]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
Make infcall.c:unwind_on_signal_p static.
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
0b302171 3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
fd0407d6 42#include "value.h"
a89aa300 43#include "dis-asm.h"
7a697b8d 44#include "disasm.h"
c8d5aac9 45#include "remote.h"
8fbca658 46#include "exceptions.h"
3d261580 47#include "gdb_assert.h"
acd5c798 48#include "gdb_string.h"
3d261580 49
d2a7c97a 50#include "i386-tdep.h"
61113f8b 51#include "i387-tdep.h"
c131fcee 52#include "i386-xstate.h"
d2a7c97a 53
7ad10968
HZ
54#include "record.h"
55#include <stdint.h>
56
90884b2b 57#include "features/i386/i386.c"
c131fcee 58#include "features/i386/i386-avx.c"
3a13a53b 59#include "features/i386/i386-mmx.c"
90884b2b 60
6710bf39
SS
61#include "ax.h"
62#include "ax-gdb.h"
63
55aa24fb
SDJ
64#include "stap-probe.h"
65#include "user-regs.h"
66#include "cli/cli-utils.h"
67#include "expression.h"
68#include "parser-defs.h"
69#include <ctype.h>
70
c4fc7f1b 71/* Register names. */
c40e1eab 72
90884b2b 73static const char *i386_register_names[] =
fc633446
MK
74{
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86};
87
c131fcee
L
88static const char *i386_ymm_names[] =
89{
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92};
93
94static const char *i386_ymmh_names[] =
95{
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98};
99
c4fc7f1b 100/* Register names for MMX pseudo-registers. */
28fc6740 101
90884b2b 102static const char *i386_mmx_names[] =
28fc6740
AC
103{
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106};
c40e1eab 107
1ba53b71
L
108/* Register names for byte pseudo-registers. */
109
110static const char *i386_byte_names[] =
111{
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114};
115
116/* Register names for word pseudo-registers. */
117
118static const char *i386_word_names[] =
119{
120 "ax", "cx", "dx", "bx",
9cad29ac 121 "", "bp", "si", "di"
1ba53b71
L
122};
123
124/* MMX register? */
c40e1eab 125
28fc6740 126static int
5716833c 127i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 128{
1ba53b71
L
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
131
132 if (mm0_regnum < 0)
133 return 0;
134
1ba53b71
L
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137}
138
139/* Byte register? */
140
141int
142i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143{
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148}
149
150/* Word register? */
151
152int
153i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154{
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159}
160
161/* Dword register? */
162
163int
164i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165{
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
174}
175
9191d390 176static int
c131fcee
L
177i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178{
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187}
188
189/* AVX register? */
190
191int
192i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193{
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202}
203
5716833c 204/* SSE register? */
23a34459 205
c131fcee
L
206int
207i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 208{
5716833c 209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 211
c131fcee 212 if (num_xmm_regs == 0)
5716833c
MK
213 return 0;
214
c131fcee
L
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
217}
218
5716833c
MK
219static int
220i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 221{
5716833c
MK
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
20a6ec49 224 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
225 return 0;
226
20a6ec49 227 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
228}
229
5716833c 230/* FP register? */
23a34459
AC
231
232int
20a6ec49 233i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 234{
20a6ec49
MD
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
238 return 0;
239
20a6ec49
MD
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
242}
243
244int
20a6ec49 245i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 246{
20a6ec49
MD
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
250 return 0;
251
20a6ec49
MD
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
254}
255
c131fcee
L
256/* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259static const char *
260i386_register_name (struct gdbarch *gdbarch, int regnum)
261{
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267}
268
30b0e2d8 269/* Return the name of register REGNUM. */
fc633446 270
1ba53b71 271const char *
90884b2b 272i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 273{
1ba53b71
L
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
285}
286
c4fc7f1b 287/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
288 number used by GDB. */
289
8201327c 290static int
d3f73121 291i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 292{
20a6ec49
MD
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
c4fc7f1b
MK
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
85540d8c
MK
298 if (reg >= 0 && reg <= 7)
299 {
9872ad24
JB
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
85540d8c
MK
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
20a6ec49 311 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
c131fcee
L
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
20a6ec49 327 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
328 }
329
330 /* This will hopefully provoke a warning. */
d3f73121 331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
332}
333
c4fc7f1b
MK
334/* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
85540d8c 336
8201327c 337static int
d3f73121 338i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 339{
20a6ec49
MD
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
c4fc7f1b
MK
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
acd5c798 349 /* General-purpose registers. */
85540d8c
MK
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
20a6ec49 355 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 356 }
c6f4c129 357 else if (reg >= 21 && reg <= 36)
85540d8c 358 {
c4fc7f1b 359 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 360 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
361 }
362
c6f4c129
JB
363 switch (reg)
364 {
20a6ec49
MD
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
85540d8c 376 /* This will hopefully provoke a warning. */
d3f73121 377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 378}
5716833c 379
fc338970 380\f
917317f4 381
fc338970
MK
382/* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
53904c9e
AC
384static const char att_flavor[] = "att";
385static const char intel_flavor[] = "intel";
40478521 386static const char *const valid_flavors[] =
c5aa993b 387{
c906108c
SS
388 att_flavor,
389 intel_flavor,
390 NULL
391};
53904c9e 392static const char *disassembly_flavor = att_flavor;
acd5c798 393\f
c906108c 394
acd5c798
MK
395/* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
c906108c 400
acd5c798
MK
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
c906108c 403
acd5c798 404 This function is 64-bit safe. */
63c0089f
MK
405
406static const gdb_byte *
67d57894 407i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 408{
63c0089f
MK
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
acd5c798
MK
411 *len = sizeof (break_insn);
412 return break_insn;
c906108c 413}
237fc4c9
PA
414\f
415/* Displaced instruction handling. */
416
1903f0e6
DE
417/* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423static gdb_byte *
424i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425{
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451}
237fc4c9
PA
452
453static int
1903f0e6 454i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 455{
1777feb0 456 /* jmp far (absolute address in operand). */
237fc4c9
PA
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
1777feb0 462 /* jump near, absolute indirect (/4). */
237fc4c9
PA
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
1777feb0 466 /* jump far, absolute indirect (/5). */
237fc4c9
PA
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472}
473
474static int
1903f0e6 475i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 476{
1777feb0 477 /* call far, absolute. */
237fc4c9
PA
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
1777feb0 483 /* Call near, absolute indirect (/2). */
237fc4c9
PA
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
1777feb0 487 /* Call far, absolute indirect (/3). */
237fc4c9
PA
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493}
494
495static int
1903f0e6 496i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
497{
498 switch (insn[0])
499 {
1777feb0 500 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 501 case 0xc3: /* ret near */
1777feb0 502 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510}
511
512static int
1903f0e6 513i386_call_p (const gdb_byte *insn)
237fc4c9
PA
514{
515 if (i386_absolute_call_p (insn))
516 return 1;
517
1777feb0 518 /* call near, relative. */
237fc4c9
PA
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523}
524
237fc4c9
PA
525/* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
1903f0e6 527
237fc4c9 528static int
b55078be 529i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 530{
9a7f938f
JK
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543}
544
b55078be
DE
545/* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548struct displaced_step_closure *
549i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552{
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580}
581
237fc4c9
PA
582/* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
1903f0e6 584
237fc4c9
PA
585void
586i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590{
e17a4113
UW
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
237fc4c9
PA
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
237fc4c9
PA
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
5af949e3 607 "displaced: fixup (%s, %s), "
237fc4c9 608 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
237fc4c9
PA
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
1903f0e6
DE
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
237fc4c9
PA
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
b55078be 640 int insn_len;
237fc4c9
PA
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
1903f0e6
DE
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
237fc4c9
PA
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
5af949e3
UW
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
237fc4c9
PA
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
237fc4c9
PA
714 }
715}
dde08ee1
PA
716
717static void
718append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719{
720 target_write_memory (*to, buf, len);
721 *to += len;
722}
723
724static void
725i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727{
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
1777feb0 752 push_buf[0] = 0x68; /* pushq $... */
dde08ee1
PA
753 memcpy (&push_buf[1], &ret_addr, 4);
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
f4a1794a 789 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
dde08ee1
PA
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801}
802
fc338970 803\f
acd5c798
MK
804#ifdef I386_REGNO_TO_SYMMETRY
805#error "The Sequent Symmetry is no longer supported."
806#endif
c906108c 807
acd5c798
MK
808/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
c906108c 811
acd5c798
MK
812/* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
a3386186 814#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
815
816struct i386_frame_cache
c906108c 817{
acd5c798
MK
818 /* Base address. */
819 CORE_ADDR base;
8fbca658 820 int base_p;
772562f8 821 LONGEST sp_offset;
acd5c798
MK
822 CORE_ADDR pc;
823
fd13a04a
AC
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 826 CORE_ADDR saved_sp;
e0c62198 827 int saved_sp_reg;
acd5c798
MK
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832};
833
834/* Allocate and initialize a frame cache. */
835
836static struct i386_frame_cache *
fd13a04a 837i386_alloc_frame_cache (void)
acd5c798
MK
838{
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
8fbca658 845 cache->base_p = 0;
acd5c798
MK
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
fd13a04a
AC
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
acd5c798 854 cache->saved_sp = 0;
e0c62198 855 cache->saved_sp_reg = -1;
acd5c798
MK
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862}
c906108c 863
acd5c798
MK
864/* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
c906108c 866
acd5c798 867static CORE_ADDR
e17a4113 868i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 869{
e17a4113 870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 871 gdb_byte op;
acd5c798
MK
872 long delta = 0;
873 int data16 = 0;
c906108c 874
3dcabaa8
MS
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
acd5c798 878 if (op == 0x66)
c906108c 879 {
c906108c 880 data16 = 1;
e17a4113 881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
882 }
883
acd5c798 884 switch (op)
c906108c
SS
885 {
886 case 0xe9:
fc338970 887 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
888 if (data16)
889 {
e17a4113 890 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 891
fc338970
MK
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
acd5c798 894 delta += 4;
c906108c
SS
895 }
896 else
897 {
e17a4113 898 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 899
acd5c798
MK
900 /* Include the size of the jmp instruction. */
901 delta += 5;
c906108c
SS
902 }
903 break;
904 case 0xeb:
fc338970 905 /* Relative jump, disp8 (ignore data16). */
e17a4113 906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 907
acd5c798 908 delta += data16 + 2;
c906108c
SS
909 break;
910 }
c906108c 911
acd5c798
MK
912 return pc + delta;
913}
fc338970 914
acd5c798
MK
915/* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
c906108c 920
acd5c798
MK
921static CORE_ADDR
922i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
c906108c 924{
acd5c798
MK
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
63c0089f
MK
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
c906108c 939
acd5c798
MK
940 if (current_pc <= pc)
941 return pc;
942
3dcabaa8
MS
943 if (target_read_memory (pc, &op, 1))
944 return pc;
c906108c 945
acd5c798
MK
946 if (op != 0x58) /* popl %eax */
947 return pc;
c906108c 948
3dcabaa8
MS
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
acd5c798
MK
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
c906108c 954
acd5c798 955 if (current_pc == pc)
c906108c 956 {
acd5c798
MK
957 cache->sp_offset += 4;
958 return current_pc;
c906108c
SS
959 }
960
acd5c798 961 if (current_pc == pc + 1)
c906108c 962 {
acd5c798
MK
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971}
972
973static CORE_ADDR
974i386_skip_probe (CORE_ADDR pc)
975{
976 /* A function may start with
fc338970 977
acd5c798
MK
978 pushl constant
979 call _probe
980 addl $4, %esp
fc338970 981
acd5c798
MK
982 followed by
983
984 pushl %ebp
fc338970 985
acd5c798 986 etc. */
63c0089f
MK
987 gdb_byte buf[8];
988 gdb_byte op;
fc338970 989
3dcabaa8
MS
990 if (target_read_memory (pc, &op, 1))
991 return pc;
acd5c798
MK
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
c906108c 996
acd5c798
MK
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
c906108c 999 if (op == 0x68)
acd5c798 1000 delta = 5;
c906108c 1001 else
acd5c798 1002 delta = 2;
c906108c 1003
acd5c798
MK
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1008 pc += delta + sizeof (buf);
c906108c
SS
1009 }
1010
acd5c798
MK
1011 return pc;
1012}
1013
92dd43fa
MK
1014/* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020static CORE_ADDR
1021i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023{
e0c62198
L
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
92dd43fa 1058 };
92dd43fa 1059
e0c62198
L
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1123 return pc;
1124
e0c62198
L
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
92dd43fa 1127
e0c62198 1128 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1129}
1130
37bdc87e 1131/* Maximum instruction length we need to handle. */
237fc4c9 1132#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1133
1134/* Instruction description. */
1135struct i386_insn
1136{
1137 size_t len;
237fc4c9
PA
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1140};
1141
a3fcb948 1142/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1143
a3fcb948
JG
1144static int
1145i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1146{
63c0089f 1147 gdb_byte op;
37bdc87e 1148
3dcabaa8 1149 if (target_read_memory (pc, &op, 1))
a3fcb948 1150 return 0;
37bdc87e 1151
a3fcb948 1152 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1153 {
a3fcb948
JG
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
37bdc87e 1157
a3fcb948
JG
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1160
a3fcb948
JG
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
613e8135 1163
a3fcb948
JG
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
37bdc87e 1168 }
a3fcb948
JG
1169 return insn_matched;
1170 }
1171 return 0;
1172}
1173
1174/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178static struct i386_insn *
1179i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180{
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
37bdc87e
MK
1187 }
1188
1189 return NULL;
1190}
1191
a3fcb948
JG
1192/* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195static int
1196i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197{
1198 CORE_ADDR current_pc;
1199 int ix, i;
1200 gdb_byte op;
1201 struct i386_insn *insn;
1202
1203 insn = i386_match_insn (pc, insn_patterns);
1204 if (insn == NULL)
1205 return 0;
1206
8bbdd3f4 1207 current_pc = pc;
a3fcb948
JG
1208 ix = insn - insn_patterns;
1209 for (i = ix - 1; i >= 0; i--)
1210 {
8bbdd3f4
MK
1211 current_pc -= insn_patterns[i].len;
1212
a3fcb948
JG
1213 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1214 return 0;
a3fcb948
JG
1215 }
1216
1217 current_pc = pc + insn->len;
1218 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1219 {
1220 if (!i386_match_pattern (current_pc, *insn))
1221 return 0;
1222
1223 current_pc += insn->len;
1224 }
1225
1226 return 1;
1227}
1228
37bdc87e
MK
1229/* Some special instructions that might be migrated by GCC into the
1230 part of the prologue that sets up the new stack frame. Because the
1231 stack frame hasn't been setup yet, no registers have been saved
1232 yet, and only the scratch registers %eax, %ecx and %edx can be
1233 touched. */
1234
1235struct i386_insn i386_frame_setup_skip_insns[] =
1236{
1777feb0 1237 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1238
1239 ??? Should we handle 16-bit operand-sizes here? */
1240
1241 /* `movb imm8, %al' and `movb imm8, %ah' */
1242 /* `movb imm8, %cl' and `movb imm8, %ch' */
1243 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1244 /* `movb imm8, %dl' and `movb imm8, %dh' */
1245 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1246 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1247 { 5, { 0xb8 }, { 0xfe } },
1248 /* `movl imm32, %edx' */
1249 { 5, { 0xba }, { 0xff } },
1250
1251 /* Check for `mov imm32, r32'. Note that there is an alternative
1252 encoding for `mov m32, %eax'.
1253
1254 ??? Should we handle SIB adressing here?
1255 ??? Should we handle 16-bit operand-sizes here? */
1256
1257 /* `movl m32, %eax' */
1258 { 5, { 0xa1 }, { 0xff } },
1259 /* `movl m32, %eax' and `mov; m32, %ecx' */
1260 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1261 /* `movl m32, %edx' */
1262 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1263
1264 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1265 Because of the symmetry, there are actually two ways to encode
1266 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1267 opcode bytes 0x31 and 0x33 for `xorl'. */
1268
1269 /* `subl %eax, %eax' */
1270 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1271 /* `subl %ecx, %ecx' */
1272 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1273 /* `subl %edx, %edx' */
1274 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1275 /* `xorl %eax, %eax' */
1276 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1277 /* `xorl %ecx, %ecx' */
1278 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1279 /* `xorl %edx, %edx' */
1280 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1281 { 0 }
1282};
1283
e11481da
PM
1284
1285/* Check whether PC points to a no-op instruction. */
1286static CORE_ADDR
1287i386_skip_noop (CORE_ADDR pc)
1288{
1289 gdb_byte op;
1290 int check = 1;
1291
3dcabaa8
MS
1292 if (target_read_memory (pc, &op, 1))
1293 return pc;
e11481da
PM
1294
1295 while (check)
1296 {
1297 check = 0;
1298 /* Ignore `nop' instruction. */
1299 if (op == 0x90)
1300 {
1301 pc += 1;
3dcabaa8
MS
1302 if (target_read_memory (pc, &op, 1))
1303 return pc;
e11481da
PM
1304 check = 1;
1305 }
1306 /* Ignore no-op instruction `mov %edi, %edi'.
1307 Microsoft system dlls often start with
1308 a `mov %edi,%edi' instruction.
1309 The 5 bytes before the function start are
1310 filled with `nop' instructions.
1311 This pattern can be used for hot-patching:
1312 The `mov %edi, %edi' instruction can be replaced by a
1313 near jump to the location of the 5 `nop' instructions
1314 which can be replaced by a 32-bit jump to anywhere
1315 in the 32-bit address space. */
1316
1317 else if (op == 0x8b)
1318 {
3dcabaa8
MS
1319 if (target_read_memory (pc + 1, &op, 1))
1320 return pc;
1321
e11481da
PM
1322 if (op == 0xff)
1323 {
1324 pc += 2;
3dcabaa8
MS
1325 if (target_read_memory (pc, &op, 1))
1326 return pc;
1327
e11481da
PM
1328 check = 1;
1329 }
1330 }
1331 }
1332 return pc;
1333}
1334
acd5c798
MK
1335/* Check whether PC points at a code that sets up a new stack frame.
1336 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1337 instruction after the sequence that sets up the frame or LIMIT,
1338 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1339
1340static CORE_ADDR
e17a4113
UW
1341i386_analyze_frame_setup (struct gdbarch *gdbarch,
1342 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1343 struct i386_frame_cache *cache)
1344{
e17a4113 1345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1346 struct i386_insn *insn;
63c0089f 1347 gdb_byte op;
26604a34 1348 int skip = 0;
acd5c798 1349
37bdc87e
MK
1350 if (limit <= pc)
1351 return limit;
acd5c798 1352
3dcabaa8
MS
1353 if (target_read_memory (pc, &op, 1))
1354 return pc;
acd5c798 1355
c906108c 1356 if (op == 0x55) /* pushl %ebp */
c5aa993b 1357 {
acd5c798
MK
1358 /* Take into account that we've executed the `pushl %ebp' that
1359 starts this instruction sequence. */
fd13a04a 1360 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1361 cache->sp_offset += 4;
37bdc87e 1362 pc++;
acd5c798
MK
1363
1364 /* If that's all, return now. */
37bdc87e
MK
1365 if (limit <= pc)
1366 return limit;
26604a34 1367
b4632131 1368 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1369 GCC into the prologue and skip them. At this point in the
1370 prologue, code should only touch the scratch registers %eax,
1371 %ecx and %edx, so while the number of posibilities is sheer,
1372 it is limited.
5daa5b4e 1373
26604a34
MK
1374 Make sure we only skip these instructions if we later see the
1375 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1376 while (pc + skip < limit)
26604a34 1377 {
37bdc87e
MK
1378 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1379 if (insn == NULL)
1380 break;
b4632131 1381
37bdc87e 1382 skip += insn->len;
26604a34
MK
1383 }
1384
37bdc87e
MK
1385 /* If that's all, return now. */
1386 if (limit <= pc + skip)
1387 return limit;
1388
3dcabaa8
MS
1389 if (target_read_memory (pc + skip, &op, 1))
1390 return pc + skip;
37bdc87e 1391
26604a34 1392 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 1393 switch (op)
c906108c
SS
1394 {
1395 case 0x8b:
e17a4113
UW
1396 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1397 != 0xec)
37bdc87e 1398 return pc;
c906108c
SS
1399 break;
1400 case 0x89:
e17a4113
UW
1401 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1402 != 0xe5)
37bdc87e 1403 return pc;
c906108c
SS
1404 break;
1405 default:
37bdc87e 1406 return pc;
c906108c 1407 }
acd5c798 1408
26604a34
MK
1409 /* OK, we actually have a frame. We just don't know how large
1410 it is yet. Set its size to zero. We'll adjust it if
1411 necessary. We also now commit to skipping the special
1412 instructions mentioned before. */
acd5c798 1413 cache->locals = 0;
37bdc87e 1414 pc += (skip + 2);
acd5c798
MK
1415
1416 /* If that's all, return now. */
37bdc87e
MK
1417 if (limit <= pc)
1418 return limit;
acd5c798 1419
fc338970
MK
1420 /* Check for stack adjustment
1421
acd5c798 1422 subl $XXX, %esp
fc338970 1423
fd35795f 1424 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1425 reg, so we don't have to worry about a data16 prefix. */
3dcabaa8
MS
1426 if (target_read_memory (pc, &op, 1))
1427 return pc;
c906108c
SS
1428 if (op == 0x83)
1429 {
fd35795f 1430 /* `subl' with 8-bit immediate. */
e17a4113 1431 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1432 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1433 return pc;
acd5c798 1434
37bdc87e
MK
1435 /* `subl' with signed 8-bit immediate (though it wouldn't
1436 make sense to be negative). */
e17a4113 1437 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1438 return pc + 3;
c906108c
SS
1439 }
1440 else if (op == 0x81)
1441 {
fd35795f 1442 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1443 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1444 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1445 return pc;
acd5c798 1446
fd35795f 1447 /* It is `subl' with a 32-bit immediate. */
e17a4113 1448 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1449 return pc + 6;
c906108c
SS
1450 }
1451 else
1452 {
acd5c798 1453 /* Some instruction other than `subl'. */
37bdc87e 1454 return pc;
c906108c
SS
1455 }
1456 }
37bdc87e 1457 else if (op == 0xc8) /* enter */
c906108c 1458 {
e17a4113 1459 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1460 return pc + 4;
c906108c 1461 }
21d0e8a4 1462
acd5c798 1463 return pc;
21d0e8a4
MK
1464}
1465
acd5c798
MK
1466/* Check whether PC points at code that saves registers on the stack.
1467 If so, it updates CACHE and returns the address of the first
1468 instruction after the register saves or CURRENT_PC, whichever is
1469 smaller. Otherwise, return PC. */
6bff26de
MK
1470
1471static CORE_ADDR
acd5c798
MK
1472i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1473 struct i386_frame_cache *cache)
6bff26de 1474{
99ab4326 1475 CORE_ADDR offset = 0;
63c0089f 1476 gdb_byte op;
99ab4326 1477 int i;
c0d1d883 1478
99ab4326
MK
1479 if (cache->locals > 0)
1480 offset -= cache->locals;
1481 for (i = 0; i < 8 && pc < current_pc; i++)
1482 {
3dcabaa8
MS
1483 if (target_read_memory (pc, &op, 1))
1484 return pc;
99ab4326
MK
1485 if (op < 0x50 || op > 0x57)
1486 break;
0d17c81d 1487
99ab4326
MK
1488 offset -= 4;
1489 cache->saved_regs[op - 0x50] = offset;
1490 cache->sp_offset += 4;
1491 pc++;
6bff26de
MK
1492 }
1493
acd5c798 1494 return pc;
22797942
AC
1495}
1496
acd5c798
MK
1497/* Do a full analysis of the prologue at PC and update CACHE
1498 accordingly. Bail out early if CURRENT_PC is reached. Return the
1499 address where the analysis stopped.
ed84f6c1 1500
fc338970
MK
1501 We handle these cases:
1502
1503 The startup sequence can be at the start of the function, or the
1504 function can start with a branch to startup code at the end.
1505
1506 %ebp can be set up with either the 'enter' instruction, or "pushl
1507 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1508 once used in the System V compiler).
1509
1510 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1511 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1512 16-bit unsigned argument for space to allocate, and the 'addl'
1513 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1514
1515 Next, the registers used by this function are pushed. With the
1516 System V compiler they will always be in the order: %edi, %esi,
1517 %ebx (and sometimes a harmless bug causes it to also save but not
1518 restore %eax); however, the code below is willing to see the pushes
1519 in any order, and will handle up to 8 of them.
1520
1521 If the setup sequence is at the end of the function, then the next
1522 instruction will be a branch back to the start. */
c906108c 1523
acd5c798 1524static CORE_ADDR
e17a4113
UW
1525i386_analyze_prologue (struct gdbarch *gdbarch,
1526 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1527 struct i386_frame_cache *cache)
c906108c 1528{
e11481da 1529 pc = i386_skip_noop (pc);
e17a4113 1530 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1531 pc = i386_analyze_struct_return (pc, current_pc, cache);
1532 pc = i386_skip_probe (pc);
92dd43fa 1533 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1534 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1535 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1536}
1537
fc338970 1538/* Return PC of first real instruction. */
c906108c 1539
3a1e71e3 1540static CORE_ADDR
6093d2eb 1541i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1542{
e17a4113
UW
1543 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1544
63c0089f 1545 static gdb_byte pic_pat[6] =
acd5c798
MK
1546 {
1547 0xe8, 0, 0, 0, 0, /* call 0x0 */
1548 0x5b, /* popl %ebx */
c5aa993b 1549 };
acd5c798
MK
1550 struct i386_frame_cache cache;
1551 CORE_ADDR pc;
63c0089f 1552 gdb_byte op;
acd5c798 1553 int i;
c5aa993b 1554
acd5c798 1555 cache.locals = -1;
e17a4113 1556 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1557 if (cache.locals < 0)
1558 return start_pc;
c5aa993b 1559
acd5c798 1560 /* Found valid frame setup. */
c906108c 1561
fc338970
MK
1562 /* The native cc on SVR4 in -K PIC mode inserts the following code
1563 to get the address of the global offset table (GOT) into register
acd5c798
MK
1564 %ebx:
1565
fc338970
MK
1566 call 0x0
1567 popl %ebx
1568 movl %ebx,x(%ebp) (optional)
1569 addl y,%ebx
1570
c906108c
SS
1571 This code is with the rest of the prologue (at the end of the
1572 function), so we have to skip it to get to the first real
1573 instruction at the start of the function. */
c5aa993b 1574
c906108c
SS
1575 for (i = 0; i < 6; i++)
1576 {
3dcabaa8
MS
1577 if (target_read_memory (pc + i, &op, 1))
1578 return pc;
1579
c5aa993b 1580 if (pic_pat[i] != op)
c906108c
SS
1581 break;
1582 }
1583 if (i == 6)
1584 {
acd5c798
MK
1585 int delta = 6;
1586
3dcabaa8
MS
1587 if (target_read_memory (pc + delta, &op, 1))
1588 return pc;
c906108c 1589
c5aa993b 1590 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1591 {
e17a4113 1592 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1593
fc338970 1594 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1595 delta += 3;
fc338970 1596 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1597 delta += 6;
fc338970 1598 else /* Unexpected instruction. */
acd5c798
MK
1599 delta = 0;
1600
3dcabaa8
MS
1601 if (target_read_memory (pc + delta, &op, 1))
1602 return pc;
c906108c 1603 }
acd5c798 1604
c5aa993b 1605 /* addl y,%ebx */
acd5c798 1606 if (delta > 0 && op == 0x81
e17a4113
UW
1607 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1608 == 0xc3)
c906108c 1609 {
acd5c798 1610 pc += delta + 6;
c906108c
SS
1611 }
1612 }
c5aa993b 1613
e63bbc88
MK
1614 /* If the function starts with a branch (to startup code at the end)
1615 the last instruction should bring us back to the first
1616 instruction of the real code. */
e17a4113
UW
1617 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1618 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1619
1620 return pc;
c906108c
SS
1621}
1622
4309257c
PM
1623/* Check that the code pointed to by PC corresponds to a call to
1624 __main, skip it if so. Return PC otherwise. */
1625
1626CORE_ADDR
1627i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1628{
e17a4113 1629 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1630 gdb_byte op;
1631
3dcabaa8
MS
1632 if (target_read_memory (pc, &op, 1))
1633 return pc;
4309257c
PM
1634 if (op == 0xe8)
1635 {
1636 gdb_byte buf[4];
1637
1638 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1639 {
1640 /* Make sure address is computed correctly as a 32bit
1641 integer even if CORE_ADDR is 64 bit wide. */
1642 struct minimal_symbol *s;
e17a4113 1643 CORE_ADDR call_dest;
4309257c 1644
e17a4113 1645 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1646 call_dest = call_dest & 0xffffffffU;
1647 s = lookup_minimal_symbol_by_pc (call_dest);
1648 if (s != NULL
1649 && SYMBOL_LINKAGE_NAME (s) != NULL
1650 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1651 pc += 5;
1652 }
1653 }
1654
1655 return pc;
1656}
1657
acd5c798 1658/* This function is 64-bit safe. */
93924b6b 1659
acd5c798
MK
1660static CORE_ADDR
1661i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1662{
63c0089f 1663 gdb_byte buf[8];
acd5c798 1664
875f8d0e 1665 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1666 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1667}
acd5c798 1668\f
93924b6b 1669
acd5c798 1670/* Normal frames. */
c5aa993b 1671
8fbca658
PA
1672static void
1673i386_frame_cache_1 (struct frame_info *this_frame,
1674 struct i386_frame_cache *cache)
a7769679 1675{
e17a4113
UW
1676 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1678 gdb_byte buf[4];
acd5c798
MK
1679 int i;
1680
8fbca658 1681 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1682
1683 /* In principle, for normal frames, %ebp holds the frame pointer,
1684 which holds the base address for the current stack frame.
1685 However, for functions that don't need it, the frame pointer is
1686 optional. For these "frameless" functions the frame pointer is
1687 actually the frame pointer of the calling frame. Signal
1688 trampolines are just a special case of a "frameless" function.
1689 They (usually) share their frame pointer with the frame that was
1690 in progress when the signal occurred. */
1691
10458914 1692 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1693 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1694 if (cache->base == 0)
620fa63a
PA
1695 {
1696 cache->base_p = 1;
1697 return;
1698 }
acd5c798
MK
1699
1700 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1701 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1702
acd5c798 1703 if (cache->pc != 0)
e17a4113
UW
1704 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1705 cache);
acd5c798
MK
1706
1707 if (cache->locals < 0)
1708 {
1709 /* We didn't find a valid frame, which means that CACHE->base
1710 currently holds the frame pointer for our calling frame. If
1711 we're at the start of a function, or somewhere half-way its
1712 prologue, the function's frame probably hasn't been fully
1713 setup yet. Try to reconstruct the base address for the stack
1714 frame by looking at the stack pointer. For truly "frameless"
1715 functions this might work too. */
1716
e0c62198 1717 if (cache->saved_sp_reg != -1)
92dd43fa 1718 {
8fbca658
PA
1719 /* Saved stack pointer has been saved. */
1720 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1721 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1722
92dd43fa
MK
1723 /* We're halfway aligning the stack. */
1724 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1725 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1726
1727 /* This will be added back below. */
1728 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1729 }
7618e12b
DJ
1730 else if (cache->pc != 0
1731 || target_read_memory (get_frame_pc (this_frame), buf, 1))
92dd43fa 1732 {
7618e12b
DJ
1733 /* We're in a known function, but did not find a frame
1734 setup. Assume that the function does not use %ebp.
1735 Alternatively, we may have jumped to an invalid
1736 address; in that case there is definitely no new
1737 frame in %ebp. */
10458914 1738 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1739 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1740 + cache->sp_offset;
92dd43fa 1741 }
7618e12b
DJ
1742 else
1743 /* We're in an unknown function. We could not find the start
1744 of the function to analyze the prologue; our best option is
1745 to assume a typical frame layout with the caller's %ebp
1746 saved. */
1747 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1748 }
1749
8fbca658
PA
1750 if (cache->saved_sp_reg != -1)
1751 {
1752 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1753 register may be unavailable). */
1754 if (cache->saved_sp == 0
1755 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1756 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1757 }
acd5c798
MK
1758 /* Now that we have the base address for the stack frame we can
1759 calculate the value of %esp in the calling frame. */
8fbca658 1760 else if (cache->saved_sp == 0)
92dd43fa 1761 cache->saved_sp = cache->base + 8;
a7769679 1762
acd5c798
MK
1763 /* Adjust all the saved registers such that they contain addresses
1764 instead of offsets. */
1765 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1766 if (cache->saved_regs[i] != -1)
1767 cache->saved_regs[i] += cache->base;
acd5c798 1768
8fbca658
PA
1769 cache->base_p = 1;
1770}
1771
1772static struct i386_frame_cache *
1773i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1774{
1775 volatile struct gdb_exception ex;
1776 struct i386_frame_cache *cache;
1777
1778 if (*this_cache)
1779 return *this_cache;
1780
1781 cache = i386_alloc_frame_cache ();
1782 *this_cache = cache;
1783
1784 TRY_CATCH (ex, RETURN_MASK_ERROR)
1785 {
1786 i386_frame_cache_1 (this_frame, cache);
1787 }
1788 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1789 throw_exception (ex);
1790
acd5c798 1791 return cache;
a7769679
MK
1792}
1793
3a1e71e3 1794static void
10458914 1795i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1796 struct frame_id *this_id)
c906108c 1797{
10458914 1798 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1799
1800 /* This marks the outermost frame. */
1801 if (cache->base == 0)
1802 return;
1803
3e210248 1804 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1805 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1806}
1807
8fbca658
PA
1808static enum unwind_stop_reason
1809i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1810 void **this_cache)
1811{
1812 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1813
1814 if (!cache->base_p)
1815 return UNWIND_UNAVAILABLE;
1816
1817 /* This marks the outermost frame. */
1818 if (cache->base == 0)
1819 return UNWIND_OUTERMOST;
1820
1821 return UNWIND_NO_REASON;
1822}
1823
10458914
DJ
1824static struct value *
1825i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1826 int regnum)
acd5c798 1827{
10458914 1828 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1829
1830 gdb_assert (regnum >= 0);
1831
1832 /* The System V ABI says that:
1833
1834 "The flags register contains the system flags, such as the
1835 direction flag and the carry flag. The direction flag must be
1836 set to the forward (that is, zero) direction before entry and
1837 upon exit from a function. Other user flags have no specified
1838 role in the standard calling sequence and are not preserved."
1839
1840 To guarantee the "upon exit" part of that statement we fake a
1841 saved flags register that has its direction flag cleared.
1842
1843 Note that GCC doesn't seem to rely on the fact that the direction
1844 flag is cleared after a function return; it always explicitly
1845 clears the flag before operations where it matters.
1846
1847 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1848 right thing to do. The way we fake the flags register here makes
1849 it impossible to change it. */
1850
1851 if (regnum == I386_EFLAGS_REGNUM)
1852 {
10458914 1853 ULONGEST val;
c5aa993b 1854
10458914
DJ
1855 val = get_frame_register_unsigned (this_frame, regnum);
1856 val &= ~(1 << 10);
1857 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1858 }
1211c4e4 1859
acd5c798 1860 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1861 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 1862
fcf250e2
UW
1863 if (regnum == I386_ESP_REGNUM
1864 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
1865 {
1866 /* If the SP has been saved, but we don't know where, then this
1867 means that SAVED_SP_REG register was found unavailable back
1868 when we built the cache. */
fcf250e2 1869 if (cache->saved_sp == 0)
8fbca658
PA
1870 return frame_unwind_got_register (this_frame, regnum,
1871 cache->saved_sp_reg);
1872 else
1873 return frame_unwind_got_constant (this_frame, regnum,
1874 cache->saved_sp);
1875 }
acd5c798 1876
fd13a04a 1877 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1878 return frame_unwind_got_memory (this_frame, regnum,
1879 cache->saved_regs[regnum]);
fd13a04a 1880
10458914 1881 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1882}
1883
1884static const struct frame_unwind i386_frame_unwind =
1885{
1886 NORMAL_FRAME,
8fbca658 1887 i386_frame_unwind_stop_reason,
acd5c798 1888 i386_frame_this_id,
10458914
DJ
1889 i386_frame_prev_register,
1890 NULL,
1891 default_frame_sniffer
acd5c798 1892};
06da04c6
MS
1893
1894/* Normal frames, but in a function epilogue. */
1895
1896/* The epilogue is defined here as the 'ret' instruction, which will
1897 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1898 the function's stack frame. */
1899
1900static int
1901i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1902{
1903 gdb_byte insn;
e0d00bc7
JK
1904 struct symtab *symtab;
1905
1906 symtab = find_pc_symtab (pc);
1907 if (symtab && symtab->epilogue_unwind_valid)
1908 return 0;
06da04c6
MS
1909
1910 if (target_read_memory (pc, &insn, 1))
1911 return 0; /* Can't read memory at pc. */
1912
1913 if (insn != 0xc3) /* 'ret' instruction. */
1914 return 0;
1915
1916 return 1;
1917}
1918
1919static int
1920i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1921 struct frame_info *this_frame,
1922 void **this_prologue_cache)
1923{
1924 if (frame_relative_level (this_frame) == 0)
1925 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1926 get_frame_pc (this_frame));
1927 else
1928 return 0;
1929}
1930
1931static struct i386_frame_cache *
1932i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1933{
8fbca658 1934 volatile struct gdb_exception ex;
06da04c6 1935 struct i386_frame_cache *cache;
0d6c2135 1936 CORE_ADDR sp;
06da04c6
MS
1937
1938 if (*this_cache)
1939 return *this_cache;
1940
1941 cache = i386_alloc_frame_cache ();
1942 *this_cache = cache;
1943
8fbca658
PA
1944 TRY_CATCH (ex, RETURN_MASK_ERROR)
1945 {
0d6c2135 1946 cache->pc = get_frame_func (this_frame);
06da04c6 1947
0d6c2135
MK
1948 /* At this point the stack looks as if we just entered the
1949 function, with the return address at the top of the
1950 stack. */
1951 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1952 cache->base = sp + cache->sp_offset;
8fbca658 1953 cache->saved_sp = cache->base + 8;
8fbca658 1954 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 1955
8fbca658
PA
1956 cache->base_p = 1;
1957 }
1958 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1959 throw_exception (ex);
06da04c6
MS
1960
1961 return cache;
1962}
1963
8fbca658
PA
1964static enum unwind_stop_reason
1965i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1966 void **this_cache)
1967{
0d6c2135
MK
1968 struct i386_frame_cache *cache =
1969 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
1970
1971 if (!cache->base_p)
1972 return UNWIND_UNAVAILABLE;
1973
1974 return UNWIND_NO_REASON;
1975}
1976
06da04c6
MS
1977static void
1978i386_epilogue_frame_this_id (struct frame_info *this_frame,
1979 void **this_cache,
1980 struct frame_id *this_id)
1981{
0d6c2135
MK
1982 struct i386_frame_cache *cache =
1983 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 1984
8fbca658
PA
1985 if (!cache->base_p)
1986 return;
1987
06da04c6
MS
1988 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1989}
1990
0d6c2135
MK
1991static struct value *
1992i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1993 void **this_cache, int regnum)
1994{
1995 /* Make sure we've initialized the cache. */
1996 i386_epilogue_frame_cache (this_frame, this_cache);
1997
1998 return i386_frame_prev_register (this_frame, this_cache, regnum);
1999}
2000
06da04c6
MS
2001static const struct frame_unwind i386_epilogue_frame_unwind =
2002{
2003 NORMAL_FRAME,
8fbca658 2004 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2005 i386_epilogue_frame_this_id,
0d6c2135 2006 i386_epilogue_frame_prev_register,
06da04c6
MS
2007 NULL,
2008 i386_epilogue_frame_sniffer
2009};
acd5c798
MK
2010\f
2011
a3fcb948
JG
2012/* Stack-based trampolines. */
2013
2014/* These trampolines are used on cross x86 targets, when taking the
2015 address of a nested function. When executing these trampolines,
2016 no stack frame is set up, so we are in a similar situation as in
2017 epilogues and i386_epilogue_frame_this_id can be re-used. */
2018
2019/* Static chain passed in register. */
2020
2021struct i386_insn i386_tramp_chain_in_reg_insns[] =
2022{
2023 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2024 { 5, { 0xb8 }, { 0xfe } },
2025
2026 /* `jmp imm32' */
2027 { 5, { 0xe9 }, { 0xff } },
2028
2029 {0}
2030};
2031
2032/* Static chain passed on stack (when regparm=3). */
2033
2034struct i386_insn i386_tramp_chain_on_stack_insns[] =
2035{
2036 /* `push imm32' */
2037 { 5, { 0x68 }, { 0xff } },
2038
2039 /* `jmp imm32' */
2040 { 5, { 0xe9 }, { 0xff } },
2041
2042 {0}
2043};
2044
2045/* Return whether PC points inside a stack trampoline. */
2046
2047static int
2048i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2049{
2050 gdb_byte insn;
2c02bd72 2051 const char *name;
a3fcb948
JG
2052
2053 /* A stack trampoline is detected if no name is associated
2054 to the current pc and if it points inside a trampoline
2055 sequence. */
2056
2057 find_pc_partial_function (pc, &name, NULL, NULL);
2058 if (name)
2059 return 0;
2060
2061 if (target_read_memory (pc, &insn, 1))
2062 return 0;
2063
2064 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2065 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2066 return 0;
2067
2068 return 1;
2069}
2070
2071static int
2072i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2073 struct frame_info *this_frame,
2074 void **this_cache)
a3fcb948
JG
2075{
2076 if (frame_relative_level (this_frame) == 0)
2077 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2078 get_frame_pc (this_frame));
2079 else
2080 return 0;
2081}
2082
2083static const struct frame_unwind i386_stack_tramp_frame_unwind =
2084{
2085 NORMAL_FRAME,
2086 i386_epilogue_frame_unwind_stop_reason,
2087 i386_epilogue_frame_this_id,
0d6c2135 2088 i386_epilogue_frame_prev_register,
a3fcb948
JG
2089 NULL,
2090 i386_stack_tramp_frame_sniffer
2091};
2092\f
6710bf39
SS
2093/* Generate a bytecode expression to get the value of the saved PC. */
2094
2095static void
2096i386_gen_return_address (struct gdbarch *gdbarch,
2097 struct agent_expr *ax, struct axs_value *value,
2098 CORE_ADDR scope)
2099{
2100 /* The following sequence assumes the traditional use of the base
2101 register. */
2102 ax_reg (ax, I386_EBP_REGNUM);
2103 ax_const_l (ax, 4);
2104 ax_simple (ax, aop_add);
2105 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2106 value->kind = axs_lvalue_memory;
2107}
2108\f
a3fcb948 2109
acd5c798
MK
2110/* Signal trampolines. */
2111
2112static struct i386_frame_cache *
10458914 2113i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2114{
e17a4113
UW
2115 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2117 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2118 volatile struct gdb_exception ex;
acd5c798 2119 struct i386_frame_cache *cache;
acd5c798 2120 CORE_ADDR addr;
63c0089f 2121 gdb_byte buf[4];
acd5c798
MK
2122
2123 if (*this_cache)
2124 return *this_cache;
2125
fd13a04a 2126 cache = i386_alloc_frame_cache ();
acd5c798 2127
8fbca658 2128 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2129 {
8fbca658
PA
2130 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2131 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2132
8fbca658
PA
2133 addr = tdep->sigcontext_addr (this_frame);
2134 if (tdep->sc_reg_offset)
2135 {
2136 int i;
a3386186 2137
8fbca658
PA
2138 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2139
2140 for (i = 0; i < tdep->sc_num_regs; i++)
2141 if (tdep->sc_reg_offset[i] != -1)
2142 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2143 }
2144 else
2145 {
2146 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2147 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2148 }
2149
2150 cache->base_p = 1;
a3386186 2151 }
8fbca658
PA
2152 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2153 throw_exception (ex);
acd5c798
MK
2154
2155 *this_cache = cache;
2156 return cache;
2157}
2158
8fbca658
PA
2159static enum unwind_stop_reason
2160i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2161 void **this_cache)
2162{
2163 struct i386_frame_cache *cache =
2164 i386_sigtramp_frame_cache (this_frame, this_cache);
2165
2166 if (!cache->base_p)
2167 return UNWIND_UNAVAILABLE;
2168
2169 return UNWIND_NO_REASON;
2170}
2171
acd5c798 2172static void
10458914 2173i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2174 struct frame_id *this_id)
2175{
2176 struct i386_frame_cache *cache =
10458914 2177 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2178
8fbca658
PA
2179 if (!cache->base_p)
2180 return;
2181
3e210248 2182 /* See the end of i386_push_dummy_call. */
10458914 2183 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
2184}
2185
10458914
DJ
2186static struct value *
2187i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2188 void **this_cache, int regnum)
acd5c798
MK
2189{
2190 /* Make sure we've initialized the cache. */
10458914 2191 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2192
10458914 2193 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2194}
c0d1d883 2195
10458914
DJ
2196static int
2197i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2198 struct frame_info *this_frame,
2199 void **this_prologue_cache)
acd5c798 2200{
10458914 2201 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2202
911bc6ee
MK
2203 /* We shouldn't even bother if we don't have a sigcontext_addr
2204 handler. */
2205 if (tdep->sigcontext_addr == NULL)
10458914 2206 return 0;
1c3545ae 2207
911bc6ee
MK
2208 if (tdep->sigtramp_p != NULL)
2209 {
10458914
DJ
2210 if (tdep->sigtramp_p (this_frame))
2211 return 1;
911bc6ee
MK
2212 }
2213
2214 if (tdep->sigtramp_start != 0)
2215 {
10458914 2216 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2217
2218 gdb_assert (tdep->sigtramp_end != 0);
2219 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2220 return 1;
911bc6ee 2221 }
acd5c798 2222
10458914 2223 return 0;
acd5c798 2224}
10458914
DJ
2225
2226static const struct frame_unwind i386_sigtramp_frame_unwind =
2227{
2228 SIGTRAMP_FRAME,
8fbca658 2229 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2230 i386_sigtramp_frame_this_id,
2231 i386_sigtramp_frame_prev_register,
2232 NULL,
2233 i386_sigtramp_frame_sniffer
2234};
acd5c798
MK
2235\f
2236
2237static CORE_ADDR
10458914 2238i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2239{
10458914 2240 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2241
2242 return cache->base;
2243}
2244
2245static const struct frame_base i386_frame_base =
2246{
2247 &i386_frame_unwind,
2248 i386_frame_base_address,
2249 i386_frame_base_address,
2250 i386_frame_base_address
2251};
2252
acd5c798 2253static struct frame_id
10458914 2254i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2255{
acd5c798
MK
2256 CORE_ADDR fp;
2257
10458914 2258 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2259
3e210248 2260 /* See the end of i386_push_dummy_call. */
10458914 2261 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2262}
e04e5beb
JM
2263
2264/* _Decimal128 function return values need 16-byte alignment on the
2265 stack. */
2266
2267static CORE_ADDR
2268i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2269{
2270 return sp & -(CORE_ADDR)16;
2271}
fc338970 2272\f
c906108c 2273
fc338970
MK
2274/* Figure out where the longjmp will land. Slurp the args out of the
2275 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2276 structure from which we extract the address that we will land at.
28bcfd30 2277 This address is copied into PC. This routine returns non-zero on
436675d3 2278 success. */
c906108c 2279
8201327c 2280static int
60ade65d 2281i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2282{
436675d3 2283 gdb_byte buf[4];
c906108c 2284 CORE_ADDR sp, jb_addr;
20a6ec49 2285 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2287 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2288
8201327c
MK
2289 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2290 longjmp will land. */
2291 if (jb_pc_offset == -1)
c906108c
SS
2292 return 0;
2293
436675d3 2294 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2295 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2296 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2297 return 0;
2298
e17a4113 2299 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2300 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2301 return 0;
c906108c 2302
e17a4113 2303 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2304 return 1;
2305}
fc338970 2306\f
c906108c 2307
7ccc1c74
JM
2308/* Check whether TYPE must be 16-byte-aligned when passed as a
2309 function argument. 16-byte vectors, _Decimal128 and structures or
2310 unions containing such types must be 16-byte-aligned; other
2311 arguments are 4-byte-aligned. */
2312
2313static int
2314i386_16_byte_align_p (struct type *type)
2315{
2316 type = check_typedef (type);
2317 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2318 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2319 && TYPE_LENGTH (type) == 16)
2320 return 1;
2321 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2322 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2323 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2324 || TYPE_CODE (type) == TYPE_CODE_UNION)
2325 {
2326 int i;
2327 for (i = 0; i < TYPE_NFIELDS (type); i++)
2328 {
2329 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2330 return 1;
2331 }
2332 }
2333 return 0;
2334}
2335
3a1e71e3 2336static CORE_ADDR
7d9b040b 2337i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2338 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2339 struct value **args, CORE_ADDR sp, int struct_return,
2340 CORE_ADDR struct_addr)
22f8ba57 2341{
e17a4113 2342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2343 gdb_byte buf[4];
acd5c798 2344 int i;
7ccc1c74
JM
2345 int write_pass;
2346 int args_space = 0;
acd5c798 2347
7ccc1c74
JM
2348 /* Determine the total space required for arguments and struct
2349 return address in a first pass (allowing for 16-byte-aligned
2350 arguments), then push arguments in a second pass. */
2351
2352 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2353 {
7ccc1c74
JM
2354 int args_space_used = 0;
2355 int have_16_byte_aligned_arg = 0;
2356
2357 if (struct_return)
2358 {
2359 if (write_pass)
2360 {
2361 /* Push value address. */
e17a4113 2362 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2363 write_memory (sp, buf, 4);
2364 args_space_used += 4;
2365 }
2366 else
2367 args_space += 4;
2368 }
2369
2370 for (i = 0; i < nargs; i++)
2371 {
2372 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2373
7ccc1c74
JM
2374 if (write_pass)
2375 {
2376 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2377 args_space_used = align_up (args_space_used, 16);
acd5c798 2378
7ccc1c74
JM
2379 write_memory (sp + args_space_used,
2380 value_contents_all (args[i]), len);
2381 /* The System V ABI says that:
acd5c798 2382
7ccc1c74
JM
2383 "An argument's size is increased, if necessary, to make it a
2384 multiple of [32-bit] words. This may require tail padding,
2385 depending on the size of the argument."
22f8ba57 2386
7ccc1c74
JM
2387 This makes sure the stack stays word-aligned. */
2388 args_space_used += align_up (len, 4);
2389 }
2390 else
2391 {
2392 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2393 {
2394 args_space = align_up (args_space, 16);
2395 have_16_byte_aligned_arg = 1;
2396 }
2397 args_space += align_up (len, 4);
2398 }
2399 }
2400
2401 if (!write_pass)
2402 {
2403 if (have_16_byte_aligned_arg)
2404 args_space = align_up (args_space, 16);
2405 sp -= args_space;
2406 }
22f8ba57
MK
2407 }
2408
acd5c798
MK
2409 /* Store return address. */
2410 sp -= 4;
e17a4113 2411 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2412 write_memory (sp, buf, 4);
2413
2414 /* Finally, update the stack pointer... */
e17a4113 2415 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2416 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2417
2418 /* ...and fake a frame pointer. */
2419 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2420
3e210248
AC
2421 /* MarkK wrote: This "+ 8" is all over the place:
2422 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2423 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2424 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2425 definition of the stack address of a frame. Otherwise frame id
2426 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2427 stack address *before* the function call as a frame's CFA. On
2428 the i386, when %ebp is used as a frame pointer, the offset
2429 between the contents %ebp and the CFA as defined by GCC. */
2430 return sp + 8;
22f8ba57
MK
2431}
2432
1a309862
MK
2433/* These registers are used for returning integers (and on some
2434 targets also for returning `struct' and `union' values when their
ef9dff19 2435 size and alignment match an integer type). */
acd5c798
MK
2436#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2437#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2438
c5e656c1
MK
2439/* Read, for architecture GDBARCH, a function return value of TYPE
2440 from REGCACHE, and copy that into VALBUF. */
1a309862 2441
3a1e71e3 2442static void
c5e656c1 2443i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2444 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2445{
c5e656c1 2446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2447 int len = TYPE_LENGTH (type);
63c0089f 2448 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2449
1e8d0a7b 2450 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2451 {
5716833c 2452 if (tdep->st0_regnum < 0)
1a309862 2453 {
8a3fe4f8 2454 warning (_("Cannot find floating-point return value."));
1a309862 2455 memset (valbuf, 0, len);
ef9dff19 2456 return;
1a309862
MK
2457 }
2458
c6ba6f0d
MK
2459 /* Floating-point return values can be found in %st(0). Convert
2460 its contents to the desired type. This is probably not
2461 exactly how it would happen on the target itself, but it is
2462 the best we can do. */
acd5c798 2463 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2464 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2465 }
2466 else
c5aa993b 2467 {
875f8d0e
UW
2468 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2469 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2470
2471 if (len <= low_size)
00f8375e 2472 {
0818c12a 2473 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2474 memcpy (valbuf, buf, len);
2475 }
d4f3574e
SS
2476 else if (len <= (low_size + high_size))
2477 {
0818c12a 2478 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2479 memcpy (valbuf, buf, low_size);
0818c12a 2480 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2481 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2482 }
2483 else
8e65ff28 2484 internal_error (__FILE__, __LINE__,
1777feb0
MS
2485 _("Cannot extract return value of %d bytes long."),
2486 len);
c906108c
SS
2487 }
2488}
2489
c5e656c1
MK
2490/* Write, for architecture GDBARCH, a function return value of TYPE
2491 from VALBUF into REGCACHE. */
ef9dff19 2492
3a1e71e3 2493static void
c5e656c1 2494i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2495 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2496{
c5e656c1 2497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2498 int len = TYPE_LENGTH (type);
2499
1e8d0a7b 2500 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2501 {
3d7f4f49 2502 ULONGEST fstat;
63c0089f 2503 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2504
5716833c 2505 if (tdep->st0_regnum < 0)
ef9dff19 2506 {
8a3fe4f8 2507 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2508 return;
2509 }
2510
635b0cc1
MK
2511 /* Returning floating-point values is a bit tricky. Apart from
2512 storing the return value in %st(0), we have to simulate the
2513 state of the FPU at function return point. */
2514
c6ba6f0d
MK
2515 /* Convert the value found in VALBUF to the extended
2516 floating-point format used by the FPU. This is probably
2517 not exactly how it would happen on the target itself, but
2518 it is the best we can do. */
27067745 2519 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2520 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2521
635b0cc1
MK
2522 /* Set the top of the floating-point register stack to 7. The
2523 actual value doesn't really matter, but 7 is what a normal
2524 function return would end up with if the program started out
2525 with a freshly initialized FPU. */
20a6ec49 2526 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2527 fstat |= (7 << 11);
20a6ec49 2528 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2529
635b0cc1
MK
2530 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2531 the floating-point register stack to 7, the appropriate value
2532 for the tag word is 0x3fff. */
20a6ec49 2533 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2534 }
2535 else
2536 {
875f8d0e
UW
2537 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2538 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2539
2540 if (len <= low_size)
3d7f4f49 2541 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2542 else if (len <= (low_size + high_size))
2543 {
3d7f4f49
MK
2544 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2545 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2546 len - low_size, valbuf + low_size);
ef9dff19
MK
2547 }
2548 else
8e65ff28 2549 internal_error (__FILE__, __LINE__,
e2e0b3e5 2550 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2551 }
2552}
fc338970 2553\f
ef9dff19 2554
8201327c
MK
2555/* This is the variable that is set with "set struct-convention", and
2556 its legitimate values. */
2557static const char default_struct_convention[] = "default";
2558static const char pcc_struct_convention[] = "pcc";
2559static const char reg_struct_convention[] = "reg";
40478521 2560static const char *const valid_conventions[] =
8201327c
MK
2561{
2562 default_struct_convention,
2563 pcc_struct_convention,
2564 reg_struct_convention,
2565 NULL
2566};
2567static const char *struct_convention = default_struct_convention;
2568
0e4377e1
JB
2569/* Return non-zero if TYPE, which is assumed to be a structure,
2570 a union type, or an array type, should be returned in registers
2571 for architecture GDBARCH. */
c5e656c1 2572
8201327c 2573static int
c5e656c1 2574i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2575{
c5e656c1
MK
2576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2577 enum type_code code = TYPE_CODE (type);
2578 int len = TYPE_LENGTH (type);
8201327c 2579
0e4377e1
JB
2580 gdb_assert (code == TYPE_CODE_STRUCT
2581 || code == TYPE_CODE_UNION
2582 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2583
2584 if (struct_convention == pcc_struct_convention
2585 || (struct_convention == default_struct_convention
2586 && tdep->struct_return == pcc_struct_return))
2587 return 0;
2588
9edde48e
MK
2589 /* Structures consisting of a single `float', `double' or 'long
2590 double' member are returned in %st(0). */
2591 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2592 {
2593 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2594 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2595 return (len == 4 || len == 8 || len == 12);
2596 }
2597
c5e656c1
MK
2598 return (len == 1 || len == 2 || len == 4 || len == 8);
2599}
2600
2601/* Determine, for architecture GDBARCH, how a return value of TYPE
2602 should be returned. If it is supposed to be returned in registers,
2603 and READBUF is non-zero, read the appropriate value from REGCACHE,
2604 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2605 from WRITEBUF into REGCACHE. */
2606
2607static enum return_value_convention
c055b101
CV
2608i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2609 struct type *type, struct regcache *regcache,
2610 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2611{
2612 enum type_code code = TYPE_CODE (type);
2613
5daa78cc
TJB
2614 if (((code == TYPE_CODE_STRUCT
2615 || code == TYPE_CODE_UNION
2616 || code == TYPE_CODE_ARRAY)
2617 && !i386_reg_struct_return_p (gdbarch, type))
2618 /* 128-bit decimal float uses the struct return convention. */
2619 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2620 {
2621 /* The System V ABI says that:
2622
2623 "A function that returns a structure or union also sets %eax
2624 to the value of the original address of the caller's area
2625 before it returns. Thus when the caller receives control
2626 again, the address of the returned object resides in register
2627 %eax and can be used to access the object."
2628
2629 So the ABI guarantees that we can always find the return
2630 value just after the function has returned. */
2631
0e4377e1
JB
2632 /* Note that the ABI doesn't mention functions returning arrays,
2633 which is something possible in certain languages such as Ada.
2634 In this case, the value is returned as if it was wrapped in
2635 a record, so the convention applied to records also applies
2636 to arrays. */
2637
31db7b6c
MK
2638 if (readbuf)
2639 {
2640 ULONGEST addr;
2641
2642 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2643 read_memory (addr, readbuf, TYPE_LENGTH (type));
2644 }
2645
2646 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2647 }
c5e656c1
MK
2648
2649 /* This special case is for structures consisting of a single
9edde48e
MK
2650 `float', `double' or 'long double' member. These structures are
2651 returned in %st(0). For these structures, we call ourselves
2652 recursively, changing TYPE into the type of the first member of
2653 the structure. Since that should work for all structures that
2654 have only one member, we don't bother to check the member's type
2655 here. */
c5e656c1
MK
2656 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2657 {
2658 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
2659 return i386_return_value (gdbarch, func_type, type, regcache,
2660 readbuf, writebuf);
c5e656c1
MK
2661 }
2662
2663 if (readbuf)
2664 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2665 if (writebuf)
2666 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2667
c5e656c1 2668 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2669}
2670\f
2671
27067745
UW
2672struct type *
2673i387_ext_type (struct gdbarch *gdbarch)
2674{
2675 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2676
2677 if (!tdep->i387_ext_type)
90884b2b
L
2678 {
2679 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2680 gdb_assert (tdep->i387_ext_type != NULL);
2681 }
27067745
UW
2682
2683 return tdep->i387_ext_type;
2684}
2685
c131fcee
L
2686/* Construct vector type for pseudo YMM registers. We can't use
2687 tdesc_find_type since YMM isn't described in target description. */
2688
2689static struct type *
2690i386_ymm_type (struct gdbarch *gdbarch)
2691{
2692 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2693
2694 if (!tdep->i386_ymm_type)
2695 {
2696 const struct builtin_type *bt = builtin_type (gdbarch);
2697
2698 /* The type we're building is this: */
2699#if 0
2700 union __gdb_builtin_type_vec256i
2701 {
2702 int128_t uint128[2];
2703 int64_t v2_int64[4];
2704 int32_t v4_int32[8];
2705 int16_t v8_int16[16];
2706 int8_t v16_int8[32];
2707 double v2_double[4];
2708 float v4_float[8];
2709 };
2710#endif
2711
2712 struct type *t;
2713
2714 t = arch_composite_type (gdbarch,
2715 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2716 append_composite_type_field (t, "v8_float",
2717 init_vector_type (bt->builtin_float, 8));
2718 append_composite_type_field (t, "v4_double",
2719 init_vector_type (bt->builtin_double, 4));
2720 append_composite_type_field (t, "v32_int8",
2721 init_vector_type (bt->builtin_int8, 32));
2722 append_composite_type_field (t, "v16_int16",
2723 init_vector_type (bt->builtin_int16, 16));
2724 append_composite_type_field (t, "v8_int32",
2725 init_vector_type (bt->builtin_int32, 8));
2726 append_composite_type_field (t, "v4_int64",
2727 init_vector_type (bt->builtin_int64, 4));
2728 append_composite_type_field (t, "v2_int128",
2729 init_vector_type (bt->builtin_int128, 2));
2730
2731 TYPE_VECTOR (t) = 1;
0c5acf93 2732 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
2733 tdep->i386_ymm_type = t;
2734 }
2735
2736 return tdep->i386_ymm_type;
2737}
2738
794ac428 2739/* Construct vector type for MMX registers. */
90884b2b 2740static struct type *
794ac428
UW
2741i386_mmx_type (struct gdbarch *gdbarch)
2742{
2743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2744
2745 if (!tdep->i386_mmx_type)
2746 {
df4df182
UW
2747 const struct builtin_type *bt = builtin_type (gdbarch);
2748
794ac428
UW
2749 /* The type we're building is this: */
2750#if 0
2751 union __gdb_builtin_type_vec64i
2752 {
2753 int64_t uint64;
2754 int32_t v2_int32[2];
2755 int16_t v4_int16[4];
2756 int8_t v8_int8[8];
2757 };
2758#endif
2759
2760 struct type *t;
2761
e9bb382b
UW
2762 t = arch_composite_type (gdbarch,
2763 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2764
2765 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2766 append_composite_type_field (t, "v2_int32",
df4df182 2767 init_vector_type (bt->builtin_int32, 2));
794ac428 2768 append_composite_type_field (t, "v4_int16",
df4df182 2769 init_vector_type (bt->builtin_int16, 4));
794ac428 2770 append_composite_type_field (t, "v8_int8",
df4df182 2771 init_vector_type (bt->builtin_int8, 8));
794ac428 2772
876cecd0 2773 TYPE_VECTOR (t) = 1;
794ac428
UW
2774 TYPE_NAME (t) = "builtin_type_vec64i";
2775 tdep->i386_mmx_type = t;
2776 }
2777
2778 return tdep->i386_mmx_type;
2779}
2780
d7a0d72c 2781/* Return the GDB type object for the "standard" data type of data in
1777feb0 2782 register REGNUM. */
d7a0d72c 2783
3a1e71e3 2784static struct type *
90884b2b 2785i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2786{
1ba53b71
L
2787 if (i386_mmx_regnum_p (gdbarch, regnum))
2788 return i386_mmx_type (gdbarch);
c131fcee
L
2789 else if (i386_ymm_regnum_p (gdbarch, regnum))
2790 return i386_ymm_type (gdbarch);
1ba53b71
L
2791 else
2792 {
2793 const struct builtin_type *bt = builtin_type (gdbarch);
2794 if (i386_byte_regnum_p (gdbarch, regnum))
2795 return bt->builtin_int8;
2796 else if (i386_word_regnum_p (gdbarch, regnum))
2797 return bt->builtin_int16;
2798 else if (i386_dword_regnum_p (gdbarch, regnum))
2799 return bt->builtin_int32;
2800 }
2801
2802 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2803}
2804
28fc6740 2805/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2806 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2807
2808static int
c86c27af 2809i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2810{
5716833c
MK
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2812 int mmxreg, fpreg;
28fc6740
AC
2813 ULONGEST fstat;
2814 int tos;
c86c27af 2815
5716833c 2816 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2817 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2818 tos = (fstat >> 11) & 0x7;
5716833c
MK
2819 fpreg = (mmxreg + tos) % 8;
2820
20a6ec49 2821 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2822}
2823
3543a589
TT
2824/* A helper function for us by i386_pseudo_register_read_value and
2825 amd64_pseudo_register_read_value. It does all the work but reads
2826 the data into an already-allocated value. */
2827
2828void
2829i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2830 struct regcache *regcache,
2831 int regnum,
2832 struct value *result_value)
28fc6740 2833{
1ba53b71 2834 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 2835 enum register_status status;
3543a589 2836 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 2837
5716833c 2838 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2839 {
c86c27af
MK
2840 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2841
28fc6740 2842 /* Extract (always little endian). */
05d1431c
PA
2843 status = regcache_raw_read (regcache, fpnum, raw_buf);
2844 if (status != REG_VALID)
3543a589
TT
2845 mark_value_bytes_unavailable (result_value, 0,
2846 TYPE_LENGTH (value_type (result_value)));
2847 else
2848 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
2849 }
2850 else
1ba53b71
L
2851 {
2852 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2853
c131fcee
L
2854 if (i386_ymm_regnum_p (gdbarch, regnum))
2855 {
2856 regnum -= tdep->ymm0_regnum;
2857
1777feb0 2858 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
2859 status = regcache_raw_read (regcache,
2860 I387_XMM0_REGNUM (tdep) + regnum,
2861 raw_buf);
2862 if (status != REG_VALID)
3543a589
TT
2863 mark_value_bytes_unavailable (result_value, 0, 16);
2864 else
2865 memcpy (buf, raw_buf, 16);
c131fcee 2866 /* Read upper 128bits. */
05d1431c
PA
2867 status = regcache_raw_read (regcache,
2868 tdep->ymm0h_regnum + regnum,
2869 raw_buf);
2870 if (status != REG_VALID)
3543a589
TT
2871 mark_value_bytes_unavailable (result_value, 16, 32);
2872 else
2873 memcpy (buf + 16, raw_buf, 16);
c131fcee
L
2874 }
2875 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2876 {
2877 int gpnum = regnum - tdep->ax_regnum;
2878
2879 /* Extract (always little endian). */
05d1431c
PA
2880 status = regcache_raw_read (regcache, gpnum, raw_buf);
2881 if (status != REG_VALID)
3543a589
TT
2882 mark_value_bytes_unavailable (result_value, 0,
2883 TYPE_LENGTH (value_type (result_value)));
2884 else
2885 memcpy (buf, raw_buf, 2);
1ba53b71
L
2886 }
2887 else if (i386_byte_regnum_p (gdbarch, regnum))
2888 {
2889 /* Check byte pseudo registers last since this function will
2890 be called from amd64_pseudo_register_read, which handles
2891 byte pseudo registers differently. */
2892 int gpnum = regnum - tdep->al_regnum;
2893
2894 /* Extract (always little endian). We read both lower and
2895 upper registers. */
05d1431c
PA
2896 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2897 if (status != REG_VALID)
3543a589
TT
2898 mark_value_bytes_unavailable (result_value, 0,
2899 TYPE_LENGTH (value_type (result_value)));
2900 else if (gpnum >= 4)
1ba53b71
L
2901 memcpy (buf, raw_buf + 1, 1);
2902 else
2903 memcpy (buf, raw_buf, 1);
2904 }
2905 else
2906 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2907 }
3543a589
TT
2908}
2909
2910static struct value *
2911i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2912 struct regcache *regcache,
2913 int regnum)
2914{
2915 struct value *result;
2916
2917 result = allocate_value (register_type (gdbarch, regnum));
2918 VALUE_LVAL (result) = lval_register;
2919 VALUE_REGNUM (result) = regnum;
2920
2921 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 2922
3543a589 2923 return result;
28fc6740
AC
2924}
2925
1ba53b71 2926void
28fc6740 2927i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2928 int regnum, const gdb_byte *buf)
28fc6740 2929{
1ba53b71
L
2930 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2931
5716833c 2932 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2933 {
c86c27af
MK
2934 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2935
28fc6740 2936 /* Read ... */
1ba53b71 2937 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 2938 /* ... Modify ... (always little endian). */
1ba53b71 2939 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 2940 /* ... Write. */
1ba53b71 2941 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
2942 }
2943 else
1ba53b71
L
2944 {
2945 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2946
c131fcee
L
2947 if (i386_ymm_regnum_p (gdbarch, regnum))
2948 {
2949 regnum -= tdep->ymm0_regnum;
2950
2951 /* ... Write lower 128bits. */
2952 regcache_raw_write (regcache,
2953 I387_XMM0_REGNUM (tdep) + regnum,
2954 buf);
2955 /* ... Write upper 128bits. */
2956 regcache_raw_write (regcache,
2957 tdep->ymm0h_regnum + regnum,
2958 buf + 16);
2959 }
2960 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2961 {
2962 int gpnum = regnum - tdep->ax_regnum;
2963
2964 /* Read ... */
2965 regcache_raw_read (regcache, gpnum, raw_buf);
2966 /* ... Modify ... (always little endian). */
2967 memcpy (raw_buf, buf, 2);
2968 /* ... Write. */
2969 regcache_raw_write (regcache, gpnum, raw_buf);
2970 }
2971 else if (i386_byte_regnum_p (gdbarch, regnum))
2972 {
2973 /* Check byte pseudo registers last since this function will
2974 be called from amd64_pseudo_register_read, which handles
2975 byte pseudo registers differently. */
2976 int gpnum = regnum - tdep->al_regnum;
2977
2978 /* Read ... We read both lower and upper registers. */
2979 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2980 /* ... Modify ... (always little endian). */
2981 if (gpnum >= 4)
2982 memcpy (raw_buf + 1, buf, 1);
2983 else
2984 memcpy (raw_buf, buf, 1);
2985 /* ... Write. */
2986 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2987 }
2988 else
2989 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2990 }
28fc6740 2991}
ff2e87ac
AC
2992\f
2993
ff2e87ac
AC
2994/* Return the register number of the register allocated by GCC after
2995 REGNUM, or -1 if there is no such register. */
2996
2997static int
2998i386_next_regnum (int regnum)
2999{
3000 /* GCC allocates the registers in the order:
3001
3002 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3003
3004 Since storing a variable in %esp doesn't make any sense we return
3005 -1 for %ebp and for %esp itself. */
3006 static int next_regnum[] =
3007 {
3008 I386_EDX_REGNUM, /* Slot for %eax. */
3009 I386_EBX_REGNUM, /* Slot for %ecx. */
3010 I386_ECX_REGNUM, /* Slot for %edx. */
3011 I386_ESI_REGNUM, /* Slot for %ebx. */
3012 -1, -1, /* Slots for %esp and %ebp. */
3013 I386_EDI_REGNUM, /* Slot for %esi. */
3014 I386_EBP_REGNUM /* Slot for %edi. */
3015 };
3016
de5b9bb9 3017 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3018 return next_regnum[regnum];
28fc6740 3019
ff2e87ac
AC
3020 return -1;
3021}
3022
3023/* Return nonzero if a value of type TYPE stored in register REGNUM
3024 needs any special handling. */
d7a0d72c 3025
3a1e71e3 3026static int
1777feb0
MS
3027i386_convert_register_p (struct gdbarch *gdbarch,
3028 int regnum, struct type *type)
d7a0d72c 3029{
de5b9bb9
MK
3030 int len = TYPE_LENGTH (type);
3031
ff2e87ac
AC
3032 /* Values may be spread across multiple registers. Most debugging
3033 formats aren't expressive enough to specify the locations, so
3034 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3035 have a length that is a multiple of the word size, since GCC
3036 doesn't seem to put any other types into registers. */
3037 if (len > 4 && len % 4 == 0)
3038 {
3039 int last_regnum = regnum;
3040
3041 while (len > 4)
3042 {
3043 last_regnum = i386_next_regnum (last_regnum);
3044 len -= 4;
3045 }
3046
3047 if (last_regnum != -1)
3048 return 1;
3049 }
ff2e87ac 3050
0abe36f5 3051 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3052}
3053
ff2e87ac
AC
3054/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3055 return its contents in TO. */
ac27f131 3056
8dccd430 3057static int
ff2e87ac 3058i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3059 struct type *type, gdb_byte *to,
3060 int *optimizedp, int *unavailablep)
ac27f131 3061{
20a6ec49 3062 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3063 int len = TYPE_LENGTH (type);
de5b9bb9 3064
20a6ec49 3065 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3066 return i387_register_to_value (frame, regnum, type, to,
3067 optimizedp, unavailablep);
ff2e87ac 3068
fd35795f 3069 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3070
3071 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3072
de5b9bb9
MK
3073 while (len > 0)
3074 {
3075 gdb_assert (regnum != -1);
20a6ec49 3076 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3077
8dccd430
PA
3078 if (!get_frame_register_bytes (frame, regnum, 0,
3079 register_size (gdbarch, regnum),
3080 to, optimizedp, unavailablep))
3081 return 0;
3082
de5b9bb9
MK
3083 regnum = i386_next_regnum (regnum);
3084 len -= 4;
42835c2b 3085 to += 4;
de5b9bb9 3086 }
8dccd430
PA
3087
3088 *optimizedp = *unavailablep = 0;
3089 return 1;
ac27f131
MK
3090}
3091
ff2e87ac
AC
3092/* Write the contents FROM of a value of type TYPE into register
3093 REGNUM in frame FRAME. */
ac27f131 3094
3a1e71e3 3095static void
ff2e87ac 3096i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3097 struct type *type, const gdb_byte *from)
ac27f131 3098{
de5b9bb9 3099 int len = TYPE_LENGTH (type);
de5b9bb9 3100
20a6ec49 3101 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3102 {
d532c08f
MK
3103 i387_value_to_register (frame, regnum, type, from);
3104 return;
3105 }
3d261580 3106
fd35795f 3107 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3108
3109 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3110
de5b9bb9
MK
3111 while (len > 0)
3112 {
3113 gdb_assert (regnum != -1);
875f8d0e 3114 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3115
42835c2b 3116 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3117 regnum = i386_next_regnum (regnum);
3118 len -= 4;
42835c2b 3119 from += 4;
de5b9bb9 3120 }
ac27f131 3121}
ff2e87ac 3122\f
7fdafb5a
MK
3123/* Supply register REGNUM from the buffer specified by GREGS and LEN
3124 in the general-purpose register set REGSET to register cache
3125 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3126
20187ed5 3127void
473f17b0
MK
3128i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3129 int regnum, const void *gregs, size_t len)
3130{
9ea75c57 3131 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3132 const gdb_byte *regs = gregs;
473f17b0
MK
3133 int i;
3134
3135 gdb_assert (len == tdep->sizeof_gregset);
3136
3137 for (i = 0; i < tdep->gregset_num_regs; i++)
3138 {
3139 if ((regnum == i || regnum == -1)
3140 && tdep->gregset_reg_offset[i] != -1)
3141 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3142 }
3143}
3144
7fdafb5a
MK
3145/* Collect register REGNUM from the register cache REGCACHE and store
3146 it in the buffer specified by GREGS and LEN as described by the
3147 general-purpose register set REGSET. If REGNUM is -1, do this for
3148 all registers in REGSET. */
3149
3150void
3151i386_collect_gregset (const struct regset *regset,
3152 const struct regcache *regcache,
3153 int regnum, void *gregs, size_t len)
3154{
3155 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3156 gdb_byte *regs = gregs;
7fdafb5a
MK
3157 int i;
3158
3159 gdb_assert (len == tdep->sizeof_gregset);
3160
3161 for (i = 0; i < tdep->gregset_num_regs; i++)
3162 {
3163 if ((regnum == i || regnum == -1)
3164 && tdep->gregset_reg_offset[i] != -1)
3165 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3166 }
3167}
3168
3169/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3170 in the floating-point register set REGSET to register cache
3171 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3172
3173static void
3174i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3175 int regnum, const void *fpregs, size_t len)
3176{
9ea75c57 3177 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 3178
66a72d25
MK
3179 if (len == I387_SIZEOF_FXSAVE)
3180 {
3181 i387_supply_fxsave (regcache, regnum, fpregs);
3182 return;
3183 }
3184
473f17b0
MK
3185 gdb_assert (len == tdep->sizeof_fpregset);
3186 i387_supply_fsave (regcache, regnum, fpregs);
3187}
8446b36a 3188
2f305df1
MK
3189/* Collect register REGNUM from the register cache REGCACHE and store
3190 it in the buffer specified by FPREGS and LEN as described by the
3191 floating-point register set REGSET. If REGNUM is -1, do this for
3192 all registers in REGSET. */
7fdafb5a
MK
3193
3194static void
3195i386_collect_fpregset (const struct regset *regset,
3196 const struct regcache *regcache,
3197 int regnum, void *fpregs, size_t len)
3198{
3199 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3200
3201 if (len == I387_SIZEOF_FXSAVE)
3202 {
3203 i387_collect_fxsave (regcache, regnum, fpregs);
3204 return;
3205 }
3206
3207 gdb_assert (len == tdep->sizeof_fpregset);
3208 i387_collect_fsave (regcache, regnum, fpregs);
3209}
3210
c131fcee
L
3211/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3212
3213static void
3214i386_supply_xstateregset (const struct regset *regset,
3215 struct regcache *regcache, int regnum,
3216 const void *xstateregs, size_t len)
3217{
c131fcee
L
3218 i387_supply_xsave (regcache, regnum, xstateregs);
3219}
3220
3221/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3222
3223static void
3224i386_collect_xstateregset (const struct regset *regset,
3225 const struct regcache *regcache,
3226 int regnum, void *xstateregs, size_t len)
3227{
c131fcee
L
3228 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3229}
3230
8446b36a
MK
3231/* Return the appropriate register set for the core section identified
3232 by SECT_NAME and SECT_SIZE. */
3233
3234const struct regset *
3235i386_regset_from_core_section (struct gdbarch *gdbarch,
3236 const char *sect_name, size_t sect_size)
3237{
3238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3239
3240 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3241 {
3242 if (tdep->gregset == NULL)
7fdafb5a
MK
3243 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3244 i386_collect_gregset);
8446b36a
MK
3245 return tdep->gregset;
3246 }
3247
66a72d25
MK
3248 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3249 || (strcmp (sect_name, ".reg-xfp") == 0
3250 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
3251 {
3252 if (tdep->fpregset == NULL)
7fdafb5a
MK
3253 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3254 i386_collect_fpregset);
8446b36a
MK
3255 return tdep->fpregset;
3256 }
3257
c131fcee
L
3258 if (strcmp (sect_name, ".reg-xstate") == 0)
3259 {
3260 if (tdep->xstateregset == NULL)
3261 tdep->xstateregset = regset_alloc (gdbarch,
3262 i386_supply_xstateregset,
3263 i386_collect_xstateregset);
3264
3265 return tdep->xstateregset;
3266 }
3267
8446b36a
MK
3268 return NULL;
3269}
473f17b0 3270\f
fc338970 3271
fc338970 3272/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3273
3274CORE_ADDR
e17a4113
UW
3275i386_pe_skip_trampoline_code (struct frame_info *frame,
3276 CORE_ADDR pc, char *name)
c906108c 3277{
e17a4113
UW
3278 struct gdbarch *gdbarch = get_frame_arch (frame);
3279 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3280
3281 /* jmp *(dest) */
3282 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3283 {
e17a4113
UW
3284 unsigned long indirect =
3285 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3286 struct minimal_symbol *indsym =
fc338970 3287 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
0d5cff50 3288 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3289
c5aa993b 3290 if (symname)
c906108c 3291 {
c5aa993b
JM
3292 if (strncmp (symname, "__imp_", 6) == 0
3293 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3294 return name ? 1 :
3295 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3296 }
3297 }
fc338970 3298 return 0; /* Not a trampoline. */
c906108c 3299}
fc338970
MK
3300\f
3301
10458914
DJ
3302/* Return whether the THIS_FRAME corresponds to a sigtramp
3303 routine. */
8201327c 3304
4bd207ef 3305int
10458914 3306i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3307{
10458914 3308 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3309 const char *name;
911bc6ee
MK
3310
3311 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3312 return (name && strcmp ("_sigtramp", name) == 0);
3313}
3314\f
3315
fc338970
MK
3316/* We have two flavours of disassembly. The machinery on this page
3317 deals with switching between those. */
c906108c
SS
3318
3319static int
a89aa300 3320i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3321{
5e3397bb
MK
3322 gdb_assert (disassembly_flavor == att_flavor
3323 || disassembly_flavor == intel_flavor);
3324
3325 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3326 constified, cast to prevent a compiler warning. */
3327 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3328
3329 return print_insn_i386 (pc, info);
7a292a7a 3330}
fc338970 3331\f
3ce1502b 3332
8201327c
MK
3333/* There are a few i386 architecture variants that differ only
3334 slightly from the generic i386 target. For now, we don't give them
3335 their own source file, but include them here. As a consequence,
3336 they'll always be included. */
3ce1502b 3337
8201327c 3338/* System V Release 4 (SVR4). */
3ce1502b 3339
10458914
DJ
3340/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3341 routine. */
911bc6ee 3342
8201327c 3343static int
10458914 3344i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3345{
10458914 3346 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3347 const char *name;
911bc6ee 3348
acd5c798
MK
3349 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3350 currently unknown. */
911bc6ee 3351 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3352 return (name && (strcmp ("_sigreturn", name) == 0
3353 || strcmp ("_sigacthandler", name) == 0
3354 || strcmp ("sigvechandler", name) == 0));
3355}
d2a7c97a 3356
10458914
DJ
3357/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3358 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3359
3a1e71e3 3360static CORE_ADDR
10458914 3361i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3362{
e17a4113
UW
3363 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3364 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3365 gdb_byte buf[4];
acd5c798 3366 CORE_ADDR sp;
3ce1502b 3367
10458914 3368 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3369 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3370
e17a4113 3371 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3372}
55aa24fb
SDJ
3373
3374\f
3375
3376/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3377 gdbarch.h. */
3378
3379int
3380i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3381{
3382 return (*s == '$' /* Literal number. */
3383 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3384 || (*s == '(' && s[1] == '%') /* Register indirection. */
3385 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3386}
3387
3388/* Implementation of `gdbarch_stap_parse_special_token', as defined in
3389 gdbarch.h. */
3390
3391int
3392i386_stap_parse_special_token (struct gdbarch *gdbarch,
3393 struct stap_parse_info *p)
3394{
55aa24fb
SDJ
3395 /* In order to parse special tokens, we use a state-machine that go
3396 through every known token and try to get a match. */
3397 enum
3398 {
3399 TRIPLET,
3400 THREE_ARG_DISPLACEMENT,
3401 DONE
3402 } current_state;
3403
3404 current_state = TRIPLET;
3405
3406 /* The special tokens to be parsed here are:
3407
3408 - `register base + (register index * size) + offset', as represented
3409 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3410
3411 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3412 `*(-8 + 3 - 1 + (void *) $eax)'. */
3413
3414 while (current_state != DONE)
3415 {
3416 const char *s = p->arg;
3417
3418 switch (current_state)
3419 {
3420 case TRIPLET:
3421 {
3422 if (isdigit (*s) || *s == '-' || *s == '+')
3423 {
3424 int got_minus[3];
3425 int i;
3426 long displacements[3];
3427 const char *start;
3428 char *regname;
3429 int len;
3430 struct stoken str;
3431
3432 got_minus[0] = 0;
3433 if (*s == '+')
3434 ++s;
3435 else if (*s == '-')
3436 {
3437 ++s;
3438 got_minus[0] = 1;
3439 }
3440
3441 displacements[0] = strtol (s, (char **) &s, 10);
3442
3443 if (*s != '+' && *s != '-')
3444 {
3445 /* We are not dealing with a triplet. */
3446 break;
3447 }
3448
3449 got_minus[1] = 0;
3450 if (*s == '+')
3451 ++s;
3452 else
3453 {
3454 ++s;
3455 got_minus[1] = 1;
3456 }
3457
3458 displacements[1] = strtol (s, (char **) &s, 10);
3459
3460 if (*s != '+' && *s != '-')
3461 {
3462 /* We are not dealing with a triplet. */
3463 break;
3464 }
3465
3466 got_minus[2] = 0;
3467 if (*s == '+')
3468 ++s;
3469 else
3470 {
3471 ++s;
3472 got_minus[2] = 1;
3473 }
3474
3475 displacements[2] = strtol (s, (char **) &s, 10);
3476
3477 if (*s != '(' || s[1] != '%')
3478 break;
3479
3480 s += 2;
3481 start = s;
3482
3483 while (isalnum (*s))
3484 ++s;
3485
3486 if (*s++ != ')')
3487 break;
3488
3489 len = s - start;
3490 regname = alloca (len + 1);
3491
3492 strncpy (regname, start, len);
3493 regname[len] = '\0';
3494
3495 if (user_reg_map_name_to_regnum (gdbarch,
3496 regname, len) == -1)
3497 error (_("Invalid register name `%s' "
3498 "on expression `%s'."),
3499 regname, p->saved_arg);
3500
3501 for (i = 0; i < 3; i++)
3502 {
3503 write_exp_elt_opcode (OP_LONG);
3504 write_exp_elt_type
3505 (builtin_type (gdbarch)->builtin_long);
3506 write_exp_elt_longcst (displacements[i]);
3507 write_exp_elt_opcode (OP_LONG);
3508 if (got_minus[i])
3509 write_exp_elt_opcode (UNOP_NEG);
3510 }
3511
3512 write_exp_elt_opcode (OP_REGISTER);
3513 str.ptr = regname;
3514 str.length = len;
3515 write_exp_string (str);
3516 write_exp_elt_opcode (OP_REGISTER);
3517
3518 write_exp_elt_opcode (UNOP_CAST);
3519 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3520 write_exp_elt_opcode (UNOP_CAST);
3521
3522 write_exp_elt_opcode (BINOP_ADD);
3523 write_exp_elt_opcode (BINOP_ADD);
3524 write_exp_elt_opcode (BINOP_ADD);
3525
3526 write_exp_elt_opcode (UNOP_CAST);
3527 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3528 write_exp_elt_opcode (UNOP_CAST);
3529
3530 write_exp_elt_opcode (UNOP_IND);
3531
3532 p->arg = s;
3533
3534 return 1;
3535 }
3536 break;
3537 }
3538 case THREE_ARG_DISPLACEMENT:
3539 {
3540 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3541 {
3542 int offset_minus = 0;
3543 long offset = 0;
3544 int size_minus = 0;
3545 long size = 0;
3546 const char *start;
3547 char *base;
3548 int len_base;
3549 char *index;
3550 int len_index;
3551 struct stoken base_token, index_token;
3552
3553 if (*s == '+')
3554 ++s;
3555 else if (*s == '-')
3556 {
3557 ++s;
3558 offset_minus = 1;
3559 }
3560
3561 if (offset_minus && !isdigit (*s))
3562 break;
3563
3564 if (isdigit (*s))
3565 offset = strtol (s, (char **) &s, 10);
3566
3567 if (*s != '(' || s[1] != '%')
3568 break;
3569
3570 s += 2;
3571 start = s;
3572
3573 while (isalnum (*s))
3574 ++s;
3575
3576 if (*s != ',' || s[1] != '%')
3577 break;
3578
3579 len_base = s - start;
3580 base = alloca (len_base + 1);
3581 strncpy (base, start, len_base);
3582 base[len_base] = '\0';
3583
3584 if (user_reg_map_name_to_regnum (gdbarch,
3585 base, len_base) == -1)
3586 error (_("Invalid register name `%s' "
3587 "on expression `%s'."),
3588 base, p->saved_arg);
3589
3590 s += 2;
3591 start = s;
3592
3593 while (isalnum (*s))
3594 ++s;
3595
3596 len_index = s - start;
3597 index = alloca (len_index + 1);
3598 strncpy (index, start, len_index);
3599 index[len_index] = '\0';
3600
3601 if (user_reg_map_name_to_regnum (gdbarch,
3602 index, len_index) == -1)
3603 error (_("Invalid register name `%s' "
3604 "on expression `%s'."),
3605 index, p->saved_arg);
3606
3607 if (*s != ',' && *s != ')')
3608 break;
3609
3610 if (*s == ',')
3611 {
3612 ++s;
3613 if (*s == '+')
3614 ++s;
3615 else if (*s == '-')
3616 {
3617 ++s;
3618 size_minus = 1;
3619 }
3620
3621 size = strtol (s, (char **) &s, 10);
3622
3623 if (*s != ')')
3624 break;
3625 }
3626
3627 ++s;
3628
3629 if (offset)
3630 {
3631 write_exp_elt_opcode (OP_LONG);
3632 write_exp_elt_type
3633 (builtin_type (gdbarch)->builtin_long);
3634 write_exp_elt_longcst (offset);
3635 write_exp_elt_opcode (OP_LONG);
3636 if (offset_minus)
3637 write_exp_elt_opcode (UNOP_NEG);
3638 }
3639
3640 write_exp_elt_opcode (OP_REGISTER);
3641 base_token.ptr = base;
3642 base_token.length = len_base;
3643 write_exp_string (base_token);
3644 write_exp_elt_opcode (OP_REGISTER);
3645
3646 if (offset)
3647 write_exp_elt_opcode (BINOP_ADD);
3648
3649 write_exp_elt_opcode (OP_REGISTER);
3650 index_token.ptr = index;
3651 index_token.length = len_index;
3652 write_exp_string (index_token);
3653 write_exp_elt_opcode (OP_REGISTER);
3654
3655 if (size)
3656 {
3657 write_exp_elt_opcode (OP_LONG);
3658 write_exp_elt_type
3659 (builtin_type (gdbarch)->builtin_long);
3660 write_exp_elt_longcst (size);
3661 write_exp_elt_opcode (OP_LONG);
3662 if (size_minus)
3663 write_exp_elt_opcode (UNOP_NEG);
3664 write_exp_elt_opcode (BINOP_MUL);
3665 }
3666
3667 write_exp_elt_opcode (BINOP_ADD);
3668
3669 write_exp_elt_opcode (UNOP_CAST);
3670 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3671 write_exp_elt_opcode (UNOP_CAST);
3672
3673 write_exp_elt_opcode (UNOP_IND);
3674
3675 p->arg = s;
3676
3677 return 1;
3678 }
3679 break;
3680 }
3681 }
3682
3683 /* Advancing to the next state. */
3684 ++current_state;
3685 }
3686
3687 return 0;
3688}
3689
8201327c 3690\f
3ce1502b 3691
8201327c 3692/* Generic ELF. */
d2a7c97a 3693
8201327c
MK
3694void
3695i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3696{
c4fc7f1b
MK
3697 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3698 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
3699
3700 /* Registering SystemTap handlers. */
3701 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3702 set_gdbarch_stap_register_prefix (gdbarch, "%");
3703 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3704 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3705 set_gdbarch_stap_is_single_operand (gdbarch,
3706 i386_stap_is_single_operand);
3707 set_gdbarch_stap_parse_special_token (gdbarch,
3708 i386_stap_parse_special_token);
8201327c 3709}
3ce1502b 3710
8201327c 3711/* System V Release 4 (SVR4). */
3ce1502b 3712
8201327c
MK
3713void
3714i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3715{
3716 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3717
8201327c
MK
3718 /* System V Release 4 uses ELF. */
3719 i386_elf_init_abi (info, gdbarch);
3ce1502b 3720
dfe01d39 3721 /* System V Release 4 has shared libraries. */
dfe01d39
MK
3722 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3723
911bc6ee 3724 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 3725 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
3726 tdep->sc_pc_offset = 36 + 14 * 4;
3727 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 3728
8201327c 3729 tdep->jb_pc_offset = 20;
3ce1502b
MK
3730}
3731
8201327c 3732/* DJGPP. */
3ce1502b 3733
3a1e71e3 3734static void
8201327c 3735i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 3736{
8201327c 3737 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3738
911bc6ee
MK
3739 /* DJGPP doesn't have any special frames for signal handlers. */
3740 tdep->sigtramp_p = NULL;
3ce1502b 3741
8201327c 3742 tdep->jb_pc_offset = 36;
15430fc0
EZ
3743
3744 /* DJGPP does not support the SSE registers. */
3a13a53b
L
3745 if (! tdesc_has_registers (info.target_desc))
3746 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
3747
3748 /* Native compiler is GCC, which uses the SVR4 register numbering
3749 even in COFF and STABS. See the comment in i386_gdbarch_init,
3750 before the calls to set_gdbarch_stab_reg_to_regnum and
3751 set_gdbarch_sdb_reg_to_regnum. */
3752 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3753 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
3754
3755 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 3756}
8201327c 3757\f
2acceee2 3758
38c968cf
AC
3759/* i386 register groups. In addition to the normal groups, add "mmx"
3760 and "sse". */
3761
3762static struct reggroup *i386_sse_reggroup;
3763static struct reggroup *i386_mmx_reggroup;
3764
3765static void
3766i386_init_reggroups (void)
3767{
3768 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3769 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3770}
3771
3772static void
3773i386_add_reggroups (struct gdbarch *gdbarch)
3774{
3775 reggroup_add (gdbarch, i386_sse_reggroup);
3776 reggroup_add (gdbarch, i386_mmx_reggroup);
3777 reggroup_add (gdbarch, general_reggroup);
3778 reggroup_add (gdbarch, float_reggroup);
3779 reggroup_add (gdbarch, all_reggroup);
3780 reggroup_add (gdbarch, save_reggroup);
3781 reggroup_add (gdbarch, restore_reggroup);
3782 reggroup_add (gdbarch, vector_reggroup);
3783 reggroup_add (gdbarch, system_reggroup);
3784}
3785
3786int
3787i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3788 struct reggroup *group)
3789{
c131fcee
L
3790 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3791 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3792 ymm_regnum_p, ymmh_regnum_p;
acd5c798 3793
1ba53b71
L
3794 /* Don't include pseudo registers, except for MMX, in any register
3795 groups. */
c131fcee 3796 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
3797 return 0;
3798
c131fcee 3799 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3800 return 0;
3801
c131fcee 3802 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
3803 return 0;
3804
3805 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
3806 if (group == i386_mmx_reggroup)
3807 return mmx_regnum_p;
1ba53b71 3808
c131fcee
L
3809 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3810 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 3811 if (group == i386_sse_reggroup)
c131fcee
L
3812 return xmm_regnum_p || mxcsr_regnum_p;
3813
3814 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
38c968cf 3815 if (group == vector_reggroup)
c131fcee
L
3816 return (mmx_regnum_p
3817 || ymm_regnum_p
3818 || mxcsr_regnum_p
3819 || (xmm_regnum_p
3820 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3821 == I386_XSTATE_SSE_MASK)));
1ba53b71
L
3822
3823 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3824 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
3825 if (group == float_reggroup)
3826 return fp_regnum_p;
1ba53b71 3827
c131fcee
L
3828 /* For "info reg all", don't include upper YMM registers nor XMM
3829 registers when AVX is supported. */
3830 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3831 if (group == all_reggroup
3832 && ((xmm_regnum_p
3833 && (tdep->xcr0 & I386_XSTATE_AVX))
3834 || ymmh_regnum_p))
3835 return 0;
3836
38c968cf 3837 if (group == general_reggroup)
1ba53b71
L
3838 return (!fp_regnum_p
3839 && !mmx_regnum_p
c131fcee
L
3840 && !mxcsr_regnum_p
3841 && !xmm_regnum_p
3842 && !ymm_regnum_p
3843 && !ymmh_regnum_p);
acd5c798 3844
38c968cf
AC
3845 return default_register_reggroup_p (gdbarch, regnum, group);
3846}
38c968cf 3847\f
acd5c798 3848
f837910f
MK
3849/* Get the ARGIth function argument for the current function. */
3850
42c466d7 3851static CORE_ADDR
143985b7
AF
3852i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3853 struct type *type)
3854{
e17a4113
UW
3855 struct gdbarch *gdbarch = get_frame_arch (frame);
3856 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f837910f 3857 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 3858 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
3859}
3860
514f746b
AR
3861static void
3862i386_skip_permanent_breakpoint (struct regcache *regcache)
3863{
3864 CORE_ADDR current_pc = regcache_read_pc (regcache);
3865
3866 /* On i386, breakpoint is exactly 1 byte long, so we just
3867 adjust the PC in the regcache. */
3868 current_pc += 1;
3869 regcache_write_pc (regcache, current_pc);
3870}
3871
3872
7ad10968
HZ
3873#define PREFIX_REPZ 0x01
3874#define PREFIX_REPNZ 0x02
3875#define PREFIX_LOCK 0x04
3876#define PREFIX_DATA 0x08
3877#define PREFIX_ADDR 0x10
473f17b0 3878
7ad10968
HZ
3879/* operand size */
3880enum
3881{
3882 OT_BYTE = 0,
3883 OT_WORD,
3884 OT_LONG,
cf648174 3885 OT_QUAD,
a3c4230a 3886 OT_DQUAD,
7ad10968 3887};
473f17b0 3888
7ad10968
HZ
3889/* i386 arith/logic operations */
3890enum
3891{
3892 OP_ADDL,
3893 OP_ORL,
3894 OP_ADCL,
3895 OP_SBBL,
3896 OP_ANDL,
3897 OP_SUBL,
3898 OP_XORL,
3899 OP_CMPL,
3900};
5716833c 3901
7ad10968
HZ
3902struct i386_record_s
3903{
cf648174 3904 struct gdbarch *gdbarch;
7ad10968 3905 struct regcache *regcache;
df61f520 3906 CORE_ADDR orig_addr;
7ad10968
HZ
3907 CORE_ADDR addr;
3908 int aflag;
3909 int dflag;
3910 int override;
3911 uint8_t modrm;
3912 uint8_t mod, reg, rm;
3913 int ot;
cf648174
HZ
3914 uint8_t rex_x;
3915 uint8_t rex_b;
3916 int rip_offset;
3917 int popl_esp_hack;
3918 const int *regmap;
7ad10968 3919};
5716833c 3920
7ad10968 3921/* Parse "modrm" part in current memory address that irp->addr point to
1777feb0 3922 Return -1 if something wrong. */
5716833c 3923
7ad10968
HZ
3924static int
3925i386_record_modrm (struct i386_record_s *irp)
3926{
cf648174 3927 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 3928
7ad10968
HZ
3929 if (target_read_memory (irp->addr, &irp->modrm, 1))
3930 {
3931 if (record_debug)
3932 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3933 "addr %s len = 1.\n"),
3934 paddress (gdbarch, irp->addr));
7ad10968
HZ
3935 return -1;
3936 }
3937 irp->addr++;
3938 irp->mod = (irp->modrm >> 6) & 3;
3939 irp->reg = (irp->modrm >> 3) & 7;
3940 irp->rm = irp->modrm & 7;
5716833c 3941
7ad10968
HZ
3942 return 0;
3943}
d2a7c97a 3944
7ad10968
HZ
3945/* Get the memory address that current instruction write to and set it to
3946 the argument "addr".
1777feb0 3947 Return -1 if something wrong. */
8201327c 3948
7ad10968 3949static int
cf648174 3950i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 3951{
cf648174 3952 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
3953 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3954 gdb_byte buf[4];
3955 ULONGEST offset64;
21d0e8a4 3956
7ad10968
HZ
3957 *addr = 0;
3958 if (irp->aflag)
3959 {
3960 /* 32 bits */
3961 int havesib = 0;
3962 uint8_t scale = 0;
648d0c8b 3963 uint8_t byte;
7ad10968
HZ
3964 uint8_t index = 0;
3965 uint8_t base = irp->rm;
896fb97d 3966
7ad10968
HZ
3967 if (base == 4)
3968 {
3969 havesib = 1;
648d0c8b 3970 if (target_read_memory (irp->addr, &byte, 1))
7ad10968
HZ
3971 {
3972 if (record_debug)
3973 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3974 "at addr %s len = 1.\n"),
3975 paddress (gdbarch, irp->addr));
7ad10968
HZ
3976 return -1;
3977 }
3978 irp->addr++;
648d0c8b
MS
3979 scale = (byte >> 6) & 3;
3980 index = ((byte >> 3) & 7) | irp->rex_x;
3981 base = (byte & 7);
7ad10968 3982 }
cf648174 3983 base |= irp->rex_b;
21d0e8a4 3984
7ad10968
HZ
3985 switch (irp->mod)
3986 {
3987 case 0:
3988 if ((base & 7) == 5)
3989 {
3990 base = 0xff;
60a1502a 3991 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
3992 {
3993 if (record_debug)
3994 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3995 "memory at addr %s len = 4.\n"),
3996 paddress (gdbarch, irp->addr));
7ad10968
HZ
3997 return -1;
3998 }
3999 irp->addr += 4;
60a1502a 4000 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4001 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4002 *addr += irp->addr + irp->rip_offset;
7ad10968 4003 }
7ad10968
HZ
4004 break;
4005 case 1:
60a1502a 4006 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
4007 {
4008 if (record_debug)
4009 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
4010 "at addr %s len = 1.\n"),
4011 paddress (gdbarch, irp->addr));
7ad10968
HZ
4012 return -1;
4013 }
4014 irp->addr++;
60a1502a 4015 *addr = (int8_t) buf[0];
7ad10968
HZ
4016 break;
4017 case 2:
60a1502a 4018 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
4019 {
4020 if (record_debug)
4021 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
4022 "at addr %s len = 4.\n"),
4023 paddress (gdbarch, irp->addr));
7ad10968
HZ
4024 return -1;
4025 }
60a1502a 4026 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4027 irp->addr += 4;
4028 break;
4029 }
356a6b3e 4030
60a1502a 4031 offset64 = 0;
7ad10968 4032 if (base != 0xff)
cf648174
HZ
4033 {
4034 if (base == 4 && irp->popl_esp_hack)
4035 *addr += irp->popl_esp_hack;
4036 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4037 &offset64);
7ad10968 4038 }
cf648174
HZ
4039 if (irp->aflag == 2)
4040 {
60a1502a 4041 *addr += offset64;
cf648174
HZ
4042 }
4043 else
60a1502a 4044 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4045
7ad10968
HZ
4046 if (havesib && (index != 4 || scale != 0))
4047 {
cf648174 4048 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4049 &offset64);
cf648174 4050 if (irp->aflag == 2)
60a1502a 4051 *addr += offset64 << scale;
cf648174 4052 else
60a1502a 4053 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968
HZ
4054 }
4055 }
4056 else
4057 {
4058 /* 16 bits */
4059 switch (irp->mod)
4060 {
4061 case 0:
4062 if (irp->rm == 6)
4063 {
60a1502a 4064 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
4065 {
4066 if (record_debug)
4067 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
4068 "memory at addr %s len = 2.\n"),
4069 paddress (gdbarch, irp->addr));
7ad10968
HZ
4070 return -1;
4071 }
4072 irp->addr += 2;
60a1502a 4073 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4074 irp->rm = 0;
4075 goto no_rm;
4076 }
7ad10968
HZ
4077 break;
4078 case 1:
60a1502a 4079 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
4080 {
4081 if (record_debug)
4082 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
4083 "at addr %s len = 1.\n"),
4084 paddress (gdbarch, irp->addr));
7ad10968
HZ
4085 return -1;
4086 }
4087 irp->addr++;
60a1502a 4088 *addr = (int8_t) buf[0];
7ad10968
HZ
4089 break;
4090 case 2:
60a1502a 4091 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
4092 {
4093 if (record_debug)
4094 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
4095 "at addr %s len = 2.\n"),
4096 paddress (gdbarch, irp->addr));
7ad10968
HZ
4097 return -1;
4098 }
4099 irp->addr += 2;
60a1502a 4100 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4101 break;
4102 }
c4fc7f1b 4103
7ad10968
HZ
4104 switch (irp->rm)
4105 {
4106 case 0:
cf648174
HZ
4107 regcache_raw_read_unsigned (irp->regcache,
4108 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4109 &offset64);
4110 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4111 regcache_raw_read_unsigned (irp->regcache,
4112 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4113 &offset64);
4114 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4115 break;
4116 case 1:
cf648174
HZ
4117 regcache_raw_read_unsigned (irp->regcache,
4118 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4119 &offset64);
4120 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4121 regcache_raw_read_unsigned (irp->regcache,
4122 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4123 &offset64);
4124 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4125 break;
4126 case 2:
cf648174
HZ
4127 regcache_raw_read_unsigned (irp->regcache,
4128 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4129 &offset64);
4130 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4131 regcache_raw_read_unsigned (irp->regcache,
4132 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4133 &offset64);
4134 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4135 break;
4136 case 3:
cf648174
HZ
4137 regcache_raw_read_unsigned (irp->regcache,
4138 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4139 &offset64);
4140 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4141 regcache_raw_read_unsigned (irp->regcache,
4142 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4143 &offset64);
4144 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4145 break;
4146 case 4:
cf648174
HZ
4147 regcache_raw_read_unsigned (irp->regcache,
4148 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4149 &offset64);
4150 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4151 break;
4152 case 5:
cf648174
HZ
4153 regcache_raw_read_unsigned (irp->regcache,
4154 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4155 &offset64);
4156 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4157 break;
4158 case 6:
cf648174
HZ
4159 regcache_raw_read_unsigned (irp->regcache,
4160 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4161 &offset64);
4162 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4163 break;
4164 case 7:
cf648174
HZ
4165 regcache_raw_read_unsigned (irp->regcache,
4166 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4167 &offset64);
4168 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4169 break;
4170 }
4171 *addr &= 0xffff;
4172 }
c4fc7f1b 4173
01fe1b41 4174 no_rm:
7ad10968
HZ
4175 return 0;
4176}
c4fc7f1b 4177
7ad10968
HZ
4178/* Record the value of the memory that willbe changed in current instruction
4179 to "record_arch_list".
1777feb0 4180 Return -1 if something wrong. */
356a6b3e 4181
7ad10968
HZ
4182static int
4183i386_record_lea_modrm (struct i386_record_s *irp)
4184{
cf648174
HZ
4185 struct gdbarch *gdbarch = irp->gdbarch;
4186 uint64_t addr;
356a6b3e 4187
d7877f7e 4188 if (irp->override >= 0)
7ad10968 4189 {
bb08c432
HZ
4190 if (record_memory_query)
4191 {
4192 int q;
4193
4194 target_terminal_ours ();
4195 q = yquery (_("\
4196Process record ignores the memory change of instruction at address %s\n\
4197because it can't get the value of the segment register.\n\
4198Do you want to stop the program?"),
4199 paddress (gdbarch, irp->orig_addr));
4200 target_terminal_inferior ();
4201 if (q)
4202 return -1;
4203 }
4204
7ad10968
HZ
4205 return 0;
4206 }
61113f8b 4207
7ad10968
HZ
4208 if (i386_record_lea_modrm_addr (irp, &addr))
4209 return -1;
96297dab 4210
7ad10968
HZ
4211 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4212 return -1;
a62cc96e 4213
7ad10968
HZ
4214 return 0;
4215}
b6197528 4216
cf648174 4217/* Record the push operation to "record_arch_list".
1777feb0 4218 Return -1 if something wrong. */
cf648174
HZ
4219
4220static int
4221i386_record_push (struct i386_record_s *irp, int size)
4222{
648d0c8b 4223 ULONGEST addr;
cf648174
HZ
4224
4225 if (record_arch_list_add_reg (irp->regcache,
4226 irp->regmap[X86_RECORD_RESP_REGNUM]))
4227 return -1;
4228 regcache_raw_read_unsigned (irp->regcache,
4229 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b
MS
4230 &addr);
4231 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4232 return -1;
4233
4234 return 0;
4235}
4236
0289bdd7
MS
4237
4238/* Defines contents to record. */
4239#define I386_SAVE_FPU_REGS 0xfffd
4240#define I386_SAVE_FPU_ENV 0xfffe
4241#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4242
1777feb0
MS
4243/* Record the value of floating point registers which will be changed
4244 by the current instruction to "record_arch_list". Return -1 if
4245 something is wrong. */
0289bdd7
MS
4246
4247static int i386_record_floats (struct gdbarch *gdbarch,
4248 struct i386_record_s *ir,
4249 uint32_t iregnum)
4250{
4251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4252 int i;
4253
4254 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4255 happen. Currently we store st0-st7 registers, but we need not store all
4256 registers all the time, in future we use ftag register and record only
4257 those who are not marked as an empty. */
4258
4259 if (I386_SAVE_FPU_REGS == iregnum)
4260 {
4261 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4262 {
4263 if (record_arch_list_add_reg (ir->regcache, i))
4264 return -1;
4265 }
4266 }
4267 else if (I386_SAVE_FPU_ENV == iregnum)
4268 {
4269 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4270 {
4271 if (record_arch_list_add_reg (ir->regcache, i))
4272 return -1;
4273 }
4274 }
4275 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4276 {
4277 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4278 {
4279 if (record_arch_list_add_reg (ir->regcache, i))
4280 return -1;
4281 }
4282 }
4283 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4284 (iregnum <= I387_FOP_REGNUM (tdep)))
4285 {
4286 if (record_arch_list_add_reg (ir->regcache,iregnum))
4287 return -1;
4288 }
4289 else
4290 {
4291 /* Parameter error. */
4292 return -1;
4293 }
4294 if(I386_SAVE_FPU_ENV != iregnum)
4295 {
4296 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4297 {
4298 if (record_arch_list_add_reg (ir->regcache, i))
4299 return -1;
4300 }
4301 }
4302 return 0;
4303}
4304
7ad10968
HZ
4305/* Parse the current instruction and record the values of the registers and
4306 memory that will be changed in current instruction to "record_arch_list".
1777feb0 4307 Return -1 if something wrong. */
8201327c 4308
cf648174
HZ
4309#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4310 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4311
a6b808b4 4312int
7ad10968 4313i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4314 CORE_ADDR input_addr)
7ad10968 4315{
60a1502a 4316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4317 int prefixes = 0;
580879fc 4318 int regnum = 0;
425b824a
MS
4319 uint32_t opcode;
4320 uint8_t opcode8;
648d0c8b 4321 ULONGEST addr;
60a1502a 4322 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4323 struct i386_record_s ir;
0289bdd7 4324 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4325 int rex = 0;
4326 uint8_t rex_w = -1;
4327 uint8_t rex_r = 0;
7ad10968 4328
8408d274 4329 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4330 ir.regcache = regcache;
648d0c8b
MS
4331 ir.addr = input_addr;
4332 ir.orig_addr = input_addr;
7ad10968
HZ
4333 ir.aflag = 1;
4334 ir.dflag = 1;
cf648174
HZ
4335 ir.override = -1;
4336 ir.popl_esp_hack = 0;
a3c4230a 4337 ir.regmap = tdep->record_regmap;
cf648174 4338 ir.gdbarch = gdbarch;
7ad10968
HZ
4339
4340 if (record_debug > 1)
4341 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4342 "addr = %s\n",
4343 paddress (gdbarch, ir.addr));
7ad10968
HZ
4344
4345 /* prefixes */
4346 while (1)
4347 {
425b824a 4348 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
4349 {
4350 if (record_debug)
4351 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
4352 "addr %s len = 1.\n"),
4353 paddress (gdbarch, ir.addr));
7ad10968
HZ
4354 return -1;
4355 }
4356 ir.addr++;
425b824a 4357 switch (opcode8) /* Instruction prefixes */
7ad10968 4358 {
01fe1b41 4359 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4360 prefixes |= PREFIX_REPZ;
4361 break;
01fe1b41 4362 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4363 prefixes |= PREFIX_REPNZ;
4364 break;
01fe1b41 4365 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4366 prefixes |= PREFIX_LOCK;
4367 break;
01fe1b41 4368 case CS_PREFIX_OPCODE:
cf648174 4369 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 4370 break;
01fe1b41 4371 case SS_PREFIX_OPCODE:
cf648174 4372 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 4373 break;
01fe1b41 4374 case DS_PREFIX_OPCODE:
cf648174 4375 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 4376 break;
01fe1b41 4377 case ES_PREFIX_OPCODE:
cf648174 4378 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 4379 break;
01fe1b41 4380 case FS_PREFIX_OPCODE:
cf648174 4381 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 4382 break;
01fe1b41 4383 case GS_PREFIX_OPCODE:
cf648174 4384 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 4385 break;
01fe1b41 4386 case DATA_PREFIX_OPCODE:
7ad10968
HZ
4387 prefixes |= PREFIX_DATA;
4388 break;
01fe1b41 4389 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
4390 prefixes |= PREFIX_ADDR;
4391 break;
d691bec7
MS
4392 case 0x40: /* i386 inc %eax */
4393 case 0x41: /* i386 inc %ecx */
4394 case 0x42: /* i386 inc %edx */
4395 case 0x43: /* i386 inc %ebx */
4396 case 0x44: /* i386 inc %esp */
4397 case 0x45: /* i386 inc %ebp */
4398 case 0x46: /* i386 inc %esi */
4399 case 0x47: /* i386 inc %edi */
4400 case 0x48: /* i386 dec %eax */
4401 case 0x49: /* i386 dec %ecx */
4402 case 0x4a: /* i386 dec %edx */
4403 case 0x4b: /* i386 dec %ebx */
4404 case 0x4c: /* i386 dec %esp */
4405 case 0x4d: /* i386 dec %ebp */
4406 case 0x4e: /* i386 dec %esi */
4407 case 0x4f: /* i386 dec %edi */
4408 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
4409 {
4410 /* REX */
4411 rex = 1;
425b824a
MS
4412 rex_w = (opcode8 >> 3) & 1;
4413 rex_r = (opcode8 & 0x4) << 1;
4414 ir.rex_x = (opcode8 & 0x2) << 2;
4415 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 4416 }
d691bec7
MS
4417 else /* 32 bit target */
4418 goto out_prefixes;
cf648174 4419 break;
7ad10968
HZ
4420 default:
4421 goto out_prefixes;
4422 break;
4423 }
4424 }
01fe1b41 4425 out_prefixes:
cf648174
HZ
4426 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4427 {
4428 ir.dflag = 2;
4429 }
4430 else
4431 {
4432 if (prefixes & PREFIX_DATA)
4433 ir.dflag ^= 1;
4434 }
7ad10968
HZ
4435 if (prefixes & PREFIX_ADDR)
4436 ir.aflag ^= 1;
cf648174
HZ
4437 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4438 ir.aflag = 2;
7ad10968 4439
1777feb0 4440 /* Now check op code. */
425b824a 4441 opcode = (uint32_t) opcode8;
01fe1b41 4442 reswitch:
7ad10968
HZ
4443 switch (opcode)
4444 {
4445 case 0x0f:
425b824a 4446 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
4447 {
4448 if (record_debug)
4449 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
4450 "addr %s len = 1.\n"),
4451 paddress (gdbarch, ir.addr));
7ad10968
HZ
4452 return -1;
4453 }
4454 ir.addr++;
a3c4230a 4455 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
4456 goto reswitch;
4457 break;
93924b6b 4458
a38bba38 4459 case 0x00: /* arith & logic */
7ad10968
HZ
4460 case 0x01:
4461 case 0x02:
4462 case 0x03:
4463 case 0x04:
4464 case 0x05:
4465 case 0x08:
4466 case 0x09:
4467 case 0x0a:
4468 case 0x0b:
4469 case 0x0c:
4470 case 0x0d:
4471 case 0x10:
4472 case 0x11:
4473 case 0x12:
4474 case 0x13:
4475 case 0x14:
4476 case 0x15:
4477 case 0x18:
4478 case 0x19:
4479 case 0x1a:
4480 case 0x1b:
4481 case 0x1c:
4482 case 0x1d:
4483 case 0x20:
4484 case 0x21:
4485 case 0x22:
4486 case 0x23:
4487 case 0x24:
4488 case 0x25:
4489 case 0x28:
4490 case 0x29:
4491 case 0x2a:
4492 case 0x2b:
4493 case 0x2c:
4494 case 0x2d:
4495 case 0x30:
4496 case 0x31:
4497 case 0x32:
4498 case 0x33:
4499 case 0x34:
4500 case 0x35:
4501 case 0x38:
4502 case 0x39:
4503 case 0x3a:
4504 case 0x3b:
4505 case 0x3c:
4506 case 0x3d:
4507 if (((opcode >> 3) & 7) != OP_CMPL)
4508 {
4509 if ((opcode & 1) == 0)
4510 ir.ot = OT_BYTE;
4511 else
4512 ir.ot = ir.dflag + OT_WORD;
93924b6b 4513
7ad10968
HZ
4514 switch ((opcode >> 1) & 3)
4515 {
a38bba38 4516 case 0: /* OP Ev, Gv */
7ad10968
HZ
4517 if (i386_record_modrm (&ir))
4518 return -1;
4519 if (ir.mod != 3)
4520 {
4521 if (i386_record_lea_modrm (&ir))
4522 return -1;
4523 }
4524 else
4525 {
cf648174
HZ
4526 ir.rm |= ir.rex_b;
4527 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4528 ir.rm &= 0x3;
cf648174 4529 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4530 }
4531 break;
a38bba38 4532 case 1: /* OP Gv, Ev */
7ad10968
HZ
4533 if (i386_record_modrm (&ir))
4534 return -1;
cf648174
HZ
4535 ir.reg |= rex_r;
4536 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4537 ir.reg &= 0x3;
cf648174 4538 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4539 break;
a38bba38 4540 case 2: /* OP A, Iv */
cf648174 4541 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4542 break;
4543 }
4544 }
cf648174 4545 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4546 break;
42fdc8df 4547
a38bba38 4548 case 0x80: /* GRP1 */
7ad10968
HZ
4549 case 0x81:
4550 case 0x82:
4551 case 0x83:
4552 if (i386_record_modrm (&ir))
4553 return -1;
8201327c 4554
7ad10968
HZ
4555 if (ir.reg != OP_CMPL)
4556 {
4557 if ((opcode & 1) == 0)
4558 ir.ot = OT_BYTE;
4559 else
4560 ir.ot = ir.dflag + OT_WORD;
28fc6740 4561
7ad10968
HZ
4562 if (ir.mod != 3)
4563 {
cf648174
HZ
4564 if (opcode == 0x83)
4565 ir.rip_offset = 1;
4566 else
4567 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4568 if (i386_record_lea_modrm (&ir))
4569 return -1;
4570 }
4571 else
cf648174 4572 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 4573 }
cf648174 4574 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4575 break;
5e3397bb 4576
a38bba38 4577 case 0x40: /* inc */
7ad10968
HZ
4578 case 0x41:
4579 case 0x42:
4580 case 0x43:
4581 case 0x44:
4582 case 0x45:
4583 case 0x46:
4584 case 0x47:
a38bba38
MS
4585
4586 case 0x48: /* dec */
7ad10968
HZ
4587 case 0x49:
4588 case 0x4a:
4589 case 0x4b:
4590 case 0x4c:
4591 case 0x4d:
4592 case 0x4e:
4593 case 0x4f:
a38bba38 4594
cf648174
HZ
4595 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4596 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4597 break;
acd5c798 4598
a38bba38 4599 case 0xf6: /* GRP3 */
7ad10968
HZ
4600 case 0xf7:
4601 if ((opcode & 1) == 0)
4602 ir.ot = OT_BYTE;
4603 else
4604 ir.ot = ir.dflag + OT_WORD;
4605 if (i386_record_modrm (&ir))
4606 return -1;
acd5c798 4607
cf648174
HZ
4608 if (ir.mod != 3 && ir.reg == 0)
4609 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4610
7ad10968
HZ
4611 switch (ir.reg)
4612 {
a38bba38 4613 case 0: /* test */
cf648174 4614 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4615 break;
a38bba38
MS
4616 case 2: /* not */
4617 case 3: /* neg */
7ad10968
HZ
4618 if (ir.mod != 3)
4619 {
4620 if (i386_record_lea_modrm (&ir))
4621 return -1;
4622 }
4623 else
4624 {
cf648174
HZ
4625 ir.rm |= ir.rex_b;
4626 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4627 ir.rm &= 0x3;
cf648174 4628 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4629 }
a38bba38 4630 if (ir.reg == 3) /* neg */
cf648174 4631 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4632 break;
a38bba38
MS
4633 case 4: /* mul */
4634 case 5: /* imul */
4635 case 6: /* div */
4636 case 7: /* idiv */
cf648174 4637 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 4638 if (ir.ot != OT_BYTE)
cf648174
HZ
4639 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4640 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4641 break;
4642 default:
4643 ir.addr -= 2;
4644 opcode = opcode << 8 | ir.modrm;
4645 goto no_support;
4646 break;
4647 }
4648 break;
4649
a38bba38
MS
4650 case 0xfe: /* GRP4 */
4651 case 0xff: /* GRP5 */
7ad10968
HZ
4652 if (i386_record_modrm (&ir))
4653 return -1;
4654 if (ir.reg >= 2 && opcode == 0xfe)
4655 {
4656 ir.addr -= 2;
4657 opcode = opcode << 8 | ir.modrm;
4658 goto no_support;
4659 }
7ad10968
HZ
4660 switch (ir.reg)
4661 {
a38bba38
MS
4662 case 0: /* inc */
4663 case 1: /* dec */
cf648174
HZ
4664 if ((opcode & 1) == 0)
4665 ir.ot = OT_BYTE;
4666 else
4667 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4668 if (ir.mod != 3)
4669 {
4670 if (i386_record_lea_modrm (&ir))
4671 return -1;
4672 }
4673 else
4674 {
cf648174
HZ
4675 ir.rm |= ir.rex_b;
4676 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4677 ir.rm &= 0x3;
cf648174 4678 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4679 }
cf648174 4680 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4681 break;
a38bba38 4682 case 2: /* call */
cf648174
HZ
4683 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4684 ir.dflag = 2;
4685 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4686 return -1;
cf648174 4687 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4688 break;
a38bba38 4689 case 3: /* lcall */
cf648174
HZ
4690 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4691 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4692 return -1;
cf648174 4693 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4694 break;
a38bba38
MS
4695 case 4: /* jmp */
4696 case 5: /* ljmp */
cf648174
HZ
4697 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4698 break;
a38bba38 4699 case 6: /* push */
cf648174
HZ
4700 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4701 ir.dflag = 2;
4702 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4703 return -1;
7ad10968
HZ
4704 break;
4705 default:
4706 ir.addr -= 2;
4707 opcode = opcode << 8 | ir.modrm;
4708 goto no_support;
4709 break;
4710 }
4711 break;
4712
a38bba38 4713 case 0x84: /* test */
7ad10968
HZ
4714 case 0x85:
4715 case 0xa8:
4716 case 0xa9:
cf648174 4717 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4718 break;
4719
a38bba38 4720 case 0x98: /* CWDE/CBW */
cf648174 4721 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4722 break;
4723
a38bba38 4724 case 0x99: /* CDQ/CWD */
cf648174
HZ
4725 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4726 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4727 break;
4728
a38bba38 4729 case 0x0faf: /* imul */
7ad10968
HZ
4730 case 0x69:
4731 case 0x6b:
4732 ir.ot = ir.dflag + OT_WORD;
4733 if (i386_record_modrm (&ir))
4734 return -1;
cf648174
HZ
4735 if (opcode == 0x69)
4736 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4737 else if (opcode == 0x6b)
4738 ir.rip_offset = 1;
4739 ir.reg |= rex_r;
4740 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4741 ir.reg &= 0x3;
cf648174
HZ
4742 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4743 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4744 break;
4745
a38bba38 4746 case 0x0fc0: /* xadd */
7ad10968
HZ
4747 case 0x0fc1:
4748 if ((opcode & 1) == 0)
4749 ir.ot = OT_BYTE;
4750 else
4751 ir.ot = ir.dflag + OT_WORD;
4752 if (i386_record_modrm (&ir))
4753 return -1;
cf648174 4754 ir.reg |= rex_r;
7ad10968
HZ
4755 if (ir.mod == 3)
4756 {
cf648174 4757 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4758 ir.reg &= 0x3;
cf648174
HZ
4759 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4760 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4761 ir.rm &= 0x3;
cf648174 4762 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4763 }
4764 else
4765 {
4766 if (i386_record_lea_modrm (&ir))
4767 return -1;
cf648174 4768 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4769 ir.reg &= 0x3;
cf648174 4770 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4771 }
cf648174 4772 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4773 break;
4774
a38bba38 4775 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
4776 case 0x0fb1:
4777 if ((opcode & 1) == 0)
4778 ir.ot = OT_BYTE;
4779 else
4780 ir.ot = ir.dflag + OT_WORD;
4781 if (i386_record_modrm (&ir))
4782 return -1;
4783 if (ir.mod == 3)
4784 {
cf648174
HZ
4785 ir.reg |= rex_r;
4786 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4787 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4788 ir.reg &= 0x3;
cf648174 4789 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4790 }
4791 else
4792 {
cf648174 4793 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4794 if (i386_record_lea_modrm (&ir))
4795 return -1;
4796 }
cf648174 4797 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4798 break;
4799
a38bba38 4800 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
4801 if (i386_record_modrm (&ir))
4802 return -1;
4803 if (ir.mod == 3)
4804 {
4805 ir.addr -= 2;
4806 opcode = opcode << 8 | ir.modrm;
4807 goto no_support;
4808 }
cf648174
HZ
4809 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4810 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4811 if (i386_record_lea_modrm (&ir))
4812 return -1;
cf648174 4813 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4814 break;
4815
a38bba38 4816 case 0x50: /* push */
7ad10968
HZ
4817 case 0x51:
4818 case 0x52:
4819 case 0x53:
4820 case 0x54:
4821 case 0x55:
4822 case 0x56:
4823 case 0x57:
4824 case 0x68:
4825 case 0x6a:
cf648174
HZ
4826 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4827 ir.dflag = 2;
4828 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4829 return -1;
4830 break;
4831
a38bba38
MS
4832 case 0x06: /* push es */
4833 case 0x0e: /* push cs */
4834 case 0x16: /* push ss */
4835 case 0x1e: /* push ds */
cf648174
HZ
4836 if (ir.regmap[X86_RECORD_R8_REGNUM])
4837 {
4838 ir.addr -= 1;
4839 goto no_support;
4840 }
4841 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4842 return -1;
4843 break;
4844
a38bba38
MS
4845 case 0x0fa0: /* push fs */
4846 case 0x0fa8: /* push gs */
cf648174
HZ
4847 if (ir.regmap[X86_RECORD_R8_REGNUM])
4848 {
4849 ir.addr -= 2;
4850 goto no_support;
4851 }
4852 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4853 return -1;
cf648174
HZ
4854 break;
4855
a38bba38 4856 case 0x60: /* pusha */
cf648174
HZ
4857 if (ir.regmap[X86_RECORD_R8_REGNUM])
4858 {
4859 ir.addr -= 1;
4860 goto no_support;
4861 }
4862 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
4863 return -1;
4864 break;
4865
a38bba38 4866 case 0x58: /* pop */
7ad10968
HZ
4867 case 0x59:
4868 case 0x5a:
4869 case 0x5b:
4870 case 0x5c:
4871 case 0x5d:
4872 case 0x5e:
4873 case 0x5f:
cf648174
HZ
4874 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4875 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4876 break;
4877
a38bba38 4878 case 0x61: /* popa */
cf648174
HZ
4879 if (ir.regmap[X86_RECORD_R8_REGNUM])
4880 {
4881 ir.addr -= 1;
4882 goto no_support;
7ad10968 4883 }
425b824a
MS
4884 for (regnum = X86_RECORD_REAX_REGNUM;
4885 regnum <= X86_RECORD_REDI_REGNUM;
4886 regnum++)
4887 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
4888 break;
4889
a38bba38 4890 case 0x8f: /* pop */
cf648174
HZ
4891 if (ir.regmap[X86_RECORD_R8_REGNUM])
4892 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4893 else
4894 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4895 if (i386_record_modrm (&ir))
4896 return -1;
4897 if (ir.mod == 3)
cf648174 4898 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
4899 else
4900 {
cf648174 4901 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
4902 if (i386_record_lea_modrm (&ir))
4903 return -1;
4904 }
cf648174 4905 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
4906 break;
4907
a38bba38 4908 case 0xc8: /* enter */
cf648174
HZ
4909 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4910 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4911 ir.dflag = 2;
4912 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
4913 return -1;
4914 break;
4915
a38bba38 4916 case 0xc9: /* leave */
cf648174
HZ
4917 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4918 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
4919 break;
4920
a38bba38 4921 case 0x07: /* pop es */
cf648174
HZ
4922 if (ir.regmap[X86_RECORD_R8_REGNUM])
4923 {
4924 ir.addr -= 1;
4925 goto no_support;
4926 }
4927 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4928 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4929 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4930 break;
4931
a38bba38 4932 case 0x17: /* pop ss */
cf648174
HZ
4933 if (ir.regmap[X86_RECORD_R8_REGNUM])
4934 {
4935 ir.addr -= 1;
4936 goto no_support;
4937 }
4938 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4939 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4940 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4941 break;
4942
a38bba38 4943 case 0x1f: /* pop ds */
cf648174
HZ
4944 if (ir.regmap[X86_RECORD_R8_REGNUM])
4945 {
4946 ir.addr -= 1;
4947 goto no_support;
4948 }
4949 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4950 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4952 break;
4953
a38bba38 4954 case 0x0fa1: /* pop fs */
cf648174
HZ
4955 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4956 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4957 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4958 break;
4959
a38bba38 4960 case 0x0fa9: /* pop gs */
cf648174
HZ
4961 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4962 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4963 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4964 break;
4965
a38bba38 4966 case 0x88: /* mov */
7ad10968
HZ
4967 case 0x89:
4968 case 0xc6:
4969 case 0xc7:
4970 if ((opcode & 1) == 0)
4971 ir.ot = OT_BYTE;
4972 else
4973 ir.ot = ir.dflag + OT_WORD;
4974
4975 if (i386_record_modrm (&ir))
4976 return -1;
4977
4978 if (ir.mod != 3)
4979 {
cf648174
HZ
4980 if (opcode == 0xc6 || opcode == 0xc7)
4981 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4982 if (i386_record_lea_modrm (&ir))
4983 return -1;
4984 }
4985 else
4986 {
cf648174
HZ
4987 if (opcode == 0xc6 || opcode == 0xc7)
4988 ir.rm |= ir.rex_b;
4989 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4990 ir.rm &= 0x3;
cf648174 4991 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4992 }
7ad10968 4993 break;
cf648174 4994
a38bba38 4995 case 0x8a: /* mov */
7ad10968
HZ
4996 case 0x8b:
4997 if ((opcode & 1) == 0)
4998 ir.ot = OT_BYTE;
4999 else
5000 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5001 if (i386_record_modrm (&ir))
5002 return -1;
cf648174
HZ
5003 ir.reg |= rex_r;
5004 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5005 ir.reg &= 0x3;
cf648174
HZ
5006 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5007 break;
7ad10968 5008
a38bba38 5009 case 0x8c: /* mov seg */
cf648174 5010 if (i386_record_modrm (&ir))
7ad10968 5011 return -1;
cf648174
HZ
5012 if (ir.reg > 5)
5013 {
5014 ir.addr -= 2;
5015 opcode = opcode << 8 | ir.modrm;
5016 goto no_support;
5017 }
5018
5019 if (ir.mod == 3)
5020 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5021 else
5022 {
5023 ir.ot = OT_WORD;
5024 if (i386_record_lea_modrm (&ir))
5025 return -1;
5026 }
7ad10968
HZ
5027 break;
5028
a38bba38 5029 case 0x8e: /* mov seg */
7ad10968
HZ
5030 if (i386_record_modrm (&ir))
5031 return -1;
7ad10968
HZ
5032 switch (ir.reg)
5033 {
5034 case 0:
425b824a 5035 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5036 break;
5037 case 2:
425b824a 5038 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5039 break;
5040 case 3:
425b824a 5041 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5042 break;
5043 case 4:
425b824a 5044 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5045 break;
5046 case 5:
425b824a 5047 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5048 break;
5049 default:
5050 ir.addr -= 2;
5051 opcode = opcode << 8 | ir.modrm;
5052 goto no_support;
5053 break;
5054 }
425b824a 5055 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174 5056 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5057 break;
5058
a38bba38
MS
5059 case 0x0fb6: /* movzbS */
5060 case 0x0fb7: /* movzwS */
5061 case 0x0fbe: /* movsbS */
5062 case 0x0fbf: /* movswS */
7ad10968
HZ
5063 if (i386_record_modrm (&ir))
5064 return -1;
cf648174 5065 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5066 break;
5067
a38bba38 5068 case 0x8d: /* lea */
7ad10968
HZ
5069 if (i386_record_modrm (&ir))
5070 return -1;
5071 if (ir.mod == 3)
5072 {
5073 ir.addr -= 2;
5074 opcode = opcode << 8 | ir.modrm;
5075 goto no_support;
5076 }
7ad10968 5077 ir.ot = ir.dflag;
cf648174
HZ
5078 ir.reg |= rex_r;
5079 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5080 ir.reg &= 0x3;
cf648174 5081 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5082 break;
5083
a38bba38 5084 case 0xa0: /* mov EAX */
7ad10968 5085 case 0xa1:
a38bba38
MS
5086
5087 case 0xd7: /* xlat */
cf648174 5088 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5089 break;
5090
a38bba38 5091 case 0xa2: /* mov EAX */
7ad10968 5092 case 0xa3:
d7877f7e 5093 if (ir.override >= 0)
cf648174 5094 {
bb08c432
HZ
5095 if (record_memory_query)
5096 {
5097 int q;
5098
5099 target_terminal_ours ();
5100 q = yquery (_("\
5101Process record ignores the memory change of instruction at address %s\n\
5102because it can't get the value of the segment register.\n\
5103Do you want to stop the program?"),
5104 paddress (gdbarch, ir.orig_addr));
5105 target_terminal_inferior ();
5106 if (q)
5107 return -1;
5108 }
cf648174
HZ
5109 }
5110 else
5111 {
5112 if ((opcode & 1) == 0)
5113 ir.ot = OT_BYTE;
5114 else
5115 ir.ot = ir.dflag + OT_WORD;
5116 if (ir.aflag == 2)
5117 {
60a1502a 5118 if (target_read_memory (ir.addr, buf, 8))
cf648174
HZ
5119 {
5120 if (record_debug)
5121 printf_unfiltered (_("Process record: error reading "
5122 "memory at addr 0x%s len = 8.\n"),
5123 paddress (gdbarch, ir.addr));
5124 return -1;
5125 }
5126 ir.addr += 8;
60a1502a 5127 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5128 }
5129 else if (ir.aflag)
5130 {
60a1502a 5131 if (target_read_memory (ir.addr, buf, 4))
cf648174
HZ
5132 {
5133 if (record_debug)
5134 printf_unfiltered (_("Process record: error reading "
5135 "memory at addr 0x%s len = 4.\n"),
5136 paddress (gdbarch, ir.addr));
5137 return -1;
5138 }
5139 ir.addr += 4;
60a1502a 5140 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5141 }
5142 else
5143 {
60a1502a 5144 if (target_read_memory (ir.addr, buf, 2))
cf648174
HZ
5145 {
5146 if (record_debug)
5147 printf_unfiltered (_("Process record: error reading "
5148 "memory at addr 0x%s len = 2.\n"),
5149 paddress (gdbarch, ir.addr));
5150 return -1;
5151 }
5152 ir.addr += 2;
60a1502a 5153 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5154 }
648d0c8b 5155 if (record_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5156 return -1;
5157 }
7ad10968
HZ
5158 break;
5159
a38bba38 5160 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5161 case 0xb1:
5162 case 0xb2:
5163 case 0xb3:
5164 case 0xb4:
5165 case 0xb5:
5166 case 0xb6:
5167 case 0xb7:
cf648174
HZ
5168 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5169 ? ((opcode & 0x7) | ir.rex_b)
5170 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5171 break;
5172
a38bba38 5173 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5174 case 0xb9:
5175 case 0xba:
5176 case 0xbb:
5177 case 0xbc:
5178 case 0xbd:
5179 case 0xbe:
5180 case 0xbf:
cf648174 5181 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5182 break;
5183
a38bba38 5184 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5185 case 0x92:
5186 case 0x93:
5187 case 0x94:
5188 case 0x95:
5189 case 0x96:
5190 case 0x97:
cf648174
HZ
5191 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5192 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5193 break;
5194
a38bba38 5195 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5196 case 0x87:
5197 if ((opcode & 1) == 0)
5198 ir.ot = OT_BYTE;
5199 else
5200 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5201 if (i386_record_modrm (&ir))
5202 return -1;
7ad10968
HZ
5203 if (ir.mod == 3)
5204 {
86839d38 5205 ir.rm |= ir.rex_b;
cf648174
HZ
5206 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5207 ir.rm &= 0x3;
5208 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5209 }
5210 else
5211 {
5212 if (i386_record_lea_modrm (&ir))
5213 return -1;
5214 }
cf648174
HZ
5215 ir.reg |= rex_r;
5216 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5217 ir.reg &= 0x3;
cf648174 5218 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5219 break;
5220
a38bba38
MS
5221 case 0xc4: /* les Gv */
5222 case 0xc5: /* lds Gv */
cf648174
HZ
5223 if (ir.regmap[X86_RECORD_R8_REGNUM])
5224 {
5225 ir.addr -= 1;
5226 goto no_support;
5227 }
d3f323f3 5228 /* FALLTHROUGH */
a38bba38
MS
5229 case 0x0fb2: /* lss Gv */
5230 case 0x0fb4: /* lfs Gv */
5231 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5232 if (i386_record_modrm (&ir))
5233 return -1;
5234 if (ir.mod == 3)
5235 {
5236 if (opcode > 0xff)
5237 ir.addr -= 3;
5238 else
5239 ir.addr -= 2;
5240 opcode = opcode << 8 | ir.modrm;
5241 goto no_support;
5242 }
7ad10968
HZ
5243 switch (opcode)
5244 {
a38bba38 5245 case 0xc4: /* les Gv */
425b824a 5246 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5247 break;
a38bba38 5248 case 0xc5: /* lds Gv */
425b824a 5249 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5250 break;
a38bba38 5251 case 0x0fb2: /* lss Gv */
425b824a 5252 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5253 break;
a38bba38 5254 case 0x0fb4: /* lfs Gv */
425b824a 5255 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5256 break;
a38bba38 5257 case 0x0fb5: /* lgs Gv */
425b824a 5258 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5259 break;
5260 }
425b824a 5261 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174
HZ
5262 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5263 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5264 break;
5265
a38bba38 5266 case 0xc0: /* shifts */
7ad10968
HZ
5267 case 0xc1:
5268 case 0xd0:
5269 case 0xd1:
5270 case 0xd2:
5271 case 0xd3:
5272 if ((opcode & 1) == 0)
5273 ir.ot = OT_BYTE;
5274 else
5275 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5276 if (i386_record_modrm (&ir))
5277 return -1;
7ad10968
HZ
5278 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5279 {
5280 if (i386_record_lea_modrm (&ir))
5281 return -1;
5282 }
5283 else
5284 {
cf648174
HZ
5285 ir.rm |= ir.rex_b;
5286 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5287 ir.rm &= 0x3;
cf648174 5288 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5289 }
cf648174 5290 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5291 break;
5292
5293 case 0x0fa4:
5294 case 0x0fa5:
5295 case 0x0fac:
5296 case 0x0fad:
5297 if (i386_record_modrm (&ir))
5298 return -1;
5299 if (ir.mod == 3)
5300 {
5301 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5302 return -1;
5303 }
5304 else
5305 {
5306 if (i386_record_lea_modrm (&ir))
5307 return -1;
5308 }
5309 break;
5310
a38bba38 5311 case 0xd8: /* Floats. */
7ad10968
HZ
5312 case 0xd9:
5313 case 0xda:
5314 case 0xdb:
5315 case 0xdc:
5316 case 0xdd:
5317 case 0xde:
5318 case 0xdf:
5319 if (i386_record_modrm (&ir))
5320 return -1;
5321 ir.reg |= ((opcode & 7) << 3);
5322 if (ir.mod != 3)
5323 {
1777feb0 5324 /* Memory. */
955db0c0 5325 uint64_t addr64;
7ad10968 5326
955db0c0 5327 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5328 return -1;
5329 switch (ir.reg)
5330 {
7ad10968 5331 case 0x02:
0289bdd7
MS
5332 case 0x12:
5333 case 0x22:
5334 case 0x32:
5335 /* For fcom, ficom nothing to do. */
5336 break;
7ad10968 5337 case 0x03:
0289bdd7
MS
5338 case 0x13:
5339 case 0x23:
5340 case 0x33:
5341 /* For fcomp, ficomp pop FPU stack, store all. */
5342 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5343 return -1;
5344 break;
5345 case 0x00:
5346 case 0x01:
7ad10968
HZ
5347 case 0x04:
5348 case 0x05:
5349 case 0x06:
5350 case 0x07:
5351 case 0x10:
5352 case 0x11:
7ad10968
HZ
5353 case 0x14:
5354 case 0x15:
5355 case 0x16:
5356 case 0x17:
5357 case 0x20:
5358 case 0x21:
7ad10968
HZ
5359 case 0x24:
5360 case 0x25:
5361 case 0x26:
5362 case 0x27:
5363 case 0x30:
5364 case 0x31:
7ad10968
HZ
5365 case 0x34:
5366 case 0x35:
5367 case 0x36:
5368 case 0x37:
0289bdd7
MS
5369 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5370 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5371 of code, always affects st(0) register. */
5372 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5373 return -1;
7ad10968
HZ
5374 break;
5375 case 0x08:
5376 case 0x0a:
5377 case 0x0b:
5378 case 0x18:
5379 case 0x19:
5380 case 0x1a:
5381 case 0x1b:
0289bdd7 5382 case 0x1d:
7ad10968
HZ
5383 case 0x28:
5384 case 0x29:
5385 case 0x2a:
5386 case 0x2b:
5387 case 0x38:
5388 case 0x39:
5389 case 0x3a:
5390 case 0x3b:
0289bdd7
MS
5391 case 0x3c:
5392 case 0x3d:
7ad10968
HZ
5393 switch (ir.reg & 7)
5394 {
5395 case 0:
0289bdd7
MS
5396 /* Handling fld, fild. */
5397 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5398 return -1;
7ad10968
HZ
5399 break;
5400 case 1:
5401 switch (ir.reg >> 4)
5402 {
5403 case 0:
955db0c0 5404 if (record_arch_list_add_mem (addr64, 4))
7ad10968
HZ
5405 return -1;
5406 break;
5407 case 2:
955db0c0 5408 if (record_arch_list_add_mem (addr64, 8))
7ad10968
HZ
5409 return -1;
5410 break;
5411 case 3:
0289bdd7 5412 break;
7ad10968 5413 default:
955db0c0 5414 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5415 return -1;
5416 break;
5417 }
5418 break;
5419 default:
5420 switch (ir.reg >> 4)
5421 {
5422 case 0:
955db0c0 5423 if (record_arch_list_add_mem (addr64, 4))
0289bdd7
MS
5424 return -1;
5425 if (3 == (ir.reg & 7))
5426 {
5427 /* For fstp m32fp. */
5428 if (i386_record_floats (gdbarch, &ir,
5429 I386_SAVE_FPU_REGS))
5430 return -1;
5431 }
5432 break;
7ad10968 5433 case 1:
955db0c0 5434 if (record_arch_list_add_mem (addr64, 4))
7ad10968 5435 return -1;
0289bdd7
MS
5436 if ((3 == (ir.reg & 7))
5437 || (5 == (ir.reg & 7))
5438 || (7 == (ir.reg & 7)))
5439 {
5440 /* For fstp insn. */
5441 if (i386_record_floats (gdbarch, &ir,
5442 I386_SAVE_FPU_REGS))
5443 return -1;
5444 }
7ad10968
HZ
5445 break;
5446 case 2:
955db0c0 5447 if (record_arch_list_add_mem (addr64, 8))
7ad10968 5448 return -1;
0289bdd7
MS
5449 if (3 == (ir.reg & 7))
5450 {
5451 /* For fstp m64fp. */
5452 if (i386_record_floats (gdbarch, &ir,
5453 I386_SAVE_FPU_REGS))
5454 return -1;
5455 }
7ad10968
HZ
5456 break;
5457 case 3:
0289bdd7
MS
5458 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5459 {
5460 /* For fistp, fbld, fild, fbstp. */
5461 if (i386_record_floats (gdbarch, &ir,
5462 I386_SAVE_FPU_REGS))
5463 return -1;
5464 }
5465 /* Fall through */
7ad10968 5466 default:
955db0c0 5467 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5468 return -1;
5469 break;
5470 }
5471 break;
5472 }
5473 break;
5474 case 0x0c:
0289bdd7
MS
5475 /* Insn fldenv. */
5476 if (i386_record_floats (gdbarch, &ir,
5477 I386_SAVE_FPU_ENV_REG_STACK))
5478 return -1;
5479 break;
7ad10968 5480 case 0x0d:
0289bdd7
MS
5481 /* Insn fldcw. */
5482 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5483 return -1;
5484 break;
7ad10968 5485 case 0x2c:
0289bdd7
MS
5486 /* Insn frstor. */
5487 if (i386_record_floats (gdbarch, &ir,
5488 I386_SAVE_FPU_ENV_REG_STACK))
5489 return -1;
7ad10968
HZ
5490 break;
5491 case 0x0e:
5492 if (ir.dflag)
5493 {
955db0c0 5494 if (record_arch_list_add_mem (addr64, 28))
7ad10968
HZ
5495 return -1;
5496 }
5497 else
5498 {
955db0c0 5499 if (record_arch_list_add_mem (addr64, 14))
7ad10968
HZ
5500 return -1;
5501 }
5502 break;
5503 case 0x0f:
5504 case 0x2f:
955db0c0 5505 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5506 return -1;
0289bdd7
MS
5507 /* Insn fstp, fbstp. */
5508 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5509 return -1;
7ad10968
HZ
5510 break;
5511 case 0x1f:
5512 case 0x3e:
955db0c0 5513 if (record_arch_list_add_mem (addr64, 10))
7ad10968
HZ
5514 return -1;
5515 break;
5516 case 0x2e:
5517 if (ir.dflag)
5518 {
955db0c0 5519 if (record_arch_list_add_mem (addr64, 28))
7ad10968 5520 return -1;
955db0c0 5521 addr64 += 28;
7ad10968
HZ
5522 }
5523 else
5524 {
955db0c0 5525 if (record_arch_list_add_mem (addr64, 14))
7ad10968 5526 return -1;
955db0c0 5527 addr64 += 14;
7ad10968 5528 }
955db0c0 5529 if (record_arch_list_add_mem (addr64, 80))
7ad10968 5530 return -1;
0289bdd7
MS
5531 /* Insn fsave. */
5532 if (i386_record_floats (gdbarch, &ir,
5533 I386_SAVE_FPU_ENV_REG_STACK))
5534 return -1;
7ad10968
HZ
5535 break;
5536 case 0x3f:
955db0c0 5537 if (record_arch_list_add_mem (addr64, 8))
7ad10968 5538 return -1;
0289bdd7
MS
5539 /* Insn fistp. */
5540 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5541 return -1;
7ad10968
HZ
5542 break;
5543 default:
5544 ir.addr -= 2;
5545 opcode = opcode << 8 | ir.modrm;
5546 goto no_support;
5547 break;
5548 }
5549 }
0289bdd7
MS
5550 /* Opcode is an extension of modR/M byte. */
5551 else
5552 {
5553 switch (opcode)
5554 {
5555 case 0xd8:
5556 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5557 return -1;
5558 break;
5559 case 0xd9:
5560 if (0x0c == (ir.modrm >> 4))
5561 {
5562 if ((ir.modrm & 0x0f) <= 7)
5563 {
5564 if (i386_record_floats (gdbarch, &ir,
5565 I386_SAVE_FPU_REGS))
5566 return -1;
5567 }
5568 else
5569 {
5570 if (i386_record_floats (gdbarch, &ir,
5571 I387_ST0_REGNUM (tdep)))
5572 return -1;
5573 /* If only st(0) is changing, then we have already
5574 recorded. */
5575 if ((ir.modrm & 0x0f) - 0x08)
5576 {
5577 if (i386_record_floats (gdbarch, &ir,
5578 I387_ST0_REGNUM (tdep) +
5579 ((ir.modrm & 0x0f) - 0x08)))
5580 return -1;
5581 }
5582 }
5583 }
5584 else
5585 {
5586 switch (ir.modrm)
5587 {
5588 case 0xe0:
5589 case 0xe1:
5590 case 0xf0:
5591 case 0xf5:
5592 case 0xf8:
5593 case 0xfa:
5594 case 0xfc:
5595 case 0xfe:
5596 case 0xff:
5597 if (i386_record_floats (gdbarch, &ir,
5598 I387_ST0_REGNUM (tdep)))
5599 return -1;
5600 break;
5601 case 0xf1:
5602 case 0xf2:
5603 case 0xf3:
5604 case 0xf4:
5605 case 0xf6:
5606 case 0xf7:
5607 case 0xe8:
5608 case 0xe9:
5609 case 0xea:
5610 case 0xeb:
5611 case 0xec:
5612 case 0xed:
5613 case 0xee:
5614 case 0xf9:
5615 case 0xfb:
5616 if (i386_record_floats (gdbarch, &ir,
5617 I386_SAVE_FPU_REGS))
5618 return -1;
5619 break;
5620 case 0xfd:
5621 if (i386_record_floats (gdbarch, &ir,
5622 I387_ST0_REGNUM (tdep)))
5623 return -1;
5624 if (i386_record_floats (gdbarch, &ir,
5625 I387_ST0_REGNUM (tdep) + 1))
5626 return -1;
5627 break;
5628 }
5629 }
5630 break;
5631 case 0xda:
5632 if (0xe9 == ir.modrm)
5633 {
5634 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5635 return -1;
5636 }
5637 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5638 {
5639 if (i386_record_floats (gdbarch, &ir,
5640 I387_ST0_REGNUM (tdep)))
5641 return -1;
5642 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5643 {
5644 if (i386_record_floats (gdbarch, &ir,
5645 I387_ST0_REGNUM (tdep) +
5646 (ir.modrm & 0x0f)))
5647 return -1;
5648 }
5649 else if ((ir.modrm & 0x0f) - 0x08)
5650 {
5651 if (i386_record_floats (gdbarch, &ir,
5652 I387_ST0_REGNUM (tdep) +
5653 ((ir.modrm & 0x0f) - 0x08)))
5654 return -1;
5655 }
5656 }
5657 break;
5658 case 0xdb:
5659 if (0xe3 == ir.modrm)
5660 {
5661 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5662 return -1;
5663 }
5664 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5665 {
5666 if (i386_record_floats (gdbarch, &ir,
5667 I387_ST0_REGNUM (tdep)))
5668 return -1;
5669 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5670 {
5671 if (i386_record_floats (gdbarch, &ir,
5672 I387_ST0_REGNUM (tdep) +
5673 (ir.modrm & 0x0f)))
5674 return -1;
5675 }
5676 else if ((ir.modrm & 0x0f) - 0x08)
5677 {
5678 if (i386_record_floats (gdbarch, &ir,
5679 I387_ST0_REGNUM (tdep) +
5680 ((ir.modrm & 0x0f) - 0x08)))
5681 return -1;
5682 }
5683 }
5684 break;
5685 case 0xdc:
5686 if ((0x0c == ir.modrm >> 4)
5687 || (0x0d == ir.modrm >> 4)
5688 || (0x0f == ir.modrm >> 4))
5689 {
5690 if ((ir.modrm & 0x0f) <= 7)
5691 {
5692 if (i386_record_floats (gdbarch, &ir,
5693 I387_ST0_REGNUM (tdep) +
5694 (ir.modrm & 0x0f)))
5695 return -1;
5696 }
5697 else
5698 {
5699 if (i386_record_floats (gdbarch, &ir,
5700 I387_ST0_REGNUM (tdep) +
5701 ((ir.modrm & 0x0f) - 0x08)))
5702 return -1;
5703 }
5704 }
5705 break;
5706 case 0xdd:
5707 if (0x0c == ir.modrm >> 4)
5708 {
5709 if (i386_record_floats (gdbarch, &ir,
5710 I387_FTAG_REGNUM (tdep)))
5711 return -1;
5712 }
5713 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5714 {
5715 if ((ir.modrm & 0x0f) <= 7)
5716 {
5717 if (i386_record_floats (gdbarch, &ir,
5718 I387_ST0_REGNUM (tdep) +
5719 (ir.modrm & 0x0f)))
5720 return -1;
5721 }
5722 else
5723 {
5724 if (i386_record_floats (gdbarch, &ir,
5725 I386_SAVE_FPU_REGS))
5726 return -1;
5727 }
5728 }
5729 break;
5730 case 0xde:
5731 if ((0x0c == ir.modrm >> 4)
5732 || (0x0e == ir.modrm >> 4)
5733 || (0x0f == ir.modrm >> 4)
5734 || (0xd9 == ir.modrm))
5735 {
5736 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5737 return -1;
5738 }
5739 break;
5740 case 0xdf:
5741 if (0xe0 == ir.modrm)
5742 {
5743 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5744 return -1;
5745 }
5746 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5747 {
5748 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5749 return -1;
5750 }
5751 break;
5752 }
5753 }
7ad10968 5754 break;
7ad10968 5755 /* string ops */
a38bba38 5756 case 0xa4: /* movsS */
7ad10968 5757 case 0xa5:
a38bba38 5758 case 0xaa: /* stosS */
7ad10968 5759 case 0xab:
a38bba38 5760 case 0x6c: /* insS */
7ad10968 5761 case 0x6d:
cf648174 5762 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 5763 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
5764 &addr);
5765 if (addr)
cf648174 5766 {
77d7dc92
HZ
5767 ULONGEST es, ds;
5768
5769 if ((opcode & 1) == 0)
5770 ir.ot = OT_BYTE;
5771 else
5772 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
5773 regcache_raw_read_unsigned (ir.regcache,
5774 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 5775 &addr);
77d7dc92 5776
d7877f7e
HZ
5777 regcache_raw_read_unsigned (ir.regcache,
5778 ir.regmap[X86_RECORD_ES_REGNUM],
5779 &es);
5780 regcache_raw_read_unsigned (ir.regcache,
5781 ir.regmap[X86_RECORD_DS_REGNUM],
5782 &ds);
5783 if (ir.aflag && (es != ds))
77d7dc92
HZ
5784 {
5785 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
bb08c432
HZ
5786 if (record_memory_query)
5787 {
5788 int q;
5789
5790 target_terminal_ours ();
5791 q = yquery (_("\
5792Process record ignores the memory change of instruction at address %s\n\
5793because it can't get the value of the segment register.\n\
5794Do you want to stop the program?"),
5795 paddress (gdbarch, ir.orig_addr));
5796 target_terminal_inferior ();
5797 if (q)
5798 return -1;
5799 }
df61f520
HZ
5800 }
5801 else
5802 {
648d0c8b 5803 if (record_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 5804 return -1;
77d7dc92
HZ
5805 }
5806
5807 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5808 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92
HZ
5809 if (opcode == 0xa4 || opcode == 0xa5)
5810 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5811 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5812 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5813 }
cf648174 5814 break;
7ad10968 5815
a38bba38 5816 case 0xa6: /* cmpsS */
cf648174
HZ
5817 case 0xa7:
5818 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5819 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5820 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5821 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5822 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5823 break;
5824
a38bba38 5825 case 0xac: /* lodsS */
7ad10968 5826 case 0xad:
cf648174
HZ
5827 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5828 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5829 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5830 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5831 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5832 break;
5833
a38bba38 5834 case 0xae: /* scasS */
7ad10968 5835 case 0xaf:
cf648174 5836 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 5837 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5838 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5839 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5840 break;
5841
a38bba38 5842 case 0x6e: /* outsS */
cf648174
HZ
5843 case 0x6f:
5844 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5845 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5846 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5847 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5848 break;
5849
a38bba38 5850 case 0xe4: /* port I/O */
7ad10968
HZ
5851 case 0xe5:
5852 case 0xec:
5853 case 0xed:
cf648174
HZ
5854 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5855 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5856 break;
5857
5858 case 0xe6:
5859 case 0xe7:
5860 case 0xee:
5861 case 0xef:
5862 break;
5863
5864 /* control */
a38bba38
MS
5865 case 0xc2: /* ret im */
5866 case 0xc3: /* ret */
cf648174
HZ
5867 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5868 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5869 break;
5870
a38bba38
MS
5871 case 0xca: /* lret im */
5872 case 0xcb: /* lret */
5873 case 0xcf: /* iret */
cf648174
HZ
5874 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5875 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5876 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5877 break;
5878
a38bba38 5879 case 0xe8: /* call im */
cf648174
HZ
5880 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5881 ir.dflag = 2;
5882 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5883 return -1;
7ad10968
HZ
5884 break;
5885
a38bba38 5886 case 0x9a: /* lcall im */
cf648174
HZ
5887 if (ir.regmap[X86_RECORD_R8_REGNUM])
5888 {
5889 ir.addr -= 1;
5890 goto no_support;
5891 }
5892 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5893 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5894 return -1;
7ad10968
HZ
5895 break;
5896
a38bba38
MS
5897 case 0xe9: /* jmp im */
5898 case 0xea: /* ljmp im */
5899 case 0xeb: /* jmp Jb */
5900 case 0x70: /* jcc Jb */
7ad10968
HZ
5901 case 0x71:
5902 case 0x72:
5903 case 0x73:
5904 case 0x74:
5905 case 0x75:
5906 case 0x76:
5907 case 0x77:
5908 case 0x78:
5909 case 0x79:
5910 case 0x7a:
5911 case 0x7b:
5912 case 0x7c:
5913 case 0x7d:
5914 case 0x7e:
5915 case 0x7f:
a38bba38 5916 case 0x0f80: /* jcc Jv */
7ad10968
HZ
5917 case 0x0f81:
5918 case 0x0f82:
5919 case 0x0f83:
5920 case 0x0f84:
5921 case 0x0f85:
5922 case 0x0f86:
5923 case 0x0f87:
5924 case 0x0f88:
5925 case 0x0f89:
5926 case 0x0f8a:
5927 case 0x0f8b:
5928 case 0x0f8c:
5929 case 0x0f8d:
5930 case 0x0f8e:
5931 case 0x0f8f:
5932 break;
5933
a38bba38 5934 case 0x0f90: /* setcc Gv */
7ad10968
HZ
5935 case 0x0f91:
5936 case 0x0f92:
5937 case 0x0f93:
5938 case 0x0f94:
5939 case 0x0f95:
5940 case 0x0f96:
5941 case 0x0f97:
5942 case 0x0f98:
5943 case 0x0f99:
5944 case 0x0f9a:
5945 case 0x0f9b:
5946 case 0x0f9c:
5947 case 0x0f9d:
5948 case 0x0f9e:
5949 case 0x0f9f:
cf648174 5950 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5951 ir.ot = OT_BYTE;
5952 if (i386_record_modrm (&ir))
5953 return -1;
5954 if (ir.mod == 3)
cf648174
HZ
5955 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5956 : (ir.rm & 0x3));
7ad10968
HZ
5957 else
5958 {
5959 if (i386_record_lea_modrm (&ir))
5960 return -1;
5961 }
5962 break;
5963
a38bba38 5964 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
5965 case 0x0f41:
5966 case 0x0f42:
5967 case 0x0f43:
5968 case 0x0f44:
5969 case 0x0f45:
5970 case 0x0f46:
5971 case 0x0f47:
5972 case 0x0f48:
5973 case 0x0f49:
5974 case 0x0f4a:
5975 case 0x0f4b:
5976 case 0x0f4c:
5977 case 0x0f4d:
5978 case 0x0f4e:
5979 case 0x0f4f:
5980 if (i386_record_modrm (&ir))
5981 return -1;
cf648174 5982 ir.reg |= rex_r;
7ad10968
HZ
5983 if (ir.dflag == OT_BYTE)
5984 ir.reg &= 0x3;
cf648174 5985 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5986 break;
5987
5988 /* flags */
a38bba38 5989 case 0x9c: /* pushf */
cf648174
HZ
5990 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5991 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5992 ir.dflag = 2;
5993 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5994 return -1;
7ad10968
HZ
5995 break;
5996
a38bba38 5997 case 0x9d: /* popf */
cf648174
HZ
5998 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5999 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6000 break;
6001
a38bba38 6002 case 0x9e: /* sahf */
cf648174
HZ
6003 if (ir.regmap[X86_RECORD_R8_REGNUM])
6004 {
6005 ir.addr -= 1;
6006 goto no_support;
6007 }
d3f323f3 6008 /* FALLTHROUGH */
a38bba38
MS
6009 case 0xf5: /* cmc */
6010 case 0xf8: /* clc */
6011 case 0xf9: /* stc */
6012 case 0xfc: /* cld */
6013 case 0xfd: /* std */
cf648174 6014 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6015 break;
6016
a38bba38 6017 case 0x9f: /* lahf */
cf648174
HZ
6018 if (ir.regmap[X86_RECORD_R8_REGNUM])
6019 {
6020 ir.addr -= 1;
6021 goto no_support;
6022 }
6023 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6024 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6025 break;
6026
6027 /* bit operations */
a38bba38 6028 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6029 ir.ot = ir.dflag + OT_WORD;
6030 if (i386_record_modrm (&ir))
6031 return -1;
6032 if (ir.reg < 4)
6033 {
cf648174 6034 ir.addr -= 2;
7ad10968
HZ
6035 opcode = opcode << 8 | ir.modrm;
6036 goto no_support;
6037 }
cf648174 6038 if (ir.reg != 4)
7ad10968 6039 {
cf648174
HZ
6040 if (ir.mod == 3)
6041 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6042 else
6043 {
cf648174 6044 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6045 return -1;
6046 }
6047 }
cf648174 6048 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6049 break;
6050
a38bba38 6051 case 0x0fa3: /* bt Gv, Ev */
cf648174
HZ
6052 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6053 break;
6054
a38bba38
MS
6055 case 0x0fab: /* bts */
6056 case 0x0fb3: /* btr */
6057 case 0x0fbb: /* btc */
cf648174
HZ
6058 ir.ot = ir.dflag + OT_WORD;
6059 if (i386_record_modrm (&ir))
6060 return -1;
6061 if (ir.mod == 3)
6062 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6063 else
6064 {
955db0c0
MS
6065 uint64_t addr64;
6066 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6067 return -1;
6068 regcache_raw_read_unsigned (ir.regcache,
6069 ir.regmap[ir.reg | rex_r],
648d0c8b 6070 &addr);
cf648174
HZ
6071 switch (ir.dflag)
6072 {
6073 case 0:
648d0c8b 6074 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6075 break;
6076 case 1:
648d0c8b 6077 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6078 break;
6079 case 2:
648d0c8b 6080 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6081 break;
6082 }
955db0c0 6083 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6084 return -1;
6085 if (i386_record_lea_modrm (&ir))
6086 return -1;
6087 }
6088 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6089 break;
6090
a38bba38
MS
6091 case 0x0fbc: /* bsf */
6092 case 0x0fbd: /* bsr */
cf648174
HZ
6093 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6094 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6095 break;
6096
6097 /* bcd */
a38bba38
MS
6098 case 0x27: /* daa */
6099 case 0x2f: /* das */
6100 case 0x37: /* aaa */
6101 case 0x3f: /* aas */
6102 case 0xd4: /* aam */
6103 case 0xd5: /* aad */
cf648174
HZ
6104 if (ir.regmap[X86_RECORD_R8_REGNUM])
6105 {
6106 ir.addr -= 1;
6107 goto no_support;
6108 }
6109 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6110 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6111 break;
6112
6113 /* misc */
a38bba38 6114 case 0x90: /* nop */
7ad10968
HZ
6115 if (prefixes & PREFIX_LOCK)
6116 {
6117 ir.addr -= 1;
6118 goto no_support;
6119 }
6120 break;
6121
a38bba38 6122 case 0x9b: /* fwait */
425b824a 6123 if (target_read_memory (ir.addr, &opcode8, 1))
0289bdd7
MS
6124 {
6125 if (record_debug)
6126 printf_unfiltered (_("Process record: error reading memory at "
6127 "addr 0x%s len = 1.\n"),
6128 paddress (gdbarch, ir.addr));
6129 return -1;
6130 }
425b824a 6131 opcode = (uint32_t) opcode8;
0289bdd7
MS
6132 ir.addr++;
6133 goto reswitch;
7ad10968
HZ
6134 break;
6135
7ad10968 6136 /* XXX */
a38bba38 6137 case 0xcc: /* int3 */
a3c4230a 6138 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6139 "int3.\n"));
6140 ir.addr -= 1;
6141 goto no_support;
6142 break;
6143
7ad10968 6144 /* XXX */
a38bba38 6145 case 0xcd: /* int */
7ad10968
HZ
6146 {
6147 int ret;
425b824a
MS
6148 uint8_t interrupt;
6149 if (target_read_memory (ir.addr, &interrupt, 1))
7ad10968
HZ
6150 {
6151 if (record_debug)
6152 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
6153 "at addr %s len = 1.\n"),
6154 paddress (gdbarch, ir.addr));
7ad10968
HZ
6155 return -1;
6156 }
6157 ir.addr++;
425b824a 6158 if (interrupt != 0x80
a3c4230a 6159 || tdep->i386_intx80_record == NULL)
7ad10968 6160 {
a3c4230a 6161 printf_unfiltered (_("Process record does not support "
7ad10968 6162 "instruction int 0x%02x.\n"),
425b824a 6163 interrupt);
7ad10968
HZ
6164 ir.addr -= 2;
6165 goto no_support;
6166 }
a3c4230a 6167 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6168 if (ret)
6169 return ret;
6170 }
6171 break;
6172
7ad10968 6173 /* XXX */
a38bba38 6174 case 0xce: /* into */
a3c4230a 6175 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6176 "instruction into.\n"));
6177 ir.addr -= 1;
6178 goto no_support;
6179 break;
6180
a38bba38
MS
6181 case 0xfa: /* cli */
6182 case 0xfb: /* sti */
7ad10968
HZ
6183 break;
6184
a38bba38 6185 case 0x62: /* bound */
a3c4230a 6186 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6187 "instruction bound.\n"));
6188 ir.addr -= 1;
6189 goto no_support;
6190 break;
6191
a38bba38 6192 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6193 case 0x0fc9:
6194 case 0x0fca:
6195 case 0x0fcb:
6196 case 0x0fcc:
6197 case 0x0fcd:
6198 case 0x0fce:
6199 case 0x0fcf:
cf648174 6200 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6201 break;
6202
a38bba38 6203 case 0xd6: /* salc */
cf648174
HZ
6204 if (ir.regmap[X86_RECORD_R8_REGNUM])
6205 {
6206 ir.addr -= 1;
6207 goto no_support;
6208 }
6209 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6210 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6211 break;
6212
a38bba38
MS
6213 case 0xe0: /* loopnz */
6214 case 0xe1: /* loopz */
6215 case 0xe2: /* loop */
6216 case 0xe3: /* jecxz */
cf648174
HZ
6217 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6218 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6219 break;
6220
a38bba38 6221 case 0x0f30: /* wrmsr */
a3c4230a 6222 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6223 "instruction wrmsr.\n"));
6224 ir.addr -= 2;
6225 goto no_support;
6226 break;
6227
a38bba38 6228 case 0x0f32: /* rdmsr */
a3c4230a 6229 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6230 "instruction rdmsr.\n"));
6231 ir.addr -= 2;
6232 goto no_support;
6233 break;
6234
a38bba38 6235 case 0x0f31: /* rdtsc */
f8c4f480
HZ
6236 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6237 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6238 break;
6239
a38bba38 6240 case 0x0f34: /* sysenter */
7ad10968
HZ
6241 {
6242 int ret;
cf648174
HZ
6243 if (ir.regmap[X86_RECORD_R8_REGNUM])
6244 {
6245 ir.addr -= 2;
6246 goto no_support;
6247 }
a3c4230a 6248 if (tdep->i386_sysenter_record == NULL)
7ad10968 6249 {
a3c4230a 6250 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6251 "instruction sysenter.\n"));
6252 ir.addr -= 2;
6253 goto no_support;
6254 }
a3c4230a 6255 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6256 if (ret)
6257 return ret;
6258 }
6259 break;
6260
a38bba38 6261 case 0x0f35: /* sysexit */
a3c4230a 6262 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6263 "instruction sysexit.\n"));
6264 ir.addr -= 2;
6265 goto no_support;
6266 break;
6267
a38bba38 6268 case 0x0f05: /* syscall */
cf648174
HZ
6269 {
6270 int ret;
a3c4230a 6271 if (tdep->i386_syscall_record == NULL)
cf648174 6272 {
a3c4230a 6273 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6274 "instruction syscall.\n"));
6275 ir.addr -= 2;
6276 goto no_support;
6277 }
a3c4230a 6278 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6279 if (ret)
6280 return ret;
6281 }
6282 break;
6283
a38bba38 6284 case 0x0f07: /* sysret */
a3c4230a 6285 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6286 "instruction sysret.\n"));
6287 ir.addr -= 2;
6288 goto no_support;
6289 break;
6290
a38bba38 6291 case 0x0fa2: /* cpuid */
cf648174
HZ
6292 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6293 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6294 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6295 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6296 break;
6297
a38bba38 6298 case 0xf4: /* hlt */
a3c4230a 6299 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6300 "instruction hlt.\n"));
6301 ir.addr -= 1;
6302 goto no_support;
6303 break;
6304
6305 case 0x0f00:
6306 if (i386_record_modrm (&ir))
6307 return -1;
6308 switch (ir.reg)
6309 {
a38bba38
MS
6310 case 0: /* sldt */
6311 case 1: /* str */
7ad10968 6312 if (ir.mod == 3)
cf648174 6313 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6314 else
6315 {
6316 ir.ot = OT_WORD;
6317 if (i386_record_lea_modrm (&ir))
6318 return -1;
6319 }
6320 break;
a38bba38
MS
6321 case 2: /* lldt */
6322 case 3: /* ltr */
7ad10968 6323 break;
a38bba38
MS
6324 case 4: /* verr */
6325 case 5: /* verw */
cf648174 6326 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6327 break;
6328 default:
6329 ir.addr -= 3;
6330 opcode = opcode << 8 | ir.modrm;
6331 goto no_support;
6332 break;
6333 }
6334 break;
6335
6336 case 0x0f01:
6337 if (i386_record_modrm (&ir))
6338 return -1;
6339 switch (ir.reg)
6340 {
a38bba38 6341 case 0: /* sgdt */
7ad10968 6342 {
955db0c0 6343 uint64_t addr64;
7ad10968
HZ
6344
6345 if (ir.mod == 3)
6346 {
6347 ir.addr -= 3;
6348 opcode = opcode << 8 | ir.modrm;
6349 goto no_support;
6350 }
d7877f7e 6351 if (ir.override >= 0)
7ad10968 6352 {
bb08c432
HZ
6353 if (record_memory_query)
6354 {
6355 int q;
6356
6357 target_terminal_ours ();
6358 q = yquery (_("\
6359Process record ignores the memory change of instruction at address %s\n\
6360because it can't get the value of the segment register.\n\
6361Do you want to stop the program?"),
6362 paddress (gdbarch, ir.orig_addr));
6363 target_terminal_inferior ();
6364 if (q)
6365 return -1;
6366 }
7ad10968
HZ
6367 }
6368 else
6369 {
955db0c0 6370 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6371 return -1;
955db0c0 6372 if (record_arch_list_add_mem (addr64, 2))
7ad10968 6373 return -1;
955db0c0 6374 addr64 += 2;
cf648174
HZ
6375 if (ir.regmap[X86_RECORD_R8_REGNUM])
6376 {
955db0c0 6377 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
6378 return -1;
6379 }
6380 else
6381 {
955db0c0 6382 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
6383 return -1;
6384 }
7ad10968
HZ
6385 }
6386 }
6387 break;
6388 case 1:
6389 if (ir.mod == 3)
6390 {
6391 switch (ir.rm)
6392 {
a38bba38 6393 case 0: /* monitor */
7ad10968 6394 break;
a38bba38 6395 case 1: /* mwait */
cf648174 6396 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6397 break;
6398 default:
6399 ir.addr -= 3;
6400 opcode = opcode << 8 | ir.modrm;
6401 goto no_support;
6402 break;
6403 }
6404 }
6405 else
6406 {
6407 /* sidt */
d7877f7e 6408 if (ir.override >= 0)
7ad10968 6409 {
bb08c432
HZ
6410 if (record_memory_query)
6411 {
6412 int q;
6413
6414 target_terminal_ours ();
6415 q = yquery (_("\
6416Process record ignores the memory change of instruction at address %s\n\
6417because it can't get the value of the segment register.\n\
6418Do you want to stop the program?"),
6419 paddress (gdbarch, ir.orig_addr));
6420 target_terminal_inferior ();
6421 if (q)
6422 return -1;
6423 }
7ad10968
HZ
6424 }
6425 else
6426 {
955db0c0 6427 uint64_t addr64;
7ad10968 6428
955db0c0 6429 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6430 return -1;
955db0c0 6431 if (record_arch_list_add_mem (addr64, 2))
7ad10968 6432 return -1;
955db0c0 6433 addr64 += 2;
cf648174
HZ
6434 if (ir.regmap[X86_RECORD_R8_REGNUM])
6435 {
955db0c0 6436 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
6437 return -1;
6438 }
6439 else
6440 {
955db0c0 6441 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
6442 return -1;
6443 }
7ad10968
HZ
6444 }
6445 }
6446 break;
a38bba38 6447 case 2: /* lgdt */
3800e645
MS
6448 if (ir.mod == 3)
6449 {
6450 /* xgetbv */
6451 if (ir.rm == 0)
6452 {
6453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6454 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6455 break;
6456 }
6457 /* xsetbv */
6458 else if (ir.rm == 1)
6459 break;
6460 }
a38bba38 6461 case 3: /* lidt */
7ad10968
HZ
6462 if (ir.mod == 3)
6463 {
6464 ir.addr -= 3;
6465 opcode = opcode << 8 | ir.modrm;
6466 goto no_support;
6467 }
6468 break;
a38bba38 6469 case 4: /* smsw */
7ad10968
HZ
6470 if (ir.mod == 3)
6471 {
cf648174 6472 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
6473 return -1;
6474 }
6475 else
6476 {
6477 ir.ot = OT_WORD;
6478 if (i386_record_lea_modrm (&ir))
6479 return -1;
6480 }
cf648174 6481 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6482 break;
a38bba38 6483 case 6: /* lmsw */
cf648174
HZ
6484 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6485 break;
a38bba38 6486 case 7: /* invlpg */
cf648174
HZ
6487 if (ir.mod == 3)
6488 {
6489 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6490 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6491 else
6492 {
6493 ir.addr -= 3;
6494 opcode = opcode << 8 | ir.modrm;
6495 goto no_support;
6496 }
6497 }
6498 else
6499 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6500 break;
6501 default:
6502 ir.addr -= 3;
6503 opcode = opcode << 8 | ir.modrm;
6504 goto no_support;
7ad10968
HZ
6505 break;
6506 }
6507 break;
6508
a38bba38
MS
6509 case 0x0f08: /* invd */
6510 case 0x0f09: /* wbinvd */
7ad10968
HZ
6511 break;
6512
a38bba38 6513 case 0x63: /* arpl */
7ad10968
HZ
6514 if (i386_record_modrm (&ir))
6515 return -1;
cf648174
HZ
6516 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6517 {
6518 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6519 ? (ir.reg | rex_r) : ir.rm);
6520 }
7ad10968 6521 else
cf648174
HZ
6522 {
6523 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6524 if (i386_record_lea_modrm (&ir))
6525 return -1;
6526 }
6527 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6528 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6529 break;
6530
a38bba38
MS
6531 case 0x0f02: /* lar */
6532 case 0x0f03: /* lsl */
7ad10968
HZ
6533 if (i386_record_modrm (&ir))
6534 return -1;
cf648174
HZ
6535 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6536 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6537 break;
6538
6539 case 0x0f18:
cf648174
HZ
6540 if (i386_record_modrm (&ir))
6541 return -1;
6542 if (ir.mod == 3 && ir.reg == 3)
6543 {
6544 ir.addr -= 3;
6545 opcode = opcode << 8 | ir.modrm;
6546 goto no_support;
6547 }
7ad10968
HZ
6548 break;
6549
7ad10968
HZ
6550 case 0x0f19:
6551 case 0x0f1a:
6552 case 0x0f1b:
6553 case 0x0f1c:
6554 case 0x0f1d:
6555 case 0x0f1e:
6556 case 0x0f1f:
a38bba38 6557 /* nop (multi byte) */
7ad10968
HZ
6558 break;
6559
a38bba38
MS
6560 case 0x0f20: /* mov reg, crN */
6561 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
6562 if (i386_record_modrm (&ir))
6563 return -1;
6564 if ((ir.modrm & 0xc0) != 0xc0)
6565 {
cf648174 6566 ir.addr -= 3;
7ad10968
HZ
6567 opcode = opcode << 8 | ir.modrm;
6568 goto no_support;
6569 }
6570 switch (ir.reg)
6571 {
6572 case 0:
6573 case 2:
6574 case 3:
6575 case 4:
6576 case 8:
6577 if (opcode & 2)
cf648174 6578 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6579 else
cf648174 6580 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6581 break;
6582 default:
cf648174 6583 ir.addr -= 3;
7ad10968
HZ
6584 opcode = opcode << 8 | ir.modrm;
6585 goto no_support;
6586 break;
6587 }
6588 break;
6589
a38bba38
MS
6590 case 0x0f21: /* mov reg, drN */
6591 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
6592 if (i386_record_modrm (&ir))
6593 return -1;
6594 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6595 || ir.reg == 5 || ir.reg >= 8)
6596 {
cf648174 6597 ir.addr -= 3;
7ad10968
HZ
6598 opcode = opcode << 8 | ir.modrm;
6599 goto no_support;
6600 }
6601 if (opcode & 2)
cf648174 6602 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6603 else
cf648174 6604 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6605 break;
6606
a38bba38 6607 case 0x0f06: /* clts */
cf648174 6608 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6609 break;
6610
a3c4230a
HZ
6611 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6612
6613 case 0x0f0d: /* 3DNow! prefetch */
6614 break;
6615
6616 case 0x0f0e: /* 3DNow! femms */
6617 case 0x0f77: /* emms */
6618 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6619 goto no_support;
6620 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6621 break;
6622
6623 case 0x0f0f: /* 3DNow! data */
6624 if (i386_record_modrm (&ir))
6625 return -1;
6626 if (target_read_memory (ir.addr, &opcode8, 1))
6627 {
6628 printf_unfiltered (_("Process record: error reading memory at "
6629 "addr %s len = 1.\n"),
6630 paddress (gdbarch, ir.addr));
6631 return -1;
6632 }
6633 ir.addr++;
6634 switch (opcode8)
6635 {
6636 case 0x0c: /* 3DNow! pi2fw */
6637 case 0x0d: /* 3DNow! pi2fd */
6638 case 0x1c: /* 3DNow! pf2iw */
6639 case 0x1d: /* 3DNow! pf2id */
6640 case 0x8a: /* 3DNow! pfnacc */
6641 case 0x8e: /* 3DNow! pfpnacc */
6642 case 0x90: /* 3DNow! pfcmpge */
6643 case 0x94: /* 3DNow! pfmin */
6644 case 0x96: /* 3DNow! pfrcp */
6645 case 0x97: /* 3DNow! pfrsqrt */
6646 case 0x9a: /* 3DNow! pfsub */
6647 case 0x9e: /* 3DNow! pfadd */
6648 case 0xa0: /* 3DNow! pfcmpgt */
6649 case 0xa4: /* 3DNow! pfmax */
6650 case 0xa6: /* 3DNow! pfrcpit1 */
6651 case 0xa7: /* 3DNow! pfrsqit1 */
6652 case 0xaa: /* 3DNow! pfsubr */
6653 case 0xae: /* 3DNow! pfacc */
6654 case 0xb0: /* 3DNow! pfcmpeq */
6655 case 0xb4: /* 3DNow! pfmul */
6656 case 0xb6: /* 3DNow! pfrcpit2 */
6657 case 0xb7: /* 3DNow! pmulhrw */
6658 case 0xbb: /* 3DNow! pswapd */
6659 case 0xbf: /* 3DNow! pavgusb */
6660 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6661 goto no_support_3dnow_data;
6662 record_arch_list_add_reg (ir.regcache, ir.reg);
6663 break;
6664
6665 default:
6666no_support_3dnow_data:
6667 opcode = (opcode << 8) | opcode8;
6668 goto no_support;
6669 break;
6670 }
6671 break;
6672
6673 case 0x0faa: /* rsm */
6674 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6675 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6676 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6677 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6678 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6679 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6680 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6681 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6682 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6683 break;
6684
6685 case 0x0fae:
6686 if (i386_record_modrm (&ir))
6687 return -1;
6688 switch(ir.reg)
6689 {
6690 case 0: /* fxsave */
6691 {
6692 uint64_t tmpu64;
6693
6694 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6695 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6696 return -1;
6697 if (record_arch_list_add_mem (tmpu64, 512))
6698 return -1;
6699 }
6700 break;
6701
6702 case 1: /* fxrstor */
6703 {
6704 int i;
6705
6706 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6707
6708 for (i = I387_MM0_REGNUM (tdep);
6709 i386_mmx_regnum_p (gdbarch, i); i++)
6710 record_arch_list_add_reg (ir.regcache, i);
6711
6712 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 6713 i386_xmm_regnum_p (gdbarch, i); i++)
a3c4230a
HZ
6714 record_arch_list_add_reg (ir.regcache, i);
6715
6716 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6717 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6718
6719 for (i = I387_ST0_REGNUM (tdep);
6720 i386_fp_regnum_p (gdbarch, i); i++)
6721 record_arch_list_add_reg (ir.regcache, i);
6722
6723 for (i = I387_FCTRL_REGNUM (tdep);
6724 i386_fpc_regnum_p (gdbarch, i); i++)
6725 record_arch_list_add_reg (ir.regcache, i);
6726 }
6727 break;
6728
6729 case 2: /* ldmxcsr */
6730 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6731 goto no_support;
6732 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6733 break;
6734
6735 case 3: /* stmxcsr */
6736 ir.ot = OT_LONG;
6737 if (i386_record_lea_modrm (&ir))
6738 return -1;
6739 break;
6740
6741 case 5: /* lfence */
6742 case 6: /* mfence */
6743 case 7: /* sfence clflush */
6744 break;
6745
6746 default:
6747 opcode = (opcode << 8) | ir.modrm;
6748 goto no_support;
6749 break;
6750 }
6751 break;
6752
6753 case 0x0fc3: /* movnti */
6754 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6755 if (i386_record_modrm (&ir))
6756 return -1;
6757 if (ir.mod == 3)
6758 goto no_support;
6759 ir.reg |= rex_r;
6760 if (i386_record_lea_modrm (&ir))
6761 return -1;
6762 break;
6763
6764 /* Add prefix to opcode. */
6765 case 0x0f10:
6766 case 0x0f11:
6767 case 0x0f12:
6768 case 0x0f13:
6769 case 0x0f14:
6770 case 0x0f15:
6771 case 0x0f16:
6772 case 0x0f17:
6773 case 0x0f28:
6774 case 0x0f29:
6775 case 0x0f2a:
6776 case 0x0f2b:
6777 case 0x0f2c:
6778 case 0x0f2d:
6779 case 0x0f2e:
6780 case 0x0f2f:
6781 case 0x0f38:
6782 case 0x0f39:
6783 case 0x0f3a:
6784 case 0x0f50:
6785 case 0x0f51:
6786 case 0x0f52:
6787 case 0x0f53:
6788 case 0x0f54:
6789 case 0x0f55:
6790 case 0x0f56:
6791 case 0x0f57:
6792 case 0x0f58:
6793 case 0x0f59:
6794 case 0x0f5a:
6795 case 0x0f5b:
6796 case 0x0f5c:
6797 case 0x0f5d:
6798 case 0x0f5e:
6799 case 0x0f5f:
6800 case 0x0f60:
6801 case 0x0f61:
6802 case 0x0f62:
6803 case 0x0f63:
6804 case 0x0f64:
6805 case 0x0f65:
6806 case 0x0f66:
6807 case 0x0f67:
6808 case 0x0f68:
6809 case 0x0f69:
6810 case 0x0f6a:
6811 case 0x0f6b:
6812 case 0x0f6c:
6813 case 0x0f6d:
6814 case 0x0f6e:
6815 case 0x0f6f:
6816 case 0x0f70:
6817 case 0x0f71:
6818 case 0x0f72:
6819 case 0x0f73:
6820 case 0x0f74:
6821 case 0x0f75:
6822 case 0x0f76:
6823 case 0x0f7c:
6824 case 0x0f7d:
6825 case 0x0f7e:
6826 case 0x0f7f:
6827 case 0x0fb8:
6828 case 0x0fc2:
6829 case 0x0fc4:
6830 case 0x0fc5:
6831 case 0x0fc6:
6832 case 0x0fd0:
6833 case 0x0fd1:
6834 case 0x0fd2:
6835 case 0x0fd3:
6836 case 0x0fd4:
6837 case 0x0fd5:
6838 case 0x0fd6:
6839 case 0x0fd7:
6840 case 0x0fd8:
6841 case 0x0fd9:
6842 case 0x0fda:
6843 case 0x0fdb:
6844 case 0x0fdc:
6845 case 0x0fdd:
6846 case 0x0fde:
6847 case 0x0fdf:
6848 case 0x0fe0:
6849 case 0x0fe1:
6850 case 0x0fe2:
6851 case 0x0fe3:
6852 case 0x0fe4:
6853 case 0x0fe5:
6854 case 0x0fe6:
6855 case 0x0fe7:
6856 case 0x0fe8:
6857 case 0x0fe9:
6858 case 0x0fea:
6859 case 0x0feb:
6860 case 0x0fec:
6861 case 0x0fed:
6862 case 0x0fee:
6863 case 0x0fef:
6864 case 0x0ff0:
6865 case 0x0ff1:
6866 case 0x0ff2:
6867 case 0x0ff3:
6868 case 0x0ff4:
6869 case 0x0ff5:
6870 case 0x0ff6:
6871 case 0x0ff7:
6872 case 0x0ff8:
6873 case 0x0ff9:
6874 case 0x0ffa:
6875 case 0x0ffb:
6876 case 0x0ffc:
6877 case 0x0ffd:
6878 case 0x0ffe:
6879 switch (prefixes)
6880 {
6881 case PREFIX_REPNZ:
6882 opcode |= 0xf20000;
6883 break;
6884 case PREFIX_DATA:
6885 opcode |= 0x660000;
6886 break;
6887 case PREFIX_REPZ:
6888 opcode |= 0xf30000;
6889 break;
6890 }
6891reswitch_prefix_add:
6892 switch (opcode)
6893 {
6894 case 0x0f38:
6895 case 0x660f38:
6896 case 0xf20f38:
6897 case 0x0f3a:
6898 case 0x660f3a:
6899 if (target_read_memory (ir.addr, &opcode8, 1))
6900 {
6901 printf_unfiltered (_("Process record: error reading memory at "
6902 "addr %s len = 1.\n"),
6903 paddress (gdbarch, ir.addr));
6904 return -1;
6905 }
6906 ir.addr++;
6907 opcode = (uint32_t) opcode8 | opcode << 8;
6908 goto reswitch_prefix_add;
6909 break;
6910
6911 case 0x0f10: /* movups */
6912 case 0x660f10: /* movupd */
6913 case 0xf30f10: /* movss */
6914 case 0xf20f10: /* movsd */
6915 case 0x0f12: /* movlps */
6916 case 0x660f12: /* movlpd */
6917 case 0xf30f12: /* movsldup */
6918 case 0xf20f12: /* movddup */
6919 case 0x0f14: /* unpcklps */
6920 case 0x660f14: /* unpcklpd */
6921 case 0x0f15: /* unpckhps */
6922 case 0x660f15: /* unpckhpd */
6923 case 0x0f16: /* movhps */
6924 case 0x660f16: /* movhpd */
6925 case 0xf30f16: /* movshdup */
6926 case 0x0f28: /* movaps */
6927 case 0x660f28: /* movapd */
6928 case 0x0f2a: /* cvtpi2ps */
6929 case 0x660f2a: /* cvtpi2pd */
6930 case 0xf30f2a: /* cvtsi2ss */
6931 case 0xf20f2a: /* cvtsi2sd */
6932 case 0x0f2c: /* cvttps2pi */
6933 case 0x660f2c: /* cvttpd2pi */
6934 case 0x0f2d: /* cvtps2pi */
6935 case 0x660f2d: /* cvtpd2pi */
6936 case 0x660f3800: /* pshufb */
6937 case 0x660f3801: /* phaddw */
6938 case 0x660f3802: /* phaddd */
6939 case 0x660f3803: /* phaddsw */
6940 case 0x660f3804: /* pmaddubsw */
6941 case 0x660f3805: /* phsubw */
6942 case 0x660f3806: /* phsubd */
4f7d61a8 6943 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
6944 case 0x660f3808: /* psignb */
6945 case 0x660f3809: /* psignw */
6946 case 0x660f380a: /* psignd */
6947 case 0x660f380b: /* pmulhrsw */
6948 case 0x660f3810: /* pblendvb */
6949 case 0x660f3814: /* blendvps */
6950 case 0x660f3815: /* blendvpd */
6951 case 0x660f381c: /* pabsb */
6952 case 0x660f381d: /* pabsw */
6953 case 0x660f381e: /* pabsd */
6954 case 0x660f3820: /* pmovsxbw */
6955 case 0x660f3821: /* pmovsxbd */
6956 case 0x660f3822: /* pmovsxbq */
6957 case 0x660f3823: /* pmovsxwd */
6958 case 0x660f3824: /* pmovsxwq */
6959 case 0x660f3825: /* pmovsxdq */
6960 case 0x660f3828: /* pmuldq */
6961 case 0x660f3829: /* pcmpeqq */
6962 case 0x660f382a: /* movntdqa */
6963 case 0x660f3a08: /* roundps */
6964 case 0x660f3a09: /* roundpd */
6965 case 0x660f3a0a: /* roundss */
6966 case 0x660f3a0b: /* roundsd */
6967 case 0x660f3a0c: /* blendps */
6968 case 0x660f3a0d: /* blendpd */
6969 case 0x660f3a0e: /* pblendw */
6970 case 0x660f3a0f: /* palignr */
6971 case 0x660f3a20: /* pinsrb */
6972 case 0x660f3a21: /* insertps */
6973 case 0x660f3a22: /* pinsrd pinsrq */
6974 case 0x660f3a40: /* dpps */
6975 case 0x660f3a41: /* dppd */
6976 case 0x660f3a42: /* mpsadbw */
6977 case 0x660f3a60: /* pcmpestrm */
6978 case 0x660f3a61: /* pcmpestri */
6979 case 0x660f3a62: /* pcmpistrm */
6980 case 0x660f3a63: /* pcmpistri */
6981 case 0x0f51: /* sqrtps */
6982 case 0x660f51: /* sqrtpd */
6983 case 0xf20f51: /* sqrtsd */
6984 case 0xf30f51: /* sqrtss */
6985 case 0x0f52: /* rsqrtps */
6986 case 0xf30f52: /* rsqrtss */
6987 case 0x0f53: /* rcpps */
6988 case 0xf30f53: /* rcpss */
6989 case 0x0f54: /* andps */
6990 case 0x660f54: /* andpd */
6991 case 0x0f55: /* andnps */
6992 case 0x660f55: /* andnpd */
6993 case 0x0f56: /* orps */
6994 case 0x660f56: /* orpd */
6995 case 0x0f57: /* xorps */
6996 case 0x660f57: /* xorpd */
6997 case 0x0f58: /* addps */
6998 case 0x660f58: /* addpd */
6999 case 0xf20f58: /* addsd */
7000 case 0xf30f58: /* addss */
7001 case 0x0f59: /* mulps */
7002 case 0x660f59: /* mulpd */
7003 case 0xf20f59: /* mulsd */
7004 case 0xf30f59: /* mulss */
7005 case 0x0f5a: /* cvtps2pd */
7006 case 0x660f5a: /* cvtpd2ps */
7007 case 0xf20f5a: /* cvtsd2ss */
7008 case 0xf30f5a: /* cvtss2sd */
7009 case 0x0f5b: /* cvtdq2ps */
7010 case 0x660f5b: /* cvtps2dq */
7011 case 0xf30f5b: /* cvttps2dq */
7012 case 0x0f5c: /* subps */
7013 case 0x660f5c: /* subpd */
7014 case 0xf20f5c: /* subsd */
7015 case 0xf30f5c: /* subss */
7016 case 0x0f5d: /* minps */
7017 case 0x660f5d: /* minpd */
7018 case 0xf20f5d: /* minsd */
7019 case 0xf30f5d: /* minss */
7020 case 0x0f5e: /* divps */
7021 case 0x660f5e: /* divpd */
7022 case 0xf20f5e: /* divsd */
7023 case 0xf30f5e: /* divss */
7024 case 0x0f5f: /* maxps */
7025 case 0x660f5f: /* maxpd */
7026 case 0xf20f5f: /* maxsd */
7027 case 0xf30f5f: /* maxss */
7028 case 0x660f60: /* punpcklbw */
7029 case 0x660f61: /* punpcklwd */
7030 case 0x660f62: /* punpckldq */
7031 case 0x660f63: /* packsswb */
7032 case 0x660f64: /* pcmpgtb */
7033 case 0x660f65: /* pcmpgtw */
56d2815c 7034 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7035 case 0x660f67: /* packuswb */
7036 case 0x660f68: /* punpckhbw */
7037 case 0x660f69: /* punpckhwd */
7038 case 0x660f6a: /* punpckhdq */
7039 case 0x660f6b: /* packssdw */
7040 case 0x660f6c: /* punpcklqdq */
7041 case 0x660f6d: /* punpckhqdq */
7042 case 0x660f6e: /* movd */
7043 case 0x660f6f: /* movdqa */
7044 case 0xf30f6f: /* movdqu */
7045 case 0x660f70: /* pshufd */
7046 case 0xf20f70: /* pshuflw */
7047 case 0xf30f70: /* pshufhw */
7048 case 0x660f74: /* pcmpeqb */
7049 case 0x660f75: /* pcmpeqw */
56d2815c 7050 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7051 case 0x660f7c: /* haddpd */
7052 case 0xf20f7c: /* haddps */
7053 case 0x660f7d: /* hsubpd */
7054 case 0xf20f7d: /* hsubps */
7055 case 0xf30f7e: /* movq */
7056 case 0x0fc2: /* cmpps */
7057 case 0x660fc2: /* cmppd */
7058 case 0xf20fc2: /* cmpsd */
7059 case 0xf30fc2: /* cmpss */
7060 case 0x660fc4: /* pinsrw */
7061 case 0x0fc6: /* shufps */
7062 case 0x660fc6: /* shufpd */
7063 case 0x660fd0: /* addsubpd */
7064 case 0xf20fd0: /* addsubps */
7065 case 0x660fd1: /* psrlw */
7066 case 0x660fd2: /* psrld */
7067 case 0x660fd3: /* psrlq */
7068 case 0x660fd4: /* paddq */
7069 case 0x660fd5: /* pmullw */
7070 case 0xf30fd6: /* movq2dq */
7071 case 0x660fd8: /* psubusb */
7072 case 0x660fd9: /* psubusw */
7073 case 0x660fda: /* pminub */
7074 case 0x660fdb: /* pand */
7075 case 0x660fdc: /* paddusb */
7076 case 0x660fdd: /* paddusw */
7077 case 0x660fde: /* pmaxub */
7078 case 0x660fdf: /* pandn */
7079 case 0x660fe0: /* pavgb */
7080 case 0x660fe1: /* psraw */
7081 case 0x660fe2: /* psrad */
7082 case 0x660fe3: /* pavgw */
7083 case 0x660fe4: /* pmulhuw */
7084 case 0x660fe5: /* pmulhw */
7085 case 0x660fe6: /* cvttpd2dq */
7086 case 0xf20fe6: /* cvtpd2dq */
7087 case 0xf30fe6: /* cvtdq2pd */
7088 case 0x660fe8: /* psubsb */
7089 case 0x660fe9: /* psubsw */
7090 case 0x660fea: /* pminsw */
7091 case 0x660feb: /* por */
7092 case 0x660fec: /* paddsb */
7093 case 0x660fed: /* paddsw */
7094 case 0x660fee: /* pmaxsw */
7095 case 0x660fef: /* pxor */
4f7d61a8 7096 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7097 case 0x660ff1: /* psllw */
7098 case 0x660ff2: /* pslld */
7099 case 0x660ff3: /* psllq */
7100 case 0x660ff4: /* pmuludq */
7101 case 0x660ff5: /* pmaddwd */
7102 case 0x660ff6: /* psadbw */
7103 case 0x660ff8: /* psubb */
7104 case 0x660ff9: /* psubw */
56d2815c 7105 case 0x660ffa: /* psubd */
a3c4230a
HZ
7106 case 0x660ffb: /* psubq */
7107 case 0x660ffc: /* paddb */
7108 case 0x660ffd: /* paddw */
56d2815c 7109 case 0x660ffe: /* paddd */
a3c4230a
HZ
7110 if (i386_record_modrm (&ir))
7111 return -1;
7112 ir.reg |= rex_r;
c131fcee 7113 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a
HZ
7114 goto no_support;
7115 record_arch_list_add_reg (ir.regcache,
7116 I387_XMM0_REGNUM (tdep) + ir.reg);
7117 if ((opcode & 0xfffffffc) == 0x660f3a60)
7118 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7119 break;
7120
7121 case 0x0f11: /* movups */
7122 case 0x660f11: /* movupd */
7123 case 0xf30f11: /* movss */
7124 case 0xf20f11: /* movsd */
7125 case 0x0f13: /* movlps */
7126 case 0x660f13: /* movlpd */
7127 case 0x0f17: /* movhps */
7128 case 0x660f17: /* movhpd */
7129 case 0x0f29: /* movaps */
7130 case 0x660f29: /* movapd */
7131 case 0x660f3a14: /* pextrb */
7132 case 0x660f3a15: /* pextrw */
7133 case 0x660f3a16: /* pextrd pextrq */
7134 case 0x660f3a17: /* extractps */
7135 case 0x660f7f: /* movdqa */
7136 case 0xf30f7f: /* movdqu */
7137 if (i386_record_modrm (&ir))
7138 return -1;
7139 if (ir.mod == 3)
7140 {
7141 if (opcode == 0x0f13 || opcode == 0x660f13
7142 || opcode == 0x0f17 || opcode == 0x660f17)
7143 goto no_support;
7144 ir.rm |= ir.rex_b;
1777feb0
MS
7145 if (!i386_xmm_regnum_p (gdbarch,
7146 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7147 goto no_support;
7148 record_arch_list_add_reg (ir.regcache,
7149 I387_XMM0_REGNUM (tdep) + ir.rm);
7150 }
7151 else
7152 {
7153 switch (opcode)
7154 {
7155 case 0x660f3a14:
7156 ir.ot = OT_BYTE;
7157 break;
7158 case 0x660f3a15:
7159 ir.ot = OT_WORD;
7160 break;
7161 case 0x660f3a16:
7162 ir.ot = OT_LONG;
7163 break;
7164 case 0x660f3a17:
7165 ir.ot = OT_QUAD;
7166 break;
7167 default:
7168 ir.ot = OT_DQUAD;
7169 break;
7170 }
7171 if (i386_record_lea_modrm (&ir))
7172 return -1;
7173 }
7174 break;
7175
7176 case 0x0f2b: /* movntps */
7177 case 0x660f2b: /* movntpd */
7178 case 0x0fe7: /* movntq */
7179 case 0x660fe7: /* movntdq */
7180 if (ir.mod == 3)
7181 goto no_support;
7182 if (opcode == 0x0fe7)
7183 ir.ot = OT_QUAD;
7184 else
7185 ir.ot = OT_DQUAD;
7186 if (i386_record_lea_modrm (&ir))
7187 return -1;
7188 break;
7189
7190 case 0xf30f2c: /* cvttss2si */
7191 case 0xf20f2c: /* cvttsd2si */
7192 case 0xf30f2d: /* cvtss2si */
7193 case 0xf20f2d: /* cvtsd2si */
7194 case 0xf20f38f0: /* crc32 */
7195 case 0xf20f38f1: /* crc32 */
7196 case 0x0f50: /* movmskps */
7197 case 0x660f50: /* movmskpd */
7198 case 0x0fc5: /* pextrw */
7199 case 0x660fc5: /* pextrw */
7200 case 0x0fd7: /* pmovmskb */
7201 case 0x660fd7: /* pmovmskb */
7202 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7203 break;
7204
7205 case 0x0f3800: /* pshufb */
7206 case 0x0f3801: /* phaddw */
7207 case 0x0f3802: /* phaddd */
7208 case 0x0f3803: /* phaddsw */
7209 case 0x0f3804: /* pmaddubsw */
7210 case 0x0f3805: /* phsubw */
7211 case 0x0f3806: /* phsubd */
4f7d61a8 7212 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7213 case 0x0f3808: /* psignb */
7214 case 0x0f3809: /* psignw */
7215 case 0x0f380a: /* psignd */
7216 case 0x0f380b: /* pmulhrsw */
7217 case 0x0f381c: /* pabsb */
7218 case 0x0f381d: /* pabsw */
7219 case 0x0f381e: /* pabsd */
7220 case 0x0f382b: /* packusdw */
7221 case 0x0f3830: /* pmovzxbw */
7222 case 0x0f3831: /* pmovzxbd */
7223 case 0x0f3832: /* pmovzxbq */
7224 case 0x0f3833: /* pmovzxwd */
7225 case 0x0f3834: /* pmovzxwq */
7226 case 0x0f3835: /* pmovzxdq */
7227 case 0x0f3837: /* pcmpgtq */
7228 case 0x0f3838: /* pminsb */
7229 case 0x0f3839: /* pminsd */
7230 case 0x0f383a: /* pminuw */
7231 case 0x0f383b: /* pminud */
7232 case 0x0f383c: /* pmaxsb */
7233 case 0x0f383d: /* pmaxsd */
7234 case 0x0f383e: /* pmaxuw */
7235 case 0x0f383f: /* pmaxud */
7236 case 0x0f3840: /* pmulld */
7237 case 0x0f3841: /* phminposuw */
7238 case 0x0f3a0f: /* palignr */
7239 case 0x0f60: /* punpcklbw */
7240 case 0x0f61: /* punpcklwd */
7241 case 0x0f62: /* punpckldq */
7242 case 0x0f63: /* packsswb */
7243 case 0x0f64: /* pcmpgtb */
7244 case 0x0f65: /* pcmpgtw */
56d2815c 7245 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7246 case 0x0f67: /* packuswb */
7247 case 0x0f68: /* punpckhbw */
7248 case 0x0f69: /* punpckhwd */
7249 case 0x0f6a: /* punpckhdq */
7250 case 0x0f6b: /* packssdw */
7251 case 0x0f6e: /* movd */
7252 case 0x0f6f: /* movq */
7253 case 0x0f70: /* pshufw */
7254 case 0x0f74: /* pcmpeqb */
7255 case 0x0f75: /* pcmpeqw */
56d2815c 7256 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7257 case 0x0fc4: /* pinsrw */
7258 case 0x0fd1: /* psrlw */
7259 case 0x0fd2: /* psrld */
7260 case 0x0fd3: /* psrlq */
7261 case 0x0fd4: /* paddq */
7262 case 0x0fd5: /* pmullw */
7263 case 0xf20fd6: /* movdq2q */
7264 case 0x0fd8: /* psubusb */
7265 case 0x0fd9: /* psubusw */
7266 case 0x0fda: /* pminub */
7267 case 0x0fdb: /* pand */
7268 case 0x0fdc: /* paddusb */
7269 case 0x0fdd: /* paddusw */
7270 case 0x0fde: /* pmaxub */
7271 case 0x0fdf: /* pandn */
7272 case 0x0fe0: /* pavgb */
7273 case 0x0fe1: /* psraw */
7274 case 0x0fe2: /* psrad */
7275 case 0x0fe3: /* pavgw */
7276 case 0x0fe4: /* pmulhuw */
7277 case 0x0fe5: /* pmulhw */
7278 case 0x0fe8: /* psubsb */
7279 case 0x0fe9: /* psubsw */
7280 case 0x0fea: /* pminsw */
7281 case 0x0feb: /* por */
7282 case 0x0fec: /* paddsb */
7283 case 0x0fed: /* paddsw */
7284 case 0x0fee: /* pmaxsw */
7285 case 0x0fef: /* pxor */
7286 case 0x0ff1: /* psllw */
7287 case 0x0ff2: /* pslld */
7288 case 0x0ff3: /* psllq */
7289 case 0x0ff4: /* pmuludq */
7290 case 0x0ff5: /* pmaddwd */
7291 case 0x0ff6: /* psadbw */
7292 case 0x0ff8: /* psubb */
7293 case 0x0ff9: /* psubw */
56d2815c 7294 case 0x0ffa: /* psubd */
a3c4230a
HZ
7295 case 0x0ffb: /* psubq */
7296 case 0x0ffc: /* paddb */
7297 case 0x0ffd: /* paddw */
56d2815c 7298 case 0x0ffe: /* paddd */
a3c4230a
HZ
7299 if (i386_record_modrm (&ir))
7300 return -1;
7301 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7302 goto no_support;
7303 record_arch_list_add_reg (ir.regcache,
7304 I387_MM0_REGNUM (tdep) + ir.reg);
7305 break;
7306
7307 case 0x0f71: /* psllw */
7308 case 0x0f72: /* pslld */
7309 case 0x0f73: /* psllq */
7310 if (i386_record_modrm (&ir))
7311 return -1;
7312 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7313 goto no_support;
7314 record_arch_list_add_reg (ir.regcache,
7315 I387_MM0_REGNUM (tdep) + ir.rm);
7316 break;
7317
7318 case 0x660f71: /* psllw */
7319 case 0x660f72: /* pslld */
7320 case 0x660f73: /* psllq */
7321 if (i386_record_modrm (&ir))
7322 return -1;
7323 ir.rm |= ir.rex_b;
c131fcee 7324 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7325 goto no_support;
7326 record_arch_list_add_reg (ir.regcache,
7327 I387_XMM0_REGNUM (tdep) + ir.rm);
7328 break;
7329
7330 case 0x0f7e: /* movd */
7331 case 0x660f7e: /* movd */
7332 if (i386_record_modrm (&ir))
7333 return -1;
7334 if (ir.mod == 3)
7335 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7336 else
7337 {
7338 if (ir.dflag == 2)
7339 ir.ot = OT_QUAD;
7340 else
7341 ir.ot = OT_LONG;
7342 if (i386_record_lea_modrm (&ir))
7343 return -1;
7344 }
7345 break;
7346
7347 case 0x0f7f: /* movq */
7348 if (i386_record_modrm (&ir))
7349 return -1;
7350 if (ir.mod == 3)
7351 {
7352 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7353 goto no_support;
7354 record_arch_list_add_reg (ir.regcache,
7355 I387_MM0_REGNUM (tdep) + ir.rm);
7356 }
7357 else
7358 {
7359 ir.ot = OT_QUAD;
7360 if (i386_record_lea_modrm (&ir))
7361 return -1;
7362 }
7363 break;
7364
7365 case 0xf30fb8: /* popcnt */
7366 if (i386_record_modrm (&ir))
7367 return -1;
7368 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7369 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7370 break;
7371
7372 case 0x660fd6: /* movq */
7373 if (i386_record_modrm (&ir))
7374 return -1;
7375 if (ir.mod == 3)
7376 {
7377 ir.rm |= ir.rex_b;
1777feb0
MS
7378 if (!i386_xmm_regnum_p (gdbarch,
7379 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7380 goto no_support;
7381 record_arch_list_add_reg (ir.regcache,
7382 I387_XMM0_REGNUM (tdep) + ir.rm);
7383 }
7384 else
7385 {
7386 ir.ot = OT_QUAD;
7387 if (i386_record_lea_modrm (&ir))
7388 return -1;
7389 }
7390 break;
7391
7392 case 0x660f3817: /* ptest */
7393 case 0x0f2e: /* ucomiss */
7394 case 0x660f2e: /* ucomisd */
7395 case 0x0f2f: /* comiss */
7396 case 0x660f2f: /* comisd */
7397 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7398 break;
7399
7400 case 0x0ff7: /* maskmovq */
7401 regcache_raw_read_unsigned (ir.regcache,
7402 ir.regmap[X86_RECORD_REDI_REGNUM],
7403 &addr);
7404 if (record_arch_list_add_mem (addr, 64))
7405 return -1;
7406 break;
7407
7408 case 0x660ff7: /* maskmovdqu */
7409 regcache_raw_read_unsigned (ir.regcache,
7410 ir.regmap[X86_RECORD_REDI_REGNUM],
7411 &addr);
7412 if (record_arch_list_add_mem (addr, 128))
7413 return -1;
7414 break;
7415
7416 default:
7417 goto no_support;
7418 break;
7419 }
7420 break;
7ad10968
HZ
7421
7422 default:
7ad10968
HZ
7423 goto no_support;
7424 break;
7425 }
7426
cf648174
HZ
7427 /* In the future, maybe still need to deal with need_dasm. */
7428 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7ad10968
HZ
7429 if (record_arch_list_add_end ())
7430 return -1;
7431
7432 return 0;
7433
01fe1b41 7434 no_support:
a3c4230a
HZ
7435 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7436 "at address %s.\n"),
7437 (unsigned int) (opcode),
7438 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
7439 return -1;
7440}
7441
cf648174
HZ
7442static const int i386_record_regmap[] =
7443{
7444 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7445 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7446 0, 0, 0, 0, 0, 0, 0, 0,
7447 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7448 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7449};
7450
7a697b8d 7451/* Check that the given address appears suitable for a fast
405f8e94 7452 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
7453 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7454 jump and not have to worry about program jumps to an address in the
405f8e94
SS
7455 middle of the tracepoint jump. On x86, it may be possible to use
7456 4-byte jumps with a 2-byte offset to a trampoline located in the
7457 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
7458 of instruction to replace, and 0 if not, plus an explanatory
7459 string. */
7460
7461static int
7462i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7463 CORE_ADDR addr, int *isize, char **msg)
7464{
7465 int len, jumplen;
7466 static struct ui_file *gdb_null = NULL;
7467
405f8e94
SS
7468 /* Ask the target for the minimum instruction length supported. */
7469 jumplen = target_get_min_fast_tracepoint_insn_len ();
7470
7471 if (jumplen < 0)
7472 {
7473 /* If the target does not support the get_min_fast_tracepoint_insn_len
7474 operation, assume that fast tracepoints will always be implemented
7475 using 4-byte relative jumps on both x86 and x86-64. */
7476 jumplen = 5;
7477 }
7478 else if (jumplen == 0)
7479 {
7480 /* If the target does support get_min_fast_tracepoint_insn_len but
7481 returns zero, then the IPA has not loaded yet. In this case,
7482 we optimistically assume that truncated 2-byte relative jumps
7483 will be available on x86, and compensate later if this assumption
7484 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7485 jumps will always be used. */
7486 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7487 }
7a697b8d
SS
7488
7489 /* Dummy file descriptor for the disassembler. */
7490 if (!gdb_null)
7491 gdb_null = ui_file_new ();
7492
7493 /* Check for fit. */
7494 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
7495 if (isize)
7496 *isize = len;
7497
7a697b8d
SS
7498 if (len < jumplen)
7499 {
7500 /* Return a bit of target-specific detail to add to the caller's
7501 generic failure message. */
7502 if (msg)
1777feb0
MS
7503 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7504 "need at least %d bytes for the jump"),
7a697b8d
SS
7505 len, jumplen);
7506 return 0;
7507 }
405f8e94
SS
7508 else
7509 {
7510 if (msg)
7511 *msg = NULL;
7512 return 1;
7513 }
7a697b8d
SS
7514}
7515
90884b2b
L
7516static int
7517i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7518 struct tdesc_arch_data *tdesc_data)
7519{
7520 const struct target_desc *tdesc = tdep->tdesc;
c131fcee
L
7521 const struct tdesc_feature *feature_core;
7522 const struct tdesc_feature *feature_sse, *feature_avx;
90884b2b
L
7523 int i, num_regs, valid_p;
7524
7525 if (! tdesc_has_registers (tdesc))
7526 return 0;
7527
7528 /* Get core registers. */
7529 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
7530 if (feature_core == NULL)
7531 return 0;
90884b2b
L
7532
7533 /* Get SSE registers. */
c131fcee 7534 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 7535
c131fcee
L
7536 /* Try AVX registers. */
7537 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7538
90884b2b
L
7539 valid_p = 1;
7540
c131fcee
L
7541 /* The XCR0 bits. */
7542 if (feature_avx)
7543 {
3a13a53b
L
7544 /* AVX register description requires SSE register description. */
7545 if (!feature_sse)
7546 return 0;
7547
c131fcee
L
7548 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7549
7550 /* It may have been set by OSABI initialization function. */
7551 if (tdep->num_ymm_regs == 0)
7552 {
7553 tdep->ymmh_register_names = i386_ymmh_names;
7554 tdep->num_ymm_regs = 8;
7555 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7556 }
7557
7558 for (i = 0; i < tdep->num_ymm_regs; i++)
7559 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7560 tdep->ymm0h_regnum + i,
7561 tdep->ymmh_register_names[i]);
7562 }
3a13a53b 7563 else if (feature_sse)
c131fcee 7564 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
7565 else
7566 {
7567 tdep->xcr0 = I386_XSTATE_X87_MASK;
7568 tdep->num_xmm_regs = 0;
7569 }
c131fcee 7570
90884b2b
L
7571 num_regs = tdep->num_core_regs;
7572 for (i = 0; i < num_regs; i++)
7573 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7574 tdep->register_names[i]);
7575
3a13a53b
L
7576 if (feature_sse)
7577 {
7578 /* Need to include %mxcsr, so add one. */
7579 num_regs += tdep->num_xmm_regs + 1;
7580 for (; i < num_regs; i++)
7581 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7582 tdep->register_names[i]);
7583 }
90884b2b
L
7584
7585 return valid_p;
7586}
7587
7ad10968
HZ
7588\f
7589static struct gdbarch *
7590i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7591{
7592 struct gdbarch_tdep *tdep;
7593 struct gdbarch *gdbarch;
90884b2b
L
7594 struct tdesc_arch_data *tdesc_data;
7595 const struct target_desc *tdesc;
1ba53b71 7596 int mm0_regnum;
c131fcee 7597 int ymm0_regnum;
7ad10968
HZ
7598
7599 /* If there is already a candidate, use it. */
7600 arches = gdbarch_list_lookup_by_info (arches, &info);
7601 if (arches != NULL)
7602 return arches->gdbarch;
7603
7604 /* Allocate space for the new architecture. */
7605 tdep = XCALLOC (1, struct gdbarch_tdep);
7606 gdbarch = gdbarch_alloc (&info, tdep);
7607
7608 /* General-purpose registers. */
7609 tdep->gregset = NULL;
7610 tdep->gregset_reg_offset = NULL;
7611 tdep->gregset_num_regs = I386_NUM_GREGS;
7612 tdep->sizeof_gregset = 0;
7613
7614 /* Floating-point registers. */
7615 tdep->fpregset = NULL;
7616 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7617
c131fcee
L
7618 tdep->xstateregset = NULL;
7619
7ad10968
HZ
7620 /* The default settings include the FPU registers, the MMX registers
7621 and the SSE registers. This can be overridden for a specific ABI
7622 by adjusting the members `st0_regnum', `mm0_regnum' and
7623 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 7624 will show up in the output of "info all-registers". */
7ad10968
HZ
7625
7626 tdep->st0_regnum = I386_ST0_REGNUM;
7627
7ad10968
HZ
7628 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7629 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7630
7631 tdep->jb_pc_offset = -1;
7632 tdep->struct_return = pcc_struct_return;
7633 tdep->sigtramp_start = 0;
7634 tdep->sigtramp_end = 0;
7635 tdep->sigtramp_p = i386_sigtramp_p;
7636 tdep->sigcontext_addr = NULL;
7637 tdep->sc_reg_offset = NULL;
7638 tdep->sc_pc_offset = -1;
7639 tdep->sc_sp_offset = -1;
7640
c131fcee
L
7641 tdep->xsave_xcr0_offset = -1;
7642
cf648174
HZ
7643 tdep->record_regmap = i386_record_regmap;
7644
205c306f
DM
7645 set_gdbarch_long_long_align_bit (gdbarch, 32);
7646
7ad10968
HZ
7647 /* The format used for `long double' on almost all i386 targets is
7648 the i387 extended floating-point format. In fact, of all targets
7649 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7650 on having a `long double' that's not `long' at all. */
7651 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7652
7653 /* Although the i387 extended floating-point has only 80 significant
7654 bits, a `long double' actually takes up 96, probably to enforce
7655 alignment. */
7656 set_gdbarch_long_double_bit (gdbarch, 96);
7657
7ad10968
HZ
7658 /* Register numbers of various important registers. */
7659 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7660 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7661 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7662 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7663
7664 /* NOTE: kettenis/20040418: GCC does have two possible register
7665 numbering schemes on the i386: dbx and SVR4. These schemes
7666 differ in how they number %ebp, %esp, %eflags, and the
7667 floating-point registers, and are implemented by the arrays
7668 dbx_register_map[] and svr4_dbx_register_map in
7669 gcc/config/i386.c. GCC also defines a third numbering scheme in
7670 gcc/config/i386.c, which it designates as the "default" register
7671 map used in 64bit mode. This last register numbering scheme is
7672 implemented in dbx64_register_map, and is used for AMD64; see
7673 amd64-tdep.c.
7674
7675 Currently, each GCC i386 target always uses the same register
7676 numbering scheme across all its supported debugging formats
7677 i.e. SDB (COFF), stabs and DWARF 2. This is because
7678 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7679 DBX_REGISTER_NUMBER macro which is defined by each target's
7680 respective config header in a manner independent of the requested
7681 output debugging format.
7682
7683 This does not match the arrangement below, which presumes that
7684 the SDB and stabs numbering schemes differ from the DWARF and
7685 DWARF 2 ones. The reason for this arrangement is that it is
7686 likely to get the numbering scheme for the target's
7687 default/native debug format right. For targets where GCC is the
7688 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7689 targets where the native toolchain uses a different numbering
7690 scheme for a particular debug format (stabs-in-ELF on Solaris)
7691 the defaults below will have to be overridden, like
7692 i386_elf_init_abi() does. */
7693
7694 /* Use the dbx register numbering scheme for stabs and COFF. */
7695 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7696 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7697
7698 /* Use the SVR4 register numbering scheme for DWARF 2. */
7699 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7700
7701 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7702 be in use on any of the supported i386 targets. */
7703
7704 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7705
7706 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7707
7708 /* Call dummy code. */
7709 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 7710 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
7711
7712 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7713 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7714 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7715
7716 set_gdbarch_return_value (gdbarch, i386_return_value);
7717
7718 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7719
7720 /* Stack grows downward. */
7721 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7722
7723 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7724 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7725 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7726
7727 set_gdbarch_frame_args_skip (gdbarch, 8);
7728
7ad10968
HZ
7729 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7730
7731 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7732
7733 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7734
7735 /* Add the i386 register groups. */
7736 i386_add_reggroups (gdbarch);
90884b2b 7737 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 7738
143985b7
AF
7739 /* Helper for function argument information. */
7740 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7741
06da04c6 7742 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
7743 appended to the list first, so that it supercedes the DWARF
7744 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
7745 currently fails). */
7746 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7747
7748 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 7749 to the list before the prologue-based unwinders, so that DWARF
06da04c6 7750 CFI info will be used if it is available. */
10458914 7751 dwarf2_append_unwinders (gdbarch);
6405b0a6 7752
acd5c798 7753 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 7754
1ba53b71 7755 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
7756 set_gdbarch_pseudo_register_read_value (gdbarch,
7757 i386_pseudo_register_read_value);
90884b2b
L
7758 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7759
7760 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7761 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7762
c131fcee
L
7763 /* Override the normal target description method to make the AVX
7764 upper halves anonymous. */
7765 set_gdbarch_register_name (gdbarch, i386_register_name);
7766
7767 /* Even though the default ABI only includes general-purpose registers,
7768 floating-point registers and the SSE registers, we have to leave a
7769 gap for the upper AVX registers. */
7770 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
90884b2b
L
7771
7772 /* Get the x86 target description from INFO. */
7773 tdesc = info.target_desc;
7774 if (! tdesc_has_registers (tdesc))
7775 tdesc = tdesc_i386;
7776 tdep->tdesc = tdesc;
7777
7778 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7779 tdep->register_names = i386_register_names;
7780
c131fcee
L
7781 /* No upper YMM registers. */
7782 tdep->ymmh_register_names = NULL;
7783 tdep->ymm0h_regnum = -1;
7784
1ba53b71
L
7785 tdep->num_byte_regs = 8;
7786 tdep->num_word_regs = 8;
7787 tdep->num_dword_regs = 0;
7788 tdep->num_mmx_regs = 8;
c131fcee 7789 tdep->num_ymm_regs = 0;
1ba53b71 7790
90884b2b
L
7791 tdesc_data = tdesc_data_alloc ();
7792
dde08ee1
PA
7793 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7794
6710bf39
SS
7795 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7796
3ce1502b 7797 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 7798 info.tdep_info = (void *) tdesc_data;
4be87837 7799 gdbarch_init_osabi (info, gdbarch);
3ce1502b 7800
c131fcee
L
7801 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7802 {
7803 tdesc_data_cleanup (tdesc_data);
7804 xfree (tdep);
7805 gdbarch_free (gdbarch);
7806 return NULL;
7807 }
7808
1ba53b71
L
7809 /* Wire in pseudo registers. Number of pseudo registers may be
7810 changed. */
7811 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7812 + tdep->num_word_regs
7813 + tdep->num_dword_regs
c131fcee
L
7814 + tdep->num_mmx_regs
7815 + tdep->num_ymm_regs));
1ba53b71 7816
90884b2b
L
7817 /* Target description may be changed. */
7818 tdesc = tdep->tdesc;
7819
90884b2b
L
7820 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7821
7822 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7823 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7824
1ba53b71
L
7825 /* Make %al the first pseudo-register. */
7826 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7827 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7828
c131fcee 7829 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
7830 if (tdep->num_dword_regs)
7831 {
1c6272a6 7832 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
7833 tdep->eax_regnum = ymm0_regnum;
7834 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
7835 }
7836 else
7837 tdep->eax_regnum = -1;
7838
c131fcee
L
7839 mm0_regnum = ymm0_regnum;
7840 if (tdep->num_ymm_regs)
7841 {
1c6272a6 7842 /* Support YMM pseudo-register if it is available. */
c131fcee
L
7843 tdep->ymm0_regnum = ymm0_regnum;
7844 mm0_regnum += tdep->num_ymm_regs;
7845 }
7846 else
7847 tdep->ymm0_regnum = -1;
7848
1ba53b71
L
7849 if (tdep->num_mmx_regs != 0)
7850 {
1c6272a6 7851 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71
L
7852 tdep->mm0_regnum = mm0_regnum;
7853 }
7854 else
7855 tdep->mm0_regnum = -1;
7856
06da04c6 7857 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 7858 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
7859 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7860 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 7861
8446b36a
MK
7862 /* If we have a register mapping, enable the generic core file
7863 support, unless it has already been enabled. */
7864 if (tdep->gregset_reg_offset
7865 && !gdbarch_regset_from_core_section_p (gdbarch))
7866 set_gdbarch_regset_from_core_section (gdbarch,
7867 i386_regset_from_core_section);
7868
514f746b
AR
7869 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7870 i386_skip_permanent_breakpoint);
7871
7a697b8d
SS
7872 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7873 i386_fast_tracepoint_valid_at);
7874
a62cc96e
AC
7875 return gdbarch;
7876}
7877
8201327c
MK
7878static enum gdb_osabi
7879i386_coff_osabi_sniffer (bfd *abfd)
7880{
762c5349
MK
7881 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7882 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
7883 return GDB_OSABI_GO32;
7884
7885 return GDB_OSABI_UNKNOWN;
7886}
8201327c
MK
7887\f
7888
28e9e0f0
MK
7889/* Provide a prototype to silence -Wmissing-prototypes. */
7890void _initialize_i386_tdep (void);
7891
c906108c 7892void
fba45db2 7893_initialize_i386_tdep (void)
c906108c 7894{
a62cc96e
AC
7895 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7896
fc338970 7897 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
7898 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7899 &disassembly_flavor, _("\
7900Set the disassembly flavor."), _("\
7901Show the disassembly flavor."), _("\
7902The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7903 NULL,
7904 NULL, /* FIXME: i18n: */
7905 &setlist, &showlist);
8201327c
MK
7906
7907 /* Add the variable that controls the convention for returning
7908 structs. */
7ab04401
AC
7909 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7910 &struct_convention, _("\
7911Set the convention for returning small structs."), _("\
7912Show the convention for returning small structs."), _("\
7913Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7914is \"default\"."),
7915 NULL,
7916 NULL, /* FIXME: i18n: */
7917 &setlist, &showlist);
8201327c
MK
7918
7919 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7920 i386_coff_osabi_sniffer);
8201327c 7921
05816f70 7922 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 7923 i386_svr4_init_abi);
05816f70 7924 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 7925 i386_go32_init_abi);
38c968cf 7926
209bd28e 7927 /* Initialize the i386-specific register groups. */
38c968cf 7928 i386_init_reggroups ();
90884b2b
L
7929
7930 /* Initialize the standard target descriptions. */
7931 initialize_tdesc_i386 ();
3a13a53b 7932 initialize_tdesc_i386_mmx ();
c131fcee 7933 initialize_tdesc_i386_avx ();
c8d5aac9
L
7934
7935 /* Tell remote stub that we support XML target description. */
7936 register_remote_support_xml ("i386");
c906108c 7937}