]> git.ipfire.org Git - thirdparty/gcc.git/blame - libiberty/hashtab.c
re PR testsuite/40475 (gcc.dg/vect/vect-nest-cycle-[12].c)
[thirdparty/gcc.git] / libiberty / hashtab.c
CommitLineData
a2f945c6 1/* An expandable hash tables datatype.
9bf3c9cc
RH
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
a2f945c6
VM
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
ee58dffd
NC
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
a2f945c6
VM
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
6de9b8ff
PDM
39#include <sys/types.h>
40
a2f945c6
VM
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
d11ec6f0
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
cf8e4b78
DH
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
9bf3c9cc
RH
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
53#ifdef HAVE_STDINT_H
54#include <stdint.h>
55#endif
cf8e4b78 56
36dd3a44
JL
57#include <stdio.h>
58
a2f945c6 59#include "libiberty.h"
9bf3c9cc 60#include "ansidecl.h"
a2f945c6
VM
61#include "hashtab.h"
62
9bf3c9cc
RH
63#ifndef CHAR_BIT
64#define CHAR_BIT 8
65#endif
66
6da879de
GDR
67static unsigned int higher_prime_index (unsigned long);
68static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
69static hashval_t htab_mod (hashval_t, htab_t);
70static hashval_t htab_mod_m2 (hashval_t, htab_t);
71static hashval_t hash_pointer (const void *);
72static int eq_pointer (const void *, const void *);
73static int htab_expand (htab_t);
74static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
18a94a2f
MM
75
76/* At some point, we could make these be NULL, and modify the
77 hash-table routines to handle NULL specially; that would avoid
78 function-call overhead for the common case of hashing pointers. */
79htab_hash htab_hash_pointer = hash_pointer;
80htab_eq htab_eq_pointer = eq_pointer;
0194e877 81
9bf3c9cc
RH
82/* Table of primes and multiplicative inverses.
83
84 Note that these are not minimally reduced inverses. Unlike when generating
85 code to divide by a constant, we want to be able to use the same algorithm
86 all the time. All of these inverses (are implied to) have bit 32 set.
87
88 For the record, here's the function that computed the table; it's a
89 vastly simplified version of the function of the same name from gcc. */
90
91#if 0
92unsigned int
93ceil_log2 (unsigned int x)
94{
95 int i;
96 for (i = 31; i >= 0 ; --i)
97 if (x > (1u << i))
98 return i+1;
99 abort ();
100}
a2f945c6 101
9bf3c9cc
RH
102unsigned int
103choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
104{
105 unsigned long long mhigh;
106 double nx;
107 int lgup, post_shift;
108 int pow, pow2;
109 int n = 32, precision = 32;
110
111 lgup = ceil_log2 (d);
112 pow = n + lgup;
113 pow2 = n + lgup - precision;
114
115 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
116 mhigh = nx / d;
117
118 *shiftp = lgup - 1;
119 *mlp = mhigh;
120 return mhigh >> 32;
121}
122#endif
123
124struct prime_ent
125{
126 hashval_t prime;
127 hashval_t inv;
128 hashval_t inv_m2; /* inverse of prime-2 */
129 hashval_t shift;
130};
131
132static struct prime_ent const prime_tab[] = {
133 { 7, 0x24924925, 0x9999999b, 2 },
134 { 13, 0x3b13b13c, 0x745d1747, 3 },
135 { 31, 0x08421085, 0x1a7b9612, 4 },
136 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
137 { 127, 0x02040811, 0x0624dd30, 6 },
138 { 251, 0x05197f7e, 0x073260a5, 7 },
139 { 509, 0x01824366, 0x02864fc8, 8 },
140 { 1021, 0x00c0906d, 0x014191f7, 9 },
141 { 2039, 0x0121456f, 0x0161e69e, 10 },
142 { 4093, 0x00300902, 0x00501908, 11 },
143 { 8191, 0x00080041, 0x00180241, 12 },
144 { 16381, 0x000c0091, 0x00140191, 13 },
145 { 32749, 0x002605a5, 0x002a06e6, 14 },
146 { 65521, 0x000f00e2, 0x00110122, 15 },
147 { 131071, 0x00008001, 0x00018003, 16 },
148 { 262139, 0x00014002, 0x0001c004, 17 },
149 { 524287, 0x00002001, 0x00006001, 18 },
150 { 1048573, 0x00003001, 0x00005001, 19 },
151 { 2097143, 0x00004801, 0x00005801, 20 },
152 { 4194301, 0x00000c01, 0x00001401, 21 },
153 { 8388593, 0x00001e01, 0x00002201, 22 },
154 { 16777213, 0x00000301, 0x00000501, 23 },
155 { 33554393, 0x00001381, 0x00001481, 24 },
156 { 67108859, 0x00000141, 0x000001c1, 25 },
157 { 134217689, 0x000004e1, 0x00000521, 26 },
158 { 268435399, 0x00000391, 0x000003b1, 27 },
159 { 536870909, 0x00000019, 0x00000029, 28 },
160 { 1073741789, 0x0000008d, 0x00000095, 29 },
161 { 2147483647, 0x00000003, 0x00000007, 30 },
162 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
163 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
164};
165
166/* The following function returns an index into the above table of the
167 nearest prime number which is greater than N, and near a power of two. */
168
169static unsigned int
6da879de 170higher_prime_index (unsigned long n)
a2f945c6 171{
9bf3c9cc
RH
172 unsigned int low = 0;
173 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
a4c9b97e
MM
174
175 while (low != high)
176 {
9bf3c9cc
RH
177 unsigned int mid = low + (high - low) / 2;
178 if (n > prime_tab[mid].prime)
a4c9b97e
MM
179 low = mid + 1;
180 else
181 high = mid;
182 }
183
184 /* If we've run out of primes, abort. */
9bf3c9cc 185 if (n > prime_tab[low].prime)
a4c9b97e
MM
186 {
187 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
188 abort ();
189 }
190
9bf3c9cc 191 return low;
a2f945c6
VM
192}
193
18a94a2f
MM
194/* Returns a hash code for P. */
195
4feeaae3 196static hashval_t
6da879de 197hash_pointer (const PTR p)
18a94a2f 198{
1d2da2e1 199 return (hashval_t) ((long)p >> 3);
18a94a2f
MM
200}
201
202/* Returns non-zero if P1 and P2 are equal. */
203
4feeaae3 204static int
6da879de 205eq_pointer (const PTR p1, const PTR p2)
18a94a2f
MM
206{
207 return p1 == p2;
208}
209
d9175b87 210
d7cf8390
GDR
211/* The parens around the function names in the next two definitions
212 are essential in order to prevent macro expansions of the name.
213 The bodies, however, are expanded as expected, so they are not
214 recursive definitions. */
215
216/* Return the current size of given hash table. */
217
218#define htab_size(htab) ((htab)->size)
219
220size_t
221(htab_size) (htab_t htab)
d9175b87 222{
d7cf8390 223 return htab_size (htab);
d9175b87
RH
224}
225
226/* Return the current number of elements in given hash table. */
227
d7cf8390
GDR
228#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
229
230size_t
231(htab_elements) (htab_t htab)
d9175b87 232{
d7cf8390 233 return htab_elements (htab);
d9175b87
RH
234}
235
9bf3c9cc
RH
236/* Return X % Y. */
237
238static inline hashval_t
6da879de 239htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
9bf3c9cc
RH
240{
241 /* The multiplicative inverses computed above are for 32-bit types, and
242 requires that we be able to compute a highpart multiply. */
243#ifdef UNSIGNED_64BIT_TYPE
244 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
245 if (sizeof (hashval_t) * CHAR_BIT <= 32)
246 {
247 hashval_t t1, t2, t3, t4, q, r;
248
249 t1 = ((ull)x * inv) >> 32;
250 t2 = x - t1;
251 t3 = t2 >> 1;
252 t4 = t1 + t3;
253 q = t4 >> shift;
254 r = x - (q * y);
255
256 return r;
257 }
258#endif
259
260 /* Otherwise just use the native division routines. */
261 return x % y;
262}
263
d9175b87
RH
264/* Compute the primary hash for HASH given HTAB's current size. */
265
266static inline hashval_t
6da879de 267htab_mod (hashval_t hash, htab_t htab)
d9175b87 268{
9bf3c9cc
RH
269 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
270 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
d9175b87
RH
271}
272
273/* Compute the secondary hash for HASH given HTAB's current size. */
274
275static inline hashval_t
6da879de 276htab_mod_m2 (hashval_t hash, htab_t htab)
d9175b87 277{
9bf3c9cc
RH
278 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
d9175b87
RH
280}
281
a2f945c6
VM
282/* This function creates table with length slightly longer than given
283 source length. Created hash table is initiated as empty (all the
a3648cfc 284 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
e2500fed 285 created hash table, or NULL if memory allocation fails. */
a2f945c6 286
5194cf08 287htab_t
6da879de
GDR
288htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
289 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
a2f945c6 290{
5194cf08 291 htab_t result;
9bf3c9cc
RH
292 unsigned int size_prime_index;
293
294 size_prime_index = higher_prime_index (size);
295 size = prime_tab[size_prime_index].prime;
a2f945c6 296
e2500fed 297 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
d50d20ec
HPN
298 if (result == NULL)
299 return NULL;
e2500fed 300 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
d50d20ec
HPN
301 if (result->entries == NULL)
302 {
e2500fed
GK
303 if (free_f != NULL)
304 (*free_f) (result);
d50d20ec
HPN
305 return NULL;
306 }
d50d20ec 307 result->size = size;
9bf3c9cc 308 result->size_prime_index = size_prime_index;
d50d20ec
HPN
309 result->hash_f = hash_f;
310 result->eq_f = eq_f;
311 result->del_f = del_f;
e2500fed
GK
312 result->alloc_f = alloc_f;
313 result->free_f = free_f;
a2f945c6
VM
314 return result;
315}
316
74828682
DJ
317/* As above, but use the variants of alloc_f and free_f which accept
318 an extra argument. */
319
320htab_t
d7cf8390
GDR
321htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
322 htab_del del_f, void *alloc_arg,
323 htab_alloc_with_arg alloc_f,
324 htab_free_with_arg free_f)
74828682
DJ
325{
326 htab_t result;
9bf3c9cc
RH
327 unsigned int size_prime_index;
328
329 size_prime_index = higher_prime_index (size);
330 size = prime_tab[size_prime_index].prime;
74828682 331
74828682
DJ
332 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
333 if (result == NULL)
334 return NULL;
335 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
336 if (result->entries == NULL)
337 {
338 if (free_f != NULL)
339 (*free_f) (alloc_arg, result);
340 return NULL;
341 }
342 result->size = size;
9bf3c9cc 343 result->size_prime_index = size_prime_index;
74828682
DJ
344 result->hash_f = hash_f;
345 result->eq_f = eq_f;
346 result->del_f = del_f;
347 result->alloc_arg = alloc_arg;
348 result->alloc_with_arg_f = alloc_f;
349 result->free_with_arg_f = free_f;
350 return result;
351}
352
353/* Update the function pointers and allocation parameter in the htab_t. */
354
355void
6da879de
GDR
356htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
357 htab_del del_f, PTR alloc_arg,
358 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
74828682
DJ
359{
360 htab->hash_f = hash_f;
361 htab->eq_f = eq_f;
362 htab->del_f = del_f;
363 htab->alloc_arg = alloc_arg;
364 htab->alloc_with_arg_f = alloc_f;
365 htab->free_with_arg_f = free_f;
366}
367
045b3a49
GK
368/* These functions exist solely for backward compatibility. */
369
370#undef htab_create
371htab_t
6da879de 372htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
373{
374 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
375}
376
377htab_t
6da879de 378htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
379{
380 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
381}
382
a2f945c6
VM
383/* This function frees all memory allocated for given hash table.
384 Naturally the hash table must already exist. */
385
386void
6da879de 387htab_delete (htab_t htab)
a2f945c6 388{
d9175b87
RH
389 size_t size = htab_size (htab);
390 PTR *entries = htab->entries;
5dc9cffd 391 int i;
e38992e8 392
5dc9cffd 393 if (htab->del_f)
d9175b87 394 for (i = size - 1; i >= 0; i--)
a3648cfc 395 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
d9175b87 396 (*htab->del_f) (entries[i]);
5dc9cffd 397
e2500fed
GK
398 if (htab->free_f != NULL)
399 {
d9175b87 400 (*htab->free_f) (entries);
e2500fed
GK
401 (*htab->free_f) (htab);
402 }
74828682
DJ
403 else if (htab->free_with_arg_f != NULL)
404 {
d9175b87 405 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
74828682
DJ
406 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
407 }
a2f945c6
VM
408}
409
410/* This function clears all entries in the given hash table. */
411
412void
6da879de 413htab_empty (htab_t htab)
a2f945c6 414{
d9175b87
RH
415 size_t size = htab_size (htab);
416 PTR *entries = htab->entries;
5dc9cffd 417 int i;
e38992e8 418
5dc9cffd 419 if (htab->del_f)
d9175b87 420 for (i = size - 1; i >= 0; i--)
a3648cfc 421 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
d9175b87 422 (*htab->del_f) (entries[i]);
5dc9cffd 423
3050098b
JH
424 /* Instead of clearing megabyte, downsize the table. */
425 if (size > 1024*1024 / sizeof (PTR))
426 {
427 int nindex = higher_prime_index (1024 / sizeof (PTR));
428 int nsize = prime_tab[nindex].prime;
429
430 if (htab->free_f != NULL)
431 (*htab->free_f) (htab->entries);
432 else if (htab->free_with_arg_f != NULL)
433 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
434 if (htab->alloc_with_arg_f != NULL)
435 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
436 sizeof (PTR *));
437 else
438 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
439 htab->size = nsize;
440 htab->size_prime_index = nindex;
441 }
442 else
443 memset (entries, 0, size * sizeof (PTR));
444 htab->n_deleted = 0;
445 htab->n_elements = 0;
a2f945c6
VM
446}
447
8c5d513f
BS
448/* Similar to htab_find_slot, but without several unwanted side effects:
449 - Does not call htab->eq_f when it finds an existing entry.
450 - Does not change the count of elements/searches/collisions in the
451 hash table.
452 This function also assumes there are no deleted entries in the table.
453 HASH is the hash value for the element to be inserted. */
e38992e8 454
35e9340f 455static PTR *
6da879de 456find_empty_slot_for_expand (htab_t htab, hashval_t hash)
8c5d513f 457{
d9175b87
RH
458 hashval_t index = htab_mod (hash, htab);
459 size_t size = htab_size (htab);
4fc4e478
RH
460 PTR *slot = htab->entries + index;
461 hashval_t hash2;
462
a3648cfc 463 if (*slot == HTAB_EMPTY_ENTRY)
4fc4e478 464 return slot;
a3648cfc 465 else if (*slot == HTAB_DELETED_ENTRY)
4fc4e478 466 abort ();
8c5d513f 467
d9175b87 468 hash2 = htab_mod_m2 (hash, htab);
8c5d513f
BS
469 for (;;)
470 {
4fc4e478
RH
471 index += hash2;
472 if (index >= size)
473 index -= size;
e38992e8 474
4fc4e478 475 slot = htab->entries + index;
a3648cfc 476 if (*slot == HTAB_EMPTY_ENTRY)
8c5d513f 477 return slot;
a3648cfc 478 else if (*slot == HTAB_DELETED_ENTRY)
8c5d513f 479 abort ();
8c5d513f
BS
480 }
481}
482
a2f945c6
VM
483/* The following function changes size of memory allocated for the
484 entries and repeatedly inserts the table elements. The occupancy
485 of the table after the call will be about 50%. Naturally the hash
486 table must already exist. Remember also that the place of the
d50d20ec
HPN
487 table entries is changed. If memory allocation failures are allowed,
488 this function will return zero, indicating that the table could not be
489 expanded. If all goes well, it will return a non-zero value. */
a2f945c6 490
d50d20ec 491static int
6da879de 492htab_expand (htab_t htab)
a2f945c6 493{
35e9340f
HPN
494 PTR *oentries;
495 PTR *olimit;
496 PTR *p;
e2500fed 497 PTR *nentries;
9bf3c9cc
RH
498 size_t nsize, osize, elts;
499 unsigned int oindex, nindex;
5194cf08
ZW
500
501 oentries = htab->entries;
9bf3c9cc
RH
502 oindex = htab->size_prime_index;
503 osize = htab->size;
504 olimit = oentries + osize;
505 elts = htab_elements (htab);
5194cf08 506
0a8e3de3
JH
507 /* Resize only when table after removal of unused elements is either
508 too full or too empty. */
9bf3c9cc
RH
509 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
510 {
511 nindex = higher_prime_index (elts * 2);
512 nsize = prime_tab[nindex].prime;
513 }
0a8e3de3 514 else
9bf3c9cc
RH
515 {
516 nindex = oindex;
517 nsize = osize;
518 }
d50d20ec 519
74828682
DJ
520 if (htab->alloc_with_arg_f != NULL)
521 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
522 sizeof (PTR *));
523 else
524 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
e2500fed
GK
525 if (nentries == NULL)
526 return 0;
527 htab->entries = nentries;
120cdf68 528 htab->size = nsize;
9bf3c9cc 529 htab->size_prime_index = nindex;
5194cf08
ZW
530 htab->n_elements -= htab->n_deleted;
531 htab->n_deleted = 0;
532
533 p = oentries;
534 do
535 {
35e9340f 536 PTR x = *p;
e38992e8 537
a3648cfc 538 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
5194cf08 539 {
35e9340f 540 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
e38992e8 541
5194cf08
ZW
542 *q = x;
543 }
e38992e8 544
5194cf08
ZW
545 p++;
546 }
547 while (p < olimit);
e38992e8 548
e2500fed
GK
549 if (htab->free_f != NULL)
550 (*htab->free_f) (oentries);
74828682
DJ
551 else if (htab->free_with_arg_f != NULL)
552 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
d50d20ec 553 return 1;
a2f945c6
VM
554}
555
5194cf08
ZW
556/* This function searches for a hash table entry equal to the given
557 element. It cannot be used to insert or delete an element. */
558
35e9340f 559PTR
6da879de 560htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
a2f945c6 561{
d9175b87 562 hashval_t index, hash2;
5194cf08 563 size_t size;
35e9340f 564 PTR entry;
5194cf08
ZW
565
566 htab->searches++;
d9175b87
RH
567 size = htab_size (htab);
568 index = htab_mod (hash, htab);
a2f945c6 569
0194e877 570 entry = htab->entries[index];
a3648cfc
DB
571 if (entry == HTAB_EMPTY_ENTRY
572 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
0194e877
ZW
573 return entry;
574
d9175b87 575 hash2 = htab_mod_m2 (hash, htab);
5194cf08 576 for (;;)
a2f945c6 577 {
5194cf08
ZW
578 htab->collisions++;
579 index += hash2;
580 if (index >= size)
581 index -= size;
0194e877
ZW
582
583 entry = htab->entries[index];
a3648cfc
DB
584 if (entry == HTAB_EMPTY_ENTRY
585 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
0194e877 586 return entry;
a2f945c6 587 }
5194cf08
ZW
588}
589
8c5d513f
BS
590/* Like htab_find_slot_with_hash, but compute the hash value from the
591 element. */
e38992e8 592
35e9340f 593PTR
6da879de 594htab_find (htab_t htab, const PTR element)
8c5d513f
BS
595{
596 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
597}
598
5194cf08
ZW
599/* This function searches for a hash table slot containing an entry
600 equal to the given element. To delete an entry, call this with
6a88516c
BE
601 insert=NO_INSERT, then call htab_clear_slot on the slot returned
602 (possibly after doing some checks). To insert an entry, call this
603 with insert=INSERT, then write the value you want into the returned
604 slot. When inserting an entry, NULL may be returned if memory
605 allocation fails. */
5194cf08 606
35e9340f 607PTR *
6da879de
GDR
608htab_find_slot_with_hash (htab_t htab, const PTR element,
609 hashval_t hash, enum insert_option insert)
5194cf08 610{
35e9340f 611 PTR *first_deleted_slot;
d9175b87 612 hashval_t index, hash2;
5194cf08 613 size_t size;
4fc4e478 614 PTR entry;
5194cf08 615
d9175b87
RH
616 size = htab_size (htab);
617 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
618 {
619 if (htab_expand (htab) == 0)
620 return NULL;
621 size = htab_size (htab);
622 }
5194cf08 623
d9175b87 624 index = htab_mod (hash, htab);
5194cf08 625
a2f945c6 626 htab->searches++;
5194cf08
ZW
627 first_deleted_slot = NULL;
628
4fc4e478 629 entry = htab->entries[index];
a3648cfc 630 if (entry == HTAB_EMPTY_ENTRY)
4fc4e478 631 goto empty_entry;
a3648cfc 632 else if (entry == HTAB_DELETED_ENTRY)
4fc4e478
RH
633 first_deleted_slot = &htab->entries[index];
634 else if ((*htab->eq_f) (entry, element))
635 return &htab->entries[index];
636
d9175b87 637 hash2 = htab_mod_m2 (hash, htab);
5194cf08 638 for (;;)
a2f945c6 639 {
4fc4e478
RH
640 htab->collisions++;
641 index += hash2;
642 if (index >= size)
643 index -= size;
644
645 entry = htab->entries[index];
a3648cfc 646 if (entry == HTAB_EMPTY_ENTRY)
4fc4e478 647 goto empty_entry;
a3648cfc 648 else if (entry == HTAB_DELETED_ENTRY)
5194cf08
ZW
649 {
650 if (!first_deleted_slot)
651 first_deleted_slot = &htab->entries[index];
652 }
4fc4e478 653 else if ((*htab->eq_f) (entry, element))
e38992e8 654 return &htab->entries[index];
a2f945c6 655 }
4fc4e478
RH
656
657 empty_entry:
658 if (insert == NO_INSERT)
659 return NULL;
660
4fc4e478
RH
661 if (first_deleted_slot)
662 {
e0432c1c 663 htab->n_deleted--;
a3648cfc 664 *first_deleted_slot = HTAB_EMPTY_ENTRY;
4fc4e478
RH
665 return first_deleted_slot;
666 }
667
e0432c1c 668 htab->n_elements++;
4fc4e478 669 return &htab->entries[index];
a2f945c6
VM
670}
671
8c5d513f
BS
672/* Like htab_find_slot_with_hash, but compute the hash value from the
673 element. */
e38992e8 674
35e9340f 675PTR *
6da879de 676htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
8c5d513f
BS
677{
678 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
679 insert);
680}
681
7f96816a
JL
682/* This function deletes an element with the given value from hash
683 table (the hash is computed from the element). If there is no matching
684 element in the hash table, this function does nothing. */
685
686void
6da879de 687htab_remove_elt (htab_t htab, PTR element)
7f96816a
JL
688{
689 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
690}
691
692
5194cf08
ZW
693/* This function deletes an element with the given value from hash
694 table. If there is no matching element in the hash table, this
695 function does nothing. */
a2f945c6
VM
696
697void
6da879de 698htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
a2f945c6 699{
35e9340f 700 PTR *slot;
a2f945c6 701
7f96816a 702 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
a3648cfc 703 if (*slot == HTAB_EMPTY_ENTRY)
5194cf08
ZW
704 return;
705
5dc9cffd
ZW
706 if (htab->del_f)
707 (*htab->del_f) (*slot);
708
a3648cfc 709 *slot = HTAB_DELETED_ENTRY;
5194cf08 710 htab->n_deleted++;
a2f945c6
VM
711}
712
5194cf08
ZW
713/* This function clears a specified slot in a hash table. It is
714 useful when you've already done the lookup and don't want to do it
715 again. */
ed38f5d5
ZW
716
717void
6da879de 718htab_clear_slot (htab_t htab, PTR *slot)
ed38f5d5 719{
d9175b87 720 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
a3648cfc 721 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
ed38f5d5 722 abort ();
e38992e8 723
5dc9cffd
ZW
724 if (htab->del_f)
725 (*htab->del_f) (*slot);
e38992e8 726
a3648cfc 727 *slot = HTAB_DELETED_ENTRY;
5194cf08 728 htab->n_deleted++;
ed38f5d5
ZW
729}
730
731/* This function scans over the entire hash table calling
732 CALLBACK for each live entry. If CALLBACK returns false,
733 the iteration stops. INFO is passed as CALLBACK's second
734 argument. */
735
736void
6da879de 737htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
ed38f5d5 738{
0a8e3de3
JH
739 PTR *slot;
740 PTR *limit;
a3648cfc 741
0a8e3de3 742 slot = htab->entries;
d9175b87 743 limit = slot + htab_size (htab);
e38992e8 744
5194cf08
ZW
745 do
746 {
35e9340f 747 PTR x = *slot;
e38992e8 748
a3648cfc 749 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
8c5d513f 750 if (!(*callback) (slot, info))
5194cf08
ZW
751 break;
752 }
753 while (++slot < limit);
ed38f5d5
ZW
754}
755
dbccdc42
JH
756/* Like htab_traverse_noresize, but does resize the table when it is
757 too empty to improve effectivity of subsequent calls. */
758
759void
6da879de 760htab_traverse (htab_t htab, htab_trav callback, PTR info)
dbccdc42 761{
d9175b87 762 if (htab_elements (htab) * 8 < htab_size (htab))
dbccdc42
JH
763 htab_expand (htab);
764
765 htab_traverse_noresize (htab, callback, info);
766}
767
e38992e8
RK
768/* Return the fraction of fixed collisions during all work with given
769 hash table. */
a2f945c6 770
5194cf08 771double
6da879de 772htab_collisions (htab_t htab)
a2f945c6 773{
e38992e8 774 if (htab->searches == 0)
5194cf08 775 return 0.0;
e38992e8
RK
776
777 return (double) htab->collisions / (double) htab->searches;
a2f945c6 778}
9e0ba685 779
0ed5305d
RH
780/* Hash P as a null-terminated string.
781
782 Copied from gcc/hashtable.c. Zack had the following to say with respect
783 to applicability, though note that unlike hashtable.c, this hash table
784 implementation re-hashes rather than chain buckets.
785
786 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
787 From: Zack Weinberg <zackw@panix.com>
788 Date: Fri, 17 Aug 2001 02:15:56 -0400
789
790 I got it by extracting all the identifiers from all the source code
791 I had lying around in mid-1999, and testing many recurrences of
792 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
793 prime numbers or the appropriate identity. This was the best one.
794 I don't remember exactly what constituted "best", except I was
795 looking at bucket-length distributions mostly.
796
797 So it should be very good at hashing identifiers, but might not be
798 as good at arbitrary strings.
799
800 I'll add that it thoroughly trounces the hash functions recommended
801 for this use at http://burtleburtle.net/bob/hash/index.html, both
802 on speed and bucket distribution. I haven't tried it against the
803 function they just started using for Perl's hashes. */
9e0ba685
RH
804
805hashval_t
6da879de 806htab_hash_string (const PTR p)
9e0ba685
RH
807{
808 const unsigned char *str = (const unsigned char *) p;
809 hashval_t r = 0;
810 unsigned char c;
811
812 while ((c = *str++) != 0)
813 r = r * 67 + c - 113;
814
815 return r;
816}
5cc5a0d0
JM
817
818/* DERIVED FROM:
819--------------------------------------------------------------------
820lookup2.c, by Bob Jenkins, December 1996, Public Domain.
821hash(), hash2(), hash3, and mix() are externally useful functions.
822Routines to test the hash are included if SELF_TEST is defined.
823You can use this free for any purpose. It has no warranty.
824--------------------------------------------------------------------
825*/
826
827/*
828--------------------------------------------------------------------
829mix -- mix 3 32-bit values reversibly.
830For every delta with one or two bit set, and the deltas of all three
831 high bits or all three low bits, whether the original value of a,b,c
832 is almost all zero or is uniformly distributed,
833* If mix() is run forward or backward, at least 32 bits in a,b,c
834 have at least 1/4 probability of changing.
835* If mix() is run forward, every bit of c will change between 1/3 and
836 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
837mix() was built out of 36 single-cycle latency instructions in a
838 structure that could supported 2x parallelism, like so:
839 a -= b;
840 a -= c; x = (c>>13);
841 b -= c; a ^= x;
842 b -= a; x = (a<<8);
843 c -= a; b ^= x;
844 c -= b; x = (b>>13);
845 ...
846 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
847 of that parallelism. They've also turned some of those single-cycle
848 latency instructions into multi-cycle latency instructions. Still,
849 this is the fastest good hash I could find. There were about 2^^68
850 to choose from. I only looked at a billion or so.
851--------------------------------------------------------------------
852*/
853/* same, but slower, works on systems that might have 8 byte hashval_t's */
854#define mix(a,b,c) \
855{ \
856 a -= b; a -= c; a ^= (c>>13); \
857 b -= c; b -= a; b ^= (a<< 8); \
858 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
859 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
860 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
861 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
862 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
863 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
864 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
865}
866
867/*
868--------------------------------------------------------------------
869hash() -- hash a variable-length key into a 32-bit value
870 k : the key (the unaligned variable-length array of bytes)
871 len : the length of the key, counting by bytes
872 level : can be any 4-byte value
873Returns a 32-bit value. Every bit of the key affects every bit of
874the return value. Every 1-bit and 2-bit delta achieves avalanche.
875About 36+6len instructions.
876
877The best hash table sizes are powers of 2. There is no need to do
878mod a prime (mod is sooo slow!). If you need less than 32 bits,
879use a bitmask. For example, if you need only 10 bits, do
880 h = (h & hashmask(10));
881In which case, the hash table should have hashsize(10) elements.
882
883If you are hashing n strings (ub1 **)k, do it like this:
884 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
885
886By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
887code any way you wish, private, educational, or commercial. It's free.
888
889See http://burtleburtle.net/bob/hash/evahash.html
890Use for hash table lookup, or anything where one collision in 2^32 is
891acceptable. Do NOT use for cryptographic purposes.
892--------------------------------------------------------------------
893*/
894
6da879de
GDR
895hashval_t
896iterative_hash (const PTR k_in /* the key */,
897 register size_t length /* the length of the key */,
898 register hashval_t initval /* the previous hash, or
899 an arbitrary value */)
5cc5a0d0
JM
900{
901 register const unsigned char *k = (const unsigned char *)k_in;
902 register hashval_t a,b,c,len;
903
904 /* Set up the internal state */
905 len = length;
906 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
907 c = initval; /* the previous hash value */
908
909 /*---------------------------------------- handle most of the key */
910#ifndef WORDS_BIGENDIAN
911 /* On a little-endian machine, if the data is 4-byte aligned we can hash
912 by word for better speed. This gives nondeterministic results on
913 big-endian machines. */
914 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
915 while (len >= 12) /* aligned */
916 {
917 a += *(hashval_t *)(k+0);
918 b += *(hashval_t *)(k+4);
919 c += *(hashval_t *)(k+8);
920 mix(a,b,c);
921 k += 12; len -= 12;
922 }
923 else /* unaligned */
924#endif
925 while (len >= 12)
926 {
927 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
928 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
929 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
930 mix(a,b,c);
931 k += 12; len -= 12;
932 }
933
934 /*------------------------------------- handle the last 11 bytes */
935 c += length;
936 switch(len) /* all the case statements fall through */
937 {
938 case 11: c+=((hashval_t)k[10]<<24);
939 case 10: c+=((hashval_t)k[9]<<16);
940 case 9 : c+=((hashval_t)k[8]<<8);
941 /* the first byte of c is reserved for the length */
942 case 8 : b+=((hashval_t)k[7]<<24);
943 case 7 : b+=((hashval_t)k[6]<<16);
944 case 6 : b+=((hashval_t)k[5]<<8);
945 case 5 : b+=k[4];
946 case 4 : a+=((hashval_t)k[3]<<24);
947 case 3 : a+=((hashval_t)k[2]<<16);
948 case 2 : a+=((hashval_t)k[1]<<8);
949 case 1 : a+=k[0];
950 /* case 0: nothing left to add */
951 }
952 mix(a,b,c);
953 /*-------------------------------------------- report the result */
954 return c;
955}