]> git.ipfire.org Git - people/ms/u-boot.git/blame - common/cmd_nand.c
Merge with /home/wd/git/u-boot/master
[people/ms/u-boot.git] / common / cmd_nand.c
CommitLineData
dc7c9a1a
WD
1/*
2 * Driver for NAND support, Rick Bronson
3 * borrowed heavily from:
4 * (c) 1999 Machine Vision Holdings, Inc.
5 * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
384cc687
WD
6 *
7 * Added 16-bit nand support
8 * (C) 2004 Texas Instruments
dc7c9a1a
WD
9 */
10
11#include <common.h>
dc7c9a1a
WD
12#include <command.h>
13#include <malloc.h>
14#include <asm/io.h>
a3d991bd 15#include <watchdog.h>
dc7c9a1a
WD
16
17#ifdef CONFIG_SHOW_BOOT_PROGRESS
18# include <status_led.h>
19# define SHOW_BOOT_PROGRESS(arg) show_boot_progress(arg)
20#else
21# define SHOW_BOOT_PROGRESS(arg)
22#endif
23
24#if (CONFIG_COMMANDS & CFG_CMD_NAND)
25
dc7c9a1a
WD
26#include <linux/mtd/nand.h>
27#include <linux/mtd/nand_ids.h>
7a8e9bed 28#include <jffs2/jffs2.h>
dc7c9a1a 29
1f4bb37d
WD
30#ifdef CONFIG_OMAP1510
31void archflashwp(void *archdata, int wp);
32#endif
33
34#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1)))
35
dc7c9a1a
WD
36/*
37 * Definition of the out of band configuration structure
38 */
39struct nand_oob_config {
40 int ecc_pos[6]; /* position of ECC bytes inside oob */
41 int badblock_pos; /* position of bad block flag inside oob -1 = inactive */
42 int eccvalid_pos; /* position of ECC valid flag inside oob -1 = inactive */
43} oob_config = { {0}, 0, 0};
44
a43278a4 45#undef NAND_DEBUG
dc7c9a1a 46#undef PSYCHO_DEBUG
7a8e9bed
WD
47
48/* ****************** WARNING *********************
49 * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
50 * erase (or at least attempt to erase) blocks that are marked
51 * bad. This can be very handy if you are _sure_ that the block
52 * is OK, say because you marked a good block bad to test bad
53 * block handling and you are done testing, or if you have
54 * accidentally marked blocks bad.
55 *
56 * Erasing factory marked bad blocks is a _bad_ idea. If the
57 * erase succeeds there is no reliable way to find them again,
58 * and attempting to program or erase bad blocks can affect
59 * the data in _other_ (good) blocks.
60 */
61#define ALLOW_ERASE_BAD_DEBUG 0
dc7c9a1a
WD
62
63#define CONFIG_MTD_NAND_ECC /* enable ECC */
1f4bb37d 64#define CONFIG_MTD_NAND_ECC_JFFS2
dc7c9a1a 65
7a8e9bed
WD
66/* bits for nand_rw() `cmd'; or together as needed */
67#define NANDRW_READ 0x01
68#define NANDRW_WRITE 0x00
69#define NANDRW_JFFS2 0x02
a3d991bd 70#define NANDRW_JFFS2_SKIP 0x04
7a8e9bed 71
dc7c9a1a
WD
72/*
73 * Function Prototypes
74 */
75static void nand_print(struct nand_chip *nand);
13a5695b 76int nand_rw (struct nand_chip* nand, int cmd,
dc7c9a1a
WD
77 size_t start, size_t len,
78 size_t * retlen, u_char * buf);
13a5695b 79int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean);
dc7c9a1a
WD
80static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
81 size_t * retlen, u_char *buf, u_char *ecc_code);
82static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
83 size_t * retlen, const u_char * buf, u_char * ecc_code);
7a8e9bed
WD
84static void nand_print_bad(struct nand_chip *nand);
85static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
86 size_t * retlen, u_char * buf);
87static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
88 size_t * retlen, const u_char * buf);
1f4bb37d 89static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
dc7c9a1a
WD
90#ifdef CONFIG_MTD_NAND_ECC
91static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
92static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
93#endif
94
7a8e9bed 95struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
dc7c9a1a
WD
96
97/* Current NAND Device */
98static int curr_device = -1;
99
100/* ------------------------------------------------------------------------- */
101
102int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
103{
104 int rcode = 0;
105
106 switch (argc) {
107 case 0:
108 case 1:
109 printf ("Usage:\n%s\n", cmdtp->usage);
110 return 1;
111 case 2:
8bde7f77 112 if (strcmp(argv[1],"info") == 0) {
dc7c9a1a
WD
113 int i;
114
115 putc ('\n');
116
117 for (i=0; i<CFG_MAX_NAND_DEVICE; ++i) {
118 if(nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN)
119 continue; /* list only known devices */
120 printf ("Device %d: ", i);
121 nand_print(&nand_dev_desc[i]);
122 }
123 return 0;
124
125 } else if (strcmp(argv[1],"device") == 0) {
126 if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
127 puts ("\nno devices available\n");
128 return 1;
129 }
130 printf ("\nDevice %d: ", curr_device);
131 nand_print(&nand_dev_desc[curr_device]);
132 return 0;
7a8e9bed
WD
133
134 } else if (strcmp(argv[1],"bad") == 0) {
135 if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
136 puts ("\nno devices available\n");
137 return 1;
138 }
139 printf ("\nDevice %d bad blocks:\n", curr_device);
140 nand_print_bad(&nand_dev_desc[curr_device]);
141 return 0;
142
dc7c9a1a
WD
143 }
144 printf ("Usage:\n%s\n", cmdtp->usage);
145 return 1;
146 case 3:
147 if (strcmp(argv[1],"device") == 0) {
148 int dev = (int)simple_strtoul(argv[2], NULL, 10);
149
150 printf ("\nDevice %d: ", dev);
151 if (dev >= CFG_MAX_NAND_DEVICE) {
152 puts ("unknown device\n");
153 return 1;
154 }
155 nand_print(&nand_dev_desc[dev]);
156 /*nand_print (dev);*/
157
158 if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) {
159 return 1;
160 }
161
162 curr_device = dev;
163
164 puts ("... is now current device\n");
165
166 return 0;
167 }
7a8e9bed
WD
168 else if (strcmp(argv[1],"erase") == 0 && strcmp(argv[2], "clean") == 0) {
169 struct nand_chip* nand = &nand_dev_desc[curr_device];
170 ulong off = 0;
171 ulong size = nand->totlen;
172 int ret;
173
174 printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
175 curr_device, off, size);
176
177 ret = nand_erase (nand, off, size, 1);
178
179 printf("%s\n", ret ? "ERROR" : "OK");
180
181 return ret;
182 }
dc7c9a1a
WD
183
184 printf ("Usage:\n%s\n", cmdtp->usage);
185 return 1;
186 default:
187 /* at least 4 args */
188
7a8e9bed
WD
189 if (strncmp(argv[1], "read", 4) == 0 ||
190 strncmp(argv[1], "write", 5) == 0) {
dc7c9a1a
WD
191 ulong addr = simple_strtoul(argv[2], NULL, 16);
192 ulong off = simple_strtoul(argv[3], NULL, 16);
193 ulong size = simple_strtoul(argv[4], NULL, 16);
7a8e9bed
WD
194 int cmd = (strncmp(argv[1], "read", 4) == 0) ?
195 NANDRW_READ : NANDRW_WRITE;
dc7c9a1a 196 int ret, total;
7a8e9bed
WD
197 char* cmdtail = strchr(argv[1], '.');
198
199 if (cmdtail && !strncmp(cmdtail, ".oob", 2)) {
200 /* read out-of-band data */
201 if (cmd & NANDRW_READ) {
202 ret = nand_read_oob(nand_dev_desc + curr_device,
203 off, size, &total,
204 (u_char*)addr);
205 }
206 else {
207 ret = nand_write_oob(nand_dev_desc + curr_device,
208 off, size, &total,
209 (u_char*)addr);
210 }
211 return ret;
212 }
213 else if (cmdtail && !strncmp(cmdtail, ".jffs2", 2))
214 cmd |= NANDRW_JFFS2; /* skip bad blocks */
a3d991bd
WD
215 else if (cmdtail && !strncmp(cmdtail, ".jffs2s", 2)) {
216 cmd |= NANDRW_JFFS2; /* skip bad blocks (on read too) */
217 if (cmd & NANDRW_READ)
218 cmd |= NANDRW_JFFS2_SKIP; /* skip bad blocks (on read too) */
219 }
7a8e9bed
WD
220#ifdef SXNI855T
221 /* need ".e" same as ".j" for compatibility with older units */
222 else if (cmdtail && !strcmp(cmdtail, ".e"))
223 cmd |= NANDRW_JFFS2; /* skip bad blocks */
224#endif
a842a6d2
SR
225#ifdef CFG_NAND_SKIP_BAD_DOT_I
226 /* need ".i" same as ".jffs2s" for compatibility with older units (esd) */
227 /* ".i" for image -> read skips bad block (no 0xff) */
228 else if (cmdtail && !strcmp(cmdtail, ".i"))
229 cmd |= NANDRW_JFFS2; /* skip bad blocks (on read too) */
230 if (cmd & NANDRW_READ)
231 cmd |= NANDRW_JFFS2_SKIP; /* skip bad blocks (on read too) */
232#endif /* CFG_NAND_SKIP_BAD_DOT_I */
7a8e9bed
WD
233 else if (cmdtail) {
234 printf ("Usage:\n%s\n", cmdtp->usage);
235 return 1;
236 }
dc7c9a1a
WD
237
238 printf ("\nNAND %s: device %d offset %ld, size %ld ... ",
7a8e9bed
WD
239 (cmd & NANDRW_READ) ? "read" : "write",
240 curr_device, off, size);
dc7c9a1a
WD
241
242 ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size,
243 &total, (u_char*)addr);
244
1f4bb37d 245 printf (" %d bytes %s: %s\n", total,
998eaaec 246 (cmd & NANDRW_READ) ? "read" : "written",
dc7c9a1a
WD
247 ret ? "ERROR" : "OK");
248
249 return ret;
7a8e9bed
WD
250 } else if (strcmp(argv[1],"erase") == 0 &&
251 (argc == 4 || strcmp("clean", argv[2]) == 0)) {
252 int clean = argc == 5;
253 ulong off = simple_strtoul(argv[2 + clean], NULL, 16);
254 ulong size = simple_strtoul(argv[3 + clean], NULL, 16);
dc7c9a1a
WD
255 int ret;
256
257 printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
258 curr_device, off, size);
259
7a8e9bed 260 ret = nand_erase (nand_dev_desc + curr_device, off, size, clean);
dc7c9a1a
WD
261
262 printf("%s\n", ret ? "ERROR" : "OK");
263
264 return ret;
265 } else {
266 printf ("Usage:\n%s\n", cmdtp->usage);
267 rcode = 1;
268 }
269
270 return rcode;
271 }
272}
273
0d498393
WD
274U_BOOT_CMD(
275 nand, 5, 1, do_nand,
b0fce99b
WD
276 "nand - NAND sub-system\n",
277 "info - show available NAND devices\n"
278 "nand device [dev] - show or set current device\n"
a3d991bd 279 "nand read[.jffs2[s]] addr off size\n"
b0fce99b
WD
280 "nand write[.jffs2] addr off size - read/write `size' bytes starting\n"
281 " at offset `off' to/from memory address `addr'\n"
282 "nand erase [clean] [off size] - erase `size' bytes from\n"
283 " offset `off' (entire device if not specified)\n"
284 "nand bad - show bad blocks\n"
285 "nand read.oob addr off size - read out-of-band data\n"
286 "nand write.oob addr off size - read out-of-band data\n"
287);
288
dc7c9a1a
WD
289int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
290{
291 char *boot_device = NULL;
292 char *ep;
293 int dev;
294 ulong cnt;
295 ulong addr;
296 ulong offset = 0;
297 image_header_t *hdr;
298 int rcode = 0;
299 switch (argc) {
300 case 1:
301 addr = CFG_LOAD_ADDR;
302 boot_device = getenv ("bootdevice");
303 break;
304 case 2:
305 addr = simple_strtoul(argv[1], NULL, 16);
306 boot_device = getenv ("bootdevice");
307 break;
308 case 3:
309 addr = simple_strtoul(argv[1], NULL, 16);
310 boot_device = argv[2];
311 break;
312 case 4:
313 addr = simple_strtoul(argv[1], NULL, 16);
314 boot_device = argv[2];
315 offset = simple_strtoul(argv[3], NULL, 16);
316 break;
317 default:
318 printf ("Usage:\n%s\n", cmdtp->usage);
319 SHOW_BOOT_PROGRESS (-1);
320 return 1;
321 }
322
323 if (!boot_device) {
324 puts ("\n** No boot device **\n");
325 SHOW_BOOT_PROGRESS (-1);
326 return 1;
327 }
328
329 dev = simple_strtoul(boot_device, &ep, 16);
330
331 if ((dev >= CFG_MAX_NAND_DEVICE) ||
332 (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) {
333 printf ("\n** Device %d not available\n", dev);
334 SHOW_BOOT_PROGRESS (-1);
335 return 1;
336 }
337
7a8e9bed 338 printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n",
dc7c9a1a
WD
339 dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR,
340 offset);
341
7a8e9bed 342 if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset,
dc7c9a1a
WD
343 SECTORSIZE, NULL, (u_char *)addr)) {
344 printf ("** Read error on %d\n", dev);
345 SHOW_BOOT_PROGRESS (-1);
346 return 1;
347 }
348
349 hdr = (image_header_t *)addr;
350
351 if (ntohl(hdr->ih_magic) == IH_MAGIC) {
352
353 print_image_hdr (hdr);
354
355 cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t));
356 cnt -= SECTORSIZE;
357 } else {
358 printf ("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
359 SHOW_BOOT_PROGRESS (-1);
360 return 1;
361 }
362
7a8e9bed 363 if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset + SECTORSIZE, cnt,
dc7c9a1a
WD
364 NULL, (u_char *)(addr+SECTORSIZE))) {
365 printf ("** Read error on %d\n", dev);
366 SHOW_BOOT_PROGRESS (-1);
367 return 1;
368 }
369
370 /* Loading ok, update default load address */
371
372 load_addr = addr;
373
374 /* Check if we should attempt an auto-start */
375 if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
376 char *local_args[2];
377 extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
378
379 local_args[0] = argv[0];
380 local_args[1] = NULL;
381
7a8e9bed 382 printf ("Automatic boot of image at addr 0x%08lx ...\n", addr);
dc7c9a1a
WD
383
384 do_bootm (cmdtp, 0, 1, local_args);
385 rcode = 1;
386 }
387 return rcode;
388}
389
0d498393
WD
390U_BOOT_CMD(
391 nboot, 4, 1, do_nandboot,
b0fce99b
WD
392 "nboot - boot from NAND device\n",
393 "loadAddr dev\n"
394);
395
7a8e9bed
WD
396/* returns 0 if block containing pos is OK:
397 * valid erase block and
398 * not marked bad, or no bad mark position is specified
399 * returns 1 if marked bad or otherwise invalid
400 */
384cc687 401int check_block (struct nand_chip *nand, unsigned long pos)
7a8e9bed
WD
402{
403 int retlen;
404 uint8_t oob_data;
384cc687 405 uint16_t oob_data16[6];
7a8e9bed
WD
406 int page0 = pos & (-nand->erasesize);
407 int page1 = page0 + nand->oobblock;
408 int badpos = oob_config.badblock_pos;
409
410 if (pos >= nand->totlen)
411 return 1;
412
413 if (badpos < 0)
414 return 0; /* no way to check, assume OK */
415
384cc687
WD
416 if (nand->bus16) {
417 if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
418 || (oob_data16[2] & 0xff00) != 0xff00)
419 return 1;
420 if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
421 || (oob_data16[2] & 0xff00) != 0xff00)
422 return 1;
423 } else {
424 /* Note - bad block marker can be on first or second page */
425 if (nand_read_oob(nand, page0 + badpos, 1, &retlen, &oob_data)
426 || oob_data != 0xff
427 || nand_read_oob (nand, page1 + badpos, 1, &retlen, &oob_data)
428 || oob_data != 0xff)
429 return 1;
430 }
7a8e9bed
WD
431
432 return 0;
433}
8bde7f77 434
7a8e9bed
WD
435/* print bad blocks in NAND flash */
436static void nand_print_bad(struct nand_chip* nand)
437{
438 unsigned long pos;
439
440 for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
441 if (check_block(nand, pos))
442 printf(" 0x%8.8lx\n", pos);
443 }
444 puts("\n");
445}
446
447/* cmd: 0: NANDRW_WRITE write, fail on bad block
448 * 1: NANDRW_READ read, fail on bad block
449 * 2: NANDRW_WRITE | NANDRW_JFFS2 write, skip bad blocks
450 * 3: NANDRW_READ | NANDRW_JFFS2 read, data all 0xff for bad blocks
a3d991bd 451 * 7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
7a8e9bed 452 */
13a5695b 453int nand_rw (struct nand_chip* nand, int cmd,
dc7c9a1a
WD
454 size_t start, size_t len,
455 size_t * retlen, u_char * buf)
456{
1f4bb37d 457 int ret = 0, n, total = 0;
dc7c9a1a 458 char eccbuf[6];
7a8e9bed
WD
459 /* eblk (once set) is the start of the erase block containing the
460 * data being processed.
461 */
462 unsigned long eblk = ~0; /* force mismatch on first pass */
463 unsigned long erasesize = nand->erasesize;
464
465 while (len) {
466 if ((start & (-erasesize)) != eblk) {
467 /* have crossed into new erase block, deal with
468 * it if it is sure marked bad.
469 */
470 eblk = start & (-erasesize); /* start of block */
471 if (check_block(nand, eblk)) {
472 if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
473 while (len > 0 &&
474 start - eblk < erasesize) {
475 *(buf++) = 0xff;
476 ++start;
477 ++total;
478 --len;
479 }
480 continue;
384cc687 481 } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
a3d991bd
WD
482 start += erasesize;
483 continue;
384cc687 484 } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
7a8e9bed
WD
485 /* skip bad block */
486 start += erasesize;
487 continue;
384cc687 488 } else {
7a8e9bed
WD
489 ret = 1;
490 break;
491 }
492 }
493 }
dc7c9a1a
WD
494 /* The ECC will not be calculated correctly if
495 less than 512 is written or read */
1f4bb37d
WD
496 /* Is request at least 512 bytes AND it starts on a proper boundry */
497 if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
498 printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");
499
384cc687 500 if (cmd & NANDRW_READ) {
7a8e9bed
WD
501 ret = nand_read_ecc(nand, start,
502 min(len, eblk + erasesize - start),
1f4bb37d 503 &n, (u_char*)buf, eccbuf);
384cc687 504 } else {
7a8e9bed
WD
505 ret = nand_write_ecc(nand, start,
506 min(len, eblk + erasesize - start),
1f4bb37d 507 &n, (u_char*)buf, eccbuf);
384cc687 508 }
dc7c9a1a
WD
509
510 if (ret)
511 break;
512
513 start += n;
514 buf += n;
515 total += n;
516 len -= n;
517 }
518 if (retlen)
519 *retlen = total;
520
521 return ret;
522}
523
524static void nand_print(struct nand_chip *nand)
0db5bca8 525{
7a8e9bed
WD
526 if (nand->numchips > 1) {
527 printf("%s at 0x%lx,\n"
528 "\t %d chips %s, size %d MB, \n"
529 "\t total size %ld MB, sector size %ld kB\n",
530 nand->name, nand->IO_ADDR, nand->numchips,
531 nand->chips_name, 1 << (nand->chipshift - 20),
532 nand->totlen >> 20, nand->erasesize >> 10);
533 }
534 else {
8bde7f77 535 printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
7a8e9bed
WD
536 print_size(nand->totlen, ", ");
537 print_size(nand->erasesize, " sector)\n");
dc7c9a1a
WD
538 }
539}
540
541/* ------------------------------------------------------------------------- */
542
1f4bb37d 543static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
dc7c9a1a
WD
544{
545 /* This is inline, to optimise the common case, where it's ready instantly */
546 int ret = 0;
dc7c9a1a 547
1f4bb37d
WD
548#ifdef NAND_NO_RB /* in config file, shorter delays currently wrap accesses */
549 if(ale_wait)
550 NAND_WAIT_READY(nand); /* do the worst case 25us wait */
551 else
552 udelay(10);
553#else /* has functional r/b signal */
12f34241 554 NAND_WAIT_READY(nand);
1f4bb37d 555#endif
dc7c9a1a
WD
556 return ret;
557}
558
559/* NanD_Command: Send a flash command to the flash chip */
560
561static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
562{
563 unsigned long nandptr = nand->IO_ADDR;
564
565 /* Assert the CLE (Command Latch Enable) line to the flash chip */
566 NAND_CTL_SETCLE(nandptr);
567
568 /* Send the command */
569 WRITE_NAND_COMMAND(command, nandptr);
570
571 /* Lower the CLE line */
572 NAND_CTL_CLRCLE(nandptr);
573
1f4bb37d
WD
574#ifdef NAND_NO_RB
575 if(command == NAND_CMD_RESET){
576 u_char ret_val;
577 NanD_Command(nand, NAND_CMD_STATUS);
384cc687 578 do {
1f4bb37d
WD
579 ret_val = READ_NAND(nandptr);/* wait till ready */
580 } while((ret_val & 0x40) != 0x40);
581 }
582#endif
583 return NanD_WaitReady(nand, 0);
dc7c9a1a
WD
584}
585
586/* NanD_Address: Set the current address for the flash chip */
587
588static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
0db5bca8
WD
589{
590 unsigned long nandptr;
591 int i;
dc7c9a1a 592
0db5bca8 593 nandptr = nand->IO_ADDR;
dc7c9a1a
WD
594
595 /* Assert the ALE (Address Latch Enable) line to the flash chip */
0db5bca8
WD
596 NAND_CTL_SETALE(nandptr);
597
598 /* Send the address */
599 /* Devices with 256-byte page are addressed as:
600 * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
601 * there is no device on the market with page256
602 * and more than 24 bits.
603 * Devices with 512-byte page are addressed as:
604 * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
605 * 25-31 is sent only if the chip support it.
606 * bit 8 changes the read command to be sent
607 * (NAND_CMD_READ0 or NAND_CMD_READ1).
dc7c9a1a
WD
608 */
609
0db5bca8
WD
610 if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
611 WRITE_NAND_ADDRESS(ofs, nandptr);
dc7c9a1a 612
0db5bca8 613 ofs = ofs >> nand->page_shift;
dc7c9a1a 614
384cc687
WD
615 if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
616 for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
0db5bca8 617 WRITE_NAND_ADDRESS(ofs, nandptr);
384cc687
WD
618 }
619 }
dc7c9a1a 620
0db5bca8
WD
621 /* Lower the ALE line */
622 NAND_CTL_CLRALE(nandptr);
dc7c9a1a 623
0db5bca8 624 /* Wait for the chip to respond */
1f4bb37d 625 return NanD_WaitReady(nand, 1);
0db5bca8 626}
dc7c9a1a
WD
627
628/* NanD_SelectChip: Select a given flash chip within the current floor */
629
630static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
631{
632 /* Wait for it to be ready */
1f4bb37d 633 return NanD_WaitReady(nand, 0);
dc7c9a1a
WD
634}
635
636/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
637
638static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
639{
640 int mfr, id, i;
641
0db5bca8 642 NAND_ENABLE_CE(nand); /* set pin low */
dc7c9a1a
WD
643 /* Reset the chip */
644 if (NanD_Command(nand, NAND_CMD_RESET)) {
645#ifdef NAND_DEBUG
646 printf("NanD_Command (reset) for %d,%d returned true\n",
647 floor, chip);
648#endif
0db5bca8 649 NAND_DISABLE_CE(nand); /* set pin high */
dc7c9a1a
WD
650 return 0;
651 }
652
653 /* Read the NAND chip ID: 1. Send ReadID command */
654 if (NanD_Command(nand, NAND_CMD_READID)) {
655#ifdef NAND_DEBUG
656 printf("NanD_Command (ReadID) for %d,%d returned true\n",
657 floor, chip);
658#endif
0db5bca8 659 NAND_DISABLE_CE(nand); /* set pin high */
dc7c9a1a
WD
660 return 0;
661 }
662
663 /* Read the NAND chip ID: 2. Send address byte zero */
664 NanD_Address(nand, ADDR_COLUMN, 0);
665
666 /* Read the manufacturer and device id codes from the device */
667
668 mfr = READ_NAND(nand->IO_ADDR);
669
670 id = READ_NAND(nand->IO_ADDR);
671
8bde7f77 672 NAND_DISABLE_CE(nand); /* set pin high */
9dd41a7b 673
4d816774 674#ifdef NAND_DEBUG
9dd41a7b 675 printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
4d816774 676#endif
9dd41a7b
WD
677 if (mfr == 0xff || mfr == 0) {
678 /* No response - return failure */
0db5bca8
WD
679 return 0;
680 }
dc7c9a1a
WD
681
682 /* Check it's the same as the first chip we identified.
683 * M-Systems say that any given nand_chip device should only
684 * contain _one_ type of flash part, although that's not a
685 * hardware restriction. */
686 if (nand->mfr) {
384cc687 687 if (nand->mfr == mfr && nand->id == id) {
dc7c9a1a 688 return 1; /* This is another the same the first */
384cc687 689 } else {
dc7c9a1a
WD
690 printf("Flash chip at floor %d, chip %d is different:\n",
691 floor, chip);
384cc687 692 }
dc7c9a1a
WD
693 }
694
695 /* Print and store the manufacturer and ID codes. */
696 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
697 if (mfr == nand_flash_ids[i].manufacture_id &&
698 id == nand_flash_ids[i].model_id) {
699#ifdef NAND_DEBUG
700 printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
701 "Chip ID: 0x%2.2X (%s)\n", mfr, id,
702 nand_flash_ids[i].name);
703#endif
704 if (!nand->mfr) {
705 nand->mfr = mfr;
706 nand->id = id;
707 nand->chipshift =
708 nand_flash_ids[i].chipshift;
709 nand->page256 = nand_flash_ids[i].page256;
7a8e9bed 710 nand->eccsize = 256;
dc7c9a1a
WD
711 if (nand->page256) {
712 nand->oobblock = 256;
713 nand->oobsize = 8;
714 nand->page_shift = 8;
715 } else {
716 nand->oobblock = 512;
717 nand->oobsize = 16;
718 nand->page_shift = 9;
719 }
384cc687
WD
720 nand->pageadrlen = nand_flash_ids[i].pageadrlen;
721 nand->erasesize = nand_flash_ids[i].erasesize;
722 nand->chips_name = nand_flash_ids[i].name;
723 nand->bus16 = nand_flash_ids[i].bus16;
724 return 1;
dc7c9a1a
WD
725 }
726 return 0;
727 }
728 }
729
730
731#ifdef NAND_DEBUG
732 /* We haven't fully identified the chip. Print as much as we know. */
733 printf("Unknown flash chip found: %2.2X %2.2X\n",
734 id, mfr);
735#endif
736
737 return 0;
738}
739
740/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
741
742static void NanD_ScanChips(struct nand_chip *nand)
743{
744 int floor, chip;
745 int numchips[NAND_MAX_FLOORS];
746 int maxchips = NAND_MAX_CHIPS;
747 int ret = 1;
748
749 nand->numchips = 0;
750 nand->mfr = 0;
751 nand->id = 0;
752
753
754 /* For each floor, find the number of valid chips it contains */
755 for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
756 ret = 1;
757 numchips[floor] = 0;
758 for (chip = 0; chip < maxchips && ret != 0; chip++) {
759
760 ret = NanD_IdentChip(nand, floor, chip);
761 if (ret) {
762 numchips[floor]++;
763 nand->numchips++;
764 }
765 }
766 }
767
768 /* If there are none at all that we recognise, bail */
769 if (!nand->numchips) {
a43278a4 770#ifdef NAND_DEBUG
4d816774 771 puts ("No NAND flash chips recognised.\n");
a43278a4 772#endif
dc7c9a1a
WD
773 return;
774 }
775
776 /* Allocate an array to hold the information for each chip */
777 nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
778 if (!nand->chips) {
779 puts ("No memory for allocating chip info structures\n");
780 return;
781 }
782
783 ret = 0;
784
785 /* Fill out the chip array with {floor, chipno} for each
786 * detected chip in the device. */
787 for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
788 for (chip = 0; chip < numchips[floor]; chip++) {
789 nand->chips[ret].floor = floor;
790 nand->chips[ret].chip = chip;
791 nand->chips[ret].curadr = 0;
792 nand->chips[ret].curmode = 0x50;
793 ret++;
794 }
795 }
796
797 /* Calculate and print the total size of the device */
798 nand->totlen = nand->numchips * (1 << nand->chipshift);
799
800#ifdef NAND_DEBUG
801 printf("%d flash chips found. Total nand_chip size: %ld MB\n",
802 nand->numchips, nand->totlen >> 20);
803#endif
804}
0db5bca8 805
dc7c9a1a 806/* we need to be fast here, 1 us per read translates to 1 second per meg */
384cc687 807static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
0db5bca8 808{
7a8e9bed 809 unsigned long nandptr = nand->IO_ADDR;
0db5bca8 810
384cc687
WD
811 NanD_Command (nand, NAND_CMD_READ0);
812
813 if (nand->bus16) {
814 u16 val;
815
816 while (cntr >= 16) {
817 val = READ_NAND (nandptr);
818 *data_buf++ = val & 0xff;
819 *data_buf++ = val >> 8;
820 val = READ_NAND (nandptr);
821 *data_buf++ = val & 0xff;
822 *data_buf++ = val >> 8;
823 val = READ_NAND (nandptr);
824 *data_buf++ = val & 0xff;
825 *data_buf++ = val >> 8;
826 val = READ_NAND (nandptr);
827 *data_buf++ = val & 0xff;
828 *data_buf++ = val >> 8;
829 val = READ_NAND (nandptr);
830 *data_buf++ = val & 0xff;
831 *data_buf++ = val >> 8;
832 val = READ_NAND (nandptr);
833 *data_buf++ = val & 0xff;
834 *data_buf++ = val >> 8;
835 val = READ_NAND (nandptr);
836 *data_buf++ = val & 0xff;
837 *data_buf++ = val >> 8;
838 val = READ_NAND (nandptr);
839 *data_buf++ = val & 0xff;
840 *data_buf++ = val >> 8;
841 cntr -= 16;
842 }
843
844 while (cntr > 0) {
845 val = READ_NAND (nandptr);
846 *data_buf++ = val & 0xff;
847 *data_buf++ = val >> 8;
848 cntr -= 2;
849 }
850 } else {
851 while (cntr >= 16) {
852 *data_buf++ = READ_NAND (nandptr);
853 *data_buf++ = READ_NAND (nandptr);
854 *data_buf++ = READ_NAND (nandptr);
855 *data_buf++ = READ_NAND (nandptr);
856 *data_buf++ = READ_NAND (nandptr);
857 *data_buf++ = READ_NAND (nandptr);
858 *data_buf++ = READ_NAND (nandptr);
859 *data_buf++ = READ_NAND (nandptr);
860 *data_buf++ = READ_NAND (nandptr);
861 *data_buf++ = READ_NAND (nandptr);
862 *data_buf++ = READ_NAND (nandptr);
863 *data_buf++ = READ_NAND (nandptr);
864 *data_buf++ = READ_NAND (nandptr);
865 *data_buf++ = READ_NAND (nandptr);
866 *data_buf++ = READ_NAND (nandptr);
867 *data_buf++ = READ_NAND (nandptr);
868 cntr -= 16;
869 }
870
871 while (cntr > 0) {
872 *data_buf++ = READ_NAND (nandptr);
873 cntr--;
874 }
0db5bca8
WD
875 }
876}
dc7c9a1a 877
dc7c9a1a
WD
878/*
879 * NAND read with ECC
880 */
881static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
882 size_t * retlen, u_char *buf, u_char *ecc_code)
883{
884 int col, page;
885 int ecc_status = 0;
886#ifdef CONFIG_MTD_NAND_ECC
887 int j;
888 int ecc_failed = 0;
889 u_char *data_poi;
890 u_char ecc_calc[6];
891#endif
dc7c9a1a
WD
892
893 /* Do not allow reads past end of device */
894 if ((start + len) > nand->totlen) {
384cc687
WD
895 printf ("%s: Attempt read beyond end of device %x %x %x\n",
896 __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
dc7c9a1a
WD
897 *retlen = 0;
898 return -1;
899 }
900
901 /* First we calculate the starting page */
0db5bca8
WD
902 /*page = shr(start, nand->page_shift);*/
903 page = start >> nand->page_shift;
dc7c9a1a
WD
904
905 /* Get raw starting column */
906 col = start & (nand->oobblock - 1);
907
908 /* Initialize return value */
909 *retlen = 0;
910
911 /* Select the NAND device */
912 NAND_ENABLE_CE(nand); /* set pin low */
913
914 /* Loop until all data read */
915 while (*retlen < len) {
916
dc7c9a1a 917#ifdef CONFIG_MTD_NAND_ECC
dc7c9a1a
WD
918 /* Do we have this page in cache ? */
919 if (nand->cache_page == page)
920 goto readdata;
921 /* Send the read command */
922 NanD_Command(nand, NAND_CMD_READ0);
384cc687
WD
923 if (nand->bus16) {
924 NanD_Address(nand, ADDR_COLUMN_PAGE,
925 (page << nand->page_shift) + (col >> 1));
926 } else {
927 NanD_Address(nand, ADDR_COLUMN_PAGE,
928 (page << nand->page_shift) + col);
929 }
930
dc7c9a1a 931 /* Read in a page + oob data */
7a8e9bed 932 NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);
dc7c9a1a
WD
933
934 /* copy data into cache, for read out of cache and if ecc fails */
384cc687
WD
935 if (nand->data_cache) {
936 memcpy (nand->data_cache, nand->data_buf,
937 nand->oobblock + nand->oobsize);
938 }
dc7c9a1a
WD
939
940 /* Pick the ECC bytes out of the oob data */
384cc687 941 for (j = 0; j < 6; j++) {
dc7c9a1a 942 ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
384cc687 943 }
dc7c9a1a
WD
944
945 /* Calculate the ECC and verify it */
946 /* If block was not written with ECC, skip ECC */
947 if (oob_config.eccvalid_pos != -1 &&
948 (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
949
950 nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
951 switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
952 case -1:
0db5bca8 953 printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
dc7c9a1a
WD
954 ecc_failed++;
955 break;
956 case 1:
957 case 2: /* transfer ECC corrected data to cache */
7a8e9bed
WD
958 if (nand->data_cache)
959 memcpy (nand->data_cache, nand->data_buf, 256);
dc7c9a1a
WD
960 break;
961 }
962 }
963
964 if (oob_config.eccvalid_pos != -1 &&
965 nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
966
967 nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
968 switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
969 case -1:
0db5bca8 970 printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
dc7c9a1a
WD
971 ecc_failed++;
972 break;
973 case 1:
974 case 2: /* transfer ECC corrected data to cache */
975 if (nand->data_cache)
976 memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
977 break;
978 }
979 }
980readdata:
981 /* Read the data from ECC data buffer into return buffer */
982 data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
983 data_poi += col;
984 if ((*retlen + (nand->oobblock - col)) >= len) {
7a8e9bed 985 memcpy (buf + *retlen, data_poi, len - *retlen);
dc7c9a1a
WD
986 *retlen = len;
987 } else {
7a8e9bed 988 memcpy (buf + *retlen, data_poi, nand->oobblock - col);
dc7c9a1a
WD
989 *retlen += nand->oobblock - col;
990 }
991 /* Set cache page address, invalidate, if ecc_failed */
992 nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
993
994 ecc_status += ecc_failed;
995 ecc_failed = 0;
996
997#else
998 /* Send the read command */
999 NanD_Command(nand, NAND_CMD_READ0);
384cc687
WD
1000 if (nand->bus16) {
1001 NanD_Address(nand, ADDR_COLUMN_PAGE,
1002 (page << nand->page_shift) + (col >> 1));
1003 } else {
1004 NanD_Address(nand, ADDR_COLUMN_PAGE,
1005 (page << nand->page_shift) + col);
1006 }
1007
dc7c9a1a
WD
1008 /* Read the data directly into the return buffer */
1009 if ((*retlen + (nand->oobblock - col)) >= len) {
7a8e9bed 1010 NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
dc7c9a1a
WD
1011 *retlen = len;
1012 /* We're done */
1013 continue;
1014 } else {
7a8e9bed 1015 NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
dc7c9a1a
WD
1016 *retlen += nand->oobblock - col;
1017 }
1018#endif
1019 /* For subsequent reads align to page boundary. */
1020 col = 0;
1021 /* Increment page address */
1022 page++;
1023 }
1024
1025 /* De-select the NAND device */
0db5bca8 1026 NAND_DISABLE_CE(nand); /* set pin high */
dc7c9a1a
WD
1027
1028 /*
1029 * Return success, if no ECC failures, else -EIO
1030 * fs driver will take care of that, because
1031 * retlen == desired len and result == -EIO
1032 */
1033 return ecc_status ? -1 : 0;
1034}
1035
dc7c9a1a
WD
1036/*
1037 * Nand_page_program function is used for write and writev !
1038 */
1039static int nand_write_page (struct nand_chip *nand,
1040 int page, int col, int last, u_char * ecc_code)
1041{
1042
1043 int i;
dc7c9a1a 1044 unsigned long nandptr = nand->IO_ADDR;
384cc687 1045
1f4bb37d 1046#ifdef CONFIG_MTD_NAND_ECC
dc7c9a1a
WD
1047#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1048 int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
1049#endif
1050#endif
1051 /* pad oob area */
1052 for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
1053 nand->data_buf[i] = 0xff;
1054
1055#ifdef CONFIG_MTD_NAND_ECC
1056 /* Zero out the ECC array */
1057 for (i = 0; i < 6; i++)
1058 ecc_code[i] = 0x00;
1059
1060 /* Read back previous written data, if col > 0 */
1061 if (col) {
384cc687
WD
1062 NanD_Command (nand, NAND_CMD_READ0);
1063 if (nand->bus16) {
1064 NanD_Address (nand, ADDR_COLUMN_PAGE,
1065 (page << nand->page_shift) + (col >> 1));
1066 } else {
1067 NanD_Address (nand, ADDR_COLUMN_PAGE,
1068 (page << nand->page_shift) + col);
1069 }
1070
1071 if (nand->bus16) {
1072 u16 val;
1073
1074 for (i = 0; i < col; i += 2) {
1075 val = READ_NAND (nandptr);
1076 nand->data_buf[i] = val & 0xff;
1077 nand->data_buf[i + 1] = val >> 8;
1078 }
1079 } else {
1080 for (i = 0; i < col; i++)
1081 nand->data_buf[i] = READ_NAND (nandptr);
1082 }
dc7c9a1a
WD
1083 }
1084
1085 /* Calculate and write the ECC if we have enough data */
1086 if ((col < nand->eccsize) && (last >= nand->eccsize)) {
1087 nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
384cc687
WD
1088 for (i = 0; i < 3; i++) {
1089 nand->data_buf[(nand->oobblock +
1090 oob_config.ecc_pos[i])] = ecc_code[i];
1091 }
1092 if (oob_config.eccvalid_pos != -1) {
1093 nand->data_buf[nand->oobblock +
1094 oob_config.eccvalid_pos] = 0xf0;
1095 }
dc7c9a1a
WD
1096 }
1097
1098 /* Calculate and write the second ECC if we have enough data */
1099 if ((nand->oobblock == 512) && (last == nand->oobblock)) {
1100 nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
384cc687
WD
1101 for (i = 3; i < 6; i++) {
1102 nand->data_buf[(nand->oobblock +
1103 oob_config.ecc_pos[i])] = ecc_code[i];
1104 }
1105 if (oob_config.eccvalid_pos != -1) {
1106 nand->data_buf[nand->oobblock +
1107 oob_config.eccvalid_pos] &= 0x0f;
1108 }
dc7c9a1a
WD
1109 }
1110#endif
1111 /* Prepad for partial page programming !!! */
1112 for (i = 0; i < col; i++)
1113 nand->data_buf[i] = 0xff;
1114
1115 /* Postpad for partial page programming !!! oob is already padded */
1116 for (i = last; i < nand->oobblock; i++)
1117 nand->data_buf[i] = 0xff;
1118
1119 /* Send command to begin auto page programming */
384cc687
WD
1120 NanD_Command (nand, NAND_CMD_READ0);
1121 NanD_Command (nand, NAND_CMD_SEQIN);
1122 if (nand->bus16) {
1123 NanD_Address (nand, ADDR_COLUMN_PAGE,
1124 (page << nand->page_shift) + (col >> 1));
1125 } else {
1126 NanD_Address (nand, ADDR_COLUMN_PAGE,
1127 (page << nand->page_shift) + col);
1128 }
dc7c9a1a
WD
1129
1130 /* Write out complete page of data */
384cc687
WD
1131 if (nand->bus16) {
1132 for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
1133 WRITE_NAND (nand->data_buf[i] +
1134 (nand->data_buf[i + 1] << 8),
1135 nand->IO_ADDR);
1136 }
1137 } else {
1138 for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
1139 WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
1140 }
dc7c9a1a
WD
1141
1142 /* Send command to actually program the data */
384cc687
WD
1143 NanD_Command (nand, NAND_CMD_PAGEPROG);
1144 NanD_Command (nand, NAND_CMD_STATUS);
1f4bb37d 1145#ifdef NAND_NO_RB
384cc687
WD
1146 {
1147 u_char ret_val;
dc7c9a1a 1148
384cc687
WD
1149 do {
1150 ret_val = READ_NAND (nandptr); /* wait till ready */
1151 } while ((ret_val & 0x40) != 0x40);
1f4bb37d
WD
1152 }
1153#endif
dc7c9a1a 1154 /* See if device thinks it succeeded */
384cc687
WD
1155 if (READ_NAND (nand->IO_ADDR) & 0x01) {
1156 printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
1157 page);
dc7c9a1a
WD
1158 return -1;
1159 }
1160#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1161 /*
1162 * The NAND device assumes that it is always writing to
1163 * a cleanly erased page. Hence, it performs its internal
1164 * write verification only on bits that transitioned from
1165 * 1 to 0. The device does NOT verify the whole page on a
1166 * byte by byte basis. It is possible that the page was
1167 * not completely erased or the page is becoming unusable
1168 * due to wear. The read with ECC would catch the error
1169 * later when the ECC page check fails, but we would rather
1170 * catch it early in the page write stage. Better to write
1171 * no data than invalid data.
1172 */
1173
1174 /* Send command to read back the page */
1175 if (col < nand->eccsize)
384cc687 1176 NanD_Command (nand, NAND_CMD_READ0);
dc7c9a1a 1177 else
384cc687
WD
1178 NanD_Command (nand, NAND_CMD_READ1);
1179 if (nand->bus16) {
1180 NanD_Address (nand, ADDR_COLUMN_PAGE,
1181 (page << nand->page_shift) + (col >> 1));
1182 } else {
1183 NanD_Address (nand, ADDR_COLUMN_PAGE,
1184 (page << nand->page_shift) + col);
1185 }
dc7c9a1a
WD
1186
1187 /* Loop through and verify the data */
384cc687
WD
1188 if (nand->bus16) {
1189 for (i = col; i < last; i = +2) {
1190 if ((nand->data_buf[i] +
1191 (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
1192 printf ("%s: Failed write verify, page 0x%08x ",
1193 __FUNCTION__, page);
1194 return -1;
1195 }
1196 }
1197 } else {
1198 for (i = col; i < last; i++) {
1199 if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
1200 printf ("%s: Failed write verify, page 0x%08x ",
1201 __FUNCTION__, page);
1202 return -1;
1203 }
dc7c9a1a
WD
1204 }
1205 }
1206
1207#ifdef CONFIG_MTD_NAND_ECC
1208 /*
1209 * We also want to check that the ECC bytes wrote
1210 * correctly for the same reasons stated above.
1211 */
384cc687
WD
1212 NanD_Command (nand, NAND_CMD_READOOB);
1213 if (nand->bus16) {
1214 NanD_Address (nand, ADDR_COLUMN_PAGE,
1215 (page << nand->page_shift) + (col >> 1));
1216 } else {
1217 NanD_Address (nand, ADDR_COLUMN_PAGE,
1218 (page << nand->page_shift) + col);
1219 }
1220 if (nand->bus16) {
1221 for (i = 0; i < nand->oobsize; i += 2) {
81b83c9e
SR
1222 u16 val;
1223
384cc687
WD
1224 val = READ_NAND (nand->IO_ADDR);
1225 nand->data_buf[i] = val & 0xff;
1226 nand->data_buf[i + 1] = val >> 8;
1227 }
1228 } else {
1229 for (i = 0; i < nand->oobsize; i++) {
1230 nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
1231 }
1232 }
dc7c9a1a
WD
1233 for (i = 0; i < ecc_bytes; i++) {
1234 if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
0db5bca8 1235 printf ("%s: Failed ECC write "
384cc687
WD
1236 "verify, page 0x%08x, "
1237 "%6i bytes were succesful\n",
1238 __FUNCTION__, page, i);
dc7c9a1a
WD
1239 return -1;
1240 }
1241 }
384cc687
WD
1242#endif /* CONFIG_MTD_NAND_ECC */
1243#endif /* CONFIG_MTD_NAND_VERIFY_WRITE */
dc7c9a1a
WD
1244 return 0;
1245}
0db5bca8 1246
dc7c9a1a
WD
1247static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
1248 size_t * retlen, const u_char * buf, u_char * ecc_code)
1249{
1250 int i, page, col, cnt, ret = 0;
1251
1252 /* Do not allow write past end of device */
1253 if ((to + len) > nand->totlen) {
0db5bca8 1254 printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
dc7c9a1a
WD
1255 return -1;
1256 }
1257
1258 /* Shift to get page */
1259 page = ((int) to) >> nand->page_shift;
1260
1261 /* Get the starting column */
1262 col = to & (nand->oobblock - 1);
1263
1264 /* Initialize return length value */
1265 *retlen = 0;
1266
1267 /* Select the NAND device */
1f4bb37d
WD
1268#ifdef CONFIG_OMAP1510
1269 archflashwp(0,0);
1270#endif
384cc687
WD
1271#ifdef CFG_NAND_WP
1272 NAND_WP_OFF();
1273#endif
1274
1f4bb37d 1275 NAND_ENABLE_CE(nand); /* set pin low */
dc7c9a1a
WD
1276
1277 /* Check the WP bit */
0db5bca8 1278 NanD_Command(nand, NAND_CMD_STATUS);
dc7c9a1a 1279 if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
0db5bca8 1280 printf ("%s: Device is write protected!!!\n", __FUNCTION__);
dc7c9a1a
WD
1281 ret = -1;
1282 goto out;
1283 }
1284
1285 /* Loop until all data is written */
1286 while (*retlen < len) {
1287 /* Invalidate cache, if we write to this page */
1288 if (nand->cache_page == page)
1289 nand->cache_page = -1;
1290
1291 /* Write data into buffer */
384cc687
WD
1292 if ((col + len) >= nand->oobblock) {
1293 for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
dc7c9a1a 1294 nand->data_buf[i] = buf[(*retlen + cnt)];
384cc687
WD
1295 }
1296 } else {
1297 for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
dc7c9a1a 1298 nand->data_buf[i] = buf[(*retlen + cnt)];
384cc687
WD
1299 }
1300 }
dc7c9a1a
WD
1301 /* We use the same function for write and writev !) */
1302 ret = nand_write_page (nand, page, col, i, ecc_code);
1303 if (ret)
1304 goto out;
1305
1306 /* Next data start at page boundary */
1307 col = 0;
1308
1309 /* Update written bytes count */
1310 *retlen += cnt;
1311
1312 /* Increment page address */
1313 page++;
1314 }
1315
1316 /* Return happy */
1317 *retlen = len;
1318
1319out:
1320 /* De-select the NAND device */
0db5bca8 1321 NAND_DISABLE_CE(nand); /* set pin high */
1f4bb37d
WD
1322#ifdef CONFIG_OMAP1510
1323 archflashwp(0,1);
1324#endif
384cc687
WD
1325#ifdef CFG_NAND_WP
1326 NAND_WP_ON();
1327#endif
1328
dc7c9a1a
WD
1329 return ret;
1330}
1331
7a8e9bed
WD
1332/* read from the 16 bytes of oob data that correspond to a 512 byte
1333 * page or 2 256-byte pages.
dc7c9a1a 1334 */
dc7c9a1a 1335static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
7a8e9bed 1336 size_t * retlen, u_char * buf)
dc7c9a1a 1337{
7a8e9bed 1338 int len256 = 0;
dc7c9a1a 1339 struct Nand *mychip;
0db5bca8 1340 int ret = 0;
dc7c9a1a 1341
7a8e9bed 1342 mychip = &nand->chips[ofs >> nand->chipshift];
dc7c9a1a
WD
1343
1344 /* update address for 2M x 8bit devices. OOB starts on the second */
1345 /* page to maintain compatibility with nand_read_ecc. */
1346 if (nand->page256) {
1347 if (!(ofs & 0x8))
1348 ofs += 0x100;
1349 else
1350 ofs -= 0x8;
1351 }
1352
7a8e9bed 1353 NAND_ENABLE_CE(nand); /* set pin low */
dc7c9a1a 1354 NanD_Command(nand, NAND_CMD_READOOB);
384cc687
WD
1355 if (nand->bus16) {
1356 NanD_Address(nand, ADDR_COLUMN_PAGE,
1357 ((ofs >> nand->page_shift) << nand->page_shift) +
1358 ((ofs & (nand->oobblock - 1)) >> 1));
1359 } else {
1360 NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
1361 }
dc7c9a1a
WD
1362
1363 /* treat crossing 8-byte OOB data for 2M x 8bit devices */
1364 /* Note: datasheet says it should automaticaly wrap to the */
1365 /* next OOB block, but it didn't work here. mf. */
1366 if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
1367 len256 = (ofs | 0x7) + 1 - ofs;
1368 NanD_ReadBuf(nand, buf, len256);
1369
1370 NanD_Command(nand, NAND_CMD_READOOB);
1371 NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
1372 }
1373
1374 NanD_ReadBuf(nand, &buf[len256], len - len256);
1375
1376 *retlen = len;
1377 /* Reading the full OOB data drops us off of the end of the page,
8bde7f77
WD
1378 * causing the flash device to go into busy mode, so we need
1379 * to wait until ready 11.4.1 and Toshiba TC58256FT nands */
dc7c9a1a 1380
1f4bb37d 1381 ret = NanD_WaitReady(nand, 1);
8bde7f77 1382 NAND_DISABLE_CE(nand); /* set pin high */
dc7c9a1a
WD
1383
1384 return ret;
1385
1386}
7a8e9bed
WD
1387
1388/* write to the 16 bytes of oob data that correspond to a 512 byte
1389 * page or 2 256-byte pages.
1390 */
dc7c9a1a
WD
1391static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
1392 size_t * retlen, const u_char * buf)
1393{
1394 int len256 = 0;
7a8e9bed 1395 int i;
dc7c9a1a
WD
1396 unsigned long nandptr = nand->IO_ADDR;
1397
1398#ifdef PSYCHO_DEBUG
1399 printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
1400 (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
1401 buf[8], buf[9], buf[14],buf[15]);
1402#endif
1403
7a8e9bed
WD
1404 NAND_ENABLE_CE(nand); /* set pin low to enable chip */
1405
dc7c9a1a
WD
1406 /* Reset the chip */
1407 NanD_Command(nand, NAND_CMD_RESET);
1408
1409 /* issue the Read2 command to set the pointer to the Spare Data Area. */
1410 NanD_Command(nand, NAND_CMD_READOOB);
384cc687
WD
1411 if (nand->bus16) {
1412 NanD_Address(nand, ADDR_COLUMN_PAGE,
1413 ((ofs >> nand->page_shift) << nand->page_shift) +
1414 ((ofs & (nand->oobblock - 1)) >> 1));
1415 } else {
1416 NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
1417 }
dc7c9a1a
WD
1418
1419 /* update address for 2M x 8bit devices. OOB starts on the second */
1420 /* page to maintain compatibility with nand_read_ecc. */
1421 if (nand->page256) {
1422 if (!(ofs & 0x8))
1423 ofs += 0x100;
1424 else
1425 ofs -= 0x8;
1426 }
1427
1428 /* issue the Serial Data In command to initial the Page Program process */
1429 NanD_Command(nand, NAND_CMD_SEQIN);
384cc687
WD
1430 if (nand->bus16) {
1431 NanD_Address(nand, ADDR_COLUMN_PAGE,
1432 ((ofs >> nand->page_shift) << nand->page_shift) +
1433 ((ofs & (nand->oobblock - 1)) >> 1));
1434 } else {
1435 NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
1436 }
dc7c9a1a
WD
1437
1438 /* treat crossing 8-byte OOB data for 2M x 8bit devices */
1439 /* Note: datasheet says it should automaticaly wrap to the */
1440 /* next OOB block, but it didn't work here. mf. */
1441 if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
1442 len256 = (ofs | 0x7) + 1 - ofs;
7a8e9bed
WD
1443 for (i = 0; i < len256; i++)
1444 WRITE_NAND(buf[i], nandptr);
dc7c9a1a
WD
1445
1446 NanD_Command(nand, NAND_CMD_PAGEPROG);
1447 NanD_Command(nand, NAND_CMD_STATUS);
1f4bb37d
WD
1448#ifdef NAND_NO_RB
1449 { u_char ret_val;
384cc687
WD
1450 do {
1451 ret_val = READ_NAND(nandptr); /* wait till ready */
1452 } while ((ret_val & 0x40) != 0x40);
1f4bb37d
WD
1453 }
1454#endif
dc7c9a1a
WD
1455 if (READ_NAND(nandptr) & 1) {
1456 puts ("Error programming oob data\n");
1457 /* There was an error */
7a8e9bed 1458 NAND_DISABLE_CE(nand); /* set pin high */
dc7c9a1a
WD
1459 *retlen = 0;
1460 return -1;
1461 }
1462 NanD_Command(nand, NAND_CMD_SEQIN);
1463 NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
1464 }
1465
384cc687
WD
1466 if (nand->bus16) {
1467 for (i = len256; i < len; i += 2) {
1468 WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
1469 }
1470 } else {
1471 for (i = len256; i < len; i++)
1472 WRITE_NAND(buf[i], nandptr);
1473 }
dc7c9a1a
WD
1474
1475 NanD_Command(nand, NAND_CMD_PAGEPROG);
1476 NanD_Command(nand, NAND_CMD_STATUS);
1f4bb37d 1477#ifdef NAND_NO_RB
384cc687
WD
1478 { u_char ret_val;
1479 do {
1480 ret_val = READ_NAND(nandptr); /* wait till ready */
1481 } while ((ret_val & 0x40) != 0x40);
1f4bb37d
WD
1482 }
1483#endif
dc7c9a1a
WD
1484 if (READ_NAND(nandptr) & 1) {
1485 puts ("Error programming oob data\n");
1486 /* There was an error */
7a8e9bed 1487 NAND_DISABLE_CE(nand); /* set pin high */
dc7c9a1a
WD
1488 *retlen = 0;
1489 return -1;
1490 }
1491
7a8e9bed 1492 NAND_DISABLE_CE(nand); /* set pin high */
dc7c9a1a
WD
1493 *retlen = len;
1494 return 0;
1495
1496}
dc7c9a1a 1497
13a5695b 1498int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
dc7c9a1a 1499{
7a8e9bed
WD
1500 /* This is defined as a structure so it will work on any system
1501 * using native endian jffs2 (the default).
1502 */
1503 static struct jffs2_unknown_node clean_marker = {
1504 JFFS2_MAGIC_BITMASK,
1505 JFFS2_NODETYPE_CLEANMARKER,
1506 8 /* 8 bytes in this node */
1507 };
dc7c9a1a
WD
1508 unsigned long nandptr;
1509 struct Nand *mychip;
85ec0bcc 1510 int ret = 0;
dc7c9a1a
WD
1511
1512 if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
1513 printf ("Offset and size must be sector aligned, erasesize = %d\n",
8bde7f77 1514 (int) nand->erasesize);
dc7c9a1a
WD
1515 return -1;
1516 }
1517
1518 nandptr = nand->IO_ADDR;
1519
85ec0bcc 1520 /* Select the NAND device */
1f4bb37d
WD
1521#ifdef CONFIG_OMAP1510
1522 archflashwp(0,0);
384cc687
WD
1523#endif
1524#ifdef CFG_NAND_WP
1525 NAND_WP_OFF();
1f4bb37d
WD
1526#endif
1527 NAND_ENABLE_CE(nand); /* set pin low */
85ec0bcc
WD
1528
1529 /* Check the WP bit */
1530 NanD_Command(nand, NAND_CMD_STATUS);
1531 if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
1532 printf ("nand_write_ecc: Device is write protected!!!\n");
1533 ret = -1;
1534 goto out;
1535 }
1536
0db5bca8
WD
1537 /* Check the WP bit */
1538 NanD_Command(nand, NAND_CMD_STATUS);
1539 if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
1540 printf ("%s: Device is write protected!!!\n", __FUNCTION__);
1541 ret = -1;
1542 goto out;
1543 }
1544
dc7c9a1a
WD
1545 /* FIXME: Do nand in the background. Use timers or schedule_task() */
1546 while(len) {
0db5bca8
WD
1547 /*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
1548 mychip = &nand->chips[ofs >> nand->chipshift];
dc7c9a1a 1549
7a8e9bed
WD
1550 /* always check for bad block first, genuine bad blocks
1551 * should _never_ be erased.
1552 */
1553 if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
1554 /* Select the NAND device */
1555 NAND_ENABLE_CE(nand); /* set pin low */
1556
1557 NanD_Command(nand, NAND_CMD_ERASE1);
1558 NanD_Address(nand, ADDR_PAGE, ofs);
1559 NanD_Command(nand, NAND_CMD_ERASE2);
1560
1561 NanD_Command(nand, NAND_CMD_STATUS);
1562
1f4bb37d 1563#ifdef NAND_NO_RB
384cc687
WD
1564 { u_char ret_val;
1565 do {
1566 ret_val = READ_NAND(nandptr); /* wait till ready */
1567 } while ((ret_val & 0x40) != 0x40);
1f4bb37d
WD
1568 }
1569#endif
7a8e9bed
WD
1570 if (READ_NAND(nandptr) & 1) {
1571 printf ("%s: Error erasing at 0x%lx\n",
1572 __FUNCTION__, (long)ofs);
1573 /* There was an error */
1574 ret = -1;
1575 goto out;
1576 }
1577 if (clean) {
1578 int n; /* return value not used */
1579 int p, l;
1580
1581 /* clean marker position and size depend
1582 * on the page size, since 256 byte pages
1583 * only have 8 bytes of oob data
1584 */
1585 if (nand->page256) {
1586 p = NAND_JFFS2_OOB8_FSDAPOS;
1587 l = NAND_JFFS2_OOB8_FSDALEN;
384cc687 1588 } else {
7a8e9bed
WD
1589 p = NAND_JFFS2_OOB16_FSDAPOS;
1590 l = NAND_JFFS2_OOB16_FSDALEN;
1591 }
dc7c9a1a 1592
7a8e9bed
WD
1593 ret = nand_write_oob(nand, ofs + p, l, &n,
1594 (u_char *)&clean_marker);
1595 /* quit here if write failed */
1596 if (ret)
1597 goto out;
1598 }
dc7c9a1a
WD
1599 }
1600 ofs += nand->erasesize;
1601 len -= nand->erasesize;
1602 }
1603
85ec0bcc
WD
1604out:
1605 /* De-select the NAND device */
1606 NAND_DISABLE_CE(nand); /* set pin high */
1f4bb37d
WD
1607#ifdef CONFIG_OMAP1510
1608 archflashwp(0,1);
1609#endif
384cc687
WD
1610#ifdef CFG_NAND_WP
1611 NAND_WP_ON();
1612#endif
1613
85ec0bcc 1614 return ret;
dc7c9a1a
WD
1615}
1616
1617static inline int nandcheck(unsigned long potential, unsigned long physadr)
1618{
dc7c9a1a
WD
1619 return 0;
1620}
1621
a43278a4 1622unsigned long nand_probe(unsigned long physadr)
dc7c9a1a
WD
1623{
1624 struct nand_chip *nand = NULL;
1625 int i = 0, ChipID = 1;
1626
1627#ifdef CONFIG_MTD_NAND_ECC_JFFS2
1628 oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
1629 oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
1630 oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
1631 oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
1632 oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
1633 oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
dc7c9a1a
WD
1634 oob_config.eccvalid_pos = 4;
1635#else
1636 oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
1637 oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
1638 oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
1639 oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
1640 oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
1641 oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
dc7c9a1a
WD
1642 oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
1643#endif
7a8e9bed 1644 oob_config.badblock_pos = 5;
dc7c9a1a
WD
1645
1646 for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {
1647 if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
a43278a4 1648 nand = &nand_dev_desc[i];
dc7c9a1a
WD
1649 break;
1650 }
1651 }
a43278a4
WD
1652 if (!nand)
1653 return (0);
dc7c9a1a 1654
0db5bca8 1655 memset((char *)nand, 0, sizeof(struct nand_chip));
dc7c9a1a 1656
0db5bca8 1657 nand->IO_ADDR = physadr;
7a8e9bed 1658 nand->cache_page = -1; /* init the cache page */
0db5bca8 1659 NanD_ScanChips(nand);
7a8e9bed
WD
1660
1661 if (nand->totlen == 0) {
1662 /* no chips found, clean up and quit */
1663 memset((char *)nand, 0, sizeof(struct nand_chip));
1664 nand->ChipID = NAND_ChipID_UNKNOWN;
a43278a4 1665 return (0);
7a8e9bed
WD
1666 }
1667
1668 nand->ChipID = ChipID;
1669 if (curr_device == -1)
1670 curr_device = i;
1671
0db5bca8
WD
1672 nand->data_buf = malloc (nand->oobblock + nand->oobsize);
1673 if (!nand->data_buf) {
1674 puts ("Cannot allocate memory for data structures.\n");
a43278a4 1675 return (0);
0db5bca8 1676 }
a43278a4
WD
1677
1678 return (nand->totlen);
dc7c9a1a
WD
1679}
1680
1681#ifdef CONFIG_MTD_NAND_ECC
1682/*
1683 * Pre-calculated 256-way 1 byte column parity
1684 */
1685static const u_char nand_ecc_precalc_table[] = {
384cc687
WD
1686 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
1687 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
1688 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
1689 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
1690 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
1691 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
1692 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
1693 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
1694 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
1695 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
1696 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
1697 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
1698 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
1699 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
1700 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
1701 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
1702 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
1703 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
1704 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
1705 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
1706 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
1707 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
1708 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
1709 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
1710 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
1711 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
1712 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
1713 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
1714 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
1715 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
1716 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
1717 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
dc7c9a1a
WD
1718};
1719
1720
1721/*
1722 * Creates non-inverted ECC code from line parity
1723 */
1724static void nand_trans_result(u_char reg2, u_char reg3,
1725 u_char *ecc_code)
1726{
1727 u_char a, b, i, tmp1, tmp2;
1728
1729 /* Initialize variables */
1730 a = b = 0x80;
1731 tmp1 = tmp2 = 0;
1732
1733 /* Calculate first ECC byte */
1734 for (i = 0; i < 4; i++) {
1735 if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */
1736 tmp1 |= b;
1737 b >>= 1;
1738 if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */
1739 tmp1 |= b;
1740 b >>= 1;
1741 a >>= 1;
1742 }
1743
1744 /* Calculate second ECC byte */
1745 b = 0x80;
1746 for (i = 0; i < 4; i++) {
1747 if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */
1748 tmp2 |= b;
1749 b >>= 1;
1750 if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */
1751 tmp2 |= b;
1752 b >>= 1;
1753 a >>= 1;
1754 }
1755
1756 /* Store two of the ECC bytes */
1757 ecc_code[0] = tmp1;
1758 ecc_code[1] = tmp2;
1759}
1760
1761/*
1762 * Calculate 3 byte ECC code for 256 byte block
1763 */
1764static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
1765{
7a8e9bed 1766 u_char idx, reg1, reg3;
dc7c9a1a
WD
1767 int j;
1768
1769 /* Initialize variables */
7a8e9bed 1770 reg1 = reg3 = 0;
dc7c9a1a
WD
1771 ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
1772
1773 /* Build up column parity */
1774 for(j = 0; j < 256; j++) {
1775
1776 /* Get CP0 - CP5 from table */
1777 idx = nand_ecc_precalc_table[dat[j]];
7a8e9bed 1778 reg1 ^= idx;
dc7c9a1a
WD
1779
1780 /* All bit XOR = 1 ? */
1781 if (idx & 0x40) {
1782 reg3 ^= (u_char) j;
dc7c9a1a
WD
1783 }
1784 }
1785
1786 /* Create non-inverted ECC code from line parity */
7a8e9bed 1787 nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);
dc7c9a1a
WD
1788
1789 /* Calculate final ECC code */
1790 ecc_code[0] = ~ecc_code[0];
1791 ecc_code[1] = ~ecc_code[1];
1792 ecc_code[2] = ((~reg1) << 2) | 0x03;
1793}
1794
1795/*
1796 * Detect and correct a 1 bit error for 256 byte block
1797 */
1798static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
1799{
1800 u_char a, b, c, d1, d2, d3, add, bit, i;
1801
1802 /* Do error detection */
1803 d1 = calc_ecc[0] ^ read_ecc[0];
1804 d2 = calc_ecc[1] ^ read_ecc[1];
1805 d3 = calc_ecc[2] ^ read_ecc[2];
1806
1807 if ((d1 | d2 | d3) == 0) {
1808 /* No errors */
1809 return 0;
384cc687 1810 } else {
dc7c9a1a
WD
1811 a = (d1 ^ (d1 >> 1)) & 0x55;
1812 b = (d2 ^ (d2 >> 1)) & 0x55;
1813 c = (d3 ^ (d3 >> 1)) & 0x54;
1814
1815 /* Found and will correct single bit error in the data */
1816 if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
1817 c = 0x80;
1818 add = 0;
1819 a = 0x80;
1820 for (i=0; i<4; i++) {
1821 if (d1 & c)
1822 add |= a;
1823 c >>= 2;
1824 a >>= 1;
1825 }
1826 c = 0x80;
1827 for (i=0; i<4; i++) {
1828 if (d2 & c)
1829 add |= a;
1830 c >>= 2;
1831 a >>= 1;
1832 }
1833 bit = 0;
1834 b = 0x04;
1835 c = 0x80;
1836 for (i=0; i<3; i++) {
1837 if (d3 & c)
1838 bit |= b;
1839 c >>= 2;
1840 b >>= 1;
1841 }
1842 b = 0x01;
1843 a = dat[add];
1844 a ^= (b << bit);
1845 dat[add] = a;
1846 return 1;
1847 }
1848 else {
1849 i = 0;
1850 while (d1) {
1851 if (d1 & 0x01)
1852 ++i;
1853 d1 >>= 1;
1854 }
1855 while (d2) {
1856 if (d2 & 0x01)
1857 ++i;
1858 d2 >>= 1;
1859 }
1860 while (d3) {
1861 if (d3 & 0x01)
1862 ++i;
1863 d3 >>= 1;
1864 }
1865 if (i == 1) {
1866 /* ECC Code Error Correction */
1867 read_ecc[0] = calc_ecc[0];
1868 read_ecc[1] = calc_ecc[1];
1869 read_ecc[2] = calc_ecc[2];
1870 return 2;
1871 }
1872 else {
1873 /* Uncorrectable Error */
1874 return -1;
1875 }
1876 }
1877 }
1878
1879 /* Should never happen */
1880 return -1;
1881}
1f4bb37d 1882
dc7c9a1a 1883#endif
998eaaec
WD
1884
1885#ifdef CONFIG_JFFS2_NAND
1886
1887int read_jffs2_nand(size_t start, size_t len,
1888 size_t * retlen, u_char * buf, int nanddev)
1889{
1890 return nand_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,
1891 start, len, retlen, buf);
1892}
1893
1894#endif /* CONFIG_JFFS2_NAND */
1895
1896
dc7c9a1a 1897#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */