]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/alpha-tdep.c
Clear addr bit in next_pcs vector
[thirdparty/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
618f726f 3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
615967cb 21#include "doublest.h"
c906108c 22#include "frame.h"
d2427a71
RH
23#include "frame-unwind.h"
24#include "frame-base.h"
baa490c4 25#include "dwarf2-frame.h"
c906108c
SS
26#include "inferior.h"
27#include "symtab.h"
28#include "value.h"
29#include "gdbcmd.h"
30#include "gdbcore.h"
31#include "dis-asm.h"
32#include "symfile.h"
33#include "objfiles.h"
c5f0f3d0 34#include "linespec.h"
4e052eda 35#include "regcache.h"
615967cb 36#include "reggroups.h"
dc129d82 37#include "arch-utils.h"
4be87837 38#include "osabi.h"
fe898f56 39#include "block.h"
7d9b040b 40#include "infcall.h"
07ea644b 41#include "trad-frame.h"
dc129d82
JT
42
43#include "elf-bfd.h"
44
45#include "alpha-tdep.h"
325fac50 46#include <algorithm>
dc129d82 47
3a48e6ff
JG
48/* Instruction decoding. The notations for registers, immediates and
49 opcodes are the same as the one used in Compaq's Alpha architecture
50 handbook. */
51
52#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
53
54/* Memory instruction format */
55#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
56#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
57#define MEM_DISP(insn) \
58 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
59
60static const int lda_opcode = 0x08;
61static const int stq_opcode = 0x2d;
62
63/* Branch instruction format */
64#define BR_RA(insn) MEM_RA(insn)
65
46ad3598 66static const int br_opcode = 0x30;
3a48e6ff
JG
67static const int bne_opcode = 0x3d;
68
69/* Operate instruction format */
70#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
71#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
72#define OPR_RA(insn) MEM_RA(insn)
73#define OPR_RC(insn) ((insn & 0x1f))
74#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
75
76static const int subq_opcode = 0x10;
77static const int subq_function = 0x29;
78
c906108c 79\f
515921d7
JB
80/* Return the name of the REGNO register.
81
82 An empty name corresponds to a register number that used to
0963b4bd 83 be used for a virtual register. That virtual register has
515921d7
JB
84 been removed, but the index is still reserved to maintain
85 compatibility with existing remote alpha targets. */
86
fa88f677 87static const char *
d93859e2 88alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 89{
5ab84872 90 static const char * const register_names[] =
636a6dfc
JT
91 {
92 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
93 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
94 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
95 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
96 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
97 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
98 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
99 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 100 "pc", "", "unique"
636a6dfc
JT
101 };
102
103 if (regno < 0)
5ab84872 104 return NULL;
e8d2d628 105 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
106 return NULL;
107 return register_names[regno];
636a6dfc 108}
d734c450 109
dc129d82 110static int
64a3914f 111alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 112{
4a1be8d2 113 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
114}
115
dc129d82 116static int
64a3914f 117alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 118{
515921d7 119 return (regno == ALPHA_ZERO_REGNUM
64a3914f 120 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
121}
122
dc129d82 123static struct type *
c483c494 124alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 125{
72667056 126 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 127 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 128 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 129 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
130
131 /* Don't need to worry about little vs big endian until
132 some jerk tries to port to alpha-unicosmk. */
b38b6be2 133 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
27067745 134 return builtin_type (gdbarch)->builtin_double;
72667056 135
df4df182 136 return builtin_type (gdbarch)->builtin_int64;
0d056799 137}
f8453e34 138
615967cb
RH
139/* Is REGNUM a member of REGGROUP? */
140
141static int
142alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
143 struct reggroup *group)
144{
145 /* Filter out any registers eliminated, but whose regnum is
146 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
147 if (gdbarch_register_name (gdbarch, regnum) == NULL
148 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
149 return 0;
150
df4a182b
RH
151 if (group == all_reggroup)
152 return 1;
153
154 /* Zero should not be saved or restored. Technically it is a general
155 register (just as $f31 would be a float if we represented it), but
156 there's no point displaying it during "info regs", so leave it out
157 of all groups except for "all". */
158 if (regnum == ALPHA_ZERO_REGNUM)
159 return 0;
160
161 /* All other registers are saved and restored. */
162 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
163 return 1;
164
165 /* All other groups are non-overlapping. */
166
167 /* Since this is really a PALcode memory slot... */
168 if (regnum == ALPHA_UNIQUE_REGNUM)
169 return group == system_reggroup;
170
171 /* Force the FPCR to be considered part of the floating point state. */
172 if (regnum == ALPHA_FPCR_REGNUM)
173 return group == float_reggroup;
174
175 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
176 return group == float_reggroup;
177 else
178 return group == general_reggroup;
179}
180
c483c494
RH
181/* The following represents exactly the conversion performed by
182 the LDS instruction. This applies to both single-precision
183 floating point and 32-bit integers. */
184
185static void
e17a4113 186alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 187{
e17a4113 188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9a3c8263
SM
189 ULONGEST mem
190 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
c483c494
RH
191 ULONGEST frac = (mem >> 0) & 0x7fffff;
192 ULONGEST sign = (mem >> 31) & 1;
193 ULONGEST exp_msb = (mem >> 30) & 1;
194 ULONGEST exp_low = (mem >> 23) & 0x7f;
195 ULONGEST exp, reg;
196
197 exp = (exp_msb << 10) | exp_low;
198 if (exp_msb)
199 {
200 if (exp_low == 0x7f)
201 exp = 0x7ff;
202 }
203 else
204 {
205 if (exp_low != 0x00)
206 exp |= 0x380;
207 }
208
209 reg = (sign << 63) | (exp << 52) | (frac << 29);
9a3c8263 210 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
c483c494
RH
211}
212
213/* Similarly, this represents exactly the conversion performed by
214 the STS instruction. */
215
39efb398 216static void
e17a4113 217alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 218{
e17a4113 219 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
220 ULONGEST reg, mem;
221
9a3c8263 222 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
c483c494 223 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
9a3c8263 224 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
c483c494
RH
225}
226
d2427a71
RH
227/* The alpha needs a conversion between register and memory format if the
228 register is a floating point register and memory format is float, as the
229 register format must be double or memory format is an integer with 4
230 bytes or less, as the representation of integers in floating point
0963b4bd 231 registers is different. */
d2427a71 232
c483c494 233static int
0963b4bd
MS
234alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
235 struct type *type)
14696584 236{
83acabca
DJ
237 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
238 && TYPE_LENGTH (type) != 8);
14696584
RH
239}
240
8dccd430 241static int
ff2e87ac 242alpha_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
243 struct type *valtype, gdb_byte *out,
244 int *optimizedp, int *unavailablep)
5868c862 245{
8dccd430 246 struct gdbarch *gdbarch = get_frame_arch (frame);
2a1ce6ec
MK
247 gdb_byte in[MAX_REGISTER_SIZE];
248
8dccd430
PA
249 /* Convert to TYPE. */
250 if (!get_frame_register_bytes (frame, regnum, 0,
251 register_size (gdbarch, regnum),
252 in, optimizedp, unavailablep))
253 return 0;
254
255 if (TYPE_LENGTH (valtype) == 4)
d2427a71 256 {
8dccd430
PA
257 alpha_sts (gdbarch, out, in);
258 *optimizedp = *unavailablep = 0;
259 return 1;
d2427a71 260 }
8dccd430
PA
261
262 error (_("Cannot retrieve value from floating point register"));
d2427a71 263}
5868c862 264
d2427a71 265static void
ff2e87ac 266alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 267 struct type *valtype, const gdb_byte *in)
d2427a71 268{
2a1ce6ec
MK
269 gdb_byte out[MAX_REGISTER_SIZE];
270
c483c494 271 switch (TYPE_LENGTH (valtype))
d2427a71 272 {
c483c494 273 case 4:
e17a4113 274 alpha_lds (get_frame_arch (frame), out, in);
c483c494 275 break;
c483c494 276 default:
323e0a4a 277 error (_("Cannot store value in floating point register"));
d2427a71 278 }
ff2e87ac 279 put_frame_register (frame, regnum, out);
5868c862
JT
280}
281
d2427a71
RH
282\f
283/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
284 the stack. The register arguments are stored in ARG_REG_BUFFER, and
285 then moved into the register file; this simplifies the passing of a
286 large struct which extends from the registers to the stack, plus avoids
287 three ptrace invocations per word.
288
289 We don't bother tracking which register values should go in integer
290 regs or fp regs; we load the same values into both.
291
d2427a71
RH
292 If the called function is returning a structure, the address of the
293 structure to be returned is passed as a hidden first argument. */
c906108c 294
d2427a71 295static CORE_ADDR
7d9b040b 296alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
297 struct regcache *regcache, CORE_ADDR bp_addr,
298 int nargs, struct value **args, CORE_ADDR sp,
299 int struct_return, CORE_ADDR struct_addr)
c906108c 300{
e17a4113 301 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71
RH
302 int i;
303 int accumulate_size = struct_return ? 8 : 0;
d2427a71 304 struct alpha_arg
c906108c 305 {
f42a0a33 306 const gdb_byte *contents;
d2427a71
RH
307 int len;
308 int offset;
309 };
8d749320 310 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
52f0bd74 311 struct alpha_arg *m_arg;
2a1ce6ec 312 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 313 int required_arg_regs;
7d9b040b 314 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 315
c88e30c0
RH
316 /* The ABI places the address of the called function in T12. */
317 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318
319 /* Set the return address register to point to the entry point
320 of the program, where a breakpoint lies in wait. */
321 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322
323 /* Lay out the arguments in memory. */
d2427a71
RH
324 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325 {
326 struct value *arg = args[i];
4991999e 327 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 328
d2427a71
RH
329 /* Cast argument to long if necessary as the compiler does it too. */
330 switch (TYPE_CODE (arg_type))
c906108c 331 {
d2427a71
RH
332 case TYPE_CODE_INT:
333 case TYPE_CODE_BOOL:
334 case TYPE_CODE_CHAR:
335 case TYPE_CODE_RANGE:
336 case TYPE_CODE_ENUM:
0ede8eca 337 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 338 {
0ede8eca
RH
339 /* 32-bit values must be sign-extended to 64 bits
340 even if the base data type is unsigned. */
df4df182 341 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
342 arg = value_cast (arg_type, arg);
343 }
344 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
345 {
df4df182 346 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
347 arg = value_cast (arg_type, arg);
348 }
349 break;
7b5e1cb3 350
c88e30c0
RH
351 case TYPE_CODE_FLT:
352 /* "float" arguments loaded in registers must be passed in
353 register format, aka "double". */
354 if (accumulate_size < sizeof (arg_reg_buffer)
355 && TYPE_LENGTH (arg_type) == 4)
356 {
27067745 357 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
358 arg = value_cast (arg_type, arg);
359 }
360 /* Tru64 5.1 has a 128-bit long double, and passes this by
361 invisible reference. No one else uses this data type. */
362 else if (TYPE_LENGTH (arg_type) == 16)
363 {
364 /* Allocate aligned storage. */
365 sp = (sp & -16) - 16;
366
367 /* Write the real data into the stack. */
0fd88904 368 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
369
370 /* Construct the indirection. */
371 arg_type = lookup_pointer_type (arg_type);
372 arg = value_from_pointer (arg_type, sp);
373 }
374 break;
7b5e1cb3
RH
375
376 case TYPE_CODE_COMPLEX:
377 /* ??? The ABI says that complex values are passed as two
378 separate scalar values. This distinction only matters
379 for complex float. However, GCC does not implement this. */
380
381 /* Tru64 5.1 has a 128-bit long double, and passes this by
382 invisible reference. */
383 if (TYPE_LENGTH (arg_type) == 32)
384 {
385 /* Allocate aligned storage. */
386 sp = (sp & -16) - 16;
387
388 /* Write the real data into the stack. */
0fd88904 389 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
390
391 /* Construct the indirection. */
392 arg_type = lookup_pointer_type (arg_type);
393 arg = value_from_pointer (arg_type, sp);
394 }
395 break;
396
d2427a71
RH
397 default:
398 break;
c906108c 399 }
d2427a71
RH
400 m_arg->len = TYPE_LENGTH (arg_type);
401 m_arg->offset = accumulate_size;
402 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
f42a0a33 403 m_arg->contents = value_contents (arg);
c906108c
SS
404 }
405
d2427a71
RH
406 /* Determine required argument register loads, loading an argument register
407 is expensive as it uses three ptrace calls. */
408 required_arg_regs = accumulate_size / 8;
409 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 411
d2427a71 412 /* Make room for the arguments on the stack. */
c88e30c0
RH
413 if (accumulate_size < sizeof(arg_reg_buffer))
414 accumulate_size = 0;
415 else
416 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 417 sp -= accumulate_size;
c906108c 418
c88e30c0 419 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 420 sp &= ~15;
c906108c 421
d2427a71
RH
422 /* `Push' arguments on the stack. */
423 for (i = nargs; m_arg--, --i >= 0;)
c906108c 424 {
f42a0a33 425 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
426 int offset = m_arg->offset;
427 int len = m_arg->len;
428
429 /* Copy the bytes destined for registers into arg_reg_buffer. */
430 if (offset < sizeof(arg_reg_buffer))
431 {
432 if (offset + len <= sizeof(arg_reg_buffer))
433 {
434 memcpy (arg_reg_buffer + offset, contents, len);
435 continue;
436 }
437 else
438 {
439 int tlen = sizeof(arg_reg_buffer) - offset;
440 memcpy (arg_reg_buffer + offset, contents, tlen);
441 offset += tlen;
442 contents += tlen;
443 len -= tlen;
444 }
445 }
446
447 /* Everything else goes to the stack. */
448 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 449 }
c88e30c0 450 if (struct_return)
e17a4113
UW
451 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 byte_order, struct_addr);
c906108c 453
d2427a71
RH
454 /* Load the argument registers. */
455 for (i = 0; i < required_arg_regs; i++)
456 {
09cc52fd
RH
457 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
458 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
459 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
460 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 461 }
c906108c 462
09cc52fd
RH
463 /* Finally, update the stack pointer. */
464 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465
c88e30c0 466 return sp;
c906108c
SS
467}
468
5ec2bb99
RH
469/* Extract from REGCACHE the value about to be returned from a function
470 and copy it into VALBUF. */
d2427a71 471
dc129d82 472static void
5ec2bb99 473alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 474 gdb_byte *valbuf)
140f9984 475{
e17a4113
UW
476 struct gdbarch *gdbarch = get_regcache_arch (regcache);
477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2a1ce6ec 478 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
479 ULONGEST l;
480
481 switch (TYPE_CODE (valtype))
482 {
483 case TYPE_CODE_FLT:
744a8059 484 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
485 {
486 case 4:
487 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 488 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
489 break;
490
491 case 8:
492 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
493 break;
494
24064b5c
RH
495 case 16:
496 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
497 read_memory (l, valbuf, 16);
498 break;
499
5ec2bb99 500 default:
0963b4bd
MS
501 internal_error (__FILE__, __LINE__,
502 _("unknown floating point width"));
5ec2bb99
RH
503 }
504 break;
505
7b5e1cb3 506 case TYPE_CODE_COMPLEX:
744a8059 507 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
508 {
509 case 8:
510 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
511 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
512 break;
513
514 case 16:
515 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 516 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
517 break;
518
519 case 32:
a9933661 520 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3
RH
521 read_memory (l, valbuf, 32);
522 break;
523
524 default:
0963b4bd
MS
525 internal_error (__FILE__, __LINE__,
526 _("unknown floating point width"));
7b5e1cb3
RH
527 }
528 break;
529
5ec2bb99
RH
530 default:
531 /* Assume everything else degenerates to an integer. */
532 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
744a8059 533 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
5ec2bb99
RH
534 break;
535 }
140f9984
JT
536}
537
5ec2bb99
RH
538/* Insert the given value into REGCACHE as if it was being
539 returned by a function. */
0d056799 540
d2427a71 541static void
5ec2bb99 542alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 543 const gdb_byte *valbuf)
c906108c 544{
df4df182 545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2a1ce6ec 546 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 547 ULONGEST l;
d2427a71 548
5ec2bb99 549 switch (TYPE_CODE (valtype))
c906108c 550 {
5ec2bb99 551 case TYPE_CODE_FLT:
744a8059 552 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
553 {
554 case 4:
e17a4113 555 alpha_lds (gdbarch, raw_buffer, valbuf);
f75d70cc
RH
556 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
557 break;
5ec2bb99
RH
558
559 case 8:
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
561 break;
562
24064b5c
RH
563 case 16:
564 /* FIXME: 128-bit long doubles are returned like structures:
565 by writing into indirect storage provided by the caller
566 as the first argument. */
323e0a4a 567 error (_("Cannot set a 128-bit long double return value."));
24064b5c 568
5ec2bb99 569 default:
0963b4bd
MS
570 internal_error (__FILE__, __LINE__,
571 _("unknown floating point width"));
5ec2bb99
RH
572 }
573 break;
d2427a71 574
7b5e1cb3 575 case TYPE_CODE_COMPLEX:
744a8059 576 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
577 {
578 case 8:
579 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
580 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
581 break;
582
583 case 16:
584 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 585 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
586 break;
587
588 case 32:
589 /* FIXME: 128-bit long doubles are returned like structures:
590 by writing into indirect storage provided by the caller
591 as the first argument. */
323e0a4a 592 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
593
594 default:
0963b4bd
MS
595 internal_error (__FILE__, __LINE__,
596 _("unknown floating point width"));
7b5e1cb3
RH
597 }
598 break;
599
5ec2bb99
RH
600 default:
601 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
602 /* 32-bit values must be sign-extended to 64 bits
603 even if the base data type is unsigned. */
744a8059 604 if (TYPE_LENGTH (valtype) == 4)
df4df182 605 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
606 l = unpack_long (valtype, valbuf);
607 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
608 break;
609 }
c906108c
SS
610}
611
9823e921 612static enum return_value_convention
6a3a010b 613alpha_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
614 struct type *type, struct regcache *regcache,
615 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921
RH
616{
617 enum type_code code = TYPE_CODE (type);
618
619 if ((code == TYPE_CODE_STRUCT
620 || code == TYPE_CODE_UNION
621 || code == TYPE_CODE_ARRAY)
622 && gdbarch_tdep (gdbarch)->return_in_memory (type))
623 {
624 if (readbuf)
625 {
626 ULONGEST addr;
627 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
628 read_memory (addr, readbuf, TYPE_LENGTH (type));
629 }
630
631 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
632 }
633
634 if (readbuf)
635 alpha_extract_return_value (type, regcache, readbuf);
636 if (writebuf)
637 alpha_store_return_value (type, regcache, writebuf);
638
639 return RETURN_VALUE_REGISTER_CONVENTION;
640}
641
642static int
643alpha_return_in_memory_always (struct type *type)
644{
645 return 1;
646}
d2427a71 647\f
c906108c 648
04180708 649constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
598cc9dc 650
04180708 651typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
c906108c 652
d2427a71
RH
653\f
654/* This returns the PC of the first insn after the prologue.
655 If we can't find the prologue, then return 0. */
c906108c 656
d2427a71
RH
657CORE_ADDR
658alpha_after_prologue (CORE_ADDR pc)
c906108c 659{
d2427a71
RH
660 struct symtab_and_line sal;
661 CORE_ADDR func_addr, func_end;
c906108c 662
d2427a71 663 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 664 return 0;
c906108c 665
d2427a71
RH
666 sal = find_pc_line (func_addr, 0);
667 if (sal.end < func_end)
668 return sal.end;
c5aa993b 669
d2427a71
RH
670 /* The line after the prologue is after the end of the function. In this
671 case, tell the caller to find the prologue the hard way. */
672 return 0;
c906108c
SS
673}
674
d2427a71
RH
675/* Read an instruction from memory at PC, looking through breakpoints. */
676
677unsigned int
e17a4113 678alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 679{
e17a4113 680 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 681 gdb_byte buf[ALPHA_INSN_SIZE];
d09f2c3f 682 int res;
c5aa993b 683
d09f2c3f
PA
684 res = target_read_memory (pc, buf, sizeof (buf));
685 if (res != 0)
686 memory_error (TARGET_XFER_E_IO, pc);
e17a4113 687 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 688}
c5aa993b 689
d2427a71
RH
690/* To skip prologues, I use this predicate. Returns either PC itself
691 if the code at PC does not look like a function prologue; otherwise
692 returns an address that (if we're lucky) follows the prologue. If
693 LENIENT, then we must skip everything which is involved in setting
694 up the frame (it's OK to skip more, just so long as we don't skip
695 anything which might clobber the registers which are being saved. */
c906108c 696
d2427a71 697static CORE_ADDR
6093d2eb 698alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
699{
700 unsigned long inst;
701 int offset;
702 CORE_ADDR post_prologue_pc;
e8d2d628 703 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 704
d2427a71
RH
705 /* Silently return the unaltered pc upon memory errors.
706 This could happen on OSF/1 if decode_line_1 tries to skip the
707 prologue for quickstarted shared library functions when the
708 shared library is not yet mapped in.
709 Reading target memory is slow over serial lines, so we perform
710 this check only if the target has shared libraries (which all
711 Alpha targets do). */
e8d2d628 712 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 713 return pc;
c906108c 714
d2427a71
RH
715 /* See if we can determine the end of the prologue via the symbol table.
716 If so, then return either PC, or the PC after the prologue, whichever
717 is greater. */
c906108c 718
d2427a71
RH
719 post_prologue_pc = alpha_after_prologue (pc);
720 if (post_prologue_pc != 0)
325fac50 721 return std::max (pc, post_prologue_pc);
c906108c 722
d2427a71
RH
723 /* Can't determine prologue from the symbol table, need to examine
724 instructions. */
dc1b0db2 725
0963b4bd 726 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
727 instruction and the instructions that save registers on the stack
728 or in the gcc frame. */
e8d2d628 729 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 730 {
e17a4113 731 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 732
d2427a71
RH
733 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
734 continue;
735 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
736 continue;
737 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
738 continue;
739 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
740 continue;
c906108c 741
d2427a71
RH
742 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
743 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
744 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
745 continue;
c906108c 746
d2427a71
RH
747 if (inst == 0x47de040f) /* bis sp,sp,fp */
748 continue;
749 if (inst == 0x47fe040f) /* bis zero,sp,fp */
750 continue;
c906108c 751
d2427a71 752 break;
c906108c 753 }
d2427a71
RH
754 return pc + offset;
755}
c906108c 756
46ad3598
UW
757\f
758static const int ldl_l_opcode = 0x2a;
759static const int ldq_l_opcode = 0x2b;
760static const int stl_c_opcode = 0x2e;
761static const int stq_c_opcode = 0x2f;
762
763/* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
764 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
765 is found, attempt to step through it. A breakpoint is placed at the end of
766 the sequence. */
767
693be288 768static int
46ad3598
UW
769alpha_deal_with_atomic_sequence (struct frame_info *frame)
770{
771 struct gdbarch *gdbarch = get_frame_arch (frame);
772 struct address_space *aspace = get_frame_address_space (frame);
773 CORE_ADDR pc = get_frame_pc (frame);
774 CORE_ADDR breaks[2] = {-1, -1};
775 CORE_ADDR loc = pc;
776 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
777 unsigned int insn = alpha_read_insn (gdbarch, loc);
778 int insn_count;
779 int index;
780 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
781 const int atomic_sequence_length = 16; /* Instruction sequence length. */
782 int bc_insn_count = 0; /* Conditional branch instruction count. */
783
784 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
785 if (INSN_OPCODE (insn) != ldl_l_opcode
786 && INSN_OPCODE (insn) != ldq_l_opcode)
787 return 0;
788
789 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
790 instructions. */
791 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
792 {
793 loc += ALPHA_INSN_SIZE;
794 insn = alpha_read_insn (gdbarch, loc);
795
796 /* Assume that there is at most one branch in the atomic
797 sequence. If a branch is found, put a breakpoint in
798 its destination address. */
799 if (INSN_OPCODE (insn) >= br_opcode)
800 {
801 int immediate = (insn & 0x001fffff) << 2;
802
803 immediate = (immediate ^ 0x400000) - 0x400000;
804
805 if (bc_insn_count >= 1)
806 return 0; /* More than one branch found, fallback
807 to the standard single-step code. */
808
809 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
810
811 bc_insn_count++;
812 last_breakpoint++;
813 }
814
815 if (INSN_OPCODE (insn) == stl_c_opcode
816 || INSN_OPCODE (insn) == stq_c_opcode)
817 break;
818 }
819
820 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
821 if (INSN_OPCODE (insn) != stl_c_opcode
822 && INSN_OPCODE (insn) != stq_c_opcode)
823 return 0;
824
825 closing_insn = loc;
826 loc += ALPHA_INSN_SIZE;
827
828 /* Insert a breakpoint right after the end of the atomic sequence. */
829 breaks[0] = loc;
830
831 /* Check for duplicated breakpoints. Check also for a breakpoint
832 placed (branch instruction's destination) anywhere in sequence. */
833 if (last_breakpoint
834 && (breaks[1] == breaks[0]
835 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
836 last_breakpoint = 0;
837
838 /* Effectively inserts the breakpoints. */
839 for (index = 0; index <= last_breakpoint; index++)
840 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
841
842 return 1;
843}
844
d2427a71
RH
845\f
846/* Figure out where the longjmp will land.
847 We expect the first arg to be a pointer to the jmp_buf structure from
848 which we extract the PC (JB_PC) that we will land at. The PC is copied
849 into the "pc". This routine returns true on success. */
c906108c
SS
850
851static int
60ade65d 852alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 853{
e17a4113
UW
854 struct gdbarch *gdbarch = get_frame_arch (frame);
855 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
856 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 857 CORE_ADDR jb_addr;
2a1ce6ec 858 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 859
60ade65d 860 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 861
d2427a71
RH
862 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
863 raw_buffer, tdep->jb_elt_size))
c906108c 864 return 0;
d2427a71 865
e17a4113 866 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 867 return 1;
c906108c
SS
868}
869
d2427a71
RH
870\f
871/* Frame unwinder for signal trampolines. We use alpha tdep bits that
872 describe the location and shape of the sigcontext structure. After
873 that, all registers are in memory, so it's easy. */
874/* ??? Shouldn't we be able to do this generically, rather than with
875 OSABI data specific to Alpha? */
876
877struct alpha_sigtramp_unwind_cache
c906108c 878{
d2427a71
RH
879 CORE_ADDR sigcontext_addr;
880};
c906108c 881
d2427a71 882static struct alpha_sigtramp_unwind_cache *
6834c9bb 883alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
884 void **this_prologue_cache)
885{
886 struct alpha_sigtramp_unwind_cache *info;
887 struct gdbarch_tdep *tdep;
c906108c 888
d2427a71 889 if (*this_prologue_cache)
9a3c8263 890 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
c906108c 891
d2427a71
RH
892 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
893 *this_prologue_cache = info;
c906108c 894
6834c9bb
JB
895 tdep = gdbarch_tdep (get_frame_arch (this_frame));
896 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 897
d2427a71 898 return info;
c906108c
SS
899}
900
138e7be5
MK
901/* Return the address of REGNUM in a sigtramp frame. Since this is
902 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 903
d2427a71 904static CORE_ADDR
be8626e0
MD
905alpha_sigtramp_register_address (struct gdbarch *gdbarch,
906 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 907{
be8626e0 908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138e7be5
MK
909
910 if (regnum >= 0 && regnum < 32)
911 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
912 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
913 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
914 else if (regnum == ALPHA_PC_REGNUM)
915 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 916
d2427a71 917 return 0;
c906108c
SS
918}
919
d2427a71
RH
920/* Given a GDB frame, determine the address of the calling function's
921 frame. This will be used to create a new GDB frame struct. */
140f9984 922
dc129d82 923static void
6834c9bb 924alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
925 void **this_prologue_cache,
926 struct frame_id *this_id)
c906108c 927{
6834c9bb 928 struct gdbarch *gdbarch = get_frame_arch (this_frame);
be8626e0 929 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71 930 struct alpha_sigtramp_unwind_cache *info
6834c9bb 931 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
932 CORE_ADDR stack_addr, code_addr;
933
934 /* If the OSABI couldn't locate the sigcontext, give up. */
935 if (info->sigcontext_addr == 0)
936 return;
937
938 /* If we have dynamic signal trampolines, find their start.
939 If we do not, then we must assume there is a symbol record
940 that can provide the start address. */
d2427a71 941 if (tdep->dynamic_sigtramp_offset)
c906108c 942 {
d2427a71 943 int offset;
6834c9bb 944 code_addr = get_frame_pc (this_frame);
e17a4113 945 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
946 if (offset >= 0)
947 code_addr -= offset;
c906108c 948 else
d2427a71 949 code_addr = 0;
c906108c 950 }
d2427a71 951 else
6834c9bb 952 code_addr = get_frame_func (this_frame);
c906108c 953
d2427a71 954 /* The stack address is trivially read from the sigcontext. */
be8626e0 955 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 956 ALPHA_SP_REGNUM);
6834c9bb 957 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 958 ALPHA_REGISTER_SIZE);
c906108c 959
d2427a71 960 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
961}
962
d2427a71 963/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 964
6834c9bb
JB
965static struct value *
966alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
967 void **this_prologue_cache, int regnum)
c906108c 968{
d2427a71 969 struct alpha_sigtramp_unwind_cache *info
6834c9bb 970 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 971 CORE_ADDR addr;
c906108c 972
d2427a71 973 if (info->sigcontext_addr != 0)
c906108c 974 {
d2427a71 975 /* All integer and fp registers are stored in memory. */
6834c9bb 976 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 977 info->sigcontext_addr, regnum);
d2427a71 978 if (addr != 0)
6834c9bb 979 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
980 }
981
d2427a71
RH
982 /* This extra register may actually be in the sigcontext, but our
983 current description of it in alpha_sigtramp_frame_unwind_cache
984 doesn't include it. Too bad. Fall back on whatever's in the
985 outer frame. */
6834c9bb 986 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 987}
c906108c 988
6834c9bb
JB
989static int
990alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
991 struct frame_info *this_frame,
992 void **this_prologue_cache)
d2427a71 993{
6834c9bb
JB
994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
995 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 996 const char *name;
c906108c 997
f2524b93
AC
998 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
999 look at tramp-frame.h and other simplier per-architecture
1000 sigtramp unwinders. */
1001
1002 /* We shouldn't even bother to try if the OSABI didn't register a
1003 sigcontext_addr handler or pc_in_sigtramp hander. */
ec7cc0e8 1004 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
6834c9bb 1005 return 0;
ec7cc0e8 1006 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
6834c9bb 1007 return 0;
c906108c 1008
d2427a71
RH
1009 /* Otherwise we should be in a signal frame. */
1010 find_pc_partial_function (pc, &name, NULL, NULL);
e17a4113 1011 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 1012 return 1;
c906108c 1013
6834c9bb 1014 return 0;
c906108c 1015}
6834c9bb
JB
1016
1017static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1018 SIGTRAMP_FRAME,
8fbca658 1019 default_frame_unwind_stop_reason,
6834c9bb
JB
1020 alpha_sigtramp_frame_this_id,
1021 alpha_sigtramp_frame_prev_register,
1022 NULL,
1023 alpha_sigtramp_frame_sniffer
1024};
1025
d2427a71 1026\f
c906108c 1027
d2427a71
RH
1028/* Heuristic_proc_start may hunt through the text section for a long
1029 time across a 2400 baud serial line. Allows the user to limit this
1030 search. */
44096aee 1031static int heuristic_fence_post = 0;
c906108c 1032
d2427a71
RH
1033/* Attempt to locate the start of the function containing PC. We assume that
1034 the previous function ends with an about_to_return insn. Not foolproof by
1035 any means, since gcc is happy to put the epilogue in the middle of a
1036 function. But we're guessing anyway... */
c906108c 1037
d2427a71 1038static CORE_ADDR
be8626e0 1039alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 1040{
be8626e0 1041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71
RH
1042 CORE_ADDR last_non_nop = pc;
1043 CORE_ADDR fence = pc - heuristic_fence_post;
1044 CORE_ADDR orig_pc = pc;
fbe586ae 1045 CORE_ADDR func;
d6b48e9c 1046 struct inferior *inf;
9e0b60a8 1047
d2427a71
RH
1048 if (pc == 0)
1049 return 0;
9e0b60a8 1050
fbe586ae
RH
1051 /* First see if we can find the start of the function from minimal
1052 symbol information. This can succeed with a binary that doesn't
1053 have debug info, but hasn't been stripped. */
1054 func = get_pc_function_start (pc);
1055 if (func)
1056 return func;
1057
44096aee 1058 if (heuristic_fence_post == -1
d2427a71
RH
1059 || fence < tdep->vm_min_address)
1060 fence = tdep->vm_min_address;
c906108c 1061
d2427a71
RH
1062 /* Search back for previous return; also stop at a 0, which might be
1063 seen for instance before the start of a code section. Don't include
1064 nops, since this usually indicates padding between functions. */
e8d2d628 1065 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 1066 {
e17a4113 1067 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 1068 switch (insn)
c906108c 1069 {
d2427a71
RH
1070 case 0: /* invalid insn */
1071 case 0x6bfa8001: /* ret $31,($26),1 */
1072 return last_non_nop;
1073
1074 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1075 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1076 break;
1077
1078 default:
1079 last_non_nop = pc;
1080 break;
c906108c 1081 }
d2427a71 1082 }
c906108c 1083
d6b48e9c
PA
1084 inf = current_inferior ();
1085
d2427a71
RH
1086 /* It's not clear to me why we reach this point when stopping quietly,
1087 but with this test, at least we don't print out warnings for every
1088 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1089 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1090 {
1091 static int blurb_printed = 0;
c906108c 1092
d2427a71 1093 if (fence == tdep->vm_min_address)
323e0a4a 1094 warning (_("Hit beginning of text section without finding \
5af949e3 1095enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1096 else
323e0a4a 1097 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1098enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1099
d2427a71
RH
1100 if (!blurb_printed)
1101 {
323e0a4a 1102 printf_filtered (_("\
d2427a71
RH
1103This warning occurs if you are debugging a function without any symbols\n\
1104(for example, in a stripped executable). In that case, you may wish to\n\
1105increase the size of the search with the `set heuristic-fence-post' command.\n\
1106\n\
1107Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1108(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1109 blurb_printed = 1;
1110 }
1111 }
c906108c 1112
d2427a71
RH
1113 return 0;
1114}
c906108c 1115
07ea644b
MD
1116/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1117 something about the traditional layout of alpha stack frames. */
1118
1119struct alpha_heuristic_unwind_cache
1120{
1121 CORE_ADDR vfp;
1122 CORE_ADDR start_pc;
1123 struct trad_frame_saved_reg *saved_regs;
1124 int return_reg;
1125};
1126
3a48e6ff
JG
1127/* If a probing loop sequence starts at PC, simulate it and compute
1128 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1129 FRAME_SIZE unchanged. */
1130
1131static void
1132alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1133 int *frame_size)
1134{
1135 CORE_ADDR cur_pc = *pc;
1136 int cur_frame_size = *frame_size;
1137 int nb_of_iterations, reg_index, reg_probe;
1138 unsigned int insn;
1139
1140 /* The following pattern is recognized as a probing loop:
1141
1142 lda REG_INDEX,NB_OF_ITERATIONS
1143 lda REG_PROBE,<immediate>(sp)
1144
1145 LOOP_START:
1146 stq zero,<immediate>(REG_PROBE)
1147 subq REG_INDEX,0x1,REG_INDEX
1148 lda REG_PROBE,<immediate>(REG_PROBE)
1149 bne REG_INDEX, LOOP_START
1150
1151 lda sp,<immediate>(REG_PROBE)
1152
1153 If anything different is found, the function returns without
1154 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1155 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1156
1157 /* lda REG_INDEX,NB_OF_ITERATIONS */
1158
1159 insn = alpha_read_insn (gdbarch, cur_pc);
1160 if (INSN_OPCODE (insn) != lda_opcode)
1161 return;
1162 reg_index = MEM_RA (insn);
1163 nb_of_iterations = MEM_DISP (insn);
1164
1165 /* lda REG_PROBE,<immediate>(sp) */
1166
1167 cur_pc += ALPHA_INSN_SIZE;
1168 insn = alpha_read_insn (gdbarch, cur_pc);
1169 if (INSN_OPCODE (insn) != lda_opcode
1170 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1171 return;
1172 reg_probe = MEM_RA (insn);
1173 cur_frame_size -= MEM_DISP (insn);
1174
1175 /* stq zero,<immediate>(REG_PROBE) */
1176
1177 cur_pc += ALPHA_INSN_SIZE;
1178 insn = alpha_read_insn (gdbarch, cur_pc);
1179 if (INSN_OPCODE (insn) != stq_opcode
1180 || MEM_RA (insn) != 0x1f
1181 || MEM_RB (insn) != reg_probe)
1182 return;
1183
1184 /* subq REG_INDEX,0x1,REG_INDEX */
1185
1186 cur_pc += ALPHA_INSN_SIZE;
1187 insn = alpha_read_insn (gdbarch, cur_pc);
1188 if (INSN_OPCODE (insn) != subq_opcode
1189 || !OPR_HAS_IMMEDIATE (insn)
1190 || OPR_FUNCTION (insn) != subq_function
1191 || OPR_LIT(insn) != 1
1192 || OPR_RA (insn) != reg_index
1193 || OPR_RC (insn) != reg_index)
1194 return;
1195
1196 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1197
1198 cur_pc += ALPHA_INSN_SIZE;
1199 insn = alpha_read_insn (gdbarch, cur_pc);
1200 if (INSN_OPCODE (insn) != lda_opcode
1201 || MEM_RA (insn) != reg_probe
1202 || MEM_RB (insn) != reg_probe)
1203 return;
1204 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1205
1206 /* bne REG_INDEX, LOOP_START */
1207
1208 cur_pc += ALPHA_INSN_SIZE;
1209 insn = alpha_read_insn (gdbarch, cur_pc);
1210 if (INSN_OPCODE (insn) != bne_opcode
1211 || MEM_RA (insn) != reg_index)
1212 return;
1213
1214 /* lda sp,<immediate>(REG_PROBE) */
1215
1216 cur_pc += ALPHA_INSN_SIZE;
1217 insn = alpha_read_insn (gdbarch, cur_pc);
1218 if (INSN_OPCODE (insn) != lda_opcode
1219 || MEM_RA (insn) != ALPHA_SP_REGNUM
1220 || MEM_RB (insn) != reg_probe)
1221 return;
1222 cur_frame_size -= MEM_DISP (insn);
1223
1224 *pc = cur_pc;
1225 *frame_size = cur_frame_size;
1226}
1227
fbe586ae 1228static struct alpha_heuristic_unwind_cache *
6834c9bb 1229alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
1230 void **this_prologue_cache,
1231 CORE_ADDR start_pc)
1232{
6834c9bb 1233 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1234 struct alpha_heuristic_unwind_cache *info;
1235 ULONGEST val;
1236 CORE_ADDR limit_pc, cur_pc;
1237 int frame_reg, frame_size, return_reg, reg;
c906108c 1238
d2427a71 1239 if (*this_prologue_cache)
9a3c8263 1240 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
c906108c 1241
d2427a71
RH
1242 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1243 *this_prologue_cache = info;
6834c9bb 1244 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1245
6834c9bb 1246 limit_pc = get_frame_pc (this_frame);
d2427a71 1247 if (start_pc == 0)
be8626e0 1248 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1249 info->start_pc = start_pc;
c906108c 1250
d2427a71
RH
1251 frame_reg = ALPHA_SP_REGNUM;
1252 frame_size = 0;
1253 return_reg = -1;
c906108c 1254
d2427a71
RH
1255 /* If we've identified a likely place to start, do code scanning. */
1256 if (start_pc != 0)
c5aa993b 1257 {
d2427a71
RH
1258 /* Limit the forward search to 50 instructions. */
1259 if (start_pc + 200 < limit_pc)
1260 limit_pc = start_pc + 200;
c5aa993b 1261
e8d2d628 1262 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1263 {
e17a4113 1264 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1265
d2427a71
RH
1266 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1267 {
1268 if (word & 0x8000)
1269 {
1270 /* Consider only the first stack allocation instruction
0963b4bd 1271 to contain the static size of the frame. */
d2427a71
RH
1272 if (frame_size == 0)
1273 frame_size = (-word) & 0xffff;
1274 }
1275 else
1276 {
1277 /* Exit loop if a positive stack adjustment is found, which
1278 usually means that the stack cleanup code in the function
1279 epilogue is reached. */
1280 break;
1281 }
1282 }
1283 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1284 {
1285 reg = (word & 0x03e00000) >> 21;
1286
d15bfd3a
AC
1287 /* Ignore this instruction if we have already encountered
1288 an instruction saving the same register earlier in the
1289 function code. The current instruction does not tell
1290 us where the original value upon function entry is saved.
1291 All it says is that the function we are scanning reused
1292 that register for some computation of its own, and is now
1293 saving its result. */
07ea644b 1294 if (trad_frame_addr_p(info->saved_regs, reg))
d15bfd3a
AC
1295 continue;
1296
d2427a71
RH
1297 if (reg == 31)
1298 continue;
1299
1300 /* Do not compute the address where the register was saved yet,
1301 because we don't know yet if the offset will need to be
1302 relative to $sp or $fp (we can not compute the address
1303 relative to $sp if $sp is updated during the execution of
1304 the current subroutine, for instance when doing some alloca).
1305 So just store the offset for the moment, and compute the
1306 address later when we know whether this frame has a frame
1307 pointer or not. */
1308 /* Hack: temporarily add one, so that the offset is non-zero
1309 and we can tell which registers have save offsets below. */
07ea644b 1310 info->saved_regs[reg].addr = (word & 0xffff) + 1;
d2427a71
RH
1311
1312 /* Starting with OSF/1-3.2C, the system libraries are shipped
1313 without local symbols, but they still contain procedure
1314 descriptors without a symbol reference. GDB is currently
1315 unable to find these procedure descriptors and uses
1316 heuristic_proc_desc instead.
1317 As some low level compiler support routines (__div*, __add*)
1318 use a non-standard return address register, we have to
1319 add some heuristics to determine the return address register,
1320 or stepping over these routines will fail.
1321 Usually the return address register is the first register
1322 saved on the stack, but assembler optimization might
1323 rearrange the register saves.
1324 So we recognize only a few registers (t7, t9, ra) within
1325 the procedure prologue as valid return address registers.
1326 If we encounter a return instruction, we extract the
7a9dd1b2 1327 return address register from it.
d2427a71
RH
1328
1329 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1330 e.g. via the minimal symbol table, might obviate this
1331 hack. */
d2427a71
RH
1332 if (return_reg == -1
1333 && cur_pc < (start_pc + 80)
1334 && (reg == ALPHA_T7_REGNUM
1335 || reg == ALPHA_T9_REGNUM
1336 || reg == ALPHA_RA_REGNUM))
1337 return_reg = reg;
1338 }
1339 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1340 return_reg = (word >> 16) & 0x1f;
1341 else if (word == 0x47de040f) /* bis sp,sp,fp */
1342 frame_reg = ALPHA_GCC_FP_REGNUM;
1343 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1344 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1345
1346 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1347 }
c5aa993b 1348
d2427a71
RH
1349 /* If we haven't found a valid return address register yet, keep
1350 searching in the procedure prologue. */
1351 if (return_reg == -1)
1352 {
1353 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1354 {
e17a4113 1355 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1356
d2427a71
RH
1357 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1358 {
1359 reg = (word & 0x03e00000) >> 21;
1360 if (reg == ALPHA_T7_REGNUM
1361 || reg == ALPHA_T9_REGNUM
1362 || reg == ALPHA_RA_REGNUM)
1363 {
1364 return_reg = reg;
1365 break;
1366 }
1367 }
1368 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1369 {
1370 return_reg = (word >> 16) & 0x1f;
1371 break;
1372 }
85b32d22 1373
e8d2d628 1374 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1375 }
1376 }
c906108c 1377 }
c906108c 1378
d2427a71
RH
1379 /* Failing that, do default to the customary RA. */
1380 if (return_reg == -1)
1381 return_reg = ALPHA_RA_REGNUM;
1382 info->return_reg = return_reg;
f8453e34 1383
6834c9bb 1384 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1385 info->vfp = val + frame_size;
c906108c 1386
d2427a71
RH
1387 /* Convert offsets to absolute addresses. See above about adding
1388 one to the offsets to make all detected offsets non-zero. */
1389 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
07ea644b
MD
1390 if (trad_frame_addr_p(info->saved_regs, reg))
1391 info->saved_regs[reg].addr += val - 1;
d2427a71 1392
bfd66dd9
JB
1393 /* The stack pointer of the previous frame is computed by popping
1394 the current stack frame. */
1395 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1396 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1397
d2427a71 1398 return info;
c906108c 1399}
c906108c 1400
d2427a71
RH
1401/* Given a GDB frame, determine the address of the calling function's
1402 frame. This will be used to create a new GDB frame struct. */
1403
fbe586ae 1404static void
6834c9bb
JB
1405alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1406 void **this_prologue_cache,
1407 struct frame_id *this_id)
c906108c 1408{
d2427a71 1409 struct alpha_heuristic_unwind_cache *info
6834c9bb 1410 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1411
d2427a71 1412 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1413}
1414
d2427a71
RH
1415/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1416
6834c9bb
JB
1417static struct value *
1418alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1419 void **this_prologue_cache, int regnum)
c906108c 1420{
d2427a71 1421 struct alpha_heuristic_unwind_cache *info
6834c9bb 1422 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1423
1424 /* The PC of the previous frame is stored in the link register of
1425 the current frame. Frob regnum so that we pull the value from
1426 the correct place. */
1427 if (regnum == ALPHA_PC_REGNUM)
1428 regnum = info->return_reg;
1429
6834c9bb 1430 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1431}
1432
d2427a71
RH
1433static const struct frame_unwind alpha_heuristic_frame_unwind = {
1434 NORMAL_FRAME,
8fbca658 1435 default_frame_unwind_stop_reason,
d2427a71 1436 alpha_heuristic_frame_this_id,
6834c9bb
JB
1437 alpha_heuristic_frame_prev_register,
1438 NULL,
1439 default_frame_sniffer
d2427a71 1440};
c906108c 1441
fbe586ae 1442static CORE_ADDR
6834c9bb 1443alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1444 void **this_prologue_cache)
c906108c 1445{
d2427a71 1446 struct alpha_heuristic_unwind_cache *info
6834c9bb 1447 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1448
d2427a71 1449 return info->vfp;
c906108c
SS
1450}
1451
d2427a71
RH
1452static const struct frame_base alpha_heuristic_frame_base = {
1453 &alpha_heuristic_frame_unwind,
1454 alpha_heuristic_frame_base_address,
1455 alpha_heuristic_frame_base_address,
1456 alpha_heuristic_frame_base_address
1457};
1458
c906108c 1459/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1460 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1461
1462static void
fba45db2 1463reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1464{
1465 reinit_frame_cache ();
1466}
1467
d2427a71 1468\f
d2427a71
RH
1469/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1470 dummy frame. The frame ID's base needs to match the TOS value
1471 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1472 breakpoint. */
d734c450 1473
d2427a71 1474static struct frame_id
6834c9bb 1475alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
0d056799 1476{
d2427a71 1477 ULONGEST base;
6834c9bb
JB
1478 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1479 return frame_id_build (base, get_frame_pc (this_frame));
0d056799
JT
1480}
1481
dc129d82 1482static CORE_ADDR
d2427a71 1483alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1484{
d2427a71 1485 ULONGEST pc;
11411de3 1486 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
d2427a71 1487 return pc;
accc6d1f
JT
1488}
1489
98a8e1e5
RH
1490\f
1491/* Helper routines for alpha*-nat.c files to move register sets to and
1492 from core files. The UNIQUE pointer is allowed to be NULL, as most
1493 targets don't supply this value in their core files. */
1494
1495void
390c1522
UW
1496alpha_supply_int_regs (struct regcache *regcache, int regno,
1497 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1498{
9a3c8263 1499 const gdb_byte *regs = (const gdb_byte *) r0_r30;
98a8e1e5
RH
1500 int i;
1501
1502 for (i = 0; i < 31; ++i)
1503 if (regno == i || regno == -1)
390c1522 1504 regcache_raw_supply (regcache, i, regs + i * 8);
98a8e1e5
RH
1505
1506 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
4a1be8d2
PA
1507 {
1508 const gdb_byte zero[8] = { 0 };
1509
1510 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1511 }
98a8e1e5
RH
1512
1513 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1514 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1515
1516 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
390c1522 1517 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1518}
1519
1520void
390c1522
UW
1521alpha_fill_int_regs (const struct regcache *regcache,
1522 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1523{
9a3c8263 1524 gdb_byte *regs = (gdb_byte *) r0_r30;
98a8e1e5
RH
1525 int i;
1526
1527 for (i = 0; i < 31; ++i)
1528 if (regno == i || regno == -1)
390c1522 1529 regcache_raw_collect (regcache, i, regs + i * 8);
98a8e1e5
RH
1530
1531 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1532 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1533
1534 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
390c1522 1535 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1536}
1537
1538void
390c1522
UW
1539alpha_supply_fp_regs (struct regcache *regcache, int regno,
1540 const void *f0_f30, const void *fpcr)
98a8e1e5 1541{
9a3c8263 1542 const gdb_byte *regs = (const gdb_byte *) f0_f30;
98a8e1e5
RH
1543 int i;
1544
1545 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1546 if (regno == i || regno == -1)
390c1522 1547 regcache_raw_supply (regcache, i,
2a1ce6ec 1548 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1549
1550 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1551 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1552}
1553
1554void
390c1522
UW
1555alpha_fill_fp_regs (const struct regcache *regcache,
1556 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1557{
9a3c8263 1558 gdb_byte *regs = (gdb_byte *) f0_f30;
98a8e1e5
RH
1559 int i;
1560
1561 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1562 if (regno == i || regno == -1)
390c1522 1563 regcache_raw_collect (regcache, i,
2a1ce6ec 1564 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1565
1566 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1567 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1568}
1569
d2427a71 1570\f
0de94d4b
JB
1571
1572/* Return nonzero if the G_floating register value in REG is equal to
1573 zero for FP control instructions. */
1574
1575static int
1576fp_register_zero_p (LONGEST reg)
1577{
1578 /* Check that all bits except the sign bit are zero. */
1579 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1580
1581 return ((reg & zero_mask) == 0);
1582}
1583
1584/* Return the value of the sign bit for the G_floating register
1585 value held in REG. */
1586
1587static int
1588fp_register_sign_bit (LONGEST reg)
1589{
1590 const LONGEST sign_mask = (LONGEST) 1 << 63;
1591
1592 return ((reg & sign_mask) != 0);
1593}
1594
ec32e4be
JT
1595/* alpha_software_single_step() is called just before we want to resume
1596 the inferior, if we want to single-step it but there is no hardware
1597 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1598 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1599
1600static CORE_ADDR
0b1b3e42 1601alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
ec32e4be 1602{
e17a4113 1603 struct gdbarch *gdbarch = get_frame_arch (frame);
ec32e4be
JT
1604 unsigned int insn;
1605 unsigned int op;
551e4f2e 1606 int regno;
ec32e4be
JT
1607 int offset;
1608 LONGEST rav;
1609
e17a4113 1610 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1611
0963b4bd 1612 /* Opcode is top 6 bits. */
ec32e4be
JT
1613 op = (insn >> 26) & 0x3f;
1614
1615 if (op == 0x1a)
1616 {
1617 /* Jump format: target PC is:
1618 RB & ~3 */
0b1b3e42 1619 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1620 }
1621
1622 if ((op & 0x30) == 0x30)
1623 {
1624 /* Branch format: target PC is:
1625 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1626 if (op == 0x30 /* BR */
1627 || op == 0x34) /* BSR */
ec32e4be
JT
1628 {
1629 branch_taken:
1630 offset = (insn & 0x001fffff);
1631 if (offset & 0x00100000)
1632 offset |= 0xffe00000;
e8d2d628
MK
1633 offset *= ALPHA_INSN_SIZE;
1634 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1635 }
1636
1637 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1638 regno = (insn >> 21) & 0x1f;
1639 switch (op)
1640 {
1641 case 0x31: /* FBEQ */
1642 case 0x36: /* FBGE */
1643 case 0x37: /* FBGT */
1644 case 0x33: /* FBLE */
1645 case 0x32: /* FBLT */
1646 case 0x35: /* FBNE */
e17a4113 1647 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1648 }
1649
0b1b3e42 1650 rav = get_frame_register_signed (frame, regno);
0de94d4b 1651
ec32e4be
JT
1652 switch (op)
1653 {
1654 case 0x38: /* BLBC */
1655 if ((rav & 1) == 0)
1656 goto branch_taken;
1657 break;
1658 case 0x3c: /* BLBS */
1659 if (rav & 1)
1660 goto branch_taken;
1661 break;
1662 case 0x39: /* BEQ */
1663 if (rav == 0)
1664 goto branch_taken;
1665 break;
1666 case 0x3d: /* BNE */
1667 if (rav != 0)
1668 goto branch_taken;
1669 break;
1670 case 0x3a: /* BLT */
1671 if (rav < 0)
1672 goto branch_taken;
1673 break;
1674 case 0x3b: /* BLE */
1675 if (rav <= 0)
1676 goto branch_taken;
1677 break;
1678 case 0x3f: /* BGT */
1679 if (rav > 0)
1680 goto branch_taken;
1681 break;
1682 case 0x3e: /* BGE */
1683 if (rav >= 0)
1684 goto branch_taken;
1685 break;
d2427a71 1686
0de94d4b
JB
1687 /* Floating point branches. */
1688
1689 case 0x31: /* FBEQ */
1690 if (fp_register_zero_p (rav))
1691 goto branch_taken;
1692 break;
1693 case 0x36: /* FBGE */
1694 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1695 goto branch_taken;
1696 break;
1697 case 0x37: /* FBGT */
1698 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1699 goto branch_taken;
1700 break;
1701 case 0x33: /* FBLE */
1702 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1703 goto branch_taken;
1704 break;
1705 case 0x32: /* FBLT */
1706 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1707 goto branch_taken;
1708 break;
1709 case 0x35: /* FBNE */
1710 if (! fp_register_zero_p (rav))
1711 goto branch_taken;
1712 break;
ec32e4be
JT
1713 }
1714 }
1715
1716 /* Not a branch or branch not taken; target PC is:
1717 pc + 4 */
e8d2d628 1718 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1719}
1720
e6590a1b 1721int
0b1b3e42 1722alpha_software_single_step (struct frame_info *frame)
ec32e4be 1723{
a6d9a66e 1724 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1725 struct address_space *aspace = get_frame_address_space (frame);
e0cd558a 1726 CORE_ADDR pc, next_pc;
ec32e4be 1727
0b1b3e42
UW
1728 pc = get_frame_pc (frame);
1729 next_pc = alpha_next_pc (frame, pc);
ec32e4be 1730
6c95b8df 1731 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b 1732 return 1;
c906108c
SS
1733}
1734
dc129d82 1735\f
dc129d82
JT
1736/* Initialize the current architecture based on INFO. If possible, re-use an
1737 architecture from ARCHES, which is a list of architectures already created
1738 during this debugging session.
1739
1740 Called e.g. at program startup, when reading a core file, and when reading
1741 a binary file. */
1742
1743static struct gdbarch *
1744alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1745{
1746 struct gdbarch_tdep *tdep;
1747 struct gdbarch *gdbarch;
dc129d82 1748
dc129d82 1749 /* Find a candidate among extant architectures. */
4be87837
DJ
1750 arches = gdbarch_list_lookup_by_info (arches, &info);
1751 if (arches != NULL)
1752 return arches->gdbarch;
dc129d82 1753
8d749320 1754 tdep = XNEW (struct gdbarch_tdep);
dc129d82
JT
1755 gdbarch = gdbarch_alloc (&info, tdep);
1756
d2427a71
RH
1757 /* Lowest text address. This is used by heuristic_proc_start()
1758 to decide when to stop looking. */
594706e6 1759 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1760
36a6271d 1761 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1762 tdep->sigcontext_addr = NULL;
138e7be5
MK
1763 tdep->sc_pc_offset = 2 * 8;
1764 tdep->sc_regs_offset = 4 * 8;
1765 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1766
0963b4bd 1767 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1768
9823e921
RH
1769 tdep->return_in_memory = alpha_return_in_memory_always;
1770
dc129d82
JT
1771 /* Type sizes */
1772 set_gdbarch_short_bit (gdbarch, 16);
1773 set_gdbarch_int_bit (gdbarch, 32);
1774 set_gdbarch_long_bit (gdbarch, 64);
1775 set_gdbarch_long_long_bit (gdbarch, 64);
1776 set_gdbarch_float_bit (gdbarch, 32);
1777 set_gdbarch_double_bit (gdbarch, 64);
1778 set_gdbarch_long_double_bit (gdbarch, 64);
1779 set_gdbarch_ptr_bit (gdbarch, 64);
1780
1781 /* Register info */
1782 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1783 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1784 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1785 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1786
1787 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1788 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1789
1790 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1791 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1792
c483c494
RH
1793 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1794 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1795 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1796
615967cb
RH
1797 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1798
d2427a71 1799 /* Prologue heuristics. */
dc129d82
JT
1800 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1801
5ef165c2
RH
1802 /* Disassembler. */
1803 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1804
d2427a71 1805 /* Call info. */
dc129d82 1806
9823e921 1807 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1808
1809 /* Settings for calling functions in the inferior. */
c88e30c0 1810 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1811
1812 /* Methods for saving / extracting a dummy frame's ID. */
6834c9bb 1813 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
d2427a71
RH
1814
1815 /* Return the unwound PC value. */
1816 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1817
1818 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1819 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1820
04180708
YQ
1821 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1822 alpha_breakpoint::kind_from_pc);
1823 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1824 alpha_breakpoint::bp_from_kind);
e8d2d628 1825 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1826 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1827
46ad3598
UW
1828 /* Handles single stepping of atomic sequences. */
1829 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1830
44dffaac 1831 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1832 gdbarch_init_osabi (info, gdbarch);
44dffaac 1833
accc6d1f
JT
1834 /* Now that we have tuned the configuration, set a few final things
1835 based on what the OS ABI has told us. */
1836
1837 if (tdep->jb_pc >= 0)
1838 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1839
6834c9bb
JB
1840 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1841 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1842
d2427a71 1843 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1844
d2427a71 1845 return gdbarch;
dc129d82
JT
1846}
1847
baa490c4
RH
1848void
1849alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1850{
6834c9bb 1851 dwarf2_append_unwinders (gdbarch);
336d1bba 1852 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1853}
1854
a78f21af
AC
1855extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1856
c906108c 1857void
fba45db2 1858_initialize_alpha_tdep (void)
c906108c 1859{
c906108c 1860
d2427a71 1861 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1862
1863 /* Let the user set the fence post for heuristic_proc_start. */
1864
1865 /* We really would like to have both "0" and "unlimited" work, but
1866 command.c doesn't deal with that. So make it a var_zinteger
1867 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1868 /* We need to throw away the frame cache when we set this, since it
1869 might change our ability to get backtraces. */
1870 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1871 &heuristic_fence_post, _("\
1872Set the distance searched for the start of a function."), _("\
1873Show the distance searched for the start of a function."), _("\
c906108c
SS
1874If you are debugging a stripped executable, GDB needs to search through the\n\
1875program for the start of a function. This command sets the distance of the\n\
323e0a4a 1876search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1877 reinit_frame_cache_sfunc,
0963b4bd
MS
1878 NULL, /* FIXME: i18n: The distance searched for
1879 the start of a function is \"%d\". */
edefbb7c 1880 &setlist, &showlist);
c906108c 1881}