]> git.ipfire.org Git - thirdparty/gcc.git/blame - libiberty/hashtab.c
re PR ipa/78188 (AIX Bootstrap broken by tree-vrp.c change)
[thirdparty/gcc.git] / libiberty / hashtab.c
CommitLineData
a2f945c6 1/* An expandable hash tables datatype.
a9429e29 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010
9bf3c9cc 3 Free Software Foundation, Inc.
a2f945c6
VM
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
ee58dffd
NC
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
a2f945c6
VM
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
6de9b8ff
PDM
39#include <sys/types.h>
40
a2f945c6
VM
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
d11ec6f0
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
cf8e4b78
DH
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
9bf3c9cc
RH
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
50cb834f
RO
53#ifdef HAVE_INTTYPES_H
54#include <inttypes.h>
55#endif
9bf3c9cc
RH
56#ifdef HAVE_STDINT_H
57#include <stdint.h>
58#endif
cf8e4b78 59
36dd3a44
JL
60#include <stdio.h>
61
a2f945c6 62#include "libiberty.h"
9bf3c9cc 63#include "ansidecl.h"
a2f945c6
VM
64#include "hashtab.h"
65
9bf3c9cc
RH
66#ifndef CHAR_BIT
67#define CHAR_BIT 8
68#endif
69
6da879de
GDR
70static unsigned int higher_prime_index (unsigned long);
71static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
72static hashval_t htab_mod (hashval_t, htab_t);
73static hashval_t htab_mod_m2 (hashval_t, htab_t);
74static hashval_t hash_pointer (const void *);
75static int eq_pointer (const void *, const void *);
76static int htab_expand (htab_t);
77static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
18a94a2f
MM
78
79/* At some point, we could make these be NULL, and modify the
80 hash-table routines to handle NULL specially; that would avoid
81 function-call overhead for the common case of hashing pointers. */
82htab_hash htab_hash_pointer = hash_pointer;
83htab_eq htab_eq_pointer = eq_pointer;
0194e877 84
9bf3c9cc
RH
85/* Table of primes and multiplicative inverses.
86
87 Note that these are not minimally reduced inverses. Unlike when generating
88 code to divide by a constant, we want to be able to use the same algorithm
89 all the time. All of these inverses (are implied to) have bit 32 set.
90
91 For the record, here's the function that computed the table; it's a
92 vastly simplified version of the function of the same name from gcc. */
93
94#if 0
95unsigned int
96ceil_log2 (unsigned int x)
97{
98 int i;
99 for (i = 31; i >= 0 ; --i)
100 if (x > (1u << i))
101 return i+1;
102 abort ();
103}
a2f945c6 104
9bf3c9cc
RH
105unsigned int
106choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
107{
108 unsigned long long mhigh;
109 double nx;
110 int lgup, post_shift;
111 int pow, pow2;
112 int n = 32, precision = 32;
113
114 lgup = ceil_log2 (d);
115 pow = n + lgup;
116 pow2 = n + lgup - precision;
117
118 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
119 mhigh = nx / d;
120
121 *shiftp = lgup - 1;
122 *mlp = mhigh;
123 return mhigh >> 32;
124}
125#endif
126
127struct prime_ent
128{
129 hashval_t prime;
130 hashval_t inv;
131 hashval_t inv_m2; /* inverse of prime-2 */
132 hashval_t shift;
133};
134
135static struct prime_ent const prime_tab[] = {
136 { 7, 0x24924925, 0x9999999b, 2 },
137 { 13, 0x3b13b13c, 0x745d1747, 3 },
138 { 31, 0x08421085, 0x1a7b9612, 4 },
139 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
140 { 127, 0x02040811, 0x0624dd30, 6 },
141 { 251, 0x05197f7e, 0x073260a5, 7 },
142 { 509, 0x01824366, 0x02864fc8, 8 },
143 { 1021, 0x00c0906d, 0x014191f7, 9 },
144 { 2039, 0x0121456f, 0x0161e69e, 10 },
145 { 4093, 0x00300902, 0x00501908, 11 },
146 { 8191, 0x00080041, 0x00180241, 12 },
147 { 16381, 0x000c0091, 0x00140191, 13 },
148 { 32749, 0x002605a5, 0x002a06e6, 14 },
149 { 65521, 0x000f00e2, 0x00110122, 15 },
150 { 131071, 0x00008001, 0x00018003, 16 },
151 { 262139, 0x00014002, 0x0001c004, 17 },
152 { 524287, 0x00002001, 0x00006001, 18 },
153 { 1048573, 0x00003001, 0x00005001, 19 },
154 { 2097143, 0x00004801, 0x00005801, 20 },
155 { 4194301, 0x00000c01, 0x00001401, 21 },
156 { 8388593, 0x00001e01, 0x00002201, 22 },
157 { 16777213, 0x00000301, 0x00000501, 23 },
158 { 33554393, 0x00001381, 0x00001481, 24 },
159 { 67108859, 0x00000141, 0x000001c1, 25 },
160 { 134217689, 0x000004e1, 0x00000521, 26 },
161 { 268435399, 0x00000391, 0x000003b1, 27 },
162 { 536870909, 0x00000019, 0x00000029, 28 },
163 { 1073741789, 0x0000008d, 0x00000095, 29 },
164 { 2147483647, 0x00000003, 0x00000007, 30 },
165 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
166 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
167};
168
169/* The following function returns an index into the above table of the
170 nearest prime number which is greater than N, and near a power of two. */
171
172static unsigned int
6da879de 173higher_prime_index (unsigned long n)
a2f945c6 174{
9bf3c9cc
RH
175 unsigned int low = 0;
176 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
a4c9b97e
MM
177
178 while (low != high)
179 {
9bf3c9cc
RH
180 unsigned int mid = low + (high - low) / 2;
181 if (n > prime_tab[mid].prime)
a4c9b97e
MM
182 low = mid + 1;
183 else
184 high = mid;
185 }
186
187 /* If we've run out of primes, abort. */
9bf3c9cc 188 if (n > prime_tab[low].prime)
a4c9b97e
MM
189 {
190 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
191 abort ();
192 }
193
9bf3c9cc 194 return low;
a2f945c6
VM
195}
196
18a94a2f
MM
197/* Returns non-zero if P1 and P2 are equal. */
198
4feeaae3 199static int
6da879de 200eq_pointer (const PTR p1, const PTR p2)
18a94a2f
MM
201{
202 return p1 == p2;
203}
204
d9175b87 205
d7cf8390
GDR
206/* The parens around the function names in the next two definitions
207 are essential in order to prevent macro expansions of the name.
208 The bodies, however, are expanded as expected, so they are not
209 recursive definitions. */
210
211/* Return the current size of given hash table. */
212
213#define htab_size(htab) ((htab)->size)
214
215size_t
216(htab_size) (htab_t htab)
d9175b87 217{
d7cf8390 218 return htab_size (htab);
d9175b87
RH
219}
220
221/* Return the current number of elements in given hash table. */
222
d7cf8390
GDR
223#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
224
225size_t
226(htab_elements) (htab_t htab)
d9175b87 227{
d7cf8390 228 return htab_elements (htab);
d9175b87
RH
229}
230
9bf3c9cc
RH
231/* Return X % Y. */
232
233static inline hashval_t
6da879de 234htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
9bf3c9cc
RH
235{
236 /* The multiplicative inverses computed above are for 32-bit types, and
237 requires that we be able to compute a highpart multiply. */
238#ifdef UNSIGNED_64BIT_TYPE
239 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
240 if (sizeof (hashval_t) * CHAR_BIT <= 32)
241 {
242 hashval_t t1, t2, t3, t4, q, r;
243
244 t1 = ((ull)x * inv) >> 32;
245 t2 = x - t1;
246 t3 = t2 >> 1;
247 t4 = t1 + t3;
248 q = t4 >> shift;
249 r = x - (q * y);
250
251 return r;
252 }
253#endif
254
255 /* Otherwise just use the native division routines. */
256 return x % y;
257}
258
d9175b87
RH
259/* Compute the primary hash for HASH given HTAB's current size. */
260
261static inline hashval_t
6da879de 262htab_mod (hashval_t hash, htab_t htab)
d9175b87 263{
9bf3c9cc
RH
264 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
265 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
d9175b87
RH
266}
267
268/* Compute the secondary hash for HASH given HTAB's current size. */
269
270static inline hashval_t
6da879de 271htab_mod_m2 (hashval_t hash, htab_t htab)
d9175b87 272{
9bf3c9cc
RH
273 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
274 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
d9175b87
RH
275}
276
a2f945c6
VM
277/* This function creates table with length slightly longer than given
278 source length. Created hash table is initiated as empty (all the
a3648cfc 279 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
e2500fed 280 created hash table, or NULL if memory allocation fails. */
a2f945c6 281
5194cf08 282htab_t
6da879de
GDR
283htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
284 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
a9429e29
LB
285{
286 return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
287 free_f);
288}
289
290/* As above, but uses the variants of ALLOC_F and FREE_F which accept
291 an extra argument. */
292
293htab_t
294htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
295 htab_del del_f, void *alloc_arg,
296 htab_alloc_with_arg alloc_f,
297 htab_free_with_arg free_f)
a2f945c6 298{
5194cf08 299 htab_t result;
9bf3c9cc
RH
300 unsigned int size_prime_index;
301
302 size_prime_index = higher_prime_index (size);
303 size = prime_tab[size_prime_index].prime;
a2f945c6 304
a9429e29 305 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
d50d20ec
HPN
306 if (result == NULL)
307 return NULL;
a9429e29 308 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
d50d20ec
HPN
309 if (result->entries == NULL)
310 {
e2500fed 311 if (free_f != NULL)
a9429e29 312 (*free_f) (alloc_arg, result);
d50d20ec
HPN
313 return NULL;
314 }
d50d20ec 315 result->size = size;
9bf3c9cc 316 result->size_prime_index = size_prime_index;
d50d20ec
HPN
317 result->hash_f = hash_f;
318 result->eq_f = eq_f;
319 result->del_f = del_f;
a9429e29
LB
320 result->alloc_arg = alloc_arg;
321 result->alloc_with_arg_f = alloc_f;
322 result->free_with_arg_f = free_f;
a2f945c6
VM
323 return result;
324}
325
a9429e29
LB
326/*
327
996c0cb0
RW
328@deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
329htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
330htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
a9429e29
LB
331htab_free @var{free_f})
332
333This function creates a hash table that uses two different allocators
334@var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
335and its entries respectively. This is useful when variables of different
336types need to be allocated with different allocators.
337
338The created hash table is slightly larger than @var{size} and it is
339initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
340The function returns the created hash table, or @code{NULL} if memory
341allocation fails.
342
343@end deftypefn
344
345*/
74828682
DJ
346
347htab_t
a9429e29
LB
348htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
349 htab_del del_f, htab_alloc alloc_tab_f,
350 htab_alloc alloc_f, htab_free free_f)
74828682
DJ
351{
352 htab_t result;
9bf3c9cc
RH
353 unsigned int size_prime_index;
354
355 size_prime_index = higher_prime_index (size);
356 size = prime_tab[size_prime_index].prime;
74828682 357
a9429e29 358 result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
74828682
DJ
359 if (result == NULL)
360 return NULL;
a9429e29 361 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
74828682
DJ
362 if (result->entries == NULL)
363 {
364 if (free_f != NULL)
a9429e29 365 (*free_f) (result);
74828682
DJ
366 return NULL;
367 }
368 result->size = size;
9bf3c9cc 369 result->size_prime_index = size_prime_index;
74828682
DJ
370 result->hash_f = hash_f;
371 result->eq_f = eq_f;
372 result->del_f = del_f;
a9429e29
LB
373 result->alloc_f = alloc_f;
374 result->free_f = free_f;
74828682
DJ
375 return result;
376}
377
a9429e29 378
74828682
DJ
379/* Update the function pointers and allocation parameter in the htab_t. */
380
381void
6da879de
GDR
382htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
383 htab_del del_f, PTR alloc_arg,
384 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
74828682
DJ
385{
386 htab->hash_f = hash_f;
387 htab->eq_f = eq_f;
388 htab->del_f = del_f;
389 htab->alloc_arg = alloc_arg;
390 htab->alloc_with_arg_f = alloc_f;
391 htab->free_with_arg_f = free_f;
392}
393
045b3a49
GK
394/* These functions exist solely for backward compatibility. */
395
396#undef htab_create
397htab_t
6da879de 398htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
399{
400 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
401}
402
403htab_t
6da879de 404htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
405{
406 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
407}
408
a2f945c6
VM
409/* This function frees all memory allocated for given hash table.
410 Naturally the hash table must already exist. */
411
412void
6da879de 413htab_delete (htab_t htab)
a2f945c6 414{
d9175b87
RH
415 size_t size = htab_size (htab);
416 PTR *entries = htab->entries;
5dc9cffd 417 int i;
e38992e8 418
5dc9cffd 419 if (htab->del_f)
d9175b87 420 for (i = size - 1; i >= 0; i--)
a3648cfc 421 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
d9175b87 422 (*htab->del_f) (entries[i]);
5dc9cffd 423
e2500fed
GK
424 if (htab->free_f != NULL)
425 {
d9175b87 426 (*htab->free_f) (entries);
e2500fed
GK
427 (*htab->free_f) (htab);
428 }
74828682
DJ
429 else if (htab->free_with_arg_f != NULL)
430 {
d9175b87 431 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
74828682
DJ
432 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
433 }
a2f945c6
VM
434}
435
436/* This function clears all entries in the given hash table. */
437
438void
6da879de 439htab_empty (htab_t htab)
a2f945c6 440{
d9175b87
RH
441 size_t size = htab_size (htab);
442 PTR *entries = htab->entries;
5dc9cffd 443 int i;
e38992e8 444
5dc9cffd 445 if (htab->del_f)
d9175b87 446 for (i = size - 1; i >= 0; i--)
a3648cfc 447 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
d9175b87 448 (*htab->del_f) (entries[i]);
5dc9cffd 449
3050098b
JH
450 /* Instead of clearing megabyte, downsize the table. */
451 if (size > 1024*1024 / sizeof (PTR))
452 {
453 int nindex = higher_prime_index (1024 / sizeof (PTR));
454 int nsize = prime_tab[nindex].prime;
455
456 if (htab->free_f != NULL)
457 (*htab->free_f) (htab->entries);
458 else if (htab->free_with_arg_f != NULL)
459 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
460 if (htab->alloc_with_arg_f != NULL)
461 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
462 sizeof (PTR *));
463 else
464 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
465 htab->size = nsize;
466 htab->size_prime_index = nindex;
467 }
468 else
469 memset (entries, 0, size * sizeof (PTR));
470 htab->n_deleted = 0;
471 htab->n_elements = 0;
a2f945c6
VM
472}
473
8c5d513f
BS
474/* Similar to htab_find_slot, but without several unwanted side effects:
475 - Does not call htab->eq_f when it finds an existing entry.
476 - Does not change the count of elements/searches/collisions in the
477 hash table.
478 This function also assumes there are no deleted entries in the table.
479 HASH is the hash value for the element to be inserted. */
e38992e8 480
35e9340f 481static PTR *
6da879de 482find_empty_slot_for_expand (htab_t htab, hashval_t hash)
8c5d513f 483{
d9175b87
RH
484 hashval_t index = htab_mod (hash, htab);
485 size_t size = htab_size (htab);
4fc4e478
RH
486 PTR *slot = htab->entries + index;
487 hashval_t hash2;
488
a3648cfc 489 if (*slot == HTAB_EMPTY_ENTRY)
4fc4e478 490 return slot;
a3648cfc 491 else if (*slot == HTAB_DELETED_ENTRY)
4fc4e478 492 abort ();
8c5d513f 493
d9175b87 494 hash2 = htab_mod_m2 (hash, htab);
8c5d513f
BS
495 for (;;)
496 {
4fc4e478
RH
497 index += hash2;
498 if (index >= size)
499 index -= size;
e38992e8 500
4fc4e478 501 slot = htab->entries + index;
a3648cfc 502 if (*slot == HTAB_EMPTY_ENTRY)
8c5d513f 503 return slot;
a3648cfc 504 else if (*slot == HTAB_DELETED_ENTRY)
8c5d513f 505 abort ();
8c5d513f
BS
506 }
507}
508
a2f945c6
VM
509/* The following function changes size of memory allocated for the
510 entries and repeatedly inserts the table elements. The occupancy
511 of the table after the call will be about 50%. Naturally the hash
512 table must already exist. Remember also that the place of the
d50d20ec
HPN
513 table entries is changed. If memory allocation failures are allowed,
514 this function will return zero, indicating that the table could not be
515 expanded. If all goes well, it will return a non-zero value. */
a2f945c6 516
d50d20ec 517static int
6da879de 518htab_expand (htab_t htab)
a2f945c6 519{
35e9340f
HPN
520 PTR *oentries;
521 PTR *olimit;
522 PTR *p;
e2500fed 523 PTR *nentries;
9bf3c9cc
RH
524 size_t nsize, osize, elts;
525 unsigned int oindex, nindex;
5194cf08
ZW
526
527 oentries = htab->entries;
9bf3c9cc
RH
528 oindex = htab->size_prime_index;
529 osize = htab->size;
530 olimit = oentries + osize;
531 elts = htab_elements (htab);
5194cf08 532
0a8e3de3
JH
533 /* Resize only when table after removal of unused elements is either
534 too full or too empty. */
9bf3c9cc
RH
535 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
536 {
537 nindex = higher_prime_index (elts * 2);
538 nsize = prime_tab[nindex].prime;
539 }
0a8e3de3 540 else
9bf3c9cc
RH
541 {
542 nindex = oindex;
543 nsize = osize;
544 }
d50d20ec 545
74828682
DJ
546 if (htab->alloc_with_arg_f != NULL)
547 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
548 sizeof (PTR *));
549 else
550 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
e2500fed
GK
551 if (nentries == NULL)
552 return 0;
553 htab->entries = nentries;
120cdf68 554 htab->size = nsize;
9bf3c9cc 555 htab->size_prime_index = nindex;
5194cf08
ZW
556 htab->n_elements -= htab->n_deleted;
557 htab->n_deleted = 0;
558
559 p = oentries;
560 do
561 {
35e9340f 562 PTR x = *p;
e38992e8 563
a3648cfc 564 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
5194cf08 565 {
35e9340f 566 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
e38992e8 567
5194cf08
ZW
568 *q = x;
569 }
e38992e8 570
5194cf08
ZW
571 p++;
572 }
573 while (p < olimit);
e38992e8 574
e2500fed
GK
575 if (htab->free_f != NULL)
576 (*htab->free_f) (oentries);
74828682
DJ
577 else if (htab->free_with_arg_f != NULL)
578 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
d50d20ec 579 return 1;
a2f945c6
VM
580}
581
5194cf08
ZW
582/* This function searches for a hash table entry equal to the given
583 element. It cannot be used to insert or delete an element. */
584
35e9340f 585PTR
6da879de 586htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
a2f945c6 587{
d9175b87 588 hashval_t index, hash2;
5194cf08 589 size_t size;
35e9340f 590 PTR entry;
5194cf08
ZW
591
592 htab->searches++;
d9175b87
RH
593 size = htab_size (htab);
594 index = htab_mod (hash, htab);
a2f945c6 595
0194e877 596 entry = htab->entries[index];
a3648cfc
DB
597 if (entry == HTAB_EMPTY_ENTRY
598 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
0194e877
ZW
599 return entry;
600
d9175b87 601 hash2 = htab_mod_m2 (hash, htab);
5194cf08 602 for (;;)
a2f945c6 603 {
5194cf08
ZW
604 htab->collisions++;
605 index += hash2;
606 if (index >= size)
607 index -= size;
0194e877
ZW
608
609 entry = htab->entries[index];
a3648cfc
DB
610 if (entry == HTAB_EMPTY_ENTRY
611 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
0194e877 612 return entry;
a2f945c6 613 }
5194cf08
ZW
614}
615
8c5d513f
BS
616/* Like htab_find_slot_with_hash, but compute the hash value from the
617 element. */
e38992e8 618
35e9340f 619PTR
6da879de 620htab_find (htab_t htab, const PTR element)
8c5d513f
BS
621{
622 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
623}
624
5194cf08
ZW
625/* This function searches for a hash table slot containing an entry
626 equal to the given element. To delete an entry, call this with
6a88516c
BE
627 insert=NO_INSERT, then call htab_clear_slot on the slot returned
628 (possibly after doing some checks). To insert an entry, call this
629 with insert=INSERT, then write the value you want into the returned
630 slot. When inserting an entry, NULL may be returned if memory
631 allocation fails. */
5194cf08 632
35e9340f 633PTR *
6da879de
GDR
634htab_find_slot_with_hash (htab_t htab, const PTR element,
635 hashval_t hash, enum insert_option insert)
5194cf08 636{
35e9340f 637 PTR *first_deleted_slot;
d9175b87 638 hashval_t index, hash2;
5194cf08 639 size_t size;
4fc4e478 640 PTR entry;
5194cf08 641
d9175b87
RH
642 size = htab_size (htab);
643 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
644 {
645 if (htab_expand (htab) == 0)
646 return NULL;
647 size = htab_size (htab);
648 }
5194cf08 649
d9175b87 650 index = htab_mod (hash, htab);
5194cf08 651
a2f945c6 652 htab->searches++;
5194cf08
ZW
653 first_deleted_slot = NULL;
654
4fc4e478 655 entry = htab->entries[index];
a3648cfc 656 if (entry == HTAB_EMPTY_ENTRY)
4fc4e478 657 goto empty_entry;
a3648cfc 658 else if (entry == HTAB_DELETED_ENTRY)
4fc4e478
RH
659 first_deleted_slot = &htab->entries[index];
660 else if ((*htab->eq_f) (entry, element))
661 return &htab->entries[index];
662
d9175b87 663 hash2 = htab_mod_m2 (hash, htab);
5194cf08 664 for (;;)
a2f945c6 665 {
4fc4e478
RH
666 htab->collisions++;
667 index += hash2;
668 if (index >= size)
669 index -= size;
670
671 entry = htab->entries[index];
a3648cfc 672 if (entry == HTAB_EMPTY_ENTRY)
4fc4e478 673 goto empty_entry;
a3648cfc 674 else if (entry == HTAB_DELETED_ENTRY)
5194cf08
ZW
675 {
676 if (!first_deleted_slot)
677 first_deleted_slot = &htab->entries[index];
678 }
4fc4e478 679 else if ((*htab->eq_f) (entry, element))
e38992e8 680 return &htab->entries[index];
a2f945c6 681 }
4fc4e478
RH
682
683 empty_entry:
684 if (insert == NO_INSERT)
685 return NULL;
686
4fc4e478
RH
687 if (first_deleted_slot)
688 {
e0432c1c 689 htab->n_deleted--;
a3648cfc 690 *first_deleted_slot = HTAB_EMPTY_ENTRY;
4fc4e478
RH
691 return first_deleted_slot;
692 }
693
e0432c1c 694 htab->n_elements++;
4fc4e478 695 return &htab->entries[index];
a2f945c6
VM
696}
697
8c5d513f
BS
698/* Like htab_find_slot_with_hash, but compute the hash value from the
699 element. */
e38992e8 700
35e9340f 701PTR *
6da879de 702htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
8c5d513f
BS
703{
704 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
705 insert);
706}
707
7f96816a
JL
708/* This function deletes an element with the given value from hash
709 table (the hash is computed from the element). If there is no matching
710 element in the hash table, this function does nothing. */
711
712void
6da879de 713htab_remove_elt (htab_t htab, PTR element)
7f96816a
JL
714{
715 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
716}
717
718
5194cf08
ZW
719/* This function deletes an element with the given value from hash
720 table. If there is no matching element in the hash table, this
721 function does nothing. */
a2f945c6
VM
722
723void
6da879de 724htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
a2f945c6 725{
35e9340f 726 PTR *slot;
a2f945c6 727
7f96816a 728 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
a3648cfc 729 if (*slot == HTAB_EMPTY_ENTRY)
5194cf08
ZW
730 return;
731
5dc9cffd
ZW
732 if (htab->del_f)
733 (*htab->del_f) (*slot);
734
a3648cfc 735 *slot = HTAB_DELETED_ENTRY;
5194cf08 736 htab->n_deleted++;
a2f945c6
VM
737}
738
5194cf08
ZW
739/* This function clears a specified slot in a hash table. It is
740 useful when you've already done the lookup and don't want to do it
741 again. */
ed38f5d5
ZW
742
743void
6da879de 744htab_clear_slot (htab_t htab, PTR *slot)
ed38f5d5 745{
d9175b87 746 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
a3648cfc 747 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
ed38f5d5 748 abort ();
e38992e8 749
5dc9cffd
ZW
750 if (htab->del_f)
751 (*htab->del_f) (*slot);
e38992e8 752
a3648cfc 753 *slot = HTAB_DELETED_ENTRY;
5194cf08 754 htab->n_deleted++;
ed38f5d5
ZW
755}
756
757/* This function scans over the entire hash table calling
758 CALLBACK for each live entry. If CALLBACK returns false,
759 the iteration stops. INFO is passed as CALLBACK's second
760 argument. */
761
762void
6da879de 763htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
ed38f5d5 764{
0a8e3de3
JH
765 PTR *slot;
766 PTR *limit;
a3648cfc 767
0a8e3de3 768 slot = htab->entries;
d9175b87 769 limit = slot + htab_size (htab);
e38992e8 770
5194cf08
ZW
771 do
772 {
35e9340f 773 PTR x = *slot;
e38992e8 774
a3648cfc 775 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
8c5d513f 776 if (!(*callback) (slot, info))
5194cf08
ZW
777 break;
778 }
779 while (++slot < limit);
ed38f5d5
ZW
780}
781
dbccdc42
JH
782/* Like htab_traverse_noresize, but does resize the table when it is
783 too empty to improve effectivity of subsequent calls. */
784
785void
6da879de 786htab_traverse (htab_t htab, htab_trav callback, PTR info)
dbccdc42 787{
a46f975b
JJ
788 size_t size = htab_size (htab);
789 if (htab_elements (htab) * 8 < size && size > 32)
dbccdc42
JH
790 htab_expand (htab);
791
792 htab_traverse_noresize (htab, callback, info);
793}
794
e38992e8
RK
795/* Return the fraction of fixed collisions during all work with given
796 hash table. */
a2f945c6 797
5194cf08 798double
6da879de 799htab_collisions (htab_t htab)
a2f945c6 800{
e38992e8 801 if (htab->searches == 0)
5194cf08 802 return 0.0;
e38992e8
RK
803
804 return (double) htab->collisions / (double) htab->searches;
a2f945c6 805}
9e0ba685 806
0ed5305d
RH
807/* Hash P as a null-terminated string.
808
809 Copied from gcc/hashtable.c. Zack had the following to say with respect
810 to applicability, though note that unlike hashtable.c, this hash table
811 implementation re-hashes rather than chain buckets.
812
813 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
814 From: Zack Weinberg <zackw@panix.com>
815 Date: Fri, 17 Aug 2001 02:15:56 -0400
816
817 I got it by extracting all the identifiers from all the source code
818 I had lying around in mid-1999, and testing many recurrences of
819 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
820 prime numbers or the appropriate identity. This was the best one.
821 I don't remember exactly what constituted "best", except I was
822 looking at bucket-length distributions mostly.
823
824 So it should be very good at hashing identifiers, but might not be
825 as good at arbitrary strings.
826
827 I'll add that it thoroughly trounces the hash functions recommended
828 for this use at http://burtleburtle.net/bob/hash/index.html, both
829 on speed and bucket distribution. I haven't tried it against the
830 function they just started using for Perl's hashes. */
9e0ba685
RH
831
832hashval_t
6da879de 833htab_hash_string (const PTR p)
9e0ba685
RH
834{
835 const unsigned char *str = (const unsigned char *) p;
836 hashval_t r = 0;
837 unsigned char c;
838
839 while ((c = *str++) != 0)
840 r = r * 67 + c - 113;
841
842 return r;
843}
5cc5a0d0
JM
844
845/* DERIVED FROM:
846--------------------------------------------------------------------
847lookup2.c, by Bob Jenkins, December 1996, Public Domain.
848hash(), hash2(), hash3, and mix() are externally useful functions.
849Routines to test the hash are included if SELF_TEST is defined.
850You can use this free for any purpose. It has no warranty.
851--------------------------------------------------------------------
852*/
853
854/*
855--------------------------------------------------------------------
856mix -- mix 3 32-bit values reversibly.
857For every delta with one or two bit set, and the deltas of all three
858 high bits or all three low bits, whether the original value of a,b,c
859 is almost all zero or is uniformly distributed,
860* If mix() is run forward or backward, at least 32 bits in a,b,c
861 have at least 1/4 probability of changing.
862* If mix() is run forward, every bit of c will change between 1/3 and
863 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
864mix() was built out of 36 single-cycle latency instructions in a
865 structure that could supported 2x parallelism, like so:
866 a -= b;
867 a -= c; x = (c>>13);
868 b -= c; a ^= x;
869 b -= a; x = (a<<8);
870 c -= a; b ^= x;
871 c -= b; x = (b>>13);
872 ...
873 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
874 of that parallelism. They've also turned some of those single-cycle
875 latency instructions into multi-cycle latency instructions. Still,
876 this is the fastest good hash I could find. There were about 2^^68
877 to choose from. I only looked at a billion or so.
878--------------------------------------------------------------------
879*/
880/* same, but slower, works on systems that might have 8 byte hashval_t's */
881#define mix(a,b,c) \
882{ \
883 a -= b; a -= c; a ^= (c>>13); \
884 b -= c; b -= a; b ^= (a<< 8); \
885 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
886 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
887 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
888 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
889 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
890 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
891 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
892}
893
894/*
895--------------------------------------------------------------------
896hash() -- hash a variable-length key into a 32-bit value
897 k : the key (the unaligned variable-length array of bytes)
898 len : the length of the key, counting by bytes
899 level : can be any 4-byte value
900Returns a 32-bit value. Every bit of the key affects every bit of
901the return value. Every 1-bit and 2-bit delta achieves avalanche.
902About 36+6len instructions.
903
904The best hash table sizes are powers of 2. There is no need to do
905mod a prime (mod is sooo slow!). If you need less than 32 bits,
906use a bitmask. For example, if you need only 10 bits, do
907 h = (h & hashmask(10));
908In which case, the hash table should have hashsize(10) elements.
909
910If you are hashing n strings (ub1 **)k, do it like this:
911 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
912
913By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
914code any way you wish, private, educational, or commercial. It's free.
915
916See http://burtleburtle.net/bob/hash/evahash.html
917Use for hash table lookup, or anything where one collision in 2^32 is
918acceptable. Do NOT use for cryptographic purposes.
919--------------------------------------------------------------------
920*/
921
6da879de
GDR
922hashval_t
923iterative_hash (const PTR k_in /* the key */,
924 register size_t length /* the length of the key */,
925 register hashval_t initval /* the previous hash, or
926 an arbitrary value */)
5cc5a0d0
JM
927{
928 register const unsigned char *k = (const unsigned char *)k_in;
929 register hashval_t a,b,c,len;
930
931 /* Set up the internal state */
932 len = length;
933 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
934 c = initval; /* the previous hash value */
935
936 /*---------------------------------------- handle most of the key */
937#ifndef WORDS_BIGENDIAN
938 /* On a little-endian machine, if the data is 4-byte aligned we can hash
939 by word for better speed. This gives nondeterministic results on
940 big-endian machines. */
941 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
942 while (len >= 12) /* aligned */
943 {
944 a += *(hashval_t *)(k+0);
945 b += *(hashval_t *)(k+4);
946 c += *(hashval_t *)(k+8);
947 mix(a,b,c);
948 k += 12; len -= 12;
949 }
950 else /* unaligned */
951#endif
952 while (len >= 12)
953 {
954 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
955 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
956 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
957 mix(a,b,c);
958 k += 12; len -= 12;
959 }
960
961 /*------------------------------------- handle the last 11 bytes */
962 c += length;
963 switch(len) /* all the case statements fall through */
964 {
965 case 11: c+=((hashval_t)k[10]<<24);
966 case 10: c+=((hashval_t)k[9]<<16);
967 case 9 : c+=((hashval_t)k[8]<<8);
968 /* the first byte of c is reserved for the length */
969 case 8 : b+=((hashval_t)k[7]<<24);
970 case 7 : b+=((hashval_t)k[6]<<16);
971 case 6 : b+=((hashval_t)k[5]<<8);
972 case 5 : b+=k[4];
973 case 4 : a+=((hashval_t)k[3]<<24);
974 case 3 : a+=((hashval_t)k[2]<<16);
975 case 2 : a+=((hashval_t)k[1]<<8);
976 case 1 : a+=k[0];
977 /* case 0: nothing left to add */
978 }
979 mix(a,b,c);
980 /*-------------------------------------------- report the result */
981 return c;
982}
86210f13
AK
983
984/* Returns a hash code for pointer P. Simplified version of evahash */
985
986static hashval_t
987hash_pointer (const PTR p)
988{
989 intptr_t v = (intptr_t) p;
990 unsigned a, b, c;
991
992 a = b = 0x9e3779b9;
b768e8cf
DE
993 a += v >> (sizeof (intptr_t) * CHAR_BIT / 2);
994 b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1);
86210f13
AK
995 c = 0x42135234;
996 mix (a, b, c);
997 return c;
998}