]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
Change way that reshaping arrays with external-metadata are assembled.
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb
DW
43
44#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45#define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
c2c087e6
DW
54#define MPB_SECTOR_CNT 418
55#define IMSM_RESERVED_SECTORS 4096
979d38be 56#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
57
58/* Disk configuration info. */
59#define IMSM_MAX_DEVICES 255
60struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
64#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 67 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71};
72
73/* RAID map configuration infos. */
74struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80#define IMSM_T_STATE_NORMAL 0
81#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
82#define IMSM_T_STATE_DEGRADED 2
83#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
84 __u8 raid_level;
85#define IMSM_T_RAID0 0
86#define IMSM_T_RAID1 1
87#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 91 __u8 ddf;
cdddbdbc 92 __u32 filler[7]; /* expansion area */
7eef0453 93#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
95 * top byte contains some flags
96 */
cdddbdbc
DW
97} __attribute__ ((packed));
98
99struct imsm_vol {
f8f603f1 100 __u32 curr_migr_unit;
fe7ed8cb 101 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 102 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
103#define MIGR_INIT 0
104#define MIGR_REBUILD 1
105#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106#define MIGR_GEN_MIGR 3
107#define MIGR_STATE_CHANGE 4
1484e727 108#define MIGR_REPAIR 5
cdddbdbc
DW
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
fe7ed8cb
DW
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
cdddbdbc
DW
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117} __attribute__ ((packed));
118
119struct imsm_dev {
fe7ed8cb 120 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
121 __u32 size_low;
122 __u32 size_high;
fe7ed8cb
DW
123#define DEV_BOOTABLE __cpu_to_le32(0x01)
124#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125#define DEV_READ_COALESCING __cpu_to_le32(0x04)
126#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148} __attribute__ ((packed));
149
150struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166#define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
604b746f 170 /* here comes BBM logs */
cdddbdbc
DW
171} __attribute__ ((packed));
172
604b746f
JD
173#define BBM_LOG_MAX_ENTRIES 254
174
175struct bbm_log_entry {
176 __u64 defective_block_start;
177#define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181} __attribute__ ((__packed__));
182
183struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190} __attribute__ ((__packed__));
191
192
cdddbdbc
DW
193#ifndef MDASSEMBLE
194static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195#endif
196
1484e727
DW
197static __u8 migr_type(struct imsm_dev *dev)
198{
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204}
205
206static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207{
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218}
219
87eb16df 220static unsigned int sector_count(__u32 bytes)
cdddbdbc 221{
87eb16df
DW
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223}
cdddbdbc 224
87eb16df
DW
225static unsigned int mpb_sectors(struct imsm_super *mpb)
226{
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
228}
229
ba2de7ba
DW
230struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
f21e18ca 233 unsigned index;
ba2de7ba
DW
234};
235
88654014
LM
236struct intel_hba {
237 enum sys_dev_type type;
238 char *path;
239 char *pci_id;
240 struct intel_hba *next;
241};
242
1a64be56
LM
243enum action {
244 DISK_REMOVE = 1,
245 DISK_ADD
246};
cdddbdbc
DW
247/* internal representation of IMSM metadata */
248struct intel_super {
249 union {
949c47a0
DW
250 void *buf; /* O_DIRECT buffer for reading/writing metadata */
251 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 252 };
949c47a0 253 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
254 void *next_buf; /* for realloc'ing buf from the manager */
255 size_t next_len;
c2c087e6 256 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 257 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 258 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 259 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 260 struct intel_dev *devlist;
cdddbdbc
DW
261 struct dl {
262 struct dl *next;
263 int index;
264 __u8 serial[MAX_RAID_SERIAL_LEN];
265 int major, minor;
266 char *devname;
b9f594fe 267 struct imsm_disk disk;
cdddbdbc 268 int fd;
0dcecb2e
DW
269 int extent_cnt;
270 struct extent *e; /* for determining freespace @ create */
efb30e7f 271 int raiddisk; /* slot to fill in autolayout */
1a64be56 272 enum action action;
cdddbdbc 273 } *disks;
1a64be56
LM
274 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
275 active */
47ee5a45 276 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 277 struct bbm_log *bbm_log;
88654014 278 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 279 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
280 struct intel_super *next; /* (temp) list for disambiguating family_num */
281};
282
283struct intel_disk {
284 struct imsm_disk disk;
285 #define IMSM_UNKNOWN_OWNER (-1)
286 int owner;
287 struct intel_disk *next;
cdddbdbc
DW
288};
289
c2c087e6
DW
290struct extent {
291 unsigned long long start, size;
292};
293
694575e7
KW
294/* definitions of reshape process types */
295enum imsm_reshape_type {
296 CH_TAKEOVER,
b5347799 297 CH_MIGRATION,
694575e7
KW
298};
299
88758e9d
DW
300/* definition of messages passed to imsm_process_update */
301enum imsm_update_type {
302 update_activate_spare,
8273f55e 303 update_create_array,
33414a01 304 update_kill_array,
aa534678 305 update_rename_array,
1a64be56 306 update_add_remove_disk,
78b10e66 307 update_reshape_container_disks,
bb025c2f 308 update_takeover
88758e9d
DW
309};
310
311struct imsm_update_activate_spare {
312 enum imsm_update_type type;
d23fe947 313 struct dl *dl;
88758e9d
DW
314 int slot;
315 int array;
316 struct imsm_update_activate_spare *next;
317};
318
78b10e66
N
319struct geo_params {
320 int dev_id;
321 char *dev_name;
322 long long size;
323 int level;
324 int layout;
325 int chunksize;
326 int raid_disks;
327};
328
bb025c2f
KW
329enum takeover_direction {
330 R10_TO_R0,
331 R0_TO_R10
332};
333struct imsm_update_takeover {
334 enum imsm_update_type type;
335 int subarray;
336 enum takeover_direction direction;
337};
78b10e66
N
338
339struct imsm_update_reshape {
340 enum imsm_update_type type;
341 int old_raid_disks;
342 int new_raid_disks;
d195167d 343 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
344};
345
54c2c1ea
DW
346struct disk_info {
347 __u8 serial[MAX_RAID_SERIAL_LEN];
348};
349
8273f55e
DW
350struct imsm_update_create_array {
351 enum imsm_update_type type;
8273f55e 352 int dev_idx;
6a3e913e 353 struct imsm_dev dev;
8273f55e
DW
354};
355
33414a01
DW
356struct imsm_update_kill_array {
357 enum imsm_update_type type;
358 int dev_idx;
359};
360
aa534678
DW
361struct imsm_update_rename_array {
362 enum imsm_update_type type;
363 __u8 name[MAX_RAID_SERIAL_LEN];
364 int dev_idx;
365};
366
1a64be56 367struct imsm_update_add_remove_disk {
43dad3d6
DW
368 enum imsm_update_type type;
369};
370
88654014
LM
371
372static const char *_sys_dev_type[] = {
373 [SYS_DEV_UNKNOWN] = "Unknown",
374 [SYS_DEV_SAS] = "SAS",
375 [SYS_DEV_SATA] = "SATA"
376};
377
378const char *get_sys_dev_type(enum sys_dev_type type)
379{
380 if (type >= SYS_DEV_MAX)
381 type = SYS_DEV_UNKNOWN;
382
383 return _sys_dev_type[type];
384}
385
71204a50 386#ifndef MDASSEMBLE
88654014
LM
387static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
388{
389 struct intel_hba *result = malloc(sizeof(*result));
390 if (result) {
391 result->type = device->type;
392 result->path = strdup(device->path);
393 result->next = NULL;
394 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
395 result->pci_id++;
396 }
397 return result;
398}
399
400static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
401{
402 struct intel_hba *result=NULL;
403 for (result = hba; result; result = result->next) {
404 if (result->type == device->type && strcmp(result->path, device->path) == 0)
405 break;
406 }
407 return result;
408}
409
410
88654014
LM
411static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device,
412 const char *devname)
413{
414 struct intel_hba *hba;
415
416 /* check if disk attached to Intel HBA */
417 hba = find_intel_hba(super->hba, device);
418 if (hba != NULL)
419 return 1;
420 /* Check if HBA is already attached to super */
421 if (super->hba == NULL) {
422 super->hba = alloc_intel_hba(device);
423 return 1;
424 }
425
426 hba = super->hba;
427 /* Intel metadata allows for all disks attached to the same type HBA.
428 * Do not sypport odf HBA types mixing
429 */
430 if (device->type != hba->type)
431 return 2;
432
433 while (hba->next)
434 hba = hba->next;
435
436 hba->next = alloc_intel_hba(device);
437 return 1;
438}
439
440static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
441{
442 struct sys_dev *list, *elem, *prev;
443 char *disk_path;
444
445 if ((list = find_intel_devices()) == NULL)
446 return 0;
447
448 if (fd < 0)
449 disk_path = (char *) devname;
450 else
451 disk_path = diskfd_to_devpath(fd);
452
453 if (!disk_path) {
454 free_sys_dev(&list);
455 return 0;
456 }
457
458 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
459 if (path_attached_to_hba(disk_path, elem->path)) {
460 if (prev == NULL)
461 list = list->next;
462 else
463 prev->next = elem->next;
464 elem->next = NULL;
465 if (disk_path != devname)
466 free(disk_path);
467 free_sys_dev(&list);
468 return elem;
469 }
470 }
471 if (disk_path != devname)
472 free(disk_path);
473 free_sys_dev(&list);
474
475 return NULL;
476}
71204a50 477#endif /* MDASSEMBLE */
88654014
LM
478
479
cdddbdbc
DW
480static struct supertype *match_metadata_desc_imsm(char *arg)
481{
482 struct supertype *st;
483
484 if (strcmp(arg, "imsm") != 0 &&
485 strcmp(arg, "default") != 0
486 )
487 return NULL;
488
489 st = malloc(sizeof(*st));
4e9d2186
AW
490 if (!st)
491 return NULL;
ef609477 492 memset(st, 0, sizeof(*st));
d1d599ea 493 st->container_dev = NoMdDev;
cdddbdbc
DW
494 st->ss = &super_imsm;
495 st->max_devs = IMSM_MAX_DEVICES;
496 st->minor_version = 0;
497 st->sb = NULL;
498 return st;
499}
500
0e600426 501#ifndef MDASSEMBLE
cdddbdbc
DW
502static __u8 *get_imsm_version(struct imsm_super *mpb)
503{
504 return &mpb->sig[MPB_SIG_LEN];
505}
0e600426 506#endif
cdddbdbc 507
949c47a0
DW
508/* retrieve a disk directly from the anchor when the anchor is known to be
509 * up-to-date, currently only at load time
510 */
511static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 512{
949c47a0 513 if (index >= mpb->num_disks)
cdddbdbc
DW
514 return NULL;
515 return &mpb->disk[index];
516}
517
95d07a2c
LM
518/* retrieve the disk description based on a index of the disk
519 * in the sub-array
520 */
521static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 522{
b9f594fe
DW
523 struct dl *d;
524
525 for (d = super->disks; d; d = d->next)
526 if (d->index == index)
95d07a2c
LM
527 return d;
528
529 return NULL;
530}
531/* retrieve a disk from the parsed metadata */
532static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
533{
534 struct dl *dl;
535
536 dl = get_imsm_dl_disk(super, index);
537 if (dl)
538 return &dl->disk;
539
b9f594fe 540 return NULL;
949c47a0
DW
541}
542
543/* generate a checksum directly from the anchor when the anchor is known to be
544 * up-to-date, currently only at load or write_super after coalescing
545 */
546static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
547{
548 __u32 end = mpb->mpb_size / sizeof(end);
549 __u32 *p = (__u32 *) mpb;
550 __u32 sum = 0;
551
97f734fd
N
552 while (end--) {
553 sum += __le32_to_cpu(*p);
554 p++;
555 }
cdddbdbc
DW
556
557 return sum - __le32_to_cpu(mpb->check_sum);
558}
559
a965f303
DW
560static size_t sizeof_imsm_map(struct imsm_map *map)
561{
562 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
563}
564
565struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 566{
5e7b0330
AK
567 /* A device can have 2 maps if it is in the middle of a migration.
568 * If second_map is:
569 * 0 - we return the first map
570 * 1 - we return the second map if it exists, else NULL
571 * -1 - we return the second map if it exists, else the first
572 */
a965f303
DW
573 struct imsm_map *map = &dev->vol.map[0];
574
5e7b0330 575 if (second_map == 1 && !dev->vol.migr_state)
a965f303 576 return NULL;
5e7b0330
AK
577 else if (second_map == 1 ||
578 (second_map < 0 && dev->vol.migr_state)) {
a965f303
DW
579 void *ptr = map;
580
581 return ptr + sizeof_imsm_map(map);
582 } else
583 return map;
5e7b0330 584
a965f303 585}
cdddbdbc 586
3393c6af
DW
587/* return the size of the device.
588 * migr_state increases the returned size if map[0] were to be duplicated
589 */
590static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
591{
592 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
593 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
594
595 /* migrating means an additional map */
a965f303
DW
596 if (dev->vol.migr_state)
597 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
598 else if (migr_state)
599 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
600
601 return size;
602}
603
54c2c1ea
DW
604#ifndef MDASSEMBLE
605/* retrieve disk serial number list from a metadata update */
606static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
607{
608 void *u = update;
609 struct disk_info *inf;
610
611 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
612 sizeof_imsm_dev(&update->dev, 0);
613
614 return inf;
615}
616#endif
617
949c47a0 618static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
619{
620 int offset;
621 int i;
622 void *_mpb = mpb;
623
949c47a0 624 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
625 return NULL;
626
627 /* devices start after all disks */
628 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
629
630 for (i = 0; i <= index; i++)
631 if (i == index)
632 return _mpb + offset;
633 else
3393c6af 634 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
635
636 return NULL;
637}
638
949c47a0
DW
639static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
640{
ba2de7ba
DW
641 struct intel_dev *dv;
642
949c47a0
DW
643 if (index >= super->anchor->num_raid_devs)
644 return NULL;
ba2de7ba
DW
645 for (dv = super->devlist; dv; dv = dv->next)
646 if (dv->index == index)
647 return dv->dev;
648 return NULL;
949c47a0
DW
649}
650
98130f40
AK
651/*
652 * for second_map:
653 * == 0 get first map
654 * == 1 get second map
655 * == -1 than get map according to the current migr_state
656 */
657static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
658 int slot,
659 int second_map)
7eef0453
DW
660{
661 struct imsm_map *map;
662
5e7b0330 663 map = get_imsm_map(dev, second_map);
7eef0453 664
ff077194
DW
665 /* top byte identifies disk under rebuild */
666 return __le32_to_cpu(map->disk_ord_tbl[slot]);
667}
668
669#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 670static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 671{
98130f40 672 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
673
674 return ord_to_idx(ord);
7eef0453
DW
675}
676
be73972f
DW
677static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
678{
679 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
680}
681
f21e18ca 682static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
683{
684 int slot;
685 __u32 ord;
686
687 for (slot = 0; slot < map->num_members; slot++) {
688 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
689 if (ord_to_idx(ord) == idx)
690 return slot;
691 }
692
693 return -1;
694}
695
cdddbdbc
DW
696static int get_imsm_raid_level(struct imsm_map *map)
697{
698 if (map->raid_level == 1) {
699 if (map->num_members == 2)
700 return 1;
701 else
702 return 10;
703 }
704
705 return map->raid_level;
706}
707
c2c087e6
DW
708static int cmp_extent(const void *av, const void *bv)
709{
710 const struct extent *a = av;
711 const struct extent *b = bv;
712 if (a->start < b->start)
713 return -1;
714 if (a->start > b->start)
715 return 1;
716 return 0;
717}
718
0dcecb2e 719static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 720{
c2c087e6 721 int memberships = 0;
620b1713 722 int i;
c2c087e6 723
949c47a0
DW
724 for (i = 0; i < super->anchor->num_raid_devs; i++) {
725 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 726 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 727
620b1713
DW
728 if (get_imsm_disk_slot(map, dl->index) >= 0)
729 memberships++;
c2c087e6 730 }
0dcecb2e
DW
731
732 return memberships;
733}
734
735static struct extent *get_extents(struct intel_super *super, struct dl *dl)
736{
737 /* find a list of used extents on the given physical device */
738 struct extent *rv, *e;
620b1713 739 int i;
0dcecb2e
DW
740 int memberships = count_memberships(dl, super);
741 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
742
c2c087e6
DW
743 rv = malloc(sizeof(struct extent) * (memberships + 1));
744 if (!rv)
745 return NULL;
746 e = rv;
747
949c47a0
DW
748 for (i = 0; i < super->anchor->num_raid_devs; i++) {
749 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 750 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 751
620b1713
DW
752 if (get_imsm_disk_slot(map, dl->index) >= 0) {
753 e->start = __le32_to_cpu(map->pba_of_lba0);
754 e->size = __le32_to_cpu(map->blocks_per_member);
755 e++;
c2c087e6
DW
756 }
757 }
758 qsort(rv, memberships, sizeof(*rv), cmp_extent);
759
14e8215b
DW
760 /* determine the start of the metadata
761 * when no raid devices are defined use the default
762 * ...otherwise allow the metadata to truncate the value
763 * as is the case with older versions of imsm
764 */
765 if (memberships) {
766 struct extent *last = &rv[memberships - 1];
767 __u32 remainder;
768
769 remainder = __le32_to_cpu(dl->disk.total_blocks) -
770 (last->start + last->size);
dda5855f
DW
771 /* round down to 1k block to satisfy precision of the kernel
772 * 'size' interface
773 */
774 remainder &= ~1UL;
775 /* make sure remainder is still sane */
f21e18ca 776 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 777 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
778 if (reservation > remainder)
779 reservation = remainder;
780 }
781 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
782 e->size = 0;
783 return rv;
784}
785
14e8215b
DW
786/* try to determine how much space is reserved for metadata from
787 * the last get_extents() entry, otherwise fallback to the
788 * default
789 */
790static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
791{
792 struct extent *e;
793 int i;
794 __u32 rv;
795
796 /* for spares just return a minimal reservation which will grow
797 * once the spare is picked up by an array
798 */
799 if (dl->index == -1)
800 return MPB_SECTOR_CNT;
801
802 e = get_extents(super, dl);
803 if (!e)
804 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
805
806 /* scroll to last entry */
807 for (i = 0; e[i].size; i++)
808 continue;
809
810 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
811
812 free(e);
813
814 return rv;
815}
816
25ed7e59
DW
817static int is_spare(struct imsm_disk *disk)
818{
819 return (disk->status & SPARE_DISK) == SPARE_DISK;
820}
821
822static int is_configured(struct imsm_disk *disk)
823{
824 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
825}
826
827static int is_failed(struct imsm_disk *disk)
828{
829 return (disk->status & FAILED_DISK) == FAILED_DISK;
830}
831
80e7f8c3
AC
832/* Return minimum size of a spare that can be used in this array*/
833static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
834{
835 struct intel_super *super = st->sb;
836 struct dl *dl;
837 struct extent *e;
838 int i;
839 unsigned long long rv = 0;
840
841 if (!super)
842 return rv;
843 /* find first active disk in array */
844 dl = super->disks;
845 while (dl && (is_failed(&dl->disk) || dl->index == -1))
846 dl = dl->next;
847 if (!dl)
848 return rv;
849 /* find last lba used by subarrays */
850 e = get_extents(super, dl);
851 if (!e)
852 return rv;
853 for (i = 0; e[i].size; i++)
854 continue;
855 if (i > 0)
856 rv = e[i-1].start + e[i-1].size;
857 free(e);
858 /* add the amount of space needed for metadata */
859 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
860 return rv * 512;
861}
862
1799c9e8 863#ifndef MDASSEMBLE
1e5c6983
DW
864static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
865
44470971 866static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
cdddbdbc
DW
867{
868 __u64 sz;
0d80bb2f 869 int slot, i;
a965f303 870 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 871 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 872 __u32 ord;
cdddbdbc
DW
873
874 printf("\n");
1e7bc0ed 875 printf("[%.16s]:\n", dev->volume);
44470971 876 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
877 printf(" RAID Level : %d", get_imsm_raid_level(map));
878 if (map2)
879 printf(" <-- %d", get_imsm_raid_level(map2));
880 printf("\n");
881 printf(" Members : %d", map->num_members);
882 if (map2)
883 printf(" <-- %d", map2->num_members);
884 printf("\n");
0d80bb2f
DW
885 printf(" Slots : [");
886 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 887 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
888 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
889 }
dd8bcb3b
AK
890 printf("]");
891 if (map2) {
892 printf(" <-- [");
893 for (i = 0; i < map2->num_members; i++) {
894 ord = get_imsm_ord_tbl_ent(dev, i, 1);
895 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
896 }
897 printf("]");
898 }
899 printf("\n");
7095bccb
AK
900 printf(" Failed disk : ");
901 if (map->failed_disk_num == 0xff)
902 printf("none");
903 else
904 printf("%i", map->failed_disk_num);
905 printf("\n");
620b1713
DW
906 slot = get_imsm_disk_slot(map, disk_idx);
907 if (slot >= 0) {
98130f40 908 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
909 printf(" This Slot : %d%s\n", slot,
910 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
911 } else
cdddbdbc
DW
912 printf(" This Slot : ?\n");
913 sz = __le32_to_cpu(dev->size_high);
914 sz <<= 32;
915 sz += __le32_to_cpu(dev->size_low);
916 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
917 human_size(sz * 512));
918 sz = __le32_to_cpu(map->blocks_per_member);
919 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
920 human_size(sz * 512));
921 printf(" Sector Offset : %u\n",
922 __le32_to_cpu(map->pba_of_lba0));
923 printf(" Num Stripes : %u\n",
924 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 925 printf(" Chunk Size : %u KiB",
cdddbdbc 926 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
927 if (map2)
928 printf(" <-- %u KiB",
929 __le16_to_cpu(map2->blocks_per_strip) / 2);
930 printf("\n");
cdddbdbc 931 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 932 printf(" Migrate State : ");
1484e727
DW
933 if (dev->vol.migr_state) {
934 if (migr_type(dev) == MIGR_INIT)
8655a7b1 935 printf("initialize\n");
1484e727 936 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 937 printf("rebuild\n");
1484e727 938 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 939 printf("check\n");
1484e727 940 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 941 printf("general migration\n");
1484e727 942 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 943 printf("state change\n");
1484e727 944 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 945 printf("repair\n");
1484e727 946 else
8655a7b1
DW
947 printf("<unknown:%d>\n", migr_type(dev));
948 } else
949 printf("idle\n");
3393c6af
DW
950 printf(" Map State : %s", map_state_str[map->map_state]);
951 if (dev->vol.migr_state) {
952 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 953
b10b37b8 954 printf(" <-- %s", map_state_str[map->map_state]);
1e5c6983
DW
955 printf("\n Checkpoint : %u (%llu)",
956 __le32_to_cpu(dev->vol.curr_migr_unit),
94fcb80a 957 (unsigned long long)blocks_per_migr_unit(dev));
3393c6af
DW
958 }
959 printf("\n");
cdddbdbc 960 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
961}
962
14e8215b 963static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
cdddbdbc 964{
949c47a0 965 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1f24f035 966 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
967 __u64 sz;
968
d362da3d 969 if (index < 0 || !disk)
e9d82038
DW
970 return;
971
cdddbdbc 972 printf("\n");
1f24f035 973 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
cdddbdbc 974 printf(" Disk%02d Serial : %s\n", index, str);
25ed7e59
DW
975 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
976 is_configured(disk) ? " active" : "",
977 is_failed(disk) ? " failed" : "");
cdddbdbc 978 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 979 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
980 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
981 human_size(sz * 512));
982}
983
a5d85af7 984static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 985
cdddbdbc
DW
986static void examine_super_imsm(struct supertype *st, char *homehost)
987{
988 struct intel_super *super = st->sb;
949c47a0 989 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
990 char str[MAX_SIGNATURE_LENGTH];
991 int i;
27fd6274
DW
992 struct mdinfo info;
993 char nbuf[64];
cdddbdbc 994 __u32 sum;
14e8215b 995 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 996 struct dl *dl;
27fd6274 997
cdddbdbc
DW
998 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
999 printf(" Magic : %s\n", str);
1000 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1001 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1002 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1003 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1004 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
a5d85af7 1005 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1006 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1007 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1008 sum = __le32_to_cpu(mpb->check_sum);
1009 printf(" Checksum : %08x %s\n", sum,
949c47a0 1010 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1011 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1012 printf(" Disks : %d\n", mpb->num_disks);
1013 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
14e8215b 1014 print_imsm_disk(mpb, super->disks->index, reserved);
604b746f
JD
1015 if (super->bbm_log) {
1016 struct bbm_log *log = super->bbm_log;
1017
1018 printf("\n");
1019 printf("Bad Block Management Log:\n");
1020 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1021 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1022 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1023 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1024 printf(" First Spare : %llx\n",
1025 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1026 }
44470971
DW
1027 for (i = 0; i < mpb->num_raid_devs; i++) {
1028 struct mdinfo info;
1029 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1030
1031 super->current_vol = i;
a5d85af7 1032 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1033 fname_from_uuid(st, &info, nbuf, ':');
44470971
DW
1034 print_imsm_dev(dev, nbuf + 5, super->disks->index);
1035 }
cdddbdbc
DW
1036 for (i = 0; i < mpb->num_disks; i++) {
1037 if (i == super->disks->index)
1038 continue;
14e8215b 1039 print_imsm_disk(mpb, i, reserved);
cdddbdbc 1040 }
94827db3
N
1041 for (dl = super->disks ; dl; dl = dl->next) {
1042 struct imsm_disk *disk;
1043 char str[MAX_RAID_SERIAL_LEN + 1];
1044 __u64 sz;
1045
1046 if (dl->index >= 0)
1047 continue;
1048
1049 disk = &dl->disk;
1050 printf("\n");
1051 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1052 printf(" Disk Serial : %s\n", str);
1053 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1054 is_configured(disk) ? " active" : "",
1055 is_failed(disk) ? " failed" : "");
1056 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1057 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1058 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1059 human_size(sz * 512));
1060 }
cdddbdbc
DW
1061}
1062
061f2c6a 1063static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1064{
27fd6274 1065 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1066 struct mdinfo info;
1067 char nbuf[64];
1e7bc0ed 1068 struct intel_super *super = st->sb;
1e7bc0ed 1069
0d5a423f
DW
1070 if (!super->anchor->num_raid_devs) {
1071 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1072 return;
0d5a423f 1073 }
ff54de6e 1074
a5d85af7 1075 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1076 fname_from_uuid(st, &info, nbuf, ':');
1077 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1078}
1079
1080static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1081{
1082 /* We just write a generic IMSM ARRAY entry */
1083 struct mdinfo info;
1084 char nbuf[64];
1085 char nbuf1[64];
1086 struct intel_super *super = st->sb;
1087 int i;
1088
1089 if (!super->anchor->num_raid_devs)
1090 return;
1091
a5d85af7 1092 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1093 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1094 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1095 struct imsm_dev *dev = get_imsm_dev(super, i);
1096
1097 super->current_vol = i;
a5d85af7 1098 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1099 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1100 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1101 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1102 }
cdddbdbc
DW
1103}
1104
9d84c8ea
DW
1105static void export_examine_super_imsm(struct supertype *st)
1106{
1107 struct intel_super *super = st->sb;
1108 struct imsm_super *mpb = super->anchor;
1109 struct mdinfo info;
1110 char nbuf[64];
1111
a5d85af7 1112 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1113 fname_from_uuid(st, &info, nbuf, ':');
1114 printf("MD_METADATA=imsm\n");
1115 printf("MD_LEVEL=container\n");
1116 printf("MD_UUID=%s\n", nbuf+5);
1117 printf("MD_DEVICES=%u\n", mpb->num_disks);
1118}
1119
cdddbdbc
DW
1120static void detail_super_imsm(struct supertype *st, char *homehost)
1121{
3ebe00a1
DW
1122 struct mdinfo info;
1123 char nbuf[64];
1124
a5d85af7 1125 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1126 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1127 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1128}
1129
1130static void brief_detail_super_imsm(struct supertype *st)
1131{
ff54de6e
N
1132 struct mdinfo info;
1133 char nbuf[64];
a5d85af7 1134 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1135 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1136 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1137}
d665cc31
DW
1138
1139static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1140static void fd2devname(int fd, char *name);
1141
120dc887 1142static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1143{
120dc887
LM
1144 /* dump an unsorted list of devices attached to AHCI Intel storage
1145 * controller, as well as non-connected ports
d665cc31
DW
1146 */
1147 int hba_len = strlen(hba_path) + 1;
1148 struct dirent *ent;
1149 DIR *dir;
1150 char *path = NULL;
1151 int err = 0;
1152 unsigned long port_mask = (1 << port_count) - 1;
1153
f21e18ca 1154 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1155 if (verbose)
1156 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1157 return 2;
1158 }
1159
1160 /* scroll through /sys/dev/block looking for devices attached to
1161 * this hba
1162 */
1163 dir = opendir("/sys/dev/block");
1164 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1165 int fd;
1166 char model[64];
1167 char vendor[64];
1168 char buf[1024];
1169 int major, minor;
1170 char *device;
1171 char *c;
1172 int port;
1173 int type;
1174
1175 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1176 continue;
1177 path = devt_to_devpath(makedev(major, minor));
1178 if (!path)
1179 continue;
1180 if (!path_attached_to_hba(path, hba_path)) {
1181 free(path);
1182 path = NULL;
1183 continue;
1184 }
1185
1186 /* retrieve the scsi device type */
1187 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1188 if (verbose)
1189 fprintf(stderr, Name ": failed to allocate 'device'\n");
1190 err = 2;
1191 break;
1192 }
1193 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1194 if (load_sys(device, buf) != 0) {
1195 if (verbose)
1196 fprintf(stderr, Name ": failed to read device type for %s\n",
1197 path);
1198 err = 2;
1199 free(device);
1200 break;
1201 }
1202 type = strtoul(buf, NULL, 10);
1203
1204 /* if it's not a disk print the vendor and model */
1205 if (!(type == 0 || type == 7 || type == 14)) {
1206 vendor[0] = '\0';
1207 model[0] = '\0';
1208 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1209 if (load_sys(device, buf) == 0) {
1210 strncpy(vendor, buf, sizeof(vendor));
1211 vendor[sizeof(vendor) - 1] = '\0';
1212 c = (char *) &vendor[sizeof(vendor) - 1];
1213 while (isspace(*c) || *c == '\0')
1214 *c-- = '\0';
1215
1216 }
1217 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1218 if (load_sys(device, buf) == 0) {
1219 strncpy(model, buf, sizeof(model));
1220 model[sizeof(model) - 1] = '\0';
1221 c = (char *) &model[sizeof(model) - 1];
1222 while (isspace(*c) || *c == '\0')
1223 *c-- = '\0';
1224 }
1225
1226 if (vendor[0] && model[0])
1227 sprintf(buf, "%.64s %.64s", vendor, model);
1228 else
1229 switch (type) { /* numbers from hald/linux/device.c */
1230 case 1: sprintf(buf, "tape"); break;
1231 case 2: sprintf(buf, "printer"); break;
1232 case 3: sprintf(buf, "processor"); break;
1233 case 4:
1234 case 5: sprintf(buf, "cdrom"); break;
1235 case 6: sprintf(buf, "scanner"); break;
1236 case 8: sprintf(buf, "media_changer"); break;
1237 case 9: sprintf(buf, "comm"); break;
1238 case 12: sprintf(buf, "raid"); break;
1239 default: sprintf(buf, "unknown");
1240 }
1241 } else
1242 buf[0] = '\0';
1243 free(device);
1244
1245 /* chop device path to 'host%d' and calculate the port number */
1246 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1247 if (!c) {
1248 if (verbose)
1249 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1250 err = 2;
1251 break;
1252 }
d665cc31
DW
1253 *c = '\0';
1254 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1255 port -= host_base;
1256 else {
1257 if (verbose) {
1258 *c = '/'; /* repair the full string */
1259 fprintf(stderr, Name ": failed to determine port number for %s\n",
1260 path);
1261 }
1262 err = 2;
1263 break;
1264 }
1265
1266 /* mark this port as used */
1267 port_mask &= ~(1 << port);
1268
1269 /* print out the device information */
1270 if (buf[0]) {
1271 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1272 continue;
1273 }
1274
1275 fd = dev_open(ent->d_name, O_RDONLY);
1276 if (fd < 0)
1277 printf(" Port%d : - disk info unavailable -\n", port);
1278 else {
1279 fd2devname(fd, buf);
1280 printf(" Port%d : %s", port, buf);
1281 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1282 printf(" (%s)\n", buf);
1283 else
1284 printf("()\n");
1285 }
1286 close(fd);
1287 free(path);
1288 path = NULL;
1289 }
1290 if (path)
1291 free(path);
1292 if (dir)
1293 closedir(dir);
1294 if (err == 0) {
1295 int i;
1296
1297 for (i = 0; i < port_count; i++)
1298 if (port_mask & (1 << i))
1299 printf(" Port%d : - no device attached -\n", i);
1300 }
1301
1302 return err;
1303}
1304
120dc887 1305
155cbb4c 1306
120dc887
LM
1307static void print_found_intel_controllers(struct sys_dev *elem)
1308{
1309 for (; elem; elem = elem->next) {
1310 fprintf(stderr, Name ": found Intel(R) ");
1311 if (elem->type == SYS_DEV_SATA)
1312 fprintf(stderr, "SATA ");
155cbb4c
LM
1313 else if (elem->type == SYS_DEV_SAS)
1314 fprintf(stderr, "SAS ");
120dc887
LM
1315 fprintf(stderr, "RAID controller");
1316 if (elem->pci_id)
1317 fprintf(stderr, " at %s", elem->pci_id);
1318 fprintf(stderr, ".\n");
1319 }
1320 fflush(stderr);
1321}
1322
120dc887
LM
1323static int ahci_get_port_count(const char *hba_path, int *port_count)
1324{
1325 struct dirent *ent;
1326 DIR *dir;
1327 int host_base = -1;
1328
1329 *port_count = 0;
1330 if ((dir = opendir(hba_path)) == NULL)
1331 return -1;
1332
1333 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1334 int host;
1335
1336 if (sscanf(ent->d_name, "host%d", &host) != 1)
1337 continue;
1338 if (*port_count == 0)
1339 host_base = host;
1340 else if (host < host_base)
1341 host_base = host;
1342
1343 if (host + 1 > *port_count + host_base)
1344 *port_count = host + 1 - host_base;
1345 }
1346 closedir(dir);
1347 return host_base;
1348}
1349
5615172f 1350static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1351{
1352 /* There are two components to imsm platform support, the ahci SATA
1353 * controller and the option-rom. To find the SATA controller we
1354 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1355 * controller with the Intel vendor id is present. This approach
1356 * allows mdadm to leverage the kernel's ahci detection logic, with the
1357 * caveat that if ahci.ko is not loaded mdadm will not be able to
1358 * detect platform raid capabilities. The option-rom resides in a
1359 * platform "Adapter ROM". We scan for its signature to retrieve the
1360 * platform capabilities. If raid support is disabled in the BIOS the
1361 * option-rom capability structure will not be available.
1362 */
1363 const struct imsm_orom *orom;
1364 struct sys_dev *list, *hba;
d665cc31
DW
1365 int host_base = 0;
1366 int port_count = 0;
120dc887 1367 int result=0;
d665cc31 1368
5615172f
DW
1369 if (enumerate_only) {
1370 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1371 return 0;
1372 return 2;
1373 }
1374
155cbb4c
LM
1375 list = find_intel_devices();
1376 if (!list) {
d665cc31 1377 if (verbose)
155cbb4c
LM
1378 fprintf(stderr, Name ": no active Intel(R) RAID "
1379 "controller found.\n");
d665cc31
DW
1380 free_sys_dev(&list);
1381 return 2;
1382 } else if (verbose)
155cbb4c 1383 print_found_intel_controllers(list);
d665cc31
DW
1384
1385 orom = find_imsm_orom();
1386 if (!orom) {
155cbb4c 1387 free_sys_dev(&list);
d665cc31
DW
1388 if (verbose)
1389 fprintf(stderr, Name ": imsm option-rom not found\n");
1390 return 2;
1391 }
1392
1393 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1394 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1395 orom->hotfix_ver, orom->build);
1396 printf(" RAID Levels :%s%s%s%s%s\n",
1397 imsm_orom_has_raid0(orom) ? " raid0" : "",
1398 imsm_orom_has_raid1(orom) ? " raid1" : "",
1399 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1400 imsm_orom_has_raid10(orom) ? " raid10" : "",
1401 imsm_orom_has_raid5(orom) ? " raid5" : "");
8be094f0
DW
1402 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1403 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1404 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1405 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1406 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1407 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1408 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1409 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1410 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1411 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1412 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1413 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1414 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1415 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1416 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1417 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1418 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
d665cc31
DW
1419 printf(" Max Disks : %d\n", orom->tds);
1420 printf(" Max Volumes : %d\n", orom->vpa);
d665cc31 1421
120dc887
LM
1422 for (hba = list; hba; hba = hba->next) {
1423 printf(" I/O Controller : %s (%s)\n",
1424 hba->path, get_sys_dev_type(hba->type));
d665cc31 1425
120dc887
LM
1426 if (hba->type == SYS_DEV_SATA) {
1427 host_base = ahci_get_port_count(hba->path, &port_count);
1428 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1429 if (verbose)
1430 fprintf(stderr, Name ": failed to enumerate "
1431 "ports on SATA controller at %s.", hba->pci_id);
1432 result |= 2;
1433 }
155cbb4c
LM
1434 } else if (hba->type == SYS_DEV_SAS) {
1435 if (verbose)
1436 fprintf(stderr, Name ": failed to enumerate "
1437 "devices on SAS controller at %s.", hba->pci_id);
1438 result |= 2;
120dc887 1439 }
d665cc31 1440 }
155cbb4c 1441
120dc887
LM
1442 free_sys_dev(&list);
1443 return result;
d665cc31 1444}
cdddbdbc
DW
1445#endif
1446
1447static int match_home_imsm(struct supertype *st, char *homehost)
1448{
5115ca67
DW
1449 /* the imsm metadata format does not specify any host
1450 * identification information. We return -1 since we can never
1451 * confirm nor deny whether a given array is "meant" for this
148acb7b 1452 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1453 * exclude member disks that do not belong, and we rely on
1454 * mdadm.conf to specify the arrays that should be assembled.
1455 * Auto-assembly may still pick up "foreign" arrays.
1456 */
cdddbdbc 1457
9362c1c8 1458 return -1;
cdddbdbc
DW
1459}
1460
1461static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1462{
51006d85
N
1463 /* The uuid returned here is used for:
1464 * uuid to put into bitmap file (Create, Grow)
1465 * uuid for backup header when saving critical section (Grow)
1466 * comparing uuids when re-adding a device into an array
1467 * In these cases the uuid required is that of the data-array,
1468 * not the device-set.
1469 * uuid to recognise same set when adding a missing device back
1470 * to an array. This is a uuid for the device-set.
1471 *
1472 * For each of these we can make do with a truncated
1473 * or hashed uuid rather than the original, as long as
1474 * everyone agrees.
1475 * In each case the uuid required is that of the data-array,
1476 * not the device-set.
43dad3d6 1477 */
51006d85
N
1478 /* imsm does not track uuid's so we synthesis one using sha1 on
1479 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1480 * - the orig_family_num of the container
51006d85
N
1481 * - the index number of the volume
1482 * - the 'serial' number of the volume.
1483 * Hopefully these are all constant.
1484 */
1485 struct intel_super *super = st->sb;
43dad3d6 1486
51006d85
N
1487 char buf[20];
1488 struct sha1_ctx ctx;
1489 struct imsm_dev *dev = NULL;
148acb7b 1490 __u32 family_num;
51006d85 1491
148acb7b
DW
1492 /* some mdadm versions failed to set ->orig_family_num, in which
1493 * case fall back to ->family_num. orig_family_num will be
1494 * fixed up with the first metadata update.
1495 */
1496 family_num = super->anchor->orig_family_num;
1497 if (family_num == 0)
1498 family_num = super->anchor->family_num;
51006d85 1499 sha1_init_ctx(&ctx);
92bd8f8d 1500 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1501 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1502 if (super->current_vol >= 0)
1503 dev = get_imsm_dev(super, super->current_vol);
1504 if (dev) {
1505 __u32 vol = super->current_vol;
1506 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1507 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1508 }
1509 sha1_finish_ctx(&ctx, buf);
1510 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1511}
1512
0d481d37 1513#if 0
4f5bc454
DW
1514static void
1515get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1516{
cdddbdbc
DW
1517 __u8 *v = get_imsm_version(mpb);
1518 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1519 char major[] = { 0, 0, 0 };
1520 char minor[] = { 0 ,0, 0 };
1521 char patch[] = { 0, 0, 0 };
1522 char *ver_parse[] = { major, minor, patch };
1523 int i, j;
1524
1525 i = j = 0;
1526 while (*v != '\0' && v < end) {
1527 if (*v != '.' && j < 2)
1528 ver_parse[i][j++] = *v;
1529 else {
1530 i++;
1531 j = 0;
1532 }
1533 v++;
1534 }
1535
4f5bc454
DW
1536 *m = strtol(minor, NULL, 0);
1537 *p = strtol(patch, NULL, 0);
1538}
0d481d37 1539#endif
4f5bc454 1540
1e5c6983
DW
1541static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1542{
1543 /* migr_strip_size when repairing or initializing parity */
1544 struct imsm_map *map = get_imsm_map(dev, 0);
1545 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1546
1547 switch (get_imsm_raid_level(map)) {
1548 case 5:
1549 case 10:
1550 return chunk;
1551 default:
1552 return 128*1024 >> 9;
1553 }
1554}
1555
1556static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1557{
1558 /* migr_strip_size when rebuilding a degraded disk, no idea why
1559 * this is different than migr_strip_size_resync(), but it's good
1560 * to be compatible
1561 */
1562 struct imsm_map *map = get_imsm_map(dev, 1);
1563 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1564
1565 switch (get_imsm_raid_level(map)) {
1566 case 1:
1567 case 10:
1568 if (map->num_members % map->num_domains == 0)
1569 return 128*1024 >> 9;
1570 else
1571 return chunk;
1572 case 5:
1573 return max((__u32) 64*1024 >> 9, chunk);
1574 default:
1575 return 128*1024 >> 9;
1576 }
1577}
1578
1579static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1580{
1581 struct imsm_map *lo = get_imsm_map(dev, 0);
1582 struct imsm_map *hi = get_imsm_map(dev, 1);
1583 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1584 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1585
1586 return max((__u32) 1, hi_chunk / lo_chunk);
1587}
1588
1589static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1590{
1591 struct imsm_map *lo = get_imsm_map(dev, 0);
1592 int level = get_imsm_raid_level(lo);
1593
1594 if (level == 1 || level == 10) {
1595 struct imsm_map *hi = get_imsm_map(dev, 1);
1596
1597 return hi->num_domains;
1598 } else
1599 return num_stripes_per_unit_resync(dev);
1600}
1601
98130f40 1602static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1603{
1604 /* named 'imsm_' because raid0, raid1 and raid10
1605 * counter-intuitively have the same number of data disks
1606 */
98130f40 1607 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1608
1609 switch (get_imsm_raid_level(map)) {
1610 case 0:
1611 case 1:
1612 case 10:
1613 return map->num_members;
1614 case 5:
1615 return map->num_members - 1;
1616 default:
1617 dprintf("%s: unsupported raid level\n", __func__);
1618 return 0;
1619 }
1620}
1621
1622static __u32 parity_segment_depth(struct imsm_dev *dev)
1623{
1624 struct imsm_map *map = get_imsm_map(dev, 0);
1625 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1626
1627 switch(get_imsm_raid_level(map)) {
1628 case 1:
1629 case 10:
1630 return chunk * map->num_domains;
1631 case 5:
1632 return chunk * map->num_members;
1633 default:
1634 return chunk;
1635 }
1636}
1637
1638static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1639{
1640 struct imsm_map *map = get_imsm_map(dev, 1);
1641 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1642 __u32 strip = block / chunk;
1643
1644 switch (get_imsm_raid_level(map)) {
1645 case 1:
1646 case 10: {
1647 __u32 vol_strip = (strip * map->num_domains) + 1;
1648 __u32 vol_stripe = vol_strip / map->num_members;
1649
1650 return vol_stripe * chunk + block % chunk;
1651 } case 5: {
1652 __u32 stripe = strip / (map->num_members - 1);
1653
1654 return stripe * chunk + block % chunk;
1655 }
1656 default:
1657 return 0;
1658 }
1659}
1660
1661static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1662{
1663 /* calculate the conversion factor between per member 'blocks'
1664 * (md/{resync,rebuild}_start) and imsm migration units, return
1665 * 0 for the 'not migrating' and 'unsupported migration' cases
1666 */
1667 if (!dev->vol.migr_state)
1668 return 0;
1669
1670 switch (migr_type(dev)) {
6345120e 1671 case MIGR_GEN_MIGR:
1e5c6983
DW
1672 case MIGR_VERIFY:
1673 case MIGR_REPAIR:
1674 case MIGR_INIT: {
1675 struct imsm_map *map = get_imsm_map(dev, 0);
1676 __u32 stripes_per_unit;
1677 __u32 blocks_per_unit;
1678 __u32 parity_depth;
1679 __u32 migr_chunk;
1680 __u32 block_map;
1681 __u32 block_rel;
1682 __u32 segment;
1683 __u32 stripe;
1684 __u8 disks;
1685
1686 /* yes, this is really the translation of migr_units to
1687 * per-member blocks in the 'resync' case
1688 */
1689 stripes_per_unit = num_stripes_per_unit_resync(dev);
1690 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 1691 disks = imsm_num_data_members(dev, 0);
1e5c6983
DW
1692 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1693 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1694 segment = blocks_per_unit / stripe;
1695 block_rel = blocks_per_unit - segment * stripe;
1696 parity_depth = parity_segment_depth(dev);
1697 block_map = map_migr_block(dev, block_rel);
1698 return block_map + parity_depth * segment;
1699 }
1700 case MIGR_REBUILD: {
1701 __u32 stripes_per_unit;
1702 __u32 migr_chunk;
1703
1704 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1705 migr_chunk = migr_strip_blocks_rebuild(dev);
1706 return migr_chunk * stripes_per_unit;
1707 }
1e5c6983
DW
1708 case MIGR_STATE_CHANGE:
1709 default:
1710 return 0;
1711 }
1712}
1713
c2c087e6
DW
1714static int imsm_level_to_layout(int level)
1715{
1716 switch (level) {
1717 case 0:
1718 case 1:
1719 return 0;
1720 case 5:
1721 case 6:
a380c027 1722 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 1723 case 10:
c92a2527 1724 return 0x102;
c2c087e6 1725 }
a18a888e 1726 return UnSet;
c2c087e6
DW
1727}
1728
a5d85af7 1729static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
1730{
1731 struct intel_super *super = st->sb;
949c47a0 1732 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 1733 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 1734 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 1735 struct imsm_map *map_to_analyse = map;
efb30e7f 1736 struct dl *dl;
e207da2f 1737 char *devname;
a5d85af7 1738 int map_disks = info->array.raid_disks;
bf5a934a 1739
b335e593
AK
1740 if (prev_map)
1741 map_to_analyse = prev_map;
1742
efb30e7f
DW
1743 for (dl = super->disks; dl; dl = dl->next)
1744 if (dl->raiddisk == info->disk.raid_disk)
1745 break;
bf5a934a 1746 info->container_member = super->current_vol;
b335e593
AK
1747 info->array.raid_disks = map_to_analyse->num_members;
1748 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
1749 info->array.layout = imsm_level_to_layout(info->array.level);
1750 info->array.md_minor = -1;
1751 info->array.ctime = 0;
1752 info->array.utime = 0;
b335e593
AK
1753 info->array.chunk_size =
1754 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 1755 info->array.state = !dev->vol.dirty;
da9b4a62
DW
1756 info->custom_array_size = __le32_to_cpu(dev->size_high);
1757 info->custom_array_size <<= 32;
1758 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3f83228a
N
1759 if (prev_map && map->map_state == prev_map->map_state) {
1760 info->reshape_active = 1;
b335e593
AK
1761 info->new_level = get_imsm_raid_level(map);
1762 info->new_layout = imsm_level_to_layout(info->new_level);
1763 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a
N
1764 info->delta_disks = map->num_members - prev_map->num_members;
1765 /* We shape information that we give to md might have to be
1766 * modify to cope with md's requirement for reshaping arrays.
1767 * For example, when reshaping a RAID0, md requires it to be
1768 * presented as a degraded RAID4.
1769 * Also if a RAID0 is migrating to a RAID5 we need to specify
1770 * the array as already being RAID5, but the 'before' layout
1771 * is a RAID4-like layout.
1772 */
1773 switch (info->array.level) {
1774 case 0:
1775 switch(info->new_level) {
1776 case 0:
1777 /* conversion is happening as RAID4 */
1778 info->array.level = 4;
1779 info->array.raid_disks += 1;
1780 break;
1781 case 5:
1782 /* conversion is happening as RAID5 */
1783 info->array.level = 5;
1784 info->array.layout = ALGORITHM_PARITY_N;
1785 info->array.raid_disks += 1;
1786 info->delta_disks -= 1;
1787 break;
1788 default:
1789 /* FIXME error message */
1790 info->array.level = UnSet;
1791 break;
1792 }
1793 break;
1794 }
b335e593
AK
1795 } else {
1796 info->new_level = UnSet;
1797 info->new_layout = UnSet;
1798 info->new_chunk = info->array.chunk_size;
3f83228a 1799 info->delta_disks = 0;
b335e593 1800 }
301406c9
DW
1801 info->disk.major = 0;
1802 info->disk.minor = 0;
efb30e7f
DW
1803 if (dl) {
1804 info->disk.major = dl->major;
1805 info->disk.minor = dl->minor;
1806 }
bf5a934a 1807
b335e593
AK
1808 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
1809 info->component_size =
1810 __le32_to_cpu(map_to_analyse->blocks_per_member);
301406c9 1811 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 1812 info->recovery_start = MaxSector;
bf5a934a 1813
d2e6d5d6 1814 info->reshape_progress = 0;
b335e593
AK
1815 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
1816 dev->vol.dirty) {
301406c9 1817 info->resync_start = 0;
1e5c6983
DW
1818 } else if (dev->vol.migr_state) {
1819 switch (migr_type(dev)) {
1820 case MIGR_REPAIR:
1821 case MIGR_INIT: {
1822 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1823 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1824
1825 info->resync_start = blocks_per_unit * units;
1826 break;
1827 }
d2e6d5d6
AK
1828 case MIGR_GEN_MIGR: {
1829 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1830 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1831
1832 info->reshape_progress = blocks_per_unit * units;
1833 dprintf("IMSM: General Migration checkpoint : %llu "
1834 "(%llu) -> read reshape progress : %llu\n",
1835 units, blocks_per_unit, info->reshape_progress);
75156c46
AK
1836 unsigned long long array_blocks;
1837 int used_disks;
1838
1839 used_disks = imsm_num_data_members(dev, 1);
1840 if (used_disks > 0) {
1841 array_blocks = map->blocks_per_member *
1842 used_disks;
1843 /* round array size down to closest MB
1844 */
1845 info->custom_array_size = (array_blocks
1846 >> SECT_PER_MB_SHIFT)
1847 << SECT_PER_MB_SHIFT;
1848 }
d2e6d5d6 1849 }
1e5c6983
DW
1850 case MIGR_VERIFY:
1851 /* we could emulate the checkpointing of
1852 * 'sync_action=check' migrations, but for now
1853 * we just immediately complete them
1854 */
1855 case MIGR_REBUILD:
1856 /* this is handled by container_content_imsm() */
1e5c6983
DW
1857 case MIGR_STATE_CHANGE:
1858 /* FIXME handle other migrations */
1859 default:
1860 /* we are not dirty, so... */
1861 info->resync_start = MaxSector;
1862 }
1863 } else
b7528a20 1864 info->resync_start = MaxSector;
301406c9
DW
1865
1866 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1867 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 1868
f35f2525
N
1869 info->array.major_version = -1;
1870 info->array.minor_version = -2;
e207da2f
AW
1871 devname = devnum2devname(st->container_dev);
1872 *info->text_version = '\0';
1873 if (devname)
1874 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1875 free(devname);
a67dd8cc 1876 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 1877 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
1878
1879 if (dmap) {
1880 int i, j;
1881 for (i=0; i<map_disks; i++) {
1882 dmap[i] = 0;
1883 if (i < info->array.raid_disks) {
1884 struct imsm_disk *dsk;
98130f40 1885 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
1886 dsk = get_imsm_disk(super, j);
1887 if (dsk && (dsk->status & CONFIGURED_DISK))
1888 dmap[i] = 1;
1889 }
1890 }
1891 }
81ac8b4d 1892}
bf5a934a 1893
97b4d0e9
DW
1894static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
1895static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
1896
1897static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
1898{
1899 struct dl *d;
1900
1901 for (d = super->missing; d; d = d->next)
1902 if (d->index == index)
1903 return &d->disk;
1904 return NULL;
1905}
1906
a5d85af7 1907static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
1908{
1909 struct intel_super *super = st->sb;
4f5bc454 1910 struct imsm_disk *disk;
a5d85af7 1911 int map_disks = info->array.raid_disks;
ab3cb6b3
N
1912 int max_enough = -1;
1913 int i;
1914 struct imsm_super *mpb;
4f5bc454 1915
bf5a934a 1916 if (super->current_vol >= 0) {
a5d85af7 1917 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
1918 return;
1919 }
d23fe947
DW
1920
1921 /* Set raid_disks to zero so that Assemble will always pull in valid
1922 * spares
1923 */
1924 info->array.raid_disks = 0;
cdddbdbc
DW
1925 info->array.level = LEVEL_CONTAINER;
1926 info->array.layout = 0;
1927 info->array.md_minor = -1;
c2c087e6 1928 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
1929 info->array.utime = 0;
1930 info->array.chunk_size = 0;
1931
1932 info->disk.major = 0;
1933 info->disk.minor = 0;
cdddbdbc 1934 info->disk.raid_disk = -1;
c2c087e6 1935 info->reshape_active = 0;
f35f2525
N
1936 info->array.major_version = -1;
1937 info->array.minor_version = -2;
c2c087e6 1938 strcpy(info->text_version, "imsm");
a67dd8cc 1939 info->safe_mode_delay = 0;
c2c087e6
DW
1940 info->disk.number = -1;
1941 info->disk.state = 0;
c5afc314 1942 info->name[0] = 0;
921d9e16 1943 info->recovery_start = MaxSector;
c2c087e6 1944
97b4d0e9 1945 /* do we have the all the insync disks that we expect? */
ab3cb6b3 1946 mpb = super->anchor;
97b4d0e9 1947
ab3cb6b3
N
1948 for (i = 0; i < mpb->num_raid_devs; i++) {
1949 struct imsm_dev *dev = get_imsm_dev(super, i);
1950 int failed, enough, j, missing = 0;
1951 struct imsm_map *map;
1952 __u8 state;
97b4d0e9 1953
ab3cb6b3
N
1954 failed = imsm_count_failed(super, dev);
1955 state = imsm_check_degraded(super, dev, failed);
1956 map = get_imsm_map(dev, dev->vol.migr_state);
1957
1958 /* any newly missing disks?
1959 * (catches single-degraded vs double-degraded)
1960 */
1961 for (j = 0; j < map->num_members; j++) {
98130f40 1962 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
ab3cb6b3
N
1963 __u32 idx = ord_to_idx(ord);
1964
1965 if (!(ord & IMSM_ORD_REBUILD) &&
1966 get_imsm_missing(super, idx)) {
1967 missing = 1;
1968 break;
1969 }
97b4d0e9 1970 }
ab3cb6b3
N
1971
1972 if (state == IMSM_T_STATE_FAILED)
1973 enough = -1;
1974 else if (state == IMSM_T_STATE_DEGRADED &&
1975 (state != map->map_state || missing))
1976 enough = 0;
1977 else /* we're normal, or already degraded */
1978 enough = 1;
1979
1980 /* in the missing/failed disk case check to see
1981 * if at least one array is runnable
1982 */
1983 max_enough = max(max_enough, enough);
1984 }
1985 dprintf("%s: enough: %d\n", __func__, max_enough);
1986 info->container_enough = max_enough;
97b4d0e9 1987
4a04ec6c 1988 if (super->disks) {
14e8215b
DW
1989 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1990
b9f594fe 1991 disk = &super->disks->disk;
14e8215b
DW
1992 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1993 info->component_size = reserved;
25ed7e59 1994 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
1995 /* we don't change info->disk.raid_disk here because
1996 * this state will be finalized in mdmon after we have
1997 * found the 'most fresh' version of the metadata
1998 */
25ed7e59
DW
1999 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2000 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2001 }
a575e2a7
DW
2002
2003 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2004 * ->compare_super may have updated the 'num_raid_devs' field for spares
2005 */
2006 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2007 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2008 else
2009 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2010
2011 /* I don't know how to compute 'map' on imsm, so use safe default */
2012 if (map) {
2013 int i;
2014 for (i = 0; i < map_disks; i++)
2015 map[i] = 1;
2016 }
2017
cdddbdbc
DW
2018}
2019
5c4cd5da
AC
2020/* allocates memory and fills disk in mdinfo structure
2021 * for each disk in array */
2022struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2023{
2024 struct mdinfo *mddev = NULL;
2025 struct intel_super *super = st->sb;
2026 struct imsm_disk *disk;
2027 int count = 0;
2028 struct dl *dl;
2029 if (!super || !super->disks)
2030 return NULL;
2031 dl = super->disks;
2032 mddev = malloc(sizeof(*mddev));
2033 if (!mddev) {
2034 fprintf(stderr, Name ": Failed to allocate memory.\n");
2035 return NULL;
2036 }
2037 memset(mddev, 0, sizeof(*mddev));
2038 while (dl) {
2039 struct mdinfo *tmp;
2040 disk = &dl->disk;
2041 tmp = malloc(sizeof(*tmp));
2042 if (!tmp) {
2043 fprintf(stderr, Name ": Failed to allocate memory.\n");
2044 if (mddev)
2045 sysfs_free(mddev);
2046 return NULL;
2047 }
2048 memset(tmp, 0, sizeof(*tmp));
2049 if (mddev->devs)
2050 tmp->next = mddev->devs;
2051 mddev->devs = tmp;
2052 tmp->disk.number = count++;
2053 tmp->disk.major = dl->major;
2054 tmp->disk.minor = dl->minor;
2055 tmp->disk.state = is_configured(disk) ?
2056 (1 << MD_DISK_ACTIVE) : 0;
2057 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2058 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2059 tmp->disk.raid_disk = -1;
2060 dl = dl->next;
2061 }
2062 return mddev;
2063}
2064
cdddbdbc
DW
2065static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2066 char *update, char *devname, int verbose,
2067 int uuid_set, char *homehost)
2068{
f352c545
DW
2069 /* For 'assemble' and 'force' we need to return non-zero if any
2070 * change was made. For others, the return value is ignored.
2071 * Update options are:
2072 * force-one : This device looks a bit old but needs to be included,
2073 * update age info appropriately.
2074 * assemble: clear any 'faulty' flag to allow this device to
2075 * be assembled.
2076 * force-array: Array is degraded but being forced, mark it clean
2077 * if that will be needed to assemble it.
2078 *
2079 * newdev: not used ????
2080 * grow: Array has gained a new device - this is currently for
2081 * linear only
2082 * resync: mark as dirty so a resync will happen.
2083 * name: update the name - preserving the homehost
6e46bf34 2084 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2085 *
2086 * Following are not relevant for this imsm:
2087 * sparc2.2 : update from old dodgey metadata
2088 * super-minor: change the preferred_minor number
2089 * summaries: update redundant counters.
f352c545
DW
2090 * homehost: update the recorded homehost
2091 * _reshape_progress: record new reshape_progress position.
2092 */
6e46bf34
DW
2093 int rv = 1;
2094 struct intel_super *super = st->sb;
2095 struct imsm_super *mpb;
f352c545 2096
6e46bf34
DW
2097 /* we can only update container info */
2098 if (!super || super->current_vol >= 0 || !super->anchor)
2099 return 1;
2100
2101 mpb = super->anchor;
2102
2103 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2104 rv = -1;
6e46bf34
DW
2105 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2106 mpb->orig_family_num = *((__u32 *) info->update_private);
2107 rv = 0;
2108 } else if (strcmp(update, "uuid") == 0) {
2109 __u32 *new_family = malloc(sizeof(*new_family));
2110
2111 /* update orig_family_number with the incoming random
2112 * data, report the new effective uuid, and store the
2113 * new orig_family_num for future updates.
2114 */
2115 if (new_family) {
2116 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2117 uuid_from_super_imsm(st, info->uuid);
2118 *new_family = mpb->orig_family_num;
2119 info->update_private = new_family;
2120 rv = 0;
2121 }
2122 } else if (strcmp(update, "assemble") == 0)
2123 rv = 0;
2124 else
1e2b2765 2125 rv = -1;
f352c545 2126
6e46bf34
DW
2127 /* successful update? recompute checksum */
2128 if (rv == 0)
2129 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2130
2131 return rv;
cdddbdbc
DW
2132}
2133
c2c087e6 2134static size_t disks_to_mpb_size(int disks)
cdddbdbc 2135{
c2c087e6 2136 size_t size;
cdddbdbc 2137
c2c087e6
DW
2138 size = sizeof(struct imsm_super);
2139 size += (disks - 1) * sizeof(struct imsm_disk);
2140 size += 2 * sizeof(struct imsm_dev);
2141 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2142 size += (4 - 2) * sizeof(struct imsm_map);
2143 /* 4 possible disk_ord_tbl's */
2144 size += 4 * (disks - 1) * sizeof(__u32);
2145
2146 return size;
2147}
2148
2149static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2150{
2151 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2152 return 0;
2153
2154 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2155}
2156
ba2de7ba
DW
2157static void free_devlist(struct intel_super *super)
2158{
2159 struct intel_dev *dv;
2160
2161 while (super->devlist) {
2162 dv = super->devlist->next;
2163 free(super->devlist->dev);
2164 free(super->devlist);
2165 super->devlist = dv;
2166 }
2167}
2168
2169static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2170{
2171 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2172}
2173
cdddbdbc
DW
2174static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2175{
2176 /*
2177 * return:
2178 * 0 same, or first was empty, and second was copied
2179 * 1 second had wrong number
2180 * 2 wrong uuid
2181 * 3 wrong other info
2182 */
2183 struct intel_super *first = st->sb;
2184 struct intel_super *sec = tst->sb;
2185
2186 if (!first) {
2187 st->sb = tst->sb;
2188 tst->sb = NULL;
2189 return 0;
2190 }
2191
d23fe947
DW
2192 /* if an anchor does not have num_raid_devs set then it is a free
2193 * floating spare
2194 */
2195 if (first->anchor->num_raid_devs > 0 &&
2196 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2197 /* Determine if these disks might ever have been
2198 * related. Further disambiguation can only take place
2199 * in load_super_imsm_all
2200 */
2201 __u32 first_family = first->anchor->orig_family_num;
2202 __u32 sec_family = sec->anchor->orig_family_num;
2203
f796af5d
DW
2204 if (memcmp(first->anchor->sig, sec->anchor->sig,
2205 MAX_SIGNATURE_LENGTH) != 0)
2206 return 3;
2207
a2b97981
DW
2208 if (first_family == 0)
2209 first_family = first->anchor->family_num;
2210 if (sec_family == 0)
2211 sec_family = sec->anchor->family_num;
2212
2213 if (first_family != sec_family)
d23fe947 2214 return 3;
f796af5d 2215
d23fe947 2216 }
cdddbdbc 2217
f796af5d 2218
3e372e5a
DW
2219 /* if 'first' is a spare promote it to a populated mpb with sec's
2220 * family number
2221 */
2222 if (first->anchor->num_raid_devs == 0 &&
2223 sec->anchor->num_raid_devs > 0) {
78d30f94 2224 int i;
ba2de7ba
DW
2225 struct intel_dev *dv;
2226 struct imsm_dev *dev;
78d30f94
DW
2227
2228 /* we need to copy raid device info from sec if an allocation
2229 * fails here we don't associate the spare
2230 */
2231 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2232 dv = malloc(sizeof(*dv));
2233 if (!dv)
2234 break;
2235 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2236 if (!dev) {
2237 free(dv);
2238 break;
78d30f94 2239 }
ba2de7ba
DW
2240 dv->dev = dev;
2241 dv->index = i;
2242 dv->next = first->devlist;
2243 first->devlist = dv;
78d30f94 2244 }
709743c5 2245 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2246 /* allocation failure */
2247 free_devlist(first);
2248 fprintf(stderr, "imsm: failed to associate spare\n");
2249 return 3;
78d30f94 2250 }
3e372e5a 2251 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2252 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2253 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2254 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2255 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2256 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2257 }
2258
cdddbdbc
DW
2259 return 0;
2260}
2261
0030e8d6
DW
2262static void fd2devname(int fd, char *name)
2263{
2264 struct stat st;
2265 char path[256];
33a6535d 2266 char dname[PATH_MAX];
0030e8d6
DW
2267 char *nm;
2268 int rv;
2269
2270 name[0] = '\0';
2271 if (fstat(fd, &st) != 0)
2272 return;
2273 sprintf(path, "/sys/dev/block/%d:%d",
2274 major(st.st_rdev), minor(st.st_rdev));
2275
2276 rv = readlink(path, dname, sizeof(dname));
2277 if (rv <= 0)
2278 return;
2279
2280 dname[rv] = '\0';
2281 nm = strrchr(dname, '/');
2282 nm++;
2283 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2284}
2285
cdddbdbc
DW
2286extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2287
2288static int imsm_read_serial(int fd, char *devname,
2289 __u8 serial[MAX_RAID_SERIAL_LEN])
2290{
2291 unsigned char scsi_serial[255];
cdddbdbc
DW
2292 int rv;
2293 int rsp_len;
1f24f035 2294 int len;
316e2bf4
DW
2295 char *dest;
2296 char *src;
2297 char *rsp_buf;
2298 int i;
cdddbdbc
DW
2299
2300 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2301
f9ba0ff1
DW
2302 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2303
40ebbb9c 2304 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2305 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2306 fd2devname(fd, (char *) serial);
0030e8d6
DW
2307 return 0;
2308 }
2309
cdddbdbc
DW
2310 if (rv != 0) {
2311 if (devname)
2312 fprintf(stderr,
2313 Name ": Failed to retrieve serial for %s\n",
2314 devname);
2315 return rv;
2316 }
2317
2318 rsp_len = scsi_serial[3];
03cd4cc8
DW
2319 if (!rsp_len) {
2320 if (devname)
2321 fprintf(stderr,
2322 Name ": Failed to retrieve serial for %s\n",
2323 devname);
2324 return 2;
2325 }
1f24f035 2326 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2327
316e2bf4
DW
2328 /* trim all whitespace and non-printable characters and convert
2329 * ':' to ';'
2330 */
2331 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2332 src = &rsp_buf[i];
2333 if (*src > 0x20) {
2334 /* ':' is reserved for use in placeholder serial
2335 * numbers for missing disks
2336 */
2337 if (*src == ':')
2338 *dest++ = ';';
2339 else
2340 *dest++ = *src;
2341 }
2342 }
2343 len = dest - rsp_buf;
2344 dest = rsp_buf;
2345
2346 /* truncate leading characters */
2347 if (len > MAX_RAID_SERIAL_LEN) {
2348 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2349 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2350 }
5c3db629 2351
5c3db629 2352 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2353 memcpy(serial, dest, len);
cdddbdbc
DW
2354
2355 return 0;
2356}
2357
1f24f035
DW
2358static int serialcmp(__u8 *s1, __u8 *s2)
2359{
2360 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2361}
2362
2363static void serialcpy(__u8 *dest, __u8 *src)
2364{
2365 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2366}
2367
1799c9e8 2368#ifndef MDASSEMBLE
54c2c1ea
DW
2369static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2370{
2371 struct dl *dl;
2372
2373 for (dl = super->disks; dl; dl = dl->next)
2374 if (serialcmp(dl->serial, serial) == 0)
2375 break;
2376
2377 return dl;
2378}
1799c9e8 2379#endif
54c2c1ea 2380
a2b97981
DW
2381static struct imsm_disk *
2382__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2383{
2384 int i;
2385
2386 for (i = 0; i < mpb->num_disks; i++) {
2387 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2388
2389 if (serialcmp(disk->serial, serial) == 0) {
2390 if (idx)
2391 *idx = i;
2392 return disk;
2393 }
2394 }
2395
2396 return NULL;
2397}
2398
cdddbdbc
DW
2399static int
2400load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2401{
a2b97981 2402 struct imsm_disk *disk;
cdddbdbc
DW
2403 struct dl *dl;
2404 struct stat stb;
cdddbdbc 2405 int rv;
a2b97981 2406 char name[40];
d23fe947
DW
2407 __u8 serial[MAX_RAID_SERIAL_LEN];
2408
2409 rv = imsm_read_serial(fd, devname, serial);
2410
2411 if (rv != 0)
2412 return 2;
2413
a2b97981 2414 dl = calloc(1, sizeof(*dl));
b9f594fe 2415 if (!dl) {
cdddbdbc
DW
2416 if (devname)
2417 fprintf(stderr,
2418 Name ": failed to allocate disk buffer for %s\n",
2419 devname);
2420 return 2;
2421 }
cdddbdbc 2422
a2b97981
DW
2423 fstat(fd, &stb);
2424 dl->major = major(stb.st_rdev);
2425 dl->minor = minor(stb.st_rdev);
2426 dl->next = super->disks;
2427 dl->fd = keep_fd ? fd : -1;
2428 assert(super->disks == NULL);
2429 super->disks = dl;
2430 serialcpy(dl->serial, serial);
2431 dl->index = -2;
2432 dl->e = NULL;
2433 fd2devname(fd, name);
2434 if (devname)
2435 dl->devname = strdup(devname);
2436 else
2437 dl->devname = strdup(name);
cdddbdbc 2438
d23fe947 2439 /* look up this disk's index in the current anchor */
a2b97981
DW
2440 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2441 if (disk) {
2442 dl->disk = *disk;
2443 /* only set index on disks that are a member of a
2444 * populated contianer, i.e. one with raid_devs
2445 */
2446 if (is_failed(&dl->disk))
3f6efecc 2447 dl->index = -2;
a2b97981
DW
2448 else if (is_spare(&dl->disk))
2449 dl->index = -1;
3f6efecc
DW
2450 }
2451
949c47a0
DW
2452 return 0;
2453}
2454
0e600426 2455#ifndef MDASSEMBLE
0c046afd
DW
2456/* When migrating map0 contains the 'destination' state while map1
2457 * contains the current state. When not migrating map0 contains the
2458 * current state. This routine assumes that map[0].map_state is set to
2459 * the current array state before being called.
2460 *
2461 * Migration is indicated by one of the following states
2462 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 2463 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 2464 * map1state=unitialized)
1484e727 2465 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 2466 * map1state=normal)
e3bba0e0 2467 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd
DW
2468 * map1state=degraded)
2469 */
0556e1a2 2470static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
3393c6af 2471{
0c046afd 2472 struct imsm_map *dest;
3393c6af
DW
2473 struct imsm_map *src = get_imsm_map(dev, 0);
2474
0c046afd 2475 dev->vol.migr_state = 1;
1484e727 2476 set_migr_type(dev, migr_type);
f8f603f1 2477 dev->vol.curr_migr_unit = 0;
0c046afd
DW
2478 dest = get_imsm_map(dev, 1);
2479
0556e1a2 2480 /* duplicate and then set the target end state in map[0] */
3393c6af 2481 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
2482 if ((migr_type == MIGR_REBUILD) ||
2483 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
2484 __u32 ord;
2485 int i;
2486
2487 for (i = 0; i < src->num_members; i++) {
2488 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2489 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2490 }
2491 }
2492
0c046afd 2493 src->map_state = to_state;
949c47a0 2494}
f8f603f1
DW
2495
2496static void end_migration(struct imsm_dev *dev, __u8 map_state)
2497{
2498 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 2499 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 2500 int i, j;
0556e1a2
DW
2501
2502 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2503 * completed in the last migration.
2504 *
28bce06f 2505 * FIXME add support for raid-level-migration
0556e1a2
DW
2506 */
2507 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
2508 for (j = 0; j < map->num_members; j++)
2509 /* during online capacity expansion
2510 * disks position can be changed if takeover is used
2511 */
2512 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2513 ord_to_idx(prev->disk_ord_tbl[i])) {
2514 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2515 break;
2516 }
f8f603f1
DW
2517
2518 dev->vol.migr_state = 0;
28bce06f 2519 dev->vol.migr_type = 0;
f8f603f1
DW
2520 dev->vol.curr_migr_unit = 0;
2521 map->map_state = map_state;
2522}
0e600426 2523#endif
949c47a0
DW
2524
2525static int parse_raid_devices(struct intel_super *super)
2526{
2527 int i;
2528 struct imsm_dev *dev_new;
4d7b1503 2529 size_t len, len_migr;
401d313b 2530 size_t max_len = 0;
4d7b1503
DW
2531 size_t space_needed = 0;
2532 struct imsm_super *mpb = super->anchor;
949c47a0
DW
2533
2534 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2535 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 2536 struct intel_dev *dv;
949c47a0 2537
4d7b1503
DW
2538 len = sizeof_imsm_dev(dev_iter, 0);
2539 len_migr = sizeof_imsm_dev(dev_iter, 1);
2540 if (len_migr > len)
2541 space_needed += len_migr - len;
2542
ba2de7ba
DW
2543 dv = malloc(sizeof(*dv));
2544 if (!dv)
2545 return 1;
401d313b
AK
2546 if (max_len < len_migr)
2547 max_len = len_migr;
2548 if (max_len > len_migr)
2549 space_needed += max_len - len_migr;
2550 dev_new = malloc(max_len);
ba2de7ba
DW
2551 if (!dev_new) {
2552 free(dv);
949c47a0 2553 return 1;
ba2de7ba 2554 }
949c47a0 2555 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
2556 dv->dev = dev_new;
2557 dv->index = i;
2558 dv->next = super->devlist;
2559 super->devlist = dv;
949c47a0 2560 }
cdddbdbc 2561
4d7b1503
DW
2562 /* ensure that super->buf is large enough when all raid devices
2563 * are migrating
2564 */
2565 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2566 void *buf;
2567
2568 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2569 if (posix_memalign(&buf, 512, len) != 0)
2570 return 1;
2571
1f45a8ad
DW
2572 memcpy(buf, super->buf, super->len);
2573 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
2574 free(super->buf);
2575 super->buf = buf;
2576 super->len = len;
2577 }
2578
cdddbdbc
DW
2579 return 0;
2580}
2581
604b746f
JD
2582/* retrieve a pointer to the bbm log which starts after all raid devices */
2583struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2584{
2585 void *ptr = NULL;
2586
2587 if (__le32_to_cpu(mpb->bbm_log_size)) {
2588 ptr = mpb;
2589 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2590 }
2591
2592 return ptr;
2593}
2594
d23fe947 2595static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 2596
cdddbdbc
DW
2597/* load_imsm_mpb - read matrix metadata
2598 * allocates super->mpb to be freed by free_super
2599 */
2600static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2601{
2602 unsigned long long dsize;
cdddbdbc
DW
2603 unsigned long long sectors;
2604 struct stat;
6416d527 2605 struct imsm_super *anchor;
cdddbdbc
DW
2606 __u32 check_sum;
2607
cdddbdbc 2608 get_dev_size(fd, NULL, &dsize);
64436f06
N
2609 if (dsize < 1024) {
2610 if (devname)
2611 fprintf(stderr,
2612 Name ": %s: device to small for imsm\n",
2613 devname);
2614 return 1;
2615 }
cdddbdbc
DW
2616
2617 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2618 if (devname)
2619 fprintf(stderr,
2620 Name ": Cannot seek to anchor block on %s: %s\n",
2621 devname, strerror(errno));
2622 return 1;
2623 }
2624
949c47a0 2625 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
2626 if (devname)
2627 fprintf(stderr,
2628 Name ": Failed to allocate imsm anchor buffer"
2629 " on %s\n", devname);
2630 return 1;
2631 }
949c47a0 2632 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
2633 if (devname)
2634 fprintf(stderr,
2635 Name ": Cannot read anchor block on %s: %s\n",
2636 devname, strerror(errno));
6416d527 2637 free(anchor);
cdddbdbc
DW
2638 return 1;
2639 }
2640
6416d527 2641 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
2642 if (devname)
2643 fprintf(stderr,
2644 Name ": no IMSM anchor on %s\n", devname);
6416d527 2645 free(anchor);
cdddbdbc
DW
2646 return 2;
2647 }
2648
d23fe947 2649 __free_imsm(super, 0);
949c47a0
DW
2650 super->len = ROUND_UP(anchor->mpb_size, 512);
2651 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
2652 if (devname)
2653 fprintf(stderr,
2654 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 2655 super->len);
6416d527 2656 free(anchor);
cdddbdbc
DW
2657 return 2;
2658 }
949c47a0 2659 memcpy(super->buf, anchor, 512);
cdddbdbc 2660
6416d527
NB
2661 sectors = mpb_sectors(anchor) - 1;
2662 free(anchor);
949c47a0 2663 if (!sectors) {
ecf45690
DW
2664 check_sum = __gen_imsm_checksum(super->anchor);
2665 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2666 if (devname)
2667 fprintf(stderr,
2668 Name ": IMSM checksum %x != %x on %s\n",
2669 check_sum,
2670 __le32_to_cpu(super->anchor->check_sum),
2671 devname);
2672 return 2;
2673 }
2674
a2b97981 2675 return 0;
949c47a0 2676 }
cdddbdbc
DW
2677
2678 /* read the extended mpb */
2679 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2680 if (devname)
2681 fprintf(stderr,
2682 Name ": Cannot seek to extended mpb on %s: %s\n",
2683 devname, strerror(errno));
2684 return 1;
2685 }
2686
f21e18ca 2687 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
2688 if (devname)
2689 fprintf(stderr,
2690 Name ": Cannot read extended mpb on %s: %s\n",
2691 devname, strerror(errno));
2692 return 2;
2693 }
2694
949c47a0
DW
2695 check_sum = __gen_imsm_checksum(super->anchor);
2696 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
2697 if (devname)
2698 fprintf(stderr,
2699 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 2700 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 2701 devname);
db575f3b 2702 return 3;
cdddbdbc
DW
2703 }
2704
604b746f
JD
2705 /* FIXME the BBM log is disk specific so we cannot use this global
2706 * buffer for all disks. Ok for now since we only look at the global
2707 * bbm_log_size parameter to gate assembly
2708 */
2709 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2710
a2b97981
DW
2711 return 0;
2712}
2713
2714static int
2715load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2716{
2717 int err;
2718
2719 err = load_imsm_mpb(fd, super, devname);
2720 if (err)
2721 return err;
2722 err = load_imsm_disk(fd, super, devname, keep_fd);
2723 if (err)
2724 return err;
2725 err = parse_raid_devices(super);
4d7b1503 2726
a2b97981 2727 return err;
cdddbdbc
DW
2728}
2729
ae6aad82
DW
2730static void __free_imsm_disk(struct dl *d)
2731{
2732 if (d->fd >= 0)
2733 close(d->fd);
2734 if (d->devname)
2735 free(d->devname);
0dcecb2e
DW
2736 if (d->e)
2737 free(d->e);
ae6aad82
DW
2738 free(d);
2739
2740}
1a64be56 2741
cdddbdbc
DW
2742static void free_imsm_disks(struct intel_super *super)
2743{
47ee5a45 2744 struct dl *d;
cdddbdbc 2745
47ee5a45
DW
2746 while (super->disks) {
2747 d = super->disks;
cdddbdbc 2748 super->disks = d->next;
ae6aad82 2749 __free_imsm_disk(d);
cdddbdbc 2750 }
cb82edca
AK
2751 while (super->disk_mgmt_list) {
2752 d = super->disk_mgmt_list;
2753 super->disk_mgmt_list = d->next;
2754 __free_imsm_disk(d);
2755 }
47ee5a45
DW
2756 while (super->missing) {
2757 d = super->missing;
2758 super->missing = d->next;
2759 __free_imsm_disk(d);
2760 }
2761
cdddbdbc
DW
2762}
2763
9ca2c81c 2764/* free all the pieces hanging off of a super pointer */
d23fe947 2765static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 2766{
88654014
LM
2767 struct intel_hba *elem, *next;
2768
9ca2c81c 2769 if (super->buf) {
949c47a0 2770 free(super->buf);
9ca2c81c
DW
2771 super->buf = NULL;
2772 }
d23fe947
DW
2773 if (free_disks)
2774 free_imsm_disks(super);
ba2de7ba 2775 free_devlist(super);
88654014
LM
2776 elem = super->hba;
2777 while (elem) {
2778 if (elem->path)
2779 free((void *)elem->path);
2780 next = elem->next;
2781 free(elem);
2782 elem = next;
88c32bb1 2783 }
88654014 2784 super->hba = NULL;
cdddbdbc
DW
2785}
2786
9ca2c81c
DW
2787static void free_imsm(struct intel_super *super)
2788{
d23fe947 2789 __free_imsm(super, 1);
9ca2c81c
DW
2790 free(super);
2791}
cdddbdbc
DW
2792
2793static void free_super_imsm(struct supertype *st)
2794{
2795 struct intel_super *super = st->sb;
2796
2797 if (!super)
2798 return;
2799
2800 free_imsm(super);
2801 st->sb = NULL;
2802}
2803
49133e57 2804static struct intel_super *alloc_super(void)
c2c087e6
DW
2805{
2806 struct intel_super *super = malloc(sizeof(*super));
2807
2808 if (super) {
2809 memset(super, 0, sizeof(*super));
bf5a934a 2810 super->current_vol = -1;
0dcecb2e 2811 super->create_offset = ~((__u32 ) 0);
88c32bb1
DW
2812 if (!check_env("IMSM_NO_PLATFORM"))
2813 super->orom = find_imsm_orom();
c2c087e6
DW
2814 }
2815
2816 return super;
2817}
2818
cdddbdbc 2819#ifndef MDASSEMBLE
47ee5a45
DW
2820/* find_missing - helper routine for load_super_imsm_all that identifies
2821 * disks that have disappeared from the system. This routine relies on
2822 * the mpb being uptodate, which it is at load time.
2823 */
2824static int find_missing(struct intel_super *super)
2825{
2826 int i;
2827 struct imsm_super *mpb = super->anchor;
2828 struct dl *dl;
2829 struct imsm_disk *disk;
47ee5a45
DW
2830
2831 for (i = 0; i < mpb->num_disks; i++) {
2832 disk = __get_imsm_disk(mpb, i);
54c2c1ea 2833 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
2834 if (dl)
2835 continue;
47ee5a45
DW
2836
2837 dl = malloc(sizeof(*dl));
2838 if (!dl)
2839 return 1;
2840 dl->major = 0;
2841 dl->minor = 0;
2842 dl->fd = -1;
2843 dl->devname = strdup("missing");
2844 dl->index = i;
2845 serialcpy(dl->serial, disk->serial);
2846 dl->disk = *disk;
689c9bf3 2847 dl->e = NULL;
47ee5a45
DW
2848 dl->next = super->missing;
2849 super->missing = dl;
2850 }
2851
2852 return 0;
2853}
2854
a2b97981
DW
2855static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2856{
2857 struct intel_disk *idisk = disk_list;
2858
2859 while (idisk) {
2860 if (serialcmp(idisk->disk.serial, serial) == 0)
2861 break;
2862 idisk = idisk->next;
2863 }
2864
2865 return idisk;
2866}
2867
2868static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2869 struct intel_super *super,
2870 struct intel_disk **disk_list)
2871{
2872 struct imsm_disk *d = &super->disks->disk;
2873 struct imsm_super *mpb = super->anchor;
2874 int i, j;
2875
2876 for (i = 0; i < tbl_size; i++) {
2877 struct imsm_super *tbl_mpb = table[i]->anchor;
2878 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2879
2880 if (tbl_mpb->family_num == mpb->family_num) {
2881 if (tbl_mpb->check_sum == mpb->check_sum) {
2882 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2883 __func__, super->disks->major,
2884 super->disks->minor,
2885 table[i]->disks->major,
2886 table[i]->disks->minor);
2887 break;
2888 }
2889
2890 if (((is_configured(d) && !is_configured(tbl_d)) ||
2891 is_configured(d) == is_configured(tbl_d)) &&
2892 tbl_mpb->generation_num < mpb->generation_num) {
2893 /* current version of the mpb is a
2894 * better candidate than the one in
2895 * super_table, but copy over "cross
2896 * generational" status
2897 */
2898 struct intel_disk *idisk;
2899
2900 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2901 __func__, super->disks->major,
2902 super->disks->minor,
2903 table[i]->disks->major,
2904 table[i]->disks->minor);
2905
2906 idisk = disk_list_get(tbl_d->serial, *disk_list);
2907 if (idisk && is_failed(&idisk->disk))
2908 tbl_d->status |= FAILED_DISK;
2909 break;
2910 } else {
2911 struct intel_disk *idisk;
2912 struct imsm_disk *disk;
2913
2914 /* tbl_mpb is more up to date, but copy
2915 * over cross generational status before
2916 * returning
2917 */
2918 disk = __serial_to_disk(d->serial, mpb, NULL);
2919 if (disk && is_failed(disk))
2920 d->status |= FAILED_DISK;
2921
2922 idisk = disk_list_get(d->serial, *disk_list);
2923 if (idisk) {
2924 idisk->owner = i;
2925 if (disk && is_configured(disk))
2926 idisk->disk.status |= CONFIGURED_DISK;
2927 }
2928
2929 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2930 __func__, super->disks->major,
2931 super->disks->minor,
2932 table[i]->disks->major,
2933 table[i]->disks->minor);
2934
2935 return tbl_size;
2936 }
2937 }
2938 }
2939
2940 if (i >= tbl_size)
2941 table[tbl_size++] = super;
2942 else
2943 table[i] = super;
2944
2945 /* update/extend the merged list of imsm_disk records */
2946 for (j = 0; j < mpb->num_disks; j++) {
2947 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2948 struct intel_disk *idisk;
2949
2950 idisk = disk_list_get(disk->serial, *disk_list);
2951 if (idisk) {
2952 idisk->disk.status |= disk->status;
2953 if (is_configured(&idisk->disk) ||
2954 is_failed(&idisk->disk))
2955 idisk->disk.status &= ~(SPARE_DISK);
2956 } else {
2957 idisk = calloc(1, sizeof(*idisk));
2958 if (!idisk)
2959 return -1;
2960 idisk->owner = IMSM_UNKNOWN_OWNER;
2961 idisk->disk = *disk;
2962 idisk->next = *disk_list;
2963 *disk_list = idisk;
2964 }
2965
2966 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2967 idisk->owner = i;
2968 }
2969
2970 return tbl_size;
2971}
2972
2973static struct intel_super *
2974validate_members(struct intel_super *super, struct intel_disk *disk_list,
2975 const int owner)
2976{
2977 struct imsm_super *mpb = super->anchor;
2978 int ok_count = 0;
2979 int i;
2980
2981 for (i = 0; i < mpb->num_disks; i++) {
2982 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2983 struct intel_disk *idisk;
2984
2985 idisk = disk_list_get(disk->serial, disk_list);
2986 if (idisk) {
2987 if (idisk->owner == owner ||
2988 idisk->owner == IMSM_UNKNOWN_OWNER)
2989 ok_count++;
2990 else
2991 dprintf("%s: '%.16s' owner %d != %d\n",
2992 __func__, disk->serial, idisk->owner,
2993 owner);
2994 } else {
2995 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2996 __func__, __le32_to_cpu(mpb->family_num), i,
2997 disk->serial);
2998 break;
2999 }
3000 }
3001
3002 if (ok_count == mpb->num_disks)
3003 return super;
3004 return NULL;
3005}
3006
3007static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3008{
3009 struct intel_super *s;
3010
3011 for (s = super_list; s; s = s->next) {
3012 if (family_num != s->anchor->family_num)
3013 continue;
3014 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3015 __le32_to_cpu(family_num), s->disks->devname);
3016 }
3017}
3018
3019static struct intel_super *
3020imsm_thunderdome(struct intel_super **super_list, int len)
3021{
3022 struct intel_super *super_table[len];
3023 struct intel_disk *disk_list = NULL;
3024 struct intel_super *champion, *spare;
3025 struct intel_super *s, **del;
3026 int tbl_size = 0;
3027 int conflict;
3028 int i;
3029
3030 memset(super_table, 0, sizeof(super_table));
3031 for (s = *super_list; s; s = s->next)
3032 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3033
3034 for (i = 0; i < tbl_size; i++) {
3035 struct imsm_disk *d;
3036 struct intel_disk *idisk;
3037 struct imsm_super *mpb = super_table[i]->anchor;
3038
3039 s = super_table[i];
3040 d = &s->disks->disk;
3041
3042 /* 'd' must appear in merged disk list for its
3043 * configuration to be valid
3044 */
3045 idisk = disk_list_get(d->serial, disk_list);
3046 if (idisk && idisk->owner == i)
3047 s = validate_members(s, disk_list, i);
3048 else
3049 s = NULL;
3050
3051 if (!s)
3052 dprintf("%s: marking family: %#x from %d:%d offline\n",
3053 __func__, mpb->family_num,
3054 super_table[i]->disks->major,
3055 super_table[i]->disks->minor);
3056 super_table[i] = s;
3057 }
3058
3059 /* This is where the mdadm implementation differs from the Windows
3060 * driver which has no strict concept of a container. We can only
3061 * assemble one family from a container, so when returning a prodigal
3062 * array member to this system the code will not be able to disambiguate
3063 * the container contents that should be assembled ("foreign" versus
3064 * "local"). It requires user intervention to set the orig_family_num
3065 * to a new value to establish a new container. The Windows driver in
3066 * this situation fixes up the volume name in place and manages the
3067 * foreign array as an independent entity.
3068 */
3069 s = NULL;
3070 spare = NULL;
3071 conflict = 0;
3072 for (i = 0; i < tbl_size; i++) {
3073 struct intel_super *tbl_ent = super_table[i];
3074 int is_spare = 0;
3075
3076 if (!tbl_ent)
3077 continue;
3078
3079 if (tbl_ent->anchor->num_raid_devs == 0) {
3080 spare = tbl_ent;
3081 is_spare = 1;
3082 }
3083
3084 if (s && !is_spare) {
3085 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3086 conflict++;
3087 } else if (!s && !is_spare)
3088 s = tbl_ent;
3089 }
3090
3091 if (!s)
3092 s = spare;
3093 if (!s) {
3094 champion = NULL;
3095 goto out;
3096 }
3097 champion = s;
3098
3099 if (conflict)
3100 fprintf(stderr, "Chose family %#x on '%s', "
3101 "assemble conflicts to new container with '--update=uuid'\n",
3102 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3103
3104 /* collect all dl's onto 'champion', and update them to
3105 * champion's version of the status
3106 */
3107 for (s = *super_list; s; s = s->next) {
3108 struct imsm_super *mpb = champion->anchor;
3109 struct dl *dl = s->disks;
3110
3111 if (s == champion)
3112 continue;
3113
3114 for (i = 0; i < mpb->num_disks; i++) {
3115 struct imsm_disk *disk;
3116
3117 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3118 if (disk) {
3119 dl->disk = *disk;
3120 /* only set index on disks that are a member of
3121 * a populated contianer, i.e. one with
3122 * raid_devs
3123 */
3124 if (is_failed(&dl->disk))
3125 dl->index = -2;
3126 else if (is_spare(&dl->disk))
3127 dl->index = -1;
3128 break;
3129 }
3130 }
3131
3132 if (i >= mpb->num_disks) {
3133 struct intel_disk *idisk;
3134
3135 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3136 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3137 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3138 dl->index = -1;
3139 else {
3140 dl->index = -2;
3141 continue;
3142 }
3143 }
3144
3145 dl->next = champion->disks;
3146 champion->disks = dl;
3147 s->disks = NULL;
3148 }
3149
3150 /* delete 'champion' from super_list */
3151 for (del = super_list; *del; ) {
3152 if (*del == champion) {
3153 *del = (*del)->next;
3154 break;
3155 } else
3156 del = &(*del)->next;
3157 }
3158 champion->next = NULL;
3159
3160 out:
3161 while (disk_list) {
3162 struct intel_disk *idisk = disk_list;
3163
3164 disk_list = disk_list->next;
3165 free(idisk);
3166 }
3167
3168 return champion;
3169}
3170
cdddbdbc 3171static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3172 char *devname)
cdddbdbc
DW
3173{
3174 struct mdinfo *sra;
a2b97981
DW
3175 struct intel_super *super_list = NULL;
3176 struct intel_super *super = NULL;
db575f3b 3177 int devnum = fd2devnum(fd);
a2b97981 3178 struct mdinfo *sd;
db575f3b 3179 int retry;
a2b97981
DW
3180 int err = 0;
3181 int i;
dab4a513
DW
3182
3183 /* check if 'fd' an opened container */
b526e52d 3184 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3185 if (!sra)
3186 return 1;
3187
3188 if (sra->array.major_version != -1 ||
3189 sra->array.minor_version != -2 ||
1602d52c
AW
3190 strcmp(sra->text_version, "imsm") != 0) {
3191 err = 1;
3192 goto error;
3193 }
a2b97981
DW
3194 /* load all mpbs */
3195 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3196 struct intel_super *s = alloc_super();
7a6ecd55 3197 char nm[32];
a2b97981
DW
3198 int dfd;
3199
3200 err = 1;
3201 if (!s)
3202 goto error;
3203 s->next = super_list;
3204 super_list = s;
cdddbdbc 3205
a2b97981 3206 err = 2;
cdddbdbc 3207 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3208 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3209 if (dfd < 0)
3210 goto error;
3211
e1902a7b 3212 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3213
3214 /* retry the load if we might have raced against mdmon */
a2b97981 3215 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3216 for (retry = 0; retry < 3; retry++) {
3217 usleep(3000);
e1902a7b 3218 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3219 if (err != 3)
db575f3b
DW
3220 break;
3221 }
a2b97981
DW
3222 if (err)
3223 goto error;
cdddbdbc
DW
3224 }
3225
a2b97981
DW
3226 /* all mpbs enter, maybe one leaves */
3227 super = imsm_thunderdome(&super_list, i);
3228 if (!super) {
3229 err = 1;
3230 goto error;
cdddbdbc
DW
3231 }
3232
47ee5a45
DW
3233 if (find_missing(super) != 0) {
3234 free_imsm(super);
a2b97981
DW
3235 err = 2;
3236 goto error;
47ee5a45 3237 }
a2b97981
DW
3238 err = 0;
3239
3240 error:
3241 while (super_list) {
3242 struct intel_super *s = super_list;
3243
3244 super_list = super_list->next;
3245 free_imsm(s);
3246 }
1602d52c 3247 sysfs_free(sra);
a2b97981
DW
3248
3249 if (err)
3250 return err;
f7e7067b 3251
cdddbdbc 3252 *sbp = super;
db575f3b 3253 st->container_dev = devnum;
a2b97981 3254 if (err == 0 && st->ss == NULL) {
bf5a934a 3255 st->ss = &super_imsm;
cdddbdbc
DW
3256 st->minor_version = 0;
3257 st->max_devs = IMSM_MAX_DEVICES;
3258 }
cdddbdbc
DW
3259 return 0;
3260}
2b959fbf
N
3261
3262static int load_container_imsm(struct supertype *st, int fd, char *devname)
3263{
3264 return load_super_imsm_all(st, fd, &st->sb, devname);
3265}
cdddbdbc
DW
3266#endif
3267
3268static int load_super_imsm(struct supertype *st, int fd, char *devname)
3269{
3270 struct intel_super *super;
3271 int rv;
3272
691c6ee1
N
3273 if (test_partition(fd))
3274 /* IMSM not allowed on partitions */
3275 return 1;
3276
37424f13
DW
3277 free_super_imsm(st);
3278
49133e57 3279 super = alloc_super();
cdddbdbc
DW
3280 if (!super) {
3281 fprintf(stderr,
3282 Name ": malloc of %zu failed.\n",
3283 sizeof(*super));
3284 return 1;
3285 }
3286
a2b97981 3287 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
3288
3289 if (rv) {
3290 if (devname)
3291 fprintf(stderr,
3292 Name ": Failed to load all information "
3293 "sections on %s\n", devname);
3294 free_imsm(super);
3295 return rv;
3296 }
3297
3298 st->sb = super;
3299 if (st->ss == NULL) {
3300 st->ss = &super_imsm;
3301 st->minor_version = 0;
3302 st->max_devs = IMSM_MAX_DEVICES;
3303 }
cdddbdbc
DW
3304 return 0;
3305}
3306
ef6ffade
DW
3307static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3308{
3309 if (info->level == 1)
3310 return 128;
3311 return info->chunk_size >> 9;
3312}
3313
ff596308 3314static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
3315{
3316 __u32 num_stripes;
3317
3318 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 3319 num_stripes /= num_domains;
ef6ffade
DW
3320
3321 return num_stripes;
3322}
3323
fcfd9599
DW
3324static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3325{
4025c288
DW
3326 if (info->level == 1)
3327 return info->size * 2;
3328 else
3329 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
3330}
3331
4d1313e9
DW
3332static void imsm_update_version_info(struct intel_super *super)
3333{
3334 /* update the version and attributes */
3335 struct imsm_super *mpb = super->anchor;
3336 char *version;
3337 struct imsm_dev *dev;
3338 struct imsm_map *map;
3339 int i;
3340
3341 for (i = 0; i < mpb->num_raid_devs; i++) {
3342 dev = get_imsm_dev(super, i);
3343 map = get_imsm_map(dev, 0);
3344 if (__le32_to_cpu(dev->size_high) > 0)
3345 mpb->attributes |= MPB_ATTRIB_2TB;
3346
3347 /* FIXME detect when an array spans a port multiplier */
3348 #if 0
3349 mpb->attributes |= MPB_ATTRIB_PM;
3350 #endif
3351
3352 if (mpb->num_raid_devs > 1 ||
3353 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3354 version = MPB_VERSION_ATTRIBS;
3355 switch (get_imsm_raid_level(map)) {
3356 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3357 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3358 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3359 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3360 }
3361 } else {
3362 if (map->num_members >= 5)
3363 version = MPB_VERSION_5OR6_DISK_ARRAY;
3364 else if (dev->status == DEV_CLONE_N_GO)
3365 version = MPB_VERSION_CNG;
3366 else if (get_imsm_raid_level(map) == 5)
3367 version = MPB_VERSION_RAID5;
3368 else if (map->num_members >= 3)
3369 version = MPB_VERSION_3OR4_DISK_ARRAY;
3370 else if (get_imsm_raid_level(map) == 1)
3371 version = MPB_VERSION_RAID1;
3372 else
3373 version = MPB_VERSION_RAID0;
3374 }
3375 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3376 }
3377}
3378
aa534678
DW
3379static int check_name(struct intel_super *super, char *name, int quiet)
3380{
3381 struct imsm_super *mpb = super->anchor;
3382 char *reason = NULL;
3383 int i;
3384
3385 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3386 reason = "must be 16 characters or less";
3387
3388 for (i = 0; i < mpb->num_raid_devs; i++) {
3389 struct imsm_dev *dev = get_imsm_dev(super, i);
3390
3391 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3392 reason = "already exists";
3393 break;
3394 }
3395 }
3396
3397 if (reason && !quiet)
3398 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3399
3400 return !reason;
3401}
3402
8b353278
DW
3403static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3404 unsigned long long size, char *name,
3405 char *homehost, int *uuid)
cdddbdbc 3406{
c2c087e6
DW
3407 /* We are creating a volume inside a pre-existing container.
3408 * so st->sb is already set.
3409 */
3410 struct intel_super *super = st->sb;
949c47a0 3411 struct imsm_super *mpb = super->anchor;
ba2de7ba 3412 struct intel_dev *dv;
c2c087e6
DW
3413 struct imsm_dev *dev;
3414 struct imsm_vol *vol;
3415 struct imsm_map *map;
3416 int idx = mpb->num_raid_devs;
3417 int i;
3418 unsigned long long array_blocks;
2c092cad 3419 size_t size_old, size_new;
ff596308 3420 __u32 num_data_stripes;
cdddbdbc 3421
88c32bb1 3422 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 3423 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 3424 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
3425 return 0;
3426 }
3427
2c092cad
DW
3428 /* ensure the mpb is large enough for the new data */
3429 size_old = __le32_to_cpu(mpb->mpb_size);
3430 size_new = disks_to_mpb_size(info->nr_disks);
3431 if (size_new > size_old) {
3432 void *mpb_new;
3433 size_t size_round = ROUND_UP(size_new, 512);
3434
3435 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3436 fprintf(stderr, Name": could not allocate new mpb\n");
3437 return 0;
3438 }
3439 memcpy(mpb_new, mpb, size_old);
3440 free(mpb);
3441 mpb = mpb_new;
949c47a0 3442 super->anchor = mpb_new;
2c092cad
DW
3443 mpb->mpb_size = __cpu_to_le32(size_new);
3444 memset(mpb_new + size_old, 0, size_round - size_old);
3445 }
bf5a934a 3446 super->current_vol = idx;
d23fe947
DW
3447 /* when creating the first raid device in this container set num_disks
3448 * to zero, i.e. delete this spare and add raid member devices in
3449 * add_to_super_imsm_volume()
3450 */
3451 if (super->current_vol == 0)
3452 mpb->num_disks = 0;
5a038140 3453
aa534678
DW
3454 if (!check_name(super, name, 0))
3455 return 0;
ba2de7ba
DW
3456 dv = malloc(sizeof(*dv));
3457 if (!dv) {
3458 fprintf(stderr, Name ": failed to allocate device list entry\n");
3459 return 0;
3460 }
1a2487c2 3461 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 3462 if (!dev) {
ba2de7ba 3463 free(dv);
949c47a0
DW
3464 fprintf(stderr, Name": could not allocate raid device\n");
3465 return 0;
3466 }
1a2487c2 3467
c2c087e6 3468 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
3469 if (info->level == 1)
3470 array_blocks = info_to_blocks_per_member(info);
3471 else
3472 array_blocks = calc_array_size(info->level, info->raid_disks,
3473 info->layout, info->chunk_size,
3474 info->size*2);
979d38be
DW
3475 /* round array size down to closest MB */
3476 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
3477
c2c087e6
DW
3478 dev->size_low = __cpu_to_le32((__u32) array_blocks);
3479 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 3480 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
3481 vol = &dev->vol;
3482 vol->migr_state = 0;
1484e727 3483 set_migr_type(dev, MIGR_INIT);
c2c087e6 3484 vol->dirty = 0;
f8f603f1 3485 vol->curr_migr_unit = 0;
a965f303 3486 map = get_imsm_map(dev, 0);
0dcecb2e 3487 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 3488 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 3489 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 3490 map->failed_disk_num = ~0;
c2c087e6
DW
3491 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3492 IMSM_T_STATE_NORMAL;
252d23c0 3493 map->ddf = 1;
ef6ffade
DW
3494
3495 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
3496 free(dev);
3497 free(dv);
ef6ffade
DW
3498 fprintf(stderr, Name": imsm does not support more than 2 disks"
3499 "in a raid1 volume\n");
3500 return 0;
3501 }
81062a36
DW
3502
3503 map->raid_level = info->level;
4d1313e9 3504 if (info->level == 10) {
c2c087e6 3505 map->raid_level = 1;
4d1313e9 3506 map->num_domains = info->raid_disks / 2;
81062a36
DW
3507 } else if (info->level == 1)
3508 map->num_domains = info->raid_disks;
3509 else
ff596308 3510 map->num_domains = 1;
81062a36 3511
ff596308
DW
3512 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3513 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 3514
c2c087e6
DW
3515 map->num_members = info->raid_disks;
3516 for (i = 0; i < map->num_members; i++) {
3517 /* initialized in add_to_super */
4eb26970 3518 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 3519 }
949c47a0 3520 mpb->num_raid_devs++;
ba2de7ba
DW
3521
3522 dv->dev = dev;
3523 dv->index = super->current_vol;
3524 dv->next = super->devlist;
3525 super->devlist = dv;
c2c087e6 3526
4d1313e9
DW
3527 imsm_update_version_info(super);
3528
c2c087e6 3529 return 1;
cdddbdbc
DW
3530}
3531
bf5a934a
DW
3532static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3533 unsigned long long size, char *name,
3534 char *homehost, int *uuid)
3535{
3536 /* This is primarily called by Create when creating a new array.
3537 * We will then get add_to_super called for each component, and then
3538 * write_init_super called to write it out to each device.
3539 * For IMSM, Create can create on fresh devices or on a pre-existing
3540 * array.
3541 * To create on a pre-existing array a different method will be called.
3542 * This one is just for fresh drives.
3543 */
3544 struct intel_super *super;
3545 struct imsm_super *mpb;
3546 size_t mpb_size;
4d1313e9 3547 char *version;
bf5a934a 3548
bf5a934a 3549 if (st->sb)
e683ca88
DW
3550 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3551
3552 if (info)
3553 mpb_size = disks_to_mpb_size(info->nr_disks);
3554 else
3555 mpb_size = 512;
bf5a934a 3556
49133e57 3557 super = alloc_super();
e683ca88 3558 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 3559 free(super);
e683ca88
DW
3560 super = NULL;
3561 }
3562 if (!super) {
3563 fprintf(stderr, Name
3564 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
3565 return 0;
3566 }
e683ca88 3567 memset(super->buf, 0, mpb_size);
ef649044 3568 mpb = super->buf;
e683ca88
DW
3569 mpb->mpb_size = __cpu_to_le32(mpb_size);
3570 st->sb = super;
3571
3572 if (info == NULL) {
3573 /* zeroing superblock */
3574 return 0;
3575 }
bf5a934a 3576
4d1313e9
DW
3577 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3578
3579 version = (char *) mpb->sig;
3580 strcpy(version, MPB_SIGNATURE);
3581 version += strlen(MPB_SIGNATURE);
3582 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 3583
bf5a934a
DW
3584 return 1;
3585}
3586
0e600426 3587#ifndef MDASSEMBLE
f20c3968 3588static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
3589 int fd, char *devname)
3590{
3591 struct intel_super *super = st->sb;
d23fe947 3592 struct imsm_super *mpb = super->anchor;
bf5a934a
DW
3593 struct dl *dl;
3594 struct imsm_dev *dev;
3595 struct imsm_map *map;
4eb26970 3596 int slot;
bf5a934a 3597
949c47a0 3598 dev = get_imsm_dev(super, super->current_vol);
a965f303 3599 map = get_imsm_map(dev, 0);
bf5a934a 3600
208933a7
N
3601 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3602 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3603 devname);
3604 return 1;
3605 }
3606
efb30e7f
DW
3607 if (fd == -1) {
3608 /* we're doing autolayout so grab the pre-marked (in
3609 * validate_geometry) raid_disk
3610 */
3611 for (dl = super->disks; dl; dl = dl->next)
3612 if (dl->raiddisk == dk->raid_disk)
3613 break;
3614 } else {
3615 for (dl = super->disks; dl ; dl = dl->next)
3616 if (dl->major == dk->major &&
3617 dl->minor == dk->minor)
3618 break;
3619 }
d23fe947 3620
208933a7
N
3621 if (!dl) {
3622 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 3623 return 1;
208933a7 3624 }
bf5a934a 3625
d23fe947
DW
3626 /* add a pristine spare to the metadata */
3627 if (dl->index < 0) {
3628 dl->index = super->anchor->num_disks;
3629 super->anchor->num_disks++;
3630 }
4eb26970
DW
3631 /* Check the device has not already been added */
3632 slot = get_imsm_disk_slot(map, dl->index);
3633 if (slot >= 0 &&
98130f40 3634 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
3635 fprintf(stderr, Name ": %s has been included in this array twice\n",
3636 devname);
3637 return 1;
3638 }
be73972f 3639 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
ee5aad5a 3640 dl->disk.status = CONFIGURED_DISK;
d23fe947
DW
3641
3642 /* if we are creating the first raid device update the family number */
3643 if (super->current_vol == 0) {
3644 __u32 sum;
3645 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3646 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3647
791b666a
AW
3648 if (!_dev || !_disk) {
3649 fprintf(stderr, Name ": BUG mpb setup error\n");
3650 return 1;
3651 }
d23fe947
DW
3652 *_dev = *dev;
3653 *_disk = dl->disk;
148acb7b
DW
3654 sum = random32();
3655 sum += __gen_imsm_checksum(mpb);
d23fe947 3656 mpb->family_num = __cpu_to_le32(sum);
148acb7b 3657 mpb->orig_family_num = mpb->family_num;
d23fe947 3658 }
f20c3968
DW
3659
3660 return 0;
bf5a934a
DW
3661}
3662
88654014 3663
f20c3968 3664static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 3665 int fd, char *devname)
cdddbdbc 3666{
c2c087e6 3667 struct intel_super *super = st->sb;
c2c087e6
DW
3668 struct dl *dd;
3669 unsigned long long size;
f2f27e63 3670 __u32 id;
c2c087e6
DW
3671 int rv;
3672 struct stat stb;
3673
88654014
LM
3674 /* If we are on an RAID enabled platform check that the disk is
3675 * attached to the raid controller.
3676 * We do not need to test disks attachment for container based additions,
3677 * they shall be already tested when container was created/assembled.
88c32bb1 3678 */
88654014
LM
3679 if ((fd != -1) && !check_env("IMSM_NO_PLATFORM")) {
3680 struct sys_dev *hba_name;
3681 struct intel_hba *hba;
3682
3683 hba_name = find_disk_attached_hba(fd, NULL);
3684 if (!hba_name) {
3685 fprintf(stderr,
3686 Name ": %s is not attached to Intel(R) RAID controller.\n",
3687 devname ? : "disk");
3688 return 1;
3689 }
3690 rv = attach_hba_to_super(super, hba_name, devname);
3691 switch (rv) {
3692 case 2:
3693 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3694 "controller (%s),\n but the container is assigned to Intel(R) "
3695 "%s RAID controller (",
3696 devname,
3697 get_sys_dev_type(hba_name->type),
3698 hba_name->pci_id ? : "Err!",
3699 get_sys_dev_type(hba_name->type));
3700
3701 hba = super->hba;
3702 while (hba) {
3703 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3704 if (hba->next)
3705 fprintf(stderr, ", ");
3706 hba = hba->next;
3707 }
3708
3709 fprintf(stderr, ").\n"
3710 " Mixing devices attached to different controllers "
3711 "is not allowed.\n");
3712 free_sys_dev(&hba_name);
3713 return 1;
3714 }
3715 free_sys_dev(&hba_name);
88c32bb1
DW
3716 }
3717
f20c3968
DW
3718 if (super->current_vol >= 0)
3719 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 3720
c2c087e6
DW
3721 fstat(fd, &stb);
3722 dd = malloc(sizeof(*dd));
b9f594fe 3723 if (!dd) {
c2c087e6
DW
3724 fprintf(stderr,
3725 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 3726 return 1;
c2c087e6
DW
3727 }
3728 memset(dd, 0, sizeof(*dd));
3729 dd->major = major(stb.st_rdev);
3730 dd->minor = minor(stb.st_rdev);
b9f594fe 3731 dd->index = -1;
c2c087e6 3732 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 3733 dd->fd = fd;
689c9bf3 3734 dd->e = NULL;
1a64be56 3735 dd->action = DISK_ADD;
c2c087e6 3736 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 3737 if (rv) {
c2c087e6 3738 fprintf(stderr,
0030e8d6 3739 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 3740 free(dd);
0030e8d6 3741 abort();
c2c087e6
DW
3742 }
3743
c2c087e6
DW
3744 get_dev_size(fd, NULL, &size);
3745 size /= 512;
1f24f035 3746 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 3747 dd->disk.total_blocks = __cpu_to_le32(size);
ee5aad5a 3748 dd->disk.status = SPARE_DISK;
c2c087e6 3749 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 3750 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 3751 else
b9f594fe 3752 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
3753
3754 if (st->update_tail) {
1a64be56
LM
3755 dd->next = super->disk_mgmt_list;
3756 super->disk_mgmt_list = dd;
43dad3d6
DW
3757 } else {
3758 dd->next = super->disks;
3759 super->disks = dd;
3760 }
f20c3968
DW
3761
3762 return 0;
cdddbdbc
DW
3763}
3764
1a64be56
LM
3765
3766static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
3767{
3768 struct intel_super *super = st->sb;
3769 struct dl *dd;
3770
3771 /* remove from super works only in mdmon - for communication
3772 * manager - monitor. Check if communication memory buffer
3773 * is prepared.
3774 */
3775 if (!st->update_tail) {
3776 fprintf(stderr,
3777 Name ": %s shall be used in mdmon context only"
3778 "(line %d).\n", __func__, __LINE__);
3779 return 1;
3780 }
3781 dd = malloc(sizeof(*dd));
3782 if (!dd) {
3783 fprintf(stderr,
3784 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3785 return 1;
3786 }
3787 memset(dd, 0, sizeof(*dd));
3788 dd->major = dk->major;
3789 dd->minor = dk->minor;
3790 dd->index = -1;
3791 dd->fd = -1;
3792 dd->disk.status = SPARE_DISK;
3793 dd->action = DISK_REMOVE;
3794
3795 dd->next = super->disk_mgmt_list;
3796 super->disk_mgmt_list = dd;
3797
3798
3799 return 0;
3800}
3801
f796af5d
DW
3802static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3803
3804static union {
3805 char buf[512];
3806 struct imsm_super anchor;
3807} spare_record __attribute__ ((aligned(512)));
c2c087e6 3808
d23fe947
DW
3809/* spare records have their own family number and do not have any defined raid
3810 * devices
3811 */
3812static int write_super_imsm_spares(struct intel_super *super, int doclose)
3813{
d23fe947 3814 struct imsm_super *mpb = super->anchor;
f796af5d 3815 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
3816 __u32 sum;
3817 struct dl *d;
3818
f796af5d
DW
3819 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3820 spare->generation_num = __cpu_to_le32(1UL),
3821 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3822 spare->num_disks = 1,
3823 spare->num_raid_devs = 0,
3824 spare->cache_size = mpb->cache_size,
3825 spare->pwr_cycle_count = __cpu_to_le32(1),
3826
3827 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3828 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
3829
3830 for (d = super->disks; d; d = d->next) {
8796fdc4 3831 if (d->index != -1)
d23fe947
DW
3832 continue;
3833
f796af5d
DW
3834 spare->disk[0] = d->disk;
3835 sum = __gen_imsm_checksum(spare);
3836 spare->family_num = __cpu_to_le32(sum);
3837 spare->orig_family_num = 0;
3838 sum = __gen_imsm_checksum(spare);
3839 spare->check_sum = __cpu_to_le32(sum);
d23fe947 3840
f796af5d 3841 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
3842 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3843 __func__, d->major, d->minor, strerror(errno));
e74255d9 3844 return 1;
d23fe947
DW
3845 }
3846 if (doclose) {
3847 close(d->fd);
3848 d->fd = -1;
3849 }
3850 }
3851
e74255d9 3852 return 0;
d23fe947
DW
3853}
3854
36988a3d 3855static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 3856{
36988a3d 3857 struct intel_super *super = st->sb;
949c47a0 3858 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
3859 struct dl *d;
3860 __u32 generation;
3861 __u32 sum;
d23fe947 3862 int spares = 0;
949c47a0 3863 int i;
a48ac0a8 3864 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 3865 int num_disks = 0;
cdddbdbc 3866
c2c087e6
DW
3867 /* 'generation' is incremented everytime the metadata is written */
3868 generation = __le32_to_cpu(mpb->generation_num);
3869 generation++;
3870 mpb->generation_num = __cpu_to_le32(generation);
3871
148acb7b
DW
3872 /* fix up cases where previous mdadm releases failed to set
3873 * orig_family_num
3874 */
3875 if (mpb->orig_family_num == 0)
3876 mpb->orig_family_num = mpb->family_num;
3877
d23fe947 3878 for (d = super->disks; d; d = d->next) {
8796fdc4 3879 if (d->index == -1)
d23fe947 3880 spares++;
36988a3d 3881 else {
d23fe947 3882 mpb->disk[d->index] = d->disk;
36988a3d
AK
3883 num_disks++;
3884 }
d23fe947 3885 }
36988a3d 3886 for (d = super->missing; d; d = d->next) {
47ee5a45 3887 mpb->disk[d->index] = d->disk;
36988a3d
AK
3888 num_disks++;
3889 }
3890 mpb->num_disks = num_disks;
3891 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 3892
949c47a0
DW
3893 for (i = 0; i < mpb->num_raid_devs; i++) {
3894 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
3895 struct imsm_dev *dev2 = get_imsm_dev(super, i);
3896 if (dev && dev2) {
3897 imsm_copy_dev(dev, dev2);
3898 mpb_size += sizeof_imsm_dev(dev, 0);
3899 }
949c47a0 3900 }
a48ac0a8
DW
3901 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3902 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 3903
c2c087e6 3904 /* recalculate checksum */
949c47a0 3905 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
3906 mpb->check_sum = __cpu_to_le32(sum);
3907
d23fe947 3908 /* write the mpb for disks that compose raid devices */
c2c087e6 3909 for (d = super->disks; d ; d = d->next) {
d23fe947
DW
3910 if (d->index < 0)
3911 continue;
f796af5d 3912 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
3913 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3914 __func__, d->major, d->minor, strerror(errno));
c2c087e6
DW
3915 if (doclose) {
3916 close(d->fd);
3917 d->fd = -1;
3918 }
3919 }
3920
d23fe947
DW
3921 if (spares)
3922 return write_super_imsm_spares(super, doclose);
3923
e74255d9 3924 return 0;
c2c087e6
DW
3925}
3926
0e600426 3927
9b1fb677 3928static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
3929{
3930 size_t len;
3931 struct imsm_update_create_array *u;
3932 struct intel_super *super = st->sb;
9b1fb677 3933 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
3934 struct imsm_map *map = get_imsm_map(dev, 0);
3935 struct disk_info *inf;
3936 struct imsm_disk *disk;
3937 int i;
43dad3d6 3938
54c2c1ea
DW
3939 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3940 sizeof(*inf) * map->num_members;
43dad3d6
DW
3941 u = malloc(len);
3942 if (!u) {
3943 fprintf(stderr, "%s: failed to allocate update buffer\n",
3944 __func__);
3945 return 1;
3946 }
3947
3948 u->type = update_create_array;
9b1fb677 3949 u->dev_idx = dev_idx;
43dad3d6 3950 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
3951 inf = get_disk_info(u);
3952 for (i = 0; i < map->num_members; i++) {
98130f40 3953 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 3954
54c2c1ea
DW
3955 disk = get_imsm_disk(super, idx);
3956 serialcpy(inf[i].serial, disk->serial);
3957 }
43dad3d6
DW
3958 append_metadata_update(st, u, len);
3959
3960 return 0;
3961}
3962
1a64be56 3963static int mgmt_disk(struct supertype *st)
43dad3d6
DW
3964{
3965 struct intel_super *super = st->sb;
3966 size_t len;
1a64be56 3967 struct imsm_update_add_remove_disk *u;
43dad3d6 3968
1a64be56 3969 if (!super->disk_mgmt_list)
43dad3d6
DW
3970 return 0;
3971
3972 len = sizeof(*u);
3973 u = malloc(len);
3974 if (!u) {
3975 fprintf(stderr, "%s: failed to allocate update buffer\n",
3976 __func__);
3977 return 1;
3978 }
3979
1a64be56 3980 u->type = update_add_remove_disk;
43dad3d6
DW
3981 append_metadata_update(st, u, len);
3982
3983 return 0;
3984}
3985
c2c087e6
DW
3986static int write_init_super_imsm(struct supertype *st)
3987{
9b1fb677
DW
3988 struct intel_super *super = st->sb;
3989 int current_vol = super->current_vol;
3990
3991 /* we are done with current_vol reset it to point st at the container */
3992 super->current_vol = -1;
3993
8273f55e 3994 if (st->update_tail) {
43dad3d6
DW
3995 /* queue the recently created array / added disk
3996 * as a metadata update */
43dad3d6 3997 int rv;
8273f55e 3998
43dad3d6 3999 /* determine if we are creating a volume or adding a disk */
9b1fb677 4000 if (current_vol < 0) {
1a64be56
LM
4001 /* in the mgmt (add/remove) disk case we are running
4002 * in mdmon context, so don't close fd's
43dad3d6 4003 */
1a64be56 4004 return mgmt_disk(st);
43dad3d6 4005 } else
9b1fb677 4006 rv = create_array(st, current_vol);
8273f55e 4007
43dad3d6 4008 return rv;
d682f344
N
4009 } else {
4010 struct dl *d;
4011 for (d = super->disks; d; d = d->next)
4012 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4013 return write_super_imsm(st, 1);
d682f344 4014 }
cdddbdbc 4015}
0e600426 4016#endif
cdddbdbc 4017
e683ca88 4018static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4019{
e683ca88
DW
4020 struct intel_super *super = st->sb;
4021 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4022
e683ca88 4023 if (!mpb)
ad97895e
DW
4024 return 1;
4025
1799c9e8 4026#ifndef MDASSEMBLE
e683ca88 4027 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4028#else
4029 return 1;
4030#endif
cdddbdbc
DW
4031}
4032
0e600426
N
4033static int imsm_bbm_log_size(struct imsm_super *mpb)
4034{
4035 return __le32_to_cpu(mpb->bbm_log_size);
4036}
4037
4038#ifndef MDASSEMBLE
cdddbdbc
DW
4039static int validate_geometry_imsm_container(struct supertype *st, int level,
4040 int layout, int raiddisks, int chunk,
c2c087e6 4041 unsigned long long size, char *dev,
2c514b71
NB
4042 unsigned long long *freesize,
4043 int verbose)
cdddbdbc 4044{
c2c087e6
DW
4045 int fd;
4046 unsigned long long ldsize;
88c32bb1 4047 const struct imsm_orom *orom;
cdddbdbc 4048
c2c087e6
DW
4049 if (level != LEVEL_CONTAINER)
4050 return 0;
4051 if (!dev)
4052 return 1;
4053
88c32bb1
DW
4054 if (check_env("IMSM_NO_PLATFORM"))
4055 orom = NULL;
4056 else
4057 orom = find_imsm_orom();
4058 if (orom && raiddisks > orom->tds) {
4059 if (verbose)
4060 fprintf(stderr, Name ": %d exceeds maximum number of"
4061 " platform supported disks: %d\n",
4062 raiddisks, orom->tds);
4063 return 0;
4064 }
4065
c2c087e6
DW
4066 fd = open(dev, O_RDONLY|O_EXCL, 0);
4067 if (fd < 0) {
2c514b71
NB
4068 if (verbose)
4069 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4070 dev, strerror(errno));
c2c087e6
DW
4071 return 0;
4072 }
4073 if (!get_dev_size(fd, dev, &ldsize)) {
4074 close(fd);
4075 return 0;
4076 }
4077 close(fd);
4078
4079 *freesize = avail_size_imsm(st, ldsize >> 9);
4080
4081 return 1;
cdddbdbc
DW
4082}
4083
0dcecb2e
DW
4084static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4085{
4086 const unsigned long long base_start = e[*idx].start;
4087 unsigned long long end = base_start + e[*idx].size;
4088 int i;
4089
4090 if (base_start == end)
4091 return 0;
4092
4093 *idx = *idx + 1;
4094 for (i = *idx; i < num_extents; i++) {
4095 /* extend overlapping extents */
4096 if (e[i].start >= base_start &&
4097 e[i].start <= end) {
4098 if (e[i].size == 0)
4099 return 0;
4100 if (e[i].start + e[i].size > end)
4101 end = e[i].start + e[i].size;
4102 } else if (e[i].start > end) {
4103 *idx = i;
4104 break;
4105 }
4106 }
4107
4108 return end - base_start;
4109}
4110
4111static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4112{
4113 /* build a composite disk with all known extents and generate a new
4114 * 'maxsize' given the "all disks in an array must share a common start
4115 * offset" constraint
4116 */
4117 struct extent *e = calloc(sum_extents, sizeof(*e));
4118 struct dl *dl;
4119 int i, j;
4120 int start_extent;
4121 unsigned long long pos;
b9d77223 4122 unsigned long long start = 0;
0dcecb2e
DW
4123 unsigned long long maxsize;
4124 unsigned long reserve;
4125
4126 if (!e)
a7dd165b 4127 return 0;
0dcecb2e
DW
4128
4129 /* coalesce and sort all extents. also, check to see if we need to
4130 * reserve space between member arrays
4131 */
4132 j = 0;
4133 for (dl = super->disks; dl; dl = dl->next) {
4134 if (!dl->e)
4135 continue;
4136 for (i = 0; i < dl->extent_cnt; i++)
4137 e[j++] = dl->e[i];
4138 }
4139 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4140
4141 /* merge extents */
4142 i = 0;
4143 j = 0;
4144 while (i < sum_extents) {
4145 e[j].start = e[i].start;
4146 e[j].size = find_size(e, &i, sum_extents);
4147 j++;
4148 if (e[j-1].size == 0)
4149 break;
4150 }
4151
4152 pos = 0;
4153 maxsize = 0;
4154 start_extent = 0;
4155 i = 0;
4156 do {
4157 unsigned long long esize;
4158
4159 esize = e[i].start - pos;
4160 if (esize >= maxsize) {
4161 maxsize = esize;
4162 start = pos;
4163 start_extent = i;
4164 }
4165 pos = e[i].start + e[i].size;
4166 i++;
4167 } while (e[i-1].size);
4168 free(e);
4169
a7dd165b
DW
4170 if (maxsize == 0)
4171 return 0;
4172
4173 /* FIXME assumes volume at offset 0 is the first volume in a
4174 * container
4175 */
0dcecb2e
DW
4176 if (start_extent > 0)
4177 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4178 else
4179 reserve = 0;
4180
4181 if (maxsize < reserve)
a7dd165b 4182 return 0;
0dcecb2e
DW
4183
4184 super->create_offset = ~((__u32) 0);
4185 if (start + reserve > super->create_offset)
a7dd165b 4186 return 0; /* start overflows create_offset */
0dcecb2e
DW
4187 super->create_offset = start + reserve;
4188
4189 return maxsize - reserve;
4190}
4191
88c32bb1
DW
4192static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4193{
4194 if (level < 0 || level == 6 || level == 4)
4195 return 0;
4196
4197 /* if we have an orom prevent invalid raid levels */
4198 if (orom)
4199 switch (level) {
4200 case 0: return imsm_orom_has_raid0(orom);
4201 case 1:
4202 if (raiddisks > 2)
4203 return imsm_orom_has_raid1e(orom);
1c556e92
DW
4204 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4205 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4206 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
4207 }
4208 else
4209 return 1; /* not on an Intel RAID platform so anything goes */
4210
4211 return 0;
4212}
4213
35f81cbb 4214#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
4215static int
4216validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 4217 int raiddisks, int *chunk, int verbose)
6592ce37
DW
4218{
4219 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
4220 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4221 level, raiddisks, raiddisks > 1 ? "s" : "");
4222 return 0;
4223 }
c21e737b
CA
4224 if (super->orom && level != 1) {
4225 if (chunk && (*chunk == 0 || *chunk == UnSet))
4226 *chunk = imsm_orom_default_chunk(super->orom);
4227 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4228 pr_vrb(": platform does not support a chunk size of: "
4229 "%d\n", *chunk);
4230 return 0;
4231 }
6592ce37
DW
4232 }
4233 if (layout != imsm_level_to_layout(level)) {
4234 if (level == 5)
4235 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4236 else if (level == 10)
4237 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4238 else
4239 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4240 layout, level);
4241 return 0;
4242 }
4243
4244 return 1;
4245}
4246
c2c087e6
DW
4247/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4248 * FIX ME add ahci details
4249 */
8b353278 4250static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 4251 int layout, int raiddisks, int *chunk,
c2c087e6 4252 unsigned long long size, char *dev,
2c514b71
NB
4253 unsigned long long *freesize,
4254 int verbose)
cdddbdbc 4255{
c2c087e6
DW
4256 struct stat stb;
4257 struct intel_super *super = st->sb;
a20d2ba5 4258 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4259 struct dl *dl;
4260 unsigned long long pos = 0;
4261 unsigned long long maxsize;
4262 struct extent *e;
4263 int i;
cdddbdbc 4264
88c32bb1
DW
4265 /* We must have the container info already read in. */
4266 if (!super)
c2c087e6
DW
4267 return 0;
4268
6592ce37 4269 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose))
c2c087e6 4270 return 0;
c2c087e6
DW
4271
4272 if (!dev) {
4273 /* General test: make sure there is space for
2da8544a
DW
4274 * 'raiddisks' device extents of size 'size' at a given
4275 * offset
c2c087e6 4276 */
e46273eb 4277 unsigned long long minsize = size;
b7528a20 4278 unsigned long long start_offset = MaxSector;
c2c087e6
DW
4279 int dcnt = 0;
4280 if (minsize == 0)
4281 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4282 for (dl = super->disks; dl ; dl = dl->next) {
4283 int found = 0;
4284
bf5a934a 4285 pos = 0;
c2c087e6
DW
4286 i = 0;
4287 e = get_extents(super, dl);
4288 if (!e) continue;
4289 do {
4290 unsigned long long esize;
4291 esize = e[i].start - pos;
4292 if (esize >= minsize)
4293 found = 1;
b7528a20 4294 if (found && start_offset == MaxSector) {
2da8544a
DW
4295 start_offset = pos;
4296 break;
4297 } else if (found && pos != start_offset) {
4298 found = 0;
4299 break;
4300 }
c2c087e6
DW
4301 pos = e[i].start + e[i].size;
4302 i++;
4303 } while (e[i-1].size);
4304 if (found)
4305 dcnt++;
4306 free(e);
4307 }
4308 if (dcnt < raiddisks) {
2c514b71
NB
4309 if (verbose)
4310 fprintf(stderr, Name ": imsm: Not enough "
4311 "devices with space for this array "
4312 "(%d < %d)\n",
4313 dcnt, raiddisks);
c2c087e6
DW
4314 return 0;
4315 }
4316 return 1;
4317 }
0dcecb2e 4318
c2c087e6
DW
4319 /* This device must be a member of the set */
4320 if (stat(dev, &stb) < 0)
4321 return 0;
4322 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4323 return 0;
4324 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
4325 if (dl->major == (int)major(stb.st_rdev) &&
4326 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
4327 break;
4328 }
4329 if (!dl) {
2c514b71
NB
4330 if (verbose)
4331 fprintf(stderr, Name ": %s is not in the "
4332 "same imsm set\n", dev);
c2c087e6 4333 return 0;
a20d2ba5
DW
4334 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4335 /* If a volume is present then the current creation attempt
4336 * cannot incorporate new spares because the orom may not
4337 * understand this configuration (all member disks must be
4338 * members of each array in the container).
4339 */
4340 fprintf(stderr, Name ": %s is a spare and a volume"
4341 " is already defined for this container\n", dev);
4342 fprintf(stderr, Name ": The option-rom requires all member"
4343 " disks to be a member of all volumes\n");
4344 return 0;
c2c087e6 4345 }
0dcecb2e
DW
4346
4347 /* retrieve the largest free space block */
c2c087e6
DW
4348 e = get_extents(super, dl);
4349 maxsize = 0;
4350 i = 0;
0dcecb2e
DW
4351 if (e) {
4352 do {
4353 unsigned long long esize;
4354
4355 esize = e[i].start - pos;
4356 if (esize >= maxsize)
4357 maxsize = esize;
4358 pos = e[i].start + e[i].size;
4359 i++;
4360 } while (e[i-1].size);
4361 dl->e = e;
4362 dl->extent_cnt = i;
4363 } else {
4364 if (verbose)
4365 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4366 dev);
4367 return 0;
4368 }
4369 if (maxsize < size) {
4370 if (verbose)
4371 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4372 dev, maxsize, size);
4373 return 0;
4374 }
4375
4376 /* count total number of extents for merge */
4377 i = 0;
4378 for (dl = super->disks; dl; dl = dl->next)
4379 if (dl->e)
4380 i += dl->extent_cnt;
4381
4382 maxsize = merge_extents(super, i);
a7dd165b 4383 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
4384 if (verbose)
4385 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4386 maxsize, size);
4387 return 0;
0dcecb2e
DW
4388 }
4389
c2c087e6
DW
4390 *freesize = maxsize;
4391
4392 return 1;
cdddbdbc
DW
4393}
4394
efb30e7f
DW
4395static int reserve_space(struct supertype *st, int raiddisks,
4396 unsigned long long size, int chunk,
4397 unsigned long long *freesize)
4398{
4399 struct intel_super *super = st->sb;
4400 struct imsm_super *mpb = super->anchor;
4401 struct dl *dl;
4402 int i;
4403 int extent_cnt;
4404 struct extent *e;
4405 unsigned long long maxsize;
4406 unsigned long long minsize;
4407 int cnt;
4408 int used;
4409
4410 /* find the largest common start free region of the possible disks */
4411 used = 0;
4412 extent_cnt = 0;
4413 cnt = 0;
4414 for (dl = super->disks; dl; dl = dl->next) {
4415 dl->raiddisk = -1;
4416
4417 if (dl->index >= 0)
4418 used++;
4419
4420 /* don't activate new spares if we are orom constrained
4421 * and there is already a volume active in the container
4422 */
4423 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
4424 continue;
4425
4426 e = get_extents(super, dl);
4427 if (!e)
4428 continue;
4429 for (i = 1; e[i-1].size; i++)
4430 ;
4431 dl->e = e;
4432 dl->extent_cnt = i;
4433 extent_cnt += i;
4434 cnt++;
4435 }
4436
4437 maxsize = merge_extents(super, extent_cnt);
4438 minsize = size;
4439 if (size == 0)
612e59d8
CA
4440 /* chunk is in K */
4441 minsize = chunk * 2;
efb30e7f
DW
4442
4443 if (cnt < raiddisks ||
4444 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
4445 maxsize < minsize ||
4446 maxsize == 0) {
efb30e7f
DW
4447 fprintf(stderr, Name ": not enough devices with space to create array.\n");
4448 return 0; /* No enough free spaces large enough */
4449 }
4450
4451 if (size == 0) {
4452 size = maxsize;
4453 if (chunk) {
612e59d8
CA
4454 size /= 2 * chunk;
4455 size *= 2 * chunk;
efb30e7f
DW
4456 }
4457 }
4458
4459 cnt = 0;
4460 for (dl = super->disks; dl; dl = dl->next)
4461 if (dl->e)
4462 dl->raiddisk = cnt++;
4463
4464 *freesize = size;
4465
4466 return 1;
4467}
4468
bf5a934a 4469static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 4470 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
4471 char *dev, unsigned long long *freesize,
4472 int verbose)
4473{
4474 int fd, cfd;
4475 struct mdinfo *sra;
20cbe8d2 4476 int is_member = 0;
bf5a934a
DW
4477
4478 /* if given unused devices create a container
4479 * if given given devices in a container create a member volume
4480 */
4481 if (level == LEVEL_CONTAINER) {
4482 /* Must be a fresh device to add to a container */
4483 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
4484 raiddisks,
4485 chunk?*chunk:0, size,
bf5a934a
DW
4486 dev, freesize,
4487 verbose);
4488 }
4489
8592f29d
N
4490 if (!dev) {
4491 if (st->sb && freesize) {
efb30e7f
DW
4492 /* we are being asked to automatically layout a
4493 * new volume based on the current contents of
4494 * the container. If the the parameters can be
4495 * satisfied reserve_space will record the disks,
4496 * start offset, and size of the volume to be
4497 * created. add_to_super and getinfo_super
4498 * detect when autolayout is in progress.
4499 */
6592ce37
DW
4500 if (!validate_geometry_imsm_orom(st->sb, level, layout,
4501 raiddisks, chunk,
4502 verbose))
4503 return 0;
c21e737b
CA
4504 return reserve_space(st, raiddisks, size,
4505 chunk?*chunk:0, freesize);
8592f29d
N
4506 }
4507 return 1;
4508 }
bf5a934a
DW
4509 if (st->sb) {
4510 /* creating in a given container */
4511 return validate_geometry_imsm_volume(st, level, layout,
4512 raiddisks, chunk, size,
4513 dev, freesize, verbose);
4514 }
4515
bf5a934a
DW
4516 /* This device needs to be a device in an 'imsm' container */
4517 fd = open(dev, O_RDONLY|O_EXCL, 0);
4518 if (fd >= 0) {
4519 if (verbose)
4520 fprintf(stderr,
4521 Name ": Cannot create this array on device %s\n",
4522 dev);
4523 close(fd);
4524 return 0;
4525 }
4526 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
4527 if (verbose)
4528 fprintf(stderr, Name ": Cannot open %s: %s\n",
4529 dev, strerror(errno));
4530 return 0;
4531 }
4532 /* Well, it is in use by someone, maybe an 'imsm' container. */
4533 cfd = open_container(fd);
20cbe8d2 4534 close(fd);
bf5a934a 4535 if (cfd < 0) {
bf5a934a
DW
4536 if (verbose)
4537 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
4538 dev);
4539 return 0;
4540 }
4541 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 4542 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
4543 strcmp(sra->text_version, "imsm") == 0)
4544 is_member = 1;
4545 sysfs_free(sra);
4546 if (is_member) {
bf5a934a
DW
4547 /* This is a member of a imsm container. Load the container
4548 * and try to create a volume
4549 */
4550 struct intel_super *super;
4551
e1902a7b 4552 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
4553 st->sb = super;
4554 st->container_dev = fd2devnum(cfd);
4555 close(cfd);
4556 return validate_geometry_imsm_volume(st, level, layout,
4557 raiddisks, chunk,
4558 size, dev,
4559 freesize, verbose);
4560 }
20cbe8d2 4561 }
bf5a934a 4562
20cbe8d2
AW
4563 if (verbose)
4564 fprintf(stderr, Name ": failed container membership check\n");
4565
4566 close(cfd);
4567 return 0;
bf5a934a 4568}
0bd16cf2 4569
30f58b22 4570static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
4571{
4572 struct intel_super *super = st->sb;
4573
30f58b22
DW
4574 if (level && *level == UnSet)
4575 *level = LEVEL_CONTAINER;
4576
4577 if (level && layout && *layout == UnSet)
4578 *layout = imsm_level_to_layout(*level);
0bd16cf2 4579
1d54f286
N
4580 if (chunk && (*chunk == UnSet || *chunk == 0) &&
4581 super && super->orom)
30f58b22 4582 *chunk = imsm_orom_default_chunk(super->orom);
0bd16cf2
DJ
4583}
4584
33414a01
DW
4585static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
4586
4587static int kill_subarray_imsm(struct supertype *st)
4588{
4589 /* remove the subarray currently referenced by ->current_vol */
4590 __u8 i;
4591 struct intel_dev **dp;
4592 struct intel_super *super = st->sb;
4593 __u8 current_vol = super->current_vol;
4594 struct imsm_super *mpb = super->anchor;
4595
4596 if (super->current_vol < 0)
4597 return 2;
4598 super->current_vol = -1; /* invalidate subarray cursor */
4599
4600 /* block deletions that would change the uuid of active subarrays
4601 *
4602 * FIXME when immutable ids are available, but note that we'll
4603 * also need to fixup the invalidated/active subarray indexes in
4604 * mdstat
4605 */
4606 for (i = 0; i < mpb->num_raid_devs; i++) {
4607 char subarray[4];
4608
4609 if (i < current_vol)
4610 continue;
4611 sprintf(subarray, "%u", i);
4612 if (is_subarray_active(subarray, st->devname)) {
4613 fprintf(stderr,
4614 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
4615 current_vol, i);
4616
4617 return 2;
4618 }
4619 }
4620
4621 if (st->update_tail) {
4622 struct imsm_update_kill_array *u = malloc(sizeof(*u));
4623
4624 if (!u)
4625 return 2;
4626 u->type = update_kill_array;
4627 u->dev_idx = current_vol;
4628 append_metadata_update(st, u, sizeof(*u));
4629
4630 return 0;
4631 }
4632
4633 for (dp = &super->devlist; *dp;)
4634 if ((*dp)->index == current_vol) {
4635 *dp = (*dp)->next;
4636 } else {
4637 handle_missing(super, (*dp)->dev);
4638 if ((*dp)->index > current_vol)
4639 (*dp)->index--;
4640 dp = &(*dp)->next;
4641 }
4642
4643 /* no more raid devices, all active components are now spares,
4644 * but of course failed are still failed
4645 */
4646 if (--mpb->num_raid_devs == 0) {
4647 struct dl *d;
4648
4649 for (d = super->disks; d; d = d->next)
4650 if (d->index > -2) {
4651 d->index = -1;
4652 d->disk.status = SPARE_DISK;
4653 }
4654 }
4655
4656 super->updates_pending++;
4657
4658 return 0;
4659}
aa534678 4660
a951a4f7 4661static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 4662 char *update, struct mddev_ident *ident)
aa534678
DW
4663{
4664 /* update the subarray currently referenced by ->current_vol */
4665 struct intel_super *super = st->sb;
4666 struct imsm_super *mpb = super->anchor;
4667
aa534678
DW
4668 if (strcmp(update, "name") == 0) {
4669 char *name = ident->name;
a951a4f7
N
4670 char *ep;
4671 int vol;
aa534678 4672
a951a4f7 4673 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
4674 fprintf(stderr,
4675 Name ": Unable to update name of active subarray\n");
4676 return 2;
4677 }
4678
4679 if (!check_name(super, name, 0))
4680 return 2;
4681
a951a4f7
N
4682 vol = strtoul(subarray, &ep, 10);
4683 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
4684 return 2;
4685
aa534678
DW
4686 if (st->update_tail) {
4687 struct imsm_update_rename_array *u = malloc(sizeof(*u));
4688
4689 if (!u)
4690 return 2;
4691 u->type = update_rename_array;
a951a4f7 4692 u->dev_idx = vol;
aa534678
DW
4693 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
4694 append_metadata_update(st, u, sizeof(*u));
4695 } else {
4696 struct imsm_dev *dev;
4697 int i;
4698
a951a4f7 4699 dev = get_imsm_dev(super, vol);
aa534678
DW
4700 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
4701 for (i = 0; i < mpb->num_raid_devs; i++) {
4702 dev = get_imsm_dev(super, i);
4703 handle_missing(super, dev);
4704 }
4705 super->updates_pending++;
4706 }
4707 } else
4708 return 2;
4709
4710 return 0;
4711}
bf5a934a 4712
28bce06f
AK
4713static int is_gen_migration(struct imsm_dev *dev)
4714{
4715 if (!dev->vol.migr_state)
4716 return 0;
4717
4718 if (migr_type(dev) == MIGR_GEN_MIGR)
4719 return 1;
4720
4721 return 0;
4722}
71204a50 4723#endif /* MDASSEMBLE */
28bce06f 4724
1e5c6983
DW
4725static int is_rebuilding(struct imsm_dev *dev)
4726{
4727 struct imsm_map *migr_map;
4728
4729 if (!dev->vol.migr_state)
4730 return 0;
4731
4732 if (migr_type(dev) != MIGR_REBUILD)
4733 return 0;
4734
4735 migr_map = get_imsm_map(dev, 1);
4736
4737 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4738 return 1;
4739 else
4740 return 0;
4741}
4742
4743static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4744{
4745 struct mdinfo *rebuild = NULL;
4746 struct mdinfo *d;
4747 __u32 units;
4748
4749 if (!is_rebuilding(dev))
4750 return;
4751
4752 /* Find the rebuild target, but punt on the dual rebuild case */
4753 for (d = array->devs; d; d = d->next)
4754 if (d->recovery_start == 0) {
4755 if (rebuild)
4756 return;
4757 rebuild = d;
4758 }
4759
4363fd80
DW
4760 if (!rebuild) {
4761 /* (?) none of the disks are marked with
4762 * IMSM_ORD_REBUILD, so assume they are missing and the
4763 * disk_ord_tbl was not correctly updated
4764 */
4765 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
4766 return;
4767 }
4768
1e5c6983
DW
4769 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4770 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4771}
4772
4773
00bbdbda 4774static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 4775{
4f5bc454
DW
4776 /* Given a container loaded by load_super_imsm_all,
4777 * extract information about all the arrays into
4778 * an mdinfo tree.
00bbdbda 4779 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
4780 *
4781 * For each imsm_dev create an mdinfo, fill it in,
4782 * then look for matching devices in super->disks
4783 * and create appropriate device mdinfo.
4784 */
4785 struct intel_super *super = st->sb;
949c47a0 4786 struct imsm_super *mpb = super->anchor;
4f5bc454 4787 struct mdinfo *rest = NULL;
00bbdbda 4788 unsigned int i;
a06d022d 4789 int bbm_errors = 0;
abef11a3
AK
4790 struct dl *d;
4791 int spare_disks = 0;
cdddbdbc 4792
a06d022d
KW
4793 /* check for bad blocks */
4794 if (imsm_bbm_log_size(super->anchor))
4795 bbm_errors = 1;
604b746f 4796
abef11a3
AK
4797 /* count spare devices, not used in maps
4798 */
4799 for (d = super->disks; d; d = d->next)
4800 if (d->index == -1)
4801 spare_disks++;
4802
4f5bc454 4803 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
4804 struct imsm_dev *dev;
4805 struct imsm_map *map;
86e3692b 4806 struct imsm_map *map2;
4f5bc454 4807 struct mdinfo *this;
4f5bc454 4808 int slot;
00bbdbda
N
4809 char *ep;
4810
4811 if (subarray &&
4812 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
4813 continue;
4814
4815 dev = get_imsm_dev(super, i);
4816 map = get_imsm_map(dev, 0);
86e3692b 4817 map2 = get_imsm_map(dev, 1);
4f5bc454 4818
1ce0101c
DW
4819 /* do not publish arrays that are in the middle of an
4820 * unsupported migration
4821 */
4822 if (dev->vol.migr_state &&
28bce06f 4823 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
4824 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4825 " unsupported migration in progress\n",
4826 dev->volume);
4827 continue;
4828 }
4829
4f5bc454 4830 this = malloc(sizeof(*this));
0fbd635c 4831 if (!this) {
cf1be220 4832 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
4833 sizeof(*this));
4834 break;
4835 }
4f5bc454
DW
4836 memset(this, 0, sizeof(*this));
4837 this->next = rest;
4f5bc454 4838
301406c9 4839 super->current_vol = i;
a5d85af7 4840 getinfo_super_imsm_volume(st, this, NULL);
4f5bc454 4841 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 4842 unsigned long long recovery_start;
4f5bc454
DW
4843 struct mdinfo *info_d;
4844 struct dl *d;
4845 int idx;
9a1608e5 4846 int skip;
7eef0453 4847 __u32 ord;
4f5bc454 4848
9a1608e5 4849 skip = 0;
98130f40 4850 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 4851 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
4852 for (d = super->disks; d ; d = d->next)
4853 if (d->index == idx)
0fbd635c 4854 break;
4f5bc454 4855
1e5c6983 4856 recovery_start = MaxSector;
4f5bc454 4857 if (d == NULL)
9a1608e5 4858 skip = 1;
25ed7e59 4859 if (d && is_failed(&d->disk))
9a1608e5 4860 skip = 1;
7eef0453 4861 if (ord & IMSM_ORD_REBUILD)
1e5c6983 4862 recovery_start = 0;
9a1608e5
DW
4863
4864 /*
4865 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
4866 * reset resync start to avoid a dirty-degraded
4867 * situation when performing the intial sync
9a1608e5
DW
4868 *
4869 * FIXME handle dirty degraded
4870 */
1e5c6983 4871 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 4872 this->resync_start = MaxSector;
9a1608e5
DW
4873 if (skip)
4874 continue;
4f5bc454 4875
1e5c6983 4876 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
4877 if (!info_d) {
4878 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 4879 " for volume %.16s\n", dev->volume);
1e5c6983
DW
4880 info_d = this->devs;
4881 while (info_d) {
4882 struct mdinfo *d = info_d->next;
4883
4884 free(info_d);
4885 info_d = d;
4886 }
9a1608e5
DW
4887 free(this);
4888 this = rest;
4889 break;
4890 }
4f5bc454
DW
4891 info_d->next = this->devs;
4892 this->devs = info_d;
4893
4f5bc454
DW
4894 info_d->disk.number = d->index;
4895 info_d->disk.major = d->major;
4896 info_d->disk.minor = d->minor;
4897 info_d->disk.raid_disk = slot;
1e5c6983 4898 info_d->recovery_start = recovery_start;
86e3692b
AK
4899 if (map2) {
4900 if (slot < map2->num_members)
4901 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
4902 else
4903 this->array.spare_disks++;
86e3692b
AK
4904 } else {
4905 if (slot < map->num_members)
4906 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
4907 else
4908 this->array.spare_disks++;
86e3692b 4909 }
1e5c6983
DW
4910 if (info_d->recovery_start == MaxSector)
4911 this->array.working_disks++;
4f5bc454
DW
4912
4913 info_d->events = __le32_to_cpu(mpb->generation_num);
4914 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
4915 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 4916 }
1e5c6983
DW
4917 /* now that the disk list is up-to-date fixup recovery_start */
4918 update_recovery_start(dev, this);
abef11a3 4919 this->array.spare_disks += spare_disks;
9a1608e5 4920 rest = this;
4f5bc454
DW
4921 }
4922
a06d022d
KW
4923 /* if array has bad blocks, set suitable bit in array status */
4924 if (bbm_errors)
4925 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
4926
4f5bc454 4927 return rest;
cdddbdbc
DW
4928}
4929
845dea95 4930
fb49eef2 4931static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 4932{
a965f303 4933 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
4934
4935 if (!failed)
3393c6af
DW
4936 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
4937 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
4938
4939 switch (get_imsm_raid_level(map)) {
4940 case 0:
4941 return IMSM_T_STATE_FAILED;
4942 break;
4943 case 1:
4944 if (failed < map->num_members)
4945 return IMSM_T_STATE_DEGRADED;
4946 else
4947 return IMSM_T_STATE_FAILED;
4948 break;
4949 case 10:
4950 {
4951 /**
c92a2527
DW
4952 * check to see if any mirrors have failed, otherwise we
4953 * are degraded. Even numbered slots are mirrored on
4954 * slot+1
c2a1e7da 4955 */
c2a1e7da 4956 int i;
d9b420a5
N
4957 /* gcc -Os complains that this is unused */
4958 int insync = insync;
c2a1e7da
DW
4959
4960 for (i = 0; i < map->num_members; i++) {
98130f40 4961 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
4962 int idx = ord_to_idx(ord);
4963 struct imsm_disk *disk;
c2a1e7da 4964
c92a2527
DW
4965 /* reset the potential in-sync count on even-numbered
4966 * slots. num_copies is always 2 for imsm raid10
4967 */
4968 if ((i & 1) == 0)
4969 insync = 2;
c2a1e7da 4970
c92a2527 4971 disk = get_imsm_disk(super, idx);
25ed7e59 4972 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 4973 insync--;
c2a1e7da 4974
c92a2527
DW
4975 /* no in-sync disks left in this mirror the
4976 * array has failed
4977 */
4978 if (insync == 0)
4979 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
4980 }
4981
4982 return IMSM_T_STATE_DEGRADED;
4983 }
4984 case 5:
4985 if (failed < 2)
4986 return IMSM_T_STATE_DEGRADED;
4987 else
4988 return IMSM_T_STATE_FAILED;
4989 break;
4990 default:
4991 break;
4992 }
4993
4994 return map->map_state;
4995}
4996
ff077194 4997static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
4998{
4999 int i;
5000 int failed = 0;
5001 struct imsm_disk *disk;
ff077194 5002 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
5003 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5004 __u32 ord;
5005 int idx;
c2a1e7da 5006
0556e1a2
DW
5007 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5008 * disks that are being rebuilt. New failures are recorded to
5009 * map[0]. So we look through all the disks we started with and
5010 * see if any failures are still present, or if any new ones
5011 * have arrived
5012 *
5013 * FIXME add support for online capacity expansion and
5014 * raid-level-migration
5015 */
5016 for (i = 0; i < prev->num_members; i++) {
5017 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5018 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5019 idx = ord_to_idx(ord);
c2a1e7da 5020
949c47a0 5021 disk = get_imsm_disk(super, idx);
25ed7e59 5022 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 5023 failed++;
c2a1e7da
DW
5024 }
5025
5026 return failed;
845dea95
NB
5027}
5028
97b4d0e9
DW
5029#ifndef MDASSEMBLE
5030static int imsm_open_new(struct supertype *c, struct active_array *a,
5031 char *inst)
5032{
5033 struct intel_super *super = c->sb;
5034 struct imsm_super *mpb = super->anchor;
5035
5036 if (atoi(inst) >= mpb->num_raid_devs) {
5037 fprintf(stderr, "%s: subarry index %d, out of range\n",
5038 __func__, atoi(inst));
5039 return -ENODEV;
5040 }
5041
5042 dprintf("imsm: open_new %s\n", inst);
5043 a->info.container_member = atoi(inst);
5044 return 0;
5045}
5046
0c046afd
DW
5047static int is_resyncing(struct imsm_dev *dev)
5048{
5049 struct imsm_map *migr_map;
5050
5051 if (!dev->vol.migr_state)
5052 return 0;
5053
1484e727
DW
5054 if (migr_type(dev) == MIGR_INIT ||
5055 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
5056 return 1;
5057
4c9bc37b
AK
5058 if (migr_type(dev) == MIGR_GEN_MIGR)
5059 return 0;
5060
0c046afd
DW
5061 migr_map = get_imsm_map(dev, 1);
5062
4c9bc37b
AK
5063 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5064 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
5065 return 1;
5066 else
5067 return 0;
5068}
5069
0556e1a2
DW
5070/* return true if we recorded new information */
5071static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 5072{
0556e1a2
DW
5073 __u32 ord;
5074 int slot;
5075 struct imsm_map *map;
1a2487c2
KW
5076 char buf[MAX_RAID_SERIAL_LEN+3];
5077 unsigned int len, shift = 0;
0556e1a2
DW
5078
5079 /* new failures are always set in map[0] */
5080 map = get_imsm_map(dev, 0);
5081
5082 slot = get_imsm_disk_slot(map, idx);
5083 if (slot < 0)
5084 return 0;
5085
5086 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 5087 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
5088 return 0;
5089
1a2487c2
KW
5090 sprintf(buf, "%s:0", disk->serial);
5091 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
5092 shift = len - MAX_RAID_SERIAL_LEN + 1;
5093 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
5094
f2f27e63 5095 disk->status |= FAILED_DISK;
0556e1a2 5096 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
f21e18ca 5097 if (map->failed_disk_num == 0xff)
0556e1a2
DW
5098 map->failed_disk_num = slot;
5099 return 1;
5100}
5101
5102static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5103{
5104 mark_failure(dev, disk, idx);
5105
5106 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5107 return;
5108
47ee5a45
DW
5109 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5110 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5111}
5112
33414a01
DW
5113static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5114{
5115 __u8 map_state;
5116 struct dl *dl;
5117 int failed;
5118
5119 if (!super->missing)
5120 return;
5121 failed = imsm_count_failed(super, dev);
5122 map_state = imsm_check_degraded(super, dev, failed);
5123
5124 dprintf("imsm: mark missing\n");
5125 end_migration(dev, map_state);
5126 for (dl = super->missing; dl; dl = dl->next)
5127 mark_missing(dev, &dl->disk, dl->index);
5128 super->updates_pending++;
5129}
5130
70bdf0dc
AK
5131static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5132{
5133 int used_disks = imsm_num_data_members(dev, 0);
5134 unsigned long long array_blocks;
5135 struct imsm_map *map;
5136
5137 if (used_disks == 0) {
5138 /* when problems occures
5139 * return current array_blocks value
5140 */
5141 array_blocks = __le32_to_cpu(dev->size_high);
5142 array_blocks = array_blocks << 32;
5143 array_blocks += __le32_to_cpu(dev->size_low);
5144
5145 return array_blocks;
5146 }
5147
5148 /* set array size in metadata
5149 */
5150 map = get_imsm_map(dev, 0);
5151 array_blocks = map->blocks_per_member * used_disks;
5152
5153 /* round array size down to closest MB
5154 */
5155 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5156 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5157 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5158
5159 return array_blocks;
5160}
5161
28bce06f
AK
5162static void imsm_set_disk(struct active_array *a, int n, int state);
5163
0e2d1a4e
AK
5164static void imsm_progress_container_reshape(struct intel_super *super)
5165{
5166 /* if no device has a migr_state, but some device has a
5167 * different number of members than the previous device, start
5168 * changing the number of devices in this device to match
5169 * previous.
5170 */
5171 struct imsm_super *mpb = super->anchor;
5172 int prev_disks = -1;
5173 int i;
1dfaa380 5174 int copy_map_size;
0e2d1a4e
AK
5175
5176 for (i = 0; i < mpb->num_raid_devs; i++) {
5177 struct imsm_dev *dev = get_imsm_dev(super, i);
5178 struct imsm_map *map = get_imsm_map(dev, 0);
5179 struct imsm_map *map2;
5180 int prev_num_members;
0e2d1a4e
AK
5181
5182 if (dev->vol.migr_state)
5183 return;
5184
5185 if (prev_disks == -1)
5186 prev_disks = map->num_members;
5187 if (prev_disks == map->num_members)
5188 continue;
5189
5190 /* OK, this array needs to enter reshape mode.
5191 * i.e it needs a migr_state
5192 */
5193
1dfaa380 5194 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
5195 prev_num_members = map->num_members;
5196 map->num_members = prev_disks;
5197 dev->vol.migr_state = 1;
5198 dev->vol.curr_migr_unit = 0;
5199 dev->vol.migr_type = MIGR_GEN_MIGR;
5200 for (i = prev_num_members;
5201 i < map->num_members; i++)
5202 set_imsm_ord_tbl_ent(map, i, i);
5203 map2 = get_imsm_map(dev, 1);
5204 /* Copy the current map */
1dfaa380 5205 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
5206 map2->num_members = prev_num_members;
5207
70bdf0dc 5208 imsm_set_array_size(dev);
0e2d1a4e
AK
5209 super->updates_pending++;
5210 }
5211}
5212
aad6f216 5213/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
5214 * states are handled in imsm_set_disk() with one exception, when a
5215 * resync is stopped due to a new failure this routine will set the
5216 * 'degraded' state for the array.
5217 */
01f157d7 5218static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
5219{
5220 int inst = a->info.container_member;
5221 struct intel_super *super = a->container->sb;
949c47a0 5222 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 5223 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
5224 int failed = imsm_count_failed(super, dev);
5225 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 5226 __u32 blocks_per_unit;
a862209d 5227
1af97990
AK
5228 if (dev->vol.migr_state &&
5229 dev->vol.migr_type == MIGR_GEN_MIGR) {
5230 /* array state change is blocked due to reshape action
aad6f216
N
5231 * We might need to
5232 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5233 * - finish the reshape (if last_checkpoint is big and action != reshape)
5234 * - update curr_migr_unit
1af97990 5235 */
aad6f216
N
5236 if (a->curr_action == reshape) {
5237 /* still reshaping, maybe update curr_migr_unit */
5238 long long blocks_per_unit = blocks_per_migr_unit(dev);
5239 long long unit = a->last_checkpoint;
6345120e
AK
5240 if (blocks_per_unit) {
5241 unit /= blocks_per_unit;
5242 if (unit >
5243 __le32_to_cpu(dev->vol.curr_migr_unit)) {
5244 dev->vol.curr_migr_unit =
5245 __cpu_to_le32(unit);
5246 super->updates_pending++;
5247 }
aad6f216 5248 }
a4546b61 5249 return 0;
aad6f216
N
5250 } else {
5251 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5252 /* for some reason we aborted the reshape.
5253 * Better clean up
5254 */
5255 struct imsm_map *map2 = get_imsm_map(dev, 1);
5256 dev->vol.migr_state = 0;
5257 dev->vol.migr_type = 0;
5258 dev->vol.curr_migr_unit = 0;
5259 memcpy(map, map2, sizeof_imsm_map(map2));
5260 super->updates_pending++;
5261 }
5262 if (a->last_checkpoint >= a->info.component_size) {
5263 unsigned long long array_blocks;
5264 int used_disks;
e154ced3 5265 struct mdinfo *mdi;
aad6f216 5266
9653001d 5267 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
5268 if (used_disks > 0) {
5269 array_blocks =
5270 map->blocks_per_member *
5271 used_disks;
5272 /* round array size down to closest MB
5273 */
5274 array_blocks = (array_blocks
5275 >> SECT_PER_MB_SHIFT)
5276 << SECT_PER_MB_SHIFT;
d55adef9
AK
5277 a->info.custom_array_size = array_blocks;
5278 /* encourage manager to update array
5279 * size
5280 */
e154ced3 5281
d55adef9 5282 a->check_reshape = 1;
f49ee92d 5283}
e154ced3
AK
5284 /* finalize online capacity expansion/reshape */
5285 for (mdi = a->info.devs; mdi; mdi = mdi->next)
5286 imsm_set_disk(a,
5287 mdi->disk.raid_disk,
5288 mdi->curr_state);
5289
0e2d1a4e 5290 imsm_progress_container_reshape(super);
e154ced3 5291 }
aad6f216 5292 }
1af97990
AK
5293 }
5294
47ee5a45 5295 /* before we activate this array handle any missing disks */
33414a01
DW
5296 if (consistent == 2)
5297 handle_missing(super, dev);
1e5c6983 5298
0c046afd 5299 if (consistent == 2 &&
b7941fd6 5300 (!is_resync_complete(&a->info) ||
0c046afd
DW
5301 map_state != IMSM_T_STATE_NORMAL ||
5302 dev->vol.migr_state))
01f157d7 5303 consistent = 0;
272906ef 5304
b7941fd6 5305 if (is_resync_complete(&a->info)) {
0c046afd 5306 /* complete intialization / resync,
0556e1a2
DW
5307 * recovery and interrupted recovery is completed in
5308 * ->set_disk
0c046afd
DW
5309 */
5310 if (is_resyncing(dev)) {
5311 dprintf("imsm: mark resync done\n");
f8f603f1 5312 end_migration(dev, map_state);
115c3803 5313 super->updates_pending++;
484240d8 5314 a->last_checkpoint = 0;
115c3803 5315 }
0c046afd
DW
5316 } else if (!is_resyncing(dev) && !failed) {
5317 /* mark the start of the init process if nothing is failed */
b7941fd6 5318 dprintf("imsm: mark resync start\n");
1484e727 5319 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
e3bba0e0 5320 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727
DW
5321 else
5322 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 5323 super->updates_pending++;
115c3803 5324 }
a862209d 5325
1e5c6983
DW
5326 /* check if we can update curr_migr_unit from resync_start, recovery_start */
5327 blocks_per_unit = blocks_per_migr_unit(dev);
4f0a7acc 5328 if (blocks_per_unit) {
1e5c6983
DW
5329 __u32 units32;
5330 __u64 units;
5331
4f0a7acc 5332 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
5333 units32 = units;
5334
5335 /* check that we did not overflow 32-bits, and that
5336 * curr_migr_unit needs updating
5337 */
5338 if (units32 == units &&
5339 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
5340 dprintf("imsm: mark checkpoint (%u)\n", units32);
5341 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
5342 super->updates_pending++;
5343 }
5344 }
f8f603f1 5345
3393c6af 5346 /* mark dirty / clean */
0c046afd 5347 if (dev->vol.dirty != !consistent) {
b7941fd6 5348 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
5349 if (consistent)
5350 dev->vol.dirty = 0;
5351 else
5352 dev->vol.dirty = 1;
a862209d
DW
5353 super->updates_pending++;
5354 }
28bce06f 5355
01f157d7 5356 return consistent;
a862209d
DW
5357}
5358
8d45d196 5359static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 5360{
8d45d196
DW
5361 int inst = a->info.container_member;
5362 struct intel_super *super = a->container->sb;
949c47a0 5363 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 5364 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 5365 struct imsm_disk *disk;
0c046afd 5366 int failed;
b10b37b8 5367 __u32 ord;
0c046afd 5368 __u8 map_state;
8d45d196
DW
5369
5370 if (n > map->num_members)
5371 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
5372 n, map->num_members - 1);
5373
5374 if (n < 0)
5375 return;
5376
4e6e574a 5377 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 5378
98130f40 5379 ord = get_imsm_ord_tbl_ent(dev, n, -1);
b10b37b8 5380 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 5381
5802a811 5382 /* check for new failures */
0556e1a2
DW
5383 if (state & DS_FAULTY) {
5384 if (mark_failure(dev, disk, ord_to_idx(ord)))
5385 super->updates_pending++;
8d45d196 5386 }
47ee5a45 5387
19859edc 5388 /* check if in_sync */
0556e1a2 5389 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
5390 struct imsm_map *migr_map = get_imsm_map(dev, 1);
5391
5392 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
5393 super->updates_pending++;
5394 }
8d45d196 5395
0c046afd
DW
5396 failed = imsm_count_failed(super, dev);
5397 map_state = imsm_check_degraded(super, dev, failed);
5802a811 5398
0c046afd
DW
5399 /* check if recovery complete, newly degraded, or failed */
5400 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 5401 end_migration(dev, map_state);
0556e1a2
DW
5402 map = get_imsm_map(dev, 0);
5403 map->failed_disk_num = ~0;
0c046afd 5404 super->updates_pending++;
484240d8 5405 a->last_checkpoint = 0;
0c046afd
DW
5406 } else if (map_state == IMSM_T_STATE_DEGRADED &&
5407 map->map_state != map_state &&
5408 !dev->vol.migr_state) {
5409 dprintf("imsm: mark degraded\n");
5410 map->map_state = map_state;
5411 super->updates_pending++;
484240d8 5412 a->last_checkpoint = 0;
0c046afd
DW
5413 } else if (map_state == IMSM_T_STATE_FAILED &&
5414 map->map_state != map_state) {
5415 dprintf("imsm: mark failed\n");
f8f603f1 5416 end_migration(dev, map_state);
0c046afd 5417 super->updates_pending++;
484240d8 5418 a->last_checkpoint = 0;
28bce06f
AK
5419 } else if (is_gen_migration(dev)) {
5420 dprintf("imsm: Detected General Migration in state: ");
5421 if (map_state == IMSM_T_STATE_NORMAL) {
5422 end_migration(dev, map_state);
5423 map = get_imsm_map(dev, 0);
5424 map->failed_disk_num = ~0;
5425 dprintf("normal\n");
5426 } else {
5427 if (map_state == IMSM_T_STATE_DEGRADED) {
5428 printf("degraded\n");
5429 end_migration(dev, map_state);
5430 } else {
5431 dprintf("failed\n");
5432 }
5433 map->map_state = map_state;
5434 }
5435 super->updates_pending++;
5802a811 5436 }
845dea95
NB
5437}
5438
f796af5d 5439static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 5440{
f796af5d 5441 void *buf = mpb;
c2a1e7da
DW
5442 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
5443 unsigned long long dsize;
5444 unsigned long long sectors;
5445
5446 get_dev_size(fd, NULL, &dsize);
5447
272f648f
DW
5448 if (mpb_size > 512) {
5449 /* -1 to account for anchor */
5450 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 5451
272f648f
DW
5452 /* write the extended mpb to the sectors preceeding the anchor */
5453 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
5454 return 1;
c2a1e7da 5455
f21e18ca
N
5456 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
5457 != 512 * sectors)
272f648f
DW
5458 return 1;
5459 }
c2a1e7da 5460
272f648f
DW
5461 /* first block is stored on second to last sector of the disk */
5462 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
5463 return 1;
5464
f796af5d 5465 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
5466 return 1;
5467
c2a1e7da
DW
5468 return 0;
5469}
5470
2e735d19 5471static void imsm_sync_metadata(struct supertype *container)
845dea95 5472{
2e735d19 5473 struct intel_super *super = container->sb;
c2a1e7da 5474
1a64be56 5475 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
5476 if (!super->updates_pending)
5477 return;
5478
36988a3d 5479 write_super_imsm(container, 0);
c2a1e7da
DW
5480
5481 super->updates_pending = 0;
845dea95
NB
5482}
5483
272906ef
DW
5484static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
5485{
5486 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 5487 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
5488 struct dl *dl;
5489
5490 for (dl = super->disks; dl; dl = dl->next)
5491 if (dl->index == i)
5492 break;
5493
25ed7e59 5494 if (dl && is_failed(&dl->disk))
272906ef
DW
5495 dl = NULL;
5496
5497 if (dl)
5498 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
5499
5500 return dl;
5501}
5502
a20d2ba5 5503static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
5504 struct active_array *a, int activate_new,
5505 struct mdinfo *additional_test_list)
272906ef
DW
5506{
5507 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 5508 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
5509 struct imsm_super *mpb = super->anchor;
5510 struct imsm_map *map;
272906ef
DW
5511 unsigned long long pos;
5512 struct mdinfo *d;
5513 struct extent *ex;
a20d2ba5 5514 int i, j;
272906ef 5515 int found;
569cc43f
DW
5516 __u32 array_start = 0;
5517 __u32 array_end = 0;
272906ef 5518 struct dl *dl;
6c932028 5519 struct mdinfo *test_list;
272906ef
DW
5520
5521 for (dl = super->disks; dl; dl = dl->next) {
5522 /* If in this array, skip */
5523 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
5524 if (d->state_fd >= 0 &&
5525 d->disk.major == dl->major &&
272906ef 5526 d->disk.minor == dl->minor) {
8ba77d32
AK
5527 dprintf("%x:%x already in array\n",
5528 dl->major, dl->minor);
272906ef
DW
5529 break;
5530 }
5531 if (d)
5532 continue;
6c932028
AK
5533 test_list = additional_test_list;
5534 while (test_list) {
5535 if (test_list->disk.major == dl->major &&
5536 test_list->disk.minor == dl->minor) {
8ba77d32
AK
5537 dprintf("%x:%x already in additional test list\n",
5538 dl->major, dl->minor);
5539 break;
5540 }
6c932028 5541 test_list = test_list->next;
8ba77d32 5542 }
6c932028 5543 if (test_list)
8ba77d32 5544 continue;
272906ef 5545
e553d2a4 5546 /* skip in use or failed drives */
25ed7e59 5547 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
5548 dl->index == -2) {
5549 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 5550 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
5551 continue;
5552 }
5553
a20d2ba5
DW
5554 /* skip pure spares when we are looking for partially
5555 * assimilated drives
5556 */
5557 if (dl->index == -1 && !activate_new)
5558 continue;
5559
272906ef 5560 /* Does this unused device have the requisite free space?
a20d2ba5 5561 * It needs to be able to cover all member volumes
272906ef
DW
5562 */
5563 ex = get_extents(super, dl);
5564 if (!ex) {
5565 dprintf("cannot get extents\n");
5566 continue;
5567 }
a20d2ba5
DW
5568 for (i = 0; i < mpb->num_raid_devs; i++) {
5569 dev = get_imsm_dev(super, i);
5570 map = get_imsm_map(dev, 0);
272906ef 5571
a20d2ba5
DW
5572 /* check if this disk is already a member of
5573 * this array
272906ef 5574 */
620b1713 5575 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
5576 continue;
5577
5578 found = 0;
5579 j = 0;
5580 pos = 0;
5581 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
5582 array_end = array_start +
5583 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
5584
5585 do {
5586 /* check that we can start at pba_of_lba0 with
5587 * blocks_per_member of space
5588 */
329c8278 5589 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
5590 found = 1;
5591 break;
5592 }
5593 pos = ex[j].start + ex[j].size;
5594 j++;
5595 } while (ex[j-1].size);
5596
5597 if (!found)
272906ef 5598 break;
a20d2ba5 5599 }
272906ef
DW
5600
5601 free(ex);
a20d2ba5 5602 if (i < mpb->num_raid_devs) {
329c8278
DW
5603 dprintf("%x:%x does not have %u to %u available\n",
5604 dl->major, dl->minor, array_start, array_end);
272906ef
DW
5605 /* No room */
5606 continue;
a20d2ba5
DW
5607 }
5608 return dl;
272906ef
DW
5609 }
5610
5611 return dl;
5612}
5613
95d07a2c
LM
5614
5615static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
5616{
5617 struct imsm_dev *dev2;
5618 struct imsm_map *map;
5619 struct dl *idisk;
5620 int slot;
5621 int idx;
5622 __u8 state;
5623
5624 dev2 = get_imsm_dev(cont->sb, dev_idx);
5625 if (dev2) {
5626 state = imsm_check_degraded(cont->sb, dev2, failed);
5627 if (state == IMSM_T_STATE_FAILED) {
5628 map = get_imsm_map(dev2, 0);
5629 if (!map)
5630 return 1;
5631 for (slot = 0; slot < map->num_members; slot++) {
5632 /*
5633 * Check if failed disks are deleted from intel
5634 * disk list or are marked to be deleted
5635 */
98130f40 5636 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
5637 idisk = get_imsm_dl_disk(cont->sb, idx);
5638 /*
5639 * Do not rebuild the array if failed disks
5640 * from failed sub-array are not removed from
5641 * container.
5642 */
5643 if (idisk &&
5644 is_failed(&idisk->disk) &&
5645 (idisk->action != DISK_REMOVE))
5646 return 0;
5647 }
5648 }
5649 }
5650 return 1;
5651}
5652
88758e9d
DW
5653static struct mdinfo *imsm_activate_spare(struct active_array *a,
5654 struct metadata_update **updates)
5655{
5656 /**
d23fe947
DW
5657 * Find a device with unused free space and use it to replace a
5658 * failed/vacant region in an array. We replace failed regions one a
5659 * array at a time. The result is that a new spare disk will be added
5660 * to the first failed array and after the monitor has finished
5661 * propagating failures the remainder will be consumed.
88758e9d 5662 *
d23fe947
DW
5663 * FIXME add a capability for mdmon to request spares from another
5664 * container.
88758e9d
DW
5665 */
5666
5667 struct intel_super *super = a->container->sb;
88758e9d 5668 int inst = a->info.container_member;
949c47a0 5669 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 5670 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
5671 int failed = a->info.array.raid_disks;
5672 struct mdinfo *rv = NULL;
5673 struct mdinfo *d;
5674 struct mdinfo *di;
5675 struct metadata_update *mu;
5676 struct dl *dl;
5677 struct imsm_update_activate_spare *u;
5678 int num_spares = 0;
5679 int i;
95d07a2c 5680 int allowed;
88758e9d
DW
5681
5682 for (d = a->info.devs ; d ; d = d->next) {
5683 if ((d->curr_state & DS_FAULTY) &&
5684 d->state_fd >= 0)
5685 /* wait for Removal to happen */
5686 return NULL;
5687 if (d->state_fd >= 0)
5688 failed--;
5689 }
5690
5691 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
5692 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990
AK
5693
5694 if (dev->vol.migr_state &&
5695 dev->vol.migr_type == MIGR_GEN_MIGR)
5696 /* No repair during migration */
5697 return NULL;
5698
89c67882
AK
5699 if (a->info.array.level == 4)
5700 /* No repair for takeovered array
5701 * imsm doesn't support raid4
5702 */
5703 return NULL;
5704
fb49eef2 5705 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
5706 return NULL;
5707
95d07a2c
LM
5708 /*
5709 * If there are any failed disks check state of the other volume.
5710 * Block rebuild if the another one is failed until failed disks
5711 * are removed from container.
5712 */
5713 if (failed) {
5714 dprintf("found failed disks in %s, check if there another"
5715 "failed sub-array.\n",
5716 dev->volume);
5717 /* check if states of the other volumes allow for rebuild */
5718 for (i = 0; i < super->anchor->num_raid_devs; i++) {
5719 if (i != inst) {
5720 allowed = imsm_rebuild_allowed(a->container,
5721 i, failed);
5722 if (!allowed)
5723 return NULL;
5724 }
5725 }
5726 }
5727
88758e9d 5728 /* For each slot, if it is not working, find a spare */
88758e9d
DW
5729 for (i = 0; i < a->info.array.raid_disks; i++) {
5730 for (d = a->info.devs ; d ; d = d->next)
5731 if (d->disk.raid_disk == i)
5732 break;
5733 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
5734 if (d && (d->state_fd >= 0))
5735 continue;
5736
272906ef 5737 /*
a20d2ba5
DW
5738 * OK, this device needs recovery. Try to re-add the
5739 * previous occupant of this slot, if this fails see if
5740 * we can continue the assimilation of a spare that was
5741 * partially assimilated, finally try to activate a new
5742 * spare.
272906ef
DW
5743 */
5744 dl = imsm_readd(super, i, a);
5745 if (!dl)
8ba77d32 5746 dl = imsm_add_spare(super, i, a, 0, NULL);
a20d2ba5 5747 if (!dl)
8ba77d32 5748 dl = imsm_add_spare(super, i, a, 1, NULL);
272906ef
DW
5749 if (!dl)
5750 continue;
5751
5752 /* found a usable disk with enough space */
5753 di = malloc(sizeof(*di));
79244939
DW
5754 if (!di)
5755 continue;
272906ef
DW
5756 memset(di, 0, sizeof(*di));
5757
5758 /* dl->index will be -1 in the case we are activating a
5759 * pristine spare. imsm_process_update() will create a
5760 * new index in this case. Once a disk is found to be
5761 * failed in all member arrays it is kicked from the
5762 * metadata
5763 */
5764 di->disk.number = dl->index;
d23fe947 5765
272906ef
DW
5766 /* (ab)use di->devs to store a pointer to the device
5767 * we chose
5768 */
5769 di->devs = (struct mdinfo *) dl;
5770
5771 di->disk.raid_disk = i;
5772 di->disk.major = dl->major;
5773 di->disk.minor = dl->minor;
5774 di->disk.state = 0;
d23534e4 5775 di->recovery_start = 0;
272906ef
DW
5776 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
5777 di->component_size = a->info.component_size;
5778 di->container_member = inst;
148acb7b 5779 super->random = random32();
272906ef
DW
5780 di->next = rv;
5781 rv = di;
5782 num_spares++;
5783 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
5784 i, di->data_offset);
88758e9d 5785
272906ef 5786 break;
88758e9d
DW
5787 }
5788
5789 if (!rv)
5790 /* No spares found */
5791 return rv;
5792 /* Now 'rv' has a list of devices to return.
5793 * Create a metadata_update record to update the
5794 * disk_ord_tbl for the array
5795 */
5796 mu = malloc(sizeof(*mu));
79244939
DW
5797 if (mu) {
5798 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
5799 if (mu->buf == NULL) {
5800 free(mu);
5801 mu = NULL;
5802 }
5803 }
5804 if (!mu) {
5805 while (rv) {
5806 struct mdinfo *n = rv->next;
5807
5808 free(rv);
5809 rv = n;
5810 }
5811 return NULL;
5812 }
5813
88758e9d 5814 mu->space = NULL;
cb23f1f4 5815 mu->space_list = NULL;
88758e9d
DW
5816 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
5817 mu->next = *updates;
5818 u = (struct imsm_update_activate_spare *) mu->buf;
5819
5820 for (di = rv ; di ; di = di->next) {
5821 u->type = update_activate_spare;
d23fe947
DW
5822 u->dl = (struct dl *) di->devs;
5823 di->devs = NULL;
88758e9d
DW
5824 u->slot = di->disk.raid_disk;
5825 u->array = inst;
5826 u->next = u + 1;
5827 u++;
5828 }
5829 (u-1)->next = NULL;
5830 *updates = mu;
5831
5832 return rv;
5833}
5834
54c2c1ea 5835static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 5836{
54c2c1ea
DW
5837 struct imsm_dev *dev = get_imsm_dev(super, idx);
5838 struct imsm_map *map = get_imsm_map(dev, 0);
5839 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
5840 struct disk_info *inf = get_disk_info(u);
5841 struct imsm_disk *disk;
8273f55e
DW
5842 int i;
5843 int j;
8273f55e 5844
54c2c1ea 5845 for (i = 0; i < map->num_members; i++) {
98130f40 5846 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
5847 for (j = 0; j < new_map->num_members; j++)
5848 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
5849 return 1;
5850 }
5851
5852 return 0;
5853}
5854
1a64be56
LM
5855
5856static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
5857{
5858 struct dl *dl = NULL;
5859 for (dl = super->disks; dl; dl = dl->next)
5860 if ((dl->major == major) && (dl->minor == minor))
5861 return dl;
5862 return NULL;
5863}
5864
5865static int remove_disk_super(struct intel_super *super, int major, int minor)
5866{
5867 struct dl *prev = NULL;
5868 struct dl *dl;
5869
5870 prev = NULL;
5871 for (dl = super->disks; dl; dl = dl->next) {
5872 if ((dl->major == major) && (dl->minor == minor)) {
5873 /* remove */
5874 if (prev)
5875 prev->next = dl->next;
5876 else
5877 super->disks = dl->next;
5878 dl->next = NULL;
5879 __free_imsm_disk(dl);
5880 dprintf("%s: removed %x:%x\n",
5881 __func__, major, minor);
5882 break;
5883 }
5884 prev = dl;
5885 }
5886 return 0;
5887}
5888
f21e18ca 5889static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 5890
1a64be56
LM
5891static int add_remove_disk_update(struct intel_super *super)
5892{
5893 int check_degraded = 0;
5894 struct dl *disk = NULL;
5895 /* add/remove some spares to/from the metadata/contrainer */
5896 while (super->disk_mgmt_list) {
5897 struct dl *disk_cfg;
5898
5899 disk_cfg = super->disk_mgmt_list;
5900 super->disk_mgmt_list = disk_cfg->next;
5901 disk_cfg->next = NULL;
5902
5903 if (disk_cfg->action == DISK_ADD) {
5904 disk_cfg->next = super->disks;
5905 super->disks = disk_cfg;
5906 check_degraded = 1;
5907 dprintf("%s: added %x:%x\n",
5908 __func__, disk_cfg->major,
5909 disk_cfg->minor);
5910 } else if (disk_cfg->action == DISK_REMOVE) {
5911 dprintf("Disk remove action processed: %x.%x\n",
5912 disk_cfg->major, disk_cfg->minor);
5913 disk = get_disk_super(super,
5914 disk_cfg->major,
5915 disk_cfg->minor);
5916 if (disk) {
5917 /* store action status */
5918 disk->action = DISK_REMOVE;
5919 /* remove spare disks only */
5920 if (disk->index == -1) {
5921 remove_disk_super(super,
5922 disk_cfg->major,
5923 disk_cfg->minor);
5924 }
5925 }
5926 /* release allocate disk structure */
5927 __free_imsm_disk(disk_cfg);
5928 }
5929 }
5930 return check_degraded;
5931}
5932
2e5dc010
N
5933static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
5934 struct intel_super *super,
5935 void ***space_list)
5936{
5937 struct dl *new_disk;
5938 struct intel_dev *id;
5939 int i;
5940 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 5941 int disk_count = u->old_raid_disks;
2e5dc010
N
5942 void **tofree = NULL;
5943 int devices_to_reshape = 1;
5944 struct imsm_super *mpb = super->anchor;
5945 int ret_val = 0;
d098291a 5946 unsigned int dev_id;
2e5dc010 5947
ed7333bd 5948 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
5949
5950 /* enable spares to use in array */
5951 for (i = 0; i < delta_disks; i++) {
5952 new_disk = get_disk_super(super,
5953 major(u->new_disks[i]),
5954 minor(u->new_disks[i]));
ed7333bd
AK
5955 dprintf("imsm: new disk for reshape is: %i:%i "
5956 "(%p, index = %i)\n",
2e5dc010
N
5957 major(u->new_disks[i]), minor(u->new_disks[i]),
5958 new_disk, new_disk->index);
5959 if ((new_disk == NULL) ||
5960 ((new_disk->index >= 0) &&
5961 (new_disk->index < u->old_raid_disks)))
5962 goto update_reshape_exit;
ee4beede 5963 new_disk->index = disk_count++;
2e5dc010
N
5964 /* slot to fill in autolayout
5965 */
5966 new_disk->raiddisk = new_disk->index;
5967 new_disk->disk.status |=
5968 CONFIGURED_DISK;
5969 new_disk->disk.status &= ~SPARE_DISK;
5970 }
5971
ed7333bd
AK
5972 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
5973 mpb->num_raid_devs);
2e5dc010
N
5974 /* manage changes in volume
5975 */
d098291a 5976 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
5977 void **sp = *space_list;
5978 struct imsm_dev *newdev;
5979 struct imsm_map *newmap, *oldmap;
5980
d098291a
AK
5981 for (id = super->devlist ; id; id = id->next) {
5982 if (id->index == dev_id)
5983 break;
5984 }
5985 if (id == NULL)
5986 break;
2e5dc010
N
5987 if (!sp)
5988 continue;
5989 *space_list = *sp;
5990 newdev = (void*)sp;
5991 /* Copy the dev, but not (all of) the map */
5992 memcpy(newdev, id->dev, sizeof(*newdev));
5993 oldmap = get_imsm_map(id->dev, 0);
5994 newmap = get_imsm_map(newdev, 0);
5995 /* Copy the current map */
5996 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
5997 /* update one device only
5998 */
5999 if (devices_to_reshape) {
ed7333bd
AK
6000 dprintf("imsm: modifying subdev: %i\n",
6001 id->index);
2e5dc010
N
6002 devices_to_reshape--;
6003 newdev->vol.migr_state = 1;
6004 newdev->vol.curr_migr_unit = 0;
6005 newdev->vol.migr_type = MIGR_GEN_MIGR;
6006 newmap->num_members = u->new_raid_disks;
6007 for (i = 0; i < delta_disks; i++) {
6008 set_imsm_ord_tbl_ent(newmap,
6009 u->old_raid_disks + i,
6010 u->old_raid_disks + i);
6011 }
6012 /* New map is correct, now need to save old map
6013 */
6014 newmap = get_imsm_map(newdev, 1);
6015 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6016
70bdf0dc 6017 imsm_set_array_size(newdev);
2e5dc010
N
6018 }
6019
6020 sp = (void **)id->dev;
6021 id->dev = newdev;
6022 *sp = tofree;
6023 tofree = sp;
6024 }
819bc634
AK
6025 if (tofree)
6026 *space_list = tofree;
2e5dc010
N
6027 ret_val = 1;
6028
6029update_reshape_exit:
6030
6031 return ret_val;
6032}
6033
bb025c2f 6034static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
6035 struct intel_super *super,
6036 void ***space_list)
bb025c2f
KW
6037{
6038 struct imsm_dev *dev = NULL;
8ca6df95
KW
6039 struct intel_dev *dv;
6040 struct imsm_dev *dev_new;
bb025c2f
KW
6041 struct imsm_map *map;
6042 struct dl *dm, *du;
8ca6df95 6043 int i;
bb025c2f
KW
6044
6045 for (dv = super->devlist; dv; dv = dv->next)
6046 if (dv->index == (unsigned int)u->subarray) {
6047 dev = dv->dev;
6048 break;
6049 }
6050
6051 if (dev == NULL)
6052 return 0;
6053
6054 map = get_imsm_map(dev, 0);
6055
6056 if (u->direction == R10_TO_R0) {
43d5ec18
KW
6057 /* Number of failed disks must be half of initial disk number */
6058 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6059 return 0;
6060
bb025c2f
KW
6061 /* iterate through devices to mark removed disks as spare */
6062 for (dm = super->disks; dm; dm = dm->next) {
6063 if (dm->disk.status & FAILED_DISK) {
6064 int idx = dm->index;
6065 /* update indexes on the disk list */
6066/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6067 the index values will end up being correct.... NB */
6068 for (du = super->disks; du; du = du->next)
6069 if (du->index > idx)
6070 du->index--;
6071 /* mark as spare disk */
6072 dm->disk.status = SPARE_DISK;
6073 dm->index = -1;
6074 }
6075 }
bb025c2f
KW
6076 /* update map */
6077 map->num_members = map->num_members / 2;
6078 map->map_state = IMSM_T_STATE_NORMAL;
6079 map->num_domains = 1;
6080 map->raid_level = 0;
6081 map->failed_disk_num = -1;
6082 }
6083
8ca6df95
KW
6084 if (u->direction == R0_TO_R10) {
6085 void **space;
6086 /* update slots in current disk list */
6087 for (dm = super->disks; dm; dm = dm->next) {
6088 if (dm->index >= 0)
6089 dm->index *= 2;
6090 }
6091 /* create new *missing* disks */
6092 for (i = 0; i < map->num_members; i++) {
6093 space = *space_list;
6094 if (!space)
6095 continue;
6096 *space_list = *space;
6097 du = (void *)space;
6098 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
6099 du->fd = -1;
6100 du->minor = 0;
6101 du->major = 0;
6102 du->index = (i * 2) + 1;
6103 sprintf((char *)du->disk.serial,
6104 " MISSING_%d", du->index);
6105 sprintf((char *)du->serial,
6106 "MISSING_%d", du->index);
6107 du->next = super->missing;
6108 super->missing = du;
6109 }
6110 /* create new dev and map */
6111 space = *space_list;
6112 if (!space)
6113 return 0;
6114 *space_list = *space;
6115 dev_new = (void *)space;
6116 memcpy(dev_new, dev, sizeof(*dev));
6117 /* update new map */
6118 map = get_imsm_map(dev_new, 0);
8ca6df95 6119 map->num_members = map->num_members * 2;
1a2487c2 6120 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
6121 map->num_domains = 2;
6122 map->raid_level = 1;
6123 /* replace dev<->dev_new */
6124 dv->dev = dev_new;
6125 }
bb025c2f
KW
6126 /* update disk order table */
6127 for (du = super->disks; du; du = du->next)
6128 if (du->index >= 0)
6129 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 6130 for (du = super->missing; du; du = du->next)
1a2487c2
KW
6131 if (du->index >= 0) {
6132 set_imsm_ord_tbl_ent(map, du->index, du->index);
6133 mark_missing(dev_new, &du->disk, du->index);
6134 }
bb025c2f
KW
6135
6136 return 1;
6137}
6138
e8319a19
DW
6139static void imsm_process_update(struct supertype *st,
6140 struct metadata_update *update)
6141{
6142 /**
6143 * crack open the metadata_update envelope to find the update record
6144 * update can be one of:
d195167d
AK
6145 * update_reshape_container_disks - all the arrays in the container
6146 * are being reshaped to have more devices. We need to mark
6147 * the arrays for general migration and convert selected spares
6148 * into active devices.
6149 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
6150 * device in an array, update the disk_ord_tbl. If this disk is
6151 * present in all member arrays then also clear the SPARE_DISK
6152 * flag
d195167d
AK
6153 * update_create_array
6154 * update_kill_array
6155 * update_rename_array
6156 * update_add_remove_disk
e8319a19
DW
6157 */
6158 struct intel_super *super = st->sb;
4d7b1503 6159 struct imsm_super *mpb;
e8319a19
DW
6160 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6161
4d7b1503
DW
6162 /* update requires a larger buf but the allocation failed */
6163 if (super->next_len && !super->next_buf) {
6164 super->next_len = 0;
6165 return;
6166 }
6167
6168 if (super->next_buf) {
6169 memcpy(super->next_buf, super->buf, super->len);
6170 free(super->buf);
6171 super->len = super->next_len;
6172 super->buf = super->next_buf;
6173
6174 super->next_len = 0;
6175 super->next_buf = NULL;
6176 }
6177
6178 mpb = super->anchor;
6179
e8319a19 6180 switch (type) {
bb025c2f
KW
6181 case update_takeover: {
6182 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
6183 if (apply_takeover_update(u, super, &update->space_list)) {
6184 imsm_update_version_info(super);
bb025c2f 6185 super->updates_pending++;
1a2487c2 6186 }
bb025c2f
KW
6187 break;
6188 }
6189
78b10e66 6190 case update_reshape_container_disks: {
d195167d 6191 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
6192 if (apply_reshape_container_disks_update(
6193 u, super, &update->space_list))
6194 super->updates_pending++;
78b10e66
N
6195 break;
6196 }
e8319a19
DW
6197 case update_activate_spare: {
6198 struct imsm_update_activate_spare *u = (void *) update->buf;
949c47a0 6199 struct imsm_dev *dev = get_imsm_dev(super, u->array);
a965f303 6200 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd 6201 struct imsm_map *migr_map;
e8319a19
DW
6202 struct active_array *a;
6203 struct imsm_disk *disk;
0c046afd 6204 __u8 to_state;
e8319a19 6205 struct dl *dl;
e8319a19 6206 unsigned int found;
0c046afd 6207 int failed;
98130f40 6208 int victim = get_imsm_disk_idx(dev, u->slot, -1);
e8319a19
DW
6209 int i;
6210
6211 for (dl = super->disks; dl; dl = dl->next)
d23fe947 6212 if (dl == u->dl)
e8319a19
DW
6213 break;
6214
6215 if (!dl) {
6216 fprintf(stderr, "error: imsm_activate_spare passed "
1f24f035
DW
6217 "an unknown disk (index: %d)\n",
6218 u->dl->index);
e8319a19
DW
6219 return;
6220 }
6221
6222 super->updates_pending++;
6223
0c046afd
DW
6224 /* count failures (excluding rebuilds and the victim)
6225 * to determine map[0] state
6226 */
6227 failed = 0;
6228 for (i = 0; i < map->num_members; i++) {
6229 if (i == u->slot)
6230 continue;
98130f40
AK
6231 disk = get_imsm_disk(super,
6232 get_imsm_disk_idx(dev, i, -1));
25ed7e59 6233 if (!disk || is_failed(disk))
0c046afd
DW
6234 failed++;
6235 }
6236
d23fe947
DW
6237 /* adding a pristine spare, assign a new index */
6238 if (dl->index < 0) {
6239 dl->index = super->anchor->num_disks;
6240 super->anchor->num_disks++;
6241 }
d23fe947 6242 disk = &dl->disk;
f2f27e63
DW
6243 disk->status |= CONFIGURED_DISK;
6244 disk->status &= ~SPARE_DISK;
e8319a19 6245
0c046afd
DW
6246 /* mark rebuild */
6247 to_state = imsm_check_degraded(super, dev, failed);
6248 map->map_state = IMSM_T_STATE_DEGRADED;
e3bba0e0 6249 migrate(dev, to_state, MIGR_REBUILD);
0c046afd
DW
6250 migr_map = get_imsm_map(dev, 1);
6251 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
6252 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
6253
148acb7b
DW
6254 /* update the family_num to mark a new container
6255 * generation, being careful to record the existing
6256 * family_num in orig_family_num to clean up after
6257 * earlier mdadm versions that neglected to set it.
6258 */
6259 if (mpb->orig_family_num == 0)
6260 mpb->orig_family_num = mpb->family_num;
6261 mpb->family_num += super->random;
6262
e8319a19
DW
6263 /* count arrays using the victim in the metadata */
6264 found = 0;
6265 for (a = st->arrays; a ; a = a->next) {
949c47a0 6266 dev = get_imsm_dev(super, a->info.container_member);
620b1713
DW
6267 map = get_imsm_map(dev, 0);
6268
6269 if (get_imsm_disk_slot(map, victim) >= 0)
6270 found++;
e8319a19
DW
6271 }
6272
24565c9a 6273 /* delete the victim if it is no longer being
e8319a19
DW
6274 * utilized anywhere
6275 */
e8319a19 6276 if (!found) {
ae6aad82 6277 struct dl **dlp;
24565c9a 6278
47ee5a45
DW
6279 /* We know that 'manager' isn't touching anything,
6280 * so it is safe to delete
6281 */
24565c9a 6282 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
ae6aad82
DW
6283 if ((*dlp)->index == victim)
6284 break;
47ee5a45
DW
6285
6286 /* victim may be on the missing list */
6287 if (!*dlp)
6288 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
6289 if ((*dlp)->index == victim)
6290 break;
24565c9a 6291 imsm_delete(super, dlp, victim);
e8319a19 6292 }
8273f55e
DW
6293 break;
6294 }
6295 case update_create_array: {
6296 /* someone wants to create a new array, we need to be aware of
6297 * a few races/collisions:
6298 * 1/ 'Create' called by two separate instances of mdadm
6299 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
6300 * devices that have since been assimilated via
6301 * activate_spare.
6302 * In the event this update can not be carried out mdadm will
6303 * (FIX ME) notice that its update did not take hold.
6304 */
6305 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 6306 struct intel_dev *dv;
8273f55e
DW
6307 struct imsm_dev *dev;
6308 struct imsm_map *map, *new_map;
6309 unsigned long long start, end;
6310 unsigned long long new_start, new_end;
6311 int i;
54c2c1ea
DW
6312 struct disk_info *inf;
6313 struct dl *dl;
8273f55e
DW
6314
6315 /* handle racing creates: first come first serve */
6316 if (u->dev_idx < mpb->num_raid_devs) {
6317 dprintf("%s: subarray %d already defined\n",
6318 __func__, u->dev_idx);
ba2de7ba 6319 goto create_error;
8273f55e
DW
6320 }
6321
6322 /* check update is next in sequence */
6323 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
6324 dprintf("%s: can not create array %d expected index %d\n",
6325 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 6326 goto create_error;
8273f55e
DW
6327 }
6328
a965f303 6329 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
6330 new_start = __le32_to_cpu(new_map->pba_of_lba0);
6331 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 6332 inf = get_disk_info(u);
8273f55e
DW
6333
6334 /* handle activate_spare versus create race:
6335 * check to make sure that overlapping arrays do not include
6336 * overalpping disks
6337 */
6338 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 6339 dev = get_imsm_dev(super, i);
a965f303 6340 map = get_imsm_map(dev, 0);
8273f55e
DW
6341 start = __le32_to_cpu(map->pba_of_lba0);
6342 end = start + __le32_to_cpu(map->blocks_per_member);
6343 if ((new_start >= start && new_start <= end) ||
6344 (start >= new_start && start <= new_end))
54c2c1ea
DW
6345 /* overlap */;
6346 else
6347 continue;
6348
6349 if (disks_overlap(super, i, u)) {
8273f55e 6350 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 6351 goto create_error;
8273f55e
DW
6352 }
6353 }
8273f55e 6354
949c47a0
DW
6355 /* check that prepare update was successful */
6356 if (!update->space) {
6357 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 6358 goto create_error;
949c47a0
DW
6359 }
6360
54c2c1ea
DW
6361 /* check that all disks are still active before committing
6362 * changes. FIXME: could we instead handle this by creating a
6363 * degraded array? That's probably not what the user expects,
6364 * so better to drop this update on the floor.
6365 */
6366 for (i = 0; i < new_map->num_members; i++) {
6367 dl = serial_to_dl(inf[i].serial, super);
6368 if (!dl) {
6369 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 6370 goto create_error;
54c2c1ea 6371 }
949c47a0
DW
6372 }
6373
8273f55e 6374 super->updates_pending++;
54c2c1ea
DW
6375
6376 /* convert spares to members and fixup ord_tbl */
6377 for (i = 0; i < new_map->num_members; i++) {
6378 dl = serial_to_dl(inf[i].serial, super);
6379 if (dl->index == -1) {
6380 dl->index = mpb->num_disks;
6381 mpb->num_disks++;
6382 dl->disk.status |= CONFIGURED_DISK;
6383 dl->disk.status &= ~SPARE_DISK;
6384 }
6385 set_imsm_ord_tbl_ent(new_map, i, dl->index);
6386 }
6387
ba2de7ba
DW
6388 dv = update->space;
6389 dev = dv->dev;
949c47a0
DW
6390 update->space = NULL;
6391 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
6392 dv->index = u->dev_idx;
6393 dv->next = super->devlist;
6394 super->devlist = dv;
8273f55e 6395 mpb->num_raid_devs++;
8273f55e 6396
4d1313e9 6397 imsm_update_version_info(super);
8273f55e 6398 break;
ba2de7ba
DW
6399 create_error:
6400 /* mdmon knows how to release update->space, but not
6401 * ((struct intel_dev *) update->space)->dev
6402 */
6403 if (update->space) {
6404 dv = update->space;
6405 free(dv->dev);
6406 }
8273f55e 6407 break;
e8319a19 6408 }
33414a01
DW
6409 case update_kill_array: {
6410 struct imsm_update_kill_array *u = (void *) update->buf;
6411 int victim = u->dev_idx;
6412 struct active_array *a;
6413 struct intel_dev **dp;
6414 struct imsm_dev *dev;
6415
6416 /* sanity check that we are not affecting the uuid of
6417 * active arrays, or deleting an active array
6418 *
6419 * FIXME when immutable ids are available, but note that
6420 * we'll also need to fixup the invalidated/active
6421 * subarray indexes in mdstat
6422 */
6423 for (a = st->arrays; a; a = a->next)
6424 if (a->info.container_member >= victim)
6425 break;
6426 /* by definition if mdmon is running at least one array
6427 * is active in the container, so checking
6428 * mpb->num_raid_devs is just extra paranoia
6429 */
6430 dev = get_imsm_dev(super, victim);
6431 if (a || !dev || mpb->num_raid_devs == 1) {
6432 dprintf("failed to delete subarray-%d\n", victim);
6433 break;
6434 }
6435
6436 for (dp = &super->devlist; *dp;)
f21e18ca 6437 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
6438 *dp = (*dp)->next;
6439 } else {
f21e18ca 6440 if ((*dp)->index > (unsigned)victim)
33414a01
DW
6441 (*dp)->index--;
6442 dp = &(*dp)->next;
6443 }
6444 mpb->num_raid_devs--;
6445 super->updates_pending++;
6446 break;
6447 }
aa534678
DW
6448 case update_rename_array: {
6449 struct imsm_update_rename_array *u = (void *) update->buf;
6450 char name[MAX_RAID_SERIAL_LEN+1];
6451 int target = u->dev_idx;
6452 struct active_array *a;
6453 struct imsm_dev *dev;
6454
6455 /* sanity check that we are not affecting the uuid of
6456 * an active array
6457 */
6458 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
6459 name[MAX_RAID_SERIAL_LEN] = '\0';
6460 for (a = st->arrays; a; a = a->next)
6461 if (a->info.container_member == target)
6462 break;
6463 dev = get_imsm_dev(super, u->dev_idx);
6464 if (a || !dev || !check_name(super, name, 1)) {
6465 dprintf("failed to rename subarray-%d\n", target);
6466 break;
6467 }
6468
cdbe98cd 6469 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
6470 super->updates_pending++;
6471 break;
6472 }
1a64be56 6473 case update_add_remove_disk: {
43dad3d6 6474 /* we may be able to repair some arrays if disks are
1a64be56
LM
6475 * being added, check teh status of add_remove_disk
6476 * if discs has been added.
6477 */
6478 if (add_remove_disk_update(super)) {
43dad3d6 6479 struct active_array *a;
072b727f
DW
6480
6481 super->updates_pending++;
1a64be56 6482 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
6483 a->check_degraded = 1;
6484 }
43dad3d6 6485 break;
e8319a19 6486 }
1a64be56
LM
6487 default:
6488 fprintf(stderr, "error: unsuported process update type:"
6489 "(type: %d)\n", type);
6490 }
e8319a19 6491}
88758e9d 6492
8273f55e
DW
6493static void imsm_prepare_update(struct supertype *st,
6494 struct metadata_update *update)
6495{
949c47a0 6496 /**
4d7b1503
DW
6497 * Allocate space to hold new disk entries, raid-device entries or a new
6498 * mpb if necessary. The manager synchronously waits for updates to
6499 * complete in the monitor, so new mpb buffers allocated here can be
6500 * integrated by the monitor thread without worrying about live pointers
6501 * in the manager thread.
8273f55e 6502 */
949c47a0 6503 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
6504 struct intel_super *super = st->sb;
6505 struct imsm_super *mpb = super->anchor;
6506 size_t buf_len;
6507 size_t len = 0;
949c47a0
DW
6508
6509 switch (type) {
abedf5fc
KW
6510 case update_takeover: {
6511 struct imsm_update_takeover *u = (void *)update->buf;
6512 if (u->direction == R0_TO_R10) {
6513 void **tail = (void **)&update->space_list;
6514 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
6515 struct imsm_map *map = get_imsm_map(dev, 0);
6516 int num_members = map->num_members;
6517 void *space;
6518 int size, i;
6519 int err = 0;
6520 /* allocate memory for added disks */
6521 for (i = 0; i < num_members; i++) {
6522 size = sizeof(struct dl);
6523 space = malloc(size);
6524 if (!space) {
6525 err++;
6526 break;
6527 }
6528 *tail = space;
6529 tail = space;
6530 *tail = NULL;
6531 }
6532 /* allocate memory for new device */
6533 size = sizeof_imsm_dev(super->devlist->dev, 0) +
6534 (num_members * sizeof(__u32));
6535 space = malloc(size);
6536 if (!space)
6537 err++;
6538 else {
6539 *tail = space;
6540 tail = space;
6541 *tail = NULL;
6542 }
6543 if (!err) {
6544 len = disks_to_mpb_size(num_members * 2);
6545 } else {
6546 /* if allocation didn't success, free buffer */
6547 while (update->space_list) {
6548 void **sp = update->space_list;
6549 update->space_list = *sp;
6550 free(sp);
6551 }
6552 }
6553 }
6554
6555 break;
6556 }
78b10e66 6557 case update_reshape_container_disks: {
d195167d
AK
6558 /* Every raid device in the container is about to
6559 * gain some more devices, and we will enter a
6560 * reconfiguration.
6561 * So each 'imsm_map' will be bigger, and the imsm_vol
6562 * will now hold 2 of them.
6563 * Thus we need new 'struct imsm_dev' allocations sized
6564 * as sizeof_imsm_dev but with more devices in both maps.
6565 */
6566 struct imsm_update_reshape *u = (void *)update->buf;
6567 struct intel_dev *dl;
6568 void **space_tail = (void**)&update->space_list;
6569
6570 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
6571
6572 for (dl = super->devlist; dl; dl = dl->next) {
6573 int size = sizeof_imsm_dev(dl->dev, 1);
6574 void *s;
d677e0b8
AK
6575 if (u->new_raid_disks > u->old_raid_disks)
6576 size += sizeof(__u32)*2*
6577 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
6578 s = malloc(size);
6579 if (!s)
6580 break;
6581 *space_tail = s;
6582 space_tail = s;
6583 *space_tail = NULL;
6584 }
6585
6586 len = disks_to_mpb_size(u->new_raid_disks);
6587 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
6588 break;
6589 }
949c47a0
DW
6590 case update_create_array: {
6591 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 6592 struct intel_dev *dv;
54c2c1ea
DW
6593 struct imsm_dev *dev = &u->dev;
6594 struct imsm_map *map = get_imsm_map(dev, 0);
6595 struct dl *dl;
6596 struct disk_info *inf;
6597 int i;
6598 int activate = 0;
949c47a0 6599
54c2c1ea
DW
6600 inf = get_disk_info(u);
6601 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
6602 /* allocate a new super->devlist entry */
6603 dv = malloc(sizeof(*dv));
6604 if (dv) {
6605 dv->dev = malloc(len);
6606 if (dv->dev)
6607 update->space = dv;
6608 else {
6609 free(dv);
6610 update->space = NULL;
6611 }
6612 }
949c47a0 6613
54c2c1ea
DW
6614 /* count how many spares will be converted to members */
6615 for (i = 0; i < map->num_members; i++) {
6616 dl = serial_to_dl(inf[i].serial, super);
6617 if (!dl) {
6618 /* hmm maybe it failed?, nothing we can do about
6619 * it here
6620 */
6621 continue;
6622 }
6623 if (count_memberships(dl, super) == 0)
6624 activate++;
6625 }
6626 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
6627 break;
6628 default:
6629 break;
6630 }
6631 }
8273f55e 6632
4d7b1503
DW
6633 /* check if we need a larger metadata buffer */
6634 if (super->next_buf)
6635 buf_len = super->next_len;
6636 else
6637 buf_len = super->len;
6638
6639 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
6640 /* ok we need a larger buf than what is currently allocated
6641 * if this allocation fails process_update will notice that
6642 * ->next_len is set and ->next_buf is NULL
6643 */
6644 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
6645 if (super->next_buf)
6646 free(super->next_buf);
6647
6648 super->next_len = buf_len;
1f45a8ad
DW
6649 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
6650 memset(super->next_buf, 0, buf_len);
6651 else
4d7b1503
DW
6652 super->next_buf = NULL;
6653 }
8273f55e
DW
6654}
6655
ae6aad82 6656/* must be called while manager is quiesced */
f21e18ca 6657static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
6658{
6659 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
6660 struct dl *iter;
6661 struct imsm_dev *dev;
6662 struct imsm_map *map;
24565c9a
DW
6663 int i, j, num_members;
6664 __u32 ord;
ae6aad82 6665
24565c9a
DW
6666 dprintf("%s: deleting device[%d] from imsm_super\n",
6667 __func__, index);
ae6aad82
DW
6668
6669 /* shift all indexes down one */
6670 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 6671 if (iter->index > (int)index)
ae6aad82 6672 iter->index--;
47ee5a45 6673 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 6674 if (iter->index > (int)index)
47ee5a45 6675 iter->index--;
ae6aad82
DW
6676
6677 for (i = 0; i < mpb->num_raid_devs; i++) {
6678 dev = get_imsm_dev(super, i);
6679 map = get_imsm_map(dev, 0);
24565c9a
DW
6680 num_members = map->num_members;
6681 for (j = 0; j < num_members; j++) {
6682 /* update ord entries being careful not to propagate
6683 * ord-flags to the first map
6684 */
98130f40 6685 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 6686
24565c9a
DW
6687 if (ord_to_idx(ord) <= index)
6688 continue;
ae6aad82 6689
24565c9a
DW
6690 map = get_imsm_map(dev, 0);
6691 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
6692 map = get_imsm_map(dev, 1);
6693 if (map)
6694 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
6695 }
6696 }
6697
6698 mpb->num_disks--;
6699 super->updates_pending++;
24565c9a
DW
6700 if (*dlp) {
6701 struct dl *dl = *dlp;
6702
6703 *dlp = (*dlp)->next;
6704 __free_imsm_disk(dl);
6705 }
ae6aad82
DW
6706}
6707
2cda7640
ML
6708static char disk_by_path[] = "/dev/disk/by-path/";
6709
6710static const char *imsm_get_disk_controller_domain(const char *path)
6711{
2cda7640 6712 char disk_path[PATH_MAX];
96234762
LM
6713 char *drv=NULL;
6714 struct stat st;
2cda7640 6715
96234762
LM
6716 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
6717 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
6718 if (stat(disk_path, &st) == 0) {
6719 struct sys_dev* hba;
6720 char *path=NULL;
6721
6722 path = devt_to_devpath(st.st_rdev);
6723 if (path == NULL)
6724 return "unknown";
6725 hba = find_disk_attached_hba(-1, path);
6726 if (hba && hba->type == SYS_DEV_SAS)
6727 drv = "isci";
6728 else if (hba && hba->type == SYS_DEV_SATA)
6729 drv = "ahci";
6730 else
6731 drv = "unknown";
6732 dprintf("path: %s hba: %s attached: %s\n",
6733 path, (hba) ? hba->path : "NULL", drv);
6734 free(path);
6735 if (hba)
6736 free_sys_dev(&hba);
2cda7640 6737 }
96234762 6738 return drv;
2cda7640
ML
6739}
6740
78b10e66
N
6741static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
6742{
6743 char subdev_name[20];
6744 struct mdstat_ent *mdstat;
6745
6746 sprintf(subdev_name, "%d", subdev);
6747 mdstat = mdstat_by_subdev(subdev_name, container);
6748 if (!mdstat)
6749 return -1;
6750
6751 *minor = mdstat->devnum;
6752 free_mdstat(mdstat);
6753 return 0;
6754}
6755
6756static int imsm_reshape_is_allowed_on_container(struct supertype *st,
6757 struct geo_params *geo,
6758 int *old_raid_disks)
6759{
694575e7
KW
6760 /* currently we only support increasing the number of devices
6761 * for a container. This increases the number of device for each
6762 * member array. They must all be RAID0 or RAID5.
6763 */
78b10e66
N
6764 int ret_val = 0;
6765 struct mdinfo *info, *member;
6766 int devices_that_can_grow = 0;
6767
6768 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
6769 "st->devnum = (%i)\n",
6770 st->devnum);
6771
6772 if (geo->size != -1 ||
6773 geo->level != UnSet ||
6774 geo->layout != UnSet ||
6775 geo->chunksize != 0 ||
6776 geo->raid_disks == UnSet) {
6777 dprintf("imsm: Container operation is allowed for "
6778 "raid disks number change only.\n");
6779 return ret_val;
6780 }
6781
6782 info = container_content_imsm(st, NULL);
6783 for (member = info; member; member = member->next) {
6784 int result;
6785 int minor;
6786
6787 dprintf("imsm: checking device_num: %i\n",
6788 member->container_member);
6789
d7d205bd 6790 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
6791 /* we work on container for Online Capacity Expansion
6792 * only so raid_disks has to grow
6793 */
6794 dprintf("imsm: for container operation raid disks "
6795 "increase is required\n");
6796 break;
6797 }
6798
6799 if ((info->array.level != 0) &&
6800 (info->array.level != 5)) {
6801 /* we cannot use this container with other raid level
6802 */
690aae1a 6803 dprintf("imsm: for container operation wrong"
78b10e66
N
6804 " raid level (%i) detected\n",
6805 info->array.level);
6806 break;
6807 } else {
6808 /* check for platform support
6809 * for this raid level configuration
6810 */
6811 struct intel_super *super = st->sb;
6812 if (!is_raid_level_supported(super->orom,
6813 member->array.level,
6814 geo->raid_disks)) {
690aae1a 6815 dprintf("platform does not support raid%d with"
78b10e66
N
6816 " %d disk%s\n",
6817 info->array.level,
6818 geo->raid_disks,
6819 geo->raid_disks > 1 ? "s" : "");
6820 break;
6821 }
6822 }
6823
6824 if (*old_raid_disks &&
6825 info->array.raid_disks != *old_raid_disks)
6826 break;
6827 *old_raid_disks = info->array.raid_disks;
6828
6829 /* All raid5 and raid0 volumes in container
6830 * have to be ready for Online Capacity Expansion
6831 * so they need to be assembled. We have already
6832 * checked that no recovery etc is happening.
6833 */
6834 result = imsm_find_array_minor_by_subdev(member->container_member,
6835 st->container_dev,
6836 &minor);
6837 if (result < 0) {
6838 dprintf("imsm: cannot find array\n");
6839 break;
6840 }
6841 devices_that_can_grow++;
6842 }
6843 sysfs_free(info);
6844 if (!member && devices_that_can_grow)
6845 ret_val = 1;
6846
6847 if (ret_val)
6848 dprintf("\tContainer operation allowed\n");
6849 else
6850 dprintf("\tError: %i\n", ret_val);
6851
6852 return ret_val;
6853}
6854
6855/* Function: get_spares_for_grow
6856 * Description: Allocates memory and creates list of spare devices
6857 * avaliable in container. Checks if spare drive size is acceptable.
6858 * Parameters: Pointer to the supertype structure
6859 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
6860 * NULL if fail
6861 */
6862static struct mdinfo *get_spares_for_grow(struct supertype *st)
6863{
78b10e66 6864 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 6865 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
6866}
6867
6868/******************************************************************************
6869 * function: imsm_create_metadata_update_for_reshape
6870 * Function creates update for whole IMSM container.
6871 *
6872 ******************************************************************************/
6873static int imsm_create_metadata_update_for_reshape(
6874 struct supertype *st,
6875 struct geo_params *geo,
6876 int old_raid_disks,
6877 struct imsm_update_reshape **updatep)
6878{
6879 struct intel_super *super = st->sb;
6880 struct imsm_super *mpb = super->anchor;
6881 int update_memory_size = 0;
6882 struct imsm_update_reshape *u = NULL;
6883 struct mdinfo *spares = NULL;
6884 int i;
6885 int delta_disks = 0;
bbd24d86 6886 struct mdinfo *dev;
78b10e66
N
6887
6888 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
6889 geo->raid_disks);
6890
6891 delta_disks = geo->raid_disks - old_raid_disks;
6892
6893 /* size of all update data without anchor */
6894 update_memory_size = sizeof(struct imsm_update_reshape);
6895
6896 /* now add space for spare disks that we need to add. */
6897 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
6898
6899 u = calloc(1, update_memory_size);
6900 if (u == NULL) {
6901 dprintf("error: "
6902 "cannot get memory for imsm_update_reshape update\n");
6903 return 0;
6904 }
6905 u->type = update_reshape_container_disks;
6906 u->old_raid_disks = old_raid_disks;
6907 u->new_raid_disks = geo->raid_disks;
6908
6909 /* now get spare disks list
6910 */
6911 spares = get_spares_for_grow(st);
6912
6913 if (spares == NULL
6914 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
6915 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
6916 "for %s.\n", geo->dev_name);
78b10e66
N
6917 goto abort;
6918 }
6919
6920 /* we have got spares
6921 * update disk list in imsm_disk list table in anchor
6922 */
6923 dprintf("imsm: %i spares are available.\n\n",
6924 spares->array.spare_disks);
6925
bbd24d86 6926 dev = spares->devs;
78b10e66 6927 for (i = 0; i < delta_disks; i++) {
78b10e66
N
6928 struct dl *dl;
6929
bbd24d86
AK
6930 if (dev == NULL)
6931 break;
78b10e66
N
6932 u->new_disks[i] = makedev(dev->disk.major,
6933 dev->disk.minor);
6934 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
6935 dl->index = mpb->num_disks;
6936 mpb->num_disks++;
bbd24d86 6937 dev = dev->next;
78b10e66 6938 }
78b10e66
N
6939
6940abort:
6941 /* free spares
6942 */
6943 sysfs_free(spares);
6944
d677e0b8 6945 dprintf("imsm: reshape update preparation :");
78b10e66 6946 if (i == delta_disks) {
d677e0b8 6947 dprintf(" OK\n");
78b10e66
N
6948 *updatep = u;
6949 return update_memory_size;
6950 }
6951 free(u);
d677e0b8 6952 dprintf(" Error\n");
78b10e66
N
6953
6954 return 0;
6955}
6956
8dd70bce
AK
6957static void imsm_update_metadata_locally(struct supertype *st,
6958 void *buf, int len)
6959{
6960 struct metadata_update mu;
6961
6962 mu.buf = buf;
6963 mu.len = len;
6964 mu.space = NULL;
6965 mu.space_list = NULL;
6966 mu.next = NULL;
6967 imsm_prepare_update(st, &mu);
6968 imsm_process_update(st, &mu);
6969
6970 while (mu.space_list) {
6971 void **space = mu.space_list;
6972 mu.space_list = *space;
6973 free(space);
6974 }
6975}
78b10e66 6976
471bceb6 6977/***************************************************************************
694575e7 6978* Function: imsm_analyze_change
471bceb6
KW
6979* Description: Function analyze change for single volume
6980* and validate if transition is supported
694575e7
KW
6981* Parameters: Geometry parameters, supertype structure
6982* Returns: Operation type code on success, -1 if fail
471bceb6
KW
6983****************************************************************************/
6984enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
6985 struct geo_params *geo)
694575e7 6986{
471bceb6
KW
6987 struct mdinfo info;
6988 int change = -1;
6989 int check_devs = 0;
c21e737b 6990 int chunk;
471bceb6
KW
6991
6992 getinfo_super_imsm_volume(st, &info, NULL);
6993
6994 if ((geo->level != info.array.level) &&
6995 (geo->level >= 0) &&
6996 (geo->level != UnSet)) {
6997 switch (info.array.level) {
6998 case 0:
6999 if (geo->level == 5) {
b5347799 7000 change = CH_MIGRATION;
471bceb6
KW
7001 check_devs = 1;
7002 }
7003 if (geo->level == 10) {
7004 change = CH_TAKEOVER;
7005 check_devs = 1;
7006 }
dfe77a9e
KW
7007 break;
7008 case 1:
7009 if (geo->level == 0) {
7010 change = CH_TAKEOVER;
7011 check_devs = 1;
7012 }
471bceb6
KW
7013 break;
7014 case 5:
41bf155e 7015 if (geo->level == 0)
b5347799 7016 change = CH_MIGRATION;
471bceb6
KW
7017 break;
7018 case 10:
7019 if (geo->level == 0) {
7020 change = CH_TAKEOVER;
7021 check_devs = 1;
7022 }
7023 break;
7024 }
7025 if (change == -1) {
7026 fprintf(stderr,
7027 Name " Error. Level Migration from %d to %d "
7028 "not supported!\n",
7029 info.array.level, geo->level);
7030 goto analyse_change_exit;
7031 }
7032 } else
7033 geo->level = info.array.level;
7034
7035 if ((geo->layout != info.array.layout)
7036 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 7037 change = CH_MIGRATION;
471bceb6
KW
7038 if ((info.array.layout == 0)
7039 && (info.array.level == 5)
7040 && (geo->layout == 5)) {
7041 /* reshape 5 -> 4 */
7042 } else if ((info.array.layout == 5)
7043 && (info.array.level == 5)
7044 && (geo->layout == 0)) {
7045 /* reshape 4 -> 5 */
7046 geo->layout = 0;
7047 geo->level = 5;
7048 } else {
7049 fprintf(stderr,
7050 Name " Error. Layout Migration from %d to %d "
7051 "not supported!\n",
7052 info.array.layout, geo->layout);
7053 change = -1;
7054 goto analyse_change_exit;
7055 }
7056 } else
7057 geo->layout = info.array.layout;
7058
7059 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
7060 && (geo->chunksize != info.array.chunk_size))
b5347799 7061 change = CH_MIGRATION;
471bceb6
KW
7062 else
7063 geo->chunksize = info.array.chunk_size;
7064
c21e737b 7065 chunk = geo->chunksize / 1024;
471bceb6
KW
7066 if (!validate_geometry_imsm(st,
7067 geo->level,
7068 geo->layout,
7069 geo->raid_disks,
c21e737b 7070 &chunk,
471bceb6
KW
7071 geo->size,
7072 0, 0, 1))
7073 change = -1;
7074
7075 if (check_devs) {
7076 struct intel_super *super = st->sb;
7077 struct imsm_super *mpb = super->anchor;
7078
7079 if (mpb->num_raid_devs > 1) {
7080 fprintf(stderr,
7081 Name " Error. Cannot perform operation on %s"
7082 "- for this operation it MUST be single "
7083 "array in container\n",
7084 geo->dev_name);
7085 change = -1;
7086 }
7087 }
7088
7089analyse_change_exit:
7090
7091 return change;
694575e7
KW
7092}
7093
bb025c2f
KW
7094int imsm_takeover(struct supertype *st, struct geo_params *geo)
7095{
7096 struct intel_super *super = st->sb;
7097 struct imsm_update_takeover *u;
7098
7099 u = malloc(sizeof(struct imsm_update_takeover));
7100 if (u == NULL)
7101 return 1;
7102
7103 u->type = update_takeover;
7104 u->subarray = super->current_vol;
7105
7106 /* 10->0 transition */
7107 if (geo->level == 0)
7108 u->direction = R10_TO_R0;
7109
0529c688
KW
7110 /* 0->10 transition */
7111 if (geo->level == 10)
7112 u->direction = R0_TO_R10;
7113
bb025c2f
KW
7114 /* update metadata locally */
7115 imsm_update_metadata_locally(st, u,
7116 sizeof(struct imsm_update_takeover));
7117 /* and possibly remotely */
7118 if (st->update_tail)
7119 append_metadata_update(st, u,
7120 sizeof(struct imsm_update_takeover));
7121 else
7122 free(u);
7123
7124 return 0;
7125}
7126
78b10e66
N
7127static int imsm_reshape_super(struct supertype *st, long long size, int level,
7128 int layout, int chunksize, int raid_disks,
41784c88
AK
7129 int delta_disks, char *backup, char *dev,
7130 int verbose)
78b10e66 7131{
78b10e66
N
7132 int ret_val = 1;
7133 struct geo_params geo;
7134
7135 dprintf("imsm: reshape_super called.\n");
7136
71204a50 7137 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
7138
7139 geo.dev_name = dev;
694575e7 7140 geo.dev_id = st->devnum;
78b10e66
N
7141 geo.size = size;
7142 geo.level = level;
7143 geo.layout = layout;
7144 geo.chunksize = chunksize;
7145 geo.raid_disks = raid_disks;
41784c88
AK
7146 if (delta_disks != UnSet)
7147 geo.raid_disks += delta_disks;
78b10e66
N
7148
7149 dprintf("\tfor level : %i\n", geo.level);
7150 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
7151
7152 if (experimental() == 0)
7153 return ret_val;
7154
78b10e66 7155 if (st->container_dev == st->devnum) {
694575e7
KW
7156 /* On container level we can only increase number of devices. */
7157 dprintf("imsm: info: Container operation\n");
78b10e66
N
7158 int old_raid_disks = 0;
7159 if (imsm_reshape_is_allowed_on_container(
7160 st, &geo, &old_raid_disks)) {
7161 struct imsm_update_reshape *u = NULL;
7162 int len;
7163
7164 len = imsm_create_metadata_update_for_reshape(
7165 st, &geo, old_raid_disks, &u);
7166
ed08d51c
AK
7167 if (len <= 0) {
7168 dprintf("imsm: Cannot prepare update\n");
7169 goto exit_imsm_reshape_super;
7170 }
7171
8dd70bce
AK
7172 ret_val = 0;
7173 /* update metadata locally */
7174 imsm_update_metadata_locally(st, u, len);
7175 /* and possibly remotely */
7176 if (st->update_tail)
7177 append_metadata_update(st, u, len);
7178 else
ed08d51c 7179 free(u);
8dd70bce 7180
694575e7 7181 } else {
e7ff7e40
AK
7182 fprintf(stderr, Name ": (imsm) Operation "
7183 "is not allowed on this container\n");
694575e7
KW
7184 }
7185 } else {
7186 /* On volume level we support following operations
471bceb6
KW
7187 * - takeover: raid10 -> raid0; raid0 -> raid10
7188 * - chunk size migration
7189 * - migration: raid5 -> raid0; raid0 -> raid5
7190 */
7191 struct intel_super *super = st->sb;
7192 struct intel_dev *dev = super->devlist;
7193 int change, devnum;
694575e7 7194 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
7195 /* find requested device */
7196 while (dev) {
7197 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
7198 if (devnum == geo.dev_id)
7199 break;
7200 dev = dev->next;
7201 }
7202 if (dev == NULL) {
7203 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
7204 geo.dev_name, geo.dev_id);
7205 goto exit_imsm_reshape_super;
7206 }
7207 super->current_vol = dev->index;
694575e7
KW
7208 change = imsm_analyze_change(st, &geo);
7209 switch (change) {
471bceb6 7210 case CH_TAKEOVER:
bb025c2f 7211 ret_val = imsm_takeover(st, &geo);
694575e7 7212 break;
b5347799 7213 case CH_MIGRATION:
471bceb6 7214 ret_val = 0;
694575e7 7215 break;
471bceb6
KW
7216 default:
7217 ret_val = 1;
694575e7 7218 }
694575e7 7219 }
78b10e66 7220
ed08d51c 7221exit_imsm_reshape_super:
78b10e66
N
7222 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
7223 return ret_val;
7224}
2cda7640 7225
999b4972
N
7226static int imsm_manage_reshape(
7227 int afd, struct mdinfo *sra, struct reshape *reshape,
7228 struct supertype *st, unsigned long stripes,
7229 int *fds, unsigned long long *offsets,
7230 int dests, int *destfd, unsigned long long *destoffsets)
7231{
7232 /* Just use child_monitor for now */
7233 return child_monitor(
7234 afd, sra, reshape, st, stripes,
7235 fds, offsets, dests, destfd, destoffsets);
7236}
71204a50 7237#endif /* MDASSEMBLE */
999b4972 7238
cdddbdbc
DW
7239struct superswitch super_imsm = {
7240#ifndef MDASSEMBLE
7241 .examine_super = examine_super_imsm,
7242 .brief_examine_super = brief_examine_super_imsm,
4737ae25 7243 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 7244 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
7245 .detail_super = detail_super_imsm,
7246 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 7247 .write_init_super = write_init_super_imsm,
0e600426
N
7248 .validate_geometry = validate_geometry_imsm,
7249 .add_to_super = add_to_super_imsm,
1a64be56 7250 .remove_from_super = remove_from_super_imsm,
d665cc31 7251 .detail_platform = detail_platform_imsm,
33414a01 7252 .kill_subarray = kill_subarray_imsm,
aa534678 7253 .update_subarray = update_subarray_imsm,
2b959fbf 7254 .load_container = load_container_imsm,
71204a50
N
7255 .default_geometry = default_geometry_imsm,
7256 .get_disk_controller_domain = imsm_get_disk_controller_domain,
7257 .reshape_super = imsm_reshape_super,
7258 .manage_reshape = imsm_manage_reshape,
cdddbdbc
DW
7259#endif
7260 .match_home = match_home_imsm,
7261 .uuid_from_super= uuid_from_super_imsm,
7262 .getinfo_super = getinfo_super_imsm,
5c4cd5da 7263 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
7264 .update_super = update_super_imsm,
7265
7266 .avail_size = avail_size_imsm,
80e7f8c3 7267 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
7268
7269 .compare_super = compare_super_imsm,
7270
7271 .load_super = load_super_imsm,
bf5a934a 7272 .init_super = init_super_imsm,
e683ca88 7273 .store_super = store_super_imsm,
cdddbdbc
DW
7274 .free_super = free_super_imsm,
7275 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 7276 .container_content = container_content_imsm,
cdddbdbc 7277
cdddbdbc 7278 .external = 1,
4cce4069 7279 .name = "imsm",
845dea95 7280
0e600426 7281#ifndef MDASSEMBLE
845dea95
NB
7282/* for mdmon */
7283 .open_new = imsm_open_new,
ed9d66aa 7284 .set_array_state= imsm_set_array_state,
845dea95
NB
7285 .set_disk = imsm_set_disk,
7286 .sync_metadata = imsm_sync_metadata,
88758e9d 7287 .activate_spare = imsm_activate_spare,
e8319a19 7288 .process_update = imsm_process_update,
8273f55e 7289 .prepare_update = imsm_prepare_update,
0e600426 7290#endif /* MDASSEMBLE */
cdddbdbc 7291};