]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
fs: Improve filesystem freezing handling
[people/ms/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
1da177e4
LT
15#include <linux/namei.h>
16#include <linux/security.h>
73cd49ec 17#include <linux/idr.h>
d10577a8
AV
18#include <linux/acct.h> /* acct_auto_close_mnt */
19#include <linux/ramfs.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
07b20889 23#include "pnode.h"
948730b0 24#include "internal.h"
1da177e4 25
13f14b4d
ED
26#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27#define HASH_SIZE (1UL << HASH_SHIFT)
28
5addc5dd 29static int event;
73cd49ec 30static DEFINE_IDA(mnt_id_ida);
719f5d7f 31static DEFINE_IDA(mnt_group_ida);
99b7db7b 32static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
33static int mnt_id_start = 0;
34static int mnt_group_start = 1;
1da177e4 35
fa3536cc 36static struct list_head *mount_hashtable __read_mostly;
e18b890b 37static struct kmem_cache *mnt_cache __read_mostly;
390c6843 38static struct rw_semaphore namespace_sem;
1da177e4 39
f87fd4c2 40/* /sys/fs */
00d26666
GKH
41struct kobject *fs_kobj;
42EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 43
99b7db7b
NP
44/*
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
48 *
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
51 */
52DEFINE_BRLOCK(vfsmount_lock);
53
1da177e4
LT
54static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55{
b58fed8b
RP
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
1da177e4
LT
60}
61
3d733633
DH
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
99b7db7b
NP
64/*
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
67 */
b105e270 68static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
69{
70 int res;
71
72retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 74 spin_lock(&mnt_id_lock);
15169fe7 75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 76 if (!res)
15169fe7 77 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 78 spin_unlock(&mnt_id_lock);
73cd49ec
MS
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83}
84
b105e270 85static void mnt_free_id(struct mount *mnt)
73cd49ec 86{
15169fe7 87 int id = mnt->mnt_id;
99b7db7b 88 spin_lock(&mnt_id_lock);
f21f6220
AV
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
99b7db7b 92 spin_unlock(&mnt_id_lock);
73cd49ec
MS
93}
94
719f5d7f
MS
95/*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
4b8b21f4 100static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 101{
f21f6220
AV
102 int res;
103
719f5d7f
MS
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
f21f6220
AV
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
15169fe7 109 &mnt->mnt_group_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
112
113 return res;
719f5d7f
MS
114}
115
116/*
117 * Release a peer group ID
118 */
4b8b21f4 119void mnt_release_group_id(struct mount *mnt)
719f5d7f 120{
15169fe7 121 int id = mnt->mnt_group_id;
f21f6220
AV
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
15169fe7 125 mnt->mnt_group_id = 0;
719f5d7f
MS
126}
127
b3e19d92
NP
128/*
129 * vfsmount lock must be held for read
130 */
83adc753 131static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
132{
133#ifdef CONFIG_SMP
68e8a9fe 134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
135#else
136 preempt_disable();
68e8a9fe 137 mnt->mnt_count += n;
b3e19d92
NP
138 preempt_enable();
139#endif
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for write
144 */
83adc753 145unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
f03c6599 148 unsigned int count = 0;
b3e19d92
NP
149 int cpu;
150
151 for_each_possible_cpu(cpu) {
68e8a9fe 152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
153 }
154
155 return count;
156#else
68e8a9fe 157 return mnt->mnt_count;
b3e19d92
NP
158#endif
159}
160
b105e270 161static struct mount *alloc_vfsmnt(const char *name)
1da177e4 162{
c63181e6
AV
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
73cd49ec
MS
165 int err;
166
c63181e6 167 err = mnt_alloc_id(mnt);
88b38782
LZ
168 if (err)
169 goto out_free_cache;
170
171 if (name) {
c63181e6
AV
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
88b38782 174 goto out_free_id;
73cd49ec
MS
175 }
176
b3e19d92 177#ifdef CONFIG_SMP
c63181e6
AV
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
b3e19d92
NP
180 goto out_free_devname;
181
c63181e6 182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 183#else
c63181e6
AV
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
b3e19d92
NP
186#endif
187
c63181e6
AV
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
196#ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 198#endif
1da177e4 199 }
c63181e6 200 return mnt;
88b38782 201
d3ef3d73
NP
202#ifdef CONFIG_SMP
203out_free_devname:
c63181e6 204 kfree(mnt->mnt_devname);
d3ef3d73 205#endif
88b38782 206out_free_id:
c63181e6 207 mnt_free_id(mnt);
88b38782 208out_free_cache:
c63181e6 209 kmem_cache_free(mnt_cache, mnt);
88b38782 210 return NULL;
1da177e4
LT
211}
212
3d733633
DH
213/*
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
220 */
221/*
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
224 *
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
231 */
232int __mnt_is_readonly(struct vfsmount *mnt)
233{
2e4b7fcd
DH
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
3d733633
DH
239}
240EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241
83adc753 242static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
243{
244#ifdef CONFIG_SMP
68e8a9fe 245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 246#else
68e8a9fe 247 mnt->mnt_writers++;
d3ef3d73
NP
248#endif
249}
3d733633 250
83adc753 251static inline void mnt_dec_writers(struct mount *mnt)
3d733633 252{
d3ef3d73 253#ifdef CONFIG_SMP
68e8a9fe 254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 255#else
68e8a9fe 256 mnt->mnt_writers--;
d3ef3d73 257#endif
3d733633 258}
3d733633 259
83adc753 260static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 261{
d3ef3d73
NP
262#ifdef CONFIG_SMP
263 unsigned int count = 0;
3d733633 264 int cpu;
3d733633
DH
265
266 for_each_possible_cpu(cpu) {
68e8a9fe 267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 268 }
3d733633 269
d3ef3d73
NP
270 return count;
271#else
272 return mnt->mnt_writers;
273#endif
3d733633
DH
274}
275
4ed5e82f
MS
276static int mnt_is_readonly(struct vfsmount *mnt)
277{
278 if (mnt->mnt_sb->s_readonly_remount)
279 return 1;
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 smp_rmb();
282 return __mnt_is_readonly(mnt);
283}
284
8366025e
DH
285/*
286 * Most r/o checks on a fs are for operations that take
287 * discrete amounts of time, like a write() or unlink().
288 * We must keep track of when those operations start
289 * (for permission checks) and when they end, so that
290 * we can determine when writes are able to occur to
291 * a filesystem.
292 */
293/**
294 * mnt_want_write - get write access to a mount
83adc753 295 * @m: the mount on which to take a write
8366025e
DH
296 *
297 * This tells the low-level filesystem that a write is
298 * about to be performed to it, and makes sure that
299 * writes are allowed before returning success. When
300 * the write operation is finished, mnt_drop_write()
301 * must be called. This is effectively a refcount.
302 */
83adc753 303int mnt_want_write(struct vfsmount *m)
8366025e 304{
83adc753 305 struct mount *mnt = real_mount(m);
3d733633 306 int ret = 0;
3d733633 307
d3ef3d73 308 preempt_disable();
c6653a83 309 mnt_inc_writers(mnt);
d3ef3d73 310 /*
c6653a83 311 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
83adc753 316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73
NP
317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
4ed5e82f 324 if (mnt_is_readonly(m)) {
c6653a83 325 mnt_dec_writers(mnt);
3d733633 326 ret = -EROFS;
3d733633 327 }
d3ef3d73 328 preempt_enable();
3d733633 329 return ret;
8366025e
DH
330}
331EXPORT_SYMBOL_GPL(mnt_want_write);
332
96029c4e
NP
333/**
334 * mnt_clone_write - get write access to a mount
335 * @mnt: the mount on which to take a write
336 *
337 * This is effectively like mnt_want_write, except
338 * it must only be used to take an extra write reference
339 * on a mountpoint that we already know has a write reference
340 * on it. This allows some optimisation.
341 *
342 * After finished, mnt_drop_write must be called as usual to
343 * drop the reference.
344 */
345int mnt_clone_write(struct vfsmount *mnt)
346{
347 /* superblock may be r/o */
348 if (__mnt_is_readonly(mnt))
349 return -EROFS;
350 preempt_disable();
83adc753 351 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
352 preempt_enable();
353 return 0;
354}
355EXPORT_SYMBOL_GPL(mnt_clone_write);
356
357/**
358 * mnt_want_write_file - get write access to a file's mount
359 * @file: the file who's mount on which to take a write
360 *
361 * This is like mnt_want_write, but it takes a file and can
362 * do some optimisations if the file is open for write already
363 */
364int mnt_want_write_file(struct file *file)
365{
2d8dd38a
OH
366 struct inode *inode = file->f_dentry->d_inode;
367 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e
NP
368 return mnt_want_write(file->f_path.mnt);
369 else
370 return mnt_clone_write(file->f_path.mnt);
371}
372EXPORT_SYMBOL_GPL(mnt_want_write_file);
373
8366025e
DH
374/**
375 * mnt_drop_write - give up write access to a mount
376 * @mnt: the mount on which to give up write access
377 *
378 * Tells the low-level filesystem that we are done
379 * performing writes to it. Must be matched with
380 * mnt_want_write() call above.
381 */
382void mnt_drop_write(struct vfsmount *mnt)
383{
d3ef3d73 384 preempt_disable();
83adc753 385 mnt_dec_writers(real_mount(mnt));
d3ef3d73 386 preempt_enable();
8366025e
DH
387}
388EXPORT_SYMBOL_GPL(mnt_drop_write);
389
2a79f17e
AV
390void mnt_drop_write_file(struct file *file)
391{
392 mnt_drop_write(file->f_path.mnt);
393}
394EXPORT_SYMBOL(mnt_drop_write_file);
395
83adc753 396static int mnt_make_readonly(struct mount *mnt)
8366025e 397{
3d733633
DH
398 int ret = 0;
399
962830df 400 br_write_lock(&vfsmount_lock);
83adc753 401 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 402 /*
d3ef3d73
NP
403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 * should be visible before we do.
3d733633 405 */
d3ef3d73
NP
406 smp_mb();
407
3d733633 408 /*
d3ef3d73
NP
409 * With writers on hold, if this value is zero, then there are
410 * definitely no active writers (although held writers may subsequently
411 * increment the count, they'll have to wait, and decrement it after
412 * seeing MNT_READONLY).
413 *
414 * It is OK to have counter incremented on one CPU and decremented on
415 * another: the sum will add up correctly. The danger would be when we
416 * sum up each counter, if we read a counter before it is incremented,
417 * but then read another CPU's count which it has been subsequently
418 * decremented from -- we would see more decrements than we should.
419 * MNT_WRITE_HOLD protects against this scenario, because
420 * mnt_want_write first increments count, then smp_mb, then spins on
421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 * we're counting up here.
3d733633 423 */
c6653a83 424 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
425 ret = -EBUSY;
426 else
83adc753 427 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
428 /*
429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 * that become unheld will see MNT_READONLY.
431 */
432 smp_wmb();
83adc753 433 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 434 br_write_unlock(&vfsmount_lock);
3d733633 435 return ret;
8366025e 436}
8366025e 437
83adc753 438static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 439{
962830df 440 br_write_lock(&vfsmount_lock);
83adc753 441 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 442 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
443}
444
4ed5e82f
MS
445int sb_prepare_remount_readonly(struct super_block *sb)
446{
447 struct mount *mnt;
448 int err = 0;
449
8e8b8796
MS
450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
451 if (atomic_long_read(&sb->s_remove_count))
452 return -EBUSY;
453
962830df 454 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
455 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
458 smp_mb();
459 if (mnt_get_writers(mnt) > 0) {
460 err = -EBUSY;
461 break;
462 }
463 }
464 }
8e8b8796
MS
465 if (!err && atomic_long_read(&sb->s_remove_count))
466 err = -EBUSY;
467
4ed5e82f
MS
468 if (!err) {
469 sb->s_readonly_remount = 1;
470 smp_wmb();
471 }
472 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
475 }
962830df 476 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
477
478 return err;
479}
480
b105e270 481static void free_vfsmnt(struct mount *mnt)
1da177e4 482{
52ba1621 483 kfree(mnt->mnt_devname);
73cd49ec 484 mnt_free_id(mnt);
d3ef3d73 485#ifdef CONFIG_SMP
68e8a9fe 486 free_percpu(mnt->mnt_pcp);
d3ef3d73 487#endif
b105e270 488 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
489}
490
491/*
a05964f3
RP
492 * find the first or last mount at @dentry on vfsmount @mnt depending on
493 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 494 * vfsmount_lock must be held for read or write.
1da177e4 495 */
c7105365 496struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 497 int dir)
1da177e4 498{
b58fed8b
RP
499 struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 struct list_head *tmp = head;
c7105365 501 struct mount *p, *found = NULL;
1da177e4 502
1da177e4 503 for (;;) {
a05964f3 504 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
505 p = NULL;
506 if (tmp == head)
507 break;
1b8e5564 508 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 509 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 510 found = p;
1da177e4
LT
511 break;
512 }
513 }
1da177e4
LT
514 return found;
515}
516
a05964f3 517/*
f015f126
DH
518 * lookup_mnt - Return the first child mount mounted at path
519 *
520 * "First" means first mounted chronologically. If you create the
521 * following mounts:
522 *
523 * mount /dev/sda1 /mnt
524 * mount /dev/sda2 /mnt
525 * mount /dev/sda3 /mnt
526 *
527 * Then lookup_mnt() on the base /mnt dentry in the root mount will
528 * return successively the root dentry and vfsmount of /dev/sda1, then
529 * /dev/sda2, then /dev/sda3, then NULL.
530 *
531 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 532 */
1c755af4 533struct vfsmount *lookup_mnt(struct path *path)
a05964f3 534{
c7105365 535 struct mount *child_mnt;
99b7db7b 536
962830df 537 br_read_lock(&vfsmount_lock);
c7105365
AV
538 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
539 if (child_mnt) {
540 mnt_add_count(child_mnt, 1);
962830df 541 br_read_unlock(&vfsmount_lock);
c7105365
AV
542 return &child_mnt->mnt;
543 } else {
962830df 544 br_read_unlock(&vfsmount_lock);
c7105365
AV
545 return NULL;
546 }
a05964f3
RP
547}
548
143c8c91 549static inline int check_mnt(struct mount *mnt)
1da177e4 550{
6b3286ed 551 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
552}
553
99b7db7b
NP
554/*
555 * vfsmount lock must be held for write
556 */
6b3286ed 557static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
558{
559 if (ns) {
560 ns->event = ++event;
561 wake_up_interruptible(&ns->poll);
562 }
563}
564
99b7db7b
NP
565/*
566 * vfsmount lock must be held for write
567 */
6b3286ed 568static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
569{
570 if (ns && ns->event != event) {
571 ns->event = event;
572 wake_up_interruptible(&ns->poll);
573 }
574}
575
5f57cbcc
NP
576/*
577 * Clear dentry's mounted state if it has no remaining mounts.
578 * vfsmount_lock must be held for write.
579 */
aa0a4cf0 580static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
581{
582 unsigned u;
583
584 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 585 struct mount *p;
5f57cbcc 586
1b8e5564 587 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 588 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
589 return;
590 }
591 }
592 spin_lock(&dentry->d_lock);
593 dentry->d_flags &= ~DCACHE_MOUNTED;
594 spin_unlock(&dentry->d_lock);
595}
596
99b7db7b
NP
597/*
598 * vfsmount lock must be held for write
599 */
419148da
AV
600static void detach_mnt(struct mount *mnt, struct path *old_path)
601{
a73324da 602 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
603 old_path->mnt = &mnt->mnt_parent->mnt;
604 mnt->mnt_parent = mnt;
a73324da 605 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 606 list_del_init(&mnt->mnt_child);
1b8e5564 607 list_del_init(&mnt->mnt_hash);
aa0a4cf0 608 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
609}
610
99b7db7b
NP
611/*
612 * vfsmount lock must be held for write
613 */
14cf1fa8 614void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 615 struct mount *child_mnt)
b90fa9ae 616{
3a2393d7 617 mnt_add_count(mnt, 1); /* essentially, that's mntget */
a73324da 618 child_mnt->mnt_mountpoint = dget(dentry);
3a2393d7 619 child_mnt->mnt_parent = mnt;
5f57cbcc
NP
620 spin_lock(&dentry->d_lock);
621 dentry->d_flags |= DCACHE_MOUNTED;
622 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
623}
624
99b7db7b
NP
625/*
626 * vfsmount lock must be held for write
627 */
419148da 628static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 629{
14cf1fa8 630 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 631 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 632 hash(path->mnt, path->dentry));
6b41d536 633 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
634}
635
636/*
99b7db7b 637 * vfsmount lock must be held for write
b90fa9ae 638 */
4b2619a5 639static void commit_tree(struct mount *mnt)
b90fa9ae 640{
0714a533 641 struct mount *parent = mnt->mnt_parent;
83adc753 642 struct mount *m;
b90fa9ae 643 LIST_HEAD(head);
143c8c91 644 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 645
0714a533 646 BUG_ON(parent == mnt);
b90fa9ae 647
1a4eeaf2 648 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 649 list_for_each_entry(m, &head, mnt_list)
143c8c91 650 m->mnt_ns = n;
f03c6599 651
b90fa9ae
RP
652 list_splice(&head, n->list.prev);
653
1b8e5564 654 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 655 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 656 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 657 touch_mnt_namespace(n);
1da177e4
LT
658}
659
909b0a88 660static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 661{
6b41d536
AV
662 struct list_head *next = p->mnt_mounts.next;
663 if (next == &p->mnt_mounts) {
1da177e4 664 while (1) {
909b0a88 665 if (p == root)
1da177e4 666 return NULL;
6b41d536
AV
667 next = p->mnt_child.next;
668 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 669 break;
0714a533 670 p = p->mnt_parent;
1da177e4
LT
671 }
672 }
6b41d536 673 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
674}
675
315fc83e 676static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 677{
6b41d536
AV
678 struct list_head *prev = p->mnt_mounts.prev;
679 while (prev != &p->mnt_mounts) {
680 p = list_entry(prev, struct mount, mnt_child);
681 prev = p->mnt_mounts.prev;
9676f0c6
RP
682 }
683 return p;
684}
685
9d412a43
AV
686struct vfsmount *
687vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
688{
b105e270 689 struct mount *mnt;
9d412a43
AV
690 struct dentry *root;
691
692 if (!type)
693 return ERR_PTR(-ENODEV);
694
695 mnt = alloc_vfsmnt(name);
696 if (!mnt)
697 return ERR_PTR(-ENOMEM);
698
699 if (flags & MS_KERNMOUNT)
b105e270 700 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
701
702 root = mount_fs(type, flags, name, data);
703 if (IS_ERR(root)) {
704 free_vfsmnt(mnt);
705 return ERR_CAST(root);
706 }
707
b105e270
AV
708 mnt->mnt.mnt_root = root;
709 mnt->mnt.mnt_sb = root->d_sb;
a73324da 710 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 711 mnt->mnt_parent = mnt;
962830df 712 br_write_lock(&vfsmount_lock);
39f7c4db 713 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 714 br_write_unlock(&vfsmount_lock);
b105e270 715 return &mnt->mnt;
9d412a43
AV
716}
717EXPORT_SYMBOL_GPL(vfs_kern_mount);
718
87129cc0 719static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 720 int flag)
1da177e4 721{
87129cc0 722 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
723 struct mount *mnt;
724 int err;
1da177e4 725
be34d1a3
DH
726 mnt = alloc_vfsmnt(old->mnt_devname);
727 if (!mnt)
728 return ERR_PTR(-ENOMEM);
719f5d7f 729
be34d1a3
DH
730 if (flag & (CL_SLAVE | CL_PRIVATE))
731 mnt->mnt_group_id = 0; /* not a peer of original */
732 else
733 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 734
be34d1a3
DH
735 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
736 err = mnt_alloc_group_id(mnt);
737 if (err)
738 goto out_free;
1da177e4 739 }
be34d1a3
DH
740
741 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
742 atomic_inc(&sb->s_active);
743 mnt->mnt.mnt_sb = sb;
744 mnt->mnt.mnt_root = dget(root);
745 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
746 mnt->mnt_parent = mnt;
747 br_write_lock(&vfsmount_lock);
748 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
749 br_write_unlock(&vfsmount_lock);
750
751 if (flag & CL_SLAVE) {
752 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
753 mnt->mnt_master = old;
754 CLEAR_MNT_SHARED(mnt);
755 } else if (!(flag & CL_PRIVATE)) {
756 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
757 list_add(&mnt->mnt_share, &old->mnt_share);
758 if (IS_MNT_SLAVE(old))
759 list_add(&mnt->mnt_slave, &old->mnt_slave);
760 mnt->mnt_master = old->mnt_master;
761 }
762 if (flag & CL_MAKE_SHARED)
763 set_mnt_shared(mnt);
764
765 /* stick the duplicate mount on the same expiry list
766 * as the original if that was on one */
767 if (flag & CL_EXPIRE) {
768 if (!list_empty(&old->mnt_expire))
769 list_add(&mnt->mnt_expire, &old->mnt_expire);
770 }
771
cb338d06 772 return mnt;
719f5d7f
MS
773
774 out_free:
775 free_vfsmnt(mnt);
be34d1a3 776 return ERR_PTR(err);
1da177e4
LT
777}
778
83adc753 779static inline void mntfree(struct mount *mnt)
1da177e4 780{
83adc753
AV
781 struct vfsmount *m = &mnt->mnt;
782 struct super_block *sb = m->mnt_sb;
b3e19d92 783
3d733633
DH
784 /*
785 * This probably indicates that somebody messed
786 * up a mnt_want/drop_write() pair. If this
787 * happens, the filesystem was probably unable
788 * to make r/w->r/o transitions.
789 */
d3ef3d73 790 /*
b3e19d92
NP
791 * The locking used to deal with mnt_count decrement provides barriers,
792 * so mnt_get_writers() below is safe.
d3ef3d73 793 */
c6653a83 794 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
795 fsnotify_vfsmount_delete(m);
796 dput(m->mnt_root);
797 free_vfsmnt(mnt);
1da177e4
LT
798 deactivate_super(sb);
799}
800
900148dc 801static void mntput_no_expire(struct mount *mnt)
b3e19d92 802{
b3e19d92 803put_again:
f03c6599 804#ifdef CONFIG_SMP
962830df 805 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
806 if (likely(mnt->mnt_ns)) {
807 /* shouldn't be the last one */
aa9c0e07 808 mnt_add_count(mnt, -1);
962830df 809 br_read_unlock(&vfsmount_lock);
f03c6599 810 return;
b3e19d92 811 }
962830df 812 br_read_unlock(&vfsmount_lock);
b3e19d92 813
962830df 814 br_write_lock(&vfsmount_lock);
aa9c0e07 815 mnt_add_count(mnt, -1);
b3e19d92 816 if (mnt_get_count(mnt)) {
962830df 817 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
818 return;
819 }
b3e19d92 820#else
aa9c0e07 821 mnt_add_count(mnt, -1);
b3e19d92 822 if (likely(mnt_get_count(mnt)))
99b7db7b 823 return;
962830df 824 br_write_lock(&vfsmount_lock);
f03c6599 825#endif
863d684f
AV
826 if (unlikely(mnt->mnt_pinned)) {
827 mnt_add_count(mnt, mnt->mnt_pinned + 1);
828 mnt->mnt_pinned = 0;
962830df 829 br_write_unlock(&vfsmount_lock);
900148dc 830 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 831 goto put_again;
7b7b1ace 832 }
962830df 833
39f7c4db 834 list_del(&mnt->mnt_instance);
962830df 835 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
836 mntfree(mnt);
837}
b3e19d92
NP
838
839void mntput(struct vfsmount *mnt)
840{
841 if (mnt) {
863d684f 842 struct mount *m = real_mount(mnt);
b3e19d92 843 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
844 if (unlikely(m->mnt_expiry_mark))
845 m->mnt_expiry_mark = 0;
846 mntput_no_expire(m);
b3e19d92
NP
847 }
848}
849EXPORT_SYMBOL(mntput);
850
851struct vfsmount *mntget(struct vfsmount *mnt)
852{
853 if (mnt)
83adc753 854 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
855 return mnt;
856}
857EXPORT_SYMBOL(mntget);
858
7b7b1ace
AV
859void mnt_pin(struct vfsmount *mnt)
860{
962830df 861 br_write_lock(&vfsmount_lock);
863d684f 862 real_mount(mnt)->mnt_pinned++;
962830df 863 br_write_unlock(&vfsmount_lock);
7b7b1ace 864}
7b7b1ace
AV
865EXPORT_SYMBOL(mnt_pin);
866
863d684f 867void mnt_unpin(struct vfsmount *m)
7b7b1ace 868{
863d684f 869 struct mount *mnt = real_mount(m);
962830df 870 br_write_lock(&vfsmount_lock);
7b7b1ace 871 if (mnt->mnt_pinned) {
863d684f 872 mnt_add_count(mnt, 1);
7b7b1ace
AV
873 mnt->mnt_pinned--;
874 }
962830df 875 br_write_unlock(&vfsmount_lock);
7b7b1ace 876}
7b7b1ace 877EXPORT_SYMBOL(mnt_unpin);
1da177e4 878
b3b304a2
MS
879static inline void mangle(struct seq_file *m, const char *s)
880{
881 seq_escape(m, s, " \t\n\\");
882}
883
884/*
885 * Simple .show_options callback for filesystems which don't want to
886 * implement more complex mount option showing.
887 *
888 * See also save_mount_options().
889 */
34c80b1d 890int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 891{
2a32cebd
AV
892 const char *options;
893
894 rcu_read_lock();
34c80b1d 895 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
896
897 if (options != NULL && options[0]) {
898 seq_putc(m, ',');
899 mangle(m, options);
900 }
2a32cebd 901 rcu_read_unlock();
b3b304a2
MS
902
903 return 0;
904}
905EXPORT_SYMBOL(generic_show_options);
906
907/*
908 * If filesystem uses generic_show_options(), this function should be
909 * called from the fill_super() callback.
910 *
911 * The .remount_fs callback usually needs to be handled in a special
912 * way, to make sure, that previous options are not overwritten if the
913 * remount fails.
914 *
915 * Also note, that if the filesystem's .remount_fs function doesn't
916 * reset all options to their default value, but changes only newly
917 * given options, then the displayed options will not reflect reality
918 * any more.
919 */
920void save_mount_options(struct super_block *sb, char *options)
921{
2a32cebd
AV
922 BUG_ON(sb->s_options);
923 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
924}
925EXPORT_SYMBOL(save_mount_options);
926
2a32cebd
AV
927void replace_mount_options(struct super_block *sb, char *options)
928{
929 char *old = sb->s_options;
930 rcu_assign_pointer(sb->s_options, options);
931 if (old) {
932 synchronize_rcu();
933 kfree(old);
934 }
935}
936EXPORT_SYMBOL(replace_mount_options);
937
a1a2c409 938#ifdef CONFIG_PROC_FS
0226f492 939/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
940static void *m_start(struct seq_file *m, loff_t *pos)
941{
6ce6e24e 942 struct proc_mounts *p = proc_mounts(m);
1da177e4 943
390c6843 944 down_read(&namespace_sem);
a1a2c409 945 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
946}
947
948static void *m_next(struct seq_file *m, void *v, loff_t *pos)
949{
6ce6e24e 950 struct proc_mounts *p = proc_mounts(m);
b0765fb8 951
a1a2c409 952 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
953}
954
955static void m_stop(struct seq_file *m, void *v)
956{
390c6843 957 up_read(&namespace_sem);
1da177e4
LT
958}
959
0226f492 960static int m_show(struct seq_file *m, void *v)
2d4d4864 961{
6ce6e24e 962 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 963 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 964 return p->show(m, &r->mnt);
1da177e4
LT
965}
966
a1a2c409 967const struct seq_operations mounts_op = {
1da177e4
LT
968 .start = m_start,
969 .next = m_next,
970 .stop = m_stop,
0226f492 971 .show = m_show,
b4629fe2 972};
a1a2c409 973#endif /* CONFIG_PROC_FS */
b4629fe2 974
1da177e4
LT
975/**
976 * may_umount_tree - check if a mount tree is busy
977 * @mnt: root of mount tree
978 *
979 * This is called to check if a tree of mounts has any
980 * open files, pwds, chroots or sub mounts that are
981 * busy.
982 */
909b0a88 983int may_umount_tree(struct vfsmount *m)
1da177e4 984{
909b0a88 985 struct mount *mnt = real_mount(m);
36341f64
RP
986 int actual_refs = 0;
987 int minimum_refs = 0;
315fc83e 988 struct mount *p;
909b0a88 989 BUG_ON(!m);
1da177e4 990
b3e19d92 991 /* write lock needed for mnt_get_count */
962830df 992 br_write_lock(&vfsmount_lock);
909b0a88 993 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 994 actual_refs += mnt_get_count(p);
1da177e4 995 minimum_refs += 2;
1da177e4 996 }
962830df 997 br_write_unlock(&vfsmount_lock);
1da177e4
LT
998
999 if (actual_refs > minimum_refs)
e3474a8e 1000 return 0;
1da177e4 1001
e3474a8e 1002 return 1;
1da177e4
LT
1003}
1004
1005EXPORT_SYMBOL(may_umount_tree);
1006
1007/**
1008 * may_umount - check if a mount point is busy
1009 * @mnt: root of mount
1010 *
1011 * This is called to check if a mount point has any
1012 * open files, pwds, chroots or sub mounts. If the
1013 * mount has sub mounts this will return busy
1014 * regardless of whether the sub mounts are busy.
1015 *
1016 * Doesn't take quota and stuff into account. IOW, in some cases it will
1017 * give false negatives. The main reason why it's here is that we need
1018 * a non-destructive way to look for easily umountable filesystems.
1019 */
1020int may_umount(struct vfsmount *mnt)
1021{
e3474a8e 1022 int ret = 1;
8ad08d8a 1023 down_read(&namespace_sem);
962830df 1024 br_write_lock(&vfsmount_lock);
1ab59738 1025 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1026 ret = 0;
962830df 1027 br_write_unlock(&vfsmount_lock);
8ad08d8a 1028 up_read(&namespace_sem);
a05964f3 1029 return ret;
1da177e4
LT
1030}
1031
1032EXPORT_SYMBOL(may_umount);
1033
b90fa9ae 1034void release_mounts(struct list_head *head)
70fbcdf4 1035{
d5e50f74 1036 struct mount *mnt;
bf066c7d 1037 while (!list_empty(head)) {
1b8e5564
AV
1038 mnt = list_first_entry(head, struct mount, mnt_hash);
1039 list_del_init(&mnt->mnt_hash);
676da58d 1040 if (mnt_has_parent(mnt)) {
70fbcdf4 1041 struct dentry *dentry;
863d684f 1042 struct mount *m;
99b7db7b 1043
962830df 1044 br_write_lock(&vfsmount_lock);
a73324da 1045 dentry = mnt->mnt_mountpoint;
863d684f 1046 m = mnt->mnt_parent;
a73324da 1047 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1048 mnt->mnt_parent = mnt;
7c4b93d8 1049 m->mnt_ghosts--;
962830df 1050 br_write_unlock(&vfsmount_lock);
70fbcdf4 1051 dput(dentry);
863d684f 1052 mntput(&m->mnt);
70fbcdf4 1053 }
d5e50f74 1054 mntput(&mnt->mnt);
70fbcdf4
RP
1055 }
1056}
1057
99b7db7b
NP
1058/*
1059 * vfsmount lock must be held for write
1060 * namespace_sem must be held for write
1061 */
761d5c38 1062void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1063{
7b8a53fd 1064 LIST_HEAD(tmp_list);
315fc83e 1065 struct mount *p;
1da177e4 1066
909b0a88 1067 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1068 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1069
a05964f3 1070 if (propagate)
7b8a53fd 1071 propagate_umount(&tmp_list);
a05964f3 1072
1b8e5564 1073 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1074 list_del_init(&p->mnt_expire);
1a4eeaf2 1075 list_del_init(&p->mnt_list);
143c8c91
AV
1076 __touch_mnt_namespace(p->mnt_ns);
1077 p->mnt_ns = NULL;
6b41d536 1078 list_del_init(&p->mnt_child);
676da58d 1079 if (mnt_has_parent(p)) {
863d684f 1080 p->mnt_parent->mnt_ghosts++;
a73324da 1081 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1082 }
0f0afb1d 1083 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1084 }
7b8a53fd 1085 list_splice(&tmp_list, kill);
1da177e4
LT
1086}
1087
692afc31 1088static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1089
1ab59738 1090static int do_umount(struct mount *mnt, int flags)
1da177e4 1091{
1ab59738 1092 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1093 int retval;
70fbcdf4 1094 LIST_HEAD(umount_list);
1da177e4 1095
1ab59738 1096 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1097 if (retval)
1098 return retval;
1099
1100 /*
1101 * Allow userspace to request a mountpoint be expired rather than
1102 * unmounting unconditionally. Unmount only happens if:
1103 * (1) the mark is already set (the mark is cleared by mntput())
1104 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1105 */
1106 if (flags & MNT_EXPIRE) {
1ab59738 1107 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1108 flags & (MNT_FORCE | MNT_DETACH))
1109 return -EINVAL;
1110
b3e19d92
NP
1111 /*
1112 * probably don't strictly need the lock here if we examined
1113 * all race cases, but it's a slowpath.
1114 */
962830df 1115 br_write_lock(&vfsmount_lock);
83adc753 1116 if (mnt_get_count(mnt) != 2) {
962830df 1117 br_write_unlock(&vfsmount_lock);
1da177e4 1118 return -EBUSY;
b3e19d92 1119 }
962830df 1120 br_write_unlock(&vfsmount_lock);
1da177e4 1121
863d684f 1122 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1123 return -EAGAIN;
1124 }
1125
1126 /*
1127 * If we may have to abort operations to get out of this
1128 * mount, and they will themselves hold resources we must
1129 * allow the fs to do things. In the Unix tradition of
1130 * 'Gee thats tricky lets do it in userspace' the umount_begin
1131 * might fail to complete on the first run through as other tasks
1132 * must return, and the like. Thats for the mount program to worry
1133 * about for the moment.
1134 */
1135
42faad99 1136 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1137 sb->s_op->umount_begin(sb);
42faad99 1138 }
1da177e4
LT
1139
1140 /*
1141 * No sense to grab the lock for this test, but test itself looks
1142 * somewhat bogus. Suggestions for better replacement?
1143 * Ho-hum... In principle, we might treat that as umount + switch
1144 * to rootfs. GC would eventually take care of the old vfsmount.
1145 * Actually it makes sense, especially if rootfs would contain a
1146 * /reboot - static binary that would close all descriptors and
1147 * call reboot(9). Then init(8) could umount root and exec /reboot.
1148 */
1ab59738 1149 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1150 /*
1151 * Special case for "unmounting" root ...
1152 * we just try to remount it readonly.
1153 */
1154 down_write(&sb->s_umount);
4aa98cf7 1155 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1156 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1157 up_write(&sb->s_umount);
1158 return retval;
1159 }
1160
390c6843 1161 down_write(&namespace_sem);
962830df 1162 br_write_lock(&vfsmount_lock);
5addc5dd 1163 event++;
1da177e4 1164
c35038be 1165 if (!(flags & MNT_DETACH))
1ab59738 1166 shrink_submounts(mnt, &umount_list);
c35038be 1167
1da177e4 1168 retval = -EBUSY;
a05964f3 1169 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1170 if (!list_empty(&mnt->mnt_list))
1ab59738 1171 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1172 retval = 0;
1173 }
962830df 1174 br_write_unlock(&vfsmount_lock);
390c6843 1175 up_write(&namespace_sem);
70fbcdf4 1176 release_mounts(&umount_list);
1da177e4
LT
1177 return retval;
1178}
1179
1180/*
1181 * Now umount can handle mount points as well as block devices.
1182 * This is important for filesystems which use unnamed block devices.
1183 *
1184 * We now support a flag for forced unmount like the other 'big iron'
1185 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1186 */
1187
bdc480e3 1188SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1189{
2d8f3038 1190 struct path path;
900148dc 1191 struct mount *mnt;
1da177e4 1192 int retval;
db1f05bb 1193 int lookup_flags = 0;
1da177e4 1194
db1f05bb
MS
1195 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1196 return -EINVAL;
1197
1198 if (!(flags & UMOUNT_NOFOLLOW))
1199 lookup_flags |= LOOKUP_FOLLOW;
1200
1201 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1202 if (retval)
1203 goto out;
900148dc 1204 mnt = real_mount(path.mnt);
1da177e4 1205 retval = -EINVAL;
2d8f3038 1206 if (path.dentry != path.mnt->mnt_root)
1da177e4 1207 goto dput_and_out;
143c8c91 1208 if (!check_mnt(mnt))
1da177e4
LT
1209 goto dput_and_out;
1210
1211 retval = -EPERM;
1212 if (!capable(CAP_SYS_ADMIN))
1213 goto dput_and_out;
1214
900148dc 1215 retval = do_umount(mnt, flags);
1da177e4 1216dput_and_out:
429731b1 1217 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1218 dput(path.dentry);
900148dc 1219 mntput_no_expire(mnt);
1da177e4
LT
1220out:
1221 return retval;
1222}
1223
1224#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1225
1226/*
b58fed8b 1227 * The 2.0 compatible umount. No flags.
1da177e4 1228 */
bdc480e3 1229SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1230{
b58fed8b 1231 return sys_umount(name, 0);
1da177e4
LT
1232}
1233
1234#endif
1235
2d92ab3c 1236static int mount_is_safe(struct path *path)
1da177e4
LT
1237{
1238 if (capable(CAP_SYS_ADMIN))
1239 return 0;
1240 return -EPERM;
1241#ifdef notyet
2d92ab3c 1242 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1243 return -EPERM;
2d92ab3c 1244 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1245 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1246 return -EPERM;
1247 }
2d92ab3c 1248 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1249 return -EPERM;
1250 return 0;
1251#endif
1252}
1253
87129cc0 1254struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1255 int flag)
1da177e4 1256{
a73324da 1257 struct mount *res, *p, *q, *r;
1a390689 1258 struct path path;
1da177e4 1259
fc7be130 1260 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1261 return ERR_PTR(-EINVAL);
9676f0c6 1262
36341f64 1263 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1264 if (IS_ERR(q))
1265 return q;
1266
a73324da 1267 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1268
1269 p = mnt;
6b41d536 1270 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1271 struct mount *s;
7ec02ef1 1272 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1273 continue;
1274
909b0a88 1275 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1276 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1277 s = skip_mnt_tree(s);
1278 continue;
1279 }
0714a533
AV
1280 while (p != s->mnt_parent) {
1281 p = p->mnt_parent;
1282 q = q->mnt_parent;
1da177e4 1283 }
87129cc0 1284 p = s;
cb338d06 1285 path.mnt = &q->mnt;
a73324da 1286 path.dentry = p->mnt_mountpoint;
87129cc0 1287 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1288 if (IS_ERR(q))
1289 goto out;
962830df 1290 br_write_lock(&vfsmount_lock);
1a4eeaf2 1291 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1292 attach_mnt(q, &path);
962830df 1293 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1294 }
1295 }
1296 return res;
be34d1a3 1297out:
1da177e4 1298 if (res) {
70fbcdf4 1299 LIST_HEAD(umount_list);
962830df 1300 br_write_lock(&vfsmount_lock);
761d5c38 1301 umount_tree(res, 0, &umount_list);
962830df 1302 br_write_unlock(&vfsmount_lock);
70fbcdf4 1303 release_mounts(&umount_list);
1da177e4 1304 }
be34d1a3 1305 return q;
1da177e4
LT
1306}
1307
be34d1a3
DH
1308/* Caller should check returned pointer for errors */
1309
589ff870 1310struct vfsmount *collect_mounts(struct path *path)
8aec0809 1311{
cb338d06 1312 struct mount *tree;
1a60a280 1313 down_write(&namespace_sem);
87129cc0
AV
1314 tree = copy_tree(real_mount(path->mnt), path->dentry,
1315 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1316 up_write(&namespace_sem);
be34d1a3
DH
1317 if (IS_ERR(tree))
1318 return NULL;
1319 return &tree->mnt;
8aec0809
AV
1320}
1321
1322void drop_collected_mounts(struct vfsmount *mnt)
1323{
1324 LIST_HEAD(umount_list);
1a60a280 1325 down_write(&namespace_sem);
962830df 1326 br_write_lock(&vfsmount_lock);
761d5c38 1327 umount_tree(real_mount(mnt), 0, &umount_list);
962830df 1328 br_write_unlock(&vfsmount_lock);
1a60a280 1329 up_write(&namespace_sem);
8aec0809
AV
1330 release_mounts(&umount_list);
1331}
1332
1f707137
AV
1333int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1334 struct vfsmount *root)
1335{
1a4eeaf2 1336 struct mount *mnt;
1f707137
AV
1337 int res = f(root, arg);
1338 if (res)
1339 return res;
1a4eeaf2
AV
1340 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1341 res = f(&mnt->mnt, arg);
1f707137
AV
1342 if (res)
1343 return res;
1344 }
1345 return 0;
1346}
1347
4b8b21f4 1348static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1349{
315fc83e 1350 struct mount *p;
719f5d7f 1351
909b0a88 1352 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1353 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1354 mnt_release_group_id(p);
719f5d7f
MS
1355 }
1356}
1357
4b8b21f4 1358static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1359{
315fc83e 1360 struct mount *p;
719f5d7f 1361
909b0a88 1362 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1363 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1364 int err = mnt_alloc_group_id(p);
719f5d7f 1365 if (err) {
4b8b21f4 1366 cleanup_group_ids(mnt, p);
719f5d7f
MS
1367 return err;
1368 }
1369 }
1370 }
1371
1372 return 0;
1373}
1374
b90fa9ae
RP
1375/*
1376 * @source_mnt : mount tree to be attached
21444403
RP
1377 * @nd : place the mount tree @source_mnt is attached
1378 * @parent_nd : if non-null, detach the source_mnt from its parent and
1379 * store the parent mount and mountpoint dentry.
1380 * (done when source_mnt is moved)
b90fa9ae
RP
1381 *
1382 * NOTE: in the table below explains the semantics when a source mount
1383 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1384 * ---------------------------------------------------------------------------
1385 * | BIND MOUNT OPERATION |
1386 * |**************************************************************************
1387 * | source-->| shared | private | slave | unbindable |
1388 * | dest | | | | |
1389 * | | | | | | |
1390 * | v | | | | |
1391 * |**************************************************************************
1392 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1393 * | | | | | |
1394 * |non-shared| shared (+) | private | slave (*) | invalid |
1395 * ***************************************************************************
b90fa9ae
RP
1396 * A bind operation clones the source mount and mounts the clone on the
1397 * destination mount.
1398 *
1399 * (++) the cloned mount is propagated to all the mounts in the propagation
1400 * tree of the destination mount and the cloned mount is added to
1401 * the peer group of the source mount.
1402 * (+) the cloned mount is created under the destination mount and is marked
1403 * as shared. The cloned mount is added to the peer group of the source
1404 * mount.
5afe0022
RP
1405 * (+++) the mount is propagated to all the mounts in the propagation tree
1406 * of the destination mount and the cloned mount is made slave
1407 * of the same master as that of the source mount. The cloned mount
1408 * is marked as 'shared and slave'.
1409 * (*) the cloned mount is made a slave of the same master as that of the
1410 * source mount.
1411 *
9676f0c6
RP
1412 * ---------------------------------------------------------------------------
1413 * | MOVE MOUNT OPERATION |
1414 * |**************************************************************************
1415 * | source-->| shared | private | slave | unbindable |
1416 * | dest | | | | |
1417 * | | | | | | |
1418 * | v | | | | |
1419 * |**************************************************************************
1420 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1421 * | | | | | |
1422 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1423 * ***************************************************************************
5afe0022
RP
1424 *
1425 * (+) the mount is moved to the destination. And is then propagated to
1426 * all the mounts in the propagation tree of the destination mount.
21444403 1427 * (+*) the mount is moved to the destination.
5afe0022
RP
1428 * (+++) the mount is moved to the destination and is then propagated to
1429 * all the mounts belonging to the destination mount's propagation tree.
1430 * the mount is marked as 'shared and slave'.
1431 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1432 *
1433 * if the source mount is a tree, the operations explained above is
1434 * applied to each mount in the tree.
1435 * Must be called without spinlocks held, since this function can sleep
1436 * in allocations.
1437 */
0fb54e50 1438static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1439 struct path *path, struct path *parent_path)
b90fa9ae
RP
1440{
1441 LIST_HEAD(tree_list);
a8d56d8e 1442 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1443 struct dentry *dest_dentry = path->dentry;
315fc83e 1444 struct mount *child, *p;
719f5d7f 1445 int err;
b90fa9ae 1446
fc7be130 1447 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1448 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1449 if (err)
1450 goto out;
1451 }
a8d56d8e 1452 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1453 if (err)
1454 goto out_cleanup_ids;
b90fa9ae 1455
962830df 1456 br_write_lock(&vfsmount_lock);
df1a1ad2 1457
fc7be130 1458 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1459 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1460 set_mnt_shared(p);
b90fa9ae 1461 }
1a390689 1462 if (parent_path) {
0fb54e50
AV
1463 detach_mnt(source_mnt, parent_path);
1464 attach_mnt(source_mnt, path);
143c8c91 1465 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1466 } else {
14cf1fa8 1467 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1468 commit_tree(source_mnt);
21444403 1469 }
b90fa9ae 1470
1b8e5564
AV
1471 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1472 list_del_init(&child->mnt_hash);
4b2619a5 1473 commit_tree(child);
b90fa9ae 1474 }
962830df 1475 br_write_unlock(&vfsmount_lock);
99b7db7b 1476
b90fa9ae 1477 return 0;
719f5d7f
MS
1478
1479 out_cleanup_ids:
fc7be130 1480 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1481 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1482 out:
1483 return err;
b90fa9ae
RP
1484}
1485
b12cea91
AV
1486static int lock_mount(struct path *path)
1487{
1488 struct vfsmount *mnt;
1489retry:
1490 mutex_lock(&path->dentry->d_inode->i_mutex);
1491 if (unlikely(cant_mount(path->dentry))) {
1492 mutex_unlock(&path->dentry->d_inode->i_mutex);
1493 return -ENOENT;
1494 }
1495 down_write(&namespace_sem);
1496 mnt = lookup_mnt(path);
1497 if (likely(!mnt))
1498 return 0;
1499 up_write(&namespace_sem);
1500 mutex_unlock(&path->dentry->d_inode->i_mutex);
1501 path_put(path);
1502 path->mnt = mnt;
1503 path->dentry = dget(mnt->mnt_root);
1504 goto retry;
1505}
1506
1507static void unlock_mount(struct path *path)
1508{
1509 up_write(&namespace_sem);
1510 mutex_unlock(&path->dentry->d_inode->i_mutex);
1511}
1512
95bc5f25 1513static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1514{
95bc5f25 1515 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1516 return -EINVAL;
1517
8c3ee42e 1518 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1519 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1520 return -ENOTDIR;
1521
b12cea91
AV
1522 if (d_unlinked(path->dentry))
1523 return -ENOENT;
1da177e4 1524
95bc5f25 1525 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1526}
1527
7a2e8a8f
VA
1528/*
1529 * Sanity check the flags to change_mnt_propagation.
1530 */
1531
1532static int flags_to_propagation_type(int flags)
1533{
7c6e984d 1534 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1535
1536 /* Fail if any non-propagation flags are set */
1537 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1538 return 0;
1539 /* Only one propagation flag should be set */
1540 if (!is_power_of_2(type))
1541 return 0;
1542 return type;
1543}
1544
07b20889
RP
1545/*
1546 * recursively change the type of the mountpoint.
1547 */
0a0d8a46 1548static int do_change_type(struct path *path, int flag)
07b20889 1549{
315fc83e 1550 struct mount *m;
4b8b21f4 1551 struct mount *mnt = real_mount(path->mnt);
07b20889 1552 int recurse = flag & MS_REC;
7a2e8a8f 1553 int type;
719f5d7f 1554 int err = 0;
07b20889 1555
ee6f9582
MS
1556 if (!capable(CAP_SYS_ADMIN))
1557 return -EPERM;
1558
2d92ab3c 1559 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1560 return -EINVAL;
1561
7a2e8a8f
VA
1562 type = flags_to_propagation_type(flag);
1563 if (!type)
1564 return -EINVAL;
1565
07b20889 1566 down_write(&namespace_sem);
719f5d7f
MS
1567 if (type == MS_SHARED) {
1568 err = invent_group_ids(mnt, recurse);
1569 if (err)
1570 goto out_unlock;
1571 }
1572
962830df 1573 br_write_lock(&vfsmount_lock);
909b0a88 1574 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1575 change_mnt_propagation(m, type);
962830df 1576 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1577
1578 out_unlock:
07b20889 1579 up_write(&namespace_sem);
719f5d7f 1580 return err;
07b20889
RP
1581}
1582
1da177e4
LT
1583/*
1584 * do loopback mount.
1585 */
0a0d8a46 1586static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1587 int recurse)
1da177e4 1588{
b12cea91 1589 LIST_HEAD(umount_list);
2d92ab3c 1590 struct path old_path;
87129cc0 1591 struct mount *mnt = NULL, *old;
2d92ab3c 1592 int err = mount_is_safe(path);
1da177e4
LT
1593 if (err)
1594 return err;
1595 if (!old_name || !*old_name)
1596 return -EINVAL;
815d405c 1597 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1598 if (err)
1599 return err;
1600
b12cea91
AV
1601 err = lock_mount(path);
1602 if (err)
1603 goto out;
1604
87129cc0
AV
1605 old = real_mount(old_path.mnt);
1606
1da177e4 1607 err = -EINVAL;
fc7be130 1608 if (IS_MNT_UNBINDABLE(old))
b12cea91 1609 goto out2;
9676f0c6 1610
143c8c91 1611 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1612 goto out2;
1da177e4 1613
ccd48bc7 1614 if (recurse)
87129cc0 1615 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1616 else
87129cc0 1617 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1618
be34d1a3
DH
1619 if (IS_ERR(mnt)) {
1620 err = PTR_ERR(mnt);
1621 goto out;
1622 }
ccd48bc7 1623
95bc5f25 1624 err = graft_tree(mnt, path);
ccd48bc7 1625 if (err) {
962830df 1626 br_write_lock(&vfsmount_lock);
761d5c38 1627 umount_tree(mnt, 0, &umount_list);
962830df 1628 br_write_unlock(&vfsmount_lock);
5b83d2c5 1629 }
b12cea91
AV
1630out2:
1631 unlock_mount(path);
1632 release_mounts(&umount_list);
ccd48bc7 1633out:
2d92ab3c 1634 path_put(&old_path);
1da177e4
LT
1635 return err;
1636}
1637
2e4b7fcd
DH
1638static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1639{
1640 int error = 0;
1641 int readonly_request = 0;
1642
1643 if (ms_flags & MS_RDONLY)
1644 readonly_request = 1;
1645 if (readonly_request == __mnt_is_readonly(mnt))
1646 return 0;
1647
1648 if (readonly_request)
83adc753 1649 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1650 else
83adc753 1651 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1652 return error;
1653}
1654
1da177e4
LT
1655/*
1656 * change filesystem flags. dir should be a physical root of filesystem.
1657 * If you've mounted a non-root directory somewhere and want to do remount
1658 * on it - tough luck.
1659 */
0a0d8a46 1660static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1661 void *data)
1662{
1663 int err;
2d92ab3c 1664 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1665 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1666
1667 if (!capable(CAP_SYS_ADMIN))
1668 return -EPERM;
1669
143c8c91 1670 if (!check_mnt(mnt))
1da177e4
LT
1671 return -EINVAL;
1672
2d92ab3c 1673 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1674 return -EINVAL;
1675
ff36fe2c
EP
1676 err = security_sb_remount(sb, data);
1677 if (err)
1678 return err;
1679
1da177e4 1680 down_write(&sb->s_umount);
2e4b7fcd 1681 if (flags & MS_BIND)
2d92ab3c 1682 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1683 else
2e4b7fcd 1684 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1685 if (!err) {
962830df 1686 br_write_lock(&vfsmount_lock);
143c8c91
AV
1687 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1688 mnt->mnt.mnt_flags = mnt_flags;
962830df 1689 br_write_unlock(&vfsmount_lock);
7b43a79f 1690 }
1da177e4 1691 up_write(&sb->s_umount);
0e55a7cc 1692 if (!err) {
962830df 1693 br_write_lock(&vfsmount_lock);
143c8c91 1694 touch_mnt_namespace(mnt->mnt_ns);
962830df 1695 br_write_unlock(&vfsmount_lock);
0e55a7cc 1696 }
1da177e4
LT
1697 return err;
1698}
1699
cbbe362c 1700static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1701{
315fc83e 1702 struct mount *p;
909b0a88 1703 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1704 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1705 return 1;
1706 }
1707 return 0;
1708}
1709
0a0d8a46 1710static int do_move_mount(struct path *path, char *old_name)
1da177e4 1711{
2d92ab3c 1712 struct path old_path, parent_path;
676da58d 1713 struct mount *p;
0fb54e50 1714 struct mount *old;
1da177e4
LT
1715 int err = 0;
1716 if (!capable(CAP_SYS_ADMIN))
1717 return -EPERM;
1718 if (!old_name || !*old_name)
1719 return -EINVAL;
2d92ab3c 1720 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1721 if (err)
1722 return err;
1723
b12cea91 1724 err = lock_mount(path);
cc53ce53
DH
1725 if (err < 0)
1726 goto out;
1727
143c8c91 1728 old = real_mount(old_path.mnt);
fc7be130 1729 p = real_mount(path->mnt);
143c8c91 1730
1da177e4 1731 err = -EINVAL;
fc7be130 1732 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1733 goto out1;
1734
f3da392e 1735 if (d_unlinked(path->dentry))
21444403 1736 goto out1;
1da177e4
LT
1737
1738 err = -EINVAL;
2d92ab3c 1739 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1740 goto out1;
1da177e4 1741
676da58d 1742 if (!mnt_has_parent(old))
21444403 1743 goto out1;
1da177e4 1744
2d92ab3c
AV
1745 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1746 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1747 goto out1;
1748 /*
1749 * Don't move a mount residing in a shared parent.
1750 */
fc7be130 1751 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1752 goto out1;
9676f0c6
RP
1753 /*
1754 * Don't move a mount tree containing unbindable mounts to a destination
1755 * mount which is shared.
1756 */
fc7be130 1757 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1758 goto out1;
1da177e4 1759 err = -ELOOP;
fc7be130 1760 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1761 if (p == old)
21444403 1762 goto out1;
1da177e4 1763
0fb54e50 1764 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1765 if (err)
21444403 1766 goto out1;
1da177e4
LT
1767
1768 /* if the mount is moved, it should no longer be expire
1769 * automatically */
6776db3d 1770 list_del_init(&old->mnt_expire);
1da177e4 1771out1:
b12cea91 1772 unlock_mount(path);
1da177e4 1773out:
1da177e4 1774 if (!err)
1a390689 1775 path_put(&parent_path);
2d92ab3c 1776 path_put(&old_path);
1da177e4
LT
1777 return err;
1778}
1779
9d412a43
AV
1780static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1781{
1782 int err;
1783 const char *subtype = strchr(fstype, '.');
1784 if (subtype) {
1785 subtype++;
1786 err = -EINVAL;
1787 if (!subtype[0])
1788 goto err;
1789 } else
1790 subtype = "";
1791
1792 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1793 err = -ENOMEM;
1794 if (!mnt->mnt_sb->s_subtype)
1795 goto err;
1796 return mnt;
1797
1798 err:
1799 mntput(mnt);
1800 return ERR_PTR(err);
1801}
1802
79e801a9 1803static struct vfsmount *
9d412a43
AV
1804do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1805{
1806 struct file_system_type *type = get_fs_type(fstype);
1807 struct vfsmount *mnt;
1808 if (!type)
1809 return ERR_PTR(-ENODEV);
1810 mnt = vfs_kern_mount(type, flags, name, data);
1811 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1812 !mnt->mnt_sb->s_subtype)
1813 mnt = fs_set_subtype(mnt, fstype);
1814 put_filesystem(type);
1815 return mnt;
1816}
9d412a43
AV
1817
1818/*
1819 * add a mount into a namespace's mount tree
1820 */
95bc5f25 1821static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1822{
1823 int err;
1824
1825 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1826
b12cea91
AV
1827 err = lock_mount(path);
1828 if (err)
1829 return err;
9d412a43
AV
1830
1831 err = -EINVAL;
143c8c91 1832 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
9d412a43
AV
1833 goto unlock;
1834
1835 /* Refuse the same filesystem on the same mount point */
1836 err = -EBUSY;
95bc5f25 1837 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1838 path->mnt->mnt_root == path->dentry)
1839 goto unlock;
1840
1841 err = -EINVAL;
95bc5f25 1842 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1843 goto unlock;
1844
95bc5f25 1845 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
1846 err = graft_tree(newmnt, path);
1847
1848unlock:
b12cea91 1849 unlock_mount(path);
9d412a43
AV
1850 return err;
1851}
b1e75df4 1852
1da177e4
LT
1853/*
1854 * create a new mount for userspace and request it to be added into the
1855 * namespace's tree
1856 */
0a0d8a46 1857static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1858 int mnt_flags, char *name, void *data)
1859{
1860 struct vfsmount *mnt;
15f9a3f3 1861 int err;
1da177e4 1862
eca6f534 1863 if (!type)
1da177e4
LT
1864 return -EINVAL;
1865
1866 /* we need capabilities... */
1867 if (!capable(CAP_SYS_ADMIN))
1868 return -EPERM;
1869
1870 mnt = do_kern_mount(type, flags, name, data);
1871 if (IS_ERR(mnt))
1872 return PTR_ERR(mnt);
1873
95bc5f25 1874 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1875 if (err)
1876 mntput(mnt);
1877 return err;
1da177e4
LT
1878}
1879
19a167af
AV
1880int finish_automount(struct vfsmount *m, struct path *path)
1881{
6776db3d 1882 struct mount *mnt = real_mount(m);
19a167af
AV
1883 int err;
1884 /* The new mount record should have at least 2 refs to prevent it being
1885 * expired before we get a chance to add it
1886 */
6776db3d 1887 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
1888
1889 if (m->mnt_sb == path->mnt->mnt_sb &&
1890 m->mnt_root == path->dentry) {
b1e75df4
AV
1891 err = -ELOOP;
1892 goto fail;
19a167af
AV
1893 }
1894
95bc5f25 1895 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1896 if (!err)
1897 return 0;
1898fail:
1899 /* remove m from any expiration list it may be on */
6776db3d 1900 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4 1901 down_write(&namespace_sem);
962830df 1902 br_write_lock(&vfsmount_lock);
6776db3d 1903 list_del_init(&mnt->mnt_expire);
962830df 1904 br_write_unlock(&vfsmount_lock);
b1e75df4 1905 up_write(&namespace_sem);
19a167af 1906 }
b1e75df4
AV
1907 mntput(m);
1908 mntput(m);
19a167af
AV
1909 return err;
1910}
1911
ea5b778a
DH
1912/**
1913 * mnt_set_expiry - Put a mount on an expiration list
1914 * @mnt: The mount to list.
1915 * @expiry_list: The list to add the mount to.
1916 */
1917void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1918{
1919 down_write(&namespace_sem);
962830df 1920 br_write_lock(&vfsmount_lock);
ea5b778a 1921
6776db3d 1922 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 1923
962830df 1924 br_write_unlock(&vfsmount_lock);
ea5b778a
DH
1925 up_write(&namespace_sem);
1926}
1927EXPORT_SYMBOL(mnt_set_expiry);
1928
1da177e4
LT
1929/*
1930 * process a list of expirable mountpoints with the intent of discarding any
1931 * mountpoints that aren't in use and haven't been touched since last we came
1932 * here
1933 */
1934void mark_mounts_for_expiry(struct list_head *mounts)
1935{
761d5c38 1936 struct mount *mnt, *next;
1da177e4 1937 LIST_HEAD(graveyard);
bcc5c7d2 1938 LIST_HEAD(umounts);
1da177e4
LT
1939
1940 if (list_empty(mounts))
1941 return;
1942
bcc5c7d2 1943 down_write(&namespace_sem);
962830df 1944 br_write_lock(&vfsmount_lock);
1da177e4
LT
1945
1946 /* extract from the expiration list every vfsmount that matches the
1947 * following criteria:
1948 * - only referenced by its parent vfsmount
1949 * - still marked for expiry (marked on the last call here; marks are
1950 * cleared by mntput())
1951 */
6776db3d 1952 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 1953 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 1954 propagate_mount_busy(mnt, 1))
1da177e4 1955 continue;
6776db3d 1956 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1957 }
bcc5c7d2 1958 while (!list_empty(&graveyard)) {
6776db3d 1959 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 1960 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
1961 umount_tree(mnt, 1, &umounts);
1962 }
962830df 1963 br_write_unlock(&vfsmount_lock);
bcc5c7d2
AV
1964 up_write(&namespace_sem);
1965
1966 release_mounts(&umounts);
5528f911
TM
1967}
1968
1969EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1970
1971/*
1972 * Ripoff of 'select_parent()'
1973 *
1974 * search the list of submounts for a given mountpoint, and move any
1975 * shrinkable submounts to the 'graveyard' list.
1976 */
692afc31 1977static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 1978{
692afc31 1979 struct mount *this_parent = parent;
5528f911
TM
1980 struct list_head *next;
1981 int found = 0;
1982
1983repeat:
6b41d536 1984 next = this_parent->mnt_mounts.next;
5528f911 1985resume:
6b41d536 1986 while (next != &this_parent->mnt_mounts) {
5528f911 1987 struct list_head *tmp = next;
6b41d536 1988 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
1989
1990 next = tmp->next;
692afc31 1991 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 1992 continue;
5528f911
TM
1993 /*
1994 * Descend a level if the d_mounts list is non-empty.
1995 */
6b41d536 1996 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
1997 this_parent = mnt;
1998 goto repeat;
1999 }
1da177e4 2000
1ab59738 2001 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2002 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2003 found++;
2004 }
1da177e4 2005 }
5528f911
TM
2006 /*
2007 * All done at this level ... ascend and resume the search
2008 */
2009 if (this_parent != parent) {
6b41d536 2010 next = this_parent->mnt_child.next;
0714a533 2011 this_parent = this_parent->mnt_parent;
5528f911
TM
2012 goto resume;
2013 }
2014 return found;
2015}
2016
2017/*
2018 * process a list of expirable mountpoints with the intent of discarding any
2019 * submounts of a specific parent mountpoint
99b7db7b
NP
2020 *
2021 * vfsmount_lock must be held for write
5528f911 2022 */
692afc31 2023static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2024{
2025 LIST_HEAD(graveyard);
761d5c38 2026 struct mount *m;
5528f911 2027
5528f911 2028 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2029 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2030 while (!list_empty(&graveyard)) {
761d5c38 2031 m = list_first_entry(&graveyard, struct mount,
6776db3d 2032 mnt_expire);
143c8c91 2033 touch_mnt_namespace(m->mnt_ns);
afef80b3 2034 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2035 }
2036 }
1da177e4
LT
2037}
2038
1da177e4
LT
2039/*
2040 * Some copy_from_user() implementations do not return the exact number of
2041 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2042 * Note that this function differs from copy_from_user() in that it will oops
2043 * on bad values of `to', rather than returning a short copy.
2044 */
b58fed8b
RP
2045static long exact_copy_from_user(void *to, const void __user * from,
2046 unsigned long n)
1da177e4
LT
2047{
2048 char *t = to;
2049 const char __user *f = from;
2050 char c;
2051
2052 if (!access_ok(VERIFY_READ, from, n))
2053 return n;
2054
2055 while (n) {
2056 if (__get_user(c, f)) {
2057 memset(t, 0, n);
2058 break;
2059 }
2060 *t++ = c;
2061 f++;
2062 n--;
2063 }
2064 return n;
2065}
2066
b58fed8b 2067int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2068{
2069 int i;
2070 unsigned long page;
2071 unsigned long size;
b58fed8b 2072
1da177e4
LT
2073 *where = 0;
2074 if (!data)
2075 return 0;
2076
2077 if (!(page = __get_free_page(GFP_KERNEL)))
2078 return -ENOMEM;
2079
2080 /* We only care that *some* data at the address the user
2081 * gave us is valid. Just in case, we'll zero
2082 * the remainder of the page.
2083 */
2084 /* copy_from_user cannot cross TASK_SIZE ! */
2085 size = TASK_SIZE - (unsigned long)data;
2086 if (size > PAGE_SIZE)
2087 size = PAGE_SIZE;
2088
2089 i = size - exact_copy_from_user((void *)page, data, size);
2090 if (!i) {
b58fed8b 2091 free_page(page);
1da177e4
LT
2092 return -EFAULT;
2093 }
2094 if (i != PAGE_SIZE)
2095 memset((char *)page + i, 0, PAGE_SIZE - i);
2096 *where = page;
2097 return 0;
2098}
2099
eca6f534
VN
2100int copy_mount_string(const void __user *data, char **where)
2101{
2102 char *tmp;
2103
2104 if (!data) {
2105 *where = NULL;
2106 return 0;
2107 }
2108
2109 tmp = strndup_user(data, PAGE_SIZE);
2110 if (IS_ERR(tmp))
2111 return PTR_ERR(tmp);
2112
2113 *where = tmp;
2114 return 0;
2115}
2116
1da177e4
LT
2117/*
2118 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2119 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2120 *
2121 * data is a (void *) that can point to any structure up to
2122 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2123 * information (or be NULL).
2124 *
2125 * Pre-0.97 versions of mount() didn't have a flags word.
2126 * When the flags word was introduced its top half was required
2127 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2128 * Therefore, if this magic number is present, it carries no information
2129 * and must be discarded.
2130 */
b58fed8b 2131long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2132 unsigned long flags, void *data_page)
2133{
2d92ab3c 2134 struct path path;
1da177e4
LT
2135 int retval = 0;
2136 int mnt_flags = 0;
2137
2138 /* Discard magic */
2139 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2140 flags &= ~MS_MGC_MSK;
2141
2142 /* Basic sanity checks */
2143
2144 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2145 return -EINVAL;
1da177e4
LT
2146
2147 if (data_page)
2148 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2149
a27ab9f2
TH
2150 /* ... and get the mountpoint */
2151 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2152 if (retval)
2153 return retval;
2154
2155 retval = security_sb_mount(dev_name, &path,
2156 type_page, flags, data_page);
2157 if (retval)
2158 goto dput_out;
2159
613cbe3d
AK
2160 /* Default to relatime unless overriden */
2161 if (!(flags & MS_NOATIME))
2162 mnt_flags |= MNT_RELATIME;
0a1c01c9 2163
1da177e4
LT
2164 /* Separate the per-mountpoint flags */
2165 if (flags & MS_NOSUID)
2166 mnt_flags |= MNT_NOSUID;
2167 if (flags & MS_NODEV)
2168 mnt_flags |= MNT_NODEV;
2169 if (flags & MS_NOEXEC)
2170 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2171 if (flags & MS_NOATIME)
2172 mnt_flags |= MNT_NOATIME;
2173 if (flags & MS_NODIRATIME)
2174 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2175 if (flags & MS_STRICTATIME)
2176 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2177 if (flags & MS_RDONLY)
2178 mnt_flags |= MNT_READONLY;
fc33a7bb 2179
7a4dec53 2180 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2181 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2182 MS_STRICTATIME);
1da177e4 2183
1da177e4 2184 if (flags & MS_REMOUNT)
2d92ab3c 2185 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2186 data_page);
2187 else if (flags & MS_BIND)
2d92ab3c 2188 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2189 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2190 retval = do_change_type(&path, flags);
1da177e4 2191 else if (flags & MS_MOVE)
2d92ab3c 2192 retval = do_move_mount(&path, dev_name);
1da177e4 2193 else
2d92ab3c 2194 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2195 dev_name, data_page);
2196dput_out:
2d92ab3c 2197 path_put(&path);
1da177e4
LT
2198 return retval;
2199}
2200
cf8d2c11
TM
2201static struct mnt_namespace *alloc_mnt_ns(void)
2202{
2203 struct mnt_namespace *new_ns;
2204
2205 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2206 if (!new_ns)
2207 return ERR_PTR(-ENOMEM);
2208 atomic_set(&new_ns->count, 1);
2209 new_ns->root = NULL;
2210 INIT_LIST_HEAD(&new_ns->list);
2211 init_waitqueue_head(&new_ns->poll);
2212 new_ns->event = 0;
2213 return new_ns;
2214}
2215
741a2951
JD
2216/*
2217 * Allocate a new namespace structure and populate it with contents
2218 * copied from the namespace of the passed in task structure.
2219 */
e3222c4e 2220static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2221 struct fs_struct *fs)
1da177e4 2222{
6b3286ed 2223 struct mnt_namespace *new_ns;
7f2da1e7 2224 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2225 struct mount *p, *q;
be08d6d2 2226 struct mount *old = mnt_ns->root;
cb338d06 2227 struct mount *new;
1da177e4 2228
cf8d2c11
TM
2229 new_ns = alloc_mnt_ns();
2230 if (IS_ERR(new_ns))
2231 return new_ns;
1da177e4 2232
390c6843 2233 down_write(&namespace_sem);
1da177e4 2234 /* First pass: copy the tree topology */
909b0a88 2235 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
be34d1a3 2236 if (IS_ERR(new)) {
390c6843 2237 up_write(&namespace_sem);
1da177e4 2238 kfree(new_ns);
be34d1a3 2239 return ERR_CAST(new);
1da177e4 2240 }
be08d6d2 2241 new_ns->root = new;
962830df 2242 br_write_lock(&vfsmount_lock);
1a4eeaf2 2243 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2244 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2245
2246 /*
2247 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2248 * as belonging to new namespace. We have already acquired a private
2249 * fs_struct, so tsk->fs->lock is not needed.
2250 */
909b0a88 2251 p = old;
cb338d06 2252 q = new;
1da177e4 2253 while (p) {
143c8c91 2254 q->mnt_ns = new_ns;
1da177e4 2255 if (fs) {
315fc83e
AV
2256 if (&p->mnt == fs->root.mnt) {
2257 fs->root.mnt = mntget(&q->mnt);
315fc83e 2258 rootmnt = &p->mnt;
1da177e4 2259 }
315fc83e
AV
2260 if (&p->mnt == fs->pwd.mnt) {
2261 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2262 pwdmnt = &p->mnt;
1da177e4 2263 }
1da177e4 2264 }
909b0a88
AV
2265 p = next_mnt(p, old);
2266 q = next_mnt(q, new);
1da177e4 2267 }
390c6843 2268 up_write(&namespace_sem);
1da177e4 2269
1da177e4 2270 if (rootmnt)
f03c6599 2271 mntput(rootmnt);
1da177e4 2272 if (pwdmnt)
f03c6599 2273 mntput(pwdmnt);
1da177e4 2274
741a2951
JD
2275 return new_ns;
2276}
2277
213dd266 2278struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2279 struct fs_struct *new_fs)
741a2951 2280{
6b3286ed 2281 struct mnt_namespace *new_ns;
741a2951 2282
e3222c4e 2283 BUG_ON(!ns);
6b3286ed 2284 get_mnt_ns(ns);
741a2951
JD
2285
2286 if (!(flags & CLONE_NEWNS))
e3222c4e 2287 return ns;
741a2951 2288
e3222c4e 2289 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2290
6b3286ed 2291 put_mnt_ns(ns);
e3222c4e 2292 return new_ns;
1da177e4
LT
2293}
2294
cf8d2c11
TM
2295/**
2296 * create_mnt_ns - creates a private namespace and adds a root filesystem
2297 * @mnt: pointer to the new root filesystem mountpoint
2298 */
1a4eeaf2 2299static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2300{
1a4eeaf2 2301 struct mnt_namespace *new_ns = alloc_mnt_ns();
cf8d2c11 2302 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2303 struct mount *mnt = real_mount(m);
2304 mnt->mnt_ns = new_ns;
be08d6d2 2305 new_ns->root = mnt;
1a4eeaf2 2306 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2307 } else {
1a4eeaf2 2308 mntput(m);
cf8d2c11
TM
2309 }
2310 return new_ns;
2311}
cf8d2c11 2312
ea441d11
AV
2313struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2314{
2315 struct mnt_namespace *ns;
d31da0f0 2316 struct super_block *s;
ea441d11
AV
2317 struct path path;
2318 int err;
2319
2320 ns = create_mnt_ns(mnt);
2321 if (IS_ERR(ns))
2322 return ERR_CAST(ns);
2323
2324 err = vfs_path_lookup(mnt->mnt_root, mnt,
2325 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2326
2327 put_mnt_ns(ns);
2328
2329 if (err)
2330 return ERR_PTR(err);
2331
2332 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2333 s = path.mnt->mnt_sb;
2334 atomic_inc(&s->s_active);
ea441d11
AV
2335 mntput(path.mnt);
2336 /* lock the sucker */
d31da0f0 2337 down_write(&s->s_umount);
ea441d11
AV
2338 /* ... and return the root of (sub)tree on it */
2339 return path.dentry;
2340}
2341EXPORT_SYMBOL(mount_subtree);
2342
bdc480e3
HC
2343SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2344 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2345{
eca6f534
VN
2346 int ret;
2347 char *kernel_type;
2348 char *kernel_dir;
2349 char *kernel_dev;
1da177e4 2350 unsigned long data_page;
1da177e4 2351
eca6f534
VN
2352 ret = copy_mount_string(type, &kernel_type);
2353 if (ret < 0)
2354 goto out_type;
1da177e4 2355
eca6f534
VN
2356 kernel_dir = getname(dir_name);
2357 if (IS_ERR(kernel_dir)) {
2358 ret = PTR_ERR(kernel_dir);
2359 goto out_dir;
2360 }
1da177e4 2361
eca6f534
VN
2362 ret = copy_mount_string(dev_name, &kernel_dev);
2363 if (ret < 0)
2364 goto out_dev;
1da177e4 2365
eca6f534
VN
2366 ret = copy_mount_options(data, &data_page);
2367 if (ret < 0)
2368 goto out_data;
1da177e4 2369
eca6f534
VN
2370 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2371 (void *) data_page);
1da177e4 2372
eca6f534
VN
2373 free_page(data_page);
2374out_data:
2375 kfree(kernel_dev);
2376out_dev:
2377 putname(kernel_dir);
2378out_dir:
2379 kfree(kernel_type);
2380out_type:
2381 return ret;
1da177e4
LT
2382}
2383
afac7cba
AV
2384/*
2385 * Return true if path is reachable from root
2386 *
2387 * namespace_sem or vfsmount_lock is held
2388 */
643822b4 2389bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2390 const struct path *root)
2391{
643822b4 2392 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2393 dentry = mnt->mnt_mountpoint;
0714a533 2394 mnt = mnt->mnt_parent;
afac7cba 2395 }
643822b4 2396 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2397}
2398
2399int path_is_under(struct path *path1, struct path *path2)
2400{
2401 int res;
962830df 2402 br_read_lock(&vfsmount_lock);
643822b4 2403 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2404 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2405 return res;
2406}
2407EXPORT_SYMBOL(path_is_under);
2408
1da177e4
LT
2409/*
2410 * pivot_root Semantics:
2411 * Moves the root file system of the current process to the directory put_old,
2412 * makes new_root as the new root file system of the current process, and sets
2413 * root/cwd of all processes which had them on the current root to new_root.
2414 *
2415 * Restrictions:
2416 * The new_root and put_old must be directories, and must not be on the
2417 * same file system as the current process root. The put_old must be
2418 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2419 * pointed to by put_old must yield the same directory as new_root. No other
2420 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2421 *
4a0d11fa
NB
2422 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2423 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2424 * in this situation.
2425 *
1da177e4
LT
2426 * Notes:
2427 * - we don't move root/cwd if they are not at the root (reason: if something
2428 * cared enough to change them, it's probably wrong to force them elsewhere)
2429 * - it's okay to pick a root that isn't the root of a file system, e.g.
2430 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2431 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2432 * first.
2433 */
3480b257
HC
2434SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2435 const char __user *, put_old)
1da177e4 2436{
2d8f3038 2437 struct path new, old, parent_path, root_parent, root;
419148da 2438 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2439 int error;
2440
2441 if (!capable(CAP_SYS_ADMIN))
2442 return -EPERM;
2443
2d8f3038 2444 error = user_path_dir(new_root, &new);
1da177e4
LT
2445 if (error)
2446 goto out0;
1da177e4 2447
2d8f3038 2448 error = user_path_dir(put_old, &old);
1da177e4
LT
2449 if (error)
2450 goto out1;
2451
2d8f3038 2452 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2453 if (error)
2454 goto out2;
1da177e4 2455
f7ad3c6b 2456 get_fs_root(current->fs, &root);
b12cea91
AV
2457 error = lock_mount(&old);
2458 if (error)
2459 goto out3;
2460
1da177e4 2461 error = -EINVAL;
419148da
AV
2462 new_mnt = real_mount(new.mnt);
2463 root_mnt = real_mount(root.mnt);
fc7be130
AV
2464 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2465 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2466 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2467 goto out4;
143c8c91 2468 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2469 goto out4;
1da177e4 2470 error = -ENOENT;
f3da392e 2471 if (d_unlinked(new.dentry))
b12cea91 2472 goto out4;
f3da392e 2473 if (d_unlinked(old.dentry))
b12cea91 2474 goto out4;
1da177e4 2475 error = -EBUSY;
2d8f3038
AV
2476 if (new.mnt == root.mnt ||
2477 old.mnt == root.mnt)
b12cea91 2478 goto out4; /* loop, on the same file system */
1da177e4 2479 error = -EINVAL;
8c3ee42e 2480 if (root.mnt->mnt_root != root.dentry)
b12cea91 2481 goto out4; /* not a mountpoint */
676da58d 2482 if (!mnt_has_parent(root_mnt))
b12cea91 2483 goto out4; /* not attached */
2d8f3038 2484 if (new.mnt->mnt_root != new.dentry)
b12cea91 2485 goto out4; /* not a mountpoint */
676da58d 2486 if (!mnt_has_parent(new_mnt))
b12cea91 2487 goto out4; /* not attached */
4ac91378 2488 /* make sure we can reach put_old from new_root */
643822b4 2489 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2490 goto out4;
962830df 2491 br_write_lock(&vfsmount_lock);
419148da
AV
2492 detach_mnt(new_mnt, &parent_path);
2493 detach_mnt(root_mnt, &root_parent);
4ac91378 2494 /* mount old root on put_old */
419148da 2495 attach_mnt(root_mnt, &old);
4ac91378 2496 /* mount new_root on / */
419148da 2497 attach_mnt(new_mnt, &root_parent);
6b3286ed 2498 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2499 br_write_unlock(&vfsmount_lock);
2d8f3038 2500 chroot_fs_refs(&root, &new);
1da177e4 2501 error = 0;
b12cea91
AV
2502out4:
2503 unlock_mount(&old);
2504 if (!error) {
2505 path_put(&root_parent);
2506 path_put(&parent_path);
2507 }
2508out3:
8c3ee42e 2509 path_put(&root);
b12cea91 2510out2:
2d8f3038 2511 path_put(&old);
1da177e4 2512out1:
2d8f3038 2513 path_put(&new);
1da177e4 2514out0:
1da177e4 2515 return error;
1da177e4
LT
2516}
2517
2518static void __init init_mount_tree(void)
2519{
2520 struct vfsmount *mnt;
6b3286ed 2521 struct mnt_namespace *ns;
ac748a09 2522 struct path root;
1da177e4
LT
2523
2524 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2525 if (IS_ERR(mnt))
2526 panic("Can't create rootfs");
b3e19d92 2527
3b22edc5
TM
2528 ns = create_mnt_ns(mnt);
2529 if (IS_ERR(ns))
1da177e4 2530 panic("Can't allocate initial namespace");
6b3286ed
KK
2531
2532 init_task.nsproxy->mnt_ns = ns;
2533 get_mnt_ns(ns);
2534
be08d6d2
AV
2535 root.mnt = mnt;
2536 root.dentry = mnt->mnt_root;
ac748a09
JB
2537
2538 set_fs_pwd(current->fs, &root);
2539 set_fs_root(current->fs, &root);
1da177e4
LT
2540}
2541
74bf17cf 2542void __init mnt_init(void)
1da177e4 2543{
13f14b4d 2544 unsigned u;
15a67dd8 2545 int err;
1da177e4 2546
390c6843
RP
2547 init_rwsem(&namespace_sem);
2548
7d6fec45 2549 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2550 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2551
b58fed8b 2552 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2553
2554 if (!mount_hashtable)
2555 panic("Failed to allocate mount hash table\n");
2556
80cdc6da 2557 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2558
2559 for (u = 0; u < HASH_SIZE; u++)
2560 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2561
962830df 2562 br_lock_init(&vfsmount_lock);
99b7db7b 2563
15a67dd8
RD
2564 err = sysfs_init();
2565 if (err)
2566 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2567 __func__, err);
00d26666
GKH
2568 fs_kobj = kobject_create_and_add("fs", NULL);
2569 if (!fs_kobj)
8e24eea7 2570 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2571 init_rootfs();
2572 init_mount_tree();
2573}
2574
616511d0 2575void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2576{
70fbcdf4 2577 LIST_HEAD(umount_list);
616511d0 2578
d498b25a 2579 if (!atomic_dec_and_test(&ns->count))
616511d0 2580 return;
390c6843 2581 down_write(&namespace_sem);
962830df 2582 br_write_lock(&vfsmount_lock);
be08d6d2 2583 umount_tree(ns->root, 0, &umount_list);
962830df 2584 br_write_unlock(&vfsmount_lock);
390c6843 2585 up_write(&namespace_sem);
70fbcdf4 2586 release_mounts(&umount_list);
6b3286ed 2587 kfree(ns);
1da177e4 2588}
9d412a43
AV
2589
2590struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2591{
423e0ab0
TC
2592 struct vfsmount *mnt;
2593 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2594 if (!IS_ERR(mnt)) {
2595 /*
2596 * it is a longterm mount, don't release mnt until
2597 * we unmount before file sys is unregistered
2598 */
f7a99c5b 2599 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2600 }
2601 return mnt;
9d412a43
AV
2602}
2603EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2604
2605void kern_unmount(struct vfsmount *mnt)
2606{
2607 /* release long term mount so mount point can be released */
2608 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2609 br_write_lock(&vfsmount_lock);
2610 real_mount(mnt)->mnt_ns = NULL;
2611 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2612 mntput(mnt);
2613 }
2614}
2615EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2616
2617bool our_mnt(struct vfsmount *mnt)
2618{
143c8c91 2619 return check_mnt(real_mount(mnt));
02125a82 2620}