]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
replace XMALLOC with XNEW
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
ecd75fc8 3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
fd0407d6 42#include "value.h"
a89aa300 43#include "dis-asm.h"
7a697b8d 44#include "disasm.h"
c8d5aac9 45#include "remote.h"
8fbca658 46#include "exceptions.h"
3d261580 47#include "gdb_assert.h"
0e9f083f 48#include <string.h>
3d261580 49
d2a7c97a 50#include "i386-tdep.h"
61113f8b 51#include "i387-tdep.h"
c131fcee 52#include "i386-xstate.h"
d2a7c97a 53
7ad10968 54#include "record.h"
d02ed0bb 55#include "record-full.h"
7ad10968
HZ
56#include <stdint.h>
57
90884b2b 58#include "features/i386/i386.c"
c131fcee 59#include "features/i386/i386-avx.c"
1dbcd68c 60#include "features/i386/i386-mpx.c"
3a13a53b 61#include "features/i386/i386-mmx.c"
90884b2b 62
6710bf39
SS
63#include "ax.h"
64#include "ax-gdb.h"
65
55aa24fb
SDJ
66#include "stap-probe.h"
67#include "user-regs.h"
68#include "cli/cli-utils.h"
69#include "expression.h"
70#include "parser-defs.h"
71#include <ctype.h>
72
c4fc7f1b 73/* Register names. */
c40e1eab 74
90884b2b 75static const char *i386_register_names[] =
fc633446
MK
76{
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88};
89
c131fcee
L
90static const char *i386_ymm_names[] =
91{
92 "ymm0", "ymm1", "ymm2", "ymm3",
93 "ymm4", "ymm5", "ymm6", "ymm7",
94};
95
96static const char *i386_ymmh_names[] =
97{
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100};
101
1dbcd68c
WT
102static const char *i386_mpx_names[] =
103{
104 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
105};
106
107/* Register names for MPX pseudo-registers. */
108
109static const char *i386_bnd_names[] =
110{
111 "bnd0", "bnd1", "bnd2", "bnd3"
112};
113
c4fc7f1b 114/* Register names for MMX pseudo-registers. */
28fc6740 115
90884b2b 116static const char *i386_mmx_names[] =
28fc6740
AC
117{
118 "mm0", "mm1", "mm2", "mm3",
119 "mm4", "mm5", "mm6", "mm7"
120};
c40e1eab 121
1ba53b71
L
122/* Register names for byte pseudo-registers. */
123
124static const char *i386_byte_names[] =
125{
126 "al", "cl", "dl", "bl",
127 "ah", "ch", "dh", "bh"
128};
129
130/* Register names for word pseudo-registers. */
131
132static const char *i386_word_names[] =
133{
134 "ax", "cx", "dx", "bx",
9cad29ac 135 "", "bp", "si", "di"
1ba53b71
L
136};
137
138/* MMX register? */
c40e1eab 139
28fc6740 140static int
5716833c 141i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 142{
1ba53b71
L
143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
144 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
145
146 if (mm0_regnum < 0)
147 return 0;
148
1ba53b71
L
149 regnum -= mm0_regnum;
150 return regnum >= 0 && regnum < tdep->num_mmx_regs;
151}
152
153/* Byte register? */
154
155int
156i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
157{
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159
160 regnum -= tdep->al_regnum;
161 return regnum >= 0 && regnum < tdep->num_byte_regs;
162}
163
164/* Word register? */
165
166int
167i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
168{
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170
171 regnum -= tdep->ax_regnum;
172 return regnum >= 0 && regnum < tdep->num_word_regs;
173}
174
175/* Dword register? */
176
177int
178i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
179{
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int eax_regnum = tdep->eax_regnum;
182
183 if (eax_regnum < 0)
184 return 0;
185
186 regnum -= eax_regnum;
187 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
188}
189
9191d390 190static int
c131fcee
L
191i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
192{
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194 int ymm0h_regnum = tdep->ymm0h_regnum;
195
196 if (ymm0h_regnum < 0)
197 return 0;
198
199 regnum -= ymm0h_regnum;
200 return regnum >= 0 && regnum < tdep->num_ymm_regs;
201}
202
203/* AVX register? */
204
205int
206i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
207{
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int ymm0_regnum = tdep->ymm0_regnum;
210
211 if (ymm0_regnum < 0)
212 return 0;
213
214 regnum -= ymm0_regnum;
215 return regnum >= 0 && regnum < tdep->num_ymm_regs;
216}
217
1dbcd68c
WT
218/* BND register? */
219
220int
221i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
222{
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int bnd0_regnum = tdep->bnd0_regnum;
225
226 if (bnd0_regnum < 0)
227 return 0;
228
229 regnum -= bnd0_regnum;
230 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
231}
232
5716833c 233/* SSE register? */
23a34459 234
c131fcee
L
235int
236i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 237{
5716833c 238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 239 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 240
c131fcee 241 if (num_xmm_regs == 0)
5716833c
MK
242 return 0;
243
c131fcee
L
244 regnum -= I387_XMM0_REGNUM (tdep);
245 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
246}
247
5716833c
MK
248static int
249i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 250{
5716833c
MK
251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252
20a6ec49 253 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
254 return 0;
255
20a6ec49 256 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
257}
258
5716833c 259/* FP register? */
23a34459
AC
260
261int
20a6ec49 262i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 263{
20a6ec49
MD
264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265
266 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
267 return 0;
268
20a6ec49
MD
269 return (I387_ST0_REGNUM (tdep) <= regnum
270 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
271}
272
273int
20a6ec49 274i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 275{
20a6ec49
MD
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277
278 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
279 return 0;
280
20a6ec49
MD
281 return (I387_FCTRL_REGNUM (tdep) <= regnum
282 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
283}
284
1dbcd68c
WT
285/* BNDr (raw) register? */
286
287static int
288i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
289{
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291
292 if (I387_BND0R_REGNUM (tdep) < 0)
293 return 0;
294
295 regnum -= tdep->bnd0r_regnum;
296 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
297}
298
299/* BND control register? */
300
301static int
302i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
303{
304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
305
306 if (I387_BNDCFGU_REGNUM (tdep) < 0)
307 return 0;
308
309 regnum -= I387_BNDCFGU_REGNUM (tdep);
310 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
311}
312
c131fcee
L
313/* Return the name of register REGNUM, or the empty string if it is
314 an anonymous register. */
315
316static const char *
317i386_register_name (struct gdbarch *gdbarch, int regnum)
318{
319 /* Hide the upper YMM registers. */
320 if (i386_ymmh_regnum_p (gdbarch, regnum))
321 return "";
322
323 return tdesc_register_name (gdbarch, regnum);
324}
325
30b0e2d8 326/* Return the name of register REGNUM. */
fc633446 327
1ba53b71 328const char *
90884b2b 329i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 330{
1ba53b71 331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
332 if (i386_bnd_regnum_p (gdbarch, regnum))
333 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
334 if (i386_mmx_regnum_p (gdbarch, regnum))
335 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
336 else if (i386_ymm_regnum_p (gdbarch, regnum))
337 return i386_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
338 else if (i386_byte_regnum_p (gdbarch, regnum))
339 return i386_byte_names[regnum - tdep->al_regnum];
340 else if (i386_word_regnum_p (gdbarch, regnum))
341 return i386_word_names[regnum - tdep->ax_regnum];
342
343 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
344}
345
c4fc7f1b 346/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
347 number used by GDB. */
348
8201327c 349static int
d3f73121 350i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 351{
20a6ec49
MD
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353
c4fc7f1b
MK
354 /* This implements what GCC calls the "default" register map
355 (dbx_register_map[]). */
356
85540d8c
MK
357 if (reg >= 0 && reg <= 7)
358 {
9872ad24
JB
359 /* General-purpose registers. The debug info calls %ebp
360 register 4, and %esp register 5. */
361 if (reg == 4)
362 return 5;
363 else if (reg == 5)
364 return 4;
365 else return reg;
85540d8c
MK
366 }
367 else if (reg >= 12 && reg <= 19)
368 {
369 /* Floating-point registers. */
20a6ec49 370 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
371 }
372 else if (reg >= 21 && reg <= 28)
373 {
374 /* SSE registers. */
c131fcee
L
375 int ymm0_regnum = tdep->ymm0_regnum;
376
377 if (ymm0_regnum >= 0
378 && i386_xmm_regnum_p (gdbarch, reg))
379 return reg - 21 + ymm0_regnum;
380 else
381 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
382 }
383 else if (reg >= 29 && reg <= 36)
384 {
385 /* MMX registers. */
20a6ec49 386 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
387 }
388
389 /* This will hopefully provoke a warning. */
d3f73121 390 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
391}
392
c4fc7f1b
MK
393/* Convert SVR4 register number REG to the appropriate register number
394 used by GDB. */
85540d8c 395
8201327c 396static int
d3f73121 397i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 398{
20a6ec49
MD
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
c4fc7f1b
MK
401 /* This implements the GCC register map that tries to be compatible
402 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
403
404 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
405 numbers the floating point registers differently. */
406 if (reg >= 0 && reg <= 9)
407 {
acd5c798 408 /* General-purpose registers. */
85540d8c
MK
409 return reg;
410 }
411 else if (reg >= 11 && reg <= 18)
412 {
413 /* Floating-point registers. */
20a6ec49 414 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 415 }
c6f4c129 416 else if (reg >= 21 && reg <= 36)
85540d8c 417 {
c4fc7f1b 418 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 419 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
420 }
421
c6f4c129
JB
422 switch (reg)
423 {
20a6ec49
MD
424 case 37: return I387_FCTRL_REGNUM (tdep);
425 case 38: return I387_FSTAT_REGNUM (tdep);
426 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
427 case 40: return I386_ES_REGNUM;
428 case 41: return I386_CS_REGNUM;
429 case 42: return I386_SS_REGNUM;
430 case 43: return I386_DS_REGNUM;
431 case 44: return I386_FS_REGNUM;
432 case 45: return I386_GS_REGNUM;
433 }
434
85540d8c 435 /* This will hopefully provoke a warning. */
d3f73121 436 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 437}
5716833c 438
fc338970 439\f
917317f4 440
fc338970
MK
441/* This is the variable that is set with "set disassembly-flavor", and
442 its legitimate values. */
53904c9e
AC
443static const char att_flavor[] = "att";
444static const char intel_flavor[] = "intel";
40478521 445static const char *const valid_flavors[] =
c5aa993b 446{
c906108c
SS
447 att_flavor,
448 intel_flavor,
449 NULL
450};
53904c9e 451static const char *disassembly_flavor = att_flavor;
acd5c798 452\f
c906108c 453
acd5c798
MK
454/* Use the program counter to determine the contents and size of a
455 breakpoint instruction. Return a pointer to a string of bytes that
456 encode a breakpoint instruction, store the length of the string in
457 *LEN and optionally adjust *PC to point to the correct memory
458 location for inserting the breakpoint.
c906108c 459
acd5c798
MK
460 On the i386 we have a single breakpoint that fits in a single byte
461 and can be inserted anywhere.
c906108c 462
acd5c798 463 This function is 64-bit safe. */
63c0089f
MK
464
465static const gdb_byte *
67d57894 466i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 467{
63c0089f
MK
468 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
469
acd5c798
MK
470 *len = sizeof (break_insn);
471 return break_insn;
c906108c 472}
237fc4c9
PA
473\f
474/* Displaced instruction handling. */
475
1903f0e6
DE
476/* Skip the legacy instruction prefixes in INSN.
477 Not all prefixes are valid for any particular insn
478 but we needn't care, the insn will fault if it's invalid.
479 The result is a pointer to the first opcode byte,
480 or NULL if we run off the end of the buffer. */
481
482static gdb_byte *
483i386_skip_prefixes (gdb_byte *insn, size_t max_len)
484{
485 gdb_byte *end = insn + max_len;
486
487 while (insn < end)
488 {
489 switch (*insn)
490 {
491 case DATA_PREFIX_OPCODE:
492 case ADDR_PREFIX_OPCODE:
493 case CS_PREFIX_OPCODE:
494 case DS_PREFIX_OPCODE:
495 case ES_PREFIX_OPCODE:
496 case FS_PREFIX_OPCODE:
497 case GS_PREFIX_OPCODE:
498 case SS_PREFIX_OPCODE:
499 case LOCK_PREFIX_OPCODE:
500 case REPE_PREFIX_OPCODE:
501 case REPNE_PREFIX_OPCODE:
502 ++insn;
503 continue;
504 default:
505 return insn;
506 }
507 }
508
509 return NULL;
510}
237fc4c9
PA
511
512static int
1903f0e6 513i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 514{
1777feb0 515 /* jmp far (absolute address in operand). */
237fc4c9
PA
516 if (insn[0] == 0xea)
517 return 1;
518
519 if (insn[0] == 0xff)
520 {
1777feb0 521 /* jump near, absolute indirect (/4). */
237fc4c9
PA
522 if ((insn[1] & 0x38) == 0x20)
523 return 1;
524
1777feb0 525 /* jump far, absolute indirect (/5). */
237fc4c9
PA
526 if ((insn[1] & 0x38) == 0x28)
527 return 1;
528 }
529
530 return 0;
531}
532
533static int
1903f0e6 534i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 535{
1777feb0 536 /* call far, absolute. */
237fc4c9
PA
537 if (insn[0] == 0x9a)
538 return 1;
539
540 if (insn[0] == 0xff)
541 {
1777feb0 542 /* Call near, absolute indirect (/2). */
237fc4c9
PA
543 if ((insn[1] & 0x38) == 0x10)
544 return 1;
545
1777feb0 546 /* Call far, absolute indirect (/3). */
237fc4c9
PA
547 if ((insn[1] & 0x38) == 0x18)
548 return 1;
549 }
550
551 return 0;
552}
553
554static int
1903f0e6 555i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
556{
557 switch (insn[0])
558 {
1777feb0 559 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 560 case 0xc3: /* ret near */
1777feb0 561 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
562 case 0xcb: /* ret far */
563 case 0xcf: /* iret */
564 return 1;
565
566 default:
567 return 0;
568 }
569}
570
571static int
1903f0e6 572i386_call_p (const gdb_byte *insn)
237fc4c9
PA
573{
574 if (i386_absolute_call_p (insn))
575 return 1;
576
1777feb0 577 /* call near, relative. */
237fc4c9
PA
578 if (insn[0] == 0xe8)
579 return 1;
580
581 return 0;
582}
583
237fc4c9
PA
584/* Return non-zero if INSN is a system call, and set *LENGTHP to its
585 length in bytes. Otherwise, return zero. */
1903f0e6 586
237fc4c9 587static int
b55078be 588i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 589{
9a7f938f
JK
590 /* Is it 'int $0x80'? */
591 if ((insn[0] == 0xcd && insn[1] == 0x80)
592 /* Or is it 'sysenter'? */
593 || (insn[0] == 0x0f && insn[1] == 0x34)
594 /* Or is it 'syscall'? */
595 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
596 {
597 *lengthp = 2;
598 return 1;
599 }
600
601 return 0;
602}
603
b55078be
DE
604/* Some kernels may run one past a syscall insn, so we have to cope.
605 Otherwise this is just simple_displaced_step_copy_insn. */
606
607struct displaced_step_closure *
608i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
609 CORE_ADDR from, CORE_ADDR to,
610 struct regcache *regs)
611{
612 size_t len = gdbarch_max_insn_length (gdbarch);
613 gdb_byte *buf = xmalloc (len);
614
615 read_memory (from, buf, len);
616
617 /* GDB may get control back after the insn after the syscall.
618 Presumably this is a kernel bug.
619 If this is a syscall, make sure there's a nop afterwards. */
620 {
621 int syscall_length;
622 gdb_byte *insn;
623
624 insn = i386_skip_prefixes (buf, len);
625 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
626 insn[syscall_length] = NOP_OPCODE;
627 }
628
629 write_memory (to, buf, len);
630
631 if (debug_displaced)
632 {
633 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
634 paddress (gdbarch, from), paddress (gdbarch, to));
635 displaced_step_dump_bytes (gdb_stdlog, buf, len);
636 }
637
638 return (struct displaced_step_closure *) buf;
639}
640
237fc4c9
PA
641/* Fix up the state of registers and memory after having single-stepped
642 a displaced instruction. */
1903f0e6 643
237fc4c9
PA
644void
645i386_displaced_step_fixup (struct gdbarch *gdbarch,
646 struct displaced_step_closure *closure,
647 CORE_ADDR from, CORE_ADDR to,
648 struct regcache *regs)
649{
e17a4113
UW
650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
651
237fc4c9
PA
652 /* The offset we applied to the instruction's address.
653 This could well be negative (when viewed as a signed 32-bit
654 value), but ULONGEST won't reflect that, so take care when
655 applying it. */
656 ULONGEST insn_offset = to - from;
657
658 /* Since we use simple_displaced_step_copy_insn, our closure is a
659 copy of the instruction. */
660 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
661 /* The start of the insn, needed in case we see some prefixes. */
662 gdb_byte *insn_start = insn;
237fc4c9
PA
663
664 if (debug_displaced)
665 fprintf_unfiltered (gdb_stdlog,
5af949e3 666 "displaced: fixup (%s, %s), "
237fc4c9 667 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
668 paddress (gdbarch, from), paddress (gdbarch, to),
669 insn[0], insn[1]);
237fc4c9
PA
670
671 /* The list of issues to contend with here is taken from
672 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
673 Yay for Free Software! */
674
675 /* Relocate the %eip, if necessary. */
676
1903f0e6
DE
677 /* The instruction recognizers we use assume any leading prefixes
678 have been skipped. */
679 {
680 /* This is the size of the buffer in closure. */
681 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
682 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
683 /* If there are too many prefixes, just ignore the insn.
684 It will fault when run. */
685 if (opcode != NULL)
686 insn = opcode;
687 }
688
237fc4c9
PA
689 /* Except in the case of absolute or indirect jump or call
690 instructions, or a return instruction, the new eip is relative to
691 the displaced instruction; make it relative. Well, signal
692 handler returns don't need relocation either, but we use the
693 value of %eip to recognize those; see below. */
694 if (! i386_absolute_jmp_p (insn)
695 && ! i386_absolute_call_p (insn)
696 && ! i386_ret_p (insn))
697 {
698 ULONGEST orig_eip;
b55078be 699 int insn_len;
237fc4c9
PA
700
701 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
702
703 /* A signal trampoline system call changes the %eip, resuming
704 execution of the main program after the signal handler has
705 returned. That makes them like 'return' instructions; we
706 shouldn't relocate %eip.
707
708 But most system calls don't, and we do need to relocate %eip.
709
710 Our heuristic for distinguishing these cases: if stepping
711 over the system call instruction left control directly after
712 the instruction, the we relocate --- control almost certainly
713 doesn't belong in the displaced copy. Otherwise, we assume
714 the instruction has put control where it belongs, and leave
715 it unrelocated. Goodness help us if there are PC-relative
716 system calls. */
717 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
718 && orig_eip != to + (insn - insn_start) + insn_len
719 /* GDB can get control back after the insn after the syscall.
720 Presumably this is a kernel bug.
721 i386_displaced_step_copy_insn ensures its a nop,
722 we add one to the length for it. */
723 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
724 {
725 if (debug_displaced)
726 fprintf_unfiltered (gdb_stdlog,
727 "displaced: syscall changed %%eip; "
728 "not relocating\n");
729 }
730 else
731 {
732 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
733
1903f0e6
DE
734 /* If we just stepped over a breakpoint insn, we don't backup
735 the pc on purpose; this is to match behaviour without
736 stepping. */
237fc4c9
PA
737
738 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
739
740 if (debug_displaced)
741 fprintf_unfiltered (gdb_stdlog,
742 "displaced: "
5af949e3
UW
743 "relocated %%eip from %s to %s\n",
744 paddress (gdbarch, orig_eip),
745 paddress (gdbarch, eip));
237fc4c9
PA
746 }
747 }
748
749 /* If the instruction was PUSHFL, then the TF bit will be set in the
750 pushed value, and should be cleared. We'll leave this for later,
751 since GDB already messes up the TF flag when stepping over a
752 pushfl. */
753
754 /* If the instruction was a call, the return address now atop the
755 stack is the address following the copied instruction. We need
756 to make it the address following the original instruction. */
757 if (i386_call_p (insn))
758 {
759 ULONGEST esp;
760 ULONGEST retaddr;
761 const ULONGEST retaddr_len = 4;
762
763 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 764 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 765 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 766 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
767
768 if (debug_displaced)
769 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
770 "displaced: relocated return addr at %s to %s\n",
771 paddress (gdbarch, esp),
772 paddress (gdbarch, retaddr));
237fc4c9
PA
773 }
774}
dde08ee1
PA
775
776static void
777append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
778{
779 target_write_memory (*to, buf, len);
780 *to += len;
781}
782
783static void
784i386_relocate_instruction (struct gdbarch *gdbarch,
785 CORE_ADDR *to, CORE_ADDR oldloc)
786{
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 gdb_byte buf[I386_MAX_INSN_LEN];
789 int offset = 0, rel32, newrel;
790 int insn_length;
791 gdb_byte *insn = buf;
792
793 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
794
795 insn_length = gdb_buffered_insn_length (gdbarch, insn,
796 I386_MAX_INSN_LEN, oldloc);
797
798 /* Get past the prefixes. */
799 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
800
801 /* Adjust calls with 32-bit relative addresses as push/jump, with
802 the address pushed being the location where the original call in
803 the user program would return to. */
804 if (insn[0] == 0xe8)
805 {
806 gdb_byte push_buf[16];
807 unsigned int ret_addr;
808
809 /* Where "ret" in the original code will return to. */
810 ret_addr = oldloc + insn_length;
1777feb0 811 push_buf[0] = 0x68; /* pushq $... */
144db827 812 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
813 /* Push the push. */
814 append_insns (to, 5, push_buf);
815
816 /* Convert the relative call to a relative jump. */
817 insn[0] = 0xe9;
818
819 /* Adjust the destination offset. */
820 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
821 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
822 store_signed_integer (insn + 1, 4, byte_order, newrel);
823
824 if (debug_displaced)
825 fprintf_unfiltered (gdb_stdlog,
826 "Adjusted insn rel32=%s at %s to"
827 " rel32=%s at %s\n",
828 hex_string (rel32), paddress (gdbarch, oldloc),
829 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
830
831 /* Write the adjusted jump into its displaced location. */
832 append_insns (to, 5, insn);
833 return;
834 }
835
836 /* Adjust jumps with 32-bit relative addresses. Calls are already
837 handled above. */
838 if (insn[0] == 0xe9)
839 offset = 1;
840 /* Adjust conditional jumps. */
841 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
842 offset = 2;
843
844 if (offset)
845 {
846 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
847 newrel = (oldloc - *to) + rel32;
f4a1794a 848 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
849 if (debug_displaced)
850 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
851 "Adjusted insn rel32=%s at %s to"
852 " rel32=%s at %s\n",
dde08ee1
PA
853 hex_string (rel32), paddress (gdbarch, oldloc),
854 hex_string (newrel), paddress (gdbarch, *to));
855 }
856
857 /* Write the adjusted instructions into their displaced
858 location. */
859 append_insns (to, insn_length, buf);
860}
861
fc338970 862\f
acd5c798
MK
863#ifdef I386_REGNO_TO_SYMMETRY
864#error "The Sequent Symmetry is no longer supported."
865#endif
c906108c 866
acd5c798
MK
867/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
868 and %esp "belong" to the calling function. Therefore these
869 registers should be saved if they're going to be modified. */
c906108c 870
acd5c798
MK
871/* The maximum number of saved registers. This should include all
872 registers mentioned above, and %eip. */
a3386186 873#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
874
875struct i386_frame_cache
c906108c 876{
acd5c798
MK
877 /* Base address. */
878 CORE_ADDR base;
8fbca658 879 int base_p;
772562f8 880 LONGEST sp_offset;
acd5c798
MK
881 CORE_ADDR pc;
882
fd13a04a
AC
883 /* Saved registers. */
884 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 885 CORE_ADDR saved_sp;
e0c62198 886 int saved_sp_reg;
acd5c798
MK
887 int pc_in_eax;
888
889 /* Stack space reserved for local variables. */
890 long locals;
891};
892
893/* Allocate and initialize a frame cache. */
894
895static struct i386_frame_cache *
fd13a04a 896i386_alloc_frame_cache (void)
acd5c798
MK
897{
898 struct i386_frame_cache *cache;
899 int i;
900
901 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
902
903 /* Base address. */
8fbca658 904 cache->base_p = 0;
acd5c798
MK
905 cache->base = 0;
906 cache->sp_offset = -4;
907 cache->pc = 0;
908
fd13a04a
AC
909 /* Saved registers. We initialize these to -1 since zero is a valid
910 offset (that's where %ebp is supposed to be stored). */
911 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
912 cache->saved_regs[i] = -1;
acd5c798 913 cache->saved_sp = 0;
e0c62198 914 cache->saved_sp_reg = -1;
acd5c798
MK
915 cache->pc_in_eax = 0;
916
917 /* Frameless until proven otherwise. */
918 cache->locals = -1;
919
920 return cache;
921}
c906108c 922
acd5c798
MK
923/* If the instruction at PC is a jump, return the address of its
924 target. Otherwise, return PC. */
c906108c 925
acd5c798 926static CORE_ADDR
e17a4113 927i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 928{
e17a4113 929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 930 gdb_byte op;
acd5c798
MK
931 long delta = 0;
932 int data16 = 0;
c906108c 933
0865b04a 934 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
935 return pc;
936
acd5c798 937 if (op == 0x66)
c906108c 938 {
c906108c 939 data16 = 1;
0865b04a
YQ
940
941 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
942 }
943
acd5c798 944 switch (op)
c906108c
SS
945 {
946 case 0xe9:
fc338970 947 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
948 if (data16)
949 {
e17a4113 950 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 951
fc338970
MK
952 /* Include the size of the jmp instruction (including the
953 0x66 prefix). */
acd5c798 954 delta += 4;
c906108c
SS
955 }
956 else
957 {
e17a4113 958 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 959
acd5c798
MK
960 /* Include the size of the jmp instruction. */
961 delta += 5;
c906108c
SS
962 }
963 break;
964 case 0xeb:
fc338970 965 /* Relative jump, disp8 (ignore data16). */
e17a4113 966 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 967
acd5c798 968 delta += data16 + 2;
c906108c
SS
969 break;
970 }
c906108c 971
acd5c798
MK
972 return pc + delta;
973}
fc338970 974
acd5c798
MK
975/* Check whether PC points at a prologue for a function returning a
976 structure or union. If so, it updates CACHE and returns the
977 address of the first instruction after the code sequence that
978 removes the "hidden" argument from the stack or CURRENT_PC,
979 whichever is smaller. Otherwise, return PC. */
c906108c 980
acd5c798
MK
981static CORE_ADDR
982i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
983 struct i386_frame_cache *cache)
c906108c 984{
acd5c798
MK
985 /* Functions that return a structure or union start with:
986
987 popl %eax 0x58
988 xchgl %eax, (%esp) 0x87 0x04 0x24
989 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
990
991 (the System V compiler puts out the second `xchg' instruction,
992 and the assembler doesn't try to optimize it, so the 'sib' form
993 gets generated). This sequence is used to get the address of the
994 return buffer for a function that returns a structure. */
63c0089f
MK
995 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
996 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
997 gdb_byte buf[4];
998 gdb_byte op;
c906108c 999
acd5c798
MK
1000 if (current_pc <= pc)
1001 return pc;
1002
0865b04a 1003 if (target_read_code (pc, &op, 1))
3dcabaa8 1004 return pc;
c906108c 1005
acd5c798
MK
1006 if (op != 0x58) /* popl %eax */
1007 return pc;
c906108c 1008
0865b04a 1009 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1010 return pc;
1011
acd5c798
MK
1012 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1013 return pc;
c906108c 1014
acd5c798 1015 if (current_pc == pc)
c906108c 1016 {
acd5c798
MK
1017 cache->sp_offset += 4;
1018 return current_pc;
c906108c
SS
1019 }
1020
acd5c798 1021 if (current_pc == pc + 1)
c906108c 1022 {
acd5c798
MK
1023 cache->pc_in_eax = 1;
1024 return current_pc;
1025 }
1026
1027 if (buf[1] == proto1[1])
1028 return pc + 4;
1029 else
1030 return pc + 5;
1031}
1032
1033static CORE_ADDR
1034i386_skip_probe (CORE_ADDR pc)
1035{
1036 /* A function may start with
fc338970 1037
acd5c798
MK
1038 pushl constant
1039 call _probe
1040 addl $4, %esp
fc338970 1041
acd5c798
MK
1042 followed by
1043
1044 pushl %ebp
fc338970 1045
acd5c798 1046 etc. */
63c0089f
MK
1047 gdb_byte buf[8];
1048 gdb_byte op;
fc338970 1049
0865b04a 1050 if (target_read_code (pc, &op, 1))
3dcabaa8 1051 return pc;
acd5c798
MK
1052
1053 if (op == 0x68 || op == 0x6a)
1054 {
1055 int delta;
c906108c 1056
acd5c798
MK
1057 /* Skip past the `pushl' instruction; it has either a one-byte or a
1058 four-byte operand, depending on the opcode. */
c906108c 1059 if (op == 0x68)
acd5c798 1060 delta = 5;
c906108c 1061 else
acd5c798 1062 delta = 2;
c906108c 1063
acd5c798
MK
1064 /* Read the following 8 bytes, which should be `call _probe' (6
1065 bytes) followed by `addl $4,%esp' (2 bytes). */
1066 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1067 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1068 pc += delta + sizeof (buf);
c906108c
SS
1069 }
1070
acd5c798
MK
1071 return pc;
1072}
1073
92dd43fa
MK
1074/* GCC 4.1 and later, can put code in the prologue to realign the
1075 stack pointer. Check whether PC points to such code, and update
1076 CACHE accordingly. Return the first instruction after the code
1077 sequence or CURRENT_PC, whichever is smaller. If we don't
1078 recognize the code, return PC. */
1079
1080static CORE_ADDR
1081i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1082 struct i386_frame_cache *cache)
1083{
e0c62198
L
1084 /* There are 2 code sequences to re-align stack before the frame
1085 gets set up:
1086
1087 1. Use a caller-saved saved register:
1088
1089 leal 4(%esp), %reg
1090 andl $-XXX, %esp
1091 pushl -4(%reg)
1092
1093 2. Use a callee-saved saved register:
1094
1095 pushl %reg
1096 leal 8(%esp), %reg
1097 andl $-XXX, %esp
1098 pushl -4(%reg)
1099
1100 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1101
1102 0x83 0xe4 0xf0 andl $-16, %esp
1103 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1104 */
1105
1106 gdb_byte buf[14];
1107 int reg;
1108 int offset, offset_and;
1109 static int regnums[8] = {
1110 I386_EAX_REGNUM, /* %eax */
1111 I386_ECX_REGNUM, /* %ecx */
1112 I386_EDX_REGNUM, /* %edx */
1113 I386_EBX_REGNUM, /* %ebx */
1114 I386_ESP_REGNUM, /* %esp */
1115 I386_EBP_REGNUM, /* %ebp */
1116 I386_ESI_REGNUM, /* %esi */
1117 I386_EDI_REGNUM /* %edi */
92dd43fa 1118 };
92dd43fa 1119
0865b04a 1120 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1121 return pc;
1122
1123 /* Check caller-saved saved register. The first instruction has
1124 to be "leal 4(%esp), %reg". */
1125 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1126 {
1127 /* MOD must be binary 10 and R/M must be binary 100. */
1128 if ((buf[1] & 0xc7) != 0x44)
1129 return pc;
1130
1131 /* REG has register number. */
1132 reg = (buf[1] >> 3) & 7;
1133 offset = 4;
1134 }
1135 else
1136 {
1137 /* Check callee-saved saved register. The first instruction
1138 has to be "pushl %reg". */
1139 if ((buf[0] & 0xf8) != 0x50)
1140 return pc;
1141
1142 /* Get register. */
1143 reg = buf[0] & 0x7;
1144
1145 /* The next instruction has to be "leal 8(%esp), %reg". */
1146 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1147 return pc;
1148
1149 /* MOD must be binary 10 and R/M must be binary 100. */
1150 if ((buf[2] & 0xc7) != 0x44)
1151 return pc;
1152
1153 /* REG has register number. Registers in pushl and leal have to
1154 be the same. */
1155 if (reg != ((buf[2] >> 3) & 7))
1156 return pc;
1157
1158 offset = 5;
1159 }
1160
1161 /* Rigister can't be %esp nor %ebp. */
1162 if (reg == 4 || reg == 5)
1163 return pc;
1164
1165 /* The next instruction has to be "andl $-XXX, %esp". */
1166 if (buf[offset + 1] != 0xe4
1167 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1168 return pc;
1169
1170 offset_and = offset;
1171 offset += buf[offset] == 0x81 ? 6 : 3;
1172
1173 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1174 0xfc. REG must be binary 110 and MOD must be binary 01. */
1175 if (buf[offset] != 0xff
1176 || buf[offset + 2] != 0xfc
1177 || (buf[offset + 1] & 0xf8) != 0x70)
1178 return pc;
1179
1180 /* R/M has register. Registers in leal and pushl have to be the
1181 same. */
1182 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1183 return pc;
1184
e0c62198
L
1185 if (current_pc > pc + offset_and)
1186 cache->saved_sp_reg = regnums[reg];
92dd43fa 1187
e0c62198 1188 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1189}
1190
37bdc87e 1191/* Maximum instruction length we need to handle. */
237fc4c9 1192#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1193
1194/* Instruction description. */
1195struct i386_insn
1196{
1197 size_t len;
237fc4c9
PA
1198 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1199 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1200};
1201
a3fcb948 1202/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1203
a3fcb948
JG
1204static int
1205i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1206{
63c0089f 1207 gdb_byte op;
37bdc87e 1208
0865b04a 1209 if (target_read_code (pc, &op, 1))
a3fcb948 1210 return 0;
37bdc87e 1211
a3fcb948 1212 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1213 {
a3fcb948
JG
1214 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1215 int insn_matched = 1;
1216 size_t i;
37bdc87e 1217
a3fcb948
JG
1218 gdb_assert (pattern.len > 1);
1219 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1220
0865b04a 1221 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1222 return 0;
613e8135 1223
a3fcb948
JG
1224 for (i = 1; i < pattern.len; i++)
1225 {
1226 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1227 insn_matched = 0;
37bdc87e 1228 }
a3fcb948
JG
1229 return insn_matched;
1230 }
1231 return 0;
1232}
1233
1234/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1235 the first instruction description that matches. Otherwise, return
1236 NULL. */
1237
1238static struct i386_insn *
1239i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1240{
1241 struct i386_insn *pattern;
1242
1243 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1244 {
1245 if (i386_match_pattern (pc, *pattern))
1246 return pattern;
37bdc87e
MK
1247 }
1248
1249 return NULL;
1250}
1251
a3fcb948
JG
1252/* Return whether PC points inside a sequence of instructions that
1253 matches INSN_PATTERNS. */
1254
1255static int
1256i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1257{
1258 CORE_ADDR current_pc;
1259 int ix, i;
a3fcb948
JG
1260 struct i386_insn *insn;
1261
1262 insn = i386_match_insn (pc, insn_patterns);
1263 if (insn == NULL)
1264 return 0;
1265
8bbdd3f4 1266 current_pc = pc;
a3fcb948
JG
1267 ix = insn - insn_patterns;
1268 for (i = ix - 1; i >= 0; i--)
1269 {
8bbdd3f4
MK
1270 current_pc -= insn_patterns[i].len;
1271
a3fcb948
JG
1272 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1273 return 0;
a3fcb948
JG
1274 }
1275
1276 current_pc = pc + insn->len;
1277 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1278 {
1279 if (!i386_match_pattern (current_pc, *insn))
1280 return 0;
1281
1282 current_pc += insn->len;
1283 }
1284
1285 return 1;
1286}
1287
37bdc87e
MK
1288/* Some special instructions that might be migrated by GCC into the
1289 part of the prologue that sets up the new stack frame. Because the
1290 stack frame hasn't been setup yet, no registers have been saved
1291 yet, and only the scratch registers %eax, %ecx and %edx can be
1292 touched. */
1293
1294struct i386_insn i386_frame_setup_skip_insns[] =
1295{
1777feb0 1296 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1297
1298 ??? Should we handle 16-bit operand-sizes here? */
1299
1300 /* `movb imm8, %al' and `movb imm8, %ah' */
1301 /* `movb imm8, %cl' and `movb imm8, %ch' */
1302 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1303 /* `movb imm8, %dl' and `movb imm8, %dh' */
1304 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1305 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1306 { 5, { 0xb8 }, { 0xfe } },
1307 /* `movl imm32, %edx' */
1308 { 5, { 0xba }, { 0xff } },
1309
1310 /* Check for `mov imm32, r32'. Note that there is an alternative
1311 encoding for `mov m32, %eax'.
1312
1313 ??? Should we handle SIB adressing here?
1314 ??? Should we handle 16-bit operand-sizes here? */
1315
1316 /* `movl m32, %eax' */
1317 { 5, { 0xa1 }, { 0xff } },
1318 /* `movl m32, %eax' and `mov; m32, %ecx' */
1319 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1320 /* `movl m32, %edx' */
1321 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1322
1323 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1324 Because of the symmetry, there are actually two ways to encode
1325 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1326 opcode bytes 0x31 and 0x33 for `xorl'. */
1327
1328 /* `subl %eax, %eax' */
1329 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1330 /* `subl %ecx, %ecx' */
1331 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1332 /* `subl %edx, %edx' */
1333 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1334 /* `xorl %eax, %eax' */
1335 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1336 /* `xorl %ecx, %ecx' */
1337 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1338 /* `xorl %edx, %edx' */
1339 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1340 { 0 }
1341};
1342
e11481da
PM
1343
1344/* Check whether PC points to a no-op instruction. */
1345static CORE_ADDR
1346i386_skip_noop (CORE_ADDR pc)
1347{
1348 gdb_byte op;
1349 int check = 1;
1350
0865b04a 1351 if (target_read_code (pc, &op, 1))
3dcabaa8 1352 return pc;
e11481da
PM
1353
1354 while (check)
1355 {
1356 check = 0;
1357 /* Ignore `nop' instruction. */
1358 if (op == 0x90)
1359 {
1360 pc += 1;
0865b04a 1361 if (target_read_code (pc, &op, 1))
3dcabaa8 1362 return pc;
e11481da
PM
1363 check = 1;
1364 }
1365 /* Ignore no-op instruction `mov %edi, %edi'.
1366 Microsoft system dlls often start with
1367 a `mov %edi,%edi' instruction.
1368 The 5 bytes before the function start are
1369 filled with `nop' instructions.
1370 This pattern can be used for hot-patching:
1371 The `mov %edi, %edi' instruction can be replaced by a
1372 near jump to the location of the 5 `nop' instructions
1373 which can be replaced by a 32-bit jump to anywhere
1374 in the 32-bit address space. */
1375
1376 else if (op == 0x8b)
1377 {
0865b04a 1378 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1379 return pc;
1380
e11481da
PM
1381 if (op == 0xff)
1382 {
1383 pc += 2;
0865b04a 1384 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1385 return pc;
1386
e11481da
PM
1387 check = 1;
1388 }
1389 }
1390 }
1391 return pc;
1392}
1393
acd5c798
MK
1394/* Check whether PC points at a code that sets up a new stack frame.
1395 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1396 instruction after the sequence that sets up the frame or LIMIT,
1397 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1398
1399static CORE_ADDR
e17a4113
UW
1400i386_analyze_frame_setup (struct gdbarch *gdbarch,
1401 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1402 struct i386_frame_cache *cache)
1403{
e17a4113 1404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1405 struct i386_insn *insn;
63c0089f 1406 gdb_byte op;
26604a34 1407 int skip = 0;
acd5c798 1408
37bdc87e
MK
1409 if (limit <= pc)
1410 return limit;
acd5c798 1411
0865b04a 1412 if (target_read_code (pc, &op, 1))
3dcabaa8 1413 return pc;
acd5c798 1414
c906108c 1415 if (op == 0x55) /* pushl %ebp */
c5aa993b 1416 {
acd5c798
MK
1417 /* Take into account that we've executed the `pushl %ebp' that
1418 starts this instruction sequence. */
fd13a04a 1419 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1420 cache->sp_offset += 4;
37bdc87e 1421 pc++;
acd5c798
MK
1422
1423 /* If that's all, return now. */
37bdc87e
MK
1424 if (limit <= pc)
1425 return limit;
26604a34 1426
b4632131 1427 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1428 GCC into the prologue and skip them. At this point in the
1429 prologue, code should only touch the scratch registers %eax,
1430 %ecx and %edx, so while the number of posibilities is sheer,
1431 it is limited.
5daa5b4e 1432
26604a34
MK
1433 Make sure we only skip these instructions if we later see the
1434 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1435 while (pc + skip < limit)
26604a34 1436 {
37bdc87e
MK
1437 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1438 if (insn == NULL)
1439 break;
b4632131 1440
37bdc87e 1441 skip += insn->len;
26604a34
MK
1442 }
1443
37bdc87e
MK
1444 /* If that's all, return now. */
1445 if (limit <= pc + skip)
1446 return limit;
1447
0865b04a 1448 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1449 return pc + skip;
37bdc87e 1450
30f8135b
YQ
1451 /* The i386 prologue looks like
1452
1453 push %ebp
1454 mov %esp,%ebp
1455 sub $0x10,%esp
1456
1457 and a different prologue can be generated for atom.
1458
1459 push %ebp
1460 lea (%esp),%ebp
1461 lea -0x10(%esp),%esp
1462
1463 We handle both of them here. */
1464
acd5c798 1465 switch (op)
c906108c 1466 {
30f8135b 1467 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1468 case 0x8b:
0865b04a 1469 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1470 != 0xec)
37bdc87e 1471 return pc;
30f8135b 1472 pc += (skip + 2);
c906108c
SS
1473 break;
1474 case 0x89:
0865b04a 1475 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1476 != 0xe5)
37bdc87e 1477 return pc;
30f8135b
YQ
1478 pc += (skip + 2);
1479 break;
1480 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1481 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1482 != 0x242c)
1483 return pc;
1484 pc += (skip + 3);
c906108c
SS
1485 break;
1486 default:
37bdc87e 1487 return pc;
c906108c 1488 }
acd5c798 1489
26604a34
MK
1490 /* OK, we actually have a frame. We just don't know how large
1491 it is yet. Set its size to zero. We'll adjust it if
1492 necessary. We also now commit to skipping the special
1493 instructions mentioned before. */
acd5c798
MK
1494 cache->locals = 0;
1495
1496 /* If that's all, return now. */
37bdc87e
MK
1497 if (limit <= pc)
1498 return limit;
acd5c798 1499
fc338970
MK
1500 /* Check for stack adjustment
1501
acd5c798 1502 subl $XXX, %esp
30f8135b
YQ
1503 or
1504 lea -XXX(%esp),%esp
fc338970 1505
fd35795f 1506 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1507 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1508 if (target_read_code (pc, &op, 1))
3dcabaa8 1509 return pc;
c906108c
SS
1510 if (op == 0x83)
1511 {
fd35795f 1512 /* `subl' with 8-bit immediate. */
0865b04a 1513 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1514 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1515 return pc;
acd5c798 1516
37bdc87e
MK
1517 /* `subl' with signed 8-bit immediate (though it wouldn't
1518 make sense to be negative). */
0865b04a 1519 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1520 return pc + 3;
c906108c
SS
1521 }
1522 else if (op == 0x81)
1523 {
fd35795f 1524 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1525 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1526 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1527 return pc;
acd5c798 1528
fd35795f 1529 /* It is `subl' with a 32-bit immediate. */
0865b04a 1530 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1531 return pc + 6;
c906108c 1532 }
30f8135b
YQ
1533 else if (op == 0x8d)
1534 {
1535 /* The ModR/M byte is 0x64. */
0865b04a 1536 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1537 return pc;
1538 /* 'lea' with 8-bit displacement. */
0865b04a 1539 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1540 return pc + 4;
1541 }
c906108c
SS
1542 else
1543 {
30f8135b 1544 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1545 return pc;
c906108c
SS
1546 }
1547 }
37bdc87e 1548 else if (op == 0xc8) /* enter */
c906108c 1549 {
0865b04a 1550 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1551 return pc + 4;
c906108c 1552 }
21d0e8a4 1553
acd5c798 1554 return pc;
21d0e8a4
MK
1555}
1556
acd5c798
MK
1557/* Check whether PC points at code that saves registers on the stack.
1558 If so, it updates CACHE and returns the address of the first
1559 instruction after the register saves or CURRENT_PC, whichever is
1560 smaller. Otherwise, return PC. */
6bff26de
MK
1561
1562static CORE_ADDR
acd5c798
MK
1563i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1564 struct i386_frame_cache *cache)
6bff26de 1565{
99ab4326 1566 CORE_ADDR offset = 0;
63c0089f 1567 gdb_byte op;
99ab4326 1568 int i;
c0d1d883 1569
99ab4326
MK
1570 if (cache->locals > 0)
1571 offset -= cache->locals;
1572 for (i = 0; i < 8 && pc < current_pc; i++)
1573 {
0865b04a 1574 if (target_read_code (pc, &op, 1))
3dcabaa8 1575 return pc;
99ab4326
MK
1576 if (op < 0x50 || op > 0x57)
1577 break;
0d17c81d 1578
99ab4326
MK
1579 offset -= 4;
1580 cache->saved_regs[op - 0x50] = offset;
1581 cache->sp_offset += 4;
1582 pc++;
6bff26de
MK
1583 }
1584
acd5c798 1585 return pc;
22797942
AC
1586}
1587
acd5c798
MK
1588/* Do a full analysis of the prologue at PC and update CACHE
1589 accordingly. Bail out early if CURRENT_PC is reached. Return the
1590 address where the analysis stopped.
ed84f6c1 1591
fc338970
MK
1592 We handle these cases:
1593
1594 The startup sequence can be at the start of the function, or the
1595 function can start with a branch to startup code at the end.
1596
1597 %ebp can be set up with either the 'enter' instruction, or "pushl
1598 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1599 once used in the System V compiler).
1600
1601 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1602 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1603 16-bit unsigned argument for space to allocate, and the 'addl'
1604 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1605
1606 Next, the registers used by this function are pushed. With the
1607 System V compiler they will always be in the order: %edi, %esi,
1608 %ebx (and sometimes a harmless bug causes it to also save but not
1609 restore %eax); however, the code below is willing to see the pushes
1610 in any order, and will handle up to 8 of them.
1611
1612 If the setup sequence is at the end of the function, then the next
1613 instruction will be a branch back to the start. */
c906108c 1614
acd5c798 1615static CORE_ADDR
e17a4113
UW
1616i386_analyze_prologue (struct gdbarch *gdbarch,
1617 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1618 struct i386_frame_cache *cache)
c906108c 1619{
e11481da 1620 pc = i386_skip_noop (pc);
e17a4113 1621 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1622 pc = i386_analyze_struct_return (pc, current_pc, cache);
1623 pc = i386_skip_probe (pc);
92dd43fa 1624 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1625 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1626 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1627}
1628
fc338970 1629/* Return PC of first real instruction. */
c906108c 1630
3a1e71e3 1631static CORE_ADDR
6093d2eb 1632i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1633{
e17a4113
UW
1634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1635
63c0089f 1636 static gdb_byte pic_pat[6] =
acd5c798
MK
1637 {
1638 0xe8, 0, 0, 0, 0, /* call 0x0 */
1639 0x5b, /* popl %ebx */
c5aa993b 1640 };
acd5c798
MK
1641 struct i386_frame_cache cache;
1642 CORE_ADDR pc;
63c0089f 1643 gdb_byte op;
acd5c798 1644 int i;
56bf0743 1645 CORE_ADDR func_addr;
4e879fc2 1646
56bf0743
KB
1647 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1648 {
1649 CORE_ADDR post_prologue_pc
1650 = skip_prologue_using_sal (gdbarch, func_addr);
1651 struct symtab *s = find_pc_symtab (func_addr);
1652
1653 /* Clang always emits a line note before the prologue and another
1654 one after. We trust clang to emit usable line notes. */
1655 if (post_prologue_pc
1656 && (s != NULL
1657 && s->producer != NULL
1658 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1659 return max (start_pc, post_prologue_pc);
1660 }
1661
e0f33b1f 1662 cache.locals = -1;
e17a4113 1663 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1664 if (cache.locals < 0)
1665 return start_pc;
c5aa993b 1666
acd5c798 1667 /* Found valid frame setup. */
c906108c 1668
fc338970
MK
1669 /* The native cc on SVR4 in -K PIC mode inserts the following code
1670 to get the address of the global offset table (GOT) into register
acd5c798
MK
1671 %ebx:
1672
fc338970
MK
1673 call 0x0
1674 popl %ebx
1675 movl %ebx,x(%ebp) (optional)
1676 addl y,%ebx
1677
c906108c
SS
1678 This code is with the rest of the prologue (at the end of the
1679 function), so we have to skip it to get to the first real
1680 instruction at the start of the function. */
c5aa993b 1681
c906108c
SS
1682 for (i = 0; i < 6; i++)
1683 {
0865b04a 1684 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1685 return pc;
1686
c5aa993b 1687 if (pic_pat[i] != op)
c906108c
SS
1688 break;
1689 }
1690 if (i == 6)
1691 {
acd5c798
MK
1692 int delta = 6;
1693
0865b04a 1694 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1695 return pc;
c906108c 1696
c5aa993b 1697 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1698 {
0865b04a 1699 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1700
fc338970 1701 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1702 delta += 3;
fc338970 1703 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1704 delta += 6;
fc338970 1705 else /* Unexpected instruction. */
acd5c798
MK
1706 delta = 0;
1707
0865b04a 1708 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1709 return pc;
c906108c 1710 }
acd5c798 1711
c5aa993b 1712 /* addl y,%ebx */
acd5c798 1713 if (delta > 0 && op == 0x81
0865b04a 1714 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1715 == 0xc3)
c906108c 1716 {
acd5c798 1717 pc += delta + 6;
c906108c
SS
1718 }
1719 }
c5aa993b 1720
e63bbc88
MK
1721 /* If the function starts with a branch (to startup code at the end)
1722 the last instruction should bring us back to the first
1723 instruction of the real code. */
e17a4113
UW
1724 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1725 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1726
1727 return pc;
c906108c
SS
1728}
1729
4309257c
PM
1730/* Check that the code pointed to by PC corresponds to a call to
1731 __main, skip it if so. Return PC otherwise. */
1732
1733CORE_ADDR
1734i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1735{
e17a4113 1736 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1737 gdb_byte op;
1738
0865b04a 1739 if (target_read_code (pc, &op, 1))
3dcabaa8 1740 return pc;
4309257c
PM
1741 if (op == 0xe8)
1742 {
1743 gdb_byte buf[4];
1744
0865b04a 1745 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1746 {
1747 /* Make sure address is computed correctly as a 32bit
1748 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1749 struct bound_minimal_symbol s;
e17a4113 1750 CORE_ADDR call_dest;
4309257c 1751
e17a4113 1752 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1753 call_dest = call_dest & 0xffffffffU;
1754 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93
TT
1755 if (s.minsym != NULL
1756 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
1757 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1758 pc += 5;
1759 }
1760 }
1761
1762 return pc;
1763}
1764
acd5c798 1765/* This function is 64-bit safe. */
93924b6b 1766
acd5c798
MK
1767static CORE_ADDR
1768i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1769{
63c0089f 1770 gdb_byte buf[8];
acd5c798 1771
875f8d0e 1772 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1773 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1774}
acd5c798 1775\f
93924b6b 1776
acd5c798 1777/* Normal frames. */
c5aa993b 1778
8fbca658
PA
1779static void
1780i386_frame_cache_1 (struct frame_info *this_frame,
1781 struct i386_frame_cache *cache)
a7769679 1782{
e17a4113
UW
1783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1784 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1785 gdb_byte buf[4];
acd5c798
MK
1786 int i;
1787
8fbca658 1788 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1789
1790 /* In principle, for normal frames, %ebp holds the frame pointer,
1791 which holds the base address for the current stack frame.
1792 However, for functions that don't need it, the frame pointer is
1793 optional. For these "frameless" functions the frame pointer is
1794 actually the frame pointer of the calling frame. Signal
1795 trampolines are just a special case of a "frameless" function.
1796 They (usually) share their frame pointer with the frame that was
1797 in progress when the signal occurred. */
1798
10458914 1799 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1800 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1801 if (cache->base == 0)
620fa63a
PA
1802 {
1803 cache->base_p = 1;
1804 return;
1805 }
acd5c798
MK
1806
1807 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1808 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1809
acd5c798 1810 if (cache->pc != 0)
e17a4113
UW
1811 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1812 cache);
acd5c798
MK
1813
1814 if (cache->locals < 0)
1815 {
1816 /* We didn't find a valid frame, which means that CACHE->base
1817 currently holds the frame pointer for our calling frame. If
1818 we're at the start of a function, or somewhere half-way its
1819 prologue, the function's frame probably hasn't been fully
1820 setup yet. Try to reconstruct the base address for the stack
1821 frame by looking at the stack pointer. For truly "frameless"
1822 functions this might work too. */
1823
e0c62198 1824 if (cache->saved_sp_reg != -1)
92dd43fa 1825 {
8fbca658
PA
1826 /* Saved stack pointer has been saved. */
1827 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1828 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1829
92dd43fa
MK
1830 /* We're halfway aligning the stack. */
1831 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1832 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1833
1834 /* This will be added back below. */
1835 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1836 }
7618e12b 1837 else if (cache->pc != 0
0865b04a 1838 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 1839 {
7618e12b
DJ
1840 /* We're in a known function, but did not find a frame
1841 setup. Assume that the function does not use %ebp.
1842 Alternatively, we may have jumped to an invalid
1843 address; in that case there is definitely no new
1844 frame in %ebp. */
10458914 1845 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1846 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1847 + cache->sp_offset;
92dd43fa 1848 }
7618e12b
DJ
1849 else
1850 /* We're in an unknown function. We could not find the start
1851 of the function to analyze the prologue; our best option is
1852 to assume a typical frame layout with the caller's %ebp
1853 saved. */
1854 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1855 }
1856
8fbca658
PA
1857 if (cache->saved_sp_reg != -1)
1858 {
1859 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1860 register may be unavailable). */
1861 if (cache->saved_sp == 0
ca9d61b9
JB
1862 && deprecated_frame_register_read (this_frame,
1863 cache->saved_sp_reg, buf))
8fbca658
PA
1864 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1865 }
acd5c798
MK
1866 /* Now that we have the base address for the stack frame we can
1867 calculate the value of %esp in the calling frame. */
8fbca658 1868 else if (cache->saved_sp == 0)
92dd43fa 1869 cache->saved_sp = cache->base + 8;
a7769679 1870
acd5c798
MK
1871 /* Adjust all the saved registers such that they contain addresses
1872 instead of offsets. */
1873 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1874 if (cache->saved_regs[i] != -1)
1875 cache->saved_regs[i] += cache->base;
acd5c798 1876
8fbca658
PA
1877 cache->base_p = 1;
1878}
1879
1880static struct i386_frame_cache *
1881i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1882{
1883 volatile struct gdb_exception ex;
1884 struct i386_frame_cache *cache;
1885
1886 if (*this_cache)
1887 return *this_cache;
1888
1889 cache = i386_alloc_frame_cache ();
1890 *this_cache = cache;
1891
1892 TRY_CATCH (ex, RETURN_MASK_ERROR)
1893 {
1894 i386_frame_cache_1 (this_frame, cache);
1895 }
1896 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1897 throw_exception (ex);
1898
acd5c798 1899 return cache;
a7769679
MK
1900}
1901
3a1e71e3 1902static void
10458914 1903i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1904 struct frame_id *this_id)
c906108c 1905{
10458914 1906 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 1907
5ce0145d
PA
1908 if (!cache->base_p)
1909 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
1910 else if (cache->base == 0)
1911 {
1912 /* This marks the outermost frame. */
1913 }
1914 else
1915 {
1916 /* See the end of i386_push_dummy_call. */
1917 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1918 }
acd5c798
MK
1919}
1920
8fbca658
PA
1921static enum unwind_stop_reason
1922i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1923 void **this_cache)
1924{
1925 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1926
1927 if (!cache->base_p)
1928 return UNWIND_UNAVAILABLE;
1929
1930 /* This marks the outermost frame. */
1931 if (cache->base == 0)
1932 return UNWIND_OUTERMOST;
1933
1934 return UNWIND_NO_REASON;
1935}
1936
10458914
DJ
1937static struct value *
1938i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1939 int regnum)
acd5c798 1940{
10458914 1941 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1942
1943 gdb_assert (regnum >= 0);
1944
1945 /* The System V ABI says that:
1946
1947 "The flags register contains the system flags, such as the
1948 direction flag and the carry flag. The direction flag must be
1949 set to the forward (that is, zero) direction before entry and
1950 upon exit from a function. Other user flags have no specified
1951 role in the standard calling sequence and are not preserved."
1952
1953 To guarantee the "upon exit" part of that statement we fake a
1954 saved flags register that has its direction flag cleared.
1955
1956 Note that GCC doesn't seem to rely on the fact that the direction
1957 flag is cleared after a function return; it always explicitly
1958 clears the flag before operations where it matters.
1959
1960 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1961 right thing to do. The way we fake the flags register here makes
1962 it impossible to change it. */
1963
1964 if (regnum == I386_EFLAGS_REGNUM)
1965 {
10458914 1966 ULONGEST val;
c5aa993b 1967
10458914
DJ
1968 val = get_frame_register_unsigned (this_frame, regnum);
1969 val &= ~(1 << 10);
1970 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1971 }
1211c4e4 1972
acd5c798 1973 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1974 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 1975
fcf250e2
UW
1976 if (regnum == I386_ESP_REGNUM
1977 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
1978 {
1979 /* If the SP has been saved, but we don't know where, then this
1980 means that SAVED_SP_REG register was found unavailable back
1981 when we built the cache. */
fcf250e2 1982 if (cache->saved_sp == 0)
8fbca658
PA
1983 return frame_unwind_got_register (this_frame, regnum,
1984 cache->saved_sp_reg);
1985 else
1986 return frame_unwind_got_constant (this_frame, regnum,
1987 cache->saved_sp);
1988 }
acd5c798 1989
fd13a04a 1990 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1991 return frame_unwind_got_memory (this_frame, regnum,
1992 cache->saved_regs[regnum]);
fd13a04a 1993
10458914 1994 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1995}
1996
1997static const struct frame_unwind i386_frame_unwind =
1998{
1999 NORMAL_FRAME,
8fbca658 2000 i386_frame_unwind_stop_reason,
acd5c798 2001 i386_frame_this_id,
10458914
DJ
2002 i386_frame_prev_register,
2003 NULL,
2004 default_frame_sniffer
acd5c798 2005};
06da04c6
MS
2006
2007/* Normal frames, but in a function epilogue. */
2008
2009/* The epilogue is defined here as the 'ret' instruction, which will
2010 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2011 the function's stack frame. */
2012
2013static int
2014i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2015{
2016 gdb_byte insn;
e0d00bc7
JK
2017 struct symtab *symtab;
2018
2019 symtab = find_pc_symtab (pc);
2020 if (symtab && symtab->epilogue_unwind_valid)
2021 return 0;
06da04c6
MS
2022
2023 if (target_read_memory (pc, &insn, 1))
2024 return 0; /* Can't read memory at pc. */
2025
2026 if (insn != 0xc3) /* 'ret' instruction. */
2027 return 0;
2028
2029 return 1;
2030}
2031
2032static int
2033i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2034 struct frame_info *this_frame,
2035 void **this_prologue_cache)
2036{
2037 if (frame_relative_level (this_frame) == 0)
2038 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2039 get_frame_pc (this_frame));
2040 else
2041 return 0;
2042}
2043
2044static struct i386_frame_cache *
2045i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2046{
8fbca658 2047 volatile struct gdb_exception ex;
06da04c6 2048 struct i386_frame_cache *cache;
0d6c2135 2049 CORE_ADDR sp;
06da04c6
MS
2050
2051 if (*this_cache)
2052 return *this_cache;
2053
2054 cache = i386_alloc_frame_cache ();
2055 *this_cache = cache;
2056
8fbca658
PA
2057 TRY_CATCH (ex, RETURN_MASK_ERROR)
2058 {
0d6c2135 2059 cache->pc = get_frame_func (this_frame);
06da04c6 2060
0d6c2135
MK
2061 /* At this point the stack looks as if we just entered the
2062 function, with the return address at the top of the
2063 stack. */
2064 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2065 cache->base = sp + cache->sp_offset;
8fbca658 2066 cache->saved_sp = cache->base + 8;
8fbca658 2067 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2068
8fbca658
PA
2069 cache->base_p = 1;
2070 }
2071 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2072 throw_exception (ex);
06da04c6
MS
2073
2074 return cache;
2075}
2076
8fbca658
PA
2077static enum unwind_stop_reason
2078i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2079 void **this_cache)
2080{
0d6c2135
MK
2081 struct i386_frame_cache *cache =
2082 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2083
2084 if (!cache->base_p)
2085 return UNWIND_UNAVAILABLE;
2086
2087 return UNWIND_NO_REASON;
2088}
2089
06da04c6
MS
2090static void
2091i386_epilogue_frame_this_id (struct frame_info *this_frame,
2092 void **this_cache,
2093 struct frame_id *this_id)
2094{
0d6c2135
MK
2095 struct i386_frame_cache *cache =
2096 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2097
8fbca658 2098 if (!cache->base_p)
5ce0145d
PA
2099 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2100 else
2101 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2102}
2103
0d6c2135
MK
2104static struct value *
2105i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2106 void **this_cache, int regnum)
2107{
2108 /* Make sure we've initialized the cache. */
2109 i386_epilogue_frame_cache (this_frame, this_cache);
2110
2111 return i386_frame_prev_register (this_frame, this_cache, regnum);
2112}
2113
06da04c6
MS
2114static const struct frame_unwind i386_epilogue_frame_unwind =
2115{
2116 NORMAL_FRAME,
8fbca658 2117 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2118 i386_epilogue_frame_this_id,
0d6c2135 2119 i386_epilogue_frame_prev_register,
06da04c6
MS
2120 NULL,
2121 i386_epilogue_frame_sniffer
2122};
acd5c798
MK
2123\f
2124
a3fcb948
JG
2125/* Stack-based trampolines. */
2126
2127/* These trampolines are used on cross x86 targets, when taking the
2128 address of a nested function. When executing these trampolines,
2129 no stack frame is set up, so we are in a similar situation as in
2130 epilogues and i386_epilogue_frame_this_id can be re-used. */
2131
2132/* Static chain passed in register. */
2133
2134struct i386_insn i386_tramp_chain_in_reg_insns[] =
2135{
2136 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2137 { 5, { 0xb8 }, { 0xfe } },
2138
2139 /* `jmp imm32' */
2140 { 5, { 0xe9 }, { 0xff } },
2141
2142 {0}
2143};
2144
2145/* Static chain passed on stack (when regparm=3). */
2146
2147struct i386_insn i386_tramp_chain_on_stack_insns[] =
2148{
2149 /* `push imm32' */
2150 { 5, { 0x68 }, { 0xff } },
2151
2152 /* `jmp imm32' */
2153 { 5, { 0xe9 }, { 0xff } },
2154
2155 {0}
2156};
2157
2158/* Return whether PC points inside a stack trampoline. */
2159
2160static int
6df81a63 2161i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2162{
2163 gdb_byte insn;
2c02bd72 2164 const char *name;
a3fcb948
JG
2165
2166 /* A stack trampoline is detected if no name is associated
2167 to the current pc and if it points inside a trampoline
2168 sequence. */
2169
2170 find_pc_partial_function (pc, &name, NULL, NULL);
2171 if (name)
2172 return 0;
2173
2174 if (target_read_memory (pc, &insn, 1))
2175 return 0;
2176
2177 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2178 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2179 return 0;
2180
2181 return 1;
2182}
2183
2184static int
2185i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2186 struct frame_info *this_frame,
2187 void **this_cache)
a3fcb948
JG
2188{
2189 if (frame_relative_level (this_frame) == 0)
6df81a63 2190 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2191 else
2192 return 0;
2193}
2194
2195static const struct frame_unwind i386_stack_tramp_frame_unwind =
2196{
2197 NORMAL_FRAME,
2198 i386_epilogue_frame_unwind_stop_reason,
2199 i386_epilogue_frame_this_id,
0d6c2135 2200 i386_epilogue_frame_prev_register,
a3fcb948
JG
2201 NULL,
2202 i386_stack_tramp_frame_sniffer
2203};
2204\f
6710bf39
SS
2205/* Generate a bytecode expression to get the value of the saved PC. */
2206
2207static void
2208i386_gen_return_address (struct gdbarch *gdbarch,
2209 struct agent_expr *ax, struct axs_value *value,
2210 CORE_ADDR scope)
2211{
2212 /* The following sequence assumes the traditional use of the base
2213 register. */
2214 ax_reg (ax, I386_EBP_REGNUM);
2215 ax_const_l (ax, 4);
2216 ax_simple (ax, aop_add);
2217 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2218 value->kind = axs_lvalue_memory;
2219}
2220\f
a3fcb948 2221
acd5c798
MK
2222/* Signal trampolines. */
2223
2224static struct i386_frame_cache *
10458914 2225i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2226{
e17a4113
UW
2227 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2230 volatile struct gdb_exception ex;
acd5c798 2231 struct i386_frame_cache *cache;
acd5c798 2232 CORE_ADDR addr;
63c0089f 2233 gdb_byte buf[4];
acd5c798
MK
2234
2235 if (*this_cache)
2236 return *this_cache;
2237
fd13a04a 2238 cache = i386_alloc_frame_cache ();
acd5c798 2239
8fbca658 2240 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2241 {
8fbca658
PA
2242 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2243 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2244
8fbca658
PA
2245 addr = tdep->sigcontext_addr (this_frame);
2246 if (tdep->sc_reg_offset)
2247 {
2248 int i;
a3386186 2249
8fbca658
PA
2250 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2251
2252 for (i = 0; i < tdep->sc_num_regs; i++)
2253 if (tdep->sc_reg_offset[i] != -1)
2254 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2255 }
2256 else
2257 {
2258 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2259 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2260 }
2261
2262 cache->base_p = 1;
a3386186 2263 }
8fbca658
PA
2264 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2265 throw_exception (ex);
acd5c798
MK
2266
2267 *this_cache = cache;
2268 return cache;
2269}
2270
8fbca658
PA
2271static enum unwind_stop_reason
2272i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2273 void **this_cache)
2274{
2275 struct i386_frame_cache *cache =
2276 i386_sigtramp_frame_cache (this_frame, this_cache);
2277
2278 if (!cache->base_p)
2279 return UNWIND_UNAVAILABLE;
2280
2281 return UNWIND_NO_REASON;
2282}
2283
acd5c798 2284static void
10458914 2285i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2286 struct frame_id *this_id)
2287{
2288 struct i386_frame_cache *cache =
10458914 2289 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2290
8fbca658 2291 if (!cache->base_p)
5ce0145d
PA
2292 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2293 else
2294 {
2295 /* See the end of i386_push_dummy_call. */
2296 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2297 }
acd5c798
MK
2298}
2299
10458914
DJ
2300static struct value *
2301i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2302 void **this_cache, int regnum)
acd5c798
MK
2303{
2304 /* Make sure we've initialized the cache. */
10458914 2305 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2306
10458914 2307 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2308}
c0d1d883 2309
10458914
DJ
2310static int
2311i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2312 struct frame_info *this_frame,
2313 void **this_prologue_cache)
acd5c798 2314{
10458914 2315 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2316
911bc6ee
MK
2317 /* We shouldn't even bother if we don't have a sigcontext_addr
2318 handler. */
2319 if (tdep->sigcontext_addr == NULL)
10458914 2320 return 0;
1c3545ae 2321
911bc6ee
MK
2322 if (tdep->sigtramp_p != NULL)
2323 {
10458914
DJ
2324 if (tdep->sigtramp_p (this_frame))
2325 return 1;
911bc6ee
MK
2326 }
2327
2328 if (tdep->sigtramp_start != 0)
2329 {
10458914 2330 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2331
2332 gdb_assert (tdep->sigtramp_end != 0);
2333 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2334 return 1;
911bc6ee 2335 }
acd5c798 2336
10458914 2337 return 0;
acd5c798 2338}
10458914
DJ
2339
2340static const struct frame_unwind i386_sigtramp_frame_unwind =
2341{
2342 SIGTRAMP_FRAME,
8fbca658 2343 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2344 i386_sigtramp_frame_this_id,
2345 i386_sigtramp_frame_prev_register,
2346 NULL,
2347 i386_sigtramp_frame_sniffer
2348};
acd5c798
MK
2349\f
2350
2351static CORE_ADDR
10458914 2352i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2353{
10458914 2354 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2355
2356 return cache->base;
2357}
2358
2359static const struct frame_base i386_frame_base =
2360{
2361 &i386_frame_unwind,
2362 i386_frame_base_address,
2363 i386_frame_base_address,
2364 i386_frame_base_address
2365};
2366
acd5c798 2367static struct frame_id
10458914 2368i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2369{
acd5c798
MK
2370 CORE_ADDR fp;
2371
10458914 2372 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2373
3e210248 2374 /* See the end of i386_push_dummy_call. */
10458914 2375 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2376}
e04e5beb
JM
2377
2378/* _Decimal128 function return values need 16-byte alignment on the
2379 stack. */
2380
2381static CORE_ADDR
2382i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2383{
2384 return sp & -(CORE_ADDR)16;
2385}
fc338970 2386\f
c906108c 2387
fc338970
MK
2388/* Figure out where the longjmp will land. Slurp the args out of the
2389 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2390 structure from which we extract the address that we will land at.
28bcfd30 2391 This address is copied into PC. This routine returns non-zero on
436675d3 2392 success. */
c906108c 2393
8201327c 2394static int
60ade65d 2395i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2396{
436675d3 2397 gdb_byte buf[4];
c906108c 2398 CORE_ADDR sp, jb_addr;
20a6ec49 2399 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2400 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2401 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2402
8201327c
MK
2403 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2404 longjmp will land. */
2405 if (jb_pc_offset == -1)
c906108c
SS
2406 return 0;
2407
436675d3 2408 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2409 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2410 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2411 return 0;
2412
e17a4113 2413 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2414 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2415 return 0;
c906108c 2416
e17a4113 2417 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2418 return 1;
2419}
fc338970 2420\f
c906108c 2421
7ccc1c74
JM
2422/* Check whether TYPE must be 16-byte-aligned when passed as a
2423 function argument. 16-byte vectors, _Decimal128 and structures or
2424 unions containing such types must be 16-byte-aligned; other
2425 arguments are 4-byte-aligned. */
2426
2427static int
2428i386_16_byte_align_p (struct type *type)
2429{
2430 type = check_typedef (type);
2431 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2432 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2433 && TYPE_LENGTH (type) == 16)
2434 return 1;
2435 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2436 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2437 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2438 || TYPE_CODE (type) == TYPE_CODE_UNION)
2439 {
2440 int i;
2441 for (i = 0; i < TYPE_NFIELDS (type); i++)
2442 {
2443 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2444 return 1;
2445 }
2446 }
2447 return 0;
2448}
2449
a9b8d892
JK
2450/* Implementation for set_gdbarch_push_dummy_code. */
2451
2452static CORE_ADDR
2453i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2454 struct value **args, int nargs, struct type *value_type,
2455 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2456 struct regcache *regcache)
2457{
2458 /* Use 0xcc breakpoint - 1 byte. */
2459 *bp_addr = sp - 1;
2460 *real_pc = funaddr;
2461
2462 /* Keep the stack aligned. */
2463 return sp - 16;
2464}
2465
3a1e71e3 2466static CORE_ADDR
7d9b040b 2467i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2468 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2469 struct value **args, CORE_ADDR sp, int struct_return,
2470 CORE_ADDR struct_addr)
22f8ba57 2471{
e17a4113 2472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2473 gdb_byte buf[4];
acd5c798 2474 int i;
7ccc1c74
JM
2475 int write_pass;
2476 int args_space = 0;
acd5c798 2477
7ccc1c74
JM
2478 /* Determine the total space required for arguments and struct
2479 return address in a first pass (allowing for 16-byte-aligned
2480 arguments), then push arguments in a second pass. */
2481
2482 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2483 {
7ccc1c74 2484 int args_space_used = 0;
7ccc1c74
JM
2485
2486 if (struct_return)
2487 {
2488 if (write_pass)
2489 {
2490 /* Push value address. */
e17a4113 2491 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2492 write_memory (sp, buf, 4);
2493 args_space_used += 4;
2494 }
2495 else
2496 args_space += 4;
2497 }
2498
2499 for (i = 0; i < nargs; i++)
2500 {
2501 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2502
7ccc1c74
JM
2503 if (write_pass)
2504 {
2505 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2506 args_space_used = align_up (args_space_used, 16);
acd5c798 2507
7ccc1c74
JM
2508 write_memory (sp + args_space_used,
2509 value_contents_all (args[i]), len);
2510 /* The System V ABI says that:
acd5c798 2511
7ccc1c74
JM
2512 "An argument's size is increased, if necessary, to make it a
2513 multiple of [32-bit] words. This may require tail padding,
2514 depending on the size of the argument."
22f8ba57 2515
7ccc1c74
JM
2516 This makes sure the stack stays word-aligned. */
2517 args_space_used += align_up (len, 4);
2518 }
2519 else
2520 {
2521 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2522 args_space = align_up (args_space, 16);
7ccc1c74
JM
2523 args_space += align_up (len, 4);
2524 }
2525 }
2526
2527 if (!write_pass)
2528 {
7ccc1c74 2529 sp -= args_space;
284c5a60
MK
2530
2531 /* The original System V ABI only requires word alignment,
2532 but modern incarnations need 16-byte alignment in order
2533 to support SSE. Since wasting a few bytes here isn't
2534 harmful we unconditionally enforce 16-byte alignment. */
2535 sp &= ~0xf;
7ccc1c74 2536 }
22f8ba57
MK
2537 }
2538
acd5c798
MK
2539 /* Store return address. */
2540 sp -= 4;
e17a4113 2541 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2542 write_memory (sp, buf, 4);
2543
2544 /* Finally, update the stack pointer... */
e17a4113 2545 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2546 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2547
2548 /* ...and fake a frame pointer. */
2549 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2550
3e210248
AC
2551 /* MarkK wrote: This "+ 8" is all over the place:
2552 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2553 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2554 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2555 definition of the stack address of a frame. Otherwise frame id
2556 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2557 stack address *before* the function call as a frame's CFA. On
2558 the i386, when %ebp is used as a frame pointer, the offset
2559 between the contents %ebp and the CFA as defined by GCC. */
2560 return sp + 8;
22f8ba57
MK
2561}
2562
1a309862
MK
2563/* These registers are used for returning integers (and on some
2564 targets also for returning `struct' and `union' values when their
ef9dff19 2565 size and alignment match an integer type). */
acd5c798
MK
2566#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2567#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2568
c5e656c1
MK
2569/* Read, for architecture GDBARCH, a function return value of TYPE
2570 from REGCACHE, and copy that into VALBUF. */
1a309862 2571
3a1e71e3 2572static void
c5e656c1 2573i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2574 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2575{
c5e656c1 2576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2577 int len = TYPE_LENGTH (type);
63c0089f 2578 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2579
1e8d0a7b 2580 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2581 {
5716833c 2582 if (tdep->st0_regnum < 0)
1a309862 2583 {
8a3fe4f8 2584 warning (_("Cannot find floating-point return value."));
1a309862 2585 memset (valbuf, 0, len);
ef9dff19 2586 return;
1a309862
MK
2587 }
2588
c6ba6f0d
MK
2589 /* Floating-point return values can be found in %st(0). Convert
2590 its contents to the desired type. This is probably not
2591 exactly how it would happen on the target itself, but it is
2592 the best we can do. */
acd5c798 2593 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2594 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2595 }
2596 else
c5aa993b 2597 {
875f8d0e
UW
2598 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2599 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2600
2601 if (len <= low_size)
00f8375e 2602 {
0818c12a 2603 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2604 memcpy (valbuf, buf, len);
2605 }
d4f3574e
SS
2606 else if (len <= (low_size + high_size))
2607 {
0818c12a 2608 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2609 memcpy (valbuf, buf, low_size);
0818c12a 2610 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2611 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2612 }
2613 else
8e65ff28 2614 internal_error (__FILE__, __LINE__,
1777feb0
MS
2615 _("Cannot extract return value of %d bytes long."),
2616 len);
c906108c
SS
2617 }
2618}
2619
c5e656c1
MK
2620/* Write, for architecture GDBARCH, a function return value of TYPE
2621 from VALBUF into REGCACHE. */
ef9dff19 2622
3a1e71e3 2623static void
c5e656c1 2624i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2625 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2626{
c5e656c1 2627 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2628 int len = TYPE_LENGTH (type);
2629
1e8d0a7b 2630 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2631 {
3d7f4f49 2632 ULONGEST fstat;
63c0089f 2633 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2634
5716833c 2635 if (tdep->st0_regnum < 0)
ef9dff19 2636 {
8a3fe4f8 2637 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2638 return;
2639 }
2640
635b0cc1
MK
2641 /* Returning floating-point values is a bit tricky. Apart from
2642 storing the return value in %st(0), we have to simulate the
2643 state of the FPU at function return point. */
2644
c6ba6f0d
MK
2645 /* Convert the value found in VALBUF to the extended
2646 floating-point format used by the FPU. This is probably
2647 not exactly how it would happen on the target itself, but
2648 it is the best we can do. */
27067745 2649 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2650 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2651
635b0cc1
MK
2652 /* Set the top of the floating-point register stack to 7. The
2653 actual value doesn't really matter, but 7 is what a normal
2654 function return would end up with if the program started out
2655 with a freshly initialized FPU. */
20a6ec49 2656 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2657 fstat |= (7 << 11);
20a6ec49 2658 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2659
635b0cc1
MK
2660 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2661 the floating-point register stack to 7, the appropriate value
2662 for the tag word is 0x3fff. */
20a6ec49 2663 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2664 }
2665 else
2666 {
875f8d0e
UW
2667 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2668 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2669
2670 if (len <= low_size)
3d7f4f49 2671 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2672 else if (len <= (low_size + high_size))
2673 {
3d7f4f49
MK
2674 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2675 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2676 len - low_size, valbuf + low_size);
ef9dff19
MK
2677 }
2678 else
8e65ff28 2679 internal_error (__FILE__, __LINE__,
e2e0b3e5 2680 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2681 }
2682}
fc338970 2683\f
ef9dff19 2684
8201327c
MK
2685/* This is the variable that is set with "set struct-convention", and
2686 its legitimate values. */
2687static const char default_struct_convention[] = "default";
2688static const char pcc_struct_convention[] = "pcc";
2689static const char reg_struct_convention[] = "reg";
40478521 2690static const char *const valid_conventions[] =
8201327c
MK
2691{
2692 default_struct_convention,
2693 pcc_struct_convention,
2694 reg_struct_convention,
2695 NULL
2696};
2697static const char *struct_convention = default_struct_convention;
2698
0e4377e1
JB
2699/* Return non-zero if TYPE, which is assumed to be a structure,
2700 a union type, or an array type, should be returned in registers
2701 for architecture GDBARCH. */
c5e656c1 2702
8201327c 2703static int
c5e656c1 2704i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2705{
c5e656c1
MK
2706 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2707 enum type_code code = TYPE_CODE (type);
2708 int len = TYPE_LENGTH (type);
8201327c 2709
0e4377e1
JB
2710 gdb_assert (code == TYPE_CODE_STRUCT
2711 || code == TYPE_CODE_UNION
2712 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2713
2714 if (struct_convention == pcc_struct_convention
2715 || (struct_convention == default_struct_convention
2716 && tdep->struct_return == pcc_struct_return))
2717 return 0;
2718
9edde48e
MK
2719 /* Structures consisting of a single `float', `double' or 'long
2720 double' member are returned in %st(0). */
2721 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2722 {
2723 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2724 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2725 return (len == 4 || len == 8 || len == 12);
2726 }
2727
c5e656c1
MK
2728 return (len == 1 || len == 2 || len == 4 || len == 8);
2729}
2730
2731/* Determine, for architecture GDBARCH, how a return value of TYPE
2732 should be returned. If it is supposed to be returned in registers,
2733 and READBUF is non-zero, read the appropriate value from REGCACHE,
2734 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2735 from WRITEBUF into REGCACHE. */
2736
2737static enum return_value_convention
6a3a010b 2738i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2739 struct type *type, struct regcache *regcache,
2740 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2741{
2742 enum type_code code = TYPE_CODE (type);
2743
5daa78cc
TJB
2744 if (((code == TYPE_CODE_STRUCT
2745 || code == TYPE_CODE_UNION
2746 || code == TYPE_CODE_ARRAY)
2747 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2748 /* Complex double and long double uses the struct return covention. */
2749 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2750 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2751 /* 128-bit decimal float uses the struct return convention. */
2752 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2753 {
2754 /* The System V ABI says that:
2755
2756 "A function that returns a structure or union also sets %eax
2757 to the value of the original address of the caller's area
2758 before it returns. Thus when the caller receives control
2759 again, the address of the returned object resides in register
2760 %eax and can be used to access the object."
2761
2762 So the ABI guarantees that we can always find the return
2763 value just after the function has returned. */
2764
0e4377e1
JB
2765 /* Note that the ABI doesn't mention functions returning arrays,
2766 which is something possible in certain languages such as Ada.
2767 In this case, the value is returned as if it was wrapped in
2768 a record, so the convention applied to records also applies
2769 to arrays. */
2770
31db7b6c
MK
2771 if (readbuf)
2772 {
2773 ULONGEST addr;
2774
2775 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2776 read_memory (addr, readbuf, TYPE_LENGTH (type));
2777 }
2778
2779 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2780 }
c5e656c1
MK
2781
2782 /* This special case is for structures consisting of a single
9edde48e
MK
2783 `float', `double' or 'long double' member. These structures are
2784 returned in %st(0). For these structures, we call ourselves
2785 recursively, changing TYPE into the type of the first member of
2786 the structure. Since that should work for all structures that
2787 have only one member, we don't bother to check the member's type
2788 here. */
c5e656c1
MK
2789 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2790 {
2791 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2792 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2793 readbuf, writebuf);
c5e656c1
MK
2794 }
2795
2796 if (readbuf)
2797 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2798 if (writebuf)
2799 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2800
c5e656c1 2801 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2802}
2803\f
2804
27067745
UW
2805struct type *
2806i387_ext_type (struct gdbarch *gdbarch)
2807{
2808 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2809
2810 if (!tdep->i387_ext_type)
90884b2b
L
2811 {
2812 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2813 gdb_assert (tdep->i387_ext_type != NULL);
2814 }
27067745
UW
2815
2816 return tdep->i387_ext_type;
2817}
2818
1dbcd68c
WT
2819/* Construct type for pseudo BND registers. We can't use
2820 tdesc_find_type since a complement of one value has to be used
2821 to describe the upper bound. */
2822
2823static struct type *
2824i386_bnd_type (struct gdbarch *gdbarch)
2825{
2826 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2827
2828
2829 if (!tdep->i386_bnd_type)
2830 {
2831 struct type *t, *bound_t;
2832 const struct builtin_type *bt = builtin_type (gdbarch);
2833
2834 /* The type we're building is described bellow: */
2835#if 0
2836 struct __bound128
2837 {
2838 void *lbound;
2839 void *ubound; /* One complement of raw ubound field. */
2840 };
2841#endif
2842
2843 t = arch_composite_type (gdbarch,
2844 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
2845
2846 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
2847 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
2848
2849 TYPE_NAME (t) = "builtin_type_bound128";
2850 tdep->i386_bnd_type = t;
2851 }
2852
2853 return tdep->i386_bnd_type;
2854}
2855
c131fcee
L
2856/* Construct vector type for pseudo YMM registers. We can't use
2857 tdesc_find_type since YMM isn't described in target description. */
2858
2859static struct type *
2860i386_ymm_type (struct gdbarch *gdbarch)
2861{
2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2863
2864 if (!tdep->i386_ymm_type)
2865 {
2866 const struct builtin_type *bt = builtin_type (gdbarch);
2867
2868 /* The type we're building is this: */
2869#if 0
2870 union __gdb_builtin_type_vec256i
2871 {
2872 int128_t uint128[2];
2873 int64_t v2_int64[4];
2874 int32_t v4_int32[8];
2875 int16_t v8_int16[16];
2876 int8_t v16_int8[32];
2877 double v2_double[4];
2878 float v4_float[8];
2879 };
2880#endif
2881
2882 struct type *t;
2883
2884 t = arch_composite_type (gdbarch,
2885 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2886 append_composite_type_field (t, "v8_float",
2887 init_vector_type (bt->builtin_float, 8));
2888 append_composite_type_field (t, "v4_double",
2889 init_vector_type (bt->builtin_double, 4));
2890 append_composite_type_field (t, "v32_int8",
2891 init_vector_type (bt->builtin_int8, 32));
2892 append_composite_type_field (t, "v16_int16",
2893 init_vector_type (bt->builtin_int16, 16));
2894 append_composite_type_field (t, "v8_int32",
2895 init_vector_type (bt->builtin_int32, 8));
2896 append_composite_type_field (t, "v4_int64",
2897 init_vector_type (bt->builtin_int64, 4));
2898 append_composite_type_field (t, "v2_int128",
2899 init_vector_type (bt->builtin_int128, 2));
2900
2901 TYPE_VECTOR (t) = 1;
0c5acf93 2902 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
2903 tdep->i386_ymm_type = t;
2904 }
2905
2906 return tdep->i386_ymm_type;
2907}
2908
794ac428 2909/* Construct vector type for MMX registers. */
90884b2b 2910static struct type *
794ac428
UW
2911i386_mmx_type (struct gdbarch *gdbarch)
2912{
2913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2914
2915 if (!tdep->i386_mmx_type)
2916 {
df4df182
UW
2917 const struct builtin_type *bt = builtin_type (gdbarch);
2918
794ac428
UW
2919 /* The type we're building is this: */
2920#if 0
2921 union __gdb_builtin_type_vec64i
2922 {
2923 int64_t uint64;
2924 int32_t v2_int32[2];
2925 int16_t v4_int16[4];
2926 int8_t v8_int8[8];
2927 };
2928#endif
2929
2930 struct type *t;
2931
e9bb382b
UW
2932 t = arch_composite_type (gdbarch,
2933 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2934
2935 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2936 append_composite_type_field (t, "v2_int32",
df4df182 2937 init_vector_type (bt->builtin_int32, 2));
794ac428 2938 append_composite_type_field (t, "v4_int16",
df4df182 2939 init_vector_type (bt->builtin_int16, 4));
794ac428 2940 append_composite_type_field (t, "v8_int8",
df4df182 2941 init_vector_type (bt->builtin_int8, 8));
794ac428 2942
876cecd0 2943 TYPE_VECTOR (t) = 1;
794ac428
UW
2944 TYPE_NAME (t) = "builtin_type_vec64i";
2945 tdep->i386_mmx_type = t;
2946 }
2947
2948 return tdep->i386_mmx_type;
2949}
2950
d7a0d72c 2951/* Return the GDB type object for the "standard" data type of data in
1777feb0 2952 register REGNUM. */
d7a0d72c 2953
fff4548b 2954struct type *
90884b2b 2955i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2956{
1dbcd68c
WT
2957 if (i386_bnd_regnum_p (gdbarch, regnum))
2958 return i386_bnd_type (gdbarch);
1ba53b71
L
2959 if (i386_mmx_regnum_p (gdbarch, regnum))
2960 return i386_mmx_type (gdbarch);
c131fcee
L
2961 else if (i386_ymm_regnum_p (gdbarch, regnum))
2962 return i386_ymm_type (gdbarch);
1ba53b71
L
2963 else
2964 {
2965 const struct builtin_type *bt = builtin_type (gdbarch);
2966 if (i386_byte_regnum_p (gdbarch, regnum))
2967 return bt->builtin_int8;
2968 else if (i386_word_regnum_p (gdbarch, regnum))
2969 return bt->builtin_int16;
2970 else if (i386_dword_regnum_p (gdbarch, regnum))
2971 return bt->builtin_int32;
2972 }
2973
2974 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2975}
2976
28fc6740 2977/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2978 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2979
2980static int
c86c27af 2981i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2982{
5716833c
MK
2983 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2984 int mmxreg, fpreg;
28fc6740
AC
2985 ULONGEST fstat;
2986 int tos;
c86c27af 2987
5716833c 2988 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2989 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2990 tos = (fstat >> 11) & 0x7;
5716833c
MK
2991 fpreg = (mmxreg + tos) % 8;
2992
20a6ec49 2993 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2994}
2995
3543a589
TT
2996/* A helper function for us by i386_pseudo_register_read_value and
2997 amd64_pseudo_register_read_value. It does all the work but reads
2998 the data into an already-allocated value. */
2999
3000void
3001i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3002 struct regcache *regcache,
3003 int regnum,
3004 struct value *result_value)
28fc6740 3005{
1ba53b71 3006 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 3007 enum register_status status;
3543a589 3008 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3009
5716833c 3010 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3011 {
c86c27af
MK
3012 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3013
28fc6740 3014 /* Extract (always little endian). */
05d1431c
PA
3015 status = regcache_raw_read (regcache, fpnum, raw_buf);
3016 if (status != REG_VALID)
3543a589
TT
3017 mark_value_bytes_unavailable (result_value, 0,
3018 TYPE_LENGTH (value_type (result_value)));
3019 else
3020 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3021 }
3022 else
1ba53b71
L
3023 {
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3025 if (i386_bnd_regnum_p (gdbarch, regnum))
3026 {
3027 regnum -= tdep->bnd0_regnum;
1ba53b71 3028
1dbcd68c
WT
3029 /* Extract (always little endian). Read lower 128bits. */
3030 status = regcache_raw_read (regcache,
3031 I387_BND0R_REGNUM (tdep) + regnum,
3032 raw_buf);
3033 if (status != REG_VALID)
3034 mark_value_bytes_unavailable (result_value, 0, 16);
3035 else
3036 {
3037 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3038 LONGEST upper, lower;
3039 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3040
3041 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3042 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3043 upper = ~upper;
3044
3045 memcpy (buf, &lower, size);
3046 memcpy (buf + size, &upper, size);
3047 }
3048 }
3049 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3050 {
3051 regnum -= tdep->ymm0_regnum;
3052
1777feb0 3053 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3054 status = regcache_raw_read (regcache,
3055 I387_XMM0_REGNUM (tdep) + regnum,
3056 raw_buf);
3057 if (status != REG_VALID)
3543a589
TT
3058 mark_value_bytes_unavailable (result_value, 0, 16);
3059 else
3060 memcpy (buf, raw_buf, 16);
c131fcee 3061 /* Read upper 128bits. */
05d1431c
PA
3062 status = regcache_raw_read (regcache,
3063 tdep->ymm0h_regnum + regnum,
3064 raw_buf);
3065 if (status != REG_VALID)
3543a589
TT
3066 mark_value_bytes_unavailable (result_value, 16, 32);
3067 else
3068 memcpy (buf + 16, raw_buf, 16);
c131fcee
L
3069 }
3070 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3071 {
3072 int gpnum = regnum - tdep->ax_regnum;
3073
3074 /* Extract (always little endian). */
05d1431c
PA
3075 status = regcache_raw_read (regcache, gpnum, raw_buf);
3076 if (status != REG_VALID)
3543a589
TT
3077 mark_value_bytes_unavailable (result_value, 0,
3078 TYPE_LENGTH (value_type (result_value)));
3079 else
3080 memcpy (buf, raw_buf, 2);
1ba53b71
L
3081 }
3082 else if (i386_byte_regnum_p (gdbarch, regnum))
3083 {
3084 /* Check byte pseudo registers last since this function will
3085 be called from amd64_pseudo_register_read, which handles
3086 byte pseudo registers differently. */
3087 int gpnum = regnum - tdep->al_regnum;
3088
3089 /* Extract (always little endian). We read both lower and
3090 upper registers. */
05d1431c
PA
3091 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3092 if (status != REG_VALID)
3543a589
TT
3093 mark_value_bytes_unavailable (result_value, 0,
3094 TYPE_LENGTH (value_type (result_value)));
3095 else if (gpnum >= 4)
1ba53b71
L
3096 memcpy (buf, raw_buf + 1, 1);
3097 else
3098 memcpy (buf, raw_buf, 1);
3099 }
3100 else
3101 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3102 }
3543a589
TT
3103}
3104
3105static struct value *
3106i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3107 struct regcache *regcache,
3108 int regnum)
3109{
3110 struct value *result;
3111
3112 result = allocate_value (register_type (gdbarch, regnum));
3113 VALUE_LVAL (result) = lval_register;
3114 VALUE_REGNUM (result) = regnum;
3115
3116 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3117
3543a589 3118 return result;
28fc6740
AC
3119}
3120
1ba53b71 3121void
28fc6740 3122i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3123 int regnum, const gdb_byte *buf)
28fc6740 3124{
1ba53b71
L
3125 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3126
5716833c 3127 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3128 {
c86c27af
MK
3129 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3130
28fc6740 3131 /* Read ... */
1ba53b71 3132 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3133 /* ... Modify ... (always little endian). */
1ba53b71 3134 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3135 /* ... Write. */
1ba53b71 3136 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3137 }
3138 else
1ba53b71
L
3139 {
3140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3141
1dbcd68c
WT
3142 if (i386_bnd_regnum_p (gdbarch, regnum))
3143 {
3144 ULONGEST upper, lower;
3145 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3146 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3147
3148 /* New values from input value. */
3149 regnum -= tdep->bnd0_regnum;
3150 lower = extract_unsigned_integer (buf, size, byte_order);
3151 upper = extract_unsigned_integer (buf + size, size, byte_order);
3152
3153 /* Fetching register buffer. */
3154 regcache_raw_read (regcache,
3155 I387_BND0R_REGNUM (tdep) + regnum,
3156 raw_buf);
3157
3158 upper = ~upper;
3159
3160 /* Set register bits. */
3161 memcpy (raw_buf, &lower, 8);
3162 memcpy (raw_buf + 8, &upper, 8);
3163
3164
3165 regcache_raw_write (regcache,
3166 I387_BND0R_REGNUM (tdep) + regnum,
3167 raw_buf);
3168 }
3169 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3170 {
3171 regnum -= tdep->ymm0_regnum;
3172
3173 /* ... Write lower 128bits. */
3174 regcache_raw_write (regcache,
3175 I387_XMM0_REGNUM (tdep) + regnum,
3176 buf);
3177 /* ... Write upper 128bits. */
3178 regcache_raw_write (regcache,
3179 tdep->ymm0h_regnum + regnum,
3180 buf + 16);
3181 }
3182 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3183 {
3184 int gpnum = regnum - tdep->ax_regnum;
3185
3186 /* Read ... */
3187 regcache_raw_read (regcache, gpnum, raw_buf);
3188 /* ... Modify ... (always little endian). */
3189 memcpy (raw_buf, buf, 2);
3190 /* ... Write. */
3191 regcache_raw_write (regcache, gpnum, raw_buf);
3192 }
3193 else if (i386_byte_regnum_p (gdbarch, regnum))
3194 {
3195 /* Check byte pseudo registers last since this function will
3196 be called from amd64_pseudo_register_read, which handles
3197 byte pseudo registers differently. */
3198 int gpnum = regnum - tdep->al_regnum;
3199
3200 /* Read ... We read both lower and upper registers. */
3201 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3202 /* ... Modify ... (always little endian). */
3203 if (gpnum >= 4)
3204 memcpy (raw_buf + 1, buf, 1);
3205 else
3206 memcpy (raw_buf, buf, 1);
3207 /* ... Write. */
3208 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3209 }
3210 else
3211 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3212 }
28fc6740 3213}
ff2e87ac
AC
3214\f
3215
ff2e87ac
AC
3216/* Return the register number of the register allocated by GCC after
3217 REGNUM, or -1 if there is no such register. */
3218
3219static int
3220i386_next_regnum (int regnum)
3221{
3222 /* GCC allocates the registers in the order:
3223
3224 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3225
3226 Since storing a variable in %esp doesn't make any sense we return
3227 -1 for %ebp and for %esp itself. */
3228 static int next_regnum[] =
3229 {
3230 I386_EDX_REGNUM, /* Slot for %eax. */
3231 I386_EBX_REGNUM, /* Slot for %ecx. */
3232 I386_ECX_REGNUM, /* Slot for %edx. */
3233 I386_ESI_REGNUM, /* Slot for %ebx. */
3234 -1, -1, /* Slots for %esp and %ebp. */
3235 I386_EDI_REGNUM, /* Slot for %esi. */
3236 I386_EBP_REGNUM /* Slot for %edi. */
3237 };
3238
de5b9bb9 3239 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3240 return next_regnum[regnum];
28fc6740 3241
ff2e87ac
AC
3242 return -1;
3243}
3244
3245/* Return nonzero if a value of type TYPE stored in register REGNUM
3246 needs any special handling. */
d7a0d72c 3247
3a1e71e3 3248static int
1777feb0
MS
3249i386_convert_register_p (struct gdbarch *gdbarch,
3250 int regnum, struct type *type)
d7a0d72c 3251{
de5b9bb9
MK
3252 int len = TYPE_LENGTH (type);
3253
ff2e87ac
AC
3254 /* Values may be spread across multiple registers. Most debugging
3255 formats aren't expressive enough to specify the locations, so
3256 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3257 have a length that is a multiple of the word size, since GCC
3258 doesn't seem to put any other types into registers. */
3259 if (len > 4 && len % 4 == 0)
3260 {
3261 int last_regnum = regnum;
3262
3263 while (len > 4)
3264 {
3265 last_regnum = i386_next_regnum (last_regnum);
3266 len -= 4;
3267 }
3268
3269 if (last_regnum != -1)
3270 return 1;
3271 }
ff2e87ac 3272
0abe36f5 3273 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3274}
3275
ff2e87ac
AC
3276/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3277 return its contents in TO. */
ac27f131 3278
8dccd430 3279static int
ff2e87ac 3280i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3281 struct type *type, gdb_byte *to,
3282 int *optimizedp, int *unavailablep)
ac27f131 3283{
20a6ec49 3284 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3285 int len = TYPE_LENGTH (type);
de5b9bb9 3286
20a6ec49 3287 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3288 return i387_register_to_value (frame, regnum, type, to,
3289 optimizedp, unavailablep);
ff2e87ac 3290
fd35795f 3291 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3292
3293 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3294
de5b9bb9
MK
3295 while (len > 0)
3296 {
3297 gdb_assert (regnum != -1);
20a6ec49 3298 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3299
8dccd430
PA
3300 if (!get_frame_register_bytes (frame, regnum, 0,
3301 register_size (gdbarch, regnum),
3302 to, optimizedp, unavailablep))
3303 return 0;
3304
de5b9bb9
MK
3305 regnum = i386_next_regnum (regnum);
3306 len -= 4;
42835c2b 3307 to += 4;
de5b9bb9 3308 }
8dccd430
PA
3309
3310 *optimizedp = *unavailablep = 0;
3311 return 1;
ac27f131
MK
3312}
3313
ff2e87ac
AC
3314/* Write the contents FROM of a value of type TYPE into register
3315 REGNUM in frame FRAME. */
ac27f131 3316
3a1e71e3 3317static void
ff2e87ac 3318i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3319 struct type *type, const gdb_byte *from)
ac27f131 3320{
de5b9bb9 3321 int len = TYPE_LENGTH (type);
de5b9bb9 3322
20a6ec49 3323 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3324 {
d532c08f
MK
3325 i387_value_to_register (frame, regnum, type, from);
3326 return;
3327 }
3d261580 3328
fd35795f 3329 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3330
3331 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3332
de5b9bb9
MK
3333 while (len > 0)
3334 {
3335 gdb_assert (regnum != -1);
875f8d0e 3336 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3337
42835c2b 3338 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3339 regnum = i386_next_regnum (regnum);
3340 len -= 4;
42835c2b 3341 from += 4;
de5b9bb9 3342 }
ac27f131 3343}
ff2e87ac 3344\f
7fdafb5a
MK
3345/* Supply register REGNUM from the buffer specified by GREGS and LEN
3346 in the general-purpose register set REGSET to register cache
3347 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3348
20187ed5 3349void
473f17b0
MK
3350i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3351 int regnum, const void *gregs, size_t len)
3352{
9ea75c57 3353 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3354 const gdb_byte *regs = gregs;
473f17b0
MK
3355 int i;
3356
3357 gdb_assert (len == tdep->sizeof_gregset);
3358
3359 for (i = 0; i < tdep->gregset_num_regs; i++)
3360 {
3361 if ((regnum == i || regnum == -1)
3362 && tdep->gregset_reg_offset[i] != -1)
3363 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3364 }
3365}
3366
7fdafb5a
MK
3367/* Collect register REGNUM from the register cache REGCACHE and store
3368 it in the buffer specified by GREGS and LEN as described by the
3369 general-purpose register set REGSET. If REGNUM is -1, do this for
3370 all registers in REGSET. */
3371
3372void
3373i386_collect_gregset (const struct regset *regset,
3374 const struct regcache *regcache,
3375 int regnum, void *gregs, size_t len)
3376{
3377 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3378 gdb_byte *regs = gregs;
7fdafb5a
MK
3379 int i;
3380
3381 gdb_assert (len == tdep->sizeof_gregset);
3382
3383 for (i = 0; i < tdep->gregset_num_regs; i++)
3384 {
3385 if ((regnum == i || regnum == -1)
3386 && tdep->gregset_reg_offset[i] != -1)
3387 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3388 }
3389}
3390
3391/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3392 in the floating-point register set REGSET to register cache
3393 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3394
3395static void
3396i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3397 int regnum, const void *fpregs, size_t len)
3398{
9ea75c57 3399 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 3400
66a72d25
MK
3401 if (len == I387_SIZEOF_FXSAVE)
3402 {
3403 i387_supply_fxsave (regcache, regnum, fpregs);
3404 return;
3405 }
3406
473f17b0
MK
3407 gdb_assert (len == tdep->sizeof_fpregset);
3408 i387_supply_fsave (regcache, regnum, fpregs);
3409}
8446b36a 3410
2f305df1
MK
3411/* Collect register REGNUM from the register cache REGCACHE and store
3412 it in the buffer specified by FPREGS and LEN as described by the
3413 floating-point register set REGSET. If REGNUM is -1, do this for
3414 all registers in REGSET. */
7fdafb5a
MK
3415
3416static void
3417i386_collect_fpregset (const struct regset *regset,
3418 const struct regcache *regcache,
3419 int regnum, void *fpregs, size_t len)
3420{
3421 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3422
3423 if (len == I387_SIZEOF_FXSAVE)
3424 {
3425 i387_collect_fxsave (regcache, regnum, fpregs);
3426 return;
3427 }
3428
3429 gdb_assert (len == tdep->sizeof_fpregset);
3430 i387_collect_fsave (regcache, regnum, fpregs);
3431}
3432
c131fcee
L
3433/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3434
3435static void
3436i386_supply_xstateregset (const struct regset *regset,
3437 struct regcache *regcache, int regnum,
3438 const void *xstateregs, size_t len)
3439{
c131fcee
L
3440 i387_supply_xsave (regcache, regnum, xstateregs);
3441}
3442
3443/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3444
3445static void
3446i386_collect_xstateregset (const struct regset *regset,
3447 const struct regcache *regcache,
3448 int regnum, void *xstateregs, size_t len)
3449{
c131fcee
L
3450 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3451}
3452
8446b36a
MK
3453/* Return the appropriate register set for the core section identified
3454 by SECT_NAME and SECT_SIZE. */
3455
3456const struct regset *
3457i386_regset_from_core_section (struct gdbarch *gdbarch,
3458 const char *sect_name, size_t sect_size)
3459{
3460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3461
3462 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3463 {
3464 if (tdep->gregset == NULL)
7fdafb5a
MK
3465 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3466 i386_collect_gregset);
8446b36a
MK
3467 return tdep->gregset;
3468 }
3469
66a72d25
MK
3470 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3471 || (strcmp (sect_name, ".reg-xfp") == 0
3472 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
3473 {
3474 if (tdep->fpregset == NULL)
7fdafb5a
MK
3475 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3476 i386_collect_fpregset);
8446b36a
MK
3477 return tdep->fpregset;
3478 }
3479
c131fcee
L
3480 if (strcmp (sect_name, ".reg-xstate") == 0)
3481 {
3482 if (tdep->xstateregset == NULL)
3483 tdep->xstateregset = regset_alloc (gdbarch,
3484 i386_supply_xstateregset,
3485 i386_collect_xstateregset);
3486
3487 return tdep->xstateregset;
3488 }
3489
8446b36a
MK
3490 return NULL;
3491}
473f17b0 3492\f
fc338970 3493
fc338970 3494/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3495
3496CORE_ADDR
e17a4113
UW
3497i386_pe_skip_trampoline_code (struct frame_info *frame,
3498 CORE_ADDR pc, char *name)
c906108c 3499{
e17a4113
UW
3500 struct gdbarch *gdbarch = get_frame_arch (frame);
3501 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3502
3503 /* jmp *(dest) */
3504 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3505 {
e17a4113
UW
3506 unsigned long indirect =
3507 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3508 struct minimal_symbol *indsym =
7cbd4a93 3509 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
0d5cff50 3510 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3511
c5aa993b 3512 if (symname)
c906108c 3513 {
c5aa993b
JM
3514 if (strncmp (symname, "__imp_", 6) == 0
3515 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3516 return name ? 1 :
3517 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3518 }
3519 }
fc338970 3520 return 0; /* Not a trampoline. */
c906108c 3521}
fc338970
MK
3522\f
3523
10458914
DJ
3524/* Return whether the THIS_FRAME corresponds to a sigtramp
3525 routine. */
8201327c 3526
4bd207ef 3527int
10458914 3528i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3529{
10458914 3530 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3531 const char *name;
911bc6ee
MK
3532
3533 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3534 return (name && strcmp ("_sigtramp", name) == 0);
3535}
3536\f
3537
fc338970
MK
3538/* We have two flavours of disassembly. The machinery on this page
3539 deals with switching between those. */
c906108c
SS
3540
3541static int
a89aa300 3542i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3543{
5e3397bb
MK
3544 gdb_assert (disassembly_flavor == att_flavor
3545 || disassembly_flavor == intel_flavor);
3546
3547 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3548 constified, cast to prevent a compiler warning. */
3549 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3550
3551 return print_insn_i386 (pc, info);
7a292a7a 3552}
fc338970 3553\f
3ce1502b 3554
8201327c
MK
3555/* There are a few i386 architecture variants that differ only
3556 slightly from the generic i386 target. For now, we don't give them
3557 their own source file, but include them here. As a consequence,
3558 they'll always be included. */
3ce1502b 3559
8201327c 3560/* System V Release 4 (SVR4). */
3ce1502b 3561
10458914
DJ
3562/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3563 routine. */
911bc6ee 3564
8201327c 3565static int
10458914 3566i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3567{
10458914 3568 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3569 const char *name;
911bc6ee 3570
05b4bd79 3571 /* The origin of these symbols is currently unknown. */
911bc6ee 3572 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3573 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
3574 || strcmp ("sigvechandler", name) == 0));
3575}
d2a7c97a 3576
10458914
DJ
3577/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3578 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3579
3a1e71e3 3580static CORE_ADDR
10458914 3581i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3582{
e17a4113
UW
3583 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3584 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3585 gdb_byte buf[4];
acd5c798 3586 CORE_ADDR sp;
3ce1502b 3587
10458914 3588 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3589 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3590
e17a4113 3591 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3592}
55aa24fb
SDJ
3593
3594\f
3595
3596/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3597 gdbarch.h. */
3598
3599int
3600i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3601{
3602 return (*s == '$' /* Literal number. */
3603 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3604 || (*s == '(' && s[1] == '%') /* Register indirection. */
3605 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3606}
3607
5acfdbae
SDJ
3608/* Helper function for i386_stap_parse_special_token.
3609
3610 This function parses operands of the form `-8+3+1(%rbp)', which
3611 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3612
3613 Return 1 if the operand was parsed successfully, zero
3614 otherwise. */
3615
3616static int
3617i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3618 struct stap_parse_info *p)
3619{
3620 const char *s = p->arg;
3621
3622 if (isdigit (*s) || *s == '-' || *s == '+')
3623 {
3624 int got_minus[3];
3625 int i;
3626 long displacements[3];
3627 const char *start;
3628 char *regname;
3629 int len;
3630 struct stoken str;
3631 char *endp;
3632
3633 got_minus[0] = 0;
3634 if (*s == '+')
3635 ++s;
3636 else if (*s == '-')
3637 {
3638 ++s;
3639 got_minus[0] = 1;
3640 }
3641
3642 displacements[0] = strtol (s, &endp, 10);
3643 s = endp;
3644
3645 if (*s != '+' && *s != '-')
3646 {
3647 /* We are not dealing with a triplet. */
3648 return 0;
3649 }
3650
3651 got_minus[1] = 0;
3652 if (*s == '+')
3653 ++s;
3654 else
3655 {
3656 ++s;
3657 got_minus[1] = 1;
3658 }
3659
3660 displacements[1] = strtol (s, &endp, 10);
3661 s = endp;
3662
3663 if (*s != '+' && *s != '-')
3664 {
3665 /* We are not dealing with a triplet. */
3666 return 0;
3667 }
3668
3669 got_minus[2] = 0;
3670 if (*s == '+')
3671 ++s;
3672 else
3673 {
3674 ++s;
3675 got_minus[2] = 1;
3676 }
3677
3678 displacements[2] = strtol (s, &endp, 10);
3679 s = endp;
3680
3681 if (*s != '(' || s[1] != '%')
3682 return 0;
3683
3684 s += 2;
3685 start = s;
3686
3687 while (isalnum (*s))
3688 ++s;
3689
3690 if (*s++ != ')')
3691 return 0;
3692
3693 len = s - start;
3694 regname = alloca (len + 1);
3695
3696 strncpy (regname, start, len);
3697 regname[len] = '\0';
3698
3699 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
3700 error (_("Invalid register name `%s' on expression `%s'."),
3701 regname, p->saved_arg);
3702
3703 for (i = 0; i < 3; i++)
3704 {
3705 write_exp_elt_opcode (OP_LONG);
3706 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
3707 write_exp_elt_longcst (displacements[i]);
3708 write_exp_elt_opcode (OP_LONG);
3709 if (got_minus[i])
3710 write_exp_elt_opcode (UNOP_NEG);
3711 }
3712
3713 write_exp_elt_opcode (OP_REGISTER);
3714 str.ptr = regname;
3715 str.length = len;
3716 write_exp_string (str);
3717 write_exp_elt_opcode (OP_REGISTER);
3718
3719 write_exp_elt_opcode (UNOP_CAST);
3720 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3721 write_exp_elt_opcode (UNOP_CAST);
3722
3723 write_exp_elt_opcode (BINOP_ADD);
3724 write_exp_elt_opcode (BINOP_ADD);
3725 write_exp_elt_opcode (BINOP_ADD);
3726
3727 write_exp_elt_opcode (UNOP_CAST);
3728 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3729 write_exp_elt_opcode (UNOP_CAST);
3730
3731 write_exp_elt_opcode (UNOP_IND);
3732
3733 p->arg = s;
3734
3735 return 1;
3736 }
3737
3738 return 0;
3739}
3740
3741/* Helper function for i386_stap_parse_special_token.
3742
3743 This function parses operands of the form `register base +
3744 (register index * size) + offset', as represented in
3745 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3746
3747 Return 1 if the operand was parsed successfully, zero
3748 otherwise. */
3749
3750static int
3751i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
3752 struct stap_parse_info *p)
3753{
3754 const char *s = p->arg;
3755
3756 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3757 {
3758 int offset_minus = 0;
3759 long offset = 0;
3760 int size_minus = 0;
3761 long size = 0;
3762 const char *start;
3763 char *base;
3764 int len_base;
3765 char *index;
3766 int len_index;
3767 struct stoken base_token, index_token;
3768
3769 if (*s == '+')
3770 ++s;
3771 else if (*s == '-')
3772 {
3773 ++s;
3774 offset_minus = 1;
3775 }
3776
3777 if (offset_minus && !isdigit (*s))
3778 return 0;
3779
3780 if (isdigit (*s))
3781 {
3782 char *endp;
3783
3784 offset = strtol (s, &endp, 10);
3785 s = endp;
3786 }
3787
3788 if (*s != '(' || s[1] != '%')
3789 return 0;
3790
3791 s += 2;
3792 start = s;
3793
3794 while (isalnum (*s))
3795 ++s;
3796
3797 if (*s != ',' || s[1] != '%')
3798 return 0;
3799
3800 len_base = s - start;
3801 base = alloca (len_base + 1);
3802 strncpy (base, start, len_base);
3803 base[len_base] = '\0';
3804
3805 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
3806 error (_("Invalid register name `%s' on expression `%s'."),
3807 base, p->saved_arg);
3808
3809 s += 2;
3810 start = s;
3811
3812 while (isalnum (*s))
3813 ++s;
3814
3815 len_index = s - start;
3816 index = alloca (len_index + 1);
3817 strncpy (index, start, len_index);
3818 index[len_index] = '\0';
3819
3820 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
3821 error (_("Invalid register name `%s' on expression `%s'."),
3822 index, p->saved_arg);
3823
3824 if (*s != ',' && *s != ')')
3825 return 0;
3826
3827 if (*s == ',')
3828 {
3829 char *endp;
3830
3831 ++s;
3832 if (*s == '+')
3833 ++s;
3834 else if (*s == '-')
3835 {
3836 ++s;
3837 size_minus = 1;
3838 }
3839
3840 size = strtol (s, &endp, 10);
3841 s = endp;
3842
3843 if (*s != ')')
3844 return 0;
3845 }
3846
3847 ++s;
3848
3849 if (offset)
3850 {
3851 write_exp_elt_opcode (OP_LONG);
3852 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
3853 write_exp_elt_longcst (offset);
3854 write_exp_elt_opcode (OP_LONG);
3855 if (offset_minus)
3856 write_exp_elt_opcode (UNOP_NEG);
3857 }
3858
3859 write_exp_elt_opcode (OP_REGISTER);
3860 base_token.ptr = base;
3861 base_token.length = len_base;
3862 write_exp_string (base_token);
3863 write_exp_elt_opcode (OP_REGISTER);
3864
3865 if (offset)
3866 write_exp_elt_opcode (BINOP_ADD);
3867
3868 write_exp_elt_opcode (OP_REGISTER);
3869 index_token.ptr = index;
3870 index_token.length = len_index;
3871 write_exp_string (index_token);
3872 write_exp_elt_opcode (OP_REGISTER);
3873
3874 if (size)
3875 {
3876 write_exp_elt_opcode (OP_LONG);
3877 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
3878 write_exp_elt_longcst (size);
3879 write_exp_elt_opcode (OP_LONG);
3880 if (size_minus)
3881 write_exp_elt_opcode (UNOP_NEG);
3882 write_exp_elt_opcode (BINOP_MUL);
3883 }
3884
3885 write_exp_elt_opcode (BINOP_ADD);
3886
3887 write_exp_elt_opcode (UNOP_CAST);
3888 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3889 write_exp_elt_opcode (UNOP_CAST);
3890
3891 write_exp_elt_opcode (UNOP_IND);
3892
3893 p->arg = s;
3894
3895 return 1;
3896 }
3897
3898 return 0;
3899}
3900
55aa24fb
SDJ
3901/* Implementation of `gdbarch_stap_parse_special_token', as defined in
3902 gdbarch.h. */
3903
3904int
3905i386_stap_parse_special_token (struct gdbarch *gdbarch,
3906 struct stap_parse_info *p)
3907{
55aa24fb
SDJ
3908 /* In order to parse special tokens, we use a state-machine that go
3909 through every known token and try to get a match. */
3910 enum
3911 {
3912 TRIPLET,
3913 THREE_ARG_DISPLACEMENT,
3914 DONE
3915 } current_state;
3916
3917 current_state = TRIPLET;
3918
3919 /* The special tokens to be parsed here are:
3920
3921 - `register base + (register index * size) + offset', as represented
3922 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3923
3924 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3925 `*(-8 + 3 - 1 + (void *) $eax)'. */
3926
3927 while (current_state != DONE)
3928 {
55aa24fb
SDJ
3929 switch (current_state)
3930 {
3931 case TRIPLET:
5acfdbae
SDJ
3932 if (i386_stap_parse_special_token_triplet (gdbarch, p))
3933 return 1;
3934 break;
3935
55aa24fb 3936 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
3937 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
3938 return 1;
3939 break;
55aa24fb
SDJ
3940 }
3941
3942 /* Advancing to the next state. */
3943 ++current_state;
3944 }
3945
3946 return 0;
3947}
3948
8201327c 3949\f
3ce1502b 3950
8201327c 3951/* Generic ELF. */
d2a7c97a 3952
8201327c
MK
3953void
3954i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3955{
05c0465e
SDJ
3956 static const char *const stap_integer_prefixes[] = { "$", NULL };
3957 static const char *const stap_register_prefixes[] = { "%", NULL };
3958 static const char *const stap_register_indirection_prefixes[] = { "(",
3959 NULL };
3960 static const char *const stap_register_indirection_suffixes[] = { ")",
3961 NULL };
3962
c4fc7f1b
MK
3963 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3964 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
3965
3966 /* Registering SystemTap handlers. */
05c0465e
SDJ
3967 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3968 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3969 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3970 stap_register_indirection_prefixes);
3971 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3972 stap_register_indirection_suffixes);
55aa24fb
SDJ
3973 set_gdbarch_stap_is_single_operand (gdbarch,
3974 i386_stap_is_single_operand);
3975 set_gdbarch_stap_parse_special_token (gdbarch,
3976 i386_stap_parse_special_token);
8201327c 3977}
3ce1502b 3978
8201327c 3979/* System V Release 4 (SVR4). */
3ce1502b 3980
8201327c
MK
3981void
3982i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3983{
3984 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3985
8201327c
MK
3986 /* System V Release 4 uses ELF. */
3987 i386_elf_init_abi (info, gdbarch);
3ce1502b 3988
dfe01d39 3989 /* System V Release 4 has shared libraries. */
dfe01d39
MK
3990 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3991
911bc6ee 3992 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 3993 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
3994 tdep->sc_pc_offset = 36 + 14 * 4;
3995 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 3996
8201327c 3997 tdep->jb_pc_offset = 20;
3ce1502b
MK
3998}
3999
8201327c 4000/* DJGPP. */
3ce1502b 4001
3a1e71e3 4002static void
8201327c 4003i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 4004{
8201327c 4005 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4006
911bc6ee
MK
4007 /* DJGPP doesn't have any special frames for signal handlers. */
4008 tdep->sigtramp_p = NULL;
3ce1502b 4009
8201327c 4010 tdep->jb_pc_offset = 36;
15430fc0
EZ
4011
4012 /* DJGPP does not support the SSE registers. */
3a13a53b
L
4013 if (! tdesc_has_registers (info.target_desc))
4014 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
4015
4016 /* Native compiler is GCC, which uses the SVR4 register numbering
4017 even in COFF and STABS. See the comment in i386_gdbarch_init,
4018 before the calls to set_gdbarch_stab_reg_to_regnum and
4019 set_gdbarch_sdb_reg_to_regnum. */
4020 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4021 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
4022
4023 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 4024}
8201327c 4025\f
2acceee2 4026
38c968cf
AC
4027/* i386 register groups. In addition to the normal groups, add "mmx"
4028 and "sse". */
4029
4030static struct reggroup *i386_sse_reggroup;
4031static struct reggroup *i386_mmx_reggroup;
4032
4033static void
4034i386_init_reggroups (void)
4035{
4036 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4037 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4038}
4039
4040static void
4041i386_add_reggroups (struct gdbarch *gdbarch)
4042{
4043 reggroup_add (gdbarch, i386_sse_reggroup);
4044 reggroup_add (gdbarch, i386_mmx_reggroup);
4045 reggroup_add (gdbarch, general_reggroup);
4046 reggroup_add (gdbarch, float_reggroup);
4047 reggroup_add (gdbarch, all_reggroup);
4048 reggroup_add (gdbarch, save_reggroup);
4049 reggroup_add (gdbarch, restore_reggroup);
4050 reggroup_add (gdbarch, vector_reggroup);
4051 reggroup_add (gdbarch, system_reggroup);
4052}
4053
4054int
4055i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4056 struct reggroup *group)
4057{
c131fcee
L
4058 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4059 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
1dbcd68c
WT
4060 ymm_regnum_p, ymmh_regnum_p, bndr_regnum_p, bnd_regnum_p,
4061 mpx_ctrl_regnum_p;
acd5c798 4062
1ba53b71
L
4063 /* Don't include pseudo registers, except for MMX, in any register
4064 groups. */
c131fcee 4065 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4066 return 0;
4067
c131fcee 4068 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4069 return 0;
4070
c131fcee 4071 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4072 return 0;
4073
4074 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4075 if (group == i386_mmx_reggroup)
4076 return mmx_regnum_p;
1ba53b71 4077
c131fcee
L
4078 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4079 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4080 if (group == i386_sse_reggroup)
c131fcee
L
4081 return xmm_regnum_p || mxcsr_regnum_p;
4082
4083 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
38c968cf 4084 if (group == vector_reggroup)
c131fcee
L
4085 return (mmx_regnum_p
4086 || ymm_regnum_p
4087 || mxcsr_regnum_p
4088 || (xmm_regnum_p
4089 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
4090 == I386_XSTATE_SSE_MASK)));
1ba53b71
L
4091
4092 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4093 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4094 if (group == float_reggroup)
4095 return fp_regnum_p;
1ba53b71 4096
c131fcee
L
4097 /* For "info reg all", don't include upper YMM registers nor XMM
4098 registers when AVX is supported. */
4099 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4100 if (group == all_reggroup
4101 && ((xmm_regnum_p
4102 && (tdep->xcr0 & I386_XSTATE_AVX))
4103 || ymmh_regnum_p))
4104 return 0;
4105
1dbcd68c
WT
4106 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4107 if (group == all_reggroup
4108 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4109 return bnd_regnum_p;
4110
4111 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4112 if (group == all_reggroup
4113 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4114 return 0;
4115
4116 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4117 if (group == all_reggroup
4118 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4119 return mpx_ctrl_regnum_p;
4120
38c968cf 4121 if (group == general_reggroup)
1ba53b71
L
4122 return (!fp_regnum_p
4123 && !mmx_regnum_p
c131fcee
L
4124 && !mxcsr_regnum_p
4125 && !xmm_regnum_p
4126 && !ymm_regnum_p
1dbcd68c
WT
4127 && !ymmh_regnum_p
4128 && !bndr_regnum_p
4129 && !bnd_regnum_p
4130 && !mpx_ctrl_regnum_p);
acd5c798 4131
38c968cf
AC
4132 return default_register_reggroup_p (gdbarch, regnum, group);
4133}
38c968cf 4134\f
acd5c798 4135
f837910f
MK
4136/* Get the ARGIth function argument for the current function. */
4137
42c466d7 4138static CORE_ADDR
143985b7
AF
4139i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4140 struct type *type)
4141{
e17a4113
UW
4142 struct gdbarch *gdbarch = get_frame_arch (frame);
4143 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4144 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4145 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4146}
4147
514f746b
AR
4148static void
4149i386_skip_permanent_breakpoint (struct regcache *regcache)
4150{
4151 CORE_ADDR current_pc = regcache_read_pc (regcache);
4152
4153 /* On i386, breakpoint is exactly 1 byte long, so we just
4154 adjust the PC in the regcache. */
4155 current_pc += 1;
4156 regcache_write_pc (regcache, current_pc);
4157}
4158
4159
7ad10968
HZ
4160#define PREFIX_REPZ 0x01
4161#define PREFIX_REPNZ 0x02
4162#define PREFIX_LOCK 0x04
4163#define PREFIX_DATA 0x08
4164#define PREFIX_ADDR 0x10
473f17b0 4165
7ad10968
HZ
4166/* operand size */
4167enum
4168{
4169 OT_BYTE = 0,
4170 OT_WORD,
4171 OT_LONG,
cf648174 4172 OT_QUAD,
a3c4230a 4173 OT_DQUAD,
7ad10968 4174};
473f17b0 4175
7ad10968
HZ
4176/* i386 arith/logic operations */
4177enum
4178{
4179 OP_ADDL,
4180 OP_ORL,
4181 OP_ADCL,
4182 OP_SBBL,
4183 OP_ANDL,
4184 OP_SUBL,
4185 OP_XORL,
4186 OP_CMPL,
4187};
5716833c 4188
7ad10968
HZ
4189struct i386_record_s
4190{
cf648174 4191 struct gdbarch *gdbarch;
7ad10968 4192 struct regcache *regcache;
df61f520 4193 CORE_ADDR orig_addr;
7ad10968
HZ
4194 CORE_ADDR addr;
4195 int aflag;
4196 int dflag;
4197 int override;
4198 uint8_t modrm;
4199 uint8_t mod, reg, rm;
4200 int ot;
cf648174
HZ
4201 uint8_t rex_x;
4202 uint8_t rex_b;
4203 int rip_offset;
4204 int popl_esp_hack;
4205 const int *regmap;
7ad10968 4206};
5716833c 4207
99c1624c
PA
4208/* Parse the "modrm" part of the memory address irp->addr points at.
4209 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4210
7ad10968
HZ
4211static int
4212i386_record_modrm (struct i386_record_s *irp)
4213{
cf648174 4214 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4215
4ffa4fc7
PA
4216 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4217 return -1;
4218
7ad10968
HZ
4219 irp->addr++;
4220 irp->mod = (irp->modrm >> 6) & 3;
4221 irp->reg = (irp->modrm >> 3) & 7;
4222 irp->rm = irp->modrm & 7;
5716833c 4223
7ad10968
HZ
4224 return 0;
4225}
d2a7c97a 4226
99c1624c
PA
4227/* Extract the memory address that the current instruction writes to,
4228 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4229
7ad10968 4230static int
cf648174 4231i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4232{
cf648174 4233 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4234 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4235 gdb_byte buf[4];
4236 ULONGEST offset64;
21d0e8a4 4237
7ad10968 4238 *addr = 0;
1e87984a 4239 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4240 {
1e87984a 4241 /* 32/64 bits */
7ad10968
HZ
4242 int havesib = 0;
4243 uint8_t scale = 0;
648d0c8b 4244 uint8_t byte;
7ad10968
HZ
4245 uint8_t index = 0;
4246 uint8_t base = irp->rm;
896fb97d 4247
7ad10968
HZ
4248 if (base == 4)
4249 {
4250 havesib = 1;
4ffa4fc7
PA
4251 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4252 return -1;
7ad10968 4253 irp->addr++;
648d0c8b
MS
4254 scale = (byte >> 6) & 3;
4255 index = ((byte >> 3) & 7) | irp->rex_x;
4256 base = (byte & 7);
7ad10968 4257 }
cf648174 4258 base |= irp->rex_b;
21d0e8a4 4259
7ad10968
HZ
4260 switch (irp->mod)
4261 {
4262 case 0:
4263 if ((base & 7) == 5)
4264 {
4265 base = 0xff;
4ffa4fc7
PA
4266 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4267 return -1;
7ad10968 4268 irp->addr += 4;
60a1502a 4269 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4270 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4271 *addr += irp->addr + irp->rip_offset;
7ad10968 4272 }
7ad10968
HZ
4273 break;
4274 case 1:
4ffa4fc7
PA
4275 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4276 return -1;
7ad10968 4277 irp->addr++;
60a1502a 4278 *addr = (int8_t) buf[0];
7ad10968
HZ
4279 break;
4280 case 2:
4ffa4fc7
PA
4281 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4282 return -1;
60a1502a 4283 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4284 irp->addr += 4;
4285 break;
4286 }
356a6b3e 4287
60a1502a 4288 offset64 = 0;
7ad10968 4289 if (base != 0xff)
cf648174
HZ
4290 {
4291 if (base == 4 && irp->popl_esp_hack)
4292 *addr += irp->popl_esp_hack;
4293 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4294 &offset64);
7ad10968 4295 }
cf648174
HZ
4296 if (irp->aflag == 2)
4297 {
60a1502a 4298 *addr += offset64;
cf648174
HZ
4299 }
4300 else
60a1502a 4301 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4302
7ad10968
HZ
4303 if (havesib && (index != 4 || scale != 0))
4304 {
cf648174 4305 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4306 &offset64);
cf648174 4307 if (irp->aflag == 2)
60a1502a 4308 *addr += offset64 << scale;
cf648174 4309 else
60a1502a 4310 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4311 }
e85596e0
L
4312
4313 if (!irp->aflag)
4314 {
4315 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4316 address from 32-bit to 64-bit. */
4317 *addr = (uint32_t) *addr;
4318 }
7ad10968
HZ
4319 }
4320 else
4321 {
4322 /* 16 bits */
4323 switch (irp->mod)
4324 {
4325 case 0:
4326 if (irp->rm == 6)
4327 {
4ffa4fc7
PA
4328 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4329 return -1;
7ad10968 4330 irp->addr += 2;
60a1502a 4331 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4332 irp->rm = 0;
4333 goto no_rm;
4334 }
7ad10968
HZ
4335 break;
4336 case 1:
4ffa4fc7
PA
4337 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4338 return -1;
7ad10968 4339 irp->addr++;
60a1502a 4340 *addr = (int8_t) buf[0];
7ad10968
HZ
4341 break;
4342 case 2:
4ffa4fc7
PA
4343 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4344 return -1;
7ad10968 4345 irp->addr += 2;
60a1502a 4346 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4347 break;
4348 }
c4fc7f1b 4349
7ad10968
HZ
4350 switch (irp->rm)
4351 {
4352 case 0:
cf648174
HZ
4353 regcache_raw_read_unsigned (irp->regcache,
4354 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4355 &offset64);
4356 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4357 regcache_raw_read_unsigned (irp->regcache,
4358 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4359 &offset64);
4360 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4361 break;
4362 case 1:
cf648174
HZ
4363 regcache_raw_read_unsigned (irp->regcache,
4364 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4365 &offset64);
4366 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4367 regcache_raw_read_unsigned (irp->regcache,
4368 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4369 &offset64);
4370 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4371 break;
4372 case 2:
cf648174
HZ
4373 regcache_raw_read_unsigned (irp->regcache,
4374 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4375 &offset64);
4376 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4377 regcache_raw_read_unsigned (irp->regcache,
4378 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4379 &offset64);
4380 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4381 break;
4382 case 3:
cf648174
HZ
4383 regcache_raw_read_unsigned (irp->regcache,
4384 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4385 &offset64);
4386 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4387 regcache_raw_read_unsigned (irp->regcache,
4388 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4389 &offset64);
4390 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4391 break;
4392 case 4:
cf648174
HZ
4393 regcache_raw_read_unsigned (irp->regcache,
4394 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4395 &offset64);
4396 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4397 break;
4398 case 5:
cf648174
HZ
4399 regcache_raw_read_unsigned (irp->regcache,
4400 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4401 &offset64);
4402 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4403 break;
4404 case 6:
cf648174
HZ
4405 regcache_raw_read_unsigned (irp->regcache,
4406 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4407 &offset64);
4408 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4409 break;
4410 case 7:
cf648174
HZ
4411 regcache_raw_read_unsigned (irp->regcache,
4412 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4413 &offset64);
4414 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4415 break;
4416 }
4417 *addr &= 0xffff;
4418 }
c4fc7f1b 4419
01fe1b41 4420 no_rm:
7ad10968
HZ
4421 return 0;
4422}
c4fc7f1b 4423
99c1624c
PA
4424/* Record the address and contents of the memory that will be changed
4425 by the current instruction. Return -1 if something goes wrong, 0
4426 otherwise. */
356a6b3e 4427
7ad10968
HZ
4428static int
4429i386_record_lea_modrm (struct i386_record_s *irp)
4430{
cf648174
HZ
4431 struct gdbarch *gdbarch = irp->gdbarch;
4432 uint64_t addr;
356a6b3e 4433
d7877f7e 4434 if (irp->override >= 0)
7ad10968 4435 {
25ea693b 4436 if (record_full_memory_query)
bb08c432
HZ
4437 {
4438 int q;
4439
4440 target_terminal_ours ();
4441 q = yquery (_("\
4442Process record ignores the memory change of instruction at address %s\n\
4443because it can't get the value of the segment register.\n\
4444Do you want to stop the program?"),
4445 paddress (gdbarch, irp->orig_addr));
4446 target_terminal_inferior ();
4447 if (q)
4448 return -1;
4449 }
4450
7ad10968
HZ
4451 return 0;
4452 }
61113f8b 4453
7ad10968
HZ
4454 if (i386_record_lea_modrm_addr (irp, &addr))
4455 return -1;
96297dab 4456
25ea693b 4457 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4458 return -1;
a62cc96e 4459
7ad10968
HZ
4460 return 0;
4461}
b6197528 4462
99c1624c
PA
4463/* Record the effects of a push operation. Return -1 if something
4464 goes wrong, 0 otherwise. */
cf648174
HZ
4465
4466static int
4467i386_record_push (struct i386_record_s *irp, int size)
4468{
648d0c8b 4469 ULONGEST addr;
cf648174 4470
25ea693b
MM
4471 if (record_full_arch_list_add_reg (irp->regcache,
4472 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4473 return -1;
4474 regcache_raw_read_unsigned (irp->regcache,
4475 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4476 &addr);
25ea693b 4477 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4478 return -1;
4479
4480 return 0;
4481}
4482
0289bdd7
MS
4483
4484/* Defines contents to record. */
4485#define I386_SAVE_FPU_REGS 0xfffd
4486#define I386_SAVE_FPU_ENV 0xfffe
4487#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4488
99c1624c
PA
4489/* Record the values of the floating point registers which will be
4490 changed by the current instruction. Returns -1 if something is
4491 wrong, 0 otherwise. */
0289bdd7
MS
4492
4493static int i386_record_floats (struct gdbarch *gdbarch,
4494 struct i386_record_s *ir,
4495 uint32_t iregnum)
4496{
4497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4498 int i;
4499
4500 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4501 happen. Currently we store st0-st7 registers, but we need not store all
4502 registers all the time, in future we use ftag register and record only
4503 those who are not marked as an empty. */
4504
4505 if (I386_SAVE_FPU_REGS == iregnum)
4506 {
4507 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4508 {
25ea693b 4509 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4510 return -1;
4511 }
4512 }
4513 else if (I386_SAVE_FPU_ENV == iregnum)
4514 {
4515 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4516 {
25ea693b 4517 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4518 return -1;
4519 }
4520 }
4521 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4522 {
4523 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4524 {
25ea693b 4525 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4526 return -1;
4527 }
4528 }
4529 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4530 (iregnum <= I387_FOP_REGNUM (tdep)))
4531 {
25ea693b 4532 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
4533 return -1;
4534 }
4535 else
4536 {
4537 /* Parameter error. */
4538 return -1;
4539 }
4540 if(I386_SAVE_FPU_ENV != iregnum)
4541 {
4542 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4543 {
25ea693b 4544 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4545 return -1;
4546 }
4547 }
4548 return 0;
4549}
4550
99c1624c
PA
4551/* Parse the current instruction, and record the values of the
4552 registers and memory that will be changed by the current
4553 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4554
25ea693b
MM
4555#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4556 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 4557
a6b808b4 4558int
7ad10968 4559i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4560 CORE_ADDR input_addr)
7ad10968 4561{
60a1502a 4562 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4563 int prefixes = 0;
580879fc 4564 int regnum = 0;
425b824a 4565 uint32_t opcode;
f4644a3f 4566 uint8_t opcode8;
648d0c8b 4567 ULONGEST addr;
60a1502a 4568 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4569 struct i386_record_s ir;
0289bdd7 4570 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4571 uint8_t rex_w = -1;
4572 uint8_t rex_r = 0;
7ad10968 4573
8408d274 4574 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4575 ir.regcache = regcache;
648d0c8b
MS
4576 ir.addr = input_addr;
4577 ir.orig_addr = input_addr;
7ad10968
HZ
4578 ir.aflag = 1;
4579 ir.dflag = 1;
cf648174
HZ
4580 ir.override = -1;
4581 ir.popl_esp_hack = 0;
a3c4230a 4582 ir.regmap = tdep->record_regmap;
cf648174 4583 ir.gdbarch = gdbarch;
7ad10968
HZ
4584
4585 if (record_debug > 1)
4586 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4587 "addr = %s\n",
4588 paddress (gdbarch, ir.addr));
7ad10968
HZ
4589
4590 /* prefixes */
4591 while (1)
4592 {
4ffa4fc7
PA
4593 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4594 return -1;
7ad10968 4595 ir.addr++;
425b824a 4596 switch (opcode8) /* Instruction prefixes */
7ad10968 4597 {
01fe1b41 4598 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4599 prefixes |= PREFIX_REPZ;
4600 break;
01fe1b41 4601 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4602 prefixes |= PREFIX_REPNZ;
4603 break;
01fe1b41 4604 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4605 prefixes |= PREFIX_LOCK;
4606 break;
01fe1b41 4607 case CS_PREFIX_OPCODE:
cf648174 4608 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 4609 break;
01fe1b41 4610 case SS_PREFIX_OPCODE:
cf648174 4611 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 4612 break;
01fe1b41 4613 case DS_PREFIX_OPCODE:
cf648174 4614 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 4615 break;
01fe1b41 4616 case ES_PREFIX_OPCODE:
cf648174 4617 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 4618 break;
01fe1b41 4619 case FS_PREFIX_OPCODE:
cf648174 4620 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 4621 break;
01fe1b41 4622 case GS_PREFIX_OPCODE:
cf648174 4623 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 4624 break;
01fe1b41 4625 case DATA_PREFIX_OPCODE:
7ad10968
HZ
4626 prefixes |= PREFIX_DATA;
4627 break;
01fe1b41 4628 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
4629 prefixes |= PREFIX_ADDR;
4630 break;
d691bec7
MS
4631 case 0x40: /* i386 inc %eax */
4632 case 0x41: /* i386 inc %ecx */
4633 case 0x42: /* i386 inc %edx */
4634 case 0x43: /* i386 inc %ebx */
4635 case 0x44: /* i386 inc %esp */
4636 case 0x45: /* i386 inc %ebp */
4637 case 0x46: /* i386 inc %esi */
4638 case 0x47: /* i386 inc %edi */
4639 case 0x48: /* i386 dec %eax */
4640 case 0x49: /* i386 dec %ecx */
4641 case 0x4a: /* i386 dec %edx */
4642 case 0x4b: /* i386 dec %ebx */
4643 case 0x4c: /* i386 dec %esp */
4644 case 0x4d: /* i386 dec %ebp */
4645 case 0x4e: /* i386 dec %esi */
4646 case 0x4f: /* i386 dec %edi */
4647 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
4648 {
4649 /* REX */
425b824a
MS
4650 rex_w = (opcode8 >> 3) & 1;
4651 rex_r = (opcode8 & 0x4) << 1;
4652 ir.rex_x = (opcode8 & 0x2) << 2;
4653 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 4654 }
d691bec7
MS
4655 else /* 32 bit target */
4656 goto out_prefixes;
cf648174 4657 break;
7ad10968
HZ
4658 default:
4659 goto out_prefixes;
4660 break;
4661 }
4662 }
01fe1b41 4663 out_prefixes:
cf648174
HZ
4664 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4665 {
4666 ir.dflag = 2;
4667 }
4668 else
4669 {
4670 if (prefixes & PREFIX_DATA)
4671 ir.dflag ^= 1;
4672 }
7ad10968
HZ
4673 if (prefixes & PREFIX_ADDR)
4674 ir.aflag ^= 1;
cf648174
HZ
4675 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4676 ir.aflag = 2;
7ad10968 4677
1777feb0 4678 /* Now check op code. */
425b824a 4679 opcode = (uint32_t) opcode8;
01fe1b41 4680 reswitch:
7ad10968
HZ
4681 switch (opcode)
4682 {
4683 case 0x0f:
4ffa4fc7
PA
4684 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4685 return -1;
7ad10968 4686 ir.addr++;
a3c4230a 4687 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
4688 goto reswitch;
4689 break;
93924b6b 4690
a38bba38 4691 case 0x00: /* arith & logic */
7ad10968
HZ
4692 case 0x01:
4693 case 0x02:
4694 case 0x03:
4695 case 0x04:
4696 case 0x05:
4697 case 0x08:
4698 case 0x09:
4699 case 0x0a:
4700 case 0x0b:
4701 case 0x0c:
4702 case 0x0d:
4703 case 0x10:
4704 case 0x11:
4705 case 0x12:
4706 case 0x13:
4707 case 0x14:
4708 case 0x15:
4709 case 0x18:
4710 case 0x19:
4711 case 0x1a:
4712 case 0x1b:
4713 case 0x1c:
4714 case 0x1d:
4715 case 0x20:
4716 case 0x21:
4717 case 0x22:
4718 case 0x23:
4719 case 0x24:
4720 case 0x25:
4721 case 0x28:
4722 case 0x29:
4723 case 0x2a:
4724 case 0x2b:
4725 case 0x2c:
4726 case 0x2d:
4727 case 0x30:
4728 case 0x31:
4729 case 0x32:
4730 case 0x33:
4731 case 0x34:
4732 case 0x35:
4733 case 0x38:
4734 case 0x39:
4735 case 0x3a:
4736 case 0x3b:
4737 case 0x3c:
4738 case 0x3d:
4739 if (((opcode >> 3) & 7) != OP_CMPL)
4740 {
4741 if ((opcode & 1) == 0)
4742 ir.ot = OT_BYTE;
4743 else
4744 ir.ot = ir.dflag + OT_WORD;
93924b6b 4745
7ad10968
HZ
4746 switch ((opcode >> 1) & 3)
4747 {
a38bba38 4748 case 0: /* OP Ev, Gv */
7ad10968
HZ
4749 if (i386_record_modrm (&ir))
4750 return -1;
4751 if (ir.mod != 3)
4752 {
4753 if (i386_record_lea_modrm (&ir))
4754 return -1;
4755 }
4756 else
4757 {
cf648174
HZ
4758 ir.rm |= ir.rex_b;
4759 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4760 ir.rm &= 0x3;
25ea693b 4761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4762 }
4763 break;
a38bba38 4764 case 1: /* OP Gv, Ev */
7ad10968
HZ
4765 if (i386_record_modrm (&ir))
4766 return -1;
cf648174
HZ
4767 ir.reg |= rex_r;
4768 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4769 ir.reg &= 0x3;
25ea693b 4770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4771 break;
a38bba38 4772 case 2: /* OP A, Iv */
25ea693b 4773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4774 break;
4775 }
4776 }
25ea693b 4777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4778 break;
42fdc8df 4779
a38bba38 4780 case 0x80: /* GRP1 */
7ad10968
HZ
4781 case 0x81:
4782 case 0x82:
4783 case 0x83:
4784 if (i386_record_modrm (&ir))
4785 return -1;
8201327c 4786
7ad10968
HZ
4787 if (ir.reg != OP_CMPL)
4788 {
4789 if ((opcode & 1) == 0)
4790 ir.ot = OT_BYTE;
4791 else
4792 ir.ot = ir.dflag + OT_WORD;
28fc6740 4793
7ad10968
HZ
4794 if (ir.mod != 3)
4795 {
cf648174
HZ
4796 if (opcode == 0x83)
4797 ir.rip_offset = 1;
4798 else
4799 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4800 if (i386_record_lea_modrm (&ir))
4801 return -1;
4802 }
4803 else
25ea693b 4804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 4805 }
25ea693b 4806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4807 break;
5e3397bb 4808
a38bba38 4809 case 0x40: /* inc */
7ad10968
HZ
4810 case 0x41:
4811 case 0x42:
4812 case 0x43:
4813 case 0x44:
4814 case 0x45:
4815 case 0x46:
4816 case 0x47:
a38bba38
MS
4817
4818 case 0x48: /* dec */
7ad10968
HZ
4819 case 0x49:
4820 case 0x4a:
4821 case 0x4b:
4822 case 0x4c:
4823 case 0x4d:
4824 case 0x4e:
4825 case 0x4f:
a38bba38 4826
25ea693b
MM
4827 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4828 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4829 break;
acd5c798 4830
a38bba38 4831 case 0xf6: /* GRP3 */
7ad10968
HZ
4832 case 0xf7:
4833 if ((opcode & 1) == 0)
4834 ir.ot = OT_BYTE;
4835 else
4836 ir.ot = ir.dflag + OT_WORD;
4837 if (i386_record_modrm (&ir))
4838 return -1;
acd5c798 4839
cf648174
HZ
4840 if (ir.mod != 3 && ir.reg == 0)
4841 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4842
7ad10968
HZ
4843 switch (ir.reg)
4844 {
a38bba38 4845 case 0: /* test */
25ea693b 4846 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4847 break;
a38bba38
MS
4848 case 2: /* not */
4849 case 3: /* neg */
7ad10968
HZ
4850 if (ir.mod != 3)
4851 {
4852 if (i386_record_lea_modrm (&ir))
4853 return -1;
4854 }
4855 else
4856 {
cf648174
HZ
4857 ir.rm |= ir.rex_b;
4858 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4859 ir.rm &= 0x3;
25ea693b 4860 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4861 }
a38bba38 4862 if (ir.reg == 3) /* neg */
25ea693b 4863 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4864 break;
a38bba38
MS
4865 case 4: /* mul */
4866 case 5: /* imul */
4867 case 6: /* div */
4868 case 7: /* idiv */
25ea693b 4869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 4870 if (ir.ot != OT_BYTE)
25ea693b
MM
4871 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4872 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4873 break;
4874 default:
4875 ir.addr -= 2;
4876 opcode = opcode << 8 | ir.modrm;
4877 goto no_support;
4878 break;
4879 }
4880 break;
4881
a38bba38
MS
4882 case 0xfe: /* GRP4 */
4883 case 0xff: /* GRP5 */
7ad10968
HZ
4884 if (i386_record_modrm (&ir))
4885 return -1;
4886 if (ir.reg >= 2 && opcode == 0xfe)
4887 {
4888 ir.addr -= 2;
4889 opcode = opcode << 8 | ir.modrm;
4890 goto no_support;
4891 }
7ad10968
HZ
4892 switch (ir.reg)
4893 {
a38bba38
MS
4894 case 0: /* inc */
4895 case 1: /* dec */
cf648174
HZ
4896 if ((opcode & 1) == 0)
4897 ir.ot = OT_BYTE;
4898 else
4899 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4900 if (ir.mod != 3)
4901 {
4902 if (i386_record_lea_modrm (&ir))
4903 return -1;
4904 }
4905 else
4906 {
cf648174
HZ
4907 ir.rm |= ir.rex_b;
4908 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4909 ir.rm &= 0x3;
25ea693b 4910 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4911 }
25ea693b 4912 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4913 break;
a38bba38 4914 case 2: /* call */
cf648174
HZ
4915 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4916 ir.dflag = 2;
4917 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4918 return -1;
25ea693b 4919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4920 break;
a38bba38 4921 case 3: /* lcall */
25ea693b 4922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 4923 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4924 return -1;
25ea693b 4925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4926 break;
a38bba38
MS
4927 case 4: /* jmp */
4928 case 5: /* ljmp */
25ea693b 4929 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 4930 break;
a38bba38 4931 case 6: /* push */
cf648174
HZ
4932 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4933 ir.dflag = 2;
4934 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4935 return -1;
7ad10968
HZ
4936 break;
4937 default:
4938 ir.addr -= 2;
4939 opcode = opcode << 8 | ir.modrm;
4940 goto no_support;
4941 break;
4942 }
4943 break;
4944
a38bba38 4945 case 0x84: /* test */
7ad10968
HZ
4946 case 0x85:
4947 case 0xa8:
4948 case 0xa9:
25ea693b 4949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4950 break;
4951
a38bba38 4952 case 0x98: /* CWDE/CBW */
25ea693b 4953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4954 break;
4955
a38bba38 4956 case 0x99: /* CDQ/CWD */
25ea693b
MM
4957 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4958 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4959 break;
4960
a38bba38 4961 case 0x0faf: /* imul */
7ad10968
HZ
4962 case 0x69:
4963 case 0x6b:
4964 ir.ot = ir.dflag + OT_WORD;
4965 if (i386_record_modrm (&ir))
4966 return -1;
cf648174
HZ
4967 if (opcode == 0x69)
4968 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4969 else if (opcode == 0x6b)
4970 ir.rip_offset = 1;
4971 ir.reg |= rex_r;
4972 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4973 ir.reg &= 0x3;
25ea693b
MM
4974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4976 break;
4977
a38bba38 4978 case 0x0fc0: /* xadd */
7ad10968
HZ
4979 case 0x0fc1:
4980 if ((opcode & 1) == 0)
4981 ir.ot = OT_BYTE;
4982 else
4983 ir.ot = ir.dflag + OT_WORD;
4984 if (i386_record_modrm (&ir))
4985 return -1;
cf648174 4986 ir.reg |= rex_r;
7ad10968
HZ
4987 if (ir.mod == 3)
4988 {
cf648174 4989 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4990 ir.reg &= 0x3;
25ea693b 4991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 4992 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4993 ir.rm &= 0x3;
25ea693b 4994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4995 }
4996 else
4997 {
4998 if (i386_record_lea_modrm (&ir))
4999 return -1;
cf648174 5000 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5001 ir.reg &= 0x3;
25ea693b 5002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5003 }
25ea693b 5004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5005 break;
5006
a38bba38 5007 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5008 case 0x0fb1:
5009 if ((opcode & 1) == 0)
5010 ir.ot = OT_BYTE;
5011 else
5012 ir.ot = ir.dflag + OT_WORD;
5013 if (i386_record_modrm (&ir))
5014 return -1;
5015 if (ir.mod == 3)
5016 {
cf648174 5017 ir.reg |= rex_r;
25ea693b 5018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5019 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5020 ir.reg &= 0x3;
25ea693b 5021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5022 }
5023 else
5024 {
25ea693b 5025 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5026 if (i386_record_lea_modrm (&ir))
5027 return -1;
5028 }
25ea693b 5029 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5030 break;
5031
a38bba38 5032 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
5033 if (i386_record_modrm (&ir))
5034 return -1;
5035 if (ir.mod == 3)
5036 {
5037 ir.addr -= 2;
5038 opcode = opcode << 8 | ir.modrm;
5039 goto no_support;
5040 }
25ea693b
MM
5041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5042 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5043 if (i386_record_lea_modrm (&ir))
5044 return -1;
25ea693b 5045 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5046 break;
5047
a38bba38 5048 case 0x50: /* push */
7ad10968
HZ
5049 case 0x51:
5050 case 0x52:
5051 case 0x53:
5052 case 0x54:
5053 case 0x55:
5054 case 0x56:
5055 case 0x57:
5056 case 0x68:
5057 case 0x6a:
cf648174
HZ
5058 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5059 ir.dflag = 2;
5060 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5061 return -1;
5062 break;
5063
a38bba38
MS
5064 case 0x06: /* push es */
5065 case 0x0e: /* push cs */
5066 case 0x16: /* push ss */
5067 case 0x1e: /* push ds */
cf648174
HZ
5068 if (ir.regmap[X86_RECORD_R8_REGNUM])
5069 {
5070 ir.addr -= 1;
5071 goto no_support;
5072 }
5073 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5074 return -1;
5075 break;
5076
a38bba38
MS
5077 case 0x0fa0: /* push fs */
5078 case 0x0fa8: /* push gs */
cf648174
HZ
5079 if (ir.regmap[X86_RECORD_R8_REGNUM])
5080 {
5081 ir.addr -= 2;
5082 goto no_support;
5083 }
5084 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5085 return -1;
cf648174
HZ
5086 break;
5087
a38bba38 5088 case 0x60: /* pusha */
cf648174
HZ
5089 if (ir.regmap[X86_RECORD_R8_REGNUM])
5090 {
5091 ir.addr -= 1;
5092 goto no_support;
5093 }
5094 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5095 return -1;
5096 break;
5097
a38bba38 5098 case 0x58: /* pop */
7ad10968
HZ
5099 case 0x59:
5100 case 0x5a:
5101 case 0x5b:
5102 case 0x5c:
5103 case 0x5d:
5104 case 0x5e:
5105 case 0x5f:
25ea693b
MM
5106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5107 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5108 break;
5109
a38bba38 5110 case 0x61: /* popa */
cf648174
HZ
5111 if (ir.regmap[X86_RECORD_R8_REGNUM])
5112 {
5113 ir.addr -= 1;
5114 goto no_support;
7ad10968 5115 }
425b824a
MS
5116 for (regnum = X86_RECORD_REAX_REGNUM;
5117 regnum <= X86_RECORD_REDI_REGNUM;
5118 regnum++)
25ea693b 5119 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5120 break;
5121
a38bba38 5122 case 0x8f: /* pop */
cf648174
HZ
5123 if (ir.regmap[X86_RECORD_R8_REGNUM])
5124 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5125 else
5126 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5127 if (i386_record_modrm (&ir))
5128 return -1;
5129 if (ir.mod == 3)
25ea693b 5130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5131 else
5132 {
cf648174 5133 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5134 if (i386_record_lea_modrm (&ir))
5135 return -1;
5136 }
25ea693b 5137 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5138 break;
5139
a38bba38 5140 case 0xc8: /* enter */
25ea693b 5141 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5142 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5143 ir.dflag = 2;
5144 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5145 return -1;
5146 break;
5147
a38bba38 5148 case 0xc9: /* leave */
25ea693b
MM
5149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5151 break;
5152
a38bba38 5153 case 0x07: /* pop es */
cf648174
HZ
5154 if (ir.regmap[X86_RECORD_R8_REGNUM])
5155 {
5156 ir.addr -= 1;
5157 goto no_support;
5158 }
25ea693b
MM
5159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5162 break;
5163
a38bba38 5164 case 0x17: /* pop ss */
cf648174
HZ
5165 if (ir.regmap[X86_RECORD_R8_REGNUM])
5166 {
5167 ir.addr -= 1;
5168 goto no_support;
5169 }
25ea693b
MM
5170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5172 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5173 break;
5174
a38bba38 5175 case 0x1f: /* pop ds */
cf648174
HZ
5176 if (ir.regmap[X86_RECORD_R8_REGNUM])
5177 {
5178 ir.addr -= 1;
5179 goto no_support;
5180 }
25ea693b
MM
5181 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5182 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5183 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5184 break;
5185
a38bba38 5186 case 0x0fa1: /* pop fs */
25ea693b
MM
5187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5190 break;
5191
a38bba38 5192 case 0x0fa9: /* pop gs */
25ea693b
MM
5193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5196 break;
5197
a38bba38 5198 case 0x88: /* mov */
7ad10968
HZ
5199 case 0x89:
5200 case 0xc6:
5201 case 0xc7:
5202 if ((opcode & 1) == 0)
5203 ir.ot = OT_BYTE;
5204 else
5205 ir.ot = ir.dflag + OT_WORD;
5206
5207 if (i386_record_modrm (&ir))
5208 return -1;
5209
5210 if (ir.mod != 3)
5211 {
cf648174
HZ
5212 if (opcode == 0xc6 || opcode == 0xc7)
5213 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5214 if (i386_record_lea_modrm (&ir))
5215 return -1;
5216 }
5217 else
5218 {
cf648174
HZ
5219 if (opcode == 0xc6 || opcode == 0xc7)
5220 ir.rm |= ir.rex_b;
5221 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5222 ir.rm &= 0x3;
25ea693b 5223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5224 }
7ad10968 5225 break;
cf648174 5226
a38bba38 5227 case 0x8a: /* mov */
7ad10968
HZ
5228 case 0x8b:
5229 if ((opcode & 1) == 0)
5230 ir.ot = OT_BYTE;
5231 else
5232 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5233 if (i386_record_modrm (&ir))
5234 return -1;
cf648174
HZ
5235 ir.reg |= rex_r;
5236 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5237 ir.reg &= 0x3;
25ea693b 5238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5239 break;
7ad10968 5240
a38bba38 5241 case 0x8c: /* mov seg */
cf648174 5242 if (i386_record_modrm (&ir))
7ad10968 5243 return -1;
cf648174
HZ
5244 if (ir.reg > 5)
5245 {
5246 ir.addr -= 2;
5247 opcode = opcode << 8 | ir.modrm;
5248 goto no_support;
5249 }
5250
5251 if (ir.mod == 3)
25ea693b 5252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5253 else
5254 {
5255 ir.ot = OT_WORD;
5256 if (i386_record_lea_modrm (&ir))
5257 return -1;
5258 }
7ad10968
HZ
5259 break;
5260
a38bba38 5261 case 0x8e: /* mov seg */
7ad10968
HZ
5262 if (i386_record_modrm (&ir))
5263 return -1;
7ad10968
HZ
5264 switch (ir.reg)
5265 {
5266 case 0:
425b824a 5267 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5268 break;
5269 case 2:
425b824a 5270 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5271 break;
5272 case 3:
425b824a 5273 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5274 break;
5275 case 4:
425b824a 5276 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5277 break;
5278 case 5:
425b824a 5279 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5280 break;
5281 default:
5282 ir.addr -= 2;
5283 opcode = opcode << 8 | ir.modrm;
5284 goto no_support;
5285 break;
5286 }
25ea693b
MM
5287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5289 break;
5290
a38bba38
MS
5291 case 0x0fb6: /* movzbS */
5292 case 0x0fb7: /* movzwS */
5293 case 0x0fbe: /* movsbS */
5294 case 0x0fbf: /* movswS */
7ad10968
HZ
5295 if (i386_record_modrm (&ir))
5296 return -1;
25ea693b 5297 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5298 break;
5299
a38bba38 5300 case 0x8d: /* lea */
7ad10968
HZ
5301 if (i386_record_modrm (&ir))
5302 return -1;
5303 if (ir.mod == 3)
5304 {
5305 ir.addr -= 2;
5306 opcode = opcode << 8 | ir.modrm;
5307 goto no_support;
5308 }
7ad10968 5309 ir.ot = ir.dflag;
cf648174
HZ
5310 ir.reg |= rex_r;
5311 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5312 ir.reg &= 0x3;
25ea693b 5313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5314 break;
5315
a38bba38 5316 case 0xa0: /* mov EAX */
7ad10968 5317 case 0xa1:
a38bba38
MS
5318
5319 case 0xd7: /* xlat */
25ea693b 5320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5321 break;
5322
a38bba38 5323 case 0xa2: /* mov EAX */
7ad10968 5324 case 0xa3:
d7877f7e 5325 if (ir.override >= 0)
cf648174 5326 {
25ea693b 5327 if (record_full_memory_query)
bb08c432
HZ
5328 {
5329 int q;
5330
5331 target_terminal_ours ();
5332 q = yquery (_("\
5333Process record ignores the memory change of instruction at address %s\n\
5334because it can't get the value of the segment register.\n\
5335Do you want to stop the program?"),
5336 paddress (gdbarch, ir.orig_addr));
5337 target_terminal_inferior ();
5338 if (q)
5339 return -1;
5340 }
cf648174
HZ
5341 }
5342 else
5343 {
5344 if ((opcode & 1) == 0)
5345 ir.ot = OT_BYTE;
5346 else
5347 ir.ot = ir.dflag + OT_WORD;
5348 if (ir.aflag == 2)
5349 {
4ffa4fc7
PA
5350 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5351 return -1;
cf648174 5352 ir.addr += 8;
60a1502a 5353 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5354 }
5355 else if (ir.aflag)
5356 {
4ffa4fc7
PA
5357 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5358 return -1;
cf648174 5359 ir.addr += 4;
60a1502a 5360 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5361 }
5362 else
5363 {
4ffa4fc7
PA
5364 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5365 return -1;
cf648174 5366 ir.addr += 2;
60a1502a 5367 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5368 }
25ea693b 5369 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5370 return -1;
5371 }
7ad10968
HZ
5372 break;
5373
a38bba38 5374 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5375 case 0xb1:
5376 case 0xb2:
5377 case 0xb3:
5378 case 0xb4:
5379 case 0xb5:
5380 case 0xb6:
5381 case 0xb7:
25ea693b
MM
5382 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5383 ? ((opcode & 0x7) | ir.rex_b)
5384 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5385 break;
5386
a38bba38 5387 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5388 case 0xb9:
5389 case 0xba:
5390 case 0xbb:
5391 case 0xbc:
5392 case 0xbd:
5393 case 0xbe:
5394 case 0xbf:
25ea693b 5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5396 break;
5397
a38bba38 5398 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5399 case 0x92:
5400 case 0x93:
5401 case 0x94:
5402 case 0x95:
5403 case 0x96:
5404 case 0x97:
25ea693b
MM
5405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5407 break;
5408
a38bba38 5409 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5410 case 0x87:
5411 if ((opcode & 1) == 0)
5412 ir.ot = OT_BYTE;
5413 else
5414 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5415 if (i386_record_modrm (&ir))
5416 return -1;
7ad10968
HZ
5417 if (ir.mod == 3)
5418 {
86839d38 5419 ir.rm |= ir.rex_b;
cf648174
HZ
5420 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5421 ir.rm &= 0x3;
25ea693b 5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5423 }
5424 else
5425 {
5426 if (i386_record_lea_modrm (&ir))
5427 return -1;
5428 }
cf648174
HZ
5429 ir.reg |= rex_r;
5430 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5431 ir.reg &= 0x3;
25ea693b 5432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5433 break;
5434
a38bba38
MS
5435 case 0xc4: /* les Gv */
5436 case 0xc5: /* lds Gv */
cf648174
HZ
5437 if (ir.regmap[X86_RECORD_R8_REGNUM])
5438 {
5439 ir.addr -= 1;
5440 goto no_support;
5441 }
d3f323f3 5442 /* FALLTHROUGH */
a38bba38
MS
5443 case 0x0fb2: /* lss Gv */
5444 case 0x0fb4: /* lfs Gv */
5445 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5446 if (i386_record_modrm (&ir))
5447 return -1;
5448 if (ir.mod == 3)
5449 {
5450 if (opcode > 0xff)
5451 ir.addr -= 3;
5452 else
5453 ir.addr -= 2;
5454 opcode = opcode << 8 | ir.modrm;
5455 goto no_support;
5456 }
7ad10968
HZ
5457 switch (opcode)
5458 {
a38bba38 5459 case 0xc4: /* les Gv */
425b824a 5460 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5461 break;
a38bba38 5462 case 0xc5: /* lds Gv */
425b824a 5463 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5464 break;
a38bba38 5465 case 0x0fb2: /* lss Gv */
425b824a 5466 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5467 break;
a38bba38 5468 case 0x0fb4: /* lfs Gv */
425b824a 5469 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5470 break;
a38bba38 5471 case 0x0fb5: /* lgs Gv */
425b824a 5472 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5473 break;
5474 }
25ea693b
MM
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5478 break;
5479
a38bba38 5480 case 0xc0: /* shifts */
7ad10968
HZ
5481 case 0xc1:
5482 case 0xd0:
5483 case 0xd1:
5484 case 0xd2:
5485 case 0xd3:
5486 if ((opcode & 1) == 0)
5487 ir.ot = OT_BYTE;
5488 else
5489 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5490 if (i386_record_modrm (&ir))
5491 return -1;
7ad10968
HZ
5492 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5493 {
5494 if (i386_record_lea_modrm (&ir))
5495 return -1;
5496 }
5497 else
5498 {
cf648174
HZ
5499 ir.rm |= ir.rex_b;
5500 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5501 ir.rm &= 0x3;
25ea693b 5502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5503 }
25ea693b 5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5505 break;
5506
5507 case 0x0fa4:
5508 case 0x0fa5:
5509 case 0x0fac:
5510 case 0x0fad:
5511 if (i386_record_modrm (&ir))
5512 return -1;
5513 if (ir.mod == 3)
5514 {
25ea693b 5515 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5516 return -1;
5517 }
5518 else
5519 {
5520 if (i386_record_lea_modrm (&ir))
5521 return -1;
5522 }
5523 break;
5524
a38bba38 5525 case 0xd8: /* Floats. */
7ad10968
HZ
5526 case 0xd9:
5527 case 0xda:
5528 case 0xdb:
5529 case 0xdc:
5530 case 0xdd:
5531 case 0xde:
5532 case 0xdf:
5533 if (i386_record_modrm (&ir))
5534 return -1;
5535 ir.reg |= ((opcode & 7) << 3);
5536 if (ir.mod != 3)
5537 {
1777feb0 5538 /* Memory. */
955db0c0 5539 uint64_t addr64;
7ad10968 5540
955db0c0 5541 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5542 return -1;
5543 switch (ir.reg)
5544 {
7ad10968 5545 case 0x02:
0289bdd7
MS
5546 case 0x12:
5547 case 0x22:
5548 case 0x32:
5549 /* For fcom, ficom nothing to do. */
5550 break;
7ad10968 5551 case 0x03:
0289bdd7
MS
5552 case 0x13:
5553 case 0x23:
5554 case 0x33:
5555 /* For fcomp, ficomp pop FPU stack, store all. */
5556 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5557 return -1;
5558 break;
5559 case 0x00:
5560 case 0x01:
7ad10968
HZ
5561 case 0x04:
5562 case 0x05:
5563 case 0x06:
5564 case 0x07:
5565 case 0x10:
5566 case 0x11:
7ad10968
HZ
5567 case 0x14:
5568 case 0x15:
5569 case 0x16:
5570 case 0x17:
5571 case 0x20:
5572 case 0x21:
7ad10968
HZ
5573 case 0x24:
5574 case 0x25:
5575 case 0x26:
5576 case 0x27:
5577 case 0x30:
5578 case 0x31:
7ad10968
HZ
5579 case 0x34:
5580 case 0x35:
5581 case 0x36:
5582 case 0x37:
0289bdd7
MS
5583 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5584 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5585 of code, always affects st(0) register. */
5586 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5587 return -1;
7ad10968
HZ
5588 break;
5589 case 0x08:
5590 case 0x0a:
5591 case 0x0b:
5592 case 0x18:
5593 case 0x19:
5594 case 0x1a:
5595 case 0x1b:
0289bdd7 5596 case 0x1d:
7ad10968
HZ
5597 case 0x28:
5598 case 0x29:
5599 case 0x2a:
5600 case 0x2b:
5601 case 0x38:
5602 case 0x39:
5603 case 0x3a:
5604 case 0x3b:
0289bdd7
MS
5605 case 0x3c:
5606 case 0x3d:
7ad10968
HZ
5607 switch (ir.reg & 7)
5608 {
5609 case 0:
0289bdd7
MS
5610 /* Handling fld, fild. */
5611 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5612 return -1;
7ad10968
HZ
5613 break;
5614 case 1:
5615 switch (ir.reg >> 4)
5616 {
5617 case 0:
25ea693b 5618 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
5619 return -1;
5620 break;
5621 case 2:
25ea693b 5622 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
5623 return -1;
5624 break;
5625 case 3:
0289bdd7 5626 break;
7ad10968 5627 default:
25ea693b 5628 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5629 return -1;
5630 break;
5631 }
5632 break;
5633 default:
5634 switch (ir.reg >> 4)
5635 {
5636 case 0:
25ea693b 5637 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
5638 return -1;
5639 if (3 == (ir.reg & 7))
5640 {
5641 /* For fstp m32fp. */
5642 if (i386_record_floats (gdbarch, &ir,
5643 I386_SAVE_FPU_REGS))
5644 return -1;
5645 }
5646 break;
7ad10968 5647 case 1:
25ea693b 5648 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 5649 return -1;
0289bdd7
MS
5650 if ((3 == (ir.reg & 7))
5651 || (5 == (ir.reg & 7))
5652 || (7 == (ir.reg & 7)))
5653 {
5654 /* For fstp insn. */
5655 if (i386_record_floats (gdbarch, &ir,
5656 I386_SAVE_FPU_REGS))
5657 return -1;
5658 }
7ad10968
HZ
5659 break;
5660 case 2:
25ea693b 5661 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 5662 return -1;
0289bdd7
MS
5663 if (3 == (ir.reg & 7))
5664 {
5665 /* For fstp m64fp. */
5666 if (i386_record_floats (gdbarch, &ir,
5667 I386_SAVE_FPU_REGS))
5668 return -1;
5669 }
7ad10968
HZ
5670 break;
5671 case 3:
0289bdd7
MS
5672 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5673 {
5674 /* For fistp, fbld, fild, fbstp. */
5675 if (i386_record_floats (gdbarch, &ir,
5676 I386_SAVE_FPU_REGS))
5677 return -1;
5678 }
5679 /* Fall through */
7ad10968 5680 default:
25ea693b 5681 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5682 return -1;
5683 break;
5684 }
5685 break;
5686 }
5687 break;
5688 case 0x0c:
0289bdd7
MS
5689 /* Insn fldenv. */
5690 if (i386_record_floats (gdbarch, &ir,
5691 I386_SAVE_FPU_ENV_REG_STACK))
5692 return -1;
5693 break;
7ad10968 5694 case 0x0d:
0289bdd7
MS
5695 /* Insn fldcw. */
5696 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5697 return -1;
5698 break;
7ad10968 5699 case 0x2c:
0289bdd7
MS
5700 /* Insn frstor. */
5701 if (i386_record_floats (gdbarch, &ir,
5702 I386_SAVE_FPU_ENV_REG_STACK))
5703 return -1;
7ad10968
HZ
5704 break;
5705 case 0x0e:
5706 if (ir.dflag)
5707 {
25ea693b 5708 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
5709 return -1;
5710 }
5711 else
5712 {
25ea693b 5713 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
5714 return -1;
5715 }
5716 break;
5717 case 0x0f:
5718 case 0x2f:
25ea693b 5719 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 5720 return -1;
0289bdd7
MS
5721 /* Insn fstp, fbstp. */
5722 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5723 return -1;
7ad10968
HZ
5724 break;
5725 case 0x1f:
5726 case 0x3e:
25ea693b 5727 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
5728 return -1;
5729 break;
5730 case 0x2e:
5731 if (ir.dflag)
5732 {
25ea693b 5733 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 5734 return -1;
955db0c0 5735 addr64 += 28;
7ad10968
HZ
5736 }
5737 else
5738 {
25ea693b 5739 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 5740 return -1;
955db0c0 5741 addr64 += 14;
7ad10968 5742 }
25ea693b 5743 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 5744 return -1;
0289bdd7
MS
5745 /* Insn fsave. */
5746 if (i386_record_floats (gdbarch, &ir,
5747 I386_SAVE_FPU_ENV_REG_STACK))
5748 return -1;
7ad10968
HZ
5749 break;
5750 case 0x3f:
25ea693b 5751 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 5752 return -1;
0289bdd7
MS
5753 /* Insn fistp. */
5754 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5755 return -1;
7ad10968
HZ
5756 break;
5757 default:
5758 ir.addr -= 2;
5759 opcode = opcode << 8 | ir.modrm;
5760 goto no_support;
5761 break;
5762 }
5763 }
0289bdd7
MS
5764 /* Opcode is an extension of modR/M byte. */
5765 else
5766 {
5767 switch (opcode)
5768 {
5769 case 0xd8:
5770 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5771 return -1;
5772 break;
5773 case 0xd9:
5774 if (0x0c == (ir.modrm >> 4))
5775 {
5776 if ((ir.modrm & 0x0f) <= 7)
5777 {
5778 if (i386_record_floats (gdbarch, &ir,
5779 I386_SAVE_FPU_REGS))
5780 return -1;
5781 }
5782 else
5783 {
5784 if (i386_record_floats (gdbarch, &ir,
5785 I387_ST0_REGNUM (tdep)))
5786 return -1;
5787 /* If only st(0) is changing, then we have already
5788 recorded. */
5789 if ((ir.modrm & 0x0f) - 0x08)
5790 {
5791 if (i386_record_floats (gdbarch, &ir,
5792 I387_ST0_REGNUM (tdep) +
5793 ((ir.modrm & 0x0f) - 0x08)))
5794 return -1;
5795 }
5796 }
5797 }
5798 else
5799 {
5800 switch (ir.modrm)
5801 {
5802 case 0xe0:
5803 case 0xe1:
5804 case 0xf0:
5805 case 0xf5:
5806 case 0xf8:
5807 case 0xfa:
5808 case 0xfc:
5809 case 0xfe:
5810 case 0xff:
5811 if (i386_record_floats (gdbarch, &ir,
5812 I387_ST0_REGNUM (tdep)))
5813 return -1;
5814 break;
5815 case 0xf1:
5816 case 0xf2:
5817 case 0xf3:
5818 case 0xf4:
5819 case 0xf6:
5820 case 0xf7:
5821 case 0xe8:
5822 case 0xe9:
5823 case 0xea:
5824 case 0xeb:
5825 case 0xec:
5826 case 0xed:
5827 case 0xee:
5828 case 0xf9:
5829 case 0xfb:
5830 if (i386_record_floats (gdbarch, &ir,
5831 I386_SAVE_FPU_REGS))
5832 return -1;
5833 break;
5834 case 0xfd:
5835 if (i386_record_floats (gdbarch, &ir,
5836 I387_ST0_REGNUM (tdep)))
5837 return -1;
5838 if (i386_record_floats (gdbarch, &ir,
5839 I387_ST0_REGNUM (tdep) + 1))
5840 return -1;
5841 break;
5842 }
5843 }
5844 break;
5845 case 0xda:
5846 if (0xe9 == ir.modrm)
5847 {
5848 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5849 return -1;
5850 }
5851 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5852 {
5853 if (i386_record_floats (gdbarch, &ir,
5854 I387_ST0_REGNUM (tdep)))
5855 return -1;
5856 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5857 {
5858 if (i386_record_floats (gdbarch, &ir,
5859 I387_ST0_REGNUM (tdep) +
5860 (ir.modrm & 0x0f)))
5861 return -1;
5862 }
5863 else if ((ir.modrm & 0x0f) - 0x08)
5864 {
5865 if (i386_record_floats (gdbarch, &ir,
5866 I387_ST0_REGNUM (tdep) +
5867 ((ir.modrm & 0x0f) - 0x08)))
5868 return -1;
5869 }
5870 }
5871 break;
5872 case 0xdb:
5873 if (0xe3 == ir.modrm)
5874 {
5875 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5876 return -1;
5877 }
5878 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5879 {
5880 if (i386_record_floats (gdbarch, &ir,
5881 I387_ST0_REGNUM (tdep)))
5882 return -1;
5883 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5884 {
5885 if (i386_record_floats (gdbarch, &ir,
5886 I387_ST0_REGNUM (tdep) +
5887 (ir.modrm & 0x0f)))
5888 return -1;
5889 }
5890 else if ((ir.modrm & 0x0f) - 0x08)
5891 {
5892 if (i386_record_floats (gdbarch, &ir,
5893 I387_ST0_REGNUM (tdep) +
5894 ((ir.modrm & 0x0f) - 0x08)))
5895 return -1;
5896 }
5897 }
5898 break;
5899 case 0xdc:
5900 if ((0x0c == ir.modrm >> 4)
5901 || (0x0d == ir.modrm >> 4)
5902 || (0x0f == ir.modrm >> 4))
5903 {
5904 if ((ir.modrm & 0x0f) <= 7)
5905 {
5906 if (i386_record_floats (gdbarch, &ir,
5907 I387_ST0_REGNUM (tdep) +
5908 (ir.modrm & 0x0f)))
5909 return -1;
5910 }
5911 else
5912 {
5913 if (i386_record_floats (gdbarch, &ir,
5914 I387_ST0_REGNUM (tdep) +
5915 ((ir.modrm & 0x0f) - 0x08)))
5916 return -1;
5917 }
5918 }
5919 break;
5920 case 0xdd:
5921 if (0x0c == ir.modrm >> 4)
5922 {
5923 if (i386_record_floats (gdbarch, &ir,
5924 I387_FTAG_REGNUM (tdep)))
5925 return -1;
5926 }
5927 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5928 {
5929 if ((ir.modrm & 0x0f) <= 7)
5930 {
5931 if (i386_record_floats (gdbarch, &ir,
5932 I387_ST0_REGNUM (tdep) +
5933 (ir.modrm & 0x0f)))
5934 return -1;
5935 }
5936 else
5937 {
5938 if (i386_record_floats (gdbarch, &ir,
5939 I386_SAVE_FPU_REGS))
5940 return -1;
5941 }
5942 }
5943 break;
5944 case 0xde:
5945 if ((0x0c == ir.modrm >> 4)
5946 || (0x0e == ir.modrm >> 4)
5947 || (0x0f == ir.modrm >> 4)
5948 || (0xd9 == ir.modrm))
5949 {
5950 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5951 return -1;
5952 }
5953 break;
5954 case 0xdf:
5955 if (0xe0 == ir.modrm)
5956 {
25ea693b
MM
5957 if (record_full_arch_list_add_reg (ir.regcache,
5958 I386_EAX_REGNUM))
0289bdd7
MS
5959 return -1;
5960 }
5961 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5962 {
5963 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5964 return -1;
5965 }
5966 break;
5967 }
5968 }
7ad10968 5969 break;
7ad10968 5970 /* string ops */
a38bba38 5971 case 0xa4: /* movsS */
7ad10968 5972 case 0xa5:
a38bba38 5973 case 0xaa: /* stosS */
7ad10968 5974 case 0xab:
a38bba38 5975 case 0x6c: /* insS */
7ad10968 5976 case 0x6d:
cf648174 5977 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 5978 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
5979 &addr);
5980 if (addr)
cf648174 5981 {
77d7dc92
HZ
5982 ULONGEST es, ds;
5983
5984 if ((opcode & 1) == 0)
5985 ir.ot = OT_BYTE;
5986 else
5987 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
5988 regcache_raw_read_unsigned (ir.regcache,
5989 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 5990 &addr);
77d7dc92 5991
d7877f7e
HZ
5992 regcache_raw_read_unsigned (ir.regcache,
5993 ir.regmap[X86_RECORD_ES_REGNUM],
5994 &es);
5995 regcache_raw_read_unsigned (ir.regcache,
5996 ir.regmap[X86_RECORD_DS_REGNUM],
5997 &ds);
5998 if (ir.aflag && (es != ds))
77d7dc92
HZ
5999 {
6000 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6001 if (record_full_memory_query)
bb08c432
HZ
6002 {
6003 int q;
6004
6005 target_terminal_ours ();
6006 q = yquery (_("\
6007Process record ignores the memory change of instruction at address %s\n\
6008because it can't get the value of the segment register.\n\
6009Do you want to stop the program?"),
6010 paddress (gdbarch, ir.orig_addr));
6011 target_terminal_inferior ();
6012 if (q)
6013 return -1;
6014 }
df61f520
HZ
6015 }
6016 else
6017 {
25ea693b 6018 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6019 return -1;
77d7dc92
HZ
6020 }
6021
6022 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6024 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6025 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6026 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6028 }
cf648174 6029 break;
7ad10968 6030
a38bba38 6031 case 0xa6: /* cmpsS */
cf648174 6032 case 0xa7:
25ea693b
MM
6033 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6034 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6035 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6037 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6038 break;
6039
a38bba38 6040 case 0xac: /* lodsS */
7ad10968 6041 case 0xad:
25ea693b
MM
6042 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6043 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6044 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6045 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6046 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6047 break;
6048
a38bba38 6049 case 0xae: /* scasS */
7ad10968 6050 case 0xaf:
25ea693b 6051 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6052 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6053 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6054 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6055 break;
6056
a38bba38 6057 case 0x6e: /* outsS */
cf648174 6058 case 0x6f:
25ea693b 6059 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6060 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6061 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6062 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6063 break;
6064
a38bba38 6065 case 0xe4: /* port I/O */
7ad10968
HZ
6066 case 0xe5:
6067 case 0xec:
6068 case 0xed:
25ea693b
MM
6069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6070 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6071 break;
6072
6073 case 0xe6:
6074 case 0xe7:
6075 case 0xee:
6076 case 0xef:
6077 break;
6078
6079 /* control */
a38bba38
MS
6080 case 0xc2: /* ret im */
6081 case 0xc3: /* ret */
25ea693b
MM
6082 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6083 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6084 break;
6085
a38bba38
MS
6086 case 0xca: /* lret im */
6087 case 0xcb: /* lret */
6088 case 0xcf: /* iret */
25ea693b
MM
6089 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6090 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6091 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6092 break;
6093
a38bba38 6094 case 0xe8: /* call im */
cf648174
HZ
6095 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6096 ir.dflag = 2;
6097 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6098 return -1;
7ad10968
HZ
6099 break;
6100
a38bba38 6101 case 0x9a: /* lcall im */
cf648174
HZ
6102 if (ir.regmap[X86_RECORD_R8_REGNUM])
6103 {
6104 ir.addr -= 1;
6105 goto no_support;
6106 }
25ea693b 6107 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6108 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6109 return -1;
7ad10968
HZ
6110 break;
6111
a38bba38
MS
6112 case 0xe9: /* jmp im */
6113 case 0xea: /* ljmp im */
6114 case 0xeb: /* jmp Jb */
6115 case 0x70: /* jcc Jb */
7ad10968
HZ
6116 case 0x71:
6117 case 0x72:
6118 case 0x73:
6119 case 0x74:
6120 case 0x75:
6121 case 0x76:
6122 case 0x77:
6123 case 0x78:
6124 case 0x79:
6125 case 0x7a:
6126 case 0x7b:
6127 case 0x7c:
6128 case 0x7d:
6129 case 0x7e:
6130 case 0x7f:
a38bba38 6131 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6132 case 0x0f81:
6133 case 0x0f82:
6134 case 0x0f83:
6135 case 0x0f84:
6136 case 0x0f85:
6137 case 0x0f86:
6138 case 0x0f87:
6139 case 0x0f88:
6140 case 0x0f89:
6141 case 0x0f8a:
6142 case 0x0f8b:
6143 case 0x0f8c:
6144 case 0x0f8d:
6145 case 0x0f8e:
6146 case 0x0f8f:
6147 break;
6148
a38bba38 6149 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6150 case 0x0f91:
6151 case 0x0f92:
6152 case 0x0f93:
6153 case 0x0f94:
6154 case 0x0f95:
6155 case 0x0f96:
6156 case 0x0f97:
6157 case 0x0f98:
6158 case 0x0f99:
6159 case 0x0f9a:
6160 case 0x0f9b:
6161 case 0x0f9c:
6162 case 0x0f9d:
6163 case 0x0f9e:
6164 case 0x0f9f:
25ea693b 6165 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6166 ir.ot = OT_BYTE;
6167 if (i386_record_modrm (&ir))
6168 return -1;
6169 if (ir.mod == 3)
25ea693b
MM
6170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6171 : (ir.rm & 0x3));
7ad10968
HZ
6172 else
6173 {
6174 if (i386_record_lea_modrm (&ir))
6175 return -1;
6176 }
6177 break;
6178
a38bba38 6179 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6180 case 0x0f41:
6181 case 0x0f42:
6182 case 0x0f43:
6183 case 0x0f44:
6184 case 0x0f45:
6185 case 0x0f46:
6186 case 0x0f47:
6187 case 0x0f48:
6188 case 0x0f49:
6189 case 0x0f4a:
6190 case 0x0f4b:
6191 case 0x0f4c:
6192 case 0x0f4d:
6193 case 0x0f4e:
6194 case 0x0f4f:
6195 if (i386_record_modrm (&ir))
6196 return -1;
cf648174 6197 ir.reg |= rex_r;
7ad10968
HZ
6198 if (ir.dflag == OT_BYTE)
6199 ir.reg &= 0x3;
25ea693b 6200 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6201 break;
6202
6203 /* flags */
a38bba38 6204 case 0x9c: /* pushf */
25ea693b 6205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6206 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6207 ir.dflag = 2;
6208 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6209 return -1;
7ad10968
HZ
6210 break;
6211
a38bba38 6212 case 0x9d: /* popf */
25ea693b
MM
6213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6214 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6215 break;
6216
a38bba38 6217 case 0x9e: /* sahf */
cf648174
HZ
6218 if (ir.regmap[X86_RECORD_R8_REGNUM])
6219 {
6220 ir.addr -= 1;
6221 goto no_support;
6222 }
d3f323f3 6223 /* FALLTHROUGH */
a38bba38
MS
6224 case 0xf5: /* cmc */
6225 case 0xf8: /* clc */
6226 case 0xf9: /* stc */
6227 case 0xfc: /* cld */
6228 case 0xfd: /* std */
25ea693b 6229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6230 break;
6231
a38bba38 6232 case 0x9f: /* lahf */
cf648174
HZ
6233 if (ir.regmap[X86_RECORD_R8_REGNUM])
6234 {
6235 ir.addr -= 1;
6236 goto no_support;
6237 }
25ea693b
MM
6238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6240 break;
6241
6242 /* bit operations */
a38bba38 6243 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6244 ir.ot = ir.dflag + OT_WORD;
6245 if (i386_record_modrm (&ir))
6246 return -1;
6247 if (ir.reg < 4)
6248 {
cf648174 6249 ir.addr -= 2;
7ad10968
HZ
6250 opcode = opcode << 8 | ir.modrm;
6251 goto no_support;
6252 }
cf648174 6253 if (ir.reg != 4)
7ad10968 6254 {
cf648174 6255 if (ir.mod == 3)
25ea693b 6256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6257 else
6258 {
cf648174 6259 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6260 return -1;
6261 }
6262 }
25ea693b 6263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6264 break;
6265
a38bba38 6266 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6267 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6268 break;
6269
a38bba38
MS
6270 case 0x0fab: /* bts */
6271 case 0x0fb3: /* btr */
6272 case 0x0fbb: /* btc */
cf648174
HZ
6273 ir.ot = ir.dflag + OT_WORD;
6274 if (i386_record_modrm (&ir))
6275 return -1;
6276 if (ir.mod == 3)
25ea693b 6277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6278 else
6279 {
955db0c0
MS
6280 uint64_t addr64;
6281 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6282 return -1;
6283 regcache_raw_read_unsigned (ir.regcache,
6284 ir.regmap[ir.reg | rex_r],
648d0c8b 6285 &addr);
cf648174
HZ
6286 switch (ir.dflag)
6287 {
6288 case 0:
648d0c8b 6289 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6290 break;
6291 case 1:
648d0c8b 6292 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6293 break;
6294 case 2:
648d0c8b 6295 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6296 break;
6297 }
25ea693b 6298 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6299 return -1;
6300 if (i386_record_lea_modrm (&ir))
6301 return -1;
6302 }
25ea693b 6303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6304 break;
6305
a38bba38
MS
6306 case 0x0fbc: /* bsf */
6307 case 0x0fbd: /* bsr */
25ea693b
MM
6308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6310 break;
6311
6312 /* bcd */
a38bba38
MS
6313 case 0x27: /* daa */
6314 case 0x2f: /* das */
6315 case 0x37: /* aaa */
6316 case 0x3f: /* aas */
6317 case 0xd4: /* aam */
6318 case 0xd5: /* aad */
cf648174
HZ
6319 if (ir.regmap[X86_RECORD_R8_REGNUM])
6320 {
6321 ir.addr -= 1;
6322 goto no_support;
6323 }
25ea693b
MM
6324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6326 break;
6327
6328 /* misc */
a38bba38 6329 case 0x90: /* nop */
7ad10968
HZ
6330 if (prefixes & PREFIX_LOCK)
6331 {
6332 ir.addr -= 1;
6333 goto no_support;
6334 }
6335 break;
6336
a38bba38 6337 case 0x9b: /* fwait */
4ffa4fc7
PA
6338 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6339 return -1;
425b824a 6340 opcode = (uint32_t) opcode8;
0289bdd7
MS
6341 ir.addr++;
6342 goto reswitch;
7ad10968
HZ
6343 break;
6344
7ad10968 6345 /* XXX */
a38bba38 6346 case 0xcc: /* int3 */
a3c4230a 6347 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6348 "int3.\n"));
6349 ir.addr -= 1;
6350 goto no_support;
6351 break;
6352
7ad10968 6353 /* XXX */
a38bba38 6354 case 0xcd: /* int */
7ad10968
HZ
6355 {
6356 int ret;
425b824a 6357 uint8_t interrupt;
4ffa4fc7
PA
6358 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6359 return -1;
7ad10968 6360 ir.addr++;
425b824a 6361 if (interrupt != 0x80
a3c4230a 6362 || tdep->i386_intx80_record == NULL)
7ad10968 6363 {
a3c4230a 6364 printf_unfiltered (_("Process record does not support "
7ad10968 6365 "instruction int 0x%02x.\n"),
425b824a 6366 interrupt);
7ad10968
HZ
6367 ir.addr -= 2;
6368 goto no_support;
6369 }
a3c4230a 6370 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6371 if (ret)
6372 return ret;
6373 }
6374 break;
6375
7ad10968 6376 /* XXX */
a38bba38 6377 case 0xce: /* into */
a3c4230a 6378 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6379 "instruction into.\n"));
6380 ir.addr -= 1;
6381 goto no_support;
6382 break;
6383
a38bba38
MS
6384 case 0xfa: /* cli */
6385 case 0xfb: /* sti */
7ad10968
HZ
6386 break;
6387
a38bba38 6388 case 0x62: /* bound */
a3c4230a 6389 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6390 "instruction bound.\n"));
6391 ir.addr -= 1;
6392 goto no_support;
6393 break;
6394
a38bba38 6395 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6396 case 0x0fc9:
6397 case 0x0fca:
6398 case 0x0fcb:
6399 case 0x0fcc:
6400 case 0x0fcd:
6401 case 0x0fce:
6402 case 0x0fcf:
25ea693b 6403 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6404 break;
6405
a38bba38 6406 case 0xd6: /* salc */
cf648174
HZ
6407 if (ir.regmap[X86_RECORD_R8_REGNUM])
6408 {
6409 ir.addr -= 1;
6410 goto no_support;
6411 }
25ea693b
MM
6412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6414 break;
6415
a38bba38
MS
6416 case 0xe0: /* loopnz */
6417 case 0xe1: /* loopz */
6418 case 0xe2: /* loop */
6419 case 0xe3: /* jecxz */
25ea693b
MM
6420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6422 break;
6423
a38bba38 6424 case 0x0f30: /* wrmsr */
a3c4230a 6425 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6426 "instruction wrmsr.\n"));
6427 ir.addr -= 2;
6428 goto no_support;
6429 break;
6430
a38bba38 6431 case 0x0f32: /* rdmsr */
a3c4230a 6432 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6433 "instruction rdmsr.\n"));
6434 ir.addr -= 2;
6435 goto no_support;
6436 break;
6437
a38bba38 6438 case 0x0f31: /* rdtsc */
25ea693b
MM
6439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6441 break;
6442
a38bba38 6443 case 0x0f34: /* sysenter */
7ad10968
HZ
6444 {
6445 int ret;
cf648174
HZ
6446 if (ir.regmap[X86_RECORD_R8_REGNUM])
6447 {
6448 ir.addr -= 2;
6449 goto no_support;
6450 }
a3c4230a 6451 if (tdep->i386_sysenter_record == NULL)
7ad10968 6452 {
a3c4230a 6453 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6454 "instruction sysenter.\n"));
6455 ir.addr -= 2;
6456 goto no_support;
6457 }
a3c4230a 6458 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6459 if (ret)
6460 return ret;
6461 }
6462 break;
6463
a38bba38 6464 case 0x0f35: /* sysexit */
a3c4230a 6465 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6466 "instruction sysexit.\n"));
6467 ir.addr -= 2;
6468 goto no_support;
6469 break;
6470
a38bba38 6471 case 0x0f05: /* syscall */
cf648174
HZ
6472 {
6473 int ret;
a3c4230a 6474 if (tdep->i386_syscall_record == NULL)
cf648174 6475 {
a3c4230a 6476 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6477 "instruction syscall.\n"));
6478 ir.addr -= 2;
6479 goto no_support;
6480 }
a3c4230a 6481 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6482 if (ret)
6483 return ret;
6484 }
6485 break;
6486
a38bba38 6487 case 0x0f07: /* sysret */
a3c4230a 6488 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6489 "instruction sysret.\n"));
6490 ir.addr -= 2;
6491 goto no_support;
6492 break;
6493
a38bba38 6494 case 0x0fa2: /* cpuid */
25ea693b
MM
6495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6499 break;
6500
a38bba38 6501 case 0xf4: /* hlt */
a3c4230a 6502 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6503 "instruction hlt.\n"));
6504 ir.addr -= 1;
6505 goto no_support;
6506 break;
6507
6508 case 0x0f00:
6509 if (i386_record_modrm (&ir))
6510 return -1;
6511 switch (ir.reg)
6512 {
a38bba38
MS
6513 case 0: /* sldt */
6514 case 1: /* str */
7ad10968 6515 if (ir.mod == 3)
25ea693b 6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6517 else
6518 {
6519 ir.ot = OT_WORD;
6520 if (i386_record_lea_modrm (&ir))
6521 return -1;
6522 }
6523 break;
a38bba38
MS
6524 case 2: /* lldt */
6525 case 3: /* ltr */
7ad10968 6526 break;
a38bba38
MS
6527 case 4: /* verr */
6528 case 5: /* verw */
25ea693b 6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6530 break;
6531 default:
6532 ir.addr -= 3;
6533 opcode = opcode << 8 | ir.modrm;
6534 goto no_support;
6535 break;
6536 }
6537 break;
6538
6539 case 0x0f01:
6540 if (i386_record_modrm (&ir))
6541 return -1;
6542 switch (ir.reg)
6543 {
a38bba38 6544 case 0: /* sgdt */
7ad10968 6545 {
955db0c0 6546 uint64_t addr64;
7ad10968
HZ
6547
6548 if (ir.mod == 3)
6549 {
6550 ir.addr -= 3;
6551 opcode = opcode << 8 | ir.modrm;
6552 goto no_support;
6553 }
d7877f7e 6554 if (ir.override >= 0)
7ad10968 6555 {
25ea693b 6556 if (record_full_memory_query)
bb08c432
HZ
6557 {
6558 int q;
6559
6560 target_terminal_ours ();
6561 q = yquery (_("\
6562Process record ignores the memory change of instruction at address %s\n\
6563because it can't get the value of the segment register.\n\
6564Do you want to stop the program?"),
6565 paddress (gdbarch, ir.orig_addr));
6566 target_terminal_inferior ();
6567 if (q)
6568 return -1;
6569 }
7ad10968
HZ
6570 }
6571 else
6572 {
955db0c0 6573 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6574 return -1;
25ea693b 6575 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6576 return -1;
955db0c0 6577 addr64 += 2;
cf648174
HZ
6578 if (ir.regmap[X86_RECORD_R8_REGNUM])
6579 {
25ea693b 6580 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6581 return -1;
6582 }
6583 else
6584 {
25ea693b 6585 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6586 return -1;
6587 }
7ad10968
HZ
6588 }
6589 }
6590 break;
6591 case 1:
6592 if (ir.mod == 3)
6593 {
6594 switch (ir.rm)
6595 {
a38bba38 6596 case 0: /* monitor */
7ad10968 6597 break;
a38bba38 6598 case 1: /* mwait */
25ea693b 6599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6600 break;
6601 default:
6602 ir.addr -= 3;
6603 opcode = opcode << 8 | ir.modrm;
6604 goto no_support;
6605 break;
6606 }
6607 }
6608 else
6609 {
6610 /* sidt */
d7877f7e 6611 if (ir.override >= 0)
7ad10968 6612 {
25ea693b 6613 if (record_full_memory_query)
bb08c432
HZ
6614 {
6615 int q;
6616
6617 target_terminal_ours ();
6618 q = yquery (_("\
6619Process record ignores the memory change of instruction at address %s\n\
6620because it can't get the value of the segment register.\n\
6621Do you want to stop the program?"),
6622 paddress (gdbarch, ir.orig_addr));
6623 target_terminal_inferior ();
6624 if (q)
6625 return -1;
6626 }
7ad10968
HZ
6627 }
6628 else
6629 {
955db0c0 6630 uint64_t addr64;
7ad10968 6631
955db0c0 6632 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6633 return -1;
25ea693b 6634 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6635 return -1;
955db0c0 6636 addr64 += 2;
cf648174
HZ
6637 if (ir.regmap[X86_RECORD_R8_REGNUM])
6638 {
25ea693b 6639 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6640 return -1;
6641 }
6642 else
6643 {
25ea693b 6644 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6645 return -1;
6646 }
7ad10968
HZ
6647 }
6648 }
6649 break;
a38bba38 6650 case 2: /* lgdt */
3800e645
MS
6651 if (ir.mod == 3)
6652 {
6653 /* xgetbv */
6654 if (ir.rm == 0)
6655 {
25ea693b
MM
6656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
6658 break;
6659 }
6660 /* xsetbv */
6661 else if (ir.rm == 1)
6662 break;
6663 }
a38bba38 6664 case 3: /* lidt */
7ad10968
HZ
6665 if (ir.mod == 3)
6666 {
6667 ir.addr -= 3;
6668 opcode = opcode << 8 | ir.modrm;
6669 goto no_support;
6670 }
6671 break;
a38bba38 6672 case 4: /* smsw */
7ad10968
HZ
6673 if (ir.mod == 3)
6674 {
25ea693b 6675 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
6676 return -1;
6677 }
6678 else
6679 {
6680 ir.ot = OT_WORD;
6681 if (i386_record_lea_modrm (&ir))
6682 return -1;
6683 }
25ea693b 6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6685 break;
a38bba38 6686 case 6: /* lmsw */
25ea693b 6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 6688 break;
a38bba38 6689 case 7: /* invlpg */
cf648174
HZ
6690 if (ir.mod == 3)
6691 {
6692 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 6693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
6694 else
6695 {
6696 ir.addr -= 3;
6697 opcode = opcode << 8 | ir.modrm;
6698 goto no_support;
6699 }
6700 }
6701 else
25ea693b 6702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6703 break;
6704 default:
6705 ir.addr -= 3;
6706 opcode = opcode << 8 | ir.modrm;
6707 goto no_support;
7ad10968
HZ
6708 break;
6709 }
6710 break;
6711
a38bba38
MS
6712 case 0x0f08: /* invd */
6713 case 0x0f09: /* wbinvd */
7ad10968
HZ
6714 break;
6715
a38bba38 6716 case 0x63: /* arpl */
7ad10968
HZ
6717 if (i386_record_modrm (&ir))
6718 return -1;
cf648174
HZ
6719 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6720 {
25ea693b
MM
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6722 ? (ir.reg | rex_r) : ir.rm);
cf648174 6723 }
7ad10968 6724 else
cf648174
HZ
6725 {
6726 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6727 if (i386_record_lea_modrm (&ir))
6728 return -1;
6729 }
6730 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 6731 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6732 break;
6733
a38bba38
MS
6734 case 0x0f02: /* lar */
6735 case 0x0f03: /* lsl */
7ad10968
HZ
6736 if (i386_record_modrm (&ir))
6737 return -1;
25ea693b
MM
6738 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6740 break;
6741
6742 case 0x0f18:
cf648174
HZ
6743 if (i386_record_modrm (&ir))
6744 return -1;
6745 if (ir.mod == 3 && ir.reg == 3)
6746 {
6747 ir.addr -= 3;
6748 opcode = opcode << 8 | ir.modrm;
6749 goto no_support;
6750 }
7ad10968
HZ
6751 break;
6752
7ad10968
HZ
6753 case 0x0f19:
6754 case 0x0f1a:
6755 case 0x0f1b:
6756 case 0x0f1c:
6757 case 0x0f1d:
6758 case 0x0f1e:
6759 case 0x0f1f:
a38bba38 6760 /* nop (multi byte) */
7ad10968
HZ
6761 break;
6762
a38bba38
MS
6763 case 0x0f20: /* mov reg, crN */
6764 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
6765 if (i386_record_modrm (&ir))
6766 return -1;
6767 if ((ir.modrm & 0xc0) != 0xc0)
6768 {
cf648174 6769 ir.addr -= 3;
7ad10968
HZ
6770 opcode = opcode << 8 | ir.modrm;
6771 goto no_support;
6772 }
6773 switch (ir.reg)
6774 {
6775 case 0:
6776 case 2:
6777 case 3:
6778 case 4:
6779 case 8:
6780 if (opcode & 2)
25ea693b 6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6782 else
25ea693b 6783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6784 break;
6785 default:
cf648174 6786 ir.addr -= 3;
7ad10968
HZ
6787 opcode = opcode << 8 | ir.modrm;
6788 goto no_support;
6789 break;
6790 }
6791 break;
6792
a38bba38
MS
6793 case 0x0f21: /* mov reg, drN */
6794 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
6795 if (i386_record_modrm (&ir))
6796 return -1;
6797 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6798 || ir.reg == 5 || ir.reg >= 8)
6799 {
cf648174 6800 ir.addr -= 3;
7ad10968
HZ
6801 opcode = opcode << 8 | ir.modrm;
6802 goto no_support;
6803 }
6804 if (opcode & 2)
25ea693b 6805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6806 else
25ea693b 6807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6808 break;
6809
a38bba38 6810 case 0x0f06: /* clts */
25ea693b 6811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6812 break;
6813
a3c4230a
HZ
6814 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6815
6816 case 0x0f0d: /* 3DNow! prefetch */
6817 break;
6818
6819 case 0x0f0e: /* 3DNow! femms */
6820 case 0x0f77: /* emms */
6821 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6822 goto no_support;
25ea693b 6823 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
6824 break;
6825
6826 case 0x0f0f: /* 3DNow! data */
6827 if (i386_record_modrm (&ir))
6828 return -1;
4ffa4fc7
PA
6829 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6830 return -1;
a3c4230a
HZ
6831 ir.addr++;
6832 switch (opcode8)
6833 {
6834 case 0x0c: /* 3DNow! pi2fw */
6835 case 0x0d: /* 3DNow! pi2fd */
6836 case 0x1c: /* 3DNow! pf2iw */
6837 case 0x1d: /* 3DNow! pf2id */
6838 case 0x8a: /* 3DNow! pfnacc */
6839 case 0x8e: /* 3DNow! pfpnacc */
6840 case 0x90: /* 3DNow! pfcmpge */
6841 case 0x94: /* 3DNow! pfmin */
6842 case 0x96: /* 3DNow! pfrcp */
6843 case 0x97: /* 3DNow! pfrsqrt */
6844 case 0x9a: /* 3DNow! pfsub */
6845 case 0x9e: /* 3DNow! pfadd */
6846 case 0xa0: /* 3DNow! pfcmpgt */
6847 case 0xa4: /* 3DNow! pfmax */
6848 case 0xa6: /* 3DNow! pfrcpit1 */
6849 case 0xa7: /* 3DNow! pfrsqit1 */
6850 case 0xaa: /* 3DNow! pfsubr */
6851 case 0xae: /* 3DNow! pfacc */
6852 case 0xb0: /* 3DNow! pfcmpeq */
6853 case 0xb4: /* 3DNow! pfmul */
6854 case 0xb6: /* 3DNow! pfrcpit2 */
6855 case 0xb7: /* 3DNow! pmulhrw */
6856 case 0xbb: /* 3DNow! pswapd */
6857 case 0xbf: /* 3DNow! pavgusb */
6858 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6859 goto no_support_3dnow_data;
25ea693b 6860 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
6861 break;
6862
6863 default:
6864no_support_3dnow_data:
6865 opcode = (opcode << 8) | opcode8;
6866 goto no_support;
6867 break;
6868 }
6869 break;
6870
6871 case 0x0faa: /* rsm */
25ea693b
MM
6872 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6873 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6880 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
6881 break;
6882
6883 case 0x0fae:
6884 if (i386_record_modrm (&ir))
6885 return -1;
6886 switch(ir.reg)
6887 {
6888 case 0: /* fxsave */
6889 {
6890 uint64_t tmpu64;
6891
25ea693b 6892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
6893 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6894 return -1;
25ea693b 6895 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
6896 return -1;
6897 }
6898 break;
6899
6900 case 1: /* fxrstor */
6901 {
6902 int i;
6903
25ea693b 6904 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
6905
6906 for (i = I387_MM0_REGNUM (tdep);
6907 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 6908 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
6909
6910 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 6911 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 6912 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
6913
6914 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
6915 record_full_arch_list_add_reg (ir.regcache,
6916 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
6917
6918 for (i = I387_ST0_REGNUM (tdep);
6919 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 6920 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
6921
6922 for (i = I387_FCTRL_REGNUM (tdep);
6923 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 6924 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
6925 }
6926 break;
6927
6928 case 2: /* ldmxcsr */
6929 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6930 goto no_support;
25ea693b 6931 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
6932 break;
6933
6934 case 3: /* stmxcsr */
6935 ir.ot = OT_LONG;
6936 if (i386_record_lea_modrm (&ir))
6937 return -1;
6938 break;
6939
6940 case 5: /* lfence */
6941 case 6: /* mfence */
6942 case 7: /* sfence clflush */
6943 break;
6944
6945 default:
6946 opcode = (opcode << 8) | ir.modrm;
6947 goto no_support;
6948 break;
6949 }
6950 break;
6951
6952 case 0x0fc3: /* movnti */
6953 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6954 if (i386_record_modrm (&ir))
6955 return -1;
6956 if (ir.mod == 3)
6957 goto no_support;
6958 ir.reg |= rex_r;
6959 if (i386_record_lea_modrm (&ir))
6960 return -1;
6961 break;
6962
6963 /* Add prefix to opcode. */
6964 case 0x0f10:
6965 case 0x0f11:
6966 case 0x0f12:
6967 case 0x0f13:
6968 case 0x0f14:
6969 case 0x0f15:
6970 case 0x0f16:
6971 case 0x0f17:
6972 case 0x0f28:
6973 case 0x0f29:
6974 case 0x0f2a:
6975 case 0x0f2b:
6976 case 0x0f2c:
6977 case 0x0f2d:
6978 case 0x0f2e:
6979 case 0x0f2f:
6980 case 0x0f38:
6981 case 0x0f39:
6982 case 0x0f3a:
6983 case 0x0f50:
6984 case 0x0f51:
6985 case 0x0f52:
6986 case 0x0f53:
6987 case 0x0f54:
6988 case 0x0f55:
6989 case 0x0f56:
6990 case 0x0f57:
6991 case 0x0f58:
6992 case 0x0f59:
6993 case 0x0f5a:
6994 case 0x0f5b:
6995 case 0x0f5c:
6996 case 0x0f5d:
6997 case 0x0f5e:
6998 case 0x0f5f:
6999 case 0x0f60:
7000 case 0x0f61:
7001 case 0x0f62:
7002 case 0x0f63:
7003 case 0x0f64:
7004 case 0x0f65:
7005 case 0x0f66:
7006 case 0x0f67:
7007 case 0x0f68:
7008 case 0x0f69:
7009 case 0x0f6a:
7010 case 0x0f6b:
7011 case 0x0f6c:
7012 case 0x0f6d:
7013 case 0x0f6e:
7014 case 0x0f6f:
7015 case 0x0f70:
7016 case 0x0f71:
7017 case 0x0f72:
7018 case 0x0f73:
7019 case 0x0f74:
7020 case 0x0f75:
7021 case 0x0f76:
7022 case 0x0f7c:
7023 case 0x0f7d:
7024 case 0x0f7e:
7025 case 0x0f7f:
7026 case 0x0fb8:
7027 case 0x0fc2:
7028 case 0x0fc4:
7029 case 0x0fc5:
7030 case 0x0fc6:
7031 case 0x0fd0:
7032 case 0x0fd1:
7033 case 0x0fd2:
7034 case 0x0fd3:
7035 case 0x0fd4:
7036 case 0x0fd5:
7037 case 0x0fd6:
7038 case 0x0fd7:
7039 case 0x0fd8:
7040 case 0x0fd9:
7041 case 0x0fda:
7042 case 0x0fdb:
7043 case 0x0fdc:
7044 case 0x0fdd:
7045 case 0x0fde:
7046 case 0x0fdf:
7047 case 0x0fe0:
7048 case 0x0fe1:
7049 case 0x0fe2:
7050 case 0x0fe3:
7051 case 0x0fe4:
7052 case 0x0fe5:
7053 case 0x0fe6:
7054 case 0x0fe7:
7055 case 0x0fe8:
7056 case 0x0fe9:
7057 case 0x0fea:
7058 case 0x0feb:
7059 case 0x0fec:
7060 case 0x0fed:
7061 case 0x0fee:
7062 case 0x0fef:
7063 case 0x0ff0:
7064 case 0x0ff1:
7065 case 0x0ff2:
7066 case 0x0ff3:
7067 case 0x0ff4:
7068 case 0x0ff5:
7069 case 0x0ff6:
7070 case 0x0ff7:
7071 case 0x0ff8:
7072 case 0x0ff9:
7073 case 0x0ffa:
7074 case 0x0ffb:
7075 case 0x0ffc:
7076 case 0x0ffd:
7077 case 0x0ffe:
f9fda3f5
L
7078 /* Mask out PREFIX_ADDR. */
7079 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7080 {
7081 case PREFIX_REPNZ:
7082 opcode |= 0xf20000;
7083 break;
7084 case PREFIX_DATA:
7085 opcode |= 0x660000;
7086 break;
7087 case PREFIX_REPZ:
7088 opcode |= 0xf30000;
7089 break;
7090 }
7091reswitch_prefix_add:
7092 switch (opcode)
7093 {
7094 case 0x0f38:
7095 case 0x660f38:
7096 case 0xf20f38:
7097 case 0x0f3a:
7098 case 0x660f3a:
4ffa4fc7
PA
7099 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7100 return -1;
a3c4230a
HZ
7101 ir.addr++;
7102 opcode = (uint32_t) opcode8 | opcode << 8;
7103 goto reswitch_prefix_add;
7104 break;
7105
7106 case 0x0f10: /* movups */
7107 case 0x660f10: /* movupd */
7108 case 0xf30f10: /* movss */
7109 case 0xf20f10: /* movsd */
7110 case 0x0f12: /* movlps */
7111 case 0x660f12: /* movlpd */
7112 case 0xf30f12: /* movsldup */
7113 case 0xf20f12: /* movddup */
7114 case 0x0f14: /* unpcklps */
7115 case 0x660f14: /* unpcklpd */
7116 case 0x0f15: /* unpckhps */
7117 case 0x660f15: /* unpckhpd */
7118 case 0x0f16: /* movhps */
7119 case 0x660f16: /* movhpd */
7120 case 0xf30f16: /* movshdup */
7121 case 0x0f28: /* movaps */
7122 case 0x660f28: /* movapd */
7123 case 0x0f2a: /* cvtpi2ps */
7124 case 0x660f2a: /* cvtpi2pd */
7125 case 0xf30f2a: /* cvtsi2ss */
7126 case 0xf20f2a: /* cvtsi2sd */
7127 case 0x0f2c: /* cvttps2pi */
7128 case 0x660f2c: /* cvttpd2pi */
7129 case 0x0f2d: /* cvtps2pi */
7130 case 0x660f2d: /* cvtpd2pi */
7131 case 0x660f3800: /* pshufb */
7132 case 0x660f3801: /* phaddw */
7133 case 0x660f3802: /* phaddd */
7134 case 0x660f3803: /* phaddsw */
7135 case 0x660f3804: /* pmaddubsw */
7136 case 0x660f3805: /* phsubw */
7137 case 0x660f3806: /* phsubd */
4f7d61a8 7138 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7139 case 0x660f3808: /* psignb */
7140 case 0x660f3809: /* psignw */
7141 case 0x660f380a: /* psignd */
7142 case 0x660f380b: /* pmulhrsw */
7143 case 0x660f3810: /* pblendvb */
7144 case 0x660f3814: /* blendvps */
7145 case 0x660f3815: /* blendvpd */
7146 case 0x660f381c: /* pabsb */
7147 case 0x660f381d: /* pabsw */
7148 case 0x660f381e: /* pabsd */
7149 case 0x660f3820: /* pmovsxbw */
7150 case 0x660f3821: /* pmovsxbd */
7151 case 0x660f3822: /* pmovsxbq */
7152 case 0x660f3823: /* pmovsxwd */
7153 case 0x660f3824: /* pmovsxwq */
7154 case 0x660f3825: /* pmovsxdq */
7155 case 0x660f3828: /* pmuldq */
7156 case 0x660f3829: /* pcmpeqq */
7157 case 0x660f382a: /* movntdqa */
7158 case 0x660f3a08: /* roundps */
7159 case 0x660f3a09: /* roundpd */
7160 case 0x660f3a0a: /* roundss */
7161 case 0x660f3a0b: /* roundsd */
7162 case 0x660f3a0c: /* blendps */
7163 case 0x660f3a0d: /* blendpd */
7164 case 0x660f3a0e: /* pblendw */
7165 case 0x660f3a0f: /* palignr */
7166 case 0x660f3a20: /* pinsrb */
7167 case 0x660f3a21: /* insertps */
7168 case 0x660f3a22: /* pinsrd pinsrq */
7169 case 0x660f3a40: /* dpps */
7170 case 0x660f3a41: /* dppd */
7171 case 0x660f3a42: /* mpsadbw */
7172 case 0x660f3a60: /* pcmpestrm */
7173 case 0x660f3a61: /* pcmpestri */
7174 case 0x660f3a62: /* pcmpistrm */
7175 case 0x660f3a63: /* pcmpistri */
7176 case 0x0f51: /* sqrtps */
7177 case 0x660f51: /* sqrtpd */
7178 case 0xf20f51: /* sqrtsd */
7179 case 0xf30f51: /* sqrtss */
7180 case 0x0f52: /* rsqrtps */
7181 case 0xf30f52: /* rsqrtss */
7182 case 0x0f53: /* rcpps */
7183 case 0xf30f53: /* rcpss */
7184 case 0x0f54: /* andps */
7185 case 0x660f54: /* andpd */
7186 case 0x0f55: /* andnps */
7187 case 0x660f55: /* andnpd */
7188 case 0x0f56: /* orps */
7189 case 0x660f56: /* orpd */
7190 case 0x0f57: /* xorps */
7191 case 0x660f57: /* xorpd */
7192 case 0x0f58: /* addps */
7193 case 0x660f58: /* addpd */
7194 case 0xf20f58: /* addsd */
7195 case 0xf30f58: /* addss */
7196 case 0x0f59: /* mulps */
7197 case 0x660f59: /* mulpd */
7198 case 0xf20f59: /* mulsd */
7199 case 0xf30f59: /* mulss */
7200 case 0x0f5a: /* cvtps2pd */
7201 case 0x660f5a: /* cvtpd2ps */
7202 case 0xf20f5a: /* cvtsd2ss */
7203 case 0xf30f5a: /* cvtss2sd */
7204 case 0x0f5b: /* cvtdq2ps */
7205 case 0x660f5b: /* cvtps2dq */
7206 case 0xf30f5b: /* cvttps2dq */
7207 case 0x0f5c: /* subps */
7208 case 0x660f5c: /* subpd */
7209 case 0xf20f5c: /* subsd */
7210 case 0xf30f5c: /* subss */
7211 case 0x0f5d: /* minps */
7212 case 0x660f5d: /* minpd */
7213 case 0xf20f5d: /* minsd */
7214 case 0xf30f5d: /* minss */
7215 case 0x0f5e: /* divps */
7216 case 0x660f5e: /* divpd */
7217 case 0xf20f5e: /* divsd */
7218 case 0xf30f5e: /* divss */
7219 case 0x0f5f: /* maxps */
7220 case 0x660f5f: /* maxpd */
7221 case 0xf20f5f: /* maxsd */
7222 case 0xf30f5f: /* maxss */
7223 case 0x660f60: /* punpcklbw */
7224 case 0x660f61: /* punpcklwd */
7225 case 0x660f62: /* punpckldq */
7226 case 0x660f63: /* packsswb */
7227 case 0x660f64: /* pcmpgtb */
7228 case 0x660f65: /* pcmpgtw */
56d2815c 7229 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7230 case 0x660f67: /* packuswb */
7231 case 0x660f68: /* punpckhbw */
7232 case 0x660f69: /* punpckhwd */
7233 case 0x660f6a: /* punpckhdq */
7234 case 0x660f6b: /* packssdw */
7235 case 0x660f6c: /* punpcklqdq */
7236 case 0x660f6d: /* punpckhqdq */
7237 case 0x660f6e: /* movd */
7238 case 0x660f6f: /* movdqa */
7239 case 0xf30f6f: /* movdqu */
7240 case 0x660f70: /* pshufd */
7241 case 0xf20f70: /* pshuflw */
7242 case 0xf30f70: /* pshufhw */
7243 case 0x660f74: /* pcmpeqb */
7244 case 0x660f75: /* pcmpeqw */
56d2815c 7245 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7246 case 0x660f7c: /* haddpd */
7247 case 0xf20f7c: /* haddps */
7248 case 0x660f7d: /* hsubpd */
7249 case 0xf20f7d: /* hsubps */
7250 case 0xf30f7e: /* movq */
7251 case 0x0fc2: /* cmpps */
7252 case 0x660fc2: /* cmppd */
7253 case 0xf20fc2: /* cmpsd */
7254 case 0xf30fc2: /* cmpss */
7255 case 0x660fc4: /* pinsrw */
7256 case 0x0fc6: /* shufps */
7257 case 0x660fc6: /* shufpd */
7258 case 0x660fd0: /* addsubpd */
7259 case 0xf20fd0: /* addsubps */
7260 case 0x660fd1: /* psrlw */
7261 case 0x660fd2: /* psrld */
7262 case 0x660fd3: /* psrlq */
7263 case 0x660fd4: /* paddq */
7264 case 0x660fd5: /* pmullw */
7265 case 0xf30fd6: /* movq2dq */
7266 case 0x660fd8: /* psubusb */
7267 case 0x660fd9: /* psubusw */
7268 case 0x660fda: /* pminub */
7269 case 0x660fdb: /* pand */
7270 case 0x660fdc: /* paddusb */
7271 case 0x660fdd: /* paddusw */
7272 case 0x660fde: /* pmaxub */
7273 case 0x660fdf: /* pandn */
7274 case 0x660fe0: /* pavgb */
7275 case 0x660fe1: /* psraw */
7276 case 0x660fe2: /* psrad */
7277 case 0x660fe3: /* pavgw */
7278 case 0x660fe4: /* pmulhuw */
7279 case 0x660fe5: /* pmulhw */
7280 case 0x660fe6: /* cvttpd2dq */
7281 case 0xf20fe6: /* cvtpd2dq */
7282 case 0xf30fe6: /* cvtdq2pd */
7283 case 0x660fe8: /* psubsb */
7284 case 0x660fe9: /* psubsw */
7285 case 0x660fea: /* pminsw */
7286 case 0x660feb: /* por */
7287 case 0x660fec: /* paddsb */
7288 case 0x660fed: /* paddsw */
7289 case 0x660fee: /* pmaxsw */
7290 case 0x660fef: /* pxor */
4f7d61a8 7291 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7292 case 0x660ff1: /* psllw */
7293 case 0x660ff2: /* pslld */
7294 case 0x660ff3: /* psllq */
7295 case 0x660ff4: /* pmuludq */
7296 case 0x660ff5: /* pmaddwd */
7297 case 0x660ff6: /* psadbw */
7298 case 0x660ff8: /* psubb */
7299 case 0x660ff9: /* psubw */
56d2815c 7300 case 0x660ffa: /* psubd */
a3c4230a
HZ
7301 case 0x660ffb: /* psubq */
7302 case 0x660ffc: /* paddb */
7303 case 0x660ffd: /* paddw */
56d2815c 7304 case 0x660ffe: /* paddd */
a3c4230a
HZ
7305 if (i386_record_modrm (&ir))
7306 return -1;
7307 ir.reg |= rex_r;
c131fcee 7308 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7309 goto no_support;
25ea693b
MM
7310 record_full_arch_list_add_reg (ir.regcache,
7311 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7312 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7314 break;
7315
7316 case 0x0f11: /* movups */
7317 case 0x660f11: /* movupd */
7318 case 0xf30f11: /* movss */
7319 case 0xf20f11: /* movsd */
7320 case 0x0f13: /* movlps */
7321 case 0x660f13: /* movlpd */
7322 case 0x0f17: /* movhps */
7323 case 0x660f17: /* movhpd */
7324 case 0x0f29: /* movaps */
7325 case 0x660f29: /* movapd */
7326 case 0x660f3a14: /* pextrb */
7327 case 0x660f3a15: /* pextrw */
7328 case 0x660f3a16: /* pextrd pextrq */
7329 case 0x660f3a17: /* extractps */
7330 case 0x660f7f: /* movdqa */
7331 case 0xf30f7f: /* movdqu */
7332 if (i386_record_modrm (&ir))
7333 return -1;
7334 if (ir.mod == 3)
7335 {
7336 if (opcode == 0x0f13 || opcode == 0x660f13
7337 || opcode == 0x0f17 || opcode == 0x660f17)
7338 goto no_support;
7339 ir.rm |= ir.rex_b;
1777feb0
MS
7340 if (!i386_xmm_regnum_p (gdbarch,
7341 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7342 goto no_support;
25ea693b
MM
7343 record_full_arch_list_add_reg (ir.regcache,
7344 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7345 }
7346 else
7347 {
7348 switch (opcode)
7349 {
7350 case 0x660f3a14:
7351 ir.ot = OT_BYTE;
7352 break;
7353 case 0x660f3a15:
7354 ir.ot = OT_WORD;
7355 break;
7356 case 0x660f3a16:
7357 ir.ot = OT_LONG;
7358 break;
7359 case 0x660f3a17:
7360 ir.ot = OT_QUAD;
7361 break;
7362 default:
7363 ir.ot = OT_DQUAD;
7364 break;
7365 }
7366 if (i386_record_lea_modrm (&ir))
7367 return -1;
7368 }
7369 break;
7370
7371 case 0x0f2b: /* movntps */
7372 case 0x660f2b: /* movntpd */
7373 case 0x0fe7: /* movntq */
7374 case 0x660fe7: /* movntdq */
7375 if (ir.mod == 3)
7376 goto no_support;
7377 if (opcode == 0x0fe7)
7378 ir.ot = OT_QUAD;
7379 else
7380 ir.ot = OT_DQUAD;
7381 if (i386_record_lea_modrm (&ir))
7382 return -1;
7383 break;
7384
7385 case 0xf30f2c: /* cvttss2si */
7386 case 0xf20f2c: /* cvttsd2si */
7387 case 0xf30f2d: /* cvtss2si */
7388 case 0xf20f2d: /* cvtsd2si */
7389 case 0xf20f38f0: /* crc32 */
7390 case 0xf20f38f1: /* crc32 */
7391 case 0x0f50: /* movmskps */
7392 case 0x660f50: /* movmskpd */
7393 case 0x0fc5: /* pextrw */
7394 case 0x660fc5: /* pextrw */
7395 case 0x0fd7: /* pmovmskb */
7396 case 0x660fd7: /* pmovmskb */
25ea693b 7397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7398 break;
7399
7400 case 0x0f3800: /* pshufb */
7401 case 0x0f3801: /* phaddw */
7402 case 0x0f3802: /* phaddd */
7403 case 0x0f3803: /* phaddsw */
7404 case 0x0f3804: /* pmaddubsw */
7405 case 0x0f3805: /* phsubw */
7406 case 0x0f3806: /* phsubd */
4f7d61a8 7407 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7408 case 0x0f3808: /* psignb */
7409 case 0x0f3809: /* psignw */
7410 case 0x0f380a: /* psignd */
7411 case 0x0f380b: /* pmulhrsw */
7412 case 0x0f381c: /* pabsb */
7413 case 0x0f381d: /* pabsw */
7414 case 0x0f381e: /* pabsd */
7415 case 0x0f382b: /* packusdw */
7416 case 0x0f3830: /* pmovzxbw */
7417 case 0x0f3831: /* pmovzxbd */
7418 case 0x0f3832: /* pmovzxbq */
7419 case 0x0f3833: /* pmovzxwd */
7420 case 0x0f3834: /* pmovzxwq */
7421 case 0x0f3835: /* pmovzxdq */
7422 case 0x0f3837: /* pcmpgtq */
7423 case 0x0f3838: /* pminsb */
7424 case 0x0f3839: /* pminsd */
7425 case 0x0f383a: /* pminuw */
7426 case 0x0f383b: /* pminud */
7427 case 0x0f383c: /* pmaxsb */
7428 case 0x0f383d: /* pmaxsd */
7429 case 0x0f383e: /* pmaxuw */
7430 case 0x0f383f: /* pmaxud */
7431 case 0x0f3840: /* pmulld */
7432 case 0x0f3841: /* phminposuw */
7433 case 0x0f3a0f: /* palignr */
7434 case 0x0f60: /* punpcklbw */
7435 case 0x0f61: /* punpcklwd */
7436 case 0x0f62: /* punpckldq */
7437 case 0x0f63: /* packsswb */
7438 case 0x0f64: /* pcmpgtb */
7439 case 0x0f65: /* pcmpgtw */
56d2815c 7440 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7441 case 0x0f67: /* packuswb */
7442 case 0x0f68: /* punpckhbw */
7443 case 0x0f69: /* punpckhwd */
7444 case 0x0f6a: /* punpckhdq */
7445 case 0x0f6b: /* packssdw */
7446 case 0x0f6e: /* movd */
7447 case 0x0f6f: /* movq */
7448 case 0x0f70: /* pshufw */
7449 case 0x0f74: /* pcmpeqb */
7450 case 0x0f75: /* pcmpeqw */
56d2815c 7451 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7452 case 0x0fc4: /* pinsrw */
7453 case 0x0fd1: /* psrlw */
7454 case 0x0fd2: /* psrld */
7455 case 0x0fd3: /* psrlq */
7456 case 0x0fd4: /* paddq */
7457 case 0x0fd5: /* pmullw */
7458 case 0xf20fd6: /* movdq2q */
7459 case 0x0fd8: /* psubusb */
7460 case 0x0fd9: /* psubusw */
7461 case 0x0fda: /* pminub */
7462 case 0x0fdb: /* pand */
7463 case 0x0fdc: /* paddusb */
7464 case 0x0fdd: /* paddusw */
7465 case 0x0fde: /* pmaxub */
7466 case 0x0fdf: /* pandn */
7467 case 0x0fe0: /* pavgb */
7468 case 0x0fe1: /* psraw */
7469 case 0x0fe2: /* psrad */
7470 case 0x0fe3: /* pavgw */
7471 case 0x0fe4: /* pmulhuw */
7472 case 0x0fe5: /* pmulhw */
7473 case 0x0fe8: /* psubsb */
7474 case 0x0fe9: /* psubsw */
7475 case 0x0fea: /* pminsw */
7476 case 0x0feb: /* por */
7477 case 0x0fec: /* paddsb */
7478 case 0x0fed: /* paddsw */
7479 case 0x0fee: /* pmaxsw */
7480 case 0x0fef: /* pxor */
7481 case 0x0ff1: /* psllw */
7482 case 0x0ff2: /* pslld */
7483 case 0x0ff3: /* psllq */
7484 case 0x0ff4: /* pmuludq */
7485 case 0x0ff5: /* pmaddwd */
7486 case 0x0ff6: /* psadbw */
7487 case 0x0ff8: /* psubb */
7488 case 0x0ff9: /* psubw */
56d2815c 7489 case 0x0ffa: /* psubd */
a3c4230a
HZ
7490 case 0x0ffb: /* psubq */
7491 case 0x0ffc: /* paddb */
7492 case 0x0ffd: /* paddw */
56d2815c 7493 case 0x0ffe: /* paddd */
a3c4230a
HZ
7494 if (i386_record_modrm (&ir))
7495 return -1;
7496 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7497 goto no_support;
25ea693b
MM
7498 record_full_arch_list_add_reg (ir.regcache,
7499 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7500 break;
7501
7502 case 0x0f71: /* psllw */
7503 case 0x0f72: /* pslld */
7504 case 0x0f73: /* psllq */
7505 if (i386_record_modrm (&ir))
7506 return -1;
7507 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7508 goto no_support;
25ea693b
MM
7509 record_full_arch_list_add_reg (ir.regcache,
7510 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7511 break;
7512
7513 case 0x660f71: /* psllw */
7514 case 0x660f72: /* pslld */
7515 case 0x660f73: /* psllq */
7516 if (i386_record_modrm (&ir))
7517 return -1;
7518 ir.rm |= ir.rex_b;
c131fcee 7519 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7520 goto no_support;
25ea693b
MM
7521 record_full_arch_list_add_reg (ir.regcache,
7522 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7523 break;
7524
7525 case 0x0f7e: /* movd */
7526 case 0x660f7e: /* movd */
7527 if (i386_record_modrm (&ir))
7528 return -1;
7529 if (ir.mod == 3)
25ea693b 7530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
7531 else
7532 {
7533 if (ir.dflag == 2)
7534 ir.ot = OT_QUAD;
7535 else
7536 ir.ot = OT_LONG;
7537 if (i386_record_lea_modrm (&ir))
7538 return -1;
7539 }
7540 break;
7541
7542 case 0x0f7f: /* movq */
7543 if (i386_record_modrm (&ir))
7544 return -1;
7545 if (ir.mod == 3)
7546 {
7547 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7548 goto no_support;
25ea693b
MM
7549 record_full_arch_list_add_reg (ir.regcache,
7550 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7551 }
7552 else
7553 {
7554 ir.ot = OT_QUAD;
7555 if (i386_record_lea_modrm (&ir))
7556 return -1;
7557 }
7558 break;
7559
7560 case 0xf30fb8: /* popcnt */
7561 if (i386_record_modrm (&ir))
7562 return -1;
25ea693b
MM
7563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7565 break;
7566
7567 case 0x660fd6: /* movq */
7568 if (i386_record_modrm (&ir))
7569 return -1;
7570 if (ir.mod == 3)
7571 {
7572 ir.rm |= ir.rex_b;
1777feb0
MS
7573 if (!i386_xmm_regnum_p (gdbarch,
7574 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7575 goto no_support;
25ea693b
MM
7576 record_full_arch_list_add_reg (ir.regcache,
7577 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7578 }
7579 else
7580 {
7581 ir.ot = OT_QUAD;
7582 if (i386_record_lea_modrm (&ir))
7583 return -1;
7584 }
7585 break;
7586
7587 case 0x660f3817: /* ptest */
7588 case 0x0f2e: /* ucomiss */
7589 case 0x660f2e: /* ucomisd */
7590 case 0x0f2f: /* comiss */
7591 case 0x660f2f: /* comisd */
25ea693b 7592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7593 break;
7594
7595 case 0x0ff7: /* maskmovq */
7596 regcache_raw_read_unsigned (ir.regcache,
7597 ir.regmap[X86_RECORD_REDI_REGNUM],
7598 &addr);
25ea693b 7599 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
7600 return -1;
7601 break;
7602
7603 case 0x660ff7: /* maskmovdqu */
7604 regcache_raw_read_unsigned (ir.regcache,
7605 ir.regmap[X86_RECORD_REDI_REGNUM],
7606 &addr);
25ea693b 7607 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
7608 return -1;
7609 break;
7610
7611 default:
7612 goto no_support;
7613 break;
7614 }
7615 break;
7ad10968
HZ
7616
7617 default:
7ad10968
HZ
7618 goto no_support;
7619 break;
7620 }
7621
cf648174 7622 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
7623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7624 if (record_full_arch_list_add_end ())
7ad10968
HZ
7625 return -1;
7626
7627 return 0;
7628
01fe1b41 7629 no_support:
a3c4230a
HZ
7630 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7631 "at address %s.\n"),
7632 (unsigned int) (opcode),
7633 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
7634 return -1;
7635}
7636
cf648174
HZ
7637static const int i386_record_regmap[] =
7638{
7639 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7640 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7641 0, 0, 0, 0, 0, 0, 0, 0,
7642 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7643 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7644};
7645
7a697b8d 7646/* Check that the given address appears suitable for a fast
405f8e94 7647 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
7648 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7649 jump and not have to worry about program jumps to an address in the
405f8e94
SS
7650 middle of the tracepoint jump. On x86, it may be possible to use
7651 4-byte jumps with a 2-byte offset to a trampoline located in the
7652 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
7653 of instruction to replace, and 0 if not, plus an explanatory
7654 string. */
7655
7656static int
7657i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7658 CORE_ADDR addr, int *isize, char **msg)
7659{
7660 int len, jumplen;
7661 static struct ui_file *gdb_null = NULL;
7662
405f8e94
SS
7663 /* Ask the target for the minimum instruction length supported. */
7664 jumplen = target_get_min_fast_tracepoint_insn_len ();
7665
7666 if (jumplen < 0)
7667 {
7668 /* If the target does not support the get_min_fast_tracepoint_insn_len
7669 operation, assume that fast tracepoints will always be implemented
7670 using 4-byte relative jumps on both x86 and x86-64. */
7671 jumplen = 5;
7672 }
7673 else if (jumplen == 0)
7674 {
7675 /* If the target does support get_min_fast_tracepoint_insn_len but
7676 returns zero, then the IPA has not loaded yet. In this case,
7677 we optimistically assume that truncated 2-byte relative jumps
7678 will be available on x86, and compensate later if this assumption
7679 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7680 jumps will always be used. */
7681 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7682 }
7a697b8d
SS
7683
7684 /* Dummy file descriptor for the disassembler. */
7685 if (!gdb_null)
7686 gdb_null = ui_file_new ();
7687
7688 /* Check for fit. */
7689 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
7690 if (isize)
7691 *isize = len;
7692
7a697b8d
SS
7693 if (len < jumplen)
7694 {
7695 /* Return a bit of target-specific detail to add to the caller's
7696 generic failure message. */
7697 if (msg)
1777feb0
MS
7698 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7699 "need at least %d bytes for the jump"),
7a697b8d
SS
7700 len, jumplen);
7701 return 0;
7702 }
405f8e94
SS
7703 else
7704 {
7705 if (msg)
7706 *msg = NULL;
7707 return 1;
7708 }
7a697b8d
SS
7709}
7710
90884b2b
L
7711static int
7712i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7713 struct tdesc_arch_data *tdesc_data)
7714{
7715 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 7716 const struct tdesc_feature *feature_core;
1dbcd68c 7717 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx;
90884b2b
L
7718 int i, num_regs, valid_p;
7719
7720 if (! tdesc_has_registers (tdesc))
7721 return 0;
7722
7723 /* Get core registers. */
7724 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
7725 if (feature_core == NULL)
7726 return 0;
90884b2b
L
7727
7728 /* Get SSE registers. */
c131fcee 7729 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 7730
c131fcee
L
7731 /* Try AVX registers. */
7732 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7733
1dbcd68c
WT
7734 /* Try MPX registers. */
7735 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
7736
90884b2b
L
7737 valid_p = 1;
7738
c131fcee
L
7739 /* The XCR0 bits. */
7740 if (feature_avx)
7741 {
3a13a53b
L
7742 /* AVX register description requires SSE register description. */
7743 if (!feature_sse)
7744 return 0;
7745
c131fcee
L
7746 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7747
7748 /* It may have been set by OSABI initialization function. */
7749 if (tdep->num_ymm_regs == 0)
7750 {
7751 tdep->ymmh_register_names = i386_ymmh_names;
7752 tdep->num_ymm_regs = 8;
7753 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7754 }
7755
7756 for (i = 0; i < tdep->num_ymm_regs; i++)
7757 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7758 tdep->ymm0h_regnum + i,
7759 tdep->ymmh_register_names[i]);
7760 }
3a13a53b 7761 else if (feature_sse)
c131fcee 7762 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
7763 else
7764 {
7765 tdep->xcr0 = I386_XSTATE_X87_MASK;
7766 tdep->num_xmm_regs = 0;
7767 }
c131fcee 7768
90884b2b
L
7769 num_regs = tdep->num_core_regs;
7770 for (i = 0; i < num_regs; i++)
7771 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7772 tdep->register_names[i]);
7773
3a13a53b
L
7774 if (feature_sse)
7775 {
7776 /* Need to include %mxcsr, so add one. */
7777 num_regs += tdep->num_xmm_regs + 1;
7778 for (; i < num_regs; i++)
7779 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7780 tdep->register_names[i]);
7781 }
90884b2b 7782
1dbcd68c
WT
7783 if (feature_mpx)
7784 {
7785 tdep->xcr0 = I386_XSTATE_MPX_MASK;
7786
7787 if (tdep->bnd0r_regnum < 0)
7788 {
7789 tdep->mpx_register_names = i386_mpx_names;
7790 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
7791 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
7792 }
7793
7794 for (i = 0; i < I387_NUM_MPX_REGS; i++)
7795 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
7796 I387_BND0R_REGNUM (tdep) + i,
7797 tdep->mpx_register_names[i]);
7798 }
7799
90884b2b
L
7800 return valid_p;
7801}
7802
7ad10968
HZ
7803\f
7804static struct gdbarch *
7805i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7806{
7807 struct gdbarch_tdep *tdep;
7808 struct gdbarch *gdbarch;
90884b2b
L
7809 struct tdesc_arch_data *tdesc_data;
7810 const struct target_desc *tdesc;
1ba53b71 7811 int mm0_regnum;
c131fcee 7812 int ymm0_regnum;
1dbcd68c
WT
7813 int bnd0_regnum;
7814 int num_bnd_cooked;
7ad10968
HZ
7815
7816 /* If there is already a candidate, use it. */
7817 arches = gdbarch_list_lookup_by_info (arches, &info);
7818 if (arches != NULL)
7819 return arches->gdbarch;
7820
7821 /* Allocate space for the new architecture. */
7822 tdep = XCALLOC (1, struct gdbarch_tdep);
7823 gdbarch = gdbarch_alloc (&info, tdep);
7824
7825 /* General-purpose registers. */
7826 tdep->gregset = NULL;
7827 tdep->gregset_reg_offset = NULL;
7828 tdep->gregset_num_regs = I386_NUM_GREGS;
7829 tdep->sizeof_gregset = 0;
7830
7831 /* Floating-point registers. */
7832 tdep->fpregset = NULL;
7833 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7834
c131fcee
L
7835 tdep->xstateregset = NULL;
7836
7ad10968
HZ
7837 /* The default settings include the FPU registers, the MMX registers
7838 and the SSE registers. This can be overridden for a specific ABI
7839 by adjusting the members `st0_regnum', `mm0_regnum' and
7840 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 7841 will show up in the output of "info all-registers". */
7ad10968
HZ
7842
7843 tdep->st0_regnum = I386_ST0_REGNUM;
7844
7ad10968
HZ
7845 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7846 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7847
7848 tdep->jb_pc_offset = -1;
7849 tdep->struct_return = pcc_struct_return;
7850 tdep->sigtramp_start = 0;
7851 tdep->sigtramp_end = 0;
7852 tdep->sigtramp_p = i386_sigtramp_p;
7853 tdep->sigcontext_addr = NULL;
7854 tdep->sc_reg_offset = NULL;
7855 tdep->sc_pc_offset = -1;
7856 tdep->sc_sp_offset = -1;
7857
c131fcee
L
7858 tdep->xsave_xcr0_offset = -1;
7859
cf648174
HZ
7860 tdep->record_regmap = i386_record_regmap;
7861
205c306f
DM
7862 set_gdbarch_long_long_align_bit (gdbarch, 32);
7863
7ad10968
HZ
7864 /* The format used for `long double' on almost all i386 targets is
7865 the i387 extended floating-point format. In fact, of all targets
7866 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7867 on having a `long double' that's not `long' at all. */
7868 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7869
7870 /* Although the i387 extended floating-point has only 80 significant
7871 bits, a `long double' actually takes up 96, probably to enforce
7872 alignment. */
7873 set_gdbarch_long_double_bit (gdbarch, 96);
7874
7ad10968
HZ
7875 /* Register numbers of various important registers. */
7876 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7877 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7878 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7879 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7880
7881 /* NOTE: kettenis/20040418: GCC does have two possible register
7882 numbering schemes on the i386: dbx and SVR4. These schemes
7883 differ in how they number %ebp, %esp, %eflags, and the
7884 floating-point registers, and are implemented by the arrays
7885 dbx_register_map[] and svr4_dbx_register_map in
7886 gcc/config/i386.c. GCC also defines a third numbering scheme in
7887 gcc/config/i386.c, which it designates as the "default" register
7888 map used in 64bit mode. This last register numbering scheme is
7889 implemented in dbx64_register_map, and is used for AMD64; see
7890 amd64-tdep.c.
7891
7892 Currently, each GCC i386 target always uses the same register
7893 numbering scheme across all its supported debugging formats
7894 i.e. SDB (COFF), stabs and DWARF 2. This is because
7895 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7896 DBX_REGISTER_NUMBER macro which is defined by each target's
7897 respective config header in a manner independent of the requested
7898 output debugging format.
7899
7900 This does not match the arrangement below, which presumes that
7901 the SDB and stabs numbering schemes differ from the DWARF and
7902 DWARF 2 ones. The reason for this arrangement is that it is
7903 likely to get the numbering scheme for the target's
7904 default/native debug format right. For targets where GCC is the
7905 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7906 targets where the native toolchain uses a different numbering
7907 scheme for a particular debug format (stabs-in-ELF on Solaris)
7908 the defaults below will have to be overridden, like
7909 i386_elf_init_abi() does. */
7910
7911 /* Use the dbx register numbering scheme for stabs and COFF. */
7912 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7913 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7914
7915 /* Use the SVR4 register numbering scheme for DWARF 2. */
7916 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7917
7918 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7919 be in use on any of the supported i386 targets. */
7920
7921 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7922
7923 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7924
7925 /* Call dummy code. */
a9b8d892
JK
7926 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7927 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 7928 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 7929 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
7930
7931 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7932 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7933 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7934
7935 set_gdbarch_return_value (gdbarch, i386_return_value);
7936
7937 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7938
7939 /* Stack grows downward. */
7940 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7941
7942 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7943 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7944 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7945
7946 set_gdbarch_frame_args_skip (gdbarch, 8);
7947
7ad10968
HZ
7948 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7949
7950 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7951
7952 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7953
7954 /* Add the i386 register groups. */
7955 i386_add_reggroups (gdbarch);
90884b2b 7956 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 7957
143985b7
AF
7958 /* Helper for function argument information. */
7959 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7960
06da04c6 7961 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
7962 appended to the list first, so that it supercedes the DWARF
7963 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
7964 currently fails). */
7965 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7966
7967 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 7968 to the list before the prologue-based unwinders, so that DWARF
06da04c6 7969 CFI info will be used if it is available. */
10458914 7970 dwarf2_append_unwinders (gdbarch);
6405b0a6 7971
acd5c798 7972 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 7973
1ba53b71 7974 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
7975 set_gdbarch_pseudo_register_read_value (gdbarch,
7976 i386_pseudo_register_read_value);
90884b2b
L
7977 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7978
7979 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7980 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7981
c131fcee
L
7982 /* Override the normal target description method to make the AVX
7983 upper halves anonymous. */
7984 set_gdbarch_register_name (gdbarch, i386_register_name);
7985
7986 /* Even though the default ABI only includes general-purpose registers,
7987 floating-point registers and the SSE registers, we have to leave a
1dbcd68c
WT
7988 gap for the upper AVX registers and the MPX registers. */
7989 set_gdbarch_num_regs (gdbarch, I386_MPX_NUM_REGS);
90884b2b
L
7990
7991 /* Get the x86 target description from INFO. */
7992 tdesc = info.target_desc;
7993 if (! tdesc_has_registers (tdesc))
7994 tdesc = tdesc_i386;
7995 tdep->tdesc = tdesc;
7996
7997 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7998 tdep->register_names = i386_register_names;
7999
c131fcee
L
8000 /* No upper YMM registers. */
8001 tdep->ymmh_register_names = NULL;
8002 tdep->ymm0h_regnum = -1;
8003
1ba53b71
L
8004 tdep->num_byte_regs = 8;
8005 tdep->num_word_regs = 8;
8006 tdep->num_dword_regs = 0;
8007 tdep->num_mmx_regs = 8;
c131fcee 8008 tdep->num_ymm_regs = 0;
1ba53b71 8009
1dbcd68c
WT
8010 /* No MPX registers. */
8011 tdep->bnd0r_regnum = -1;
8012 tdep->bndcfgu_regnum = -1;
8013
90884b2b
L
8014 tdesc_data = tdesc_data_alloc ();
8015
dde08ee1
PA
8016 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8017
6710bf39
SS
8018 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8019
3ce1502b 8020 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 8021 info.tdep_info = (void *) tdesc_data;
4be87837 8022 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8023
c131fcee
L
8024 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8025 {
8026 tdesc_data_cleanup (tdesc_data);
8027 xfree (tdep);
8028 gdbarch_free (gdbarch);
8029 return NULL;
8030 }
8031
1dbcd68c
WT
8032 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8033
1ba53b71
L
8034 /* Wire in pseudo registers. Number of pseudo registers may be
8035 changed. */
8036 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8037 + tdep->num_word_regs
8038 + tdep->num_dword_regs
c131fcee 8039 + tdep->num_mmx_regs
1dbcd68c
WT
8040 + tdep->num_ymm_regs
8041 + num_bnd_cooked));
1ba53b71 8042
90884b2b
L
8043 /* Target description may be changed. */
8044 tdesc = tdep->tdesc;
8045
90884b2b
L
8046 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8047
8048 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8049 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8050
1ba53b71
L
8051 /* Make %al the first pseudo-register. */
8052 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8053 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8054
c131fcee 8055 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8056 if (tdep->num_dword_regs)
8057 {
1c6272a6 8058 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8059 tdep->eax_regnum = ymm0_regnum;
8060 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8061 }
8062 else
8063 tdep->eax_regnum = -1;
8064
c131fcee
L
8065 mm0_regnum = ymm0_regnum;
8066 if (tdep->num_ymm_regs)
8067 {
1c6272a6 8068 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8069 tdep->ymm0_regnum = ymm0_regnum;
8070 mm0_regnum += tdep->num_ymm_regs;
8071 }
8072 else
8073 tdep->ymm0_regnum = -1;
8074
1dbcd68c 8075 bnd0_regnum = mm0_regnum;
1ba53b71
L
8076 if (tdep->num_mmx_regs != 0)
8077 {
1c6272a6 8078 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8079 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8080 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8081 }
8082 else
8083 tdep->mm0_regnum = -1;
8084
1dbcd68c
WT
8085 if (tdep->bnd0r_regnum > 0)
8086 tdep->bnd0_regnum = bnd0_regnum;
8087 else
8088 tdep-> bnd0_regnum = -1;
8089
06da04c6 8090 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8091 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8092 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8093 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8094
8446b36a
MK
8095 /* If we have a register mapping, enable the generic core file
8096 support, unless it has already been enabled. */
8097 if (tdep->gregset_reg_offset
8098 && !gdbarch_regset_from_core_section_p (gdbarch))
8099 set_gdbarch_regset_from_core_section (gdbarch,
8100 i386_regset_from_core_section);
8101
514f746b
AR
8102 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8103 i386_skip_permanent_breakpoint);
8104
7a697b8d
SS
8105 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8106 i386_fast_tracepoint_valid_at);
8107
a62cc96e
AC
8108 return gdbarch;
8109}
8110
8201327c
MK
8111static enum gdb_osabi
8112i386_coff_osabi_sniffer (bfd *abfd)
8113{
762c5349
MK
8114 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8115 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
8116 return GDB_OSABI_GO32;
8117
8118 return GDB_OSABI_UNKNOWN;
8119}
8201327c
MK
8120\f
8121
28e9e0f0
MK
8122/* Provide a prototype to silence -Wmissing-prototypes. */
8123void _initialize_i386_tdep (void);
8124
c906108c 8125void
fba45db2 8126_initialize_i386_tdep (void)
c906108c 8127{
a62cc96e
AC
8128 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8129
fc338970 8130 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
8131 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8132 &disassembly_flavor, _("\
8133Set the disassembly flavor."), _("\
8134Show the disassembly flavor."), _("\
8135The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8136 NULL,
8137 NULL, /* FIXME: i18n: */
8138 &setlist, &showlist);
8201327c
MK
8139
8140 /* Add the variable that controls the convention for returning
8141 structs. */
7ab04401
AC
8142 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8143 &struct_convention, _("\
8144Set the convention for returning small structs."), _("\
8145Show the convention for returning small structs."), _("\
8146Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8147is \"default\"."),
8148 NULL,
8149 NULL, /* FIXME: i18n: */
8150 &setlist, &showlist);
8201327c
MK
8151
8152 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8153 i386_coff_osabi_sniffer);
8201327c 8154
05816f70 8155 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 8156 i386_svr4_init_abi);
05816f70 8157 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 8158 i386_go32_init_abi);
38c968cf 8159
209bd28e 8160 /* Initialize the i386-specific register groups. */
38c968cf 8161 i386_init_reggroups ();
90884b2b
L
8162
8163 /* Initialize the standard target descriptions. */
8164 initialize_tdesc_i386 ();
3a13a53b 8165 initialize_tdesc_i386_mmx ();
c131fcee 8166 initialize_tdesc_i386_avx ();
1dbcd68c 8167 initialize_tdesc_i386_mpx ();
c8d5aac9
L
8168
8169 /* Tell remote stub that we support XML target description. */
8170 register_remote_support_xml ("i386");
c906108c 8171}