]> git.ipfire.org Git - thirdparty/gcc.git/blame - libiberty/hashtab.c
re PR fortran/44446 (Error with protected pocedure pointer)
[thirdparty/gcc.git] / libiberty / hashtab.c
CommitLineData
a2f945c6 1/* An expandable hash tables datatype.
a46f975b 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009
9bf3c9cc 3 Free Software Foundation, Inc.
a2f945c6
VM
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
ee58dffd
NC
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
a2f945c6
VM
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
6de9b8ff
PDM
39#include <sys/types.h>
40
a2f945c6
VM
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
d11ec6f0
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
cf8e4b78
DH
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
9bf3c9cc
RH
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
50cb834f
RO
53#ifdef HAVE_INTTYPES_H
54#include <inttypes.h>
55#endif
9bf3c9cc
RH
56#ifdef HAVE_STDINT_H
57#include <stdint.h>
58#endif
cf8e4b78 59
36dd3a44
JL
60#include <stdio.h>
61
a2f945c6 62#include "libiberty.h"
9bf3c9cc 63#include "ansidecl.h"
a2f945c6
VM
64#include "hashtab.h"
65
9bf3c9cc
RH
66#ifndef CHAR_BIT
67#define CHAR_BIT 8
68#endif
69
6da879de
GDR
70static unsigned int higher_prime_index (unsigned long);
71static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
72static hashval_t htab_mod (hashval_t, htab_t);
73static hashval_t htab_mod_m2 (hashval_t, htab_t);
74static hashval_t hash_pointer (const void *);
75static int eq_pointer (const void *, const void *);
76static int htab_expand (htab_t);
77static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
18a94a2f
MM
78
79/* At some point, we could make these be NULL, and modify the
80 hash-table routines to handle NULL specially; that would avoid
81 function-call overhead for the common case of hashing pointers. */
82htab_hash htab_hash_pointer = hash_pointer;
83htab_eq htab_eq_pointer = eq_pointer;
0194e877 84
9bf3c9cc
RH
85/* Table of primes and multiplicative inverses.
86
87 Note that these are not minimally reduced inverses. Unlike when generating
88 code to divide by a constant, we want to be able to use the same algorithm
89 all the time. All of these inverses (are implied to) have bit 32 set.
90
91 For the record, here's the function that computed the table; it's a
92 vastly simplified version of the function of the same name from gcc. */
93
94#if 0
95unsigned int
96ceil_log2 (unsigned int x)
97{
98 int i;
99 for (i = 31; i >= 0 ; --i)
100 if (x > (1u << i))
101 return i+1;
102 abort ();
103}
a2f945c6 104
9bf3c9cc
RH
105unsigned int
106choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
107{
108 unsigned long long mhigh;
109 double nx;
110 int lgup, post_shift;
111 int pow, pow2;
112 int n = 32, precision = 32;
113
114 lgup = ceil_log2 (d);
115 pow = n + lgup;
116 pow2 = n + lgup - precision;
117
118 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
119 mhigh = nx / d;
120
121 *shiftp = lgup - 1;
122 *mlp = mhigh;
123 return mhigh >> 32;
124}
125#endif
126
127struct prime_ent
128{
129 hashval_t prime;
130 hashval_t inv;
131 hashval_t inv_m2; /* inverse of prime-2 */
132 hashval_t shift;
133};
134
135static struct prime_ent const prime_tab[] = {
136 { 7, 0x24924925, 0x9999999b, 2 },
137 { 13, 0x3b13b13c, 0x745d1747, 3 },
138 { 31, 0x08421085, 0x1a7b9612, 4 },
139 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
140 { 127, 0x02040811, 0x0624dd30, 6 },
141 { 251, 0x05197f7e, 0x073260a5, 7 },
142 { 509, 0x01824366, 0x02864fc8, 8 },
143 { 1021, 0x00c0906d, 0x014191f7, 9 },
144 { 2039, 0x0121456f, 0x0161e69e, 10 },
145 { 4093, 0x00300902, 0x00501908, 11 },
146 { 8191, 0x00080041, 0x00180241, 12 },
147 { 16381, 0x000c0091, 0x00140191, 13 },
148 { 32749, 0x002605a5, 0x002a06e6, 14 },
149 { 65521, 0x000f00e2, 0x00110122, 15 },
150 { 131071, 0x00008001, 0x00018003, 16 },
151 { 262139, 0x00014002, 0x0001c004, 17 },
152 { 524287, 0x00002001, 0x00006001, 18 },
153 { 1048573, 0x00003001, 0x00005001, 19 },
154 { 2097143, 0x00004801, 0x00005801, 20 },
155 { 4194301, 0x00000c01, 0x00001401, 21 },
156 { 8388593, 0x00001e01, 0x00002201, 22 },
157 { 16777213, 0x00000301, 0x00000501, 23 },
158 { 33554393, 0x00001381, 0x00001481, 24 },
159 { 67108859, 0x00000141, 0x000001c1, 25 },
160 { 134217689, 0x000004e1, 0x00000521, 26 },
161 { 268435399, 0x00000391, 0x000003b1, 27 },
162 { 536870909, 0x00000019, 0x00000029, 28 },
163 { 1073741789, 0x0000008d, 0x00000095, 29 },
164 { 2147483647, 0x00000003, 0x00000007, 30 },
165 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
166 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
167};
168
169/* The following function returns an index into the above table of the
170 nearest prime number which is greater than N, and near a power of two. */
171
172static unsigned int
6da879de 173higher_prime_index (unsigned long n)
a2f945c6 174{
9bf3c9cc
RH
175 unsigned int low = 0;
176 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
a4c9b97e
MM
177
178 while (low != high)
179 {
9bf3c9cc
RH
180 unsigned int mid = low + (high - low) / 2;
181 if (n > prime_tab[mid].prime)
a4c9b97e
MM
182 low = mid + 1;
183 else
184 high = mid;
185 }
186
187 /* If we've run out of primes, abort. */
9bf3c9cc 188 if (n > prime_tab[low].prime)
a4c9b97e
MM
189 {
190 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
191 abort ();
192 }
193
9bf3c9cc 194 return low;
a2f945c6
VM
195}
196
18a94a2f
MM
197/* Returns a hash code for P. */
198
4feeaae3 199static hashval_t
6da879de 200hash_pointer (const PTR p)
18a94a2f 201{
2e3dac6f 202 return (hashval_t) ((intptr_t)p >> 3);
18a94a2f
MM
203}
204
205/* Returns non-zero if P1 and P2 are equal. */
206
4feeaae3 207static int
6da879de 208eq_pointer (const PTR p1, const PTR p2)
18a94a2f
MM
209{
210 return p1 == p2;
211}
212
d9175b87 213
d7cf8390
GDR
214/* The parens around the function names in the next two definitions
215 are essential in order to prevent macro expansions of the name.
216 The bodies, however, are expanded as expected, so they are not
217 recursive definitions. */
218
219/* Return the current size of given hash table. */
220
221#define htab_size(htab) ((htab)->size)
222
223size_t
224(htab_size) (htab_t htab)
d9175b87 225{
d7cf8390 226 return htab_size (htab);
d9175b87
RH
227}
228
229/* Return the current number of elements in given hash table. */
230
d7cf8390
GDR
231#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
232
233size_t
234(htab_elements) (htab_t htab)
d9175b87 235{
d7cf8390 236 return htab_elements (htab);
d9175b87
RH
237}
238
9bf3c9cc
RH
239/* Return X % Y. */
240
241static inline hashval_t
6da879de 242htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
9bf3c9cc
RH
243{
244 /* The multiplicative inverses computed above are for 32-bit types, and
245 requires that we be able to compute a highpart multiply. */
246#ifdef UNSIGNED_64BIT_TYPE
247 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
248 if (sizeof (hashval_t) * CHAR_BIT <= 32)
249 {
250 hashval_t t1, t2, t3, t4, q, r;
251
252 t1 = ((ull)x * inv) >> 32;
253 t2 = x - t1;
254 t3 = t2 >> 1;
255 t4 = t1 + t3;
256 q = t4 >> shift;
257 r = x - (q * y);
258
259 return r;
260 }
261#endif
262
263 /* Otherwise just use the native division routines. */
264 return x % y;
265}
266
d9175b87
RH
267/* Compute the primary hash for HASH given HTAB's current size. */
268
269static inline hashval_t
6da879de 270htab_mod (hashval_t hash, htab_t htab)
d9175b87 271{
9bf3c9cc
RH
272 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
273 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
d9175b87
RH
274}
275
276/* Compute the secondary hash for HASH given HTAB's current size. */
277
278static inline hashval_t
6da879de 279htab_mod_m2 (hashval_t hash, htab_t htab)
d9175b87 280{
9bf3c9cc
RH
281 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
282 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
d9175b87
RH
283}
284
a2f945c6
VM
285/* This function creates table with length slightly longer than given
286 source length. Created hash table is initiated as empty (all the
a3648cfc 287 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
e2500fed 288 created hash table, or NULL if memory allocation fails. */
a2f945c6 289
5194cf08 290htab_t
6da879de
GDR
291htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
292 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
a2f945c6 293{
5194cf08 294 htab_t result;
9bf3c9cc
RH
295 unsigned int size_prime_index;
296
297 size_prime_index = higher_prime_index (size);
298 size = prime_tab[size_prime_index].prime;
a2f945c6 299
e2500fed 300 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
d50d20ec
HPN
301 if (result == NULL)
302 return NULL;
e2500fed 303 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
d50d20ec
HPN
304 if (result->entries == NULL)
305 {
e2500fed
GK
306 if (free_f != NULL)
307 (*free_f) (result);
d50d20ec
HPN
308 return NULL;
309 }
d50d20ec 310 result->size = size;
9bf3c9cc 311 result->size_prime_index = size_prime_index;
d50d20ec
HPN
312 result->hash_f = hash_f;
313 result->eq_f = eq_f;
314 result->del_f = del_f;
e2500fed
GK
315 result->alloc_f = alloc_f;
316 result->free_f = free_f;
a2f945c6
VM
317 return result;
318}
319
74828682
DJ
320/* As above, but use the variants of alloc_f and free_f which accept
321 an extra argument. */
322
323htab_t
d7cf8390
GDR
324htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
325 htab_del del_f, void *alloc_arg,
326 htab_alloc_with_arg alloc_f,
327 htab_free_with_arg free_f)
74828682
DJ
328{
329 htab_t result;
9bf3c9cc
RH
330 unsigned int size_prime_index;
331
332 size_prime_index = higher_prime_index (size);
333 size = prime_tab[size_prime_index].prime;
74828682 334
74828682
DJ
335 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
336 if (result == NULL)
337 return NULL;
338 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
339 if (result->entries == NULL)
340 {
341 if (free_f != NULL)
342 (*free_f) (alloc_arg, result);
343 return NULL;
344 }
345 result->size = size;
9bf3c9cc 346 result->size_prime_index = size_prime_index;
74828682
DJ
347 result->hash_f = hash_f;
348 result->eq_f = eq_f;
349 result->del_f = del_f;
350 result->alloc_arg = alloc_arg;
351 result->alloc_with_arg_f = alloc_f;
352 result->free_with_arg_f = free_f;
353 return result;
354}
355
356/* Update the function pointers and allocation parameter in the htab_t. */
357
358void
6da879de
GDR
359htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
360 htab_del del_f, PTR alloc_arg,
361 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
74828682
DJ
362{
363 htab->hash_f = hash_f;
364 htab->eq_f = eq_f;
365 htab->del_f = del_f;
366 htab->alloc_arg = alloc_arg;
367 htab->alloc_with_arg_f = alloc_f;
368 htab->free_with_arg_f = free_f;
369}
370
045b3a49
GK
371/* These functions exist solely for backward compatibility. */
372
373#undef htab_create
374htab_t
6da879de 375htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
376{
377 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
378}
379
380htab_t
6da879de 381htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
382{
383 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
384}
385
a2f945c6
VM
386/* This function frees all memory allocated for given hash table.
387 Naturally the hash table must already exist. */
388
389void
6da879de 390htab_delete (htab_t htab)
a2f945c6 391{
d9175b87
RH
392 size_t size = htab_size (htab);
393 PTR *entries = htab->entries;
5dc9cffd 394 int i;
e38992e8 395
5dc9cffd 396 if (htab->del_f)
d9175b87 397 for (i = size - 1; i >= 0; i--)
a3648cfc 398 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
d9175b87 399 (*htab->del_f) (entries[i]);
5dc9cffd 400
e2500fed
GK
401 if (htab->free_f != NULL)
402 {
d9175b87 403 (*htab->free_f) (entries);
e2500fed
GK
404 (*htab->free_f) (htab);
405 }
74828682
DJ
406 else if (htab->free_with_arg_f != NULL)
407 {
d9175b87 408 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
74828682
DJ
409 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
410 }
a2f945c6
VM
411}
412
413/* This function clears all entries in the given hash table. */
414
415void
6da879de 416htab_empty (htab_t htab)
a2f945c6 417{
d9175b87
RH
418 size_t size = htab_size (htab);
419 PTR *entries = htab->entries;
5dc9cffd 420 int i;
e38992e8 421
5dc9cffd 422 if (htab->del_f)
d9175b87 423 for (i = size - 1; i >= 0; i--)
a3648cfc 424 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
d9175b87 425 (*htab->del_f) (entries[i]);
5dc9cffd 426
3050098b
JH
427 /* Instead of clearing megabyte, downsize the table. */
428 if (size > 1024*1024 / sizeof (PTR))
429 {
430 int nindex = higher_prime_index (1024 / sizeof (PTR));
431 int nsize = prime_tab[nindex].prime;
432
433 if (htab->free_f != NULL)
434 (*htab->free_f) (htab->entries);
435 else if (htab->free_with_arg_f != NULL)
436 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
437 if (htab->alloc_with_arg_f != NULL)
438 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
439 sizeof (PTR *));
440 else
441 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
442 htab->size = nsize;
443 htab->size_prime_index = nindex;
444 }
445 else
446 memset (entries, 0, size * sizeof (PTR));
447 htab->n_deleted = 0;
448 htab->n_elements = 0;
a2f945c6
VM
449}
450
8c5d513f
BS
451/* Similar to htab_find_slot, but without several unwanted side effects:
452 - Does not call htab->eq_f when it finds an existing entry.
453 - Does not change the count of elements/searches/collisions in the
454 hash table.
455 This function also assumes there are no deleted entries in the table.
456 HASH is the hash value for the element to be inserted. */
e38992e8 457
35e9340f 458static PTR *
6da879de 459find_empty_slot_for_expand (htab_t htab, hashval_t hash)
8c5d513f 460{
d9175b87
RH
461 hashval_t index = htab_mod (hash, htab);
462 size_t size = htab_size (htab);
4fc4e478
RH
463 PTR *slot = htab->entries + index;
464 hashval_t hash2;
465
a3648cfc 466 if (*slot == HTAB_EMPTY_ENTRY)
4fc4e478 467 return slot;
a3648cfc 468 else if (*slot == HTAB_DELETED_ENTRY)
4fc4e478 469 abort ();
8c5d513f 470
d9175b87 471 hash2 = htab_mod_m2 (hash, htab);
8c5d513f
BS
472 for (;;)
473 {
4fc4e478
RH
474 index += hash2;
475 if (index >= size)
476 index -= size;
e38992e8 477
4fc4e478 478 slot = htab->entries + index;
a3648cfc 479 if (*slot == HTAB_EMPTY_ENTRY)
8c5d513f 480 return slot;
a3648cfc 481 else if (*slot == HTAB_DELETED_ENTRY)
8c5d513f 482 abort ();
8c5d513f
BS
483 }
484}
485
a2f945c6
VM
486/* The following function changes size of memory allocated for the
487 entries and repeatedly inserts the table elements. The occupancy
488 of the table after the call will be about 50%. Naturally the hash
489 table must already exist. Remember also that the place of the
d50d20ec
HPN
490 table entries is changed. If memory allocation failures are allowed,
491 this function will return zero, indicating that the table could not be
492 expanded. If all goes well, it will return a non-zero value. */
a2f945c6 493
d50d20ec 494static int
6da879de 495htab_expand (htab_t htab)
a2f945c6 496{
35e9340f
HPN
497 PTR *oentries;
498 PTR *olimit;
499 PTR *p;
e2500fed 500 PTR *nentries;
9bf3c9cc
RH
501 size_t nsize, osize, elts;
502 unsigned int oindex, nindex;
5194cf08
ZW
503
504 oentries = htab->entries;
9bf3c9cc
RH
505 oindex = htab->size_prime_index;
506 osize = htab->size;
507 olimit = oentries + osize;
508 elts = htab_elements (htab);
5194cf08 509
0a8e3de3
JH
510 /* Resize only when table after removal of unused elements is either
511 too full or too empty. */
9bf3c9cc
RH
512 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
513 {
514 nindex = higher_prime_index (elts * 2);
515 nsize = prime_tab[nindex].prime;
516 }
0a8e3de3 517 else
9bf3c9cc
RH
518 {
519 nindex = oindex;
520 nsize = osize;
521 }
d50d20ec 522
74828682
DJ
523 if (htab->alloc_with_arg_f != NULL)
524 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
525 sizeof (PTR *));
526 else
527 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
e2500fed
GK
528 if (nentries == NULL)
529 return 0;
530 htab->entries = nentries;
120cdf68 531 htab->size = nsize;
9bf3c9cc 532 htab->size_prime_index = nindex;
5194cf08
ZW
533 htab->n_elements -= htab->n_deleted;
534 htab->n_deleted = 0;
535
536 p = oentries;
537 do
538 {
35e9340f 539 PTR x = *p;
e38992e8 540
a3648cfc 541 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
5194cf08 542 {
35e9340f 543 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
e38992e8 544
5194cf08
ZW
545 *q = x;
546 }
e38992e8 547
5194cf08
ZW
548 p++;
549 }
550 while (p < olimit);
e38992e8 551
e2500fed
GK
552 if (htab->free_f != NULL)
553 (*htab->free_f) (oentries);
74828682
DJ
554 else if (htab->free_with_arg_f != NULL)
555 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
d50d20ec 556 return 1;
a2f945c6
VM
557}
558
5194cf08
ZW
559/* This function searches for a hash table entry equal to the given
560 element. It cannot be used to insert or delete an element. */
561
35e9340f 562PTR
6da879de 563htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
a2f945c6 564{
d9175b87 565 hashval_t index, hash2;
5194cf08 566 size_t size;
35e9340f 567 PTR entry;
5194cf08
ZW
568
569 htab->searches++;
d9175b87
RH
570 size = htab_size (htab);
571 index = htab_mod (hash, htab);
a2f945c6 572
0194e877 573 entry = htab->entries[index];
a3648cfc
DB
574 if (entry == HTAB_EMPTY_ENTRY
575 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
0194e877
ZW
576 return entry;
577
d9175b87 578 hash2 = htab_mod_m2 (hash, htab);
5194cf08 579 for (;;)
a2f945c6 580 {
5194cf08
ZW
581 htab->collisions++;
582 index += hash2;
583 if (index >= size)
584 index -= size;
0194e877
ZW
585
586 entry = htab->entries[index];
a3648cfc
DB
587 if (entry == HTAB_EMPTY_ENTRY
588 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
0194e877 589 return entry;
a2f945c6 590 }
5194cf08
ZW
591}
592
8c5d513f
BS
593/* Like htab_find_slot_with_hash, but compute the hash value from the
594 element. */
e38992e8 595
35e9340f 596PTR
6da879de 597htab_find (htab_t htab, const PTR element)
8c5d513f
BS
598{
599 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
600}
601
5194cf08
ZW
602/* This function searches for a hash table slot containing an entry
603 equal to the given element. To delete an entry, call this with
6a88516c
BE
604 insert=NO_INSERT, then call htab_clear_slot on the slot returned
605 (possibly after doing some checks). To insert an entry, call this
606 with insert=INSERT, then write the value you want into the returned
607 slot. When inserting an entry, NULL may be returned if memory
608 allocation fails. */
5194cf08 609
35e9340f 610PTR *
6da879de
GDR
611htab_find_slot_with_hash (htab_t htab, const PTR element,
612 hashval_t hash, enum insert_option insert)
5194cf08 613{
35e9340f 614 PTR *first_deleted_slot;
d9175b87 615 hashval_t index, hash2;
5194cf08 616 size_t size;
4fc4e478 617 PTR entry;
5194cf08 618
d9175b87
RH
619 size = htab_size (htab);
620 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
621 {
622 if (htab_expand (htab) == 0)
623 return NULL;
624 size = htab_size (htab);
625 }
5194cf08 626
d9175b87 627 index = htab_mod (hash, htab);
5194cf08 628
a2f945c6 629 htab->searches++;
5194cf08
ZW
630 first_deleted_slot = NULL;
631
4fc4e478 632 entry = htab->entries[index];
a3648cfc 633 if (entry == HTAB_EMPTY_ENTRY)
4fc4e478 634 goto empty_entry;
a3648cfc 635 else if (entry == HTAB_DELETED_ENTRY)
4fc4e478
RH
636 first_deleted_slot = &htab->entries[index];
637 else if ((*htab->eq_f) (entry, element))
638 return &htab->entries[index];
639
d9175b87 640 hash2 = htab_mod_m2 (hash, htab);
5194cf08 641 for (;;)
a2f945c6 642 {
4fc4e478
RH
643 htab->collisions++;
644 index += hash2;
645 if (index >= size)
646 index -= size;
647
648 entry = htab->entries[index];
a3648cfc 649 if (entry == HTAB_EMPTY_ENTRY)
4fc4e478 650 goto empty_entry;
a3648cfc 651 else if (entry == HTAB_DELETED_ENTRY)
5194cf08
ZW
652 {
653 if (!first_deleted_slot)
654 first_deleted_slot = &htab->entries[index];
655 }
4fc4e478 656 else if ((*htab->eq_f) (entry, element))
e38992e8 657 return &htab->entries[index];
a2f945c6 658 }
4fc4e478
RH
659
660 empty_entry:
661 if (insert == NO_INSERT)
662 return NULL;
663
4fc4e478
RH
664 if (first_deleted_slot)
665 {
e0432c1c 666 htab->n_deleted--;
a3648cfc 667 *first_deleted_slot = HTAB_EMPTY_ENTRY;
4fc4e478
RH
668 return first_deleted_slot;
669 }
670
e0432c1c 671 htab->n_elements++;
4fc4e478 672 return &htab->entries[index];
a2f945c6
VM
673}
674
8c5d513f
BS
675/* Like htab_find_slot_with_hash, but compute the hash value from the
676 element. */
e38992e8 677
35e9340f 678PTR *
6da879de 679htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
8c5d513f
BS
680{
681 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
682 insert);
683}
684
7f96816a
JL
685/* This function deletes an element with the given value from hash
686 table (the hash is computed from the element). If there is no matching
687 element in the hash table, this function does nothing. */
688
689void
6da879de 690htab_remove_elt (htab_t htab, PTR element)
7f96816a
JL
691{
692 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
693}
694
695
5194cf08
ZW
696/* This function deletes an element with the given value from hash
697 table. If there is no matching element in the hash table, this
698 function does nothing. */
a2f945c6
VM
699
700void
6da879de 701htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
a2f945c6 702{
35e9340f 703 PTR *slot;
a2f945c6 704
7f96816a 705 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
a3648cfc 706 if (*slot == HTAB_EMPTY_ENTRY)
5194cf08
ZW
707 return;
708
5dc9cffd
ZW
709 if (htab->del_f)
710 (*htab->del_f) (*slot);
711
a3648cfc 712 *slot = HTAB_DELETED_ENTRY;
5194cf08 713 htab->n_deleted++;
a2f945c6
VM
714}
715
5194cf08
ZW
716/* This function clears a specified slot in a hash table. It is
717 useful when you've already done the lookup and don't want to do it
718 again. */
ed38f5d5
ZW
719
720void
6da879de 721htab_clear_slot (htab_t htab, PTR *slot)
ed38f5d5 722{
d9175b87 723 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
a3648cfc 724 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
ed38f5d5 725 abort ();
e38992e8 726
5dc9cffd
ZW
727 if (htab->del_f)
728 (*htab->del_f) (*slot);
e38992e8 729
a3648cfc 730 *slot = HTAB_DELETED_ENTRY;
5194cf08 731 htab->n_deleted++;
ed38f5d5
ZW
732}
733
734/* This function scans over the entire hash table calling
735 CALLBACK for each live entry. If CALLBACK returns false,
736 the iteration stops. INFO is passed as CALLBACK's second
737 argument. */
738
739void
6da879de 740htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
ed38f5d5 741{
0a8e3de3
JH
742 PTR *slot;
743 PTR *limit;
a3648cfc 744
0a8e3de3 745 slot = htab->entries;
d9175b87 746 limit = slot + htab_size (htab);
e38992e8 747
5194cf08
ZW
748 do
749 {
35e9340f 750 PTR x = *slot;
e38992e8 751
a3648cfc 752 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
8c5d513f 753 if (!(*callback) (slot, info))
5194cf08
ZW
754 break;
755 }
756 while (++slot < limit);
ed38f5d5
ZW
757}
758
dbccdc42
JH
759/* Like htab_traverse_noresize, but does resize the table when it is
760 too empty to improve effectivity of subsequent calls. */
761
762void
6da879de 763htab_traverse (htab_t htab, htab_trav callback, PTR info)
dbccdc42 764{
a46f975b
JJ
765 size_t size = htab_size (htab);
766 if (htab_elements (htab) * 8 < size && size > 32)
dbccdc42
JH
767 htab_expand (htab);
768
769 htab_traverse_noresize (htab, callback, info);
770}
771
e38992e8
RK
772/* Return the fraction of fixed collisions during all work with given
773 hash table. */
a2f945c6 774
5194cf08 775double
6da879de 776htab_collisions (htab_t htab)
a2f945c6 777{
e38992e8 778 if (htab->searches == 0)
5194cf08 779 return 0.0;
e38992e8
RK
780
781 return (double) htab->collisions / (double) htab->searches;
a2f945c6 782}
9e0ba685 783
0ed5305d
RH
784/* Hash P as a null-terminated string.
785
786 Copied from gcc/hashtable.c. Zack had the following to say with respect
787 to applicability, though note that unlike hashtable.c, this hash table
788 implementation re-hashes rather than chain buckets.
789
790 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
791 From: Zack Weinberg <zackw@panix.com>
792 Date: Fri, 17 Aug 2001 02:15:56 -0400
793
794 I got it by extracting all the identifiers from all the source code
795 I had lying around in mid-1999, and testing many recurrences of
796 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
797 prime numbers or the appropriate identity. This was the best one.
798 I don't remember exactly what constituted "best", except I was
799 looking at bucket-length distributions mostly.
800
801 So it should be very good at hashing identifiers, but might not be
802 as good at arbitrary strings.
803
804 I'll add that it thoroughly trounces the hash functions recommended
805 for this use at http://burtleburtle.net/bob/hash/index.html, both
806 on speed and bucket distribution. I haven't tried it against the
807 function they just started using for Perl's hashes. */
9e0ba685
RH
808
809hashval_t
6da879de 810htab_hash_string (const PTR p)
9e0ba685
RH
811{
812 const unsigned char *str = (const unsigned char *) p;
813 hashval_t r = 0;
814 unsigned char c;
815
816 while ((c = *str++) != 0)
817 r = r * 67 + c - 113;
818
819 return r;
820}
5cc5a0d0
JM
821
822/* DERIVED FROM:
823--------------------------------------------------------------------
824lookup2.c, by Bob Jenkins, December 1996, Public Domain.
825hash(), hash2(), hash3, and mix() are externally useful functions.
826Routines to test the hash are included if SELF_TEST is defined.
827You can use this free for any purpose. It has no warranty.
828--------------------------------------------------------------------
829*/
830
831/*
832--------------------------------------------------------------------
833mix -- mix 3 32-bit values reversibly.
834For every delta with one or two bit set, and the deltas of all three
835 high bits or all three low bits, whether the original value of a,b,c
836 is almost all zero or is uniformly distributed,
837* If mix() is run forward or backward, at least 32 bits in a,b,c
838 have at least 1/4 probability of changing.
839* If mix() is run forward, every bit of c will change between 1/3 and
840 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
841mix() was built out of 36 single-cycle latency instructions in a
842 structure that could supported 2x parallelism, like so:
843 a -= b;
844 a -= c; x = (c>>13);
845 b -= c; a ^= x;
846 b -= a; x = (a<<8);
847 c -= a; b ^= x;
848 c -= b; x = (b>>13);
849 ...
850 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
851 of that parallelism. They've also turned some of those single-cycle
852 latency instructions into multi-cycle latency instructions. Still,
853 this is the fastest good hash I could find. There were about 2^^68
854 to choose from. I only looked at a billion or so.
855--------------------------------------------------------------------
856*/
857/* same, but slower, works on systems that might have 8 byte hashval_t's */
858#define mix(a,b,c) \
859{ \
860 a -= b; a -= c; a ^= (c>>13); \
861 b -= c; b -= a; b ^= (a<< 8); \
862 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
863 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
864 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
865 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
866 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
867 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
868 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
869}
870
871/*
872--------------------------------------------------------------------
873hash() -- hash a variable-length key into a 32-bit value
874 k : the key (the unaligned variable-length array of bytes)
875 len : the length of the key, counting by bytes
876 level : can be any 4-byte value
877Returns a 32-bit value. Every bit of the key affects every bit of
878the return value. Every 1-bit and 2-bit delta achieves avalanche.
879About 36+6len instructions.
880
881The best hash table sizes are powers of 2. There is no need to do
882mod a prime (mod is sooo slow!). If you need less than 32 bits,
883use a bitmask. For example, if you need only 10 bits, do
884 h = (h & hashmask(10));
885In which case, the hash table should have hashsize(10) elements.
886
887If you are hashing n strings (ub1 **)k, do it like this:
888 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
889
890By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
891code any way you wish, private, educational, or commercial. It's free.
892
893See http://burtleburtle.net/bob/hash/evahash.html
894Use for hash table lookup, or anything where one collision in 2^32 is
895acceptable. Do NOT use for cryptographic purposes.
896--------------------------------------------------------------------
897*/
898
6da879de
GDR
899hashval_t
900iterative_hash (const PTR k_in /* the key */,
901 register size_t length /* the length of the key */,
902 register hashval_t initval /* the previous hash, or
903 an arbitrary value */)
5cc5a0d0
JM
904{
905 register const unsigned char *k = (const unsigned char *)k_in;
906 register hashval_t a,b,c,len;
907
908 /* Set up the internal state */
909 len = length;
910 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
911 c = initval; /* the previous hash value */
912
913 /*---------------------------------------- handle most of the key */
914#ifndef WORDS_BIGENDIAN
915 /* On a little-endian machine, if the data is 4-byte aligned we can hash
916 by word for better speed. This gives nondeterministic results on
917 big-endian machines. */
918 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
919 while (len >= 12) /* aligned */
920 {
921 a += *(hashval_t *)(k+0);
922 b += *(hashval_t *)(k+4);
923 c += *(hashval_t *)(k+8);
924 mix(a,b,c);
925 k += 12; len -= 12;
926 }
927 else /* unaligned */
928#endif
929 while (len >= 12)
930 {
931 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
932 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
933 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
934 mix(a,b,c);
935 k += 12; len -= 12;
936 }
937
938 /*------------------------------------- handle the last 11 bytes */
939 c += length;
940 switch(len) /* all the case statements fall through */
941 {
942 case 11: c+=((hashval_t)k[10]<<24);
943 case 10: c+=((hashval_t)k[9]<<16);
944 case 9 : c+=((hashval_t)k[8]<<8);
945 /* the first byte of c is reserved for the length */
946 case 8 : b+=((hashval_t)k[7]<<24);
947 case 7 : b+=((hashval_t)k[6]<<16);
948 case 6 : b+=((hashval_t)k[5]<<8);
949 case 5 : b+=k[4];
950 case 4 : a+=((hashval_t)k[3]<<24);
951 case 3 : a+=((hashval_t)k[2]<<16);
952 case 2 : a+=((hashval_t)k[1]<<8);
953 case 1 : a+=k[0];
954 /* case 0: nothing left to add */
955 }
956 mix(a,b,c);
957 /*-------------------------------------------- report the result */
958 return c;
959}