(_sxtb, b240, fa4ff080), \
10564 X(_sxth, b200, fa0ff080), \
10565 X(_tst, 4200, ea100f00), \
10566 X(_uxtb, b2c0, fa5ff080), \
10567 X(_uxth, b280, fa1ff080), \
10568 X(_nop, bf00, f3af8000), \
10569 X(_yield, bf10, f3af8001), \
10570 X(_wfe, bf20, f3af8002), \
10571 X(_wfi, bf30, f3af8003), \
53c4b28b 10572 X(_sev, bf40, f3af8004), \
74db7efb
NC
10573 X(_sevl, bf50, f3af8005), \
10574 X(_udf, de00, f7f0a000)
c19d1205
ZW
10575
10576/* To catch errors in encoding functions, the codes are all offset by
10577 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10578 as 16-bit instructions. */
21d799b5 10579#define X(a,b,c) T_MNEM##a
c19d1205
ZW
10580enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10581#undef X
10582
10583#define X(a,b,c) 0x##b
10584static const unsigned short thumb_op16[] = { T16_32_TAB };
10585#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10586#undef X
10587
10588#define X(a,b,c) 0x##c
10589static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
10590#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10591#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
10592#undef X
10593#undef T16_32_TAB
10594
10595/* Thumb instruction encoders, in alphabetical order. */
10596
92e90b6e 10597/* ADDW or SUBW. */
c921be7d 10598
92e90b6e
PB
10599static void
10600do_t_add_sub_w (void)
10601{
10602 int Rd, Rn;
10603
10604 Rd = inst.operands[0].reg;
10605 Rn = inst.operands[1].reg;
10606
539d4391
NC
10607 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10608 is the SP-{plus,minus}-immediate form of the instruction. */
10609 if (Rn == REG_SP)
10610 constraint (Rd == REG_PC, BAD_PC);
10611 else
10612 reject_bad_reg (Rd);
fdfde340 10613
92e90b6e 10614 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 10615 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
10616}
10617
c19d1205 10618/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 10619 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
10620
10621static void
10622do_t_add_sub (void)
10623{
10624 int Rd, Rs, Rn;
10625
10626 Rd = inst.operands[0].reg;
10627 Rs = (inst.operands[1].present
10628 ? inst.operands[1].reg /* Rd, Rs, foo */
10629 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10630
e07e6e58
NC
10631 if (Rd == REG_PC)
10632 set_it_insn_type_last ();
10633
c19d1205
ZW
10634 if (unified_syntax)
10635 {
0110f2b8
PB
10636 bfd_boolean flags;
10637 bfd_boolean narrow;
10638 int opcode;
10639
10640 flags = (inst.instruction == T_MNEM_adds
10641 || inst.instruction == T_MNEM_subs);
10642 if (flags)
e07e6e58 10643 narrow = !in_it_block ();
0110f2b8 10644 else
e07e6e58 10645 narrow = in_it_block ();
c19d1205 10646 if (!inst.operands[2].isreg)
b99bd4ef 10647 {
16805f35
PB
10648 int add;
10649
5c8ed6a4
JW
10650 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10651 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 10652
16805f35
PB
10653 add = (inst.instruction == T_MNEM_add
10654 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
10655 opcode = 0;
10656 if (inst.size_req != 4)
10657 {
0110f2b8 10658 /* Attempt to use a narrow opcode, with relaxation if
477330fc 10659 appropriate. */
0110f2b8
PB
10660 if (Rd == REG_SP && Rs == REG_SP && !flags)
10661 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10662 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10663 opcode = T_MNEM_add_sp;
10664 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10665 opcode = T_MNEM_add_pc;
10666 else if (Rd <= 7 && Rs <= 7 && narrow)
10667 {
10668 if (flags)
10669 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10670 else
10671 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10672 }
10673 if (opcode)
10674 {
10675 inst.instruction = THUMB_OP16(opcode);
10676 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
10677 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10678 || (inst.relocs[0].type
10679 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
10680 {
10681 if (inst.size_req == 2)
e2b0ab59 10682 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
10683 else
10684 inst.relax = opcode;
10685 }
0110f2b8
PB
10686 }
10687 else
10688 constraint (inst.size_req == 2, BAD_HIREG);
10689 }
10690 if (inst.size_req == 4
10691 || (inst.size_req != 2 && !opcode))
10692 {
e2b0ab59
AV
10693 constraint ((inst.relocs[0].type
10694 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
10695 && (inst.relocs[0].type
10696 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 10697 THUMB1_RELOC_ONLY);
efd81785
PB
10698 if (Rd == REG_PC)
10699 {
fdfde340 10700 constraint (add, BAD_PC);
efd81785
PB
10701 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10702 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 10703 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 10704 _("expression too complex"));
e2b0ab59
AV
10705 constraint (inst.relocs[0].exp.X_add_number < 0
10706 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
10707 _("immediate value out of range"));
10708 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
10709 | inst.relocs[0].exp.X_add_number;
10710 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
10711 return;
10712 }
10713 else if (Rs == REG_PC)
16805f35
PB
10714 {
10715 /* Always use addw/subw. */
10716 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 10717 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
10718 }
10719 else
10720 {
10721 inst.instruction = THUMB_OP32 (inst.instruction);
10722 inst.instruction = (inst.instruction & 0xe1ffffff)
10723 | 0x10000000;
10724 if (flags)
e2b0ab59 10725 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 10726 else
e2b0ab59 10727 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 10728 }
dc4503c6
PB
10729 inst.instruction |= Rd << 8;
10730 inst.instruction |= Rs << 16;
0110f2b8 10731 }
b99bd4ef 10732 }
c19d1205
ZW
10733 else
10734 {
e2b0ab59 10735 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
10736 unsigned int shift = inst.operands[2].shift_kind;
10737
c19d1205
ZW
10738 Rn = inst.operands[2].reg;
10739 /* See if we can do this with a 16-bit instruction. */
10740 if (!inst.operands[2].shifted && inst.size_req != 4)
10741 {
e27ec89e
PB
10742 if (Rd > 7 || Rs > 7 || Rn > 7)
10743 narrow = FALSE;
10744
10745 if (narrow)
c19d1205 10746 {
e27ec89e
PB
10747 inst.instruction = ((inst.instruction == T_MNEM_adds
10748 || inst.instruction == T_MNEM_add)
c19d1205
ZW
10749 ? T_OPCODE_ADD_R3
10750 : T_OPCODE_SUB_R3);
10751 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10752 return;
10753 }
b99bd4ef 10754
7e806470 10755 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 10756 {
7e806470
PB
10757 /* Thumb-1 cores (except v6-M) require at least one high
10758 register in a narrow non flag setting add. */
10759 if (Rd > 7 || Rn > 7
10760 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10761 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 10762 {
7e806470
PB
10763 if (Rd == Rn)
10764 {
10765 Rn = Rs;
10766 Rs = Rd;
10767 }
c19d1205
ZW
10768 inst.instruction = T_OPCODE_ADD_HI;
10769 inst.instruction |= (Rd & 8) << 4;
10770 inst.instruction |= (Rd & 7);
10771 inst.instruction |= Rn << 3;
10772 return;
10773 }
c19d1205
ZW
10774 }
10775 }
c921be7d 10776
fdfde340 10777 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
10778 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10779 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
10780 constraint (Rs == REG_PC, BAD_PC);
10781 reject_bad_reg (Rn);
10782
c19d1205
ZW
10783 /* If we get here, it can't be done in 16 bits. */
10784 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10785 _("shift must be constant"));
10786 inst.instruction = THUMB_OP32 (inst.instruction);
10787 inst.instruction |= Rd << 8;
10788 inst.instruction |= Rs << 16;
5f4cb198
NC
10789 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10790 _("shift value over 3 not allowed in thumb mode"));
10791 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10792 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
10793 encode_thumb32_shifted_operand (2);
10794 }
10795 }
10796 else
10797 {
10798 constraint (inst.instruction == T_MNEM_adds
10799 || inst.instruction == T_MNEM_subs,
10800 BAD_THUMB32);
b99bd4ef 10801
c19d1205 10802 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 10803 {
c19d1205
ZW
10804 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10805 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10806 BAD_HIREG);
10807
10808 inst.instruction = (inst.instruction == T_MNEM_add
10809 ? 0x0000 : 0x8000);
10810 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 10811 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
10812 return;
10813 }
10814
c19d1205
ZW
10815 Rn = inst.operands[2].reg;
10816 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 10817
c19d1205
ZW
10818 /* We now have Rd, Rs, and Rn set to registers. */
10819 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 10820 {
c19d1205
ZW
10821 /* Can't do this for SUB. */
10822 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10823 inst.instruction = T_OPCODE_ADD_HI;
10824 inst.instruction |= (Rd & 8) << 4;
10825 inst.instruction |= (Rd & 7);
10826 if (Rs == Rd)
10827 inst.instruction |= Rn << 3;
10828 else if (Rn == Rd)
10829 inst.instruction |= Rs << 3;
10830 else
10831 constraint (1, _("dest must overlap one source register"));
10832 }
10833 else
10834 {
10835 inst.instruction = (inst.instruction == T_MNEM_add
10836 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10837 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 10838 }
b99bd4ef 10839 }
b99bd4ef
NC
10840}
10841
c19d1205
ZW
10842static void
10843do_t_adr (void)
10844{
fdfde340
JM
10845 unsigned Rd;
10846
10847 Rd = inst.operands[0].reg;
10848 reject_bad_reg (Rd);
10849
10850 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
10851 {
10852 /* Defer to section relaxation. */
10853 inst.relax = inst.instruction;
10854 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10855 inst.instruction |= Rd << 4;
0110f2b8
PB
10856 }
10857 else if (unified_syntax && inst.size_req != 2)
e9f89963 10858 {
0110f2b8 10859 /* Generate a 32-bit opcode. */
e9f89963 10860 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10861 inst.instruction |= Rd << 8;
e2b0ab59
AV
10862 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
10863 inst.relocs[0].pc_rel = 1;
e9f89963
PB
10864 }
10865 else
10866 {
0110f2b8 10867 /* Generate a 16-bit opcode. */
e9f89963 10868 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
10869 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
10870 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
10871 inst.relocs[0].pc_rel = 1;
fdfde340 10872 inst.instruction |= Rd << 4;
e9f89963 10873 }
52a86f84 10874
e2b0ab59
AV
10875 if (inst.relocs[0].exp.X_op == O_symbol
10876 && inst.relocs[0].exp.X_add_symbol != NULL
10877 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
10878 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
10879 inst.relocs[0].exp.X_add_number += 1;
c19d1205 10880}
b99bd4ef 10881
c19d1205
ZW
10882/* Arithmetic instructions for which there is just one 16-bit
10883 instruction encoding, and it allows only two low registers.
10884 For maximal compatibility with ARM syntax, we allow three register
10885 operands even when Thumb-32 instructions are not available, as long
10886 as the first two are identical. For instance, both "sbc r0,r1" and
10887 "sbc r0,r0,r1" are allowed. */
b99bd4ef 10888static void
c19d1205 10889do_t_arit3 (void)
b99bd4ef 10890{
c19d1205 10891 int Rd, Rs, Rn;
b99bd4ef 10892
c19d1205
ZW
10893 Rd = inst.operands[0].reg;
10894 Rs = (inst.operands[1].present
10895 ? inst.operands[1].reg /* Rd, Rs, foo */
10896 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10897 Rn = inst.operands[2].reg;
b99bd4ef 10898
fdfde340
JM
10899 reject_bad_reg (Rd);
10900 reject_bad_reg (Rs);
10901 if (inst.operands[2].isreg)
10902 reject_bad_reg (Rn);
10903
c19d1205 10904 if (unified_syntax)
b99bd4ef 10905 {
c19d1205
ZW
10906 if (!inst.operands[2].isreg)
10907 {
10908 /* For an immediate, we always generate a 32-bit opcode;
10909 section relaxation will shrink it later if possible. */
10910 inst.instruction = THUMB_OP32 (inst.instruction);
10911 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10912 inst.instruction |= Rd << 8;
10913 inst.instruction |= Rs << 16;
e2b0ab59 10914 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
10915 }
10916 else
10917 {
e27ec89e
PB
10918 bfd_boolean narrow;
10919
c19d1205 10920 /* See if we can do this with a 16-bit instruction. */
e27ec89e 10921 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10922 narrow = !in_it_block ();
e27ec89e 10923 else
e07e6e58 10924 narrow = in_it_block ();
e27ec89e
PB
10925
10926 if (Rd > 7 || Rn > 7 || Rs > 7)
10927 narrow = FALSE;
10928 if (inst.operands[2].shifted)
10929 narrow = FALSE;
10930 if (inst.size_req == 4)
10931 narrow = FALSE;
10932
10933 if (narrow
c19d1205
ZW
10934 && Rd == Rs)
10935 {
10936 inst.instruction = THUMB_OP16 (inst.instruction);
10937 inst.instruction |= Rd;
10938 inst.instruction |= Rn << 3;
10939 return;
10940 }
b99bd4ef 10941
c19d1205
ZW
10942 /* If we get here, it can't be done in 16 bits. */
10943 constraint (inst.operands[2].shifted
10944 && inst.operands[2].immisreg,
10945 _("shift must be constant"));
10946 inst.instruction = THUMB_OP32 (inst.instruction);
10947 inst.instruction |= Rd << 8;
10948 inst.instruction |= Rs << 16;
10949 encode_thumb32_shifted_operand (2);
10950 }
a737bd4d 10951 }
c19d1205 10952 else
b99bd4ef 10953 {
c19d1205
ZW
10954 /* On its face this is a lie - the instruction does set the
10955 flags. However, the only supported mnemonic in this mode
10956 says it doesn't. */
10957 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 10958
c19d1205
ZW
10959 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10960 _("unshifted register required"));
10961 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10962 constraint (Rd != Rs,
10963 _("dest and source1 must be the same register"));
a737bd4d 10964
c19d1205
ZW
10965 inst.instruction = THUMB_OP16 (inst.instruction);
10966 inst.instruction |= Rd;
10967 inst.instruction |= Rn << 3;
b99bd4ef 10968 }
a737bd4d 10969}
b99bd4ef 10970
c19d1205
ZW
10971/* Similarly, but for instructions where the arithmetic operation is
10972 commutative, so we can allow either of them to be different from
10973 the destination operand in a 16-bit instruction. For instance, all
10974 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10975 accepted. */
10976static void
10977do_t_arit3c (void)
a737bd4d 10978{
c19d1205 10979 int Rd, Rs, Rn;
b99bd4ef 10980
c19d1205
ZW
10981 Rd = inst.operands[0].reg;
10982 Rs = (inst.operands[1].present
10983 ? inst.operands[1].reg /* Rd, Rs, foo */
10984 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10985 Rn = inst.operands[2].reg;
c921be7d 10986
fdfde340
JM
10987 reject_bad_reg (Rd);
10988 reject_bad_reg (Rs);
10989 if (inst.operands[2].isreg)
10990 reject_bad_reg (Rn);
a737bd4d 10991
c19d1205 10992 if (unified_syntax)
a737bd4d 10993 {
c19d1205 10994 if (!inst.operands[2].isreg)
b99bd4ef 10995 {
c19d1205
ZW
10996 /* For an immediate, we always generate a 32-bit opcode;
10997 section relaxation will shrink it later if possible. */
10998 inst.instruction = THUMB_OP32 (inst.instruction);
10999 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11000 inst.instruction |= Rd << 8;
11001 inst.instruction |= Rs << 16;
e2b0ab59 11002 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11003 }
c19d1205 11004 else
a737bd4d 11005 {
e27ec89e
PB
11006 bfd_boolean narrow;
11007
c19d1205 11008 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11009 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11010 narrow = !in_it_block ();
e27ec89e 11011 else
e07e6e58 11012 narrow = in_it_block ();
e27ec89e
PB
11013
11014 if (Rd > 7 || Rn > 7 || Rs > 7)
11015 narrow = FALSE;
11016 if (inst.operands[2].shifted)
11017 narrow = FALSE;
11018 if (inst.size_req == 4)
11019 narrow = FALSE;
11020
11021 if (narrow)
a737bd4d 11022 {
c19d1205 11023 if (Rd == Rs)
a737bd4d 11024 {
c19d1205
ZW
11025 inst.instruction = THUMB_OP16 (inst.instruction);
11026 inst.instruction |= Rd;
11027 inst.instruction |= Rn << 3;
11028 return;
a737bd4d 11029 }
c19d1205 11030 if (Rd == Rn)
a737bd4d 11031 {
c19d1205
ZW
11032 inst.instruction = THUMB_OP16 (inst.instruction);
11033 inst.instruction |= Rd;
11034 inst.instruction |= Rs << 3;
11035 return;
a737bd4d
NC
11036 }
11037 }
c19d1205
ZW
11038
11039 /* If we get here, it can't be done in 16 bits. */
11040 constraint (inst.operands[2].shifted
11041 && inst.operands[2].immisreg,
11042 _("shift must be constant"));
11043 inst.instruction = THUMB_OP32 (inst.instruction);
11044 inst.instruction |= Rd << 8;
11045 inst.instruction |= Rs << 16;
11046 encode_thumb32_shifted_operand (2);
a737bd4d 11047 }
b99bd4ef 11048 }
c19d1205
ZW
11049 else
11050 {
11051 /* On its face this is a lie - the instruction does set the
11052 flags. However, the only supported mnemonic in this mode
11053 says it doesn't. */
11054 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11055
c19d1205
ZW
11056 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11057 _("unshifted register required"));
11058 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11059
11060 inst.instruction = THUMB_OP16 (inst.instruction);
11061 inst.instruction |= Rd;
11062
11063 if (Rd == Rs)
11064 inst.instruction |= Rn << 3;
11065 else if (Rd == Rn)
11066 inst.instruction |= Rs << 3;
11067 else
11068 constraint (1, _("dest must overlap one source register"));
11069 }
a737bd4d
NC
11070}
11071
c19d1205
ZW
11072static void
11073do_t_bfc (void)
a737bd4d 11074{
fdfde340 11075 unsigned Rd;
c19d1205
ZW
11076 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11077 constraint (msb > 32, _("bit-field extends past end of register"));
11078 /* The instruction encoding stores the LSB and MSB,
11079 not the LSB and width. */
fdfde340
JM
11080 Rd = inst.operands[0].reg;
11081 reject_bad_reg (Rd);
11082 inst.instruction |= Rd << 8;
c19d1205
ZW
11083 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11084 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11085 inst.instruction |= msb - 1;
b99bd4ef
NC
11086}
11087
c19d1205
ZW
11088static void
11089do_t_bfi (void)
b99bd4ef 11090{
fdfde340 11091 int Rd, Rn;
c19d1205 11092 unsigned int msb;
b99bd4ef 11093
fdfde340
JM
11094 Rd = inst.operands[0].reg;
11095 reject_bad_reg (Rd);
11096
c19d1205
ZW
11097 /* #0 in second position is alternative syntax for bfc, which is
11098 the same instruction but with REG_PC in the Rm field. */
11099 if (!inst.operands[1].isreg)
fdfde340
JM
11100 Rn = REG_PC;
11101 else
11102 {
11103 Rn = inst.operands[1].reg;
11104 reject_bad_reg (Rn);
11105 }
b99bd4ef 11106
c19d1205
ZW
11107 msb = inst.operands[2].imm + inst.operands[3].imm;
11108 constraint (msb > 32, _("bit-field extends past end of register"));
11109 /* The instruction encoding stores the LSB and MSB,
11110 not the LSB and width. */
fdfde340
JM
11111 inst.instruction |= Rd << 8;
11112 inst.instruction |= Rn << 16;
c19d1205
ZW
11113 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11114 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11115 inst.instruction |= msb - 1;
b99bd4ef
NC
11116}
11117
c19d1205
ZW
11118static void
11119do_t_bfx (void)
b99bd4ef 11120{
fdfde340
JM
11121 unsigned Rd, Rn;
11122
11123 Rd = inst.operands[0].reg;
11124 Rn = inst.operands[1].reg;
11125
11126 reject_bad_reg (Rd);
11127 reject_bad_reg (Rn);
11128
c19d1205
ZW
11129 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11130 _("bit-field extends past end of register"));
fdfde340
JM
11131 inst.instruction |= Rd << 8;
11132 inst.instruction |= Rn << 16;
c19d1205
ZW
11133 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11134 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11135 inst.instruction |= inst.operands[3].imm - 1;
11136}
b99bd4ef 11137
c19d1205
ZW
11138/* ARM V5 Thumb BLX (argument parse)
11139 BLX <target_addr> which is BLX(1)
11140 BLX <Rm> which is BLX(2)
11141 Unfortunately, there are two different opcodes for this mnemonic.
11142 So, the insns[].value is not used, and the code here zaps values
11143 into inst.instruction.
b99bd4ef 11144
c19d1205
ZW
11145 ??? How to take advantage of the additional two bits of displacement
11146 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11147
c19d1205
ZW
11148static void
11149do_t_blx (void)
11150{
e07e6e58
NC
11151 set_it_insn_type_last ();
11152
c19d1205 11153 if (inst.operands[0].isreg)
fdfde340
JM
11154 {
11155 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11156 /* We have a register, so this is BLX(2). */
11157 inst.instruction |= inst.operands[0].reg << 3;
11158 }
b99bd4ef
NC
11159 else
11160 {
c19d1205 11161 /* No register. This must be BLX(1). */
2fc8bdac 11162 inst.instruction = 0xf000e800;
0855e32b 11163 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11164 }
11165}
11166
c19d1205
ZW
11167static void
11168do_t_branch (void)
b99bd4ef 11169{
0110f2b8 11170 int opcode;
dfa9f0d5 11171 int cond;
2fe88214 11172 bfd_reloc_code_real_type reloc;
dfa9f0d5 11173
e07e6e58
NC
11174 cond = inst.cond;
11175 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
11176
11177 if (in_it_block ())
dfa9f0d5
PB
11178 {
11179 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11180 branches. */
dfa9f0d5 11181 cond = COND_ALWAYS;
dfa9f0d5
PB
11182 }
11183 else
11184 cond = inst.cond;
11185
11186 if (cond != COND_ALWAYS)
0110f2b8
PB
11187 opcode = T_MNEM_bcond;
11188 else
11189 opcode = inst.instruction;
11190
12d6b0b7
RS
11191 if (unified_syntax
11192 && (inst.size_req == 4
10960bfb
PB
11193 || (inst.size_req != 2
11194 && (inst.operands[0].hasreloc
e2b0ab59 11195 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11196 {
0110f2b8 11197 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11198 if (cond == COND_ALWAYS)
9ae92b05 11199 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11200 else
11201 {
ff8646ee
TP
11202 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11203 _("selected architecture does not support "
11204 "wide conditional branch instruction"));
11205
9c2799c2 11206 gas_assert (cond != 0xF);
dfa9f0d5 11207 inst.instruction |= cond << 22;
9ae92b05 11208 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11209 }
11210 }
b99bd4ef
NC
11211 else
11212 {
0110f2b8 11213 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11214 if (cond == COND_ALWAYS)
9ae92b05 11215 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11216 else
b99bd4ef 11217 {
dfa9f0d5 11218 inst.instruction |= cond << 8;
9ae92b05 11219 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11220 }
0110f2b8
PB
11221 /* Allow section relaxation. */
11222 if (unified_syntax && inst.size_req != 2)
11223 inst.relax = opcode;
b99bd4ef 11224 }
e2b0ab59
AV
11225 inst.relocs[0].type = reloc;
11226 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11227}
11228
8884b720 11229/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11230 between the two is the maximum immediate allowed - which is passed in
8884b720 11231 RANGE. */
b99bd4ef 11232static void
8884b720 11233do_t_bkpt_hlt1 (int range)
b99bd4ef 11234{
dfa9f0d5
PB
11235 constraint (inst.cond != COND_ALWAYS,
11236 _("instruction is always unconditional"));
c19d1205 11237 if (inst.operands[0].present)
b99bd4ef 11238 {
8884b720 11239 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11240 _("immediate value out of range"));
11241 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11242 }
8884b720
MGD
11243
11244 set_it_insn_type (NEUTRAL_IT_INSN);
11245}
11246
11247static void
11248do_t_hlt (void)
11249{
11250 do_t_bkpt_hlt1 (63);
11251}
11252
11253static void
11254do_t_bkpt (void)
11255{
11256 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11257}
11258
11259static void
c19d1205 11260do_t_branch23 (void)
b99bd4ef 11261{
e07e6e58 11262 set_it_insn_type_last ();
0855e32b 11263 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11264
0855e32b
NS
11265 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11266 this file. We used to simply ignore the PLT reloc type here --
11267 the branch encoding is now needed to deal with TLSCALL relocs.
11268 So if we see a PLT reloc now, put it back to how it used to be to
11269 keep the preexisting behaviour. */
e2b0ab59
AV
11270 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11271 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11272
4343666d 11273#if defined(OBJ_COFF)
c19d1205
ZW
11274 /* If the destination of the branch is a defined symbol which does not have
11275 the THUMB_FUNC attribute, then we must be calling a function which has
11276 the (interfacearm) attribute. We look for the Thumb entry point to that
11277 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11278 if ( inst.relocs[0].exp.X_op == O_symbol
11279 && inst.relocs[0].exp.X_add_symbol != NULL
11280 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11281 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11282 inst.relocs[0].exp.X_add_symbol
11283 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11284#endif
90e4755a
RE
11285}
11286
11287static void
c19d1205 11288do_t_bx (void)
90e4755a 11289{
e07e6e58 11290 set_it_insn_type_last ();
c19d1205
ZW
11291 inst.instruction |= inst.operands[0].reg << 3;
11292 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11293 should cause the alignment to be checked once it is known. This is
11294 because BX PC only works if the instruction is word aligned. */
11295}
90e4755a 11296
c19d1205
ZW
11297static void
11298do_t_bxj (void)
11299{
fdfde340 11300 int Rm;
90e4755a 11301
e07e6e58 11302 set_it_insn_type_last ();
fdfde340
JM
11303 Rm = inst.operands[0].reg;
11304 reject_bad_reg (Rm);
11305 inst.instruction |= Rm << 16;
90e4755a
RE
11306}
11307
11308static void
c19d1205 11309do_t_clz (void)
90e4755a 11310{
fdfde340
JM
11311 unsigned Rd;
11312 unsigned Rm;
11313
11314 Rd = inst.operands[0].reg;
11315 Rm = inst.operands[1].reg;
11316
11317 reject_bad_reg (Rd);
11318 reject_bad_reg (Rm);
11319
11320 inst.instruction |= Rd << 8;
11321 inst.instruction |= Rm << 16;
11322 inst.instruction |= Rm;
c19d1205 11323}
90e4755a 11324
91d8b670
JG
11325static void
11326do_t_csdb (void)
11327{
11328 set_it_insn_type (OUTSIDE_IT_INSN);
11329}
11330
dfa9f0d5
PB
11331static void
11332do_t_cps (void)
11333{
e07e6e58 11334 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
11335 inst.instruction |= inst.operands[0].imm;
11336}
11337
c19d1205
ZW
11338static void
11339do_t_cpsi (void)
11340{
e07e6e58 11341 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 11342 if (unified_syntax
62b3e311
PB
11343 && (inst.operands[1].present || inst.size_req == 4)
11344 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11345 {
c19d1205
ZW
11346 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11347 inst.instruction = 0xf3af8000;
11348 inst.instruction |= imod << 9;
11349 inst.instruction |= inst.operands[0].imm << 5;
11350 if (inst.operands[1].present)
11351 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11352 }
c19d1205 11353 else
90e4755a 11354 {
62b3e311
PB
11355 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11356 && (inst.operands[0].imm & 4),
11357 _("selected processor does not support 'A' form "
11358 "of this instruction"));
11359 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11360 _("Thumb does not support the 2-argument "
11361 "form of this instruction"));
11362 inst.instruction |= inst.operands[0].imm;
90e4755a 11363 }
90e4755a
RE
11364}
11365
c19d1205
ZW
11366/* THUMB CPY instruction (argument parse). */
11367
90e4755a 11368static void
c19d1205 11369do_t_cpy (void)
90e4755a 11370{
c19d1205 11371 if (inst.size_req == 4)
90e4755a 11372 {
c19d1205
ZW
11373 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11374 inst.instruction |= inst.operands[0].reg << 8;
11375 inst.instruction |= inst.operands[1].reg;
90e4755a 11376 }
c19d1205 11377 else
90e4755a 11378 {
c19d1205
ZW
11379 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11380 inst.instruction |= (inst.operands[0].reg & 0x7);
11381 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11382 }
90e4755a
RE
11383}
11384
90e4755a 11385static void
25fe350b 11386do_t_cbz (void)
90e4755a 11387{
e07e6e58 11388 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11389 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11390 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
11391 inst.relocs[0].pc_rel = 1;
11392 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 11393}
90e4755a 11394
62b3e311
PB
11395static void
11396do_t_dbg (void)
11397{
11398 inst.instruction |= inst.operands[0].imm;
11399}
11400
11401static void
11402do_t_div (void)
11403{
fdfde340
JM
11404 unsigned Rd, Rn, Rm;
11405
11406 Rd = inst.operands[0].reg;
11407 Rn = (inst.operands[1].present
11408 ? inst.operands[1].reg : Rd);
11409 Rm = inst.operands[2].reg;
11410
11411 reject_bad_reg (Rd);
11412 reject_bad_reg (Rn);
11413 reject_bad_reg (Rm);
11414
11415 inst.instruction |= Rd << 8;
11416 inst.instruction |= Rn << 16;
11417 inst.instruction |= Rm;
62b3e311
PB
11418}
11419
c19d1205
ZW
11420static void
11421do_t_hint (void)
11422{
11423 if (unified_syntax && inst.size_req == 4)
11424 inst.instruction = THUMB_OP32 (inst.instruction);
11425 else
11426 inst.instruction = THUMB_OP16 (inst.instruction);
11427}
90e4755a 11428
c19d1205
ZW
11429static void
11430do_t_it (void)
11431{
11432 unsigned int cond = inst.operands[0].imm;
e27ec89e 11433
e07e6e58
NC
11434 set_it_insn_type (IT_INSN);
11435 now_it.mask = (inst.instruction & 0xf) | 0x10;
11436 now_it.cc = cond;
5a01bb1d 11437 now_it.warn_deprecated = FALSE;
e27ec89e
PB
11438
11439 /* If the condition is a negative condition, invert the mask. */
c19d1205 11440 if ((cond & 0x1) == 0x0)
90e4755a 11441 {
c19d1205 11442 unsigned int mask = inst.instruction & 0x000f;
90e4755a 11443
c19d1205 11444 if ((mask & 0x7) == 0)
5a01bb1d
MGD
11445 {
11446 /* No conversion needed. */
11447 now_it.block_length = 1;
11448 }
c19d1205 11449 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
11450 {
11451 mask ^= 0x8;
11452 now_it.block_length = 2;
11453 }
e27ec89e 11454 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
11455 {
11456 mask ^= 0xC;
11457 now_it.block_length = 3;
11458 }
c19d1205 11459 else
5a01bb1d
MGD
11460 {
11461 mask ^= 0xE;
11462 now_it.block_length = 4;
11463 }
90e4755a 11464
e27ec89e
PB
11465 inst.instruction &= 0xfff0;
11466 inst.instruction |= mask;
c19d1205 11467 }
90e4755a 11468
c19d1205
ZW
11469 inst.instruction |= cond << 4;
11470}
90e4755a 11471
3c707909
PB
11472/* Helper function used for both push/pop and ldm/stm. */
11473static void
11474encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11475{
11476 bfd_boolean load;
11477
11478 load = (inst.instruction & (1 << 20)) != 0;
11479
11480 if (mask & (1 << 13))
11481 inst.error = _("SP not allowed in register list");
1e5b0379
NC
11482
11483 if ((mask & (1 << base)) != 0
11484 && writeback)
11485 inst.error = _("having the base register in the register list when "
11486 "using write back is UNPREDICTABLE");
11487
3c707909
PB
11488 if (load)
11489 {
e07e6e58 11490 if (mask & (1 << 15))
477330fc
RM
11491 {
11492 if (mask & (1 << 14))
11493 inst.error = _("LR and PC should not both be in register list");
11494 else
11495 set_it_insn_type_last ();
11496 }
3c707909
PB
11497 }
11498 else
11499 {
11500 if (mask & (1 << 15))
11501 inst.error = _("PC not allowed in register list");
3c707909
PB
11502 }
11503
11504 if ((mask & (mask - 1)) == 0)
11505 {
11506 /* Single register transfers implemented as str/ldr. */
11507 if (writeback)
11508 {
11509 if (inst.instruction & (1 << 23))
11510 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11511 else
11512 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11513 }
11514 else
11515 {
11516 if (inst.instruction & (1 << 23))
11517 inst.instruction = 0x00800000; /* ia -> [base] */
11518 else
11519 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11520 }
11521
11522 inst.instruction |= 0xf8400000;
11523 if (load)
11524 inst.instruction |= 0x00100000;
11525
5f4273c7 11526 mask = ffs (mask) - 1;
3c707909
PB
11527 mask <<= 12;
11528 }
11529 else if (writeback)
11530 inst.instruction |= WRITE_BACK;
11531
11532 inst.instruction |= mask;
11533 inst.instruction |= base << 16;
11534}
11535
c19d1205
ZW
11536static void
11537do_t_ldmstm (void)
11538{
11539 /* This really doesn't seem worth it. */
e2b0ab59 11540 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
11541 _("expression too complex"));
11542 constraint (inst.operands[1].writeback,
11543 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 11544
c19d1205
ZW
11545 if (unified_syntax)
11546 {
3c707909
PB
11547 bfd_boolean narrow;
11548 unsigned mask;
11549
11550 narrow = FALSE;
c19d1205
ZW
11551 /* See if we can use a 16-bit instruction. */
11552 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11553 && inst.size_req != 4
3c707909 11554 && !(inst.operands[1].imm & ~0xff))
90e4755a 11555 {
3c707909 11556 mask = 1 << inst.operands[0].reg;
90e4755a 11557
eab4f823 11558 if (inst.operands[0].reg <= 7)
90e4755a 11559 {
3c707909 11560 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
11561 ? inst.operands[0].writeback
11562 : (inst.operands[0].writeback
11563 == !(inst.operands[1].imm & mask)))
477330fc 11564 {
eab4f823
MGD
11565 if (inst.instruction == T_MNEM_stmia
11566 && (inst.operands[1].imm & mask)
11567 && (inst.operands[1].imm & (mask - 1)))
11568 as_warn (_("value stored for r%d is UNKNOWN"),
11569 inst.operands[0].reg);
3c707909 11570
eab4f823
MGD
11571 inst.instruction = THUMB_OP16 (inst.instruction);
11572 inst.instruction |= inst.operands[0].reg << 8;
11573 inst.instruction |= inst.operands[1].imm;
11574 narrow = TRUE;
11575 }
11576 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11577 {
11578 /* This means 1 register in reg list one of 3 situations:
11579 1. Instruction is stmia, but without writeback.
11580 2. lmdia without writeback, but with Rn not in
477330fc 11581 reglist.
eab4f823
MGD
11582 3. ldmia with writeback, but with Rn in reglist.
11583 Case 3 is UNPREDICTABLE behaviour, so we handle
11584 case 1 and 2 which can be converted into a 16-bit
11585 str or ldr. The SP cases are handled below. */
11586 unsigned long opcode;
11587 /* First, record an error for Case 3. */
11588 if (inst.operands[1].imm & mask
11589 && inst.operands[0].writeback)
fa94de6b 11590 inst.error =
eab4f823
MGD
11591 _("having the base register in the register list when "
11592 "using write back is UNPREDICTABLE");
fa94de6b
RM
11593
11594 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
11595 : T_MNEM_ldr);
11596 inst.instruction = THUMB_OP16 (opcode);
11597 inst.instruction |= inst.operands[0].reg << 3;
11598 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11599 narrow = TRUE;
11600 }
90e4755a 11601 }
eab4f823 11602 else if (inst.operands[0] .reg == REG_SP)
90e4755a 11603 {
eab4f823
MGD
11604 if (inst.operands[0].writeback)
11605 {
fa94de6b 11606 inst.instruction =
eab4f823 11607 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 11608 ? T_MNEM_push : T_MNEM_pop);
eab4f823 11609 inst.instruction |= inst.operands[1].imm;
477330fc 11610 narrow = TRUE;
eab4f823
MGD
11611 }
11612 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11613 {
fa94de6b 11614 inst.instruction =
eab4f823 11615 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 11616 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 11617 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 11618 narrow = TRUE;
eab4f823 11619 }
90e4755a 11620 }
3c707909
PB
11621 }
11622
11623 if (!narrow)
11624 {
c19d1205
ZW
11625 if (inst.instruction < 0xffff)
11626 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 11627
5f4273c7
NC
11628 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11629 inst.operands[0].writeback);
90e4755a
RE
11630 }
11631 }
c19d1205 11632 else
90e4755a 11633 {
c19d1205
ZW
11634 constraint (inst.operands[0].reg > 7
11635 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
11636 constraint (inst.instruction != T_MNEM_ldmia
11637 && inst.instruction != T_MNEM_stmia,
11638 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 11639 if (inst.instruction == T_MNEM_stmia)
f03698e6 11640 {
c19d1205
ZW
11641 if (!inst.operands[0].writeback)
11642 as_warn (_("this instruction will write back the base register"));
11643 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11644 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 11645 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 11646 inst.operands[0].reg);
f03698e6 11647 }
c19d1205 11648 else
90e4755a 11649 {
c19d1205
ZW
11650 if (!inst.operands[0].writeback
11651 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11652 as_warn (_("this instruction will write back the base register"));
11653 else if (inst.operands[0].writeback
11654 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11655 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
11656 }
11657
c19d1205
ZW
11658 inst.instruction = THUMB_OP16 (inst.instruction);
11659 inst.instruction |= inst.operands[0].reg << 8;
11660 inst.instruction |= inst.operands[1].imm;
11661 }
11662}
e28cd48c 11663
c19d1205
ZW
11664static void
11665do_t_ldrex (void)
11666{
11667 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11668 || inst.operands[1].postind || inst.operands[1].writeback
11669 || inst.operands[1].immisreg || inst.operands[1].shifted
11670 || inst.operands[1].negative,
01cfc07f 11671 BAD_ADDR_MODE);
e28cd48c 11672
5be8be5d
DG
11673 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11674
c19d1205
ZW
11675 inst.instruction |= inst.operands[0].reg << 12;
11676 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 11677 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 11678}
e28cd48c 11679
c19d1205
ZW
11680static void
11681do_t_ldrexd (void)
11682{
11683 if (!inst.operands[1].present)
1cac9012 11684 {
c19d1205
ZW
11685 constraint (inst.operands[0].reg == REG_LR,
11686 _("r14 not allowed as first register "
11687 "when second register is omitted"));
11688 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 11689 }
c19d1205
ZW
11690 constraint (inst.operands[0].reg == inst.operands[1].reg,
11691 BAD_OVERLAP);
b99bd4ef 11692
c19d1205
ZW
11693 inst.instruction |= inst.operands[0].reg << 12;
11694 inst.instruction |= inst.operands[1].reg << 8;
11695 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
11696}
11697
11698static void
c19d1205 11699do_t_ldst (void)
b99bd4ef 11700{
0110f2b8
PB
11701 unsigned long opcode;
11702 int Rn;
11703
e07e6e58
NC
11704 if (inst.operands[0].isreg
11705 && !inst.operands[0].preind
11706 && inst.operands[0].reg == REG_PC)
11707 set_it_insn_type_last ();
11708
0110f2b8 11709 opcode = inst.instruction;
c19d1205 11710 if (unified_syntax)
b99bd4ef 11711 {
53365c0d
PB
11712 if (!inst.operands[1].isreg)
11713 {
11714 if (opcode <= 0xffff)
11715 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 11716 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
11717 return;
11718 }
0110f2b8
PB
11719 if (inst.operands[1].isreg
11720 && !inst.operands[1].writeback
c19d1205
ZW
11721 && !inst.operands[1].shifted && !inst.operands[1].postind
11722 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
11723 && opcode <= 0xffff
11724 && inst.size_req != 4)
c19d1205 11725 {
0110f2b8
PB
11726 /* Insn may have a 16-bit form. */
11727 Rn = inst.operands[1].reg;
11728 if (inst.operands[1].immisreg)
11729 {
11730 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 11731 /* [Rn, Rik] */
0110f2b8
PB
11732 if (Rn <= 7 && inst.operands[1].imm <= 7)
11733 goto op16;
5be8be5d
DG
11734 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11735 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
11736 }
11737 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11738 && opcode != T_MNEM_ldrsb)
11739 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11740 || (Rn == REG_SP && opcode == T_MNEM_str))
11741 {
11742 /* [Rn, #const] */
11743 if (Rn > 7)
11744 {
11745 if (Rn == REG_PC)
11746 {
e2b0ab59 11747 if (inst.relocs[0].pc_rel)
0110f2b8
PB
11748 opcode = T_MNEM_ldr_pc2;
11749 else
11750 opcode = T_MNEM_ldr_pc;
11751 }
11752 else
11753 {
11754 if (opcode == T_MNEM_ldr)
11755 opcode = T_MNEM_ldr_sp;
11756 else
11757 opcode = T_MNEM_str_sp;
11758 }
11759 inst.instruction = inst.operands[0].reg << 8;
11760 }
11761 else
11762 {
11763 inst.instruction = inst.operands[0].reg;
11764 inst.instruction |= inst.operands[1].reg << 3;
11765 }
11766 inst.instruction |= THUMB_OP16 (opcode);
11767 if (inst.size_req == 2)
e2b0ab59 11768 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
11769 else
11770 inst.relax = opcode;
11771 return;
11772 }
c19d1205 11773 }
0110f2b8 11774 /* Definitely a 32-bit variant. */
5be8be5d 11775
8d67f500
NC
11776 /* Warning for Erratum 752419. */
11777 if (opcode == T_MNEM_ldr
11778 && inst.operands[0].reg == REG_SP
11779 && inst.operands[1].writeback == 1
11780 && !inst.operands[1].immisreg)
11781 {
11782 if (no_cpu_selected ()
11783 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
11784 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11785 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
11786 as_warn (_("This instruction may be unpredictable "
11787 "if executed on M-profile cores "
11788 "with interrupts enabled."));
11789 }
11790
5be8be5d 11791 /* Do some validations regarding addressing modes. */
1be5fd2e 11792 if (inst.operands[1].immisreg)
5be8be5d
DG
11793 reject_bad_reg (inst.operands[1].imm);
11794
1be5fd2e
NC
11795 constraint (inst.operands[1].writeback == 1
11796 && inst.operands[0].reg == inst.operands[1].reg,
11797 BAD_OVERLAP);
11798
0110f2b8 11799 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
11800 inst.instruction |= inst.operands[0].reg << 12;
11801 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 11802 check_ldr_r15_aligned ();
b99bd4ef
NC
11803 return;
11804 }
11805
c19d1205
ZW
11806 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11807
11808 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 11809 {
c19d1205
ZW
11810 /* Only [Rn,Rm] is acceptable. */
11811 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11812 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11813 || inst.operands[1].postind || inst.operands[1].shifted
11814 || inst.operands[1].negative,
11815 _("Thumb does not support this addressing mode"));
11816 inst.instruction = THUMB_OP16 (inst.instruction);
11817 goto op16;
b99bd4ef 11818 }
5f4273c7 11819
c19d1205
ZW
11820 inst.instruction = THUMB_OP16 (inst.instruction);
11821 if (!inst.operands[1].isreg)
8335d6aa 11822 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 11823 return;
b99bd4ef 11824
c19d1205
ZW
11825 constraint (!inst.operands[1].preind
11826 || inst.operands[1].shifted
11827 || inst.operands[1].writeback,
11828 _("Thumb does not support this addressing mode"));
11829 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 11830 {
c19d1205
ZW
11831 constraint (inst.instruction & 0x0600,
11832 _("byte or halfword not valid for base register"));
11833 constraint (inst.operands[1].reg == REG_PC
11834 && !(inst.instruction & THUMB_LOAD_BIT),
11835 _("r15 based store not allowed"));
11836 constraint (inst.operands[1].immisreg,
11837 _("invalid base register for register offset"));
b99bd4ef 11838
c19d1205
ZW
11839 if (inst.operands[1].reg == REG_PC)
11840 inst.instruction = T_OPCODE_LDR_PC;
11841 else if (inst.instruction & THUMB_LOAD_BIT)
11842 inst.instruction = T_OPCODE_LDR_SP;
11843 else
11844 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 11845
c19d1205 11846 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 11847 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
11848 return;
11849 }
90e4755a 11850
c19d1205
ZW
11851 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11852 if (!inst.operands[1].immisreg)
11853 {
11854 /* Immediate offset. */
11855 inst.instruction |= inst.operands[0].reg;
11856 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 11857 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
11858 return;
11859 }
90e4755a 11860
c19d1205
ZW
11861 /* Register offset. */
11862 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11863 constraint (inst.operands[1].negative,
11864 _("Thumb does not support this addressing mode"));
90e4755a 11865
c19d1205
ZW
11866 op16:
11867 switch (inst.instruction)
11868 {
11869 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11870 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11871 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11872 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11873 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11874 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11875 case 0x5600 /* ldrsb */:
11876 case 0x5e00 /* ldrsh */: break;
11877 default: abort ();
11878 }
90e4755a 11879
c19d1205
ZW
11880 inst.instruction |= inst.operands[0].reg;
11881 inst.instruction |= inst.operands[1].reg << 3;
11882 inst.instruction |= inst.operands[1].imm << 6;
11883}
90e4755a 11884
c19d1205
ZW
11885static void
11886do_t_ldstd (void)
11887{
11888 if (!inst.operands[1].present)
b99bd4ef 11889 {
c19d1205
ZW
11890 inst.operands[1].reg = inst.operands[0].reg + 1;
11891 constraint (inst.operands[0].reg == REG_LR,
11892 _("r14 not allowed here"));
bd340a04 11893 constraint (inst.operands[0].reg == REG_R12,
477330fc 11894 _("r12 not allowed here"));
b99bd4ef 11895 }
bd340a04
MGD
11896
11897 if (inst.operands[2].writeback
11898 && (inst.operands[0].reg == inst.operands[2].reg
11899 || inst.operands[1].reg == inst.operands[2].reg))
11900 as_warn (_("base register written back, and overlaps "
477330fc 11901 "one of transfer registers"));
bd340a04 11902
c19d1205
ZW
11903 inst.instruction |= inst.operands[0].reg << 12;
11904 inst.instruction |= inst.operands[1].reg << 8;
11905 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
11906}
11907
c19d1205
ZW
11908static void
11909do_t_ldstt (void)
11910{
11911 inst.instruction |= inst.operands[0].reg << 12;
11912 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11913}
a737bd4d 11914
b99bd4ef 11915static void
c19d1205 11916do_t_mla (void)
b99bd4ef 11917{
fdfde340 11918 unsigned Rd, Rn, Rm, Ra;
c921be7d 11919
fdfde340
JM
11920 Rd = inst.operands[0].reg;
11921 Rn = inst.operands[1].reg;
11922 Rm = inst.operands[2].reg;
11923 Ra = inst.operands[3].reg;
11924
11925 reject_bad_reg (Rd);
11926 reject_bad_reg (Rn);
11927 reject_bad_reg (Rm);
11928 reject_bad_reg (Ra);
11929
11930 inst.instruction |= Rd << 8;
11931 inst.instruction |= Rn << 16;
11932 inst.instruction |= Rm;
11933 inst.instruction |= Ra << 12;
c19d1205 11934}
b99bd4ef 11935
c19d1205
ZW
11936static void
11937do_t_mlal (void)
11938{
fdfde340
JM
11939 unsigned RdLo, RdHi, Rn, Rm;
11940
11941 RdLo = inst.operands[0].reg;
11942 RdHi = inst.operands[1].reg;
11943 Rn = inst.operands[2].reg;
11944 Rm = inst.operands[3].reg;
11945
11946 reject_bad_reg (RdLo);
11947 reject_bad_reg (RdHi);
11948 reject_bad_reg (Rn);
11949 reject_bad_reg (Rm);
11950
11951 inst.instruction |= RdLo << 12;
11952 inst.instruction |= RdHi << 8;
11953 inst.instruction |= Rn << 16;
11954 inst.instruction |= Rm;
c19d1205 11955}
b99bd4ef 11956
c19d1205
ZW
11957static void
11958do_t_mov_cmp (void)
11959{
fdfde340
JM
11960 unsigned Rn, Rm;
11961
11962 Rn = inst.operands[0].reg;
11963 Rm = inst.operands[1].reg;
11964
e07e6e58
NC
11965 if (Rn == REG_PC)
11966 set_it_insn_type_last ();
11967
c19d1205 11968 if (unified_syntax)
b99bd4ef 11969 {
c19d1205
ZW
11970 int r0off = (inst.instruction == T_MNEM_mov
11971 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 11972 unsigned long opcode;
3d388997
PB
11973 bfd_boolean narrow;
11974 bfd_boolean low_regs;
11975
fdfde340 11976 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 11977 opcode = inst.instruction;
e07e6e58 11978 if (in_it_block ())
0110f2b8 11979 narrow = opcode != T_MNEM_movs;
3d388997 11980 else
0110f2b8 11981 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
11982 if (inst.size_req == 4
11983 || inst.operands[1].shifted)
11984 narrow = FALSE;
11985
efd81785
PB
11986 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11987 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11988 && !inst.operands[1].shifted
fdfde340
JM
11989 && Rn == REG_PC
11990 && Rm == REG_LR)
efd81785
PB
11991 {
11992 inst.instruction = T2_SUBS_PC_LR;
11993 return;
11994 }
11995
fdfde340
JM
11996 if (opcode == T_MNEM_cmp)
11997 {
11998 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
11999 if (narrow)
12000 {
12001 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12002 but valid. */
12003 warn_deprecated_sp (Rm);
12004 /* R15 was documented as a valid choice for Rm in ARMv6,
12005 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12006 tools reject R15, so we do too. */
12007 constraint (Rm == REG_PC, BAD_PC);
12008 }
12009 else
12010 reject_bad_reg (Rm);
fdfde340
JM
12011 }
12012 else if (opcode == T_MNEM_mov
12013 || opcode == T_MNEM_movs)
12014 {
12015 if (inst.operands[1].isreg)
12016 {
12017 if (opcode == T_MNEM_movs)
12018 {
12019 reject_bad_reg (Rn);
12020 reject_bad_reg (Rm);
12021 }
76fa04a4
MGD
12022 else if (narrow)
12023 {
12024 /* This is mov.n. */
12025 if ((Rn == REG_SP || Rn == REG_PC)
12026 && (Rm == REG_SP || Rm == REG_PC))
12027 {
5c3696f8 12028 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12029 "deprecated when r%u is the destination "
12030 "register."), Rm, Rn);
12031 }
12032 }
12033 else
12034 {
12035 /* This is mov.w. */
12036 constraint (Rn == REG_PC, BAD_PC);
12037 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12038 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12039 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12040 }
fdfde340
JM
12041 }
12042 else
12043 reject_bad_reg (Rn);
12044 }
12045
c19d1205
ZW
12046 if (!inst.operands[1].isreg)
12047 {
0110f2b8 12048 /* Immediate operand. */
e07e6e58 12049 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12050 narrow = 0;
12051 if (low_regs && narrow)
12052 {
12053 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12054 inst.instruction |= Rn << 8;
e2b0ab59
AV
12055 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12056 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12057 {
a9f02af8 12058 if (inst.size_req == 2)
e2b0ab59 12059 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12060 else
12061 inst.relax = opcode;
72d98d16 12062 }
0110f2b8
PB
12063 }
12064 else
12065 {
e2b0ab59
AV
12066 constraint ((inst.relocs[0].type
12067 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12068 && (inst.relocs[0].type
12069 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12070 THUMB1_RELOC_ONLY);
12071
0110f2b8
PB
12072 inst.instruction = THUMB_OP32 (inst.instruction);
12073 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12074 inst.instruction |= Rn << r0off;
e2b0ab59 12075 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12076 }
c19d1205 12077 }
728ca7c9
PB
12078 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12079 && (inst.instruction == T_MNEM_mov
12080 || inst.instruction == T_MNEM_movs))
12081 {
12082 /* Register shifts are encoded as separate shift instructions. */
12083 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12084
e07e6e58 12085 if (in_it_block ())
728ca7c9
PB
12086 narrow = !flags;
12087 else
12088 narrow = flags;
12089
12090 if (inst.size_req == 4)
12091 narrow = FALSE;
12092
12093 if (!low_regs || inst.operands[1].imm > 7)
12094 narrow = FALSE;
12095
fdfde340 12096 if (Rn != Rm)
728ca7c9
PB
12097 narrow = FALSE;
12098
12099 switch (inst.operands[1].shift_kind)
12100 {
12101 case SHIFT_LSL:
12102 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12103 break;
12104 case SHIFT_ASR:
12105 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12106 break;
12107 case SHIFT_LSR:
12108 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12109 break;
12110 case SHIFT_ROR:
12111 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12112 break;
12113 default:
5f4273c7 12114 abort ();
728ca7c9
PB
12115 }
12116
12117 inst.instruction = opcode;
12118 if (narrow)
12119 {
fdfde340 12120 inst.instruction |= Rn;
728ca7c9
PB
12121 inst.instruction |= inst.operands[1].imm << 3;
12122 }
12123 else
12124 {
12125 if (flags)
12126 inst.instruction |= CONDS_BIT;
12127
fdfde340
JM
12128 inst.instruction |= Rn << 8;
12129 inst.instruction |= Rm << 16;
728ca7c9
PB
12130 inst.instruction |= inst.operands[1].imm;
12131 }
12132 }
3d388997 12133 else if (!narrow)
c19d1205 12134 {
728ca7c9
PB
12135 /* Some mov with immediate shift have narrow variants.
12136 Register shifts are handled above. */
12137 if (low_regs && inst.operands[1].shifted
12138 && (inst.instruction == T_MNEM_mov
12139 || inst.instruction == T_MNEM_movs))
12140 {
e07e6e58 12141 if (in_it_block ())
728ca7c9
PB
12142 narrow = (inst.instruction == T_MNEM_mov);
12143 else
12144 narrow = (inst.instruction == T_MNEM_movs);
12145 }
12146
12147 if (narrow)
12148 {
12149 switch (inst.operands[1].shift_kind)
12150 {
12151 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12152 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12153 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12154 default: narrow = FALSE; break;
12155 }
12156 }
12157
12158 if (narrow)
12159 {
fdfde340
JM
12160 inst.instruction |= Rn;
12161 inst.instruction |= Rm << 3;
e2b0ab59 12162 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12163 }
12164 else
12165 {
12166 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12167 inst.instruction |= Rn << r0off;
728ca7c9
PB
12168 encode_thumb32_shifted_operand (1);
12169 }
c19d1205
ZW
12170 }
12171 else
12172 switch (inst.instruction)
12173 {
12174 case T_MNEM_mov:
837b3435 12175 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12176 results. Don't allow this. */
12177 if (low_regs)
12178 {
12179 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12180 "MOV Rd, Rs with two low registers is not "
12181 "permitted on this architecture");
fa94de6b 12182 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12183 arm_ext_v6);
12184 }
12185
c19d1205 12186 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12187 inst.instruction |= (Rn & 0x8) << 4;
12188 inst.instruction |= (Rn & 0x7);
12189 inst.instruction |= Rm << 3;
c19d1205 12190 break;
b99bd4ef 12191
c19d1205
ZW
12192 case T_MNEM_movs:
12193 /* We know we have low registers at this point.
941a8a52
MGD
12194 Generate LSLS Rd, Rs, #0. */
12195 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12196 inst.instruction |= Rn;
12197 inst.instruction |= Rm << 3;
c19d1205
ZW
12198 break;
12199
12200 case T_MNEM_cmp:
3d388997 12201 if (low_regs)
c19d1205
ZW
12202 {
12203 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12204 inst.instruction |= Rn;
12205 inst.instruction |= Rm << 3;
c19d1205
ZW
12206 }
12207 else
12208 {
12209 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12210 inst.instruction |= (Rn & 0x8) << 4;
12211 inst.instruction |= (Rn & 0x7);
12212 inst.instruction |= Rm << 3;
c19d1205
ZW
12213 }
12214 break;
12215 }
b99bd4ef
NC
12216 return;
12217 }
12218
c19d1205 12219 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12220
12221 /* PR 10443: Do not silently ignore shifted operands. */
12222 constraint (inst.operands[1].shifted,
12223 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12224
c19d1205 12225 if (inst.operands[1].isreg)
b99bd4ef 12226 {
fdfde340 12227 if (Rn < 8 && Rm < 8)
b99bd4ef 12228 {
c19d1205
ZW
12229 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12230 since a MOV instruction produces unpredictable results. */
12231 if (inst.instruction == T_OPCODE_MOV_I8)
12232 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12233 else
c19d1205 12234 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12235
fdfde340
JM
12236 inst.instruction |= Rn;
12237 inst.instruction |= Rm << 3;
b99bd4ef
NC
12238 }
12239 else
12240 {
c19d1205
ZW
12241 if (inst.instruction == T_OPCODE_MOV_I8)
12242 inst.instruction = T_OPCODE_MOV_HR;
12243 else
12244 inst.instruction = T_OPCODE_CMP_HR;
12245 do_t_cpy ();
b99bd4ef
NC
12246 }
12247 }
c19d1205 12248 else
b99bd4ef 12249 {
fdfde340 12250 constraint (Rn > 7,
c19d1205 12251 _("only lo regs allowed with immediate"));
fdfde340 12252 inst.instruction |= Rn << 8;
e2b0ab59 12253 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12254 }
12255}
b99bd4ef 12256
c19d1205
ZW
12257static void
12258do_t_mov16 (void)
12259{
fdfde340 12260 unsigned Rd;
b6895b4f
PB
12261 bfd_vma imm;
12262 bfd_boolean top;
12263
12264 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12265 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12266 {
33eaf5de 12267 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12268 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12269 }
e2b0ab59 12270 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12271 {
33eaf5de 12272 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12273 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12274 }
12275
fdfde340
JM
12276 Rd = inst.operands[0].reg;
12277 reject_bad_reg (Rd);
12278
12279 inst.instruction |= Rd << 8;
e2b0ab59 12280 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12281 {
e2b0ab59 12282 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12283 inst.instruction |= (imm & 0xf000) << 4;
12284 inst.instruction |= (imm & 0x0800) << 15;
12285 inst.instruction |= (imm & 0x0700) << 4;
12286 inst.instruction |= (imm & 0x00ff);
12287 }
c19d1205 12288}
b99bd4ef 12289
c19d1205
ZW
12290static void
12291do_t_mvn_tst (void)
12292{
fdfde340 12293 unsigned Rn, Rm;
c921be7d 12294
fdfde340
JM
12295 Rn = inst.operands[0].reg;
12296 Rm = inst.operands[1].reg;
12297
12298 if (inst.instruction == T_MNEM_cmp
12299 || inst.instruction == T_MNEM_cmn)
12300 constraint (Rn == REG_PC, BAD_PC);
12301 else
12302 reject_bad_reg (Rn);
12303 reject_bad_reg (Rm);
12304
c19d1205
ZW
12305 if (unified_syntax)
12306 {
12307 int r0off = (inst.instruction == T_MNEM_mvn
12308 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12309 bfd_boolean narrow;
12310
12311 if (inst.size_req == 4
12312 || inst.instruction > 0xffff
12313 || inst.operands[1].shifted
fdfde340 12314 || Rn > 7 || Rm > 7)
3d388997 12315 narrow = FALSE;
fe8b4cc3
KT
12316 else if (inst.instruction == T_MNEM_cmn
12317 || inst.instruction == T_MNEM_tst)
3d388997
PB
12318 narrow = TRUE;
12319 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12320 narrow = !in_it_block ();
3d388997 12321 else
e07e6e58 12322 narrow = in_it_block ();
3d388997 12323
c19d1205 12324 if (!inst.operands[1].isreg)
b99bd4ef 12325 {
c19d1205
ZW
12326 /* For an immediate, we always generate a 32-bit opcode;
12327 section relaxation will shrink it later if possible. */
12328 if (inst.instruction < 0xffff)
12329 inst.instruction = THUMB_OP32 (inst.instruction);
12330 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12331 inst.instruction |= Rn << r0off;
e2b0ab59 12332 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12333 }
c19d1205 12334 else
b99bd4ef 12335 {
c19d1205 12336 /* See if we can do this with a 16-bit instruction. */
3d388997 12337 if (narrow)
b99bd4ef 12338 {
c19d1205 12339 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12340 inst.instruction |= Rn;
12341 inst.instruction |= Rm << 3;
b99bd4ef 12342 }
c19d1205 12343 else
b99bd4ef 12344 {
c19d1205
ZW
12345 constraint (inst.operands[1].shifted
12346 && inst.operands[1].immisreg,
12347 _("shift must be constant"));
12348 if (inst.instruction < 0xffff)
12349 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12350 inst.instruction |= Rn << r0off;
c19d1205 12351 encode_thumb32_shifted_operand (1);
b99bd4ef 12352 }
b99bd4ef
NC
12353 }
12354 }
12355 else
12356 {
c19d1205
ZW
12357 constraint (inst.instruction > 0xffff
12358 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12359 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12360 _("unshifted register required"));
fdfde340 12361 constraint (Rn > 7 || Rm > 7,
c19d1205 12362 BAD_HIREG);
b99bd4ef 12363
c19d1205 12364 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12365 inst.instruction |= Rn;
12366 inst.instruction |= Rm << 3;
b99bd4ef 12367 }
b99bd4ef
NC
12368}
12369
b05fe5cf 12370static void
c19d1205 12371do_t_mrs (void)
b05fe5cf 12372{
fdfde340 12373 unsigned Rd;
037e8744
JB
12374
12375 if (do_vfp_nsyn_mrs () == SUCCESS)
12376 return;
12377
90ec0d68
MGD
12378 Rd = inst.operands[0].reg;
12379 reject_bad_reg (Rd);
12380 inst.instruction |= Rd << 8;
12381
12382 if (inst.operands[1].isreg)
62b3e311 12383 {
90ec0d68
MGD
12384 unsigned br = inst.operands[1].reg;
12385 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12386 as_bad (_("bad register for mrs"));
12387
12388 inst.instruction |= br & (0xf << 16);
12389 inst.instruction |= (br & 0x300) >> 4;
12390 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12391 }
12392 else
12393 {
90ec0d68 12394 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12395
d2cd1205 12396 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12397 {
12398 /* PR gas/12698: The constraint is only applied for m_profile.
12399 If the user has specified -march=all, we want to ignore it as
12400 we are building for any CPU type, including non-m variants. */
823d2571
TG
12401 bfd_boolean m_profile =
12402 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
12403 constraint ((flags != 0) && m_profile, _("selected processor does "
12404 "not support requested special purpose register"));
12405 }
90ec0d68 12406 else
d2cd1205
JB
12407 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12408 devices). */
12409 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12410 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 12411
90ec0d68
MGD
12412 inst.instruction |= (flags & SPSR_BIT) >> 2;
12413 inst.instruction |= inst.operands[1].imm & 0xff;
12414 inst.instruction |= 0xf0000;
12415 }
c19d1205 12416}
b05fe5cf 12417
c19d1205
ZW
12418static void
12419do_t_msr (void)
12420{
62b3e311 12421 int flags;
fdfde340 12422 unsigned Rn;
62b3e311 12423
037e8744
JB
12424 if (do_vfp_nsyn_msr () == SUCCESS)
12425 return;
12426
c19d1205
ZW
12427 constraint (!inst.operands[1].isreg,
12428 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
12429
12430 if (inst.operands[0].isreg)
12431 flags = (int)(inst.operands[0].reg);
12432 else
12433 flags = inst.operands[0].imm;
12434
d2cd1205 12435 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 12436 {
d2cd1205
JB
12437 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12438
1a43faaf 12439 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
12440 If the user has specified -march=all, we want to ignore it as
12441 we are building for any CPU type, including non-m variants. */
823d2571
TG
12442 bfd_boolean m_profile =
12443 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 12444 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
12445 && (bits & ~(PSR_s | PSR_f)) != 0)
12446 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12447 && bits != PSR_f)) && m_profile,
12448 _("selected processor does not support requested special "
12449 "purpose register"));
62b3e311
PB
12450 }
12451 else
d2cd1205
JB
12452 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12453 "requested special purpose register"));
c921be7d 12454
fdfde340
JM
12455 Rn = inst.operands[1].reg;
12456 reject_bad_reg (Rn);
12457
62b3e311 12458 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
12459 inst.instruction |= (flags & 0xf0000) >> 8;
12460 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 12461 inst.instruction |= (flags & 0xff);
fdfde340 12462 inst.instruction |= Rn << 16;
c19d1205 12463}
b05fe5cf 12464
c19d1205
ZW
12465static void
12466do_t_mul (void)
12467{
17828f45 12468 bfd_boolean narrow;
fdfde340 12469 unsigned Rd, Rn, Rm;
17828f45 12470
c19d1205
ZW
12471 if (!inst.operands[2].present)
12472 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 12473
fdfde340
JM
12474 Rd = inst.operands[0].reg;
12475 Rn = inst.operands[1].reg;
12476 Rm = inst.operands[2].reg;
12477
17828f45 12478 if (unified_syntax)
b05fe5cf 12479 {
17828f45 12480 if (inst.size_req == 4
fdfde340
JM
12481 || (Rd != Rn
12482 && Rd != Rm)
12483 || Rn > 7
12484 || Rm > 7)
17828f45
JM
12485 narrow = FALSE;
12486 else if (inst.instruction == T_MNEM_muls)
e07e6e58 12487 narrow = !in_it_block ();
17828f45 12488 else
e07e6e58 12489 narrow = in_it_block ();
b05fe5cf 12490 }
c19d1205 12491 else
b05fe5cf 12492 {
17828f45 12493 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 12494 constraint (Rn > 7 || Rm > 7,
c19d1205 12495 BAD_HIREG);
17828f45
JM
12496 narrow = TRUE;
12497 }
b05fe5cf 12498
17828f45
JM
12499 if (narrow)
12500 {
12501 /* 16-bit MULS/Conditional MUL. */
c19d1205 12502 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 12503 inst.instruction |= Rd;
b05fe5cf 12504
fdfde340
JM
12505 if (Rd == Rn)
12506 inst.instruction |= Rm << 3;
12507 else if (Rd == Rm)
12508 inst.instruction |= Rn << 3;
c19d1205
ZW
12509 else
12510 constraint (1, _("dest must overlap one source register"));
12511 }
17828f45
JM
12512 else
12513 {
e07e6e58
NC
12514 constraint (inst.instruction != T_MNEM_mul,
12515 _("Thumb-2 MUL must not set flags"));
17828f45
JM
12516 /* 32-bit MUL. */
12517 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12518 inst.instruction |= Rd << 8;
12519 inst.instruction |= Rn << 16;
12520 inst.instruction |= Rm << 0;
12521
12522 reject_bad_reg (Rd);
12523 reject_bad_reg (Rn);
12524 reject_bad_reg (Rm);
17828f45 12525 }
c19d1205 12526}
b05fe5cf 12527
c19d1205
ZW
12528static void
12529do_t_mull (void)
12530{
fdfde340 12531 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 12532
fdfde340
JM
12533 RdLo = inst.operands[0].reg;
12534 RdHi = inst.operands[1].reg;
12535 Rn = inst.operands[2].reg;
12536 Rm = inst.operands[3].reg;
12537
12538 reject_bad_reg (RdLo);
12539 reject_bad_reg (RdHi);
12540 reject_bad_reg (Rn);
12541 reject_bad_reg (Rm);
12542
12543 inst.instruction |= RdLo << 12;
12544 inst.instruction |= RdHi << 8;
12545 inst.instruction |= Rn << 16;
12546 inst.instruction |= Rm;
12547
12548 if (RdLo == RdHi)
c19d1205
ZW
12549 as_tsktsk (_("rdhi and rdlo must be different"));
12550}
b05fe5cf 12551
c19d1205
ZW
12552static void
12553do_t_nop (void)
12554{
e07e6e58
NC
12555 set_it_insn_type (NEUTRAL_IT_INSN);
12556
c19d1205
ZW
12557 if (unified_syntax)
12558 {
12559 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 12560 {
c19d1205
ZW
12561 inst.instruction = THUMB_OP32 (inst.instruction);
12562 inst.instruction |= inst.operands[0].imm;
12563 }
12564 else
12565 {
bc2d1808
NC
12566 /* PR9722: Check for Thumb2 availability before
12567 generating a thumb2 nop instruction. */
afa62d5e 12568 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
12569 {
12570 inst.instruction = THUMB_OP16 (inst.instruction);
12571 inst.instruction |= inst.operands[0].imm << 4;
12572 }
12573 else
12574 inst.instruction = 0x46c0;
c19d1205
ZW
12575 }
12576 }
12577 else
12578 {
12579 constraint (inst.operands[0].present,
12580 _("Thumb does not support NOP with hints"));
12581 inst.instruction = 0x46c0;
12582 }
12583}
b05fe5cf 12584
c19d1205
ZW
12585static void
12586do_t_neg (void)
12587{
12588 if (unified_syntax)
12589 {
3d388997
PB
12590 bfd_boolean narrow;
12591
12592 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12593 narrow = !in_it_block ();
3d388997 12594 else
e07e6e58 12595 narrow = in_it_block ();
3d388997
PB
12596 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12597 narrow = FALSE;
12598 if (inst.size_req == 4)
12599 narrow = FALSE;
12600
12601 if (!narrow)
c19d1205
ZW
12602 {
12603 inst.instruction = THUMB_OP32 (inst.instruction);
12604 inst.instruction |= inst.operands[0].reg << 8;
12605 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
12606 }
12607 else
12608 {
c19d1205
ZW
12609 inst.instruction = THUMB_OP16 (inst.instruction);
12610 inst.instruction |= inst.operands[0].reg;
12611 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
12612 }
12613 }
12614 else
12615 {
c19d1205
ZW
12616 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12617 BAD_HIREG);
12618 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12619
12620 inst.instruction = THUMB_OP16 (inst.instruction);
12621 inst.instruction |= inst.operands[0].reg;
12622 inst.instruction |= inst.operands[1].reg << 3;
12623 }
12624}
12625
1c444d06
JM
12626static void
12627do_t_orn (void)
12628{
12629 unsigned Rd, Rn;
12630
12631 Rd = inst.operands[0].reg;
12632 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12633
fdfde340
JM
12634 reject_bad_reg (Rd);
12635 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12636 reject_bad_reg (Rn);
12637
1c444d06
JM
12638 inst.instruction |= Rd << 8;
12639 inst.instruction |= Rn << 16;
12640
12641 if (!inst.operands[2].isreg)
12642 {
12643 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 12644 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
12645 }
12646 else
12647 {
12648 unsigned Rm;
12649
12650 Rm = inst.operands[2].reg;
fdfde340 12651 reject_bad_reg (Rm);
1c444d06
JM
12652
12653 constraint (inst.operands[2].shifted
12654 && inst.operands[2].immisreg,
12655 _("shift must be constant"));
12656 encode_thumb32_shifted_operand (2);
12657 }
12658}
12659
c19d1205
ZW
12660static void
12661do_t_pkhbt (void)
12662{
fdfde340
JM
12663 unsigned Rd, Rn, Rm;
12664
12665 Rd = inst.operands[0].reg;
12666 Rn = inst.operands[1].reg;
12667 Rm = inst.operands[2].reg;
12668
12669 reject_bad_reg (Rd);
12670 reject_bad_reg (Rn);
12671 reject_bad_reg (Rm);
12672
12673 inst.instruction |= Rd << 8;
12674 inst.instruction |= Rn << 16;
12675 inst.instruction |= Rm;
c19d1205
ZW
12676 if (inst.operands[3].present)
12677 {
e2b0ab59
AV
12678 unsigned int val = inst.relocs[0].exp.X_add_number;
12679 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
12680 _("expression too complex"));
12681 inst.instruction |= (val & 0x1c) << 10;
12682 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 12683 }
c19d1205 12684}
b05fe5cf 12685
c19d1205
ZW
12686static void
12687do_t_pkhtb (void)
12688{
12689 if (!inst.operands[3].present)
1ef52f49
NC
12690 {
12691 unsigned Rtmp;
12692
12693 inst.instruction &= ~0x00000020;
12694
12695 /* PR 10168. Swap the Rm and Rn registers. */
12696 Rtmp = inst.operands[1].reg;
12697 inst.operands[1].reg = inst.operands[2].reg;
12698 inst.operands[2].reg = Rtmp;
12699 }
c19d1205 12700 do_t_pkhbt ();
b05fe5cf
ZW
12701}
12702
c19d1205
ZW
12703static void
12704do_t_pld (void)
12705{
fdfde340
JM
12706 if (inst.operands[0].immisreg)
12707 reject_bad_reg (inst.operands[0].imm);
12708
c19d1205
ZW
12709 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12710}
b05fe5cf 12711
c19d1205
ZW
12712static void
12713do_t_push_pop (void)
b99bd4ef 12714{
e9f89963 12715 unsigned mask;
5f4273c7 12716
c19d1205
ZW
12717 constraint (inst.operands[0].writeback,
12718 _("push/pop do not support {reglist}^"));
e2b0ab59 12719 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 12720 _("expression too complex"));
b99bd4ef 12721
e9f89963 12722 mask = inst.operands[0].imm;
d3bfe16e 12723 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 12724 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 12725 else if (inst.size_req != 4
c6025a80 12726 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 12727 ? REG_LR : REG_PC)))
b99bd4ef 12728 {
c19d1205
ZW
12729 inst.instruction = THUMB_OP16 (inst.instruction);
12730 inst.instruction |= THUMB_PP_PC_LR;
3c707909 12731 inst.instruction |= mask & 0xff;
c19d1205
ZW
12732 }
12733 else if (unified_syntax)
12734 {
3c707909 12735 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 12736 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
12737 }
12738 else
12739 {
12740 inst.error = _("invalid register list to push/pop instruction");
12741 return;
12742 }
c19d1205 12743}
b99bd4ef 12744
c19d1205
ZW
12745static void
12746do_t_rbit (void)
12747{
fdfde340
JM
12748 unsigned Rd, Rm;
12749
12750 Rd = inst.operands[0].reg;
12751 Rm = inst.operands[1].reg;
12752
12753 reject_bad_reg (Rd);
12754 reject_bad_reg (Rm);
12755
12756 inst.instruction |= Rd << 8;
12757 inst.instruction |= Rm << 16;
12758 inst.instruction |= Rm;
c19d1205 12759}
b99bd4ef 12760
c19d1205
ZW
12761static void
12762do_t_rev (void)
12763{
fdfde340
JM
12764 unsigned Rd, Rm;
12765
12766 Rd = inst.operands[0].reg;
12767 Rm = inst.operands[1].reg;
12768
12769 reject_bad_reg (Rd);
12770 reject_bad_reg (Rm);
12771
12772 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
12773 && inst.size_req != 4)
12774 {
12775 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12776 inst.instruction |= Rd;
12777 inst.instruction |= Rm << 3;
c19d1205
ZW
12778 }
12779 else if (unified_syntax)
12780 {
12781 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12782 inst.instruction |= Rd << 8;
12783 inst.instruction |= Rm << 16;
12784 inst.instruction |= Rm;
c19d1205
ZW
12785 }
12786 else
12787 inst.error = BAD_HIREG;
12788}
b99bd4ef 12789
1c444d06
JM
12790static void
12791do_t_rrx (void)
12792{
12793 unsigned Rd, Rm;
12794
12795 Rd = inst.operands[0].reg;
12796 Rm = inst.operands[1].reg;
12797
fdfde340
JM
12798 reject_bad_reg (Rd);
12799 reject_bad_reg (Rm);
c921be7d 12800
1c444d06
JM
12801 inst.instruction |= Rd << 8;
12802 inst.instruction |= Rm;
12803}
12804
c19d1205
ZW
12805static void
12806do_t_rsb (void)
12807{
fdfde340 12808 unsigned Rd, Rs;
b99bd4ef 12809
c19d1205
ZW
12810 Rd = inst.operands[0].reg;
12811 Rs = (inst.operands[1].present
12812 ? inst.operands[1].reg /* Rd, Rs, foo */
12813 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 12814
fdfde340
JM
12815 reject_bad_reg (Rd);
12816 reject_bad_reg (Rs);
12817 if (inst.operands[2].isreg)
12818 reject_bad_reg (inst.operands[2].reg);
12819
c19d1205
ZW
12820 inst.instruction |= Rd << 8;
12821 inst.instruction |= Rs << 16;
12822 if (!inst.operands[2].isreg)
12823 {
026d3abb
PB
12824 bfd_boolean narrow;
12825
12826 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 12827 narrow = !in_it_block ();
026d3abb 12828 else
e07e6e58 12829 narrow = in_it_block ();
026d3abb
PB
12830
12831 if (Rd > 7 || Rs > 7)
12832 narrow = FALSE;
12833
12834 if (inst.size_req == 4 || !unified_syntax)
12835 narrow = FALSE;
12836
e2b0ab59
AV
12837 if (inst.relocs[0].exp.X_op != O_constant
12838 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
12839 narrow = FALSE;
12840
12841 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 12842 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
12843 if (narrow)
12844 {
e2b0ab59 12845 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
12846 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12847 inst.instruction |= Rs << 3;
12848 inst.instruction |= Rd;
12849 }
12850 else
12851 {
12852 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 12853 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 12854 }
c19d1205
ZW
12855 }
12856 else
12857 encode_thumb32_shifted_operand (2);
12858}
b99bd4ef 12859
c19d1205
ZW
12860static void
12861do_t_setend (void)
12862{
12e37cbc
MGD
12863 if (warn_on_deprecated
12864 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 12865 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 12866
e07e6e58 12867 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
12868 if (inst.operands[0].imm)
12869 inst.instruction |= 0x8;
12870}
b99bd4ef 12871
c19d1205
ZW
12872static void
12873do_t_shift (void)
12874{
12875 if (!inst.operands[1].present)
12876 inst.operands[1].reg = inst.operands[0].reg;
12877
12878 if (unified_syntax)
12879 {
3d388997
PB
12880 bfd_boolean narrow;
12881 int shift_kind;
12882
12883 switch (inst.instruction)
12884 {
12885 case T_MNEM_asr:
12886 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12887 case T_MNEM_lsl:
12888 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12889 case T_MNEM_lsr:
12890 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12891 case T_MNEM_ror:
12892 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12893 default: abort ();
12894 }
12895
12896 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12897 narrow = !in_it_block ();
3d388997 12898 else
e07e6e58 12899 narrow = in_it_block ();
3d388997
PB
12900 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12901 narrow = FALSE;
12902 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12903 narrow = FALSE;
12904 if (inst.operands[2].isreg
12905 && (inst.operands[1].reg != inst.operands[0].reg
12906 || inst.operands[2].reg > 7))
12907 narrow = FALSE;
12908 if (inst.size_req == 4)
12909 narrow = FALSE;
12910
fdfde340
JM
12911 reject_bad_reg (inst.operands[0].reg);
12912 reject_bad_reg (inst.operands[1].reg);
c921be7d 12913
3d388997 12914 if (!narrow)
c19d1205
ZW
12915 {
12916 if (inst.operands[2].isreg)
b99bd4ef 12917 {
fdfde340 12918 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
12919 inst.instruction = THUMB_OP32 (inst.instruction);
12920 inst.instruction |= inst.operands[0].reg << 8;
12921 inst.instruction |= inst.operands[1].reg << 16;
12922 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
12923
12924 /* PR 12854: Error on extraneous shifts. */
12925 constraint (inst.operands[2].shifted,
12926 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
12927 }
12928 else
12929 {
12930 inst.operands[1].shifted = 1;
3d388997 12931 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
12932 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12933 ? T_MNEM_movs : T_MNEM_mov);
12934 inst.instruction |= inst.operands[0].reg << 8;
12935 encode_thumb32_shifted_operand (1);
12936 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 12937 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
12938 }
12939 }
12940 else
12941 {
c19d1205 12942 if (inst.operands[2].isreg)
b99bd4ef 12943 {
3d388997 12944 switch (shift_kind)
b99bd4ef 12945 {
3d388997
PB
12946 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12947 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12948 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12949 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 12950 default: abort ();
b99bd4ef 12951 }
5f4273c7 12952
c19d1205
ZW
12953 inst.instruction |= inst.operands[0].reg;
12954 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
12955
12956 /* PR 12854: Error on extraneous shifts. */
12957 constraint (inst.operands[2].shifted,
12958 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
12959 }
12960 else
12961 {
3d388997 12962 switch (shift_kind)
b99bd4ef 12963 {
3d388997
PB
12964 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12965 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12966 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 12967 default: abort ();
b99bd4ef 12968 }
e2b0ab59 12969 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
12970 inst.instruction |= inst.operands[0].reg;
12971 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
12972 }
12973 }
c19d1205
ZW
12974 }
12975 else
12976 {
12977 constraint (inst.operands[0].reg > 7
12978 || inst.operands[1].reg > 7, BAD_HIREG);
12979 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 12980
c19d1205
ZW
12981 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12982 {
12983 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12984 constraint (inst.operands[0].reg != inst.operands[1].reg,
12985 _("source1 and dest must be same register"));
b99bd4ef 12986
c19d1205
ZW
12987 switch (inst.instruction)
12988 {
12989 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12990 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12991 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12992 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12993 default: abort ();
12994 }
5f4273c7 12995
c19d1205
ZW
12996 inst.instruction |= inst.operands[0].reg;
12997 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
12998
12999 /* PR 12854: Error on extraneous shifts. */
13000 constraint (inst.operands[2].shifted,
13001 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13002 }
13003 else
b99bd4ef 13004 {
c19d1205
ZW
13005 switch (inst.instruction)
13006 {
13007 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13008 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13009 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13010 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13011 default: abort ();
13012 }
e2b0ab59 13013 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13014 inst.instruction |= inst.operands[0].reg;
13015 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13016 }
13017 }
b99bd4ef
NC
13018}
13019
13020static void
c19d1205 13021do_t_simd (void)
b99bd4ef 13022{
fdfde340
JM
13023 unsigned Rd, Rn, Rm;
13024
13025 Rd = inst.operands[0].reg;
13026 Rn = inst.operands[1].reg;
13027 Rm = inst.operands[2].reg;
13028
13029 reject_bad_reg (Rd);
13030 reject_bad_reg (Rn);
13031 reject_bad_reg (Rm);
13032
13033 inst.instruction |= Rd << 8;
13034 inst.instruction |= Rn << 16;
13035 inst.instruction |= Rm;
c19d1205 13036}
b99bd4ef 13037
03ee1b7f
NC
13038static void
13039do_t_simd2 (void)
13040{
13041 unsigned Rd, Rn, Rm;
13042
13043 Rd = inst.operands[0].reg;
13044 Rm = inst.operands[1].reg;
13045 Rn = inst.operands[2].reg;
13046
13047 reject_bad_reg (Rd);
13048 reject_bad_reg (Rn);
13049 reject_bad_reg (Rm);
13050
13051 inst.instruction |= Rd << 8;
13052 inst.instruction |= Rn << 16;
13053 inst.instruction |= Rm;
13054}
13055
c19d1205 13056static void
3eb17e6b 13057do_t_smc (void)
c19d1205 13058{
e2b0ab59 13059 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13060 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13061 _("SMC is not permitted on this architecture"));
e2b0ab59 13062 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13063 _("expression too complex"));
e2b0ab59 13064 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13065 inst.instruction |= (value & 0xf000) >> 12;
13066 inst.instruction |= (value & 0x0ff0);
13067 inst.instruction |= (value & 0x000f) << 16;
24382199
NC
13068 /* PR gas/15623: SMC instructions must be last in an IT block. */
13069 set_it_insn_type_last ();
c19d1205 13070}
b99bd4ef 13071
90ec0d68
MGD
13072static void
13073do_t_hvc (void)
13074{
e2b0ab59 13075 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13076
e2b0ab59 13077 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13078 inst.instruction |= (value & 0x0fff);
13079 inst.instruction |= (value & 0xf000) << 4;
13080}
13081
c19d1205 13082static void
3a21c15a 13083do_t_ssat_usat (int bias)
c19d1205 13084{
fdfde340
JM
13085 unsigned Rd, Rn;
13086
13087 Rd = inst.operands[0].reg;
13088 Rn = inst.operands[2].reg;
13089
13090 reject_bad_reg (Rd);
13091 reject_bad_reg (Rn);
13092
13093 inst.instruction |= Rd << 8;
3a21c15a 13094 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13095 inst.instruction |= Rn << 16;
b99bd4ef 13096
c19d1205 13097 if (inst.operands[3].present)
b99bd4ef 13098 {
e2b0ab59 13099 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13100
e2b0ab59 13101 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13102
e2b0ab59 13103 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13104 _("expression too complex"));
b99bd4ef 13105
3a21c15a 13106 if (shift_amount != 0)
6189168b 13107 {
3a21c15a
NC
13108 constraint (shift_amount > 31,
13109 _("shift expression is too large"));
13110
c19d1205 13111 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13112 inst.instruction |= 0x00200000; /* sh bit. */
13113
13114 inst.instruction |= (shift_amount & 0x1c) << 10;
13115 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13116 }
13117 }
b99bd4ef 13118}
c921be7d 13119
3a21c15a
NC
13120static void
13121do_t_ssat (void)
13122{
13123 do_t_ssat_usat (1);
13124}
b99bd4ef 13125
0dd132b6 13126static void
c19d1205 13127do_t_ssat16 (void)
0dd132b6 13128{
fdfde340
JM
13129 unsigned Rd, Rn;
13130
13131 Rd = inst.operands[0].reg;
13132 Rn = inst.operands[2].reg;
13133
13134 reject_bad_reg (Rd);
13135 reject_bad_reg (Rn);
13136
13137 inst.instruction |= Rd << 8;
c19d1205 13138 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13139 inst.instruction |= Rn << 16;
c19d1205 13140}
0dd132b6 13141
c19d1205
ZW
13142static void
13143do_t_strex (void)
13144{
13145 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13146 || inst.operands[2].postind || inst.operands[2].writeback
13147 || inst.operands[2].immisreg || inst.operands[2].shifted
13148 || inst.operands[2].negative,
01cfc07f 13149 BAD_ADDR_MODE);
0dd132b6 13150
5be8be5d
DG
13151 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13152
c19d1205
ZW
13153 inst.instruction |= inst.operands[0].reg << 8;
13154 inst.instruction |= inst.operands[1].reg << 12;
13155 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13156 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13157}
13158
b99bd4ef 13159static void
c19d1205 13160do_t_strexd (void)
b99bd4ef 13161{
c19d1205
ZW
13162 if (!inst.operands[2].present)
13163 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13164
c19d1205
ZW
13165 constraint (inst.operands[0].reg == inst.operands[1].reg
13166 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13167 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13168 BAD_OVERLAP);
b99bd4ef 13169
c19d1205
ZW
13170 inst.instruction |= inst.operands[0].reg;
13171 inst.instruction |= inst.operands[1].reg << 12;
13172 inst.instruction |= inst.operands[2].reg << 8;
13173 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13174}
13175
13176static void
c19d1205 13177do_t_sxtah (void)
b99bd4ef 13178{
fdfde340
JM
13179 unsigned Rd, Rn, Rm;
13180
13181 Rd = inst.operands[0].reg;
13182 Rn = inst.operands[1].reg;
13183 Rm = inst.operands[2].reg;
13184
13185 reject_bad_reg (Rd);
13186 reject_bad_reg (Rn);
13187 reject_bad_reg (Rm);
13188
13189 inst.instruction |= Rd << 8;
13190 inst.instruction |= Rn << 16;
13191 inst.instruction |= Rm;
c19d1205
ZW
13192 inst.instruction |= inst.operands[3].imm << 4;
13193}
b99bd4ef 13194
c19d1205
ZW
13195static void
13196do_t_sxth (void)
13197{
fdfde340
JM
13198 unsigned Rd, Rm;
13199
13200 Rd = inst.operands[0].reg;
13201 Rm = inst.operands[1].reg;
13202
13203 reject_bad_reg (Rd);
13204 reject_bad_reg (Rm);
c921be7d
NC
13205
13206 if (inst.instruction <= 0xffff
13207 && inst.size_req != 4
fdfde340 13208 && Rd <= 7 && Rm <= 7
c19d1205 13209 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13210 {
c19d1205 13211 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13212 inst.instruction |= Rd;
13213 inst.instruction |= Rm << 3;
b99bd4ef 13214 }
c19d1205 13215 else if (unified_syntax)
b99bd4ef 13216 {
c19d1205
ZW
13217 if (inst.instruction <= 0xffff)
13218 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13219 inst.instruction |= Rd << 8;
13220 inst.instruction |= Rm;
c19d1205 13221 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13222 }
c19d1205 13223 else
b99bd4ef 13224 {
c19d1205
ZW
13225 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13226 _("Thumb encoding does not support rotation"));
13227 constraint (1, BAD_HIREG);
b99bd4ef 13228 }
c19d1205 13229}
b99bd4ef 13230
c19d1205
ZW
13231static void
13232do_t_swi (void)
13233{
e2b0ab59 13234 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13235}
b99bd4ef 13236
92e90b6e
PB
13237static void
13238do_t_tb (void)
13239{
fdfde340 13240 unsigned Rn, Rm;
92e90b6e
PB
13241 int half;
13242
13243 half = (inst.instruction & 0x10) != 0;
e07e6e58 13244 set_it_insn_type_last ();
dfa9f0d5
PB
13245 constraint (inst.operands[0].immisreg,
13246 _("instruction requires register index"));
fdfde340
JM
13247
13248 Rn = inst.operands[0].reg;
13249 Rm = inst.operands[0].imm;
c921be7d 13250
5c8ed6a4
JW
13251 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13252 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13253 reject_bad_reg (Rm);
13254
92e90b6e
PB
13255 constraint (!half && inst.operands[0].shifted,
13256 _("instruction does not allow shifted index"));
fdfde340 13257 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13258}
13259
74db7efb
NC
13260static void
13261do_t_udf (void)
13262{
13263 if (!inst.operands[0].present)
13264 inst.operands[0].imm = 0;
13265
13266 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13267 {
13268 constraint (inst.size_req == 2,
13269 _("immediate value out of range"));
13270 inst.instruction = THUMB_OP32 (inst.instruction);
13271 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13272 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13273 }
13274 else
13275 {
13276 inst.instruction = THUMB_OP16 (inst.instruction);
13277 inst.instruction |= inst.operands[0].imm;
13278 }
13279
13280 set_it_insn_type (NEUTRAL_IT_INSN);
13281}
13282
13283
c19d1205
ZW
13284static void
13285do_t_usat (void)
13286{
3a21c15a 13287 do_t_ssat_usat (0);
b99bd4ef
NC
13288}
13289
13290static void
c19d1205 13291do_t_usat16 (void)
b99bd4ef 13292{
fdfde340
JM
13293 unsigned Rd, Rn;
13294
13295 Rd = inst.operands[0].reg;
13296 Rn = inst.operands[2].reg;
13297
13298 reject_bad_reg (Rd);
13299 reject_bad_reg (Rn);
13300
13301 inst.instruction |= Rd << 8;
c19d1205 13302 inst.instruction |= inst.operands[1].imm;
fdfde340 13303 inst.instruction |= Rn << 16;
b99bd4ef 13304}
c19d1205 13305
e12437dc
AV
13306/* Checking the range of the branch offset (VAL) with NBITS bits
13307 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13308static int
13309v8_1_branch_value_check (int val, int nbits, int is_signed)
13310{
13311 gas_assert (nbits > 0 && nbits <= 32);
13312 if (is_signed)
13313 {
13314 int cmp = (1 << (nbits - 1));
13315 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13316 return FAIL;
13317 }
13318 else
13319 {
13320 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13321 return FAIL;
13322 }
13323 return SUCCESS;
13324}
13325
4389b29a
AV
13326/* For branches in Armv8.1-M Mainline. */
13327static void
13328do_t_branch_future (void)
13329{
13330 unsigned long insn = inst.instruction;
13331
13332 inst.instruction = THUMB_OP32 (inst.instruction);
13333 if (inst.operands[0].hasreloc == 0)
13334 {
13335 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13336 as_bad (BAD_BRANCH_OFF);
13337
13338 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13339 }
13340 else
13341 {
13342 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13343 inst.relocs[0].pc_rel = 1;
13344 }
13345
13346 switch (insn)
13347 {
13348 case T_MNEM_bf:
13349 if (inst.operands[1].hasreloc == 0)
13350 {
13351 int val = inst.operands[1].imm;
13352 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13353 as_bad (BAD_BRANCH_OFF);
13354
13355 int immA = (val & 0x0001f000) >> 12;
13356 int immB = (val & 0x00000ffc) >> 2;
13357 int immC = (val & 0x00000002) >> 1;
13358 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13359 }
13360 else
13361 {
13362 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13363 inst.relocs[1].pc_rel = 1;
13364 }
13365 break;
13366
f1c7f421
AV
13367 case T_MNEM_bfx:
13368 case T_MNEM_bflx:
13369 inst.instruction |= inst.operands[1].reg << 16;
13370 break;
13371
4389b29a
AV
13372 default: abort ();
13373 }
13374}
13375
5287ad62 13376/* Neon instruction encoder helpers. */
5f4273c7 13377
5287ad62 13378/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 13379
5287ad62
JB
13380/* An "invalid" code for the following tables. */
13381#define N_INV -1u
13382
13383struct neon_tab_entry
b99bd4ef 13384{
5287ad62
JB
13385 unsigned integer;
13386 unsigned float_or_poly;
13387 unsigned scalar_or_imm;
13388};
5f4273c7 13389
5287ad62
JB
13390/* Map overloaded Neon opcodes to their respective encodings. */
13391#define NEON_ENC_TAB \
13392 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13393 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13394 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13395 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13396 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13397 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13398 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13399 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13400 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13401 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13402 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13403 /* Register variants of the following two instructions are encoded as
e07e6e58 13404 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
13405 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13406 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
13407 X(vfma, N_INV, 0x0000c10, N_INV), \
13408 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
13409 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13410 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13411 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13412 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13413 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13414 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13415 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13416 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13417 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13418 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13419 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
13420 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13421 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
13422 X(vshl, 0x0000400, N_INV, 0x0800510), \
13423 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13424 X(vand, 0x0000110, N_INV, 0x0800030), \
13425 X(vbic, 0x0100110, N_INV, 0x0800030), \
13426 X(veor, 0x1000110, N_INV, N_INV), \
13427 X(vorn, 0x0300110, N_INV, 0x0800010), \
13428 X(vorr, 0x0200110, N_INV, 0x0800010), \
13429 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13430 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13431 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13432 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13433 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13434 X(vst1, 0x0000000, 0x0800000, N_INV), \
13435 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13436 X(vst2, 0x0000100, 0x0800100, N_INV), \
13437 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13438 X(vst3, 0x0000200, 0x0800200, N_INV), \
13439 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13440 X(vst4, 0x0000300, 0x0800300, N_INV), \
13441 X(vmovn, 0x1b20200, N_INV, N_INV), \
13442 X(vtrn, 0x1b20080, N_INV, N_INV), \
13443 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
13444 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13445 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
13446 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13447 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
13448 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13449 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
13450 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13451 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13452 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
13453 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13454 X(vseleq, 0xe000a00, N_INV, N_INV), \
13455 X(vselvs, 0xe100a00, N_INV, N_INV), \
13456 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
13457 X(vselgt, 0xe300a00, N_INV, N_INV), \
13458 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 13459 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
13460 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13461 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 13462 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 13463 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
13464 X(sha3op, 0x2000c00, N_INV, N_INV), \
13465 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13466 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
13467
13468enum neon_opc
13469{
13470#define X(OPC,I,F,S) N_MNEM_##OPC
13471NEON_ENC_TAB
13472#undef X
13473};
b99bd4ef 13474
5287ad62
JB
13475static const struct neon_tab_entry neon_enc_tab[] =
13476{
13477#define X(OPC,I,F,S) { (I), (F), (S) }
13478NEON_ENC_TAB
13479#undef X
13480};
b99bd4ef 13481
88714cb8
DG
13482/* Do not use these macros; instead, use NEON_ENCODE defined below. */
13483#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13484#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13485#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13486#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13487#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13488#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13489#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13490#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13491#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13492#define NEON_ENC_SINGLE_(X) \
037e8744 13493 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 13494#define NEON_ENC_DOUBLE_(X) \
037e8744 13495 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
13496#define NEON_ENC_FPV8_(X) \
13497 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 13498
88714cb8
DG
13499#define NEON_ENCODE(type, inst) \
13500 do \
13501 { \
13502 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13503 inst.is_neon = 1; \
13504 } \
13505 while (0)
13506
13507#define check_neon_suffixes \
13508 do \
13509 { \
13510 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13511 { \
13512 as_bad (_("invalid neon suffix for non neon instruction")); \
13513 return; \
13514 } \
13515 } \
13516 while (0)
13517
037e8744
JB
13518/* Define shapes for instruction operands. The following mnemonic characters
13519 are used in this table:
5287ad62 13520
037e8744 13521 F - VFP S<n> register
5287ad62
JB
13522 D - Neon D<n> register
13523 Q - Neon Q<n> register
13524 I - Immediate
13525 S - Scalar
13526 R - ARM register
13527 L - D<n> register list
5f4273c7 13528
037e8744
JB
13529 This table is used to generate various data:
13530 - enumerations of the form NS_DDR to be used as arguments to
13531 neon_select_shape.
13532 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 13533 - a table used to drive neon_select_shape. */
b99bd4ef 13534
037e8744
JB
13535#define NEON_SHAPE_DEF \
13536 X(3, (D, D, D), DOUBLE), \
13537 X(3, (Q, Q, Q), QUAD), \
13538 X(3, (D, D, I), DOUBLE), \
13539 X(3, (Q, Q, I), QUAD), \
13540 X(3, (D, D, S), DOUBLE), \
13541 X(3, (Q, Q, S), QUAD), \
13542 X(2, (D, D), DOUBLE), \
13543 X(2, (Q, Q), QUAD), \
13544 X(2, (D, S), DOUBLE), \
13545 X(2, (Q, S), QUAD), \
13546 X(2, (D, R), DOUBLE), \
13547 X(2, (Q, R), QUAD), \
13548 X(2, (D, I), DOUBLE), \
13549 X(2, (Q, I), QUAD), \
13550 X(3, (D, L, D), DOUBLE), \
13551 X(2, (D, Q), MIXED), \
13552 X(2, (Q, D), MIXED), \
13553 X(3, (D, Q, I), MIXED), \
13554 X(3, (Q, D, I), MIXED), \
13555 X(3, (Q, D, D), MIXED), \
13556 X(3, (D, Q, Q), MIXED), \
13557 X(3, (Q, Q, D), MIXED), \
13558 X(3, (Q, D, S), MIXED), \
13559 X(3, (D, Q, S), MIXED), \
13560 X(4, (D, D, D, I), DOUBLE), \
13561 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
13562 X(4, (D, D, S, I), DOUBLE), \
13563 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
13564 X(2, (F, F), SINGLE), \
13565 X(3, (F, F, F), SINGLE), \
13566 X(2, (F, I), SINGLE), \
13567 X(2, (F, D), MIXED), \
13568 X(2, (D, F), MIXED), \
13569 X(3, (F, F, I), MIXED), \
13570 X(4, (R, R, F, F), SINGLE), \
13571 X(4, (F, F, R, R), SINGLE), \
13572 X(3, (D, R, R), DOUBLE), \
13573 X(3, (R, R, D), DOUBLE), \
13574 X(2, (S, R), SINGLE), \
13575 X(2, (R, S), SINGLE), \
13576 X(2, (F, R), SINGLE), \
d54af2d0
RL
13577 X(2, (R, F), SINGLE), \
13578/* Half float shape supported so far. */\
13579 X (2, (H, D), MIXED), \
13580 X (2, (D, H), MIXED), \
13581 X (2, (H, F), MIXED), \
13582 X (2, (F, H), MIXED), \
13583 X (2, (H, H), HALF), \
13584 X (2, (H, R), HALF), \
13585 X (2, (R, H), HALF), \
13586 X (2, (H, I), HALF), \
13587 X (3, (H, H, H), HALF), \
13588 X (3, (H, F, I), MIXED), \
dec41383
JW
13589 X (3, (F, H, I), MIXED), \
13590 X (3, (D, H, H), MIXED), \
13591 X (3, (D, H, S), MIXED)
037e8744
JB
13592
13593#define S2(A,B) NS_##A##B
13594#define S3(A,B,C) NS_##A##B##C
13595#define S4(A,B,C,D) NS_##A##B##C##D
13596
13597#define X(N, L, C) S##N L
13598
5287ad62
JB
13599enum neon_shape
13600{
037e8744
JB
13601 NEON_SHAPE_DEF,
13602 NS_NULL
5287ad62 13603};
b99bd4ef 13604
037e8744
JB
13605#undef X
13606#undef S2
13607#undef S3
13608#undef S4
13609
13610enum neon_shape_class
13611{
d54af2d0 13612 SC_HALF,
037e8744
JB
13613 SC_SINGLE,
13614 SC_DOUBLE,
13615 SC_QUAD,
13616 SC_MIXED
13617};
13618
13619#define X(N, L, C) SC_##C
13620
13621static enum neon_shape_class neon_shape_class[] =
13622{
13623 NEON_SHAPE_DEF
13624};
13625
13626#undef X
13627
13628enum neon_shape_el
13629{
d54af2d0 13630 SE_H,
037e8744
JB
13631 SE_F,
13632 SE_D,
13633 SE_Q,
13634 SE_I,
13635 SE_S,
13636 SE_R,
13637 SE_L
13638};
13639
13640/* Register widths of above. */
13641static unsigned neon_shape_el_size[] =
13642{
d54af2d0 13643 16,
037e8744
JB
13644 32,
13645 64,
13646 128,
13647 0,
13648 32,
13649 32,
13650 0
13651};
13652
13653struct neon_shape_info
13654{
13655 unsigned els;
13656 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13657};
13658
13659#define S2(A,B) { SE_##A, SE_##B }
13660#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13661#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13662
13663#define X(N, L, C) { N, S##N L }
13664
13665static struct neon_shape_info neon_shape_tab[] =
13666{
13667 NEON_SHAPE_DEF
13668};
13669
13670#undef X
13671#undef S2
13672#undef S3
13673#undef S4
13674
5287ad62
JB
13675/* Bit masks used in type checking given instructions.
13676 'N_EQK' means the type must be the same as (or based on in some way) the key
13677 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13678 set, various other bits can be set as well in order to modify the meaning of
13679 the type constraint. */
13680
13681enum neon_type_mask
13682{
8e79c3df
CM
13683 N_S8 = 0x0000001,
13684 N_S16 = 0x0000002,
13685 N_S32 = 0x0000004,
13686 N_S64 = 0x0000008,
13687 N_U8 = 0x0000010,
13688 N_U16 = 0x0000020,
13689 N_U32 = 0x0000040,
13690 N_U64 = 0x0000080,
13691 N_I8 = 0x0000100,
13692 N_I16 = 0x0000200,
13693 N_I32 = 0x0000400,
13694 N_I64 = 0x0000800,
13695 N_8 = 0x0001000,
13696 N_16 = 0x0002000,
13697 N_32 = 0x0004000,
13698 N_64 = 0x0008000,
13699 N_P8 = 0x0010000,
13700 N_P16 = 0x0020000,
13701 N_F16 = 0x0040000,
13702 N_F32 = 0x0080000,
13703 N_F64 = 0x0100000,
4f51b4bd 13704 N_P64 = 0x0200000,
c921be7d
NC
13705 N_KEY = 0x1000000, /* Key element (main type specifier). */
13706 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 13707 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 13708 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
13709 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13710 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13711 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13712 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13713 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13714 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13715 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 13716 N_UTYP = 0,
4f51b4bd 13717 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
13718};
13719
dcbf9037
JB
13720#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13721
5287ad62
JB
13722#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13723#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13724#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
13725#define N_S_32 (N_S8 | N_S16 | N_S32)
13726#define N_F_16_32 (N_F16 | N_F32)
13727#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 13728#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 13729#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 13730#define N_F_ALL (N_F16 | N_F32 | N_F64)
5287ad62
JB
13731
13732/* Pass this as the first type argument to neon_check_type to ignore types
13733 altogether. */
13734#define N_IGNORE_TYPE (N_KEY | N_EQK)
13735
037e8744
JB
13736/* Select a "shape" for the current instruction (describing register types or
13737 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13738 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13739 function of operand parsing, so this function doesn't need to be called.
13740 Shapes should be listed in order of decreasing length. */
5287ad62
JB
13741
13742static enum neon_shape
037e8744 13743neon_select_shape (enum neon_shape shape, ...)
5287ad62 13744{
037e8744
JB
13745 va_list ap;
13746 enum neon_shape first_shape = shape;
5287ad62
JB
13747
13748 /* Fix missing optional operands. FIXME: we don't know at this point how
13749 many arguments we should have, so this makes the assumption that we have
13750 > 1. This is true of all current Neon opcodes, I think, but may not be
13751 true in the future. */
13752 if (!inst.operands[1].present)
13753 inst.operands[1] = inst.operands[0];
13754
037e8744 13755 va_start (ap, shape);
5f4273c7 13756
21d799b5 13757 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
13758 {
13759 unsigned j;
13760 int matches = 1;
13761
13762 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
13763 {
13764 if (!inst.operands[j].present)
13765 {
13766 matches = 0;
13767 break;
13768 }
13769
13770 switch (neon_shape_tab[shape].el[j])
13771 {
d54af2d0
RL
13772 /* If a .f16, .16, .u16, .s16 type specifier is given over
13773 a VFP single precision register operand, it's essentially
13774 means only half of the register is used.
13775
13776 If the type specifier is given after the mnemonics, the
13777 information is stored in inst.vectype. If the type specifier
13778 is given after register operand, the information is stored
13779 in inst.operands[].vectype.
13780
13781 When there is only one type specifier, and all the register
13782 operands are the same type of hardware register, the type
13783 specifier applies to all register operands.
13784
13785 If no type specifier is given, the shape is inferred from
13786 operand information.
13787
13788 for example:
13789 vadd.f16 s0, s1, s2: NS_HHH
13790 vabs.f16 s0, s1: NS_HH
13791 vmov.f16 s0, r1: NS_HR
13792 vmov.f16 r0, s1: NS_RH
13793 vcvt.f16 r0, s1: NS_RH
13794 vcvt.f16.s32 s2, s2, #29: NS_HFI
13795 vcvt.f16.s32 s2, s2: NS_HF
13796 */
13797 case SE_H:
13798 if (!(inst.operands[j].isreg
13799 && inst.operands[j].isvec
13800 && inst.operands[j].issingle
13801 && !inst.operands[j].isquad
13802 && ((inst.vectype.elems == 1
13803 && inst.vectype.el[0].size == 16)
13804 || (inst.vectype.elems > 1
13805 && inst.vectype.el[j].size == 16)
13806 || (inst.vectype.elems == 0
13807 && inst.operands[j].vectype.type != NT_invtype
13808 && inst.operands[j].vectype.size == 16))))
13809 matches = 0;
13810 break;
13811
477330fc
RM
13812 case SE_F:
13813 if (!(inst.operands[j].isreg
13814 && inst.operands[j].isvec
13815 && inst.operands[j].issingle
d54af2d0
RL
13816 && !inst.operands[j].isquad
13817 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13818 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13819 || (inst.vectype.elems == 0
13820 && (inst.operands[j].vectype.size == 32
13821 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
13822 matches = 0;
13823 break;
13824
13825 case SE_D:
13826 if (!(inst.operands[j].isreg
13827 && inst.operands[j].isvec
13828 && !inst.operands[j].isquad
13829 && !inst.operands[j].issingle))
13830 matches = 0;
13831 break;
13832
13833 case SE_R:
13834 if (!(inst.operands[j].isreg
13835 && !inst.operands[j].isvec))
13836 matches = 0;
13837 break;
13838
13839 case SE_Q:
13840 if (!(inst.operands[j].isreg
13841 && inst.operands[j].isvec
13842 && inst.operands[j].isquad
13843 && !inst.operands[j].issingle))
13844 matches = 0;
13845 break;
13846
13847 case SE_I:
13848 if (!(!inst.operands[j].isreg
13849 && !inst.operands[j].isscalar))
13850 matches = 0;
13851 break;
13852
13853 case SE_S:
13854 if (!(!inst.operands[j].isreg
13855 && inst.operands[j].isscalar))
13856 matches = 0;
13857 break;
13858
13859 case SE_L:
13860 break;
13861 }
3fde54a2
JZ
13862 if (!matches)
13863 break;
477330fc 13864 }
ad6cec43
MGD
13865 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13866 /* We've matched all the entries in the shape table, and we don't
13867 have any left over operands which have not been matched. */
477330fc 13868 break;
037e8744 13869 }
5f4273c7 13870
037e8744 13871 va_end (ap);
5287ad62 13872
037e8744
JB
13873 if (shape == NS_NULL && first_shape != NS_NULL)
13874 first_error (_("invalid instruction shape"));
5287ad62 13875
037e8744
JB
13876 return shape;
13877}
5287ad62 13878
037e8744
JB
13879/* True if SHAPE is predominantly a quadword operation (most of the time, this
13880 means the Q bit should be set). */
13881
13882static int
13883neon_quad (enum neon_shape shape)
13884{
13885 return neon_shape_class[shape] == SC_QUAD;
5287ad62 13886}
037e8744 13887
5287ad62
JB
13888static void
13889neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 13890 unsigned *g_size)
5287ad62
JB
13891{
13892 /* Allow modification to be made to types which are constrained to be
13893 based on the key element, based on bits set alongside N_EQK. */
13894 if ((typebits & N_EQK) != 0)
13895 {
13896 if ((typebits & N_HLF) != 0)
13897 *g_size /= 2;
13898 else if ((typebits & N_DBL) != 0)
13899 *g_size *= 2;
13900 if ((typebits & N_SGN) != 0)
13901 *g_type = NT_signed;
13902 else if ((typebits & N_UNS) != 0)
477330fc 13903 *g_type = NT_unsigned;
5287ad62 13904 else if ((typebits & N_INT) != 0)
477330fc 13905 *g_type = NT_integer;
5287ad62 13906 else if ((typebits & N_FLT) != 0)
477330fc 13907 *g_type = NT_float;
dcbf9037 13908 else if ((typebits & N_SIZ) != 0)
477330fc 13909 *g_type = NT_untyped;
5287ad62
JB
13910 }
13911}
5f4273c7 13912
5287ad62
JB
13913/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13914 operand type, i.e. the single type specified in a Neon instruction when it
13915 is the only one given. */
13916
13917static struct neon_type_el
13918neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13919{
13920 struct neon_type_el dest = *key;
5f4273c7 13921
9c2799c2 13922 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 13923
5287ad62
JB
13924 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13925
13926 return dest;
13927}
13928
13929/* Convert Neon type and size into compact bitmask representation. */
13930
13931static enum neon_type_mask
13932type_chk_of_el_type (enum neon_el_type type, unsigned size)
13933{
13934 switch (type)
13935 {
13936 case NT_untyped:
13937 switch (size)
477330fc
RM
13938 {
13939 case 8: return N_8;
13940 case 16: return N_16;
13941 case 32: return N_32;
13942 case 64: return N_64;
13943 default: ;
13944 }
5287ad62
JB
13945 break;
13946
13947 case NT_integer:
13948 switch (size)
477330fc
RM
13949 {
13950 case 8: return N_I8;
13951 case 16: return N_I16;
13952 case 32: return N_I32;
13953 case 64: return N_I64;
13954 default: ;
13955 }
5287ad62
JB
13956 break;
13957
13958 case NT_float:
037e8744 13959 switch (size)
477330fc 13960 {
8e79c3df 13961 case 16: return N_F16;
477330fc
RM
13962 case 32: return N_F32;
13963 case 64: return N_F64;
13964 default: ;
13965 }
5287ad62
JB
13966 break;
13967
13968 case NT_poly:
13969 switch (size)
477330fc
RM
13970 {
13971 case 8: return N_P8;
13972 case 16: return N_P16;
4f51b4bd 13973 case 64: return N_P64;
477330fc
RM
13974 default: ;
13975 }
5287ad62
JB
13976 break;
13977
13978 case NT_signed:
13979 switch (size)
477330fc
RM
13980 {
13981 case 8: return N_S8;
13982 case 16: return N_S16;
13983 case 32: return N_S32;
13984 case 64: return N_S64;
13985 default: ;
13986 }
5287ad62
JB
13987 break;
13988
13989 case NT_unsigned:
13990 switch (size)
477330fc
RM
13991 {
13992 case 8: return N_U8;
13993 case 16: return N_U16;
13994 case 32: return N_U32;
13995 case 64: return N_U64;
13996 default: ;
13997 }
5287ad62
JB
13998 break;
13999
14000 default: ;
14001 }
5f4273c7 14002
5287ad62
JB
14003 return N_UTYP;
14004}
14005
14006/* Convert compact Neon bitmask type representation to a type and size. Only
14007 handles the case where a single bit is set in the mask. */
14008
dcbf9037 14009static int
5287ad62 14010el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14011 enum neon_type_mask mask)
5287ad62 14012{
dcbf9037
JB
14013 if ((mask & N_EQK) != 0)
14014 return FAIL;
14015
5287ad62
JB
14016 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14017 *size = 8;
c70a8987 14018 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14019 *size = 16;
dcbf9037 14020 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14021 *size = 32;
4f51b4bd 14022 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14023 *size = 64;
dcbf9037
JB
14024 else
14025 return FAIL;
14026
5287ad62
JB
14027 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14028 *type = NT_signed;
dcbf9037 14029 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14030 *type = NT_unsigned;
dcbf9037 14031 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14032 *type = NT_integer;
dcbf9037 14033 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14034 *type = NT_untyped;
4f51b4bd 14035 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14036 *type = NT_poly;
d54af2d0 14037 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14038 *type = NT_float;
dcbf9037
JB
14039 else
14040 return FAIL;
5f4273c7 14041
dcbf9037 14042 return SUCCESS;
5287ad62
JB
14043}
14044
14045/* Modify a bitmask of allowed types. This is only needed for type
14046 relaxation. */
14047
14048static unsigned
14049modify_types_allowed (unsigned allowed, unsigned mods)
14050{
14051 unsigned size;
14052 enum neon_el_type type;
14053 unsigned destmask;
14054 int i;
5f4273c7 14055
5287ad62 14056 destmask = 0;
5f4273c7 14057
5287ad62
JB
14058 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14059 {
21d799b5 14060 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14061 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14062 {
14063 neon_modify_type_size (mods, &type, &size);
14064 destmask |= type_chk_of_el_type (type, size);
14065 }
5287ad62 14066 }
5f4273c7 14067
5287ad62
JB
14068 return destmask;
14069}
14070
14071/* Check type and return type classification.
14072 The manual states (paraphrase): If one datatype is given, it indicates the
14073 type given in:
14074 - the second operand, if there is one
14075 - the operand, if there is no second operand
14076 - the result, if there are no operands.
14077 This isn't quite good enough though, so we use a concept of a "key" datatype
14078 which is set on a per-instruction basis, which is the one which matters when
14079 only one data type is written.
14080 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14081 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14082
14083static struct neon_type_el
14084neon_check_type (unsigned els, enum neon_shape ns, ...)
14085{
14086 va_list ap;
14087 unsigned i, pass, key_el = 0;
14088 unsigned types[NEON_MAX_TYPE_ELS];
14089 enum neon_el_type k_type = NT_invtype;
14090 unsigned k_size = -1u;
14091 struct neon_type_el badtype = {NT_invtype, -1};
14092 unsigned key_allowed = 0;
14093
14094 /* Optional registers in Neon instructions are always (not) in operand 1.
14095 Fill in the missing operand here, if it was omitted. */
14096 if (els > 1 && !inst.operands[1].present)
14097 inst.operands[1] = inst.operands[0];
14098
14099 /* Suck up all the varargs. */
14100 va_start (ap, ns);
14101 for (i = 0; i < els; i++)
14102 {
14103 unsigned thisarg = va_arg (ap, unsigned);
14104 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14105 {
14106 va_end (ap);
14107 return badtype;
14108 }
5287ad62
JB
14109 types[i] = thisarg;
14110 if ((thisarg & N_KEY) != 0)
477330fc 14111 key_el = i;
5287ad62
JB
14112 }
14113 va_end (ap);
14114
dcbf9037
JB
14115 if (inst.vectype.elems > 0)
14116 for (i = 0; i < els; i++)
14117 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14118 {
14119 first_error (_("types specified in both the mnemonic and operands"));
14120 return badtype;
14121 }
dcbf9037 14122
5287ad62
JB
14123 /* Duplicate inst.vectype elements here as necessary.
14124 FIXME: No idea if this is exactly the same as the ARM assembler,
14125 particularly when an insn takes one register and one non-register
14126 operand. */
14127 if (inst.vectype.elems == 1 && els > 1)
14128 {
14129 unsigned j;
14130 inst.vectype.elems = els;
14131 inst.vectype.el[key_el] = inst.vectype.el[0];
14132 for (j = 0; j < els; j++)
477330fc
RM
14133 if (j != key_el)
14134 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14135 types[j]);
dcbf9037
JB
14136 }
14137 else if (inst.vectype.elems == 0 && els > 0)
14138 {
14139 unsigned j;
14140 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14141 after each operand. We allow some flexibility here; as long as the
14142 "key" operand has a type, we can infer the others. */
dcbf9037 14143 for (j = 0; j < els; j++)
477330fc
RM
14144 if (inst.operands[j].vectype.type != NT_invtype)
14145 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14146
14147 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14148 {
14149 for (j = 0; j < els; j++)
14150 if (inst.operands[j].vectype.type == NT_invtype)
14151 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14152 types[j]);
14153 }
dcbf9037 14154 else
477330fc
RM
14155 {
14156 first_error (_("operand types can't be inferred"));
14157 return badtype;
14158 }
5287ad62
JB
14159 }
14160 else if (inst.vectype.elems != els)
14161 {
dcbf9037 14162 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
14163 return badtype;
14164 }
14165
14166 for (pass = 0; pass < 2; pass++)
14167 {
14168 for (i = 0; i < els; i++)
477330fc
RM
14169 {
14170 unsigned thisarg = types[i];
14171 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14172 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14173 enum neon_el_type g_type = inst.vectype.el[i].type;
14174 unsigned g_size = inst.vectype.el[i].size;
14175
14176 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 14177 integer types if sign-specific variants are unavailable. */
477330fc 14178 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
14179 && (types_allowed & N_SU_ALL) == 0)
14180 g_type = NT_integer;
14181
477330fc 14182 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
14183 them. Some instructions only care about signs for some element
14184 sizes, so handle that properly. */
477330fc 14185 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
14186 && ((g_size == 8 && (types_allowed & N_8) != 0)
14187 || (g_size == 16 && (types_allowed & N_16) != 0)
14188 || (g_size == 32 && (types_allowed & N_32) != 0)
14189 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
14190 g_type = NT_untyped;
14191
477330fc
RM
14192 if (pass == 0)
14193 {
14194 if ((thisarg & N_KEY) != 0)
14195 {
14196 k_type = g_type;
14197 k_size = g_size;
14198 key_allowed = thisarg & ~N_KEY;
cc933301
JW
14199
14200 /* Check architecture constraint on FP16 extension. */
14201 if (k_size == 16
14202 && k_type == NT_float
14203 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14204 {
14205 inst.error = _(BAD_FP16);
14206 return badtype;
14207 }
477330fc
RM
14208 }
14209 }
14210 else
14211 {
14212 if ((thisarg & N_VFP) != 0)
14213 {
14214 enum neon_shape_el regshape;
14215 unsigned regwidth, match;
99b253c5
NC
14216
14217 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14218 if (ns == NS_NULL)
14219 {
14220 first_error (_("invalid instruction shape"));
14221 return badtype;
14222 }
477330fc
RM
14223 regshape = neon_shape_tab[ns].el[i];
14224 regwidth = neon_shape_el_size[regshape];
14225
14226 /* In VFP mode, operands must match register widths. If we
14227 have a key operand, use its width, else use the width of
14228 the current operand. */
14229 if (k_size != -1u)
14230 match = k_size;
14231 else
14232 match = g_size;
14233
9db2f6b4
RL
14234 /* FP16 will use a single precision register. */
14235 if (regwidth == 32 && match == 16)
14236 {
14237 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14238 match = regwidth;
14239 else
14240 {
14241 inst.error = _(BAD_FP16);
14242 return badtype;
14243 }
14244 }
14245
477330fc
RM
14246 if (regwidth != match)
14247 {
14248 first_error (_("operand size must match register width"));
14249 return badtype;
14250 }
14251 }
14252
14253 if ((thisarg & N_EQK) == 0)
14254 {
14255 unsigned given_type = type_chk_of_el_type (g_type, g_size);
14256
14257 if ((given_type & types_allowed) == 0)
14258 {
14259 first_error (_("bad type in Neon instruction"));
14260 return badtype;
14261 }
14262 }
14263 else
14264 {
14265 enum neon_el_type mod_k_type = k_type;
14266 unsigned mod_k_size = k_size;
14267 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
14268 if (g_type != mod_k_type || g_size != mod_k_size)
14269 {
14270 first_error (_("inconsistent types in Neon instruction"));
14271 return badtype;
14272 }
14273 }
14274 }
14275 }
5287ad62
JB
14276 }
14277
14278 return inst.vectype.el[key_el];
14279}
14280
037e8744 14281/* Neon-style VFP instruction forwarding. */
5287ad62 14282
037e8744
JB
14283/* Thumb VFP instructions have 0xE in the condition field. */
14284
14285static void
14286do_vfp_cond_or_thumb (void)
5287ad62 14287{
88714cb8
DG
14288 inst.is_neon = 1;
14289
5287ad62 14290 if (thumb_mode)
037e8744 14291 inst.instruction |= 0xe0000000;
5287ad62 14292 else
037e8744 14293 inst.instruction |= inst.cond << 28;
5287ad62
JB
14294}
14295
037e8744
JB
14296/* Look up and encode a simple mnemonic, for use as a helper function for the
14297 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14298 etc. It is assumed that operand parsing has already been done, and that the
14299 operands are in the form expected by the given opcode (this isn't necessarily
14300 the same as the form in which they were parsed, hence some massaging must
14301 take place before this function is called).
14302 Checks current arch version against that in the looked-up opcode. */
5287ad62 14303
037e8744
JB
14304static void
14305do_vfp_nsyn_opcode (const char *opname)
5287ad62 14306{
037e8744 14307 const struct asm_opcode *opcode;
5f4273c7 14308
21d799b5 14309 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 14310
037e8744
JB
14311 if (!opcode)
14312 abort ();
5287ad62 14313
037e8744 14314 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
14315 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14316 _(BAD_FPU));
5287ad62 14317
88714cb8
DG
14318 inst.is_neon = 1;
14319
037e8744
JB
14320 if (thumb_mode)
14321 {
14322 inst.instruction = opcode->tvalue;
14323 opcode->tencode ();
14324 }
14325 else
14326 {
14327 inst.instruction = (inst.cond << 28) | opcode->avalue;
14328 opcode->aencode ();
14329 }
14330}
5287ad62
JB
14331
14332static void
037e8744 14333do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 14334{
037e8744
JB
14335 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14336
9db2f6b4 14337 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
14338 {
14339 if (is_add)
477330fc 14340 do_vfp_nsyn_opcode ("fadds");
037e8744 14341 else
477330fc 14342 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
14343
14344 /* ARMv8.2 fp16 instruction. */
14345 if (rs == NS_HHH)
14346 do_scalar_fp16_v82_encode ();
037e8744
JB
14347 }
14348 else
14349 {
14350 if (is_add)
477330fc 14351 do_vfp_nsyn_opcode ("faddd");
037e8744 14352 else
477330fc 14353 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
14354 }
14355}
14356
14357/* Check operand types to see if this is a VFP instruction, and if so call
14358 PFN (). */
14359
14360static int
14361try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14362{
14363 enum neon_shape rs;
14364 struct neon_type_el et;
14365
14366 switch (args)
14367 {
14368 case 2:
9db2f6b4
RL
14369 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14370 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 14371 break;
5f4273c7 14372
037e8744 14373 case 3:
9db2f6b4
RL
14374 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14375 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14376 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
14377 break;
14378
14379 default:
14380 abort ();
14381 }
14382
14383 if (et.type != NT_invtype)
14384 {
14385 pfn (rs);
14386 return SUCCESS;
14387 }
037e8744 14388
99b253c5 14389 inst.error = NULL;
037e8744
JB
14390 return FAIL;
14391}
14392
14393static void
14394do_vfp_nsyn_mla_mls (enum neon_shape rs)
14395{
14396 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 14397
9db2f6b4 14398 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
14399 {
14400 if (is_mla)
477330fc 14401 do_vfp_nsyn_opcode ("fmacs");
037e8744 14402 else
477330fc 14403 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
14404
14405 /* ARMv8.2 fp16 instruction. */
14406 if (rs == NS_HHH)
14407 do_scalar_fp16_v82_encode ();
037e8744
JB
14408 }
14409 else
14410 {
14411 if (is_mla)
477330fc 14412 do_vfp_nsyn_opcode ("fmacd");
037e8744 14413 else
477330fc 14414 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
14415 }
14416}
14417
62f3b8c8
PB
14418static void
14419do_vfp_nsyn_fma_fms (enum neon_shape rs)
14420{
14421 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14422
9db2f6b4 14423 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
14424 {
14425 if (is_fma)
477330fc 14426 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 14427 else
477330fc 14428 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
14429
14430 /* ARMv8.2 fp16 instruction. */
14431 if (rs == NS_HHH)
14432 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
14433 }
14434 else
14435 {
14436 if (is_fma)
477330fc 14437 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 14438 else
477330fc 14439 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
14440 }
14441}
14442
037e8744
JB
14443static void
14444do_vfp_nsyn_mul (enum neon_shape rs)
14445{
9db2f6b4
RL
14446 if (rs == NS_FFF || rs == NS_HHH)
14447 {
14448 do_vfp_nsyn_opcode ("fmuls");
14449
14450 /* ARMv8.2 fp16 instruction. */
14451 if (rs == NS_HHH)
14452 do_scalar_fp16_v82_encode ();
14453 }
037e8744
JB
14454 else
14455 do_vfp_nsyn_opcode ("fmuld");
14456}
14457
14458static void
14459do_vfp_nsyn_abs_neg (enum neon_shape rs)
14460{
14461 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 14462 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 14463
9db2f6b4 14464 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
14465 {
14466 if (is_neg)
477330fc 14467 do_vfp_nsyn_opcode ("fnegs");
037e8744 14468 else
477330fc 14469 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
14470
14471 /* ARMv8.2 fp16 instruction. */
14472 if (rs == NS_HH)
14473 do_scalar_fp16_v82_encode ();
037e8744
JB
14474 }
14475 else
14476 {
14477 if (is_neg)
477330fc 14478 do_vfp_nsyn_opcode ("fnegd");
037e8744 14479 else
477330fc 14480 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
14481 }
14482}
14483
14484/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14485 insns belong to Neon, and are handled elsewhere. */
14486
14487static void
14488do_vfp_nsyn_ldm_stm (int is_dbmode)
14489{
14490 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14491 if (is_ldm)
14492 {
14493 if (is_dbmode)
477330fc 14494 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 14495 else
477330fc 14496 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
14497 }
14498 else
14499 {
14500 if (is_dbmode)
477330fc 14501 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 14502 else
477330fc 14503 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
14504 }
14505}
14506
037e8744
JB
14507static void
14508do_vfp_nsyn_sqrt (void)
14509{
9db2f6b4
RL
14510 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14511 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 14512
9db2f6b4
RL
14513 if (rs == NS_FF || rs == NS_HH)
14514 {
14515 do_vfp_nsyn_opcode ("fsqrts");
14516
14517 /* ARMv8.2 fp16 instruction. */
14518 if (rs == NS_HH)
14519 do_scalar_fp16_v82_encode ();
14520 }
037e8744
JB
14521 else
14522 do_vfp_nsyn_opcode ("fsqrtd");
14523}
14524
14525static void
14526do_vfp_nsyn_div (void)
14527{
9db2f6b4 14528 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 14529 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 14530 N_F_ALL | N_KEY | N_VFP);
5f4273c7 14531
9db2f6b4
RL
14532 if (rs == NS_FFF || rs == NS_HHH)
14533 {
14534 do_vfp_nsyn_opcode ("fdivs");
14535
14536 /* ARMv8.2 fp16 instruction. */
14537 if (rs == NS_HHH)
14538 do_scalar_fp16_v82_encode ();
14539 }
037e8744
JB
14540 else
14541 do_vfp_nsyn_opcode ("fdivd");
14542}
14543
14544static void
14545do_vfp_nsyn_nmul (void)
14546{
9db2f6b4 14547 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 14548 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 14549 N_F_ALL | N_KEY | N_VFP);
5f4273c7 14550
9db2f6b4 14551 if (rs == NS_FFF || rs == NS_HHH)
037e8744 14552 {
88714cb8 14553 NEON_ENCODE (SINGLE, inst);
037e8744 14554 do_vfp_sp_dyadic ();
9db2f6b4
RL
14555
14556 /* ARMv8.2 fp16 instruction. */
14557 if (rs == NS_HHH)
14558 do_scalar_fp16_v82_encode ();
037e8744
JB
14559 }
14560 else
14561 {
88714cb8 14562 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
14563 do_vfp_dp_rd_rn_rm ();
14564 }
14565 do_vfp_cond_or_thumb ();
9db2f6b4 14566
037e8744
JB
14567}
14568
14569static void
14570do_vfp_nsyn_cmp (void)
14571{
9db2f6b4 14572 enum neon_shape rs;
037e8744
JB
14573 if (inst.operands[1].isreg)
14574 {
9db2f6b4
RL
14575 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14576 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 14577
9db2f6b4 14578 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
14579 {
14580 NEON_ENCODE (SINGLE, inst);
14581 do_vfp_sp_monadic ();
14582 }
037e8744 14583 else
477330fc
RM
14584 {
14585 NEON_ENCODE (DOUBLE, inst);
14586 do_vfp_dp_rd_rm ();
14587 }
037e8744
JB
14588 }
14589 else
14590 {
9db2f6b4
RL
14591 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14592 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
14593
14594 switch (inst.instruction & 0x0fffffff)
477330fc
RM
14595 {
14596 case N_MNEM_vcmp:
14597 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14598 break;
14599 case N_MNEM_vcmpe:
14600 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14601 break;
14602 default:
14603 abort ();
14604 }
5f4273c7 14605
9db2f6b4 14606 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
14607 {
14608 NEON_ENCODE (SINGLE, inst);
14609 do_vfp_sp_compare_z ();
14610 }
037e8744 14611 else
477330fc
RM
14612 {
14613 NEON_ENCODE (DOUBLE, inst);
14614 do_vfp_dp_rd ();
14615 }
037e8744
JB
14616 }
14617 do_vfp_cond_or_thumb ();
9db2f6b4
RL
14618
14619 /* ARMv8.2 fp16 instruction. */
14620 if (rs == NS_HI || rs == NS_HH)
14621 do_scalar_fp16_v82_encode ();
037e8744
JB
14622}
14623
14624static void
14625nsyn_insert_sp (void)
14626{
14627 inst.operands[1] = inst.operands[0];
14628 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 14629 inst.operands[0].reg = REG_SP;
037e8744
JB
14630 inst.operands[0].isreg = 1;
14631 inst.operands[0].writeback = 1;
14632 inst.operands[0].present = 1;
14633}
14634
14635static void
14636do_vfp_nsyn_push (void)
14637{
14638 nsyn_insert_sp ();
b126985e
NC
14639
14640 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14641 _("register list must contain at least 1 and at most 16 "
14642 "registers"));
14643
037e8744
JB
14644 if (inst.operands[1].issingle)
14645 do_vfp_nsyn_opcode ("fstmdbs");
14646 else
14647 do_vfp_nsyn_opcode ("fstmdbd");
14648}
14649
14650static void
14651do_vfp_nsyn_pop (void)
14652{
14653 nsyn_insert_sp ();
b126985e
NC
14654
14655 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14656 _("register list must contain at least 1 and at most 16 "
14657 "registers"));
14658
037e8744 14659 if (inst.operands[1].issingle)
22b5b651 14660 do_vfp_nsyn_opcode ("fldmias");
037e8744 14661 else
22b5b651 14662 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
14663}
14664
14665/* Fix up Neon data-processing instructions, ORing in the correct bits for
14666 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14667
88714cb8
DG
14668static void
14669neon_dp_fixup (struct arm_it* insn)
037e8744 14670{
88714cb8
DG
14671 unsigned int i = insn->instruction;
14672 insn->is_neon = 1;
14673
037e8744
JB
14674 if (thumb_mode)
14675 {
14676 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14677 if (i & (1 << 24))
477330fc 14678 i |= 1 << 28;
5f4273c7 14679
037e8744 14680 i &= ~(1 << 24);
5f4273c7 14681
037e8744
JB
14682 i |= 0xef000000;
14683 }
14684 else
14685 i |= 0xf2000000;
5f4273c7 14686
88714cb8 14687 insn->instruction = i;
037e8744
JB
14688}
14689
14690/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14691 (0, 1, 2, 3). */
14692
14693static unsigned
14694neon_logbits (unsigned x)
14695{
14696 return ffs (x) - 4;
14697}
14698
14699#define LOW4(R) ((R) & 0xf)
14700#define HI1(R) (((R) >> 4) & 1)
14701
14702/* Encode insns with bit pattern:
14703
14704 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14705 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 14706
037e8744
JB
14707 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14708 different meaning for some instruction. */
14709
14710static void
14711neon_three_same (int isquad, int ubit, int size)
14712{
14713 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14714 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14715 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14716 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14717 inst.instruction |= LOW4 (inst.operands[2].reg);
14718 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14719 inst.instruction |= (isquad != 0) << 6;
14720 inst.instruction |= (ubit != 0) << 24;
14721 if (size != -1)
14722 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14723
88714cb8 14724 neon_dp_fixup (&inst);
037e8744
JB
14725}
14726
14727/* Encode instructions of the form:
14728
14729 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14730 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
14731
14732 Don't write size if SIZE == -1. */
14733
14734static void
14735neon_two_same (int qbit, int ubit, int size)
14736{
14737 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14738 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14739 inst.instruction |= LOW4 (inst.operands[1].reg);
14740 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14741 inst.instruction |= (qbit != 0) << 6;
14742 inst.instruction |= (ubit != 0) << 24;
14743
14744 if (size != -1)
14745 inst.instruction |= neon_logbits (size) << 18;
14746
88714cb8 14747 neon_dp_fixup (&inst);
5287ad62
JB
14748}
14749
14750/* Neon instruction encoders, in approximate order of appearance. */
14751
14752static void
14753do_neon_dyadic_i_su (void)
14754{
037e8744 14755 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14756 struct neon_type_el et = neon_check_type (3, rs,
14757 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 14758 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14759}
14760
14761static void
14762do_neon_dyadic_i64_su (void)
14763{
037e8744 14764 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14765 struct neon_type_el et = neon_check_type (3, rs,
14766 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 14767 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14768}
14769
14770static void
14771neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 14772 unsigned immbits)
5287ad62
JB
14773{
14774 unsigned size = et.size >> 3;
14775 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14776 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14777 inst.instruction |= LOW4 (inst.operands[1].reg);
14778 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14779 inst.instruction |= (isquad != 0) << 6;
14780 inst.instruction |= immbits << 16;
14781 inst.instruction |= (size >> 3) << 7;
14782 inst.instruction |= (size & 0x7) << 19;
14783 if (write_ubit)
14784 inst.instruction |= (uval != 0) << 24;
14785
88714cb8 14786 neon_dp_fixup (&inst);
5287ad62
JB
14787}
14788
14789static void
14790do_neon_shl_imm (void)
14791{
14792 if (!inst.operands[2].isreg)
14793 {
037e8744 14794 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 14795 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
14796 int imm = inst.operands[2].imm;
14797
14798 constraint (imm < 0 || (unsigned)imm >= et.size,
14799 _("immediate out of range for shift"));
88714cb8 14800 NEON_ENCODE (IMMED, inst);
cb3b1e65 14801 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14802 }
14803 else
14804 {
037e8744 14805 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14806 struct neon_type_el et = neon_check_type (3, rs,
477330fc 14807 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
14808 unsigned int tmp;
14809
14810 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
14811 vshl.xx Dd, Dm, Dn
14812 whereas other 3-register operations encoded by neon_three_same have
14813 syntax like:
14814 vadd.xx Dd, Dn, Dm
14815 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14816 here. */
627907b7
JB
14817 tmp = inst.operands[2].reg;
14818 inst.operands[2].reg = inst.operands[1].reg;
14819 inst.operands[1].reg = tmp;
88714cb8 14820 NEON_ENCODE (INTEGER, inst);
037e8744 14821 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14822 }
14823}
14824
14825static void
14826do_neon_qshl_imm (void)
14827{
14828 if (!inst.operands[2].isreg)
14829 {
037e8744 14830 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 14831 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 14832 int imm = inst.operands[2].imm;
627907b7 14833
cb3b1e65
JB
14834 constraint (imm < 0 || (unsigned)imm >= et.size,
14835 _("immediate out of range for shift"));
88714cb8 14836 NEON_ENCODE (IMMED, inst);
cb3b1e65 14837 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
14838 }
14839 else
14840 {
037e8744 14841 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14842 struct neon_type_el et = neon_check_type (3, rs,
477330fc 14843 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
14844 unsigned int tmp;
14845
14846 /* See note in do_neon_shl_imm. */
14847 tmp = inst.operands[2].reg;
14848 inst.operands[2].reg = inst.operands[1].reg;
14849 inst.operands[1].reg = tmp;
88714cb8 14850 NEON_ENCODE (INTEGER, inst);
037e8744 14851 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14852 }
14853}
14854
627907b7
JB
14855static void
14856do_neon_rshl (void)
14857{
14858 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14859 struct neon_type_el et = neon_check_type (3, rs,
14860 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14861 unsigned int tmp;
14862
14863 tmp = inst.operands[2].reg;
14864 inst.operands[2].reg = inst.operands[1].reg;
14865 inst.operands[1].reg = tmp;
14866 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14867}
14868
5287ad62
JB
14869static int
14870neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14871{
036dc3f7
PB
14872 /* Handle .I8 pseudo-instructions. */
14873 if (size == 8)
5287ad62 14874 {
5287ad62 14875 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
14876 FIXME is this the intended semantics? There doesn't seem much point in
14877 accepting .I8 if so. */
5287ad62
JB
14878 immediate |= immediate << 8;
14879 size = 16;
036dc3f7
PB
14880 }
14881
14882 if (size >= 32)
14883 {
14884 if (immediate == (immediate & 0x000000ff))
14885 {
14886 *immbits = immediate;
14887 return 0x1;
14888 }
14889 else if (immediate == (immediate & 0x0000ff00))
14890 {
14891 *immbits = immediate >> 8;
14892 return 0x3;
14893 }
14894 else if (immediate == (immediate & 0x00ff0000))
14895 {
14896 *immbits = immediate >> 16;
14897 return 0x5;
14898 }
14899 else if (immediate == (immediate & 0xff000000))
14900 {
14901 *immbits = immediate >> 24;
14902 return 0x7;
14903 }
14904 if ((immediate & 0xffff) != (immediate >> 16))
14905 goto bad_immediate;
14906 immediate &= 0xffff;
5287ad62
JB
14907 }
14908
14909 if (immediate == (immediate & 0x000000ff))
14910 {
14911 *immbits = immediate;
036dc3f7 14912 return 0x9;
5287ad62
JB
14913 }
14914 else if (immediate == (immediate & 0x0000ff00))
14915 {
14916 *immbits = immediate >> 8;
036dc3f7 14917 return 0xb;
5287ad62
JB
14918 }
14919
14920 bad_immediate:
dcbf9037 14921 first_error (_("immediate value out of range"));
5287ad62
JB
14922 return FAIL;
14923}
14924
5287ad62
JB
14925static void
14926do_neon_logic (void)
14927{
14928 if (inst.operands[2].present && inst.operands[2].isreg)
14929 {
037e8744 14930 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14931 neon_check_type (3, rs, N_IGNORE_TYPE);
14932 /* U bit and size field were set as part of the bitmask. */
88714cb8 14933 NEON_ENCODE (INTEGER, inst);
037e8744 14934 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14935 }
14936 else
14937 {
4316f0d2
DG
14938 const int three_ops_form = (inst.operands[2].present
14939 && !inst.operands[2].isreg);
14940 const int immoperand = (three_ops_form ? 2 : 1);
14941 enum neon_shape rs = (three_ops_form
14942 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14943 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744 14944 struct neon_type_el et = neon_check_type (2, rs,
477330fc 14945 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 14946 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
14947 unsigned immbits;
14948 int cmode;
5f4273c7 14949
5287ad62 14950 if (et.type == NT_invtype)
477330fc 14951 return;
5f4273c7 14952
4316f0d2
DG
14953 if (three_ops_form)
14954 constraint (inst.operands[0].reg != inst.operands[1].reg,
14955 _("first and second operands shall be the same register"));
14956
88714cb8 14957 NEON_ENCODE (IMMED, inst);
5287ad62 14958
4316f0d2 14959 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
14960 if (et.size == 64)
14961 {
14962 /* .i64 is a pseudo-op, so the immediate must be a repeating
14963 pattern. */
4316f0d2
DG
14964 if (immbits != (inst.operands[immoperand].regisimm ?
14965 inst.operands[immoperand].reg : 0))
036dc3f7
PB
14966 {
14967 /* Set immbits to an invalid constant. */
14968 immbits = 0xdeadbeef;
14969 }
14970 }
14971
5287ad62 14972 switch (opcode)
477330fc
RM
14973 {
14974 case N_MNEM_vbic:
14975 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14976 break;
14977
14978 case N_MNEM_vorr:
14979 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14980 break;
14981
14982 case N_MNEM_vand:
14983 /* Pseudo-instruction for VBIC. */
14984 neon_invert_size (&immbits, 0, et.size);
14985 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14986 break;
14987
14988 case N_MNEM_vorn:
14989 /* Pseudo-instruction for VORR. */
14990 neon_invert_size (&immbits, 0, et.size);
14991 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14992 break;
14993
14994 default:
14995 abort ();
14996 }
5287ad62
JB
14997
14998 if (cmode == FAIL)
477330fc 14999 return;
5287ad62 15000
037e8744 15001 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15002 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15003 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15004 inst.instruction |= cmode << 8;
15005 neon_write_immbits (immbits);
5f4273c7 15006
88714cb8 15007 neon_dp_fixup (&inst);
5287ad62
JB
15008 }
15009}
15010
15011static void
15012do_neon_bitfield (void)
15013{
037e8744 15014 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 15015 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 15016 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
15017}
15018
15019static void
dcbf9037 15020neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 15021 unsigned destbits)
5287ad62 15022{
037e8744 15023 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 15024 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 15025 types | N_KEY);
5287ad62
JB
15026 if (et.type == NT_float)
15027 {
88714cb8 15028 NEON_ENCODE (FLOAT, inst);
cc933301 15029 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15030 }
15031 else
15032 {
88714cb8 15033 NEON_ENCODE (INTEGER, inst);
037e8744 15034 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
15035 }
15036}
15037
15038static void
15039do_neon_dyadic_if_su (void)
15040{
dcbf9037 15041 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
15042}
15043
15044static void
15045do_neon_dyadic_if_su_d (void)
15046{
15047 /* This version only allow D registers, but that constraint is enforced during
15048 operand parsing so we don't need to do anything extra here. */
dcbf9037 15049 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
15050}
15051
5287ad62
JB
15052static void
15053do_neon_dyadic_if_i_d (void)
15054{
428e3f1f
PB
15055 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15056 affected if we specify unsigned args. */
15057 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
15058}
15059
037e8744
JB
15060enum vfp_or_neon_is_neon_bits
15061{
15062 NEON_CHECK_CC = 1,
73924fbc
MGD
15063 NEON_CHECK_ARCH = 2,
15064 NEON_CHECK_ARCH8 = 4
037e8744
JB
15065};
15066
15067/* Call this function if an instruction which may have belonged to the VFP or
15068 Neon instruction sets, but turned out to be a Neon instruction (due to the
15069 operand types involved, etc.). We have to check and/or fix-up a couple of
15070 things:
15071
15072 - Make sure the user hasn't attempted to make a Neon instruction
15073 conditional.
15074 - Alter the value in the condition code field if necessary.
15075 - Make sure that the arch supports Neon instructions.
15076
15077 Which of these operations take place depends on bits from enum
15078 vfp_or_neon_is_neon_bits.
15079
15080 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
15081 current instruction's condition is COND_ALWAYS, the condition field is
15082 changed to inst.uncond_value. This is necessary because instructions shared
15083 between VFP and Neon may be conditional for the VFP variants only, and the
15084 unconditional Neon version must have, e.g., 0xF in the condition field. */
15085
15086static int
15087vfp_or_neon_is_neon (unsigned check)
15088{
15089 /* Conditions are always legal in Thumb mode (IT blocks). */
15090 if (!thumb_mode && (check & NEON_CHECK_CC))
15091 {
15092 if (inst.cond != COND_ALWAYS)
477330fc
RM
15093 {
15094 first_error (_(BAD_COND));
15095 return FAIL;
15096 }
037e8744 15097 if (inst.uncond_value != -1)
477330fc 15098 inst.instruction |= inst.uncond_value << 28;
037e8744 15099 }
5f4273c7 15100
037e8744 15101 if ((check & NEON_CHECK_ARCH)
73924fbc
MGD
15102 && !mark_feature_used (&fpu_neon_ext_v1))
15103 {
15104 first_error (_(BAD_FPU));
15105 return FAIL;
15106 }
15107
15108 if ((check & NEON_CHECK_ARCH8)
15109 && !mark_feature_used (&fpu_neon_ext_armv8))
037e8744
JB
15110 {
15111 first_error (_(BAD_FPU));
15112 return FAIL;
15113 }
5f4273c7 15114
037e8744
JB
15115 return SUCCESS;
15116}
15117
5287ad62
JB
15118static void
15119do_neon_addsub_if_i (void)
15120{
037e8744
JB
15121 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
15122 return;
15123
15124 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15125 return;
15126
5287ad62
JB
15127 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15128 affected if we specify unsigned args. */
dcbf9037 15129 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
15130}
15131
15132/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
15133 result to be:
15134 V<op> A,B (A is operand 0, B is operand 2)
15135 to mean:
15136 V<op> A,B,A
15137 not:
15138 V<op> A,B,B
15139 so handle that case specially. */
15140
15141static void
15142neon_exchange_operands (void)
15143{
5287ad62
JB
15144 if (inst.operands[1].present)
15145 {
e1fa0163
NC
15146 void *scratch = xmalloc (sizeof (inst.operands[0]));
15147
5287ad62
JB
15148 /* Swap operands[1] and operands[2]. */
15149 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
15150 inst.operands[1] = inst.operands[2];
15151 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 15152 free (scratch);
5287ad62
JB
15153 }
15154 else
15155 {
15156 inst.operands[1] = inst.operands[2];
15157 inst.operands[2] = inst.operands[0];
15158 }
15159}
15160
15161static void
15162neon_compare (unsigned regtypes, unsigned immtypes, int invert)
15163{
15164 if (inst.operands[2].isreg)
15165 {
15166 if (invert)
477330fc 15167 neon_exchange_operands ();
dcbf9037 15168 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
15169 }
15170 else
15171 {
037e8744 15172 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 15173 struct neon_type_el et = neon_check_type (2, rs,
477330fc 15174 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 15175
88714cb8 15176 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15177 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15178 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15179 inst.instruction |= LOW4 (inst.operands[1].reg);
15180 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15181 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15182 inst.instruction |= (et.type == NT_float) << 10;
15183 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15184
88714cb8 15185 neon_dp_fixup (&inst);
5287ad62
JB
15186 }
15187}
15188
15189static void
15190do_neon_cmp (void)
15191{
cc933301 15192 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
15193}
15194
15195static void
15196do_neon_cmp_inv (void)
15197{
cc933301 15198 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
15199}
15200
15201static void
15202do_neon_ceq (void)
15203{
15204 neon_compare (N_IF_32, N_IF_32, FALSE);
15205}
15206
15207/* For multiply instructions, we have the possibility of 16-bit or 32-bit
15208 scalars, which are encoded in 5 bits, M : Rm.
15209 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
15210 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
15211 index in M.
15212
15213 Dot Product instructions are similar to multiply instructions except elsize
15214 should always be 32.
15215
15216 This function translates SCALAR, which is GAS's internal encoding of indexed
15217 scalar register, to raw encoding. There is also register and index range
15218 check based on ELSIZE. */
5287ad62
JB
15219
15220static unsigned
15221neon_scalar_for_mul (unsigned scalar, unsigned elsize)
15222{
dcbf9037
JB
15223 unsigned regno = NEON_SCALAR_REG (scalar);
15224 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
15225
15226 switch (elsize)
15227 {
15228 case 16:
15229 if (regno > 7 || elno > 3)
477330fc 15230 goto bad_scalar;
5287ad62 15231 return regno | (elno << 3);
5f4273c7 15232
5287ad62
JB
15233 case 32:
15234 if (regno > 15 || elno > 1)
477330fc 15235 goto bad_scalar;
5287ad62
JB
15236 return regno | (elno << 4);
15237
15238 default:
15239 bad_scalar:
dcbf9037 15240 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
15241 }
15242
15243 return 0;
15244}
15245
15246/* Encode multiply / multiply-accumulate scalar instructions. */
15247
15248static void
15249neon_mul_mac (struct neon_type_el et, int ubit)
15250{
dcbf9037
JB
15251 unsigned scalar;
15252
15253 /* Give a more helpful error message if we have an invalid type. */
15254 if (et.type == NT_invtype)
15255 return;
5f4273c7 15256
dcbf9037 15257 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
15258 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15259 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15260 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15261 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15262 inst.instruction |= LOW4 (scalar);
15263 inst.instruction |= HI1 (scalar) << 5;
15264 inst.instruction |= (et.type == NT_float) << 8;
15265 inst.instruction |= neon_logbits (et.size) << 20;
15266 inst.instruction |= (ubit != 0) << 24;
15267
88714cb8 15268 neon_dp_fixup (&inst);
5287ad62
JB
15269}
15270
15271static void
15272do_neon_mac_maybe_scalar (void)
15273{
037e8744
JB
15274 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
15275 return;
15276
15277 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15278 return;
15279
5287ad62
JB
15280 if (inst.operands[2].isscalar)
15281 {
037e8744 15282 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 15283 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 15284 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 15285 NEON_ENCODE (SCALAR, inst);
037e8744 15286 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
15287 }
15288 else
428e3f1f
PB
15289 {
15290 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15291 affected if we specify unsigned args. */
15292 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15293 }
5287ad62
JB
15294}
15295
62f3b8c8
PB
15296static void
15297do_neon_fmac (void)
15298{
15299 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15300 return;
15301
15302 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15303 return;
15304
15305 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15306}
15307
5287ad62
JB
15308static void
15309do_neon_tst (void)
15310{
037e8744 15311 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15312 struct neon_type_el et = neon_check_type (3, rs,
15313 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 15314 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
15315}
15316
15317/* VMUL with 3 registers allows the P8 type. The scalar version supports the
15318 same types as the MAC equivalents. The polynomial type for this instruction
15319 is encoded the same as the integer type. */
15320
15321static void
15322do_neon_mul (void)
15323{
037e8744
JB
15324 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15325 return;
15326
15327 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15328 return;
15329
5287ad62
JB
15330 if (inst.operands[2].isscalar)
15331 do_neon_mac_maybe_scalar ();
15332 else
cc933301 15333 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
5287ad62
JB
15334}
15335
15336static void
15337do_neon_qdmulh (void)
15338{
15339 if (inst.operands[2].isscalar)
15340 {
037e8744 15341 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 15342 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15343 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 15344 NEON_ENCODE (SCALAR, inst);
037e8744 15345 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
15346 }
15347 else
15348 {
037e8744 15349 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 15350 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15351 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 15352 NEON_ENCODE (INTEGER, inst);
5287ad62 15353 /* The U bit (rounding) comes from bit mask. */
037e8744 15354 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
15355 }
15356}
15357
643afb90
MW
15358static void
15359do_neon_qrdmlah (void)
15360{
15361 /* Check we're on the correct architecture. */
15362 if (!mark_feature_used (&fpu_neon_ext_armv8))
15363 inst.error =
15364 _("instruction form not available on this architecture.");
15365 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15366 {
15367 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15368 record_feature_use (&fpu_neon_ext_v8_1);
15369 }
15370
15371 if (inst.operands[2].isscalar)
15372 {
15373 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15374 struct neon_type_el et = neon_check_type (3, rs,
15375 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15376 NEON_ENCODE (SCALAR, inst);
15377 neon_mul_mac (et, neon_quad (rs));
15378 }
15379 else
15380 {
15381 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15382 struct neon_type_el et = neon_check_type (3, rs,
15383 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15384 NEON_ENCODE (INTEGER, inst);
15385 /* The U bit (rounding) comes from bit mask. */
15386 neon_three_same (neon_quad (rs), 0, et.size);
15387 }
15388}
15389
5287ad62
JB
15390static void
15391do_neon_fcmp_absolute (void)
15392{
037e8744 15393 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
15394 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15395 N_F_16_32 | N_KEY);
5287ad62 15396 /* Size field comes from bit mask. */
cc933301 15397 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15398}
15399
15400static void
15401do_neon_fcmp_absolute_inv (void)
15402{
15403 neon_exchange_operands ();
15404 do_neon_fcmp_absolute ();
15405}
15406
15407static void
15408do_neon_step (void)
15409{
037e8744 15410 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
15411 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15412 N_F_16_32 | N_KEY);
15413 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15414}
15415
15416static void
15417do_neon_abs_neg (void)
15418{
037e8744
JB
15419 enum neon_shape rs;
15420 struct neon_type_el et;
5f4273c7 15421
037e8744
JB
15422 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15423 return;
15424
15425 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15426 return;
15427
15428 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 15429 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 15430
5287ad62
JB
15431 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15432 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15433 inst.instruction |= LOW4 (inst.operands[1].reg);
15434 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15435 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15436 inst.instruction |= (et.type == NT_float) << 10;
15437 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15438
88714cb8 15439 neon_dp_fixup (&inst);
5287ad62
JB
15440}
15441
15442static void
15443do_neon_sli (void)
15444{
037e8744 15445 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15446 struct neon_type_el et = neon_check_type (2, rs,
15447 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15448 int imm = inst.operands[2].imm;
15449 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 15450 _("immediate out of range for insert"));
037e8744 15451 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15452}
15453
15454static void
15455do_neon_sri (void)
15456{
037e8744 15457 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15458 struct neon_type_el et = neon_check_type (2, rs,
15459 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15460 int imm = inst.operands[2].imm;
15461 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15462 _("immediate out of range for insert"));
037e8744 15463 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
15464}
15465
15466static void
15467do_neon_qshlu_imm (void)
15468{
037e8744 15469 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15470 struct neon_type_el et = neon_check_type (2, rs,
15471 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15472 int imm = inst.operands[2].imm;
15473 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 15474 _("immediate out of range for shift"));
5287ad62
JB
15475 /* Only encodes the 'U present' variant of the instruction.
15476 In this case, signed types have OP (bit 8) set to 0.
15477 Unsigned types have OP set to 1. */
15478 inst.instruction |= (et.type == NT_unsigned) << 8;
15479 /* The rest of the bits are the same as other immediate shifts. */
037e8744 15480 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15481}
15482
15483static void
15484do_neon_qmovn (void)
15485{
15486 struct neon_type_el et = neon_check_type (2, NS_DQ,
15487 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15488 /* Saturating move where operands can be signed or unsigned, and the
15489 destination has the same signedness. */
88714cb8 15490 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15491 if (et.type == NT_unsigned)
15492 inst.instruction |= 0xc0;
15493 else
15494 inst.instruction |= 0x80;
15495 neon_two_same (0, 1, et.size / 2);
15496}
15497
15498static void
15499do_neon_qmovun (void)
15500{
15501 struct neon_type_el et = neon_check_type (2, NS_DQ,
15502 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15503 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 15504 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15505 neon_two_same (0, 1, et.size / 2);
15506}
15507
15508static void
15509do_neon_rshift_sat_narrow (void)
15510{
15511 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15512 or unsigned. If operands are unsigned, results must also be unsigned. */
15513 struct neon_type_el et = neon_check_type (2, NS_DQI,
15514 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15515 int imm = inst.operands[2].imm;
15516 /* This gets the bounds check, size encoding and immediate bits calculation
15517 right. */
15518 et.size /= 2;
5f4273c7 15519
5287ad62
JB
15520 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15521 VQMOVN.I<size> <Dd>, <Qm>. */
15522 if (imm == 0)
15523 {
15524 inst.operands[2].present = 0;
15525 inst.instruction = N_MNEM_vqmovn;
15526 do_neon_qmovn ();
15527 return;
15528 }
5f4273c7 15529
5287ad62 15530 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15531 _("immediate out of range"));
5287ad62
JB
15532 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15533}
15534
15535static void
15536do_neon_rshift_sat_narrow_u (void)
15537{
15538 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15539 or unsigned. If operands are unsigned, results must also be unsigned. */
15540 struct neon_type_el et = neon_check_type (2, NS_DQI,
15541 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15542 int imm = inst.operands[2].imm;
15543 /* This gets the bounds check, size encoding and immediate bits calculation
15544 right. */
15545 et.size /= 2;
15546
15547 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15548 VQMOVUN.I<size> <Dd>, <Qm>. */
15549 if (imm == 0)
15550 {
15551 inst.operands[2].present = 0;
15552 inst.instruction = N_MNEM_vqmovun;
15553 do_neon_qmovun ();
15554 return;
15555 }
15556
15557 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15558 _("immediate out of range"));
5287ad62
JB
15559 /* FIXME: The manual is kind of unclear about what value U should have in
15560 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15561 must be 1. */
15562 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15563}
15564
15565static void
15566do_neon_movn (void)
15567{
15568 struct neon_type_el et = neon_check_type (2, NS_DQ,
15569 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 15570 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15571 neon_two_same (0, 1, et.size / 2);
15572}
15573
15574static void
15575do_neon_rshift_narrow (void)
15576{
15577 struct neon_type_el et = neon_check_type (2, NS_DQI,
15578 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15579 int imm = inst.operands[2].imm;
15580 /* This gets the bounds check, size encoding and immediate bits calculation
15581 right. */
15582 et.size /= 2;
5f4273c7 15583
5287ad62
JB
15584 /* If immediate is zero then we are a pseudo-instruction for
15585 VMOVN.I<size> <Dd>, <Qm> */
15586 if (imm == 0)
15587 {
15588 inst.operands[2].present = 0;
15589 inst.instruction = N_MNEM_vmovn;
15590 do_neon_movn ();
15591 return;
15592 }
5f4273c7 15593
5287ad62 15594 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15595 _("immediate out of range for narrowing operation"));
5287ad62
JB
15596 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15597}
15598
15599static void
15600do_neon_shll (void)
15601{
15602 /* FIXME: Type checking when lengthening. */
15603 struct neon_type_el et = neon_check_type (2, NS_QDI,
15604 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15605 unsigned imm = inst.operands[2].imm;
15606
15607 if (imm == et.size)
15608 {
15609 /* Maximum shift variant. */
88714cb8 15610 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15611 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15612 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15613 inst.instruction |= LOW4 (inst.operands[1].reg);
15614 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15615 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15616
88714cb8 15617 neon_dp_fixup (&inst);
5287ad62
JB
15618 }
15619 else
15620 {
15621 /* A more-specific type check for non-max versions. */
15622 et = neon_check_type (2, NS_QDI,
477330fc 15623 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 15624 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15625 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15626 }
15627}
15628
037e8744 15629/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
15630 the current instruction is. */
15631
6b9a8b67
MGD
15632#define CVT_FLAVOUR_VAR \
15633 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15634 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15635 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15636 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15637 /* Half-precision conversions. */ \
cc933301
JW
15638 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15639 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15640 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15641 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
15642 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15643 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
15644 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15645 Compared with single/double precision variants, only the co-processor \
15646 field is different, so the encoding flow is reused here. */ \
15647 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15648 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15649 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15650 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
15651 /* VFP instructions. */ \
15652 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15653 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15654 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15655 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15656 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15657 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15658 /* VFP instructions with bitshift. */ \
15659 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15660 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15661 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15662 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15663 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15664 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15665 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15666 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15667
15668#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15669 neon_cvt_flavour_##C,
15670
15671/* The different types of conversions we can do. */
15672enum neon_cvt_flavour
15673{
15674 CVT_FLAVOUR_VAR
15675 neon_cvt_flavour_invalid,
15676 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15677};
15678
15679#undef CVT_VAR
15680
15681static enum neon_cvt_flavour
15682get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 15683{
6b9a8b67
MGD
15684#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15685 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15686 if (et.type != NT_invtype) \
15687 { \
15688 inst.error = NULL; \
15689 return (neon_cvt_flavour_##C); \
5287ad62 15690 }
6b9a8b67 15691
5287ad62 15692 struct neon_type_el et;
037e8744 15693 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 15694 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
15695 /* The instruction versions which take an immediate take one register
15696 argument, which is extended to the width of the full register. Thus the
15697 "source" and "destination" registers must have the same width. Hack that
15698 here by making the size equal to the key (wider, in this case) operand. */
15699 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 15700
6b9a8b67
MGD
15701 CVT_FLAVOUR_VAR;
15702
15703 return neon_cvt_flavour_invalid;
5287ad62
JB
15704#undef CVT_VAR
15705}
15706
7e8e6784
MGD
15707enum neon_cvt_mode
15708{
15709 neon_cvt_mode_a,
15710 neon_cvt_mode_n,
15711 neon_cvt_mode_p,
15712 neon_cvt_mode_m,
15713 neon_cvt_mode_z,
30bdf752
MGD
15714 neon_cvt_mode_x,
15715 neon_cvt_mode_r
7e8e6784
MGD
15716};
15717
037e8744
JB
15718/* Neon-syntax VFP conversions. */
15719
5287ad62 15720static void
6b9a8b67 15721do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 15722{
037e8744 15723 const char *opname = 0;
5f4273c7 15724
d54af2d0
RL
15725 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15726 || rs == NS_FHI || rs == NS_HFI)
5287ad62 15727 {
037e8744
JB
15728 /* Conversions with immediate bitshift. */
15729 const char *enc[] =
477330fc 15730 {
6b9a8b67
MGD
15731#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15732 CVT_FLAVOUR_VAR
15733 NULL
15734#undef CVT_VAR
477330fc 15735 };
037e8744 15736
6b9a8b67 15737 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
15738 {
15739 opname = enc[flavour];
15740 constraint (inst.operands[0].reg != inst.operands[1].reg,
15741 _("operands 0 and 1 must be the same register"));
15742 inst.operands[1] = inst.operands[2];
15743 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15744 }
5287ad62
JB
15745 }
15746 else
15747 {
037e8744
JB
15748 /* Conversions without bitshift. */
15749 const char *enc[] =
477330fc 15750 {
6b9a8b67
MGD
15751#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15752 CVT_FLAVOUR_VAR
15753 NULL
15754#undef CVT_VAR
477330fc 15755 };
037e8744 15756
6b9a8b67 15757 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 15758 opname = enc[flavour];
037e8744
JB
15759 }
15760
15761 if (opname)
15762 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
15763
15764 /* ARMv8.2 fp16 VCVT instruction. */
15765 if (flavour == neon_cvt_flavour_s32_f16
15766 || flavour == neon_cvt_flavour_u32_f16
15767 || flavour == neon_cvt_flavour_f16_u32
15768 || flavour == neon_cvt_flavour_f16_s32)
15769 do_scalar_fp16_v82_encode ();
037e8744
JB
15770}
15771
15772static void
15773do_vfp_nsyn_cvtz (void)
15774{
d54af2d0 15775 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 15776 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
15777 const char *enc[] =
15778 {
6b9a8b67
MGD
15779#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15780 CVT_FLAVOUR_VAR
15781 NULL
15782#undef CVT_VAR
037e8744
JB
15783 };
15784
6b9a8b67 15785 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
15786 do_vfp_nsyn_opcode (enc[flavour]);
15787}
f31fef98 15788
037e8744 15789static void
bacebabc 15790do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
15791 enum neon_cvt_mode mode)
15792{
15793 int sz, op;
15794 int rm;
15795
a715796b
TG
15796 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15797 D register operands. */
15798 if (flavour == neon_cvt_flavour_s32_f64
15799 || flavour == neon_cvt_flavour_u32_f64)
15800 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15801 _(BAD_FPU));
15802
9db2f6b4
RL
15803 if (flavour == neon_cvt_flavour_s32_f16
15804 || flavour == neon_cvt_flavour_u32_f16)
15805 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15806 _(BAD_FP16));
15807
7e8e6784
MGD
15808 set_it_insn_type (OUTSIDE_IT_INSN);
15809
15810 switch (flavour)
15811 {
15812 case neon_cvt_flavour_s32_f64:
15813 sz = 1;
827f64ff 15814 op = 1;
7e8e6784
MGD
15815 break;
15816 case neon_cvt_flavour_s32_f32:
15817 sz = 0;
15818 op = 1;
15819 break;
9db2f6b4
RL
15820 case neon_cvt_flavour_s32_f16:
15821 sz = 0;
15822 op = 1;
15823 break;
7e8e6784
MGD
15824 case neon_cvt_flavour_u32_f64:
15825 sz = 1;
15826 op = 0;
15827 break;
15828 case neon_cvt_flavour_u32_f32:
15829 sz = 0;
15830 op = 0;
15831 break;
9db2f6b4
RL
15832 case neon_cvt_flavour_u32_f16:
15833 sz = 0;
15834 op = 0;
15835 break;
7e8e6784
MGD
15836 default:
15837 first_error (_("invalid instruction shape"));
15838 return;
15839 }
15840
15841 switch (mode)
15842 {
15843 case neon_cvt_mode_a: rm = 0; break;
15844 case neon_cvt_mode_n: rm = 1; break;
15845 case neon_cvt_mode_p: rm = 2; break;
15846 case neon_cvt_mode_m: rm = 3; break;
15847 default: first_error (_("invalid rounding mode")); return;
15848 }
15849
15850 NEON_ENCODE (FPV8, inst);
15851 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15852 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15853 inst.instruction |= sz << 8;
9db2f6b4
RL
15854
15855 /* ARMv8.2 fp16 VCVT instruction. */
15856 if (flavour == neon_cvt_flavour_s32_f16
15857 ||flavour == neon_cvt_flavour_u32_f16)
15858 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
15859 inst.instruction |= op << 7;
15860 inst.instruction |= rm << 16;
15861 inst.instruction |= 0xf0000000;
15862 inst.is_neon = TRUE;
15863}
15864
15865static void
15866do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
15867{
15868 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
15869 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15870 NS_FH, NS_HF, NS_FHI, NS_HFI,
15871 NS_NULL);
6b9a8b67 15872 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 15873
cc933301
JW
15874 if (flavour == neon_cvt_flavour_invalid)
15875 return;
15876
e3e535bc 15877 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 15878 if (mode == neon_cvt_mode_z
e3e535bc 15879 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
15880 && (flavour == neon_cvt_flavour_s16_f16
15881 || flavour == neon_cvt_flavour_u16_f16
15882 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
15883 || flavour == neon_cvt_flavour_u32_f32
15884 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 15885 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
15886 && (rs == NS_FD || rs == NS_FF))
15887 {
15888 do_vfp_nsyn_cvtz ();
15889 return;
15890 }
15891
9db2f6b4
RL
15892 /* ARMv8.2 fp16 VCVT conversions. */
15893 if (mode == neon_cvt_mode_z
15894 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15895 && (flavour == neon_cvt_flavour_s32_f16
15896 || flavour == neon_cvt_flavour_u32_f16)
15897 && (rs == NS_FH))
15898 {
15899 do_vfp_nsyn_cvtz ();
15900 do_scalar_fp16_v82_encode ();
15901 return;
15902 }
15903
037e8744 15904 /* VFP rather than Neon conversions. */
6b9a8b67 15905 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 15906 {
7e8e6784
MGD
15907 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15908 do_vfp_nsyn_cvt (rs, flavour);
15909 else
15910 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15911
037e8744
JB
15912 return;
15913 }
15914
15915 switch (rs)
15916 {
15917 case NS_DDI:
15918 case NS_QQI:
15919 {
477330fc 15920 unsigned immbits;
cc933301
JW
15921 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15922 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 15923
477330fc
RM
15924 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15925 return;
037e8744 15926
477330fc
RM
15927 /* Fixed-point conversion with #0 immediate is encoded as an
15928 integer conversion. */
15929 if (inst.operands[2].present && inst.operands[2].imm == 0)
15930 goto int_encode;
477330fc
RM
15931 NEON_ENCODE (IMMED, inst);
15932 if (flavour != neon_cvt_flavour_invalid)
15933 inst.instruction |= enctab[flavour];
15934 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15935 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15936 inst.instruction |= LOW4 (inst.operands[1].reg);
15937 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15938 inst.instruction |= neon_quad (rs) << 6;
15939 inst.instruction |= 1 << 21;
cc933301
JW
15940 if (flavour < neon_cvt_flavour_s16_f16)
15941 {
15942 inst.instruction |= 1 << 21;
15943 immbits = 32 - inst.operands[2].imm;
15944 inst.instruction |= immbits << 16;
15945 }
15946 else
15947 {
15948 inst.instruction |= 3 << 20;
15949 immbits = 16 - inst.operands[2].imm;
15950 inst.instruction |= immbits << 16;
15951 inst.instruction &= ~(1 << 9);
15952 }
477330fc
RM
15953
15954 neon_dp_fixup (&inst);
037e8744
JB
15955 }
15956 break;
15957
15958 case NS_DD:
15959 case NS_QQ:
7e8e6784
MGD
15960 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15961 {
15962 NEON_ENCODE (FLOAT, inst);
15963 set_it_insn_type (OUTSIDE_IT_INSN);
15964
15965 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15966 return;
15967
15968 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15969 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15970 inst.instruction |= LOW4 (inst.operands[1].reg);
15971 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15972 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
15973 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
15974 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 15975 inst.instruction |= mode << 8;
cc933301
JW
15976 if (flavour == neon_cvt_flavour_u16_f16
15977 || flavour == neon_cvt_flavour_s16_f16)
15978 /* Mask off the original size bits and reencode them. */
15979 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
15980
7e8e6784
MGD
15981 if (thumb_mode)
15982 inst.instruction |= 0xfc000000;
15983 else
15984 inst.instruction |= 0xf0000000;
15985 }
15986 else
15987 {
037e8744 15988 int_encode:
7e8e6784 15989 {
cc933301
JW
15990 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
15991 0x100, 0x180, 0x0, 0x080};
037e8744 15992
7e8e6784 15993 NEON_ENCODE (INTEGER, inst);
037e8744 15994
7e8e6784
MGD
15995 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15996 return;
037e8744 15997
7e8e6784
MGD
15998 if (flavour != neon_cvt_flavour_invalid)
15999 inst.instruction |= enctab[flavour];
037e8744 16000
7e8e6784
MGD
16001 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16002 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16003 inst.instruction |= LOW4 (inst.operands[1].reg);
16004 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16005 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
16006 if (flavour >= neon_cvt_flavour_s16_f16
16007 && flavour <= neon_cvt_flavour_f16_u16)
16008 /* Half precision. */
16009 inst.instruction |= 1 << 18;
16010 else
16011 inst.instruction |= 2 << 18;
037e8744 16012
7e8e6784
MGD
16013 neon_dp_fixup (&inst);
16014 }
16015 }
16016 break;
037e8744 16017
8e79c3df
CM
16018 /* Half-precision conversions for Advanced SIMD -- neon. */
16019 case NS_QD:
16020 case NS_DQ:
bc52d49c
MM
16021 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16022 return;
8e79c3df
CM
16023
16024 if ((rs == NS_DQ)
16025 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
16026 {
16027 as_bad (_("operand size must match register width"));
16028 break;
16029 }
16030
16031 if ((rs == NS_QD)
16032 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
16033 {
16034 as_bad (_("operand size must match register width"));
16035 break;
16036 }
16037
16038 if (rs == NS_DQ)
477330fc 16039 inst.instruction = 0x3b60600;
8e79c3df
CM
16040 else
16041 inst.instruction = 0x3b60700;
16042
16043 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16044 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16045 inst.instruction |= LOW4 (inst.operands[1].reg);
16046 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 16047 neon_dp_fixup (&inst);
8e79c3df
CM
16048 break;
16049
037e8744
JB
16050 default:
16051 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
16052 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
16053 do_vfp_nsyn_cvt (rs, flavour);
16054 else
16055 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 16056 }
5287ad62
JB
16057}
16058
e3e535bc
NC
16059static void
16060do_neon_cvtr (void)
16061{
7e8e6784 16062 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
16063}
16064
16065static void
16066do_neon_cvt (void)
16067{
7e8e6784
MGD
16068 do_neon_cvt_1 (neon_cvt_mode_z);
16069}
16070
16071static void
16072do_neon_cvta (void)
16073{
16074 do_neon_cvt_1 (neon_cvt_mode_a);
16075}
16076
16077static void
16078do_neon_cvtn (void)
16079{
16080 do_neon_cvt_1 (neon_cvt_mode_n);
16081}
16082
16083static void
16084do_neon_cvtp (void)
16085{
16086 do_neon_cvt_1 (neon_cvt_mode_p);
16087}
16088
16089static void
16090do_neon_cvtm (void)
16091{
16092 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
16093}
16094
8e79c3df 16095static void
c70a8987 16096do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 16097{
c70a8987
MGD
16098 if (is_double)
16099 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 16100
c70a8987
MGD
16101 encode_arm_vfp_reg (inst.operands[0].reg,
16102 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
16103 encode_arm_vfp_reg (inst.operands[1].reg,
16104 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
16105 inst.instruction |= to ? 0x10000 : 0;
16106 inst.instruction |= t ? 0x80 : 0;
16107 inst.instruction |= is_double ? 0x100 : 0;
16108 do_vfp_cond_or_thumb ();
16109}
8e79c3df 16110
c70a8987
MGD
16111static void
16112do_neon_cvttb_1 (bfd_boolean t)
16113{
d54af2d0
RL
16114 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
16115 NS_DF, NS_DH, NS_NULL);
8e79c3df 16116
c70a8987
MGD
16117 if (rs == NS_NULL)
16118 return;
16119 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
16120 {
16121 inst.error = NULL;
16122 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
16123 }
16124 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
16125 {
16126 inst.error = NULL;
16127 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
16128 }
16129 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
16130 {
a715796b
TG
16131 /* The VCVTB and VCVTT instructions with D-register operands
16132 don't work for SP only targets. */
16133 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16134 _(BAD_FPU));
16135
c70a8987
MGD
16136 inst.error = NULL;
16137 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
16138 }
16139 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
16140 {
a715796b
TG
16141 /* The VCVTB and VCVTT instructions with D-register operands
16142 don't work for SP only targets. */
16143 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16144 _(BAD_FPU));
16145
c70a8987
MGD
16146 inst.error = NULL;
16147 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
16148 }
16149 else
16150 return;
16151}
16152
16153static void
16154do_neon_cvtb (void)
16155{
16156 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
16157}
16158
16159
16160static void
16161do_neon_cvtt (void)
16162{
c70a8987 16163 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
16164}
16165
5287ad62
JB
16166static void
16167neon_move_immediate (void)
16168{
037e8744
JB
16169 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
16170 struct neon_type_el et = neon_check_type (2, rs,
16171 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 16172 unsigned immlo, immhi = 0, immbits;
c96612cc 16173 int op, cmode, float_p;
5287ad62 16174
037e8744 16175 constraint (et.type == NT_invtype,
477330fc 16176 _("operand size must be specified for immediate VMOV"));
037e8744 16177
5287ad62
JB
16178 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
16179 op = (inst.instruction & (1 << 5)) != 0;
16180
16181 immlo = inst.operands[1].imm;
16182 if (inst.operands[1].regisimm)
16183 immhi = inst.operands[1].reg;
16184
16185 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 16186 _("immediate has bits set outside the operand size"));
5287ad62 16187
c96612cc
JB
16188 float_p = inst.operands[1].immisfloat;
16189
16190 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 16191 et.size, et.type)) == FAIL)
5287ad62
JB
16192 {
16193 /* Invert relevant bits only. */
16194 neon_invert_size (&immlo, &immhi, et.size);
16195 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
16196 with one or the other; those cases are caught by
16197 neon_cmode_for_move_imm. */
5287ad62 16198 op = !op;
c96612cc
JB
16199 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
16200 &op, et.size, et.type)) == FAIL)
477330fc
RM
16201 {
16202 first_error (_("immediate out of range"));
16203 return;
16204 }
5287ad62
JB
16205 }
16206
16207 inst.instruction &= ~(1 << 5);
16208 inst.instruction |= op << 5;
16209
16210 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16211 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 16212 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16213 inst.instruction |= cmode << 8;
16214
16215 neon_write_immbits (immbits);
16216}
16217
16218static void
16219do_neon_mvn (void)
16220{
16221 if (inst.operands[1].isreg)
16222 {
037e8744 16223 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 16224
88714cb8 16225 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
16226 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16227 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16228 inst.instruction |= LOW4 (inst.operands[1].reg);
16229 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16230 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16231 }
16232 else
16233 {
88714cb8 16234 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16235 neon_move_immediate ();
16236 }
16237
88714cb8 16238 neon_dp_fixup (&inst);
5287ad62
JB
16239}
16240
16241/* Encode instructions of form:
16242
16243 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 16244 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
16245
16246static void
16247neon_mixed_length (struct neon_type_el et, unsigned size)
16248{
16249 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16250 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16251 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16252 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16253 inst.instruction |= LOW4 (inst.operands[2].reg);
16254 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16255 inst.instruction |= (et.type == NT_unsigned) << 24;
16256 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16257
88714cb8 16258 neon_dp_fixup (&inst);
5287ad62
JB
16259}
16260
16261static void
16262do_neon_dyadic_long (void)
16263{
16264 /* FIXME: Type checking for lengthening op. */
16265 struct neon_type_el et = neon_check_type (3, NS_QDD,
16266 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
16267 neon_mixed_length (et, et.size);
16268}
16269
16270static void
16271do_neon_abal (void)
16272{
16273 struct neon_type_el et = neon_check_type (3, NS_QDD,
16274 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
16275 neon_mixed_length (et, et.size);
16276}
16277
16278static void
16279neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
16280{
16281 if (inst.operands[2].isscalar)
16282 {
dcbf9037 16283 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 16284 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 16285 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
16286 neon_mul_mac (et, et.type == NT_unsigned);
16287 }
16288 else
16289 {
16290 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 16291 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 16292 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
16293 neon_mixed_length (et, et.size);
16294 }
16295}
16296
16297static void
16298do_neon_mac_maybe_scalar_long (void)
16299{
16300 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16301}
16302
dec41383
JW
16303/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
16304 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
16305
16306static unsigned
16307neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
16308{
16309 unsigned regno = NEON_SCALAR_REG (scalar);
16310 unsigned elno = NEON_SCALAR_INDEX (scalar);
16311
16312 if (quad_p)
16313 {
16314 if (regno > 7 || elno > 3)
16315 goto bad_scalar;
16316
16317 return ((regno & 0x7)
16318 | ((elno & 0x1) << 3)
16319 | (((elno >> 1) & 0x1) << 5));
16320 }
16321 else
16322 {
16323 if (regno > 15 || elno > 1)
16324 goto bad_scalar;
16325
16326 return (((regno & 0x1) << 5)
16327 | ((regno >> 1) & 0x7)
16328 | ((elno & 0x1) << 3));
16329 }
16330
16331bad_scalar:
16332 first_error (_("scalar out of range for multiply instruction"));
16333 return 0;
16334}
16335
16336static void
16337do_neon_fmac_maybe_scalar_long (int subtype)
16338{
16339 enum neon_shape rs;
16340 int high8;
16341 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
16342 field (bits[21:20]) has different meaning. For scalar index variant, it's
16343 used to differentiate add and subtract, otherwise it's with fixed value
16344 0x2. */
16345 int size = -1;
16346
16347 if (inst.cond != COND_ALWAYS)
16348 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
16349 "behaviour is UNPREDICTABLE"));
16350
01f48020 16351 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
16352 _(BAD_FP16));
16353
16354 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
16355 _(BAD_FPU));
16356
16357 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
16358 be a scalar index register. */
16359 if (inst.operands[2].isscalar)
16360 {
16361 high8 = 0xfe000000;
16362 if (subtype)
16363 size = 16;
16364 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
16365 }
16366 else
16367 {
16368 high8 = 0xfc000000;
16369 size = 32;
16370 if (subtype)
16371 inst.instruction |= (0x1 << 23);
16372 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
16373 }
16374
16375 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
16376
16377 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
16378 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
16379 so we simply pass -1 as size. */
16380 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
16381 neon_three_same (quad_p, 0, size);
16382
16383 /* Undo neon_dp_fixup. Redo the high eight bits. */
16384 inst.instruction &= 0x00ffffff;
16385 inst.instruction |= high8;
16386
16387#define LOW1(R) ((R) & 0x1)
16388#define HI4(R) (((R) >> 1) & 0xf)
16389 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
16390 whether the instruction is in Q form and whether Vm is a scalar indexed
16391 operand. */
16392 if (inst.operands[2].isscalar)
16393 {
16394 unsigned rm
16395 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
16396 inst.instruction &= 0xffffffd0;
16397 inst.instruction |= rm;
16398
16399 if (!quad_p)
16400 {
16401 /* Redo Rn as well. */
16402 inst.instruction &= 0xfff0ff7f;
16403 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16404 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16405 }
16406 }
16407 else if (!quad_p)
16408 {
16409 /* Redo Rn and Rm. */
16410 inst.instruction &= 0xfff0ff50;
16411 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16412 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16413 inst.instruction |= HI4 (inst.operands[2].reg);
16414 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
16415 }
16416}
16417
16418static void
16419do_neon_vfmal (void)
16420{
16421 return do_neon_fmac_maybe_scalar_long (0);
16422}
16423
16424static void
16425do_neon_vfmsl (void)
16426{
16427 return do_neon_fmac_maybe_scalar_long (1);
16428}
16429
5287ad62
JB
16430static void
16431do_neon_dyadic_wide (void)
16432{
16433 struct neon_type_el et = neon_check_type (3, NS_QQD,
16434 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16435 neon_mixed_length (et, et.size);
16436}
16437
16438static void
16439do_neon_dyadic_narrow (void)
16440{
16441 struct neon_type_el et = neon_check_type (3, NS_QDD,
16442 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
16443 /* Operand sign is unimportant, and the U bit is part of the opcode,
16444 so force the operand type to integer. */
16445 et.type = NT_integer;
5287ad62
JB
16446 neon_mixed_length (et, et.size / 2);
16447}
16448
16449static void
16450do_neon_mul_sat_scalar_long (void)
16451{
16452 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16453}
16454
16455static void
16456do_neon_vmull (void)
16457{
16458 if (inst.operands[2].isscalar)
16459 do_neon_mac_maybe_scalar_long ();
16460 else
16461 {
16462 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 16463 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 16464
5287ad62 16465 if (et.type == NT_poly)
477330fc 16466 NEON_ENCODE (POLY, inst);
5287ad62 16467 else
477330fc 16468 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
16469
16470 /* For polynomial encoding the U bit must be zero, and the size must
16471 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16472 obviously, as 0b10). */
16473 if (et.size == 64)
16474 {
16475 /* Check we're on the correct architecture. */
16476 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16477 inst.error =
16478 _("Instruction form not available on this architecture.");
16479
16480 et.size = 32;
16481 }
16482
5287ad62
JB
16483 neon_mixed_length (et, et.size);
16484 }
16485}
16486
16487static void
16488do_neon_ext (void)
16489{
037e8744 16490 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
16491 struct neon_type_el et = neon_check_type (3, rs,
16492 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16493 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
16494
16495 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16496 _("shift out of range"));
5287ad62
JB
16497 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16498 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16499 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16500 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16501 inst.instruction |= LOW4 (inst.operands[2].reg);
16502 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 16503 inst.instruction |= neon_quad (rs) << 6;
5287ad62 16504 inst.instruction |= imm << 8;
5f4273c7 16505
88714cb8 16506 neon_dp_fixup (&inst);
5287ad62
JB
16507}
16508
16509static void
16510do_neon_rev (void)
16511{
037e8744 16512 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16513 struct neon_type_el et = neon_check_type (2, rs,
16514 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16515 unsigned op = (inst.instruction >> 7) & 3;
16516 /* N (width of reversed regions) is encoded as part of the bitmask. We
16517 extract it here to check the elements to be reversed are smaller.
16518 Otherwise we'd get a reserved instruction. */
16519 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 16520 gas_assert (elsize != 0);
5287ad62 16521 constraint (et.size >= elsize,
477330fc 16522 _("elements must be smaller than reversal region"));
037e8744 16523 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16524}
16525
16526static void
16527do_neon_dup (void)
16528{
16529 if (inst.operands[1].isscalar)
16530 {
037e8744 16531 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 16532 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16533 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 16534 unsigned sizebits = et.size >> 3;
dcbf9037 16535 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 16536 int logsize = neon_logbits (et.size);
dcbf9037 16537 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
16538
16539 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 16540 return;
037e8744 16541
88714cb8 16542 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
16543 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16544 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16545 inst.instruction |= LOW4 (dm);
16546 inst.instruction |= HI1 (dm) << 5;
037e8744 16547 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16548 inst.instruction |= x << 17;
16549 inst.instruction |= sizebits << 16;
5f4273c7 16550
88714cb8 16551 neon_dp_fixup (&inst);
5287ad62
JB
16552 }
16553 else
16554 {
037e8744
JB
16555 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16556 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16557 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 16558 /* Duplicate ARM register to lanes of vector. */
88714cb8 16559 NEON_ENCODE (ARMREG, inst);
5287ad62 16560 switch (et.size)
477330fc
RM
16561 {
16562 case 8: inst.instruction |= 0x400000; break;
16563 case 16: inst.instruction |= 0x000020; break;
16564 case 32: inst.instruction |= 0x000000; break;
16565 default: break;
16566 }
5287ad62
JB
16567 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16568 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16569 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 16570 inst.instruction |= neon_quad (rs) << 21;
5287ad62 16571 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 16572 variants, except for the condition field. */
037e8744 16573 do_vfp_cond_or_thumb ();
5287ad62
JB
16574 }
16575}
16576
16577/* VMOV has particularly many variations. It can be one of:
16578 0. VMOV<c><q> <Qd>, <Qm>
16579 1. VMOV<c><q> <Dd>, <Dm>
16580 (Register operations, which are VORR with Rm = Rn.)
16581 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16582 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16583 (Immediate loads.)
16584 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16585 (ARM register to scalar.)
16586 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16587 (Two ARM registers to vector.)
16588 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16589 (Scalar to ARM register.)
16590 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16591 (Vector to two ARM registers.)
037e8744
JB
16592 8. VMOV.F32 <Sd>, <Sm>
16593 9. VMOV.F64 <Dd>, <Dm>
16594 (VFP register moves.)
16595 10. VMOV.F32 <Sd>, #imm
16596 11. VMOV.F64 <Dd>, #imm
16597 (VFP float immediate load.)
16598 12. VMOV <Rd>, <Sm>
16599 (VFP single to ARM reg.)
16600 13. VMOV <Sd>, <Rm>
16601 (ARM reg to VFP single.)
16602 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16603 (Two ARM regs to two VFP singles.)
16604 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16605 (Two VFP singles to two ARM regs.)
5f4273c7 16606
037e8744
JB
16607 These cases can be disambiguated using neon_select_shape, except cases 1/9
16608 and 3/11 which depend on the operand type too.
5f4273c7 16609
5287ad62 16610 All the encoded bits are hardcoded by this function.
5f4273c7 16611
b7fc2769
JB
16612 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16613 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 16614
5287ad62 16615 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 16616 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
16617
16618static void
16619do_neon_mov (void)
16620{
037e8744 16621 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
9db2f6b4
RL
16622 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16623 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16624 NS_HR, NS_RH, NS_HI, NS_NULL);
037e8744
JB
16625 struct neon_type_el et;
16626 const char *ldconst = 0;
5287ad62 16627
037e8744 16628 switch (rs)
5287ad62 16629 {
037e8744
JB
16630 case NS_DD: /* case 1/9. */
16631 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16632 /* It is not an error here if no type is given. */
16633 inst.error = NULL;
16634 if (et.type == NT_float && et.size == 64)
477330fc
RM
16635 {
16636 do_vfp_nsyn_opcode ("fcpyd");
16637 break;
16638 }
037e8744 16639 /* fall through. */
5287ad62 16640
037e8744
JB
16641 case NS_QQ: /* case 0/1. */
16642 {
477330fc
RM
16643 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16644 return;
16645 /* The architecture manual I have doesn't explicitly state which
16646 value the U bit should have for register->register moves, but
16647 the equivalent VORR instruction has U = 0, so do that. */
16648 inst.instruction = 0x0200110;
16649 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16650 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16651 inst.instruction |= LOW4 (inst.operands[1].reg);
16652 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16653 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16654 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16655 inst.instruction |= neon_quad (rs) << 6;
16656
16657 neon_dp_fixup (&inst);
037e8744
JB
16658 }
16659 break;
5f4273c7 16660
037e8744
JB
16661 case NS_DI: /* case 3/11. */
16662 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16663 inst.error = NULL;
16664 if (et.type == NT_float && et.size == 64)
477330fc
RM
16665 {
16666 /* case 11 (fconstd). */
16667 ldconst = "fconstd";
16668 goto encode_fconstd;
16669 }
037e8744
JB
16670 /* fall through. */
16671
16672 case NS_QI: /* case 2/3. */
16673 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
477330fc 16674 return;
037e8744
JB
16675 inst.instruction = 0x0800010;
16676 neon_move_immediate ();
88714cb8 16677 neon_dp_fixup (&inst);
5287ad62 16678 break;
5f4273c7 16679
037e8744
JB
16680 case NS_SR: /* case 4. */
16681 {
477330fc
RM
16682 unsigned bcdebits = 0;
16683 int logsize;
16684 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16685 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 16686
05ac0ffb
JB
16687 /* .<size> is optional here, defaulting to .32. */
16688 if (inst.vectype.elems == 0
16689 && inst.operands[0].vectype.type == NT_invtype
16690 && inst.operands[1].vectype.type == NT_invtype)
16691 {
16692 inst.vectype.el[0].type = NT_untyped;
16693 inst.vectype.el[0].size = 32;
16694 inst.vectype.elems = 1;
16695 }
16696
477330fc
RM
16697 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16698 logsize = neon_logbits (et.size);
16699
16700 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16701 _(BAD_FPU));
16702 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16703 && et.size != 32, _(BAD_FPU));
16704 constraint (et.type == NT_invtype, _("bad type for scalar"));
16705 constraint (x >= 64 / et.size, _("scalar index out of range"));
16706
16707 switch (et.size)
16708 {
16709 case 8: bcdebits = 0x8; break;
16710 case 16: bcdebits = 0x1; break;
16711 case 32: bcdebits = 0x0; break;
16712 default: ;
16713 }
16714
16715 bcdebits |= x << logsize;
16716
16717 inst.instruction = 0xe000b10;
16718 do_vfp_cond_or_thumb ();
16719 inst.instruction |= LOW4 (dn) << 16;
16720 inst.instruction |= HI1 (dn) << 7;
16721 inst.instruction |= inst.operands[1].reg << 12;
16722 inst.instruction |= (bcdebits & 3) << 5;
16723 inst.instruction |= (bcdebits >> 2) << 21;
037e8744
JB
16724 }
16725 break;
5f4273c7 16726
037e8744 16727 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 16728 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
477330fc 16729 _(BAD_FPU));
b7fc2769 16730
037e8744
JB
16731 inst.instruction = 0xc400b10;
16732 do_vfp_cond_or_thumb ();
16733 inst.instruction |= LOW4 (inst.operands[0].reg);
16734 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16735 inst.instruction |= inst.operands[1].reg << 12;
16736 inst.instruction |= inst.operands[2].reg << 16;
16737 break;
5f4273c7 16738
037e8744
JB
16739 case NS_RS: /* case 6. */
16740 {
477330fc
RM
16741 unsigned logsize;
16742 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16743 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16744 unsigned abcdebits = 0;
037e8744 16745
05ac0ffb
JB
16746 /* .<dt> is optional here, defaulting to .32. */
16747 if (inst.vectype.elems == 0
16748 && inst.operands[0].vectype.type == NT_invtype
16749 && inst.operands[1].vectype.type == NT_invtype)
16750 {
16751 inst.vectype.el[0].type = NT_untyped;
16752 inst.vectype.el[0].size = 32;
16753 inst.vectype.elems = 1;
16754 }
16755
91d6fa6a
NC
16756 et = neon_check_type (2, NS_NULL,
16757 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
16758 logsize = neon_logbits (et.size);
16759
16760 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16761 _(BAD_FPU));
16762 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16763 && et.size != 32, _(BAD_FPU));
16764 constraint (et.type == NT_invtype, _("bad type for scalar"));
16765 constraint (x >= 64 / et.size, _("scalar index out of range"));
16766
16767 switch (et.size)
16768 {
16769 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16770 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16771 case 32: abcdebits = 0x00; break;
16772 default: ;
16773 }
16774
16775 abcdebits |= x << logsize;
16776 inst.instruction = 0xe100b10;
16777 do_vfp_cond_or_thumb ();
16778 inst.instruction |= LOW4 (dn) << 16;
16779 inst.instruction |= HI1 (dn) << 7;
16780 inst.instruction |= inst.operands[0].reg << 12;
16781 inst.instruction |= (abcdebits & 3) << 5;
16782 inst.instruction |= (abcdebits >> 2) << 21;
037e8744
JB
16783 }
16784 break;
5f4273c7 16785
037e8744
JB
16786 case NS_RRD: /* case 7 (fmrrd). */
16787 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
477330fc 16788 _(BAD_FPU));
037e8744
JB
16789
16790 inst.instruction = 0xc500b10;
16791 do_vfp_cond_or_thumb ();
16792 inst.instruction |= inst.operands[0].reg << 12;
16793 inst.instruction |= inst.operands[1].reg << 16;
16794 inst.instruction |= LOW4 (inst.operands[2].reg);
16795 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16796 break;
5f4273c7 16797
037e8744
JB
16798 case NS_FF: /* case 8 (fcpys). */
16799 do_vfp_nsyn_opcode ("fcpys");
16800 break;
5f4273c7 16801
9db2f6b4 16802 case NS_HI:
037e8744
JB
16803 case NS_FI: /* case 10 (fconsts). */
16804 ldconst = "fconsts";
4ef4710f 16805 encode_fconstd:
58ed5c38
TC
16806 if (!inst.operands[1].immisfloat)
16807 {
4ef4710f 16808 unsigned new_imm;
58ed5c38 16809 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
16810 float imm = (float) inst.operands[1].imm;
16811 memcpy (&new_imm, &imm, sizeof (float));
16812 /* But the assembly may have been written to provide an integer
16813 bit pattern that equates to a float, so check that the
16814 conversion has worked. */
16815 if (is_quarter_float (new_imm))
16816 {
16817 if (is_quarter_float (inst.operands[1].imm))
16818 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
16819
16820 inst.operands[1].imm = new_imm;
16821 inst.operands[1].immisfloat = 1;
16822 }
58ed5c38
TC
16823 }
16824
037e8744 16825 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
16826 {
16827 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16828 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
16829
16830 /* ARMv8.2 fp16 vmov.f16 instruction. */
16831 if (rs == NS_HI)
16832 do_scalar_fp16_v82_encode ();
477330fc 16833 }
5287ad62 16834 else
477330fc 16835 first_error (_("immediate out of range"));
037e8744 16836 break;
5f4273c7 16837
9db2f6b4 16838 case NS_RH:
037e8744
JB
16839 case NS_RF: /* case 12 (fmrs). */
16840 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
16841 /* ARMv8.2 fp16 vmov.f16 instruction. */
16842 if (rs == NS_RH)
16843 do_scalar_fp16_v82_encode ();
037e8744 16844 break;
5f4273c7 16845
9db2f6b4 16846 case NS_HR:
037e8744
JB
16847 case NS_FR: /* case 13 (fmsr). */
16848 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
16849 /* ARMv8.2 fp16 vmov.f16 instruction. */
16850 if (rs == NS_HR)
16851 do_scalar_fp16_v82_encode ();
037e8744 16852 break;
5f4273c7 16853
037e8744
JB
16854 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16855 (one of which is a list), but we have parsed four. Do some fiddling to
16856 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16857 expect. */
16858 case NS_RRFF: /* case 14 (fmrrs). */
16859 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 16860 _("VFP registers must be adjacent"));
037e8744
JB
16861 inst.operands[2].imm = 2;
16862 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16863 do_vfp_nsyn_opcode ("fmrrs");
16864 break;
5f4273c7 16865
037e8744
JB
16866 case NS_FFRR: /* case 15 (fmsrr). */
16867 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 16868 _("VFP registers must be adjacent"));
037e8744
JB
16869 inst.operands[1] = inst.operands[2];
16870 inst.operands[2] = inst.operands[3];
16871 inst.operands[0].imm = 2;
16872 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16873 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 16874 break;
5f4273c7 16875
4c261dff
NC
16876 case NS_NULL:
16877 /* neon_select_shape has determined that the instruction
16878 shape is wrong and has already set the error message. */
16879 break;
16880
5287ad62
JB
16881 default:
16882 abort ();
16883 }
16884}
16885
16886static void
16887do_neon_rshift_round_imm (void)
16888{
037e8744 16889 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
16890 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16891 int imm = inst.operands[2].imm;
16892
16893 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16894 if (imm == 0)
16895 {
16896 inst.operands[2].present = 0;
16897 do_neon_mov ();
16898 return;
16899 }
16900
16901 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 16902 _("immediate out of range for shift"));
037e8744 16903 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 16904 et.size - imm);
5287ad62
JB
16905}
16906
9db2f6b4
RL
16907static void
16908do_neon_movhf (void)
16909{
16910 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16911 constraint (rs != NS_HH, _("invalid suffix"));
16912
7bdf778b
ASDV
16913 if (inst.cond != COND_ALWAYS)
16914 {
16915 if (thumb_mode)
16916 {
16917 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
16918 " the behaviour is UNPREDICTABLE"));
16919 }
16920 else
16921 {
16922 inst.error = BAD_COND;
16923 return;
16924 }
16925 }
16926
9db2f6b4
RL
16927 do_vfp_sp_monadic ();
16928
16929 inst.is_neon = 1;
16930 inst.instruction |= 0xf0000000;
16931}
16932
5287ad62
JB
16933static void
16934do_neon_movl (void)
16935{
16936 struct neon_type_el et = neon_check_type (2, NS_QD,
16937 N_EQK | N_DBL, N_SU_32 | N_KEY);
16938 unsigned sizebits = et.size >> 3;
16939 inst.instruction |= sizebits << 19;
16940 neon_two_same (0, et.type == NT_unsigned, -1);
16941}
16942
16943static void
16944do_neon_trn (void)
16945{
037e8744 16946 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16947 struct neon_type_el et = neon_check_type (2, rs,
16948 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 16949 NEON_ENCODE (INTEGER, inst);
037e8744 16950 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16951}
16952
16953static void
16954do_neon_zip_uzp (void)
16955{
037e8744 16956 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16957 struct neon_type_el et = neon_check_type (2, rs,
16958 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16959 if (rs == NS_DD && et.size == 32)
16960 {
16961 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16962 inst.instruction = N_MNEM_vtrn;
16963 do_neon_trn ();
16964 return;
16965 }
037e8744 16966 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16967}
16968
16969static void
16970do_neon_sat_abs_neg (void)
16971{
037e8744 16972 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16973 struct neon_type_el et = neon_check_type (2, rs,
16974 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 16975 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16976}
16977
16978static void
16979do_neon_pair_long (void)
16980{
037e8744 16981 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16982 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16983 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16984 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 16985 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16986}
16987
16988static void
16989do_neon_recip_est (void)
16990{
037e8744 16991 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 16992 struct neon_type_el et = neon_check_type (2, rs,
cc933301 16993 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 16994 inst.instruction |= (et.type == NT_float) << 8;
037e8744 16995 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16996}
16997
16998static void
16999do_neon_cls (void)
17000{
037e8744 17001 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
17002 struct neon_type_el et = neon_check_type (2, rs,
17003 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 17004 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
17005}
17006
17007static void
17008do_neon_clz (void)
17009{
037e8744 17010 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
17011 struct neon_type_el et = neon_check_type (2, rs,
17012 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 17013 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
17014}
17015
17016static void
17017do_neon_cnt (void)
17018{
037e8744 17019 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
17020 struct neon_type_el et = neon_check_type (2, rs,
17021 N_EQK | N_INT, N_8 | N_KEY);
037e8744 17022 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
17023}
17024
17025static void
17026do_neon_swp (void)
17027{
037e8744
JB
17028 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17029 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
17030}
17031
17032static void
17033do_neon_tbl_tbx (void)
17034{
17035 unsigned listlenbits;
dcbf9037 17036 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 17037
5287ad62
JB
17038 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
17039 {
dcbf9037 17040 first_error (_("bad list length for table lookup"));
5287ad62
JB
17041 return;
17042 }
5f4273c7 17043
5287ad62
JB
17044 listlenbits = inst.operands[1].imm - 1;
17045 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17046 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17047 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17048 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17049 inst.instruction |= LOW4 (inst.operands[2].reg);
17050 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
17051 inst.instruction |= listlenbits << 8;
5f4273c7 17052
88714cb8 17053 neon_dp_fixup (&inst);
5287ad62
JB
17054}
17055
17056static void
17057do_neon_ldm_stm (void)
17058{
17059 /* P, U and L bits are part of bitmask. */
17060 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
17061 unsigned offsetbits = inst.operands[1].imm * 2;
17062
037e8744
JB
17063 if (inst.operands[1].issingle)
17064 {
17065 do_vfp_nsyn_ldm_stm (is_dbmode);
17066 return;
17067 }
17068
5287ad62 17069 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 17070 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
17071
17072 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
17073 _("register list must contain at least 1 and at most 16 "
17074 "registers"));
5287ad62
JB
17075
17076 inst.instruction |= inst.operands[0].reg << 16;
17077 inst.instruction |= inst.operands[0].writeback << 21;
17078 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
17079 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
17080
17081 inst.instruction |= offsetbits;
5f4273c7 17082
037e8744 17083 do_vfp_cond_or_thumb ();
5287ad62
JB
17084}
17085
17086static void
17087do_neon_ldr_str (void)
17088{
5287ad62 17089 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 17090
6844b2c2
MGD
17091 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
17092 And is UNPREDICTABLE in thumb mode. */
fa94de6b 17093 if (!is_ldr
6844b2c2 17094 && inst.operands[1].reg == REG_PC
ba86b375 17095 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 17096 {
94dcf8bf 17097 if (thumb_mode)
6844b2c2 17098 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 17099 else if (warn_on_deprecated)
5c3696f8 17100 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
17101 }
17102
037e8744
JB
17103 if (inst.operands[0].issingle)
17104 {
cd2f129f 17105 if (is_ldr)
477330fc 17106 do_vfp_nsyn_opcode ("flds");
cd2f129f 17107 else
477330fc 17108 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
17109
17110 /* ARMv8.2 vldr.16/vstr.16 instruction. */
17111 if (inst.vectype.el[0].size == 16)
17112 do_scalar_fp16_v82_encode ();
5287ad62
JB
17113 }
17114 else
5287ad62 17115 {
cd2f129f 17116 if (is_ldr)
477330fc 17117 do_vfp_nsyn_opcode ("fldd");
5287ad62 17118 else
477330fc 17119 do_vfp_nsyn_opcode ("fstd");
5287ad62 17120 }
5287ad62
JB
17121}
17122
17123/* "interleave" version also handles non-interleaving register VLD1/VST1
17124 instructions. */
17125
17126static void
17127do_neon_ld_st_interleave (void)
17128{
037e8744 17129 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 17130 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
17131 unsigned alignbits = 0;
17132 unsigned idx;
17133 /* The bits in this table go:
17134 0: register stride of one (0) or two (1)
17135 1,2: register list length, minus one (1, 2, 3, 4).
17136 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
17137 We use -1 for invalid entries. */
17138 const int typetable[] =
17139 {
17140 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
17141 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
17142 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
17143 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
17144 };
17145 int typebits;
17146
dcbf9037
JB
17147 if (et.type == NT_invtype)
17148 return;
17149
5287ad62
JB
17150 if (inst.operands[1].immisalign)
17151 switch (inst.operands[1].imm >> 8)
17152 {
17153 case 64: alignbits = 1; break;
17154 case 128:
477330fc 17155 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 17156 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
17157 goto bad_alignment;
17158 alignbits = 2;
17159 break;
5287ad62 17160 case 256:
477330fc
RM
17161 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17162 goto bad_alignment;
17163 alignbits = 3;
17164 break;
5287ad62
JB
17165 default:
17166 bad_alignment:
477330fc
RM
17167 first_error (_("bad alignment"));
17168 return;
5287ad62
JB
17169 }
17170
17171 inst.instruction |= alignbits << 4;
17172 inst.instruction |= neon_logbits (et.size) << 6;
17173
17174 /* Bits [4:6] of the immediate in a list specifier encode register stride
17175 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
17176 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
17177 up the right value for "type" in a table based on this value and the given
17178 list style, then stick it back. */
17179 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 17180 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
17181
17182 typebits = typetable[idx];
5f4273c7 17183
5287ad62 17184 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c
WN
17185 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
17186 _("bad element type for instruction"));
5287ad62
JB
17187
17188 inst.instruction &= ~0xf00;
17189 inst.instruction |= typebits << 8;
17190}
17191
17192/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
17193 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
17194 otherwise. The variable arguments are a list of pairs of legal (size, align)
17195 values, terminated with -1. */
17196
17197static int
aa8a0863 17198neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
17199{
17200 va_list ap;
17201 int result = FAIL, thissize, thisalign;
5f4273c7 17202
5287ad62
JB
17203 if (!inst.operands[1].immisalign)
17204 {
aa8a0863 17205 *do_alignment = 0;
5287ad62
JB
17206 return SUCCESS;
17207 }
5f4273c7 17208
aa8a0863 17209 va_start (ap, do_alignment);
5287ad62
JB
17210
17211 do
17212 {
17213 thissize = va_arg (ap, int);
17214 if (thissize == -1)
477330fc 17215 break;
5287ad62
JB
17216 thisalign = va_arg (ap, int);
17217
17218 if (size == thissize && align == thisalign)
477330fc 17219 result = SUCCESS;
5287ad62
JB
17220 }
17221 while (result != SUCCESS);
17222
17223 va_end (ap);
17224
17225 if (result == SUCCESS)
aa8a0863 17226 *do_alignment = 1;
5287ad62 17227 else
dcbf9037 17228 first_error (_("unsupported alignment for instruction"));
5f4273c7 17229
5287ad62
JB
17230 return result;
17231}
17232
17233static void
17234do_neon_ld_st_lane (void)
17235{
037e8744 17236 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 17237 int align_good, do_alignment = 0;
5287ad62
JB
17238 int logsize = neon_logbits (et.size);
17239 int align = inst.operands[1].imm >> 8;
17240 int n = (inst.instruction >> 8) & 3;
17241 int max_el = 64 / et.size;
5f4273c7 17242
dcbf9037
JB
17243 if (et.type == NT_invtype)
17244 return;
5f4273c7 17245
5287ad62 17246 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 17247 _("bad list length"));
5287ad62 17248 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 17249 _("scalar index out of range"));
5287ad62 17250 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
17251 && et.size == 8,
17252 _("stride of 2 unavailable when element size is 8"));
5f4273c7 17253
5287ad62
JB
17254 switch (n)
17255 {
17256 case 0: /* VLD1 / VST1. */
aa8a0863 17257 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 17258 32, 32, -1);
5287ad62 17259 if (align_good == FAIL)
477330fc 17260 return;
aa8a0863 17261 if (do_alignment)
477330fc
RM
17262 {
17263 unsigned alignbits = 0;
17264 switch (et.size)
17265 {
17266 case 16: alignbits = 0x1; break;
17267 case 32: alignbits = 0x3; break;
17268 default: ;
17269 }
17270 inst.instruction |= alignbits << 4;
17271 }
5287ad62
JB
17272 break;
17273
17274 case 1: /* VLD2 / VST2. */
aa8a0863
TS
17275 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
17276 16, 32, 32, 64, -1);
5287ad62 17277 if (align_good == FAIL)
477330fc 17278 return;
aa8a0863 17279 if (do_alignment)
477330fc 17280 inst.instruction |= 1 << 4;
5287ad62
JB
17281 break;
17282
17283 case 2: /* VLD3 / VST3. */
17284 constraint (inst.operands[1].immisalign,
477330fc 17285 _("can't use alignment with this instruction"));
5287ad62
JB
17286 break;
17287
17288 case 3: /* VLD4 / VST4. */
aa8a0863 17289 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 17290 16, 64, 32, 64, 32, 128, -1);
5287ad62 17291 if (align_good == FAIL)
477330fc 17292 return;
aa8a0863 17293 if (do_alignment)
477330fc
RM
17294 {
17295 unsigned alignbits = 0;
17296 switch (et.size)
17297 {
17298 case 8: alignbits = 0x1; break;
17299 case 16: alignbits = 0x1; break;
17300 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
17301 default: ;
17302 }
17303 inst.instruction |= alignbits << 4;
17304 }
5287ad62
JB
17305 break;
17306
17307 default: ;
17308 }
17309
17310 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
17311 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17312 inst.instruction |= 1 << (4 + logsize);
5f4273c7 17313
5287ad62
JB
17314 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
17315 inst.instruction |= logsize << 10;
17316}
17317
17318/* Encode single n-element structure to all lanes VLD<n> instructions. */
17319
17320static void
17321do_neon_ld_dup (void)
17322{
037e8744 17323 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 17324 int align_good, do_alignment = 0;
5287ad62 17325
dcbf9037
JB
17326 if (et.type == NT_invtype)
17327 return;
17328
5287ad62
JB
17329 switch ((inst.instruction >> 8) & 3)
17330 {
17331 case 0: /* VLD1. */
9c2799c2 17332 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 17333 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 17334 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 17335 if (align_good == FAIL)
477330fc 17336 return;
5287ad62 17337 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
17338 {
17339 case 1: break;
17340 case 2: inst.instruction |= 1 << 5; break;
17341 default: first_error (_("bad list length")); return;
17342 }
5287ad62
JB
17343 inst.instruction |= neon_logbits (et.size) << 6;
17344 break;
17345
17346 case 1: /* VLD2. */
17347 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
17348 &do_alignment, 8, 16, 16, 32, 32, 64,
17349 -1);
5287ad62 17350 if (align_good == FAIL)
477330fc 17351 return;
5287ad62 17352 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 17353 _("bad list length"));
5287ad62 17354 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 17355 inst.instruction |= 1 << 5;
5287ad62
JB
17356 inst.instruction |= neon_logbits (et.size) << 6;
17357 break;
17358
17359 case 2: /* VLD3. */
17360 constraint (inst.operands[1].immisalign,
477330fc 17361 _("can't use alignment with this instruction"));
5287ad62 17362 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 17363 _("bad list length"));
5287ad62 17364 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 17365 inst.instruction |= 1 << 5;
5287ad62
JB
17366 inst.instruction |= neon_logbits (et.size) << 6;
17367 break;
17368
17369 case 3: /* VLD4. */
17370 {
477330fc 17371 int align = inst.operands[1].imm >> 8;
aa8a0863 17372 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
17373 16, 64, 32, 64, 32, 128, -1);
17374 if (align_good == FAIL)
17375 return;
17376 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
17377 _("bad list length"));
17378 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17379 inst.instruction |= 1 << 5;
17380 if (et.size == 32 && align == 128)
17381 inst.instruction |= 0x3 << 6;
17382 else
17383 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
17384 }
17385 break;
17386
17387 default: ;
17388 }
17389
aa8a0863 17390 inst.instruction |= do_alignment << 4;
5287ad62
JB
17391}
17392
17393/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
17394 apart from bits [11:4]. */
17395
17396static void
17397do_neon_ldx_stx (void)
17398{
b1a769ed
DG
17399 if (inst.operands[1].isreg)
17400 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17401
5287ad62
JB
17402 switch (NEON_LANE (inst.operands[0].imm))
17403 {
17404 case NEON_INTERLEAVE_LANES:
88714cb8 17405 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
17406 do_neon_ld_st_interleave ();
17407 break;
5f4273c7 17408
5287ad62 17409 case NEON_ALL_LANES:
88714cb8 17410 NEON_ENCODE (DUP, inst);
2d51fb74
JB
17411 if (inst.instruction == N_INV)
17412 {
17413 first_error ("only loads support such operands");
17414 break;
17415 }
5287ad62
JB
17416 do_neon_ld_dup ();
17417 break;
5f4273c7 17418
5287ad62 17419 default:
88714cb8 17420 NEON_ENCODE (LANE, inst);
5287ad62
JB
17421 do_neon_ld_st_lane ();
17422 }
17423
17424 /* L bit comes from bit mask. */
17425 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17426 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17427 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 17428
5287ad62
JB
17429 if (inst.operands[1].postind)
17430 {
17431 int postreg = inst.operands[1].imm & 0xf;
17432 constraint (!inst.operands[1].immisreg,
477330fc 17433 _("post-index must be a register"));
5287ad62 17434 constraint (postreg == 0xd || postreg == 0xf,
477330fc 17435 _("bad register for post-index"));
5287ad62
JB
17436 inst.instruction |= postreg;
17437 }
4f2374c7 17438 else
5287ad62 17439 {
4f2374c7 17440 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
17441 constraint (inst.relocs[0].exp.X_op != O_constant
17442 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
17443 BAD_ADDR_MODE);
17444
17445 if (inst.operands[1].writeback)
17446 {
17447 inst.instruction |= 0xd;
17448 }
17449 else
17450 inst.instruction |= 0xf;
5287ad62 17451 }
5f4273c7 17452
5287ad62
JB
17453 if (thumb_mode)
17454 inst.instruction |= 0xf9000000;
17455 else
17456 inst.instruction |= 0xf4000000;
17457}
33399f07
MGD
17458
17459/* FP v8. */
17460static void
17461do_vfp_nsyn_fpv8 (enum neon_shape rs)
17462{
a715796b
TG
17463 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17464 D register operands. */
17465 if (neon_shape_class[rs] == SC_DOUBLE)
17466 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17467 _(BAD_FPU));
17468
33399f07
MGD
17469 NEON_ENCODE (FPV8, inst);
17470
9db2f6b4
RL
17471 if (rs == NS_FFF || rs == NS_HHH)
17472 {
17473 do_vfp_sp_dyadic ();
17474
17475 /* ARMv8.2 fp16 instruction. */
17476 if (rs == NS_HHH)
17477 do_scalar_fp16_v82_encode ();
17478 }
33399f07
MGD
17479 else
17480 do_vfp_dp_rd_rn_rm ();
17481
17482 if (rs == NS_DDD)
17483 inst.instruction |= 0x100;
17484
17485 inst.instruction |= 0xf0000000;
17486}
17487
17488static void
17489do_vsel (void)
17490{
17491 set_it_insn_type (OUTSIDE_IT_INSN);
17492
17493 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17494 first_error (_("invalid instruction shape"));
17495}
17496
73924fbc
MGD
17497static void
17498do_vmaxnm (void)
17499{
17500 set_it_insn_type (OUTSIDE_IT_INSN);
17501
17502 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17503 return;
17504
17505 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17506 return;
17507
cc933301 17508 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
17509}
17510
30bdf752
MGD
17511static void
17512do_vrint_1 (enum neon_cvt_mode mode)
17513{
9db2f6b4 17514 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
17515 struct neon_type_el et;
17516
17517 if (rs == NS_NULL)
17518 return;
17519
a715796b
TG
17520 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17521 D register operands. */
17522 if (neon_shape_class[rs] == SC_DOUBLE)
17523 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17524 _(BAD_FPU));
17525
9db2f6b4
RL
17526 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17527 | N_VFP);
30bdf752
MGD
17528 if (et.type != NT_invtype)
17529 {
17530 /* VFP encodings. */
17531 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17532 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17533 set_it_insn_type (OUTSIDE_IT_INSN);
17534
17535 NEON_ENCODE (FPV8, inst);
9db2f6b4 17536 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
17537 do_vfp_sp_monadic ();
17538 else
17539 do_vfp_dp_rd_rm ();
17540
17541 switch (mode)
17542 {
17543 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17544 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17545 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17546 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17547 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17548 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17549 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17550 default: abort ();
17551 }
17552
17553 inst.instruction |= (rs == NS_DD) << 8;
17554 do_vfp_cond_or_thumb ();
9db2f6b4
RL
17555
17556 /* ARMv8.2 fp16 vrint instruction. */
17557 if (rs == NS_HH)
17558 do_scalar_fp16_v82_encode ();
30bdf752
MGD
17559 }
17560 else
17561 {
17562 /* Neon encodings (or something broken...). */
17563 inst.error = NULL;
cc933301 17564 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
17565
17566 if (et.type == NT_invtype)
17567 return;
17568
17569 set_it_insn_type (OUTSIDE_IT_INSN);
17570 NEON_ENCODE (FLOAT, inst);
17571
17572 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17573 return;
17574
17575 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17576 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17577 inst.instruction |= LOW4 (inst.operands[1].reg);
17578 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17579 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17580 /* Mask off the original size bits and reencode them. */
17581 inst.instruction = ((inst.instruction & 0xfff3ffff)
17582 | neon_logbits (et.size) << 18);
17583
30bdf752
MGD
17584 switch (mode)
17585 {
17586 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17587 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17588 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17589 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17590 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17591 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17592 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17593 default: abort ();
17594 }
17595
17596 if (thumb_mode)
17597 inst.instruction |= 0xfc000000;
17598 else
17599 inst.instruction |= 0xf0000000;
17600 }
17601}
17602
17603static void
17604do_vrintx (void)
17605{
17606 do_vrint_1 (neon_cvt_mode_x);
17607}
17608
17609static void
17610do_vrintz (void)
17611{
17612 do_vrint_1 (neon_cvt_mode_z);
17613}
17614
17615static void
17616do_vrintr (void)
17617{
17618 do_vrint_1 (neon_cvt_mode_r);
17619}
17620
17621static void
17622do_vrinta (void)
17623{
17624 do_vrint_1 (neon_cvt_mode_a);
17625}
17626
17627static void
17628do_vrintn (void)
17629{
17630 do_vrint_1 (neon_cvt_mode_n);
17631}
17632
17633static void
17634do_vrintp (void)
17635{
17636 do_vrint_1 (neon_cvt_mode_p);
17637}
17638
17639static void
17640do_vrintm (void)
17641{
17642 do_vrint_1 (neon_cvt_mode_m);
17643}
17644
c28eeff2
SN
17645static unsigned
17646neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
17647{
17648 unsigned regno = NEON_SCALAR_REG (opnd);
17649 unsigned elno = NEON_SCALAR_INDEX (opnd);
17650
17651 if (elsize == 16 && elno < 2 && regno < 16)
17652 return regno | (elno << 4);
17653 else if (elsize == 32 && elno == 0)
17654 return regno;
17655
17656 first_error (_("scalar out of range"));
17657 return 0;
17658}
17659
17660static void
17661do_vcmla (void)
17662{
17663 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17664 _(BAD_FPU));
e2b0ab59
AV
17665 constraint (inst.relocs[0].exp.X_op != O_constant,
17666 _("expression too complex"));
17667 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
17668 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
17669 _("immediate out of range"));
17670 rot /= 90;
17671 if (inst.operands[2].isscalar)
17672 {
17673 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
17674 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17675 N_KEY | N_F16 | N_F32).size;
17676 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
17677 inst.is_neon = 1;
17678 inst.instruction = 0xfe000800;
17679 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17680 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17681 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17682 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17683 inst.instruction |= LOW4 (m);
17684 inst.instruction |= HI1 (m) << 5;
17685 inst.instruction |= neon_quad (rs) << 6;
17686 inst.instruction |= rot << 20;
17687 inst.instruction |= (size == 32) << 23;
17688 }
17689 else
17690 {
17691 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17692 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17693 N_KEY | N_F16 | N_F32).size;
17694 neon_three_same (neon_quad (rs), 0, -1);
17695 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17696 inst.instruction |= 0xfc200800;
17697 inst.instruction |= rot << 23;
17698 inst.instruction |= (size == 32) << 20;
17699 }
17700}
17701
17702static void
17703do_vcadd (void)
17704{
17705 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17706 _(BAD_FPU));
e2b0ab59
AV
17707 constraint (inst.relocs[0].exp.X_op != O_constant,
17708 _("expression too complex"));
17709 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
17710 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17711 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17712 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17713 N_KEY | N_F16 | N_F32).size;
17714 neon_three_same (neon_quad (rs), 0, -1);
17715 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17716 inst.instruction |= 0xfc800800;
17717 inst.instruction |= (rot == 270) << 24;
17718 inst.instruction |= (size == 32) << 20;
17719}
17720
c604a79a
JW
17721/* Dot Product instructions encoding support. */
17722
17723static void
17724do_neon_dotproduct (int unsigned_p)
17725{
17726 enum neon_shape rs;
17727 unsigned scalar_oprd2 = 0;
17728 int high8;
17729
17730 if (inst.cond != COND_ALWAYS)
17731 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
17732 "is UNPREDICTABLE"));
17733
17734 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17735 _(BAD_FPU));
17736
17737 /* Dot Product instructions are in three-same D/Q register format or the third
17738 operand can be a scalar index register. */
17739 if (inst.operands[2].isscalar)
17740 {
17741 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
17742 high8 = 0xfe000000;
17743 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17744 }
17745 else
17746 {
17747 high8 = 0xfc000000;
17748 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17749 }
17750
17751 if (unsigned_p)
17752 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
17753 else
17754 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
17755
17756 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
17757 Product instruction, so we pass 0 as the "ubit" parameter. And the
17758 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
17759 neon_three_same (neon_quad (rs), 0, 32);
17760
17761 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
17762 different NEON three-same encoding. */
17763 inst.instruction &= 0x00ffffff;
17764 inst.instruction |= high8;
17765 /* Encode 'U' bit which indicates signedness. */
17766 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
17767 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
17768 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
17769 the instruction encoding. */
17770 if (inst.operands[2].isscalar)
17771 {
17772 inst.instruction &= 0xffffffd0;
17773 inst.instruction |= LOW4 (scalar_oprd2);
17774 inst.instruction |= HI1 (scalar_oprd2) << 5;
17775 }
17776}
17777
17778/* Dot Product instructions for signed integer. */
17779
17780static void
17781do_neon_dotproduct_s (void)
17782{
17783 return do_neon_dotproduct (0);
17784}
17785
17786/* Dot Product instructions for unsigned integer. */
17787
17788static void
17789do_neon_dotproduct_u (void)
17790{
17791 return do_neon_dotproduct (1);
17792}
17793
91ff7894
MGD
17794/* Crypto v1 instructions. */
17795static void
17796do_crypto_2op_1 (unsigned elttype, int op)
17797{
17798 set_it_insn_type (OUTSIDE_IT_INSN);
17799
17800 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17801 == NT_invtype)
17802 return;
17803
17804 inst.error = NULL;
17805
17806 NEON_ENCODE (INTEGER, inst);
17807 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17808 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17809 inst.instruction |= LOW4 (inst.operands[1].reg);
17810 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17811 if (op != -1)
17812 inst.instruction |= op << 6;
17813
17814 if (thumb_mode)
17815 inst.instruction |= 0xfc000000;
17816 else
17817 inst.instruction |= 0xf0000000;
17818}
17819
48adcd8e
MGD
17820static void
17821do_crypto_3op_1 (int u, int op)
17822{
17823 set_it_insn_type (OUTSIDE_IT_INSN);
17824
17825 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17826 N_32 | N_UNT | N_KEY).type == NT_invtype)
17827 return;
17828
17829 inst.error = NULL;
17830
17831 NEON_ENCODE (INTEGER, inst);
17832 neon_three_same (1, u, 8 << op);
17833}
17834
91ff7894
MGD
17835static void
17836do_aese (void)
17837{
17838 do_crypto_2op_1 (N_8, 0);
17839}
17840
17841static void
17842do_aesd (void)
17843{
17844 do_crypto_2op_1 (N_8, 1);
17845}
17846
17847static void
17848do_aesmc (void)
17849{
17850 do_crypto_2op_1 (N_8, 2);
17851}
17852
17853static void
17854do_aesimc (void)
17855{
17856 do_crypto_2op_1 (N_8, 3);
17857}
17858
48adcd8e
MGD
17859static void
17860do_sha1c (void)
17861{
17862 do_crypto_3op_1 (0, 0);
17863}
17864
17865static void
17866do_sha1p (void)
17867{
17868 do_crypto_3op_1 (0, 1);
17869}
17870
17871static void
17872do_sha1m (void)
17873{
17874 do_crypto_3op_1 (0, 2);
17875}
17876
17877static void
17878do_sha1su0 (void)
17879{
17880 do_crypto_3op_1 (0, 3);
17881}
91ff7894 17882
48adcd8e
MGD
17883static void
17884do_sha256h (void)
17885{
17886 do_crypto_3op_1 (1, 0);
17887}
17888
17889static void
17890do_sha256h2 (void)
17891{
17892 do_crypto_3op_1 (1, 1);
17893}
17894
17895static void
17896do_sha256su1 (void)
17897{
17898 do_crypto_3op_1 (1, 2);
17899}
3c9017d2
MGD
17900
17901static void
17902do_sha1h (void)
17903{
17904 do_crypto_2op_1 (N_32, -1);
17905}
17906
17907static void
17908do_sha1su1 (void)
17909{
17910 do_crypto_2op_1 (N_32, 0);
17911}
17912
17913static void
17914do_sha256su0 (void)
17915{
17916 do_crypto_2op_1 (N_32, 1);
17917}
dd5181d5
KT
17918
17919static void
17920do_crc32_1 (unsigned int poly, unsigned int sz)
17921{
17922 unsigned int Rd = inst.operands[0].reg;
17923 unsigned int Rn = inst.operands[1].reg;
17924 unsigned int Rm = inst.operands[2].reg;
17925
17926 set_it_insn_type (OUTSIDE_IT_INSN);
17927 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17928 inst.instruction |= LOW4 (Rn) << 16;
17929 inst.instruction |= LOW4 (Rm);
17930 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17931 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17932
17933 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17934 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
17935}
17936
17937static void
17938do_crc32b (void)
17939{
17940 do_crc32_1 (0, 0);
17941}
17942
17943static void
17944do_crc32h (void)
17945{
17946 do_crc32_1 (0, 1);
17947}
17948
17949static void
17950do_crc32w (void)
17951{
17952 do_crc32_1 (0, 2);
17953}
17954
17955static void
17956do_crc32cb (void)
17957{
17958 do_crc32_1 (1, 0);
17959}
17960
17961static void
17962do_crc32ch (void)
17963{
17964 do_crc32_1 (1, 1);
17965}
17966
17967static void
17968do_crc32cw (void)
17969{
17970 do_crc32_1 (1, 2);
17971}
17972
49e8a725
SN
17973static void
17974do_vjcvt (void)
17975{
17976 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17977 _(BAD_FPU));
17978 neon_check_type (2, NS_FD, N_S32, N_F64);
17979 do_vfp_sp_dp_cvt ();
17980 do_vfp_cond_or_thumb ();
17981}
17982
5287ad62
JB
17983\f
17984/* Overall per-instruction processing. */
17985
17986/* We need to be able to fix up arbitrary expressions in some statements.
17987 This is so that we can handle symbols that are an arbitrary distance from
17988 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
17989 which returns part of an address in a form which will be valid for
17990 a data instruction. We do this by pushing the expression into a symbol
17991 in the expr_section, and creating a fix for that. */
17992
17993static void
17994fix_new_arm (fragS * frag,
17995 int where,
17996 short int size,
17997 expressionS * exp,
17998 int pc_rel,
17999 int reloc)
18000{
18001 fixS * new_fix;
18002
18003 switch (exp->X_op)
18004 {
18005 case O_constant:
6e7ce2cd
PB
18006 if (pc_rel)
18007 {
18008 /* Create an absolute valued symbol, so we have something to
477330fc
RM
18009 refer to in the object file. Unfortunately for us, gas's
18010 generic expression parsing will already have folded out
18011 any use of .set foo/.type foo %function that may have
18012 been used to set type information of the target location,
18013 that's being specified symbolically. We have to presume
18014 the user knows what they are doing. */
6e7ce2cd
PB
18015 char name[16 + 8];
18016 symbolS *symbol;
18017
18018 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
18019
18020 symbol = symbol_find_or_make (name);
18021 S_SET_SEGMENT (symbol, absolute_section);
18022 symbol_set_frag (symbol, &zero_address_frag);
18023 S_SET_VALUE (symbol, exp->X_add_number);
18024 exp->X_op = O_symbol;
18025 exp->X_add_symbol = symbol;
18026 exp->X_add_number = 0;
18027 }
18028 /* FALLTHROUGH */
5287ad62
JB
18029 case O_symbol:
18030 case O_add:
18031 case O_subtract:
21d799b5 18032 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 18033 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
18034 break;
18035
18036 default:
21d799b5 18037 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 18038 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
18039 break;
18040 }
18041
18042 /* Mark whether the fix is to a THUMB instruction, or an ARM
18043 instruction. */
18044 new_fix->tc_fix_data = thumb_mode;
18045}
18046
18047/* Create a frg for an instruction requiring relaxation. */
18048static void
18049output_relax_insn (void)
18050{
18051 char * to;
18052 symbolS *sym;
0110f2b8
PB
18053 int offset;
18054
6e1cb1a6
PB
18055 /* The size of the instruction is unknown, so tie the debug info to the
18056 start of the instruction. */
18057 dwarf2_emit_insn (0);
6e1cb1a6 18058
e2b0ab59 18059 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
18060 {
18061 case O_symbol:
e2b0ab59
AV
18062 sym = inst.relocs[0].exp.X_add_symbol;
18063 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
18064 break;
18065 case O_constant:
18066 sym = NULL;
e2b0ab59 18067 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
18068 break;
18069 default:
e2b0ab59 18070 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
18071 offset = 0;
18072 break;
18073 }
18074 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
18075 inst.relax, sym, offset, NULL/*offset, opcode*/);
18076 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
18077}
18078
18079/* Write a 32-bit thumb instruction to buf. */
18080static void
18081put_thumb32_insn (char * buf, unsigned long insn)
18082{
18083 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
18084 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
18085}
18086
b99bd4ef 18087static void
c19d1205 18088output_inst (const char * str)
b99bd4ef 18089{
c19d1205 18090 char * to = NULL;
b99bd4ef 18091
c19d1205 18092 if (inst.error)
b99bd4ef 18093 {
c19d1205 18094 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
18095 return;
18096 }
5f4273c7
NC
18097 if (inst.relax)
18098 {
18099 output_relax_insn ();
0110f2b8 18100 return;
5f4273c7 18101 }
c19d1205
ZW
18102 if (inst.size == 0)
18103 return;
b99bd4ef 18104
c19d1205 18105 to = frag_more (inst.size);
8dc2430f
NC
18106 /* PR 9814: Record the thumb mode into the current frag so that we know
18107 what type of NOP padding to use, if necessary. We override any previous
18108 setting so that if the mode has changed then the NOPS that we use will
18109 match the encoding of the last instruction in the frag. */
cd000bff 18110 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
18111
18112 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 18113 {
9c2799c2 18114 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 18115 put_thumb32_insn (to, inst.instruction);
b99bd4ef 18116 }
c19d1205 18117 else if (inst.size > INSN_SIZE)
b99bd4ef 18118 {
9c2799c2 18119 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
18120 md_number_to_chars (to, inst.instruction, INSN_SIZE);
18121 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 18122 }
c19d1205
ZW
18123 else
18124 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 18125
e2b0ab59
AV
18126 int r;
18127 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
18128 {
18129 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
18130 fix_new_arm (frag_now, to - frag_now->fr_literal,
18131 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
18132 inst.relocs[r].type);
18133 }
b99bd4ef 18134
c19d1205 18135 dwarf2_emit_insn (inst.size);
c19d1205 18136}
b99bd4ef 18137
e07e6e58
NC
18138static char *
18139output_it_inst (int cond, int mask, char * to)
18140{
18141 unsigned long instruction = 0xbf00;
18142
18143 mask &= 0xf;
18144 instruction |= mask;
18145 instruction |= cond << 4;
18146
18147 if (to == NULL)
18148 {
18149 to = frag_more (2);
18150#ifdef OBJ_ELF
18151 dwarf2_emit_insn (2);
18152#endif
18153 }
18154
18155 md_number_to_chars (to, instruction, 2);
18156
18157 return to;
18158}
18159
c19d1205
ZW
18160/* Tag values used in struct asm_opcode's tag field. */
18161enum opcode_tag
18162{
18163 OT_unconditional, /* Instruction cannot be conditionalized.
18164 The ARM condition field is still 0xE. */
18165 OT_unconditionalF, /* Instruction cannot be conditionalized
18166 and carries 0xF in its ARM condition field. */
18167 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744 18168 OT_csuffixF, /* Some forms of the instruction take a conditional
477330fc
RM
18169 suffix, others place 0xF where the condition field
18170 would be. */
c19d1205
ZW
18171 OT_cinfix3, /* Instruction takes a conditional infix,
18172 beginning at character index 3. (In
18173 unified mode, it becomes a suffix.) */
088fa78e
KH
18174 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
18175 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
18176 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
18177 character index 3, even in unified mode. Used for
18178 legacy instructions where suffix and infix forms
18179 may be ambiguous. */
c19d1205 18180 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 18181 suffix or an infix at character index 3. */
c19d1205
ZW
18182 OT_odd_infix_unc, /* This is the unconditional variant of an
18183 instruction that takes a conditional infix
18184 at an unusual position. In unified mode,
18185 this variant will accept a suffix. */
18186 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
18187 are the conditional variants of instructions that
18188 take conditional infixes in unusual positions.
18189 The infix appears at character index
18190 (tag - OT_odd_infix_0). These are not accepted
18191 in unified mode. */
18192};
b99bd4ef 18193
c19d1205
ZW
18194/* Subroutine of md_assemble, responsible for looking up the primary
18195 opcode from the mnemonic the user wrote. STR points to the
18196 beginning of the mnemonic.
18197
18198 This is not simply a hash table lookup, because of conditional
18199 variants. Most instructions have conditional variants, which are
18200 expressed with a _conditional affix_ to the mnemonic. If we were
18201 to encode each conditional variant as a literal string in the opcode
18202 table, it would have approximately 20,000 entries.
18203
18204 Most mnemonics take this affix as a suffix, and in unified syntax,
18205 'most' is upgraded to 'all'. However, in the divided syntax, some
18206 instructions take the affix as an infix, notably the s-variants of
18207 the arithmetic instructions. Of those instructions, all but six
18208 have the infix appear after the third character of the mnemonic.
18209
18210 Accordingly, the algorithm for looking up primary opcodes given
18211 an identifier is:
18212
18213 1. Look up the identifier in the opcode table.
18214 If we find a match, go to step U.
18215
18216 2. Look up the last two characters of the identifier in the
18217 conditions table. If we find a match, look up the first N-2
18218 characters of the identifier in the opcode table. If we
18219 find a match, go to step CE.
18220
18221 3. Look up the fourth and fifth characters of the identifier in
18222 the conditions table. If we find a match, extract those
18223 characters from the identifier, and look up the remaining
18224 characters in the opcode table. If we find a match, go
18225 to step CM.
18226
18227 4. Fail.
18228
18229 U. Examine the tag field of the opcode structure, in case this is
18230 one of the six instructions with its conditional infix in an
18231 unusual place. If it is, the tag tells us where to find the
18232 infix; look it up in the conditions table and set inst.cond
18233 accordingly. Otherwise, this is an unconditional instruction.
18234 Again set inst.cond accordingly. Return the opcode structure.
18235
18236 CE. Examine the tag field to make sure this is an instruction that
18237 should receive a conditional suffix. If it is not, fail.
18238 Otherwise, set inst.cond from the suffix we already looked up,
18239 and return the opcode structure.
18240
18241 CM. Examine the tag field to make sure this is an instruction that
18242 should receive a conditional infix after the third character.
18243 If it is not, fail. Otherwise, undo the edits to the current
18244 line of input and proceed as for case CE. */
18245
18246static const struct asm_opcode *
18247opcode_lookup (char **str)
18248{
18249 char *end, *base;
18250 char *affix;
18251 const struct asm_opcode *opcode;
18252 const struct asm_cond *cond;
e3cb604e 18253 char save[2];
c19d1205
ZW
18254
18255 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 18256 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 18257 for (base = end = *str; *end != '\0'; end++)
721a8186 18258 if (*end == ' ' || *end == '.')
c19d1205 18259 break;
b99bd4ef 18260
c19d1205 18261 if (end == base)
c921be7d 18262 return NULL;
b99bd4ef 18263
5287ad62 18264 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 18265 if (end[0] == '.')
b99bd4ef 18266 {
5287ad62 18267 int offset = 2;
5f4273c7 18268
267d2029 18269 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 18270 use. */
267d2029 18271 if (unified_syntax && end[1] == 'w')
c19d1205 18272 inst.size_req = 4;
267d2029 18273 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
18274 inst.size_req = 2;
18275 else
477330fc 18276 offset = 0;
5287ad62
JB
18277
18278 inst.vectype.elems = 0;
18279
18280 *str = end + offset;
b99bd4ef 18281
5f4273c7 18282 if (end[offset] == '.')
5287ad62 18283 {
267d2029 18284 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
18285 non-unified ARM syntax mode). */
18286 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 18287 return NULL;
477330fc 18288 }
5287ad62 18289 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 18290 return NULL;
b99bd4ef 18291 }
c19d1205
ZW
18292 else
18293 *str = end;
b99bd4ef 18294
c19d1205 18295 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 18296 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18297 end - base);
c19d1205 18298 if (opcode)
b99bd4ef 18299 {
c19d1205
ZW
18300 /* step U */
18301 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 18302 {
c19d1205
ZW
18303 inst.cond = COND_ALWAYS;
18304 return opcode;
b99bd4ef 18305 }
b99bd4ef 18306
278df34e 18307 if (warn_on_deprecated && unified_syntax)
5c3696f8 18308 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 18309 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 18310 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 18311 gas_assert (cond);
b99bd4ef 18312
c19d1205
ZW
18313 inst.cond = cond->value;
18314 return opcode;
18315 }
b99bd4ef 18316
c19d1205
ZW
18317 /* Cannot have a conditional suffix on a mnemonic of less than two
18318 characters. */
18319 if (end - base < 3)
c921be7d 18320 return NULL;
b99bd4ef 18321
c19d1205
ZW
18322 /* Look for suffixed mnemonic. */
18323 affix = end - 2;
21d799b5
NC
18324 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18325 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18326 affix - base);
c19d1205
ZW
18327 if (opcode && cond)
18328 {
18329 /* step CE */
18330 switch (opcode->tag)
18331 {
e3cb604e
PB
18332 case OT_cinfix3_legacy:
18333 /* Ignore conditional suffixes matched on infix only mnemonics. */
18334 break;
18335
c19d1205 18336 case OT_cinfix3:
088fa78e 18337 case OT_cinfix3_deprecated:
c19d1205
ZW
18338 case OT_odd_infix_unc:
18339 if (!unified_syntax)
0198d5e6 18340 return NULL;
1a0670f3 18341 /* Fall through. */
c19d1205
ZW
18342
18343 case OT_csuffix:
477330fc 18344 case OT_csuffixF:
c19d1205
ZW
18345 case OT_csuf_or_in3:
18346 inst.cond = cond->value;
18347 return opcode;
18348
18349 case OT_unconditional:
18350 case OT_unconditionalF:
dfa9f0d5 18351 if (thumb_mode)
c921be7d 18352 inst.cond = cond->value;
dfa9f0d5
PB
18353 else
18354 {
c921be7d 18355 /* Delayed diagnostic. */
dfa9f0d5
PB
18356 inst.error = BAD_COND;
18357 inst.cond = COND_ALWAYS;
18358 }
c19d1205 18359 return opcode;
b99bd4ef 18360
c19d1205 18361 default:
c921be7d 18362 return NULL;
c19d1205
ZW
18363 }
18364 }
b99bd4ef 18365
c19d1205
ZW
18366 /* Cannot have a usual-position infix on a mnemonic of less than
18367 six characters (five would be a suffix). */
18368 if (end - base < 6)
c921be7d 18369 return NULL;
b99bd4ef 18370
c19d1205
ZW
18371 /* Look for infixed mnemonic in the usual position. */
18372 affix = base + 3;
21d799b5 18373 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 18374 if (!cond)
c921be7d 18375 return NULL;
e3cb604e
PB
18376
18377 memcpy (save, affix, 2);
18378 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 18379 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18380 (end - base) - 2);
e3cb604e
PB
18381 memmove (affix + 2, affix, (end - affix) - 2);
18382 memcpy (affix, save, 2);
18383
088fa78e
KH
18384 if (opcode
18385 && (opcode->tag == OT_cinfix3
18386 || opcode->tag == OT_cinfix3_deprecated
18387 || opcode->tag == OT_csuf_or_in3
18388 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 18389 {
c921be7d 18390 /* Step CM. */
278df34e 18391 if (warn_on_deprecated && unified_syntax
088fa78e
KH
18392 && (opcode->tag == OT_cinfix3
18393 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 18394 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
18395
18396 inst.cond = cond->value;
18397 return opcode;
b99bd4ef
NC
18398 }
18399
c921be7d 18400 return NULL;
b99bd4ef
NC
18401}
18402
e07e6e58
NC
18403/* This function generates an initial IT instruction, leaving its block
18404 virtually open for the new instructions. Eventually,
18405 the mask will be updated by now_it_add_mask () each time
18406 a new instruction needs to be included in the IT block.
18407 Finally, the block is closed with close_automatic_it_block ().
18408 The block closure can be requested either from md_assemble (),
18409 a tencode (), or due to a label hook. */
18410
18411static void
18412new_automatic_it_block (int cond)
18413{
18414 now_it.state = AUTOMATIC_IT_BLOCK;
18415 now_it.mask = 0x18;
18416 now_it.cc = cond;
18417 now_it.block_length = 1;
cd000bff 18418 mapping_state (MAP_THUMB);
e07e6e58 18419 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
5a01bb1d
MGD
18420 now_it.warn_deprecated = FALSE;
18421 now_it.insn_cond = TRUE;
e07e6e58
NC
18422}
18423
18424/* Close an automatic IT block.
18425 See comments in new_automatic_it_block (). */
18426
18427static void
18428close_automatic_it_block (void)
18429{
18430 now_it.mask = 0x10;
18431 now_it.block_length = 0;
18432}
18433
18434/* Update the mask of the current automatically-generated IT
18435 instruction. See comments in new_automatic_it_block (). */
18436
18437static void
18438now_it_add_mask (int cond)
18439{
18440#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
18441#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 18442 | ((bitvalue) << (nbit)))
e07e6e58 18443 const int resulting_bit = (cond & 1);
c921be7d 18444
e07e6e58
NC
18445 now_it.mask &= 0xf;
18446 now_it.mask = SET_BIT_VALUE (now_it.mask,
477330fc
RM
18447 resulting_bit,
18448 (5 - now_it.block_length));
e07e6e58 18449 now_it.mask = SET_BIT_VALUE (now_it.mask,
477330fc
RM
18450 1,
18451 ((5 - now_it.block_length) - 1) );
e07e6e58
NC
18452 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
18453
18454#undef CLEAR_BIT
18455#undef SET_BIT_VALUE
e07e6e58
NC
18456}
18457
18458/* The IT blocks handling machinery is accessed through the these functions:
18459 it_fsm_pre_encode () from md_assemble ()
18460 set_it_insn_type () optional, from the tencode functions
18461 set_it_insn_type_last () ditto
18462 in_it_block () ditto
18463 it_fsm_post_encode () from md_assemble ()
33eaf5de 18464 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
18465
18466 Rationale:
18467 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
18468 initializing the IT insn type with a generic initial value depending
18469 on the inst.condition.
e07e6e58 18470 2) During the tencode function, two things may happen:
477330fc
RM
18471 a) The tencode function overrides the IT insn type by
18472 calling either set_it_insn_type (type) or set_it_insn_type_last ().
18473 b) The tencode function queries the IT block state by
18474 calling in_it_block () (i.e. to determine narrow/not narrow mode).
18475
18476 Both set_it_insn_type and in_it_block run the internal FSM state
18477 handling function (handle_it_state), because: a) setting the IT insn
18478 type may incur in an invalid state (exiting the function),
18479 and b) querying the state requires the FSM to be updated.
18480 Specifically we want to avoid creating an IT block for conditional
18481 branches, so it_fsm_pre_encode is actually a guess and we can't
18482 determine whether an IT block is required until the tencode () routine
18483 has decided what type of instruction this actually it.
18484 Because of this, if set_it_insn_type and in_it_block have to be used,
18485 set_it_insn_type has to be called first.
18486
18487 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
18488 determines the insn IT type depending on the inst.cond code.
18489 When a tencode () routine encodes an instruction that can be
18490 either outside an IT block, or, in the case of being inside, has to be
18491 the last one, set_it_insn_type_last () will determine the proper
18492 IT instruction type based on the inst.cond code. Otherwise,
18493 set_it_insn_type can be called for overriding that logic or
18494 for covering other cases.
18495
18496 Calling handle_it_state () may not transition the IT block state to
2b0f3761 18497 OUTSIDE_IT_BLOCK immediately, since the (current) state could be
477330fc
RM
18498 still queried. Instead, if the FSM determines that the state should
18499 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
18500 after the tencode () function: that's what it_fsm_post_encode () does.
18501
18502 Since in_it_block () calls the state handling function to get an
18503 updated state, an error may occur (due to invalid insns combination).
18504 In that case, inst.error is set.
18505 Therefore, inst.error has to be checked after the execution of
18506 the tencode () routine.
e07e6e58
NC
18507
18508 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc
RM
18509 any pending state change (if any) that didn't take place in
18510 handle_it_state () as explained above. */
e07e6e58
NC
18511
18512static void
18513it_fsm_pre_encode (void)
18514{
18515 if (inst.cond != COND_ALWAYS)
18516 inst.it_insn_type = INSIDE_IT_INSN;
18517 else
18518 inst.it_insn_type = OUTSIDE_IT_INSN;
18519
18520 now_it.state_handled = 0;
18521}
18522
18523/* IT state FSM handling function. */
18524
18525static int
18526handle_it_state (void)
18527{
18528 now_it.state_handled = 1;
5a01bb1d 18529 now_it.insn_cond = FALSE;
e07e6e58
NC
18530
18531 switch (now_it.state)
18532 {
18533 case OUTSIDE_IT_BLOCK:
18534 switch (inst.it_insn_type)
18535 {
18536 case OUTSIDE_IT_INSN:
18537 break;
18538
18539 case INSIDE_IT_INSN:
18540 case INSIDE_IT_LAST_INSN:
18541 if (thumb_mode == 0)
18542 {
c921be7d 18543 if (unified_syntax
e07e6e58
NC
18544 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
18545 as_tsktsk (_("Warning: conditional outside an IT block"\
18546 " for Thumb."));
18547 }
18548 else
18549 {
18550 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
fc289b0a 18551 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
e07e6e58
NC
18552 {
18553 /* Automatically generate the IT instruction. */
18554 new_automatic_it_block (inst.cond);
18555 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
18556 close_automatic_it_block ();
18557 }
18558 else
18559 {
18560 inst.error = BAD_OUT_IT;
18561 return FAIL;
18562 }
18563 }
18564 break;
18565
18566 case IF_INSIDE_IT_LAST_INSN:
18567 case NEUTRAL_IT_INSN:
18568 break;
18569
18570 case IT_INSN:
18571 now_it.state = MANUAL_IT_BLOCK;
18572 now_it.block_length = 0;
18573 break;
18574 }
18575 break;
18576
18577 case AUTOMATIC_IT_BLOCK:
18578 /* Three things may happen now:
18579 a) We should increment current it block size;
18580 b) We should close current it block (closing insn or 4 insns);
18581 c) We should close current it block and start a new one (due
18582 to incompatible conditions or
18583 4 insns-length block reached). */
18584
18585 switch (inst.it_insn_type)
18586 {
18587 case OUTSIDE_IT_INSN:
2b0f3761 18588 /* The closure of the block shall happen immediately,
e07e6e58
NC
18589 so any in_it_block () call reports the block as closed. */
18590 force_automatic_it_block_close ();
18591 break;
18592
18593 case INSIDE_IT_INSN:
18594 case INSIDE_IT_LAST_INSN:
18595 case IF_INSIDE_IT_LAST_INSN:
18596 now_it.block_length++;
18597
18598 if (now_it.block_length > 4
18599 || !now_it_compatible (inst.cond))
18600 {
18601 force_automatic_it_block_close ();
18602 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
18603 new_automatic_it_block (inst.cond);
18604 }
18605 else
18606 {
5a01bb1d 18607 now_it.insn_cond = TRUE;
e07e6e58
NC
18608 now_it_add_mask (inst.cond);
18609 }
18610
18611 if (now_it.state == AUTOMATIC_IT_BLOCK
18612 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18613 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18614 close_automatic_it_block ();
18615 break;
18616
18617 case NEUTRAL_IT_INSN:
18618 now_it.block_length++;
5a01bb1d 18619 now_it.insn_cond = TRUE;
e07e6e58
NC
18620
18621 if (now_it.block_length > 4)
18622 force_automatic_it_block_close ();
18623 else
18624 now_it_add_mask (now_it.cc & 1);
18625 break;
18626
18627 case IT_INSN:
18628 close_automatic_it_block ();
18629 now_it.state = MANUAL_IT_BLOCK;
18630 break;
18631 }
18632 break;
18633
18634 case MANUAL_IT_BLOCK:
18635 {
18636 /* Check conditional suffixes. */
18637 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18638 int is_last;
18639 now_it.mask <<= 1;
18640 now_it.mask &= 0x1f;
18641 is_last = (now_it.mask == 0x10);
5a01bb1d 18642 now_it.insn_cond = TRUE;
e07e6e58
NC
18643
18644 switch (inst.it_insn_type)
18645 {
18646 case OUTSIDE_IT_INSN:
18647 inst.error = BAD_NOT_IT;
18648 return FAIL;
18649
18650 case INSIDE_IT_INSN:
18651 if (cond != inst.cond)
18652 {
18653 inst.error = BAD_IT_COND;
18654 return FAIL;
18655 }
18656 break;
18657
18658 case INSIDE_IT_LAST_INSN:
18659 case IF_INSIDE_IT_LAST_INSN:
18660 if (cond != inst.cond)
18661 {
18662 inst.error = BAD_IT_COND;
18663 return FAIL;
18664 }
18665 if (!is_last)
18666 {
18667 inst.error = BAD_BRANCH;
18668 return FAIL;
18669 }
18670 break;
18671
18672 case NEUTRAL_IT_INSN:
18673 /* The BKPT instruction is unconditional even in an IT block. */
18674 break;
18675
18676 case IT_INSN:
18677 inst.error = BAD_IT_IT;
18678 return FAIL;
18679 }
18680 }
18681 break;
18682 }
18683
18684 return SUCCESS;
18685}
18686
5a01bb1d
MGD
18687struct depr_insn_mask
18688{
18689 unsigned long pattern;
18690 unsigned long mask;
18691 const char* description;
18692};
18693
18694/* List of 16-bit instruction patterns deprecated in an IT block in
18695 ARMv8. */
18696static const struct depr_insn_mask depr_it_insns[] = {
18697 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18698 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18699 { 0xa000, 0xb800, N_("ADR") },
18700 { 0x4800, 0xf800, N_("Literal loads") },
18701 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18702 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
18703 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18704 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18705 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
18706 { 0, 0, NULL }
18707};
18708
e07e6e58
NC
18709static void
18710it_fsm_post_encode (void)
18711{
18712 int is_last;
18713
18714 if (!now_it.state_handled)
18715 handle_it_state ();
18716
5a01bb1d
MGD
18717 if (now_it.insn_cond
18718 && !now_it.warn_deprecated
18719 && warn_on_deprecated
df9909b8
TP
18720 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
18721 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
18722 {
18723 if (inst.instruction >= 0x10000)
18724 {
5c3696f8 18725 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 18726 "performance deprecated in ARMv8-A and ARMv8-R"));
5a01bb1d
MGD
18727 now_it.warn_deprecated = TRUE;
18728 }
18729 else
18730 {
18731 const struct depr_insn_mask *p = depr_it_insns;
18732
18733 while (p->mask != 0)
18734 {
18735 if ((inst.instruction & p->mask) == p->pattern)
18736 {
df9909b8
TP
18737 as_tsktsk (_("IT blocks containing 16-bit Thumb "
18738 "instructions of the following class are "
18739 "performance deprecated in ARMv8-A and "
18740 "ARMv8-R: %s"), p->description);
5a01bb1d
MGD
18741 now_it.warn_deprecated = TRUE;
18742 break;
18743 }
18744
18745 ++p;
18746 }
18747 }
18748
18749 if (now_it.block_length > 1)
18750 {
5c3696f8 18751 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
18752 "instruction are performance deprecated in ARMv8-A and "
18753 "ARMv8-R"));
5a01bb1d
MGD
18754 now_it.warn_deprecated = TRUE;
18755 }
18756 }
18757
e07e6e58
NC
18758 is_last = (now_it.mask == 0x10);
18759 if (is_last)
18760 {
18761 now_it.state = OUTSIDE_IT_BLOCK;
18762 now_it.mask = 0;
18763 }
18764}
18765
18766static void
18767force_automatic_it_block_close (void)
18768{
18769 if (now_it.state == AUTOMATIC_IT_BLOCK)
18770 {
18771 close_automatic_it_block ();
18772 now_it.state = OUTSIDE_IT_BLOCK;
18773 now_it.mask = 0;
18774 }
18775}
18776
18777static int
18778in_it_block (void)
18779{
18780 if (!now_it.state_handled)
18781 handle_it_state ();
18782
18783 return now_it.state != OUTSIDE_IT_BLOCK;
18784}
18785
ff8646ee
TP
18786/* Whether OPCODE only has T32 encoding. Since this function is only used by
18787 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18788 here, hence the "known" in the function name. */
fc289b0a
TP
18789
18790static bfd_boolean
ff8646ee 18791known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
18792{
18793 /* Original Thumb-1 wide instruction. */
18794 if (opcode->tencode == do_t_blx
18795 || opcode->tencode == do_t_branch23
18796 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18797 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18798 return TRUE;
18799
16a1fa25
TP
18800 /* Wide-only instruction added to ARMv8-M Baseline. */
18801 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
18802 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18803 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18804 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18805 return TRUE;
18806
18807 return FALSE;
18808}
18809
18810/* Whether wide instruction variant can be used if available for a valid OPCODE
18811 in ARCH. */
18812
18813static bfd_boolean
18814t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18815{
18816 if (known_t32_only_insn (opcode))
18817 return TRUE;
18818
18819 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18820 of variant T3 of B.W is checked in do_t_branch. */
18821 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18822 && opcode->tencode == do_t_branch)
18823 return TRUE;
18824
bada4342
JW
18825 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
18826 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18827 && opcode->tencode == do_t_mov_cmp
18828 /* Make sure CMP instruction is not affected. */
18829 && opcode->aencode == do_mov)
18830 return TRUE;
18831
ff8646ee
TP
18832 /* Wide instruction variants of all instructions with narrow *and* wide
18833 variants become available with ARMv6t2. Other opcodes are either
18834 narrow-only or wide-only and are thus available if OPCODE is valid. */
18835 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18836 return TRUE;
18837
18838 /* OPCODE with narrow only instruction variant or wide variant not
18839 available. */
fc289b0a
TP
18840 return FALSE;
18841}
18842
c19d1205
ZW
18843void
18844md_assemble (char *str)
b99bd4ef 18845{
c19d1205
ZW
18846 char *p = str;
18847 const struct asm_opcode * opcode;
b99bd4ef 18848
c19d1205
ZW
18849 /* Align the previous label if needed. */
18850 if (last_label_seen != NULL)
b99bd4ef 18851 {
c19d1205
ZW
18852 symbol_set_frag (last_label_seen, frag_now);
18853 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18854 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
18855 }
18856
c19d1205 18857 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
18858 int r;
18859 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
18860 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 18861
c19d1205
ZW
18862 opcode = opcode_lookup (&p);
18863 if (!opcode)
b99bd4ef 18864 {
c19d1205 18865 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 18866 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 18867 if (! create_register_alias (str, p)
477330fc 18868 && ! create_neon_reg_alias (str, p))
c19d1205 18869 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 18870
b99bd4ef
NC
18871 return;
18872 }
18873
278df34e 18874 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 18875 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 18876
037e8744
JB
18877 /* The value which unconditional instructions should have in place of the
18878 condition field. */
18879 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18880
c19d1205 18881 if (thumb_mode)
b99bd4ef 18882 {
e74cfd16 18883 arm_feature_set variant;
8f06b2d8
PB
18884
18885 variant = cpu_variant;
18886 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
18887 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18888 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 18889 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
18890 if (!opcode->tvariant
18891 || (thumb_mode == 1
18892 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 18893 {
173205ca
TP
18894 if (opcode->tencode == do_t_swi)
18895 as_bad (_("SVC is not permitted on this architecture"));
18896 else
18897 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
18898 return;
18899 }
c19d1205
ZW
18900 if (inst.cond != COND_ALWAYS && !unified_syntax
18901 && opcode->tencode != do_t_branch)
b99bd4ef 18902 {
c19d1205 18903 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
18904 return;
18905 }
18906
fc289b0a
TP
18907 /* Two things are addressed here:
18908 1) Implicit require narrow instructions on Thumb-1.
18909 This avoids relaxation accidentally introducing Thumb-2
18910 instructions.
18911 2) Reject wide instructions in non Thumb-2 cores.
18912
18913 Only instructions with narrow and wide variants need to be handled
18914 but selecting all non wide-only instructions is easier. */
18915 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 18916 && !t32_insn_ok (variant, opcode))
076d447c 18917 {
fc289b0a
TP
18918 if (inst.size_req == 0)
18919 inst.size_req = 2;
18920 else if (inst.size_req == 4)
752d5da4 18921 {
ff8646ee
TP
18922 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18923 as_bad (_("selected processor does not support 32bit wide "
18924 "variant of instruction `%s'"), str);
18925 else
18926 as_bad (_("selected processor does not support `%s' in "
18927 "Thumb-2 mode"), str);
fc289b0a 18928 return;
752d5da4 18929 }
076d447c
PB
18930 }
18931
c19d1205
ZW
18932 inst.instruction = opcode->tvalue;
18933
5be8be5d 18934 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc
RM
18935 {
18936 /* Prepare the it_insn_type for those encodings that don't set
18937 it. */
18938 it_fsm_pre_encode ();
c19d1205 18939
477330fc 18940 opcode->tencode ();
e07e6e58 18941
477330fc
RM
18942 it_fsm_post_encode ();
18943 }
e27ec89e 18944
0110f2b8 18945 if (!(inst.error || inst.relax))
b99bd4ef 18946 {
9c2799c2 18947 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
18948 inst.size = (inst.instruction > 0xffff ? 4 : 2);
18949 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 18950 {
c19d1205 18951 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
18952 return;
18953 }
18954 }
076d447c
PB
18955
18956 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 18957 instruction. */
9c2799c2 18958 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 18959
e74cfd16
PB
18960 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18961 *opcode->tvariant);
ee065d83 18962 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
18963 set those bits when Thumb-2 32-bit instructions are seen. The impact
18964 of relaxable instructions will be considered later after we finish all
18965 relaxation. */
ff8646ee
TP
18966 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
18967 variant = arm_arch_none;
18968 else
18969 variant = cpu_variant;
18970 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
18971 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18972 arm_ext_v6t2);
cd000bff 18973
88714cb8
DG
18974 check_neon_suffixes;
18975
cd000bff 18976 if (!inst.error)
c877a2f2
NC
18977 {
18978 mapping_state (MAP_THUMB);
18979 }
c19d1205 18980 }
3e9e4fcf 18981 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 18982 {
845b51d6
PB
18983 bfd_boolean is_bx;
18984
18985 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
18986 is_bx = (opcode->aencode == do_bx);
18987
c19d1205 18988 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
18989 if (!(is_bx && fix_v4bx)
18990 && !(opcode->avariant &&
18991 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 18992 {
84b52b66 18993 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 18994 return;
b99bd4ef 18995 }
c19d1205 18996 if (inst.size_req)
b99bd4ef 18997 {
c19d1205
ZW
18998 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
18999 return;
b99bd4ef
NC
19000 }
19001
c19d1205
ZW
19002 inst.instruction = opcode->avalue;
19003 if (opcode->tag == OT_unconditionalF)
eff0bc54 19004 inst.instruction |= 0xFU << 28;
c19d1205
ZW
19005 else
19006 inst.instruction |= inst.cond << 28;
19007 inst.size = INSN_SIZE;
5be8be5d 19008 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
19009 {
19010 it_fsm_pre_encode ();
19011 opcode->aencode ();
19012 it_fsm_post_encode ();
19013 }
ee065d83 19014 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 19015 on a hypothetical non-thumb v5 core. */
845b51d6 19016 if (is_bx)
e74cfd16 19017 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 19018 else
e74cfd16
PB
19019 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
19020 *opcode->avariant);
88714cb8
DG
19021
19022 check_neon_suffixes;
19023
cd000bff 19024 if (!inst.error)
c877a2f2
NC
19025 {
19026 mapping_state (MAP_ARM);
19027 }
b99bd4ef 19028 }
3e9e4fcf
JB
19029 else
19030 {
19031 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
19032 "-- `%s'"), str);
19033 return;
19034 }
c19d1205
ZW
19035 output_inst (str);
19036}
b99bd4ef 19037
e07e6e58
NC
19038static void
19039check_it_blocks_finished (void)
19040{
19041#ifdef OBJ_ELF
19042 asection *sect;
19043
19044 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
19045 if (seg_info (sect)->tc_segment_info_data.current_it.state
19046 == MANUAL_IT_BLOCK)
19047 {
19048 as_warn (_("section '%s' finished with an open IT block."),
19049 sect->name);
19050 }
19051#else
19052 if (now_it.state == MANUAL_IT_BLOCK)
19053 as_warn (_("file finished with an open IT block."));
19054#endif
19055}
19056
c19d1205
ZW
19057/* Various frobbings of labels and their addresses. */
19058
19059void
19060arm_start_line_hook (void)
19061{
19062 last_label_seen = NULL;
b99bd4ef
NC
19063}
19064
c19d1205
ZW
19065void
19066arm_frob_label (symbolS * sym)
b99bd4ef 19067{
c19d1205 19068 last_label_seen = sym;
b99bd4ef 19069
c19d1205 19070 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 19071
c19d1205
ZW
19072#if defined OBJ_COFF || defined OBJ_ELF
19073 ARM_SET_INTERWORK (sym, support_interwork);
19074#endif
b99bd4ef 19075
e07e6e58
NC
19076 force_automatic_it_block_close ();
19077
5f4273c7 19078 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
19079 as Thumb functions. This is because these labels, whilst
19080 they exist inside Thumb code, are not the entry points for
19081 possible ARM->Thumb calls. Also, these labels can be used
19082 as part of a computed goto or switch statement. eg gcc
19083 can generate code that looks like this:
b99bd4ef 19084
c19d1205
ZW
19085 ldr r2, [pc, .Laaa]
19086 lsl r3, r3, #2
19087 ldr r2, [r3, r2]
19088 mov pc, r2
b99bd4ef 19089
c19d1205
ZW
19090 .Lbbb: .word .Lxxx
19091 .Lccc: .word .Lyyy
19092 ..etc...
19093 .Laaa: .word Lbbb
b99bd4ef 19094
c19d1205
ZW
19095 The first instruction loads the address of the jump table.
19096 The second instruction converts a table index into a byte offset.
19097 The third instruction gets the jump address out of the table.
19098 The fourth instruction performs the jump.
b99bd4ef 19099
c19d1205
ZW
19100 If the address stored at .Laaa is that of a symbol which has the
19101 Thumb_Func bit set, then the linker will arrange for this address
19102 to have the bottom bit set, which in turn would mean that the
19103 address computation performed by the third instruction would end
19104 up with the bottom bit set. Since the ARM is capable of unaligned
19105 word loads, the instruction would then load the incorrect address
19106 out of the jump table, and chaos would ensue. */
19107 if (label_is_thumb_function_name
19108 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
19109 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 19110 {
c19d1205
ZW
19111 /* When the address of a Thumb function is taken the bottom
19112 bit of that address should be set. This will allow
19113 interworking between Arm and Thumb functions to work
19114 correctly. */
b99bd4ef 19115
c19d1205 19116 THUMB_SET_FUNC (sym, 1);
b99bd4ef 19117
c19d1205 19118 label_is_thumb_function_name = FALSE;
b99bd4ef 19119 }
07a53e5c 19120
07a53e5c 19121 dwarf2_emit_label (sym);
b99bd4ef
NC
19122}
19123
c921be7d 19124bfd_boolean
c19d1205 19125arm_data_in_code (void)
b99bd4ef 19126{
c19d1205 19127 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 19128 {
c19d1205
ZW
19129 *input_line_pointer = '/';
19130 input_line_pointer += 5;
19131 *input_line_pointer = 0;
c921be7d 19132 return TRUE;
b99bd4ef
NC
19133 }
19134
c921be7d 19135 return FALSE;
b99bd4ef
NC
19136}
19137
c19d1205
ZW
19138char *
19139arm_canonicalize_symbol_name (char * name)
b99bd4ef 19140{
c19d1205 19141 int len;
b99bd4ef 19142
c19d1205
ZW
19143 if (thumb_mode && (len = strlen (name)) > 5
19144 && streq (name + len - 5, "/data"))
19145 *(name + len - 5) = 0;
b99bd4ef 19146
c19d1205 19147 return name;
b99bd4ef 19148}
c19d1205
ZW
19149\f
19150/* Table of all register names defined by default. The user can
19151 define additional names with .req. Note that all register names
19152 should appear in both upper and lowercase variants. Some registers
19153 also have mixed-case names. */
b99bd4ef 19154
dcbf9037 19155#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 19156#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 19157#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
19158#define REGSET(p,t) \
19159 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
19160 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
19161 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
19162 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
19163#define REGSETH(p,t) \
19164 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
19165 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
19166 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
19167 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
19168#define REGSET2(p,t) \
19169 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
19170 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
19171 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
19172 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
19173#define SPLRBANK(base,bank,t) \
19174 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
19175 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
19176 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
19177 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
19178 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
19179 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 19180
c19d1205 19181static const struct reg_entry reg_names[] =
7ed4c4c5 19182{
c19d1205
ZW
19183 /* ARM integer registers. */
19184 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 19185
c19d1205
ZW
19186 /* ATPCS synonyms. */
19187 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
19188 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
19189 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 19190
c19d1205
ZW
19191 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
19192 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
19193 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 19194
c19d1205
ZW
19195 /* Well-known aliases. */
19196 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
19197 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
19198
19199 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
19200 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
19201
19202 /* Coprocessor numbers. */
19203 REGSET(p, CP), REGSET(P, CP),
19204
19205 /* Coprocessor register numbers. The "cr" variants are for backward
19206 compatibility. */
19207 REGSET(c, CN), REGSET(C, CN),
19208 REGSET(cr, CN), REGSET(CR, CN),
19209
90ec0d68
MGD
19210 /* ARM banked registers. */
19211 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
19212 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
19213 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
19214 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
19215 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
19216 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
19217 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
19218
19219 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
19220 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
19221 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
19222 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
19223 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 19224 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
19225 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
19226 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
19227
19228 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
19229 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
19230 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
19231 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
19232 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
19233 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
19234 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 19235 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
19236 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
19237
c19d1205
ZW
19238 /* FPA registers. */
19239 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
19240 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
19241
19242 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
19243 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
19244
19245 /* VFP SP registers. */
5287ad62
JB
19246 REGSET(s,VFS), REGSET(S,VFS),
19247 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
19248
19249 /* VFP DP Registers. */
5287ad62
JB
19250 REGSET(d,VFD), REGSET(D,VFD),
19251 /* Extra Neon DP registers. */
19252 REGSETH(d,VFD), REGSETH(D,VFD),
19253
19254 /* Neon QP registers. */
19255 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
19256
19257 /* VFP control registers. */
19258 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
19259 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
19260 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
19261 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
19262 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
19263 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 19264 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
19265
19266 /* Maverick DSP coprocessor registers. */
19267 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
19268 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
19269
19270 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
19271 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
19272 REGDEF(dspsc,0,DSPSC),
19273
19274 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
19275 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
19276 REGDEF(DSPSC,0,DSPSC),
19277
19278 /* iWMMXt data registers - p0, c0-15. */
19279 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
19280
19281 /* iWMMXt control registers - p1, c0-3. */
19282 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
19283 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
19284 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
19285 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
19286
19287 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
19288 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
19289 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
19290 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
19291 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
19292
19293 /* XScale accumulator registers. */
19294 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
19295};
19296#undef REGDEF
19297#undef REGNUM
19298#undef REGSET
7ed4c4c5 19299
c19d1205
ZW
19300/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
19301 within psr_required_here. */
19302static const struct asm_psr psrs[] =
19303{
19304 /* Backward compatibility notation. Note that "all" is no longer
19305 truly all possible PSR bits. */
19306 {"all", PSR_c | PSR_f},
19307 {"flg", PSR_f},
19308 {"ctl", PSR_c},
19309
19310 /* Individual flags. */
19311 {"f", PSR_f},
19312 {"c", PSR_c},
19313 {"x", PSR_x},
19314 {"s", PSR_s},
59b42a0d 19315
c19d1205
ZW
19316 /* Combinations of flags. */
19317 {"fs", PSR_f | PSR_s},
19318 {"fx", PSR_f | PSR_x},
19319 {"fc", PSR_f | PSR_c},
19320 {"sf", PSR_s | PSR_f},
19321 {"sx", PSR_s | PSR_x},
19322 {"sc", PSR_s | PSR_c},
19323 {"xf", PSR_x | PSR_f},
19324 {"xs", PSR_x | PSR_s},
19325 {"xc", PSR_x | PSR_c},
19326 {"cf", PSR_c | PSR_f},
19327 {"cs", PSR_c | PSR_s},
19328 {"cx", PSR_c | PSR_x},
19329 {"fsx", PSR_f | PSR_s | PSR_x},
19330 {"fsc", PSR_f | PSR_s | PSR_c},
19331 {"fxs", PSR_f | PSR_x | PSR_s},
19332 {"fxc", PSR_f | PSR_x | PSR_c},
19333 {"fcs", PSR_f | PSR_c | PSR_s},
19334 {"fcx", PSR_f | PSR_c | PSR_x},
19335 {"sfx", PSR_s | PSR_f | PSR_x},
19336 {"sfc", PSR_s | PSR_f | PSR_c},
19337 {"sxf", PSR_s | PSR_x | PSR_f},
19338 {"sxc", PSR_s | PSR_x | PSR_c},
19339 {"scf", PSR_s | PSR_c | PSR_f},
19340 {"scx", PSR_s | PSR_c | PSR_x},
19341 {"xfs", PSR_x | PSR_f | PSR_s},
19342 {"xfc", PSR_x | PSR_f | PSR_c},
19343 {"xsf", PSR_x | PSR_s | PSR_f},
19344 {"xsc", PSR_x | PSR_s | PSR_c},
19345 {"xcf", PSR_x | PSR_c | PSR_f},
19346 {"xcs", PSR_x | PSR_c | PSR_s},
19347 {"cfs", PSR_c | PSR_f | PSR_s},
19348 {"cfx", PSR_c | PSR_f | PSR_x},
19349 {"csf", PSR_c | PSR_s | PSR_f},
19350 {"csx", PSR_c | PSR_s | PSR_x},
19351 {"cxf", PSR_c | PSR_x | PSR_f},
19352 {"cxs", PSR_c | PSR_x | PSR_s},
19353 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
19354 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
19355 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
19356 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
19357 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
19358 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
19359 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
19360 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
19361 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
19362 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
19363 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
19364 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
19365 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
19366 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
19367 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
19368 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
19369 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
19370 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
19371 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
19372 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
19373 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
19374 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
19375 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
19376 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
19377};
19378
62b3e311
PB
19379/* Table of V7M psr names. */
19380static const struct asm_psr v7m_psrs[] =
19381{
1a336194
TP
19382 {"apsr", 0x0 }, {"APSR", 0x0 },
19383 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
19384 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
19385 {"psr", 0x3 }, {"PSR", 0x3 },
19386 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
19387 {"ipsr", 0x5 }, {"IPSR", 0x5 },
19388 {"epsr", 0x6 }, {"EPSR", 0x6 },
19389 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
19390 {"msp", 0x8 }, {"MSP", 0x8 },
19391 {"psp", 0x9 }, {"PSP", 0x9 },
19392 {"msplim", 0xa }, {"MSPLIM", 0xa },
19393 {"psplim", 0xb }, {"PSPLIM", 0xb },
19394 {"primask", 0x10}, {"PRIMASK", 0x10},
19395 {"basepri", 0x11}, {"BASEPRI", 0x11},
19396 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
19397 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
19398 {"control", 0x14}, {"CONTROL", 0x14},
19399 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
19400 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
19401 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
19402 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
19403 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
19404 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
19405 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
19406 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
19407 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
19408};
19409
c19d1205
ZW
19410/* Table of all shift-in-operand names. */
19411static const struct asm_shift_name shift_names [] =
b99bd4ef 19412{
c19d1205
ZW
19413 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
19414 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
19415 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
19416 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
19417 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
19418 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
19419};
b99bd4ef 19420
c19d1205
ZW
19421/* Table of all explicit relocation names. */
19422#ifdef OBJ_ELF
19423static struct reloc_entry reloc_names[] =
19424{
19425 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
19426 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
19427 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
19428 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
19429 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
19430 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
19431 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
19432 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
19433 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
19434 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 19435 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
19436 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
19437 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 19438 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 19439 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 19440 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 19441 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
19442 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
19443 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
19444 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
19445 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19446 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19447 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
19448 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
19449 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
19450 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
19451 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
19452};
19453#endif
b99bd4ef 19454
c19d1205
ZW
19455/* Table of all conditional affixes. 0xF is not defined as a condition code. */
19456static const struct asm_cond conds[] =
19457{
19458 {"eq", 0x0},
19459 {"ne", 0x1},
19460 {"cs", 0x2}, {"hs", 0x2},
19461 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
19462 {"mi", 0x4},
19463 {"pl", 0x5},
19464 {"vs", 0x6},
19465 {"vc", 0x7},
19466 {"hi", 0x8},
19467 {"ls", 0x9},
19468 {"ge", 0xa},
19469 {"lt", 0xb},
19470 {"gt", 0xc},
19471 {"le", 0xd},
19472 {"al", 0xe}
19473};
bfae80f2 19474
e797f7e0 19475#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
19476 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
19477 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 19478
62b3e311
PB
19479static struct asm_barrier_opt barrier_opt_names[] =
19480{
e797f7e0
MGD
19481 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
19482 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
19483 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
19484 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
19485 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
19486 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
19487 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
19488 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
19489 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
19490 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
19491 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
19492 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
19493 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
19494 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
19495 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
19496 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
19497};
19498
e797f7e0
MGD
19499#undef UL_BARRIER
19500
c19d1205
ZW
19501/* Table of ARM-format instructions. */
19502
19503/* Macros for gluing together operand strings. N.B. In all cases
19504 other than OPS0, the trailing OP_stop comes from default
19505 zero-initialization of the unspecified elements of the array. */
19506#define OPS0() { OP_stop, }
19507#define OPS1(a) { OP_##a, }
19508#define OPS2(a,b) { OP_##a,OP_##b, }
19509#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
19510#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
19511#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
19512#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
19513
5be8be5d
DG
19514/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
19515 This is useful when mixing operands for ARM and THUMB, i.e. using the
19516 MIX_ARM_THUMB_OPERANDS macro.
19517 In order to use these macros, prefix the number of operands with _
19518 e.g. _3. */
19519#define OPS_1(a) { a, }
19520#define OPS_2(a,b) { a,b, }
19521#define OPS_3(a,b,c) { a,b,c, }
19522#define OPS_4(a,b,c,d) { a,b,c,d, }
19523#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
19524#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
19525
c19d1205
ZW
19526/* These macros abstract out the exact format of the mnemonic table and
19527 save some repeated characters. */
19528
19529/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
19530#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 19531 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 19532 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
19533
19534/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
19535 a T_MNEM_xyz enumerator. */
19536#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19537 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 19538#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19539 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
19540
19541/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
19542 infix after the third character. */
19543#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 19544 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 19545 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 19546#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 19547 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 19548 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 19549#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19550 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 19551#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19552 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 19553#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19554 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 19555#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19556 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 19557
c19d1205 19558/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
19559 field is still 0xE. Many of the Thumb variants can be executed
19560 conditionally, so this is checked separately. */
c19d1205 19561#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 19562 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 19563 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 19564
dd5181d5
KT
19565/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
19566 Used by mnemonics that have very minimal differences in the encoding for
19567 ARM and Thumb variants and can be handled in a common function. */
19568#define TUEc(mnem, op, top, nops, ops, en) \
19569 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19570 THUMB_VARIANT, do_##en, do_##en }
19571
c19d1205
ZW
19572/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
19573 condition code field. */
19574#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 19575 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 19576 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
19577
19578/* ARM-only variants of all the above. */
6a86118a 19579#define CE(mnem, op, nops, ops, ae) \
21d799b5 19580 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
19581
19582#define C3(mnem, op, nops, ops, ae) \
19583 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19584
cf3cf39d
TP
19585/* Thumb-only variants of TCE and TUE. */
19586#define ToC(mnem, top, nops, ops, te) \
19587 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
19588 do_##te }
cf3cf39d
TP
19589
19590#define ToU(mnem, top, nops, ops, te) \
19591 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
19592 NULL, do_##te }
cf3cf39d 19593
4389b29a
AV
19594/* T_MNEM_xyz enumerator variants of ToC. */
19595#define toC(mnem, top, nops, ops, te) \
19596 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
19597 do_##te }
19598
e3cb604e
PB
19599/* Legacy mnemonics that always have conditional infix after the third
19600 character. */
19601#define CL(mnem, op, nops, ops, ae) \
21d799b5 19602 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
19603 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19604
8f06b2d8
PB
19605/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
19606#define cCE(mnem, op, nops, ops, ae) \
21d799b5 19607 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 19608
e3cb604e
PB
19609/* Legacy coprocessor instructions where conditional infix and conditional
19610 suffix are ambiguous. For consistency this includes all FPA instructions,
19611 not just the potentially ambiguous ones. */
19612#define cCL(mnem, op, nops, ops, ae) \
21d799b5 19613 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
19614 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19615
19616/* Coprocessor, takes either a suffix or a position-3 infix
19617 (for an FPA corner case). */
19618#define C3E(mnem, op, nops, ops, ae) \
21d799b5 19619 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 19620 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 19621
6a86118a 19622#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
19623 { m1 #m2 m3, OPS##nops ops, \
19624 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
19625 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19626
19627#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
19628 xCM_ (m1, , m2, op, nops, ops, ae), \
19629 xCM_ (m1, eq, m2, op, nops, ops, ae), \
19630 xCM_ (m1, ne, m2, op, nops, ops, ae), \
19631 xCM_ (m1, cs, m2, op, nops, ops, ae), \
19632 xCM_ (m1, hs, m2, op, nops, ops, ae), \
19633 xCM_ (m1, cc, m2, op, nops, ops, ae), \
19634 xCM_ (m1, ul, m2, op, nops, ops, ae), \
19635 xCM_ (m1, lo, m2, op, nops, ops, ae), \
19636 xCM_ (m1, mi, m2, op, nops, ops, ae), \
19637 xCM_ (m1, pl, m2, op, nops, ops, ae), \
19638 xCM_ (m1, vs, m2, op, nops, ops, ae), \
19639 xCM_ (m1, vc, m2, op, nops, ops, ae), \
19640 xCM_ (m1, hi, m2, op, nops, ops, ae), \
19641 xCM_ (m1, ls, m2, op, nops, ops, ae), \
19642 xCM_ (m1, ge, m2, op, nops, ops, ae), \
19643 xCM_ (m1, lt, m2, op, nops, ops, ae), \
19644 xCM_ (m1, gt, m2, op, nops, ops, ae), \
19645 xCM_ (m1, le, m2, op, nops, ops, ae), \
19646 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
19647
19648#define UE(mnem, op, nops, ops, ae) \
19649 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19650
19651#define UF(mnem, op, nops, ops, ae) \
19652 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19653
5287ad62
JB
19654/* Neon data-processing. ARM versions are unconditional with cond=0xf.
19655 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
19656 use the same encoding function for each. */
19657#define NUF(mnem, op, nops, ops, enc) \
19658 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19659 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19660
19661/* Neon data processing, version which indirects through neon_enc_tab for
19662 the various overloaded versions of opcodes. */
19663#define nUF(mnem, op, nops, ops, enc) \
21d799b5 19664 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
19665 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19666
19667/* Neon insn with conditional suffix for the ARM version, non-overloaded
19668 version. */
037e8744
JB
19669#define NCE_tag(mnem, op, nops, ops, enc, tag) \
19670 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
19671 THUMB_VARIANT, do_##enc, do_##enc }
19672
037e8744 19673#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 19674 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
19675
19676#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 19677 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 19678
5287ad62 19679/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 19680#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 19681 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
19682 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19683
037e8744 19684#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 19685 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
19686
19687#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 19688 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 19689
c19d1205
ZW
19690#define do_0 0
19691
c19d1205 19692static const struct asm_opcode insns[] =
bfae80f2 19693{
74db7efb
NC
19694#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19695#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
19696 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19697 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19698 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19699 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19700 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19701 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19702 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19703 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19704 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19705 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19706 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19707 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19708 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19709 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19710 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19711 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
19712
19713 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19714 for setting PSR flag bits. They are obsolete in V6 and do not
19715 have Thumb equivalents. */
21d799b5
NC
19716 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19717 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19718 CL("tstp", 110f000, 2, (RR, SH), cmp),
19719 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19720 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19721 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19722 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19723 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19724 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19725
19726 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 19727 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
19728 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19729 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19730
19731 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
19732 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19733 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19734 OP_RRnpc),
19735 OP_ADDRGLDR),ldst, t_ldst),
19736 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
19737
19738 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19739 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19740 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19741 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19742 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19743 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19744
21d799b5
NC
19745 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19746 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 19747
c19d1205 19748 /* Pseudo ops. */
21d799b5 19749 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 19750 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 19751 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 19752 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
19753
19754 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
19755 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19756 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19757 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19758 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19759 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19760 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19761 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19762 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19763 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19764 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19765 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19766 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 19767
16a4cf17 19768 /* These may simplify to neg. */
21d799b5
NC
19769 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19770 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 19771
173205ca
TP
19772#undef THUMB_VARIANT
19773#define THUMB_VARIANT & arm_ext_os
19774
19775 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19776 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19777
c921be7d
NC
19778#undef THUMB_VARIANT
19779#define THUMB_VARIANT & arm_ext_v6
19780
21d799b5 19781 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
19782
19783 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
19784#undef THUMB_VARIANT
19785#define THUMB_VARIANT & arm_ext_v6t2
19786
21d799b5
NC
19787 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19788 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19789 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 19790
5be8be5d
DG
19791 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19792 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19793 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19794 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 19795
21d799b5
NC
19796 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19797 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 19798
21d799b5
NC
19799 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19800 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
19801
19802 /* V1 instructions with no Thumb analogue at all. */
21d799b5 19803 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
19804 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19805
19806 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19807 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19808 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19809 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19810 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19811 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19812 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19813 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19814
c921be7d
NC
19815#undef ARM_VARIANT
19816#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19817#undef THUMB_VARIANT
19818#define THUMB_VARIANT & arm_ext_v4t
19819
21d799b5
NC
19820 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19821 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 19822
c921be7d
NC
19823#undef THUMB_VARIANT
19824#define THUMB_VARIANT & arm_ext_v6t2
19825
21d799b5 19826 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
19827 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19828
19829 /* Generic coprocessor instructions. */
21d799b5
NC
19830 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19831 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19832 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19833 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19834 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19835 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 19836 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 19837
c921be7d
NC
19838#undef ARM_VARIANT
19839#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19840
21d799b5 19841 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
19842 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19843
c921be7d
NC
19844#undef ARM_VARIANT
19845#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19846#undef THUMB_VARIANT
19847#define THUMB_VARIANT & arm_ext_msr
19848
d2cd1205
JB
19849 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19850 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 19851
c921be7d
NC
19852#undef ARM_VARIANT
19853#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19854#undef THUMB_VARIANT
19855#define THUMB_VARIANT & arm_ext_v6t2
19856
21d799b5
NC
19857 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19858 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19859 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19860 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19861 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19862 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19863 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19864 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 19865
c921be7d
NC
19866#undef ARM_VARIANT
19867#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19868#undef THUMB_VARIANT
19869#define THUMB_VARIANT & arm_ext_v4t
19870
5be8be5d
DG
19871 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19872 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19873 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19874 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
19875 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19876 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 19877
c921be7d
NC
19878#undef ARM_VARIANT
19879#define ARM_VARIANT & arm_ext_v4t_5
19880
c19d1205
ZW
19881 /* ARM Architecture 4T. */
19882 /* Note: bx (and blx) are required on V5, even if the processor does
19883 not support Thumb. */
21d799b5 19884 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 19885
c921be7d
NC
19886#undef ARM_VARIANT
19887#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19888#undef THUMB_VARIANT
19889#define THUMB_VARIANT & arm_ext_v5t
19890
c19d1205
ZW
19891 /* Note: blx has 2 variants; the .value coded here is for
19892 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
19893 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19894 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 19895
c921be7d
NC
19896#undef THUMB_VARIANT
19897#define THUMB_VARIANT & arm_ext_v6t2
19898
21d799b5
NC
19899 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19900 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19901 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19902 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19903 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19904 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19905 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19906 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 19907
c921be7d 19908#undef ARM_VARIANT
74db7efb
NC
19909#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19910#undef THUMB_VARIANT
19911#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 19912
21d799b5
NC
19913 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19914 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19915 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19916 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 19917
21d799b5
NC
19918 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19919 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 19920
21d799b5
NC
19921 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19922 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19923 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19924 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 19925
21d799b5
NC
19926 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19927 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19928 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19929 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 19930
21d799b5
NC
19931 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19932 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 19933
03ee1b7f
NC
19934 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19935 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19936 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19937 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 19938
c921be7d 19939#undef ARM_VARIANT
74db7efb
NC
19940#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
19941#undef THUMB_VARIANT
19942#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 19943
21d799b5 19944 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
19945 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
19946 ldrd, t_ldstd),
19947 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
19948 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 19949
21d799b5
NC
19950 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19951 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 19952
c921be7d
NC
19953#undef ARM_VARIANT
19954#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
19955
21d799b5 19956 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 19957
c921be7d
NC
19958#undef ARM_VARIANT
19959#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
19960#undef THUMB_VARIANT
19961#define THUMB_VARIANT & arm_ext_v6
19962
21d799b5
NC
19963 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
19964 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
19965 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19966 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19967 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19968 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19969 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19970 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19971 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19972 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 19973
c921be7d 19974#undef THUMB_VARIANT
ff8646ee 19975#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 19976
5be8be5d
DG
19977 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
19978 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19979 strex, t_strex),
ff8646ee
TP
19980#undef THUMB_VARIANT
19981#define THUMB_VARIANT & arm_ext_v6t2
19982
21d799b5
NC
19983 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19984 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 19985
21d799b5
NC
19986 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
19987 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 19988
9e3c6df6 19989/* ARM V6 not included in V7M. */
c921be7d
NC
19990#undef THUMB_VARIANT
19991#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 19992 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 19993 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
19994 UF(rfeib, 9900a00, 1, (RRw), rfe),
19995 UF(rfeda, 8100a00, 1, (RRw), rfe),
19996 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19997 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
19998 UF(rfefa, 8100a00, 1, (RRw), rfe),
19999 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
20000 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 20001 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
20002 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
20003 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 20004 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 20005 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 20006 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 20007 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 20008 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 20009 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 20010 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 20011
9e3c6df6
PB
20012/* ARM V6 not included in V7M (eg. integer SIMD). */
20013#undef THUMB_VARIANT
20014#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
20015 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
20016 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
20017 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20018 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20019 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20020 /* Old name for QASX. */
74db7efb 20021 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 20022 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20023 /* Old name for QSAX. */
74db7efb 20024 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
20025 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20026 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20027 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20028 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20029 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20030 /* Old name for SASX. */
74db7efb 20031 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
20032 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20033 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 20034 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20035 /* Old name for SHASX. */
21d799b5 20036 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 20037 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20038 /* Old name for SHSAX. */
21d799b5
NC
20039 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20040 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20041 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20042 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20043 /* Old name for SSAX. */
74db7efb 20044 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
20045 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20046 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20047 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20048 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20049 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20050 /* Old name for UASX. */
74db7efb 20051 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
20052 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20053 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 20054 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20055 /* Old name for UHASX. */
21d799b5
NC
20056 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20057 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20058 /* Old name for UHSAX. */
21d799b5
NC
20059 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20060 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20061 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20062 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20063 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 20064 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20065 /* Old name for UQASX. */
21d799b5
NC
20066 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20067 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20068 /* Old name for UQSAX. */
21d799b5
NC
20069 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20070 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20071 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20072 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20073 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20074 /* Old name for USAX. */
74db7efb 20075 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 20076 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
20077 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20078 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20079 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20080 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20081 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20082 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20083 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20084 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20085 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20086 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20087 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20088 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20089 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20090 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20091 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20092 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20093 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20094 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20095 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20096 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20097 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20098 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20099 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20100 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20101 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20102 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20103 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
20104 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
20105 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
20106 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20107 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20108 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 20109
c921be7d 20110#undef ARM_VARIANT
55e8aae7 20111#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 20112#undef THUMB_VARIANT
55e8aae7 20113#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 20114
21d799b5
NC
20115 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
20116 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
20117 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
20118 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 20119
c921be7d
NC
20120#undef THUMB_VARIANT
20121#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
20122 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
20123 ldrexd, t_ldrexd),
20124 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
20125 RRnpcb), strexd, t_strexd),
ebdca51a 20126
c921be7d 20127#undef THUMB_VARIANT
ff8646ee 20128#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
20129 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
20130 rd_rn, rd_rn),
20131 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
20132 rd_rn, rd_rn),
20133 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 20134 strex, t_strexbh),
5be8be5d 20135 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 20136 strex, t_strexbh),
21d799b5 20137 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 20138
c921be7d 20139#undef ARM_VARIANT
f4c65163 20140#define ARM_VARIANT & arm_ext_sec
74db7efb 20141#undef THUMB_VARIANT
f4c65163 20142#define THUMB_VARIANT & arm_ext_sec
c921be7d 20143
21d799b5 20144 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 20145
90ec0d68
MGD
20146#undef ARM_VARIANT
20147#define ARM_VARIANT & arm_ext_virt
20148#undef THUMB_VARIANT
20149#define THUMB_VARIANT & arm_ext_virt
20150
20151 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
20152 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
20153
ddfded2f
MW
20154#undef ARM_VARIANT
20155#define ARM_VARIANT & arm_ext_pan
20156#undef THUMB_VARIANT
20157#define THUMB_VARIANT & arm_ext_pan
20158
20159 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
20160
c921be7d 20161#undef ARM_VARIANT
74db7efb 20162#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
20163#undef THUMB_VARIANT
20164#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 20165
21d799b5
NC
20166 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
20167 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
20168 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
20169 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 20170
21d799b5 20171 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 20172 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 20173
5be8be5d
DG
20174 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20175 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20176 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20177 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 20178
91d8b670
JG
20179#undef ARM_VARIANT
20180#define ARM_VARIANT & arm_ext_v3
20181#undef THUMB_VARIANT
20182#define THUMB_VARIANT & arm_ext_v6t2
20183
20184 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
20185 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
20186 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
20187
20188#undef ARM_VARIANT
20189#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
20190#undef THUMB_VARIANT
20191#define THUMB_VARIANT & arm_ext_v6t2_v8m
20192 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
20193 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
20194
bf3eeda7 20195 /* Thumb-only instructions. */
74db7efb 20196#undef ARM_VARIANT
bf3eeda7
NS
20197#define ARM_VARIANT NULL
20198 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
20199 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
20200
20201 /* ARM does not really have an IT instruction, so always allow it.
20202 The opcode is copied from Thumb in order to allow warnings in
20203 -mimplicit-it=[never | arm] modes. */
20204#undef ARM_VARIANT
20205#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
20206#undef THUMB_VARIANT
20207#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 20208
21d799b5
NC
20209 TUE("it", bf08, bf08, 1, (COND), it, t_it),
20210 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
20211 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
20212 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
20213 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
20214 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
20215 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
20216 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
20217 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
20218 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
20219 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
20220 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
20221 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
20222 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
20223 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 20224 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
20225 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
20226 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 20227
92e90b6e 20228 /* Thumb2 only instructions. */
c921be7d
NC
20229#undef ARM_VARIANT
20230#define ARM_VARIANT NULL
92e90b6e 20231
21d799b5
NC
20232 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20233 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20234 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
20235 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
20236 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
20237 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 20238
eea54501
MGD
20239 /* Hardware division instructions. */
20240#undef ARM_VARIANT
20241#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
20242#undef THUMB_VARIANT
20243#define THUMB_VARIANT & arm_ext_div
20244
eea54501
MGD
20245 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
20246 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 20247
7e806470 20248 /* ARM V6M/V7 instructions. */
c921be7d
NC
20249#undef ARM_VARIANT
20250#define ARM_VARIANT & arm_ext_barrier
20251#undef THUMB_VARIANT
20252#define THUMB_VARIANT & arm_ext_barrier
20253
ccb84d65
JB
20254 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
20255 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
20256 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 20257
62b3e311 20258 /* ARM V7 instructions. */
c921be7d
NC
20259#undef ARM_VARIANT
20260#define ARM_VARIANT & arm_ext_v7
20261#undef THUMB_VARIANT
20262#define THUMB_VARIANT & arm_ext_v7
20263
21d799b5
NC
20264 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
20265 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 20266
74db7efb 20267#undef ARM_VARIANT
60e5ef9f 20268#define ARM_VARIANT & arm_ext_mp
74db7efb 20269#undef THUMB_VARIANT
60e5ef9f
MGD
20270#define THUMB_VARIANT & arm_ext_mp
20271
20272 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
20273
53c4b28b
MGD
20274 /* AArchv8 instructions. */
20275#undef ARM_VARIANT
20276#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
20277
20278/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 20279#undef THUMB_VARIANT
4ed7ed8d 20280#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 20281
4ed7ed8d
TP
20282 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20283 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20284 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20285 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20286 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20287 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 20288 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
20289 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
20290 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20291 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
20292 stlex, t_stlex),
4b8c8c02
RE
20293 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
20294 stlex, t_stlex),
20295 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
20296 stlex, t_stlex),
4ed7ed8d
TP
20297#undef THUMB_VARIANT
20298#define THUMB_VARIANT & arm_ext_v8
53c4b28b 20299
4ed7ed8d 20300 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
20301 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
20302 ldrexd, t_ldrexd),
20303 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
20304 strexd, t_strexd),
f7dd2fb2
TC
20305
20306/* Defined in V8 but is in undefined encoding space for earlier
20307 architectures. However earlier architectures are required to treat
20308 this instuction as a semihosting trap as well. Hence while not explicitly
20309 defined as such, it is in fact correct to define the instruction for all
20310 architectures. */
20311#undef THUMB_VARIANT
20312#define THUMB_VARIANT & arm_ext_v1
20313#undef ARM_VARIANT
20314#define ARM_VARIANT & arm_ext_v1
20315 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
20316
8884b720 20317 /* ARMv8 T32 only. */
74db7efb 20318#undef ARM_VARIANT
b79f7053
MGD
20319#define ARM_VARIANT NULL
20320 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
20321 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
20322 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
20323
33399f07
MGD
20324 /* FP for ARMv8. */
20325#undef ARM_VARIANT
a715796b 20326#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 20327#undef THUMB_VARIANT
a715796b 20328#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
20329
20330 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
20331 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
20332 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
20333 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
20334 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20335 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
7e8e6784
MGD
20336 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
20337 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
20338 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
20339 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
30bdf752
MGD
20340 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
20341 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
20342 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
20343 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
20344 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
20345 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
20346 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 20347
91ff7894
MGD
20348 /* Crypto v1 extensions. */
20349#undef ARM_VARIANT
20350#define ARM_VARIANT & fpu_crypto_ext_armv8
20351#undef THUMB_VARIANT
20352#define THUMB_VARIANT & fpu_crypto_ext_armv8
20353
20354 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
20355 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
20356 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
20357 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
20358 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
20359 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
20360 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
20361 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
20362 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
20363 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
20364 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
20365 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
20366 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
20367 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 20368
dd5181d5 20369#undef ARM_VARIANT
74db7efb 20370#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
20371#undef THUMB_VARIANT
20372#define THUMB_VARIANT & crc_ext_armv8
20373 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
20374 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
20375 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
20376 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
20377 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
20378 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
20379
105bde57
MW
20380 /* ARMv8.2 RAS extension. */
20381#undef ARM_VARIANT
4d1464f2 20382#define ARM_VARIANT & arm_ext_ras
105bde57 20383#undef THUMB_VARIANT
4d1464f2 20384#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
20385 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
20386
49e8a725
SN
20387#undef ARM_VARIANT
20388#define ARM_VARIANT & arm_ext_v8_3
20389#undef THUMB_VARIANT
20390#define THUMB_VARIANT & arm_ext_v8_3
20391 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
c28eeff2
SN
20392 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
20393 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
49e8a725 20394
c604a79a
JW
20395#undef ARM_VARIANT
20396#define ARM_VARIANT & fpu_neon_ext_dotprod
20397#undef THUMB_VARIANT
20398#define THUMB_VARIANT & fpu_neon_ext_dotprod
20399 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
20400 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
20401
c921be7d
NC
20402#undef ARM_VARIANT
20403#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
20404#undef THUMB_VARIANT
20405#define THUMB_VARIANT NULL
c921be7d 20406
21d799b5
NC
20407 cCE("wfs", e200110, 1, (RR), rd),
20408 cCE("rfs", e300110, 1, (RR), rd),
20409 cCE("wfc", e400110, 1, (RR), rd),
20410 cCE("rfc", e500110, 1, (RR), rd),
20411
20412 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
20413 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
20414 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
20415 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
20416
20417 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
20418 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
20419 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
20420 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
20421
20422 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
20423 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
20424 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
20425 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
20426 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
20427 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
20428 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
20429 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
20430 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
20431 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
20432 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
20433 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
20434
20435 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
20436 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
20437 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
20438 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
20439 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
20440 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
20441 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
20442 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
20443 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
20444 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
20445 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
20446 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
20447
20448 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
20449 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
20450 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
20451 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
20452 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
20453 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
20454 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
20455 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
20456 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
20457 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
20458 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
20459 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
20460
20461 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
20462 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
20463 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
20464 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
20465 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
20466 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
20467 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
20468 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
20469 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
20470 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
20471 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
20472 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
20473
20474 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
20475 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
20476 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
20477 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
20478 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
20479 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
20480 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
20481 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
20482 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
20483 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
20484 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
20485 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
20486
20487 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
20488 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
20489 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
20490 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
20491 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
20492 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
20493 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
20494 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
20495 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
20496 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
20497 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
20498 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
20499
20500 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
20501 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
20502 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
20503 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
20504 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
20505 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
20506 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
20507 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
20508 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
20509 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
20510 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
20511 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
20512
20513 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
20514 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
20515 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
20516 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
20517 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
20518 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
20519 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
20520 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
20521 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
20522 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
20523 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
20524 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
20525
20526 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
20527 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
20528 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
20529 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
20530 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
20531 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
20532 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
20533 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
20534 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
20535 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
20536 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
20537 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
20538
20539 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
20540 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
20541 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
20542 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
20543 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
20544 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
20545 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
20546 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
20547 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
20548 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
20549 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
20550 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
20551
20552 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
20553 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
20554 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
20555 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
20556 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
20557 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
20558 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
20559 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
20560 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
20561 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
20562 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
20563 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
20564
20565 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
20566 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
20567 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
20568 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
20569 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
20570 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
20571 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
20572 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
20573 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
20574 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
20575 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
20576 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
20577
20578 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
20579 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
20580 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
20581 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
20582 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
20583 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
20584 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
20585 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
20586 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
20587 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
20588 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
20589 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
20590
20591 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
20592 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
20593 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
20594 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
20595 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
20596 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
20597 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
20598 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
20599 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
20600 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
20601 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
20602 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
20603
20604 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
20605 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
20606 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
20607 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
20608 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
20609 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
20610 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
20611 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
20612 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
20613 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
20614 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
20615 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
20616
20617 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
20618 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
20619 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
20620 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
20621 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
20622 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
20623 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
20624 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
20625 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
20626 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
20627 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
20628 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
20629
20630 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
20631 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
20632 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
20633 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
20634 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
20635 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20636 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20637 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20638 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
20639 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
20640 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
20641 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
20642
20643 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
20644 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
20645 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
20646 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
20647 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
20648 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20649 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20650 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20651 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
20652 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
20653 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
20654 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
20655
20656 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
20657 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
20658 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
20659 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
20660 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
20661 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20662 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20663 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20664 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
20665 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
20666 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
20667 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
20668
20669 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
20670 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
20671 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
20672 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
20673 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
20674 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20675 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20676 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20677 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
20678 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
20679 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
20680 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
20681
20682 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
20683 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
20684 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
20685 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
20686 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
20687 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20688 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20689 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20690 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
20691 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
20692 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
20693 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
20694
20695 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
20696 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
20697 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
20698 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20699 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20700 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20701 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20702 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20703 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20704 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20705 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20706 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20707
20708 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20709 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20710 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20711 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20712 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20713 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20714 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20715 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20716 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20717 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20718 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20719 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20720
20721 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20722 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20723 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20724 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20725 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20726 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20727 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20728 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20729 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20730 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20731 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20732 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20733
20734 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20735 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20736 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20737 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20738 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20739 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20740 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20741 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20742 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20743 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20744 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20745 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20746
20747 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20748 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20749 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20750 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20751 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20752 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20753 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20754 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20755 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20756 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20757 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20758 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20759
20760 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20761 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20762 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20763 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20764 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20765 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20766 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20767 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20768 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20769 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20770 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20771 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20772
20773 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20774 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20775 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20776 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20777 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20778 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20779 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20780 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20781 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20782 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20783 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20784 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20785
20786 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20787 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20788 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20789 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20790 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20791 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20792 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20793 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20794 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20795 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20796 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20797 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20798
20799 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20800 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20801 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20802 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20803
20804 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20805 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20806 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20807 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20808 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20809 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20810 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20811 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20812 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20813 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20814 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20815 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 20816
c19d1205
ZW
20817 /* The implementation of the FIX instruction is broken on some
20818 assemblers, in that it accepts a precision specifier as well as a
20819 rounding specifier, despite the fact that this is meaningless.
20820 To be more compatible, we accept it as well, though of course it
20821 does not set any bits. */
21d799b5
NC
20822 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20823 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20824 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20825 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20826 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20827 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20828 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20829 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20830 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20831 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20832 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20833 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20834 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 20835
c19d1205 20836 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
20837#undef ARM_VARIANT
20838#define ARM_VARIANT & fpu_fpa_ext_v2
20839
21d799b5
NC
20840 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20841 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20842 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20843 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20844 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20845 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 20846
c921be7d
NC
20847#undef ARM_VARIANT
20848#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20849
c19d1205 20850 /* Moves and type conversions. */
21d799b5
NC
20851 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20852 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20853 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20854 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
20855 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20856 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
20857 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20858 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20859 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20860 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20861 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20862 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20863 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20864 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
20865
20866 /* Memory operations. */
21d799b5
NC
20867 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20868 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
20869 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20870 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20871 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20872 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20873 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20874 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20875 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20876 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20877 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20878 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20879 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20880 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20881 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20882 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20883 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20884 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 20885
c19d1205 20886 /* Monadic operations. */
21d799b5
NC
20887 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20888 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20889 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
20890
20891 /* Dyadic operations. */
21d799b5
NC
20892 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20893 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20894 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20895 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20896 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20897 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20898 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20899 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20900 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 20901
c19d1205 20902 /* Comparisons. */
21d799b5
NC
20903 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20904 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20905 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20906 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 20907
62f3b8c8
PB
20908 /* Double precision load/store are still present on single precision
20909 implementations. */
20910 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20911 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
20912 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20913 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20914 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20915 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20916 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20917 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20918 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20919 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 20920
c921be7d
NC
20921#undef ARM_VARIANT
20922#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20923
c19d1205 20924 /* Moves and type conversions. */
21d799b5
NC
20925 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20926 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20927 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20928 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20929 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20930 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20931 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20932 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20933 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
20934 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20935 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20936 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20937 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 20938
c19d1205 20939 /* Monadic operations. */
21d799b5
NC
20940 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20941 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20942 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
20943
20944 /* Dyadic operations. */
21d799b5
NC
20945 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20946 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20947 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20948 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20949 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20950 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20951 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20952 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20953 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 20954
c19d1205 20955 /* Comparisons. */
21d799b5
NC
20956 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20957 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
20958 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20959 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 20960
c921be7d
NC
20961#undef ARM_VARIANT
20962#define ARM_VARIANT & fpu_vfp_ext_v2
20963
21d799b5
NC
20964 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
20965 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
20966 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
20967 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 20968
037e8744
JB
20969/* Instructions which may belong to either the Neon or VFP instruction sets.
20970 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
20971#undef ARM_VARIANT
20972#define ARM_VARIANT & fpu_vfp_ext_v1xd
20973#undef THUMB_VARIANT
20974#define THUMB_VARIANT & fpu_vfp_ext_v1xd
20975
037e8744
JB
20976 /* These mnemonics are unique to VFP. */
20977 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
20978 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
20979 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20980 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20981 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
aacf0b33
KT
20982 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20983 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
037e8744
JB
20984 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
20985 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
20986 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
20987
20988 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
20989 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
20990 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20991 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 20992
21d799b5
NC
20993 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20994 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
20995
20996 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20997 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20998
55881a11
MGD
20999 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21000 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21001 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21002 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21003 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21004 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
21005 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
21006 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 21007
5f1af56b 21008 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 21009 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
c70a8987
MGD
21010 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
21011 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
f31fef98 21012
037e8744
JB
21013
21014 /* NOTE: All VMOV encoding is special-cased! */
21015 NCE(vmov, 0, 1, (VMOV), neon_mov),
21016 NCE(vmovq, 0, 1, (VMOV), neon_mov),
21017
9db2f6b4
RL
21018#undef ARM_VARIANT
21019#define ARM_VARIANT & arm_ext_fp16
21020#undef THUMB_VARIANT
21021#define THUMB_VARIANT & arm_ext_fp16
21022 /* New instructions added from v8.2, allowing the extraction and insertion of
21023 the upper 16 bits of a 32-bit vector register. */
21024 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
21025 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
21026
dec41383
JW
21027 /* New backported fma/fms instructions optional in v8.2. */
21028 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
21029 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
21030
c921be7d
NC
21031#undef THUMB_VARIANT
21032#define THUMB_VARIANT & fpu_neon_ext_v1
21033#undef ARM_VARIANT
21034#define ARM_VARIANT & fpu_neon_ext_v1
21035
5287ad62
JB
21036 /* Data processing with three registers of the same length. */
21037 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
21038 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
21039 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
21040 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
21041 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
21042 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
21043 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
21044 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
21045 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
21046 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
21047 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
21048 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
21049 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
21050 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
21051 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
21052 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
21053 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
21054 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
21055 /* If not immediate, fall back to neon_dyadic_i64_su.
21056 shl_imm should accept I8 I16 I32 I64,
21057 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
21058 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
21059 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
21060 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
21061 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 21062 /* Logic ops, types optional & ignored. */
4316f0d2
DG
21063 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21064 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21065 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21066 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21067 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21068 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21069 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21070 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21071 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
21072 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
21073 /* Bitfield ops, untyped. */
21074 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21075 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
21076 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21077 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
21078 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21079 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 21080 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5
NC
21081 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21082 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21083 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21084 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21085 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21086 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
21087 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
21088 back to neon_dyadic_if_su. */
21d799b5
NC
21089 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
21090 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
21091 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
21092 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
21093 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
21094 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
21095 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
21096 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 21097 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
21098 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
21099 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 21100 /* As above, D registers only. */
21d799b5
NC
21101 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
21102 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 21103 /* Int and float variants, signedness unimportant. */
21d799b5
NC
21104 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
21105 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
21106 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 21107 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
21108 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
21109 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
21110 /* vtst takes sizes 8, 16, 32. */
21111 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
21112 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
21113 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 21114 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 21115 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
21116 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
21117 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21118 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
21119 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
21120 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
21121 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
21122 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
21123 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
21124 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
21125 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
21126 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
21127 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
21128 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
21129 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
21130 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
21131 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 21132 /* ARM v8.1 extension. */
643afb90
MW
21133 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
21134 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
21135 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
21136 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
21137
21138 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 21139 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
21140 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
21141
21142 /* Data processing with two registers and a shift amount. */
21143 /* Right shifts, and variants with rounding.
21144 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
21145 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21146 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21147 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21148 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21149 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21150 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21151 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21152 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21153 /* Shift and insert. Sizes accepted 8 16 32 64. */
21154 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
21155 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
21156 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
21157 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
21158 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
21159 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
21160 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
21161 /* Right shift immediate, saturating & narrowing, with rounding variants.
21162 Types accepted S16 S32 S64 U16 U32 U64. */
21163 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21164 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21165 /* As above, unsigned. Types accepted S16 S32 S64. */
21166 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21167 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21168 /* Right shift narrowing. Types accepted I16 I32 I64. */
21169 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21170 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21171 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 21172 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 21173 /* CVT with optional immediate for fixed-point variant. */
21d799b5 21174 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 21175
4316f0d2
DG
21176 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
21177 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
21178
21179 /* Data processing, three registers of different lengths. */
21180 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
21181 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
21182 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
21183 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
21184 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
21185 /* If not scalar, fall back to neon_dyadic_long.
21186 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
21187 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
21188 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
21189 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
21190 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21191 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21192 /* Dyadic, narrowing insns. Types I16 I32 I64. */
21193 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21194 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21195 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21196 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21197 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
21198 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21199 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21200 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
21201 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
21202 S16 S32 U16 U32. */
21d799b5 21203 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
21204
21205 /* Extract. Size 8. */
3b8d421e
PB
21206 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
21207 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
21208
21209 /* Two registers, miscellaneous. */
21210 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
21211 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
21212 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
21213 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
21214 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
21215 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
21216 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
21217 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
21218 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
21219 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
21220 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
21221 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
21222 /* VMOVN. Types I16 I32 I64. */
21d799b5 21223 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 21224 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 21225 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 21226 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 21227 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
21228 /* VZIP / VUZP. Sizes 8 16 32. */
21229 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
21230 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
21231 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
21232 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
21233 /* VQABS / VQNEG. Types S8 S16 S32. */
21234 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21235 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
21236 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21237 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
21238 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
21239 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
21240 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
21241 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
21242 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 21243 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
21244 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
21245 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
21246 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
21247 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
21248 /* VCLS. Types S8 S16 S32. */
21249 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
21250 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
21251 /* VCLZ. Types I8 I16 I32. */
21252 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
21253 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
21254 /* VCNT. Size 8. */
21255 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
21256 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
21257 /* Two address, untyped. */
21258 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
21259 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
21260 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
21261 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
21262 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
21263
21264 /* Table lookup. Size 8. */
21265 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21266 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21267
c921be7d
NC
21268#undef THUMB_VARIANT
21269#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
21270#undef ARM_VARIANT
21271#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
21272
5287ad62 21273 /* Neon element/structure load/store. */
21d799b5
NC
21274 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21275 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21276 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21277 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21278 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21279 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21280 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21281 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 21282
c921be7d 21283#undef THUMB_VARIANT
74db7efb
NC
21284#define THUMB_VARIANT & fpu_vfp_ext_v3xd
21285#undef ARM_VARIANT
21286#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
21287 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
21288 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21289 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21290 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21291 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21292 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21293 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21294 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21295 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21296
74db7efb 21297#undef THUMB_VARIANT
c921be7d
NC
21298#define THUMB_VARIANT & fpu_vfp_ext_v3
21299#undef ARM_VARIANT
21300#define ARM_VARIANT & fpu_vfp_ext_v3
21301
21d799b5 21302 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 21303 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21304 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21305 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21306 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21307 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21308 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21309 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21310 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 21311
74db7efb
NC
21312#undef ARM_VARIANT
21313#define ARM_VARIANT & fpu_vfp_ext_fma
21314#undef THUMB_VARIANT
21315#define THUMB_VARIANT & fpu_vfp_ext_fma
62f3b8c8
PB
21316 /* Mnemonics shared by Neon and VFP. These are included in the
21317 VFP FMA variant; NEON and VFP FMA always includes the NEON
21318 FMA instructions. */
21319 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21320 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21321 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
21322 the v form should always be used. */
21323 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21324 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21325 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21326 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21327 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21328 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21329
5287ad62 21330#undef THUMB_VARIANT
c921be7d
NC
21331#undef ARM_VARIANT
21332#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
21333
21d799b5
NC
21334 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21335 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21336 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21337 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21338 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21339 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21340 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
21341 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 21342
c921be7d
NC
21343#undef ARM_VARIANT
21344#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
21345
21d799b5
NC
21346 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
21347 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
21348 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
21349 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
21350 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
21351 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
21352 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
21353 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
21354 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
21355 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21356 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21357 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21358 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21359 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21360 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
21361 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21362 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21363 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21364 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
21365 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
21366 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21367 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21368 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21369 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21370 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21371 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
21372 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
21373 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
21374 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
21375 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
21376 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
21377 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
21378 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
21379 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
21380 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
21381 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
21382 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
21383 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21384 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21385 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21386 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21387 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21388 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21389 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21390 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21391 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21392 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
21393 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21394 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21395 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21396 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21397 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21398 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21399 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21400 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21401 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21402 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21403 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21404 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21405 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
21406 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21407 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21408 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21409 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21410 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21411 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21412 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21413 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21414 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21415 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21416 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21417 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21418 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21419 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21420 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21421 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21422 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21423 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21424 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21425 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21426 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21427 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21428 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21429 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21430 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21431 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21432 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21433 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21434 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
21435 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21436 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21437 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21438 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21439 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
21440 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21441 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21442 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21443 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21444 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21445 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21446 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21447 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21448 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21449 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21450 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21451 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21452 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21453 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21454 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21455 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21456 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
21457 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21458 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21459 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21460 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21461 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21462 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21463 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21464 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21465 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21466 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21467 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21468 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21469 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21470 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21471 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21472 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21473 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21474 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21475 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21476 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21477 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21478 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21479 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21480 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21481 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21482 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21483 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21484 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21485 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21486 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21487 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21488 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
21489 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
21490 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
21491 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
21492 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
21493 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
21494 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21495 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21496 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21497 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
21498 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
21499 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
21500 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
21501 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
21502 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
21503 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21504 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21505 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21506 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21507 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 21508
c921be7d
NC
21509#undef ARM_VARIANT
21510#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
21511
21d799b5
NC
21512 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
21513 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
21514 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
21515 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
21516 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
21517 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
21518 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21519 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21520 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21521 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21522 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21523 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21524 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21525 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21526 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21527 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21528 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21529 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21530 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21531 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21532 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
21533 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21534 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21535 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21536 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21537 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21538 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21539 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21540 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21541 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21542 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21543 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21544 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21545 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21546 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21547 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21548 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21549 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21550 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21551 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21552 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21553 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21554 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21555 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21556 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21557 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21558 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21559 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21560 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21561 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21562 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21563 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21564 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21565 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21566 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21567 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21568 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 21569
c921be7d
NC
21570#undef ARM_VARIANT
21571#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
21572
21d799b5
NC
21573 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21574 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21575 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21576 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21577 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21578 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21579 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21580 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21581 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
21582 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
21583 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
21584 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
21585 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
21586 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
21587 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
21588 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
21589 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
21590 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
21591 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
21592 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
21593 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
21594 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
21595 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
21596 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
21597 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
21598 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
21599 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
21600 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
21601 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
21602 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
21603 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
21604 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
21605 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
21606 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
21607 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
21608 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
21609 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
21610 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
21611 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
21612 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
21613 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
21614 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
21615 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
21616 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
21617 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
21618 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
21619 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
21620 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
21621 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
21622 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
21623 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
21624 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
21625 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
21626 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
21627 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
21628 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
21629 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
21630 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
21631 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
21632 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
21633 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
21634 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
21635 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
21636 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
21637 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21638 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21639 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21640 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21641 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21642 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21643 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21644 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
21645 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21646 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
21647 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21648 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 21649
7fadb25d
SD
21650 /* ARMv8.5-A instructions. */
21651#undef ARM_VARIANT
21652#define ARM_VARIANT & arm_ext_sb
21653#undef THUMB_VARIANT
21654#define THUMB_VARIANT & arm_ext_sb
21655 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
21656
dad0c3bf
SD
21657#undef ARM_VARIANT
21658#define ARM_VARIANT & arm_ext_predres
21659#undef THUMB_VARIANT
21660#define THUMB_VARIANT & arm_ext_predres
21661 CE("cfprctx", e070f93, 1, (RRnpc), rd),
21662 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
21663 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
21664
16a1fa25 21665 /* ARMv8-M instructions. */
4ed7ed8d
TP
21666#undef ARM_VARIANT
21667#define ARM_VARIANT NULL
21668#undef THUMB_VARIANT
21669#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
21670 ToU("sg", e97fe97f, 0, (), noargs),
21671 ToC("blxns", 4784, 1, (RRnpc), t_blx),
21672 ToC("bxns", 4704, 1, (RRnpc), t_bx),
21673 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
21674 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
21675 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
21676 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
21677
21678 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
21679 instructions behave as nop if no VFP is present. */
21680#undef THUMB_VARIANT
21681#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
21682 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
21683 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
21684
21685 /* Armv8.1-M Mainline instructions. */
21686#undef THUMB_VARIANT
21687#define THUMB_VARIANT & arm_ext_v8_1m_main
21688 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f1c7f421
AV
21689 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
21690 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
c19d1205
ZW
21691};
21692#undef ARM_VARIANT
21693#undef THUMB_VARIANT
21694#undef TCE
c19d1205
ZW
21695#undef TUE
21696#undef TUF
21697#undef TCC
8f06b2d8 21698#undef cCE
e3cb604e
PB
21699#undef cCL
21700#undef C3E
4389b29a 21701#undef C3
c19d1205
ZW
21702#undef CE
21703#undef CM
4389b29a 21704#undef CL
c19d1205
ZW
21705#undef UE
21706#undef UF
21707#undef UT
5287ad62
JB
21708#undef NUF
21709#undef nUF
21710#undef NCE
21711#undef nCE
c19d1205
ZW
21712#undef OPS0
21713#undef OPS1
21714#undef OPS2
21715#undef OPS3
21716#undef OPS4
21717#undef OPS5
21718#undef OPS6
21719#undef do_0
4389b29a
AV
21720#undef ToC
21721#undef toC
21722#undef ToU
c19d1205
ZW
21723\f
21724/* MD interface: bits in the object file. */
bfae80f2 21725
c19d1205
ZW
21726/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
21727 for use in the a.out file, and stores them in the array pointed to by buf.
21728 This knows about the endian-ness of the target machine and does
21729 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
21730 2 (short) and 4 (long) Floating numbers are put out as a series of
21731 LITTLENUMS (shorts, here at least). */
b99bd4ef 21732
c19d1205
ZW
21733void
21734md_number_to_chars (char * buf, valueT val, int n)
21735{
21736 if (target_big_endian)
21737 number_to_chars_bigendian (buf, val, n);
21738 else
21739 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
21740}
21741
c19d1205
ZW
21742static valueT
21743md_chars_to_number (char * buf, int n)
bfae80f2 21744{
c19d1205
ZW
21745 valueT result = 0;
21746 unsigned char * where = (unsigned char *) buf;
bfae80f2 21747
c19d1205 21748 if (target_big_endian)
b99bd4ef 21749 {
c19d1205
ZW
21750 while (n--)
21751 {
21752 result <<= 8;
21753 result |= (*where++ & 255);
21754 }
b99bd4ef 21755 }
c19d1205 21756 else
b99bd4ef 21757 {
c19d1205
ZW
21758 while (n--)
21759 {
21760 result <<= 8;
21761 result |= (where[n] & 255);
21762 }
bfae80f2 21763 }
b99bd4ef 21764
c19d1205 21765 return result;
bfae80f2 21766}
b99bd4ef 21767
c19d1205 21768/* MD interface: Sections. */
b99bd4ef 21769
fa94de6b
RM
21770/* Calculate the maximum variable size (i.e., excluding fr_fix)
21771 that an rs_machine_dependent frag may reach. */
21772
21773unsigned int
21774arm_frag_max_var (fragS *fragp)
21775{
21776 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21777 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21778
21779 Note that we generate relaxable instructions even for cases that don't
21780 really need it, like an immediate that's a trivial constant. So we're
21781 overestimating the instruction size for some of those cases. Rather
21782 than putting more intelligence here, it would probably be better to
21783 avoid generating a relaxation frag in the first place when it can be
21784 determined up front that a short instruction will suffice. */
21785
21786 gas_assert (fragp->fr_type == rs_machine_dependent);
21787 return INSN_SIZE;
21788}
21789
0110f2b8
PB
21790/* Estimate the size of a frag before relaxing. Assume everything fits in
21791 2 bytes. */
21792
c19d1205 21793int
0110f2b8 21794md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
21795 segT segtype ATTRIBUTE_UNUSED)
21796{
0110f2b8
PB
21797 fragp->fr_var = 2;
21798 return 2;
21799}
21800
21801/* Convert a machine dependent frag. */
21802
21803void
21804md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21805{
21806 unsigned long insn;
21807 unsigned long old_op;
21808 char *buf;
21809 expressionS exp;
21810 fixS *fixp;
21811 int reloc_type;
21812 int pc_rel;
21813 int opcode;
21814
21815 buf = fragp->fr_literal + fragp->fr_fix;
21816
21817 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
21818 if (fragp->fr_symbol)
21819 {
0110f2b8
PB
21820 exp.X_op = O_symbol;
21821 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
21822 }
21823 else
21824 {
0110f2b8 21825 exp.X_op = O_constant;
5f4273c7 21826 }
0110f2b8
PB
21827 exp.X_add_number = fragp->fr_offset;
21828 opcode = fragp->fr_subtype;
21829 switch (opcode)
21830 {
21831 case T_MNEM_ldr_pc:
21832 case T_MNEM_ldr_pc2:
21833 case T_MNEM_ldr_sp:
21834 case T_MNEM_str_sp:
21835 case T_MNEM_ldr:
21836 case T_MNEM_ldrb:
21837 case T_MNEM_ldrh:
21838 case T_MNEM_str:
21839 case T_MNEM_strb:
21840 case T_MNEM_strh:
21841 if (fragp->fr_var == 4)
21842 {
5f4273c7 21843 insn = THUMB_OP32 (opcode);
0110f2b8
PB
21844 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21845 {
21846 insn |= (old_op & 0x700) << 4;
21847 }
21848 else
21849 {
21850 insn |= (old_op & 7) << 12;
21851 insn |= (old_op & 0x38) << 13;
21852 }
21853 insn |= 0x00000c00;
21854 put_thumb32_insn (buf, insn);
21855 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21856 }
21857 else
21858 {
21859 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21860 }
21861 pc_rel = (opcode == T_MNEM_ldr_pc2);
21862 break;
21863 case T_MNEM_adr:
21864 if (fragp->fr_var == 4)
21865 {
21866 insn = THUMB_OP32 (opcode);
21867 insn |= (old_op & 0xf0) << 4;
21868 put_thumb32_insn (buf, insn);
21869 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21870 }
21871 else
21872 {
21873 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21874 exp.X_add_number -= 4;
21875 }
21876 pc_rel = 1;
21877 break;
21878 case T_MNEM_mov:
21879 case T_MNEM_movs:
21880 case T_MNEM_cmp:
21881 case T_MNEM_cmn:
21882 if (fragp->fr_var == 4)
21883 {
21884 int r0off = (opcode == T_MNEM_mov
21885 || opcode == T_MNEM_movs) ? 0 : 8;
21886 insn = THUMB_OP32 (opcode);
21887 insn = (insn & 0xe1ffffff) | 0x10000000;
21888 insn |= (old_op & 0x700) << r0off;
21889 put_thumb32_insn (buf, insn);
21890 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21891 }
21892 else
21893 {
21894 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21895 }
21896 pc_rel = 0;
21897 break;
21898 case T_MNEM_b:
21899 if (fragp->fr_var == 4)
21900 {
21901 insn = THUMB_OP32(opcode);
21902 put_thumb32_insn (buf, insn);
21903 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21904 }
21905 else
21906 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21907 pc_rel = 1;
21908 break;
21909 case T_MNEM_bcond:
21910 if (fragp->fr_var == 4)
21911 {
21912 insn = THUMB_OP32(opcode);
21913 insn |= (old_op & 0xf00) << 14;
21914 put_thumb32_insn (buf, insn);
21915 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21916 }
21917 else
21918 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21919 pc_rel = 1;
21920 break;
21921 case T_MNEM_add_sp:
21922 case T_MNEM_add_pc:
21923 case T_MNEM_inc_sp:
21924 case T_MNEM_dec_sp:
21925 if (fragp->fr_var == 4)
21926 {
21927 /* ??? Choose between add and addw. */
21928 insn = THUMB_OP32 (opcode);
21929 insn |= (old_op & 0xf0) << 4;
21930 put_thumb32_insn (buf, insn);
16805f35
PB
21931 if (opcode == T_MNEM_add_pc)
21932 reloc_type = BFD_RELOC_ARM_T32_IMM12;
21933 else
21934 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
21935 }
21936 else
21937 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21938 pc_rel = 0;
21939 break;
21940
21941 case T_MNEM_addi:
21942 case T_MNEM_addis:
21943 case T_MNEM_subi:
21944 case T_MNEM_subis:
21945 if (fragp->fr_var == 4)
21946 {
21947 insn = THUMB_OP32 (opcode);
21948 insn |= (old_op & 0xf0) << 4;
21949 insn |= (old_op & 0xf) << 16;
21950 put_thumb32_insn (buf, insn);
16805f35
PB
21951 if (insn & (1 << 20))
21952 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21953 else
21954 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
21955 }
21956 else
21957 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21958 pc_rel = 0;
21959 break;
21960 default:
5f4273c7 21961 abort ();
0110f2b8
PB
21962 }
21963 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 21964 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
21965 fixp->fx_file = fragp->fr_file;
21966 fixp->fx_line = fragp->fr_line;
21967 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
21968
21969 /* Set whether we use thumb-2 ISA based on final relaxation results. */
21970 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
21971 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
21972 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
21973}
21974
21975/* Return the size of a relaxable immediate operand instruction.
21976 SHIFT and SIZE specify the form of the allowable immediate. */
21977static int
21978relax_immediate (fragS *fragp, int size, int shift)
21979{
21980 offsetT offset;
21981 offsetT mask;
21982 offsetT low;
21983
21984 /* ??? Should be able to do better than this. */
21985 if (fragp->fr_symbol)
21986 return 4;
21987
21988 low = (1 << shift) - 1;
21989 mask = (1 << (shift + size)) - (1 << shift);
21990 offset = fragp->fr_offset;
21991 /* Force misaligned offsets to 32-bit variant. */
21992 if (offset & low)
5e77afaa 21993 return 4;
0110f2b8
PB
21994 if (offset & ~mask)
21995 return 4;
21996 return 2;
21997}
21998
5e77afaa
PB
21999/* Get the address of a symbol during relaxation. */
22000static addressT
5f4273c7 22001relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
22002{
22003 fragS *sym_frag;
22004 addressT addr;
22005 symbolS *sym;
22006
22007 sym = fragp->fr_symbol;
22008 sym_frag = symbol_get_frag (sym);
22009 know (S_GET_SEGMENT (sym) != absolute_section
22010 || sym_frag == &zero_address_frag);
22011 addr = S_GET_VALUE (sym) + fragp->fr_offset;
22012
22013 /* If frag has yet to be reached on this pass, assume it will
22014 move by STRETCH just as we did. If this is not so, it will
22015 be because some frag between grows, and that will force
22016 another pass. */
22017
22018 if (stretch != 0
22019 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
22020 {
22021 fragS *f;
22022
22023 /* Adjust stretch for any alignment frag. Note that if have
22024 been expanding the earlier code, the symbol may be
22025 defined in what appears to be an earlier frag. FIXME:
22026 This doesn't handle the fr_subtype field, which specifies
22027 a maximum number of bytes to skip when doing an
22028 alignment. */
22029 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
22030 {
22031 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
22032 {
22033 if (stretch < 0)
22034 stretch = - ((- stretch)
22035 & ~ ((1 << (int) f->fr_offset) - 1));
22036 else
22037 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
22038 if (stretch == 0)
22039 break;
22040 }
22041 }
22042 if (f != NULL)
22043 addr += stretch;
22044 }
5e77afaa
PB
22045
22046 return addr;
22047}
22048
0110f2b8
PB
22049/* Return the size of a relaxable adr pseudo-instruction or PC-relative
22050 load. */
22051static int
5e77afaa 22052relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
22053{
22054 addressT addr;
22055 offsetT val;
22056
22057 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
22058 if (fragp->fr_symbol == NULL
22059 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
22060 || sec != S_GET_SEGMENT (fragp->fr_symbol)
22061 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
22062 return 4;
22063
5f4273c7 22064 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
22065 addr = fragp->fr_address + fragp->fr_fix;
22066 addr = (addr + 4) & ~3;
5e77afaa 22067 /* Force misaligned targets to 32-bit variant. */
0110f2b8 22068 if (val & 3)
5e77afaa 22069 return 4;
0110f2b8
PB
22070 val -= addr;
22071 if (val < 0 || val > 1020)
22072 return 4;
22073 return 2;
22074}
22075
22076/* Return the size of a relaxable add/sub immediate instruction. */
22077static int
22078relax_addsub (fragS *fragp, asection *sec)
22079{
22080 char *buf;
22081 int op;
22082
22083 buf = fragp->fr_literal + fragp->fr_fix;
22084 op = bfd_get_16(sec->owner, buf);
22085 if ((op & 0xf) == ((op >> 4) & 0xf))
22086 return relax_immediate (fragp, 8, 0);
22087 else
22088 return relax_immediate (fragp, 3, 0);
22089}
22090
e83a675f
RE
22091/* Return TRUE iff the definition of symbol S could be pre-empted
22092 (overridden) at link or load time. */
22093static bfd_boolean
22094symbol_preemptible (symbolS *s)
22095{
22096 /* Weak symbols can always be pre-empted. */
22097 if (S_IS_WEAK (s))
22098 return TRUE;
22099
22100 /* Non-global symbols cannot be pre-empted. */
22101 if (! S_IS_EXTERNAL (s))
22102 return FALSE;
22103
22104#ifdef OBJ_ELF
22105 /* In ELF, a global symbol can be marked protected, or private. In that
22106 case it can't be pre-empted (other definitions in the same link unit
22107 would violate the ODR). */
22108 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
22109 return FALSE;
22110#endif
22111
22112 /* Other global symbols might be pre-empted. */
22113 return TRUE;
22114}
0110f2b8
PB
22115
22116/* Return the size of a relaxable branch instruction. BITS is the
22117 size of the offset field in the narrow instruction. */
22118
22119static int
5e77afaa 22120relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
22121{
22122 addressT addr;
22123 offsetT val;
22124 offsetT limit;
22125
22126 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 22127 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
22128 || sec != S_GET_SEGMENT (fragp->fr_symbol)
22129 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
22130 return 4;
22131
267bf995 22132#ifdef OBJ_ELF
e83a675f 22133 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
22134 if (S_IS_DEFINED (fragp->fr_symbol)
22135 && ARM_IS_FUNC (fragp->fr_symbol))
22136 return 4;
e83a675f 22137#endif
0d9b4b55 22138
e83a675f 22139 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 22140 return 4;
267bf995 22141
5f4273c7 22142 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
22143 addr = fragp->fr_address + fragp->fr_fix + 4;
22144 val -= addr;
22145
22146 /* Offset is a signed value *2 */
22147 limit = 1 << bits;
22148 if (val >= limit || val < -limit)
22149 return 4;
22150 return 2;
22151}
22152
22153
22154/* Relax a machine dependent frag. This returns the amount by which
22155 the current size of the frag should change. */
22156
22157int
5e77afaa 22158arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
22159{
22160 int oldsize;
22161 int newsize;
22162
22163 oldsize = fragp->fr_var;
22164 switch (fragp->fr_subtype)
22165 {
22166 case T_MNEM_ldr_pc2:
5f4273c7 22167 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
22168 break;
22169 case T_MNEM_ldr_pc:
22170 case T_MNEM_ldr_sp:
22171 case T_MNEM_str_sp:
5f4273c7 22172 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
22173 break;
22174 case T_MNEM_ldr:
22175 case T_MNEM_str:
5f4273c7 22176 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
22177 break;
22178 case T_MNEM_ldrh:
22179 case T_MNEM_strh:
5f4273c7 22180 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
22181 break;
22182 case T_MNEM_ldrb:
22183 case T_MNEM_strb:
5f4273c7 22184 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
22185 break;
22186 case T_MNEM_adr:
5f4273c7 22187 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
22188 break;
22189 case T_MNEM_mov:
22190 case T_MNEM_movs:
22191 case T_MNEM_cmp:
22192 case T_MNEM_cmn:
5f4273c7 22193 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
22194 break;
22195 case T_MNEM_b:
5f4273c7 22196 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
22197 break;
22198 case T_MNEM_bcond:
5f4273c7 22199 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
22200 break;
22201 case T_MNEM_add_sp:
22202 case T_MNEM_add_pc:
22203 newsize = relax_immediate (fragp, 8, 2);
22204 break;
22205 case T_MNEM_inc_sp:
22206 case T_MNEM_dec_sp:
22207 newsize = relax_immediate (fragp, 7, 2);
22208 break;
22209 case T_MNEM_addi:
22210 case T_MNEM_addis:
22211 case T_MNEM_subi:
22212 case T_MNEM_subis:
22213 newsize = relax_addsub (fragp, sec);
22214 break;
22215 default:
5f4273c7 22216 abort ();
0110f2b8 22217 }
5e77afaa
PB
22218
22219 fragp->fr_var = newsize;
22220 /* Freeze wide instructions that are at or before the same location as
22221 in the previous pass. This avoids infinite loops.
5f4273c7
NC
22222 Don't freeze them unconditionally because targets may be artificially
22223 misaligned by the expansion of preceding frags. */
5e77afaa 22224 if (stretch <= 0 && newsize > 2)
0110f2b8 22225 {
0110f2b8 22226 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 22227 frag_wane (fragp);
0110f2b8 22228 }
5e77afaa 22229
0110f2b8 22230 return newsize - oldsize;
c19d1205 22231}
b99bd4ef 22232
c19d1205 22233/* Round up a section size to the appropriate boundary. */
b99bd4ef 22234
c19d1205
ZW
22235valueT
22236md_section_align (segT segment ATTRIBUTE_UNUSED,
22237 valueT size)
22238{
6844c0cc 22239 return size;
bfae80f2 22240}
b99bd4ef 22241
c19d1205
ZW
22242/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
22243 of an rs_align_code fragment. */
22244
22245void
22246arm_handle_align (fragS * fragP)
bfae80f2 22247{
d9235011 22248 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
22249 {
22250 { /* ARMv1 */
22251 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
22252 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
22253 },
22254 { /* ARMv6k */
22255 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
22256 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
22257 },
22258 };
d9235011 22259 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
22260 {
22261 { /* Thumb-1 */
22262 {0xc0, 0x46}, /* LE */
22263 {0x46, 0xc0}, /* BE */
22264 },
22265 { /* Thumb-2 */
22266 {0x00, 0xbf}, /* LE */
22267 {0xbf, 0x00} /* BE */
22268 }
22269 };
d9235011 22270 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
22271 { /* Wide Thumb-2 */
22272 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
22273 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
22274 };
c921be7d 22275
e7495e45 22276 unsigned bytes, fix, noop_size;
c19d1205 22277 char * p;
d9235011
TS
22278 const unsigned char * noop;
22279 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
22280#ifdef OBJ_ELF
22281 enum mstate state;
22282#endif
bfae80f2 22283
c19d1205 22284 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
22285 return;
22286
c19d1205
ZW
22287 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
22288 p = fragP->fr_literal + fragP->fr_fix;
22289 fix = 0;
bfae80f2 22290
c19d1205
ZW
22291 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
22292 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 22293
cd000bff 22294 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 22295
cd000bff 22296 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 22297 {
7f78eb34
JW
22298 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22299 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
22300 {
22301 narrow_noop = thumb_noop[1][target_big_endian];
22302 noop = wide_thumb_noop[target_big_endian];
22303 }
c19d1205 22304 else
e7495e45
NS
22305 noop = thumb_noop[0][target_big_endian];
22306 noop_size = 2;
cd000bff
DJ
22307#ifdef OBJ_ELF
22308 state = MAP_THUMB;
22309#endif
7ed4c4c5
NC
22310 }
22311 else
22312 {
7f78eb34
JW
22313 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22314 ? selected_cpu : arm_arch_none,
22315 arm_ext_v6k) != 0]
e7495e45
NS
22316 [target_big_endian];
22317 noop_size = 4;
cd000bff
DJ
22318#ifdef OBJ_ELF
22319 state = MAP_ARM;
22320#endif
7ed4c4c5 22321 }
c921be7d 22322
e7495e45 22323 fragP->fr_var = noop_size;
c921be7d 22324
c19d1205 22325 if (bytes & (noop_size - 1))
7ed4c4c5 22326 {
c19d1205 22327 fix = bytes & (noop_size - 1);
cd000bff
DJ
22328#ifdef OBJ_ELF
22329 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
22330#endif
c19d1205
ZW
22331 memset (p, 0, fix);
22332 p += fix;
22333 bytes -= fix;
a737bd4d 22334 }
a737bd4d 22335
e7495e45
NS
22336 if (narrow_noop)
22337 {
22338 if (bytes & noop_size)
22339 {
22340 /* Insert a narrow noop. */
22341 memcpy (p, narrow_noop, noop_size);
22342 p += noop_size;
22343 bytes -= noop_size;
22344 fix += noop_size;
22345 }
22346
22347 /* Use wide noops for the remainder */
22348 noop_size = 4;
22349 }
22350
c19d1205 22351 while (bytes >= noop_size)
a737bd4d 22352 {
c19d1205
ZW
22353 memcpy (p, noop, noop_size);
22354 p += noop_size;
22355 bytes -= noop_size;
22356 fix += noop_size;
a737bd4d
NC
22357 }
22358
c19d1205 22359 fragP->fr_fix += fix;
a737bd4d
NC
22360}
22361
c19d1205
ZW
22362/* Called from md_do_align. Used to create an alignment
22363 frag in a code section. */
22364
22365void
22366arm_frag_align_code (int n, int max)
bfae80f2 22367{
c19d1205 22368 char * p;
7ed4c4c5 22369
c19d1205 22370 /* We assume that there will never be a requirement
6ec8e702 22371 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 22372 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
22373 {
22374 char err_msg[128];
22375
fa94de6b 22376 sprintf (err_msg,
477330fc
RM
22377 _("alignments greater than %d bytes not supported in .text sections."),
22378 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 22379 as_fatal ("%s", err_msg);
6ec8e702 22380 }
bfae80f2 22381
c19d1205
ZW
22382 p = frag_var (rs_align_code,
22383 MAX_MEM_FOR_RS_ALIGN_CODE,
22384 1,
22385 (relax_substateT) max,
22386 (symbolS *) NULL,
22387 (offsetT) n,
22388 (char *) NULL);
22389 *p = 0;
22390}
bfae80f2 22391
8dc2430f
NC
22392/* Perform target specific initialisation of a frag.
22393 Note - despite the name this initialisation is not done when the frag
22394 is created, but only when its type is assigned. A frag can be created
22395 and used a long time before its type is set, so beware of assuming that
33eaf5de 22396 this initialisation is performed first. */
bfae80f2 22397
cd000bff
DJ
22398#ifndef OBJ_ELF
22399void
22400arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
22401{
22402 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 22403 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
22404}
22405
22406#else /* OBJ_ELF is defined. */
c19d1205 22407void
cd000bff 22408arm_init_frag (fragS * fragP, int max_chars)
c19d1205 22409{
e8d84ca1 22410 bfd_boolean frag_thumb_mode;
b968d18a 22411
8dc2430f
NC
22412 /* If the current ARM vs THUMB mode has not already
22413 been recorded into this frag then do so now. */
cd000bff 22414 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
22415 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22416
e8d84ca1
NC
22417 /* PR 21809: Do not set a mapping state for debug sections
22418 - it just confuses other tools. */
22419 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
22420 return;
22421
b968d18a 22422 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 22423
f9c1b181
RL
22424 /* Record a mapping symbol for alignment frags. We will delete this
22425 later if the alignment ends up empty. */
22426 switch (fragP->fr_type)
22427 {
22428 case rs_align:
22429 case rs_align_test:
22430 case rs_fill:
22431 mapping_state_2 (MAP_DATA, max_chars);
22432 break;
22433 case rs_align_code:
b968d18a 22434 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
22435 break;
22436 default:
22437 break;
cd000bff 22438 }
bfae80f2
RE
22439}
22440
c19d1205
ZW
22441/* When we change sections we need to issue a new mapping symbol. */
22442
22443void
22444arm_elf_change_section (void)
bfae80f2 22445{
c19d1205
ZW
22446 /* Link an unlinked unwind index table section to the .text section. */
22447 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
22448 && elf_linked_to_section (now_seg) == NULL)
22449 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
22450}
22451
c19d1205
ZW
22452int
22453arm_elf_section_type (const char * str, size_t len)
e45d0630 22454{
c19d1205
ZW
22455 if (len == 5 && strncmp (str, "exidx", 5) == 0)
22456 return SHT_ARM_EXIDX;
e45d0630 22457
c19d1205
ZW
22458 return -1;
22459}
22460\f
22461/* Code to deal with unwinding tables. */
e45d0630 22462
c19d1205 22463static void add_unwind_adjustsp (offsetT);
e45d0630 22464
5f4273c7 22465/* Generate any deferred unwind frame offset. */
e45d0630 22466
bfae80f2 22467static void
c19d1205 22468flush_pending_unwind (void)
bfae80f2 22469{
c19d1205 22470 offsetT offset;
bfae80f2 22471
c19d1205
ZW
22472 offset = unwind.pending_offset;
22473 unwind.pending_offset = 0;
22474 if (offset != 0)
22475 add_unwind_adjustsp (offset);
bfae80f2
RE
22476}
22477
c19d1205
ZW
22478/* Add an opcode to this list for this function. Two-byte opcodes should
22479 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
22480 order. */
22481
bfae80f2 22482static void
c19d1205 22483add_unwind_opcode (valueT op, int length)
bfae80f2 22484{
c19d1205
ZW
22485 /* Add any deferred stack adjustment. */
22486 if (unwind.pending_offset)
22487 flush_pending_unwind ();
bfae80f2 22488
c19d1205 22489 unwind.sp_restored = 0;
bfae80f2 22490
c19d1205 22491 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 22492 {
c19d1205
ZW
22493 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
22494 if (unwind.opcodes)
325801bd
TS
22495 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
22496 unwind.opcode_alloc);
c19d1205 22497 else
325801bd 22498 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 22499 }
c19d1205 22500 while (length > 0)
bfae80f2 22501 {
c19d1205
ZW
22502 length--;
22503 unwind.opcodes[unwind.opcode_count] = op & 0xff;
22504 op >>= 8;
22505 unwind.opcode_count++;
bfae80f2 22506 }
bfae80f2
RE
22507}
22508
c19d1205
ZW
22509/* Add unwind opcodes to adjust the stack pointer. */
22510
bfae80f2 22511static void
c19d1205 22512add_unwind_adjustsp (offsetT offset)
bfae80f2 22513{
c19d1205 22514 valueT op;
bfae80f2 22515
c19d1205 22516 if (offset > 0x200)
bfae80f2 22517 {
c19d1205
ZW
22518 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
22519 char bytes[5];
22520 int n;
22521 valueT o;
bfae80f2 22522
c19d1205
ZW
22523 /* Long form: 0xb2, uleb128. */
22524 /* This might not fit in a word so add the individual bytes,
22525 remembering the list is built in reverse order. */
22526 o = (valueT) ((offset - 0x204) >> 2);
22527 if (o == 0)
22528 add_unwind_opcode (0, 1);
bfae80f2 22529
c19d1205
ZW
22530 /* Calculate the uleb128 encoding of the offset. */
22531 n = 0;
22532 while (o)
22533 {
22534 bytes[n] = o & 0x7f;
22535 o >>= 7;
22536 if (o)
22537 bytes[n] |= 0x80;
22538 n++;
22539 }
22540 /* Add the insn. */
22541 for (; n; n--)
22542 add_unwind_opcode (bytes[n - 1], 1);
22543 add_unwind_opcode (0xb2, 1);
22544 }
22545 else if (offset > 0x100)
bfae80f2 22546 {
c19d1205
ZW
22547 /* Two short opcodes. */
22548 add_unwind_opcode (0x3f, 1);
22549 op = (offset - 0x104) >> 2;
22550 add_unwind_opcode (op, 1);
bfae80f2 22551 }
c19d1205
ZW
22552 else if (offset > 0)
22553 {
22554 /* Short opcode. */
22555 op = (offset - 4) >> 2;
22556 add_unwind_opcode (op, 1);
22557 }
22558 else if (offset < 0)
bfae80f2 22559 {
c19d1205
ZW
22560 offset = -offset;
22561 while (offset > 0x100)
bfae80f2 22562 {
c19d1205
ZW
22563 add_unwind_opcode (0x7f, 1);
22564 offset -= 0x100;
bfae80f2 22565 }
c19d1205
ZW
22566 op = ((offset - 4) >> 2) | 0x40;
22567 add_unwind_opcode (op, 1);
bfae80f2 22568 }
bfae80f2
RE
22569}
22570
c19d1205 22571/* Finish the list of unwind opcodes for this function. */
0198d5e6 22572
c19d1205
ZW
22573static void
22574finish_unwind_opcodes (void)
bfae80f2 22575{
c19d1205 22576 valueT op;
bfae80f2 22577
c19d1205 22578 if (unwind.fp_used)
bfae80f2 22579 {
708587a4 22580 /* Adjust sp as necessary. */
c19d1205
ZW
22581 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
22582 flush_pending_unwind ();
bfae80f2 22583
c19d1205
ZW
22584 /* After restoring sp from the frame pointer. */
22585 op = 0x90 | unwind.fp_reg;
22586 add_unwind_opcode (op, 1);
22587 }
22588 else
22589 flush_pending_unwind ();
bfae80f2
RE
22590}
22591
bfae80f2 22592
c19d1205
ZW
22593/* Start an exception table entry. If idx is nonzero this is an index table
22594 entry. */
bfae80f2
RE
22595
22596static void
c19d1205 22597start_unwind_section (const segT text_seg, int idx)
bfae80f2 22598{
c19d1205
ZW
22599 const char * text_name;
22600 const char * prefix;
22601 const char * prefix_once;
22602 const char * group_name;
c19d1205 22603 char * sec_name;
c19d1205
ZW
22604 int type;
22605 int flags;
22606 int linkonce;
bfae80f2 22607
c19d1205 22608 if (idx)
bfae80f2 22609 {
c19d1205
ZW
22610 prefix = ELF_STRING_ARM_unwind;
22611 prefix_once = ELF_STRING_ARM_unwind_once;
22612 type = SHT_ARM_EXIDX;
bfae80f2 22613 }
c19d1205 22614 else
bfae80f2 22615 {
c19d1205
ZW
22616 prefix = ELF_STRING_ARM_unwind_info;
22617 prefix_once = ELF_STRING_ARM_unwind_info_once;
22618 type = SHT_PROGBITS;
bfae80f2
RE
22619 }
22620
c19d1205
ZW
22621 text_name = segment_name (text_seg);
22622 if (streq (text_name, ".text"))
22623 text_name = "";
22624
22625 if (strncmp (text_name, ".gnu.linkonce.t.",
22626 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 22627 {
c19d1205
ZW
22628 prefix = prefix_once;
22629 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
22630 }
22631
29a2809e 22632 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 22633
c19d1205
ZW
22634 flags = SHF_ALLOC;
22635 linkonce = 0;
22636 group_name = 0;
bfae80f2 22637
c19d1205
ZW
22638 /* Handle COMDAT group. */
22639 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 22640 {
c19d1205
ZW
22641 group_name = elf_group_name (text_seg);
22642 if (group_name == NULL)
22643 {
bd3ba5d1 22644 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
22645 segment_name (text_seg));
22646 ignore_rest_of_line ();
22647 return;
22648 }
22649 flags |= SHF_GROUP;
22650 linkonce = 1;
bfae80f2
RE
22651 }
22652
a91e1603
L
22653 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
22654 linkonce, 0);
bfae80f2 22655
5f4273c7 22656 /* Set the section link for index tables. */
c19d1205
ZW
22657 if (idx)
22658 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
22659}
22660
bfae80f2 22661
c19d1205
ZW
22662/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
22663 personality routine data. Returns zero, or the index table value for
cad0da33 22664 an inline entry. */
c19d1205
ZW
22665
22666static valueT
22667create_unwind_entry (int have_data)
bfae80f2 22668{
c19d1205
ZW
22669 int size;
22670 addressT where;
22671 char *ptr;
22672 /* The current word of data. */
22673 valueT data;
22674 /* The number of bytes left in this word. */
22675 int n;
bfae80f2 22676
c19d1205 22677 finish_unwind_opcodes ();
bfae80f2 22678
c19d1205
ZW
22679 /* Remember the current text section. */
22680 unwind.saved_seg = now_seg;
22681 unwind.saved_subseg = now_subseg;
bfae80f2 22682
c19d1205 22683 start_unwind_section (now_seg, 0);
bfae80f2 22684
c19d1205 22685 if (unwind.personality_routine == NULL)
bfae80f2 22686 {
c19d1205
ZW
22687 if (unwind.personality_index == -2)
22688 {
22689 if (have_data)
5f4273c7 22690 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
22691 return 1; /* EXIDX_CANTUNWIND. */
22692 }
bfae80f2 22693
c19d1205
ZW
22694 /* Use a default personality routine if none is specified. */
22695 if (unwind.personality_index == -1)
22696 {
22697 if (unwind.opcode_count > 3)
22698 unwind.personality_index = 1;
22699 else
22700 unwind.personality_index = 0;
22701 }
bfae80f2 22702
c19d1205
ZW
22703 /* Space for the personality routine entry. */
22704 if (unwind.personality_index == 0)
22705 {
22706 if (unwind.opcode_count > 3)
22707 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 22708
c19d1205
ZW
22709 if (!have_data)
22710 {
22711 /* All the data is inline in the index table. */
22712 data = 0x80;
22713 n = 3;
22714 while (unwind.opcode_count > 0)
22715 {
22716 unwind.opcode_count--;
22717 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22718 n--;
22719 }
bfae80f2 22720
c19d1205
ZW
22721 /* Pad with "finish" opcodes. */
22722 while (n--)
22723 data = (data << 8) | 0xb0;
bfae80f2 22724
c19d1205
ZW
22725 return data;
22726 }
22727 size = 0;
22728 }
22729 else
22730 /* We get two opcodes "free" in the first word. */
22731 size = unwind.opcode_count - 2;
22732 }
22733 else
5011093d 22734 {
cad0da33
NC
22735 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22736 if (unwind.personality_index != -1)
22737 {
22738 as_bad (_("attempt to recreate an unwind entry"));
22739 return 1;
22740 }
5011093d
NC
22741
22742 /* An extra byte is required for the opcode count. */
22743 size = unwind.opcode_count + 1;
22744 }
bfae80f2 22745
c19d1205
ZW
22746 size = (size + 3) >> 2;
22747 if (size > 0xff)
22748 as_bad (_("too many unwind opcodes"));
bfae80f2 22749
c19d1205
ZW
22750 frag_align (2, 0, 0);
22751 record_alignment (now_seg, 2);
22752 unwind.table_entry = expr_build_dot ();
22753
22754 /* Allocate the table entry. */
22755 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
22756 /* PR 13449: Zero the table entries in case some of them are not used. */
22757 memset (ptr, 0, (size << 2) + 4);
c19d1205 22758 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 22759
c19d1205 22760 switch (unwind.personality_index)
bfae80f2 22761 {
c19d1205
ZW
22762 case -1:
22763 /* ??? Should this be a PLT generating relocation? */
22764 /* Custom personality routine. */
22765 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22766 BFD_RELOC_ARM_PREL31);
bfae80f2 22767
c19d1205
ZW
22768 where += 4;
22769 ptr += 4;
bfae80f2 22770
c19d1205 22771 /* Set the first byte to the number of additional words. */
5011093d 22772 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
22773 n = 3;
22774 break;
bfae80f2 22775
c19d1205
ZW
22776 /* ABI defined personality routines. */
22777 case 0:
22778 /* Three opcodes bytes are packed into the first word. */
22779 data = 0x80;
22780 n = 3;
22781 break;
bfae80f2 22782
c19d1205
ZW
22783 case 1:
22784 case 2:
22785 /* The size and first two opcode bytes go in the first word. */
22786 data = ((0x80 + unwind.personality_index) << 8) | size;
22787 n = 2;
22788 break;
bfae80f2 22789
c19d1205
ZW
22790 default:
22791 /* Should never happen. */
22792 abort ();
22793 }
bfae80f2 22794
c19d1205
ZW
22795 /* Pack the opcodes into words (MSB first), reversing the list at the same
22796 time. */
22797 while (unwind.opcode_count > 0)
22798 {
22799 if (n == 0)
22800 {
22801 md_number_to_chars (ptr, data, 4);
22802 ptr += 4;
22803 n = 4;
22804 data = 0;
22805 }
22806 unwind.opcode_count--;
22807 n--;
22808 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22809 }
22810
22811 /* Finish off the last word. */
22812 if (n < 4)
22813 {
22814 /* Pad with "finish" opcodes. */
22815 while (n--)
22816 data = (data << 8) | 0xb0;
22817
22818 md_number_to_chars (ptr, data, 4);
22819 }
22820
22821 if (!have_data)
22822 {
22823 /* Add an empty descriptor if there is no user-specified data. */
22824 ptr = frag_more (4);
22825 md_number_to_chars (ptr, 0, 4);
22826 }
22827
22828 return 0;
bfae80f2
RE
22829}
22830
f0927246
NC
22831
22832/* Initialize the DWARF-2 unwind information for this procedure. */
22833
22834void
22835tc_arm_frame_initial_instructions (void)
22836{
22837 cfi_add_CFA_def_cfa (REG_SP, 0);
22838}
22839#endif /* OBJ_ELF */
22840
c19d1205
ZW
22841/* Convert REGNAME to a DWARF-2 register number. */
22842
22843int
1df69f4f 22844tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 22845{
1df69f4f 22846 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
22847 if (reg != FAIL)
22848 return reg;
c19d1205 22849
1f5afe1c
NC
22850 /* PR 16694: Allow VFP registers as well. */
22851 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22852 if (reg != FAIL)
22853 return 64 + reg;
c19d1205 22854
1f5afe1c
NC
22855 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22856 if (reg != FAIL)
22857 return reg + 256;
22858
0198d5e6 22859 return FAIL;
bfae80f2
RE
22860}
22861
f0927246 22862#ifdef TE_PE
c19d1205 22863void
f0927246 22864tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 22865{
91d6fa6a 22866 expressionS exp;
bfae80f2 22867
91d6fa6a
NC
22868 exp.X_op = O_secrel;
22869 exp.X_add_symbol = symbol;
22870 exp.X_add_number = 0;
22871 emit_expr (&exp, size);
f0927246
NC
22872}
22873#endif
bfae80f2 22874
c19d1205 22875/* MD interface: Symbol and relocation handling. */
bfae80f2 22876
2fc8bdac
ZW
22877/* Return the address within the segment that a PC-relative fixup is
22878 relative to. For ARM, PC-relative fixups applied to instructions
22879 are generally relative to the location of the fixup plus 8 bytes.
22880 Thumb branches are offset by 4, and Thumb loads relative to PC
22881 require special handling. */
bfae80f2 22882
c19d1205 22883long
2fc8bdac 22884md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 22885{
2fc8bdac
ZW
22886 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22887
22888 /* If this is pc-relative and we are going to emit a relocation
22889 then we just want to put out any pipeline compensation that the linker
53baae48
NC
22890 will need. Otherwise we want to use the calculated base.
22891 For WinCE we skip the bias for externals as well, since this
22892 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 22893 if (fixP->fx_pcrel
2fc8bdac 22894 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
22895 || (arm_force_relocation (fixP)
22896#ifdef TE_WINCE
22897 && !S_IS_EXTERNAL (fixP->fx_addsy)
22898#endif
22899 )))
2fc8bdac 22900 base = 0;
bfae80f2 22901
267bf995 22902
c19d1205 22903 switch (fixP->fx_r_type)
bfae80f2 22904 {
2fc8bdac
ZW
22905 /* PC relative addressing on the Thumb is slightly odd as the
22906 bottom two bits of the PC are forced to zero for the
22907 calculation. This happens *after* application of the
22908 pipeline offset. However, Thumb adrl already adjusts for
22909 this, so we need not do it again. */
c19d1205 22910 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 22911 return base & ~3;
c19d1205
ZW
22912
22913 case BFD_RELOC_ARM_THUMB_OFFSET:
22914 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 22915 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 22916 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 22917 return (base + 4) & ~3;
c19d1205 22918
2fc8bdac 22919 /* Thumb branches are simply offset by +4. */
e12437dc 22920 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
22921 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22922 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22923 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22924 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 22925 case BFD_RELOC_THUMB_PCREL_BRANCH25:
e5d6e09e 22926 case BFD_RELOC_ARM_THUMB_BF17:
2fc8bdac 22927 return base + 4;
bfae80f2 22928
267bf995 22929 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
22930 if (fixP->fx_addsy
22931 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22932 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 22933 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
22934 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22935 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
22936 return base + 4;
22937
00adf2d4
JB
22938 /* BLX is like branches above, but forces the low two bits of PC to
22939 zero. */
486499d0
CL
22940 case BFD_RELOC_THUMB_PCREL_BLX:
22941 if (fixP->fx_addsy
22942 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22943 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22944 && THUMB_IS_FUNC (fixP->fx_addsy)
22945 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22946 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
22947 return (base + 4) & ~3;
22948
2fc8bdac
ZW
22949 /* ARM mode branches are offset by +8. However, the Windows CE
22950 loader expects the relocation not to take this into account. */
267bf995 22951 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
22952 if (fixP->fx_addsy
22953 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22954 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22955 && ARM_IS_FUNC (fixP->fx_addsy)
22956 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22957 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 22958 return base + 8;
267bf995 22959
486499d0
CL
22960 case BFD_RELOC_ARM_PCREL_CALL:
22961 if (fixP->fx_addsy
22962 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22963 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22964 && THUMB_IS_FUNC (fixP->fx_addsy)
22965 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22966 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 22967 return base + 8;
267bf995 22968
2fc8bdac 22969 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 22970 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 22971 case BFD_RELOC_ARM_PLT32:
c19d1205 22972#ifdef TE_WINCE
5f4273c7 22973 /* When handling fixups immediately, because we have already
477330fc 22974 discovered the value of a symbol, or the address of the frag involved
53baae48 22975 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
22976 see fixup_segment() in write.c
22977 The S_IS_EXTERNAL test handles the case of global symbols.
22978 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
22979 if (fixP->fx_pcrel
22980 && fixP->fx_addsy != NULL
22981 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22982 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
22983 return base + 8;
2fc8bdac 22984 return base;
c19d1205 22985#else
2fc8bdac 22986 return base + 8;
c19d1205 22987#endif
2fc8bdac 22988
267bf995 22989
2fc8bdac
ZW
22990 /* ARM mode loads relative to PC are also offset by +8. Unlike
22991 branches, the Windows CE loader *does* expect the relocation
22992 to take this into account. */
22993 case BFD_RELOC_ARM_OFFSET_IMM:
22994 case BFD_RELOC_ARM_OFFSET_IMM8:
22995 case BFD_RELOC_ARM_HWLITERAL:
22996 case BFD_RELOC_ARM_LITERAL:
22997 case BFD_RELOC_ARM_CP_OFF_IMM:
22998 return base + 8;
22999
23000
23001 /* Other PC-relative relocations are un-offset. */
23002 default:
23003 return base;
23004 }
bfae80f2
RE
23005}
23006
8b2d793c
NC
23007static bfd_boolean flag_warn_syms = TRUE;
23008
ae8714c2
NC
23009bfd_boolean
23010arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 23011{
8b2d793c
NC
23012 /* PR 18347 - Warn if the user attempts to create a symbol with the same
23013 name as an ARM instruction. Whilst strictly speaking it is allowed, it
23014 does mean that the resulting code might be very confusing to the reader.
23015 Also this warning can be triggered if the user omits an operand before
23016 an immediate address, eg:
23017
23018 LDR =foo
23019
23020 GAS treats this as an assignment of the value of the symbol foo to a
23021 symbol LDR, and so (without this code) it will not issue any kind of
23022 warning or error message.
23023
23024 Note - ARM instructions are case-insensitive but the strings in the hash
23025 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
23026 lower case too. */
23027 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
23028 {
23029 char * nbuf = strdup (name);
23030 char * p;
23031
23032 for (p = nbuf; *p; p++)
23033 *p = TOLOWER (*p);
23034 if (hash_find (arm_ops_hsh, nbuf) != NULL)
23035 {
23036 static struct hash_control * already_warned = NULL;
23037
23038 if (already_warned == NULL)
23039 already_warned = hash_new ();
23040 /* Only warn about the symbol once. To keep the code
23041 simple we let hash_insert do the lookup for us. */
23042 if (hash_insert (already_warned, name, NULL) == NULL)
ae8714c2 23043 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
23044 }
23045 else
23046 free (nbuf);
23047 }
3739860c 23048
ae8714c2
NC
23049 return FALSE;
23050}
23051
23052/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
23053 Otherwise we have no need to default values of symbols. */
23054
23055symbolS *
23056md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
23057{
23058#ifdef OBJ_ELF
23059 if (name[0] == '_' && name[1] == 'G'
23060 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
23061 {
23062 if (!GOT_symbol)
23063 {
23064 if (symbol_find (name))
23065 as_bad (_("GOT already in the symbol table"));
23066
23067 GOT_symbol = symbol_new (name, undefined_section,
23068 (valueT) 0, & zero_address_frag);
23069 }
23070
23071 return GOT_symbol;
23072 }
23073#endif
23074
c921be7d 23075 return NULL;
bfae80f2
RE
23076}
23077
55cf6793 23078/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
23079 computed as two separate immediate values, added together. We
23080 already know that this value cannot be computed by just one ARM
23081 instruction. */
23082
23083static unsigned int
23084validate_immediate_twopart (unsigned int val,
23085 unsigned int * highpart)
bfae80f2 23086{
c19d1205
ZW
23087 unsigned int a;
23088 unsigned int i;
bfae80f2 23089
c19d1205
ZW
23090 for (i = 0; i < 32; i += 2)
23091 if (((a = rotate_left (val, i)) & 0xff) != 0)
23092 {
23093 if (a & 0xff00)
23094 {
23095 if (a & ~ 0xffff)
23096 continue;
23097 * highpart = (a >> 8) | ((i + 24) << 7);
23098 }
23099 else if (a & 0xff0000)
23100 {
23101 if (a & 0xff000000)
23102 continue;
23103 * highpart = (a >> 16) | ((i + 16) << 7);
23104 }
23105 else
23106 {
9c2799c2 23107 gas_assert (a & 0xff000000);
c19d1205
ZW
23108 * highpart = (a >> 24) | ((i + 8) << 7);
23109 }
bfae80f2 23110
c19d1205
ZW
23111 return (a & 0xff) | (i << 7);
23112 }
bfae80f2 23113
c19d1205 23114 return FAIL;
bfae80f2
RE
23115}
23116
c19d1205
ZW
23117static int
23118validate_offset_imm (unsigned int val, int hwse)
23119{
23120 if ((hwse && val > 255) || val > 4095)
23121 return FAIL;
23122 return val;
23123}
bfae80f2 23124
55cf6793 23125/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
23126 negative immediate constant by altering the instruction. A bit of
23127 a hack really.
23128 MOV <-> MVN
23129 AND <-> BIC
23130 ADC <-> SBC
23131 by inverting the second operand, and
23132 ADD <-> SUB
23133 CMP <-> CMN
23134 by negating the second operand. */
bfae80f2 23135
c19d1205
ZW
23136static int
23137negate_data_op (unsigned long * instruction,
23138 unsigned long value)
bfae80f2 23139{
c19d1205
ZW
23140 int op, new_inst;
23141 unsigned long negated, inverted;
bfae80f2 23142
c19d1205
ZW
23143 negated = encode_arm_immediate (-value);
23144 inverted = encode_arm_immediate (~value);
bfae80f2 23145
c19d1205
ZW
23146 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
23147 switch (op)
bfae80f2 23148 {
c19d1205
ZW
23149 /* First negates. */
23150 case OPCODE_SUB: /* ADD <-> SUB */
23151 new_inst = OPCODE_ADD;
23152 value = negated;
23153 break;
bfae80f2 23154
c19d1205
ZW
23155 case OPCODE_ADD:
23156 new_inst = OPCODE_SUB;
23157 value = negated;
23158 break;
bfae80f2 23159
c19d1205
ZW
23160 case OPCODE_CMP: /* CMP <-> CMN */
23161 new_inst = OPCODE_CMN;
23162 value = negated;
23163 break;
bfae80f2 23164
c19d1205
ZW
23165 case OPCODE_CMN:
23166 new_inst = OPCODE_CMP;
23167 value = negated;
23168 break;
bfae80f2 23169
c19d1205
ZW
23170 /* Now Inverted ops. */
23171 case OPCODE_MOV: /* MOV <-> MVN */
23172 new_inst = OPCODE_MVN;
23173 value = inverted;
23174 break;
bfae80f2 23175
c19d1205
ZW
23176 case OPCODE_MVN:
23177 new_inst = OPCODE_MOV;
23178 value = inverted;
23179 break;
bfae80f2 23180
c19d1205
ZW
23181 case OPCODE_AND: /* AND <-> BIC */
23182 new_inst = OPCODE_BIC;
23183 value = inverted;
23184 break;
bfae80f2 23185
c19d1205
ZW
23186 case OPCODE_BIC:
23187 new_inst = OPCODE_AND;
23188 value = inverted;
23189 break;
bfae80f2 23190
c19d1205
ZW
23191 case OPCODE_ADC: /* ADC <-> SBC */
23192 new_inst = OPCODE_SBC;
23193 value = inverted;
23194 break;
bfae80f2 23195
c19d1205
ZW
23196 case OPCODE_SBC:
23197 new_inst = OPCODE_ADC;
23198 value = inverted;
23199 break;
bfae80f2 23200
c19d1205
ZW
23201 /* We cannot do anything. */
23202 default:
23203 return FAIL;
b99bd4ef
NC
23204 }
23205
c19d1205
ZW
23206 if (value == (unsigned) FAIL)
23207 return FAIL;
23208
23209 *instruction &= OPCODE_MASK;
23210 *instruction |= new_inst << DATA_OP_SHIFT;
23211 return value;
b99bd4ef
NC
23212}
23213
ef8d22e6
PB
23214/* Like negate_data_op, but for Thumb-2. */
23215
23216static unsigned int
16dd5e42 23217thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
23218{
23219 int op, new_inst;
23220 int rd;
16dd5e42 23221 unsigned int negated, inverted;
ef8d22e6
PB
23222
23223 negated = encode_thumb32_immediate (-value);
23224 inverted = encode_thumb32_immediate (~value);
23225
23226 rd = (*instruction >> 8) & 0xf;
23227 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
23228 switch (op)
23229 {
23230 /* ADD <-> SUB. Includes CMP <-> CMN. */
23231 case T2_OPCODE_SUB:
23232 new_inst = T2_OPCODE_ADD;
23233 value = negated;
23234 break;
23235
23236 case T2_OPCODE_ADD:
23237 new_inst = T2_OPCODE_SUB;
23238 value = negated;
23239 break;
23240
23241 /* ORR <-> ORN. Includes MOV <-> MVN. */
23242 case T2_OPCODE_ORR:
23243 new_inst = T2_OPCODE_ORN;
23244 value = inverted;
23245 break;
23246
23247 case T2_OPCODE_ORN:
23248 new_inst = T2_OPCODE_ORR;
23249 value = inverted;
23250 break;
23251
23252 /* AND <-> BIC. TST has no inverted equivalent. */
23253 case T2_OPCODE_AND:
23254 new_inst = T2_OPCODE_BIC;
23255 if (rd == 15)
23256 value = FAIL;
23257 else
23258 value = inverted;
23259 break;
23260
23261 case T2_OPCODE_BIC:
23262 new_inst = T2_OPCODE_AND;
23263 value = inverted;
23264 break;
23265
23266 /* ADC <-> SBC */
23267 case T2_OPCODE_ADC:
23268 new_inst = T2_OPCODE_SBC;
23269 value = inverted;
23270 break;
23271
23272 case T2_OPCODE_SBC:
23273 new_inst = T2_OPCODE_ADC;
23274 value = inverted;
23275 break;
23276
23277 /* We cannot do anything. */
23278 default:
23279 return FAIL;
23280 }
23281
16dd5e42 23282 if (value == (unsigned int)FAIL)
ef8d22e6
PB
23283 return FAIL;
23284
23285 *instruction &= T2_OPCODE_MASK;
23286 *instruction |= new_inst << T2_DATA_OP_SHIFT;
23287 return value;
23288}
23289
8f06b2d8 23290/* Read a 32-bit thumb instruction from buf. */
0198d5e6 23291
8f06b2d8
PB
23292static unsigned long
23293get_thumb32_insn (char * buf)
23294{
23295 unsigned long insn;
23296 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
23297 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23298
23299 return insn;
23300}
23301
a8bc6c78
PB
23302/* We usually want to set the low bit on the address of thumb function
23303 symbols. In particular .word foo - . should have the low bit set.
23304 Generic code tries to fold the difference of two symbols to
23305 a constant. Prevent this and force a relocation when the first symbols
23306 is a thumb function. */
c921be7d
NC
23307
23308bfd_boolean
a8bc6c78
PB
23309arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
23310{
23311 if (op == O_subtract
23312 && l->X_op == O_symbol
23313 && r->X_op == O_symbol
23314 && THUMB_IS_FUNC (l->X_add_symbol))
23315 {
23316 l->X_op = O_subtract;
23317 l->X_op_symbol = r->X_add_symbol;
23318 l->X_add_number -= r->X_add_number;
c921be7d 23319 return TRUE;
a8bc6c78 23320 }
c921be7d 23321
a8bc6c78 23322 /* Process as normal. */
c921be7d 23323 return FALSE;
a8bc6c78
PB
23324}
23325
4a42ebbc
RR
23326/* Encode Thumb2 unconditional branches and calls. The encoding
23327 for the 2 are identical for the immediate values. */
23328
23329static void
23330encode_thumb2_b_bl_offset (char * buf, offsetT value)
23331{
23332#define T2I1I2MASK ((1 << 13) | (1 << 11))
23333 offsetT newval;
23334 offsetT newval2;
23335 addressT S, I1, I2, lo, hi;
23336
23337 S = (value >> 24) & 0x01;
23338 I1 = (value >> 23) & 0x01;
23339 I2 = (value >> 22) & 0x01;
23340 hi = (value >> 12) & 0x3ff;
fa94de6b 23341 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
23342 newval = md_chars_to_number (buf, THUMB_SIZE);
23343 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23344 newval |= (S << 10) | hi;
23345 newval2 &= ~T2I1I2MASK;
23346 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
23347 md_number_to_chars (buf, newval, THUMB_SIZE);
23348 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23349}
23350
c19d1205 23351void
55cf6793 23352md_apply_fix (fixS * fixP,
c19d1205
ZW
23353 valueT * valP,
23354 segT seg)
23355{
23356 offsetT value = * valP;
23357 offsetT newval;
23358 unsigned int newimm;
23359 unsigned long temp;
23360 int sign;
23361 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 23362
9c2799c2 23363 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 23364
c19d1205 23365 /* Note whether this will delete the relocation. */
4962c51a 23366
c19d1205
ZW
23367 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
23368 fixP->fx_done = 1;
b99bd4ef 23369
adbaf948 23370 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 23371 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
23372 for emit_reloc. */
23373 value &= 0xffffffff;
23374 value ^= 0x80000000;
5f4273c7 23375 value -= 0x80000000;
adbaf948
ZW
23376
23377 *valP = value;
c19d1205 23378 fixP->fx_addnumber = value;
b99bd4ef 23379
adbaf948
ZW
23380 /* Same treatment for fixP->fx_offset. */
23381 fixP->fx_offset &= 0xffffffff;
23382 fixP->fx_offset ^= 0x80000000;
23383 fixP->fx_offset -= 0x80000000;
23384
c19d1205 23385 switch (fixP->fx_r_type)
b99bd4ef 23386 {
c19d1205
ZW
23387 case BFD_RELOC_NONE:
23388 /* This will need to go in the object file. */
23389 fixP->fx_done = 0;
23390 break;
b99bd4ef 23391
c19d1205
ZW
23392 case BFD_RELOC_ARM_IMMEDIATE:
23393 /* We claim that this fixup has been processed here,
23394 even if in fact we generate an error because we do
23395 not have a reloc for it, so tc_gen_reloc will reject it. */
23396 fixP->fx_done = 1;
b99bd4ef 23397
77db8e2e 23398 if (fixP->fx_addsy)
b99bd4ef 23399 {
77db8e2e 23400 const char *msg = 0;
b99bd4ef 23401
77db8e2e
NC
23402 if (! S_IS_DEFINED (fixP->fx_addsy))
23403 msg = _("undefined symbol %s used as an immediate value");
23404 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23405 msg = _("symbol %s is in a different section");
23406 else if (S_IS_WEAK (fixP->fx_addsy))
23407 msg = _("symbol %s is weak and may be overridden later");
23408
23409 if (msg)
23410 {
23411 as_bad_where (fixP->fx_file, fixP->fx_line,
23412 msg, S_GET_NAME (fixP->fx_addsy));
23413 break;
23414 }
42e5fcbf
AS
23415 }
23416
c19d1205
ZW
23417 temp = md_chars_to_number (buf, INSN_SIZE);
23418
5e73442d
SL
23419 /* If the offset is negative, we should use encoding A2 for ADR. */
23420 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
23421 newimm = negate_data_op (&temp, value);
23422 else
23423 {
23424 newimm = encode_arm_immediate (value);
23425
23426 /* If the instruction will fail, see if we can fix things up by
23427 changing the opcode. */
23428 if (newimm == (unsigned int) FAIL)
23429 newimm = negate_data_op (&temp, value);
bada4342
JW
23430 /* MOV accepts both ARM modified immediate (A1 encoding) and
23431 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
23432 When disassembling, MOV is preferred when there is no encoding
23433 overlap. */
23434 if (newimm == (unsigned int) FAIL
23435 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
23436 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
23437 && !((temp >> SBIT_SHIFT) & 0x1)
23438 && value >= 0 && value <= 0xffff)
23439 {
23440 /* Clear bits[23:20] to change encoding from A1 to A2. */
23441 temp &= 0xff0fffff;
23442 /* Encoding high 4bits imm. Code below will encode the remaining
23443 low 12bits. */
23444 temp |= (value & 0x0000f000) << 4;
23445 newimm = value & 0x00000fff;
23446 }
5e73442d
SL
23447 }
23448
23449 if (newimm == (unsigned int) FAIL)
b99bd4ef 23450 {
c19d1205
ZW
23451 as_bad_where (fixP->fx_file, fixP->fx_line,
23452 _("invalid constant (%lx) after fixup"),
23453 (unsigned long) value);
23454 break;
b99bd4ef 23455 }
b99bd4ef 23456
c19d1205
ZW
23457 newimm |= (temp & 0xfffff000);
23458 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23459 break;
b99bd4ef 23460
c19d1205
ZW
23461 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23462 {
23463 unsigned int highpart = 0;
23464 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 23465
77db8e2e 23466 if (fixP->fx_addsy)
42e5fcbf 23467 {
77db8e2e 23468 const char *msg = 0;
42e5fcbf 23469
77db8e2e
NC
23470 if (! S_IS_DEFINED (fixP->fx_addsy))
23471 msg = _("undefined symbol %s used as an immediate value");
23472 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23473 msg = _("symbol %s is in a different section");
23474 else if (S_IS_WEAK (fixP->fx_addsy))
23475 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 23476
77db8e2e
NC
23477 if (msg)
23478 {
23479 as_bad_where (fixP->fx_file, fixP->fx_line,
23480 msg, S_GET_NAME (fixP->fx_addsy));
23481 break;
23482 }
23483 }
fa94de6b 23484
c19d1205
ZW
23485 newimm = encode_arm_immediate (value);
23486 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 23487
c19d1205
ZW
23488 /* If the instruction will fail, see if we can fix things up by
23489 changing the opcode. */
23490 if (newimm == (unsigned int) FAIL
23491 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
23492 {
23493 /* No ? OK - try using two ADD instructions to generate
23494 the value. */
23495 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 23496
c19d1205
ZW
23497 /* Yes - then make sure that the second instruction is
23498 also an add. */
23499 if (newimm != (unsigned int) FAIL)
23500 newinsn = temp;
23501 /* Still No ? Try using a negated value. */
23502 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
23503 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
23504 /* Otherwise - give up. */
23505 else
23506 {
23507 as_bad_where (fixP->fx_file, fixP->fx_line,
23508 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
23509 (long) value);
23510 break;
23511 }
b99bd4ef 23512
c19d1205
ZW
23513 /* Replace the first operand in the 2nd instruction (which
23514 is the PC) with the destination register. We have
23515 already added in the PC in the first instruction and we
23516 do not want to do it again. */
23517 newinsn &= ~ 0xf0000;
23518 newinsn |= ((newinsn & 0x0f000) << 4);
23519 }
b99bd4ef 23520
c19d1205
ZW
23521 newimm |= (temp & 0xfffff000);
23522 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 23523
c19d1205
ZW
23524 highpart |= (newinsn & 0xfffff000);
23525 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
23526 }
23527 break;
b99bd4ef 23528
c19d1205 23529 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
23530 if (!fixP->fx_done && seg->use_rela_p)
23531 value = 0;
1a0670f3 23532 /* Fall through. */
00a97672 23533
c19d1205 23534 case BFD_RELOC_ARM_LITERAL:
26d97720 23535 sign = value > 0;
b99bd4ef 23536
c19d1205
ZW
23537 if (value < 0)
23538 value = - value;
b99bd4ef 23539
c19d1205 23540 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 23541 {
c19d1205
ZW
23542 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
23543 as_bad_where (fixP->fx_file, fixP->fx_line,
23544 _("invalid literal constant: pool needs to be closer"));
23545 else
23546 as_bad_where (fixP->fx_file, fixP->fx_line,
23547 _("bad immediate value for offset (%ld)"),
23548 (long) value);
23549 break;
f03698e6
RE
23550 }
23551
c19d1205 23552 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
23553 if (value == 0)
23554 newval &= 0xfffff000;
23555 else
23556 {
23557 newval &= 0xff7ff000;
23558 newval |= value | (sign ? INDEX_UP : 0);
23559 }
c19d1205
ZW
23560 md_number_to_chars (buf, newval, INSN_SIZE);
23561 break;
b99bd4ef 23562
c19d1205
ZW
23563 case BFD_RELOC_ARM_OFFSET_IMM8:
23564 case BFD_RELOC_ARM_HWLITERAL:
26d97720 23565 sign = value > 0;
b99bd4ef 23566
c19d1205
ZW
23567 if (value < 0)
23568 value = - value;
b99bd4ef 23569
c19d1205 23570 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 23571 {
c19d1205
ZW
23572 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
23573 as_bad_where (fixP->fx_file, fixP->fx_line,
23574 _("invalid literal constant: pool needs to be closer"));
23575 else
427d0db6
RM
23576 as_bad_where (fixP->fx_file, fixP->fx_line,
23577 _("bad immediate value for 8-bit offset (%ld)"),
23578 (long) value);
c19d1205 23579 break;
b99bd4ef
NC
23580 }
23581
c19d1205 23582 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
23583 if (value == 0)
23584 newval &= 0xfffff0f0;
23585 else
23586 {
23587 newval &= 0xff7ff0f0;
23588 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
23589 }
c19d1205
ZW
23590 md_number_to_chars (buf, newval, INSN_SIZE);
23591 break;
b99bd4ef 23592
c19d1205
ZW
23593 case BFD_RELOC_ARM_T32_OFFSET_U8:
23594 if (value < 0 || value > 1020 || value % 4 != 0)
23595 as_bad_where (fixP->fx_file, fixP->fx_line,
23596 _("bad immediate value for offset (%ld)"), (long) value);
23597 value /= 4;
b99bd4ef 23598
c19d1205 23599 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
23600 newval |= value;
23601 md_number_to_chars (buf+2, newval, THUMB_SIZE);
23602 break;
b99bd4ef 23603
c19d1205
ZW
23604 case BFD_RELOC_ARM_T32_OFFSET_IMM:
23605 /* This is a complicated relocation used for all varieties of Thumb32
23606 load/store instruction with immediate offset:
23607
23608 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 23609 *4, optional writeback(W)
c19d1205
ZW
23610 (doubleword load/store)
23611
23612 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
23613 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
23614 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
23615 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
23616 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
23617
23618 Uppercase letters indicate bits that are already encoded at
23619 this point. Lowercase letters are our problem. For the
23620 second block of instructions, the secondary opcode nybble
23621 (bits 8..11) is present, and bit 23 is zero, even if this is
23622 a PC-relative operation. */
23623 newval = md_chars_to_number (buf, THUMB_SIZE);
23624 newval <<= 16;
23625 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 23626
c19d1205 23627 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 23628 {
c19d1205
ZW
23629 /* Doubleword load/store: 8-bit offset, scaled by 4. */
23630 if (value >= 0)
23631 newval |= (1 << 23);
23632 else
23633 value = -value;
23634 if (value % 4 != 0)
23635 {
23636 as_bad_where (fixP->fx_file, fixP->fx_line,
23637 _("offset not a multiple of 4"));
23638 break;
23639 }
23640 value /= 4;
216d22bc 23641 if (value > 0xff)
c19d1205
ZW
23642 {
23643 as_bad_where (fixP->fx_file, fixP->fx_line,
23644 _("offset out of range"));
23645 break;
23646 }
23647 newval &= ~0xff;
b99bd4ef 23648 }
c19d1205 23649 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 23650 {
c19d1205
ZW
23651 /* PC-relative, 12-bit offset. */
23652 if (value >= 0)
23653 newval |= (1 << 23);
23654 else
23655 value = -value;
216d22bc 23656 if (value > 0xfff)
c19d1205
ZW
23657 {
23658 as_bad_where (fixP->fx_file, fixP->fx_line,
23659 _("offset out of range"));
23660 break;
23661 }
23662 newval &= ~0xfff;
b99bd4ef 23663 }
c19d1205 23664 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 23665 {
c19d1205
ZW
23666 /* Writeback: 8-bit, +/- offset. */
23667 if (value >= 0)
23668 newval |= (1 << 9);
23669 else
23670 value = -value;
216d22bc 23671 if (value > 0xff)
c19d1205
ZW
23672 {
23673 as_bad_where (fixP->fx_file, fixP->fx_line,
23674 _("offset out of range"));
23675 break;
23676 }
23677 newval &= ~0xff;
b99bd4ef 23678 }
c19d1205 23679 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 23680 {
c19d1205 23681 /* T-instruction: positive 8-bit offset. */
216d22bc 23682 if (value < 0 || value > 0xff)
b99bd4ef 23683 {
c19d1205
ZW
23684 as_bad_where (fixP->fx_file, fixP->fx_line,
23685 _("offset out of range"));
23686 break;
b99bd4ef 23687 }
c19d1205
ZW
23688 newval &= ~0xff;
23689 newval |= value;
b99bd4ef
NC
23690 }
23691 else
b99bd4ef 23692 {
c19d1205
ZW
23693 /* Positive 12-bit or negative 8-bit offset. */
23694 int limit;
23695 if (value >= 0)
b99bd4ef 23696 {
c19d1205
ZW
23697 newval |= (1 << 23);
23698 limit = 0xfff;
23699 }
23700 else
23701 {
23702 value = -value;
23703 limit = 0xff;
23704 }
23705 if (value > limit)
23706 {
23707 as_bad_where (fixP->fx_file, fixP->fx_line,
23708 _("offset out of range"));
23709 break;
b99bd4ef 23710 }
c19d1205 23711 newval &= ~limit;
b99bd4ef 23712 }
b99bd4ef 23713
c19d1205
ZW
23714 newval |= value;
23715 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
23716 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
23717 break;
404ff6b5 23718
c19d1205
ZW
23719 case BFD_RELOC_ARM_SHIFT_IMM:
23720 newval = md_chars_to_number (buf, INSN_SIZE);
23721 if (((unsigned long) value) > 32
23722 || (value == 32
23723 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
23724 {
23725 as_bad_where (fixP->fx_file, fixP->fx_line,
23726 _("shift expression is too large"));
23727 break;
23728 }
404ff6b5 23729
c19d1205
ZW
23730 if (value == 0)
23731 /* Shifts of zero must be done as lsl. */
23732 newval &= ~0x60;
23733 else if (value == 32)
23734 value = 0;
23735 newval &= 0xfffff07f;
23736 newval |= (value & 0x1f) << 7;
23737 md_number_to_chars (buf, newval, INSN_SIZE);
23738 break;
404ff6b5 23739
c19d1205 23740 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 23741 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 23742 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 23743 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
23744 /* We claim that this fixup has been processed here,
23745 even if in fact we generate an error because we do
23746 not have a reloc for it, so tc_gen_reloc will reject it. */
23747 fixP->fx_done = 1;
404ff6b5 23748
c19d1205
ZW
23749 if (fixP->fx_addsy
23750 && ! S_IS_DEFINED (fixP->fx_addsy))
23751 {
23752 as_bad_where (fixP->fx_file, fixP->fx_line,
23753 _("undefined symbol %s used as an immediate value"),
23754 S_GET_NAME (fixP->fx_addsy));
23755 break;
23756 }
404ff6b5 23757
c19d1205
ZW
23758 newval = md_chars_to_number (buf, THUMB_SIZE);
23759 newval <<= 16;
23760 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 23761
16805f35 23762 newimm = FAIL;
bada4342
JW
23763 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23764 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
23765 Thumb2 modified immediate encoding (T2). */
23766 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 23767 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
23768 {
23769 newimm = encode_thumb32_immediate (value);
23770 if (newimm == (unsigned int) FAIL)
23771 newimm = thumb32_negate_data_op (&newval, value);
23772 }
bada4342 23773 if (newimm == (unsigned int) FAIL)
92e90b6e 23774 {
bada4342 23775 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 23776 {
bada4342
JW
23777 /* Turn add/sum into addw/subw. */
23778 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23779 newval = (newval & 0xfeffffff) | 0x02000000;
23780 /* No flat 12-bit imm encoding for addsw/subsw. */
23781 if ((newval & 0x00100000) == 0)
40f246e3 23782 {
bada4342
JW
23783 /* 12 bit immediate for addw/subw. */
23784 if (value < 0)
23785 {
23786 value = -value;
23787 newval ^= 0x00a00000;
23788 }
23789 if (value > 0xfff)
23790 newimm = (unsigned int) FAIL;
23791 else
23792 newimm = value;
23793 }
23794 }
23795 else
23796 {
23797 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
23798 UINT16 (T3 encoding), MOVW only accepts UINT16. When
23799 disassembling, MOV is preferred when there is no encoding
db7bf105 23800 overlap. */
bada4342 23801 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
23802 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
23803 but with the Rn field [19:16] set to 1111. */
23804 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
23805 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
23806 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 23807 && value >= 0 && value <= 0xffff)
bada4342
JW
23808 {
23809 /* Toggle bit[25] to change encoding from T2 to T3. */
23810 newval ^= 1 << 25;
23811 /* Clear bits[19:16]. */
23812 newval &= 0xfff0ffff;
23813 /* Encoding high 4bits imm. Code below will encode the
23814 remaining low 12bits. */
23815 newval |= (value & 0x0000f000) << 4;
23816 newimm = value & 0x00000fff;
40f246e3 23817 }
e9f89963 23818 }
92e90b6e 23819 }
cc8a6dd0 23820
c19d1205 23821 if (newimm == (unsigned int)FAIL)
3631a3c8 23822 {
c19d1205
ZW
23823 as_bad_where (fixP->fx_file, fixP->fx_line,
23824 _("invalid constant (%lx) after fixup"),
23825 (unsigned long) value);
23826 break;
3631a3c8
NC
23827 }
23828
c19d1205
ZW
23829 newval |= (newimm & 0x800) << 15;
23830 newval |= (newimm & 0x700) << 4;
23831 newval |= (newimm & 0x0ff);
cc8a6dd0 23832
c19d1205
ZW
23833 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23834 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23835 break;
a737bd4d 23836
3eb17e6b 23837 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
23838 if (((unsigned long) value) > 0xffff)
23839 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 23840 _("invalid smc expression"));
2fc8bdac 23841 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
23842 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23843 md_number_to_chars (buf, newval, INSN_SIZE);
23844 break;
a737bd4d 23845
90ec0d68
MGD
23846 case BFD_RELOC_ARM_HVC:
23847 if (((unsigned long) value) > 0xffff)
23848 as_bad_where (fixP->fx_file, fixP->fx_line,
23849 _("invalid hvc expression"));
23850 newval = md_chars_to_number (buf, INSN_SIZE);
23851 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23852 md_number_to_chars (buf, newval, INSN_SIZE);
23853 break;
23854
c19d1205 23855 case BFD_RELOC_ARM_SWI:
adbaf948 23856 if (fixP->tc_fix_data != 0)
c19d1205
ZW
23857 {
23858 if (((unsigned long) value) > 0xff)
23859 as_bad_where (fixP->fx_file, fixP->fx_line,
23860 _("invalid swi expression"));
2fc8bdac 23861 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
23862 newval |= value;
23863 md_number_to_chars (buf, newval, THUMB_SIZE);
23864 }
23865 else
23866 {
23867 if (((unsigned long) value) > 0x00ffffff)
23868 as_bad_where (fixP->fx_file, fixP->fx_line,
23869 _("invalid swi expression"));
2fc8bdac 23870 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
23871 newval |= value;
23872 md_number_to_chars (buf, newval, INSN_SIZE);
23873 }
23874 break;
a737bd4d 23875
c19d1205
ZW
23876 case BFD_RELOC_ARM_MULTI:
23877 if (((unsigned long) value) > 0xffff)
23878 as_bad_where (fixP->fx_file, fixP->fx_line,
23879 _("invalid expression in load/store multiple"));
23880 newval = value | md_chars_to_number (buf, INSN_SIZE);
23881 md_number_to_chars (buf, newval, INSN_SIZE);
23882 break;
a737bd4d 23883
c19d1205 23884#ifdef OBJ_ELF
39b41c9c 23885 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
23886
23887 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23888 && fixP->fx_addsy
34e77a92 23889 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23890 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23891 && THUMB_IS_FUNC (fixP->fx_addsy))
23892 /* Flip the bl to blx. This is a simple flip
23893 bit here because we generate PCREL_CALL for
23894 unconditional bls. */
23895 {
23896 newval = md_chars_to_number (buf, INSN_SIZE);
23897 newval = newval | 0x10000000;
23898 md_number_to_chars (buf, newval, INSN_SIZE);
23899 temp = 1;
23900 fixP->fx_done = 1;
23901 }
39b41c9c
PB
23902 else
23903 temp = 3;
23904 goto arm_branch_common;
23905
23906 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
23907 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23908 && fixP->fx_addsy
34e77a92 23909 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23910 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23911 && THUMB_IS_FUNC (fixP->fx_addsy))
23912 {
23913 /* This would map to a bl<cond>, b<cond>,
23914 b<always> to a Thumb function. We
23915 need to force a relocation for this particular
23916 case. */
23917 newval = md_chars_to_number (buf, INSN_SIZE);
23918 fixP->fx_done = 0;
23919 }
1a0670f3 23920 /* Fall through. */
267bf995 23921
2fc8bdac 23922 case BFD_RELOC_ARM_PLT32:
c19d1205 23923#endif
39b41c9c
PB
23924 case BFD_RELOC_ARM_PCREL_BRANCH:
23925 temp = 3;
23926 goto arm_branch_common;
a737bd4d 23927
39b41c9c 23928 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 23929
39b41c9c 23930 temp = 1;
267bf995
RR
23931 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23932 && fixP->fx_addsy
34e77a92 23933 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23934 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23935 && ARM_IS_FUNC (fixP->fx_addsy))
23936 {
23937 /* Flip the blx to a bl and warn. */
23938 const char *name = S_GET_NAME (fixP->fx_addsy);
23939 newval = 0xeb000000;
23940 as_warn_where (fixP->fx_file, fixP->fx_line,
23941 _("blx to '%s' an ARM ISA state function changed to bl"),
23942 name);
23943 md_number_to_chars (buf, newval, INSN_SIZE);
23944 temp = 3;
23945 fixP->fx_done = 1;
23946 }
23947
23948#ifdef OBJ_ELF
23949 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 23950 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
23951#endif
23952
39b41c9c 23953 arm_branch_common:
c19d1205 23954 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
23955 instruction, in a 24 bit, signed field. Bits 26 through 32 either
23956 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 23957 also be clear. */
39b41c9c 23958 if (value & temp)
c19d1205 23959 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
23960 _("misaligned branch destination"));
23961 if ((value & (offsetT)0xfe000000) != (offsetT)0
23962 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 23963 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23964
2fc8bdac 23965 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 23966 {
2fc8bdac
ZW
23967 newval = md_chars_to_number (buf, INSN_SIZE);
23968 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
23969 /* Set the H bit on BLX instructions. */
23970 if (temp == 1)
23971 {
23972 if (value & 2)
23973 newval |= 0x01000000;
23974 else
23975 newval &= ~0x01000000;
23976 }
2fc8bdac 23977 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 23978 }
c19d1205 23979 break;
a737bd4d 23980
25fe350b
MS
23981 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
23982 /* CBZ can only branch forward. */
a737bd4d 23983
738755b0 23984 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
23985 (which, strictly speaking, are prohibited) will be turned into
23986 no-ops.
738755b0
MS
23987
23988 FIXME: It may be better to remove the instruction completely and
23989 perform relaxation. */
23990 if (value == -2)
2fc8bdac
ZW
23991 {
23992 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 23993 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
23994 md_number_to_chars (buf, newval, THUMB_SIZE);
23995 }
738755b0
MS
23996 else
23997 {
23998 if (value & ~0x7e)
08f10d51 23999 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 24000
477330fc 24001 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
24002 {
24003 newval = md_chars_to_number (buf, THUMB_SIZE);
24004 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
24005 md_number_to_chars (buf, newval, THUMB_SIZE);
24006 }
24007 }
c19d1205 24008 break;
a737bd4d 24009
c19d1205 24010 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 24011 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 24012 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 24013
2fc8bdac
ZW
24014 if (fixP->fx_done || !seg->use_rela_p)
24015 {
24016 newval = md_chars_to_number (buf, THUMB_SIZE);
24017 newval |= (value & 0x1ff) >> 1;
24018 md_number_to_chars (buf, newval, THUMB_SIZE);
24019 }
c19d1205 24020 break;
a737bd4d 24021
c19d1205 24022 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 24023 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 24024 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 24025
2fc8bdac
ZW
24026 if (fixP->fx_done || !seg->use_rela_p)
24027 {
24028 newval = md_chars_to_number (buf, THUMB_SIZE);
24029 newval |= (value & 0xfff) >> 1;
24030 md_number_to_chars (buf, newval, THUMB_SIZE);
24031 }
c19d1205 24032 break;
a737bd4d 24033
c19d1205 24034 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
24035 if (fixP->fx_addsy
24036 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 24037 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
24038 && ARM_IS_FUNC (fixP->fx_addsy)
24039 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
24040 {
24041 /* Force a relocation for a branch 20 bits wide. */
24042 fixP->fx_done = 0;
24043 }
08f10d51 24044 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
24045 as_bad_where (fixP->fx_file, fixP->fx_line,
24046 _("conditional branch out of range"));
404ff6b5 24047
2fc8bdac
ZW
24048 if (fixP->fx_done || !seg->use_rela_p)
24049 {
24050 offsetT newval2;
24051 addressT S, J1, J2, lo, hi;
404ff6b5 24052
2fc8bdac
ZW
24053 S = (value & 0x00100000) >> 20;
24054 J2 = (value & 0x00080000) >> 19;
24055 J1 = (value & 0x00040000) >> 18;
24056 hi = (value & 0x0003f000) >> 12;
24057 lo = (value & 0x00000ffe) >> 1;
6c43fab6 24058
2fc8bdac
ZW
24059 newval = md_chars_to_number (buf, THUMB_SIZE);
24060 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24061 newval |= (S << 10) | hi;
24062 newval2 |= (J1 << 13) | (J2 << 11) | lo;
24063 md_number_to_chars (buf, newval, THUMB_SIZE);
24064 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
24065 }
c19d1205 24066 break;
6c43fab6 24067
c19d1205 24068 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
24069 /* If there is a blx from a thumb state function to
24070 another thumb function flip this to a bl and warn
24071 about it. */
24072
24073 if (fixP->fx_addsy
34e77a92 24074 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
24075 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24076 && THUMB_IS_FUNC (fixP->fx_addsy))
24077 {
24078 const char *name = S_GET_NAME (fixP->fx_addsy);
24079 as_warn_where (fixP->fx_file, fixP->fx_line,
24080 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
24081 name);
24082 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24083 newval = newval | 0x1000;
24084 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
24085 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
24086 fixP->fx_done = 1;
24087 }
24088
24089
24090 goto thumb_bl_common;
24091
c19d1205 24092 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
24093 /* A bl from Thumb state ISA to an internal ARM state function
24094 is converted to a blx. */
24095 if (fixP->fx_addsy
24096 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 24097 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
24098 && ARM_IS_FUNC (fixP->fx_addsy)
24099 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
24100 {
24101 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24102 newval = newval & ~0x1000;
24103 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
24104 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
24105 fixP->fx_done = 1;
24106 }
24107
24108 thumb_bl_common:
24109
2fc8bdac
ZW
24110 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
24111 /* For a BLX instruction, make sure that the relocation is rounded up
24112 to a word boundary. This follows the semantics of the instruction
24113 which specifies that bit 1 of the target address will come from bit
24114 1 of the base address. */
d406f3e4
JB
24115 value = (value + 3) & ~ 3;
24116
24117#ifdef OBJ_ELF
24118 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
24119 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
24120 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
24121#endif
404ff6b5 24122
2b2f5df9
NC
24123 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
24124 {
fc289b0a 24125 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
24126 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24127 else if ((value & ~0x1ffffff)
24128 && ((value & ~0x1ffffff) != ~0x1ffffff))
24129 as_bad_where (fixP->fx_file, fixP->fx_line,
24130 _("Thumb2 branch out of range"));
24131 }
4a42ebbc
RR
24132
24133 if (fixP->fx_done || !seg->use_rela_p)
24134 encode_thumb2_b_bl_offset (buf, value);
24135
c19d1205 24136 break;
404ff6b5 24137
c19d1205 24138 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
24139 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
24140 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 24141
2fc8bdac 24142 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 24143 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 24144
2fc8bdac 24145 break;
a737bd4d 24146
2fc8bdac
ZW
24147 case BFD_RELOC_8:
24148 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 24149 *buf = value;
c19d1205 24150 break;
a737bd4d 24151
c19d1205 24152 case BFD_RELOC_16:
2fc8bdac 24153 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 24154 md_number_to_chars (buf, value, 2);
c19d1205 24155 break;
a737bd4d 24156
c19d1205 24157#ifdef OBJ_ELF
0855e32b
NS
24158 case BFD_RELOC_ARM_TLS_CALL:
24159 case BFD_RELOC_ARM_THM_TLS_CALL:
24160 case BFD_RELOC_ARM_TLS_DESCSEQ:
24161 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 24162 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
24163 case BFD_RELOC_ARM_TLS_GD32:
24164 case BFD_RELOC_ARM_TLS_LE32:
24165 case BFD_RELOC_ARM_TLS_IE32:
24166 case BFD_RELOC_ARM_TLS_LDM32:
24167 case BFD_RELOC_ARM_TLS_LDO32:
24168 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 24169 break;
6c43fab6 24170
5c5a4843
CL
24171 /* Same handling as above, but with the arm_fdpic guard. */
24172 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
24173 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
24174 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
24175 if (arm_fdpic)
24176 {
24177 S_SET_THREAD_LOCAL (fixP->fx_addsy);
24178 }
24179 else
24180 {
24181 as_bad_where (fixP->fx_file, fixP->fx_line,
24182 _("Relocation supported only in FDPIC mode"));
24183 }
24184 break;
24185
c19d1205
ZW
24186 case BFD_RELOC_ARM_GOT32:
24187 case BFD_RELOC_ARM_GOTOFF:
c19d1205 24188 break;
b43420e6
NC
24189
24190 case BFD_RELOC_ARM_GOT_PREL:
24191 if (fixP->fx_done || !seg->use_rela_p)
477330fc 24192 md_number_to_chars (buf, value, 4);
b43420e6
NC
24193 break;
24194
9a6f4e97
NS
24195 case BFD_RELOC_ARM_TARGET2:
24196 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
24197 addend here for REL targets, because it won't be written out
24198 during reloc processing later. */
9a6f4e97
NS
24199 if (fixP->fx_done || !seg->use_rela_p)
24200 md_number_to_chars (buf, fixP->fx_offset, 4);
24201 break;
188fd7ae
CL
24202
24203 /* Relocations for FDPIC. */
24204 case BFD_RELOC_ARM_GOTFUNCDESC:
24205 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
24206 case BFD_RELOC_ARM_FUNCDESC:
24207 if (arm_fdpic)
24208 {
24209 if (fixP->fx_done || !seg->use_rela_p)
24210 md_number_to_chars (buf, 0, 4);
24211 }
24212 else
24213 {
24214 as_bad_where (fixP->fx_file, fixP->fx_line,
24215 _("Relocation supported only in FDPIC mode"));
24216 }
24217 break;
c19d1205 24218#endif
6c43fab6 24219
c19d1205
ZW
24220 case BFD_RELOC_RVA:
24221 case BFD_RELOC_32:
24222 case BFD_RELOC_ARM_TARGET1:
24223 case BFD_RELOC_ARM_ROSEGREL32:
24224 case BFD_RELOC_ARM_SBREL32:
24225 case BFD_RELOC_32_PCREL:
f0927246
NC
24226#ifdef TE_PE
24227 case BFD_RELOC_32_SECREL:
24228#endif
2fc8bdac 24229 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
24230#ifdef TE_WINCE
24231 /* For WinCE we only do this for pcrel fixups. */
24232 if (fixP->fx_done || fixP->fx_pcrel)
24233#endif
24234 md_number_to_chars (buf, value, 4);
c19d1205 24235 break;
6c43fab6 24236
c19d1205
ZW
24237#ifdef OBJ_ELF
24238 case BFD_RELOC_ARM_PREL31:
2fc8bdac 24239 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
24240 {
24241 newval = md_chars_to_number (buf, 4) & 0x80000000;
24242 if ((value ^ (value >> 1)) & 0x40000000)
24243 {
24244 as_bad_where (fixP->fx_file, fixP->fx_line,
24245 _("rel31 relocation overflow"));
24246 }
24247 newval |= value & 0x7fffffff;
24248 md_number_to_chars (buf, newval, 4);
24249 }
24250 break;
c19d1205 24251#endif
a737bd4d 24252
c19d1205 24253 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 24254 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
9db2f6b4
RL
24255 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
24256 newval = md_chars_to_number (buf, INSN_SIZE);
24257 else
24258 newval = get_thumb32_insn (buf);
24259 if ((newval & 0x0f200f00) == 0x0d000900)
24260 {
24261 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
24262 has permitted values that are multiples of 2, in the range 0
24263 to 510. */
24264 if (value < -510 || value > 510 || (value & 1))
24265 as_bad_where (fixP->fx_file, fixP->fx_line,
24266 _("co-processor offset out of range"));
24267 }
24268 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
24269 as_bad_where (fixP->fx_file, fixP->fx_line,
24270 _("co-processor offset out of range"));
24271 cp_off_common:
26d97720 24272 sign = value > 0;
c19d1205
ZW
24273 if (value < 0)
24274 value = -value;
8f06b2d8
PB
24275 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24276 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24277 newval = md_chars_to_number (buf, INSN_SIZE);
24278 else
24279 newval = get_thumb32_insn (buf);
26d97720
NS
24280 if (value == 0)
24281 newval &= 0xffffff00;
24282 else
24283 {
24284 newval &= 0xff7fff00;
9db2f6b4
RL
24285 if ((newval & 0x0f200f00) == 0x0d000900)
24286 {
24287 /* This is a fp16 vstr/vldr.
24288
24289 It requires the immediate offset in the instruction is shifted
24290 left by 1 to be a half-word offset.
24291
24292 Here, left shift by 1 first, and later right shift by 2
24293 should get the right offset. */
24294 value <<= 1;
24295 }
26d97720
NS
24296 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
24297 }
8f06b2d8
PB
24298 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24299 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24300 md_number_to_chars (buf, newval, INSN_SIZE);
24301 else
24302 put_thumb32_insn (buf, newval);
c19d1205 24303 break;
a737bd4d 24304
c19d1205 24305 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 24306 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
24307 if (value < -255 || value > 255)
24308 as_bad_where (fixP->fx_file, fixP->fx_line,
24309 _("co-processor offset out of range"));
df7849c5 24310 value *= 4;
c19d1205 24311 goto cp_off_common;
6c43fab6 24312
c19d1205
ZW
24313 case BFD_RELOC_ARM_THUMB_OFFSET:
24314 newval = md_chars_to_number (buf, THUMB_SIZE);
24315 /* Exactly what ranges, and where the offset is inserted depends
24316 on the type of instruction, we can establish this from the
24317 top 4 bits. */
24318 switch (newval >> 12)
24319 {
24320 case 4: /* PC load. */
24321 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
24322 forced to zero for these loads; md_pcrel_from has already
24323 compensated for this. */
24324 if (value & 3)
24325 as_bad_where (fixP->fx_file, fixP->fx_line,
24326 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
24327 (((unsigned long) fixP->fx_frag->fr_address
24328 + (unsigned long) fixP->fx_where) & ~3)
24329 + (unsigned long) value);
a737bd4d 24330
c19d1205
ZW
24331 if (value & ~0x3fc)
24332 as_bad_where (fixP->fx_file, fixP->fx_line,
24333 _("invalid offset, value too big (0x%08lX)"),
24334 (long) value);
a737bd4d 24335
c19d1205
ZW
24336 newval |= value >> 2;
24337 break;
a737bd4d 24338
c19d1205
ZW
24339 case 9: /* SP load/store. */
24340 if (value & ~0x3fc)
24341 as_bad_where (fixP->fx_file, fixP->fx_line,
24342 _("invalid offset, value too big (0x%08lX)"),
24343 (long) value);
24344 newval |= value >> 2;
24345 break;
6c43fab6 24346
c19d1205
ZW
24347 case 6: /* Word load/store. */
24348 if (value & ~0x7c)
24349 as_bad_where (fixP->fx_file, fixP->fx_line,
24350 _("invalid offset, value too big (0x%08lX)"),
24351 (long) value);
24352 newval |= value << 4; /* 6 - 2. */
24353 break;
a737bd4d 24354
c19d1205
ZW
24355 case 7: /* Byte load/store. */
24356 if (value & ~0x1f)
24357 as_bad_where (fixP->fx_file, fixP->fx_line,
24358 _("invalid offset, value too big (0x%08lX)"),
24359 (long) value);
24360 newval |= value << 6;
24361 break;
a737bd4d 24362
c19d1205
ZW
24363 case 8: /* Halfword load/store. */
24364 if (value & ~0x3e)
24365 as_bad_where (fixP->fx_file, fixP->fx_line,
24366 _("invalid offset, value too big (0x%08lX)"),
24367 (long) value);
24368 newval |= value << 5; /* 6 - 1. */
24369 break;
a737bd4d 24370
c19d1205
ZW
24371 default:
24372 as_bad_where (fixP->fx_file, fixP->fx_line,
24373 "Unable to process relocation for thumb opcode: %lx",
24374 (unsigned long) newval);
24375 break;
24376 }
24377 md_number_to_chars (buf, newval, THUMB_SIZE);
24378 break;
a737bd4d 24379
c19d1205
ZW
24380 case BFD_RELOC_ARM_THUMB_ADD:
24381 /* This is a complicated relocation, since we use it for all of
24382 the following immediate relocations:
a737bd4d 24383
c19d1205
ZW
24384 3bit ADD/SUB
24385 8bit ADD/SUB
24386 9bit ADD/SUB SP word-aligned
24387 10bit ADD PC/SP word-aligned
a737bd4d 24388
c19d1205
ZW
24389 The type of instruction being processed is encoded in the
24390 instruction field:
a737bd4d 24391
c19d1205
ZW
24392 0x8000 SUB
24393 0x00F0 Rd
24394 0x000F Rs
24395 */
24396 newval = md_chars_to_number (buf, THUMB_SIZE);
24397 {
24398 int rd = (newval >> 4) & 0xf;
24399 int rs = newval & 0xf;
24400 int subtract = !!(newval & 0x8000);
a737bd4d 24401
c19d1205
ZW
24402 /* Check for HI regs, only very restricted cases allowed:
24403 Adjusting SP, and using PC or SP to get an address. */
24404 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
24405 || (rs > 7 && rs != REG_SP && rs != REG_PC))
24406 as_bad_where (fixP->fx_file, fixP->fx_line,
24407 _("invalid Hi register with immediate"));
a737bd4d 24408
c19d1205
ZW
24409 /* If value is negative, choose the opposite instruction. */
24410 if (value < 0)
24411 {
24412 value = -value;
24413 subtract = !subtract;
24414 if (value < 0)
24415 as_bad_where (fixP->fx_file, fixP->fx_line,
24416 _("immediate value out of range"));
24417 }
a737bd4d 24418
c19d1205
ZW
24419 if (rd == REG_SP)
24420 {
75c11999 24421 if (value & ~0x1fc)
c19d1205
ZW
24422 as_bad_where (fixP->fx_file, fixP->fx_line,
24423 _("invalid immediate for stack address calculation"));
24424 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
24425 newval |= value >> 2;
24426 }
24427 else if (rs == REG_PC || rs == REG_SP)
24428 {
c12d2c9d
NC
24429 /* PR gas/18541. If the addition is for a defined symbol
24430 within range of an ADR instruction then accept it. */
24431 if (subtract
24432 && value == 4
24433 && fixP->fx_addsy != NULL)
24434 {
24435 subtract = 0;
24436
24437 if (! S_IS_DEFINED (fixP->fx_addsy)
24438 || S_GET_SEGMENT (fixP->fx_addsy) != seg
24439 || S_IS_WEAK (fixP->fx_addsy))
24440 {
24441 as_bad_where (fixP->fx_file, fixP->fx_line,
24442 _("address calculation needs a strongly defined nearby symbol"));
24443 }
24444 else
24445 {
24446 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
24447
24448 /* Round up to the next 4-byte boundary. */
24449 if (v & 3)
24450 v = (v + 3) & ~ 3;
24451 else
24452 v += 4;
24453 v = S_GET_VALUE (fixP->fx_addsy) - v;
24454
24455 if (v & ~0x3fc)
24456 {
24457 as_bad_where (fixP->fx_file, fixP->fx_line,
24458 _("symbol too far away"));
24459 }
24460 else
24461 {
24462 fixP->fx_done = 1;
24463 value = v;
24464 }
24465 }
24466 }
24467
c19d1205
ZW
24468 if (subtract || value & ~0x3fc)
24469 as_bad_where (fixP->fx_file, fixP->fx_line,
24470 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 24471 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
24472 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
24473 newval |= rd << 8;
24474 newval |= value >> 2;
24475 }
24476 else if (rs == rd)
24477 {
24478 if (value & ~0xff)
24479 as_bad_where (fixP->fx_file, fixP->fx_line,
24480 _("immediate value out of range"));
24481 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
24482 newval |= (rd << 8) | value;
24483 }
24484 else
24485 {
24486 if (value & ~0x7)
24487 as_bad_where (fixP->fx_file, fixP->fx_line,
24488 _("immediate value out of range"));
24489 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
24490 newval |= rd | (rs << 3) | (value << 6);
24491 }
24492 }
24493 md_number_to_chars (buf, newval, THUMB_SIZE);
24494 break;
a737bd4d 24495
c19d1205
ZW
24496 case BFD_RELOC_ARM_THUMB_IMM:
24497 newval = md_chars_to_number (buf, THUMB_SIZE);
24498 if (value < 0 || value > 255)
24499 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 24500 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
24501 (long) value);
24502 newval |= value;
24503 md_number_to_chars (buf, newval, THUMB_SIZE);
24504 break;
a737bd4d 24505
c19d1205
ZW
24506 case BFD_RELOC_ARM_THUMB_SHIFT:
24507 /* 5bit shift value (0..32). LSL cannot take 32. */
24508 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
24509 temp = newval & 0xf800;
24510 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
24511 as_bad_where (fixP->fx_file, fixP->fx_line,
24512 _("invalid shift value: %ld"), (long) value);
24513 /* Shifts of zero must be encoded as LSL. */
24514 if (value == 0)
24515 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
24516 /* Shifts of 32 are encoded as zero. */
24517 else if (value == 32)
24518 value = 0;
24519 newval |= value << 6;
24520 md_number_to_chars (buf, newval, THUMB_SIZE);
24521 break;
a737bd4d 24522
c19d1205
ZW
24523 case BFD_RELOC_VTABLE_INHERIT:
24524 case BFD_RELOC_VTABLE_ENTRY:
24525 fixP->fx_done = 0;
24526 return;
6c43fab6 24527
b6895b4f
PB
24528 case BFD_RELOC_ARM_MOVW:
24529 case BFD_RELOC_ARM_MOVT:
24530 case BFD_RELOC_ARM_THUMB_MOVW:
24531 case BFD_RELOC_ARM_THUMB_MOVT:
24532 if (fixP->fx_done || !seg->use_rela_p)
24533 {
24534 /* REL format relocations are limited to a 16-bit addend. */
24535 if (!fixP->fx_done)
24536 {
39623e12 24537 if (value < -0x8000 || value > 0x7fff)
b6895b4f 24538 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 24539 _("offset out of range"));
b6895b4f
PB
24540 }
24541 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24542 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24543 {
24544 value >>= 16;
24545 }
24546
24547 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24548 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24549 {
24550 newval = get_thumb32_insn (buf);
24551 newval &= 0xfbf08f00;
24552 newval |= (value & 0xf000) << 4;
24553 newval |= (value & 0x0800) << 15;
24554 newval |= (value & 0x0700) << 4;
24555 newval |= (value & 0x00ff);
24556 put_thumb32_insn (buf, newval);
24557 }
24558 else
24559 {
24560 newval = md_chars_to_number (buf, 4);
24561 newval &= 0xfff0f000;
24562 newval |= value & 0x0fff;
24563 newval |= (value & 0xf000) << 4;
24564 md_number_to_chars (buf, newval, 4);
24565 }
24566 }
24567 return;
24568
72d98d16
MG
24569 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24570 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24571 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24572 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24573 gas_assert (!fixP->fx_done);
24574 {
24575 bfd_vma insn;
24576 bfd_boolean is_mov;
24577 bfd_vma encoded_addend = value;
24578
24579 /* Check that addend can be encoded in instruction. */
24580 if (!seg->use_rela_p && (value < 0 || value > 255))
24581 as_bad_where (fixP->fx_file, fixP->fx_line,
24582 _("the offset 0x%08lX is not representable"),
24583 (unsigned long) encoded_addend);
24584
24585 /* Extract the instruction. */
24586 insn = md_chars_to_number (buf, THUMB_SIZE);
24587 is_mov = (insn & 0xf800) == 0x2000;
24588
24589 /* Encode insn. */
24590 if (is_mov)
24591 {
24592 if (!seg->use_rela_p)
24593 insn |= encoded_addend;
24594 }
24595 else
24596 {
24597 int rd, rs;
24598
24599 /* Extract the instruction. */
24600 /* Encoding is the following
24601 0x8000 SUB
24602 0x00F0 Rd
24603 0x000F Rs
24604 */
24605 /* The following conditions must be true :
24606 - ADD
24607 - Rd == Rs
24608 - Rd <= 7
24609 */
24610 rd = (insn >> 4) & 0xf;
24611 rs = insn & 0xf;
24612 if ((insn & 0x8000) || (rd != rs) || rd > 7)
24613 as_bad_where (fixP->fx_file, fixP->fx_line,
24614 _("Unable to process relocation for thumb opcode: %lx"),
24615 (unsigned long) insn);
24616
24617 /* Encode as ADD immediate8 thumb 1 code. */
24618 insn = 0x3000 | (rd << 8);
24619
24620 /* Place the encoded addend into the first 8 bits of the
24621 instruction. */
24622 if (!seg->use_rela_p)
24623 insn |= encoded_addend;
24624 }
24625
24626 /* Update the instruction. */
24627 md_number_to_chars (buf, insn, THUMB_SIZE);
24628 }
24629 break;
24630
4962c51a
MS
24631 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24632 case BFD_RELOC_ARM_ALU_PC_G0:
24633 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24634 case BFD_RELOC_ARM_ALU_PC_G1:
24635 case BFD_RELOC_ARM_ALU_PC_G2:
24636 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24637 case BFD_RELOC_ARM_ALU_SB_G0:
24638 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24639 case BFD_RELOC_ARM_ALU_SB_G1:
24640 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 24641 gas_assert (!fixP->fx_done);
4962c51a
MS
24642 if (!seg->use_rela_p)
24643 {
477330fc
RM
24644 bfd_vma insn;
24645 bfd_vma encoded_addend;
3ca4a8ec 24646 bfd_vma addend_abs = llabs (value);
477330fc
RM
24647
24648 /* Check that the absolute value of the addend can be
24649 expressed as an 8-bit constant plus a rotation. */
24650 encoded_addend = encode_arm_immediate (addend_abs);
24651 if (encoded_addend == (unsigned int) FAIL)
4962c51a 24652 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24653 _("the offset 0x%08lX is not representable"),
24654 (unsigned long) addend_abs);
24655
24656 /* Extract the instruction. */
24657 insn = md_chars_to_number (buf, INSN_SIZE);
24658
24659 /* If the addend is positive, use an ADD instruction.
24660 Otherwise use a SUB. Take care not to destroy the S bit. */
24661 insn &= 0xff1fffff;
24662 if (value < 0)
24663 insn |= 1 << 22;
24664 else
24665 insn |= 1 << 23;
24666
24667 /* Place the encoded addend into the first 12 bits of the
24668 instruction. */
24669 insn &= 0xfffff000;
24670 insn |= encoded_addend;
24671
24672 /* Update the instruction. */
24673 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
24674 }
24675 break;
24676
24677 case BFD_RELOC_ARM_LDR_PC_G0:
24678 case BFD_RELOC_ARM_LDR_PC_G1:
24679 case BFD_RELOC_ARM_LDR_PC_G2:
24680 case BFD_RELOC_ARM_LDR_SB_G0:
24681 case BFD_RELOC_ARM_LDR_SB_G1:
24682 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 24683 gas_assert (!fixP->fx_done);
4962c51a 24684 if (!seg->use_rela_p)
477330fc
RM
24685 {
24686 bfd_vma insn;
3ca4a8ec 24687 bfd_vma addend_abs = llabs (value);
4962c51a 24688
477330fc
RM
24689 /* Check that the absolute value of the addend can be
24690 encoded in 12 bits. */
24691 if (addend_abs >= 0x1000)
4962c51a 24692 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24693 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
24694 (unsigned long) addend_abs);
24695
24696 /* Extract the instruction. */
24697 insn = md_chars_to_number (buf, INSN_SIZE);
24698
24699 /* If the addend is negative, clear bit 23 of the instruction.
24700 Otherwise set it. */
24701 if (value < 0)
24702 insn &= ~(1 << 23);
24703 else
24704 insn |= 1 << 23;
24705
24706 /* Place the absolute value of the addend into the first 12 bits
24707 of the instruction. */
24708 insn &= 0xfffff000;
24709 insn |= addend_abs;
24710
24711 /* Update the instruction. */
24712 md_number_to_chars (buf, insn, INSN_SIZE);
24713 }
4962c51a
MS
24714 break;
24715
24716 case BFD_RELOC_ARM_LDRS_PC_G0:
24717 case BFD_RELOC_ARM_LDRS_PC_G1:
24718 case BFD_RELOC_ARM_LDRS_PC_G2:
24719 case BFD_RELOC_ARM_LDRS_SB_G0:
24720 case BFD_RELOC_ARM_LDRS_SB_G1:
24721 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 24722 gas_assert (!fixP->fx_done);
4962c51a 24723 if (!seg->use_rela_p)
477330fc
RM
24724 {
24725 bfd_vma insn;
3ca4a8ec 24726 bfd_vma addend_abs = llabs (value);
4962c51a 24727
477330fc
RM
24728 /* Check that the absolute value of the addend can be
24729 encoded in 8 bits. */
24730 if (addend_abs >= 0x100)
4962c51a 24731 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24732 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
24733 (unsigned long) addend_abs);
24734
24735 /* Extract the instruction. */
24736 insn = md_chars_to_number (buf, INSN_SIZE);
24737
24738 /* If the addend is negative, clear bit 23 of the instruction.
24739 Otherwise set it. */
24740 if (value < 0)
24741 insn &= ~(1 << 23);
24742 else
24743 insn |= 1 << 23;
24744
24745 /* Place the first four bits of the absolute value of the addend
24746 into the first 4 bits of the instruction, and the remaining
24747 four into bits 8 .. 11. */
24748 insn &= 0xfffff0f0;
24749 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
24750
24751 /* Update the instruction. */
24752 md_number_to_chars (buf, insn, INSN_SIZE);
24753 }
4962c51a
MS
24754 break;
24755
24756 case BFD_RELOC_ARM_LDC_PC_G0:
24757 case BFD_RELOC_ARM_LDC_PC_G1:
24758 case BFD_RELOC_ARM_LDC_PC_G2:
24759 case BFD_RELOC_ARM_LDC_SB_G0:
24760 case BFD_RELOC_ARM_LDC_SB_G1:
24761 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 24762 gas_assert (!fixP->fx_done);
4962c51a 24763 if (!seg->use_rela_p)
477330fc
RM
24764 {
24765 bfd_vma insn;
3ca4a8ec 24766 bfd_vma addend_abs = llabs (value);
4962c51a 24767
477330fc
RM
24768 /* Check that the absolute value of the addend is a multiple of
24769 four and, when divided by four, fits in 8 bits. */
24770 if (addend_abs & 0x3)
4962c51a 24771 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24772 _("bad offset 0x%08lX (must be word-aligned)"),
24773 (unsigned long) addend_abs);
4962c51a 24774
477330fc 24775 if ((addend_abs >> 2) > 0xff)
4962c51a 24776 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24777 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
24778 (unsigned long) addend_abs);
24779
24780 /* Extract the instruction. */
24781 insn = md_chars_to_number (buf, INSN_SIZE);
24782
24783 /* If the addend is negative, clear bit 23 of the instruction.
24784 Otherwise set it. */
24785 if (value < 0)
24786 insn &= ~(1 << 23);
24787 else
24788 insn |= 1 << 23;
24789
24790 /* Place the addend (divided by four) into the first eight
24791 bits of the instruction. */
24792 insn &= 0xfffffff0;
24793 insn |= addend_abs >> 2;
24794
24795 /* Update the instruction. */
24796 md_number_to_chars (buf, insn, INSN_SIZE);
24797 }
4962c51a
MS
24798 break;
24799
e12437dc
AV
24800 case BFD_RELOC_THUMB_PCREL_BRANCH5:
24801 if (fixP->fx_addsy
24802 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24803 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24804 && ARM_IS_FUNC (fixP->fx_addsy)
24805 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24806 {
24807 /* Force a relocation for a branch 5 bits wide. */
24808 fixP->fx_done = 0;
24809 }
24810 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
24811 as_bad_where (fixP->fx_file, fixP->fx_line,
24812 BAD_BRANCH_OFF);
24813
24814 if (fixP->fx_done || !seg->use_rela_p)
24815 {
24816 addressT boff = value >> 1;
24817
24818 newval = md_chars_to_number (buf, THUMB_SIZE);
24819 newval |= (boff << 7);
24820 md_number_to_chars (buf, newval, THUMB_SIZE);
24821 }
24822 break;
24823
e5d6e09e
AV
24824 case BFD_RELOC_ARM_THUMB_BF17:
24825 if (fixP->fx_addsy
24826 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24827 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24828 && ARM_IS_FUNC (fixP->fx_addsy)
24829 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24830 {
24831 /* Force a relocation for a branch 17 bits wide. */
24832 fixP->fx_done = 0;
24833 }
24834
24835 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
24836 as_bad_where (fixP->fx_file, fixP->fx_line,
24837 BAD_BRANCH_OFF);
24838
24839 if (fixP->fx_done || !seg->use_rela_p)
24840 {
24841 offsetT newval2;
24842 addressT immA, immB, immC;
24843
24844 immA = (value & 0x0001f000) >> 12;
24845 immB = (value & 0x00000ffc) >> 2;
24846 immC = (value & 0x00000002) >> 1;
24847
24848 newval = md_chars_to_number (buf, THUMB_SIZE);
24849 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24850 newval |= immA;
24851 newval2 |= (immC << 11) | (immB << 1);
24852 md_number_to_chars (buf, newval, THUMB_SIZE);
24853 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
24854 }
24855 break;
24856
845b51d6
PB
24857 case BFD_RELOC_ARM_V4BX:
24858 /* This will need to go in the object file. */
24859 fixP->fx_done = 0;
24860 break;
24861
c19d1205
ZW
24862 case BFD_RELOC_UNUSED:
24863 default:
24864 as_bad_where (fixP->fx_file, fixP->fx_line,
24865 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
24866 }
6c43fab6
RE
24867}
24868
c19d1205
ZW
24869/* Translate internal representation of relocation info to BFD target
24870 format. */
a737bd4d 24871
c19d1205 24872arelent *
00a97672 24873tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 24874{
c19d1205
ZW
24875 arelent * reloc;
24876 bfd_reloc_code_real_type code;
a737bd4d 24877
325801bd 24878 reloc = XNEW (arelent);
a737bd4d 24879
325801bd 24880 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
24881 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
24882 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 24883
2fc8bdac 24884 if (fixp->fx_pcrel)
00a97672
RS
24885 {
24886 if (section->use_rela_p)
24887 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
24888 else
24889 fixp->fx_offset = reloc->address;
24890 }
c19d1205 24891 reloc->addend = fixp->fx_offset;
a737bd4d 24892
c19d1205 24893 switch (fixp->fx_r_type)
a737bd4d 24894 {
c19d1205
ZW
24895 case BFD_RELOC_8:
24896 if (fixp->fx_pcrel)
24897 {
24898 code = BFD_RELOC_8_PCREL;
24899 break;
24900 }
1a0670f3 24901 /* Fall through. */
a737bd4d 24902
c19d1205
ZW
24903 case BFD_RELOC_16:
24904 if (fixp->fx_pcrel)
24905 {
24906 code = BFD_RELOC_16_PCREL;
24907 break;
24908 }
1a0670f3 24909 /* Fall through. */
6c43fab6 24910
c19d1205
ZW
24911 case BFD_RELOC_32:
24912 if (fixp->fx_pcrel)
24913 {
24914 code = BFD_RELOC_32_PCREL;
24915 break;
24916 }
1a0670f3 24917 /* Fall through. */
a737bd4d 24918
b6895b4f
PB
24919 case BFD_RELOC_ARM_MOVW:
24920 if (fixp->fx_pcrel)
24921 {
24922 code = BFD_RELOC_ARM_MOVW_PCREL;
24923 break;
24924 }
1a0670f3 24925 /* Fall through. */
b6895b4f
PB
24926
24927 case BFD_RELOC_ARM_MOVT:
24928 if (fixp->fx_pcrel)
24929 {
24930 code = BFD_RELOC_ARM_MOVT_PCREL;
24931 break;
24932 }
1a0670f3 24933 /* Fall through. */
b6895b4f
PB
24934
24935 case BFD_RELOC_ARM_THUMB_MOVW:
24936 if (fixp->fx_pcrel)
24937 {
24938 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
24939 break;
24940 }
1a0670f3 24941 /* Fall through. */
b6895b4f
PB
24942
24943 case BFD_RELOC_ARM_THUMB_MOVT:
24944 if (fixp->fx_pcrel)
24945 {
24946 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
24947 break;
24948 }
1a0670f3 24949 /* Fall through. */
b6895b4f 24950
c19d1205
ZW
24951 case BFD_RELOC_NONE:
24952 case BFD_RELOC_ARM_PCREL_BRANCH:
24953 case BFD_RELOC_ARM_PCREL_BLX:
24954 case BFD_RELOC_RVA:
24955 case BFD_RELOC_THUMB_PCREL_BRANCH7:
24956 case BFD_RELOC_THUMB_PCREL_BRANCH9:
24957 case BFD_RELOC_THUMB_PCREL_BRANCH12:
24958 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24959 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24960 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
24961 case BFD_RELOC_VTABLE_ENTRY:
24962 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
24963#ifdef TE_PE
24964 case BFD_RELOC_32_SECREL:
24965#endif
c19d1205
ZW
24966 code = fixp->fx_r_type;
24967 break;
a737bd4d 24968
00adf2d4
JB
24969 case BFD_RELOC_THUMB_PCREL_BLX:
24970#ifdef OBJ_ELF
24971 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
24972 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
24973 else
24974#endif
24975 code = BFD_RELOC_THUMB_PCREL_BLX;
24976 break;
24977
c19d1205
ZW
24978 case BFD_RELOC_ARM_LITERAL:
24979 case BFD_RELOC_ARM_HWLITERAL:
24980 /* If this is called then the a literal has
24981 been referenced across a section boundary. */
24982 as_bad_where (fixp->fx_file, fixp->fx_line,
24983 _("literal referenced across section boundary"));
24984 return NULL;
a737bd4d 24985
c19d1205 24986#ifdef OBJ_ELF
0855e32b
NS
24987 case BFD_RELOC_ARM_TLS_CALL:
24988 case BFD_RELOC_ARM_THM_TLS_CALL:
24989 case BFD_RELOC_ARM_TLS_DESCSEQ:
24990 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
24991 case BFD_RELOC_ARM_GOT32:
24992 case BFD_RELOC_ARM_GOTOFF:
b43420e6 24993 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
24994 case BFD_RELOC_ARM_PLT32:
24995 case BFD_RELOC_ARM_TARGET1:
24996 case BFD_RELOC_ARM_ROSEGREL32:
24997 case BFD_RELOC_ARM_SBREL32:
24998 case BFD_RELOC_ARM_PREL31:
24999 case BFD_RELOC_ARM_TARGET2:
c19d1205 25000 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
25001 case BFD_RELOC_ARM_PCREL_CALL:
25002 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
25003 case BFD_RELOC_ARM_ALU_PC_G0_NC:
25004 case BFD_RELOC_ARM_ALU_PC_G0:
25005 case BFD_RELOC_ARM_ALU_PC_G1_NC:
25006 case BFD_RELOC_ARM_ALU_PC_G1:
25007 case BFD_RELOC_ARM_ALU_PC_G2:
25008 case BFD_RELOC_ARM_LDR_PC_G0:
25009 case BFD_RELOC_ARM_LDR_PC_G1:
25010 case BFD_RELOC_ARM_LDR_PC_G2:
25011 case BFD_RELOC_ARM_LDRS_PC_G0:
25012 case BFD_RELOC_ARM_LDRS_PC_G1:
25013 case BFD_RELOC_ARM_LDRS_PC_G2:
25014 case BFD_RELOC_ARM_LDC_PC_G0:
25015 case BFD_RELOC_ARM_LDC_PC_G1:
25016 case BFD_RELOC_ARM_LDC_PC_G2:
25017 case BFD_RELOC_ARM_ALU_SB_G0_NC:
25018 case BFD_RELOC_ARM_ALU_SB_G0:
25019 case BFD_RELOC_ARM_ALU_SB_G1_NC:
25020 case BFD_RELOC_ARM_ALU_SB_G1:
25021 case BFD_RELOC_ARM_ALU_SB_G2:
25022 case BFD_RELOC_ARM_LDR_SB_G0:
25023 case BFD_RELOC_ARM_LDR_SB_G1:
25024 case BFD_RELOC_ARM_LDR_SB_G2:
25025 case BFD_RELOC_ARM_LDRS_SB_G0:
25026 case BFD_RELOC_ARM_LDRS_SB_G1:
25027 case BFD_RELOC_ARM_LDRS_SB_G2:
25028 case BFD_RELOC_ARM_LDC_SB_G0:
25029 case BFD_RELOC_ARM_LDC_SB_G1:
25030 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 25031 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
25032 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
25033 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
25034 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
25035 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
25036 case BFD_RELOC_ARM_GOTFUNCDESC:
25037 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
25038 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 25039 case BFD_RELOC_ARM_THUMB_BF17:
c19d1205
ZW
25040 code = fixp->fx_r_type;
25041 break;
a737bd4d 25042
0855e32b 25043 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 25044 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 25045 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 25046 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 25047 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 25048 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 25049 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 25050 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
25051 /* BFD will include the symbol's address in the addend.
25052 But we don't want that, so subtract it out again here. */
25053 if (!S_IS_COMMON (fixp->fx_addsy))
25054 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
25055 code = fixp->fx_r_type;
25056 break;
25057#endif
a737bd4d 25058
c19d1205
ZW
25059 case BFD_RELOC_ARM_IMMEDIATE:
25060 as_bad_where (fixp->fx_file, fixp->fx_line,
25061 _("internal relocation (type: IMMEDIATE) not fixed up"));
25062 return NULL;
a737bd4d 25063
c19d1205
ZW
25064 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
25065 as_bad_where (fixp->fx_file, fixp->fx_line,
25066 _("ADRL used for a symbol not defined in the same file"));
25067 return NULL;
a737bd4d 25068
e12437dc
AV
25069 case BFD_RELOC_THUMB_PCREL_BRANCH5:
25070 as_bad_where (fixp->fx_file, fixp->fx_line,
25071 _("%s used for a symbol not defined in the same file"),
25072 bfd_get_reloc_code_name (fixp->fx_r_type));
25073 return NULL;
25074
c19d1205 25075 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
25076 if (section->use_rela_p)
25077 {
25078 code = fixp->fx_r_type;
25079 break;
25080 }
25081
c19d1205
ZW
25082 if (fixp->fx_addsy != NULL
25083 && !S_IS_DEFINED (fixp->fx_addsy)
25084 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 25085 {
c19d1205
ZW
25086 as_bad_where (fixp->fx_file, fixp->fx_line,
25087 _("undefined local label `%s'"),
25088 S_GET_NAME (fixp->fx_addsy));
25089 return NULL;
a737bd4d
NC
25090 }
25091
c19d1205
ZW
25092 as_bad_where (fixp->fx_file, fixp->fx_line,
25093 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
25094 return NULL;
a737bd4d 25095
c19d1205
ZW
25096 default:
25097 {
e0471c16 25098 const char * type;
6c43fab6 25099
c19d1205
ZW
25100 switch (fixp->fx_r_type)
25101 {
25102 case BFD_RELOC_NONE: type = "NONE"; break;
25103 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
25104 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 25105 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
25106 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
25107 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
25108 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 25109 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 25110 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
25111 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
25112 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
25113 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
25114 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
25115 default: type = _("<unknown>"); break;
25116 }
25117 as_bad_where (fixp->fx_file, fixp->fx_line,
25118 _("cannot represent %s relocation in this object file format"),
25119 type);
25120 return NULL;
25121 }
a737bd4d 25122 }
6c43fab6 25123
c19d1205
ZW
25124#ifdef OBJ_ELF
25125 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
25126 && GOT_symbol
25127 && fixp->fx_addsy == GOT_symbol)
25128 {
25129 code = BFD_RELOC_ARM_GOTPC;
25130 reloc->addend = fixp->fx_offset = reloc->address;
25131 }
25132#endif
6c43fab6 25133
c19d1205 25134 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 25135
c19d1205
ZW
25136 if (reloc->howto == NULL)
25137 {
25138 as_bad_where (fixp->fx_file, fixp->fx_line,
25139 _("cannot represent %s relocation in this object file format"),
25140 bfd_get_reloc_code_name (code));
25141 return NULL;
25142 }
6c43fab6 25143
c19d1205
ZW
25144 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
25145 vtable entry to be used in the relocation's section offset. */
25146 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
25147 reloc->address = fixp->fx_offset;
6c43fab6 25148
c19d1205 25149 return reloc;
6c43fab6
RE
25150}
25151
c19d1205 25152/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 25153
c19d1205
ZW
25154void
25155cons_fix_new_arm (fragS * frag,
25156 int where,
25157 int size,
62ebcb5c
AM
25158 expressionS * exp,
25159 bfd_reloc_code_real_type reloc)
6c43fab6 25160{
c19d1205 25161 int pcrel = 0;
6c43fab6 25162
c19d1205
ZW
25163 /* Pick a reloc.
25164 FIXME: @@ Should look at CPU word size. */
25165 switch (size)
25166 {
25167 case 1:
62ebcb5c 25168 reloc = BFD_RELOC_8;
c19d1205
ZW
25169 break;
25170 case 2:
62ebcb5c 25171 reloc = BFD_RELOC_16;
c19d1205
ZW
25172 break;
25173 case 4:
25174 default:
62ebcb5c 25175 reloc = BFD_RELOC_32;
c19d1205
ZW
25176 break;
25177 case 8:
62ebcb5c 25178 reloc = BFD_RELOC_64;
c19d1205
ZW
25179 break;
25180 }
6c43fab6 25181
f0927246
NC
25182#ifdef TE_PE
25183 if (exp->X_op == O_secrel)
25184 {
25185 exp->X_op = O_symbol;
62ebcb5c 25186 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
25187 }
25188#endif
25189
62ebcb5c 25190 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 25191}
6c43fab6 25192
4343666d 25193#if defined (OBJ_COFF)
c19d1205
ZW
25194void
25195arm_validate_fix (fixS * fixP)
6c43fab6 25196{
c19d1205
ZW
25197 /* If the destination of the branch is a defined symbol which does not have
25198 the THUMB_FUNC attribute, then we must be calling a function which has
25199 the (interfacearm) attribute. We look for the Thumb entry point to that
25200 function and change the branch to refer to that function instead. */
25201 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
25202 && fixP->fx_addsy != NULL
25203 && S_IS_DEFINED (fixP->fx_addsy)
25204 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 25205 {
c19d1205 25206 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 25207 }
c19d1205
ZW
25208}
25209#endif
6c43fab6 25210
267bf995 25211
c19d1205
ZW
25212int
25213arm_force_relocation (struct fix * fixp)
25214{
25215#if defined (OBJ_COFF) && defined (TE_PE)
25216 if (fixp->fx_r_type == BFD_RELOC_RVA)
25217 return 1;
25218#endif
6c43fab6 25219
267bf995
RR
25220 /* In case we have a call or a branch to a function in ARM ISA mode from
25221 a thumb function or vice-versa force the relocation. These relocations
25222 are cleared off for some cores that might have blx and simple transformations
25223 are possible. */
25224
25225#ifdef OBJ_ELF
25226 switch (fixp->fx_r_type)
25227 {
25228 case BFD_RELOC_ARM_PCREL_JUMP:
25229 case BFD_RELOC_ARM_PCREL_CALL:
25230 case BFD_RELOC_THUMB_PCREL_BLX:
25231 if (THUMB_IS_FUNC (fixp->fx_addsy))
25232 return 1;
25233 break;
25234
25235 case BFD_RELOC_ARM_PCREL_BLX:
25236 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25237 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25238 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25239 if (ARM_IS_FUNC (fixp->fx_addsy))
25240 return 1;
25241 break;
25242
25243 default:
25244 break;
25245 }
25246#endif
25247
b5884301
PB
25248 /* Resolve these relocations even if the symbol is extern or weak.
25249 Technically this is probably wrong due to symbol preemption.
25250 In practice these relocations do not have enough range to be useful
25251 at dynamic link time, and some code (e.g. in the Linux kernel)
25252 expects these references to be resolved. */
c19d1205
ZW
25253 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
25254 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 25255 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 25256 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
25257 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
25258 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
25259 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 25260 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
25261 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
25262 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
25263 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
25264 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
25265 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
25266 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 25267 return 0;
a737bd4d 25268
4962c51a
MS
25269 /* Always leave these relocations for the linker. */
25270 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25271 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25272 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
25273 return 1;
25274
f0291e4c
PB
25275 /* Always generate relocations against function symbols. */
25276 if (fixp->fx_r_type == BFD_RELOC_32
25277 && fixp->fx_addsy
25278 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
25279 return 1;
25280
c19d1205 25281 return generic_force_reloc (fixp);
404ff6b5
AH
25282}
25283
0ffdc86c 25284#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
25285/* Relocations against function names must be left unadjusted,
25286 so that the linker can use this information to generate interworking
25287 stubs. The MIPS version of this function
c19d1205
ZW
25288 also prevents relocations that are mips-16 specific, but I do not
25289 know why it does this.
404ff6b5 25290
c19d1205
ZW
25291 FIXME:
25292 There is one other problem that ought to be addressed here, but
25293 which currently is not: Taking the address of a label (rather
25294 than a function) and then later jumping to that address. Such
25295 addresses also ought to have their bottom bit set (assuming that
25296 they reside in Thumb code), but at the moment they will not. */
404ff6b5 25297
c19d1205
ZW
25298bfd_boolean
25299arm_fix_adjustable (fixS * fixP)
404ff6b5 25300{
c19d1205
ZW
25301 if (fixP->fx_addsy == NULL)
25302 return 1;
404ff6b5 25303
e28387c3
PB
25304 /* Preserve relocations against symbols with function type. */
25305 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 25306 return FALSE;
e28387c3 25307
c19d1205
ZW
25308 if (THUMB_IS_FUNC (fixP->fx_addsy)
25309 && fixP->fx_subsy == NULL)
c921be7d 25310 return FALSE;
a737bd4d 25311
c19d1205
ZW
25312 /* We need the symbol name for the VTABLE entries. */
25313 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
25314 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 25315 return FALSE;
404ff6b5 25316
c19d1205
ZW
25317 /* Don't allow symbols to be discarded on GOT related relocs. */
25318 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
25319 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
25320 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
25321 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 25322 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
25323 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
25324 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 25325 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 25326 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 25327 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 25328 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
25329 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
25330 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
25331 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
25332 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
25333 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 25334 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 25335 return FALSE;
a737bd4d 25336
4962c51a
MS
25337 /* Similarly for group relocations. */
25338 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25339 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25340 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 25341 return FALSE;
4962c51a 25342
79947c54
CD
25343 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
25344 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
25345 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
25346 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
25347 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
25348 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
25349 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
25350 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
25351 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 25352 return FALSE;
79947c54 25353
72d98d16
MG
25354 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
25355 offsets, so keep these symbols. */
25356 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
25357 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
25358 return FALSE;
25359
c921be7d 25360 return TRUE;
a737bd4d 25361}
0ffdc86c
NC
25362#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
25363
25364#ifdef OBJ_ELF
c19d1205
ZW
25365const char *
25366elf32_arm_target_format (void)
404ff6b5 25367{
c19d1205
ZW
25368#ifdef TE_SYMBIAN
25369 return (target_big_endian
25370 ? "elf32-bigarm-symbian"
25371 : "elf32-littlearm-symbian");
25372#elif defined (TE_VXWORKS)
25373 return (target_big_endian
25374 ? "elf32-bigarm-vxworks"
25375 : "elf32-littlearm-vxworks");
b38cadfb
NC
25376#elif defined (TE_NACL)
25377 return (target_big_endian
25378 ? "elf32-bigarm-nacl"
25379 : "elf32-littlearm-nacl");
c19d1205 25380#else
18a20338
CL
25381 if (arm_fdpic)
25382 {
25383 if (target_big_endian)
25384 return "elf32-bigarm-fdpic";
25385 else
25386 return "elf32-littlearm-fdpic";
25387 }
c19d1205 25388 else
18a20338
CL
25389 {
25390 if (target_big_endian)
25391 return "elf32-bigarm";
25392 else
25393 return "elf32-littlearm";
25394 }
c19d1205 25395#endif
404ff6b5
AH
25396}
25397
c19d1205
ZW
25398void
25399armelf_frob_symbol (symbolS * symp,
25400 int * puntp)
404ff6b5 25401{
c19d1205
ZW
25402 elf_frob_symbol (symp, puntp);
25403}
25404#endif
404ff6b5 25405
c19d1205 25406/* MD interface: Finalization. */
a737bd4d 25407
c19d1205
ZW
25408void
25409arm_cleanup (void)
25410{
25411 literal_pool * pool;
a737bd4d 25412
e07e6e58
NC
25413 /* Ensure that all the IT blocks are properly closed. */
25414 check_it_blocks_finished ();
25415
c19d1205
ZW
25416 for (pool = list_of_pools; pool; pool = pool->next)
25417 {
5f4273c7 25418 /* Put it at the end of the relevant section. */
c19d1205
ZW
25419 subseg_set (pool->section, pool->sub_section);
25420#ifdef OBJ_ELF
25421 arm_elf_change_section ();
25422#endif
25423 s_ltorg (0);
25424 }
404ff6b5
AH
25425}
25426
cd000bff
DJ
25427#ifdef OBJ_ELF
25428/* Remove any excess mapping symbols generated for alignment frags in
25429 SEC. We may have created a mapping symbol before a zero byte
25430 alignment; remove it if there's a mapping symbol after the
25431 alignment. */
25432static void
25433check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
25434 void *dummy ATTRIBUTE_UNUSED)
25435{
25436 segment_info_type *seginfo = seg_info (sec);
25437 fragS *fragp;
25438
25439 if (seginfo == NULL || seginfo->frchainP == NULL)
25440 return;
25441
25442 for (fragp = seginfo->frchainP->frch_root;
25443 fragp != NULL;
25444 fragp = fragp->fr_next)
25445 {
25446 symbolS *sym = fragp->tc_frag_data.last_map;
25447 fragS *next = fragp->fr_next;
25448
25449 /* Variable-sized frags have been converted to fixed size by
25450 this point. But if this was variable-sized to start with,
25451 there will be a fixed-size frag after it. So don't handle
25452 next == NULL. */
25453 if (sym == NULL || next == NULL)
25454 continue;
25455
25456 if (S_GET_VALUE (sym) < next->fr_address)
25457 /* Not at the end of this frag. */
25458 continue;
25459 know (S_GET_VALUE (sym) == next->fr_address);
25460
25461 do
25462 {
25463 if (next->tc_frag_data.first_map != NULL)
25464 {
25465 /* Next frag starts with a mapping symbol. Discard this
25466 one. */
25467 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25468 break;
25469 }
25470
25471 if (next->fr_next == NULL)
25472 {
25473 /* This mapping symbol is at the end of the section. Discard
25474 it. */
25475 know (next->fr_fix == 0 && next->fr_var == 0);
25476 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25477 break;
25478 }
25479
25480 /* As long as we have empty frags without any mapping symbols,
25481 keep looking. */
25482 /* If the next frag is non-empty and does not start with a
25483 mapping symbol, then this mapping symbol is required. */
25484 if (next->fr_address != next->fr_next->fr_address)
25485 break;
25486
25487 next = next->fr_next;
25488 }
25489 while (next != NULL);
25490 }
25491}
25492#endif
25493
c19d1205
ZW
25494/* Adjust the symbol table. This marks Thumb symbols as distinct from
25495 ARM ones. */
404ff6b5 25496
c19d1205
ZW
25497void
25498arm_adjust_symtab (void)
404ff6b5 25499{
c19d1205
ZW
25500#ifdef OBJ_COFF
25501 symbolS * sym;
404ff6b5 25502
c19d1205
ZW
25503 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25504 {
25505 if (ARM_IS_THUMB (sym))
25506 {
25507 if (THUMB_IS_FUNC (sym))
25508 {
25509 /* Mark the symbol as a Thumb function. */
25510 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
25511 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
25512 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 25513
c19d1205
ZW
25514 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
25515 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
25516 else
25517 as_bad (_("%s: unexpected function type: %d"),
25518 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
25519 }
25520 else switch (S_GET_STORAGE_CLASS (sym))
25521 {
25522 case C_EXT:
25523 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
25524 break;
25525 case C_STAT:
25526 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
25527 break;
25528 case C_LABEL:
25529 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
25530 break;
25531 default:
25532 /* Do nothing. */
25533 break;
25534 }
25535 }
a737bd4d 25536
c19d1205
ZW
25537 if (ARM_IS_INTERWORK (sym))
25538 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 25539 }
c19d1205
ZW
25540#endif
25541#ifdef OBJ_ELF
25542 symbolS * sym;
25543 char bind;
404ff6b5 25544
c19d1205 25545 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 25546 {
c19d1205
ZW
25547 if (ARM_IS_THUMB (sym))
25548 {
25549 elf_symbol_type * elf_sym;
404ff6b5 25550
c19d1205
ZW
25551 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
25552 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 25553
b0796911
PB
25554 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
25555 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
25556 {
25557 /* If it's a .thumb_func, declare it as so,
25558 otherwise tag label as .code 16. */
25559 if (THUMB_IS_FUNC (sym))
39d911fc
TP
25560 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
25561 ST_BRANCH_TO_THUMB);
3ba67470 25562 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
25563 elf_sym->internal_elf_sym.st_info =
25564 ELF_ST_INFO (bind, STT_ARM_16BIT);
25565 }
25566 }
25567 }
cd000bff
DJ
25568
25569 /* Remove any overlapping mapping symbols generated by alignment frags. */
25570 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
25571 /* Now do generic ELF adjustments. */
25572 elf_adjust_symtab ();
c19d1205 25573#endif
404ff6b5
AH
25574}
25575
c19d1205 25576/* MD interface: Initialization. */
404ff6b5 25577
a737bd4d 25578static void
c19d1205 25579set_constant_flonums (void)
a737bd4d 25580{
c19d1205 25581 int i;
404ff6b5 25582
c19d1205
ZW
25583 for (i = 0; i < NUM_FLOAT_VALS; i++)
25584 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
25585 abort ();
a737bd4d 25586}
404ff6b5 25587
3e9e4fcf
JB
25588/* Auto-select Thumb mode if it's the only available instruction set for the
25589 given architecture. */
25590
25591static void
25592autoselect_thumb_from_cpu_variant (void)
25593{
25594 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
25595 opcode_select (16);
25596}
25597
c19d1205
ZW
25598void
25599md_begin (void)
a737bd4d 25600{
c19d1205
ZW
25601 unsigned mach;
25602 unsigned int i;
404ff6b5 25603
c19d1205
ZW
25604 if ( (arm_ops_hsh = hash_new ()) == NULL
25605 || (arm_cond_hsh = hash_new ()) == NULL
25606 || (arm_shift_hsh = hash_new ()) == NULL
25607 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 25608 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 25609 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
25610 || (arm_reloc_hsh = hash_new ()) == NULL
25611 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
25612 as_fatal (_("virtual memory exhausted"));
25613
25614 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 25615 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 25616 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 25617 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 25618 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 25619 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 25620 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 25621 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 25622 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 25623 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 25624 (void *) (v7m_psrs + i));
c19d1205 25625 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 25626 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
25627 for (i = 0;
25628 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
25629 i++)
d3ce72d0 25630 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 25631 (void *) (barrier_opt_names + i));
c19d1205 25632#ifdef OBJ_ELF
3da1d841
NC
25633 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
25634 {
25635 struct reloc_entry * entry = reloc_names + i;
25636
25637 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
25638 /* This makes encode_branch() use the EABI versions of this relocation. */
25639 entry->reloc = BFD_RELOC_UNUSED;
25640
25641 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
25642 }
c19d1205
ZW
25643#endif
25644
25645 set_constant_flonums ();
404ff6b5 25646
c19d1205
ZW
25647 /* Set the cpu variant based on the command-line options. We prefer
25648 -mcpu= over -march= if both are set (as for GCC); and we prefer
25649 -mfpu= over any other way of setting the floating point unit.
25650 Use of legacy options with new options are faulted. */
e74cfd16 25651 if (legacy_cpu)
404ff6b5 25652 {
e74cfd16 25653 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
25654 as_bad (_("use of old and new-style options to set CPU type"));
25655
4d354d8b 25656 selected_arch = *legacy_cpu;
404ff6b5 25657 }
4d354d8b
TP
25658 else if (mcpu_cpu_opt)
25659 {
25660 selected_arch = *mcpu_cpu_opt;
25661 selected_ext = *mcpu_ext_opt;
25662 }
25663 else if (march_cpu_opt)
c168ce07 25664 {
4d354d8b
TP
25665 selected_arch = *march_cpu_opt;
25666 selected_ext = *march_ext_opt;
c168ce07 25667 }
4d354d8b 25668 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 25669
e74cfd16 25670 if (legacy_fpu)
c19d1205 25671 {
e74cfd16 25672 if (mfpu_opt)
c19d1205 25673 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 25674
4d354d8b 25675 selected_fpu = *legacy_fpu;
03b1477f 25676 }
4d354d8b
TP
25677 else if (mfpu_opt)
25678 selected_fpu = *mfpu_opt;
25679 else
03b1477f 25680 {
45eb4c1b
NS
25681#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
25682 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
25683 /* Some environments specify a default FPU. If they don't, infer it
25684 from the processor. */
e74cfd16 25685 if (mcpu_fpu_opt)
4d354d8b 25686 selected_fpu = *mcpu_fpu_opt;
e7da50fa 25687 else if (march_fpu_opt)
4d354d8b 25688 selected_fpu = *march_fpu_opt;
39c2da32 25689#else
4d354d8b 25690 selected_fpu = fpu_default;
39c2da32 25691#endif
03b1477f
RE
25692 }
25693
4d354d8b 25694 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 25695 {
4d354d8b
TP
25696 if (!no_cpu_selected ())
25697 selected_fpu = fpu_default;
03b1477f 25698 else
4d354d8b 25699 selected_fpu = fpu_arch_fpa;
03b1477f
RE
25700 }
25701
ee065d83 25702#ifdef CPU_DEFAULT
4d354d8b 25703 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 25704 {
4d354d8b
TP
25705 selected_arch = cpu_default;
25706 selected_cpu = selected_arch;
ee065d83 25707 }
4d354d8b 25708 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 25709#else
4d354d8b
TP
25710 /* Autodection of feature mode: allow all features in cpu_variant but leave
25711 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
25712 after all instruction have been processed and we can decide what CPU
25713 should be selected. */
25714 if (ARM_FEATURE_ZERO (selected_arch))
25715 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 25716 else
4d354d8b 25717 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 25718#endif
03b1477f 25719
3e9e4fcf
JB
25720 autoselect_thumb_from_cpu_variant ();
25721
e74cfd16 25722 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 25723
f17c130b 25724#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 25725 {
7cc69913
NC
25726 unsigned int flags = 0;
25727
25728#if defined OBJ_ELF
25729 flags = meabi_flags;
d507cf36
PB
25730
25731 switch (meabi_flags)
33a392fb 25732 {
d507cf36 25733 case EF_ARM_EABI_UNKNOWN:
7cc69913 25734#endif
d507cf36
PB
25735 /* Set the flags in the private structure. */
25736 if (uses_apcs_26) flags |= F_APCS26;
25737 if (support_interwork) flags |= F_INTERWORK;
25738 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 25739 if (pic_code) flags |= F_PIC;
e74cfd16 25740 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
25741 flags |= F_SOFT_FLOAT;
25742
d507cf36
PB
25743 switch (mfloat_abi_opt)
25744 {
25745 case ARM_FLOAT_ABI_SOFT:
25746 case ARM_FLOAT_ABI_SOFTFP:
25747 flags |= F_SOFT_FLOAT;
25748 break;
33a392fb 25749
d507cf36
PB
25750 case ARM_FLOAT_ABI_HARD:
25751 if (flags & F_SOFT_FLOAT)
25752 as_bad (_("hard-float conflicts with specified fpu"));
25753 break;
25754 }
03b1477f 25755
e74cfd16
PB
25756 /* Using pure-endian doubles (even if soft-float). */
25757 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 25758 flags |= F_VFP_FLOAT;
f17c130b 25759
fde78edd 25760#if defined OBJ_ELF
e74cfd16 25761 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 25762 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
25763 break;
25764
8cb51566 25765 case EF_ARM_EABI_VER4:
3a4a14e9 25766 case EF_ARM_EABI_VER5:
c19d1205 25767 /* No additional flags to set. */
d507cf36
PB
25768 break;
25769
25770 default:
25771 abort ();
25772 }
7cc69913 25773#endif
b99bd4ef
NC
25774 bfd_set_private_flags (stdoutput, flags);
25775
25776 /* We have run out flags in the COFF header to encode the
25777 status of ATPCS support, so instead we create a dummy,
c19d1205 25778 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
25779 if (atpcs)
25780 {
25781 asection * sec;
25782
25783 sec = bfd_make_section (stdoutput, ".arm.atpcs");
25784
25785 if (sec != NULL)
25786 {
25787 bfd_set_section_flags
25788 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
25789 bfd_set_section_size (stdoutput, sec, 0);
25790 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
25791 }
25792 }
7cc69913 25793 }
f17c130b 25794#endif
b99bd4ef
NC
25795
25796 /* Record the CPU type as well. */
2d447fca
JM
25797 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
25798 mach = bfd_mach_arm_iWMMXt2;
25799 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 25800 mach = bfd_mach_arm_iWMMXt;
e74cfd16 25801 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 25802 mach = bfd_mach_arm_XScale;
e74cfd16 25803 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 25804 mach = bfd_mach_arm_ep9312;
e74cfd16 25805 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 25806 mach = bfd_mach_arm_5TE;
e74cfd16 25807 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 25808 {
e74cfd16 25809 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
25810 mach = bfd_mach_arm_5T;
25811 else
25812 mach = bfd_mach_arm_5;
25813 }
e74cfd16 25814 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 25815 {
e74cfd16 25816 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
25817 mach = bfd_mach_arm_4T;
25818 else
25819 mach = bfd_mach_arm_4;
25820 }
e74cfd16 25821 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 25822 mach = bfd_mach_arm_3M;
e74cfd16
PB
25823 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
25824 mach = bfd_mach_arm_3;
25825 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
25826 mach = bfd_mach_arm_2a;
25827 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
25828 mach = bfd_mach_arm_2;
25829 else
25830 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
25831
25832 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
25833}
25834
c19d1205 25835/* Command line processing. */
b99bd4ef 25836
c19d1205
ZW
25837/* md_parse_option
25838 Invocation line includes a switch not recognized by the base assembler.
25839 See if it's a processor-specific option.
b99bd4ef 25840
c19d1205
ZW
25841 This routine is somewhat complicated by the need for backwards
25842 compatibility (since older releases of gcc can't be changed).
25843 The new options try to make the interface as compatible as
25844 possible with GCC.
b99bd4ef 25845
c19d1205 25846 New options (supported) are:
b99bd4ef 25847
c19d1205
ZW
25848 -mcpu=<cpu name> Assemble for selected processor
25849 -march=<architecture name> Assemble for selected architecture
25850 -mfpu=<fpu architecture> Assemble for selected FPU.
25851 -EB/-mbig-endian Big-endian
25852 -EL/-mlittle-endian Little-endian
25853 -k Generate PIC code
25854 -mthumb Start in Thumb mode
25855 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 25856
278df34e 25857 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 25858 -m[no-]warn-syms Warn when symbols match instructions
267bf995 25859
c19d1205 25860 For now we will also provide support for:
b99bd4ef 25861
c19d1205
ZW
25862 -mapcs-32 32-bit Program counter
25863 -mapcs-26 26-bit Program counter
25864 -macps-float Floats passed in FP registers
25865 -mapcs-reentrant Reentrant code
25866 -matpcs
25867 (sometime these will probably be replaced with -mapcs=<list of options>
25868 and -matpcs=<list of options>)
b99bd4ef 25869
c19d1205
ZW
25870 The remaining options are only supported for back-wards compatibility.
25871 Cpu variants, the arm part is optional:
25872 -m[arm]1 Currently not supported.
25873 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
25874 -m[arm]3 Arm 3 processor
25875 -m[arm]6[xx], Arm 6 processors
25876 -m[arm]7[xx][t][[d]m] Arm 7 processors
25877 -m[arm]8[10] Arm 8 processors
25878 -m[arm]9[20][tdmi] Arm 9 processors
25879 -mstrongarm[110[0]] StrongARM processors
25880 -mxscale XScale processors
25881 -m[arm]v[2345[t[e]]] Arm architectures
25882 -mall All (except the ARM1)
25883 FP variants:
25884 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
25885 -mfpe-old (No float load/store multiples)
25886 -mvfpxd VFP Single precision
25887 -mvfp All VFP
25888 -mno-fpu Disable all floating point instructions
b99bd4ef 25889
c19d1205
ZW
25890 The following CPU names are recognized:
25891 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
25892 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
25893 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
25894 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
25895 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
25896 arm10t arm10e, arm1020t, arm1020e, arm10200e,
25897 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 25898
c19d1205 25899 */
b99bd4ef 25900
c19d1205 25901const char * md_shortopts = "m:k";
b99bd4ef 25902
c19d1205
ZW
25903#ifdef ARM_BI_ENDIAN
25904#define OPTION_EB (OPTION_MD_BASE + 0)
25905#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 25906#else
c19d1205
ZW
25907#if TARGET_BYTES_BIG_ENDIAN
25908#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 25909#else
c19d1205
ZW
25910#define OPTION_EL (OPTION_MD_BASE + 1)
25911#endif
b99bd4ef 25912#endif
845b51d6 25913#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 25914#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 25915
c19d1205 25916struct option md_longopts[] =
b99bd4ef 25917{
c19d1205
ZW
25918#ifdef OPTION_EB
25919 {"EB", no_argument, NULL, OPTION_EB},
25920#endif
25921#ifdef OPTION_EL
25922 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 25923#endif
845b51d6 25924 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
25925#ifdef OBJ_ELF
25926 {"fdpic", no_argument, NULL, OPTION_FDPIC},
25927#endif
c19d1205
ZW
25928 {NULL, no_argument, NULL, 0}
25929};
b99bd4ef 25930
c19d1205 25931size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 25932
c19d1205 25933struct arm_option_table
b99bd4ef 25934{
0198d5e6
TC
25935 const char * option; /* Option name to match. */
25936 const char * help; /* Help information. */
25937 int * var; /* Variable to change. */
25938 int value; /* What to change it to. */
25939 const char * deprecated; /* If non-null, print this message. */
c19d1205 25940};
b99bd4ef 25941
c19d1205
ZW
25942struct arm_option_table arm_opts[] =
25943{
25944 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
25945 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
25946 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
25947 &support_interwork, 1, NULL},
25948 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
25949 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
25950 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
25951 1, NULL},
25952 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
25953 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
25954 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
25955 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
25956 NULL},
b99bd4ef 25957
c19d1205
ZW
25958 /* These are recognized by the assembler, but have no affect on code. */
25959 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
25960 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
25961
25962 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
25963 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
25964 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
25965 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
25966 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
25967 {NULL, NULL, NULL, 0, NULL}
25968};
25969
25970struct arm_legacy_option_table
25971{
0198d5e6
TC
25972 const char * option; /* Option name to match. */
25973 const arm_feature_set ** var; /* Variable to change. */
25974 const arm_feature_set value; /* What to change it to. */
25975 const char * deprecated; /* If non-null, print this message. */
e74cfd16 25976};
b99bd4ef 25977
e74cfd16
PB
25978const struct arm_legacy_option_table arm_legacy_opts[] =
25979{
c19d1205
ZW
25980 /* DON'T add any new processors to this list -- we want the whole list
25981 to go away... Add them to the processors table instead. */
e74cfd16
PB
25982 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25983 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25984 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25985 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25986 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25987 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25988 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25989 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25990 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25991 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25992 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25993 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25994 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25995 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25996 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25997 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25998 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25999 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
26000 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
26001 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
26002 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
26003 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
26004 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
26005 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
26006 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
26007 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
26008 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
26009 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
26010 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
26011 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
26012 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
26013 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
26014 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
26015 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
26016 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
26017 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
26018 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
26019 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
26020 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
26021 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
26022 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
26023 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
26024 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
26025 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
26026 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
26027 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
26028 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26029 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26030 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26031 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26032 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
26033 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
26034 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
26035 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
26036 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
26037 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
26038 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
26039 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
26040 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
26041 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
26042 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
26043 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
26044 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
26045 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
26046 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
26047 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
26048 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
26049 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
26050 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
26051 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 26052 N_("use -mcpu=strongarm110")},
e74cfd16 26053 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 26054 N_("use -mcpu=strongarm1100")},
e74cfd16 26055 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 26056 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
26057 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
26058 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
26059 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 26060
c19d1205 26061 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
26062 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
26063 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
26064 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
26065 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
26066 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
26067 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
26068 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
26069 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
26070 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
26071 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
26072 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
26073 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
26074 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
26075 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
26076 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
26077 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
26078 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
26079 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 26080
c19d1205 26081 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
26082 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
26083 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
26084 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
26085 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 26086 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 26087
e74cfd16 26088 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 26089};
7ed4c4c5 26090
c19d1205 26091struct arm_cpu_option_table
7ed4c4c5 26092{
0198d5e6
TC
26093 const char * name;
26094 size_t name_len;
26095 const arm_feature_set value;
26096 const arm_feature_set ext;
c19d1205
ZW
26097 /* For some CPUs we assume an FPU unless the user explicitly sets
26098 -mfpu=... */
0198d5e6 26099 const arm_feature_set default_fpu;
ee065d83
PB
26100 /* The canonical name of the CPU, or NULL to use NAME converted to upper
26101 case. */
0198d5e6 26102 const char * canonical_name;
c19d1205 26103};
7ed4c4c5 26104
c19d1205
ZW
26105/* This list should, at a minimum, contain all the cpu names
26106 recognized by GCC. */
996b5569 26107#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 26108
e74cfd16 26109static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 26110{
996b5569
TP
26111 ARM_CPU_OPT ("all", NULL, ARM_ANY,
26112 ARM_ARCH_NONE,
26113 FPU_ARCH_FPA),
26114 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
26115 ARM_ARCH_NONE,
26116 FPU_ARCH_FPA),
26117 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
26118 ARM_ARCH_NONE,
26119 FPU_ARCH_FPA),
26120 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
26121 ARM_ARCH_NONE,
26122 FPU_ARCH_FPA),
26123 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
26124 ARM_ARCH_NONE,
26125 FPU_ARCH_FPA),
26126 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
26127 ARM_ARCH_NONE,
26128 FPU_ARCH_FPA),
26129 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
26130 ARM_ARCH_NONE,
26131 FPU_ARCH_FPA),
26132 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
26133 ARM_ARCH_NONE,
26134 FPU_ARCH_FPA),
26135 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
26136 ARM_ARCH_NONE,
26137 FPU_ARCH_FPA),
26138 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
26139 ARM_ARCH_NONE,
26140 FPU_ARCH_FPA),
26141 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
26142 ARM_ARCH_NONE,
26143 FPU_ARCH_FPA),
26144 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
26145 ARM_ARCH_NONE,
26146 FPU_ARCH_FPA),
26147 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
26148 ARM_ARCH_NONE,
26149 FPU_ARCH_FPA),
26150 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
26151 ARM_ARCH_NONE,
26152 FPU_ARCH_FPA),
26153 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
26154 ARM_ARCH_NONE,
26155 FPU_ARCH_FPA),
26156 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
26157 ARM_ARCH_NONE,
26158 FPU_ARCH_FPA),
26159 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
26160 ARM_ARCH_NONE,
26161 FPU_ARCH_FPA),
26162 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
26163 ARM_ARCH_NONE,
26164 FPU_ARCH_FPA),
26165 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
26166 ARM_ARCH_NONE,
26167 FPU_ARCH_FPA),
26168 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
26169 ARM_ARCH_NONE,
26170 FPU_ARCH_FPA),
26171 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
26172 ARM_ARCH_NONE,
26173 FPU_ARCH_FPA),
26174 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
26175 ARM_ARCH_NONE,
26176 FPU_ARCH_FPA),
26177 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
26178 ARM_ARCH_NONE,
26179 FPU_ARCH_FPA),
26180 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
26181 ARM_ARCH_NONE,
26182 FPU_ARCH_FPA),
26183 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
26184 ARM_ARCH_NONE,
26185 FPU_ARCH_FPA),
26186 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
26187 ARM_ARCH_NONE,
26188 FPU_ARCH_FPA),
26189 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
26190 ARM_ARCH_NONE,
26191 FPU_ARCH_FPA),
26192 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
26193 ARM_ARCH_NONE,
26194 FPU_ARCH_FPA),
26195 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
26196 ARM_ARCH_NONE,
26197 FPU_ARCH_FPA),
26198 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
26199 ARM_ARCH_NONE,
26200 FPU_ARCH_FPA),
26201 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
26202 ARM_ARCH_NONE,
26203 FPU_ARCH_FPA),
26204 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
26205 ARM_ARCH_NONE,
26206 FPU_ARCH_FPA),
26207 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
26208 ARM_ARCH_NONE,
26209 FPU_ARCH_FPA),
26210 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
26211 ARM_ARCH_NONE,
26212 FPU_ARCH_FPA),
26213 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
26214 ARM_ARCH_NONE,
26215 FPU_ARCH_FPA),
26216 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
26217 ARM_ARCH_NONE,
26218 FPU_ARCH_FPA),
26219 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
26220 ARM_ARCH_NONE,
26221 FPU_ARCH_FPA),
26222 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
26223 ARM_ARCH_NONE,
26224 FPU_ARCH_FPA),
26225 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
26226 ARM_ARCH_NONE,
26227 FPU_ARCH_FPA),
26228 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
26229 ARM_ARCH_NONE,
26230 FPU_ARCH_FPA),
26231 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
26232 ARM_ARCH_NONE,
26233 FPU_ARCH_FPA),
26234 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
26235 ARM_ARCH_NONE,
26236 FPU_ARCH_FPA),
26237 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
26238 ARM_ARCH_NONE,
26239 FPU_ARCH_FPA),
26240 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
26241 ARM_ARCH_NONE,
26242 FPU_ARCH_FPA),
26243 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
26244 ARM_ARCH_NONE,
26245 FPU_ARCH_FPA),
26246 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
26247 ARM_ARCH_NONE,
26248 FPU_ARCH_FPA),
26249
c19d1205
ZW
26250 /* For V5 or later processors we default to using VFP; but the user
26251 should really set the FPU type explicitly. */
996b5569
TP
26252 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
26253 ARM_ARCH_NONE,
26254 FPU_ARCH_VFP_V2),
26255 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
26256 ARM_ARCH_NONE,
26257 FPU_ARCH_VFP_V2),
26258 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26259 ARM_ARCH_NONE,
26260 FPU_ARCH_VFP_V2),
26261 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26262 ARM_ARCH_NONE,
26263 FPU_ARCH_VFP_V2),
26264 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
26265 ARM_ARCH_NONE,
26266 FPU_ARCH_VFP_V2),
26267 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
26268 ARM_ARCH_NONE,
26269 FPU_ARCH_VFP_V2),
26270 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
26271 ARM_ARCH_NONE,
26272 FPU_ARCH_VFP_V2),
26273 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
26274 ARM_ARCH_NONE,
26275 FPU_ARCH_VFP_V2),
26276 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
26277 ARM_ARCH_NONE,
26278 FPU_ARCH_VFP_V2),
26279 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
26280 ARM_ARCH_NONE,
26281 FPU_ARCH_VFP_V2),
26282 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
26283 ARM_ARCH_NONE,
26284 FPU_ARCH_VFP_V2),
26285 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
26286 ARM_ARCH_NONE,
26287 FPU_ARCH_VFP_V2),
26288 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
26289 ARM_ARCH_NONE,
26290 FPU_ARCH_VFP_V1),
26291 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
26292 ARM_ARCH_NONE,
26293 FPU_ARCH_VFP_V1),
26294 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
26295 ARM_ARCH_NONE,
26296 FPU_ARCH_VFP_V2),
26297 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
26298 ARM_ARCH_NONE,
26299 FPU_ARCH_VFP_V2),
26300 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
26301 ARM_ARCH_NONE,
26302 FPU_ARCH_VFP_V1),
26303 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
26304 ARM_ARCH_NONE,
26305 FPU_ARCH_VFP_V2),
26306 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
26307 ARM_ARCH_NONE,
26308 FPU_ARCH_VFP_V2),
26309 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
26310 ARM_ARCH_NONE,
26311 FPU_ARCH_VFP_V2),
26312 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
26313 ARM_ARCH_NONE,
26314 FPU_ARCH_VFP_V2),
26315 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
26316 ARM_ARCH_NONE,
26317 FPU_ARCH_VFP_V2),
26318 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
26319 ARM_ARCH_NONE,
26320 FPU_ARCH_VFP_V2),
26321 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
26322 ARM_ARCH_NONE,
26323 FPU_ARCH_VFP_V2),
26324 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
26325 ARM_ARCH_NONE,
26326 FPU_ARCH_VFP_V2),
26327 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
26328 ARM_ARCH_NONE,
26329 FPU_ARCH_VFP_V2),
26330 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
26331 ARM_ARCH_NONE,
26332 FPU_NONE),
26333 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
26334 ARM_ARCH_NONE,
26335 FPU_NONE),
26336 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
26337 ARM_ARCH_NONE,
26338 FPU_ARCH_VFP_V2),
26339 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
26340 ARM_ARCH_NONE,
26341 FPU_ARCH_VFP_V2),
26342 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
26343 ARM_ARCH_NONE,
26344 FPU_ARCH_VFP_V2),
26345 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
26346 ARM_ARCH_NONE,
26347 FPU_NONE),
26348 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
26349 ARM_ARCH_NONE,
26350 FPU_NONE),
26351 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
26352 ARM_ARCH_NONE,
26353 FPU_ARCH_VFP_V2),
26354 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
26355 ARM_ARCH_NONE,
26356 FPU_NONE),
26357 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
26358 ARM_ARCH_NONE,
26359 FPU_ARCH_VFP_V2),
26360 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
26361 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26362 FPU_NONE),
26363 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
26364 ARM_ARCH_NONE,
26365 FPU_ARCH_NEON_VFP_V4),
26366 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
26367 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26368 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26369 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
26370 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26371 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26372 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
26373 ARM_ARCH_NONE,
26374 FPU_ARCH_NEON_VFP_V4),
26375 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
26376 ARM_ARCH_NONE,
26377 FPU_ARCH_NEON_VFP_V4),
26378 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
26379 ARM_ARCH_NONE,
26380 FPU_ARCH_NEON_VFP_V4),
26381 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
26382 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26383 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26384 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
26385 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26386 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26387 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
26388 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26389 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
26390 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
26391 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 26392 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
26393 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
26394 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26395 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26396 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
26397 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26398 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26399 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
26400 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26401 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
26402 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
26403 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 26404 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 26405 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
26406 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26407 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
26408 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
26409 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26410 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
26411 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
26412 ARM_ARCH_NONE,
26413 FPU_NONE),
26414 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
26415 ARM_ARCH_NONE,
26416 FPU_ARCH_VFP_V3D16),
26417 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
26418 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26419 FPU_NONE),
26420 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
26421 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26422 FPU_ARCH_VFP_V3D16),
26423 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
26424 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26425 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
26426 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
26427 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26428 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
26429 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
26430 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26431 FPU_NONE),
26432 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
26433 ARM_ARCH_NONE,
26434 FPU_NONE),
26435 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
26436 ARM_ARCH_NONE,
26437 FPU_NONE),
26438 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
26439 ARM_ARCH_NONE,
26440 FPU_NONE),
26441 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
26442 ARM_ARCH_NONE,
26443 FPU_NONE),
26444 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
26445 ARM_ARCH_NONE,
26446 FPU_NONE),
26447 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
26448 ARM_ARCH_NONE,
26449 FPU_NONE),
26450 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
26451 ARM_ARCH_NONE,
26452 FPU_NONE),
26453 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
26454 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26455 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
26456 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
26457 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26458 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 26459 /* ??? XSCALE is really an architecture. */
996b5569
TP
26460 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
26461 ARM_ARCH_NONE,
26462 FPU_ARCH_VFP_V2),
26463
c19d1205 26464 /* ??? iwmmxt is not a processor. */
996b5569
TP
26465 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
26466 ARM_ARCH_NONE,
26467 FPU_ARCH_VFP_V2),
26468 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
26469 ARM_ARCH_NONE,
26470 FPU_ARCH_VFP_V2),
26471 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
26472 ARM_ARCH_NONE,
26473 FPU_ARCH_VFP_V2),
26474
0198d5e6 26475 /* Maverick. */
996b5569
TP
26476 ARM_CPU_OPT ("ep9312", "ARM920T",
26477 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
26478 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
26479
da4339ed 26480 /* Marvell processors. */
996b5569
TP
26481 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
26482 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26483 FPU_ARCH_VFP_V3D16),
26484 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
26485 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26486 FPU_ARCH_NEON_VFP_V4),
da4339ed 26487
996b5569
TP
26488 /* APM X-Gene family. */
26489 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
26490 ARM_ARCH_NONE,
26491 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26492 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
26493 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26494 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26495
26496 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 26497};
f3bad469 26498#undef ARM_CPU_OPT
7ed4c4c5 26499
34ef62f4
AV
26500struct arm_ext_table
26501{
26502 const char * name;
26503 size_t name_len;
26504 const arm_feature_set merge;
26505 const arm_feature_set clear;
26506};
26507
c19d1205 26508struct arm_arch_option_table
7ed4c4c5 26509{
34ef62f4
AV
26510 const char * name;
26511 size_t name_len;
26512 const arm_feature_set value;
26513 const arm_feature_set default_fpu;
26514 const struct arm_ext_table * ext_table;
26515};
26516
26517/* Used to add support for +E and +noE extension. */
26518#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
26519/* Used to add support for a +E extension. */
26520#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
26521/* Used to add support for a +noE extension. */
26522#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
26523
26524#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
26525 ~0 & ~FPU_ENDIAN_PURE)
26526
26527static const struct arm_ext_table armv5te_ext_table[] =
26528{
26529 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
26530 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26531};
26532
26533static const struct arm_ext_table armv7_ext_table[] =
26534{
26535 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26536 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26537};
26538
26539static const struct arm_ext_table armv7ve_ext_table[] =
26540{
26541 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
26542 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
26543 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
26544 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26545 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
26546 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
26547 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
26548
26549 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
26550 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
26551
26552 /* Aliases for +simd. */
26553 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
26554
26555 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26556 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26557 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
26558
26559 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26560};
26561
26562static const struct arm_ext_table armv7a_ext_table[] =
26563{
26564 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26565 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
26566 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
26567 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26568 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
26569 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
26570 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
26571
26572 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
26573 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
26574
26575 /* Aliases for +simd. */
26576 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26577 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26578
26579 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
26580 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
26581
26582 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
26583 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
26584 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26585};
26586
26587static const struct arm_ext_table armv7r_ext_table[] =
26588{
26589 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
26590 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
26591 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26592 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
26593 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
26594 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26595 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26596 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
26597 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26598};
26599
26600static const struct arm_ext_table armv7em_ext_table[] =
26601{
26602 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
26603 /* Alias for +fp, used to be known as fpv4-sp-d16. */
26604 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
26605 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
26606 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
26607 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
26608 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26609};
26610
26611static const struct arm_ext_table armv8a_ext_table[] =
26612{
26613 ARM_ADD ("crc", ARCH_CRC_ARMV8),
26614 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
26615 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26616 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26617
26618 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26619 should use the +simd option to turn on FP. */
26620 ARM_REMOVE ("fp", ALL_FP),
26621 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26622 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26623 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26624};
26625
26626
26627static const struct arm_ext_table armv81a_ext_table[] =
26628{
26629 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
26630 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
26631 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26632
26633 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26634 should use the +simd option to turn on FP. */
26635 ARM_REMOVE ("fp", ALL_FP),
26636 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26637 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26638 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26639};
26640
26641static const struct arm_ext_table armv82a_ext_table[] =
26642{
26643 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
26644 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
26645 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
26646 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
26647 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26648 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26649
26650 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26651 should use the +simd option to turn on FP. */
26652 ARM_REMOVE ("fp", ALL_FP),
26653 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26654 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26655 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26656};
26657
26658static const struct arm_ext_table armv84a_ext_table[] =
26659{
26660 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26661 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
26662 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
26663 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26664
26665 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26666 should use the +simd option to turn on FP. */
26667 ARM_REMOVE ("fp", ALL_FP),
26668 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26669 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26670 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26671};
26672
26673static const struct arm_ext_table armv85a_ext_table[] =
26674{
26675 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26676 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
26677 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
26678 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26679
26680 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26681 should use the +simd option to turn on FP. */
26682 ARM_REMOVE ("fp", ALL_FP),
26683 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26684};
26685
26686static const struct arm_ext_table armv8m_main_ext_table[] =
26687{
26688 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26689 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
26690 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
26691 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
26692 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26693};
26694
e0991585
AV
26695static const struct arm_ext_table armv8_1m_main_ext_table[] =
26696{
26697 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26698 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
26699 ARM_EXT ("fp",
26700 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
26701 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
26702 ALL_FP),
26703 ARM_ADD ("fp.dp",
26704 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
26705 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
26706 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26707};
26708
34ef62f4
AV
26709static const struct arm_ext_table armv8r_ext_table[] =
26710{
26711 ARM_ADD ("crc", ARCH_CRC_ARMV8),
26712 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
26713 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26714 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26715 ARM_REMOVE ("fp", ALL_FP),
26716 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
26717 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 26718};
7ed4c4c5 26719
c19d1205
ZW
26720/* This list should, at a minimum, contain all the architecture names
26721 recognized by GCC. */
34ef62f4
AV
26722#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
26723#define ARM_ARCH_OPT2(N, V, DF, ext) \
26724 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 26725
e74cfd16 26726static const struct arm_arch_option_table arm_archs[] =
c19d1205 26727{
497d849d
TP
26728 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
26729 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
26730 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
26731 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
26732 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
26733 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
26734 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
26735 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
26736 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
26737 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
26738 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
26739 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
26740 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
26741 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
26742 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
26743 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
26744 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
26745 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
26746 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
26747 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
26748 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
26749 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
26750 kept to preserve existing behaviour. */
34ef62f4
AV
26751 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
26752 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
26753 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
26754 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
26755 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
26756 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
26757 kept to preserve existing behaviour. */
34ef62f4
AV
26758 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
26759 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
26760 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
26761 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 26762 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
26763 /* The official spelling of the ARMv7 profile variants is the dashed form.
26764 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
26765 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
26766 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
26767 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 26768 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
26769 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
26770 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 26771 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 26772 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 26773 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
26774 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
26775 armv8m_main),
e0991585
AV
26776 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
26777 armv8_1m_main),
34ef62f4
AV
26778 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
26779 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
26780 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
26781 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
26782 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
26783 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
26784 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
26785 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
26786 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
26787 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 26788 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 26789};
f3bad469 26790#undef ARM_ARCH_OPT
7ed4c4c5 26791
69133863 26792/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 26793
69133863 26794struct arm_option_extension_value_table
c19d1205 26795{
0198d5e6
TC
26796 const char * name;
26797 size_t name_len;
26798 const arm_feature_set merge_value;
26799 const arm_feature_set clear_value;
d942732e
TP
26800 /* List of architectures for which an extension is available. ARM_ARCH_NONE
26801 indicates that an extension is available for all architectures while
26802 ARM_ANY marks an empty entry. */
0198d5e6 26803 const arm_feature_set allowed_archs[2];
c19d1205 26804};
7ed4c4c5 26805
0198d5e6
TC
26806/* The following table must be in alphabetical order with a NULL last entry. */
26807
d942732e
TP
26808#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
26809#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 26810
34ef62f4
AV
26811/* DEPRECATED: Refrain from using this table to add any new extensions, instead
26812 use the context sensitive approach using arm_ext_table's. */
69133863 26813static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 26814{
823d2571
TG
26815 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26816 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 26817 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
26818 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
26819 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
26820 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
26821 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
26822 ARM_ARCH_V8_2A),
15afaa63
TP
26823 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26824 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26825 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
26826 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
26827 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
26828 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26829 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26830 ARM_ARCH_V8_2A),
01f48020
TC
26831 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26832 | ARM_EXT2_FP16_FML),
26833 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26834 | ARM_EXT2_FP16_FML),
26835 ARM_ARCH_V8_2A),
d942732e 26836 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 26837 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
26838 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26839 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
26840 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
26841 Thumb divide instruction. Due to this having the same name as the
26842 previous entry, this will be ignored when doing command-line parsing and
26843 only considered by build attribute selection code. */
26844 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26845 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26846 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 26847 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 26848 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 26849 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 26850 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 26851 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
26852 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
26853 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 26854 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
26855 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26856 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
26857 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26858 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26859 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
26860 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
26861 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 26862 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
26863 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
26864 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
26865 ARM_ARCH_V8A),
4d1464f2
MW
26866 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
26867 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 26868 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
26869 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
26870 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 26871 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
26872 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
26873 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
26874 ARM_ARCH_V8A),
d942732e 26875 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 26876 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
26877 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
26878 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
26879 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
26880 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
26881 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
26882 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
26883 | ARM_EXT_DIV),
26884 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
26885 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26886 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
26887 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
26888 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 26889};
f3bad469 26890#undef ARM_EXT_OPT
69133863
MGD
26891
26892/* ISA floating-point and Advanced SIMD extensions. */
26893struct arm_option_fpu_value_table
26894{
0198d5e6
TC
26895 const char * name;
26896 const arm_feature_set value;
c19d1205 26897};
7ed4c4c5 26898
c19d1205
ZW
26899/* This list should, at a minimum, contain all the fpu names
26900 recognized by GCC. */
69133863 26901static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
26902{
26903 {"softfpa", FPU_NONE},
26904 {"fpe", FPU_ARCH_FPE},
26905 {"fpe2", FPU_ARCH_FPE},
26906 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
26907 {"fpa", FPU_ARCH_FPA},
26908 {"fpa10", FPU_ARCH_FPA},
26909 {"fpa11", FPU_ARCH_FPA},
26910 {"arm7500fe", FPU_ARCH_FPA},
26911 {"softvfp", FPU_ARCH_VFP},
26912 {"softvfp+vfp", FPU_ARCH_VFP_V2},
26913 {"vfp", FPU_ARCH_VFP_V2},
26914 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 26915 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
26916 {"vfp10", FPU_ARCH_VFP_V2},
26917 {"vfp10-r0", FPU_ARCH_VFP_V1},
26918 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
26919 {"vfpv2", FPU_ARCH_VFP_V2},
26920 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 26921 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 26922 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
26923 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
26924 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
26925 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
26926 {"arm1020t", FPU_ARCH_VFP_V1},
26927 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 26928 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
26929 {"arm1136jf-s", FPU_ARCH_VFP_V2},
26930 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 26931 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 26932 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 26933 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
26934 {"vfpv4", FPU_ARCH_VFP_V4},
26935 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 26936 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
26937 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
26938 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 26939 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
26940 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
26941 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
26942 {"crypto-neon-fp-armv8",
26943 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 26944 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
26945 {"crypto-neon-fp-armv8.1",
26946 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
26947 {NULL, ARM_ARCH_NONE}
26948};
26949
26950struct arm_option_value_table
26951{
e0471c16 26952 const char *name;
e74cfd16 26953 long value;
c19d1205 26954};
7ed4c4c5 26955
e74cfd16 26956static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
26957{
26958 {"hard", ARM_FLOAT_ABI_HARD},
26959 {"softfp", ARM_FLOAT_ABI_SOFTFP},
26960 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 26961 {NULL, 0}
c19d1205 26962};
7ed4c4c5 26963
c19d1205 26964#ifdef OBJ_ELF
3a4a14e9 26965/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 26966static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
26967{
26968 {"gnu", EF_ARM_EABI_UNKNOWN},
26969 {"4", EF_ARM_EABI_VER4},
3a4a14e9 26970 {"5", EF_ARM_EABI_VER5},
e74cfd16 26971 {NULL, 0}
c19d1205
ZW
26972};
26973#endif
7ed4c4c5 26974
c19d1205
ZW
26975struct arm_long_option_table
26976{
0198d5e6 26977 const char * option; /* Substring to match. */
e0471c16 26978 const char * help; /* Help information. */
17b9d67d 26979 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 26980 const char * deprecated; /* If non-null, print this message. */
c19d1205 26981};
7ed4c4c5 26982
c921be7d 26983static bfd_boolean
c168ce07 26984arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
26985 arm_feature_set *ext_set,
26986 const struct arm_ext_table *ext_table)
7ed4c4c5 26987{
69133863 26988 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
26989 extensions being added before being removed. We achieve this by having
26990 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 26991 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 26992 or removing it (0) and only allowing it to change in the order
69133863
MGD
26993 -1 -> 1 -> 0. */
26994 const struct arm_option_extension_value_table * opt = NULL;
d942732e 26995 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
26996 int adding_value = -1;
26997
c19d1205 26998 while (str != NULL && *str != 0)
7ed4c4c5 26999 {
82b8a785 27000 const char *ext;
f3bad469 27001 size_t len;
7ed4c4c5 27002
c19d1205
ZW
27003 if (*str != '+')
27004 {
27005 as_bad (_("invalid architectural extension"));
c921be7d 27006 return FALSE;
c19d1205 27007 }
7ed4c4c5 27008
c19d1205
ZW
27009 str++;
27010 ext = strchr (str, '+');
7ed4c4c5 27011
c19d1205 27012 if (ext != NULL)
f3bad469 27013 len = ext - str;
c19d1205 27014 else
f3bad469 27015 len = strlen (str);
7ed4c4c5 27016
f3bad469 27017 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
27018 {
27019 if (adding_value != 0)
27020 {
27021 adding_value = 0;
27022 opt = arm_extensions;
27023 }
27024
f3bad469 27025 len -= 2;
69133863
MGD
27026 str += 2;
27027 }
f3bad469 27028 else if (len > 0)
69133863
MGD
27029 {
27030 if (adding_value == -1)
27031 {
27032 adding_value = 1;
27033 opt = arm_extensions;
27034 }
27035 else if (adding_value != 1)
27036 {
27037 as_bad (_("must specify extensions to add before specifying "
27038 "those to remove"));
27039 return FALSE;
27040 }
27041 }
27042
f3bad469 27043 if (len == 0)
c19d1205
ZW
27044 {
27045 as_bad (_("missing architectural extension"));
c921be7d 27046 return FALSE;
c19d1205 27047 }
7ed4c4c5 27048
69133863
MGD
27049 gas_assert (adding_value != -1);
27050 gas_assert (opt != NULL);
27051
34ef62f4
AV
27052 if (ext_table != NULL)
27053 {
27054 const struct arm_ext_table * ext_opt = ext_table;
27055 bfd_boolean found = FALSE;
27056 for (; ext_opt->name != NULL; ext_opt++)
27057 if (ext_opt->name_len == len
27058 && strncmp (ext_opt->name, str, len) == 0)
27059 {
27060 if (adding_value)
27061 {
27062 if (ARM_FEATURE_ZERO (ext_opt->merge))
27063 /* TODO: Option not supported. When we remove the
27064 legacy table this case should error out. */
27065 continue;
27066
27067 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
27068 }
27069 else
27070 {
27071 if (ARM_FEATURE_ZERO (ext_opt->clear))
27072 /* TODO: Option not supported. When we remove the
27073 legacy table this case should error out. */
27074 continue;
27075 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
27076 }
27077 found = TRUE;
27078 break;
27079 }
27080 if (found)
27081 {
27082 str = ext;
27083 continue;
27084 }
27085 }
27086
69133863
MGD
27087 /* Scan over the options table trying to find an exact match. */
27088 for (; opt->name != NULL; opt++)
f3bad469 27089 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 27090 {
d942732e
TP
27091 int i, nb_allowed_archs =
27092 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 27093 /* Check we can apply the extension to this architecture. */
d942732e
TP
27094 for (i = 0; i < nb_allowed_archs; i++)
27095 {
27096 /* Empty entry. */
27097 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
27098 continue;
c168ce07 27099 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
27100 break;
27101 }
27102 if (i == nb_allowed_archs)
69133863
MGD
27103 {
27104 as_bad (_("extension does not apply to the base architecture"));
27105 return FALSE;
27106 }
27107
27108 /* Add or remove the extension. */
27109 if (adding_value)
4d354d8b 27110 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 27111 else
4d354d8b 27112 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 27113
3d030cdb
TP
27114 /* Allowing Thumb division instructions for ARMv7 in autodetection
27115 rely on this break so that duplicate extensions (extensions
27116 with the same name as a previous extension in the list) are not
27117 considered for command-line parsing. */
c19d1205
ZW
27118 break;
27119 }
7ed4c4c5 27120
c19d1205
ZW
27121 if (opt->name == NULL)
27122 {
69133863
MGD
27123 /* Did we fail to find an extension because it wasn't specified in
27124 alphabetical order, or because it does not exist? */
27125
27126 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 27127 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
27128 break;
27129
27130 if (opt->name == NULL)
27131 as_bad (_("unknown architectural extension `%s'"), str);
27132 else
27133 as_bad (_("architectural extensions must be specified in "
27134 "alphabetical order"));
27135
c921be7d 27136 return FALSE;
c19d1205 27137 }
69133863
MGD
27138 else
27139 {
27140 /* We should skip the extension we've just matched the next time
27141 round. */
27142 opt++;
27143 }
7ed4c4c5 27144
c19d1205
ZW
27145 str = ext;
27146 };
7ed4c4c5 27147
c921be7d 27148 return TRUE;
c19d1205 27149}
7ed4c4c5 27150
c921be7d 27151static bfd_boolean
17b9d67d 27152arm_parse_cpu (const char *str)
7ed4c4c5 27153{
f3bad469 27154 const struct arm_cpu_option_table *opt;
82b8a785 27155 const char *ext = strchr (str, '+');
f3bad469 27156 size_t len;
7ed4c4c5 27157
c19d1205 27158 if (ext != NULL)
f3bad469 27159 len = ext - str;
7ed4c4c5 27160 else
f3bad469 27161 len = strlen (str);
7ed4c4c5 27162
f3bad469 27163 if (len == 0)
7ed4c4c5 27164 {
c19d1205 27165 as_bad (_("missing cpu name `%s'"), str);
c921be7d 27166 return FALSE;
7ed4c4c5
NC
27167 }
27168
c19d1205 27169 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 27170 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 27171 {
c168ce07 27172 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
27173 if (mcpu_ext_opt == NULL)
27174 mcpu_ext_opt = XNEW (arm_feature_set);
27175 *mcpu_ext_opt = opt->ext;
e74cfd16 27176 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 27177 if (opt->canonical_name)
ef8e6722
JW
27178 {
27179 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
27180 strcpy (selected_cpu_name, opt->canonical_name);
27181 }
ee065d83
PB
27182 else
27183 {
f3bad469 27184 size_t i;
c921be7d 27185
ef8e6722
JW
27186 if (len >= sizeof selected_cpu_name)
27187 len = (sizeof selected_cpu_name) - 1;
27188
f3bad469 27189 for (i = 0; i < len; i++)
ee065d83
PB
27190 selected_cpu_name[i] = TOUPPER (opt->name[i]);
27191 selected_cpu_name[i] = 0;
27192 }
7ed4c4c5 27193
c19d1205 27194 if (ext != NULL)
34ef62f4 27195 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 27196
c921be7d 27197 return TRUE;
c19d1205 27198 }
7ed4c4c5 27199
c19d1205 27200 as_bad (_("unknown cpu `%s'"), str);
c921be7d 27201 return FALSE;
7ed4c4c5
NC
27202}
27203
c921be7d 27204static bfd_boolean
17b9d67d 27205arm_parse_arch (const char *str)
7ed4c4c5 27206{
e74cfd16 27207 const struct arm_arch_option_table *opt;
82b8a785 27208 const char *ext = strchr (str, '+');
f3bad469 27209 size_t len;
7ed4c4c5 27210
c19d1205 27211 if (ext != NULL)
f3bad469 27212 len = ext - str;
7ed4c4c5 27213 else
f3bad469 27214 len = strlen (str);
7ed4c4c5 27215
f3bad469 27216 if (len == 0)
7ed4c4c5 27217 {
c19d1205 27218 as_bad (_("missing architecture name `%s'"), str);
c921be7d 27219 return FALSE;
7ed4c4c5
NC
27220 }
27221
c19d1205 27222 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 27223 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 27224 {
e74cfd16 27225 march_cpu_opt = &opt->value;
4d354d8b
TP
27226 if (march_ext_opt == NULL)
27227 march_ext_opt = XNEW (arm_feature_set);
27228 *march_ext_opt = arm_arch_none;
e74cfd16 27229 march_fpu_opt = &opt->default_fpu;
5f4273c7 27230 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 27231
c19d1205 27232 if (ext != NULL)
34ef62f4
AV
27233 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
27234 opt->ext_table);
7ed4c4c5 27235
c921be7d 27236 return TRUE;
c19d1205
ZW
27237 }
27238
27239 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 27240 return FALSE;
7ed4c4c5 27241}
eb043451 27242
c921be7d 27243static bfd_boolean
17b9d67d 27244arm_parse_fpu (const char * str)
c19d1205 27245{
69133863 27246 const struct arm_option_fpu_value_table * opt;
b99bd4ef 27247
c19d1205
ZW
27248 for (opt = arm_fpus; opt->name != NULL; opt++)
27249 if (streq (opt->name, str))
27250 {
e74cfd16 27251 mfpu_opt = &opt->value;
c921be7d 27252 return TRUE;
c19d1205 27253 }
b99bd4ef 27254
c19d1205 27255 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 27256 return FALSE;
c19d1205
ZW
27257}
27258
c921be7d 27259static bfd_boolean
17b9d67d 27260arm_parse_float_abi (const char * str)
b99bd4ef 27261{
e74cfd16 27262 const struct arm_option_value_table * opt;
b99bd4ef 27263
c19d1205
ZW
27264 for (opt = arm_float_abis; opt->name != NULL; opt++)
27265 if (streq (opt->name, str))
27266 {
27267 mfloat_abi_opt = opt->value;
c921be7d 27268 return TRUE;
c19d1205 27269 }
cc8a6dd0 27270
c19d1205 27271 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 27272 return FALSE;
c19d1205 27273}
b99bd4ef 27274
c19d1205 27275#ifdef OBJ_ELF
c921be7d 27276static bfd_boolean
17b9d67d 27277arm_parse_eabi (const char * str)
c19d1205 27278{
e74cfd16 27279 const struct arm_option_value_table *opt;
cc8a6dd0 27280
c19d1205
ZW
27281 for (opt = arm_eabis; opt->name != NULL; opt++)
27282 if (streq (opt->name, str))
27283 {
27284 meabi_flags = opt->value;
c921be7d 27285 return TRUE;
c19d1205
ZW
27286 }
27287 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 27288 return FALSE;
c19d1205
ZW
27289}
27290#endif
cc8a6dd0 27291
c921be7d 27292static bfd_boolean
17b9d67d 27293arm_parse_it_mode (const char * str)
e07e6e58 27294{
c921be7d 27295 bfd_boolean ret = TRUE;
e07e6e58
NC
27296
27297 if (streq ("arm", str))
27298 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
27299 else if (streq ("thumb", str))
27300 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
27301 else if (streq ("always", str))
27302 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
27303 else if (streq ("never", str))
27304 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
27305 else
27306 {
27307 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 27308 "arm, thumb, always, or never."), str);
c921be7d 27309 ret = FALSE;
e07e6e58
NC
27310 }
27311
27312 return ret;
27313}
27314
2e6976a8 27315static bfd_boolean
17b9d67d 27316arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
27317{
27318 codecomposer_syntax = TRUE;
27319 arm_comment_chars[0] = ';';
27320 arm_line_separator_chars[0] = 0;
27321 return TRUE;
27322}
27323
c19d1205
ZW
27324struct arm_long_option_table arm_long_opts[] =
27325{
27326 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
27327 arm_parse_cpu, NULL},
27328 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
27329 arm_parse_arch, NULL},
27330 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
27331 arm_parse_fpu, NULL},
27332 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
27333 arm_parse_float_abi, NULL},
27334#ifdef OBJ_ELF
7fac0536 27335 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
27336 arm_parse_eabi, NULL},
27337#endif
e07e6e58
NC
27338 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
27339 arm_parse_it_mode, NULL},
2e6976a8
DG
27340 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
27341 arm_ccs_mode, NULL},
c19d1205
ZW
27342 {NULL, NULL, 0, NULL}
27343};
cc8a6dd0 27344
c19d1205 27345int
17b9d67d 27346md_parse_option (int c, const char * arg)
c19d1205
ZW
27347{
27348 struct arm_option_table *opt;
e74cfd16 27349 const struct arm_legacy_option_table *fopt;
c19d1205 27350 struct arm_long_option_table *lopt;
b99bd4ef 27351
c19d1205 27352 switch (c)
b99bd4ef 27353 {
c19d1205
ZW
27354#ifdef OPTION_EB
27355 case OPTION_EB:
27356 target_big_endian = 1;
27357 break;
27358#endif
cc8a6dd0 27359
c19d1205
ZW
27360#ifdef OPTION_EL
27361 case OPTION_EL:
27362 target_big_endian = 0;
27363 break;
27364#endif
b99bd4ef 27365
845b51d6
PB
27366 case OPTION_FIX_V4BX:
27367 fix_v4bx = TRUE;
27368 break;
27369
18a20338
CL
27370#ifdef OBJ_ELF
27371 case OPTION_FDPIC:
27372 arm_fdpic = TRUE;
27373 break;
27374#endif /* OBJ_ELF */
27375
c19d1205
ZW
27376 case 'a':
27377 /* Listing option. Just ignore these, we don't support additional
27378 ones. */
27379 return 0;
b99bd4ef 27380
c19d1205
ZW
27381 default:
27382 for (opt = arm_opts; opt->option != NULL; opt++)
27383 {
27384 if (c == opt->option[0]
27385 && ((arg == NULL && opt->option[1] == 0)
27386 || streq (arg, opt->option + 1)))
27387 {
c19d1205 27388 /* If the option is deprecated, tell the user. */
278df34e 27389 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
27390 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
27391 arg ? arg : "", _(opt->deprecated));
b99bd4ef 27392
c19d1205
ZW
27393 if (opt->var != NULL)
27394 *opt->var = opt->value;
cc8a6dd0 27395
c19d1205
ZW
27396 return 1;
27397 }
27398 }
b99bd4ef 27399
e74cfd16
PB
27400 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
27401 {
27402 if (c == fopt->option[0]
27403 && ((arg == NULL && fopt->option[1] == 0)
27404 || streq (arg, fopt->option + 1)))
27405 {
e74cfd16 27406 /* If the option is deprecated, tell the user. */
278df34e 27407 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
27408 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
27409 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
27410
27411 if (fopt->var != NULL)
27412 *fopt->var = &fopt->value;
27413
27414 return 1;
27415 }
27416 }
27417
c19d1205
ZW
27418 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
27419 {
27420 /* These options are expected to have an argument. */
27421 if (c == lopt->option[0]
27422 && arg != NULL
27423 && strncmp (arg, lopt->option + 1,
27424 strlen (lopt->option + 1)) == 0)
27425 {
c19d1205 27426 /* If the option is deprecated, tell the user. */
278df34e 27427 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
27428 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
27429 _(lopt->deprecated));
b99bd4ef 27430
c19d1205
ZW
27431 /* Call the sup-option parser. */
27432 return lopt->func (arg + strlen (lopt->option) - 1);
27433 }
27434 }
a737bd4d 27435
c19d1205
ZW
27436 return 0;
27437 }
a394c00f 27438
c19d1205
ZW
27439 return 1;
27440}
a394c00f 27441
c19d1205
ZW
27442void
27443md_show_usage (FILE * fp)
a394c00f 27444{
c19d1205
ZW
27445 struct arm_option_table *opt;
27446 struct arm_long_option_table *lopt;
a394c00f 27447
c19d1205 27448 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 27449
c19d1205
ZW
27450 for (opt = arm_opts; opt->option != NULL; opt++)
27451 if (opt->help != NULL)
27452 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 27453
c19d1205
ZW
27454 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
27455 if (lopt->help != NULL)
27456 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 27457
c19d1205
ZW
27458#ifdef OPTION_EB
27459 fprintf (fp, _("\
27460 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
27461#endif
27462
c19d1205
ZW
27463#ifdef OPTION_EL
27464 fprintf (fp, _("\
27465 -EL assemble code for a little-endian cpu\n"));
a737bd4d 27466#endif
845b51d6
PB
27467
27468 fprintf (fp, _("\
27469 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
27470
27471#ifdef OBJ_ELF
27472 fprintf (fp, _("\
27473 --fdpic generate an FDPIC object file\n"));
27474#endif /* OBJ_ELF */
c19d1205 27475}
ee065d83 27476
ee065d83 27477#ifdef OBJ_ELF
0198d5e6 27478
62b3e311
PB
27479typedef struct
27480{
27481 int val;
27482 arm_feature_set flags;
27483} cpu_arch_ver_table;
27484
2c6b98ea
TP
27485/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
27486 chronologically for architectures, with an exception for ARMv6-M and
27487 ARMv6S-M due to legacy reasons. No new architecture should have a
27488 special case. This allows for build attribute selection results to be
27489 stable when new architectures are added. */
62b3e311
PB
27490static const cpu_arch_ver_table cpu_arch_ver[] =
27491{
031254f2
AV
27492 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
27493 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
27494 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
27495 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
27496 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
27497 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
27498 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
27499 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
27500 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
27501 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
27502 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
27503 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
27504 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
27505 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
27506 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
27507 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
27508 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
27509 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
27510 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
27511 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
27512 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
27513 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
27514 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
27515 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
27516
27517 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
27518 always selected build attributes to match those of ARMv6-M
27519 (resp. ARMv6S-M). However, due to these architectures being a strict
27520 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
27521 would be selected when fully respecting chronology of architectures.
27522 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
27523 move them before ARMv7 architectures. */
031254f2
AV
27524 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
27525 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
27526
27527 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
27528 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
27529 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
27530 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
27531 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
27532 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
27533 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
27534 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
27535 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
27536 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
27537 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
27538 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
27539 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
27540 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
27541 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
27542 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
27543 {-1, ARM_ARCH_NONE}
62b3e311
PB
27544};
27545
ee3c0378 27546/* Set an attribute if it has not already been set by the user. */
0198d5e6 27547
ee3c0378
AS
27548static void
27549aeabi_set_attribute_int (int tag, int value)
27550{
27551 if (tag < 1
27552 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27553 || !attributes_set_explicitly[tag])
27554 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
27555}
27556
27557static void
27558aeabi_set_attribute_string (int tag, const char *value)
27559{
27560 if (tag < 1
27561 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27562 || !attributes_set_explicitly[tag])
27563 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
27564}
27565
2c6b98ea
TP
27566/* Return whether features in the *NEEDED feature set are available via
27567 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 27568
2c6b98ea
TP
27569static bfd_boolean
27570have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
27571 const arm_feature_set *needed)
27572{
27573 int i, nb_allowed_archs;
27574 arm_feature_set ext_fset;
27575 const struct arm_option_extension_value_table *opt;
27576
27577 ext_fset = arm_arch_none;
27578 for (opt = arm_extensions; opt->name != NULL; opt++)
27579 {
27580 /* Extension does not provide any feature we need. */
27581 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
27582 continue;
27583
27584 nb_allowed_archs =
27585 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
27586 for (i = 0; i < nb_allowed_archs; i++)
27587 {
27588 /* Empty entry. */
27589 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
27590 break;
27591
27592 /* Extension is available, add it. */
27593 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
27594 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
27595 }
27596 }
27597
27598 /* Can we enable all features in *needed? */
27599 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
27600}
27601
27602/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
27603 a given architecture feature set *ARCH_EXT_FSET including extension feature
27604 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
27605 - if true, check for an exact match of the architecture modulo extensions;
27606 - otherwise, select build attribute value of the first superset
27607 architecture released so that results remains stable when new architectures
27608 are added.
27609 For -march/-mcpu=all the build attribute value of the most featureful
27610 architecture is returned. Tag_CPU_arch_profile result is returned in
27611 PROFILE. */
0198d5e6 27612
2c6b98ea
TP
27613static int
27614get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
27615 const arm_feature_set *ext_fset,
27616 char *profile, int exact_match)
27617{
27618 arm_feature_set arch_fset;
27619 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
27620
27621 /* Select most featureful architecture with all its extensions if building
27622 for -march=all as the feature sets used to set build attributes. */
27623 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
27624 {
27625 /* Force revisiting of decision for each new architecture. */
031254f2 27626 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
27627 *profile = 'A';
27628 return TAG_CPU_ARCH_V8;
27629 }
27630
27631 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
27632
27633 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
27634 {
27635 arm_feature_set known_arch_fset;
27636
27637 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
27638 if (exact_match)
27639 {
27640 /* Base architecture match user-specified architecture and
27641 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
27642 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
27643 {
27644 p_ver_ret = p_ver;
27645 goto found;
27646 }
27647 /* Base architecture match user-specified architecture only
27648 (eg. ARMv6-M in the same case as above). Record it in case we
27649 find a match with above condition. */
27650 else if (p_ver_ret == NULL
27651 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
27652 p_ver_ret = p_ver;
27653 }
27654 else
27655 {
27656
27657 /* Architecture has all features wanted. */
27658 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
27659 {
27660 arm_feature_set added_fset;
27661
27662 /* Compute features added by this architecture over the one
27663 recorded in p_ver_ret. */
27664 if (p_ver_ret != NULL)
27665 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
27666 p_ver_ret->flags);
27667 /* First architecture that match incl. with extensions, or the
27668 only difference in features over the recorded match is
27669 features that were optional and are now mandatory. */
27670 if (p_ver_ret == NULL
27671 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
27672 {
27673 p_ver_ret = p_ver;
27674 goto found;
27675 }
27676 }
27677 else if (p_ver_ret == NULL)
27678 {
27679 arm_feature_set needed_ext_fset;
27680
27681 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
27682
27683 /* Architecture has all features needed when using some
27684 extensions. Record it and continue searching in case there
27685 exist an architecture providing all needed features without
27686 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
27687 OS extension). */
27688 if (have_ext_for_needed_feat_p (&known_arch_fset,
27689 &needed_ext_fset))
27690 p_ver_ret = p_ver;
27691 }
27692 }
27693 }
27694
27695 if (p_ver_ret == NULL)
27696 return -1;
27697
27698found:
27699 /* Tag_CPU_arch_profile. */
27700 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
27701 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
27702 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
27703 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
27704 *profile = 'A';
27705 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
27706 *profile = 'R';
27707 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
27708 *profile = 'M';
27709 else
27710 *profile = '\0';
27711 return p_ver_ret->val;
27712}
27713
ee065d83 27714/* Set the public EABI object attributes. */
0198d5e6 27715
c168ce07 27716static void
ee065d83
PB
27717aeabi_set_public_attributes (void)
27718{
b90d5ba0 27719 char profile = '\0';
2c6b98ea 27720 int arch = -1;
90ec0d68 27721 int virt_sec = 0;
bca38921 27722 int fp16_optional = 0;
2c6b98ea
TP
27723 int skip_exact_match = 0;
27724 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 27725
54bab281
TP
27726 /* Autodetection mode, choose the architecture based the instructions
27727 actually used. */
27728 if (no_cpu_selected ())
27729 {
27730 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 27731
54bab281
TP
27732 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
27733 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 27734
54bab281
TP
27735 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
27736 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 27737
54bab281 27738 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
27739 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27740 flags_ext = arm_arch_none;
27741 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
27742 selected_ext = flags_ext;
54bab281
TP
27743 selected_cpu = flags;
27744 }
27745 /* Otherwise, choose the architecture based on the capabilities of the
27746 requested cpu. */
27747 else
4d354d8b
TP
27748 {
27749 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
27750 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
27751 flags_ext = selected_ext;
27752 flags = selected_cpu;
27753 }
27754 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 27755
ddd7f988 27756 /* Allow the user to override the reported architecture. */
4d354d8b 27757 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 27758 {
4d354d8b 27759 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 27760 flags_ext = arm_arch_none;
7a1d4c38 27761 }
2c6b98ea 27762 else
4d354d8b 27763 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
27764
27765 /* When this function is run again after relaxation has happened there is no
27766 way to determine whether an architecture or CPU was specified by the user:
27767 - selected_cpu is set above for relaxation to work;
27768 - march_cpu_opt is not set if only -mcpu or .cpu is used;
27769 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
27770 Therefore, if not in -march=all case we first try an exact match and fall
27771 back to autodetection. */
27772 if (!skip_exact_match)
27773 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
27774 if (arch == -1)
27775 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
27776 if (arch == -1)
27777 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 27778
ee065d83
PB
27779 /* Tag_CPU_name. */
27780 if (selected_cpu_name[0])
27781 {
91d6fa6a 27782 char *q;
ee065d83 27783
91d6fa6a
NC
27784 q = selected_cpu_name;
27785 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
27786 {
27787 int i;
5f4273c7 27788
91d6fa6a
NC
27789 q += 4;
27790 for (i = 0; q[i]; i++)
27791 q[i] = TOUPPER (q[i]);
ee065d83 27792 }
91d6fa6a 27793 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 27794 }
62f3b8c8 27795
ee065d83 27796 /* Tag_CPU_arch. */
ee3c0378 27797 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 27798
62b3e311 27799 /* Tag_CPU_arch_profile. */
69239280
MGD
27800 if (profile != '\0')
27801 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 27802
15afaa63 27803 /* Tag_DSP_extension. */
4d354d8b 27804 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 27805 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 27806
2c6b98ea 27807 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 27808 /* Tag_ARM_ISA_use. */
ee3c0378 27809 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 27810 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 27811 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 27812
ee065d83 27813 /* Tag_THUMB_ISA_use. */
ee3c0378 27814 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 27815 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
27816 {
27817 int thumb_isa_use;
27818
27819 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 27820 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
27821 thumb_isa_use = 3;
27822 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
27823 thumb_isa_use = 2;
27824 else
27825 thumb_isa_use = 1;
27826 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
27827 }
62f3b8c8 27828
ee065d83 27829 /* Tag_VFP_arch. */
a715796b
TG
27830 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
27831 aeabi_set_attribute_int (Tag_VFP_arch,
27832 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27833 ? 7 : 8);
bca38921 27834 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
27835 aeabi_set_attribute_int (Tag_VFP_arch,
27836 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27837 ? 5 : 6);
27838 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
27839 {
27840 fp16_optional = 1;
27841 aeabi_set_attribute_int (Tag_VFP_arch, 3);
27842 }
ada65aa3 27843 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
27844 {
27845 aeabi_set_attribute_int (Tag_VFP_arch, 4);
27846 fp16_optional = 1;
27847 }
ee3c0378
AS
27848 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
27849 aeabi_set_attribute_int (Tag_VFP_arch, 2);
27850 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 27851 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 27852 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 27853
4547cb56
NC
27854 /* Tag_ABI_HardFP_use. */
27855 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
27856 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
27857 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
27858
ee065d83 27859 /* Tag_WMMX_arch. */
ee3c0378
AS
27860 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
27861 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
27862 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
27863 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 27864
ee3c0378 27865 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
27866 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
27867 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
27868 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
27869 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
27870 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
27871 {
27872 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
27873 {
27874 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
27875 }
27876 else
27877 {
27878 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
27879 fp16_optional = 1;
27880 }
27881 }
fa94de6b 27882
ee3c0378 27883 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 27884 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 27885 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 27886
69239280
MGD
27887 /* Tag_DIV_use.
27888
27889 We set Tag_DIV_use to two when integer divide instructions have been used
27890 in ARM state, or when Thumb integer divide instructions have been used,
27891 but we have no architecture profile set, nor have we any ARM instructions.
27892
4ed7ed8d
TP
27893 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
27894 by the base architecture.
bca38921 27895
69239280 27896 For new architectures we will have to check these tests. */
031254f2 27897 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
27898 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27899 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
27900 aeabi_set_attribute_int (Tag_DIV_use, 0);
27901 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
27902 || (profile == '\0'
27903 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
27904 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 27905 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
27906
27907 /* Tag_MP_extension_use. */
27908 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
27909 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
27910
27911 /* Tag Virtualization_use. */
27912 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
27913 virt_sec |= 1;
27914 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
27915 virt_sec |= 2;
27916 if (virt_sec != 0)
27917 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
27918}
27919
c168ce07
TP
27920/* Post relaxation hook. Recompute ARM attributes now that relaxation is
27921 finished and free extension feature bits which will not be used anymore. */
0198d5e6 27922
c168ce07
TP
27923void
27924arm_md_post_relax (void)
27925{
27926 aeabi_set_public_attributes ();
4d354d8b
TP
27927 XDELETE (mcpu_ext_opt);
27928 mcpu_ext_opt = NULL;
27929 XDELETE (march_ext_opt);
27930 march_ext_opt = NULL;
c168ce07
TP
27931}
27932
104d59d1 27933/* Add the default contents for the .ARM.attributes section. */
0198d5e6 27934
ee065d83
PB
27935void
27936arm_md_end (void)
27937{
ee065d83
PB
27938 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
27939 return;
27940
27941 aeabi_set_public_attributes ();
ee065d83 27942}
8463be01 27943#endif /* OBJ_ELF */
ee065d83 27944
ee065d83
PB
27945/* Parse a .cpu directive. */
27946
27947static void
27948s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
27949{
e74cfd16 27950 const struct arm_cpu_option_table *opt;
ee065d83
PB
27951 char *name;
27952 char saved_char;
27953
27954 name = input_line_pointer;
5f4273c7 27955 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27956 input_line_pointer++;
27957 saved_char = *input_line_pointer;
27958 *input_line_pointer = 0;
27959
27960 /* Skip the first "all" entry. */
27961 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
27962 if (streq (opt->name, name))
27963 {
4d354d8b
TP
27964 selected_arch = opt->value;
27965 selected_ext = opt->ext;
27966 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 27967 if (opt->canonical_name)
5f4273c7 27968 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
27969 else
27970 {
27971 int i;
27972 for (i = 0; opt->name[i]; i++)
27973 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 27974
ee065d83
PB
27975 selected_cpu_name[i] = 0;
27976 }
4d354d8b
TP
27977 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
27978
ee065d83
PB
27979 *input_line_pointer = saved_char;
27980 demand_empty_rest_of_line ();
27981 return;
27982 }
27983 as_bad (_("unknown cpu `%s'"), name);
27984 *input_line_pointer = saved_char;
27985 ignore_rest_of_line ();
27986}
27987
ee065d83
PB
27988/* Parse a .arch directive. */
27989
27990static void
27991s_arm_arch (int ignored ATTRIBUTE_UNUSED)
27992{
e74cfd16 27993 const struct arm_arch_option_table *opt;
ee065d83
PB
27994 char saved_char;
27995 char *name;
27996
27997 name = input_line_pointer;
5f4273c7 27998 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27999 input_line_pointer++;
28000 saved_char = *input_line_pointer;
28001 *input_line_pointer = 0;
28002
28003 /* Skip the first "all" entry. */
28004 for (opt = arm_archs + 1; opt->name != NULL; opt++)
28005 if (streq (opt->name, name))
28006 {
4d354d8b
TP
28007 selected_arch = opt->value;
28008 selected_ext = arm_arch_none;
28009 selected_cpu = selected_arch;
5f4273c7 28010 strcpy (selected_cpu_name, opt->name);
4d354d8b 28011 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
28012 *input_line_pointer = saved_char;
28013 demand_empty_rest_of_line ();
28014 return;
28015 }
28016
28017 as_bad (_("unknown architecture `%s'\n"), name);
28018 *input_line_pointer = saved_char;
28019 ignore_rest_of_line ();
28020}
28021
7a1d4c38
PB
28022/* Parse a .object_arch directive. */
28023
28024static void
28025s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
28026{
28027 const struct arm_arch_option_table *opt;
28028 char saved_char;
28029 char *name;
28030
28031 name = input_line_pointer;
5f4273c7 28032 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
28033 input_line_pointer++;
28034 saved_char = *input_line_pointer;
28035 *input_line_pointer = 0;
28036
28037 /* Skip the first "all" entry. */
28038 for (opt = arm_archs + 1; opt->name != NULL; opt++)
28039 if (streq (opt->name, name))
28040 {
4d354d8b 28041 selected_object_arch = opt->value;
7a1d4c38
PB
28042 *input_line_pointer = saved_char;
28043 demand_empty_rest_of_line ();
28044 return;
28045 }
28046
28047 as_bad (_("unknown architecture `%s'\n"), name);
28048 *input_line_pointer = saved_char;
28049 ignore_rest_of_line ();
28050}
28051
69133863
MGD
28052/* Parse a .arch_extension directive. */
28053
28054static void
28055s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
28056{
28057 const struct arm_option_extension_value_table *opt;
28058 char saved_char;
28059 char *name;
28060 int adding_value = 1;
28061
28062 name = input_line_pointer;
28063 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
28064 input_line_pointer++;
28065 saved_char = *input_line_pointer;
28066 *input_line_pointer = 0;
28067
28068 if (strlen (name) >= 2
28069 && strncmp (name, "no", 2) == 0)
28070 {
28071 adding_value = 0;
28072 name += 2;
28073 }
28074
28075 for (opt = arm_extensions; opt->name != NULL; opt++)
28076 if (streq (opt->name, name))
28077 {
d942732e
TP
28078 int i, nb_allowed_archs =
28079 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
28080 for (i = 0; i < nb_allowed_archs; i++)
28081 {
28082 /* Empty entry. */
4d354d8b 28083 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 28084 continue;
4d354d8b 28085 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
28086 break;
28087 }
28088
28089 if (i == nb_allowed_archs)
69133863
MGD
28090 {
28091 as_bad (_("architectural extension `%s' is not allowed for the "
28092 "current base architecture"), name);
28093 break;
28094 }
28095
28096 if (adding_value)
4d354d8b 28097 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 28098 opt->merge_value);
69133863 28099 else
4d354d8b 28100 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 28101
4d354d8b
TP
28102 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
28103 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
28104 *input_line_pointer = saved_char;
28105 demand_empty_rest_of_line ();
3d030cdb
TP
28106 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
28107 on this return so that duplicate extensions (extensions with the
28108 same name as a previous extension in the list) are not considered
28109 for command-line parsing. */
69133863
MGD
28110 return;
28111 }
28112
28113 if (opt->name == NULL)
e673710a 28114 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
28115
28116 *input_line_pointer = saved_char;
28117 ignore_rest_of_line ();
28118}
28119
ee065d83
PB
28120/* Parse a .fpu directive. */
28121
28122static void
28123s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
28124{
69133863 28125 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
28126 char saved_char;
28127 char *name;
28128
28129 name = input_line_pointer;
5f4273c7 28130 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
28131 input_line_pointer++;
28132 saved_char = *input_line_pointer;
28133 *input_line_pointer = 0;
5f4273c7 28134
ee065d83
PB
28135 for (opt = arm_fpus; opt->name != NULL; opt++)
28136 if (streq (opt->name, name))
28137 {
4d354d8b
TP
28138 selected_fpu = opt->value;
28139#ifndef CPU_DEFAULT
28140 if (no_cpu_selected ())
28141 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
28142 else
28143#endif
28144 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
28145 *input_line_pointer = saved_char;
28146 demand_empty_rest_of_line ();
28147 return;
28148 }
28149
28150 as_bad (_("unknown floating point format `%s'\n"), name);
28151 *input_line_pointer = saved_char;
28152 ignore_rest_of_line ();
28153}
ee065d83 28154
794ba86a 28155/* Copy symbol information. */
f31fef98 28156
794ba86a
DJ
28157void
28158arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
28159{
28160 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
28161}
e04befd0 28162
f31fef98 28163#ifdef OBJ_ELF
e04befd0
AS
28164/* Given a symbolic attribute NAME, return the proper integer value.
28165 Returns -1 if the attribute is not known. */
f31fef98 28166
e04befd0
AS
28167int
28168arm_convert_symbolic_attribute (const char *name)
28169{
f31fef98
NC
28170 static const struct
28171 {
28172 const char * name;
28173 const int tag;
28174 }
28175 attribute_table[] =
28176 {
28177 /* When you modify this table you should
28178 also modify the list in doc/c-arm.texi. */
e04befd0 28179#define T(tag) {#tag, tag}
f31fef98
NC
28180 T (Tag_CPU_raw_name),
28181 T (Tag_CPU_name),
28182 T (Tag_CPU_arch),
28183 T (Tag_CPU_arch_profile),
28184 T (Tag_ARM_ISA_use),
28185 T (Tag_THUMB_ISA_use),
75375b3e 28186 T (Tag_FP_arch),
f31fef98
NC
28187 T (Tag_VFP_arch),
28188 T (Tag_WMMX_arch),
28189 T (Tag_Advanced_SIMD_arch),
28190 T (Tag_PCS_config),
28191 T (Tag_ABI_PCS_R9_use),
28192 T (Tag_ABI_PCS_RW_data),
28193 T (Tag_ABI_PCS_RO_data),
28194 T (Tag_ABI_PCS_GOT_use),
28195 T (Tag_ABI_PCS_wchar_t),
28196 T (Tag_ABI_FP_rounding),
28197 T (Tag_ABI_FP_denormal),
28198 T (Tag_ABI_FP_exceptions),
28199 T (Tag_ABI_FP_user_exceptions),
28200 T (Tag_ABI_FP_number_model),
75375b3e 28201 T (Tag_ABI_align_needed),
f31fef98 28202 T (Tag_ABI_align8_needed),
75375b3e 28203 T (Tag_ABI_align_preserved),
f31fef98
NC
28204 T (Tag_ABI_align8_preserved),
28205 T (Tag_ABI_enum_size),
28206 T (Tag_ABI_HardFP_use),
28207 T (Tag_ABI_VFP_args),
28208 T (Tag_ABI_WMMX_args),
28209 T (Tag_ABI_optimization_goals),
28210 T (Tag_ABI_FP_optimization_goals),
28211 T (Tag_compatibility),
28212 T (Tag_CPU_unaligned_access),
75375b3e 28213 T (Tag_FP_HP_extension),
f31fef98
NC
28214 T (Tag_VFP_HP_extension),
28215 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
28216 T (Tag_MPextension_use),
28217 T (Tag_DIV_use),
f31fef98
NC
28218 T (Tag_nodefaults),
28219 T (Tag_also_compatible_with),
28220 T (Tag_conformance),
28221 T (Tag_T2EE_use),
28222 T (Tag_Virtualization_use),
15afaa63 28223 T (Tag_DSP_extension),
cd21e546 28224 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 28225#undef T
f31fef98 28226 };
e04befd0
AS
28227 unsigned int i;
28228
28229 if (name == NULL)
28230 return -1;
28231
f31fef98 28232 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 28233 if (streq (name, attribute_table[i].name))
e04befd0
AS
28234 return attribute_table[i].tag;
28235
28236 return -1;
28237}
267bf995 28238
93ef582d
NC
28239/* Apply sym value for relocations only in the case that they are for
28240 local symbols in the same segment as the fixup and you have the
28241 respective architectural feature for blx and simple switches. */
0198d5e6 28242
267bf995 28243int
93ef582d 28244arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
28245{
28246 if (fixP->fx_addsy
28247 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
28248 /* PR 17444: If the local symbol is in a different section then a reloc
28249 will always be generated for it, so applying the symbol value now
28250 will result in a double offset being stored in the relocation. */
28251 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 28252 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
28253 {
28254 switch (fixP->fx_r_type)
28255 {
28256 case BFD_RELOC_ARM_PCREL_BLX:
28257 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28258 if (ARM_IS_FUNC (fixP->fx_addsy))
28259 return 1;
28260 break;
28261
28262 case BFD_RELOC_ARM_PCREL_CALL:
28263 case BFD_RELOC_THUMB_PCREL_BLX:
28264 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 28265 return 1;
267bf995
RR
28266 break;
28267
28268 default:
28269 break;
28270 }
28271
28272 }
28273 return 0;
28274}
f31fef98 28275#endif /* OBJ_ELF */