]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4c38e0a4 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
7b6bb8da 5 2010, 2011 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
1903f0e6 23#include "opcode/i386.h"
acd5c798
MK
24#include "arch-utils.h"
25#include "command.h"
26#include "dummy-frame.h"
6405b0a6 27#include "dwarf2-frame.h"
acd5c798 28#include "doublest.h"
c906108c 29#include "frame.h"
acd5c798
MK
30#include "frame-base.h"
31#include "frame-unwind.h"
c906108c 32#include "inferior.h"
acd5c798 33#include "gdbcmd.h"
c906108c 34#include "gdbcore.h"
e6bb342a 35#include "gdbtypes.h"
dfe01d39 36#include "objfiles.h"
acd5c798
MK
37#include "osabi.h"
38#include "regcache.h"
39#include "reggroups.h"
473f17b0 40#include "regset.h"
c0d1d883 41#include "symfile.h"
c906108c 42#include "symtab.h"
acd5c798 43#include "target.h"
fd0407d6 44#include "value.h"
a89aa300 45#include "dis-asm.h"
7a697b8d 46#include "disasm.h"
c8d5aac9 47#include "remote.h"
acd5c798 48
3d261580 49#include "gdb_assert.h"
acd5c798 50#include "gdb_string.h"
3d261580 51
d2a7c97a 52#include "i386-tdep.h"
61113f8b 53#include "i387-tdep.h"
c131fcee 54#include "i386-xstate.h"
d2a7c97a 55
7ad10968
HZ
56#include "record.h"
57#include <stdint.h>
58
90884b2b 59#include "features/i386/i386.c"
c131fcee 60#include "features/i386/i386-avx.c"
3a13a53b 61#include "features/i386/i386-mmx.c"
90884b2b 62
c4fc7f1b 63/* Register names. */
c40e1eab 64
90884b2b 65static const char *i386_register_names[] =
fc633446
MK
66{
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78};
79
c131fcee
L
80static const char *i386_ymm_names[] =
81{
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84};
85
86static const char *i386_ymmh_names[] =
87{
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90};
91
c4fc7f1b 92/* Register names for MMX pseudo-registers. */
28fc6740 93
90884b2b 94static const char *i386_mmx_names[] =
28fc6740
AC
95{
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98};
c40e1eab 99
1ba53b71
L
100/* Register names for byte pseudo-registers. */
101
102static const char *i386_byte_names[] =
103{
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106};
107
108/* Register names for word pseudo-registers. */
109
110static const char *i386_word_names[] =
111{
112 "ax", "cx", "dx", "bx",
9cad29ac 113 "", "bp", "si", "di"
1ba53b71
L
114};
115
116/* MMX register? */
c40e1eab 117
28fc6740 118static int
5716833c 119i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 120{
1ba53b71
L
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
123
124 if (mm0_regnum < 0)
125 return 0;
126
1ba53b71
L
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129}
130
131/* Byte register? */
132
133int
134i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135{
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140}
141
142/* Word register? */
143
144int
145i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146{
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151}
152
153/* Dword register? */
154
155int
156i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157{
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
166}
167
9191d390 168static int
c131fcee
L
169i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170{
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179}
180
181/* AVX register? */
182
183int
184i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185{
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194}
195
5716833c 196/* SSE register? */
23a34459 197
c131fcee
L
198int
199i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 200{
5716833c 201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 203
c131fcee 204 if (num_xmm_regs == 0)
5716833c
MK
205 return 0;
206
c131fcee
L
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
209}
210
5716833c
MK
211static int
212i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 213{
5716833c
MK
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
20a6ec49 216 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
217 return 0;
218
20a6ec49 219 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
220}
221
5716833c 222/* FP register? */
23a34459
AC
223
224int
20a6ec49 225i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 226{
20a6ec49
MD
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
230 return 0;
231
20a6ec49
MD
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
234}
235
236int
20a6ec49 237i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 238{
20a6ec49
MD
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
242 return 0;
243
20a6ec49
MD
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
246}
247
c131fcee
L
248/* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251static const char *
252i386_register_name (struct gdbarch *gdbarch, int regnum)
253{
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259}
260
30b0e2d8 261/* Return the name of register REGNUM. */
fc633446 262
1ba53b71 263const char *
90884b2b 264i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 265{
1ba53b71
L
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
277}
278
c4fc7f1b 279/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
280 number used by GDB. */
281
8201327c 282static int
d3f73121 283i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 284{
20a6ec49
MD
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
c4fc7f1b
MK
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
85540d8c
MK
290 if (reg >= 0 && reg <= 7)
291 {
9872ad24
JB
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
85540d8c
MK
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
20a6ec49 303 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
c131fcee
L
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
20a6ec49 319 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
320 }
321
322 /* This will hopefully provoke a warning. */
d3f73121 323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
324}
325
c4fc7f1b
MK
326/* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
85540d8c 328
8201327c 329static int
d3f73121 330i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 331{
20a6ec49
MD
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
c4fc7f1b
MK
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
acd5c798 341 /* General-purpose registers. */
85540d8c
MK
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
20a6ec49 347 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 348 }
c6f4c129 349 else if (reg >= 21 && reg <= 36)
85540d8c 350 {
c4fc7f1b 351 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 352 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
353 }
354
c6f4c129
JB
355 switch (reg)
356 {
20a6ec49
MD
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
85540d8c 368 /* This will hopefully provoke a warning. */
d3f73121 369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 370}
5716833c 371
fc338970 372\f
917317f4 373
fc338970
MK
374/* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
53904c9e
AC
376static const char att_flavor[] = "att";
377static const char intel_flavor[] = "intel";
378static const char *valid_flavors[] =
c5aa993b 379{
c906108c
SS
380 att_flavor,
381 intel_flavor,
382 NULL
383};
53904c9e 384static const char *disassembly_flavor = att_flavor;
acd5c798 385\f
c906108c 386
acd5c798
MK
387/* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
c906108c 392
acd5c798
MK
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
c906108c 395
acd5c798 396 This function is 64-bit safe. */
63c0089f
MK
397
398static const gdb_byte *
67d57894 399i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 400{
63c0089f
MK
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
acd5c798
MK
403 *len = sizeof (break_insn);
404 return break_insn;
c906108c 405}
237fc4c9
PA
406\f
407/* Displaced instruction handling. */
408
1903f0e6
DE
409/* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415static gdb_byte *
416i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417{
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443}
237fc4c9
PA
444
445static int
1903f0e6 446i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9
PA
447{
448 /* jmp far (absolute address in operand) */
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
454 /* jump near, absolute indirect (/4) */
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
458 /* jump far, absolute indirect (/5) */
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464}
465
466static int
1903f0e6 467i386_absolute_call_p (const gdb_byte *insn)
237fc4c9
PA
468{
469 /* call far, absolute */
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
475 /* Call near, absolute indirect (/2) */
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
479 /* Call far, absolute indirect (/3) */
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485}
486
487static int
1903f0e6 488i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
489{
490 switch (insn[0])
491 {
492 case 0xc2: /* ret near, pop N bytes */
493 case 0xc3: /* ret near */
494 case 0xca: /* ret far, pop N bytes */
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502}
503
504static int
1903f0e6 505i386_call_p (const gdb_byte *insn)
237fc4c9
PA
506{
507 if (i386_absolute_call_p (insn))
508 return 1;
509
510 /* call near, relative */
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515}
516
237fc4c9
PA
517/* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
1903f0e6 519
237fc4c9 520static int
b55078be 521i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9
PA
522{
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530}
531
b55078be
DE
532/* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535struct displaced_step_closure *
536i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539{
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567}
568
237fc4c9
PA
569/* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
1903f0e6 571
237fc4c9
PA
572void
573i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577{
e17a4113
UW
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
237fc4c9
PA
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
237fc4c9
PA
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
5af949e3 594 "displaced: fixup (%s, %s), "
237fc4c9 595 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
237fc4c9
PA
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
1903f0e6
DE
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
237fc4c9
PA
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
b55078be 627 int insn_len;
237fc4c9
PA
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
1903f0e6
DE
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
237fc4c9
PA
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
5af949e3
UW
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
237fc4c9
PA
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
237fc4c9
PA
701 }
702}
dde08ee1
PA
703
704static void
705append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706{
707 target_write_memory (*to, buf, len);
708 *to += len;
709}
710
711static void
712i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714{
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
739 push_buf[0] = 0x68; /* pushq $... */
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, newrel, byte_order);
751
752 /* Write the adjusted jump into its displaced location. */
753 append_insns (to, 5, insn);
754 return;
755 }
756
757 /* Adjust jumps with 32-bit relative addresses. Calls are already
758 handled above. */
759 if (insn[0] == 0xe9)
760 offset = 1;
761 /* Adjust conditional jumps. */
762 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
763 offset = 2;
764
765 if (offset)
766 {
767 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
768 newrel = (oldloc - *to) + rel32;
769 store_signed_integer (insn + offset, 4, newrel, byte_order);
770 if (debug_displaced)
771 fprintf_unfiltered (gdb_stdlog,
772 "Adjusted insn rel32=0x%s at 0x%s to"
773 " rel32=0x%s at 0x%s\n",
774 hex_string (rel32), paddress (gdbarch, oldloc),
775 hex_string (newrel), paddress (gdbarch, *to));
776 }
777
778 /* Write the adjusted instructions into their displaced
779 location. */
780 append_insns (to, insn_length, buf);
781}
782
fc338970 783\f
acd5c798
MK
784#ifdef I386_REGNO_TO_SYMMETRY
785#error "The Sequent Symmetry is no longer supported."
786#endif
c906108c 787
acd5c798
MK
788/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
789 and %esp "belong" to the calling function. Therefore these
790 registers should be saved if they're going to be modified. */
c906108c 791
acd5c798
MK
792/* The maximum number of saved registers. This should include all
793 registers mentioned above, and %eip. */
a3386186 794#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
795
796struct i386_frame_cache
c906108c 797{
acd5c798
MK
798 /* Base address. */
799 CORE_ADDR base;
772562f8 800 LONGEST sp_offset;
acd5c798
MK
801 CORE_ADDR pc;
802
fd13a04a
AC
803 /* Saved registers. */
804 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 805 CORE_ADDR saved_sp;
e0c62198 806 int saved_sp_reg;
acd5c798
MK
807 int pc_in_eax;
808
809 /* Stack space reserved for local variables. */
810 long locals;
811};
812
813/* Allocate and initialize a frame cache. */
814
815static struct i386_frame_cache *
fd13a04a 816i386_alloc_frame_cache (void)
acd5c798
MK
817{
818 struct i386_frame_cache *cache;
819 int i;
820
821 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
822
823 /* Base address. */
824 cache->base = 0;
825 cache->sp_offset = -4;
826 cache->pc = 0;
827
fd13a04a
AC
828 /* Saved registers. We initialize these to -1 since zero is a valid
829 offset (that's where %ebp is supposed to be stored). */
830 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
831 cache->saved_regs[i] = -1;
acd5c798 832 cache->saved_sp = 0;
e0c62198 833 cache->saved_sp_reg = -1;
acd5c798
MK
834 cache->pc_in_eax = 0;
835
836 /* Frameless until proven otherwise. */
837 cache->locals = -1;
838
839 return cache;
840}
c906108c 841
acd5c798
MK
842/* If the instruction at PC is a jump, return the address of its
843 target. Otherwise, return PC. */
c906108c 844
acd5c798 845static CORE_ADDR
e17a4113 846i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 847{
e17a4113 848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 849 gdb_byte op;
acd5c798
MK
850 long delta = 0;
851 int data16 = 0;
c906108c 852
8defab1a 853 target_read_memory (pc, &op, 1);
acd5c798 854 if (op == 0x66)
c906108c 855 {
c906108c 856 data16 = 1;
e17a4113 857 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
858 }
859
acd5c798 860 switch (op)
c906108c
SS
861 {
862 case 0xe9:
fc338970 863 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
864 if (data16)
865 {
e17a4113 866 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 867
fc338970
MK
868 /* Include the size of the jmp instruction (including the
869 0x66 prefix). */
acd5c798 870 delta += 4;
c906108c
SS
871 }
872 else
873 {
e17a4113 874 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 875
acd5c798
MK
876 /* Include the size of the jmp instruction. */
877 delta += 5;
c906108c
SS
878 }
879 break;
880 case 0xeb:
fc338970 881 /* Relative jump, disp8 (ignore data16). */
e17a4113 882 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 883
acd5c798 884 delta += data16 + 2;
c906108c
SS
885 break;
886 }
c906108c 887
acd5c798
MK
888 return pc + delta;
889}
fc338970 890
acd5c798
MK
891/* Check whether PC points at a prologue for a function returning a
892 structure or union. If so, it updates CACHE and returns the
893 address of the first instruction after the code sequence that
894 removes the "hidden" argument from the stack or CURRENT_PC,
895 whichever is smaller. Otherwise, return PC. */
c906108c 896
acd5c798
MK
897static CORE_ADDR
898i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
899 struct i386_frame_cache *cache)
c906108c 900{
acd5c798
MK
901 /* Functions that return a structure or union start with:
902
903 popl %eax 0x58
904 xchgl %eax, (%esp) 0x87 0x04 0x24
905 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
906
907 (the System V compiler puts out the second `xchg' instruction,
908 and the assembler doesn't try to optimize it, so the 'sib' form
909 gets generated). This sequence is used to get the address of the
910 return buffer for a function that returns a structure. */
63c0089f
MK
911 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
912 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
913 gdb_byte buf[4];
914 gdb_byte op;
c906108c 915
acd5c798
MK
916 if (current_pc <= pc)
917 return pc;
918
8defab1a 919 target_read_memory (pc, &op, 1);
c906108c 920
acd5c798
MK
921 if (op != 0x58) /* popl %eax */
922 return pc;
c906108c 923
8defab1a 924 target_read_memory (pc + 1, buf, 4);
acd5c798
MK
925 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
926 return pc;
c906108c 927
acd5c798 928 if (current_pc == pc)
c906108c 929 {
acd5c798
MK
930 cache->sp_offset += 4;
931 return current_pc;
c906108c
SS
932 }
933
acd5c798 934 if (current_pc == pc + 1)
c906108c 935 {
acd5c798
MK
936 cache->pc_in_eax = 1;
937 return current_pc;
938 }
939
940 if (buf[1] == proto1[1])
941 return pc + 4;
942 else
943 return pc + 5;
944}
945
946static CORE_ADDR
947i386_skip_probe (CORE_ADDR pc)
948{
949 /* A function may start with
fc338970 950
acd5c798
MK
951 pushl constant
952 call _probe
953 addl $4, %esp
fc338970 954
acd5c798
MK
955 followed by
956
957 pushl %ebp
fc338970 958
acd5c798 959 etc. */
63c0089f
MK
960 gdb_byte buf[8];
961 gdb_byte op;
fc338970 962
8defab1a 963 target_read_memory (pc, &op, 1);
acd5c798
MK
964
965 if (op == 0x68 || op == 0x6a)
966 {
967 int delta;
c906108c 968
acd5c798
MK
969 /* Skip past the `pushl' instruction; it has either a one-byte or a
970 four-byte operand, depending on the opcode. */
c906108c 971 if (op == 0x68)
acd5c798 972 delta = 5;
c906108c 973 else
acd5c798 974 delta = 2;
c906108c 975
acd5c798
MK
976 /* Read the following 8 bytes, which should be `call _probe' (6
977 bytes) followed by `addl $4,%esp' (2 bytes). */
978 read_memory (pc + delta, buf, sizeof (buf));
c906108c 979 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 980 pc += delta + sizeof (buf);
c906108c
SS
981 }
982
acd5c798
MK
983 return pc;
984}
985
92dd43fa
MK
986/* GCC 4.1 and later, can put code in the prologue to realign the
987 stack pointer. Check whether PC points to such code, and update
988 CACHE accordingly. Return the first instruction after the code
989 sequence or CURRENT_PC, whichever is smaller. If we don't
990 recognize the code, return PC. */
991
992static CORE_ADDR
993i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
994 struct i386_frame_cache *cache)
995{
e0c62198
L
996 /* There are 2 code sequences to re-align stack before the frame
997 gets set up:
998
999 1. Use a caller-saved saved register:
1000
1001 leal 4(%esp), %reg
1002 andl $-XXX, %esp
1003 pushl -4(%reg)
1004
1005 2. Use a callee-saved saved register:
1006
1007 pushl %reg
1008 leal 8(%esp), %reg
1009 andl $-XXX, %esp
1010 pushl -4(%reg)
1011
1012 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1013
1014 0x83 0xe4 0xf0 andl $-16, %esp
1015 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1016 */
1017
1018 gdb_byte buf[14];
1019 int reg;
1020 int offset, offset_and;
1021 static int regnums[8] = {
1022 I386_EAX_REGNUM, /* %eax */
1023 I386_ECX_REGNUM, /* %ecx */
1024 I386_EDX_REGNUM, /* %edx */
1025 I386_EBX_REGNUM, /* %ebx */
1026 I386_ESP_REGNUM, /* %esp */
1027 I386_EBP_REGNUM, /* %ebp */
1028 I386_ESI_REGNUM, /* %esi */
1029 I386_EDI_REGNUM /* %edi */
92dd43fa 1030 };
92dd43fa 1031
e0c62198
L
1032 if (target_read_memory (pc, buf, sizeof buf))
1033 return pc;
1034
1035 /* Check caller-saved saved register. The first instruction has
1036 to be "leal 4(%esp), %reg". */
1037 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1038 {
1039 /* MOD must be binary 10 and R/M must be binary 100. */
1040 if ((buf[1] & 0xc7) != 0x44)
1041 return pc;
1042
1043 /* REG has register number. */
1044 reg = (buf[1] >> 3) & 7;
1045 offset = 4;
1046 }
1047 else
1048 {
1049 /* Check callee-saved saved register. The first instruction
1050 has to be "pushl %reg". */
1051 if ((buf[0] & 0xf8) != 0x50)
1052 return pc;
1053
1054 /* Get register. */
1055 reg = buf[0] & 0x7;
1056
1057 /* The next instruction has to be "leal 8(%esp), %reg". */
1058 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1059 return pc;
1060
1061 /* MOD must be binary 10 and R/M must be binary 100. */
1062 if ((buf[2] & 0xc7) != 0x44)
1063 return pc;
1064
1065 /* REG has register number. Registers in pushl and leal have to
1066 be the same. */
1067 if (reg != ((buf[2] >> 3) & 7))
1068 return pc;
1069
1070 offset = 5;
1071 }
1072
1073 /* Rigister can't be %esp nor %ebp. */
1074 if (reg == 4 || reg == 5)
1075 return pc;
1076
1077 /* The next instruction has to be "andl $-XXX, %esp". */
1078 if (buf[offset + 1] != 0xe4
1079 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1080 return pc;
1081
1082 offset_and = offset;
1083 offset += buf[offset] == 0x81 ? 6 : 3;
1084
1085 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1086 0xfc. REG must be binary 110 and MOD must be binary 01. */
1087 if (buf[offset] != 0xff
1088 || buf[offset + 2] != 0xfc
1089 || (buf[offset + 1] & 0xf8) != 0x70)
1090 return pc;
1091
1092 /* R/M has register. Registers in leal and pushl have to be the
1093 same. */
1094 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1095 return pc;
1096
e0c62198
L
1097 if (current_pc > pc + offset_and)
1098 cache->saved_sp_reg = regnums[reg];
92dd43fa 1099
e0c62198 1100 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1101}
1102
37bdc87e 1103/* Maximum instruction length we need to handle. */
237fc4c9 1104#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1105
1106/* Instruction description. */
1107struct i386_insn
1108{
1109 size_t len;
237fc4c9
PA
1110 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1111 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1112};
1113
1114/* Search for the instruction at PC in the list SKIP_INSNS. Return
1115 the first instruction description that matches. Otherwise, return
1116 NULL. */
1117
1118static struct i386_insn *
1119i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1120{
1121 struct i386_insn *insn;
63c0089f 1122 gdb_byte op;
37bdc87e 1123
8defab1a 1124 target_read_memory (pc, &op, 1);
37bdc87e
MK
1125
1126 for (insn = skip_insns; insn->len > 0; insn++)
1127 {
1128 if ((op & insn->mask[0]) == insn->insn[0])
1129 {
237fc4c9 1130 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
613e8135 1131 int insn_matched = 1;
37bdc87e
MK
1132 size_t i;
1133
1134 gdb_assert (insn->len > 1);
237fc4c9 1135 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
37bdc87e 1136
8defab1a 1137 target_read_memory (pc + 1, buf, insn->len - 1);
37bdc87e
MK
1138 for (i = 1; i < insn->len; i++)
1139 {
1140 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 1141 insn_matched = 0;
37bdc87e 1142 }
613e8135
MK
1143
1144 if (insn_matched)
1145 return insn;
37bdc87e
MK
1146 }
1147 }
1148
1149 return NULL;
1150}
1151
1152/* Some special instructions that might be migrated by GCC into the
1153 part of the prologue that sets up the new stack frame. Because the
1154 stack frame hasn't been setup yet, no registers have been saved
1155 yet, and only the scratch registers %eax, %ecx and %edx can be
1156 touched. */
1157
1158struct i386_insn i386_frame_setup_skip_insns[] =
1159{
1160 /* Check for `movb imm8, r' and `movl imm32, r'.
1161
1162 ??? Should we handle 16-bit operand-sizes here? */
1163
1164 /* `movb imm8, %al' and `movb imm8, %ah' */
1165 /* `movb imm8, %cl' and `movb imm8, %ch' */
1166 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1167 /* `movb imm8, %dl' and `movb imm8, %dh' */
1168 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1169 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1170 { 5, { 0xb8 }, { 0xfe } },
1171 /* `movl imm32, %edx' */
1172 { 5, { 0xba }, { 0xff } },
1173
1174 /* Check for `mov imm32, r32'. Note that there is an alternative
1175 encoding for `mov m32, %eax'.
1176
1177 ??? Should we handle SIB adressing here?
1178 ??? Should we handle 16-bit operand-sizes here? */
1179
1180 /* `movl m32, %eax' */
1181 { 5, { 0xa1 }, { 0xff } },
1182 /* `movl m32, %eax' and `mov; m32, %ecx' */
1183 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1184 /* `movl m32, %edx' */
1185 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1186
1187 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1188 Because of the symmetry, there are actually two ways to encode
1189 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1190 opcode bytes 0x31 and 0x33 for `xorl'. */
1191
1192 /* `subl %eax, %eax' */
1193 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1194 /* `subl %ecx, %ecx' */
1195 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1196 /* `subl %edx, %edx' */
1197 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1198 /* `xorl %eax, %eax' */
1199 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1200 /* `xorl %ecx, %ecx' */
1201 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1202 /* `xorl %edx, %edx' */
1203 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1204 { 0 }
1205};
1206
e11481da
PM
1207
1208/* Check whether PC points to a no-op instruction. */
1209static CORE_ADDR
1210i386_skip_noop (CORE_ADDR pc)
1211{
1212 gdb_byte op;
1213 int check = 1;
1214
8defab1a 1215 target_read_memory (pc, &op, 1);
e11481da
PM
1216
1217 while (check)
1218 {
1219 check = 0;
1220 /* Ignore `nop' instruction. */
1221 if (op == 0x90)
1222 {
1223 pc += 1;
8defab1a 1224 target_read_memory (pc, &op, 1);
e11481da
PM
1225 check = 1;
1226 }
1227 /* Ignore no-op instruction `mov %edi, %edi'.
1228 Microsoft system dlls often start with
1229 a `mov %edi,%edi' instruction.
1230 The 5 bytes before the function start are
1231 filled with `nop' instructions.
1232 This pattern can be used for hot-patching:
1233 The `mov %edi, %edi' instruction can be replaced by a
1234 near jump to the location of the 5 `nop' instructions
1235 which can be replaced by a 32-bit jump to anywhere
1236 in the 32-bit address space. */
1237
1238 else if (op == 0x8b)
1239 {
8defab1a 1240 target_read_memory (pc + 1, &op, 1);
e11481da
PM
1241 if (op == 0xff)
1242 {
1243 pc += 2;
8defab1a 1244 target_read_memory (pc, &op, 1);
e11481da
PM
1245 check = 1;
1246 }
1247 }
1248 }
1249 return pc;
1250}
1251
acd5c798
MK
1252/* Check whether PC points at a code that sets up a new stack frame.
1253 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1254 instruction after the sequence that sets up the frame or LIMIT,
1255 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1256
1257static CORE_ADDR
e17a4113
UW
1258i386_analyze_frame_setup (struct gdbarch *gdbarch,
1259 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1260 struct i386_frame_cache *cache)
1261{
e17a4113 1262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1263 struct i386_insn *insn;
63c0089f 1264 gdb_byte op;
26604a34 1265 int skip = 0;
acd5c798 1266
37bdc87e
MK
1267 if (limit <= pc)
1268 return limit;
acd5c798 1269
8defab1a 1270 target_read_memory (pc, &op, 1);
acd5c798 1271
c906108c 1272 if (op == 0x55) /* pushl %ebp */
c5aa993b 1273 {
acd5c798
MK
1274 /* Take into account that we've executed the `pushl %ebp' that
1275 starts this instruction sequence. */
fd13a04a 1276 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1277 cache->sp_offset += 4;
37bdc87e 1278 pc++;
acd5c798
MK
1279
1280 /* If that's all, return now. */
37bdc87e
MK
1281 if (limit <= pc)
1282 return limit;
26604a34 1283
b4632131 1284 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1285 GCC into the prologue and skip them. At this point in the
1286 prologue, code should only touch the scratch registers %eax,
1287 %ecx and %edx, so while the number of posibilities is sheer,
1288 it is limited.
5daa5b4e 1289
26604a34
MK
1290 Make sure we only skip these instructions if we later see the
1291 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1292 while (pc + skip < limit)
26604a34 1293 {
37bdc87e
MK
1294 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1295 if (insn == NULL)
1296 break;
b4632131 1297
37bdc87e 1298 skip += insn->len;
26604a34
MK
1299 }
1300
37bdc87e
MK
1301 /* If that's all, return now. */
1302 if (limit <= pc + skip)
1303 return limit;
1304
8defab1a 1305 target_read_memory (pc + skip, &op, 1);
37bdc87e 1306
26604a34 1307 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 1308 switch (op)
c906108c
SS
1309 {
1310 case 0x8b:
e17a4113
UW
1311 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1312 != 0xec)
37bdc87e 1313 return pc;
c906108c
SS
1314 break;
1315 case 0x89:
e17a4113
UW
1316 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1317 != 0xe5)
37bdc87e 1318 return pc;
c906108c
SS
1319 break;
1320 default:
37bdc87e 1321 return pc;
c906108c 1322 }
acd5c798 1323
26604a34
MK
1324 /* OK, we actually have a frame. We just don't know how large
1325 it is yet. Set its size to zero. We'll adjust it if
1326 necessary. We also now commit to skipping the special
1327 instructions mentioned before. */
acd5c798 1328 cache->locals = 0;
37bdc87e 1329 pc += (skip + 2);
acd5c798
MK
1330
1331 /* If that's all, return now. */
37bdc87e
MK
1332 if (limit <= pc)
1333 return limit;
acd5c798 1334
fc338970
MK
1335 /* Check for stack adjustment
1336
acd5c798 1337 subl $XXX, %esp
fc338970 1338
fd35795f 1339 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1340 reg, so we don't have to worry about a data16 prefix. */
8defab1a 1341 target_read_memory (pc, &op, 1);
c906108c
SS
1342 if (op == 0x83)
1343 {
fd35795f 1344 /* `subl' with 8-bit immediate. */
e17a4113 1345 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1346 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1347 return pc;
acd5c798 1348
37bdc87e
MK
1349 /* `subl' with signed 8-bit immediate (though it wouldn't
1350 make sense to be negative). */
e17a4113 1351 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1352 return pc + 3;
c906108c
SS
1353 }
1354 else if (op == 0x81)
1355 {
fd35795f 1356 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1357 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1358 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1359 return pc;
acd5c798 1360
fd35795f 1361 /* It is `subl' with a 32-bit immediate. */
e17a4113 1362 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1363 return pc + 6;
c906108c
SS
1364 }
1365 else
1366 {
acd5c798 1367 /* Some instruction other than `subl'. */
37bdc87e 1368 return pc;
c906108c
SS
1369 }
1370 }
37bdc87e 1371 else if (op == 0xc8) /* enter */
c906108c 1372 {
e17a4113 1373 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1374 return pc + 4;
c906108c 1375 }
21d0e8a4 1376
acd5c798 1377 return pc;
21d0e8a4
MK
1378}
1379
acd5c798
MK
1380/* Check whether PC points at code that saves registers on the stack.
1381 If so, it updates CACHE and returns the address of the first
1382 instruction after the register saves or CURRENT_PC, whichever is
1383 smaller. Otherwise, return PC. */
6bff26de
MK
1384
1385static CORE_ADDR
acd5c798
MK
1386i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1387 struct i386_frame_cache *cache)
6bff26de 1388{
99ab4326 1389 CORE_ADDR offset = 0;
63c0089f 1390 gdb_byte op;
99ab4326 1391 int i;
c0d1d883 1392
99ab4326
MK
1393 if (cache->locals > 0)
1394 offset -= cache->locals;
1395 for (i = 0; i < 8 && pc < current_pc; i++)
1396 {
8defab1a 1397 target_read_memory (pc, &op, 1);
99ab4326
MK
1398 if (op < 0x50 || op > 0x57)
1399 break;
0d17c81d 1400
99ab4326
MK
1401 offset -= 4;
1402 cache->saved_regs[op - 0x50] = offset;
1403 cache->sp_offset += 4;
1404 pc++;
6bff26de
MK
1405 }
1406
acd5c798 1407 return pc;
22797942
AC
1408}
1409
acd5c798
MK
1410/* Do a full analysis of the prologue at PC and update CACHE
1411 accordingly. Bail out early if CURRENT_PC is reached. Return the
1412 address where the analysis stopped.
ed84f6c1 1413
fc338970
MK
1414 We handle these cases:
1415
1416 The startup sequence can be at the start of the function, or the
1417 function can start with a branch to startup code at the end.
1418
1419 %ebp can be set up with either the 'enter' instruction, or "pushl
1420 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1421 once used in the System V compiler).
1422
1423 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1424 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1425 16-bit unsigned argument for space to allocate, and the 'addl'
1426 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1427
1428 Next, the registers used by this function are pushed. With the
1429 System V compiler they will always be in the order: %edi, %esi,
1430 %ebx (and sometimes a harmless bug causes it to also save but not
1431 restore %eax); however, the code below is willing to see the pushes
1432 in any order, and will handle up to 8 of them.
1433
1434 If the setup sequence is at the end of the function, then the next
1435 instruction will be a branch back to the start. */
c906108c 1436
acd5c798 1437static CORE_ADDR
e17a4113
UW
1438i386_analyze_prologue (struct gdbarch *gdbarch,
1439 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1440 struct i386_frame_cache *cache)
c906108c 1441{
e11481da 1442 pc = i386_skip_noop (pc);
e17a4113 1443 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1444 pc = i386_analyze_struct_return (pc, current_pc, cache);
1445 pc = i386_skip_probe (pc);
92dd43fa 1446 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1447 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1448 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1449}
1450
fc338970 1451/* Return PC of first real instruction. */
c906108c 1452
3a1e71e3 1453static CORE_ADDR
6093d2eb 1454i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1455{
e17a4113
UW
1456 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1457
63c0089f 1458 static gdb_byte pic_pat[6] =
acd5c798
MK
1459 {
1460 0xe8, 0, 0, 0, 0, /* call 0x0 */
1461 0x5b, /* popl %ebx */
c5aa993b 1462 };
acd5c798
MK
1463 struct i386_frame_cache cache;
1464 CORE_ADDR pc;
63c0089f 1465 gdb_byte op;
acd5c798 1466 int i;
c5aa993b 1467
acd5c798 1468 cache.locals = -1;
e17a4113 1469 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1470 if (cache.locals < 0)
1471 return start_pc;
c5aa993b 1472
acd5c798 1473 /* Found valid frame setup. */
c906108c 1474
fc338970
MK
1475 /* The native cc on SVR4 in -K PIC mode inserts the following code
1476 to get the address of the global offset table (GOT) into register
acd5c798
MK
1477 %ebx:
1478
fc338970
MK
1479 call 0x0
1480 popl %ebx
1481 movl %ebx,x(%ebp) (optional)
1482 addl y,%ebx
1483
c906108c
SS
1484 This code is with the rest of the prologue (at the end of the
1485 function), so we have to skip it to get to the first real
1486 instruction at the start of the function. */
c5aa993b 1487
c906108c
SS
1488 for (i = 0; i < 6; i++)
1489 {
8defab1a 1490 target_read_memory (pc + i, &op, 1);
c5aa993b 1491 if (pic_pat[i] != op)
c906108c
SS
1492 break;
1493 }
1494 if (i == 6)
1495 {
acd5c798
MK
1496 int delta = 6;
1497
8defab1a 1498 target_read_memory (pc + delta, &op, 1);
c906108c 1499
c5aa993b 1500 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1501 {
e17a4113 1502 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1503
fc338970 1504 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1505 delta += 3;
fc338970 1506 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1507 delta += 6;
fc338970 1508 else /* Unexpected instruction. */
acd5c798
MK
1509 delta = 0;
1510
8defab1a 1511 target_read_memory (pc + delta, &op, 1);
c906108c 1512 }
acd5c798 1513
c5aa993b 1514 /* addl y,%ebx */
acd5c798 1515 if (delta > 0 && op == 0x81
e17a4113
UW
1516 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1517 == 0xc3)
c906108c 1518 {
acd5c798 1519 pc += delta + 6;
c906108c
SS
1520 }
1521 }
c5aa993b 1522
e63bbc88
MK
1523 /* If the function starts with a branch (to startup code at the end)
1524 the last instruction should bring us back to the first
1525 instruction of the real code. */
e17a4113
UW
1526 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1527 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1528
1529 return pc;
c906108c
SS
1530}
1531
4309257c
PM
1532/* Check that the code pointed to by PC corresponds to a call to
1533 __main, skip it if so. Return PC otherwise. */
1534
1535CORE_ADDR
1536i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1537{
e17a4113 1538 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1539 gdb_byte op;
1540
1541 target_read_memory (pc, &op, 1);
1542 if (op == 0xe8)
1543 {
1544 gdb_byte buf[4];
1545
1546 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1547 {
1548 /* Make sure address is computed correctly as a 32bit
1549 integer even if CORE_ADDR is 64 bit wide. */
1550 struct minimal_symbol *s;
e17a4113 1551 CORE_ADDR call_dest;
4309257c 1552
e17a4113 1553 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1554 call_dest = call_dest & 0xffffffffU;
1555 s = lookup_minimal_symbol_by_pc (call_dest);
1556 if (s != NULL
1557 && SYMBOL_LINKAGE_NAME (s) != NULL
1558 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1559 pc += 5;
1560 }
1561 }
1562
1563 return pc;
1564}
1565
acd5c798 1566/* This function is 64-bit safe. */
93924b6b 1567
acd5c798
MK
1568static CORE_ADDR
1569i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1570{
63c0089f 1571 gdb_byte buf[8];
acd5c798 1572
875f8d0e 1573 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1574 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1575}
acd5c798 1576\f
93924b6b 1577
acd5c798 1578/* Normal frames. */
c5aa993b 1579
acd5c798 1580static struct i386_frame_cache *
10458914 1581i386_frame_cache (struct frame_info *this_frame, void **this_cache)
a7769679 1582{
e17a4113
UW
1583 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1584 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 1585 struct i386_frame_cache *cache;
63c0089f 1586 gdb_byte buf[4];
acd5c798
MK
1587 int i;
1588
1589 if (*this_cache)
1590 return *this_cache;
1591
fd13a04a 1592 cache = i386_alloc_frame_cache ();
acd5c798
MK
1593 *this_cache = cache;
1594
1595 /* In principle, for normal frames, %ebp holds the frame pointer,
1596 which holds the base address for the current stack frame.
1597 However, for functions that don't need it, the frame pointer is
1598 optional. For these "frameless" functions the frame pointer is
1599 actually the frame pointer of the calling frame. Signal
1600 trampolines are just a special case of a "frameless" function.
1601 They (usually) share their frame pointer with the frame that was
1602 in progress when the signal occurred. */
1603
10458914 1604 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1605 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798
MK
1606 if (cache->base == 0)
1607 return cache;
1608
1609 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1610 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1611
10458914 1612 cache->pc = get_frame_func (this_frame);
acd5c798 1613 if (cache->pc != 0)
e17a4113
UW
1614 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1615 cache);
acd5c798 1616
e0c62198 1617 if (cache->saved_sp_reg != -1)
92dd43fa 1618 {
e0c62198
L
1619 /* Saved stack pointer has been saved. */
1620 get_frame_register (this_frame, cache->saved_sp_reg, buf);
e17a4113 1621 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
92dd43fa
MK
1622 }
1623
acd5c798
MK
1624 if (cache->locals < 0)
1625 {
1626 /* We didn't find a valid frame, which means that CACHE->base
1627 currently holds the frame pointer for our calling frame. If
1628 we're at the start of a function, or somewhere half-way its
1629 prologue, the function's frame probably hasn't been fully
1630 setup yet. Try to reconstruct the base address for the stack
1631 frame by looking at the stack pointer. For truly "frameless"
1632 functions this might work too. */
1633
e0c62198 1634 if (cache->saved_sp_reg != -1)
92dd43fa
MK
1635 {
1636 /* We're halfway aligning the stack. */
1637 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1638 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1639
1640 /* This will be added back below. */
1641 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1642 }
7618e12b
DJ
1643 else if (cache->pc != 0
1644 || target_read_memory (get_frame_pc (this_frame), buf, 1))
92dd43fa 1645 {
7618e12b
DJ
1646 /* We're in a known function, but did not find a frame
1647 setup. Assume that the function does not use %ebp.
1648 Alternatively, we may have jumped to an invalid
1649 address; in that case there is definitely no new
1650 frame in %ebp. */
10458914 1651 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1652 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1653 + cache->sp_offset;
92dd43fa 1654 }
7618e12b
DJ
1655 else
1656 /* We're in an unknown function. We could not find the start
1657 of the function to analyze the prologue; our best option is
1658 to assume a typical frame layout with the caller's %ebp
1659 saved. */
1660 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1661 }
1662
1663 /* Now that we have the base address for the stack frame we can
1664 calculate the value of %esp in the calling frame. */
92dd43fa
MK
1665 if (cache->saved_sp == 0)
1666 cache->saved_sp = cache->base + 8;
a7769679 1667
acd5c798
MK
1668 /* Adjust all the saved registers such that they contain addresses
1669 instead of offsets. */
1670 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1671 if (cache->saved_regs[i] != -1)
1672 cache->saved_regs[i] += cache->base;
acd5c798
MK
1673
1674 return cache;
a7769679
MK
1675}
1676
3a1e71e3 1677static void
10458914 1678i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1679 struct frame_id *this_id)
c906108c 1680{
10458914 1681 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1682
1683 /* This marks the outermost frame. */
1684 if (cache->base == 0)
1685 return;
1686
3e210248 1687 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1688 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1689}
1690
10458914
DJ
1691static struct value *
1692i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1693 int regnum)
acd5c798 1694{
10458914 1695 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1696
1697 gdb_assert (regnum >= 0);
1698
1699 /* The System V ABI says that:
1700
1701 "The flags register contains the system flags, such as the
1702 direction flag and the carry flag. The direction flag must be
1703 set to the forward (that is, zero) direction before entry and
1704 upon exit from a function. Other user flags have no specified
1705 role in the standard calling sequence and are not preserved."
1706
1707 To guarantee the "upon exit" part of that statement we fake a
1708 saved flags register that has its direction flag cleared.
1709
1710 Note that GCC doesn't seem to rely on the fact that the direction
1711 flag is cleared after a function return; it always explicitly
1712 clears the flag before operations where it matters.
1713
1714 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1715 right thing to do. The way we fake the flags register here makes
1716 it impossible to change it. */
1717
1718 if (regnum == I386_EFLAGS_REGNUM)
1719 {
10458914 1720 ULONGEST val;
c5aa993b 1721
10458914
DJ
1722 val = get_frame_register_unsigned (this_frame, regnum);
1723 val &= ~(1 << 10);
1724 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1725 }
1211c4e4 1726
acd5c798 1727 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1728 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798
MK
1729
1730 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
10458914 1731 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
acd5c798 1732
fd13a04a 1733 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1734 return frame_unwind_got_memory (this_frame, regnum,
1735 cache->saved_regs[regnum]);
fd13a04a 1736
10458914 1737 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1738}
1739
1740static const struct frame_unwind i386_frame_unwind =
1741{
1742 NORMAL_FRAME,
1743 i386_frame_this_id,
10458914
DJ
1744 i386_frame_prev_register,
1745 NULL,
1746 default_frame_sniffer
acd5c798 1747};
06da04c6
MS
1748
1749/* Normal frames, but in a function epilogue. */
1750
1751/* The epilogue is defined here as the 'ret' instruction, which will
1752 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1753 the function's stack frame. */
1754
1755static int
1756i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1757{
1758 gdb_byte insn;
1759
1760 if (target_read_memory (pc, &insn, 1))
1761 return 0; /* Can't read memory at pc. */
1762
1763 if (insn != 0xc3) /* 'ret' instruction. */
1764 return 0;
1765
1766 return 1;
1767}
1768
1769static int
1770i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1771 struct frame_info *this_frame,
1772 void **this_prologue_cache)
1773{
1774 if (frame_relative_level (this_frame) == 0)
1775 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1776 get_frame_pc (this_frame));
1777 else
1778 return 0;
1779}
1780
1781static struct i386_frame_cache *
1782i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1783{
1784 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1785 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1786 struct i386_frame_cache *cache;
1787 gdb_byte buf[4];
1788
1789 if (*this_cache)
1790 return *this_cache;
1791
1792 cache = i386_alloc_frame_cache ();
1793 *this_cache = cache;
1794
1795 /* Cache base will be %esp plus cache->sp_offset (-4). */
1796 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1797 cache->base = extract_unsigned_integer (buf, 4,
1798 byte_order) + cache->sp_offset;
1799
1800 /* Cache pc will be the frame func. */
1801 cache->pc = get_frame_pc (this_frame);
1802
1803 /* The saved %esp will be at cache->base plus 8. */
1804 cache->saved_sp = cache->base + 8;
1805
1806 /* The saved %eip will be at cache->base plus 4. */
1807 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1808
1809 return cache;
1810}
1811
1812static void
1813i386_epilogue_frame_this_id (struct frame_info *this_frame,
1814 void **this_cache,
1815 struct frame_id *this_id)
1816{
1817 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1818 this_cache);
1819
1820 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1821}
1822
1823static const struct frame_unwind i386_epilogue_frame_unwind =
1824{
1825 NORMAL_FRAME,
1826 i386_epilogue_frame_this_id,
1827 i386_frame_prev_register,
1828 NULL,
1829 i386_epilogue_frame_sniffer
1830};
acd5c798
MK
1831\f
1832
1833/* Signal trampolines. */
1834
1835static struct i386_frame_cache *
10458914 1836i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 1837{
e17a4113
UW
1838 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1839 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1840 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 1841 struct i386_frame_cache *cache;
acd5c798 1842 CORE_ADDR addr;
63c0089f 1843 gdb_byte buf[4];
acd5c798
MK
1844
1845 if (*this_cache)
1846 return *this_cache;
1847
fd13a04a 1848 cache = i386_alloc_frame_cache ();
acd5c798 1849
10458914 1850 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 1851 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
acd5c798 1852
10458914 1853 addr = tdep->sigcontext_addr (this_frame);
a3386186
MK
1854 if (tdep->sc_reg_offset)
1855 {
1856 int i;
1857
1858 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1859
1860 for (i = 0; i < tdep->sc_num_regs; i++)
1861 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1862 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1863 }
1864 else
1865 {
fd13a04a
AC
1866 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1867 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1868 }
acd5c798
MK
1869
1870 *this_cache = cache;
1871 return cache;
1872}
1873
1874static void
10458914 1875i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
1876 struct frame_id *this_id)
1877{
1878 struct i386_frame_cache *cache =
10458914 1879 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1880
3e210248 1881 /* See the end of i386_push_dummy_call. */
10458914 1882 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
1883}
1884
10458914
DJ
1885static struct value *
1886i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1887 void **this_cache, int regnum)
acd5c798
MK
1888{
1889 /* Make sure we've initialized the cache. */
10458914 1890 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1891
10458914 1892 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 1893}
c0d1d883 1894
10458914
DJ
1895static int
1896i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1897 struct frame_info *this_frame,
1898 void **this_prologue_cache)
acd5c798 1899{
10458914 1900 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1901
911bc6ee
MK
1902 /* We shouldn't even bother if we don't have a sigcontext_addr
1903 handler. */
1904 if (tdep->sigcontext_addr == NULL)
10458914 1905 return 0;
1c3545ae 1906
911bc6ee
MK
1907 if (tdep->sigtramp_p != NULL)
1908 {
10458914
DJ
1909 if (tdep->sigtramp_p (this_frame))
1910 return 1;
911bc6ee
MK
1911 }
1912
1913 if (tdep->sigtramp_start != 0)
1914 {
10458914 1915 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
1916
1917 gdb_assert (tdep->sigtramp_end != 0);
1918 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 1919 return 1;
911bc6ee 1920 }
acd5c798 1921
10458914 1922 return 0;
acd5c798 1923}
10458914
DJ
1924
1925static const struct frame_unwind i386_sigtramp_frame_unwind =
1926{
1927 SIGTRAMP_FRAME,
1928 i386_sigtramp_frame_this_id,
1929 i386_sigtramp_frame_prev_register,
1930 NULL,
1931 i386_sigtramp_frame_sniffer
1932};
acd5c798
MK
1933\f
1934
1935static CORE_ADDR
10458914 1936i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 1937{
10458914 1938 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1939
1940 return cache->base;
1941}
1942
1943static const struct frame_base i386_frame_base =
1944{
1945 &i386_frame_unwind,
1946 i386_frame_base_address,
1947 i386_frame_base_address,
1948 i386_frame_base_address
1949};
1950
acd5c798 1951static struct frame_id
10458914 1952i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 1953{
acd5c798
MK
1954 CORE_ADDR fp;
1955
10458914 1956 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 1957
3e210248 1958 /* See the end of i386_push_dummy_call. */
10458914 1959 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 1960}
fc338970 1961\f
c906108c 1962
fc338970
MK
1963/* Figure out where the longjmp will land. Slurp the args out of the
1964 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1965 structure from which we extract the address that we will land at.
28bcfd30 1966 This address is copied into PC. This routine returns non-zero on
436675d3 1967 success. */
c906108c 1968
8201327c 1969static int
60ade65d 1970i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1971{
436675d3 1972 gdb_byte buf[4];
c906108c 1973 CORE_ADDR sp, jb_addr;
20a6ec49 1974 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 1975 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 1976 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 1977
8201327c
MK
1978 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1979 longjmp will land. */
1980 if (jb_pc_offset == -1)
c906108c
SS
1981 return 0;
1982
436675d3 1983 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 1984 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 1985 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
1986 return 0;
1987
e17a4113 1988 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 1989 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 1990 return 0;
c906108c 1991
e17a4113 1992 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1993 return 1;
1994}
fc338970 1995\f
c906108c 1996
7ccc1c74
JM
1997/* Check whether TYPE must be 16-byte-aligned when passed as a
1998 function argument. 16-byte vectors, _Decimal128 and structures or
1999 unions containing such types must be 16-byte-aligned; other
2000 arguments are 4-byte-aligned. */
2001
2002static int
2003i386_16_byte_align_p (struct type *type)
2004{
2005 type = check_typedef (type);
2006 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2007 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2008 && TYPE_LENGTH (type) == 16)
2009 return 1;
2010 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2011 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2012 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2013 || TYPE_CODE (type) == TYPE_CODE_UNION)
2014 {
2015 int i;
2016 for (i = 0; i < TYPE_NFIELDS (type); i++)
2017 {
2018 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2019 return 1;
2020 }
2021 }
2022 return 0;
2023}
2024
3a1e71e3 2025static CORE_ADDR
7d9b040b 2026i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2027 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2028 struct value **args, CORE_ADDR sp, int struct_return,
2029 CORE_ADDR struct_addr)
22f8ba57 2030{
e17a4113 2031 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2032 gdb_byte buf[4];
acd5c798 2033 int i;
7ccc1c74
JM
2034 int write_pass;
2035 int args_space = 0;
acd5c798 2036
7ccc1c74
JM
2037 /* Determine the total space required for arguments and struct
2038 return address in a first pass (allowing for 16-byte-aligned
2039 arguments), then push arguments in a second pass. */
2040
2041 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2042 {
7ccc1c74
JM
2043 int args_space_used = 0;
2044 int have_16_byte_aligned_arg = 0;
2045
2046 if (struct_return)
2047 {
2048 if (write_pass)
2049 {
2050 /* Push value address. */
e17a4113 2051 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2052 write_memory (sp, buf, 4);
2053 args_space_used += 4;
2054 }
2055 else
2056 args_space += 4;
2057 }
2058
2059 for (i = 0; i < nargs; i++)
2060 {
2061 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2062
7ccc1c74
JM
2063 if (write_pass)
2064 {
2065 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2066 args_space_used = align_up (args_space_used, 16);
acd5c798 2067
7ccc1c74
JM
2068 write_memory (sp + args_space_used,
2069 value_contents_all (args[i]), len);
2070 /* The System V ABI says that:
acd5c798 2071
7ccc1c74
JM
2072 "An argument's size is increased, if necessary, to make it a
2073 multiple of [32-bit] words. This may require tail padding,
2074 depending on the size of the argument."
22f8ba57 2075
7ccc1c74
JM
2076 This makes sure the stack stays word-aligned. */
2077 args_space_used += align_up (len, 4);
2078 }
2079 else
2080 {
2081 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2082 {
2083 args_space = align_up (args_space, 16);
2084 have_16_byte_aligned_arg = 1;
2085 }
2086 args_space += align_up (len, 4);
2087 }
2088 }
2089
2090 if (!write_pass)
2091 {
2092 if (have_16_byte_aligned_arg)
2093 args_space = align_up (args_space, 16);
2094 sp -= args_space;
2095 }
22f8ba57
MK
2096 }
2097
acd5c798
MK
2098 /* Store return address. */
2099 sp -= 4;
e17a4113 2100 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2101 write_memory (sp, buf, 4);
2102
2103 /* Finally, update the stack pointer... */
e17a4113 2104 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2105 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2106
2107 /* ...and fake a frame pointer. */
2108 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2109
3e210248
AC
2110 /* MarkK wrote: This "+ 8" is all over the place:
2111 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2112 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2113 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2114 definition of the stack address of a frame. Otherwise frame id
2115 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2116 stack address *before* the function call as a frame's CFA. On
2117 the i386, when %ebp is used as a frame pointer, the offset
2118 between the contents %ebp and the CFA as defined by GCC. */
2119 return sp + 8;
22f8ba57
MK
2120}
2121
1a309862
MK
2122/* These registers are used for returning integers (and on some
2123 targets also for returning `struct' and `union' values when their
ef9dff19 2124 size and alignment match an integer type). */
acd5c798
MK
2125#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2126#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2127
c5e656c1
MK
2128/* Read, for architecture GDBARCH, a function return value of TYPE
2129 from REGCACHE, and copy that into VALBUF. */
1a309862 2130
3a1e71e3 2131static void
c5e656c1 2132i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2133 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2134{
c5e656c1 2135 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2136 int len = TYPE_LENGTH (type);
63c0089f 2137 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2138
1e8d0a7b 2139 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2140 {
5716833c 2141 if (tdep->st0_regnum < 0)
1a309862 2142 {
8a3fe4f8 2143 warning (_("Cannot find floating-point return value."));
1a309862 2144 memset (valbuf, 0, len);
ef9dff19 2145 return;
1a309862
MK
2146 }
2147
c6ba6f0d
MK
2148 /* Floating-point return values can be found in %st(0). Convert
2149 its contents to the desired type. This is probably not
2150 exactly how it would happen on the target itself, but it is
2151 the best we can do. */
acd5c798 2152 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2153 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2154 }
2155 else
c5aa993b 2156 {
875f8d0e
UW
2157 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2158 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2159
2160 if (len <= low_size)
00f8375e 2161 {
0818c12a 2162 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2163 memcpy (valbuf, buf, len);
2164 }
d4f3574e
SS
2165 else if (len <= (low_size + high_size))
2166 {
0818c12a 2167 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2168 memcpy (valbuf, buf, low_size);
0818c12a 2169 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2170 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2171 }
2172 else
8e65ff28 2173 internal_error (__FILE__, __LINE__,
e2e0b3e5 2174 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
2175 }
2176}
2177
c5e656c1
MK
2178/* Write, for architecture GDBARCH, a function return value of TYPE
2179 from VALBUF into REGCACHE. */
ef9dff19 2180
3a1e71e3 2181static void
c5e656c1 2182i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2183 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2184{
c5e656c1 2185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2186 int len = TYPE_LENGTH (type);
2187
1e8d0a7b 2188 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2189 {
3d7f4f49 2190 ULONGEST fstat;
63c0089f 2191 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2192
5716833c 2193 if (tdep->st0_regnum < 0)
ef9dff19 2194 {
8a3fe4f8 2195 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2196 return;
2197 }
2198
635b0cc1
MK
2199 /* Returning floating-point values is a bit tricky. Apart from
2200 storing the return value in %st(0), we have to simulate the
2201 state of the FPU at function return point. */
2202
c6ba6f0d
MK
2203 /* Convert the value found in VALBUF to the extended
2204 floating-point format used by the FPU. This is probably
2205 not exactly how it would happen on the target itself, but
2206 it is the best we can do. */
27067745 2207 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2208 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2209
635b0cc1
MK
2210 /* Set the top of the floating-point register stack to 7. The
2211 actual value doesn't really matter, but 7 is what a normal
2212 function return would end up with if the program started out
2213 with a freshly initialized FPU. */
20a6ec49 2214 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2215 fstat |= (7 << 11);
20a6ec49 2216 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2217
635b0cc1
MK
2218 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2219 the floating-point register stack to 7, the appropriate value
2220 for the tag word is 0x3fff. */
20a6ec49 2221 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2222 }
2223 else
2224 {
875f8d0e
UW
2225 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2226 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2227
2228 if (len <= low_size)
3d7f4f49 2229 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2230 else if (len <= (low_size + high_size))
2231 {
3d7f4f49
MK
2232 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2233 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2234 len - low_size, valbuf + low_size);
ef9dff19
MK
2235 }
2236 else
8e65ff28 2237 internal_error (__FILE__, __LINE__,
e2e0b3e5 2238 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2239 }
2240}
fc338970 2241\f
ef9dff19 2242
8201327c
MK
2243/* This is the variable that is set with "set struct-convention", and
2244 its legitimate values. */
2245static const char default_struct_convention[] = "default";
2246static const char pcc_struct_convention[] = "pcc";
2247static const char reg_struct_convention[] = "reg";
2248static const char *valid_conventions[] =
2249{
2250 default_struct_convention,
2251 pcc_struct_convention,
2252 reg_struct_convention,
2253 NULL
2254};
2255static const char *struct_convention = default_struct_convention;
2256
0e4377e1
JB
2257/* Return non-zero if TYPE, which is assumed to be a structure,
2258 a union type, or an array type, should be returned in registers
2259 for architecture GDBARCH. */
c5e656c1 2260
8201327c 2261static int
c5e656c1 2262i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2263{
c5e656c1
MK
2264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2265 enum type_code code = TYPE_CODE (type);
2266 int len = TYPE_LENGTH (type);
8201327c 2267
0e4377e1
JB
2268 gdb_assert (code == TYPE_CODE_STRUCT
2269 || code == TYPE_CODE_UNION
2270 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2271
2272 if (struct_convention == pcc_struct_convention
2273 || (struct_convention == default_struct_convention
2274 && tdep->struct_return == pcc_struct_return))
2275 return 0;
2276
9edde48e
MK
2277 /* Structures consisting of a single `float', `double' or 'long
2278 double' member are returned in %st(0). */
2279 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2280 {
2281 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2282 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2283 return (len == 4 || len == 8 || len == 12);
2284 }
2285
c5e656c1
MK
2286 return (len == 1 || len == 2 || len == 4 || len == 8);
2287}
2288
2289/* Determine, for architecture GDBARCH, how a return value of TYPE
2290 should be returned. If it is supposed to be returned in registers,
2291 and READBUF is non-zero, read the appropriate value from REGCACHE,
2292 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2293 from WRITEBUF into REGCACHE. */
2294
2295static enum return_value_convention
c055b101
CV
2296i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2297 struct type *type, struct regcache *regcache,
2298 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2299{
2300 enum type_code code = TYPE_CODE (type);
2301
5daa78cc
TJB
2302 if (((code == TYPE_CODE_STRUCT
2303 || code == TYPE_CODE_UNION
2304 || code == TYPE_CODE_ARRAY)
2305 && !i386_reg_struct_return_p (gdbarch, type))
2306 /* 128-bit decimal float uses the struct return convention. */
2307 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2308 {
2309 /* The System V ABI says that:
2310
2311 "A function that returns a structure or union also sets %eax
2312 to the value of the original address of the caller's area
2313 before it returns. Thus when the caller receives control
2314 again, the address of the returned object resides in register
2315 %eax and can be used to access the object."
2316
2317 So the ABI guarantees that we can always find the return
2318 value just after the function has returned. */
2319
0e4377e1
JB
2320 /* Note that the ABI doesn't mention functions returning arrays,
2321 which is something possible in certain languages such as Ada.
2322 In this case, the value is returned as if it was wrapped in
2323 a record, so the convention applied to records also applies
2324 to arrays. */
2325
31db7b6c
MK
2326 if (readbuf)
2327 {
2328 ULONGEST addr;
2329
2330 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2331 read_memory (addr, readbuf, TYPE_LENGTH (type));
2332 }
2333
2334 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2335 }
c5e656c1
MK
2336
2337 /* This special case is for structures consisting of a single
9edde48e
MK
2338 `float', `double' or 'long double' member. These structures are
2339 returned in %st(0). For these structures, we call ourselves
2340 recursively, changing TYPE into the type of the first member of
2341 the structure. Since that should work for all structures that
2342 have only one member, we don't bother to check the member's type
2343 here. */
c5e656c1
MK
2344 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2345 {
2346 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
2347 return i386_return_value (gdbarch, func_type, type, regcache,
2348 readbuf, writebuf);
c5e656c1
MK
2349 }
2350
2351 if (readbuf)
2352 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2353 if (writebuf)
2354 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2355
c5e656c1 2356 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2357}
2358\f
2359
27067745
UW
2360struct type *
2361i387_ext_type (struct gdbarch *gdbarch)
2362{
2363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2364
2365 if (!tdep->i387_ext_type)
90884b2b
L
2366 {
2367 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2368 gdb_assert (tdep->i387_ext_type != NULL);
2369 }
27067745
UW
2370
2371 return tdep->i387_ext_type;
2372}
2373
c131fcee
L
2374/* Construct vector type for pseudo YMM registers. We can't use
2375 tdesc_find_type since YMM isn't described in target description. */
2376
2377static struct type *
2378i386_ymm_type (struct gdbarch *gdbarch)
2379{
2380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2381
2382 if (!tdep->i386_ymm_type)
2383 {
2384 const struct builtin_type *bt = builtin_type (gdbarch);
2385
2386 /* The type we're building is this: */
2387#if 0
2388 union __gdb_builtin_type_vec256i
2389 {
2390 int128_t uint128[2];
2391 int64_t v2_int64[4];
2392 int32_t v4_int32[8];
2393 int16_t v8_int16[16];
2394 int8_t v16_int8[32];
2395 double v2_double[4];
2396 float v4_float[8];
2397 };
2398#endif
2399
2400 struct type *t;
2401
2402 t = arch_composite_type (gdbarch,
2403 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2404 append_composite_type_field (t, "v8_float",
2405 init_vector_type (bt->builtin_float, 8));
2406 append_composite_type_field (t, "v4_double",
2407 init_vector_type (bt->builtin_double, 4));
2408 append_composite_type_field (t, "v32_int8",
2409 init_vector_type (bt->builtin_int8, 32));
2410 append_composite_type_field (t, "v16_int16",
2411 init_vector_type (bt->builtin_int16, 16));
2412 append_composite_type_field (t, "v8_int32",
2413 init_vector_type (bt->builtin_int32, 8));
2414 append_composite_type_field (t, "v4_int64",
2415 init_vector_type (bt->builtin_int64, 4));
2416 append_composite_type_field (t, "v2_int128",
2417 init_vector_type (bt->builtin_int128, 2));
2418
2419 TYPE_VECTOR (t) = 1;
0c5acf93 2420 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
2421 tdep->i386_ymm_type = t;
2422 }
2423
2424 return tdep->i386_ymm_type;
2425}
2426
794ac428 2427/* Construct vector type for MMX registers. */
90884b2b 2428static struct type *
794ac428
UW
2429i386_mmx_type (struct gdbarch *gdbarch)
2430{
2431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2432
2433 if (!tdep->i386_mmx_type)
2434 {
df4df182
UW
2435 const struct builtin_type *bt = builtin_type (gdbarch);
2436
794ac428
UW
2437 /* The type we're building is this: */
2438#if 0
2439 union __gdb_builtin_type_vec64i
2440 {
2441 int64_t uint64;
2442 int32_t v2_int32[2];
2443 int16_t v4_int16[4];
2444 int8_t v8_int8[8];
2445 };
2446#endif
2447
2448 struct type *t;
2449
e9bb382b
UW
2450 t = arch_composite_type (gdbarch,
2451 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2452
2453 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2454 append_composite_type_field (t, "v2_int32",
df4df182 2455 init_vector_type (bt->builtin_int32, 2));
794ac428 2456 append_composite_type_field (t, "v4_int16",
df4df182 2457 init_vector_type (bt->builtin_int16, 4));
794ac428 2458 append_composite_type_field (t, "v8_int8",
df4df182 2459 init_vector_type (bt->builtin_int8, 8));
794ac428 2460
876cecd0 2461 TYPE_VECTOR (t) = 1;
794ac428
UW
2462 TYPE_NAME (t) = "builtin_type_vec64i";
2463 tdep->i386_mmx_type = t;
2464 }
2465
2466 return tdep->i386_mmx_type;
2467}
2468
d7a0d72c 2469/* Return the GDB type object for the "standard" data type of data in
90884b2b 2470 register REGNUM. */
d7a0d72c 2471
3a1e71e3 2472static struct type *
90884b2b 2473i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2474{
1ba53b71
L
2475 if (i386_mmx_regnum_p (gdbarch, regnum))
2476 return i386_mmx_type (gdbarch);
c131fcee
L
2477 else if (i386_ymm_regnum_p (gdbarch, regnum))
2478 return i386_ymm_type (gdbarch);
1ba53b71
L
2479 else
2480 {
2481 const struct builtin_type *bt = builtin_type (gdbarch);
2482 if (i386_byte_regnum_p (gdbarch, regnum))
2483 return bt->builtin_int8;
2484 else if (i386_word_regnum_p (gdbarch, regnum))
2485 return bt->builtin_int16;
2486 else if (i386_dword_regnum_p (gdbarch, regnum))
2487 return bt->builtin_int32;
2488 }
2489
2490 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2491}
2492
28fc6740 2493/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2494 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2495
2496static int
c86c27af 2497i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2498{
5716833c
MK
2499 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2500 int mmxreg, fpreg;
28fc6740
AC
2501 ULONGEST fstat;
2502 int tos;
c86c27af 2503
5716833c 2504 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2505 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2506 tos = (fstat >> 11) & 0x7;
5716833c
MK
2507 fpreg = (mmxreg + tos) % 8;
2508
20a6ec49 2509 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2510}
2511
1ba53b71 2512void
28fc6740 2513i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2514 int regnum, gdb_byte *buf)
28fc6740 2515{
1ba53b71
L
2516 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2517
5716833c 2518 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2519 {
c86c27af
MK
2520 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2521
28fc6740 2522 /* Extract (always little endian). */
1ba53b71
L
2523 regcache_raw_read (regcache, fpnum, raw_buf);
2524 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
2525 }
2526 else
1ba53b71
L
2527 {
2528 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2529
c131fcee
L
2530 if (i386_ymm_regnum_p (gdbarch, regnum))
2531 {
2532 regnum -= tdep->ymm0_regnum;
2533
2534 /* Extract (always little endian). Read lower 128bits. */
2535 regcache_raw_read (regcache,
2536 I387_XMM0_REGNUM (tdep) + regnum,
2537 raw_buf);
2538 memcpy (buf, raw_buf, 16);
2539 /* Read upper 128bits. */
2540 regcache_raw_read (regcache,
2541 tdep->ymm0h_regnum + regnum,
2542 raw_buf);
2543 memcpy (buf + 16, raw_buf, 16);
2544 }
2545 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2546 {
2547 int gpnum = regnum - tdep->ax_regnum;
2548
2549 /* Extract (always little endian). */
2550 regcache_raw_read (regcache, gpnum, raw_buf);
2551 memcpy (buf, raw_buf, 2);
2552 }
2553 else if (i386_byte_regnum_p (gdbarch, regnum))
2554 {
2555 /* Check byte pseudo registers last since this function will
2556 be called from amd64_pseudo_register_read, which handles
2557 byte pseudo registers differently. */
2558 int gpnum = regnum - tdep->al_regnum;
2559
2560 /* Extract (always little endian). We read both lower and
2561 upper registers. */
2562 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2563 if (gpnum >= 4)
2564 memcpy (buf, raw_buf + 1, 1);
2565 else
2566 memcpy (buf, raw_buf, 1);
2567 }
2568 else
2569 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2570 }
28fc6740
AC
2571}
2572
1ba53b71 2573void
28fc6740 2574i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2575 int regnum, const gdb_byte *buf)
28fc6740 2576{
1ba53b71
L
2577 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2578
5716833c 2579 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2580 {
c86c27af
MK
2581 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2582
28fc6740 2583 /* Read ... */
1ba53b71 2584 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 2585 /* ... Modify ... (always little endian). */
1ba53b71 2586 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 2587 /* ... Write. */
1ba53b71 2588 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
2589 }
2590 else
1ba53b71
L
2591 {
2592 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2593
c131fcee
L
2594 if (i386_ymm_regnum_p (gdbarch, regnum))
2595 {
2596 regnum -= tdep->ymm0_regnum;
2597
2598 /* ... Write lower 128bits. */
2599 regcache_raw_write (regcache,
2600 I387_XMM0_REGNUM (tdep) + regnum,
2601 buf);
2602 /* ... Write upper 128bits. */
2603 regcache_raw_write (regcache,
2604 tdep->ymm0h_regnum + regnum,
2605 buf + 16);
2606 }
2607 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2608 {
2609 int gpnum = regnum - tdep->ax_regnum;
2610
2611 /* Read ... */
2612 regcache_raw_read (regcache, gpnum, raw_buf);
2613 /* ... Modify ... (always little endian). */
2614 memcpy (raw_buf, buf, 2);
2615 /* ... Write. */
2616 regcache_raw_write (regcache, gpnum, raw_buf);
2617 }
2618 else if (i386_byte_regnum_p (gdbarch, regnum))
2619 {
2620 /* Check byte pseudo registers last since this function will
2621 be called from amd64_pseudo_register_read, which handles
2622 byte pseudo registers differently. */
2623 int gpnum = regnum - tdep->al_regnum;
2624
2625 /* Read ... We read both lower and upper registers. */
2626 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2627 /* ... Modify ... (always little endian). */
2628 if (gpnum >= 4)
2629 memcpy (raw_buf + 1, buf, 1);
2630 else
2631 memcpy (raw_buf, buf, 1);
2632 /* ... Write. */
2633 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2634 }
2635 else
2636 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2637 }
28fc6740 2638}
ff2e87ac
AC
2639\f
2640
ff2e87ac
AC
2641/* Return the register number of the register allocated by GCC after
2642 REGNUM, or -1 if there is no such register. */
2643
2644static int
2645i386_next_regnum (int regnum)
2646{
2647 /* GCC allocates the registers in the order:
2648
2649 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2650
2651 Since storing a variable in %esp doesn't make any sense we return
2652 -1 for %ebp and for %esp itself. */
2653 static int next_regnum[] =
2654 {
2655 I386_EDX_REGNUM, /* Slot for %eax. */
2656 I386_EBX_REGNUM, /* Slot for %ecx. */
2657 I386_ECX_REGNUM, /* Slot for %edx. */
2658 I386_ESI_REGNUM, /* Slot for %ebx. */
2659 -1, -1, /* Slots for %esp and %ebp. */
2660 I386_EDI_REGNUM, /* Slot for %esi. */
2661 I386_EBP_REGNUM /* Slot for %edi. */
2662 };
2663
de5b9bb9 2664 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 2665 return next_regnum[regnum];
28fc6740 2666
ff2e87ac
AC
2667 return -1;
2668}
2669
2670/* Return nonzero if a value of type TYPE stored in register REGNUM
2671 needs any special handling. */
d7a0d72c 2672
3a1e71e3 2673static int
0abe36f5 2674i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
d7a0d72c 2675{
de5b9bb9
MK
2676 int len = TYPE_LENGTH (type);
2677
ff2e87ac
AC
2678 /* Values may be spread across multiple registers. Most debugging
2679 formats aren't expressive enough to specify the locations, so
2680 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
2681 have a length that is a multiple of the word size, since GCC
2682 doesn't seem to put any other types into registers. */
2683 if (len > 4 && len % 4 == 0)
2684 {
2685 int last_regnum = regnum;
2686
2687 while (len > 4)
2688 {
2689 last_regnum = i386_next_regnum (last_regnum);
2690 len -= 4;
2691 }
2692
2693 if (last_regnum != -1)
2694 return 1;
2695 }
ff2e87ac 2696
0abe36f5 2697 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
2698}
2699
ff2e87ac
AC
2700/* Read a value of type TYPE from register REGNUM in frame FRAME, and
2701 return its contents in TO. */
ac27f131 2702
3a1e71e3 2703static void
ff2e87ac 2704i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 2705 struct type *type, gdb_byte *to)
ac27f131 2706{
20a6ec49 2707 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 2708 int len = TYPE_LENGTH (type);
de5b9bb9 2709
ff2e87ac
AC
2710 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2711 available in FRAME (i.e. if it wasn't saved)? */
3d261580 2712
20a6ec49 2713 if (i386_fp_regnum_p (gdbarch, regnum))
8d7f6b4a 2714 {
d532c08f
MK
2715 i387_register_to_value (frame, regnum, type, to);
2716 return;
8d7f6b4a 2717 }
ff2e87ac 2718
fd35795f 2719 /* Read a value spread across multiple registers. */
de5b9bb9
MK
2720
2721 gdb_assert (len > 4 && len % 4 == 0);
3d261580 2722
de5b9bb9
MK
2723 while (len > 0)
2724 {
2725 gdb_assert (regnum != -1);
20a6ec49 2726 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 2727
42835c2b 2728 get_frame_register (frame, regnum, to);
de5b9bb9
MK
2729 regnum = i386_next_regnum (regnum);
2730 len -= 4;
42835c2b 2731 to += 4;
de5b9bb9 2732 }
ac27f131
MK
2733}
2734
ff2e87ac
AC
2735/* Write the contents FROM of a value of type TYPE into register
2736 REGNUM in frame FRAME. */
ac27f131 2737
3a1e71e3 2738static void
ff2e87ac 2739i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 2740 struct type *type, const gdb_byte *from)
ac27f131 2741{
de5b9bb9 2742 int len = TYPE_LENGTH (type);
de5b9bb9 2743
20a6ec49 2744 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 2745 {
d532c08f
MK
2746 i387_value_to_register (frame, regnum, type, from);
2747 return;
2748 }
3d261580 2749
fd35795f 2750 /* Write a value spread across multiple registers. */
de5b9bb9
MK
2751
2752 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 2753
de5b9bb9
MK
2754 while (len > 0)
2755 {
2756 gdb_assert (regnum != -1);
875f8d0e 2757 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 2758
42835c2b 2759 put_frame_register (frame, regnum, from);
de5b9bb9
MK
2760 regnum = i386_next_regnum (regnum);
2761 len -= 4;
42835c2b 2762 from += 4;
de5b9bb9 2763 }
ac27f131 2764}
ff2e87ac 2765\f
7fdafb5a
MK
2766/* Supply register REGNUM from the buffer specified by GREGS and LEN
2767 in the general-purpose register set REGSET to register cache
2768 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 2769
20187ed5 2770void
473f17b0
MK
2771i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2772 int regnum, const void *gregs, size_t len)
2773{
9ea75c57 2774 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2775 const gdb_byte *regs = gregs;
473f17b0
MK
2776 int i;
2777
2778 gdb_assert (len == tdep->sizeof_gregset);
2779
2780 for (i = 0; i < tdep->gregset_num_regs; i++)
2781 {
2782 if ((regnum == i || regnum == -1)
2783 && tdep->gregset_reg_offset[i] != -1)
2784 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2785 }
2786}
2787
7fdafb5a
MK
2788/* Collect register REGNUM from the register cache REGCACHE and store
2789 it in the buffer specified by GREGS and LEN as described by the
2790 general-purpose register set REGSET. If REGNUM is -1, do this for
2791 all registers in REGSET. */
2792
2793void
2794i386_collect_gregset (const struct regset *regset,
2795 const struct regcache *regcache,
2796 int regnum, void *gregs, size_t len)
2797{
2798 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2799 gdb_byte *regs = gregs;
7fdafb5a
MK
2800 int i;
2801
2802 gdb_assert (len == tdep->sizeof_gregset);
2803
2804 for (i = 0; i < tdep->gregset_num_regs; i++)
2805 {
2806 if ((regnum == i || regnum == -1)
2807 && tdep->gregset_reg_offset[i] != -1)
2808 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2809 }
2810}
2811
2812/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2813 in the floating-point register set REGSET to register cache
2814 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2815
2816static void
2817i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2818 int regnum, const void *fpregs, size_t len)
2819{
9ea75c57 2820 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2821
66a72d25
MK
2822 if (len == I387_SIZEOF_FXSAVE)
2823 {
2824 i387_supply_fxsave (regcache, regnum, fpregs);
2825 return;
2826 }
2827
473f17b0
MK
2828 gdb_assert (len == tdep->sizeof_fpregset);
2829 i387_supply_fsave (regcache, regnum, fpregs);
2830}
8446b36a 2831
2f305df1
MK
2832/* Collect register REGNUM from the register cache REGCACHE and store
2833 it in the buffer specified by FPREGS and LEN as described by the
2834 floating-point register set REGSET. If REGNUM is -1, do this for
2835 all registers in REGSET. */
7fdafb5a
MK
2836
2837static void
2838i386_collect_fpregset (const struct regset *regset,
2839 const struct regcache *regcache,
2840 int regnum, void *fpregs, size_t len)
2841{
2842 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2843
2844 if (len == I387_SIZEOF_FXSAVE)
2845 {
2846 i387_collect_fxsave (regcache, regnum, fpregs);
2847 return;
2848 }
2849
2850 gdb_assert (len == tdep->sizeof_fpregset);
2851 i387_collect_fsave (regcache, regnum, fpregs);
2852}
2853
c131fcee
L
2854/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
2855
2856static void
2857i386_supply_xstateregset (const struct regset *regset,
2858 struct regcache *regcache, int regnum,
2859 const void *xstateregs, size_t len)
2860{
c131fcee
L
2861 i387_supply_xsave (regcache, regnum, xstateregs);
2862}
2863
2864/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
2865
2866static void
2867i386_collect_xstateregset (const struct regset *regset,
2868 const struct regcache *regcache,
2869 int regnum, void *xstateregs, size_t len)
2870{
c131fcee
L
2871 i387_collect_xsave (regcache, regnum, xstateregs, 1);
2872}
2873
8446b36a
MK
2874/* Return the appropriate register set for the core section identified
2875 by SECT_NAME and SECT_SIZE. */
2876
2877const struct regset *
2878i386_regset_from_core_section (struct gdbarch *gdbarch,
2879 const char *sect_name, size_t sect_size)
2880{
2881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2882
2883 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2884 {
2885 if (tdep->gregset == NULL)
7fdafb5a
MK
2886 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2887 i386_collect_gregset);
8446b36a
MK
2888 return tdep->gregset;
2889 }
2890
66a72d25
MK
2891 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2892 || (strcmp (sect_name, ".reg-xfp") == 0
2893 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2894 {
2895 if (tdep->fpregset == NULL)
7fdafb5a
MK
2896 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2897 i386_collect_fpregset);
8446b36a
MK
2898 return tdep->fpregset;
2899 }
2900
c131fcee
L
2901 if (strcmp (sect_name, ".reg-xstate") == 0)
2902 {
2903 if (tdep->xstateregset == NULL)
2904 tdep->xstateregset = regset_alloc (gdbarch,
2905 i386_supply_xstateregset,
2906 i386_collect_xstateregset);
2907
2908 return tdep->xstateregset;
2909 }
2910
8446b36a
MK
2911 return NULL;
2912}
473f17b0 2913\f
fc338970 2914
fc338970 2915/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2916
2917CORE_ADDR
e17a4113
UW
2918i386_pe_skip_trampoline_code (struct frame_info *frame,
2919 CORE_ADDR pc, char *name)
c906108c 2920{
e17a4113
UW
2921 struct gdbarch *gdbarch = get_frame_arch (frame);
2922 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2923
2924 /* jmp *(dest) */
2925 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 2926 {
e17a4113
UW
2927 unsigned long indirect =
2928 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 2929 struct minimal_symbol *indsym =
fc338970 2930 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2931 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2932
c5aa993b 2933 if (symname)
c906108c 2934 {
c5aa993b
JM
2935 if (strncmp (symname, "__imp_", 6) == 0
2936 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
2937 return name ? 1 :
2938 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
2939 }
2940 }
fc338970 2941 return 0; /* Not a trampoline. */
c906108c 2942}
fc338970
MK
2943\f
2944
10458914
DJ
2945/* Return whether the THIS_FRAME corresponds to a sigtramp
2946 routine. */
8201327c 2947
4bd207ef 2948int
10458914 2949i386_sigtramp_p (struct frame_info *this_frame)
8201327c 2950{
10458914 2951 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2952 char *name;
2953
2954 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2955 return (name && strcmp ("_sigtramp", name) == 0);
2956}
2957\f
2958
fc338970
MK
2959/* We have two flavours of disassembly. The machinery on this page
2960 deals with switching between those. */
c906108c
SS
2961
2962static int
a89aa300 2963i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2964{
5e3397bb
MK
2965 gdb_assert (disassembly_flavor == att_flavor
2966 || disassembly_flavor == intel_flavor);
2967
2968 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2969 constified, cast to prevent a compiler warning. */
2970 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
2971
2972 return print_insn_i386 (pc, info);
7a292a7a 2973}
fc338970 2974\f
3ce1502b 2975
8201327c
MK
2976/* There are a few i386 architecture variants that differ only
2977 slightly from the generic i386 target. For now, we don't give them
2978 their own source file, but include them here. As a consequence,
2979 they'll always be included. */
3ce1502b 2980
8201327c 2981/* System V Release 4 (SVR4). */
3ce1502b 2982
10458914
DJ
2983/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2984 routine. */
911bc6ee 2985
8201327c 2986static int
10458914 2987i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 2988{
10458914 2989 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2990 char *name;
2991
acd5c798
MK
2992 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2993 currently unknown. */
911bc6ee 2994 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2995 return (name && (strcmp ("_sigreturn", name) == 0
2996 || strcmp ("_sigacthandler", name) == 0
2997 || strcmp ("sigvechandler", name) == 0));
2998}
d2a7c97a 2999
10458914
DJ
3000/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3001 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3002
3a1e71e3 3003static CORE_ADDR
10458914 3004i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3005{
e17a4113
UW
3006 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3007 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3008 gdb_byte buf[4];
acd5c798 3009 CORE_ADDR sp;
3ce1502b 3010
10458914 3011 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3012 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3013
e17a4113 3014 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c
MK
3015}
3016\f
3ce1502b 3017
8201327c 3018/* Generic ELF. */
d2a7c97a 3019
8201327c
MK
3020void
3021i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3022{
c4fc7f1b
MK
3023 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3024 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 3025}
3ce1502b 3026
8201327c 3027/* System V Release 4 (SVR4). */
3ce1502b 3028
8201327c
MK
3029void
3030i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3031{
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3033
8201327c
MK
3034 /* System V Release 4 uses ELF. */
3035 i386_elf_init_abi (info, gdbarch);
3ce1502b 3036
dfe01d39 3037 /* System V Release 4 has shared libraries. */
dfe01d39
MK
3038 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3039
911bc6ee 3040 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 3041 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
3042 tdep->sc_pc_offset = 36 + 14 * 4;
3043 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 3044
8201327c 3045 tdep->jb_pc_offset = 20;
3ce1502b
MK
3046}
3047
8201327c 3048/* DJGPP. */
3ce1502b 3049
3a1e71e3 3050static void
8201327c 3051i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 3052{
8201327c 3053 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3054
911bc6ee
MK
3055 /* DJGPP doesn't have any special frames for signal handlers. */
3056 tdep->sigtramp_p = NULL;
3ce1502b 3057
8201327c 3058 tdep->jb_pc_offset = 36;
15430fc0
EZ
3059
3060 /* DJGPP does not support the SSE registers. */
3a13a53b
L
3061 if (! tdesc_has_registers (info.target_desc))
3062 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
3063
3064 /* Native compiler is GCC, which uses the SVR4 register numbering
3065 even in COFF and STABS. See the comment in i386_gdbarch_init,
3066 before the calls to set_gdbarch_stab_reg_to_regnum and
3067 set_gdbarch_sdb_reg_to_regnum. */
3068 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3069 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
3070
3071 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 3072}
8201327c 3073\f
2acceee2 3074
38c968cf
AC
3075/* i386 register groups. In addition to the normal groups, add "mmx"
3076 and "sse". */
3077
3078static struct reggroup *i386_sse_reggroup;
3079static struct reggroup *i386_mmx_reggroup;
3080
3081static void
3082i386_init_reggroups (void)
3083{
3084 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3085 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3086}
3087
3088static void
3089i386_add_reggroups (struct gdbarch *gdbarch)
3090{
3091 reggroup_add (gdbarch, i386_sse_reggroup);
3092 reggroup_add (gdbarch, i386_mmx_reggroup);
3093 reggroup_add (gdbarch, general_reggroup);
3094 reggroup_add (gdbarch, float_reggroup);
3095 reggroup_add (gdbarch, all_reggroup);
3096 reggroup_add (gdbarch, save_reggroup);
3097 reggroup_add (gdbarch, restore_reggroup);
3098 reggroup_add (gdbarch, vector_reggroup);
3099 reggroup_add (gdbarch, system_reggroup);
3100}
3101
3102int
3103i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3104 struct reggroup *group)
3105{
c131fcee
L
3106 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3107 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3108 ymm_regnum_p, ymmh_regnum_p;
acd5c798 3109
1ba53b71
L
3110 /* Don't include pseudo registers, except for MMX, in any register
3111 groups. */
c131fcee 3112 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
3113 return 0;
3114
c131fcee 3115 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3116 return 0;
3117
c131fcee 3118 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
3119 return 0;
3120
3121 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
3122 if (group == i386_mmx_reggroup)
3123 return mmx_regnum_p;
1ba53b71 3124
c131fcee
L
3125 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3126 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 3127 if (group == i386_sse_reggroup)
c131fcee
L
3128 return xmm_regnum_p || mxcsr_regnum_p;
3129
3130 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
38c968cf 3131 if (group == vector_reggroup)
c131fcee
L
3132 return (mmx_regnum_p
3133 || ymm_regnum_p
3134 || mxcsr_regnum_p
3135 || (xmm_regnum_p
3136 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3137 == I386_XSTATE_SSE_MASK)));
1ba53b71
L
3138
3139 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3140 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
3141 if (group == float_reggroup)
3142 return fp_regnum_p;
1ba53b71 3143
c131fcee
L
3144 /* For "info reg all", don't include upper YMM registers nor XMM
3145 registers when AVX is supported. */
3146 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3147 if (group == all_reggroup
3148 && ((xmm_regnum_p
3149 && (tdep->xcr0 & I386_XSTATE_AVX))
3150 || ymmh_regnum_p))
3151 return 0;
3152
38c968cf 3153 if (group == general_reggroup)
1ba53b71
L
3154 return (!fp_regnum_p
3155 && !mmx_regnum_p
c131fcee
L
3156 && !mxcsr_regnum_p
3157 && !xmm_regnum_p
3158 && !ymm_regnum_p
3159 && !ymmh_regnum_p);
acd5c798 3160
38c968cf
AC
3161 return default_register_reggroup_p (gdbarch, regnum, group);
3162}
38c968cf 3163\f
acd5c798 3164
f837910f
MK
3165/* Get the ARGIth function argument for the current function. */
3166
42c466d7 3167static CORE_ADDR
143985b7
AF
3168i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3169 struct type *type)
3170{
e17a4113
UW
3171 struct gdbarch *gdbarch = get_frame_arch (frame);
3172 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f837910f 3173 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 3174 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
3175}
3176
514f746b
AR
3177static void
3178i386_skip_permanent_breakpoint (struct regcache *regcache)
3179{
3180 CORE_ADDR current_pc = regcache_read_pc (regcache);
3181
3182 /* On i386, breakpoint is exactly 1 byte long, so we just
3183 adjust the PC in the regcache. */
3184 current_pc += 1;
3185 regcache_write_pc (regcache, current_pc);
3186}
3187
3188
7ad10968
HZ
3189#define PREFIX_REPZ 0x01
3190#define PREFIX_REPNZ 0x02
3191#define PREFIX_LOCK 0x04
3192#define PREFIX_DATA 0x08
3193#define PREFIX_ADDR 0x10
473f17b0 3194
7ad10968
HZ
3195/* operand size */
3196enum
3197{
3198 OT_BYTE = 0,
3199 OT_WORD,
3200 OT_LONG,
cf648174 3201 OT_QUAD,
a3c4230a 3202 OT_DQUAD,
7ad10968 3203};
473f17b0 3204
7ad10968
HZ
3205/* i386 arith/logic operations */
3206enum
3207{
3208 OP_ADDL,
3209 OP_ORL,
3210 OP_ADCL,
3211 OP_SBBL,
3212 OP_ANDL,
3213 OP_SUBL,
3214 OP_XORL,
3215 OP_CMPL,
3216};
5716833c 3217
7ad10968
HZ
3218struct i386_record_s
3219{
cf648174 3220 struct gdbarch *gdbarch;
7ad10968 3221 struct regcache *regcache;
df61f520 3222 CORE_ADDR orig_addr;
7ad10968
HZ
3223 CORE_ADDR addr;
3224 int aflag;
3225 int dflag;
3226 int override;
3227 uint8_t modrm;
3228 uint8_t mod, reg, rm;
3229 int ot;
cf648174
HZ
3230 uint8_t rex_x;
3231 uint8_t rex_b;
3232 int rip_offset;
3233 int popl_esp_hack;
3234 const int *regmap;
7ad10968 3235};
5716833c 3236
7ad10968
HZ
3237/* Parse "modrm" part in current memory address that irp->addr point to
3238 Return -1 if something wrong. */
5716833c 3239
7ad10968
HZ
3240static int
3241i386_record_modrm (struct i386_record_s *irp)
3242{
cf648174 3243 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 3244
7ad10968
HZ
3245 if (target_read_memory (irp->addr, &irp->modrm, 1))
3246 {
3247 if (record_debug)
3248 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3249 "addr %s len = 1.\n"),
3250 paddress (gdbarch, irp->addr));
7ad10968
HZ
3251 return -1;
3252 }
3253 irp->addr++;
3254 irp->mod = (irp->modrm >> 6) & 3;
3255 irp->reg = (irp->modrm >> 3) & 7;
3256 irp->rm = irp->modrm & 7;
5716833c 3257
7ad10968
HZ
3258 return 0;
3259}
d2a7c97a 3260
7ad10968
HZ
3261/* Get the memory address that current instruction write to and set it to
3262 the argument "addr".
3263 Return -1 if something wrong. */
8201327c 3264
7ad10968 3265static int
cf648174 3266i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 3267{
cf648174 3268 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
3269 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3270 gdb_byte buf[4];
3271 ULONGEST offset64;
21d0e8a4 3272
7ad10968
HZ
3273 *addr = 0;
3274 if (irp->aflag)
3275 {
3276 /* 32 bits */
3277 int havesib = 0;
3278 uint8_t scale = 0;
648d0c8b 3279 uint8_t byte;
7ad10968
HZ
3280 uint8_t index = 0;
3281 uint8_t base = irp->rm;
896fb97d 3282
7ad10968
HZ
3283 if (base == 4)
3284 {
3285 havesib = 1;
648d0c8b 3286 if (target_read_memory (irp->addr, &byte, 1))
7ad10968
HZ
3287 {
3288 if (record_debug)
3289 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3290 "at addr %s len = 1.\n"),
3291 paddress (gdbarch, irp->addr));
7ad10968
HZ
3292 return -1;
3293 }
3294 irp->addr++;
648d0c8b
MS
3295 scale = (byte >> 6) & 3;
3296 index = ((byte >> 3) & 7) | irp->rex_x;
3297 base = (byte & 7);
7ad10968 3298 }
cf648174 3299 base |= irp->rex_b;
21d0e8a4 3300
7ad10968
HZ
3301 switch (irp->mod)
3302 {
3303 case 0:
3304 if ((base & 7) == 5)
3305 {
3306 base = 0xff;
60a1502a 3307 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
3308 {
3309 if (record_debug)
3310 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3311 "memory at addr %s len = 4.\n"),
3312 paddress (gdbarch, irp->addr));
7ad10968
HZ
3313 return -1;
3314 }
3315 irp->addr += 4;
60a1502a 3316 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
3317 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3318 *addr += irp->addr + irp->rip_offset;
7ad10968 3319 }
7ad10968
HZ
3320 break;
3321 case 1:
60a1502a 3322 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
3323 {
3324 if (record_debug)
3325 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3326 "at addr %s len = 1.\n"),
3327 paddress (gdbarch, irp->addr));
7ad10968
HZ
3328 return -1;
3329 }
3330 irp->addr++;
60a1502a 3331 *addr = (int8_t) buf[0];
7ad10968
HZ
3332 break;
3333 case 2:
60a1502a 3334 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
3335 {
3336 if (record_debug)
3337 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3338 "at addr %s len = 4.\n"),
3339 paddress (gdbarch, irp->addr));
7ad10968
HZ
3340 return -1;
3341 }
60a1502a 3342 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
3343 irp->addr += 4;
3344 break;
3345 }
356a6b3e 3346
60a1502a 3347 offset64 = 0;
7ad10968 3348 if (base != 0xff)
cf648174
HZ
3349 {
3350 if (base == 4 && irp->popl_esp_hack)
3351 *addr += irp->popl_esp_hack;
3352 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 3353 &offset64);
7ad10968 3354 }
cf648174
HZ
3355 if (irp->aflag == 2)
3356 {
60a1502a 3357 *addr += offset64;
cf648174
HZ
3358 }
3359 else
60a1502a 3360 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 3361
7ad10968
HZ
3362 if (havesib && (index != 4 || scale != 0))
3363 {
cf648174 3364 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 3365 &offset64);
cf648174 3366 if (irp->aflag == 2)
60a1502a 3367 *addr += offset64 << scale;
cf648174 3368 else
60a1502a 3369 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968
HZ
3370 }
3371 }
3372 else
3373 {
3374 /* 16 bits */
3375 switch (irp->mod)
3376 {
3377 case 0:
3378 if (irp->rm == 6)
3379 {
60a1502a 3380 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
3381 {
3382 if (record_debug)
3383 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3384 "memory at addr %s len = 2.\n"),
3385 paddress (gdbarch, irp->addr));
7ad10968
HZ
3386 return -1;
3387 }
3388 irp->addr += 2;
60a1502a 3389 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
3390 irp->rm = 0;
3391 goto no_rm;
3392 }
7ad10968
HZ
3393 break;
3394 case 1:
60a1502a 3395 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
3396 {
3397 if (record_debug)
3398 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3399 "at addr %s len = 1.\n"),
3400 paddress (gdbarch, irp->addr));
7ad10968
HZ
3401 return -1;
3402 }
3403 irp->addr++;
60a1502a 3404 *addr = (int8_t) buf[0];
7ad10968
HZ
3405 break;
3406 case 2:
60a1502a 3407 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
3408 {
3409 if (record_debug)
3410 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3411 "at addr %s len = 2.\n"),
3412 paddress (gdbarch, irp->addr));
7ad10968
HZ
3413 return -1;
3414 }
3415 irp->addr += 2;
60a1502a 3416 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
3417 break;
3418 }
c4fc7f1b 3419
7ad10968
HZ
3420 switch (irp->rm)
3421 {
3422 case 0:
cf648174
HZ
3423 regcache_raw_read_unsigned (irp->regcache,
3424 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3425 &offset64);
3426 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3427 regcache_raw_read_unsigned (irp->regcache,
3428 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3429 &offset64);
3430 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3431 break;
3432 case 1:
cf648174
HZ
3433 regcache_raw_read_unsigned (irp->regcache,
3434 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3435 &offset64);
3436 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3437 regcache_raw_read_unsigned (irp->regcache,
3438 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3439 &offset64);
3440 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3441 break;
3442 case 2:
cf648174
HZ
3443 regcache_raw_read_unsigned (irp->regcache,
3444 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3445 &offset64);
3446 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3447 regcache_raw_read_unsigned (irp->regcache,
3448 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3449 &offset64);
3450 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3451 break;
3452 case 3:
cf648174
HZ
3453 regcache_raw_read_unsigned (irp->regcache,
3454 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3455 &offset64);
3456 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3457 regcache_raw_read_unsigned (irp->regcache,
3458 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3459 &offset64);
3460 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3461 break;
3462 case 4:
cf648174
HZ
3463 regcache_raw_read_unsigned (irp->regcache,
3464 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3465 &offset64);
3466 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3467 break;
3468 case 5:
cf648174
HZ
3469 regcache_raw_read_unsigned (irp->regcache,
3470 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3471 &offset64);
3472 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3473 break;
3474 case 6:
cf648174
HZ
3475 regcache_raw_read_unsigned (irp->regcache,
3476 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3477 &offset64);
3478 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3479 break;
3480 case 7:
cf648174
HZ
3481 regcache_raw_read_unsigned (irp->regcache,
3482 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3483 &offset64);
3484 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3485 break;
3486 }
3487 *addr &= 0xffff;
3488 }
c4fc7f1b 3489
01fe1b41 3490 no_rm:
7ad10968
HZ
3491 return 0;
3492}
c4fc7f1b 3493
7ad10968
HZ
3494/* Record the value of the memory that willbe changed in current instruction
3495 to "record_arch_list".
3496 Return -1 if something wrong. */
356a6b3e 3497
7ad10968
HZ
3498static int
3499i386_record_lea_modrm (struct i386_record_s *irp)
3500{
cf648174
HZ
3501 struct gdbarch *gdbarch = irp->gdbarch;
3502 uint64_t addr;
356a6b3e 3503
d7877f7e 3504 if (irp->override >= 0)
7ad10968 3505 {
bb08c432
HZ
3506 if (record_memory_query)
3507 {
3508 int q;
3509
3510 target_terminal_ours ();
3511 q = yquery (_("\
3512Process record ignores the memory change of instruction at address %s\n\
3513because it can't get the value of the segment register.\n\
3514Do you want to stop the program?"),
3515 paddress (gdbarch, irp->orig_addr));
3516 target_terminal_inferior ();
3517 if (q)
3518 return -1;
3519 }
3520
7ad10968
HZ
3521 return 0;
3522 }
61113f8b 3523
7ad10968
HZ
3524 if (i386_record_lea_modrm_addr (irp, &addr))
3525 return -1;
96297dab 3526
7ad10968
HZ
3527 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3528 return -1;
a62cc96e 3529
7ad10968
HZ
3530 return 0;
3531}
b6197528 3532
cf648174
HZ
3533/* Record the push operation to "record_arch_list".
3534 Return -1 if something wrong. */
3535
3536static int
3537i386_record_push (struct i386_record_s *irp, int size)
3538{
648d0c8b 3539 ULONGEST addr;
cf648174
HZ
3540
3541 if (record_arch_list_add_reg (irp->regcache,
3542 irp->regmap[X86_RECORD_RESP_REGNUM]))
3543 return -1;
3544 regcache_raw_read_unsigned (irp->regcache,
3545 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b
MS
3546 &addr);
3547 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
3548 return -1;
3549
3550 return 0;
3551}
3552
0289bdd7
MS
3553
3554/* Defines contents to record. */
3555#define I386_SAVE_FPU_REGS 0xfffd
3556#define I386_SAVE_FPU_ENV 0xfffe
3557#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3558
3559/* Record the value of floating point registers which will be changed by the
3560 current instruction to "record_arch_list". Return -1 if something is wrong.
3561*/
3562
3563static int i386_record_floats (struct gdbarch *gdbarch,
3564 struct i386_record_s *ir,
3565 uint32_t iregnum)
3566{
3567 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3568 int i;
3569
3570 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3571 happen. Currently we store st0-st7 registers, but we need not store all
3572 registers all the time, in future we use ftag register and record only
3573 those who are not marked as an empty. */
3574
3575 if (I386_SAVE_FPU_REGS == iregnum)
3576 {
3577 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3578 {
3579 if (record_arch_list_add_reg (ir->regcache, i))
3580 return -1;
3581 }
3582 }
3583 else if (I386_SAVE_FPU_ENV == iregnum)
3584 {
3585 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3586 {
3587 if (record_arch_list_add_reg (ir->regcache, i))
3588 return -1;
3589 }
3590 }
3591 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3592 {
3593 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3594 {
3595 if (record_arch_list_add_reg (ir->regcache, i))
3596 return -1;
3597 }
3598 }
3599 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3600 (iregnum <= I387_FOP_REGNUM (tdep)))
3601 {
3602 if (record_arch_list_add_reg (ir->regcache,iregnum))
3603 return -1;
3604 }
3605 else
3606 {
3607 /* Parameter error. */
3608 return -1;
3609 }
3610 if(I386_SAVE_FPU_ENV != iregnum)
3611 {
3612 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3613 {
3614 if (record_arch_list_add_reg (ir->regcache, i))
3615 return -1;
3616 }
3617 }
3618 return 0;
3619}
3620
7ad10968
HZ
3621/* Parse the current instruction and record the values of the registers and
3622 memory that will be changed in current instruction to "record_arch_list".
3623 Return -1 if something wrong. */
8201327c 3624
cf648174
HZ
3625#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3626 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3627
a6b808b4 3628int
7ad10968 3629i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 3630 CORE_ADDR input_addr)
7ad10968 3631{
60a1502a 3632 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 3633 int prefixes = 0;
580879fc 3634 int regnum = 0;
425b824a
MS
3635 uint32_t opcode;
3636 uint8_t opcode8;
648d0c8b 3637 ULONGEST addr;
60a1502a 3638 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 3639 struct i386_record_s ir;
0289bdd7 3640 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
3641 int rex = 0;
3642 uint8_t rex_w = -1;
3643 uint8_t rex_r = 0;
7ad10968 3644
8408d274 3645 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 3646 ir.regcache = regcache;
648d0c8b
MS
3647 ir.addr = input_addr;
3648 ir.orig_addr = input_addr;
7ad10968
HZ
3649 ir.aflag = 1;
3650 ir.dflag = 1;
cf648174
HZ
3651 ir.override = -1;
3652 ir.popl_esp_hack = 0;
a3c4230a 3653 ir.regmap = tdep->record_regmap;
cf648174 3654 ir.gdbarch = gdbarch;
7ad10968
HZ
3655
3656 if (record_debug > 1)
3657 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
3658 "addr = %s\n",
3659 paddress (gdbarch, ir.addr));
7ad10968
HZ
3660
3661 /* prefixes */
3662 while (1)
3663 {
425b824a 3664 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
3665 {
3666 if (record_debug)
3667 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3668 "addr %s len = 1.\n"),
3669 paddress (gdbarch, ir.addr));
7ad10968
HZ
3670 return -1;
3671 }
3672 ir.addr++;
425b824a 3673 switch (opcode8) /* Instruction prefixes */
7ad10968 3674 {
01fe1b41 3675 case REPE_PREFIX_OPCODE:
7ad10968
HZ
3676 prefixes |= PREFIX_REPZ;
3677 break;
01fe1b41 3678 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
3679 prefixes |= PREFIX_REPNZ;
3680 break;
01fe1b41 3681 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
3682 prefixes |= PREFIX_LOCK;
3683 break;
01fe1b41 3684 case CS_PREFIX_OPCODE:
cf648174 3685 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 3686 break;
01fe1b41 3687 case SS_PREFIX_OPCODE:
cf648174 3688 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 3689 break;
01fe1b41 3690 case DS_PREFIX_OPCODE:
cf648174 3691 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 3692 break;
01fe1b41 3693 case ES_PREFIX_OPCODE:
cf648174 3694 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 3695 break;
01fe1b41 3696 case FS_PREFIX_OPCODE:
cf648174 3697 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 3698 break;
01fe1b41 3699 case GS_PREFIX_OPCODE:
cf648174 3700 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 3701 break;
01fe1b41 3702 case DATA_PREFIX_OPCODE:
7ad10968
HZ
3703 prefixes |= PREFIX_DATA;
3704 break;
01fe1b41 3705 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
3706 prefixes |= PREFIX_ADDR;
3707 break;
d691bec7
MS
3708 case 0x40: /* i386 inc %eax */
3709 case 0x41: /* i386 inc %ecx */
3710 case 0x42: /* i386 inc %edx */
3711 case 0x43: /* i386 inc %ebx */
3712 case 0x44: /* i386 inc %esp */
3713 case 0x45: /* i386 inc %ebp */
3714 case 0x46: /* i386 inc %esi */
3715 case 0x47: /* i386 inc %edi */
3716 case 0x48: /* i386 dec %eax */
3717 case 0x49: /* i386 dec %ecx */
3718 case 0x4a: /* i386 dec %edx */
3719 case 0x4b: /* i386 dec %ebx */
3720 case 0x4c: /* i386 dec %esp */
3721 case 0x4d: /* i386 dec %ebp */
3722 case 0x4e: /* i386 dec %esi */
3723 case 0x4f: /* i386 dec %edi */
3724 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
3725 {
3726 /* REX */
3727 rex = 1;
425b824a
MS
3728 rex_w = (opcode8 >> 3) & 1;
3729 rex_r = (opcode8 & 0x4) << 1;
3730 ir.rex_x = (opcode8 & 0x2) << 2;
3731 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 3732 }
d691bec7
MS
3733 else /* 32 bit target */
3734 goto out_prefixes;
cf648174 3735 break;
7ad10968
HZ
3736 default:
3737 goto out_prefixes;
3738 break;
3739 }
3740 }
01fe1b41 3741 out_prefixes:
cf648174
HZ
3742 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3743 {
3744 ir.dflag = 2;
3745 }
3746 else
3747 {
3748 if (prefixes & PREFIX_DATA)
3749 ir.dflag ^= 1;
3750 }
7ad10968
HZ
3751 if (prefixes & PREFIX_ADDR)
3752 ir.aflag ^= 1;
cf648174
HZ
3753 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3754 ir.aflag = 2;
7ad10968
HZ
3755
3756 /* now check op code */
425b824a 3757 opcode = (uint32_t) opcode8;
01fe1b41 3758 reswitch:
7ad10968
HZ
3759 switch (opcode)
3760 {
3761 case 0x0f:
425b824a 3762 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
3763 {
3764 if (record_debug)
3765 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3766 "addr %s len = 1.\n"),
3767 paddress (gdbarch, ir.addr));
7ad10968
HZ
3768 return -1;
3769 }
3770 ir.addr++;
a3c4230a 3771 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
3772 goto reswitch;
3773 break;
93924b6b 3774
a38bba38 3775 case 0x00: /* arith & logic */
7ad10968
HZ
3776 case 0x01:
3777 case 0x02:
3778 case 0x03:
3779 case 0x04:
3780 case 0x05:
3781 case 0x08:
3782 case 0x09:
3783 case 0x0a:
3784 case 0x0b:
3785 case 0x0c:
3786 case 0x0d:
3787 case 0x10:
3788 case 0x11:
3789 case 0x12:
3790 case 0x13:
3791 case 0x14:
3792 case 0x15:
3793 case 0x18:
3794 case 0x19:
3795 case 0x1a:
3796 case 0x1b:
3797 case 0x1c:
3798 case 0x1d:
3799 case 0x20:
3800 case 0x21:
3801 case 0x22:
3802 case 0x23:
3803 case 0x24:
3804 case 0x25:
3805 case 0x28:
3806 case 0x29:
3807 case 0x2a:
3808 case 0x2b:
3809 case 0x2c:
3810 case 0x2d:
3811 case 0x30:
3812 case 0x31:
3813 case 0x32:
3814 case 0x33:
3815 case 0x34:
3816 case 0x35:
3817 case 0x38:
3818 case 0x39:
3819 case 0x3a:
3820 case 0x3b:
3821 case 0x3c:
3822 case 0x3d:
3823 if (((opcode >> 3) & 7) != OP_CMPL)
3824 {
3825 if ((opcode & 1) == 0)
3826 ir.ot = OT_BYTE;
3827 else
3828 ir.ot = ir.dflag + OT_WORD;
93924b6b 3829
7ad10968
HZ
3830 switch ((opcode >> 1) & 3)
3831 {
a38bba38 3832 case 0: /* OP Ev, Gv */
7ad10968
HZ
3833 if (i386_record_modrm (&ir))
3834 return -1;
3835 if (ir.mod != 3)
3836 {
3837 if (i386_record_lea_modrm (&ir))
3838 return -1;
3839 }
3840 else
3841 {
cf648174
HZ
3842 ir.rm |= ir.rex_b;
3843 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3844 ir.rm &= 0x3;
cf648174 3845 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
3846 }
3847 break;
a38bba38 3848 case 1: /* OP Gv, Ev */
7ad10968
HZ
3849 if (i386_record_modrm (&ir))
3850 return -1;
cf648174
HZ
3851 ir.reg |= rex_r;
3852 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3853 ir.reg &= 0x3;
cf648174 3854 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 3855 break;
a38bba38 3856 case 2: /* OP A, Iv */
cf648174 3857 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
3858 break;
3859 }
3860 }
cf648174 3861 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3862 break;
42fdc8df 3863
a38bba38 3864 case 0x80: /* GRP1 */
7ad10968
HZ
3865 case 0x81:
3866 case 0x82:
3867 case 0x83:
3868 if (i386_record_modrm (&ir))
3869 return -1;
8201327c 3870
7ad10968
HZ
3871 if (ir.reg != OP_CMPL)
3872 {
3873 if ((opcode & 1) == 0)
3874 ir.ot = OT_BYTE;
3875 else
3876 ir.ot = ir.dflag + OT_WORD;
28fc6740 3877
7ad10968
HZ
3878 if (ir.mod != 3)
3879 {
cf648174
HZ
3880 if (opcode == 0x83)
3881 ir.rip_offset = 1;
3882 else
3883 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
3884 if (i386_record_lea_modrm (&ir))
3885 return -1;
3886 }
3887 else
cf648174 3888 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 3889 }
cf648174 3890 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3891 break;
5e3397bb 3892
a38bba38 3893 case 0x40: /* inc */
7ad10968
HZ
3894 case 0x41:
3895 case 0x42:
3896 case 0x43:
3897 case 0x44:
3898 case 0x45:
3899 case 0x46:
3900 case 0x47:
a38bba38
MS
3901
3902 case 0x48: /* dec */
7ad10968
HZ
3903 case 0x49:
3904 case 0x4a:
3905 case 0x4b:
3906 case 0x4c:
3907 case 0x4d:
3908 case 0x4e:
3909 case 0x4f:
a38bba38 3910
cf648174
HZ
3911 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3912 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3913 break;
acd5c798 3914
a38bba38 3915 case 0xf6: /* GRP3 */
7ad10968
HZ
3916 case 0xf7:
3917 if ((opcode & 1) == 0)
3918 ir.ot = OT_BYTE;
3919 else
3920 ir.ot = ir.dflag + OT_WORD;
3921 if (i386_record_modrm (&ir))
3922 return -1;
acd5c798 3923
cf648174
HZ
3924 if (ir.mod != 3 && ir.reg == 0)
3925 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3926
7ad10968
HZ
3927 switch (ir.reg)
3928 {
a38bba38 3929 case 0: /* test */
cf648174 3930 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3931 break;
a38bba38
MS
3932 case 2: /* not */
3933 case 3: /* neg */
7ad10968
HZ
3934 if (ir.mod != 3)
3935 {
3936 if (i386_record_lea_modrm (&ir))
3937 return -1;
3938 }
3939 else
3940 {
cf648174
HZ
3941 ir.rm |= ir.rex_b;
3942 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3943 ir.rm &= 0x3;
cf648174 3944 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 3945 }
a38bba38 3946 if (ir.reg == 3) /* neg */
cf648174 3947 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3948 break;
a38bba38
MS
3949 case 4: /* mul */
3950 case 5: /* imul */
3951 case 6: /* div */
3952 case 7: /* idiv */
cf648174 3953 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 3954 if (ir.ot != OT_BYTE)
cf648174
HZ
3955 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3956 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3957 break;
3958 default:
3959 ir.addr -= 2;
3960 opcode = opcode << 8 | ir.modrm;
3961 goto no_support;
3962 break;
3963 }
3964 break;
3965
a38bba38
MS
3966 case 0xfe: /* GRP4 */
3967 case 0xff: /* GRP5 */
7ad10968
HZ
3968 if (i386_record_modrm (&ir))
3969 return -1;
3970 if (ir.reg >= 2 && opcode == 0xfe)
3971 {
3972 ir.addr -= 2;
3973 opcode = opcode << 8 | ir.modrm;
3974 goto no_support;
3975 }
7ad10968
HZ
3976 switch (ir.reg)
3977 {
a38bba38
MS
3978 case 0: /* inc */
3979 case 1: /* dec */
cf648174
HZ
3980 if ((opcode & 1) == 0)
3981 ir.ot = OT_BYTE;
3982 else
3983 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
3984 if (ir.mod != 3)
3985 {
3986 if (i386_record_lea_modrm (&ir))
3987 return -1;
3988 }
3989 else
3990 {
cf648174
HZ
3991 ir.rm |= ir.rex_b;
3992 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3993 ir.rm &= 0x3;
cf648174 3994 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 3995 }
cf648174 3996 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3997 break;
a38bba38 3998 case 2: /* call */
cf648174
HZ
3999 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4000 ir.dflag = 2;
4001 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4002 return -1;
cf648174 4003 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4004 break;
a38bba38 4005 case 3: /* lcall */
cf648174
HZ
4006 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4007 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4008 return -1;
cf648174 4009 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4010 break;
a38bba38
MS
4011 case 4: /* jmp */
4012 case 5: /* ljmp */
cf648174
HZ
4013 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4014 break;
a38bba38 4015 case 6: /* push */
cf648174
HZ
4016 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4017 ir.dflag = 2;
4018 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4019 return -1;
7ad10968
HZ
4020 break;
4021 default:
4022 ir.addr -= 2;
4023 opcode = opcode << 8 | ir.modrm;
4024 goto no_support;
4025 break;
4026 }
4027 break;
4028
a38bba38 4029 case 0x84: /* test */
7ad10968
HZ
4030 case 0x85:
4031 case 0xa8:
4032 case 0xa9:
cf648174 4033 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4034 break;
4035
a38bba38 4036 case 0x98: /* CWDE/CBW */
cf648174 4037 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4038 break;
4039
a38bba38 4040 case 0x99: /* CDQ/CWD */
cf648174
HZ
4041 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4042 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4043 break;
4044
a38bba38 4045 case 0x0faf: /* imul */
7ad10968
HZ
4046 case 0x69:
4047 case 0x6b:
4048 ir.ot = ir.dflag + OT_WORD;
4049 if (i386_record_modrm (&ir))
4050 return -1;
cf648174
HZ
4051 if (opcode == 0x69)
4052 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4053 else if (opcode == 0x6b)
4054 ir.rip_offset = 1;
4055 ir.reg |= rex_r;
4056 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4057 ir.reg &= 0x3;
cf648174
HZ
4058 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4059 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4060 break;
4061
a38bba38 4062 case 0x0fc0: /* xadd */
7ad10968
HZ
4063 case 0x0fc1:
4064 if ((opcode & 1) == 0)
4065 ir.ot = OT_BYTE;
4066 else
4067 ir.ot = ir.dflag + OT_WORD;
4068 if (i386_record_modrm (&ir))
4069 return -1;
cf648174 4070 ir.reg |= rex_r;
7ad10968
HZ
4071 if (ir.mod == 3)
4072 {
cf648174 4073 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4074 ir.reg &= 0x3;
cf648174
HZ
4075 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4076 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4077 ir.rm &= 0x3;
cf648174 4078 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4079 }
4080 else
4081 {
4082 if (i386_record_lea_modrm (&ir))
4083 return -1;
cf648174 4084 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4085 ir.reg &= 0x3;
cf648174 4086 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4087 }
cf648174 4088 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4089 break;
4090
a38bba38 4091 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
4092 case 0x0fb1:
4093 if ((opcode & 1) == 0)
4094 ir.ot = OT_BYTE;
4095 else
4096 ir.ot = ir.dflag + OT_WORD;
4097 if (i386_record_modrm (&ir))
4098 return -1;
4099 if (ir.mod == 3)
4100 {
cf648174
HZ
4101 ir.reg |= rex_r;
4102 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4103 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4104 ir.reg &= 0x3;
cf648174 4105 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4106 }
4107 else
4108 {
cf648174 4109 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4110 if (i386_record_lea_modrm (&ir))
4111 return -1;
4112 }
cf648174 4113 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4114 break;
4115
a38bba38 4116 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
4117 if (i386_record_modrm (&ir))
4118 return -1;
4119 if (ir.mod == 3)
4120 {
4121 ir.addr -= 2;
4122 opcode = opcode << 8 | ir.modrm;
4123 goto no_support;
4124 }
cf648174
HZ
4125 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4126 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4127 if (i386_record_lea_modrm (&ir))
4128 return -1;
cf648174 4129 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4130 break;
4131
a38bba38 4132 case 0x50: /* push */
7ad10968
HZ
4133 case 0x51:
4134 case 0x52:
4135 case 0x53:
4136 case 0x54:
4137 case 0x55:
4138 case 0x56:
4139 case 0x57:
4140 case 0x68:
4141 case 0x6a:
cf648174
HZ
4142 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4143 ir.dflag = 2;
4144 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4145 return -1;
4146 break;
4147
a38bba38
MS
4148 case 0x06: /* push es */
4149 case 0x0e: /* push cs */
4150 case 0x16: /* push ss */
4151 case 0x1e: /* push ds */
cf648174
HZ
4152 if (ir.regmap[X86_RECORD_R8_REGNUM])
4153 {
4154 ir.addr -= 1;
4155 goto no_support;
4156 }
4157 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4158 return -1;
4159 break;
4160
a38bba38
MS
4161 case 0x0fa0: /* push fs */
4162 case 0x0fa8: /* push gs */
cf648174
HZ
4163 if (ir.regmap[X86_RECORD_R8_REGNUM])
4164 {
4165 ir.addr -= 2;
4166 goto no_support;
4167 }
4168 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4169 return -1;
cf648174
HZ
4170 break;
4171
a38bba38 4172 case 0x60: /* pusha */
cf648174
HZ
4173 if (ir.regmap[X86_RECORD_R8_REGNUM])
4174 {
4175 ir.addr -= 1;
4176 goto no_support;
4177 }
4178 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
4179 return -1;
4180 break;
4181
a38bba38 4182 case 0x58: /* pop */
7ad10968
HZ
4183 case 0x59:
4184 case 0x5a:
4185 case 0x5b:
4186 case 0x5c:
4187 case 0x5d:
4188 case 0x5e:
4189 case 0x5f:
cf648174
HZ
4190 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4191 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4192 break;
4193
a38bba38 4194 case 0x61: /* popa */
cf648174
HZ
4195 if (ir.regmap[X86_RECORD_R8_REGNUM])
4196 {
4197 ir.addr -= 1;
4198 goto no_support;
7ad10968 4199 }
425b824a
MS
4200 for (regnum = X86_RECORD_REAX_REGNUM;
4201 regnum <= X86_RECORD_REDI_REGNUM;
4202 regnum++)
4203 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
4204 break;
4205
a38bba38 4206 case 0x8f: /* pop */
cf648174
HZ
4207 if (ir.regmap[X86_RECORD_R8_REGNUM])
4208 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4209 else
4210 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4211 if (i386_record_modrm (&ir))
4212 return -1;
4213 if (ir.mod == 3)
cf648174 4214 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
4215 else
4216 {
cf648174 4217 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
4218 if (i386_record_lea_modrm (&ir))
4219 return -1;
4220 }
cf648174 4221 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
4222 break;
4223
a38bba38 4224 case 0xc8: /* enter */
cf648174
HZ
4225 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4226 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4227 ir.dflag = 2;
4228 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
4229 return -1;
4230 break;
4231
a38bba38 4232 case 0xc9: /* leave */
cf648174
HZ
4233 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4234 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
4235 break;
4236
a38bba38 4237 case 0x07: /* pop es */
cf648174
HZ
4238 if (ir.regmap[X86_RECORD_R8_REGNUM])
4239 {
4240 ir.addr -= 1;
4241 goto no_support;
4242 }
4243 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4244 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4245 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4246 break;
4247
a38bba38 4248 case 0x17: /* pop ss */
cf648174
HZ
4249 if (ir.regmap[X86_RECORD_R8_REGNUM])
4250 {
4251 ir.addr -= 1;
4252 goto no_support;
4253 }
4254 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4255 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4256 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4257 break;
4258
a38bba38 4259 case 0x1f: /* pop ds */
cf648174
HZ
4260 if (ir.regmap[X86_RECORD_R8_REGNUM])
4261 {
4262 ir.addr -= 1;
4263 goto no_support;
4264 }
4265 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4266 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4267 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4268 break;
4269
a38bba38 4270 case 0x0fa1: /* pop fs */
cf648174
HZ
4271 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4272 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4273 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4274 break;
4275
a38bba38 4276 case 0x0fa9: /* pop gs */
cf648174
HZ
4277 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4278 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4279 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4280 break;
4281
a38bba38 4282 case 0x88: /* mov */
7ad10968
HZ
4283 case 0x89:
4284 case 0xc6:
4285 case 0xc7:
4286 if ((opcode & 1) == 0)
4287 ir.ot = OT_BYTE;
4288 else
4289 ir.ot = ir.dflag + OT_WORD;
4290
4291 if (i386_record_modrm (&ir))
4292 return -1;
4293
4294 if (ir.mod != 3)
4295 {
cf648174
HZ
4296 if (opcode == 0xc6 || opcode == 0xc7)
4297 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4298 if (i386_record_lea_modrm (&ir))
4299 return -1;
4300 }
4301 else
4302 {
cf648174
HZ
4303 if (opcode == 0xc6 || opcode == 0xc7)
4304 ir.rm |= ir.rex_b;
4305 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4306 ir.rm &= 0x3;
cf648174 4307 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4308 }
7ad10968 4309 break;
cf648174 4310
a38bba38 4311 case 0x8a: /* mov */
7ad10968
HZ
4312 case 0x8b:
4313 if ((opcode & 1) == 0)
4314 ir.ot = OT_BYTE;
4315 else
4316 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4317 if (i386_record_modrm (&ir))
4318 return -1;
cf648174
HZ
4319 ir.reg |= rex_r;
4320 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4321 ir.reg &= 0x3;
cf648174
HZ
4322 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4323 break;
7ad10968 4324
a38bba38 4325 case 0x8c: /* mov seg */
cf648174 4326 if (i386_record_modrm (&ir))
7ad10968 4327 return -1;
cf648174
HZ
4328 if (ir.reg > 5)
4329 {
4330 ir.addr -= 2;
4331 opcode = opcode << 8 | ir.modrm;
4332 goto no_support;
4333 }
4334
4335 if (ir.mod == 3)
4336 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4337 else
4338 {
4339 ir.ot = OT_WORD;
4340 if (i386_record_lea_modrm (&ir))
4341 return -1;
4342 }
7ad10968
HZ
4343 break;
4344
a38bba38 4345 case 0x8e: /* mov seg */
7ad10968
HZ
4346 if (i386_record_modrm (&ir))
4347 return -1;
7ad10968
HZ
4348 switch (ir.reg)
4349 {
4350 case 0:
425b824a 4351 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
4352 break;
4353 case 2:
425b824a 4354 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
4355 break;
4356 case 3:
425b824a 4357 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
4358 break;
4359 case 4:
425b824a 4360 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
4361 break;
4362 case 5:
425b824a 4363 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
4364 break;
4365 default:
4366 ir.addr -= 2;
4367 opcode = opcode << 8 | ir.modrm;
4368 goto no_support;
4369 break;
4370 }
425b824a 4371 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174 4372 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4373 break;
4374
a38bba38
MS
4375 case 0x0fb6: /* movzbS */
4376 case 0x0fb7: /* movzwS */
4377 case 0x0fbe: /* movsbS */
4378 case 0x0fbf: /* movswS */
7ad10968
HZ
4379 if (i386_record_modrm (&ir))
4380 return -1;
cf648174 4381 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
4382 break;
4383
a38bba38 4384 case 0x8d: /* lea */
7ad10968
HZ
4385 if (i386_record_modrm (&ir))
4386 return -1;
4387 if (ir.mod == 3)
4388 {
4389 ir.addr -= 2;
4390 opcode = opcode << 8 | ir.modrm;
4391 goto no_support;
4392 }
7ad10968 4393 ir.ot = ir.dflag;
cf648174
HZ
4394 ir.reg |= rex_r;
4395 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4396 ir.reg &= 0x3;
cf648174 4397 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4398 break;
4399
a38bba38 4400 case 0xa0: /* mov EAX */
7ad10968 4401 case 0xa1:
a38bba38
MS
4402
4403 case 0xd7: /* xlat */
cf648174 4404 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4405 break;
4406
a38bba38 4407 case 0xa2: /* mov EAX */
7ad10968 4408 case 0xa3:
d7877f7e 4409 if (ir.override >= 0)
cf648174 4410 {
bb08c432
HZ
4411 if (record_memory_query)
4412 {
4413 int q;
4414
4415 target_terminal_ours ();
4416 q = yquery (_("\
4417Process record ignores the memory change of instruction at address %s\n\
4418because it can't get the value of the segment register.\n\
4419Do you want to stop the program?"),
4420 paddress (gdbarch, ir.orig_addr));
4421 target_terminal_inferior ();
4422 if (q)
4423 return -1;
4424 }
cf648174
HZ
4425 }
4426 else
4427 {
4428 if ((opcode & 1) == 0)
4429 ir.ot = OT_BYTE;
4430 else
4431 ir.ot = ir.dflag + OT_WORD;
4432 if (ir.aflag == 2)
4433 {
60a1502a 4434 if (target_read_memory (ir.addr, buf, 8))
cf648174
HZ
4435 {
4436 if (record_debug)
4437 printf_unfiltered (_("Process record: error reading "
4438 "memory at addr 0x%s len = 8.\n"),
4439 paddress (gdbarch, ir.addr));
4440 return -1;
4441 }
4442 ir.addr += 8;
60a1502a 4443 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
4444 }
4445 else if (ir.aflag)
4446 {
60a1502a 4447 if (target_read_memory (ir.addr, buf, 4))
cf648174
HZ
4448 {
4449 if (record_debug)
4450 printf_unfiltered (_("Process record: error reading "
4451 "memory at addr 0x%s len = 4.\n"),
4452 paddress (gdbarch, ir.addr));
4453 return -1;
4454 }
4455 ir.addr += 4;
60a1502a 4456 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
4457 }
4458 else
4459 {
60a1502a 4460 if (target_read_memory (ir.addr, buf, 2))
cf648174
HZ
4461 {
4462 if (record_debug)
4463 printf_unfiltered (_("Process record: error reading "
4464 "memory at addr 0x%s len = 2.\n"),
4465 paddress (gdbarch, ir.addr));
4466 return -1;
4467 }
4468 ir.addr += 2;
60a1502a 4469 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 4470 }
648d0c8b 4471 if (record_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
4472 return -1;
4473 }
7ad10968
HZ
4474 break;
4475
a38bba38 4476 case 0xb0: /* mov R, Ib */
7ad10968
HZ
4477 case 0xb1:
4478 case 0xb2:
4479 case 0xb3:
4480 case 0xb4:
4481 case 0xb5:
4482 case 0xb6:
4483 case 0xb7:
cf648174
HZ
4484 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4485 ? ((opcode & 0x7) | ir.rex_b)
4486 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
4487 break;
4488
a38bba38 4489 case 0xb8: /* mov R, Iv */
7ad10968
HZ
4490 case 0xb9:
4491 case 0xba:
4492 case 0xbb:
4493 case 0xbc:
4494 case 0xbd:
4495 case 0xbe:
4496 case 0xbf:
cf648174 4497 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4498 break;
4499
a38bba38 4500 case 0x91: /* xchg R, EAX */
7ad10968
HZ
4501 case 0x92:
4502 case 0x93:
4503 case 0x94:
4504 case 0x95:
4505 case 0x96:
4506 case 0x97:
cf648174
HZ
4507 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4508 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
4509 break;
4510
a38bba38 4511 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
4512 case 0x87:
4513 if ((opcode & 1) == 0)
4514 ir.ot = OT_BYTE;
4515 else
4516 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4517 if (i386_record_modrm (&ir))
4518 return -1;
7ad10968
HZ
4519 if (ir.mod == 3)
4520 {
86839d38 4521 ir.rm |= ir.rex_b;
cf648174
HZ
4522 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4523 ir.rm &= 0x3;
4524 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4525 }
4526 else
4527 {
4528 if (i386_record_lea_modrm (&ir))
4529 return -1;
4530 }
cf648174
HZ
4531 ir.reg |= rex_r;
4532 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4533 ir.reg &= 0x3;
cf648174 4534 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4535 break;
4536
a38bba38
MS
4537 case 0xc4: /* les Gv */
4538 case 0xc5: /* lds Gv */
cf648174
HZ
4539 if (ir.regmap[X86_RECORD_R8_REGNUM])
4540 {
4541 ir.addr -= 1;
4542 goto no_support;
4543 }
a38bba38
MS
4544 case 0x0fb2: /* lss Gv */
4545 case 0x0fb4: /* lfs Gv */
4546 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
4547 if (i386_record_modrm (&ir))
4548 return -1;
4549 if (ir.mod == 3)
4550 {
4551 if (opcode > 0xff)
4552 ir.addr -= 3;
4553 else
4554 ir.addr -= 2;
4555 opcode = opcode << 8 | ir.modrm;
4556 goto no_support;
4557 }
7ad10968
HZ
4558 switch (opcode)
4559 {
a38bba38 4560 case 0xc4: /* les Gv */
425b824a 4561 regnum = X86_RECORD_ES_REGNUM;
7ad10968 4562 break;
a38bba38 4563 case 0xc5: /* lds Gv */
425b824a 4564 regnum = X86_RECORD_DS_REGNUM;
7ad10968 4565 break;
a38bba38 4566 case 0x0fb2: /* lss Gv */
425b824a 4567 regnum = X86_RECORD_SS_REGNUM;
7ad10968 4568 break;
a38bba38 4569 case 0x0fb4: /* lfs Gv */
425b824a 4570 regnum = X86_RECORD_FS_REGNUM;
7ad10968 4571 break;
a38bba38 4572 case 0x0fb5: /* lgs Gv */
425b824a 4573 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
4574 break;
4575 }
425b824a 4576 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174
HZ
4577 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4578 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4579 break;
4580
a38bba38 4581 case 0xc0: /* shifts */
7ad10968
HZ
4582 case 0xc1:
4583 case 0xd0:
4584 case 0xd1:
4585 case 0xd2:
4586 case 0xd3:
4587 if ((opcode & 1) == 0)
4588 ir.ot = OT_BYTE;
4589 else
4590 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4591 if (i386_record_modrm (&ir))
4592 return -1;
7ad10968
HZ
4593 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4594 {
4595 if (i386_record_lea_modrm (&ir))
4596 return -1;
4597 }
4598 else
4599 {
cf648174
HZ
4600 ir.rm |= ir.rex_b;
4601 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4602 ir.rm &= 0x3;
cf648174 4603 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4604 }
cf648174 4605 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4606 break;
4607
4608 case 0x0fa4:
4609 case 0x0fa5:
4610 case 0x0fac:
4611 case 0x0fad:
4612 if (i386_record_modrm (&ir))
4613 return -1;
4614 if (ir.mod == 3)
4615 {
4616 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4617 return -1;
4618 }
4619 else
4620 {
4621 if (i386_record_lea_modrm (&ir))
4622 return -1;
4623 }
4624 break;
4625
a38bba38 4626 case 0xd8: /* Floats. */
7ad10968
HZ
4627 case 0xd9:
4628 case 0xda:
4629 case 0xdb:
4630 case 0xdc:
4631 case 0xdd:
4632 case 0xde:
4633 case 0xdf:
4634 if (i386_record_modrm (&ir))
4635 return -1;
4636 ir.reg |= ((opcode & 7) << 3);
4637 if (ir.mod != 3)
4638 {
0289bdd7 4639 /* Memory. */
955db0c0 4640 uint64_t addr64;
7ad10968 4641
955db0c0 4642 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
4643 return -1;
4644 switch (ir.reg)
4645 {
7ad10968 4646 case 0x02:
0289bdd7
MS
4647 case 0x12:
4648 case 0x22:
4649 case 0x32:
4650 /* For fcom, ficom nothing to do. */
4651 break;
7ad10968 4652 case 0x03:
0289bdd7
MS
4653 case 0x13:
4654 case 0x23:
4655 case 0x33:
4656 /* For fcomp, ficomp pop FPU stack, store all. */
4657 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4658 return -1;
4659 break;
4660 case 0x00:
4661 case 0x01:
7ad10968
HZ
4662 case 0x04:
4663 case 0x05:
4664 case 0x06:
4665 case 0x07:
4666 case 0x10:
4667 case 0x11:
7ad10968
HZ
4668 case 0x14:
4669 case 0x15:
4670 case 0x16:
4671 case 0x17:
4672 case 0x20:
4673 case 0x21:
7ad10968
HZ
4674 case 0x24:
4675 case 0x25:
4676 case 0x26:
4677 case 0x27:
4678 case 0x30:
4679 case 0x31:
7ad10968
HZ
4680 case 0x34:
4681 case 0x35:
4682 case 0x36:
4683 case 0x37:
0289bdd7
MS
4684 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4685 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4686 of code, always affects st(0) register. */
4687 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4688 return -1;
7ad10968
HZ
4689 break;
4690 case 0x08:
4691 case 0x0a:
4692 case 0x0b:
4693 case 0x18:
4694 case 0x19:
4695 case 0x1a:
4696 case 0x1b:
0289bdd7 4697 case 0x1d:
7ad10968
HZ
4698 case 0x28:
4699 case 0x29:
4700 case 0x2a:
4701 case 0x2b:
4702 case 0x38:
4703 case 0x39:
4704 case 0x3a:
4705 case 0x3b:
0289bdd7
MS
4706 case 0x3c:
4707 case 0x3d:
7ad10968
HZ
4708 switch (ir.reg & 7)
4709 {
4710 case 0:
0289bdd7
MS
4711 /* Handling fld, fild. */
4712 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4713 return -1;
7ad10968
HZ
4714 break;
4715 case 1:
4716 switch (ir.reg >> 4)
4717 {
4718 case 0:
955db0c0 4719 if (record_arch_list_add_mem (addr64, 4))
7ad10968
HZ
4720 return -1;
4721 break;
4722 case 2:
955db0c0 4723 if (record_arch_list_add_mem (addr64, 8))
7ad10968
HZ
4724 return -1;
4725 break;
4726 case 3:
0289bdd7 4727 break;
7ad10968 4728 default:
955db0c0 4729 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
4730 return -1;
4731 break;
4732 }
4733 break;
4734 default:
4735 switch (ir.reg >> 4)
4736 {
4737 case 0:
955db0c0 4738 if (record_arch_list_add_mem (addr64, 4))
0289bdd7
MS
4739 return -1;
4740 if (3 == (ir.reg & 7))
4741 {
4742 /* For fstp m32fp. */
4743 if (i386_record_floats (gdbarch, &ir,
4744 I386_SAVE_FPU_REGS))
4745 return -1;
4746 }
4747 break;
7ad10968 4748 case 1:
955db0c0 4749 if (record_arch_list_add_mem (addr64, 4))
7ad10968 4750 return -1;
0289bdd7
MS
4751 if ((3 == (ir.reg & 7))
4752 || (5 == (ir.reg & 7))
4753 || (7 == (ir.reg & 7)))
4754 {
4755 /* For fstp insn. */
4756 if (i386_record_floats (gdbarch, &ir,
4757 I386_SAVE_FPU_REGS))
4758 return -1;
4759 }
7ad10968
HZ
4760 break;
4761 case 2:
955db0c0 4762 if (record_arch_list_add_mem (addr64, 8))
7ad10968 4763 return -1;
0289bdd7
MS
4764 if (3 == (ir.reg & 7))
4765 {
4766 /* For fstp m64fp. */
4767 if (i386_record_floats (gdbarch, &ir,
4768 I386_SAVE_FPU_REGS))
4769 return -1;
4770 }
7ad10968
HZ
4771 break;
4772 case 3:
0289bdd7
MS
4773 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4774 {
4775 /* For fistp, fbld, fild, fbstp. */
4776 if (i386_record_floats (gdbarch, &ir,
4777 I386_SAVE_FPU_REGS))
4778 return -1;
4779 }
4780 /* Fall through */
7ad10968 4781 default:
955db0c0 4782 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
4783 return -1;
4784 break;
4785 }
4786 break;
4787 }
4788 break;
4789 case 0x0c:
0289bdd7
MS
4790 /* Insn fldenv. */
4791 if (i386_record_floats (gdbarch, &ir,
4792 I386_SAVE_FPU_ENV_REG_STACK))
4793 return -1;
4794 break;
7ad10968 4795 case 0x0d:
0289bdd7
MS
4796 /* Insn fldcw. */
4797 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4798 return -1;
4799 break;
7ad10968 4800 case 0x2c:
0289bdd7
MS
4801 /* Insn frstor. */
4802 if (i386_record_floats (gdbarch, &ir,
4803 I386_SAVE_FPU_ENV_REG_STACK))
4804 return -1;
7ad10968
HZ
4805 break;
4806 case 0x0e:
4807 if (ir.dflag)
4808 {
955db0c0 4809 if (record_arch_list_add_mem (addr64, 28))
7ad10968
HZ
4810 return -1;
4811 }
4812 else
4813 {
955db0c0 4814 if (record_arch_list_add_mem (addr64, 14))
7ad10968
HZ
4815 return -1;
4816 }
4817 break;
4818 case 0x0f:
4819 case 0x2f:
955db0c0 4820 if (record_arch_list_add_mem (addr64, 2))
7ad10968 4821 return -1;
0289bdd7
MS
4822 /* Insn fstp, fbstp. */
4823 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4824 return -1;
7ad10968
HZ
4825 break;
4826 case 0x1f:
4827 case 0x3e:
955db0c0 4828 if (record_arch_list_add_mem (addr64, 10))
7ad10968
HZ
4829 return -1;
4830 break;
4831 case 0x2e:
4832 if (ir.dflag)
4833 {
955db0c0 4834 if (record_arch_list_add_mem (addr64, 28))
7ad10968 4835 return -1;
955db0c0 4836 addr64 += 28;
7ad10968
HZ
4837 }
4838 else
4839 {
955db0c0 4840 if (record_arch_list_add_mem (addr64, 14))
7ad10968 4841 return -1;
955db0c0 4842 addr64 += 14;
7ad10968 4843 }
955db0c0 4844 if (record_arch_list_add_mem (addr64, 80))
7ad10968 4845 return -1;
0289bdd7
MS
4846 /* Insn fsave. */
4847 if (i386_record_floats (gdbarch, &ir,
4848 I386_SAVE_FPU_ENV_REG_STACK))
4849 return -1;
7ad10968
HZ
4850 break;
4851 case 0x3f:
955db0c0 4852 if (record_arch_list_add_mem (addr64, 8))
7ad10968 4853 return -1;
0289bdd7
MS
4854 /* Insn fistp. */
4855 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4856 return -1;
7ad10968
HZ
4857 break;
4858 default:
4859 ir.addr -= 2;
4860 opcode = opcode << 8 | ir.modrm;
4861 goto no_support;
4862 break;
4863 }
4864 }
0289bdd7
MS
4865 /* Opcode is an extension of modR/M byte. */
4866 else
4867 {
4868 switch (opcode)
4869 {
4870 case 0xd8:
4871 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4872 return -1;
4873 break;
4874 case 0xd9:
4875 if (0x0c == (ir.modrm >> 4))
4876 {
4877 if ((ir.modrm & 0x0f) <= 7)
4878 {
4879 if (i386_record_floats (gdbarch, &ir,
4880 I386_SAVE_FPU_REGS))
4881 return -1;
4882 }
4883 else
4884 {
4885 if (i386_record_floats (gdbarch, &ir,
4886 I387_ST0_REGNUM (tdep)))
4887 return -1;
4888 /* If only st(0) is changing, then we have already
4889 recorded. */
4890 if ((ir.modrm & 0x0f) - 0x08)
4891 {
4892 if (i386_record_floats (gdbarch, &ir,
4893 I387_ST0_REGNUM (tdep) +
4894 ((ir.modrm & 0x0f) - 0x08)))
4895 return -1;
4896 }
4897 }
4898 }
4899 else
4900 {
4901 switch (ir.modrm)
4902 {
4903 case 0xe0:
4904 case 0xe1:
4905 case 0xf0:
4906 case 0xf5:
4907 case 0xf8:
4908 case 0xfa:
4909 case 0xfc:
4910 case 0xfe:
4911 case 0xff:
4912 if (i386_record_floats (gdbarch, &ir,
4913 I387_ST0_REGNUM (tdep)))
4914 return -1;
4915 break;
4916 case 0xf1:
4917 case 0xf2:
4918 case 0xf3:
4919 case 0xf4:
4920 case 0xf6:
4921 case 0xf7:
4922 case 0xe8:
4923 case 0xe9:
4924 case 0xea:
4925 case 0xeb:
4926 case 0xec:
4927 case 0xed:
4928 case 0xee:
4929 case 0xf9:
4930 case 0xfb:
4931 if (i386_record_floats (gdbarch, &ir,
4932 I386_SAVE_FPU_REGS))
4933 return -1;
4934 break;
4935 case 0xfd:
4936 if (i386_record_floats (gdbarch, &ir,
4937 I387_ST0_REGNUM (tdep)))
4938 return -1;
4939 if (i386_record_floats (gdbarch, &ir,
4940 I387_ST0_REGNUM (tdep) + 1))
4941 return -1;
4942 break;
4943 }
4944 }
4945 break;
4946 case 0xda:
4947 if (0xe9 == ir.modrm)
4948 {
4949 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4950 return -1;
4951 }
4952 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4953 {
4954 if (i386_record_floats (gdbarch, &ir,
4955 I387_ST0_REGNUM (tdep)))
4956 return -1;
4957 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4958 {
4959 if (i386_record_floats (gdbarch, &ir,
4960 I387_ST0_REGNUM (tdep) +
4961 (ir.modrm & 0x0f)))
4962 return -1;
4963 }
4964 else if ((ir.modrm & 0x0f) - 0x08)
4965 {
4966 if (i386_record_floats (gdbarch, &ir,
4967 I387_ST0_REGNUM (tdep) +
4968 ((ir.modrm & 0x0f) - 0x08)))
4969 return -1;
4970 }
4971 }
4972 break;
4973 case 0xdb:
4974 if (0xe3 == ir.modrm)
4975 {
4976 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
4977 return -1;
4978 }
4979 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4980 {
4981 if (i386_record_floats (gdbarch, &ir,
4982 I387_ST0_REGNUM (tdep)))
4983 return -1;
4984 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4985 {
4986 if (i386_record_floats (gdbarch, &ir,
4987 I387_ST0_REGNUM (tdep) +
4988 (ir.modrm & 0x0f)))
4989 return -1;
4990 }
4991 else if ((ir.modrm & 0x0f) - 0x08)
4992 {
4993 if (i386_record_floats (gdbarch, &ir,
4994 I387_ST0_REGNUM (tdep) +
4995 ((ir.modrm & 0x0f) - 0x08)))
4996 return -1;
4997 }
4998 }
4999 break;
5000 case 0xdc:
5001 if ((0x0c == ir.modrm >> 4)
5002 || (0x0d == ir.modrm >> 4)
5003 || (0x0f == ir.modrm >> 4))
5004 {
5005 if ((ir.modrm & 0x0f) <= 7)
5006 {
5007 if (i386_record_floats (gdbarch, &ir,
5008 I387_ST0_REGNUM (tdep) +
5009 (ir.modrm & 0x0f)))
5010 return -1;
5011 }
5012 else
5013 {
5014 if (i386_record_floats (gdbarch, &ir,
5015 I387_ST0_REGNUM (tdep) +
5016 ((ir.modrm & 0x0f) - 0x08)))
5017 return -1;
5018 }
5019 }
5020 break;
5021 case 0xdd:
5022 if (0x0c == ir.modrm >> 4)
5023 {
5024 if (i386_record_floats (gdbarch, &ir,
5025 I387_FTAG_REGNUM (tdep)))
5026 return -1;
5027 }
5028 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5029 {
5030 if ((ir.modrm & 0x0f) <= 7)
5031 {
5032 if (i386_record_floats (gdbarch, &ir,
5033 I387_ST0_REGNUM (tdep) +
5034 (ir.modrm & 0x0f)))
5035 return -1;
5036 }
5037 else
5038 {
5039 if (i386_record_floats (gdbarch, &ir,
5040 I386_SAVE_FPU_REGS))
5041 return -1;
5042 }
5043 }
5044 break;
5045 case 0xde:
5046 if ((0x0c == ir.modrm >> 4)
5047 || (0x0e == ir.modrm >> 4)
5048 || (0x0f == ir.modrm >> 4)
5049 || (0xd9 == ir.modrm))
5050 {
5051 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5052 return -1;
5053 }
5054 break;
5055 case 0xdf:
5056 if (0xe0 == ir.modrm)
5057 {
5058 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5059 return -1;
5060 }
5061 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5062 {
5063 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5064 return -1;
5065 }
5066 break;
5067 }
5068 }
7ad10968 5069 break;
7ad10968 5070 /* string ops */
a38bba38 5071 case 0xa4: /* movsS */
7ad10968 5072 case 0xa5:
a38bba38 5073 case 0xaa: /* stosS */
7ad10968 5074 case 0xab:
a38bba38 5075 case 0x6c: /* insS */
7ad10968 5076 case 0x6d:
cf648174 5077 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 5078 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
5079 &addr);
5080 if (addr)
cf648174 5081 {
77d7dc92
HZ
5082 ULONGEST es, ds;
5083
5084 if ((opcode & 1) == 0)
5085 ir.ot = OT_BYTE;
5086 else
5087 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
5088 regcache_raw_read_unsigned (ir.regcache,
5089 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 5090 &addr);
77d7dc92 5091
d7877f7e
HZ
5092 regcache_raw_read_unsigned (ir.regcache,
5093 ir.regmap[X86_RECORD_ES_REGNUM],
5094 &es);
5095 regcache_raw_read_unsigned (ir.regcache,
5096 ir.regmap[X86_RECORD_DS_REGNUM],
5097 &ds);
5098 if (ir.aflag && (es != ds))
77d7dc92
HZ
5099 {
5100 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
bb08c432
HZ
5101 if (record_memory_query)
5102 {
5103 int q;
5104
5105 target_terminal_ours ();
5106 q = yquery (_("\
5107Process record ignores the memory change of instruction at address %s\n\
5108because it can't get the value of the segment register.\n\
5109Do you want to stop the program?"),
5110 paddress (gdbarch, ir.orig_addr));
5111 target_terminal_inferior ();
5112 if (q)
5113 return -1;
5114 }
df61f520
HZ
5115 }
5116 else
5117 {
648d0c8b 5118 if (record_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 5119 return -1;
77d7dc92
HZ
5120 }
5121
5122 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5123 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92
HZ
5124 if (opcode == 0xa4 || opcode == 0xa5)
5125 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5126 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5127 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5128 }
cf648174 5129 break;
7ad10968 5130
a38bba38 5131 case 0xa6: /* cmpsS */
cf648174
HZ
5132 case 0xa7:
5133 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5134 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5135 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5136 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5137 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5138 break;
5139
a38bba38 5140 case 0xac: /* lodsS */
7ad10968 5141 case 0xad:
cf648174
HZ
5142 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5143 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5144 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5145 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5146 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5147 break;
5148
a38bba38 5149 case 0xae: /* scasS */
7ad10968 5150 case 0xaf:
cf648174 5151 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 5152 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5153 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5154 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5155 break;
5156
a38bba38 5157 case 0x6e: /* outsS */
cf648174
HZ
5158 case 0x6f:
5159 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5160 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5161 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5162 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5163 break;
5164
a38bba38 5165 case 0xe4: /* port I/O */
7ad10968
HZ
5166 case 0xe5:
5167 case 0xec:
5168 case 0xed:
cf648174
HZ
5169 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5170 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5171 break;
5172
5173 case 0xe6:
5174 case 0xe7:
5175 case 0xee:
5176 case 0xef:
5177 break;
5178
5179 /* control */
a38bba38
MS
5180 case 0xc2: /* ret im */
5181 case 0xc3: /* ret */
cf648174
HZ
5182 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5183 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5184 break;
5185
a38bba38
MS
5186 case 0xca: /* lret im */
5187 case 0xcb: /* lret */
5188 case 0xcf: /* iret */
cf648174
HZ
5189 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5190 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5191 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5192 break;
5193
a38bba38 5194 case 0xe8: /* call im */
cf648174
HZ
5195 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5196 ir.dflag = 2;
5197 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5198 return -1;
7ad10968
HZ
5199 break;
5200
a38bba38 5201 case 0x9a: /* lcall im */
cf648174
HZ
5202 if (ir.regmap[X86_RECORD_R8_REGNUM])
5203 {
5204 ir.addr -= 1;
5205 goto no_support;
5206 }
5207 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5208 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5209 return -1;
7ad10968
HZ
5210 break;
5211
a38bba38
MS
5212 case 0xe9: /* jmp im */
5213 case 0xea: /* ljmp im */
5214 case 0xeb: /* jmp Jb */
5215 case 0x70: /* jcc Jb */
7ad10968
HZ
5216 case 0x71:
5217 case 0x72:
5218 case 0x73:
5219 case 0x74:
5220 case 0x75:
5221 case 0x76:
5222 case 0x77:
5223 case 0x78:
5224 case 0x79:
5225 case 0x7a:
5226 case 0x7b:
5227 case 0x7c:
5228 case 0x7d:
5229 case 0x7e:
5230 case 0x7f:
a38bba38 5231 case 0x0f80: /* jcc Jv */
7ad10968
HZ
5232 case 0x0f81:
5233 case 0x0f82:
5234 case 0x0f83:
5235 case 0x0f84:
5236 case 0x0f85:
5237 case 0x0f86:
5238 case 0x0f87:
5239 case 0x0f88:
5240 case 0x0f89:
5241 case 0x0f8a:
5242 case 0x0f8b:
5243 case 0x0f8c:
5244 case 0x0f8d:
5245 case 0x0f8e:
5246 case 0x0f8f:
5247 break;
5248
a38bba38 5249 case 0x0f90: /* setcc Gv */
7ad10968
HZ
5250 case 0x0f91:
5251 case 0x0f92:
5252 case 0x0f93:
5253 case 0x0f94:
5254 case 0x0f95:
5255 case 0x0f96:
5256 case 0x0f97:
5257 case 0x0f98:
5258 case 0x0f99:
5259 case 0x0f9a:
5260 case 0x0f9b:
5261 case 0x0f9c:
5262 case 0x0f9d:
5263 case 0x0f9e:
5264 case 0x0f9f:
cf648174 5265 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5266 ir.ot = OT_BYTE;
5267 if (i386_record_modrm (&ir))
5268 return -1;
5269 if (ir.mod == 3)
cf648174
HZ
5270 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5271 : (ir.rm & 0x3));
7ad10968
HZ
5272 else
5273 {
5274 if (i386_record_lea_modrm (&ir))
5275 return -1;
5276 }
5277 break;
5278
a38bba38 5279 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
5280 case 0x0f41:
5281 case 0x0f42:
5282 case 0x0f43:
5283 case 0x0f44:
5284 case 0x0f45:
5285 case 0x0f46:
5286 case 0x0f47:
5287 case 0x0f48:
5288 case 0x0f49:
5289 case 0x0f4a:
5290 case 0x0f4b:
5291 case 0x0f4c:
5292 case 0x0f4d:
5293 case 0x0f4e:
5294 case 0x0f4f:
5295 if (i386_record_modrm (&ir))
5296 return -1;
cf648174 5297 ir.reg |= rex_r;
7ad10968
HZ
5298 if (ir.dflag == OT_BYTE)
5299 ir.reg &= 0x3;
cf648174 5300 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5301 break;
5302
5303 /* flags */
a38bba38 5304 case 0x9c: /* pushf */
cf648174
HZ
5305 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5306 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5307 ir.dflag = 2;
5308 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5309 return -1;
7ad10968
HZ
5310 break;
5311
a38bba38 5312 case 0x9d: /* popf */
cf648174
HZ
5313 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5314 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5315 break;
5316
a38bba38 5317 case 0x9e: /* sahf */
cf648174
HZ
5318 if (ir.regmap[X86_RECORD_R8_REGNUM])
5319 {
5320 ir.addr -= 1;
5321 goto no_support;
5322 }
a38bba38
MS
5323 case 0xf5: /* cmc */
5324 case 0xf8: /* clc */
5325 case 0xf9: /* stc */
5326 case 0xfc: /* cld */
5327 case 0xfd: /* std */
cf648174 5328 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5329 break;
5330
a38bba38 5331 case 0x9f: /* lahf */
cf648174
HZ
5332 if (ir.regmap[X86_RECORD_R8_REGNUM])
5333 {
5334 ir.addr -= 1;
5335 goto no_support;
5336 }
5337 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5338 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5339 break;
5340
5341 /* bit operations */
a38bba38 5342 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
5343 ir.ot = ir.dflag + OT_WORD;
5344 if (i386_record_modrm (&ir))
5345 return -1;
5346 if (ir.reg < 4)
5347 {
cf648174 5348 ir.addr -= 2;
7ad10968
HZ
5349 opcode = opcode << 8 | ir.modrm;
5350 goto no_support;
5351 }
cf648174 5352 if (ir.reg != 4)
7ad10968 5353 {
cf648174
HZ
5354 if (ir.mod == 3)
5355 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5356 else
5357 {
cf648174 5358 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
5359 return -1;
5360 }
5361 }
cf648174 5362 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5363 break;
5364
a38bba38 5365 case 0x0fa3: /* bt Gv, Ev */
cf648174
HZ
5366 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5367 break;
5368
a38bba38
MS
5369 case 0x0fab: /* bts */
5370 case 0x0fb3: /* btr */
5371 case 0x0fbb: /* btc */
cf648174
HZ
5372 ir.ot = ir.dflag + OT_WORD;
5373 if (i386_record_modrm (&ir))
5374 return -1;
5375 if (ir.mod == 3)
5376 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5377 else
5378 {
955db0c0
MS
5379 uint64_t addr64;
5380 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
5381 return -1;
5382 regcache_raw_read_unsigned (ir.regcache,
5383 ir.regmap[ir.reg | rex_r],
648d0c8b 5384 &addr);
cf648174
HZ
5385 switch (ir.dflag)
5386 {
5387 case 0:
648d0c8b 5388 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
5389 break;
5390 case 1:
648d0c8b 5391 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
5392 break;
5393 case 2:
648d0c8b 5394 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
5395 break;
5396 }
955db0c0 5397 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
5398 return -1;
5399 if (i386_record_lea_modrm (&ir))
5400 return -1;
5401 }
5402 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5403 break;
5404
a38bba38
MS
5405 case 0x0fbc: /* bsf */
5406 case 0x0fbd: /* bsr */
cf648174
HZ
5407 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5408 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5409 break;
5410
5411 /* bcd */
a38bba38
MS
5412 case 0x27: /* daa */
5413 case 0x2f: /* das */
5414 case 0x37: /* aaa */
5415 case 0x3f: /* aas */
5416 case 0xd4: /* aam */
5417 case 0xd5: /* aad */
cf648174
HZ
5418 if (ir.regmap[X86_RECORD_R8_REGNUM])
5419 {
5420 ir.addr -= 1;
5421 goto no_support;
5422 }
5423 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5424 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5425 break;
5426
5427 /* misc */
a38bba38 5428 case 0x90: /* nop */
7ad10968
HZ
5429 if (prefixes & PREFIX_LOCK)
5430 {
5431 ir.addr -= 1;
5432 goto no_support;
5433 }
5434 break;
5435
a38bba38 5436 case 0x9b: /* fwait */
425b824a 5437 if (target_read_memory (ir.addr, &opcode8, 1))
0289bdd7
MS
5438 {
5439 if (record_debug)
5440 printf_unfiltered (_("Process record: error reading memory at "
5441 "addr 0x%s len = 1.\n"),
5442 paddress (gdbarch, ir.addr));
5443 return -1;
5444 }
425b824a 5445 opcode = (uint32_t) opcode8;
0289bdd7
MS
5446 ir.addr++;
5447 goto reswitch;
7ad10968
HZ
5448 break;
5449
7ad10968 5450 /* XXX */
a38bba38 5451 case 0xcc: /* int3 */
a3c4230a 5452 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
5453 "int3.\n"));
5454 ir.addr -= 1;
5455 goto no_support;
5456 break;
5457
7ad10968 5458 /* XXX */
a38bba38 5459 case 0xcd: /* int */
7ad10968
HZ
5460 {
5461 int ret;
425b824a
MS
5462 uint8_t interrupt;
5463 if (target_read_memory (ir.addr, &interrupt, 1))
7ad10968
HZ
5464 {
5465 if (record_debug)
5466 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
5467 "at addr %s len = 1.\n"),
5468 paddress (gdbarch, ir.addr));
7ad10968
HZ
5469 return -1;
5470 }
5471 ir.addr++;
425b824a 5472 if (interrupt != 0x80
a3c4230a 5473 || tdep->i386_intx80_record == NULL)
7ad10968 5474 {
a3c4230a 5475 printf_unfiltered (_("Process record does not support "
7ad10968 5476 "instruction int 0x%02x.\n"),
425b824a 5477 interrupt);
7ad10968
HZ
5478 ir.addr -= 2;
5479 goto no_support;
5480 }
a3c4230a 5481 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
5482 if (ret)
5483 return ret;
5484 }
5485 break;
5486
7ad10968 5487 /* XXX */
a38bba38 5488 case 0xce: /* into */
a3c4230a 5489 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5490 "instruction into.\n"));
5491 ir.addr -= 1;
5492 goto no_support;
5493 break;
5494
a38bba38
MS
5495 case 0xfa: /* cli */
5496 case 0xfb: /* sti */
7ad10968
HZ
5497 break;
5498
a38bba38 5499 case 0x62: /* bound */
a3c4230a 5500 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5501 "instruction bound.\n"));
5502 ir.addr -= 1;
5503 goto no_support;
5504 break;
5505
a38bba38 5506 case 0x0fc8: /* bswap reg */
7ad10968
HZ
5507 case 0x0fc9:
5508 case 0x0fca:
5509 case 0x0fcb:
5510 case 0x0fcc:
5511 case 0x0fcd:
5512 case 0x0fce:
5513 case 0x0fcf:
cf648174 5514 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
5515 break;
5516
a38bba38 5517 case 0xd6: /* salc */
cf648174
HZ
5518 if (ir.regmap[X86_RECORD_R8_REGNUM])
5519 {
5520 ir.addr -= 1;
5521 goto no_support;
5522 }
5523 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5524 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5525 break;
5526
a38bba38
MS
5527 case 0xe0: /* loopnz */
5528 case 0xe1: /* loopz */
5529 case 0xe2: /* loop */
5530 case 0xe3: /* jecxz */
cf648174
HZ
5531 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5532 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5533 break;
5534
a38bba38 5535 case 0x0f30: /* wrmsr */
a3c4230a 5536 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5537 "instruction wrmsr.\n"));
5538 ir.addr -= 2;
5539 goto no_support;
5540 break;
5541
a38bba38 5542 case 0x0f32: /* rdmsr */
a3c4230a 5543 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5544 "instruction rdmsr.\n"));
5545 ir.addr -= 2;
5546 goto no_support;
5547 break;
5548
a38bba38 5549 case 0x0f31: /* rdtsc */
f8c4f480
HZ
5550 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5551 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5552 break;
5553
a38bba38 5554 case 0x0f34: /* sysenter */
7ad10968
HZ
5555 {
5556 int ret;
cf648174
HZ
5557 if (ir.regmap[X86_RECORD_R8_REGNUM])
5558 {
5559 ir.addr -= 2;
5560 goto no_support;
5561 }
a3c4230a 5562 if (tdep->i386_sysenter_record == NULL)
7ad10968 5563 {
a3c4230a 5564 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5565 "instruction sysenter.\n"));
5566 ir.addr -= 2;
5567 goto no_support;
5568 }
a3c4230a 5569 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
5570 if (ret)
5571 return ret;
5572 }
5573 break;
5574
a38bba38 5575 case 0x0f35: /* sysexit */
a3c4230a 5576 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5577 "instruction sysexit.\n"));
5578 ir.addr -= 2;
5579 goto no_support;
5580 break;
5581
a38bba38 5582 case 0x0f05: /* syscall */
cf648174
HZ
5583 {
5584 int ret;
a3c4230a 5585 if (tdep->i386_syscall_record == NULL)
cf648174 5586 {
a3c4230a 5587 printf_unfiltered (_("Process record does not support "
cf648174
HZ
5588 "instruction syscall.\n"));
5589 ir.addr -= 2;
5590 goto no_support;
5591 }
a3c4230a 5592 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
5593 if (ret)
5594 return ret;
5595 }
5596 break;
5597
a38bba38 5598 case 0x0f07: /* sysret */
a3c4230a 5599 printf_unfiltered (_("Process record does not support "
cf648174
HZ
5600 "instruction sysret.\n"));
5601 ir.addr -= 2;
5602 goto no_support;
5603 break;
5604
a38bba38 5605 case 0x0fa2: /* cpuid */
cf648174
HZ
5606 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5607 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5608 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5609 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
5610 break;
5611
a38bba38 5612 case 0xf4: /* hlt */
a3c4230a 5613 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5614 "instruction hlt.\n"));
5615 ir.addr -= 1;
5616 goto no_support;
5617 break;
5618
5619 case 0x0f00:
5620 if (i386_record_modrm (&ir))
5621 return -1;
5622 switch (ir.reg)
5623 {
a38bba38
MS
5624 case 0: /* sldt */
5625 case 1: /* str */
7ad10968 5626 if (ir.mod == 3)
cf648174 5627 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5628 else
5629 {
5630 ir.ot = OT_WORD;
5631 if (i386_record_lea_modrm (&ir))
5632 return -1;
5633 }
5634 break;
a38bba38
MS
5635 case 2: /* lldt */
5636 case 3: /* ltr */
7ad10968 5637 break;
a38bba38
MS
5638 case 4: /* verr */
5639 case 5: /* verw */
cf648174 5640 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5641 break;
5642 default:
5643 ir.addr -= 3;
5644 opcode = opcode << 8 | ir.modrm;
5645 goto no_support;
5646 break;
5647 }
5648 break;
5649
5650 case 0x0f01:
5651 if (i386_record_modrm (&ir))
5652 return -1;
5653 switch (ir.reg)
5654 {
a38bba38 5655 case 0: /* sgdt */
7ad10968 5656 {
955db0c0 5657 uint64_t addr64;
7ad10968
HZ
5658
5659 if (ir.mod == 3)
5660 {
5661 ir.addr -= 3;
5662 opcode = opcode << 8 | ir.modrm;
5663 goto no_support;
5664 }
d7877f7e 5665 if (ir.override >= 0)
7ad10968 5666 {
bb08c432
HZ
5667 if (record_memory_query)
5668 {
5669 int q;
5670
5671 target_terminal_ours ();
5672 q = yquery (_("\
5673Process record ignores the memory change of instruction at address %s\n\
5674because it can't get the value of the segment register.\n\
5675Do you want to stop the program?"),
5676 paddress (gdbarch, ir.orig_addr));
5677 target_terminal_inferior ();
5678 if (q)
5679 return -1;
5680 }
7ad10968
HZ
5681 }
5682 else
5683 {
955db0c0 5684 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 5685 return -1;
955db0c0 5686 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5687 return -1;
955db0c0 5688 addr64 += 2;
cf648174
HZ
5689 if (ir.regmap[X86_RECORD_R8_REGNUM])
5690 {
955db0c0 5691 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
5692 return -1;
5693 }
5694 else
5695 {
955db0c0 5696 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
5697 return -1;
5698 }
7ad10968
HZ
5699 }
5700 }
5701 break;
5702 case 1:
5703 if (ir.mod == 3)
5704 {
5705 switch (ir.rm)
5706 {
a38bba38 5707 case 0: /* monitor */
7ad10968 5708 break;
a38bba38 5709 case 1: /* mwait */
cf648174 5710 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5711 break;
5712 default:
5713 ir.addr -= 3;
5714 opcode = opcode << 8 | ir.modrm;
5715 goto no_support;
5716 break;
5717 }
5718 }
5719 else
5720 {
5721 /* sidt */
d7877f7e 5722 if (ir.override >= 0)
7ad10968 5723 {
bb08c432
HZ
5724 if (record_memory_query)
5725 {
5726 int q;
5727
5728 target_terminal_ours ();
5729 q = yquery (_("\
5730Process record ignores the memory change of instruction at address %s\n\
5731because it can't get the value of the segment register.\n\
5732Do you want to stop the program?"),
5733 paddress (gdbarch, ir.orig_addr));
5734 target_terminal_inferior ();
5735 if (q)
5736 return -1;
5737 }
7ad10968
HZ
5738 }
5739 else
5740 {
955db0c0 5741 uint64_t addr64;
7ad10968 5742
955db0c0 5743 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 5744 return -1;
955db0c0 5745 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5746 return -1;
955db0c0 5747 addr64 += 2;
cf648174
HZ
5748 if (ir.regmap[X86_RECORD_R8_REGNUM])
5749 {
955db0c0 5750 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
5751 return -1;
5752 }
5753 else
5754 {
955db0c0 5755 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
5756 return -1;
5757 }
7ad10968
HZ
5758 }
5759 }
5760 break;
a38bba38 5761 case 2: /* lgdt */
3800e645
MS
5762 if (ir.mod == 3)
5763 {
5764 /* xgetbv */
5765 if (ir.rm == 0)
5766 {
5767 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5768 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5769 break;
5770 }
5771 /* xsetbv */
5772 else if (ir.rm == 1)
5773 break;
5774 }
a38bba38 5775 case 3: /* lidt */
7ad10968
HZ
5776 if (ir.mod == 3)
5777 {
5778 ir.addr -= 3;
5779 opcode = opcode << 8 | ir.modrm;
5780 goto no_support;
5781 }
5782 break;
a38bba38 5783 case 4: /* smsw */
7ad10968
HZ
5784 if (ir.mod == 3)
5785 {
cf648174 5786 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
5787 return -1;
5788 }
5789 else
5790 {
5791 ir.ot = OT_WORD;
5792 if (i386_record_lea_modrm (&ir))
5793 return -1;
5794 }
cf648174 5795 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5796 break;
a38bba38 5797 case 6: /* lmsw */
cf648174
HZ
5798 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5799 break;
a38bba38 5800 case 7: /* invlpg */
cf648174
HZ
5801 if (ir.mod == 3)
5802 {
5803 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5804 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5805 else
5806 {
5807 ir.addr -= 3;
5808 opcode = opcode << 8 | ir.modrm;
5809 goto no_support;
5810 }
5811 }
5812 else
5813 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5814 break;
5815 default:
5816 ir.addr -= 3;
5817 opcode = opcode << 8 | ir.modrm;
5818 goto no_support;
7ad10968
HZ
5819 break;
5820 }
5821 break;
5822
a38bba38
MS
5823 case 0x0f08: /* invd */
5824 case 0x0f09: /* wbinvd */
7ad10968
HZ
5825 break;
5826
a38bba38 5827 case 0x63: /* arpl */
7ad10968
HZ
5828 if (i386_record_modrm (&ir))
5829 return -1;
cf648174
HZ
5830 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5831 {
5832 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5833 ? (ir.reg | rex_r) : ir.rm);
5834 }
7ad10968 5835 else
cf648174
HZ
5836 {
5837 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5838 if (i386_record_lea_modrm (&ir))
5839 return -1;
5840 }
5841 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5842 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5843 break;
5844
a38bba38
MS
5845 case 0x0f02: /* lar */
5846 case 0x0f03: /* lsl */
7ad10968
HZ
5847 if (i386_record_modrm (&ir))
5848 return -1;
cf648174
HZ
5849 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5850 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5851 break;
5852
5853 case 0x0f18:
cf648174
HZ
5854 if (i386_record_modrm (&ir))
5855 return -1;
5856 if (ir.mod == 3 && ir.reg == 3)
5857 {
5858 ir.addr -= 3;
5859 opcode = opcode << 8 | ir.modrm;
5860 goto no_support;
5861 }
7ad10968
HZ
5862 break;
5863
7ad10968
HZ
5864 case 0x0f19:
5865 case 0x0f1a:
5866 case 0x0f1b:
5867 case 0x0f1c:
5868 case 0x0f1d:
5869 case 0x0f1e:
5870 case 0x0f1f:
a38bba38 5871 /* nop (multi byte) */
7ad10968
HZ
5872 break;
5873
a38bba38
MS
5874 case 0x0f20: /* mov reg, crN */
5875 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
5876 if (i386_record_modrm (&ir))
5877 return -1;
5878 if ((ir.modrm & 0xc0) != 0xc0)
5879 {
cf648174 5880 ir.addr -= 3;
7ad10968
HZ
5881 opcode = opcode << 8 | ir.modrm;
5882 goto no_support;
5883 }
5884 switch (ir.reg)
5885 {
5886 case 0:
5887 case 2:
5888 case 3:
5889 case 4:
5890 case 8:
5891 if (opcode & 2)
cf648174 5892 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5893 else
cf648174 5894 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5895 break;
5896 default:
cf648174 5897 ir.addr -= 3;
7ad10968
HZ
5898 opcode = opcode << 8 | ir.modrm;
5899 goto no_support;
5900 break;
5901 }
5902 break;
5903
a38bba38
MS
5904 case 0x0f21: /* mov reg, drN */
5905 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
5906 if (i386_record_modrm (&ir))
5907 return -1;
5908 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5909 || ir.reg == 5 || ir.reg >= 8)
5910 {
cf648174 5911 ir.addr -= 3;
7ad10968
HZ
5912 opcode = opcode << 8 | ir.modrm;
5913 goto no_support;
5914 }
5915 if (opcode & 2)
cf648174 5916 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5917 else
cf648174 5918 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5919 break;
5920
a38bba38 5921 case 0x0f06: /* clts */
cf648174 5922 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5923 break;
5924
a3c4230a
HZ
5925 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
5926
5927 case 0x0f0d: /* 3DNow! prefetch */
5928 break;
5929
5930 case 0x0f0e: /* 3DNow! femms */
5931 case 0x0f77: /* emms */
5932 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
5933 goto no_support;
5934 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
5935 break;
5936
5937 case 0x0f0f: /* 3DNow! data */
5938 if (i386_record_modrm (&ir))
5939 return -1;
5940 if (target_read_memory (ir.addr, &opcode8, 1))
5941 {
5942 printf_unfiltered (_("Process record: error reading memory at "
5943 "addr %s len = 1.\n"),
5944 paddress (gdbarch, ir.addr));
5945 return -1;
5946 }
5947 ir.addr++;
5948 switch (opcode8)
5949 {
5950 case 0x0c: /* 3DNow! pi2fw */
5951 case 0x0d: /* 3DNow! pi2fd */
5952 case 0x1c: /* 3DNow! pf2iw */
5953 case 0x1d: /* 3DNow! pf2id */
5954 case 0x8a: /* 3DNow! pfnacc */
5955 case 0x8e: /* 3DNow! pfpnacc */
5956 case 0x90: /* 3DNow! pfcmpge */
5957 case 0x94: /* 3DNow! pfmin */
5958 case 0x96: /* 3DNow! pfrcp */
5959 case 0x97: /* 3DNow! pfrsqrt */
5960 case 0x9a: /* 3DNow! pfsub */
5961 case 0x9e: /* 3DNow! pfadd */
5962 case 0xa0: /* 3DNow! pfcmpgt */
5963 case 0xa4: /* 3DNow! pfmax */
5964 case 0xa6: /* 3DNow! pfrcpit1 */
5965 case 0xa7: /* 3DNow! pfrsqit1 */
5966 case 0xaa: /* 3DNow! pfsubr */
5967 case 0xae: /* 3DNow! pfacc */
5968 case 0xb0: /* 3DNow! pfcmpeq */
5969 case 0xb4: /* 3DNow! pfmul */
5970 case 0xb6: /* 3DNow! pfrcpit2 */
5971 case 0xb7: /* 3DNow! pmulhrw */
5972 case 0xbb: /* 3DNow! pswapd */
5973 case 0xbf: /* 3DNow! pavgusb */
5974 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
5975 goto no_support_3dnow_data;
5976 record_arch_list_add_reg (ir.regcache, ir.reg);
5977 break;
5978
5979 default:
5980no_support_3dnow_data:
5981 opcode = (opcode << 8) | opcode8;
5982 goto no_support;
5983 break;
5984 }
5985 break;
5986
5987 case 0x0faa: /* rsm */
5988 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5989 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5990 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5991 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5992 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5993 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5994 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5995 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5996 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5997 break;
5998
5999 case 0x0fae:
6000 if (i386_record_modrm (&ir))
6001 return -1;
6002 switch(ir.reg)
6003 {
6004 case 0: /* fxsave */
6005 {
6006 uint64_t tmpu64;
6007
6008 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6009 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6010 return -1;
6011 if (record_arch_list_add_mem (tmpu64, 512))
6012 return -1;
6013 }
6014 break;
6015
6016 case 1: /* fxrstor */
6017 {
6018 int i;
6019
6020 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6021
6022 for (i = I387_MM0_REGNUM (tdep);
6023 i386_mmx_regnum_p (gdbarch, i); i++)
6024 record_arch_list_add_reg (ir.regcache, i);
6025
6026 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 6027 i386_xmm_regnum_p (gdbarch, i); i++)
a3c4230a
HZ
6028 record_arch_list_add_reg (ir.regcache, i);
6029
6030 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6031 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6032
6033 for (i = I387_ST0_REGNUM (tdep);
6034 i386_fp_regnum_p (gdbarch, i); i++)
6035 record_arch_list_add_reg (ir.regcache, i);
6036
6037 for (i = I387_FCTRL_REGNUM (tdep);
6038 i386_fpc_regnum_p (gdbarch, i); i++)
6039 record_arch_list_add_reg (ir.regcache, i);
6040 }
6041 break;
6042
6043 case 2: /* ldmxcsr */
6044 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6045 goto no_support;
6046 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6047 break;
6048
6049 case 3: /* stmxcsr */
6050 ir.ot = OT_LONG;
6051 if (i386_record_lea_modrm (&ir))
6052 return -1;
6053 break;
6054
6055 case 5: /* lfence */
6056 case 6: /* mfence */
6057 case 7: /* sfence clflush */
6058 break;
6059
6060 default:
6061 opcode = (opcode << 8) | ir.modrm;
6062 goto no_support;
6063 break;
6064 }
6065 break;
6066
6067 case 0x0fc3: /* movnti */
6068 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6069 if (i386_record_modrm (&ir))
6070 return -1;
6071 if (ir.mod == 3)
6072 goto no_support;
6073 ir.reg |= rex_r;
6074 if (i386_record_lea_modrm (&ir))
6075 return -1;
6076 break;
6077
6078 /* Add prefix to opcode. */
6079 case 0x0f10:
6080 case 0x0f11:
6081 case 0x0f12:
6082 case 0x0f13:
6083 case 0x0f14:
6084 case 0x0f15:
6085 case 0x0f16:
6086 case 0x0f17:
6087 case 0x0f28:
6088 case 0x0f29:
6089 case 0x0f2a:
6090 case 0x0f2b:
6091 case 0x0f2c:
6092 case 0x0f2d:
6093 case 0x0f2e:
6094 case 0x0f2f:
6095 case 0x0f38:
6096 case 0x0f39:
6097 case 0x0f3a:
6098 case 0x0f50:
6099 case 0x0f51:
6100 case 0x0f52:
6101 case 0x0f53:
6102 case 0x0f54:
6103 case 0x0f55:
6104 case 0x0f56:
6105 case 0x0f57:
6106 case 0x0f58:
6107 case 0x0f59:
6108 case 0x0f5a:
6109 case 0x0f5b:
6110 case 0x0f5c:
6111 case 0x0f5d:
6112 case 0x0f5e:
6113 case 0x0f5f:
6114 case 0x0f60:
6115 case 0x0f61:
6116 case 0x0f62:
6117 case 0x0f63:
6118 case 0x0f64:
6119 case 0x0f65:
6120 case 0x0f66:
6121 case 0x0f67:
6122 case 0x0f68:
6123 case 0x0f69:
6124 case 0x0f6a:
6125 case 0x0f6b:
6126 case 0x0f6c:
6127 case 0x0f6d:
6128 case 0x0f6e:
6129 case 0x0f6f:
6130 case 0x0f70:
6131 case 0x0f71:
6132 case 0x0f72:
6133 case 0x0f73:
6134 case 0x0f74:
6135 case 0x0f75:
6136 case 0x0f76:
6137 case 0x0f7c:
6138 case 0x0f7d:
6139 case 0x0f7e:
6140 case 0x0f7f:
6141 case 0x0fb8:
6142 case 0x0fc2:
6143 case 0x0fc4:
6144 case 0x0fc5:
6145 case 0x0fc6:
6146 case 0x0fd0:
6147 case 0x0fd1:
6148 case 0x0fd2:
6149 case 0x0fd3:
6150 case 0x0fd4:
6151 case 0x0fd5:
6152 case 0x0fd6:
6153 case 0x0fd7:
6154 case 0x0fd8:
6155 case 0x0fd9:
6156 case 0x0fda:
6157 case 0x0fdb:
6158 case 0x0fdc:
6159 case 0x0fdd:
6160 case 0x0fde:
6161 case 0x0fdf:
6162 case 0x0fe0:
6163 case 0x0fe1:
6164 case 0x0fe2:
6165 case 0x0fe3:
6166 case 0x0fe4:
6167 case 0x0fe5:
6168 case 0x0fe6:
6169 case 0x0fe7:
6170 case 0x0fe8:
6171 case 0x0fe9:
6172 case 0x0fea:
6173 case 0x0feb:
6174 case 0x0fec:
6175 case 0x0fed:
6176 case 0x0fee:
6177 case 0x0fef:
6178 case 0x0ff0:
6179 case 0x0ff1:
6180 case 0x0ff2:
6181 case 0x0ff3:
6182 case 0x0ff4:
6183 case 0x0ff5:
6184 case 0x0ff6:
6185 case 0x0ff7:
6186 case 0x0ff8:
6187 case 0x0ff9:
6188 case 0x0ffa:
6189 case 0x0ffb:
6190 case 0x0ffc:
6191 case 0x0ffd:
6192 case 0x0ffe:
6193 switch (prefixes)
6194 {
6195 case PREFIX_REPNZ:
6196 opcode |= 0xf20000;
6197 break;
6198 case PREFIX_DATA:
6199 opcode |= 0x660000;
6200 break;
6201 case PREFIX_REPZ:
6202 opcode |= 0xf30000;
6203 break;
6204 }
6205reswitch_prefix_add:
6206 switch (opcode)
6207 {
6208 case 0x0f38:
6209 case 0x660f38:
6210 case 0xf20f38:
6211 case 0x0f3a:
6212 case 0x660f3a:
6213 if (target_read_memory (ir.addr, &opcode8, 1))
6214 {
6215 printf_unfiltered (_("Process record: error reading memory at "
6216 "addr %s len = 1.\n"),
6217 paddress (gdbarch, ir.addr));
6218 return -1;
6219 }
6220 ir.addr++;
6221 opcode = (uint32_t) opcode8 | opcode << 8;
6222 goto reswitch_prefix_add;
6223 break;
6224
6225 case 0x0f10: /* movups */
6226 case 0x660f10: /* movupd */
6227 case 0xf30f10: /* movss */
6228 case 0xf20f10: /* movsd */
6229 case 0x0f12: /* movlps */
6230 case 0x660f12: /* movlpd */
6231 case 0xf30f12: /* movsldup */
6232 case 0xf20f12: /* movddup */
6233 case 0x0f14: /* unpcklps */
6234 case 0x660f14: /* unpcklpd */
6235 case 0x0f15: /* unpckhps */
6236 case 0x660f15: /* unpckhpd */
6237 case 0x0f16: /* movhps */
6238 case 0x660f16: /* movhpd */
6239 case 0xf30f16: /* movshdup */
6240 case 0x0f28: /* movaps */
6241 case 0x660f28: /* movapd */
6242 case 0x0f2a: /* cvtpi2ps */
6243 case 0x660f2a: /* cvtpi2pd */
6244 case 0xf30f2a: /* cvtsi2ss */
6245 case 0xf20f2a: /* cvtsi2sd */
6246 case 0x0f2c: /* cvttps2pi */
6247 case 0x660f2c: /* cvttpd2pi */
6248 case 0x0f2d: /* cvtps2pi */
6249 case 0x660f2d: /* cvtpd2pi */
6250 case 0x660f3800: /* pshufb */
6251 case 0x660f3801: /* phaddw */
6252 case 0x660f3802: /* phaddd */
6253 case 0x660f3803: /* phaddsw */
6254 case 0x660f3804: /* pmaddubsw */
6255 case 0x660f3805: /* phsubw */
6256 case 0x660f3806: /* phsubd */
6257 case 0x660f3807: /* phaddsw */
6258 case 0x660f3808: /* psignb */
6259 case 0x660f3809: /* psignw */
6260 case 0x660f380a: /* psignd */
6261 case 0x660f380b: /* pmulhrsw */
6262 case 0x660f3810: /* pblendvb */
6263 case 0x660f3814: /* blendvps */
6264 case 0x660f3815: /* blendvpd */
6265 case 0x660f381c: /* pabsb */
6266 case 0x660f381d: /* pabsw */
6267 case 0x660f381e: /* pabsd */
6268 case 0x660f3820: /* pmovsxbw */
6269 case 0x660f3821: /* pmovsxbd */
6270 case 0x660f3822: /* pmovsxbq */
6271 case 0x660f3823: /* pmovsxwd */
6272 case 0x660f3824: /* pmovsxwq */
6273 case 0x660f3825: /* pmovsxdq */
6274 case 0x660f3828: /* pmuldq */
6275 case 0x660f3829: /* pcmpeqq */
6276 case 0x660f382a: /* movntdqa */
6277 case 0x660f3a08: /* roundps */
6278 case 0x660f3a09: /* roundpd */
6279 case 0x660f3a0a: /* roundss */
6280 case 0x660f3a0b: /* roundsd */
6281 case 0x660f3a0c: /* blendps */
6282 case 0x660f3a0d: /* blendpd */
6283 case 0x660f3a0e: /* pblendw */
6284 case 0x660f3a0f: /* palignr */
6285 case 0x660f3a20: /* pinsrb */
6286 case 0x660f3a21: /* insertps */
6287 case 0x660f3a22: /* pinsrd pinsrq */
6288 case 0x660f3a40: /* dpps */
6289 case 0x660f3a41: /* dppd */
6290 case 0x660f3a42: /* mpsadbw */
6291 case 0x660f3a60: /* pcmpestrm */
6292 case 0x660f3a61: /* pcmpestri */
6293 case 0x660f3a62: /* pcmpistrm */
6294 case 0x660f3a63: /* pcmpistri */
6295 case 0x0f51: /* sqrtps */
6296 case 0x660f51: /* sqrtpd */
6297 case 0xf20f51: /* sqrtsd */
6298 case 0xf30f51: /* sqrtss */
6299 case 0x0f52: /* rsqrtps */
6300 case 0xf30f52: /* rsqrtss */
6301 case 0x0f53: /* rcpps */
6302 case 0xf30f53: /* rcpss */
6303 case 0x0f54: /* andps */
6304 case 0x660f54: /* andpd */
6305 case 0x0f55: /* andnps */
6306 case 0x660f55: /* andnpd */
6307 case 0x0f56: /* orps */
6308 case 0x660f56: /* orpd */
6309 case 0x0f57: /* xorps */
6310 case 0x660f57: /* xorpd */
6311 case 0x0f58: /* addps */
6312 case 0x660f58: /* addpd */
6313 case 0xf20f58: /* addsd */
6314 case 0xf30f58: /* addss */
6315 case 0x0f59: /* mulps */
6316 case 0x660f59: /* mulpd */
6317 case 0xf20f59: /* mulsd */
6318 case 0xf30f59: /* mulss */
6319 case 0x0f5a: /* cvtps2pd */
6320 case 0x660f5a: /* cvtpd2ps */
6321 case 0xf20f5a: /* cvtsd2ss */
6322 case 0xf30f5a: /* cvtss2sd */
6323 case 0x0f5b: /* cvtdq2ps */
6324 case 0x660f5b: /* cvtps2dq */
6325 case 0xf30f5b: /* cvttps2dq */
6326 case 0x0f5c: /* subps */
6327 case 0x660f5c: /* subpd */
6328 case 0xf20f5c: /* subsd */
6329 case 0xf30f5c: /* subss */
6330 case 0x0f5d: /* minps */
6331 case 0x660f5d: /* minpd */
6332 case 0xf20f5d: /* minsd */
6333 case 0xf30f5d: /* minss */
6334 case 0x0f5e: /* divps */
6335 case 0x660f5e: /* divpd */
6336 case 0xf20f5e: /* divsd */
6337 case 0xf30f5e: /* divss */
6338 case 0x0f5f: /* maxps */
6339 case 0x660f5f: /* maxpd */
6340 case 0xf20f5f: /* maxsd */
6341 case 0xf30f5f: /* maxss */
6342 case 0x660f60: /* punpcklbw */
6343 case 0x660f61: /* punpcklwd */
6344 case 0x660f62: /* punpckldq */
6345 case 0x660f63: /* packsswb */
6346 case 0x660f64: /* pcmpgtb */
6347 case 0x660f65: /* pcmpgtw */
6348 case 0x660f66: /* pcmpgtl */
6349 case 0x660f67: /* packuswb */
6350 case 0x660f68: /* punpckhbw */
6351 case 0x660f69: /* punpckhwd */
6352 case 0x660f6a: /* punpckhdq */
6353 case 0x660f6b: /* packssdw */
6354 case 0x660f6c: /* punpcklqdq */
6355 case 0x660f6d: /* punpckhqdq */
6356 case 0x660f6e: /* movd */
6357 case 0x660f6f: /* movdqa */
6358 case 0xf30f6f: /* movdqu */
6359 case 0x660f70: /* pshufd */
6360 case 0xf20f70: /* pshuflw */
6361 case 0xf30f70: /* pshufhw */
6362 case 0x660f74: /* pcmpeqb */
6363 case 0x660f75: /* pcmpeqw */
6364 case 0x660f76: /* pcmpeql */
6365 case 0x660f7c: /* haddpd */
6366 case 0xf20f7c: /* haddps */
6367 case 0x660f7d: /* hsubpd */
6368 case 0xf20f7d: /* hsubps */
6369 case 0xf30f7e: /* movq */
6370 case 0x0fc2: /* cmpps */
6371 case 0x660fc2: /* cmppd */
6372 case 0xf20fc2: /* cmpsd */
6373 case 0xf30fc2: /* cmpss */
6374 case 0x660fc4: /* pinsrw */
6375 case 0x0fc6: /* shufps */
6376 case 0x660fc6: /* shufpd */
6377 case 0x660fd0: /* addsubpd */
6378 case 0xf20fd0: /* addsubps */
6379 case 0x660fd1: /* psrlw */
6380 case 0x660fd2: /* psrld */
6381 case 0x660fd3: /* psrlq */
6382 case 0x660fd4: /* paddq */
6383 case 0x660fd5: /* pmullw */
6384 case 0xf30fd6: /* movq2dq */
6385 case 0x660fd8: /* psubusb */
6386 case 0x660fd9: /* psubusw */
6387 case 0x660fda: /* pminub */
6388 case 0x660fdb: /* pand */
6389 case 0x660fdc: /* paddusb */
6390 case 0x660fdd: /* paddusw */
6391 case 0x660fde: /* pmaxub */
6392 case 0x660fdf: /* pandn */
6393 case 0x660fe0: /* pavgb */
6394 case 0x660fe1: /* psraw */
6395 case 0x660fe2: /* psrad */
6396 case 0x660fe3: /* pavgw */
6397 case 0x660fe4: /* pmulhuw */
6398 case 0x660fe5: /* pmulhw */
6399 case 0x660fe6: /* cvttpd2dq */
6400 case 0xf20fe6: /* cvtpd2dq */
6401 case 0xf30fe6: /* cvtdq2pd */
6402 case 0x660fe8: /* psubsb */
6403 case 0x660fe9: /* psubsw */
6404 case 0x660fea: /* pminsw */
6405 case 0x660feb: /* por */
6406 case 0x660fec: /* paddsb */
6407 case 0x660fed: /* paddsw */
6408 case 0x660fee: /* pmaxsw */
6409 case 0x660fef: /* pxor */
6410 case 0x660ff0: /* lddqu */
6411 case 0x660ff1: /* psllw */
6412 case 0x660ff2: /* pslld */
6413 case 0x660ff3: /* psllq */
6414 case 0x660ff4: /* pmuludq */
6415 case 0x660ff5: /* pmaddwd */
6416 case 0x660ff6: /* psadbw */
6417 case 0x660ff8: /* psubb */
6418 case 0x660ff9: /* psubw */
6419 case 0x660ffa: /* psubl */
6420 case 0x660ffb: /* psubq */
6421 case 0x660ffc: /* paddb */
6422 case 0x660ffd: /* paddw */
6423 case 0x660ffe: /* paddl */
6424 if (i386_record_modrm (&ir))
6425 return -1;
6426 ir.reg |= rex_r;
c131fcee 6427 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a
HZ
6428 goto no_support;
6429 record_arch_list_add_reg (ir.regcache,
6430 I387_XMM0_REGNUM (tdep) + ir.reg);
6431 if ((opcode & 0xfffffffc) == 0x660f3a60)
6432 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6433 break;
6434
6435 case 0x0f11: /* movups */
6436 case 0x660f11: /* movupd */
6437 case 0xf30f11: /* movss */
6438 case 0xf20f11: /* movsd */
6439 case 0x0f13: /* movlps */
6440 case 0x660f13: /* movlpd */
6441 case 0x0f17: /* movhps */
6442 case 0x660f17: /* movhpd */
6443 case 0x0f29: /* movaps */
6444 case 0x660f29: /* movapd */
6445 case 0x660f3a14: /* pextrb */
6446 case 0x660f3a15: /* pextrw */
6447 case 0x660f3a16: /* pextrd pextrq */
6448 case 0x660f3a17: /* extractps */
6449 case 0x660f7f: /* movdqa */
6450 case 0xf30f7f: /* movdqu */
6451 if (i386_record_modrm (&ir))
6452 return -1;
6453 if (ir.mod == 3)
6454 {
6455 if (opcode == 0x0f13 || opcode == 0x660f13
6456 || opcode == 0x0f17 || opcode == 0x660f17)
6457 goto no_support;
6458 ir.rm |= ir.rex_b;
c131fcee 6459 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6460 goto no_support;
6461 record_arch_list_add_reg (ir.regcache,
6462 I387_XMM0_REGNUM (tdep) + ir.rm);
6463 }
6464 else
6465 {
6466 switch (opcode)
6467 {
6468 case 0x660f3a14:
6469 ir.ot = OT_BYTE;
6470 break;
6471 case 0x660f3a15:
6472 ir.ot = OT_WORD;
6473 break;
6474 case 0x660f3a16:
6475 ir.ot = OT_LONG;
6476 break;
6477 case 0x660f3a17:
6478 ir.ot = OT_QUAD;
6479 break;
6480 default:
6481 ir.ot = OT_DQUAD;
6482 break;
6483 }
6484 if (i386_record_lea_modrm (&ir))
6485 return -1;
6486 }
6487 break;
6488
6489 case 0x0f2b: /* movntps */
6490 case 0x660f2b: /* movntpd */
6491 case 0x0fe7: /* movntq */
6492 case 0x660fe7: /* movntdq */
6493 if (ir.mod == 3)
6494 goto no_support;
6495 if (opcode == 0x0fe7)
6496 ir.ot = OT_QUAD;
6497 else
6498 ir.ot = OT_DQUAD;
6499 if (i386_record_lea_modrm (&ir))
6500 return -1;
6501 break;
6502
6503 case 0xf30f2c: /* cvttss2si */
6504 case 0xf20f2c: /* cvttsd2si */
6505 case 0xf30f2d: /* cvtss2si */
6506 case 0xf20f2d: /* cvtsd2si */
6507 case 0xf20f38f0: /* crc32 */
6508 case 0xf20f38f1: /* crc32 */
6509 case 0x0f50: /* movmskps */
6510 case 0x660f50: /* movmskpd */
6511 case 0x0fc5: /* pextrw */
6512 case 0x660fc5: /* pextrw */
6513 case 0x0fd7: /* pmovmskb */
6514 case 0x660fd7: /* pmovmskb */
6515 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6516 break;
6517
6518 case 0x0f3800: /* pshufb */
6519 case 0x0f3801: /* phaddw */
6520 case 0x0f3802: /* phaddd */
6521 case 0x0f3803: /* phaddsw */
6522 case 0x0f3804: /* pmaddubsw */
6523 case 0x0f3805: /* phsubw */
6524 case 0x0f3806: /* phsubd */
6525 case 0x0f3807: /* phaddsw */
6526 case 0x0f3808: /* psignb */
6527 case 0x0f3809: /* psignw */
6528 case 0x0f380a: /* psignd */
6529 case 0x0f380b: /* pmulhrsw */
6530 case 0x0f381c: /* pabsb */
6531 case 0x0f381d: /* pabsw */
6532 case 0x0f381e: /* pabsd */
6533 case 0x0f382b: /* packusdw */
6534 case 0x0f3830: /* pmovzxbw */
6535 case 0x0f3831: /* pmovzxbd */
6536 case 0x0f3832: /* pmovzxbq */
6537 case 0x0f3833: /* pmovzxwd */
6538 case 0x0f3834: /* pmovzxwq */
6539 case 0x0f3835: /* pmovzxdq */
6540 case 0x0f3837: /* pcmpgtq */
6541 case 0x0f3838: /* pminsb */
6542 case 0x0f3839: /* pminsd */
6543 case 0x0f383a: /* pminuw */
6544 case 0x0f383b: /* pminud */
6545 case 0x0f383c: /* pmaxsb */
6546 case 0x0f383d: /* pmaxsd */
6547 case 0x0f383e: /* pmaxuw */
6548 case 0x0f383f: /* pmaxud */
6549 case 0x0f3840: /* pmulld */
6550 case 0x0f3841: /* phminposuw */
6551 case 0x0f3a0f: /* palignr */
6552 case 0x0f60: /* punpcklbw */
6553 case 0x0f61: /* punpcklwd */
6554 case 0x0f62: /* punpckldq */
6555 case 0x0f63: /* packsswb */
6556 case 0x0f64: /* pcmpgtb */
6557 case 0x0f65: /* pcmpgtw */
6558 case 0x0f66: /* pcmpgtl */
6559 case 0x0f67: /* packuswb */
6560 case 0x0f68: /* punpckhbw */
6561 case 0x0f69: /* punpckhwd */
6562 case 0x0f6a: /* punpckhdq */
6563 case 0x0f6b: /* packssdw */
6564 case 0x0f6e: /* movd */
6565 case 0x0f6f: /* movq */
6566 case 0x0f70: /* pshufw */
6567 case 0x0f74: /* pcmpeqb */
6568 case 0x0f75: /* pcmpeqw */
6569 case 0x0f76: /* pcmpeql */
6570 case 0x0fc4: /* pinsrw */
6571 case 0x0fd1: /* psrlw */
6572 case 0x0fd2: /* psrld */
6573 case 0x0fd3: /* psrlq */
6574 case 0x0fd4: /* paddq */
6575 case 0x0fd5: /* pmullw */
6576 case 0xf20fd6: /* movdq2q */
6577 case 0x0fd8: /* psubusb */
6578 case 0x0fd9: /* psubusw */
6579 case 0x0fda: /* pminub */
6580 case 0x0fdb: /* pand */
6581 case 0x0fdc: /* paddusb */
6582 case 0x0fdd: /* paddusw */
6583 case 0x0fde: /* pmaxub */
6584 case 0x0fdf: /* pandn */
6585 case 0x0fe0: /* pavgb */
6586 case 0x0fe1: /* psraw */
6587 case 0x0fe2: /* psrad */
6588 case 0x0fe3: /* pavgw */
6589 case 0x0fe4: /* pmulhuw */
6590 case 0x0fe5: /* pmulhw */
6591 case 0x0fe8: /* psubsb */
6592 case 0x0fe9: /* psubsw */
6593 case 0x0fea: /* pminsw */
6594 case 0x0feb: /* por */
6595 case 0x0fec: /* paddsb */
6596 case 0x0fed: /* paddsw */
6597 case 0x0fee: /* pmaxsw */
6598 case 0x0fef: /* pxor */
6599 case 0x0ff1: /* psllw */
6600 case 0x0ff2: /* pslld */
6601 case 0x0ff3: /* psllq */
6602 case 0x0ff4: /* pmuludq */
6603 case 0x0ff5: /* pmaddwd */
6604 case 0x0ff6: /* psadbw */
6605 case 0x0ff8: /* psubb */
6606 case 0x0ff9: /* psubw */
6607 case 0x0ffa: /* psubl */
6608 case 0x0ffb: /* psubq */
6609 case 0x0ffc: /* paddb */
6610 case 0x0ffd: /* paddw */
6611 case 0x0ffe: /* paddl */
6612 if (i386_record_modrm (&ir))
6613 return -1;
6614 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6615 goto no_support;
6616 record_arch_list_add_reg (ir.regcache,
6617 I387_MM0_REGNUM (tdep) + ir.reg);
6618 break;
6619
6620 case 0x0f71: /* psllw */
6621 case 0x0f72: /* pslld */
6622 case 0x0f73: /* psllq */
6623 if (i386_record_modrm (&ir))
6624 return -1;
6625 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6626 goto no_support;
6627 record_arch_list_add_reg (ir.regcache,
6628 I387_MM0_REGNUM (tdep) + ir.rm);
6629 break;
6630
6631 case 0x660f71: /* psllw */
6632 case 0x660f72: /* pslld */
6633 case 0x660f73: /* psllq */
6634 if (i386_record_modrm (&ir))
6635 return -1;
6636 ir.rm |= ir.rex_b;
c131fcee 6637 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6638 goto no_support;
6639 record_arch_list_add_reg (ir.regcache,
6640 I387_XMM0_REGNUM (tdep) + ir.rm);
6641 break;
6642
6643 case 0x0f7e: /* movd */
6644 case 0x660f7e: /* movd */
6645 if (i386_record_modrm (&ir))
6646 return -1;
6647 if (ir.mod == 3)
6648 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6649 else
6650 {
6651 if (ir.dflag == 2)
6652 ir.ot = OT_QUAD;
6653 else
6654 ir.ot = OT_LONG;
6655 if (i386_record_lea_modrm (&ir))
6656 return -1;
6657 }
6658 break;
6659
6660 case 0x0f7f: /* movq */
6661 if (i386_record_modrm (&ir))
6662 return -1;
6663 if (ir.mod == 3)
6664 {
6665 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6666 goto no_support;
6667 record_arch_list_add_reg (ir.regcache,
6668 I387_MM0_REGNUM (tdep) + ir.rm);
6669 }
6670 else
6671 {
6672 ir.ot = OT_QUAD;
6673 if (i386_record_lea_modrm (&ir))
6674 return -1;
6675 }
6676 break;
6677
6678 case 0xf30fb8: /* popcnt */
6679 if (i386_record_modrm (&ir))
6680 return -1;
6681 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6682 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6683 break;
6684
6685 case 0x660fd6: /* movq */
6686 if (i386_record_modrm (&ir))
6687 return -1;
6688 if (ir.mod == 3)
6689 {
6690 ir.rm |= ir.rex_b;
c131fcee 6691 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6692 goto no_support;
6693 record_arch_list_add_reg (ir.regcache,
6694 I387_XMM0_REGNUM (tdep) + ir.rm);
6695 }
6696 else
6697 {
6698 ir.ot = OT_QUAD;
6699 if (i386_record_lea_modrm (&ir))
6700 return -1;
6701 }
6702 break;
6703
6704 case 0x660f3817: /* ptest */
6705 case 0x0f2e: /* ucomiss */
6706 case 0x660f2e: /* ucomisd */
6707 case 0x0f2f: /* comiss */
6708 case 0x660f2f: /* comisd */
6709 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6710 break;
6711
6712 case 0x0ff7: /* maskmovq */
6713 regcache_raw_read_unsigned (ir.regcache,
6714 ir.regmap[X86_RECORD_REDI_REGNUM],
6715 &addr);
6716 if (record_arch_list_add_mem (addr, 64))
6717 return -1;
6718 break;
6719
6720 case 0x660ff7: /* maskmovdqu */
6721 regcache_raw_read_unsigned (ir.regcache,
6722 ir.regmap[X86_RECORD_REDI_REGNUM],
6723 &addr);
6724 if (record_arch_list_add_mem (addr, 128))
6725 return -1;
6726 break;
6727
6728 default:
6729 goto no_support;
6730 break;
6731 }
6732 break;
7ad10968
HZ
6733
6734 default:
7ad10968
HZ
6735 goto no_support;
6736 break;
6737 }
6738
cf648174
HZ
6739 /* In the future, maybe still need to deal with need_dasm. */
6740 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7ad10968
HZ
6741 if (record_arch_list_add_end ())
6742 return -1;
6743
6744 return 0;
6745
01fe1b41 6746 no_support:
a3c4230a
HZ
6747 printf_unfiltered (_("Process record does not support instruction 0x%02x "
6748 "at address %s.\n"),
6749 (unsigned int) (opcode),
6750 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
6751 return -1;
6752}
6753
cf648174
HZ
6754static const int i386_record_regmap[] =
6755{
6756 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6757 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6758 0, 0, 0, 0, 0, 0, 0, 0,
6759 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6760 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6761};
6762
7a697b8d
SS
6763/* Check that the given address appears suitable for a fast
6764 tracepoint, which on x86 means that we need an instruction of at
6765 least 5 bytes, so that we can overwrite it with a 4-byte-offset
6766 jump and not have to worry about program jumps to an address in the
6767 middle of the tracepoint jump. Returns 1 if OK, and writes a size
6768 of instruction to replace, and 0 if not, plus an explanatory
6769 string. */
6770
6771static int
6772i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6773 CORE_ADDR addr, int *isize, char **msg)
6774{
6775 int len, jumplen;
6776 static struct ui_file *gdb_null = NULL;
6777
6778 /* This is based on the target agent using a 4-byte relative jump.
6779 Alternate future possibilities include 8-byte offset for x86-84,
6780 or 3-byte jumps if the program has trampoline space close by. */
6781 jumplen = 5;
6782
6783 /* Dummy file descriptor for the disassembler. */
6784 if (!gdb_null)
6785 gdb_null = ui_file_new ();
6786
6787 /* Check for fit. */
6788 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6789 if (len < jumplen)
6790 {
6791 /* Return a bit of target-specific detail to add to the caller's
6792 generic failure message. */
6793 if (msg)
6794 *msg = xstrprintf (_("; instruction is only %d bytes long, need at least %d bytes for the jump"),
6795 len, jumplen);
6796 return 0;
6797 }
6798
6799 if (isize)
6800 *isize = len;
6801 if (msg)
6802 *msg = NULL;
6803 return 1;
6804}
6805
90884b2b
L
6806static int
6807i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6808 struct tdesc_arch_data *tdesc_data)
6809{
6810 const struct target_desc *tdesc = tdep->tdesc;
c131fcee
L
6811 const struct tdesc_feature *feature_core;
6812 const struct tdesc_feature *feature_sse, *feature_avx;
90884b2b
L
6813 int i, num_regs, valid_p;
6814
6815 if (! tdesc_has_registers (tdesc))
6816 return 0;
6817
6818 /* Get core registers. */
6819 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
6820 if (feature_core == NULL)
6821 return 0;
90884b2b
L
6822
6823 /* Get SSE registers. */
c131fcee 6824 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 6825
c131fcee
L
6826 /* Try AVX registers. */
6827 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6828
90884b2b
L
6829 valid_p = 1;
6830
c131fcee
L
6831 /* The XCR0 bits. */
6832 if (feature_avx)
6833 {
3a13a53b
L
6834 /* AVX register description requires SSE register description. */
6835 if (!feature_sse)
6836 return 0;
6837
c131fcee
L
6838 tdep->xcr0 = I386_XSTATE_AVX_MASK;
6839
6840 /* It may have been set by OSABI initialization function. */
6841 if (tdep->num_ymm_regs == 0)
6842 {
6843 tdep->ymmh_register_names = i386_ymmh_names;
6844 tdep->num_ymm_regs = 8;
6845 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
6846 }
6847
6848 for (i = 0; i < tdep->num_ymm_regs; i++)
6849 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
6850 tdep->ymm0h_regnum + i,
6851 tdep->ymmh_register_names[i]);
6852 }
3a13a53b 6853 else if (feature_sse)
c131fcee 6854 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
6855 else
6856 {
6857 tdep->xcr0 = I386_XSTATE_X87_MASK;
6858 tdep->num_xmm_regs = 0;
6859 }
c131fcee 6860
90884b2b
L
6861 num_regs = tdep->num_core_regs;
6862 for (i = 0; i < num_regs; i++)
6863 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
6864 tdep->register_names[i]);
6865
3a13a53b
L
6866 if (feature_sse)
6867 {
6868 /* Need to include %mxcsr, so add one. */
6869 num_regs += tdep->num_xmm_regs + 1;
6870 for (; i < num_regs; i++)
6871 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
6872 tdep->register_names[i]);
6873 }
90884b2b
L
6874
6875 return valid_p;
6876}
6877
7ad10968
HZ
6878\f
6879static struct gdbarch *
6880i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6881{
6882 struct gdbarch_tdep *tdep;
6883 struct gdbarch *gdbarch;
90884b2b
L
6884 struct tdesc_arch_data *tdesc_data;
6885 const struct target_desc *tdesc;
1ba53b71 6886 int mm0_regnum;
c131fcee 6887 int ymm0_regnum;
7ad10968
HZ
6888
6889 /* If there is already a candidate, use it. */
6890 arches = gdbarch_list_lookup_by_info (arches, &info);
6891 if (arches != NULL)
6892 return arches->gdbarch;
6893
6894 /* Allocate space for the new architecture. */
6895 tdep = XCALLOC (1, struct gdbarch_tdep);
6896 gdbarch = gdbarch_alloc (&info, tdep);
6897
6898 /* General-purpose registers. */
6899 tdep->gregset = NULL;
6900 tdep->gregset_reg_offset = NULL;
6901 tdep->gregset_num_regs = I386_NUM_GREGS;
6902 tdep->sizeof_gregset = 0;
6903
6904 /* Floating-point registers. */
6905 tdep->fpregset = NULL;
6906 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
6907
c131fcee
L
6908 tdep->xstateregset = NULL;
6909
7ad10968
HZ
6910 /* The default settings include the FPU registers, the MMX registers
6911 and the SSE registers. This can be overridden for a specific ABI
6912 by adjusting the members `st0_regnum', `mm0_regnum' and
6913 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 6914 will show up in the output of "info all-registers". */
7ad10968
HZ
6915
6916 tdep->st0_regnum = I386_ST0_REGNUM;
6917
7ad10968
HZ
6918 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
6919 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
6920
6921 tdep->jb_pc_offset = -1;
6922 tdep->struct_return = pcc_struct_return;
6923 tdep->sigtramp_start = 0;
6924 tdep->sigtramp_end = 0;
6925 tdep->sigtramp_p = i386_sigtramp_p;
6926 tdep->sigcontext_addr = NULL;
6927 tdep->sc_reg_offset = NULL;
6928 tdep->sc_pc_offset = -1;
6929 tdep->sc_sp_offset = -1;
6930
c131fcee
L
6931 tdep->xsave_xcr0_offset = -1;
6932
cf648174
HZ
6933 tdep->record_regmap = i386_record_regmap;
6934
7ad10968
HZ
6935 /* The format used for `long double' on almost all i386 targets is
6936 the i387 extended floating-point format. In fact, of all targets
6937 in the GCC 2.95 tree, only OSF/1 does it different, and insists
6938 on having a `long double' that's not `long' at all. */
6939 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
6940
6941 /* Although the i387 extended floating-point has only 80 significant
6942 bits, a `long double' actually takes up 96, probably to enforce
6943 alignment. */
6944 set_gdbarch_long_double_bit (gdbarch, 96);
6945
7ad10968
HZ
6946 /* Register numbers of various important registers. */
6947 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
6948 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
6949 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
6950 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
6951
6952 /* NOTE: kettenis/20040418: GCC does have two possible register
6953 numbering schemes on the i386: dbx and SVR4. These schemes
6954 differ in how they number %ebp, %esp, %eflags, and the
6955 floating-point registers, and are implemented by the arrays
6956 dbx_register_map[] and svr4_dbx_register_map in
6957 gcc/config/i386.c. GCC also defines a third numbering scheme in
6958 gcc/config/i386.c, which it designates as the "default" register
6959 map used in 64bit mode. This last register numbering scheme is
6960 implemented in dbx64_register_map, and is used for AMD64; see
6961 amd64-tdep.c.
6962
6963 Currently, each GCC i386 target always uses the same register
6964 numbering scheme across all its supported debugging formats
6965 i.e. SDB (COFF), stabs and DWARF 2. This is because
6966 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
6967 DBX_REGISTER_NUMBER macro which is defined by each target's
6968 respective config header in a manner independent of the requested
6969 output debugging format.
6970
6971 This does not match the arrangement below, which presumes that
6972 the SDB and stabs numbering schemes differ from the DWARF and
6973 DWARF 2 ones. The reason for this arrangement is that it is
6974 likely to get the numbering scheme for the target's
6975 default/native debug format right. For targets where GCC is the
6976 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
6977 targets where the native toolchain uses a different numbering
6978 scheme for a particular debug format (stabs-in-ELF on Solaris)
6979 the defaults below will have to be overridden, like
6980 i386_elf_init_abi() does. */
6981
6982 /* Use the dbx register numbering scheme for stabs and COFF. */
6983 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
6984 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
6985
6986 /* Use the SVR4 register numbering scheme for DWARF 2. */
6987 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
6988
6989 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
6990 be in use on any of the supported i386 targets. */
6991
6992 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
6993
6994 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
6995
6996 /* Call dummy code. */
6997 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
6998
6999 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7000 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7001 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7002
7003 set_gdbarch_return_value (gdbarch, i386_return_value);
7004
7005 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7006
7007 /* Stack grows downward. */
7008 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7009
7010 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7011 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7012 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7013
7014 set_gdbarch_frame_args_skip (gdbarch, 8);
7015
7ad10968
HZ
7016 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7017
7018 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7019
7020 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7021
7022 /* Add the i386 register groups. */
7023 i386_add_reggroups (gdbarch);
90884b2b 7024 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 7025
143985b7
AF
7026 /* Helper for function argument information. */
7027 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7028
06da04c6
MS
7029 /* Hook the function epilogue frame unwinder. This unwinder is
7030 appended to the list first, so that it supercedes the Dwarf
7031 unwinder in function epilogues (where the Dwarf unwinder
7032 currently fails). */
7033 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7034
7035 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7036 to the list before the prologue-based unwinders, so that Dwarf
7037 CFI info will be used if it is available. */
10458914 7038 dwarf2_append_unwinders (gdbarch);
6405b0a6 7039
acd5c798 7040 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 7041
1ba53b71 7042 /* Pseudo registers may be changed by amd64_init_abi. */
90884b2b
L
7043 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7044 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7045
7046 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7047 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7048
c131fcee
L
7049 /* Override the normal target description method to make the AVX
7050 upper halves anonymous. */
7051 set_gdbarch_register_name (gdbarch, i386_register_name);
7052
7053 /* Even though the default ABI only includes general-purpose registers,
7054 floating-point registers and the SSE registers, we have to leave a
7055 gap for the upper AVX registers. */
7056 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
90884b2b
L
7057
7058 /* Get the x86 target description from INFO. */
7059 tdesc = info.target_desc;
7060 if (! tdesc_has_registers (tdesc))
7061 tdesc = tdesc_i386;
7062 tdep->tdesc = tdesc;
7063
7064 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7065 tdep->register_names = i386_register_names;
7066
c131fcee
L
7067 /* No upper YMM registers. */
7068 tdep->ymmh_register_names = NULL;
7069 tdep->ymm0h_regnum = -1;
7070
1ba53b71
L
7071 tdep->num_byte_regs = 8;
7072 tdep->num_word_regs = 8;
7073 tdep->num_dword_regs = 0;
7074 tdep->num_mmx_regs = 8;
c131fcee 7075 tdep->num_ymm_regs = 0;
1ba53b71 7076
90884b2b
L
7077 tdesc_data = tdesc_data_alloc ();
7078
dde08ee1
PA
7079 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7080
3ce1502b 7081 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 7082 info.tdep_info = (void *) tdesc_data;
4be87837 7083 gdbarch_init_osabi (info, gdbarch);
3ce1502b 7084
c131fcee
L
7085 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7086 {
7087 tdesc_data_cleanup (tdesc_data);
7088 xfree (tdep);
7089 gdbarch_free (gdbarch);
7090 return NULL;
7091 }
7092
1ba53b71
L
7093 /* Wire in pseudo registers. Number of pseudo registers may be
7094 changed. */
7095 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7096 + tdep->num_word_regs
7097 + tdep->num_dword_regs
c131fcee
L
7098 + tdep->num_mmx_regs
7099 + tdep->num_ymm_regs));
1ba53b71 7100
90884b2b
L
7101 /* Target description may be changed. */
7102 tdesc = tdep->tdesc;
7103
90884b2b
L
7104 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7105
7106 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7107 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7108
1ba53b71
L
7109 /* Make %al the first pseudo-register. */
7110 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7111 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7112
c131fcee 7113 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
7114 if (tdep->num_dword_regs)
7115 {
1c6272a6 7116 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
7117 tdep->eax_regnum = ymm0_regnum;
7118 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
7119 }
7120 else
7121 tdep->eax_regnum = -1;
7122
c131fcee
L
7123 mm0_regnum = ymm0_regnum;
7124 if (tdep->num_ymm_regs)
7125 {
1c6272a6 7126 /* Support YMM pseudo-register if it is available. */
c131fcee
L
7127 tdep->ymm0_regnum = ymm0_regnum;
7128 mm0_regnum += tdep->num_ymm_regs;
7129 }
7130 else
7131 tdep->ymm0_regnum = -1;
7132
1ba53b71
L
7133 if (tdep->num_mmx_regs != 0)
7134 {
1c6272a6 7135 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71
L
7136 tdep->mm0_regnum = mm0_regnum;
7137 }
7138 else
7139 tdep->mm0_regnum = -1;
7140
06da04c6 7141 /* Hook in the legacy prologue-based unwinders last (fallback). */
10458914
DJ
7142 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7143 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 7144
8446b36a
MK
7145 /* If we have a register mapping, enable the generic core file
7146 support, unless it has already been enabled. */
7147 if (tdep->gregset_reg_offset
7148 && !gdbarch_regset_from_core_section_p (gdbarch))
7149 set_gdbarch_regset_from_core_section (gdbarch,
7150 i386_regset_from_core_section);
7151
514f746b
AR
7152 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7153 i386_skip_permanent_breakpoint);
7154
7a697b8d
SS
7155 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7156 i386_fast_tracepoint_valid_at);
7157
a62cc96e
AC
7158 return gdbarch;
7159}
7160
8201327c
MK
7161static enum gdb_osabi
7162i386_coff_osabi_sniffer (bfd *abfd)
7163{
762c5349
MK
7164 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7165 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
7166 return GDB_OSABI_GO32;
7167
7168 return GDB_OSABI_UNKNOWN;
7169}
8201327c
MK
7170\f
7171
28e9e0f0
MK
7172/* Provide a prototype to silence -Wmissing-prototypes. */
7173void _initialize_i386_tdep (void);
7174
c906108c 7175void
fba45db2 7176_initialize_i386_tdep (void)
c906108c 7177{
a62cc96e
AC
7178 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7179
fc338970 7180 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
7181 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7182 &disassembly_flavor, _("\
7183Set the disassembly flavor."), _("\
7184Show the disassembly flavor."), _("\
7185The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7186 NULL,
7187 NULL, /* FIXME: i18n: */
7188 &setlist, &showlist);
8201327c
MK
7189
7190 /* Add the variable that controls the convention for returning
7191 structs. */
7ab04401
AC
7192 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7193 &struct_convention, _("\
7194Set the convention for returning small structs."), _("\
7195Show the convention for returning small structs."), _("\
7196Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7197is \"default\"."),
7198 NULL,
7199 NULL, /* FIXME: i18n: */
7200 &setlist, &showlist);
8201327c
MK
7201
7202 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7203 i386_coff_osabi_sniffer);
8201327c 7204
05816f70 7205 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 7206 i386_svr4_init_abi);
05816f70 7207 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 7208 i386_go32_init_abi);
38c968cf 7209
209bd28e 7210 /* Initialize the i386-specific register groups. */
38c968cf 7211 i386_init_reggroups ();
90884b2b
L
7212
7213 /* Initialize the standard target descriptions. */
7214 initialize_tdesc_i386 ();
3a13a53b 7215 initialize_tdesc_i386_mmx ();
c131fcee 7216 initialize_tdesc_i386_avx ();
c8d5aac9
L
7217
7218 /* Tell remote stub that we support XML target description. */
7219 register_remote_support_xml ("i386");
c906108c 7220}