]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
dwarf2_physname patchset:
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4c38e0a4
JB
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
1903f0e6 23#include "opcode/i386.h"
acd5c798
MK
24#include "arch-utils.h"
25#include "command.h"
26#include "dummy-frame.h"
6405b0a6 27#include "dwarf2-frame.h"
acd5c798 28#include "doublest.h"
c906108c 29#include "frame.h"
acd5c798
MK
30#include "frame-base.h"
31#include "frame-unwind.h"
c906108c 32#include "inferior.h"
acd5c798 33#include "gdbcmd.h"
c906108c 34#include "gdbcore.h"
e6bb342a 35#include "gdbtypes.h"
dfe01d39 36#include "objfiles.h"
acd5c798
MK
37#include "osabi.h"
38#include "regcache.h"
39#include "reggroups.h"
473f17b0 40#include "regset.h"
c0d1d883 41#include "symfile.h"
c906108c 42#include "symtab.h"
acd5c798 43#include "target.h"
fd0407d6 44#include "value.h"
a89aa300 45#include "dis-asm.h"
7a697b8d 46#include "disasm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
7ad10968
HZ
54#include "record.h"
55#include <stdint.h>
56
90884b2b
L
57#include "features/i386/i386.c"
58
c4fc7f1b 59/* Register names. */
c40e1eab 60
90884b2b 61static const char *i386_register_names[] =
fc633446
MK
62{
63 "eax", "ecx", "edx", "ebx",
64 "esp", "ebp", "esi", "edi",
65 "eip", "eflags", "cs", "ss",
66 "ds", "es", "fs", "gs",
67 "st0", "st1", "st2", "st3",
68 "st4", "st5", "st6", "st7",
69 "fctrl", "fstat", "ftag", "fiseg",
70 "fioff", "foseg", "fooff", "fop",
71 "xmm0", "xmm1", "xmm2", "xmm3",
72 "xmm4", "xmm5", "xmm6", "xmm7",
73 "mxcsr"
74};
75
c4fc7f1b 76/* Register names for MMX pseudo-registers. */
28fc6740 77
90884b2b 78static const char *i386_mmx_names[] =
28fc6740
AC
79{
80 "mm0", "mm1", "mm2", "mm3",
81 "mm4", "mm5", "mm6", "mm7"
82};
c40e1eab 83
1ba53b71
L
84/* Register names for byte pseudo-registers. */
85
86static const char *i386_byte_names[] =
87{
88 "al", "cl", "dl", "bl",
89 "ah", "ch", "dh", "bh"
90};
91
92/* Register names for word pseudo-registers. */
93
94static const char *i386_word_names[] =
95{
96 "ax", "cx", "dx", "bx",
97 "sp", "bp", "si", "di"
98};
99
100/* MMX register? */
c40e1eab 101
28fc6740 102static int
5716833c 103i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 104{
1ba53b71
L
105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
106 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
107
108 if (mm0_regnum < 0)
109 return 0;
110
1ba53b71
L
111 regnum -= mm0_regnum;
112 return regnum >= 0 && regnum < tdep->num_mmx_regs;
113}
114
115/* Byte register? */
116
117int
118i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
119{
120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
121
122 regnum -= tdep->al_regnum;
123 return regnum >= 0 && regnum < tdep->num_byte_regs;
124}
125
126/* Word register? */
127
128int
129i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
130{
131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
132
133 regnum -= tdep->ax_regnum;
134 return regnum >= 0 && regnum < tdep->num_word_regs;
135}
136
137/* Dword register? */
138
139int
140i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
141{
142 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
143 int eax_regnum = tdep->eax_regnum;
144
145 if (eax_regnum < 0)
146 return 0;
147
148 regnum -= eax_regnum;
149 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
150}
151
5716833c 152/* SSE register? */
23a34459 153
5716833c
MK
154static int
155i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 156{
5716833c
MK
157 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
158
20a6ec49 159 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
160 return 0;
161
20a6ec49
MD
162 return (I387_XMM0_REGNUM (tdep) <= regnum
163 && regnum < I387_MXCSR_REGNUM (tdep));
23a34459
AC
164}
165
5716833c
MK
166static int
167i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 168{
5716833c
MK
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170
20a6ec49 171 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
172 return 0;
173
20a6ec49 174 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
175}
176
5716833c 177/* FP register? */
23a34459
AC
178
179int
20a6ec49 180i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 181{
20a6ec49
MD
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
183
184 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
185 return 0;
186
20a6ec49
MD
187 return (I387_ST0_REGNUM (tdep) <= regnum
188 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
189}
190
191int
20a6ec49 192i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 193{
20a6ec49
MD
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195
196 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
197 return 0;
198
20a6ec49
MD
199 return (I387_FCTRL_REGNUM (tdep) <= regnum
200 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
201}
202
30b0e2d8 203/* Return the name of register REGNUM. */
fc633446 204
1ba53b71 205const char *
90884b2b 206i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 207{
1ba53b71
L
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 if (i386_mmx_regnum_p (gdbarch, regnum))
210 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
211 else if (i386_byte_regnum_p (gdbarch, regnum))
212 return i386_byte_names[regnum - tdep->al_regnum];
213 else if (i386_word_regnum_p (gdbarch, regnum))
214 return i386_word_names[regnum - tdep->ax_regnum];
215
216 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
217}
218
c4fc7f1b 219/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
220 number used by GDB. */
221
8201327c 222static int
d3f73121 223i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 224{
20a6ec49
MD
225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
226
c4fc7f1b
MK
227 /* This implements what GCC calls the "default" register map
228 (dbx_register_map[]). */
229
85540d8c
MK
230 if (reg >= 0 && reg <= 7)
231 {
9872ad24
JB
232 /* General-purpose registers. The debug info calls %ebp
233 register 4, and %esp register 5. */
234 if (reg == 4)
235 return 5;
236 else if (reg == 5)
237 return 4;
238 else return reg;
85540d8c
MK
239 }
240 else if (reg >= 12 && reg <= 19)
241 {
242 /* Floating-point registers. */
20a6ec49 243 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
244 }
245 else if (reg >= 21 && reg <= 28)
246 {
247 /* SSE registers. */
20a6ec49 248 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
249 }
250 else if (reg >= 29 && reg <= 36)
251 {
252 /* MMX registers. */
20a6ec49 253 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
254 }
255
256 /* This will hopefully provoke a warning. */
d3f73121 257 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
258}
259
c4fc7f1b
MK
260/* Convert SVR4 register number REG to the appropriate register number
261 used by GDB. */
85540d8c 262
8201327c 263static int
d3f73121 264i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 265{
20a6ec49
MD
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267
c4fc7f1b
MK
268 /* This implements the GCC register map that tries to be compatible
269 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
270
271 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
272 numbers the floating point registers differently. */
273 if (reg >= 0 && reg <= 9)
274 {
acd5c798 275 /* General-purpose registers. */
85540d8c
MK
276 return reg;
277 }
278 else if (reg >= 11 && reg <= 18)
279 {
280 /* Floating-point registers. */
20a6ec49 281 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 282 }
c6f4c129 283 else if (reg >= 21 && reg <= 36)
85540d8c 284 {
c4fc7f1b 285 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 286 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
287 }
288
c6f4c129
JB
289 switch (reg)
290 {
20a6ec49
MD
291 case 37: return I387_FCTRL_REGNUM (tdep);
292 case 38: return I387_FSTAT_REGNUM (tdep);
293 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
294 case 40: return I386_ES_REGNUM;
295 case 41: return I386_CS_REGNUM;
296 case 42: return I386_SS_REGNUM;
297 case 43: return I386_DS_REGNUM;
298 case 44: return I386_FS_REGNUM;
299 case 45: return I386_GS_REGNUM;
300 }
301
85540d8c 302 /* This will hopefully provoke a warning. */
d3f73121 303 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 304}
5716833c 305
fc338970 306\f
917317f4 307
fc338970
MK
308/* This is the variable that is set with "set disassembly-flavor", and
309 its legitimate values. */
53904c9e
AC
310static const char att_flavor[] = "att";
311static const char intel_flavor[] = "intel";
312static const char *valid_flavors[] =
c5aa993b 313{
c906108c
SS
314 att_flavor,
315 intel_flavor,
316 NULL
317};
53904c9e 318static const char *disassembly_flavor = att_flavor;
acd5c798 319\f
c906108c 320
acd5c798
MK
321/* Use the program counter to determine the contents and size of a
322 breakpoint instruction. Return a pointer to a string of bytes that
323 encode a breakpoint instruction, store the length of the string in
324 *LEN and optionally adjust *PC to point to the correct memory
325 location for inserting the breakpoint.
c906108c 326
acd5c798
MK
327 On the i386 we have a single breakpoint that fits in a single byte
328 and can be inserted anywhere.
c906108c 329
acd5c798 330 This function is 64-bit safe. */
63c0089f
MK
331
332static const gdb_byte *
67d57894 333i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 334{
63c0089f
MK
335 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
336
acd5c798
MK
337 *len = sizeof (break_insn);
338 return break_insn;
c906108c 339}
237fc4c9
PA
340\f
341/* Displaced instruction handling. */
342
1903f0e6
DE
343/* Skip the legacy instruction prefixes in INSN.
344 Not all prefixes are valid for any particular insn
345 but we needn't care, the insn will fault if it's invalid.
346 The result is a pointer to the first opcode byte,
347 or NULL if we run off the end of the buffer. */
348
349static gdb_byte *
350i386_skip_prefixes (gdb_byte *insn, size_t max_len)
351{
352 gdb_byte *end = insn + max_len;
353
354 while (insn < end)
355 {
356 switch (*insn)
357 {
358 case DATA_PREFIX_OPCODE:
359 case ADDR_PREFIX_OPCODE:
360 case CS_PREFIX_OPCODE:
361 case DS_PREFIX_OPCODE:
362 case ES_PREFIX_OPCODE:
363 case FS_PREFIX_OPCODE:
364 case GS_PREFIX_OPCODE:
365 case SS_PREFIX_OPCODE:
366 case LOCK_PREFIX_OPCODE:
367 case REPE_PREFIX_OPCODE:
368 case REPNE_PREFIX_OPCODE:
369 ++insn;
370 continue;
371 default:
372 return insn;
373 }
374 }
375
376 return NULL;
377}
237fc4c9
PA
378
379static int
1903f0e6 380i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9
PA
381{
382 /* jmp far (absolute address in operand) */
383 if (insn[0] == 0xea)
384 return 1;
385
386 if (insn[0] == 0xff)
387 {
388 /* jump near, absolute indirect (/4) */
389 if ((insn[1] & 0x38) == 0x20)
390 return 1;
391
392 /* jump far, absolute indirect (/5) */
393 if ((insn[1] & 0x38) == 0x28)
394 return 1;
395 }
396
397 return 0;
398}
399
400static int
1903f0e6 401i386_absolute_call_p (const gdb_byte *insn)
237fc4c9
PA
402{
403 /* call far, absolute */
404 if (insn[0] == 0x9a)
405 return 1;
406
407 if (insn[0] == 0xff)
408 {
409 /* Call near, absolute indirect (/2) */
410 if ((insn[1] & 0x38) == 0x10)
411 return 1;
412
413 /* Call far, absolute indirect (/3) */
414 if ((insn[1] & 0x38) == 0x18)
415 return 1;
416 }
417
418 return 0;
419}
420
421static int
1903f0e6 422i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
423{
424 switch (insn[0])
425 {
426 case 0xc2: /* ret near, pop N bytes */
427 case 0xc3: /* ret near */
428 case 0xca: /* ret far, pop N bytes */
429 case 0xcb: /* ret far */
430 case 0xcf: /* iret */
431 return 1;
432
433 default:
434 return 0;
435 }
436}
437
438static int
1903f0e6 439i386_call_p (const gdb_byte *insn)
237fc4c9
PA
440{
441 if (i386_absolute_call_p (insn))
442 return 1;
443
444 /* call near, relative */
445 if (insn[0] == 0xe8)
446 return 1;
447
448 return 0;
449}
450
237fc4c9
PA
451/* Return non-zero if INSN is a system call, and set *LENGTHP to its
452 length in bytes. Otherwise, return zero. */
1903f0e6 453
237fc4c9 454static int
1903f0e6 455i386_syscall_p (const gdb_byte *insn, ULONGEST *lengthp)
237fc4c9
PA
456{
457 if (insn[0] == 0xcd)
458 {
459 *lengthp = 2;
460 return 1;
461 }
462
463 return 0;
464}
465
466/* Fix up the state of registers and memory after having single-stepped
467 a displaced instruction. */
1903f0e6 468
237fc4c9
PA
469void
470i386_displaced_step_fixup (struct gdbarch *gdbarch,
471 struct displaced_step_closure *closure,
472 CORE_ADDR from, CORE_ADDR to,
473 struct regcache *regs)
474{
e17a4113
UW
475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
476
237fc4c9
PA
477 /* The offset we applied to the instruction's address.
478 This could well be negative (when viewed as a signed 32-bit
479 value), but ULONGEST won't reflect that, so take care when
480 applying it. */
481 ULONGEST insn_offset = to - from;
482
483 /* Since we use simple_displaced_step_copy_insn, our closure is a
484 copy of the instruction. */
485 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
486 /* The start of the insn, needed in case we see some prefixes. */
487 gdb_byte *insn_start = insn;
237fc4c9
PA
488
489 if (debug_displaced)
490 fprintf_unfiltered (gdb_stdlog,
5af949e3 491 "displaced: fixup (%s, %s), "
237fc4c9 492 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
493 paddress (gdbarch, from), paddress (gdbarch, to),
494 insn[0], insn[1]);
237fc4c9
PA
495
496 /* The list of issues to contend with here is taken from
497 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
498 Yay for Free Software! */
499
500 /* Relocate the %eip, if necessary. */
501
1903f0e6
DE
502 /* The instruction recognizers we use assume any leading prefixes
503 have been skipped. */
504 {
505 /* This is the size of the buffer in closure. */
506 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
507 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
508 /* If there are too many prefixes, just ignore the insn.
509 It will fault when run. */
510 if (opcode != NULL)
511 insn = opcode;
512 }
513
237fc4c9
PA
514 /* Except in the case of absolute or indirect jump or call
515 instructions, or a return instruction, the new eip is relative to
516 the displaced instruction; make it relative. Well, signal
517 handler returns don't need relocation either, but we use the
518 value of %eip to recognize those; see below. */
519 if (! i386_absolute_jmp_p (insn)
520 && ! i386_absolute_call_p (insn)
521 && ! i386_ret_p (insn))
522 {
523 ULONGEST orig_eip;
524 ULONGEST insn_len;
525
526 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
527
528 /* A signal trampoline system call changes the %eip, resuming
529 execution of the main program after the signal handler has
530 returned. That makes them like 'return' instructions; we
531 shouldn't relocate %eip.
532
533 But most system calls don't, and we do need to relocate %eip.
534
535 Our heuristic for distinguishing these cases: if stepping
536 over the system call instruction left control directly after
537 the instruction, the we relocate --- control almost certainly
538 doesn't belong in the displaced copy. Otherwise, we assume
539 the instruction has put control where it belongs, and leave
540 it unrelocated. Goodness help us if there are PC-relative
541 system calls. */
542 if (i386_syscall_p (insn, &insn_len)
1903f0e6 543 && orig_eip != to + (insn - insn_start) + insn_len)
237fc4c9
PA
544 {
545 if (debug_displaced)
546 fprintf_unfiltered (gdb_stdlog,
547 "displaced: syscall changed %%eip; "
548 "not relocating\n");
549 }
550 else
551 {
552 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
553
1903f0e6
DE
554 /* If we just stepped over a breakpoint insn, we don't backup
555 the pc on purpose; this is to match behaviour without
556 stepping. */
237fc4c9
PA
557
558 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
559
560 if (debug_displaced)
561 fprintf_unfiltered (gdb_stdlog,
562 "displaced: "
5af949e3
UW
563 "relocated %%eip from %s to %s\n",
564 paddress (gdbarch, orig_eip),
565 paddress (gdbarch, eip));
237fc4c9
PA
566 }
567 }
568
569 /* If the instruction was PUSHFL, then the TF bit will be set in the
570 pushed value, and should be cleared. We'll leave this for later,
571 since GDB already messes up the TF flag when stepping over a
572 pushfl. */
573
574 /* If the instruction was a call, the return address now atop the
575 stack is the address following the copied instruction. We need
576 to make it the address following the original instruction. */
577 if (i386_call_p (insn))
578 {
579 ULONGEST esp;
580 ULONGEST retaddr;
581 const ULONGEST retaddr_len = 4;
582
583 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 584 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 585 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 586 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
587
588 if (debug_displaced)
589 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
590 "displaced: relocated return addr at %s to %s\n",
591 paddress (gdbarch, esp),
592 paddress (gdbarch, retaddr));
237fc4c9
PA
593 }
594}
fc338970 595\f
acd5c798
MK
596#ifdef I386_REGNO_TO_SYMMETRY
597#error "The Sequent Symmetry is no longer supported."
598#endif
c906108c 599
acd5c798
MK
600/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
601 and %esp "belong" to the calling function. Therefore these
602 registers should be saved if they're going to be modified. */
c906108c 603
acd5c798
MK
604/* The maximum number of saved registers. This should include all
605 registers mentioned above, and %eip. */
a3386186 606#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
607
608struct i386_frame_cache
c906108c 609{
acd5c798
MK
610 /* Base address. */
611 CORE_ADDR base;
772562f8 612 LONGEST sp_offset;
acd5c798
MK
613 CORE_ADDR pc;
614
fd13a04a
AC
615 /* Saved registers. */
616 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 617 CORE_ADDR saved_sp;
e0c62198 618 int saved_sp_reg;
acd5c798
MK
619 int pc_in_eax;
620
621 /* Stack space reserved for local variables. */
622 long locals;
623};
624
625/* Allocate and initialize a frame cache. */
626
627static struct i386_frame_cache *
fd13a04a 628i386_alloc_frame_cache (void)
acd5c798
MK
629{
630 struct i386_frame_cache *cache;
631 int i;
632
633 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
634
635 /* Base address. */
636 cache->base = 0;
637 cache->sp_offset = -4;
638 cache->pc = 0;
639
fd13a04a
AC
640 /* Saved registers. We initialize these to -1 since zero is a valid
641 offset (that's where %ebp is supposed to be stored). */
642 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
643 cache->saved_regs[i] = -1;
acd5c798 644 cache->saved_sp = 0;
e0c62198 645 cache->saved_sp_reg = -1;
acd5c798
MK
646 cache->pc_in_eax = 0;
647
648 /* Frameless until proven otherwise. */
649 cache->locals = -1;
650
651 return cache;
652}
c906108c 653
acd5c798
MK
654/* If the instruction at PC is a jump, return the address of its
655 target. Otherwise, return PC. */
c906108c 656
acd5c798 657static CORE_ADDR
e17a4113 658i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 659{
e17a4113 660 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 661 gdb_byte op;
acd5c798
MK
662 long delta = 0;
663 int data16 = 0;
c906108c 664
8defab1a 665 target_read_memory (pc, &op, 1);
acd5c798 666 if (op == 0x66)
c906108c 667 {
c906108c 668 data16 = 1;
e17a4113 669 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
670 }
671
acd5c798 672 switch (op)
c906108c
SS
673 {
674 case 0xe9:
fc338970 675 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
676 if (data16)
677 {
e17a4113 678 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 679
fc338970
MK
680 /* Include the size of the jmp instruction (including the
681 0x66 prefix). */
acd5c798 682 delta += 4;
c906108c
SS
683 }
684 else
685 {
e17a4113 686 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 687
acd5c798
MK
688 /* Include the size of the jmp instruction. */
689 delta += 5;
c906108c
SS
690 }
691 break;
692 case 0xeb:
fc338970 693 /* Relative jump, disp8 (ignore data16). */
e17a4113 694 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 695
acd5c798 696 delta += data16 + 2;
c906108c
SS
697 break;
698 }
c906108c 699
acd5c798
MK
700 return pc + delta;
701}
fc338970 702
acd5c798
MK
703/* Check whether PC points at a prologue for a function returning a
704 structure or union. If so, it updates CACHE and returns the
705 address of the first instruction after the code sequence that
706 removes the "hidden" argument from the stack or CURRENT_PC,
707 whichever is smaller. Otherwise, return PC. */
c906108c 708
acd5c798
MK
709static CORE_ADDR
710i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
711 struct i386_frame_cache *cache)
c906108c 712{
acd5c798
MK
713 /* Functions that return a structure or union start with:
714
715 popl %eax 0x58
716 xchgl %eax, (%esp) 0x87 0x04 0x24
717 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
718
719 (the System V compiler puts out the second `xchg' instruction,
720 and the assembler doesn't try to optimize it, so the 'sib' form
721 gets generated). This sequence is used to get the address of the
722 return buffer for a function that returns a structure. */
63c0089f
MK
723 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
724 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
725 gdb_byte buf[4];
726 gdb_byte op;
c906108c 727
acd5c798
MK
728 if (current_pc <= pc)
729 return pc;
730
8defab1a 731 target_read_memory (pc, &op, 1);
c906108c 732
acd5c798
MK
733 if (op != 0x58) /* popl %eax */
734 return pc;
c906108c 735
8defab1a 736 target_read_memory (pc + 1, buf, 4);
acd5c798
MK
737 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
738 return pc;
c906108c 739
acd5c798 740 if (current_pc == pc)
c906108c 741 {
acd5c798
MK
742 cache->sp_offset += 4;
743 return current_pc;
c906108c
SS
744 }
745
acd5c798 746 if (current_pc == pc + 1)
c906108c 747 {
acd5c798
MK
748 cache->pc_in_eax = 1;
749 return current_pc;
750 }
751
752 if (buf[1] == proto1[1])
753 return pc + 4;
754 else
755 return pc + 5;
756}
757
758static CORE_ADDR
759i386_skip_probe (CORE_ADDR pc)
760{
761 /* A function may start with
fc338970 762
acd5c798
MK
763 pushl constant
764 call _probe
765 addl $4, %esp
fc338970 766
acd5c798
MK
767 followed by
768
769 pushl %ebp
fc338970 770
acd5c798 771 etc. */
63c0089f
MK
772 gdb_byte buf[8];
773 gdb_byte op;
fc338970 774
8defab1a 775 target_read_memory (pc, &op, 1);
acd5c798
MK
776
777 if (op == 0x68 || op == 0x6a)
778 {
779 int delta;
c906108c 780
acd5c798
MK
781 /* Skip past the `pushl' instruction; it has either a one-byte or a
782 four-byte operand, depending on the opcode. */
c906108c 783 if (op == 0x68)
acd5c798 784 delta = 5;
c906108c 785 else
acd5c798 786 delta = 2;
c906108c 787
acd5c798
MK
788 /* Read the following 8 bytes, which should be `call _probe' (6
789 bytes) followed by `addl $4,%esp' (2 bytes). */
790 read_memory (pc + delta, buf, sizeof (buf));
c906108c 791 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 792 pc += delta + sizeof (buf);
c906108c
SS
793 }
794
acd5c798
MK
795 return pc;
796}
797
92dd43fa
MK
798/* GCC 4.1 and later, can put code in the prologue to realign the
799 stack pointer. Check whether PC points to such code, and update
800 CACHE accordingly. Return the first instruction after the code
801 sequence or CURRENT_PC, whichever is smaller. If we don't
802 recognize the code, return PC. */
803
804static CORE_ADDR
805i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
806 struct i386_frame_cache *cache)
807{
e0c62198
L
808 /* There are 2 code sequences to re-align stack before the frame
809 gets set up:
810
811 1. Use a caller-saved saved register:
812
813 leal 4(%esp), %reg
814 andl $-XXX, %esp
815 pushl -4(%reg)
816
817 2. Use a callee-saved saved register:
818
819 pushl %reg
820 leal 8(%esp), %reg
821 andl $-XXX, %esp
822 pushl -4(%reg)
823
824 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
825
826 0x83 0xe4 0xf0 andl $-16, %esp
827 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
828 */
829
830 gdb_byte buf[14];
831 int reg;
832 int offset, offset_and;
833 static int regnums[8] = {
834 I386_EAX_REGNUM, /* %eax */
835 I386_ECX_REGNUM, /* %ecx */
836 I386_EDX_REGNUM, /* %edx */
837 I386_EBX_REGNUM, /* %ebx */
838 I386_ESP_REGNUM, /* %esp */
839 I386_EBP_REGNUM, /* %ebp */
840 I386_ESI_REGNUM, /* %esi */
841 I386_EDI_REGNUM /* %edi */
92dd43fa 842 };
92dd43fa 843
e0c62198
L
844 if (target_read_memory (pc, buf, sizeof buf))
845 return pc;
846
847 /* Check caller-saved saved register. The first instruction has
848 to be "leal 4(%esp), %reg". */
849 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
850 {
851 /* MOD must be binary 10 and R/M must be binary 100. */
852 if ((buf[1] & 0xc7) != 0x44)
853 return pc;
854
855 /* REG has register number. */
856 reg = (buf[1] >> 3) & 7;
857 offset = 4;
858 }
859 else
860 {
861 /* Check callee-saved saved register. The first instruction
862 has to be "pushl %reg". */
863 if ((buf[0] & 0xf8) != 0x50)
864 return pc;
865
866 /* Get register. */
867 reg = buf[0] & 0x7;
868
869 /* The next instruction has to be "leal 8(%esp), %reg". */
870 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
871 return pc;
872
873 /* MOD must be binary 10 and R/M must be binary 100. */
874 if ((buf[2] & 0xc7) != 0x44)
875 return pc;
876
877 /* REG has register number. Registers in pushl and leal have to
878 be the same. */
879 if (reg != ((buf[2] >> 3) & 7))
880 return pc;
881
882 offset = 5;
883 }
884
885 /* Rigister can't be %esp nor %ebp. */
886 if (reg == 4 || reg == 5)
887 return pc;
888
889 /* The next instruction has to be "andl $-XXX, %esp". */
890 if (buf[offset + 1] != 0xe4
891 || (buf[offset] != 0x81 && buf[offset] != 0x83))
892 return pc;
893
894 offset_and = offset;
895 offset += buf[offset] == 0x81 ? 6 : 3;
896
897 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
898 0xfc. REG must be binary 110 and MOD must be binary 01. */
899 if (buf[offset] != 0xff
900 || buf[offset + 2] != 0xfc
901 || (buf[offset + 1] & 0xf8) != 0x70)
902 return pc;
903
904 /* R/M has register. Registers in leal and pushl have to be the
905 same. */
906 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
907 return pc;
908
e0c62198
L
909 if (current_pc > pc + offset_and)
910 cache->saved_sp_reg = regnums[reg];
92dd43fa 911
e0c62198 912 return min (pc + offset + 3, current_pc);
92dd43fa
MK
913}
914
37bdc87e 915/* Maximum instruction length we need to handle. */
237fc4c9 916#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
917
918/* Instruction description. */
919struct i386_insn
920{
921 size_t len;
237fc4c9
PA
922 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
923 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
924};
925
926/* Search for the instruction at PC in the list SKIP_INSNS. Return
927 the first instruction description that matches. Otherwise, return
928 NULL. */
929
930static struct i386_insn *
931i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
932{
933 struct i386_insn *insn;
63c0089f 934 gdb_byte op;
37bdc87e 935
8defab1a 936 target_read_memory (pc, &op, 1);
37bdc87e
MK
937
938 for (insn = skip_insns; insn->len > 0; insn++)
939 {
940 if ((op & insn->mask[0]) == insn->insn[0])
941 {
237fc4c9 942 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
613e8135 943 int insn_matched = 1;
37bdc87e
MK
944 size_t i;
945
946 gdb_assert (insn->len > 1);
237fc4c9 947 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
37bdc87e 948
8defab1a 949 target_read_memory (pc + 1, buf, insn->len - 1);
37bdc87e
MK
950 for (i = 1; i < insn->len; i++)
951 {
952 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 953 insn_matched = 0;
37bdc87e 954 }
613e8135
MK
955
956 if (insn_matched)
957 return insn;
37bdc87e
MK
958 }
959 }
960
961 return NULL;
962}
963
964/* Some special instructions that might be migrated by GCC into the
965 part of the prologue that sets up the new stack frame. Because the
966 stack frame hasn't been setup yet, no registers have been saved
967 yet, and only the scratch registers %eax, %ecx and %edx can be
968 touched. */
969
970struct i386_insn i386_frame_setup_skip_insns[] =
971{
972 /* Check for `movb imm8, r' and `movl imm32, r'.
973
974 ??? Should we handle 16-bit operand-sizes here? */
975
976 /* `movb imm8, %al' and `movb imm8, %ah' */
977 /* `movb imm8, %cl' and `movb imm8, %ch' */
978 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
979 /* `movb imm8, %dl' and `movb imm8, %dh' */
980 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
981 /* `movl imm32, %eax' and `movl imm32, %ecx' */
982 { 5, { 0xb8 }, { 0xfe } },
983 /* `movl imm32, %edx' */
984 { 5, { 0xba }, { 0xff } },
985
986 /* Check for `mov imm32, r32'. Note that there is an alternative
987 encoding for `mov m32, %eax'.
988
989 ??? Should we handle SIB adressing here?
990 ??? Should we handle 16-bit operand-sizes here? */
991
992 /* `movl m32, %eax' */
993 { 5, { 0xa1 }, { 0xff } },
994 /* `movl m32, %eax' and `mov; m32, %ecx' */
995 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
996 /* `movl m32, %edx' */
997 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
998
999 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1000 Because of the symmetry, there are actually two ways to encode
1001 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1002 opcode bytes 0x31 and 0x33 for `xorl'. */
1003
1004 /* `subl %eax, %eax' */
1005 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1006 /* `subl %ecx, %ecx' */
1007 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1008 /* `subl %edx, %edx' */
1009 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1010 /* `xorl %eax, %eax' */
1011 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1012 /* `xorl %ecx, %ecx' */
1013 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1014 /* `xorl %edx, %edx' */
1015 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1016 { 0 }
1017};
1018
e11481da
PM
1019
1020/* Check whether PC points to a no-op instruction. */
1021static CORE_ADDR
1022i386_skip_noop (CORE_ADDR pc)
1023{
1024 gdb_byte op;
1025 int check = 1;
1026
8defab1a 1027 target_read_memory (pc, &op, 1);
e11481da
PM
1028
1029 while (check)
1030 {
1031 check = 0;
1032 /* Ignore `nop' instruction. */
1033 if (op == 0x90)
1034 {
1035 pc += 1;
8defab1a 1036 target_read_memory (pc, &op, 1);
e11481da
PM
1037 check = 1;
1038 }
1039 /* Ignore no-op instruction `mov %edi, %edi'.
1040 Microsoft system dlls often start with
1041 a `mov %edi,%edi' instruction.
1042 The 5 bytes before the function start are
1043 filled with `nop' instructions.
1044 This pattern can be used for hot-patching:
1045 The `mov %edi, %edi' instruction can be replaced by a
1046 near jump to the location of the 5 `nop' instructions
1047 which can be replaced by a 32-bit jump to anywhere
1048 in the 32-bit address space. */
1049
1050 else if (op == 0x8b)
1051 {
8defab1a 1052 target_read_memory (pc + 1, &op, 1);
e11481da
PM
1053 if (op == 0xff)
1054 {
1055 pc += 2;
8defab1a 1056 target_read_memory (pc, &op, 1);
e11481da
PM
1057 check = 1;
1058 }
1059 }
1060 }
1061 return pc;
1062}
1063
acd5c798
MK
1064/* Check whether PC points at a code that sets up a new stack frame.
1065 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1066 instruction after the sequence that sets up the frame or LIMIT,
1067 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1068
1069static CORE_ADDR
e17a4113
UW
1070i386_analyze_frame_setup (struct gdbarch *gdbarch,
1071 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1072 struct i386_frame_cache *cache)
1073{
e17a4113 1074 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1075 struct i386_insn *insn;
63c0089f 1076 gdb_byte op;
26604a34 1077 int skip = 0;
acd5c798 1078
37bdc87e
MK
1079 if (limit <= pc)
1080 return limit;
acd5c798 1081
8defab1a 1082 target_read_memory (pc, &op, 1);
acd5c798 1083
c906108c 1084 if (op == 0x55) /* pushl %ebp */
c5aa993b 1085 {
acd5c798
MK
1086 /* Take into account that we've executed the `pushl %ebp' that
1087 starts this instruction sequence. */
fd13a04a 1088 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1089 cache->sp_offset += 4;
37bdc87e 1090 pc++;
acd5c798
MK
1091
1092 /* If that's all, return now. */
37bdc87e
MK
1093 if (limit <= pc)
1094 return limit;
26604a34 1095
b4632131 1096 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1097 GCC into the prologue and skip them. At this point in the
1098 prologue, code should only touch the scratch registers %eax,
1099 %ecx and %edx, so while the number of posibilities is sheer,
1100 it is limited.
5daa5b4e 1101
26604a34
MK
1102 Make sure we only skip these instructions if we later see the
1103 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1104 while (pc + skip < limit)
26604a34 1105 {
37bdc87e
MK
1106 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1107 if (insn == NULL)
1108 break;
b4632131 1109
37bdc87e 1110 skip += insn->len;
26604a34
MK
1111 }
1112
37bdc87e
MK
1113 /* If that's all, return now. */
1114 if (limit <= pc + skip)
1115 return limit;
1116
8defab1a 1117 target_read_memory (pc + skip, &op, 1);
37bdc87e 1118
26604a34 1119 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 1120 switch (op)
c906108c
SS
1121 {
1122 case 0x8b:
e17a4113
UW
1123 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1124 != 0xec)
37bdc87e 1125 return pc;
c906108c
SS
1126 break;
1127 case 0x89:
e17a4113
UW
1128 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1129 != 0xe5)
37bdc87e 1130 return pc;
c906108c
SS
1131 break;
1132 default:
37bdc87e 1133 return pc;
c906108c 1134 }
acd5c798 1135
26604a34
MK
1136 /* OK, we actually have a frame. We just don't know how large
1137 it is yet. Set its size to zero. We'll adjust it if
1138 necessary. We also now commit to skipping the special
1139 instructions mentioned before. */
acd5c798 1140 cache->locals = 0;
37bdc87e 1141 pc += (skip + 2);
acd5c798
MK
1142
1143 /* If that's all, return now. */
37bdc87e
MK
1144 if (limit <= pc)
1145 return limit;
acd5c798 1146
fc338970
MK
1147 /* Check for stack adjustment
1148
acd5c798 1149 subl $XXX, %esp
fc338970 1150
fd35795f 1151 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1152 reg, so we don't have to worry about a data16 prefix. */
8defab1a 1153 target_read_memory (pc, &op, 1);
c906108c
SS
1154 if (op == 0x83)
1155 {
fd35795f 1156 /* `subl' with 8-bit immediate. */
e17a4113 1157 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1158 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1159 return pc;
acd5c798 1160
37bdc87e
MK
1161 /* `subl' with signed 8-bit immediate (though it wouldn't
1162 make sense to be negative). */
e17a4113 1163 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1164 return pc + 3;
c906108c
SS
1165 }
1166 else if (op == 0x81)
1167 {
fd35795f 1168 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1169 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1170 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1171 return pc;
acd5c798 1172
fd35795f 1173 /* It is `subl' with a 32-bit immediate. */
e17a4113 1174 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1175 return pc + 6;
c906108c
SS
1176 }
1177 else
1178 {
acd5c798 1179 /* Some instruction other than `subl'. */
37bdc87e 1180 return pc;
c906108c
SS
1181 }
1182 }
37bdc87e 1183 else if (op == 0xc8) /* enter */
c906108c 1184 {
e17a4113 1185 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1186 return pc + 4;
c906108c 1187 }
21d0e8a4 1188
acd5c798 1189 return pc;
21d0e8a4
MK
1190}
1191
acd5c798
MK
1192/* Check whether PC points at code that saves registers on the stack.
1193 If so, it updates CACHE and returns the address of the first
1194 instruction after the register saves or CURRENT_PC, whichever is
1195 smaller. Otherwise, return PC. */
6bff26de
MK
1196
1197static CORE_ADDR
acd5c798
MK
1198i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1199 struct i386_frame_cache *cache)
6bff26de 1200{
99ab4326 1201 CORE_ADDR offset = 0;
63c0089f 1202 gdb_byte op;
99ab4326 1203 int i;
c0d1d883 1204
99ab4326
MK
1205 if (cache->locals > 0)
1206 offset -= cache->locals;
1207 for (i = 0; i < 8 && pc < current_pc; i++)
1208 {
8defab1a 1209 target_read_memory (pc, &op, 1);
99ab4326
MK
1210 if (op < 0x50 || op > 0x57)
1211 break;
0d17c81d 1212
99ab4326
MK
1213 offset -= 4;
1214 cache->saved_regs[op - 0x50] = offset;
1215 cache->sp_offset += 4;
1216 pc++;
6bff26de
MK
1217 }
1218
acd5c798 1219 return pc;
22797942
AC
1220}
1221
acd5c798
MK
1222/* Do a full analysis of the prologue at PC and update CACHE
1223 accordingly. Bail out early if CURRENT_PC is reached. Return the
1224 address where the analysis stopped.
ed84f6c1 1225
fc338970
MK
1226 We handle these cases:
1227
1228 The startup sequence can be at the start of the function, or the
1229 function can start with a branch to startup code at the end.
1230
1231 %ebp can be set up with either the 'enter' instruction, or "pushl
1232 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1233 once used in the System V compiler).
1234
1235 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1236 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1237 16-bit unsigned argument for space to allocate, and the 'addl'
1238 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1239
1240 Next, the registers used by this function are pushed. With the
1241 System V compiler they will always be in the order: %edi, %esi,
1242 %ebx (and sometimes a harmless bug causes it to also save but not
1243 restore %eax); however, the code below is willing to see the pushes
1244 in any order, and will handle up to 8 of them.
1245
1246 If the setup sequence is at the end of the function, then the next
1247 instruction will be a branch back to the start. */
c906108c 1248
acd5c798 1249static CORE_ADDR
e17a4113
UW
1250i386_analyze_prologue (struct gdbarch *gdbarch,
1251 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1252 struct i386_frame_cache *cache)
c906108c 1253{
e11481da 1254 pc = i386_skip_noop (pc);
e17a4113 1255 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1256 pc = i386_analyze_struct_return (pc, current_pc, cache);
1257 pc = i386_skip_probe (pc);
92dd43fa 1258 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1259 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1260 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1261}
1262
fc338970 1263/* Return PC of first real instruction. */
c906108c 1264
3a1e71e3 1265static CORE_ADDR
6093d2eb 1266i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1267{
e17a4113
UW
1268 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1269
63c0089f 1270 static gdb_byte pic_pat[6] =
acd5c798
MK
1271 {
1272 0xe8, 0, 0, 0, 0, /* call 0x0 */
1273 0x5b, /* popl %ebx */
c5aa993b 1274 };
acd5c798
MK
1275 struct i386_frame_cache cache;
1276 CORE_ADDR pc;
63c0089f 1277 gdb_byte op;
acd5c798 1278 int i;
c5aa993b 1279
acd5c798 1280 cache.locals = -1;
e17a4113 1281 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1282 if (cache.locals < 0)
1283 return start_pc;
c5aa993b 1284
acd5c798 1285 /* Found valid frame setup. */
c906108c 1286
fc338970
MK
1287 /* The native cc on SVR4 in -K PIC mode inserts the following code
1288 to get the address of the global offset table (GOT) into register
acd5c798
MK
1289 %ebx:
1290
fc338970
MK
1291 call 0x0
1292 popl %ebx
1293 movl %ebx,x(%ebp) (optional)
1294 addl y,%ebx
1295
c906108c
SS
1296 This code is with the rest of the prologue (at the end of the
1297 function), so we have to skip it to get to the first real
1298 instruction at the start of the function. */
c5aa993b 1299
c906108c
SS
1300 for (i = 0; i < 6; i++)
1301 {
8defab1a 1302 target_read_memory (pc + i, &op, 1);
c5aa993b 1303 if (pic_pat[i] != op)
c906108c
SS
1304 break;
1305 }
1306 if (i == 6)
1307 {
acd5c798
MK
1308 int delta = 6;
1309
8defab1a 1310 target_read_memory (pc + delta, &op, 1);
c906108c 1311
c5aa993b 1312 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1313 {
e17a4113 1314 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1315
fc338970 1316 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1317 delta += 3;
fc338970 1318 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1319 delta += 6;
fc338970 1320 else /* Unexpected instruction. */
acd5c798
MK
1321 delta = 0;
1322
8defab1a 1323 target_read_memory (pc + delta, &op, 1);
c906108c 1324 }
acd5c798 1325
c5aa993b 1326 /* addl y,%ebx */
acd5c798 1327 if (delta > 0 && op == 0x81
e17a4113
UW
1328 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1329 == 0xc3)
c906108c 1330 {
acd5c798 1331 pc += delta + 6;
c906108c
SS
1332 }
1333 }
c5aa993b 1334
e63bbc88
MK
1335 /* If the function starts with a branch (to startup code at the end)
1336 the last instruction should bring us back to the first
1337 instruction of the real code. */
e17a4113
UW
1338 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1339 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1340
1341 return pc;
c906108c
SS
1342}
1343
4309257c
PM
1344/* Check that the code pointed to by PC corresponds to a call to
1345 __main, skip it if so. Return PC otherwise. */
1346
1347CORE_ADDR
1348i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1349{
e17a4113 1350 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1351 gdb_byte op;
1352
1353 target_read_memory (pc, &op, 1);
1354 if (op == 0xe8)
1355 {
1356 gdb_byte buf[4];
1357
1358 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1359 {
1360 /* Make sure address is computed correctly as a 32bit
1361 integer even if CORE_ADDR is 64 bit wide. */
1362 struct minimal_symbol *s;
e17a4113 1363 CORE_ADDR call_dest;
4309257c 1364
e17a4113 1365 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1366 call_dest = call_dest & 0xffffffffU;
1367 s = lookup_minimal_symbol_by_pc (call_dest);
1368 if (s != NULL
1369 && SYMBOL_LINKAGE_NAME (s) != NULL
1370 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1371 pc += 5;
1372 }
1373 }
1374
1375 return pc;
1376}
1377
acd5c798 1378/* This function is 64-bit safe. */
93924b6b 1379
acd5c798
MK
1380static CORE_ADDR
1381i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1382{
63c0089f 1383 gdb_byte buf[8];
acd5c798 1384
875f8d0e 1385 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1386 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1387}
acd5c798 1388\f
93924b6b 1389
acd5c798 1390/* Normal frames. */
c5aa993b 1391
acd5c798 1392static struct i386_frame_cache *
10458914 1393i386_frame_cache (struct frame_info *this_frame, void **this_cache)
a7769679 1394{
e17a4113
UW
1395 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1396 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 1397 struct i386_frame_cache *cache;
63c0089f 1398 gdb_byte buf[4];
acd5c798
MK
1399 int i;
1400
1401 if (*this_cache)
1402 return *this_cache;
1403
fd13a04a 1404 cache = i386_alloc_frame_cache ();
acd5c798
MK
1405 *this_cache = cache;
1406
1407 /* In principle, for normal frames, %ebp holds the frame pointer,
1408 which holds the base address for the current stack frame.
1409 However, for functions that don't need it, the frame pointer is
1410 optional. For these "frameless" functions the frame pointer is
1411 actually the frame pointer of the calling frame. Signal
1412 trampolines are just a special case of a "frameless" function.
1413 They (usually) share their frame pointer with the frame that was
1414 in progress when the signal occurred. */
1415
10458914 1416 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1417 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798
MK
1418 if (cache->base == 0)
1419 return cache;
1420
1421 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1422 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1423
10458914 1424 cache->pc = get_frame_func (this_frame);
acd5c798 1425 if (cache->pc != 0)
e17a4113
UW
1426 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1427 cache);
acd5c798 1428
e0c62198 1429 if (cache->saved_sp_reg != -1)
92dd43fa 1430 {
e0c62198
L
1431 /* Saved stack pointer has been saved. */
1432 get_frame_register (this_frame, cache->saved_sp_reg, buf);
e17a4113 1433 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
92dd43fa
MK
1434 }
1435
acd5c798
MK
1436 if (cache->locals < 0)
1437 {
1438 /* We didn't find a valid frame, which means that CACHE->base
1439 currently holds the frame pointer for our calling frame. If
1440 we're at the start of a function, or somewhere half-way its
1441 prologue, the function's frame probably hasn't been fully
1442 setup yet. Try to reconstruct the base address for the stack
1443 frame by looking at the stack pointer. For truly "frameless"
1444 functions this might work too. */
1445
e0c62198 1446 if (cache->saved_sp_reg != -1)
92dd43fa
MK
1447 {
1448 /* We're halfway aligning the stack. */
1449 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1450 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1451
1452 /* This will be added back below. */
1453 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1454 }
7618e12b
DJ
1455 else if (cache->pc != 0
1456 || target_read_memory (get_frame_pc (this_frame), buf, 1))
92dd43fa 1457 {
7618e12b
DJ
1458 /* We're in a known function, but did not find a frame
1459 setup. Assume that the function does not use %ebp.
1460 Alternatively, we may have jumped to an invalid
1461 address; in that case there is definitely no new
1462 frame in %ebp. */
10458914 1463 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1464 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1465 + cache->sp_offset;
92dd43fa 1466 }
7618e12b
DJ
1467 else
1468 /* We're in an unknown function. We could not find the start
1469 of the function to analyze the prologue; our best option is
1470 to assume a typical frame layout with the caller's %ebp
1471 saved. */
1472 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1473 }
1474
1475 /* Now that we have the base address for the stack frame we can
1476 calculate the value of %esp in the calling frame. */
92dd43fa
MK
1477 if (cache->saved_sp == 0)
1478 cache->saved_sp = cache->base + 8;
a7769679 1479
acd5c798
MK
1480 /* Adjust all the saved registers such that they contain addresses
1481 instead of offsets. */
1482 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1483 if (cache->saved_regs[i] != -1)
1484 cache->saved_regs[i] += cache->base;
acd5c798
MK
1485
1486 return cache;
a7769679
MK
1487}
1488
3a1e71e3 1489static void
10458914 1490i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1491 struct frame_id *this_id)
c906108c 1492{
10458914 1493 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1494
1495 /* This marks the outermost frame. */
1496 if (cache->base == 0)
1497 return;
1498
3e210248 1499 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1500 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1501}
1502
10458914
DJ
1503static struct value *
1504i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1505 int regnum)
acd5c798 1506{
10458914 1507 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1508
1509 gdb_assert (regnum >= 0);
1510
1511 /* The System V ABI says that:
1512
1513 "The flags register contains the system flags, such as the
1514 direction flag and the carry flag. The direction flag must be
1515 set to the forward (that is, zero) direction before entry and
1516 upon exit from a function. Other user flags have no specified
1517 role in the standard calling sequence and are not preserved."
1518
1519 To guarantee the "upon exit" part of that statement we fake a
1520 saved flags register that has its direction flag cleared.
1521
1522 Note that GCC doesn't seem to rely on the fact that the direction
1523 flag is cleared after a function return; it always explicitly
1524 clears the flag before operations where it matters.
1525
1526 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1527 right thing to do. The way we fake the flags register here makes
1528 it impossible to change it. */
1529
1530 if (regnum == I386_EFLAGS_REGNUM)
1531 {
10458914 1532 ULONGEST val;
c5aa993b 1533
10458914
DJ
1534 val = get_frame_register_unsigned (this_frame, regnum);
1535 val &= ~(1 << 10);
1536 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1537 }
1211c4e4 1538
acd5c798 1539 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1540 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798
MK
1541
1542 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
10458914 1543 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
acd5c798 1544
fd13a04a 1545 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1546 return frame_unwind_got_memory (this_frame, regnum,
1547 cache->saved_regs[regnum]);
fd13a04a 1548
10458914 1549 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1550}
1551
1552static const struct frame_unwind i386_frame_unwind =
1553{
1554 NORMAL_FRAME,
1555 i386_frame_this_id,
10458914
DJ
1556 i386_frame_prev_register,
1557 NULL,
1558 default_frame_sniffer
acd5c798 1559};
06da04c6
MS
1560
1561/* Normal frames, but in a function epilogue. */
1562
1563/* The epilogue is defined here as the 'ret' instruction, which will
1564 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1565 the function's stack frame. */
1566
1567static int
1568i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1569{
1570 gdb_byte insn;
1571
1572 if (target_read_memory (pc, &insn, 1))
1573 return 0; /* Can't read memory at pc. */
1574
1575 if (insn != 0xc3) /* 'ret' instruction. */
1576 return 0;
1577
1578 return 1;
1579}
1580
1581static int
1582i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1583 struct frame_info *this_frame,
1584 void **this_prologue_cache)
1585{
1586 if (frame_relative_level (this_frame) == 0)
1587 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1588 get_frame_pc (this_frame));
1589 else
1590 return 0;
1591}
1592
1593static struct i386_frame_cache *
1594i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1595{
1596 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1597 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1598 struct i386_frame_cache *cache;
1599 gdb_byte buf[4];
1600
1601 if (*this_cache)
1602 return *this_cache;
1603
1604 cache = i386_alloc_frame_cache ();
1605 *this_cache = cache;
1606
1607 /* Cache base will be %esp plus cache->sp_offset (-4). */
1608 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1609 cache->base = extract_unsigned_integer (buf, 4,
1610 byte_order) + cache->sp_offset;
1611
1612 /* Cache pc will be the frame func. */
1613 cache->pc = get_frame_pc (this_frame);
1614
1615 /* The saved %esp will be at cache->base plus 8. */
1616 cache->saved_sp = cache->base + 8;
1617
1618 /* The saved %eip will be at cache->base plus 4. */
1619 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1620
1621 return cache;
1622}
1623
1624static void
1625i386_epilogue_frame_this_id (struct frame_info *this_frame,
1626 void **this_cache,
1627 struct frame_id *this_id)
1628{
1629 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1630 this_cache);
1631
1632 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1633}
1634
1635static const struct frame_unwind i386_epilogue_frame_unwind =
1636{
1637 NORMAL_FRAME,
1638 i386_epilogue_frame_this_id,
1639 i386_frame_prev_register,
1640 NULL,
1641 i386_epilogue_frame_sniffer
1642};
acd5c798
MK
1643\f
1644
1645/* Signal trampolines. */
1646
1647static struct i386_frame_cache *
10458914 1648i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 1649{
e17a4113
UW
1650 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1651 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1652 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 1653 struct i386_frame_cache *cache;
acd5c798 1654 CORE_ADDR addr;
63c0089f 1655 gdb_byte buf[4];
acd5c798
MK
1656
1657 if (*this_cache)
1658 return *this_cache;
1659
fd13a04a 1660 cache = i386_alloc_frame_cache ();
acd5c798 1661
10458914 1662 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 1663 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
acd5c798 1664
10458914 1665 addr = tdep->sigcontext_addr (this_frame);
a3386186
MK
1666 if (tdep->sc_reg_offset)
1667 {
1668 int i;
1669
1670 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1671
1672 for (i = 0; i < tdep->sc_num_regs; i++)
1673 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1674 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1675 }
1676 else
1677 {
fd13a04a
AC
1678 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1679 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1680 }
acd5c798
MK
1681
1682 *this_cache = cache;
1683 return cache;
1684}
1685
1686static void
10458914 1687i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
1688 struct frame_id *this_id)
1689{
1690 struct i386_frame_cache *cache =
10458914 1691 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1692
3e210248 1693 /* See the end of i386_push_dummy_call. */
10458914 1694 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
1695}
1696
10458914
DJ
1697static struct value *
1698i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1699 void **this_cache, int regnum)
acd5c798
MK
1700{
1701 /* Make sure we've initialized the cache. */
10458914 1702 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1703
10458914 1704 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 1705}
c0d1d883 1706
10458914
DJ
1707static int
1708i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1709 struct frame_info *this_frame,
1710 void **this_prologue_cache)
acd5c798 1711{
10458914 1712 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1713
911bc6ee
MK
1714 /* We shouldn't even bother if we don't have a sigcontext_addr
1715 handler. */
1716 if (tdep->sigcontext_addr == NULL)
10458914 1717 return 0;
1c3545ae 1718
911bc6ee
MK
1719 if (tdep->sigtramp_p != NULL)
1720 {
10458914
DJ
1721 if (tdep->sigtramp_p (this_frame))
1722 return 1;
911bc6ee
MK
1723 }
1724
1725 if (tdep->sigtramp_start != 0)
1726 {
10458914 1727 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
1728
1729 gdb_assert (tdep->sigtramp_end != 0);
1730 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 1731 return 1;
911bc6ee 1732 }
acd5c798 1733
10458914 1734 return 0;
acd5c798 1735}
10458914
DJ
1736
1737static const struct frame_unwind i386_sigtramp_frame_unwind =
1738{
1739 SIGTRAMP_FRAME,
1740 i386_sigtramp_frame_this_id,
1741 i386_sigtramp_frame_prev_register,
1742 NULL,
1743 i386_sigtramp_frame_sniffer
1744};
acd5c798
MK
1745\f
1746
1747static CORE_ADDR
10458914 1748i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 1749{
10458914 1750 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1751
1752 return cache->base;
1753}
1754
1755static const struct frame_base i386_frame_base =
1756{
1757 &i386_frame_unwind,
1758 i386_frame_base_address,
1759 i386_frame_base_address,
1760 i386_frame_base_address
1761};
1762
acd5c798 1763static struct frame_id
10458914 1764i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 1765{
acd5c798
MK
1766 CORE_ADDR fp;
1767
10458914 1768 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 1769
3e210248 1770 /* See the end of i386_push_dummy_call. */
10458914 1771 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 1772}
fc338970 1773\f
c906108c 1774
fc338970
MK
1775/* Figure out where the longjmp will land. Slurp the args out of the
1776 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1777 structure from which we extract the address that we will land at.
28bcfd30 1778 This address is copied into PC. This routine returns non-zero on
436675d3 1779 success. */
c906108c 1780
8201327c 1781static int
60ade65d 1782i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1783{
436675d3 1784 gdb_byte buf[4];
c906108c 1785 CORE_ADDR sp, jb_addr;
20a6ec49 1786 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 1787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 1788 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 1789
8201327c
MK
1790 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1791 longjmp will land. */
1792 if (jb_pc_offset == -1)
c906108c
SS
1793 return 0;
1794
436675d3 1795 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 1796 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 1797 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
1798 return 0;
1799
e17a4113 1800 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 1801 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 1802 return 0;
c906108c 1803
e17a4113 1804 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1805 return 1;
1806}
fc338970 1807\f
c906108c 1808
7ccc1c74
JM
1809/* Check whether TYPE must be 16-byte-aligned when passed as a
1810 function argument. 16-byte vectors, _Decimal128 and structures or
1811 unions containing such types must be 16-byte-aligned; other
1812 arguments are 4-byte-aligned. */
1813
1814static int
1815i386_16_byte_align_p (struct type *type)
1816{
1817 type = check_typedef (type);
1818 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1819 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
1820 && TYPE_LENGTH (type) == 16)
1821 return 1;
1822 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1823 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
1824 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1825 || TYPE_CODE (type) == TYPE_CODE_UNION)
1826 {
1827 int i;
1828 for (i = 0; i < TYPE_NFIELDS (type); i++)
1829 {
1830 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
1831 return 1;
1832 }
1833 }
1834 return 0;
1835}
1836
3a1e71e3 1837static CORE_ADDR
7d9b040b 1838i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1839 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1840 struct value **args, CORE_ADDR sp, int struct_return,
1841 CORE_ADDR struct_addr)
22f8ba57 1842{
e17a4113 1843 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1844 gdb_byte buf[4];
acd5c798 1845 int i;
7ccc1c74
JM
1846 int write_pass;
1847 int args_space = 0;
acd5c798 1848
7ccc1c74
JM
1849 /* Determine the total space required for arguments and struct
1850 return address in a first pass (allowing for 16-byte-aligned
1851 arguments), then push arguments in a second pass. */
1852
1853 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 1854 {
7ccc1c74
JM
1855 int args_space_used = 0;
1856 int have_16_byte_aligned_arg = 0;
1857
1858 if (struct_return)
1859 {
1860 if (write_pass)
1861 {
1862 /* Push value address. */
e17a4113 1863 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
1864 write_memory (sp, buf, 4);
1865 args_space_used += 4;
1866 }
1867 else
1868 args_space += 4;
1869 }
1870
1871 for (i = 0; i < nargs; i++)
1872 {
1873 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 1874
7ccc1c74
JM
1875 if (write_pass)
1876 {
1877 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1878 args_space_used = align_up (args_space_used, 16);
acd5c798 1879
7ccc1c74
JM
1880 write_memory (sp + args_space_used,
1881 value_contents_all (args[i]), len);
1882 /* The System V ABI says that:
acd5c798 1883
7ccc1c74
JM
1884 "An argument's size is increased, if necessary, to make it a
1885 multiple of [32-bit] words. This may require tail padding,
1886 depending on the size of the argument."
22f8ba57 1887
7ccc1c74
JM
1888 This makes sure the stack stays word-aligned. */
1889 args_space_used += align_up (len, 4);
1890 }
1891 else
1892 {
1893 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1894 {
1895 args_space = align_up (args_space, 16);
1896 have_16_byte_aligned_arg = 1;
1897 }
1898 args_space += align_up (len, 4);
1899 }
1900 }
1901
1902 if (!write_pass)
1903 {
1904 if (have_16_byte_aligned_arg)
1905 args_space = align_up (args_space, 16);
1906 sp -= args_space;
1907 }
22f8ba57
MK
1908 }
1909
acd5c798
MK
1910 /* Store return address. */
1911 sp -= 4;
e17a4113 1912 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
1913 write_memory (sp, buf, 4);
1914
1915 /* Finally, update the stack pointer... */
e17a4113 1916 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
1917 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1918
1919 /* ...and fake a frame pointer. */
1920 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1921
3e210248
AC
1922 /* MarkK wrote: This "+ 8" is all over the place:
1923 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 1924 i386_dummy_id). It's there, since all frame unwinders for
3e210248 1925 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
1926 definition of the stack address of a frame. Otherwise frame id
1927 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
1928 stack address *before* the function call as a frame's CFA. On
1929 the i386, when %ebp is used as a frame pointer, the offset
1930 between the contents %ebp and the CFA as defined by GCC. */
1931 return sp + 8;
22f8ba57
MK
1932}
1933
1a309862
MK
1934/* These registers are used for returning integers (and on some
1935 targets also for returning `struct' and `union' values when their
ef9dff19 1936 size and alignment match an integer type). */
acd5c798
MK
1937#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1938#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1939
c5e656c1
MK
1940/* Read, for architecture GDBARCH, a function return value of TYPE
1941 from REGCACHE, and copy that into VALBUF. */
1a309862 1942
3a1e71e3 1943static void
c5e656c1 1944i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1945 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1946{
c5e656c1 1947 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1948 int len = TYPE_LENGTH (type);
63c0089f 1949 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1950
1e8d0a7b 1951 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1952 {
5716833c 1953 if (tdep->st0_regnum < 0)
1a309862 1954 {
8a3fe4f8 1955 warning (_("Cannot find floating-point return value."));
1a309862 1956 memset (valbuf, 0, len);
ef9dff19 1957 return;
1a309862
MK
1958 }
1959
c6ba6f0d
MK
1960 /* Floating-point return values can be found in %st(0). Convert
1961 its contents to the desired type. This is probably not
1962 exactly how it would happen on the target itself, but it is
1963 the best we can do. */
acd5c798 1964 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 1965 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
1966 }
1967 else
c5aa993b 1968 {
875f8d0e
UW
1969 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1970 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1971
1972 if (len <= low_size)
00f8375e 1973 {
0818c12a 1974 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1975 memcpy (valbuf, buf, len);
1976 }
d4f3574e
SS
1977 else if (len <= (low_size + high_size))
1978 {
0818c12a 1979 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1980 memcpy (valbuf, buf, low_size);
0818c12a 1981 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1982 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1983 }
1984 else
8e65ff28 1985 internal_error (__FILE__, __LINE__,
e2e0b3e5 1986 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1987 }
1988}
1989
c5e656c1
MK
1990/* Write, for architecture GDBARCH, a function return value of TYPE
1991 from VALBUF into REGCACHE. */
ef9dff19 1992
3a1e71e3 1993static void
c5e656c1 1994i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1995 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1996{
c5e656c1 1997 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1998 int len = TYPE_LENGTH (type);
1999
1e8d0a7b 2000 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2001 {
3d7f4f49 2002 ULONGEST fstat;
63c0089f 2003 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2004
5716833c 2005 if (tdep->st0_regnum < 0)
ef9dff19 2006 {
8a3fe4f8 2007 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2008 return;
2009 }
2010
635b0cc1
MK
2011 /* Returning floating-point values is a bit tricky. Apart from
2012 storing the return value in %st(0), we have to simulate the
2013 state of the FPU at function return point. */
2014
c6ba6f0d
MK
2015 /* Convert the value found in VALBUF to the extended
2016 floating-point format used by the FPU. This is probably
2017 not exactly how it would happen on the target itself, but
2018 it is the best we can do. */
27067745 2019 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2020 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2021
635b0cc1
MK
2022 /* Set the top of the floating-point register stack to 7. The
2023 actual value doesn't really matter, but 7 is what a normal
2024 function return would end up with if the program started out
2025 with a freshly initialized FPU. */
20a6ec49 2026 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2027 fstat |= (7 << 11);
20a6ec49 2028 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2029
635b0cc1
MK
2030 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2031 the floating-point register stack to 7, the appropriate value
2032 for the tag word is 0x3fff. */
20a6ec49 2033 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2034 }
2035 else
2036 {
875f8d0e
UW
2037 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2038 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2039
2040 if (len <= low_size)
3d7f4f49 2041 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2042 else if (len <= (low_size + high_size))
2043 {
3d7f4f49
MK
2044 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2045 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2046 len - low_size, valbuf + low_size);
ef9dff19
MK
2047 }
2048 else
8e65ff28 2049 internal_error (__FILE__, __LINE__,
e2e0b3e5 2050 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2051 }
2052}
fc338970 2053\f
ef9dff19 2054
8201327c
MK
2055/* This is the variable that is set with "set struct-convention", and
2056 its legitimate values. */
2057static const char default_struct_convention[] = "default";
2058static const char pcc_struct_convention[] = "pcc";
2059static const char reg_struct_convention[] = "reg";
2060static const char *valid_conventions[] =
2061{
2062 default_struct_convention,
2063 pcc_struct_convention,
2064 reg_struct_convention,
2065 NULL
2066};
2067static const char *struct_convention = default_struct_convention;
2068
0e4377e1
JB
2069/* Return non-zero if TYPE, which is assumed to be a structure,
2070 a union type, or an array type, should be returned in registers
2071 for architecture GDBARCH. */
c5e656c1 2072
8201327c 2073static int
c5e656c1 2074i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2075{
c5e656c1
MK
2076 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2077 enum type_code code = TYPE_CODE (type);
2078 int len = TYPE_LENGTH (type);
8201327c 2079
0e4377e1
JB
2080 gdb_assert (code == TYPE_CODE_STRUCT
2081 || code == TYPE_CODE_UNION
2082 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2083
2084 if (struct_convention == pcc_struct_convention
2085 || (struct_convention == default_struct_convention
2086 && tdep->struct_return == pcc_struct_return))
2087 return 0;
2088
9edde48e
MK
2089 /* Structures consisting of a single `float', `double' or 'long
2090 double' member are returned in %st(0). */
2091 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2092 {
2093 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2094 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2095 return (len == 4 || len == 8 || len == 12);
2096 }
2097
c5e656c1
MK
2098 return (len == 1 || len == 2 || len == 4 || len == 8);
2099}
2100
2101/* Determine, for architecture GDBARCH, how a return value of TYPE
2102 should be returned. If it is supposed to be returned in registers,
2103 and READBUF is non-zero, read the appropriate value from REGCACHE,
2104 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2105 from WRITEBUF into REGCACHE. */
2106
2107static enum return_value_convention
c055b101
CV
2108i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2109 struct type *type, struct regcache *regcache,
2110 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2111{
2112 enum type_code code = TYPE_CODE (type);
2113
5daa78cc
TJB
2114 if (((code == TYPE_CODE_STRUCT
2115 || code == TYPE_CODE_UNION
2116 || code == TYPE_CODE_ARRAY)
2117 && !i386_reg_struct_return_p (gdbarch, type))
2118 /* 128-bit decimal float uses the struct return convention. */
2119 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2120 {
2121 /* The System V ABI says that:
2122
2123 "A function that returns a structure or union also sets %eax
2124 to the value of the original address of the caller's area
2125 before it returns. Thus when the caller receives control
2126 again, the address of the returned object resides in register
2127 %eax and can be used to access the object."
2128
2129 So the ABI guarantees that we can always find the return
2130 value just after the function has returned. */
2131
0e4377e1
JB
2132 /* Note that the ABI doesn't mention functions returning arrays,
2133 which is something possible in certain languages such as Ada.
2134 In this case, the value is returned as if it was wrapped in
2135 a record, so the convention applied to records also applies
2136 to arrays. */
2137
31db7b6c
MK
2138 if (readbuf)
2139 {
2140 ULONGEST addr;
2141
2142 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2143 read_memory (addr, readbuf, TYPE_LENGTH (type));
2144 }
2145
2146 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2147 }
c5e656c1
MK
2148
2149 /* This special case is for structures consisting of a single
9edde48e
MK
2150 `float', `double' or 'long double' member. These structures are
2151 returned in %st(0). For these structures, we call ourselves
2152 recursively, changing TYPE into the type of the first member of
2153 the structure. Since that should work for all structures that
2154 have only one member, we don't bother to check the member's type
2155 here. */
c5e656c1
MK
2156 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2157 {
2158 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
2159 return i386_return_value (gdbarch, func_type, type, regcache,
2160 readbuf, writebuf);
c5e656c1
MK
2161 }
2162
2163 if (readbuf)
2164 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2165 if (writebuf)
2166 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2167
c5e656c1 2168 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2169}
2170\f
2171
27067745
UW
2172struct type *
2173i387_ext_type (struct gdbarch *gdbarch)
2174{
2175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2176
2177 if (!tdep->i387_ext_type)
90884b2b
L
2178 {
2179 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2180 gdb_assert (tdep->i387_ext_type != NULL);
2181 }
27067745
UW
2182
2183 return tdep->i387_ext_type;
2184}
2185
794ac428 2186/* Construct vector type for MMX registers. */
90884b2b 2187static struct type *
794ac428
UW
2188i386_mmx_type (struct gdbarch *gdbarch)
2189{
2190 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2191
2192 if (!tdep->i386_mmx_type)
2193 {
df4df182
UW
2194 const struct builtin_type *bt = builtin_type (gdbarch);
2195
794ac428
UW
2196 /* The type we're building is this: */
2197#if 0
2198 union __gdb_builtin_type_vec64i
2199 {
2200 int64_t uint64;
2201 int32_t v2_int32[2];
2202 int16_t v4_int16[4];
2203 int8_t v8_int8[8];
2204 };
2205#endif
2206
2207 struct type *t;
2208
e9bb382b
UW
2209 t = arch_composite_type (gdbarch,
2210 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2211
2212 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2213 append_composite_type_field (t, "v2_int32",
df4df182 2214 init_vector_type (bt->builtin_int32, 2));
794ac428 2215 append_composite_type_field (t, "v4_int16",
df4df182 2216 init_vector_type (bt->builtin_int16, 4));
794ac428 2217 append_composite_type_field (t, "v8_int8",
df4df182 2218 init_vector_type (bt->builtin_int8, 8));
794ac428 2219
876cecd0 2220 TYPE_VECTOR (t) = 1;
794ac428
UW
2221 TYPE_NAME (t) = "builtin_type_vec64i";
2222 tdep->i386_mmx_type = t;
2223 }
2224
2225 return tdep->i386_mmx_type;
2226}
2227
d7a0d72c 2228/* Return the GDB type object for the "standard" data type of data in
90884b2b 2229 register REGNUM. */
d7a0d72c 2230
3a1e71e3 2231static struct type *
90884b2b 2232i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2233{
1ba53b71
L
2234 if (i386_mmx_regnum_p (gdbarch, regnum))
2235 return i386_mmx_type (gdbarch);
2236 else
2237 {
2238 const struct builtin_type *bt = builtin_type (gdbarch);
2239 if (i386_byte_regnum_p (gdbarch, regnum))
2240 return bt->builtin_int8;
2241 else if (i386_word_regnum_p (gdbarch, regnum))
2242 return bt->builtin_int16;
2243 else if (i386_dword_regnum_p (gdbarch, regnum))
2244 return bt->builtin_int32;
2245 }
2246
2247 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2248}
2249
28fc6740 2250/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2251 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2252
2253static int
c86c27af 2254i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2255{
5716833c
MK
2256 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2257 int mmxreg, fpreg;
28fc6740
AC
2258 ULONGEST fstat;
2259 int tos;
c86c27af 2260
5716833c 2261 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2262 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2263 tos = (fstat >> 11) & 0x7;
5716833c
MK
2264 fpreg = (mmxreg + tos) % 8;
2265
20a6ec49 2266 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2267}
2268
1ba53b71 2269void
28fc6740 2270i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2271 int regnum, gdb_byte *buf)
28fc6740 2272{
1ba53b71
L
2273 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2274
5716833c 2275 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2276 {
c86c27af
MK
2277 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2278
28fc6740 2279 /* Extract (always little endian). */
1ba53b71
L
2280 regcache_raw_read (regcache, fpnum, raw_buf);
2281 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
2282 }
2283 else
1ba53b71
L
2284 {
2285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2286
2287 if (i386_word_regnum_p (gdbarch, regnum))
2288 {
2289 int gpnum = regnum - tdep->ax_regnum;
2290
2291 /* Extract (always little endian). */
2292 regcache_raw_read (regcache, gpnum, raw_buf);
2293 memcpy (buf, raw_buf, 2);
2294 }
2295 else if (i386_byte_regnum_p (gdbarch, regnum))
2296 {
2297 /* Check byte pseudo registers last since this function will
2298 be called from amd64_pseudo_register_read, which handles
2299 byte pseudo registers differently. */
2300 int gpnum = regnum - tdep->al_regnum;
2301
2302 /* Extract (always little endian). We read both lower and
2303 upper registers. */
2304 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2305 if (gpnum >= 4)
2306 memcpy (buf, raw_buf + 1, 1);
2307 else
2308 memcpy (buf, raw_buf, 1);
2309 }
2310 else
2311 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2312 }
28fc6740
AC
2313}
2314
1ba53b71 2315void
28fc6740 2316i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2317 int regnum, const gdb_byte *buf)
28fc6740 2318{
1ba53b71
L
2319 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2320
5716833c 2321 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2322 {
c86c27af
MK
2323 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2324
28fc6740 2325 /* Read ... */
1ba53b71 2326 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 2327 /* ... Modify ... (always little endian). */
1ba53b71 2328 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 2329 /* ... Write. */
1ba53b71 2330 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
2331 }
2332 else
1ba53b71
L
2333 {
2334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2335
2336 if (i386_word_regnum_p (gdbarch, regnum))
2337 {
2338 int gpnum = regnum - tdep->ax_regnum;
2339
2340 /* Read ... */
2341 regcache_raw_read (regcache, gpnum, raw_buf);
2342 /* ... Modify ... (always little endian). */
2343 memcpy (raw_buf, buf, 2);
2344 /* ... Write. */
2345 regcache_raw_write (regcache, gpnum, raw_buf);
2346 }
2347 else if (i386_byte_regnum_p (gdbarch, regnum))
2348 {
2349 /* Check byte pseudo registers last since this function will
2350 be called from amd64_pseudo_register_read, which handles
2351 byte pseudo registers differently. */
2352 int gpnum = regnum - tdep->al_regnum;
2353
2354 /* Read ... We read both lower and upper registers. */
2355 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2356 /* ... Modify ... (always little endian). */
2357 if (gpnum >= 4)
2358 memcpy (raw_buf + 1, buf, 1);
2359 else
2360 memcpy (raw_buf, buf, 1);
2361 /* ... Write. */
2362 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2363 }
2364 else
2365 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2366 }
28fc6740 2367}
ff2e87ac
AC
2368\f
2369
ff2e87ac
AC
2370/* Return the register number of the register allocated by GCC after
2371 REGNUM, or -1 if there is no such register. */
2372
2373static int
2374i386_next_regnum (int regnum)
2375{
2376 /* GCC allocates the registers in the order:
2377
2378 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2379
2380 Since storing a variable in %esp doesn't make any sense we return
2381 -1 for %ebp and for %esp itself. */
2382 static int next_regnum[] =
2383 {
2384 I386_EDX_REGNUM, /* Slot for %eax. */
2385 I386_EBX_REGNUM, /* Slot for %ecx. */
2386 I386_ECX_REGNUM, /* Slot for %edx. */
2387 I386_ESI_REGNUM, /* Slot for %ebx. */
2388 -1, -1, /* Slots for %esp and %ebp. */
2389 I386_EDI_REGNUM, /* Slot for %esi. */
2390 I386_EBP_REGNUM /* Slot for %edi. */
2391 };
2392
de5b9bb9 2393 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 2394 return next_regnum[regnum];
28fc6740 2395
ff2e87ac
AC
2396 return -1;
2397}
2398
2399/* Return nonzero if a value of type TYPE stored in register REGNUM
2400 needs any special handling. */
d7a0d72c 2401
3a1e71e3 2402static int
0abe36f5 2403i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
d7a0d72c 2404{
de5b9bb9
MK
2405 int len = TYPE_LENGTH (type);
2406
ff2e87ac
AC
2407 /* Values may be spread across multiple registers. Most debugging
2408 formats aren't expressive enough to specify the locations, so
2409 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
2410 have a length that is a multiple of the word size, since GCC
2411 doesn't seem to put any other types into registers. */
2412 if (len > 4 && len % 4 == 0)
2413 {
2414 int last_regnum = regnum;
2415
2416 while (len > 4)
2417 {
2418 last_regnum = i386_next_regnum (last_regnum);
2419 len -= 4;
2420 }
2421
2422 if (last_regnum != -1)
2423 return 1;
2424 }
ff2e87ac 2425
0abe36f5 2426 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
2427}
2428
ff2e87ac
AC
2429/* Read a value of type TYPE from register REGNUM in frame FRAME, and
2430 return its contents in TO. */
ac27f131 2431
3a1e71e3 2432static void
ff2e87ac 2433i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 2434 struct type *type, gdb_byte *to)
ac27f131 2435{
20a6ec49 2436 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 2437 int len = TYPE_LENGTH (type);
de5b9bb9 2438
ff2e87ac
AC
2439 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2440 available in FRAME (i.e. if it wasn't saved)? */
3d261580 2441
20a6ec49 2442 if (i386_fp_regnum_p (gdbarch, regnum))
8d7f6b4a 2443 {
d532c08f
MK
2444 i387_register_to_value (frame, regnum, type, to);
2445 return;
8d7f6b4a 2446 }
ff2e87ac 2447
fd35795f 2448 /* Read a value spread across multiple registers. */
de5b9bb9
MK
2449
2450 gdb_assert (len > 4 && len % 4 == 0);
3d261580 2451
de5b9bb9
MK
2452 while (len > 0)
2453 {
2454 gdb_assert (regnum != -1);
20a6ec49 2455 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 2456
42835c2b 2457 get_frame_register (frame, regnum, to);
de5b9bb9
MK
2458 regnum = i386_next_regnum (regnum);
2459 len -= 4;
42835c2b 2460 to += 4;
de5b9bb9 2461 }
ac27f131
MK
2462}
2463
ff2e87ac
AC
2464/* Write the contents FROM of a value of type TYPE into register
2465 REGNUM in frame FRAME. */
ac27f131 2466
3a1e71e3 2467static void
ff2e87ac 2468i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 2469 struct type *type, const gdb_byte *from)
ac27f131 2470{
de5b9bb9 2471 int len = TYPE_LENGTH (type);
de5b9bb9 2472
20a6ec49 2473 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 2474 {
d532c08f
MK
2475 i387_value_to_register (frame, regnum, type, from);
2476 return;
2477 }
3d261580 2478
fd35795f 2479 /* Write a value spread across multiple registers. */
de5b9bb9
MK
2480
2481 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 2482
de5b9bb9
MK
2483 while (len > 0)
2484 {
2485 gdb_assert (regnum != -1);
875f8d0e 2486 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 2487
42835c2b 2488 put_frame_register (frame, regnum, from);
de5b9bb9
MK
2489 regnum = i386_next_regnum (regnum);
2490 len -= 4;
42835c2b 2491 from += 4;
de5b9bb9 2492 }
ac27f131 2493}
ff2e87ac 2494\f
7fdafb5a
MK
2495/* Supply register REGNUM from the buffer specified by GREGS and LEN
2496 in the general-purpose register set REGSET to register cache
2497 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 2498
20187ed5 2499void
473f17b0
MK
2500i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2501 int regnum, const void *gregs, size_t len)
2502{
9ea75c57 2503 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2504 const gdb_byte *regs = gregs;
473f17b0
MK
2505 int i;
2506
2507 gdb_assert (len == tdep->sizeof_gregset);
2508
2509 for (i = 0; i < tdep->gregset_num_regs; i++)
2510 {
2511 if ((regnum == i || regnum == -1)
2512 && tdep->gregset_reg_offset[i] != -1)
2513 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2514 }
2515}
2516
7fdafb5a
MK
2517/* Collect register REGNUM from the register cache REGCACHE and store
2518 it in the buffer specified by GREGS and LEN as described by the
2519 general-purpose register set REGSET. If REGNUM is -1, do this for
2520 all registers in REGSET. */
2521
2522void
2523i386_collect_gregset (const struct regset *regset,
2524 const struct regcache *regcache,
2525 int regnum, void *gregs, size_t len)
2526{
2527 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2528 gdb_byte *regs = gregs;
7fdafb5a
MK
2529 int i;
2530
2531 gdb_assert (len == tdep->sizeof_gregset);
2532
2533 for (i = 0; i < tdep->gregset_num_regs; i++)
2534 {
2535 if ((regnum == i || regnum == -1)
2536 && tdep->gregset_reg_offset[i] != -1)
2537 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2538 }
2539}
2540
2541/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2542 in the floating-point register set REGSET to register cache
2543 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2544
2545static void
2546i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2547 int regnum, const void *fpregs, size_t len)
2548{
9ea75c57 2549 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2550
66a72d25
MK
2551 if (len == I387_SIZEOF_FXSAVE)
2552 {
2553 i387_supply_fxsave (regcache, regnum, fpregs);
2554 return;
2555 }
2556
473f17b0
MK
2557 gdb_assert (len == tdep->sizeof_fpregset);
2558 i387_supply_fsave (regcache, regnum, fpregs);
2559}
8446b36a 2560
2f305df1
MK
2561/* Collect register REGNUM from the register cache REGCACHE and store
2562 it in the buffer specified by FPREGS and LEN as described by the
2563 floating-point register set REGSET. If REGNUM is -1, do this for
2564 all registers in REGSET. */
7fdafb5a
MK
2565
2566static void
2567i386_collect_fpregset (const struct regset *regset,
2568 const struct regcache *regcache,
2569 int regnum, void *fpregs, size_t len)
2570{
2571 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2572
2573 if (len == I387_SIZEOF_FXSAVE)
2574 {
2575 i387_collect_fxsave (regcache, regnum, fpregs);
2576 return;
2577 }
2578
2579 gdb_assert (len == tdep->sizeof_fpregset);
2580 i387_collect_fsave (regcache, regnum, fpregs);
2581}
2582
8446b36a
MK
2583/* Return the appropriate register set for the core section identified
2584 by SECT_NAME and SECT_SIZE. */
2585
2586const struct regset *
2587i386_regset_from_core_section (struct gdbarch *gdbarch,
2588 const char *sect_name, size_t sect_size)
2589{
2590 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2591
2592 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2593 {
2594 if (tdep->gregset == NULL)
7fdafb5a
MK
2595 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2596 i386_collect_gregset);
8446b36a
MK
2597 return tdep->gregset;
2598 }
2599
66a72d25
MK
2600 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2601 || (strcmp (sect_name, ".reg-xfp") == 0
2602 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2603 {
2604 if (tdep->fpregset == NULL)
7fdafb5a
MK
2605 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2606 i386_collect_fpregset);
8446b36a
MK
2607 return tdep->fpregset;
2608 }
2609
2610 return NULL;
2611}
473f17b0 2612\f
fc338970 2613
fc338970 2614/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2615
2616CORE_ADDR
e17a4113
UW
2617i386_pe_skip_trampoline_code (struct frame_info *frame,
2618 CORE_ADDR pc, char *name)
c906108c 2619{
e17a4113
UW
2620 struct gdbarch *gdbarch = get_frame_arch (frame);
2621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2622
2623 /* jmp *(dest) */
2624 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 2625 {
e17a4113
UW
2626 unsigned long indirect =
2627 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 2628 struct minimal_symbol *indsym =
fc338970 2629 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2630 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2631
c5aa993b 2632 if (symname)
c906108c 2633 {
c5aa993b
JM
2634 if (strncmp (symname, "__imp_", 6) == 0
2635 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
2636 return name ? 1 :
2637 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
2638 }
2639 }
fc338970 2640 return 0; /* Not a trampoline. */
c906108c 2641}
fc338970
MK
2642\f
2643
10458914
DJ
2644/* Return whether the THIS_FRAME corresponds to a sigtramp
2645 routine. */
8201327c 2646
4bd207ef 2647int
10458914 2648i386_sigtramp_p (struct frame_info *this_frame)
8201327c 2649{
10458914 2650 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2651 char *name;
2652
2653 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2654 return (name && strcmp ("_sigtramp", name) == 0);
2655}
2656\f
2657
fc338970
MK
2658/* We have two flavours of disassembly. The machinery on this page
2659 deals with switching between those. */
c906108c
SS
2660
2661static int
a89aa300 2662i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2663{
5e3397bb
MK
2664 gdb_assert (disassembly_flavor == att_flavor
2665 || disassembly_flavor == intel_flavor);
2666
2667 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2668 constified, cast to prevent a compiler warning. */
2669 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
2670
2671 return print_insn_i386 (pc, info);
7a292a7a 2672}
fc338970 2673\f
3ce1502b 2674
8201327c
MK
2675/* There are a few i386 architecture variants that differ only
2676 slightly from the generic i386 target. For now, we don't give them
2677 their own source file, but include them here. As a consequence,
2678 they'll always be included. */
3ce1502b 2679
8201327c 2680/* System V Release 4 (SVR4). */
3ce1502b 2681
10458914
DJ
2682/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2683 routine. */
911bc6ee 2684
8201327c 2685static int
10458914 2686i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 2687{
10458914 2688 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2689 char *name;
2690
acd5c798
MK
2691 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2692 currently unknown. */
911bc6ee 2693 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2694 return (name && (strcmp ("_sigreturn", name) == 0
2695 || strcmp ("_sigacthandler", name) == 0
2696 || strcmp ("sigvechandler", name) == 0));
2697}
d2a7c97a 2698
10458914
DJ
2699/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2700 address of the associated sigcontext (ucontext) structure. */
3ce1502b 2701
3a1e71e3 2702static CORE_ADDR
10458914 2703i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 2704{
e17a4113
UW
2705 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2706 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2707 gdb_byte buf[4];
acd5c798 2708 CORE_ADDR sp;
3ce1502b 2709
10458914 2710 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 2711 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 2712
e17a4113 2713 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c
MK
2714}
2715\f
3ce1502b 2716
8201327c 2717/* Generic ELF. */
d2a7c97a 2718
8201327c
MK
2719void
2720i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2721{
c4fc7f1b
MK
2722 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2723 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2724}
3ce1502b 2725
8201327c 2726/* System V Release 4 (SVR4). */
3ce1502b 2727
8201327c
MK
2728void
2729i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2730{
2731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2732
8201327c
MK
2733 /* System V Release 4 uses ELF. */
2734 i386_elf_init_abi (info, gdbarch);
3ce1502b 2735
dfe01d39 2736 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2737 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2738
911bc6ee 2739 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2740 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2741 tdep->sc_pc_offset = 36 + 14 * 4;
2742 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2743
8201327c 2744 tdep->jb_pc_offset = 20;
3ce1502b
MK
2745}
2746
8201327c 2747/* DJGPP. */
3ce1502b 2748
3a1e71e3 2749static void
8201327c 2750i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2751{
8201327c 2752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2753
911bc6ee
MK
2754 /* DJGPP doesn't have any special frames for signal handlers. */
2755 tdep->sigtramp_p = NULL;
3ce1502b 2756
8201327c 2757 tdep->jb_pc_offset = 36;
15430fc0
EZ
2758
2759 /* DJGPP does not support the SSE registers. */
2760 tdep->num_xmm_regs = 0;
90884b2b 2761 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I387_NUM_REGS);
3d22076f
EZ
2762
2763 /* Native compiler is GCC, which uses the SVR4 register numbering
2764 even in COFF and STABS. See the comment in i386_gdbarch_init,
2765 before the calls to set_gdbarch_stab_reg_to_regnum and
2766 set_gdbarch_sdb_reg_to_regnum. */
2767 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2768 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3ce1502b 2769}
8201327c 2770\f
2acceee2 2771
38c968cf
AC
2772/* i386 register groups. In addition to the normal groups, add "mmx"
2773 and "sse". */
2774
2775static struct reggroup *i386_sse_reggroup;
2776static struct reggroup *i386_mmx_reggroup;
2777
2778static void
2779i386_init_reggroups (void)
2780{
2781 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2782 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2783}
2784
2785static void
2786i386_add_reggroups (struct gdbarch *gdbarch)
2787{
2788 reggroup_add (gdbarch, i386_sse_reggroup);
2789 reggroup_add (gdbarch, i386_mmx_reggroup);
2790 reggroup_add (gdbarch, general_reggroup);
2791 reggroup_add (gdbarch, float_reggroup);
2792 reggroup_add (gdbarch, all_reggroup);
2793 reggroup_add (gdbarch, save_reggroup);
2794 reggroup_add (gdbarch, restore_reggroup);
2795 reggroup_add (gdbarch, vector_reggroup);
2796 reggroup_add (gdbarch, system_reggroup);
2797}
2798
2799int
2800i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2801 struct reggroup *group)
2802{
1ba53b71
L
2803 int sse_regnum_p, fp_regnum_p, mmx_regnum_p, byte_regnum_p,
2804 word_regnum_p, dword_regnum_p;
acd5c798 2805
1ba53b71
L
2806 /* Don't include pseudo registers, except for MMX, in any register
2807 groups. */
2808 byte_regnum_p = i386_byte_regnum_p (gdbarch, regnum);
2809 if (byte_regnum_p)
2810 return 0;
2811
2812 word_regnum_p = i386_word_regnum_p (gdbarch, regnum);
2813 if (word_regnum_p)
2814 return 0;
2815
2816 dword_regnum_p = i386_dword_regnum_p (gdbarch, regnum);
2817 if (dword_regnum_p)
2818 return 0;
2819
2820 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
2821 if (group == i386_mmx_reggroup)
2822 return mmx_regnum_p;
1ba53b71
L
2823
2824 sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2825 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2826 if (group == i386_sse_reggroup)
2827 return sse_regnum_p;
2828 if (group == vector_reggroup)
1ba53b71
L
2829 return mmx_regnum_p || sse_regnum_p;
2830
2831 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2832 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
2833 if (group == float_reggroup)
2834 return fp_regnum_p;
1ba53b71 2835
38c968cf 2836 if (group == general_reggroup)
1ba53b71
L
2837 return (!fp_regnum_p
2838 && !mmx_regnum_p
2839 && !sse_regnum_p
2840 && !byte_regnum_p
2841 && !word_regnum_p
2842 && !dword_regnum_p);
acd5c798 2843
38c968cf
AC
2844 return default_register_reggroup_p (gdbarch, regnum, group);
2845}
38c968cf 2846\f
acd5c798 2847
f837910f
MK
2848/* Get the ARGIth function argument for the current function. */
2849
42c466d7 2850static CORE_ADDR
143985b7
AF
2851i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2852 struct type *type)
2853{
e17a4113
UW
2854 struct gdbarch *gdbarch = get_frame_arch (frame);
2855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f837910f 2856 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 2857 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
2858}
2859
514f746b
AR
2860static void
2861i386_skip_permanent_breakpoint (struct regcache *regcache)
2862{
2863 CORE_ADDR current_pc = regcache_read_pc (regcache);
2864
2865 /* On i386, breakpoint is exactly 1 byte long, so we just
2866 adjust the PC in the regcache. */
2867 current_pc += 1;
2868 regcache_write_pc (regcache, current_pc);
2869}
2870
2871
7ad10968
HZ
2872#define PREFIX_REPZ 0x01
2873#define PREFIX_REPNZ 0x02
2874#define PREFIX_LOCK 0x04
2875#define PREFIX_DATA 0x08
2876#define PREFIX_ADDR 0x10
473f17b0 2877
7ad10968
HZ
2878/* operand size */
2879enum
2880{
2881 OT_BYTE = 0,
2882 OT_WORD,
2883 OT_LONG,
cf648174 2884 OT_QUAD,
7ad10968 2885};
473f17b0 2886
7ad10968
HZ
2887/* i386 arith/logic operations */
2888enum
2889{
2890 OP_ADDL,
2891 OP_ORL,
2892 OP_ADCL,
2893 OP_SBBL,
2894 OP_ANDL,
2895 OP_SUBL,
2896 OP_XORL,
2897 OP_CMPL,
2898};
5716833c 2899
7ad10968
HZ
2900struct i386_record_s
2901{
cf648174 2902 struct gdbarch *gdbarch;
7ad10968 2903 struct regcache *regcache;
df61f520 2904 CORE_ADDR orig_addr;
7ad10968
HZ
2905 CORE_ADDR addr;
2906 int aflag;
2907 int dflag;
2908 int override;
2909 uint8_t modrm;
2910 uint8_t mod, reg, rm;
2911 int ot;
cf648174
HZ
2912 uint8_t rex_x;
2913 uint8_t rex_b;
2914 int rip_offset;
2915 int popl_esp_hack;
2916 const int *regmap;
7ad10968 2917};
5716833c 2918
7ad10968
HZ
2919/* Parse "modrm" part in current memory address that irp->addr point to
2920 Return -1 if something wrong. */
5716833c 2921
7ad10968
HZ
2922static int
2923i386_record_modrm (struct i386_record_s *irp)
2924{
cf648174 2925 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 2926
7ad10968
HZ
2927 if (target_read_memory (irp->addr, &irp->modrm, 1))
2928 {
2929 if (record_debug)
2930 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
2931 "addr %s len = 1.\n"),
2932 paddress (gdbarch, irp->addr));
7ad10968
HZ
2933 return -1;
2934 }
2935 irp->addr++;
2936 irp->mod = (irp->modrm >> 6) & 3;
2937 irp->reg = (irp->modrm >> 3) & 7;
2938 irp->rm = irp->modrm & 7;
5716833c 2939
7ad10968
HZ
2940 return 0;
2941}
d2a7c97a 2942
7ad10968
HZ
2943/* Get the memory address that current instruction write to and set it to
2944 the argument "addr".
2945 Return -1 if something wrong. */
8201327c 2946
7ad10968 2947static int
cf648174 2948i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 2949{
cf648174 2950 struct gdbarch *gdbarch = irp->gdbarch;
648d0c8b
MS
2951 int8_t addr8;
2952 int16_t addr16;
2953 int32_t addr32;
2954 ULONGEST addr64;
21d0e8a4 2955
7ad10968
HZ
2956 *addr = 0;
2957 if (irp->aflag)
2958 {
2959 /* 32 bits */
2960 int havesib = 0;
2961 uint8_t scale = 0;
648d0c8b 2962 uint8_t byte;
7ad10968
HZ
2963 uint8_t index = 0;
2964 uint8_t base = irp->rm;
896fb97d 2965
7ad10968
HZ
2966 if (base == 4)
2967 {
2968 havesib = 1;
648d0c8b 2969 if (target_read_memory (irp->addr, &byte, 1))
7ad10968
HZ
2970 {
2971 if (record_debug)
2972 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
2973 "at addr %s len = 1.\n"),
2974 paddress (gdbarch, irp->addr));
7ad10968
HZ
2975 return -1;
2976 }
2977 irp->addr++;
648d0c8b
MS
2978 scale = (byte >> 6) & 3;
2979 index = ((byte >> 3) & 7) | irp->rex_x;
2980 base = (byte & 7);
7ad10968 2981 }
cf648174 2982 base |= irp->rex_b;
21d0e8a4 2983
7ad10968
HZ
2984 switch (irp->mod)
2985 {
2986 case 0:
2987 if ((base & 7) == 5)
2988 {
2989 base = 0xff;
648d0c8b 2990 if (target_read_memory (irp->addr, (gdb_byte *) &addr32, 4))
7ad10968
HZ
2991 {
2992 if (record_debug)
2993 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
2994 "memory at addr %s len = 4.\n"),
2995 paddress (gdbarch, irp->addr));
7ad10968
HZ
2996 return -1;
2997 }
2998 irp->addr += 4;
648d0c8b 2999 *addr = addr32;
cf648174
HZ
3000 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3001 *addr += irp->addr + irp->rip_offset;
7ad10968
HZ
3002 }
3003 else
3004 {
3005 *addr = 0;
3006 }
3007 break;
3008 case 1:
648d0c8b 3009 if (target_read_memory (irp->addr, &addr8, 1))
7ad10968
HZ
3010 {
3011 if (record_debug)
3012 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3013 "at addr %s len = 1.\n"),
3014 paddress (gdbarch, irp->addr));
7ad10968
HZ
3015 return -1;
3016 }
3017 irp->addr++;
648d0c8b 3018 *addr = addr8;
7ad10968
HZ
3019 break;
3020 case 2:
648d0c8b 3021 if (target_read_memory (irp->addr, (gdb_byte *) &addr32, 4))
7ad10968
HZ
3022 {
3023 if (record_debug)
3024 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3025 "at addr %s len = 4.\n"),
3026 paddress (gdbarch, irp->addr));
7ad10968
HZ
3027 return -1;
3028 }
648d0c8b 3029 *addr = addr32;
7ad10968
HZ
3030 irp->addr += 4;
3031 break;
3032 }
356a6b3e 3033
648d0c8b 3034 addr64 = 0;
7ad10968 3035 if (base != 0xff)
cf648174
HZ
3036 {
3037 if (base == 4 && irp->popl_esp_hack)
3038 *addr += irp->popl_esp_hack;
3039 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
648d0c8b 3040 &addr64);
7ad10968 3041 }
cf648174
HZ
3042 if (irp->aflag == 2)
3043 {
648d0c8b 3044 *addr += addr64;
cf648174
HZ
3045 }
3046 else
648d0c8b 3047 *addr = (uint32_t) (addr64 + *addr);
c4fc7f1b 3048
7ad10968
HZ
3049 if (havesib && (index != 4 || scale != 0))
3050 {
cf648174 3051 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
648d0c8b 3052 &addr64);
cf648174 3053 if (irp->aflag == 2)
648d0c8b 3054 *addr += addr64 << scale;
cf648174 3055 else
648d0c8b 3056 *addr = (uint32_t) (*addr + (addr64 << scale));
7ad10968
HZ
3057 }
3058 }
3059 else
3060 {
3061 /* 16 bits */
3062 switch (irp->mod)
3063 {
3064 case 0:
3065 if (irp->rm == 6)
3066 {
648d0c8b 3067 if (target_read_memory (irp->addr, (gdb_byte *) &addr16, 2))
7ad10968
HZ
3068 {
3069 if (record_debug)
3070 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3071 "memory at addr %s len = 2.\n"),
3072 paddress (gdbarch, irp->addr));
7ad10968
HZ
3073 return -1;
3074 }
3075 irp->addr += 2;
648d0c8b 3076 *addr = addr16;
7ad10968
HZ
3077 irp->rm = 0;
3078 goto no_rm;
3079 }
3080 else
3081 {
3082 *addr = 0;
3083 }
3084 break;
3085 case 1:
648d0c8b 3086 if (target_read_memory (irp->addr, &addr8, 1))
7ad10968
HZ
3087 {
3088 if (record_debug)
3089 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3090 "at addr %s len = 1.\n"),
3091 paddress (gdbarch, irp->addr));
7ad10968
HZ
3092 return -1;
3093 }
3094 irp->addr++;
648d0c8b 3095 *addr = addr8;
7ad10968
HZ
3096 break;
3097 case 2:
648d0c8b 3098 if (target_read_memory (irp->addr, (gdb_byte *) &addr16, 2))
7ad10968
HZ
3099 {
3100 if (record_debug)
3101 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3102 "at addr %s len = 2.\n"),
3103 paddress (gdbarch, irp->addr));
7ad10968
HZ
3104 return -1;
3105 }
3106 irp->addr += 2;
648d0c8b 3107 *addr = addr16;
7ad10968
HZ
3108 break;
3109 }
c4fc7f1b 3110
7ad10968
HZ
3111 switch (irp->rm)
3112 {
3113 case 0:
cf648174
HZ
3114 regcache_raw_read_unsigned (irp->regcache,
3115 irp->regmap[X86_RECORD_REBX_REGNUM],
648d0c8b
MS
3116 &addr64);
3117 *addr = (uint32_t) (*addr + addr64);
cf648174
HZ
3118 regcache_raw_read_unsigned (irp->regcache,
3119 irp->regmap[X86_RECORD_RESI_REGNUM],
648d0c8b
MS
3120 &addr64);
3121 *addr = (uint32_t) (*addr + addr64);
7ad10968
HZ
3122 break;
3123 case 1:
cf648174
HZ
3124 regcache_raw_read_unsigned (irp->regcache,
3125 irp->regmap[X86_RECORD_REBX_REGNUM],
648d0c8b
MS
3126 &addr64);
3127 *addr = (uint32_t) (*addr + addr64);
cf648174
HZ
3128 regcache_raw_read_unsigned (irp->regcache,
3129 irp->regmap[X86_RECORD_REDI_REGNUM],
648d0c8b
MS
3130 &addr64);
3131 *addr = (uint32_t) (*addr + addr64);
7ad10968
HZ
3132 break;
3133 case 2:
cf648174
HZ
3134 regcache_raw_read_unsigned (irp->regcache,
3135 irp->regmap[X86_RECORD_REBP_REGNUM],
648d0c8b
MS
3136 &addr64);
3137 *addr = (uint32_t) (*addr + addr64);
cf648174
HZ
3138 regcache_raw_read_unsigned (irp->regcache,
3139 irp->regmap[X86_RECORD_RESI_REGNUM],
648d0c8b
MS
3140 &addr64);
3141 *addr = (uint32_t) (*addr + addr64);
7ad10968
HZ
3142 break;
3143 case 3:
cf648174
HZ
3144 regcache_raw_read_unsigned (irp->regcache,
3145 irp->regmap[X86_RECORD_REBP_REGNUM],
648d0c8b
MS
3146 &addr64);
3147 *addr = (uint32_t) (*addr + addr64);
cf648174
HZ
3148 regcache_raw_read_unsigned (irp->regcache,
3149 irp->regmap[X86_RECORD_REDI_REGNUM],
648d0c8b
MS
3150 &addr64);
3151 *addr = (uint32_t) (*addr + addr64);
7ad10968
HZ
3152 break;
3153 case 4:
cf648174
HZ
3154 regcache_raw_read_unsigned (irp->regcache,
3155 irp->regmap[X86_RECORD_RESI_REGNUM],
648d0c8b
MS
3156 &addr64);
3157 *addr = (uint32_t) (*addr + addr64);
7ad10968
HZ
3158 break;
3159 case 5:
cf648174
HZ
3160 regcache_raw_read_unsigned (irp->regcache,
3161 irp->regmap[X86_RECORD_REDI_REGNUM],
648d0c8b
MS
3162 &addr64);
3163 *addr = (uint32_t) (*addr + addr64);
7ad10968
HZ
3164 break;
3165 case 6:
cf648174
HZ
3166 regcache_raw_read_unsigned (irp->regcache,
3167 irp->regmap[X86_RECORD_REBP_REGNUM],
648d0c8b
MS
3168 &addr64);
3169 *addr = (uint32_t) (*addr + addr64);
7ad10968
HZ
3170 break;
3171 case 7:
cf648174
HZ
3172 regcache_raw_read_unsigned (irp->regcache,
3173 irp->regmap[X86_RECORD_REBX_REGNUM],
648d0c8b
MS
3174 &addr64);
3175 *addr = (uint32_t) (*addr + addr64);
7ad10968
HZ
3176 break;
3177 }
3178 *addr &= 0xffff;
3179 }
c4fc7f1b 3180
01fe1b41 3181 no_rm:
7ad10968
HZ
3182 return 0;
3183}
c4fc7f1b 3184
7ad10968
HZ
3185/* Record the value of the memory that willbe changed in current instruction
3186 to "record_arch_list".
3187 Return -1 if something wrong. */
356a6b3e 3188
7ad10968
HZ
3189static int
3190i386_record_lea_modrm (struct i386_record_s *irp)
3191{
cf648174
HZ
3192 struct gdbarch *gdbarch = irp->gdbarch;
3193 uint64_t addr;
356a6b3e 3194
d7877f7e 3195 if (irp->override >= 0)
7ad10968 3196 {
df61f520
HZ
3197 warning (_("Process record ignores the memory change "
3198 "of instruction at address %s because it "
3199 "can't get the value of the segment register."),
3200 paddress (gdbarch, irp->orig_addr));
7ad10968
HZ
3201 return 0;
3202 }
61113f8b 3203
7ad10968
HZ
3204 if (i386_record_lea_modrm_addr (irp, &addr))
3205 return -1;
96297dab 3206
7ad10968
HZ
3207 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3208 return -1;
a62cc96e 3209
7ad10968
HZ
3210 return 0;
3211}
b6197528 3212
cf648174
HZ
3213/* Record the push operation to "record_arch_list".
3214 Return -1 if something wrong. */
3215
3216static int
3217i386_record_push (struct i386_record_s *irp, int size)
3218{
648d0c8b 3219 ULONGEST addr;
cf648174
HZ
3220
3221 if (record_arch_list_add_reg (irp->regcache,
3222 irp->regmap[X86_RECORD_RESP_REGNUM]))
3223 return -1;
3224 regcache_raw_read_unsigned (irp->regcache,
3225 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b
MS
3226 &addr);
3227 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
3228 return -1;
3229
3230 return 0;
3231}
3232
0289bdd7
MS
3233
3234/* Defines contents to record. */
3235#define I386_SAVE_FPU_REGS 0xfffd
3236#define I386_SAVE_FPU_ENV 0xfffe
3237#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3238
3239/* Record the value of floating point registers which will be changed by the
3240 current instruction to "record_arch_list". Return -1 if something is wrong.
3241*/
3242
3243static int i386_record_floats (struct gdbarch *gdbarch,
3244 struct i386_record_s *ir,
3245 uint32_t iregnum)
3246{
3247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3248 int i;
3249
3250 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3251 happen. Currently we store st0-st7 registers, but we need not store all
3252 registers all the time, in future we use ftag register and record only
3253 those who are not marked as an empty. */
3254
3255 if (I386_SAVE_FPU_REGS == iregnum)
3256 {
3257 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3258 {
3259 if (record_arch_list_add_reg (ir->regcache, i))
3260 return -1;
3261 }
3262 }
3263 else if (I386_SAVE_FPU_ENV == iregnum)
3264 {
3265 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3266 {
3267 if (record_arch_list_add_reg (ir->regcache, i))
3268 return -1;
3269 }
3270 }
3271 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3272 {
3273 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3274 {
3275 if (record_arch_list_add_reg (ir->regcache, i))
3276 return -1;
3277 }
3278 }
3279 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3280 (iregnum <= I387_FOP_REGNUM (tdep)))
3281 {
3282 if (record_arch_list_add_reg (ir->regcache,iregnum))
3283 return -1;
3284 }
3285 else
3286 {
3287 /* Parameter error. */
3288 return -1;
3289 }
3290 if(I386_SAVE_FPU_ENV != iregnum)
3291 {
3292 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3293 {
3294 if (record_arch_list_add_reg (ir->regcache, i))
3295 return -1;
3296 }
3297 }
3298 return 0;
3299}
3300
7ad10968
HZ
3301/* Parse the current instruction and record the values of the registers and
3302 memory that will be changed in current instruction to "record_arch_list".
3303 Return -1 if something wrong. */
8201327c 3304
cf648174
HZ
3305#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3306 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3307
a6b808b4 3308int
7ad10968 3309i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 3310 CORE_ADDR input_addr)
7ad10968
HZ
3311{
3312 int prefixes = 0;
580879fc 3313 int regnum = 0;
425b824a
MS
3314 uint32_t opcode;
3315 uint8_t opcode8;
648d0c8b 3316 ULONGEST addr;
7ad10968 3317 struct i386_record_s ir;
0289bdd7 3318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
3319 int rex = 0;
3320 uint8_t rex_w = -1;
3321 uint8_t rex_r = 0;
7ad10968 3322
8408d274 3323 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 3324 ir.regcache = regcache;
648d0c8b
MS
3325 ir.addr = input_addr;
3326 ir.orig_addr = input_addr;
7ad10968
HZ
3327 ir.aflag = 1;
3328 ir.dflag = 1;
cf648174
HZ
3329 ir.override = -1;
3330 ir.popl_esp_hack = 0;
3331 ir.regmap = gdbarch_tdep (gdbarch)->record_regmap;
3332 ir.gdbarch = gdbarch;
7ad10968
HZ
3333
3334 if (record_debug > 1)
3335 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
3336 "addr = %s\n",
3337 paddress (gdbarch, ir.addr));
7ad10968
HZ
3338
3339 /* prefixes */
3340 while (1)
3341 {
425b824a 3342 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
3343 {
3344 if (record_debug)
3345 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3346 "addr %s len = 1.\n"),
3347 paddress (gdbarch, ir.addr));
7ad10968
HZ
3348 return -1;
3349 }
3350 ir.addr++;
425b824a 3351 switch (opcode8) /* Instruction prefixes */
7ad10968 3352 {
01fe1b41 3353 case REPE_PREFIX_OPCODE:
7ad10968
HZ
3354 prefixes |= PREFIX_REPZ;
3355 break;
01fe1b41 3356 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
3357 prefixes |= PREFIX_REPNZ;
3358 break;
01fe1b41 3359 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
3360 prefixes |= PREFIX_LOCK;
3361 break;
01fe1b41 3362 case CS_PREFIX_OPCODE:
cf648174 3363 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 3364 break;
01fe1b41 3365 case SS_PREFIX_OPCODE:
cf648174 3366 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 3367 break;
01fe1b41 3368 case DS_PREFIX_OPCODE:
cf648174 3369 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 3370 break;
01fe1b41 3371 case ES_PREFIX_OPCODE:
cf648174 3372 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 3373 break;
01fe1b41 3374 case FS_PREFIX_OPCODE:
cf648174 3375 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 3376 break;
01fe1b41 3377 case GS_PREFIX_OPCODE:
cf648174 3378 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 3379 break;
01fe1b41 3380 case DATA_PREFIX_OPCODE:
7ad10968
HZ
3381 prefixes |= PREFIX_DATA;
3382 break;
01fe1b41 3383 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
3384 prefixes |= PREFIX_ADDR;
3385 break;
d691bec7
MS
3386 case 0x40: /* i386 inc %eax */
3387 case 0x41: /* i386 inc %ecx */
3388 case 0x42: /* i386 inc %edx */
3389 case 0x43: /* i386 inc %ebx */
3390 case 0x44: /* i386 inc %esp */
3391 case 0x45: /* i386 inc %ebp */
3392 case 0x46: /* i386 inc %esi */
3393 case 0x47: /* i386 inc %edi */
3394 case 0x48: /* i386 dec %eax */
3395 case 0x49: /* i386 dec %ecx */
3396 case 0x4a: /* i386 dec %edx */
3397 case 0x4b: /* i386 dec %ebx */
3398 case 0x4c: /* i386 dec %esp */
3399 case 0x4d: /* i386 dec %ebp */
3400 case 0x4e: /* i386 dec %esi */
3401 case 0x4f: /* i386 dec %edi */
3402 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
3403 {
3404 /* REX */
3405 rex = 1;
425b824a
MS
3406 rex_w = (opcode8 >> 3) & 1;
3407 rex_r = (opcode8 & 0x4) << 1;
3408 ir.rex_x = (opcode8 & 0x2) << 2;
3409 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 3410 }
d691bec7
MS
3411 else /* 32 bit target */
3412 goto out_prefixes;
cf648174 3413 break;
7ad10968
HZ
3414 default:
3415 goto out_prefixes;
3416 break;
3417 }
3418 }
01fe1b41 3419 out_prefixes:
cf648174
HZ
3420 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3421 {
3422 ir.dflag = 2;
3423 }
3424 else
3425 {
3426 if (prefixes & PREFIX_DATA)
3427 ir.dflag ^= 1;
3428 }
7ad10968
HZ
3429 if (prefixes & PREFIX_ADDR)
3430 ir.aflag ^= 1;
cf648174
HZ
3431 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3432 ir.aflag = 2;
7ad10968
HZ
3433
3434 /* now check op code */
425b824a 3435 opcode = (uint32_t) opcode8;
01fe1b41 3436 reswitch:
7ad10968
HZ
3437 switch (opcode)
3438 {
3439 case 0x0f:
425b824a 3440 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
3441 {
3442 if (record_debug)
3443 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3444 "addr %s len = 1.\n"),
3445 paddress (gdbarch, ir.addr));
7ad10968
HZ
3446 return -1;
3447 }
3448 ir.addr++;
425b824a 3449 opcode = (uint16_t) opcode8 | 0x0f00;
7ad10968
HZ
3450 goto reswitch;
3451 break;
93924b6b 3452
a38bba38 3453 case 0x00: /* arith & logic */
7ad10968
HZ
3454 case 0x01:
3455 case 0x02:
3456 case 0x03:
3457 case 0x04:
3458 case 0x05:
3459 case 0x08:
3460 case 0x09:
3461 case 0x0a:
3462 case 0x0b:
3463 case 0x0c:
3464 case 0x0d:
3465 case 0x10:
3466 case 0x11:
3467 case 0x12:
3468 case 0x13:
3469 case 0x14:
3470 case 0x15:
3471 case 0x18:
3472 case 0x19:
3473 case 0x1a:
3474 case 0x1b:
3475 case 0x1c:
3476 case 0x1d:
3477 case 0x20:
3478 case 0x21:
3479 case 0x22:
3480 case 0x23:
3481 case 0x24:
3482 case 0x25:
3483 case 0x28:
3484 case 0x29:
3485 case 0x2a:
3486 case 0x2b:
3487 case 0x2c:
3488 case 0x2d:
3489 case 0x30:
3490 case 0x31:
3491 case 0x32:
3492 case 0x33:
3493 case 0x34:
3494 case 0x35:
3495 case 0x38:
3496 case 0x39:
3497 case 0x3a:
3498 case 0x3b:
3499 case 0x3c:
3500 case 0x3d:
3501 if (((opcode >> 3) & 7) != OP_CMPL)
3502 {
3503 if ((opcode & 1) == 0)
3504 ir.ot = OT_BYTE;
3505 else
3506 ir.ot = ir.dflag + OT_WORD;
93924b6b 3507
7ad10968
HZ
3508 switch ((opcode >> 1) & 3)
3509 {
a38bba38 3510 case 0: /* OP Ev, Gv */
7ad10968
HZ
3511 if (i386_record_modrm (&ir))
3512 return -1;
3513 if (ir.mod != 3)
3514 {
3515 if (i386_record_lea_modrm (&ir))
3516 return -1;
3517 }
3518 else
3519 {
cf648174
HZ
3520 ir.rm |= ir.rex_b;
3521 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3522 ir.rm &= 0x3;
cf648174 3523 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
3524 }
3525 break;
a38bba38 3526 case 1: /* OP Gv, Ev */
7ad10968
HZ
3527 if (i386_record_modrm (&ir))
3528 return -1;
cf648174
HZ
3529 ir.reg |= rex_r;
3530 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3531 ir.reg &= 0x3;
cf648174 3532 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 3533 break;
a38bba38 3534 case 2: /* OP A, Iv */
cf648174 3535 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
3536 break;
3537 }
3538 }
cf648174 3539 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3540 break;
42fdc8df 3541
a38bba38 3542 case 0x80: /* GRP1 */
7ad10968
HZ
3543 case 0x81:
3544 case 0x82:
3545 case 0x83:
3546 if (i386_record_modrm (&ir))
3547 return -1;
8201327c 3548
7ad10968
HZ
3549 if (ir.reg != OP_CMPL)
3550 {
3551 if ((opcode & 1) == 0)
3552 ir.ot = OT_BYTE;
3553 else
3554 ir.ot = ir.dflag + OT_WORD;
28fc6740 3555
7ad10968
HZ
3556 if (ir.mod != 3)
3557 {
cf648174
HZ
3558 if (opcode == 0x83)
3559 ir.rip_offset = 1;
3560 else
3561 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
3562 if (i386_record_lea_modrm (&ir))
3563 return -1;
3564 }
3565 else
cf648174 3566 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 3567 }
cf648174 3568 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3569 break;
5e3397bb 3570
a38bba38 3571 case 0x40: /* inc */
7ad10968
HZ
3572 case 0x41:
3573 case 0x42:
3574 case 0x43:
3575 case 0x44:
3576 case 0x45:
3577 case 0x46:
3578 case 0x47:
a38bba38
MS
3579
3580 case 0x48: /* dec */
7ad10968
HZ
3581 case 0x49:
3582 case 0x4a:
3583 case 0x4b:
3584 case 0x4c:
3585 case 0x4d:
3586 case 0x4e:
3587 case 0x4f:
a38bba38 3588
cf648174
HZ
3589 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3590 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3591 break;
acd5c798 3592
a38bba38 3593 case 0xf6: /* GRP3 */
7ad10968
HZ
3594 case 0xf7:
3595 if ((opcode & 1) == 0)
3596 ir.ot = OT_BYTE;
3597 else
3598 ir.ot = ir.dflag + OT_WORD;
3599 if (i386_record_modrm (&ir))
3600 return -1;
acd5c798 3601
cf648174
HZ
3602 if (ir.mod != 3 && ir.reg == 0)
3603 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3604
7ad10968
HZ
3605 switch (ir.reg)
3606 {
a38bba38 3607 case 0: /* test */
cf648174 3608 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3609 break;
a38bba38
MS
3610 case 2: /* not */
3611 case 3: /* neg */
7ad10968
HZ
3612 if (ir.mod != 3)
3613 {
3614 if (i386_record_lea_modrm (&ir))
3615 return -1;
3616 }
3617 else
3618 {
cf648174
HZ
3619 ir.rm |= ir.rex_b;
3620 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3621 ir.rm &= 0x3;
cf648174 3622 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 3623 }
a38bba38 3624 if (ir.reg == 3) /* neg */
cf648174 3625 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3626 break;
a38bba38
MS
3627 case 4: /* mul */
3628 case 5: /* imul */
3629 case 6: /* div */
3630 case 7: /* idiv */
cf648174 3631 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 3632 if (ir.ot != OT_BYTE)
cf648174
HZ
3633 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3634 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3635 break;
3636 default:
3637 ir.addr -= 2;
3638 opcode = opcode << 8 | ir.modrm;
3639 goto no_support;
3640 break;
3641 }
3642 break;
3643
a38bba38
MS
3644 case 0xfe: /* GRP4 */
3645 case 0xff: /* GRP5 */
7ad10968
HZ
3646 if (i386_record_modrm (&ir))
3647 return -1;
3648 if (ir.reg >= 2 && opcode == 0xfe)
3649 {
3650 ir.addr -= 2;
3651 opcode = opcode << 8 | ir.modrm;
3652 goto no_support;
3653 }
7ad10968
HZ
3654 switch (ir.reg)
3655 {
a38bba38
MS
3656 case 0: /* inc */
3657 case 1: /* dec */
cf648174
HZ
3658 if ((opcode & 1) == 0)
3659 ir.ot = OT_BYTE;
3660 else
3661 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
3662 if (ir.mod != 3)
3663 {
3664 if (i386_record_lea_modrm (&ir))
3665 return -1;
3666 }
3667 else
3668 {
cf648174
HZ
3669 ir.rm |= ir.rex_b;
3670 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3671 ir.rm &= 0x3;
cf648174 3672 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 3673 }
cf648174 3674 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3675 break;
a38bba38 3676 case 2: /* call */
cf648174
HZ
3677 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3678 ir.dflag = 2;
3679 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 3680 return -1;
cf648174 3681 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3682 break;
a38bba38 3683 case 3: /* lcall */
cf648174
HZ
3684 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
3685 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 3686 return -1;
cf648174 3687 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3688 break;
a38bba38
MS
3689 case 4: /* jmp */
3690 case 5: /* ljmp */
cf648174
HZ
3691 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3692 break;
a38bba38 3693 case 6: /* push */
cf648174
HZ
3694 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3695 ir.dflag = 2;
3696 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3697 return -1;
7ad10968
HZ
3698 break;
3699 default:
3700 ir.addr -= 2;
3701 opcode = opcode << 8 | ir.modrm;
3702 goto no_support;
3703 break;
3704 }
3705 break;
3706
a38bba38 3707 case 0x84: /* test */
7ad10968
HZ
3708 case 0x85:
3709 case 0xa8:
3710 case 0xa9:
cf648174 3711 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3712 break;
3713
a38bba38 3714 case 0x98: /* CWDE/CBW */
cf648174 3715 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
3716 break;
3717
a38bba38 3718 case 0x99: /* CDQ/CWD */
cf648174
HZ
3719 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3720 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
3721 break;
3722
a38bba38 3723 case 0x0faf: /* imul */
7ad10968
HZ
3724 case 0x69:
3725 case 0x6b:
3726 ir.ot = ir.dflag + OT_WORD;
3727 if (i386_record_modrm (&ir))
3728 return -1;
cf648174
HZ
3729 if (opcode == 0x69)
3730 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3731 else if (opcode == 0x6b)
3732 ir.rip_offset = 1;
3733 ir.reg |= rex_r;
3734 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3735 ir.reg &= 0x3;
cf648174
HZ
3736 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3737 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3738 break;
3739
a38bba38 3740 case 0x0fc0: /* xadd */
7ad10968
HZ
3741 case 0x0fc1:
3742 if ((opcode & 1) == 0)
3743 ir.ot = OT_BYTE;
3744 else
3745 ir.ot = ir.dflag + OT_WORD;
3746 if (i386_record_modrm (&ir))
3747 return -1;
cf648174 3748 ir.reg |= rex_r;
7ad10968
HZ
3749 if (ir.mod == 3)
3750 {
cf648174 3751 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3752 ir.reg &= 0x3;
cf648174
HZ
3753 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3754 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3755 ir.rm &= 0x3;
cf648174 3756 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
3757 }
3758 else
3759 {
3760 if (i386_record_lea_modrm (&ir))
3761 return -1;
cf648174 3762 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3763 ir.reg &= 0x3;
cf648174 3764 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 3765 }
cf648174 3766 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3767 break;
3768
a38bba38 3769 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
3770 case 0x0fb1:
3771 if ((opcode & 1) == 0)
3772 ir.ot = OT_BYTE;
3773 else
3774 ir.ot = ir.dflag + OT_WORD;
3775 if (i386_record_modrm (&ir))
3776 return -1;
3777 if (ir.mod == 3)
3778 {
cf648174
HZ
3779 ir.reg |= rex_r;
3780 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3781 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3782 ir.reg &= 0x3;
cf648174 3783 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
3784 }
3785 else
3786 {
cf648174 3787 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
3788 if (i386_record_lea_modrm (&ir))
3789 return -1;
3790 }
cf648174 3791 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3792 break;
3793
a38bba38 3794 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
3795 if (i386_record_modrm (&ir))
3796 return -1;
3797 if (ir.mod == 3)
3798 {
3799 ir.addr -= 2;
3800 opcode = opcode << 8 | ir.modrm;
3801 goto no_support;
3802 }
cf648174
HZ
3803 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3804 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
3805 if (i386_record_lea_modrm (&ir))
3806 return -1;
cf648174 3807 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3808 break;
3809
a38bba38 3810 case 0x50: /* push */
7ad10968
HZ
3811 case 0x51:
3812 case 0x52:
3813 case 0x53:
3814 case 0x54:
3815 case 0x55:
3816 case 0x56:
3817 case 0x57:
3818 case 0x68:
3819 case 0x6a:
cf648174
HZ
3820 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3821 ir.dflag = 2;
3822 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3823 return -1;
3824 break;
3825
a38bba38
MS
3826 case 0x06: /* push es */
3827 case 0x0e: /* push cs */
3828 case 0x16: /* push ss */
3829 case 0x1e: /* push ds */
cf648174
HZ
3830 if (ir.regmap[X86_RECORD_R8_REGNUM])
3831 {
3832 ir.addr -= 1;
3833 goto no_support;
3834 }
3835 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3836 return -1;
3837 break;
3838
a38bba38
MS
3839 case 0x0fa0: /* push fs */
3840 case 0x0fa8: /* push gs */
cf648174
HZ
3841 if (ir.regmap[X86_RECORD_R8_REGNUM])
3842 {
3843 ir.addr -= 2;
3844 goto no_support;
3845 }
3846 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 3847 return -1;
cf648174
HZ
3848 break;
3849
a38bba38 3850 case 0x60: /* pusha */
cf648174
HZ
3851 if (ir.regmap[X86_RECORD_R8_REGNUM])
3852 {
3853 ir.addr -= 1;
3854 goto no_support;
3855 }
3856 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
3857 return -1;
3858 break;
3859
a38bba38 3860 case 0x58: /* pop */
7ad10968
HZ
3861 case 0x59:
3862 case 0x5a:
3863 case 0x5b:
3864 case 0x5c:
3865 case 0x5d:
3866 case 0x5e:
3867 case 0x5f:
cf648174
HZ
3868 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3869 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
3870 break;
3871
a38bba38 3872 case 0x61: /* popa */
cf648174
HZ
3873 if (ir.regmap[X86_RECORD_R8_REGNUM])
3874 {
3875 ir.addr -= 1;
3876 goto no_support;
7ad10968 3877 }
425b824a
MS
3878 for (regnum = X86_RECORD_REAX_REGNUM;
3879 regnum <= X86_RECORD_REDI_REGNUM;
3880 regnum++)
3881 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
3882 break;
3883
a38bba38 3884 case 0x8f: /* pop */
cf648174
HZ
3885 if (ir.regmap[X86_RECORD_R8_REGNUM])
3886 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
3887 else
3888 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
3889 if (i386_record_modrm (&ir))
3890 return -1;
3891 if (ir.mod == 3)
cf648174 3892 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
3893 else
3894 {
cf648174 3895 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
3896 if (i386_record_lea_modrm (&ir))
3897 return -1;
3898 }
cf648174 3899 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
3900 break;
3901
a38bba38 3902 case 0xc8: /* enter */
cf648174
HZ
3903 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
3904 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3905 ir.dflag = 2;
3906 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
3907 return -1;
3908 break;
3909
a38bba38 3910 case 0xc9: /* leave */
cf648174
HZ
3911 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3912 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
3913 break;
3914
a38bba38 3915 case 0x07: /* pop es */
cf648174
HZ
3916 if (ir.regmap[X86_RECORD_R8_REGNUM])
3917 {
3918 ir.addr -= 1;
3919 goto no_support;
3920 }
3921 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3922 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
3923 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3924 break;
3925
a38bba38 3926 case 0x17: /* pop ss */
cf648174
HZ
3927 if (ir.regmap[X86_RECORD_R8_REGNUM])
3928 {
3929 ir.addr -= 1;
3930 goto no_support;
3931 }
3932 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3933 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
3934 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3935 break;
3936
a38bba38 3937 case 0x1f: /* pop ds */
cf648174
HZ
3938 if (ir.regmap[X86_RECORD_R8_REGNUM])
3939 {
3940 ir.addr -= 1;
3941 goto no_support;
3942 }
3943 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3944 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
3945 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3946 break;
3947
a38bba38 3948 case 0x0fa1: /* pop fs */
cf648174
HZ
3949 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3950 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
3951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3952 break;
3953
a38bba38 3954 case 0x0fa9: /* pop gs */
cf648174
HZ
3955 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3956 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
3957 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3958 break;
3959
a38bba38 3960 case 0x88: /* mov */
7ad10968
HZ
3961 case 0x89:
3962 case 0xc6:
3963 case 0xc7:
3964 if ((opcode & 1) == 0)
3965 ir.ot = OT_BYTE;
3966 else
3967 ir.ot = ir.dflag + OT_WORD;
3968
3969 if (i386_record_modrm (&ir))
3970 return -1;
3971
3972 if (ir.mod != 3)
3973 {
cf648174
HZ
3974 if (opcode == 0xc6 || opcode == 0xc7)
3975 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
3976 if (i386_record_lea_modrm (&ir))
3977 return -1;
3978 }
3979 else
3980 {
cf648174
HZ
3981 if (opcode == 0xc6 || opcode == 0xc7)
3982 ir.rm |= ir.rex_b;
3983 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3984 ir.rm &= 0x3;
cf648174 3985 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 3986 }
7ad10968 3987 break;
cf648174 3988
a38bba38 3989 case 0x8a: /* mov */
7ad10968
HZ
3990 case 0x8b:
3991 if ((opcode & 1) == 0)
3992 ir.ot = OT_BYTE;
3993 else
3994 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
3995 if (i386_record_modrm (&ir))
3996 return -1;
cf648174
HZ
3997 ir.reg |= rex_r;
3998 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3999 ir.reg &= 0x3;
cf648174
HZ
4000 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4001 break;
7ad10968 4002
a38bba38 4003 case 0x8c: /* mov seg */
cf648174 4004 if (i386_record_modrm (&ir))
7ad10968 4005 return -1;
cf648174
HZ
4006 if (ir.reg > 5)
4007 {
4008 ir.addr -= 2;
4009 opcode = opcode << 8 | ir.modrm;
4010 goto no_support;
4011 }
4012
4013 if (ir.mod == 3)
4014 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4015 else
4016 {
4017 ir.ot = OT_WORD;
4018 if (i386_record_lea_modrm (&ir))
4019 return -1;
4020 }
7ad10968
HZ
4021 break;
4022
a38bba38 4023 case 0x8e: /* mov seg */
7ad10968
HZ
4024 if (i386_record_modrm (&ir))
4025 return -1;
7ad10968
HZ
4026 switch (ir.reg)
4027 {
4028 case 0:
425b824a 4029 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
4030 break;
4031 case 2:
425b824a 4032 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
4033 break;
4034 case 3:
425b824a 4035 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
4036 break;
4037 case 4:
425b824a 4038 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
4039 break;
4040 case 5:
425b824a 4041 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
4042 break;
4043 default:
4044 ir.addr -= 2;
4045 opcode = opcode << 8 | ir.modrm;
4046 goto no_support;
4047 break;
4048 }
425b824a 4049 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174 4050 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4051 break;
4052
a38bba38
MS
4053 case 0x0fb6: /* movzbS */
4054 case 0x0fb7: /* movzwS */
4055 case 0x0fbe: /* movsbS */
4056 case 0x0fbf: /* movswS */
7ad10968
HZ
4057 if (i386_record_modrm (&ir))
4058 return -1;
cf648174 4059 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
4060 break;
4061
a38bba38 4062 case 0x8d: /* lea */
7ad10968
HZ
4063 if (i386_record_modrm (&ir))
4064 return -1;
4065 if (ir.mod == 3)
4066 {
4067 ir.addr -= 2;
4068 opcode = opcode << 8 | ir.modrm;
4069 goto no_support;
4070 }
7ad10968 4071 ir.ot = ir.dflag;
cf648174
HZ
4072 ir.reg |= rex_r;
4073 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4074 ir.reg &= 0x3;
cf648174 4075 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4076 break;
4077
a38bba38 4078 case 0xa0: /* mov EAX */
7ad10968 4079 case 0xa1:
a38bba38
MS
4080
4081 case 0xd7: /* xlat */
cf648174 4082 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4083 break;
4084
a38bba38 4085 case 0xa2: /* mov EAX */
7ad10968 4086 case 0xa3:
d7877f7e 4087 if (ir.override >= 0)
cf648174 4088 {
df61f520 4089 warning (_("Process record ignores the memory change "
926569ae 4090 "of instruction at address %s because "
df61f520
HZ
4091 "it can't get the value of the segment "
4092 "register."),
4093 paddress (gdbarch, ir.orig_addr));
cf648174
HZ
4094 }
4095 else
4096 {
4097 if ((opcode & 1) == 0)
4098 ir.ot = OT_BYTE;
4099 else
4100 ir.ot = ir.dflag + OT_WORD;
4101 if (ir.aflag == 2)
4102 {
648d0c8b
MS
4103 uint64_t addr64;
4104
4105 if (target_read_memory (ir.addr, (gdb_byte *) &addr64, 8))
cf648174
HZ
4106 {
4107 if (record_debug)
4108 printf_unfiltered (_("Process record: error reading "
4109 "memory at addr 0x%s len = 8.\n"),
4110 paddress (gdbarch, ir.addr));
4111 return -1;
4112 }
4113 ir.addr += 8;
648d0c8b 4114 addr = addr64;
cf648174
HZ
4115 }
4116 else if (ir.aflag)
4117 {
955db0c0
MS
4118 uint32_t addr32;
4119
4120 if (target_read_memory (ir.addr, (gdb_byte *) &addr32, 4))
cf648174
HZ
4121 {
4122 if (record_debug)
4123 printf_unfiltered (_("Process record: error reading "
4124 "memory at addr 0x%s len = 4.\n"),
4125 paddress (gdbarch, ir.addr));
4126 return -1;
4127 }
4128 ir.addr += 4;
648d0c8b 4129 addr = addr32;
cf648174
HZ
4130 }
4131 else
4132 {
955db0c0
MS
4133 uint16_t addr16;
4134
4135 if (target_read_memory (ir.addr, (gdb_byte *) &addr16, 2))
cf648174
HZ
4136 {
4137 if (record_debug)
4138 printf_unfiltered (_("Process record: error reading "
4139 "memory at addr 0x%s len = 2.\n"),
4140 paddress (gdbarch, ir.addr));
4141 return -1;
4142 }
4143 ir.addr += 2;
648d0c8b 4144 addr = addr16;
cf648174 4145 }
648d0c8b 4146 if (record_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
4147 return -1;
4148 }
7ad10968
HZ
4149 break;
4150
a38bba38 4151 case 0xb0: /* mov R, Ib */
7ad10968
HZ
4152 case 0xb1:
4153 case 0xb2:
4154 case 0xb3:
4155 case 0xb4:
4156 case 0xb5:
4157 case 0xb6:
4158 case 0xb7:
cf648174
HZ
4159 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4160 ? ((opcode & 0x7) | ir.rex_b)
4161 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
4162 break;
4163
a38bba38 4164 case 0xb8: /* mov R, Iv */
7ad10968
HZ
4165 case 0xb9:
4166 case 0xba:
4167 case 0xbb:
4168 case 0xbc:
4169 case 0xbd:
4170 case 0xbe:
4171 case 0xbf:
cf648174 4172 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4173 break;
4174
a38bba38 4175 case 0x91: /* xchg R, EAX */
7ad10968
HZ
4176 case 0x92:
4177 case 0x93:
4178 case 0x94:
4179 case 0x95:
4180 case 0x96:
4181 case 0x97:
cf648174
HZ
4182 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4183 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
4184 break;
4185
a38bba38 4186 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
4187 case 0x87:
4188 if ((opcode & 1) == 0)
4189 ir.ot = OT_BYTE;
4190 else
4191 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4192 if (i386_record_modrm (&ir))
4193 return -1;
7ad10968
HZ
4194 if (ir.mod == 3)
4195 {
86839d38 4196 ir.rm |= ir.rex_b;
cf648174
HZ
4197 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4198 ir.rm &= 0x3;
4199 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4200 }
4201 else
4202 {
4203 if (i386_record_lea_modrm (&ir))
4204 return -1;
4205 }
cf648174
HZ
4206 ir.reg |= rex_r;
4207 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4208 ir.reg &= 0x3;
cf648174 4209 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4210 break;
4211
a38bba38
MS
4212 case 0xc4: /* les Gv */
4213 case 0xc5: /* lds Gv */
cf648174
HZ
4214 if (ir.regmap[X86_RECORD_R8_REGNUM])
4215 {
4216 ir.addr -= 1;
4217 goto no_support;
4218 }
a38bba38
MS
4219 case 0x0fb2: /* lss Gv */
4220 case 0x0fb4: /* lfs Gv */
4221 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
4222 if (i386_record_modrm (&ir))
4223 return -1;
4224 if (ir.mod == 3)
4225 {
4226 if (opcode > 0xff)
4227 ir.addr -= 3;
4228 else
4229 ir.addr -= 2;
4230 opcode = opcode << 8 | ir.modrm;
4231 goto no_support;
4232 }
7ad10968
HZ
4233 switch (opcode)
4234 {
a38bba38 4235 case 0xc4: /* les Gv */
425b824a 4236 regnum = X86_RECORD_ES_REGNUM;
7ad10968 4237 break;
a38bba38 4238 case 0xc5: /* lds Gv */
425b824a 4239 regnum = X86_RECORD_DS_REGNUM;
7ad10968 4240 break;
a38bba38 4241 case 0x0fb2: /* lss Gv */
425b824a 4242 regnum = X86_RECORD_SS_REGNUM;
7ad10968 4243 break;
a38bba38 4244 case 0x0fb4: /* lfs Gv */
425b824a 4245 regnum = X86_RECORD_FS_REGNUM;
7ad10968 4246 break;
a38bba38 4247 case 0x0fb5: /* lgs Gv */
425b824a 4248 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
4249 break;
4250 }
425b824a 4251 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174
HZ
4252 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4253 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4254 break;
4255
a38bba38 4256 case 0xc0: /* shifts */
7ad10968
HZ
4257 case 0xc1:
4258 case 0xd0:
4259 case 0xd1:
4260 case 0xd2:
4261 case 0xd3:
4262 if ((opcode & 1) == 0)
4263 ir.ot = OT_BYTE;
4264 else
4265 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4266 if (i386_record_modrm (&ir))
4267 return -1;
7ad10968
HZ
4268 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4269 {
4270 if (i386_record_lea_modrm (&ir))
4271 return -1;
4272 }
4273 else
4274 {
cf648174
HZ
4275 ir.rm |= ir.rex_b;
4276 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4277 ir.rm &= 0x3;
cf648174 4278 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4279 }
cf648174 4280 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4281 break;
4282
4283 case 0x0fa4:
4284 case 0x0fa5:
4285 case 0x0fac:
4286 case 0x0fad:
4287 if (i386_record_modrm (&ir))
4288 return -1;
4289 if (ir.mod == 3)
4290 {
4291 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4292 return -1;
4293 }
4294 else
4295 {
4296 if (i386_record_lea_modrm (&ir))
4297 return -1;
4298 }
4299 break;
4300
a38bba38 4301 case 0xd8: /* Floats. */
7ad10968
HZ
4302 case 0xd9:
4303 case 0xda:
4304 case 0xdb:
4305 case 0xdc:
4306 case 0xdd:
4307 case 0xde:
4308 case 0xdf:
4309 if (i386_record_modrm (&ir))
4310 return -1;
4311 ir.reg |= ((opcode & 7) << 3);
4312 if (ir.mod != 3)
4313 {
0289bdd7 4314 /* Memory. */
955db0c0 4315 uint64_t addr64;
7ad10968 4316
955db0c0 4317 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
4318 return -1;
4319 switch (ir.reg)
4320 {
7ad10968 4321 case 0x02:
0289bdd7
MS
4322 case 0x12:
4323 case 0x22:
4324 case 0x32:
4325 /* For fcom, ficom nothing to do. */
4326 break;
7ad10968 4327 case 0x03:
0289bdd7
MS
4328 case 0x13:
4329 case 0x23:
4330 case 0x33:
4331 /* For fcomp, ficomp pop FPU stack, store all. */
4332 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4333 return -1;
4334 break;
4335 case 0x00:
4336 case 0x01:
7ad10968
HZ
4337 case 0x04:
4338 case 0x05:
4339 case 0x06:
4340 case 0x07:
4341 case 0x10:
4342 case 0x11:
7ad10968
HZ
4343 case 0x14:
4344 case 0x15:
4345 case 0x16:
4346 case 0x17:
4347 case 0x20:
4348 case 0x21:
7ad10968
HZ
4349 case 0x24:
4350 case 0x25:
4351 case 0x26:
4352 case 0x27:
4353 case 0x30:
4354 case 0x31:
7ad10968
HZ
4355 case 0x34:
4356 case 0x35:
4357 case 0x36:
4358 case 0x37:
0289bdd7
MS
4359 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4360 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4361 of code, always affects st(0) register. */
4362 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4363 return -1;
7ad10968
HZ
4364 break;
4365 case 0x08:
4366 case 0x0a:
4367 case 0x0b:
4368 case 0x18:
4369 case 0x19:
4370 case 0x1a:
4371 case 0x1b:
0289bdd7 4372 case 0x1d:
7ad10968
HZ
4373 case 0x28:
4374 case 0x29:
4375 case 0x2a:
4376 case 0x2b:
4377 case 0x38:
4378 case 0x39:
4379 case 0x3a:
4380 case 0x3b:
0289bdd7
MS
4381 case 0x3c:
4382 case 0x3d:
7ad10968
HZ
4383 switch (ir.reg & 7)
4384 {
4385 case 0:
0289bdd7
MS
4386 /* Handling fld, fild. */
4387 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4388 return -1;
7ad10968
HZ
4389 break;
4390 case 1:
4391 switch (ir.reg >> 4)
4392 {
4393 case 0:
955db0c0 4394 if (record_arch_list_add_mem (addr64, 4))
7ad10968
HZ
4395 return -1;
4396 break;
4397 case 2:
955db0c0 4398 if (record_arch_list_add_mem (addr64, 8))
7ad10968
HZ
4399 return -1;
4400 break;
4401 case 3:
0289bdd7 4402 break;
7ad10968 4403 default:
955db0c0 4404 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
4405 return -1;
4406 break;
4407 }
4408 break;
4409 default:
4410 switch (ir.reg >> 4)
4411 {
4412 case 0:
955db0c0 4413 if (record_arch_list_add_mem (addr64, 4))
0289bdd7
MS
4414 return -1;
4415 if (3 == (ir.reg & 7))
4416 {
4417 /* For fstp m32fp. */
4418 if (i386_record_floats (gdbarch, &ir,
4419 I386_SAVE_FPU_REGS))
4420 return -1;
4421 }
4422 break;
7ad10968 4423 case 1:
955db0c0 4424 if (record_arch_list_add_mem (addr64, 4))
7ad10968 4425 return -1;
0289bdd7
MS
4426 if ((3 == (ir.reg & 7))
4427 || (5 == (ir.reg & 7))
4428 || (7 == (ir.reg & 7)))
4429 {
4430 /* For fstp insn. */
4431 if (i386_record_floats (gdbarch, &ir,
4432 I386_SAVE_FPU_REGS))
4433 return -1;
4434 }
7ad10968
HZ
4435 break;
4436 case 2:
955db0c0 4437 if (record_arch_list_add_mem (addr64, 8))
7ad10968 4438 return -1;
0289bdd7
MS
4439 if (3 == (ir.reg & 7))
4440 {
4441 /* For fstp m64fp. */
4442 if (i386_record_floats (gdbarch, &ir,
4443 I386_SAVE_FPU_REGS))
4444 return -1;
4445 }
7ad10968
HZ
4446 break;
4447 case 3:
0289bdd7
MS
4448 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4449 {
4450 /* For fistp, fbld, fild, fbstp. */
4451 if (i386_record_floats (gdbarch, &ir,
4452 I386_SAVE_FPU_REGS))
4453 return -1;
4454 }
4455 /* Fall through */
7ad10968 4456 default:
955db0c0 4457 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
4458 return -1;
4459 break;
4460 }
4461 break;
4462 }
4463 break;
4464 case 0x0c:
0289bdd7
MS
4465 /* Insn fldenv. */
4466 if (i386_record_floats (gdbarch, &ir,
4467 I386_SAVE_FPU_ENV_REG_STACK))
4468 return -1;
4469 break;
7ad10968 4470 case 0x0d:
0289bdd7
MS
4471 /* Insn fldcw. */
4472 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4473 return -1;
4474 break;
7ad10968 4475 case 0x2c:
0289bdd7
MS
4476 /* Insn frstor. */
4477 if (i386_record_floats (gdbarch, &ir,
4478 I386_SAVE_FPU_ENV_REG_STACK))
4479 return -1;
7ad10968
HZ
4480 break;
4481 case 0x0e:
4482 if (ir.dflag)
4483 {
955db0c0 4484 if (record_arch_list_add_mem (addr64, 28))
7ad10968
HZ
4485 return -1;
4486 }
4487 else
4488 {
955db0c0 4489 if (record_arch_list_add_mem (addr64, 14))
7ad10968
HZ
4490 return -1;
4491 }
4492 break;
4493 case 0x0f:
4494 case 0x2f:
955db0c0 4495 if (record_arch_list_add_mem (addr64, 2))
7ad10968 4496 return -1;
0289bdd7
MS
4497 /* Insn fstp, fbstp. */
4498 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4499 return -1;
7ad10968
HZ
4500 break;
4501 case 0x1f:
4502 case 0x3e:
955db0c0 4503 if (record_arch_list_add_mem (addr64, 10))
7ad10968
HZ
4504 return -1;
4505 break;
4506 case 0x2e:
4507 if (ir.dflag)
4508 {
955db0c0 4509 if (record_arch_list_add_mem (addr64, 28))
7ad10968 4510 return -1;
955db0c0 4511 addr64 += 28;
7ad10968
HZ
4512 }
4513 else
4514 {
955db0c0 4515 if (record_arch_list_add_mem (addr64, 14))
7ad10968 4516 return -1;
955db0c0 4517 addr64 += 14;
7ad10968 4518 }
955db0c0 4519 if (record_arch_list_add_mem (addr64, 80))
7ad10968 4520 return -1;
0289bdd7
MS
4521 /* Insn fsave. */
4522 if (i386_record_floats (gdbarch, &ir,
4523 I386_SAVE_FPU_ENV_REG_STACK))
4524 return -1;
7ad10968
HZ
4525 break;
4526 case 0x3f:
955db0c0 4527 if (record_arch_list_add_mem (addr64, 8))
7ad10968 4528 return -1;
0289bdd7
MS
4529 /* Insn fistp. */
4530 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4531 return -1;
7ad10968
HZ
4532 break;
4533 default:
4534 ir.addr -= 2;
4535 opcode = opcode << 8 | ir.modrm;
4536 goto no_support;
4537 break;
4538 }
4539 }
0289bdd7
MS
4540 /* Opcode is an extension of modR/M byte. */
4541 else
4542 {
4543 switch (opcode)
4544 {
4545 case 0xd8:
4546 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4547 return -1;
4548 break;
4549 case 0xd9:
4550 if (0x0c == (ir.modrm >> 4))
4551 {
4552 if ((ir.modrm & 0x0f) <= 7)
4553 {
4554 if (i386_record_floats (gdbarch, &ir,
4555 I386_SAVE_FPU_REGS))
4556 return -1;
4557 }
4558 else
4559 {
4560 if (i386_record_floats (gdbarch, &ir,
4561 I387_ST0_REGNUM (tdep)))
4562 return -1;
4563 /* If only st(0) is changing, then we have already
4564 recorded. */
4565 if ((ir.modrm & 0x0f) - 0x08)
4566 {
4567 if (i386_record_floats (gdbarch, &ir,
4568 I387_ST0_REGNUM (tdep) +
4569 ((ir.modrm & 0x0f) - 0x08)))
4570 return -1;
4571 }
4572 }
4573 }
4574 else
4575 {
4576 switch (ir.modrm)
4577 {
4578 case 0xe0:
4579 case 0xe1:
4580 case 0xf0:
4581 case 0xf5:
4582 case 0xf8:
4583 case 0xfa:
4584 case 0xfc:
4585 case 0xfe:
4586 case 0xff:
4587 if (i386_record_floats (gdbarch, &ir,
4588 I387_ST0_REGNUM (tdep)))
4589 return -1;
4590 break;
4591 case 0xf1:
4592 case 0xf2:
4593 case 0xf3:
4594 case 0xf4:
4595 case 0xf6:
4596 case 0xf7:
4597 case 0xe8:
4598 case 0xe9:
4599 case 0xea:
4600 case 0xeb:
4601 case 0xec:
4602 case 0xed:
4603 case 0xee:
4604 case 0xf9:
4605 case 0xfb:
4606 if (i386_record_floats (gdbarch, &ir,
4607 I386_SAVE_FPU_REGS))
4608 return -1;
4609 break;
4610 case 0xfd:
4611 if (i386_record_floats (gdbarch, &ir,
4612 I387_ST0_REGNUM (tdep)))
4613 return -1;
4614 if (i386_record_floats (gdbarch, &ir,
4615 I387_ST0_REGNUM (tdep) + 1))
4616 return -1;
4617 break;
4618 }
4619 }
4620 break;
4621 case 0xda:
4622 if (0xe9 == ir.modrm)
4623 {
4624 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4625 return -1;
4626 }
4627 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4628 {
4629 if (i386_record_floats (gdbarch, &ir,
4630 I387_ST0_REGNUM (tdep)))
4631 return -1;
4632 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4633 {
4634 if (i386_record_floats (gdbarch, &ir,
4635 I387_ST0_REGNUM (tdep) +
4636 (ir.modrm & 0x0f)))
4637 return -1;
4638 }
4639 else if ((ir.modrm & 0x0f) - 0x08)
4640 {
4641 if (i386_record_floats (gdbarch, &ir,
4642 I387_ST0_REGNUM (tdep) +
4643 ((ir.modrm & 0x0f) - 0x08)))
4644 return -1;
4645 }
4646 }
4647 break;
4648 case 0xdb:
4649 if (0xe3 == ir.modrm)
4650 {
4651 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
4652 return -1;
4653 }
4654 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4655 {
4656 if (i386_record_floats (gdbarch, &ir,
4657 I387_ST0_REGNUM (tdep)))
4658 return -1;
4659 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4660 {
4661 if (i386_record_floats (gdbarch, &ir,
4662 I387_ST0_REGNUM (tdep) +
4663 (ir.modrm & 0x0f)))
4664 return -1;
4665 }
4666 else if ((ir.modrm & 0x0f) - 0x08)
4667 {
4668 if (i386_record_floats (gdbarch, &ir,
4669 I387_ST0_REGNUM (tdep) +
4670 ((ir.modrm & 0x0f) - 0x08)))
4671 return -1;
4672 }
4673 }
4674 break;
4675 case 0xdc:
4676 if ((0x0c == ir.modrm >> 4)
4677 || (0x0d == ir.modrm >> 4)
4678 || (0x0f == ir.modrm >> 4))
4679 {
4680 if ((ir.modrm & 0x0f) <= 7)
4681 {
4682 if (i386_record_floats (gdbarch, &ir,
4683 I387_ST0_REGNUM (tdep) +
4684 (ir.modrm & 0x0f)))
4685 return -1;
4686 }
4687 else
4688 {
4689 if (i386_record_floats (gdbarch, &ir,
4690 I387_ST0_REGNUM (tdep) +
4691 ((ir.modrm & 0x0f) - 0x08)))
4692 return -1;
4693 }
4694 }
4695 break;
4696 case 0xdd:
4697 if (0x0c == ir.modrm >> 4)
4698 {
4699 if (i386_record_floats (gdbarch, &ir,
4700 I387_FTAG_REGNUM (tdep)))
4701 return -1;
4702 }
4703 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
4704 {
4705 if ((ir.modrm & 0x0f) <= 7)
4706 {
4707 if (i386_record_floats (gdbarch, &ir,
4708 I387_ST0_REGNUM (tdep) +
4709 (ir.modrm & 0x0f)))
4710 return -1;
4711 }
4712 else
4713 {
4714 if (i386_record_floats (gdbarch, &ir,
4715 I386_SAVE_FPU_REGS))
4716 return -1;
4717 }
4718 }
4719 break;
4720 case 0xde:
4721 if ((0x0c == ir.modrm >> 4)
4722 || (0x0e == ir.modrm >> 4)
4723 || (0x0f == ir.modrm >> 4)
4724 || (0xd9 == ir.modrm))
4725 {
4726 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4727 return -1;
4728 }
4729 break;
4730 case 0xdf:
4731 if (0xe0 == ir.modrm)
4732 {
4733 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4734 return -1;
4735 }
4736 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
4737 {
4738 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4739 return -1;
4740 }
4741 break;
4742 }
4743 }
7ad10968 4744 break;
7ad10968 4745 /* string ops */
a38bba38 4746 case 0xa4: /* movsS */
7ad10968 4747 case 0xa5:
a38bba38 4748 case 0xaa: /* stosS */
7ad10968 4749 case 0xab:
a38bba38 4750 case 0x6c: /* insS */
7ad10968 4751 case 0x6d:
cf648174 4752 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 4753 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
4754 &addr);
4755 if (addr)
cf648174 4756 {
77d7dc92
HZ
4757 ULONGEST es, ds;
4758
4759 if ((opcode & 1) == 0)
4760 ir.ot = OT_BYTE;
4761 else
4762 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
4763 regcache_raw_read_unsigned (ir.regcache,
4764 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 4765 &addr);
77d7dc92 4766
d7877f7e
HZ
4767 regcache_raw_read_unsigned (ir.regcache,
4768 ir.regmap[X86_RECORD_ES_REGNUM],
4769 &es);
4770 regcache_raw_read_unsigned (ir.regcache,
4771 ir.regmap[X86_RECORD_DS_REGNUM],
4772 &ds);
4773 if (ir.aflag && (es != ds))
77d7dc92
HZ
4774 {
4775 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
df61f520 4776 warning (_("Process record ignores the memory "
926569ae 4777 "change of instruction at address %s "
df61f520
HZ
4778 "because it can't get the value of the "
4779 "ES segment register."),
4780 paddress (gdbarch, ir.orig_addr));
4781 }
4782 else
4783 {
648d0c8b 4784 if (record_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 4785 return -1;
77d7dc92
HZ
4786 }
4787
4788 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4789 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92
HZ
4790 if (opcode == 0xa4 || opcode == 0xa5)
4791 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
4792 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
4793 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4794 }
cf648174 4795 break;
7ad10968 4796
a38bba38 4797 case 0xa6: /* cmpsS */
cf648174
HZ
4798 case 0xa7:
4799 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
4800 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
4801 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4802 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4803 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4804 break;
4805
a38bba38 4806 case 0xac: /* lodsS */
7ad10968 4807 case 0xad:
cf648174
HZ
4808 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4809 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 4810 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
4811 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4812 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4813 break;
4814
a38bba38 4815 case 0xae: /* scasS */
7ad10968 4816 case 0xaf:
cf648174 4817 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 4818 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
4819 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4820 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4821 break;
4822
a38bba38 4823 case 0x6e: /* outsS */
cf648174
HZ
4824 case 0x6f:
4825 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 4826 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
4827 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4828 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4829 break;
4830
a38bba38 4831 case 0xe4: /* port I/O */
7ad10968
HZ
4832 case 0xe5:
4833 case 0xec:
4834 case 0xed:
cf648174
HZ
4835 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4836 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4837 break;
4838
4839 case 0xe6:
4840 case 0xe7:
4841 case 0xee:
4842 case 0xef:
4843 break;
4844
4845 /* control */
a38bba38
MS
4846 case 0xc2: /* ret im */
4847 case 0xc3: /* ret */
cf648174
HZ
4848 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4849 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4850 break;
4851
a38bba38
MS
4852 case 0xca: /* lret im */
4853 case 0xcb: /* lret */
4854 case 0xcf: /* iret */
cf648174
HZ
4855 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4856 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4857 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4858 break;
4859
a38bba38 4860 case 0xe8: /* call im */
cf648174
HZ
4861 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4862 ir.dflag = 2;
4863 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4864 return -1;
7ad10968
HZ
4865 break;
4866
a38bba38 4867 case 0x9a: /* lcall im */
cf648174
HZ
4868 if (ir.regmap[X86_RECORD_R8_REGNUM])
4869 {
4870 ir.addr -= 1;
4871 goto no_support;
4872 }
4873 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4874 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4875 return -1;
7ad10968
HZ
4876 break;
4877
a38bba38
MS
4878 case 0xe9: /* jmp im */
4879 case 0xea: /* ljmp im */
4880 case 0xeb: /* jmp Jb */
4881 case 0x70: /* jcc Jb */
7ad10968
HZ
4882 case 0x71:
4883 case 0x72:
4884 case 0x73:
4885 case 0x74:
4886 case 0x75:
4887 case 0x76:
4888 case 0x77:
4889 case 0x78:
4890 case 0x79:
4891 case 0x7a:
4892 case 0x7b:
4893 case 0x7c:
4894 case 0x7d:
4895 case 0x7e:
4896 case 0x7f:
a38bba38 4897 case 0x0f80: /* jcc Jv */
7ad10968
HZ
4898 case 0x0f81:
4899 case 0x0f82:
4900 case 0x0f83:
4901 case 0x0f84:
4902 case 0x0f85:
4903 case 0x0f86:
4904 case 0x0f87:
4905 case 0x0f88:
4906 case 0x0f89:
4907 case 0x0f8a:
4908 case 0x0f8b:
4909 case 0x0f8c:
4910 case 0x0f8d:
4911 case 0x0f8e:
4912 case 0x0f8f:
4913 break;
4914
a38bba38 4915 case 0x0f90: /* setcc Gv */
7ad10968
HZ
4916 case 0x0f91:
4917 case 0x0f92:
4918 case 0x0f93:
4919 case 0x0f94:
4920 case 0x0f95:
4921 case 0x0f96:
4922 case 0x0f97:
4923 case 0x0f98:
4924 case 0x0f99:
4925 case 0x0f9a:
4926 case 0x0f9b:
4927 case 0x0f9c:
4928 case 0x0f9d:
4929 case 0x0f9e:
4930 case 0x0f9f:
cf648174 4931 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4932 ir.ot = OT_BYTE;
4933 if (i386_record_modrm (&ir))
4934 return -1;
4935 if (ir.mod == 3)
cf648174
HZ
4936 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
4937 : (ir.rm & 0x3));
7ad10968
HZ
4938 else
4939 {
4940 if (i386_record_lea_modrm (&ir))
4941 return -1;
4942 }
4943 break;
4944
a38bba38 4945 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
4946 case 0x0f41:
4947 case 0x0f42:
4948 case 0x0f43:
4949 case 0x0f44:
4950 case 0x0f45:
4951 case 0x0f46:
4952 case 0x0f47:
4953 case 0x0f48:
4954 case 0x0f49:
4955 case 0x0f4a:
4956 case 0x0f4b:
4957 case 0x0f4c:
4958 case 0x0f4d:
4959 case 0x0f4e:
4960 case 0x0f4f:
4961 if (i386_record_modrm (&ir))
4962 return -1;
cf648174 4963 ir.reg |= rex_r;
7ad10968
HZ
4964 if (ir.dflag == OT_BYTE)
4965 ir.reg &= 0x3;
cf648174 4966 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4967 break;
4968
4969 /* flags */
a38bba38 4970 case 0x9c: /* pushf */
cf648174
HZ
4971 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4972 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4973 ir.dflag = 2;
4974 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4975 return -1;
7ad10968
HZ
4976 break;
4977
a38bba38 4978 case 0x9d: /* popf */
cf648174
HZ
4979 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4980 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4981 break;
4982
a38bba38 4983 case 0x9e: /* sahf */
cf648174
HZ
4984 if (ir.regmap[X86_RECORD_R8_REGNUM])
4985 {
4986 ir.addr -= 1;
4987 goto no_support;
4988 }
a38bba38
MS
4989 case 0xf5: /* cmc */
4990 case 0xf8: /* clc */
4991 case 0xf9: /* stc */
4992 case 0xfc: /* cld */
4993 case 0xfd: /* std */
cf648174 4994 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4995 break;
4996
a38bba38 4997 case 0x9f: /* lahf */
cf648174
HZ
4998 if (ir.regmap[X86_RECORD_R8_REGNUM])
4999 {
5000 ir.addr -= 1;
5001 goto no_support;
5002 }
5003 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5004 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5005 break;
5006
5007 /* bit operations */
a38bba38 5008 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
5009 ir.ot = ir.dflag + OT_WORD;
5010 if (i386_record_modrm (&ir))
5011 return -1;
5012 if (ir.reg < 4)
5013 {
cf648174 5014 ir.addr -= 2;
7ad10968
HZ
5015 opcode = opcode << 8 | ir.modrm;
5016 goto no_support;
5017 }
cf648174 5018 if (ir.reg != 4)
7ad10968 5019 {
cf648174
HZ
5020 if (ir.mod == 3)
5021 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5022 else
5023 {
cf648174 5024 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
5025 return -1;
5026 }
5027 }
cf648174 5028 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5029 break;
5030
a38bba38 5031 case 0x0fa3: /* bt Gv, Ev */
cf648174
HZ
5032 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5033 break;
5034
a38bba38
MS
5035 case 0x0fab: /* bts */
5036 case 0x0fb3: /* btr */
5037 case 0x0fbb: /* btc */
cf648174
HZ
5038 ir.ot = ir.dflag + OT_WORD;
5039 if (i386_record_modrm (&ir))
5040 return -1;
5041 if (ir.mod == 3)
5042 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5043 else
5044 {
955db0c0
MS
5045 uint64_t addr64;
5046 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
5047 return -1;
5048 regcache_raw_read_unsigned (ir.regcache,
5049 ir.regmap[ir.reg | rex_r],
648d0c8b 5050 &addr);
cf648174
HZ
5051 switch (ir.dflag)
5052 {
5053 case 0:
648d0c8b 5054 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
5055 break;
5056 case 1:
648d0c8b 5057 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
5058 break;
5059 case 2:
648d0c8b 5060 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
5061 break;
5062 }
955db0c0 5063 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
5064 return -1;
5065 if (i386_record_lea_modrm (&ir))
5066 return -1;
5067 }
5068 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5069 break;
5070
a38bba38
MS
5071 case 0x0fbc: /* bsf */
5072 case 0x0fbd: /* bsr */
cf648174
HZ
5073 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5074 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5075 break;
5076
5077 /* bcd */
a38bba38
MS
5078 case 0x27: /* daa */
5079 case 0x2f: /* das */
5080 case 0x37: /* aaa */
5081 case 0x3f: /* aas */
5082 case 0xd4: /* aam */
5083 case 0xd5: /* aad */
cf648174
HZ
5084 if (ir.regmap[X86_RECORD_R8_REGNUM])
5085 {
5086 ir.addr -= 1;
5087 goto no_support;
5088 }
5089 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5090 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5091 break;
5092
5093 /* misc */
a38bba38 5094 case 0x90: /* nop */
7ad10968
HZ
5095 if (prefixes & PREFIX_LOCK)
5096 {
5097 ir.addr -= 1;
5098 goto no_support;
5099 }
5100 break;
5101
a38bba38 5102 case 0x9b: /* fwait */
425b824a 5103 if (target_read_memory (ir.addr, &opcode8, 1))
0289bdd7
MS
5104 {
5105 if (record_debug)
5106 printf_unfiltered (_("Process record: error reading memory at "
5107 "addr 0x%s len = 1.\n"),
5108 paddress (gdbarch, ir.addr));
5109 return -1;
5110 }
425b824a 5111 opcode = (uint32_t) opcode8;
0289bdd7
MS
5112 ir.addr++;
5113 goto reswitch;
7ad10968
HZ
5114 break;
5115
7ad10968 5116 /* XXX */
a38bba38 5117 case 0xcc: /* int3 */
7ad10968
HZ
5118 printf_unfiltered (_("Process record doesn't support instruction "
5119 "int3.\n"));
5120 ir.addr -= 1;
5121 goto no_support;
5122 break;
5123
7ad10968 5124 /* XXX */
a38bba38 5125 case 0xcd: /* int */
7ad10968
HZ
5126 {
5127 int ret;
425b824a
MS
5128 uint8_t interrupt;
5129 if (target_read_memory (ir.addr, &interrupt, 1))
7ad10968
HZ
5130 {
5131 if (record_debug)
5132 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
5133 "at addr %s len = 1.\n"),
5134 paddress (gdbarch, ir.addr));
7ad10968
HZ
5135 return -1;
5136 }
5137 ir.addr++;
425b824a 5138 if (interrupt != 0x80
7ad10968
HZ
5139 || gdbarch_tdep (gdbarch)->i386_intx80_record == NULL)
5140 {
5141 printf_unfiltered (_("Process record doesn't support "
5142 "instruction int 0x%02x.\n"),
425b824a 5143 interrupt);
7ad10968
HZ
5144 ir.addr -= 2;
5145 goto no_support;
5146 }
5147 ret = gdbarch_tdep (gdbarch)->i386_intx80_record (ir.regcache);
5148 if (ret)
5149 return ret;
5150 }
5151 break;
5152
7ad10968 5153 /* XXX */
a38bba38 5154 case 0xce: /* into */
7ad10968
HZ
5155 printf_unfiltered (_("Process record doesn't support "
5156 "instruction into.\n"));
5157 ir.addr -= 1;
5158 goto no_support;
5159 break;
5160
a38bba38
MS
5161 case 0xfa: /* cli */
5162 case 0xfb: /* sti */
7ad10968
HZ
5163 break;
5164
a38bba38 5165 case 0x62: /* bound */
7ad10968
HZ
5166 printf_unfiltered (_("Process record doesn't support "
5167 "instruction bound.\n"));
5168 ir.addr -= 1;
5169 goto no_support;
5170 break;
5171
a38bba38 5172 case 0x0fc8: /* bswap reg */
7ad10968
HZ
5173 case 0x0fc9:
5174 case 0x0fca:
5175 case 0x0fcb:
5176 case 0x0fcc:
5177 case 0x0fcd:
5178 case 0x0fce:
5179 case 0x0fcf:
cf648174 5180 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
5181 break;
5182
a38bba38 5183 case 0xd6: /* salc */
cf648174
HZ
5184 if (ir.regmap[X86_RECORD_R8_REGNUM])
5185 {
5186 ir.addr -= 1;
5187 goto no_support;
5188 }
5189 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5190 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5191 break;
5192
a38bba38
MS
5193 case 0xe0: /* loopnz */
5194 case 0xe1: /* loopz */
5195 case 0xe2: /* loop */
5196 case 0xe3: /* jecxz */
cf648174
HZ
5197 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5198 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5199 break;
5200
a38bba38 5201 case 0x0f30: /* wrmsr */
7ad10968
HZ
5202 printf_unfiltered (_("Process record doesn't support "
5203 "instruction wrmsr.\n"));
5204 ir.addr -= 2;
5205 goto no_support;
5206 break;
5207
a38bba38 5208 case 0x0f32: /* rdmsr */
7ad10968
HZ
5209 printf_unfiltered (_("Process record doesn't support "
5210 "instruction rdmsr.\n"));
5211 ir.addr -= 2;
5212 goto no_support;
5213 break;
5214
a38bba38 5215 case 0x0f31: /* rdtsc */
7ad10968
HZ
5216 printf_unfiltered (_("Process record doesn't support "
5217 "instruction rdtsc.\n"));
5218 ir.addr -= 2;
5219 goto no_support;
5220 break;
5221
a38bba38 5222 case 0x0f34: /* sysenter */
7ad10968
HZ
5223 {
5224 int ret;
cf648174
HZ
5225 if (ir.regmap[X86_RECORD_R8_REGNUM])
5226 {
5227 ir.addr -= 2;
5228 goto no_support;
5229 }
7ad10968
HZ
5230 if (gdbarch_tdep (gdbarch)->i386_sysenter_record == NULL)
5231 {
5232 printf_unfiltered (_("Process record doesn't support "
5233 "instruction sysenter.\n"));
5234 ir.addr -= 2;
5235 goto no_support;
5236 }
5237 ret = gdbarch_tdep (gdbarch)->i386_sysenter_record (ir.regcache);
5238 if (ret)
5239 return ret;
5240 }
5241 break;
5242
a38bba38 5243 case 0x0f35: /* sysexit */
7ad10968
HZ
5244 printf_unfiltered (_("Process record doesn't support "
5245 "instruction sysexit.\n"));
5246 ir.addr -= 2;
5247 goto no_support;
5248 break;
5249
a38bba38 5250 case 0x0f05: /* syscall */
cf648174
HZ
5251 {
5252 int ret;
5253 if (gdbarch_tdep (gdbarch)->i386_syscall_record == NULL)
5254 {
5255 printf_unfiltered (_("Process record doesn't support "
5256 "instruction syscall.\n"));
5257 ir.addr -= 2;
5258 goto no_support;
5259 }
5260 ret = gdbarch_tdep (gdbarch)->i386_syscall_record (ir.regcache);
5261 if (ret)
5262 return ret;
5263 }
5264 break;
5265
a38bba38 5266 case 0x0f07: /* sysret */
cf648174
HZ
5267 printf_unfiltered (_("Process record doesn't support "
5268 "instruction sysret.\n"));
5269 ir.addr -= 2;
5270 goto no_support;
5271 break;
5272
a38bba38 5273 case 0x0fa2: /* cpuid */
cf648174
HZ
5274 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5275 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5276 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5277 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
5278 break;
5279
a38bba38 5280 case 0xf4: /* hlt */
7ad10968
HZ
5281 printf_unfiltered (_("Process record doesn't support "
5282 "instruction hlt.\n"));
5283 ir.addr -= 1;
5284 goto no_support;
5285 break;
5286
5287 case 0x0f00:
5288 if (i386_record_modrm (&ir))
5289 return -1;
5290 switch (ir.reg)
5291 {
a38bba38
MS
5292 case 0: /* sldt */
5293 case 1: /* str */
7ad10968 5294 if (ir.mod == 3)
cf648174 5295 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5296 else
5297 {
5298 ir.ot = OT_WORD;
5299 if (i386_record_lea_modrm (&ir))
5300 return -1;
5301 }
5302 break;
a38bba38
MS
5303 case 2: /* lldt */
5304 case 3: /* ltr */
7ad10968 5305 break;
a38bba38
MS
5306 case 4: /* verr */
5307 case 5: /* verw */
cf648174 5308 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5309 break;
5310 default:
5311 ir.addr -= 3;
5312 opcode = opcode << 8 | ir.modrm;
5313 goto no_support;
5314 break;
5315 }
5316 break;
5317
5318 case 0x0f01:
5319 if (i386_record_modrm (&ir))
5320 return -1;
5321 switch (ir.reg)
5322 {
a38bba38 5323 case 0: /* sgdt */
7ad10968 5324 {
955db0c0 5325 uint64_t addr64;
7ad10968
HZ
5326
5327 if (ir.mod == 3)
5328 {
5329 ir.addr -= 3;
5330 opcode = opcode << 8 | ir.modrm;
5331 goto no_support;
5332 }
d7877f7e 5333 if (ir.override >= 0)
7ad10968 5334 {
df61f520
HZ
5335 warning (_("Process record ignores the memory "
5336 "change of instruction at "
5337 "address %s because it can't get "
5338 "the value of the segment "
5339 "register."),
5340 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
5341 }
5342 else
5343 {
955db0c0 5344 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 5345 return -1;
955db0c0 5346 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5347 return -1;
955db0c0 5348 addr64 += 2;
cf648174
HZ
5349 if (ir.regmap[X86_RECORD_R8_REGNUM])
5350 {
955db0c0 5351 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
5352 return -1;
5353 }
5354 else
5355 {
955db0c0 5356 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
5357 return -1;
5358 }
7ad10968
HZ
5359 }
5360 }
5361 break;
5362 case 1:
5363 if (ir.mod == 3)
5364 {
5365 switch (ir.rm)
5366 {
a38bba38 5367 case 0: /* monitor */
7ad10968 5368 break;
a38bba38 5369 case 1: /* mwait */
cf648174 5370 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5371 break;
5372 default:
5373 ir.addr -= 3;
5374 opcode = opcode << 8 | ir.modrm;
5375 goto no_support;
5376 break;
5377 }
5378 }
5379 else
5380 {
5381 /* sidt */
d7877f7e 5382 if (ir.override >= 0)
7ad10968 5383 {
df61f520
HZ
5384 warning (_("Process record ignores the memory "
5385 "change of instruction at "
5386 "address %s because it can't get "
5387 "the value of the segment "
5388 "register."),
5389 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
5390 }
5391 else
5392 {
955db0c0 5393 uint64_t addr64;
7ad10968 5394
955db0c0 5395 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 5396 return -1;
955db0c0 5397 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5398 return -1;
955db0c0 5399 addr64 += 2;
cf648174
HZ
5400 if (ir.regmap[X86_RECORD_R8_REGNUM])
5401 {
955db0c0 5402 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
5403 return -1;
5404 }
5405 else
5406 {
955db0c0 5407 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
5408 return -1;
5409 }
7ad10968
HZ
5410 }
5411 }
5412 break;
a38bba38 5413 case 2: /* lgdt */
3800e645
MS
5414 if (ir.mod == 3)
5415 {
5416 /* xgetbv */
5417 if (ir.rm == 0)
5418 {
5419 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5420 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5421 break;
5422 }
5423 /* xsetbv */
5424 else if (ir.rm == 1)
5425 break;
5426 }
a38bba38 5427 case 3: /* lidt */
7ad10968
HZ
5428 if (ir.mod == 3)
5429 {
5430 ir.addr -= 3;
5431 opcode = opcode << 8 | ir.modrm;
5432 goto no_support;
5433 }
5434 break;
a38bba38 5435 case 4: /* smsw */
7ad10968
HZ
5436 if (ir.mod == 3)
5437 {
cf648174 5438 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
5439 return -1;
5440 }
5441 else
5442 {
5443 ir.ot = OT_WORD;
5444 if (i386_record_lea_modrm (&ir))
5445 return -1;
5446 }
cf648174 5447 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5448 break;
a38bba38 5449 case 6: /* lmsw */
cf648174
HZ
5450 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5451 break;
a38bba38 5452 case 7: /* invlpg */
cf648174
HZ
5453 if (ir.mod == 3)
5454 {
5455 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5456 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5457 else
5458 {
5459 ir.addr -= 3;
5460 opcode = opcode << 8 | ir.modrm;
5461 goto no_support;
5462 }
5463 }
5464 else
5465 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5466 break;
5467 default:
5468 ir.addr -= 3;
5469 opcode = opcode << 8 | ir.modrm;
5470 goto no_support;
7ad10968
HZ
5471 break;
5472 }
5473 break;
5474
a38bba38
MS
5475 case 0x0f08: /* invd */
5476 case 0x0f09: /* wbinvd */
7ad10968
HZ
5477 break;
5478
a38bba38 5479 case 0x63: /* arpl */
7ad10968
HZ
5480 if (i386_record_modrm (&ir))
5481 return -1;
cf648174
HZ
5482 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5483 {
5484 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5485 ? (ir.reg | rex_r) : ir.rm);
5486 }
7ad10968 5487 else
cf648174
HZ
5488 {
5489 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5490 if (i386_record_lea_modrm (&ir))
5491 return -1;
5492 }
5493 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5494 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5495 break;
5496
a38bba38
MS
5497 case 0x0f02: /* lar */
5498 case 0x0f03: /* lsl */
7ad10968
HZ
5499 if (i386_record_modrm (&ir))
5500 return -1;
cf648174
HZ
5501 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5502 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5503 break;
5504
5505 case 0x0f18:
cf648174
HZ
5506 if (i386_record_modrm (&ir))
5507 return -1;
5508 if (ir.mod == 3 && ir.reg == 3)
5509 {
5510 ir.addr -= 3;
5511 opcode = opcode << 8 | ir.modrm;
5512 goto no_support;
5513 }
7ad10968
HZ
5514 break;
5515
7ad10968
HZ
5516 case 0x0f19:
5517 case 0x0f1a:
5518 case 0x0f1b:
5519 case 0x0f1c:
5520 case 0x0f1d:
5521 case 0x0f1e:
5522 case 0x0f1f:
a38bba38 5523 /* nop (multi byte) */
7ad10968
HZ
5524 break;
5525
a38bba38
MS
5526 case 0x0f20: /* mov reg, crN */
5527 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
5528 if (i386_record_modrm (&ir))
5529 return -1;
5530 if ((ir.modrm & 0xc0) != 0xc0)
5531 {
cf648174 5532 ir.addr -= 3;
7ad10968
HZ
5533 opcode = opcode << 8 | ir.modrm;
5534 goto no_support;
5535 }
5536 switch (ir.reg)
5537 {
5538 case 0:
5539 case 2:
5540 case 3:
5541 case 4:
5542 case 8:
5543 if (opcode & 2)
cf648174 5544 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5545 else
cf648174 5546 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5547 break;
5548 default:
cf648174 5549 ir.addr -= 3;
7ad10968
HZ
5550 opcode = opcode << 8 | ir.modrm;
5551 goto no_support;
5552 break;
5553 }
5554 break;
5555
a38bba38
MS
5556 case 0x0f21: /* mov reg, drN */
5557 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
5558 if (i386_record_modrm (&ir))
5559 return -1;
5560 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5561 || ir.reg == 5 || ir.reg >= 8)
5562 {
cf648174 5563 ir.addr -= 3;
7ad10968
HZ
5564 opcode = opcode << 8 | ir.modrm;
5565 goto no_support;
5566 }
5567 if (opcode & 2)
cf648174 5568 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5569 else
cf648174 5570 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5571 break;
5572
a38bba38 5573 case 0x0f06: /* clts */
cf648174 5574 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5575 break;
5576
5577 /* MMX/SSE/SSE2/PNI support */
5578 /* XXX */
5579
5580 default:
5581 if (opcode > 0xff)
5582 ir.addr -= 2;
5583 else
5584 ir.addr -= 1;
5585 goto no_support;
5586 break;
5587 }
5588
cf648174
HZ
5589 /* In the future, maybe still need to deal with need_dasm. */
5590 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7ad10968
HZ
5591 if (record_arch_list_add_end ())
5592 return -1;
5593
5594 return 0;
5595
01fe1b41 5596 no_support:
7ad10968 5597 printf_unfiltered (_("Process record doesn't support instruction 0x%02x "
5af949e3
UW
5598 "at address %s.\n"),
5599 (unsigned int) (opcode), paddress (gdbarch, ir.addr));
7ad10968
HZ
5600 return -1;
5601}
5602
cf648174
HZ
5603static const int i386_record_regmap[] =
5604{
5605 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
5606 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
5607 0, 0, 0, 0, 0, 0, 0, 0,
5608 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
5609 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
5610};
5611
7a697b8d
SS
5612/* Check that the given address appears suitable for a fast
5613 tracepoint, which on x86 means that we need an instruction of at
5614 least 5 bytes, so that we can overwrite it with a 4-byte-offset
5615 jump and not have to worry about program jumps to an address in the
5616 middle of the tracepoint jump. Returns 1 if OK, and writes a size
5617 of instruction to replace, and 0 if not, plus an explanatory
5618 string. */
5619
5620static int
5621i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
5622 CORE_ADDR addr, int *isize, char **msg)
5623{
5624 int len, jumplen;
5625 static struct ui_file *gdb_null = NULL;
5626
5627 /* This is based on the target agent using a 4-byte relative jump.
5628 Alternate future possibilities include 8-byte offset for x86-84,
5629 or 3-byte jumps if the program has trampoline space close by. */
5630 jumplen = 5;
5631
5632 /* Dummy file descriptor for the disassembler. */
5633 if (!gdb_null)
5634 gdb_null = ui_file_new ();
5635
5636 /* Check for fit. */
5637 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
5638 if (len < jumplen)
5639 {
5640 /* Return a bit of target-specific detail to add to the caller's
5641 generic failure message. */
5642 if (msg)
5643 *msg = xstrprintf (_("; instruction is only %d bytes long, need at least %d bytes for the jump"),
5644 len, jumplen);
5645 return 0;
5646 }
5647
5648 if (isize)
5649 *isize = len;
5650 if (msg)
5651 *msg = NULL;
5652 return 1;
5653}
5654
90884b2b
L
5655static int
5656i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
5657 struct tdesc_arch_data *tdesc_data)
5658{
5659 const struct target_desc *tdesc = tdep->tdesc;
5660 const struct tdesc_feature *feature_core, *feature_vector;
5661 int i, num_regs, valid_p;
5662
5663 if (! tdesc_has_registers (tdesc))
5664 return 0;
5665
5666 /* Get core registers. */
5667 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
5668
5669 /* Get SSE registers. */
5670 feature_vector = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
5671
5672 if (feature_core == NULL || feature_vector == NULL)
5673 return 0;
5674
5675 valid_p = 1;
5676
5677 num_regs = tdep->num_core_regs;
5678 for (i = 0; i < num_regs; i++)
5679 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
5680 tdep->register_names[i]);
5681
5682 /* Need to include %mxcsr, so add one. */
5683 num_regs += tdep->num_xmm_regs + 1;
5684 for (; i < num_regs; i++)
5685 valid_p &= tdesc_numbered_register (feature_vector, tdesc_data, i,
5686 tdep->register_names[i]);
5687
5688 return valid_p;
5689}
5690
7ad10968
HZ
5691\f
5692static struct gdbarch *
5693i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5694{
5695 struct gdbarch_tdep *tdep;
5696 struct gdbarch *gdbarch;
90884b2b
L
5697 struct tdesc_arch_data *tdesc_data;
5698 const struct target_desc *tdesc;
1ba53b71 5699 int mm0_regnum;
7ad10968
HZ
5700
5701 /* If there is already a candidate, use it. */
5702 arches = gdbarch_list_lookup_by_info (arches, &info);
5703 if (arches != NULL)
5704 return arches->gdbarch;
5705
5706 /* Allocate space for the new architecture. */
5707 tdep = XCALLOC (1, struct gdbarch_tdep);
5708 gdbarch = gdbarch_alloc (&info, tdep);
5709
5710 /* General-purpose registers. */
5711 tdep->gregset = NULL;
5712 tdep->gregset_reg_offset = NULL;
5713 tdep->gregset_num_regs = I386_NUM_GREGS;
5714 tdep->sizeof_gregset = 0;
5715
5716 /* Floating-point registers. */
5717 tdep->fpregset = NULL;
5718 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
5719
5720 /* The default settings include the FPU registers, the MMX registers
5721 and the SSE registers. This can be overridden for a specific ABI
5722 by adjusting the members `st0_regnum', `mm0_regnum' and
5723 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
5724 will show up in the output of "info all-registers". Ideally we
5725 should try to autodetect whether they are available, such that we
5726 can prevent "info all-registers" from displaying registers that
5727 aren't available.
5728
5729 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
5730 [the SSE registers] always (even when they don't exist) or never
5731 showing them to the user (even when they do exist), I prefer the
5732 former over the latter. */
5733
5734 tdep->st0_regnum = I386_ST0_REGNUM;
5735
7ad10968
HZ
5736 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
5737 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
5738
5739 tdep->jb_pc_offset = -1;
5740 tdep->struct_return = pcc_struct_return;
5741 tdep->sigtramp_start = 0;
5742 tdep->sigtramp_end = 0;
5743 tdep->sigtramp_p = i386_sigtramp_p;
5744 tdep->sigcontext_addr = NULL;
5745 tdep->sc_reg_offset = NULL;
5746 tdep->sc_pc_offset = -1;
5747 tdep->sc_sp_offset = -1;
5748
cf648174
HZ
5749 tdep->record_regmap = i386_record_regmap;
5750
7ad10968
HZ
5751 /* The format used for `long double' on almost all i386 targets is
5752 the i387 extended floating-point format. In fact, of all targets
5753 in the GCC 2.95 tree, only OSF/1 does it different, and insists
5754 on having a `long double' that's not `long' at all. */
5755 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
5756
5757 /* Although the i387 extended floating-point has only 80 significant
5758 bits, a `long double' actually takes up 96, probably to enforce
5759 alignment. */
5760 set_gdbarch_long_double_bit (gdbarch, 96);
5761
7ad10968
HZ
5762 /* Register numbers of various important registers. */
5763 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
5764 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
5765 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
5766 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
5767
5768 /* NOTE: kettenis/20040418: GCC does have two possible register
5769 numbering schemes on the i386: dbx and SVR4. These schemes
5770 differ in how they number %ebp, %esp, %eflags, and the
5771 floating-point registers, and are implemented by the arrays
5772 dbx_register_map[] and svr4_dbx_register_map in
5773 gcc/config/i386.c. GCC also defines a third numbering scheme in
5774 gcc/config/i386.c, which it designates as the "default" register
5775 map used in 64bit mode. This last register numbering scheme is
5776 implemented in dbx64_register_map, and is used for AMD64; see
5777 amd64-tdep.c.
5778
5779 Currently, each GCC i386 target always uses the same register
5780 numbering scheme across all its supported debugging formats
5781 i.e. SDB (COFF), stabs and DWARF 2. This is because
5782 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
5783 DBX_REGISTER_NUMBER macro which is defined by each target's
5784 respective config header in a manner independent of the requested
5785 output debugging format.
5786
5787 This does not match the arrangement below, which presumes that
5788 the SDB and stabs numbering schemes differ from the DWARF and
5789 DWARF 2 ones. The reason for this arrangement is that it is
5790 likely to get the numbering scheme for the target's
5791 default/native debug format right. For targets where GCC is the
5792 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
5793 targets where the native toolchain uses a different numbering
5794 scheme for a particular debug format (stabs-in-ELF on Solaris)
5795 the defaults below will have to be overridden, like
5796 i386_elf_init_abi() does. */
5797
5798 /* Use the dbx register numbering scheme for stabs and COFF. */
5799 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
5800 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
5801
5802 /* Use the SVR4 register numbering scheme for DWARF 2. */
5803 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
5804
5805 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
5806 be in use on any of the supported i386 targets. */
5807
5808 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
5809
5810 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
5811
5812 /* Call dummy code. */
5813 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
5814
5815 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
5816 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
5817 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
5818
5819 set_gdbarch_return_value (gdbarch, i386_return_value);
5820
5821 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
5822
5823 /* Stack grows downward. */
5824 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5825
5826 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
5827 set_gdbarch_decr_pc_after_break (gdbarch, 1);
5828 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
5829
5830 set_gdbarch_frame_args_skip (gdbarch, 8);
5831
7ad10968
HZ
5832 set_gdbarch_print_insn (gdbarch, i386_print_insn);
5833
5834 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
5835
5836 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
5837
5838 /* Add the i386 register groups. */
5839 i386_add_reggroups (gdbarch);
90884b2b 5840 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 5841
143985b7
AF
5842 /* Helper for function argument information. */
5843 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
5844
06da04c6
MS
5845 /* Hook the function epilogue frame unwinder. This unwinder is
5846 appended to the list first, so that it supercedes the Dwarf
5847 unwinder in function epilogues (where the Dwarf unwinder
5848 currently fails). */
5849 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
5850
5851 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
5852 to the list before the prologue-based unwinders, so that Dwarf
5853 CFI info will be used if it is available. */
10458914 5854 dwarf2_append_unwinders (gdbarch);
6405b0a6 5855
acd5c798 5856 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 5857
1ba53b71 5858 /* Pseudo registers may be changed by amd64_init_abi. */
90884b2b
L
5859 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
5860 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
5861
5862 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
5863 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
5864
5865 /* The default ABI includes general-purpose registers,
5866 floating-point registers, and the SSE registers. */
5867 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
5868
5869 /* Get the x86 target description from INFO. */
5870 tdesc = info.target_desc;
5871 if (! tdesc_has_registers (tdesc))
5872 tdesc = tdesc_i386;
5873 tdep->tdesc = tdesc;
5874
5875 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
5876 tdep->register_names = i386_register_names;
5877
1ba53b71
L
5878 tdep->num_byte_regs = 8;
5879 tdep->num_word_regs = 8;
5880 tdep->num_dword_regs = 0;
5881 tdep->num_mmx_regs = 8;
5882
90884b2b
L
5883 tdesc_data = tdesc_data_alloc ();
5884
3ce1502b 5885 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 5886 info.tdep_info = (void *) tdesc_data;
4be87837 5887 gdbarch_init_osabi (info, gdbarch);
3ce1502b 5888
1ba53b71
L
5889 /* Wire in pseudo registers. Number of pseudo registers may be
5890 changed. */
5891 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
5892 + tdep->num_word_regs
5893 + tdep->num_dword_regs
5894 + tdep->num_mmx_regs));
5895
90884b2b
L
5896 /* Target description may be changed. */
5897 tdesc = tdep->tdesc;
5898
5899 if (!i386_validate_tdesc_p (tdep, tdesc_data))
5900 {
5901 tdesc_data_cleanup (tdesc_data);
5902 xfree (tdep);
5903 gdbarch_free (gdbarch);
5904 return NULL;
5905 }
5906
5907 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
5908
5909 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
5910 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
5911
1ba53b71
L
5912 /* Make %al the first pseudo-register. */
5913 tdep->al_regnum = gdbarch_num_regs (gdbarch);
5914 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
5915
5916 mm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
5917 if (tdep->num_dword_regs)
5918 {
5919 /* Support dword pseudo-registesr if it hasn't been disabled, */
5920 tdep->eax_regnum = mm0_regnum;
5921 mm0_regnum = tdep->eax_regnum + tdep->num_dword_regs;
5922 }
5923 else
5924 tdep->eax_regnum = -1;
5925
5926 if (tdep->num_mmx_regs != 0)
5927 {
5928 /* Support MMX pseudo-registesr if MMX hasn't been disabled, */
5929 tdep->mm0_regnum = mm0_regnum;
5930 }
5931 else
5932 tdep->mm0_regnum = -1;
5933
06da04c6 5934 /* Hook in the legacy prologue-based unwinders last (fallback). */
10458914
DJ
5935 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
5936 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 5937
8446b36a
MK
5938 /* If we have a register mapping, enable the generic core file
5939 support, unless it has already been enabled. */
5940 if (tdep->gregset_reg_offset
5941 && !gdbarch_regset_from_core_section_p (gdbarch))
5942 set_gdbarch_regset_from_core_section (gdbarch,
5943 i386_regset_from_core_section);
5944
514f746b
AR
5945 set_gdbarch_skip_permanent_breakpoint (gdbarch,
5946 i386_skip_permanent_breakpoint);
5947
7a697b8d
SS
5948 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
5949 i386_fast_tracepoint_valid_at);
5950
a62cc96e
AC
5951 return gdbarch;
5952}
5953
8201327c
MK
5954static enum gdb_osabi
5955i386_coff_osabi_sniffer (bfd *abfd)
5956{
762c5349
MK
5957 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
5958 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
5959 return GDB_OSABI_GO32;
5960
5961 return GDB_OSABI_UNKNOWN;
5962}
8201327c
MK
5963\f
5964
28e9e0f0
MK
5965/* Provide a prototype to silence -Wmissing-prototypes. */
5966void _initialize_i386_tdep (void);
5967
c906108c 5968void
fba45db2 5969_initialize_i386_tdep (void)
c906108c 5970{
a62cc96e
AC
5971 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
5972
fc338970 5973 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
5974 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
5975 &disassembly_flavor, _("\
5976Set the disassembly flavor."), _("\
5977Show the disassembly flavor."), _("\
5978The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
5979 NULL,
5980 NULL, /* FIXME: i18n: */
5981 &setlist, &showlist);
8201327c
MK
5982
5983 /* Add the variable that controls the convention for returning
5984 structs. */
7ab04401
AC
5985 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
5986 &struct_convention, _("\
5987Set the convention for returning small structs."), _("\
5988Show the convention for returning small structs."), _("\
5989Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
5990is \"default\"."),
5991 NULL,
5992 NULL, /* FIXME: i18n: */
5993 &setlist, &showlist);
8201327c
MK
5994
5995 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
5996 i386_coff_osabi_sniffer);
8201327c 5997
05816f70 5998 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 5999 i386_svr4_init_abi);
05816f70 6000 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 6001 i386_go32_init_abi);
38c968cf 6002
209bd28e 6003 /* Initialize the i386-specific register groups. */
38c968cf 6004 i386_init_reggroups ();
90884b2b
L
6005
6006 /* Initialize the standard target descriptions. */
6007 initialize_tdesc_i386 ();
c906108c 6008}