]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
Add recovery blocked field to mdinfo
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107};
108
109/* RAID map configuration infos. */
110struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116#define IMSM_T_STATE_NORMAL 0
117#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
118#define IMSM_T_STATE_DEGRADED 2
119#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
120 __u8 raid_level;
121#define IMSM_T_RAID0 0
122#define IMSM_T_RAID1 1
123#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 127 __u8 ddf;
cdddbdbc 128 __u32 filler[7]; /* expansion area */
7eef0453 129#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
131 * top byte contains some flags
132 */
cdddbdbc
DW
133} __attribute__ ((packed));
134
135struct imsm_vol {
f8f603f1 136 __u32 curr_migr_unit;
fe7ed8cb 137 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 138 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
139#define MIGR_INIT 0
140#define MIGR_REBUILD 1
141#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142#define MIGR_GEN_MIGR 3
143#define MIGR_STATE_CHANGE 4
1484e727 144#define MIGR_REPAIR 5
cdddbdbc
DW
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
fe7ed8cb
DW
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
cdddbdbc
DW
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153} __attribute__ ((packed));
154
155struct imsm_dev {
fe7ed8cb 156 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
157 __u32 size_low;
158 __u32 size_high;
fe7ed8cb
DW
159#define DEV_BOOTABLE __cpu_to_le32(0x01)
160#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161#define DEV_READ_COALESCING __cpu_to_le32(0x04)
162#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184} __attribute__ ((packed));
185
186struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202#define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
604b746f 206 /* here comes BBM logs */
cdddbdbc
DW
207} __attribute__ ((packed));
208
604b746f
JD
209#define BBM_LOG_MAX_ENTRIES 254
210
211struct bbm_log_entry {
212 __u64 defective_block_start;
213#define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217} __attribute__ ((__packed__));
218
219struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226} __attribute__ ((__packed__));
227
228
cdddbdbc
DW
229#ifndef MDASSEMBLE
230static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231#endif
232
8e59f3d8
AK
233#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266} __attribute__ ((__packed__));
267
1484e727
DW
268static __u8 migr_type(struct imsm_dev *dev)
269{
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275}
276
277static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278{
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289}
290
87eb16df 291static unsigned int sector_count(__u32 bytes)
cdddbdbc 292{
87eb16df
DW
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294}
cdddbdbc 295
87eb16df
DW
296static unsigned int mpb_sectors(struct imsm_super *mpb)
297{
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
299}
300
ba2de7ba
DW
301struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
f21e18ca 304 unsigned index;
ba2de7ba
DW
305};
306
88654014
LM
307struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312};
313
1a64be56
LM
314enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317};
cdddbdbc
DW
318/* internal representation of IMSM metadata */
319struct intel_super {
320 union {
949c47a0
DW
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 323 };
8e59f3d8
AK
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
949c47a0 328 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
c2c087e6 331 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 332 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 333 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 334 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 335 struct intel_dev *devlist;
cdddbdbc
DW
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
b9f594fe 342 struct imsm_disk disk;
cdddbdbc 343 int fd;
0dcecb2e
DW
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
efb30e7f 346 int raiddisk; /* slot to fill in autolayout */
1a64be56 347 enum action action;
ca0748fa 348 } *disks, *current_disk;
1a64be56
LM
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
47ee5a45 351 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 352 struct bbm_log *bbm_log;
88654014 353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 354 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356};
357
358struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
cdddbdbc
DW
363};
364
c2c087e6
DW
365struct extent {
366 unsigned long long start, size;
367};
368
694575e7
KW
369/* definitions of reshape process types */
370enum imsm_reshape_type {
371 CH_TAKEOVER,
b5347799 372 CH_MIGRATION,
694575e7
KW
373};
374
88758e9d
DW
375/* definition of messages passed to imsm_process_update */
376enum imsm_update_type {
377 update_activate_spare,
8273f55e 378 update_create_array,
33414a01 379 update_kill_array,
aa534678 380 update_rename_array,
1a64be56 381 update_add_remove_disk,
78b10e66 382 update_reshape_container_disks,
48c5303a 383 update_reshape_migration,
2d40f3a1
AK
384 update_takeover,
385 update_general_migration_checkpoint,
88758e9d
DW
386};
387
388struct imsm_update_activate_spare {
389 enum imsm_update_type type;
d23fe947 390 struct dl *dl;
88758e9d
DW
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394};
395
78b10e66
N
396struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404};
405
bb025c2f
KW
406enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409};
410struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414};
78b10e66
N
415
416struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
48c5303a
PC
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422};
423
424struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
4bba0439 433 int new_chunksize;
48c5303a 434
d195167d 435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
436};
437
2d40f3a1
AK
438struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441};
442
54c2c1ea
DW
443struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445};
446
8273f55e
DW
447struct imsm_update_create_array {
448 enum imsm_update_type type;
8273f55e 449 int dev_idx;
6a3e913e 450 struct imsm_dev dev;
8273f55e
DW
451};
452
33414a01
DW
453struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456};
457
aa534678
DW
458struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462};
463
1a64be56 464struct imsm_update_add_remove_disk {
43dad3d6
DW
465 enum imsm_update_type type;
466};
467
88654014
LM
468
469static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473};
474
475const char *get_sys_dev_type(enum sys_dev_type type)
476{
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481}
482
483static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484{
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494}
495
496static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497{
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504}
505
b4cf4cba 506static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
507{
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532}
533
534static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535{
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570}
571
572
d424212e
N
573static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
f2f5c343 575
cdddbdbc
DW
576static struct supertype *match_metadata_desc_imsm(char *arg)
577{
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
4e9d2186
AW
586 if (!st)
587 return NULL;
ef609477 588 memset(st, 0, sizeof(*st));
d1d599ea 589 st->container_dev = NoMdDev;
cdddbdbc
DW
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595}
596
0e600426 597#ifndef MDASSEMBLE
cdddbdbc
DW
598static __u8 *get_imsm_version(struct imsm_super *mpb)
599{
600 return &mpb->sig[MPB_SIG_LEN];
601}
9e2d750d 602#endif
cdddbdbc 603
949c47a0
DW
604/* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 608{
949c47a0 609 if (index >= mpb->num_disks)
cdddbdbc
DW
610 return NULL;
611 return &mpb->disk[index];
612}
613
95d07a2c
LM
614/* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 618{
b9f594fe
DW
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
95d07a2c
LM
623 return d;
624
625 return NULL;
626}
627/* retrieve a disk from the parsed metadata */
628static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629{
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
b9f594fe 636 return NULL;
949c47a0
DW
637}
638
639/* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
643{
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
97f734fd
N
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
cdddbdbc
DW
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654}
655
a965f303
DW
656static size_t sizeof_imsm_map(struct imsm_map *map)
657{
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659}
660
661struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 662{
5e7b0330
AK
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
668 */
a965f303
DW
669 struct imsm_map *map = &dev->vol.map[0];
670
5e7b0330 671 if (second_map == 1 && !dev->vol.migr_state)
a965f303 672 return NULL;
5e7b0330
AK
673 else if (second_map == 1 ||
674 (second_map < 0 && dev->vol.migr_state)) {
a965f303
DW
675 void *ptr = map;
676
677 return ptr + sizeof_imsm_map(map);
678 } else
679 return map;
5e7b0330 680
a965f303 681}
cdddbdbc 682
3393c6af
DW
683/* return the size of the device.
684 * migr_state increases the returned size if map[0] were to be duplicated
685 */
686static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
687{
688 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
689 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
690
691 /* migrating means an additional map */
a965f303
DW
692 if (dev->vol.migr_state)
693 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
694 else if (migr_state)
695 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
696
697 return size;
698}
699
54c2c1ea
DW
700#ifndef MDASSEMBLE
701/* retrieve disk serial number list from a metadata update */
702static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
703{
704 void *u = update;
705 struct disk_info *inf;
706
707 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
708 sizeof_imsm_dev(&update->dev, 0);
709
710 return inf;
711}
712#endif
713
949c47a0 714static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
715{
716 int offset;
717 int i;
718 void *_mpb = mpb;
719
949c47a0 720 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
721 return NULL;
722
723 /* devices start after all disks */
724 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
725
726 for (i = 0; i <= index; i++)
727 if (i == index)
728 return _mpb + offset;
729 else
3393c6af 730 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
731
732 return NULL;
733}
734
949c47a0
DW
735static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
736{
ba2de7ba
DW
737 struct intel_dev *dv;
738
949c47a0
DW
739 if (index >= super->anchor->num_raid_devs)
740 return NULL;
ba2de7ba
DW
741 for (dv = super->devlist; dv; dv = dv->next)
742 if (dv->index == index)
743 return dv->dev;
744 return NULL;
949c47a0
DW
745}
746
98130f40
AK
747/*
748 * for second_map:
749 * == 0 get first map
750 * == 1 get second map
751 * == -1 than get map according to the current migr_state
752 */
753static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
754 int slot,
755 int second_map)
7eef0453
DW
756{
757 struct imsm_map *map;
758
5e7b0330 759 map = get_imsm_map(dev, second_map);
7eef0453 760
ff077194
DW
761 /* top byte identifies disk under rebuild */
762 return __le32_to_cpu(map->disk_ord_tbl[slot]);
763}
764
765#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 766static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 767{
98130f40 768 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
769
770 return ord_to_idx(ord);
7eef0453
DW
771}
772
be73972f
DW
773static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
774{
775 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
776}
777
f21e18ca 778static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
779{
780 int slot;
781 __u32 ord;
782
783 for (slot = 0; slot < map->num_members; slot++) {
784 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
785 if (ord_to_idx(ord) == idx)
786 return slot;
787 }
788
789 return -1;
790}
791
cdddbdbc
DW
792static int get_imsm_raid_level(struct imsm_map *map)
793{
794 if (map->raid_level == 1) {
795 if (map->num_members == 2)
796 return 1;
797 else
798 return 10;
799 }
800
801 return map->raid_level;
802}
803
c2c087e6
DW
804static int cmp_extent(const void *av, const void *bv)
805{
806 const struct extent *a = av;
807 const struct extent *b = bv;
808 if (a->start < b->start)
809 return -1;
810 if (a->start > b->start)
811 return 1;
812 return 0;
813}
814
0dcecb2e 815static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 816{
c2c087e6 817 int memberships = 0;
620b1713 818 int i;
c2c087e6 819
949c47a0
DW
820 for (i = 0; i < super->anchor->num_raid_devs; i++) {
821 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 822 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 823
620b1713
DW
824 if (get_imsm_disk_slot(map, dl->index) >= 0)
825 memberships++;
c2c087e6 826 }
0dcecb2e
DW
827
828 return memberships;
829}
830
b81221b7
CA
831static __u32 imsm_min_reserved_sectors(struct intel_super *super);
832
0dcecb2e
DW
833static struct extent *get_extents(struct intel_super *super, struct dl *dl)
834{
835 /* find a list of used extents on the given physical device */
836 struct extent *rv, *e;
620b1713 837 int i;
0dcecb2e 838 int memberships = count_memberships(dl, super);
b276dd33
DW
839 __u32 reservation;
840
841 /* trim the reserved area for spares, so they can join any array
842 * regardless of whether the OROM has assigned sectors from the
843 * IMSM_RESERVED_SECTORS region
844 */
845 if (dl->index == -1)
b81221b7 846 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
847 else
848 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 849
c2c087e6
DW
850 rv = malloc(sizeof(struct extent) * (memberships + 1));
851 if (!rv)
852 return NULL;
853 e = rv;
854
949c47a0
DW
855 for (i = 0; i < super->anchor->num_raid_devs; i++) {
856 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 857 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 858
620b1713
DW
859 if (get_imsm_disk_slot(map, dl->index) >= 0) {
860 e->start = __le32_to_cpu(map->pba_of_lba0);
861 e->size = __le32_to_cpu(map->blocks_per_member);
862 e++;
c2c087e6
DW
863 }
864 }
865 qsort(rv, memberships, sizeof(*rv), cmp_extent);
866
14e8215b
DW
867 /* determine the start of the metadata
868 * when no raid devices are defined use the default
869 * ...otherwise allow the metadata to truncate the value
870 * as is the case with older versions of imsm
871 */
872 if (memberships) {
873 struct extent *last = &rv[memberships - 1];
874 __u32 remainder;
875
876 remainder = __le32_to_cpu(dl->disk.total_blocks) -
877 (last->start + last->size);
dda5855f
DW
878 /* round down to 1k block to satisfy precision of the kernel
879 * 'size' interface
880 */
881 remainder &= ~1UL;
882 /* make sure remainder is still sane */
f21e18ca 883 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 884 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
885 if (reservation > remainder)
886 reservation = remainder;
887 }
888 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
889 e->size = 0;
890 return rv;
891}
892
14e8215b
DW
893/* try to determine how much space is reserved for metadata from
894 * the last get_extents() entry, otherwise fallback to the
895 * default
896 */
897static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
898{
899 struct extent *e;
900 int i;
901 __u32 rv;
902
903 /* for spares just return a minimal reservation which will grow
904 * once the spare is picked up by an array
905 */
906 if (dl->index == -1)
907 return MPB_SECTOR_CNT;
908
909 e = get_extents(super, dl);
910 if (!e)
911 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
912
913 /* scroll to last entry */
914 for (i = 0; e[i].size; i++)
915 continue;
916
917 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
918
919 free(e);
920
921 return rv;
922}
923
25ed7e59
DW
924static int is_spare(struct imsm_disk *disk)
925{
926 return (disk->status & SPARE_DISK) == SPARE_DISK;
927}
928
929static int is_configured(struct imsm_disk *disk)
930{
931 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
932}
933
934static int is_failed(struct imsm_disk *disk)
935{
936 return (disk->status & FAILED_DISK) == FAILED_DISK;
937}
938
b81221b7
CA
939/* try to determine how much space is reserved for metadata from
940 * the last get_extents() entry on the smallest active disk,
941 * otherwise fallback to the default
942 */
943static __u32 imsm_min_reserved_sectors(struct intel_super *super)
944{
945 struct extent *e;
946 int i;
947 __u32 min_active, remainder;
948 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
949 struct dl *dl, *dl_min = NULL;
950
951 if (!super)
952 return rv;
953
954 min_active = 0;
955 for (dl = super->disks; dl; dl = dl->next) {
956 if (dl->index < 0)
957 continue;
958 if (dl->disk.total_blocks < min_active || min_active == 0) {
959 dl_min = dl;
960 min_active = dl->disk.total_blocks;
961 }
962 }
963 if (!dl_min)
964 return rv;
965
966 /* find last lba used by subarrays on the smallest active disk */
967 e = get_extents(super, dl_min);
968 if (!e)
969 return rv;
970 for (i = 0; e[i].size; i++)
971 continue;
972
973 remainder = min_active - e[i].start;
974 free(e);
975
976 /* to give priority to recovery we should not require full
977 IMSM_RESERVED_SECTORS from the spare */
978 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
979
980 /* if real reservation is smaller use that value */
981 return (remainder < rv) ? remainder : rv;
982}
983
80e7f8c3
AC
984/* Return minimum size of a spare that can be used in this array*/
985static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
986{
987 struct intel_super *super = st->sb;
988 struct dl *dl;
989 struct extent *e;
990 int i;
991 unsigned long long rv = 0;
b81221b7 992 __u32 reservation;
80e7f8c3
AC
993
994 if (!super)
995 return rv;
996 /* find first active disk in array */
997 dl = super->disks;
998 while (dl && (is_failed(&dl->disk) || dl->index == -1))
999 dl = dl->next;
1000 if (!dl)
1001 return rv;
1002 /* find last lba used by subarrays */
1003 e = get_extents(super, dl);
1004 if (!e)
1005 return rv;
1006 for (i = 0; e[i].size; i++)
1007 continue;
1008 if (i > 0)
1009 rv = e[i-1].start + e[i-1].size;
b81221b7 1010 reservation = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
80e7f8c3 1011 free(e);
b81221b7 1012
80e7f8c3 1013 /* add the amount of space needed for metadata */
b81221b7
CA
1014 rv = rv + imsm_min_reserved_sectors(super);
1015
80e7f8c3
AC
1016 return rv * 512;
1017}
1018
1799c9e8 1019#ifndef MDASSEMBLE
c47b0ff6
AK
1020static __u64 blocks_per_migr_unit(struct intel_super *super,
1021 struct imsm_dev *dev);
1e5c6983 1022
c47b0ff6
AK
1023static void print_imsm_dev(struct intel_super *super,
1024 struct imsm_dev *dev,
1025 char *uuid,
1026 int disk_idx)
cdddbdbc
DW
1027{
1028 __u64 sz;
0d80bb2f 1029 int slot, i;
a965f303 1030 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 1031 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 1032 __u32 ord;
cdddbdbc
DW
1033
1034 printf("\n");
1e7bc0ed 1035 printf("[%.16s]:\n", dev->volume);
44470971 1036 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1037 printf(" RAID Level : %d", get_imsm_raid_level(map));
1038 if (map2)
1039 printf(" <-- %d", get_imsm_raid_level(map2));
1040 printf("\n");
1041 printf(" Members : %d", map->num_members);
1042 if (map2)
1043 printf(" <-- %d", map2->num_members);
1044 printf("\n");
0d80bb2f
DW
1045 printf(" Slots : [");
1046 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 1047 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
1048 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1049 }
dd8bcb3b
AK
1050 printf("]");
1051 if (map2) {
1052 printf(" <-- [");
1053 for (i = 0; i < map2->num_members; i++) {
1054 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1055 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1056 }
1057 printf("]");
1058 }
1059 printf("\n");
7095bccb
AK
1060 printf(" Failed disk : ");
1061 if (map->failed_disk_num == 0xff)
1062 printf("none");
1063 else
1064 printf("%i", map->failed_disk_num);
1065 printf("\n");
620b1713
DW
1066 slot = get_imsm_disk_slot(map, disk_idx);
1067 if (slot >= 0) {
98130f40 1068 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
1069 printf(" This Slot : %d%s\n", slot,
1070 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1071 } else
cdddbdbc
DW
1072 printf(" This Slot : ?\n");
1073 sz = __le32_to_cpu(dev->size_high);
1074 sz <<= 32;
1075 sz += __le32_to_cpu(dev->size_low);
1076 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1077 human_size(sz * 512));
1078 sz = __le32_to_cpu(map->blocks_per_member);
1079 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1080 human_size(sz * 512));
1081 printf(" Sector Offset : %u\n",
1082 __le32_to_cpu(map->pba_of_lba0));
1083 printf(" Num Stripes : %u\n",
1084 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 1085 printf(" Chunk Size : %u KiB",
cdddbdbc 1086 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1087 if (map2)
1088 printf(" <-- %u KiB",
1089 __le16_to_cpu(map2->blocks_per_strip) / 2);
1090 printf("\n");
cdddbdbc 1091 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1092 printf(" Migrate State : ");
1484e727
DW
1093 if (dev->vol.migr_state) {
1094 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1095 printf("initialize\n");
1484e727 1096 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1097 printf("rebuild\n");
1484e727 1098 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1099 printf("check\n");
1484e727 1100 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1101 printf("general migration\n");
1484e727 1102 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1103 printf("state change\n");
1484e727 1104 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1105 printf("repair\n");
1484e727 1106 else
8655a7b1
DW
1107 printf("<unknown:%d>\n", migr_type(dev));
1108 } else
1109 printf("idle\n");
3393c6af
DW
1110 printf(" Map State : %s", map_state_str[map->map_state]);
1111 if (dev->vol.migr_state) {
1112 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1113
b10b37b8 1114 printf(" <-- %s", map_state_str[map->map_state]);
1e5c6983
DW
1115 printf("\n Checkpoint : %u (%llu)",
1116 __le32_to_cpu(dev->vol.curr_migr_unit),
c47b0ff6 1117 (unsigned long long)blocks_per_migr_unit(super, dev));
3393c6af
DW
1118 }
1119 printf("\n");
cdddbdbc 1120 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1121}
1122
0ec1f4e8 1123static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1124{
1f24f035 1125 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1126 __u64 sz;
1127
0ec1f4e8 1128 if (index < -1 || !disk)
e9d82038
DW
1129 return;
1130
cdddbdbc 1131 printf("\n");
1f24f035 1132 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1133 if (index >= 0)
1134 printf(" Disk%02d Serial : %s\n", index, str);
1135 else
1136 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1137 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1138 is_configured(disk) ? " active" : "",
1139 is_failed(disk) ? " failed" : "");
cdddbdbc 1140 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1141 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1142 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1143 human_size(sz * 512));
1144}
1145
520e69e2
AK
1146static int is_gen_migration(struct imsm_dev *dev);
1147
1148void examine_migr_rec_imsm(struct intel_super *super)
1149{
1150 struct migr_record *migr_rec = super->migr_rec;
1151 struct imsm_super *mpb = super->anchor;
1152 int i;
1153
1154 for (i = 0; i < mpb->num_raid_devs; i++) {
1155 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1156 if (is_gen_migration(dev) == 0)
1157 continue;
1158
1159 printf("\nMigration Record Information:");
1160 if (super->disks->index > 1) {
1161 printf(" Empty\n ");
1162 printf("Examine one of first two disks in array\n");
1163 break;
1164 }
1165 printf("\n Status : ");
1166 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1167 printf("Normal\n");
1168 else
1169 printf("Contains Data\n");
1170 printf(" Current Unit : %u\n",
1171 __le32_to_cpu(migr_rec->curr_migr_unit));
1172 printf(" Family : %u\n",
1173 __le32_to_cpu(migr_rec->family_num));
1174 printf(" Ascending : %u\n",
1175 __le32_to_cpu(migr_rec->ascending_migr));
1176 printf(" Blocks Per Unit : %u\n",
1177 __le32_to_cpu(migr_rec->blocks_per_unit));
1178 printf(" Dest. Depth Per Unit : %u\n",
1179 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1180 printf(" Checkpoint Area pba : %u\n",
1181 __le32_to_cpu(migr_rec->ckpt_area_pba));
1182 printf(" First member lba : %u\n",
1183 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1184 printf(" Total Number of Units : %u\n",
1185 __le32_to_cpu(migr_rec->num_migr_units));
1186 printf(" Size of volume : %u\n",
1187 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1188 printf(" Expansion space for LBA64 : %u\n",
1189 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1190 printf(" Record was read from : %u\n",
1191 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1192
1193 break;
1194 }
1195}
9e2d750d 1196#endif /* MDASSEMBLE */
19482bcc
AK
1197/*******************************************************************************
1198 * function: imsm_check_attributes
1199 * Description: Function checks if features represented by attributes flags
1200 * are supported by mdadm.
1201 * Parameters:
1202 * attributes - Attributes read from metadata
1203 * Returns:
1204 * 0 - passed attributes contains unsupported features flags
1205 * 1 - all features are supported
1206 ******************************************************************************/
1207static int imsm_check_attributes(__u32 attributes)
1208{
1209 int ret_val = 1;
418f9b36
N
1210 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1211
1212 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1213
1214 not_supported &= attributes;
1215 if (not_supported) {
418f9b36
N
1216 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1217 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1218 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1219 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1220 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1221 }
1222 if (not_supported & MPB_ATTRIB_2TB) {
1223 dprintf("\t\tMPB_ATTRIB_2TB\n");
1224 not_supported ^= MPB_ATTRIB_2TB;
1225 }
1226 if (not_supported & MPB_ATTRIB_RAID0) {
1227 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1228 not_supported ^= MPB_ATTRIB_RAID0;
1229 }
1230 if (not_supported & MPB_ATTRIB_RAID1) {
1231 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1232 not_supported ^= MPB_ATTRIB_RAID1;
1233 }
1234 if (not_supported & MPB_ATTRIB_RAID10) {
1235 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1236 not_supported ^= MPB_ATTRIB_RAID10;
1237 }
1238 if (not_supported & MPB_ATTRIB_RAID1E) {
1239 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1240 not_supported ^= MPB_ATTRIB_RAID1E;
1241 }
1242 if (not_supported & MPB_ATTRIB_RAID5) {
1243 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1244 not_supported ^= MPB_ATTRIB_RAID5;
1245 }
1246 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1247 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1248 not_supported ^= MPB_ATTRIB_RAIDCNG;
1249 }
1250 if (not_supported & MPB_ATTRIB_BBM) {
1251 dprintf("\t\tMPB_ATTRIB_BBM\n");
1252 not_supported ^= MPB_ATTRIB_BBM;
1253 }
1254 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1255 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1256 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1257 }
1258 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1259 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1260 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1261 }
1262 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1263 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1264 not_supported ^= MPB_ATTRIB_2TB_DISK;
1265 }
1266 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1267 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1268 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1269 }
1270 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1271 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1272 not_supported ^= MPB_ATTRIB_NEVER_USE;
1273 }
1274
1275 if (not_supported)
1276 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1277
1278 ret_val = 0;
1279 }
1280
1281 return ret_val;
1282}
1283
9e2d750d 1284#ifndef MDASSEMBLE
a5d85af7 1285static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1286
cdddbdbc
DW
1287static void examine_super_imsm(struct supertype *st, char *homehost)
1288{
1289 struct intel_super *super = st->sb;
949c47a0 1290 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1291 char str[MAX_SIGNATURE_LENGTH];
1292 int i;
27fd6274
DW
1293 struct mdinfo info;
1294 char nbuf[64];
cdddbdbc 1295 __u32 sum;
14e8215b 1296 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1297 struct dl *dl;
27fd6274 1298
cdddbdbc
DW
1299 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1300 printf(" Magic : %s\n", str);
1301 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1302 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1303 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1304 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1305 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1306 printf(" Attributes : ");
1307 if (imsm_check_attributes(mpb->attributes))
1308 printf("All supported\n");
1309 else
1310 printf("not supported\n");
a5d85af7 1311 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1312 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1313 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1314 sum = __le32_to_cpu(mpb->check_sum);
1315 printf(" Checksum : %08x %s\n", sum,
949c47a0 1316 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1317 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1318 printf(" Disks : %d\n", mpb->num_disks);
1319 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1320 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1321 if (super->bbm_log) {
1322 struct bbm_log *log = super->bbm_log;
1323
1324 printf("\n");
1325 printf("Bad Block Management Log:\n");
1326 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1327 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1328 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1329 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1330 printf(" First Spare : %llx\n",
1331 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1332 }
44470971
DW
1333 for (i = 0; i < mpb->num_raid_devs; i++) {
1334 struct mdinfo info;
1335 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1336
1337 super->current_vol = i;
a5d85af7 1338 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1339 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1340 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1341 }
cdddbdbc
DW
1342 for (i = 0; i < mpb->num_disks; i++) {
1343 if (i == super->disks->index)
1344 continue;
0ec1f4e8 1345 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1346 }
94827db3 1347
0ec1f4e8
DW
1348 for (dl = super->disks; dl; dl = dl->next)
1349 if (dl->index == -1)
1350 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1351
1352 examine_migr_rec_imsm(super);
cdddbdbc
DW
1353}
1354
061f2c6a 1355static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1356{
27fd6274 1357 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1358 struct mdinfo info;
1359 char nbuf[64];
1e7bc0ed 1360 struct intel_super *super = st->sb;
1e7bc0ed 1361
0d5a423f
DW
1362 if (!super->anchor->num_raid_devs) {
1363 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1364 return;
0d5a423f 1365 }
ff54de6e 1366
a5d85af7 1367 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1368 fname_from_uuid(st, &info, nbuf, ':');
1369 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1370}
1371
1372static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1373{
1374 /* We just write a generic IMSM ARRAY entry */
1375 struct mdinfo info;
1376 char nbuf[64];
1377 char nbuf1[64];
1378 struct intel_super *super = st->sb;
1379 int i;
1380
1381 if (!super->anchor->num_raid_devs)
1382 return;
1383
a5d85af7 1384 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1385 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1386 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1387 struct imsm_dev *dev = get_imsm_dev(super, i);
1388
1389 super->current_vol = i;
a5d85af7 1390 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1391 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1392 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1393 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1394 }
cdddbdbc
DW
1395}
1396
9d84c8ea
DW
1397static void export_examine_super_imsm(struct supertype *st)
1398{
1399 struct intel_super *super = st->sb;
1400 struct imsm_super *mpb = super->anchor;
1401 struct mdinfo info;
1402 char nbuf[64];
1403
a5d85af7 1404 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1405 fname_from_uuid(st, &info, nbuf, ':');
1406 printf("MD_METADATA=imsm\n");
1407 printf("MD_LEVEL=container\n");
1408 printf("MD_UUID=%s\n", nbuf+5);
1409 printf("MD_DEVICES=%u\n", mpb->num_disks);
1410}
1411
cdddbdbc
DW
1412static void detail_super_imsm(struct supertype *st, char *homehost)
1413{
3ebe00a1
DW
1414 struct mdinfo info;
1415 char nbuf[64];
1416
a5d85af7 1417 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1418 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1419 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1420}
1421
1422static void brief_detail_super_imsm(struct supertype *st)
1423{
ff54de6e
N
1424 struct mdinfo info;
1425 char nbuf[64];
a5d85af7 1426 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1427 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1428 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1429}
d665cc31
DW
1430
1431static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1432static void fd2devname(int fd, char *name);
1433
120dc887 1434static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1435{
120dc887
LM
1436 /* dump an unsorted list of devices attached to AHCI Intel storage
1437 * controller, as well as non-connected ports
d665cc31
DW
1438 */
1439 int hba_len = strlen(hba_path) + 1;
1440 struct dirent *ent;
1441 DIR *dir;
1442 char *path = NULL;
1443 int err = 0;
1444 unsigned long port_mask = (1 << port_count) - 1;
1445
f21e18ca 1446 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1447 if (verbose)
1448 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1449 return 2;
1450 }
1451
1452 /* scroll through /sys/dev/block looking for devices attached to
1453 * this hba
1454 */
1455 dir = opendir("/sys/dev/block");
1456 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1457 int fd;
1458 char model[64];
1459 char vendor[64];
1460 char buf[1024];
1461 int major, minor;
1462 char *device;
1463 char *c;
1464 int port;
1465 int type;
1466
1467 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1468 continue;
1469 path = devt_to_devpath(makedev(major, minor));
1470 if (!path)
1471 continue;
1472 if (!path_attached_to_hba(path, hba_path)) {
1473 free(path);
1474 path = NULL;
1475 continue;
1476 }
1477
1478 /* retrieve the scsi device type */
1479 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1480 if (verbose)
1481 fprintf(stderr, Name ": failed to allocate 'device'\n");
1482 err = 2;
1483 break;
1484 }
1485 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1486 if (load_sys(device, buf) != 0) {
1487 if (verbose)
1488 fprintf(stderr, Name ": failed to read device type for %s\n",
1489 path);
1490 err = 2;
1491 free(device);
1492 break;
1493 }
1494 type = strtoul(buf, NULL, 10);
1495
1496 /* if it's not a disk print the vendor and model */
1497 if (!(type == 0 || type == 7 || type == 14)) {
1498 vendor[0] = '\0';
1499 model[0] = '\0';
1500 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1501 if (load_sys(device, buf) == 0) {
1502 strncpy(vendor, buf, sizeof(vendor));
1503 vendor[sizeof(vendor) - 1] = '\0';
1504 c = (char *) &vendor[sizeof(vendor) - 1];
1505 while (isspace(*c) || *c == '\0')
1506 *c-- = '\0';
1507
1508 }
1509 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1510 if (load_sys(device, buf) == 0) {
1511 strncpy(model, buf, sizeof(model));
1512 model[sizeof(model) - 1] = '\0';
1513 c = (char *) &model[sizeof(model) - 1];
1514 while (isspace(*c) || *c == '\0')
1515 *c-- = '\0';
1516 }
1517
1518 if (vendor[0] && model[0])
1519 sprintf(buf, "%.64s %.64s", vendor, model);
1520 else
1521 switch (type) { /* numbers from hald/linux/device.c */
1522 case 1: sprintf(buf, "tape"); break;
1523 case 2: sprintf(buf, "printer"); break;
1524 case 3: sprintf(buf, "processor"); break;
1525 case 4:
1526 case 5: sprintf(buf, "cdrom"); break;
1527 case 6: sprintf(buf, "scanner"); break;
1528 case 8: sprintf(buf, "media_changer"); break;
1529 case 9: sprintf(buf, "comm"); break;
1530 case 12: sprintf(buf, "raid"); break;
1531 default: sprintf(buf, "unknown");
1532 }
1533 } else
1534 buf[0] = '\0';
1535 free(device);
1536
1537 /* chop device path to 'host%d' and calculate the port number */
1538 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1539 if (!c) {
1540 if (verbose)
1541 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1542 err = 2;
1543 break;
1544 }
d665cc31
DW
1545 *c = '\0';
1546 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1547 port -= host_base;
1548 else {
1549 if (verbose) {
1550 *c = '/'; /* repair the full string */
1551 fprintf(stderr, Name ": failed to determine port number for %s\n",
1552 path);
1553 }
1554 err = 2;
1555 break;
1556 }
1557
1558 /* mark this port as used */
1559 port_mask &= ~(1 << port);
1560
1561 /* print out the device information */
1562 if (buf[0]) {
1563 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1564 continue;
1565 }
1566
1567 fd = dev_open(ent->d_name, O_RDONLY);
1568 if (fd < 0)
1569 printf(" Port%d : - disk info unavailable -\n", port);
1570 else {
1571 fd2devname(fd, buf);
1572 printf(" Port%d : %s", port, buf);
1573 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1574 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1575 else
664d5325 1576 printf(" ()\n");
d665cc31
DW
1577 }
1578 close(fd);
1579 free(path);
1580 path = NULL;
1581 }
1582 if (path)
1583 free(path);
1584 if (dir)
1585 closedir(dir);
1586 if (err == 0) {
1587 int i;
1588
1589 for (i = 0; i < port_count; i++)
1590 if (port_mask & (1 << i))
1591 printf(" Port%d : - no device attached -\n", i);
1592 }
1593
1594 return err;
1595}
1596
120dc887
LM
1597static void print_found_intel_controllers(struct sys_dev *elem)
1598{
1599 for (; elem; elem = elem->next) {
1600 fprintf(stderr, Name ": found Intel(R) ");
1601 if (elem->type == SYS_DEV_SATA)
1602 fprintf(stderr, "SATA ");
155cbb4c
LM
1603 else if (elem->type == SYS_DEV_SAS)
1604 fprintf(stderr, "SAS ");
120dc887
LM
1605 fprintf(stderr, "RAID controller");
1606 if (elem->pci_id)
1607 fprintf(stderr, " at %s", elem->pci_id);
1608 fprintf(stderr, ".\n");
1609 }
1610 fflush(stderr);
1611}
1612
120dc887
LM
1613static int ahci_get_port_count(const char *hba_path, int *port_count)
1614{
1615 struct dirent *ent;
1616 DIR *dir;
1617 int host_base = -1;
1618
1619 *port_count = 0;
1620 if ((dir = opendir(hba_path)) == NULL)
1621 return -1;
1622
1623 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1624 int host;
1625
1626 if (sscanf(ent->d_name, "host%d", &host) != 1)
1627 continue;
1628 if (*port_count == 0)
1629 host_base = host;
1630 else if (host < host_base)
1631 host_base = host;
1632
1633 if (host + 1 > *port_count + host_base)
1634 *port_count = host + 1 - host_base;
1635 }
1636 closedir(dir);
1637 return host_base;
1638}
1639
a891a3c2
LM
1640static void print_imsm_capability(const struct imsm_orom *orom)
1641{
1642 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1643 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1644 orom->hotfix_ver, orom->build);
1645 printf(" RAID Levels :%s%s%s%s%s\n",
1646 imsm_orom_has_raid0(orom) ? " raid0" : "",
1647 imsm_orom_has_raid1(orom) ? " raid1" : "",
1648 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1649 imsm_orom_has_raid10(orom) ? " raid10" : "",
1650 imsm_orom_has_raid5(orom) ? " raid5" : "");
1651 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1652 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1653 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1654 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1655 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1656 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1657 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1658 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1659 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1660 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1661 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1662 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1663 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1664 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1665 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1666 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1667 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1668 printf(" Max Disks : %d\n", orom->tds);
1669 printf(" Max Volumes : %d\n", orom->vpa);
1670 return;
1671}
1672
5615172f 1673static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1674{
1675 /* There are two components to imsm platform support, the ahci SATA
1676 * controller and the option-rom. To find the SATA controller we
1677 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1678 * controller with the Intel vendor id is present. This approach
1679 * allows mdadm to leverage the kernel's ahci detection logic, with the
1680 * caveat that if ahci.ko is not loaded mdadm will not be able to
1681 * detect platform raid capabilities. The option-rom resides in a
1682 * platform "Adapter ROM". We scan for its signature to retrieve the
1683 * platform capabilities. If raid support is disabled in the BIOS the
1684 * option-rom capability structure will not be available.
1685 */
1686 const struct imsm_orom *orom;
1687 struct sys_dev *list, *hba;
d665cc31
DW
1688 int host_base = 0;
1689 int port_count = 0;
120dc887 1690 int result=0;
d665cc31 1691
5615172f 1692 if (enumerate_only) {
a891a3c2 1693 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1694 return 0;
a891a3c2
LM
1695 list = find_intel_devices();
1696 if (!list)
1697 return 2;
1698 for (hba = list; hba; hba = hba->next) {
1699 orom = find_imsm_capability(hba->type);
1700 if (!orom) {
1701 result = 2;
1702 break;
1703 }
1704 }
1705 free_sys_dev(&list);
1706 return result;
5615172f
DW
1707 }
1708
155cbb4c
LM
1709 list = find_intel_devices();
1710 if (!list) {
d665cc31 1711 if (verbose)
155cbb4c
LM
1712 fprintf(stderr, Name ": no active Intel(R) RAID "
1713 "controller found.\n");
d665cc31
DW
1714 free_sys_dev(&list);
1715 return 2;
1716 } else if (verbose)
155cbb4c 1717 print_found_intel_controllers(list);
d665cc31 1718
a891a3c2
LM
1719 for (hba = list; hba; hba = hba->next) {
1720 orom = find_imsm_capability(hba->type);
1721 if (!orom)
1722 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1723 hba->path, get_sys_dev_type(hba->type));
1724 else
1725 print_imsm_capability(orom);
d665cc31
DW
1726 }
1727
120dc887
LM
1728 for (hba = list; hba; hba = hba->next) {
1729 printf(" I/O Controller : %s (%s)\n",
1730 hba->path, get_sys_dev_type(hba->type));
d665cc31 1731
120dc887
LM
1732 if (hba->type == SYS_DEV_SATA) {
1733 host_base = ahci_get_port_count(hba->path, &port_count);
1734 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1735 if (verbose)
1736 fprintf(stderr, Name ": failed to enumerate "
1737 "ports on SATA controller at %s.", hba->pci_id);
1738 result |= 2;
1739 }
1740 }
d665cc31 1741 }
155cbb4c 1742
120dc887
LM
1743 free_sys_dev(&list);
1744 return result;
d665cc31 1745}
cdddbdbc
DW
1746#endif
1747
1748static int match_home_imsm(struct supertype *st, char *homehost)
1749{
5115ca67
DW
1750 /* the imsm metadata format does not specify any host
1751 * identification information. We return -1 since we can never
1752 * confirm nor deny whether a given array is "meant" for this
148acb7b 1753 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1754 * exclude member disks that do not belong, and we rely on
1755 * mdadm.conf to specify the arrays that should be assembled.
1756 * Auto-assembly may still pick up "foreign" arrays.
1757 */
cdddbdbc 1758
9362c1c8 1759 return -1;
cdddbdbc
DW
1760}
1761
1762static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1763{
51006d85
N
1764 /* The uuid returned here is used for:
1765 * uuid to put into bitmap file (Create, Grow)
1766 * uuid for backup header when saving critical section (Grow)
1767 * comparing uuids when re-adding a device into an array
1768 * In these cases the uuid required is that of the data-array,
1769 * not the device-set.
1770 * uuid to recognise same set when adding a missing device back
1771 * to an array. This is a uuid for the device-set.
1772 *
1773 * For each of these we can make do with a truncated
1774 * or hashed uuid rather than the original, as long as
1775 * everyone agrees.
1776 * In each case the uuid required is that of the data-array,
1777 * not the device-set.
43dad3d6 1778 */
51006d85
N
1779 /* imsm does not track uuid's so we synthesis one using sha1 on
1780 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1781 * - the orig_family_num of the container
51006d85
N
1782 * - the index number of the volume
1783 * - the 'serial' number of the volume.
1784 * Hopefully these are all constant.
1785 */
1786 struct intel_super *super = st->sb;
43dad3d6 1787
51006d85
N
1788 char buf[20];
1789 struct sha1_ctx ctx;
1790 struct imsm_dev *dev = NULL;
148acb7b 1791 __u32 family_num;
51006d85 1792
148acb7b
DW
1793 /* some mdadm versions failed to set ->orig_family_num, in which
1794 * case fall back to ->family_num. orig_family_num will be
1795 * fixed up with the first metadata update.
1796 */
1797 family_num = super->anchor->orig_family_num;
1798 if (family_num == 0)
1799 family_num = super->anchor->family_num;
51006d85 1800 sha1_init_ctx(&ctx);
92bd8f8d 1801 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1802 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1803 if (super->current_vol >= 0)
1804 dev = get_imsm_dev(super, super->current_vol);
1805 if (dev) {
1806 __u32 vol = super->current_vol;
1807 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1808 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1809 }
1810 sha1_finish_ctx(&ctx, buf);
1811 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1812}
1813
0d481d37 1814#if 0
4f5bc454
DW
1815static void
1816get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1817{
cdddbdbc
DW
1818 __u8 *v = get_imsm_version(mpb);
1819 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1820 char major[] = { 0, 0, 0 };
1821 char minor[] = { 0 ,0, 0 };
1822 char patch[] = { 0, 0, 0 };
1823 char *ver_parse[] = { major, minor, patch };
1824 int i, j;
1825
1826 i = j = 0;
1827 while (*v != '\0' && v < end) {
1828 if (*v != '.' && j < 2)
1829 ver_parse[i][j++] = *v;
1830 else {
1831 i++;
1832 j = 0;
1833 }
1834 v++;
1835 }
1836
4f5bc454
DW
1837 *m = strtol(minor, NULL, 0);
1838 *p = strtol(patch, NULL, 0);
1839}
0d481d37 1840#endif
4f5bc454 1841
1e5c6983
DW
1842static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1843{
1844 /* migr_strip_size when repairing or initializing parity */
1845 struct imsm_map *map = get_imsm_map(dev, 0);
1846 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1847
1848 switch (get_imsm_raid_level(map)) {
1849 case 5:
1850 case 10:
1851 return chunk;
1852 default:
1853 return 128*1024 >> 9;
1854 }
1855}
1856
1857static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1858{
1859 /* migr_strip_size when rebuilding a degraded disk, no idea why
1860 * this is different than migr_strip_size_resync(), but it's good
1861 * to be compatible
1862 */
1863 struct imsm_map *map = get_imsm_map(dev, 1);
1864 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1865
1866 switch (get_imsm_raid_level(map)) {
1867 case 1:
1868 case 10:
1869 if (map->num_members % map->num_domains == 0)
1870 return 128*1024 >> 9;
1871 else
1872 return chunk;
1873 case 5:
1874 return max((__u32) 64*1024 >> 9, chunk);
1875 default:
1876 return 128*1024 >> 9;
1877 }
1878}
1879
1880static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1881{
1882 struct imsm_map *lo = get_imsm_map(dev, 0);
1883 struct imsm_map *hi = get_imsm_map(dev, 1);
1884 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1885 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1886
1887 return max((__u32) 1, hi_chunk / lo_chunk);
1888}
1889
1890static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1891{
1892 struct imsm_map *lo = get_imsm_map(dev, 0);
1893 int level = get_imsm_raid_level(lo);
1894
1895 if (level == 1 || level == 10) {
1896 struct imsm_map *hi = get_imsm_map(dev, 1);
1897
1898 return hi->num_domains;
1899 } else
1900 return num_stripes_per_unit_resync(dev);
1901}
1902
98130f40 1903static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1904{
1905 /* named 'imsm_' because raid0, raid1 and raid10
1906 * counter-intuitively have the same number of data disks
1907 */
98130f40 1908 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1909
1910 switch (get_imsm_raid_level(map)) {
1911 case 0:
1912 case 1:
1913 case 10:
1914 return map->num_members;
1915 case 5:
1916 return map->num_members - 1;
1917 default:
1918 dprintf("%s: unsupported raid level\n", __func__);
1919 return 0;
1920 }
1921}
1922
1923static __u32 parity_segment_depth(struct imsm_dev *dev)
1924{
1925 struct imsm_map *map = get_imsm_map(dev, 0);
1926 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1927
1928 switch(get_imsm_raid_level(map)) {
1929 case 1:
1930 case 10:
1931 return chunk * map->num_domains;
1932 case 5:
1933 return chunk * map->num_members;
1934 default:
1935 return chunk;
1936 }
1937}
1938
1939static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1940{
1941 struct imsm_map *map = get_imsm_map(dev, 1);
1942 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1943 __u32 strip = block / chunk;
1944
1945 switch (get_imsm_raid_level(map)) {
1946 case 1:
1947 case 10: {
1948 __u32 vol_strip = (strip * map->num_domains) + 1;
1949 __u32 vol_stripe = vol_strip / map->num_members;
1950
1951 return vol_stripe * chunk + block % chunk;
1952 } case 5: {
1953 __u32 stripe = strip / (map->num_members - 1);
1954
1955 return stripe * chunk + block % chunk;
1956 }
1957 default:
1958 return 0;
1959 }
1960}
1961
c47b0ff6
AK
1962static __u64 blocks_per_migr_unit(struct intel_super *super,
1963 struct imsm_dev *dev)
1e5c6983
DW
1964{
1965 /* calculate the conversion factor between per member 'blocks'
1966 * (md/{resync,rebuild}_start) and imsm migration units, return
1967 * 0 for the 'not migrating' and 'unsupported migration' cases
1968 */
1969 if (!dev->vol.migr_state)
1970 return 0;
1971
1972 switch (migr_type(dev)) {
c47b0ff6
AK
1973 case MIGR_GEN_MIGR: {
1974 struct migr_record *migr_rec = super->migr_rec;
1975 return __le32_to_cpu(migr_rec->blocks_per_unit);
1976 }
1e5c6983
DW
1977 case MIGR_VERIFY:
1978 case MIGR_REPAIR:
1979 case MIGR_INIT: {
1980 struct imsm_map *map = get_imsm_map(dev, 0);
1981 __u32 stripes_per_unit;
1982 __u32 blocks_per_unit;
1983 __u32 parity_depth;
1984 __u32 migr_chunk;
1985 __u32 block_map;
1986 __u32 block_rel;
1987 __u32 segment;
1988 __u32 stripe;
1989 __u8 disks;
1990
1991 /* yes, this is really the translation of migr_units to
1992 * per-member blocks in the 'resync' case
1993 */
1994 stripes_per_unit = num_stripes_per_unit_resync(dev);
1995 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 1996 disks = imsm_num_data_members(dev, 0);
1e5c6983 1997 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 1998 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
1999 segment = blocks_per_unit / stripe;
2000 block_rel = blocks_per_unit - segment * stripe;
2001 parity_depth = parity_segment_depth(dev);
2002 block_map = map_migr_block(dev, block_rel);
2003 return block_map + parity_depth * segment;
2004 }
2005 case MIGR_REBUILD: {
2006 __u32 stripes_per_unit;
2007 __u32 migr_chunk;
2008
2009 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2010 migr_chunk = migr_strip_blocks_rebuild(dev);
2011 return migr_chunk * stripes_per_unit;
2012 }
1e5c6983
DW
2013 case MIGR_STATE_CHANGE:
2014 default:
2015 return 0;
2016 }
2017}
2018
c2c087e6
DW
2019static int imsm_level_to_layout(int level)
2020{
2021 switch (level) {
2022 case 0:
2023 case 1:
2024 return 0;
2025 case 5:
2026 case 6:
a380c027 2027 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2028 case 10:
c92a2527 2029 return 0x102;
c2c087e6 2030 }
a18a888e 2031 return UnSet;
c2c087e6
DW
2032}
2033
8e59f3d8
AK
2034/*******************************************************************************
2035 * Function: read_imsm_migr_rec
2036 * Description: Function reads imsm migration record from last sector of disk
2037 * Parameters:
2038 * fd : disk descriptor
2039 * super : metadata info
2040 * Returns:
2041 * 0 : success,
2042 * -1 : fail
2043 ******************************************************************************/
2044static int read_imsm_migr_rec(int fd, struct intel_super *super)
2045{
2046 int ret_val = -1;
2047 unsigned long long dsize;
2048
2049 get_dev_size(fd, NULL, &dsize);
2050 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2051 fprintf(stderr,
2052 Name ": Cannot seek to anchor block: %s\n",
2053 strerror(errno));
2054 goto out;
2055 }
2056 if (read(fd, super->migr_rec_buf, 512) != 512) {
2057 fprintf(stderr,
2058 Name ": Cannot read migr record block: %s\n",
2059 strerror(errno));
2060 goto out;
2061 }
2062 ret_val = 0;
2063
2064out:
2065 return ret_val;
2066}
2067
2068/*******************************************************************************
2069 * Function: load_imsm_migr_rec
2070 * Description: Function reads imsm migration record (it is stored at the last
2071 * sector of disk)
2072 * Parameters:
2073 * super : imsm internal array info
2074 * info : general array info
2075 * Returns:
2076 * 0 : success
2077 * -1 : fail
2078 ******************************************************************************/
2079static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2080{
2081 struct mdinfo *sd;
2082 struct dl *dl = NULL;
2083 char nm[30];
2084 int retval = -1;
2085 int fd = -1;
2086
2087 if (info) {
2088 for (sd = info->devs ; sd ; sd = sd->next) {
2089 /* read only from one of the first two slots */
2090 if ((sd->disk.raid_disk > 1) ||
2091 (sd->disk.raid_disk < 0))
2092 continue;
2093 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2094 fd = dev_open(nm, O_RDONLY);
2095 if (fd >= 0)
2096 break;
2097 }
2098 }
2099 if (fd < 0) {
2100 for (dl = super->disks; dl; dl = dl->next) {
2101 /* read only from one of the first two slots */
2102 if (dl->index > 1)
2103 continue;
2104 sprintf(nm, "%d:%d", dl->major, dl->minor);
2105 fd = dev_open(nm, O_RDONLY);
2106 if (fd >= 0)
2107 break;
2108 }
2109 }
2110 if (fd < 0)
2111 goto out;
2112 retval = read_imsm_migr_rec(fd, super);
2113
2114out:
2115 if (fd >= 0)
2116 close(fd);
2117 return retval;
2118}
2119
9e2d750d 2120#ifndef MDASSEMBLE
c17608ea
AK
2121/*******************************************************************************
2122 * function: imsm_create_metadata_checkpoint_update
2123 * Description: It creates update for checkpoint change.
2124 * Parameters:
2125 * super : imsm internal array info
2126 * u : pointer to prepared update
2127 * Returns:
2128 * Uptate length.
2129 * If length is equal to 0, input pointer u contains no update
2130 ******************************************************************************/
2131static int imsm_create_metadata_checkpoint_update(
2132 struct intel_super *super,
2133 struct imsm_update_general_migration_checkpoint **u)
2134{
2135
2136 int update_memory_size = 0;
2137
2138 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2139
2140 if (u == NULL)
2141 return 0;
2142 *u = NULL;
2143
2144 /* size of all update data without anchor */
2145 update_memory_size =
2146 sizeof(struct imsm_update_general_migration_checkpoint);
2147
2148 *u = calloc(1, update_memory_size);
2149 if (*u == NULL) {
2150 dprintf("error: cannot get memory for "
2151 "imsm_create_metadata_checkpoint_update update\n");
2152 return 0;
2153 }
2154 (*u)->type = update_general_migration_checkpoint;
2155 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2156 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2157 (*u)->curr_migr_unit);
2158
2159 return update_memory_size;
2160}
2161
2162
2163static void imsm_update_metadata_locally(struct supertype *st,
2164 void *buf, int len);
2165
687629c2
AK
2166/*******************************************************************************
2167 * Function: write_imsm_migr_rec
2168 * Description: Function writes imsm migration record
2169 * (at the last sector of disk)
2170 * Parameters:
2171 * super : imsm internal array info
2172 * Returns:
2173 * 0 : success
2174 * -1 : if fail
2175 ******************************************************************************/
2176static int write_imsm_migr_rec(struct supertype *st)
2177{
2178 struct intel_super *super = st->sb;
2179 unsigned long long dsize;
2180 char nm[30];
2181 int fd = -1;
2182 int retval = -1;
2183 struct dl *sd;
c17608ea
AK
2184 int len;
2185 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2186
2187 for (sd = super->disks ; sd ; sd = sd->next) {
2188 /* write to 2 first slots only */
2189 if ((sd->index < 0) || (sd->index > 1))
2190 continue;
2191 sprintf(nm, "%d:%d", sd->major, sd->minor);
2192 fd = dev_open(nm, O_RDWR);
2193 if (fd < 0)
2194 continue;
2195 get_dev_size(fd, NULL, &dsize);
2196 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2197 fprintf(stderr,
2198 Name ": Cannot seek to anchor block: %s\n",
2199 strerror(errno));
2200 goto out;
2201 }
2202 if (write(fd, super->migr_rec_buf, 512) != 512) {
2203 fprintf(stderr,
2204 Name ": Cannot write migr record block: %s\n",
2205 strerror(errno));
2206 goto out;
2207 }
2208 close(fd);
2209 fd = -1;
2210 }
c17608ea
AK
2211 /* update checkpoint information in metadata */
2212 len = imsm_create_metadata_checkpoint_update(super, &u);
2213
2214 if (len <= 0) {
2215 dprintf("imsm: Cannot prepare update\n");
2216 goto out;
2217 }
2218 /* update metadata locally */
2219 imsm_update_metadata_locally(st, u, len);
2220 /* and possibly remotely */
2221 if (st->update_tail) {
2222 append_metadata_update(st, u, len);
2223 /* during reshape we do all work inside metadata handler
2224 * manage_reshape(), so metadata update has to be triggered
2225 * insida it
2226 */
2227 flush_metadata_updates(st);
2228 st->update_tail = &st->updates;
2229 } else
2230 free(u);
687629c2
AK
2231
2232 retval = 0;
2233 out:
2234 if (fd >= 0)
2235 close(fd);
2236 return retval;
2237}
9e2d750d 2238#endif /* MDASSEMBLE */
687629c2 2239
e2962bfc
AK
2240/* spare/missing disks activations are not allowe when
2241 * array/container performs reshape operation, because
2242 * all arrays in container works on the same disks set
2243 */
2244int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2245{
2246 int rv = 0;
2247 struct intel_dev *i_dev;
2248 struct imsm_dev *dev;
2249
2250 /* check whole container
2251 */
2252 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2253 dev = i_dev->dev;
2254 if (dev->vol.migr_state &&
2255 dev->vol.migr_type == MIGR_GEN_MIGR) {
2256 /* No repair during any migration in container
2257 */
2258 rv = 1;
2259 break;
2260 }
2261 }
2262 return rv;
2263}
2264
a5d85af7 2265static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2266{
2267 struct intel_super *super = st->sb;
c47b0ff6 2268 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2269 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 2270 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 2271 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 2272 struct imsm_map *map_to_analyse = map;
efb30e7f 2273 struct dl *dl;
e207da2f 2274 char *devname;
139dae11 2275 unsigned int component_size_alligment;
a5d85af7 2276 int map_disks = info->array.raid_disks;
bf5a934a 2277
95eeceeb 2278 memset(info, 0, sizeof(*info));
b335e593
AK
2279 if (prev_map)
2280 map_to_analyse = prev_map;
2281
ca0748fa 2282 dl = super->current_disk;
9894ec0d 2283
bf5a934a 2284 info->container_member = super->current_vol;
cd0430a1 2285 info->array.raid_disks = map->num_members;
b335e593 2286 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2287 info->array.layout = imsm_level_to_layout(info->array.level);
2288 info->array.md_minor = -1;
2289 info->array.ctime = 0;
2290 info->array.utime = 0;
b335e593
AK
2291 info->array.chunk_size =
2292 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2293 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2294 info->custom_array_size = __le32_to_cpu(dev->size_high);
2295 info->custom_array_size <<= 32;
2296 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3f83228a
N
2297 if (prev_map && map->map_state == prev_map->map_state) {
2298 info->reshape_active = 1;
b335e593
AK
2299 info->new_level = get_imsm_raid_level(map);
2300 info->new_layout = imsm_level_to_layout(info->new_level);
2301 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2302 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2303 if (info->delta_disks) {
2304 /* this needs to be applied to every array
2305 * in the container.
2306 */
2307 info->reshape_active = 2;
2308 }
3f83228a
N
2309 /* We shape information that we give to md might have to be
2310 * modify to cope with md's requirement for reshaping arrays.
2311 * For example, when reshaping a RAID0, md requires it to be
2312 * presented as a degraded RAID4.
2313 * Also if a RAID0 is migrating to a RAID5 we need to specify
2314 * the array as already being RAID5, but the 'before' layout
2315 * is a RAID4-like layout.
2316 */
2317 switch (info->array.level) {
2318 case 0:
2319 switch(info->new_level) {
2320 case 0:
2321 /* conversion is happening as RAID4 */
2322 info->array.level = 4;
2323 info->array.raid_disks += 1;
2324 break;
2325 case 5:
2326 /* conversion is happening as RAID5 */
2327 info->array.level = 5;
2328 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2329 info->delta_disks -= 1;
2330 break;
2331 default:
2332 /* FIXME error message */
2333 info->array.level = UnSet;
2334 break;
2335 }
2336 break;
2337 }
b335e593
AK
2338 } else {
2339 info->new_level = UnSet;
2340 info->new_layout = UnSet;
2341 info->new_chunk = info->array.chunk_size;
3f83228a 2342 info->delta_disks = 0;
b335e593 2343 }
ca0748fa 2344
efb30e7f
DW
2345 if (dl) {
2346 info->disk.major = dl->major;
2347 info->disk.minor = dl->minor;
ca0748fa 2348 info->disk.number = dl->index;
656b6b5a
N
2349 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2350 dl->index);
efb30e7f 2351 }
bf5a934a 2352
b335e593
AK
2353 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2354 info->component_size =
2355 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2356
2357 /* check component size aligment
2358 */
2359 component_size_alligment =
2360 info->component_size % (info->array.chunk_size/512);
2361
2362 if (component_size_alligment &&
2363 (info->array.level != 1) && (info->array.level != UnSet)) {
2364 dprintf("imsm: reported component size alligned from %llu ",
2365 info->component_size);
2366 info->component_size -= component_size_alligment;
2367 dprintf("to %llu (%i).\n",
2368 info->component_size, component_size_alligment);
2369 }
2370
301406c9 2371 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2372 info->recovery_start = MaxSector;
bf5a934a 2373
d2e6d5d6 2374 info->reshape_progress = 0;
b6796ce1 2375 info->resync_start = MaxSector;
b9172665
AK
2376 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2377 dev->vol.dirty) &&
2378 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 2379 info->resync_start = 0;
b6796ce1
AK
2380 }
2381 if (dev->vol.migr_state) {
1e5c6983
DW
2382 switch (migr_type(dev)) {
2383 case MIGR_REPAIR:
2384 case MIGR_INIT: {
c47b0ff6
AK
2385 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2386 dev);
1e5c6983
DW
2387 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2388
2389 info->resync_start = blocks_per_unit * units;
2390 break;
2391 }
d2e6d5d6 2392 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2393 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2394 dev);
2395 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2396 unsigned long long array_blocks;
2397 int used_disks;
d2e6d5d6 2398
befb629b
AK
2399 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2400 (units <
2401 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2402 (super->migr_rec->rec_status ==
2403 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2404 units++;
2405
d2e6d5d6 2406 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2407
d2e6d5d6
AK
2408 dprintf("IMSM: General Migration checkpoint : %llu "
2409 "(%llu) -> read reshape progress : %llu\n",
19986c72
MB
2410 (unsigned long long)units,
2411 (unsigned long long)blocks_per_unit,
2412 info->reshape_progress);
75156c46
AK
2413
2414 used_disks = imsm_num_data_members(dev, 1);
2415 if (used_disks > 0) {
2416 array_blocks = map->blocks_per_member *
2417 used_disks;
2418 /* round array size down to closest MB
2419 */
2420 info->custom_array_size = (array_blocks
2421 >> SECT_PER_MB_SHIFT)
2422 << SECT_PER_MB_SHIFT;
2423 }
d2e6d5d6 2424 }
1e5c6983
DW
2425 case MIGR_VERIFY:
2426 /* we could emulate the checkpointing of
2427 * 'sync_action=check' migrations, but for now
2428 * we just immediately complete them
2429 */
2430 case MIGR_REBUILD:
2431 /* this is handled by container_content_imsm() */
1e5c6983
DW
2432 case MIGR_STATE_CHANGE:
2433 /* FIXME handle other migrations */
2434 default:
2435 /* we are not dirty, so... */
2436 info->resync_start = MaxSector;
2437 }
b6796ce1 2438 }
301406c9
DW
2439
2440 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2441 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2442
f35f2525
N
2443 info->array.major_version = -1;
2444 info->array.minor_version = -2;
e207da2f
AW
2445 devname = devnum2devname(st->container_dev);
2446 *info->text_version = '\0';
2447 if (devname)
2448 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2449 free(devname);
a67dd8cc 2450 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2451 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2452
2453 if (dmap) {
2454 int i, j;
2455 for (i=0; i<map_disks; i++) {
2456 dmap[i] = 0;
2457 if (i < info->array.raid_disks) {
2458 struct imsm_disk *dsk;
98130f40 2459 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2460 dsk = get_imsm_disk(super, j);
2461 if (dsk && (dsk->status & CONFIGURED_DISK))
2462 dmap[i] = 1;
2463 }
2464 }
2465 }
81ac8b4d 2466}
bf5a934a 2467
97b4d0e9
DW
2468static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2469static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2470
2471static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2472{
2473 struct dl *d;
2474
2475 for (d = super->missing; d; d = d->next)
2476 if (d->index == index)
2477 return &d->disk;
2478 return NULL;
2479}
2480
a5d85af7 2481static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2482{
2483 struct intel_super *super = st->sb;
4f5bc454 2484 struct imsm_disk *disk;
a5d85af7 2485 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2486 int max_enough = -1;
2487 int i;
2488 struct imsm_super *mpb;
4f5bc454 2489
bf5a934a 2490 if (super->current_vol >= 0) {
a5d85af7 2491 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2492 return;
2493 }
95eeceeb 2494 memset(info, 0, sizeof(*info));
d23fe947
DW
2495
2496 /* Set raid_disks to zero so that Assemble will always pull in valid
2497 * spares
2498 */
2499 info->array.raid_disks = 0;
cdddbdbc
DW
2500 info->array.level = LEVEL_CONTAINER;
2501 info->array.layout = 0;
2502 info->array.md_minor = -1;
c2c087e6 2503 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2504 info->array.utime = 0;
2505 info->array.chunk_size = 0;
2506
2507 info->disk.major = 0;
2508 info->disk.minor = 0;
cdddbdbc 2509 info->disk.raid_disk = -1;
c2c087e6 2510 info->reshape_active = 0;
f35f2525
N
2511 info->array.major_version = -1;
2512 info->array.minor_version = -2;
c2c087e6 2513 strcpy(info->text_version, "imsm");
a67dd8cc 2514 info->safe_mode_delay = 0;
c2c087e6
DW
2515 info->disk.number = -1;
2516 info->disk.state = 0;
c5afc314 2517 info->name[0] = 0;
921d9e16 2518 info->recovery_start = MaxSector;
c2c087e6 2519
97b4d0e9 2520 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2521 mpb = super->anchor;
97b4d0e9 2522
ab3cb6b3
N
2523 for (i = 0; i < mpb->num_raid_devs; i++) {
2524 struct imsm_dev *dev = get_imsm_dev(super, i);
2525 int failed, enough, j, missing = 0;
2526 struct imsm_map *map;
2527 __u8 state;
97b4d0e9 2528
ab3cb6b3
N
2529 failed = imsm_count_failed(super, dev);
2530 state = imsm_check_degraded(super, dev, failed);
2531 map = get_imsm_map(dev, dev->vol.migr_state);
2532
2533 /* any newly missing disks?
2534 * (catches single-degraded vs double-degraded)
2535 */
2536 for (j = 0; j < map->num_members; j++) {
98130f40 2537 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
ab3cb6b3
N
2538 __u32 idx = ord_to_idx(ord);
2539
2540 if (!(ord & IMSM_ORD_REBUILD) &&
2541 get_imsm_missing(super, idx)) {
2542 missing = 1;
2543 break;
2544 }
97b4d0e9 2545 }
ab3cb6b3
N
2546
2547 if (state == IMSM_T_STATE_FAILED)
2548 enough = -1;
2549 else if (state == IMSM_T_STATE_DEGRADED &&
2550 (state != map->map_state || missing))
2551 enough = 0;
2552 else /* we're normal, or already degraded */
2553 enough = 1;
2554
2555 /* in the missing/failed disk case check to see
2556 * if at least one array is runnable
2557 */
2558 max_enough = max(max_enough, enough);
2559 }
2560 dprintf("%s: enough: %d\n", __func__, max_enough);
2561 info->container_enough = max_enough;
97b4d0e9 2562
4a04ec6c 2563 if (super->disks) {
14e8215b
DW
2564 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2565
b9f594fe 2566 disk = &super->disks->disk;
14e8215b
DW
2567 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2568 info->component_size = reserved;
25ed7e59 2569 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2570 /* we don't change info->disk.raid_disk here because
2571 * this state will be finalized in mdmon after we have
2572 * found the 'most fresh' version of the metadata
2573 */
25ed7e59
DW
2574 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2575 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2576 }
a575e2a7
DW
2577
2578 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2579 * ->compare_super may have updated the 'num_raid_devs' field for spares
2580 */
2581 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2582 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2583 else
2584 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2585
2586 /* I don't know how to compute 'map' on imsm, so use safe default */
2587 if (map) {
2588 int i;
2589 for (i = 0; i < map_disks; i++)
2590 map[i] = 1;
2591 }
2592
cdddbdbc
DW
2593}
2594
5c4cd5da
AC
2595/* allocates memory and fills disk in mdinfo structure
2596 * for each disk in array */
2597struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2598{
2599 struct mdinfo *mddev = NULL;
2600 struct intel_super *super = st->sb;
2601 struct imsm_disk *disk;
2602 int count = 0;
2603 struct dl *dl;
2604 if (!super || !super->disks)
2605 return NULL;
2606 dl = super->disks;
2607 mddev = malloc(sizeof(*mddev));
2608 if (!mddev) {
2609 fprintf(stderr, Name ": Failed to allocate memory.\n");
2610 return NULL;
2611 }
2612 memset(mddev, 0, sizeof(*mddev));
2613 while (dl) {
2614 struct mdinfo *tmp;
2615 disk = &dl->disk;
2616 tmp = malloc(sizeof(*tmp));
2617 if (!tmp) {
2618 fprintf(stderr, Name ": Failed to allocate memory.\n");
2619 if (mddev)
2620 sysfs_free(mddev);
2621 return NULL;
2622 }
2623 memset(tmp, 0, sizeof(*tmp));
2624 if (mddev->devs)
2625 tmp->next = mddev->devs;
2626 mddev->devs = tmp;
2627 tmp->disk.number = count++;
2628 tmp->disk.major = dl->major;
2629 tmp->disk.minor = dl->minor;
2630 tmp->disk.state = is_configured(disk) ?
2631 (1 << MD_DISK_ACTIVE) : 0;
2632 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2633 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2634 tmp->disk.raid_disk = -1;
2635 dl = dl->next;
2636 }
2637 return mddev;
2638}
2639
cdddbdbc
DW
2640static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2641 char *update, char *devname, int verbose,
2642 int uuid_set, char *homehost)
2643{
f352c545
DW
2644 /* For 'assemble' and 'force' we need to return non-zero if any
2645 * change was made. For others, the return value is ignored.
2646 * Update options are:
2647 * force-one : This device looks a bit old but needs to be included,
2648 * update age info appropriately.
2649 * assemble: clear any 'faulty' flag to allow this device to
2650 * be assembled.
2651 * force-array: Array is degraded but being forced, mark it clean
2652 * if that will be needed to assemble it.
2653 *
2654 * newdev: not used ????
2655 * grow: Array has gained a new device - this is currently for
2656 * linear only
2657 * resync: mark as dirty so a resync will happen.
2658 * name: update the name - preserving the homehost
6e46bf34 2659 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2660 *
2661 * Following are not relevant for this imsm:
2662 * sparc2.2 : update from old dodgey metadata
2663 * super-minor: change the preferred_minor number
2664 * summaries: update redundant counters.
f352c545
DW
2665 * homehost: update the recorded homehost
2666 * _reshape_progress: record new reshape_progress position.
2667 */
6e46bf34
DW
2668 int rv = 1;
2669 struct intel_super *super = st->sb;
2670 struct imsm_super *mpb;
f352c545 2671
6e46bf34
DW
2672 /* we can only update container info */
2673 if (!super || super->current_vol >= 0 || !super->anchor)
2674 return 1;
2675
2676 mpb = super->anchor;
2677
2678 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2679 rv = -1;
6e46bf34
DW
2680 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2681 mpb->orig_family_num = *((__u32 *) info->update_private);
2682 rv = 0;
2683 } else if (strcmp(update, "uuid") == 0) {
2684 __u32 *new_family = malloc(sizeof(*new_family));
2685
2686 /* update orig_family_number with the incoming random
2687 * data, report the new effective uuid, and store the
2688 * new orig_family_num for future updates.
2689 */
2690 if (new_family) {
2691 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2692 uuid_from_super_imsm(st, info->uuid);
2693 *new_family = mpb->orig_family_num;
2694 info->update_private = new_family;
2695 rv = 0;
2696 }
2697 } else if (strcmp(update, "assemble") == 0)
2698 rv = 0;
2699 else
1e2b2765 2700 rv = -1;
f352c545 2701
6e46bf34
DW
2702 /* successful update? recompute checksum */
2703 if (rv == 0)
2704 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2705
2706 return rv;
cdddbdbc
DW
2707}
2708
c2c087e6 2709static size_t disks_to_mpb_size(int disks)
cdddbdbc 2710{
c2c087e6 2711 size_t size;
cdddbdbc 2712
c2c087e6
DW
2713 size = sizeof(struct imsm_super);
2714 size += (disks - 1) * sizeof(struct imsm_disk);
2715 size += 2 * sizeof(struct imsm_dev);
2716 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2717 size += (4 - 2) * sizeof(struct imsm_map);
2718 /* 4 possible disk_ord_tbl's */
2719 size += 4 * (disks - 1) * sizeof(__u32);
2720
2721 return size;
2722}
2723
2724static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2725{
2726 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2727 return 0;
2728
2729 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2730}
2731
ba2de7ba
DW
2732static void free_devlist(struct intel_super *super)
2733{
2734 struct intel_dev *dv;
2735
2736 while (super->devlist) {
2737 dv = super->devlist->next;
2738 free(super->devlist->dev);
2739 free(super->devlist);
2740 super->devlist = dv;
2741 }
2742}
2743
2744static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2745{
2746 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2747}
2748
cdddbdbc
DW
2749static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2750{
2751 /*
2752 * return:
2753 * 0 same, or first was empty, and second was copied
2754 * 1 second had wrong number
2755 * 2 wrong uuid
2756 * 3 wrong other info
2757 */
2758 struct intel_super *first = st->sb;
2759 struct intel_super *sec = tst->sb;
2760
2761 if (!first) {
2762 st->sb = tst->sb;
2763 tst->sb = NULL;
2764 return 0;
2765 }
8603ea6f
LM
2766 /* in platform dependent environment test if the disks
2767 * use the same Intel hba
2768 */
2769 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2770 if (!first->hba || !sec->hba ||
2771 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2772 fprintf(stderr,
2773 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2774 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2775 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2776 return 3;
2777 }
2778 }
cdddbdbc 2779
d23fe947
DW
2780 /* if an anchor does not have num_raid_devs set then it is a free
2781 * floating spare
2782 */
2783 if (first->anchor->num_raid_devs > 0 &&
2784 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2785 /* Determine if these disks might ever have been
2786 * related. Further disambiguation can only take place
2787 * in load_super_imsm_all
2788 */
2789 __u32 first_family = first->anchor->orig_family_num;
2790 __u32 sec_family = sec->anchor->orig_family_num;
2791
f796af5d
DW
2792 if (memcmp(first->anchor->sig, sec->anchor->sig,
2793 MAX_SIGNATURE_LENGTH) != 0)
2794 return 3;
2795
a2b97981
DW
2796 if (first_family == 0)
2797 first_family = first->anchor->family_num;
2798 if (sec_family == 0)
2799 sec_family = sec->anchor->family_num;
2800
2801 if (first_family != sec_family)
d23fe947 2802 return 3;
f796af5d 2803
d23fe947 2804 }
cdddbdbc 2805
f796af5d 2806
3e372e5a
DW
2807 /* if 'first' is a spare promote it to a populated mpb with sec's
2808 * family number
2809 */
2810 if (first->anchor->num_raid_devs == 0 &&
2811 sec->anchor->num_raid_devs > 0) {
78d30f94 2812 int i;
ba2de7ba
DW
2813 struct intel_dev *dv;
2814 struct imsm_dev *dev;
78d30f94
DW
2815
2816 /* we need to copy raid device info from sec if an allocation
2817 * fails here we don't associate the spare
2818 */
2819 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2820 dv = malloc(sizeof(*dv));
2821 if (!dv)
2822 break;
2823 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2824 if (!dev) {
2825 free(dv);
2826 break;
78d30f94 2827 }
ba2de7ba
DW
2828 dv->dev = dev;
2829 dv->index = i;
2830 dv->next = first->devlist;
2831 first->devlist = dv;
78d30f94 2832 }
709743c5 2833 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2834 /* allocation failure */
2835 free_devlist(first);
2836 fprintf(stderr, "imsm: failed to associate spare\n");
2837 return 3;
78d30f94 2838 }
3e372e5a 2839 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2840 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2841 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2842 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2843 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2844 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2845 }
2846
cdddbdbc
DW
2847 return 0;
2848}
2849
0030e8d6
DW
2850static void fd2devname(int fd, char *name)
2851{
2852 struct stat st;
2853 char path[256];
33a6535d 2854 char dname[PATH_MAX];
0030e8d6
DW
2855 char *nm;
2856 int rv;
2857
2858 name[0] = '\0';
2859 if (fstat(fd, &st) != 0)
2860 return;
2861 sprintf(path, "/sys/dev/block/%d:%d",
2862 major(st.st_rdev), minor(st.st_rdev));
2863
2864 rv = readlink(path, dname, sizeof(dname));
2865 if (rv <= 0)
2866 return;
2867
2868 dname[rv] = '\0';
2869 nm = strrchr(dname, '/');
2870 nm++;
2871 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2872}
2873
cdddbdbc
DW
2874extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2875
2876static int imsm_read_serial(int fd, char *devname,
2877 __u8 serial[MAX_RAID_SERIAL_LEN])
2878{
2879 unsigned char scsi_serial[255];
cdddbdbc
DW
2880 int rv;
2881 int rsp_len;
1f24f035 2882 int len;
316e2bf4
DW
2883 char *dest;
2884 char *src;
2885 char *rsp_buf;
2886 int i;
cdddbdbc
DW
2887
2888 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2889
f9ba0ff1
DW
2890 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2891
40ebbb9c 2892 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2893 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2894 fd2devname(fd, (char *) serial);
0030e8d6
DW
2895 return 0;
2896 }
2897
cdddbdbc
DW
2898 if (rv != 0) {
2899 if (devname)
2900 fprintf(stderr,
2901 Name ": Failed to retrieve serial for %s\n",
2902 devname);
2903 return rv;
2904 }
2905
2906 rsp_len = scsi_serial[3];
03cd4cc8
DW
2907 if (!rsp_len) {
2908 if (devname)
2909 fprintf(stderr,
2910 Name ": Failed to retrieve serial for %s\n",
2911 devname);
2912 return 2;
2913 }
1f24f035 2914 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2915
316e2bf4
DW
2916 /* trim all whitespace and non-printable characters and convert
2917 * ':' to ';'
2918 */
2919 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2920 src = &rsp_buf[i];
2921 if (*src > 0x20) {
2922 /* ':' is reserved for use in placeholder serial
2923 * numbers for missing disks
2924 */
2925 if (*src == ':')
2926 *dest++ = ';';
2927 else
2928 *dest++ = *src;
2929 }
2930 }
2931 len = dest - rsp_buf;
2932 dest = rsp_buf;
2933
2934 /* truncate leading characters */
2935 if (len > MAX_RAID_SERIAL_LEN) {
2936 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2937 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2938 }
5c3db629 2939
5c3db629 2940 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2941 memcpy(serial, dest, len);
cdddbdbc
DW
2942
2943 return 0;
2944}
2945
1f24f035
DW
2946static int serialcmp(__u8 *s1, __u8 *s2)
2947{
2948 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2949}
2950
2951static void serialcpy(__u8 *dest, __u8 *src)
2952{
2953 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2954}
2955
54c2c1ea
DW
2956static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2957{
2958 struct dl *dl;
2959
2960 for (dl = super->disks; dl; dl = dl->next)
2961 if (serialcmp(dl->serial, serial) == 0)
2962 break;
2963
2964 return dl;
2965}
2966
a2b97981
DW
2967static struct imsm_disk *
2968__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2969{
2970 int i;
2971
2972 for (i = 0; i < mpb->num_disks; i++) {
2973 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2974
2975 if (serialcmp(disk->serial, serial) == 0) {
2976 if (idx)
2977 *idx = i;
2978 return disk;
2979 }
2980 }
2981
2982 return NULL;
2983}
2984
cdddbdbc
DW
2985static int
2986load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2987{
a2b97981 2988 struct imsm_disk *disk;
cdddbdbc
DW
2989 struct dl *dl;
2990 struct stat stb;
cdddbdbc 2991 int rv;
a2b97981 2992 char name[40];
d23fe947
DW
2993 __u8 serial[MAX_RAID_SERIAL_LEN];
2994
2995 rv = imsm_read_serial(fd, devname, serial);
2996
2997 if (rv != 0)
2998 return 2;
2999
a2b97981 3000 dl = calloc(1, sizeof(*dl));
b9f594fe 3001 if (!dl) {
cdddbdbc
DW
3002 if (devname)
3003 fprintf(stderr,
3004 Name ": failed to allocate disk buffer for %s\n",
3005 devname);
3006 return 2;
3007 }
cdddbdbc 3008
a2b97981
DW
3009 fstat(fd, &stb);
3010 dl->major = major(stb.st_rdev);
3011 dl->minor = minor(stb.st_rdev);
3012 dl->next = super->disks;
3013 dl->fd = keep_fd ? fd : -1;
3014 assert(super->disks == NULL);
3015 super->disks = dl;
3016 serialcpy(dl->serial, serial);
3017 dl->index = -2;
3018 dl->e = NULL;
3019 fd2devname(fd, name);
3020 if (devname)
3021 dl->devname = strdup(devname);
3022 else
3023 dl->devname = strdup(name);
cdddbdbc 3024
d23fe947 3025 /* look up this disk's index in the current anchor */
a2b97981
DW
3026 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3027 if (disk) {
3028 dl->disk = *disk;
3029 /* only set index on disks that are a member of a
3030 * populated contianer, i.e. one with raid_devs
3031 */
3032 if (is_failed(&dl->disk))
3f6efecc 3033 dl->index = -2;
a2b97981
DW
3034 else if (is_spare(&dl->disk))
3035 dl->index = -1;
3f6efecc
DW
3036 }
3037
949c47a0
DW
3038 return 0;
3039}
3040
0e600426 3041#ifndef MDASSEMBLE
0c046afd
DW
3042/* When migrating map0 contains the 'destination' state while map1
3043 * contains the current state. When not migrating map0 contains the
3044 * current state. This routine assumes that map[0].map_state is set to
3045 * the current array state before being called.
3046 *
3047 * Migration is indicated by one of the following states
3048 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3049 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3050 * map1state=unitialized)
1484e727 3051 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3052 * map1state=normal)
e3bba0e0 3053 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3054 * map1state=degraded)
8e59f3d8
AK
3055 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3056 * map1state=normal)
0c046afd 3057 */
8e59f3d8
AK
3058static void migrate(struct imsm_dev *dev, struct intel_super *super,
3059 __u8 to_state, int migr_type)
3393c6af 3060{
0c046afd 3061 struct imsm_map *dest;
3393c6af
DW
3062 struct imsm_map *src = get_imsm_map(dev, 0);
3063
0c046afd 3064 dev->vol.migr_state = 1;
1484e727 3065 set_migr_type(dev, migr_type);
f8f603f1 3066 dev->vol.curr_migr_unit = 0;
0c046afd
DW
3067 dest = get_imsm_map(dev, 1);
3068
0556e1a2 3069 /* duplicate and then set the target end state in map[0] */
3393c6af 3070 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3071 if ((migr_type == MIGR_REBUILD) ||
3072 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3073 __u32 ord;
3074 int i;
3075
3076 for (i = 0; i < src->num_members; i++) {
3077 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3078 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3079 }
3080 }
3081
8e59f3d8
AK
3082 if (migr_type == MIGR_GEN_MIGR)
3083 /* Clear migration record */
3084 memset(super->migr_rec, 0, sizeof(struct migr_record));
3085
0c046afd 3086 src->map_state = to_state;
949c47a0 3087}
f8f603f1
DW
3088
3089static void end_migration(struct imsm_dev *dev, __u8 map_state)
3090{
3091 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 3092 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 3093 int i, j;
0556e1a2
DW
3094
3095 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3096 * completed in the last migration.
3097 *
28bce06f 3098 * FIXME add support for raid-level-migration
0556e1a2
DW
3099 */
3100 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
3101 for (j = 0; j < map->num_members; j++)
3102 /* during online capacity expansion
3103 * disks position can be changed if takeover is used
3104 */
3105 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3106 ord_to_idx(prev->disk_ord_tbl[i])) {
3107 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3108 break;
3109 }
f8f603f1
DW
3110
3111 dev->vol.migr_state = 0;
28bce06f 3112 dev->vol.migr_type = 0;
f8f603f1
DW
3113 dev->vol.curr_migr_unit = 0;
3114 map->map_state = map_state;
3115}
0e600426 3116#endif
949c47a0
DW
3117
3118static int parse_raid_devices(struct intel_super *super)
3119{
3120 int i;
3121 struct imsm_dev *dev_new;
4d7b1503 3122 size_t len, len_migr;
401d313b 3123 size_t max_len = 0;
4d7b1503
DW
3124 size_t space_needed = 0;
3125 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3126
3127 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3128 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3129 struct intel_dev *dv;
949c47a0 3130
4d7b1503
DW
3131 len = sizeof_imsm_dev(dev_iter, 0);
3132 len_migr = sizeof_imsm_dev(dev_iter, 1);
3133 if (len_migr > len)
3134 space_needed += len_migr - len;
3135
ba2de7ba
DW
3136 dv = malloc(sizeof(*dv));
3137 if (!dv)
3138 return 1;
401d313b
AK
3139 if (max_len < len_migr)
3140 max_len = len_migr;
3141 if (max_len > len_migr)
3142 space_needed += max_len - len_migr;
3143 dev_new = malloc(max_len);
ba2de7ba
DW
3144 if (!dev_new) {
3145 free(dv);
949c47a0 3146 return 1;
ba2de7ba 3147 }
949c47a0 3148 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3149 dv->dev = dev_new;
3150 dv->index = i;
3151 dv->next = super->devlist;
3152 super->devlist = dv;
949c47a0 3153 }
cdddbdbc 3154
4d7b1503
DW
3155 /* ensure that super->buf is large enough when all raid devices
3156 * are migrating
3157 */
3158 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3159 void *buf;
3160
3161 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3162 if (posix_memalign(&buf, 512, len) != 0)
3163 return 1;
3164
1f45a8ad
DW
3165 memcpy(buf, super->buf, super->len);
3166 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3167 free(super->buf);
3168 super->buf = buf;
3169 super->len = len;
3170 }
3171
cdddbdbc
DW
3172 return 0;
3173}
3174
604b746f
JD
3175/* retrieve a pointer to the bbm log which starts after all raid devices */
3176struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3177{
3178 void *ptr = NULL;
3179
3180 if (__le32_to_cpu(mpb->bbm_log_size)) {
3181 ptr = mpb;
3182 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3183 }
3184
3185 return ptr;
3186}
3187
e2f41b2c
AK
3188/*******************************************************************************
3189 * Function: check_mpb_migr_compatibility
3190 * Description: Function checks for unsupported migration features:
3191 * - migration optimization area (pba_of_lba0)
3192 * - descending reshape (ascending_migr)
3193 * Parameters:
3194 * super : imsm metadata information
3195 * Returns:
3196 * 0 : migration is compatible
3197 * -1 : migration is not compatible
3198 ******************************************************************************/
3199int check_mpb_migr_compatibility(struct intel_super *super)
3200{
3201 struct imsm_map *map0, *map1;
3202 struct migr_record *migr_rec = super->migr_rec;
3203 int i;
3204
3205 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3206 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3207
3208 if (dev_iter &&
3209 dev_iter->vol.migr_state == 1 &&
3210 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3211 /* This device is migrating */
3212 map0 = get_imsm_map(dev_iter, 0);
3213 map1 = get_imsm_map(dev_iter, 1);
3214 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3215 /* migration optimization area was used */
3216 return -1;
3217 if (migr_rec->ascending_migr == 0
3218 && migr_rec->dest_depth_per_unit > 0)
3219 /* descending reshape not supported yet */
3220 return -1;
3221 }
3222 }
3223 return 0;
3224}
3225
d23fe947 3226static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3227
cdddbdbc 3228/* load_imsm_mpb - read matrix metadata
f2f5c343 3229 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3230 */
3231static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3232{
3233 unsigned long long dsize;
cdddbdbc
DW
3234 unsigned long long sectors;
3235 struct stat;
6416d527 3236 struct imsm_super *anchor;
cdddbdbc
DW
3237 __u32 check_sum;
3238
cdddbdbc 3239 get_dev_size(fd, NULL, &dsize);
64436f06
N
3240 if (dsize < 1024) {
3241 if (devname)
3242 fprintf(stderr,
3243 Name ": %s: device to small for imsm\n",
3244 devname);
3245 return 1;
3246 }
cdddbdbc
DW
3247
3248 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3249 if (devname)
2e062e82
AK
3250 fprintf(stderr, Name
3251 ": Cannot seek to anchor block on %s: %s\n",
cdddbdbc
DW
3252 devname, strerror(errno));
3253 return 1;
3254 }
3255
949c47a0 3256 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3257 if (devname)
3258 fprintf(stderr,
3259 Name ": Failed to allocate imsm anchor buffer"
3260 " on %s\n", devname);
3261 return 1;
3262 }
949c47a0 3263 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3264 if (devname)
3265 fprintf(stderr,
3266 Name ": Cannot read anchor block on %s: %s\n",
3267 devname, strerror(errno));
6416d527 3268 free(anchor);
cdddbdbc
DW
3269 return 1;
3270 }
3271
6416d527 3272 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3273 if (devname)
3274 fprintf(stderr,
3275 Name ": no IMSM anchor on %s\n", devname);
6416d527 3276 free(anchor);
cdddbdbc
DW
3277 return 2;
3278 }
3279
d23fe947 3280 __free_imsm(super, 0);
f2f5c343
LM
3281 /* reload capability and hba */
3282
3283 /* capability and hba must be updated with new super allocation */
d424212e 3284 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3285 super->len = ROUND_UP(anchor->mpb_size, 512);
3286 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3287 if (devname)
3288 fprintf(stderr,
3289 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3290 super->len);
6416d527 3291 free(anchor);
cdddbdbc
DW
3292 return 2;
3293 }
949c47a0 3294 memcpy(super->buf, anchor, 512);
cdddbdbc 3295
6416d527
NB
3296 sectors = mpb_sectors(anchor) - 1;
3297 free(anchor);
8e59f3d8
AK
3298
3299 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3300 fprintf(stderr, Name
3301 ": %s could not allocate migr_rec buffer\n", __func__);
3302 free(super->buf);
3303 return 2;
3304 }
3305
949c47a0 3306 if (!sectors) {
ecf45690
DW
3307 check_sum = __gen_imsm_checksum(super->anchor);
3308 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3309 if (devname)
3310 fprintf(stderr,
3311 Name ": IMSM checksum %x != %x on %s\n",
3312 check_sum,
3313 __le32_to_cpu(super->anchor->check_sum),
3314 devname);
3315 return 2;
3316 }
3317
a2b97981 3318 return 0;
949c47a0 3319 }
cdddbdbc
DW
3320
3321 /* read the extended mpb */
3322 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3323 if (devname)
3324 fprintf(stderr,
3325 Name ": Cannot seek to extended mpb on %s: %s\n",
3326 devname, strerror(errno));
3327 return 1;
3328 }
3329
f21e18ca 3330 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3331 if (devname)
3332 fprintf(stderr,
3333 Name ": Cannot read extended mpb on %s: %s\n",
3334 devname, strerror(errno));
3335 return 2;
3336 }
3337
949c47a0
DW
3338 check_sum = __gen_imsm_checksum(super->anchor);
3339 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3340 if (devname)
3341 fprintf(stderr,
3342 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3343 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3344 devname);
db575f3b 3345 return 3;
cdddbdbc
DW
3346 }
3347
604b746f
JD
3348 /* FIXME the BBM log is disk specific so we cannot use this global
3349 * buffer for all disks. Ok for now since we only look at the global
3350 * bbm_log_size parameter to gate assembly
3351 */
3352 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3353
a2b97981
DW
3354 return 0;
3355}
3356
8e59f3d8
AK
3357static int read_imsm_migr_rec(int fd, struct intel_super *super);
3358
a2b97981
DW
3359static int
3360load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3361{
3362 int err;
3363
3364 err = load_imsm_mpb(fd, super, devname);
3365 if (err)
3366 return err;
3367 err = load_imsm_disk(fd, super, devname, keep_fd);
3368 if (err)
3369 return err;
3370 err = parse_raid_devices(super);
4d7b1503 3371
a2b97981 3372 return err;
cdddbdbc
DW
3373}
3374
ae6aad82
DW
3375static void __free_imsm_disk(struct dl *d)
3376{
3377 if (d->fd >= 0)
3378 close(d->fd);
3379 if (d->devname)
3380 free(d->devname);
0dcecb2e
DW
3381 if (d->e)
3382 free(d->e);
ae6aad82
DW
3383 free(d);
3384
3385}
1a64be56 3386
cdddbdbc
DW
3387static void free_imsm_disks(struct intel_super *super)
3388{
47ee5a45 3389 struct dl *d;
cdddbdbc 3390
47ee5a45
DW
3391 while (super->disks) {
3392 d = super->disks;
cdddbdbc 3393 super->disks = d->next;
ae6aad82 3394 __free_imsm_disk(d);
cdddbdbc 3395 }
cb82edca
AK
3396 while (super->disk_mgmt_list) {
3397 d = super->disk_mgmt_list;
3398 super->disk_mgmt_list = d->next;
3399 __free_imsm_disk(d);
3400 }
47ee5a45
DW
3401 while (super->missing) {
3402 d = super->missing;
3403 super->missing = d->next;
3404 __free_imsm_disk(d);
3405 }
3406
cdddbdbc
DW
3407}
3408
9ca2c81c 3409/* free all the pieces hanging off of a super pointer */
d23fe947 3410static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3411{
88654014
LM
3412 struct intel_hba *elem, *next;
3413
9ca2c81c 3414 if (super->buf) {
949c47a0 3415 free(super->buf);
9ca2c81c
DW
3416 super->buf = NULL;
3417 }
f2f5c343
LM
3418 /* unlink capability description */
3419 super->orom = NULL;
8e59f3d8
AK
3420 if (super->migr_rec_buf) {
3421 free(super->migr_rec_buf);
3422 super->migr_rec_buf = NULL;
3423 }
d23fe947
DW
3424 if (free_disks)
3425 free_imsm_disks(super);
ba2de7ba 3426 free_devlist(super);
88654014
LM
3427 elem = super->hba;
3428 while (elem) {
3429 if (elem->path)
3430 free((void *)elem->path);
3431 next = elem->next;
3432 free(elem);
3433 elem = next;
88c32bb1 3434 }
88654014 3435 super->hba = NULL;
cdddbdbc
DW
3436}
3437
9ca2c81c
DW
3438static void free_imsm(struct intel_super *super)
3439{
d23fe947 3440 __free_imsm(super, 1);
9ca2c81c
DW
3441 free(super);
3442}
cdddbdbc
DW
3443
3444static void free_super_imsm(struct supertype *st)
3445{
3446 struct intel_super *super = st->sb;
3447
3448 if (!super)
3449 return;
3450
3451 free_imsm(super);
3452 st->sb = NULL;
3453}
3454
49133e57 3455static struct intel_super *alloc_super(void)
c2c087e6
DW
3456{
3457 struct intel_super *super = malloc(sizeof(*super));
3458
3459 if (super) {
3460 memset(super, 0, sizeof(*super));
bf5a934a 3461 super->current_vol = -1;
0dcecb2e 3462 super->create_offset = ~((__u32 ) 0);
c2c087e6 3463 }
c2c087e6
DW
3464 return super;
3465}
3466
f0f5a016
LM
3467/*
3468 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3469 */
d424212e 3470static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3471{
3472 struct sys_dev *hba_name;
3473 int rv = 0;
3474
3475 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3476 super->orom = NULL;
f0f5a016
LM
3477 super->hba = NULL;
3478 return 0;
3479 }
3480 hba_name = find_disk_attached_hba(fd, NULL);
3481 if (!hba_name) {
d424212e 3482 if (devname)
f0f5a016
LM
3483 fprintf(stderr,
3484 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3485 devname);
f0f5a016
LM
3486 return 1;
3487 }
3488 rv = attach_hba_to_super(super, hba_name);
3489 if (rv == 2) {
d424212e
N
3490 if (devname) {
3491 struct intel_hba *hba = super->hba;
f0f5a016 3492
f0f5a016
LM
3493 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3494 "controller (%s),\n"
3495 " but the container is assigned to Intel(R) "
3496 "%s RAID controller (",
d424212e 3497 devname,
f0f5a016
LM
3498 hba_name->path,
3499 hba_name->pci_id ? : "Err!",
3500 get_sys_dev_type(hba_name->type));
3501
f0f5a016
LM
3502 while (hba) {
3503 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3504 if (hba->next)
3505 fprintf(stderr, ", ");
3506 hba = hba->next;
3507 }
3508
3509 fprintf(stderr, ").\n"
3510 " Mixing devices attached to different controllers "
3511 "is not allowed.\n");
3512 }
3513 free_sys_dev(&hba_name);
3514 return 2;
3515 }
f2f5c343 3516 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3517 free_sys_dev(&hba_name);
f2f5c343
LM
3518 if (!super->orom)
3519 return 3;
f0f5a016
LM
3520 return 0;
3521}
3522
47ee5a45
DW
3523/* find_missing - helper routine for load_super_imsm_all that identifies
3524 * disks that have disappeared from the system. This routine relies on
3525 * the mpb being uptodate, which it is at load time.
3526 */
3527static int find_missing(struct intel_super *super)
3528{
3529 int i;
3530 struct imsm_super *mpb = super->anchor;
3531 struct dl *dl;
3532 struct imsm_disk *disk;
47ee5a45
DW
3533
3534 for (i = 0; i < mpb->num_disks; i++) {
3535 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3536 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3537 if (dl)
3538 continue;
47ee5a45
DW
3539
3540 dl = malloc(sizeof(*dl));
3541 if (!dl)
3542 return 1;
3543 dl->major = 0;
3544 dl->minor = 0;
3545 dl->fd = -1;
3546 dl->devname = strdup("missing");
3547 dl->index = i;
3548 serialcpy(dl->serial, disk->serial);
3549 dl->disk = *disk;
689c9bf3 3550 dl->e = NULL;
47ee5a45
DW
3551 dl->next = super->missing;
3552 super->missing = dl;
3553 }
3554
3555 return 0;
3556}
3557
3960e579 3558#ifndef MDASSEMBLE
a2b97981
DW
3559static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3560{
3561 struct intel_disk *idisk = disk_list;
3562
3563 while (idisk) {
3564 if (serialcmp(idisk->disk.serial, serial) == 0)
3565 break;
3566 idisk = idisk->next;
3567 }
3568
3569 return idisk;
3570}
3571
3572static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3573 struct intel_super *super,
3574 struct intel_disk **disk_list)
3575{
3576 struct imsm_disk *d = &super->disks->disk;
3577 struct imsm_super *mpb = super->anchor;
3578 int i, j;
3579
3580 for (i = 0; i < tbl_size; i++) {
3581 struct imsm_super *tbl_mpb = table[i]->anchor;
3582 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3583
3584 if (tbl_mpb->family_num == mpb->family_num) {
3585 if (tbl_mpb->check_sum == mpb->check_sum) {
3586 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3587 __func__, super->disks->major,
3588 super->disks->minor,
3589 table[i]->disks->major,
3590 table[i]->disks->minor);
3591 break;
3592 }
3593
3594 if (((is_configured(d) && !is_configured(tbl_d)) ||
3595 is_configured(d) == is_configured(tbl_d)) &&
3596 tbl_mpb->generation_num < mpb->generation_num) {
3597 /* current version of the mpb is a
3598 * better candidate than the one in
3599 * super_table, but copy over "cross
3600 * generational" status
3601 */
3602 struct intel_disk *idisk;
3603
3604 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3605 __func__, super->disks->major,
3606 super->disks->minor,
3607 table[i]->disks->major,
3608 table[i]->disks->minor);
3609
3610 idisk = disk_list_get(tbl_d->serial, *disk_list);
3611 if (idisk && is_failed(&idisk->disk))
3612 tbl_d->status |= FAILED_DISK;
3613 break;
3614 } else {
3615 struct intel_disk *idisk;
3616 struct imsm_disk *disk;
3617
3618 /* tbl_mpb is more up to date, but copy
3619 * over cross generational status before
3620 * returning
3621 */
3622 disk = __serial_to_disk(d->serial, mpb, NULL);
3623 if (disk && is_failed(disk))
3624 d->status |= FAILED_DISK;
3625
3626 idisk = disk_list_get(d->serial, *disk_list);
3627 if (idisk) {
3628 idisk->owner = i;
3629 if (disk && is_configured(disk))
3630 idisk->disk.status |= CONFIGURED_DISK;
3631 }
3632
3633 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3634 __func__, super->disks->major,
3635 super->disks->minor,
3636 table[i]->disks->major,
3637 table[i]->disks->minor);
3638
3639 return tbl_size;
3640 }
3641 }
3642 }
3643
3644 if (i >= tbl_size)
3645 table[tbl_size++] = super;
3646 else
3647 table[i] = super;
3648
3649 /* update/extend the merged list of imsm_disk records */
3650 for (j = 0; j < mpb->num_disks; j++) {
3651 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3652 struct intel_disk *idisk;
3653
3654 idisk = disk_list_get(disk->serial, *disk_list);
3655 if (idisk) {
3656 idisk->disk.status |= disk->status;
3657 if (is_configured(&idisk->disk) ||
3658 is_failed(&idisk->disk))
3659 idisk->disk.status &= ~(SPARE_DISK);
3660 } else {
3661 idisk = calloc(1, sizeof(*idisk));
3662 if (!idisk)
3663 return -1;
3664 idisk->owner = IMSM_UNKNOWN_OWNER;
3665 idisk->disk = *disk;
3666 idisk->next = *disk_list;
3667 *disk_list = idisk;
3668 }
3669
3670 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3671 idisk->owner = i;
3672 }
3673
3674 return tbl_size;
3675}
3676
3677static struct intel_super *
3678validate_members(struct intel_super *super, struct intel_disk *disk_list,
3679 const int owner)
3680{
3681 struct imsm_super *mpb = super->anchor;
3682 int ok_count = 0;
3683 int i;
3684
3685 for (i = 0; i < mpb->num_disks; i++) {
3686 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3687 struct intel_disk *idisk;
3688
3689 idisk = disk_list_get(disk->serial, disk_list);
3690 if (idisk) {
3691 if (idisk->owner == owner ||
3692 idisk->owner == IMSM_UNKNOWN_OWNER)
3693 ok_count++;
3694 else
3695 dprintf("%s: '%.16s' owner %d != %d\n",
3696 __func__, disk->serial, idisk->owner,
3697 owner);
3698 } else {
3699 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3700 __func__, __le32_to_cpu(mpb->family_num), i,
3701 disk->serial);
3702 break;
3703 }
3704 }
3705
3706 if (ok_count == mpb->num_disks)
3707 return super;
3708 return NULL;
3709}
3710
3711static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3712{
3713 struct intel_super *s;
3714
3715 for (s = super_list; s; s = s->next) {
3716 if (family_num != s->anchor->family_num)
3717 continue;
3718 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3719 __le32_to_cpu(family_num), s->disks->devname);
3720 }
3721}
3722
3723static struct intel_super *
3724imsm_thunderdome(struct intel_super **super_list, int len)
3725{
3726 struct intel_super *super_table[len];
3727 struct intel_disk *disk_list = NULL;
3728 struct intel_super *champion, *spare;
3729 struct intel_super *s, **del;
3730 int tbl_size = 0;
3731 int conflict;
3732 int i;
3733
3734 memset(super_table, 0, sizeof(super_table));
3735 for (s = *super_list; s; s = s->next)
3736 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3737
3738 for (i = 0; i < tbl_size; i++) {
3739 struct imsm_disk *d;
3740 struct intel_disk *idisk;
3741 struct imsm_super *mpb = super_table[i]->anchor;
3742
3743 s = super_table[i];
3744 d = &s->disks->disk;
3745
3746 /* 'd' must appear in merged disk list for its
3747 * configuration to be valid
3748 */
3749 idisk = disk_list_get(d->serial, disk_list);
3750 if (idisk && idisk->owner == i)
3751 s = validate_members(s, disk_list, i);
3752 else
3753 s = NULL;
3754
3755 if (!s)
3756 dprintf("%s: marking family: %#x from %d:%d offline\n",
3757 __func__, mpb->family_num,
3758 super_table[i]->disks->major,
3759 super_table[i]->disks->minor);
3760 super_table[i] = s;
3761 }
3762
3763 /* This is where the mdadm implementation differs from the Windows
3764 * driver which has no strict concept of a container. We can only
3765 * assemble one family from a container, so when returning a prodigal
3766 * array member to this system the code will not be able to disambiguate
3767 * the container contents that should be assembled ("foreign" versus
3768 * "local"). It requires user intervention to set the orig_family_num
3769 * to a new value to establish a new container. The Windows driver in
3770 * this situation fixes up the volume name in place and manages the
3771 * foreign array as an independent entity.
3772 */
3773 s = NULL;
3774 spare = NULL;
3775 conflict = 0;
3776 for (i = 0; i < tbl_size; i++) {
3777 struct intel_super *tbl_ent = super_table[i];
3778 int is_spare = 0;
3779
3780 if (!tbl_ent)
3781 continue;
3782
3783 if (tbl_ent->anchor->num_raid_devs == 0) {
3784 spare = tbl_ent;
3785 is_spare = 1;
3786 }
3787
3788 if (s && !is_spare) {
3789 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3790 conflict++;
3791 } else if (!s && !is_spare)
3792 s = tbl_ent;
3793 }
3794
3795 if (!s)
3796 s = spare;
3797 if (!s) {
3798 champion = NULL;
3799 goto out;
3800 }
3801 champion = s;
3802
3803 if (conflict)
3804 fprintf(stderr, "Chose family %#x on '%s', "
3805 "assemble conflicts to new container with '--update=uuid'\n",
3806 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3807
3808 /* collect all dl's onto 'champion', and update them to
3809 * champion's version of the status
3810 */
3811 for (s = *super_list; s; s = s->next) {
3812 struct imsm_super *mpb = champion->anchor;
3813 struct dl *dl = s->disks;
3814
3815 if (s == champion)
3816 continue;
3817
3818 for (i = 0; i < mpb->num_disks; i++) {
3819 struct imsm_disk *disk;
3820
3821 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3822 if (disk) {
3823 dl->disk = *disk;
3824 /* only set index on disks that are a member of
3825 * a populated contianer, i.e. one with
3826 * raid_devs
3827 */
3828 if (is_failed(&dl->disk))
3829 dl->index = -2;
3830 else if (is_spare(&dl->disk))
3831 dl->index = -1;
3832 break;
3833 }
3834 }
3835
3836 if (i >= mpb->num_disks) {
3837 struct intel_disk *idisk;
3838
3839 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3840 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3841 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3842 dl->index = -1;
3843 else {
3844 dl->index = -2;
3845 continue;
3846 }
3847 }
3848
3849 dl->next = champion->disks;
3850 champion->disks = dl;
3851 s->disks = NULL;
3852 }
3853
3854 /* delete 'champion' from super_list */
3855 for (del = super_list; *del; ) {
3856 if (*del == champion) {
3857 *del = (*del)->next;
3858 break;
3859 } else
3860 del = &(*del)->next;
3861 }
3862 champion->next = NULL;
3863
3864 out:
3865 while (disk_list) {
3866 struct intel_disk *idisk = disk_list;
3867
3868 disk_list = disk_list->next;
3869 free(idisk);
3870 }
3871
3872 return champion;
3873}
3874
cdddbdbc 3875static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3876 char *devname)
cdddbdbc
DW
3877{
3878 struct mdinfo *sra;
a2b97981
DW
3879 struct intel_super *super_list = NULL;
3880 struct intel_super *super = NULL;
db575f3b 3881 int devnum = fd2devnum(fd);
a2b97981 3882 struct mdinfo *sd;
db575f3b 3883 int retry;
a2b97981
DW
3884 int err = 0;
3885 int i;
dab4a513
DW
3886
3887 /* check if 'fd' an opened container */
b526e52d 3888 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3889 if (!sra)
3890 return 1;
3891
3892 if (sra->array.major_version != -1 ||
3893 sra->array.minor_version != -2 ||
1602d52c
AW
3894 strcmp(sra->text_version, "imsm") != 0) {
3895 err = 1;
3896 goto error;
3897 }
a2b97981
DW
3898 /* load all mpbs */
3899 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3900 struct intel_super *s = alloc_super();
7a6ecd55 3901 char nm[32];
a2b97981 3902 int dfd;
f2f5c343 3903 int rv;
a2b97981
DW
3904
3905 err = 1;
3906 if (!s)
3907 goto error;
3908 s->next = super_list;
3909 super_list = s;
cdddbdbc 3910
a2b97981 3911 err = 2;
cdddbdbc 3912 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3913 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3914 if (dfd < 0)
3915 goto error;
3916
d424212e 3917 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3918 /* no orom/efi or non-intel hba of the disk */
3919 if (rv != 0)
3920 goto error;
3921
e1902a7b 3922 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3923
3924 /* retry the load if we might have raced against mdmon */
a2b97981 3925 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3926 for (retry = 0; retry < 3; retry++) {
3927 usleep(3000);
e1902a7b 3928 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3929 if (err != 3)
db575f3b
DW
3930 break;
3931 }
a2b97981
DW
3932 if (err)
3933 goto error;
cdddbdbc
DW
3934 }
3935
a2b97981
DW
3936 /* all mpbs enter, maybe one leaves */
3937 super = imsm_thunderdome(&super_list, i);
3938 if (!super) {
3939 err = 1;
3940 goto error;
cdddbdbc
DW
3941 }
3942
47ee5a45
DW
3943 if (find_missing(super) != 0) {
3944 free_imsm(super);
a2b97981
DW
3945 err = 2;
3946 goto error;
47ee5a45 3947 }
8e59f3d8
AK
3948
3949 /* load migration record */
3950 err = load_imsm_migr_rec(super, NULL);
3951 if (err) {
3952 err = 4;
3953 goto error;
3954 }
e2f41b2c
AK
3955
3956 /* Check migration compatibility */
3957 if (check_mpb_migr_compatibility(super) != 0) {
3958 fprintf(stderr, Name ": Unsupported migration detected");
3959 if (devname)
3960 fprintf(stderr, " on %s\n", devname);
3961 else
3962 fprintf(stderr, " (IMSM).\n");
3963
3964 err = 5;
3965 goto error;
3966 }
3967
a2b97981
DW
3968 err = 0;
3969
3970 error:
3971 while (super_list) {
3972 struct intel_super *s = super_list;
3973
3974 super_list = super_list->next;
3975 free_imsm(s);
3976 }
1602d52c 3977 sysfs_free(sra);
a2b97981
DW
3978
3979 if (err)
3980 return err;
f7e7067b 3981
cdddbdbc 3982 *sbp = super;
db575f3b 3983 st->container_dev = devnum;
a2b97981 3984 if (err == 0 && st->ss == NULL) {
bf5a934a 3985 st->ss = &super_imsm;
cdddbdbc
DW
3986 st->minor_version = 0;
3987 st->max_devs = IMSM_MAX_DEVICES;
3988 }
cdddbdbc
DW
3989 return 0;
3990}
2b959fbf
N
3991
3992static int load_container_imsm(struct supertype *st, int fd, char *devname)
3993{
3994 return load_super_imsm_all(st, fd, &st->sb, devname);
3995}
cdddbdbc
DW
3996#endif
3997
3998static int load_super_imsm(struct supertype *st, int fd, char *devname)
3999{
4000 struct intel_super *super;
4001 int rv;
4002
691c6ee1
N
4003 if (test_partition(fd))
4004 /* IMSM not allowed on partitions */
4005 return 1;
4006
37424f13
DW
4007 free_super_imsm(st);
4008
49133e57 4009 super = alloc_super();
cdddbdbc
DW
4010 if (!super) {
4011 fprintf(stderr,
4012 Name ": malloc of %zu failed.\n",
4013 sizeof(*super));
4014 return 1;
4015 }
ea2bc72b
LM
4016 /* Load hba and capabilities if they exist.
4017 * But do not preclude loading metadata in case capabilities or hba are
4018 * non-compliant and ignore_hw_compat is set.
4019 */
d424212e 4020 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4021 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4022 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
4023 if (devname)
4024 fprintf(stderr,
4025 Name ": No OROM/EFI properties for %s\n", devname);
4026 free_imsm(super);
4027 return 2;
4028 }
a2b97981 4029 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
4030
4031 if (rv) {
4032 if (devname)
4033 fprintf(stderr,
4034 Name ": Failed to load all information "
4035 "sections on %s\n", devname);
4036 free_imsm(super);
4037 return rv;
4038 }
4039
4040 st->sb = super;
4041 if (st->ss == NULL) {
4042 st->ss = &super_imsm;
4043 st->minor_version = 0;
4044 st->max_devs = IMSM_MAX_DEVICES;
4045 }
8e59f3d8
AK
4046
4047 /* load migration record */
2e062e82
AK
4048 if (load_imsm_migr_rec(super, NULL) == 0) {
4049 /* Check for unsupported migration features */
4050 if (check_mpb_migr_compatibility(super) != 0) {
4051 fprintf(stderr,
4052 Name ": Unsupported migration detected");
4053 if (devname)
4054 fprintf(stderr, " on %s\n", devname);
4055 else
4056 fprintf(stderr, " (IMSM).\n");
4057 return 3;
4058 }
e2f41b2c
AK
4059 }
4060
cdddbdbc
DW
4061 return 0;
4062}
4063
ef6ffade
DW
4064static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4065{
4066 if (info->level == 1)
4067 return 128;
4068 return info->chunk_size >> 9;
4069}
4070
ff596308 4071static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
4072{
4073 __u32 num_stripes;
4074
4075 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 4076 num_stripes /= num_domains;
ef6ffade
DW
4077
4078 return num_stripes;
4079}
4080
fcfd9599
DW
4081static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4082{
4025c288
DW
4083 if (info->level == 1)
4084 return info->size * 2;
4085 else
4086 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4087}
4088
4d1313e9
DW
4089static void imsm_update_version_info(struct intel_super *super)
4090{
4091 /* update the version and attributes */
4092 struct imsm_super *mpb = super->anchor;
4093 char *version;
4094 struct imsm_dev *dev;
4095 struct imsm_map *map;
4096 int i;
4097
4098 for (i = 0; i < mpb->num_raid_devs; i++) {
4099 dev = get_imsm_dev(super, i);
4100 map = get_imsm_map(dev, 0);
4101 if (__le32_to_cpu(dev->size_high) > 0)
4102 mpb->attributes |= MPB_ATTRIB_2TB;
4103
4104 /* FIXME detect when an array spans a port multiplier */
4105 #if 0
4106 mpb->attributes |= MPB_ATTRIB_PM;
4107 #endif
4108
4109 if (mpb->num_raid_devs > 1 ||
4110 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4111 version = MPB_VERSION_ATTRIBS;
4112 switch (get_imsm_raid_level(map)) {
4113 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4114 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4115 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4116 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4117 }
4118 } else {
4119 if (map->num_members >= 5)
4120 version = MPB_VERSION_5OR6_DISK_ARRAY;
4121 else if (dev->status == DEV_CLONE_N_GO)
4122 version = MPB_VERSION_CNG;
4123 else if (get_imsm_raid_level(map) == 5)
4124 version = MPB_VERSION_RAID5;
4125 else if (map->num_members >= 3)
4126 version = MPB_VERSION_3OR4_DISK_ARRAY;
4127 else if (get_imsm_raid_level(map) == 1)
4128 version = MPB_VERSION_RAID1;
4129 else
4130 version = MPB_VERSION_RAID0;
4131 }
4132 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4133 }
4134}
4135
aa534678
DW
4136static int check_name(struct intel_super *super, char *name, int quiet)
4137{
4138 struct imsm_super *mpb = super->anchor;
4139 char *reason = NULL;
4140 int i;
4141
4142 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4143 reason = "must be 16 characters or less";
4144
4145 for (i = 0; i < mpb->num_raid_devs; i++) {
4146 struct imsm_dev *dev = get_imsm_dev(super, i);
4147
4148 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4149 reason = "already exists";
4150 break;
4151 }
4152 }
4153
4154 if (reason && !quiet)
4155 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4156
4157 return !reason;
4158}
4159
8b353278
DW
4160static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4161 unsigned long long size, char *name,
4162 char *homehost, int *uuid)
cdddbdbc 4163{
c2c087e6
DW
4164 /* We are creating a volume inside a pre-existing container.
4165 * so st->sb is already set.
4166 */
4167 struct intel_super *super = st->sb;
949c47a0 4168 struct imsm_super *mpb = super->anchor;
ba2de7ba 4169 struct intel_dev *dv;
c2c087e6
DW
4170 struct imsm_dev *dev;
4171 struct imsm_vol *vol;
4172 struct imsm_map *map;
4173 int idx = mpb->num_raid_devs;
4174 int i;
4175 unsigned long long array_blocks;
2c092cad 4176 size_t size_old, size_new;
ff596308 4177 __u32 num_data_stripes;
cdddbdbc 4178
88c32bb1 4179 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 4180 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 4181 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4182 return 0;
4183 }
4184
2c092cad
DW
4185 /* ensure the mpb is large enough for the new data */
4186 size_old = __le32_to_cpu(mpb->mpb_size);
4187 size_new = disks_to_mpb_size(info->nr_disks);
4188 if (size_new > size_old) {
4189 void *mpb_new;
4190 size_t size_round = ROUND_UP(size_new, 512);
4191
4192 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4193 fprintf(stderr, Name": could not allocate new mpb\n");
4194 return 0;
4195 }
8e59f3d8
AK
4196 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4197 fprintf(stderr, Name
4198 ": %s could not allocate migr_rec buffer\n",
4199 __func__);
4200 free(super->buf);
4201 free(super);
4202 return 0;
4203 }
2c092cad
DW
4204 memcpy(mpb_new, mpb, size_old);
4205 free(mpb);
4206 mpb = mpb_new;
949c47a0 4207 super->anchor = mpb_new;
2c092cad
DW
4208 mpb->mpb_size = __cpu_to_le32(size_new);
4209 memset(mpb_new + size_old, 0, size_round - size_old);
4210 }
bf5a934a 4211 super->current_vol = idx;
3960e579
DW
4212
4213 /* handle 'failed_disks' by either:
4214 * a) create dummy disk entries in the table if this the first
4215 * volume in the array. We add them here as this is the only
4216 * opportunity to add them. add_to_super_imsm_volume()
4217 * handles the non-failed disks and continues incrementing
4218 * mpb->num_disks.
4219 * b) validate that 'failed_disks' matches the current number
4220 * of missing disks if the container is populated
d23fe947 4221 */
3960e579 4222 if (super->current_vol == 0) {
d23fe947 4223 mpb->num_disks = 0;
3960e579
DW
4224 for (i = 0; i < info->failed_disks; i++) {
4225 struct imsm_disk *disk;
4226
4227 mpb->num_disks++;
4228 disk = __get_imsm_disk(mpb, i);
4229 disk->status = CONFIGURED_DISK | FAILED_DISK;
4230 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4231 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4232 "missing:%d", i);
4233 }
4234 find_missing(super);
4235 } else {
4236 int missing = 0;
4237 struct dl *d;
4238
4239 for (d = super->missing; d; d = d->next)
4240 missing++;
4241 if (info->failed_disks > missing) {
4242 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4243 return 0;
4244 }
4245 }
5a038140 4246
aa534678
DW
4247 if (!check_name(super, name, 0))
4248 return 0;
ba2de7ba
DW
4249 dv = malloc(sizeof(*dv));
4250 if (!dv) {
4251 fprintf(stderr, Name ": failed to allocate device list entry\n");
4252 return 0;
4253 }
1a2487c2 4254 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4255 if (!dev) {
ba2de7ba 4256 free(dv);
949c47a0
DW
4257 fprintf(stderr, Name": could not allocate raid device\n");
4258 return 0;
4259 }
1a2487c2 4260
c2c087e6 4261 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4262 if (info->level == 1)
4263 array_blocks = info_to_blocks_per_member(info);
4264 else
4265 array_blocks = calc_array_size(info->level, info->raid_disks,
4266 info->layout, info->chunk_size,
4267 info->size*2);
979d38be
DW
4268 /* round array size down to closest MB */
4269 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4270
c2c087e6
DW
4271 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4272 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4273 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4274 vol = &dev->vol;
4275 vol->migr_state = 0;
1484e727 4276 set_migr_type(dev, MIGR_INIT);
3960e579 4277 vol->dirty = !info->state;
f8f603f1 4278 vol->curr_migr_unit = 0;
a965f303 4279 map = get_imsm_map(dev, 0);
0dcecb2e 4280 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4281 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4282 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4283 map->failed_disk_num = ~0;
3960e579 4284 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
252d23c0 4285 map->ddf = 1;
ef6ffade
DW
4286
4287 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4288 free(dev);
4289 free(dv);
ef6ffade
DW
4290 fprintf(stderr, Name": imsm does not support more than 2 disks"
4291 "in a raid1 volume\n");
4292 return 0;
4293 }
81062a36
DW
4294
4295 map->raid_level = info->level;
4d1313e9 4296 if (info->level == 10) {
c2c087e6 4297 map->raid_level = 1;
4d1313e9 4298 map->num_domains = info->raid_disks / 2;
81062a36
DW
4299 } else if (info->level == 1)
4300 map->num_domains = info->raid_disks;
4301 else
ff596308 4302 map->num_domains = 1;
81062a36 4303
ff596308
DW
4304 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4305 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4306
c2c087e6
DW
4307 map->num_members = info->raid_disks;
4308 for (i = 0; i < map->num_members; i++) {
4309 /* initialized in add_to_super */
4eb26970 4310 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4311 }
949c47a0 4312 mpb->num_raid_devs++;
ba2de7ba
DW
4313
4314 dv->dev = dev;
4315 dv->index = super->current_vol;
4316 dv->next = super->devlist;
4317 super->devlist = dv;
c2c087e6 4318
4d1313e9
DW
4319 imsm_update_version_info(super);
4320
c2c087e6 4321 return 1;
cdddbdbc
DW
4322}
4323
bf5a934a
DW
4324static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4325 unsigned long long size, char *name,
4326 char *homehost, int *uuid)
4327{
4328 /* This is primarily called by Create when creating a new array.
4329 * We will then get add_to_super called for each component, and then
4330 * write_init_super called to write it out to each device.
4331 * For IMSM, Create can create on fresh devices or on a pre-existing
4332 * array.
4333 * To create on a pre-existing array a different method will be called.
4334 * This one is just for fresh drives.
4335 */
4336 struct intel_super *super;
4337 struct imsm_super *mpb;
4338 size_t mpb_size;
4d1313e9 4339 char *version;
bf5a934a 4340
bf5a934a 4341 if (st->sb)
e683ca88
DW
4342 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4343
4344 if (info)
4345 mpb_size = disks_to_mpb_size(info->nr_disks);
4346 else
4347 mpb_size = 512;
bf5a934a 4348
49133e57 4349 super = alloc_super();
e683ca88 4350 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4351 free(super);
e683ca88
DW
4352 super = NULL;
4353 }
4354 if (!super) {
4355 fprintf(stderr, Name
4356 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4357 return 0;
4358 }
8e59f3d8
AK
4359 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4360 fprintf(stderr, Name
4361 ": %s could not allocate migr_rec buffer\n", __func__);
4362 free(super->buf);
4363 free(super);
4364 return 0;
4365 }
e683ca88 4366 memset(super->buf, 0, mpb_size);
ef649044 4367 mpb = super->buf;
e683ca88
DW
4368 mpb->mpb_size = __cpu_to_le32(mpb_size);
4369 st->sb = super;
4370
4371 if (info == NULL) {
4372 /* zeroing superblock */
4373 return 0;
4374 }
bf5a934a 4375
4d1313e9
DW
4376 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4377
4378 version = (char *) mpb->sig;
4379 strcpy(version, MPB_SIGNATURE);
4380 version += strlen(MPB_SIGNATURE);
4381 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4382
bf5a934a
DW
4383 return 1;
4384}
4385
0e600426 4386#ifndef MDASSEMBLE
f20c3968 4387static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4388 int fd, char *devname)
4389{
4390 struct intel_super *super = st->sb;
d23fe947 4391 struct imsm_super *mpb = super->anchor;
3960e579 4392 struct imsm_disk *_disk;
bf5a934a
DW
4393 struct imsm_dev *dev;
4394 struct imsm_map *map;
3960e579 4395 struct dl *dl, *df;
4eb26970 4396 int slot;
bf5a934a 4397
949c47a0 4398 dev = get_imsm_dev(super, super->current_vol);
a965f303 4399 map = get_imsm_map(dev, 0);
bf5a934a 4400
208933a7
N
4401 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4402 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4403 devname);
4404 return 1;
4405 }
4406
efb30e7f
DW
4407 if (fd == -1) {
4408 /* we're doing autolayout so grab the pre-marked (in
4409 * validate_geometry) raid_disk
4410 */
4411 for (dl = super->disks; dl; dl = dl->next)
4412 if (dl->raiddisk == dk->raid_disk)
4413 break;
4414 } else {
4415 for (dl = super->disks; dl ; dl = dl->next)
4416 if (dl->major == dk->major &&
4417 dl->minor == dk->minor)
4418 break;
4419 }
d23fe947 4420
208933a7
N
4421 if (!dl) {
4422 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4423 return 1;
208933a7 4424 }
bf5a934a 4425
d23fe947
DW
4426 /* add a pristine spare to the metadata */
4427 if (dl->index < 0) {
4428 dl->index = super->anchor->num_disks;
4429 super->anchor->num_disks++;
4430 }
4eb26970
DW
4431 /* Check the device has not already been added */
4432 slot = get_imsm_disk_slot(map, dl->index);
4433 if (slot >= 0 &&
98130f40 4434 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4435 fprintf(stderr, Name ": %s has been included in this array twice\n",
4436 devname);
4437 return 1;
4438 }
656b6b5a 4439 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 4440 dl->disk.status = CONFIGURED_DISK;
d23fe947 4441
3960e579
DW
4442 /* update size of 'missing' disks to be at least as large as the
4443 * largest acitve member (we only have dummy missing disks when
4444 * creating the first volume)
4445 */
4446 if (super->current_vol == 0) {
4447 for (df = super->missing; df; df = df->next) {
4448 if (dl->disk.total_blocks > df->disk.total_blocks)
4449 df->disk.total_blocks = dl->disk.total_blocks;
4450 _disk = __get_imsm_disk(mpb, df->index);
4451 *_disk = df->disk;
4452 }
4453 }
4454
4455 /* refresh unset/failed slots to point to valid 'missing' entries */
4456 for (df = super->missing; df; df = df->next)
4457 for (slot = 0; slot < mpb->num_disks; slot++) {
4458 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4459
4460 if ((ord & IMSM_ORD_REBUILD) == 0)
4461 continue;
4462 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4463 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4464 break;
4465 }
4466
d23fe947
DW
4467 /* if we are creating the first raid device update the family number */
4468 if (super->current_vol == 0) {
4469 __u32 sum;
4470 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 4471
3960e579 4472 _disk = __get_imsm_disk(mpb, dl->index);
791b666a
AW
4473 if (!_dev || !_disk) {
4474 fprintf(stderr, Name ": BUG mpb setup error\n");
4475 return 1;
4476 }
d23fe947
DW
4477 *_dev = *dev;
4478 *_disk = dl->disk;
148acb7b
DW
4479 sum = random32();
4480 sum += __gen_imsm_checksum(mpb);
d23fe947 4481 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4482 mpb->orig_family_num = mpb->family_num;
d23fe947 4483 }
ca0748fa 4484 super->current_disk = dl;
f20c3968 4485 return 0;
bf5a934a
DW
4486}
4487
a8619d23
AK
4488/* mark_spare()
4489 * Function marks disk as spare and restores disk serial
4490 * in case it was previously marked as failed by takeover operation
4491 * reruns:
4492 * -1 : critical error
4493 * 0 : disk is marked as spare but serial is not set
4494 * 1 : success
4495 */
4496int mark_spare(struct dl *disk)
4497{
4498 __u8 serial[MAX_RAID_SERIAL_LEN];
4499 int ret_val = -1;
4500
4501 if (!disk)
4502 return ret_val;
4503
4504 ret_val = 0;
4505 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4506 /* Restore disk serial number, because takeover marks disk
4507 * as failed and adds to serial ':0' before it becomes
4508 * a spare disk.
4509 */
4510 serialcpy(disk->serial, serial);
4511 serialcpy(disk->disk.serial, serial);
4512 ret_val = 1;
4513 }
4514 disk->disk.status = SPARE_DISK;
4515 disk->index = -1;
4516
4517 return ret_val;
4518}
88654014 4519
f20c3968 4520static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4521 int fd, char *devname)
cdddbdbc 4522{
c2c087e6 4523 struct intel_super *super = st->sb;
c2c087e6
DW
4524 struct dl *dd;
4525 unsigned long long size;
f2f27e63 4526 __u32 id;
c2c087e6
DW
4527 int rv;
4528 struct stat stb;
4529
88654014
LM
4530 /* If we are on an RAID enabled platform check that the disk is
4531 * attached to the raid controller.
4532 * We do not need to test disks attachment for container based additions,
4533 * they shall be already tested when container was created/assembled.
88c32bb1 4534 */
d424212e 4535 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4536 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4537 if (rv != 0) {
4538 dprintf("capability: %p fd: %d ret: %d\n",
4539 super->orom, fd, rv);
4540 return 1;
88c32bb1
DW
4541 }
4542
f20c3968
DW
4543 if (super->current_vol >= 0)
4544 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4545
c2c087e6
DW
4546 fstat(fd, &stb);
4547 dd = malloc(sizeof(*dd));
b9f594fe 4548 if (!dd) {
c2c087e6
DW
4549 fprintf(stderr,
4550 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4551 return 1;
c2c087e6
DW
4552 }
4553 memset(dd, 0, sizeof(*dd));
4554 dd->major = major(stb.st_rdev);
4555 dd->minor = minor(stb.st_rdev);
c2c087e6 4556 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4557 dd->fd = fd;
689c9bf3 4558 dd->e = NULL;
1a64be56 4559 dd->action = DISK_ADD;
c2c087e6 4560 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4561 if (rv) {
c2c087e6 4562 fprintf(stderr,
0030e8d6 4563 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4564 free(dd);
0030e8d6 4565 abort();
c2c087e6
DW
4566 }
4567
c2c087e6
DW
4568 get_dev_size(fd, NULL, &size);
4569 size /= 512;
1f24f035 4570 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4571 dd->disk.total_blocks = __cpu_to_le32(size);
a8619d23 4572 mark_spare(dd);
c2c087e6 4573 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4574 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4575 else
b9f594fe 4576 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4577
4578 if (st->update_tail) {
1a64be56
LM
4579 dd->next = super->disk_mgmt_list;
4580 super->disk_mgmt_list = dd;
43dad3d6
DW
4581 } else {
4582 dd->next = super->disks;
4583 super->disks = dd;
ceaf0ee1 4584 super->updates_pending++;
43dad3d6 4585 }
f20c3968
DW
4586
4587 return 0;
cdddbdbc
DW
4588}
4589
1a64be56
LM
4590
4591static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4592{
4593 struct intel_super *super = st->sb;
4594 struct dl *dd;
4595
4596 /* remove from super works only in mdmon - for communication
4597 * manager - monitor. Check if communication memory buffer
4598 * is prepared.
4599 */
4600 if (!st->update_tail) {
4601 fprintf(stderr,
4602 Name ": %s shall be used in mdmon context only"
4603 "(line %d).\n", __func__, __LINE__);
4604 return 1;
4605 }
4606 dd = malloc(sizeof(*dd));
4607 if (!dd) {
4608 fprintf(stderr,
4609 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4610 return 1;
4611 }
4612 memset(dd, 0, sizeof(*dd));
4613 dd->major = dk->major;
4614 dd->minor = dk->minor;
1a64be56 4615 dd->fd = -1;
a8619d23 4616 mark_spare(dd);
1a64be56
LM
4617 dd->action = DISK_REMOVE;
4618
4619 dd->next = super->disk_mgmt_list;
4620 super->disk_mgmt_list = dd;
4621
4622
4623 return 0;
4624}
4625
f796af5d
DW
4626static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4627
4628static union {
4629 char buf[512];
4630 struct imsm_super anchor;
4631} spare_record __attribute__ ((aligned(512)));
c2c087e6 4632
d23fe947
DW
4633/* spare records have their own family number and do not have any defined raid
4634 * devices
4635 */
4636static int write_super_imsm_spares(struct intel_super *super, int doclose)
4637{
d23fe947 4638 struct imsm_super *mpb = super->anchor;
f796af5d 4639 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4640 __u32 sum;
4641 struct dl *d;
4642
f796af5d
DW
4643 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4644 spare->generation_num = __cpu_to_le32(1UL),
4645 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4646 spare->num_disks = 1,
4647 spare->num_raid_devs = 0,
4648 spare->cache_size = mpb->cache_size,
4649 spare->pwr_cycle_count = __cpu_to_le32(1),
4650
4651 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4652 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4653
4654 for (d = super->disks; d; d = d->next) {
8796fdc4 4655 if (d->index != -1)
d23fe947
DW
4656 continue;
4657
f796af5d
DW
4658 spare->disk[0] = d->disk;
4659 sum = __gen_imsm_checksum(spare);
4660 spare->family_num = __cpu_to_le32(sum);
4661 spare->orig_family_num = 0;
4662 sum = __gen_imsm_checksum(spare);
4663 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4664
f796af5d 4665 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4666 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4667 __func__, d->major, d->minor, strerror(errno));
e74255d9 4668 return 1;
d23fe947
DW
4669 }
4670 if (doclose) {
4671 close(d->fd);
4672 d->fd = -1;
4673 }
4674 }
4675
e74255d9 4676 return 0;
d23fe947
DW
4677}
4678
36988a3d 4679static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4680{
36988a3d 4681 struct intel_super *super = st->sb;
949c47a0 4682 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4683 struct dl *d;
4684 __u32 generation;
4685 __u32 sum;
d23fe947 4686 int spares = 0;
949c47a0 4687 int i;
a48ac0a8 4688 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4689 int num_disks = 0;
146c6260 4690 int clear_migration_record = 1;
cdddbdbc 4691
c2c087e6
DW
4692 /* 'generation' is incremented everytime the metadata is written */
4693 generation = __le32_to_cpu(mpb->generation_num);
4694 generation++;
4695 mpb->generation_num = __cpu_to_le32(generation);
4696
148acb7b
DW
4697 /* fix up cases where previous mdadm releases failed to set
4698 * orig_family_num
4699 */
4700 if (mpb->orig_family_num == 0)
4701 mpb->orig_family_num = mpb->family_num;
4702
d23fe947 4703 for (d = super->disks; d; d = d->next) {
8796fdc4 4704 if (d->index == -1)
d23fe947 4705 spares++;
36988a3d 4706 else {
d23fe947 4707 mpb->disk[d->index] = d->disk;
36988a3d
AK
4708 num_disks++;
4709 }
d23fe947 4710 }
36988a3d 4711 for (d = super->missing; d; d = d->next) {
47ee5a45 4712 mpb->disk[d->index] = d->disk;
36988a3d
AK
4713 num_disks++;
4714 }
4715 mpb->num_disks = num_disks;
4716 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4717
949c47a0
DW
4718 for (i = 0; i < mpb->num_raid_devs; i++) {
4719 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4720 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4721 if (dev && dev2) {
4722 imsm_copy_dev(dev, dev2);
4723 mpb_size += sizeof_imsm_dev(dev, 0);
4724 }
146c6260
AK
4725 if (is_gen_migration(dev2))
4726 clear_migration_record = 0;
949c47a0 4727 }
a48ac0a8
DW
4728 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4729 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4730
c2c087e6 4731 /* recalculate checksum */
949c47a0 4732 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4733 mpb->check_sum = __cpu_to_le32(sum);
4734
146c6260
AK
4735 if (clear_migration_record)
4736 memset(super->migr_rec_buf, 0, 512);
4737
d23fe947 4738 /* write the mpb for disks that compose raid devices */
c2c087e6 4739 for (d = super->disks; d ; d = d->next) {
86c54047 4740 if (d->index < 0 || is_failed(&d->disk))
d23fe947 4741 continue;
f796af5d 4742 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4743 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4744 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4745 if (clear_migration_record) {
4746 unsigned long long dsize;
4747
4748 get_dev_size(d->fd, NULL, &dsize);
4749 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
9e2d750d
N
4750 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4751 perror("Write migr_rec failed");
146c6260
AK
4752 }
4753 }
c2c087e6
DW
4754 if (doclose) {
4755 close(d->fd);
4756 d->fd = -1;
4757 }
4758 }
4759
d23fe947
DW
4760 if (spares)
4761 return write_super_imsm_spares(super, doclose);
4762
e74255d9 4763 return 0;
c2c087e6
DW
4764}
4765
0e600426 4766
9b1fb677 4767static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4768{
4769 size_t len;
4770 struct imsm_update_create_array *u;
4771 struct intel_super *super = st->sb;
9b1fb677 4772 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4773 struct imsm_map *map = get_imsm_map(dev, 0);
4774 struct disk_info *inf;
4775 struct imsm_disk *disk;
4776 int i;
43dad3d6 4777
54c2c1ea
DW
4778 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4779 sizeof(*inf) * map->num_members;
43dad3d6
DW
4780 u = malloc(len);
4781 if (!u) {
4782 fprintf(stderr, "%s: failed to allocate update buffer\n",
4783 __func__);
4784 return 1;
4785 }
4786
4787 u->type = update_create_array;
9b1fb677 4788 u->dev_idx = dev_idx;
43dad3d6 4789 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4790 inf = get_disk_info(u);
4791 for (i = 0; i < map->num_members; i++) {
98130f40 4792 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4793
54c2c1ea
DW
4794 disk = get_imsm_disk(super, idx);
4795 serialcpy(inf[i].serial, disk->serial);
4796 }
43dad3d6
DW
4797 append_metadata_update(st, u, len);
4798
4799 return 0;
4800}
4801
1a64be56 4802static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4803{
4804 struct intel_super *super = st->sb;
4805 size_t len;
1a64be56 4806 struct imsm_update_add_remove_disk *u;
43dad3d6 4807
1a64be56 4808 if (!super->disk_mgmt_list)
43dad3d6
DW
4809 return 0;
4810
4811 len = sizeof(*u);
4812 u = malloc(len);
4813 if (!u) {
4814 fprintf(stderr, "%s: failed to allocate update buffer\n",
4815 __func__);
4816 return 1;
4817 }
4818
1a64be56 4819 u->type = update_add_remove_disk;
43dad3d6
DW
4820 append_metadata_update(st, u, len);
4821
4822 return 0;
4823}
4824
c2c087e6
DW
4825static int write_init_super_imsm(struct supertype *st)
4826{
9b1fb677
DW
4827 struct intel_super *super = st->sb;
4828 int current_vol = super->current_vol;
4829
4830 /* we are done with current_vol reset it to point st at the container */
4831 super->current_vol = -1;
4832
8273f55e 4833 if (st->update_tail) {
43dad3d6
DW
4834 /* queue the recently created array / added disk
4835 * as a metadata update */
43dad3d6 4836 int rv;
8273f55e 4837
43dad3d6 4838 /* determine if we are creating a volume or adding a disk */
9b1fb677 4839 if (current_vol < 0) {
1a64be56
LM
4840 /* in the mgmt (add/remove) disk case we are running
4841 * in mdmon context, so don't close fd's
43dad3d6 4842 */
1a64be56 4843 return mgmt_disk(st);
43dad3d6 4844 } else
9b1fb677 4845 rv = create_array(st, current_vol);
8273f55e 4846
43dad3d6 4847 return rv;
d682f344
N
4848 } else {
4849 struct dl *d;
4850 for (d = super->disks; d; d = d->next)
4851 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4852 return write_super_imsm(st, 1);
d682f344 4853 }
cdddbdbc 4854}
0e600426 4855#endif
cdddbdbc 4856
e683ca88 4857static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4858{
e683ca88
DW
4859 struct intel_super *super = st->sb;
4860 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4861
e683ca88 4862 if (!mpb)
ad97895e
DW
4863 return 1;
4864
1799c9e8 4865#ifndef MDASSEMBLE
e683ca88 4866 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4867#else
4868 return 1;
4869#endif
cdddbdbc
DW
4870}
4871
0e600426
N
4872static int imsm_bbm_log_size(struct imsm_super *mpb)
4873{
4874 return __le32_to_cpu(mpb->bbm_log_size);
4875}
4876
4877#ifndef MDASSEMBLE
cdddbdbc
DW
4878static int validate_geometry_imsm_container(struct supertype *st, int level,
4879 int layout, int raiddisks, int chunk,
c2c087e6 4880 unsigned long long size, char *dev,
2c514b71
NB
4881 unsigned long long *freesize,
4882 int verbose)
cdddbdbc 4883{
c2c087e6
DW
4884 int fd;
4885 unsigned long long ldsize;
f2f5c343
LM
4886 struct intel_super *super=NULL;
4887 int rv = 0;
cdddbdbc 4888
c2c087e6
DW
4889 if (level != LEVEL_CONTAINER)
4890 return 0;
4891 if (!dev)
4892 return 1;
4893
4894 fd = open(dev, O_RDONLY|O_EXCL, 0);
4895 if (fd < 0) {
2c514b71
NB
4896 if (verbose)
4897 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4898 dev, strerror(errno));
c2c087e6
DW
4899 return 0;
4900 }
4901 if (!get_dev_size(fd, dev, &ldsize)) {
4902 close(fd);
4903 return 0;
4904 }
f2f5c343
LM
4905
4906 /* capabilities retrieve could be possible
4907 * note that there is no fd for the disks in array.
4908 */
4909 super = alloc_super();
4910 if (!super) {
4911 fprintf(stderr,
4912 Name ": malloc of %zu failed.\n",
4913 sizeof(*super));
4914 close(fd);
4915 return 0;
4916 }
4917
d424212e 4918 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4919 if (rv != 0) {
4920#if DEBUG
4921 char str[256];
4922 fd2devname(fd, str);
4923 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4924 fd, str, super->orom, rv, raiddisks);
4925#endif
4926 /* no orom/efi or non-intel hba of the disk */
4927 close(fd);
4928 free_imsm(super);
4929 return 0;
4930 }
c2c087e6 4931 close(fd);
f2f5c343
LM
4932 if (super->orom && raiddisks > super->orom->tds) {
4933 if (verbose)
4934 fprintf(stderr, Name ": %d exceeds maximum number of"
4935 " platform supported disks: %d\n",
4936 raiddisks, super->orom->tds);
4937
4938 free_imsm(super);
4939 return 0;
4940 }
c2c087e6
DW
4941
4942 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 4943 free_imsm(super);
c2c087e6
DW
4944
4945 return 1;
cdddbdbc
DW
4946}
4947
0dcecb2e
DW
4948static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4949{
4950 const unsigned long long base_start = e[*idx].start;
4951 unsigned long long end = base_start + e[*idx].size;
4952 int i;
4953
4954 if (base_start == end)
4955 return 0;
4956
4957 *idx = *idx + 1;
4958 for (i = *idx; i < num_extents; i++) {
4959 /* extend overlapping extents */
4960 if (e[i].start >= base_start &&
4961 e[i].start <= end) {
4962 if (e[i].size == 0)
4963 return 0;
4964 if (e[i].start + e[i].size > end)
4965 end = e[i].start + e[i].size;
4966 } else if (e[i].start > end) {
4967 *idx = i;
4968 break;
4969 }
4970 }
4971
4972 return end - base_start;
4973}
4974
4975static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4976{
4977 /* build a composite disk with all known extents and generate a new
4978 * 'maxsize' given the "all disks in an array must share a common start
4979 * offset" constraint
4980 */
4981 struct extent *e = calloc(sum_extents, sizeof(*e));
4982 struct dl *dl;
4983 int i, j;
4984 int start_extent;
4985 unsigned long long pos;
b9d77223 4986 unsigned long long start = 0;
0dcecb2e
DW
4987 unsigned long long maxsize;
4988 unsigned long reserve;
4989
4990 if (!e)
a7dd165b 4991 return 0;
0dcecb2e
DW
4992
4993 /* coalesce and sort all extents. also, check to see if we need to
4994 * reserve space between member arrays
4995 */
4996 j = 0;
4997 for (dl = super->disks; dl; dl = dl->next) {
4998 if (!dl->e)
4999 continue;
5000 for (i = 0; i < dl->extent_cnt; i++)
5001 e[j++] = dl->e[i];
5002 }
5003 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5004
5005 /* merge extents */
5006 i = 0;
5007 j = 0;
5008 while (i < sum_extents) {
5009 e[j].start = e[i].start;
5010 e[j].size = find_size(e, &i, sum_extents);
5011 j++;
5012 if (e[j-1].size == 0)
5013 break;
5014 }
5015
5016 pos = 0;
5017 maxsize = 0;
5018 start_extent = 0;
5019 i = 0;
5020 do {
5021 unsigned long long esize;
5022
5023 esize = e[i].start - pos;
5024 if (esize >= maxsize) {
5025 maxsize = esize;
5026 start = pos;
5027 start_extent = i;
5028 }
5029 pos = e[i].start + e[i].size;
5030 i++;
5031 } while (e[i-1].size);
5032 free(e);
5033
a7dd165b
DW
5034 if (maxsize == 0)
5035 return 0;
5036
5037 /* FIXME assumes volume at offset 0 is the first volume in a
5038 * container
5039 */
0dcecb2e
DW
5040 if (start_extent > 0)
5041 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5042 else
5043 reserve = 0;
5044
5045 if (maxsize < reserve)
a7dd165b 5046 return 0;
0dcecb2e
DW
5047
5048 super->create_offset = ~((__u32) 0);
5049 if (start + reserve > super->create_offset)
a7dd165b 5050 return 0; /* start overflows create_offset */
0dcecb2e
DW
5051 super->create_offset = start + reserve;
5052
5053 return maxsize - reserve;
5054}
5055
88c32bb1
DW
5056static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5057{
5058 if (level < 0 || level == 6 || level == 4)
5059 return 0;
5060
5061 /* if we have an orom prevent invalid raid levels */
5062 if (orom)
5063 switch (level) {
5064 case 0: return imsm_orom_has_raid0(orom);
5065 case 1:
5066 if (raiddisks > 2)
5067 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5068 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5069 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5070 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5071 }
5072 else
5073 return 1; /* not on an Intel RAID platform so anything goes */
5074
5075 return 0;
5076}
5077
cd9d1ac7
DW
5078static int imsm_default_chunk(const struct imsm_orom *orom)
5079{
5080 /* up to 512 if the plaform supports it, otherwise the platform max.
5081 * 128 if no platform detected
5082 */
5083 int fs = max(7, orom ? fls(orom->sss) : 0);
5084
5085 return min(512, (1 << fs));
5086}
73408129 5087
35f81cbb 5088#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
5089static int
5090validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 5091 int raiddisks, int *chunk, int verbose)
6592ce37 5092{
660260d0
DW
5093 /* check/set platform and metadata limits/defaults */
5094 if (super->orom && raiddisks > super->orom->dpa) {
5095 pr_vrb(": platform supports a maximum of %d disks per array\n",
5096 super->orom->dpa);
73408129
LM
5097 return 0;
5098 }
5099
5100 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 5101 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
5102 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5103 level, raiddisks, raiddisks > 1 ? "s" : "");
5104 return 0;
5105 }
cd9d1ac7
DW
5106
5107 if (chunk && (*chunk == 0 || *chunk == UnSet))
5108 *chunk = imsm_default_chunk(super->orom);
5109
5110 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5111 pr_vrb(": platform does not support a chunk size of: "
5112 "%d\n", *chunk);
5113 return 0;
6592ce37 5114 }
cd9d1ac7 5115
6592ce37
DW
5116 if (layout != imsm_level_to_layout(level)) {
5117 if (level == 5)
5118 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5119 else if (level == 10)
5120 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5121 else
5122 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5123 layout, level);
5124 return 0;
5125 }
6592ce37
DW
5126 return 1;
5127}
5128
c2c087e6
DW
5129/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5130 * FIX ME add ahci details
5131 */
8b353278 5132static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 5133 int layout, int raiddisks, int *chunk,
c2c087e6 5134 unsigned long long size, char *dev,
2c514b71
NB
5135 unsigned long long *freesize,
5136 int verbose)
cdddbdbc 5137{
c2c087e6
DW
5138 struct stat stb;
5139 struct intel_super *super = st->sb;
a20d2ba5 5140 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
5141 struct dl *dl;
5142 unsigned long long pos = 0;
5143 unsigned long long maxsize;
5144 struct extent *e;
5145 int i;
cdddbdbc 5146
88c32bb1
DW
5147 /* We must have the container info already read in. */
5148 if (!super)
c2c087e6
DW
5149 return 0;
5150
e7cb06c8
LO
5151 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5152 fprintf(stderr, Name ": the option-rom requires all "
5153 "member disks to be a member of all volumes.\n");
5154 return 0;
5155 }
5156
d54559f0
LM
5157 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5158 fprintf(stderr, Name ": RAID gemetry validation failed. "
5159 "Cannot proceed with the action(s).\n");
c2c087e6 5160 return 0;
d54559f0 5161 }
c2c087e6
DW
5162 if (!dev) {
5163 /* General test: make sure there is space for
2da8544a
DW
5164 * 'raiddisks' device extents of size 'size' at a given
5165 * offset
c2c087e6 5166 */
e46273eb 5167 unsigned long long minsize = size;
b7528a20 5168 unsigned long long start_offset = MaxSector;
c2c087e6
DW
5169 int dcnt = 0;
5170 if (minsize == 0)
5171 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5172 for (dl = super->disks; dl ; dl = dl->next) {
5173 int found = 0;
5174
bf5a934a 5175 pos = 0;
c2c087e6
DW
5176 i = 0;
5177 e = get_extents(super, dl);
5178 if (!e) continue;
5179 do {
5180 unsigned long long esize;
5181 esize = e[i].start - pos;
5182 if (esize >= minsize)
5183 found = 1;
b7528a20 5184 if (found && start_offset == MaxSector) {
2da8544a
DW
5185 start_offset = pos;
5186 break;
5187 } else if (found && pos != start_offset) {
5188 found = 0;
5189 break;
5190 }
c2c087e6
DW
5191 pos = e[i].start + e[i].size;
5192 i++;
5193 } while (e[i-1].size);
5194 if (found)
5195 dcnt++;
5196 free(e);
5197 }
5198 if (dcnt < raiddisks) {
2c514b71
NB
5199 if (verbose)
5200 fprintf(stderr, Name ": imsm: Not enough "
5201 "devices with space for this array "
5202 "(%d < %d)\n",
5203 dcnt, raiddisks);
c2c087e6
DW
5204 return 0;
5205 }
5206 return 1;
5207 }
0dcecb2e 5208
c2c087e6
DW
5209 /* This device must be a member of the set */
5210 if (stat(dev, &stb) < 0)
5211 return 0;
5212 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5213 return 0;
5214 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5215 if (dl->major == (int)major(stb.st_rdev) &&
5216 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5217 break;
5218 }
5219 if (!dl) {
2c514b71
NB
5220 if (verbose)
5221 fprintf(stderr, Name ": %s is not in the "
5222 "same imsm set\n", dev);
c2c087e6 5223 return 0;
a20d2ba5
DW
5224 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5225 /* If a volume is present then the current creation attempt
5226 * cannot incorporate new spares because the orom may not
5227 * understand this configuration (all member disks must be
5228 * members of each array in the container).
5229 */
5230 fprintf(stderr, Name ": %s is a spare and a volume"
5231 " is already defined for this container\n", dev);
5232 fprintf(stderr, Name ": The option-rom requires all member"
5233 " disks to be a member of all volumes\n");
5234 return 0;
c2c087e6 5235 }
0dcecb2e
DW
5236
5237 /* retrieve the largest free space block */
c2c087e6
DW
5238 e = get_extents(super, dl);
5239 maxsize = 0;
5240 i = 0;
0dcecb2e
DW
5241 if (e) {
5242 do {
5243 unsigned long long esize;
5244
5245 esize = e[i].start - pos;
5246 if (esize >= maxsize)
5247 maxsize = esize;
5248 pos = e[i].start + e[i].size;
5249 i++;
5250 } while (e[i-1].size);
5251 dl->e = e;
5252 dl->extent_cnt = i;
5253 } else {
5254 if (verbose)
5255 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5256 dev);
5257 return 0;
5258 }
5259 if (maxsize < size) {
5260 if (verbose)
5261 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5262 dev, maxsize, size);
5263 return 0;
5264 }
5265
5266 /* count total number of extents for merge */
5267 i = 0;
5268 for (dl = super->disks; dl; dl = dl->next)
5269 if (dl->e)
5270 i += dl->extent_cnt;
5271
5272 maxsize = merge_extents(super, i);
a7dd165b 5273 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
5274 if (verbose)
5275 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5276 maxsize, size);
5277 return 0;
0dcecb2e
DW
5278 }
5279
c2c087e6
DW
5280 *freesize = maxsize;
5281
5282 return 1;
cdddbdbc
DW
5283}
5284
efb30e7f
DW
5285static int reserve_space(struct supertype *st, int raiddisks,
5286 unsigned long long size, int chunk,
5287 unsigned long long *freesize)
5288{
5289 struct intel_super *super = st->sb;
5290 struct imsm_super *mpb = super->anchor;
5291 struct dl *dl;
5292 int i;
5293 int extent_cnt;
5294 struct extent *e;
5295 unsigned long long maxsize;
5296 unsigned long long minsize;
5297 int cnt;
5298 int used;
5299
5300 /* find the largest common start free region of the possible disks */
5301 used = 0;
5302 extent_cnt = 0;
5303 cnt = 0;
5304 for (dl = super->disks; dl; dl = dl->next) {
5305 dl->raiddisk = -1;
5306
5307 if (dl->index >= 0)
5308 used++;
5309
5310 /* don't activate new spares if we are orom constrained
5311 * and there is already a volume active in the container
5312 */
5313 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5314 continue;
5315
5316 e = get_extents(super, dl);
5317 if (!e)
5318 continue;
5319 for (i = 1; e[i-1].size; i++)
5320 ;
5321 dl->e = e;
5322 dl->extent_cnt = i;
5323 extent_cnt += i;
5324 cnt++;
5325 }
5326
5327 maxsize = merge_extents(super, extent_cnt);
5328 minsize = size;
5329 if (size == 0)
612e59d8
CA
5330 /* chunk is in K */
5331 minsize = chunk * 2;
efb30e7f
DW
5332
5333 if (cnt < raiddisks ||
5334 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5335 maxsize < minsize ||
5336 maxsize == 0) {
efb30e7f
DW
5337 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5338 return 0; /* No enough free spaces large enough */
5339 }
5340
5341 if (size == 0) {
5342 size = maxsize;
5343 if (chunk) {
612e59d8
CA
5344 size /= 2 * chunk;
5345 size *= 2 * chunk;
efb30e7f
DW
5346 }
5347 }
5348
5349 cnt = 0;
5350 for (dl = super->disks; dl; dl = dl->next)
5351 if (dl->e)
5352 dl->raiddisk = cnt++;
5353
5354 *freesize = size;
5355
5356 return 1;
5357}
5358
bf5a934a 5359static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5360 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5361 char *dev, unsigned long long *freesize,
5362 int verbose)
5363{
5364 int fd, cfd;
5365 struct mdinfo *sra;
20cbe8d2 5366 int is_member = 0;
bf5a934a 5367
d54559f0
LM
5368 /* load capability
5369 * if given unused devices create a container
bf5a934a
DW
5370 * if given given devices in a container create a member volume
5371 */
5372 if (level == LEVEL_CONTAINER) {
5373 /* Must be a fresh device to add to a container */
5374 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5375 raiddisks,
5376 chunk?*chunk:0, size,
bf5a934a
DW
5377 dev, freesize,
5378 verbose);
5379 }
5380
8592f29d
N
5381 if (!dev) {
5382 if (st->sb && freesize) {
efb30e7f
DW
5383 /* we are being asked to automatically layout a
5384 * new volume based on the current contents of
5385 * the container. If the the parameters can be
5386 * satisfied reserve_space will record the disks,
5387 * start offset, and size of the volume to be
5388 * created. add_to_super and getinfo_super
5389 * detect when autolayout is in progress.
5390 */
6592ce37
DW
5391 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5392 raiddisks, chunk,
5393 verbose))
5394 return 0;
c21e737b
CA
5395 return reserve_space(st, raiddisks, size,
5396 chunk?*chunk:0, freesize);
8592f29d
N
5397 }
5398 return 1;
5399 }
bf5a934a
DW
5400 if (st->sb) {
5401 /* creating in a given container */
5402 return validate_geometry_imsm_volume(st, level, layout,
5403 raiddisks, chunk, size,
5404 dev, freesize, verbose);
5405 }
5406
bf5a934a
DW
5407 /* This device needs to be a device in an 'imsm' container */
5408 fd = open(dev, O_RDONLY|O_EXCL, 0);
5409 if (fd >= 0) {
5410 if (verbose)
5411 fprintf(stderr,
5412 Name ": Cannot create this array on device %s\n",
5413 dev);
5414 close(fd);
5415 return 0;
5416 }
5417 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5418 if (verbose)
5419 fprintf(stderr, Name ": Cannot open %s: %s\n",
5420 dev, strerror(errno));
5421 return 0;
5422 }
5423 /* Well, it is in use by someone, maybe an 'imsm' container. */
5424 cfd = open_container(fd);
20cbe8d2 5425 close(fd);
bf5a934a 5426 if (cfd < 0) {
bf5a934a
DW
5427 if (verbose)
5428 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5429 dev);
5430 return 0;
5431 }
5432 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5433 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5434 strcmp(sra->text_version, "imsm") == 0)
5435 is_member = 1;
5436 sysfs_free(sra);
5437 if (is_member) {
bf5a934a
DW
5438 /* This is a member of a imsm container. Load the container
5439 * and try to create a volume
5440 */
5441 struct intel_super *super;
5442
e1902a7b 5443 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5444 st->sb = super;
5445 st->container_dev = fd2devnum(cfd);
5446 close(cfd);
5447 return validate_geometry_imsm_volume(st, level, layout,
5448 raiddisks, chunk,
5449 size, dev,
ecbd9e81
N
5450 freesize, 1)
5451 ? 1 : -1;
bf5a934a 5452 }
20cbe8d2 5453 }
bf5a934a 5454
20cbe8d2
AW
5455 if (verbose)
5456 fprintf(stderr, Name ": failed container membership check\n");
5457
5458 close(cfd);
5459 return 0;
bf5a934a 5460}
0bd16cf2 5461
30f58b22 5462static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5463{
5464 struct intel_super *super = st->sb;
5465
30f58b22
DW
5466 if (level && *level == UnSet)
5467 *level = LEVEL_CONTAINER;
5468
5469 if (level && layout && *layout == UnSet)
5470 *layout = imsm_level_to_layout(*level);
0bd16cf2 5471
cd9d1ac7
DW
5472 if (chunk && (*chunk == UnSet || *chunk == 0))
5473 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
5474}
5475
33414a01
DW
5476static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5477
5478static int kill_subarray_imsm(struct supertype *st)
5479{
5480 /* remove the subarray currently referenced by ->current_vol */
5481 __u8 i;
5482 struct intel_dev **dp;
5483 struct intel_super *super = st->sb;
5484 __u8 current_vol = super->current_vol;
5485 struct imsm_super *mpb = super->anchor;
5486
5487 if (super->current_vol < 0)
5488 return 2;
5489 super->current_vol = -1; /* invalidate subarray cursor */
5490
5491 /* block deletions that would change the uuid of active subarrays
5492 *
5493 * FIXME when immutable ids are available, but note that we'll
5494 * also need to fixup the invalidated/active subarray indexes in
5495 * mdstat
5496 */
5497 for (i = 0; i < mpb->num_raid_devs; i++) {
5498 char subarray[4];
5499
5500 if (i < current_vol)
5501 continue;
5502 sprintf(subarray, "%u", i);
5503 if (is_subarray_active(subarray, st->devname)) {
5504 fprintf(stderr,
5505 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5506 current_vol, i);
5507
5508 return 2;
5509 }
5510 }
5511
5512 if (st->update_tail) {
5513 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5514
5515 if (!u)
5516 return 2;
5517 u->type = update_kill_array;
5518 u->dev_idx = current_vol;
5519 append_metadata_update(st, u, sizeof(*u));
5520
5521 return 0;
5522 }
5523
5524 for (dp = &super->devlist; *dp;)
5525 if ((*dp)->index == current_vol) {
5526 *dp = (*dp)->next;
5527 } else {
5528 handle_missing(super, (*dp)->dev);
5529 if ((*dp)->index > current_vol)
5530 (*dp)->index--;
5531 dp = &(*dp)->next;
5532 }
5533
5534 /* no more raid devices, all active components are now spares,
5535 * but of course failed are still failed
5536 */
5537 if (--mpb->num_raid_devs == 0) {
5538 struct dl *d;
5539
5540 for (d = super->disks; d; d = d->next)
a8619d23
AK
5541 if (d->index > -2)
5542 mark_spare(d);
33414a01
DW
5543 }
5544
5545 super->updates_pending++;
5546
5547 return 0;
5548}
aa534678 5549
a951a4f7 5550static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5551 char *update, struct mddev_ident *ident)
aa534678
DW
5552{
5553 /* update the subarray currently referenced by ->current_vol */
5554 struct intel_super *super = st->sb;
5555 struct imsm_super *mpb = super->anchor;
5556
aa534678
DW
5557 if (strcmp(update, "name") == 0) {
5558 char *name = ident->name;
a951a4f7
N
5559 char *ep;
5560 int vol;
aa534678 5561
a951a4f7 5562 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5563 fprintf(stderr,
5564 Name ": Unable to update name of active subarray\n");
5565 return 2;
5566 }
5567
5568 if (!check_name(super, name, 0))
5569 return 2;
5570
a951a4f7
N
5571 vol = strtoul(subarray, &ep, 10);
5572 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5573 return 2;
5574
aa534678
DW
5575 if (st->update_tail) {
5576 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5577
5578 if (!u)
5579 return 2;
5580 u->type = update_rename_array;
a951a4f7 5581 u->dev_idx = vol;
aa534678
DW
5582 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5583 append_metadata_update(st, u, sizeof(*u));
5584 } else {
5585 struct imsm_dev *dev;
5586 int i;
5587
a951a4f7 5588 dev = get_imsm_dev(super, vol);
aa534678
DW
5589 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5590 for (i = 0; i < mpb->num_raid_devs; i++) {
5591 dev = get_imsm_dev(super, i);
5592 handle_missing(super, dev);
5593 }
5594 super->updates_pending++;
5595 }
5596 } else
5597 return 2;
5598
5599 return 0;
5600}
bf5a934a 5601
28bce06f
AK
5602static int is_gen_migration(struct imsm_dev *dev)
5603{
7534230b
AK
5604 if (dev == NULL)
5605 return 0;
5606
28bce06f
AK
5607 if (!dev->vol.migr_state)
5608 return 0;
5609
5610 if (migr_type(dev) == MIGR_GEN_MIGR)
5611 return 1;
5612
5613 return 0;
5614}
71204a50 5615#endif /* MDASSEMBLE */
28bce06f 5616
1e5c6983
DW
5617static int is_rebuilding(struct imsm_dev *dev)
5618{
5619 struct imsm_map *migr_map;
5620
5621 if (!dev->vol.migr_state)
5622 return 0;
5623
5624 if (migr_type(dev) != MIGR_REBUILD)
5625 return 0;
5626
5627 migr_map = get_imsm_map(dev, 1);
5628
5629 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5630 return 1;
5631 else
5632 return 0;
5633}
5634
c47b0ff6
AK
5635static void update_recovery_start(struct intel_super *super,
5636 struct imsm_dev *dev,
5637 struct mdinfo *array)
1e5c6983
DW
5638{
5639 struct mdinfo *rebuild = NULL;
5640 struct mdinfo *d;
5641 __u32 units;
5642
5643 if (!is_rebuilding(dev))
5644 return;
5645
5646 /* Find the rebuild target, but punt on the dual rebuild case */
5647 for (d = array->devs; d; d = d->next)
5648 if (d->recovery_start == 0) {
5649 if (rebuild)
5650 return;
5651 rebuild = d;
5652 }
5653
4363fd80
DW
5654 if (!rebuild) {
5655 /* (?) none of the disks are marked with
5656 * IMSM_ORD_REBUILD, so assume they are missing and the
5657 * disk_ord_tbl was not correctly updated
5658 */
5659 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5660 return;
5661 }
5662
1e5c6983 5663 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5664 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5665}
5666
9e2d750d 5667#ifndef MDASSEMBLE
276d77db 5668static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 5669#endif
1e5c6983 5670
00bbdbda 5671static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5672{
4f5bc454
DW
5673 /* Given a container loaded by load_super_imsm_all,
5674 * extract information about all the arrays into
5675 * an mdinfo tree.
00bbdbda 5676 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5677 *
5678 * For each imsm_dev create an mdinfo, fill it in,
5679 * then look for matching devices in super->disks
5680 * and create appropriate device mdinfo.
5681 */
5682 struct intel_super *super = st->sb;
949c47a0 5683 struct imsm_super *mpb = super->anchor;
4f5bc454 5684 struct mdinfo *rest = NULL;
00bbdbda 5685 unsigned int i;
a06d022d 5686 int bbm_errors = 0;
abef11a3
AK
5687 struct dl *d;
5688 int spare_disks = 0;
cdddbdbc 5689
19482bcc
AK
5690 /* do not assemble arrays when not all attributes are supported */
5691 if (imsm_check_attributes(mpb->attributes) == 0) {
5692 fprintf(stderr, Name ": IMSM metadata loading not allowed "
5693 "due to attributes incompatibility.\n");
5694 return NULL;
5695 }
5696
a06d022d
KW
5697 /* check for bad blocks */
5698 if (imsm_bbm_log_size(super->anchor))
5699 bbm_errors = 1;
604b746f 5700
abef11a3
AK
5701 /* count spare devices, not used in maps
5702 */
5703 for (d = super->disks; d; d = d->next)
5704 if (d->index == -1)
5705 spare_disks++;
5706
4f5bc454 5707 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5708 struct imsm_dev *dev;
5709 struct imsm_map *map;
86e3692b 5710 struct imsm_map *map2;
4f5bc454 5711 struct mdinfo *this;
2db86302 5712 int slot, chunk;
00bbdbda
N
5713 char *ep;
5714
5715 if (subarray &&
5716 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5717 continue;
5718
5719 dev = get_imsm_dev(super, i);
5720 map = get_imsm_map(dev, 0);
86e3692b 5721 map2 = get_imsm_map(dev, 1);
4f5bc454 5722
1ce0101c
DW
5723 /* do not publish arrays that are in the middle of an
5724 * unsupported migration
5725 */
5726 if (dev->vol.migr_state &&
28bce06f 5727 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5728 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5729 " unsupported migration in progress\n",
5730 dev->volume);
5731 continue;
5732 }
2db86302
LM
5733 /* do not publish arrays that are not support by controller's
5734 * OROM/EFI
5735 */
1ce0101c 5736
2db86302 5737 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
7b0bbd0f 5738#ifndef MDASSEMBLE
2db86302
LM
5739 if (!validate_geometry_imsm_orom(super,
5740 get_imsm_raid_level(map), /* RAID level */
5741 imsm_level_to_layout(get_imsm_raid_level(map)),
5742 map->num_members, /* raid disks */
5743 &chunk,
5744 1 /* verbose */)) {
5745 fprintf(stderr, Name ": RAID gemetry validation failed. "
5746 "Cannot proceed with the action(s).\n");
5747 continue;
5748 }
7b0bbd0f 5749#endif /* MDASSEMBLE */
4f5bc454 5750 this = malloc(sizeof(*this));
0fbd635c 5751 if (!this) {
cf1be220 5752 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5753 sizeof(*this));
5754 break;
5755 }
4f5bc454 5756
301406c9 5757 super->current_vol = i;
a5d85af7 5758 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5759 this->next = rest;
4f5bc454 5760 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5761 unsigned long long recovery_start;
4f5bc454
DW
5762 struct mdinfo *info_d;
5763 struct dl *d;
5764 int idx;
9a1608e5 5765 int skip;
7eef0453 5766 __u32 ord;
4f5bc454 5767
9a1608e5 5768 skip = 0;
98130f40 5769 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5770 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5771 for (d = super->disks; d ; d = d->next)
5772 if (d->index == idx)
0fbd635c 5773 break;
4f5bc454 5774
1e5c6983 5775 recovery_start = MaxSector;
4f5bc454 5776 if (d == NULL)
9a1608e5 5777 skip = 1;
25ed7e59 5778 if (d && is_failed(&d->disk))
9a1608e5 5779 skip = 1;
7eef0453 5780 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5781 recovery_start = 0;
9a1608e5
DW
5782
5783 /*
5784 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5785 * reset resync start to avoid a dirty-degraded
5786 * situation when performing the intial sync
9a1608e5
DW
5787 *
5788 * FIXME handle dirty degraded
5789 */
1e5c6983 5790 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5791 this->resync_start = MaxSector;
9a1608e5
DW
5792 if (skip)
5793 continue;
4f5bc454 5794
1e5c6983 5795 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5796 if (!info_d) {
5797 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5798 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5799 info_d = this->devs;
5800 while (info_d) {
5801 struct mdinfo *d = info_d->next;
5802
5803 free(info_d);
5804 info_d = d;
5805 }
9a1608e5
DW
5806 free(this);
5807 this = rest;
5808 break;
5809 }
4f5bc454
DW
5810 info_d->next = this->devs;
5811 this->devs = info_d;
5812
4f5bc454
DW
5813 info_d->disk.number = d->index;
5814 info_d->disk.major = d->major;
5815 info_d->disk.minor = d->minor;
5816 info_d->disk.raid_disk = slot;
1e5c6983 5817 info_d->recovery_start = recovery_start;
86e3692b
AK
5818 if (map2) {
5819 if (slot < map2->num_members)
5820 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5821 else
5822 this->array.spare_disks++;
86e3692b
AK
5823 } else {
5824 if (slot < map->num_members)
5825 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5826 else
5827 this->array.spare_disks++;
86e3692b 5828 }
1e5c6983
DW
5829 if (info_d->recovery_start == MaxSector)
5830 this->array.working_disks++;
4f5bc454
DW
5831
5832 info_d->events = __le32_to_cpu(mpb->generation_num);
5833 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5834 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5835 }
1e5c6983 5836 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5837 update_recovery_start(super, dev, this);
abef11a3 5838 this->array.spare_disks += spare_disks;
276d77db 5839
9e2d750d 5840#ifndef MDASSEMBLE
276d77db
AK
5841 /* check for reshape */
5842 if (this->reshape_active == 1)
5843 recover_backup_imsm(st, this);
9e2d750d 5844#endif
9a1608e5 5845 rest = this;
4f5bc454
DW
5846 }
5847
a06d022d
KW
5848 /* if array has bad blocks, set suitable bit in array status */
5849 if (bbm_errors)
5850 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5851
4f5bc454 5852 return rest;
cdddbdbc
DW
5853}
5854
845dea95 5855
fb49eef2 5856static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 5857{
a965f303 5858 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
5859
5860 if (!failed)
3393c6af
DW
5861 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5862 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5863
5864 switch (get_imsm_raid_level(map)) {
5865 case 0:
5866 return IMSM_T_STATE_FAILED;
5867 break;
5868 case 1:
5869 if (failed < map->num_members)
5870 return IMSM_T_STATE_DEGRADED;
5871 else
5872 return IMSM_T_STATE_FAILED;
5873 break;
5874 case 10:
5875 {
5876 /**
c92a2527
DW
5877 * check to see if any mirrors have failed, otherwise we
5878 * are degraded. Even numbered slots are mirrored on
5879 * slot+1
c2a1e7da 5880 */
c2a1e7da 5881 int i;
d9b420a5
N
5882 /* gcc -Os complains that this is unused */
5883 int insync = insync;
c2a1e7da
DW
5884
5885 for (i = 0; i < map->num_members; i++) {
98130f40 5886 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5887 int idx = ord_to_idx(ord);
5888 struct imsm_disk *disk;
c2a1e7da 5889
c92a2527
DW
5890 /* reset the potential in-sync count on even-numbered
5891 * slots. num_copies is always 2 for imsm raid10
5892 */
5893 if ((i & 1) == 0)
5894 insync = 2;
c2a1e7da 5895
c92a2527 5896 disk = get_imsm_disk(super, idx);
25ed7e59 5897 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5898 insync--;
c2a1e7da 5899
c92a2527
DW
5900 /* no in-sync disks left in this mirror the
5901 * array has failed
5902 */
5903 if (insync == 0)
5904 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5905 }
5906
5907 return IMSM_T_STATE_DEGRADED;
5908 }
5909 case 5:
5910 if (failed < 2)
5911 return IMSM_T_STATE_DEGRADED;
5912 else
5913 return IMSM_T_STATE_FAILED;
5914 break;
5915 default:
5916 break;
5917 }
5918
5919 return map->map_state;
5920}
5921
ff077194 5922static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
5923{
5924 int i;
5925 int failed = 0;
5926 struct imsm_disk *disk;
ff077194 5927 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
5928 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5929 __u32 ord;
5930 int idx;
c2a1e7da 5931
0556e1a2
DW
5932 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5933 * disks that are being rebuilt. New failures are recorded to
5934 * map[0]. So we look through all the disks we started with and
5935 * see if any failures are still present, or if any new ones
5936 * have arrived
5937 *
5938 * FIXME add support for online capacity expansion and
5939 * raid-level-migration
5940 */
5941 for (i = 0; i < prev->num_members; i++) {
5942 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5943 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5944 idx = ord_to_idx(ord);
c2a1e7da 5945
949c47a0 5946 disk = get_imsm_disk(super, idx);
25ed7e59 5947 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 5948 failed++;
c2a1e7da
DW
5949 }
5950
5951 return failed;
845dea95
NB
5952}
5953
97b4d0e9
DW
5954#ifndef MDASSEMBLE
5955static int imsm_open_new(struct supertype *c, struct active_array *a,
5956 char *inst)
5957{
5958 struct intel_super *super = c->sb;
5959 struct imsm_super *mpb = super->anchor;
5960
5961 if (atoi(inst) >= mpb->num_raid_devs) {
5962 fprintf(stderr, "%s: subarry index %d, out of range\n",
5963 __func__, atoi(inst));
5964 return -ENODEV;
5965 }
5966
5967 dprintf("imsm: open_new %s\n", inst);
5968 a->info.container_member = atoi(inst);
5969 return 0;
5970}
5971
0c046afd
DW
5972static int is_resyncing(struct imsm_dev *dev)
5973{
5974 struct imsm_map *migr_map;
5975
5976 if (!dev->vol.migr_state)
5977 return 0;
5978
1484e727
DW
5979 if (migr_type(dev) == MIGR_INIT ||
5980 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
5981 return 1;
5982
4c9bc37b
AK
5983 if (migr_type(dev) == MIGR_GEN_MIGR)
5984 return 0;
5985
0c046afd
DW
5986 migr_map = get_imsm_map(dev, 1);
5987
4c9bc37b
AK
5988 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5989 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
5990 return 1;
5991 else
5992 return 0;
5993}
5994
0556e1a2
DW
5995/* return true if we recorded new information */
5996static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 5997{
0556e1a2
DW
5998 __u32 ord;
5999 int slot;
6000 struct imsm_map *map;
86c54047
DW
6001 char buf[MAX_RAID_SERIAL_LEN+3];
6002 unsigned int len, shift = 0;
0556e1a2
DW
6003
6004 /* new failures are always set in map[0] */
6005 map = get_imsm_map(dev, 0);
6006
6007 slot = get_imsm_disk_slot(map, idx);
6008 if (slot < 0)
6009 return 0;
6010
6011 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 6012 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
6013 return 0;
6014
86c54047
DW
6015 sprintf(buf, "%s:0", disk->serial);
6016 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6017 shift = len - MAX_RAID_SERIAL_LEN + 1;
6018 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6019
f2f27e63 6020 disk->status |= FAILED_DISK;
0556e1a2 6021 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
f21e18ca 6022 if (map->failed_disk_num == 0xff)
0556e1a2
DW
6023 map->failed_disk_num = slot;
6024 return 1;
6025}
6026
6027static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6028{
6029 mark_failure(dev, disk, idx);
6030
6031 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6032 return;
6033
47ee5a45
DW
6034 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6035 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6036}
6037
33414a01
DW
6038static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6039{
6040 __u8 map_state;
6041 struct dl *dl;
6042 int failed;
6043
6044 if (!super->missing)
6045 return;
6046 failed = imsm_count_failed(super, dev);
6047 map_state = imsm_check_degraded(super, dev, failed);
6048
6049 dprintf("imsm: mark missing\n");
6050 end_migration(dev, map_state);
6051 for (dl = super->missing; dl; dl = dl->next)
6052 mark_missing(dev, &dl->disk, dl->index);
6053 super->updates_pending++;
6054}
6055
70bdf0dc
AK
6056static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6057{
6058 int used_disks = imsm_num_data_members(dev, 0);
6059 unsigned long long array_blocks;
6060 struct imsm_map *map;
6061
6062 if (used_disks == 0) {
6063 /* when problems occures
6064 * return current array_blocks value
6065 */
6066 array_blocks = __le32_to_cpu(dev->size_high);
6067 array_blocks = array_blocks << 32;
6068 array_blocks += __le32_to_cpu(dev->size_low);
6069
6070 return array_blocks;
6071 }
6072
6073 /* set array size in metadata
6074 */
6075 map = get_imsm_map(dev, 0);
6076 array_blocks = map->blocks_per_member * used_disks;
6077
6078 /* round array size down to closest MB
6079 */
6080 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6081 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6082 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6083
6084 return array_blocks;
6085}
6086
28bce06f
AK
6087static void imsm_set_disk(struct active_array *a, int n, int state);
6088
0e2d1a4e
AK
6089static void imsm_progress_container_reshape(struct intel_super *super)
6090{
6091 /* if no device has a migr_state, but some device has a
6092 * different number of members than the previous device, start
6093 * changing the number of devices in this device to match
6094 * previous.
6095 */
6096 struct imsm_super *mpb = super->anchor;
6097 int prev_disks = -1;
6098 int i;
1dfaa380 6099 int copy_map_size;
0e2d1a4e
AK
6100
6101 for (i = 0; i < mpb->num_raid_devs; i++) {
6102 struct imsm_dev *dev = get_imsm_dev(super, i);
6103 struct imsm_map *map = get_imsm_map(dev, 0);
6104 struct imsm_map *map2;
6105 int prev_num_members;
0e2d1a4e
AK
6106
6107 if (dev->vol.migr_state)
6108 return;
6109
6110 if (prev_disks == -1)
6111 prev_disks = map->num_members;
6112 if (prev_disks == map->num_members)
6113 continue;
6114
6115 /* OK, this array needs to enter reshape mode.
6116 * i.e it needs a migr_state
6117 */
6118
1dfaa380 6119 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
6120 prev_num_members = map->num_members;
6121 map->num_members = prev_disks;
6122 dev->vol.migr_state = 1;
6123 dev->vol.curr_migr_unit = 0;
6124 dev->vol.migr_type = MIGR_GEN_MIGR;
6125 for (i = prev_num_members;
6126 i < map->num_members; i++)
6127 set_imsm_ord_tbl_ent(map, i, i);
6128 map2 = get_imsm_map(dev, 1);
6129 /* Copy the current map */
1dfaa380 6130 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
6131 map2->num_members = prev_num_members;
6132
70bdf0dc 6133 imsm_set_array_size(dev);
0e2d1a4e
AK
6134 super->updates_pending++;
6135 }
6136}
6137
aad6f216 6138/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
6139 * states are handled in imsm_set_disk() with one exception, when a
6140 * resync is stopped due to a new failure this routine will set the
6141 * 'degraded' state for the array.
6142 */
01f157d7 6143static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
6144{
6145 int inst = a->info.container_member;
6146 struct intel_super *super = a->container->sb;
949c47a0 6147 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6148 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
6149 int failed = imsm_count_failed(super, dev);
6150 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 6151 __u32 blocks_per_unit;
a862209d 6152
1af97990
AK
6153 if (dev->vol.migr_state &&
6154 dev->vol.migr_type == MIGR_GEN_MIGR) {
6155 /* array state change is blocked due to reshape action
aad6f216
N
6156 * We might need to
6157 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6158 * - finish the reshape (if last_checkpoint is big and action != reshape)
6159 * - update curr_migr_unit
1af97990 6160 */
aad6f216
N
6161 if (a->curr_action == reshape) {
6162 /* still reshaping, maybe update curr_migr_unit */
633b5610 6163 goto mark_checkpoint;
aad6f216
N
6164 } else {
6165 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6166 /* for some reason we aborted the reshape.
b66e591b
AK
6167 *
6168 * disable automatic metadata rollback
6169 * user action is required to recover process
aad6f216 6170 */
b66e591b 6171 if (0) {
aad6f216
N
6172 struct imsm_map *map2 = get_imsm_map(dev, 1);
6173 dev->vol.migr_state = 0;
6174 dev->vol.migr_type = 0;
6175 dev->vol.curr_migr_unit = 0;
6176 memcpy(map, map2, sizeof_imsm_map(map2));
6177 super->updates_pending++;
b66e591b 6178 }
aad6f216
N
6179 }
6180 if (a->last_checkpoint >= a->info.component_size) {
6181 unsigned long long array_blocks;
6182 int used_disks;
e154ced3 6183 struct mdinfo *mdi;
aad6f216 6184
9653001d 6185 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
6186 if (used_disks > 0) {
6187 array_blocks =
6188 map->blocks_per_member *
6189 used_disks;
6190 /* round array size down to closest MB
6191 */
6192 array_blocks = (array_blocks
6193 >> SECT_PER_MB_SHIFT)
6194 << SECT_PER_MB_SHIFT;
d55adef9
AK
6195 a->info.custom_array_size = array_blocks;
6196 /* encourage manager to update array
6197 * size
6198 */
e154ced3 6199
d55adef9 6200 a->check_reshape = 1;
633b5610 6201 }
e154ced3
AK
6202 /* finalize online capacity expansion/reshape */
6203 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6204 imsm_set_disk(a,
6205 mdi->disk.raid_disk,
6206 mdi->curr_state);
6207
0e2d1a4e 6208 imsm_progress_container_reshape(super);
e154ced3 6209 }
aad6f216 6210 }
1af97990
AK
6211 }
6212
47ee5a45 6213 /* before we activate this array handle any missing disks */
33414a01
DW
6214 if (consistent == 2)
6215 handle_missing(super, dev);
1e5c6983 6216
0c046afd 6217 if (consistent == 2 &&
b7941fd6 6218 (!is_resync_complete(&a->info) ||
0c046afd
DW
6219 map_state != IMSM_T_STATE_NORMAL ||
6220 dev->vol.migr_state))
01f157d7 6221 consistent = 0;
272906ef 6222
b7941fd6 6223 if (is_resync_complete(&a->info)) {
0c046afd 6224 /* complete intialization / resync,
0556e1a2
DW
6225 * recovery and interrupted recovery is completed in
6226 * ->set_disk
0c046afd
DW
6227 */
6228 if (is_resyncing(dev)) {
6229 dprintf("imsm: mark resync done\n");
f8f603f1 6230 end_migration(dev, map_state);
115c3803 6231 super->updates_pending++;
484240d8 6232 a->last_checkpoint = 0;
115c3803 6233 }
b9172665
AK
6234 } else if ((!is_resyncing(dev) && !failed) &&
6235 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 6236 /* mark the start of the init process if nothing is failed */
b7941fd6 6237 dprintf("imsm: mark resync start\n");
1484e727 6238 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 6239 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 6240 else
8e59f3d8 6241 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 6242 super->updates_pending++;
115c3803 6243 }
a862209d 6244
633b5610 6245mark_checkpoint:
5b83bacf
AK
6246 /* skip checkpointing for general migration,
6247 * it is controlled in mdadm
6248 */
6249 if (is_gen_migration(dev))
6250 goto skip_mark_checkpoint;
6251
1e5c6983 6252 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 6253 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 6254 if (blocks_per_unit) {
1e5c6983
DW
6255 __u32 units32;
6256 __u64 units;
6257
4f0a7acc 6258 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
6259 units32 = units;
6260
6261 /* check that we did not overflow 32-bits, and that
6262 * curr_migr_unit needs updating
6263 */
6264 if (units32 == units &&
bfd80a56 6265 units32 != 0 &&
1e5c6983
DW
6266 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6267 dprintf("imsm: mark checkpoint (%u)\n", units32);
6268 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6269 super->updates_pending++;
6270 }
6271 }
f8f603f1 6272
5b83bacf 6273skip_mark_checkpoint:
3393c6af 6274 /* mark dirty / clean */
0c046afd 6275 if (dev->vol.dirty != !consistent) {
b7941fd6 6276 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
6277 if (consistent)
6278 dev->vol.dirty = 0;
6279 else
6280 dev->vol.dirty = 1;
a862209d
DW
6281 super->updates_pending++;
6282 }
28bce06f 6283
01f157d7 6284 return consistent;
a862209d
DW
6285}
6286
8d45d196 6287static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 6288{
8d45d196
DW
6289 int inst = a->info.container_member;
6290 struct intel_super *super = a->container->sb;
949c47a0 6291 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6292 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 6293 struct imsm_disk *disk;
0c046afd 6294 int failed;
b10b37b8 6295 __u32 ord;
0c046afd 6296 __u8 map_state;
8d45d196
DW
6297
6298 if (n > map->num_members)
6299 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6300 n, map->num_members - 1);
6301
6302 if (n < 0)
6303 return;
6304
4e6e574a 6305 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 6306
98130f40 6307 ord = get_imsm_ord_tbl_ent(dev, n, -1);
b10b37b8 6308 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 6309
5802a811 6310 /* check for new failures */
0556e1a2
DW
6311 if (state & DS_FAULTY) {
6312 if (mark_failure(dev, disk, ord_to_idx(ord)))
6313 super->updates_pending++;
8d45d196 6314 }
47ee5a45 6315
19859edc 6316 /* check if in_sync */
0556e1a2 6317 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
6318 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6319
6320 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6321 super->updates_pending++;
6322 }
8d45d196 6323
0c046afd
DW
6324 failed = imsm_count_failed(super, dev);
6325 map_state = imsm_check_degraded(super, dev, failed);
5802a811 6326
0c046afd
DW
6327 /* check if recovery complete, newly degraded, or failed */
6328 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 6329 end_migration(dev, map_state);
0556e1a2
DW
6330 map = get_imsm_map(dev, 0);
6331 map->failed_disk_num = ~0;
0c046afd 6332 super->updates_pending++;
484240d8 6333 a->last_checkpoint = 0;
0c046afd
DW
6334 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6335 map->map_state != map_state &&
6336 !dev->vol.migr_state) {
6337 dprintf("imsm: mark degraded\n");
6338 map->map_state = map_state;
6339 super->updates_pending++;
484240d8 6340 a->last_checkpoint = 0;
0c046afd
DW
6341 } else if (map_state == IMSM_T_STATE_FAILED &&
6342 map->map_state != map_state) {
6343 dprintf("imsm: mark failed\n");
f8f603f1 6344 end_migration(dev, map_state);
0c046afd 6345 super->updates_pending++;
484240d8 6346 a->last_checkpoint = 0;
28bce06f
AK
6347 } else if (is_gen_migration(dev)) {
6348 dprintf("imsm: Detected General Migration in state: ");
6349 if (map_state == IMSM_T_STATE_NORMAL) {
6350 end_migration(dev, map_state);
6351 map = get_imsm_map(dev, 0);
6352 map->failed_disk_num = ~0;
6353 dprintf("normal\n");
6354 } else {
6355 if (map_state == IMSM_T_STATE_DEGRADED) {
6356 printf("degraded\n");
6357 end_migration(dev, map_state);
6358 } else {
6359 dprintf("failed\n");
6360 }
6361 map->map_state = map_state;
6362 }
6363 super->updates_pending++;
5802a811 6364 }
845dea95
NB
6365}
6366
f796af5d 6367static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6368{
f796af5d 6369 void *buf = mpb;
c2a1e7da
DW
6370 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6371 unsigned long long dsize;
6372 unsigned long long sectors;
6373
6374 get_dev_size(fd, NULL, &dsize);
6375
272f648f
DW
6376 if (mpb_size > 512) {
6377 /* -1 to account for anchor */
6378 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6379
272f648f
DW
6380 /* write the extended mpb to the sectors preceeding the anchor */
6381 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6382 return 1;
c2a1e7da 6383
f21e18ca
N
6384 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6385 != 512 * sectors)
272f648f
DW
6386 return 1;
6387 }
c2a1e7da 6388
272f648f
DW
6389 /* first block is stored on second to last sector of the disk */
6390 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6391 return 1;
6392
f796af5d 6393 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6394 return 1;
6395
c2a1e7da
DW
6396 return 0;
6397}
6398
2e735d19 6399static void imsm_sync_metadata(struct supertype *container)
845dea95 6400{
2e735d19 6401 struct intel_super *super = container->sb;
c2a1e7da 6402
1a64be56 6403 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6404 if (!super->updates_pending)
6405 return;
6406
36988a3d 6407 write_super_imsm(container, 0);
c2a1e7da
DW
6408
6409 super->updates_pending = 0;
845dea95
NB
6410}
6411
272906ef
DW
6412static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6413{
6414 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6415 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6416 struct dl *dl;
6417
6418 for (dl = super->disks; dl; dl = dl->next)
6419 if (dl->index == i)
6420 break;
6421
25ed7e59 6422 if (dl && is_failed(&dl->disk))
272906ef
DW
6423 dl = NULL;
6424
6425 if (dl)
6426 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6427
6428 return dl;
6429}
6430
a20d2ba5 6431static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6432 struct active_array *a, int activate_new,
6433 struct mdinfo *additional_test_list)
272906ef
DW
6434{
6435 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6436 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6437 struct imsm_super *mpb = super->anchor;
6438 struct imsm_map *map;
272906ef
DW
6439 unsigned long long pos;
6440 struct mdinfo *d;
6441 struct extent *ex;
a20d2ba5 6442 int i, j;
272906ef 6443 int found;
569cc43f
DW
6444 __u32 array_start = 0;
6445 __u32 array_end = 0;
272906ef 6446 struct dl *dl;
6c932028 6447 struct mdinfo *test_list;
272906ef
DW
6448
6449 for (dl = super->disks; dl; dl = dl->next) {
6450 /* If in this array, skip */
6451 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6452 if (d->state_fd >= 0 &&
6453 d->disk.major == dl->major &&
272906ef 6454 d->disk.minor == dl->minor) {
8ba77d32
AK
6455 dprintf("%x:%x already in array\n",
6456 dl->major, dl->minor);
272906ef
DW
6457 break;
6458 }
6459 if (d)
6460 continue;
6c932028
AK
6461 test_list = additional_test_list;
6462 while (test_list) {
6463 if (test_list->disk.major == dl->major &&
6464 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6465 dprintf("%x:%x already in additional test list\n",
6466 dl->major, dl->minor);
6467 break;
6468 }
6c932028 6469 test_list = test_list->next;
8ba77d32 6470 }
6c932028 6471 if (test_list)
8ba77d32 6472 continue;
272906ef 6473
e553d2a4 6474 /* skip in use or failed drives */
25ed7e59 6475 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6476 dl->index == -2) {
6477 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6478 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6479 continue;
6480 }
6481
a20d2ba5
DW
6482 /* skip pure spares when we are looking for partially
6483 * assimilated drives
6484 */
6485 if (dl->index == -1 && !activate_new)
6486 continue;
6487
272906ef 6488 /* Does this unused device have the requisite free space?
a20d2ba5 6489 * It needs to be able to cover all member volumes
272906ef
DW
6490 */
6491 ex = get_extents(super, dl);
6492 if (!ex) {
6493 dprintf("cannot get extents\n");
6494 continue;
6495 }
a20d2ba5
DW
6496 for (i = 0; i < mpb->num_raid_devs; i++) {
6497 dev = get_imsm_dev(super, i);
6498 map = get_imsm_map(dev, 0);
272906ef 6499
a20d2ba5
DW
6500 /* check if this disk is already a member of
6501 * this array
272906ef 6502 */
620b1713 6503 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6504 continue;
6505
6506 found = 0;
6507 j = 0;
6508 pos = 0;
6509 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6510 array_end = array_start +
6511 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6512
6513 do {
6514 /* check that we can start at pba_of_lba0 with
6515 * blocks_per_member of space
6516 */
329c8278 6517 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6518 found = 1;
6519 break;
6520 }
6521 pos = ex[j].start + ex[j].size;
6522 j++;
6523 } while (ex[j-1].size);
6524
6525 if (!found)
272906ef 6526 break;
a20d2ba5 6527 }
272906ef
DW
6528
6529 free(ex);
a20d2ba5 6530 if (i < mpb->num_raid_devs) {
329c8278
DW
6531 dprintf("%x:%x does not have %u to %u available\n",
6532 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6533 /* No room */
6534 continue;
a20d2ba5
DW
6535 }
6536 return dl;
272906ef
DW
6537 }
6538
6539 return dl;
6540}
6541
95d07a2c
LM
6542
6543static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6544{
6545 struct imsm_dev *dev2;
6546 struct imsm_map *map;
6547 struct dl *idisk;
6548 int slot;
6549 int idx;
6550 __u8 state;
6551
6552 dev2 = get_imsm_dev(cont->sb, dev_idx);
6553 if (dev2) {
6554 state = imsm_check_degraded(cont->sb, dev2, failed);
6555 if (state == IMSM_T_STATE_FAILED) {
6556 map = get_imsm_map(dev2, 0);
6557 if (!map)
6558 return 1;
6559 for (slot = 0; slot < map->num_members; slot++) {
6560 /*
6561 * Check if failed disks are deleted from intel
6562 * disk list or are marked to be deleted
6563 */
98130f40 6564 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6565 idisk = get_imsm_dl_disk(cont->sb, idx);
6566 /*
6567 * Do not rebuild the array if failed disks
6568 * from failed sub-array are not removed from
6569 * container.
6570 */
6571 if (idisk &&
6572 is_failed(&idisk->disk) &&
6573 (idisk->action != DISK_REMOVE))
6574 return 0;
6575 }
6576 }
6577 }
6578 return 1;
6579}
6580
88758e9d
DW
6581static struct mdinfo *imsm_activate_spare(struct active_array *a,
6582 struct metadata_update **updates)
6583{
6584 /**
d23fe947
DW
6585 * Find a device with unused free space and use it to replace a
6586 * failed/vacant region in an array. We replace failed regions one a
6587 * array at a time. The result is that a new spare disk will be added
6588 * to the first failed array and after the monitor has finished
6589 * propagating failures the remainder will be consumed.
88758e9d 6590 *
d23fe947
DW
6591 * FIXME add a capability for mdmon to request spares from another
6592 * container.
88758e9d
DW
6593 */
6594
6595 struct intel_super *super = a->container->sb;
88758e9d 6596 int inst = a->info.container_member;
949c47a0 6597 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6598 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6599 int failed = a->info.array.raid_disks;
6600 struct mdinfo *rv = NULL;
6601 struct mdinfo *d;
6602 struct mdinfo *di;
6603 struct metadata_update *mu;
6604 struct dl *dl;
6605 struct imsm_update_activate_spare *u;
6606 int num_spares = 0;
6607 int i;
95d07a2c 6608 int allowed;
88758e9d
DW
6609
6610 for (d = a->info.devs ; d ; d = d->next) {
6611 if ((d->curr_state & DS_FAULTY) &&
6612 d->state_fd >= 0)
6613 /* wait for Removal to happen */
6614 return NULL;
6615 if (d->state_fd >= 0)
6616 failed--;
6617 }
6618
6619 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6620 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 6621
e2962bfc
AK
6622 if (imsm_reshape_blocks_arrays_changes(super))
6623 return NULL;
1af97990 6624
89c67882
AK
6625 if (a->info.array.level == 4)
6626 /* No repair for takeovered array
6627 * imsm doesn't support raid4
6628 */
6629 return NULL;
6630
fb49eef2 6631 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
6632 return NULL;
6633
95d07a2c
LM
6634 /*
6635 * If there are any failed disks check state of the other volume.
6636 * Block rebuild if the another one is failed until failed disks
6637 * are removed from container.
6638 */
6639 if (failed) {
6640 dprintf("found failed disks in %s, check if there another"
6641 "failed sub-array.\n",
6642 dev->volume);
6643 /* check if states of the other volumes allow for rebuild */
6644 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6645 if (i != inst) {
6646 allowed = imsm_rebuild_allowed(a->container,
6647 i, failed);
6648 if (!allowed)
6649 return NULL;
6650 }
6651 }
6652 }
6653
88758e9d 6654 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6655 for (i = 0; i < a->info.array.raid_disks; i++) {
6656 for (d = a->info.devs ; d ; d = d->next)
6657 if (d->disk.raid_disk == i)
6658 break;
6659 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6660 if (d && (d->state_fd >= 0))
6661 continue;
6662
272906ef 6663 /*
a20d2ba5
DW
6664 * OK, this device needs recovery. Try to re-add the
6665 * previous occupant of this slot, if this fails see if
6666 * we can continue the assimilation of a spare that was
6667 * partially assimilated, finally try to activate a new
6668 * spare.
272906ef
DW
6669 */
6670 dl = imsm_readd(super, i, a);
6671 if (!dl)
8ba77d32 6672 dl = imsm_add_spare(super, i, a, 0, NULL);
a20d2ba5 6673 if (!dl)
8ba77d32 6674 dl = imsm_add_spare(super, i, a, 1, NULL);
272906ef
DW
6675 if (!dl)
6676 continue;
6677
6678 /* found a usable disk with enough space */
6679 di = malloc(sizeof(*di));
79244939
DW
6680 if (!di)
6681 continue;
272906ef
DW
6682 memset(di, 0, sizeof(*di));
6683
6684 /* dl->index will be -1 in the case we are activating a
6685 * pristine spare. imsm_process_update() will create a
6686 * new index in this case. Once a disk is found to be
6687 * failed in all member arrays it is kicked from the
6688 * metadata
6689 */
6690 di->disk.number = dl->index;
d23fe947 6691
272906ef
DW
6692 /* (ab)use di->devs to store a pointer to the device
6693 * we chose
6694 */
6695 di->devs = (struct mdinfo *) dl;
6696
6697 di->disk.raid_disk = i;
6698 di->disk.major = dl->major;
6699 di->disk.minor = dl->minor;
6700 di->disk.state = 0;
d23534e4 6701 di->recovery_start = 0;
272906ef
DW
6702 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6703 di->component_size = a->info.component_size;
6704 di->container_member = inst;
148acb7b 6705 super->random = random32();
272906ef
DW
6706 di->next = rv;
6707 rv = di;
6708 num_spares++;
6709 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6710 i, di->data_offset);
88758e9d 6711
272906ef 6712 break;
88758e9d
DW
6713 }
6714
6715 if (!rv)
6716 /* No spares found */
6717 return rv;
6718 /* Now 'rv' has a list of devices to return.
6719 * Create a metadata_update record to update the
6720 * disk_ord_tbl for the array
6721 */
6722 mu = malloc(sizeof(*mu));
79244939
DW
6723 if (mu) {
6724 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6725 if (mu->buf == NULL) {
6726 free(mu);
6727 mu = NULL;
6728 }
6729 }
6730 if (!mu) {
6731 while (rv) {
6732 struct mdinfo *n = rv->next;
6733
6734 free(rv);
6735 rv = n;
6736 }
6737 return NULL;
6738 }
6739
88758e9d 6740 mu->space = NULL;
cb23f1f4 6741 mu->space_list = NULL;
88758e9d
DW
6742 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6743 mu->next = *updates;
6744 u = (struct imsm_update_activate_spare *) mu->buf;
6745
6746 for (di = rv ; di ; di = di->next) {
6747 u->type = update_activate_spare;
d23fe947
DW
6748 u->dl = (struct dl *) di->devs;
6749 di->devs = NULL;
88758e9d
DW
6750 u->slot = di->disk.raid_disk;
6751 u->array = inst;
6752 u->next = u + 1;
6753 u++;
6754 }
6755 (u-1)->next = NULL;
6756 *updates = mu;
6757
6758 return rv;
6759}
6760
54c2c1ea 6761static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6762{
54c2c1ea
DW
6763 struct imsm_dev *dev = get_imsm_dev(super, idx);
6764 struct imsm_map *map = get_imsm_map(dev, 0);
6765 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6766 struct disk_info *inf = get_disk_info(u);
6767 struct imsm_disk *disk;
8273f55e
DW
6768 int i;
6769 int j;
8273f55e 6770
54c2c1ea 6771 for (i = 0; i < map->num_members; i++) {
98130f40 6772 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6773 for (j = 0; j < new_map->num_members; j++)
6774 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6775 return 1;
6776 }
6777
6778 return 0;
6779}
6780
1a64be56
LM
6781
6782static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6783{
6784 struct dl *dl = NULL;
6785 for (dl = super->disks; dl; dl = dl->next)
6786 if ((dl->major == major) && (dl->minor == minor))
6787 return dl;
6788 return NULL;
6789}
6790
6791static int remove_disk_super(struct intel_super *super, int major, int minor)
6792{
6793 struct dl *prev = NULL;
6794 struct dl *dl;
6795
6796 prev = NULL;
6797 for (dl = super->disks; dl; dl = dl->next) {
6798 if ((dl->major == major) && (dl->minor == minor)) {
6799 /* remove */
6800 if (prev)
6801 prev->next = dl->next;
6802 else
6803 super->disks = dl->next;
6804 dl->next = NULL;
6805 __free_imsm_disk(dl);
6806 dprintf("%s: removed %x:%x\n",
6807 __func__, major, minor);
6808 break;
6809 }
6810 prev = dl;
6811 }
6812 return 0;
6813}
6814
f21e18ca 6815static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6816
1a64be56
LM
6817static int add_remove_disk_update(struct intel_super *super)
6818{
6819 int check_degraded = 0;
6820 struct dl *disk = NULL;
6821 /* add/remove some spares to/from the metadata/contrainer */
6822 while (super->disk_mgmt_list) {
6823 struct dl *disk_cfg;
6824
6825 disk_cfg = super->disk_mgmt_list;
6826 super->disk_mgmt_list = disk_cfg->next;
6827 disk_cfg->next = NULL;
6828
6829 if (disk_cfg->action == DISK_ADD) {
6830 disk_cfg->next = super->disks;
6831 super->disks = disk_cfg;
6832 check_degraded = 1;
6833 dprintf("%s: added %x:%x\n",
6834 __func__, disk_cfg->major,
6835 disk_cfg->minor);
6836 } else if (disk_cfg->action == DISK_REMOVE) {
6837 dprintf("Disk remove action processed: %x.%x\n",
6838 disk_cfg->major, disk_cfg->minor);
6839 disk = get_disk_super(super,
6840 disk_cfg->major,
6841 disk_cfg->minor);
6842 if (disk) {
6843 /* store action status */
6844 disk->action = DISK_REMOVE;
6845 /* remove spare disks only */
6846 if (disk->index == -1) {
6847 remove_disk_super(super,
6848 disk_cfg->major,
6849 disk_cfg->minor);
6850 }
6851 }
6852 /* release allocate disk structure */
6853 __free_imsm_disk(disk_cfg);
6854 }
6855 }
6856 return check_degraded;
6857}
6858
a29911da
PC
6859
6860static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6861 struct intel_super *super,
6862 void ***space_list)
6863{
6864 struct intel_dev *id;
6865 void **tofree = NULL;
6866 int ret_val = 0;
6867
6868 dprintf("apply_reshape_migration_update()\n");
6869 if ((u->subdev < 0) ||
6870 (u->subdev > 1)) {
6871 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6872 return ret_val;
6873 }
6874 if ((space_list == NULL) || (*space_list == NULL)) {
6875 dprintf("imsm: Error: Memory is not allocated\n");
6876 return ret_val;
6877 }
6878
6879 for (id = super->devlist ; id; id = id->next) {
6880 if (id->index == (unsigned)u->subdev) {
6881 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6882 struct imsm_map *map;
6883 struct imsm_dev *new_dev =
6884 (struct imsm_dev *)*space_list;
6885 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6886 int to_state;
6887 struct dl *new_disk;
6888
6889 if (new_dev == NULL)
6890 return ret_val;
6891 *space_list = **space_list;
6892 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6893 map = get_imsm_map(new_dev, 0);
6894 if (migr_map) {
6895 dprintf("imsm: Error: migration in progress");
6896 return ret_val;
6897 }
6898
6899 to_state = map->map_state;
6900 if ((u->new_level == 5) && (map->raid_level == 0)) {
6901 map->num_members++;
6902 /* this should not happen */
6903 if (u->new_disks[0] < 0) {
6904 map->failed_disk_num =
6905 map->num_members - 1;
6906 to_state = IMSM_T_STATE_DEGRADED;
6907 } else
6908 to_state = IMSM_T_STATE_NORMAL;
6909 }
8e59f3d8 6910 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
6911 if (u->new_level > -1)
6912 map->raid_level = u->new_level;
6913 migr_map = get_imsm_map(new_dev, 1);
6914 if ((u->new_level == 5) &&
6915 (migr_map->raid_level == 0)) {
6916 int ord = map->num_members - 1;
6917 migr_map->num_members--;
6918 if (u->new_disks[0] < 0)
6919 ord |= IMSM_ORD_REBUILD;
6920 set_imsm_ord_tbl_ent(map,
6921 map->num_members - 1,
6922 ord);
6923 }
6924 id->dev = new_dev;
6925 tofree = (void **)dev;
6926
4bba0439
PC
6927 /* update chunk size
6928 */
6929 if (u->new_chunksize > 0)
6930 map->blocks_per_strip =
6931 __cpu_to_le16(u->new_chunksize * 2);
6932
a29911da
PC
6933 /* add disk
6934 */
6935 if ((u->new_level != 5) ||
6936 (migr_map->raid_level != 0) ||
6937 (migr_map->raid_level == map->raid_level))
6938 goto skip_disk_add;
6939
6940 if (u->new_disks[0] >= 0) {
6941 /* use passes spare
6942 */
6943 new_disk = get_disk_super(super,
6944 major(u->new_disks[0]),
6945 minor(u->new_disks[0]));
6946 dprintf("imsm: new disk for reshape is: %i:%i "
6947 "(%p, index = %i)\n",
6948 major(u->new_disks[0]),
6949 minor(u->new_disks[0]),
6950 new_disk, new_disk->index);
6951 if (new_disk == NULL)
6952 goto error_disk_add;
6953
6954 new_disk->index = map->num_members - 1;
6955 /* slot to fill in autolayout
6956 */
6957 new_disk->raiddisk = new_disk->index;
6958 new_disk->disk.status |= CONFIGURED_DISK;
6959 new_disk->disk.status &= ~SPARE_DISK;
6960 } else
6961 goto error_disk_add;
6962
6963skip_disk_add:
6964 *tofree = *space_list;
6965 /* calculate new size
6966 */
6967 imsm_set_array_size(new_dev);
6968
6969 ret_val = 1;
6970 }
6971 }
6972
6973 if (tofree)
6974 *space_list = tofree;
6975 return ret_val;
6976
6977error_disk_add:
6978 dprintf("Error: imsm: Cannot find disk.\n");
6979 return ret_val;
6980}
6981
6982
2e5dc010
N
6983static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6984 struct intel_super *super,
6985 void ***space_list)
6986{
6987 struct dl *new_disk;
6988 struct intel_dev *id;
6989 int i;
6990 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 6991 int disk_count = u->old_raid_disks;
2e5dc010
N
6992 void **tofree = NULL;
6993 int devices_to_reshape = 1;
6994 struct imsm_super *mpb = super->anchor;
6995 int ret_val = 0;
d098291a 6996 unsigned int dev_id;
2e5dc010 6997
ed7333bd 6998 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
6999
7000 /* enable spares to use in array */
7001 for (i = 0; i < delta_disks; i++) {
7002 new_disk = get_disk_super(super,
7003 major(u->new_disks[i]),
7004 minor(u->new_disks[i]));
ed7333bd
AK
7005 dprintf("imsm: new disk for reshape is: %i:%i "
7006 "(%p, index = %i)\n",
2e5dc010
N
7007 major(u->new_disks[i]), minor(u->new_disks[i]),
7008 new_disk, new_disk->index);
7009 if ((new_disk == NULL) ||
7010 ((new_disk->index >= 0) &&
7011 (new_disk->index < u->old_raid_disks)))
7012 goto update_reshape_exit;
ee4beede 7013 new_disk->index = disk_count++;
2e5dc010
N
7014 /* slot to fill in autolayout
7015 */
7016 new_disk->raiddisk = new_disk->index;
7017 new_disk->disk.status |=
7018 CONFIGURED_DISK;
7019 new_disk->disk.status &= ~SPARE_DISK;
7020 }
7021
ed7333bd
AK
7022 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7023 mpb->num_raid_devs);
2e5dc010
N
7024 /* manage changes in volume
7025 */
d098291a 7026 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
7027 void **sp = *space_list;
7028 struct imsm_dev *newdev;
7029 struct imsm_map *newmap, *oldmap;
7030
d098291a
AK
7031 for (id = super->devlist ; id; id = id->next) {
7032 if (id->index == dev_id)
7033 break;
7034 }
7035 if (id == NULL)
7036 break;
2e5dc010
N
7037 if (!sp)
7038 continue;
7039 *space_list = *sp;
7040 newdev = (void*)sp;
7041 /* Copy the dev, but not (all of) the map */
7042 memcpy(newdev, id->dev, sizeof(*newdev));
7043 oldmap = get_imsm_map(id->dev, 0);
7044 newmap = get_imsm_map(newdev, 0);
7045 /* Copy the current map */
7046 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7047 /* update one device only
7048 */
7049 if (devices_to_reshape) {
ed7333bd
AK
7050 dprintf("imsm: modifying subdev: %i\n",
7051 id->index);
2e5dc010
N
7052 devices_to_reshape--;
7053 newdev->vol.migr_state = 1;
7054 newdev->vol.curr_migr_unit = 0;
7055 newdev->vol.migr_type = MIGR_GEN_MIGR;
7056 newmap->num_members = u->new_raid_disks;
7057 for (i = 0; i < delta_disks; i++) {
7058 set_imsm_ord_tbl_ent(newmap,
7059 u->old_raid_disks + i,
7060 u->old_raid_disks + i);
7061 }
7062 /* New map is correct, now need to save old map
7063 */
7064 newmap = get_imsm_map(newdev, 1);
7065 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7066
70bdf0dc 7067 imsm_set_array_size(newdev);
2e5dc010
N
7068 }
7069
7070 sp = (void **)id->dev;
7071 id->dev = newdev;
7072 *sp = tofree;
7073 tofree = sp;
8e59f3d8
AK
7074
7075 /* Clear migration record */
7076 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 7077 }
819bc634
AK
7078 if (tofree)
7079 *space_list = tofree;
2e5dc010
N
7080 ret_val = 1;
7081
7082update_reshape_exit:
7083
7084 return ret_val;
7085}
7086
bb025c2f 7087static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
7088 struct intel_super *super,
7089 void ***space_list)
bb025c2f
KW
7090{
7091 struct imsm_dev *dev = NULL;
8ca6df95
KW
7092 struct intel_dev *dv;
7093 struct imsm_dev *dev_new;
bb025c2f
KW
7094 struct imsm_map *map;
7095 struct dl *dm, *du;
8ca6df95 7096 int i;
bb025c2f
KW
7097
7098 for (dv = super->devlist; dv; dv = dv->next)
7099 if (dv->index == (unsigned int)u->subarray) {
7100 dev = dv->dev;
7101 break;
7102 }
7103
7104 if (dev == NULL)
7105 return 0;
7106
7107 map = get_imsm_map(dev, 0);
7108
7109 if (u->direction == R10_TO_R0) {
43d5ec18
KW
7110 /* Number of failed disks must be half of initial disk number */
7111 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7112 return 0;
7113
bb025c2f
KW
7114 /* iterate through devices to mark removed disks as spare */
7115 for (dm = super->disks; dm; dm = dm->next) {
7116 if (dm->disk.status & FAILED_DISK) {
7117 int idx = dm->index;
7118 /* update indexes on the disk list */
7119/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7120 the index values will end up being correct.... NB */
7121 for (du = super->disks; du; du = du->next)
7122 if (du->index > idx)
7123 du->index--;
7124 /* mark as spare disk */
a8619d23 7125 mark_spare(dm);
bb025c2f
KW
7126 }
7127 }
bb025c2f
KW
7128 /* update map */
7129 map->num_members = map->num_members / 2;
7130 map->map_state = IMSM_T_STATE_NORMAL;
7131 map->num_domains = 1;
7132 map->raid_level = 0;
7133 map->failed_disk_num = -1;
7134 }
7135
8ca6df95
KW
7136 if (u->direction == R0_TO_R10) {
7137 void **space;
7138 /* update slots in current disk list */
7139 for (dm = super->disks; dm; dm = dm->next) {
7140 if (dm->index >= 0)
7141 dm->index *= 2;
7142 }
7143 /* create new *missing* disks */
7144 for (i = 0; i < map->num_members; i++) {
7145 space = *space_list;
7146 if (!space)
7147 continue;
7148 *space_list = *space;
7149 du = (void *)space;
7150 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
7151 du->fd = -1;
7152 du->minor = 0;
7153 du->major = 0;
7154 du->index = (i * 2) + 1;
7155 sprintf((char *)du->disk.serial,
7156 " MISSING_%d", du->index);
7157 sprintf((char *)du->serial,
7158 "MISSING_%d", du->index);
7159 du->next = super->missing;
7160 super->missing = du;
7161 }
7162 /* create new dev and map */
7163 space = *space_list;
7164 if (!space)
7165 return 0;
7166 *space_list = *space;
7167 dev_new = (void *)space;
7168 memcpy(dev_new, dev, sizeof(*dev));
7169 /* update new map */
7170 map = get_imsm_map(dev_new, 0);
8ca6df95 7171 map->num_members = map->num_members * 2;
1a2487c2 7172 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
7173 map->num_domains = 2;
7174 map->raid_level = 1;
7175 /* replace dev<->dev_new */
7176 dv->dev = dev_new;
7177 }
bb025c2f
KW
7178 /* update disk order table */
7179 for (du = super->disks; du; du = du->next)
7180 if (du->index >= 0)
7181 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 7182 for (du = super->missing; du; du = du->next)
1a2487c2
KW
7183 if (du->index >= 0) {
7184 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 7185 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 7186 }
bb025c2f
KW
7187
7188 return 1;
7189}
7190
e8319a19
DW
7191static void imsm_process_update(struct supertype *st,
7192 struct metadata_update *update)
7193{
7194 /**
7195 * crack open the metadata_update envelope to find the update record
7196 * update can be one of:
d195167d
AK
7197 * update_reshape_container_disks - all the arrays in the container
7198 * are being reshaped to have more devices. We need to mark
7199 * the arrays for general migration and convert selected spares
7200 * into active devices.
7201 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
7202 * device in an array, update the disk_ord_tbl. If this disk is
7203 * present in all member arrays then also clear the SPARE_DISK
7204 * flag
d195167d
AK
7205 * update_create_array
7206 * update_kill_array
7207 * update_rename_array
7208 * update_add_remove_disk
e8319a19
DW
7209 */
7210 struct intel_super *super = st->sb;
4d7b1503 7211 struct imsm_super *mpb;
e8319a19
DW
7212 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7213
4d7b1503
DW
7214 /* update requires a larger buf but the allocation failed */
7215 if (super->next_len && !super->next_buf) {
7216 super->next_len = 0;
7217 return;
7218 }
7219
7220 if (super->next_buf) {
7221 memcpy(super->next_buf, super->buf, super->len);
7222 free(super->buf);
7223 super->len = super->next_len;
7224 super->buf = super->next_buf;
7225
7226 super->next_len = 0;
7227 super->next_buf = NULL;
7228 }
7229
7230 mpb = super->anchor;
7231
e8319a19 7232 switch (type) {
0ec5d470
AK
7233 case update_general_migration_checkpoint: {
7234 struct intel_dev *id;
7235 struct imsm_update_general_migration_checkpoint *u =
7236 (void *)update->buf;
7237
7238 dprintf("imsm: process_update() "
7239 "for update_general_migration_checkpoint called\n");
7240
7241 /* find device under general migration */
7242 for (id = super->devlist ; id; id = id->next) {
7243 if (is_gen_migration(id->dev)) {
7244 id->dev->vol.curr_migr_unit =
7245 __cpu_to_le32(u->curr_migr_unit);
7246 super->updates_pending++;
7247 }
7248 }
7249 break;
7250 }
bb025c2f
KW
7251 case update_takeover: {
7252 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
7253 if (apply_takeover_update(u, super, &update->space_list)) {
7254 imsm_update_version_info(super);
bb025c2f 7255 super->updates_pending++;
1a2487c2 7256 }
bb025c2f
KW
7257 break;
7258 }
7259
78b10e66 7260 case update_reshape_container_disks: {
d195167d 7261 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
7262 if (apply_reshape_container_disks_update(
7263 u, super, &update->space_list))
7264 super->updates_pending++;
78b10e66
N
7265 break;
7266 }
48c5303a 7267 case update_reshape_migration: {
a29911da
PC
7268 struct imsm_update_reshape_migration *u = (void *)update->buf;
7269 if (apply_reshape_migration_update(
7270 u, super, &update->space_list))
7271 super->updates_pending++;
48c5303a
PC
7272 break;
7273 }
e8319a19
DW
7274 case update_activate_spare: {
7275 struct imsm_update_activate_spare *u = (void *) update->buf;
949c47a0 7276 struct imsm_dev *dev = get_imsm_dev(super, u->array);
a965f303 7277 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd 7278 struct imsm_map *migr_map;
e8319a19
DW
7279 struct active_array *a;
7280 struct imsm_disk *disk;
0c046afd 7281 __u8 to_state;
e8319a19 7282 struct dl *dl;
e8319a19 7283 unsigned int found;
0c046afd 7284 int failed;
98130f40 7285 int victim = get_imsm_disk_idx(dev, u->slot, -1);
e8319a19
DW
7286 int i;
7287
7288 for (dl = super->disks; dl; dl = dl->next)
d23fe947 7289 if (dl == u->dl)
e8319a19
DW
7290 break;
7291
7292 if (!dl) {
7293 fprintf(stderr, "error: imsm_activate_spare passed "
1f24f035
DW
7294 "an unknown disk (index: %d)\n",
7295 u->dl->index);
e8319a19
DW
7296 return;
7297 }
7298
7299 super->updates_pending++;
0c046afd
DW
7300 /* count failures (excluding rebuilds and the victim)
7301 * to determine map[0] state
7302 */
7303 failed = 0;
7304 for (i = 0; i < map->num_members; i++) {
7305 if (i == u->slot)
7306 continue;
98130f40
AK
7307 disk = get_imsm_disk(super,
7308 get_imsm_disk_idx(dev, i, -1));
25ed7e59 7309 if (!disk || is_failed(disk))
0c046afd
DW
7310 failed++;
7311 }
7312
d23fe947
DW
7313 /* adding a pristine spare, assign a new index */
7314 if (dl->index < 0) {
7315 dl->index = super->anchor->num_disks;
7316 super->anchor->num_disks++;
7317 }
d23fe947 7318 disk = &dl->disk;
f2f27e63
DW
7319 disk->status |= CONFIGURED_DISK;
7320 disk->status &= ~SPARE_DISK;
e8319a19 7321
0c046afd
DW
7322 /* mark rebuild */
7323 to_state = imsm_check_degraded(super, dev, failed);
7324 map->map_state = IMSM_T_STATE_DEGRADED;
8e59f3d8 7325 migrate(dev, super, to_state, MIGR_REBUILD);
0c046afd
DW
7326 migr_map = get_imsm_map(dev, 1);
7327 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7328 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
7329
148acb7b
DW
7330 /* update the family_num to mark a new container
7331 * generation, being careful to record the existing
7332 * family_num in orig_family_num to clean up after
7333 * earlier mdadm versions that neglected to set it.
7334 */
7335 if (mpb->orig_family_num == 0)
7336 mpb->orig_family_num = mpb->family_num;
7337 mpb->family_num += super->random;
7338
e8319a19
DW
7339 /* count arrays using the victim in the metadata */
7340 found = 0;
7341 for (a = st->arrays; a ; a = a->next) {
949c47a0 7342 dev = get_imsm_dev(super, a->info.container_member);
620b1713
DW
7343 map = get_imsm_map(dev, 0);
7344
7345 if (get_imsm_disk_slot(map, victim) >= 0)
7346 found++;
e8319a19
DW
7347 }
7348
24565c9a 7349 /* delete the victim if it is no longer being
e8319a19
DW
7350 * utilized anywhere
7351 */
e8319a19 7352 if (!found) {
ae6aad82 7353 struct dl **dlp;
24565c9a 7354
47ee5a45
DW
7355 /* We know that 'manager' isn't touching anything,
7356 * so it is safe to delete
7357 */
24565c9a 7358 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
ae6aad82
DW
7359 if ((*dlp)->index == victim)
7360 break;
47ee5a45
DW
7361
7362 /* victim may be on the missing list */
7363 if (!*dlp)
7364 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
7365 if ((*dlp)->index == victim)
7366 break;
24565c9a 7367 imsm_delete(super, dlp, victim);
e8319a19 7368 }
8273f55e
DW
7369 break;
7370 }
7371 case update_create_array: {
7372 /* someone wants to create a new array, we need to be aware of
7373 * a few races/collisions:
7374 * 1/ 'Create' called by two separate instances of mdadm
7375 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7376 * devices that have since been assimilated via
7377 * activate_spare.
7378 * In the event this update can not be carried out mdadm will
7379 * (FIX ME) notice that its update did not take hold.
7380 */
7381 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7382 struct intel_dev *dv;
8273f55e
DW
7383 struct imsm_dev *dev;
7384 struct imsm_map *map, *new_map;
7385 unsigned long long start, end;
7386 unsigned long long new_start, new_end;
7387 int i;
54c2c1ea
DW
7388 struct disk_info *inf;
7389 struct dl *dl;
8273f55e
DW
7390
7391 /* handle racing creates: first come first serve */
7392 if (u->dev_idx < mpb->num_raid_devs) {
7393 dprintf("%s: subarray %d already defined\n",
7394 __func__, u->dev_idx);
ba2de7ba 7395 goto create_error;
8273f55e
DW
7396 }
7397
7398 /* check update is next in sequence */
7399 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7400 dprintf("%s: can not create array %d expected index %d\n",
7401 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7402 goto create_error;
8273f55e
DW
7403 }
7404
a965f303 7405 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
7406 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7407 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7408 inf = get_disk_info(u);
8273f55e
DW
7409
7410 /* handle activate_spare versus create race:
7411 * check to make sure that overlapping arrays do not include
7412 * overalpping disks
7413 */
7414 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7415 dev = get_imsm_dev(super, i);
a965f303 7416 map = get_imsm_map(dev, 0);
8273f55e
DW
7417 start = __le32_to_cpu(map->pba_of_lba0);
7418 end = start + __le32_to_cpu(map->blocks_per_member);
7419 if ((new_start >= start && new_start <= end) ||
7420 (start >= new_start && start <= new_end))
54c2c1ea
DW
7421 /* overlap */;
7422 else
7423 continue;
7424
7425 if (disks_overlap(super, i, u)) {
8273f55e 7426 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7427 goto create_error;
8273f55e
DW
7428 }
7429 }
8273f55e 7430
949c47a0
DW
7431 /* check that prepare update was successful */
7432 if (!update->space) {
7433 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7434 goto create_error;
949c47a0
DW
7435 }
7436
54c2c1ea
DW
7437 /* check that all disks are still active before committing
7438 * changes. FIXME: could we instead handle this by creating a
7439 * degraded array? That's probably not what the user expects,
7440 * so better to drop this update on the floor.
7441 */
7442 for (i = 0; i < new_map->num_members; i++) {
7443 dl = serial_to_dl(inf[i].serial, super);
7444 if (!dl) {
7445 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7446 goto create_error;
54c2c1ea 7447 }
949c47a0
DW
7448 }
7449
8273f55e 7450 super->updates_pending++;
54c2c1ea
DW
7451
7452 /* convert spares to members and fixup ord_tbl */
7453 for (i = 0; i < new_map->num_members; i++) {
7454 dl = serial_to_dl(inf[i].serial, super);
7455 if (dl->index == -1) {
7456 dl->index = mpb->num_disks;
7457 mpb->num_disks++;
7458 dl->disk.status |= CONFIGURED_DISK;
7459 dl->disk.status &= ~SPARE_DISK;
7460 }
7461 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7462 }
7463
ba2de7ba
DW
7464 dv = update->space;
7465 dev = dv->dev;
949c47a0
DW
7466 update->space = NULL;
7467 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7468 dv->index = u->dev_idx;
7469 dv->next = super->devlist;
7470 super->devlist = dv;
8273f55e 7471 mpb->num_raid_devs++;
8273f55e 7472
4d1313e9 7473 imsm_update_version_info(super);
8273f55e 7474 break;
ba2de7ba
DW
7475 create_error:
7476 /* mdmon knows how to release update->space, but not
7477 * ((struct intel_dev *) update->space)->dev
7478 */
7479 if (update->space) {
7480 dv = update->space;
7481 free(dv->dev);
7482 }
8273f55e 7483 break;
e8319a19 7484 }
33414a01
DW
7485 case update_kill_array: {
7486 struct imsm_update_kill_array *u = (void *) update->buf;
7487 int victim = u->dev_idx;
7488 struct active_array *a;
7489 struct intel_dev **dp;
7490 struct imsm_dev *dev;
7491
7492 /* sanity check that we are not affecting the uuid of
7493 * active arrays, or deleting an active array
7494 *
7495 * FIXME when immutable ids are available, but note that
7496 * we'll also need to fixup the invalidated/active
7497 * subarray indexes in mdstat
7498 */
7499 for (a = st->arrays; a; a = a->next)
7500 if (a->info.container_member >= victim)
7501 break;
7502 /* by definition if mdmon is running at least one array
7503 * is active in the container, so checking
7504 * mpb->num_raid_devs is just extra paranoia
7505 */
7506 dev = get_imsm_dev(super, victim);
7507 if (a || !dev || mpb->num_raid_devs == 1) {
7508 dprintf("failed to delete subarray-%d\n", victim);
7509 break;
7510 }
7511
7512 for (dp = &super->devlist; *dp;)
f21e18ca 7513 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7514 *dp = (*dp)->next;
7515 } else {
f21e18ca 7516 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7517 (*dp)->index--;
7518 dp = &(*dp)->next;
7519 }
7520 mpb->num_raid_devs--;
7521 super->updates_pending++;
7522 break;
7523 }
aa534678
DW
7524 case update_rename_array: {
7525 struct imsm_update_rename_array *u = (void *) update->buf;
7526 char name[MAX_RAID_SERIAL_LEN+1];
7527 int target = u->dev_idx;
7528 struct active_array *a;
7529 struct imsm_dev *dev;
7530
7531 /* sanity check that we are not affecting the uuid of
7532 * an active array
7533 */
7534 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7535 name[MAX_RAID_SERIAL_LEN] = '\0';
7536 for (a = st->arrays; a; a = a->next)
7537 if (a->info.container_member == target)
7538 break;
7539 dev = get_imsm_dev(super, u->dev_idx);
7540 if (a || !dev || !check_name(super, name, 1)) {
7541 dprintf("failed to rename subarray-%d\n", target);
7542 break;
7543 }
7544
cdbe98cd 7545 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7546 super->updates_pending++;
7547 break;
7548 }
1a64be56 7549 case update_add_remove_disk: {
43dad3d6 7550 /* we may be able to repair some arrays if disks are
1a64be56
LM
7551 * being added, check teh status of add_remove_disk
7552 * if discs has been added.
7553 */
7554 if (add_remove_disk_update(super)) {
43dad3d6 7555 struct active_array *a;
072b727f
DW
7556
7557 super->updates_pending++;
1a64be56 7558 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7559 a->check_degraded = 1;
7560 }
43dad3d6 7561 break;
e8319a19 7562 }
1a64be56
LM
7563 default:
7564 fprintf(stderr, "error: unsuported process update type:"
7565 "(type: %d)\n", type);
7566 }
e8319a19 7567}
88758e9d 7568
bc0b9d34
PC
7569static struct mdinfo *get_spares_for_grow(struct supertype *st);
7570
8273f55e
DW
7571static void imsm_prepare_update(struct supertype *st,
7572 struct metadata_update *update)
7573{
949c47a0 7574 /**
4d7b1503
DW
7575 * Allocate space to hold new disk entries, raid-device entries or a new
7576 * mpb if necessary. The manager synchronously waits for updates to
7577 * complete in the monitor, so new mpb buffers allocated here can be
7578 * integrated by the monitor thread without worrying about live pointers
7579 * in the manager thread.
8273f55e 7580 */
949c47a0 7581 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7582 struct intel_super *super = st->sb;
7583 struct imsm_super *mpb = super->anchor;
7584 size_t buf_len;
7585 size_t len = 0;
949c47a0
DW
7586
7587 switch (type) {
0ec5d470
AK
7588 case update_general_migration_checkpoint:
7589 dprintf("imsm: prepare_update() "
7590 "for update_general_migration_checkpoint called\n");
7591 break;
abedf5fc
KW
7592 case update_takeover: {
7593 struct imsm_update_takeover *u = (void *)update->buf;
7594 if (u->direction == R0_TO_R10) {
7595 void **tail = (void **)&update->space_list;
7596 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7597 struct imsm_map *map = get_imsm_map(dev, 0);
7598 int num_members = map->num_members;
7599 void *space;
7600 int size, i;
7601 int err = 0;
7602 /* allocate memory for added disks */
7603 for (i = 0; i < num_members; i++) {
7604 size = sizeof(struct dl);
7605 space = malloc(size);
7606 if (!space) {
7607 err++;
7608 break;
7609 }
7610 *tail = space;
7611 tail = space;
7612 *tail = NULL;
7613 }
7614 /* allocate memory for new device */
7615 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7616 (num_members * sizeof(__u32));
7617 space = malloc(size);
7618 if (!space)
7619 err++;
7620 else {
7621 *tail = space;
7622 tail = space;
7623 *tail = NULL;
7624 }
7625 if (!err) {
7626 len = disks_to_mpb_size(num_members * 2);
7627 } else {
7628 /* if allocation didn't success, free buffer */
7629 while (update->space_list) {
7630 void **sp = update->space_list;
7631 update->space_list = *sp;
7632 free(sp);
7633 }
7634 }
7635 }
7636
7637 break;
7638 }
78b10e66 7639 case update_reshape_container_disks: {
d195167d
AK
7640 /* Every raid device in the container is about to
7641 * gain some more devices, and we will enter a
7642 * reconfiguration.
7643 * So each 'imsm_map' will be bigger, and the imsm_vol
7644 * will now hold 2 of them.
7645 * Thus we need new 'struct imsm_dev' allocations sized
7646 * as sizeof_imsm_dev but with more devices in both maps.
7647 */
7648 struct imsm_update_reshape *u = (void *)update->buf;
7649 struct intel_dev *dl;
7650 void **space_tail = (void**)&update->space_list;
7651
7652 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7653
7654 for (dl = super->devlist; dl; dl = dl->next) {
7655 int size = sizeof_imsm_dev(dl->dev, 1);
7656 void *s;
d677e0b8
AK
7657 if (u->new_raid_disks > u->old_raid_disks)
7658 size += sizeof(__u32)*2*
7659 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7660 s = malloc(size);
7661 if (!s)
7662 break;
7663 *space_tail = s;
7664 space_tail = s;
7665 *space_tail = NULL;
7666 }
7667
7668 len = disks_to_mpb_size(u->new_raid_disks);
7669 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7670 break;
7671 }
48c5303a 7672 case update_reshape_migration: {
bc0b9d34
PC
7673 /* for migration level 0->5 we need to add disks
7674 * so the same as for container operation we will copy
7675 * device to the bigger location.
7676 * in memory prepared device and new disk area are prepared
7677 * for usage in process update
7678 */
7679 struct imsm_update_reshape_migration *u = (void *)update->buf;
7680 struct intel_dev *id;
7681 void **space_tail = (void **)&update->space_list;
7682 int size;
7683 void *s;
7684 int current_level = -1;
7685
7686 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7687
7688 /* add space for bigger array in update
7689 */
7690 for (id = super->devlist; id; id = id->next) {
7691 if (id->index == (unsigned)u->subdev) {
7692 size = sizeof_imsm_dev(id->dev, 1);
7693 if (u->new_raid_disks > u->old_raid_disks)
7694 size += sizeof(__u32)*2*
7695 (u->new_raid_disks - u->old_raid_disks);
7696 s = malloc(size);
7697 if (!s)
7698 break;
7699 *space_tail = s;
7700 space_tail = s;
7701 *space_tail = NULL;
7702 break;
7703 }
7704 }
7705 if (update->space_list == NULL)
7706 break;
7707
7708 /* add space for disk in update
7709 */
7710 size = sizeof(struct dl);
7711 s = malloc(size);
7712 if (!s) {
7713 free(update->space_list);
7714 update->space_list = NULL;
7715 break;
7716 }
7717 *space_tail = s;
7718 space_tail = s;
7719 *space_tail = NULL;
7720
7721 /* add spare device to update
7722 */
7723 for (id = super->devlist ; id; id = id->next)
7724 if (id->index == (unsigned)u->subdev) {
7725 struct imsm_dev *dev;
7726 struct imsm_map *map;
7727
7728 dev = get_imsm_dev(super, u->subdev);
7729 map = get_imsm_map(dev, 0);
7730 current_level = map->raid_level;
7731 break;
7732 }
7733 if ((u->new_level == 5) && (u->new_level != current_level)) {
7734 struct mdinfo *spares;
7735
7736 spares = get_spares_for_grow(st);
7737 if (spares) {
7738 struct dl *dl;
7739 struct mdinfo *dev;
7740
7741 dev = spares->devs;
7742 if (dev) {
7743 u->new_disks[0] =
7744 makedev(dev->disk.major,
7745 dev->disk.minor);
7746 dl = get_disk_super(super,
7747 dev->disk.major,
7748 dev->disk.minor);
7749 dl->index = u->old_raid_disks;
7750 dev = dev->next;
7751 }
7752 sysfs_free(spares);
7753 }
7754 }
7755 len = disks_to_mpb_size(u->new_raid_disks);
7756 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7757 break;
7758 }
949c47a0
DW
7759 case update_create_array: {
7760 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7761 struct intel_dev *dv;
54c2c1ea
DW
7762 struct imsm_dev *dev = &u->dev;
7763 struct imsm_map *map = get_imsm_map(dev, 0);
7764 struct dl *dl;
7765 struct disk_info *inf;
7766 int i;
7767 int activate = 0;
949c47a0 7768
54c2c1ea
DW
7769 inf = get_disk_info(u);
7770 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7771 /* allocate a new super->devlist entry */
7772 dv = malloc(sizeof(*dv));
7773 if (dv) {
7774 dv->dev = malloc(len);
7775 if (dv->dev)
7776 update->space = dv;
7777 else {
7778 free(dv);
7779 update->space = NULL;
7780 }
7781 }
949c47a0 7782
54c2c1ea
DW
7783 /* count how many spares will be converted to members */
7784 for (i = 0; i < map->num_members; i++) {
7785 dl = serial_to_dl(inf[i].serial, super);
7786 if (!dl) {
7787 /* hmm maybe it failed?, nothing we can do about
7788 * it here
7789 */
7790 continue;
7791 }
7792 if (count_memberships(dl, super) == 0)
7793 activate++;
7794 }
7795 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7796 break;
7797 default:
7798 break;
7799 }
7800 }
8273f55e 7801
4d7b1503
DW
7802 /* check if we need a larger metadata buffer */
7803 if (super->next_buf)
7804 buf_len = super->next_len;
7805 else
7806 buf_len = super->len;
7807
7808 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7809 /* ok we need a larger buf than what is currently allocated
7810 * if this allocation fails process_update will notice that
7811 * ->next_len is set and ->next_buf is NULL
7812 */
7813 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7814 if (super->next_buf)
7815 free(super->next_buf);
7816
7817 super->next_len = buf_len;
1f45a8ad
DW
7818 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7819 memset(super->next_buf, 0, buf_len);
7820 else
4d7b1503
DW
7821 super->next_buf = NULL;
7822 }
8273f55e
DW
7823}
7824
ae6aad82 7825/* must be called while manager is quiesced */
f21e18ca 7826static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7827{
7828 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7829 struct dl *iter;
7830 struct imsm_dev *dev;
7831 struct imsm_map *map;
24565c9a
DW
7832 int i, j, num_members;
7833 __u32 ord;
ae6aad82 7834
24565c9a
DW
7835 dprintf("%s: deleting device[%d] from imsm_super\n",
7836 __func__, index);
ae6aad82
DW
7837
7838 /* shift all indexes down one */
7839 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7840 if (iter->index > (int)index)
ae6aad82 7841 iter->index--;
47ee5a45 7842 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7843 if (iter->index > (int)index)
47ee5a45 7844 iter->index--;
ae6aad82
DW
7845
7846 for (i = 0; i < mpb->num_raid_devs; i++) {
7847 dev = get_imsm_dev(super, i);
7848 map = get_imsm_map(dev, 0);
24565c9a
DW
7849 num_members = map->num_members;
7850 for (j = 0; j < num_members; j++) {
7851 /* update ord entries being careful not to propagate
7852 * ord-flags to the first map
7853 */
98130f40 7854 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7855
24565c9a
DW
7856 if (ord_to_idx(ord) <= index)
7857 continue;
ae6aad82 7858
24565c9a
DW
7859 map = get_imsm_map(dev, 0);
7860 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7861 map = get_imsm_map(dev, 1);
7862 if (map)
7863 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
7864 }
7865 }
7866
7867 mpb->num_disks--;
7868 super->updates_pending++;
24565c9a
DW
7869 if (*dlp) {
7870 struct dl *dl = *dlp;
7871
7872 *dlp = (*dlp)->next;
7873 __free_imsm_disk(dl);
7874 }
ae6aad82 7875}
9e2d750d 7876#endif /* MDASSEMBLE */
687629c2
AK
7877/*******************************************************************************
7878 * Function: open_backup_targets
7879 * Description: Function opens file descriptors for all devices given in
7880 * info->devs
7881 * Parameters:
7882 * info : general array info
7883 * raid_disks : number of disks
7884 * raid_fds : table of device's file descriptors
7885 * Returns:
7886 * 0 : success
7887 * -1 : fail
7888 ******************************************************************************/
7889int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7890{
7891 struct mdinfo *sd;
7892
7893 for (sd = info->devs ; sd ; sd = sd->next) {
7894 char *dn;
7895
7896 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7897 dprintf("disk is faulty!!\n");
7898 continue;
7899 }
7900
7901 if ((sd->disk.raid_disk >= raid_disks) ||
7902 (sd->disk.raid_disk < 0))
7903 continue;
7904
7905 dn = map_dev(sd->disk.major,
7906 sd->disk.minor, 1);
7907 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7908 if (raid_fds[sd->disk.raid_disk] < 0) {
7909 fprintf(stderr, "cannot open component\n");
7910 return -1;
7911 }
7912 }
7913 return 0;
7914}
7915
9e2d750d 7916#ifndef MDASSEMBLE
687629c2
AK
7917/*******************************************************************************
7918 * Function: init_migr_record_imsm
7919 * Description: Function inits imsm migration record
7920 * Parameters:
7921 * super : imsm internal array info
7922 * dev : device under migration
7923 * info : general array info to find the smallest device
7924 * Returns:
7925 * none
7926 ******************************************************************************/
7927void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7928 struct mdinfo *info)
7929{
7930 struct intel_super *super = st->sb;
7931 struct migr_record *migr_rec = super->migr_rec;
7932 int new_data_disks;
7933 unsigned long long dsize, dev_sectors;
7934 long long unsigned min_dev_sectors = -1LLU;
7935 struct mdinfo *sd;
7936 char nm[30];
7937 int fd;
7938 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7939 struct imsm_map *map_src = get_imsm_map(dev, 1);
7940 unsigned long long num_migr_units;
3ef4403c 7941 unsigned long long array_blocks;
687629c2
AK
7942
7943 memset(migr_rec, 0, sizeof(struct migr_record));
7944 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7945
7946 /* only ascending reshape supported now */
7947 migr_rec->ascending_migr = __cpu_to_le32(1);
7948
7949 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7950 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7951 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7952 new_data_disks = imsm_num_data_members(dev, 0);
7953 migr_rec->blocks_per_unit =
7954 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7955 migr_rec->dest_depth_per_unit =
7956 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 7957 array_blocks = info->component_size * new_data_disks;
687629c2
AK
7958 num_migr_units =
7959 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7960
7961 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7962 num_migr_units++;
7963 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7964
7965 migr_rec->post_migr_vol_cap = dev->size_low;
7966 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7967
7968
7969 /* Find the smallest dev */
7970 for (sd = info->devs ; sd ; sd = sd->next) {
7971 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7972 fd = dev_open(nm, O_RDONLY);
7973 if (fd < 0)
7974 continue;
7975 get_dev_size(fd, NULL, &dsize);
7976 dev_sectors = dsize / 512;
7977 if (dev_sectors < min_dev_sectors)
7978 min_dev_sectors = dev_sectors;
7979 close(fd);
7980 }
7981 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7982 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7983
7984 write_imsm_migr_rec(st);
7985
7986 return;
7987}
7988
7989/*******************************************************************************
7990 * Function: save_backup_imsm
7991 * Description: Function saves critical data stripes to Migration Copy Area
7992 * and updates the current migration unit status.
7993 * Use restore_stripes() to form a destination stripe,
7994 * and to write it to the Copy Area.
7995 * Parameters:
7996 * st : supertype information
aea93171 7997 * dev : imsm device that backup is saved for
687629c2
AK
7998 * info : general array info
7999 * buf : input buffer
687629c2
AK
8000 * length : length of data to backup (blocks_per_unit)
8001 * Returns:
8002 * 0 : success
8003 *, -1 : fail
8004 ******************************************************************************/
8005int save_backup_imsm(struct supertype *st,
8006 struct imsm_dev *dev,
8007 struct mdinfo *info,
8008 void *buf,
687629c2
AK
8009 int length)
8010{
8011 int rv = -1;
8012 struct intel_super *super = st->sb;
8013 unsigned long long *target_offsets = NULL;
8014 int *targets = NULL;
8015 int i;
8016 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8017 int new_disks = map_dest->num_members;
ab724b98
AK
8018 int dest_layout = 0;
8019 int dest_chunk;
d1877f69
AK
8020 unsigned long long start;
8021 int data_disks = imsm_num_data_members(dev, 0);
687629c2
AK
8022
8023 targets = malloc(new_disks * sizeof(int));
8024 if (!targets)
8025 goto abort;
8026
7e45b550
AK
8027 for (i = 0; i < new_disks; i++)
8028 targets[i] = -1;
8029
687629c2
AK
8030 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8031 if (!target_offsets)
8032 goto abort;
8033
d1877f69 8034 start = info->reshape_progress * 512;
687629c2 8035 for (i = 0; i < new_disks; i++) {
687629c2
AK
8036 target_offsets[i] = (unsigned long long)
8037 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
8038 /* move back copy area adderss, it will be moved forward
8039 * in restore_stripes() using start input variable
8040 */
8041 target_offsets[i] -= start/data_disks;
687629c2
AK
8042 }
8043
8044 if (open_backup_targets(info, new_disks, targets))
8045 goto abort;
8046
68eb8bc6 8047 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
8048 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8049
687629c2
AK
8050 if (restore_stripes(targets, /* list of dest devices */
8051 target_offsets, /* migration record offsets */
8052 new_disks,
ab724b98
AK
8053 dest_chunk,
8054 map_dest->raid_level,
8055 dest_layout,
8056 -1, /* source backup file descriptor */
8057 0, /* input buf offset
8058 * always 0 buf is already offseted */
d1877f69 8059 start,
687629c2
AK
8060 length,
8061 buf) != 0) {
8062 fprintf(stderr, Name ": Error restoring stripes\n");
8063 goto abort;
8064 }
8065
8066 rv = 0;
8067
8068abort:
8069 if (targets) {
8070 for (i = 0; i < new_disks; i++)
8071 if (targets[i] >= 0)
8072 close(targets[i]);
8073 free(targets);
8074 }
8075 free(target_offsets);
8076
8077 return rv;
8078}
8079
8080/*******************************************************************************
8081 * Function: save_checkpoint_imsm
8082 * Description: Function called for current unit status update
8083 * in the migration record. It writes it to disk.
8084 * Parameters:
8085 * super : imsm internal array info
8086 * info : general array info
8087 * Returns:
8088 * 0: success
8089 * 1: failure
0228d92c
AK
8090 * 2: failure, means no valid migration record
8091 * / no general migration in progress /
687629c2
AK
8092 ******************************************************************************/
8093int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8094{
8095 struct intel_super *super = st->sb;
f8b72ef5
AK
8096 unsigned long long blocks_per_unit;
8097 unsigned long long curr_migr_unit;
8098
2e062e82
AK
8099 if (load_imsm_migr_rec(super, info) != 0) {
8100 dprintf("imsm: ERROR: Cannot read migration record "
8101 "for checkpoint save.\n");
8102 return 1;
8103 }
8104
f8b72ef5
AK
8105 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8106 if (blocks_per_unit == 0) {
0228d92c
AK
8107 dprintf("imsm: no migration in progress.\n");
8108 return 2;
687629c2 8109 }
f8b72ef5
AK
8110 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8111 /* check if array is alligned to copy area
8112 * if it is not alligned, add one to current migration unit value
8113 * this can happend on array reshape finish only
8114 */
8115 if (info->reshape_progress % blocks_per_unit)
8116 curr_migr_unit++;
687629c2
AK
8117
8118 super->migr_rec->curr_migr_unit =
f8b72ef5 8119 __cpu_to_le32(curr_migr_unit);
687629c2
AK
8120 super->migr_rec->rec_status = __cpu_to_le32(state);
8121 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
8122 __cpu_to_le32(curr_migr_unit *
8123 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
8124 if (write_imsm_migr_rec(st) < 0) {
8125 dprintf("imsm: Cannot write migration record "
8126 "outside backup area\n");
8127 return 1;
8128 }
8129
8130 return 0;
8131}
8132
276d77db
AK
8133/*******************************************************************************
8134 * Function: recover_backup_imsm
8135 * Description: Function recovers critical data from the Migration Copy Area
8136 * while assembling an array.
8137 * Parameters:
8138 * super : imsm internal array info
8139 * info : general array info
8140 * Returns:
8141 * 0 : success (or there is no data to recover)
8142 * 1 : fail
8143 ******************************************************************************/
8144int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8145{
8146 struct intel_super *super = st->sb;
8147 struct migr_record *migr_rec = super->migr_rec;
8148 struct imsm_map *map_dest = NULL;
8149 struct intel_dev *id = NULL;
8150 unsigned long long read_offset;
8151 unsigned long long write_offset;
8152 unsigned unit_len;
8153 int *targets = NULL;
8154 int new_disks, i, err;
8155 char *buf = NULL;
8156 int retval = 1;
8157 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8158 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 8159 char buffer[20];
6c3560c0
AK
8160 int skipped_disks = 0;
8161 int max_degradation;
276d77db
AK
8162
8163 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8164 if (err < 1)
8165 return 1;
8166
8167 /* recover data only during assemblation */
8168 if (strncmp(buffer, "inactive", 8) != 0)
8169 return 0;
8170 /* no data to recover */
8171 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8172 return 0;
8173 if (curr_migr_unit >= num_migr_units)
8174 return 1;
8175
8176 /* find device during reshape */
8177 for (id = super->devlist; id; id = id->next)
8178 if (is_gen_migration(id->dev))
8179 break;
8180 if (id == NULL)
8181 return 1;
8182
8183 map_dest = get_imsm_map(id->dev, 0);
8184 new_disks = map_dest->num_members;
6c3560c0 8185 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
276d77db
AK
8186
8187 read_offset = (unsigned long long)
8188 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8189
8190 write_offset = ((unsigned long long)
8191 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
75b69ea4 8192 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
276d77db
AK
8193
8194 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8195 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8196 goto abort;
8197 targets = malloc(new_disks * sizeof(int));
8198 if (!targets)
8199 goto abort;
8200
8201 open_backup_targets(info, new_disks, targets);
8202
8203 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
8204 if (targets[i] < 0) {
8205 skipped_disks++;
8206 continue;
8207 }
276d77db
AK
8208 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8209 fprintf(stderr,
8210 Name ": Cannot seek to block: %s\n",
8211 strerror(errno));
8212 goto abort;
8213 }
9ec11d1a 8214 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8215 fprintf(stderr,
8216 Name ": Cannot read copy area block: %s\n",
8217 strerror(errno));
8218 goto abort;
8219 }
8220 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8221 fprintf(stderr,
8222 Name ": Cannot seek to block: %s\n",
8223 strerror(errno));
8224 goto abort;
8225 }
9ec11d1a 8226 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8227 fprintf(stderr,
8228 Name ": Cannot restore block: %s\n",
8229 strerror(errno));
8230 goto abort;
8231 }
8232 }
8233
6c3560c0
AK
8234 if (skipped_disks > max_degradation) {
8235 fprintf(stderr,
8236 Name ": Cannot restore data from backup."
8237 " Too many failed disks\n");
8238 goto abort;
8239 }
8240
befb629b
AK
8241 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8242 /* ignore error == 2, this can mean end of reshape here
8243 */
8244 dprintf("imsm: Cannot write checkpoint to "
8245 "migration record (UNIT_SRC_NORMAL) during restart\n");
8246 } else
276d77db 8247 retval = 0;
276d77db
AK
8248
8249abort:
8250 if (targets) {
8251 for (i = 0; i < new_disks; i++)
8252 if (targets[i])
8253 close(targets[i]);
8254 free(targets);
8255 }
8256 free(buf);
8257 return retval;
8258}
8259
2cda7640
ML
8260static char disk_by_path[] = "/dev/disk/by-path/";
8261
8262static const char *imsm_get_disk_controller_domain(const char *path)
8263{
2cda7640 8264 char disk_path[PATH_MAX];
96234762
LM
8265 char *drv=NULL;
8266 struct stat st;
2cda7640 8267
96234762
LM
8268 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8269 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8270 if (stat(disk_path, &st) == 0) {
8271 struct sys_dev* hba;
8272 char *path=NULL;
8273
8274 path = devt_to_devpath(st.st_rdev);
8275 if (path == NULL)
8276 return "unknown";
8277 hba = find_disk_attached_hba(-1, path);
8278 if (hba && hba->type == SYS_DEV_SAS)
8279 drv = "isci";
8280 else if (hba && hba->type == SYS_DEV_SATA)
8281 drv = "ahci";
8282 else
8283 drv = "unknown";
8284 dprintf("path: %s hba: %s attached: %s\n",
8285 path, (hba) ? hba->path : "NULL", drv);
8286 free(path);
8287 if (hba)
8288 free_sys_dev(&hba);
2cda7640 8289 }
96234762 8290 return drv;
2cda7640
ML
8291}
8292
78b10e66
N
8293static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8294{
8295 char subdev_name[20];
8296 struct mdstat_ent *mdstat;
8297
8298 sprintf(subdev_name, "%d", subdev);
8299 mdstat = mdstat_by_subdev(subdev_name, container);
8300 if (!mdstat)
8301 return -1;
8302
8303 *minor = mdstat->devnum;
8304 free_mdstat(mdstat);
8305 return 0;
8306}
8307
8308static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8309 struct geo_params *geo,
8310 int *old_raid_disks)
8311{
694575e7
KW
8312 /* currently we only support increasing the number of devices
8313 * for a container. This increases the number of device for each
8314 * member array. They must all be RAID0 or RAID5.
8315 */
78b10e66
N
8316 int ret_val = 0;
8317 struct mdinfo *info, *member;
8318 int devices_that_can_grow = 0;
8319
8320 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8321 "st->devnum = (%i)\n",
8322 st->devnum);
8323
8324 if (geo->size != -1 ||
8325 geo->level != UnSet ||
8326 geo->layout != UnSet ||
8327 geo->chunksize != 0 ||
8328 geo->raid_disks == UnSet) {
8329 dprintf("imsm: Container operation is allowed for "
8330 "raid disks number change only.\n");
8331 return ret_val;
8332 }
8333
8334 info = container_content_imsm(st, NULL);
8335 for (member = info; member; member = member->next) {
8336 int result;
8337 int minor;
8338
8339 dprintf("imsm: checking device_num: %i\n",
8340 member->container_member);
8341
d7d205bd 8342 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
8343 /* we work on container for Online Capacity Expansion
8344 * only so raid_disks has to grow
8345 */
8346 dprintf("imsm: for container operation raid disks "
8347 "increase is required\n");
8348 break;
8349 }
8350
8351 if ((info->array.level != 0) &&
8352 (info->array.level != 5)) {
8353 /* we cannot use this container with other raid level
8354 */
690aae1a 8355 dprintf("imsm: for container operation wrong"
78b10e66
N
8356 " raid level (%i) detected\n",
8357 info->array.level);
8358 break;
8359 } else {
8360 /* check for platform support
8361 * for this raid level configuration
8362 */
8363 struct intel_super *super = st->sb;
8364 if (!is_raid_level_supported(super->orom,
8365 member->array.level,
8366 geo->raid_disks)) {
690aae1a 8367 dprintf("platform does not support raid%d with"
78b10e66
N
8368 " %d disk%s\n",
8369 info->array.level,
8370 geo->raid_disks,
8371 geo->raid_disks > 1 ? "s" : "");
8372 break;
8373 }
2a4a08e7
AK
8374 /* check if component size is aligned to chunk size
8375 */
8376 if (info->component_size %
8377 (info->array.chunk_size/512)) {
8378 dprintf("Component size is not aligned to "
8379 "chunk size\n");
8380 break;
8381 }
78b10e66
N
8382 }
8383
8384 if (*old_raid_disks &&
8385 info->array.raid_disks != *old_raid_disks)
8386 break;
8387 *old_raid_disks = info->array.raid_disks;
8388
8389 /* All raid5 and raid0 volumes in container
8390 * have to be ready for Online Capacity Expansion
8391 * so they need to be assembled. We have already
8392 * checked that no recovery etc is happening.
8393 */
8394 result = imsm_find_array_minor_by_subdev(member->container_member,
8395 st->container_dev,
8396 &minor);
8397 if (result < 0) {
8398 dprintf("imsm: cannot find array\n");
8399 break;
8400 }
8401 devices_that_can_grow++;
8402 }
8403 sysfs_free(info);
8404 if (!member && devices_that_can_grow)
8405 ret_val = 1;
8406
8407 if (ret_val)
8408 dprintf("\tContainer operation allowed\n");
8409 else
8410 dprintf("\tError: %i\n", ret_val);
8411
8412 return ret_val;
8413}
8414
8415/* Function: get_spares_for_grow
8416 * Description: Allocates memory and creates list of spare devices
8417 * avaliable in container. Checks if spare drive size is acceptable.
8418 * Parameters: Pointer to the supertype structure
8419 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8420 * NULL if fail
8421 */
8422static struct mdinfo *get_spares_for_grow(struct supertype *st)
8423{
78b10e66 8424 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8425 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8426}
8427
8428/******************************************************************************
8429 * function: imsm_create_metadata_update_for_reshape
8430 * Function creates update for whole IMSM container.
8431 *
8432 ******************************************************************************/
8433static int imsm_create_metadata_update_for_reshape(
8434 struct supertype *st,
8435 struct geo_params *geo,
8436 int old_raid_disks,
8437 struct imsm_update_reshape **updatep)
8438{
8439 struct intel_super *super = st->sb;
8440 struct imsm_super *mpb = super->anchor;
8441 int update_memory_size = 0;
8442 struct imsm_update_reshape *u = NULL;
8443 struct mdinfo *spares = NULL;
8444 int i;
8445 int delta_disks = 0;
bbd24d86 8446 struct mdinfo *dev;
78b10e66
N
8447
8448 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8449 geo->raid_disks);
8450
8451 delta_disks = geo->raid_disks - old_raid_disks;
8452
8453 /* size of all update data without anchor */
8454 update_memory_size = sizeof(struct imsm_update_reshape);
8455
8456 /* now add space for spare disks that we need to add. */
8457 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8458
8459 u = calloc(1, update_memory_size);
8460 if (u == NULL) {
8461 dprintf("error: "
8462 "cannot get memory for imsm_update_reshape update\n");
8463 return 0;
8464 }
8465 u->type = update_reshape_container_disks;
8466 u->old_raid_disks = old_raid_disks;
8467 u->new_raid_disks = geo->raid_disks;
8468
8469 /* now get spare disks list
8470 */
8471 spares = get_spares_for_grow(st);
8472
8473 if (spares == NULL
8474 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8475 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8476 "for %s.\n", geo->dev_name);
e4c72d1d 8477 i = -1;
78b10e66
N
8478 goto abort;
8479 }
8480
8481 /* we have got spares
8482 * update disk list in imsm_disk list table in anchor
8483 */
8484 dprintf("imsm: %i spares are available.\n\n",
8485 spares->array.spare_disks);
8486
bbd24d86 8487 dev = spares->devs;
78b10e66 8488 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8489 struct dl *dl;
8490
bbd24d86
AK
8491 if (dev == NULL)
8492 break;
78b10e66
N
8493 u->new_disks[i] = makedev(dev->disk.major,
8494 dev->disk.minor);
8495 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8496 dl->index = mpb->num_disks;
8497 mpb->num_disks++;
bbd24d86 8498 dev = dev->next;
78b10e66 8499 }
78b10e66
N
8500
8501abort:
8502 /* free spares
8503 */
8504 sysfs_free(spares);
8505
d677e0b8 8506 dprintf("imsm: reshape update preparation :");
78b10e66 8507 if (i == delta_disks) {
d677e0b8 8508 dprintf(" OK\n");
78b10e66
N
8509 *updatep = u;
8510 return update_memory_size;
8511 }
8512 free(u);
d677e0b8 8513 dprintf(" Error\n");
78b10e66
N
8514
8515 return 0;
8516}
8517
48c5303a
PC
8518/******************************************************************************
8519 * function: imsm_create_metadata_update_for_migration()
8520 * Creates update for IMSM array.
8521 *
8522 ******************************************************************************/
8523static int imsm_create_metadata_update_for_migration(
8524 struct supertype *st,
8525 struct geo_params *geo,
8526 struct imsm_update_reshape_migration **updatep)
8527{
8528 struct intel_super *super = st->sb;
8529 int update_memory_size = 0;
8530 struct imsm_update_reshape_migration *u = NULL;
8531 struct imsm_dev *dev;
8532 int previous_level = -1;
8533
8534 dprintf("imsm_create_metadata_update_for_migration(enter)"
8535 " New Level = %i\n", geo->level);
8536
8537 /* size of all update data without anchor */
8538 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8539
8540 u = calloc(1, update_memory_size);
8541 if (u == NULL) {
8542 dprintf("error: cannot get memory for "
8543 "imsm_create_metadata_update_for_migration\n");
8544 return 0;
8545 }
8546 u->type = update_reshape_migration;
8547 u->subdev = super->current_vol;
8548 u->new_level = geo->level;
8549 u->new_layout = geo->layout;
8550 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8551 u->new_disks[0] = -1;
4bba0439 8552 u->new_chunksize = -1;
48c5303a
PC
8553
8554 dev = get_imsm_dev(super, u->subdev);
8555 if (dev) {
8556 struct imsm_map *map;
8557
8558 map = get_imsm_map(dev, 0);
4bba0439
PC
8559 if (map) {
8560 int current_chunk_size =
8561 __le16_to_cpu(map->blocks_per_strip) / 2;
8562
8563 if (geo->chunksize != current_chunk_size) {
8564 u->new_chunksize = geo->chunksize / 1024;
8565 dprintf("imsm: "
8566 "chunk size change from %i to %i\n",
8567 current_chunk_size, u->new_chunksize);
8568 }
48c5303a 8569 previous_level = map->raid_level;
4bba0439 8570 }
48c5303a
PC
8571 }
8572 if ((geo->level == 5) && (previous_level == 0)) {
8573 struct mdinfo *spares = NULL;
8574
8575 u->new_raid_disks++;
8576 spares = get_spares_for_grow(st);
8577 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8578 free(u);
8579 sysfs_free(spares);
8580 update_memory_size = 0;
8581 dprintf("error: cannot get spare device "
8582 "for requested migration");
8583 return 0;
8584 }
8585 sysfs_free(spares);
8586 }
8587 dprintf("imsm: reshape update preparation : OK\n");
8588 *updatep = u;
8589
8590 return update_memory_size;
8591}
8592
8dd70bce
AK
8593static void imsm_update_metadata_locally(struct supertype *st,
8594 void *buf, int len)
8595{
8596 struct metadata_update mu;
8597
8598 mu.buf = buf;
8599 mu.len = len;
8600 mu.space = NULL;
8601 mu.space_list = NULL;
8602 mu.next = NULL;
8603 imsm_prepare_update(st, &mu);
8604 imsm_process_update(st, &mu);
8605
8606 while (mu.space_list) {
8607 void **space = mu.space_list;
8608 mu.space_list = *space;
8609 free(space);
8610 }
8611}
78b10e66 8612
471bceb6 8613/***************************************************************************
694575e7 8614* Function: imsm_analyze_change
471bceb6
KW
8615* Description: Function analyze change for single volume
8616* and validate if transition is supported
694575e7
KW
8617* Parameters: Geometry parameters, supertype structure
8618* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8619****************************************************************************/
8620enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8621 struct geo_params *geo)
694575e7 8622{
471bceb6
KW
8623 struct mdinfo info;
8624 int change = -1;
8625 int check_devs = 0;
c21e737b 8626 int chunk;
471bceb6
KW
8627
8628 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
8629 if ((geo->level != info.array.level) &&
8630 (geo->level >= 0) &&
8631 (geo->level != UnSet)) {
8632 switch (info.array.level) {
8633 case 0:
8634 if (geo->level == 5) {
b5347799 8635 change = CH_MIGRATION;
e13ce846
AK
8636 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8637 fprintf(stderr,
8638 Name " Error. Requested Layout "
8639 "not supported (left-asymmetric layout "
8640 "is supported only)!\n");
8641 change = -1;
8642 goto analyse_change_exit;
8643 }
471bceb6
KW
8644 check_devs = 1;
8645 }
8646 if (geo->level == 10) {
8647 change = CH_TAKEOVER;
8648 check_devs = 1;
8649 }
dfe77a9e
KW
8650 break;
8651 case 1:
8652 if (geo->level == 0) {
8653 change = CH_TAKEOVER;
8654 check_devs = 1;
8655 }
471bceb6 8656 break;
471bceb6
KW
8657 case 10:
8658 if (geo->level == 0) {
8659 change = CH_TAKEOVER;
8660 check_devs = 1;
8661 }
8662 break;
8663 }
8664 if (change == -1) {
8665 fprintf(stderr,
8666 Name " Error. Level Migration from %d to %d "
8667 "not supported!\n",
8668 info.array.level, geo->level);
8669 goto analyse_change_exit;
8670 }
8671 } else
8672 geo->level = info.array.level;
8673
8674 if ((geo->layout != info.array.layout)
8675 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8676 change = CH_MIGRATION;
471bceb6
KW
8677 if ((info.array.layout == 0)
8678 && (info.array.level == 5)
8679 && (geo->layout == 5)) {
8680 /* reshape 5 -> 4 */
8681 } else if ((info.array.layout == 5)
8682 && (info.array.level == 5)
8683 && (geo->layout == 0)) {
8684 /* reshape 4 -> 5 */
8685 geo->layout = 0;
8686 geo->level = 5;
8687 } else {
8688 fprintf(stderr,
8689 Name " Error. Layout Migration from %d to %d "
8690 "not supported!\n",
8691 info.array.layout, geo->layout);
8692 change = -1;
8693 goto analyse_change_exit;
8694 }
8695 } else
8696 geo->layout = info.array.layout;
8697
8698 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8699 && (geo->chunksize != info.array.chunk_size))
b5347799 8700 change = CH_MIGRATION;
471bceb6
KW
8701 else
8702 geo->chunksize = info.array.chunk_size;
8703
c21e737b 8704 chunk = geo->chunksize / 1024;
471bceb6
KW
8705 if (!validate_geometry_imsm(st,
8706 geo->level,
8707 geo->layout,
8708 geo->raid_disks,
c21e737b 8709 &chunk,
471bceb6
KW
8710 geo->size,
8711 0, 0, 1))
8712 change = -1;
8713
8714 if (check_devs) {
8715 struct intel_super *super = st->sb;
8716 struct imsm_super *mpb = super->anchor;
8717
8718 if (mpb->num_raid_devs > 1) {
8719 fprintf(stderr,
8720 Name " Error. Cannot perform operation on %s"
8721 "- for this operation it MUST be single "
8722 "array in container\n",
8723 geo->dev_name);
8724 change = -1;
8725 }
8726 }
8727
8728analyse_change_exit:
8729
8730 return change;
694575e7
KW
8731}
8732
bb025c2f
KW
8733int imsm_takeover(struct supertype *st, struct geo_params *geo)
8734{
8735 struct intel_super *super = st->sb;
8736 struct imsm_update_takeover *u;
8737
8738 u = malloc(sizeof(struct imsm_update_takeover));
8739 if (u == NULL)
8740 return 1;
8741
8742 u->type = update_takeover;
8743 u->subarray = super->current_vol;
8744
8745 /* 10->0 transition */
8746 if (geo->level == 0)
8747 u->direction = R10_TO_R0;
8748
0529c688
KW
8749 /* 0->10 transition */
8750 if (geo->level == 10)
8751 u->direction = R0_TO_R10;
8752
bb025c2f
KW
8753 /* update metadata locally */
8754 imsm_update_metadata_locally(st, u,
8755 sizeof(struct imsm_update_takeover));
8756 /* and possibly remotely */
8757 if (st->update_tail)
8758 append_metadata_update(st, u,
8759 sizeof(struct imsm_update_takeover));
8760 else
8761 free(u);
8762
8763 return 0;
8764}
8765
78b10e66
N
8766static int imsm_reshape_super(struct supertype *st, long long size, int level,
8767 int layout, int chunksize, int raid_disks,
41784c88
AK
8768 int delta_disks, char *backup, char *dev,
8769 int verbose)
78b10e66 8770{
78b10e66
N
8771 int ret_val = 1;
8772 struct geo_params geo;
8773
8774 dprintf("imsm: reshape_super called.\n");
8775
71204a50 8776 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
8777
8778 geo.dev_name = dev;
694575e7 8779 geo.dev_id = st->devnum;
78b10e66
N
8780 geo.size = size;
8781 geo.level = level;
8782 geo.layout = layout;
8783 geo.chunksize = chunksize;
8784 geo.raid_disks = raid_disks;
41784c88
AK
8785 if (delta_disks != UnSet)
8786 geo.raid_disks += delta_disks;
78b10e66
N
8787
8788 dprintf("\tfor level : %i\n", geo.level);
8789 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8790
8791 if (experimental() == 0)
8792 return ret_val;
8793
78b10e66 8794 if (st->container_dev == st->devnum) {
694575e7
KW
8795 /* On container level we can only increase number of devices. */
8796 dprintf("imsm: info: Container operation\n");
78b10e66 8797 int old_raid_disks = 0;
6dc0be30 8798
78b10e66
N
8799 if (imsm_reshape_is_allowed_on_container(
8800 st, &geo, &old_raid_disks)) {
8801 struct imsm_update_reshape *u = NULL;
8802 int len;
8803
8804 len = imsm_create_metadata_update_for_reshape(
8805 st, &geo, old_raid_disks, &u);
8806
ed08d51c
AK
8807 if (len <= 0) {
8808 dprintf("imsm: Cannot prepare update\n");
8809 goto exit_imsm_reshape_super;
8810 }
8811
8dd70bce
AK
8812 ret_val = 0;
8813 /* update metadata locally */
8814 imsm_update_metadata_locally(st, u, len);
8815 /* and possibly remotely */
8816 if (st->update_tail)
8817 append_metadata_update(st, u, len);
8818 else
ed08d51c 8819 free(u);
8dd70bce 8820
694575e7 8821 } else {
e7ff7e40
AK
8822 fprintf(stderr, Name ": (imsm) Operation "
8823 "is not allowed on this container\n");
694575e7
KW
8824 }
8825 } else {
8826 /* On volume level we support following operations
471bceb6
KW
8827 * - takeover: raid10 -> raid0; raid0 -> raid10
8828 * - chunk size migration
8829 * - migration: raid5 -> raid0; raid0 -> raid5
8830 */
8831 struct intel_super *super = st->sb;
8832 struct intel_dev *dev = super->devlist;
8833 int change, devnum;
694575e7 8834 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
8835 /* find requested device */
8836 while (dev) {
19986c72
MB
8837 if (imsm_find_array_minor_by_subdev(
8838 dev->index, st->container_dev, &devnum) == 0
8839 && devnum == geo.dev_id)
471bceb6
KW
8840 break;
8841 dev = dev->next;
8842 }
8843 if (dev == NULL) {
8844 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8845 geo.dev_name, geo.dev_id);
8846 goto exit_imsm_reshape_super;
8847 }
8848 super->current_vol = dev->index;
694575e7
KW
8849 change = imsm_analyze_change(st, &geo);
8850 switch (change) {
471bceb6 8851 case CH_TAKEOVER:
bb025c2f 8852 ret_val = imsm_takeover(st, &geo);
694575e7 8853 break;
48c5303a
PC
8854 case CH_MIGRATION: {
8855 struct imsm_update_reshape_migration *u = NULL;
8856 int len =
8857 imsm_create_metadata_update_for_migration(
8858 st, &geo, &u);
8859 if (len < 1) {
8860 dprintf("imsm: "
8861 "Cannot prepare update\n");
8862 break;
8863 }
471bceb6 8864 ret_val = 0;
48c5303a
PC
8865 /* update metadata locally */
8866 imsm_update_metadata_locally(st, u, len);
8867 /* and possibly remotely */
8868 if (st->update_tail)
8869 append_metadata_update(st, u, len);
8870 else
8871 free(u);
8872 }
8873 break;
471bceb6
KW
8874 default:
8875 ret_val = 1;
694575e7 8876 }
694575e7 8877 }
78b10e66 8878
ed08d51c 8879exit_imsm_reshape_super:
78b10e66
N
8880 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8881 return ret_val;
8882}
2cda7640 8883
eee67a47
AK
8884/*******************************************************************************
8885 * Function: wait_for_reshape_imsm
8886 * Description: Function writes new sync_max value and waits until
8887 * reshape process reach new position
8888 * Parameters:
8889 * sra : general array info
eee67a47
AK
8890 * ndata : number of disks in new array's layout
8891 * Returns:
8892 * 0 : success,
8893 * 1 : there is no reshape in progress,
8894 * -1 : fail
8895 ******************************************************************************/
ae9f01f8 8896int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
8897{
8898 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8899 unsigned long long completed;
ae9f01f8
AK
8900 /* to_complete : new sync_max position */
8901 unsigned long long to_complete = sra->reshape_progress;
8902 unsigned long long position_to_set = to_complete / ndata;
eee67a47 8903
ae9f01f8
AK
8904 if (fd < 0) {
8905 dprintf("imsm: wait_for_reshape_imsm() "
8906 "cannot open reshape_position\n");
eee67a47 8907 return 1;
ae9f01f8 8908 }
eee67a47 8909
ae9f01f8
AK
8910 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8911 dprintf("imsm: wait_for_reshape_imsm() "
8912 "cannot read reshape_position (no reshape in progres)\n");
8913 close(fd);
8914 return 0;
8915 }
eee67a47 8916
ae9f01f8
AK
8917 if (completed > to_complete) {
8918 dprintf("imsm: wait_for_reshape_imsm() "
8919 "wrong next position to set %llu (%llu)\n",
8920 to_complete, completed);
8921 close(fd);
8922 return -1;
8923 }
8924 dprintf("Position set: %llu\n", position_to_set);
8925 if (sysfs_set_num(sra, NULL, "sync_max",
8926 position_to_set) != 0) {
8927 dprintf("imsm: wait_for_reshape_imsm() "
8928 "cannot set reshape position to %llu\n",
8929 position_to_set);
8930 close(fd);
8931 return -1;
eee67a47
AK
8932 }
8933
eee67a47
AK
8934 do {
8935 char action[20];
8936 fd_set rfds;
8937 FD_ZERO(&rfds);
8938 FD_SET(fd, &rfds);
a47e44fb
AK
8939 select(fd+1, &rfds, NULL, NULL, NULL);
8940 if (sysfs_get_str(sra, NULL, "sync_action",
8941 action, 20) > 0 &&
8942 strncmp(action, "reshape", 7) != 0)
8943 break;
eee67a47 8944 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
8945 dprintf("imsm: wait_for_reshape_imsm() "
8946 "cannot read reshape_position (in loop)\n");
eee67a47
AK
8947 close(fd);
8948 return 1;
8949 }
eee67a47
AK
8950 } while (completed < to_complete);
8951 close(fd);
8952 return 0;
8953
8954}
8955
b915c95f
AK
8956/*******************************************************************************
8957 * Function: check_degradation_change
8958 * Description: Check that array hasn't become failed.
8959 * Parameters:
8960 * info : for sysfs access
8961 * sources : source disks descriptors
8962 * degraded: previous degradation level
8963 * Returns:
8964 * degradation level
8965 ******************************************************************************/
8966int check_degradation_change(struct mdinfo *info,
8967 int *sources,
8968 int degraded)
8969{
8970 unsigned long long new_degraded;
8971 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8972 if (new_degraded != (unsigned long long)degraded) {
8973 /* check each device to ensure it is still working */
8974 struct mdinfo *sd;
8975 new_degraded = 0;
8976 for (sd = info->devs ; sd ; sd = sd->next) {
8977 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8978 continue;
8979 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8980 char sbuf[20];
8981 if (sysfs_get_str(info,
8982 sd, "state", sbuf, 20) < 0 ||
8983 strstr(sbuf, "faulty") ||
8984 strstr(sbuf, "in_sync") == NULL) {
8985 /* this device is dead */
8986 sd->disk.state = (1<<MD_DISK_FAULTY);
8987 if (sd->disk.raid_disk >= 0 &&
8988 sources[sd->disk.raid_disk] >= 0) {
8989 close(sources[
8990 sd->disk.raid_disk]);
8991 sources[sd->disk.raid_disk] =
8992 -1;
8993 }
8994 new_degraded++;
8995 }
8996 }
8997 }
8998 }
8999
9000 return new_degraded;
9001}
9002
10f22854
AK
9003/*******************************************************************************
9004 * Function: imsm_manage_reshape
9005 * Description: Function finds array under reshape and it manages reshape
9006 * process. It creates stripes backups (if required) and sets
9007 * checheckpoits.
9008 * Parameters:
9009 * afd : Backup handle (nattive) - not used
9010 * sra : general array info
9011 * reshape : reshape parameters - not used
9012 * st : supertype structure
9013 * blocks : size of critical section [blocks]
9014 * fds : table of source device descriptor
9015 * offsets : start of array (offest per devices)
9016 * dests : not used
9017 * destfd : table of destination device descriptor
9018 * destoffsets : table of destination offsets (per device)
9019 * Returns:
9020 * 1 : success, reshape is done
9021 * 0 : fail
9022 ******************************************************************************/
999b4972
N
9023static int imsm_manage_reshape(
9024 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 9025 struct supertype *st, unsigned long backup_blocks,
999b4972
N
9026 int *fds, unsigned long long *offsets,
9027 int dests, int *destfd, unsigned long long *destoffsets)
9028{
10f22854
AK
9029 int ret_val = 0;
9030 struct intel_super *super = st->sb;
9031 struct intel_dev *dv = NULL;
9032 struct imsm_dev *dev = NULL;
a6b6d984 9033 struct imsm_map *map_src;
10f22854
AK
9034 int migr_vol_qan = 0;
9035 int ndata, odata; /* [bytes] */
9036 int chunk; /* [bytes] */
9037 struct migr_record *migr_rec;
9038 char *buf = NULL;
9039 unsigned int buf_size; /* [bytes] */
9040 unsigned long long max_position; /* array size [bytes] */
9041 unsigned long long next_step; /* [blocks]/[bytes] */
9042 unsigned long long old_data_stripe_length;
10f22854
AK
9043 unsigned long long start_src; /* [bytes] */
9044 unsigned long long start; /* [bytes] */
9045 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 9046 int degraded = 0;
ab724b98 9047 int source_layout = 0;
10f22854 9048
1ab242d8 9049 if (!fds || !offsets || !sra)
10f22854
AK
9050 goto abort;
9051
9052 /* Find volume during the reshape */
9053 for (dv = super->devlist; dv; dv = dv->next) {
9054 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9055 && dv->dev->vol.migr_state == 1) {
9056 dev = dv->dev;
9057 migr_vol_qan++;
9058 }
9059 }
9060 /* Only one volume can migrate at the same time */
9061 if (migr_vol_qan != 1) {
9062 fprintf(stderr, Name " : %s", migr_vol_qan ?
9063 "Number of migrating volumes greater than 1\n" :
9064 "There is no volume during migrationg\n");
9065 goto abort;
9066 }
9067
9068 map_src = get_imsm_map(dev, 1);
9069 if (map_src == NULL)
9070 goto abort;
10f22854
AK
9071
9072 ndata = imsm_num_data_members(dev, 0);
9073 odata = imsm_num_data_members(dev, 1);
9074
7b1ab482 9075 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
9076 old_data_stripe_length = odata * chunk;
9077
9078 migr_rec = super->migr_rec;
9079
10f22854
AK
9080 /* initialize migration record for start condition */
9081 if (sra->reshape_progress == 0)
9082 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
9083 else {
9084 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9085 dprintf("imsm: cannot restart migration when data "
9086 "are present in copy area.\n");
9087 goto abort;
9088 }
9089 }
10f22854
AK
9090
9091 /* size for data */
9092 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9093 /* extend buffer size for parity disk */
9094 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9095 /* add space for stripe aligment */
9096 buf_size += old_data_stripe_length;
9097 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9098 dprintf("imsm: Cannot allocate checpoint buffer\n");
9099 goto abort;
9100 }
9101
3ef4403c 9102 max_position = sra->component_size * ndata;
68eb8bc6 9103 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
9104
9105 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9106 __le32_to_cpu(migr_rec->num_migr_units)) {
9107 /* current reshape position [blocks] */
9108 unsigned long long current_position =
9109 __le32_to_cpu(migr_rec->blocks_per_unit)
9110 * __le32_to_cpu(migr_rec->curr_migr_unit);
9111 unsigned long long border;
9112
b915c95f
AK
9113 /* Check that array hasn't become failed.
9114 */
9115 degraded = check_degradation_change(sra, fds, degraded);
9116 if (degraded > 1) {
9117 dprintf("imsm: Abort reshape due to degradation"
9118 " level (%i)\n", degraded);
9119 goto abort;
9120 }
9121
10f22854
AK
9122 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9123
9124 if ((current_position + next_step) > max_position)
9125 next_step = max_position - current_position;
9126
92144abf 9127 start = current_position * 512;
10f22854
AK
9128
9129 /* allign reading start to old geometry */
9130 start_buf_shift = start % old_data_stripe_length;
9131 start_src = start - start_buf_shift;
9132
9133 border = (start_src / odata) - (start / ndata);
9134 border /= 512;
9135 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9136 /* save critical stripes to buf
9137 * start - start address of current unit
9138 * to backup [bytes]
9139 * start_src - start address of current unit
9140 * to backup alligned to source array
9141 * [bytes]
9142 */
9143 unsigned long long next_step_filler = 0;
9144 unsigned long long copy_length = next_step * 512;
9145
9146 /* allign copy area length to stripe in old geometry */
9147 next_step_filler = ((copy_length + start_buf_shift)
9148 % old_data_stripe_length);
9149 if (next_step_filler)
9150 next_step_filler = (old_data_stripe_length
9151 - next_step_filler);
9152 dprintf("save_stripes() parameters: start = %llu,"
9153 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9154 "\tstart_in_buf_shift = %llu,"
9155 "\tnext_step_filler = %llu\n",
9156 start, start_src, copy_length,
9157 start_buf_shift, next_step_filler);
9158
9159 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
9160 chunk, map_src->raid_level,
9161 source_layout, 0, NULL, start_src,
10f22854
AK
9162 copy_length +
9163 next_step_filler + start_buf_shift,
9164 buf)) {
9165 dprintf("imsm: Cannot save stripes"
9166 " to buffer\n");
9167 goto abort;
9168 }
9169 /* Convert data to destination format and store it
9170 * in backup general migration area
9171 */
9172 if (save_backup_imsm(st, dev, sra,
aea93171 9173 buf + start_buf_shift, copy_length)) {
10f22854
AK
9174 dprintf("imsm: Cannot save stripes to "
9175 "target devices\n");
9176 goto abort;
9177 }
9178 if (save_checkpoint_imsm(st, sra,
9179 UNIT_SRC_IN_CP_AREA)) {
9180 dprintf("imsm: Cannot write checkpoint to "
9181 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9182 goto abort;
9183 }
8016a6d4
AK
9184 } else {
9185 /* set next step to use whole border area */
9186 border /= next_step;
9187 if (border > 1)
9188 next_step *= border;
10f22854
AK
9189 }
9190 /* When data backed up, checkpoint stored,
9191 * kick the kernel to reshape unit of data
9192 */
9193 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
9194 /* limit next step to array max position */
9195 if (next_step > max_position)
9196 next_step = max_position;
10f22854
AK
9197 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9198 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 9199 sra->reshape_progress = next_step;
10f22854
AK
9200
9201 /* wait until reshape finish */
ae9f01f8 9202 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
9203 dprintf("wait_for_reshape_imsm returned error!\n");
9204 goto abort;
9205 }
10f22854 9206
0228d92c
AK
9207 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9208 /* ignore error == 2, this can mean end of reshape here
9209 */
10f22854
AK
9210 dprintf("imsm: Cannot write checkpoint to "
9211 "migration record (UNIT_SRC_NORMAL)\n");
9212 goto abort;
9213 }
9214
9215 }
9216
9217 /* return '1' if done */
9218 ret_val = 1;
9219abort:
9220 free(buf);
9221 abort_reshape(sra);
9222
9223 return ret_val;
999b4972 9224}
71204a50 9225#endif /* MDASSEMBLE */
999b4972 9226
cdddbdbc
DW
9227struct superswitch super_imsm = {
9228#ifndef MDASSEMBLE
9229 .examine_super = examine_super_imsm,
9230 .brief_examine_super = brief_examine_super_imsm,
4737ae25 9231 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 9232 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
9233 .detail_super = detail_super_imsm,
9234 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 9235 .write_init_super = write_init_super_imsm,
0e600426
N
9236 .validate_geometry = validate_geometry_imsm,
9237 .add_to_super = add_to_super_imsm,
1a64be56 9238 .remove_from_super = remove_from_super_imsm,
d665cc31 9239 .detail_platform = detail_platform_imsm,
33414a01 9240 .kill_subarray = kill_subarray_imsm,
aa534678 9241 .update_subarray = update_subarray_imsm,
2b959fbf 9242 .load_container = load_container_imsm,
71204a50
N
9243 .default_geometry = default_geometry_imsm,
9244 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9245 .reshape_super = imsm_reshape_super,
9246 .manage_reshape = imsm_manage_reshape,
9e2d750d 9247 .recover_backup = recover_backup_imsm,
cdddbdbc
DW
9248#endif
9249 .match_home = match_home_imsm,
9250 .uuid_from_super= uuid_from_super_imsm,
9251 .getinfo_super = getinfo_super_imsm,
5c4cd5da 9252 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
9253 .update_super = update_super_imsm,
9254
9255 .avail_size = avail_size_imsm,
80e7f8c3 9256 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
9257
9258 .compare_super = compare_super_imsm,
9259
9260 .load_super = load_super_imsm,
bf5a934a 9261 .init_super = init_super_imsm,
e683ca88 9262 .store_super = store_super_imsm,
cdddbdbc
DW
9263 .free_super = free_super_imsm,
9264 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 9265 .container_content = container_content_imsm,
cdddbdbc 9266
276d77db 9267
cdddbdbc 9268 .external = 1,
4cce4069 9269 .name = "imsm",
845dea95 9270
0e600426 9271#ifndef MDASSEMBLE
845dea95
NB
9272/* for mdmon */
9273 .open_new = imsm_open_new,
ed9d66aa 9274 .set_array_state= imsm_set_array_state,
845dea95
NB
9275 .set_disk = imsm_set_disk,
9276 .sync_metadata = imsm_sync_metadata,
88758e9d 9277 .activate_spare = imsm_activate_spare,
e8319a19 9278 .process_update = imsm_process_update,
8273f55e 9279 .prepare_update = imsm_prepare_update,
0e600426 9280#endif /* MDASSEMBLE */
cdddbdbc 9281};