]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: Unit Tests - remove backup-file during grow command
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb
DW
43
44#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45#define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
8e59f3d8 54#define MPB_SECTOR_CNT 2210
c2c087e6 55#define IMSM_RESERVED_SECTORS 4096
979d38be 56#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
57
58/* Disk configuration info. */
59#define IMSM_MAX_DEVICES 255
60struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
64#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 67 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71};
72
73/* RAID map configuration infos. */
74struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80#define IMSM_T_STATE_NORMAL 0
81#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
82#define IMSM_T_STATE_DEGRADED 2
83#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
84 __u8 raid_level;
85#define IMSM_T_RAID0 0
86#define IMSM_T_RAID1 1
87#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 91 __u8 ddf;
cdddbdbc 92 __u32 filler[7]; /* expansion area */
7eef0453 93#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
95 * top byte contains some flags
96 */
cdddbdbc
DW
97} __attribute__ ((packed));
98
99struct imsm_vol {
f8f603f1 100 __u32 curr_migr_unit;
fe7ed8cb 101 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 102 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
103#define MIGR_INIT 0
104#define MIGR_REBUILD 1
105#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106#define MIGR_GEN_MIGR 3
107#define MIGR_STATE_CHANGE 4
1484e727 108#define MIGR_REPAIR 5
cdddbdbc
DW
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
fe7ed8cb
DW
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
cdddbdbc
DW
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117} __attribute__ ((packed));
118
119struct imsm_dev {
fe7ed8cb 120 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
121 __u32 size_low;
122 __u32 size_high;
fe7ed8cb
DW
123#define DEV_BOOTABLE __cpu_to_le32(0x01)
124#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125#define DEV_READ_COALESCING __cpu_to_le32(0x04)
126#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148} __attribute__ ((packed));
149
150struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166#define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
604b746f 170 /* here comes BBM logs */
cdddbdbc
DW
171} __attribute__ ((packed));
172
604b746f
JD
173#define BBM_LOG_MAX_ENTRIES 254
174
175struct bbm_log_entry {
176 __u64 defective_block_start;
177#define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181} __attribute__ ((__packed__));
182
183struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190} __attribute__ ((__packed__));
191
192
cdddbdbc
DW
193#ifndef MDASSEMBLE
194static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195#endif
196
8e59f3d8
AK
197#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
198
199#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
200
201#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
202 * be recovered using srcMap */
203#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
204 * already been migrated and must
205 * be recovered from checkpoint area */
206struct migr_record {
207 __u32 rec_status; /* Status used to determine how to restart
208 * migration in case it aborts
209 * in some fashion */
210 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
211 __u32 family_num; /* Family number of MPB
212 * containing the RaidDev
213 * that is migrating */
214 __u32 ascending_migr; /* True if migrating in increasing
215 * order of lbas */
216 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
217 __u32 dest_depth_per_unit; /* Num member blocks each destMap
218 * member disk
219 * advances per unit-of-operation */
220 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
221 __u32 dest_1st_member_lba; /* First member lba on first
222 * stripe of destination */
223 __u32 num_migr_units; /* Total num migration units-of-op */
224 __u32 post_migr_vol_cap; /* Size of volume after
225 * migration completes */
226 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
227 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
228 * migration ckpt record was read from
229 * (for recovered migrations) */
230} __attribute__ ((__packed__));
231
1484e727
DW
232static __u8 migr_type(struct imsm_dev *dev)
233{
234 if (dev->vol.migr_type == MIGR_VERIFY &&
235 dev->status & DEV_VERIFY_AND_FIX)
236 return MIGR_REPAIR;
237 else
238 return dev->vol.migr_type;
239}
240
241static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
242{
243 /* for compatibility with older oroms convert MIGR_REPAIR, into
244 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
245 */
246 if (migr_type == MIGR_REPAIR) {
247 dev->vol.migr_type = MIGR_VERIFY;
248 dev->status |= DEV_VERIFY_AND_FIX;
249 } else {
250 dev->vol.migr_type = migr_type;
251 dev->status &= ~DEV_VERIFY_AND_FIX;
252 }
253}
254
87eb16df 255static unsigned int sector_count(__u32 bytes)
cdddbdbc 256{
87eb16df
DW
257 return ((bytes + (512-1)) & (~(512-1))) / 512;
258}
cdddbdbc 259
87eb16df
DW
260static unsigned int mpb_sectors(struct imsm_super *mpb)
261{
262 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
263}
264
ba2de7ba
DW
265struct intel_dev {
266 struct imsm_dev *dev;
267 struct intel_dev *next;
f21e18ca 268 unsigned index;
ba2de7ba
DW
269};
270
88654014
LM
271struct intel_hba {
272 enum sys_dev_type type;
273 char *path;
274 char *pci_id;
275 struct intel_hba *next;
276};
277
1a64be56
LM
278enum action {
279 DISK_REMOVE = 1,
280 DISK_ADD
281};
cdddbdbc
DW
282/* internal representation of IMSM metadata */
283struct intel_super {
284 union {
949c47a0
DW
285 void *buf; /* O_DIRECT buffer for reading/writing metadata */
286 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 287 };
8e59f3d8
AK
288 union {
289 void *migr_rec_buf; /* buffer for I/O operations */
290 struct migr_record *migr_rec; /* migration record */
291 };
949c47a0 292 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
293 void *next_buf; /* for realloc'ing buf from the manager */
294 size_t next_len;
c2c087e6 295 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 296 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 297 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 298 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 299 struct intel_dev *devlist;
cdddbdbc
DW
300 struct dl {
301 struct dl *next;
302 int index;
303 __u8 serial[MAX_RAID_SERIAL_LEN];
304 int major, minor;
305 char *devname;
b9f594fe 306 struct imsm_disk disk;
cdddbdbc 307 int fd;
0dcecb2e
DW
308 int extent_cnt;
309 struct extent *e; /* for determining freespace @ create */
efb30e7f 310 int raiddisk; /* slot to fill in autolayout */
1a64be56 311 enum action action;
cdddbdbc 312 } *disks;
1a64be56
LM
313 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
314 active */
47ee5a45 315 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 316 struct bbm_log *bbm_log;
88654014 317 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 318 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
319 struct intel_super *next; /* (temp) list for disambiguating family_num */
320};
321
322struct intel_disk {
323 struct imsm_disk disk;
324 #define IMSM_UNKNOWN_OWNER (-1)
325 int owner;
326 struct intel_disk *next;
cdddbdbc
DW
327};
328
c2c087e6
DW
329struct extent {
330 unsigned long long start, size;
331};
332
694575e7
KW
333/* definitions of reshape process types */
334enum imsm_reshape_type {
335 CH_TAKEOVER,
b5347799 336 CH_MIGRATION,
694575e7
KW
337};
338
88758e9d
DW
339/* definition of messages passed to imsm_process_update */
340enum imsm_update_type {
341 update_activate_spare,
8273f55e 342 update_create_array,
33414a01 343 update_kill_array,
aa534678 344 update_rename_array,
1a64be56 345 update_add_remove_disk,
78b10e66 346 update_reshape_container_disks,
48c5303a 347 update_reshape_migration,
2d40f3a1
AK
348 update_takeover,
349 update_general_migration_checkpoint,
88758e9d
DW
350};
351
352struct imsm_update_activate_spare {
353 enum imsm_update_type type;
d23fe947 354 struct dl *dl;
88758e9d
DW
355 int slot;
356 int array;
357 struct imsm_update_activate_spare *next;
358};
359
78b10e66
N
360struct geo_params {
361 int dev_id;
362 char *dev_name;
363 long long size;
364 int level;
365 int layout;
366 int chunksize;
367 int raid_disks;
368};
369
bb025c2f
KW
370enum takeover_direction {
371 R10_TO_R0,
372 R0_TO_R10
373};
374struct imsm_update_takeover {
375 enum imsm_update_type type;
376 int subarray;
377 enum takeover_direction direction;
378};
78b10e66
N
379
380struct imsm_update_reshape {
381 enum imsm_update_type type;
382 int old_raid_disks;
383 int new_raid_disks;
48c5303a
PC
384
385 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
386};
387
388struct imsm_update_reshape_migration {
389 enum imsm_update_type type;
390 int old_raid_disks;
391 int new_raid_disks;
392 /* fields for array migration changes
393 */
394 int subdev;
395 int new_level;
396 int new_layout;
4bba0439 397 int new_chunksize;
48c5303a 398
d195167d 399 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
400};
401
2d40f3a1
AK
402struct imsm_update_general_migration_checkpoint {
403 enum imsm_update_type type;
404 __u32 curr_migr_unit;
405};
406
54c2c1ea
DW
407struct disk_info {
408 __u8 serial[MAX_RAID_SERIAL_LEN];
409};
410
8273f55e
DW
411struct imsm_update_create_array {
412 enum imsm_update_type type;
8273f55e 413 int dev_idx;
6a3e913e 414 struct imsm_dev dev;
8273f55e
DW
415};
416
33414a01
DW
417struct imsm_update_kill_array {
418 enum imsm_update_type type;
419 int dev_idx;
420};
421
aa534678
DW
422struct imsm_update_rename_array {
423 enum imsm_update_type type;
424 __u8 name[MAX_RAID_SERIAL_LEN];
425 int dev_idx;
426};
427
1a64be56 428struct imsm_update_add_remove_disk {
43dad3d6
DW
429 enum imsm_update_type type;
430};
431
88654014
LM
432
433static const char *_sys_dev_type[] = {
434 [SYS_DEV_UNKNOWN] = "Unknown",
435 [SYS_DEV_SAS] = "SAS",
436 [SYS_DEV_SATA] = "SATA"
437};
438
439const char *get_sys_dev_type(enum sys_dev_type type)
440{
441 if (type >= SYS_DEV_MAX)
442 type = SYS_DEV_UNKNOWN;
443
444 return _sys_dev_type[type];
445}
446
447static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
448{
449 struct intel_hba *result = malloc(sizeof(*result));
450 if (result) {
451 result->type = device->type;
452 result->path = strdup(device->path);
453 result->next = NULL;
454 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
455 result->pci_id++;
456 }
457 return result;
458}
459
460static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
461{
462 struct intel_hba *result=NULL;
463 for (result = hba; result; result = result->next) {
464 if (result->type == device->type && strcmp(result->path, device->path) == 0)
465 break;
466 }
467 return result;
468}
469
b4cf4cba 470static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
471{
472 struct intel_hba *hba;
473
474 /* check if disk attached to Intel HBA */
475 hba = find_intel_hba(super->hba, device);
476 if (hba != NULL)
477 return 1;
478 /* Check if HBA is already attached to super */
479 if (super->hba == NULL) {
480 super->hba = alloc_intel_hba(device);
481 return 1;
482 }
483
484 hba = super->hba;
485 /* Intel metadata allows for all disks attached to the same type HBA.
486 * Do not sypport odf HBA types mixing
487 */
488 if (device->type != hba->type)
489 return 2;
490
491 while (hba->next)
492 hba = hba->next;
493
494 hba->next = alloc_intel_hba(device);
495 return 1;
496}
497
498static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
499{
500 struct sys_dev *list, *elem, *prev;
501 char *disk_path;
502
503 if ((list = find_intel_devices()) == NULL)
504 return 0;
505
506 if (fd < 0)
507 disk_path = (char *) devname;
508 else
509 disk_path = diskfd_to_devpath(fd);
510
511 if (!disk_path) {
512 free_sys_dev(&list);
513 return 0;
514 }
515
516 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
517 if (path_attached_to_hba(disk_path, elem->path)) {
518 if (prev == NULL)
519 list = list->next;
520 else
521 prev->next = elem->next;
522 elem->next = NULL;
523 if (disk_path != devname)
524 free(disk_path);
525 free_sys_dev(&list);
526 return elem;
527 }
528 }
529 if (disk_path != devname)
530 free(disk_path);
531 free_sys_dev(&list);
532
533 return NULL;
534}
535
536
d424212e
N
537static int find_intel_hba_capability(int fd, struct intel_super *super,
538 char *devname);
f2f5c343 539
cdddbdbc
DW
540static struct supertype *match_metadata_desc_imsm(char *arg)
541{
542 struct supertype *st;
543
544 if (strcmp(arg, "imsm") != 0 &&
545 strcmp(arg, "default") != 0
546 )
547 return NULL;
548
549 st = malloc(sizeof(*st));
4e9d2186
AW
550 if (!st)
551 return NULL;
ef609477 552 memset(st, 0, sizeof(*st));
d1d599ea 553 st->container_dev = NoMdDev;
cdddbdbc
DW
554 st->ss = &super_imsm;
555 st->max_devs = IMSM_MAX_DEVICES;
556 st->minor_version = 0;
557 st->sb = NULL;
558 return st;
559}
560
0e600426 561#ifndef MDASSEMBLE
cdddbdbc
DW
562static __u8 *get_imsm_version(struct imsm_super *mpb)
563{
564 return &mpb->sig[MPB_SIG_LEN];
565}
0e600426 566#endif
cdddbdbc 567
949c47a0
DW
568/* retrieve a disk directly from the anchor when the anchor is known to be
569 * up-to-date, currently only at load time
570 */
571static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 572{
949c47a0 573 if (index >= mpb->num_disks)
cdddbdbc
DW
574 return NULL;
575 return &mpb->disk[index];
576}
577
95d07a2c
LM
578/* retrieve the disk description based on a index of the disk
579 * in the sub-array
580 */
581static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 582{
b9f594fe
DW
583 struct dl *d;
584
585 for (d = super->disks; d; d = d->next)
586 if (d->index == index)
95d07a2c
LM
587 return d;
588
589 return NULL;
590}
591/* retrieve a disk from the parsed metadata */
592static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
593{
594 struct dl *dl;
595
596 dl = get_imsm_dl_disk(super, index);
597 if (dl)
598 return &dl->disk;
599
b9f594fe 600 return NULL;
949c47a0
DW
601}
602
603/* generate a checksum directly from the anchor when the anchor is known to be
604 * up-to-date, currently only at load or write_super after coalescing
605 */
606static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
607{
608 __u32 end = mpb->mpb_size / sizeof(end);
609 __u32 *p = (__u32 *) mpb;
610 __u32 sum = 0;
611
97f734fd
N
612 while (end--) {
613 sum += __le32_to_cpu(*p);
614 p++;
615 }
cdddbdbc
DW
616
617 return sum - __le32_to_cpu(mpb->check_sum);
618}
619
a965f303
DW
620static size_t sizeof_imsm_map(struct imsm_map *map)
621{
622 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
623}
624
625struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 626{
5e7b0330
AK
627 /* A device can have 2 maps if it is in the middle of a migration.
628 * If second_map is:
629 * 0 - we return the first map
630 * 1 - we return the second map if it exists, else NULL
631 * -1 - we return the second map if it exists, else the first
632 */
a965f303
DW
633 struct imsm_map *map = &dev->vol.map[0];
634
5e7b0330 635 if (second_map == 1 && !dev->vol.migr_state)
a965f303 636 return NULL;
5e7b0330
AK
637 else if (second_map == 1 ||
638 (second_map < 0 && dev->vol.migr_state)) {
a965f303
DW
639 void *ptr = map;
640
641 return ptr + sizeof_imsm_map(map);
642 } else
643 return map;
5e7b0330 644
a965f303 645}
cdddbdbc 646
3393c6af
DW
647/* return the size of the device.
648 * migr_state increases the returned size if map[0] were to be duplicated
649 */
650static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
651{
652 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
653 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
654
655 /* migrating means an additional map */
a965f303
DW
656 if (dev->vol.migr_state)
657 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
658 else if (migr_state)
659 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
660
661 return size;
662}
663
54c2c1ea
DW
664#ifndef MDASSEMBLE
665/* retrieve disk serial number list from a metadata update */
666static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
667{
668 void *u = update;
669 struct disk_info *inf;
670
671 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
672 sizeof_imsm_dev(&update->dev, 0);
673
674 return inf;
675}
676#endif
677
949c47a0 678static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
679{
680 int offset;
681 int i;
682 void *_mpb = mpb;
683
949c47a0 684 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
685 return NULL;
686
687 /* devices start after all disks */
688 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
689
690 for (i = 0; i <= index; i++)
691 if (i == index)
692 return _mpb + offset;
693 else
3393c6af 694 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
695
696 return NULL;
697}
698
949c47a0
DW
699static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
700{
ba2de7ba
DW
701 struct intel_dev *dv;
702
949c47a0
DW
703 if (index >= super->anchor->num_raid_devs)
704 return NULL;
ba2de7ba
DW
705 for (dv = super->devlist; dv; dv = dv->next)
706 if (dv->index == index)
707 return dv->dev;
708 return NULL;
949c47a0
DW
709}
710
98130f40
AK
711/*
712 * for second_map:
713 * == 0 get first map
714 * == 1 get second map
715 * == -1 than get map according to the current migr_state
716 */
717static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
718 int slot,
719 int second_map)
7eef0453
DW
720{
721 struct imsm_map *map;
722
5e7b0330 723 map = get_imsm_map(dev, second_map);
7eef0453 724
ff077194
DW
725 /* top byte identifies disk under rebuild */
726 return __le32_to_cpu(map->disk_ord_tbl[slot]);
727}
728
729#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 730static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 731{
98130f40 732 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
733
734 return ord_to_idx(ord);
7eef0453
DW
735}
736
be73972f
DW
737static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
738{
739 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
740}
741
f21e18ca 742static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
743{
744 int slot;
745 __u32 ord;
746
747 for (slot = 0; slot < map->num_members; slot++) {
748 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
749 if (ord_to_idx(ord) == idx)
750 return slot;
751 }
752
753 return -1;
754}
755
cdddbdbc
DW
756static int get_imsm_raid_level(struct imsm_map *map)
757{
758 if (map->raid_level == 1) {
759 if (map->num_members == 2)
760 return 1;
761 else
762 return 10;
763 }
764
765 return map->raid_level;
766}
767
c2c087e6
DW
768static int cmp_extent(const void *av, const void *bv)
769{
770 const struct extent *a = av;
771 const struct extent *b = bv;
772 if (a->start < b->start)
773 return -1;
774 if (a->start > b->start)
775 return 1;
776 return 0;
777}
778
0dcecb2e 779static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 780{
c2c087e6 781 int memberships = 0;
620b1713 782 int i;
c2c087e6 783
949c47a0
DW
784 for (i = 0; i < super->anchor->num_raid_devs; i++) {
785 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 786 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 787
620b1713
DW
788 if (get_imsm_disk_slot(map, dl->index) >= 0)
789 memberships++;
c2c087e6 790 }
0dcecb2e
DW
791
792 return memberships;
793}
794
795static struct extent *get_extents(struct intel_super *super, struct dl *dl)
796{
797 /* find a list of used extents on the given physical device */
798 struct extent *rv, *e;
620b1713 799 int i;
0dcecb2e
DW
800 int memberships = count_memberships(dl, super);
801 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
802
c2c087e6
DW
803 rv = malloc(sizeof(struct extent) * (memberships + 1));
804 if (!rv)
805 return NULL;
806 e = rv;
807
949c47a0
DW
808 for (i = 0; i < super->anchor->num_raid_devs; i++) {
809 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 810 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 811
620b1713
DW
812 if (get_imsm_disk_slot(map, dl->index) >= 0) {
813 e->start = __le32_to_cpu(map->pba_of_lba0);
814 e->size = __le32_to_cpu(map->blocks_per_member);
815 e++;
c2c087e6
DW
816 }
817 }
818 qsort(rv, memberships, sizeof(*rv), cmp_extent);
819
14e8215b
DW
820 /* determine the start of the metadata
821 * when no raid devices are defined use the default
822 * ...otherwise allow the metadata to truncate the value
823 * as is the case with older versions of imsm
824 */
825 if (memberships) {
826 struct extent *last = &rv[memberships - 1];
827 __u32 remainder;
828
829 remainder = __le32_to_cpu(dl->disk.total_blocks) -
830 (last->start + last->size);
dda5855f
DW
831 /* round down to 1k block to satisfy precision of the kernel
832 * 'size' interface
833 */
834 remainder &= ~1UL;
835 /* make sure remainder is still sane */
f21e18ca 836 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 837 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
838 if (reservation > remainder)
839 reservation = remainder;
840 }
841 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
842 e->size = 0;
843 return rv;
844}
845
14e8215b
DW
846/* try to determine how much space is reserved for metadata from
847 * the last get_extents() entry, otherwise fallback to the
848 * default
849 */
850static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
851{
852 struct extent *e;
853 int i;
854 __u32 rv;
855
856 /* for spares just return a minimal reservation which will grow
857 * once the spare is picked up by an array
858 */
859 if (dl->index == -1)
860 return MPB_SECTOR_CNT;
861
862 e = get_extents(super, dl);
863 if (!e)
864 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
865
866 /* scroll to last entry */
867 for (i = 0; e[i].size; i++)
868 continue;
869
870 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
871
872 free(e);
873
874 return rv;
875}
876
25ed7e59
DW
877static int is_spare(struct imsm_disk *disk)
878{
879 return (disk->status & SPARE_DISK) == SPARE_DISK;
880}
881
882static int is_configured(struct imsm_disk *disk)
883{
884 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
885}
886
887static int is_failed(struct imsm_disk *disk)
888{
889 return (disk->status & FAILED_DISK) == FAILED_DISK;
890}
891
80e7f8c3
AC
892/* Return minimum size of a spare that can be used in this array*/
893static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
894{
895 struct intel_super *super = st->sb;
896 struct dl *dl;
897 struct extent *e;
898 int i;
899 unsigned long long rv = 0;
900
901 if (!super)
902 return rv;
903 /* find first active disk in array */
904 dl = super->disks;
905 while (dl && (is_failed(&dl->disk) || dl->index == -1))
906 dl = dl->next;
907 if (!dl)
908 return rv;
909 /* find last lba used by subarrays */
910 e = get_extents(super, dl);
911 if (!e)
912 return rv;
913 for (i = 0; e[i].size; i++)
914 continue;
915 if (i > 0)
916 rv = e[i-1].start + e[i-1].size;
917 free(e);
918 /* add the amount of space needed for metadata */
919 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
920 return rv * 512;
921}
922
1799c9e8 923#ifndef MDASSEMBLE
c47b0ff6
AK
924static __u64 blocks_per_migr_unit(struct intel_super *super,
925 struct imsm_dev *dev);
1e5c6983 926
c47b0ff6
AK
927static void print_imsm_dev(struct intel_super *super,
928 struct imsm_dev *dev,
929 char *uuid,
930 int disk_idx)
cdddbdbc
DW
931{
932 __u64 sz;
0d80bb2f 933 int slot, i;
a965f303 934 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 935 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 936 __u32 ord;
cdddbdbc
DW
937
938 printf("\n");
1e7bc0ed 939 printf("[%.16s]:\n", dev->volume);
44470971 940 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
941 printf(" RAID Level : %d", get_imsm_raid_level(map));
942 if (map2)
943 printf(" <-- %d", get_imsm_raid_level(map2));
944 printf("\n");
945 printf(" Members : %d", map->num_members);
946 if (map2)
947 printf(" <-- %d", map2->num_members);
948 printf("\n");
0d80bb2f
DW
949 printf(" Slots : [");
950 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 951 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
952 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
953 }
dd8bcb3b
AK
954 printf("]");
955 if (map2) {
956 printf(" <-- [");
957 for (i = 0; i < map2->num_members; i++) {
958 ord = get_imsm_ord_tbl_ent(dev, i, 1);
959 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
960 }
961 printf("]");
962 }
963 printf("\n");
7095bccb
AK
964 printf(" Failed disk : ");
965 if (map->failed_disk_num == 0xff)
966 printf("none");
967 else
968 printf("%i", map->failed_disk_num);
969 printf("\n");
620b1713
DW
970 slot = get_imsm_disk_slot(map, disk_idx);
971 if (slot >= 0) {
98130f40 972 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
973 printf(" This Slot : %d%s\n", slot,
974 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
975 } else
cdddbdbc
DW
976 printf(" This Slot : ?\n");
977 sz = __le32_to_cpu(dev->size_high);
978 sz <<= 32;
979 sz += __le32_to_cpu(dev->size_low);
980 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
981 human_size(sz * 512));
982 sz = __le32_to_cpu(map->blocks_per_member);
983 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
984 human_size(sz * 512));
985 printf(" Sector Offset : %u\n",
986 __le32_to_cpu(map->pba_of_lba0));
987 printf(" Num Stripes : %u\n",
988 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 989 printf(" Chunk Size : %u KiB",
cdddbdbc 990 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
991 if (map2)
992 printf(" <-- %u KiB",
993 __le16_to_cpu(map2->blocks_per_strip) / 2);
994 printf("\n");
cdddbdbc 995 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 996 printf(" Migrate State : ");
1484e727
DW
997 if (dev->vol.migr_state) {
998 if (migr_type(dev) == MIGR_INIT)
8655a7b1 999 printf("initialize\n");
1484e727 1000 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1001 printf("rebuild\n");
1484e727 1002 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1003 printf("check\n");
1484e727 1004 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1005 printf("general migration\n");
1484e727 1006 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1007 printf("state change\n");
1484e727 1008 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1009 printf("repair\n");
1484e727 1010 else
8655a7b1
DW
1011 printf("<unknown:%d>\n", migr_type(dev));
1012 } else
1013 printf("idle\n");
3393c6af
DW
1014 printf(" Map State : %s", map_state_str[map->map_state]);
1015 if (dev->vol.migr_state) {
1016 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1017
b10b37b8 1018 printf(" <-- %s", map_state_str[map->map_state]);
1e5c6983
DW
1019 printf("\n Checkpoint : %u (%llu)",
1020 __le32_to_cpu(dev->vol.curr_migr_unit),
c47b0ff6 1021 (unsigned long long)blocks_per_migr_unit(super, dev));
3393c6af
DW
1022 }
1023 printf("\n");
cdddbdbc 1024 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1025}
1026
14e8215b 1027static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
cdddbdbc 1028{
949c47a0 1029 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1f24f035 1030 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1031 __u64 sz;
1032
d362da3d 1033 if (index < 0 || !disk)
e9d82038
DW
1034 return;
1035
cdddbdbc 1036 printf("\n");
1f24f035 1037 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
cdddbdbc 1038 printf(" Disk%02d Serial : %s\n", index, str);
25ed7e59
DW
1039 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1040 is_configured(disk) ? " active" : "",
1041 is_failed(disk) ? " failed" : "");
cdddbdbc 1042 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1043 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1044 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1045 human_size(sz * 512));
1046}
1047
520e69e2
AK
1048static int is_gen_migration(struct imsm_dev *dev);
1049
1050void examine_migr_rec_imsm(struct intel_super *super)
1051{
1052 struct migr_record *migr_rec = super->migr_rec;
1053 struct imsm_super *mpb = super->anchor;
1054 int i;
1055
1056 for (i = 0; i < mpb->num_raid_devs; i++) {
1057 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1058 if (is_gen_migration(dev) == 0)
1059 continue;
1060
1061 printf("\nMigration Record Information:");
1062 if (super->disks->index > 1) {
1063 printf(" Empty\n ");
1064 printf("Examine one of first two disks in array\n");
1065 break;
1066 }
1067 printf("\n Status : ");
1068 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1069 printf("Normal\n");
1070 else
1071 printf("Contains Data\n");
1072 printf(" Current Unit : %u\n",
1073 __le32_to_cpu(migr_rec->curr_migr_unit));
1074 printf(" Family : %u\n",
1075 __le32_to_cpu(migr_rec->family_num));
1076 printf(" Ascending : %u\n",
1077 __le32_to_cpu(migr_rec->ascending_migr));
1078 printf(" Blocks Per Unit : %u\n",
1079 __le32_to_cpu(migr_rec->blocks_per_unit));
1080 printf(" Dest. Depth Per Unit : %u\n",
1081 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1082 printf(" Checkpoint Area pba : %u\n",
1083 __le32_to_cpu(migr_rec->ckpt_area_pba));
1084 printf(" First member lba : %u\n",
1085 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1086 printf(" Total Number of Units : %u\n",
1087 __le32_to_cpu(migr_rec->num_migr_units));
1088 printf(" Size of volume : %u\n",
1089 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1090 printf(" Expansion space for LBA64 : %u\n",
1091 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1092 printf(" Record was read from : %u\n",
1093 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1094
1095 break;
1096 }
1097}
1098
a5d85af7 1099static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1100
cdddbdbc
DW
1101static void examine_super_imsm(struct supertype *st, char *homehost)
1102{
1103 struct intel_super *super = st->sb;
949c47a0 1104 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1105 char str[MAX_SIGNATURE_LENGTH];
1106 int i;
27fd6274
DW
1107 struct mdinfo info;
1108 char nbuf[64];
cdddbdbc 1109 __u32 sum;
14e8215b 1110 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1111 struct dl *dl;
27fd6274 1112
cdddbdbc
DW
1113 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1114 printf(" Magic : %s\n", str);
1115 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1116 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1117 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1118 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1119 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
a5d85af7 1120 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1121 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1122 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1123 sum = __le32_to_cpu(mpb->check_sum);
1124 printf(" Checksum : %08x %s\n", sum,
949c47a0 1125 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1126 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1127 printf(" Disks : %d\n", mpb->num_disks);
1128 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
14e8215b 1129 print_imsm_disk(mpb, super->disks->index, reserved);
604b746f
JD
1130 if (super->bbm_log) {
1131 struct bbm_log *log = super->bbm_log;
1132
1133 printf("\n");
1134 printf("Bad Block Management Log:\n");
1135 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1136 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1137 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1138 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1139 printf(" First Spare : %llx\n",
1140 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1141 }
44470971
DW
1142 for (i = 0; i < mpb->num_raid_devs; i++) {
1143 struct mdinfo info;
1144 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1145
1146 super->current_vol = i;
a5d85af7 1147 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1148 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1149 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1150 }
cdddbdbc
DW
1151 for (i = 0; i < mpb->num_disks; i++) {
1152 if (i == super->disks->index)
1153 continue;
14e8215b 1154 print_imsm_disk(mpb, i, reserved);
cdddbdbc 1155 }
94827db3
N
1156 for (dl = super->disks ; dl; dl = dl->next) {
1157 struct imsm_disk *disk;
1158 char str[MAX_RAID_SERIAL_LEN + 1];
1159 __u64 sz;
1160
1161 if (dl->index >= 0)
1162 continue;
1163
1164 disk = &dl->disk;
1165 printf("\n");
1166 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1167 printf(" Disk Serial : %s\n", str);
1168 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1169 is_configured(disk) ? " active" : "",
1170 is_failed(disk) ? " failed" : "");
1171 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1172 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1173 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1174 human_size(sz * 512));
1175 }
520e69e2
AK
1176
1177 examine_migr_rec_imsm(super);
cdddbdbc
DW
1178}
1179
061f2c6a 1180static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1181{
27fd6274 1182 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1183 struct mdinfo info;
1184 char nbuf[64];
1e7bc0ed 1185 struct intel_super *super = st->sb;
1e7bc0ed 1186
0d5a423f
DW
1187 if (!super->anchor->num_raid_devs) {
1188 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1189 return;
0d5a423f 1190 }
ff54de6e 1191
a5d85af7 1192 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1193 fname_from_uuid(st, &info, nbuf, ':');
1194 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1195}
1196
1197static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1198{
1199 /* We just write a generic IMSM ARRAY entry */
1200 struct mdinfo info;
1201 char nbuf[64];
1202 char nbuf1[64];
1203 struct intel_super *super = st->sb;
1204 int i;
1205
1206 if (!super->anchor->num_raid_devs)
1207 return;
1208
a5d85af7 1209 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1210 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1211 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1212 struct imsm_dev *dev = get_imsm_dev(super, i);
1213
1214 super->current_vol = i;
a5d85af7 1215 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1216 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1217 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1218 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1219 }
cdddbdbc
DW
1220}
1221
9d84c8ea
DW
1222static void export_examine_super_imsm(struct supertype *st)
1223{
1224 struct intel_super *super = st->sb;
1225 struct imsm_super *mpb = super->anchor;
1226 struct mdinfo info;
1227 char nbuf[64];
1228
a5d85af7 1229 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1230 fname_from_uuid(st, &info, nbuf, ':');
1231 printf("MD_METADATA=imsm\n");
1232 printf("MD_LEVEL=container\n");
1233 printf("MD_UUID=%s\n", nbuf+5);
1234 printf("MD_DEVICES=%u\n", mpb->num_disks);
1235}
1236
cdddbdbc
DW
1237static void detail_super_imsm(struct supertype *st, char *homehost)
1238{
3ebe00a1
DW
1239 struct mdinfo info;
1240 char nbuf[64];
1241
a5d85af7 1242 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1243 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1244 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1245}
1246
1247static void brief_detail_super_imsm(struct supertype *st)
1248{
ff54de6e
N
1249 struct mdinfo info;
1250 char nbuf[64];
a5d85af7 1251 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1252 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1253 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1254}
d665cc31
DW
1255
1256static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1257static void fd2devname(int fd, char *name);
1258
120dc887 1259static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1260{
120dc887
LM
1261 /* dump an unsorted list of devices attached to AHCI Intel storage
1262 * controller, as well as non-connected ports
d665cc31
DW
1263 */
1264 int hba_len = strlen(hba_path) + 1;
1265 struct dirent *ent;
1266 DIR *dir;
1267 char *path = NULL;
1268 int err = 0;
1269 unsigned long port_mask = (1 << port_count) - 1;
1270
f21e18ca 1271 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1272 if (verbose)
1273 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1274 return 2;
1275 }
1276
1277 /* scroll through /sys/dev/block looking for devices attached to
1278 * this hba
1279 */
1280 dir = opendir("/sys/dev/block");
1281 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1282 int fd;
1283 char model[64];
1284 char vendor[64];
1285 char buf[1024];
1286 int major, minor;
1287 char *device;
1288 char *c;
1289 int port;
1290 int type;
1291
1292 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1293 continue;
1294 path = devt_to_devpath(makedev(major, minor));
1295 if (!path)
1296 continue;
1297 if (!path_attached_to_hba(path, hba_path)) {
1298 free(path);
1299 path = NULL;
1300 continue;
1301 }
1302
1303 /* retrieve the scsi device type */
1304 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1305 if (verbose)
1306 fprintf(stderr, Name ": failed to allocate 'device'\n");
1307 err = 2;
1308 break;
1309 }
1310 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1311 if (load_sys(device, buf) != 0) {
1312 if (verbose)
1313 fprintf(stderr, Name ": failed to read device type for %s\n",
1314 path);
1315 err = 2;
1316 free(device);
1317 break;
1318 }
1319 type = strtoul(buf, NULL, 10);
1320
1321 /* if it's not a disk print the vendor and model */
1322 if (!(type == 0 || type == 7 || type == 14)) {
1323 vendor[0] = '\0';
1324 model[0] = '\0';
1325 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1326 if (load_sys(device, buf) == 0) {
1327 strncpy(vendor, buf, sizeof(vendor));
1328 vendor[sizeof(vendor) - 1] = '\0';
1329 c = (char *) &vendor[sizeof(vendor) - 1];
1330 while (isspace(*c) || *c == '\0')
1331 *c-- = '\0';
1332
1333 }
1334 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1335 if (load_sys(device, buf) == 0) {
1336 strncpy(model, buf, sizeof(model));
1337 model[sizeof(model) - 1] = '\0';
1338 c = (char *) &model[sizeof(model) - 1];
1339 while (isspace(*c) || *c == '\0')
1340 *c-- = '\0';
1341 }
1342
1343 if (vendor[0] && model[0])
1344 sprintf(buf, "%.64s %.64s", vendor, model);
1345 else
1346 switch (type) { /* numbers from hald/linux/device.c */
1347 case 1: sprintf(buf, "tape"); break;
1348 case 2: sprintf(buf, "printer"); break;
1349 case 3: sprintf(buf, "processor"); break;
1350 case 4:
1351 case 5: sprintf(buf, "cdrom"); break;
1352 case 6: sprintf(buf, "scanner"); break;
1353 case 8: sprintf(buf, "media_changer"); break;
1354 case 9: sprintf(buf, "comm"); break;
1355 case 12: sprintf(buf, "raid"); break;
1356 default: sprintf(buf, "unknown");
1357 }
1358 } else
1359 buf[0] = '\0';
1360 free(device);
1361
1362 /* chop device path to 'host%d' and calculate the port number */
1363 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1364 if (!c) {
1365 if (verbose)
1366 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1367 err = 2;
1368 break;
1369 }
d665cc31
DW
1370 *c = '\0';
1371 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1372 port -= host_base;
1373 else {
1374 if (verbose) {
1375 *c = '/'; /* repair the full string */
1376 fprintf(stderr, Name ": failed to determine port number for %s\n",
1377 path);
1378 }
1379 err = 2;
1380 break;
1381 }
1382
1383 /* mark this port as used */
1384 port_mask &= ~(1 << port);
1385
1386 /* print out the device information */
1387 if (buf[0]) {
1388 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1389 continue;
1390 }
1391
1392 fd = dev_open(ent->d_name, O_RDONLY);
1393 if (fd < 0)
1394 printf(" Port%d : - disk info unavailable -\n", port);
1395 else {
1396 fd2devname(fd, buf);
1397 printf(" Port%d : %s", port, buf);
1398 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1399 printf(" (%s)\n", buf);
1400 else
1401 printf("()\n");
1402 }
1403 close(fd);
1404 free(path);
1405 path = NULL;
1406 }
1407 if (path)
1408 free(path);
1409 if (dir)
1410 closedir(dir);
1411 if (err == 0) {
1412 int i;
1413
1414 for (i = 0; i < port_count; i++)
1415 if (port_mask & (1 << i))
1416 printf(" Port%d : - no device attached -\n", i);
1417 }
1418
1419 return err;
1420}
1421
120dc887 1422
155cbb4c 1423
120dc887
LM
1424static void print_found_intel_controllers(struct sys_dev *elem)
1425{
1426 for (; elem; elem = elem->next) {
1427 fprintf(stderr, Name ": found Intel(R) ");
1428 if (elem->type == SYS_DEV_SATA)
1429 fprintf(stderr, "SATA ");
155cbb4c
LM
1430 else if (elem->type == SYS_DEV_SAS)
1431 fprintf(stderr, "SAS ");
120dc887
LM
1432 fprintf(stderr, "RAID controller");
1433 if (elem->pci_id)
1434 fprintf(stderr, " at %s", elem->pci_id);
1435 fprintf(stderr, ".\n");
1436 }
1437 fflush(stderr);
1438}
1439
120dc887
LM
1440static int ahci_get_port_count(const char *hba_path, int *port_count)
1441{
1442 struct dirent *ent;
1443 DIR *dir;
1444 int host_base = -1;
1445
1446 *port_count = 0;
1447 if ((dir = opendir(hba_path)) == NULL)
1448 return -1;
1449
1450 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1451 int host;
1452
1453 if (sscanf(ent->d_name, "host%d", &host) != 1)
1454 continue;
1455 if (*port_count == 0)
1456 host_base = host;
1457 else if (host < host_base)
1458 host_base = host;
1459
1460 if (host + 1 > *port_count + host_base)
1461 *port_count = host + 1 - host_base;
1462 }
1463 closedir(dir);
1464 return host_base;
1465}
1466
a891a3c2
LM
1467static void print_imsm_capability(const struct imsm_orom *orom)
1468{
1469 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1470 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1471 orom->hotfix_ver, orom->build);
1472 printf(" RAID Levels :%s%s%s%s%s\n",
1473 imsm_orom_has_raid0(orom) ? " raid0" : "",
1474 imsm_orom_has_raid1(orom) ? " raid1" : "",
1475 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1476 imsm_orom_has_raid10(orom) ? " raid10" : "",
1477 imsm_orom_has_raid5(orom) ? " raid5" : "");
1478 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1479 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1480 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1481 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1482 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1483 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1484 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1485 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1486 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1487 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1488 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1489 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1490 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1491 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1492 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1493 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1494 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1495 printf(" Max Disks : %d\n", orom->tds);
1496 printf(" Max Volumes : %d\n", orom->vpa);
1497 return;
1498}
1499
5615172f 1500static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1501{
1502 /* There are two components to imsm platform support, the ahci SATA
1503 * controller and the option-rom. To find the SATA controller we
1504 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1505 * controller with the Intel vendor id is present. This approach
1506 * allows mdadm to leverage the kernel's ahci detection logic, with the
1507 * caveat that if ahci.ko is not loaded mdadm will not be able to
1508 * detect platform raid capabilities. The option-rom resides in a
1509 * platform "Adapter ROM". We scan for its signature to retrieve the
1510 * platform capabilities. If raid support is disabled in the BIOS the
1511 * option-rom capability structure will not be available.
1512 */
1513 const struct imsm_orom *orom;
1514 struct sys_dev *list, *hba;
d665cc31
DW
1515 int host_base = 0;
1516 int port_count = 0;
120dc887 1517 int result=0;
d665cc31 1518
5615172f 1519 if (enumerate_only) {
a891a3c2 1520 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1521 return 0;
a891a3c2
LM
1522 list = find_intel_devices();
1523 if (!list)
1524 return 2;
1525 for (hba = list; hba; hba = hba->next) {
1526 orom = find_imsm_capability(hba->type);
1527 if (!orom) {
1528 result = 2;
1529 break;
1530 }
1531 }
1532 free_sys_dev(&list);
1533 return result;
5615172f
DW
1534 }
1535
155cbb4c
LM
1536 list = find_intel_devices();
1537 if (!list) {
d665cc31 1538 if (verbose)
155cbb4c
LM
1539 fprintf(stderr, Name ": no active Intel(R) RAID "
1540 "controller found.\n");
d665cc31
DW
1541 free_sys_dev(&list);
1542 return 2;
1543 } else if (verbose)
155cbb4c 1544 print_found_intel_controllers(list);
d665cc31 1545
a891a3c2
LM
1546 for (hba = list; hba; hba = hba->next) {
1547 orom = find_imsm_capability(hba->type);
1548 if (!orom)
1549 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1550 hba->path, get_sys_dev_type(hba->type));
1551 else
1552 print_imsm_capability(orom);
d665cc31
DW
1553 }
1554
120dc887
LM
1555 for (hba = list; hba; hba = hba->next) {
1556 printf(" I/O Controller : %s (%s)\n",
1557 hba->path, get_sys_dev_type(hba->type));
d665cc31 1558
120dc887
LM
1559 if (hba->type == SYS_DEV_SATA) {
1560 host_base = ahci_get_port_count(hba->path, &port_count);
1561 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1562 if (verbose)
1563 fprintf(stderr, Name ": failed to enumerate "
1564 "ports on SATA controller at %s.", hba->pci_id);
1565 result |= 2;
1566 }
1567 }
d665cc31 1568 }
155cbb4c 1569
120dc887
LM
1570 free_sys_dev(&list);
1571 return result;
d665cc31 1572}
cdddbdbc
DW
1573#endif
1574
1575static int match_home_imsm(struct supertype *st, char *homehost)
1576{
5115ca67
DW
1577 /* the imsm metadata format does not specify any host
1578 * identification information. We return -1 since we can never
1579 * confirm nor deny whether a given array is "meant" for this
148acb7b 1580 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1581 * exclude member disks that do not belong, and we rely on
1582 * mdadm.conf to specify the arrays that should be assembled.
1583 * Auto-assembly may still pick up "foreign" arrays.
1584 */
cdddbdbc 1585
9362c1c8 1586 return -1;
cdddbdbc
DW
1587}
1588
1589static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1590{
51006d85
N
1591 /* The uuid returned here is used for:
1592 * uuid to put into bitmap file (Create, Grow)
1593 * uuid for backup header when saving critical section (Grow)
1594 * comparing uuids when re-adding a device into an array
1595 * In these cases the uuid required is that of the data-array,
1596 * not the device-set.
1597 * uuid to recognise same set when adding a missing device back
1598 * to an array. This is a uuid for the device-set.
1599 *
1600 * For each of these we can make do with a truncated
1601 * or hashed uuid rather than the original, as long as
1602 * everyone agrees.
1603 * In each case the uuid required is that of the data-array,
1604 * not the device-set.
43dad3d6 1605 */
51006d85
N
1606 /* imsm does not track uuid's so we synthesis one using sha1 on
1607 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1608 * - the orig_family_num of the container
51006d85
N
1609 * - the index number of the volume
1610 * - the 'serial' number of the volume.
1611 * Hopefully these are all constant.
1612 */
1613 struct intel_super *super = st->sb;
43dad3d6 1614
51006d85
N
1615 char buf[20];
1616 struct sha1_ctx ctx;
1617 struct imsm_dev *dev = NULL;
148acb7b 1618 __u32 family_num;
51006d85 1619
148acb7b
DW
1620 /* some mdadm versions failed to set ->orig_family_num, in which
1621 * case fall back to ->family_num. orig_family_num will be
1622 * fixed up with the first metadata update.
1623 */
1624 family_num = super->anchor->orig_family_num;
1625 if (family_num == 0)
1626 family_num = super->anchor->family_num;
51006d85 1627 sha1_init_ctx(&ctx);
92bd8f8d 1628 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1629 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1630 if (super->current_vol >= 0)
1631 dev = get_imsm_dev(super, super->current_vol);
1632 if (dev) {
1633 __u32 vol = super->current_vol;
1634 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1635 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1636 }
1637 sha1_finish_ctx(&ctx, buf);
1638 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1639}
1640
0d481d37 1641#if 0
4f5bc454
DW
1642static void
1643get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1644{
cdddbdbc
DW
1645 __u8 *v = get_imsm_version(mpb);
1646 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1647 char major[] = { 0, 0, 0 };
1648 char minor[] = { 0 ,0, 0 };
1649 char patch[] = { 0, 0, 0 };
1650 char *ver_parse[] = { major, minor, patch };
1651 int i, j;
1652
1653 i = j = 0;
1654 while (*v != '\0' && v < end) {
1655 if (*v != '.' && j < 2)
1656 ver_parse[i][j++] = *v;
1657 else {
1658 i++;
1659 j = 0;
1660 }
1661 v++;
1662 }
1663
4f5bc454
DW
1664 *m = strtol(minor, NULL, 0);
1665 *p = strtol(patch, NULL, 0);
1666}
0d481d37 1667#endif
4f5bc454 1668
1e5c6983
DW
1669static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1670{
1671 /* migr_strip_size when repairing or initializing parity */
1672 struct imsm_map *map = get_imsm_map(dev, 0);
1673 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1674
1675 switch (get_imsm_raid_level(map)) {
1676 case 5:
1677 case 10:
1678 return chunk;
1679 default:
1680 return 128*1024 >> 9;
1681 }
1682}
1683
1684static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1685{
1686 /* migr_strip_size when rebuilding a degraded disk, no idea why
1687 * this is different than migr_strip_size_resync(), but it's good
1688 * to be compatible
1689 */
1690 struct imsm_map *map = get_imsm_map(dev, 1);
1691 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1692
1693 switch (get_imsm_raid_level(map)) {
1694 case 1:
1695 case 10:
1696 if (map->num_members % map->num_domains == 0)
1697 return 128*1024 >> 9;
1698 else
1699 return chunk;
1700 case 5:
1701 return max((__u32) 64*1024 >> 9, chunk);
1702 default:
1703 return 128*1024 >> 9;
1704 }
1705}
1706
1707static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1708{
1709 struct imsm_map *lo = get_imsm_map(dev, 0);
1710 struct imsm_map *hi = get_imsm_map(dev, 1);
1711 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1712 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1713
1714 return max((__u32) 1, hi_chunk / lo_chunk);
1715}
1716
1717static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1718{
1719 struct imsm_map *lo = get_imsm_map(dev, 0);
1720 int level = get_imsm_raid_level(lo);
1721
1722 if (level == 1 || level == 10) {
1723 struct imsm_map *hi = get_imsm_map(dev, 1);
1724
1725 return hi->num_domains;
1726 } else
1727 return num_stripes_per_unit_resync(dev);
1728}
1729
98130f40 1730static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1731{
1732 /* named 'imsm_' because raid0, raid1 and raid10
1733 * counter-intuitively have the same number of data disks
1734 */
98130f40 1735 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1736
1737 switch (get_imsm_raid_level(map)) {
1738 case 0:
1739 case 1:
1740 case 10:
1741 return map->num_members;
1742 case 5:
1743 return map->num_members - 1;
1744 default:
1745 dprintf("%s: unsupported raid level\n", __func__);
1746 return 0;
1747 }
1748}
1749
1750static __u32 parity_segment_depth(struct imsm_dev *dev)
1751{
1752 struct imsm_map *map = get_imsm_map(dev, 0);
1753 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1754
1755 switch(get_imsm_raid_level(map)) {
1756 case 1:
1757 case 10:
1758 return chunk * map->num_domains;
1759 case 5:
1760 return chunk * map->num_members;
1761 default:
1762 return chunk;
1763 }
1764}
1765
1766static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1767{
1768 struct imsm_map *map = get_imsm_map(dev, 1);
1769 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1770 __u32 strip = block / chunk;
1771
1772 switch (get_imsm_raid_level(map)) {
1773 case 1:
1774 case 10: {
1775 __u32 vol_strip = (strip * map->num_domains) + 1;
1776 __u32 vol_stripe = vol_strip / map->num_members;
1777
1778 return vol_stripe * chunk + block % chunk;
1779 } case 5: {
1780 __u32 stripe = strip / (map->num_members - 1);
1781
1782 return stripe * chunk + block % chunk;
1783 }
1784 default:
1785 return 0;
1786 }
1787}
1788
c47b0ff6
AK
1789static __u64 blocks_per_migr_unit(struct intel_super *super,
1790 struct imsm_dev *dev)
1e5c6983
DW
1791{
1792 /* calculate the conversion factor between per member 'blocks'
1793 * (md/{resync,rebuild}_start) and imsm migration units, return
1794 * 0 for the 'not migrating' and 'unsupported migration' cases
1795 */
1796 if (!dev->vol.migr_state)
1797 return 0;
1798
1799 switch (migr_type(dev)) {
c47b0ff6
AK
1800 case MIGR_GEN_MIGR: {
1801 struct migr_record *migr_rec = super->migr_rec;
1802 return __le32_to_cpu(migr_rec->blocks_per_unit);
1803 }
1e5c6983
DW
1804 case MIGR_VERIFY:
1805 case MIGR_REPAIR:
1806 case MIGR_INIT: {
1807 struct imsm_map *map = get_imsm_map(dev, 0);
1808 __u32 stripes_per_unit;
1809 __u32 blocks_per_unit;
1810 __u32 parity_depth;
1811 __u32 migr_chunk;
1812 __u32 block_map;
1813 __u32 block_rel;
1814 __u32 segment;
1815 __u32 stripe;
1816 __u8 disks;
1817
1818 /* yes, this is really the translation of migr_units to
1819 * per-member blocks in the 'resync' case
1820 */
1821 stripes_per_unit = num_stripes_per_unit_resync(dev);
1822 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 1823 disks = imsm_num_data_members(dev, 0);
1e5c6983
DW
1824 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1825 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1826 segment = blocks_per_unit / stripe;
1827 block_rel = blocks_per_unit - segment * stripe;
1828 parity_depth = parity_segment_depth(dev);
1829 block_map = map_migr_block(dev, block_rel);
1830 return block_map + parity_depth * segment;
1831 }
1832 case MIGR_REBUILD: {
1833 __u32 stripes_per_unit;
1834 __u32 migr_chunk;
1835
1836 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1837 migr_chunk = migr_strip_blocks_rebuild(dev);
1838 return migr_chunk * stripes_per_unit;
1839 }
1e5c6983
DW
1840 case MIGR_STATE_CHANGE:
1841 default:
1842 return 0;
1843 }
1844}
1845
c2c087e6
DW
1846static int imsm_level_to_layout(int level)
1847{
1848 switch (level) {
1849 case 0:
1850 case 1:
1851 return 0;
1852 case 5:
1853 case 6:
a380c027 1854 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 1855 case 10:
c92a2527 1856 return 0x102;
c2c087e6 1857 }
a18a888e 1858 return UnSet;
c2c087e6
DW
1859}
1860
8e59f3d8
AK
1861/*******************************************************************************
1862 * Function: read_imsm_migr_rec
1863 * Description: Function reads imsm migration record from last sector of disk
1864 * Parameters:
1865 * fd : disk descriptor
1866 * super : metadata info
1867 * Returns:
1868 * 0 : success,
1869 * -1 : fail
1870 ******************************************************************************/
1871static int read_imsm_migr_rec(int fd, struct intel_super *super)
1872{
1873 int ret_val = -1;
1874 unsigned long long dsize;
1875
1876 get_dev_size(fd, NULL, &dsize);
1877 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
1878 fprintf(stderr,
1879 Name ": Cannot seek to anchor block: %s\n",
1880 strerror(errno));
1881 goto out;
1882 }
1883 if (read(fd, super->migr_rec_buf, 512) != 512) {
1884 fprintf(stderr,
1885 Name ": Cannot read migr record block: %s\n",
1886 strerror(errno));
1887 goto out;
1888 }
1889 ret_val = 0;
1890
1891out:
1892 return ret_val;
1893}
1894
1895/*******************************************************************************
1896 * Function: load_imsm_migr_rec
1897 * Description: Function reads imsm migration record (it is stored at the last
1898 * sector of disk)
1899 * Parameters:
1900 * super : imsm internal array info
1901 * info : general array info
1902 * Returns:
1903 * 0 : success
1904 * -1 : fail
1905 ******************************************************************************/
1906static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
1907{
1908 struct mdinfo *sd;
1909 struct dl *dl = NULL;
1910 char nm[30];
1911 int retval = -1;
1912 int fd = -1;
1913
1914 if (info) {
1915 for (sd = info->devs ; sd ; sd = sd->next) {
1916 /* read only from one of the first two slots */
1917 if ((sd->disk.raid_disk > 1) ||
1918 (sd->disk.raid_disk < 0))
1919 continue;
1920 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1921 fd = dev_open(nm, O_RDONLY);
1922 if (fd >= 0)
1923 break;
1924 }
1925 }
1926 if (fd < 0) {
1927 for (dl = super->disks; dl; dl = dl->next) {
1928 /* read only from one of the first two slots */
1929 if (dl->index > 1)
1930 continue;
1931 sprintf(nm, "%d:%d", dl->major, dl->minor);
1932 fd = dev_open(nm, O_RDONLY);
1933 if (fd >= 0)
1934 break;
1935 }
1936 }
1937 if (fd < 0)
1938 goto out;
1939 retval = read_imsm_migr_rec(fd, super);
1940
1941out:
1942 if (fd >= 0)
1943 close(fd);
1944 return retval;
1945}
1946
c17608ea
AK
1947/*******************************************************************************
1948 * function: imsm_create_metadata_checkpoint_update
1949 * Description: It creates update for checkpoint change.
1950 * Parameters:
1951 * super : imsm internal array info
1952 * u : pointer to prepared update
1953 * Returns:
1954 * Uptate length.
1955 * If length is equal to 0, input pointer u contains no update
1956 ******************************************************************************/
1957static int imsm_create_metadata_checkpoint_update(
1958 struct intel_super *super,
1959 struct imsm_update_general_migration_checkpoint **u)
1960{
1961
1962 int update_memory_size = 0;
1963
1964 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
1965
1966 if (u == NULL)
1967 return 0;
1968 *u = NULL;
1969
1970 /* size of all update data without anchor */
1971 update_memory_size =
1972 sizeof(struct imsm_update_general_migration_checkpoint);
1973
1974 *u = calloc(1, update_memory_size);
1975 if (*u == NULL) {
1976 dprintf("error: cannot get memory for "
1977 "imsm_create_metadata_checkpoint_update update\n");
1978 return 0;
1979 }
1980 (*u)->type = update_general_migration_checkpoint;
1981 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
1982 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
1983 (*u)->curr_migr_unit);
1984
1985 return update_memory_size;
1986}
1987
1988
1989static void imsm_update_metadata_locally(struct supertype *st,
1990 void *buf, int len);
1991
687629c2
AK
1992/*******************************************************************************
1993 * Function: write_imsm_migr_rec
1994 * Description: Function writes imsm migration record
1995 * (at the last sector of disk)
1996 * Parameters:
1997 * super : imsm internal array info
1998 * Returns:
1999 * 0 : success
2000 * -1 : if fail
2001 ******************************************************************************/
2002static int write_imsm_migr_rec(struct supertype *st)
2003{
2004 struct intel_super *super = st->sb;
2005 unsigned long long dsize;
2006 char nm[30];
2007 int fd = -1;
2008 int retval = -1;
2009 struct dl *sd;
c17608ea
AK
2010 int len;
2011 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2012
2013 for (sd = super->disks ; sd ; sd = sd->next) {
2014 /* write to 2 first slots only */
2015 if ((sd->index < 0) || (sd->index > 1))
2016 continue;
2017 sprintf(nm, "%d:%d", sd->major, sd->minor);
2018 fd = dev_open(nm, O_RDWR);
2019 if (fd < 0)
2020 continue;
2021 get_dev_size(fd, NULL, &dsize);
2022 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2023 fprintf(stderr,
2024 Name ": Cannot seek to anchor block: %s\n",
2025 strerror(errno));
2026 goto out;
2027 }
2028 if (write(fd, super->migr_rec_buf, 512) != 512) {
2029 fprintf(stderr,
2030 Name ": Cannot write migr record block: %s\n",
2031 strerror(errno));
2032 goto out;
2033 }
2034 close(fd);
2035 fd = -1;
2036 }
c17608ea
AK
2037 /* update checkpoint information in metadata */
2038 len = imsm_create_metadata_checkpoint_update(super, &u);
2039
2040 if (len <= 0) {
2041 dprintf("imsm: Cannot prepare update\n");
2042 goto out;
2043 }
2044 /* update metadata locally */
2045 imsm_update_metadata_locally(st, u, len);
2046 /* and possibly remotely */
2047 if (st->update_tail) {
2048 append_metadata_update(st, u, len);
2049 /* during reshape we do all work inside metadata handler
2050 * manage_reshape(), so metadata update has to be triggered
2051 * insida it
2052 */
2053 flush_metadata_updates(st);
2054 st->update_tail = &st->updates;
2055 } else
2056 free(u);
687629c2
AK
2057
2058 retval = 0;
2059 out:
2060 if (fd >= 0)
2061 close(fd);
2062 return retval;
2063}
2064
a5d85af7 2065static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2066{
2067 struct intel_super *super = st->sb;
c47b0ff6 2068 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2069 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 2070 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 2071 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 2072 struct imsm_map *map_to_analyse = map;
efb30e7f 2073 struct dl *dl;
e207da2f 2074 char *devname;
139dae11 2075 unsigned int component_size_alligment;
a5d85af7 2076 int map_disks = info->array.raid_disks;
bf5a934a 2077
95eeceeb 2078 memset(info, 0, sizeof(*info));
b335e593
AK
2079 if (prev_map)
2080 map_to_analyse = prev_map;
2081
efb30e7f
DW
2082 for (dl = super->disks; dl; dl = dl->next)
2083 if (dl->raiddisk == info->disk.raid_disk)
2084 break;
bf5a934a 2085 info->container_member = super->current_vol;
cd0430a1 2086 info->array.raid_disks = map->num_members;
b335e593 2087 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2088 info->array.layout = imsm_level_to_layout(info->array.level);
2089 info->array.md_minor = -1;
2090 info->array.ctime = 0;
2091 info->array.utime = 0;
b335e593
AK
2092 info->array.chunk_size =
2093 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2094 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2095 info->custom_array_size = __le32_to_cpu(dev->size_high);
2096 info->custom_array_size <<= 32;
2097 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3f83228a
N
2098 if (prev_map && map->map_state == prev_map->map_state) {
2099 info->reshape_active = 1;
b335e593
AK
2100 info->new_level = get_imsm_raid_level(map);
2101 info->new_layout = imsm_level_to_layout(info->new_level);
2102 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2103 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2104 if (info->delta_disks) {
2105 /* this needs to be applied to every array
2106 * in the container.
2107 */
2108 info->reshape_active = 2;
2109 }
3f83228a
N
2110 /* We shape information that we give to md might have to be
2111 * modify to cope with md's requirement for reshaping arrays.
2112 * For example, when reshaping a RAID0, md requires it to be
2113 * presented as a degraded RAID4.
2114 * Also if a RAID0 is migrating to a RAID5 we need to specify
2115 * the array as already being RAID5, but the 'before' layout
2116 * is a RAID4-like layout.
2117 */
2118 switch (info->array.level) {
2119 case 0:
2120 switch(info->new_level) {
2121 case 0:
2122 /* conversion is happening as RAID4 */
2123 info->array.level = 4;
2124 info->array.raid_disks += 1;
2125 break;
2126 case 5:
2127 /* conversion is happening as RAID5 */
2128 info->array.level = 5;
2129 info->array.layout = ALGORITHM_PARITY_N;
2130 info->array.raid_disks += 1;
2131 info->delta_disks -= 1;
2132 break;
2133 default:
2134 /* FIXME error message */
2135 info->array.level = UnSet;
2136 break;
2137 }
2138 break;
2139 }
b335e593
AK
2140 } else {
2141 info->new_level = UnSet;
2142 info->new_layout = UnSet;
2143 info->new_chunk = info->array.chunk_size;
3f83228a 2144 info->delta_disks = 0;
b335e593 2145 }
301406c9
DW
2146 info->disk.major = 0;
2147 info->disk.minor = 0;
efb30e7f
DW
2148 if (dl) {
2149 info->disk.major = dl->major;
2150 info->disk.minor = dl->minor;
2151 }
bf5a934a 2152
b335e593
AK
2153 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2154 info->component_size =
2155 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2156
2157 /* check component size aligment
2158 */
2159 component_size_alligment =
2160 info->component_size % (info->array.chunk_size/512);
2161
2162 if (component_size_alligment &&
2163 (info->array.level != 1) && (info->array.level != UnSet)) {
2164 dprintf("imsm: reported component size alligned from %llu ",
2165 info->component_size);
2166 info->component_size -= component_size_alligment;
2167 dprintf("to %llu (%i).\n",
2168 info->component_size, component_size_alligment);
2169 }
2170
301406c9 2171 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2172 info->recovery_start = MaxSector;
bf5a934a 2173
d2e6d5d6 2174 info->reshape_progress = 0;
b6796ce1 2175 info->resync_start = MaxSector;
b335e593
AK
2176 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2177 dev->vol.dirty) {
301406c9 2178 info->resync_start = 0;
b6796ce1
AK
2179 }
2180 if (dev->vol.migr_state) {
1e5c6983
DW
2181 switch (migr_type(dev)) {
2182 case MIGR_REPAIR:
2183 case MIGR_INIT: {
c47b0ff6
AK
2184 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2185 dev);
1e5c6983
DW
2186 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2187
2188 info->resync_start = blocks_per_unit * units;
2189 break;
2190 }
d2e6d5d6 2191 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2192 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2193 dev);
2194 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2195 unsigned long long array_blocks;
2196 int used_disks;
d2e6d5d6
AK
2197
2198 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2199
d2e6d5d6
AK
2200 dprintf("IMSM: General Migration checkpoint : %llu "
2201 "(%llu) -> read reshape progress : %llu\n",
2202 units, blocks_per_unit, info->reshape_progress);
75156c46
AK
2203
2204 used_disks = imsm_num_data_members(dev, 1);
2205 if (used_disks > 0) {
2206 array_blocks = map->blocks_per_member *
2207 used_disks;
2208 /* round array size down to closest MB
2209 */
2210 info->custom_array_size = (array_blocks
2211 >> SECT_PER_MB_SHIFT)
2212 << SECT_PER_MB_SHIFT;
2213 }
d2e6d5d6 2214 }
1e5c6983
DW
2215 case MIGR_VERIFY:
2216 /* we could emulate the checkpointing of
2217 * 'sync_action=check' migrations, but for now
2218 * we just immediately complete them
2219 */
2220 case MIGR_REBUILD:
2221 /* this is handled by container_content_imsm() */
1e5c6983
DW
2222 case MIGR_STATE_CHANGE:
2223 /* FIXME handle other migrations */
2224 default:
2225 /* we are not dirty, so... */
2226 info->resync_start = MaxSector;
2227 }
b6796ce1 2228 }
301406c9
DW
2229
2230 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2231 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2232
f35f2525
N
2233 info->array.major_version = -1;
2234 info->array.minor_version = -2;
e207da2f
AW
2235 devname = devnum2devname(st->container_dev);
2236 *info->text_version = '\0';
2237 if (devname)
2238 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2239 free(devname);
a67dd8cc 2240 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2241 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2242
2243 if (dmap) {
2244 int i, j;
2245 for (i=0; i<map_disks; i++) {
2246 dmap[i] = 0;
2247 if (i < info->array.raid_disks) {
2248 struct imsm_disk *dsk;
98130f40 2249 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2250 dsk = get_imsm_disk(super, j);
2251 if (dsk && (dsk->status & CONFIGURED_DISK))
2252 dmap[i] = 1;
2253 }
2254 }
2255 }
81ac8b4d 2256}
bf5a934a 2257
97b4d0e9
DW
2258static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2259static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2260
2261static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2262{
2263 struct dl *d;
2264
2265 for (d = super->missing; d; d = d->next)
2266 if (d->index == index)
2267 return &d->disk;
2268 return NULL;
2269}
2270
a5d85af7 2271static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2272{
2273 struct intel_super *super = st->sb;
4f5bc454 2274 struct imsm_disk *disk;
a5d85af7 2275 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2276 int max_enough = -1;
2277 int i;
2278 struct imsm_super *mpb;
4f5bc454 2279
bf5a934a 2280 if (super->current_vol >= 0) {
a5d85af7 2281 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2282 return;
2283 }
95eeceeb 2284 memset(info, 0, sizeof(*info));
d23fe947
DW
2285
2286 /* Set raid_disks to zero so that Assemble will always pull in valid
2287 * spares
2288 */
2289 info->array.raid_disks = 0;
cdddbdbc
DW
2290 info->array.level = LEVEL_CONTAINER;
2291 info->array.layout = 0;
2292 info->array.md_minor = -1;
c2c087e6 2293 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2294 info->array.utime = 0;
2295 info->array.chunk_size = 0;
2296
2297 info->disk.major = 0;
2298 info->disk.minor = 0;
cdddbdbc 2299 info->disk.raid_disk = -1;
c2c087e6 2300 info->reshape_active = 0;
f35f2525
N
2301 info->array.major_version = -1;
2302 info->array.minor_version = -2;
c2c087e6 2303 strcpy(info->text_version, "imsm");
a67dd8cc 2304 info->safe_mode_delay = 0;
c2c087e6
DW
2305 info->disk.number = -1;
2306 info->disk.state = 0;
c5afc314 2307 info->name[0] = 0;
921d9e16 2308 info->recovery_start = MaxSector;
c2c087e6 2309
97b4d0e9 2310 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2311 mpb = super->anchor;
97b4d0e9 2312
ab3cb6b3
N
2313 for (i = 0; i < mpb->num_raid_devs; i++) {
2314 struct imsm_dev *dev = get_imsm_dev(super, i);
2315 int failed, enough, j, missing = 0;
2316 struct imsm_map *map;
2317 __u8 state;
97b4d0e9 2318
ab3cb6b3
N
2319 failed = imsm_count_failed(super, dev);
2320 state = imsm_check_degraded(super, dev, failed);
2321 map = get_imsm_map(dev, dev->vol.migr_state);
2322
2323 /* any newly missing disks?
2324 * (catches single-degraded vs double-degraded)
2325 */
2326 for (j = 0; j < map->num_members; j++) {
98130f40 2327 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
ab3cb6b3
N
2328 __u32 idx = ord_to_idx(ord);
2329
2330 if (!(ord & IMSM_ORD_REBUILD) &&
2331 get_imsm_missing(super, idx)) {
2332 missing = 1;
2333 break;
2334 }
97b4d0e9 2335 }
ab3cb6b3
N
2336
2337 if (state == IMSM_T_STATE_FAILED)
2338 enough = -1;
2339 else if (state == IMSM_T_STATE_DEGRADED &&
2340 (state != map->map_state || missing))
2341 enough = 0;
2342 else /* we're normal, or already degraded */
2343 enough = 1;
2344
2345 /* in the missing/failed disk case check to see
2346 * if at least one array is runnable
2347 */
2348 max_enough = max(max_enough, enough);
2349 }
2350 dprintf("%s: enough: %d\n", __func__, max_enough);
2351 info->container_enough = max_enough;
97b4d0e9 2352
4a04ec6c 2353 if (super->disks) {
14e8215b
DW
2354 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2355
b9f594fe 2356 disk = &super->disks->disk;
14e8215b
DW
2357 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2358 info->component_size = reserved;
25ed7e59 2359 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2360 /* we don't change info->disk.raid_disk here because
2361 * this state will be finalized in mdmon after we have
2362 * found the 'most fresh' version of the metadata
2363 */
25ed7e59
DW
2364 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2365 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2366 }
a575e2a7
DW
2367
2368 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2369 * ->compare_super may have updated the 'num_raid_devs' field for spares
2370 */
2371 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2372 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2373 else
2374 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2375
2376 /* I don't know how to compute 'map' on imsm, so use safe default */
2377 if (map) {
2378 int i;
2379 for (i = 0; i < map_disks; i++)
2380 map[i] = 1;
2381 }
2382
cdddbdbc
DW
2383}
2384
5c4cd5da
AC
2385/* allocates memory and fills disk in mdinfo structure
2386 * for each disk in array */
2387struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2388{
2389 struct mdinfo *mddev = NULL;
2390 struct intel_super *super = st->sb;
2391 struct imsm_disk *disk;
2392 int count = 0;
2393 struct dl *dl;
2394 if (!super || !super->disks)
2395 return NULL;
2396 dl = super->disks;
2397 mddev = malloc(sizeof(*mddev));
2398 if (!mddev) {
2399 fprintf(stderr, Name ": Failed to allocate memory.\n");
2400 return NULL;
2401 }
2402 memset(mddev, 0, sizeof(*mddev));
2403 while (dl) {
2404 struct mdinfo *tmp;
2405 disk = &dl->disk;
2406 tmp = malloc(sizeof(*tmp));
2407 if (!tmp) {
2408 fprintf(stderr, Name ": Failed to allocate memory.\n");
2409 if (mddev)
2410 sysfs_free(mddev);
2411 return NULL;
2412 }
2413 memset(tmp, 0, sizeof(*tmp));
2414 if (mddev->devs)
2415 tmp->next = mddev->devs;
2416 mddev->devs = tmp;
2417 tmp->disk.number = count++;
2418 tmp->disk.major = dl->major;
2419 tmp->disk.minor = dl->minor;
2420 tmp->disk.state = is_configured(disk) ?
2421 (1 << MD_DISK_ACTIVE) : 0;
2422 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2423 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2424 tmp->disk.raid_disk = -1;
2425 dl = dl->next;
2426 }
2427 return mddev;
2428}
2429
cdddbdbc
DW
2430static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2431 char *update, char *devname, int verbose,
2432 int uuid_set, char *homehost)
2433{
f352c545
DW
2434 /* For 'assemble' and 'force' we need to return non-zero if any
2435 * change was made. For others, the return value is ignored.
2436 * Update options are:
2437 * force-one : This device looks a bit old but needs to be included,
2438 * update age info appropriately.
2439 * assemble: clear any 'faulty' flag to allow this device to
2440 * be assembled.
2441 * force-array: Array is degraded but being forced, mark it clean
2442 * if that will be needed to assemble it.
2443 *
2444 * newdev: not used ????
2445 * grow: Array has gained a new device - this is currently for
2446 * linear only
2447 * resync: mark as dirty so a resync will happen.
2448 * name: update the name - preserving the homehost
6e46bf34 2449 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2450 *
2451 * Following are not relevant for this imsm:
2452 * sparc2.2 : update from old dodgey metadata
2453 * super-minor: change the preferred_minor number
2454 * summaries: update redundant counters.
f352c545
DW
2455 * homehost: update the recorded homehost
2456 * _reshape_progress: record new reshape_progress position.
2457 */
6e46bf34
DW
2458 int rv = 1;
2459 struct intel_super *super = st->sb;
2460 struct imsm_super *mpb;
f352c545 2461
6e46bf34
DW
2462 /* we can only update container info */
2463 if (!super || super->current_vol >= 0 || !super->anchor)
2464 return 1;
2465
2466 mpb = super->anchor;
2467
2468 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2469 rv = -1;
6e46bf34
DW
2470 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2471 mpb->orig_family_num = *((__u32 *) info->update_private);
2472 rv = 0;
2473 } else if (strcmp(update, "uuid") == 0) {
2474 __u32 *new_family = malloc(sizeof(*new_family));
2475
2476 /* update orig_family_number with the incoming random
2477 * data, report the new effective uuid, and store the
2478 * new orig_family_num for future updates.
2479 */
2480 if (new_family) {
2481 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2482 uuid_from_super_imsm(st, info->uuid);
2483 *new_family = mpb->orig_family_num;
2484 info->update_private = new_family;
2485 rv = 0;
2486 }
2487 } else if (strcmp(update, "assemble") == 0)
2488 rv = 0;
2489 else
1e2b2765 2490 rv = -1;
f352c545 2491
6e46bf34
DW
2492 /* successful update? recompute checksum */
2493 if (rv == 0)
2494 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2495
2496 return rv;
cdddbdbc
DW
2497}
2498
c2c087e6 2499static size_t disks_to_mpb_size(int disks)
cdddbdbc 2500{
c2c087e6 2501 size_t size;
cdddbdbc 2502
c2c087e6
DW
2503 size = sizeof(struct imsm_super);
2504 size += (disks - 1) * sizeof(struct imsm_disk);
2505 size += 2 * sizeof(struct imsm_dev);
2506 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2507 size += (4 - 2) * sizeof(struct imsm_map);
2508 /* 4 possible disk_ord_tbl's */
2509 size += 4 * (disks - 1) * sizeof(__u32);
2510
2511 return size;
2512}
2513
2514static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2515{
2516 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2517 return 0;
2518
2519 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2520}
2521
ba2de7ba
DW
2522static void free_devlist(struct intel_super *super)
2523{
2524 struct intel_dev *dv;
2525
2526 while (super->devlist) {
2527 dv = super->devlist->next;
2528 free(super->devlist->dev);
2529 free(super->devlist);
2530 super->devlist = dv;
2531 }
2532}
2533
2534static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2535{
2536 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2537}
2538
cdddbdbc
DW
2539static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2540{
2541 /*
2542 * return:
2543 * 0 same, or first was empty, and second was copied
2544 * 1 second had wrong number
2545 * 2 wrong uuid
2546 * 3 wrong other info
2547 */
2548 struct intel_super *first = st->sb;
2549 struct intel_super *sec = tst->sb;
2550
2551 if (!first) {
2552 st->sb = tst->sb;
2553 tst->sb = NULL;
2554 return 0;
2555 }
8603ea6f
LM
2556 /* in platform dependent environment test if the disks
2557 * use the same Intel hba
2558 */
2559 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2560 if (!first->hba || !sec->hba ||
2561 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2562 fprintf(stderr,
2563 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2564 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2565 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2566 return 3;
2567 }
2568 }
cdddbdbc 2569
d23fe947
DW
2570 /* if an anchor does not have num_raid_devs set then it is a free
2571 * floating spare
2572 */
2573 if (first->anchor->num_raid_devs > 0 &&
2574 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2575 /* Determine if these disks might ever have been
2576 * related. Further disambiguation can only take place
2577 * in load_super_imsm_all
2578 */
2579 __u32 first_family = first->anchor->orig_family_num;
2580 __u32 sec_family = sec->anchor->orig_family_num;
2581
f796af5d
DW
2582 if (memcmp(first->anchor->sig, sec->anchor->sig,
2583 MAX_SIGNATURE_LENGTH) != 0)
2584 return 3;
2585
a2b97981
DW
2586 if (first_family == 0)
2587 first_family = first->anchor->family_num;
2588 if (sec_family == 0)
2589 sec_family = sec->anchor->family_num;
2590
2591 if (first_family != sec_family)
d23fe947 2592 return 3;
f796af5d 2593
d23fe947 2594 }
cdddbdbc 2595
f796af5d 2596
3e372e5a
DW
2597 /* if 'first' is a spare promote it to a populated mpb with sec's
2598 * family number
2599 */
2600 if (first->anchor->num_raid_devs == 0 &&
2601 sec->anchor->num_raid_devs > 0) {
78d30f94 2602 int i;
ba2de7ba
DW
2603 struct intel_dev *dv;
2604 struct imsm_dev *dev;
78d30f94
DW
2605
2606 /* we need to copy raid device info from sec if an allocation
2607 * fails here we don't associate the spare
2608 */
2609 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2610 dv = malloc(sizeof(*dv));
2611 if (!dv)
2612 break;
2613 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2614 if (!dev) {
2615 free(dv);
2616 break;
78d30f94 2617 }
ba2de7ba
DW
2618 dv->dev = dev;
2619 dv->index = i;
2620 dv->next = first->devlist;
2621 first->devlist = dv;
78d30f94 2622 }
709743c5 2623 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2624 /* allocation failure */
2625 free_devlist(first);
2626 fprintf(stderr, "imsm: failed to associate spare\n");
2627 return 3;
78d30f94 2628 }
3e372e5a 2629 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2630 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2631 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2632 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2633 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2634 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2635 }
2636
cdddbdbc
DW
2637 return 0;
2638}
2639
0030e8d6
DW
2640static void fd2devname(int fd, char *name)
2641{
2642 struct stat st;
2643 char path[256];
33a6535d 2644 char dname[PATH_MAX];
0030e8d6
DW
2645 char *nm;
2646 int rv;
2647
2648 name[0] = '\0';
2649 if (fstat(fd, &st) != 0)
2650 return;
2651 sprintf(path, "/sys/dev/block/%d:%d",
2652 major(st.st_rdev), minor(st.st_rdev));
2653
2654 rv = readlink(path, dname, sizeof(dname));
2655 if (rv <= 0)
2656 return;
2657
2658 dname[rv] = '\0';
2659 nm = strrchr(dname, '/');
2660 nm++;
2661 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2662}
2663
cdddbdbc
DW
2664extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2665
2666static int imsm_read_serial(int fd, char *devname,
2667 __u8 serial[MAX_RAID_SERIAL_LEN])
2668{
2669 unsigned char scsi_serial[255];
cdddbdbc
DW
2670 int rv;
2671 int rsp_len;
1f24f035 2672 int len;
316e2bf4
DW
2673 char *dest;
2674 char *src;
2675 char *rsp_buf;
2676 int i;
cdddbdbc
DW
2677
2678 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2679
f9ba0ff1
DW
2680 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2681
40ebbb9c 2682 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2683 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2684 fd2devname(fd, (char *) serial);
0030e8d6
DW
2685 return 0;
2686 }
2687
cdddbdbc
DW
2688 if (rv != 0) {
2689 if (devname)
2690 fprintf(stderr,
2691 Name ": Failed to retrieve serial for %s\n",
2692 devname);
2693 return rv;
2694 }
2695
2696 rsp_len = scsi_serial[3];
03cd4cc8
DW
2697 if (!rsp_len) {
2698 if (devname)
2699 fprintf(stderr,
2700 Name ": Failed to retrieve serial for %s\n",
2701 devname);
2702 return 2;
2703 }
1f24f035 2704 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2705
316e2bf4
DW
2706 /* trim all whitespace and non-printable characters and convert
2707 * ':' to ';'
2708 */
2709 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2710 src = &rsp_buf[i];
2711 if (*src > 0x20) {
2712 /* ':' is reserved for use in placeholder serial
2713 * numbers for missing disks
2714 */
2715 if (*src == ':')
2716 *dest++ = ';';
2717 else
2718 *dest++ = *src;
2719 }
2720 }
2721 len = dest - rsp_buf;
2722 dest = rsp_buf;
2723
2724 /* truncate leading characters */
2725 if (len > MAX_RAID_SERIAL_LEN) {
2726 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2727 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2728 }
5c3db629 2729
5c3db629 2730 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2731 memcpy(serial, dest, len);
cdddbdbc
DW
2732
2733 return 0;
2734}
2735
1f24f035
DW
2736static int serialcmp(__u8 *s1, __u8 *s2)
2737{
2738 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2739}
2740
2741static void serialcpy(__u8 *dest, __u8 *src)
2742{
2743 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2744}
2745
1799c9e8 2746#ifndef MDASSEMBLE
54c2c1ea
DW
2747static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2748{
2749 struct dl *dl;
2750
2751 for (dl = super->disks; dl; dl = dl->next)
2752 if (serialcmp(dl->serial, serial) == 0)
2753 break;
2754
2755 return dl;
2756}
1799c9e8 2757#endif
54c2c1ea 2758
a2b97981
DW
2759static struct imsm_disk *
2760__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2761{
2762 int i;
2763
2764 for (i = 0; i < mpb->num_disks; i++) {
2765 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2766
2767 if (serialcmp(disk->serial, serial) == 0) {
2768 if (idx)
2769 *idx = i;
2770 return disk;
2771 }
2772 }
2773
2774 return NULL;
2775}
2776
cdddbdbc
DW
2777static int
2778load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2779{
a2b97981 2780 struct imsm_disk *disk;
cdddbdbc
DW
2781 struct dl *dl;
2782 struct stat stb;
cdddbdbc 2783 int rv;
a2b97981 2784 char name[40];
d23fe947
DW
2785 __u8 serial[MAX_RAID_SERIAL_LEN];
2786
2787 rv = imsm_read_serial(fd, devname, serial);
2788
2789 if (rv != 0)
2790 return 2;
2791
a2b97981 2792 dl = calloc(1, sizeof(*dl));
b9f594fe 2793 if (!dl) {
cdddbdbc
DW
2794 if (devname)
2795 fprintf(stderr,
2796 Name ": failed to allocate disk buffer for %s\n",
2797 devname);
2798 return 2;
2799 }
cdddbdbc 2800
a2b97981
DW
2801 fstat(fd, &stb);
2802 dl->major = major(stb.st_rdev);
2803 dl->minor = minor(stb.st_rdev);
2804 dl->next = super->disks;
2805 dl->fd = keep_fd ? fd : -1;
2806 assert(super->disks == NULL);
2807 super->disks = dl;
2808 serialcpy(dl->serial, serial);
2809 dl->index = -2;
2810 dl->e = NULL;
2811 fd2devname(fd, name);
2812 if (devname)
2813 dl->devname = strdup(devname);
2814 else
2815 dl->devname = strdup(name);
cdddbdbc 2816
d23fe947 2817 /* look up this disk's index in the current anchor */
a2b97981
DW
2818 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2819 if (disk) {
2820 dl->disk = *disk;
2821 /* only set index on disks that are a member of a
2822 * populated contianer, i.e. one with raid_devs
2823 */
2824 if (is_failed(&dl->disk))
3f6efecc 2825 dl->index = -2;
a2b97981
DW
2826 else if (is_spare(&dl->disk))
2827 dl->index = -1;
3f6efecc
DW
2828 }
2829
949c47a0
DW
2830 return 0;
2831}
2832
0e600426 2833#ifndef MDASSEMBLE
0c046afd
DW
2834/* When migrating map0 contains the 'destination' state while map1
2835 * contains the current state. When not migrating map0 contains the
2836 * current state. This routine assumes that map[0].map_state is set to
2837 * the current array state before being called.
2838 *
2839 * Migration is indicated by one of the following states
2840 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 2841 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 2842 * map1state=unitialized)
1484e727 2843 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 2844 * map1state=normal)
e3bba0e0 2845 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 2846 * map1state=degraded)
8e59f3d8
AK
2847 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
2848 * map1state=normal)
0c046afd 2849 */
8e59f3d8
AK
2850static void migrate(struct imsm_dev *dev, struct intel_super *super,
2851 __u8 to_state, int migr_type)
3393c6af 2852{
0c046afd 2853 struct imsm_map *dest;
3393c6af
DW
2854 struct imsm_map *src = get_imsm_map(dev, 0);
2855
0c046afd 2856 dev->vol.migr_state = 1;
1484e727 2857 set_migr_type(dev, migr_type);
f8f603f1 2858 dev->vol.curr_migr_unit = 0;
0c046afd
DW
2859 dest = get_imsm_map(dev, 1);
2860
0556e1a2 2861 /* duplicate and then set the target end state in map[0] */
3393c6af 2862 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
2863 if ((migr_type == MIGR_REBUILD) ||
2864 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
2865 __u32 ord;
2866 int i;
2867
2868 for (i = 0; i < src->num_members; i++) {
2869 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2870 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2871 }
2872 }
2873
8e59f3d8
AK
2874 if (migr_type == MIGR_GEN_MIGR)
2875 /* Clear migration record */
2876 memset(super->migr_rec, 0, sizeof(struct migr_record));
2877
0c046afd 2878 src->map_state = to_state;
949c47a0 2879}
f8f603f1
DW
2880
2881static void end_migration(struct imsm_dev *dev, __u8 map_state)
2882{
2883 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 2884 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 2885 int i, j;
0556e1a2
DW
2886
2887 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2888 * completed in the last migration.
2889 *
28bce06f 2890 * FIXME add support for raid-level-migration
0556e1a2
DW
2891 */
2892 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
2893 for (j = 0; j < map->num_members; j++)
2894 /* during online capacity expansion
2895 * disks position can be changed if takeover is used
2896 */
2897 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2898 ord_to_idx(prev->disk_ord_tbl[i])) {
2899 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2900 break;
2901 }
f8f603f1
DW
2902
2903 dev->vol.migr_state = 0;
28bce06f 2904 dev->vol.migr_type = 0;
f8f603f1
DW
2905 dev->vol.curr_migr_unit = 0;
2906 map->map_state = map_state;
2907}
0e600426 2908#endif
949c47a0
DW
2909
2910static int parse_raid_devices(struct intel_super *super)
2911{
2912 int i;
2913 struct imsm_dev *dev_new;
4d7b1503 2914 size_t len, len_migr;
401d313b 2915 size_t max_len = 0;
4d7b1503
DW
2916 size_t space_needed = 0;
2917 struct imsm_super *mpb = super->anchor;
949c47a0
DW
2918
2919 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2920 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 2921 struct intel_dev *dv;
949c47a0 2922
4d7b1503
DW
2923 len = sizeof_imsm_dev(dev_iter, 0);
2924 len_migr = sizeof_imsm_dev(dev_iter, 1);
2925 if (len_migr > len)
2926 space_needed += len_migr - len;
2927
ba2de7ba
DW
2928 dv = malloc(sizeof(*dv));
2929 if (!dv)
2930 return 1;
401d313b
AK
2931 if (max_len < len_migr)
2932 max_len = len_migr;
2933 if (max_len > len_migr)
2934 space_needed += max_len - len_migr;
2935 dev_new = malloc(max_len);
ba2de7ba
DW
2936 if (!dev_new) {
2937 free(dv);
949c47a0 2938 return 1;
ba2de7ba 2939 }
949c47a0 2940 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
2941 dv->dev = dev_new;
2942 dv->index = i;
2943 dv->next = super->devlist;
2944 super->devlist = dv;
949c47a0 2945 }
cdddbdbc 2946
4d7b1503
DW
2947 /* ensure that super->buf is large enough when all raid devices
2948 * are migrating
2949 */
2950 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2951 void *buf;
2952
2953 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2954 if (posix_memalign(&buf, 512, len) != 0)
2955 return 1;
2956
1f45a8ad
DW
2957 memcpy(buf, super->buf, super->len);
2958 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
2959 free(super->buf);
2960 super->buf = buf;
2961 super->len = len;
2962 }
2963
cdddbdbc
DW
2964 return 0;
2965}
2966
604b746f
JD
2967/* retrieve a pointer to the bbm log which starts after all raid devices */
2968struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2969{
2970 void *ptr = NULL;
2971
2972 if (__le32_to_cpu(mpb->bbm_log_size)) {
2973 ptr = mpb;
2974 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2975 }
2976
2977 return ptr;
2978}
2979
e2f41b2c
AK
2980/*******************************************************************************
2981 * Function: check_mpb_migr_compatibility
2982 * Description: Function checks for unsupported migration features:
2983 * - migration optimization area (pba_of_lba0)
2984 * - descending reshape (ascending_migr)
2985 * Parameters:
2986 * super : imsm metadata information
2987 * Returns:
2988 * 0 : migration is compatible
2989 * -1 : migration is not compatible
2990 ******************************************************************************/
2991int check_mpb_migr_compatibility(struct intel_super *super)
2992{
2993 struct imsm_map *map0, *map1;
2994 struct migr_record *migr_rec = super->migr_rec;
2995 int i;
2996
2997 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2998 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2999
3000 if (dev_iter &&
3001 dev_iter->vol.migr_state == 1 &&
3002 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3003 /* This device is migrating */
3004 map0 = get_imsm_map(dev_iter, 0);
3005 map1 = get_imsm_map(dev_iter, 1);
3006 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3007 /* migration optimization area was used */
3008 return -1;
3009 if (migr_rec->ascending_migr == 0
3010 && migr_rec->dest_depth_per_unit > 0)
3011 /* descending reshape not supported yet */
3012 return -1;
3013 }
3014 }
3015 return 0;
3016}
3017
d23fe947 3018static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3019
cdddbdbc 3020/* load_imsm_mpb - read matrix metadata
f2f5c343 3021 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3022 */
3023static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3024{
3025 unsigned long long dsize;
cdddbdbc
DW
3026 unsigned long long sectors;
3027 struct stat;
6416d527 3028 struct imsm_super *anchor;
cdddbdbc
DW
3029 __u32 check_sum;
3030
cdddbdbc 3031 get_dev_size(fd, NULL, &dsize);
64436f06
N
3032 if (dsize < 1024) {
3033 if (devname)
3034 fprintf(stderr,
3035 Name ": %s: device to small for imsm\n",
3036 devname);
3037 return 1;
3038 }
cdddbdbc
DW
3039
3040 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3041 if (devname)
3042 fprintf(stderr,
3043 Name ": Cannot seek to anchor block on %s: %s\n",
3044 devname, strerror(errno));
3045 return 1;
3046 }
3047
949c47a0 3048 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3049 if (devname)
3050 fprintf(stderr,
3051 Name ": Failed to allocate imsm anchor buffer"
3052 " on %s\n", devname);
3053 return 1;
3054 }
949c47a0 3055 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3056 if (devname)
3057 fprintf(stderr,
3058 Name ": Cannot read anchor block on %s: %s\n",
3059 devname, strerror(errno));
6416d527 3060 free(anchor);
cdddbdbc
DW
3061 return 1;
3062 }
3063
6416d527 3064 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3065 if (devname)
3066 fprintf(stderr,
3067 Name ": no IMSM anchor on %s\n", devname);
6416d527 3068 free(anchor);
cdddbdbc
DW
3069 return 2;
3070 }
3071
d23fe947 3072 __free_imsm(super, 0);
f2f5c343
LM
3073 /* reload capability and hba */
3074
3075 /* capability and hba must be updated with new super allocation */
d424212e 3076 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3077 super->len = ROUND_UP(anchor->mpb_size, 512);
3078 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3079 if (devname)
3080 fprintf(stderr,
3081 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3082 super->len);
6416d527 3083 free(anchor);
cdddbdbc
DW
3084 return 2;
3085 }
949c47a0 3086 memcpy(super->buf, anchor, 512);
cdddbdbc 3087
6416d527
NB
3088 sectors = mpb_sectors(anchor) - 1;
3089 free(anchor);
8e59f3d8
AK
3090
3091 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3092 fprintf(stderr, Name
3093 ": %s could not allocate migr_rec buffer\n", __func__);
3094 free(super->buf);
3095 return 2;
3096 }
3097
949c47a0 3098 if (!sectors) {
ecf45690
DW
3099 check_sum = __gen_imsm_checksum(super->anchor);
3100 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3101 if (devname)
3102 fprintf(stderr,
3103 Name ": IMSM checksum %x != %x on %s\n",
3104 check_sum,
3105 __le32_to_cpu(super->anchor->check_sum),
3106 devname);
3107 return 2;
3108 }
3109
a2b97981 3110 return 0;
949c47a0 3111 }
cdddbdbc
DW
3112
3113 /* read the extended mpb */
3114 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3115 if (devname)
3116 fprintf(stderr,
3117 Name ": Cannot seek to extended mpb on %s: %s\n",
3118 devname, strerror(errno));
3119 return 1;
3120 }
3121
f21e18ca 3122 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3123 if (devname)
3124 fprintf(stderr,
3125 Name ": Cannot read extended mpb on %s: %s\n",
3126 devname, strerror(errno));
3127 return 2;
3128 }
3129
949c47a0
DW
3130 check_sum = __gen_imsm_checksum(super->anchor);
3131 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3132 if (devname)
3133 fprintf(stderr,
3134 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3135 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3136 devname);
db575f3b 3137 return 3;
cdddbdbc
DW
3138 }
3139
604b746f
JD
3140 /* FIXME the BBM log is disk specific so we cannot use this global
3141 * buffer for all disks. Ok for now since we only look at the global
3142 * bbm_log_size parameter to gate assembly
3143 */
3144 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3145
a2b97981
DW
3146 return 0;
3147}
3148
8e59f3d8
AK
3149static int read_imsm_migr_rec(int fd, struct intel_super *super);
3150
a2b97981
DW
3151static int
3152load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3153{
3154 int err;
3155
3156 err = load_imsm_mpb(fd, super, devname);
3157 if (err)
3158 return err;
3159 err = load_imsm_disk(fd, super, devname, keep_fd);
3160 if (err)
3161 return err;
3162 err = parse_raid_devices(super);
4d7b1503 3163
a2b97981 3164 return err;
cdddbdbc
DW
3165}
3166
ae6aad82
DW
3167static void __free_imsm_disk(struct dl *d)
3168{
3169 if (d->fd >= 0)
3170 close(d->fd);
3171 if (d->devname)
3172 free(d->devname);
0dcecb2e
DW
3173 if (d->e)
3174 free(d->e);
ae6aad82
DW
3175 free(d);
3176
3177}
1a64be56 3178
cdddbdbc
DW
3179static void free_imsm_disks(struct intel_super *super)
3180{
47ee5a45 3181 struct dl *d;
cdddbdbc 3182
47ee5a45
DW
3183 while (super->disks) {
3184 d = super->disks;
cdddbdbc 3185 super->disks = d->next;
ae6aad82 3186 __free_imsm_disk(d);
cdddbdbc 3187 }
cb82edca
AK
3188 while (super->disk_mgmt_list) {
3189 d = super->disk_mgmt_list;
3190 super->disk_mgmt_list = d->next;
3191 __free_imsm_disk(d);
3192 }
47ee5a45
DW
3193 while (super->missing) {
3194 d = super->missing;
3195 super->missing = d->next;
3196 __free_imsm_disk(d);
3197 }
3198
cdddbdbc
DW
3199}
3200
9ca2c81c 3201/* free all the pieces hanging off of a super pointer */
d23fe947 3202static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3203{
88654014
LM
3204 struct intel_hba *elem, *next;
3205
9ca2c81c 3206 if (super->buf) {
949c47a0 3207 free(super->buf);
9ca2c81c
DW
3208 super->buf = NULL;
3209 }
f2f5c343
LM
3210 /* unlink capability description */
3211 super->orom = NULL;
8e59f3d8
AK
3212 if (super->migr_rec_buf) {
3213 free(super->migr_rec_buf);
3214 super->migr_rec_buf = NULL;
3215 }
d23fe947
DW
3216 if (free_disks)
3217 free_imsm_disks(super);
ba2de7ba 3218 free_devlist(super);
88654014
LM
3219 elem = super->hba;
3220 while (elem) {
3221 if (elem->path)
3222 free((void *)elem->path);
3223 next = elem->next;
3224 free(elem);
3225 elem = next;
88c32bb1 3226 }
88654014 3227 super->hba = NULL;
cdddbdbc
DW
3228}
3229
9ca2c81c
DW
3230static void free_imsm(struct intel_super *super)
3231{
d23fe947 3232 __free_imsm(super, 1);
9ca2c81c
DW
3233 free(super);
3234}
cdddbdbc
DW
3235
3236static void free_super_imsm(struct supertype *st)
3237{
3238 struct intel_super *super = st->sb;
3239
3240 if (!super)
3241 return;
3242
3243 free_imsm(super);
3244 st->sb = NULL;
3245}
3246
49133e57 3247static struct intel_super *alloc_super(void)
c2c087e6
DW
3248{
3249 struct intel_super *super = malloc(sizeof(*super));
3250
3251 if (super) {
3252 memset(super, 0, sizeof(*super));
bf5a934a 3253 super->current_vol = -1;
0dcecb2e 3254 super->create_offset = ~((__u32 ) 0);
c2c087e6 3255 }
c2c087e6
DW
3256 return super;
3257}
3258
f0f5a016
LM
3259/*
3260 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3261 */
d424212e 3262static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3263{
3264 struct sys_dev *hba_name;
3265 int rv = 0;
3266
3267 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3268 super->orom = NULL;
f0f5a016
LM
3269 super->hba = NULL;
3270 return 0;
3271 }
3272 hba_name = find_disk_attached_hba(fd, NULL);
3273 if (!hba_name) {
d424212e 3274 if (devname)
f0f5a016
LM
3275 fprintf(stderr,
3276 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3277 devname);
f0f5a016
LM
3278 return 1;
3279 }
3280 rv = attach_hba_to_super(super, hba_name);
3281 if (rv == 2) {
d424212e
N
3282 if (devname) {
3283 struct intel_hba *hba = super->hba;
f0f5a016 3284
f0f5a016
LM
3285 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3286 "controller (%s),\n"
3287 " but the container is assigned to Intel(R) "
3288 "%s RAID controller (",
d424212e 3289 devname,
f0f5a016
LM
3290 hba_name->path,
3291 hba_name->pci_id ? : "Err!",
3292 get_sys_dev_type(hba_name->type));
3293
f0f5a016
LM
3294 while (hba) {
3295 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3296 if (hba->next)
3297 fprintf(stderr, ", ");
3298 hba = hba->next;
3299 }
3300
3301 fprintf(stderr, ").\n"
3302 " Mixing devices attached to different controllers "
3303 "is not allowed.\n");
3304 }
3305 free_sys_dev(&hba_name);
3306 return 2;
3307 }
f2f5c343 3308 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3309 free_sys_dev(&hba_name);
f2f5c343
LM
3310 if (!super->orom)
3311 return 3;
f0f5a016
LM
3312 return 0;
3313}
3314
cdddbdbc 3315#ifndef MDASSEMBLE
47ee5a45
DW
3316/* find_missing - helper routine for load_super_imsm_all that identifies
3317 * disks that have disappeared from the system. This routine relies on
3318 * the mpb being uptodate, which it is at load time.
3319 */
3320static int find_missing(struct intel_super *super)
3321{
3322 int i;
3323 struct imsm_super *mpb = super->anchor;
3324 struct dl *dl;
3325 struct imsm_disk *disk;
47ee5a45
DW
3326
3327 for (i = 0; i < mpb->num_disks; i++) {
3328 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3329 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3330 if (dl)
3331 continue;
47ee5a45
DW
3332
3333 dl = malloc(sizeof(*dl));
3334 if (!dl)
3335 return 1;
3336 dl->major = 0;
3337 dl->minor = 0;
3338 dl->fd = -1;
3339 dl->devname = strdup("missing");
3340 dl->index = i;
3341 serialcpy(dl->serial, disk->serial);
3342 dl->disk = *disk;
689c9bf3 3343 dl->e = NULL;
47ee5a45
DW
3344 dl->next = super->missing;
3345 super->missing = dl;
3346 }
3347
3348 return 0;
3349}
3350
a2b97981
DW
3351static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3352{
3353 struct intel_disk *idisk = disk_list;
3354
3355 while (idisk) {
3356 if (serialcmp(idisk->disk.serial, serial) == 0)
3357 break;
3358 idisk = idisk->next;
3359 }
3360
3361 return idisk;
3362}
3363
3364static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3365 struct intel_super *super,
3366 struct intel_disk **disk_list)
3367{
3368 struct imsm_disk *d = &super->disks->disk;
3369 struct imsm_super *mpb = super->anchor;
3370 int i, j;
3371
3372 for (i = 0; i < tbl_size; i++) {
3373 struct imsm_super *tbl_mpb = table[i]->anchor;
3374 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3375
3376 if (tbl_mpb->family_num == mpb->family_num) {
3377 if (tbl_mpb->check_sum == mpb->check_sum) {
3378 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3379 __func__, super->disks->major,
3380 super->disks->minor,
3381 table[i]->disks->major,
3382 table[i]->disks->minor);
3383 break;
3384 }
3385
3386 if (((is_configured(d) && !is_configured(tbl_d)) ||
3387 is_configured(d) == is_configured(tbl_d)) &&
3388 tbl_mpb->generation_num < mpb->generation_num) {
3389 /* current version of the mpb is a
3390 * better candidate than the one in
3391 * super_table, but copy over "cross
3392 * generational" status
3393 */
3394 struct intel_disk *idisk;
3395
3396 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3397 __func__, super->disks->major,
3398 super->disks->minor,
3399 table[i]->disks->major,
3400 table[i]->disks->minor);
3401
3402 idisk = disk_list_get(tbl_d->serial, *disk_list);
3403 if (idisk && is_failed(&idisk->disk))
3404 tbl_d->status |= FAILED_DISK;
3405 break;
3406 } else {
3407 struct intel_disk *idisk;
3408 struct imsm_disk *disk;
3409
3410 /* tbl_mpb is more up to date, but copy
3411 * over cross generational status before
3412 * returning
3413 */
3414 disk = __serial_to_disk(d->serial, mpb, NULL);
3415 if (disk && is_failed(disk))
3416 d->status |= FAILED_DISK;
3417
3418 idisk = disk_list_get(d->serial, *disk_list);
3419 if (idisk) {
3420 idisk->owner = i;
3421 if (disk && is_configured(disk))
3422 idisk->disk.status |= CONFIGURED_DISK;
3423 }
3424
3425 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3426 __func__, super->disks->major,
3427 super->disks->minor,
3428 table[i]->disks->major,
3429 table[i]->disks->minor);
3430
3431 return tbl_size;
3432 }
3433 }
3434 }
3435
3436 if (i >= tbl_size)
3437 table[tbl_size++] = super;
3438 else
3439 table[i] = super;
3440
3441 /* update/extend the merged list of imsm_disk records */
3442 for (j = 0; j < mpb->num_disks; j++) {
3443 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3444 struct intel_disk *idisk;
3445
3446 idisk = disk_list_get(disk->serial, *disk_list);
3447 if (idisk) {
3448 idisk->disk.status |= disk->status;
3449 if (is_configured(&idisk->disk) ||
3450 is_failed(&idisk->disk))
3451 idisk->disk.status &= ~(SPARE_DISK);
3452 } else {
3453 idisk = calloc(1, sizeof(*idisk));
3454 if (!idisk)
3455 return -1;
3456 idisk->owner = IMSM_UNKNOWN_OWNER;
3457 idisk->disk = *disk;
3458 idisk->next = *disk_list;
3459 *disk_list = idisk;
3460 }
3461
3462 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3463 idisk->owner = i;
3464 }
3465
3466 return tbl_size;
3467}
3468
3469static struct intel_super *
3470validate_members(struct intel_super *super, struct intel_disk *disk_list,
3471 const int owner)
3472{
3473 struct imsm_super *mpb = super->anchor;
3474 int ok_count = 0;
3475 int i;
3476
3477 for (i = 0; i < mpb->num_disks; i++) {
3478 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3479 struct intel_disk *idisk;
3480
3481 idisk = disk_list_get(disk->serial, disk_list);
3482 if (idisk) {
3483 if (idisk->owner == owner ||
3484 idisk->owner == IMSM_UNKNOWN_OWNER)
3485 ok_count++;
3486 else
3487 dprintf("%s: '%.16s' owner %d != %d\n",
3488 __func__, disk->serial, idisk->owner,
3489 owner);
3490 } else {
3491 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3492 __func__, __le32_to_cpu(mpb->family_num), i,
3493 disk->serial);
3494 break;
3495 }
3496 }
3497
3498 if (ok_count == mpb->num_disks)
3499 return super;
3500 return NULL;
3501}
3502
3503static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3504{
3505 struct intel_super *s;
3506
3507 for (s = super_list; s; s = s->next) {
3508 if (family_num != s->anchor->family_num)
3509 continue;
3510 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3511 __le32_to_cpu(family_num), s->disks->devname);
3512 }
3513}
3514
3515static struct intel_super *
3516imsm_thunderdome(struct intel_super **super_list, int len)
3517{
3518 struct intel_super *super_table[len];
3519 struct intel_disk *disk_list = NULL;
3520 struct intel_super *champion, *spare;
3521 struct intel_super *s, **del;
3522 int tbl_size = 0;
3523 int conflict;
3524 int i;
3525
3526 memset(super_table, 0, sizeof(super_table));
3527 for (s = *super_list; s; s = s->next)
3528 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3529
3530 for (i = 0; i < tbl_size; i++) {
3531 struct imsm_disk *d;
3532 struct intel_disk *idisk;
3533 struct imsm_super *mpb = super_table[i]->anchor;
3534
3535 s = super_table[i];
3536 d = &s->disks->disk;
3537
3538 /* 'd' must appear in merged disk list for its
3539 * configuration to be valid
3540 */
3541 idisk = disk_list_get(d->serial, disk_list);
3542 if (idisk && idisk->owner == i)
3543 s = validate_members(s, disk_list, i);
3544 else
3545 s = NULL;
3546
3547 if (!s)
3548 dprintf("%s: marking family: %#x from %d:%d offline\n",
3549 __func__, mpb->family_num,
3550 super_table[i]->disks->major,
3551 super_table[i]->disks->minor);
3552 super_table[i] = s;
3553 }
3554
3555 /* This is where the mdadm implementation differs from the Windows
3556 * driver which has no strict concept of a container. We can only
3557 * assemble one family from a container, so when returning a prodigal
3558 * array member to this system the code will not be able to disambiguate
3559 * the container contents that should be assembled ("foreign" versus
3560 * "local"). It requires user intervention to set the orig_family_num
3561 * to a new value to establish a new container. The Windows driver in
3562 * this situation fixes up the volume name in place and manages the
3563 * foreign array as an independent entity.
3564 */
3565 s = NULL;
3566 spare = NULL;
3567 conflict = 0;
3568 for (i = 0; i < tbl_size; i++) {
3569 struct intel_super *tbl_ent = super_table[i];
3570 int is_spare = 0;
3571
3572 if (!tbl_ent)
3573 continue;
3574
3575 if (tbl_ent->anchor->num_raid_devs == 0) {
3576 spare = tbl_ent;
3577 is_spare = 1;
3578 }
3579
3580 if (s && !is_spare) {
3581 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3582 conflict++;
3583 } else if (!s && !is_spare)
3584 s = tbl_ent;
3585 }
3586
3587 if (!s)
3588 s = spare;
3589 if (!s) {
3590 champion = NULL;
3591 goto out;
3592 }
3593 champion = s;
3594
3595 if (conflict)
3596 fprintf(stderr, "Chose family %#x on '%s', "
3597 "assemble conflicts to new container with '--update=uuid'\n",
3598 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3599
3600 /* collect all dl's onto 'champion', and update them to
3601 * champion's version of the status
3602 */
3603 for (s = *super_list; s; s = s->next) {
3604 struct imsm_super *mpb = champion->anchor;
3605 struct dl *dl = s->disks;
3606
3607 if (s == champion)
3608 continue;
3609
3610 for (i = 0; i < mpb->num_disks; i++) {
3611 struct imsm_disk *disk;
3612
3613 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3614 if (disk) {
3615 dl->disk = *disk;
3616 /* only set index on disks that are a member of
3617 * a populated contianer, i.e. one with
3618 * raid_devs
3619 */
3620 if (is_failed(&dl->disk))
3621 dl->index = -2;
3622 else if (is_spare(&dl->disk))
3623 dl->index = -1;
3624 break;
3625 }
3626 }
3627
3628 if (i >= mpb->num_disks) {
3629 struct intel_disk *idisk;
3630
3631 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3632 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3633 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3634 dl->index = -1;
3635 else {
3636 dl->index = -2;
3637 continue;
3638 }
3639 }
3640
3641 dl->next = champion->disks;
3642 champion->disks = dl;
3643 s->disks = NULL;
3644 }
3645
3646 /* delete 'champion' from super_list */
3647 for (del = super_list; *del; ) {
3648 if (*del == champion) {
3649 *del = (*del)->next;
3650 break;
3651 } else
3652 del = &(*del)->next;
3653 }
3654 champion->next = NULL;
3655
3656 out:
3657 while (disk_list) {
3658 struct intel_disk *idisk = disk_list;
3659
3660 disk_list = disk_list->next;
3661 free(idisk);
3662 }
3663
3664 return champion;
3665}
3666
cdddbdbc 3667static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3668 char *devname)
cdddbdbc
DW
3669{
3670 struct mdinfo *sra;
a2b97981
DW
3671 struct intel_super *super_list = NULL;
3672 struct intel_super *super = NULL;
db575f3b 3673 int devnum = fd2devnum(fd);
a2b97981 3674 struct mdinfo *sd;
db575f3b 3675 int retry;
a2b97981
DW
3676 int err = 0;
3677 int i;
dab4a513
DW
3678
3679 /* check if 'fd' an opened container */
b526e52d 3680 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3681 if (!sra)
3682 return 1;
3683
3684 if (sra->array.major_version != -1 ||
3685 sra->array.minor_version != -2 ||
1602d52c
AW
3686 strcmp(sra->text_version, "imsm") != 0) {
3687 err = 1;
3688 goto error;
3689 }
a2b97981
DW
3690 /* load all mpbs */
3691 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3692 struct intel_super *s = alloc_super();
7a6ecd55 3693 char nm[32];
a2b97981 3694 int dfd;
f2f5c343 3695 int rv;
a2b97981
DW
3696
3697 err = 1;
3698 if (!s)
3699 goto error;
3700 s->next = super_list;
3701 super_list = s;
cdddbdbc 3702
a2b97981 3703 err = 2;
cdddbdbc 3704 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3705 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3706 if (dfd < 0)
3707 goto error;
3708
d424212e 3709 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3710 /* no orom/efi or non-intel hba of the disk */
3711 if (rv != 0)
3712 goto error;
3713
e1902a7b 3714 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3715
3716 /* retry the load if we might have raced against mdmon */
a2b97981 3717 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3718 for (retry = 0; retry < 3; retry++) {
3719 usleep(3000);
e1902a7b 3720 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3721 if (err != 3)
db575f3b
DW
3722 break;
3723 }
a2b97981
DW
3724 if (err)
3725 goto error;
cdddbdbc
DW
3726 }
3727
a2b97981
DW
3728 /* all mpbs enter, maybe one leaves */
3729 super = imsm_thunderdome(&super_list, i);
3730 if (!super) {
3731 err = 1;
3732 goto error;
cdddbdbc
DW
3733 }
3734
47ee5a45
DW
3735 if (find_missing(super) != 0) {
3736 free_imsm(super);
a2b97981
DW
3737 err = 2;
3738 goto error;
47ee5a45 3739 }
8e59f3d8
AK
3740
3741 /* load migration record */
3742 err = load_imsm_migr_rec(super, NULL);
3743 if (err) {
3744 err = 4;
3745 goto error;
3746 }
e2f41b2c
AK
3747
3748 /* Check migration compatibility */
3749 if (check_mpb_migr_compatibility(super) != 0) {
3750 fprintf(stderr, Name ": Unsupported migration detected");
3751 if (devname)
3752 fprintf(stderr, " on %s\n", devname);
3753 else
3754 fprintf(stderr, " (IMSM).\n");
3755
3756 err = 5;
3757 goto error;
3758 }
3759
a2b97981
DW
3760 err = 0;
3761
3762 error:
3763 while (super_list) {
3764 struct intel_super *s = super_list;
3765
3766 super_list = super_list->next;
3767 free_imsm(s);
3768 }
1602d52c 3769 sysfs_free(sra);
a2b97981
DW
3770
3771 if (err)
3772 return err;
f7e7067b 3773
cdddbdbc 3774 *sbp = super;
db575f3b 3775 st->container_dev = devnum;
a2b97981 3776 if (err == 0 && st->ss == NULL) {
bf5a934a 3777 st->ss = &super_imsm;
cdddbdbc
DW
3778 st->minor_version = 0;
3779 st->max_devs = IMSM_MAX_DEVICES;
3780 }
cdddbdbc
DW
3781 return 0;
3782}
2b959fbf
N
3783
3784static int load_container_imsm(struct supertype *st, int fd, char *devname)
3785{
3786 return load_super_imsm_all(st, fd, &st->sb, devname);
3787}
cdddbdbc
DW
3788#endif
3789
3790static int load_super_imsm(struct supertype *st, int fd, char *devname)
3791{
3792 struct intel_super *super;
3793 int rv;
3794
691c6ee1
N
3795 if (test_partition(fd))
3796 /* IMSM not allowed on partitions */
3797 return 1;
3798
37424f13
DW
3799 free_super_imsm(st);
3800
49133e57 3801 super = alloc_super();
cdddbdbc
DW
3802 if (!super) {
3803 fprintf(stderr,
3804 Name ": malloc of %zu failed.\n",
3805 sizeof(*super));
3806 return 1;
3807 }
ea2bc72b
LM
3808 /* Load hba and capabilities if they exist.
3809 * But do not preclude loading metadata in case capabilities or hba are
3810 * non-compliant and ignore_hw_compat is set.
3811 */
d424212e 3812 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 3813 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 3814 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
3815 if (devname)
3816 fprintf(stderr,
3817 Name ": No OROM/EFI properties for %s\n", devname);
3818 free_imsm(super);
3819 return 2;
3820 }
a2b97981 3821 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
3822
3823 if (rv) {
3824 if (devname)
3825 fprintf(stderr,
3826 Name ": Failed to load all information "
3827 "sections on %s\n", devname);
3828 free_imsm(super);
3829 return rv;
3830 }
3831
3832 st->sb = super;
3833 if (st->ss == NULL) {
3834 st->ss = &super_imsm;
3835 st->minor_version = 0;
3836 st->max_devs = IMSM_MAX_DEVICES;
3837 }
8e59f3d8
AK
3838
3839 /* load migration record */
3840 load_imsm_migr_rec(super, NULL);
3841
e2f41b2c
AK
3842 /* Check for unsupported migration features */
3843 if (check_mpb_migr_compatibility(super) != 0) {
3844 fprintf(stderr, Name ": Unsupported migration detected");
3845 if (devname)
3846 fprintf(stderr, " on %s\n", devname);
3847 else
3848 fprintf(stderr, " (IMSM).\n");
3849 return 3;
3850 }
3851
cdddbdbc
DW
3852 return 0;
3853}
3854
ef6ffade
DW
3855static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3856{
3857 if (info->level == 1)
3858 return 128;
3859 return info->chunk_size >> 9;
3860}
3861
ff596308 3862static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
3863{
3864 __u32 num_stripes;
3865
3866 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 3867 num_stripes /= num_domains;
ef6ffade
DW
3868
3869 return num_stripes;
3870}
3871
fcfd9599
DW
3872static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3873{
4025c288
DW
3874 if (info->level == 1)
3875 return info->size * 2;
3876 else
3877 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
3878}
3879
4d1313e9
DW
3880static void imsm_update_version_info(struct intel_super *super)
3881{
3882 /* update the version and attributes */
3883 struct imsm_super *mpb = super->anchor;
3884 char *version;
3885 struct imsm_dev *dev;
3886 struct imsm_map *map;
3887 int i;
3888
3889 for (i = 0; i < mpb->num_raid_devs; i++) {
3890 dev = get_imsm_dev(super, i);
3891 map = get_imsm_map(dev, 0);
3892 if (__le32_to_cpu(dev->size_high) > 0)
3893 mpb->attributes |= MPB_ATTRIB_2TB;
3894
3895 /* FIXME detect when an array spans a port multiplier */
3896 #if 0
3897 mpb->attributes |= MPB_ATTRIB_PM;
3898 #endif
3899
3900 if (mpb->num_raid_devs > 1 ||
3901 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3902 version = MPB_VERSION_ATTRIBS;
3903 switch (get_imsm_raid_level(map)) {
3904 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3905 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3906 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3907 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3908 }
3909 } else {
3910 if (map->num_members >= 5)
3911 version = MPB_VERSION_5OR6_DISK_ARRAY;
3912 else if (dev->status == DEV_CLONE_N_GO)
3913 version = MPB_VERSION_CNG;
3914 else if (get_imsm_raid_level(map) == 5)
3915 version = MPB_VERSION_RAID5;
3916 else if (map->num_members >= 3)
3917 version = MPB_VERSION_3OR4_DISK_ARRAY;
3918 else if (get_imsm_raid_level(map) == 1)
3919 version = MPB_VERSION_RAID1;
3920 else
3921 version = MPB_VERSION_RAID0;
3922 }
3923 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3924 }
3925}
3926
aa534678
DW
3927static int check_name(struct intel_super *super, char *name, int quiet)
3928{
3929 struct imsm_super *mpb = super->anchor;
3930 char *reason = NULL;
3931 int i;
3932
3933 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3934 reason = "must be 16 characters or less";
3935
3936 for (i = 0; i < mpb->num_raid_devs; i++) {
3937 struct imsm_dev *dev = get_imsm_dev(super, i);
3938
3939 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3940 reason = "already exists";
3941 break;
3942 }
3943 }
3944
3945 if (reason && !quiet)
3946 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3947
3948 return !reason;
3949}
3950
8b353278
DW
3951static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3952 unsigned long long size, char *name,
3953 char *homehost, int *uuid)
cdddbdbc 3954{
c2c087e6
DW
3955 /* We are creating a volume inside a pre-existing container.
3956 * so st->sb is already set.
3957 */
3958 struct intel_super *super = st->sb;
949c47a0 3959 struct imsm_super *mpb = super->anchor;
ba2de7ba 3960 struct intel_dev *dv;
c2c087e6
DW
3961 struct imsm_dev *dev;
3962 struct imsm_vol *vol;
3963 struct imsm_map *map;
3964 int idx = mpb->num_raid_devs;
3965 int i;
3966 unsigned long long array_blocks;
2c092cad 3967 size_t size_old, size_new;
ff596308 3968 __u32 num_data_stripes;
cdddbdbc 3969
88c32bb1 3970 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 3971 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 3972 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
3973 return 0;
3974 }
3975
2c092cad
DW
3976 /* ensure the mpb is large enough for the new data */
3977 size_old = __le32_to_cpu(mpb->mpb_size);
3978 size_new = disks_to_mpb_size(info->nr_disks);
3979 if (size_new > size_old) {
3980 void *mpb_new;
3981 size_t size_round = ROUND_UP(size_new, 512);
3982
3983 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3984 fprintf(stderr, Name": could not allocate new mpb\n");
3985 return 0;
3986 }
8e59f3d8
AK
3987 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3988 fprintf(stderr, Name
3989 ": %s could not allocate migr_rec buffer\n",
3990 __func__);
3991 free(super->buf);
3992 free(super);
3993 return 0;
3994 }
2c092cad
DW
3995 memcpy(mpb_new, mpb, size_old);
3996 free(mpb);
3997 mpb = mpb_new;
949c47a0 3998 super->anchor = mpb_new;
2c092cad
DW
3999 mpb->mpb_size = __cpu_to_le32(size_new);
4000 memset(mpb_new + size_old, 0, size_round - size_old);
4001 }
bf5a934a 4002 super->current_vol = idx;
d23fe947
DW
4003 /* when creating the first raid device in this container set num_disks
4004 * to zero, i.e. delete this spare and add raid member devices in
4005 * add_to_super_imsm_volume()
4006 */
4007 if (super->current_vol == 0)
4008 mpb->num_disks = 0;
5a038140 4009
aa534678
DW
4010 if (!check_name(super, name, 0))
4011 return 0;
ba2de7ba
DW
4012 dv = malloc(sizeof(*dv));
4013 if (!dv) {
4014 fprintf(stderr, Name ": failed to allocate device list entry\n");
4015 return 0;
4016 }
1a2487c2 4017 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4018 if (!dev) {
ba2de7ba 4019 free(dv);
949c47a0
DW
4020 fprintf(stderr, Name": could not allocate raid device\n");
4021 return 0;
4022 }
1a2487c2 4023
c2c087e6 4024 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4025 if (info->level == 1)
4026 array_blocks = info_to_blocks_per_member(info);
4027 else
4028 array_blocks = calc_array_size(info->level, info->raid_disks,
4029 info->layout, info->chunk_size,
4030 info->size*2);
979d38be
DW
4031 /* round array size down to closest MB */
4032 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4033
c2c087e6
DW
4034 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4035 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4036 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4037 vol = &dev->vol;
4038 vol->migr_state = 0;
1484e727 4039 set_migr_type(dev, MIGR_INIT);
c2c087e6 4040 vol->dirty = 0;
f8f603f1 4041 vol->curr_migr_unit = 0;
a965f303 4042 map = get_imsm_map(dev, 0);
0dcecb2e 4043 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4044 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4045 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4046 map->failed_disk_num = ~0;
c2c087e6
DW
4047 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
4048 IMSM_T_STATE_NORMAL;
252d23c0 4049 map->ddf = 1;
ef6ffade
DW
4050
4051 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4052 free(dev);
4053 free(dv);
ef6ffade
DW
4054 fprintf(stderr, Name": imsm does not support more than 2 disks"
4055 "in a raid1 volume\n");
4056 return 0;
4057 }
81062a36
DW
4058
4059 map->raid_level = info->level;
4d1313e9 4060 if (info->level == 10) {
c2c087e6 4061 map->raid_level = 1;
4d1313e9 4062 map->num_domains = info->raid_disks / 2;
81062a36
DW
4063 } else if (info->level == 1)
4064 map->num_domains = info->raid_disks;
4065 else
ff596308 4066 map->num_domains = 1;
81062a36 4067
ff596308
DW
4068 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4069 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4070
c2c087e6
DW
4071 map->num_members = info->raid_disks;
4072 for (i = 0; i < map->num_members; i++) {
4073 /* initialized in add_to_super */
4eb26970 4074 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4075 }
949c47a0 4076 mpb->num_raid_devs++;
ba2de7ba
DW
4077
4078 dv->dev = dev;
4079 dv->index = super->current_vol;
4080 dv->next = super->devlist;
4081 super->devlist = dv;
c2c087e6 4082
4d1313e9
DW
4083 imsm_update_version_info(super);
4084
c2c087e6 4085 return 1;
cdddbdbc
DW
4086}
4087
bf5a934a
DW
4088static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4089 unsigned long long size, char *name,
4090 char *homehost, int *uuid)
4091{
4092 /* This is primarily called by Create when creating a new array.
4093 * We will then get add_to_super called for each component, and then
4094 * write_init_super called to write it out to each device.
4095 * For IMSM, Create can create on fresh devices or on a pre-existing
4096 * array.
4097 * To create on a pre-existing array a different method will be called.
4098 * This one is just for fresh drives.
4099 */
4100 struct intel_super *super;
4101 struct imsm_super *mpb;
4102 size_t mpb_size;
4d1313e9 4103 char *version;
bf5a934a 4104
bf5a934a 4105 if (st->sb)
e683ca88
DW
4106 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4107
4108 if (info)
4109 mpb_size = disks_to_mpb_size(info->nr_disks);
4110 else
4111 mpb_size = 512;
bf5a934a 4112
49133e57 4113 super = alloc_super();
e683ca88 4114 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4115 free(super);
e683ca88
DW
4116 super = NULL;
4117 }
4118 if (!super) {
4119 fprintf(stderr, Name
4120 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4121 return 0;
4122 }
8e59f3d8
AK
4123 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4124 fprintf(stderr, Name
4125 ": %s could not allocate migr_rec buffer\n", __func__);
4126 free(super->buf);
4127 free(super);
4128 return 0;
4129 }
e683ca88 4130 memset(super->buf, 0, mpb_size);
ef649044 4131 mpb = super->buf;
e683ca88
DW
4132 mpb->mpb_size = __cpu_to_le32(mpb_size);
4133 st->sb = super;
4134
4135 if (info == NULL) {
4136 /* zeroing superblock */
4137 return 0;
4138 }
bf5a934a 4139
4d1313e9
DW
4140 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4141
4142 version = (char *) mpb->sig;
4143 strcpy(version, MPB_SIGNATURE);
4144 version += strlen(MPB_SIGNATURE);
4145 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4146
bf5a934a
DW
4147 return 1;
4148}
4149
0e600426 4150#ifndef MDASSEMBLE
f20c3968 4151static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4152 int fd, char *devname)
4153{
4154 struct intel_super *super = st->sb;
d23fe947 4155 struct imsm_super *mpb = super->anchor;
bf5a934a
DW
4156 struct dl *dl;
4157 struct imsm_dev *dev;
4158 struct imsm_map *map;
4eb26970 4159 int slot;
bf5a934a 4160
949c47a0 4161 dev = get_imsm_dev(super, super->current_vol);
a965f303 4162 map = get_imsm_map(dev, 0);
bf5a934a 4163
208933a7
N
4164 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4165 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4166 devname);
4167 return 1;
4168 }
4169
efb30e7f
DW
4170 if (fd == -1) {
4171 /* we're doing autolayout so grab the pre-marked (in
4172 * validate_geometry) raid_disk
4173 */
4174 for (dl = super->disks; dl; dl = dl->next)
4175 if (dl->raiddisk == dk->raid_disk)
4176 break;
4177 } else {
4178 for (dl = super->disks; dl ; dl = dl->next)
4179 if (dl->major == dk->major &&
4180 dl->minor == dk->minor)
4181 break;
4182 }
d23fe947 4183
208933a7
N
4184 if (!dl) {
4185 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4186 return 1;
208933a7 4187 }
bf5a934a 4188
d23fe947
DW
4189 /* add a pristine spare to the metadata */
4190 if (dl->index < 0) {
4191 dl->index = super->anchor->num_disks;
4192 super->anchor->num_disks++;
4193 }
4eb26970
DW
4194 /* Check the device has not already been added */
4195 slot = get_imsm_disk_slot(map, dl->index);
4196 if (slot >= 0 &&
98130f40 4197 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4198 fprintf(stderr, Name ": %s has been included in this array twice\n",
4199 devname);
4200 return 1;
4201 }
be73972f 4202 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
ee5aad5a 4203 dl->disk.status = CONFIGURED_DISK;
d23fe947
DW
4204
4205 /* if we are creating the first raid device update the family number */
4206 if (super->current_vol == 0) {
4207 __u32 sum;
4208 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4209 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
4210
791b666a
AW
4211 if (!_dev || !_disk) {
4212 fprintf(stderr, Name ": BUG mpb setup error\n");
4213 return 1;
4214 }
d23fe947
DW
4215 *_dev = *dev;
4216 *_disk = dl->disk;
148acb7b
DW
4217 sum = random32();
4218 sum += __gen_imsm_checksum(mpb);
d23fe947 4219 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4220 mpb->orig_family_num = mpb->family_num;
d23fe947 4221 }
f20c3968
DW
4222
4223 return 0;
bf5a934a
DW
4224}
4225
88654014 4226
f20c3968 4227static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4228 int fd, char *devname)
cdddbdbc 4229{
c2c087e6 4230 struct intel_super *super = st->sb;
c2c087e6
DW
4231 struct dl *dd;
4232 unsigned long long size;
f2f27e63 4233 __u32 id;
c2c087e6
DW
4234 int rv;
4235 struct stat stb;
4236
88654014
LM
4237 /* If we are on an RAID enabled platform check that the disk is
4238 * attached to the raid controller.
4239 * We do not need to test disks attachment for container based additions,
4240 * they shall be already tested when container was created/assembled.
88c32bb1 4241 */
d424212e 4242 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4243 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4244 if (rv != 0) {
4245 dprintf("capability: %p fd: %d ret: %d\n",
4246 super->orom, fd, rv);
4247 return 1;
88c32bb1
DW
4248 }
4249
f20c3968
DW
4250 if (super->current_vol >= 0)
4251 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4252
c2c087e6
DW
4253 fstat(fd, &stb);
4254 dd = malloc(sizeof(*dd));
b9f594fe 4255 if (!dd) {
c2c087e6
DW
4256 fprintf(stderr,
4257 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4258 return 1;
c2c087e6
DW
4259 }
4260 memset(dd, 0, sizeof(*dd));
4261 dd->major = major(stb.st_rdev);
4262 dd->minor = minor(stb.st_rdev);
b9f594fe 4263 dd->index = -1;
c2c087e6 4264 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4265 dd->fd = fd;
689c9bf3 4266 dd->e = NULL;
1a64be56 4267 dd->action = DISK_ADD;
c2c087e6 4268 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4269 if (rv) {
c2c087e6 4270 fprintf(stderr,
0030e8d6 4271 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4272 free(dd);
0030e8d6 4273 abort();
c2c087e6
DW
4274 }
4275
c2c087e6
DW
4276 get_dev_size(fd, NULL, &size);
4277 size /= 512;
1f24f035 4278 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4279 dd->disk.total_blocks = __cpu_to_le32(size);
ee5aad5a 4280 dd->disk.status = SPARE_DISK;
c2c087e6 4281 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4282 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4283 else
b9f594fe 4284 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4285
4286 if (st->update_tail) {
1a64be56
LM
4287 dd->next = super->disk_mgmt_list;
4288 super->disk_mgmt_list = dd;
43dad3d6
DW
4289 } else {
4290 dd->next = super->disks;
4291 super->disks = dd;
ceaf0ee1 4292 super->updates_pending++;
43dad3d6 4293 }
f20c3968
DW
4294
4295 return 0;
cdddbdbc
DW
4296}
4297
1a64be56
LM
4298
4299static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4300{
4301 struct intel_super *super = st->sb;
4302 struct dl *dd;
4303
4304 /* remove from super works only in mdmon - for communication
4305 * manager - monitor. Check if communication memory buffer
4306 * is prepared.
4307 */
4308 if (!st->update_tail) {
4309 fprintf(stderr,
4310 Name ": %s shall be used in mdmon context only"
4311 "(line %d).\n", __func__, __LINE__);
4312 return 1;
4313 }
4314 dd = malloc(sizeof(*dd));
4315 if (!dd) {
4316 fprintf(stderr,
4317 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4318 return 1;
4319 }
4320 memset(dd, 0, sizeof(*dd));
4321 dd->major = dk->major;
4322 dd->minor = dk->minor;
4323 dd->index = -1;
4324 dd->fd = -1;
4325 dd->disk.status = SPARE_DISK;
4326 dd->action = DISK_REMOVE;
4327
4328 dd->next = super->disk_mgmt_list;
4329 super->disk_mgmt_list = dd;
4330
4331
4332 return 0;
4333}
4334
f796af5d
DW
4335static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4336
4337static union {
4338 char buf[512];
4339 struct imsm_super anchor;
4340} spare_record __attribute__ ((aligned(512)));
c2c087e6 4341
d23fe947
DW
4342/* spare records have their own family number and do not have any defined raid
4343 * devices
4344 */
4345static int write_super_imsm_spares(struct intel_super *super, int doclose)
4346{
d23fe947 4347 struct imsm_super *mpb = super->anchor;
f796af5d 4348 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4349 __u32 sum;
4350 struct dl *d;
4351
f796af5d
DW
4352 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4353 spare->generation_num = __cpu_to_le32(1UL),
4354 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4355 spare->num_disks = 1,
4356 spare->num_raid_devs = 0,
4357 spare->cache_size = mpb->cache_size,
4358 spare->pwr_cycle_count = __cpu_to_le32(1),
4359
4360 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4361 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4362
4363 for (d = super->disks; d; d = d->next) {
8796fdc4 4364 if (d->index != -1)
d23fe947
DW
4365 continue;
4366
f796af5d
DW
4367 spare->disk[0] = d->disk;
4368 sum = __gen_imsm_checksum(spare);
4369 spare->family_num = __cpu_to_le32(sum);
4370 spare->orig_family_num = 0;
4371 sum = __gen_imsm_checksum(spare);
4372 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4373
f796af5d 4374 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4375 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4376 __func__, d->major, d->minor, strerror(errno));
e74255d9 4377 return 1;
d23fe947
DW
4378 }
4379 if (doclose) {
4380 close(d->fd);
4381 d->fd = -1;
4382 }
4383 }
4384
e74255d9 4385 return 0;
d23fe947
DW
4386}
4387
146c6260
AK
4388static int is_gen_migration(struct imsm_dev *dev);
4389
36988a3d 4390static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4391{
36988a3d 4392 struct intel_super *super = st->sb;
949c47a0 4393 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4394 struct dl *d;
4395 __u32 generation;
4396 __u32 sum;
d23fe947 4397 int spares = 0;
949c47a0 4398 int i;
a48ac0a8 4399 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4400 int num_disks = 0;
146c6260 4401 int clear_migration_record = 1;
cdddbdbc 4402
c2c087e6
DW
4403 /* 'generation' is incremented everytime the metadata is written */
4404 generation = __le32_to_cpu(mpb->generation_num);
4405 generation++;
4406 mpb->generation_num = __cpu_to_le32(generation);
4407
148acb7b
DW
4408 /* fix up cases where previous mdadm releases failed to set
4409 * orig_family_num
4410 */
4411 if (mpb->orig_family_num == 0)
4412 mpb->orig_family_num = mpb->family_num;
4413
d23fe947 4414 for (d = super->disks; d; d = d->next) {
8796fdc4 4415 if (d->index == -1)
d23fe947 4416 spares++;
36988a3d 4417 else {
d23fe947 4418 mpb->disk[d->index] = d->disk;
36988a3d
AK
4419 num_disks++;
4420 }
d23fe947 4421 }
36988a3d 4422 for (d = super->missing; d; d = d->next) {
47ee5a45 4423 mpb->disk[d->index] = d->disk;
36988a3d
AK
4424 num_disks++;
4425 }
4426 mpb->num_disks = num_disks;
4427 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4428
949c47a0
DW
4429 for (i = 0; i < mpb->num_raid_devs; i++) {
4430 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4431 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4432 if (dev && dev2) {
4433 imsm_copy_dev(dev, dev2);
4434 mpb_size += sizeof_imsm_dev(dev, 0);
4435 }
146c6260
AK
4436 if (is_gen_migration(dev2))
4437 clear_migration_record = 0;
949c47a0 4438 }
a48ac0a8
DW
4439 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4440 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4441
c2c087e6 4442 /* recalculate checksum */
949c47a0 4443 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4444 mpb->check_sum = __cpu_to_le32(sum);
4445
146c6260
AK
4446 if (clear_migration_record)
4447 memset(super->migr_rec_buf, 0, 512);
4448
d23fe947 4449 /* write the mpb for disks that compose raid devices */
c2c087e6 4450 for (d = super->disks; d ; d = d->next) {
d23fe947
DW
4451 if (d->index < 0)
4452 continue;
f796af5d 4453 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4454 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4455 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4456 if (clear_migration_record) {
4457 unsigned long long dsize;
4458
4459 get_dev_size(d->fd, NULL, &dsize);
4460 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4461 write(d->fd, super->migr_rec_buf, 512);
4462 }
4463 }
c2c087e6
DW
4464 if (doclose) {
4465 close(d->fd);
4466 d->fd = -1;
4467 }
4468 }
4469
d23fe947
DW
4470 if (spares)
4471 return write_super_imsm_spares(super, doclose);
4472
e74255d9 4473 return 0;
c2c087e6
DW
4474}
4475
0e600426 4476
9b1fb677 4477static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4478{
4479 size_t len;
4480 struct imsm_update_create_array *u;
4481 struct intel_super *super = st->sb;
9b1fb677 4482 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4483 struct imsm_map *map = get_imsm_map(dev, 0);
4484 struct disk_info *inf;
4485 struct imsm_disk *disk;
4486 int i;
43dad3d6 4487
54c2c1ea
DW
4488 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4489 sizeof(*inf) * map->num_members;
43dad3d6
DW
4490 u = malloc(len);
4491 if (!u) {
4492 fprintf(stderr, "%s: failed to allocate update buffer\n",
4493 __func__);
4494 return 1;
4495 }
4496
4497 u->type = update_create_array;
9b1fb677 4498 u->dev_idx = dev_idx;
43dad3d6 4499 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4500 inf = get_disk_info(u);
4501 for (i = 0; i < map->num_members; i++) {
98130f40 4502 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4503
54c2c1ea
DW
4504 disk = get_imsm_disk(super, idx);
4505 serialcpy(inf[i].serial, disk->serial);
4506 }
43dad3d6
DW
4507 append_metadata_update(st, u, len);
4508
4509 return 0;
4510}
4511
1a64be56 4512static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4513{
4514 struct intel_super *super = st->sb;
4515 size_t len;
1a64be56 4516 struct imsm_update_add_remove_disk *u;
43dad3d6 4517
1a64be56 4518 if (!super->disk_mgmt_list)
43dad3d6
DW
4519 return 0;
4520
4521 len = sizeof(*u);
4522 u = malloc(len);
4523 if (!u) {
4524 fprintf(stderr, "%s: failed to allocate update buffer\n",
4525 __func__);
4526 return 1;
4527 }
4528
1a64be56 4529 u->type = update_add_remove_disk;
43dad3d6
DW
4530 append_metadata_update(st, u, len);
4531
4532 return 0;
4533}
4534
c2c087e6
DW
4535static int write_init_super_imsm(struct supertype *st)
4536{
9b1fb677
DW
4537 struct intel_super *super = st->sb;
4538 int current_vol = super->current_vol;
4539
4540 /* we are done with current_vol reset it to point st at the container */
4541 super->current_vol = -1;
4542
8273f55e 4543 if (st->update_tail) {
43dad3d6
DW
4544 /* queue the recently created array / added disk
4545 * as a metadata update */
43dad3d6 4546 int rv;
8273f55e 4547
43dad3d6 4548 /* determine if we are creating a volume or adding a disk */
9b1fb677 4549 if (current_vol < 0) {
1a64be56
LM
4550 /* in the mgmt (add/remove) disk case we are running
4551 * in mdmon context, so don't close fd's
43dad3d6 4552 */
1a64be56 4553 return mgmt_disk(st);
43dad3d6 4554 } else
9b1fb677 4555 rv = create_array(st, current_vol);
8273f55e 4556
43dad3d6 4557 return rv;
d682f344
N
4558 } else {
4559 struct dl *d;
4560 for (d = super->disks; d; d = d->next)
4561 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4562 return write_super_imsm(st, 1);
d682f344 4563 }
cdddbdbc 4564}
0e600426 4565#endif
cdddbdbc 4566
e683ca88 4567static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4568{
e683ca88
DW
4569 struct intel_super *super = st->sb;
4570 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4571
e683ca88 4572 if (!mpb)
ad97895e
DW
4573 return 1;
4574
1799c9e8 4575#ifndef MDASSEMBLE
e683ca88 4576 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4577#else
4578 return 1;
4579#endif
cdddbdbc
DW
4580}
4581
0e600426
N
4582static int imsm_bbm_log_size(struct imsm_super *mpb)
4583{
4584 return __le32_to_cpu(mpb->bbm_log_size);
4585}
4586
4587#ifndef MDASSEMBLE
cdddbdbc
DW
4588static int validate_geometry_imsm_container(struct supertype *st, int level,
4589 int layout, int raiddisks, int chunk,
c2c087e6 4590 unsigned long long size, char *dev,
2c514b71
NB
4591 unsigned long long *freesize,
4592 int verbose)
cdddbdbc 4593{
c2c087e6
DW
4594 int fd;
4595 unsigned long long ldsize;
f2f5c343
LM
4596 struct intel_super *super=NULL;
4597 int rv = 0;
cdddbdbc 4598
c2c087e6
DW
4599 if (level != LEVEL_CONTAINER)
4600 return 0;
4601 if (!dev)
4602 return 1;
4603
4604 fd = open(dev, O_RDONLY|O_EXCL, 0);
4605 if (fd < 0) {
2c514b71
NB
4606 if (verbose)
4607 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4608 dev, strerror(errno));
c2c087e6
DW
4609 return 0;
4610 }
4611 if (!get_dev_size(fd, dev, &ldsize)) {
4612 close(fd);
4613 return 0;
4614 }
f2f5c343
LM
4615
4616 /* capabilities retrieve could be possible
4617 * note that there is no fd for the disks in array.
4618 */
4619 super = alloc_super();
4620 if (!super) {
4621 fprintf(stderr,
4622 Name ": malloc of %zu failed.\n",
4623 sizeof(*super));
4624 close(fd);
4625 return 0;
4626 }
4627
d424212e 4628 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4629 if (rv != 0) {
4630#if DEBUG
4631 char str[256];
4632 fd2devname(fd, str);
4633 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4634 fd, str, super->orom, rv, raiddisks);
4635#endif
4636 /* no orom/efi or non-intel hba of the disk */
4637 close(fd);
4638 free_imsm(super);
4639 return 0;
4640 }
c2c087e6 4641 close(fd);
f2f5c343
LM
4642 if (super->orom && raiddisks > super->orom->tds) {
4643 if (verbose)
4644 fprintf(stderr, Name ": %d exceeds maximum number of"
4645 " platform supported disks: %d\n",
4646 raiddisks, super->orom->tds);
4647
4648 free_imsm(super);
4649 return 0;
4650 }
c2c087e6
DW
4651
4652 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 4653 free_imsm(super);
c2c087e6
DW
4654
4655 return 1;
cdddbdbc
DW
4656}
4657
0dcecb2e
DW
4658static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4659{
4660 const unsigned long long base_start = e[*idx].start;
4661 unsigned long long end = base_start + e[*idx].size;
4662 int i;
4663
4664 if (base_start == end)
4665 return 0;
4666
4667 *idx = *idx + 1;
4668 for (i = *idx; i < num_extents; i++) {
4669 /* extend overlapping extents */
4670 if (e[i].start >= base_start &&
4671 e[i].start <= end) {
4672 if (e[i].size == 0)
4673 return 0;
4674 if (e[i].start + e[i].size > end)
4675 end = e[i].start + e[i].size;
4676 } else if (e[i].start > end) {
4677 *idx = i;
4678 break;
4679 }
4680 }
4681
4682 return end - base_start;
4683}
4684
4685static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4686{
4687 /* build a composite disk with all known extents and generate a new
4688 * 'maxsize' given the "all disks in an array must share a common start
4689 * offset" constraint
4690 */
4691 struct extent *e = calloc(sum_extents, sizeof(*e));
4692 struct dl *dl;
4693 int i, j;
4694 int start_extent;
4695 unsigned long long pos;
b9d77223 4696 unsigned long long start = 0;
0dcecb2e
DW
4697 unsigned long long maxsize;
4698 unsigned long reserve;
4699
4700 if (!e)
a7dd165b 4701 return 0;
0dcecb2e
DW
4702
4703 /* coalesce and sort all extents. also, check to see if we need to
4704 * reserve space between member arrays
4705 */
4706 j = 0;
4707 for (dl = super->disks; dl; dl = dl->next) {
4708 if (!dl->e)
4709 continue;
4710 for (i = 0; i < dl->extent_cnt; i++)
4711 e[j++] = dl->e[i];
4712 }
4713 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4714
4715 /* merge extents */
4716 i = 0;
4717 j = 0;
4718 while (i < sum_extents) {
4719 e[j].start = e[i].start;
4720 e[j].size = find_size(e, &i, sum_extents);
4721 j++;
4722 if (e[j-1].size == 0)
4723 break;
4724 }
4725
4726 pos = 0;
4727 maxsize = 0;
4728 start_extent = 0;
4729 i = 0;
4730 do {
4731 unsigned long long esize;
4732
4733 esize = e[i].start - pos;
4734 if (esize >= maxsize) {
4735 maxsize = esize;
4736 start = pos;
4737 start_extent = i;
4738 }
4739 pos = e[i].start + e[i].size;
4740 i++;
4741 } while (e[i-1].size);
4742 free(e);
4743
a7dd165b
DW
4744 if (maxsize == 0)
4745 return 0;
4746
4747 /* FIXME assumes volume at offset 0 is the first volume in a
4748 * container
4749 */
0dcecb2e
DW
4750 if (start_extent > 0)
4751 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4752 else
4753 reserve = 0;
4754
4755 if (maxsize < reserve)
a7dd165b 4756 return 0;
0dcecb2e
DW
4757
4758 super->create_offset = ~((__u32) 0);
4759 if (start + reserve > super->create_offset)
a7dd165b 4760 return 0; /* start overflows create_offset */
0dcecb2e
DW
4761 super->create_offset = start + reserve;
4762
4763 return maxsize - reserve;
4764}
4765
88c32bb1
DW
4766static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4767{
4768 if (level < 0 || level == 6 || level == 4)
4769 return 0;
4770
4771 /* if we have an orom prevent invalid raid levels */
4772 if (orom)
4773 switch (level) {
4774 case 0: return imsm_orom_has_raid0(orom);
4775 case 1:
4776 if (raiddisks > 2)
4777 return imsm_orom_has_raid1e(orom);
1c556e92
DW
4778 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4779 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4780 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
4781 }
4782 else
4783 return 1; /* not on an Intel RAID platform so anything goes */
4784
4785 return 0;
4786}
4787
73408129 4788
35f81cbb 4789#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
73408129
LM
4790/*
4791 * validate volume parameters with OROM/EFI capabilities
4792 */
6592ce37
DW
4793static int
4794validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 4795 int raiddisks, int *chunk, int verbose)
6592ce37 4796{
73408129
LM
4797#if DEBUG
4798 verbose = 1;
4799#endif
4800 /* validate container capabilities */
4801 if (super->orom && raiddisks > super->orom->tds) {
4802 if (verbose)
4803 fprintf(stderr, Name ": %d exceeds maximum number of"
4804 " platform supported disks: %d\n",
4805 raiddisks, super->orom->tds);
4806 return 0;
4807 }
4808
4809 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
4810 if (super->orom && (!is_raid_level_supported(super->orom, level,
4811 raiddisks))) {
6592ce37
DW
4812 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4813 level, raiddisks, raiddisks > 1 ? "s" : "");
4814 return 0;
4815 }
c21e737b
CA
4816 if (super->orom && level != 1) {
4817 if (chunk && (*chunk == 0 || *chunk == UnSet))
4818 *chunk = imsm_orom_default_chunk(super->orom);
4819 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4820 pr_vrb(": platform does not support a chunk size of: "
4821 "%d\n", *chunk);
4822 return 0;
4823 }
6592ce37
DW
4824 }
4825 if (layout != imsm_level_to_layout(level)) {
4826 if (level == 5)
4827 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4828 else if (level == 10)
4829 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4830 else
4831 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4832 layout, level);
4833 return 0;
4834 }
6592ce37
DW
4835 return 1;
4836}
4837
c2c087e6
DW
4838/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4839 * FIX ME add ahci details
4840 */
8b353278 4841static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 4842 int layout, int raiddisks, int *chunk,
c2c087e6 4843 unsigned long long size, char *dev,
2c514b71
NB
4844 unsigned long long *freesize,
4845 int verbose)
cdddbdbc 4846{
c2c087e6
DW
4847 struct stat stb;
4848 struct intel_super *super = st->sb;
a20d2ba5 4849 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4850 struct dl *dl;
4851 unsigned long long pos = 0;
4852 unsigned long long maxsize;
4853 struct extent *e;
4854 int i;
cdddbdbc 4855
88c32bb1
DW
4856 /* We must have the container info already read in. */
4857 if (!super)
c2c087e6
DW
4858 return 0;
4859
d54559f0
LM
4860 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
4861 fprintf(stderr, Name ": RAID gemetry validation failed. "
4862 "Cannot proceed with the action(s).\n");
c2c087e6 4863 return 0;
d54559f0 4864 }
c2c087e6
DW
4865 if (!dev) {
4866 /* General test: make sure there is space for
2da8544a
DW
4867 * 'raiddisks' device extents of size 'size' at a given
4868 * offset
c2c087e6 4869 */
e46273eb 4870 unsigned long long minsize = size;
b7528a20 4871 unsigned long long start_offset = MaxSector;
c2c087e6
DW
4872 int dcnt = 0;
4873 if (minsize == 0)
4874 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4875 for (dl = super->disks; dl ; dl = dl->next) {
4876 int found = 0;
4877
bf5a934a 4878 pos = 0;
c2c087e6
DW
4879 i = 0;
4880 e = get_extents(super, dl);
4881 if (!e) continue;
4882 do {
4883 unsigned long long esize;
4884 esize = e[i].start - pos;
4885 if (esize >= minsize)
4886 found = 1;
b7528a20 4887 if (found && start_offset == MaxSector) {
2da8544a
DW
4888 start_offset = pos;
4889 break;
4890 } else if (found && pos != start_offset) {
4891 found = 0;
4892 break;
4893 }
c2c087e6
DW
4894 pos = e[i].start + e[i].size;
4895 i++;
4896 } while (e[i-1].size);
4897 if (found)
4898 dcnt++;
4899 free(e);
4900 }
4901 if (dcnt < raiddisks) {
2c514b71
NB
4902 if (verbose)
4903 fprintf(stderr, Name ": imsm: Not enough "
4904 "devices with space for this array "
4905 "(%d < %d)\n",
4906 dcnt, raiddisks);
c2c087e6
DW
4907 return 0;
4908 }
4909 return 1;
4910 }
0dcecb2e 4911
c2c087e6
DW
4912 /* This device must be a member of the set */
4913 if (stat(dev, &stb) < 0)
4914 return 0;
4915 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4916 return 0;
4917 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
4918 if (dl->major == (int)major(stb.st_rdev) &&
4919 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
4920 break;
4921 }
4922 if (!dl) {
2c514b71
NB
4923 if (verbose)
4924 fprintf(stderr, Name ": %s is not in the "
4925 "same imsm set\n", dev);
c2c087e6 4926 return 0;
a20d2ba5
DW
4927 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4928 /* If a volume is present then the current creation attempt
4929 * cannot incorporate new spares because the orom may not
4930 * understand this configuration (all member disks must be
4931 * members of each array in the container).
4932 */
4933 fprintf(stderr, Name ": %s is a spare and a volume"
4934 " is already defined for this container\n", dev);
4935 fprintf(stderr, Name ": The option-rom requires all member"
4936 " disks to be a member of all volumes\n");
4937 return 0;
c2c087e6 4938 }
0dcecb2e
DW
4939
4940 /* retrieve the largest free space block */
c2c087e6
DW
4941 e = get_extents(super, dl);
4942 maxsize = 0;
4943 i = 0;
0dcecb2e
DW
4944 if (e) {
4945 do {
4946 unsigned long long esize;
4947
4948 esize = e[i].start - pos;
4949 if (esize >= maxsize)
4950 maxsize = esize;
4951 pos = e[i].start + e[i].size;
4952 i++;
4953 } while (e[i-1].size);
4954 dl->e = e;
4955 dl->extent_cnt = i;
4956 } else {
4957 if (verbose)
4958 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4959 dev);
4960 return 0;
4961 }
4962 if (maxsize < size) {
4963 if (verbose)
4964 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4965 dev, maxsize, size);
4966 return 0;
4967 }
4968
4969 /* count total number of extents for merge */
4970 i = 0;
4971 for (dl = super->disks; dl; dl = dl->next)
4972 if (dl->e)
4973 i += dl->extent_cnt;
4974
4975 maxsize = merge_extents(super, i);
a7dd165b 4976 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
4977 if (verbose)
4978 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4979 maxsize, size);
4980 return 0;
0dcecb2e
DW
4981 }
4982
c2c087e6
DW
4983 *freesize = maxsize;
4984
4985 return 1;
cdddbdbc
DW
4986}
4987
efb30e7f
DW
4988static int reserve_space(struct supertype *st, int raiddisks,
4989 unsigned long long size, int chunk,
4990 unsigned long long *freesize)
4991{
4992 struct intel_super *super = st->sb;
4993 struct imsm_super *mpb = super->anchor;
4994 struct dl *dl;
4995 int i;
4996 int extent_cnt;
4997 struct extent *e;
4998 unsigned long long maxsize;
4999 unsigned long long minsize;
5000 int cnt;
5001 int used;
5002
5003 /* find the largest common start free region of the possible disks */
5004 used = 0;
5005 extent_cnt = 0;
5006 cnt = 0;
5007 for (dl = super->disks; dl; dl = dl->next) {
5008 dl->raiddisk = -1;
5009
5010 if (dl->index >= 0)
5011 used++;
5012
5013 /* don't activate new spares if we are orom constrained
5014 * and there is already a volume active in the container
5015 */
5016 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5017 continue;
5018
5019 e = get_extents(super, dl);
5020 if (!e)
5021 continue;
5022 for (i = 1; e[i-1].size; i++)
5023 ;
5024 dl->e = e;
5025 dl->extent_cnt = i;
5026 extent_cnt += i;
5027 cnt++;
5028 }
5029
5030 maxsize = merge_extents(super, extent_cnt);
5031 minsize = size;
5032 if (size == 0)
612e59d8
CA
5033 /* chunk is in K */
5034 minsize = chunk * 2;
efb30e7f
DW
5035
5036 if (cnt < raiddisks ||
5037 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5038 maxsize < minsize ||
5039 maxsize == 0) {
efb30e7f
DW
5040 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5041 return 0; /* No enough free spaces large enough */
5042 }
5043
5044 if (size == 0) {
5045 size = maxsize;
5046 if (chunk) {
612e59d8
CA
5047 size /= 2 * chunk;
5048 size *= 2 * chunk;
efb30e7f
DW
5049 }
5050 }
5051
5052 cnt = 0;
5053 for (dl = super->disks; dl; dl = dl->next)
5054 if (dl->e)
5055 dl->raiddisk = cnt++;
5056
5057 *freesize = size;
5058
5059 return 1;
5060}
5061
bf5a934a 5062static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5063 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5064 char *dev, unsigned long long *freesize,
5065 int verbose)
5066{
5067 int fd, cfd;
5068 struct mdinfo *sra;
20cbe8d2 5069 int is_member = 0;
bf5a934a 5070
d54559f0
LM
5071 /* load capability
5072 * if given unused devices create a container
bf5a934a
DW
5073 * if given given devices in a container create a member volume
5074 */
5075 if (level == LEVEL_CONTAINER) {
5076 /* Must be a fresh device to add to a container */
5077 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5078 raiddisks,
5079 chunk?*chunk:0, size,
bf5a934a
DW
5080 dev, freesize,
5081 verbose);
5082 }
5083
8592f29d
N
5084 if (!dev) {
5085 if (st->sb && freesize) {
efb30e7f
DW
5086 /* we are being asked to automatically layout a
5087 * new volume based on the current contents of
5088 * the container. If the the parameters can be
5089 * satisfied reserve_space will record the disks,
5090 * start offset, and size of the volume to be
5091 * created. add_to_super and getinfo_super
5092 * detect when autolayout is in progress.
5093 */
6592ce37
DW
5094 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5095 raiddisks, chunk,
5096 verbose))
5097 return 0;
c21e737b
CA
5098 return reserve_space(st, raiddisks, size,
5099 chunk?*chunk:0, freesize);
8592f29d
N
5100 }
5101 return 1;
5102 }
bf5a934a
DW
5103 if (st->sb) {
5104 /* creating in a given container */
5105 return validate_geometry_imsm_volume(st, level, layout,
5106 raiddisks, chunk, size,
5107 dev, freesize, verbose);
5108 }
5109
bf5a934a
DW
5110 /* This device needs to be a device in an 'imsm' container */
5111 fd = open(dev, O_RDONLY|O_EXCL, 0);
5112 if (fd >= 0) {
5113 if (verbose)
5114 fprintf(stderr,
5115 Name ": Cannot create this array on device %s\n",
5116 dev);
5117 close(fd);
5118 return 0;
5119 }
5120 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5121 if (verbose)
5122 fprintf(stderr, Name ": Cannot open %s: %s\n",
5123 dev, strerror(errno));
5124 return 0;
5125 }
5126 /* Well, it is in use by someone, maybe an 'imsm' container. */
5127 cfd = open_container(fd);
20cbe8d2 5128 close(fd);
bf5a934a 5129 if (cfd < 0) {
bf5a934a
DW
5130 if (verbose)
5131 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5132 dev);
5133 return 0;
5134 }
5135 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5136 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5137 strcmp(sra->text_version, "imsm") == 0)
5138 is_member = 1;
5139 sysfs_free(sra);
5140 if (is_member) {
bf5a934a
DW
5141 /* This is a member of a imsm container. Load the container
5142 * and try to create a volume
5143 */
5144 struct intel_super *super;
5145
e1902a7b 5146 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5147 st->sb = super;
5148 st->container_dev = fd2devnum(cfd);
5149 close(cfd);
5150 return validate_geometry_imsm_volume(st, level, layout,
5151 raiddisks, chunk,
5152 size, dev,
5153 freesize, verbose);
5154 }
20cbe8d2 5155 }
bf5a934a 5156
20cbe8d2
AW
5157 if (verbose)
5158 fprintf(stderr, Name ": failed container membership check\n");
5159
5160 close(cfd);
5161 return 0;
bf5a934a 5162}
0bd16cf2 5163
30f58b22 5164static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5165{
5166 struct intel_super *super = st->sb;
5167
30f58b22
DW
5168 if (level && *level == UnSet)
5169 *level = LEVEL_CONTAINER;
5170
5171 if (level && layout && *layout == UnSet)
5172 *layout = imsm_level_to_layout(*level);
0bd16cf2 5173
1d54f286
N
5174 if (chunk && (*chunk == UnSet || *chunk == 0) &&
5175 super && super->orom)
30f58b22 5176 *chunk = imsm_orom_default_chunk(super->orom);
0bd16cf2
DJ
5177}
5178
33414a01
DW
5179static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5180
5181static int kill_subarray_imsm(struct supertype *st)
5182{
5183 /* remove the subarray currently referenced by ->current_vol */
5184 __u8 i;
5185 struct intel_dev **dp;
5186 struct intel_super *super = st->sb;
5187 __u8 current_vol = super->current_vol;
5188 struct imsm_super *mpb = super->anchor;
5189
5190 if (super->current_vol < 0)
5191 return 2;
5192 super->current_vol = -1; /* invalidate subarray cursor */
5193
5194 /* block deletions that would change the uuid of active subarrays
5195 *
5196 * FIXME when immutable ids are available, but note that we'll
5197 * also need to fixup the invalidated/active subarray indexes in
5198 * mdstat
5199 */
5200 for (i = 0; i < mpb->num_raid_devs; i++) {
5201 char subarray[4];
5202
5203 if (i < current_vol)
5204 continue;
5205 sprintf(subarray, "%u", i);
5206 if (is_subarray_active(subarray, st->devname)) {
5207 fprintf(stderr,
5208 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5209 current_vol, i);
5210
5211 return 2;
5212 }
5213 }
5214
5215 if (st->update_tail) {
5216 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5217
5218 if (!u)
5219 return 2;
5220 u->type = update_kill_array;
5221 u->dev_idx = current_vol;
5222 append_metadata_update(st, u, sizeof(*u));
5223
5224 return 0;
5225 }
5226
5227 for (dp = &super->devlist; *dp;)
5228 if ((*dp)->index == current_vol) {
5229 *dp = (*dp)->next;
5230 } else {
5231 handle_missing(super, (*dp)->dev);
5232 if ((*dp)->index > current_vol)
5233 (*dp)->index--;
5234 dp = &(*dp)->next;
5235 }
5236
5237 /* no more raid devices, all active components are now spares,
5238 * but of course failed are still failed
5239 */
5240 if (--mpb->num_raid_devs == 0) {
5241 struct dl *d;
5242
5243 for (d = super->disks; d; d = d->next)
5244 if (d->index > -2) {
5245 d->index = -1;
5246 d->disk.status = SPARE_DISK;
5247 }
5248 }
5249
5250 super->updates_pending++;
5251
5252 return 0;
5253}
aa534678 5254
a951a4f7 5255static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5256 char *update, struct mddev_ident *ident)
aa534678
DW
5257{
5258 /* update the subarray currently referenced by ->current_vol */
5259 struct intel_super *super = st->sb;
5260 struct imsm_super *mpb = super->anchor;
5261
aa534678
DW
5262 if (strcmp(update, "name") == 0) {
5263 char *name = ident->name;
a951a4f7
N
5264 char *ep;
5265 int vol;
aa534678 5266
a951a4f7 5267 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5268 fprintf(stderr,
5269 Name ": Unable to update name of active subarray\n");
5270 return 2;
5271 }
5272
5273 if (!check_name(super, name, 0))
5274 return 2;
5275
a951a4f7
N
5276 vol = strtoul(subarray, &ep, 10);
5277 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5278 return 2;
5279
aa534678
DW
5280 if (st->update_tail) {
5281 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5282
5283 if (!u)
5284 return 2;
5285 u->type = update_rename_array;
a951a4f7 5286 u->dev_idx = vol;
aa534678
DW
5287 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5288 append_metadata_update(st, u, sizeof(*u));
5289 } else {
5290 struct imsm_dev *dev;
5291 int i;
5292
a951a4f7 5293 dev = get_imsm_dev(super, vol);
aa534678
DW
5294 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5295 for (i = 0; i < mpb->num_raid_devs; i++) {
5296 dev = get_imsm_dev(super, i);
5297 handle_missing(super, dev);
5298 }
5299 super->updates_pending++;
5300 }
5301 } else
5302 return 2;
5303
5304 return 0;
5305}
bf5a934a 5306
28bce06f
AK
5307static int is_gen_migration(struct imsm_dev *dev)
5308{
5309 if (!dev->vol.migr_state)
5310 return 0;
5311
5312 if (migr_type(dev) == MIGR_GEN_MIGR)
5313 return 1;
5314
5315 return 0;
5316}
71204a50 5317#endif /* MDASSEMBLE */
28bce06f 5318
1e5c6983
DW
5319static int is_rebuilding(struct imsm_dev *dev)
5320{
5321 struct imsm_map *migr_map;
5322
5323 if (!dev->vol.migr_state)
5324 return 0;
5325
5326 if (migr_type(dev) != MIGR_REBUILD)
5327 return 0;
5328
5329 migr_map = get_imsm_map(dev, 1);
5330
5331 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5332 return 1;
5333 else
5334 return 0;
5335}
5336
c47b0ff6
AK
5337static void update_recovery_start(struct intel_super *super,
5338 struct imsm_dev *dev,
5339 struct mdinfo *array)
1e5c6983
DW
5340{
5341 struct mdinfo *rebuild = NULL;
5342 struct mdinfo *d;
5343 __u32 units;
5344
5345 if (!is_rebuilding(dev))
5346 return;
5347
5348 /* Find the rebuild target, but punt on the dual rebuild case */
5349 for (d = array->devs; d; d = d->next)
5350 if (d->recovery_start == 0) {
5351 if (rebuild)
5352 return;
5353 rebuild = d;
5354 }
5355
4363fd80
DW
5356 if (!rebuild) {
5357 /* (?) none of the disks are marked with
5358 * IMSM_ORD_REBUILD, so assume they are missing and the
5359 * disk_ord_tbl was not correctly updated
5360 */
5361 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5362 return;
5363 }
5364
1e5c6983 5365 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5366 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5367}
5368
276d77db 5369static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 5370
00bbdbda 5371static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5372{
4f5bc454
DW
5373 /* Given a container loaded by load_super_imsm_all,
5374 * extract information about all the arrays into
5375 * an mdinfo tree.
00bbdbda 5376 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5377 *
5378 * For each imsm_dev create an mdinfo, fill it in,
5379 * then look for matching devices in super->disks
5380 * and create appropriate device mdinfo.
5381 */
5382 struct intel_super *super = st->sb;
949c47a0 5383 struct imsm_super *mpb = super->anchor;
4f5bc454 5384 struct mdinfo *rest = NULL;
00bbdbda 5385 unsigned int i;
a06d022d 5386 int bbm_errors = 0;
abef11a3
AK
5387 struct dl *d;
5388 int spare_disks = 0;
cdddbdbc 5389
a06d022d
KW
5390 /* check for bad blocks */
5391 if (imsm_bbm_log_size(super->anchor))
5392 bbm_errors = 1;
604b746f 5393
abef11a3
AK
5394 /* count spare devices, not used in maps
5395 */
5396 for (d = super->disks; d; d = d->next)
5397 if (d->index == -1)
5398 spare_disks++;
5399
4f5bc454 5400 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5401 struct imsm_dev *dev;
5402 struct imsm_map *map;
86e3692b 5403 struct imsm_map *map2;
4f5bc454 5404 struct mdinfo *this;
2db86302 5405 int slot, chunk;
00bbdbda
N
5406 char *ep;
5407
5408 if (subarray &&
5409 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5410 continue;
5411
5412 dev = get_imsm_dev(super, i);
5413 map = get_imsm_map(dev, 0);
86e3692b 5414 map2 = get_imsm_map(dev, 1);
4f5bc454 5415
1ce0101c
DW
5416 /* do not publish arrays that are in the middle of an
5417 * unsupported migration
5418 */
5419 if (dev->vol.migr_state &&
28bce06f 5420 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5421 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5422 " unsupported migration in progress\n",
5423 dev->volume);
5424 continue;
5425 }
2db86302
LM
5426 /* do not publish arrays that are not support by controller's
5427 * OROM/EFI
5428 */
1ce0101c 5429
2db86302 5430 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
7b0bbd0f 5431#ifndef MDASSEMBLE
2db86302
LM
5432 if (!validate_geometry_imsm_orom(super,
5433 get_imsm_raid_level(map), /* RAID level */
5434 imsm_level_to_layout(get_imsm_raid_level(map)),
5435 map->num_members, /* raid disks */
5436 &chunk,
5437 1 /* verbose */)) {
5438 fprintf(stderr, Name ": RAID gemetry validation failed. "
5439 "Cannot proceed with the action(s).\n");
5440 continue;
5441 }
7b0bbd0f 5442#endif /* MDASSEMBLE */
4f5bc454 5443 this = malloc(sizeof(*this));
0fbd635c 5444 if (!this) {
cf1be220 5445 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5446 sizeof(*this));
5447 break;
5448 }
4f5bc454
DW
5449 memset(this, 0, sizeof(*this));
5450 this->next = rest;
4f5bc454 5451
301406c9 5452 super->current_vol = i;
a5d85af7 5453 getinfo_super_imsm_volume(st, this, NULL);
4f5bc454 5454 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5455 unsigned long long recovery_start;
4f5bc454
DW
5456 struct mdinfo *info_d;
5457 struct dl *d;
5458 int idx;
9a1608e5 5459 int skip;
7eef0453 5460 __u32 ord;
4f5bc454 5461
9a1608e5 5462 skip = 0;
98130f40 5463 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5464 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5465 for (d = super->disks; d ; d = d->next)
5466 if (d->index == idx)
0fbd635c 5467 break;
4f5bc454 5468
1e5c6983 5469 recovery_start = MaxSector;
4f5bc454 5470 if (d == NULL)
9a1608e5 5471 skip = 1;
25ed7e59 5472 if (d && is_failed(&d->disk))
9a1608e5 5473 skip = 1;
7eef0453 5474 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5475 recovery_start = 0;
9a1608e5
DW
5476
5477 /*
5478 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5479 * reset resync start to avoid a dirty-degraded
5480 * situation when performing the intial sync
9a1608e5
DW
5481 *
5482 * FIXME handle dirty degraded
5483 */
1e5c6983 5484 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5485 this->resync_start = MaxSector;
9a1608e5
DW
5486 if (skip)
5487 continue;
4f5bc454 5488
1e5c6983 5489 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5490 if (!info_d) {
5491 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5492 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5493 info_d = this->devs;
5494 while (info_d) {
5495 struct mdinfo *d = info_d->next;
5496
5497 free(info_d);
5498 info_d = d;
5499 }
9a1608e5
DW
5500 free(this);
5501 this = rest;
5502 break;
5503 }
4f5bc454
DW
5504 info_d->next = this->devs;
5505 this->devs = info_d;
5506
4f5bc454
DW
5507 info_d->disk.number = d->index;
5508 info_d->disk.major = d->major;
5509 info_d->disk.minor = d->minor;
5510 info_d->disk.raid_disk = slot;
1e5c6983 5511 info_d->recovery_start = recovery_start;
86e3692b
AK
5512 if (map2) {
5513 if (slot < map2->num_members)
5514 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5515 else
5516 this->array.spare_disks++;
86e3692b
AK
5517 } else {
5518 if (slot < map->num_members)
5519 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5520 else
5521 this->array.spare_disks++;
86e3692b 5522 }
1e5c6983
DW
5523 if (info_d->recovery_start == MaxSector)
5524 this->array.working_disks++;
4f5bc454
DW
5525
5526 info_d->events = __le32_to_cpu(mpb->generation_num);
5527 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5528 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5529 }
1e5c6983 5530 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5531 update_recovery_start(super, dev, this);
abef11a3 5532 this->array.spare_disks += spare_disks;
276d77db
AK
5533
5534 /* check for reshape */
5535 if (this->reshape_active == 1)
5536 recover_backup_imsm(st, this);
5537
9a1608e5 5538 rest = this;
4f5bc454
DW
5539 }
5540
a06d022d
KW
5541 /* if array has bad blocks, set suitable bit in array status */
5542 if (bbm_errors)
5543 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5544
4f5bc454 5545 return rest;
cdddbdbc
DW
5546}
5547
845dea95 5548
fb49eef2 5549static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 5550{
a965f303 5551 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
5552
5553 if (!failed)
3393c6af
DW
5554 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5555 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5556
5557 switch (get_imsm_raid_level(map)) {
5558 case 0:
5559 return IMSM_T_STATE_FAILED;
5560 break;
5561 case 1:
5562 if (failed < map->num_members)
5563 return IMSM_T_STATE_DEGRADED;
5564 else
5565 return IMSM_T_STATE_FAILED;
5566 break;
5567 case 10:
5568 {
5569 /**
c92a2527
DW
5570 * check to see if any mirrors have failed, otherwise we
5571 * are degraded. Even numbered slots are mirrored on
5572 * slot+1
c2a1e7da 5573 */
c2a1e7da 5574 int i;
d9b420a5
N
5575 /* gcc -Os complains that this is unused */
5576 int insync = insync;
c2a1e7da
DW
5577
5578 for (i = 0; i < map->num_members; i++) {
98130f40 5579 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5580 int idx = ord_to_idx(ord);
5581 struct imsm_disk *disk;
c2a1e7da 5582
c92a2527
DW
5583 /* reset the potential in-sync count on even-numbered
5584 * slots. num_copies is always 2 for imsm raid10
5585 */
5586 if ((i & 1) == 0)
5587 insync = 2;
c2a1e7da 5588
c92a2527 5589 disk = get_imsm_disk(super, idx);
25ed7e59 5590 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5591 insync--;
c2a1e7da 5592
c92a2527
DW
5593 /* no in-sync disks left in this mirror the
5594 * array has failed
5595 */
5596 if (insync == 0)
5597 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5598 }
5599
5600 return IMSM_T_STATE_DEGRADED;
5601 }
5602 case 5:
5603 if (failed < 2)
5604 return IMSM_T_STATE_DEGRADED;
5605 else
5606 return IMSM_T_STATE_FAILED;
5607 break;
5608 default:
5609 break;
5610 }
5611
5612 return map->map_state;
5613}
5614
ff077194 5615static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
5616{
5617 int i;
5618 int failed = 0;
5619 struct imsm_disk *disk;
ff077194 5620 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
5621 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5622 __u32 ord;
5623 int idx;
c2a1e7da 5624
0556e1a2
DW
5625 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5626 * disks that are being rebuilt. New failures are recorded to
5627 * map[0]. So we look through all the disks we started with and
5628 * see if any failures are still present, or if any new ones
5629 * have arrived
5630 *
5631 * FIXME add support for online capacity expansion and
5632 * raid-level-migration
5633 */
5634 for (i = 0; i < prev->num_members; i++) {
5635 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5636 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5637 idx = ord_to_idx(ord);
c2a1e7da 5638
949c47a0 5639 disk = get_imsm_disk(super, idx);
25ed7e59 5640 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 5641 failed++;
c2a1e7da
DW
5642 }
5643
5644 return failed;
845dea95
NB
5645}
5646
97b4d0e9
DW
5647#ifndef MDASSEMBLE
5648static int imsm_open_new(struct supertype *c, struct active_array *a,
5649 char *inst)
5650{
5651 struct intel_super *super = c->sb;
5652 struct imsm_super *mpb = super->anchor;
5653
5654 if (atoi(inst) >= mpb->num_raid_devs) {
5655 fprintf(stderr, "%s: subarry index %d, out of range\n",
5656 __func__, atoi(inst));
5657 return -ENODEV;
5658 }
5659
5660 dprintf("imsm: open_new %s\n", inst);
5661 a->info.container_member = atoi(inst);
5662 return 0;
5663}
5664
0c046afd
DW
5665static int is_resyncing(struct imsm_dev *dev)
5666{
5667 struct imsm_map *migr_map;
5668
5669 if (!dev->vol.migr_state)
5670 return 0;
5671
1484e727
DW
5672 if (migr_type(dev) == MIGR_INIT ||
5673 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
5674 return 1;
5675
4c9bc37b
AK
5676 if (migr_type(dev) == MIGR_GEN_MIGR)
5677 return 0;
5678
0c046afd
DW
5679 migr_map = get_imsm_map(dev, 1);
5680
4c9bc37b
AK
5681 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5682 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
5683 return 1;
5684 else
5685 return 0;
5686}
5687
0556e1a2
DW
5688/* return true if we recorded new information */
5689static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 5690{
0556e1a2
DW
5691 __u32 ord;
5692 int slot;
5693 struct imsm_map *map;
5694
5695 /* new failures are always set in map[0] */
5696 map = get_imsm_map(dev, 0);
5697
5698 slot = get_imsm_disk_slot(map, idx);
5699 if (slot < 0)
5700 return 0;
5701
5702 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 5703 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
5704 return 0;
5705
f2f27e63 5706 disk->status |= FAILED_DISK;
0556e1a2 5707 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
f21e18ca 5708 if (map->failed_disk_num == 0xff)
0556e1a2
DW
5709 map->failed_disk_num = slot;
5710 return 1;
5711}
5712
5713static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5714{
5715 mark_failure(dev, disk, idx);
5716
5717 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5718 return;
5719
47ee5a45
DW
5720 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5721 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5722}
5723
33414a01
DW
5724static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5725{
5726 __u8 map_state;
5727 struct dl *dl;
5728 int failed;
5729
5730 if (!super->missing)
5731 return;
5732 failed = imsm_count_failed(super, dev);
5733 map_state = imsm_check_degraded(super, dev, failed);
5734
5735 dprintf("imsm: mark missing\n");
5736 end_migration(dev, map_state);
5737 for (dl = super->missing; dl; dl = dl->next)
5738 mark_missing(dev, &dl->disk, dl->index);
5739 super->updates_pending++;
5740}
5741
70bdf0dc
AK
5742static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5743{
5744 int used_disks = imsm_num_data_members(dev, 0);
5745 unsigned long long array_blocks;
5746 struct imsm_map *map;
5747
5748 if (used_disks == 0) {
5749 /* when problems occures
5750 * return current array_blocks value
5751 */
5752 array_blocks = __le32_to_cpu(dev->size_high);
5753 array_blocks = array_blocks << 32;
5754 array_blocks += __le32_to_cpu(dev->size_low);
5755
5756 return array_blocks;
5757 }
5758
5759 /* set array size in metadata
5760 */
5761 map = get_imsm_map(dev, 0);
5762 array_blocks = map->blocks_per_member * used_disks;
5763
5764 /* round array size down to closest MB
5765 */
5766 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5767 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5768 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5769
5770 return array_blocks;
5771}
5772
28bce06f
AK
5773static void imsm_set_disk(struct active_array *a, int n, int state);
5774
0e2d1a4e
AK
5775static void imsm_progress_container_reshape(struct intel_super *super)
5776{
5777 /* if no device has a migr_state, but some device has a
5778 * different number of members than the previous device, start
5779 * changing the number of devices in this device to match
5780 * previous.
5781 */
5782 struct imsm_super *mpb = super->anchor;
5783 int prev_disks = -1;
5784 int i;
1dfaa380 5785 int copy_map_size;
0e2d1a4e
AK
5786
5787 for (i = 0; i < mpb->num_raid_devs; i++) {
5788 struct imsm_dev *dev = get_imsm_dev(super, i);
5789 struct imsm_map *map = get_imsm_map(dev, 0);
5790 struct imsm_map *map2;
5791 int prev_num_members;
0e2d1a4e
AK
5792
5793 if (dev->vol.migr_state)
5794 return;
5795
5796 if (prev_disks == -1)
5797 prev_disks = map->num_members;
5798 if (prev_disks == map->num_members)
5799 continue;
5800
5801 /* OK, this array needs to enter reshape mode.
5802 * i.e it needs a migr_state
5803 */
5804
1dfaa380 5805 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
5806 prev_num_members = map->num_members;
5807 map->num_members = prev_disks;
5808 dev->vol.migr_state = 1;
5809 dev->vol.curr_migr_unit = 0;
5810 dev->vol.migr_type = MIGR_GEN_MIGR;
5811 for (i = prev_num_members;
5812 i < map->num_members; i++)
5813 set_imsm_ord_tbl_ent(map, i, i);
5814 map2 = get_imsm_map(dev, 1);
5815 /* Copy the current map */
1dfaa380 5816 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
5817 map2->num_members = prev_num_members;
5818
70bdf0dc 5819 imsm_set_array_size(dev);
0e2d1a4e
AK
5820 super->updates_pending++;
5821 }
5822}
5823
aad6f216 5824/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
5825 * states are handled in imsm_set_disk() with one exception, when a
5826 * resync is stopped due to a new failure this routine will set the
5827 * 'degraded' state for the array.
5828 */
01f157d7 5829static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
5830{
5831 int inst = a->info.container_member;
5832 struct intel_super *super = a->container->sb;
949c47a0 5833 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 5834 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
5835 int failed = imsm_count_failed(super, dev);
5836 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 5837 __u32 blocks_per_unit;
a862209d 5838
1af97990
AK
5839 if (dev->vol.migr_state &&
5840 dev->vol.migr_type == MIGR_GEN_MIGR) {
5841 /* array state change is blocked due to reshape action
aad6f216
N
5842 * We might need to
5843 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5844 * - finish the reshape (if last_checkpoint is big and action != reshape)
5845 * - update curr_migr_unit
1af97990 5846 */
aad6f216
N
5847 if (a->curr_action == reshape) {
5848 /* still reshaping, maybe update curr_migr_unit */
633b5610 5849 goto mark_checkpoint;
aad6f216
N
5850 } else {
5851 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5852 /* for some reason we aborted the reshape.
5853 * Better clean up
5854 */
5855 struct imsm_map *map2 = get_imsm_map(dev, 1);
5856 dev->vol.migr_state = 0;
5857 dev->vol.migr_type = 0;
5858 dev->vol.curr_migr_unit = 0;
5859 memcpy(map, map2, sizeof_imsm_map(map2));
5860 super->updates_pending++;
5861 }
5862 if (a->last_checkpoint >= a->info.component_size) {
5863 unsigned long long array_blocks;
5864 int used_disks;
e154ced3 5865 struct mdinfo *mdi;
aad6f216 5866
9653001d 5867 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
5868 if (used_disks > 0) {
5869 array_blocks =
5870 map->blocks_per_member *
5871 used_disks;
5872 /* round array size down to closest MB
5873 */
5874 array_blocks = (array_blocks
5875 >> SECT_PER_MB_SHIFT)
5876 << SECT_PER_MB_SHIFT;
d55adef9
AK
5877 a->info.custom_array_size = array_blocks;
5878 /* encourage manager to update array
5879 * size
5880 */
e154ced3 5881
d55adef9 5882 a->check_reshape = 1;
633b5610 5883 }
e154ced3
AK
5884 /* finalize online capacity expansion/reshape */
5885 for (mdi = a->info.devs; mdi; mdi = mdi->next)
5886 imsm_set_disk(a,
5887 mdi->disk.raid_disk,
5888 mdi->curr_state);
5889
0e2d1a4e 5890 imsm_progress_container_reshape(super);
e154ced3 5891 }
aad6f216 5892 }
1af97990
AK
5893 }
5894
47ee5a45 5895 /* before we activate this array handle any missing disks */
33414a01
DW
5896 if (consistent == 2)
5897 handle_missing(super, dev);
1e5c6983 5898
0c046afd 5899 if (consistent == 2 &&
b7941fd6 5900 (!is_resync_complete(&a->info) ||
0c046afd
DW
5901 map_state != IMSM_T_STATE_NORMAL ||
5902 dev->vol.migr_state))
01f157d7 5903 consistent = 0;
272906ef 5904
b7941fd6 5905 if (is_resync_complete(&a->info)) {
0c046afd 5906 /* complete intialization / resync,
0556e1a2
DW
5907 * recovery and interrupted recovery is completed in
5908 * ->set_disk
0c046afd
DW
5909 */
5910 if (is_resyncing(dev)) {
5911 dprintf("imsm: mark resync done\n");
f8f603f1 5912 end_migration(dev, map_state);
115c3803 5913 super->updates_pending++;
484240d8 5914 a->last_checkpoint = 0;
115c3803 5915 }
0c046afd
DW
5916 } else if (!is_resyncing(dev) && !failed) {
5917 /* mark the start of the init process if nothing is failed */
b7941fd6 5918 dprintf("imsm: mark resync start\n");
1484e727 5919 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 5920 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 5921 else
8e59f3d8 5922 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 5923 super->updates_pending++;
115c3803 5924 }
a862209d 5925
633b5610 5926mark_checkpoint:
5b83bacf
AK
5927 /* skip checkpointing for general migration,
5928 * it is controlled in mdadm
5929 */
5930 if (is_gen_migration(dev))
5931 goto skip_mark_checkpoint;
5932
1e5c6983 5933 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 5934 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 5935 if (blocks_per_unit) {
1e5c6983
DW
5936 __u32 units32;
5937 __u64 units;
5938
4f0a7acc 5939 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
5940 units32 = units;
5941
5942 /* check that we did not overflow 32-bits, and that
5943 * curr_migr_unit needs updating
5944 */
5945 if (units32 == units &&
bfd80a56 5946 units32 != 0 &&
1e5c6983
DW
5947 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
5948 dprintf("imsm: mark checkpoint (%u)\n", units32);
5949 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
5950 super->updates_pending++;
5951 }
5952 }
f8f603f1 5953
5b83bacf 5954skip_mark_checkpoint:
3393c6af 5955 /* mark dirty / clean */
0c046afd 5956 if (dev->vol.dirty != !consistent) {
b7941fd6 5957 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
5958 if (consistent)
5959 dev->vol.dirty = 0;
5960 else
5961 dev->vol.dirty = 1;
a862209d
DW
5962 super->updates_pending++;
5963 }
28bce06f 5964
01f157d7 5965 return consistent;
a862209d
DW
5966}
5967
8d45d196 5968static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 5969{
8d45d196
DW
5970 int inst = a->info.container_member;
5971 struct intel_super *super = a->container->sb;
949c47a0 5972 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 5973 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 5974 struct imsm_disk *disk;
0c046afd 5975 int failed;
b10b37b8 5976 __u32 ord;
0c046afd 5977 __u8 map_state;
8d45d196
DW
5978
5979 if (n > map->num_members)
5980 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
5981 n, map->num_members - 1);
5982
5983 if (n < 0)
5984 return;
5985
4e6e574a 5986 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 5987
98130f40 5988 ord = get_imsm_ord_tbl_ent(dev, n, -1);
b10b37b8 5989 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 5990
5802a811 5991 /* check for new failures */
0556e1a2
DW
5992 if (state & DS_FAULTY) {
5993 if (mark_failure(dev, disk, ord_to_idx(ord)))
5994 super->updates_pending++;
8d45d196 5995 }
47ee5a45 5996
19859edc 5997 /* check if in_sync */
0556e1a2 5998 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
5999 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6000
6001 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6002 super->updates_pending++;
6003 }
8d45d196 6004
0c046afd
DW
6005 failed = imsm_count_failed(super, dev);
6006 map_state = imsm_check_degraded(super, dev, failed);
5802a811 6007
0c046afd
DW
6008 /* check if recovery complete, newly degraded, or failed */
6009 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 6010 end_migration(dev, map_state);
0556e1a2
DW
6011 map = get_imsm_map(dev, 0);
6012 map->failed_disk_num = ~0;
0c046afd 6013 super->updates_pending++;
484240d8 6014 a->last_checkpoint = 0;
0c046afd
DW
6015 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6016 map->map_state != map_state &&
6017 !dev->vol.migr_state) {
6018 dprintf("imsm: mark degraded\n");
6019 map->map_state = map_state;
6020 super->updates_pending++;
484240d8 6021 a->last_checkpoint = 0;
0c046afd
DW
6022 } else if (map_state == IMSM_T_STATE_FAILED &&
6023 map->map_state != map_state) {
6024 dprintf("imsm: mark failed\n");
f8f603f1 6025 end_migration(dev, map_state);
0c046afd 6026 super->updates_pending++;
484240d8 6027 a->last_checkpoint = 0;
28bce06f
AK
6028 } else if (is_gen_migration(dev)) {
6029 dprintf("imsm: Detected General Migration in state: ");
6030 if (map_state == IMSM_T_STATE_NORMAL) {
6031 end_migration(dev, map_state);
6032 map = get_imsm_map(dev, 0);
6033 map->failed_disk_num = ~0;
6034 dprintf("normal\n");
6035 } else {
6036 if (map_state == IMSM_T_STATE_DEGRADED) {
6037 printf("degraded\n");
6038 end_migration(dev, map_state);
6039 } else {
6040 dprintf("failed\n");
6041 }
6042 map->map_state = map_state;
6043 }
6044 super->updates_pending++;
5802a811 6045 }
845dea95
NB
6046}
6047
f796af5d 6048static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6049{
f796af5d 6050 void *buf = mpb;
c2a1e7da
DW
6051 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6052 unsigned long long dsize;
6053 unsigned long long sectors;
6054
6055 get_dev_size(fd, NULL, &dsize);
6056
272f648f
DW
6057 if (mpb_size > 512) {
6058 /* -1 to account for anchor */
6059 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6060
272f648f
DW
6061 /* write the extended mpb to the sectors preceeding the anchor */
6062 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6063 return 1;
c2a1e7da 6064
f21e18ca
N
6065 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6066 != 512 * sectors)
272f648f
DW
6067 return 1;
6068 }
c2a1e7da 6069
272f648f
DW
6070 /* first block is stored on second to last sector of the disk */
6071 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6072 return 1;
6073
f796af5d 6074 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6075 return 1;
6076
c2a1e7da
DW
6077 return 0;
6078}
6079
2e735d19 6080static void imsm_sync_metadata(struct supertype *container)
845dea95 6081{
2e735d19 6082 struct intel_super *super = container->sb;
c2a1e7da 6083
1a64be56 6084 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6085 if (!super->updates_pending)
6086 return;
6087
36988a3d 6088 write_super_imsm(container, 0);
c2a1e7da
DW
6089
6090 super->updates_pending = 0;
845dea95
NB
6091}
6092
272906ef
DW
6093static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6094{
6095 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6096 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6097 struct dl *dl;
6098
6099 for (dl = super->disks; dl; dl = dl->next)
6100 if (dl->index == i)
6101 break;
6102
25ed7e59 6103 if (dl && is_failed(&dl->disk))
272906ef
DW
6104 dl = NULL;
6105
6106 if (dl)
6107 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6108
6109 return dl;
6110}
6111
a20d2ba5 6112static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6113 struct active_array *a, int activate_new,
6114 struct mdinfo *additional_test_list)
272906ef
DW
6115{
6116 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6117 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6118 struct imsm_super *mpb = super->anchor;
6119 struct imsm_map *map;
272906ef
DW
6120 unsigned long long pos;
6121 struct mdinfo *d;
6122 struct extent *ex;
a20d2ba5 6123 int i, j;
272906ef 6124 int found;
569cc43f
DW
6125 __u32 array_start = 0;
6126 __u32 array_end = 0;
272906ef 6127 struct dl *dl;
6c932028 6128 struct mdinfo *test_list;
272906ef
DW
6129
6130 for (dl = super->disks; dl; dl = dl->next) {
6131 /* If in this array, skip */
6132 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6133 if (d->state_fd >= 0 &&
6134 d->disk.major == dl->major &&
272906ef 6135 d->disk.minor == dl->minor) {
8ba77d32
AK
6136 dprintf("%x:%x already in array\n",
6137 dl->major, dl->minor);
272906ef
DW
6138 break;
6139 }
6140 if (d)
6141 continue;
6c932028
AK
6142 test_list = additional_test_list;
6143 while (test_list) {
6144 if (test_list->disk.major == dl->major &&
6145 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6146 dprintf("%x:%x already in additional test list\n",
6147 dl->major, dl->minor);
6148 break;
6149 }
6c932028 6150 test_list = test_list->next;
8ba77d32 6151 }
6c932028 6152 if (test_list)
8ba77d32 6153 continue;
272906ef 6154
e553d2a4 6155 /* skip in use or failed drives */
25ed7e59 6156 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6157 dl->index == -2) {
6158 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6159 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6160 continue;
6161 }
6162
a20d2ba5
DW
6163 /* skip pure spares when we are looking for partially
6164 * assimilated drives
6165 */
6166 if (dl->index == -1 && !activate_new)
6167 continue;
6168
272906ef 6169 /* Does this unused device have the requisite free space?
a20d2ba5 6170 * It needs to be able to cover all member volumes
272906ef
DW
6171 */
6172 ex = get_extents(super, dl);
6173 if (!ex) {
6174 dprintf("cannot get extents\n");
6175 continue;
6176 }
a20d2ba5
DW
6177 for (i = 0; i < mpb->num_raid_devs; i++) {
6178 dev = get_imsm_dev(super, i);
6179 map = get_imsm_map(dev, 0);
272906ef 6180
a20d2ba5
DW
6181 /* check if this disk is already a member of
6182 * this array
272906ef 6183 */
620b1713 6184 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6185 continue;
6186
6187 found = 0;
6188 j = 0;
6189 pos = 0;
6190 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6191 array_end = array_start +
6192 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6193
6194 do {
6195 /* check that we can start at pba_of_lba0 with
6196 * blocks_per_member of space
6197 */
329c8278 6198 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6199 found = 1;
6200 break;
6201 }
6202 pos = ex[j].start + ex[j].size;
6203 j++;
6204 } while (ex[j-1].size);
6205
6206 if (!found)
272906ef 6207 break;
a20d2ba5 6208 }
272906ef
DW
6209
6210 free(ex);
a20d2ba5 6211 if (i < mpb->num_raid_devs) {
329c8278
DW
6212 dprintf("%x:%x does not have %u to %u available\n",
6213 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6214 /* No room */
6215 continue;
a20d2ba5
DW
6216 }
6217 return dl;
272906ef
DW
6218 }
6219
6220 return dl;
6221}
6222
95d07a2c
LM
6223
6224static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6225{
6226 struct imsm_dev *dev2;
6227 struct imsm_map *map;
6228 struct dl *idisk;
6229 int slot;
6230 int idx;
6231 __u8 state;
6232
6233 dev2 = get_imsm_dev(cont->sb, dev_idx);
6234 if (dev2) {
6235 state = imsm_check_degraded(cont->sb, dev2, failed);
6236 if (state == IMSM_T_STATE_FAILED) {
6237 map = get_imsm_map(dev2, 0);
6238 if (!map)
6239 return 1;
6240 for (slot = 0; slot < map->num_members; slot++) {
6241 /*
6242 * Check if failed disks are deleted from intel
6243 * disk list or are marked to be deleted
6244 */
98130f40 6245 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6246 idisk = get_imsm_dl_disk(cont->sb, idx);
6247 /*
6248 * Do not rebuild the array if failed disks
6249 * from failed sub-array are not removed from
6250 * container.
6251 */
6252 if (idisk &&
6253 is_failed(&idisk->disk) &&
6254 (idisk->action != DISK_REMOVE))
6255 return 0;
6256 }
6257 }
6258 }
6259 return 1;
6260}
6261
88758e9d
DW
6262static struct mdinfo *imsm_activate_spare(struct active_array *a,
6263 struct metadata_update **updates)
6264{
6265 /**
d23fe947
DW
6266 * Find a device with unused free space and use it to replace a
6267 * failed/vacant region in an array. We replace failed regions one a
6268 * array at a time. The result is that a new spare disk will be added
6269 * to the first failed array and after the monitor has finished
6270 * propagating failures the remainder will be consumed.
88758e9d 6271 *
d23fe947
DW
6272 * FIXME add a capability for mdmon to request spares from another
6273 * container.
88758e9d
DW
6274 */
6275
6276 struct intel_super *super = a->container->sb;
88758e9d 6277 int inst = a->info.container_member;
949c47a0 6278 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6279 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6280 int failed = a->info.array.raid_disks;
6281 struct mdinfo *rv = NULL;
6282 struct mdinfo *d;
6283 struct mdinfo *di;
6284 struct metadata_update *mu;
6285 struct dl *dl;
6286 struct imsm_update_activate_spare *u;
6287 int num_spares = 0;
6288 int i;
95d07a2c 6289 int allowed;
88758e9d
DW
6290
6291 for (d = a->info.devs ; d ; d = d->next) {
6292 if ((d->curr_state & DS_FAULTY) &&
6293 d->state_fd >= 0)
6294 /* wait for Removal to happen */
6295 return NULL;
6296 if (d->state_fd >= 0)
6297 failed--;
6298 }
6299
6300 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6301 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990
AK
6302
6303 if (dev->vol.migr_state &&
6304 dev->vol.migr_type == MIGR_GEN_MIGR)
6305 /* No repair during migration */
6306 return NULL;
6307
89c67882
AK
6308 if (a->info.array.level == 4)
6309 /* No repair for takeovered array
6310 * imsm doesn't support raid4
6311 */
6312 return NULL;
6313
fb49eef2 6314 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
6315 return NULL;
6316
95d07a2c
LM
6317 /*
6318 * If there are any failed disks check state of the other volume.
6319 * Block rebuild if the another one is failed until failed disks
6320 * are removed from container.
6321 */
6322 if (failed) {
6323 dprintf("found failed disks in %s, check if there another"
6324 "failed sub-array.\n",
6325 dev->volume);
6326 /* check if states of the other volumes allow for rebuild */
6327 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6328 if (i != inst) {
6329 allowed = imsm_rebuild_allowed(a->container,
6330 i, failed);
6331 if (!allowed)
6332 return NULL;
6333 }
6334 }
6335 }
6336
88758e9d 6337 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6338 for (i = 0; i < a->info.array.raid_disks; i++) {
6339 for (d = a->info.devs ; d ; d = d->next)
6340 if (d->disk.raid_disk == i)
6341 break;
6342 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6343 if (d && (d->state_fd >= 0))
6344 continue;
6345
272906ef 6346 /*
a20d2ba5
DW
6347 * OK, this device needs recovery. Try to re-add the
6348 * previous occupant of this slot, if this fails see if
6349 * we can continue the assimilation of a spare that was
6350 * partially assimilated, finally try to activate a new
6351 * spare.
272906ef
DW
6352 */
6353 dl = imsm_readd(super, i, a);
6354 if (!dl)
8ba77d32 6355 dl = imsm_add_spare(super, i, a, 0, NULL);
a20d2ba5 6356 if (!dl)
8ba77d32 6357 dl = imsm_add_spare(super, i, a, 1, NULL);
272906ef
DW
6358 if (!dl)
6359 continue;
6360
6361 /* found a usable disk with enough space */
6362 di = malloc(sizeof(*di));
79244939
DW
6363 if (!di)
6364 continue;
272906ef
DW
6365 memset(di, 0, sizeof(*di));
6366
6367 /* dl->index will be -1 in the case we are activating a
6368 * pristine spare. imsm_process_update() will create a
6369 * new index in this case. Once a disk is found to be
6370 * failed in all member arrays it is kicked from the
6371 * metadata
6372 */
6373 di->disk.number = dl->index;
d23fe947 6374
272906ef
DW
6375 /* (ab)use di->devs to store a pointer to the device
6376 * we chose
6377 */
6378 di->devs = (struct mdinfo *) dl;
6379
6380 di->disk.raid_disk = i;
6381 di->disk.major = dl->major;
6382 di->disk.minor = dl->minor;
6383 di->disk.state = 0;
d23534e4 6384 di->recovery_start = 0;
272906ef
DW
6385 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6386 di->component_size = a->info.component_size;
6387 di->container_member = inst;
148acb7b 6388 super->random = random32();
272906ef
DW
6389 di->next = rv;
6390 rv = di;
6391 num_spares++;
6392 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6393 i, di->data_offset);
88758e9d 6394
272906ef 6395 break;
88758e9d
DW
6396 }
6397
6398 if (!rv)
6399 /* No spares found */
6400 return rv;
6401 /* Now 'rv' has a list of devices to return.
6402 * Create a metadata_update record to update the
6403 * disk_ord_tbl for the array
6404 */
6405 mu = malloc(sizeof(*mu));
79244939
DW
6406 if (mu) {
6407 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6408 if (mu->buf == NULL) {
6409 free(mu);
6410 mu = NULL;
6411 }
6412 }
6413 if (!mu) {
6414 while (rv) {
6415 struct mdinfo *n = rv->next;
6416
6417 free(rv);
6418 rv = n;
6419 }
6420 return NULL;
6421 }
6422
88758e9d 6423 mu->space = NULL;
cb23f1f4 6424 mu->space_list = NULL;
88758e9d
DW
6425 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6426 mu->next = *updates;
6427 u = (struct imsm_update_activate_spare *) mu->buf;
6428
6429 for (di = rv ; di ; di = di->next) {
6430 u->type = update_activate_spare;
d23fe947
DW
6431 u->dl = (struct dl *) di->devs;
6432 di->devs = NULL;
88758e9d
DW
6433 u->slot = di->disk.raid_disk;
6434 u->array = inst;
6435 u->next = u + 1;
6436 u++;
6437 }
6438 (u-1)->next = NULL;
6439 *updates = mu;
6440
6441 return rv;
6442}
6443
54c2c1ea 6444static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6445{
54c2c1ea
DW
6446 struct imsm_dev *dev = get_imsm_dev(super, idx);
6447 struct imsm_map *map = get_imsm_map(dev, 0);
6448 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6449 struct disk_info *inf = get_disk_info(u);
6450 struct imsm_disk *disk;
8273f55e
DW
6451 int i;
6452 int j;
8273f55e 6453
54c2c1ea 6454 for (i = 0; i < map->num_members; i++) {
98130f40 6455 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6456 for (j = 0; j < new_map->num_members; j++)
6457 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6458 return 1;
6459 }
6460
6461 return 0;
6462}
6463
1a64be56
LM
6464
6465static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6466{
6467 struct dl *dl = NULL;
6468 for (dl = super->disks; dl; dl = dl->next)
6469 if ((dl->major == major) && (dl->minor == minor))
6470 return dl;
6471 return NULL;
6472}
6473
6474static int remove_disk_super(struct intel_super *super, int major, int minor)
6475{
6476 struct dl *prev = NULL;
6477 struct dl *dl;
6478
6479 prev = NULL;
6480 for (dl = super->disks; dl; dl = dl->next) {
6481 if ((dl->major == major) && (dl->minor == minor)) {
6482 /* remove */
6483 if (prev)
6484 prev->next = dl->next;
6485 else
6486 super->disks = dl->next;
6487 dl->next = NULL;
6488 __free_imsm_disk(dl);
6489 dprintf("%s: removed %x:%x\n",
6490 __func__, major, minor);
6491 break;
6492 }
6493 prev = dl;
6494 }
6495 return 0;
6496}
6497
f21e18ca 6498static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6499
1a64be56
LM
6500static int add_remove_disk_update(struct intel_super *super)
6501{
6502 int check_degraded = 0;
6503 struct dl *disk = NULL;
6504 /* add/remove some spares to/from the metadata/contrainer */
6505 while (super->disk_mgmt_list) {
6506 struct dl *disk_cfg;
6507
6508 disk_cfg = super->disk_mgmt_list;
6509 super->disk_mgmt_list = disk_cfg->next;
6510 disk_cfg->next = NULL;
6511
6512 if (disk_cfg->action == DISK_ADD) {
6513 disk_cfg->next = super->disks;
6514 super->disks = disk_cfg;
6515 check_degraded = 1;
6516 dprintf("%s: added %x:%x\n",
6517 __func__, disk_cfg->major,
6518 disk_cfg->minor);
6519 } else if (disk_cfg->action == DISK_REMOVE) {
6520 dprintf("Disk remove action processed: %x.%x\n",
6521 disk_cfg->major, disk_cfg->minor);
6522 disk = get_disk_super(super,
6523 disk_cfg->major,
6524 disk_cfg->minor);
6525 if (disk) {
6526 /* store action status */
6527 disk->action = DISK_REMOVE;
6528 /* remove spare disks only */
6529 if (disk->index == -1) {
6530 remove_disk_super(super,
6531 disk_cfg->major,
6532 disk_cfg->minor);
6533 }
6534 }
6535 /* release allocate disk structure */
6536 __free_imsm_disk(disk_cfg);
6537 }
6538 }
6539 return check_degraded;
6540}
6541
a29911da
PC
6542
6543static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6544 struct intel_super *super,
6545 void ***space_list)
6546{
6547 struct intel_dev *id;
6548 void **tofree = NULL;
6549 int ret_val = 0;
6550
6551 dprintf("apply_reshape_migration_update()\n");
6552 if ((u->subdev < 0) ||
6553 (u->subdev > 1)) {
6554 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6555 return ret_val;
6556 }
6557 if ((space_list == NULL) || (*space_list == NULL)) {
6558 dprintf("imsm: Error: Memory is not allocated\n");
6559 return ret_val;
6560 }
6561
6562 for (id = super->devlist ; id; id = id->next) {
6563 if (id->index == (unsigned)u->subdev) {
6564 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6565 struct imsm_map *map;
6566 struct imsm_dev *new_dev =
6567 (struct imsm_dev *)*space_list;
6568 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6569 int to_state;
6570 struct dl *new_disk;
6571
6572 if (new_dev == NULL)
6573 return ret_val;
6574 *space_list = **space_list;
6575 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6576 map = get_imsm_map(new_dev, 0);
6577 if (migr_map) {
6578 dprintf("imsm: Error: migration in progress");
6579 return ret_val;
6580 }
6581
6582 to_state = map->map_state;
6583 if ((u->new_level == 5) && (map->raid_level == 0)) {
6584 map->num_members++;
6585 /* this should not happen */
6586 if (u->new_disks[0] < 0) {
6587 map->failed_disk_num =
6588 map->num_members - 1;
6589 to_state = IMSM_T_STATE_DEGRADED;
6590 } else
6591 to_state = IMSM_T_STATE_NORMAL;
6592 }
8e59f3d8 6593 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
6594 if (u->new_level > -1)
6595 map->raid_level = u->new_level;
6596 migr_map = get_imsm_map(new_dev, 1);
6597 if ((u->new_level == 5) &&
6598 (migr_map->raid_level == 0)) {
6599 int ord = map->num_members - 1;
6600 migr_map->num_members--;
6601 if (u->new_disks[0] < 0)
6602 ord |= IMSM_ORD_REBUILD;
6603 set_imsm_ord_tbl_ent(map,
6604 map->num_members - 1,
6605 ord);
6606 }
6607 id->dev = new_dev;
6608 tofree = (void **)dev;
6609
4bba0439
PC
6610 /* update chunk size
6611 */
6612 if (u->new_chunksize > 0)
6613 map->blocks_per_strip =
6614 __cpu_to_le16(u->new_chunksize * 2);
6615
a29911da
PC
6616 /* add disk
6617 */
6618 if ((u->new_level != 5) ||
6619 (migr_map->raid_level != 0) ||
6620 (migr_map->raid_level == map->raid_level))
6621 goto skip_disk_add;
6622
6623 if (u->new_disks[0] >= 0) {
6624 /* use passes spare
6625 */
6626 new_disk = get_disk_super(super,
6627 major(u->new_disks[0]),
6628 minor(u->new_disks[0]));
6629 dprintf("imsm: new disk for reshape is: %i:%i "
6630 "(%p, index = %i)\n",
6631 major(u->new_disks[0]),
6632 minor(u->new_disks[0]),
6633 new_disk, new_disk->index);
6634 if (new_disk == NULL)
6635 goto error_disk_add;
6636
6637 new_disk->index = map->num_members - 1;
6638 /* slot to fill in autolayout
6639 */
6640 new_disk->raiddisk = new_disk->index;
6641 new_disk->disk.status |= CONFIGURED_DISK;
6642 new_disk->disk.status &= ~SPARE_DISK;
6643 } else
6644 goto error_disk_add;
6645
6646skip_disk_add:
6647 *tofree = *space_list;
6648 /* calculate new size
6649 */
6650 imsm_set_array_size(new_dev);
6651
6652 ret_val = 1;
6653 }
6654 }
6655
6656 if (tofree)
6657 *space_list = tofree;
6658 return ret_val;
6659
6660error_disk_add:
6661 dprintf("Error: imsm: Cannot find disk.\n");
6662 return ret_val;
6663}
6664
6665
2e5dc010
N
6666static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6667 struct intel_super *super,
6668 void ***space_list)
6669{
6670 struct dl *new_disk;
6671 struct intel_dev *id;
6672 int i;
6673 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 6674 int disk_count = u->old_raid_disks;
2e5dc010
N
6675 void **tofree = NULL;
6676 int devices_to_reshape = 1;
6677 struct imsm_super *mpb = super->anchor;
6678 int ret_val = 0;
d098291a 6679 unsigned int dev_id;
2e5dc010 6680
ed7333bd 6681 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
6682
6683 /* enable spares to use in array */
6684 for (i = 0; i < delta_disks; i++) {
6685 new_disk = get_disk_super(super,
6686 major(u->new_disks[i]),
6687 minor(u->new_disks[i]));
ed7333bd
AK
6688 dprintf("imsm: new disk for reshape is: %i:%i "
6689 "(%p, index = %i)\n",
2e5dc010
N
6690 major(u->new_disks[i]), minor(u->new_disks[i]),
6691 new_disk, new_disk->index);
6692 if ((new_disk == NULL) ||
6693 ((new_disk->index >= 0) &&
6694 (new_disk->index < u->old_raid_disks)))
6695 goto update_reshape_exit;
ee4beede 6696 new_disk->index = disk_count++;
2e5dc010
N
6697 /* slot to fill in autolayout
6698 */
6699 new_disk->raiddisk = new_disk->index;
6700 new_disk->disk.status |=
6701 CONFIGURED_DISK;
6702 new_disk->disk.status &= ~SPARE_DISK;
6703 }
6704
ed7333bd
AK
6705 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6706 mpb->num_raid_devs);
2e5dc010
N
6707 /* manage changes in volume
6708 */
d098291a 6709 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
6710 void **sp = *space_list;
6711 struct imsm_dev *newdev;
6712 struct imsm_map *newmap, *oldmap;
6713
d098291a
AK
6714 for (id = super->devlist ; id; id = id->next) {
6715 if (id->index == dev_id)
6716 break;
6717 }
6718 if (id == NULL)
6719 break;
2e5dc010
N
6720 if (!sp)
6721 continue;
6722 *space_list = *sp;
6723 newdev = (void*)sp;
6724 /* Copy the dev, but not (all of) the map */
6725 memcpy(newdev, id->dev, sizeof(*newdev));
6726 oldmap = get_imsm_map(id->dev, 0);
6727 newmap = get_imsm_map(newdev, 0);
6728 /* Copy the current map */
6729 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6730 /* update one device only
6731 */
6732 if (devices_to_reshape) {
ed7333bd
AK
6733 dprintf("imsm: modifying subdev: %i\n",
6734 id->index);
2e5dc010
N
6735 devices_to_reshape--;
6736 newdev->vol.migr_state = 1;
6737 newdev->vol.curr_migr_unit = 0;
6738 newdev->vol.migr_type = MIGR_GEN_MIGR;
6739 newmap->num_members = u->new_raid_disks;
6740 for (i = 0; i < delta_disks; i++) {
6741 set_imsm_ord_tbl_ent(newmap,
6742 u->old_raid_disks + i,
6743 u->old_raid_disks + i);
6744 }
6745 /* New map is correct, now need to save old map
6746 */
6747 newmap = get_imsm_map(newdev, 1);
6748 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6749
70bdf0dc 6750 imsm_set_array_size(newdev);
2e5dc010
N
6751 }
6752
6753 sp = (void **)id->dev;
6754 id->dev = newdev;
6755 *sp = tofree;
6756 tofree = sp;
8e59f3d8
AK
6757
6758 /* Clear migration record */
6759 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 6760 }
819bc634
AK
6761 if (tofree)
6762 *space_list = tofree;
2e5dc010
N
6763 ret_val = 1;
6764
6765update_reshape_exit:
6766
6767 return ret_val;
6768}
6769
bb025c2f 6770static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
6771 struct intel_super *super,
6772 void ***space_list)
bb025c2f
KW
6773{
6774 struct imsm_dev *dev = NULL;
8ca6df95
KW
6775 struct intel_dev *dv;
6776 struct imsm_dev *dev_new;
bb025c2f
KW
6777 struct imsm_map *map;
6778 struct dl *dm, *du;
8ca6df95 6779 int i;
bb025c2f
KW
6780
6781 for (dv = super->devlist; dv; dv = dv->next)
6782 if (dv->index == (unsigned int)u->subarray) {
6783 dev = dv->dev;
6784 break;
6785 }
6786
6787 if (dev == NULL)
6788 return 0;
6789
6790 map = get_imsm_map(dev, 0);
6791
6792 if (u->direction == R10_TO_R0) {
43d5ec18
KW
6793 /* Number of failed disks must be half of initial disk number */
6794 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6795 return 0;
6796
bb025c2f
KW
6797 /* iterate through devices to mark removed disks as spare */
6798 for (dm = super->disks; dm; dm = dm->next) {
6799 if (dm->disk.status & FAILED_DISK) {
6800 int idx = dm->index;
6801 /* update indexes on the disk list */
6802/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6803 the index values will end up being correct.... NB */
6804 for (du = super->disks; du; du = du->next)
6805 if (du->index > idx)
6806 du->index--;
6807 /* mark as spare disk */
6808 dm->disk.status = SPARE_DISK;
6809 dm->index = -1;
6810 }
6811 }
bb025c2f
KW
6812 /* update map */
6813 map->num_members = map->num_members / 2;
6814 map->map_state = IMSM_T_STATE_NORMAL;
6815 map->num_domains = 1;
6816 map->raid_level = 0;
6817 map->failed_disk_num = -1;
6818 }
6819
8ca6df95
KW
6820 if (u->direction == R0_TO_R10) {
6821 void **space;
6822 /* update slots in current disk list */
6823 for (dm = super->disks; dm; dm = dm->next) {
6824 if (dm->index >= 0)
6825 dm->index *= 2;
6826 }
6827 /* create new *missing* disks */
6828 for (i = 0; i < map->num_members; i++) {
6829 space = *space_list;
6830 if (!space)
6831 continue;
6832 *space_list = *space;
6833 du = (void *)space;
6834 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
6835 du->fd = -1;
6836 du->minor = 0;
6837 du->major = 0;
6838 du->index = (i * 2) + 1;
6839 sprintf((char *)du->disk.serial,
6840 " MISSING_%d", du->index);
6841 sprintf((char *)du->serial,
6842 "MISSING_%d", du->index);
6843 du->next = super->missing;
6844 super->missing = du;
6845 }
6846 /* create new dev and map */
6847 space = *space_list;
6848 if (!space)
6849 return 0;
6850 *space_list = *space;
6851 dev_new = (void *)space;
6852 memcpy(dev_new, dev, sizeof(*dev));
6853 /* update new map */
6854 map = get_imsm_map(dev_new, 0);
8ca6df95 6855 map->num_members = map->num_members * 2;
1a2487c2 6856 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
6857 map->num_domains = 2;
6858 map->raid_level = 1;
6859 /* replace dev<->dev_new */
6860 dv->dev = dev_new;
6861 }
bb025c2f
KW
6862 /* update disk order table */
6863 for (du = super->disks; du; du = du->next)
6864 if (du->index >= 0)
6865 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 6866 for (du = super->missing; du; du = du->next)
1a2487c2
KW
6867 if (du->index >= 0) {
6868 set_imsm_ord_tbl_ent(map, du->index, du->index);
6869 mark_missing(dev_new, &du->disk, du->index);
6870 }
bb025c2f
KW
6871
6872 return 1;
6873}
6874
e8319a19
DW
6875static void imsm_process_update(struct supertype *st,
6876 struct metadata_update *update)
6877{
6878 /**
6879 * crack open the metadata_update envelope to find the update record
6880 * update can be one of:
d195167d
AK
6881 * update_reshape_container_disks - all the arrays in the container
6882 * are being reshaped to have more devices. We need to mark
6883 * the arrays for general migration and convert selected spares
6884 * into active devices.
6885 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
6886 * device in an array, update the disk_ord_tbl. If this disk is
6887 * present in all member arrays then also clear the SPARE_DISK
6888 * flag
d195167d
AK
6889 * update_create_array
6890 * update_kill_array
6891 * update_rename_array
6892 * update_add_remove_disk
e8319a19
DW
6893 */
6894 struct intel_super *super = st->sb;
4d7b1503 6895 struct imsm_super *mpb;
e8319a19
DW
6896 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6897
4d7b1503
DW
6898 /* update requires a larger buf but the allocation failed */
6899 if (super->next_len && !super->next_buf) {
6900 super->next_len = 0;
6901 return;
6902 }
6903
6904 if (super->next_buf) {
6905 memcpy(super->next_buf, super->buf, super->len);
6906 free(super->buf);
6907 super->len = super->next_len;
6908 super->buf = super->next_buf;
6909
6910 super->next_len = 0;
6911 super->next_buf = NULL;
6912 }
6913
6914 mpb = super->anchor;
6915
e8319a19 6916 switch (type) {
0ec5d470
AK
6917 case update_general_migration_checkpoint: {
6918 struct intel_dev *id;
6919 struct imsm_update_general_migration_checkpoint *u =
6920 (void *)update->buf;
6921
6922 dprintf("imsm: process_update() "
6923 "for update_general_migration_checkpoint called\n");
6924
6925 /* find device under general migration */
6926 for (id = super->devlist ; id; id = id->next) {
6927 if (is_gen_migration(id->dev)) {
6928 id->dev->vol.curr_migr_unit =
6929 __cpu_to_le32(u->curr_migr_unit);
6930 super->updates_pending++;
6931 }
6932 }
6933 break;
6934 }
bb025c2f
KW
6935 case update_takeover: {
6936 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
6937 if (apply_takeover_update(u, super, &update->space_list)) {
6938 imsm_update_version_info(super);
bb025c2f 6939 super->updates_pending++;
1a2487c2 6940 }
bb025c2f
KW
6941 break;
6942 }
6943
78b10e66 6944 case update_reshape_container_disks: {
d195167d 6945 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
6946 if (apply_reshape_container_disks_update(
6947 u, super, &update->space_list))
6948 super->updates_pending++;
78b10e66
N
6949 break;
6950 }
48c5303a 6951 case update_reshape_migration: {
a29911da
PC
6952 struct imsm_update_reshape_migration *u = (void *)update->buf;
6953 if (apply_reshape_migration_update(
6954 u, super, &update->space_list))
6955 super->updates_pending++;
48c5303a
PC
6956 break;
6957 }
e8319a19
DW
6958 case update_activate_spare: {
6959 struct imsm_update_activate_spare *u = (void *) update->buf;
949c47a0 6960 struct imsm_dev *dev = get_imsm_dev(super, u->array);
a965f303 6961 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd 6962 struct imsm_map *migr_map;
e8319a19
DW
6963 struct active_array *a;
6964 struct imsm_disk *disk;
0c046afd 6965 __u8 to_state;
e8319a19 6966 struct dl *dl;
e8319a19 6967 unsigned int found;
0c046afd 6968 int failed;
98130f40 6969 int victim = get_imsm_disk_idx(dev, u->slot, -1);
e8319a19
DW
6970 int i;
6971
6972 for (dl = super->disks; dl; dl = dl->next)
d23fe947 6973 if (dl == u->dl)
e8319a19
DW
6974 break;
6975
6976 if (!dl) {
6977 fprintf(stderr, "error: imsm_activate_spare passed "
1f24f035
DW
6978 "an unknown disk (index: %d)\n",
6979 u->dl->index);
e8319a19
DW
6980 return;
6981 }
6982
6983 super->updates_pending++;
0c046afd
DW
6984 /* count failures (excluding rebuilds and the victim)
6985 * to determine map[0] state
6986 */
6987 failed = 0;
6988 for (i = 0; i < map->num_members; i++) {
6989 if (i == u->slot)
6990 continue;
98130f40
AK
6991 disk = get_imsm_disk(super,
6992 get_imsm_disk_idx(dev, i, -1));
25ed7e59 6993 if (!disk || is_failed(disk))
0c046afd
DW
6994 failed++;
6995 }
6996
d23fe947
DW
6997 /* adding a pristine spare, assign a new index */
6998 if (dl->index < 0) {
6999 dl->index = super->anchor->num_disks;
7000 super->anchor->num_disks++;
7001 }
d23fe947 7002 disk = &dl->disk;
f2f27e63
DW
7003 disk->status |= CONFIGURED_DISK;
7004 disk->status &= ~SPARE_DISK;
e8319a19 7005
0c046afd
DW
7006 /* mark rebuild */
7007 to_state = imsm_check_degraded(super, dev, failed);
7008 map->map_state = IMSM_T_STATE_DEGRADED;
8e59f3d8 7009 migrate(dev, super, to_state, MIGR_REBUILD);
0c046afd
DW
7010 migr_map = get_imsm_map(dev, 1);
7011 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7012 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
7013
148acb7b
DW
7014 /* update the family_num to mark a new container
7015 * generation, being careful to record the existing
7016 * family_num in orig_family_num to clean up after
7017 * earlier mdadm versions that neglected to set it.
7018 */
7019 if (mpb->orig_family_num == 0)
7020 mpb->orig_family_num = mpb->family_num;
7021 mpb->family_num += super->random;
7022
e8319a19
DW
7023 /* count arrays using the victim in the metadata */
7024 found = 0;
7025 for (a = st->arrays; a ; a = a->next) {
949c47a0 7026 dev = get_imsm_dev(super, a->info.container_member);
620b1713
DW
7027 map = get_imsm_map(dev, 0);
7028
7029 if (get_imsm_disk_slot(map, victim) >= 0)
7030 found++;
e8319a19
DW
7031 }
7032
24565c9a 7033 /* delete the victim if it is no longer being
e8319a19
DW
7034 * utilized anywhere
7035 */
e8319a19 7036 if (!found) {
ae6aad82 7037 struct dl **dlp;
24565c9a 7038
47ee5a45
DW
7039 /* We know that 'manager' isn't touching anything,
7040 * so it is safe to delete
7041 */
24565c9a 7042 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
ae6aad82
DW
7043 if ((*dlp)->index == victim)
7044 break;
47ee5a45
DW
7045
7046 /* victim may be on the missing list */
7047 if (!*dlp)
7048 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
7049 if ((*dlp)->index == victim)
7050 break;
24565c9a 7051 imsm_delete(super, dlp, victim);
e8319a19 7052 }
8273f55e
DW
7053 break;
7054 }
7055 case update_create_array: {
7056 /* someone wants to create a new array, we need to be aware of
7057 * a few races/collisions:
7058 * 1/ 'Create' called by two separate instances of mdadm
7059 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7060 * devices that have since been assimilated via
7061 * activate_spare.
7062 * In the event this update can not be carried out mdadm will
7063 * (FIX ME) notice that its update did not take hold.
7064 */
7065 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7066 struct intel_dev *dv;
8273f55e
DW
7067 struct imsm_dev *dev;
7068 struct imsm_map *map, *new_map;
7069 unsigned long long start, end;
7070 unsigned long long new_start, new_end;
7071 int i;
54c2c1ea
DW
7072 struct disk_info *inf;
7073 struct dl *dl;
8273f55e
DW
7074
7075 /* handle racing creates: first come first serve */
7076 if (u->dev_idx < mpb->num_raid_devs) {
7077 dprintf("%s: subarray %d already defined\n",
7078 __func__, u->dev_idx);
ba2de7ba 7079 goto create_error;
8273f55e
DW
7080 }
7081
7082 /* check update is next in sequence */
7083 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7084 dprintf("%s: can not create array %d expected index %d\n",
7085 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7086 goto create_error;
8273f55e
DW
7087 }
7088
a965f303 7089 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
7090 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7091 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7092 inf = get_disk_info(u);
8273f55e
DW
7093
7094 /* handle activate_spare versus create race:
7095 * check to make sure that overlapping arrays do not include
7096 * overalpping disks
7097 */
7098 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7099 dev = get_imsm_dev(super, i);
a965f303 7100 map = get_imsm_map(dev, 0);
8273f55e
DW
7101 start = __le32_to_cpu(map->pba_of_lba0);
7102 end = start + __le32_to_cpu(map->blocks_per_member);
7103 if ((new_start >= start && new_start <= end) ||
7104 (start >= new_start && start <= new_end))
54c2c1ea
DW
7105 /* overlap */;
7106 else
7107 continue;
7108
7109 if (disks_overlap(super, i, u)) {
8273f55e 7110 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7111 goto create_error;
8273f55e
DW
7112 }
7113 }
8273f55e 7114
949c47a0
DW
7115 /* check that prepare update was successful */
7116 if (!update->space) {
7117 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7118 goto create_error;
949c47a0
DW
7119 }
7120
54c2c1ea
DW
7121 /* check that all disks are still active before committing
7122 * changes. FIXME: could we instead handle this by creating a
7123 * degraded array? That's probably not what the user expects,
7124 * so better to drop this update on the floor.
7125 */
7126 for (i = 0; i < new_map->num_members; i++) {
7127 dl = serial_to_dl(inf[i].serial, super);
7128 if (!dl) {
7129 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7130 goto create_error;
54c2c1ea 7131 }
949c47a0
DW
7132 }
7133
8273f55e 7134 super->updates_pending++;
54c2c1ea
DW
7135
7136 /* convert spares to members and fixup ord_tbl */
7137 for (i = 0; i < new_map->num_members; i++) {
7138 dl = serial_to_dl(inf[i].serial, super);
7139 if (dl->index == -1) {
7140 dl->index = mpb->num_disks;
7141 mpb->num_disks++;
7142 dl->disk.status |= CONFIGURED_DISK;
7143 dl->disk.status &= ~SPARE_DISK;
7144 }
7145 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7146 }
7147
ba2de7ba
DW
7148 dv = update->space;
7149 dev = dv->dev;
949c47a0
DW
7150 update->space = NULL;
7151 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7152 dv->index = u->dev_idx;
7153 dv->next = super->devlist;
7154 super->devlist = dv;
8273f55e 7155 mpb->num_raid_devs++;
8273f55e 7156
4d1313e9 7157 imsm_update_version_info(super);
8273f55e 7158 break;
ba2de7ba
DW
7159 create_error:
7160 /* mdmon knows how to release update->space, but not
7161 * ((struct intel_dev *) update->space)->dev
7162 */
7163 if (update->space) {
7164 dv = update->space;
7165 free(dv->dev);
7166 }
8273f55e 7167 break;
e8319a19 7168 }
33414a01
DW
7169 case update_kill_array: {
7170 struct imsm_update_kill_array *u = (void *) update->buf;
7171 int victim = u->dev_idx;
7172 struct active_array *a;
7173 struct intel_dev **dp;
7174 struct imsm_dev *dev;
7175
7176 /* sanity check that we are not affecting the uuid of
7177 * active arrays, or deleting an active array
7178 *
7179 * FIXME when immutable ids are available, but note that
7180 * we'll also need to fixup the invalidated/active
7181 * subarray indexes in mdstat
7182 */
7183 for (a = st->arrays; a; a = a->next)
7184 if (a->info.container_member >= victim)
7185 break;
7186 /* by definition if mdmon is running at least one array
7187 * is active in the container, so checking
7188 * mpb->num_raid_devs is just extra paranoia
7189 */
7190 dev = get_imsm_dev(super, victim);
7191 if (a || !dev || mpb->num_raid_devs == 1) {
7192 dprintf("failed to delete subarray-%d\n", victim);
7193 break;
7194 }
7195
7196 for (dp = &super->devlist; *dp;)
f21e18ca 7197 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7198 *dp = (*dp)->next;
7199 } else {
f21e18ca 7200 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7201 (*dp)->index--;
7202 dp = &(*dp)->next;
7203 }
7204 mpb->num_raid_devs--;
7205 super->updates_pending++;
7206 break;
7207 }
aa534678
DW
7208 case update_rename_array: {
7209 struct imsm_update_rename_array *u = (void *) update->buf;
7210 char name[MAX_RAID_SERIAL_LEN+1];
7211 int target = u->dev_idx;
7212 struct active_array *a;
7213 struct imsm_dev *dev;
7214
7215 /* sanity check that we are not affecting the uuid of
7216 * an active array
7217 */
7218 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7219 name[MAX_RAID_SERIAL_LEN] = '\0';
7220 for (a = st->arrays; a; a = a->next)
7221 if (a->info.container_member == target)
7222 break;
7223 dev = get_imsm_dev(super, u->dev_idx);
7224 if (a || !dev || !check_name(super, name, 1)) {
7225 dprintf("failed to rename subarray-%d\n", target);
7226 break;
7227 }
7228
cdbe98cd 7229 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7230 super->updates_pending++;
7231 break;
7232 }
1a64be56 7233 case update_add_remove_disk: {
43dad3d6 7234 /* we may be able to repair some arrays if disks are
1a64be56
LM
7235 * being added, check teh status of add_remove_disk
7236 * if discs has been added.
7237 */
7238 if (add_remove_disk_update(super)) {
43dad3d6 7239 struct active_array *a;
072b727f
DW
7240
7241 super->updates_pending++;
1a64be56 7242 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7243 a->check_degraded = 1;
7244 }
43dad3d6 7245 break;
e8319a19 7246 }
1a64be56
LM
7247 default:
7248 fprintf(stderr, "error: unsuported process update type:"
7249 "(type: %d)\n", type);
7250 }
e8319a19 7251}
88758e9d 7252
bc0b9d34
PC
7253static struct mdinfo *get_spares_for_grow(struct supertype *st);
7254
8273f55e
DW
7255static void imsm_prepare_update(struct supertype *st,
7256 struct metadata_update *update)
7257{
949c47a0 7258 /**
4d7b1503
DW
7259 * Allocate space to hold new disk entries, raid-device entries or a new
7260 * mpb if necessary. The manager synchronously waits for updates to
7261 * complete in the monitor, so new mpb buffers allocated here can be
7262 * integrated by the monitor thread without worrying about live pointers
7263 * in the manager thread.
8273f55e 7264 */
949c47a0 7265 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7266 struct intel_super *super = st->sb;
7267 struct imsm_super *mpb = super->anchor;
7268 size_t buf_len;
7269 size_t len = 0;
949c47a0
DW
7270
7271 switch (type) {
0ec5d470
AK
7272 case update_general_migration_checkpoint:
7273 dprintf("imsm: prepare_update() "
7274 "for update_general_migration_checkpoint called\n");
7275 break;
abedf5fc
KW
7276 case update_takeover: {
7277 struct imsm_update_takeover *u = (void *)update->buf;
7278 if (u->direction == R0_TO_R10) {
7279 void **tail = (void **)&update->space_list;
7280 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7281 struct imsm_map *map = get_imsm_map(dev, 0);
7282 int num_members = map->num_members;
7283 void *space;
7284 int size, i;
7285 int err = 0;
7286 /* allocate memory for added disks */
7287 for (i = 0; i < num_members; i++) {
7288 size = sizeof(struct dl);
7289 space = malloc(size);
7290 if (!space) {
7291 err++;
7292 break;
7293 }
7294 *tail = space;
7295 tail = space;
7296 *tail = NULL;
7297 }
7298 /* allocate memory for new device */
7299 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7300 (num_members * sizeof(__u32));
7301 space = malloc(size);
7302 if (!space)
7303 err++;
7304 else {
7305 *tail = space;
7306 tail = space;
7307 *tail = NULL;
7308 }
7309 if (!err) {
7310 len = disks_to_mpb_size(num_members * 2);
7311 } else {
7312 /* if allocation didn't success, free buffer */
7313 while (update->space_list) {
7314 void **sp = update->space_list;
7315 update->space_list = *sp;
7316 free(sp);
7317 }
7318 }
7319 }
7320
7321 break;
7322 }
78b10e66 7323 case update_reshape_container_disks: {
d195167d
AK
7324 /* Every raid device in the container is about to
7325 * gain some more devices, and we will enter a
7326 * reconfiguration.
7327 * So each 'imsm_map' will be bigger, and the imsm_vol
7328 * will now hold 2 of them.
7329 * Thus we need new 'struct imsm_dev' allocations sized
7330 * as sizeof_imsm_dev but with more devices in both maps.
7331 */
7332 struct imsm_update_reshape *u = (void *)update->buf;
7333 struct intel_dev *dl;
7334 void **space_tail = (void**)&update->space_list;
7335
7336 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7337
7338 for (dl = super->devlist; dl; dl = dl->next) {
7339 int size = sizeof_imsm_dev(dl->dev, 1);
7340 void *s;
d677e0b8
AK
7341 if (u->new_raid_disks > u->old_raid_disks)
7342 size += sizeof(__u32)*2*
7343 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7344 s = malloc(size);
7345 if (!s)
7346 break;
7347 *space_tail = s;
7348 space_tail = s;
7349 *space_tail = NULL;
7350 }
7351
7352 len = disks_to_mpb_size(u->new_raid_disks);
7353 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7354 break;
7355 }
48c5303a 7356 case update_reshape_migration: {
bc0b9d34
PC
7357 /* for migration level 0->5 we need to add disks
7358 * so the same as for container operation we will copy
7359 * device to the bigger location.
7360 * in memory prepared device and new disk area are prepared
7361 * for usage in process update
7362 */
7363 struct imsm_update_reshape_migration *u = (void *)update->buf;
7364 struct intel_dev *id;
7365 void **space_tail = (void **)&update->space_list;
7366 int size;
7367 void *s;
7368 int current_level = -1;
7369
7370 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7371
7372 /* add space for bigger array in update
7373 */
7374 for (id = super->devlist; id; id = id->next) {
7375 if (id->index == (unsigned)u->subdev) {
7376 size = sizeof_imsm_dev(id->dev, 1);
7377 if (u->new_raid_disks > u->old_raid_disks)
7378 size += sizeof(__u32)*2*
7379 (u->new_raid_disks - u->old_raid_disks);
7380 s = malloc(size);
7381 if (!s)
7382 break;
7383 *space_tail = s;
7384 space_tail = s;
7385 *space_tail = NULL;
7386 break;
7387 }
7388 }
7389 if (update->space_list == NULL)
7390 break;
7391
7392 /* add space for disk in update
7393 */
7394 size = sizeof(struct dl);
7395 s = malloc(size);
7396 if (!s) {
7397 free(update->space_list);
7398 update->space_list = NULL;
7399 break;
7400 }
7401 *space_tail = s;
7402 space_tail = s;
7403 *space_tail = NULL;
7404
7405 /* add spare device to update
7406 */
7407 for (id = super->devlist ; id; id = id->next)
7408 if (id->index == (unsigned)u->subdev) {
7409 struct imsm_dev *dev;
7410 struct imsm_map *map;
7411
7412 dev = get_imsm_dev(super, u->subdev);
7413 map = get_imsm_map(dev, 0);
7414 current_level = map->raid_level;
7415 break;
7416 }
7417 if ((u->new_level == 5) && (u->new_level != current_level)) {
7418 struct mdinfo *spares;
7419
7420 spares = get_spares_for_grow(st);
7421 if (spares) {
7422 struct dl *dl;
7423 struct mdinfo *dev;
7424
7425 dev = spares->devs;
7426 if (dev) {
7427 u->new_disks[0] =
7428 makedev(dev->disk.major,
7429 dev->disk.minor);
7430 dl = get_disk_super(super,
7431 dev->disk.major,
7432 dev->disk.minor);
7433 dl->index = u->old_raid_disks;
7434 dev = dev->next;
7435 }
7436 sysfs_free(spares);
7437 }
7438 }
7439 len = disks_to_mpb_size(u->new_raid_disks);
7440 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7441 break;
7442 }
949c47a0
DW
7443 case update_create_array: {
7444 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7445 struct intel_dev *dv;
54c2c1ea
DW
7446 struct imsm_dev *dev = &u->dev;
7447 struct imsm_map *map = get_imsm_map(dev, 0);
7448 struct dl *dl;
7449 struct disk_info *inf;
7450 int i;
7451 int activate = 0;
949c47a0 7452
54c2c1ea
DW
7453 inf = get_disk_info(u);
7454 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7455 /* allocate a new super->devlist entry */
7456 dv = malloc(sizeof(*dv));
7457 if (dv) {
7458 dv->dev = malloc(len);
7459 if (dv->dev)
7460 update->space = dv;
7461 else {
7462 free(dv);
7463 update->space = NULL;
7464 }
7465 }
949c47a0 7466
54c2c1ea
DW
7467 /* count how many spares will be converted to members */
7468 for (i = 0; i < map->num_members; i++) {
7469 dl = serial_to_dl(inf[i].serial, super);
7470 if (!dl) {
7471 /* hmm maybe it failed?, nothing we can do about
7472 * it here
7473 */
7474 continue;
7475 }
7476 if (count_memberships(dl, super) == 0)
7477 activate++;
7478 }
7479 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7480 break;
7481 default:
7482 break;
7483 }
7484 }
8273f55e 7485
4d7b1503
DW
7486 /* check if we need a larger metadata buffer */
7487 if (super->next_buf)
7488 buf_len = super->next_len;
7489 else
7490 buf_len = super->len;
7491
7492 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7493 /* ok we need a larger buf than what is currently allocated
7494 * if this allocation fails process_update will notice that
7495 * ->next_len is set and ->next_buf is NULL
7496 */
7497 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7498 if (super->next_buf)
7499 free(super->next_buf);
7500
7501 super->next_len = buf_len;
1f45a8ad
DW
7502 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7503 memset(super->next_buf, 0, buf_len);
7504 else
4d7b1503
DW
7505 super->next_buf = NULL;
7506 }
8273f55e
DW
7507}
7508
ae6aad82 7509/* must be called while manager is quiesced */
f21e18ca 7510static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7511{
7512 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7513 struct dl *iter;
7514 struct imsm_dev *dev;
7515 struct imsm_map *map;
24565c9a
DW
7516 int i, j, num_members;
7517 __u32 ord;
ae6aad82 7518
24565c9a
DW
7519 dprintf("%s: deleting device[%d] from imsm_super\n",
7520 __func__, index);
ae6aad82
DW
7521
7522 /* shift all indexes down one */
7523 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7524 if (iter->index > (int)index)
ae6aad82 7525 iter->index--;
47ee5a45 7526 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7527 if (iter->index > (int)index)
47ee5a45 7528 iter->index--;
ae6aad82
DW
7529
7530 for (i = 0; i < mpb->num_raid_devs; i++) {
7531 dev = get_imsm_dev(super, i);
7532 map = get_imsm_map(dev, 0);
24565c9a
DW
7533 num_members = map->num_members;
7534 for (j = 0; j < num_members; j++) {
7535 /* update ord entries being careful not to propagate
7536 * ord-flags to the first map
7537 */
98130f40 7538 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7539
24565c9a
DW
7540 if (ord_to_idx(ord) <= index)
7541 continue;
ae6aad82 7542
24565c9a
DW
7543 map = get_imsm_map(dev, 0);
7544 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7545 map = get_imsm_map(dev, 1);
7546 if (map)
7547 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
7548 }
7549 }
7550
7551 mpb->num_disks--;
7552 super->updates_pending++;
24565c9a
DW
7553 if (*dlp) {
7554 struct dl *dl = *dlp;
7555
7556 *dlp = (*dlp)->next;
7557 __free_imsm_disk(dl);
7558 }
ae6aad82
DW
7559}
7560
687629c2
AK
7561/*******************************************************************************
7562 * Function: open_backup_targets
7563 * Description: Function opens file descriptors for all devices given in
7564 * info->devs
7565 * Parameters:
7566 * info : general array info
7567 * raid_disks : number of disks
7568 * raid_fds : table of device's file descriptors
7569 * Returns:
7570 * 0 : success
7571 * -1 : fail
7572 ******************************************************************************/
7573int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7574{
7575 struct mdinfo *sd;
7576
7577 for (sd = info->devs ; sd ; sd = sd->next) {
7578 char *dn;
7579
7580 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7581 dprintf("disk is faulty!!\n");
7582 continue;
7583 }
7584
7585 if ((sd->disk.raid_disk >= raid_disks) ||
7586 (sd->disk.raid_disk < 0))
7587 continue;
7588
7589 dn = map_dev(sd->disk.major,
7590 sd->disk.minor, 1);
7591 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7592 if (raid_fds[sd->disk.raid_disk] < 0) {
7593 fprintf(stderr, "cannot open component\n");
7594 return -1;
7595 }
7596 }
7597 return 0;
7598}
7599
7600/*******************************************************************************
7601 * Function: init_migr_record_imsm
7602 * Description: Function inits imsm migration record
7603 * Parameters:
7604 * super : imsm internal array info
7605 * dev : device under migration
7606 * info : general array info to find the smallest device
7607 * Returns:
7608 * none
7609 ******************************************************************************/
7610void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7611 struct mdinfo *info)
7612{
7613 struct intel_super *super = st->sb;
7614 struct migr_record *migr_rec = super->migr_rec;
7615 int new_data_disks;
7616 unsigned long long dsize, dev_sectors;
7617 long long unsigned min_dev_sectors = -1LLU;
7618 struct mdinfo *sd;
7619 char nm[30];
7620 int fd;
7621 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7622 struct imsm_map *map_src = get_imsm_map(dev, 1);
7623 unsigned long long num_migr_units;
7624
7625 unsigned long long array_blocks =
7626 (((unsigned long long)__le32_to_cpu(dev->size_high)) << 32) +
7627 __le32_to_cpu(dev->size_low);
7628
7629 memset(migr_rec, 0, sizeof(struct migr_record));
7630 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7631
7632 /* only ascending reshape supported now */
7633 migr_rec->ascending_migr = __cpu_to_le32(1);
7634
7635 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7636 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7637 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7638 new_data_disks = imsm_num_data_members(dev, 0);
7639 migr_rec->blocks_per_unit =
7640 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7641 migr_rec->dest_depth_per_unit =
7642 __cpu_to_le32(migr_rec->dest_depth_per_unit);
7643
7644 num_migr_units =
7645 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7646
7647 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7648 num_migr_units++;
7649 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7650
7651 migr_rec->post_migr_vol_cap = dev->size_low;
7652 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7653
7654
7655 /* Find the smallest dev */
7656 for (sd = info->devs ; sd ; sd = sd->next) {
7657 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7658 fd = dev_open(nm, O_RDONLY);
7659 if (fd < 0)
7660 continue;
7661 get_dev_size(fd, NULL, &dsize);
7662 dev_sectors = dsize / 512;
7663 if (dev_sectors < min_dev_sectors)
7664 min_dev_sectors = dev_sectors;
7665 close(fd);
7666 }
7667 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7668 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7669
7670 write_imsm_migr_rec(st);
7671
7672 return;
7673}
7674
7675/*******************************************************************************
7676 * Function: save_backup_imsm
7677 * Description: Function saves critical data stripes to Migration Copy Area
7678 * and updates the current migration unit status.
7679 * Use restore_stripes() to form a destination stripe,
7680 * and to write it to the Copy Area.
7681 * Parameters:
7682 * st : supertype information
7683 * info : general array info
7684 * buf : input buffer
7685 * write_offset : address of data to backup
7686 * length : length of data to backup (blocks_per_unit)
7687 * Returns:
7688 * 0 : success
7689 *, -1 : fail
7690 ******************************************************************************/
7691int save_backup_imsm(struct supertype *st,
7692 struct imsm_dev *dev,
7693 struct mdinfo *info,
7694 void *buf,
7695 int new_data,
7696 int length)
7697{
7698 int rv = -1;
7699 struct intel_super *super = st->sb;
7700 unsigned long long *target_offsets = NULL;
7701 int *targets = NULL;
7702 int i;
7703 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7704 int new_disks = map_dest->num_members;
7705
7706 targets = malloc(new_disks * sizeof(int));
7707 if (!targets)
7708 goto abort;
7709
7710 target_offsets = malloc(new_disks * sizeof(unsigned long long));
7711 if (!target_offsets)
7712 goto abort;
7713
7714 for (i = 0; i < new_disks; i++) {
7715 targets[i] = -1;
7716 target_offsets[i] = (unsigned long long)
7717 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
7718 }
7719
7720 if (open_backup_targets(info, new_disks, targets))
7721 goto abort;
7722
7723 if (restore_stripes(targets, /* list of dest devices */
7724 target_offsets, /* migration record offsets */
7725 new_disks,
7726 info->new_chunk,
7727 info->new_level,
7728 info->new_layout,
7729 -1, /* source backup file descriptor */
7730 0, /* input buf offset
7731 * always 0 buf is already offset */
7732 0,
7733 length,
7734 buf) != 0) {
7735 fprintf(stderr, Name ": Error restoring stripes\n");
7736 goto abort;
7737 }
7738
7739 rv = 0;
7740
7741abort:
7742 if (targets) {
7743 for (i = 0; i < new_disks; i++)
7744 if (targets[i] >= 0)
7745 close(targets[i]);
7746 free(targets);
7747 }
7748 free(target_offsets);
7749
7750 return rv;
7751}
7752
7753/*******************************************************************************
7754 * Function: save_checkpoint_imsm
7755 * Description: Function called for current unit status update
7756 * in the migration record. It writes it to disk.
7757 * Parameters:
7758 * super : imsm internal array info
7759 * info : general array info
7760 * Returns:
7761 * 0: success
7762 * 1: failure
7763 ******************************************************************************/
7764int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
7765{
7766 struct intel_super *super = st->sb;
7767 load_imsm_migr_rec(super, info);
7768 if (__le32_to_cpu(super->migr_rec->blocks_per_unit) == 0) {
7769 dprintf("ERROR: blocks_per_unit = 0!!!\n");
7770 return 1;
7771 }
7772
7773 super->migr_rec->curr_migr_unit =
7774 __cpu_to_le32(info->reshape_progress /
7775 __le32_to_cpu(super->migr_rec->blocks_per_unit));
7776 super->migr_rec->rec_status = __cpu_to_le32(state);
7777 super->migr_rec->dest_1st_member_lba =
7778 __cpu_to_le32((__le32_to_cpu(super->migr_rec->curr_migr_unit))
7779 * __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
7780 if (write_imsm_migr_rec(st) < 0) {
7781 dprintf("imsm: Cannot write migration record "
7782 "outside backup area\n");
7783 return 1;
7784 }
7785
7786 return 0;
7787}
7788
276d77db
AK
7789static __u64 blocks_per_migr_unit(struct intel_super *super,
7790 struct imsm_dev *dev);
7791
7792/*******************************************************************************
7793 * Function: recover_backup_imsm
7794 * Description: Function recovers critical data from the Migration Copy Area
7795 * while assembling an array.
7796 * Parameters:
7797 * super : imsm internal array info
7798 * info : general array info
7799 * Returns:
7800 * 0 : success (or there is no data to recover)
7801 * 1 : fail
7802 ******************************************************************************/
7803int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
7804{
7805 struct intel_super *super = st->sb;
7806 struct migr_record *migr_rec = super->migr_rec;
7807 struct imsm_map *map_dest = NULL;
7808 struct intel_dev *id = NULL;
7809 unsigned long long read_offset;
7810 unsigned long long write_offset;
7811 unsigned unit_len;
7812 int *targets = NULL;
7813 int new_disks, i, err;
7814 char *buf = NULL;
7815 int retval = 1;
7816 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
7817 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
7818 int ascending = __le32_to_cpu(migr_rec->ascending_migr);
7819 char buffer[20];
7820
7821 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
7822 if (err < 1)
7823 return 1;
7824
7825 /* recover data only during assemblation */
7826 if (strncmp(buffer, "inactive", 8) != 0)
7827 return 0;
7828 /* no data to recover */
7829 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
7830 return 0;
7831 if (curr_migr_unit >= num_migr_units)
7832 return 1;
7833
7834 /* find device during reshape */
7835 for (id = super->devlist; id; id = id->next)
7836 if (is_gen_migration(id->dev))
7837 break;
7838 if (id == NULL)
7839 return 1;
7840
7841 map_dest = get_imsm_map(id->dev, 0);
7842 new_disks = map_dest->num_members;
7843
7844 read_offset = (unsigned long long)
7845 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
7846
7847 write_offset = ((unsigned long long)
7848 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
7849 info->data_offset) * 512;
7850
7851 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
7852 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
7853 goto abort;
7854 targets = malloc(new_disks * sizeof(int));
7855 if (!targets)
7856 goto abort;
7857
7858 open_backup_targets(info, new_disks, targets);
7859
7860 for (i = 0; i < new_disks; i++) {
7861 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
7862 fprintf(stderr,
7863 Name ": Cannot seek to block: %s\n",
7864 strerror(errno));
7865 goto abort;
7866 }
7867 if (read(targets[i], buf, unit_len) != unit_len) {
7868 fprintf(stderr,
7869 Name ": Cannot read copy area block: %s\n",
7870 strerror(errno));
7871 goto abort;
7872 }
7873 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
7874 fprintf(stderr,
7875 Name ": Cannot seek to block: %s\n",
7876 strerror(errno));
7877 goto abort;
7878 }
7879 if (write(targets[i], buf, unit_len) != unit_len) {
7880 fprintf(stderr,
7881 Name ": Cannot restore block: %s\n",
7882 strerror(errno));
7883 goto abort;
7884 }
7885 }
7886
7887 if (ascending && curr_migr_unit < (num_migr_units-1))
7888 curr_migr_unit++;
7889
7890 migr_rec->curr_migr_unit = __le32_to_cpu(curr_migr_unit);
7891 super->migr_rec->rec_status = __cpu_to_le32(UNIT_SRC_NORMAL);
7892 if (write_imsm_migr_rec(st) == 0) {
7893 __u64 blocks_per_unit = blocks_per_migr_unit(super, id->dev);
7894 info->reshape_progress = curr_migr_unit * blocks_per_unit;
7895 retval = 0;
7896 }
7897
7898abort:
7899 if (targets) {
7900 for (i = 0; i < new_disks; i++)
7901 if (targets[i])
7902 close(targets[i]);
7903 free(targets);
7904 }
7905 free(buf);
7906 return retval;
7907}
7908
2cda7640
ML
7909static char disk_by_path[] = "/dev/disk/by-path/";
7910
7911static const char *imsm_get_disk_controller_domain(const char *path)
7912{
2cda7640 7913 char disk_path[PATH_MAX];
96234762
LM
7914 char *drv=NULL;
7915 struct stat st;
2cda7640 7916
96234762
LM
7917 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
7918 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
7919 if (stat(disk_path, &st) == 0) {
7920 struct sys_dev* hba;
7921 char *path=NULL;
7922
7923 path = devt_to_devpath(st.st_rdev);
7924 if (path == NULL)
7925 return "unknown";
7926 hba = find_disk_attached_hba(-1, path);
7927 if (hba && hba->type == SYS_DEV_SAS)
7928 drv = "isci";
7929 else if (hba && hba->type == SYS_DEV_SATA)
7930 drv = "ahci";
7931 else
7932 drv = "unknown";
7933 dprintf("path: %s hba: %s attached: %s\n",
7934 path, (hba) ? hba->path : "NULL", drv);
7935 free(path);
7936 if (hba)
7937 free_sys_dev(&hba);
2cda7640 7938 }
96234762 7939 return drv;
2cda7640
ML
7940}
7941
78b10e66
N
7942static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
7943{
7944 char subdev_name[20];
7945 struct mdstat_ent *mdstat;
7946
7947 sprintf(subdev_name, "%d", subdev);
7948 mdstat = mdstat_by_subdev(subdev_name, container);
7949 if (!mdstat)
7950 return -1;
7951
7952 *minor = mdstat->devnum;
7953 free_mdstat(mdstat);
7954 return 0;
7955}
7956
7957static int imsm_reshape_is_allowed_on_container(struct supertype *st,
7958 struct geo_params *geo,
7959 int *old_raid_disks)
7960{
694575e7
KW
7961 /* currently we only support increasing the number of devices
7962 * for a container. This increases the number of device for each
7963 * member array. They must all be RAID0 or RAID5.
7964 */
78b10e66
N
7965 int ret_val = 0;
7966 struct mdinfo *info, *member;
7967 int devices_that_can_grow = 0;
7968
7969 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
7970 "st->devnum = (%i)\n",
7971 st->devnum);
7972
7973 if (geo->size != -1 ||
7974 geo->level != UnSet ||
7975 geo->layout != UnSet ||
7976 geo->chunksize != 0 ||
7977 geo->raid_disks == UnSet) {
7978 dprintf("imsm: Container operation is allowed for "
7979 "raid disks number change only.\n");
7980 return ret_val;
7981 }
7982
7983 info = container_content_imsm(st, NULL);
7984 for (member = info; member; member = member->next) {
7985 int result;
7986 int minor;
7987
7988 dprintf("imsm: checking device_num: %i\n",
7989 member->container_member);
7990
d7d205bd 7991 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
7992 /* we work on container for Online Capacity Expansion
7993 * only so raid_disks has to grow
7994 */
7995 dprintf("imsm: for container operation raid disks "
7996 "increase is required\n");
7997 break;
7998 }
7999
8000 if ((info->array.level != 0) &&
8001 (info->array.level != 5)) {
8002 /* we cannot use this container with other raid level
8003 */
690aae1a 8004 dprintf("imsm: for container operation wrong"
78b10e66
N
8005 " raid level (%i) detected\n",
8006 info->array.level);
8007 break;
8008 } else {
8009 /* check for platform support
8010 * for this raid level configuration
8011 */
8012 struct intel_super *super = st->sb;
8013 if (!is_raid_level_supported(super->orom,
8014 member->array.level,
8015 geo->raid_disks)) {
690aae1a 8016 dprintf("platform does not support raid%d with"
78b10e66
N
8017 " %d disk%s\n",
8018 info->array.level,
8019 geo->raid_disks,
8020 geo->raid_disks > 1 ? "s" : "");
8021 break;
8022 }
2a4a08e7
AK
8023 /* check if component size is aligned to chunk size
8024 */
8025 if (info->component_size %
8026 (info->array.chunk_size/512)) {
8027 dprintf("Component size is not aligned to "
8028 "chunk size\n");
8029 break;
8030 }
78b10e66
N
8031 }
8032
8033 if (*old_raid_disks &&
8034 info->array.raid_disks != *old_raid_disks)
8035 break;
8036 *old_raid_disks = info->array.raid_disks;
8037
8038 /* All raid5 and raid0 volumes in container
8039 * have to be ready for Online Capacity Expansion
8040 * so they need to be assembled. We have already
8041 * checked that no recovery etc is happening.
8042 */
8043 result = imsm_find_array_minor_by_subdev(member->container_member,
8044 st->container_dev,
8045 &minor);
8046 if (result < 0) {
8047 dprintf("imsm: cannot find array\n");
8048 break;
8049 }
8050 devices_that_can_grow++;
8051 }
8052 sysfs_free(info);
8053 if (!member && devices_that_can_grow)
8054 ret_val = 1;
8055
8056 if (ret_val)
8057 dprintf("\tContainer operation allowed\n");
8058 else
8059 dprintf("\tError: %i\n", ret_val);
8060
8061 return ret_val;
8062}
8063
8064/* Function: get_spares_for_grow
8065 * Description: Allocates memory and creates list of spare devices
8066 * avaliable in container. Checks if spare drive size is acceptable.
8067 * Parameters: Pointer to the supertype structure
8068 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8069 * NULL if fail
8070 */
8071static struct mdinfo *get_spares_for_grow(struct supertype *st)
8072{
78b10e66 8073 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8074 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8075}
8076
8077/******************************************************************************
8078 * function: imsm_create_metadata_update_for_reshape
8079 * Function creates update for whole IMSM container.
8080 *
8081 ******************************************************************************/
8082static int imsm_create_metadata_update_for_reshape(
8083 struct supertype *st,
8084 struct geo_params *geo,
8085 int old_raid_disks,
8086 struct imsm_update_reshape **updatep)
8087{
8088 struct intel_super *super = st->sb;
8089 struct imsm_super *mpb = super->anchor;
8090 int update_memory_size = 0;
8091 struct imsm_update_reshape *u = NULL;
8092 struct mdinfo *spares = NULL;
8093 int i;
8094 int delta_disks = 0;
bbd24d86 8095 struct mdinfo *dev;
78b10e66
N
8096
8097 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8098 geo->raid_disks);
8099
8100 delta_disks = geo->raid_disks - old_raid_disks;
8101
8102 /* size of all update data without anchor */
8103 update_memory_size = sizeof(struct imsm_update_reshape);
8104
8105 /* now add space for spare disks that we need to add. */
8106 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8107
8108 u = calloc(1, update_memory_size);
8109 if (u == NULL) {
8110 dprintf("error: "
8111 "cannot get memory for imsm_update_reshape update\n");
8112 return 0;
8113 }
8114 u->type = update_reshape_container_disks;
8115 u->old_raid_disks = old_raid_disks;
8116 u->new_raid_disks = geo->raid_disks;
8117
8118 /* now get spare disks list
8119 */
8120 spares = get_spares_for_grow(st);
8121
8122 if (spares == NULL
8123 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8124 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8125 "for %s.\n", geo->dev_name);
78b10e66
N
8126 goto abort;
8127 }
8128
8129 /* we have got spares
8130 * update disk list in imsm_disk list table in anchor
8131 */
8132 dprintf("imsm: %i spares are available.\n\n",
8133 spares->array.spare_disks);
8134
bbd24d86 8135 dev = spares->devs;
78b10e66 8136 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8137 struct dl *dl;
8138
bbd24d86
AK
8139 if (dev == NULL)
8140 break;
78b10e66
N
8141 u->new_disks[i] = makedev(dev->disk.major,
8142 dev->disk.minor);
8143 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8144 dl->index = mpb->num_disks;
8145 mpb->num_disks++;
bbd24d86 8146 dev = dev->next;
78b10e66 8147 }
78b10e66
N
8148
8149abort:
8150 /* free spares
8151 */
8152 sysfs_free(spares);
8153
d677e0b8 8154 dprintf("imsm: reshape update preparation :");
78b10e66 8155 if (i == delta_disks) {
d677e0b8 8156 dprintf(" OK\n");
78b10e66
N
8157 *updatep = u;
8158 return update_memory_size;
8159 }
8160 free(u);
d677e0b8 8161 dprintf(" Error\n");
78b10e66
N
8162
8163 return 0;
8164}
8165
48c5303a
PC
8166/******************************************************************************
8167 * function: imsm_create_metadata_update_for_migration()
8168 * Creates update for IMSM array.
8169 *
8170 ******************************************************************************/
8171static int imsm_create_metadata_update_for_migration(
8172 struct supertype *st,
8173 struct geo_params *geo,
8174 struct imsm_update_reshape_migration **updatep)
8175{
8176 struct intel_super *super = st->sb;
8177 int update_memory_size = 0;
8178 struct imsm_update_reshape_migration *u = NULL;
8179 struct imsm_dev *dev;
8180 int previous_level = -1;
8181
8182 dprintf("imsm_create_metadata_update_for_migration(enter)"
8183 " New Level = %i\n", geo->level);
8184
8185 /* size of all update data without anchor */
8186 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8187
8188 u = calloc(1, update_memory_size);
8189 if (u == NULL) {
8190 dprintf("error: cannot get memory for "
8191 "imsm_create_metadata_update_for_migration\n");
8192 return 0;
8193 }
8194 u->type = update_reshape_migration;
8195 u->subdev = super->current_vol;
8196 u->new_level = geo->level;
8197 u->new_layout = geo->layout;
8198 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8199 u->new_disks[0] = -1;
4bba0439 8200 u->new_chunksize = -1;
48c5303a
PC
8201
8202 dev = get_imsm_dev(super, u->subdev);
8203 if (dev) {
8204 struct imsm_map *map;
8205
8206 map = get_imsm_map(dev, 0);
4bba0439
PC
8207 if (map) {
8208 int current_chunk_size =
8209 __le16_to_cpu(map->blocks_per_strip) / 2;
8210
8211 if (geo->chunksize != current_chunk_size) {
8212 u->new_chunksize = geo->chunksize / 1024;
8213 dprintf("imsm: "
8214 "chunk size change from %i to %i\n",
8215 current_chunk_size, u->new_chunksize);
8216 }
48c5303a 8217 previous_level = map->raid_level;
4bba0439 8218 }
48c5303a
PC
8219 }
8220 if ((geo->level == 5) && (previous_level == 0)) {
8221 struct mdinfo *spares = NULL;
8222
8223 u->new_raid_disks++;
8224 spares = get_spares_for_grow(st);
8225 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8226 free(u);
8227 sysfs_free(spares);
8228 update_memory_size = 0;
8229 dprintf("error: cannot get spare device "
8230 "for requested migration");
8231 return 0;
8232 }
8233 sysfs_free(spares);
8234 }
8235 dprintf("imsm: reshape update preparation : OK\n");
8236 *updatep = u;
8237
8238 return update_memory_size;
8239}
8240
8dd70bce
AK
8241static void imsm_update_metadata_locally(struct supertype *st,
8242 void *buf, int len)
8243{
8244 struct metadata_update mu;
8245
8246 mu.buf = buf;
8247 mu.len = len;
8248 mu.space = NULL;
8249 mu.space_list = NULL;
8250 mu.next = NULL;
8251 imsm_prepare_update(st, &mu);
8252 imsm_process_update(st, &mu);
8253
8254 while (mu.space_list) {
8255 void **space = mu.space_list;
8256 mu.space_list = *space;
8257 free(space);
8258 }
8259}
78b10e66 8260
471bceb6 8261/***************************************************************************
694575e7 8262* Function: imsm_analyze_change
471bceb6
KW
8263* Description: Function analyze change for single volume
8264* and validate if transition is supported
694575e7
KW
8265* Parameters: Geometry parameters, supertype structure
8266* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8267****************************************************************************/
8268enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8269 struct geo_params *geo)
694575e7 8270{
471bceb6
KW
8271 struct mdinfo info;
8272 int change = -1;
8273 int check_devs = 0;
c21e737b 8274 int chunk;
471bceb6
KW
8275
8276 getinfo_super_imsm_volume(st, &info, NULL);
8277
8278 if ((geo->level != info.array.level) &&
8279 (geo->level >= 0) &&
8280 (geo->level != UnSet)) {
8281 switch (info.array.level) {
8282 case 0:
8283 if (geo->level == 5) {
b5347799 8284 change = CH_MIGRATION;
471bceb6
KW
8285 check_devs = 1;
8286 }
8287 if (geo->level == 10) {
8288 change = CH_TAKEOVER;
8289 check_devs = 1;
8290 }
dfe77a9e
KW
8291 break;
8292 case 1:
8293 if (geo->level == 0) {
8294 change = CH_TAKEOVER;
8295 check_devs = 1;
8296 }
471bceb6 8297 break;
471bceb6
KW
8298 case 10:
8299 if (geo->level == 0) {
8300 change = CH_TAKEOVER;
8301 check_devs = 1;
8302 }
8303 break;
8304 }
8305 if (change == -1) {
8306 fprintf(stderr,
8307 Name " Error. Level Migration from %d to %d "
8308 "not supported!\n",
8309 info.array.level, geo->level);
8310 goto analyse_change_exit;
8311 }
8312 } else
8313 geo->level = info.array.level;
8314
8315 if ((geo->layout != info.array.layout)
8316 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8317 change = CH_MIGRATION;
471bceb6
KW
8318 if ((info.array.layout == 0)
8319 && (info.array.level == 5)
8320 && (geo->layout == 5)) {
8321 /* reshape 5 -> 4 */
8322 } else if ((info.array.layout == 5)
8323 && (info.array.level == 5)
8324 && (geo->layout == 0)) {
8325 /* reshape 4 -> 5 */
8326 geo->layout = 0;
8327 geo->level = 5;
8328 } else {
8329 fprintf(stderr,
8330 Name " Error. Layout Migration from %d to %d "
8331 "not supported!\n",
8332 info.array.layout, geo->layout);
8333 change = -1;
8334 goto analyse_change_exit;
8335 }
8336 } else
8337 geo->layout = info.array.layout;
8338
8339 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8340 && (geo->chunksize != info.array.chunk_size))
b5347799 8341 change = CH_MIGRATION;
471bceb6
KW
8342 else
8343 geo->chunksize = info.array.chunk_size;
8344
c21e737b 8345 chunk = geo->chunksize / 1024;
471bceb6
KW
8346 if (!validate_geometry_imsm(st,
8347 geo->level,
8348 geo->layout,
8349 geo->raid_disks,
c21e737b 8350 &chunk,
471bceb6
KW
8351 geo->size,
8352 0, 0, 1))
8353 change = -1;
8354
8355 if (check_devs) {
8356 struct intel_super *super = st->sb;
8357 struct imsm_super *mpb = super->anchor;
8358
8359 if (mpb->num_raid_devs > 1) {
8360 fprintf(stderr,
8361 Name " Error. Cannot perform operation on %s"
8362 "- for this operation it MUST be single "
8363 "array in container\n",
8364 geo->dev_name);
8365 change = -1;
8366 }
8367 }
8368
8369analyse_change_exit:
8370
8371 return change;
694575e7
KW
8372}
8373
bb025c2f
KW
8374int imsm_takeover(struct supertype *st, struct geo_params *geo)
8375{
8376 struct intel_super *super = st->sb;
8377 struct imsm_update_takeover *u;
8378
8379 u = malloc(sizeof(struct imsm_update_takeover));
8380 if (u == NULL)
8381 return 1;
8382
8383 u->type = update_takeover;
8384 u->subarray = super->current_vol;
8385
8386 /* 10->0 transition */
8387 if (geo->level == 0)
8388 u->direction = R10_TO_R0;
8389
0529c688
KW
8390 /* 0->10 transition */
8391 if (geo->level == 10)
8392 u->direction = R0_TO_R10;
8393
bb025c2f
KW
8394 /* update metadata locally */
8395 imsm_update_metadata_locally(st, u,
8396 sizeof(struct imsm_update_takeover));
8397 /* and possibly remotely */
8398 if (st->update_tail)
8399 append_metadata_update(st, u,
8400 sizeof(struct imsm_update_takeover));
8401 else
8402 free(u);
8403
8404 return 0;
8405}
8406
78b10e66
N
8407static int imsm_reshape_super(struct supertype *st, long long size, int level,
8408 int layout, int chunksize, int raid_disks,
41784c88
AK
8409 int delta_disks, char *backup, char *dev,
8410 int verbose)
78b10e66 8411{
78b10e66
N
8412 int ret_val = 1;
8413 struct geo_params geo;
8414
8415 dprintf("imsm: reshape_super called.\n");
8416
71204a50 8417 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
8418
8419 geo.dev_name = dev;
694575e7 8420 geo.dev_id = st->devnum;
78b10e66
N
8421 geo.size = size;
8422 geo.level = level;
8423 geo.layout = layout;
8424 geo.chunksize = chunksize;
8425 geo.raid_disks = raid_disks;
41784c88
AK
8426 if (delta_disks != UnSet)
8427 geo.raid_disks += delta_disks;
78b10e66
N
8428
8429 dprintf("\tfor level : %i\n", geo.level);
8430 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8431
8432 if (experimental() == 0)
8433 return ret_val;
8434
78b10e66 8435 if (st->container_dev == st->devnum) {
694575e7
KW
8436 /* On container level we can only increase number of devices. */
8437 dprintf("imsm: info: Container operation\n");
78b10e66 8438 int old_raid_disks = 0;
6dc0be30 8439
78b10e66
N
8440 if (imsm_reshape_is_allowed_on_container(
8441 st, &geo, &old_raid_disks)) {
8442 struct imsm_update_reshape *u = NULL;
8443 int len;
8444
8445 len = imsm_create_metadata_update_for_reshape(
8446 st, &geo, old_raid_disks, &u);
8447
ed08d51c
AK
8448 if (len <= 0) {
8449 dprintf("imsm: Cannot prepare update\n");
8450 goto exit_imsm_reshape_super;
8451 }
8452
8dd70bce
AK
8453 ret_val = 0;
8454 /* update metadata locally */
8455 imsm_update_metadata_locally(st, u, len);
8456 /* and possibly remotely */
8457 if (st->update_tail)
8458 append_metadata_update(st, u, len);
8459 else
ed08d51c 8460 free(u);
8dd70bce 8461
694575e7 8462 } else {
e7ff7e40
AK
8463 fprintf(stderr, Name ": (imsm) Operation "
8464 "is not allowed on this container\n");
694575e7
KW
8465 }
8466 } else {
8467 /* On volume level we support following operations
471bceb6
KW
8468 * - takeover: raid10 -> raid0; raid0 -> raid10
8469 * - chunk size migration
8470 * - migration: raid5 -> raid0; raid0 -> raid5
8471 */
8472 struct intel_super *super = st->sb;
8473 struct intel_dev *dev = super->devlist;
8474 int change, devnum;
694575e7 8475 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
8476 /* find requested device */
8477 while (dev) {
8478 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
8479 if (devnum == geo.dev_id)
8480 break;
8481 dev = dev->next;
8482 }
8483 if (dev == NULL) {
8484 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8485 geo.dev_name, geo.dev_id);
8486 goto exit_imsm_reshape_super;
8487 }
8488 super->current_vol = dev->index;
694575e7
KW
8489 change = imsm_analyze_change(st, &geo);
8490 switch (change) {
471bceb6 8491 case CH_TAKEOVER:
bb025c2f 8492 ret_val = imsm_takeover(st, &geo);
694575e7 8493 break;
48c5303a
PC
8494 case CH_MIGRATION: {
8495 struct imsm_update_reshape_migration *u = NULL;
8496 int len =
8497 imsm_create_metadata_update_for_migration(
8498 st, &geo, &u);
8499 if (len < 1) {
8500 dprintf("imsm: "
8501 "Cannot prepare update\n");
8502 break;
8503 }
471bceb6 8504 ret_val = 0;
48c5303a
PC
8505 /* update metadata locally */
8506 imsm_update_metadata_locally(st, u, len);
8507 /* and possibly remotely */
8508 if (st->update_tail)
8509 append_metadata_update(st, u, len);
8510 else
8511 free(u);
8512 }
8513 break;
471bceb6
KW
8514 default:
8515 ret_val = 1;
694575e7 8516 }
694575e7 8517 }
78b10e66 8518
ed08d51c 8519exit_imsm_reshape_super:
78b10e66
N
8520 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8521 return ret_val;
8522}
2cda7640 8523
eee67a47
AK
8524/*******************************************************************************
8525 * Function: wait_for_reshape_imsm
8526 * Description: Function writes new sync_max value and waits until
8527 * reshape process reach new position
8528 * Parameters:
8529 * sra : general array info
8530 * to_complete : new sync_max position
8531 * ndata : number of disks in new array's layout
8532 * Returns:
8533 * 0 : success,
8534 * 1 : there is no reshape in progress,
8535 * -1 : fail
8536 ******************************************************************************/
8537int wait_for_reshape_imsm(struct mdinfo *sra, unsigned long long to_complete,
8538 int ndata)
8539{
8540 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8541 unsigned long long completed;
8542
8543 struct timeval timeout;
8544
8545 if (fd < 0)
8546 return 1;
8547
8548 sysfs_fd_get_ll(fd, &completed);
8549
8550 if (to_complete == 0) {/* reshape till the end of array */
8551 sysfs_set_str(sra, NULL, "sync_max", "max");
8552 to_complete = MaxSector;
8553 } else {
8554 if (completed > to_complete)
8555 return -1;
8556 if (sysfs_set_num(sra, NULL, "sync_max",
8557 to_complete / ndata) != 0) {
8558 close(fd);
8559 return -1;
8560 }
8561 }
8562
8563 /* FIXME should not need a timeout at all */
8564 timeout.tv_sec = 30;
8565 timeout.tv_usec = 0;
8566 do {
8567 char action[20];
8568 fd_set rfds;
8569 FD_ZERO(&rfds);
8570 FD_SET(fd, &rfds);
8571 select(fd+1, NULL, NULL, &rfds, &timeout);
8572 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8573 close(fd);
8574 return 1;
8575 }
8576 if (sysfs_get_str(sra, NULL, "sync_action",
8577 action, 20) > 0 &&
8578 strncmp(action, "reshape", 7) != 0)
8579 break;
8580 } while (completed < to_complete);
8581 close(fd);
8582 return 0;
8583
8584}
8585
b915c95f
AK
8586/*******************************************************************************
8587 * Function: check_degradation_change
8588 * Description: Check that array hasn't become failed.
8589 * Parameters:
8590 * info : for sysfs access
8591 * sources : source disks descriptors
8592 * degraded: previous degradation level
8593 * Returns:
8594 * degradation level
8595 ******************************************************************************/
8596int check_degradation_change(struct mdinfo *info,
8597 int *sources,
8598 int degraded)
8599{
8600 unsigned long long new_degraded;
8601 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8602 if (new_degraded != (unsigned long long)degraded) {
8603 /* check each device to ensure it is still working */
8604 struct mdinfo *sd;
8605 new_degraded = 0;
8606 for (sd = info->devs ; sd ; sd = sd->next) {
8607 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8608 continue;
8609 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8610 char sbuf[20];
8611 if (sysfs_get_str(info,
8612 sd, "state", sbuf, 20) < 0 ||
8613 strstr(sbuf, "faulty") ||
8614 strstr(sbuf, "in_sync") == NULL) {
8615 /* this device is dead */
8616 sd->disk.state = (1<<MD_DISK_FAULTY);
8617 if (sd->disk.raid_disk >= 0 &&
8618 sources[sd->disk.raid_disk] >= 0) {
8619 close(sources[
8620 sd->disk.raid_disk]);
8621 sources[sd->disk.raid_disk] =
8622 -1;
8623 }
8624 new_degraded++;
8625 }
8626 }
8627 }
8628 }
8629
8630 return new_degraded;
8631}
8632
10f22854
AK
8633/*******************************************************************************
8634 * Function: imsm_manage_reshape
8635 * Description: Function finds array under reshape and it manages reshape
8636 * process. It creates stripes backups (if required) and sets
8637 * checheckpoits.
8638 * Parameters:
8639 * afd : Backup handle (nattive) - not used
8640 * sra : general array info
8641 * reshape : reshape parameters - not used
8642 * st : supertype structure
8643 * blocks : size of critical section [blocks]
8644 * fds : table of source device descriptor
8645 * offsets : start of array (offest per devices)
8646 * dests : not used
8647 * destfd : table of destination device descriptor
8648 * destoffsets : table of destination offsets (per device)
8649 * Returns:
8650 * 1 : success, reshape is done
8651 * 0 : fail
8652 ******************************************************************************/
999b4972
N
8653static int imsm_manage_reshape(
8654 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 8655 struct supertype *st, unsigned long backup_blocks,
999b4972
N
8656 int *fds, unsigned long long *offsets,
8657 int dests, int *destfd, unsigned long long *destoffsets)
8658{
10f22854
AK
8659 int ret_val = 0;
8660 struct intel_super *super = st->sb;
8661 struct intel_dev *dv = NULL;
8662 struct imsm_dev *dev = NULL;
8663 struct imsm_map *map_src, *map_dest;
8664 int migr_vol_qan = 0;
8665 int ndata, odata; /* [bytes] */
8666 int chunk; /* [bytes] */
8667 struct migr_record *migr_rec;
8668 char *buf = NULL;
8669 unsigned int buf_size; /* [bytes] */
8670 unsigned long long max_position; /* array size [bytes] */
8671 unsigned long long next_step; /* [blocks]/[bytes] */
8672 unsigned long long old_data_stripe_length;
8673 unsigned long long new_data_stripe_length;
8674 unsigned long long start_src; /* [bytes] */
8675 unsigned long long start; /* [bytes] */
8676 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 8677 int degraded = 0;
10f22854
AK
8678
8679 if (!fds || !offsets || !destfd || !destoffsets || !sra)
8680 goto abort;
8681
8682 /* Find volume during the reshape */
8683 for (dv = super->devlist; dv; dv = dv->next) {
8684 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
8685 && dv->dev->vol.migr_state == 1) {
8686 dev = dv->dev;
8687 migr_vol_qan++;
8688 }
8689 }
8690 /* Only one volume can migrate at the same time */
8691 if (migr_vol_qan != 1) {
8692 fprintf(stderr, Name " : %s", migr_vol_qan ?
8693 "Number of migrating volumes greater than 1\n" :
8694 "There is no volume during migrationg\n");
8695 goto abort;
8696 }
8697
8698 map_src = get_imsm_map(dev, 1);
8699 if (map_src == NULL)
8700 goto abort;
8701 map_dest = get_imsm_map(dev, 0);
8702
8703 ndata = imsm_num_data_members(dev, 0);
8704 odata = imsm_num_data_members(dev, 1);
8705
8706 chunk = map_src->blocks_per_strip * 512;
8707 old_data_stripe_length = odata * chunk;
8708
8709 migr_rec = super->migr_rec;
8710
8711 /* [bytes] */
8712 sra->new_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8713 sra->new_level = map_dest->raid_level;
8714 new_data_stripe_length = sra->new_chunk * ndata;
8715
8716 /* initialize migration record for start condition */
8717 if (sra->reshape_progress == 0)
8718 init_migr_record_imsm(st, dev, sra);
8719
8720 /* size for data */
8721 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
8722 /* extend buffer size for parity disk */
8723 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8724 /* add space for stripe aligment */
8725 buf_size += old_data_stripe_length;
8726 if (posix_memalign((void **)&buf, 4096, buf_size)) {
8727 dprintf("imsm: Cannot allocate checpoint buffer\n");
8728 goto abort;
8729 }
8730
8731 max_position =
8732 __le32_to_cpu(migr_rec->post_migr_vol_cap) +
8733 ((unsigned long long)__le32_to_cpu(
8734 migr_rec->post_migr_vol_cap_hi) << 32);
8735
8736 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
8737 __le32_to_cpu(migr_rec->num_migr_units)) {
8738 /* current reshape position [blocks] */
8739 unsigned long long current_position =
8740 __le32_to_cpu(migr_rec->blocks_per_unit)
8741 * __le32_to_cpu(migr_rec->curr_migr_unit);
8742 unsigned long long border;
8743
b915c95f
AK
8744 /* Check that array hasn't become failed.
8745 */
8746 degraded = check_degradation_change(sra, fds, degraded);
8747 if (degraded > 1) {
8748 dprintf("imsm: Abort reshape due to degradation"
8749 " level (%i)\n", degraded);
8750 goto abort;
8751 }
8752
10f22854
AK
8753 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
8754
8755 if ((current_position + next_step) > max_position)
8756 next_step = max_position - current_position;
8757
8758 start = (map_src->pba_of_lba0 + dev->reserved_blocks +
8759 current_position) * 512;
8760
8761 /* allign reading start to old geometry */
8762 start_buf_shift = start % old_data_stripe_length;
8763 start_src = start - start_buf_shift;
8764
8765 border = (start_src / odata) - (start / ndata);
8766 border /= 512;
8767 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
8768 /* save critical stripes to buf
8769 * start - start address of current unit
8770 * to backup [bytes]
8771 * start_src - start address of current unit
8772 * to backup alligned to source array
8773 * [bytes]
8774 */
8775 unsigned long long next_step_filler = 0;
8776 unsigned long long copy_length = next_step * 512;
8777
8778 /* allign copy area length to stripe in old geometry */
8779 next_step_filler = ((copy_length + start_buf_shift)
8780 % old_data_stripe_length);
8781 if (next_step_filler)
8782 next_step_filler = (old_data_stripe_length
8783 - next_step_filler);
8784 dprintf("save_stripes() parameters: start = %llu,"
8785 "\tstart_src = %llu,\tnext_step*512 = %llu,"
8786 "\tstart_in_buf_shift = %llu,"
8787 "\tnext_step_filler = %llu\n",
8788 start, start_src, copy_length,
8789 start_buf_shift, next_step_filler);
8790
8791 if (save_stripes(fds, offsets, map_src->num_members,
8792 chunk, sra->array.level,
8793 sra->array.layout, 0, NULL, start_src,
8794 copy_length +
8795 next_step_filler + start_buf_shift,
8796 buf)) {
8797 dprintf("imsm: Cannot save stripes"
8798 " to buffer\n");
8799 goto abort;
8800 }
8801 /* Convert data to destination format and store it
8802 * in backup general migration area
8803 */
8804 if (save_backup_imsm(st, dev, sra,
8805 buf + start_buf_shift,
8806 ndata, copy_length)) {
8807 dprintf("imsm: Cannot save stripes to "
8808 "target devices\n");
8809 goto abort;
8810 }
8811 if (save_checkpoint_imsm(st, sra,
8812 UNIT_SRC_IN_CP_AREA)) {
8813 dprintf("imsm: Cannot write checkpoint to "
8814 "migration record (UNIT_SRC_IN_CP_AREA)\n");
8815 goto abort;
8816 }
8817 /* decrease backup_blocks */
8818 if (backup_blocks > (unsigned long)next_step)
8819 backup_blocks -= next_step;
8820 else
8821 backup_blocks = 0;
8822 }
8823 /* When data backed up, checkpoint stored,
8824 * kick the kernel to reshape unit of data
8825 */
8826 next_step = next_step + sra->reshape_progress;
8827 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
8828 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
8829
8830 /* wait until reshape finish */
c47b0ff6
AK
8831 if (wait_for_reshape_imsm(sra, next_step, ndata) < 0) {
8832 dprintf("wait_for_reshape_imsm returned error!\n");
8833 goto abort;
8834 }
10f22854
AK
8835
8836 sra->reshape_progress = next_step;
8837
8838 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL)) {
8839 dprintf("imsm: Cannot write checkpoint to "
8840 "migration record (UNIT_SRC_NORMAL)\n");
8841 goto abort;
8842 }
8843
8844 }
8845
8846 /* return '1' if done */
8847 ret_val = 1;
8848abort:
8849 free(buf);
8850 abort_reshape(sra);
8851
8852 return ret_val;
999b4972 8853}
71204a50 8854#endif /* MDASSEMBLE */
999b4972 8855
cdddbdbc
DW
8856struct superswitch super_imsm = {
8857#ifndef MDASSEMBLE
8858 .examine_super = examine_super_imsm,
8859 .brief_examine_super = brief_examine_super_imsm,
4737ae25 8860 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 8861 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
8862 .detail_super = detail_super_imsm,
8863 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 8864 .write_init_super = write_init_super_imsm,
0e600426
N
8865 .validate_geometry = validate_geometry_imsm,
8866 .add_to_super = add_to_super_imsm,
1a64be56 8867 .remove_from_super = remove_from_super_imsm,
d665cc31 8868 .detail_platform = detail_platform_imsm,
33414a01 8869 .kill_subarray = kill_subarray_imsm,
aa534678 8870 .update_subarray = update_subarray_imsm,
2b959fbf 8871 .load_container = load_container_imsm,
71204a50
N
8872 .default_geometry = default_geometry_imsm,
8873 .get_disk_controller_domain = imsm_get_disk_controller_domain,
8874 .reshape_super = imsm_reshape_super,
8875 .manage_reshape = imsm_manage_reshape,
cdddbdbc
DW
8876#endif
8877 .match_home = match_home_imsm,
8878 .uuid_from_super= uuid_from_super_imsm,
8879 .getinfo_super = getinfo_super_imsm,
5c4cd5da 8880 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
8881 .update_super = update_super_imsm,
8882
8883 .avail_size = avail_size_imsm,
80e7f8c3 8884 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
8885
8886 .compare_super = compare_super_imsm,
8887
8888 .load_super = load_super_imsm,
bf5a934a 8889 .init_super = init_super_imsm,
e683ca88 8890 .store_super = store_super_imsm,
cdddbdbc
DW
8891 .free_super = free_super_imsm,
8892 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 8893 .container_content = container_content_imsm,
cdddbdbc 8894
276d77db
AK
8895 .recover_backup = recover_backup_imsm,
8896
cdddbdbc 8897 .external = 1,
4cce4069 8898 .name = "imsm",
845dea95 8899
0e600426 8900#ifndef MDASSEMBLE
845dea95
NB
8901/* for mdmon */
8902 .open_new = imsm_open_new,
ed9d66aa 8903 .set_array_state= imsm_set_array_state,
845dea95
NB
8904 .set_disk = imsm_set_disk,
8905 .sync_metadata = imsm_sync_metadata,
88758e9d 8906 .activate_spare = imsm_activate_spare,
e8319a19 8907 .process_update = imsm_process_update,
8273f55e 8908 .prepare_update = imsm_prepare_update,
0e600426 8909#endif /* MDASSEMBLE */
cdddbdbc 8910};