]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
gas/
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
f31fef98 3 2004, 2005, 2006, 2007, 2008, 2009
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
5287ad62 28#include <limits.h>
037e8744 29#include <stdarg.h>
c19d1205 30#define NO_RELOC 0
b99bd4ef 31#include "as.h"
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80/* Bit N indicates that an R_ARM_NONE relocation has been output for
81 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
82 emitted only once per section, to save unnecessary bloat. */
83static unsigned int marked_pr_dependency = 0;
84
85#endif /* OBJ_ELF */
86
4962c51a
MS
87/* Results from operand parsing worker functions. */
88
89typedef enum
90{
91 PARSE_OPERAND_SUCCESS,
92 PARSE_OPERAND_FAIL,
93 PARSE_OPERAND_FAIL_NO_BACKTRACK
94} parse_operand_result;
95
33a392fb
PB
96enum arm_float_abi
97{
98 ARM_FLOAT_ABI_HARD,
99 ARM_FLOAT_ABI_SOFTFP,
100 ARM_FLOAT_ABI_SOFT
101};
102
c19d1205 103/* Types of processor to assemble for. */
b99bd4ef
NC
104#ifndef CPU_DEFAULT
105#if defined __XSCALE__
e74cfd16 106#define CPU_DEFAULT ARM_ARCH_XSCALE
b99bd4ef
NC
107#else
108#if defined __thumb__
e74cfd16 109#define CPU_DEFAULT ARM_ARCH_V5T
b99bd4ef
NC
110#endif
111#endif
112#endif
113
114#ifndef FPU_DEFAULT
c820d418
MM
115# ifdef TE_LINUX
116# define FPU_DEFAULT FPU_ARCH_FPA
117# elif defined (TE_NetBSD)
118# ifdef OBJ_ELF
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
120# else
121 /* Legacy a.out format. */
122# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
123# endif
4e7fd91e
PB
124# elif defined (TE_VXWORKS)
125# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
126# else
127 /* For backwards compatibility, default to FPA. */
128# define FPU_DEFAULT FPU_ARCH_FPA
129# endif
130#endif /* ifndef FPU_DEFAULT */
b99bd4ef 131
c19d1205 132#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 133
e74cfd16
PB
134static arm_feature_set cpu_variant;
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
03b1477f
RE
148
149/* Variables that we set while parsing command-line options. Once all
150 options have been read we re-process these values to set the real
151 assembly flags. */
e74cfd16
PB
152static const arm_feature_set *legacy_cpu = NULL;
153static const arm_feature_set *legacy_fpu = NULL;
154
155static const arm_feature_set *mcpu_cpu_opt = NULL;
156static const arm_feature_set *mcpu_fpu_opt = NULL;
157static const arm_feature_set *march_cpu_opt = NULL;
158static const arm_feature_set *march_fpu_opt = NULL;
159static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 160static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
161
162/* Constants for known architecture features. */
163static const arm_feature_set fpu_default = FPU_DEFAULT;
164static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
165static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
166static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
167static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
168static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
169static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
170static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
171static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
172
173#ifdef CPU_DEFAULT
174static const arm_feature_set cpu_default = CPU_DEFAULT;
175#endif
176
177static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
178static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
179static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
180static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
181static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
182static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
183static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
184static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
185static const arm_feature_set arm_ext_v4t_5 =
186 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
187static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
188static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
189static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
190static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
191static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
192static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
193static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
194static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311 195static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
7e806470
PB
196static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
197static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
198static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
199static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
200static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
201static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
7e806470
PB
202static const arm_feature_set arm_ext_m =
203 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
e74cfd16
PB
204
205static const arm_feature_set arm_arch_any = ARM_ANY;
206static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
207static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
208static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
209
2d447fca
JM
210static const arm_feature_set arm_cext_iwmmxt2 =
211 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
212static const arm_feature_set arm_cext_iwmmxt =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
214static const arm_feature_set arm_cext_xscale =
215 ARM_FEATURE (0, ARM_CEXT_XSCALE);
216static const arm_feature_set arm_cext_maverick =
217 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
218static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
219static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
220static const arm_feature_set fpu_vfp_ext_v1xd =
221 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
222static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
223static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
5287ad62 224static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
225static const arm_feature_set fpu_vfp_ext_d32 =
226 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
227static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
228static const arm_feature_set fpu_vfp_v3_or_neon_ext =
229 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
8e79c3df 230static const arm_feature_set fpu_neon_fp16 = ARM_FEATURE (0, FPU_NEON_FP16);
e74cfd16 231
33a392fb 232static int mfloat_abi_opt = -1;
e74cfd16
PB
233/* Record user cpu selection for object attributes. */
234static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
235/* Must be long enough to hold any of the names in arm_cpus. */
236static char selected_cpu_name[16];
7cc69913 237#ifdef OBJ_ELF
deeaaff8
DJ
238# ifdef EABI_DEFAULT
239static int meabi_flags = EABI_DEFAULT;
240# else
d507cf36 241static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 242# endif
e1da3f5b 243
ee3c0378
AS
244static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
245
e1da3f5b 246bfd_boolean
5f4273c7 247arm_is_eabi (void)
e1da3f5b
PB
248{
249 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
250}
7cc69913 251#endif
b99bd4ef 252
b99bd4ef 253#ifdef OBJ_ELF
c19d1205 254/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
255symbolS * GOT_symbol;
256#endif
257
b99bd4ef
NC
258/* 0: assemble for ARM,
259 1: assemble for Thumb,
260 2: assemble for Thumb even though target CPU does not support thumb
261 instructions. */
262static int thumb_mode = 0;
8dc2430f
NC
263/* A value distinct from the possible values for thumb_mode that we
264 can use to record whether thumb_mode has been copied into the
265 tc_frag_data field of a frag. */
266#define MODE_RECORDED (1 << 4)
b99bd4ef 267
c19d1205
ZW
268/* If unified_syntax is true, we are processing the new unified
269 ARM/Thumb syntax. Important differences from the old ARM mode:
270
271 - Immediate operands do not require a # prefix.
272 - Conditional affixes always appear at the end of the
273 instruction. (For backward compatibility, those instructions
274 that formerly had them in the middle, continue to accept them
275 there.)
276 - The IT instruction may appear, and if it does is validated
277 against subsequent conditional affixes. It does not generate
278 machine code.
279
280 Important differences from the old Thumb mode:
281
282 - Immediate operands do not require a # prefix.
283 - Most of the V6T2 instructions are only available in unified mode.
284 - The .N and .W suffixes are recognized and honored (it is an error
285 if they cannot be honored).
286 - All instructions set the flags if and only if they have an 's' affix.
287 - Conditional affixes may be used. They are validated against
288 preceding IT instructions. Unlike ARM mode, you cannot use a
289 conditional affix except in the scope of an IT instruction. */
290
291static bfd_boolean unified_syntax = FALSE;
b99bd4ef 292
5287ad62
JB
293enum neon_el_type
294{
dcbf9037 295 NT_invtype,
5287ad62
JB
296 NT_untyped,
297 NT_integer,
298 NT_float,
299 NT_poly,
300 NT_signed,
dcbf9037 301 NT_unsigned
5287ad62
JB
302};
303
304struct neon_type_el
305{
306 enum neon_el_type type;
307 unsigned size;
308};
309
310#define NEON_MAX_TYPE_ELS 4
311
312struct neon_type
313{
314 struct neon_type_el el[NEON_MAX_TYPE_ELS];
315 unsigned elems;
316};
317
b99bd4ef
NC
318struct arm_it
319{
c19d1205 320 const char * error;
b99bd4ef 321 unsigned long instruction;
c19d1205
ZW
322 int size;
323 int size_req;
324 int cond;
037e8744
JB
325 /* "uncond_value" is set to the value in place of the conditional field in
326 unconditional versions of the instruction, or -1 if nothing is
327 appropriate. */
328 int uncond_value;
5287ad62 329 struct neon_type vectype;
0110f2b8
PB
330 /* Set to the opcode if the instruction needs relaxation.
331 Zero if the instruction is not relaxed. */
332 unsigned long relax;
b99bd4ef
NC
333 struct
334 {
335 bfd_reloc_code_real_type type;
c19d1205
ZW
336 expressionS exp;
337 int pc_rel;
b99bd4ef 338 } reloc;
b99bd4ef 339
c19d1205
ZW
340 struct
341 {
342 unsigned reg;
ca3f61f7 343 signed int imm;
dcbf9037 344 struct neon_type_el vectype;
ca3f61f7
NC
345 unsigned present : 1; /* Operand present. */
346 unsigned isreg : 1; /* Operand was a register. */
347 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
348 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
349 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 350 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
351 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
352 instructions. This allows us to disambiguate ARM <-> vector insns. */
353 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 354 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 355 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 356 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
357 unsigned hasreloc : 1; /* Operand has relocation suffix. */
358 unsigned writeback : 1; /* Operand has trailing ! */
359 unsigned preind : 1; /* Preindexed address. */
360 unsigned postind : 1; /* Postindexed address. */
361 unsigned negative : 1; /* Index register was negated. */
362 unsigned shifted : 1; /* Shift applied to operation. */
363 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 364 } operands[6];
b99bd4ef
NC
365};
366
c19d1205 367static struct arm_it inst;
b99bd4ef
NC
368
369#define NUM_FLOAT_VALS 8
370
05d2d07e 371const char * fp_const[] =
b99bd4ef
NC
372{
373 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
374};
375
c19d1205 376/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
377#define MAX_LITTLENUMS 6
378
379LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
380
381#define FAIL (-1)
382#define SUCCESS (0)
383
384#define SUFF_S 1
385#define SUFF_D 2
386#define SUFF_E 3
387#define SUFF_P 4
388
c19d1205
ZW
389#define CP_T_X 0x00008000
390#define CP_T_Y 0x00400000
b99bd4ef 391
c19d1205
ZW
392#define CONDS_BIT 0x00100000
393#define LOAD_BIT 0x00100000
b99bd4ef
NC
394
395#define DOUBLE_LOAD_FLAG 0x00000001
396
397struct asm_cond
398{
c19d1205 399 const char * template;
b99bd4ef
NC
400 unsigned long value;
401};
402
c19d1205 403#define COND_ALWAYS 0xE
b99bd4ef 404
b99bd4ef
NC
405struct asm_psr
406{
b34976b6 407 const char *template;
b99bd4ef
NC
408 unsigned long field;
409};
410
62b3e311
PB
411struct asm_barrier_opt
412{
413 const char *template;
414 unsigned long value;
415};
416
2d2255b5 417/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
418#define SPSR_BIT (1 << 22)
419
c19d1205
ZW
420/* The individual PSR flag bits. */
421#define PSR_c (1 << 16)
422#define PSR_x (1 << 17)
423#define PSR_s (1 << 18)
424#define PSR_f (1 << 19)
b99bd4ef 425
c19d1205 426struct reloc_entry
bfae80f2 427{
c19d1205
ZW
428 char *name;
429 bfd_reloc_code_real_type reloc;
bfae80f2
RE
430};
431
5287ad62 432enum vfp_reg_pos
bfae80f2 433{
5287ad62
JB
434 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
435 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
436};
437
438enum vfp_ldstm_type
439{
440 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
441};
442
dcbf9037
JB
443/* Bits for DEFINED field in neon_typed_alias. */
444#define NTA_HASTYPE 1
445#define NTA_HASINDEX 2
446
447struct neon_typed_alias
448{
449 unsigned char defined;
450 unsigned char index;
451 struct neon_type_el eltype;
452};
453
c19d1205
ZW
454/* ARM register categories. This includes coprocessor numbers and various
455 architecture extensions' registers. */
456enum arm_reg_type
bfae80f2 457{
c19d1205
ZW
458 REG_TYPE_RN,
459 REG_TYPE_CP,
460 REG_TYPE_CN,
461 REG_TYPE_FN,
462 REG_TYPE_VFS,
463 REG_TYPE_VFD,
5287ad62 464 REG_TYPE_NQ,
037e8744 465 REG_TYPE_VFSD,
5287ad62 466 REG_TYPE_NDQ,
037e8744 467 REG_TYPE_NSDQ,
c19d1205
ZW
468 REG_TYPE_VFC,
469 REG_TYPE_MVF,
470 REG_TYPE_MVD,
471 REG_TYPE_MVFX,
472 REG_TYPE_MVDX,
473 REG_TYPE_MVAX,
474 REG_TYPE_DSPSC,
475 REG_TYPE_MMXWR,
476 REG_TYPE_MMXWC,
477 REG_TYPE_MMXWCG,
478 REG_TYPE_XSCALE,
bfae80f2
RE
479};
480
dcbf9037
JB
481/* Structure for a hash table entry for a register.
482 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
483 information which states whether a vector type or index is specified (for a
484 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
485struct reg_entry
486{
dcbf9037
JB
487 const char *name;
488 unsigned char number;
489 unsigned char type;
490 unsigned char builtin;
491 struct neon_typed_alias *neon;
6c43fab6
RE
492};
493
c19d1205
ZW
494/* Diagnostics used when we don't get a register of the expected type. */
495const char *const reg_expected_msgs[] =
496{
497 N_("ARM register expected"),
498 N_("bad or missing co-processor number"),
499 N_("co-processor register expected"),
500 N_("FPA register expected"),
501 N_("VFP single precision register expected"),
5287ad62
JB
502 N_("VFP/Neon double precision register expected"),
503 N_("Neon quad precision register expected"),
037e8744 504 N_("VFP single or double precision register expected"),
5287ad62 505 N_("Neon double or quad precision register expected"),
037e8744 506 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
507 N_("VFP system register expected"),
508 N_("Maverick MVF register expected"),
509 N_("Maverick MVD register expected"),
510 N_("Maverick MVFX register expected"),
511 N_("Maverick MVDX register expected"),
512 N_("Maverick MVAX register expected"),
513 N_("Maverick DSPSC register expected"),
514 N_("iWMMXt data register expected"),
515 N_("iWMMXt control register expected"),
516 N_("iWMMXt scalar register expected"),
517 N_("XScale accumulator register expected"),
6c43fab6
RE
518};
519
c19d1205
ZW
520/* Some well known registers that we refer to directly elsewhere. */
521#define REG_SP 13
522#define REG_LR 14
523#define REG_PC 15
404ff6b5 524
b99bd4ef
NC
525/* ARM instructions take 4bytes in the object file, Thumb instructions
526 take 2: */
c19d1205 527#define INSN_SIZE 4
b99bd4ef
NC
528
529struct asm_opcode
530{
531 /* Basic string to match. */
c19d1205
ZW
532 const char *template;
533
534 /* Parameters to instruction. */
535 unsigned char operands[8];
536
537 /* Conditional tag - see opcode_lookup. */
538 unsigned int tag : 4;
b99bd4ef
NC
539
540 /* Basic instruction code. */
c19d1205 541 unsigned int avalue : 28;
b99bd4ef 542
c19d1205
ZW
543 /* Thumb-format instruction code. */
544 unsigned int tvalue;
b99bd4ef 545
90e4755a 546 /* Which architecture variant provides this instruction. */
e74cfd16
PB
547 const arm_feature_set *avariant;
548 const arm_feature_set *tvariant;
c19d1205
ZW
549
550 /* Function to call to encode instruction in ARM format. */
551 void (* aencode) (void);
b99bd4ef 552
c19d1205
ZW
553 /* Function to call to encode instruction in Thumb format. */
554 void (* tencode) (void);
b99bd4ef
NC
555};
556
a737bd4d
NC
557/* Defines for various bits that we will want to toggle. */
558#define INST_IMMEDIATE 0x02000000
559#define OFFSET_REG 0x02000000
c19d1205 560#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
561#define SHIFT_BY_REG 0x00000010
562#define PRE_INDEX 0x01000000
563#define INDEX_UP 0x00800000
564#define WRITE_BACK 0x00200000
565#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 566#define CPSI_MMOD 0x00020000
90e4755a 567
a737bd4d
NC
568#define LITERAL_MASK 0xf000f000
569#define OPCODE_MASK 0xfe1fffff
570#define V4_STR_BIT 0x00000020
90e4755a 571
efd81785
PB
572#define T2_SUBS_PC_LR 0xf3de8f00
573
a737bd4d 574#define DATA_OP_SHIFT 21
90e4755a 575
ef8d22e6
PB
576#define T2_OPCODE_MASK 0xfe1fffff
577#define T2_DATA_OP_SHIFT 21
578
a737bd4d
NC
579/* Codes to distinguish the arithmetic instructions. */
580#define OPCODE_AND 0
581#define OPCODE_EOR 1
582#define OPCODE_SUB 2
583#define OPCODE_RSB 3
584#define OPCODE_ADD 4
585#define OPCODE_ADC 5
586#define OPCODE_SBC 6
587#define OPCODE_RSC 7
588#define OPCODE_TST 8
589#define OPCODE_TEQ 9
590#define OPCODE_CMP 10
591#define OPCODE_CMN 11
592#define OPCODE_ORR 12
593#define OPCODE_MOV 13
594#define OPCODE_BIC 14
595#define OPCODE_MVN 15
90e4755a 596
ef8d22e6
PB
597#define T2_OPCODE_AND 0
598#define T2_OPCODE_BIC 1
599#define T2_OPCODE_ORR 2
600#define T2_OPCODE_ORN 3
601#define T2_OPCODE_EOR 4
602#define T2_OPCODE_ADD 8
603#define T2_OPCODE_ADC 10
604#define T2_OPCODE_SBC 11
605#define T2_OPCODE_SUB 13
606#define T2_OPCODE_RSB 14
607
a737bd4d
NC
608#define T_OPCODE_MUL 0x4340
609#define T_OPCODE_TST 0x4200
610#define T_OPCODE_CMN 0x42c0
611#define T_OPCODE_NEG 0x4240
612#define T_OPCODE_MVN 0x43c0
90e4755a 613
a737bd4d
NC
614#define T_OPCODE_ADD_R3 0x1800
615#define T_OPCODE_SUB_R3 0x1a00
616#define T_OPCODE_ADD_HI 0x4400
617#define T_OPCODE_ADD_ST 0xb000
618#define T_OPCODE_SUB_ST 0xb080
619#define T_OPCODE_ADD_SP 0xa800
620#define T_OPCODE_ADD_PC 0xa000
621#define T_OPCODE_ADD_I8 0x3000
622#define T_OPCODE_SUB_I8 0x3800
623#define T_OPCODE_ADD_I3 0x1c00
624#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 625
a737bd4d
NC
626#define T_OPCODE_ASR_R 0x4100
627#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
628#define T_OPCODE_LSR_R 0x40c0
629#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
630#define T_OPCODE_ASR_I 0x1000
631#define T_OPCODE_LSL_I 0x0000
632#define T_OPCODE_LSR_I 0x0800
b99bd4ef 633
a737bd4d
NC
634#define T_OPCODE_MOV_I8 0x2000
635#define T_OPCODE_CMP_I8 0x2800
636#define T_OPCODE_CMP_LR 0x4280
637#define T_OPCODE_MOV_HR 0x4600
638#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 639
a737bd4d
NC
640#define T_OPCODE_LDR_PC 0x4800
641#define T_OPCODE_LDR_SP 0x9800
642#define T_OPCODE_STR_SP 0x9000
643#define T_OPCODE_LDR_IW 0x6800
644#define T_OPCODE_STR_IW 0x6000
645#define T_OPCODE_LDR_IH 0x8800
646#define T_OPCODE_STR_IH 0x8000
647#define T_OPCODE_LDR_IB 0x7800
648#define T_OPCODE_STR_IB 0x7000
649#define T_OPCODE_LDR_RW 0x5800
650#define T_OPCODE_STR_RW 0x5000
651#define T_OPCODE_LDR_RH 0x5a00
652#define T_OPCODE_STR_RH 0x5200
653#define T_OPCODE_LDR_RB 0x5c00
654#define T_OPCODE_STR_RB 0x5400
c9b604bd 655
a737bd4d
NC
656#define T_OPCODE_PUSH 0xb400
657#define T_OPCODE_POP 0xbc00
b99bd4ef 658
2fc8bdac 659#define T_OPCODE_BRANCH 0xe000
b99bd4ef 660
a737bd4d 661#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 662#define THUMB_PP_PC_LR 0x0100
c19d1205 663#define THUMB_LOAD_BIT 0x0800
53365c0d 664#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
665
666#define BAD_ARGS _("bad arguments to instruction")
fdfde340 667#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
668#define BAD_PC _("r15 not allowed here")
669#define BAD_COND _("instruction cannot be conditional")
670#define BAD_OVERLAP _("registers may not be the same")
671#define BAD_HIREG _("lo register required")
672#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 673#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
674#define BAD_BRANCH _("branch must be last instruction in IT block")
675#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 676#define BAD_FPU _("selected FPU does not support instruction")
c19d1205
ZW
677
678static struct hash_control *arm_ops_hsh;
679static struct hash_control *arm_cond_hsh;
680static struct hash_control *arm_shift_hsh;
681static struct hash_control *arm_psr_hsh;
62b3e311 682static struct hash_control *arm_v7m_psr_hsh;
c19d1205
ZW
683static struct hash_control *arm_reg_hsh;
684static struct hash_control *arm_reloc_hsh;
62b3e311 685static struct hash_control *arm_barrier_opt_hsh;
b99bd4ef 686
b99bd4ef
NC
687/* Stuff needed to resolve the label ambiguity
688 As:
689 ...
690 label: <insn>
691 may differ from:
692 ...
693 label:
5f4273c7 694 <insn> */
b99bd4ef
NC
695
696symbolS * last_label_seen;
b34976b6 697static int label_is_thumb_function_name = FALSE;
a737bd4d 698\f
3d0c9500
NC
699/* Literal pool structure. Held on a per-section
700 and per-sub-section basis. */
a737bd4d 701
c19d1205 702#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 703typedef struct literal_pool
b99bd4ef 704{
c19d1205
ZW
705 expressionS literals [MAX_LITERAL_POOL_SIZE];
706 unsigned int next_free_entry;
707 unsigned int id;
708 symbolS * symbol;
709 segT section;
710 subsegT sub_section;
61b5f74b 711 struct literal_pool * next;
3d0c9500 712} literal_pool;
b99bd4ef 713
3d0c9500
NC
714/* Pointer to a linked list of literal pools. */
715literal_pool * list_of_pools = NULL;
e27ec89e
PB
716
717/* State variables for IT block handling. */
718static bfd_boolean current_it_mask = 0;
719static int current_cc;
c19d1205
ZW
720\f
721/* Pure syntax. */
b99bd4ef 722
c19d1205
ZW
723/* This array holds the chars that always start a comment. If the
724 pre-processor is disabled, these aren't very useful. */
725const char comment_chars[] = "@";
3d0c9500 726
c19d1205
ZW
727/* This array holds the chars that only start a comment at the beginning of
728 a line. If the line seems to have the form '# 123 filename'
729 .line and .file directives will appear in the pre-processed output. */
730/* Note that input_file.c hand checks for '#' at the beginning of the
731 first line of the input file. This is because the compiler outputs
732 #NO_APP at the beginning of its output. */
733/* Also note that comments like this one will always work. */
734const char line_comment_chars[] = "#";
3d0c9500 735
c19d1205 736const char line_separator_chars[] = ";";
b99bd4ef 737
c19d1205
ZW
738/* Chars that can be used to separate mant
739 from exp in floating point numbers. */
740const char EXP_CHARS[] = "eE";
3d0c9500 741
c19d1205
ZW
742/* Chars that mean this number is a floating point constant. */
743/* As in 0f12.456 */
744/* or 0d1.2345e12 */
b99bd4ef 745
c19d1205 746const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 747
c19d1205
ZW
748/* Prefix characters that indicate the start of an immediate
749 value. */
750#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 751
c19d1205
ZW
752/* Separator character handling. */
753
754#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
755
756static inline int
757skip_past_char (char ** str, char c)
758{
759 if (**str == c)
760 {
761 (*str)++;
762 return SUCCESS;
3d0c9500 763 }
c19d1205
ZW
764 else
765 return FAIL;
766}
767#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 768
c19d1205
ZW
769/* Arithmetic expressions (possibly involving symbols). */
770
771/* Return TRUE if anything in the expression is a bignum. */
772
773static int
774walk_no_bignums (symbolS * sp)
775{
776 if (symbol_get_value_expression (sp)->X_op == O_big)
777 return 1;
778
779 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 780 {
c19d1205
ZW
781 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
782 || (symbol_get_value_expression (sp)->X_op_symbol
783 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
784 }
785
c19d1205 786 return 0;
3d0c9500
NC
787}
788
c19d1205
ZW
789static int in_my_get_expression = 0;
790
791/* Third argument to my_get_expression. */
792#define GE_NO_PREFIX 0
793#define GE_IMM_PREFIX 1
794#define GE_OPT_PREFIX 2
5287ad62
JB
795/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
796 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
797#define GE_OPT_PREFIX_BIG 3
a737bd4d 798
b99bd4ef 799static int
c19d1205 800my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 801{
c19d1205
ZW
802 char * save_in;
803 segT seg;
b99bd4ef 804
c19d1205
ZW
805 /* In unified syntax, all prefixes are optional. */
806 if (unified_syntax)
5287ad62
JB
807 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
808 : GE_OPT_PREFIX;
b99bd4ef 809
c19d1205 810 switch (prefix_mode)
b99bd4ef 811 {
c19d1205
ZW
812 case GE_NO_PREFIX: break;
813 case GE_IMM_PREFIX:
814 if (!is_immediate_prefix (**str))
815 {
816 inst.error = _("immediate expression requires a # prefix");
817 return FAIL;
818 }
819 (*str)++;
820 break;
821 case GE_OPT_PREFIX:
5287ad62 822 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
823 if (is_immediate_prefix (**str))
824 (*str)++;
825 break;
826 default: abort ();
827 }
b99bd4ef 828
c19d1205 829 memset (ep, 0, sizeof (expressionS));
b99bd4ef 830
c19d1205
ZW
831 save_in = input_line_pointer;
832 input_line_pointer = *str;
833 in_my_get_expression = 1;
834 seg = expression (ep);
835 in_my_get_expression = 0;
836
837 if (ep->X_op == O_illegal)
b99bd4ef 838 {
c19d1205
ZW
839 /* We found a bad expression in md_operand(). */
840 *str = input_line_pointer;
841 input_line_pointer = save_in;
842 if (inst.error == NULL)
843 inst.error = _("bad expression");
844 return 1;
845 }
b99bd4ef 846
c19d1205
ZW
847#ifdef OBJ_AOUT
848 if (seg != absolute_section
849 && seg != text_section
850 && seg != data_section
851 && seg != bss_section
852 && seg != undefined_section)
853 {
854 inst.error = _("bad segment");
855 *str = input_line_pointer;
856 input_line_pointer = save_in;
857 return 1;
b99bd4ef 858 }
c19d1205 859#endif
b99bd4ef 860
c19d1205
ZW
861 /* Get rid of any bignums now, so that we don't generate an error for which
862 we can't establish a line number later on. Big numbers are never valid
863 in instructions, which is where this routine is always called. */
5287ad62
JB
864 if (prefix_mode != GE_OPT_PREFIX_BIG
865 && (ep->X_op == O_big
866 || (ep->X_add_symbol
867 && (walk_no_bignums (ep->X_add_symbol)
868 || (ep->X_op_symbol
869 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
870 {
871 inst.error = _("invalid constant");
872 *str = input_line_pointer;
873 input_line_pointer = save_in;
874 return 1;
875 }
b99bd4ef 876
c19d1205
ZW
877 *str = input_line_pointer;
878 input_line_pointer = save_in;
879 return 0;
b99bd4ef
NC
880}
881
c19d1205
ZW
882/* Turn a string in input_line_pointer into a floating point constant
883 of type TYPE, and store the appropriate bytes in *LITP. The number
884 of LITTLENUMS emitted is stored in *SIZEP. An error message is
885 returned, or NULL on OK.
b99bd4ef 886
c19d1205
ZW
887 Note that fp constants aren't represent in the normal way on the ARM.
888 In big endian mode, things are as expected. However, in little endian
889 mode fp constants are big-endian word-wise, and little-endian byte-wise
890 within the words. For example, (double) 1.1 in big endian mode is
891 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
892 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 893
c19d1205 894 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 895
c19d1205
ZW
896char *
897md_atof (int type, char * litP, int * sizeP)
898{
899 int prec;
900 LITTLENUM_TYPE words[MAX_LITTLENUMS];
901 char *t;
902 int i;
b99bd4ef 903
c19d1205
ZW
904 switch (type)
905 {
906 case 'f':
907 case 'F':
908 case 's':
909 case 'S':
910 prec = 2;
911 break;
b99bd4ef 912
c19d1205
ZW
913 case 'd':
914 case 'D':
915 case 'r':
916 case 'R':
917 prec = 4;
918 break;
b99bd4ef 919
c19d1205
ZW
920 case 'x':
921 case 'X':
499ac353 922 prec = 5;
c19d1205 923 break;
b99bd4ef 924
c19d1205
ZW
925 case 'p':
926 case 'P':
499ac353 927 prec = 5;
c19d1205 928 break;
a737bd4d 929
c19d1205
ZW
930 default:
931 *sizeP = 0;
499ac353 932 return _("Unrecognized or unsupported floating point constant");
c19d1205 933 }
b99bd4ef 934
c19d1205
ZW
935 t = atof_ieee (input_line_pointer, type, words);
936 if (t)
937 input_line_pointer = t;
499ac353 938 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 939
c19d1205
ZW
940 if (target_big_endian)
941 {
942 for (i = 0; i < prec; i++)
943 {
499ac353
NC
944 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
945 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
946 }
947 }
948 else
949 {
e74cfd16 950 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
951 for (i = prec - 1; i >= 0; i--)
952 {
499ac353
NC
953 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
954 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
955 }
956 else
957 /* For a 4 byte float the order of elements in `words' is 1 0.
958 For an 8 byte float the order is 1 0 3 2. */
959 for (i = 0; i < prec; i += 2)
960 {
499ac353
NC
961 md_number_to_chars (litP, (valueT) words[i + 1],
962 sizeof (LITTLENUM_TYPE));
963 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
964 (valueT) words[i], sizeof (LITTLENUM_TYPE));
965 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
966 }
967 }
b99bd4ef 968
499ac353 969 return NULL;
c19d1205 970}
b99bd4ef 971
c19d1205
ZW
972/* We handle all bad expressions here, so that we can report the faulty
973 instruction in the error message. */
974void
975md_operand (expressionS * expr)
976{
977 if (in_my_get_expression)
978 expr->X_op = O_illegal;
b99bd4ef
NC
979}
980
c19d1205 981/* Immediate values. */
b99bd4ef 982
c19d1205
ZW
983/* Generic immediate-value read function for use in directives.
984 Accepts anything that 'expression' can fold to a constant.
985 *val receives the number. */
986#ifdef OBJ_ELF
987static int
988immediate_for_directive (int *val)
b99bd4ef 989{
c19d1205
ZW
990 expressionS exp;
991 exp.X_op = O_illegal;
b99bd4ef 992
c19d1205
ZW
993 if (is_immediate_prefix (*input_line_pointer))
994 {
995 input_line_pointer++;
996 expression (&exp);
997 }
b99bd4ef 998
c19d1205
ZW
999 if (exp.X_op != O_constant)
1000 {
1001 as_bad (_("expected #constant"));
1002 ignore_rest_of_line ();
1003 return FAIL;
1004 }
1005 *val = exp.X_add_number;
1006 return SUCCESS;
b99bd4ef 1007}
c19d1205 1008#endif
b99bd4ef 1009
c19d1205 1010/* Register parsing. */
b99bd4ef 1011
c19d1205
ZW
1012/* Generic register parser. CCP points to what should be the
1013 beginning of a register name. If it is indeed a valid register
1014 name, advance CCP over it and return the reg_entry structure;
1015 otherwise return NULL. Does not issue diagnostics. */
1016
1017static struct reg_entry *
1018arm_reg_parse_multi (char **ccp)
b99bd4ef 1019{
c19d1205
ZW
1020 char *start = *ccp;
1021 char *p;
1022 struct reg_entry *reg;
b99bd4ef 1023
c19d1205
ZW
1024#ifdef REGISTER_PREFIX
1025 if (*start != REGISTER_PREFIX)
01cfc07f 1026 return NULL;
c19d1205
ZW
1027 start++;
1028#endif
1029#ifdef OPTIONAL_REGISTER_PREFIX
1030 if (*start == OPTIONAL_REGISTER_PREFIX)
1031 start++;
1032#endif
b99bd4ef 1033
c19d1205
ZW
1034 p = start;
1035 if (!ISALPHA (*p) || !is_name_beginner (*p))
1036 return NULL;
b99bd4ef 1037
c19d1205
ZW
1038 do
1039 p++;
1040 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1041
1042 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1043
1044 if (!reg)
1045 return NULL;
1046
1047 *ccp = p;
1048 return reg;
b99bd4ef
NC
1049}
1050
1051static int
dcbf9037
JB
1052arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1053 enum arm_reg_type type)
b99bd4ef 1054{
c19d1205
ZW
1055 /* Alternative syntaxes are accepted for a few register classes. */
1056 switch (type)
1057 {
1058 case REG_TYPE_MVF:
1059 case REG_TYPE_MVD:
1060 case REG_TYPE_MVFX:
1061 case REG_TYPE_MVDX:
1062 /* Generic coprocessor register names are allowed for these. */
79134647 1063 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1064 return reg->number;
1065 break;
69b97547 1066
c19d1205
ZW
1067 case REG_TYPE_CP:
1068 /* For backward compatibility, a bare number is valid here. */
1069 {
1070 unsigned long processor = strtoul (start, ccp, 10);
1071 if (*ccp != start && processor <= 15)
1072 return processor;
1073 }
6057a28f 1074
c19d1205
ZW
1075 case REG_TYPE_MMXWC:
1076 /* WC includes WCG. ??? I'm not sure this is true for all
1077 instructions that take WC registers. */
79134647 1078 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1079 return reg->number;
6057a28f 1080 break;
c19d1205 1081
6057a28f 1082 default:
c19d1205 1083 break;
6057a28f
NC
1084 }
1085
dcbf9037
JB
1086 return FAIL;
1087}
1088
1089/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1090 return value is the register number or FAIL. */
1091
1092static int
1093arm_reg_parse (char **ccp, enum arm_reg_type type)
1094{
1095 char *start = *ccp;
1096 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1097 int ret;
1098
1099 /* Do not allow a scalar (reg+index) to parse as a register. */
1100 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1101 return FAIL;
1102
1103 if (reg && reg->type == type)
1104 return reg->number;
1105
1106 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1107 return ret;
1108
c19d1205
ZW
1109 *ccp = start;
1110 return FAIL;
1111}
69b97547 1112
dcbf9037
JB
1113/* Parse a Neon type specifier. *STR should point at the leading '.'
1114 character. Does no verification at this stage that the type fits the opcode
1115 properly. E.g.,
1116
1117 .i32.i32.s16
1118 .s32.f32
1119 .u16
1120
1121 Can all be legally parsed by this function.
1122
1123 Fills in neon_type struct pointer with parsed information, and updates STR
1124 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1125 type, FAIL if not. */
1126
1127static int
1128parse_neon_type (struct neon_type *type, char **str)
1129{
1130 char *ptr = *str;
1131
1132 if (type)
1133 type->elems = 0;
1134
1135 while (type->elems < NEON_MAX_TYPE_ELS)
1136 {
1137 enum neon_el_type thistype = NT_untyped;
1138 unsigned thissize = -1u;
1139
1140 if (*ptr != '.')
1141 break;
1142
1143 ptr++;
1144
1145 /* Just a size without an explicit type. */
1146 if (ISDIGIT (*ptr))
1147 goto parsesize;
1148
1149 switch (TOLOWER (*ptr))
1150 {
1151 case 'i': thistype = NT_integer; break;
1152 case 'f': thistype = NT_float; break;
1153 case 'p': thistype = NT_poly; break;
1154 case 's': thistype = NT_signed; break;
1155 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1156 case 'd':
1157 thistype = NT_float;
1158 thissize = 64;
1159 ptr++;
1160 goto done;
dcbf9037
JB
1161 default:
1162 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1163 return FAIL;
1164 }
1165
1166 ptr++;
1167
1168 /* .f is an abbreviation for .f32. */
1169 if (thistype == NT_float && !ISDIGIT (*ptr))
1170 thissize = 32;
1171 else
1172 {
1173 parsesize:
1174 thissize = strtoul (ptr, &ptr, 10);
1175
1176 if (thissize != 8 && thissize != 16 && thissize != 32
1177 && thissize != 64)
1178 {
1179 as_bad (_("bad size %d in type specifier"), thissize);
1180 return FAIL;
1181 }
1182 }
1183
037e8744 1184 done:
dcbf9037
JB
1185 if (type)
1186 {
1187 type->el[type->elems].type = thistype;
1188 type->el[type->elems].size = thissize;
1189 type->elems++;
1190 }
1191 }
1192
1193 /* Empty/missing type is not a successful parse. */
1194 if (type->elems == 0)
1195 return FAIL;
1196
1197 *str = ptr;
1198
1199 return SUCCESS;
1200}
1201
1202/* Errors may be set multiple times during parsing or bit encoding
1203 (particularly in the Neon bits), but usually the earliest error which is set
1204 will be the most meaningful. Avoid overwriting it with later (cascading)
1205 errors by calling this function. */
1206
1207static void
1208first_error (const char *err)
1209{
1210 if (!inst.error)
1211 inst.error = err;
1212}
1213
1214/* Parse a single type, e.g. ".s32", leading period included. */
1215static int
1216parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1217{
1218 char *str = *ccp;
1219 struct neon_type optype;
1220
1221 if (*str == '.')
1222 {
1223 if (parse_neon_type (&optype, &str) == SUCCESS)
1224 {
1225 if (optype.elems == 1)
1226 *vectype = optype.el[0];
1227 else
1228 {
1229 first_error (_("only one type should be specified for operand"));
1230 return FAIL;
1231 }
1232 }
1233 else
1234 {
1235 first_error (_("vector type expected"));
1236 return FAIL;
1237 }
1238 }
1239 else
1240 return FAIL;
5f4273c7 1241
dcbf9037 1242 *ccp = str;
5f4273c7 1243
dcbf9037
JB
1244 return SUCCESS;
1245}
1246
1247/* Special meanings for indices (which have a range of 0-7), which will fit into
1248 a 4-bit integer. */
1249
1250#define NEON_ALL_LANES 15
1251#define NEON_INTERLEAVE_LANES 14
1252
1253/* Parse either a register or a scalar, with an optional type. Return the
1254 register number, and optionally fill in the actual type of the register
1255 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1256 type/index information in *TYPEINFO. */
1257
1258static int
1259parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1260 enum arm_reg_type *rtype,
1261 struct neon_typed_alias *typeinfo)
1262{
1263 char *str = *ccp;
1264 struct reg_entry *reg = arm_reg_parse_multi (&str);
1265 struct neon_typed_alias atype;
1266 struct neon_type_el parsetype;
1267
1268 atype.defined = 0;
1269 atype.index = -1;
1270 atype.eltype.type = NT_invtype;
1271 atype.eltype.size = -1;
1272
1273 /* Try alternate syntax for some types of register. Note these are mutually
1274 exclusive with the Neon syntax extensions. */
1275 if (reg == NULL)
1276 {
1277 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1278 if (altreg != FAIL)
1279 *ccp = str;
1280 if (typeinfo)
1281 *typeinfo = atype;
1282 return altreg;
1283 }
1284
037e8744
JB
1285 /* Undo polymorphism when a set of register types may be accepted. */
1286 if ((type == REG_TYPE_NDQ
1287 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1288 || (type == REG_TYPE_VFSD
1289 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1290 || (type == REG_TYPE_NSDQ
1291 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1292 || reg->type == REG_TYPE_NQ))
1293 || (type == REG_TYPE_MMXWC
1294 && (reg->type == REG_TYPE_MMXWCG)))
dcbf9037
JB
1295 type = reg->type;
1296
1297 if (type != reg->type)
1298 return FAIL;
1299
1300 if (reg->neon)
1301 atype = *reg->neon;
5f4273c7 1302
dcbf9037
JB
1303 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1304 {
1305 if ((atype.defined & NTA_HASTYPE) != 0)
1306 {
1307 first_error (_("can't redefine type for operand"));
1308 return FAIL;
1309 }
1310 atype.defined |= NTA_HASTYPE;
1311 atype.eltype = parsetype;
1312 }
5f4273c7 1313
dcbf9037
JB
1314 if (skip_past_char (&str, '[') == SUCCESS)
1315 {
1316 if (type != REG_TYPE_VFD)
1317 {
1318 first_error (_("only D registers may be indexed"));
1319 return FAIL;
1320 }
5f4273c7 1321
dcbf9037
JB
1322 if ((atype.defined & NTA_HASINDEX) != 0)
1323 {
1324 first_error (_("can't change index for operand"));
1325 return FAIL;
1326 }
1327
1328 atype.defined |= NTA_HASINDEX;
1329
1330 if (skip_past_char (&str, ']') == SUCCESS)
1331 atype.index = NEON_ALL_LANES;
1332 else
1333 {
1334 expressionS exp;
1335
1336 my_get_expression (&exp, &str, GE_NO_PREFIX);
1337
1338 if (exp.X_op != O_constant)
1339 {
1340 first_error (_("constant expression required"));
1341 return FAIL;
1342 }
1343
1344 if (skip_past_char (&str, ']') == FAIL)
1345 return FAIL;
1346
1347 atype.index = exp.X_add_number;
1348 }
1349 }
5f4273c7 1350
dcbf9037
JB
1351 if (typeinfo)
1352 *typeinfo = atype;
5f4273c7 1353
dcbf9037
JB
1354 if (rtype)
1355 *rtype = type;
5f4273c7 1356
dcbf9037 1357 *ccp = str;
5f4273c7 1358
dcbf9037
JB
1359 return reg->number;
1360}
1361
1362/* Like arm_reg_parse, but allow allow the following extra features:
1363 - If RTYPE is non-zero, return the (possibly restricted) type of the
1364 register (e.g. Neon double or quad reg when either has been requested).
1365 - If this is a Neon vector type with additional type information, fill
1366 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1367 This function will fault on encountering a scalar. */
dcbf9037
JB
1368
1369static int
1370arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1371 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1372{
1373 struct neon_typed_alias atype;
1374 char *str = *ccp;
1375 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1376
1377 if (reg == FAIL)
1378 return FAIL;
1379
1380 /* Do not allow a scalar (reg+index) to parse as a register. */
1381 if ((atype.defined & NTA_HASINDEX) != 0)
1382 {
1383 first_error (_("register operand expected, but got scalar"));
1384 return FAIL;
1385 }
1386
1387 if (vectype)
1388 *vectype = atype.eltype;
1389
1390 *ccp = str;
1391
1392 return reg;
1393}
1394
1395#define NEON_SCALAR_REG(X) ((X) >> 4)
1396#define NEON_SCALAR_INDEX(X) ((X) & 15)
1397
5287ad62
JB
1398/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1399 have enough information to be able to do a good job bounds-checking. So, we
1400 just do easy checks here, and do further checks later. */
1401
1402static int
dcbf9037 1403parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1404{
dcbf9037 1405 int reg;
5287ad62 1406 char *str = *ccp;
dcbf9037 1407 struct neon_typed_alias atype;
5f4273c7 1408
dcbf9037 1409 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1410
dcbf9037 1411 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1412 return FAIL;
5f4273c7 1413
dcbf9037 1414 if (atype.index == NEON_ALL_LANES)
5287ad62 1415 {
dcbf9037 1416 first_error (_("scalar must have an index"));
5287ad62
JB
1417 return FAIL;
1418 }
dcbf9037 1419 else if (atype.index >= 64 / elsize)
5287ad62 1420 {
dcbf9037 1421 first_error (_("scalar index out of range"));
5287ad62
JB
1422 return FAIL;
1423 }
5f4273c7 1424
dcbf9037
JB
1425 if (type)
1426 *type = atype.eltype;
5f4273c7 1427
5287ad62 1428 *ccp = str;
5f4273c7 1429
dcbf9037 1430 return reg * 16 + atype.index;
5287ad62
JB
1431}
1432
c19d1205
ZW
1433/* Parse an ARM register list. Returns the bitmask, or FAIL. */
1434static long
1435parse_reg_list (char ** strp)
1436{
1437 char * str = * strp;
1438 long range = 0;
1439 int another_range;
a737bd4d 1440
c19d1205
ZW
1441 /* We come back here if we get ranges concatenated by '+' or '|'. */
1442 do
6057a28f 1443 {
c19d1205 1444 another_range = 0;
a737bd4d 1445
c19d1205
ZW
1446 if (*str == '{')
1447 {
1448 int in_range = 0;
1449 int cur_reg = -1;
a737bd4d 1450
c19d1205
ZW
1451 str++;
1452 do
1453 {
1454 int reg;
6057a28f 1455
dcbf9037 1456 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1457 {
dcbf9037 1458 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1459 return FAIL;
1460 }
a737bd4d 1461
c19d1205
ZW
1462 if (in_range)
1463 {
1464 int i;
a737bd4d 1465
c19d1205
ZW
1466 if (reg <= cur_reg)
1467 {
dcbf9037 1468 first_error (_("bad range in register list"));
c19d1205
ZW
1469 return FAIL;
1470 }
40a18ebd 1471
c19d1205
ZW
1472 for (i = cur_reg + 1; i < reg; i++)
1473 {
1474 if (range & (1 << i))
1475 as_tsktsk
1476 (_("Warning: duplicated register (r%d) in register list"),
1477 i);
1478 else
1479 range |= 1 << i;
1480 }
1481 in_range = 0;
1482 }
a737bd4d 1483
c19d1205
ZW
1484 if (range & (1 << reg))
1485 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1486 reg);
1487 else if (reg <= cur_reg)
1488 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1489
c19d1205
ZW
1490 range |= 1 << reg;
1491 cur_reg = reg;
1492 }
1493 while (skip_past_comma (&str) != FAIL
1494 || (in_range = 1, *str++ == '-'));
1495 str--;
a737bd4d 1496
c19d1205
ZW
1497 if (*str++ != '}')
1498 {
dcbf9037 1499 first_error (_("missing `}'"));
c19d1205
ZW
1500 return FAIL;
1501 }
1502 }
1503 else
1504 {
1505 expressionS expr;
40a18ebd 1506
c19d1205
ZW
1507 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1508 return FAIL;
40a18ebd 1509
c19d1205
ZW
1510 if (expr.X_op == O_constant)
1511 {
1512 if (expr.X_add_number
1513 != (expr.X_add_number & 0x0000ffff))
1514 {
1515 inst.error = _("invalid register mask");
1516 return FAIL;
1517 }
a737bd4d 1518
c19d1205
ZW
1519 if ((range & expr.X_add_number) != 0)
1520 {
1521 int regno = range & expr.X_add_number;
a737bd4d 1522
c19d1205
ZW
1523 regno &= -regno;
1524 regno = (1 << regno) - 1;
1525 as_tsktsk
1526 (_("Warning: duplicated register (r%d) in register list"),
1527 regno);
1528 }
a737bd4d 1529
c19d1205
ZW
1530 range |= expr.X_add_number;
1531 }
1532 else
1533 {
1534 if (inst.reloc.type != 0)
1535 {
1536 inst.error = _("expression too complex");
1537 return FAIL;
1538 }
a737bd4d 1539
c19d1205
ZW
1540 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1541 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1542 inst.reloc.pc_rel = 0;
1543 }
1544 }
a737bd4d 1545
c19d1205
ZW
1546 if (*str == '|' || *str == '+')
1547 {
1548 str++;
1549 another_range = 1;
1550 }
a737bd4d 1551 }
c19d1205 1552 while (another_range);
a737bd4d 1553
c19d1205
ZW
1554 *strp = str;
1555 return range;
a737bd4d
NC
1556}
1557
5287ad62
JB
1558/* Types of registers in a list. */
1559
1560enum reg_list_els
1561{
1562 REGLIST_VFP_S,
1563 REGLIST_VFP_D,
1564 REGLIST_NEON_D
1565};
1566
c19d1205
ZW
1567/* Parse a VFP register list. If the string is invalid return FAIL.
1568 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1569 register. Parses registers of type ETYPE.
1570 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1571 - Q registers can be used to specify pairs of D registers
1572 - { } can be omitted from around a singleton register list
1573 FIXME: This is not implemented, as it would require backtracking in
1574 some cases, e.g.:
1575 vtbl.8 d3,d4,d5
1576 This could be done (the meaning isn't really ambiguous), but doesn't
1577 fit in well with the current parsing framework.
dcbf9037
JB
1578 - 32 D registers may be used (also true for VFPv3).
1579 FIXME: Types are ignored in these register lists, which is probably a
1580 bug. */
6057a28f 1581
c19d1205 1582static int
037e8744 1583parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1584{
037e8744 1585 char *str = *ccp;
c19d1205
ZW
1586 int base_reg;
1587 int new_base;
5287ad62
JB
1588 enum arm_reg_type regtype = 0;
1589 int max_regs = 0;
c19d1205
ZW
1590 int count = 0;
1591 int warned = 0;
1592 unsigned long mask = 0;
a737bd4d 1593 int i;
6057a28f 1594
037e8744 1595 if (*str != '{')
5287ad62
JB
1596 {
1597 inst.error = _("expecting {");
1598 return FAIL;
1599 }
6057a28f 1600
037e8744 1601 str++;
6057a28f 1602
5287ad62 1603 switch (etype)
c19d1205 1604 {
5287ad62 1605 case REGLIST_VFP_S:
c19d1205
ZW
1606 regtype = REG_TYPE_VFS;
1607 max_regs = 32;
5287ad62 1608 break;
5f4273c7 1609
5287ad62
JB
1610 case REGLIST_VFP_D:
1611 regtype = REG_TYPE_VFD;
b7fc2769 1612 break;
5f4273c7 1613
b7fc2769
JB
1614 case REGLIST_NEON_D:
1615 regtype = REG_TYPE_NDQ;
1616 break;
1617 }
1618
1619 if (etype != REGLIST_VFP_S)
1620 {
b1cc4aeb
PB
1621 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1622 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1623 {
1624 max_regs = 32;
1625 if (thumb_mode)
1626 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1627 fpu_vfp_ext_d32);
5287ad62
JB
1628 else
1629 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1630 fpu_vfp_ext_d32);
5287ad62
JB
1631 }
1632 else
1633 max_regs = 16;
c19d1205 1634 }
6057a28f 1635
c19d1205 1636 base_reg = max_regs;
a737bd4d 1637
c19d1205
ZW
1638 do
1639 {
5287ad62 1640 int setmask = 1, addregs = 1;
dcbf9037 1641
037e8744 1642 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1643
c19d1205 1644 if (new_base == FAIL)
a737bd4d 1645 {
dcbf9037 1646 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1647 return FAIL;
1648 }
5f4273c7 1649
b7fc2769
JB
1650 if (new_base >= max_regs)
1651 {
1652 first_error (_("register out of range in list"));
1653 return FAIL;
1654 }
5f4273c7 1655
5287ad62
JB
1656 /* Note: a value of 2 * n is returned for the register Q<n>. */
1657 if (regtype == REG_TYPE_NQ)
1658 {
1659 setmask = 3;
1660 addregs = 2;
1661 }
1662
c19d1205
ZW
1663 if (new_base < base_reg)
1664 base_reg = new_base;
a737bd4d 1665
5287ad62 1666 if (mask & (setmask << new_base))
c19d1205 1667 {
dcbf9037 1668 first_error (_("invalid register list"));
c19d1205 1669 return FAIL;
a737bd4d 1670 }
a737bd4d 1671
c19d1205
ZW
1672 if ((mask >> new_base) != 0 && ! warned)
1673 {
1674 as_tsktsk (_("register list not in ascending order"));
1675 warned = 1;
1676 }
0bbf2aa4 1677
5287ad62
JB
1678 mask |= setmask << new_base;
1679 count += addregs;
0bbf2aa4 1680
037e8744 1681 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1682 {
1683 int high_range;
0bbf2aa4 1684
037e8744 1685 str++;
0bbf2aa4 1686
037e8744 1687 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1688 == FAIL)
c19d1205
ZW
1689 {
1690 inst.error = gettext (reg_expected_msgs[regtype]);
1691 return FAIL;
1692 }
0bbf2aa4 1693
b7fc2769
JB
1694 if (high_range >= max_regs)
1695 {
1696 first_error (_("register out of range in list"));
1697 return FAIL;
1698 }
1699
5287ad62
JB
1700 if (regtype == REG_TYPE_NQ)
1701 high_range = high_range + 1;
1702
c19d1205
ZW
1703 if (high_range <= new_base)
1704 {
1705 inst.error = _("register range not in ascending order");
1706 return FAIL;
1707 }
0bbf2aa4 1708
5287ad62 1709 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1710 {
5287ad62 1711 if (mask & (setmask << new_base))
0bbf2aa4 1712 {
c19d1205
ZW
1713 inst.error = _("invalid register list");
1714 return FAIL;
0bbf2aa4 1715 }
c19d1205 1716
5287ad62
JB
1717 mask |= setmask << new_base;
1718 count += addregs;
0bbf2aa4 1719 }
0bbf2aa4 1720 }
0bbf2aa4 1721 }
037e8744 1722 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1723
037e8744 1724 str++;
0bbf2aa4 1725
c19d1205
ZW
1726 /* Sanity check -- should have raised a parse error above. */
1727 if (count == 0 || count > max_regs)
1728 abort ();
1729
1730 *pbase = base_reg;
1731
1732 /* Final test -- the registers must be consecutive. */
1733 mask >>= base_reg;
1734 for (i = 0; i < count; i++)
1735 {
1736 if ((mask & (1u << i)) == 0)
1737 {
1738 inst.error = _("non-contiguous register range");
1739 return FAIL;
1740 }
1741 }
1742
037e8744
JB
1743 *ccp = str;
1744
c19d1205 1745 return count;
b99bd4ef
NC
1746}
1747
dcbf9037
JB
1748/* True if two alias types are the same. */
1749
1750static int
1751neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1752{
1753 if (!a && !b)
1754 return 1;
5f4273c7 1755
dcbf9037
JB
1756 if (!a || !b)
1757 return 0;
1758
1759 if (a->defined != b->defined)
1760 return 0;
5f4273c7 1761
dcbf9037
JB
1762 if ((a->defined & NTA_HASTYPE) != 0
1763 && (a->eltype.type != b->eltype.type
1764 || a->eltype.size != b->eltype.size))
1765 return 0;
1766
1767 if ((a->defined & NTA_HASINDEX) != 0
1768 && (a->index != b->index))
1769 return 0;
5f4273c7 1770
dcbf9037
JB
1771 return 1;
1772}
1773
5287ad62
JB
1774/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1775 The base register is put in *PBASE.
dcbf9037 1776 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1777 the return value.
1778 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1779 Bits [6:5] encode the list length (minus one).
1780 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1781
5287ad62 1782#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1783#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1784#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1785
1786static int
dcbf9037
JB
1787parse_neon_el_struct_list (char **str, unsigned *pbase,
1788 struct neon_type_el *eltype)
5287ad62
JB
1789{
1790 char *ptr = *str;
1791 int base_reg = -1;
1792 int reg_incr = -1;
1793 int count = 0;
1794 int lane = -1;
1795 int leading_brace = 0;
1796 enum arm_reg_type rtype = REG_TYPE_NDQ;
1797 int addregs = 1;
1798 const char *const incr_error = "register stride must be 1 or 2";
1799 const char *const type_error = "mismatched element/structure types in list";
dcbf9037 1800 struct neon_typed_alias firsttype;
5f4273c7 1801
5287ad62
JB
1802 if (skip_past_char (&ptr, '{') == SUCCESS)
1803 leading_brace = 1;
5f4273c7 1804
5287ad62
JB
1805 do
1806 {
dcbf9037
JB
1807 struct neon_typed_alias atype;
1808 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1809
5287ad62
JB
1810 if (getreg == FAIL)
1811 {
dcbf9037 1812 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1813 return FAIL;
1814 }
5f4273c7 1815
5287ad62
JB
1816 if (base_reg == -1)
1817 {
1818 base_reg = getreg;
1819 if (rtype == REG_TYPE_NQ)
1820 {
1821 reg_incr = 1;
1822 addregs = 2;
1823 }
dcbf9037 1824 firsttype = atype;
5287ad62
JB
1825 }
1826 else if (reg_incr == -1)
1827 {
1828 reg_incr = getreg - base_reg;
1829 if (reg_incr < 1 || reg_incr > 2)
1830 {
dcbf9037 1831 first_error (_(incr_error));
5287ad62
JB
1832 return FAIL;
1833 }
1834 }
1835 else if (getreg != base_reg + reg_incr * count)
1836 {
dcbf9037
JB
1837 first_error (_(incr_error));
1838 return FAIL;
1839 }
1840
1841 if (!neon_alias_types_same (&atype, &firsttype))
1842 {
1843 first_error (_(type_error));
5287ad62
JB
1844 return FAIL;
1845 }
5f4273c7 1846
5287ad62
JB
1847 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1848 modes. */
1849 if (ptr[0] == '-')
1850 {
dcbf9037 1851 struct neon_typed_alias htype;
5287ad62
JB
1852 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1853 if (lane == -1)
1854 lane = NEON_INTERLEAVE_LANES;
1855 else if (lane != NEON_INTERLEAVE_LANES)
1856 {
dcbf9037 1857 first_error (_(type_error));
5287ad62
JB
1858 return FAIL;
1859 }
1860 if (reg_incr == -1)
1861 reg_incr = 1;
1862 else if (reg_incr != 1)
1863 {
dcbf9037 1864 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1865 return FAIL;
1866 }
1867 ptr++;
dcbf9037 1868 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1869 if (hireg == FAIL)
1870 {
dcbf9037
JB
1871 first_error (_(reg_expected_msgs[rtype]));
1872 return FAIL;
1873 }
1874 if (!neon_alias_types_same (&htype, &firsttype))
1875 {
1876 first_error (_(type_error));
5287ad62
JB
1877 return FAIL;
1878 }
1879 count += hireg + dregs - getreg;
1880 continue;
1881 }
5f4273c7 1882
5287ad62
JB
1883 /* If we're using Q registers, we can't use [] or [n] syntax. */
1884 if (rtype == REG_TYPE_NQ)
1885 {
1886 count += 2;
1887 continue;
1888 }
5f4273c7 1889
dcbf9037 1890 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1891 {
dcbf9037
JB
1892 if (lane == -1)
1893 lane = atype.index;
1894 else if (lane != atype.index)
5287ad62 1895 {
dcbf9037
JB
1896 first_error (_(type_error));
1897 return FAIL;
5287ad62
JB
1898 }
1899 }
1900 else if (lane == -1)
1901 lane = NEON_INTERLEAVE_LANES;
1902 else if (lane != NEON_INTERLEAVE_LANES)
1903 {
dcbf9037 1904 first_error (_(type_error));
5287ad62
JB
1905 return FAIL;
1906 }
1907 count++;
1908 }
1909 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 1910
5287ad62
JB
1911 /* No lane set by [x]. We must be interleaving structures. */
1912 if (lane == -1)
1913 lane = NEON_INTERLEAVE_LANES;
5f4273c7 1914
5287ad62
JB
1915 /* Sanity check. */
1916 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1917 || (count > 1 && reg_incr == -1))
1918 {
dcbf9037 1919 first_error (_("error parsing element/structure list"));
5287ad62
JB
1920 return FAIL;
1921 }
1922
1923 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1924 {
dcbf9037 1925 first_error (_("expected }"));
5287ad62
JB
1926 return FAIL;
1927 }
5f4273c7 1928
5287ad62
JB
1929 if (reg_incr == -1)
1930 reg_incr = 1;
1931
dcbf9037
JB
1932 if (eltype)
1933 *eltype = firsttype.eltype;
1934
5287ad62
JB
1935 *pbase = base_reg;
1936 *str = ptr;
5f4273c7 1937
5287ad62
JB
1938 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1939}
1940
c19d1205
ZW
1941/* Parse an explicit relocation suffix on an expression. This is
1942 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1943 arm_reloc_hsh contains no entries, so this function can only
1944 succeed if there is no () after the word. Returns -1 on error,
1945 BFD_RELOC_UNUSED if there wasn't any suffix. */
1946static int
1947parse_reloc (char **str)
b99bd4ef 1948{
c19d1205
ZW
1949 struct reloc_entry *r;
1950 char *p, *q;
b99bd4ef 1951
c19d1205
ZW
1952 if (**str != '(')
1953 return BFD_RELOC_UNUSED;
b99bd4ef 1954
c19d1205
ZW
1955 p = *str + 1;
1956 q = p;
1957
1958 while (*q && *q != ')' && *q != ',')
1959 q++;
1960 if (*q != ')')
1961 return -1;
1962
1963 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1964 return -1;
1965
1966 *str = q + 1;
1967 return r->reloc;
b99bd4ef
NC
1968}
1969
c19d1205
ZW
1970/* Directives: register aliases. */
1971
dcbf9037 1972static struct reg_entry *
c19d1205 1973insert_reg_alias (char *str, int number, int type)
b99bd4ef 1974{
c19d1205
ZW
1975 struct reg_entry *new;
1976 const char *name;
b99bd4ef 1977
c19d1205
ZW
1978 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1979 {
1980 if (new->builtin)
1981 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 1982
c19d1205
ZW
1983 /* Only warn about a redefinition if it's not defined as the
1984 same register. */
1985 else if (new->number != number || new->type != type)
1986 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 1987
d929913e 1988 return NULL;
c19d1205 1989 }
b99bd4ef 1990
c19d1205
ZW
1991 name = xstrdup (str);
1992 new = xmalloc (sizeof (struct reg_entry));
b99bd4ef 1993
c19d1205
ZW
1994 new->name = name;
1995 new->number = number;
1996 new->type = type;
1997 new->builtin = FALSE;
dcbf9037 1998 new->neon = NULL;
b99bd4ef 1999
5a49b8ac 2000 if (hash_insert (arm_reg_hsh, name, (void *) new))
c19d1205 2001 abort ();
5f4273c7 2002
dcbf9037
JB
2003 return new;
2004}
2005
2006static void
2007insert_neon_reg_alias (char *str, int number, int type,
2008 struct neon_typed_alias *atype)
2009{
2010 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2011
dcbf9037
JB
2012 if (!reg)
2013 {
2014 first_error (_("attempt to redefine typed alias"));
2015 return;
2016 }
5f4273c7 2017
dcbf9037
JB
2018 if (atype)
2019 {
2020 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2021 *reg->neon = *atype;
2022 }
c19d1205 2023}
b99bd4ef 2024
c19d1205 2025/* Look for the .req directive. This is of the form:
b99bd4ef 2026
c19d1205 2027 new_register_name .req existing_register_name
b99bd4ef 2028
c19d1205 2029 If we find one, or if it looks sufficiently like one that we want to
d929913e 2030 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2031
d929913e 2032static bfd_boolean
c19d1205
ZW
2033create_register_alias (char * newname, char *p)
2034{
2035 struct reg_entry *old;
2036 char *oldname, *nbuf;
2037 size_t nlen;
b99bd4ef 2038
c19d1205
ZW
2039 /* The input scrubber ensures that whitespace after the mnemonic is
2040 collapsed to single spaces. */
2041 oldname = p;
2042 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2043 return FALSE;
b99bd4ef 2044
c19d1205
ZW
2045 oldname += 6;
2046 if (*oldname == '\0')
d929913e 2047 return FALSE;
b99bd4ef 2048
c19d1205
ZW
2049 old = hash_find (arm_reg_hsh, oldname);
2050 if (!old)
b99bd4ef 2051 {
c19d1205 2052 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2053 return TRUE;
b99bd4ef
NC
2054 }
2055
c19d1205
ZW
2056 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2057 the desired alias name, and p points to its end. If not, then
2058 the desired alias name is in the global original_case_string. */
2059#ifdef TC_CASE_SENSITIVE
2060 nlen = p - newname;
2061#else
2062 newname = original_case_string;
2063 nlen = strlen (newname);
2064#endif
b99bd4ef 2065
c19d1205
ZW
2066 nbuf = alloca (nlen + 1);
2067 memcpy (nbuf, newname, nlen);
2068 nbuf[nlen] = '\0';
b99bd4ef 2069
c19d1205
ZW
2070 /* Create aliases under the new name as stated; an all-lowercase
2071 version of the new name; and an all-uppercase version of the new
2072 name. */
d929913e
NC
2073 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2074 {
2075 for (p = nbuf; *p; p++)
2076 *p = TOUPPER (*p);
c19d1205 2077
d929913e
NC
2078 if (strncmp (nbuf, newname, nlen))
2079 {
2080 /* If this attempt to create an additional alias fails, do not bother
2081 trying to create the all-lower case alias. We will fail and issue
2082 a second, duplicate error message. This situation arises when the
2083 programmer does something like:
2084 foo .req r0
2085 Foo .req r1
2086 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2087 the artificial FOO alias because it has already been created by the
d929913e
NC
2088 first .req. */
2089 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2090 return TRUE;
2091 }
c19d1205 2092
d929913e
NC
2093 for (p = nbuf; *p; p++)
2094 *p = TOLOWER (*p);
c19d1205 2095
d929913e
NC
2096 if (strncmp (nbuf, newname, nlen))
2097 insert_reg_alias (nbuf, old->number, old->type);
2098 }
c19d1205 2099
d929913e 2100 return TRUE;
b99bd4ef
NC
2101}
2102
dcbf9037
JB
2103/* Create a Neon typed/indexed register alias using directives, e.g.:
2104 X .dn d5.s32[1]
2105 Y .qn 6.s16
2106 Z .dn d7
2107 T .dn Z[0]
2108 These typed registers can be used instead of the types specified after the
2109 Neon mnemonic, so long as all operands given have types. Types can also be
2110 specified directly, e.g.:
5f4273c7 2111 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037
JB
2112
2113static int
2114create_neon_reg_alias (char *newname, char *p)
2115{
2116 enum arm_reg_type basetype;
2117 struct reg_entry *basereg;
2118 struct reg_entry mybasereg;
2119 struct neon_type ntype;
2120 struct neon_typed_alias typeinfo;
2121 char *namebuf, *nameend;
2122 int namelen;
5f4273c7 2123
dcbf9037
JB
2124 typeinfo.defined = 0;
2125 typeinfo.eltype.type = NT_invtype;
2126 typeinfo.eltype.size = -1;
2127 typeinfo.index = -1;
5f4273c7 2128
dcbf9037 2129 nameend = p;
5f4273c7 2130
dcbf9037
JB
2131 if (strncmp (p, " .dn ", 5) == 0)
2132 basetype = REG_TYPE_VFD;
2133 else if (strncmp (p, " .qn ", 5) == 0)
2134 basetype = REG_TYPE_NQ;
2135 else
2136 return 0;
5f4273c7 2137
dcbf9037 2138 p += 5;
5f4273c7 2139
dcbf9037
JB
2140 if (*p == '\0')
2141 return 0;
5f4273c7 2142
dcbf9037
JB
2143 basereg = arm_reg_parse_multi (&p);
2144
2145 if (basereg && basereg->type != basetype)
2146 {
2147 as_bad (_("bad type for register"));
2148 return 0;
2149 }
2150
2151 if (basereg == NULL)
2152 {
2153 expressionS exp;
2154 /* Try parsing as an integer. */
2155 my_get_expression (&exp, &p, GE_NO_PREFIX);
2156 if (exp.X_op != O_constant)
2157 {
2158 as_bad (_("expression must be constant"));
2159 return 0;
2160 }
2161 basereg = &mybasereg;
2162 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2163 : exp.X_add_number;
2164 basereg->neon = 0;
2165 }
2166
2167 if (basereg->neon)
2168 typeinfo = *basereg->neon;
2169
2170 if (parse_neon_type (&ntype, &p) == SUCCESS)
2171 {
2172 /* We got a type. */
2173 if (typeinfo.defined & NTA_HASTYPE)
2174 {
2175 as_bad (_("can't redefine the type of a register alias"));
2176 return 0;
2177 }
5f4273c7 2178
dcbf9037
JB
2179 typeinfo.defined |= NTA_HASTYPE;
2180 if (ntype.elems != 1)
2181 {
2182 as_bad (_("you must specify a single type only"));
2183 return 0;
2184 }
2185 typeinfo.eltype = ntype.el[0];
2186 }
5f4273c7 2187
dcbf9037
JB
2188 if (skip_past_char (&p, '[') == SUCCESS)
2189 {
2190 expressionS exp;
2191 /* We got a scalar index. */
5f4273c7 2192
dcbf9037
JB
2193 if (typeinfo.defined & NTA_HASINDEX)
2194 {
2195 as_bad (_("can't redefine the index of a scalar alias"));
2196 return 0;
2197 }
5f4273c7 2198
dcbf9037 2199 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2200
dcbf9037
JB
2201 if (exp.X_op != O_constant)
2202 {
2203 as_bad (_("scalar index must be constant"));
2204 return 0;
2205 }
5f4273c7 2206
dcbf9037
JB
2207 typeinfo.defined |= NTA_HASINDEX;
2208 typeinfo.index = exp.X_add_number;
5f4273c7 2209
dcbf9037
JB
2210 if (skip_past_char (&p, ']') == FAIL)
2211 {
2212 as_bad (_("expecting ]"));
2213 return 0;
2214 }
2215 }
2216
2217 namelen = nameend - newname;
2218 namebuf = alloca (namelen + 1);
2219 strncpy (namebuf, newname, namelen);
2220 namebuf[namelen] = '\0';
5f4273c7 2221
dcbf9037
JB
2222 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2223 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2224
dcbf9037
JB
2225 /* Insert name in all uppercase. */
2226 for (p = namebuf; *p; p++)
2227 *p = TOUPPER (*p);
5f4273c7 2228
dcbf9037
JB
2229 if (strncmp (namebuf, newname, namelen))
2230 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2231 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2232
dcbf9037
JB
2233 /* Insert name in all lowercase. */
2234 for (p = namebuf; *p; p++)
2235 *p = TOLOWER (*p);
5f4273c7 2236
dcbf9037
JB
2237 if (strncmp (namebuf, newname, namelen))
2238 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2239 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2240
dcbf9037
JB
2241 return 1;
2242}
2243
c19d1205
ZW
2244/* Should never be called, as .req goes between the alias and the
2245 register name, not at the beginning of the line. */
b99bd4ef 2246static void
c19d1205 2247s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2248{
c19d1205
ZW
2249 as_bad (_("invalid syntax for .req directive"));
2250}
b99bd4ef 2251
dcbf9037
JB
2252static void
2253s_dn (int a ATTRIBUTE_UNUSED)
2254{
2255 as_bad (_("invalid syntax for .dn directive"));
2256}
2257
2258static void
2259s_qn (int a ATTRIBUTE_UNUSED)
2260{
2261 as_bad (_("invalid syntax for .qn directive"));
2262}
2263
c19d1205
ZW
2264/* The .unreq directive deletes an alias which was previously defined
2265 by .req. For example:
b99bd4ef 2266
c19d1205
ZW
2267 my_alias .req r11
2268 .unreq my_alias */
b99bd4ef
NC
2269
2270static void
c19d1205 2271s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2272{
c19d1205
ZW
2273 char * name;
2274 char saved_char;
b99bd4ef 2275
c19d1205
ZW
2276 name = input_line_pointer;
2277
2278 while (*input_line_pointer != 0
2279 && *input_line_pointer != ' '
2280 && *input_line_pointer != '\n')
2281 ++input_line_pointer;
2282
2283 saved_char = *input_line_pointer;
2284 *input_line_pointer = 0;
2285
2286 if (!*name)
2287 as_bad (_("invalid syntax for .unreq directive"));
2288 else
2289 {
2290 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2291
2292 if (!reg)
2293 as_bad (_("unknown register alias '%s'"), name);
2294 else if (reg->builtin)
2295 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2296 name);
2297 else
2298 {
d929913e
NC
2299 char * p;
2300 char * nbuf;
2301
db0bc284 2302 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2303 free ((char *) reg->name);
dcbf9037
JB
2304 if (reg->neon)
2305 free (reg->neon);
c19d1205 2306 free (reg);
d929913e
NC
2307
2308 /* Also locate the all upper case and all lower case versions.
2309 Do not complain if we cannot find one or the other as it
2310 was probably deleted above. */
5f4273c7 2311
d929913e
NC
2312 nbuf = strdup (name);
2313 for (p = nbuf; *p; p++)
2314 *p = TOUPPER (*p);
2315 reg = hash_find (arm_reg_hsh, nbuf);
2316 if (reg)
2317 {
db0bc284 2318 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2319 free ((char *) reg->name);
2320 if (reg->neon)
2321 free (reg->neon);
2322 free (reg);
2323 }
2324
2325 for (p = nbuf; *p; p++)
2326 *p = TOLOWER (*p);
2327 reg = hash_find (arm_reg_hsh, nbuf);
2328 if (reg)
2329 {
db0bc284 2330 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2331 free ((char *) reg->name);
2332 if (reg->neon)
2333 free (reg->neon);
2334 free (reg);
2335 }
2336
2337 free (nbuf);
c19d1205
ZW
2338 }
2339 }
b99bd4ef 2340
c19d1205 2341 *input_line_pointer = saved_char;
b99bd4ef
NC
2342 demand_empty_rest_of_line ();
2343}
2344
c19d1205
ZW
2345/* Directives: Instruction set selection. */
2346
2347#ifdef OBJ_ELF
2348/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2349 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2350 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2351 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2352
2353static enum mstate mapstate = MAP_UNDEFINED;
b99bd4ef 2354
e821645d 2355void
c19d1205 2356mapping_state (enum mstate state)
b99bd4ef 2357{
a737bd4d 2358 symbolS * symbolP;
c19d1205
ZW
2359 const char * symname;
2360 int type;
b99bd4ef 2361
c19d1205
ZW
2362 if (mapstate == state)
2363 /* The mapping symbol has already been emitted.
2364 There is nothing else to do. */
2365 return;
b99bd4ef 2366
c19d1205 2367 mapstate = state;
b99bd4ef 2368
c19d1205 2369 switch (state)
b99bd4ef 2370 {
c19d1205
ZW
2371 case MAP_DATA:
2372 symname = "$d";
2373 type = BSF_NO_FLAGS;
2374 break;
2375 case MAP_ARM:
2376 symname = "$a";
2377 type = BSF_NO_FLAGS;
2378 break;
2379 case MAP_THUMB:
2380 symname = "$t";
2381 type = BSF_NO_FLAGS;
2382 break;
2383 case MAP_UNDEFINED:
2384 return;
2385 default:
2386 abort ();
2387 }
2388
2389 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2390
2391 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2392 symbol_table_insert (symbolP);
2393 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2394
2395 switch (state)
2396 {
2397 case MAP_ARM:
2398 THUMB_SET_FUNC (symbolP, 0);
2399 ARM_SET_THUMB (symbolP, 0);
2400 ARM_SET_INTERWORK (symbolP, support_interwork);
2401 break;
2402
2403 case MAP_THUMB:
2404 THUMB_SET_FUNC (symbolP, 1);
2405 ARM_SET_THUMB (symbolP, 1);
2406 ARM_SET_INTERWORK (symbolP, support_interwork);
2407 break;
2408
2409 case MAP_DATA:
2410 default:
2411 return;
2412 }
2413}
2414#else
2415#define mapping_state(x) /* nothing */
2416#endif
2417
2418/* Find the real, Thumb encoded start of a Thumb function. */
2419
2420static symbolS *
2421find_real_start (symbolS * symbolP)
2422{
2423 char * real_start;
2424 const char * name = S_GET_NAME (symbolP);
2425 symbolS * new_target;
2426
2427 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2428#define STUB_NAME ".real_start_of"
2429
2430 if (name == NULL)
2431 abort ();
2432
37f6032b
ZW
2433 /* The compiler may generate BL instructions to local labels because
2434 it needs to perform a branch to a far away location. These labels
2435 do not have a corresponding ".real_start_of" label. We check
2436 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2437 the ".real_start_of" convention for nonlocal branches. */
2438 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2439 return symbolP;
2440
37f6032b 2441 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2442 new_target = symbol_find (real_start);
2443
2444 if (new_target == NULL)
2445 {
bd3ba5d1 2446 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2447 new_target = symbolP;
2448 }
2449
c19d1205
ZW
2450 return new_target;
2451}
2452
2453static void
2454opcode_select (int width)
2455{
2456 switch (width)
2457 {
2458 case 16:
2459 if (! thumb_mode)
2460 {
e74cfd16 2461 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2462 as_bad (_("selected processor does not support THUMB opcodes"));
2463
2464 thumb_mode = 1;
2465 /* No need to force the alignment, since we will have been
2466 coming from ARM mode, which is word-aligned. */
2467 record_alignment (now_seg, 1);
2468 }
2469 mapping_state (MAP_THUMB);
2470 break;
2471
2472 case 32:
2473 if (thumb_mode)
2474 {
e74cfd16 2475 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2476 as_bad (_("selected processor does not support ARM opcodes"));
2477
2478 thumb_mode = 0;
2479
2480 if (!need_pass_2)
2481 frag_align (2, 0, 0);
2482
2483 record_alignment (now_seg, 1);
2484 }
2485 mapping_state (MAP_ARM);
2486 break;
2487
2488 default:
2489 as_bad (_("invalid instruction size selected (%d)"), width);
2490 }
2491}
2492
2493static void
2494s_arm (int ignore ATTRIBUTE_UNUSED)
2495{
2496 opcode_select (32);
2497 demand_empty_rest_of_line ();
2498}
2499
2500static void
2501s_thumb (int ignore ATTRIBUTE_UNUSED)
2502{
2503 opcode_select (16);
2504 demand_empty_rest_of_line ();
2505}
2506
2507static void
2508s_code (int unused ATTRIBUTE_UNUSED)
2509{
2510 int temp;
2511
2512 temp = get_absolute_expression ();
2513 switch (temp)
2514 {
2515 case 16:
2516 case 32:
2517 opcode_select (temp);
2518 break;
2519
2520 default:
2521 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2522 }
2523}
2524
2525static void
2526s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2527{
2528 /* If we are not already in thumb mode go into it, EVEN if
2529 the target processor does not support thumb instructions.
2530 This is used by gcc/config/arm/lib1funcs.asm for example
2531 to compile interworking support functions even if the
2532 target processor should not support interworking. */
2533 if (! thumb_mode)
2534 {
2535 thumb_mode = 2;
2536 record_alignment (now_seg, 1);
2537 }
2538
2539 demand_empty_rest_of_line ();
2540}
2541
2542static void
2543s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2544{
2545 s_thumb (0);
2546
2547 /* The following label is the name/address of the start of a Thumb function.
2548 We need to know this for the interworking support. */
2549 label_is_thumb_function_name = TRUE;
2550}
2551
2552/* Perform a .set directive, but also mark the alias as
2553 being a thumb function. */
2554
2555static void
2556s_thumb_set (int equiv)
2557{
2558 /* XXX the following is a duplicate of the code for s_set() in read.c
2559 We cannot just call that code as we need to get at the symbol that
2560 is created. */
2561 char * name;
2562 char delim;
2563 char * end_name;
2564 symbolS * symbolP;
2565
2566 /* Especial apologies for the random logic:
2567 This just grew, and could be parsed much more simply!
2568 Dean - in haste. */
2569 name = input_line_pointer;
2570 delim = get_symbol_end ();
2571 end_name = input_line_pointer;
2572 *end_name = delim;
2573
2574 if (*input_line_pointer != ',')
2575 {
2576 *end_name = 0;
2577 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2578 *end_name = delim;
2579 ignore_rest_of_line ();
2580 return;
2581 }
2582
2583 input_line_pointer++;
2584 *end_name = 0;
2585
2586 if (name[0] == '.' && name[1] == '\0')
2587 {
2588 /* XXX - this should not happen to .thumb_set. */
2589 abort ();
2590 }
2591
2592 if ((symbolP = symbol_find (name)) == NULL
2593 && (symbolP = md_undefined_symbol (name)) == NULL)
2594 {
2595#ifndef NO_LISTING
2596 /* When doing symbol listings, play games with dummy fragments living
2597 outside the normal fragment chain to record the file and line info
c19d1205 2598 for this symbol. */
b99bd4ef
NC
2599 if (listing & LISTING_SYMBOLS)
2600 {
2601 extern struct list_info_struct * listing_tail;
a737bd4d 2602 fragS * dummy_frag = xmalloc (sizeof (fragS));
b99bd4ef
NC
2603
2604 memset (dummy_frag, 0, sizeof (fragS));
2605 dummy_frag->fr_type = rs_fill;
2606 dummy_frag->line = listing_tail;
2607 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2608 dummy_frag->fr_symbol = symbolP;
2609 }
2610 else
2611#endif
2612 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2613
2614#ifdef OBJ_COFF
2615 /* "set" symbols are local unless otherwise specified. */
2616 SF_SET_LOCAL (symbolP);
2617#endif /* OBJ_COFF */
2618 } /* Make a new symbol. */
2619
2620 symbol_table_insert (symbolP);
2621
2622 * end_name = delim;
2623
2624 if (equiv
2625 && S_IS_DEFINED (symbolP)
2626 && S_GET_SEGMENT (symbolP) != reg_section)
2627 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2628
2629 pseudo_set (symbolP);
2630
2631 demand_empty_rest_of_line ();
2632
c19d1205 2633 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2634
2635 THUMB_SET_FUNC (symbolP, 1);
2636 ARM_SET_THUMB (symbolP, 1);
2637#if defined OBJ_ELF || defined OBJ_COFF
2638 ARM_SET_INTERWORK (symbolP, support_interwork);
2639#endif
2640}
2641
c19d1205 2642/* Directives: Mode selection. */
b99bd4ef 2643
c19d1205
ZW
2644/* .syntax [unified|divided] - choose the new unified syntax
2645 (same for Arm and Thumb encoding, modulo slight differences in what
2646 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2647static void
c19d1205 2648s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2649{
c19d1205
ZW
2650 char *name, delim;
2651
2652 name = input_line_pointer;
2653 delim = get_symbol_end ();
2654
2655 if (!strcasecmp (name, "unified"))
2656 unified_syntax = TRUE;
2657 else if (!strcasecmp (name, "divided"))
2658 unified_syntax = FALSE;
2659 else
2660 {
2661 as_bad (_("unrecognized syntax mode \"%s\""), name);
2662 return;
2663 }
2664 *input_line_pointer = delim;
b99bd4ef
NC
2665 demand_empty_rest_of_line ();
2666}
2667
c19d1205
ZW
2668/* Directives: sectioning and alignment. */
2669
2670/* Same as s_align_ptwo but align 0 => align 2. */
2671
b99bd4ef 2672static void
c19d1205 2673s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2674{
a737bd4d 2675 int temp;
dce323d1 2676 bfd_boolean fill_p;
c19d1205
ZW
2677 long temp_fill;
2678 long max_alignment = 15;
b99bd4ef
NC
2679
2680 temp = get_absolute_expression ();
c19d1205
ZW
2681 if (temp > max_alignment)
2682 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2683 else if (temp < 0)
b99bd4ef 2684 {
c19d1205
ZW
2685 as_bad (_("alignment negative. 0 assumed."));
2686 temp = 0;
2687 }
b99bd4ef 2688
c19d1205
ZW
2689 if (*input_line_pointer == ',')
2690 {
2691 input_line_pointer++;
2692 temp_fill = get_absolute_expression ();
dce323d1 2693 fill_p = TRUE;
b99bd4ef 2694 }
c19d1205 2695 else
dce323d1
PB
2696 {
2697 fill_p = FALSE;
2698 temp_fill = 0;
2699 }
b99bd4ef 2700
c19d1205
ZW
2701 if (!temp)
2702 temp = 2;
b99bd4ef 2703
c19d1205
ZW
2704 /* Only make a frag if we HAVE to. */
2705 if (temp && !need_pass_2)
dce323d1
PB
2706 {
2707 if (!fill_p && subseg_text_p (now_seg))
2708 frag_align_code (temp, 0);
2709 else
2710 frag_align (temp, (int) temp_fill, 0);
2711 }
c19d1205
ZW
2712 demand_empty_rest_of_line ();
2713
2714 record_alignment (now_seg, temp);
b99bd4ef
NC
2715}
2716
c19d1205
ZW
2717static void
2718s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2719{
c19d1205
ZW
2720 /* We don't support putting frags in the BSS segment, we fake it by
2721 marking in_bss, then looking at s_skip for clues. */
2722 subseg_set (bss_section, 0);
2723 demand_empty_rest_of_line ();
2724 mapping_state (MAP_DATA);
2725}
b99bd4ef 2726
c19d1205
ZW
2727static void
2728s_even (int ignore ATTRIBUTE_UNUSED)
2729{
2730 /* Never make frag if expect extra pass. */
2731 if (!need_pass_2)
2732 frag_align (1, 0, 0);
b99bd4ef 2733
c19d1205 2734 record_alignment (now_seg, 1);
b99bd4ef 2735
c19d1205 2736 demand_empty_rest_of_line ();
b99bd4ef
NC
2737}
2738
c19d1205 2739/* Directives: Literal pools. */
a737bd4d 2740
c19d1205
ZW
2741static literal_pool *
2742find_literal_pool (void)
a737bd4d 2743{
c19d1205 2744 literal_pool * pool;
a737bd4d 2745
c19d1205 2746 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2747 {
c19d1205
ZW
2748 if (pool->section == now_seg
2749 && pool->sub_section == now_subseg)
2750 break;
a737bd4d
NC
2751 }
2752
c19d1205 2753 return pool;
a737bd4d
NC
2754}
2755
c19d1205
ZW
2756static literal_pool *
2757find_or_make_literal_pool (void)
a737bd4d 2758{
c19d1205
ZW
2759 /* Next literal pool ID number. */
2760 static unsigned int latest_pool_num = 1;
2761 literal_pool * pool;
a737bd4d 2762
c19d1205 2763 pool = find_literal_pool ();
a737bd4d 2764
c19d1205 2765 if (pool == NULL)
a737bd4d 2766 {
c19d1205
ZW
2767 /* Create a new pool. */
2768 pool = xmalloc (sizeof (* pool));
2769 if (! pool)
2770 return NULL;
a737bd4d 2771
c19d1205
ZW
2772 pool->next_free_entry = 0;
2773 pool->section = now_seg;
2774 pool->sub_section = now_subseg;
2775 pool->next = list_of_pools;
2776 pool->symbol = NULL;
2777
2778 /* Add it to the list. */
2779 list_of_pools = pool;
a737bd4d 2780 }
a737bd4d 2781
c19d1205
ZW
2782 /* New pools, and emptied pools, will have a NULL symbol. */
2783 if (pool->symbol == NULL)
a737bd4d 2784 {
c19d1205
ZW
2785 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2786 (valueT) 0, &zero_address_frag);
2787 pool->id = latest_pool_num ++;
a737bd4d
NC
2788 }
2789
c19d1205
ZW
2790 /* Done. */
2791 return pool;
a737bd4d
NC
2792}
2793
c19d1205 2794/* Add the literal in the global 'inst'
5f4273c7 2795 structure to the relevant literal pool. */
b99bd4ef
NC
2796
2797static int
c19d1205 2798add_to_lit_pool (void)
b99bd4ef 2799{
c19d1205
ZW
2800 literal_pool * pool;
2801 unsigned int entry;
b99bd4ef 2802
c19d1205
ZW
2803 pool = find_or_make_literal_pool ();
2804
2805 /* Check if this literal value is already in the pool. */
2806 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2807 {
c19d1205
ZW
2808 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2809 && (inst.reloc.exp.X_op == O_constant)
2810 && (pool->literals[entry].X_add_number
2811 == inst.reloc.exp.X_add_number)
2812 && (pool->literals[entry].X_unsigned
2813 == inst.reloc.exp.X_unsigned))
2814 break;
2815
2816 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2817 && (inst.reloc.exp.X_op == O_symbol)
2818 && (pool->literals[entry].X_add_number
2819 == inst.reloc.exp.X_add_number)
2820 && (pool->literals[entry].X_add_symbol
2821 == inst.reloc.exp.X_add_symbol)
2822 && (pool->literals[entry].X_op_symbol
2823 == inst.reloc.exp.X_op_symbol))
2824 break;
b99bd4ef
NC
2825 }
2826
c19d1205
ZW
2827 /* Do we need to create a new entry? */
2828 if (entry == pool->next_free_entry)
2829 {
2830 if (entry >= MAX_LITERAL_POOL_SIZE)
2831 {
2832 inst.error = _("literal pool overflow");
2833 return FAIL;
2834 }
2835
2836 pool->literals[entry] = inst.reloc.exp;
2837 pool->next_free_entry += 1;
2838 }
b99bd4ef 2839
c19d1205
ZW
2840 inst.reloc.exp.X_op = O_symbol;
2841 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2842 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 2843
c19d1205 2844 return SUCCESS;
b99bd4ef
NC
2845}
2846
c19d1205
ZW
2847/* Can't use symbol_new here, so have to create a symbol and then at
2848 a later date assign it a value. Thats what these functions do. */
e16bb312 2849
c19d1205
ZW
2850static void
2851symbol_locate (symbolS * symbolP,
2852 const char * name, /* It is copied, the caller can modify. */
2853 segT segment, /* Segment identifier (SEG_<something>). */
2854 valueT valu, /* Symbol value. */
2855 fragS * frag) /* Associated fragment. */
2856{
2857 unsigned int name_length;
2858 char * preserved_copy_of_name;
e16bb312 2859
c19d1205
ZW
2860 name_length = strlen (name) + 1; /* +1 for \0. */
2861 obstack_grow (&notes, name, name_length);
2862 preserved_copy_of_name = obstack_finish (&notes);
e16bb312 2863
c19d1205
ZW
2864#ifdef tc_canonicalize_symbol_name
2865 preserved_copy_of_name =
2866 tc_canonicalize_symbol_name (preserved_copy_of_name);
2867#endif
b99bd4ef 2868
c19d1205 2869 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 2870
c19d1205
ZW
2871 S_SET_SEGMENT (symbolP, segment);
2872 S_SET_VALUE (symbolP, valu);
2873 symbol_clear_list_pointers (symbolP);
b99bd4ef 2874
c19d1205 2875 symbol_set_frag (symbolP, frag);
b99bd4ef 2876
c19d1205
ZW
2877 /* Link to end of symbol chain. */
2878 {
2879 extern int symbol_table_frozen;
b99bd4ef 2880
c19d1205
ZW
2881 if (symbol_table_frozen)
2882 abort ();
2883 }
b99bd4ef 2884
c19d1205 2885 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 2886
c19d1205 2887 obj_symbol_new_hook (symbolP);
b99bd4ef 2888
c19d1205
ZW
2889#ifdef tc_symbol_new_hook
2890 tc_symbol_new_hook (symbolP);
2891#endif
2892
2893#ifdef DEBUG_SYMS
2894 verify_symbol_chain (symbol_rootP, symbol_lastP);
2895#endif /* DEBUG_SYMS */
b99bd4ef
NC
2896}
2897
b99bd4ef 2898
c19d1205
ZW
2899static void
2900s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2901{
c19d1205
ZW
2902 unsigned int entry;
2903 literal_pool * pool;
2904 char sym_name[20];
b99bd4ef 2905
c19d1205
ZW
2906 pool = find_literal_pool ();
2907 if (pool == NULL
2908 || pool->symbol == NULL
2909 || pool->next_free_entry == 0)
2910 return;
b99bd4ef 2911
c19d1205 2912 mapping_state (MAP_DATA);
b99bd4ef 2913
c19d1205
ZW
2914 /* Align pool as you have word accesses.
2915 Only make a frag if we have to. */
2916 if (!need_pass_2)
2917 frag_align (2, 0, 0);
b99bd4ef 2918
c19d1205 2919 record_alignment (now_seg, 2);
b99bd4ef 2920
c19d1205 2921 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 2922
c19d1205
ZW
2923 symbol_locate (pool->symbol, sym_name, now_seg,
2924 (valueT) frag_now_fix (), frag_now);
2925 symbol_table_insert (pool->symbol);
b99bd4ef 2926
c19d1205 2927 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 2928
c19d1205
ZW
2929#if defined OBJ_COFF || defined OBJ_ELF
2930 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2931#endif
6c43fab6 2932
c19d1205
ZW
2933 for (entry = 0; entry < pool->next_free_entry; entry ++)
2934 /* First output the expression in the instruction to the pool. */
2935 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 2936
c19d1205
ZW
2937 /* Mark the pool as empty. */
2938 pool->next_free_entry = 0;
2939 pool->symbol = NULL;
b99bd4ef
NC
2940}
2941
c19d1205
ZW
2942#ifdef OBJ_ELF
2943/* Forward declarations for functions below, in the MD interface
2944 section. */
2945static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2946static valueT create_unwind_entry (int);
2947static void start_unwind_section (const segT, int);
2948static void add_unwind_opcode (valueT, int);
2949static void flush_pending_unwind (void);
b99bd4ef 2950
c19d1205 2951/* Directives: Data. */
b99bd4ef 2952
c19d1205
ZW
2953static void
2954s_arm_elf_cons (int nbytes)
2955{
2956 expressionS exp;
b99bd4ef 2957
c19d1205
ZW
2958#ifdef md_flush_pending_output
2959 md_flush_pending_output ();
2960#endif
b99bd4ef 2961
c19d1205 2962 if (is_it_end_of_statement ())
b99bd4ef 2963 {
c19d1205
ZW
2964 demand_empty_rest_of_line ();
2965 return;
b99bd4ef
NC
2966 }
2967
c19d1205
ZW
2968#ifdef md_cons_align
2969 md_cons_align (nbytes);
2970#endif
b99bd4ef 2971
c19d1205
ZW
2972 mapping_state (MAP_DATA);
2973 do
b99bd4ef 2974 {
c19d1205
ZW
2975 int reloc;
2976 char *base = input_line_pointer;
b99bd4ef 2977
c19d1205 2978 expression (& exp);
b99bd4ef 2979
c19d1205
ZW
2980 if (exp.X_op != O_symbol)
2981 emit_expr (&exp, (unsigned int) nbytes);
2982 else
2983 {
2984 char *before_reloc = input_line_pointer;
2985 reloc = parse_reloc (&input_line_pointer);
2986 if (reloc == -1)
2987 {
2988 as_bad (_("unrecognized relocation suffix"));
2989 ignore_rest_of_line ();
2990 return;
2991 }
2992 else if (reloc == BFD_RELOC_UNUSED)
2993 emit_expr (&exp, (unsigned int) nbytes);
2994 else
2995 {
2996 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2997 int size = bfd_get_reloc_size (howto);
b99bd4ef 2998
2fc8bdac
ZW
2999 if (reloc == BFD_RELOC_ARM_PLT32)
3000 {
3001 as_bad (_("(plt) is only valid on branch targets"));
3002 reloc = BFD_RELOC_UNUSED;
3003 size = 0;
3004 }
3005
c19d1205 3006 if (size > nbytes)
2fc8bdac 3007 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3008 howto->name, nbytes);
3009 else
3010 {
3011 /* We've parsed an expression stopping at O_symbol.
3012 But there may be more expression left now that we
3013 have parsed the relocation marker. Parse it again.
3014 XXX Surely there is a cleaner way to do this. */
3015 char *p = input_line_pointer;
3016 int offset;
3017 char *save_buf = alloca (input_line_pointer - base);
3018 memcpy (save_buf, base, input_line_pointer - base);
3019 memmove (base + (input_line_pointer - before_reloc),
3020 base, before_reloc - base);
3021
3022 input_line_pointer = base + (input_line_pointer-before_reloc);
3023 expression (&exp);
3024 memcpy (base, save_buf, p - base);
3025
3026 offset = nbytes - size;
3027 p = frag_more ((int) nbytes);
3028 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3029 size, &exp, 0, reloc);
3030 }
3031 }
3032 }
b99bd4ef 3033 }
c19d1205 3034 while (*input_line_pointer++ == ',');
b99bd4ef 3035
c19d1205
ZW
3036 /* Put terminator back into stream. */
3037 input_line_pointer --;
3038 demand_empty_rest_of_line ();
b99bd4ef
NC
3039}
3040
b99bd4ef 3041
c19d1205 3042/* Parse a .rel31 directive. */
b99bd4ef 3043
c19d1205
ZW
3044static void
3045s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3046{
3047 expressionS exp;
3048 char *p;
3049 valueT highbit;
b99bd4ef 3050
c19d1205
ZW
3051 highbit = 0;
3052 if (*input_line_pointer == '1')
3053 highbit = 0x80000000;
3054 else if (*input_line_pointer != '0')
3055 as_bad (_("expected 0 or 1"));
b99bd4ef 3056
c19d1205
ZW
3057 input_line_pointer++;
3058 if (*input_line_pointer != ',')
3059 as_bad (_("missing comma"));
3060 input_line_pointer++;
b99bd4ef 3061
c19d1205
ZW
3062#ifdef md_flush_pending_output
3063 md_flush_pending_output ();
3064#endif
b99bd4ef 3065
c19d1205
ZW
3066#ifdef md_cons_align
3067 md_cons_align (4);
3068#endif
b99bd4ef 3069
c19d1205 3070 mapping_state (MAP_DATA);
b99bd4ef 3071
c19d1205 3072 expression (&exp);
b99bd4ef 3073
c19d1205
ZW
3074 p = frag_more (4);
3075 md_number_to_chars (p, highbit, 4);
3076 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3077 BFD_RELOC_ARM_PREL31);
b99bd4ef 3078
c19d1205 3079 demand_empty_rest_of_line ();
b99bd4ef
NC
3080}
3081
c19d1205 3082/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3083
c19d1205 3084/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3085
c19d1205
ZW
3086static void
3087s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3088{
3089 demand_empty_rest_of_line ();
3090 /* Mark the start of the function. */
3091 unwind.proc_start = expr_build_dot ();
b99bd4ef 3092
c19d1205
ZW
3093 /* Reset the rest of the unwind info. */
3094 unwind.opcode_count = 0;
3095 unwind.table_entry = NULL;
3096 unwind.personality_routine = NULL;
3097 unwind.personality_index = -1;
3098 unwind.frame_size = 0;
3099 unwind.fp_offset = 0;
fdfde340 3100 unwind.fp_reg = REG_SP;
c19d1205
ZW
3101 unwind.fp_used = 0;
3102 unwind.sp_restored = 0;
3103}
b99bd4ef 3104
b99bd4ef 3105
c19d1205
ZW
3106/* Parse a handlerdata directive. Creates the exception handling table entry
3107 for the function. */
b99bd4ef 3108
c19d1205
ZW
3109static void
3110s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3111{
3112 demand_empty_rest_of_line ();
3113 if (unwind.table_entry)
6decc662 3114 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3115
c19d1205
ZW
3116 create_unwind_entry (1);
3117}
a737bd4d 3118
c19d1205 3119/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3120
c19d1205
ZW
3121static void
3122s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3123{
3124 long where;
3125 char *ptr;
3126 valueT val;
f02232aa 3127
c19d1205 3128 demand_empty_rest_of_line ();
f02232aa 3129
c19d1205
ZW
3130 /* Add eh table entry. */
3131 if (unwind.table_entry == NULL)
3132 val = create_unwind_entry (0);
3133 else
3134 val = 0;
f02232aa 3135
c19d1205
ZW
3136 /* Add index table entry. This is two words. */
3137 start_unwind_section (unwind.saved_seg, 1);
3138 frag_align (2, 0, 0);
3139 record_alignment (now_seg, 2);
b99bd4ef 3140
c19d1205
ZW
3141 ptr = frag_more (8);
3142 where = frag_now_fix () - 8;
f02232aa 3143
c19d1205
ZW
3144 /* Self relative offset of the function start. */
3145 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3146 BFD_RELOC_ARM_PREL31);
f02232aa 3147
c19d1205
ZW
3148 /* Indicate dependency on EHABI-defined personality routines to the
3149 linker, if it hasn't been done already. */
3150 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3151 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3152 {
5f4273c7
NC
3153 static const char *const name[] =
3154 {
3155 "__aeabi_unwind_cpp_pr0",
3156 "__aeabi_unwind_cpp_pr1",
3157 "__aeabi_unwind_cpp_pr2"
3158 };
c19d1205
ZW
3159 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3160 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3161 marked_pr_dependency |= 1 << unwind.personality_index;
3162 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3163 = marked_pr_dependency;
3164 }
f02232aa 3165
c19d1205
ZW
3166 if (val)
3167 /* Inline exception table entry. */
3168 md_number_to_chars (ptr + 4, val, 4);
3169 else
3170 /* Self relative offset of the table entry. */
3171 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3172 BFD_RELOC_ARM_PREL31);
f02232aa 3173
c19d1205
ZW
3174 /* Restore the original section. */
3175 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3176}
f02232aa 3177
f02232aa 3178
c19d1205 3179/* Parse an unwind_cantunwind directive. */
b99bd4ef 3180
c19d1205
ZW
3181static void
3182s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3183{
3184 demand_empty_rest_of_line ();
3185 if (unwind.personality_routine || unwind.personality_index != -1)
3186 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3187
c19d1205
ZW
3188 unwind.personality_index = -2;
3189}
b99bd4ef 3190
b99bd4ef 3191
c19d1205 3192/* Parse a personalityindex directive. */
b99bd4ef 3193
c19d1205
ZW
3194static void
3195s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3196{
3197 expressionS exp;
b99bd4ef 3198
c19d1205
ZW
3199 if (unwind.personality_routine || unwind.personality_index != -1)
3200 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3201
c19d1205 3202 expression (&exp);
b99bd4ef 3203
c19d1205
ZW
3204 if (exp.X_op != O_constant
3205 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3206 {
c19d1205
ZW
3207 as_bad (_("bad personality routine number"));
3208 ignore_rest_of_line ();
3209 return;
b99bd4ef
NC
3210 }
3211
c19d1205 3212 unwind.personality_index = exp.X_add_number;
b99bd4ef 3213
c19d1205
ZW
3214 demand_empty_rest_of_line ();
3215}
e16bb312 3216
e16bb312 3217
c19d1205 3218/* Parse a personality directive. */
e16bb312 3219
c19d1205
ZW
3220static void
3221s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3222{
3223 char *name, *p, c;
a737bd4d 3224
c19d1205
ZW
3225 if (unwind.personality_routine || unwind.personality_index != -1)
3226 as_bad (_("duplicate .personality directive"));
a737bd4d 3227
c19d1205
ZW
3228 name = input_line_pointer;
3229 c = get_symbol_end ();
3230 p = input_line_pointer;
3231 unwind.personality_routine = symbol_find_or_make (name);
3232 *p = c;
3233 demand_empty_rest_of_line ();
3234}
e16bb312 3235
e16bb312 3236
c19d1205 3237/* Parse a directive saving core registers. */
e16bb312 3238
c19d1205
ZW
3239static void
3240s_arm_unwind_save_core (void)
e16bb312 3241{
c19d1205
ZW
3242 valueT op;
3243 long range;
3244 int n;
e16bb312 3245
c19d1205
ZW
3246 range = parse_reg_list (&input_line_pointer);
3247 if (range == FAIL)
e16bb312 3248 {
c19d1205
ZW
3249 as_bad (_("expected register list"));
3250 ignore_rest_of_line ();
3251 return;
3252 }
e16bb312 3253
c19d1205 3254 demand_empty_rest_of_line ();
e16bb312 3255
c19d1205
ZW
3256 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3257 into .unwind_save {..., sp...}. We aren't bothered about the value of
3258 ip because it is clobbered by calls. */
3259 if (unwind.sp_restored && unwind.fp_reg == 12
3260 && (range & 0x3000) == 0x1000)
3261 {
3262 unwind.opcode_count--;
3263 unwind.sp_restored = 0;
3264 range = (range | 0x2000) & ~0x1000;
3265 unwind.pending_offset = 0;
3266 }
e16bb312 3267
01ae4198
DJ
3268 /* Pop r4-r15. */
3269 if (range & 0xfff0)
c19d1205 3270 {
01ae4198
DJ
3271 /* See if we can use the short opcodes. These pop a block of up to 8
3272 registers starting with r4, plus maybe r14. */
3273 for (n = 0; n < 8; n++)
3274 {
3275 /* Break at the first non-saved register. */
3276 if ((range & (1 << (n + 4))) == 0)
3277 break;
3278 }
3279 /* See if there are any other bits set. */
3280 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3281 {
3282 /* Use the long form. */
3283 op = 0x8000 | ((range >> 4) & 0xfff);
3284 add_unwind_opcode (op, 2);
3285 }
0dd132b6 3286 else
01ae4198
DJ
3287 {
3288 /* Use the short form. */
3289 if (range & 0x4000)
3290 op = 0xa8; /* Pop r14. */
3291 else
3292 op = 0xa0; /* Do not pop r14. */
3293 op |= (n - 1);
3294 add_unwind_opcode (op, 1);
3295 }
c19d1205 3296 }
0dd132b6 3297
c19d1205
ZW
3298 /* Pop r0-r3. */
3299 if (range & 0xf)
3300 {
3301 op = 0xb100 | (range & 0xf);
3302 add_unwind_opcode (op, 2);
0dd132b6
NC
3303 }
3304
c19d1205
ZW
3305 /* Record the number of bytes pushed. */
3306 for (n = 0; n < 16; n++)
3307 {
3308 if (range & (1 << n))
3309 unwind.frame_size += 4;
3310 }
0dd132b6
NC
3311}
3312
c19d1205
ZW
3313
3314/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3315
3316static void
c19d1205 3317s_arm_unwind_save_fpa (int reg)
b99bd4ef 3318{
c19d1205
ZW
3319 expressionS exp;
3320 int num_regs;
3321 valueT op;
b99bd4ef 3322
c19d1205
ZW
3323 /* Get Number of registers to transfer. */
3324 if (skip_past_comma (&input_line_pointer) != FAIL)
3325 expression (&exp);
3326 else
3327 exp.X_op = O_illegal;
b99bd4ef 3328
c19d1205 3329 if (exp.X_op != O_constant)
b99bd4ef 3330 {
c19d1205
ZW
3331 as_bad (_("expected , <constant>"));
3332 ignore_rest_of_line ();
b99bd4ef
NC
3333 return;
3334 }
3335
c19d1205
ZW
3336 num_regs = exp.X_add_number;
3337
3338 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3339 {
c19d1205
ZW
3340 as_bad (_("number of registers must be in the range [1:4]"));
3341 ignore_rest_of_line ();
b99bd4ef
NC
3342 return;
3343 }
3344
c19d1205 3345 demand_empty_rest_of_line ();
b99bd4ef 3346
c19d1205
ZW
3347 if (reg == 4)
3348 {
3349 /* Short form. */
3350 op = 0xb4 | (num_regs - 1);
3351 add_unwind_opcode (op, 1);
3352 }
b99bd4ef
NC
3353 else
3354 {
c19d1205
ZW
3355 /* Long form. */
3356 op = 0xc800 | (reg << 4) | (num_regs - 1);
3357 add_unwind_opcode (op, 2);
b99bd4ef 3358 }
c19d1205 3359 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3360}
3361
c19d1205 3362
fa073d69
MS
3363/* Parse a directive saving VFP registers for ARMv6 and above. */
3364
3365static void
3366s_arm_unwind_save_vfp_armv6 (void)
3367{
3368 int count;
3369 unsigned int start;
3370 valueT op;
3371 int num_vfpv3_regs = 0;
3372 int num_regs_below_16;
3373
3374 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3375 if (count == FAIL)
3376 {
3377 as_bad (_("expected register list"));
3378 ignore_rest_of_line ();
3379 return;
3380 }
3381
3382 demand_empty_rest_of_line ();
3383
3384 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3385 than FSTMX/FLDMX-style ones). */
3386
3387 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3388 if (start >= 16)
3389 num_vfpv3_regs = count;
3390 else if (start + count > 16)
3391 num_vfpv3_regs = start + count - 16;
3392
3393 if (num_vfpv3_regs > 0)
3394 {
3395 int start_offset = start > 16 ? start - 16 : 0;
3396 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3397 add_unwind_opcode (op, 2);
3398 }
3399
3400 /* Generate opcode for registers numbered in the range 0 .. 15. */
3401 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3402 assert (num_regs_below_16 + num_vfpv3_regs == count);
3403 if (num_regs_below_16 > 0)
3404 {
3405 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3406 add_unwind_opcode (op, 2);
3407 }
3408
3409 unwind.frame_size += count * 8;
3410}
3411
3412
3413/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3414
3415static void
c19d1205 3416s_arm_unwind_save_vfp (void)
b99bd4ef 3417{
c19d1205 3418 int count;
ca3f61f7 3419 unsigned int reg;
c19d1205 3420 valueT op;
b99bd4ef 3421
5287ad62 3422 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3423 if (count == FAIL)
b99bd4ef 3424 {
c19d1205
ZW
3425 as_bad (_("expected register list"));
3426 ignore_rest_of_line ();
b99bd4ef
NC
3427 return;
3428 }
3429
c19d1205 3430 demand_empty_rest_of_line ();
b99bd4ef 3431
c19d1205 3432 if (reg == 8)
b99bd4ef 3433 {
c19d1205
ZW
3434 /* Short form. */
3435 op = 0xb8 | (count - 1);
3436 add_unwind_opcode (op, 1);
b99bd4ef 3437 }
c19d1205 3438 else
b99bd4ef 3439 {
c19d1205
ZW
3440 /* Long form. */
3441 op = 0xb300 | (reg << 4) | (count - 1);
3442 add_unwind_opcode (op, 2);
b99bd4ef 3443 }
c19d1205
ZW
3444 unwind.frame_size += count * 8 + 4;
3445}
b99bd4ef 3446
b99bd4ef 3447
c19d1205
ZW
3448/* Parse a directive saving iWMMXt data registers. */
3449
3450static void
3451s_arm_unwind_save_mmxwr (void)
3452{
3453 int reg;
3454 int hi_reg;
3455 int i;
3456 unsigned mask = 0;
3457 valueT op;
b99bd4ef 3458
c19d1205
ZW
3459 if (*input_line_pointer == '{')
3460 input_line_pointer++;
b99bd4ef 3461
c19d1205 3462 do
b99bd4ef 3463 {
dcbf9037 3464 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3465
c19d1205 3466 if (reg == FAIL)
b99bd4ef 3467 {
9b7132d3 3468 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3469 goto error;
b99bd4ef
NC
3470 }
3471
c19d1205
ZW
3472 if (mask >> reg)
3473 as_tsktsk (_("register list not in ascending order"));
3474 mask |= 1 << reg;
b99bd4ef 3475
c19d1205
ZW
3476 if (*input_line_pointer == '-')
3477 {
3478 input_line_pointer++;
dcbf9037 3479 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3480 if (hi_reg == FAIL)
3481 {
9b7132d3 3482 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3483 goto error;
3484 }
3485 else if (reg >= hi_reg)
3486 {
3487 as_bad (_("bad register range"));
3488 goto error;
3489 }
3490 for (; reg < hi_reg; reg++)
3491 mask |= 1 << reg;
3492 }
3493 }
3494 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3495
c19d1205
ZW
3496 if (*input_line_pointer == '}')
3497 input_line_pointer++;
b99bd4ef 3498
c19d1205 3499 demand_empty_rest_of_line ();
b99bd4ef 3500
708587a4 3501 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3502 the list. */
3503 flush_pending_unwind ();
b99bd4ef 3504
c19d1205 3505 for (i = 0; i < 16; i++)
b99bd4ef 3506 {
c19d1205
ZW
3507 if (mask & (1 << i))
3508 unwind.frame_size += 8;
b99bd4ef
NC
3509 }
3510
c19d1205
ZW
3511 /* Attempt to combine with a previous opcode. We do this because gcc
3512 likes to output separate unwind directives for a single block of
3513 registers. */
3514 if (unwind.opcode_count > 0)
b99bd4ef 3515 {
c19d1205
ZW
3516 i = unwind.opcodes[unwind.opcode_count - 1];
3517 if ((i & 0xf8) == 0xc0)
3518 {
3519 i &= 7;
3520 /* Only merge if the blocks are contiguous. */
3521 if (i < 6)
3522 {
3523 if ((mask & 0xfe00) == (1 << 9))
3524 {
3525 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3526 unwind.opcode_count--;
3527 }
3528 }
3529 else if (i == 6 && unwind.opcode_count >= 2)
3530 {
3531 i = unwind.opcodes[unwind.opcode_count - 2];
3532 reg = i >> 4;
3533 i &= 0xf;
b99bd4ef 3534
c19d1205
ZW
3535 op = 0xffff << (reg - 1);
3536 if (reg > 0
87a1fd79 3537 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3538 {
3539 op = (1 << (reg + i + 1)) - 1;
3540 op &= ~((1 << reg) - 1);
3541 mask |= op;
3542 unwind.opcode_count -= 2;
3543 }
3544 }
3545 }
b99bd4ef
NC
3546 }
3547
c19d1205
ZW
3548 hi_reg = 15;
3549 /* We want to generate opcodes in the order the registers have been
3550 saved, ie. descending order. */
3551 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3552 {
c19d1205
ZW
3553 /* Save registers in blocks. */
3554 if (reg < 0
3555 || !(mask & (1 << reg)))
3556 {
3557 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3558 preceding block. */
c19d1205
ZW
3559 if (reg != hi_reg)
3560 {
3561 if (reg == 9)
3562 {
3563 /* Short form. */
3564 op = 0xc0 | (hi_reg - 10);
3565 add_unwind_opcode (op, 1);
3566 }
3567 else
3568 {
3569 /* Long form. */
3570 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3571 add_unwind_opcode (op, 2);
3572 }
3573 }
3574 hi_reg = reg - 1;
3575 }
b99bd4ef
NC
3576 }
3577
c19d1205
ZW
3578 return;
3579error:
3580 ignore_rest_of_line ();
b99bd4ef
NC
3581}
3582
3583static void
c19d1205 3584s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3585{
c19d1205
ZW
3586 int reg;
3587 int hi_reg;
3588 unsigned mask = 0;
3589 valueT op;
b99bd4ef 3590
c19d1205
ZW
3591 if (*input_line_pointer == '{')
3592 input_line_pointer++;
b99bd4ef 3593
c19d1205 3594 do
b99bd4ef 3595 {
dcbf9037 3596 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3597
c19d1205
ZW
3598 if (reg == FAIL)
3599 {
9b7132d3 3600 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3601 goto error;
3602 }
b99bd4ef 3603
c19d1205
ZW
3604 reg -= 8;
3605 if (mask >> reg)
3606 as_tsktsk (_("register list not in ascending order"));
3607 mask |= 1 << reg;
b99bd4ef 3608
c19d1205
ZW
3609 if (*input_line_pointer == '-')
3610 {
3611 input_line_pointer++;
dcbf9037 3612 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3613 if (hi_reg == FAIL)
3614 {
9b7132d3 3615 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3616 goto error;
3617 }
3618 else if (reg >= hi_reg)
3619 {
3620 as_bad (_("bad register range"));
3621 goto error;
3622 }
3623 for (; reg < hi_reg; reg++)
3624 mask |= 1 << reg;
3625 }
b99bd4ef 3626 }
c19d1205 3627 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3628
c19d1205
ZW
3629 if (*input_line_pointer == '}')
3630 input_line_pointer++;
b99bd4ef 3631
c19d1205
ZW
3632 demand_empty_rest_of_line ();
3633
708587a4 3634 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3635 the list. */
3636 flush_pending_unwind ();
b99bd4ef 3637
c19d1205 3638 for (reg = 0; reg < 16; reg++)
b99bd4ef 3639 {
c19d1205
ZW
3640 if (mask & (1 << reg))
3641 unwind.frame_size += 4;
b99bd4ef 3642 }
c19d1205
ZW
3643 op = 0xc700 | mask;
3644 add_unwind_opcode (op, 2);
3645 return;
3646error:
3647 ignore_rest_of_line ();
b99bd4ef
NC
3648}
3649
c19d1205 3650
fa073d69
MS
3651/* Parse an unwind_save directive.
3652 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3653
b99bd4ef 3654static void
fa073d69 3655s_arm_unwind_save (int arch_v6)
b99bd4ef 3656{
c19d1205
ZW
3657 char *peek;
3658 struct reg_entry *reg;
3659 bfd_boolean had_brace = FALSE;
b99bd4ef 3660
c19d1205
ZW
3661 /* Figure out what sort of save we have. */
3662 peek = input_line_pointer;
b99bd4ef 3663
c19d1205 3664 if (*peek == '{')
b99bd4ef 3665 {
c19d1205
ZW
3666 had_brace = TRUE;
3667 peek++;
b99bd4ef
NC
3668 }
3669
c19d1205 3670 reg = arm_reg_parse_multi (&peek);
b99bd4ef 3671
c19d1205 3672 if (!reg)
b99bd4ef 3673 {
c19d1205
ZW
3674 as_bad (_("register expected"));
3675 ignore_rest_of_line ();
b99bd4ef
NC
3676 return;
3677 }
3678
c19d1205 3679 switch (reg->type)
b99bd4ef 3680 {
c19d1205
ZW
3681 case REG_TYPE_FN:
3682 if (had_brace)
3683 {
3684 as_bad (_("FPA .unwind_save does not take a register list"));
3685 ignore_rest_of_line ();
3686 return;
3687 }
93ac2687 3688 input_line_pointer = peek;
c19d1205 3689 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 3690 return;
c19d1205
ZW
3691
3692 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
3693 case REG_TYPE_VFD:
3694 if (arch_v6)
3695 s_arm_unwind_save_vfp_armv6 ();
3696 else
3697 s_arm_unwind_save_vfp ();
3698 return;
c19d1205
ZW
3699 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3700 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3701
3702 default:
3703 as_bad (_(".unwind_save does not support this kind of register"));
3704 ignore_rest_of_line ();
b99bd4ef 3705 }
c19d1205 3706}
b99bd4ef 3707
b99bd4ef 3708
c19d1205
ZW
3709/* Parse an unwind_movsp directive. */
3710
3711static void
3712s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3713{
3714 int reg;
3715 valueT op;
4fa3602b 3716 int offset;
c19d1205 3717
dcbf9037 3718 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 3719 if (reg == FAIL)
b99bd4ef 3720 {
9b7132d3 3721 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 3722 ignore_rest_of_line ();
b99bd4ef
NC
3723 return;
3724 }
4fa3602b
PB
3725
3726 /* Optional constant. */
3727 if (skip_past_comma (&input_line_pointer) != FAIL)
3728 {
3729 if (immediate_for_directive (&offset) == FAIL)
3730 return;
3731 }
3732 else
3733 offset = 0;
3734
c19d1205 3735 demand_empty_rest_of_line ();
b99bd4ef 3736
c19d1205 3737 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 3738 {
c19d1205 3739 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
3740 return;
3741 }
3742
c19d1205
ZW
3743 if (unwind.fp_reg != REG_SP)
3744 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 3745
c19d1205
ZW
3746 /* Generate opcode to restore the value. */
3747 op = 0x90 | reg;
3748 add_unwind_opcode (op, 1);
3749
3750 /* Record the information for later. */
3751 unwind.fp_reg = reg;
4fa3602b 3752 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 3753 unwind.sp_restored = 1;
b05fe5cf
ZW
3754}
3755
c19d1205
ZW
3756/* Parse an unwind_pad directive. */
3757
b05fe5cf 3758static void
c19d1205 3759s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 3760{
c19d1205 3761 int offset;
b05fe5cf 3762
c19d1205
ZW
3763 if (immediate_for_directive (&offset) == FAIL)
3764 return;
b99bd4ef 3765
c19d1205
ZW
3766 if (offset & 3)
3767 {
3768 as_bad (_("stack increment must be multiple of 4"));
3769 ignore_rest_of_line ();
3770 return;
3771 }
b99bd4ef 3772
c19d1205
ZW
3773 /* Don't generate any opcodes, just record the details for later. */
3774 unwind.frame_size += offset;
3775 unwind.pending_offset += offset;
3776
3777 demand_empty_rest_of_line ();
3778}
3779
3780/* Parse an unwind_setfp directive. */
3781
3782static void
3783s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3784{
c19d1205
ZW
3785 int sp_reg;
3786 int fp_reg;
3787 int offset;
3788
dcbf9037 3789 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
3790 if (skip_past_comma (&input_line_pointer) == FAIL)
3791 sp_reg = FAIL;
3792 else
dcbf9037 3793 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 3794
c19d1205
ZW
3795 if (fp_reg == FAIL || sp_reg == FAIL)
3796 {
3797 as_bad (_("expected <reg>, <reg>"));
3798 ignore_rest_of_line ();
3799 return;
3800 }
b99bd4ef 3801
c19d1205
ZW
3802 /* Optional constant. */
3803 if (skip_past_comma (&input_line_pointer) != FAIL)
3804 {
3805 if (immediate_for_directive (&offset) == FAIL)
3806 return;
3807 }
3808 else
3809 offset = 0;
a737bd4d 3810
c19d1205 3811 demand_empty_rest_of_line ();
a737bd4d 3812
fdfde340 3813 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 3814 {
c19d1205
ZW
3815 as_bad (_("register must be either sp or set by a previous"
3816 "unwind_movsp directive"));
3817 return;
a737bd4d
NC
3818 }
3819
c19d1205
ZW
3820 /* Don't generate any opcodes, just record the information for later. */
3821 unwind.fp_reg = fp_reg;
3822 unwind.fp_used = 1;
fdfde340 3823 if (sp_reg == REG_SP)
c19d1205
ZW
3824 unwind.fp_offset = unwind.frame_size - offset;
3825 else
3826 unwind.fp_offset -= offset;
a737bd4d
NC
3827}
3828
c19d1205
ZW
3829/* Parse an unwind_raw directive. */
3830
3831static void
3832s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 3833{
c19d1205 3834 expressionS exp;
708587a4 3835 /* This is an arbitrary limit. */
c19d1205
ZW
3836 unsigned char op[16];
3837 int count;
a737bd4d 3838
c19d1205
ZW
3839 expression (&exp);
3840 if (exp.X_op == O_constant
3841 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 3842 {
c19d1205
ZW
3843 unwind.frame_size += exp.X_add_number;
3844 expression (&exp);
3845 }
3846 else
3847 exp.X_op = O_illegal;
a737bd4d 3848
c19d1205
ZW
3849 if (exp.X_op != O_constant)
3850 {
3851 as_bad (_("expected <offset>, <opcode>"));
3852 ignore_rest_of_line ();
3853 return;
3854 }
a737bd4d 3855
c19d1205 3856 count = 0;
a737bd4d 3857
c19d1205
ZW
3858 /* Parse the opcode. */
3859 for (;;)
3860 {
3861 if (count >= 16)
3862 {
3863 as_bad (_("unwind opcode too long"));
3864 ignore_rest_of_line ();
a737bd4d 3865 }
c19d1205 3866 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 3867 {
c19d1205
ZW
3868 as_bad (_("invalid unwind opcode"));
3869 ignore_rest_of_line ();
3870 return;
a737bd4d 3871 }
c19d1205 3872 op[count++] = exp.X_add_number;
a737bd4d 3873
c19d1205
ZW
3874 /* Parse the next byte. */
3875 if (skip_past_comma (&input_line_pointer) == FAIL)
3876 break;
a737bd4d 3877
c19d1205
ZW
3878 expression (&exp);
3879 }
b99bd4ef 3880
c19d1205
ZW
3881 /* Add the opcode bytes in reverse order. */
3882 while (count--)
3883 add_unwind_opcode (op[count], 1);
b99bd4ef 3884
c19d1205 3885 demand_empty_rest_of_line ();
b99bd4ef 3886}
ee065d83
PB
3887
3888
3889/* Parse a .eabi_attribute directive. */
3890
3891static void
3892s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3893{
ee3c0378
AS
3894 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
3895
3896 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
3897 attributes_set_explicitly[tag] = 1;
ee065d83 3898}
8463be01 3899#endif /* OBJ_ELF */
ee065d83
PB
3900
3901static void s_arm_arch (int);
7a1d4c38 3902static void s_arm_object_arch (int);
ee065d83
PB
3903static void s_arm_cpu (int);
3904static void s_arm_fpu (int);
b99bd4ef 3905
f0927246
NC
3906#ifdef TE_PE
3907
3908static void
5f4273c7 3909pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
3910{
3911 expressionS exp;
3912
3913 do
3914 {
3915 expression (&exp);
3916 if (exp.X_op == O_symbol)
3917 exp.X_op = O_secrel;
3918
3919 emit_expr (&exp, 4);
3920 }
3921 while (*input_line_pointer++ == ',');
3922
3923 input_line_pointer--;
3924 demand_empty_rest_of_line ();
3925}
3926#endif /* TE_PE */
3927
c19d1205
ZW
3928/* This table describes all the machine specific pseudo-ops the assembler
3929 has to support. The fields are:
3930 pseudo-op name without dot
3931 function to call to execute this pseudo-op
3932 Integer arg to pass to the function. */
b99bd4ef 3933
c19d1205 3934const pseudo_typeS md_pseudo_table[] =
b99bd4ef 3935{
c19d1205
ZW
3936 /* Never called because '.req' does not start a line. */
3937 { "req", s_req, 0 },
dcbf9037
JB
3938 /* Following two are likewise never called. */
3939 { "dn", s_dn, 0 },
3940 { "qn", s_qn, 0 },
c19d1205
ZW
3941 { "unreq", s_unreq, 0 },
3942 { "bss", s_bss, 0 },
3943 { "align", s_align, 0 },
3944 { "arm", s_arm, 0 },
3945 { "thumb", s_thumb, 0 },
3946 { "code", s_code, 0 },
3947 { "force_thumb", s_force_thumb, 0 },
3948 { "thumb_func", s_thumb_func, 0 },
3949 { "thumb_set", s_thumb_set, 0 },
3950 { "even", s_even, 0 },
3951 { "ltorg", s_ltorg, 0 },
3952 { "pool", s_ltorg, 0 },
3953 { "syntax", s_syntax, 0 },
8463be01
PB
3954 { "cpu", s_arm_cpu, 0 },
3955 { "arch", s_arm_arch, 0 },
7a1d4c38 3956 { "object_arch", s_arm_object_arch, 0 },
8463be01 3957 { "fpu", s_arm_fpu, 0 },
c19d1205
ZW
3958#ifdef OBJ_ELF
3959 { "word", s_arm_elf_cons, 4 },
3960 { "long", s_arm_elf_cons, 4 },
3961 { "rel31", s_arm_rel31, 0 },
3962 { "fnstart", s_arm_unwind_fnstart, 0 },
3963 { "fnend", s_arm_unwind_fnend, 0 },
3964 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3965 { "personality", s_arm_unwind_personality, 0 },
3966 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3967 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3968 { "save", s_arm_unwind_save, 0 },
fa073d69 3969 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
3970 { "movsp", s_arm_unwind_movsp, 0 },
3971 { "pad", s_arm_unwind_pad, 0 },
3972 { "setfp", s_arm_unwind_setfp, 0 },
3973 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 3974 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
3975#else
3976 { "word", cons, 4},
f0927246
NC
3977
3978 /* These are used for dwarf. */
3979 {"2byte", cons, 2},
3980 {"4byte", cons, 4},
3981 {"8byte", cons, 8},
3982 /* These are used for dwarf2. */
3983 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3984 { "loc", dwarf2_directive_loc, 0 },
3985 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
3986#endif
3987 { "extend", float_cons, 'x' },
3988 { "ldouble", float_cons, 'x' },
3989 { "packed", float_cons, 'p' },
f0927246
NC
3990#ifdef TE_PE
3991 {"secrel32", pe_directive_secrel, 0},
3992#endif
c19d1205
ZW
3993 { 0, 0, 0 }
3994};
3995\f
3996/* Parser functions used exclusively in instruction operands. */
b99bd4ef 3997
c19d1205
ZW
3998/* Generic immediate-value read function for use in insn parsing.
3999 STR points to the beginning of the immediate (the leading #);
4000 VAL receives the value; if the value is outside [MIN, MAX]
4001 issue an error. PREFIX_OPT is true if the immediate prefix is
4002 optional. */
b99bd4ef 4003
c19d1205
ZW
4004static int
4005parse_immediate (char **str, int *val, int min, int max,
4006 bfd_boolean prefix_opt)
4007{
4008 expressionS exp;
4009 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4010 if (exp.X_op != O_constant)
b99bd4ef 4011 {
c19d1205
ZW
4012 inst.error = _("constant expression required");
4013 return FAIL;
4014 }
b99bd4ef 4015
c19d1205
ZW
4016 if (exp.X_add_number < min || exp.X_add_number > max)
4017 {
4018 inst.error = _("immediate value out of range");
4019 return FAIL;
4020 }
b99bd4ef 4021
c19d1205
ZW
4022 *val = exp.X_add_number;
4023 return SUCCESS;
4024}
b99bd4ef 4025
5287ad62 4026/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4027 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4028 instructions. Puts the result directly in inst.operands[i]. */
4029
4030static int
4031parse_big_immediate (char **str, int i)
4032{
4033 expressionS exp;
4034 char *ptr = *str;
4035
4036 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4037
4038 if (exp.X_op == O_constant)
036dc3f7
PB
4039 {
4040 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4041 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4042 O_constant. We have to be careful not to break compilation for
4043 32-bit X_add_number, though. */
4044 if ((exp.X_add_number & ~0xffffffffl) != 0)
4045 {
4046 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4047 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4048 inst.operands[i].regisimm = 1;
4049 }
4050 }
5287ad62
JB
4051 else if (exp.X_op == O_big
4052 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4053 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4054 {
4055 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4056 /* Bignums have their least significant bits in
4057 generic_bignum[0]. Make sure we put 32 bits in imm and
4058 32 bits in reg, in a (hopefully) portable way. */
4059 assert (parts != 0);
4060 inst.operands[i].imm = 0;
4061 for (j = 0; j < parts; j++, idx++)
4062 inst.operands[i].imm |= generic_bignum[idx]
4063 << (LITTLENUM_NUMBER_OF_BITS * j);
4064 inst.operands[i].reg = 0;
4065 for (j = 0; j < parts; j++, idx++)
4066 inst.operands[i].reg |= generic_bignum[idx]
4067 << (LITTLENUM_NUMBER_OF_BITS * j);
4068 inst.operands[i].regisimm = 1;
4069 }
4070 else
4071 return FAIL;
5f4273c7 4072
5287ad62
JB
4073 *str = ptr;
4074
4075 return SUCCESS;
4076}
4077
c19d1205
ZW
4078/* Returns the pseudo-register number of an FPA immediate constant,
4079 or FAIL if there isn't a valid constant here. */
b99bd4ef 4080
c19d1205
ZW
4081static int
4082parse_fpa_immediate (char ** str)
4083{
4084 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4085 char * save_in;
4086 expressionS exp;
4087 int i;
4088 int j;
b99bd4ef 4089
c19d1205
ZW
4090 /* First try and match exact strings, this is to guarantee
4091 that some formats will work even for cross assembly. */
b99bd4ef 4092
c19d1205
ZW
4093 for (i = 0; fp_const[i]; i++)
4094 {
4095 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4096 {
c19d1205 4097 char *start = *str;
b99bd4ef 4098
c19d1205
ZW
4099 *str += strlen (fp_const[i]);
4100 if (is_end_of_line[(unsigned char) **str])
4101 return i + 8;
4102 *str = start;
4103 }
4104 }
b99bd4ef 4105
c19d1205
ZW
4106 /* Just because we didn't get a match doesn't mean that the constant
4107 isn't valid, just that it is in a format that we don't
4108 automatically recognize. Try parsing it with the standard
4109 expression routines. */
b99bd4ef 4110
c19d1205 4111 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4112
c19d1205
ZW
4113 /* Look for a raw floating point number. */
4114 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4115 && is_end_of_line[(unsigned char) *save_in])
4116 {
4117 for (i = 0; i < NUM_FLOAT_VALS; i++)
4118 {
4119 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4120 {
c19d1205
ZW
4121 if (words[j] != fp_values[i][j])
4122 break;
b99bd4ef
NC
4123 }
4124
c19d1205 4125 if (j == MAX_LITTLENUMS)
b99bd4ef 4126 {
c19d1205
ZW
4127 *str = save_in;
4128 return i + 8;
b99bd4ef
NC
4129 }
4130 }
4131 }
b99bd4ef 4132
c19d1205
ZW
4133 /* Try and parse a more complex expression, this will probably fail
4134 unless the code uses a floating point prefix (eg "0f"). */
4135 save_in = input_line_pointer;
4136 input_line_pointer = *str;
4137 if (expression (&exp) == absolute_section
4138 && exp.X_op == O_big
4139 && exp.X_add_number < 0)
4140 {
4141 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4142 Ditto for 15. */
4143 if (gen_to_words (words, 5, (long) 15) == 0)
4144 {
4145 for (i = 0; i < NUM_FLOAT_VALS; i++)
4146 {
4147 for (j = 0; j < MAX_LITTLENUMS; j++)
4148 {
4149 if (words[j] != fp_values[i][j])
4150 break;
4151 }
b99bd4ef 4152
c19d1205
ZW
4153 if (j == MAX_LITTLENUMS)
4154 {
4155 *str = input_line_pointer;
4156 input_line_pointer = save_in;
4157 return i + 8;
4158 }
4159 }
4160 }
b99bd4ef
NC
4161 }
4162
c19d1205
ZW
4163 *str = input_line_pointer;
4164 input_line_pointer = save_in;
4165 inst.error = _("invalid FPA immediate expression");
4166 return FAIL;
b99bd4ef
NC
4167}
4168
136da414
JB
4169/* Returns 1 if a number has "quarter-precision" float format
4170 0baBbbbbbc defgh000 00000000 00000000. */
4171
4172static int
4173is_quarter_float (unsigned imm)
4174{
4175 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4176 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4177}
4178
4179/* Parse an 8-bit "quarter-precision" floating point number of the form:
4180 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4181 The zero and minus-zero cases need special handling, since they can't be
4182 encoded in the "quarter-precision" float format, but can nonetheless be
4183 loaded as integer constants. */
136da414
JB
4184
4185static unsigned
4186parse_qfloat_immediate (char **ccp, int *immed)
4187{
4188 char *str = *ccp;
c96612cc 4189 char *fpnum;
136da414 4190 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4191 int found_fpchar = 0;
5f4273c7 4192
136da414 4193 skip_past_char (&str, '#');
5f4273c7 4194
c96612cc
JB
4195 /* We must not accidentally parse an integer as a floating-point number. Make
4196 sure that the value we parse is not an integer by checking for special
4197 characters '.' or 'e'.
4198 FIXME: This is a horrible hack, but doing better is tricky because type
4199 information isn't in a very usable state at parse time. */
4200 fpnum = str;
4201 skip_whitespace (fpnum);
4202
4203 if (strncmp (fpnum, "0x", 2) == 0)
4204 return FAIL;
4205 else
4206 {
4207 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4208 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4209 {
4210 found_fpchar = 1;
4211 break;
4212 }
4213
4214 if (!found_fpchar)
4215 return FAIL;
4216 }
5f4273c7 4217
136da414
JB
4218 if ((str = atof_ieee (str, 's', words)) != NULL)
4219 {
4220 unsigned fpword = 0;
4221 int i;
5f4273c7 4222
136da414
JB
4223 /* Our FP word must be 32 bits (single-precision FP). */
4224 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4225 {
4226 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4227 fpword |= words[i];
4228 }
5f4273c7 4229
c96612cc 4230 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4231 *immed = fpword;
4232 else
4233 return FAIL;
4234
4235 *ccp = str;
5f4273c7 4236
136da414
JB
4237 return SUCCESS;
4238 }
5f4273c7 4239
136da414
JB
4240 return FAIL;
4241}
4242
c19d1205
ZW
4243/* Shift operands. */
4244enum shift_kind
b99bd4ef 4245{
c19d1205
ZW
4246 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4247};
b99bd4ef 4248
c19d1205
ZW
4249struct asm_shift_name
4250{
4251 const char *name;
4252 enum shift_kind kind;
4253};
b99bd4ef 4254
c19d1205
ZW
4255/* Third argument to parse_shift. */
4256enum parse_shift_mode
4257{
4258 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4259 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4260 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4261 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4262 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4263};
b99bd4ef 4264
c19d1205
ZW
4265/* Parse a <shift> specifier on an ARM data processing instruction.
4266 This has three forms:
b99bd4ef 4267
c19d1205
ZW
4268 (LSL|LSR|ASL|ASR|ROR) Rs
4269 (LSL|LSR|ASL|ASR|ROR) #imm
4270 RRX
b99bd4ef 4271
c19d1205
ZW
4272 Note that ASL is assimilated to LSL in the instruction encoding, and
4273 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4274
c19d1205
ZW
4275static int
4276parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4277{
c19d1205
ZW
4278 const struct asm_shift_name *shift_name;
4279 enum shift_kind shift;
4280 char *s = *str;
4281 char *p = s;
4282 int reg;
b99bd4ef 4283
c19d1205
ZW
4284 for (p = *str; ISALPHA (*p); p++)
4285 ;
b99bd4ef 4286
c19d1205 4287 if (p == *str)
b99bd4ef 4288 {
c19d1205
ZW
4289 inst.error = _("shift expression expected");
4290 return FAIL;
b99bd4ef
NC
4291 }
4292
c19d1205
ZW
4293 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4294
4295 if (shift_name == NULL)
b99bd4ef 4296 {
c19d1205
ZW
4297 inst.error = _("shift expression expected");
4298 return FAIL;
b99bd4ef
NC
4299 }
4300
c19d1205 4301 shift = shift_name->kind;
b99bd4ef 4302
c19d1205
ZW
4303 switch (mode)
4304 {
4305 case NO_SHIFT_RESTRICT:
4306 case SHIFT_IMMEDIATE: break;
b99bd4ef 4307
c19d1205
ZW
4308 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4309 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4310 {
4311 inst.error = _("'LSL' or 'ASR' required");
4312 return FAIL;
4313 }
4314 break;
b99bd4ef 4315
c19d1205
ZW
4316 case SHIFT_LSL_IMMEDIATE:
4317 if (shift != SHIFT_LSL)
4318 {
4319 inst.error = _("'LSL' required");
4320 return FAIL;
4321 }
4322 break;
b99bd4ef 4323
c19d1205
ZW
4324 case SHIFT_ASR_IMMEDIATE:
4325 if (shift != SHIFT_ASR)
4326 {
4327 inst.error = _("'ASR' required");
4328 return FAIL;
4329 }
4330 break;
b99bd4ef 4331
c19d1205
ZW
4332 default: abort ();
4333 }
b99bd4ef 4334
c19d1205
ZW
4335 if (shift != SHIFT_RRX)
4336 {
4337 /* Whitespace can appear here if the next thing is a bare digit. */
4338 skip_whitespace (p);
b99bd4ef 4339
c19d1205 4340 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4341 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4342 {
4343 inst.operands[i].imm = reg;
4344 inst.operands[i].immisreg = 1;
4345 }
4346 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4347 return FAIL;
4348 }
4349 inst.operands[i].shift_kind = shift;
4350 inst.operands[i].shifted = 1;
4351 *str = p;
4352 return SUCCESS;
b99bd4ef
NC
4353}
4354
c19d1205 4355/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4356
c19d1205
ZW
4357 #<immediate>
4358 #<immediate>, <rotate>
4359 <Rm>
4360 <Rm>, <shift>
b99bd4ef 4361
c19d1205
ZW
4362 where <shift> is defined by parse_shift above, and <rotate> is a
4363 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4364 is deferred to md_apply_fix. */
b99bd4ef 4365
c19d1205
ZW
4366static int
4367parse_shifter_operand (char **str, int i)
4368{
4369 int value;
4370 expressionS expr;
b99bd4ef 4371
dcbf9037 4372 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4373 {
4374 inst.operands[i].reg = value;
4375 inst.operands[i].isreg = 1;
b99bd4ef 4376
c19d1205
ZW
4377 /* parse_shift will override this if appropriate */
4378 inst.reloc.exp.X_op = O_constant;
4379 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4380
c19d1205
ZW
4381 if (skip_past_comma (str) == FAIL)
4382 return SUCCESS;
b99bd4ef 4383
c19d1205
ZW
4384 /* Shift operation on register. */
4385 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4386 }
4387
c19d1205
ZW
4388 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4389 return FAIL;
b99bd4ef 4390
c19d1205 4391 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4392 {
c19d1205
ZW
4393 /* #x, y -- ie explicit rotation by Y. */
4394 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4395 return FAIL;
b99bd4ef 4396
c19d1205
ZW
4397 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4398 {
4399 inst.error = _("constant expression expected");
4400 return FAIL;
4401 }
b99bd4ef 4402
c19d1205
ZW
4403 value = expr.X_add_number;
4404 if (value < 0 || value > 30 || value % 2 != 0)
4405 {
4406 inst.error = _("invalid rotation");
4407 return FAIL;
4408 }
4409 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4410 {
4411 inst.error = _("invalid constant");
4412 return FAIL;
4413 }
09d92015 4414
55cf6793 4415 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4416 inst.reloc.exp.X_add_number
4417 = (((inst.reloc.exp.X_add_number << (32 - value))
4418 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4419 }
4420
c19d1205
ZW
4421 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4422 inst.reloc.pc_rel = 0;
4423 return SUCCESS;
09d92015
MM
4424}
4425
4962c51a
MS
4426/* Group relocation information. Each entry in the table contains the
4427 textual name of the relocation as may appear in assembler source
4428 and must end with a colon.
4429 Along with this textual name are the relocation codes to be used if
4430 the corresponding instruction is an ALU instruction (ADD or SUB only),
4431 an LDR, an LDRS, or an LDC. */
4432
4433struct group_reloc_table_entry
4434{
4435 const char *name;
4436 int alu_code;
4437 int ldr_code;
4438 int ldrs_code;
4439 int ldc_code;
4440};
4441
4442typedef enum
4443{
4444 /* Varieties of non-ALU group relocation. */
4445
4446 GROUP_LDR,
4447 GROUP_LDRS,
4448 GROUP_LDC
4449} group_reloc_type;
4450
4451static struct group_reloc_table_entry group_reloc_table[] =
4452 { /* Program counter relative: */
4453 { "pc_g0_nc",
4454 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4455 0, /* LDR */
4456 0, /* LDRS */
4457 0 }, /* LDC */
4458 { "pc_g0",
4459 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4460 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4461 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4462 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4463 { "pc_g1_nc",
4464 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4465 0, /* LDR */
4466 0, /* LDRS */
4467 0 }, /* LDC */
4468 { "pc_g1",
4469 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4470 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4471 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4472 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4473 { "pc_g2",
4474 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4475 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4476 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4477 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4478 /* Section base relative */
4479 { "sb_g0_nc",
4480 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4481 0, /* LDR */
4482 0, /* LDRS */
4483 0 }, /* LDC */
4484 { "sb_g0",
4485 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4486 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4487 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4488 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4489 { "sb_g1_nc",
4490 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4491 0, /* LDR */
4492 0, /* LDRS */
4493 0 }, /* LDC */
4494 { "sb_g1",
4495 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4496 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4497 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4498 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4499 { "sb_g2",
4500 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4501 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4502 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4503 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4504
4505/* Given the address of a pointer pointing to the textual name of a group
4506 relocation as may appear in assembler source, attempt to find its details
4507 in group_reloc_table. The pointer will be updated to the character after
4508 the trailing colon. On failure, FAIL will be returned; SUCCESS
4509 otherwise. On success, *entry will be updated to point at the relevant
4510 group_reloc_table entry. */
4511
4512static int
4513find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4514{
4515 unsigned int i;
4516 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4517 {
4518 int length = strlen (group_reloc_table[i].name);
4519
5f4273c7
NC
4520 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4521 && (*str)[length] == ':')
4962c51a
MS
4522 {
4523 *out = &group_reloc_table[i];
4524 *str += (length + 1);
4525 return SUCCESS;
4526 }
4527 }
4528
4529 return FAIL;
4530}
4531
4532/* Parse a <shifter_operand> for an ARM data processing instruction
4533 (as for parse_shifter_operand) where group relocations are allowed:
4534
4535 #<immediate>
4536 #<immediate>, <rotate>
4537 #:<group_reloc>:<expression>
4538 <Rm>
4539 <Rm>, <shift>
4540
4541 where <group_reloc> is one of the strings defined in group_reloc_table.
4542 The hashes are optional.
4543
4544 Everything else is as for parse_shifter_operand. */
4545
4546static parse_operand_result
4547parse_shifter_operand_group_reloc (char **str, int i)
4548{
4549 /* Determine if we have the sequence of characters #: or just :
4550 coming next. If we do, then we check for a group relocation.
4551 If we don't, punt the whole lot to parse_shifter_operand. */
4552
4553 if (((*str)[0] == '#' && (*str)[1] == ':')
4554 || (*str)[0] == ':')
4555 {
4556 struct group_reloc_table_entry *entry;
4557
4558 if ((*str)[0] == '#')
4559 (*str) += 2;
4560 else
4561 (*str)++;
4562
4563 /* Try to parse a group relocation. Anything else is an error. */
4564 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4565 {
4566 inst.error = _("unknown group relocation");
4567 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4568 }
4569
4570 /* We now have the group relocation table entry corresponding to
4571 the name in the assembler source. Next, we parse the expression. */
4572 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4573 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4574
4575 /* Record the relocation type (always the ALU variant here). */
4576 inst.reloc.type = entry->alu_code;
4577 assert (inst.reloc.type != 0);
4578
4579 return PARSE_OPERAND_SUCCESS;
4580 }
4581 else
4582 return parse_shifter_operand (str, i) == SUCCESS
4583 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4584
4585 /* Never reached. */
4586}
4587
c19d1205
ZW
4588/* Parse all forms of an ARM address expression. Information is written
4589 to inst.operands[i] and/or inst.reloc.
09d92015 4590
c19d1205 4591 Preindexed addressing (.preind=1):
09d92015 4592
c19d1205
ZW
4593 [Rn, #offset] .reg=Rn .reloc.exp=offset
4594 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4595 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4596 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4597
c19d1205 4598 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4599
c19d1205 4600 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4601
c19d1205
ZW
4602 [Rn], #offset .reg=Rn .reloc.exp=offset
4603 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4604 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4605 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4606
c19d1205 4607 Unindexed addressing (.preind=0, .postind=0):
09d92015 4608
c19d1205 4609 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4610
c19d1205 4611 Other:
09d92015 4612
c19d1205
ZW
4613 [Rn]{!} shorthand for [Rn,#0]{!}
4614 =immediate .isreg=0 .reloc.exp=immediate
4615 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4616
c19d1205
ZW
4617 It is the caller's responsibility to check for addressing modes not
4618 supported by the instruction, and to set inst.reloc.type. */
4619
4962c51a
MS
4620static parse_operand_result
4621parse_address_main (char **str, int i, int group_relocations,
4622 group_reloc_type group_type)
09d92015 4623{
c19d1205
ZW
4624 char *p = *str;
4625 int reg;
09d92015 4626
c19d1205 4627 if (skip_past_char (&p, '[') == FAIL)
09d92015 4628 {
c19d1205
ZW
4629 if (skip_past_char (&p, '=') == FAIL)
4630 {
4631 /* bare address - translate to PC-relative offset */
4632 inst.reloc.pc_rel = 1;
4633 inst.operands[i].reg = REG_PC;
4634 inst.operands[i].isreg = 1;
4635 inst.operands[i].preind = 1;
4636 }
4637 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 4638
c19d1205 4639 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 4640 return PARSE_OPERAND_FAIL;
09d92015 4641
c19d1205 4642 *str = p;
4962c51a 4643 return PARSE_OPERAND_SUCCESS;
09d92015
MM
4644 }
4645
dcbf9037 4646 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4647 {
c19d1205 4648 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 4649 return PARSE_OPERAND_FAIL;
09d92015 4650 }
c19d1205
ZW
4651 inst.operands[i].reg = reg;
4652 inst.operands[i].isreg = 1;
09d92015 4653
c19d1205 4654 if (skip_past_comma (&p) == SUCCESS)
09d92015 4655 {
c19d1205 4656 inst.operands[i].preind = 1;
09d92015 4657
c19d1205
ZW
4658 if (*p == '+') p++;
4659 else if (*p == '-') p++, inst.operands[i].negative = 1;
4660
dcbf9037 4661 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 4662 {
c19d1205
ZW
4663 inst.operands[i].imm = reg;
4664 inst.operands[i].immisreg = 1;
4665
4666 if (skip_past_comma (&p) == SUCCESS)
4667 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4668 return PARSE_OPERAND_FAIL;
c19d1205 4669 }
5287ad62
JB
4670 else if (skip_past_char (&p, ':') == SUCCESS)
4671 {
4672 /* FIXME: '@' should be used here, but it's filtered out by generic
4673 code before we get to see it here. This may be subject to
4674 change. */
4675 expressionS exp;
4676 my_get_expression (&exp, &p, GE_NO_PREFIX);
4677 if (exp.X_op != O_constant)
4678 {
4679 inst.error = _("alignment must be constant");
4962c51a 4680 return PARSE_OPERAND_FAIL;
5287ad62
JB
4681 }
4682 inst.operands[i].imm = exp.X_add_number << 8;
4683 inst.operands[i].immisalign = 1;
4684 /* Alignments are not pre-indexes. */
4685 inst.operands[i].preind = 0;
4686 }
c19d1205
ZW
4687 else
4688 {
4689 if (inst.operands[i].negative)
4690 {
4691 inst.operands[i].negative = 0;
4692 p--;
4693 }
4962c51a 4694
5f4273c7
NC
4695 if (group_relocations
4696 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
4697 {
4698 struct group_reloc_table_entry *entry;
4699
4700 /* Skip over the #: or : sequence. */
4701 if (*p == '#')
4702 p += 2;
4703 else
4704 p++;
4705
4706 /* Try to parse a group relocation. Anything else is an
4707 error. */
4708 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4709 {
4710 inst.error = _("unknown group relocation");
4711 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4712 }
4713
4714 /* We now have the group relocation table entry corresponding to
4715 the name in the assembler source. Next, we parse the
4716 expression. */
4717 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4718 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4719
4720 /* Record the relocation type. */
4721 switch (group_type)
4722 {
4723 case GROUP_LDR:
4724 inst.reloc.type = entry->ldr_code;
4725 break;
4726
4727 case GROUP_LDRS:
4728 inst.reloc.type = entry->ldrs_code;
4729 break;
4730
4731 case GROUP_LDC:
4732 inst.reloc.type = entry->ldc_code;
4733 break;
4734
4735 default:
4736 assert (0);
4737 }
4738
4739 if (inst.reloc.type == 0)
4740 {
4741 inst.error = _("this group relocation is not allowed on this instruction");
4742 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4743 }
4744 }
4745 else
4746 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4747 return PARSE_OPERAND_FAIL;
09d92015
MM
4748 }
4749 }
4750
c19d1205 4751 if (skip_past_char (&p, ']') == FAIL)
09d92015 4752 {
c19d1205 4753 inst.error = _("']' expected");
4962c51a 4754 return PARSE_OPERAND_FAIL;
09d92015
MM
4755 }
4756
c19d1205
ZW
4757 if (skip_past_char (&p, '!') == SUCCESS)
4758 inst.operands[i].writeback = 1;
09d92015 4759
c19d1205 4760 else if (skip_past_comma (&p) == SUCCESS)
09d92015 4761 {
c19d1205
ZW
4762 if (skip_past_char (&p, '{') == SUCCESS)
4763 {
4764 /* [Rn], {expr} - unindexed, with option */
4765 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 4766 0, 255, TRUE) == FAIL)
4962c51a 4767 return PARSE_OPERAND_FAIL;
09d92015 4768
c19d1205
ZW
4769 if (skip_past_char (&p, '}') == FAIL)
4770 {
4771 inst.error = _("'}' expected at end of 'option' field");
4962c51a 4772 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4773 }
4774 if (inst.operands[i].preind)
4775 {
4776 inst.error = _("cannot combine index with option");
4962c51a 4777 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4778 }
4779 *str = p;
4962c51a 4780 return PARSE_OPERAND_SUCCESS;
09d92015 4781 }
c19d1205
ZW
4782 else
4783 {
4784 inst.operands[i].postind = 1;
4785 inst.operands[i].writeback = 1;
09d92015 4786
c19d1205
ZW
4787 if (inst.operands[i].preind)
4788 {
4789 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 4790 return PARSE_OPERAND_FAIL;
c19d1205 4791 }
09d92015 4792
c19d1205
ZW
4793 if (*p == '+') p++;
4794 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 4795
dcbf9037 4796 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 4797 {
5287ad62
JB
4798 /* We might be using the immediate for alignment already. If we
4799 are, OR the register number into the low-order bits. */
4800 if (inst.operands[i].immisalign)
4801 inst.operands[i].imm |= reg;
4802 else
4803 inst.operands[i].imm = reg;
c19d1205 4804 inst.operands[i].immisreg = 1;
a737bd4d 4805
c19d1205
ZW
4806 if (skip_past_comma (&p) == SUCCESS)
4807 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4808 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4809 }
4810 else
4811 {
4812 if (inst.operands[i].negative)
4813 {
4814 inst.operands[i].negative = 0;
4815 p--;
4816 }
4817 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 4818 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4819 }
4820 }
a737bd4d
NC
4821 }
4822
c19d1205
ZW
4823 /* If at this point neither .preind nor .postind is set, we have a
4824 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4825 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4826 {
4827 inst.operands[i].preind = 1;
4828 inst.reloc.exp.X_op = O_constant;
4829 inst.reloc.exp.X_add_number = 0;
4830 }
4831 *str = p;
4962c51a
MS
4832 return PARSE_OPERAND_SUCCESS;
4833}
4834
4835static int
4836parse_address (char **str, int i)
4837{
4838 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4839 ? SUCCESS : FAIL;
4840}
4841
4842static parse_operand_result
4843parse_address_group_reloc (char **str, int i, group_reloc_type type)
4844{
4845 return parse_address_main (str, i, 1, type);
a737bd4d
NC
4846}
4847
b6895b4f
PB
4848/* Parse an operand for a MOVW or MOVT instruction. */
4849static int
4850parse_half (char **str)
4851{
4852 char * p;
5f4273c7 4853
b6895b4f
PB
4854 p = *str;
4855 skip_past_char (&p, '#');
5f4273c7 4856 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
4857 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4858 else if (strncasecmp (p, ":upper16:", 9) == 0)
4859 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4860
4861 if (inst.reloc.type != BFD_RELOC_UNUSED)
4862 {
4863 p += 9;
5f4273c7 4864 skip_whitespace (p);
b6895b4f
PB
4865 }
4866
4867 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4868 return FAIL;
4869
4870 if (inst.reloc.type == BFD_RELOC_UNUSED)
4871 {
4872 if (inst.reloc.exp.X_op != O_constant)
4873 {
4874 inst.error = _("constant expression expected");
4875 return FAIL;
4876 }
4877 if (inst.reloc.exp.X_add_number < 0
4878 || inst.reloc.exp.X_add_number > 0xffff)
4879 {
4880 inst.error = _("immediate value out of range");
4881 return FAIL;
4882 }
4883 }
4884 *str = p;
4885 return SUCCESS;
4886}
4887
c19d1205 4888/* Miscellaneous. */
a737bd4d 4889
c19d1205
ZW
4890/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4891 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4892static int
4893parse_psr (char **str)
09d92015 4894{
c19d1205
ZW
4895 char *p;
4896 unsigned long psr_field;
62b3e311
PB
4897 const struct asm_psr *psr;
4898 char *start;
09d92015 4899
c19d1205
ZW
4900 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4901 feature for ease of use and backwards compatibility. */
4902 p = *str;
62b3e311 4903 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 4904 psr_field = SPSR_BIT;
62b3e311 4905 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
4906 psr_field = 0;
4907 else
62b3e311
PB
4908 {
4909 start = p;
4910 do
4911 p++;
4912 while (ISALNUM (*p) || *p == '_');
4913
4914 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4915 if (!psr)
4916 return FAIL;
09d92015 4917
62b3e311
PB
4918 *str = p;
4919 return psr->field;
4920 }
09d92015 4921
62b3e311 4922 p += 4;
c19d1205
ZW
4923 if (*p == '_')
4924 {
4925 /* A suffix follows. */
c19d1205
ZW
4926 p++;
4927 start = p;
a737bd4d 4928
c19d1205
ZW
4929 do
4930 p++;
4931 while (ISALNUM (*p) || *p == '_');
a737bd4d 4932
c19d1205
ZW
4933 psr = hash_find_n (arm_psr_hsh, start, p - start);
4934 if (!psr)
4935 goto error;
a737bd4d 4936
c19d1205 4937 psr_field |= psr->field;
a737bd4d 4938 }
c19d1205 4939 else
a737bd4d 4940 {
c19d1205
ZW
4941 if (ISALNUM (*p))
4942 goto error; /* Garbage after "[CS]PSR". */
4943
4944 psr_field |= (PSR_c | PSR_f);
a737bd4d 4945 }
c19d1205
ZW
4946 *str = p;
4947 return psr_field;
a737bd4d 4948
c19d1205
ZW
4949 error:
4950 inst.error = _("flag for {c}psr instruction expected");
4951 return FAIL;
a737bd4d
NC
4952}
4953
c19d1205
ZW
4954/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4955 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 4956
c19d1205
ZW
4957static int
4958parse_cps_flags (char **str)
a737bd4d 4959{
c19d1205
ZW
4960 int val = 0;
4961 int saw_a_flag = 0;
4962 char *s = *str;
a737bd4d 4963
c19d1205
ZW
4964 for (;;)
4965 switch (*s++)
4966 {
4967 case '\0': case ',':
4968 goto done;
a737bd4d 4969
c19d1205
ZW
4970 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4971 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4972 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 4973
c19d1205
ZW
4974 default:
4975 inst.error = _("unrecognized CPS flag");
4976 return FAIL;
4977 }
a737bd4d 4978
c19d1205
ZW
4979 done:
4980 if (saw_a_flag == 0)
a737bd4d 4981 {
c19d1205
ZW
4982 inst.error = _("missing CPS flags");
4983 return FAIL;
a737bd4d 4984 }
a737bd4d 4985
c19d1205
ZW
4986 *str = s - 1;
4987 return val;
a737bd4d
NC
4988}
4989
c19d1205
ZW
4990/* Parse an endian specifier ("BE" or "LE", case insensitive);
4991 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
4992
4993static int
c19d1205 4994parse_endian_specifier (char **str)
a737bd4d 4995{
c19d1205
ZW
4996 int little_endian;
4997 char *s = *str;
a737bd4d 4998
c19d1205
ZW
4999 if (strncasecmp (s, "BE", 2))
5000 little_endian = 0;
5001 else if (strncasecmp (s, "LE", 2))
5002 little_endian = 1;
5003 else
a737bd4d 5004 {
c19d1205 5005 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5006 return FAIL;
5007 }
5008
c19d1205 5009 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5010 {
c19d1205 5011 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5012 return FAIL;
5013 }
5014
c19d1205
ZW
5015 *str = s + 2;
5016 return little_endian;
5017}
a737bd4d 5018
c19d1205
ZW
5019/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5020 value suitable for poking into the rotate field of an sxt or sxta
5021 instruction, or FAIL on error. */
5022
5023static int
5024parse_ror (char **str)
5025{
5026 int rot;
5027 char *s = *str;
5028
5029 if (strncasecmp (s, "ROR", 3) == 0)
5030 s += 3;
5031 else
a737bd4d 5032 {
c19d1205 5033 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5034 return FAIL;
5035 }
c19d1205
ZW
5036
5037 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5038 return FAIL;
5039
5040 switch (rot)
a737bd4d 5041 {
c19d1205
ZW
5042 case 0: *str = s; return 0x0;
5043 case 8: *str = s; return 0x1;
5044 case 16: *str = s; return 0x2;
5045 case 24: *str = s; return 0x3;
5046
5047 default:
5048 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5049 return FAIL;
5050 }
c19d1205 5051}
a737bd4d 5052
c19d1205
ZW
5053/* Parse a conditional code (from conds[] below). The value returned is in the
5054 range 0 .. 14, or FAIL. */
5055static int
5056parse_cond (char **str)
5057{
c462b453 5058 char *q;
c19d1205 5059 const struct asm_cond *c;
c462b453
PB
5060 int n;
5061 /* Condition codes are always 2 characters, so matching up to
5062 3 characters is sufficient. */
5063 char cond[3];
a737bd4d 5064
c462b453
PB
5065 q = *str;
5066 n = 0;
5067 while (ISALPHA (*q) && n < 3)
5068 {
5069 cond[n] = TOLOWER(*q);
5070 q++;
5071 n++;
5072 }
a737bd4d 5073
c462b453 5074 c = hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5075 if (!c)
a737bd4d 5076 {
c19d1205 5077 inst.error = _("condition required");
a737bd4d
NC
5078 return FAIL;
5079 }
5080
c19d1205
ZW
5081 *str = q;
5082 return c->value;
5083}
5084
62b3e311
PB
5085/* Parse an option for a barrier instruction. Returns the encoding for the
5086 option, or FAIL. */
5087static int
5088parse_barrier (char **str)
5089{
5090 char *p, *q;
5091 const struct asm_barrier_opt *o;
5092
5093 p = q = *str;
5094 while (ISALPHA (*q))
5095 q++;
5096
5097 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5098 if (!o)
5099 return FAIL;
5100
5101 *str = q;
5102 return o->value;
5103}
5104
92e90b6e
PB
5105/* Parse the operands of a table branch instruction. Similar to a memory
5106 operand. */
5107static int
5108parse_tb (char **str)
5109{
5110 char * p = *str;
5111 int reg;
5112
5113 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5114 {
5115 inst.error = _("'[' expected");
5116 return FAIL;
5117 }
92e90b6e 5118
dcbf9037 5119 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5120 {
5121 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5122 return FAIL;
5123 }
5124 inst.operands[0].reg = reg;
5125
5126 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5127 {
5128 inst.error = _("',' expected");
5129 return FAIL;
5130 }
5f4273c7 5131
dcbf9037 5132 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5133 {
5134 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5135 return FAIL;
5136 }
5137 inst.operands[0].imm = reg;
5138
5139 if (skip_past_comma (&p) == SUCCESS)
5140 {
5141 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5142 return FAIL;
5143 if (inst.reloc.exp.X_add_number != 1)
5144 {
5145 inst.error = _("invalid shift");
5146 return FAIL;
5147 }
5148 inst.operands[0].shifted = 1;
5149 }
5150
5151 if (skip_past_char (&p, ']') == FAIL)
5152 {
5153 inst.error = _("']' expected");
5154 return FAIL;
5155 }
5156 *str = p;
5157 return SUCCESS;
5158}
5159
5287ad62
JB
5160/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5161 information on the types the operands can take and how they are encoded.
037e8744
JB
5162 Up to four operands may be read; this function handles setting the
5163 ".present" field for each read operand itself.
5287ad62
JB
5164 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5165 else returns FAIL. */
5166
5167static int
5168parse_neon_mov (char **str, int *which_operand)
5169{
5170 int i = *which_operand, val;
5171 enum arm_reg_type rtype;
5172 char *ptr = *str;
dcbf9037 5173 struct neon_type_el optype;
5f4273c7 5174
dcbf9037 5175 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5176 {
5177 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5178 inst.operands[i].reg = val;
5179 inst.operands[i].isscalar = 1;
dcbf9037 5180 inst.operands[i].vectype = optype;
5287ad62
JB
5181 inst.operands[i++].present = 1;
5182
5183 if (skip_past_comma (&ptr) == FAIL)
5184 goto wanted_comma;
5f4273c7 5185
dcbf9037 5186 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5187 goto wanted_arm;
5f4273c7 5188
5287ad62
JB
5189 inst.operands[i].reg = val;
5190 inst.operands[i].isreg = 1;
5191 inst.operands[i].present = 1;
5192 }
037e8744 5193 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5194 != FAIL)
5287ad62
JB
5195 {
5196 /* Cases 0, 1, 2, 3, 5 (D only). */
5197 if (skip_past_comma (&ptr) == FAIL)
5198 goto wanted_comma;
5f4273c7 5199
5287ad62
JB
5200 inst.operands[i].reg = val;
5201 inst.operands[i].isreg = 1;
5202 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5203 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5204 inst.operands[i].isvec = 1;
dcbf9037 5205 inst.operands[i].vectype = optype;
5287ad62
JB
5206 inst.operands[i++].present = 1;
5207
dcbf9037 5208 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5209 {
037e8744
JB
5210 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5211 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5212 inst.operands[i].reg = val;
5213 inst.operands[i].isreg = 1;
037e8744 5214 inst.operands[i].present = 1;
5287ad62
JB
5215
5216 if (rtype == REG_TYPE_NQ)
5217 {
dcbf9037 5218 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5219 return FAIL;
5220 }
037e8744
JB
5221 else if (rtype != REG_TYPE_VFS)
5222 {
5223 i++;
5224 if (skip_past_comma (&ptr) == FAIL)
5225 goto wanted_comma;
5226 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5227 goto wanted_arm;
5228 inst.operands[i].reg = val;
5229 inst.operands[i].isreg = 1;
5230 inst.operands[i].present = 1;
5231 }
5287ad62 5232 }
037e8744
JB
5233 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5234 &optype)) != FAIL)
5287ad62
JB
5235 {
5236 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5237 Case 1: VMOV<c><q> <Dd>, <Dm>
5238 Case 8: VMOV.F32 <Sd>, <Sm>
5239 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5240
5241 inst.operands[i].reg = val;
5242 inst.operands[i].isreg = 1;
5243 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5244 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5245 inst.operands[i].isvec = 1;
dcbf9037 5246 inst.operands[i].vectype = optype;
5287ad62 5247 inst.operands[i].present = 1;
5f4273c7 5248
037e8744
JB
5249 if (skip_past_comma (&ptr) == SUCCESS)
5250 {
5251 /* Case 15. */
5252 i++;
5253
5254 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5255 goto wanted_arm;
5256
5257 inst.operands[i].reg = val;
5258 inst.operands[i].isreg = 1;
5259 inst.operands[i++].present = 1;
5f4273c7 5260
037e8744
JB
5261 if (skip_past_comma (&ptr) == FAIL)
5262 goto wanted_comma;
5f4273c7 5263
037e8744
JB
5264 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5265 goto wanted_arm;
5f4273c7 5266
037e8744
JB
5267 inst.operands[i].reg = val;
5268 inst.operands[i].isreg = 1;
5269 inst.operands[i++].present = 1;
5270 }
5287ad62 5271 }
4641781c
PB
5272 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5273 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5274 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5275 Case 10: VMOV.F32 <Sd>, #<imm>
5276 Case 11: VMOV.F64 <Dd>, #<imm> */
5277 inst.operands[i].immisfloat = 1;
5278 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5279 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5280 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5281 ;
5287ad62
JB
5282 else
5283 {
dcbf9037 5284 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5285 return FAIL;
5286 }
5287 }
dcbf9037 5288 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5289 {
5290 /* Cases 6, 7. */
5291 inst.operands[i].reg = val;
5292 inst.operands[i].isreg = 1;
5293 inst.operands[i++].present = 1;
5f4273c7 5294
5287ad62
JB
5295 if (skip_past_comma (&ptr) == FAIL)
5296 goto wanted_comma;
5f4273c7 5297
dcbf9037 5298 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5299 {
5300 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5301 inst.operands[i].reg = val;
5302 inst.operands[i].isscalar = 1;
5303 inst.operands[i].present = 1;
dcbf9037 5304 inst.operands[i].vectype = optype;
5287ad62 5305 }
dcbf9037 5306 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5307 {
5308 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5309 inst.operands[i].reg = val;
5310 inst.operands[i].isreg = 1;
5311 inst.operands[i++].present = 1;
5f4273c7 5312
5287ad62
JB
5313 if (skip_past_comma (&ptr) == FAIL)
5314 goto wanted_comma;
5f4273c7 5315
037e8744 5316 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5317 == FAIL)
5287ad62 5318 {
037e8744 5319 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5320 return FAIL;
5321 }
5322
5323 inst.operands[i].reg = val;
5324 inst.operands[i].isreg = 1;
037e8744
JB
5325 inst.operands[i].isvec = 1;
5326 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5327 inst.operands[i].vectype = optype;
5287ad62 5328 inst.operands[i].present = 1;
5f4273c7 5329
037e8744
JB
5330 if (rtype == REG_TYPE_VFS)
5331 {
5332 /* Case 14. */
5333 i++;
5334 if (skip_past_comma (&ptr) == FAIL)
5335 goto wanted_comma;
5336 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5337 &optype)) == FAIL)
5338 {
5339 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5340 return FAIL;
5341 }
5342 inst.operands[i].reg = val;
5343 inst.operands[i].isreg = 1;
5344 inst.operands[i].isvec = 1;
5345 inst.operands[i].issingle = 1;
5346 inst.operands[i].vectype = optype;
5347 inst.operands[i].present = 1;
5348 }
5349 }
5350 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5351 != FAIL)
5352 {
5353 /* Case 13. */
5354 inst.operands[i].reg = val;
5355 inst.operands[i].isreg = 1;
5356 inst.operands[i].isvec = 1;
5357 inst.operands[i].issingle = 1;
5358 inst.operands[i].vectype = optype;
5359 inst.operands[i++].present = 1;
5287ad62
JB
5360 }
5361 }
5362 else
5363 {
dcbf9037 5364 first_error (_("parse error"));
5287ad62
JB
5365 return FAIL;
5366 }
5367
5368 /* Successfully parsed the operands. Update args. */
5369 *which_operand = i;
5370 *str = ptr;
5371 return SUCCESS;
5372
5f4273c7 5373 wanted_comma:
dcbf9037 5374 first_error (_("expected comma"));
5287ad62 5375 return FAIL;
5f4273c7
NC
5376
5377 wanted_arm:
dcbf9037 5378 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5379 return FAIL;
5287ad62
JB
5380}
5381
c19d1205
ZW
5382/* Matcher codes for parse_operands. */
5383enum operand_parse_code
5384{
5385 OP_stop, /* end of line */
5386
5387 OP_RR, /* ARM register */
5388 OP_RRnpc, /* ARM register, not r15 */
5389 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5390 OP_RRw, /* ARM register, not r15, optional trailing ! */
5391 OP_RCP, /* Coprocessor number */
5392 OP_RCN, /* Coprocessor register */
5393 OP_RF, /* FPA register */
5394 OP_RVS, /* VFP single precision register */
5287ad62
JB
5395 OP_RVD, /* VFP double precision register (0..15) */
5396 OP_RND, /* Neon double precision register (0..31) */
5397 OP_RNQ, /* Neon quad precision register */
037e8744 5398 OP_RVSD, /* VFP single or double precision register */
5287ad62 5399 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5400 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5401 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5402 OP_RVC, /* VFP control register */
5403 OP_RMF, /* Maverick F register */
5404 OP_RMD, /* Maverick D register */
5405 OP_RMFX, /* Maverick FX register */
5406 OP_RMDX, /* Maverick DX register */
5407 OP_RMAX, /* Maverick AX register */
5408 OP_RMDS, /* Maverick DSPSC register */
5409 OP_RIWR, /* iWMMXt wR register */
5410 OP_RIWC, /* iWMMXt wC register */
5411 OP_RIWG, /* iWMMXt wCG register */
5412 OP_RXA, /* XScale accumulator register */
5413
5414 OP_REGLST, /* ARM register list */
5415 OP_VRSLST, /* VFP single-precision register list */
5416 OP_VRDLST, /* VFP double-precision register list */
037e8744 5417 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5418 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5419 OP_NSTRLST, /* Neon element/structure list */
5420
5421 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5422 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5423 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5424 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5425 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5426 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5427 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5428 OP_VMOV, /* Neon VMOV operands. */
5429 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5430 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5431 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5432
5433 OP_I0, /* immediate zero */
c19d1205
ZW
5434 OP_I7, /* immediate value 0 .. 7 */
5435 OP_I15, /* 0 .. 15 */
5436 OP_I16, /* 1 .. 16 */
5287ad62 5437 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5438 OP_I31, /* 0 .. 31 */
5439 OP_I31w, /* 0 .. 31, optional trailing ! */
5440 OP_I32, /* 1 .. 32 */
5287ad62
JB
5441 OP_I32z, /* 0 .. 32 */
5442 OP_I63, /* 0 .. 63 */
c19d1205 5443 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5444 OP_I64, /* 1 .. 64 */
5445 OP_I64z, /* 0 .. 64 */
c19d1205 5446 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5447
5448 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5449 OP_I7b, /* 0 .. 7 */
5450 OP_I15b, /* 0 .. 15 */
5451 OP_I31b, /* 0 .. 31 */
5452
5453 OP_SH, /* shifter operand */
4962c51a 5454 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5455 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5456 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5457 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5458 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5459 OP_EXP, /* arbitrary expression */
5460 OP_EXPi, /* same, with optional immediate prefix */
5461 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5462 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5463
5464 OP_CPSF, /* CPS flags */
5465 OP_ENDI, /* Endianness specifier */
5466 OP_PSR, /* CPSR/SPSR mask for msr */
5467 OP_COND, /* conditional code */
92e90b6e 5468 OP_TB, /* Table branch. */
c19d1205 5469
037e8744
JB
5470 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5471 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5472
c19d1205
ZW
5473 OP_RRnpc_I0, /* ARM register or literal 0 */
5474 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5475 OP_RR_EXi, /* ARM register or expression with imm prefix */
5476 OP_RF_IF, /* FPA register or immediate */
5477 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5478 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5479
5480 /* Optional operands. */
5481 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5482 OP_oI31b, /* 0 .. 31 */
5287ad62 5483 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5484 OP_oIffffb, /* 0 .. 65535 */
5485 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5486
5487 OP_oRR, /* ARM register */
5488 OP_oRRnpc, /* ARM register, not the PC */
b6702015 5489 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5490 OP_oRND, /* Optional Neon double precision register */
5491 OP_oRNQ, /* Optional Neon quad precision register */
5492 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5493 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5494 OP_oSHll, /* LSL immediate */
5495 OP_oSHar, /* ASR immediate */
5496 OP_oSHllar, /* LSL or ASR immediate */
5497 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5498 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205
ZW
5499
5500 OP_FIRST_OPTIONAL = OP_oI7b
5501};
a737bd4d 5502
c19d1205
ZW
5503/* Generic instruction operand parser. This does no encoding and no
5504 semantic validation; it merely squirrels values away in the inst
5505 structure. Returns SUCCESS or FAIL depending on whether the
5506 specified grammar matched. */
5507static int
ca3f61f7 5508parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
5509{
5510 unsigned const char *upat = pattern;
5511 char *backtrack_pos = 0;
5512 const char *backtrack_error = 0;
5513 int i, val, backtrack_index = 0;
5287ad62 5514 enum arm_reg_type rtype;
4962c51a 5515 parse_operand_result result;
c19d1205
ZW
5516
5517#define po_char_or_fail(chr) do { \
5518 if (skip_past_char (&str, chr) == FAIL) \
5519 goto bad_args; \
5520} while (0)
5521
dcbf9037
JB
5522#define po_reg_or_fail(regtype) do { \
5523 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5524 &inst.operands[i].vectype); \
5525 if (val == FAIL) \
5526 { \
5527 first_error (_(reg_expected_msgs[regtype])); \
5528 goto failure; \
5529 } \
5530 inst.operands[i].reg = val; \
5531 inst.operands[i].isreg = 1; \
5532 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5533 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5534 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5535 || rtype == REG_TYPE_VFD \
5536 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5537} while (0)
5538
dcbf9037
JB
5539#define po_reg_or_goto(regtype, label) do { \
5540 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5541 &inst.operands[i].vectype); \
5542 if (val == FAIL) \
5543 goto label; \
5544 \
5545 inst.operands[i].reg = val; \
5546 inst.operands[i].isreg = 1; \
5547 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5548 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5549 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5550 || rtype == REG_TYPE_VFD \
5551 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5552} while (0)
5553
5554#define po_imm_or_fail(min, max, popt) do { \
5555 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5556 goto failure; \
5557 inst.operands[i].imm = val; \
5558} while (0)
5559
dcbf9037
JB
5560#define po_scalar_or_goto(elsz, label) do { \
5561 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5562 if (val == FAIL) \
5563 goto label; \
5564 inst.operands[i].reg = val; \
5565 inst.operands[i].isscalar = 1; \
5287ad62
JB
5566} while (0)
5567
c19d1205
ZW
5568#define po_misc_or_fail(expr) do { \
5569 if (expr) \
5570 goto failure; \
5571} while (0)
5572
4962c51a
MS
5573#define po_misc_or_fail_no_backtrack(expr) do { \
5574 result = expr; \
5575 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5576 backtrack_pos = 0; \
5577 if (result != PARSE_OPERAND_SUCCESS) \
5578 goto failure; \
5579} while (0)
5580
c19d1205
ZW
5581 skip_whitespace (str);
5582
5583 for (i = 0; upat[i] != OP_stop; i++)
5584 {
5585 if (upat[i] >= OP_FIRST_OPTIONAL)
5586 {
5587 /* Remember where we are in case we need to backtrack. */
5588 assert (!backtrack_pos);
5589 backtrack_pos = str;
5590 backtrack_error = inst.error;
5591 backtrack_index = i;
5592 }
5593
b6702015 5594 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
5595 po_char_or_fail (',');
5596
5597 switch (upat[i])
5598 {
5599 /* Registers */
5600 case OP_oRRnpc:
5601 case OP_RRnpc:
5602 case OP_oRR:
5603 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5604 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5605 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5606 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5607 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5608 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
5609 case OP_oRND:
5610 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
5611 case OP_RVC:
5612 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5613 break;
5614 /* Also accept generic coprocessor regs for unknown registers. */
5615 coproc_reg:
5616 po_reg_or_fail (REG_TYPE_CN);
5617 break;
c19d1205
ZW
5618 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5619 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5620 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5621 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5622 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5623 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5624 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5625 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5626 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5627 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
5628 case OP_oRNQ:
5629 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5630 case OP_oRNDQ:
5631 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
5632 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5633 case OP_oRNSDQ:
5634 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
5635
5636 /* Neon scalar. Using an element size of 8 means that some invalid
5637 scalars are accepted here, so deal with those in later code. */
5638 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5639
5640 /* WARNING: We can expand to two operands here. This has the potential
5641 to totally confuse the backtracking mechanism! It will be OK at
5642 least as long as we don't try to use optional args as well,
5643 though. */
5644 case OP_NILO:
5645 {
5646 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
466bbf93 5647 inst.operands[i].present = 1;
5287ad62
JB
5648 i++;
5649 skip_past_comma (&str);
5650 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5651 break;
5652 one_reg_only:
5653 /* Optional register operand was omitted. Unfortunately, it's in
5654 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5655 here (this is a bit grotty). */
5656 inst.operands[i] = inst.operands[i-1];
5657 inst.operands[i-1].present = 0;
5658 break;
5659 try_imm:
036dc3f7
PB
5660 /* There's a possibility of getting a 64-bit immediate here, so
5661 we need special handling. */
5662 if (parse_big_immediate (&str, i) == FAIL)
5663 {
5664 inst.error = _("immediate value is out of range");
5665 goto failure;
5666 }
5287ad62
JB
5667 }
5668 break;
5669
5670 case OP_RNDQ_I0:
5671 {
5672 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5673 break;
5674 try_imm0:
5675 po_imm_or_fail (0, 0, TRUE);
5676 }
5677 break;
5678
037e8744
JB
5679 case OP_RVSD_I0:
5680 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5681 break;
5682
5287ad62
JB
5683 case OP_RR_RNSC:
5684 {
5685 po_scalar_or_goto (8, try_rr);
5686 break;
5687 try_rr:
5688 po_reg_or_fail (REG_TYPE_RN);
5689 }
5690 break;
5691
037e8744
JB
5692 case OP_RNSDQ_RNSC:
5693 {
5694 po_scalar_or_goto (8, try_nsdq);
5695 break;
5696 try_nsdq:
5697 po_reg_or_fail (REG_TYPE_NSDQ);
5698 }
5699 break;
5700
5287ad62
JB
5701 case OP_RNDQ_RNSC:
5702 {
5703 po_scalar_or_goto (8, try_ndq);
5704 break;
5705 try_ndq:
5706 po_reg_or_fail (REG_TYPE_NDQ);
5707 }
5708 break;
5709
5710 case OP_RND_RNSC:
5711 {
5712 po_scalar_or_goto (8, try_vfd);
5713 break;
5714 try_vfd:
5715 po_reg_or_fail (REG_TYPE_VFD);
5716 }
5717 break;
5718
5719 case OP_VMOV:
5720 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5721 not careful then bad things might happen. */
5722 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5723 break;
5724
5725 case OP_RNDQ_IMVNb:
5726 {
5727 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5728 break;
5729 try_mvnimm:
5730 /* There's a possibility of getting a 64-bit immediate here, so
5731 we need special handling. */
5732 if (parse_big_immediate (&str, i) == FAIL)
5733 {
5734 inst.error = _("immediate value is out of range");
5735 goto failure;
5736 }
5737 }
5738 break;
5739
5740 case OP_RNDQ_I63b:
5741 {
5742 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5743 break;
5744 try_shimm:
5745 po_imm_or_fail (0, 63, TRUE);
5746 }
5747 break;
c19d1205
ZW
5748
5749 case OP_RRnpcb:
5750 po_char_or_fail ('[');
5751 po_reg_or_fail (REG_TYPE_RN);
5752 po_char_or_fail (']');
5753 break;
a737bd4d 5754
c19d1205 5755 case OP_RRw:
b6702015 5756 case OP_oRRw:
c19d1205
ZW
5757 po_reg_or_fail (REG_TYPE_RN);
5758 if (skip_past_char (&str, '!') == SUCCESS)
5759 inst.operands[i].writeback = 1;
5760 break;
5761
5762 /* Immediates */
5763 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5764 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5765 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 5766 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
5767 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5768 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 5769 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 5770 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
5771 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5772 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5773 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 5774 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
5775
5776 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5777 case OP_oI7b:
5778 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5779 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5780 case OP_oI31b:
5781 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 5782 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
5783 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5784
5785 /* Immediate variants */
5786 case OP_oI255c:
5787 po_char_or_fail ('{');
5788 po_imm_or_fail (0, 255, TRUE);
5789 po_char_or_fail ('}');
5790 break;
5791
5792 case OP_I31w:
5793 /* The expression parser chokes on a trailing !, so we have
5794 to find it first and zap it. */
5795 {
5796 char *s = str;
5797 while (*s && *s != ',')
5798 s++;
5799 if (s[-1] == '!')
5800 {
5801 s[-1] = '\0';
5802 inst.operands[i].writeback = 1;
5803 }
5804 po_imm_or_fail (0, 31, TRUE);
5805 if (str == s - 1)
5806 str = s;
5807 }
5808 break;
5809
5810 /* Expressions */
5811 case OP_EXPi: EXPi:
5812 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5813 GE_OPT_PREFIX));
5814 break;
5815
5816 case OP_EXP:
5817 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5818 GE_NO_PREFIX));
5819 break;
5820
5821 case OP_EXPr: EXPr:
5822 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5823 GE_NO_PREFIX));
5824 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 5825 {
c19d1205
ZW
5826 val = parse_reloc (&str);
5827 if (val == -1)
5828 {
5829 inst.error = _("unrecognized relocation suffix");
5830 goto failure;
5831 }
5832 else if (val != BFD_RELOC_UNUSED)
5833 {
5834 inst.operands[i].imm = val;
5835 inst.operands[i].hasreloc = 1;
5836 }
a737bd4d 5837 }
c19d1205 5838 break;
a737bd4d 5839
b6895b4f
PB
5840 /* Operand for MOVW or MOVT. */
5841 case OP_HALF:
5842 po_misc_or_fail (parse_half (&str));
5843 break;
5844
c19d1205
ZW
5845 /* Register or expression */
5846 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5847 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 5848
c19d1205
ZW
5849 /* Register or immediate */
5850 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5851 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 5852
c19d1205
ZW
5853 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5854 IF:
5855 if (!is_immediate_prefix (*str))
5856 goto bad_args;
5857 str++;
5858 val = parse_fpa_immediate (&str);
5859 if (val == FAIL)
5860 goto failure;
5861 /* FPA immediates are encoded as registers 8-15.
5862 parse_fpa_immediate has already applied the offset. */
5863 inst.operands[i].reg = val;
5864 inst.operands[i].isreg = 1;
5865 break;
09d92015 5866
2d447fca
JM
5867 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5868 I32z: po_imm_or_fail (0, 32, FALSE); break;
5869
c19d1205
ZW
5870 /* Two kinds of register */
5871 case OP_RIWR_RIWC:
5872 {
5873 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
5874 if (!rege
5875 || (rege->type != REG_TYPE_MMXWR
5876 && rege->type != REG_TYPE_MMXWC
5877 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
5878 {
5879 inst.error = _("iWMMXt data or control register expected");
5880 goto failure;
5881 }
5882 inst.operands[i].reg = rege->number;
5883 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5884 }
5885 break;
09d92015 5886
41adaa5c
JM
5887 case OP_RIWC_RIWG:
5888 {
5889 struct reg_entry *rege = arm_reg_parse_multi (&str);
5890 if (!rege
5891 || (rege->type != REG_TYPE_MMXWC
5892 && rege->type != REG_TYPE_MMXWCG))
5893 {
5894 inst.error = _("iWMMXt control register expected");
5895 goto failure;
5896 }
5897 inst.operands[i].reg = rege->number;
5898 inst.operands[i].isreg = 1;
5899 }
5900 break;
5901
c19d1205
ZW
5902 /* Misc */
5903 case OP_CPSF: val = parse_cps_flags (&str); break;
5904 case OP_ENDI: val = parse_endian_specifier (&str); break;
5905 case OP_oROR: val = parse_ror (&str); break;
5906 case OP_PSR: val = parse_psr (&str); break;
5907 case OP_COND: val = parse_cond (&str); break;
62b3e311 5908 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 5909
037e8744
JB
5910 case OP_RVC_PSR:
5911 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5912 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5913 break;
5914 try_psr:
5915 val = parse_psr (&str);
5916 break;
5917
5918 case OP_APSR_RR:
5919 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5920 break;
5921 try_apsr:
5922 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5923 instruction). */
5924 if (strncasecmp (str, "APSR_", 5) == 0)
5925 {
5926 unsigned found = 0;
5927 str += 5;
5928 while (found < 15)
5929 switch (*str++)
5930 {
5931 case 'c': found = (found & 1) ? 16 : found | 1; break;
5932 case 'n': found = (found & 2) ? 16 : found | 2; break;
5933 case 'z': found = (found & 4) ? 16 : found | 4; break;
5934 case 'v': found = (found & 8) ? 16 : found | 8; break;
5935 default: found = 16;
5936 }
5937 if (found != 15)
5938 goto failure;
5939 inst.operands[i].isvec = 1;
5940 }
5941 else
5942 goto failure;
5943 break;
5944
92e90b6e
PB
5945 case OP_TB:
5946 po_misc_or_fail (parse_tb (&str));
5947 break;
5948
c19d1205
ZW
5949 /* Register lists */
5950 case OP_REGLST:
5951 val = parse_reg_list (&str);
5952 if (*str == '^')
5953 {
5954 inst.operands[1].writeback = 1;
5955 str++;
5956 }
5957 break;
09d92015 5958
c19d1205 5959 case OP_VRSLST:
5287ad62 5960 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 5961 break;
09d92015 5962
c19d1205 5963 case OP_VRDLST:
5287ad62 5964 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 5965 break;
a737bd4d 5966
037e8744
JB
5967 case OP_VRSDLST:
5968 /* Allow Q registers too. */
5969 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5970 REGLIST_NEON_D);
5971 if (val == FAIL)
5972 {
5973 inst.error = NULL;
5974 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5975 REGLIST_VFP_S);
5976 inst.operands[i].issingle = 1;
5977 }
5978 break;
5979
5287ad62
JB
5980 case OP_NRDLST:
5981 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5982 REGLIST_NEON_D);
5983 break;
5984
5985 case OP_NSTRLST:
dcbf9037
JB
5986 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5987 &inst.operands[i].vectype);
5287ad62
JB
5988 break;
5989
c19d1205
ZW
5990 /* Addressing modes */
5991 case OP_ADDR:
5992 po_misc_or_fail (parse_address (&str, i));
5993 break;
09d92015 5994
4962c51a
MS
5995 case OP_ADDRGLDR:
5996 po_misc_or_fail_no_backtrack (
5997 parse_address_group_reloc (&str, i, GROUP_LDR));
5998 break;
5999
6000 case OP_ADDRGLDRS:
6001 po_misc_or_fail_no_backtrack (
6002 parse_address_group_reloc (&str, i, GROUP_LDRS));
6003 break;
6004
6005 case OP_ADDRGLDC:
6006 po_misc_or_fail_no_backtrack (
6007 parse_address_group_reloc (&str, i, GROUP_LDC));
6008 break;
6009
c19d1205
ZW
6010 case OP_SH:
6011 po_misc_or_fail (parse_shifter_operand (&str, i));
6012 break;
09d92015 6013
4962c51a
MS
6014 case OP_SHG:
6015 po_misc_or_fail_no_backtrack (
6016 parse_shifter_operand_group_reloc (&str, i));
6017 break;
6018
c19d1205
ZW
6019 case OP_oSHll:
6020 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6021 break;
09d92015 6022
c19d1205
ZW
6023 case OP_oSHar:
6024 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6025 break;
09d92015 6026
c19d1205
ZW
6027 case OP_oSHllar:
6028 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6029 break;
09d92015 6030
c19d1205 6031 default:
bd3ba5d1 6032 as_fatal (_("unhandled operand code %d"), upat[i]);
c19d1205 6033 }
09d92015 6034
c19d1205
ZW
6035 /* Various value-based sanity checks and shared operations. We
6036 do not signal immediate failures for the register constraints;
6037 this allows a syntax error to take precedence. */
6038 switch (upat[i])
6039 {
6040 case OP_oRRnpc:
6041 case OP_RRnpc:
6042 case OP_RRnpcb:
6043 case OP_RRw:
b6702015 6044 case OP_oRRw:
c19d1205
ZW
6045 case OP_RRnpc_I0:
6046 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6047 inst.error = BAD_PC;
6048 break;
09d92015 6049
c19d1205
ZW
6050 case OP_CPSF:
6051 case OP_ENDI:
6052 case OP_oROR:
6053 case OP_PSR:
037e8744 6054 case OP_RVC_PSR:
c19d1205 6055 case OP_COND:
62b3e311 6056 case OP_oBARRIER:
c19d1205
ZW
6057 case OP_REGLST:
6058 case OP_VRSLST:
6059 case OP_VRDLST:
037e8744 6060 case OP_VRSDLST:
5287ad62
JB
6061 case OP_NRDLST:
6062 case OP_NSTRLST:
c19d1205
ZW
6063 if (val == FAIL)
6064 goto failure;
6065 inst.operands[i].imm = val;
6066 break;
a737bd4d 6067
c19d1205
ZW
6068 default:
6069 break;
6070 }
09d92015 6071
c19d1205
ZW
6072 /* If we get here, this operand was successfully parsed. */
6073 inst.operands[i].present = 1;
6074 continue;
09d92015 6075
c19d1205 6076 bad_args:
09d92015 6077 inst.error = BAD_ARGS;
c19d1205
ZW
6078
6079 failure:
6080 if (!backtrack_pos)
d252fdde
PB
6081 {
6082 /* The parse routine should already have set inst.error, but set a
5f4273c7 6083 default here just in case. */
d252fdde
PB
6084 if (!inst.error)
6085 inst.error = _("syntax error");
6086 return FAIL;
6087 }
c19d1205
ZW
6088
6089 /* Do not backtrack over a trailing optional argument that
6090 absorbed some text. We will only fail again, with the
6091 'garbage following instruction' error message, which is
6092 probably less helpful than the current one. */
6093 if (backtrack_index == i && backtrack_pos != str
6094 && upat[i+1] == OP_stop)
d252fdde
PB
6095 {
6096 if (!inst.error)
6097 inst.error = _("syntax error");
6098 return FAIL;
6099 }
c19d1205
ZW
6100
6101 /* Try again, skipping the optional argument at backtrack_pos. */
6102 str = backtrack_pos;
6103 inst.error = backtrack_error;
6104 inst.operands[backtrack_index].present = 0;
6105 i = backtrack_index;
6106 backtrack_pos = 0;
09d92015 6107 }
09d92015 6108
c19d1205
ZW
6109 /* Check that we have parsed all the arguments. */
6110 if (*str != '\0' && !inst.error)
6111 inst.error = _("garbage following instruction");
09d92015 6112
c19d1205 6113 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6114}
6115
c19d1205
ZW
6116#undef po_char_or_fail
6117#undef po_reg_or_fail
6118#undef po_reg_or_goto
6119#undef po_imm_or_fail
5287ad62 6120#undef po_scalar_or_fail
c19d1205
ZW
6121\f
6122/* Shorthand macro for instruction encoding functions issuing errors. */
6123#define constraint(expr, err) do { \
6124 if (expr) \
6125 { \
6126 inst.error = err; \
6127 return; \
6128 } \
6129} while (0)
6130
fdfde340
JM
6131/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6132 instructions are unpredictable if these registers are used. This
6133 is the BadReg predicate in ARM's Thumb-2 documentation. */
6134#define reject_bad_reg(reg) \
6135 do \
6136 if (reg == REG_SP || reg == REG_PC) \
6137 { \
6138 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6139 return; \
6140 } \
6141 while (0)
6142
94206790
MM
6143/* If REG is R13 (the stack pointer), warn that its use is
6144 deprecated. */
6145#define warn_deprecated_sp(reg) \
6146 do \
6147 if (warn_on_deprecated && reg == REG_SP) \
6148 as_warn (_("use of r13 is deprecated")); \
6149 while (0)
6150
c19d1205
ZW
6151/* Functions for operand encoding. ARM, then Thumb. */
6152
6153#define rotate_left(v, n) (v << n | v >> (32 - n))
6154
6155/* If VAL can be encoded in the immediate field of an ARM instruction,
6156 return the encoded form. Otherwise, return FAIL. */
6157
6158static unsigned int
6159encode_arm_immediate (unsigned int val)
09d92015 6160{
c19d1205
ZW
6161 unsigned int a, i;
6162
6163 for (i = 0; i < 32; i += 2)
6164 if ((a = rotate_left (val, i)) <= 0xff)
6165 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6166
6167 return FAIL;
09d92015
MM
6168}
6169
c19d1205
ZW
6170/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6171 return the encoded form. Otherwise, return FAIL. */
6172static unsigned int
6173encode_thumb32_immediate (unsigned int val)
09d92015 6174{
c19d1205 6175 unsigned int a, i;
09d92015 6176
9c3c69f2 6177 if (val <= 0xff)
c19d1205 6178 return val;
a737bd4d 6179
9c3c69f2 6180 for (i = 1; i <= 24; i++)
09d92015 6181 {
9c3c69f2
PB
6182 a = val >> i;
6183 if ((val & ~(0xff << i)) == 0)
6184 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6185 }
a737bd4d 6186
c19d1205
ZW
6187 a = val & 0xff;
6188 if (val == ((a << 16) | a))
6189 return 0x100 | a;
6190 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6191 return 0x300 | a;
09d92015 6192
c19d1205
ZW
6193 a = val & 0xff00;
6194 if (val == ((a << 16) | a))
6195 return 0x200 | (a >> 8);
a737bd4d 6196
c19d1205 6197 return FAIL;
09d92015 6198}
5287ad62 6199/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6200
6201static void
5287ad62
JB
6202encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6203{
6204 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6205 && reg > 15)
6206 {
b1cc4aeb 6207 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6208 {
6209 if (thumb_mode)
6210 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6211 fpu_vfp_ext_d32);
5287ad62
JB
6212 else
6213 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6214 fpu_vfp_ext_d32);
5287ad62
JB
6215 }
6216 else
6217 {
dcbf9037 6218 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6219 return;
6220 }
6221 }
6222
c19d1205 6223 switch (pos)
09d92015 6224 {
c19d1205
ZW
6225 case VFP_REG_Sd:
6226 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6227 break;
6228
6229 case VFP_REG_Sn:
6230 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6231 break;
6232
6233 case VFP_REG_Sm:
6234 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6235 break;
6236
5287ad62
JB
6237 case VFP_REG_Dd:
6238 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6239 break;
5f4273c7 6240
5287ad62
JB
6241 case VFP_REG_Dn:
6242 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6243 break;
5f4273c7 6244
5287ad62
JB
6245 case VFP_REG_Dm:
6246 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6247 break;
6248
c19d1205
ZW
6249 default:
6250 abort ();
09d92015 6251 }
09d92015
MM
6252}
6253
c19d1205 6254/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6255 if any, is handled by md_apply_fix. */
09d92015 6256static void
c19d1205 6257encode_arm_shift (int i)
09d92015 6258{
c19d1205
ZW
6259 if (inst.operands[i].shift_kind == SHIFT_RRX)
6260 inst.instruction |= SHIFT_ROR << 5;
6261 else
09d92015 6262 {
c19d1205
ZW
6263 inst.instruction |= inst.operands[i].shift_kind << 5;
6264 if (inst.operands[i].immisreg)
6265 {
6266 inst.instruction |= SHIFT_BY_REG;
6267 inst.instruction |= inst.operands[i].imm << 8;
6268 }
6269 else
6270 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6271 }
c19d1205 6272}
09d92015 6273
c19d1205
ZW
6274static void
6275encode_arm_shifter_operand (int i)
6276{
6277 if (inst.operands[i].isreg)
09d92015 6278 {
c19d1205
ZW
6279 inst.instruction |= inst.operands[i].reg;
6280 encode_arm_shift (i);
09d92015 6281 }
c19d1205
ZW
6282 else
6283 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6284}
6285
c19d1205 6286/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6287static void
c19d1205 6288encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6289{
c19d1205
ZW
6290 assert (inst.operands[i].isreg);
6291 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6292
c19d1205 6293 if (inst.operands[i].preind)
09d92015 6294 {
c19d1205
ZW
6295 if (is_t)
6296 {
6297 inst.error = _("instruction does not accept preindexed addressing");
6298 return;
6299 }
6300 inst.instruction |= PRE_INDEX;
6301 if (inst.operands[i].writeback)
6302 inst.instruction |= WRITE_BACK;
09d92015 6303
c19d1205
ZW
6304 }
6305 else if (inst.operands[i].postind)
6306 {
6307 assert (inst.operands[i].writeback);
6308 if (is_t)
6309 inst.instruction |= WRITE_BACK;
6310 }
6311 else /* unindexed - only for coprocessor */
09d92015 6312 {
c19d1205 6313 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6314 return;
6315 }
6316
c19d1205
ZW
6317 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6318 && (((inst.instruction & 0x000f0000) >> 16)
6319 == ((inst.instruction & 0x0000f000) >> 12)))
6320 as_warn ((inst.instruction & LOAD_BIT)
6321 ? _("destination register same as write-back base")
6322 : _("source register same as write-back base"));
09d92015
MM
6323}
6324
c19d1205
ZW
6325/* inst.operands[i] was set up by parse_address. Encode it into an
6326 ARM-format mode 2 load or store instruction. If is_t is true,
6327 reject forms that cannot be used with a T instruction (i.e. not
6328 post-indexed). */
a737bd4d 6329static void
c19d1205 6330encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6331{
c19d1205 6332 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6333
c19d1205 6334 if (inst.operands[i].immisreg)
09d92015 6335 {
c19d1205
ZW
6336 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6337 inst.instruction |= inst.operands[i].imm;
6338 if (!inst.operands[i].negative)
6339 inst.instruction |= INDEX_UP;
6340 if (inst.operands[i].shifted)
6341 {
6342 if (inst.operands[i].shift_kind == SHIFT_RRX)
6343 inst.instruction |= SHIFT_ROR << 5;
6344 else
6345 {
6346 inst.instruction |= inst.operands[i].shift_kind << 5;
6347 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6348 }
6349 }
09d92015 6350 }
c19d1205 6351 else /* immediate offset in inst.reloc */
09d92015 6352 {
c19d1205
ZW
6353 if (inst.reloc.type == BFD_RELOC_UNUSED)
6354 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6355 }
09d92015
MM
6356}
6357
c19d1205
ZW
6358/* inst.operands[i] was set up by parse_address. Encode it into an
6359 ARM-format mode 3 load or store instruction. Reject forms that
6360 cannot be used with such instructions. If is_t is true, reject
6361 forms that cannot be used with a T instruction (i.e. not
6362 post-indexed). */
6363static void
6364encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6365{
c19d1205 6366 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6367 {
c19d1205
ZW
6368 inst.error = _("instruction does not accept scaled register index");
6369 return;
09d92015 6370 }
a737bd4d 6371
c19d1205 6372 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6373
c19d1205
ZW
6374 if (inst.operands[i].immisreg)
6375 {
6376 inst.instruction |= inst.operands[i].imm;
6377 if (!inst.operands[i].negative)
6378 inst.instruction |= INDEX_UP;
6379 }
6380 else /* immediate offset in inst.reloc */
6381 {
6382 inst.instruction |= HWOFFSET_IMM;
6383 if (inst.reloc.type == BFD_RELOC_UNUSED)
6384 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6385 }
a737bd4d
NC
6386}
6387
c19d1205
ZW
6388/* inst.operands[i] was set up by parse_address. Encode it into an
6389 ARM-format instruction. Reject all forms which cannot be encoded
6390 into a coprocessor load/store instruction. If wb_ok is false,
6391 reject use of writeback; if unind_ok is false, reject use of
6392 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6393 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6394 (in which case it is preserved). */
09d92015 6395
c19d1205
ZW
6396static int
6397encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6398{
c19d1205 6399 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6400
c19d1205 6401 assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6402
c19d1205 6403 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6404 {
c19d1205
ZW
6405 assert (!inst.operands[i].writeback);
6406 if (!unind_ok)
6407 {
6408 inst.error = _("instruction does not support unindexed addressing");
6409 return FAIL;
6410 }
6411 inst.instruction |= inst.operands[i].imm;
6412 inst.instruction |= INDEX_UP;
6413 return SUCCESS;
09d92015 6414 }
a737bd4d 6415
c19d1205
ZW
6416 if (inst.operands[i].preind)
6417 inst.instruction |= PRE_INDEX;
a737bd4d 6418
c19d1205 6419 if (inst.operands[i].writeback)
09d92015 6420 {
c19d1205
ZW
6421 if (inst.operands[i].reg == REG_PC)
6422 {
6423 inst.error = _("pc may not be used with write-back");
6424 return FAIL;
6425 }
6426 if (!wb_ok)
6427 {
6428 inst.error = _("instruction does not support writeback");
6429 return FAIL;
6430 }
6431 inst.instruction |= WRITE_BACK;
09d92015 6432 }
a737bd4d 6433
c19d1205
ZW
6434 if (reloc_override)
6435 inst.reloc.type = reloc_override;
4962c51a
MS
6436 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6437 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6438 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6439 {
6440 if (thumb_mode)
6441 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6442 else
6443 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6444 }
6445
c19d1205
ZW
6446 return SUCCESS;
6447}
a737bd4d 6448
c19d1205
ZW
6449/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6450 Determine whether it can be performed with a move instruction; if
6451 it can, convert inst.instruction to that move instruction and
6452 return 1; if it can't, convert inst.instruction to a literal-pool
6453 load and return 0. If this is not a valid thing to do in the
6454 current context, set inst.error and return 1.
a737bd4d 6455
c19d1205
ZW
6456 inst.operands[i] describes the destination register. */
6457
6458static int
6459move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6460{
53365c0d
PB
6461 unsigned long tbit;
6462
6463 if (thumb_p)
6464 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6465 else
6466 tbit = LOAD_BIT;
6467
6468 if ((inst.instruction & tbit) == 0)
09d92015 6469 {
c19d1205
ZW
6470 inst.error = _("invalid pseudo operation");
6471 return 1;
09d92015 6472 }
c19d1205 6473 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6474 {
6475 inst.error = _("constant expression expected");
c19d1205 6476 return 1;
09d92015 6477 }
c19d1205 6478 if (inst.reloc.exp.X_op == O_constant)
09d92015 6479 {
c19d1205
ZW
6480 if (thumb_p)
6481 {
53365c0d 6482 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6483 {
6484 /* This can be done with a mov(1) instruction. */
6485 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6486 inst.instruction |= inst.reloc.exp.X_add_number;
6487 return 1;
6488 }
6489 }
6490 else
6491 {
6492 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6493 if (value != FAIL)
6494 {
6495 /* This can be done with a mov instruction. */
6496 inst.instruction &= LITERAL_MASK;
6497 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6498 inst.instruction |= value & 0xfff;
6499 return 1;
6500 }
09d92015 6501
c19d1205
ZW
6502 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6503 if (value != FAIL)
6504 {
6505 /* This can be done with a mvn instruction. */
6506 inst.instruction &= LITERAL_MASK;
6507 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6508 inst.instruction |= value & 0xfff;
6509 return 1;
6510 }
6511 }
09d92015
MM
6512 }
6513
c19d1205
ZW
6514 if (add_to_lit_pool () == FAIL)
6515 {
6516 inst.error = _("literal pool insertion failed");
6517 return 1;
6518 }
6519 inst.operands[1].reg = REG_PC;
6520 inst.operands[1].isreg = 1;
6521 inst.operands[1].preind = 1;
6522 inst.reloc.pc_rel = 1;
6523 inst.reloc.type = (thumb_p
6524 ? BFD_RELOC_ARM_THUMB_OFFSET
6525 : (mode_3
6526 ? BFD_RELOC_ARM_HWLITERAL
6527 : BFD_RELOC_ARM_LITERAL));
6528 return 0;
09d92015
MM
6529}
6530
5f4273c7 6531/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
6532 First some generics; their names are taken from the conventional
6533 bit positions for register arguments in ARM format instructions. */
09d92015 6534
a737bd4d 6535static void
c19d1205 6536do_noargs (void)
09d92015 6537{
c19d1205 6538}
a737bd4d 6539
c19d1205
ZW
6540static void
6541do_rd (void)
6542{
6543 inst.instruction |= inst.operands[0].reg << 12;
6544}
a737bd4d 6545
c19d1205
ZW
6546static void
6547do_rd_rm (void)
6548{
6549 inst.instruction |= inst.operands[0].reg << 12;
6550 inst.instruction |= inst.operands[1].reg;
6551}
09d92015 6552
c19d1205
ZW
6553static void
6554do_rd_rn (void)
6555{
6556 inst.instruction |= inst.operands[0].reg << 12;
6557 inst.instruction |= inst.operands[1].reg << 16;
6558}
a737bd4d 6559
c19d1205
ZW
6560static void
6561do_rn_rd (void)
6562{
6563 inst.instruction |= inst.operands[0].reg << 16;
6564 inst.instruction |= inst.operands[1].reg << 12;
6565}
09d92015 6566
c19d1205
ZW
6567static void
6568do_rd_rm_rn (void)
6569{
9a64e435 6570 unsigned Rn = inst.operands[2].reg;
708587a4 6571 /* Enforce restrictions on SWP instruction. */
9a64e435
PB
6572 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6573 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6574 _("Rn must not overlap other operands"));
c19d1205
ZW
6575 inst.instruction |= inst.operands[0].reg << 12;
6576 inst.instruction |= inst.operands[1].reg;
9a64e435 6577 inst.instruction |= Rn << 16;
c19d1205 6578}
09d92015 6579
c19d1205
ZW
6580static void
6581do_rd_rn_rm (void)
6582{
6583 inst.instruction |= inst.operands[0].reg << 12;
6584 inst.instruction |= inst.operands[1].reg << 16;
6585 inst.instruction |= inst.operands[2].reg;
6586}
a737bd4d 6587
c19d1205
ZW
6588static void
6589do_rm_rd_rn (void)
6590{
6591 inst.instruction |= inst.operands[0].reg;
6592 inst.instruction |= inst.operands[1].reg << 12;
6593 inst.instruction |= inst.operands[2].reg << 16;
6594}
09d92015 6595
c19d1205
ZW
6596static void
6597do_imm0 (void)
6598{
6599 inst.instruction |= inst.operands[0].imm;
6600}
09d92015 6601
c19d1205
ZW
6602static void
6603do_rd_cpaddr (void)
6604{
6605 inst.instruction |= inst.operands[0].reg << 12;
6606 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 6607}
a737bd4d 6608
c19d1205
ZW
6609/* ARM instructions, in alphabetical order by function name (except
6610 that wrapper functions appear immediately after the function they
6611 wrap). */
09d92015 6612
c19d1205
ZW
6613/* This is a pseudo-op of the form "adr rd, label" to be converted
6614 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
6615
6616static void
c19d1205 6617do_adr (void)
09d92015 6618{
c19d1205 6619 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6620
c19d1205
ZW
6621 /* Frag hacking will turn this into a sub instruction if the offset turns
6622 out to be negative. */
6623 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 6624 inst.reloc.pc_rel = 1;
2fc8bdac 6625 inst.reloc.exp.X_add_number -= 8;
c19d1205 6626}
b99bd4ef 6627
c19d1205
ZW
6628/* This is a pseudo-op of the form "adrl rd, label" to be converted
6629 into a relative address of the form:
6630 add rd, pc, #low(label-.-8)"
6631 add rd, rd, #high(label-.-8)" */
b99bd4ef 6632
c19d1205
ZW
6633static void
6634do_adrl (void)
6635{
6636 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6637
c19d1205
ZW
6638 /* Frag hacking will turn this into a sub instruction if the offset turns
6639 out to be negative. */
6640 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
6641 inst.reloc.pc_rel = 1;
6642 inst.size = INSN_SIZE * 2;
2fc8bdac 6643 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
6644}
6645
b99bd4ef 6646static void
c19d1205 6647do_arit (void)
b99bd4ef 6648{
c19d1205
ZW
6649 if (!inst.operands[1].present)
6650 inst.operands[1].reg = inst.operands[0].reg;
6651 inst.instruction |= inst.operands[0].reg << 12;
6652 inst.instruction |= inst.operands[1].reg << 16;
6653 encode_arm_shifter_operand (2);
6654}
b99bd4ef 6655
62b3e311
PB
6656static void
6657do_barrier (void)
6658{
6659 if (inst.operands[0].present)
6660 {
6661 constraint ((inst.instruction & 0xf0) != 0x40
6662 && inst.operands[0].imm != 0xf,
bd3ba5d1 6663 _("bad barrier type"));
62b3e311
PB
6664 inst.instruction |= inst.operands[0].imm;
6665 }
6666 else
6667 inst.instruction |= 0xf;
6668}
6669
c19d1205
ZW
6670static void
6671do_bfc (void)
6672{
6673 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6674 constraint (msb > 32, _("bit-field extends past end of register"));
6675 /* The instruction encoding stores the LSB and MSB,
6676 not the LSB and width. */
6677 inst.instruction |= inst.operands[0].reg << 12;
6678 inst.instruction |= inst.operands[1].imm << 7;
6679 inst.instruction |= (msb - 1) << 16;
6680}
b99bd4ef 6681
c19d1205
ZW
6682static void
6683do_bfi (void)
6684{
6685 unsigned int msb;
b99bd4ef 6686
c19d1205
ZW
6687 /* #0 in second position is alternative syntax for bfc, which is
6688 the same instruction but with REG_PC in the Rm field. */
6689 if (!inst.operands[1].isreg)
6690 inst.operands[1].reg = REG_PC;
b99bd4ef 6691
c19d1205
ZW
6692 msb = inst.operands[2].imm + inst.operands[3].imm;
6693 constraint (msb > 32, _("bit-field extends past end of register"));
6694 /* The instruction encoding stores the LSB and MSB,
6695 not the LSB and width. */
6696 inst.instruction |= inst.operands[0].reg << 12;
6697 inst.instruction |= inst.operands[1].reg;
6698 inst.instruction |= inst.operands[2].imm << 7;
6699 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
6700}
6701
b99bd4ef 6702static void
c19d1205 6703do_bfx (void)
b99bd4ef 6704{
c19d1205
ZW
6705 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6706 _("bit-field extends past end of register"));
6707 inst.instruction |= inst.operands[0].reg << 12;
6708 inst.instruction |= inst.operands[1].reg;
6709 inst.instruction |= inst.operands[2].imm << 7;
6710 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6711}
09d92015 6712
c19d1205
ZW
6713/* ARM V5 breakpoint instruction (argument parse)
6714 BKPT <16 bit unsigned immediate>
6715 Instruction is not conditional.
6716 The bit pattern given in insns[] has the COND_ALWAYS condition,
6717 and it is an error if the caller tried to override that. */
b99bd4ef 6718
c19d1205
ZW
6719static void
6720do_bkpt (void)
6721{
6722 /* Top 12 of 16 bits to bits 19:8. */
6723 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 6724
c19d1205
ZW
6725 /* Bottom 4 of 16 bits to bits 3:0. */
6726 inst.instruction |= inst.operands[0].imm & 0xf;
6727}
09d92015 6728
c19d1205
ZW
6729static void
6730encode_branch (int default_reloc)
6731{
6732 if (inst.operands[0].hasreloc)
6733 {
6734 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6735 _("the only suffix valid here is '(plt)'"));
6736 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 6737 }
b99bd4ef 6738 else
c19d1205
ZW
6739 {
6740 inst.reloc.type = default_reloc;
c19d1205 6741 }
2fc8bdac 6742 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6743}
6744
b99bd4ef 6745static void
c19d1205 6746do_branch (void)
b99bd4ef 6747{
39b41c9c
PB
6748#ifdef OBJ_ELF
6749 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6750 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6751 else
6752#endif
6753 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6754}
6755
6756static void
6757do_bl (void)
6758{
6759#ifdef OBJ_ELF
6760 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6761 {
6762 if (inst.cond == COND_ALWAYS)
6763 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6764 else
6765 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6766 }
6767 else
6768#endif
6769 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 6770}
b99bd4ef 6771
c19d1205
ZW
6772/* ARM V5 branch-link-exchange instruction (argument parse)
6773 BLX <target_addr> ie BLX(1)
6774 BLX{<condition>} <Rm> ie BLX(2)
6775 Unfortunately, there are two different opcodes for this mnemonic.
6776 So, the insns[].value is not used, and the code here zaps values
6777 into inst.instruction.
6778 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 6779
c19d1205
ZW
6780static void
6781do_blx (void)
6782{
6783 if (inst.operands[0].isreg)
b99bd4ef 6784 {
c19d1205
ZW
6785 /* Arg is a register; the opcode provided by insns[] is correct.
6786 It is not illegal to do "blx pc", just useless. */
6787 if (inst.operands[0].reg == REG_PC)
6788 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 6789
c19d1205
ZW
6790 inst.instruction |= inst.operands[0].reg;
6791 }
6792 else
b99bd4ef 6793 {
c19d1205
ZW
6794 /* Arg is an address; this instruction cannot be executed
6795 conditionally, and the opcode must be adjusted. */
6796 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 6797 inst.instruction = 0xfa000000;
39b41c9c
PB
6798#ifdef OBJ_ELF
6799 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6800 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6801 else
6802#endif
6803 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 6804 }
c19d1205
ZW
6805}
6806
6807static void
6808do_bx (void)
6809{
845b51d6
PB
6810 bfd_boolean want_reloc;
6811
c19d1205
ZW
6812 if (inst.operands[0].reg == REG_PC)
6813 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 6814
c19d1205 6815 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
6816 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
6817 it is for ARMv4t or earlier. */
6818 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
6819 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
6820 want_reloc = TRUE;
6821
5ad34203 6822#ifdef OBJ_ELF
845b51d6 6823 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 6824#endif
584206db 6825 want_reloc = FALSE;
845b51d6
PB
6826
6827 if (want_reloc)
6828 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
6829}
6830
c19d1205
ZW
6831
6832/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
6833
6834static void
c19d1205 6835do_bxj (void)
a737bd4d 6836{
c19d1205
ZW
6837 if (inst.operands[0].reg == REG_PC)
6838 as_tsktsk (_("use of r15 in bxj is not really useful"));
6839
6840 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
6841}
6842
c19d1205
ZW
6843/* Co-processor data operation:
6844 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6845 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6846static void
6847do_cdp (void)
6848{
6849 inst.instruction |= inst.operands[0].reg << 8;
6850 inst.instruction |= inst.operands[1].imm << 20;
6851 inst.instruction |= inst.operands[2].reg << 12;
6852 inst.instruction |= inst.operands[3].reg << 16;
6853 inst.instruction |= inst.operands[4].reg;
6854 inst.instruction |= inst.operands[5].imm << 5;
6855}
a737bd4d
NC
6856
6857static void
c19d1205 6858do_cmp (void)
a737bd4d 6859{
c19d1205
ZW
6860 inst.instruction |= inst.operands[0].reg << 16;
6861 encode_arm_shifter_operand (1);
a737bd4d
NC
6862}
6863
c19d1205
ZW
6864/* Transfer between coprocessor and ARM registers.
6865 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6866 MRC2
6867 MCR{cond}
6868 MCR2
6869
6870 No special properties. */
09d92015
MM
6871
6872static void
c19d1205 6873do_co_reg (void)
09d92015 6874{
fdfde340
JM
6875 unsigned Rd;
6876
6877 Rd = inst.operands[2].reg;
6878 if (thumb_mode)
6879 {
6880 if (inst.instruction == 0xee000010
6881 || inst.instruction == 0xfe000010)
6882 /* MCR, MCR2 */
6883 reject_bad_reg (Rd);
6884 else
6885 /* MRC, MRC2 */
6886 constraint (Rd == REG_SP, BAD_SP);
6887 }
6888 else
6889 {
6890 /* MCR */
6891 if (inst.instruction == 0xe000010)
6892 constraint (Rd == REG_PC, BAD_PC);
6893 }
6894
6895
c19d1205
ZW
6896 inst.instruction |= inst.operands[0].reg << 8;
6897 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 6898 inst.instruction |= Rd << 12;
c19d1205
ZW
6899 inst.instruction |= inst.operands[3].reg << 16;
6900 inst.instruction |= inst.operands[4].reg;
6901 inst.instruction |= inst.operands[5].imm << 5;
6902}
09d92015 6903
c19d1205
ZW
6904/* Transfer between coprocessor register and pair of ARM registers.
6905 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6906 MCRR2
6907 MRRC{cond}
6908 MRRC2
b99bd4ef 6909
c19d1205 6910 Two XScale instructions are special cases of these:
09d92015 6911
c19d1205
ZW
6912 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6913 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 6914
5f4273c7 6915 Result unpredictable if Rd or Rn is R15. */
a737bd4d 6916
c19d1205
ZW
6917static void
6918do_co_reg2c (void)
6919{
fdfde340
JM
6920 unsigned Rd, Rn;
6921
6922 Rd = inst.operands[2].reg;
6923 Rn = inst.operands[3].reg;
6924
6925 if (thumb_mode)
6926 {
6927 reject_bad_reg (Rd);
6928 reject_bad_reg (Rn);
6929 }
6930 else
6931 {
6932 constraint (Rd == REG_PC, BAD_PC);
6933 constraint (Rn == REG_PC, BAD_PC);
6934 }
6935
c19d1205
ZW
6936 inst.instruction |= inst.operands[0].reg << 8;
6937 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
6938 inst.instruction |= Rd << 12;
6939 inst.instruction |= Rn << 16;
c19d1205 6940 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
6941}
6942
c19d1205
ZW
6943static void
6944do_cpsi (void)
6945{
6946 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
6947 if (inst.operands[1].present)
6948 {
6949 inst.instruction |= CPSI_MMOD;
6950 inst.instruction |= inst.operands[1].imm;
6951 }
c19d1205 6952}
b99bd4ef 6953
62b3e311
PB
6954static void
6955do_dbg (void)
6956{
6957 inst.instruction |= inst.operands[0].imm;
6958}
6959
b99bd4ef 6960static void
c19d1205 6961do_it (void)
b99bd4ef 6962{
c19d1205
ZW
6963 /* There is no IT instruction in ARM mode. We
6964 process it but do not generate code for it. */
6965 inst.size = 0;
09d92015 6966}
b99bd4ef 6967
09d92015 6968static void
c19d1205 6969do_ldmstm (void)
ea6ef066 6970{
c19d1205
ZW
6971 int base_reg = inst.operands[0].reg;
6972 int range = inst.operands[1].imm;
ea6ef066 6973
c19d1205
ZW
6974 inst.instruction |= base_reg << 16;
6975 inst.instruction |= range;
ea6ef066 6976
c19d1205
ZW
6977 if (inst.operands[1].writeback)
6978 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 6979
c19d1205 6980 if (inst.operands[0].writeback)
ea6ef066 6981 {
c19d1205
ZW
6982 inst.instruction |= WRITE_BACK;
6983 /* Check for unpredictable uses of writeback. */
6984 if (inst.instruction & LOAD_BIT)
09d92015 6985 {
c19d1205
ZW
6986 /* Not allowed in LDM type 2. */
6987 if ((inst.instruction & LDM_TYPE_2_OR_3)
6988 && ((range & (1 << REG_PC)) == 0))
6989 as_warn (_("writeback of base register is UNPREDICTABLE"));
6990 /* Only allowed if base reg not in list for other types. */
6991 else if (range & (1 << base_reg))
6992 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6993 }
6994 else /* STM. */
6995 {
6996 /* Not allowed for type 2. */
6997 if (inst.instruction & LDM_TYPE_2_OR_3)
6998 as_warn (_("writeback of base register is UNPREDICTABLE"));
6999 /* Only allowed if base reg not in list, or first in list. */
7000 else if ((range & (1 << base_reg))
7001 && (range & ((1 << base_reg) - 1)))
7002 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7003 }
ea6ef066 7004 }
a737bd4d
NC
7005}
7006
c19d1205
ZW
7007/* ARMv5TE load-consecutive (argument parse)
7008 Mode is like LDRH.
7009
7010 LDRccD R, mode
7011 STRccD R, mode. */
7012
a737bd4d 7013static void
c19d1205 7014do_ldrd (void)
a737bd4d 7015{
c19d1205
ZW
7016 constraint (inst.operands[0].reg % 2 != 0,
7017 _("first destination register must be even"));
7018 constraint (inst.operands[1].present
7019 && inst.operands[1].reg != inst.operands[0].reg + 1,
7020 _("can only load two consecutive registers"));
7021 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7022 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7023
c19d1205
ZW
7024 if (!inst.operands[1].present)
7025 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7026
c19d1205 7027 if (inst.instruction & LOAD_BIT)
a737bd4d 7028 {
c19d1205
ZW
7029 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7030 register and the first register written; we have to diagnose
7031 overlap between the base and the second register written here. */
ea6ef066 7032
c19d1205
ZW
7033 if (inst.operands[2].reg == inst.operands[1].reg
7034 && (inst.operands[2].writeback || inst.operands[2].postind))
7035 as_warn (_("base register written back, and overlaps "
7036 "second destination register"));
b05fe5cf 7037
c19d1205
ZW
7038 /* For an index-register load, the index register must not overlap the
7039 destination (even if not write-back). */
7040 else if (inst.operands[2].immisreg
ca3f61f7
NC
7041 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7042 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 7043 as_warn (_("index register overlaps destination register"));
b05fe5cf 7044 }
c19d1205
ZW
7045
7046 inst.instruction |= inst.operands[0].reg << 12;
7047 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7048}
7049
7050static void
c19d1205 7051do_ldrex (void)
b05fe5cf 7052{
c19d1205
ZW
7053 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7054 || inst.operands[1].postind || inst.operands[1].writeback
7055 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7056 || inst.operands[1].negative
7057 /* This can arise if the programmer has written
7058 strex rN, rM, foo
7059 or if they have mistakenly used a register name as the last
7060 operand, eg:
7061 strex rN, rM, rX
7062 It is very difficult to distinguish between these two cases
7063 because "rX" might actually be a label. ie the register
7064 name has been occluded by a symbol of the same name. So we
7065 just generate a general 'bad addressing mode' type error
7066 message and leave it up to the programmer to discover the
7067 true cause and fix their mistake. */
7068 || (inst.operands[1].reg == REG_PC),
7069 BAD_ADDR_MODE);
b05fe5cf 7070
c19d1205
ZW
7071 constraint (inst.reloc.exp.X_op != O_constant
7072 || inst.reloc.exp.X_add_number != 0,
7073 _("offset must be zero in ARM encoding"));
b05fe5cf 7074
c19d1205
ZW
7075 inst.instruction |= inst.operands[0].reg << 12;
7076 inst.instruction |= inst.operands[1].reg << 16;
7077 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7078}
7079
7080static void
c19d1205 7081do_ldrexd (void)
b05fe5cf 7082{
c19d1205
ZW
7083 constraint (inst.operands[0].reg % 2 != 0,
7084 _("even register required"));
7085 constraint (inst.operands[1].present
7086 && inst.operands[1].reg != inst.operands[0].reg + 1,
7087 _("can only load two consecutive registers"));
7088 /* If op 1 were present and equal to PC, this function wouldn't
7089 have been called in the first place. */
7090 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7091
c19d1205
ZW
7092 inst.instruction |= inst.operands[0].reg << 12;
7093 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7094}
7095
7096static void
c19d1205 7097do_ldst (void)
b05fe5cf 7098{
c19d1205
ZW
7099 inst.instruction |= inst.operands[0].reg << 12;
7100 if (!inst.operands[1].isreg)
7101 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7102 return;
c19d1205 7103 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7104}
7105
7106static void
c19d1205 7107do_ldstt (void)
b05fe5cf 7108{
c19d1205
ZW
7109 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7110 reject [Rn,...]. */
7111 if (inst.operands[1].preind)
b05fe5cf 7112 {
bd3ba5d1
NC
7113 constraint (inst.reloc.exp.X_op != O_constant
7114 || inst.reloc.exp.X_add_number != 0,
c19d1205 7115 _("this instruction requires a post-indexed address"));
b05fe5cf 7116
c19d1205
ZW
7117 inst.operands[1].preind = 0;
7118 inst.operands[1].postind = 1;
7119 inst.operands[1].writeback = 1;
b05fe5cf 7120 }
c19d1205
ZW
7121 inst.instruction |= inst.operands[0].reg << 12;
7122 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7123}
b05fe5cf 7124
c19d1205 7125/* Halfword and signed-byte load/store operations. */
b05fe5cf 7126
c19d1205
ZW
7127static void
7128do_ldstv4 (void)
7129{
7130 inst.instruction |= inst.operands[0].reg << 12;
7131 if (!inst.operands[1].isreg)
7132 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7133 return;
c19d1205 7134 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7135}
7136
7137static void
c19d1205 7138do_ldsttv4 (void)
b05fe5cf 7139{
c19d1205
ZW
7140 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7141 reject [Rn,...]. */
7142 if (inst.operands[1].preind)
b05fe5cf 7143 {
bd3ba5d1
NC
7144 constraint (inst.reloc.exp.X_op != O_constant
7145 || inst.reloc.exp.X_add_number != 0,
c19d1205 7146 _("this instruction requires a post-indexed address"));
b05fe5cf 7147
c19d1205
ZW
7148 inst.operands[1].preind = 0;
7149 inst.operands[1].postind = 1;
7150 inst.operands[1].writeback = 1;
b05fe5cf 7151 }
c19d1205
ZW
7152 inst.instruction |= inst.operands[0].reg << 12;
7153 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7154}
b05fe5cf 7155
c19d1205
ZW
7156/* Co-processor register load/store.
7157 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7158static void
7159do_lstc (void)
7160{
7161 inst.instruction |= inst.operands[0].reg << 8;
7162 inst.instruction |= inst.operands[1].reg << 12;
7163 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7164}
7165
b05fe5cf 7166static void
c19d1205 7167do_mlas (void)
b05fe5cf 7168{
8fb9d7b9 7169 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7170 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7171 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7172 && !(inst.instruction & 0x00400000))
8fb9d7b9 7173 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7174
c19d1205
ZW
7175 inst.instruction |= inst.operands[0].reg << 16;
7176 inst.instruction |= inst.operands[1].reg;
7177 inst.instruction |= inst.operands[2].reg << 8;
7178 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7179}
b05fe5cf 7180
c19d1205
ZW
7181static void
7182do_mov (void)
7183{
7184 inst.instruction |= inst.operands[0].reg << 12;
7185 encode_arm_shifter_operand (1);
7186}
b05fe5cf 7187
c19d1205
ZW
7188/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7189static void
7190do_mov16 (void)
7191{
b6895b4f
PB
7192 bfd_vma imm;
7193 bfd_boolean top;
7194
7195 top = (inst.instruction & 0x00400000) != 0;
7196 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7197 _(":lower16: not allowed this instruction"));
7198 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7199 _(":upper16: not allowed instruction"));
c19d1205 7200 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7201 if (inst.reloc.type == BFD_RELOC_UNUSED)
7202 {
7203 imm = inst.reloc.exp.X_add_number;
7204 /* The value is in two pieces: 0:11, 16:19. */
7205 inst.instruction |= (imm & 0x00000fff);
7206 inst.instruction |= (imm & 0x0000f000) << 4;
7207 }
b05fe5cf 7208}
b99bd4ef 7209
037e8744
JB
7210static void do_vfp_nsyn_opcode (const char *);
7211
7212static int
7213do_vfp_nsyn_mrs (void)
7214{
7215 if (inst.operands[0].isvec)
7216 {
7217 if (inst.operands[1].reg != 1)
7218 first_error (_("operand 1 must be FPSCR"));
7219 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7220 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7221 do_vfp_nsyn_opcode ("fmstat");
7222 }
7223 else if (inst.operands[1].isvec)
7224 do_vfp_nsyn_opcode ("fmrx");
7225 else
7226 return FAIL;
5f4273c7 7227
037e8744
JB
7228 return SUCCESS;
7229}
7230
7231static int
7232do_vfp_nsyn_msr (void)
7233{
7234 if (inst.operands[0].isvec)
7235 do_vfp_nsyn_opcode ("fmxr");
7236 else
7237 return FAIL;
7238
7239 return SUCCESS;
7240}
7241
b99bd4ef 7242static void
c19d1205 7243do_mrs (void)
b99bd4ef 7244{
037e8744
JB
7245 if (do_vfp_nsyn_mrs () == SUCCESS)
7246 return;
7247
c19d1205
ZW
7248 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7249 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7250 != (PSR_c|PSR_f),
7251 _("'CPSR' or 'SPSR' expected"));
7252 inst.instruction |= inst.operands[0].reg << 12;
7253 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7254}
b99bd4ef 7255
c19d1205
ZW
7256/* Two possible forms:
7257 "{C|S}PSR_<field>, Rm",
7258 "{C|S}PSR_f, #expression". */
b99bd4ef 7259
c19d1205
ZW
7260static void
7261do_msr (void)
7262{
037e8744
JB
7263 if (do_vfp_nsyn_msr () == SUCCESS)
7264 return;
7265
c19d1205
ZW
7266 inst.instruction |= inst.operands[0].imm;
7267 if (inst.operands[1].isreg)
7268 inst.instruction |= inst.operands[1].reg;
7269 else
b99bd4ef 7270 {
c19d1205
ZW
7271 inst.instruction |= INST_IMMEDIATE;
7272 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7273 inst.reloc.pc_rel = 0;
b99bd4ef 7274 }
b99bd4ef
NC
7275}
7276
c19d1205
ZW
7277static void
7278do_mul (void)
a737bd4d 7279{
c19d1205
ZW
7280 if (!inst.operands[2].present)
7281 inst.operands[2].reg = inst.operands[0].reg;
7282 inst.instruction |= inst.operands[0].reg << 16;
7283 inst.instruction |= inst.operands[1].reg;
7284 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7285
8fb9d7b9
MS
7286 if (inst.operands[0].reg == inst.operands[1].reg
7287 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7288 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7289}
7290
c19d1205
ZW
7291/* Long Multiply Parser
7292 UMULL RdLo, RdHi, Rm, Rs
7293 SMULL RdLo, RdHi, Rm, Rs
7294 UMLAL RdLo, RdHi, Rm, Rs
7295 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7296
7297static void
c19d1205 7298do_mull (void)
b99bd4ef 7299{
c19d1205
ZW
7300 inst.instruction |= inst.operands[0].reg << 12;
7301 inst.instruction |= inst.operands[1].reg << 16;
7302 inst.instruction |= inst.operands[2].reg;
7303 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7304
682b27ad
PB
7305 /* rdhi and rdlo must be different. */
7306 if (inst.operands[0].reg == inst.operands[1].reg)
7307 as_tsktsk (_("rdhi and rdlo must be different"));
7308
7309 /* rdhi, rdlo and rm must all be different before armv6. */
7310 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 7311 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 7312 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
7313 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7314}
b99bd4ef 7315
c19d1205
ZW
7316static void
7317do_nop (void)
7318{
7319 if (inst.operands[0].present)
7320 {
7321 /* Architectural NOP hints are CPSR sets with no bits selected. */
7322 inst.instruction &= 0xf0000000;
7323 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7324 }
b99bd4ef
NC
7325}
7326
c19d1205
ZW
7327/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7328 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7329 Condition defaults to COND_ALWAYS.
7330 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7331
7332static void
c19d1205 7333do_pkhbt (void)
b99bd4ef 7334{
c19d1205
ZW
7335 inst.instruction |= inst.operands[0].reg << 12;
7336 inst.instruction |= inst.operands[1].reg << 16;
7337 inst.instruction |= inst.operands[2].reg;
7338 if (inst.operands[3].present)
7339 encode_arm_shift (3);
7340}
b99bd4ef 7341
c19d1205 7342/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7343
c19d1205
ZW
7344static void
7345do_pkhtb (void)
7346{
7347 if (!inst.operands[3].present)
b99bd4ef 7348 {
c19d1205
ZW
7349 /* If the shift specifier is omitted, turn the instruction
7350 into pkhbt rd, rm, rn. */
7351 inst.instruction &= 0xfff00010;
7352 inst.instruction |= inst.operands[0].reg << 12;
7353 inst.instruction |= inst.operands[1].reg;
7354 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7355 }
7356 else
7357 {
c19d1205
ZW
7358 inst.instruction |= inst.operands[0].reg << 12;
7359 inst.instruction |= inst.operands[1].reg << 16;
7360 inst.instruction |= inst.operands[2].reg;
7361 encode_arm_shift (3);
b99bd4ef
NC
7362 }
7363}
7364
c19d1205
ZW
7365/* ARMv5TE: Preload-Cache
7366
7367 PLD <addr_mode>
7368
7369 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7370
7371static void
c19d1205 7372do_pld (void)
b99bd4ef 7373{
c19d1205
ZW
7374 constraint (!inst.operands[0].isreg,
7375 _("'[' expected after PLD mnemonic"));
7376 constraint (inst.operands[0].postind,
7377 _("post-indexed expression used in preload instruction"));
7378 constraint (inst.operands[0].writeback,
7379 _("writeback used in preload instruction"));
7380 constraint (!inst.operands[0].preind,
7381 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7382 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7383}
b99bd4ef 7384
62b3e311
PB
7385/* ARMv7: PLI <addr_mode> */
7386static void
7387do_pli (void)
7388{
7389 constraint (!inst.operands[0].isreg,
7390 _("'[' expected after PLI mnemonic"));
7391 constraint (inst.operands[0].postind,
7392 _("post-indexed expression used in preload instruction"));
7393 constraint (inst.operands[0].writeback,
7394 _("writeback used in preload instruction"));
7395 constraint (!inst.operands[0].preind,
7396 _("unindexed addressing used in preload instruction"));
7397 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7398 inst.instruction &= ~PRE_INDEX;
7399}
7400
c19d1205
ZW
7401static void
7402do_push_pop (void)
7403{
7404 inst.operands[1] = inst.operands[0];
7405 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7406 inst.operands[0].isreg = 1;
7407 inst.operands[0].writeback = 1;
7408 inst.operands[0].reg = REG_SP;
7409 do_ldmstm ();
7410}
b99bd4ef 7411
c19d1205
ZW
7412/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7413 word at the specified address and the following word
7414 respectively.
7415 Unconditionally executed.
7416 Error if Rn is R15. */
b99bd4ef 7417
c19d1205
ZW
7418static void
7419do_rfe (void)
7420{
7421 inst.instruction |= inst.operands[0].reg << 16;
7422 if (inst.operands[0].writeback)
7423 inst.instruction |= WRITE_BACK;
7424}
b99bd4ef 7425
c19d1205 7426/* ARM V6 ssat (argument parse). */
b99bd4ef 7427
c19d1205
ZW
7428static void
7429do_ssat (void)
7430{
7431 inst.instruction |= inst.operands[0].reg << 12;
7432 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7433 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7434
c19d1205
ZW
7435 if (inst.operands[3].present)
7436 encode_arm_shift (3);
b99bd4ef
NC
7437}
7438
c19d1205 7439/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7440
7441static void
c19d1205 7442do_usat (void)
b99bd4ef 7443{
c19d1205
ZW
7444 inst.instruction |= inst.operands[0].reg << 12;
7445 inst.instruction |= inst.operands[1].imm << 16;
7446 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7447
c19d1205
ZW
7448 if (inst.operands[3].present)
7449 encode_arm_shift (3);
b99bd4ef
NC
7450}
7451
c19d1205 7452/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7453
7454static void
c19d1205 7455do_ssat16 (void)
09d92015 7456{
c19d1205
ZW
7457 inst.instruction |= inst.operands[0].reg << 12;
7458 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7459 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7460}
7461
c19d1205
ZW
7462static void
7463do_usat16 (void)
a737bd4d 7464{
c19d1205
ZW
7465 inst.instruction |= inst.operands[0].reg << 12;
7466 inst.instruction |= inst.operands[1].imm << 16;
7467 inst.instruction |= inst.operands[2].reg;
7468}
a737bd4d 7469
c19d1205
ZW
7470/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7471 preserving the other bits.
a737bd4d 7472
c19d1205
ZW
7473 setend <endian_specifier>, where <endian_specifier> is either
7474 BE or LE. */
a737bd4d 7475
c19d1205
ZW
7476static void
7477do_setend (void)
7478{
7479 if (inst.operands[0].imm)
7480 inst.instruction |= 0x200;
a737bd4d
NC
7481}
7482
7483static void
c19d1205 7484do_shift (void)
a737bd4d 7485{
c19d1205
ZW
7486 unsigned int Rm = (inst.operands[1].present
7487 ? inst.operands[1].reg
7488 : inst.operands[0].reg);
a737bd4d 7489
c19d1205
ZW
7490 inst.instruction |= inst.operands[0].reg << 12;
7491 inst.instruction |= Rm;
7492 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7493 {
c19d1205
ZW
7494 inst.instruction |= inst.operands[2].reg << 8;
7495 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7496 }
7497 else
c19d1205 7498 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7499}
7500
09d92015 7501static void
3eb17e6b 7502do_smc (void)
09d92015 7503{
3eb17e6b 7504 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7505 inst.reloc.pc_rel = 0;
09d92015
MM
7506}
7507
09d92015 7508static void
c19d1205 7509do_swi (void)
09d92015 7510{
c19d1205
ZW
7511 inst.reloc.type = BFD_RELOC_ARM_SWI;
7512 inst.reloc.pc_rel = 0;
09d92015
MM
7513}
7514
c19d1205
ZW
7515/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7516 SMLAxy{cond} Rd,Rm,Rs,Rn
7517 SMLAWy{cond} Rd,Rm,Rs,Rn
7518 Error if any register is R15. */
e16bb312 7519
c19d1205
ZW
7520static void
7521do_smla (void)
e16bb312 7522{
c19d1205
ZW
7523 inst.instruction |= inst.operands[0].reg << 16;
7524 inst.instruction |= inst.operands[1].reg;
7525 inst.instruction |= inst.operands[2].reg << 8;
7526 inst.instruction |= inst.operands[3].reg << 12;
7527}
a737bd4d 7528
c19d1205
ZW
7529/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7530 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7531 Error if any register is R15.
7532 Warning if Rdlo == Rdhi. */
a737bd4d 7533
c19d1205
ZW
7534static void
7535do_smlal (void)
7536{
7537 inst.instruction |= inst.operands[0].reg << 12;
7538 inst.instruction |= inst.operands[1].reg << 16;
7539 inst.instruction |= inst.operands[2].reg;
7540 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 7541
c19d1205
ZW
7542 if (inst.operands[0].reg == inst.operands[1].reg)
7543 as_tsktsk (_("rdhi and rdlo must be different"));
7544}
a737bd4d 7545
c19d1205
ZW
7546/* ARM V5E (El Segundo) signed-multiply (argument parse)
7547 SMULxy{cond} Rd,Rm,Rs
7548 Error if any register is R15. */
a737bd4d 7549
c19d1205
ZW
7550static void
7551do_smul (void)
7552{
7553 inst.instruction |= inst.operands[0].reg << 16;
7554 inst.instruction |= inst.operands[1].reg;
7555 inst.instruction |= inst.operands[2].reg << 8;
7556}
a737bd4d 7557
b6702015
PB
7558/* ARM V6 srs (argument parse). The variable fields in the encoding are
7559 the same for both ARM and Thumb-2. */
a737bd4d 7560
c19d1205
ZW
7561static void
7562do_srs (void)
7563{
b6702015
PB
7564 int reg;
7565
7566 if (inst.operands[0].present)
7567 {
7568 reg = inst.operands[0].reg;
fdfde340 7569 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
7570 }
7571 else
fdfde340 7572 reg = REG_SP;
b6702015
PB
7573
7574 inst.instruction |= reg << 16;
7575 inst.instruction |= inst.operands[1].imm;
7576 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
7577 inst.instruction |= WRITE_BACK;
7578}
a737bd4d 7579
c19d1205 7580/* ARM V6 strex (argument parse). */
a737bd4d 7581
c19d1205
ZW
7582static void
7583do_strex (void)
7584{
7585 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7586 || inst.operands[2].postind || inst.operands[2].writeback
7587 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
7588 || inst.operands[2].negative
7589 /* See comment in do_ldrex(). */
7590 || (inst.operands[2].reg == REG_PC),
7591 BAD_ADDR_MODE);
a737bd4d 7592
c19d1205
ZW
7593 constraint (inst.operands[0].reg == inst.operands[1].reg
7594 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 7595
c19d1205
ZW
7596 constraint (inst.reloc.exp.X_op != O_constant
7597 || inst.reloc.exp.X_add_number != 0,
7598 _("offset must be zero in ARM encoding"));
a737bd4d 7599
c19d1205
ZW
7600 inst.instruction |= inst.operands[0].reg << 12;
7601 inst.instruction |= inst.operands[1].reg;
7602 inst.instruction |= inst.operands[2].reg << 16;
7603 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
7604}
7605
7606static void
c19d1205 7607do_strexd (void)
e16bb312 7608{
c19d1205
ZW
7609 constraint (inst.operands[1].reg % 2 != 0,
7610 _("even register required"));
7611 constraint (inst.operands[2].present
7612 && inst.operands[2].reg != inst.operands[1].reg + 1,
7613 _("can only store two consecutive registers"));
7614 /* If op 2 were present and equal to PC, this function wouldn't
7615 have been called in the first place. */
7616 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 7617
c19d1205
ZW
7618 constraint (inst.operands[0].reg == inst.operands[1].reg
7619 || inst.operands[0].reg == inst.operands[1].reg + 1
7620 || inst.operands[0].reg == inst.operands[3].reg,
7621 BAD_OVERLAP);
e16bb312 7622
c19d1205
ZW
7623 inst.instruction |= inst.operands[0].reg << 12;
7624 inst.instruction |= inst.operands[1].reg;
7625 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
7626}
7627
c19d1205
ZW
7628/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7629 extends it to 32-bits, and adds the result to a value in another
7630 register. You can specify a rotation by 0, 8, 16, or 24 bits
7631 before extracting the 16-bit value.
7632 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7633 Condition defaults to COND_ALWAYS.
7634 Error if any register uses R15. */
7635
e16bb312 7636static void
c19d1205 7637do_sxtah (void)
e16bb312 7638{
c19d1205
ZW
7639 inst.instruction |= inst.operands[0].reg << 12;
7640 inst.instruction |= inst.operands[1].reg << 16;
7641 inst.instruction |= inst.operands[2].reg;
7642 inst.instruction |= inst.operands[3].imm << 10;
7643}
e16bb312 7644
c19d1205 7645/* ARM V6 SXTH.
e16bb312 7646
c19d1205
ZW
7647 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7648 Condition defaults to COND_ALWAYS.
7649 Error if any register uses R15. */
e16bb312
NC
7650
7651static void
c19d1205 7652do_sxth (void)
e16bb312 7653{
c19d1205
ZW
7654 inst.instruction |= inst.operands[0].reg << 12;
7655 inst.instruction |= inst.operands[1].reg;
7656 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 7657}
c19d1205
ZW
7658\f
7659/* VFP instructions. In a logical order: SP variant first, monad
7660 before dyad, arithmetic then move then load/store. */
e16bb312
NC
7661
7662static void
c19d1205 7663do_vfp_sp_monadic (void)
e16bb312 7664{
5287ad62
JB
7665 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7666 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7667}
7668
7669static void
c19d1205 7670do_vfp_sp_dyadic (void)
e16bb312 7671{
5287ad62
JB
7672 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7673 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7674 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7675}
7676
7677static void
c19d1205 7678do_vfp_sp_compare_z (void)
e16bb312 7679{
5287ad62 7680 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
7681}
7682
7683static void
c19d1205 7684do_vfp_dp_sp_cvt (void)
e16bb312 7685{
5287ad62
JB
7686 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7687 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7688}
7689
7690static void
c19d1205 7691do_vfp_sp_dp_cvt (void)
e16bb312 7692{
5287ad62
JB
7693 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7694 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
7695}
7696
7697static void
c19d1205 7698do_vfp_reg_from_sp (void)
e16bb312 7699{
c19d1205 7700 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 7701 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
7702}
7703
7704static void
c19d1205 7705do_vfp_reg2_from_sp2 (void)
e16bb312 7706{
c19d1205
ZW
7707 constraint (inst.operands[2].imm != 2,
7708 _("only two consecutive VFP SP registers allowed here"));
7709 inst.instruction |= inst.operands[0].reg << 12;
7710 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 7711 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7712}
7713
7714static void
c19d1205 7715do_vfp_sp_from_reg (void)
e16bb312 7716{
5287ad62 7717 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 7718 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
7719}
7720
7721static void
c19d1205 7722do_vfp_sp2_from_reg2 (void)
e16bb312 7723{
c19d1205
ZW
7724 constraint (inst.operands[0].imm != 2,
7725 _("only two consecutive VFP SP registers allowed here"));
5287ad62 7726 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
7727 inst.instruction |= inst.operands[1].reg << 12;
7728 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
7729}
7730
7731static void
c19d1205 7732do_vfp_sp_ldst (void)
e16bb312 7733{
5287ad62 7734 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 7735 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7736}
7737
7738static void
c19d1205 7739do_vfp_dp_ldst (void)
e16bb312 7740{
5287ad62 7741 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 7742 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7743}
7744
c19d1205 7745
e16bb312 7746static void
c19d1205 7747vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7748{
c19d1205
ZW
7749 if (inst.operands[0].writeback)
7750 inst.instruction |= WRITE_BACK;
7751 else
7752 constraint (ldstm_type != VFP_LDSTMIA,
7753 _("this addressing mode requires base-register writeback"));
7754 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7755 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 7756 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
7757}
7758
7759static void
c19d1205 7760vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7761{
c19d1205 7762 int count;
e16bb312 7763
c19d1205
ZW
7764 if (inst.operands[0].writeback)
7765 inst.instruction |= WRITE_BACK;
7766 else
7767 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7768 _("this addressing mode requires base-register writeback"));
e16bb312 7769
c19d1205 7770 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7771 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 7772
c19d1205
ZW
7773 count = inst.operands[1].imm << 1;
7774 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7775 count += 1;
e16bb312 7776
c19d1205 7777 inst.instruction |= count;
e16bb312
NC
7778}
7779
7780static void
c19d1205 7781do_vfp_sp_ldstmia (void)
e16bb312 7782{
c19d1205 7783 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7784}
7785
7786static void
c19d1205 7787do_vfp_sp_ldstmdb (void)
e16bb312 7788{
c19d1205 7789 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7790}
7791
7792static void
c19d1205 7793do_vfp_dp_ldstmia (void)
e16bb312 7794{
c19d1205 7795 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7796}
7797
7798static void
c19d1205 7799do_vfp_dp_ldstmdb (void)
e16bb312 7800{
c19d1205 7801 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7802}
7803
7804static void
c19d1205 7805do_vfp_xp_ldstmia (void)
e16bb312 7806{
c19d1205
ZW
7807 vfp_dp_ldstm (VFP_LDSTMIAX);
7808}
e16bb312 7809
c19d1205
ZW
7810static void
7811do_vfp_xp_ldstmdb (void)
7812{
7813 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 7814}
5287ad62
JB
7815
7816static void
7817do_vfp_dp_rd_rm (void)
7818{
7819 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7820 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7821}
7822
7823static void
7824do_vfp_dp_rn_rd (void)
7825{
7826 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7827 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7828}
7829
7830static void
7831do_vfp_dp_rd_rn (void)
7832{
7833 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7834 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7835}
7836
7837static void
7838do_vfp_dp_rd_rn_rm (void)
7839{
7840 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7841 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7842 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7843}
7844
7845static void
7846do_vfp_dp_rd (void)
7847{
7848 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7849}
7850
7851static void
7852do_vfp_dp_rm_rd_rn (void)
7853{
7854 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7855 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7856 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7857}
7858
7859/* VFPv3 instructions. */
7860static void
7861do_vfp_sp_const (void)
7862{
7863 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
7864 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7865 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7866}
7867
7868static void
7869do_vfp_dp_const (void)
7870{
7871 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
7872 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7873 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7874}
7875
7876static void
7877vfp_conv (int srcsize)
7878{
7879 unsigned immbits = srcsize - inst.operands[1].imm;
7880 inst.instruction |= (immbits & 1) << 5;
7881 inst.instruction |= (immbits >> 1);
7882}
7883
7884static void
7885do_vfp_sp_conv_16 (void)
7886{
7887 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7888 vfp_conv (16);
7889}
7890
7891static void
7892do_vfp_dp_conv_16 (void)
7893{
7894 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7895 vfp_conv (16);
7896}
7897
7898static void
7899do_vfp_sp_conv_32 (void)
7900{
7901 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7902 vfp_conv (32);
7903}
7904
7905static void
7906do_vfp_dp_conv_32 (void)
7907{
7908 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7909 vfp_conv (32);
7910}
c19d1205
ZW
7911\f
7912/* FPA instructions. Also in a logical order. */
e16bb312 7913
c19d1205
ZW
7914static void
7915do_fpa_cmp (void)
7916{
7917 inst.instruction |= inst.operands[0].reg << 16;
7918 inst.instruction |= inst.operands[1].reg;
7919}
b99bd4ef
NC
7920
7921static void
c19d1205 7922do_fpa_ldmstm (void)
b99bd4ef 7923{
c19d1205
ZW
7924 inst.instruction |= inst.operands[0].reg << 12;
7925 switch (inst.operands[1].imm)
7926 {
7927 case 1: inst.instruction |= CP_T_X; break;
7928 case 2: inst.instruction |= CP_T_Y; break;
7929 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7930 case 4: break;
7931 default: abort ();
7932 }
b99bd4ef 7933
c19d1205
ZW
7934 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7935 {
7936 /* The instruction specified "ea" or "fd", so we can only accept
7937 [Rn]{!}. The instruction does not really support stacking or
7938 unstacking, so we have to emulate these by setting appropriate
7939 bits and offsets. */
7940 constraint (inst.reloc.exp.X_op != O_constant
7941 || inst.reloc.exp.X_add_number != 0,
7942 _("this instruction does not support indexing"));
b99bd4ef 7943
c19d1205
ZW
7944 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7945 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 7946
c19d1205
ZW
7947 if (!(inst.instruction & INDEX_UP))
7948 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 7949
c19d1205
ZW
7950 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7951 {
7952 inst.operands[2].preind = 0;
7953 inst.operands[2].postind = 1;
7954 }
7955 }
b99bd4ef 7956
c19d1205 7957 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 7958}
c19d1205
ZW
7959\f
7960/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 7961
c19d1205
ZW
7962static void
7963do_iwmmxt_tandorc (void)
7964{
7965 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7966}
b99bd4ef 7967
c19d1205
ZW
7968static void
7969do_iwmmxt_textrc (void)
7970{
7971 inst.instruction |= inst.operands[0].reg << 12;
7972 inst.instruction |= inst.operands[1].imm;
7973}
b99bd4ef
NC
7974
7975static void
c19d1205 7976do_iwmmxt_textrm (void)
b99bd4ef 7977{
c19d1205
ZW
7978 inst.instruction |= inst.operands[0].reg << 12;
7979 inst.instruction |= inst.operands[1].reg << 16;
7980 inst.instruction |= inst.operands[2].imm;
7981}
b99bd4ef 7982
c19d1205
ZW
7983static void
7984do_iwmmxt_tinsr (void)
7985{
7986 inst.instruction |= inst.operands[0].reg << 16;
7987 inst.instruction |= inst.operands[1].reg << 12;
7988 inst.instruction |= inst.operands[2].imm;
7989}
b99bd4ef 7990
c19d1205
ZW
7991static void
7992do_iwmmxt_tmia (void)
7993{
7994 inst.instruction |= inst.operands[0].reg << 5;
7995 inst.instruction |= inst.operands[1].reg;
7996 inst.instruction |= inst.operands[2].reg << 12;
7997}
b99bd4ef 7998
c19d1205
ZW
7999static void
8000do_iwmmxt_waligni (void)
8001{
8002 inst.instruction |= inst.operands[0].reg << 12;
8003 inst.instruction |= inst.operands[1].reg << 16;
8004 inst.instruction |= inst.operands[2].reg;
8005 inst.instruction |= inst.operands[3].imm << 20;
8006}
b99bd4ef 8007
2d447fca
JM
8008static void
8009do_iwmmxt_wmerge (void)
8010{
8011 inst.instruction |= inst.operands[0].reg << 12;
8012 inst.instruction |= inst.operands[1].reg << 16;
8013 inst.instruction |= inst.operands[2].reg;
8014 inst.instruction |= inst.operands[3].imm << 21;
8015}
8016
c19d1205
ZW
8017static void
8018do_iwmmxt_wmov (void)
8019{
8020 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8021 inst.instruction |= inst.operands[0].reg << 12;
8022 inst.instruction |= inst.operands[1].reg << 16;
8023 inst.instruction |= inst.operands[1].reg;
8024}
b99bd4ef 8025
c19d1205
ZW
8026static void
8027do_iwmmxt_wldstbh (void)
8028{
8f06b2d8 8029 int reloc;
c19d1205 8030 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8031 if (thumb_mode)
8032 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8033 else
8034 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8035 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8036}
8037
c19d1205
ZW
8038static void
8039do_iwmmxt_wldstw (void)
8040{
8041 /* RIWR_RIWC clears .isreg for a control register. */
8042 if (!inst.operands[0].isreg)
8043 {
8044 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8045 inst.instruction |= 0xf0000000;
8046 }
b99bd4ef 8047
c19d1205
ZW
8048 inst.instruction |= inst.operands[0].reg << 12;
8049 encode_arm_cp_address (1, TRUE, TRUE, 0);
8050}
b99bd4ef
NC
8051
8052static void
c19d1205 8053do_iwmmxt_wldstd (void)
b99bd4ef 8054{
c19d1205 8055 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8056 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8057 && inst.operands[1].immisreg)
8058 {
8059 inst.instruction &= ~0x1a000ff;
8060 inst.instruction |= (0xf << 28);
8061 if (inst.operands[1].preind)
8062 inst.instruction |= PRE_INDEX;
8063 if (!inst.operands[1].negative)
8064 inst.instruction |= INDEX_UP;
8065 if (inst.operands[1].writeback)
8066 inst.instruction |= WRITE_BACK;
8067 inst.instruction |= inst.operands[1].reg << 16;
8068 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8069 inst.instruction |= inst.operands[1].imm;
8070 }
8071 else
8072 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8073}
b99bd4ef 8074
c19d1205
ZW
8075static void
8076do_iwmmxt_wshufh (void)
8077{
8078 inst.instruction |= inst.operands[0].reg << 12;
8079 inst.instruction |= inst.operands[1].reg << 16;
8080 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8081 inst.instruction |= (inst.operands[2].imm & 0x0f);
8082}
b99bd4ef 8083
c19d1205
ZW
8084static void
8085do_iwmmxt_wzero (void)
8086{
8087 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8088 inst.instruction |= inst.operands[0].reg;
8089 inst.instruction |= inst.operands[0].reg << 12;
8090 inst.instruction |= inst.operands[0].reg << 16;
8091}
2d447fca
JM
8092
8093static void
8094do_iwmmxt_wrwrwr_or_imm5 (void)
8095{
8096 if (inst.operands[2].isreg)
8097 do_rd_rn_rm ();
8098 else {
8099 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8100 _("immediate operand requires iWMMXt2"));
8101 do_rd_rn ();
8102 if (inst.operands[2].imm == 0)
8103 {
8104 switch ((inst.instruction >> 20) & 0xf)
8105 {
8106 case 4:
8107 case 5:
8108 case 6:
5f4273c7 8109 case 7:
2d447fca
JM
8110 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8111 inst.operands[2].imm = 16;
8112 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8113 break;
8114 case 8:
8115 case 9:
8116 case 10:
8117 case 11:
8118 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8119 inst.operands[2].imm = 32;
8120 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8121 break;
8122 case 12:
8123 case 13:
8124 case 14:
8125 case 15:
8126 {
8127 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8128 unsigned long wrn;
8129 wrn = (inst.instruction >> 16) & 0xf;
8130 inst.instruction &= 0xff0fff0f;
8131 inst.instruction |= wrn;
8132 /* Bail out here; the instruction is now assembled. */
8133 return;
8134 }
8135 }
8136 }
8137 /* Map 32 -> 0, etc. */
8138 inst.operands[2].imm &= 0x1f;
8139 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8140 }
8141}
c19d1205
ZW
8142\f
8143/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8144 operations first, then control, shift, and load/store. */
b99bd4ef 8145
c19d1205 8146/* Insns like "foo X,Y,Z". */
b99bd4ef 8147
c19d1205
ZW
8148static void
8149do_mav_triple (void)
8150{
8151 inst.instruction |= inst.operands[0].reg << 16;
8152 inst.instruction |= inst.operands[1].reg;
8153 inst.instruction |= inst.operands[2].reg << 12;
8154}
b99bd4ef 8155
c19d1205
ZW
8156/* Insns like "foo W,X,Y,Z".
8157 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8158
c19d1205
ZW
8159static void
8160do_mav_quad (void)
8161{
8162 inst.instruction |= inst.operands[0].reg << 5;
8163 inst.instruction |= inst.operands[1].reg << 12;
8164 inst.instruction |= inst.operands[2].reg << 16;
8165 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8166}
8167
c19d1205
ZW
8168/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8169static void
8170do_mav_dspsc (void)
a737bd4d 8171{
c19d1205
ZW
8172 inst.instruction |= inst.operands[1].reg << 12;
8173}
a737bd4d 8174
c19d1205
ZW
8175/* Maverick shift immediate instructions.
8176 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8177 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8178
c19d1205
ZW
8179static void
8180do_mav_shift (void)
8181{
8182 int imm = inst.operands[2].imm;
a737bd4d 8183
c19d1205
ZW
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8186
c19d1205
ZW
8187 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8188 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8189 Bit 4 should be 0. */
8190 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8191
c19d1205
ZW
8192 inst.instruction |= imm;
8193}
8194\f
8195/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8196
c19d1205
ZW
8197/* Xscale multiply-accumulate (argument parse)
8198 MIAcc acc0,Rm,Rs
8199 MIAPHcc acc0,Rm,Rs
8200 MIAxycc acc0,Rm,Rs. */
a737bd4d 8201
c19d1205
ZW
8202static void
8203do_xsc_mia (void)
8204{
8205 inst.instruction |= inst.operands[1].reg;
8206 inst.instruction |= inst.operands[2].reg << 12;
8207}
a737bd4d 8208
c19d1205 8209/* Xscale move-accumulator-register (argument parse)
a737bd4d 8210
c19d1205 8211 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8212
c19d1205
ZW
8213static void
8214do_xsc_mar (void)
8215{
8216 inst.instruction |= inst.operands[1].reg << 12;
8217 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8218}
8219
c19d1205 8220/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8221
c19d1205 8222 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8223
8224static void
c19d1205 8225do_xsc_mra (void)
b99bd4ef 8226{
c19d1205
ZW
8227 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8228 inst.instruction |= inst.operands[0].reg << 12;
8229 inst.instruction |= inst.operands[1].reg << 16;
8230}
8231\f
8232/* Encoding functions relevant only to Thumb. */
b99bd4ef 8233
c19d1205
ZW
8234/* inst.operands[i] is a shifted-register operand; encode
8235 it into inst.instruction in the format used by Thumb32. */
8236
8237static void
8238encode_thumb32_shifted_operand (int i)
8239{
8240 unsigned int value = inst.reloc.exp.X_add_number;
8241 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8242
9c3c69f2
PB
8243 constraint (inst.operands[i].immisreg,
8244 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8245 inst.instruction |= inst.operands[i].reg;
8246 if (shift == SHIFT_RRX)
8247 inst.instruction |= SHIFT_ROR << 4;
8248 else
b99bd4ef 8249 {
c19d1205
ZW
8250 constraint (inst.reloc.exp.X_op != O_constant,
8251 _("expression too complex"));
8252
8253 constraint (value > 32
8254 || (value == 32 && (shift == SHIFT_LSL
8255 || shift == SHIFT_ROR)),
8256 _("shift expression is too large"));
8257
8258 if (value == 0)
8259 shift = SHIFT_LSL;
8260 else if (value == 32)
8261 value = 0;
8262
8263 inst.instruction |= shift << 4;
8264 inst.instruction |= (value & 0x1c) << 10;
8265 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8266 }
c19d1205 8267}
b99bd4ef 8268
b99bd4ef 8269
c19d1205
ZW
8270/* inst.operands[i] was set up by parse_address. Encode it into a
8271 Thumb32 format load or store instruction. Reject forms that cannot
8272 be used with such instructions. If is_t is true, reject forms that
8273 cannot be used with a T instruction; if is_d is true, reject forms
8274 that cannot be used with a D instruction. */
b99bd4ef 8275
c19d1205
ZW
8276static void
8277encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8278{
8279 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8280
8281 constraint (!inst.operands[i].isreg,
53365c0d 8282 _("Instruction does not support =N addresses"));
b99bd4ef 8283
c19d1205
ZW
8284 inst.instruction |= inst.operands[i].reg << 16;
8285 if (inst.operands[i].immisreg)
b99bd4ef 8286 {
c19d1205
ZW
8287 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8288 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8289 constraint (inst.operands[i].negative,
8290 _("Thumb does not support negative register indexing"));
8291 constraint (inst.operands[i].postind,
8292 _("Thumb does not support register post-indexing"));
8293 constraint (inst.operands[i].writeback,
8294 _("Thumb does not support register indexing with writeback"));
8295 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8296 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8297
f40d1643 8298 inst.instruction |= inst.operands[i].imm;
c19d1205 8299 if (inst.operands[i].shifted)
b99bd4ef 8300 {
c19d1205
ZW
8301 constraint (inst.reloc.exp.X_op != O_constant,
8302 _("expression too complex"));
9c3c69f2
PB
8303 constraint (inst.reloc.exp.X_add_number < 0
8304 || inst.reloc.exp.X_add_number > 3,
c19d1205 8305 _("shift out of range"));
9c3c69f2 8306 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8307 }
8308 inst.reloc.type = BFD_RELOC_UNUSED;
8309 }
8310 else if (inst.operands[i].preind)
8311 {
8312 constraint (is_pc && inst.operands[i].writeback,
8313 _("cannot use writeback with PC-relative addressing"));
f40d1643 8314 constraint (is_t && inst.operands[i].writeback,
c19d1205
ZW
8315 _("cannot use writeback with this instruction"));
8316
8317 if (is_d)
8318 {
8319 inst.instruction |= 0x01000000;
8320 if (inst.operands[i].writeback)
8321 inst.instruction |= 0x00200000;
b99bd4ef 8322 }
c19d1205 8323 else
b99bd4ef 8324 {
c19d1205
ZW
8325 inst.instruction |= 0x00000c00;
8326 if (inst.operands[i].writeback)
8327 inst.instruction |= 0x00000100;
b99bd4ef 8328 }
c19d1205 8329 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8330 }
c19d1205 8331 else if (inst.operands[i].postind)
b99bd4ef 8332 {
c19d1205
ZW
8333 assert (inst.operands[i].writeback);
8334 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8335 constraint (is_t, _("cannot use post-indexing with this instruction"));
8336
8337 if (is_d)
8338 inst.instruction |= 0x00200000;
8339 else
8340 inst.instruction |= 0x00000900;
8341 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8342 }
8343 else /* unindexed - only for coprocessor */
8344 inst.error = _("instruction does not accept unindexed addressing");
8345}
8346
8347/* Table of Thumb instructions which exist in both 16- and 32-bit
8348 encodings (the latter only in post-V6T2 cores). The index is the
8349 value used in the insns table below. When there is more than one
8350 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8351 holds variant (1).
8352 Also contains several pseudo-instructions used during relaxation. */
c19d1205
ZW
8353#define T16_32_TAB \
8354 X(adc, 4140, eb400000), \
8355 X(adcs, 4140, eb500000), \
8356 X(add, 1c00, eb000000), \
8357 X(adds, 1c00, eb100000), \
0110f2b8
PB
8358 X(addi, 0000, f1000000), \
8359 X(addis, 0000, f1100000), \
8360 X(add_pc,000f, f20f0000), \
8361 X(add_sp,000d, f10d0000), \
e9f89963 8362 X(adr, 000f, f20f0000), \
c19d1205
ZW
8363 X(and, 4000, ea000000), \
8364 X(ands, 4000, ea100000), \
8365 X(asr, 1000, fa40f000), \
8366 X(asrs, 1000, fa50f000), \
0110f2b8
PB
8367 X(b, e000, f000b000), \
8368 X(bcond, d000, f0008000), \
c19d1205
ZW
8369 X(bic, 4380, ea200000), \
8370 X(bics, 4380, ea300000), \
8371 X(cmn, 42c0, eb100f00), \
8372 X(cmp, 2800, ebb00f00), \
8373 X(cpsie, b660, f3af8400), \
8374 X(cpsid, b670, f3af8600), \
8375 X(cpy, 4600, ea4f0000), \
155257ea 8376 X(dec_sp,80dd, f1ad0d00), \
c19d1205
ZW
8377 X(eor, 4040, ea800000), \
8378 X(eors, 4040, ea900000), \
0110f2b8 8379 X(inc_sp,00dd, f10d0d00), \
c19d1205
ZW
8380 X(ldmia, c800, e8900000), \
8381 X(ldr, 6800, f8500000), \
8382 X(ldrb, 7800, f8100000), \
8383 X(ldrh, 8800, f8300000), \
8384 X(ldrsb, 5600, f9100000), \
8385 X(ldrsh, 5e00, f9300000), \
0110f2b8
PB
8386 X(ldr_pc,4800, f85f0000), \
8387 X(ldr_pc2,4800, f85f0000), \
8388 X(ldr_sp,9800, f85d0000), \
c19d1205
ZW
8389 X(lsl, 0000, fa00f000), \
8390 X(lsls, 0000, fa10f000), \
8391 X(lsr, 0800, fa20f000), \
8392 X(lsrs, 0800, fa30f000), \
8393 X(mov, 2000, ea4f0000), \
8394 X(movs, 2000, ea5f0000), \
8395 X(mul, 4340, fb00f000), \
8396 X(muls, 4340, ffffffff), /* no 32b muls */ \
8397 X(mvn, 43c0, ea6f0000), \
8398 X(mvns, 43c0, ea7f0000), \
8399 X(neg, 4240, f1c00000), /* rsb #0 */ \
8400 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8401 X(orr, 4300, ea400000), \
8402 X(orrs, 4300, ea500000), \
e9f89963
PB
8403 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8404 X(push, b400, e92d0000), /* stmdb sp!,... */ \
c19d1205
ZW
8405 X(rev, ba00, fa90f080), \
8406 X(rev16, ba40, fa90f090), \
8407 X(revsh, bac0, fa90f0b0), \
8408 X(ror, 41c0, fa60f000), \
8409 X(rors, 41c0, fa70f000), \
8410 X(sbc, 4180, eb600000), \
8411 X(sbcs, 4180, eb700000), \
8412 X(stmia, c000, e8800000), \
8413 X(str, 6000, f8400000), \
8414 X(strb, 7000, f8000000), \
8415 X(strh, 8000, f8200000), \
0110f2b8 8416 X(str_sp,9000, f84d0000), \
c19d1205
ZW
8417 X(sub, 1e00, eba00000), \
8418 X(subs, 1e00, ebb00000), \
0110f2b8
PB
8419 X(subi, 8000, f1a00000), \
8420 X(subis, 8000, f1b00000), \
c19d1205
ZW
8421 X(sxtb, b240, fa4ff080), \
8422 X(sxth, b200, fa0ff080), \
8423 X(tst, 4200, ea100f00), \
8424 X(uxtb, b2c0, fa5ff080), \
8425 X(uxth, b280, fa1ff080), \
8426 X(nop, bf00, f3af8000), \
8427 X(yield, bf10, f3af8001), \
8428 X(wfe, bf20, f3af8002), \
8429 X(wfi, bf30, f3af8003), \
8430 X(sev, bf40, f3af9004), /* typo, 8004? */
8431
8432/* To catch errors in encoding functions, the codes are all offset by
8433 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8434 as 16-bit instructions. */
8435#define X(a,b,c) T_MNEM_##a
8436enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8437#undef X
8438
8439#define X(a,b,c) 0x##b
8440static const unsigned short thumb_op16[] = { T16_32_TAB };
8441#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8442#undef X
8443
8444#define X(a,b,c) 0x##c
8445static const unsigned int thumb_op32[] = { T16_32_TAB };
8446#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8447#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8448#undef X
8449#undef T16_32_TAB
8450
8451/* Thumb instruction encoders, in alphabetical order. */
8452
92e90b6e
PB
8453/* ADDW or SUBW. */
8454static void
8455do_t_add_sub_w (void)
8456{
8457 int Rd, Rn;
8458
8459 Rd = inst.operands[0].reg;
8460 Rn = inst.operands[1].reg;
8461
fdfde340
JM
8462 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this is the
8463 SP-{plus,minute}-immediate form of the instruction. */
8464 reject_bad_reg (Rd);
8465
92e90b6e
PB
8466 inst.instruction |= (Rn << 16) | (Rd << 8);
8467 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8468}
8469
c19d1205
ZW
8470/* Parse an add or subtract instruction. We get here with inst.instruction
8471 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8472
8473static void
8474do_t_add_sub (void)
8475{
8476 int Rd, Rs, Rn;
8477
8478 Rd = inst.operands[0].reg;
8479 Rs = (inst.operands[1].present
8480 ? inst.operands[1].reg /* Rd, Rs, foo */
8481 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8482
8483 if (unified_syntax)
8484 {
0110f2b8
PB
8485 bfd_boolean flags;
8486 bfd_boolean narrow;
8487 int opcode;
8488
8489 flags = (inst.instruction == T_MNEM_adds
8490 || inst.instruction == T_MNEM_subs);
8491 if (flags)
8492 narrow = (current_it_mask == 0);
8493 else
8494 narrow = (current_it_mask != 0);
c19d1205 8495 if (!inst.operands[2].isreg)
b99bd4ef 8496 {
16805f35
PB
8497 int add;
8498
fdfde340
JM
8499 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8500
16805f35
PB
8501 add = (inst.instruction == T_MNEM_add
8502 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8503 opcode = 0;
8504 if (inst.size_req != 4)
8505 {
0110f2b8
PB
8506 /* Attempt to use a narrow opcode, with relaxation if
8507 appropriate. */
8508 if (Rd == REG_SP && Rs == REG_SP && !flags)
8509 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8510 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8511 opcode = T_MNEM_add_sp;
8512 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8513 opcode = T_MNEM_add_pc;
8514 else if (Rd <= 7 && Rs <= 7 && narrow)
8515 {
8516 if (flags)
8517 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8518 else
8519 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8520 }
8521 if (opcode)
8522 {
8523 inst.instruction = THUMB_OP16(opcode);
8524 inst.instruction |= (Rd << 4) | Rs;
8525 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8526 if (inst.size_req != 2)
8527 inst.relax = opcode;
8528 }
8529 else
8530 constraint (inst.size_req == 2, BAD_HIREG);
8531 }
8532 if (inst.size_req == 4
8533 || (inst.size_req != 2 && !opcode))
8534 {
efd81785
PB
8535 if (Rd == REG_PC)
8536 {
fdfde340 8537 constraint (add, BAD_PC);
efd81785
PB
8538 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8539 _("only SUBS PC, LR, #const allowed"));
8540 constraint (inst.reloc.exp.X_op != O_constant,
8541 _("expression too complex"));
8542 constraint (inst.reloc.exp.X_add_number < 0
8543 || inst.reloc.exp.X_add_number > 0xff,
8544 _("immediate value out of range"));
8545 inst.instruction = T2_SUBS_PC_LR
8546 | inst.reloc.exp.X_add_number;
8547 inst.reloc.type = BFD_RELOC_UNUSED;
8548 return;
8549 }
8550 else if (Rs == REG_PC)
16805f35
PB
8551 {
8552 /* Always use addw/subw. */
8553 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8554 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8555 }
8556 else
8557 {
8558 inst.instruction = THUMB_OP32 (inst.instruction);
8559 inst.instruction = (inst.instruction & 0xe1ffffff)
8560 | 0x10000000;
8561 if (flags)
8562 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8563 else
8564 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8565 }
dc4503c6
PB
8566 inst.instruction |= Rd << 8;
8567 inst.instruction |= Rs << 16;
0110f2b8 8568 }
b99bd4ef 8569 }
c19d1205
ZW
8570 else
8571 {
8572 Rn = inst.operands[2].reg;
8573 /* See if we can do this with a 16-bit instruction. */
8574 if (!inst.operands[2].shifted && inst.size_req != 4)
8575 {
e27ec89e
PB
8576 if (Rd > 7 || Rs > 7 || Rn > 7)
8577 narrow = FALSE;
8578
8579 if (narrow)
c19d1205 8580 {
e27ec89e
PB
8581 inst.instruction = ((inst.instruction == T_MNEM_adds
8582 || inst.instruction == T_MNEM_add)
c19d1205
ZW
8583 ? T_OPCODE_ADD_R3
8584 : T_OPCODE_SUB_R3);
8585 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8586 return;
8587 }
b99bd4ef 8588
7e806470 8589 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 8590 {
7e806470
PB
8591 /* Thumb-1 cores (except v6-M) require at least one high
8592 register in a narrow non flag setting add. */
8593 if (Rd > 7 || Rn > 7
8594 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
8595 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 8596 {
7e806470
PB
8597 if (Rd == Rn)
8598 {
8599 Rn = Rs;
8600 Rs = Rd;
8601 }
c19d1205
ZW
8602 inst.instruction = T_OPCODE_ADD_HI;
8603 inst.instruction |= (Rd & 8) << 4;
8604 inst.instruction |= (Rd & 7);
8605 inst.instruction |= Rn << 3;
8606 return;
8607 }
c19d1205
ZW
8608 }
8609 }
fdfde340
JM
8610
8611 constraint (Rd == REG_PC, BAD_PC);
8612 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8613 constraint (Rs == REG_PC, BAD_PC);
8614 reject_bad_reg (Rn);
8615
c19d1205
ZW
8616 /* If we get here, it can't be done in 16 bits. */
8617 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8618 _("shift must be constant"));
8619 inst.instruction = THUMB_OP32 (inst.instruction);
8620 inst.instruction |= Rd << 8;
8621 inst.instruction |= Rs << 16;
8622 encode_thumb32_shifted_operand (2);
8623 }
8624 }
8625 else
8626 {
8627 constraint (inst.instruction == T_MNEM_adds
8628 || inst.instruction == T_MNEM_subs,
8629 BAD_THUMB32);
b99bd4ef 8630
c19d1205 8631 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 8632 {
c19d1205
ZW
8633 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8634 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8635 BAD_HIREG);
8636
8637 inst.instruction = (inst.instruction == T_MNEM_add
8638 ? 0x0000 : 0x8000);
8639 inst.instruction |= (Rd << 4) | Rs;
8640 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
8641 return;
8642 }
8643
c19d1205
ZW
8644 Rn = inst.operands[2].reg;
8645 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 8646
c19d1205
ZW
8647 /* We now have Rd, Rs, and Rn set to registers. */
8648 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 8649 {
c19d1205
ZW
8650 /* Can't do this for SUB. */
8651 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8652 inst.instruction = T_OPCODE_ADD_HI;
8653 inst.instruction |= (Rd & 8) << 4;
8654 inst.instruction |= (Rd & 7);
8655 if (Rs == Rd)
8656 inst.instruction |= Rn << 3;
8657 else if (Rn == Rd)
8658 inst.instruction |= Rs << 3;
8659 else
8660 constraint (1, _("dest must overlap one source register"));
8661 }
8662 else
8663 {
8664 inst.instruction = (inst.instruction == T_MNEM_add
8665 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8666 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 8667 }
b99bd4ef 8668 }
b99bd4ef
NC
8669}
8670
c19d1205
ZW
8671static void
8672do_t_adr (void)
8673{
fdfde340
JM
8674 unsigned Rd;
8675
8676 Rd = inst.operands[0].reg;
8677 reject_bad_reg (Rd);
8678
8679 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
8680 {
8681 /* Defer to section relaxation. */
8682 inst.relax = inst.instruction;
8683 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 8684 inst.instruction |= Rd << 4;
0110f2b8
PB
8685 }
8686 else if (unified_syntax && inst.size_req != 2)
e9f89963 8687 {
0110f2b8 8688 /* Generate a 32-bit opcode. */
e9f89963 8689 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 8690 inst.instruction |= Rd << 8;
e9f89963
PB
8691 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8692 inst.reloc.pc_rel = 1;
8693 }
8694 else
8695 {
0110f2b8 8696 /* Generate a 16-bit opcode. */
e9f89963
PB
8697 inst.instruction = THUMB_OP16 (inst.instruction);
8698 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8699 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8700 inst.reloc.pc_rel = 1;
b99bd4ef 8701
fdfde340 8702 inst.instruction |= Rd << 4;
e9f89963 8703 }
c19d1205 8704}
b99bd4ef 8705
c19d1205
ZW
8706/* Arithmetic instructions for which there is just one 16-bit
8707 instruction encoding, and it allows only two low registers.
8708 For maximal compatibility with ARM syntax, we allow three register
8709 operands even when Thumb-32 instructions are not available, as long
8710 as the first two are identical. For instance, both "sbc r0,r1" and
8711 "sbc r0,r0,r1" are allowed. */
b99bd4ef 8712static void
c19d1205 8713do_t_arit3 (void)
b99bd4ef 8714{
c19d1205 8715 int Rd, Rs, Rn;
b99bd4ef 8716
c19d1205
ZW
8717 Rd = inst.operands[0].reg;
8718 Rs = (inst.operands[1].present
8719 ? inst.operands[1].reg /* Rd, Rs, foo */
8720 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8721 Rn = inst.operands[2].reg;
b99bd4ef 8722
fdfde340
JM
8723 reject_bad_reg (Rd);
8724 reject_bad_reg (Rs);
8725 if (inst.operands[2].isreg)
8726 reject_bad_reg (Rn);
8727
c19d1205 8728 if (unified_syntax)
b99bd4ef 8729 {
c19d1205
ZW
8730 if (!inst.operands[2].isreg)
8731 {
8732 /* For an immediate, we always generate a 32-bit opcode;
8733 section relaxation will shrink it later if possible. */
8734 inst.instruction = THUMB_OP32 (inst.instruction);
8735 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8736 inst.instruction |= Rd << 8;
8737 inst.instruction |= Rs << 16;
8738 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8739 }
8740 else
8741 {
e27ec89e
PB
8742 bfd_boolean narrow;
8743
c19d1205 8744 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8745 if (THUMB_SETS_FLAGS (inst.instruction))
8746 narrow = current_it_mask == 0;
8747 else
8748 narrow = current_it_mask != 0;
8749
8750 if (Rd > 7 || Rn > 7 || Rs > 7)
8751 narrow = FALSE;
8752 if (inst.operands[2].shifted)
8753 narrow = FALSE;
8754 if (inst.size_req == 4)
8755 narrow = FALSE;
8756
8757 if (narrow
c19d1205
ZW
8758 && Rd == Rs)
8759 {
8760 inst.instruction = THUMB_OP16 (inst.instruction);
8761 inst.instruction |= Rd;
8762 inst.instruction |= Rn << 3;
8763 return;
8764 }
b99bd4ef 8765
c19d1205
ZW
8766 /* If we get here, it can't be done in 16 bits. */
8767 constraint (inst.operands[2].shifted
8768 && inst.operands[2].immisreg,
8769 _("shift must be constant"));
8770 inst.instruction = THUMB_OP32 (inst.instruction);
8771 inst.instruction |= Rd << 8;
8772 inst.instruction |= Rs << 16;
8773 encode_thumb32_shifted_operand (2);
8774 }
a737bd4d 8775 }
c19d1205 8776 else
b99bd4ef 8777 {
c19d1205
ZW
8778 /* On its face this is a lie - the instruction does set the
8779 flags. However, the only supported mnemonic in this mode
8780 says it doesn't. */
8781 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8782
c19d1205
ZW
8783 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8784 _("unshifted register required"));
8785 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8786 constraint (Rd != Rs,
8787 _("dest and source1 must be the same register"));
a737bd4d 8788
c19d1205
ZW
8789 inst.instruction = THUMB_OP16 (inst.instruction);
8790 inst.instruction |= Rd;
8791 inst.instruction |= Rn << 3;
b99bd4ef 8792 }
a737bd4d 8793}
b99bd4ef 8794
c19d1205
ZW
8795/* Similarly, but for instructions where the arithmetic operation is
8796 commutative, so we can allow either of them to be different from
8797 the destination operand in a 16-bit instruction. For instance, all
8798 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8799 accepted. */
8800static void
8801do_t_arit3c (void)
a737bd4d 8802{
c19d1205 8803 int Rd, Rs, Rn;
b99bd4ef 8804
c19d1205
ZW
8805 Rd = inst.operands[0].reg;
8806 Rs = (inst.operands[1].present
8807 ? inst.operands[1].reg /* Rd, Rs, foo */
8808 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8809 Rn = inst.operands[2].reg;
fdfde340
JM
8810
8811 reject_bad_reg (Rd);
8812 reject_bad_reg (Rs);
8813 if (inst.operands[2].isreg)
8814 reject_bad_reg (Rn);
a737bd4d 8815
c19d1205 8816 if (unified_syntax)
a737bd4d 8817 {
c19d1205 8818 if (!inst.operands[2].isreg)
b99bd4ef 8819 {
c19d1205
ZW
8820 /* For an immediate, we always generate a 32-bit opcode;
8821 section relaxation will shrink it later if possible. */
8822 inst.instruction = THUMB_OP32 (inst.instruction);
8823 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8824 inst.instruction |= Rd << 8;
8825 inst.instruction |= Rs << 16;
8826 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 8827 }
c19d1205 8828 else
a737bd4d 8829 {
e27ec89e
PB
8830 bfd_boolean narrow;
8831
c19d1205 8832 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8833 if (THUMB_SETS_FLAGS (inst.instruction))
8834 narrow = current_it_mask == 0;
8835 else
8836 narrow = current_it_mask != 0;
8837
8838 if (Rd > 7 || Rn > 7 || Rs > 7)
8839 narrow = FALSE;
8840 if (inst.operands[2].shifted)
8841 narrow = FALSE;
8842 if (inst.size_req == 4)
8843 narrow = FALSE;
8844
8845 if (narrow)
a737bd4d 8846 {
c19d1205 8847 if (Rd == Rs)
a737bd4d 8848 {
c19d1205
ZW
8849 inst.instruction = THUMB_OP16 (inst.instruction);
8850 inst.instruction |= Rd;
8851 inst.instruction |= Rn << 3;
8852 return;
a737bd4d 8853 }
c19d1205 8854 if (Rd == Rn)
a737bd4d 8855 {
c19d1205
ZW
8856 inst.instruction = THUMB_OP16 (inst.instruction);
8857 inst.instruction |= Rd;
8858 inst.instruction |= Rs << 3;
8859 return;
a737bd4d
NC
8860 }
8861 }
c19d1205
ZW
8862
8863 /* If we get here, it can't be done in 16 bits. */
8864 constraint (inst.operands[2].shifted
8865 && inst.operands[2].immisreg,
8866 _("shift must be constant"));
8867 inst.instruction = THUMB_OP32 (inst.instruction);
8868 inst.instruction |= Rd << 8;
8869 inst.instruction |= Rs << 16;
8870 encode_thumb32_shifted_operand (2);
a737bd4d 8871 }
b99bd4ef 8872 }
c19d1205
ZW
8873 else
8874 {
8875 /* On its face this is a lie - the instruction does set the
8876 flags. However, the only supported mnemonic in this mode
8877 says it doesn't. */
8878 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8879
c19d1205
ZW
8880 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8881 _("unshifted register required"));
8882 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8883
8884 inst.instruction = THUMB_OP16 (inst.instruction);
8885 inst.instruction |= Rd;
8886
8887 if (Rd == Rs)
8888 inst.instruction |= Rn << 3;
8889 else if (Rd == Rn)
8890 inst.instruction |= Rs << 3;
8891 else
8892 constraint (1, _("dest must overlap one source register"));
8893 }
a737bd4d
NC
8894}
8895
62b3e311
PB
8896static void
8897do_t_barrier (void)
8898{
8899 if (inst.operands[0].present)
8900 {
8901 constraint ((inst.instruction & 0xf0) != 0x40
8902 && inst.operands[0].imm != 0xf,
bd3ba5d1 8903 _("bad barrier type"));
62b3e311
PB
8904 inst.instruction |= inst.operands[0].imm;
8905 }
8906 else
8907 inst.instruction |= 0xf;
8908}
8909
c19d1205
ZW
8910static void
8911do_t_bfc (void)
a737bd4d 8912{
fdfde340 8913 unsigned Rd;
c19d1205
ZW
8914 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8915 constraint (msb > 32, _("bit-field extends past end of register"));
8916 /* The instruction encoding stores the LSB and MSB,
8917 not the LSB and width. */
fdfde340
JM
8918 Rd = inst.operands[0].reg;
8919 reject_bad_reg (Rd);
8920 inst.instruction |= Rd << 8;
c19d1205
ZW
8921 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8922 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8923 inst.instruction |= msb - 1;
b99bd4ef
NC
8924}
8925
c19d1205
ZW
8926static void
8927do_t_bfi (void)
b99bd4ef 8928{
fdfde340 8929 int Rd, Rn;
c19d1205 8930 unsigned int msb;
b99bd4ef 8931
fdfde340
JM
8932 Rd = inst.operands[0].reg;
8933 reject_bad_reg (Rd);
8934
c19d1205
ZW
8935 /* #0 in second position is alternative syntax for bfc, which is
8936 the same instruction but with REG_PC in the Rm field. */
8937 if (!inst.operands[1].isreg)
fdfde340
JM
8938 Rn = REG_PC;
8939 else
8940 {
8941 Rn = inst.operands[1].reg;
8942 reject_bad_reg (Rn);
8943 }
b99bd4ef 8944
c19d1205
ZW
8945 msb = inst.operands[2].imm + inst.operands[3].imm;
8946 constraint (msb > 32, _("bit-field extends past end of register"));
8947 /* The instruction encoding stores the LSB and MSB,
8948 not the LSB and width. */
fdfde340
JM
8949 inst.instruction |= Rd << 8;
8950 inst.instruction |= Rn << 16;
c19d1205
ZW
8951 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8952 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8953 inst.instruction |= msb - 1;
b99bd4ef
NC
8954}
8955
c19d1205
ZW
8956static void
8957do_t_bfx (void)
b99bd4ef 8958{
fdfde340
JM
8959 unsigned Rd, Rn;
8960
8961 Rd = inst.operands[0].reg;
8962 Rn = inst.operands[1].reg;
8963
8964 reject_bad_reg (Rd);
8965 reject_bad_reg (Rn);
8966
c19d1205
ZW
8967 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8968 _("bit-field extends past end of register"));
fdfde340
JM
8969 inst.instruction |= Rd << 8;
8970 inst.instruction |= Rn << 16;
c19d1205
ZW
8971 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8972 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8973 inst.instruction |= inst.operands[3].imm - 1;
8974}
b99bd4ef 8975
c19d1205
ZW
8976/* ARM V5 Thumb BLX (argument parse)
8977 BLX <target_addr> which is BLX(1)
8978 BLX <Rm> which is BLX(2)
8979 Unfortunately, there are two different opcodes for this mnemonic.
8980 So, the insns[].value is not used, and the code here zaps values
8981 into inst.instruction.
b99bd4ef 8982
c19d1205
ZW
8983 ??? How to take advantage of the additional two bits of displacement
8984 available in Thumb32 mode? Need new relocation? */
b99bd4ef 8985
c19d1205
ZW
8986static void
8987do_t_blx (void)
8988{
dfa9f0d5 8989 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205 8990 if (inst.operands[0].isreg)
fdfde340
JM
8991 {
8992 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8993 /* We have a register, so this is BLX(2). */
8994 inst.instruction |= inst.operands[0].reg << 3;
8995 }
b99bd4ef
NC
8996 else
8997 {
c19d1205 8998 /* No register. This must be BLX(1). */
2fc8bdac 8999 inst.instruction = 0xf000e800;
39b41c9c
PB
9000#ifdef OBJ_ELF
9001 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9002 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9003 else
9004#endif
9005 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 9006 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9007 }
9008}
9009
c19d1205
ZW
9010static void
9011do_t_branch (void)
b99bd4ef 9012{
0110f2b8 9013 int opcode;
dfa9f0d5
PB
9014 int cond;
9015
9016 if (current_it_mask)
9017 {
9018 /* Conditional branches inside IT blocks are encoded as unconditional
9019 branches. */
9020 cond = COND_ALWAYS;
9021 /* A branch must be the last instruction in an IT block. */
9022 constraint (current_it_mask != 0x10, BAD_BRANCH);
9023 }
9024 else
9025 cond = inst.cond;
9026
9027 if (cond != COND_ALWAYS)
0110f2b8
PB
9028 opcode = T_MNEM_bcond;
9029 else
9030 opcode = inst.instruction;
9031
9032 if (unified_syntax && inst.size_req == 4)
c19d1205 9033 {
0110f2b8 9034 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9035 if (cond == COND_ALWAYS)
0110f2b8 9036 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9037 else
9038 {
dfa9f0d5
PB
9039 assert (cond != 0xF);
9040 inst.instruction |= cond << 22;
c19d1205
ZW
9041 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9042 }
9043 }
b99bd4ef
NC
9044 else
9045 {
0110f2b8 9046 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9047 if (cond == COND_ALWAYS)
c19d1205
ZW
9048 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9049 else
b99bd4ef 9050 {
dfa9f0d5 9051 inst.instruction |= cond << 8;
c19d1205 9052 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9053 }
0110f2b8
PB
9054 /* Allow section relaxation. */
9055 if (unified_syntax && inst.size_req != 2)
9056 inst.relax = opcode;
b99bd4ef 9057 }
c19d1205
ZW
9058
9059 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9060}
9061
9062static void
c19d1205 9063do_t_bkpt (void)
b99bd4ef 9064{
dfa9f0d5
PB
9065 constraint (inst.cond != COND_ALWAYS,
9066 _("instruction is always unconditional"));
c19d1205 9067 if (inst.operands[0].present)
b99bd4ef 9068 {
c19d1205
ZW
9069 constraint (inst.operands[0].imm > 255,
9070 _("immediate value out of range"));
9071 inst.instruction |= inst.operands[0].imm;
b99bd4ef 9072 }
b99bd4ef
NC
9073}
9074
9075static void
c19d1205 9076do_t_branch23 (void)
b99bd4ef 9077{
dfa9f0d5 9078 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205 9079 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
9080 inst.reloc.pc_rel = 1;
9081
c19d1205
ZW
9082 /* If the destination of the branch is a defined symbol which does not have
9083 the THUMB_FUNC attribute, then we must be calling a function which has
9084 the (interfacearm) attribute. We look for the Thumb entry point to that
9085 function and change the branch to refer to that function instead. */
9086 if ( inst.reloc.exp.X_op == O_symbol
9087 && inst.reloc.exp.X_add_symbol != NULL
9088 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9089 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9090 inst.reloc.exp.X_add_symbol =
9091 find_real_start (inst.reloc.exp.X_add_symbol);
90e4755a
RE
9092}
9093
9094static void
c19d1205 9095do_t_bx (void)
90e4755a 9096{
dfa9f0d5 9097 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
9098 inst.instruction |= inst.operands[0].reg << 3;
9099 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9100 should cause the alignment to be checked once it is known. This is
9101 because BX PC only works if the instruction is word aligned. */
9102}
90e4755a 9103
c19d1205
ZW
9104static void
9105do_t_bxj (void)
9106{
fdfde340 9107 int Rm;
90e4755a 9108
fdfde340
JM
9109 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
9110 Rm = inst.operands[0].reg;
9111 reject_bad_reg (Rm);
9112 inst.instruction |= Rm << 16;
90e4755a
RE
9113}
9114
9115static void
c19d1205 9116do_t_clz (void)
90e4755a 9117{
fdfde340
JM
9118 unsigned Rd;
9119 unsigned Rm;
9120
9121 Rd = inst.operands[0].reg;
9122 Rm = inst.operands[1].reg;
9123
9124 reject_bad_reg (Rd);
9125 reject_bad_reg (Rm);
9126
9127 inst.instruction |= Rd << 8;
9128 inst.instruction |= Rm << 16;
9129 inst.instruction |= Rm;
c19d1205 9130}
90e4755a 9131
dfa9f0d5
PB
9132static void
9133do_t_cps (void)
9134{
9135 constraint (current_it_mask, BAD_NOT_IT);
9136 inst.instruction |= inst.operands[0].imm;
9137}
9138
c19d1205
ZW
9139static void
9140do_t_cpsi (void)
9141{
dfa9f0d5 9142 constraint (current_it_mask, BAD_NOT_IT);
c19d1205 9143 if (unified_syntax
62b3e311
PB
9144 && (inst.operands[1].present || inst.size_req == 4)
9145 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9146 {
c19d1205
ZW
9147 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9148 inst.instruction = 0xf3af8000;
9149 inst.instruction |= imod << 9;
9150 inst.instruction |= inst.operands[0].imm << 5;
9151 if (inst.operands[1].present)
9152 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9153 }
c19d1205 9154 else
90e4755a 9155 {
62b3e311
PB
9156 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9157 && (inst.operands[0].imm & 4),
9158 _("selected processor does not support 'A' form "
9159 "of this instruction"));
9160 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9161 _("Thumb does not support the 2-argument "
9162 "form of this instruction"));
9163 inst.instruction |= inst.operands[0].imm;
90e4755a 9164 }
90e4755a
RE
9165}
9166
c19d1205
ZW
9167/* THUMB CPY instruction (argument parse). */
9168
90e4755a 9169static void
c19d1205 9170do_t_cpy (void)
90e4755a 9171{
c19d1205 9172 if (inst.size_req == 4)
90e4755a 9173 {
c19d1205
ZW
9174 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9175 inst.instruction |= inst.operands[0].reg << 8;
9176 inst.instruction |= inst.operands[1].reg;
90e4755a 9177 }
c19d1205 9178 else
90e4755a 9179 {
c19d1205
ZW
9180 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9181 inst.instruction |= (inst.operands[0].reg & 0x7);
9182 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9183 }
90e4755a
RE
9184}
9185
90e4755a 9186static void
25fe350b 9187do_t_cbz (void)
90e4755a 9188{
dfa9f0d5 9189 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
9190 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9191 inst.instruction |= inst.operands[0].reg;
9192 inst.reloc.pc_rel = 1;
9193 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9194}
90e4755a 9195
62b3e311
PB
9196static void
9197do_t_dbg (void)
9198{
9199 inst.instruction |= inst.operands[0].imm;
9200}
9201
9202static void
9203do_t_div (void)
9204{
fdfde340
JM
9205 unsigned Rd, Rn, Rm;
9206
9207 Rd = inst.operands[0].reg;
9208 Rn = (inst.operands[1].present
9209 ? inst.operands[1].reg : Rd);
9210 Rm = inst.operands[2].reg;
9211
9212 reject_bad_reg (Rd);
9213 reject_bad_reg (Rn);
9214 reject_bad_reg (Rm);
9215
9216 inst.instruction |= Rd << 8;
9217 inst.instruction |= Rn << 16;
9218 inst.instruction |= Rm;
62b3e311
PB
9219}
9220
c19d1205
ZW
9221static void
9222do_t_hint (void)
9223{
9224 if (unified_syntax && inst.size_req == 4)
9225 inst.instruction = THUMB_OP32 (inst.instruction);
9226 else
9227 inst.instruction = THUMB_OP16 (inst.instruction);
9228}
90e4755a 9229
c19d1205
ZW
9230static void
9231do_t_it (void)
9232{
9233 unsigned int cond = inst.operands[0].imm;
e27ec89e 9234
dfa9f0d5 9235 constraint (current_it_mask, BAD_NOT_IT);
e27ec89e
PB
9236 current_it_mask = (inst.instruction & 0xf) | 0x10;
9237 current_cc = cond;
9238
9239 /* If the condition is a negative condition, invert the mask. */
c19d1205 9240 if ((cond & 0x1) == 0x0)
90e4755a 9241 {
c19d1205 9242 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9243
c19d1205
ZW
9244 if ((mask & 0x7) == 0)
9245 /* no conversion needed */;
9246 else if ((mask & 0x3) == 0)
e27ec89e
PB
9247 mask ^= 0x8;
9248 else if ((mask & 0x1) == 0)
9249 mask ^= 0xC;
c19d1205 9250 else
e27ec89e 9251 mask ^= 0xE;
90e4755a 9252
e27ec89e
PB
9253 inst.instruction &= 0xfff0;
9254 inst.instruction |= mask;
c19d1205 9255 }
90e4755a 9256
c19d1205
ZW
9257 inst.instruction |= cond << 4;
9258}
90e4755a 9259
3c707909
PB
9260/* Helper function used for both push/pop and ldm/stm. */
9261static void
9262encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9263{
9264 bfd_boolean load;
9265
9266 load = (inst.instruction & (1 << 20)) != 0;
9267
9268 if (mask & (1 << 13))
9269 inst.error = _("SP not allowed in register list");
9270 if (load)
9271 {
9272 if (mask & (1 << 14)
9273 && mask & (1 << 15))
9274 inst.error = _("LR and PC should not both be in register list");
9275
9276 if ((mask & (1 << base)) != 0
9277 && writeback)
9278 as_warn (_("base register should not be in register list "
9279 "when written back"));
9280 }
9281 else
9282 {
9283 if (mask & (1 << 15))
9284 inst.error = _("PC not allowed in register list");
9285
9286 if (mask & (1 << base))
9287 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9288 }
9289
9290 if ((mask & (mask - 1)) == 0)
9291 {
9292 /* Single register transfers implemented as str/ldr. */
9293 if (writeback)
9294 {
9295 if (inst.instruction & (1 << 23))
9296 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9297 else
9298 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9299 }
9300 else
9301 {
9302 if (inst.instruction & (1 << 23))
9303 inst.instruction = 0x00800000; /* ia -> [base] */
9304 else
9305 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9306 }
9307
9308 inst.instruction |= 0xf8400000;
9309 if (load)
9310 inst.instruction |= 0x00100000;
9311
5f4273c7 9312 mask = ffs (mask) - 1;
3c707909
PB
9313 mask <<= 12;
9314 }
9315 else if (writeback)
9316 inst.instruction |= WRITE_BACK;
9317
9318 inst.instruction |= mask;
9319 inst.instruction |= base << 16;
9320}
9321
c19d1205
ZW
9322static void
9323do_t_ldmstm (void)
9324{
9325 /* This really doesn't seem worth it. */
9326 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9327 _("expression too complex"));
9328 constraint (inst.operands[1].writeback,
9329 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9330
c19d1205
ZW
9331 if (unified_syntax)
9332 {
3c707909
PB
9333 bfd_boolean narrow;
9334 unsigned mask;
9335
9336 narrow = FALSE;
c19d1205
ZW
9337 /* See if we can use a 16-bit instruction. */
9338 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9339 && inst.size_req != 4
3c707909 9340 && !(inst.operands[1].imm & ~0xff))
90e4755a 9341 {
3c707909 9342 mask = 1 << inst.operands[0].reg;
90e4755a 9343
3c707909
PB
9344 if (inst.operands[0].reg <= 7
9345 && (inst.instruction == T_MNEM_stmia
9346 ? inst.operands[0].writeback
9347 : (inst.operands[0].writeback
9348 == !(inst.operands[1].imm & mask))))
90e4755a 9349 {
3c707909
PB
9350 if (inst.instruction == T_MNEM_stmia
9351 && (inst.operands[1].imm & mask)
9352 && (inst.operands[1].imm & (mask - 1)))
c19d1205
ZW
9353 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9354 inst.operands[0].reg);
3c707909
PB
9355
9356 inst.instruction = THUMB_OP16 (inst.instruction);
9357 inst.instruction |= inst.operands[0].reg << 8;
9358 inst.instruction |= inst.operands[1].imm;
9359 narrow = TRUE;
90e4755a 9360 }
3c707909
PB
9361 else if (inst.operands[0] .reg == REG_SP
9362 && inst.operands[0].writeback)
90e4755a 9363 {
3c707909
PB
9364 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9365 ? T_MNEM_push : T_MNEM_pop);
9366 inst.instruction |= inst.operands[1].imm;
9367 narrow = TRUE;
90e4755a 9368 }
3c707909
PB
9369 }
9370
9371 if (!narrow)
9372 {
c19d1205
ZW
9373 if (inst.instruction < 0xffff)
9374 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 9375
5f4273c7
NC
9376 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9377 inst.operands[0].writeback);
90e4755a
RE
9378 }
9379 }
c19d1205 9380 else
90e4755a 9381 {
c19d1205
ZW
9382 constraint (inst.operands[0].reg > 7
9383 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9384 constraint (inst.instruction != T_MNEM_ldmia
9385 && inst.instruction != T_MNEM_stmia,
9386 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9387 if (inst.instruction == T_MNEM_stmia)
f03698e6 9388 {
c19d1205
ZW
9389 if (!inst.operands[0].writeback)
9390 as_warn (_("this instruction will write back the base register"));
9391 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9392 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9393 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9394 inst.operands[0].reg);
f03698e6 9395 }
c19d1205 9396 else
90e4755a 9397 {
c19d1205
ZW
9398 if (!inst.operands[0].writeback
9399 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9400 as_warn (_("this instruction will write back the base register"));
9401 else if (inst.operands[0].writeback
9402 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9403 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9404 }
9405
c19d1205
ZW
9406 inst.instruction = THUMB_OP16 (inst.instruction);
9407 inst.instruction |= inst.operands[0].reg << 8;
9408 inst.instruction |= inst.operands[1].imm;
9409 }
9410}
e28cd48c 9411
c19d1205
ZW
9412static void
9413do_t_ldrex (void)
9414{
9415 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9416 || inst.operands[1].postind || inst.operands[1].writeback
9417 || inst.operands[1].immisreg || inst.operands[1].shifted
9418 || inst.operands[1].negative,
01cfc07f 9419 BAD_ADDR_MODE);
e28cd48c 9420
c19d1205
ZW
9421 inst.instruction |= inst.operands[0].reg << 12;
9422 inst.instruction |= inst.operands[1].reg << 16;
9423 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9424}
e28cd48c 9425
c19d1205
ZW
9426static void
9427do_t_ldrexd (void)
9428{
9429 if (!inst.operands[1].present)
1cac9012 9430 {
c19d1205
ZW
9431 constraint (inst.operands[0].reg == REG_LR,
9432 _("r14 not allowed as first register "
9433 "when second register is omitted"));
9434 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9435 }
c19d1205
ZW
9436 constraint (inst.operands[0].reg == inst.operands[1].reg,
9437 BAD_OVERLAP);
b99bd4ef 9438
c19d1205
ZW
9439 inst.instruction |= inst.operands[0].reg << 12;
9440 inst.instruction |= inst.operands[1].reg << 8;
9441 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9442}
9443
9444static void
c19d1205 9445do_t_ldst (void)
b99bd4ef 9446{
0110f2b8
PB
9447 unsigned long opcode;
9448 int Rn;
9449
9450 opcode = inst.instruction;
c19d1205 9451 if (unified_syntax)
b99bd4ef 9452 {
53365c0d
PB
9453 if (!inst.operands[1].isreg)
9454 {
9455 if (opcode <= 0xffff)
9456 inst.instruction = THUMB_OP32 (opcode);
9457 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9458 return;
9459 }
0110f2b8
PB
9460 if (inst.operands[1].isreg
9461 && !inst.operands[1].writeback
c19d1205
ZW
9462 && !inst.operands[1].shifted && !inst.operands[1].postind
9463 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9464 && opcode <= 0xffff
9465 && inst.size_req != 4)
c19d1205 9466 {
0110f2b8
PB
9467 /* Insn may have a 16-bit form. */
9468 Rn = inst.operands[1].reg;
9469 if (inst.operands[1].immisreg)
9470 {
9471 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 9472 /* [Rn, Rik] */
0110f2b8
PB
9473 if (Rn <= 7 && inst.operands[1].imm <= 7)
9474 goto op16;
9475 }
9476 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9477 && opcode != T_MNEM_ldrsb)
9478 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9479 || (Rn == REG_SP && opcode == T_MNEM_str))
9480 {
9481 /* [Rn, #const] */
9482 if (Rn > 7)
9483 {
9484 if (Rn == REG_PC)
9485 {
9486 if (inst.reloc.pc_rel)
9487 opcode = T_MNEM_ldr_pc2;
9488 else
9489 opcode = T_MNEM_ldr_pc;
9490 }
9491 else
9492 {
9493 if (opcode == T_MNEM_ldr)
9494 opcode = T_MNEM_ldr_sp;
9495 else
9496 opcode = T_MNEM_str_sp;
9497 }
9498 inst.instruction = inst.operands[0].reg << 8;
9499 }
9500 else
9501 {
9502 inst.instruction = inst.operands[0].reg;
9503 inst.instruction |= inst.operands[1].reg << 3;
9504 }
9505 inst.instruction |= THUMB_OP16 (opcode);
9506 if (inst.size_req == 2)
9507 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9508 else
9509 inst.relax = opcode;
9510 return;
9511 }
c19d1205 9512 }
0110f2b8
PB
9513 /* Definitely a 32-bit variant. */
9514 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
9515 inst.instruction |= inst.operands[0].reg << 12;
9516 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
9517 return;
9518 }
9519
c19d1205
ZW
9520 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9521
9522 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 9523 {
c19d1205
ZW
9524 /* Only [Rn,Rm] is acceptable. */
9525 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9526 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9527 || inst.operands[1].postind || inst.operands[1].shifted
9528 || inst.operands[1].negative,
9529 _("Thumb does not support this addressing mode"));
9530 inst.instruction = THUMB_OP16 (inst.instruction);
9531 goto op16;
b99bd4ef 9532 }
5f4273c7 9533
c19d1205
ZW
9534 inst.instruction = THUMB_OP16 (inst.instruction);
9535 if (!inst.operands[1].isreg)
9536 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9537 return;
b99bd4ef 9538
c19d1205
ZW
9539 constraint (!inst.operands[1].preind
9540 || inst.operands[1].shifted
9541 || inst.operands[1].writeback,
9542 _("Thumb does not support this addressing mode"));
9543 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 9544 {
c19d1205
ZW
9545 constraint (inst.instruction & 0x0600,
9546 _("byte or halfword not valid for base register"));
9547 constraint (inst.operands[1].reg == REG_PC
9548 && !(inst.instruction & THUMB_LOAD_BIT),
9549 _("r15 based store not allowed"));
9550 constraint (inst.operands[1].immisreg,
9551 _("invalid base register for register offset"));
b99bd4ef 9552
c19d1205
ZW
9553 if (inst.operands[1].reg == REG_PC)
9554 inst.instruction = T_OPCODE_LDR_PC;
9555 else if (inst.instruction & THUMB_LOAD_BIT)
9556 inst.instruction = T_OPCODE_LDR_SP;
9557 else
9558 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 9559
c19d1205
ZW
9560 inst.instruction |= inst.operands[0].reg << 8;
9561 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9562 return;
9563 }
90e4755a 9564
c19d1205
ZW
9565 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9566 if (!inst.operands[1].immisreg)
9567 {
9568 /* Immediate offset. */
9569 inst.instruction |= inst.operands[0].reg;
9570 inst.instruction |= inst.operands[1].reg << 3;
9571 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9572 return;
9573 }
90e4755a 9574
c19d1205
ZW
9575 /* Register offset. */
9576 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9577 constraint (inst.operands[1].negative,
9578 _("Thumb does not support this addressing mode"));
90e4755a 9579
c19d1205
ZW
9580 op16:
9581 switch (inst.instruction)
9582 {
9583 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9584 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9585 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9586 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9587 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9588 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9589 case 0x5600 /* ldrsb */:
9590 case 0x5e00 /* ldrsh */: break;
9591 default: abort ();
9592 }
90e4755a 9593
c19d1205
ZW
9594 inst.instruction |= inst.operands[0].reg;
9595 inst.instruction |= inst.operands[1].reg << 3;
9596 inst.instruction |= inst.operands[1].imm << 6;
9597}
90e4755a 9598
c19d1205
ZW
9599static void
9600do_t_ldstd (void)
9601{
9602 if (!inst.operands[1].present)
b99bd4ef 9603 {
c19d1205
ZW
9604 inst.operands[1].reg = inst.operands[0].reg + 1;
9605 constraint (inst.operands[0].reg == REG_LR,
9606 _("r14 not allowed here"));
b99bd4ef 9607 }
c19d1205
ZW
9608 inst.instruction |= inst.operands[0].reg << 12;
9609 inst.instruction |= inst.operands[1].reg << 8;
9610 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
9611}
9612
c19d1205
ZW
9613static void
9614do_t_ldstt (void)
9615{
9616 inst.instruction |= inst.operands[0].reg << 12;
9617 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9618}
a737bd4d 9619
b99bd4ef 9620static void
c19d1205 9621do_t_mla (void)
b99bd4ef 9622{
fdfde340
JM
9623 unsigned Rd, Rn, Rm, Ra;
9624
9625 Rd = inst.operands[0].reg;
9626 Rn = inst.operands[1].reg;
9627 Rm = inst.operands[2].reg;
9628 Ra = inst.operands[3].reg;
9629
9630 reject_bad_reg (Rd);
9631 reject_bad_reg (Rn);
9632 reject_bad_reg (Rm);
9633 reject_bad_reg (Ra);
9634
9635 inst.instruction |= Rd << 8;
9636 inst.instruction |= Rn << 16;
9637 inst.instruction |= Rm;
9638 inst.instruction |= Ra << 12;
c19d1205 9639}
b99bd4ef 9640
c19d1205
ZW
9641static void
9642do_t_mlal (void)
9643{
fdfde340
JM
9644 unsigned RdLo, RdHi, Rn, Rm;
9645
9646 RdLo = inst.operands[0].reg;
9647 RdHi = inst.operands[1].reg;
9648 Rn = inst.operands[2].reg;
9649 Rm = inst.operands[3].reg;
9650
9651 reject_bad_reg (RdLo);
9652 reject_bad_reg (RdHi);
9653 reject_bad_reg (Rn);
9654 reject_bad_reg (Rm);
9655
9656 inst.instruction |= RdLo << 12;
9657 inst.instruction |= RdHi << 8;
9658 inst.instruction |= Rn << 16;
9659 inst.instruction |= Rm;
c19d1205 9660}
b99bd4ef 9661
c19d1205
ZW
9662static void
9663do_t_mov_cmp (void)
9664{
fdfde340
JM
9665 unsigned Rn, Rm;
9666
9667 Rn = inst.operands[0].reg;
9668 Rm = inst.operands[1].reg;
9669
c19d1205 9670 if (unified_syntax)
b99bd4ef 9671 {
c19d1205
ZW
9672 int r0off = (inst.instruction == T_MNEM_mov
9673 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 9674 unsigned long opcode;
3d388997
PB
9675 bfd_boolean narrow;
9676 bfd_boolean low_regs;
9677
fdfde340 9678 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 9679 opcode = inst.instruction;
3d388997 9680 if (current_it_mask)
0110f2b8 9681 narrow = opcode != T_MNEM_movs;
3d388997 9682 else
0110f2b8 9683 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
9684 if (inst.size_req == 4
9685 || inst.operands[1].shifted)
9686 narrow = FALSE;
9687
efd81785
PB
9688 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9689 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9690 && !inst.operands[1].shifted
fdfde340
JM
9691 && Rn == REG_PC
9692 && Rm == REG_LR)
efd81785
PB
9693 {
9694 inst.instruction = T2_SUBS_PC_LR;
9695 return;
9696 }
9697
fdfde340
JM
9698 if (opcode == T_MNEM_cmp)
9699 {
9700 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
9701 if (narrow)
9702 {
9703 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
9704 but valid. */
9705 warn_deprecated_sp (Rm);
9706 /* R15 was documented as a valid choice for Rm in ARMv6,
9707 but as UNPREDICTABLE in ARMv7. ARM's proprietary
9708 tools reject R15, so we do too. */
9709 constraint (Rm == REG_PC, BAD_PC);
9710 }
9711 else
9712 reject_bad_reg (Rm);
fdfde340
JM
9713 }
9714 else if (opcode == T_MNEM_mov
9715 || opcode == T_MNEM_movs)
9716 {
9717 if (inst.operands[1].isreg)
9718 {
9719 if (opcode == T_MNEM_movs)
9720 {
9721 reject_bad_reg (Rn);
9722 reject_bad_reg (Rm);
9723 }
9724 else if ((Rn == REG_SP || Rn == REG_PC)
9725 && (Rm == REG_SP || Rm == REG_PC))
9726 reject_bad_reg (Rm);
9727 }
9728 else
9729 reject_bad_reg (Rn);
9730 }
9731
c19d1205
ZW
9732 if (!inst.operands[1].isreg)
9733 {
0110f2b8
PB
9734 /* Immediate operand. */
9735 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9736 narrow = 0;
9737 if (low_regs && narrow)
9738 {
9739 inst.instruction = THUMB_OP16 (opcode);
fdfde340 9740 inst.instruction |= Rn << 8;
0110f2b8
PB
9741 if (inst.size_req == 2)
9742 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9743 else
9744 inst.relax = opcode;
9745 }
9746 else
9747 {
9748 inst.instruction = THUMB_OP32 (inst.instruction);
9749 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 9750 inst.instruction |= Rn << r0off;
0110f2b8
PB
9751 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9752 }
c19d1205 9753 }
728ca7c9
PB
9754 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9755 && (inst.instruction == T_MNEM_mov
9756 || inst.instruction == T_MNEM_movs))
9757 {
9758 /* Register shifts are encoded as separate shift instructions. */
9759 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9760
9761 if (current_it_mask)
9762 narrow = !flags;
9763 else
9764 narrow = flags;
9765
9766 if (inst.size_req == 4)
9767 narrow = FALSE;
9768
9769 if (!low_regs || inst.operands[1].imm > 7)
9770 narrow = FALSE;
9771
fdfde340 9772 if (Rn != Rm)
728ca7c9
PB
9773 narrow = FALSE;
9774
9775 switch (inst.operands[1].shift_kind)
9776 {
9777 case SHIFT_LSL:
9778 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9779 break;
9780 case SHIFT_ASR:
9781 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9782 break;
9783 case SHIFT_LSR:
9784 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9785 break;
9786 case SHIFT_ROR:
9787 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9788 break;
9789 default:
5f4273c7 9790 abort ();
728ca7c9
PB
9791 }
9792
9793 inst.instruction = opcode;
9794 if (narrow)
9795 {
fdfde340 9796 inst.instruction |= Rn;
728ca7c9
PB
9797 inst.instruction |= inst.operands[1].imm << 3;
9798 }
9799 else
9800 {
9801 if (flags)
9802 inst.instruction |= CONDS_BIT;
9803
fdfde340
JM
9804 inst.instruction |= Rn << 8;
9805 inst.instruction |= Rm << 16;
728ca7c9
PB
9806 inst.instruction |= inst.operands[1].imm;
9807 }
9808 }
3d388997 9809 else if (!narrow)
c19d1205 9810 {
728ca7c9
PB
9811 /* Some mov with immediate shift have narrow variants.
9812 Register shifts are handled above. */
9813 if (low_regs && inst.operands[1].shifted
9814 && (inst.instruction == T_MNEM_mov
9815 || inst.instruction == T_MNEM_movs))
9816 {
9817 if (current_it_mask)
9818 narrow = (inst.instruction == T_MNEM_mov);
9819 else
9820 narrow = (inst.instruction == T_MNEM_movs);
9821 }
9822
9823 if (narrow)
9824 {
9825 switch (inst.operands[1].shift_kind)
9826 {
9827 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9828 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9829 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9830 default: narrow = FALSE; break;
9831 }
9832 }
9833
9834 if (narrow)
9835 {
fdfde340
JM
9836 inst.instruction |= Rn;
9837 inst.instruction |= Rm << 3;
728ca7c9
PB
9838 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9839 }
9840 else
9841 {
9842 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9843 inst.instruction |= Rn << r0off;
728ca7c9
PB
9844 encode_thumb32_shifted_operand (1);
9845 }
c19d1205
ZW
9846 }
9847 else
9848 switch (inst.instruction)
9849 {
9850 case T_MNEM_mov:
9851 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
9852 inst.instruction |= (Rn & 0x8) << 4;
9853 inst.instruction |= (Rn & 0x7);
9854 inst.instruction |= Rm << 3;
c19d1205 9855 break;
b99bd4ef 9856
c19d1205
ZW
9857 case T_MNEM_movs:
9858 /* We know we have low registers at this point.
9859 Generate ADD Rd, Rs, #0. */
9860 inst.instruction = T_OPCODE_ADD_I3;
fdfde340
JM
9861 inst.instruction |= Rn;
9862 inst.instruction |= Rm << 3;
c19d1205
ZW
9863 break;
9864
9865 case T_MNEM_cmp:
3d388997 9866 if (low_regs)
c19d1205
ZW
9867 {
9868 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
9869 inst.instruction |= Rn;
9870 inst.instruction |= Rm << 3;
c19d1205
ZW
9871 }
9872 else
9873 {
9874 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
9875 inst.instruction |= (Rn & 0x8) << 4;
9876 inst.instruction |= (Rn & 0x7);
9877 inst.instruction |= Rm << 3;
c19d1205
ZW
9878 }
9879 break;
9880 }
b99bd4ef
NC
9881 return;
9882 }
9883
c19d1205
ZW
9884 inst.instruction = THUMB_OP16 (inst.instruction);
9885 if (inst.operands[1].isreg)
b99bd4ef 9886 {
fdfde340 9887 if (Rn < 8 && Rm < 8)
b99bd4ef 9888 {
c19d1205
ZW
9889 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9890 since a MOV instruction produces unpredictable results. */
9891 if (inst.instruction == T_OPCODE_MOV_I8)
9892 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 9893 else
c19d1205 9894 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 9895
fdfde340
JM
9896 inst.instruction |= Rn;
9897 inst.instruction |= Rm << 3;
b99bd4ef
NC
9898 }
9899 else
9900 {
c19d1205
ZW
9901 if (inst.instruction == T_OPCODE_MOV_I8)
9902 inst.instruction = T_OPCODE_MOV_HR;
9903 else
9904 inst.instruction = T_OPCODE_CMP_HR;
9905 do_t_cpy ();
b99bd4ef
NC
9906 }
9907 }
c19d1205 9908 else
b99bd4ef 9909 {
fdfde340 9910 constraint (Rn > 7,
c19d1205 9911 _("only lo regs allowed with immediate"));
fdfde340 9912 inst.instruction |= Rn << 8;
c19d1205
ZW
9913 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9914 }
9915}
b99bd4ef 9916
c19d1205
ZW
9917static void
9918do_t_mov16 (void)
9919{
fdfde340 9920 unsigned Rd;
b6895b4f
PB
9921 bfd_vma imm;
9922 bfd_boolean top;
9923
9924 top = (inst.instruction & 0x00800000) != 0;
9925 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9926 {
9927 constraint (top, _(":lower16: not allowed this instruction"));
9928 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9929 }
9930 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9931 {
9932 constraint (!top, _(":upper16: not allowed this instruction"));
9933 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9934 }
9935
fdfde340
JM
9936 Rd = inst.operands[0].reg;
9937 reject_bad_reg (Rd);
9938
9939 inst.instruction |= Rd << 8;
b6895b4f
PB
9940 if (inst.reloc.type == BFD_RELOC_UNUSED)
9941 {
9942 imm = inst.reloc.exp.X_add_number;
9943 inst.instruction |= (imm & 0xf000) << 4;
9944 inst.instruction |= (imm & 0x0800) << 15;
9945 inst.instruction |= (imm & 0x0700) << 4;
9946 inst.instruction |= (imm & 0x00ff);
9947 }
c19d1205 9948}
b99bd4ef 9949
c19d1205
ZW
9950static void
9951do_t_mvn_tst (void)
9952{
fdfde340
JM
9953 unsigned Rn, Rm;
9954
9955 Rn = inst.operands[0].reg;
9956 Rm = inst.operands[1].reg;
9957
9958 if (inst.instruction == T_MNEM_cmp
9959 || inst.instruction == T_MNEM_cmn)
9960 constraint (Rn == REG_PC, BAD_PC);
9961 else
9962 reject_bad_reg (Rn);
9963 reject_bad_reg (Rm);
9964
c19d1205
ZW
9965 if (unified_syntax)
9966 {
9967 int r0off = (inst.instruction == T_MNEM_mvn
9968 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
9969 bfd_boolean narrow;
9970
9971 if (inst.size_req == 4
9972 || inst.instruction > 0xffff
9973 || inst.operands[1].shifted
fdfde340 9974 || Rn > 7 || Rm > 7)
3d388997
PB
9975 narrow = FALSE;
9976 else if (inst.instruction == T_MNEM_cmn)
9977 narrow = TRUE;
9978 else if (THUMB_SETS_FLAGS (inst.instruction))
9979 narrow = (current_it_mask == 0);
9980 else
9981 narrow = (current_it_mask != 0);
9982
c19d1205 9983 if (!inst.operands[1].isreg)
b99bd4ef 9984 {
c19d1205
ZW
9985 /* For an immediate, we always generate a 32-bit opcode;
9986 section relaxation will shrink it later if possible. */
9987 if (inst.instruction < 0xffff)
9988 inst.instruction = THUMB_OP32 (inst.instruction);
9989 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 9990 inst.instruction |= Rn << r0off;
c19d1205 9991 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9992 }
c19d1205 9993 else
b99bd4ef 9994 {
c19d1205 9995 /* See if we can do this with a 16-bit instruction. */
3d388997 9996 if (narrow)
b99bd4ef 9997 {
c19d1205 9998 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
9999 inst.instruction |= Rn;
10000 inst.instruction |= Rm << 3;
b99bd4ef 10001 }
c19d1205 10002 else
b99bd4ef 10003 {
c19d1205
ZW
10004 constraint (inst.operands[1].shifted
10005 && inst.operands[1].immisreg,
10006 _("shift must be constant"));
10007 if (inst.instruction < 0xffff)
10008 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10009 inst.instruction |= Rn << r0off;
c19d1205 10010 encode_thumb32_shifted_operand (1);
b99bd4ef 10011 }
b99bd4ef
NC
10012 }
10013 }
10014 else
10015 {
c19d1205
ZW
10016 constraint (inst.instruction > 0xffff
10017 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10018 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10019 _("unshifted register required"));
fdfde340 10020 constraint (Rn > 7 || Rm > 7,
c19d1205 10021 BAD_HIREG);
b99bd4ef 10022
c19d1205 10023 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10024 inst.instruction |= Rn;
10025 inst.instruction |= Rm << 3;
b99bd4ef 10026 }
b99bd4ef
NC
10027}
10028
b05fe5cf 10029static void
c19d1205 10030do_t_mrs (void)
b05fe5cf 10031{
fdfde340 10032 unsigned Rd;
62b3e311 10033 int flags;
037e8744
JB
10034
10035 if (do_vfp_nsyn_mrs () == SUCCESS)
10036 return;
10037
62b3e311
PB
10038 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10039 if (flags == 0)
10040 {
7e806470 10041 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10042 _("selected processor does not support "
10043 "requested special purpose register"));
10044 }
10045 else
10046 {
10047 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10048 _("selected processor does not support "
44bf2362 10049 "requested special purpose register"));
62b3e311
PB
10050 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10051 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10052 _("'CPSR' or 'SPSR' expected"));
10053 }
5f4273c7 10054
fdfde340
JM
10055 Rd = inst.operands[0].reg;
10056 reject_bad_reg (Rd);
10057
10058 inst.instruction |= Rd << 8;
62b3e311
PB
10059 inst.instruction |= (flags & SPSR_BIT) >> 2;
10060 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 10061}
b05fe5cf 10062
c19d1205
ZW
10063static void
10064do_t_msr (void)
10065{
62b3e311 10066 int flags;
fdfde340 10067 unsigned Rn;
62b3e311 10068
037e8744
JB
10069 if (do_vfp_nsyn_msr () == SUCCESS)
10070 return;
10071
c19d1205
ZW
10072 constraint (!inst.operands[1].isreg,
10073 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
10074 flags = inst.operands[0].imm;
10075 if (flags & ~0xff)
10076 {
10077 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10078 _("selected processor does not support "
10079 "requested special purpose register"));
10080 }
10081 else
10082 {
7e806470 10083 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10084 _("selected processor does not support "
10085 "requested special purpose register"));
10086 flags |= PSR_f;
10087 }
fdfde340
JM
10088
10089 Rn = inst.operands[1].reg;
10090 reject_bad_reg (Rn);
10091
62b3e311
PB
10092 inst.instruction |= (flags & SPSR_BIT) >> 2;
10093 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10094 inst.instruction |= (flags & 0xff);
fdfde340 10095 inst.instruction |= Rn << 16;
c19d1205 10096}
b05fe5cf 10097
c19d1205
ZW
10098static void
10099do_t_mul (void)
10100{
17828f45 10101 bfd_boolean narrow;
fdfde340 10102 unsigned Rd, Rn, Rm;
17828f45 10103
c19d1205
ZW
10104 if (!inst.operands[2].present)
10105 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 10106
fdfde340
JM
10107 Rd = inst.operands[0].reg;
10108 Rn = inst.operands[1].reg;
10109 Rm = inst.operands[2].reg;
10110
17828f45 10111 if (unified_syntax)
b05fe5cf 10112 {
17828f45 10113 if (inst.size_req == 4
fdfde340
JM
10114 || (Rd != Rn
10115 && Rd != Rm)
10116 || Rn > 7
10117 || Rm > 7)
17828f45
JM
10118 narrow = FALSE;
10119 else if (inst.instruction == T_MNEM_muls)
10120 narrow = (current_it_mask == 0);
10121 else
10122 narrow = (current_it_mask != 0);
b05fe5cf 10123 }
c19d1205 10124 else
b05fe5cf 10125 {
17828f45 10126 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 10127 constraint (Rn > 7 || Rm > 7,
c19d1205 10128 BAD_HIREG);
17828f45
JM
10129 narrow = TRUE;
10130 }
b05fe5cf 10131
17828f45
JM
10132 if (narrow)
10133 {
10134 /* 16-bit MULS/Conditional MUL. */
c19d1205 10135 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10136 inst.instruction |= Rd;
b05fe5cf 10137
fdfde340
JM
10138 if (Rd == Rn)
10139 inst.instruction |= Rm << 3;
10140 else if (Rd == Rm)
10141 inst.instruction |= Rn << 3;
c19d1205
ZW
10142 else
10143 constraint (1, _("dest must overlap one source register"));
10144 }
17828f45
JM
10145 else
10146 {
10147 constraint(inst.instruction != T_MNEM_mul,
10148 _("Thumb-2 MUL must not set flags"));
10149 /* 32-bit MUL. */
10150 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10151 inst.instruction |= Rd << 8;
10152 inst.instruction |= Rn << 16;
10153 inst.instruction |= Rm << 0;
10154
10155 reject_bad_reg (Rd);
10156 reject_bad_reg (Rn);
10157 reject_bad_reg (Rm);
17828f45 10158 }
c19d1205 10159}
b05fe5cf 10160
c19d1205
ZW
10161static void
10162do_t_mull (void)
10163{
fdfde340 10164 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 10165
fdfde340
JM
10166 RdLo = inst.operands[0].reg;
10167 RdHi = inst.operands[1].reg;
10168 Rn = inst.operands[2].reg;
10169 Rm = inst.operands[3].reg;
10170
10171 reject_bad_reg (RdLo);
10172 reject_bad_reg (RdHi);
10173 reject_bad_reg (Rn);
10174 reject_bad_reg (Rm);
10175
10176 inst.instruction |= RdLo << 12;
10177 inst.instruction |= RdHi << 8;
10178 inst.instruction |= Rn << 16;
10179 inst.instruction |= Rm;
10180
10181 if (RdLo == RdHi)
c19d1205
ZW
10182 as_tsktsk (_("rdhi and rdlo must be different"));
10183}
b05fe5cf 10184
c19d1205
ZW
10185static void
10186do_t_nop (void)
10187{
10188 if (unified_syntax)
10189 {
10190 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 10191 {
c19d1205
ZW
10192 inst.instruction = THUMB_OP32 (inst.instruction);
10193 inst.instruction |= inst.operands[0].imm;
10194 }
10195 else
10196 {
bc2d1808
NC
10197 /* PR9722: Check for Thumb2 availability before
10198 generating a thumb2 nop instruction. */
10199 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
10200 {
10201 inst.instruction = THUMB_OP16 (inst.instruction);
10202 inst.instruction |= inst.operands[0].imm << 4;
10203 }
10204 else
10205 inst.instruction = 0x46c0;
c19d1205
ZW
10206 }
10207 }
10208 else
10209 {
10210 constraint (inst.operands[0].present,
10211 _("Thumb does not support NOP with hints"));
10212 inst.instruction = 0x46c0;
10213 }
10214}
b05fe5cf 10215
c19d1205
ZW
10216static void
10217do_t_neg (void)
10218{
10219 if (unified_syntax)
10220 {
3d388997
PB
10221 bfd_boolean narrow;
10222
10223 if (THUMB_SETS_FLAGS (inst.instruction))
10224 narrow = (current_it_mask == 0);
10225 else
10226 narrow = (current_it_mask != 0);
10227 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10228 narrow = FALSE;
10229 if (inst.size_req == 4)
10230 narrow = FALSE;
10231
10232 if (!narrow)
c19d1205
ZW
10233 {
10234 inst.instruction = THUMB_OP32 (inst.instruction);
10235 inst.instruction |= inst.operands[0].reg << 8;
10236 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
10237 }
10238 else
10239 {
c19d1205
ZW
10240 inst.instruction = THUMB_OP16 (inst.instruction);
10241 inst.instruction |= inst.operands[0].reg;
10242 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
10243 }
10244 }
10245 else
10246 {
c19d1205
ZW
10247 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10248 BAD_HIREG);
10249 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10250
10251 inst.instruction = THUMB_OP16 (inst.instruction);
10252 inst.instruction |= inst.operands[0].reg;
10253 inst.instruction |= inst.operands[1].reg << 3;
10254 }
10255}
10256
1c444d06
JM
10257static void
10258do_t_orn (void)
10259{
10260 unsigned Rd, Rn;
10261
10262 Rd = inst.operands[0].reg;
10263 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10264
fdfde340
JM
10265 reject_bad_reg (Rd);
10266 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10267 reject_bad_reg (Rn);
10268
1c444d06
JM
10269 inst.instruction |= Rd << 8;
10270 inst.instruction |= Rn << 16;
10271
10272 if (!inst.operands[2].isreg)
10273 {
10274 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10275 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10276 }
10277 else
10278 {
10279 unsigned Rm;
10280
10281 Rm = inst.operands[2].reg;
fdfde340 10282 reject_bad_reg (Rm);
1c444d06
JM
10283
10284 constraint (inst.operands[2].shifted
10285 && inst.operands[2].immisreg,
10286 _("shift must be constant"));
10287 encode_thumb32_shifted_operand (2);
10288 }
10289}
10290
c19d1205
ZW
10291static void
10292do_t_pkhbt (void)
10293{
fdfde340
JM
10294 unsigned Rd, Rn, Rm;
10295
10296 Rd = inst.operands[0].reg;
10297 Rn = inst.operands[1].reg;
10298 Rm = inst.operands[2].reg;
10299
10300 reject_bad_reg (Rd);
10301 reject_bad_reg (Rn);
10302 reject_bad_reg (Rm);
10303
10304 inst.instruction |= Rd << 8;
10305 inst.instruction |= Rn << 16;
10306 inst.instruction |= Rm;
c19d1205
ZW
10307 if (inst.operands[3].present)
10308 {
10309 unsigned int val = inst.reloc.exp.X_add_number;
10310 constraint (inst.reloc.exp.X_op != O_constant,
10311 _("expression too complex"));
10312 inst.instruction |= (val & 0x1c) << 10;
10313 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 10314 }
c19d1205 10315}
b05fe5cf 10316
c19d1205
ZW
10317static void
10318do_t_pkhtb (void)
10319{
10320 if (!inst.operands[3].present)
10321 inst.instruction &= ~0x00000020;
10322 do_t_pkhbt ();
b05fe5cf
ZW
10323}
10324
c19d1205
ZW
10325static void
10326do_t_pld (void)
10327{
fdfde340
JM
10328 if (inst.operands[0].immisreg)
10329 reject_bad_reg (inst.operands[0].imm);
10330
c19d1205
ZW
10331 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10332}
b05fe5cf 10333
c19d1205
ZW
10334static void
10335do_t_push_pop (void)
b99bd4ef 10336{
e9f89963 10337 unsigned mask;
5f4273c7 10338
c19d1205
ZW
10339 constraint (inst.operands[0].writeback,
10340 _("push/pop do not support {reglist}^"));
10341 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10342 _("expression too complex"));
b99bd4ef 10343
e9f89963
PB
10344 mask = inst.operands[0].imm;
10345 if ((mask & ~0xff) == 0)
3c707909 10346 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 10347 else if ((inst.instruction == T_MNEM_push
e9f89963 10348 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 10349 || (inst.instruction == T_MNEM_pop
e9f89963 10350 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 10351 {
c19d1205
ZW
10352 inst.instruction = THUMB_OP16 (inst.instruction);
10353 inst.instruction |= THUMB_PP_PC_LR;
3c707909 10354 inst.instruction |= mask & 0xff;
c19d1205
ZW
10355 }
10356 else if (unified_syntax)
10357 {
3c707909 10358 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 10359 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
10360 }
10361 else
10362 {
10363 inst.error = _("invalid register list to push/pop instruction");
10364 return;
10365 }
c19d1205 10366}
b99bd4ef 10367
c19d1205
ZW
10368static void
10369do_t_rbit (void)
10370{
fdfde340
JM
10371 unsigned Rd, Rm;
10372
10373 Rd = inst.operands[0].reg;
10374 Rm = inst.operands[1].reg;
10375
10376 reject_bad_reg (Rd);
10377 reject_bad_reg (Rm);
10378
10379 inst.instruction |= Rd << 8;
10380 inst.instruction |= Rm << 16;
10381 inst.instruction |= Rm;
c19d1205 10382}
b99bd4ef 10383
c19d1205
ZW
10384static void
10385do_t_rev (void)
10386{
fdfde340
JM
10387 unsigned Rd, Rm;
10388
10389 Rd = inst.operands[0].reg;
10390 Rm = inst.operands[1].reg;
10391
10392 reject_bad_reg (Rd);
10393 reject_bad_reg (Rm);
10394
10395 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
10396 && inst.size_req != 4)
10397 {
10398 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10399 inst.instruction |= Rd;
10400 inst.instruction |= Rm << 3;
c19d1205
ZW
10401 }
10402 else if (unified_syntax)
10403 {
10404 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10405 inst.instruction |= Rd << 8;
10406 inst.instruction |= Rm << 16;
10407 inst.instruction |= Rm;
c19d1205
ZW
10408 }
10409 else
10410 inst.error = BAD_HIREG;
10411}
b99bd4ef 10412
1c444d06
JM
10413static void
10414do_t_rrx (void)
10415{
10416 unsigned Rd, Rm;
10417
10418 Rd = inst.operands[0].reg;
10419 Rm = inst.operands[1].reg;
10420
fdfde340
JM
10421 reject_bad_reg (Rd);
10422 reject_bad_reg (Rm);
10423
1c444d06
JM
10424 inst.instruction |= Rd << 8;
10425 inst.instruction |= Rm;
10426}
10427
c19d1205
ZW
10428static void
10429do_t_rsb (void)
10430{
fdfde340 10431 unsigned Rd, Rs;
b99bd4ef 10432
c19d1205
ZW
10433 Rd = inst.operands[0].reg;
10434 Rs = (inst.operands[1].present
10435 ? inst.operands[1].reg /* Rd, Rs, foo */
10436 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 10437
fdfde340
JM
10438 reject_bad_reg (Rd);
10439 reject_bad_reg (Rs);
10440 if (inst.operands[2].isreg)
10441 reject_bad_reg (inst.operands[2].reg);
10442
c19d1205
ZW
10443 inst.instruction |= Rd << 8;
10444 inst.instruction |= Rs << 16;
10445 if (!inst.operands[2].isreg)
10446 {
026d3abb
PB
10447 bfd_boolean narrow;
10448
10449 if ((inst.instruction & 0x00100000) != 0)
10450 narrow = (current_it_mask == 0);
10451 else
10452 narrow = (current_it_mask != 0);
10453
10454 if (Rd > 7 || Rs > 7)
10455 narrow = FALSE;
10456
10457 if (inst.size_req == 4 || !unified_syntax)
10458 narrow = FALSE;
10459
10460 if (inst.reloc.exp.X_op != O_constant
10461 || inst.reloc.exp.X_add_number != 0)
10462 narrow = FALSE;
10463
10464 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10465 relaxation, but it doesn't seem worth the hassle. */
10466 if (narrow)
10467 {
10468 inst.reloc.type = BFD_RELOC_UNUSED;
10469 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10470 inst.instruction |= Rs << 3;
10471 inst.instruction |= Rd;
10472 }
10473 else
10474 {
10475 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10476 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10477 }
c19d1205
ZW
10478 }
10479 else
10480 encode_thumb32_shifted_operand (2);
10481}
b99bd4ef 10482
c19d1205
ZW
10483static void
10484do_t_setend (void)
10485{
dfa9f0d5 10486 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
10487 if (inst.operands[0].imm)
10488 inst.instruction |= 0x8;
10489}
b99bd4ef 10490
c19d1205
ZW
10491static void
10492do_t_shift (void)
10493{
10494 if (!inst.operands[1].present)
10495 inst.operands[1].reg = inst.operands[0].reg;
10496
10497 if (unified_syntax)
10498 {
3d388997
PB
10499 bfd_boolean narrow;
10500 int shift_kind;
10501
10502 switch (inst.instruction)
10503 {
10504 case T_MNEM_asr:
10505 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10506 case T_MNEM_lsl:
10507 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10508 case T_MNEM_lsr:
10509 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10510 case T_MNEM_ror:
10511 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10512 default: abort ();
10513 }
10514
10515 if (THUMB_SETS_FLAGS (inst.instruction))
10516 narrow = (current_it_mask == 0);
10517 else
10518 narrow = (current_it_mask != 0);
10519 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10520 narrow = FALSE;
10521 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10522 narrow = FALSE;
10523 if (inst.operands[2].isreg
10524 && (inst.operands[1].reg != inst.operands[0].reg
10525 || inst.operands[2].reg > 7))
10526 narrow = FALSE;
10527 if (inst.size_req == 4)
10528 narrow = FALSE;
10529
fdfde340
JM
10530 reject_bad_reg (inst.operands[0].reg);
10531 reject_bad_reg (inst.operands[1].reg);
10532
3d388997 10533 if (!narrow)
c19d1205
ZW
10534 {
10535 if (inst.operands[2].isreg)
b99bd4ef 10536 {
fdfde340 10537 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
10538 inst.instruction = THUMB_OP32 (inst.instruction);
10539 inst.instruction |= inst.operands[0].reg << 8;
10540 inst.instruction |= inst.operands[1].reg << 16;
10541 inst.instruction |= inst.operands[2].reg;
10542 }
10543 else
10544 {
10545 inst.operands[1].shifted = 1;
3d388997 10546 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
10547 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10548 ? T_MNEM_movs : T_MNEM_mov);
10549 inst.instruction |= inst.operands[0].reg << 8;
10550 encode_thumb32_shifted_operand (1);
10551 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10552 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
10553 }
10554 }
10555 else
10556 {
c19d1205 10557 if (inst.operands[2].isreg)
b99bd4ef 10558 {
3d388997 10559 switch (shift_kind)
b99bd4ef 10560 {
3d388997
PB
10561 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10562 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10563 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10564 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 10565 default: abort ();
b99bd4ef 10566 }
5f4273c7 10567
c19d1205
ZW
10568 inst.instruction |= inst.operands[0].reg;
10569 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
10570 }
10571 else
10572 {
3d388997 10573 switch (shift_kind)
b99bd4ef 10574 {
3d388997
PB
10575 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10576 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10577 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 10578 default: abort ();
b99bd4ef 10579 }
c19d1205
ZW
10580 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10581 inst.instruction |= inst.operands[0].reg;
10582 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10583 }
10584 }
c19d1205
ZW
10585 }
10586 else
10587 {
10588 constraint (inst.operands[0].reg > 7
10589 || inst.operands[1].reg > 7, BAD_HIREG);
10590 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 10591
c19d1205
ZW
10592 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10593 {
10594 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10595 constraint (inst.operands[0].reg != inst.operands[1].reg,
10596 _("source1 and dest must be same register"));
b99bd4ef 10597
c19d1205
ZW
10598 switch (inst.instruction)
10599 {
10600 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10601 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10602 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10603 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10604 default: abort ();
10605 }
5f4273c7 10606
c19d1205
ZW
10607 inst.instruction |= inst.operands[0].reg;
10608 inst.instruction |= inst.operands[2].reg << 3;
10609 }
10610 else
b99bd4ef 10611 {
c19d1205
ZW
10612 switch (inst.instruction)
10613 {
10614 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10615 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10616 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10617 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10618 default: abort ();
10619 }
10620 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10621 inst.instruction |= inst.operands[0].reg;
10622 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10623 }
10624 }
b99bd4ef
NC
10625}
10626
10627static void
c19d1205 10628do_t_simd (void)
b99bd4ef 10629{
fdfde340
JM
10630 unsigned Rd, Rn, Rm;
10631
10632 Rd = inst.operands[0].reg;
10633 Rn = inst.operands[1].reg;
10634 Rm = inst.operands[2].reg;
10635
10636 reject_bad_reg (Rd);
10637 reject_bad_reg (Rn);
10638 reject_bad_reg (Rm);
10639
10640 inst.instruction |= Rd << 8;
10641 inst.instruction |= Rn << 16;
10642 inst.instruction |= Rm;
c19d1205 10643}
b99bd4ef 10644
c19d1205 10645static void
3eb17e6b 10646do_t_smc (void)
c19d1205
ZW
10647{
10648 unsigned int value = inst.reloc.exp.X_add_number;
10649 constraint (inst.reloc.exp.X_op != O_constant,
10650 _("expression too complex"));
10651 inst.reloc.type = BFD_RELOC_UNUSED;
10652 inst.instruction |= (value & 0xf000) >> 12;
10653 inst.instruction |= (value & 0x0ff0);
10654 inst.instruction |= (value & 0x000f) << 16;
10655}
b99bd4ef 10656
c19d1205
ZW
10657static void
10658do_t_ssat (void)
10659{
fdfde340
JM
10660 unsigned Rd, Rn;
10661
10662 Rd = inst.operands[0].reg;
10663 Rn = inst.operands[2].reg;
10664
10665 reject_bad_reg (Rd);
10666 reject_bad_reg (Rn);
10667
10668 inst.instruction |= Rd << 8;
c19d1205 10669 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 10670 inst.instruction |= Rn << 16;
b99bd4ef 10671
c19d1205 10672 if (inst.operands[3].present)
b99bd4ef 10673 {
c19d1205
ZW
10674 constraint (inst.reloc.exp.X_op != O_constant,
10675 _("expression too complex"));
b99bd4ef 10676
c19d1205 10677 if (inst.reloc.exp.X_add_number != 0)
6189168b 10678 {
c19d1205
ZW
10679 if (inst.operands[3].shift_kind == SHIFT_ASR)
10680 inst.instruction |= 0x00200000; /* sh bit */
10681 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10682 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
6189168b 10683 }
c19d1205 10684 inst.reloc.type = BFD_RELOC_UNUSED;
6189168b 10685 }
b99bd4ef
NC
10686}
10687
0dd132b6 10688static void
c19d1205 10689do_t_ssat16 (void)
0dd132b6 10690{
fdfde340
JM
10691 unsigned Rd, Rn;
10692
10693 Rd = inst.operands[0].reg;
10694 Rn = inst.operands[2].reg;
10695
10696 reject_bad_reg (Rd);
10697 reject_bad_reg (Rn);
10698
10699 inst.instruction |= Rd << 8;
c19d1205 10700 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 10701 inst.instruction |= Rn << 16;
c19d1205 10702}
0dd132b6 10703
c19d1205
ZW
10704static void
10705do_t_strex (void)
10706{
10707 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10708 || inst.operands[2].postind || inst.operands[2].writeback
10709 || inst.operands[2].immisreg || inst.operands[2].shifted
10710 || inst.operands[2].negative,
01cfc07f 10711 BAD_ADDR_MODE);
0dd132b6 10712
c19d1205
ZW
10713 inst.instruction |= inst.operands[0].reg << 8;
10714 inst.instruction |= inst.operands[1].reg << 12;
10715 inst.instruction |= inst.operands[2].reg << 16;
10716 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
10717}
10718
b99bd4ef 10719static void
c19d1205 10720do_t_strexd (void)
b99bd4ef 10721{
c19d1205
ZW
10722 if (!inst.operands[2].present)
10723 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 10724
c19d1205
ZW
10725 constraint (inst.operands[0].reg == inst.operands[1].reg
10726 || inst.operands[0].reg == inst.operands[2].reg
10727 || inst.operands[0].reg == inst.operands[3].reg
10728 || inst.operands[1].reg == inst.operands[2].reg,
10729 BAD_OVERLAP);
b99bd4ef 10730
c19d1205
ZW
10731 inst.instruction |= inst.operands[0].reg;
10732 inst.instruction |= inst.operands[1].reg << 12;
10733 inst.instruction |= inst.operands[2].reg << 8;
10734 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
10735}
10736
10737static void
c19d1205 10738do_t_sxtah (void)
b99bd4ef 10739{
fdfde340
JM
10740 unsigned Rd, Rn, Rm;
10741
10742 Rd = inst.operands[0].reg;
10743 Rn = inst.operands[1].reg;
10744 Rm = inst.operands[2].reg;
10745
10746 reject_bad_reg (Rd);
10747 reject_bad_reg (Rn);
10748 reject_bad_reg (Rm);
10749
10750 inst.instruction |= Rd << 8;
10751 inst.instruction |= Rn << 16;
10752 inst.instruction |= Rm;
c19d1205
ZW
10753 inst.instruction |= inst.operands[3].imm << 4;
10754}
b99bd4ef 10755
c19d1205
ZW
10756static void
10757do_t_sxth (void)
10758{
fdfde340
JM
10759 unsigned Rd, Rm;
10760
10761 Rd = inst.operands[0].reg;
10762 Rm = inst.operands[1].reg;
10763
10764 reject_bad_reg (Rd);
10765 reject_bad_reg (Rm);
10766
c19d1205 10767 if (inst.instruction <= 0xffff && inst.size_req != 4
fdfde340 10768 && Rd <= 7 && Rm <= 7
c19d1205 10769 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 10770 {
c19d1205 10771 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10772 inst.instruction |= Rd;
10773 inst.instruction |= Rm << 3;
b99bd4ef 10774 }
c19d1205 10775 else if (unified_syntax)
b99bd4ef 10776 {
c19d1205
ZW
10777 if (inst.instruction <= 0xffff)
10778 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10779 inst.instruction |= Rd << 8;
10780 inst.instruction |= Rm;
c19d1205 10781 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 10782 }
c19d1205 10783 else
b99bd4ef 10784 {
c19d1205
ZW
10785 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10786 _("Thumb encoding does not support rotation"));
10787 constraint (1, BAD_HIREG);
b99bd4ef 10788 }
c19d1205 10789}
b99bd4ef 10790
c19d1205
ZW
10791static void
10792do_t_swi (void)
10793{
10794 inst.reloc.type = BFD_RELOC_ARM_SWI;
10795}
b99bd4ef 10796
92e90b6e
PB
10797static void
10798do_t_tb (void)
10799{
fdfde340 10800 unsigned Rn, Rm;
92e90b6e
PB
10801 int half;
10802
10803 half = (inst.instruction & 0x10) != 0;
dfa9f0d5
PB
10804 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10805 constraint (inst.operands[0].immisreg,
10806 _("instruction requires register index"));
fdfde340
JM
10807
10808 Rn = inst.operands[0].reg;
10809 Rm = inst.operands[0].imm;
10810
10811 constraint (Rn == REG_SP, BAD_SP);
10812 reject_bad_reg (Rm);
10813
92e90b6e
PB
10814 constraint (!half && inst.operands[0].shifted,
10815 _("instruction does not allow shifted index"));
fdfde340 10816 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
10817}
10818
c19d1205
ZW
10819static void
10820do_t_usat (void)
10821{
fdfde340
JM
10822 unsigned Rd, Rn;
10823
10824 Rd = inst.operands[0].reg;
10825 Rn = inst.operands[2].reg;
10826
10827 reject_bad_reg (Rd);
10828 reject_bad_reg (Rn);
10829
10830 inst.instruction |= Rd << 8;
c19d1205 10831 inst.instruction |= inst.operands[1].imm;
fdfde340 10832 inst.instruction |= Rn << 16;
b99bd4ef 10833
c19d1205 10834 if (inst.operands[3].present)
b99bd4ef 10835 {
c19d1205
ZW
10836 constraint (inst.reloc.exp.X_op != O_constant,
10837 _("expression too complex"));
10838 if (inst.reloc.exp.X_add_number != 0)
10839 {
10840 if (inst.operands[3].shift_kind == SHIFT_ASR)
10841 inst.instruction |= 0x00200000; /* sh bit */
b99bd4ef 10842
c19d1205
ZW
10843 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10844 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10845 }
10846 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 10847 }
b99bd4ef
NC
10848}
10849
10850static void
c19d1205 10851do_t_usat16 (void)
b99bd4ef 10852{
fdfde340
JM
10853 unsigned Rd, Rn;
10854
10855 Rd = inst.operands[0].reg;
10856 Rn = inst.operands[2].reg;
10857
10858 reject_bad_reg (Rd);
10859 reject_bad_reg (Rn);
10860
10861 inst.instruction |= Rd << 8;
c19d1205 10862 inst.instruction |= inst.operands[1].imm;
fdfde340 10863 inst.instruction |= Rn << 16;
b99bd4ef 10864}
c19d1205 10865
5287ad62 10866/* Neon instruction encoder helpers. */
5f4273c7 10867
5287ad62 10868/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 10869
5287ad62
JB
10870/* An "invalid" code for the following tables. */
10871#define N_INV -1u
10872
10873struct neon_tab_entry
b99bd4ef 10874{
5287ad62
JB
10875 unsigned integer;
10876 unsigned float_or_poly;
10877 unsigned scalar_or_imm;
10878};
5f4273c7 10879
5287ad62
JB
10880/* Map overloaded Neon opcodes to their respective encodings. */
10881#define NEON_ENC_TAB \
10882 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10883 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10884 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10885 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10886 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10887 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10888 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10889 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10890 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10891 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10892 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10893 /* Register variants of the following two instructions are encoded as
10894 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
10895 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10896 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
5287ad62
JB
10897 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10898 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10899 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10900 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10901 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10902 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10903 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10904 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10905 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10906 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10907 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10908 X(vshl, 0x0000400, N_INV, 0x0800510), \
10909 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10910 X(vand, 0x0000110, N_INV, 0x0800030), \
10911 X(vbic, 0x0100110, N_INV, 0x0800030), \
10912 X(veor, 0x1000110, N_INV, N_INV), \
10913 X(vorn, 0x0300110, N_INV, 0x0800010), \
10914 X(vorr, 0x0200110, N_INV, 0x0800010), \
10915 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10916 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10917 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10918 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10919 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10920 X(vst1, 0x0000000, 0x0800000, N_INV), \
10921 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10922 X(vst2, 0x0000100, 0x0800100, N_INV), \
10923 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10924 X(vst3, 0x0000200, 0x0800200, N_INV), \
10925 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10926 X(vst4, 0x0000300, 0x0800300, N_INV), \
10927 X(vmovn, 0x1b20200, N_INV, N_INV), \
10928 X(vtrn, 0x1b20080, N_INV, N_INV), \
10929 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
10930 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10931 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10932 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10933 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10934 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10935 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10936 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10937 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
10938
10939enum neon_opc
10940{
10941#define X(OPC,I,F,S) N_MNEM_##OPC
10942NEON_ENC_TAB
10943#undef X
10944};
b99bd4ef 10945
5287ad62
JB
10946static const struct neon_tab_entry neon_enc_tab[] =
10947{
10948#define X(OPC,I,F,S) { (I), (F), (S) }
10949NEON_ENC_TAB
10950#undef X
10951};
b99bd4ef 10952
5287ad62
JB
10953#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10954#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10955#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10956#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10957#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10958#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10959#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10960#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10961#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
037e8744
JB
10962#define NEON_ENC_SINGLE(X) \
10963 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10964#define NEON_ENC_DOUBLE(X) \
10965 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 10966
037e8744
JB
10967/* Define shapes for instruction operands. The following mnemonic characters
10968 are used in this table:
5287ad62 10969
037e8744 10970 F - VFP S<n> register
5287ad62
JB
10971 D - Neon D<n> register
10972 Q - Neon Q<n> register
10973 I - Immediate
10974 S - Scalar
10975 R - ARM register
10976 L - D<n> register list
5f4273c7 10977
037e8744
JB
10978 This table is used to generate various data:
10979 - enumerations of the form NS_DDR to be used as arguments to
10980 neon_select_shape.
10981 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 10982 - a table used to drive neon_select_shape. */
b99bd4ef 10983
037e8744
JB
10984#define NEON_SHAPE_DEF \
10985 X(3, (D, D, D), DOUBLE), \
10986 X(3, (Q, Q, Q), QUAD), \
10987 X(3, (D, D, I), DOUBLE), \
10988 X(3, (Q, Q, I), QUAD), \
10989 X(3, (D, D, S), DOUBLE), \
10990 X(3, (Q, Q, S), QUAD), \
10991 X(2, (D, D), DOUBLE), \
10992 X(2, (Q, Q), QUAD), \
10993 X(2, (D, S), DOUBLE), \
10994 X(2, (Q, S), QUAD), \
10995 X(2, (D, R), DOUBLE), \
10996 X(2, (Q, R), QUAD), \
10997 X(2, (D, I), DOUBLE), \
10998 X(2, (Q, I), QUAD), \
10999 X(3, (D, L, D), DOUBLE), \
11000 X(2, (D, Q), MIXED), \
11001 X(2, (Q, D), MIXED), \
11002 X(3, (D, Q, I), MIXED), \
11003 X(3, (Q, D, I), MIXED), \
11004 X(3, (Q, D, D), MIXED), \
11005 X(3, (D, Q, Q), MIXED), \
11006 X(3, (Q, Q, D), MIXED), \
11007 X(3, (Q, D, S), MIXED), \
11008 X(3, (D, Q, S), MIXED), \
11009 X(4, (D, D, D, I), DOUBLE), \
11010 X(4, (Q, Q, Q, I), QUAD), \
11011 X(2, (F, F), SINGLE), \
11012 X(3, (F, F, F), SINGLE), \
11013 X(2, (F, I), SINGLE), \
11014 X(2, (F, D), MIXED), \
11015 X(2, (D, F), MIXED), \
11016 X(3, (F, F, I), MIXED), \
11017 X(4, (R, R, F, F), SINGLE), \
11018 X(4, (F, F, R, R), SINGLE), \
11019 X(3, (D, R, R), DOUBLE), \
11020 X(3, (R, R, D), DOUBLE), \
11021 X(2, (S, R), SINGLE), \
11022 X(2, (R, S), SINGLE), \
11023 X(2, (F, R), SINGLE), \
11024 X(2, (R, F), SINGLE)
11025
11026#define S2(A,B) NS_##A##B
11027#define S3(A,B,C) NS_##A##B##C
11028#define S4(A,B,C,D) NS_##A##B##C##D
11029
11030#define X(N, L, C) S##N L
11031
5287ad62
JB
11032enum neon_shape
11033{
037e8744
JB
11034 NEON_SHAPE_DEF,
11035 NS_NULL
5287ad62 11036};
b99bd4ef 11037
037e8744
JB
11038#undef X
11039#undef S2
11040#undef S3
11041#undef S4
11042
11043enum neon_shape_class
11044{
11045 SC_SINGLE,
11046 SC_DOUBLE,
11047 SC_QUAD,
11048 SC_MIXED
11049};
11050
11051#define X(N, L, C) SC_##C
11052
11053static enum neon_shape_class neon_shape_class[] =
11054{
11055 NEON_SHAPE_DEF
11056};
11057
11058#undef X
11059
11060enum neon_shape_el
11061{
11062 SE_F,
11063 SE_D,
11064 SE_Q,
11065 SE_I,
11066 SE_S,
11067 SE_R,
11068 SE_L
11069};
11070
11071/* Register widths of above. */
11072static unsigned neon_shape_el_size[] =
11073{
11074 32,
11075 64,
11076 128,
11077 0,
11078 32,
11079 32,
11080 0
11081};
11082
11083struct neon_shape_info
11084{
11085 unsigned els;
11086 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11087};
11088
11089#define S2(A,B) { SE_##A, SE_##B }
11090#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11091#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11092
11093#define X(N, L, C) { N, S##N L }
11094
11095static struct neon_shape_info neon_shape_tab[] =
11096{
11097 NEON_SHAPE_DEF
11098};
11099
11100#undef X
11101#undef S2
11102#undef S3
11103#undef S4
11104
5287ad62
JB
11105/* Bit masks used in type checking given instructions.
11106 'N_EQK' means the type must be the same as (or based on in some way) the key
11107 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11108 set, various other bits can be set as well in order to modify the meaning of
11109 the type constraint. */
11110
11111enum neon_type_mask
11112{
8e79c3df
CM
11113 N_S8 = 0x0000001,
11114 N_S16 = 0x0000002,
11115 N_S32 = 0x0000004,
11116 N_S64 = 0x0000008,
11117 N_U8 = 0x0000010,
11118 N_U16 = 0x0000020,
11119 N_U32 = 0x0000040,
11120 N_U64 = 0x0000080,
11121 N_I8 = 0x0000100,
11122 N_I16 = 0x0000200,
11123 N_I32 = 0x0000400,
11124 N_I64 = 0x0000800,
11125 N_8 = 0x0001000,
11126 N_16 = 0x0002000,
11127 N_32 = 0x0004000,
11128 N_64 = 0x0008000,
11129 N_P8 = 0x0010000,
11130 N_P16 = 0x0020000,
11131 N_F16 = 0x0040000,
11132 N_F32 = 0x0080000,
11133 N_F64 = 0x0100000,
11134 N_KEY = 0x1000000, /* key element (main type specifier). */
11135 N_EQK = 0x2000000, /* given operand has the same type & size as the key. */
11136 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11137 N_DBL = 0x0000001, /* if N_EQK, this operand is twice the size. */
11138 N_HLF = 0x0000002, /* if N_EQK, this operand is half the size. */
11139 N_SGN = 0x0000004, /* if N_EQK, this operand is forced to be signed. */
11140 N_UNS = 0x0000008, /* if N_EQK, this operand is forced to be unsigned. */
11141 N_INT = 0x0000010, /* if N_EQK, this operand is forced to be integer. */
11142 N_FLT = 0x0000020, /* if N_EQK, this operand is forced to be float. */
11143 N_SIZ = 0x0000040, /* if N_EQK, this operand is forced to be size-only. */
5287ad62 11144 N_UTYP = 0,
037e8744 11145 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
11146};
11147
dcbf9037
JB
11148#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11149
5287ad62
JB
11150#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11151#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11152#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11153#define N_SUF_32 (N_SU_32 | N_F32)
11154#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11155#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11156
11157/* Pass this as the first type argument to neon_check_type to ignore types
11158 altogether. */
11159#define N_IGNORE_TYPE (N_KEY | N_EQK)
11160
037e8744
JB
11161/* Select a "shape" for the current instruction (describing register types or
11162 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11163 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11164 function of operand parsing, so this function doesn't need to be called.
11165 Shapes should be listed in order of decreasing length. */
5287ad62
JB
11166
11167static enum neon_shape
037e8744 11168neon_select_shape (enum neon_shape shape, ...)
5287ad62 11169{
037e8744
JB
11170 va_list ap;
11171 enum neon_shape first_shape = shape;
5287ad62
JB
11172
11173 /* Fix missing optional operands. FIXME: we don't know at this point how
11174 many arguments we should have, so this makes the assumption that we have
11175 > 1. This is true of all current Neon opcodes, I think, but may not be
11176 true in the future. */
11177 if (!inst.operands[1].present)
11178 inst.operands[1] = inst.operands[0];
11179
037e8744 11180 va_start (ap, shape);
5f4273c7 11181
037e8744
JB
11182 for (; shape != NS_NULL; shape = va_arg (ap, int))
11183 {
11184 unsigned j;
11185 int matches = 1;
11186
11187 for (j = 0; j < neon_shape_tab[shape].els; j++)
11188 {
11189 if (!inst.operands[j].present)
11190 {
11191 matches = 0;
11192 break;
11193 }
11194
11195 switch (neon_shape_tab[shape].el[j])
11196 {
11197 case SE_F:
11198 if (!(inst.operands[j].isreg
11199 && inst.operands[j].isvec
11200 && inst.operands[j].issingle
11201 && !inst.operands[j].isquad))
11202 matches = 0;
11203 break;
11204
11205 case SE_D:
11206 if (!(inst.operands[j].isreg
11207 && inst.operands[j].isvec
11208 && !inst.operands[j].isquad
11209 && !inst.operands[j].issingle))
11210 matches = 0;
11211 break;
11212
11213 case SE_R:
11214 if (!(inst.operands[j].isreg
11215 && !inst.operands[j].isvec))
11216 matches = 0;
11217 break;
11218
11219 case SE_Q:
11220 if (!(inst.operands[j].isreg
11221 && inst.operands[j].isvec
11222 && inst.operands[j].isquad
11223 && !inst.operands[j].issingle))
11224 matches = 0;
11225 break;
11226
11227 case SE_I:
11228 if (!(!inst.operands[j].isreg
11229 && !inst.operands[j].isscalar))
11230 matches = 0;
11231 break;
11232
11233 case SE_S:
11234 if (!(!inst.operands[j].isreg
11235 && inst.operands[j].isscalar))
11236 matches = 0;
11237 break;
11238
11239 case SE_L:
11240 break;
11241 }
11242 }
11243 if (matches)
5287ad62 11244 break;
037e8744 11245 }
5f4273c7 11246
037e8744 11247 va_end (ap);
5287ad62 11248
037e8744
JB
11249 if (shape == NS_NULL && first_shape != NS_NULL)
11250 first_error (_("invalid instruction shape"));
5287ad62 11251
037e8744
JB
11252 return shape;
11253}
5287ad62 11254
037e8744
JB
11255/* True if SHAPE is predominantly a quadword operation (most of the time, this
11256 means the Q bit should be set). */
11257
11258static int
11259neon_quad (enum neon_shape shape)
11260{
11261 return neon_shape_class[shape] == SC_QUAD;
5287ad62 11262}
037e8744 11263
5287ad62
JB
11264static void
11265neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11266 unsigned *g_size)
11267{
11268 /* Allow modification to be made to types which are constrained to be
11269 based on the key element, based on bits set alongside N_EQK. */
11270 if ((typebits & N_EQK) != 0)
11271 {
11272 if ((typebits & N_HLF) != 0)
11273 *g_size /= 2;
11274 else if ((typebits & N_DBL) != 0)
11275 *g_size *= 2;
11276 if ((typebits & N_SGN) != 0)
11277 *g_type = NT_signed;
11278 else if ((typebits & N_UNS) != 0)
11279 *g_type = NT_unsigned;
11280 else if ((typebits & N_INT) != 0)
11281 *g_type = NT_integer;
11282 else if ((typebits & N_FLT) != 0)
11283 *g_type = NT_float;
dcbf9037
JB
11284 else if ((typebits & N_SIZ) != 0)
11285 *g_type = NT_untyped;
5287ad62
JB
11286 }
11287}
5f4273c7 11288
5287ad62
JB
11289/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11290 operand type, i.e. the single type specified in a Neon instruction when it
11291 is the only one given. */
11292
11293static struct neon_type_el
11294neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11295{
11296 struct neon_type_el dest = *key;
5f4273c7 11297
5287ad62 11298 assert ((thisarg & N_EQK) != 0);
5f4273c7 11299
5287ad62
JB
11300 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11301
11302 return dest;
11303}
11304
11305/* Convert Neon type and size into compact bitmask representation. */
11306
11307static enum neon_type_mask
11308type_chk_of_el_type (enum neon_el_type type, unsigned size)
11309{
11310 switch (type)
11311 {
11312 case NT_untyped:
11313 switch (size)
11314 {
11315 case 8: return N_8;
11316 case 16: return N_16;
11317 case 32: return N_32;
11318 case 64: return N_64;
11319 default: ;
11320 }
11321 break;
11322
11323 case NT_integer:
11324 switch (size)
11325 {
11326 case 8: return N_I8;
11327 case 16: return N_I16;
11328 case 32: return N_I32;
11329 case 64: return N_I64;
11330 default: ;
11331 }
11332 break;
11333
11334 case NT_float:
037e8744
JB
11335 switch (size)
11336 {
8e79c3df 11337 case 16: return N_F16;
037e8744
JB
11338 case 32: return N_F32;
11339 case 64: return N_F64;
11340 default: ;
11341 }
5287ad62
JB
11342 break;
11343
11344 case NT_poly:
11345 switch (size)
11346 {
11347 case 8: return N_P8;
11348 case 16: return N_P16;
11349 default: ;
11350 }
11351 break;
11352
11353 case NT_signed:
11354 switch (size)
11355 {
11356 case 8: return N_S8;
11357 case 16: return N_S16;
11358 case 32: return N_S32;
11359 case 64: return N_S64;
11360 default: ;
11361 }
11362 break;
11363
11364 case NT_unsigned:
11365 switch (size)
11366 {
11367 case 8: return N_U8;
11368 case 16: return N_U16;
11369 case 32: return N_U32;
11370 case 64: return N_U64;
11371 default: ;
11372 }
11373 break;
11374
11375 default: ;
11376 }
5f4273c7 11377
5287ad62
JB
11378 return N_UTYP;
11379}
11380
11381/* Convert compact Neon bitmask type representation to a type and size. Only
11382 handles the case where a single bit is set in the mask. */
11383
dcbf9037 11384static int
5287ad62
JB
11385el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11386 enum neon_type_mask mask)
11387{
dcbf9037
JB
11388 if ((mask & N_EQK) != 0)
11389 return FAIL;
11390
5287ad62
JB
11391 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11392 *size = 8;
dcbf9037 11393 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 11394 *size = 16;
dcbf9037 11395 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 11396 *size = 32;
037e8744 11397 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 11398 *size = 64;
dcbf9037
JB
11399 else
11400 return FAIL;
11401
5287ad62
JB
11402 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11403 *type = NT_signed;
dcbf9037 11404 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 11405 *type = NT_unsigned;
dcbf9037 11406 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 11407 *type = NT_integer;
dcbf9037 11408 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 11409 *type = NT_untyped;
dcbf9037 11410 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 11411 *type = NT_poly;
037e8744 11412 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 11413 *type = NT_float;
dcbf9037
JB
11414 else
11415 return FAIL;
5f4273c7 11416
dcbf9037 11417 return SUCCESS;
5287ad62
JB
11418}
11419
11420/* Modify a bitmask of allowed types. This is only needed for type
11421 relaxation. */
11422
11423static unsigned
11424modify_types_allowed (unsigned allowed, unsigned mods)
11425{
11426 unsigned size;
11427 enum neon_el_type type;
11428 unsigned destmask;
11429 int i;
5f4273c7 11430
5287ad62 11431 destmask = 0;
5f4273c7 11432
5287ad62
JB
11433 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11434 {
dcbf9037
JB
11435 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
11436 {
11437 neon_modify_type_size (mods, &type, &size);
11438 destmask |= type_chk_of_el_type (type, size);
11439 }
5287ad62 11440 }
5f4273c7 11441
5287ad62
JB
11442 return destmask;
11443}
11444
11445/* Check type and return type classification.
11446 The manual states (paraphrase): If one datatype is given, it indicates the
11447 type given in:
11448 - the second operand, if there is one
11449 - the operand, if there is no second operand
11450 - the result, if there are no operands.
11451 This isn't quite good enough though, so we use a concept of a "key" datatype
11452 which is set on a per-instruction basis, which is the one which matters when
11453 only one data type is written.
11454 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 11455 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
11456
11457static struct neon_type_el
11458neon_check_type (unsigned els, enum neon_shape ns, ...)
11459{
11460 va_list ap;
11461 unsigned i, pass, key_el = 0;
11462 unsigned types[NEON_MAX_TYPE_ELS];
11463 enum neon_el_type k_type = NT_invtype;
11464 unsigned k_size = -1u;
11465 struct neon_type_el badtype = {NT_invtype, -1};
11466 unsigned key_allowed = 0;
11467
11468 /* Optional registers in Neon instructions are always (not) in operand 1.
11469 Fill in the missing operand here, if it was omitted. */
11470 if (els > 1 && !inst.operands[1].present)
11471 inst.operands[1] = inst.operands[0];
11472
11473 /* Suck up all the varargs. */
11474 va_start (ap, ns);
11475 for (i = 0; i < els; i++)
11476 {
11477 unsigned thisarg = va_arg (ap, unsigned);
11478 if (thisarg == N_IGNORE_TYPE)
11479 {
11480 va_end (ap);
11481 return badtype;
11482 }
11483 types[i] = thisarg;
11484 if ((thisarg & N_KEY) != 0)
11485 key_el = i;
11486 }
11487 va_end (ap);
11488
dcbf9037
JB
11489 if (inst.vectype.elems > 0)
11490 for (i = 0; i < els; i++)
11491 if (inst.operands[i].vectype.type != NT_invtype)
11492 {
11493 first_error (_("types specified in both the mnemonic and operands"));
11494 return badtype;
11495 }
11496
5287ad62
JB
11497 /* Duplicate inst.vectype elements here as necessary.
11498 FIXME: No idea if this is exactly the same as the ARM assembler,
11499 particularly when an insn takes one register and one non-register
11500 operand. */
11501 if (inst.vectype.elems == 1 && els > 1)
11502 {
11503 unsigned j;
11504 inst.vectype.elems = els;
11505 inst.vectype.el[key_el] = inst.vectype.el[0];
11506 for (j = 0; j < els; j++)
dcbf9037
JB
11507 if (j != key_el)
11508 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11509 types[j]);
11510 }
11511 else if (inst.vectype.elems == 0 && els > 0)
11512 {
11513 unsigned j;
11514 /* No types were given after the mnemonic, so look for types specified
11515 after each operand. We allow some flexibility here; as long as the
11516 "key" operand has a type, we can infer the others. */
11517 for (j = 0; j < els; j++)
11518 if (inst.operands[j].vectype.type != NT_invtype)
11519 inst.vectype.el[j] = inst.operands[j].vectype;
11520
11521 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 11522 {
dcbf9037
JB
11523 for (j = 0; j < els; j++)
11524 if (inst.operands[j].vectype.type == NT_invtype)
11525 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11526 types[j]);
11527 }
11528 else
11529 {
11530 first_error (_("operand types can't be inferred"));
11531 return badtype;
5287ad62
JB
11532 }
11533 }
11534 else if (inst.vectype.elems != els)
11535 {
dcbf9037 11536 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
11537 return badtype;
11538 }
11539
11540 for (pass = 0; pass < 2; pass++)
11541 {
11542 for (i = 0; i < els; i++)
11543 {
11544 unsigned thisarg = types[i];
11545 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11546 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11547 enum neon_el_type g_type = inst.vectype.el[i].type;
11548 unsigned g_size = inst.vectype.el[i].size;
11549
11550 /* Decay more-specific signed & unsigned types to sign-insensitive
11551 integer types if sign-specific variants are unavailable. */
11552 if ((g_type == NT_signed || g_type == NT_unsigned)
11553 && (types_allowed & N_SU_ALL) == 0)
11554 g_type = NT_integer;
11555
11556 /* If only untyped args are allowed, decay any more specific types to
11557 them. Some instructions only care about signs for some element
11558 sizes, so handle that properly. */
11559 if ((g_size == 8 && (types_allowed & N_8) != 0)
11560 || (g_size == 16 && (types_allowed & N_16) != 0)
11561 || (g_size == 32 && (types_allowed & N_32) != 0)
11562 || (g_size == 64 && (types_allowed & N_64) != 0))
11563 g_type = NT_untyped;
11564
11565 if (pass == 0)
11566 {
11567 if ((thisarg & N_KEY) != 0)
11568 {
11569 k_type = g_type;
11570 k_size = g_size;
11571 key_allowed = thisarg & ~N_KEY;
11572 }
11573 }
11574 else
11575 {
037e8744
JB
11576 if ((thisarg & N_VFP) != 0)
11577 {
11578 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11579 unsigned regwidth = neon_shape_el_size[regshape], match;
11580
11581 /* In VFP mode, operands must match register widths. If we
11582 have a key operand, use its width, else use the width of
11583 the current operand. */
11584 if (k_size != -1u)
11585 match = k_size;
11586 else
11587 match = g_size;
11588
11589 if (regwidth != match)
11590 {
11591 first_error (_("operand size must match register width"));
11592 return badtype;
11593 }
11594 }
5f4273c7 11595
5287ad62
JB
11596 if ((thisarg & N_EQK) == 0)
11597 {
11598 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11599
11600 if ((given_type & types_allowed) == 0)
11601 {
dcbf9037 11602 first_error (_("bad type in Neon instruction"));
5287ad62
JB
11603 return badtype;
11604 }
11605 }
11606 else
11607 {
11608 enum neon_el_type mod_k_type = k_type;
11609 unsigned mod_k_size = k_size;
11610 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11611 if (g_type != mod_k_type || g_size != mod_k_size)
11612 {
dcbf9037 11613 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
11614 return badtype;
11615 }
11616 }
11617 }
11618 }
11619 }
11620
11621 return inst.vectype.el[key_el];
11622}
11623
037e8744 11624/* Neon-style VFP instruction forwarding. */
5287ad62 11625
037e8744
JB
11626/* Thumb VFP instructions have 0xE in the condition field. */
11627
11628static void
11629do_vfp_cond_or_thumb (void)
5287ad62
JB
11630{
11631 if (thumb_mode)
037e8744 11632 inst.instruction |= 0xe0000000;
5287ad62 11633 else
037e8744 11634 inst.instruction |= inst.cond << 28;
5287ad62
JB
11635}
11636
037e8744
JB
11637/* Look up and encode a simple mnemonic, for use as a helper function for the
11638 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11639 etc. It is assumed that operand parsing has already been done, and that the
11640 operands are in the form expected by the given opcode (this isn't necessarily
11641 the same as the form in which they were parsed, hence some massaging must
11642 take place before this function is called).
11643 Checks current arch version against that in the looked-up opcode. */
5287ad62 11644
037e8744
JB
11645static void
11646do_vfp_nsyn_opcode (const char *opname)
5287ad62 11647{
037e8744 11648 const struct asm_opcode *opcode;
5f4273c7 11649
037e8744 11650 opcode = hash_find (arm_ops_hsh, opname);
5287ad62 11651
037e8744
JB
11652 if (!opcode)
11653 abort ();
5287ad62 11654
037e8744
JB
11655 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11656 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11657 _(BAD_FPU));
5287ad62 11658
037e8744
JB
11659 if (thumb_mode)
11660 {
11661 inst.instruction = opcode->tvalue;
11662 opcode->tencode ();
11663 }
11664 else
11665 {
11666 inst.instruction = (inst.cond << 28) | opcode->avalue;
11667 opcode->aencode ();
11668 }
11669}
5287ad62
JB
11670
11671static void
037e8744 11672do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 11673{
037e8744
JB
11674 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11675
11676 if (rs == NS_FFF)
11677 {
11678 if (is_add)
11679 do_vfp_nsyn_opcode ("fadds");
11680 else
11681 do_vfp_nsyn_opcode ("fsubs");
11682 }
11683 else
11684 {
11685 if (is_add)
11686 do_vfp_nsyn_opcode ("faddd");
11687 else
11688 do_vfp_nsyn_opcode ("fsubd");
11689 }
11690}
11691
11692/* Check operand types to see if this is a VFP instruction, and if so call
11693 PFN (). */
11694
11695static int
11696try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11697{
11698 enum neon_shape rs;
11699 struct neon_type_el et;
11700
11701 switch (args)
11702 {
11703 case 2:
11704 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11705 et = neon_check_type (2, rs,
11706 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11707 break;
5f4273c7 11708
037e8744
JB
11709 case 3:
11710 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11711 et = neon_check_type (3, rs,
11712 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11713 break;
11714
11715 default:
11716 abort ();
11717 }
11718
11719 if (et.type != NT_invtype)
11720 {
11721 pfn (rs);
11722 return SUCCESS;
11723 }
11724 else
11725 inst.error = NULL;
11726
11727 return FAIL;
11728}
11729
11730static void
11731do_vfp_nsyn_mla_mls (enum neon_shape rs)
11732{
11733 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 11734
037e8744
JB
11735 if (rs == NS_FFF)
11736 {
11737 if (is_mla)
11738 do_vfp_nsyn_opcode ("fmacs");
11739 else
11740 do_vfp_nsyn_opcode ("fmscs");
11741 }
11742 else
11743 {
11744 if (is_mla)
11745 do_vfp_nsyn_opcode ("fmacd");
11746 else
11747 do_vfp_nsyn_opcode ("fmscd");
11748 }
11749}
11750
11751static void
11752do_vfp_nsyn_mul (enum neon_shape rs)
11753{
11754 if (rs == NS_FFF)
11755 do_vfp_nsyn_opcode ("fmuls");
11756 else
11757 do_vfp_nsyn_opcode ("fmuld");
11758}
11759
11760static void
11761do_vfp_nsyn_abs_neg (enum neon_shape rs)
11762{
11763 int is_neg = (inst.instruction & 0x80) != 0;
11764 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11765
11766 if (rs == NS_FF)
11767 {
11768 if (is_neg)
11769 do_vfp_nsyn_opcode ("fnegs");
11770 else
11771 do_vfp_nsyn_opcode ("fabss");
11772 }
11773 else
11774 {
11775 if (is_neg)
11776 do_vfp_nsyn_opcode ("fnegd");
11777 else
11778 do_vfp_nsyn_opcode ("fabsd");
11779 }
11780}
11781
11782/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11783 insns belong to Neon, and are handled elsewhere. */
11784
11785static void
11786do_vfp_nsyn_ldm_stm (int is_dbmode)
11787{
11788 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11789 if (is_ldm)
11790 {
11791 if (is_dbmode)
11792 do_vfp_nsyn_opcode ("fldmdbs");
11793 else
11794 do_vfp_nsyn_opcode ("fldmias");
11795 }
11796 else
11797 {
11798 if (is_dbmode)
11799 do_vfp_nsyn_opcode ("fstmdbs");
11800 else
11801 do_vfp_nsyn_opcode ("fstmias");
11802 }
11803}
11804
037e8744
JB
11805static void
11806do_vfp_nsyn_sqrt (void)
11807{
11808 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11809 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11810
037e8744
JB
11811 if (rs == NS_FF)
11812 do_vfp_nsyn_opcode ("fsqrts");
11813 else
11814 do_vfp_nsyn_opcode ("fsqrtd");
11815}
11816
11817static void
11818do_vfp_nsyn_div (void)
11819{
11820 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11821 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11822 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11823
037e8744
JB
11824 if (rs == NS_FFF)
11825 do_vfp_nsyn_opcode ("fdivs");
11826 else
11827 do_vfp_nsyn_opcode ("fdivd");
11828}
11829
11830static void
11831do_vfp_nsyn_nmul (void)
11832{
11833 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11834 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11835 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11836
037e8744
JB
11837 if (rs == NS_FFF)
11838 {
11839 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11840 do_vfp_sp_dyadic ();
11841 }
11842 else
11843 {
11844 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11845 do_vfp_dp_rd_rn_rm ();
11846 }
11847 do_vfp_cond_or_thumb ();
11848}
11849
11850static void
11851do_vfp_nsyn_cmp (void)
11852{
11853 if (inst.operands[1].isreg)
11854 {
11855 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11856 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11857
037e8744
JB
11858 if (rs == NS_FF)
11859 {
11860 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11861 do_vfp_sp_monadic ();
11862 }
11863 else
11864 {
11865 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11866 do_vfp_dp_rd_rm ();
11867 }
11868 }
11869 else
11870 {
11871 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11872 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11873
11874 switch (inst.instruction & 0x0fffffff)
11875 {
11876 case N_MNEM_vcmp:
11877 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11878 break;
11879 case N_MNEM_vcmpe:
11880 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11881 break;
11882 default:
11883 abort ();
11884 }
5f4273c7 11885
037e8744
JB
11886 if (rs == NS_FI)
11887 {
11888 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11889 do_vfp_sp_compare_z ();
11890 }
11891 else
11892 {
11893 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11894 do_vfp_dp_rd ();
11895 }
11896 }
11897 do_vfp_cond_or_thumb ();
11898}
11899
11900static void
11901nsyn_insert_sp (void)
11902{
11903 inst.operands[1] = inst.operands[0];
11904 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 11905 inst.operands[0].reg = REG_SP;
037e8744
JB
11906 inst.operands[0].isreg = 1;
11907 inst.operands[0].writeback = 1;
11908 inst.operands[0].present = 1;
11909}
11910
11911static void
11912do_vfp_nsyn_push (void)
11913{
11914 nsyn_insert_sp ();
11915 if (inst.operands[1].issingle)
11916 do_vfp_nsyn_opcode ("fstmdbs");
11917 else
11918 do_vfp_nsyn_opcode ("fstmdbd");
11919}
11920
11921static void
11922do_vfp_nsyn_pop (void)
11923{
11924 nsyn_insert_sp ();
11925 if (inst.operands[1].issingle)
22b5b651 11926 do_vfp_nsyn_opcode ("fldmias");
037e8744 11927 else
22b5b651 11928 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
11929}
11930
11931/* Fix up Neon data-processing instructions, ORing in the correct bits for
11932 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11933
11934static unsigned
11935neon_dp_fixup (unsigned i)
11936{
11937 if (thumb_mode)
11938 {
11939 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11940 if (i & (1 << 24))
11941 i |= 1 << 28;
5f4273c7 11942
037e8744 11943 i &= ~(1 << 24);
5f4273c7 11944
037e8744
JB
11945 i |= 0xef000000;
11946 }
11947 else
11948 i |= 0xf2000000;
5f4273c7 11949
037e8744
JB
11950 return i;
11951}
11952
11953/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11954 (0, 1, 2, 3). */
11955
11956static unsigned
11957neon_logbits (unsigned x)
11958{
11959 return ffs (x) - 4;
11960}
11961
11962#define LOW4(R) ((R) & 0xf)
11963#define HI1(R) (((R) >> 4) & 1)
11964
11965/* Encode insns with bit pattern:
11966
11967 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11968 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 11969
037e8744
JB
11970 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11971 different meaning for some instruction. */
11972
11973static void
11974neon_three_same (int isquad, int ubit, int size)
11975{
11976 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11977 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11978 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11979 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11980 inst.instruction |= LOW4 (inst.operands[2].reg);
11981 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11982 inst.instruction |= (isquad != 0) << 6;
11983 inst.instruction |= (ubit != 0) << 24;
11984 if (size != -1)
11985 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 11986
037e8744
JB
11987 inst.instruction = neon_dp_fixup (inst.instruction);
11988}
11989
11990/* Encode instructions of the form:
11991
11992 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11993 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
11994
11995 Don't write size if SIZE == -1. */
11996
11997static void
11998neon_two_same (int qbit, int ubit, int size)
11999{
12000 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12001 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12002 inst.instruction |= LOW4 (inst.operands[1].reg);
12003 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12004 inst.instruction |= (qbit != 0) << 6;
12005 inst.instruction |= (ubit != 0) << 24;
12006
12007 if (size != -1)
12008 inst.instruction |= neon_logbits (size) << 18;
12009
12010 inst.instruction = neon_dp_fixup (inst.instruction);
12011}
12012
12013/* Neon instruction encoders, in approximate order of appearance. */
12014
12015static void
12016do_neon_dyadic_i_su (void)
12017{
037e8744 12018 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12019 struct neon_type_el et = neon_check_type (3, rs,
12020 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 12021 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12022}
12023
12024static void
12025do_neon_dyadic_i64_su (void)
12026{
037e8744 12027 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12028 struct neon_type_el et = neon_check_type (3, rs,
12029 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 12030 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12031}
12032
12033static void
12034neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12035 unsigned immbits)
12036{
12037 unsigned size = et.size >> 3;
12038 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12039 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12040 inst.instruction |= LOW4 (inst.operands[1].reg);
12041 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12042 inst.instruction |= (isquad != 0) << 6;
12043 inst.instruction |= immbits << 16;
12044 inst.instruction |= (size >> 3) << 7;
12045 inst.instruction |= (size & 0x7) << 19;
12046 if (write_ubit)
12047 inst.instruction |= (uval != 0) << 24;
12048
12049 inst.instruction = neon_dp_fixup (inst.instruction);
12050}
12051
12052static void
12053do_neon_shl_imm (void)
12054{
12055 if (!inst.operands[2].isreg)
12056 {
037e8744 12057 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12058 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12059 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 12060 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
12061 }
12062 else
12063 {
037e8744 12064 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12065 struct neon_type_el et = neon_check_type (3, rs,
12066 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12067 unsigned int tmp;
12068
12069 /* VSHL/VQSHL 3-register variants have syntax such as:
12070 vshl.xx Dd, Dm, Dn
12071 whereas other 3-register operations encoded by neon_three_same have
12072 syntax like:
12073 vadd.xx Dd, Dn, Dm
12074 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12075 here. */
12076 tmp = inst.operands[2].reg;
12077 inst.operands[2].reg = inst.operands[1].reg;
12078 inst.operands[1].reg = tmp;
5287ad62 12079 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12080 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12081 }
12082}
12083
12084static void
12085do_neon_qshl_imm (void)
12086{
12087 if (!inst.operands[2].isreg)
12088 {
037e8744 12089 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12090 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 12091
5287ad62 12092 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 12093 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
12094 inst.operands[2].imm);
12095 }
12096 else
12097 {
037e8744 12098 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12099 struct neon_type_el et = neon_check_type (3, rs,
12100 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12101 unsigned int tmp;
12102
12103 /* See note in do_neon_shl_imm. */
12104 tmp = inst.operands[2].reg;
12105 inst.operands[2].reg = inst.operands[1].reg;
12106 inst.operands[1].reg = tmp;
5287ad62 12107 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12108 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12109 }
12110}
12111
627907b7
JB
12112static void
12113do_neon_rshl (void)
12114{
12115 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12116 struct neon_type_el et = neon_check_type (3, rs,
12117 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12118 unsigned int tmp;
12119
12120 tmp = inst.operands[2].reg;
12121 inst.operands[2].reg = inst.operands[1].reg;
12122 inst.operands[1].reg = tmp;
12123 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12124}
12125
5287ad62
JB
12126static int
12127neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12128{
036dc3f7
PB
12129 /* Handle .I8 pseudo-instructions. */
12130 if (size == 8)
5287ad62 12131 {
5287ad62
JB
12132 /* Unfortunately, this will make everything apart from zero out-of-range.
12133 FIXME is this the intended semantics? There doesn't seem much point in
12134 accepting .I8 if so. */
12135 immediate |= immediate << 8;
12136 size = 16;
036dc3f7
PB
12137 }
12138
12139 if (size >= 32)
12140 {
12141 if (immediate == (immediate & 0x000000ff))
12142 {
12143 *immbits = immediate;
12144 return 0x1;
12145 }
12146 else if (immediate == (immediate & 0x0000ff00))
12147 {
12148 *immbits = immediate >> 8;
12149 return 0x3;
12150 }
12151 else if (immediate == (immediate & 0x00ff0000))
12152 {
12153 *immbits = immediate >> 16;
12154 return 0x5;
12155 }
12156 else if (immediate == (immediate & 0xff000000))
12157 {
12158 *immbits = immediate >> 24;
12159 return 0x7;
12160 }
12161 if ((immediate & 0xffff) != (immediate >> 16))
12162 goto bad_immediate;
12163 immediate &= 0xffff;
5287ad62
JB
12164 }
12165
12166 if (immediate == (immediate & 0x000000ff))
12167 {
12168 *immbits = immediate;
036dc3f7 12169 return 0x9;
5287ad62
JB
12170 }
12171 else if (immediate == (immediate & 0x0000ff00))
12172 {
12173 *immbits = immediate >> 8;
036dc3f7 12174 return 0xb;
5287ad62
JB
12175 }
12176
12177 bad_immediate:
dcbf9037 12178 first_error (_("immediate value out of range"));
5287ad62
JB
12179 return FAIL;
12180}
12181
12182/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12183 A, B, C, D. */
12184
12185static int
12186neon_bits_same_in_bytes (unsigned imm)
12187{
12188 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12189 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12190 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12191 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12192}
12193
12194/* For immediate of above form, return 0bABCD. */
12195
12196static unsigned
12197neon_squash_bits (unsigned imm)
12198{
12199 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12200 | ((imm & 0x01000000) >> 21);
12201}
12202
136da414 12203/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
12204
12205static unsigned
12206neon_qfloat_bits (unsigned imm)
12207{
136da414 12208 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
12209}
12210
12211/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12212 the instruction. *OP is passed as the initial value of the op field, and
12213 may be set to a different value depending on the constant (i.e.
12214 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 12215 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 12216 try smaller element sizes. */
5287ad62
JB
12217
12218static int
c96612cc
JB
12219neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12220 unsigned *immbits, int *op, int size,
12221 enum neon_el_type type)
5287ad62 12222{
c96612cc
JB
12223 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12224 float. */
12225 if (type == NT_float && !float_p)
12226 return FAIL;
12227
136da414
JB
12228 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12229 {
12230 if (size != 32 || *op == 1)
12231 return FAIL;
12232 *immbits = neon_qfloat_bits (immlo);
12233 return 0xf;
12234 }
036dc3f7
PB
12235
12236 if (size == 64)
5287ad62 12237 {
036dc3f7
PB
12238 if (neon_bits_same_in_bytes (immhi)
12239 && neon_bits_same_in_bytes (immlo))
12240 {
12241 if (*op == 1)
12242 return FAIL;
12243 *immbits = (neon_squash_bits (immhi) << 4)
12244 | neon_squash_bits (immlo);
12245 *op = 1;
12246 return 0xe;
12247 }
12248
12249 if (immhi != immlo)
12250 return FAIL;
5287ad62 12251 }
036dc3f7
PB
12252
12253 if (size >= 32)
5287ad62 12254 {
036dc3f7
PB
12255 if (immlo == (immlo & 0x000000ff))
12256 {
12257 *immbits = immlo;
12258 return 0x0;
12259 }
12260 else if (immlo == (immlo & 0x0000ff00))
12261 {
12262 *immbits = immlo >> 8;
12263 return 0x2;
12264 }
12265 else if (immlo == (immlo & 0x00ff0000))
12266 {
12267 *immbits = immlo >> 16;
12268 return 0x4;
12269 }
12270 else if (immlo == (immlo & 0xff000000))
12271 {
12272 *immbits = immlo >> 24;
12273 return 0x6;
12274 }
12275 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12276 {
12277 *immbits = (immlo >> 8) & 0xff;
12278 return 0xc;
12279 }
12280 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12281 {
12282 *immbits = (immlo >> 16) & 0xff;
12283 return 0xd;
12284 }
12285
12286 if ((immlo & 0xffff) != (immlo >> 16))
12287 return FAIL;
12288 immlo &= 0xffff;
5287ad62 12289 }
036dc3f7
PB
12290
12291 if (size >= 16)
5287ad62 12292 {
036dc3f7
PB
12293 if (immlo == (immlo & 0x000000ff))
12294 {
12295 *immbits = immlo;
12296 return 0x8;
12297 }
12298 else if (immlo == (immlo & 0x0000ff00))
12299 {
12300 *immbits = immlo >> 8;
12301 return 0xa;
12302 }
12303
12304 if ((immlo & 0xff) != (immlo >> 8))
12305 return FAIL;
12306 immlo &= 0xff;
5287ad62 12307 }
036dc3f7
PB
12308
12309 if (immlo == (immlo & 0x000000ff))
5287ad62 12310 {
036dc3f7
PB
12311 /* Don't allow MVN with 8-bit immediate. */
12312 if (*op == 1)
12313 return FAIL;
12314 *immbits = immlo;
12315 return 0xe;
5287ad62 12316 }
5287ad62
JB
12317
12318 return FAIL;
12319}
12320
12321/* Write immediate bits [7:0] to the following locations:
12322
12323 |28/24|23 19|18 16|15 4|3 0|
12324 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12325
12326 This function is used by VMOV/VMVN/VORR/VBIC. */
12327
12328static void
12329neon_write_immbits (unsigned immbits)
12330{
12331 inst.instruction |= immbits & 0xf;
12332 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12333 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12334}
12335
12336/* Invert low-order SIZE bits of XHI:XLO. */
12337
12338static void
12339neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12340{
12341 unsigned immlo = xlo ? *xlo : 0;
12342 unsigned immhi = xhi ? *xhi : 0;
12343
12344 switch (size)
12345 {
12346 case 8:
12347 immlo = (~immlo) & 0xff;
12348 break;
12349
12350 case 16:
12351 immlo = (~immlo) & 0xffff;
12352 break;
12353
12354 case 64:
12355 immhi = (~immhi) & 0xffffffff;
12356 /* fall through. */
12357
12358 case 32:
12359 immlo = (~immlo) & 0xffffffff;
12360 break;
12361
12362 default:
12363 abort ();
12364 }
12365
12366 if (xlo)
12367 *xlo = immlo;
12368
12369 if (xhi)
12370 *xhi = immhi;
12371}
12372
12373static void
12374do_neon_logic (void)
12375{
12376 if (inst.operands[2].present && inst.operands[2].isreg)
12377 {
037e8744 12378 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12379 neon_check_type (3, rs, N_IGNORE_TYPE);
12380 /* U bit and size field were set as part of the bitmask. */
12381 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12382 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12383 }
12384 else
12385 {
037e8744
JB
12386 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12387 struct neon_type_el et = neon_check_type (2, rs,
12388 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62
JB
12389 enum neon_opc opcode = inst.instruction & 0x0fffffff;
12390 unsigned immbits;
12391 int cmode;
5f4273c7 12392
5287ad62
JB
12393 if (et.type == NT_invtype)
12394 return;
5f4273c7 12395
5287ad62
JB
12396 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12397
036dc3f7
PB
12398 immbits = inst.operands[1].imm;
12399 if (et.size == 64)
12400 {
12401 /* .i64 is a pseudo-op, so the immediate must be a repeating
12402 pattern. */
12403 if (immbits != (inst.operands[1].regisimm ?
12404 inst.operands[1].reg : 0))
12405 {
12406 /* Set immbits to an invalid constant. */
12407 immbits = 0xdeadbeef;
12408 }
12409 }
12410
5287ad62
JB
12411 switch (opcode)
12412 {
12413 case N_MNEM_vbic:
036dc3f7 12414 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 12415 break;
5f4273c7 12416
5287ad62 12417 case N_MNEM_vorr:
036dc3f7 12418 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 12419 break;
5f4273c7 12420
5287ad62
JB
12421 case N_MNEM_vand:
12422 /* Pseudo-instruction for VBIC. */
5287ad62
JB
12423 neon_invert_size (&immbits, 0, et.size);
12424 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12425 break;
5f4273c7 12426
5287ad62
JB
12427 case N_MNEM_vorn:
12428 /* Pseudo-instruction for VORR. */
5287ad62
JB
12429 neon_invert_size (&immbits, 0, et.size);
12430 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12431 break;
5f4273c7 12432
5287ad62
JB
12433 default:
12434 abort ();
12435 }
12436
12437 if (cmode == FAIL)
12438 return;
12439
037e8744 12440 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12441 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12442 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12443 inst.instruction |= cmode << 8;
12444 neon_write_immbits (immbits);
5f4273c7 12445
5287ad62
JB
12446 inst.instruction = neon_dp_fixup (inst.instruction);
12447 }
12448}
12449
12450static void
12451do_neon_bitfield (void)
12452{
037e8744 12453 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 12454 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 12455 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12456}
12457
12458static void
dcbf9037
JB
12459neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12460 unsigned destbits)
5287ad62 12461{
037e8744 12462 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
12463 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12464 types | N_KEY);
5287ad62
JB
12465 if (et.type == NT_float)
12466 {
12467 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
037e8744 12468 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12469 }
12470 else
12471 {
12472 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12473 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
12474 }
12475}
12476
12477static void
12478do_neon_dyadic_if_su (void)
12479{
dcbf9037 12480 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12481}
12482
12483static void
12484do_neon_dyadic_if_su_d (void)
12485{
12486 /* This version only allow D registers, but that constraint is enforced during
12487 operand parsing so we don't need to do anything extra here. */
dcbf9037 12488 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12489}
12490
5287ad62
JB
12491static void
12492do_neon_dyadic_if_i_d (void)
12493{
428e3f1f
PB
12494 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12495 affected if we specify unsigned args. */
12496 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
12497}
12498
037e8744
JB
12499enum vfp_or_neon_is_neon_bits
12500{
12501 NEON_CHECK_CC = 1,
12502 NEON_CHECK_ARCH = 2
12503};
12504
12505/* Call this function if an instruction which may have belonged to the VFP or
12506 Neon instruction sets, but turned out to be a Neon instruction (due to the
12507 operand types involved, etc.). We have to check and/or fix-up a couple of
12508 things:
12509
12510 - Make sure the user hasn't attempted to make a Neon instruction
12511 conditional.
12512 - Alter the value in the condition code field if necessary.
12513 - Make sure that the arch supports Neon instructions.
12514
12515 Which of these operations take place depends on bits from enum
12516 vfp_or_neon_is_neon_bits.
12517
12518 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12519 current instruction's condition is COND_ALWAYS, the condition field is
12520 changed to inst.uncond_value. This is necessary because instructions shared
12521 between VFP and Neon may be conditional for the VFP variants only, and the
12522 unconditional Neon version must have, e.g., 0xF in the condition field. */
12523
12524static int
12525vfp_or_neon_is_neon (unsigned check)
12526{
12527 /* Conditions are always legal in Thumb mode (IT blocks). */
12528 if (!thumb_mode && (check & NEON_CHECK_CC))
12529 {
12530 if (inst.cond != COND_ALWAYS)
12531 {
12532 first_error (_(BAD_COND));
12533 return FAIL;
12534 }
12535 if (inst.uncond_value != -1)
12536 inst.instruction |= inst.uncond_value << 28;
12537 }
5f4273c7 12538
037e8744
JB
12539 if ((check & NEON_CHECK_ARCH)
12540 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12541 {
12542 first_error (_(BAD_FPU));
12543 return FAIL;
12544 }
5f4273c7 12545
037e8744
JB
12546 return SUCCESS;
12547}
12548
5287ad62
JB
12549static void
12550do_neon_addsub_if_i (void)
12551{
037e8744
JB
12552 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12553 return;
12554
12555 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12556 return;
12557
5287ad62
JB
12558 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12559 affected if we specify unsigned args. */
dcbf9037 12560 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
12561}
12562
12563/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12564 result to be:
12565 V<op> A,B (A is operand 0, B is operand 2)
12566 to mean:
12567 V<op> A,B,A
12568 not:
12569 V<op> A,B,B
12570 so handle that case specially. */
12571
12572static void
12573neon_exchange_operands (void)
12574{
12575 void *scratch = alloca (sizeof (inst.operands[0]));
12576 if (inst.operands[1].present)
12577 {
12578 /* Swap operands[1] and operands[2]. */
12579 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12580 inst.operands[1] = inst.operands[2];
12581 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12582 }
12583 else
12584 {
12585 inst.operands[1] = inst.operands[2];
12586 inst.operands[2] = inst.operands[0];
12587 }
12588}
12589
12590static void
12591neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12592{
12593 if (inst.operands[2].isreg)
12594 {
12595 if (invert)
12596 neon_exchange_operands ();
dcbf9037 12597 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
12598 }
12599 else
12600 {
037e8744 12601 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
12602 struct neon_type_el et = neon_check_type (2, rs,
12603 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62
JB
12604
12605 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12606 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12607 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12608 inst.instruction |= LOW4 (inst.operands[1].reg);
12609 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12610 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12611 inst.instruction |= (et.type == NT_float) << 10;
12612 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12613
5287ad62
JB
12614 inst.instruction = neon_dp_fixup (inst.instruction);
12615 }
12616}
12617
12618static void
12619do_neon_cmp (void)
12620{
12621 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12622}
12623
12624static void
12625do_neon_cmp_inv (void)
12626{
12627 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12628}
12629
12630static void
12631do_neon_ceq (void)
12632{
12633 neon_compare (N_IF_32, N_IF_32, FALSE);
12634}
12635
12636/* For multiply instructions, we have the possibility of 16-bit or 32-bit
12637 scalars, which are encoded in 5 bits, M : Rm.
12638 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12639 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12640 index in M. */
12641
12642static unsigned
12643neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12644{
dcbf9037
JB
12645 unsigned regno = NEON_SCALAR_REG (scalar);
12646 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
12647
12648 switch (elsize)
12649 {
12650 case 16:
12651 if (regno > 7 || elno > 3)
12652 goto bad_scalar;
12653 return regno | (elno << 3);
5f4273c7 12654
5287ad62
JB
12655 case 32:
12656 if (regno > 15 || elno > 1)
12657 goto bad_scalar;
12658 return regno | (elno << 4);
12659
12660 default:
12661 bad_scalar:
dcbf9037 12662 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
12663 }
12664
12665 return 0;
12666}
12667
12668/* Encode multiply / multiply-accumulate scalar instructions. */
12669
12670static void
12671neon_mul_mac (struct neon_type_el et, int ubit)
12672{
dcbf9037
JB
12673 unsigned scalar;
12674
12675 /* Give a more helpful error message if we have an invalid type. */
12676 if (et.type == NT_invtype)
12677 return;
5f4273c7 12678
dcbf9037 12679 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
12680 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12681 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12682 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12683 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12684 inst.instruction |= LOW4 (scalar);
12685 inst.instruction |= HI1 (scalar) << 5;
12686 inst.instruction |= (et.type == NT_float) << 8;
12687 inst.instruction |= neon_logbits (et.size) << 20;
12688 inst.instruction |= (ubit != 0) << 24;
12689
12690 inst.instruction = neon_dp_fixup (inst.instruction);
12691}
12692
12693static void
12694do_neon_mac_maybe_scalar (void)
12695{
037e8744
JB
12696 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12697 return;
12698
12699 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12700 return;
12701
5287ad62
JB
12702 if (inst.operands[2].isscalar)
12703 {
037e8744 12704 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12705 struct neon_type_el et = neon_check_type (3, rs,
12706 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12707 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12708 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12709 }
12710 else
428e3f1f
PB
12711 {
12712 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12713 affected if we specify unsigned args. */
12714 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12715 }
5287ad62
JB
12716}
12717
12718static void
12719do_neon_tst (void)
12720{
037e8744 12721 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12722 struct neon_type_el et = neon_check_type (3, rs,
12723 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 12724 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12725}
12726
12727/* VMUL with 3 registers allows the P8 type. The scalar version supports the
12728 same types as the MAC equivalents. The polynomial type for this instruction
12729 is encoded the same as the integer type. */
12730
12731static void
12732do_neon_mul (void)
12733{
037e8744
JB
12734 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12735 return;
12736
12737 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12738 return;
12739
5287ad62
JB
12740 if (inst.operands[2].isscalar)
12741 do_neon_mac_maybe_scalar ();
12742 else
dcbf9037 12743 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
12744}
12745
12746static void
12747do_neon_qdmulh (void)
12748{
12749 if (inst.operands[2].isscalar)
12750 {
037e8744 12751 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12752 struct neon_type_el et = neon_check_type (3, rs,
12753 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12754 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12755 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12756 }
12757 else
12758 {
037e8744 12759 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12760 struct neon_type_el et = neon_check_type (3, rs,
12761 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12762 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12763 /* The U bit (rounding) comes from bit mask. */
037e8744 12764 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12765 }
12766}
12767
12768static void
12769do_neon_fcmp_absolute (void)
12770{
037e8744 12771 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12772 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12773 /* Size field comes from bit mask. */
037e8744 12774 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
12775}
12776
12777static void
12778do_neon_fcmp_absolute_inv (void)
12779{
12780 neon_exchange_operands ();
12781 do_neon_fcmp_absolute ();
12782}
12783
12784static void
12785do_neon_step (void)
12786{
037e8744 12787 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 12788 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 12789 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12790}
12791
12792static void
12793do_neon_abs_neg (void)
12794{
037e8744
JB
12795 enum neon_shape rs;
12796 struct neon_type_el et;
5f4273c7 12797
037e8744
JB
12798 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12799 return;
12800
12801 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12802 return;
12803
12804 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12805 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 12806
5287ad62
JB
12807 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12808 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12809 inst.instruction |= LOW4 (inst.operands[1].reg);
12810 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12811 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12812 inst.instruction |= (et.type == NT_float) << 10;
12813 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12814
5287ad62
JB
12815 inst.instruction = neon_dp_fixup (inst.instruction);
12816}
12817
12818static void
12819do_neon_sli (void)
12820{
037e8744 12821 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12822 struct neon_type_el et = neon_check_type (2, rs,
12823 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12824 int imm = inst.operands[2].imm;
12825 constraint (imm < 0 || (unsigned)imm >= et.size,
12826 _("immediate out of range for insert"));
037e8744 12827 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12828}
12829
12830static void
12831do_neon_sri (void)
12832{
037e8744 12833 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12834 struct neon_type_el et = neon_check_type (2, rs,
12835 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12836 int imm = inst.operands[2].imm;
12837 constraint (imm < 1 || (unsigned)imm > et.size,
12838 _("immediate out of range for insert"));
037e8744 12839 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
12840}
12841
12842static void
12843do_neon_qshlu_imm (void)
12844{
037e8744 12845 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12846 struct neon_type_el et = neon_check_type (2, rs,
12847 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12848 int imm = inst.operands[2].imm;
12849 constraint (imm < 0 || (unsigned)imm >= et.size,
12850 _("immediate out of range for shift"));
12851 /* Only encodes the 'U present' variant of the instruction.
12852 In this case, signed types have OP (bit 8) set to 0.
12853 Unsigned types have OP set to 1. */
12854 inst.instruction |= (et.type == NT_unsigned) << 8;
12855 /* The rest of the bits are the same as other immediate shifts. */
037e8744 12856 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12857}
12858
12859static void
12860do_neon_qmovn (void)
12861{
12862 struct neon_type_el et = neon_check_type (2, NS_DQ,
12863 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12864 /* Saturating move where operands can be signed or unsigned, and the
12865 destination has the same signedness. */
12866 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12867 if (et.type == NT_unsigned)
12868 inst.instruction |= 0xc0;
12869 else
12870 inst.instruction |= 0x80;
12871 neon_two_same (0, 1, et.size / 2);
12872}
12873
12874static void
12875do_neon_qmovun (void)
12876{
12877 struct neon_type_el et = neon_check_type (2, NS_DQ,
12878 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12879 /* Saturating move with unsigned results. Operands must be signed. */
12880 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12881 neon_two_same (0, 1, et.size / 2);
12882}
12883
12884static void
12885do_neon_rshift_sat_narrow (void)
12886{
12887 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12888 or unsigned. If operands are unsigned, results must also be unsigned. */
12889 struct neon_type_el et = neon_check_type (2, NS_DQI,
12890 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12891 int imm = inst.operands[2].imm;
12892 /* This gets the bounds check, size encoding and immediate bits calculation
12893 right. */
12894 et.size /= 2;
5f4273c7 12895
5287ad62
JB
12896 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12897 VQMOVN.I<size> <Dd>, <Qm>. */
12898 if (imm == 0)
12899 {
12900 inst.operands[2].present = 0;
12901 inst.instruction = N_MNEM_vqmovn;
12902 do_neon_qmovn ();
12903 return;
12904 }
5f4273c7 12905
5287ad62
JB
12906 constraint (imm < 1 || (unsigned)imm > et.size,
12907 _("immediate out of range"));
12908 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12909}
12910
12911static void
12912do_neon_rshift_sat_narrow_u (void)
12913{
12914 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12915 or unsigned. If operands are unsigned, results must also be unsigned. */
12916 struct neon_type_el et = neon_check_type (2, NS_DQI,
12917 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12918 int imm = inst.operands[2].imm;
12919 /* This gets the bounds check, size encoding and immediate bits calculation
12920 right. */
12921 et.size /= 2;
12922
12923 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12924 VQMOVUN.I<size> <Dd>, <Qm>. */
12925 if (imm == 0)
12926 {
12927 inst.operands[2].present = 0;
12928 inst.instruction = N_MNEM_vqmovun;
12929 do_neon_qmovun ();
12930 return;
12931 }
12932
12933 constraint (imm < 1 || (unsigned)imm > et.size,
12934 _("immediate out of range"));
12935 /* FIXME: The manual is kind of unclear about what value U should have in
12936 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12937 must be 1. */
12938 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12939}
12940
12941static void
12942do_neon_movn (void)
12943{
12944 struct neon_type_el et = neon_check_type (2, NS_DQ,
12945 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12946 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12947 neon_two_same (0, 1, et.size / 2);
12948}
12949
12950static void
12951do_neon_rshift_narrow (void)
12952{
12953 struct neon_type_el et = neon_check_type (2, NS_DQI,
12954 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12955 int imm = inst.operands[2].imm;
12956 /* This gets the bounds check, size encoding and immediate bits calculation
12957 right. */
12958 et.size /= 2;
5f4273c7 12959
5287ad62
JB
12960 /* If immediate is zero then we are a pseudo-instruction for
12961 VMOVN.I<size> <Dd>, <Qm> */
12962 if (imm == 0)
12963 {
12964 inst.operands[2].present = 0;
12965 inst.instruction = N_MNEM_vmovn;
12966 do_neon_movn ();
12967 return;
12968 }
5f4273c7 12969
5287ad62
JB
12970 constraint (imm < 1 || (unsigned)imm > et.size,
12971 _("immediate out of range for narrowing operation"));
12972 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12973}
12974
12975static void
12976do_neon_shll (void)
12977{
12978 /* FIXME: Type checking when lengthening. */
12979 struct neon_type_el et = neon_check_type (2, NS_QDI,
12980 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12981 unsigned imm = inst.operands[2].imm;
12982
12983 if (imm == et.size)
12984 {
12985 /* Maximum shift variant. */
12986 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12987 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12988 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12989 inst.instruction |= LOW4 (inst.operands[1].reg);
12990 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12991 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12992
5287ad62
JB
12993 inst.instruction = neon_dp_fixup (inst.instruction);
12994 }
12995 else
12996 {
12997 /* A more-specific type check for non-max versions. */
12998 et = neon_check_type (2, NS_QDI,
12999 N_EQK | N_DBL, N_SU_32 | N_KEY);
13000 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13001 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13002 }
13003}
13004
037e8744 13005/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
13006 the current instruction is. */
13007
13008static int
13009neon_cvt_flavour (enum neon_shape rs)
13010{
037e8744
JB
13011#define CVT_VAR(C,X,Y) \
13012 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13013 if (et.type != NT_invtype) \
13014 { \
13015 inst.error = NULL; \
13016 return (C); \
5287ad62
JB
13017 }
13018 struct neon_type_el et;
037e8744
JB
13019 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13020 || rs == NS_FF) ? N_VFP : 0;
13021 /* The instruction versions which take an immediate take one register
13022 argument, which is extended to the width of the full register. Thus the
13023 "source" and "destination" registers must have the same width. Hack that
13024 here by making the size equal to the key (wider, in this case) operand. */
13025 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 13026
5287ad62
JB
13027 CVT_VAR (0, N_S32, N_F32);
13028 CVT_VAR (1, N_U32, N_F32);
13029 CVT_VAR (2, N_F32, N_S32);
13030 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
13031 /* Half-precision conversions. */
13032 CVT_VAR (4, N_F32, N_F16);
13033 CVT_VAR (5, N_F16, N_F32);
5f4273c7 13034
037e8744 13035 whole_reg = N_VFP;
5f4273c7 13036
037e8744 13037 /* VFP instructions. */
8e79c3df
CM
13038 CVT_VAR (6, N_F32, N_F64);
13039 CVT_VAR (7, N_F64, N_F32);
13040 CVT_VAR (8, N_S32, N_F64 | key);
13041 CVT_VAR (9, N_U32, N_F64 | key);
13042 CVT_VAR (10, N_F64 | key, N_S32);
13043 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 13044 /* VFP instructions with bitshift. */
8e79c3df
CM
13045 CVT_VAR (12, N_F32 | key, N_S16);
13046 CVT_VAR (13, N_F32 | key, N_U16);
13047 CVT_VAR (14, N_F64 | key, N_S16);
13048 CVT_VAR (15, N_F64 | key, N_U16);
13049 CVT_VAR (16, N_S16, N_F32 | key);
13050 CVT_VAR (17, N_U16, N_F32 | key);
13051 CVT_VAR (18, N_S16, N_F64 | key);
13052 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 13053
5287ad62
JB
13054 return -1;
13055#undef CVT_VAR
13056}
13057
037e8744
JB
13058/* Neon-syntax VFP conversions. */
13059
5287ad62 13060static void
037e8744 13061do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 13062{
037e8744 13063 const char *opname = 0;
5f4273c7 13064
037e8744 13065 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 13066 {
037e8744
JB
13067 /* Conversions with immediate bitshift. */
13068 const char *enc[] =
13069 {
13070 "ftosls",
13071 "ftouls",
13072 "fsltos",
13073 "fultos",
13074 NULL,
13075 NULL,
8e79c3df
CM
13076 NULL,
13077 NULL,
037e8744
JB
13078 "ftosld",
13079 "ftould",
13080 "fsltod",
13081 "fultod",
13082 "fshtos",
13083 "fuhtos",
13084 "fshtod",
13085 "fuhtod",
13086 "ftoshs",
13087 "ftouhs",
13088 "ftoshd",
13089 "ftouhd"
13090 };
13091
13092 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13093 {
13094 opname = enc[flavour];
13095 constraint (inst.operands[0].reg != inst.operands[1].reg,
13096 _("operands 0 and 1 must be the same register"));
13097 inst.operands[1] = inst.operands[2];
13098 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13099 }
5287ad62
JB
13100 }
13101 else
13102 {
037e8744
JB
13103 /* Conversions without bitshift. */
13104 const char *enc[] =
13105 {
13106 "ftosis",
13107 "ftouis",
13108 "fsitos",
13109 "fuitos",
8e79c3df
CM
13110 "NULL",
13111 "NULL",
037e8744
JB
13112 "fcvtsd",
13113 "fcvtds",
13114 "ftosid",
13115 "ftouid",
13116 "fsitod",
13117 "fuitod"
13118 };
13119
13120 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13121 opname = enc[flavour];
13122 }
13123
13124 if (opname)
13125 do_vfp_nsyn_opcode (opname);
13126}
13127
13128static void
13129do_vfp_nsyn_cvtz (void)
13130{
13131 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13132 int flavour = neon_cvt_flavour (rs);
13133 const char *enc[] =
13134 {
13135 "ftosizs",
13136 "ftouizs",
13137 NULL,
13138 NULL,
13139 NULL,
13140 NULL,
8e79c3df
CM
13141 NULL,
13142 NULL,
037e8744
JB
13143 "ftosizd",
13144 "ftouizd"
13145 };
13146
13147 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13148 do_vfp_nsyn_opcode (enc[flavour]);
13149}
f31fef98 13150
037e8744
JB
13151static void
13152do_neon_cvt (void)
13153{
13154 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 13155 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
13156 int flavour = neon_cvt_flavour (rs);
13157
13158 /* VFP rather than Neon conversions. */
8e79c3df 13159 if (flavour >= 6)
037e8744
JB
13160 {
13161 do_vfp_nsyn_cvt (rs, flavour);
13162 return;
13163 }
13164
13165 switch (rs)
13166 {
13167 case NS_DDI:
13168 case NS_QQI:
13169 {
35997600
NC
13170 unsigned immbits;
13171 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13172
037e8744
JB
13173 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13174 return;
13175
13176 /* Fixed-point conversion with #0 immediate is encoded as an
13177 integer conversion. */
13178 if (inst.operands[2].present && inst.operands[2].imm == 0)
13179 goto int_encode;
35997600 13180 immbits = 32 - inst.operands[2].imm;
037e8744
JB
13181 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13182 if (flavour != -1)
13183 inst.instruction |= enctab[flavour];
13184 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13185 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13186 inst.instruction |= LOW4 (inst.operands[1].reg);
13187 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13188 inst.instruction |= neon_quad (rs) << 6;
13189 inst.instruction |= 1 << 21;
13190 inst.instruction |= immbits << 16;
13191
13192 inst.instruction = neon_dp_fixup (inst.instruction);
13193 }
13194 break;
13195
13196 case NS_DD:
13197 case NS_QQ:
13198 int_encode:
13199 {
13200 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13201
13202 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13203
13204 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13205 return;
13206
13207 if (flavour != -1)
13208 inst.instruction |= enctab[flavour];
13209
13210 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13211 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13212 inst.instruction |= LOW4 (inst.operands[1].reg);
13213 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13214 inst.instruction |= neon_quad (rs) << 6;
13215 inst.instruction |= 2 << 18;
13216
13217 inst.instruction = neon_dp_fixup (inst.instruction);
13218 }
13219 break;
13220
8e79c3df
CM
13221 /* Half-precision conversions for Advanced SIMD -- neon. */
13222 case NS_QD:
13223 case NS_DQ:
13224
13225 if ((rs == NS_DQ)
13226 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13227 {
13228 as_bad (_("operand size must match register width"));
13229 break;
13230 }
13231
13232 if ((rs == NS_QD)
13233 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13234 {
13235 as_bad (_("operand size must match register width"));
13236 break;
13237 }
13238
13239 if (rs == NS_DQ)
13240 inst.instruction = 0x3b60600;
13241 else
13242 inst.instruction = 0x3b60700;
13243
13244 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13245 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13246 inst.instruction |= LOW4 (inst.operands[1].reg);
13247 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13248 inst.instruction = neon_dp_fixup (inst.instruction);
13249 break;
13250
037e8744
JB
13251 default:
13252 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13253 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 13254 }
5287ad62
JB
13255}
13256
8e79c3df
CM
13257static void
13258do_neon_cvtb (void)
13259{
13260 inst.instruction = 0xeb20a40;
13261
13262 /* The sizes are attached to the mnemonic. */
13263 if (inst.vectype.el[0].type != NT_invtype
13264 && inst.vectype.el[0].size == 16)
13265 inst.instruction |= 0x00010000;
13266
13267 /* Programmer's syntax: the sizes are attached to the operands. */
13268 else if (inst.operands[0].vectype.type != NT_invtype
13269 && inst.operands[0].vectype.size == 16)
13270 inst.instruction |= 0x00010000;
13271
13272 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13273 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13274 do_vfp_cond_or_thumb ();
13275}
13276
13277
13278static void
13279do_neon_cvtt (void)
13280{
13281 do_neon_cvtb ();
13282 inst.instruction |= 0x80;
13283}
13284
5287ad62
JB
13285static void
13286neon_move_immediate (void)
13287{
037e8744
JB
13288 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13289 struct neon_type_el et = neon_check_type (2, rs,
13290 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 13291 unsigned immlo, immhi = 0, immbits;
c96612cc 13292 int op, cmode, float_p;
5287ad62 13293
037e8744
JB
13294 constraint (et.type == NT_invtype,
13295 _("operand size must be specified for immediate VMOV"));
13296
5287ad62
JB
13297 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13298 op = (inst.instruction & (1 << 5)) != 0;
13299
13300 immlo = inst.operands[1].imm;
13301 if (inst.operands[1].regisimm)
13302 immhi = inst.operands[1].reg;
13303
13304 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13305 _("immediate has bits set outside the operand size"));
13306
c96612cc
JB
13307 float_p = inst.operands[1].immisfloat;
13308
13309 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 13310 et.size, et.type)) == FAIL)
5287ad62
JB
13311 {
13312 /* Invert relevant bits only. */
13313 neon_invert_size (&immlo, &immhi, et.size);
13314 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13315 with one or the other; those cases are caught by
13316 neon_cmode_for_move_imm. */
13317 op = !op;
c96612cc
JB
13318 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13319 &op, et.size, et.type)) == FAIL)
5287ad62 13320 {
dcbf9037 13321 first_error (_("immediate out of range"));
5287ad62
JB
13322 return;
13323 }
13324 }
13325
13326 inst.instruction &= ~(1 << 5);
13327 inst.instruction |= op << 5;
13328
13329 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13330 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 13331 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13332 inst.instruction |= cmode << 8;
13333
13334 neon_write_immbits (immbits);
13335}
13336
13337static void
13338do_neon_mvn (void)
13339{
13340 if (inst.operands[1].isreg)
13341 {
037e8744 13342 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 13343
5287ad62
JB
13344 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13345 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13346 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13347 inst.instruction |= LOW4 (inst.operands[1].reg);
13348 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13349 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13350 }
13351 else
13352 {
13353 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13354 neon_move_immediate ();
13355 }
13356
13357 inst.instruction = neon_dp_fixup (inst.instruction);
13358}
13359
13360/* Encode instructions of form:
13361
13362 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 13363 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
13364
13365static void
13366neon_mixed_length (struct neon_type_el et, unsigned size)
13367{
13368 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13369 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13370 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13371 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13372 inst.instruction |= LOW4 (inst.operands[2].reg);
13373 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13374 inst.instruction |= (et.type == NT_unsigned) << 24;
13375 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13376
5287ad62
JB
13377 inst.instruction = neon_dp_fixup (inst.instruction);
13378}
13379
13380static void
13381do_neon_dyadic_long (void)
13382{
13383 /* FIXME: Type checking for lengthening op. */
13384 struct neon_type_el et = neon_check_type (3, NS_QDD,
13385 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
13386 neon_mixed_length (et, et.size);
13387}
13388
13389static void
13390do_neon_abal (void)
13391{
13392 struct neon_type_el et = neon_check_type (3, NS_QDD,
13393 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
13394 neon_mixed_length (et, et.size);
13395}
13396
13397static void
13398neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
13399{
13400 if (inst.operands[2].isscalar)
13401 {
dcbf9037
JB
13402 struct neon_type_el et = neon_check_type (3, NS_QDS,
13403 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
5287ad62
JB
13404 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13405 neon_mul_mac (et, et.type == NT_unsigned);
13406 }
13407 else
13408 {
13409 struct neon_type_el et = neon_check_type (3, NS_QDD,
13410 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
13411 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13412 neon_mixed_length (et, et.size);
13413 }
13414}
13415
13416static void
13417do_neon_mac_maybe_scalar_long (void)
13418{
13419 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13420}
13421
13422static void
13423do_neon_dyadic_wide (void)
13424{
13425 struct neon_type_el et = neon_check_type (3, NS_QQD,
13426 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13427 neon_mixed_length (et, et.size);
13428}
13429
13430static void
13431do_neon_dyadic_narrow (void)
13432{
13433 struct neon_type_el et = neon_check_type (3, NS_QDD,
13434 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
13435 /* Operand sign is unimportant, and the U bit is part of the opcode,
13436 so force the operand type to integer. */
13437 et.type = NT_integer;
5287ad62
JB
13438 neon_mixed_length (et, et.size / 2);
13439}
13440
13441static void
13442do_neon_mul_sat_scalar_long (void)
13443{
13444 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13445}
13446
13447static void
13448do_neon_vmull (void)
13449{
13450 if (inst.operands[2].isscalar)
13451 do_neon_mac_maybe_scalar_long ();
13452 else
13453 {
13454 struct neon_type_el et = neon_check_type (3, NS_QDD,
13455 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13456 if (et.type == NT_poly)
13457 inst.instruction = NEON_ENC_POLY (inst.instruction);
13458 else
13459 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13460 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13461 zero. Should be OK as-is. */
13462 neon_mixed_length (et, et.size);
13463 }
13464}
13465
13466static void
13467do_neon_ext (void)
13468{
037e8744 13469 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
13470 struct neon_type_el et = neon_check_type (3, rs,
13471 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13472 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
13473
13474 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13475 _("shift out of range"));
5287ad62
JB
13476 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13477 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13478 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13479 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13480 inst.instruction |= LOW4 (inst.operands[2].reg);
13481 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 13482 inst.instruction |= neon_quad (rs) << 6;
5287ad62 13483 inst.instruction |= imm << 8;
5f4273c7 13484
5287ad62
JB
13485 inst.instruction = neon_dp_fixup (inst.instruction);
13486}
13487
13488static void
13489do_neon_rev (void)
13490{
037e8744 13491 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13492 struct neon_type_el et = neon_check_type (2, rs,
13493 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13494 unsigned op = (inst.instruction >> 7) & 3;
13495 /* N (width of reversed regions) is encoded as part of the bitmask. We
13496 extract it here to check the elements to be reversed are smaller.
13497 Otherwise we'd get a reserved instruction. */
13498 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
13499 assert (elsize != 0);
13500 constraint (et.size >= elsize,
13501 _("elements must be smaller than reversal region"));
037e8744 13502 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13503}
13504
13505static void
13506do_neon_dup (void)
13507{
13508 if (inst.operands[1].isscalar)
13509 {
037e8744 13510 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
13511 struct neon_type_el et = neon_check_type (2, rs,
13512 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 13513 unsigned sizebits = et.size >> 3;
dcbf9037 13514 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 13515 int logsize = neon_logbits (et.size);
dcbf9037 13516 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
13517
13518 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
13519 return;
13520
5287ad62
JB
13521 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13522 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13523 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13524 inst.instruction |= LOW4 (dm);
13525 inst.instruction |= HI1 (dm) << 5;
037e8744 13526 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13527 inst.instruction |= x << 17;
13528 inst.instruction |= sizebits << 16;
5f4273c7 13529
5287ad62
JB
13530 inst.instruction = neon_dp_fixup (inst.instruction);
13531 }
13532 else
13533 {
037e8744
JB
13534 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13535 struct neon_type_el et = neon_check_type (2, rs,
13536 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62
JB
13537 /* Duplicate ARM register to lanes of vector. */
13538 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13539 switch (et.size)
13540 {
13541 case 8: inst.instruction |= 0x400000; break;
13542 case 16: inst.instruction |= 0x000020; break;
13543 case 32: inst.instruction |= 0x000000; break;
13544 default: break;
13545 }
13546 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13547 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13548 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 13549 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
13550 /* The encoding for this instruction is identical for the ARM and Thumb
13551 variants, except for the condition field. */
037e8744 13552 do_vfp_cond_or_thumb ();
5287ad62
JB
13553 }
13554}
13555
13556/* VMOV has particularly many variations. It can be one of:
13557 0. VMOV<c><q> <Qd>, <Qm>
13558 1. VMOV<c><q> <Dd>, <Dm>
13559 (Register operations, which are VORR with Rm = Rn.)
13560 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13561 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13562 (Immediate loads.)
13563 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13564 (ARM register to scalar.)
13565 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13566 (Two ARM registers to vector.)
13567 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13568 (Scalar to ARM register.)
13569 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13570 (Vector to two ARM registers.)
037e8744
JB
13571 8. VMOV.F32 <Sd>, <Sm>
13572 9. VMOV.F64 <Dd>, <Dm>
13573 (VFP register moves.)
13574 10. VMOV.F32 <Sd>, #imm
13575 11. VMOV.F64 <Dd>, #imm
13576 (VFP float immediate load.)
13577 12. VMOV <Rd>, <Sm>
13578 (VFP single to ARM reg.)
13579 13. VMOV <Sd>, <Rm>
13580 (ARM reg to VFP single.)
13581 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13582 (Two ARM regs to two VFP singles.)
13583 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13584 (Two VFP singles to two ARM regs.)
5f4273c7 13585
037e8744
JB
13586 These cases can be disambiguated using neon_select_shape, except cases 1/9
13587 and 3/11 which depend on the operand type too.
5f4273c7 13588
5287ad62 13589 All the encoded bits are hardcoded by this function.
5f4273c7 13590
b7fc2769
JB
13591 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13592 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 13593
5287ad62 13594 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 13595 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
13596
13597static void
13598do_neon_mov (void)
13599{
037e8744
JB
13600 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13601 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13602 NS_NULL);
13603 struct neon_type_el et;
13604 const char *ldconst = 0;
5287ad62 13605
037e8744 13606 switch (rs)
5287ad62 13607 {
037e8744
JB
13608 case NS_DD: /* case 1/9. */
13609 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13610 /* It is not an error here if no type is given. */
13611 inst.error = NULL;
13612 if (et.type == NT_float && et.size == 64)
5287ad62 13613 {
037e8744
JB
13614 do_vfp_nsyn_opcode ("fcpyd");
13615 break;
5287ad62 13616 }
037e8744 13617 /* fall through. */
5287ad62 13618
037e8744
JB
13619 case NS_QQ: /* case 0/1. */
13620 {
13621 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13622 return;
13623 /* The architecture manual I have doesn't explicitly state which
13624 value the U bit should have for register->register moves, but
13625 the equivalent VORR instruction has U = 0, so do that. */
13626 inst.instruction = 0x0200110;
13627 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13628 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13629 inst.instruction |= LOW4 (inst.operands[1].reg);
13630 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13631 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13632 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13633 inst.instruction |= neon_quad (rs) << 6;
13634
13635 inst.instruction = neon_dp_fixup (inst.instruction);
13636 }
13637 break;
5f4273c7 13638
037e8744
JB
13639 case NS_DI: /* case 3/11. */
13640 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13641 inst.error = NULL;
13642 if (et.type == NT_float && et.size == 64)
5287ad62 13643 {
037e8744
JB
13644 /* case 11 (fconstd). */
13645 ldconst = "fconstd";
13646 goto encode_fconstd;
5287ad62 13647 }
037e8744
JB
13648 /* fall through. */
13649
13650 case NS_QI: /* case 2/3. */
13651 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13652 return;
13653 inst.instruction = 0x0800010;
13654 neon_move_immediate ();
13655 inst.instruction = neon_dp_fixup (inst.instruction);
5287ad62 13656 break;
5f4273c7 13657
037e8744
JB
13658 case NS_SR: /* case 4. */
13659 {
13660 unsigned bcdebits = 0;
13661 struct neon_type_el et = neon_check_type (2, NS_NULL,
13662 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13663 int logsize = neon_logbits (et.size);
13664 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13665 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13666
13667 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13668 _(BAD_FPU));
13669 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13670 && et.size != 32, _(BAD_FPU));
13671 constraint (et.type == NT_invtype, _("bad type for scalar"));
13672 constraint (x >= 64 / et.size, _("scalar index out of range"));
13673
13674 switch (et.size)
13675 {
13676 case 8: bcdebits = 0x8; break;
13677 case 16: bcdebits = 0x1; break;
13678 case 32: bcdebits = 0x0; break;
13679 default: ;
13680 }
13681
13682 bcdebits |= x << logsize;
13683
13684 inst.instruction = 0xe000b10;
13685 do_vfp_cond_or_thumb ();
13686 inst.instruction |= LOW4 (dn) << 16;
13687 inst.instruction |= HI1 (dn) << 7;
13688 inst.instruction |= inst.operands[1].reg << 12;
13689 inst.instruction |= (bcdebits & 3) << 5;
13690 inst.instruction |= (bcdebits >> 2) << 21;
13691 }
13692 break;
5f4273c7 13693
037e8744 13694 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 13695 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 13696 _(BAD_FPU));
b7fc2769 13697
037e8744
JB
13698 inst.instruction = 0xc400b10;
13699 do_vfp_cond_or_thumb ();
13700 inst.instruction |= LOW4 (inst.operands[0].reg);
13701 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13702 inst.instruction |= inst.operands[1].reg << 12;
13703 inst.instruction |= inst.operands[2].reg << 16;
13704 break;
5f4273c7 13705
037e8744
JB
13706 case NS_RS: /* case 6. */
13707 {
13708 struct neon_type_el et = neon_check_type (2, NS_NULL,
13709 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13710 unsigned logsize = neon_logbits (et.size);
13711 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13712 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13713 unsigned abcdebits = 0;
13714
13715 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13716 _(BAD_FPU));
13717 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13718 && et.size != 32, _(BAD_FPU));
13719 constraint (et.type == NT_invtype, _("bad type for scalar"));
13720 constraint (x >= 64 / et.size, _("scalar index out of range"));
13721
13722 switch (et.size)
13723 {
13724 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13725 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13726 case 32: abcdebits = 0x00; break;
13727 default: ;
13728 }
13729
13730 abcdebits |= x << logsize;
13731 inst.instruction = 0xe100b10;
13732 do_vfp_cond_or_thumb ();
13733 inst.instruction |= LOW4 (dn) << 16;
13734 inst.instruction |= HI1 (dn) << 7;
13735 inst.instruction |= inst.operands[0].reg << 12;
13736 inst.instruction |= (abcdebits & 3) << 5;
13737 inst.instruction |= (abcdebits >> 2) << 21;
13738 }
13739 break;
5f4273c7 13740
037e8744
JB
13741 case NS_RRD: /* case 7 (fmrrd). */
13742 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13743 _(BAD_FPU));
13744
13745 inst.instruction = 0xc500b10;
13746 do_vfp_cond_or_thumb ();
13747 inst.instruction |= inst.operands[0].reg << 12;
13748 inst.instruction |= inst.operands[1].reg << 16;
13749 inst.instruction |= LOW4 (inst.operands[2].reg);
13750 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13751 break;
5f4273c7 13752
037e8744
JB
13753 case NS_FF: /* case 8 (fcpys). */
13754 do_vfp_nsyn_opcode ("fcpys");
13755 break;
5f4273c7 13756
037e8744
JB
13757 case NS_FI: /* case 10 (fconsts). */
13758 ldconst = "fconsts";
13759 encode_fconstd:
13760 if (is_quarter_float (inst.operands[1].imm))
5287ad62 13761 {
037e8744
JB
13762 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13763 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
13764 }
13765 else
037e8744
JB
13766 first_error (_("immediate out of range"));
13767 break;
5f4273c7 13768
037e8744
JB
13769 case NS_RF: /* case 12 (fmrs). */
13770 do_vfp_nsyn_opcode ("fmrs");
13771 break;
5f4273c7 13772
037e8744
JB
13773 case NS_FR: /* case 13 (fmsr). */
13774 do_vfp_nsyn_opcode ("fmsr");
13775 break;
5f4273c7 13776
037e8744
JB
13777 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13778 (one of which is a list), but we have parsed four. Do some fiddling to
13779 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13780 expect. */
13781 case NS_RRFF: /* case 14 (fmrrs). */
13782 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13783 _("VFP registers must be adjacent"));
13784 inst.operands[2].imm = 2;
13785 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13786 do_vfp_nsyn_opcode ("fmrrs");
13787 break;
5f4273c7 13788
037e8744
JB
13789 case NS_FFRR: /* case 15 (fmsrr). */
13790 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13791 _("VFP registers must be adjacent"));
13792 inst.operands[1] = inst.operands[2];
13793 inst.operands[2] = inst.operands[3];
13794 inst.operands[0].imm = 2;
13795 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13796 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 13797 break;
5f4273c7 13798
5287ad62
JB
13799 default:
13800 abort ();
13801 }
13802}
13803
13804static void
13805do_neon_rshift_round_imm (void)
13806{
037e8744 13807 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13808 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13809 int imm = inst.operands[2].imm;
13810
13811 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13812 if (imm == 0)
13813 {
13814 inst.operands[2].present = 0;
13815 do_neon_mov ();
13816 return;
13817 }
13818
13819 constraint (imm < 1 || (unsigned)imm > et.size,
13820 _("immediate out of range for shift"));
037e8744 13821 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13822 et.size - imm);
13823}
13824
13825static void
13826do_neon_movl (void)
13827{
13828 struct neon_type_el et = neon_check_type (2, NS_QD,
13829 N_EQK | N_DBL, N_SU_32 | N_KEY);
13830 unsigned sizebits = et.size >> 3;
13831 inst.instruction |= sizebits << 19;
13832 neon_two_same (0, et.type == NT_unsigned, -1);
13833}
13834
13835static void
13836do_neon_trn (void)
13837{
037e8744 13838 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13839 struct neon_type_el et = neon_check_type (2, rs,
13840 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13841 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 13842 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13843}
13844
13845static void
13846do_neon_zip_uzp (void)
13847{
037e8744 13848 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13849 struct neon_type_el et = neon_check_type (2, rs,
13850 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13851 if (rs == NS_DD && et.size == 32)
13852 {
13853 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13854 inst.instruction = N_MNEM_vtrn;
13855 do_neon_trn ();
13856 return;
13857 }
037e8744 13858 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13859}
13860
13861static void
13862do_neon_sat_abs_neg (void)
13863{
037e8744 13864 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13865 struct neon_type_el et = neon_check_type (2, rs,
13866 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13867 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13868}
13869
13870static void
13871do_neon_pair_long (void)
13872{
037e8744 13873 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13874 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13875 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13876 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 13877 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13878}
13879
13880static void
13881do_neon_recip_est (void)
13882{
037e8744 13883 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13884 struct neon_type_el et = neon_check_type (2, rs,
13885 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13886 inst.instruction |= (et.type == NT_float) << 8;
037e8744 13887 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13888}
13889
13890static void
13891do_neon_cls (void)
13892{
037e8744 13893 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13894 struct neon_type_el et = neon_check_type (2, rs,
13895 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13896 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13897}
13898
13899static void
13900do_neon_clz (void)
13901{
037e8744 13902 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13903 struct neon_type_el et = neon_check_type (2, rs,
13904 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 13905 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13906}
13907
13908static void
13909do_neon_cnt (void)
13910{
037e8744 13911 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13912 struct neon_type_el et = neon_check_type (2, rs,
13913 N_EQK | N_INT, N_8 | N_KEY);
037e8744 13914 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13915}
13916
13917static void
13918do_neon_swp (void)
13919{
037e8744
JB
13920 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13921 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
13922}
13923
13924static void
13925do_neon_tbl_tbx (void)
13926{
13927 unsigned listlenbits;
dcbf9037 13928 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 13929
5287ad62
JB
13930 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13931 {
dcbf9037 13932 first_error (_("bad list length for table lookup"));
5287ad62
JB
13933 return;
13934 }
5f4273c7 13935
5287ad62
JB
13936 listlenbits = inst.operands[1].imm - 1;
13937 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13938 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13939 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13940 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13941 inst.instruction |= LOW4 (inst.operands[2].reg);
13942 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13943 inst.instruction |= listlenbits << 8;
5f4273c7 13944
5287ad62
JB
13945 inst.instruction = neon_dp_fixup (inst.instruction);
13946}
13947
13948static void
13949do_neon_ldm_stm (void)
13950{
13951 /* P, U and L bits are part of bitmask. */
13952 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13953 unsigned offsetbits = inst.operands[1].imm * 2;
13954
037e8744
JB
13955 if (inst.operands[1].issingle)
13956 {
13957 do_vfp_nsyn_ldm_stm (is_dbmode);
13958 return;
13959 }
13960
5287ad62
JB
13961 constraint (is_dbmode && !inst.operands[0].writeback,
13962 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13963
13964 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13965 _("register list must contain at least 1 and at most 16 "
13966 "registers"));
13967
13968 inst.instruction |= inst.operands[0].reg << 16;
13969 inst.instruction |= inst.operands[0].writeback << 21;
13970 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13971 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13972
13973 inst.instruction |= offsetbits;
5f4273c7 13974
037e8744 13975 do_vfp_cond_or_thumb ();
5287ad62
JB
13976}
13977
13978static void
13979do_neon_ldr_str (void)
13980{
5287ad62 13981 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 13982
037e8744
JB
13983 if (inst.operands[0].issingle)
13984 {
cd2f129f
JB
13985 if (is_ldr)
13986 do_vfp_nsyn_opcode ("flds");
13987 else
13988 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
13989 }
13990 else
5287ad62 13991 {
cd2f129f
JB
13992 if (is_ldr)
13993 do_vfp_nsyn_opcode ("fldd");
5287ad62 13994 else
cd2f129f 13995 do_vfp_nsyn_opcode ("fstd");
5287ad62 13996 }
5287ad62
JB
13997}
13998
13999/* "interleave" version also handles non-interleaving register VLD1/VST1
14000 instructions. */
14001
14002static void
14003do_neon_ld_st_interleave (void)
14004{
037e8744 14005 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
14006 N_8 | N_16 | N_32 | N_64);
14007 unsigned alignbits = 0;
14008 unsigned idx;
14009 /* The bits in this table go:
14010 0: register stride of one (0) or two (1)
14011 1,2: register list length, minus one (1, 2, 3, 4).
14012 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14013 We use -1 for invalid entries. */
14014 const int typetable[] =
14015 {
14016 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14017 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14018 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14019 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14020 };
14021 int typebits;
14022
dcbf9037
JB
14023 if (et.type == NT_invtype)
14024 return;
14025
5287ad62
JB
14026 if (inst.operands[1].immisalign)
14027 switch (inst.operands[1].imm >> 8)
14028 {
14029 case 64: alignbits = 1; break;
14030 case 128:
14031 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14032 goto bad_alignment;
14033 alignbits = 2;
14034 break;
14035 case 256:
14036 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14037 goto bad_alignment;
14038 alignbits = 3;
14039 break;
14040 default:
14041 bad_alignment:
dcbf9037 14042 first_error (_("bad alignment"));
5287ad62
JB
14043 return;
14044 }
14045
14046 inst.instruction |= alignbits << 4;
14047 inst.instruction |= neon_logbits (et.size) << 6;
14048
14049 /* Bits [4:6] of the immediate in a list specifier encode register stride
14050 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14051 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14052 up the right value for "type" in a table based on this value and the given
14053 list style, then stick it back. */
14054 idx = ((inst.operands[0].imm >> 4) & 7)
14055 | (((inst.instruction >> 8) & 3) << 3);
14056
14057 typebits = typetable[idx];
5f4273c7 14058
5287ad62
JB
14059 constraint (typebits == -1, _("bad list type for instruction"));
14060
14061 inst.instruction &= ~0xf00;
14062 inst.instruction |= typebits << 8;
14063}
14064
14065/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14066 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14067 otherwise. The variable arguments are a list of pairs of legal (size, align)
14068 values, terminated with -1. */
14069
14070static int
14071neon_alignment_bit (int size, int align, int *do_align, ...)
14072{
14073 va_list ap;
14074 int result = FAIL, thissize, thisalign;
5f4273c7 14075
5287ad62
JB
14076 if (!inst.operands[1].immisalign)
14077 {
14078 *do_align = 0;
14079 return SUCCESS;
14080 }
5f4273c7 14081
5287ad62
JB
14082 va_start (ap, do_align);
14083
14084 do
14085 {
14086 thissize = va_arg (ap, int);
14087 if (thissize == -1)
14088 break;
14089 thisalign = va_arg (ap, int);
14090
14091 if (size == thissize && align == thisalign)
14092 result = SUCCESS;
14093 }
14094 while (result != SUCCESS);
14095
14096 va_end (ap);
14097
14098 if (result == SUCCESS)
14099 *do_align = 1;
14100 else
dcbf9037 14101 first_error (_("unsupported alignment for instruction"));
5f4273c7 14102
5287ad62
JB
14103 return result;
14104}
14105
14106static void
14107do_neon_ld_st_lane (void)
14108{
037e8744 14109 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14110 int align_good, do_align = 0;
14111 int logsize = neon_logbits (et.size);
14112 int align = inst.operands[1].imm >> 8;
14113 int n = (inst.instruction >> 8) & 3;
14114 int max_el = 64 / et.size;
5f4273c7 14115
dcbf9037
JB
14116 if (et.type == NT_invtype)
14117 return;
5f4273c7 14118
5287ad62
JB
14119 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14120 _("bad list length"));
14121 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14122 _("scalar index out of range"));
14123 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14124 && et.size == 8,
14125 _("stride of 2 unavailable when element size is 8"));
5f4273c7 14126
5287ad62
JB
14127 switch (n)
14128 {
14129 case 0: /* VLD1 / VST1. */
14130 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14131 32, 32, -1);
14132 if (align_good == FAIL)
14133 return;
14134 if (do_align)
14135 {
14136 unsigned alignbits = 0;
14137 switch (et.size)
14138 {
14139 case 16: alignbits = 0x1; break;
14140 case 32: alignbits = 0x3; break;
14141 default: ;
14142 }
14143 inst.instruction |= alignbits << 4;
14144 }
14145 break;
14146
14147 case 1: /* VLD2 / VST2. */
14148 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14149 32, 64, -1);
14150 if (align_good == FAIL)
14151 return;
14152 if (do_align)
14153 inst.instruction |= 1 << 4;
14154 break;
14155
14156 case 2: /* VLD3 / VST3. */
14157 constraint (inst.operands[1].immisalign,
14158 _("can't use alignment with this instruction"));
14159 break;
14160
14161 case 3: /* VLD4 / VST4. */
14162 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14163 16, 64, 32, 64, 32, 128, -1);
14164 if (align_good == FAIL)
14165 return;
14166 if (do_align)
14167 {
14168 unsigned alignbits = 0;
14169 switch (et.size)
14170 {
14171 case 8: alignbits = 0x1; break;
14172 case 16: alignbits = 0x1; break;
14173 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14174 default: ;
14175 }
14176 inst.instruction |= alignbits << 4;
14177 }
14178 break;
14179
14180 default: ;
14181 }
14182
14183 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14184 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14185 inst.instruction |= 1 << (4 + logsize);
5f4273c7 14186
5287ad62
JB
14187 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14188 inst.instruction |= logsize << 10;
14189}
14190
14191/* Encode single n-element structure to all lanes VLD<n> instructions. */
14192
14193static void
14194do_neon_ld_dup (void)
14195{
037e8744 14196 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14197 int align_good, do_align = 0;
14198
dcbf9037
JB
14199 if (et.type == NT_invtype)
14200 return;
14201
5287ad62
JB
14202 switch ((inst.instruction >> 8) & 3)
14203 {
14204 case 0: /* VLD1. */
14205 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14206 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14207 &do_align, 16, 16, 32, 32, -1);
14208 if (align_good == FAIL)
14209 return;
14210 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14211 {
14212 case 1: break;
14213 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 14214 default: first_error (_("bad list length")); return;
5287ad62
JB
14215 }
14216 inst.instruction |= neon_logbits (et.size) << 6;
14217 break;
14218
14219 case 1: /* VLD2. */
14220 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14221 &do_align, 8, 16, 16, 32, 32, 64, -1);
14222 if (align_good == FAIL)
14223 return;
14224 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14225 _("bad list length"));
14226 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14227 inst.instruction |= 1 << 5;
14228 inst.instruction |= neon_logbits (et.size) << 6;
14229 break;
14230
14231 case 2: /* VLD3. */
14232 constraint (inst.operands[1].immisalign,
14233 _("can't use alignment with this instruction"));
14234 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14235 _("bad list length"));
14236 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14237 inst.instruction |= 1 << 5;
14238 inst.instruction |= neon_logbits (et.size) << 6;
14239 break;
14240
14241 case 3: /* VLD4. */
14242 {
14243 int align = inst.operands[1].imm >> 8;
14244 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14245 16, 64, 32, 64, 32, 128, -1);
14246 if (align_good == FAIL)
14247 return;
14248 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14249 _("bad list length"));
14250 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14251 inst.instruction |= 1 << 5;
14252 if (et.size == 32 && align == 128)
14253 inst.instruction |= 0x3 << 6;
14254 else
14255 inst.instruction |= neon_logbits (et.size) << 6;
14256 }
14257 break;
14258
14259 default: ;
14260 }
14261
14262 inst.instruction |= do_align << 4;
14263}
14264
14265/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14266 apart from bits [11:4]. */
14267
14268static void
14269do_neon_ldx_stx (void)
14270{
14271 switch (NEON_LANE (inst.operands[0].imm))
14272 {
14273 case NEON_INTERLEAVE_LANES:
14274 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
14275 do_neon_ld_st_interleave ();
14276 break;
5f4273c7 14277
5287ad62
JB
14278 case NEON_ALL_LANES:
14279 inst.instruction = NEON_ENC_DUP (inst.instruction);
14280 do_neon_ld_dup ();
14281 break;
5f4273c7 14282
5287ad62
JB
14283 default:
14284 inst.instruction = NEON_ENC_LANE (inst.instruction);
14285 do_neon_ld_st_lane ();
14286 }
14287
14288 /* L bit comes from bit mask. */
14289 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14290 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14291 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 14292
5287ad62
JB
14293 if (inst.operands[1].postind)
14294 {
14295 int postreg = inst.operands[1].imm & 0xf;
14296 constraint (!inst.operands[1].immisreg,
14297 _("post-index must be a register"));
14298 constraint (postreg == 0xd || postreg == 0xf,
14299 _("bad register for post-index"));
14300 inst.instruction |= postreg;
14301 }
14302 else if (inst.operands[1].writeback)
14303 {
14304 inst.instruction |= 0xd;
14305 }
14306 else
5f4273c7
NC
14307 inst.instruction |= 0xf;
14308
5287ad62
JB
14309 if (thumb_mode)
14310 inst.instruction |= 0xf9000000;
14311 else
14312 inst.instruction |= 0xf4000000;
14313}
5287ad62
JB
14314\f
14315/* Overall per-instruction processing. */
14316
14317/* We need to be able to fix up arbitrary expressions in some statements.
14318 This is so that we can handle symbols that are an arbitrary distance from
14319 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14320 which returns part of an address in a form which will be valid for
14321 a data instruction. We do this by pushing the expression into a symbol
14322 in the expr_section, and creating a fix for that. */
14323
14324static void
14325fix_new_arm (fragS * frag,
14326 int where,
14327 short int size,
14328 expressionS * exp,
14329 int pc_rel,
14330 int reloc)
14331{
14332 fixS * new_fix;
14333
14334 switch (exp->X_op)
14335 {
14336 case O_constant:
14337 case O_symbol:
14338 case O_add:
14339 case O_subtract:
14340 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
14341 break;
14342
14343 default:
14344 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
14345 pc_rel, reloc);
14346 break;
14347 }
14348
14349 /* Mark whether the fix is to a THUMB instruction, or an ARM
14350 instruction. */
14351 new_fix->tc_fix_data = thumb_mode;
14352}
14353
14354/* Create a frg for an instruction requiring relaxation. */
14355static void
14356output_relax_insn (void)
14357{
14358 char * to;
14359 symbolS *sym;
0110f2b8
PB
14360 int offset;
14361
6e1cb1a6
PB
14362 /* The size of the instruction is unknown, so tie the debug info to the
14363 start of the instruction. */
14364 dwarf2_emit_insn (0);
6e1cb1a6 14365
0110f2b8
PB
14366 switch (inst.reloc.exp.X_op)
14367 {
14368 case O_symbol:
14369 sym = inst.reloc.exp.X_add_symbol;
14370 offset = inst.reloc.exp.X_add_number;
14371 break;
14372 case O_constant:
14373 sym = NULL;
14374 offset = inst.reloc.exp.X_add_number;
14375 break;
14376 default:
14377 sym = make_expr_symbol (&inst.reloc.exp);
14378 offset = 0;
14379 break;
14380 }
14381 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
14382 inst.relax, sym, offset, NULL/*offset, opcode*/);
14383 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
14384}
14385
14386/* Write a 32-bit thumb instruction to buf. */
14387static void
14388put_thumb32_insn (char * buf, unsigned long insn)
14389{
14390 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
14391 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
14392}
14393
b99bd4ef 14394static void
c19d1205 14395output_inst (const char * str)
b99bd4ef 14396{
c19d1205 14397 char * to = NULL;
b99bd4ef 14398
c19d1205 14399 if (inst.error)
b99bd4ef 14400 {
c19d1205 14401 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
14402 return;
14403 }
5f4273c7
NC
14404 if (inst.relax)
14405 {
14406 output_relax_insn ();
0110f2b8 14407 return;
5f4273c7 14408 }
c19d1205
ZW
14409 if (inst.size == 0)
14410 return;
b99bd4ef 14411
c19d1205 14412 to = frag_more (inst.size);
8dc2430f
NC
14413 /* PR 9814: Record the thumb mode into the current frag so that we know
14414 what type of NOP padding to use, if necessary. We override any previous
14415 setting so that if the mode has changed then the NOPS that we use will
14416 match the encoding of the last instruction in the frag. */
14417 frag_now->tc_frag_data = thumb_mode | MODE_RECORDED;
c19d1205
ZW
14418
14419 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 14420 {
c19d1205 14421 assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 14422 put_thumb32_insn (to, inst.instruction);
b99bd4ef 14423 }
c19d1205 14424 else if (inst.size > INSN_SIZE)
b99bd4ef 14425 {
c19d1205
ZW
14426 assert (inst.size == (2 * INSN_SIZE));
14427 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14428 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 14429 }
c19d1205
ZW
14430 else
14431 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 14432
c19d1205
ZW
14433 if (inst.reloc.type != BFD_RELOC_UNUSED)
14434 fix_new_arm (frag_now, to - frag_now->fr_literal,
14435 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14436 inst.reloc.type);
b99bd4ef 14437
c19d1205 14438 dwarf2_emit_insn (inst.size);
c19d1205 14439}
b99bd4ef 14440
c19d1205
ZW
14441/* Tag values used in struct asm_opcode's tag field. */
14442enum opcode_tag
14443{
14444 OT_unconditional, /* Instruction cannot be conditionalized.
14445 The ARM condition field is still 0xE. */
14446 OT_unconditionalF, /* Instruction cannot be conditionalized
14447 and carries 0xF in its ARM condition field. */
14448 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
14449 OT_csuffixF, /* Some forms of the instruction take a conditional
14450 suffix, others place 0xF where the condition field
14451 would be. */
c19d1205
ZW
14452 OT_cinfix3, /* Instruction takes a conditional infix,
14453 beginning at character index 3. (In
14454 unified mode, it becomes a suffix.) */
088fa78e
KH
14455 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14456 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
14457 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14458 character index 3, even in unified mode. Used for
14459 legacy instructions where suffix and infix forms
14460 may be ambiguous. */
c19d1205 14461 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 14462 suffix or an infix at character index 3. */
c19d1205
ZW
14463 OT_odd_infix_unc, /* This is the unconditional variant of an
14464 instruction that takes a conditional infix
14465 at an unusual position. In unified mode,
14466 this variant will accept a suffix. */
14467 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
14468 are the conditional variants of instructions that
14469 take conditional infixes in unusual positions.
14470 The infix appears at character index
14471 (tag - OT_odd_infix_0). These are not accepted
14472 in unified mode. */
14473};
b99bd4ef 14474
c19d1205
ZW
14475/* Subroutine of md_assemble, responsible for looking up the primary
14476 opcode from the mnemonic the user wrote. STR points to the
14477 beginning of the mnemonic.
14478
14479 This is not simply a hash table lookup, because of conditional
14480 variants. Most instructions have conditional variants, which are
14481 expressed with a _conditional affix_ to the mnemonic. If we were
14482 to encode each conditional variant as a literal string in the opcode
14483 table, it would have approximately 20,000 entries.
14484
14485 Most mnemonics take this affix as a suffix, and in unified syntax,
14486 'most' is upgraded to 'all'. However, in the divided syntax, some
14487 instructions take the affix as an infix, notably the s-variants of
14488 the arithmetic instructions. Of those instructions, all but six
14489 have the infix appear after the third character of the mnemonic.
14490
14491 Accordingly, the algorithm for looking up primary opcodes given
14492 an identifier is:
14493
14494 1. Look up the identifier in the opcode table.
14495 If we find a match, go to step U.
14496
14497 2. Look up the last two characters of the identifier in the
14498 conditions table. If we find a match, look up the first N-2
14499 characters of the identifier in the opcode table. If we
14500 find a match, go to step CE.
14501
14502 3. Look up the fourth and fifth characters of the identifier in
14503 the conditions table. If we find a match, extract those
14504 characters from the identifier, and look up the remaining
14505 characters in the opcode table. If we find a match, go
14506 to step CM.
14507
14508 4. Fail.
14509
14510 U. Examine the tag field of the opcode structure, in case this is
14511 one of the six instructions with its conditional infix in an
14512 unusual place. If it is, the tag tells us where to find the
14513 infix; look it up in the conditions table and set inst.cond
14514 accordingly. Otherwise, this is an unconditional instruction.
14515 Again set inst.cond accordingly. Return the opcode structure.
14516
14517 CE. Examine the tag field to make sure this is an instruction that
14518 should receive a conditional suffix. If it is not, fail.
14519 Otherwise, set inst.cond from the suffix we already looked up,
14520 and return the opcode structure.
14521
14522 CM. Examine the tag field to make sure this is an instruction that
14523 should receive a conditional infix after the third character.
14524 If it is not, fail. Otherwise, undo the edits to the current
14525 line of input and proceed as for case CE. */
14526
14527static const struct asm_opcode *
14528opcode_lookup (char **str)
14529{
14530 char *end, *base;
14531 char *affix;
14532 const struct asm_opcode *opcode;
14533 const struct asm_cond *cond;
e3cb604e 14534 char save[2];
267d2029 14535 bfd_boolean neon_supported;
5f4273c7 14536
267d2029 14537 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
c19d1205
ZW
14538
14539 /* Scan up to the end of the mnemonic, which must end in white space,
267d2029 14540 '.' (in unified mode, or for Neon instructions), or end of string. */
c19d1205 14541 for (base = end = *str; *end != '\0'; end++)
267d2029 14542 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
c19d1205 14543 break;
b99bd4ef 14544
c19d1205
ZW
14545 if (end == base)
14546 return 0;
b99bd4ef 14547
5287ad62 14548 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 14549 if (end[0] == '.')
b99bd4ef 14550 {
5287ad62 14551 int offset = 2;
5f4273c7 14552
267d2029
JB
14553 /* The .w and .n suffixes are only valid if the unified syntax is in
14554 use. */
14555 if (unified_syntax && end[1] == 'w')
c19d1205 14556 inst.size_req = 4;
267d2029 14557 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
14558 inst.size_req = 2;
14559 else
5287ad62
JB
14560 offset = 0;
14561
14562 inst.vectype.elems = 0;
14563
14564 *str = end + offset;
b99bd4ef 14565
5f4273c7 14566 if (end[offset] == '.')
5287ad62 14567 {
267d2029
JB
14568 /* See if we have a Neon type suffix (possible in either unified or
14569 non-unified ARM syntax mode). */
dcbf9037 14570 if (parse_neon_type (&inst.vectype, str) == FAIL)
5287ad62
JB
14571 return 0;
14572 }
14573 else if (end[offset] != '\0' && end[offset] != ' ')
14574 return 0;
b99bd4ef 14575 }
c19d1205
ZW
14576 else
14577 *str = end;
b99bd4ef 14578
c19d1205
ZW
14579 /* Look for unaffixed or special-case affixed mnemonic. */
14580 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14581 if (opcode)
b99bd4ef 14582 {
c19d1205
ZW
14583 /* step U */
14584 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 14585 {
c19d1205
ZW
14586 inst.cond = COND_ALWAYS;
14587 return opcode;
b99bd4ef 14588 }
b99bd4ef 14589
278df34e 14590 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
14591 as_warn (_("conditional infixes are deprecated in unified syntax"));
14592 affix = base + (opcode->tag - OT_odd_infix_0);
14593 cond = hash_find_n (arm_cond_hsh, affix, 2);
14594 assert (cond);
b99bd4ef 14595
c19d1205
ZW
14596 inst.cond = cond->value;
14597 return opcode;
14598 }
b99bd4ef 14599
c19d1205
ZW
14600 /* Cannot have a conditional suffix on a mnemonic of less than two
14601 characters. */
14602 if (end - base < 3)
14603 return 0;
b99bd4ef 14604
c19d1205
ZW
14605 /* Look for suffixed mnemonic. */
14606 affix = end - 2;
14607 cond = hash_find_n (arm_cond_hsh, affix, 2);
14608 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14609 if (opcode && cond)
14610 {
14611 /* step CE */
14612 switch (opcode->tag)
14613 {
e3cb604e
PB
14614 case OT_cinfix3_legacy:
14615 /* Ignore conditional suffixes matched on infix only mnemonics. */
14616 break;
14617
c19d1205 14618 case OT_cinfix3:
088fa78e 14619 case OT_cinfix3_deprecated:
c19d1205
ZW
14620 case OT_odd_infix_unc:
14621 if (!unified_syntax)
e3cb604e 14622 return 0;
c19d1205
ZW
14623 /* else fall through */
14624
14625 case OT_csuffix:
037e8744 14626 case OT_csuffixF:
c19d1205
ZW
14627 case OT_csuf_or_in3:
14628 inst.cond = cond->value;
14629 return opcode;
14630
14631 case OT_unconditional:
14632 case OT_unconditionalF:
dfa9f0d5
PB
14633 if (thumb_mode)
14634 {
14635 inst.cond = cond->value;
14636 }
14637 else
14638 {
14639 /* delayed diagnostic */
14640 inst.error = BAD_COND;
14641 inst.cond = COND_ALWAYS;
14642 }
c19d1205 14643 return opcode;
b99bd4ef 14644
c19d1205
ZW
14645 default:
14646 return 0;
14647 }
14648 }
b99bd4ef 14649
c19d1205
ZW
14650 /* Cannot have a usual-position infix on a mnemonic of less than
14651 six characters (five would be a suffix). */
14652 if (end - base < 6)
14653 return 0;
b99bd4ef 14654
c19d1205
ZW
14655 /* Look for infixed mnemonic in the usual position. */
14656 affix = base + 3;
14657 cond = hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e
PB
14658 if (!cond)
14659 return 0;
14660
14661 memcpy (save, affix, 2);
14662 memmove (affix, affix + 2, (end - affix) - 2);
14663 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14664 memmove (affix + 2, affix, (end - affix) - 2);
14665 memcpy (affix, save, 2);
14666
088fa78e
KH
14667 if (opcode
14668 && (opcode->tag == OT_cinfix3
14669 || opcode->tag == OT_cinfix3_deprecated
14670 || opcode->tag == OT_csuf_or_in3
14671 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 14672 {
c19d1205 14673 /* step CM */
278df34e 14674 if (warn_on_deprecated && unified_syntax
088fa78e
KH
14675 && (opcode->tag == OT_cinfix3
14676 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
14677 as_warn (_("conditional infixes are deprecated in unified syntax"));
14678
14679 inst.cond = cond->value;
14680 return opcode;
b99bd4ef
NC
14681 }
14682
c19d1205 14683 return 0;
b99bd4ef
NC
14684}
14685
c19d1205
ZW
14686void
14687md_assemble (char *str)
b99bd4ef 14688{
c19d1205
ZW
14689 char *p = str;
14690 const struct asm_opcode * opcode;
b99bd4ef 14691
c19d1205
ZW
14692 /* Align the previous label if needed. */
14693 if (last_label_seen != NULL)
b99bd4ef 14694 {
c19d1205
ZW
14695 symbol_set_frag (last_label_seen, frag_now);
14696 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14697 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
14698 }
14699
c19d1205
ZW
14700 memset (&inst, '\0', sizeof (inst));
14701 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 14702
c19d1205
ZW
14703 opcode = opcode_lookup (&p);
14704 if (!opcode)
b99bd4ef 14705 {
c19d1205 14706 /* It wasn't an instruction, but it might be a register alias of
dcbf9037
JB
14707 the form alias .req reg, or a Neon .dn/.qn directive. */
14708 if (!create_register_alias (str, p)
14709 && !create_neon_reg_alias (str, p))
c19d1205 14710 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 14711
b99bd4ef
NC
14712 return;
14713 }
14714
278df34e 14715 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
14716 as_warn (_("s suffix on comparison instruction is deprecated"));
14717
037e8744
JB
14718 /* The value which unconditional instructions should have in place of the
14719 condition field. */
14720 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14721
c19d1205 14722 if (thumb_mode)
b99bd4ef 14723 {
e74cfd16 14724 arm_feature_set variant;
8f06b2d8
PB
14725
14726 variant = cpu_variant;
14727 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
14728 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14729 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 14730 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
14731 if (!opcode->tvariant
14732 || (thumb_mode == 1
14733 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 14734 {
c19d1205 14735 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
14736 return;
14737 }
c19d1205
ZW
14738 if (inst.cond != COND_ALWAYS && !unified_syntax
14739 && opcode->tencode != do_t_branch)
b99bd4ef 14740 {
c19d1205 14741 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
14742 return;
14743 }
14744
076d447c
PB
14745 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14746 {
14747 /* Implicit require narrow instructions on Thumb-1. This avoids
14748 relaxation accidentally introducing Thumb-2 instructions. */
7e806470 14749 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
04e2c417
MM
14750 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
14751 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
076d447c
PB
14752 inst.size_req = 2;
14753 }
14754
e27ec89e
PB
14755 /* Check conditional suffixes. */
14756 if (current_it_mask)
14757 {
14758 int cond;
14759 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
dfa9f0d5
PB
14760 current_it_mask <<= 1;
14761 current_it_mask &= 0x1f;
14762 /* The BKPT instruction is unconditional even in an IT block. */
14763 if (!inst.error
14764 && cond != inst.cond && opcode->tencode != do_t_bkpt)
e27ec89e
PB
14765 {
14766 as_bad (_("incorrect condition in IT block"));
14767 return;
14768 }
e27ec89e
PB
14769 }
14770 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14771 {
6decc662 14772 as_bad (_("thumb conditional instruction not in IT block"));
e27ec89e
PB
14773 return;
14774 }
14775
c19d1205
ZW
14776 mapping_state (MAP_THUMB);
14777 inst.instruction = opcode->tvalue;
14778
14779 if (!parse_operands (p, opcode->operands))
14780 opcode->tencode ();
14781
e27ec89e
PB
14782 /* Clear current_it_mask at the end of an IT block. */
14783 if (current_it_mask == 0x10)
14784 current_it_mask = 0;
14785
0110f2b8 14786 if (!(inst.error || inst.relax))
b99bd4ef 14787 {
c19d1205
ZW
14788 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14789 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14790 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 14791 {
c19d1205 14792 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
14793 return;
14794 }
14795 }
076d447c
PB
14796
14797 /* Something has gone badly wrong if we try to relax a fixed size
14798 instruction. */
14799 assert (inst.size_req == 0 || !inst.relax);
14800
e74cfd16
PB
14801 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14802 *opcode->tvariant);
ee065d83 14803 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 14804 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 14805 anything other than bl/blx and v6-M instructions.
ee065d83 14806 This is overly pessimistic for relaxable instructions. */
7e806470
PB
14807 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14808 || inst.relax)
04e2c417
MM
14809 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
14810 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
14811 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14812 arm_ext_v6t2);
c19d1205 14813 }
3e9e4fcf 14814 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 14815 {
845b51d6
PB
14816 bfd_boolean is_bx;
14817
14818 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
14819 is_bx = (opcode->aencode == do_bx);
14820
c19d1205 14821 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
14822 if (!(is_bx && fix_v4bx)
14823 && !(opcode->avariant &&
14824 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 14825 {
c19d1205
ZW
14826 as_bad (_("selected processor does not support `%s'"), str);
14827 return;
b99bd4ef 14828 }
c19d1205 14829 if (inst.size_req)
b99bd4ef 14830 {
c19d1205
ZW
14831 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14832 return;
b99bd4ef
NC
14833 }
14834
c19d1205
ZW
14835 mapping_state (MAP_ARM);
14836 inst.instruction = opcode->avalue;
14837 if (opcode->tag == OT_unconditionalF)
14838 inst.instruction |= 0xF << 28;
14839 else
14840 inst.instruction |= inst.cond << 28;
14841 inst.size = INSN_SIZE;
14842 if (!parse_operands (p, opcode->operands))
14843 opcode->aencode ();
ee065d83
PB
14844 /* Arm mode bx is marked as both v4T and v5 because it's still required
14845 on a hypothetical non-thumb v5 core. */
845b51d6 14846 if (is_bx)
e74cfd16 14847 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 14848 else
e74cfd16
PB
14849 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14850 *opcode->avariant);
b99bd4ef 14851 }
3e9e4fcf
JB
14852 else
14853 {
14854 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14855 "-- `%s'"), str);
14856 return;
14857 }
c19d1205
ZW
14858 output_inst (str);
14859}
b99bd4ef 14860
c19d1205
ZW
14861/* Various frobbings of labels and their addresses. */
14862
14863void
14864arm_start_line_hook (void)
14865{
14866 last_label_seen = NULL;
b99bd4ef
NC
14867}
14868
c19d1205
ZW
14869void
14870arm_frob_label (symbolS * sym)
b99bd4ef 14871{
c19d1205 14872 last_label_seen = sym;
b99bd4ef 14873
c19d1205 14874 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 14875
c19d1205
ZW
14876#if defined OBJ_COFF || defined OBJ_ELF
14877 ARM_SET_INTERWORK (sym, support_interwork);
14878#endif
b99bd4ef 14879
5f4273c7 14880 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
14881 as Thumb functions. This is because these labels, whilst
14882 they exist inside Thumb code, are not the entry points for
14883 possible ARM->Thumb calls. Also, these labels can be used
14884 as part of a computed goto or switch statement. eg gcc
14885 can generate code that looks like this:
b99bd4ef 14886
c19d1205
ZW
14887 ldr r2, [pc, .Laaa]
14888 lsl r3, r3, #2
14889 ldr r2, [r3, r2]
14890 mov pc, r2
b99bd4ef 14891
c19d1205
ZW
14892 .Lbbb: .word .Lxxx
14893 .Lccc: .word .Lyyy
14894 ..etc...
14895 .Laaa: .word Lbbb
b99bd4ef 14896
c19d1205
ZW
14897 The first instruction loads the address of the jump table.
14898 The second instruction converts a table index into a byte offset.
14899 The third instruction gets the jump address out of the table.
14900 The fourth instruction performs the jump.
b99bd4ef 14901
c19d1205
ZW
14902 If the address stored at .Laaa is that of a symbol which has the
14903 Thumb_Func bit set, then the linker will arrange for this address
14904 to have the bottom bit set, which in turn would mean that the
14905 address computation performed by the third instruction would end
14906 up with the bottom bit set. Since the ARM is capable of unaligned
14907 word loads, the instruction would then load the incorrect address
14908 out of the jump table, and chaos would ensue. */
14909 if (label_is_thumb_function_name
14910 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14911 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 14912 {
c19d1205
ZW
14913 /* When the address of a Thumb function is taken the bottom
14914 bit of that address should be set. This will allow
14915 interworking between Arm and Thumb functions to work
14916 correctly. */
b99bd4ef 14917
c19d1205 14918 THUMB_SET_FUNC (sym, 1);
b99bd4ef 14919
c19d1205 14920 label_is_thumb_function_name = FALSE;
b99bd4ef 14921 }
07a53e5c 14922
07a53e5c 14923 dwarf2_emit_label (sym);
b99bd4ef
NC
14924}
14925
c19d1205
ZW
14926int
14927arm_data_in_code (void)
b99bd4ef 14928{
c19d1205 14929 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 14930 {
c19d1205
ZW
14931 *input_line_pointer = '/';
14932 input_line_pointer += 5;
14933 *input_line_pointer = 0;
14934 return 1;
b99bd4ef
NC
14935 }
14936
c19d1205 14937 return 0;
b99bd4ef
NC
14938}
14939
c19d1205
ZW
14940char *
14941arm_canonicalize_symbol_name (char * name)
b99bd4ef 14942{
c19d1205 14943 int len;
b99bd4ef 14944
c19d1205
ZW
14945 if (thumb_mode && (len = strlen (name)) > 5
14946 && streq (name + len - 5, "/data"))
14947 *(name + len - 5) = 0;
b99bd4ef 14948
c19d1205 14949 return name;
b99bd4ef 14950}
c19d1205
ZW
14951\f
14952/* Table of all register names defined by default. The user can
14953 define additional names with .req. Note that all register names
14954 should appear in both upper and lowercase variants. Some registers
14955 also have mixed-case names. */
b99bd4ef 14956
dcbf9037 14957#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 14958#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 14959#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
14960#define REGSET(p,t) \
14961 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14962 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14963 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14964 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
14965#define REGSETH(p,t) \
14966 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14967 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14968 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14969 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14970#define REGSET2(p,t) \
14971 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14972 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14973 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14974 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 14975
c19d1205 14976static const struct reg_entry reg_names[] =
7ed4c4c5 14977{
c19d1205
ZW
14978 /* ARM integer registers. */
14979 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 14980
c19d1205
ZW
14981 /* ATPCS synonyms. */
14982 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14983 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14984 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 14985
c19d1205
ZW
14986 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14987 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14988 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 14989
c19d1205
ZW
14990 /* Well-known aliases. */
14991 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14992 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14993
14994 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14995 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14996
14997 /* Coprocessor numbers. */
14998 REGSET(p, CP), REGSET(P, CP),
14999
15000 /* Coprocessor register numbers. The "cr" variants are for backward
15001 compatibility. */
15002 REGSET(c, CN), REGSET(C, CN),
15003 REGSET(cr, CN), REGSET(CR, CN),
15004
15005 /* FPA registers. */
15006 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
15007 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
15008
15009 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
15010 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
15011
15012 /* VFP SP registers. */
5287ad62
JB
15013 REGSET(s,VFS), REGSET(S,VFS),
15014 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
15015
15016 /* VFP DP Registers. */
5287ad62
JB
15017 REGSET(d,VFD), REGSET(D,VFD),
15018 /* Extra Neon DP registers. */
15019 REGSETH(d,VFD), REGSETH(D,VFD),
15020
15021 /* Neon QP registers. */
15022 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
15023
15024 /* VFP control registers. */
15025 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
15026 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
15027 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
15028 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
15029 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
15030 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
15031
15032 /* Maverick DSP coprocessor registers. */
15033 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
15034 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
15035
15036 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
15037 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
15038 REGDEF(dspsc,0,DSPSC),
15039
15040 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
15041 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
15042 REGDEF(DSPSC,0,DSPSC),
15043
15044 /* iWMMXt data registers - p0, c0-15. */
15045 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
15046
15047 /* iWMMXt control registers - p1, c0-3. */
15048 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
15049 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
15050 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
15051 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
15052
15053 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
15054 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
15055 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
15056 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
15057 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
15058
15059 /* XScale accumulator registers. */
15060 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
15061};
15062#undef REGDEF
15063#undef REGNUM
15064#undef REGSET
7ed4c4c5 15065
c19d1205
ZW
15066/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
15067 within psr_required_here. */
15068static const struct asm_psr psrs[] =
15069{
15070 /* Backward compatibility notation. Note that "all" is no longer
15071 truly all possible PSR bits. */
15072 {"all", PSR_c | PSR_f},
15073 {"flg", PSR_f},
15074 {"ctl", PSR_c},
15075
15076 /* Individual flags. */
15077 {"f", PSR_f},
15078 {"c", PSR_c},
15079 {"x", PSR_x},
15080 {"s", PSR_s},
15081 /* Combinations of flags. */
15082 {"fs", PSR_f | PSR_s},
15083 {"fx", PSR_f | PSR_x},
15084 {"fc", PSR_f | PSR_c},
15085 {"sf", PSR_s | PSR_f},
15086 {"sx", PSR_s | PSR_x},
15087 {"sc", PSR_s | PSR_c},
15088 {"xf", PSR_x | PSR_f},
15089 {"xs", PSR_x | PSR_s},
15090 {"xc", PSR_x | PSR_c},
15091 {"cf", PSR_c | PSR_f},
15092 {"cs", PSR_c | PSR_s},
15093 {"cx", PSR_c | PSR_x},
15094 {"fsx", PSR_f | PSR_s | PSR_x},
15095 {"fsc", PSR_f | PSR_s | PSR_c},
15096 {"fxs", PSR_f | PSR_x | PSR_s},
15097 {"fxc", PSR_f | PSR_x | PSR_c},
15098 {"fcs", PSR_f | PSR_c | PSR_s},
15099 {"fcx", PSR_f | PSR_c | PSR_x},
15100 {"sfx", PSR_s | PSR_f | PSR_x},
15101 {"sfc", PSR_s | PSR_f | PSR_c},
15102 {"sxf", PSR_s | PSR_x | PSR_f},
15103 {"sxc", PSR_s | PSR_x | PSR_c},
15104 {"scf", PSR_s | PSR_c | PSR_f},
15105 {"scx", PSR_s | PSR_c | PSR_x},
15106 {"xfs", PSR_x | PSR_f | PSR_s},
15107 {"xfc", PSR_x | PSR_f | PSR_c},
15108 {"xsf", PSR_x | PSR_s | PSR_f},
15109 {"xsc", PSR_x | PSR_s | PSR_c},
15110 {"xcf", PSR_x | PSR_c | PSR_f},
15111 {"xcs", PSR_x | PSR_c | PSR_s},
15112 {"cfs", PSR_c | PSR_f | PSR_s},
15113 {"cfx", PSR_c | PSR_f | PSR_x},
15114 {"csf", PSR_c | PSR_s | PSR_f},
15115 {"csx", PSR_c | PSR_s | PSR_x},
15116 {"cxf", PSR_c | PSR_x | PSR_f},
15117 {"cxs", PSR_c | PSR_x | PSR_s},
15118 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
15119 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
15120 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
15121 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
15122 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
15123 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
15124 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
15125 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
15126 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
15127 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
15128 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
15129 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
15130 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
15131 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
15132 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
15133 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
15134 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
15135 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
15136 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
15137 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
15138 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
15139 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
15140 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
15141 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
15142};
15143
62b3e311
PB
15144/* Table of V7M psr names. */
15145static const struct asm_psr v7m_psrs[] =
15146{
2b744c99
PB
15147 {"apsr", 0 }, {"APSR", 0 },
15148 {"iapsr", 1 }, {"IAPSR", 1 },
15149 {"eapsr", 2 }, {"EAPSR", 2 },
15150 {"psr", 3 }, {"PSR", 3 },
15151 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
15152 {"ipsr", 5 }, {"IPSR", 5 },
15153 {"epsr", 6 }, {"EPSR", 6 },
15154 {"iepsr", 7 }, {"IEPSR", 7 },
15155 {"msp", 8 }, {"MSP", 8 },
15156 {"psp", 9 }, {"PSP", 9 },
15157 {"primask", 16}, {"PRIMASK", 16},
15158 {"basepri", 17}, {"BASEPRI", 17},
15159 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
15160 {"faultmask", 19}, {"FAULTMASK", 19},
15161 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
15162};
15163
c19d1205
ZW
15164/* Table of all shift-in-operand names. */
15165static const struct asm_shift_name shift_names [] =
b99bd4ef 15166{
c19d1205
ZW
15167 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
15168 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
15169 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
15170 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
15171 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
15172 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
15173};
b99bd4ef 15174
c19d1205
ZW
15175/* Table of all explicit relocation names. */
15176#ifdef OBJ_ELF
15177static struct reloc_entry reloc_names[] =
15178{
15179 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
15180 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
15181 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
15182 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
15183 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
15184 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
15185 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
15186 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
15187 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
15188 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
15189 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
15190};
15191#endif
b99bd4ef 15192
c19d1205
ZW
15193/* Table of all conditional affixes. 0xF is not defined as a condition code. */
15194static const struct asm_cond conds[] =
15195{
15196 {"eq", 0x0},
15197 {"ne", 0x1},
15198 {"cs", 0x2}, {"hs", 0x2},
15199 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
15200 {"mi", 0x4},
15201 {"pl", 0x5},
15202 {"vs", 0x6},
15203 {"vc", 0x7},
15204 {"hi", 0x8},
15205 {"ls", 0x9},
15206 {"ge", 0xa},
15207 {"lt", 0xb},
15208 {"gt", 0xc},
15209 {"le", 0xd},
15210 {"al", 0xe}
15211};
bfae80f2 15212
62b3e311
PB
15213static struct asm_barrier_opt barrier_opt_names[] =
15214{
15215 { "sy", 0xf },
15216 { "un", 0x7 },
15217 { "st", 0xe },
15218 { "unst", 0x6 }
15219};
15220
c19d1205
ZW
15221/* Table of ARM-format instructions. */
15222
15223/* Macros for gluing together operand strings. N.B. In all cases
15224 other than OPS0, the trailing OP_stop comes from default
15225 zero-initialization of the unspecified elements of the array. */
15226#define OPS0() { OP_stop, }
15227#define OPS1(a) { OP_##a, }
15228#define OPS2(a,b) { OP_##a,OP_##b, }
15229#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
15230#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
15231#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
15232#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
15233
15234/* These macros abstract out the exact format of the mnemonic table and
15235 save some repeated characters. */
15236
15237/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
15238#define TxCE(mnem, op, top, nops, ops, ae, te) \
15239 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 15240 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
15241
15242/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
15243 a T_MNEM_xyz enumerator. */
15244#define TCE(mnem, aop, top, nops, ops, ae, te) \
15245 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
15246#define tCE(mnem, aop, top, nops, ops, ae, te) \
15247 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
15248
15249/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
15250 infix after the third character. */
15251#define TxC3(mnem, op, top, nops, ops, ae, te) \
15252 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 15253 THUMB_VARIANT, do_##ae, do_##te }
088fa78e
KH
15254#define TxC3w(mnem, op, top, nops, ops, ae, te) \
15255 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
15256 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
15257#define TC3(mnem, aop, top, nops, ops, ae, te) \
15258 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e
KH
15259#define TC3w(mnem, aop, top, nops, ops, ae, te) \
15260 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205
ZW
15261#define tC3(mnem, aop, top, nops, ops, ae, te) \
15262 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
088fa78e
KH
15263#define tC3w(mnem, aop, top, nops, ops, ae, te) \
15264 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
c19d1205
ZW
15265
15266/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
15267 appear in the condition table. */
15268#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
15269 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
1887dd22 15270 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
15271
15272#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
15273 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
15274 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
15275 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
15276 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
15277 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
15278 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
15279 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
15280 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
15281 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
15282 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
15283 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
15284 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
15285 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
15286 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
15287 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
15288 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
15289 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
15290 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
15291 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
15292
15293#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
15294 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
15295#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
15296 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
15297
15298/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
15299 field is still 0xE. Many of the Thumb variants can be executed
15300 conditionally, so this is checked separately. */
c19d1205
ZW
15301#define TUE(mnem, op, top, nops, ops, ae, te) \
15302 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 15303 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
15304
15305/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
15306 condition code field. */
15307#define TUF(mnem, op, top, nops, ops, ae, te) \
15308 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 15309 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
15310
15311/* ARM-only variants of all the above. */
6a86118a
NC
15312#define CE(mnem, op, nops, ops, ae) \
15313 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15314
15315#define C3(mnem, op, nops, ops, ae) \
15316 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15317
e3cb604e
PB
15318/* Legacy mnemonics that always have conditional infix after the third
15319 character. */
15320#define CL(mnem, op, nops, ops, ae) \
15321 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
15322 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15323
8f06b2d8
PB
15324/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
15325#define cCE(mnem, op, nops, ops, ae) \
15326 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15327
e3cb604e
PB
15328/* Legacy coprocessor instructions where conditional infix and conditional
15329 suffix are ambiguous. For consistency this includes all FPA instructions,
15330 not just the potentially ambiguous ones. */
15331#define cCL(mnem, op, nops, ops, ae) \
15332 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
15333 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15334
15335/* Coprocessor, takes either a suffix or a position-3 infix
15336 (for an FPA corner case). */
15337#define C3E(mnem, op, nops, ops, ae) \
15338 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
15339 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 15340
6a86118a
NC
15341#define xCM_(m1, m2, m3, op, nops, ops, ae) \
15342 { #m1 #m2 #m3, OPS##nops ops, \
15343 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
15344 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15345
15346#define CM(m1, m2, op, nops, ops, ae) \
15347 xCM_(m1, , m2, op, nops, ops, ae), \
15348 xCM_(m1, eq, m2, op, nops, ops, ae), \
15349 xCM_(m1, ne, m2, op, nops, ops, ae), \
15350 xCM_(m1, cs, m2, op, nops, ops, ae), \
15351 xCM_(m1, hs, m2, op, nops, ops, ae), \
15352 xCM_(m1, cc, m2, op, nops, ops, ae), \
15353 xCM_(m1, ul, m2, op, nops, ops, ae), \
15354 xCM_(m1, lo, m2, op, nops, ops, ae), \
15355 xCM_(m1, mi, m2, op, nops, ops, ae), \
15356 xCM_(m1, pl, m2, op, nops, ops, ae), \
15357 xCM_(m1, vs, m2, op, nops, ops, ae), \
15358 xCM_(m1, vc, m2, op, nops, ops, ae), \
15359 xCM_(m1, hi, m2, op, nops, ops, ae), \
15360 xCM_(m1, ls, m2, op, nops, ops, ae), \
15361 xCM_(m1, ge, m2, op, nops, ops, ae), \
15362 xCM_(m1, lt, m2, op, nops, ops, ae), \
15363 xCM_(m1, gt, m2, op, nops, ops, ae), \
15364 xCM_(m1, le, m2, op, nops, ops, ae), \
15365 xCM_(m1, al, m2, op, nops, ops, ae)
15366
15367#define UE(mnem, op, nops, ops, ae) \
15368 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
15369
15370#define UF(mnem, op, nops, ops, ae) \
15371 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
15372
5287ad62
JB
15373/* Neon data-processing. ARM versions are unconditional with cond=0xf.
15374 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
15375 use the same encoding function for each. */
15376#define NUF(mnem, op, nops, ops, enc) \
15377 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
15378 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15379
15380/* Neon data processing, version which indirects through neon_enc_tab for
15381 the various overloaded versions of opcodes. */
15382#define nUF(mnem, op, nops, ops, enc) \
15383 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
15384 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15385
15386/* Neon insn with conditional suffix for the ARM version, non-overloaded
15387 version. */
037e8744
JB
15388#define NCE_tag(mnem, op, nops, ops, enc, tag) \
15389 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
15390 THUMB_VARIANT, do_##enc, do_##enc }
15391
037e8744
JB
15392#define NCE(mnem, op, nops, ops, enc) \
15393 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
15394
15395#define NCEF(mnem, op, nops, ops, enc) \
15396 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
15397
5287ad62 15398/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744
JB
15399#define nCE_tag(mnem, op, nops, ops, enc, tag) \
15400 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
5287ad62
JB
15401 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15402
037e8744
JB
15403#define nCE(mnem, op, nops, ops, enc) \
15404 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
15405
15406#define nCEF(mnem, op, nops, ops, enc) \
15407 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
15408
c19d1205
ZW
15409#define do_0 0
15410
15411/* Thumb-only, unconditional. */
15412#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
15413
c19d1205 15414static const struct asm_opcode insns[] =
bfae80f2 15415{
e74cfd16
PB
15416#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
15417#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
15418 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
15419 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
15420 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
15421 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
15422 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
15423 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
4962c51a
MS
15424 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
15425 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
c19d1205
ZW
15426 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
15427 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
15428 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
15429 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
15430 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
15431 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
15432 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
15433 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
15434
15435 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
15436 for setting PSR flag bits. They are obsolete in V6 and do not
15437 have Thumb equivalents. */
15438 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 15439 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 15440 CL(tstp, 110f000, 2, (RR, SH), cmp),
c19d1205 15441 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
088fa78e 15442 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
e3cb604e 15443 CL(cmpp, 150f000, 2, (RR, SH), cmp),
c19d1205 15444 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 15445 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 15446 CL(cmnp, 170f000, 2, (RR, SH), cmp),
c19d1205
ZW
15447
15448 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
15449 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
15450 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
15451 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
15452
4962c51a
MS
15453 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
15454 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
15455 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
15456 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
c19d1205 15457
f5208ef2 15458 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
15459 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15460 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
f5208ef2 15461 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
15462 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15463 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15464
15465 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
c16d2bf0 15466 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
0110f2b8 15467 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
39b41c9c 15468 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 15469
c19d1205 15470 /* Pseudo ops. */
e9f89963 15471 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac
ZW
15472 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
15473 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
15474
15475 /* Thumb-compatibility pseudo ops. */
15476 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
15477 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
15478 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
15479 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
15480 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
2fc8bdac 15481 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
c19d1205
ZW
15482 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
15483 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
15484 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
15485 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
15486 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
15487 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
15488
16a4cf17
PB
15489 /* These may simplify to neg. */
15490 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
15491 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
15492
c19d1205 15493#undef THUMB_VARIANT
e74cfd16 15494#define THUMB_VARIANT &arm_ext_v6
2fc8bdac 15495 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
15496
15497 /* V1 instructions with no Thumb analogue prior to V6T2. */
15498#undef THUMB_VARIANT
e74cfd16 15499#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15500 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 15501 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 15502 CL(teqp, 130f000, 2, (RR, SH), cmp),
c19d1205
ZW
15503
15504 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 15505 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 15506 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 15507 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 15508
9c3c69f2
PB
15509 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15510 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 15511
9c3c69f2
PB
15512 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15513 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
15514
15515 /* V1 instructions with no Thumb analogue at all. */
15516 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
15517 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
15518
15519 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
15520 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
15521 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
15522 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
15523 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
15524 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
15525 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
15526 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
15527
15528#undef ARM_VARIANT
e74cfd16 15529#define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
c19d1205 15530#undef THUMB_VARIANT
e74cfd16 15531#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
15532 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15533 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15534
15535#undef THUMB_VARIANT
e74cfd16 15536#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15537 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15538 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
15539
15540 /* Generic coprocessor instructions. */
15541 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
4962c51a
MS
15542 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15543 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15544 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15545 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
15546 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15547 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15548
15549#undef ARM_VARIANT
e74cfd16 15550#define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
c19d1205
ZW
15551 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15552 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15553
15554#undef ARM_VARIANT
e74cfd16 15555#define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
7e806470
PB
15556#undef THUMB_VARIANT
15557#define THUMB_VARIANT &arm_ext_msr
037e8744
JB
15558 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15559 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205
ZW
15560
15561#undef ARM_VARIANT
e74cfd16 15562#define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
7e806470
PB
15563#undef THUMB_VARIANT
15564#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15565 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15566 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15567 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15568 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15569 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15570 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15571 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15572 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15573
15574#undef ARM_VARIANT
e74cfd16 15575#define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
c19d1205 15576#undef THUMB_VARIANT
e74cfd16 15577#define THUMB_VARIANT &arm_ext_v4t
4962c51a
MS
15578 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15579 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15580 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15581 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15582 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15583 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
c19d1205
ZW
15584
15585#undef ARM_VARIANT
e74cfd16 15586#define ARM_VARIANT &arm_ext_v4t_5
c19d1205
ZW
15587 /* ARM Architecture 4T. */
15588 /* Note: bx (and blx) are required on V5, even if the processor does
15589 not support Thumb. */
15590 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15591
15592#undef ARM_VARIANT
e74cfd16 15593#define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
c19d1205 15594#undef THUMB_VARIANT
e74cfd16 15595#define THUMB_VARIANT &arm_ext_v5t
c19d1205
ZW
15596 /* Note: blx has 2 variants; the .value coded here is for
15597 BLX(2). Only this variant has conditional execution. */
15598 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15599 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15600
15601#undef THUMB_VARIANT
e74cfd16 15602#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15603 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
4962c51a
MS
15604 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15605 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15606 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15607 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
15608 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15609 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15610 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15611
15612#undef ARM_VARIANT
e74cfd16 15613#define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
c19d1205
ZW
15614 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15615 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15616 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15617 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15618
15619 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15620 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15621
15622 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15623 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15624 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15625 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15626
15627 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15628 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15629 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15630 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15631
15632 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15633 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15634
087b80de
JM
15635 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15636 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15637 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15638 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
c19d1205
ZW
15639
15640#undef ARM_VARIANT
e74cfd16 15641#define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
c19d1205 15642 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
79d49516
PB
15643 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15644 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
c19d1205
ZW
15645
15646 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15647 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15648
15649#undef ARM_VARIANT
e74cfd16 15650#define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
c19d1205
ZW
15651 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15652
15653#undef ARM_VARIANT
e74cfd16 15654#define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
c19d1205 15655#undef THUMB_VARIANT
e74cfd16 15656#define THUMB_VARIANT &arm_ext_v6
c19d1205
ZW
15657 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15658 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15659 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15660 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15661 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15662 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15663 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15664 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15665 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15666 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15667
15668#undef THUMB_VARIANT
e74cfd16 15669#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15670 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
91568d08 15671 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
c19d1205
ZW
15672 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15673 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311
PB
15674
15675 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15676 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15677
15678/* ARM V6 not included in V7M (eg. integer SIMD). */
15679#undef THUMB_VARIANT
15680#define THUMB_VARIANT &arm_ext_v6_notm
dfa9f0d5 15681 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c19d1205
ZW
15682 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15683 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15684 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15685 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15686 TCE(qasx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15687 /* Old name for QASX. */
c19d1205 15688 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15689 TCE(qsax, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15690 /* Old name for QSAX. */
15691 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15692 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15693 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15694 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15695 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15696 TCE(sasx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15697 /* Old name for SASX. */
c19d1205
ZW
15698 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15699 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15700 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15701 TCE(shasx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15702 /* Old name for SHASX. */
c19d1205 15703 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15704 TCE(shsax, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15705 /* Old name for SHSAX. */
15706 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15707 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15708 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15709 TCE(ssax, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15710 /* Old name for SSAX. */
15711 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15712 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15713 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15714 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15715 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15716 TCE(uasx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15717 /* Old name for UASX. */
c19d1205
ZW
15718 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15719 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15720 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15721 TCE(uhasx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15722 /* Old name for UHASX. */
c19d1205 15723 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15724 TCE(uhsax, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15725 /* Old name for UHSAX. */
15726 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15727 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15728 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15729 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15730 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15731 TCE(uqasx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15732 /* Old name for UQASX. */
c19d1205 15733 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15734 TCE(uqsax, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15735 /* Old name for UQSAX. */
15736 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15737 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15738 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205 15739 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15740 TCE(usax, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15741 /* Old name for USAX. */
c19d1205 15742 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 15743 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15744 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15745 UF(rfeib, 9900a00, 1, (RRw), rfe),
15746 UF(rfeda, 8100a00, 1, (RRw), rfe),
15747 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15748 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15749 UF(rfefa, 9900a00, 1, (RRw), rfe),
15750 UF(rfeea, 8100a00, 1, (RRw), rfe),
15751 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15752 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15753 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15754 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15755 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15756 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15757 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15758 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15759 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
f1022c90 15760 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15761 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15762 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15763 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15764 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15765 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15766 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15767 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15768 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15769 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15770 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15771 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15772 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15773 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15774 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15775 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15776 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15777 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15778 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
b6702015
PB
15779 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15780 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15781 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15782 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c19d1205 15783 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
c19d1205
ZW
15784 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15785 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15786 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
c19d1205
ZW
15787 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15788
15789#undef ARM_VARIANT
e74cfd16 15790#define ARM_VARIANT &arm_ext_v6k
c19d1205 15791#undef THUMB_VARIANT
e74cfd16 15792#define THUMB_VARIANT &arm_ext_v6k
c19d1205
ZW
15793 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15794 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15795 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15796 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15797
ebdca51a
PB
15798#undef THUMB_VARIANT
15799#define THUMB_VARIANT &arm_ext_v6_notm
15800 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15801 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15802
c19d1205 15803#undef THUMB_VARIANT
e74cfd16 15804#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15805 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15806 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
c19d1205
ZW
15807 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15808 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
c19d1205
ZW
15809 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15810
15811#undef ARM_VARIANT
e74cfd16 15812#define ARM_VARIANT &arm_ext_v6z
3eb17e6b 15813 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205
ZW
15814
15815#undef ARM_VARIANT
e74cfd16 15816#define ARM_VARIANT &arm_ext_v6t2
c19d1205
ZW
15817 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15818 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15819 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15820 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15821
15822 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
b6895b4f
PB
15823 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15824 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
401a54cf 15825 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205
ZW
15826
15827 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15828 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15829 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15830 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15831
25fe350b
MS
15832 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15833 UT(cbz, b100, 2, (RR, EXP), t_cbz),
f91e006c
PB
15834 /* ARM does not really have an IT instruction, so always allow it. */
15835#undef ARM_VARIANT
15836#define ARM_VARIANT &arm_ext_v1
1c444d06
JM
15837 TUE(it, 0, bf08, 1, (COND), it, t_it),
15838 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15839 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15840 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15841 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15842 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15843 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15844 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15845 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15846 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15847 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15848 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15849 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15850 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15851 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15852 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
15853 TC3(rrx, 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
15854 TC3(rrxs, 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 15855
92e90b6e
PB
15856 /* Thumb2 only instructions. */
15857#undef ARM_VARIANT
e74cfd16 15858#define ARM_VARIANT NULL
92e90b6e
PB
15859
15860 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15861 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
1c444d06
JM
15862 TCE(orn, 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
15863 TCE(orns, 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
92e90b6e
PB
15864 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15865 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15866
62b3e311
PB
15867 /* Thumb-2 hardware division instructions (R and M profiles only). */
15868#undef THUMB_VARIANT
15869#define THUMB_VARIANT &arm_ext_div
15870 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15871 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15872
7e806470
PB
15873 /* ARM V6M/V7 instructions. */
15874#undef ARM_VARIANT
15875#define ARM_VARIANT &arm_ext_barrier
15876#undef THUMB_VARIANT
15877#define THUMB_VARIANT &arm_ext_barrier
15878 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15879 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15880 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15881
62b3e311
PB
15882 /* ARM V7 instructions. */
15883#undef ARM_VARIANT
15884#define ARM_VARIANT &arm_ext_v7
15885#undef THUMB_VARIANT
15886#define THUMB_VARIANT &arm_ext_v7
15887 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15888 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 15889
c19d1205 15890#undef ARM_VARIANT
e74cfd16 15891#define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
8f06b2d8
PB
15892 cCE(wfs, e200110, 1, (RR), rd),
15893 cCE(rfs, e300110, 1, (RR), rd),
15894 cCE(wfc, e400110, 1, (RR), rd),
15895 cCE(rfc, e500110, 1, (RR), rd),
15896
4962c51a
MS
15897 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15898 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15899 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15900 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e 15901
4962c51a
MS
15902 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15903 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15904 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15905 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e
PB
15906
15907 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15908 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15909 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15910 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15911 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15912 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15913 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15914 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15915 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15916 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15917 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15918 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15919
15920 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15921 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15922 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15923 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15924 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15925 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15926 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15927 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15928 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15929 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15930 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15931 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15932
15933 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15934 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15935 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15936 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15937 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15938 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15939 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15940 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15941 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15942 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15943 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15944 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15945
15946 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15947 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15948 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15949 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15950 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15951 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15952 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15953 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15954 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15955 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15956 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15957 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15958
15959 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15960 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15961 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15962 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15963 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15964 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15965 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15966 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15967 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15968 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15969 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15970 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15971
15972 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15973 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15974 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15975 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15976 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15977 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15978 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15979 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15980 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15981 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15982 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15983 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15984
15985 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15986 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15987 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15988 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15989 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15990 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15991 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15992 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15993 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15994 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15995 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15996 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15997
15998 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15999 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
16000 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
16001 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
16002 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
16003 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
16004 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
16005 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
16006 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
16007 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
16008 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
16009 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
16010
16011 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
16012 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
16013 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
16014 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
16015 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
16016 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
16017 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
16018 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
16019 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
16020 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
16021 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
16022 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
16023
16024 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
16025 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
16026 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
16027 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
16028 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
16029 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
16030 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
16031 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
16032 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
16033 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
16034 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
16035 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
16036
16037 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
16038 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
16039 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
16040 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
16041 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
16042 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
16043 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
16044 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
16045 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
16046 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
16047 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
16048 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
16049
16050 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
16051 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
16052 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
16053 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
16054 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
16055 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
16056 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
16057 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
16058 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
16059 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
16060 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
16061 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
16062
16063 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
16064 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
16065 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
16066 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
16067 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
16068 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
16069 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
16070 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
16071 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
16072 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
16073 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
16074 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
16075
16076 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
16077 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
16078 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
16079 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
16080 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
16081 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
16082 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
16083 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
16084 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
16085 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
16086 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
16087 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
16088
16089 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
16090 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
16091 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
16092 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
16093 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
16094 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
16095 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
16096 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
16097 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
16098 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
16099 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
16100 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
16101
16102 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
16103 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
16104 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
16105 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
16106 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
16107 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
16108 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
16109 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
16110 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
16111 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
16112 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
16113 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
16114
16115 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
16116 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
16117 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
16118 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
16119 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
16120 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16121 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16122 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16123 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
16124 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
16125 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
16126 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
16127
16128 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
16129 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
16130 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
16131 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
16132 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
16133 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16134 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16135 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16136 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
16137 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
16138 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
16139 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
16140
16141 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
16142 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
16143 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
16144 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
16145 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
16146 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16147 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16148 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16149 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
16150 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
16151 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
16152 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
16153
16154 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
16155 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
16156 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
16157 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
16158 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
16159 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16160 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16161 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16162 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
16163 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
16164 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
16165 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
16166
16167 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
16168 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
16169 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
16170 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
16171 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
16172 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16173 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16174 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16175 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
16176 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
16177 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
16178 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
16179
16180 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
16181 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
16182 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
16183 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
16184 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
16185 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16186 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16187 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16188 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
16189 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
16190 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
16191 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
16192
16193 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
16194 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
16195 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
16196 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
16197 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
16198 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16199 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16200 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16201 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
16202 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
16203 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
16204 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
16205
16206 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
16207 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
16208 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
16209 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
16210 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
16211 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16212 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16213 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16214 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
16215 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
16216 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
16217 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
16218
16219 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
16220 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
16221 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
16222 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
16223 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
16224 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16225 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16226 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16227 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
16228 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
16229 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
16230 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
16231
16232 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
16233 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
16234 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
16235 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
16236 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
16237 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16238 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16239 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16240 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
16241 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
16242 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
16243 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
16244
16245 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16246 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16247 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16248 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16249 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16250 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16251 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16252 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16253 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16254 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16255 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16256 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16257
16258 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16259 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16260 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16261 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16262 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16263 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16264 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16265 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16266 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16267 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16268 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16269 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16270
16271 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16272 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16273 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16274 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16275 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16276 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16277 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16278 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16279 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16280 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16281 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16282 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8f06b2d8
PB
16283
16284 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205 16285 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
8f06b2d8 16286 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205
ZW
16287 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
16288
e3cb604e
PB
16289 cCL(flts, e000110, 2, (RF, RR), rn_rd),
16290 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
16291 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
16292 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
16293 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
16294 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
16295 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
16296 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
16297 cCL(flte, e080110, 2, (RF, RR), rn_rd),
16298 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
16299 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
16300 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
b99bd4ef 16301
c19d1205
ZW
16302 /* The implementation of the FIX instruction is broken on some
16303 assemblers, in that it accepts a precision specifier as well as a
16304 rounding specifier, despite the fact that this is meaningless.
16305 To be more compatible, we accept it as well, though of course it
16306 does not set any bits. */
8f06b2d8 16307 cCE(fix, e100110, 2, (RR, RF), rd_rm),
e3cb604e
PB
16308 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
16309 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
16310 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
16311 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
16312 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
16313 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
16314 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
16315 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
16316 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
16317 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
16318 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
16319 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
bfae80f2 16320
c19d1205
ZW
16321 /* Instructions that were new with the real FPA, call them V2. */
16322#undef ARM_VARIANT
e74cfd16 16323#define ARM_VARIANT &fpu_fpa_ext_v2
8f06b2d8 16324 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
16325 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16326 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8f06b2d8 16327 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
16328 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16329 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205
ZW
16330
16331#undef ARM_VARIANT
e74cfd16 16332#define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
c19d1205 16333 /* Moves and type conversions. */
8f06b2d8
PB
16334 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
16335 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
16336 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
16337 cCE(fmstat, ef1fa10, 0, (), noargs),
16338 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
16339 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
16340 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
16341 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
16342 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
16343 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
16344 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
16345 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
16346
16347 /* Memory operations. */
4962c51a
MS
16348 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
16349 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
8f06b2d8
PB
16350 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16351 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16352 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16353 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16354 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16355 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16356 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16357 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16358 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16359 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16360 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16361 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16362 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16363 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16364 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16365 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 16366
c19d1205 16367 /* Monadic operations. */
8f06b2d8
PB
16368 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
16369 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
16370 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
16371
16372 /* Dyadic operations. */
8f06b2d8
PB
16373 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16374 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16375 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16376 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16377 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16378 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16379 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16380 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16381 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 16382
c19d1205 16383 /* Comparisons. */
8f06b2d8
PB
16384 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
16385 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
16386 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
16387 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 16388
c19d1205 16389#undef ARM_VARIANT
e74cfd16 16390#define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
c19d1205 16391 /* Moves and type conversions. */
5287ad62 16392 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
8f06b2d8
PB
16393 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
16394 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
5287ad62
JB
16395 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
16396 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
16397 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
16398 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
8f06b2d8
PB
16399 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
16400 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
16401 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
16402 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
16403 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
16404 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205
ZW
16405
16406 /* Memory operations. */
4962c51a
MS
16407 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
16408 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
8f06b2d8
PB
16409 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16410 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16411 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16412 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16413 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16414 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16415 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16416 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
b99bd4ef 16417
c19d1205 16418 /* Monadic operations. */
5287ad62
JB
16419 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16420 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
16421 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
16422
16423 /* Dyadic operations. */
5287ad62
JB
16424 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16425 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16426 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16427 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16428 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16429 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16430 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16431 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16432 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 16433
c19d1205 16434 /* Comparisons. */
5287ad62
JB
16435 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
16436 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
16437 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16438 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205
ZW
16439
16440#undef ARM_VARIANT
e74cfd16 16441#define ARM_VARIANT &fpu_vfp_ext_v2
8f06b2d8
PB
16442 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
16443 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
5287ad62
JB
16444 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
16445 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
16446
037e8744
JB
16447/* Instructions which may belong to either the Neon or VFP instruction sets.
16448 Individual encoder functions perform additional architecture checks. */
16449#undef ARM_VARIANT
16450#define ARM_VARIANT &fpu_vfp_ext_v1xd
16451#undef THUMB_VARIANT
16452#define THUMB_VARIANT &fpu_vfp_ext_v1xd
16453 /* These mnemonics are unique to VFP. */
16454 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
16455 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
16456 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16457 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16458 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16459 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16460 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16461 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
16462 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
16463 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
16464
16465 /* Mnemonics shared by Neon and VFP. */
16466 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
16467 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16468 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16469
16470 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16471 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16472
16473 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16474 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16475
16476 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16477 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16478 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16479 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16480 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16481 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
16482 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
16483 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744
JB
16484
16485 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
8e79c3df
CM
16486 nCEF(vcvtb, vcvt, 2, (RVS, RVS), neon_cvtb),
16487 nCEF(vcvtt, vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 16488
037e8744
JB
16489
16490 /* NOTE: All VMOV encoding is special-cased! */
16491 NCE(vmov, 0, 1, (VMOV), neon_mov),
16492 NCE(vmovq, 0, 1, (VMOV), neon_mov),
16493
5287ad62
JB
16494#undef THUMB_VARIANT
16495#define THUMB_VARIANT &fpu_neon_ext_v1
16496#undef ARM_VARIANT
16497#define ARM_VARIANT &fpu_neon_ext_v1
16498 /* Data processing with three registers of the same length. */
16499 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
16500 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
16501 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
16502 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16503 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16504 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16505 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16506 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16507 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16508 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
16509 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16510 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
16511 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16512 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
16513 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16514 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
16515 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16516 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
16517 /* If not immediate, fall back to neon_dyadic_i64_su.
16518 shl_imm should accept I8 I16 I32 I64,
16519 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
16520 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
16521 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
16522 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
16523 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
16524 /* Logic ops, types optional & ignored. */
16525 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
16526 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
16527 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
16528 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
16529 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
16530 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
16531 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
16532 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
16533 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
16534 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
16535 /* Bitfield ops, untyped. */
16536 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16537 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16538 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16539 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16540 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16541 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16542 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
16543 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16544 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16545 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16546 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16547 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16548 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16549 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
16550 back to neon_dyadic_if_su. */
16551 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16552 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16553 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16554 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16555 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16556 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
16557 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16558 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 16559 /* Comparison. Type I8 I16 I32 F32. */
5287ad62
JB
16560 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
16561 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
16562 /* As above, D registers only. */
16563 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16564 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16565 /* Int and float variants, signedness unimportant. */
5287ad62 16566 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
5287ad62
JB
16567 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16568 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
16569 /* Add/sub take types I8 I16 I32 I64 F32. */
5287ad62 16570 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
16571 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16572 /* vtst takes sizes 8, 16, 32. */
16573 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
16574 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
16575 /* VMUL takes I8 I16 I32 F32 P8. */
037e8744 16576 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62
JB
16577 /* VQD{R}MULH takes S16 S32. */
16578 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16579 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16580 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16581 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16582 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16583 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16584 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16585 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
16586 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16587 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16588 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16589 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
16590 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16591 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16592 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16593 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16594
16595 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 16596 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
16597 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16598
16599 /* Data processing with two registers and a shift amount. */
16600 /* Right shifts, and variants with rounding.
16601 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16602 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16603 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16604 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16605 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16606 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16607 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16608 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16609 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16610 /* Shift and insert. Sizes accepted 8 16 32 64. */
16611 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16612 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16613 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16614 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16615 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16616 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16617 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16618 /* Right shift immediate, saturating & narrowing, with rounding variants.
16619 Types accepted S16 S32 S64 U16 U32 U64. */
16620 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16621 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16622 /* As above, unsigned. Types accepted S16 S32 S64. */
16623 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16624 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16625 /* Right shift narrowing. Types accepted I16 I32 I64. */
16626 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16627 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16628 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16629 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16630 /* CVT with optional immediate for fixed-point variant. */
037e8744 16631 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 16632
5287ad62
JB
16633 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16634 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16635
16636 /* Data processing, three registers of different lengths. */
16637 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16638 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16639 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16640 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16641 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16642 /* If not scalar, fall back to neon_dyadic_long.
16643 Vector types as above, scalar types S16 S32 U16 U32. */
16644 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16645 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16646 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16647 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16648 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16649 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16650 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16651 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16652 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16653 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16654 /* Saturating doubling multiplies. Types S16 S32. */
16655 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16656 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16657 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16658 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16659 S16 S32 U16 U32. */
16660 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16661
16662 /* Extract. Size 8. */
3b8d421e
PB
16663 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16664 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
16665
16666 /* Two registers, miscellaneous. */
16667 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16668 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16669 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16670 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16671 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16672 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16673 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16674 /* Vector replicate. Sizes 8 16 32. */
16675 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16676 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16677 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16678 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16679 /* VMOVN. Types I16 I32 I64. */
16680 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16681 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16682 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16683 /* VQMOVUN. Types S16 S32 S64. */
16684 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16685 /* VZIP / VUZP. Sizes 8 16 32. */
16686 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16687 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16688 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16689 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16690 /* VQABS / VQNEG. Types S8 S16 S32. */
16691 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16692 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16693 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16694 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16695 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16696 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16697 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16698 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16699 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16700 /* Reciprocal estimates. Types U32 F32. */
16701 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16702 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16703 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16704 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16705 /* VCLS. Types S8 S16 S32. */
16706 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16707 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16708 /* VCLZ. Types I8 I16 I32. */
16709 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16710 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16711 /* VCNT. Size 8. */
16712 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16713 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16714 /* Two address, untyped. */
16715 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16716 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16717 /* VTRN. Sizes 8 16 32. */
16718 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16719 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16720
16721 /* Table lookup. Size 8. */
16722 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16723 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16724
b7fc2769
JB
16725#undef THUMB_VARIANT
16726#define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16727#undef ARM_VARIANT
16728#define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
5287ad62
JB
16729 /* Neon element/structure load/store. */
16730 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16731 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16732 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16733 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16734 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16735 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16736 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16737 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16738
16739#undef THUMB_VARIANT
16740#define THUMB_VARIANT &fpu_vfp_ext_v3
16741#undef ARM_VARIANT
16742#define ARM_VARIANT &fpu_vfp_ext_v3
5287ad62
JB
16743 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16744 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16745 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16746 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16747 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16748 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16749 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16750 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16751 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16752 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16753 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16754 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16755 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16756 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16757 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16758 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16759 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16760 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 16761
5287ad62 16762#undef THUMB_VARIANT
c19d1205 16763#undef ARM_VARIANT
e74cfd16 16764#define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
8f06b2d8
PB
16765 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16766 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16767 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16768 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16769 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16770 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16771 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16772 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205
ZW
16773
16774#undef ARM_VARIANT
e74cfd16 16775#define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
8f06b2d8
PB
16776 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16777 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16778 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16779 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16780 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16781 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16782 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16783 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16784 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16785 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16786 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16787 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16788 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16789 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16790 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16791 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16792 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16793 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
41adaa5c 16794 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
8f06b2d8
PB
16795 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16796 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16797 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16798 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16799 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16800 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16801 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16802 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16803 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16804 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
41adaa5c 16805 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
8f06b2d8
PB
16806 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16807 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16808 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16809 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16810 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16811 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16812 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16813 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16814 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16815 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16816 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16817 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16818 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16819 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16820 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16821 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16822 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16823 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16824 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16825 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16826 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16827 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16828 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16829 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16830 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16831 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16832 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16833 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16834 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16835 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16836 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16837 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16838 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16839 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16840 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16841 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16842 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16843 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16844 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16845 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16846 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16847 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16848 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16849 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16850 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16851 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16852 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16853 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16854 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16855 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16856 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16857 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16858 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16859 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16860 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16861 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16862 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16863 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16864 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16865 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16866 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16867 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16868 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16869 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16870 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16871 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16872 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16873 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16874 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16875 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 16876 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16877 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16878 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16879 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16880 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16881 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16882 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16883 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16884 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16885 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16886 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
2d447fca 16887 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16888 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16889 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16890 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16891 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16892 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16893 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16894 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16895 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16896 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16897 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16898 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16899 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16900 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16901 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16902 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16903 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16904 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16905 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16906 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16907 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16908 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16909 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16910 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16911 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16912 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16913 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16914 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16915 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16916 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16917 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16918 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16919 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16920 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16921 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16922 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16923 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16924 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16925 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16926 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16927 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16928 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16929 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16930 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16931 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16932 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16933 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16934 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16935 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16936 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16937 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 16938
2d447fca
JM
16939#undef ARM_VARIANT
16940#define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16941 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16942 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16943 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16944 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16945 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16946 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16947 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16948 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16949 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16950 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16951 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16952 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16953 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16954 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16955 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16956 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16957 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16958 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16959 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16960 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16961 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16962 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16963 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16964 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16965 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16966 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16967 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16968 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16969 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16970 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16971 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16972 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16973 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16974 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16975 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16976 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16977 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16978 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16979 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16980 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16981 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16982 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16983 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16984 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16985 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16986 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16987 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16988 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16989 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16990 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16991 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16992 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16993 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16994 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16995 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16996 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16997 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16998
c19d1205 16999#undef ARM_VARIANT
e74cfd16 17000#define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
4962c51a
MS
17001 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17002 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17003 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17004 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17005 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17006 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17007 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17008 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
8f06b2d8
PB
17009 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
17010 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
17011 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
17012 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
17013 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
17014 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
17015 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
17016 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
17017 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
17018 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
17019 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
17020 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
17021 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
17022 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
17023 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
17024 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
17025 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
17026 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
17027 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
17028 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
17029 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
17030 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
17031 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
17032 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
17033 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
17034 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
17035 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
17036 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
17037 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
17038 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
17039 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
17040 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
17041 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
17042 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
17043 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
17044 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
17045 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
17046 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
17047 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
17048 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
17049 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
17050 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
17051 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
17052 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
17053 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
17054 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
17055 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
17056 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
17057 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
17058 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
17059 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
17060 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
17061 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
17062 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
17063 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
17064 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
17065 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17066 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17067 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17068 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17069 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17070 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17071 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17072 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17073 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17074 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17075 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17076 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
17077};
17078#undef ARM_VARIANT
17079#undef THUMB_VARIANT
17080#undef TCE
17081#undef TCM
17082#undef TUE
17083#undef TUF
17084#undef TCC
8f06b2d8 17085#undef cCE
e3cb604e
PB
17086#undef cCL
17087#undef C3E
c19d1205
ZW
17088#undef CE
17089#undef CM
17090#undef UE
17091#undef UF
17092#undef UT
5287ad62
JB
17093#undef NUF
17094#undef nUF
17095#undef NCE
17096#undef nCE
c19d1205
ZW
17097#undef OPS0
17098#undef OPS1
17099#undef OPS2
17100#undef OPS3
17101#undef OPS4
17102#undef OPS5
17103#undef OPS6
17104#undef do_0
17105\f
17106/* MD interface: bits in the object file. */
bfae80f2 17107
c19d1205
ZW
17108/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
17109 for use in the a.out file, and stores them in the array pointed to by buf.
17110 This knows about the endian-ness of the target machine and does
17111 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
17112 2 (short) and 4 (long) Floating numbers are put out as a series of
17113 LITTLENUMS (shorts, here at least). */
b99bd4ef 17114
c19d1205
ZW
17115void
17116md_number_to_chars (char * buf, valueT val, int n)
17117{
17118 if (target_big_endian)
17119 number_to_chars_bigendian (buf, val, n);
17120 else
17121 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
17122}
17123
c19d1205
ZW
17124static valueT
17125md_chars_to_number (char * buf, int n)
bfae80f2 17126{
c19d1205
ZW
17127 valueT result = 0;
17128 unsigned char * where = (unsigned char *) buf;
bfae80f2 17129
c19d1205 17130 if (target_big_endian)
b99bd4ef 17131 {
c19d1205
ZW
17132 while (n--)
17133 {
17134 result <<= 8;
17135 result |= (*where++ & 255);
17136 }
b99bd4ef 17137 }
c19d1205 17138 else
b99bd4ef 17139 {
c19d1205
ZW
17140 while (n--)
17141 {
17142 result <<= 8;
17143 result |= (where[n] & 255);
17144 }
bfae80f2 17145 }
b99bd4ef 17146
c19d1205 17147 return result;
bfae80f2 17148}
b99bd4ef 17149
c19d1205 17150/* MD interface: Sections. */
b99bd4ef 17151
0110f2b8
PB
17152/* Estimate the size of a frag before relaxing. Assume everything fits in
17153 2 bytes. */
17154
c19d1205 17155int
0110f2b8 17156md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
17157 segT segtype ATTRIBUTE_UNUSED)
17158{
0110f2b8
PB
17159 fragp->fr_var = 2;
17160 return 2;
17161}
17162
17163/* Convert a machine dependent frag. */
17164
17165void
17166md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
17167{
17168 unsigned long insn;
17169 unsigned long old_op;
17170 char *buf;
17171 expressionS exp;
17172 fixS *fixp;
17173 int reloc_type;
17174 int pc_rel;
17175 int opcode;
17176
17177 buf = fragp->fr_literal + fragp->fr_fix;
17178
17179 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
17180 if (fragp->fr_symbol)
17181 {
0110f2b8
PB
17182 exp.X_op = O_symbol;
17183 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
17184 }
17185 else
17186 {
0110f2b8 17187 exp.X_op = O_constant;
5f4273c7 17188 }
0110f2b8
PB
17189 exp.X_add_number = fragp->fr_offset;
17190 opcode = fragp->fr_subtype;
17191 switch (opcode)
17192 {
17193 case T_MNEM_ldr_pc:
17194 case T_MNEM_ldr_pc2:
17195 case T_MNEM_ldr_sp:
17196 case T_MNEM_str_sp:
17197 case T_MNEM_ldr:
17198 case T_MNEM_ldrb:
17199 case T_MNEM_ldrh:
17200 case T_MNEM_str:
17201 case T_MNEM_strb:
17202 case T_MNEM_strh:
17203 if (fragp->fr_var == 4)
17204 {
5f4273c7 17205 insn = THUMB_OP32 (opcode);
0110f2b8
PB
17206 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
17207 {
17208 insn |= (old_op & 0x700) << 4;
17209 }
17210 else
17211 {
17212 insn |= (old_op & 7) << 12;
17213 insn |= (old_op & 0x38) << 13;
17214 }
17215 insn |= 0x00000c00;
17216 put_thumb32_insn (buf, insn);
17217 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
17218 }
17219 else
17220 {
17221 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
17222 }
17223 pc_rel = (opcode == T_MNEM_ldr_pc2);
17224 break;
17225 case T_MNEM_adr:
17226 if (fragp->fr_var == 4)
17227 {
17228 insn = THUMB_OP32 (opcode);
17229 insn |= (old_op & 0xf0) << 4;
17230 put_thumb32_insn (buf, insn);
17231 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
17232 }
17233 else
17234 {
17235 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17236 exp.X_add_number -= 4;
17237 }
17238 pc_rel = 1;
17239 break;
17240 case T_MNEM_mov:
17241 case T_MNEM_movs:
17242 case T_MNEM_cmp:
17243 case T_MNEM_cmn:
17244 if (fragp->fr_var == 4)
17245 {
17246 int r0off = (opcode == T_MNEM_mov
17247 || opcode == T_MNEM_movs) ? 0 : 8;
17248 insn = THUMB_OP32 (opcode);
17249 insn = (insn & 0xe1ffffff) | 0x10000000;
17250 insn |= (old_op & 0x700) << r0off;
17251 put_thumb32_insn (buf, insn);
17252 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
17253 }
17254 else
17255 {
17256 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
17257 }
17258 pc_rel = 0;
17259 break;
17260 case T_MNEM_b:
17261 if (fragp->fr_var == 4)
17262 {
17263 insn = THUMB_OP32(opcode);
17264 put_thumb32_insn (buf, insn);
17265 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
17266 }
17267 else
17268 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
17269 pc_rel = 1;
17270 break;
17271 case T_MNEM_bcond:
17272 if (fragp->fr_var == 4)
17273 {
17274 insn = THUMB_OP32(opcode);
17275 insn |= (old_op & 0xf00) << 14;
17276 put_thumb32_insn (buf, insn);
17277 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
17278 }
17279 else
17280 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
17281 pc_rel = 1;
17282 break;
17283 case T_MNEM_add_sp:
17284 case T_MNEM_add_pc:
17285 case T_MNEM_inc_sp:
17286 case T_MNEM_dec_sp:
17287 if (fragp->fr_var == 4)
17288 {
17289 /* ??? Choose between add and addw. */
17290 insn = THUMB_OP32 (opcode);
17291 insn |= (old_op & 0xf0) << 4;
17292 put_thumb32_insn (buf, insn);
16805f35
PB
17293 if (opcode == T_MNEM_add_pc)
17294 reloc_type = BFD_RELOC_ARM_T32_IMM12;
17295 else
17296 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
17297 }
17298 else
17299 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17300 pc_rel = 0;
17301 break;
17302
17303 case T_MNEM_addi:
17304 case T_MNEM_addis:
17305 case T_MNEM_subi:
17306 case T_MNEM_subis:
17307 if (fragp->fr_var == 4)
17308 {
17309 insn = THUMB_OP32 (opcode);
17310 insn |= (old_op & 0xf0) << 4;
17311 insn |= (old_op & 0xf) << 16;
17312 put_thumb32_insn (buf, insn);
16805f35
PB
17313 if (insn & (1 << 20))
17314 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
17315 else
17316 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
17317 }
17318 else
17319 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17320 pc_rel = 0;
17321 break;
17322 default:
5f4273c7 17323 abort ();
0110f2b8
PB
17324 }
17325 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
17326 reloc_type);
17327 fixp->fx_file = fragp->fr_file;
17328 fixp->fx_line = fragp->fr_line;
17329 fragp->fr_fix += fragp->fr_var;
17330}
17331
17332/* Return the size of a relaxable immediate operand instruction.
17333 SHIFT and SIZE specify the form of the allowable immediate. */
17334static int
17335relax_immediate (fragS *fragp, int size, int shift)
17336{
17337 offsetT offset;
17338 offsetT mask;
17339 offsetT low;
17340
17341 /* ??? Should be able to do better than this. */
17342 if (fragp->fr_symbol)
17343 return 4;
17344
17345 low = (1 << shift) - 1;
17346 mask = (1 << (shift + size)) - (1 << shift);
17347 offset = fragp->fr_offset;
17348 /* Force misaligned offsets to 32-bit variant. */
17349 if (offset & low)
5e77afaa 17350 return 4;
0110f2b8
PB
17351 if (offset & ~mask)
17352 return 4;
17353 return 2;
17354}
17355
5e77afaa
PB
17356/* Get the address of a symbol during relaxation. */
17357static addressT
5f4273c7 17358relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
17359{
17360 fragS *sym_frag;
17361 addressT addr;
17362 symbolS *sym;
17363
17364 sym = fragp->fr_symbol;
17365 sym_frag = symbol_get_frag (sym);
17366 know (S_GET_SEGMENT (sym) != absolute_section
17367 || sym_frag == &zero_address_frag);
17368 addr = S_GET_VALUE (sym) + fragp->fr_offset;
17369
17370 /* If frag has yet to be reached on this pass, assume it will
17371 move by STRETCH just as we did. If this is not so, it will
17372 be because some frag between grows, and that will force
17373 another pass. */
17374
17375 if (stretch != 0
17376 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
17377 {
17378 fragS *f;
17379
17380 /* Adjust stretch for any alignment frag. Note that if have
17381 been expanding the earlier code, the symbol may be
17382 defined in what appears to be an earlier frag. FIXME:
17383 This doesn't handle the fr_subtype field, which specifies
17384 a maximum number of bytes to skip when doing an
17385 alignment. */
17386 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17387 {
17388 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17389 {
17390 if (stretch < 0)
17391 stretch = - ((- stretch)
17392 & ~ ((1 << (int) f->fr_offset) - 1));
17393 else
17394 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17395 if (stretch == 0)
17396 break;
17397 }
17398 }
17399 if (f != NULL)
17400 addr += stretch;
17401 }
5e77afaa
PB
17402
17403 return addr;
17404}
17405
0110f2b8
PB
17406/* Return the size of a relaxable adr pseudo-instruction or PC-relative
17407 load. */
17408static int
5e77afaa 17409relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
17410{
17411 addressT addr;
17412 offsetT val;
17413
17414 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 17415 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
17416 || sec != S_GET_SEGMENT (fragp->fr_symbol))
17417 return 4;
17418
5f4273c7 17419 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
17420 addr = fragp->fr_address + fragp->fr_fix;
17421 addr = (addr + 4) & ~3;
5e77afaa 17422 /* Force misaligned targets to 32-bit variant. */
0110f2b8 17423 if (val & 3)
5e77afaa 17424 return 4;
0110f2b8
PB
17425 val -= addr;
17426 if (val < 0 || val > 1020)
17427 return 4;
17428 return 2;
17429}
17430
17431/* Return the size of a relaxable add/sub immediate instruction. */
17432static int
17433relax_addsub (fragS *fragp, asection *sec)
17434{
17435 char *buf;
17436 int op;
17437
17438 buf = fragp->fr_literal + fragp->fr_fix;
17439 op = bfd_get_16(sec->owner, buf);
17440 if ((op & 0xf) == ((op >> 4) & 0xf))
17441 return relax_immediate (fragp, 8, 0);
17442 else
17443 return relax_immediate (fragp, 3, 0);
17444}
17445
17446
17447/* Return the size of a relaxable branch instruction. BITS is the
17448 size of the offset field in the narrow instruction. */
17449
17450static int
5e77afaa 17451relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
17452{
17453 addressT addr;
17454 offsetT val;
17455 offsetT limit;
17456
17457 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 17458 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
17459 || sec != S_GET_SEGMENT (fragp->fr_symbol))
17460 return 4;
17461
5f4273c7 17462 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
17463 addr = fragp->fr_address + fragp->fr_fix + 4;
17464 val -= addr;
17465
17466 /* Offset is a signed value *2 */
17467 limit = 1 << bits;
17468 if (val >= limit || val < -limit)
17469 return 4;
17470 return 2;
17471}
17472
17473
17474/* Relax a machine dependent frag. This returns the amount by which
17475 the current size of the frag should change. */
17476
17477int
5e77afaa 17478arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
17479{
17480 int oldsize;
17481 int newsize;
17482
17483 oldsize = fragp->fr_var;
17484 switch (fragp->fr_subtype)
17485 {
17486 case T_MNEM_ldr_pc2:
5f4273c7 17487 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
17488 break;
17489 case T_MNEM_ldr_pc:
17490 case T_MNEM_ldr_sp:
17491 case T_MNEM_str_sp:
5f4273c7 17492 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
17493 break;
17494 case T_MNEM_ldr:
17495 case T_MNEM_str:
5f4273c7 17496 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
17497 break;
17498 case T_MNEM_ldrh:
17499 case T_MNEM_strh:
5f4273c7 17500 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
17501 break;
17502 case T_MNEM_ldrb:
17503 case T_MNEM_strb:
5f4273c7 17504 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
17505 break;
17506 case T_MNEM_adr:
5f4273c7 17507 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
17508 break;
17509 case T_MNEM_mov:
17510 case T_MNEM_movs:
17511 case T_MNEM_cmp:
17512 case T_MNEM_cmn:
5f4273c7 17513 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
17514 break;
17515 case T_MNEM_b:
5f4273c7 17516 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
17517 break;
17518 case T_MNEM_bcond:
5f4273c7 17519 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
17520 break;
17521 case T_MNEM_add_sp:
17522 case T_MNEM_add_pc:
17523 newsize = relax_immediate (fragp, 8, 2);
17524 break;
17525 case T_MNEM_inc_sp:
17526 case T_MNEM_dec_sp:
17527 newsize = relax_immediate (fragp, 7, 2);
17528 break;
17529 case T_MNEM_addi:
17530 case T_MNEM_addis:
17531 case T_MNEM_subi:
17532 case T_MNEM_subis:
17533 newsize = relax_addsub (fragp, sec);
17534 break;
17535 default:
5f4273c7 17536 abort ();
0110f2b8 17537 }
5e77afaa
PB
17538
17539 fragp->fr_var = newsize;
17540 /* Freeze wide instructions that are at or before the same location as
17541 in the previous pass. This avoids infinite loops.
5f4273c7
NC
17542 Don't freeze them unconditionally because targets may be artificially
17543 misaligned by the expansion of preceding frags. */
5e77afaa 17544 if (stretch <= 0 && newsize > 2)
0110f2b8 17545 {
0110f2b8 17546 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 17547 frag_wane (fragp);
0110f2b8 17548 }
5e77afaa 17549
0110f2b8 17550 return newsize - oldsize;
c19d1205 17551}
b99bd4ef 17552
c19d1205 17553/* Round up a section size to the appropriate boundary. */
b99bd4ef 17554
c19d1205
ZW
17555valueT
17556md_section_align (segT segment ATTRIBUTE_UNUSED,
17557 valueT size)
17558{
f0927246
NC
17559#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
17560 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
17561 {
17562 /* For a.out, force the section size to be aligned. If we don't do
17563 this, BFD will align it for us, but it will not write out the
17564 final bytes of the section. This may be a bug in BFD, but it is
17565 easier to fix it here since that is how the other a.out targets
17566 work. */
17567 int align;
17568
17569 align = bfd_get_section_alignment (stdoutput, segment);
17570 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
17571 }
c19d1205 17572#endif
f0927246
NC
17573
17574 return size;
bfae80f2 17575}
b99bd4ef 17576
c19d1205
ZW
17577/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
17578 of an rs_align_code fragment. */
17579
17580void
17581arm_handle_align (fragS * fragP)
bfae80f2 17582{
c19d1205
ZW
17583 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
17584 static char const thumb_noop[2] = { 0xc0, 0x46 };
17585 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
17586 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
17587
17588 int bytes, fix, noop_size;
17589 char * p;
17590 const char * noop;
bfae80f2 17591
c19d1205 17592 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
17593 return;
17594
c19d1205
ZW
17595 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17596 p = fragP->fr_literal + fragP->fr_fix;
17597 fix = 0;
bfae80f2 17598
c19d1205
ZW
17599 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17600 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 17601
8dc2430f
NC
17602 assert ((fragP->tc_frag_data & MODE_RECORDED) != 0);
17603
17604 if (fragP->tc_frag_data & (~ MODE_RECORDED))
a737bd4d 17605 {
c19d1205
ZW
17606 if (target_big_endian)
17607 noop = thumb_bigend_noop;
17608 else
17609 noop = thumb_noop;
17610 noop_size = sizeof (thumb_noop);
7ed4c4c5
NC
17611 }
17612 else
17613 {
c19d1205
ZW
17614 if (target_big_endian)
17615 noop = arm_bigend_noop;
17616 else
17617 noop = arm_noop;
17618 noop_size = sizeof (arm_noop);
7ed4c4c5 17619 }
a737bd4d 17620
c19d1205 17621 if (bytes & (noop_size - 1))
7ed4c4c5 17622 {
c19d1205
ZW
17623 fix = bytes & (noop_size - 1);
17624 memset (p, 0, fix);
17625 p += fix;
17626 bytes -= fix;
a737bd4d 17627 }
a737bd4d 17628
c19d1205 17629 while (bytes >= noop_size)
a737bd4d 17630 {
c19d1205
ZW
17631 memcpy (p, noop, noop_size);
17632 p += noop_size;
17633 bytes -= noop_size;
17634 fix += noop_size;
a737bd4d
NC
17635 }
17636
c19d1205
ZW
17637 fragP->fr_fix += fix;
17638 fragP->fr_var = noop_size;
a737bd4d
NC
17639}
17640
c19d1205
ZW
17641/* Called from md_do_align. Used to create an alignment
17642 frag in a code section. */
17643
17644void
17645arm_frag_align_code (int n, int max)
bfae80f2 17646{
c19d1205 17647 char * p;
7ed4c4c5 17648
c19d1205
ZW
17649 /* We assume that there will never be a requirement
17650 to support alignments greater than 32 bytes. */
17651 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17652 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
bfae80f2 17653
c19d1205
ZW
17654 p = frag_var (rs_align_code,
17655 MAX_MEM_FOR_RS_ALIGN_CODE,
17656 1,
17657 (relax_substateT) max,
17658 (symbolS *) NULL,
17659 (offsetT) n,
17660 (char *) NULL);
17661 *p = 0;
17662}
bfae80f2 17663
8dc2430f
NC
17664/* Perform target specific initialisation of a frag.
17665 Note - despite the name this initialisation is not done when the frag
17666 is created, but only when its type is assigned. A frag can be created
17667 and used a long time before its type is set, so beware of assuming that
17668 this initialisationis performed first. */
bfae80f2 17669
c19d1205
ZW
17670void
17671arm_init_frag (fragS * fragP)
17672{
8dc2430f
NC
17673 /* If the current ARM vs THUMB mode has not already
17674 been recorded into this frag then do so now. */
17675 if ((fragP->tc_frag_data & MODE_RECORDED) == 0)
17676 fragP->tc_frag_data = thumb_mode | MODE_RECORDED;
bfae80f2
RE
17677}
17678
c19d1205
ZW
17679#ifdef OBJ_ELF
17680/* When we change sections we need to issue a new mapping symbol. */
17681
17682void
17683arm_elf_change_section (void)
bfae80f2 17684{
c19d1205
ZW
17685 flagword flags;
17686 segment_info_type *seginfo;
bfae80f2 17687
c19d1205
ZW
17688 /* Link an unlinked unwind index table section to the .text section. */
17689 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17690 && elf_linked_to_section (now_seg) == NULL)
17691 elf_linked_to_section (now_seg) = text_section;
17692
17693 if (!SEG_NORMAL (now_seg))
bfae80f2
RE
17694 return;
17695
c19d1205
ZW
17696 flags = bfd_get_section_flags (stdoutput, now_seg);
17697
17698 /* We can ignore sections that only contain debug info. */
17699 if ((flags & SEC_ALLOC) == 0)
17700 return;
bfae80f2 17701
c19d1205
ZW
17702 seginfo = seg_info (now_seg);
17703 mapstate = seginfo->tc_segment_info_data.mapstate;
17704 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
bfae80f2
RE
17705}
17706
c19d1205
ZW
17707int
17708arm_elf_section_type (const char * str, size_t len)
e45d0630 17709{
c19d1205
ZW
17710 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17711 return SHT_ARM_EXIDX;
e45d0630 17712
c19d1205
ZW
17713 return -1;
17714}
17715\f
17716/* Code to deal with unwinding tables. */
e45d0630 17717
c19d1205 17718static void add_unwind_adjustsp (offsetT);
e45d0630 17719
5f4273c7 17720/* Generate any deferred unwind frame offset. */
e45d0630 17721
bfae80f2 17722static void
c19d1205 17723flush_pending_unwind (void)
bfae80f2 17724{
c19d1205 17725 offsetT offset;
bfae80f2 17726
c19d1205
ZW
17727 offset = unwind.pending_offset;
17728 unwind.pending_offset = 0;
17729 if (offset != 0)
17730 add_unwind_adjustsp (offset);
bfae80f2
RE
17731}
17732
c19d1205
ZW
17733/* Add an opcode to this list for this function. Two-byte opcodes should
17734 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17735 order. */
17736
bfae80f2 17737static void
c19d1205 17738add_unwind_opcode (valueT op, int length)
bfae80f2 17739{
c19d1205
ZW
17740 /* Add any deferred stack adjustment. */
17741 if (unwind.pending_offset)
17742 flush_pending_unwind ();
bfae80f2 17743
c19d1205 17744 unwind.sp_restored = 0;
bfae80f2 17745
c19d1205 17746 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 17747 {
c19d1205
ZW
17748 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17749 if (unwind.opcodes)
17750 unwind.opcodes = xrealloc (unwind.opcodes,
17751 unwind.opcode_alloc);
17752 else
17753 unwind.opcodes = xmalloc (unwind.opcode_alloc);
bfae80f2 17754 }
c19d1205 17755 while (length > 0)
bfae80f2 17756 {
c19d1205
ZW
17757 length--;
17758 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17759 op >>= 8;
17760 unwind.opcode_count++;
bfae80f2 17761 }
bfae80f2
RE
17762}
17763
c19d1205
ZW
17764/* Add unwind opcodes to adjust the stack pointer. */
17765
bfae80f2 17766static void
c19d1205 17767add_unwind_adjustsp (offsetT offset)
bfae80f2 17768{
c19d1205 17769 valueT op;
bfae80f2 17770
c19d1205 17771 if (offset > 0x200)
bfae80f2 17772 {
c19d1205
ZW
17773 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17774 char bytes[5];
17775 int n;
17776 valueT o;
bfae80f2 17777
c19d1205
ZW
17778 /* Long form: 0xb2, uleb128. */
17779 /* This might not fit in a word so add the individual bytes,
17780 remembering the list is built in reverse order. */
17781 o = (valueT) ((offset - 0x204) >> 2);
17782 if (o == 0)
17783 add_unwind_opcode (0, 1);
bfae80f2 17784
c19d1205
ZW
17785 /* Calculate the uleb128 encoding of the offset. */
17786 n = 0;
17787 while (o)
17788 {
17789 bytes[n] = o & 0x7f;
17790 o >>= 7;
17791 if (o)
17792 bytes[n] |= 0x80;
17793 n++;
17794 }
17795 /* Add the insn. */
17796 for (; n; n--)
17797 add_unwind_opcode (bytes[n - 1], 1);
17798 add_unwind_opcode (0xb2, 1);
17799 }
17800 else if (offset > 0x100)
bfae80f2 17801 {
c19d1205
ZW
17802 /* Two short opcodes. */
17803 add_unwind_opcode (0x3f, 1);
17804 op = (offset - 0x104) >> 2;
17805 add_unwind_opcode (op, 1);
bfae80f2 17806 }
c19d1205
ZW
17807 else if (offset > 0)
17808 {
17809 /* Short opcode. */
17810 op = (offset - 4) >> 2;
17811 add_unwind_opcode (op, 1);
17812 }
17813 else if (offset < 0)
bfae80f2 17814 {
c19d1205
ZW
17815 offset = -offset;
17816 while (offset > 0x100)
bfae80f2 17817 {
c19d1205
ZW
17818 add_unwind_opcode (0x7f, 1);
17819 offset -= 0x100;
bfae80f2 17820 }
c19d1205
ZW
17821 op = ((offset - 4) >> 2) | 0x40;
17822 add_unwind_opcode (op, 1);
bfae80f2 17823 }
bfae80f2
RE
17824}
17825
c19d1205
ZW
17826/* Finish the list of unwind opcodes for this function. */
17827static void
17828finish_unwind_opcodes (void)
bfae80f2 17829{
c19d1205 17830 valueT op;
bfae80f2 17831
c19d1205 17832 if (unwind.fp_used)
bfae80f2 17833 {
708587a4 17834 /* Adjust sp as necessary. */
c19d1205
ZW
17835 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17836 flush_pending_unwind ();
bfae80f2 17837
c19d1205
ZW
17838 /* After restoring sp from the frame pointer. */
17839 op = 0x90 | unwind.fp_reg;
17840 add_unwind_opcode (op, 1);
17841 }
17842 else
17843 flush_pending_unwind ();
bfae80f2
RE
17844}
17845
bfae80f2 17846
c19d1205
ZW
17847/* Start an exception table entry. If idx is nonzero this is an index table
17848 entry. */
bfae80f2
RE
17849
17850static void
c19d1205 17851start_unwind_section (const segT text_seg, int idx)
bfae80f2 17852{
c19d1205
ZW
17853 const char * text_name;
17854 const char * prefix;
17855 const char * prefix_once;
17856 const char * group_name;
17857 size_t prefix_len;
17858 size_t text_len;
17859 char * sec_name;
17860 size_t sec_name_len;
17861 int type;
17862 int flags;
17863 int linkonce;
bfae80f2 17864
c19d1205 17865 if (idx)
bfae80f2 17866 {
c19d1205
ZW
17867 prefix = ELF_STRING_ARM_unwind;
17868 prefix_once = ELF_STRING_ARM_unwind_once;
17869 type = SHT_ARM_EXIDX;
bfae80f2 17870 }
c19d1205 17871 else
bfae80f2 17872 {
c19d1205
ZW
17873 prefix = ELF_STRING_ARM_unwind_info;
17874 prefix_once = ELF_STRING_ARM_unwind_info_once;
17875 type = SHT_PROGBITS;
bfae80f2
RE
17876 }
17877
c19d1205
ZW
17878 text_name = segment_name (text_seg);
17879 if (streq (text_name, ".text"))
17880 text_name = "";
17881
17882 if (strncmp (text_name, ".gnu.linkonce.t.",
17883 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 17884 {
c19d1205
ZW
17885 prefix = prefix_once;
17886 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
17887 }
17888
c19d1205
ZW
17889 prefix_len = strlen (prefix);
17890 text_len = strlen (text_name);
17891 sec_name_len = prefix_len + text_len;
17892 sec_name = xmalloc (sec_name_len + 1);
17893 memcpy (sec_name, prefix, prefix_len);
17894 memcpy (sec_name + prefix_len, text_name, text_len);
17895 sec_name[prefix_len + text_len] = '\0';
bfae80f2 17896
c19d1205
ZW
17897 flags = SHF_ALLOC;
17898 linkonce = 0;
17899 group_name = 0;
bfae80f2 17900
c19d1205
ZW
17901 /* Handle COMDAT group. */
17902 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 17903 {
c19d1205
ZW
17904 group_name = elf_group_name (text_seg);
17905 if (group_name == NULL)
17906 {
bd3ba5d1 17907 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
17908 segment_name (text_seg));
17909 ignore_rest_of_line ();
17910 return;
17911 }
17912 flags |= SHF_GROUP;
17913 linkonce = 1;
bfae80f2
RE
17914 }
17915
c19d1205 17916 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 17917
5f4273c7 17918 /* Set the section link for index tables. */
c19d1205
ZW
17919 if (idx)
17920 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
17921}
17922
bfae80f2 17923
c19d1205
ZW
17924/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17925 personality routine data. Returns zero, or the index table value for
17926 and inline entry. */
17927
17928static valueT
17929create_unwind_entry (int have_data)
bfae80f2 17930{
c19d1205
ZW
17931 int size;
17932 addressT where;
17933 char *ptr;
17934 /* The current word of data. */
17935 valueT data;
17936 /* The number of bytes left in this word. */
17937 int n;
bfae80f2 17938
c19d1205 17939 finish_unwind_opcodes ();
bfae80f2 17940
c19d1205
ZW
17941 /* Remember the current text section. */
17942 unwind.saved_seg = now_seg;
17943 unwind.saved_subseg = now_subseg;
bfae80f2 17944
c19d1205 17945 start_unwind_section (now_seg, 0);
bfae80f2 17946
c19d1205 17947 if (unwind.personality_routine == NULL)
bfae80f2 17948 {
c19d1205
ZW
17949 if (unwind.personality_index == -2)
17950 {
17951 if (have_data)
5f4273c7 17952 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
17953 return 1; /* EXIDX_CANTUNWIND. */
17954 }
bfae80f2 17955
c19d1205
ZW
17956 /* Use a default personality routine if none is specified. */
17957 if (unwind.personality_index == -1)
17958 {
17959 if (unwind.opcode_count > 3)
17960 unwind.personality_index = 1;
17961 else
17962 unwind.personality_index = 0;
17963 }
bfae80f2 17964
c19d1205
ZW
17965 /* Space for the personality routine entry. */
17966 if (unwind.personality_index == 0)
17967 {
17968 if (unwind.opcode_count > 3)
17969 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 17970
c19d1205
ZW
17971 if (!have_data)
17972 {
17973 /* All the data is inline in the index table. */
17974 data = 0x80;
17975 n = 3;
17976 while (unwind.opcode_count > 0)
17977 {
17978 unwind.opcode_count--;
17979 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17980 n--;
17981 }
bfae80f2 17982
c19d1205
ZW
17983 /* Pad with "finish" opcodes. */
17984 while (n--)
17985 data = (data << 8) | 0xb0;
bfae80f2 17986
c19d1205
ZW
17987 return data;
17988 }
17989 size = 0;
17990 }
17991 else
17992 /* We get two opcodes "free" in the first word. */
17993 size = unwind.opcode_count - 2;
17994 }
17995 else
17996 /* An extra byte is required for the opcode count. */
17997 size = unwind.opcode_count + 1;
bfae80f2 17998
c19d1205
ZW
17999 size = (size + 3) >> 2;
18000 if (size > 0xff)
18001 as_bad (_("too many unwind opcodes"));
bfae80f2 18002
c19d1205
ZW
18003 frag_align (2, 0, 0);
18004 record_alignment (now_seg, 2);
18005 unwind.table_entry = expr_build_dot ();
18006
18007 /* Allocate the table entry. */
18008 ptr = frag_more ((size << 2) + 4);
18009 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 18010
c19d1205 18011 switch (unwind.personality_index)
bfae80f2 18012 {
c19d1205
ZW
18013 case -1:
18014 /* ??? Should this be a PLT generating relocation? */
18015 /* Custom personality routine. */
18016 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
18017 BFD_RELOC_ARM_PREL31);
bfae80f2 18018
c19d1205
ZW
18019 where += 4;
18020 ptr += 4;
bfae80f2 18021
c19d1205
ZW
18022 /* Set the first byte to the number of additional words. */
18023 data = size - 1;
18024 n = 3;
18025 break;
bfae80f2 18026
c19d1205
ZW
18027 /* ABI defined personality routines. */
18028 case 0:
18029 /* Three opcodes bytes are packed into the first word. */
18030 data = 0x80;
18031 n = 3;
18032 break;
bfae80f2 18033
c19d1205
ZW
18034 case 1:
18035 case 2:
18036 /* The size and first two opcode bytes go in the first word. */
18037 data = ((0x80 + unwind.personality_index) << 8) | size;
18038 n = 2;
18039 break;
bfae80f2 18040
c19d1205
ZW
18041 default:
18042 /* Should never happen. */
18043 abort ();
18044 }
bfae80f2 18045
c19d1205
ZW
18046 /* Pack the opcodes into words (MSB first), reversing the list at the same
18047 time. */
18048 while (unwind.opcode_count > 0)
18049 {
18050 if (n == 0)
18051 {
18052 md_number_to_chars (ptr, data, 4);
18053 ptr += 4;
18054 n = 4;
18055 data = 0;
18056 }
18057 unwind.opcode_count--;
18058 n--;
18059 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
18060 }
18061
18062 /* Finish off the last word. */
18063 if (n < 4)
18064 {
18065 /* Pad with "finish" opcodes. */
18066 while (n--)
18067 data = (data << 8) | 0xb0;
18068
18069 md_number_to_chars (ptr, data, 4);
18070 }
18071
18072 if (!have_data)
18073 {
18074 /* Add an empty descriptor if there is no user-specified data. */
18075 ptr = frag_more (4);
18076 md_number_to_chars (ptr, 0, 4);
18077 }
18078
18079 return 0;
bfae80f2
RE
18080}
18081
f0927246
NC
18082
18083/* Initialize the DWARF-2 unwind information for this procedure. */
18084
18085void
18086tc_arm_frame_initial_instructions (void)
18087{
18088 cfi_add_CFA_def_cfa (REG_SP, 0);
18089}
18090#endif /* OBJ_ELF */
18091
c19d1205
ZW
18092/* Convert REGNAME to a DWARF-2 register number. */
18093
18094int
1df69f4f 18095tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 18096{
1df69f4f 18097 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
18098
18099 if (reg == FAIL)
18100 return -1;
18101
18102 return reg;
bfae80f2
RE
18103}
18104
f0927246 18105#ifdef TE_PE
c19d1205 18106void
f0927246 18107tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 18108{
f0927246 18109 expressionS expr;
bfae80f2 18110
f0927246
NC
18111 expr.X_op = O_secrel;
18112 expr.X_add_symbol = symbol;
18113 expr.X_add_number = 0;
18114 emit_expr (&expr, size);
18115}
18116#endif
bfae80f2 18117
c19d1205 18118/* MD interface: Symbol and relocation handling. */
bfae80f2 18119
2fc8bdac
ZW
18120/* Return the address within the segment that a PC-relative fixup is
18121 relative to. For ARM, PC-relative fixups applied to instructions
18122 are generally relative to the location of the fixup plus 8 bytes.
18123 Thumb branches are offset by 4, and Thumb loads relative to PC
18124 require special handling. */
bfae80f2 18125
c19d1205 18126long
2fc8bdac 18127md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 18128{
2fc8bdac
ZW
18129 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
18130
18131 /* If this is pc-relative and we are going to emit a relocation
18132 then we just want to put out any pipeline compensation that the linker
53baae48
NC
18133 will need. Otherwise we want to use the calculated base.
18134 For WinCE we skip the bias for externals as well, since this
18135 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 18136 if (fixP->fx_pcrel
2fc8bdac 18137 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
18138 || (arm_force_relocation (fixP)
18139#ifdef TE_WINCE
18140 && !S_IS_EXTERNAL (fixP->fx_addsy)
18141#endif
18142 )))
2fc8bdac 18143 base = 0;
bfae80f2 18144
c19d1205 18145 switch (fixP->fx_r_type)
bfae80f2 18146 {
2fc8bdac
ZW
18147 /* PC relative addressing on the Thumb is slightly odd as the
18148 bottom two bits of the PC are forced to zero for the
18149 calculation. This happens *after* application of the
18150 pipeline offset. However, Thumb adrl already adjusts for
18151 this, so we need not do it again. */
c19d1205 18152 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 18153 return base & ~3;
c19d1205
ZW
18154
18155 case BFD_RELOC_ARM_THUMB_OFFSET:
18156 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 18157 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 18158 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 18159 return (base + 4) & ~3;
c19d1205 18160
2fc8bdac
ZW
18161 /* Thumb branches are simply offset by +4. */
18162 case BFD_RELOC_THUMB_PCREL_BRANCH7:
18163 case BFD_RELOC_THUMB_PCREL_BRANCH9:
18164 case BFD_RELOC_THUMB_PCREL_BRANCH12:
18165 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18166 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18167 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18168 case BFD_RELOC_THUMB_PCREL_BLX:
18169 return base + 4;
bfae80f2 18170
2fc8bdac
ZW
18171 /* ARM mode branches are offset by +8. However, the Windows CE
18172 loader expects the relocation not to take this into account. */
18173 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c
PB
18174 case BFD_RELOC_ARM_PCREL_CALL:
18175 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac
ZW
18176 case BFD_RELOC_ARM_PCREL_BLX:
18177 case BFD_RELOC_ARM_PLT32:
c19d1205 18178#ifdef TE_WINCE
5f4273c7 18179 /* When handling fixups immediately, because we have already
53baae48
NC
18180 discovered the value of a symbol, or the address of the frag involved
18181 we must account for the offset by +8, as the OS loader will never see the reloc.
18182 see fixup_segment() in write.c
18183 The S_IS_EXTERNAL test handles the case of global symbols.
18184 Those need the calculated base, not just the pipe compensation the linker will need. */
18185 if (fixP->fx_pcrel
18186 && fixP->fx_addsy != NULL
18187 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
18188 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
18189 return base + 8;
2fc8bdac 18190 return base;
c19d1205 18191#else
2fc8bdac 18192 return base + 8;
c19d1205 18193#endif
2fc8bdac
ZW
18194
18195 /* ARM mode loads relative to PC are also offset by +8. Unlike
18196 branches, the Windows CE loader *does* expect the relocation
18197 to take this into account. */
18198 case BFD_RELOC_ARM_OFFSET_IMM:
18199 case BFD_RELOC_ARM_OFFSET_IMM8:
18200 case BFD_RELOC_ARM_HWLITERAL:
18201 case BFD_RELOC_ARM_LITERAL:
18202 case BFD_RELOC_ARM_CP_OFF_IMM:
18203 return base + 8;
18204
18205
18206 /* Other PC-relative relocations are un-offset. */
18207 default:
18208 return base;
18209 }
bfae80f2
RE
18210}
18211
c19d1205
ZW
18212/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
18213 Otherwise we have no need to default values of symbols. */
18214
18215symbolS *
18216md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 18217{
c19d1205
ZW
18218#ifdef OBJ_ELF
18219 if (name[0] == '_' && name[1] == 'G'
18220 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
18221 {
18222 if (!GOT_symbol)
18223 {
18224 if (symbol_find (name))
bd3ba5d1 18225 as_bad (_("GOT already in the symbol table"));
bfae80f2 18226
c19d1205
ZW
18227 GOT_symbol = symbol_new (name, undefined_section,
18228 (valueT) 0, & zero_address_frag);
18229 }
bfae80f2 18230
c19d1205 18231 return GOT_symbol;
bfae80f2 18232 }
c19d1205 18233#endif
bfae80f2 18234
c19d1205 18235 return 0;
bfae80f2
RE
18236}
18237
55cf6793 18238/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
18239 computed as two separate immediate values, added together. We
18240 already know that this value cannot be computed by just one ARM
18241 instruction. */
18242
18243static unsigned int
18244validate_immediate_twopart (unsigned int val,
18245 unsigned int * highpart)
bfae80f2 18246{
c19d1205
ZW
18247 unsigned int a;
18248 unsigned int i;
bfae80f2 18249
c19d1205
ZW
18250 for (i = 0; i < 32; i += 2)
18251 if (((a = rotate_left (val, i)) & 0xff) != 0)
18252 {
18253 if (a & 0xff00)
18254 {
18255 if (a & ~ 0xffff)
18256 continue;
18257 * highpart = (a >> 8) | ((i + 24) << 7);
18258 }
18259 else if (a & 0xff0000)
18260 {
18261 if (a & 0xff000000)
18262 continue;
18263 * highpart = (a >> 16) | ((i + 16) << 7);
18264 }
18265 else
18266 {
18267 assert (a & 0xff000000);
18268 * highpart = (a >> 24) | ((i + 8) << 7);
18269 }
bfae80f2 18270
c19d1205
ZW
18271 return (a & 0xff) | (i << 7);
18272 }
bfae80f2 18273
c19d1205 18274 return FAIL;
bfae80f2
RE
18275}
18276
c19d1205
ZW
18277static int
18278validate_offset_imm (unsigned int val, int hwse)
18279{
18280 if ((hwse && val > 255) || val > 4095)
18281 return FAIL;
18282 return val;
18283}
bfae80f2 18284
55cf6793 18285/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
18286 negative immediate constant by altering the instruction. A bit of
18287 a hack really.
18288 MOV <-> MVN
18289 AND <-> BIC
18290 ADC <-> SBC
18291 by inverting the second operand, and
18292 ADD <-> SUB
18293 CMP <-> CMN
18294 by negating the second operand. */
bfae80f2 18295
c19d1205
ZW
18296static int
18297negate_data_op (unsigned long * instruction,
18298 unsigned long value)
bfae80f2 18299{
c19d1205
ZW
18300 int op, new_inst;
18301 unsigned long negated, inverted;
bfae80f2 18302
c19d1205
ZW
18303 negated = encode_arm_immediate (-value);
18304 inverted = encode_arm_immediate (~value);
bfae80f2 18305
c19d1205
ZW
18306 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
18307 switch (op)
bfae80f2 18308 {
c19d1205
ZW
18309 /* First negates. */
18310 case OPCODE_SUB: /* ADD <-> SUB */
18311 new_inst = OPCODE_ADD;
18312 value = negated;
18313 break;
bfae80f2 18314
c19d1205
ZW
18315 case OPCODE_ADD:
18316 new_inst = OPCODE_SUB;
18317 value = negated;
18318 break;
bfae80f2 18319
c19d1205
ZW
18320 case OPCODE_CMP: /* CMP <-> CMN */
18321 new_inst = OPCODE_CMN;
18322 value = negated;
18323 break;
bfae80f2 18324
c19d1205
ZW
18325 case OPCODE_CMN:
18326 new_inst = OPCODE_CMP;
18327 value = negated;
18328 break;
bfae80f2 18329
c19d1205
ZW
18330 /* Now Inverted ops. */
18331 case OPCODE_MOV: /* MOV <-> MVN */
18332 new_inst = OPCODE_MVN;
18333 value = inverted;
18334 break;
bfae80f2 18335
c19d1205
ZW
18336 case OPCODE_MVN:
18337 new_inst = OPCODE_MOV;
18338 value = inverted;
18339 break;
bfae80f2 18340
c19d1205
ZW
18341 case OPCODE_AND: /* AND <-> BIC */
18342 new_inst = OPCODE_BIC;
18343 value = inverted;
18344 break;
bfae80f2 18345
c19d1205
ZW
18346 case OPCODE_BIC:
18347 new_inst = OPCODE_AND;
18348 value = inverted;
18349 break;
bfae80f2 18350
c19d1205
ZW
18351 case OPCODE_ADC: /* ADC <-> SBC */
18352 new_inst = OPCODE_SBC;
18353 value = inverted;
18354 break;
bfae80f2 18355
c19d1205
ZW
18356 case OPCODE_SBC:
18357 new_inst = OPCODE_ADC;
18358 value = inverted;
18359 break;
bfae80f2 18360
c19d1205
ZW
18361 /* We cannot do anything. */
18362 default:
18363 return FAIL;
b99bd4ef
NC
18364 }
18365
c19d1205
ZW
18366 if (value == (unsigned) FAIL)
18367 return FAIL;
18368
18369 *instruction &= OPCODE_MASK;
18370 *instruction |= new_inst << DATA_OP_SHIFT;
18371 return value;
b99bd4ef
NC
18372}
18373
ef8d22e6
PB
18374/* Like negate_data_op, but for Thumb-2. */
18375
18376static unsigned int
16dd5e42 18377thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
18378{
18379 int op, new_inst;
18380 int rd;
16dd5e42 18381 unsigned int negated, inverted;
ef8d22e6
PB
18382
18383 negated = encode_thumb32_immediate (-value);
18384 inverted = encode_thumb32_immediate (~value);
18385
18386 rd = (*instruction >> 8) & 0xf;
18387 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
18388 switch (op)
18389 {
18390 /* ADD <-> SUB. Includes CMP <-> CMN. */
18391 case T2_OPCODE_SUB:
18392 new_inst = T2_OPCODE_ADD;
18393 value = negated;
18394 break;
18395
18396 case T2_OPCODE_ADD:
18397 new_inst = T2_OPCODE_SUB;
18398 value = negated;
18399 break;
18400
18401 /* ORR <-> ORN. Includes MOV <-> MVN. */
18402 case T2_OPCODE_ORR:
18403 new_inst = T2_OPCODE_ORN;
18404 value = inverted;
18405 break;
18406
18407 case T2_OPCODE_ORN:
18408 new_inst = T2_OPCODE_ORR;
18409 value = inverted;
18410 break;
18411
18412 /* AND <-> BIC. TST has no inverted equivalent. */
18413 case T2_OPCODE_AND:
18414 new_inst = T2_OPCODE_BIC;
18415 if (rd == 15)
18416 value = FAIL;
18417 else
18418 value = inverted;
18419 break;
18420
18421 case T2_OPCODE_BIC:
18422 new_inst = T2_OPCODE_AND;
18423 value = inverted;
18424 break;
18425
18426 /* ADC <-> SBC */
18427 case T2_OPCODE_ADC:
18428 new_inst = T2_OPCODE_SBC;
18429 value = inverted;
18430 break;
18431
18432 case T2_OPCODE_SBC:
18433 new_inst = T2_OPCODE_ADC;
18434 value = inverted;
18435 break;
18436
18437 /* We cannot do anything. */
18438 default:
18439 return FAIL;
18440 }
18441
16dd5e42 18442 if (value == (unsigned int)FAIL)
ef8d22e6
PB
18443 return FAIL;
18444
18445 *instruction &= T2_OPCODE_MASK;
18446 *instruction |= new_inst << T2_DATA_OP_SHIFT;
18447 return value;
18448}
18449
8f06b2d8
PB
18450/* Read a 32-bit thumb instruction from buf. */
18451static unsigned long
18452get_thumb32_insn (char * buf)
18453{
18454 unsigned long insn;
18455 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
18456 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18457
18458 return insn;
18459}
18460
a8bc6c78
PB
18461
18462/* We usually want to set the low bit on the address of thumb function
18463 symbols. In particular .word foo - . should have the low bit set.
18464 Generic code tries to fold the difference of two symbols to
18465 a constant. Prevent this and force a relocation when the first symbols
18466 is a thumb function. */
18467int
18468arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
18469{
18470 if (op == O_subtract
18471 && l->X_op == O_symbol
18472 && r->X_op == O_symbol
18473 && THUMB_IS_FUNC (l->X_add_symbol))
18474 {
18475 l->X_op = O_subtract;
18476 l->X_op_symbol = r->X_add_symbol;
18477 l->X_add_number -= r->X_add_number;
18478 return 1;
18479 }
18480 /* Process as normal. */
18481 return 0;
18482}
18483
c19d1205 18484void
55cf6793 18485md_apply_fix (fixS * fixP,
c19d1205
ZW
18486 valueT * valP,
18487 segT seg)
18488{
18489 offsetT value = * valP;
18490 offsetT newval;
18491 unsigned int newimm;
18492 unsigned long temp;
18493 int sign;
18494 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 18495
c19d1205 18496 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 18497
c19d1205 18498 /* Note whether this will delete the relocation. */
4962c51a 18499
c19d1205
ZW
18500 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
18501 fixP->fx_done = 1;
b99bd4ef 18502
adbaf948 18503 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 18504 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
18505 for emit_reloc. */
18506 value &= 0xffffffff;
18507 value ^= 0x80000000;
5f4273c7 18508 value -= 0x80000000;
adbaf948
ZW
18509
18510 *valP = value;
c19d1205 18511 fixP->fx_addnumber = value;
b99bd4ef 18512
adbaf948
ZW
18513 /* Same treatment for fixP->fx_offset. */
18514 fixP->fx_offset &= 0xffffffff;
18515 fixP->fx_offset ^= 0x80000000;
18516 fixP->fx_offset -= 0x80000000;
18517
c19d1205 18518 switch (fixP->fx_r_type)
b99bd4ef 18519 {
c19d1205
ZW
18520 case BFD_RELOC_NONE:
18521 /* This will need to go in the object file. */
18522 fixP->fx_done = 0;
18523 break;
b99bd4ef 18524
c19d1205
ZW
18525 case BFD_RELOC_ARM_IMMEDIATE:
18526 /* We claim that this fixup has been processed here,
18527 even if in fact we generate an error because we do
18528 not have a reloc for it, so tc_gen_reloc will reject it. */
18529 fixP->fx_done = 1;
b99bd4ef 18530
c19d1205
ZW
18531 if (fixP->fx_addsy
18532 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 18533 {
c19d1205
ZW
18534 as_bad_where (fixP->fx_file, fixP->fx_line,
18535 _("undefined symbol %s used as an immediate value"),
18536 S_GET_NAME (fixP->fx_addsy));
18537 break;
b99bd4ef
NC
18538 }
18539
42e5fcbf
AS
18540 if (fixP->fx_addsy
18541 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
18542 {
18543 as_bad_where (fixP->fx_file, fixP->fx_line,
18544 _("symbol %s is in a different section"),
18545 S_GET_NAME (fixP->fx_addsy));
18546 break;
18547 }
18548
c19d1205
ZW
18549 newimm = encode_arm_immediate (value);
18550 temp = md_chars_to_number (buf, INSN_SIZE);
18551
18552 /* If the instruction will fail, see if we can fix things up by
18553 changing the opcode. */
18554 if (newimm == (unsigned int) FAIL
18555 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 18556 {
c19d1205
ZW
18557 as_bad_where (fixP->fx_file, fixP->fx_line,
18558 _("invalid constant (%lx) after fixup"),
18559 (unsigned long) value);
18560 break;
b99bd4ef 18561 }
b99bd4ef 18562
c19d1205
ZW
18563 newimm |= (temp & 0xfffff000);
18564 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18565 break;
b99bd4ef 18566
c19d1205
ZW
18567 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18568 {
18569 unsigned int highpart = 0;
18570 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 18571
42e5fcbf
AS
18572 if (fixP->fx_addsy
18573 && ! S_IS_DEFINED (fixP->fx_addsy))
18574 {
18575 as_bad_where (fixP->fx_file, fixP->fx_line,
18576 _("undefined symbol %s used as an immediate value"),
18577 S_GET_NAME (fixP->fx_addsy));
18578 break;
18579 }
18580
18581 if (fixP->fx_addsy
18582 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
18583 {
18584 as_bad_where (fixP->fx_file, fixP->fx_line,
18585 _("symbol %s is in a different section"),
18586 S_GET_NAME (fixP->fx_addsy));
18587 break;
18588 }
18589
c19d1205
ZW
18590 newimm = encode_arm_immediate (value);
18591 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 18592
c19d1205
ZW
18593 /* If the instruction will fail, see if we can fix things up by
18594 changing the opcode. */
18595 if (newimm == (unsigned int) FAIL
18596 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
18597 {
18598 /* No ? OK - try using two ADD instructions to generate
18599 the value. */
18600 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 18601
c19d1205
ZW
18602 /* Yes - then make sure that the second instruction is
18603 also an add. */
18604 if (newimm != (unsigned int) FAIL)
18605 newinsn = temp;
18606 /* Still No ? Try using a negated value. */
18607 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
18608 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
18609 /* Otherwise - give up. */
18610 else
18611 {
18612 as_bad_where (fixP->fx_file, fixP->fx_line,
18613 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
18614 (long) value);
18615 break;
18616 }
b99bd4ef 18617
c19d1205
ZW
18618 /* Replace the first operand in the 2nd instruction (which
18619 is the PC) with the destination register. We have
18620 already added in the PC in the first instruction and we
18621 do not want to do it again. */
18622 newinsn &= ~ 0xf0000;
18623 newinsn |= ((newinsn & 0x0f000) << 4);
18624 }
b99bd4ef 18625
c19d1205
ZW
18626 newimm |= (temp & 0xfffff000);
18627 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 18628
c19d1205
ZW
18629 highpart |= (newinsn & 0xfffff000);
18630 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18631 }
18632 break;
b99bd4ef 18633
c19d1205 18634 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
18635 if (!fixP->fx_done && seg->use_rela_p)
18636 value = 0;
18637
c19d1205
ZW
18638 case BFD_RELOC_ARM_LITERAL:
18639 sign = value >= 0;
b99bd4ef 18640
c19d1205
ZW
18641 if (value < 0)
18642 value = - value;
b99bd4ef 18643
c19d1205 18644 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 18645 {
c19d1205
ZW
18646 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18647 as_bad_where (fixP->fx_file, fixP->fx_line,
18648 _("invalid literal constant: pool needs to be closer"));
18649 else
18650 as_bad_where (fixP->fx_file, fixP->fx_line,
18651 _("bad immediate value for offset (%ld)"),
18652 (long) value);
18653 break;
f03698e6
RE
18654 }
18655
c19d1205
ZW
18656 newval = md_chars_to_number (buf, INSN_SIZE);
18657 newval &= 0xff7ff000;
18658 newval |= value | (sign ? INDEX_UP : 0);
18659 md_number_to_chars (buf, newval, INSN_SIZE);
18660 break;
b99bd4ef 18661
c19d1205
ZW
18662 case BFD_RELOC_ARM_OFFSET_IMM8:
18663 case BFD_RELOC_ARM_HWLITERAL:
18664 sign = value >= 0;
b99bd4ef 18665
c19d1205
ZW
18666 if (value < 0)
18667 value = - value;
b99bd4ef 18668
c19d1205 18669 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 18670 {
c19d1205
ZW
18671 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18672 as_bad_where (fixP->fx_file, fixP->fx_line,
18673 _("invalid literal constant: pool needs to be closer"));
18674 else
f9d4405b 18675 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
18676 (long) value);
18677 break;
b99bd4ef
NC
18678 }
18679
c19d1205
ZW
18680 newval = md_chars_to_number (buf, INSN_SIZE);
18681 newval &= 0xff7ff0f0;
18682 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18683 md_number_to_chars (buf, newval, INSN_SIZE);
18684 break;
b99bd4ef 18685
c19d1205
ZW
18686 case BFD_RELOC_ARM_T32_OFFSET_U8:
18687 if (value < 0 || value > 1020 || value % 4 != 0)
18688 as_bad_where (fixP->fx_file, fixP->fx_line,
18689 _("bad immediate value for offset (%ld)"), (long) value);
18690 value /= 4;
b99bd4ef 18691
c19d1205 18692 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
18693 newval |= value;
18694 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18695 break;
b99bd4ef 18696
c19d1205
ZW
18697 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18698 /* This is a complicated relocation used for all varieties of Thumb32
18699 load/store instruction with immediate offset:
18700
18701 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18702 *4, optional writeback(W)
18703 (doubleword load/store)
18704
18705 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18706 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18707 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18708 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18709 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18710
18711 Uppercase letters indicate bits that are already encoded at
18712 this point. Lowercase letters are our problem. For the
18713 second block of instructions, the secondary opcode nybble
18714 (bits 8..11) is present, and bit 23 is zero, even if this is
18715 a PC-relative operation. */
18716 newval = md_chars_to_number (buf, THUMB_SIZE);
18717 newval <<= 16;
18718 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 18719
c19d1205 18720 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 18721 {
c19d1205
ZW
18722 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18723 if (value >= 0)
18724 newval |= (1 << 23);
18725 else
18726 value = -value;
18727 if (value % 4 != 0)
18728 {
18729 as_bad_where (fixP->fx_file, fixP->fx_line,
18730 _("offset not a multiple of 4"));
18731 break;
18732 }
18733 value /= 4;
216d22bc 18734 if (value > 0xff)
c19d1205
ZW
18735 {
18736 as_bad_where (fixP->fx_file, fixP->fx_line,
18737 _("offset out of range"));
18738 break;
18739 }
18740 newval &= ~0xff;
b99bd4ef 18741 }
c19d1205 18742 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 18743 {
c19d1205
ZW
18744 /* PC-relative, 12-bit offset. */
18745 if (value >= 0)
18746 newval |= (1 << 23);
18747 else
18748 value = -value;
216d22bc 18749 if (value > 0xfff)
c19d1205
ZW
18750 {
18751 as_bad_where (fixP->fx_file, fixP->fx_line,
18752 _("offset out of range"));
18753 break;
18754 }
18755 newval &= ~0xfff;
b99bd4ef 18756 }
c19d1205 18757 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 18758 {
c19d1205
ZW
18759 /* Writeback: 8-bit, +/- offset. */
18760 if (value >= 0)
18761 newval |= (1 << 9);
18762 else
18763 value = -value;
216d22bc 18764 if (value > 0xff)
c19d1205
ZW
18765 {
18766 as_bad_where (fixP->fx_file, fixP->fx_line,
18767 _("offset out of range"));
18768 break;
18769 }
18770 newval &= ~0xff;
b99bd4ef 18771 }
c19d1205 18772 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 18773 {
c19d1205 18774 /* T-instruction: positive 8-bit offset. */
216d22bc 18775 if (value < 0 || value > 0xff)
b99bd4ef 18776 {
c19d1205
ZW
18777 as_bad_where (fixP->fx_file, fixP->fx_line,
18778 _("offset out of range"));
18779 break;
b99bd4ef 18780 }
c19d1205
ZW
18781 newval &= ~0xff;
18782 newval |= value;
b99bd4ef
NC
18783 }
18784 else
b99bd4ef 18785 {
c19d1205
ZW
18786 /* Positive 12-bit or negative 8-bit offset. */
18787 int limit;
18788 if (value >= 0)
b99bd4ef 18789 {
c19d1205
ZW
18790 newval |= (1 << 23);
18791 limit = 0xfff;
18792 }
18793 else
18794 {
18795 value = -value;
18796 limit = 0xff;
18797 }
18798 if (value > limit)
18799 {
18800 as_bad_where (fixP->fx_file, fixP->fx_line,
18801 _("offset out of range"));
18802 break;
b99bd4ef 18803 }
c19d1205 18804 newval &= ~limit;
b99bd4ef 18805 }
b99bd4ef 18806
c19d1205
ZW
18807 newval |= value;
18808 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18809 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18810 break;
404ff6b5 18811
c19d1205
ZW
18812 case BFD_RELOC_ARM_SHIFT_IMM:
18813 newval = md_chars_to_number (buf, INSN_SIZE);
18814 if (((unsigned long) value) > 32
18815 || (value == 32
18816 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18817 {
18818 as_bad_where (fixP->fx_file, fixP->fx_line,
18819 _("shift expression is too large"));
18820 break;
18821 }
404ff6b5 18822
c19d1205
ZW
18823 if (value == 0)
18824 /* Shifts of zero must be done as lsl. */
18825 newval &= ~0x60;
18826 else if (value == 32)
18827 value = 0;
18828 newval &= 0xfffff07f;
18829 newval |= (value & 0x1f) << 7;
18830 md_number_to_chars (buf, newval, INSN_SIZE);
18831 break;
404ff6b5 18832
c19d1205 18833 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 18834 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 18835 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 18836 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
18837 /* We claim that this fixup has been processed here,
18838 even if in fact we generate an error because we do
18839 not have a reloc for it, so tc_gen_reloc will reject it. */
18840 fixP->fx_done = 1;
404ff6b5 18841
c19d1205
ZW
18842 if (fixP->fx_addsy
18843 && ! S_IS_DEFINED (fixP->fx_addsy))
18844 {
18845 as_bad_where (fixP->fx_file, fixP->fx_line,
18846 _("undefined symbol %s used as an immediate value"),
18847 S_GET_NAME (fixP->fx_addsy));
18848 break;
18849 }
404ff6b5 18850
c19d1205
ZW
18851 newval = md_chars_to_number (buf, THUMB_SIZE);
18852 newval <<= 16;
18853 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 18854
16805f35
PB
18855 newimm = FAIL;
18856 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18857 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
18858 {
18859 newimm = encode_thumb32_immediate (value);
18860 if (newimm == (unsigned int) FAIL)
18861 newimm = thumb32_negate_data_op (&newval, value);
18862 }
16805f35
PB
18863 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18864 && newimm == (unsigned int) FAIL)
92e90b6e 18865 {
16805f35
PB
18866 /* Turn add/sum into addw/subw. */
18867 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18868 newval = (newval & 0xfeffffff) | 0x02000000;
18869
e9f89963
PB
18870 /* 12 bit immediate for addw/subw. */
18871 if (value < 0)
18872 {
18873 value = -value;
18874 newval ^= 0x00a00000;
18875 }
92e90b6e
PB
18876 if (value > 0xfff)
18877 newimm = (unsigned int) FAIL;
18878 else
18879 newimm = value;
18880 }
cc8a6dd0 18881
c19d1205 18882 if (newimm == (unsigned int)FAIL)
3631a3c8 18883 {
c19d1205
ZW
18884 as_bad_where (fixP->fx_file, fixP->fx_line,
18885 _("invalid constant (%lx) after fixup"),
18886 (unsigned long) value);
18887 break;
3631a3c8
NC
18888 }
18889
c19d1205
ZW
18890 newval |= (newimm & 0x800) << 15;
18891 newval |= (newimm & 0x700) << 4;
18892 newval |= (newimm & 0x0ff);
cc8a6dd0 18893
c19d1205
ZW
18894 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18895 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18896 break;
a737bd4d 18897
3eb17e6b 18898 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
18899 if (((unsigned long) value) > 0xffff)
18900 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 18901 _("invalid smc expression"));
2fc8bdac 18902 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18903 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18904 md_number_to_chars (buf, newval, INSN_SIZE);
18905 break;
a737bd4d 18906
c19d1205 18907 case BFD_RELOC_ARM_SWI:
adbaf948 18908 if (fixP->tc_fix_data != 0)
c19d1205
ZW
18909 {
18910 if (((unsigned long) value) > 0xff)
18911 as_bad_where (fixP->fx_file, fixP->fx_line,
18912 _("invalid swi expression"));
2fc8bdac 18913 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
18914 newval |= value;
18915 md_number_to_chars (buf, newval, THUMB_SIZE);
18916 }
18917 else
18918 {
18919 if (((unsigned long) value) > 0x00ffffff)
18920 as_bad_where (fixP->fx_file, fixP->fx_line,
18921 _("invalid swi expression"));
2fc8bdac 18922 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18923 newval |= value;
18924 md_number_to_chars (buf, newval, INSN_SIZE);
18925 }
18926 break;
a737bd4d 18927
c19d1205
ZW
18928 case BFD_RELOC_ARM_MULTI:
18929 if (((unsigned long) value) > 0xffff)
18930 as_bad_where (fixP->fx_file, fixP->fx_line,
18931 _("invalid expression in load/store multiple"));
18932 newval = value | md_chars_to_number (buf, INSN_SIZE);
18933 md_number_to_chars (buf, newval, INSN_SIZE);
18934 break;
a737bd4d 18935
c19d1205 18936#ifdef OBJ_ELF
39b41c9c
PB
18937 case BFD_RELOC_ARM_PCREL_CALL:
18938 newval = md_chars_to_number (buf, INSN_SIZE);
18939 if ((newval & 0xf0000000) == 0xf0000000)
18940 temp = 1;
18941 else
18942 temp = 3;
18943 goto arm_branch_common;
18944
18945 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 18946 case BFD_RELOC_ARM_PLT32:
c19d1205 18947#endif
39b41c9c
PB
18948 case BFD_RELOC_ARM_PCREL_BRANCH:
18949 temp = 3;
18950 goto arm_branch_common;
a737bd4d 18951
39b41c9c
PB
18952 case BFD_RELOC_ARM_PCREL_BLX:
18953 temp = 1;
18954 arm_branch_common:
c19d1205 18955 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
18956 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18957 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18958 also be be clear. */
18959 if (value & temp)
c19d1205 18960 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
18961 _("misaligned branch destination"));
18962 if ((value & (offsetT)0xfe000000) != (offsetT)0
18963 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18964 as_bad_where (fixP->fx_file, fixP->fx_line,
18965 _("branch out of range"));
a737bd4d 18966
2fc8bdac 18967 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18968 {
2fc8bdac
ZW
18969 newval = md_chars_to_number (buf, INSN_SIZE);
18970 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
18971 /* Set the H bit on BLX instructions. */
18972 if (temp == 1)
18973 {
18974 if (value & 2)
18975 newval |= 0x01000000;
18976 else
18977 newval &= ~0x01000000;
18978 }
2fc8bdac 18979 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 18980 }
c19d1205 18981 break;
a737bd4d 18982
25fe350b
MS
18983 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18984 /* CBZ can only branch forward. */
a737bd4d 18985
738755b0
MS
18986 /* Attempts to use CBZ to branch to the next instruction
18987 (which, strictly speaking, are prohibited) will be turned into
18988 no-ops.
18989
18990 FIXME: It may be better to remove the instruction completely and
18991 perform relaxation. */
18992 if (value == -2)
2fc8bdac
ZW
18993 {
18994 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 18995 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
18996 md_number_to_chars (buf, newval, THUMB_SIZE);
18997 }
738755b0
MS
18998 else
18999 {
19000 if (value & ~0x7e)
19001 as_bad_where (fixP->fx_file, fixP->fx_line,
19002 _("branch out of range"));
19003
19004 if (fixP->fx_done || !seg->use_rela_p)
19005 {
19006 newval = md_chars_to_number (buf, THUMB_SIZE);
19007 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
19008 md_number_to_chars (buf, newval, THUMB_SIZE);
19009 }
19010 }
c19d1205 19011 break;
a737bd4d 19012
c19d1205 19013 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
19014 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
19015 as_bad_where (fixP->fx_file, fixP->fx_line,
19016 _("branch out of range"));
a737bd4d 19017
2fc8bdac
ZW
19018 if (fixP->fx_done || !seg->use_rela_p)
19019 {
19020 newval = md_chars_to_number (buf, THUMB_SIZE);
19021 newval |= (value & 0x1ff) >> 1;
19022 md_number_to_chars (buf, newval, THUMB_SIZE);
19023 }
c19d1205 19024 break;
a737bd4d 19025
c19d1205 19026 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
19027 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
19028 as_bad_where (fixP->fx_file, fixP->fx_line,
19029 _("branch out of range"));
a737bd4d 19030
2fc8bdac
ZW
19031 if (fixP->fx_done || !seg->use_rela_p)
19032 {
19033 newval = md_chars_to_number (buf, THUMB_SIZE);
19034 newval |= (value & 0xfff) >> 1;
19035 md_number_to_chars (buf, newval, THUMB_SIZE);
19036 }
c19d1205 19037 break;
a737bd4d 19038
c19d1205 19039 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac
ZW
19040 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
19041 as_bad_where (fixP->fx_file, fixP->fx_line,
19042 _("conditional branch out of range"));
404ff6b5 19043
2fc8bdac
ZW
19044 if (fixP->fx_done || !seg->use_rela_p)
19045 {
19046 offsetT newval2;
19047 addressT S, J1, J2, lo, hi;
404ff6b5 19048
2fc8bdac
ZW
19049 S = (value & 0x00100000) >> 20;
19050 J2 = (value & 0x00080000) >> 19;
19051 J1 = (value & 0x00040000) >> 18;
19052 hi = (value & 0x0003f000) >> 12;
19053 lo = (value & 0x00000ffe) >> 1;
6c43fab6 19054
2fc8bdac
ZW
19055 newval = md_chars_to_number (buf, THUMB_SIZE);
19056 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19057 newval |= (S << 10) | hi;
19058 newval2 |= (J1 << 13) | (J2 << 11) | lo;
19059 md_number_to_chars (buf, newval, THUMB_SIZE);
19060 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19061 }
c19d1205 19062 break;
6c43fab6 19063
c19d1205
ZW
19064 case BFD_RELOC_THUMB_PCREL_BLX:
19065 case BFD_RELOC_THUMB_PCREL_BRANCH23:
2fc8bdac
ZW
19066 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
19067 as_bad_where (fixP->fx_file, fixP->fx_line,
19068 _("branch out of range"));
404ff6b5 19069
2fc8bdac
ZW
19070 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
19071 /* For a BLX instruction, make sure that the relocation is rounded up
19072 to a word boundary. This follows the semantics of the instruction
19073 which specifies that bit 1 of the target address will come from bit
19074 1 of the base address. */
19075 value = (value + 1) & ~ 1;
404ff6b5 19076
2fc8bdac 19077 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 19078 {
2fc8bdac
ZW
19079 offsetT newval2;
19080
19081 newval = md_chars_to_number (buf, THUMB_SIZE);
19082 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19083 newval |= (value & 0x7fffff) >> 12;
19084 newval2 |= (value & 0xfff) >> 1;
19085 md_number_to_chars (buf, newval, THUMB_SIZE);
19086 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
c19d1205 19087 }
c19d1205 19088 break;
404ff6b5 19089
c19d1205 19090 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
19091 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
19092 as_bad_where (fixP->fx_file, fixP->fx_line,
19093 _("branch out of range"));
6c43fab6 19094
2fc8bdac
ZW
19095 if (fixP->fx_done || !seg->use_rela_p)
19096 {
19097 offsetT newval2;
19098 addressT S, I1, I2, lo, hi;
6c43fab6 19099
2fc8bdac
ZW
19100 S = (value & 0x01000000) >> 24;
19101 I1 = (value & 0x00800000) >> 23;
19102 I2 = (value & 0x00400000) >> 22;
19103 hi = (value & 0x003ff000) >> 12;
19104 lo = (value & 0x00000ffe) >> 1;
6c43fab6 19105
2fc8bdac
ZW
19106 I1 = !(I1 ^ S);
19107 I2 = !(I2 ^ S);
a737bd4d 19108
2fc8bdac
ZW
19109 newval = md_chars_to_number (buf, THUMB_SIZE);
19110 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19111 newval |= (S << 10) | hi;
19112 newval2 |= (I1 << 13) | (I2 << 11) | lo;
19113 md_number_to_chars (buf, newval, THUMB_SIZE);
19114 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19115 }
19116 break;
a737bd4d 19117
2fc8bdac
ZW
19118 case BFD_RELOC_8:
19119 if (fixP->fx_done || !seg->use_rela_p)
19120 md_number_to_chars (buf, value, 1);
c19d1205 19121 break;
a737bd4d 19122
c19d1205 19123 case BFD_RELOC_16:
2fc8bdac 19124 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 19125 md_number_to_chars (buf, value, 2);
c19d1205 19126 break;
a737bd4d 19127
c19d1205
ZW
19128#ifdef OBJ_ELF
19129 case BFD_RELOC_ARM_TLS_GD32:
19130 case BFD_RELOC_ARM_TLS_LE32:
19131 case BFD_RELOC_ARM_TLS_IE32:
19132 case BFD_RELOC_ARM_TLS_LDM32:
19133 case BFD_RELOC_ARM_TLS_LDO32:
19134 S_SET_THREAD_LOCAL (fixP->fx_addsy);
19135 /* fall through */
6c43fab6 19136
c19d1205
ZW
19137 case BFD_RELOC_ARM_GOT32:
19138 case BFD_RELOC_ARM_GOTOFF:
19139 case BFD_RELOC_ARM_TARGET2:
2fc8bdac
ZW
19140 if (fixP->fx_done || !seg->use_rela_p)
19141 md_number_to_chars (buf, 0, 4);
c19d1205
ZW
19142 break;
19143#endif
6c43fab6 19144
c19d1205
ZW
19145 case BFD_RELOC_RVA:
19146 case BFD_RELOC_32:
19147 case BFD_RELOC_ARM_TARGET1:
19148 case BFD_RELOC_ARM_ROSEGREL32:
19149 case BFD_RELOC_ARM_SBREL32:
19150 case BFD_RELOC_32_PCREL:
f0927246
NC
19151#ifdef TE_PE
19152 case BFD_RELOC_32_SECREL:
19153#endif
2fc8bdac 19154 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
19155#ifdef TE_WINCE
19156 /* For WinCE we only do this for pcrel fixups. */
19157 if (fixP->fx_done || fixP->fx_pcrel)
19158#endif
19159 md_number_to_chars (buf, value, 4);
c19d1205 19160 break;
6c43fab6 19161
c19d1205
ZW
19162#ifdef OBJ_ELF
19163 case BFD_RELOC_ARM_PREL31:
2fc8bdac 19164 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
19165 {
19166 newval = md_chars_to_number (buf, 4) & 0x80000000;
19167 if ((value ^ (value >> 1)) & 0x40000000)
19168 {
19169 as_bad_where (fixP->fx_file, fixP->fx_line,
19170 _("rel31 relocation overflow"));
19171 }
19172 newval |= value & 0x7fffffff;
19173 md_number_to_chars (buf, newval, 4);
19174 }
19175 break;
c19d1205 19176#endif
a737bd4d 19177
c19d1205 19178 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 19179 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
19180 if (value < -1023 || value > 1023 || (value & 3))
19181 as_bad_where (fixP->fx_file, fixP->fx_line,
19182 _("co-processor offset out of range"));
19183 cp_off_common:
19184 sign = value >= 0;
19185 if (value < 0)
19186 value = -value;
8f06b2d8
PB
19187 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
19188 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
19189 newval = md_chars_to_number (buf, INSN_SIZE);
19190 else
19191 newval = get_thumb32_insn (buf);
19192 newval &= 0xff7fff00;
c19d1205 19193 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
19194 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
19195 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
19196 md_number_to_chars (buf, newval, INSN_SIZE);
19197 else
19198 put_thumb32_insn (buf, newval);
c19d1205 19199 break;
a737bd4d 19200
c19d1205 19201 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 19202 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
19203 if (value < -255 || value > 255)
19204 as_bad_where (fixP->fx_file, fixP->fx_line,
19205 _("co-processor offset out of range"));
df7849c5 19206 value *= 4;
c19d1205 19207 goto cp_off_common;
6c43fab6 19208
c19d1205
ZW
19209 case BFD_RELOC_ARM_THUMB_OFFSET:
19210 newval = md_chars_to_number (buf, THUMB_SIZE);
19211 /* Exactly what ranges, and where the offset is inserted depends
19212 on the type of instruction, we can establish this from the
19213 top 4 bits. */
19214 switch (newval >> 12)
19215 {
19216 case 4: /* PC load. */
19217 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
19218 forced to zero for these loads; md_pcrel_from has already
19219 compensated for this. */
19220 if (value & 3)
19221 as_bad_where (fixP->fx_file, fixP->fx_line,
19222 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
19223 (((unsigned long) fixP->fx_frag->fr_address
19224 + (unsigned long) fixP->fx_where) & ~3)
19225 + (unsigned long) value);
a737bd4d 19226
c19d1205
ZW
19227 if (value & ~0x3fc)
19228 as_bad_where (fixP->fx_file, fixP->fx_line,
19229 _("invalid offset, value too big (0x%08lX)"),
19230 (long) value);
a737bd4d 19231
c19d1205
ZW
19232 newval |= value >> 2;
19233 break;
a737bd4d 19234
c19d1205
ZW
19235 case 9: /* SP load/store. */
19236 if (value & ~0x3fc)
19237 as_bad_where (fixP->fx_file, fixP->fx_line,
19238 _("invalid offset, value too big (0x%08lX)"),
19239 (long) value);
19240 newval |= value >> 2;
19241 break;
6c43fab6 19242
c19d1205
ZW
19243 case 6: /* Word load/store. */
19244 if (value & ~0x7c)
19245 as_bad_where (fixP->fx_file, fixP->fx_line,
19246 _("invalid offset, value too big (0x%08lX)"),
19247 (long) value);
19248 newval |= value << 4; /* 6 - 2. */
19249 break;
a737bd4d 19250
c19d1205
ZW
19251 case 7: /* Byte load/store. */
19252 if (value & ~0x1f)
19253 as_bad_where (fixP->fx_file, fixP->fx_line,
19254 _("invalid offset, value too big (0x%08lX)"),
19255 (long) value);
19256 newval |= value << 6;
19257 break;
a737bd4d 19258
c19d1205
ZW
19259 case 8: /* Halfword load/store. */
19260 if (value & ~0x3e)
19261 as_bad_where (fixP->fx_file, fixP->fx_line,
19262 _("invalid offset, value too big (0x%08lX)"),
19263 (long) value);
19264 newval |= value << 5; /* 6 - 1. */
19265 break;
a737bd4d 19266
c19d1205
ZW
19267 default:
19268 as_bad_where (fixP->fx_file, fixP->fx_line,
19269 "Unable to process relocation for thumb opcode: %lx",
19270 (unsigned long) newval);
19271 break;
19272 }
19273 md_number_to_chars (buf, newval, THUMB_SIZE);
19274 break;
a737bd4d 19275
c19d1205
ZW
19276 case BFD_RELOC_ARM_THUMB_ADD:
19277 /* This is a complicated relocation, since we use it for all of
19278 the following immediate relocations:
a737bd4d 19279
c19d1205
ZW
19280 3bit ADD/SUB
19281 8bit ADD/SUB
19282 9bit ADD/SUB SP word-aligned
19283 10bit ADD PC/SP word-aligned
a737bd4d 19284
c19d1205
ZW
19285 The type of instruction being processed is encoded in the
19286 instruction field:
a737bd4d 19287
c19d1205
ZW
19288 0x8000 SUB
19289 0x00F0 Rd
19290 0x000F Rs
19291 */
19292 newval = md_chars_to_number (buf, THUMB_SIZE);
19293 {
19294 int rd = (newval >> 4) & 0xf;
19295 int rs = newval & 0xf;
19296 int subtract = !!(newval & 0x8000);
a737bd4d 19297
c19d1205
ZW
19298 /* Check for HI regs, only very restricted cases allowed:
19299 Adjusting SP, and using PC or SP to get an address. */
19300 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
19301 || (rs > 7 && rs != REG_SP && rs != REG_PC))
19302 as_bad_where (fixP->fx_file, fixP->fx_line,
19303 _("invalid Hi register with immediate"));
a737bd4d 19304
c19d1205
ZW
19305 /* If value is negative, choose the opposite instruction. */
19306 if (value < 0)
19307 {
19308 value = -value;
19309 subtract = !subtract;
19310 if (value < 0)
19311 as_bad_where (fixP->fx_file, fixP->fx_line,
19312 _("immediate value out of range"));
19313 }
a737bd4d 19314
c19d1205
ZW
19315 if (rd == REG_SP)
19316 {
19317 if (value & ~0x1fc)
19318 as_bad_where (fixP->fx_file, fixP->fx_line,
19319 _("invalid immediate for stack address calculation"));
19320 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
19321 newval |= value >> 2;
19322 }
19323 else if (rs == REG_PC || rs == REG_SP)
19324 {
19325 if (subtract || value & ~0x3fc)
19326 as_bad_where (fixP->fx_file, fixP->fx_line,
19327 _("invalid immediate for address calculation (value = 0x%08lX)"),
19328 (unsigned long) value);
19329 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
19330 newval |= rd << 8;
19331 newval |= value >> 2;
19332 }
19333 else if (rs == rd)
19334 {
19335 if (value & ~0xff)
19336 as_bad_where (fixP->fx_file, fixP->fx_line,
19337 _("immediate value out of range"));
19338 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
19339 newval |= (rd << 8) | value;
19340 }
19341 else
19342 {
19343 if (value & ~0x7)
19344 as_bad_where (fixP->fx_file, fixP->fx_line,
19345 _("immediate value out of range"));
19346 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
19347 newval |= rd | (rs << 3) | (value << 6);
19348 }
19349 }
19350 md_number_to_chars (buf, newval, THUMB_SIZE);
19351 break;
a737bd4d 19352
c19d1205
ZW
19353 case BFD_RELOC_ARM_THUMB_IMM:
19354 newval = md_chars_to_number (buf, THUMB_SIZE);
19355 if (value < 0 || value > 255)
19356 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 19357 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
19358 (long) value);
19359 newval |= value;
19360 md_number_to_chars (buf, newval, THUMB_SIZE);
19361 break;
a737bd4d 19362
c19d1205
ZW
19363 case BFD_RELOC_ARM_THUMB_SHIFT:
19364 /* 5bit shift value (0..32). LSL cannot take 32. */
19365 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
19366 temp = newval & 0xf800;
19367 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
19368 as_bad_where (fixP->fx_file, fixP->fx_line,
19369 _("invalid shift value: %ld"), (long) value);
19370 /* Shifts of zero must be encoded as LSL. */
19371 if (value == 0)
19372 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
19373 /* Shifts of 32 are encoded as zero. */
19374 else if (value == 32)
19375 value = 0;
19376 newval |= value << 6;
19377 md_number_to_chars (buf, newval, THUMB_SIZE);
19378 break;
a737bd4d 19379
c19d1205
ZW
19380 case BFD_RELOC_VTABLE_INHERIT:
19381 case BFD_RELOC_VTABLE_ENTRY:
19382 fixP->fx_done = 0;
19383 return;
6c43fab6 19384
b6895b4f
PB
19385 case BFD_RELOC_ARM_MOVW:
19386 case BFD_RELOC_ARM_MOVT:
19387 case BFD_RELOC_ARM_THUMB_MOVW:
19388 case BFD_RELOC_ARM_THUMB_MOVT:
19389 if (fixP->fx_done || !seg->use_rela_p)
19390 {
19391 /* REL format relocations are limited to a 16-bit addend. */
19392 if (!fixP->fx_done)
19393 {
39623e12 19394 if (value < -0x8000 || value > 0x7fff)
b6895b4f 19395 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 19396 _("offset out of range"));
b6895b4f
PB
19397 }
19398 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
19399 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
19400 {
19401 value >>= 16;
19402 }
19403
19404 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
19405 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
19406 {
19407 newval = get_thumb32_insn (buf);
19408 newval &= 0xfbf08f00;
19409 newval |= (value & 0xf000) << 4;
19410 newval |= (value & 0x0800) << 15;
19411 newval |= (value & 0x0700) << 4;
19412 newval |= (value & 0x00ff);
19413 put_thumb32_insn (buf, newval);
19414 }
19415 else
19416 {
19417 newval = md_chars_to_number (buf, 4);
19418 newval &= 0xfff0f000;
19419 newval |= value & 0x0fff;
19420 newval |= (value & 0xf000) << 4;
19421 md_number_to_chars (buf, newval, 4);
19422 }
19423 }
19424 return;
19425
4962c51a
MS
19426 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19427 case BFD_RELOC_ARM_ALU_PC_G0:
19428 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19429 case BFD_RELOC_ARM_ALU_PC_G1:
19430 case BFD_RELOC_ARM_ALU_PC_G2:
19431 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19432 case BFD_RELOC_ARM_ALU_SB_G0:
19433 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19434 case BFD_RELOC_ARM_ALU_SB_G1:
19435 case BFD_RELOC_ARM_ALU_SB_G2:
19436 assert (!fixP->fx_done);
19437 if (!seg->use_rela_p)
19438 {
19439 bfd_vma insn;
19440 bfd_vma encoded_addend;
19441 bfd_vma addend_abs = abs (value);
19442
19443 /* Check that the absolute value of the addend can be
19444 expressed as an 8-bit constant plus a rotation. */
19445 encoded_addend = encode_arm_immediate (addend_abs);
19446 if (encoded_addend == (unsigned int) FAIL)
19447 as_bad_where (fixP->fx_file, fixP->fx_line,
19448 _("the offset 0x%08lX is not representable"),
495bde8e 19449 (unsigned long) addend_abs);
4962c51a
MS
19450
19451 /* Extract the instruction. */
19452 insn = md_chars_to_number (buf, INSN_SIZE);
19453
19454 /* If the addend is positive, use an ADD instruction.
19455 Otherwise use a SUB. Take care not to destroy the S bit. */
19456 insn &= 0xff1fffff;
19457 if (value < 0)
19458 insn |= 1 << 22;
19459 else
19460 insn |= 1 << 23;
19461
19462 /* Place the encoded addend into the first 12 bits of the
19463 instruction. */
19464 insn &= 0xfffff000;
19465 insn |= encoded_addend;
5f4273c7
NC
19466
19467 /* Update the instruction. */
4962c51a
MS
19468 md_number_to_chars (buf, insn, INSN_SIZE);
19469 }
19470 break;
19471
19472 case BFD_RELOC_ARM_LDR_PC_G0:
19473 case BFD_RELOC_ARM_LDR_PC_G1:
19474 case BFD_RELOC_ARM_LDR_PC_G2:
19475 case BFD_RELOC_ARM_LDR_SB_G0:
19476 case BFD_RELOC_ARM_LDR_SB_G1:
19477 case BFD_RELOC_ARM_LDR_SB_G2:
19478 assert (!fixP->fx_done);
19479 if (!seg->use_rela_p)
19480 {
19481 bfd_vma insn;
19482 bfd_vma addend_abs = abs (value);
19483
19484 /* Check that the absolute value of the addend can be
19485 encoded in 12 bits. */
19486 if (addend_abs >= 0x1000)
19487 as_bad_where (fixP->fx_file, fixP->fx_line,
19488 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 19489 (unsigned long) addend_abs);
4962c51a
MS
19490
19491 /* Extract the instruction. */
19492 insn = md_chars_to_number (buf, INSN_SIZE);
19493
19494 /* If the addend is negative, clear bit 23 of the instruction.
19495 Otherwise set it. */
19496 if (value < 0)
19497 insn &= ~(1 << 23);
19498 else
19499 insn |= 1 << 23;
19500
19501 /* Place the absolute value of the addend into the first 12 bits
19502 of the instruction. */
19503 insn &= 0xfffff000;
19504 insn |= addend_abs;
5f4273c7
NC
19505
19506 /* Update the instruction. */
4962c51a
MS
19507 md_number_to_chars (buf, insn, INSN_SIZE);
19508 }
19509 break;
19510
19511 case BFD_RELOC_ARM_LDRS_PC_G0:
19512 case BFD_RELOC_ARM_LDRS_PC_G1:
19513 case BFD_RELOC_ARM_LDRS_PC_G2:
19514 case BFD_RELOC_ARM_LDRS_SB_G0:
19515 case BFD_RELOC_ARM_LDRS_SB_G1:
19516 case BFD_RELOC_ARM_LDRS_SB_G2:
19517 assert (!fixP->fx_done);
19518 if (!seg->use_rela_p)
19519 {
19520 bfd_vma insn;
19521 bfd_vma addend_abs = abs (value);
19522
19523 /* Check that the absolute value of the addend can be
19524 encoded in 8 bits. */
19525 if (addend_abs >= 0x100)
19526 as_bad_where (fixP->fx_file, fixP->fx_line,
19527 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 19528 (unsigned long) addend_abs);
4962c51a
MS
19529
19530 /* Extract the instruction. */
19531 insn = md_chars_to_number (buf, INSN_SIZE);
19532
19533 /* If the addend is negative, clear bit 23 of the instruction.
19534 Otherwise set it. */
19535 if (value < 0)
19536 insn &= ~(1 << 23);
19537 else
19538 insn |= 1 << 23;
19539
19540 /* Place the first four bits of the absolute value of the addend
19541 into the first 4 bits of the instruction, and the remaining
19542 four into bits 8 .. 11. */
19543 insn &= 0xfffff0f0;
19544 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
19545
19546 /* Update the instruction. */
4962c51a
MS
19547 md_number_to_chars (buf, insn, INSN_SIZE);
19548 }
19549 break;
19550
19551 case BFD_RELOC_ARM_LDC_PC_G0:
19552 case BFD_RELOC_ARM_LDC_PC_G1:
19553 case BFD_RELOC_ARM_LDC_PC_G2:
19554 case BFD_RELOC_ARM_LDC_SB_G0:
19555 case BFD_RELOC_ARM_LDC_SB_G1:
19556 case BFD_RELOC_ARM_LDC_SB_G2:
19557 assert (!fixP->fx_done);
19558 if (!seg->use_rela_p)
19559 {
19560 bfd_vma insn;
19561 bfd_vma addend_abs = abs (value);
19562
19563 /* Check that the absolute value of the addend is a multiple of
19564 four and, when divided by four, fits in 8 bits. */
19565 if (addend_abs & 0x3)
19566 as_bad_where (fixP->fx_file, fixP->fx_line,
19567 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 19568 (unsigned long) addend_abs);
4962c51a
MS
19569
19570 if ((addend_abs >> 2) > 0xff)
19571 as_bad_where (fixP->fx_file, fixP->fx_line,
19572 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 19573 (unsigned long) addend_abs);
4962c51a
MS
19574
19575 /* Extract the instruction. */
19576 insn = md_chars_to_number (buf, INSN_SIZE);
19577
19578 /* If the addend is negative, clear bit 23 of the instruction.
19579 Otherwise set it. */
19580 if (value < 0)
19581 insn &= ~(1 << 23);
19582 else
19583 insn |= 1 << 23;
19584
19585 /* Place the addend (divided by four) into the first eight
19586 bits of the instruction. */
19587 insn &= 0xfffffff0;
19588 insn |= addend_abs >> 2;
5f4273c7
NC
19589
19590 /* Update the instruction. */
4962c51a
MS
19591 md_number_to_chars (buf, insn, INSN_SIZE);
19592 }
19593 break;
19594
845b51d6
PB
19595 case BFD_RELOC_ARM_V4BX:
19596 /* This will need to go in the object file. */
19597 fixP->fx_done = 0;
19598 break;
19599
c19d1205
ZW
19600 case BFD_RELOC_UNUSED:
19601 default:
19602 as_bad_where (fixP->fx_file, fixP->fx_line,
19603 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
19604 }
6c43fab6
RE
19605}
19606
c19d1205
ZW
19607/* Translate internal representation of relocation info to BFD target
19608 format. */
a737bd4d 19609
c19d1205 19610arelent *
00a97672 19611tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 19612{
c19d1205
ZW
19613 arelent * reloc;
19614 bfd_reloc_code_real_type code;
a737bd4d 19615
c19d1205 19616 reloc = xmalloc (sizeof (arelent));
a737bd4d 19617
c19d1205
ZW
19618 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
19619 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
19620 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 19621
2fc8bdac 19622 if (fixp->fx_pcrel)
00a97672
RS
19623 {
19624 if (section->use_rela_p)
19625 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
19626 else
19627 fixp->fx_offset = reloc->address;
19628 }
c19d1205 19629 reloc->addend = fixp->fx_offset;
a737bd4d 19630
c19d1205 19631 switch (fixp->fx_r_type)
a737bd4d 19632 {
c19d1205
ZW
19633 case BFD_RELOC_8:
19634 if (fixp->fx_pcrel)
19635 {
19636 code = BFD_RELOC_8_PCREL;
19637 break;
19638 }
a737bd4d 19639
c19d1205
ZW
19640 case BFD_RELOC_16:
19641 if (fixp->fx_pcrel)
19642 {
19643 code = BFD_RELOC_16_PCREL;
19644 break;
19645 }
6c43fab6 19646
c19d1205
ZW
19647 case BFD_RELOC_32:
19648 if (fixp->fx_pcrel)
19649 {
19650 code = BFD_RELOC_32_PCREL;
19651 break;
19652 }
a737bd4d 19653
b6895b4f
PB
19654 case BFD_RELOC_ARM_MOVW:
19655 if (fixp->fx_pcrel)
19656 {
19657 code = BFD_RELOC_ARM_MOVW_PCREL;
19658 break;
19659 }
19660
19661 case BFD_RELOC_ARM_MOVT:
19662 if (fixp->fx_pcrel)
19663 {
19664 code = BFD_RELOC_ARM_MOVT_PCREL;
19665 break;
19666 }
19667
19668 case BFD_RELOC_ARM_THUMB_MOVW:
19669 if (fixp->fx_pcrel)
19670 {
19671 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19672 break;
19673 }
19674
19675 case BFD_RELOC_ARM_THUMB_MOVT:
19676 if (fixp->fx_pcrel)
19677 {
19678 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19679 break;
19680 }
19681
c19d1205
ZW
19682 case BFD_RELOC_NONE:
19683 case BFD_RELOC_ARM_PCREL_BRANCH:
19684 case BFD_RELOC_ARM_PCREL_BLX:
19685 case BFD_RELOC_RVA:
19686 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19687 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19688 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19689 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19690 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19691 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19692 case BFD_RELOC_THUMB_PCREL_BLX:
19693 case BFD_RELOC_VTABLE_ENTRY:
19694 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
19695#ifdef TE_PE
19696 case BFD_RELOC_32_SECREL:
19697#endif
c19d1205
ZW
19698 code = fixp->fx_r_type;
19699 break;
a737bd4d 19700
c19d1205
ZW
19701 case BFD_RELOC_ARM_LITERAL:
19702 case BFD_RELOC_ARM_HWLITERAL:
19703 /* If this is called then the a literal has
19704 been referenced across a section boundary. */
19705 as_bad_where (fixp->fx_file, fixp->fx_line,
19706 _("literal referenced across section boundary"));
19707 return NULL;
a737bd4d 19708
c19d1205
ZW
19709#ifdef OBJ_ELF
19710 case BFD_RELOC_ARM_GOT32:
19711 case BFD_RELOC_ARM_GOTOFF:
19712 case BFD_RELOC_ARM_PLT32:
19713 case BFD_RELOC_ARM_TARGET1:
19714 case BFD_RELOC_ARM_ROSEGREL32:
19715 case BFD_RELOC_ARM_SBREL32:
19716 case BFD_RELOC_ARM_PREL31:
19717 case BFD_RELOC_ARM_TARGET2:
19718 case BFD_RELOC_ARM_TLS_LE32:
19719 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
19720 case BFD_RELOC_ARM_PCREL_CALL:
19721 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
19722 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19723 case BFD_RELOC_ARM_ALU_PC_G0:
19724 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19725 case BFD_RELOC_ARM_ALU_PC_G1:
19726 case BFD_RELOC_ARM_ALU_PC_G2:
19727 case BFD_RELOC_ARM_LDR_PC_G0:
19728 case BFD_RELOC_ARM_LDR_PC_G1:
19729 case BFD_RELOC_ARM_LDR_PC_G2:
19730 case BFD_RELOC_ARM_LDRS_PC_G0:
19731 case BFD_RELOC_ARM_LDRS_PC_G1:
19732 case BFD_RELOC_ARM_LDRS_PC_G2:
19733 case BFD_RELOC_ARM_LDC_PC_G0:
19734 case BFD_RELOC_ARM_LDC_PC_G1:
19735 case BFD_RELOC_ARM_LDC_PC_G2:
19736 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19737 case BFD_RELOC_ARM_ALU_SB_G0:
19738 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19739 case BFD_RELOC_ARM_ALU_SB_G1:
19740 case BFD_RELOC_ARM_ALU_SB_G2:
19741 case BFD_RELOC_ARM_LDR_SB_G0:
19742 case BFD_RELOC_ARM_LDR_SB_G1:
19743 case BFD_RELOC_ARM_LDR_SB_G2:
19744 case BFD_RELOC_ARM_LDRS_SB_G0:
19745 case BFD_RELOC_ARM_LDRS_SB_G1:
19746 case BFD_RELOC_ARM_LDRS_SB_G2:
19747 case BFD_RELOC_ARM_LDC_SB_G0:
19748 case BFD_RELOC_ARM_LDC_SB_G1:
19749 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 19750 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
19751 code = fixp->fx_r_type;
19752 break;
a737bd4d 19753
c19d1205
ZW
19754 case BFD_RELOC_ARM_TLS_GD32:
19755 case BFD_RELOC_ARM_TLS_IE32:
19756 case BFD_RELOC_ARM_TLS_LDM32:
19757 /* BFD will include the symbol's address in the addend.
19758 But we don't want that, so subtract it out again here. */
19759 if (!S_IS_COMMON (fixp->fx_addsy))
19760 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19761 code = fixp->fx_r_type;
19762 break;
19763#endif
a737bd4d 19764
c19d1205
ZW
19765 case BFD_RELOC_ARM_IMMEDIATE:
19766 as_bad_where (fixp->fx_file, fixp->fx_line,
19767 _("internal relocation (type: IMMEDIATE) not fixed up"));
19768 return NULL;
a737bd4d 19769
c19d1205
ZW
19770 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19771 as_bad_where (fixp->fx_file, fixp->fx_line,
19772 _("ADRL used for a symbol not defined in the same file"));
19773 return NULL;
a737bd4d 19774
c19d1205 19775 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
19776 if (section->use_rela_p)
19777 {
19778 code = fixp->fx_r_type;
19779 break;
19780 }
19781
c19d1205
ZW
19782 if (fixp->fx_addsy != NULL
19783 && !S_IS_DEFINED (fixp->fx_addsy)
19784 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 19785 {
c19d1205
ZW
19786 as_bad_where (fixp->fx_file, fixp->fx_line,
19787 _("undefined local label `%s'"),
19788 S_GET_NAME (fixp->fx_addsy));
19789 return NULL;
a737bd4d
NC
19790 }
19791
c19d1205
ZW
19792 as_bad_where (fixp->fx_file, fixp->fx_line,
19793 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19794 return NULL;
a737bd4d 19795
c19d1205
ZW
19796 default:
19797 {
19798 char * type;
6c43fab6 19799
c19d1205
ZW
19800 switch (fixp->fx_r_type)
19801 {
19802 case BFD_RELOC_NONE: type = "NONE"; break;
19803 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19804 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 19805 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
19806 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19807 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19808 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 19809 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
19810 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19811 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19812 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19813 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19814 default: type = _("<unknown>"); break;
19815 }
19816 as_bad_where (fixp->fx_file, fixp->fx_line,
19817 _("cannot represent %s relocation in this object file format"),
19818 type);
19819 return NULL;
19820 }
a737bd4d 19821 }
6c43fab6 19822
c19d1205
ZW
19823#ifdef OBJ_ELF
19824 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19825 && GOT_symbol
19826 && fixp->fx_addsy == GOT_symbol)
19827 {
19828 code = BFD_RELOC_ARM_GOTPC;
19829 reloc->addend = fixp->fx_offset = reloc->address;
19830 }
19831#endif
6c43fab6 19832
c19d1205 19833 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 19834
c19d1205
ZW
19835 if (reloc->howto == NULL)
19836 {
19837 as_bad_where (fixp->fx_file, fixp->fx_line,
19838 _("cannot represent %s relocation in this object file format"),
19839 bfd_get_reloc_code_name (code));
19840 return NULL;
19841 }
6c43fab6 19842
c19d1205
ZW
19843 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19844 vtable entry to be used in the relocation's section offset. */
19845 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19846 reloc->address = fixp->fx_offset;
6c43fab6 19847
c19d1205 19848 return reloc;
6c43fab6
RE
19849}
19850
c19d1205 19851/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 19852
c19d1205
ZW
19853void
19854cons_fix_new_arm (fragS * frag,
19855 int where,
19856 int size,
19857 expressionS * exp)
6c43fab6 19858{
c19d1205
ZW
19859 bfd_reloc_code_real_type type;
19860 int pcrel = 0;
6c43fab6 19861
c19d1205
ZW
19862 /* Pick a reloc.
19863 FIXME: @@ Should look at CPU word size. */
19864 switch (size)
19865 {
19866 case 1:
19867 type = BFD_RELOC_8;
19868 break;
19869 case 2:
19870 type = BFD_RELOC_16;
19871 break;
19872 case 4:
19873 default:
19874 type = BFD_RELOC_32;
19875 break;
19876 case 8:
19877 type = BFD_RELOC_64;
19878 break;
19879 }
6c43fab6 19880
f0927246
NC
19881#ifdef TE_PE
19882 if (exp->X_op == O_secrel)
19883 {
19884 exp->X_op = O_symbol;
19885 type = BFD_RELOC_32_SECREL;
19886 }
19887#endif
19888
c19d1205
ZW
19889 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19890}
6c43fab6 19891
c19d1205
ZW
19892#if defined OBJ_COFF || defined OBJ_ELF
19893void
19894arm_validate_fix (fixS * fixP)
6c43fab6 19895{
c19d1205
ZW
19896 /* If the destination of the branch is a defined symbol which does not have
19897 the THUMB_FUNC attribute, then we must be calling a function which has
19898 the (interfacearm) attribute. We look for the Thumb entry point to that
19899 function and change the branch to refer to that function instead. */
19900 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19901 && fixP->fx_addsy != NULL
19902 && S_IS_DEFINED (fixP->fx_addsy)
19903 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 19904 {
c19d1205 19905 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 19906 }
c19d1205
ZW
19907}
19908#endif
6c43fab6 19909
c19d1205
ZW
19910int
19911arm_force_relocation (struct fix * fixp)
19912{
19913#if defined (OBJ_COFF) && defined (TE_PE)
19914 if (fixp->fx_r_type == BFD_RELOC_RVA)
19915 return 1;
19916#endif
6c43fab6 19917
c19d1205
ZW
19918 /* Resolve these relocations even if the symbol is extern or weak. */
19919 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19920 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 19921 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 19922 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
19923 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19924 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19925 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 19926 return 0;
a737bd4d 19927
4962c51a
MS
19928 /* Always leave these relocations for the linker. */
19929 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19930 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19931 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19932 return 1;
19933
f0291e4c
PB
19934 /* Always generate relocations against function symbols. */
19935 if (fixp->fx_r_type == BFD_RELOC_32
19936 && fixp->fx_addsy
19937 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19938 return 1;
19939
c19d1205 19940 return generic_force_reloc (fixp);
404ff6b5
AH
19941}
19942
0ffdc86c 19943#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
19944/* Relocations against function names must be left unadjusted,
19945 so that the linker can use this information to generate interworking
19946 stubs. The MIPS version of this function
c19d1205
ZW
19947 also prevents relocations that are mips-16 specific, but I do not
19948 know why it does this.
404ff6b5 19949
c19d1205
ZW
19950 FIXME:
19951 There is one other problem that ought to be addressed here, but
19952 which currently is not: Taking the address of a label (rather
19953 than a function) and then later jumping to that address. Such
19954 addresses also ought to have their bottom bit set (assuming that
19955 they reside in Thumb code), but at the moment they will not. */
404ff6b5 19956
c19d1205
ZW
19957bfd_boolean
19958arm_fix_adjustable (fixS * fixP)
404ff6b5 19959{
c19d1205
ZW
19960 if (fixP->fx_addsy == NULL)
19961 return 1;
404ff6b5 19962
e28387c3
PB
19963 /* Preserve relocations against symbols with function type. */
19964 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19965 return 0;
19966
c19d1205
ZW
19967 if (THUMB_IS_FUNC (fixP->fx_addsy)
19968 && fixP->fx_subsy == NULL)
19969 return 0;
a737bd4d 19970
c19d1205
ZW
19971 /* We need the symbol name for the VTABLE entries. */
19972 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19973 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19974 return 0;
404ff6b5 19975
c19d1205
ZW
19976 /* Don't allow symbols to be discarded on GOT related relocs. */
19977 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19978 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19979 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19980 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19981 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19982 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19983 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19984 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19985 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19986 return 0;
a737bd4d 19987
4962c51a
MS
19988 /* Similarly for group relocations. */
19989 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19990 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19991 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19992 return 0;
19993
79947c54
CD
19994 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
19995 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
19996 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
19997 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
19998 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
19999 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20000 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
20001 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
20002 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
20003 return 0;
20004
c19d1205 20005 return 1;
a737bd4d 20006}
0ffdc86c
NC
20007#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
20008
20009#ifdef OBJ_ELF
404ff6b5 20010
c19d1205
ZW
20011const char *
20012elf32_arm_target_format (void)
404ff6b5 20013{
c19d1205
ZW
20014#ifdef TE_SYMBIAN
20015 return (target_big_endian
20016 ? "elf32-bigarm-symbian"
20017 : "elf32-littlearm-symbian");
20018#elif defined (TE_VXWORKS)
20019 return (target_big_endian
20020 ? "elf32-bigarm-vxworks"
20021 : "elf32-littlearm-vxworks");
20022#else
20023 if (target_big_endian)
20024 return "elf32-bigarm";
20025 else
20026 return "elf32-littlearm";
20027#endif
404ff6b5
AH
20028}
20029
c19d1205
ZW
20030void
20031armelf_frob_symbol (symbolS * symp,
20032 int * puntp)
404ff6b5 20033{
c19d1205
ZW
20034 elf_frob_symbol (symp, puntp);
20035}
20036#endif
404ff6b5 20037
c19d1205 20038/* MD interface: Finalization. */
a737bd4d 20039
c19d1205
ZW
20040/* A good place to do this, although this was probably not intended
20041 for this kind of use. We need to dump the literal pool before
20042 references are made to a null symbol pointer. */
a737bd4d 20043
c19d1205
ZW
20044void
20045arm_cleanup (void)
20046{
20047 literal_pool * pool;
a737bd4d 20048
c19d1205
ZW
20049 for (pool = list_of_pools; pool; pool = pool->next)
20050 {
5f4273c7 20051 /* Put it at the end of the relevant section. */
c19d1205
ZW
20052 subseg_set (pool->section, pool->sub_section);
20053#ifdef OBJ_ELF
20054 arm_elf_change_section ();
20055#endif
20056 s_ltorg (0);
20057 }
404ff6b5
AH
20058}
20059
c19d1205
ZW
20060/* Adjust the symbol table. This marks Thumb symbols as distinct from
20061 ARM ones. */
404ff6b5 20062
c19d1205
ZW
20063void
20064arm_adjust_symtab (void)
404ff6b5 20065{
c19d1205
ZW
20066#ifdef OBJ_COFF
20067 symbolS * sym;
404ff6b5 20068
c19d1205
ZW
20069 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
20070 {
20071 if (ARM_IS_THUMB (sym))
20072 {
20073 if (THUMB_IS_FUNC (sym))
20074 {
20075 /* Mark the symbol as a Thumb function. */
20076 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
20077 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
20078 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 20079
c19d1205
ZW
20080 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
20081 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
20082 else
20083 as_bad (_("%s: unexpected function type: %d"),
20084 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
20085 }
20086 else switch (S_GET_STORAGE_CLASS (sym))
20087 {
20088 case C_EXT:
20089 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
20090 break;
20091 case C_STAT:
20092 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
20093 break;
20094 case C_LABEL:
20095 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
20096 break;
20097 default:
20098 /* Do nothing. */
20099 break;
20100 }
20101 }
a737bd4d 20102
c19d1205
ZW
20103 if (ARM_IS_INTERWORK (sym))
20104 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 20105 }
c19d1205
ZW
20106#endif
20107#ifdef OBJ_ELF
20108 symbolS * sym;
20109 char bind;
404ff6b5 20110
c19d1205 20111 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 20112 {
c19d1205
ZW
20113 if (ARM_IS_THUMB (sym))
20114 {
20115 elf_symbol_type * elf_sym;
404ff6b5 20116
c19d1205
ZW
20117 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
20118 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 20119
b0796911
PB
20120 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
20121 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
20122 {
20123 /* If it's a .thumb_func, declare it as so,
20124 otherwise tag label as .code 16. */
20125 if (THUMB_IS_FUNC (sym))
20126 elf_sym->internal_elf_sym.st_info =
20127 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 20128 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
20129 elf_sym->internal_elf_sym.st_info =
20130 ELF_ST_INFO (bind, STT_ARM_16BIT);
20131 }
20132 }
20133 }
20134#endif
404ff6b5
AH
20135}
20136
c19d1205 20137/* MD interface: Initialization. */
404ff6b5 20138
a737bd4d 20139static void
c19d1205 20140set_constant_flonums (void)
a737bd4d 20141{
c19d1205 20142 int i;
404ff6b5 20143
c19d1205
ZW
20144 for (i = 0; i < NUM_FLOAT_VALS; i++)
20145 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
20146 abort ();
a737bd4d 20147}
404ff6b5 20148
3e9e4fcf
JB
20149/* Auto-select Thumb mode if it's the only available instruction set for the
20150 given architecture. */
20151
20152static void
20153autoselect_thumb_from_cpu_variant (void)
20154{
20155 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
20156 opcode_select (16);
20157}
20158
c19d1205
ZW
20159void
20160md_begin (void)
a737bd4d 20161{
c19d1205
ZW
20162 unsigned mach;
20163 unsigned int i;
404ff6b5 20164
c19d1205
ZW
20165 if ( (arm_ops_hsh = hash_new ()) == NULL
20166 || (arm_cond_hsh = hash_new ()) == NULL
20167 || (arm_shift_hsh = hash_new ()) == NULL
20168 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 20169 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 20170 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
20171 || (arm_reloc_hsh = hash_new ()) == NULL
20172 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
20173 as_fatal (_("virtual memory exhausted"));
20174
20175 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
5a49b8ac 20176 hash_insert (arm_ops_hsh, insns[i].template, (void *) (insns + i));
c19d1205 20177 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
5a49b8ac 20178 hash_insert (arm_cond_hsh, conds[i].template, (void *) (conds + i));
c19d1205 20179 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 20180 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 20181 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
5a49b8ac 20182 hash_insert (arm_psr_hsh, psrs[i].template, (void *) (psrs + i));
62b3e311 20183 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
5a49b8ac 20184 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (void *) (v7m_psrs + i));
c19d1205 20185 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 20186 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
20187 for (i = 0;
20188 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
20189 i++)
20190 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
5a49b8ac 20191 (void *) (barrier_opt_names + i));
c19d1205
ZW
20192#ifdef OBJ_ELF
20193 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 20194 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
20195#endif
20196
20197 set_constant_flonums ();
404ff6b5 20198
c19d1205
ZW
20199 /* Set the cpu variant based on the command-line options. We prefer
20200 -mcpu= over -march= if both are set (as for GCC); and we prefer
20201 -mfpu= over any other way of setting the floating point unit.
20202 Use of legacy options with new options are faulted. */
e74cfd16 20203 if (legacy_cpu)
404ff6b5 20204 {
e74cfd16 20205 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
20206 as_bad (_("use of old and new-style options to set CPU type"));
20207
20208 mcpu_cpu_opt = legacy_cpu;
404ff6b5 20209 }
e74cfd16 20210 else if (!mcpu_cpu_opt)
c19d1205 20211 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 20212
e74cfd16 20213 if (legacy_fpu)
c19d1205 20214 {
e74cfd16 20215 if (mfpu_opt)
c19d1205 20216 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
20217
20218 mfpu_opt = legacy_fpu;
20219 }
e74cfd16 20220 else if (!mfpu_opt)
03b1477f 20221 {
c19d1205 20222#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
20223 /* Some environments specify a default FPU. If they don't, infer it
20224 from the processor. */
e74cfd16 20225 if (mcpu_fpu_opt)
03b1477f
RE
20226 mfpu_opt = mcpu_fpu_opt;
20227 else
20228 mfpu_opt = march_fpu_opt;
39c2da32 20229#else
e74cfd16 20230 mfpu_opt = &fpu_default;
39c2da32 20231#endif
03b1477f
RE
20232 }
20233
e74cfd16 20234 if (!mfpu_opt)
03b1477f 20235 {
493cb6ef 20236 if (mcpu_cpu_opt != NULL)
e74cfd16 20237 mfpu_opt = &fpu_default;
493cb6ef 20238 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 20239 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 20240 else
e74cfd16 20241 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
20242 }
20243
ee065d83 20244#ifdef CPU_DEFAULT
e74cfd16 20245 if (!mcpu_cpu_opt)
ee065d83 20246 {
e74cfd16
PB
20247 mcpu_cpu_opt = &cpu_default;
20248 selected_cpu = cpu_default;
ee065d83 20249 }
e74cfd16
PB
20250#else
20251 if (mcpu_cpu_opt)
20252 selected_cpu = *mcpu_cpu_opt;
ee065d83 20253 else
e74cfd16 20254 mcpu_cpu_opt = &arm_arch_any;
ee065d83 20255#endif
03b1477f 20256
e74cfd16 20257 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 20258
3e9e4fcf
JB
20259 autoselect_thumb_from_cpu_variant ();
20260
e74cfd16 20261 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 20262
f17c130b 20263#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 20264 {
7cc69913
NC
20265 unsigned int flags = 0;
20266
20267#if defined OBJ_ELF
20268 flags = meabi_flags;
d507cf36
PB
20269
20270 switch (meabi_flags)
33a392fb 20271 {
d507cf36 20272 case EF_ARM_EABI_UNKNOWN:
7cc69913 20273#endif
d507cf36
PB
20274 /* Set the flags in the private structure. */
20275 if (uses_apcs_26) flags |= F_APCS26;
20276 if (support_interwork) flags |= F_INTERWORK;
20277 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 20278 if (pic_code) flags |= F_PIC;
e74cfd16 20279 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
20280 flags |= F_SOFT_FLOAT;
20281
d507cf36
PB
20282 switch (mfloat_abi_opt)
20283 {
20284 case ARM_FLOAT_ABI_SOFT:
20285 case ARM_FLOAT_ABI_SOFTFP:
20286 flags |= F_SOFT_FLOAT;
20287 break;
33a392fb 20288
d507cf36
PB
20289 case ARM_FLOAT_ABI_HARD:
20290 if (flags & F_SOFT_FLOAT)
20291 as_bad (_("hard-float conflicts with specified fpu"));
20292 break;
20293 }
03b1477f 20294
e74cfd16
PB
20295 /* Using pure-endian doubles (even if soft-float). */
20296 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 20297 flags |= F_VFP_FLOAT;
f17c130b 20298
fde78edd 20299#if defined OBJ_ELF
e74cfd16 20300 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 20301 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
20302 break;
20303
8cb51566 20304 case EF_ARM_EABI_VER4:
3a4a14e9 20305 case EF_ARM_EABI_VER5:
c19d1205 20306 /* No additional flags to set. */
d507cf36
PB
20307 break;
20308
20309 default:
20310 abort ();
20311 }
7cc69913 20312#endif
b99bd4ef
NC
20313 bfd_set_private_flags (stdoutput, flags);
20314
20315 /* We have run out flags in the COFF header to encode the
20316 status of ATPCS support, so instead we create a dummy,
c19d1205 20317 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
20318 if (atpcs)
20319 {
20320 asection * sec;
20321
20322 sec = bfd_make_section (stdoutput, ".arm.atpcs");
20323
20324 if (sec != NULL)
20325 {
20326 bfd_set_section_flags
20327 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
20328 bfd_set_section_size (stdoutput, sec, 0);
20329 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
20330 }
20331 }
7cc69913 20332 }
f17c130b 20333#endif
b99bd4ef
NC
20334
20335 /* Record the CPU type as well. */
2d447fca
JM
20336 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
20337 mach = bfd_mach_arm_iWMMXt2;
20338 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 20339 mach = bfd_mach_arm_iWMMXt;
e74cfd16 20340 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 20341 mach = bfd_mach_arm_XScale;
e74cfd16 20342 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 20343 mach = bfd_mach_arm_ep9312;
e74cfd16 20344 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 20345 mach = bfd_mach_arm_5TE;
e74cfd16 20346 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 20347 {
e74cfd16 20348 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
20349 mach = bfd_mach_arm_5T;
20350 else
20351 mach = bfd_mach_arm_5;
20352 }
e74cfd16 20353 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 20354 {
e74cfd16 20355 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
20356 mach = bfd_mach_arm_4T;
20357 else
20358 mach = bfd_mach_arm_4;
20359 }
e74cfd16 20360 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 20361 mach = bfd_mach_arm_3M;
e74cfd16
PB
20362 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
20363 mach = bfd_mach_arm_3;
20364 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
20365 mach = bfd_mach_arm_2a;
20366 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
20367 mach = bfd_mach_arm_2;
20368 else
20369 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
20370
20371 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
20372}
20373
c19d1205 20374/* Command line processing. */
b99bd4ef 20375
c19d1205
ZW
20376/* md_parse_option
20377 Invocation line includes a switch not recognized by the base assembler.
20378 See if it's a processor-specific option.
b99bd4ef 20379
c19d1205
ZW
20380 This routine is somewhat complicated by the need for backwards
20381 compatibility (since older releases of gcc can't be changed).
20382 The new options try to make the interface as compatible as
20383 possible with GCC.
b99bd4ef 20384
c19d1205 20385 New options (supported) are:
b99bd4ef 20386
c19d1205
ZW
20387 -mcpu=<cpu name> Assemble for selected processor
20388 -march=<architecture name> Assemble for selected architecture
20389 -mfpu=<fpu architecture> Assemble for selected FPU.
20390 -EB/-mbig-endian Big-endian
20391 -EL/-mlittle-endian Little-endian
20392 -k Generate PIC code
20393 -mthumb Start in Thumb mode
20394 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 20395
278df34e
NS
20396 -m[no-]warn-deprecated Warn about deprecated features
20397
c19d1205 20398 For now we will also provide support for:
b99bd4ef 20399
c19d1205
ZW
20400 -mapcs-32 32-bit Program counter
20401 -mapcs-26 26-bit Program counter
20402 -macps-float Floats passed in FP registers
20403 -mapcs-reentrant Reentrant code
20404 -matpcs
20405 (sometime these will probably be replaced with -mapcs=<list of options>
20406 and -matpcs=<list of options>)
b99bd4ef 20407
c19d1205
ZW
20408 The remaining options are only supported for back-wards compatibility.
20409 Cpu variants, the arm part is optional:
20410 -m[arm]1 Currently not supported.
20411 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
20412 -m[arm]3 Arm 3 processor
20413 -m[arm]6[xx], Arm 6 processors
20414 -m[arm]7[xx][t][[d]m] Arm 7 processors
20415 -m[arm]8[10] Arm 8 processors
20416 -m[arm]9[20][tdmi] Arm 9 processors
20417 -mstrongarm[110[0]] StrongARM processors
20418 -mxscale XScale processors
20419 -m[arm]v[2345[t[e]]] Arm architectures
20420 -mall All (except the ARM1)
20421 FP variants:
20422 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
20423 -mfpe-old (No float load/store multiples)
20424 -mvfpxd VFP Single precision
20425 -mvfp All VFP
20426 -mno-fpu Disable all floating point instructions
b99bd4ef 20427
c19d1205
ZW
20428 The following CPU names are recognized:
20429 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
20430 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
20431 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
20432 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
20433 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
20434 arm10t arm10e, arm1020t, arm1020e, arm10200e,
20435 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 20436
c19d1205 20437 */
b99bd4ef 20438
c19d1205 20439const char * md_shortopts = "m:k";
b99bd4ef 20440
c19d1205
ZW
20441#ifdef ARM_BI_ENDIAN
20442#define OPTION_EB (OPTION_MD_BASE + 0)
20443#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 20444#else
c19d1205
ZW
20445#if TARGET_BYTES_BIG_ENDIAN
20446#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 20447#else
c19d1205
ZW
20448#define OPTION_EL (OPTION_MD_BASE + 1)
20449#endif
b99bd4ef 20450#endif
845b51d6 20451#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 20452
c19d1205 20453struct option md_longopts[] =
b99bd4ef 20454{
c19d1205
ZW
20455#ifdef OPTION_EB
20456 {"EB", no_argument, NULL, OPTION_EB},
20457#endif
20458#ifdef OPTION_EL
20459 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 20460#endif
845b51d6 20461 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
20462 {NULL, no_argument, NULL, 0}
20463};
b99bd4ef 20464
c19d1205 20465size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 20466
c19d1205 20467struct arm_option_table
b99bd4ef 20468{
c19d1205
ZW
20469 char *option; /* Option name to match. */
20470 char *help; /* Help information. */
20471 int *var; /* Variable to change. */
20472 int value; /* What to change it to. */
20473 char *deprecated; /* If non-null, print this message. */
20474};
b99bd4ef 20475
c19d1205
ZW
20476struct arm_option_table arm_opts[] =
20477{
20478 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
20479 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
20480 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
20481 &support_interwork, 1, NULL},
20482 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
20483 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
20484 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
20485 1, NULL},
20486 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
20487 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
20488 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
20489 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
20490 NULL},
b99bd4ef 20491
c19d1205
ZW
20492 /* These are recognized by the assembler, but have no affect on code. */
20493 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
20494 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
20495
20496 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
20497 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
20498 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
20499 {NULL, NULL, NULL, 0, NULL}
20500};
20501
20502struct arm_legacy_option_table
20503{
20504 char *option; /* Option name to match. */
20505 const arm_feature_set **var; /* Variable to change. */
20506 const arm_feature_set value; /* What to change it to. */
20507 char *deprecated; /* If non-null, print this message. */
20508};
b99bd4ef 20509
e74cfd16
PB
20510const struct arm_legacy_option_table arm_legacy_opts[] =
20511{
c19d1205
ZW
20512 /* DON'T add any new processors to this list -- we want the whole list
20513 to go away... Add them to the processors table instead. */
e74cfd16
PB
20514 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20515 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20516 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20517 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20518 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20519 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20520 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20521 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20522 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20523 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20524 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20525 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20526 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20527 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20528 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20529 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20530 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20531 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20532 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20533 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20534 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20535 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20536 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20537 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20538 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20539 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20540 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20541 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20542 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20543 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20544 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20545 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20546 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20547 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20548 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20549 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20550 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20551 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20552 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20553 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20554 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20555 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20556 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20557 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20558 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20559 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20560 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20561 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20562 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20563 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20564 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20565 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20566 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20567 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20568 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20569 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20570 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20571 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20572 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20573 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20574 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20575 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20576 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20577 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20578 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20579 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20580 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20581 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20582 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
20583 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 20584 N_("use -mcpu=strongarm110")},
e74cfd16 20585 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 20586 N_("use -mcpu=strongarm1100")},
e74cfd16 20587 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 20588 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
20589 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
20590 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
20591 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 20592
c19d1205 20593 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
20594 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20595 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20596 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20597 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20598 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20599 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20600 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20601 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20602 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20603 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20604 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20605 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20606 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20607 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20608 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20609 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20610 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
20611 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 20612
c19d1205 20613 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
20614 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
20615 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
20616 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
20617 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 20618 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 20619
e74cfd16 20620 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 20621};
7ed4c4c5 20622
c19d1205 20623struct arm_cpu_option_table
7ed4c4c5 20624{
c19d1205 20625 char *name;
e74cfd16 20626 const arm_feature_set value;
c19d1205
ZW
20627 /* For some CPUs we assume an FPU unless the user explicitly sets
20628 -mfpu=... */
e74cfd16 20629 const arm_feature_set default_fpu;
ee065d83
PB
20630 /* The canonical name of the CPU, or NULL to use NAME converted to upper
20631 case. */
20632 const char *canonical_name;
c19d1205 20633};
7ed4c4c5 20634
c19d1205
ZW
20635/* This list should, at a minimum, contain all the cpu names
20636 recognized by GCC. */
e74cfd16 20637static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 20638{
ee065d83
PB
20639 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
20640 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
20641 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
20642 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20643 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20644 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20645 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20646 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20647 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20648 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20649 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20650 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20651 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20652 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20653 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20654 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20655 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20656 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20657 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20658 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20659 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20660 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20661 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20662 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20663 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20664 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20665 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20666 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20667 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20668 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20669 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20670 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20671 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20672 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20673 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20674 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20675 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20676 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20677 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20678 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20679 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20680 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20681 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20682 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
20683 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20684 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
20685 /* For V5 or later processors we default to using VFP; but the user
20686 should really set the FPU type explicitly. */
ee065d83
PB
20687 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20688 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20689 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20690 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20691 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20692 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20693 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20694 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20695 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20696 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20697 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20698 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20699 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20700 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20701 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20702 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20703 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20704 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20705 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20706 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20707 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
7fac0536
NC
20708 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
20709 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
20710 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20711 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20712 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20713 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20714 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20715 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20716 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20717 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20718 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20719 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
5287ad62
JB
20720 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20721 | FPU_NEON_EXT_V1),
15290f0a
PB
20722 NULL},
20723 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20724 | FPU_NEON_EXT_V1),
5287ad62 20725 NULL},
62b3e311
PB
20726 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20727 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
7e806470 20728 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
c19d1205 20729 /* ??? XSCALE is really an architecture. */
ee065d83 20730 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 20731 /* ??? iwmmxt is not a processor. */
ee065d83 20732 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 20733 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 20734 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 20735 /* Maverick */
e74cfd16
PB
20736 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20737 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 20738};
7ed4c4c5 20739
c19d1205 20740struct arm_arch_option_table
7ed4c4c5 20741{
c19d1205 20742 char *name;
e74cfd16
PB
20743 const arm_feature_set value;
20744 const arm_feature_set default_fpu;
c19d1205 20745};
7ed4c4c5 20746
c19d1205
ZW
20747/* This list should, at a minimum, contain all the architecture names
20748 recognized by GCC. */
e74cfd16 20749static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
20750{
20751 {"all", ARM_ANY, FPU_ARCH_FPA},
20752 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20753 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20754 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20755 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20756 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20757 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20758 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20759 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20760 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20761 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20762 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20763 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20764 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20765 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20766 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20767 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20768 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20769 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20770 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20771 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20772 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20773 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20774 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20775 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20776 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 20777 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
62b3e311 20778 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
20779 /* The official spelling of the ARMv7 profile variants is the dashed form.
20780 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
20781 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20782 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20783 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
20784 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20785 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20786 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c19d1205
ZW
20787 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20788 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 20789 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 20790 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 20791};
7ed4c4c5 20792
c19d1205 20793/* ISA extensions in the co-processor space. */
e74cfd16 20794struct arm_option_cpu_value_table
c19d1205
ZW
20795{
20796 char *name;
e74cfd16 20797 const arm_feature_set value;
c19d1205 20798};
7ed4c4c5 20799
e74cfd16 20800static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 20801{
e74cfd16
PB
20802 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20803 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20804 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 20805 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 20806 {NULL, ARM_ARCH_NONE}
c19d1205 20807};
7ed4c4c5 20808
c19d1205
ZW
20809/* This list should, at a minimum, contain all the fpu names
20810 recognized by GCC. */
e74cfd16 20811static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
20812{
20813 {"softfpa", FPU_NONE},
20814 {"fpe", FPU_ARCH_FPE},
20815 {"fpe2", FPU_ARCH_FPE},
20816 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
20817 {"fpa", FPU_ARCH_FPA},
20818 {"fpa10", FPU_ARCH_FPA},
20819 {"fpa11", FPU_ARCH_FPA},
20820 {"arm7500fe", FPU_ARCH_FPA},
20821 {"softvfp", FPU_ARCH_VFP},
20822 {"softvfp+vfp", FPU_ARCH_VFP_V2},
20823 {"vfp", FPU_ARCH_VFP_V2},
20824 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 20825 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
20826 {"vfp10", FPU_ARCH_VFP_V2},
20827 {"vfp10-r0", FPU_ARCH_VFP_V1},
20828 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
20829 {"vfpv2", FPU_ARCH_VFP_V2},
20830 {"vfpv3", FPU_ARCH_VFP_V3},
20831 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
c19d1205
ZW
20832 {"arm1020t", FPU_ARCH_VFP_V1},
20833 {"arm1020e", FPU_ARCH_VFP_V2},
20834 {"arm1136jfs", FPU_ARCH_VFP_V2},
20835 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20836 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 20837 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 20838 {"neon-fp16", FPU_ARCH_NEON_FP16},
e74cfd16
PB
20839 {NULL, ARM_ARCH_NONE}
20840};
20841
20842struct arm_option_value_table
20843{
20844 char *name;
20845 long value;
c19d1205 20846};
7ed4c4c5 20847
e74cfd16 20848static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
20849{
20850 {"hard", ARM_FLOAT_ABI_HARD},
20851 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20852 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 20853 {NULL, 0}
c19d1205 20854};
7ed4c4c5 20855
c19d1205 20856#ifdef OBJ_ELF
3a4a14e9 20857/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 20858static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
20859{
20860 {"gnu", EF_ARM_EABI_UNKNOWN},
20861 {"4", EF_ARM_EABI_VER4},
3a4a14e9 20862 {"5", EF_ARM_EABI_VER5},
e74cfd16 20863 {NULL, 0}
c19d1205
ZW
20864};
20865#endif
7ed4c4c5 20866
c19d1205
ZW
20867struct arm_long_option_table
20868{
20869 char * option; /* Substring to match. */
20870 char * help; /* Help information. */
20871 int (* func) (char * subopt); /* Function to decode sub-option. */
20872 char * deprecated; /* If non-null, print this message. */
20873};
7ed4c4c5
NC
20874
20875static int
e74cfd16 20876arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 20877{
e74cfd16
PB
20878 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20879
20880 /* Copy the feature set, so that we can modify it. */
20881 *ext_set = **opt_p;
20882 *opt_p = ext_set;
20883
c19d1205 20884 while (str != NULL && *str != 0)
7ed4c4c5 20885 {
e74cfd16 20886 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
20887 char * ext;
20888 int optlen;
7ed4c4c5 20889
c19d1205
ZW
20890 if (*str != '+')
20891 {
20892 as_bad (_("invalid architectural extension"));
20893 return 0;
20894 }
7ed4c4c5 20895
c19d1205
ZW
20896 str++;
20897 ext = strchr (str, '+');
7ed4c4c5 20898
c19d1205
ZW
20899 if (ext != NULL)
20900 optlen = ext - str;
20901 else
20902 optlen = strlen (str);
7ed4c4c5 20903
c19d1205
ZW
20904 if (optlen == 0)
20905 {
20906 as_bad (_("missing architectural extension"));
20907 return 0;
20908 }
7ed4c4c5 20909
c19d1205
ZW
20910 for (opt = arm_extensions; opt->name != NULL; opt++)
20911 if (strncmp (opt->name, str, optlen) == 0)
20912 {
e74cfd16 20913 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
20914 break;
20915 }
7ed4c4c5 20916
c19d1205
ZW
20917 if (opt->name == NULL)
20918 {
5f4273c7 20919 as_bad (_("unknown architectural extension `%s'"), str);
c19d1205
ZW
20920 return 0;
20921 }
7ed4c4c5 20922
c19d1205
ZW
20923 str = ext;
20924 };
7ed4c4c5 20925
c19d1205
ZW
20926 return 1;
20927}
7ed4c4c5 20928
c19d1205
ZW
20929static int
20930arm_parse_cpu (char * str)
7ed4c4c5 20931{
e74cfd16 20932 const struct arm_cpu_option_table * opt;
c19d1205
ZW
20933 char * ext = strchr (str, '+');
20934 int optlen;
7ed4c4c5 20935
c19d1205
ZW
20936 if (ext != NULL)
20937 optlen = ext - str;
7ed4c4c5 20938 else
c19d1205 20939 optlen = strlen (str);
7ed4c4c5 20940
c19d1205 20941 if (optlen == 0)
7ed4c4c5 20942 {
c19d1205
ZW
20943 as_bad (_("missing cpu name `%s'"), str);
20944 return 0;
7ed4c4c5
NC
20945 }
20946
c19d1205
ZW
20947 for (opt = arm_cpus; opt->name != NULL; opt++)
20948 if (strncmp (opt->name, str, optlen) == 0)
20949 {
e74cfd16
PB
20950 mcpu_cpu_opt = &opt->value;
20951 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 20952 if (opt->canonical_name)
5f4273c7 20953 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
20954 else
20955 {
20956 int i;
20957 for (i = 0; i < optlen; i++)
20958 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20959 selected_cpu_name[i] = 0;
20960 }
7ed4c4c5 20961
c19d1205
ZW
20962 if (ext != NULL)
20963 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 20964
c19d1205
ZW
20965 return 1;
20966 }
7ed4c4c5 20967
c19d1205
ZW
20968 as_bad (_("unknown cpu `%s'"), str);
20969 return 0;
7ed4c4c5
NC
20970}
20971
c19d1205
ZW
20972static int
20973arm_parse_arch (char * str)
7ed4c4c5 20974{
e74cfd16 20975 const struct arm_arch_option_table *opt;
c19d1205
ZW
20976 char *ext = strchr (str, '+');
20977 int optlen;
7ed4c4c5 20978
c19d1205
ZW
20979 if (ext != NULL)
20980 optlen = ext - str;
7ed4c4c5 20981 else
c19d1205 20982 optlen = strlen (str);
7ed4c4c5 20983
c19d1205 20984 if (optlen == 0)
7ed4c4c5 20985 {
c19d1205
ZW
20986 as_bad (_("missing architecture name `%s'"), str);
20987 return 0;
7ed4c4c5
NC
20988 }
20989
c19d1205
ZW
20990 for (opt = arm_archs; opt->name != NULL; opt++)
20991 if (streq (opt->name, str))
20992 {
e74cfd16
PB
20993 march_cpu_opt = &opt->value;
20994 march_fpu_opt = &opt->default_fpu;
5f4273c7 20995 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 20996
c19d1205
ZW
20997 if (ext != NULL)
20998 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 20999
c19d1205
ZW
21000 return 1;
21001 }
21002
21003 as_bad (_("unknown architecture `%s'\n"), str);
21004 return 0;
7ed4c4c5 21005}
eb043451 21006
c19d1205
ZW
21007static int
21008arm_parse_fpu (char * str)
21009{
e74cfd16 21010 const struct arm_option_cpu_value_table * opt;
b99bd4ef 21011
c19d1205
ZW
21012 for (opt = arm_fpus; opt->name != NULL; opt++)
21013 if (streq (opt->name, str))
21014 {
e74cfd16 21015 mfpu_opt = &opt->value;
c19d1205
ZW
21016 return 1;
21017 }
b99bd4ef 21018
c19d1205
ZW
21019 as_bad (_("unknown floating point format `%s'\n"), str);
21020 return 0;
21021}
21022
21023static int
21024arm_parse_float_abi (char * str)
b99bd4ef 21025{
e74cfd16 21026 const struct arm_option_value_table * opt;
b99bd4ef 21027
c19d1205
ZW
21028 for (opt = arm_float_abis; opt->name != NULL; opt++)
21029 if (streq (opt->name, str))
21030 {
21031 mfloat_abi_opt = opt->value;
21032 return 1;
21033 }
cc8a6dd0 21034
c19d1205
ZW
21035 as_bad (_("unknown floating point abi `%s'\n"), str);
21036 return 0;
21037}
b99bd4ef 21038
c19d1205
ZW
21039#ifdef OBJ_ELF
21040static int
21041arm_parse_eabi (char * str)
21042{
e74cfd16 21043 const struct arm_option_value_table *opt;
cc8a6dd0 21044
c19d1205
ZW
21045 for (opt = arm_eabis; opt->name != NULL; opt++)
21046 if (streq (opt->name, str))
21047 {
21048 meabi_flags = opt->value;
21049 return 1;
21050 }
21051 as_bad (_("unknown EABI `%s'\n"), str);
21052 return 0;
21053}
21054#endif
cc8a6dd0 21055
c19d1205
ZW
21056struct arm_long_option_table arm_long_opts[] =
21057{
21058 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
21059 arm_parse_cpu, NULL},
21060 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
21061 arm_parse_arch, NULL},
21062 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
21063 arm_parse_fpu, NULL},
21064 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
21065 arm_parse_float_abi, NULL},
21066#ifdef OBJ_ELF
7fac0536 21067 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
21068 arm_parse_eabi, NULL},
21069#endif
21070 {NULL, NULL, 0, NULL}
21071};
cc8a6dd0 21072
c19d1205
ZW
21073int
21074md_parse_option (int c, char * arg)
21075{
21076 struct arm_option_table *opt;
e74cfd16 21077 const struct arm_legacy_option_table *fopt;
c19d1205 21078 struct arm_long_option_table *lopt;
b99bd4ef 21079
c19d1205 21080 switch (c)
b99bd4ef 21081 {
c19d1205
ZW
21082#ifdef OPTION_EB
21083 case OPTION_EB:
21084 target_big_endian = 1;
21085 break;
21086#endif
cc8a6dd0 21087
c19d1205
ZW
21088#ifdef OPTION_EL
21089 case OPTION_EL:
21090 target_big_endian = 0;
21091 break;
21092#endif
b99bd4ef 21093
845b51d6
PB
21094 case OPTION_FIX_V4BX:
21095 fix_v4bx = TRUE;
21096 break;
21097
c19d1205
ZW
21098 case 'a':
21099 /* Listing option. Just ignore these, we don't support additional
21100 ones. */
21101 return 0;
b99bd4ef 21102
c19d1205
ZW
21103 default:
21104 for (opt = arm_opts; opt->option != NULL; opt++)
21105 {
21106 if (c == opt->option[0]
21107 && ((arg == NULL && opt->option[1] == 0)
21108 || streq (arg, opt->option + 1)))
21109 {
c19d1205 21110 /* If the option is deprecated, tell the user. */
278df34e 21111 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
21112 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
21113 arg ? arg : "", _(opt->deprecated));
b99bd4ef 21114
c19d1205
ZW
21115 if (opt->var != NULL)
21116 *opt->var = opt->value;
cc8a6dd0 21117
c19d1205
ZW
21118 return 1;
21119 }
21120 }
b99bd4ef 21121
e74cfd16
PB
21122 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
21123 {
21124 if (c == fopt->option[0]
21125 && ((arg == NULL && fopt->option[1] == 0)
21126 || streq (arg, fopt->option + 1)))
21127 {
e74cfd16 21128 /* If the option is deprecated, tell the user. */
278df34e 21129 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
21130 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
21131 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
21132
21133 if (fopt->var != NULL)
21134 *fopt->var = &fopt->value;
21135
21136 return 1;
21137 }
21138 }
21139
c19d1205
ZW
21140 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
21141 {
21142 /* These options are expected to have an argument. */
21143 if (c == lopt->option[0]
21144 && arg != NULL
21145 && strncmp (arg, lopt->option + 1,
21146 strlen (lopt->option + 1)) == 0)
21147 {
c19d1205 21148 /* If the option is deprecated, tell the user. */
278df34e 21149 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
21150 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
21151 _(lopt->deprecated));
b99bd4ef 21152
c19d1205
ZW
21153 /* Call the sup-option parser. */
21154 return lopt->func (arg + strlen (lopt->option) - 1);
21155 }
21156 }
a737bd4d 21157
c19d1205
ZW
21158 return 0;
21159 }
a394c00f 21160
c19d1205
ZW
21161 return 1;
21162}
a394c00f 21163
c19d1205
ZW
21164void
21165md_show_usage (FILE * fp)
a394c00f 21166{
c19d1205
ZW
21167 struct arm_option_table *opt;
21168 struct arm_long_option_table *lopt;
a394c00f 21169
c19d1205 21170 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 21171
c19d1205
ZW
21172 for (opt = arm_opts; opt->option != NULL; opt++)
21173 if (opt->help != NULL)
21174 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 21175
c19d1205
ZW
21176 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
21177 if (lopt->help != NULL)
21178 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 21179
c19d1205
ZW
21180#ifdef OPTION_EB
21181 fprintf (fp, _("\
21182 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
21183#endif
21184
c19d1205
ZW
21185#ifdef OPTION_EL
21186 fprintf (fp, _("\
21187 -EL assemble code for a little-endian cpu\n"));
a737bd4d 21188#endif
845b51d6
PB
21189
21190 fprintf (fp, _("\
21191 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 21192}
ee065d83
PB
21193
21194
21195#ifdef OBJ_ELF
62b3e311
PB
21196typedef struct
21197{
21198 int val;
21199 arm_feature_set flags;
21200} cpu_arch_ver_table;
21201
21202/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
21203 least features first. */
21204static const cpu_arch_ver_table cpu_arch_ver[] =
21205{
21206 {1, ARM_ARCH_V4},
21207 {2, ARM_ARCH_V4T},
21208 {3, ARM_ARCH_V5},
ee3c0378 21209 {3, ARM_ARCH_V5T},
62b3e311
PB
21210 {4, ARM_ARCH_V5TE},
21211 {5, ARM_ARCH_V5TEJ},
21212 {6, ARM_ARCH_V6},
21213 {7, ARM_ARCH_V6Z},
7e806470 21214 {9, ARM_ARCH_V6K},
91e22acd 21215 {11, ARM_ARCH_V6M},
7e806470 21216 {8, ARM_ARCH_V6T2},
62b3e311
PB
21217 {10, ARM_ARCH_V7A},
21218 {10, ARM_ARCH_V7R},
21219 {10, ARM_ARCH_V7M},
21220 {0, ARM_ARCH_NONE}
21221};
21222
ee3c0378
AS
21223/* Set an attribute if it has not already been set by the user. */
21224static void
21225aeabi_set_attribute_int (int tag, int value)
21226{
21227 if (tag < 1
21228 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
21229 || !attributes_set_explicitly[tag])
21230 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
21231}
21232
21233static void
21234aeabi_set_attribute_string (int tag, const char *value)
21235{
21236 if (tag < 1
21237 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
21238 || !attributes_set_explicitly[tag])
21239 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
21240}
21241
ee065d83
PB
21242/* Set the public EABI object attributes. */
21243static void
21244aeabi_set_public_attributes (void)
21245{
21246 int arch;
e74cfd16 21247 arm_feature_set flags;
62b3e311
PB
21248 arm_feature_set tmp;
21249 const cpu_arch_ver_table *p;
ee065d83
PB
21250
21251 /* Choose the architecture based on the capabilities of the requested cpu
21252 (if any) and/or the instructions actually used. */
e74cfd16
PB
21253 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
21254 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
21255 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
21256 /*Allow the user to override the reported architecture. */
21257 if (object_arch)
21258 {
21259 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
21260 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
21261 }
21262
62b3e311
PB
21263 tmp = flags;
21264 arch = 0;
21265 for (p = cpu_arch_ver; p->val; p++)
21266 {
21267 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
21268 {
21269 arch = p->val;
21270 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
21271 }
21272 }
ee065d83
PB
21273
21274 /* Tag_CPU_name. */
21275 if (selected_cpu_name[0])
21276 {
21277 char *p;
21278
21279 p = selected_cpu_name;
5f4273c7 21280 if (strncmp (p, "armv", 4) == 0)
ee065d83
PB
21281 {
21282 int i;
5f4273c7 21283
ee065d83
PB
21284 p += 4;
21285 for (i = 0; p[i]; i++)
21286 p[i] = TOUPPER (p[i]);
21287 }
ee3c0378 21288 aeabi_set_attribute_string (Tag_CPU_name, p);
ee065d83
PB
21289 }
21290 /* Tag_CPU_arch. */
ee3c0378 21291 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62b3e311
PB
21292 /* Tag_CPU_arch_profile. */
21293 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 21294 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 21295 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 21296 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 21297 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 21298 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
ee065d83 21299 /* Tag_ARM_ISA_use. */
ee3c0378
AS
21300 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
21301 || arch == 0)
21302 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
ee065d83 21303 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
21304 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
21305 || arch == 0)
21306 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
21307 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
ee065d83 21308 /* Tag_VFP_arch. */
ee3c0378
AS
21309 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
21310 aeabi_set_attribute_int (Tag_VFP_arch, 3);
21311 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3))
21312 aeabi_set_attribute_int (Tag_VFP_arch, 4);
21313 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
21314 aeabi_set_attribute_int (Tag_VFP_arch, 2);
21315 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
21316 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
21317 aeabi_set_attribute_int (Tag_VFP_arch, 1);
ee065d83 21318 /* Tag_WMMX_arch. */
ee3c0378
AS
21319 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
21320 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
21321 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
21322 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
21323 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 21324 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
ee3c0378
AS
21325 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
21326 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
8e79c3df 21327 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_fp16))
ee3c0378 21328 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
ee065d83
PB
21329}
21330
104d59d1 21331/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
21332void
21333arm_md_end (void)
21334{
ee065d83
PB
21335 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21336 return;
21337
21338 aeabi_set_public_attributes ();
ee065d83 21339}
8463be01 21340#endif /* OBJ_ELF */
ee065d83
PB
21341
21342
21343/* Parse a .cpu directive. */
21344
21345static void
21346s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
21347{
e74cfd16 21348 const struct arm_cpu_option_table *opt;
ee065d83
PB
21349 char *name;
21350 char saved_char;
21351
21352 name = input_line_pointer;
5f4273c7 21353 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
21354 input_line_pointer++;
21355 saved_char = *input_line_pointer;
21356 *input_line_pointer = 0;
21357
21358 /* Skip the first "all" entry. */
21359 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
21360 if (streq (opt->name, name))
21361 {
e74cfd16
PB
21362 mcpu_cpu_opt = &opt->value;
21363 selected_cpu = opt->value;
ee065d83 21364 if (opt->canonical_name)
5f4273c7 21365 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
21366 else
21367 {
21368 int i;
21369 for (i = 0; opt->name[i]; i++)
21370 selected_cpu_name[i] = TOUPPER (opt->name[i]);
21371 selected_cpu_name[i] = 0;
21372 }
e74cfd16 21373 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
21374 *input_line_pointer = saved_char;
21375 demand_empty_rest_of_line ();
21376 return;
21377 }
21378 as_bad (_("unknown cpu `%s'"), name);
21379 *input_line_pointer = saved_char;
21380 ignore_rest_of_line ();
21381}
21382
21383
21384/* Parse a .arch directive. */
21385
21386static void
21387s_arm_arch (int ignored ATTRIBUTE_UNUSED)
21388{
e74cfd16 21389 const struct arm_arch_option_table *opt;
ee065d83
PB
21390 char saved_char;
21391 char *name;
21392
21393 name = input_line_pointer;
5f4273c7 21394 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
21395 input_line_pointer++;
21396 saved_char = *input_line_pointer;
21397 *input_line_pointer = 0;
21398
21399 /* Skip the first "all" entry. */
21400 for (opt = arm_archs + 1; opt->name != NULL; opt++)
21401 if (streq (opt->name, name))
21402 {
e74cfd16
PB
21403 mcpu_cpu_opt = &opt->value;
21404 selected_cpu = opt->value;
5f4273c7 21405 strcpy (selected_cpu_name, opt->name);
e74cfd16 21406 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
21407 *input_line_pointer = saved_char;
21408 demand_empty_rest_of_line ();
21409 return;
21410 }
21411
21412 as_bad (_("unknown architecture `%s'\n"), name);
21413 *input_line_pointer = saved_char;
21414 ignore_rest_of_line ();
21415}
21416
21417
7a1d4c38
PB
21418/* Parse a .object_arch directive. */
21419
21420static void
21421s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
21422{
21423 const struct arm_arch_option_table *opt;
21424 char saved_char;
21425 char *name;
21426
21427 name = input_line_pointer;
5f4273c7 21428 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
21429 input_line_pointer++;
21430 saved_char = *input_line_pointer;
21431 *input_line_pointer = 0;
21432
21433 /* Skip the first "all" entry. */
21434 for (opt = arm_archs + 1; opt->name != NULL; opt++)
21435 if (streq (opt->name, name))
21436 {
21437 object_arch = &opt->value;
21438 *input_line_pointer = saved_char;
21439 demand_empty_rest_of_line ();
21440 return;
21441 }
21442
21443 as_bad (_("unknown architecture `%s'\n"), name);
21444 *input_line_pointer = saved_char;
21445 ignore_rest_of_line ();
21446}
21447
ee065d83
PB
21448/* Parse a .fpu directive. */
21449
21450static void
21451s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
21452{
e74cfd16 21453 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
21454 char saved_char;
21455 char *name;
21456
21457 name = input_line_pointer;
5f4273c7 21458 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
21459 input_line_pointer++;
21460 saved_char = *input_line_pointer;
21461 *input_line_pointer = 0;
5f4273c7 21462
ee065d83
PB
21463 for (opt = arm_fpus; opt->name != NULL; opt++)
21464 if (streq (opt->name, name))
21465 {
e74cfd16
PB
21466 mfpu_opt = &opt->value;
21467 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
21468 *input_line_pointer = saved_char;
21469 demand_empty_rest_of_line ();
21470 return;
21471 }
21472
21473 as_bad (_("unknown floating point format `%s'\n"), name);
21474 *input_line_pointer = saved_char;
21475 ignore_rest_of_line ();
21476}
ee065d83 21477
794ba86a 21478/* Copy symbol information. */
f31fef98 21479
794ba86a
DJ
21480void
21481arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
21482{
21483 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
21484}
e04befd0 21485
f31fef98 21486#ifdef OBJ_ELF
e04befd0
AS
21487/* Given a symbolic attribute NAME, return the proper integer value.
21488 Returns -1 if the attribute is not known. */
f31fef98 21489
e04befd0
AS
21490int
21491arm_convert_symbolic_attribute (const char *name)
21492{
f31fef98
NC
21493 static const struct
21494 {
21495 const char * name;
21496 const int tag;
21497 }
21498 attribute_table[] =
21499 {
21500 /* When you modify this table you should
21501 also modify the list in doc/c-arm.texi. */
e04befd0 21502#define T(tag) {#tag, tag}
f31fef98
NC
21503 T (Tag_CPU_raw_name),
21504 T (Tag_CPU_name),
21505 T (Tag_CPU_arch),
21506 T (Tag_CPU_arch_profile),
21507 T (Tag_ARM_ISA_use),
21508 T (Tag_THUMB_ISA_use),
21509 T (Tag_VFP_arch),
21510 T (Tag_WMMX_arch),
21511 T (Tag_Advanced_SIMD_arch),
21512 T (Tag_PCS_config),
21513 T (Tag_ABI_PCS_R9_use),
21514 T (Tag_ABI_PCS_RW_data),
21515 T (Tag_ABI_PCS_RO_data),
21516 T (Tag_ABI_PCS_GOT_use),
21517 T (Tag_ABI_PCS_wchar_t),
21518 T (Tag_ABI_FP_rounding),
21519 T (Tag_ABI_FP_denormal),
21520 T (Tag_ABI_FP_exceptions),
21521 T (Tag_ABI_FP_user_exceptions),
21522 T (Tag_ABI_FP_number_model),
21523 T (Tag_ABI_align8_needed),
21524 T (Tag_ABI_align8_preserved),
21525 T (Tag_ABI_enum_size),
21526 T (Tag_ABI_HardFP_use),
21527 T (Tag_ABI_VFP_args),
21528 T (Tag_ABI_WMMX_args),
21529 T (Tag_ABI_optimization_goals),
21530 T (Tag_ABI_FP_optimization_goals),
21531 T (Tag_compatibility),
21532 T (Tag_CPU_unaligned_access),
21533 T (Tag_VFP_HP_extension),
21534 T (Tag_ABI_FP_16bit_format),
21535 T (Tag_nodefaults),
21536 T (Tag_also_compatible_with),
21537 T (Tag_conformance),
21538 T (Tag_T2EE_use),
21539 T (Tag_Virtualization_use),
21540 T (Tag_MPextension_use)
e04befd0 21541#undef T
f31fef98 21542 };
e04befd0
AS
21543 unsigned int i;
21544
21545 if (name == NULL)
21546 return -1;
21547
f31fef98 21548 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
e04befd0
AS
21549 if (strcmp (name, attribute_table[i].name) == 0)
21550 return attribute_table[i].tag;
21551
21552 return -1;
21553}
f31fef98 21554#endif /* OBJ_ELF */