]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: fix: correct checking newly missing disks
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107};
108
109/* RAID map configuration infos. */
110struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116#define IMSM_T_STATE_NORMAL 0
117#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
118#define IMSM_T_STATE_DEGRADED 2
119#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
120 __u8 raid_level;
121#define IMSM_T_RAID0 0
122#define IMSM_T_RAID1 1
123#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 127 __u8 ddf;
cdddbdbc 128 __u32 filler[7]; /* expansion area */
7eef0453 129#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
131 * top byte contains some flags
132 */
cdddbdbc
DW
133} __attribute__ ((packed));
134
135struct imsm_vol {
f8f603f1 136 __u32 curr_migr_unit;
fe7ed8cb 137 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 138 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
139#define MIGR_INIT 0
140#define MIGR_REBUILD 1
141#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142#define MIGR_GEN_MIGR 3
143#define MIGR_STATE_CHANGE 4
1484e727 144#define MIGR_REPAIR 5
cdddbdbc
DW
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
fe7ed8cb
DW
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
cdddbdbc
DW
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153} __attribute__ ((packed));
154
155struct imsm_dev {
fe7ed8cb 156 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
157 __u32 size_low;
158 __u32 size_high;
fe7ed8cb
DW
159#define DEV_BOOTABLE __cpu_to_le32(0x01)
160#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161#define DEV_READ_COALESCING __cpu_to_le32(0x04)
162#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184} __attribute__ ((packed));
185
186struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202#define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
604b746f 206 /* here comes BBM logs */
cdddbdbc
DW
207} __attribute__ ((packed));
208
604b746f
JD
209#define BBM_LOG_MAX_ENTRIES 254
210
211struct bbm_log_entry {
212 __u64 defective_block_start;
213#define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217} __attribute__ ((__packed__));
218
219struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226} __attribute__ ((__packed__));
227
228
cdddbdbc
DW
229#ifndef MDASSEMBLE
230static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231#endif
232
8e59f3d8
AK
233#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266} __attribute__ ((__packed__));
267
1484e727
DW
268static __u8 migr_type(struct imsm_dev *dev)
269{
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275}
276
277static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278{
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289}
290
87eb16df 291static unsigned int sector_count(__u32 bytes)
cdddbdbc 292{
87eb16df
DW
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294}
cdddbdbc 295
87eb16df
DW
296static unsigned int mpb_sectors(struct imsm_super *mpb)
297{
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
299}
300
ba2de7ba
DW
301struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
f21e18ca 304 unsigned index;
ba2de7ba
DW
305};
306
88654014
LM
307struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312};
313
1a64be56
LM
314enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317};
cdddbdbc
DW
318/* internal representation of IMSM metadata */
319struct intel_super {
320 union {
949c47a0
DW
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 323 };
8e59f3d8
AK
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
949c47a0 328 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
c2c087e6 331 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 332 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 333 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 334 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 335 struct intel_dev *devlist;
cdddbdbc
DW
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
b9f594fe 342 struct imsm_disk disk;
cdddbdbc 343 int fd;
0dcecb2e
DW
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
efb30e7f 346 int raiddisk; /* slot to fill in autolayout */
1a64be56 347 enum action action;
ca0748fa 348 } *disks, *current_disk;
1a64be56
LM
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
47ee5a45 351 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 352 struct bbm_log *bbm_log;
88654014 353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 354 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356};
357
358struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
cdddbdbc
DW
363};
364
c2c087e6
DW
365struct extent {
366 unsigned long long start, size;
367};
368
694575e7
KW
369/* definitions of reshape process types */
370enum imsm_reshape_type {
371 CH_TAKEOVER,
b5347799 372 CH_MIGRATION,
694575e7
KW
373};
374
88758e9d
DW
375/* definition of messages passed to imsm_process_update */
376enum imsm_update_type {
377 update_activate_spare,
8273f55e 378 update_create_array,
33414a01 379 update_kill_array,
aa534678 380 update_rename_array,
1a64be56 381 update_add_remove_disk,
78b10e66 382 update_reshape_container_disks,
48c5303a 383 update_reshape_migration,
2d40f3a1
AK
384 update_takeover,
385 update_general_migration_checkpoint,
88758e9d
DW
386};
387
388struct imsm_update_activate_spare {
389 enum imsm_update_type type;
d23fe947 390 struct dl *dl;
88758e9d
DW
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394};
395
78b10e66
N
396struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404};
405
bb025c2f
KW
406enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409};
410struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414};
78b10e66
N
415
416struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
48c5303a
PC
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422};
423
424struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
4bba0439 433 int new_chunksize;
48c5303a 434
d195167d 435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
436};
437
2d40f3a1
AK
438struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441};
442
54c2c1ea
DW
443struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445};
446
8273f55e
DW
447struct imsm_update_create_array {
448 enum imsm_update_type type;
8273f55e 449 int dev_idx;
6a3e913e 450 struct imsm_dev dev;
8273f55e
DW
451};
452
33414a01
DW
453struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456};
457
aa534678
DW
458struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462};
463
1a64be56 464struct imsm_update_add_remove_disk {
43dad3d6
DW
465 enum imsm_update_type type;
466};
467
88654014
LM
468
469static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473};
474
475const char *get_sys_dev_type(enum sys_dev_type type)
476{
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481}
482
483static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484{
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494}
495
496static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497{
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504}
505
b4cf4cba 506static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
507{
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532}
533
534static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535{
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570}
571
572
d424212e
N
573static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
f2f5c343 575
cdddbdbc
DW
576static struct supertype *match_metadata_desc_imsm(char *arg)
577{
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
4e9d2186
AW
586 if (!st)
587 return NULL;
ef609477 588 memset(st, 0, sizeof(*st));
d1d599ea 589 st->container_dev = NoMdDev;
cdddbdbc
DW
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595}
596
0e600426 597#ifndef MDASSEMBLE
cdddbdbc
DW
598static __u8 *get_imsm_version(struct imsm_super *mpb)
599{
600 return &mpb->sig[MPB_SIG_LEN];
601}
9e2d750d 602#endif
cdddbdbc 603
949c47a0
DW
604/* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 608{
949c47a0 609 if (index >= mpb->num_disks)
cdddbdbc
DW
610 return NULL;
611 return &mpb->disk[index];
612}
613
95d07a2c
LM
614/* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 618{
b9f594fe
DW
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
95d07a2c
LM
623 return d;
624
625 return NULL;
626}
627/* retrieve a disk from the parsed metadata */
628static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629{
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
b9f594fe 636 return NULL;
949c47a0
DW
637}
638
639/* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
643{
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
97f734fd
N
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
cdddbdbc
DW
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654}
655
a965f303
DW
656static size_t sizeof_imsm_map(struct imsm_map *map)
657{
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659}
660
661struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 662{
5e7b0330
AK
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
668 */
a965f303
DW
669 struct imsm_map *map = &dev->vol.map[0];
670
5e7b0330 671 if (second_map == 1 && !dev->vol.migr_state)
a965f303 672 return NULL;
5e7b0330
AK
673 else if (second_map == 1 ||
674 (second_map < 0 && dev->vol.migr_state)) {
a965f303
DW
675 void *ptr = map;
676
677 return ptr + sizeof_imsm_map(map);
678 } else
679 return map;
5e7b0330 680
a965f303 681}
cdddbdbc 682
3393c6af
DW
683/* return the size of the device.
684 * migr_state increases the returned size if map[0] were to be duplicated
685 */
686static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
687{
688 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
689 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
690
691 /* migrating means an additional map */
a965f303
DW
692 if (dev->vol.migr_state)
693 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
694 else if (migr_state)
695 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
696
697 return size;
698}
699
54c2c1ea
DW
700#ifndef MDASSEMBLE
701/* retrieve disk serial number list from a metadata update */
702static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
703{
704 void *u = update;
705 struct disk_info *inf;
706
707 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
708 sizeof_imsm_dev(&update->dev, 0);
709
710 return inf;
711}
712#endif
713
949c47a0 714static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
715{
716 int offset;
717 int i;
718 void *_mpb = mpb;
719
949c47a0 720 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
721 return NULL;
722
723 /* devices start after all disks */
724 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
725
726 for (i = 0; i <= index; i++)
727 if (i == index)
728 return _mpb + offset;
729 else
3393c6af 730 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
731
732 return NULL;
733}
734
949c47a0
DW
735static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
736{
ba2de7ba
DW
737 struct intel_dev *dv;
738
949c47a0
DW
739 if (index >= super->anchor->num_raid_devs)
740 return NULL;
ba2de7ba
DW
741 for (dv = super->devlist; dv; dv = dv->next)
742 if (dv->index == index)
743 return dv->dev;
744 return NULL;
949c47a0
DW
745}
746
98130f40
AK
747/*
748 * for second_map:
749 * == 0 get first map
750 * == 1 get second map
751 * == -1 than get map according to the current migr_state
752 */
753static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
754 int slot,
755 int second_map)
7eef0453
DW
756{
757 struct imsm_map *map;
758
5e7b0330 759 map = get_imsm_map(dev, second_map);
7eef0453 760
ff077194
DW
761 /* top byte identifies disk under rebuild */
762 return __le32_to_cpu(map->disk_ord_tbl[slot]);
763}
764
765#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 766static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 767{
98130f40 768 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
769
770 return ord_to_idx(ord);
7eef0453
DW
771}
772
be73972f
DW
773static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
774{
775 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
776}
777
f21e18ca 778static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
779{
780 int slot;
781 __u32 ord;
782
783 for (slot = 0; slot < map->num_members; slot++) {
784 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
785 if (ord_to_idx(ord) == idx)
786 return slot;
787 }
788
789 return -1;
790}
791
cdddbdbc
DW
792static int get_imsm_raid_level(struct imsm_map *map)
793{
794 if (map->raid_level == 1) {
795 if (map->num_members == 2)
796 return 1;
797 else
798 return 10;
799 }
800
801 return map->raid_level;
802}
803
c2c087e6
DW
804static int cmp_extent(const void *av, const void *bv)
805{
806 const struct extent *a = av;
807 const struct extent *b = bv;
808 if (a->start < b->start)
809 return -1;
810 if (a->start > b->start)
811 return 1;
812 return 0;
813}
814
0dcecb2e 815static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 816{
c2c087e6 817 int memberships = 0;
620b1713 818 int i;
c2c087e6 819
949c47a0
DW
820 for (i = 0; i < super->anchor->num_raid_devs; i++) {
821 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 822 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 823
620b1713
DW
824 if (get_imsm_disk_slot(map, dl->index) >= 0)
825 memberships++;
c2c087e6 826 }
0dcecb2e
DW
827
828 return memberships;
829}
830
b81221b7
CA
831static __u32 imsm_min_reserved_sectors(struct intel_super *super);
832
0dcecb2e
DW
833static struct extent *get_extents(struct intel_super *super, struct dl *dl)
834{
835 /* find a list of used extents on the given physical device */
836 struct extent *rv, *e;
620b1713 837 int i;
0dcecb2e 838 int memberships = count_memberships(dl, super);
b276dd33
DW
839 __u32 reservation;
840
841 /* trim the reserved area for spares, so they can join any array
842 * regardless of whether the OROM has assigned sectors from the
843 * IMSM_RESERVED_SECTORS region
844 */
845 if (dl->index == -1)
b81221b7 846 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
847 else
848 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 849
c2c087e6
DW
850 rv = malloc(sizeof(struct extent) * (memberships + 1));
851 if (!rv)
852 return NULL;
853 e = rv;
854
949c47a0
DW
855 for (i = 0; i < super->anchor->num_raid_devs; i++) {
856 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 857 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 858
620b1713
DW
859 if (get_imsm_disk_slot(map, dl->index) >= 0) {
860 e->start = __le32_to_cpu(map->pba_of_lba0);
861 e->size = __le32_to_cpu(map->blocks_per_member);
862 e++;
c2c087e6
DW
863 }
864 }
865 qsort(rv, memberships, sizeof(*rv), cmp_extent);
866
14e8215b
DW
867 /* determine the start of the metadata
868 * when no raid devices are defined use the default
869 * ...otherwise allow the metadata to truncate the value
870 * as is the case with older versions of imsm
871 */
872 if (memberships) {
873 struct extent *last = &rv[memberships - 1];
874 __u32 remainder;
875
876 remainder = __le32_to_cpu(dl->disk.total_blocks) -
877 (last->start + last->size);
dda5855f
DW
878 /* round down to 1k block to satisfy precision of the kernel
879 * 'size' interface
880 */
881 remainder &= ~1UL;
882 /* make sure remainder is still sane */
f21e18ca 883 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 884 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
885 if (reservation > remainder)
886 reservation = remainder;
887 }
888 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
889 e->size = 0;
890 return rv;
891}
892
14e8215b
DW
893/* try to determine how much space is reserved for metadata from
894 * the last get_extents() entry, otherwise fallback to the
895 * default
896 */
897static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
898{
899 struct extent *e;
900 int i;
901 __u32 rv;
902
903 /* for spares just return a minimal reservation which will grow
904 * once the spare is picked up by an array
905 */
906 if (dl->index == -1)
907 return MPB_SECTOR_CNT;
908
909 e = get_extents(super, dl);
910 if (!e)
911 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
912
913 /* scroll to last entry */
914 for (i = 0; e[i].size; i++)
915 continue;
916
917 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
918
919 free(e);
920
921 return rv;
922}
923
25ed7e59
DW
924static int is_spare(struct imsm_disk *disk)
925{
926 return (disk->status & SPARE_DISK) == SPARE_DISK;
927}
928
929static int is_configured(struct imsm_disk *disk)
930{
931 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
932}
933
934static int is_failed(struct imsm_disk *disk)
935{
936 return (disk->status & FAILED_DISK) == FAILED_DISK;
937}
938
b81221b7
CA
939/* try to determine how much space is reserved for metadata from
940 * the last get_extents() entry on the smallest active disk,
941 * otherwise fallback to the default
942 */
943static __u32 imsm_min_reserved_sectors(struct intel_super *super)
944{
945 struct extent *e;
946 int i;
947 __u32 min_active, remainder;
948 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
949 struct dl *dl, *dl_min = NULL;
950
951 if (!super)
952 return rv;
953
954 min_active = 0;
955 for (dl = super->disks; dl; dl = dl->next) {
956 if (dl->index < 0)
957 continue;
958 if (dl->disk.total_blocks < min_active || min_active == 0) {
959 dl_min = dl;
960 min_active = dl->disk.total_blocks;
961 }
962 }
963 if (!dl_min)
964 return rv;
965
966 /* find last lba used by subarrays on the smallest active disk */
967 e = get_extents(super, dl_min);
968 if (!e)
969 return rv;
970 for (i = 0; e[i].size; i++)
971 continue;
972
973 remainder = min_active - e[i].start;
974 free(e);
975
976 /* to give priority to recovery we should not require full
977 IMSM_RESERVED_SECTORS from the spare */
978 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
979
980 /* if real reservation is smaller use that value */
981 return (remainder < rv) ? remainder : rv;
982}
983
80e7f8c3
AC
984/* Return minimum size of a spare that can be used in this array*/
985static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
986{
987 struct intel_super *super = st->sb;
988 struct dl *dl;
989 struct extent *e;
990 int i;
991 unsigned long long rv = 0;
992
993 if (!super)
994 return rv;
995 /* find first active disk in array */
996 dl = super->disks;
997 while (dl && (is_failed(&dl->disk) || dl->index == -1))
998 dl = dl->next;
999 if (!dl)
1000 return rv;
1001 /* find last lba used by subarrays */
1002 e = get_extents(super, dl);
1003 if (!e)
1004 return rv;
1005 for (i = 0; e[i].size; i++)
1006 continue;
1007 if (i > 0)
1008 rv = e[i-1].start + e[i-1].size;
1009 free(e);
b81221b7 1010
80e7f8c3 1011 /* add the amount of space needed for metadata */
b81221b7
CA
1012 rv = rv + imsm_min_reserved_sectors(super);
1013
80e7f8c3
AC
1014 return rv * 512;
1015}
1016
1799c9e8 1017#ifndef MDASSEMBLE
c47b0ff6
AK
1018static __u64 blocks_per_migr_unit(struct intel_super *super,
1019 struct imsm_dev *dev);
1e5c6983 1020
c47b0ff6
AK
1021static void print_imsm_dev(struct intel_super *super,
1022 struct imsm_dev *dev,
1023 char *uuid,
1024 int disk_idx)
cdddbdbc
DW
1025{
1026 __u64 sz;
0d80bb2f 1027 int slot, i;
a965f303 1028 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 1029 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 1030 __u32 ord;
cdddbdbc
DW
1031
1032 printf("\n");
1e7bc0ed 1033 printf("[%.16s]:\n", dev->volume);
44470971 1034 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1035 printf(" RAID Level : %d", get_imsm_raid_level(map));
1036 if (map2)
1037 printf(" <-- %d", get_imsm_raid_level(map2));
1038 printf("\n");
1039 printf(" Members : %d", map->num_members);
1040 if (map2)
1041 printf(" <-- %d", map2->num_members);
1042 printf("\n");
0d80bb2f
DW
1043 printf(" Slots : [");
1044 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 1045 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
1046 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1047 }
dd8bcb3b
AK
1048 printf("]");
1049 if (map2) {
1050 printf(" <-- [");
1051 for (i = 0; i < map2->num_members; i++) {
1052 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1053 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1054 }
1055 printf("]");
1056 }
1057 printf("\n");
7095bccb
AK
1058 printf(" Failed disk : ");
1059 if (map->failed_disk_num == 0xff)
1060 printf("none");
1061 else
1062 printf("%i", map->failed_disk_num);
1063 printf("\n");
620b1713
DW
1064 slot = get_imsm_disk_slot(map, disk_idx);
1065 if (slot >= 0) {
98130f40 1066 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
1067 printf(" This Slot : %d%s\n", slot,
1068 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1069 } else
cdddbdbc
DW
1070 printf(" This Slot : ?\n");
1071 sz = __le32_to_cpu(dev->size_high);
1072 sz <<= 32;
1073 sz += __le32_to_cpu(dev->size_low);
1074 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1075 human_size(sz * 512));
1076 sz = __le32_to_cpu(map->blocks_per_member);
1077 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1078 human_size(sz * 512));
1079 printf(" Sector Offset : %u\n",
1080 __le32_to_cpu(map->pba_of_lba0));
1081 printf(" Num Stripes : %u\n",
1082 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 1083 printf(" Chunk Size : %u KiB",
cdddbdbc 1084 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1085 if (map2)
1086 printf(" <-- %u KiB",
1087 __le16_to_cpu(map2->blocks_per_strip) / 2);
1088 printf("\n");
cdddbdbc 1089 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1090 printf(" Migrate State : ");
1484e727
DW
1091 if (dev->vol.migr_state) {
1092 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1093 printf("initialize\n");
1484e727 1094 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1095 printf("rebuild\n");
1484e727 1096 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1097 printf("check\n");
1484e727 1098 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1099 printf("general migration\n");
1484e727 1100 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1101 printf("state change\n");
1484e727 1102 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1103 printf("repair\n");
1484e727 1104 else
8655a7b1
DW
1105 printf("<unknown:%d>\n", migr_type(dev));
1106 } else
1107 printf("idle\n");
3393c6af
DW
1108 printf(" Map State : %s", map_state_str[map->map_state]);
1109 if (dev->vol.migr_state) {
1110 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1111
b10b37b8 1112 printf(" <-- %s", map_state_str[map->map_state]);
1e5c6983
DW
1113 printf("\n Checkpoint : %u (%llu)",
1114 __le32_to_cpu(dev->vol.curr_migr_unit),
c47b0ff6 1115 (unsigned long long)blocks_per_migr_unit(super, dev));
3393c6af
DW
1116 }
1117 printf("\n");
cdddbdbc 1118 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1119}
1120
0ec1f4e8 1121static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1122{
1f24f035 1123 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1124 __u64 sz;
1125
0ec1f4e8 1126 if (index < -1 || !disk)
e9d82038
DW
1127 return;
1128
cdddbdbc 1129 printf("\n");
1f24f035 1130 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1131 if (index >= 0)
1132 printf(" Disk%02d Serial : %s\n", index, str);
1133 else
1134 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1135 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1136 is_configured(disk) ? " active" : "",
1137 is_failed(disk) ? " failed" : "");
cdddbdbc 1138 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1139 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1140 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1141 human_size(sz * 512));
1142}
1143
520e69e2
AK
1144static int is_gen_migration(struct imsm_dev *dev);
1145
1146void examine_migr_rec_imsm(struct intel_super *super)
1147{
1148 struct migr_record *migr_rec = super->migr_rec;
1149 struct imsm_super *mpb = super->anchor;
1150 int i;
1151
1152 for (i = 0; i < mpb->num_raid_devs; i++) {
1153 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1154 if (is_gen_migration(dev) == 0)
1155 continue;
1156
1157 printf("\nMigration Record Information:");
1158 if (super->disks->index > 1) {
1159 printf(" Empty\n ");
1160 printf("Examine one of first two disks in array\n");
1161 break;
1162 }
1163 printf("\n Status : ");
1164 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1165 printf("Normal\n");
1166 else
1167 printf("Contains Data\n");
1168 printf(" Current Unit : %u\n",
1169 __le32_to_cpu(migr_rec->curr_migr_unit));
1170 printf(" Family : %u\n",
1171 __le32_to_cpu(migr_rec->family_num));
1172 printf(" Ascending : %u\n",
1173 __le32_to_cpu(migr_rec->ascending_migr));
1174 printf(" Blocks Per Unit : %u\n",
1175 __le32_to_cpu(migr_rec->blocks_per_unit));
1176 printf(" Dest. Depth Per Unit : %u\n",
1177 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1178 printf(" Checkpoint Area pba : %u\n",
1179 __le32_to_cpu(migr_rec->ckpt_area_pba));
1180 printf(" First member lba : %u\n",
1181 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1182 printf(" Total Number of Units : %u\n",
1183 __le32_to_cpu(migr_rec->num_migr_units));
1184 printf(" Size of volume : %u\n",
1185 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1186 printf(" Expansion space for LBA64 : %u\n",
1187 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1188 printf(" Record was read from : %u\n",
1189 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1190
1191 break;
1192 }
1193}
9e2d750d 1194#endif /* MDASSEMBLE */
19482bcc
AK
1195/*******************************************************************************
1196 * function: imsm_check_attributes
1197 * Description: Function checks if features represented by attributes flags
1198 * are supported by mdadm.
1199 * Parameters:
1200 * attributes - Attributes read from metadata
1201 * Returns:
1202 * 0 - passed attributes contains unsupported features flags
1203 * 1 - all features are supported
1204 ******************************************************************************/
1205static int imsm_check_attributes(__u32 attributes)
1206{
1207 int ret_val = 1;
418f9b36
N
1208 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1209
1210 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1211
1212 not_supported &= attributes;
1213 if (not_supported) {
418f9b36
N
1214 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1215 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1216 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1217 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1218 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1219 }
1220 if (not_supported & MPB_ATTRIB_2TB) {
1221 dprintf("\t\tMPB_ATTRIB_2TB\n");
1222 not_supported ^= MPB_ATTRIB_2TB;
1223 }
1224 if (not_supported & MPB_ATTRIB_RAID0) {
1225 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1226 not_supported ^= MPB_ATTRIB_RAID0;
1227 }
1228 if (not_supported & MPB_ATTRIB_RAID1) {
1229 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1230 not_supported ^= MPB_ATTRIB_RAID1;
1231 }
1232 if (not_supported & MPB_ATTRIB_RAID10) {
1233 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1234 not_supported ^= MPB_ATTRIB_RAID10;
1235 }
1236 if (not_supported & MPB_ATTRIB_RAID1E) {
1237 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1238 not_supported ^= MPB_ATTRIB_RAID1E;
1239 }
1240 if (not_supported & MPB_ATTRIB_RAID5) {
1241 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1242 not_supported ^= MPB_ATTRIB_RAID5;
1243 }
1244 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1245 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1246 not_supported ^= MPB_ATTRIB_RAIDCNG;
1247 }
1248 if (not_supported & MPB_ATTRIB_BBM) {
1249 dprintf("\t\tMPB_ATTRIB_BBM\n");
1250 not_supported ^= MPB_ATTRIB_BBM;
1251 }
1252 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1253 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1254 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1255 }
1256 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1257 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1258 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1259 }
1260 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1261 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1262 not_supported ^= MPB_ATTRIB_2TB_DISK;
1263 }
1264 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1265 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1266 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1267 }
1268 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1269 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1270 not_supported ^= MPB_ATTRIB_NEVER_USE;
1271 }
1272
1273 if (not_supported)
1274 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1275
1276 ret_val = 0;
1277 }
1278
1279 return ret_val;
1280}
1281
9e2d750d 1282#ifndef MDASSEMBLE
a5d85af7 1283static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1284
cdddbdbc
DW
1285static void examine_super_imsm(struct supertype *st, char *homehost)
1286{
1287 struct intel_super *super = st->sb;
949c47a0 1288 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1289 char str[MAX_SIGNATURE_LENGTH];
1290 int i;
27fd6274
DW
1291 struct mdinfo info;
1292 char nbuf[64];
cdddbdbc 1293 __u32 sum;
14e8215b 1294 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1295 struct dl *dl;
27fd6274 1296
cdddbdbc
DW
1297 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1298 printf(" Magic : %s\n", str);
1299 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1300 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1301 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1302 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1303 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1304 printf(" Attributes : ");
1305 if (imsm_check_attributes(mpb->attributes))
1306 printf("All supported\n");
1307 else
1308 printf("not supported\n");
a5d85af7 1309 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1310 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1311 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1312 sum = __le32_to_cpu(mpb->check_sum);
1313 printf(" Checksum : %08x %s\n", sum,
949c47a0 1314 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1315 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1316 printf(" Disks : %d\n", mpb->num_disks);
1317 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1318 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1319 if (super->bbm_log) {
1320 struct bbm_log *log = super->bbm_log;
1321
1322 printf("\n");
1323 printf("Bad Block Management Log:\n");
1324 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1325 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1326 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1327 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1328 printf(" First Spare : %llx\n",
1329 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1330 }
44470971
DW
1331 for (i = 0; i < mpb->num_raid_devs; i++) {
1332 struct mdinfo info;
1333 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1334
1335 super->current_vol = i;
a5d85af7 1336 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1337 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1338 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1339 }
cdddbdbc
DW
1340 for (i = 0; i < mpb->num_disks; i++) {
1341 if (i == super->disks->index)
1342 continue;
0ec1f4e8 1343 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1344 }
94827db3 1345
0ec1f4e8
DW
1346 for (dl = super->disks; dl; dl = dl->next)
1347 if (dl->index == -1)
1348 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1349
1350 examine_migr_rec_imsm(super);
cdddbdbc
DW
1351}
1352
061f2c6a 1353static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1354{
27fd6274 1355 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1356 struct mdinfo info;
1357 char nbuf[64];
1e7bc0ed 1358 struct intel_super *super = st->sb;
1e7bc0ed 1359
0d5a423f
DW
1360 if (!super->anchor->num_raid_devs) {
1361 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1362 return;
0d5a423f 1363 }
ff54de6e 1364
a5d85af7 1365 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1366 fname_from_uuid(st, &info, nbuf, ':');
1367 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1368}
1369
1370static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1371{
1372 /* We just write a generic IMSM ARRAY entry */
1373 struct mdinfo info;
1374 char nbuf[64];
1375 char nbuf1[64];
1376 struct intel_super *super = st->sb;
1377 int i;
1378
1379 if (!super->anchor->num_raid_devs)
1380 return;
1381
a5d85af7 1382 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1383 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1384 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1385 struct imsm_dev *dev = get_imsm_dev(super, i);
1386
1387 super->current_vol = i;
a5d85af7 1388 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1389 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1390 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1391 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1392 }
cdddbdbc
DW
1393}
1394
9d84c8ea
DW
1395static void export_examine_super_imsm(struct supertype *st)
1396{
1397 struct intel_super *super = st->sb;
1398 struct imsm_super *mpb = super->anchor;
1399 struct mdinfo info;
1400 char nbuf[64];
1401
a5d85af7 1402 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1403 fname_from_uuid(st, &info, nbuf, ':');
1404 printf("MD_METADATA=imsm\n");
1405 printf("MD_LEVEL=container\n");
1406 printf("MD_UUID=%s\n", nbuf+5);
1407 printf("MD_DEVICES=%u\n", mpb->num_disks);
1408}
1409
cdddbdbc
DW
1410static void detail_super_imsm(struct supertype *st, char *homehost)
1411{
3ebe00a1
DW
1412 struct mdinfo info;
1413 char nbuf[64];
1414
a5d85af7 1415 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1416 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1417 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1418}
1419
1420static void brief_detail_super_imsm(struct supertype *st)
1421{
ff54de6e
N
1422 struct mdinfo info;
1423 char nbuf[64];
a5d85af7 1424 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1425 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1426 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1427}
d665cc31
DW
1428
1429static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1430static void fd2devname(int fd, char *name);
1431
120dc887 1432static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1433{
120dc887
LM
1434 /* dump an unsorted list of devices attached to AHCI Intel storage
1435 * controller, as well as non-connected ports
d665cc31
DW
1436 */
1437 int hba_len = strlen(hba_path) + 1;
1438 struct dirent *ent;
1439 DIR *dir;
1440 char *path = NULL;
1441 int err = 0;
1442 unsigned long port_mask = (1 << port_count) - 1;
1443
f21e18ca 1444 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1445 if (verbose)
1446 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1447 return 2;
1448 }
1449
1450 /* scroll through /sys/dev/block looking for devices attached to
1451 * this hba
1452 */
1453 dir = opendir("/sys/dev/block");
1454 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1455 int fd;
1456 char model[64];
1457 char vendor[64];
1458 char buf[1024];
1459 int major, minor;
1460 char *device;
1461 char *c;
1462 int port;
1463 int type;
1464
1465 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1466 continue;
1467 path = devt_to_devpath(makedev(major, minor));
1468 if (!path)
1469 continue;
1470 if (!path_attached_to_hba(path, hba_path)) {
1471 free(path);
1472 path = NULL;
1473 continue;
1474 }
1475
1476 /* retrieve the scsi device type */
1477 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1478 if (verbose)
1479 fprintf(stderr, Name ": failed to allocate 'device'\n");
1480 err = 2;
1481 break;
1482 }
1483 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1484 if (load_sys(device, buf) != 0) {
1485 if (verbose)
1486 fprintf(stderr, Name ": failed to read device type for %s\n",
1487 path);
1488 err = 2;
1489 free(device);
1490 break;
1491 }
1492 type = strtoul(buf, NULL, 10);
1493
1494 /* if it's not a disk print the vendor and model */
1495 if (!(type == 0 || type == 7 || type == 14)) {
1496 vendor[0] = '\0';
1497 model[0] = '\0';
1498 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1499 if (load_sys(device, buf) == 0) {
1500 strncpy(vendor, buf, sizeof(vendor));
1501 vendor[sizeof(vendor) - 1] = '\0';
1502 c = (char *) &vendor[sizeof(vendor) - 1];
1503 while (isspace(*c) || *c == '\0')
1504 *c-- = '\0';
1505
1506 }
1507 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1508 if (load_sys(device, buf) == 0) {
1509 strncpy(model, buf, sizeof(model));
1510 model[sizeof(model) - 1] = '\0';
1511 c = (char *) &model[sizeof(model) - 1];
1512 while (isspace(*c) || *c == '\0')
1513 *c-- = '\0';
1514 }
1515
1516 if (vendor[0] && model[0])
1517 sprintf(buf, "%.64s %.64s", vendor, model);
1518 else
1519 switch (type) { /* numbers from hald/linux/device.c */
1520 case 1: sprintf(buf, "tape"); break;
1521 case 2: sprintf(buf, "printer"); break;
1522 case 3: sprintf(buf, "processor"); break;
1523 case 4:
1524 case 5: sprintf(buf, "cdrom"); break;
1525 case 6: sprintf(buf, "scanner"); break;
1526 case 8: sprintf(buf, "media_changer"); break;
1527 case 9: sprintf(buf, "comm"); break;
1528 case 12: sprintf(buf, "raid"); break;
1529 default: sprintf(buf, "unknown");
1530 }
1531 } else
1532 buf[0] = '\0';
1533 free(device);
1534
1535 /* chop device path to 'host%d' and calculate the port number */
1536 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1537 if (!c) {
1538 if (verbose)
1539 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1540 err = 2;
1541 break;
1542 }
d665cc31
DW
1543 *c = '\0';
1544 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1545 port -= host_base;
1546 else {
1547 if (verbose) {
1548 *c = '/'; /* repair the full string */
1549 fprintf(stderr, Name ": failed to determine port number for %s\n",
1550 path);
1551 }
1552 err = 2;
1553 break;
1554 }
1555
1556 /* mark this port as used */
1557 port_mask &= ~(1 << port);
1558
1559 /* print out the device information */
1560 if (buf[0]) {
1561 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1562 continue;
1563 }
1564
1565 fd = dev_open(ent->d_name, O_RDONLY);
1566 if (fd < 0)
1567 printf(" Port%d : - disk info unavailable -\n", port);
1568 else {
1569 fd2devname(fd, buf);
1570 printf(" Port%d : %s", port, buf);
1571 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1572 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1573 else
664d5325 1574 printf(" ()\n");
4dab422a 1575 close(fd);
d665cc31 1576 }
d665cc31
DW
1577 free(path);
1578 path = NULL;
1579 }
1580 if (path)
1581 free(path);
1582 if (dir)
1583 closedir(dir);
1584 if (err == 0) {
1585 int i;
1586
1587 for (i = 0; i < port_count; i++)
1588 if (port_mask & (1 << i))
1589 printf(" Port%d : - no device attached -\n", i);
1590 }
1591
1592 return err;
1593}
1594
120dc887
LM
1595static void print_found_intel_controllers(struct sys_dev *elem)
1596{
1597 for (; elem; elem = elem->next) {
1598 fprintf(stderr, Name ": found Intel(R) ");
1599 if (elem->type == SYS_DEV_SATA)
1600 fprintf(stderr, "SATA ");
155cbb4c
LM
1601 else if (elem->type == SYS_DEV_SAS)
1602 fprintf(stderr, "SAS ");
120dc887
LM
1603 fprintf(stderr, "RAID controller");
1604 if (elem->pci_id)
1605 fprintf(stderr, " at %s", elem->pci_id);
1606 fprintf(stderr, ".\n");
1607 }
1608 fflush(stderr);
1609}
1610
120dc887
LM
1611static int ahci_get_port_count(const char *hba_path, int *port_count)
1612{
1613 struct dirent *ent;
1614 DIR *dir;
1615 int host_base = -1;
1616
1617 *port_count = 0;
1618 if ((dir = opendir(hba_path)) == NULL)
1619 return -1;
1620
1621 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1622 int host;
1623
1624 if (sscanf(ent->d_name, "host%d", &host) != 1)
1625 continue;
1626 if (*port_count == 0)
1627 host_base = host;
1628 else if (host < host_base)
1629 host_base = host;
1630
1631 if (host + 1 > *port_count + host_base)
1632 *port_count = host + 1 - host_base;
1633 }
1634 closedir(dir);
1635 return host_base;
1636}
1637
a891a3c2
LM
1638static void print_imsm_capability(const struct imsm_orom *orom)
1639{
1640 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1641 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1642 orom->hotfix_ver, orom->build);
1643 printf(" RAID Levels :%s%s%s%s%s\n",
1644 imsm_orom_has_raid0(orom) ? " raid0" : "",
1645 imsm_orom_has_raid1(orom) ? " raid1" : "",
1646 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1647 imsm_orom_has_raid10(orom) ? " raid10" : "",
1648 imsm_orom_has_raid5(orom) ? " raid5" : "");
1649 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1650 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1651 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1652 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1653 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1654 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1655 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1656 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1657 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1658 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1659 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1660 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1661 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1662 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1663 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1664 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1665 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1666 printf(" Max Disks : %d\n", orom->tds);
1667 printf(" Max Volumes : %d\n", orom->vpa);
1668 return;
1669}
1670
5615172f 1671static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1672{
1673 /* There are two components to imsm platform support, the ahci SATA
1674 * controller and the option-rom. To find the SATA controller we
1675 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1676 * controller with the Intel vendor id is present. This approach
1677 * allows mdadm to leverage the kernel's ahci detection logic, with the
1678 * caveat that if ahci.ko is not loaded mdadm will not be able to
1679 * detect platform raid capabilities. The option-rom resides in a
1680 * platform "Adapter ROM". We scan for its signature to retrieve the
1681 * platform capabilities. If raid support is disabled in the BIOS the
1682 * option-rom capability structure will not be available.
1683 */
1684 const struct imsm_orom *orom;
1685 struct sys_dev *list, *hba;
d665cc31
DW
1686 int host_base = 0;
1687 int port_count = 0;
120dc887 1688 int result=0;
d665cc31 1689
5615172f 1690 if (enumerate_only) {
a891a3c2 1691 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1692 return 0;
a891a3c2
LM
1693 list = find_intel_devices();
1694 if (!list)
1695 return 2;
1696 for (hba = list; hba; hba = hba->next) {
1697 orom = find_imsm_capability(hba->type);
1698 if (!orom) {
1699 result = 2;
1700 break;
1701 }
1702 }
1703 free_sys_dev(&list);
1704 return result;
5615172f
DW
1705 }
1706
155cbb4c
LM
1707 list = find_intel_devices();
1708 if (!list) {
d665cc31 1709 if (verbose)
155cbb4c
LM
1710 fprintf(stderr, Name ": no active Intel(R) RAID "
1711 "controller found.\n");
d665cc31
DW
1712 free_sys_dev(&list);
1713 return 2;
1714 } else if (verbose)
155cbb4c 1715 print_found_intel_controllers(list);
d665cc31 1716
a891a3c2
LM
1717 for (hba = list; hba; hba = hba->next) {
1718 orom = find_imsm_capability(hba->type);
1719 if (!orom)
1720 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1721 hba->path, get_sys_dev_type(hba->type));
1722 else
1723 print_imsm_capability(orom);
d665cc31
DW
1724 }
1725
120dc887
LM
1726 for (hba = list; hba; hba = hba->next) {
1727 printf(" I/O Controller : %s (%s)\n",
1728 hba->path, get_sys_dev_type(hba->type));
d665cc31 1729
120dc887
LM
1730 if (hba->type == SYS_DEV_SATA) {
1731 host_base = ahci_get_port_count(hba->path, &port_count);
1732 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1733 if (verbose)
1734 fprintf(stderr, Name ": failed to enumerate "
1735 "ports on SATA controller at %s.", hba->pci_id);
1736 result |= 2;
1737 }
1738 }
d665cc31 1739 }
155cbb4c 1740
120dc887
LM
1741 free_sys_dev(&list);
1742 return result;
d665cc31 1743}
cdddbdbc
DW
1744#endif
1745
1746static int match_home_imsm(struct supertype *st, char *homehost)
1747{
5115ca67
DW
1748 /* the imsm metadata format does not specify any host
1749 * identification information. We return -1 since we can never
1750 * confirm nor deny whether a given array is "meant" for this
148acb7b 1751 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1752 * exclude member disks that do not belong, and we rely on
1753 * mdadm.conf to specify the arrays that should be assembled.
1754 * Auto-assembly may still pick up "foreign" arrays.
1755 */
cdddbdbc 1756
9362c1c8 1757 return -1;
cdddbdbc
DW
1758}
1759
1760static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1761{
51006d85
N
1762 /* The uuid returned here is used for:
1763 * uuid to put into bitmap file (Create, Grow)
1764 * uuid for backup header when saving critical section (Grow)
1765 * comparing uuids when re-adding a device into an array
1766 * In these cases the uuid required is that of the data-array,
1767 * not the device-set.
1768 * uuid to recognise same set when adding a missing device back
1769 * to an array. This is a uuid for the device-set.
1770 *
1771 * For each of these we can make do with a truncated
1772 * or hashed uuid rather than the original, as long as
1773 * everyone agrees.
1774 * In each case the uuid required is that of the data-array,
1775 * not the device-set.
43dad3d6 1776 */
51006d85
N
1777 /* imsm does not track uuid's so we synthesis one using sha1 on
1778 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1779 * - the orig_family_num of the container
51006d85
N
1780 * - the index number of the volume
1781 * - the 'serial' number of the volume.
1782 * Hopefully these are all constant.
1783 */
1784 struct intel_super *super = st->sb;
43dad3d6 1785
51006d85
N
1786 char buf[20];
1787 struct sha1_ctx ctx;
1788 struct imsm_dev *dev = NULL;
148acb7b 1789 __u32 family_num;
51006d85 1790
148acb7b
DW
1791 /* some mdadm versions failed to set ->orig_family_num, in which
1792 * case fall back to ->family_num. orig_family_num will be
1793 * fixed up with the first metadata update.
1794 */
1795 family_num = super->anchor->orig_family_num;
1796 if (family_num == 0)
1797 family_num = super->anchor->family_num;
51006d85 1798 sha1_init_ctx(&ctx);
92bd8f8d 1799 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1800 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1801 if (super->current_vol >= 0)
1802 dev = get_imsm_dev(super, super->current_vol);
1803 if (dev) {
1804 __u32 vol = super->current_vol;
1805 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1806 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1807 }
1808 sha1_finish_ctx(&ctx, buf);
1809 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1810}
1811
0d481d37 1812#if 0
4f5bc454
DW
1813static void
1814get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1815{
cdddbdbc
DW
1816 __u8 *v = get_imsm_version(mpb);
1817 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1818 char major[] = { 0, 0, 0 };
1819 char minor[] = { 0 ,0, 0 };
1820 char patch[] = { 0, 0, 0 };
1821 char *ver_parse[] = { major, minor, patch };
1822 int i, j;
1823
1824 i = j = 0;
1825 while (*v != '\0' && v < end) {
1826 if (*v != '.' && j < 2)
1827 ver_parse[i][j++] = *v;
1828 else {
1829 i++;
1830 j = 0;
1831 }
1832 v++;
1833 }
1834
4f5bc454
DW
1835 *m = strtol(minor, NULL, 0);
1836 *p = strtol(patch, NULL, 0);
1837}
0d481d37 1838#endif
4f5bc454 1839
1e5c6983
DW
1840static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1841{
1842 /* migr_strip_size when repairing or initializing parity */
1843 struct imsm_map *map = get_imsm_map(dev, 0);
1844 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1845
1846 switch (get_imsm_raid_level(map)) {
1847 case 5:
1848 case 10:
1849 return chunk;
1850 default:
1851 return 128*1024 >> 9;
1852 }
1853}
1854
1855static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1856{
1857 /* migr_strip_size when rebuilding a degraded disk, no idea why
1858 * this is different than migr_strip_size_resync(), but it's good
1859 * to be compatible
1860 */
1861 struct imsm_map *map = get_imsm_map(dev, 1);
1862 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1863
1864 switch (get_imsm_raid_level(map)) {
1865 case 1:
1866 case 10:
1867 if (map->num_members % map->num_domains == 0)
1868 return 128*1024 >> 9;
1869 else
1870 return chunk;
1871 case 5:
1872 return max((__u32) 64*1024 >> 9, chunk);
1873 default:
1874 return 128*1024 >> 9;
1875 }
1876}
1877
1878static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1879{
1880 struct imsm_map *lo = get_imsm_map(dev, 0);
1881 struct imsm_map *hi = get_imsm_map(dev, 1);
1882 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1883 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1884
1885 return max((__u32) 1, hi_chunk / lo_chunk);
1886}
1887
1888static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1889{
1890 struct imsm_map *lo = get_imsm_map(dev, 0);
1891 int level = get_imsm_raid_level(lo);
1892
1893 if (level == 1 || level == 10) {
1894 struct imsm_map *hi = get_imsm_map(dev, 1);
1895
1896 return hi->num_domains;
1897 } else
1898 return num_stripes_per_unit_resync(dev);
1899}
1900
98130f40 1901static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1902{
1903 /* named 'imsm_' because raid0, raid1 and raid10
1904 * counter-intuitively have the same number of data disks
1905 */
98130f40 1906 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1907
1908 switch (get_imsm_raid_level(map)) {
1909 case 0:
1910 case 1:
1911 case 10:
1912 return map->num_members;
1913 case 5:
1914 return map->num_members - 1;
1915 default:
1916 dprintf("%s: unsupported raid level\n", __func__);
1917 return 0;
1918 }
1919}
1920
1921static __u32 parity_segment_depth(struct imsm_dev *dev)
1922{
1923 struct imsm_map *map = get_imsm_map(dev, 0);
1924 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1925
1926 switch(get_imsm_raid_level(map)) {
1927 case 1:
1928 case 10:
1929 return chunk * map->num_domains;
1930 case 5:
1931 return chunk * map->num_members;
1932 default:
1933 return chunk;
1934 }
1935}
1936
1937static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1938{
1939 struct imsm_map *map = get_imsm_map(dev, 1);
1940 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1941 __u32 strip = block / chunk;
1942
1943 switch (get_imsm_raid_level(map)) {
1944 case 1:
1945 case 10: {
1946 __u32 vol_strip = (strip * map->num_domains) + 1;
1947 __u32 vol_stripe = vol_strip / map->num_members;
1948
1949 return vol_stripe * chunk + block % chunk;
1950 } case 5: {
1951 __u32 stripe = strip / (map->num_members - 1);
1952
1953 return stripe * chunk + block % chunk;
1954 }
1955 default:
1956 return 0;
1957 }
1958}
1959
c47b0ff6
AK
1960static __u64 blocks_per_migr_unit(struct intel_super *super,
1961 struct imsm_dev *dev)
1e5c6983
DW
1962{
1963 /* calculate the conversion factor between per member 'blocks'
1964 * (md/{resync,rebuild}_start) and imsm migration units, return
1965 * 0 for the 'not migrating' and 'unsupported migration' cases
1966 */
1967 if (!dev->vol.migr_state)
1968 return 0;
1969
1970 switch (migr_type(dev)) {
c47b0ff6
AK
1971 case MIGR_GEN_MIGR: {
1972 struct migr_record *migr_rec = super->migr_rec;
1973 return __le32_to_cpu(migr_rec->blocks_per_unit);
1974 }
1e5c6983
DW
1975 case MIGR_VERIFY:
1976 case MIGR_REPAIR:
1977 case MIGR_INIT: {
1978 struct imsm_map *map = get_imsm_map(dev, 0);
1979 __u32 stripes_per_unit;
1980 __u32 blocks_per_unit;
1981 __u32 parity_depth;
1982 __u32 migr_chunk;
1983 __u32 block_map;
1984 __u32 block_rel;
1985 __u32 segment;
1986 __u32 stripe;
1987 __u8 disks;
1988
1989 /* yes, this is really the translation of migr_units to
1990 * per-member blocks in the 'resync' case
1991 */
1992 stripes_per_unit = num_stripes_per_unit_resync(dev);
1993 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 1994 disks = imsm_num_data_members(dev, 0);
1e5c6983 1995 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 1996 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
1997 segment = blocks_per_unit / stripe;
1998 block_rel = blocks_per_unit - segment * stripe;
1999 parity_depth = parity_segment_depth(dev);
2000 block_map = map_migr_block(dev, block_rel);
2001 return block_map + parity_depth * segment;
2002 }
2003 case MIGR_REBUILD: {
2004 __u32 stripes_per_unit;
2005 __u32 migr_chunk;
2006
2007 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2008 migr_chunk = migr_strip_blocks_rebuild(dev);
2009 return migr_chunk * stripes_per_unit;
2010 }
1e5c6983
DW
2011 case MIGR_STATE_CHANGE:
2012 default:
2013 return 0;
2014 }
2015}
2016
c2c087e6
DW
2017static int imsm_level_to_layout(int level)
2018{
2019 switch (level) {
2020 case 0:
2021 case 1:
2022 return 0;
2023 case 5:
2024 case 6:
a380c027 2025 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2026 case 10:
c92a2527 2027 return 0x102;
c2c087e6 2028 }
a18a888e 2029 return UnSet;
c2c087e6
DW
2030}
2031
8e59f3d8
AK
2032/*******************************************************************************
2033 * Function: read_imsm_migr_rec
2034 * Description: Function reads imsm migration record from last sector of disk
2035 * Parameters:
2036 * fd : disk descriptor
2037 * super : metadata info
2038 * Returns:
2039 * 0 : success,
2040 * -1 : fail
2041 ******************************************************************************/
2042static int read_imsm_migr_rec(int fd, struct intel_super *super)
2043{
2044 int ret_val = -1;
2045 unsigned long long dsize;
2046
2047 get_dev_size(fd, NULL, &dsize);
2048 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2049 fprintf(stderr,
2050 Name ": Cannot seek to anchor block: %s\n",
2051 strerror(errno));
2052 goto out;
2053 }
2054 if (read(fd, super->migr_rec_buf, 512) != 512) {
2055 fprintf(stderr,
2056 Name ": Cannot read migr record block: %s\n",
2057 strerror(errno));
2058 goto out;
2059 }
2060 ret_val = 0;
2061
2062out:
2063 return ret_val;
2064}
2065
2066/*******************************************************************************
2067 * Function: load_imsm_migr_rec
2068 * Description: Function reads imsm migration record (it is stored at the last
2069 * sector of disk)
2070 * Parameters:
2071 * super : imsm internal array info
2072 * info : general array info
2073 * Returns:
2074 * 0 : success
2075 * -1 : fail
2076 ******************************************************************************/
2077static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2078{
2079 struct mdinfo *sd;
2080 struct dl *dl = NULL;
2081 char nm[30];
2082 int retval = -1;
2083 int fd = -1;
2084
2085 if (info) {
2086 for (sd = info->devs ; sd ; sd = sd->next) {
2087 /* read only from one of the first two slots */
2088 if ((sd->disk.raid_disk > 1) ||
2089 (sd->disk.raid_disk < 0))
2090 continue;
2091 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2092 fd = dev_open(nm, O_RDONLY);
2093 if (fd >= 0)
2094 break;
2095 }
2096 }
2097 if (fd < 0) {
2098 for (dl = super->disks; dl; dl = dl->next) {
2099 /* read only from one of the first two slots */
2100 if (dl->index > 1)
2101 continue;
2102 sprintf(nm, "%d:%d", dl->major, dl->minor);
2103 fd = dev_open(nm, O_RDONLY);
2104 if (fd >= 0)
2105 break;
2106 }
2107 }
2108 if (fd < 0)
2109 goto out;
2110 retval = read_imsm_migr_rec(fd, super);
2111
2112out:
2113 if (fd >= 0)
2114 close(fd);
2115 return retval;
2116}
2117
9e2d750d 2118#ifndef MDASSEMBLE
c17608ea
AK
2119/*******************************************************************************
2120 * function: imsm_create_metadata_checkpoint_update
2121 * Description: It creates update for checkpoint change.
2122 * Parameters:
2123 * super : imsm internal array info
2124 * u : pointer to prepared update
2125 * Returns:
2126 * Uptate length.
2127 * If length is equal to 0, input pointer u contains no update
2128 ******************************************************************************/
2129static int imsm_create_metadata_checkpoint_update(
2130 struct intel_super *super,
2131 struct imsm_update_general_migration_checkpoint **u)
2132{
2133
2134 int update_memory_size = 0;
2135
2136 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2137
2138 if (u == NULL)
2139 return 0;
2140 *u = NULL;
2141
2142 /* size of all update data without anchor */
2143 update_memory_size =
2144 sizeof(struct imsm_update_general_migration_checkpoint);
2145
2146 *u = calloc(1, update_memory_size);
2147 if (*u == NULL) {
2148 dprintf("error: cannot get memory for "
2149 "imsm_create_metadata_checkpoint_update update\n");
2150 return 0;
2151 }
2152 (*u)->type = update_general_migration_checkpoint;
2153 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2154 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2155 (*u)->curr_migr_unit);
2156
2157 return update_memory_size;
2158}
2159
2160
2161static void imsm_update_metadata_locally(struct supertype *st,
2162 void *buf, int len);
2163
687629c2
AK
2164/*******************************************************************************
2165 * Function: write_imsm_migr_rec
2166 * Description: Function writes imsm migration record
2167 * (at the last sector of disk)
2168 * Parameters:
2169 * super : imsm internal array info
2170 * Returns:
2171 * 0 : success
2172 * -1 : if fail
2173 ******************************************************************************/
2174static int write_imsm_migr_rec(struct supertype *st)
2175{
2176 struct intel_super *super = st->sb;
2177 unsigned long long dsize;
2178 char nm[30];
2179 int fd = -1;
2180 int retval = -1;
2181 struct dl *sd;
c17608ea
AK
2182 int len;
2183 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2184
2185 for (sd = super->disks ; sd ; sd = sd->next) {
2186 /* write to 2 first slots only */
2187 if ((sd->index < 0) || (sd->index > 1))
2188 continue;
2189 sprintf(nm, "%d:%d", sd->major, sd->minor);
2190 fd = dev_open(nm, O_RDWR);
2191 if (fd < 0)
2192 continue;
2193 get_dev_size(fd, NULL, &dsize);
2194 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2195 fprintf(stderr,
2196 Name ": Cannot seek to anchor block: %s\n",
2197 strerror(errno));
2198 goto out;
2199 }
2200 if (write(fd, super->migr_rec_buf, 512) != 512) {
2201 fprintf(stderr,
2202 Name ": Cannot write migr record block: %s\n",
2203 strerror(errno));
2204 goto out;
2205 }
2206 close(fd);
2207 fd = -1;
2208 }
c17608ea
AK
2209 /* update checkpoint information in metadata */
2210 len = imsm_create_metadata_checkpoint_update(super, &u);
2211
2212 if (len <= 0) {
2213 dprintf("imsm: Cannot prepare update\n");
2214 goto out;
2215 }
2216 /* update metadata locally */
2217 imsm_update_metadata_locally(st, u, len);
2218 /* and possibly remotely */
2219 if (st->update_tail) {
2220 append_metadata_update(st, u, len);
2221 /* during reshape we do all work inside metadata handler
2222 * manage_reshape(), so metadata update has to be triggered
2223 * insida it
2224 */
2225 flush_metadata_updates(st);
2226 st->update_tail = &st->updates;
2227 } else
2228 free(u);
687629c2
AK
2229
2230 retval = 0;
2231 out:
2232 if (fd >= 0)
2233 close(fd);
2234 return retval;
2235}
9e2d750d 2236#endif /* MDASSEMBLE */
687629c2 2237
e2962bfc
AK
2238/* spare/missing disks activations are not allowe when
2239 * array/container performs reshape operation, because
2240 * all arrays in container works on the same disks set
2241 */
2242int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2243{
2244 int rv = 0;
2245 struct intel_dev *i_dev;
2246 struct imsm_dev *dev;
2247
2248 /* check whole container
2249 */
2250 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2251 dev = i_dev->dev;
3ad25638 2252 if (is_gen_migration(dev)) {
e2962bfc
AK
2253 /* No repair during any migration in container
2254 */
2255 rv = 1;
2256 break;
2257 }
2258 }
2259 return rv;
2260}
2261
a5d85af7 2262static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2263{
2264 struct intel_super *super = st->sb;
c47b0ff6 2265 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2266 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 2267 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 2268 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 2269 struct imsm_map *map_to_analyse = map;
efb30e7f 2270 struct dl *dl;
e207da2f 2271 char *devname;
139dae11 2272 unsigned int component_size_alligment;
a5d85af7 2273 int map_disks = info->array.raid_disks;
bf5a934a 2274
95eeceeb 2275 memset(info, 0, sizeof(*info));
b335e593
AK
2276 if (prev_map)
2277 map_to_analyse = prev_map;
2278
ca0748fa 2279 dl = super->current_disk;
9894ec0d 2280
bf5a934a 2281 info->container_member = super->current_vol;
cd0430a1 2282 info->array.raid_disks = map->num_members;
b335e593 2283 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2284 info->array.layout = imsm_level_to_layout(info->array.level);
2285 info->array.md_minor = -1;
2286 info->array.ctime = 0;
2287 info->array.utime = 0;
b335e593
AK
2288 info->array.chunk_size =
2289 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2290 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2291 info->custom_array_size = __le32_to_cpu(dev->size_high);
2292 info->custom_array_size <<= 32;
2293 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
2294 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2295
b601104e
LD
2296 if (prev_map && map->map_state == prev_map->map_state &&
2297 (migr_type(dev) == MIGR_GEN_MIGR)) {
3f83228a 2298 info->reshape_active = 1;
b335e593
AK
2299 info->new_level = get_imsm_raid_level(map);
2300 info->new_layout = imsm_level_to_layout(info->new_level);
2301 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2302 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2303 if (info->delta_disks) {
2304 /* this needs to be applied to every array
2305 * in the container.
2306 */
81219e70 2307 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 2308 }
3f83228a
N
2309 /* We shape information that we give to md might have to be
2310 * modify to cope with md's requirement for reshaping arrays.
2311 * For example, when reshaping a RAID0, md requires it to be
2312 * presented as a degraded RAID4.
2313 * Also if a RAID0 is migrating to a RAID5 we need to specify
2314 * the array as already being RAID5, but the 'before' layout
2315 * is a RAID4-like layout.
2316 */
2317 switch (info->array.level) {
2318 case 0:
2319 switch(info->new_level) {
2320 case 0:
2321 /* conversion is happening as RAID4 */
2322 info->array.level = 4;
2323 info->array.raid_disks += 1;
2324 break;
2325 case 5:
2326 /* conversion is happening as RAID5 */
2327 info->array.level = 5;
2328 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2329 info->delta_disks -= 1;
2330 break;
2331 default:
2332 /* FIXME error message */
2333 info->array.level = UnSet;
2334 break;
2335 }
2336 break;
2337 }
b335e593
AK
2338 } else {
2339 info->new_level = UnSet;
2340 info->new_layout = UnSet;
2341 info->new_chunk = info->array.chunk_size;
3f83228a 2342 info->delta_disks = 0;
b335e593 2343 }
ca0748fa 2344
efb30e7f
DW
2345 if (dl) {
2346 info->disk.major = dl->major;
2347 info->disk.minor = dl->minor;
ca0748fa 2348 info->disk.number = dl->index;
656b6b5a
N
2349 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2350 dl->index);
efb30e7f 2351 }
bf5a934a 2352
b335e593
AK
2353 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2354 info->component_size =
2355 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2356
2357 /* check component size aligment
2358 */
2359 component_size_alligment =
2360 info->component_size % (info->array.chunk_size/512);
2361
2362 if (component_size_alligment &&
2363 (info->array.level != 1) && (info->array.level != UnSet)) {
2364 dprintf("imsm: reported component size alligned from %llu ",
2365 info->component_size);
2366 info->component_size -= component_size_alligment;
2367 dprintf("to %llu (%i).\n",
2368 info->component_size, component_size_alligment);
2369 }
2370
301406c9 2371 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2372 info->recovery_start = MaxSector;
bf5a934a 2373
d2e6d5d6 2374 info->reshape_progress = 0;
b6796ce1 2375 info->resync_start = MaxSector;
b9172665
AK
2376 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2377 dev->vol.dirty) &&
2378 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 2379 info->resync_start = 0;
b6796ce1
AK
2380 }
2381 if (dev->vol.migr_state) {
1e5c6983
DW
2382 switch (migr_type(dev)) {
2383 case MIGR_REPAIR:
2384 case MIGR_INIT: {
c47b0ff6
AK
2385 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2386 dev);
1e5c6983
DW
2387 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2388
2389 info->resync_start = blocks_per_unit * units;
2390 break;
2391 }
d2e6d5d6 2392 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2393 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2394 dev);
2395 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2396 unsigned long long array_blocks;
2397 int used_disks;
d2e6d5d6 2398
befb629b
AK
2399 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2400 (units <
2401 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2402 (super->migr_rec->rec_status ==
2403 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2404 units++;
2405
d2e6d5d6 2406 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2407
d2e6d5d6
AK
2408 dprintf("IMSM: General Migration checkpoint : %llu "
2409 "(%llu) -> read reshape progress : %llu\n",
19986c72
MB
2410 (unsigned long long)units,
2411 (unsigned long long)blocks_per_unit,
2412 info->reshape_progress);
75156c46
AK
2413
2414 used_disks = imsm_num_data_members(dev, 1);
2415 if (used_disks > 0) {
2416 array_blocks = map->blocks_per_member *
2417 used_disks;
2418 /* round array size down to closest MB
2419 */
2420 info->custom_array_size = (array_blocks
2421 >> SECT_PER_MB_SHIFT)
2422 << SECT_PER_MB_SHIFT;
2423 }
d2e6d5d6 2424 }
1e5c6983
DW
2425 case MIGR_VERIFY:
2426 /* we could emulate the checkpointing of
2427 * 'sync_action=check' migrations, but for now
2428 * we just immediately complete them
2429 */
2430 case MIGR_REBUILD:
2431 /* this is handled by container_content_imsm() */
1e5c6983
DW
2432 case MIGR_STATE_CHANGE:
2433 /* FIXME handle other migrations */
2434 default:
2435 /* we are not dirty, so... */
2436 info->resync_start = MaxSector;
2437 }
b6796ce1 2438 }
301406c9
DW
2439
2440 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2441 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2442
f35f2525
N
2443 info->array.major_version = -1;
2444 info->array.minor_version = -2;
e207da2f
AW
2445 devname = devnum2devname(st->container_dev);
2446 *info->text_version = '\0';
2447 if (devname)
2448 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2449 free(devname);
a67dd8cc 2450 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2451 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2452
2453 if (dmap) {
2454 int i, j;
2455 for (i=0; i<map_disks; i++) {
2456 dmap[i] = 0;
2457 if (i < info->array.raid_disks) {
2458 struct imsm_disk *dsk;
98130f40 2459 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2460 dsk = get_imsm_disk(super, j);
2461 if (dsk && (dsk->status & CONFIGURED_DISK))
2462 dmap[i] = 1;
2463 }
2464 }
2465 }
81ac8b4d 2466}
bf5a934a 2467
97b4d0e9
DW
2468static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2469static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2470
2471static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2472{
2473 struct dl *d;
2474
2475 for (d = super->missing; d; d = d->next)
2476 if (d->index == index)
2477 return &d->disk;
2478 return NULL;
2479}
2480
a5d85af7 2481static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2482{
2483 struct intel_super *super = st->sb;
4f5bc454 2484 struct imsm_disk *disk;
a5d85af7 2485 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2486 int max_enough = -1;
2487 int i;
2488 struct imsm_super *mpb;
4f5bc454 2489
bf5a934a 2490 if (super->current_vol >= 0) {
a5d85af7 2491 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2492 return;
2493 }
95eeceeb 2494 memset(info, 0, sizeof(*info));
d23fe947
DW
2495
2496 /* Set raid_disks to zero so that Assemble will always pull in valid
2497 * spares
2498 */
2499 info->array.raid_disks = 0;
cdddbdbc
DW
2500 info->array.level = LEVEL_CONTAINER;
2501 info->array.layout = 0;
2502 info->array.md_minor = -1;
c2c087e6 2503 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2504 info->array.utime = 0;
2505 info->array.chunk_size = 0;
2506
2507 info->disk.major = 0;
2508 info->disk.minor = 0;
cdddbdbc 2509 info->disk.raid_disk = -1;
c2c087e6 2510 info->reshape_active = 0;
f35f2525
N
2511 info->array.major_version = -1;
2512 info->array.minor_version = -2;
c2c087e6 2513 strcpy(info->text_version, "imsm");
a67dd8cc 2514 info->safe_mode_delay = 0;
c2c087e6
DW
2515 info->disk.number = -1;
2516 info->disk.state = 0;
c5afc314 2517 info->name[0] = 0;
921d9e16 2518 info->recovery_start = MaxSector;
3ad25638 2519 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
c2c087e6 2520
97b4d0e9 2521 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2522 mpb = super->anchor;
97b4d0e9 2523
ab3cb6b3
N
2524 for (i = 0; i < mpb->num_raid_devs; i++) {
2525 struct imsm_dev *dev = get_imsm_dev(super, i);
2526 int failed, enough, j, missing = 0;
2527 struct imsm_map *map;
2528 __u8 state;
97b4d0e9 2529
ab3cb6b3
N
2530 failed = imsm_count_failed(super, dev);
2531 state = imsm_check_degraded(super, dev, failed);
a510b1c7 2532 map = get_imsm_map(dev, 0);
ab3cb6b3
N
2533
2534 /* any newly missing disks?
2535 * (catches single-degraded vs double-degraded)
2536 */
2537 for (j = 0; j < map->num_members; j++) {
a510b1c7 2538 __u32 ord = get_imsm_ord_tbl_ent(dev, i, 0);
ab3cb6b3
N
2539 __u32 idx = ord_to_idx(ord);
2540
2541 if (!(ord & IMSM_ORD_REBUILD) &&
2542 get_imsm_missing(super, idx)) {
2543 missing = 1;
2544 break;
2545 }
97b4d0e9 2546 }
ab3cb6b3
N
2547
2548 if (state == IMSM_T_STATE_FAILED)
2549 enough = -1;
2550 else if (state == IMSM_T_STATE_DEGRADED &&
2551 (state != map->map_state || missing))
2552 enough = 0;
2553 else /* we're normal, or already degraded */
2554 enough = 1;
2555
2556 /* in the missing/failed disk case check to see
2557 * if at least one array is runnable
2558 */
2559 max_enough = max(max_enough, enough);
2560 }
2561 dprintf("%s: enough: %d\n", __func__, max_enough);
2562 info->container_enough = max_enough;
97b4d0e9 2563
4a04ec6c 2564 if (super->disks) {
14e8215b
DW
2565 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2566
b9f594fe 2567 disk = &super->disks->disk;
14e8215b
DW
2568 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2569 info->component_size = reserved;
25ed7e59 2570 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2571 /* we don't change info->disk.raid_disk here because
2572 * this state will be finalized in mdmon after we have
2573 * found the 'most fresh' version of the metadata
2574 */
25ed7e59
DW
2575 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2576 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2577 }
a575e2a7
DW
2578
2579 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2580 * ->compare_super may have updated the 'num_raid_devs' field for spares
2581 */
2582 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2583 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2584 else
2585 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2586
2587 /* I don't know how to compute 'map' on imsm, so use safe default */
2588 if (map) {
2589 int i;
2590 for (i = 0; i < map_disks; i++)
2591 map[i] = 1;
2592 }
2593
cdddbdbc
DW
2594}
2595
5c4cd5da
AC
2596/* allocates memory and fills disk in mdinfo structure
2597 * for each disk in array */
2598struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2599{
2600 struct mdinfo *mddev = NULL;
2601 struct intel_super *super = st->sb;
2602 struct imsm_disk *disk;
2603 int count = 0;
2604 struct dl *dl;
2605 if (!super || !super->disks)
2606 return NULL;
2607 dl = super->disks;
2608 mddev = malloc(sizeof(*mddev));
2609 if (!mddev) {
2610 fprintf(stderr, Name ": Failed to allocate memory.\n");
2611 return NULL;
2612 }
2613 memset(mddev, 0, sizeof(*mddev));
2614 while (dl) {
2615 struct mdinfo *tmp;
2616 disk = &dl->disk;
2617 tmp = malloc(sizeof(*tmp));
2618 if (!tmp) {
2619 fprintf(stderr, Name ": Failed to allocate memory.\n");
2620 if (mddev)
2621 sysfs_free(mddev);
2622 return NULL;
2623 }
2624 memset(tmp, 0, sizeof(*tmp));
2625 if (mddev->devs)
2626 tmp->next = mddev->devs;
2627 mddev->devs = tmp;
2628 tmp->disk.number = count++;
2629 tmp->disk.major = dl->major;
2630 tmp->disk.minor = dl->minor;
2631 tmp->disk.state = is_configured(disk) ?
2632 (1 << MD_DISK_ACTIVE) : 0;
2633 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2634 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2635 tmp->disk.raid_disk = -1;
2636 dl = dl->next;
2637 }
2638 return mddev;
2639}
2640
cdddbdbc
DW
2641static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2642 char *update, char *devname, int verbose,
2643 int uuid_set, char *homehost)
2644{
f352c545
DW
2645 /* For 'assemble' and 'force' we need to return non-zero if any
2646 * change was made. For others, the return value is ignored.
2647 * Update options are:
2648 * force-one : This device looks a bit old but needs to be included,
2649 * update age info appropriately.
2650 * assemble: clear any 'faulty' flag to allow this device to
2651 * be assembled.
2652 * force-array: Array is degraded but being forced, mark it clean
2653 * if that will be needed to assemble it.
2654 *
2655 * newdev: not used ????
2656 * grow: Array has gained a new device - this is currently for
2657 * linear only
2658 * resync: mark as dirty so a resync will happen.
2659 * name: update the name - preserving the homehost
6e46bf34 2660 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2661 *
2662 * Following are not relevant for this imsm:
2663 * sparc2.2 : update from old dodgey metadata
2664 * super-minor: change the preferred_minor number
2665 * summaries: update redundant counters.
f352c545
DW
2666 * homehost: update the recorded homehost
2667 * _reshape_progress: record new reshape_progress position.
2668 */
6e46bf34
DW
2669 int rv = 1;
2670 struct intel_super *super = st->sb;
2671 struct imsm_super *mpb;
f352c545 2672
6e46bf34
DW
2673 /* we can only update container info */
2674 if (!super || super->current_vol >= 0 || !super->anchor)
2675 return 1;
2676
2677 mpb = super->anchor;
2678
2679 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2680 rv = -1;
6e46bf34
DW
2681 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2682 mpb->orig_family_num = *((__u32 *) info->update_private);
2683 rv = 0;
2684 } else if (strcmp(update, "uuid") == 0) {
2685 __u32 *new_family = malloc(sizeof(*new_family));
2686
2687 /* update orig_family_number with the incoming random
2688 * data, report the new effective uuid, and store the
2689 * new orig_family_num for future updates.
2690 */
2691 if (new_family) {
2692 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2693 uuid_from_super_imsm(st, info->uuid);
2694 *new_family = mpb->orig_family_num;
2695 info->update_private = new_family;
2696 rv = 0;
2697 }
2698 } else if (strcmp(update, "assemble") == 0)
2699 rv = 0;
2700 else
1e2b2765 2701 rv = -1;
f352c545 2702
6e46bf34
DW
2703 /* successful update? recompute checksum */
2704 if (rv == 0)
2705 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2706
2707 return rv;
cdddbdbc
DW
2708}
2709
c2c087e6 2710static size_t disks_to_mpb_size(int disks)
cdddbdbc 2711{
c2c087e6 2712 size_t size;
cdddbdbc 2713
c2c087e6
DW
2714 size = sizeof(struct imsm_super);
2715 size += (disks - 1) * sizeof(struct imsm_disk);
2716 size += 2 * sizeof(struct imsm_dev);
2717 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2718 size += (4 - 2) * sizeof(struct imsm_map);
2719 /* 4 possible disk_ord_tbl's */
2720 size += 4 * (disks - 1) * sizeof(__u32);
2721
2722 return size;
2723}
2724
2725static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2726{
2727 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2728 return 0;
2729
2730 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2731}
2732
ba2de7ba
DW
2733static void free_devlist(struct intel_super *super)
2734{
2735 struct intel_dev *dv;
2736
2737 while (super->devlist) {
2738 dv = super->devlist->next;
2739 free(super->devlist->dev);
2740 free(super->devlist);
2741 super->devlist = dv;
2742 }
2743}
2744
2745static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2746{
2747 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2748}
2749
cdddbdbc
DW
2750static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2751{
2752 /*
2753 * return:
2754 * 0 same, or first was empty, and second was copied
2755 * 1 second had wrong number
2756 * 2 wrong uuid
2757 * 3 wrong other info
2758 */
2759 struct intel_super *first = st->sb;
2760 struct intel_super *sec = tst->sb;
2761
2762 if (!first) {
2763 st->sb = tst->sb;
2764 tst->sb = NULL;
2765 return 0;
2766 }
8603ea6f
LM
2767 /* in platform dependent environment test if the disks
2768 * use the same Intel hba
2769 */
2770 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2771 if (!first->hba || !sec->hba ||
2772 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2773 fprintf(stderr,
2774 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2775 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2776 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2777 return 3;
2778 }
2779 }
cdddbdbc 2780
d23fe947
DW
2781 /* if an anchor does not have num_raid_devs set then it is a free
2782 * floating spare
2783 */
2784 if (first->anchor->num_raid_devs > 0 &&
2785 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2786 /* Determine if these disks might ever have been
2787 * related. Further disambiguation can only take place
2788 * in load_super_imsm_all
2789 */
2790 __u32 first_family = first->anchor->orig_family_num;
2791 __u32 sec_family = sec->anchor->orig_family_num;
2792
f796af5d
DW
2793 if (memcmp(first->anchor->sig, sec->anchor->sig,
2794 MAX_SIGNATURE_LENGTH) != 0)
2795 return 3;
2796
a2b97981
DW
2797 if (first_family == 0)
2798 first_family = first->anchor->family_num;
2799 if (sec_family == 0)
2800 sec_family = sec->anchor->family_num;
2801
2802 if (first_family != sec_family)
d23fe947 2803 return 3;
f796af5d 2804
d23fe947 2805 }
cdddbdbc 2806
f796af5d 2807
3e372e5a
DW
2808 /* if 'first' is a spare promote it to a populated mpb with sec's
2809 * family number
2810 */
2811 if (first->anchor->num_raid_devs == 0 &&
2812 sec->anchor->num_raid_devs > 0) {
78d30f94 2813 int i;
ba2de7ba
DW
2814 struct intel_dev *dv;
2815 struct imsm_dev *dev;
78d30f94
DW
2816
2817 /* we need to copy raid device info from sec if an allocation
2818 * fails here we don't associate the spare
2819 */
2820 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2821 dv = malloc(sizeof(*dv));
2822 if (!dv)
2823 break;
2824 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2825 if (!dev) {
2826 free(dv);
2827 break;
78d30f94 2828 }
ba2de7ba
DW
2829 dv->dev = dev;
2830 dv->index = i;
2831 dv->next = first->devlist;
2832 first->devlist = dv;
78d30f94 2833 }
709743c5 2834 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2835 /* allocation failure */
2836 free_devlist(first);
2837 fprintf(stderr, "imsm: failed to associate spare\n");
2838 return 3;
78d30f94 2839 }
3e372e5a 2840 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2841 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2842 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2843 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2844 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2845 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2846 }
2847
cdddbdbc
DW
2848 return 0;
2849}
2850
0030e8d6
DW
2851static void fd2devname(int fd, char *name)
2852{
2853 struct stat st;
2854 char path[256];
33a6535d 2855 char dname[PATH_MAX];
0030e8d6
DW
2856 char *nm;
2857 int rv;
2858
2859 name[0] = '\0';
2860 if (fstat(fd, &st) != 0)
2861 return;
2862 sprintf(path, "/sys/dev/block/%d:%d",
2863 major(st.st_rdev), minor(st.st_rdev));
2864
9cf014ec 2865 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
2866 if (rv <= 0)
2867 return;
2868
2869 dname[rv] = '\0';
2870 nm = strrchr(dname, '/');
7897de29
JS
2871 if (nm) {
2872 nm++;
2873 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2874 }
0030e8d6
DW
2875}
2876
cdddbdbc
DW
2877extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2878
2879static int imsm_read_serial(int fd, char *devname,
2880 __u8 serial[MAX_RAID_SERIAL_LEN])
2881{
2882 unsigned char scsi_serial[255];
cdddbdbc
DW
2883 int rv;
2884 int rsp_len;
1f24f035 2885 int len;
316e2bf4
DW
2886 char *dest;
2887 char *src;
2888 char *rsp_buf;
2889 int i;
cdddbdbc
DW
2890
2891 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2892
f9ba0ff1
DW
2893 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2894
40ebbb9c 2895 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2896 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2897 fd2devname(fd, (char *) serial);
0030e8d6
DW
2898 return 0;
2899 }
2900
cdddbdbc
DW
2901 if (rv != 0) {
2902 if (devname)
2903 fprintf(stderr,
2904 Name ": Failed to retrieve serial for %s\n",
2905 devname);
2906 return rv;
2907 }
2908
2909 rsp_len = scsi_serial[3];
03cd4cc8
DW
2910 if (!rsp_len) {
2911 if (devname)
2912 fprintf(stderr,
2913 Name ": Failed to retrieve serial for %s\n",
2914 devname);
2915 return 2;
2916 }
1f24f035 2917 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2918
316e2bf4
DW
2919 /* trim all whitespace and non-printable characters and convert
2920 * ':' to ';'
2921 */
2922 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2923 src = &rsp_buf[i];
2924 if (*src > 0x20) {
2925 /* ':' is reserved for use in placeholder serial
2926 * numbers for missing disks
2927 */
2928 if (*src == ':')
2929 *dest++ = ';';
2930 else
2931 *dest++ = *src;
2932 }
2933 }
2934 len = dest - rsp_buf;
2935 dest = rsp_buf;
2936
2937 /* truncate leading characters */
2938 if (len > MAX_RAID_SERIAL_LEN) {
2939 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2940 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2941 }
5c3db629 2942
5c3db629 2943 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2944 memcpy(serial, dest, len);
cdddbdbc
DW
2945
2946 return 0;
2947}
2948
1f24f035
DW
2949static int serialcmp(__u8 *s1, __u8 *s2)
2950{
2951 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2952}
2953
2954static void serialcpy(__u8 *dest, __u8 *src)
2955{
2956 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2957}
2958
54c2c1ea
DW
2959static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2960{
2961 struct dl *dl;
2962
2963 for (dl = super->disks; dl; dl = dl->next)
2964 if (serialcmp(dl->serial, serial) == 0)
2965 break;
2966
2967 return dl;
2968}
2969
a2b97981
DW
2970static struct imsm_disk *
2971__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2972{
2973 int i;
2974
2975 for (i = 0; i < mpb->num_disks; i++) {
2976 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2977
2978 if (serialcmp(disk->serial, serial) == 0) {
2979 if (idx)
2980 *idx = i;
2981 return disk;
2982 }
2983 }
2984
2985 return NULL;
2986}
2987
cdddbdbc
DW
2988static int
2989load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2990{
a2b97981 2991 struct imsm_disk *disk;
cdddbdbc
DW
2992 struct dl *dl;
2993 struct stat stb;
cdddbdbc 2994 int rv;
a2b97981 2995 char name[40];
d23fe947
DW
2996 __u8 serial[MAX_RAID_SERIAL_LEN];
2997
2998 rv = imsm_read_serial(fd, devname, serial);
2999
3000 if (rv != 0)
3001 return 2;
3002
a2b97981 3003 dl = calloc(1, sizeof(*dl));
b9f594fe 3004 if (!dl) {
cdddbdbc
DW
3005 if (devname)
3006 fprintf(stderr,
3007 Name ": failed to allocate disk buffer for %s\n",
3008 devname);
3009 return 2;
3010 }
cdddbdbc 3011
a2b97981
DW
3012 fstat(fd, &stb);
3013 dl->major = major(stb.st_rdev);
3014 dl->minor = minor(stb.st_rdev);
3015 dl->next = super->disks;
3016 dl->fd = keep_fd ? fd : -1;
3017 assert(super->disks == NULL);
3018 super->disks = dl;
3019 serialcpy(dl->serial, serial);
3020 dl->index = -2;
3021 dl->e = NULL;
3022 fd2devname(fd, name);
3023 if (devname)
3024 dl->devname = strdup(devname);
3025 else
3026 dl->devname = strdup(name);
cdddbdbc 3027
d23fe947 3028 /* look up this disk's index in the current anchor */
a2b97981
DW
3029 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3030 if (disk) {
3031 dl->disk = *disk;
3032 /* only set index on disks that are a member of a
3033 * populated contianer, i.e. one with raid_devs
3034 */
3035 if (is_failed(&dl->disk))
3f6efecc 3036 dl->index = -2;
a2b97981
DW
3037 else if (is_spare(&dl->disk))
3038 dl->index = -1;
3f6efecc
DW
3039 }
3040
949c47a0
DW
3041 return 0;
3042}
3043
0e600426 3044#ifndef MDASSEMBLE
0c046afd
DW
3045/* When migrating map0 contains the 'destination' state while map1
3046 * contains the current state. When not migrating map0 contains the
3047 * current state. This routine assumes that map[0].map_state is set to
3048 * the current array state before being called.
3049 *
3050 * Migration is indicated by one of the following states
3051 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3052 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3053 * map1state=unitialized)
1484e727 3054 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3055 * map1state=normal)
e3bba0e0 3056 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3057 * map1state=degraded)
8e59f3d8
AK
3058 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3059 * map1state=normal)
0c046afd 3060 */
8e59f3d8
AK
3061static void migrate(struct imsm_dev *dev, struct intel_super *super,
3062 __u8 to_state, int migr_type)
3393c6af 3063{
0c046afd 3064 struct imsm_map *dest;
3393c6af
DW
3065 struct imsm_map *src = get_imsm_map(dev, 0);
3066
0c046afd 3067 dev->vol.migr_state = 1;
1484e727 3068 set_migr_type(dev, migr_type);
f8f603f1 3069 dev->vol.curr_migr_unit = 0;
0c046afd
DW
3070 dest = get_imsm_map(dev, 1);
3071
0556e1a2 3072 /* duplicate and then set the target end state in map[0] */
3393c6af 3073 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3074 if ((migr_type == MIGR_REBUILD) ||
3075 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3076 __u32 ord;
3077 int i;
3078
3079 for (i = 0; i < src->num_members; i++) {
3080 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3081 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3082 }
3083 }
3084
8e59f3d8
AK
3085 if (migr_type == MIGR_GEN_MIGR)
3086 /* Clear migration record */
3087 memset(super->migr_rec, 0, sizeof(struct migr_record));
3088
0c046afd 3089 src->map_state = to_state;
949c47a0 3090}
f8f603f1
DW
3091
3092static void end_migration(struct imsm_dev *dev, __u8 map_state)
3093{
3094 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 3095 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 3096 int i, j;
0556e1a2
DW
3097
3098 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3099 * completed in the last migration.
3100 *
28bce06f 3101 * FIXME add support for raid-level-migration
0556e1a2
DW
3102 */
3103 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
3104 for (j = 0; j < map->num_members; j++)
3105 /* during online capacity expansion
3106 * disks position can be changed if takeover is used
3107 */
3108 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3109 ord_to_idx(prev->disk_ord_tbl[i])) {
3110 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3111 break;
3112 }
f8f603f1
DW
3113
3114 dev->vol.migr_state = 0;
ea672ee1 3115 set_migr_type(dev, 0);
f8f603f1
DW
3116 dev->vol.curr_migr_unit = 0;
3117 map->map_state = map_state;
3118}
0e600426 3119#endif
949c47a0
DW
3120
3121static int parse_raid_devices(struct intel_super *super)
3122{
3123 int i;
3124 struct imsm_dev *dev_new;
4d7b1503 3125 size_t len, len_migr;
401d313b 3126 size_t max_len = 0;
4d7b1503
DW
3127 size_t space_needed = 0;
3128 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3129
3130 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3131 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3132 struct intel_dev *dv;
949c47a0 3133
4d7b1503
DW
3134 len = sizeof_imsm_dev(dev_iter, 0);
3135 len_migr = sizeof_imsm_dev(dev_iter, 1);
3136 if (len_migr > len)
3137 space_needed += len_migr - len;
3138
ba2de7ba
DW
3139 dv = malloc(sizeof(*dv));
3140 if (!dv)
3141 return 1;
401d313b
AK
3142 if (max_len < len_migr)
3143 max_len = len_migr;
3144 if (max_len > len_migr)
3145 space_needed += max_len - len_migr;
3146 dev_new = malloc(max_len);
ba2de7ba
DW
3147 if (!dev_new) {
3148 free(dv);
949c47a0 3149 return 1;
ba2de7ba 3150 }
949c47a0 3151 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3152 dv->dev = dev_new;
3153 dv->index = i;
3154 dv->next = super->devlist;
3155 super->devlist = dv;
949c47a0 3156 }
cdddbdbc 3157
4d7b1503
DW
3158 /* ensure that super->buf is large enough when all raid devices
3159 * are migrating
3160 */
3161 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3162 void *buf;
3163
3164 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3165 if (posix_memalign(&buf, 512, len) != 0)
3166 return 1;
3167
1f45a8ad
DW
3168 memcpy(buf, super->buf, super->len);
3169 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3170 free(super->buf);
3171 super->buf = buf;
3172 super->len = len;
3173 }
3174
cdddbdbc
DW
3175 return 0;
3176}
3177
604b746f
JD
3178/* retrieve a pointer to the bbm log which starts after all raid devices */
3179struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3180{
3181 void *ptr = NULL;
3182
3183 if (__le32_to_cpu(mpb->bbm_log_size)) {
3184 ptr = mpb;
3185 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3186 }
3187
3188 return ptr;
3189}
3190
e2f41b2c
AK
3191/*******************************************************************************
3192 * Function: check_mpb_migr_compatibility
3193 * Description: Function checks for unsupported migration features:
3194 * - migration optimization area (pba_of_lba0)
3195 * - descending reshape (ascending_migr)
3196 * Parameters:
3197 * super : imsm metadata information
3198 * Returns:
3199 * 0 : migration is compatible
3200 * -1 : migration is not compatible
3201 ******************************************************************************/
3202int check_mpb_migr_compatibility(struct intel_super *super)
3203{
3204 struct imsm_map *map0, *map1;
3205 struct migr_record *migr_rec = super->migr_rec;
3206 int i;
3207
3208 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3209 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3210
3211 if (dev_iter &&
3212 dev_iter->vol.migr_state == 1 &&
3213 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3214 /* This device is migrating */
3215 map0 = get_imsm_map(dev_iter, 0);
3216 map1 = get_imsm_map(dev_iter, 1);
3217 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3218 /* migration optimization area was used */
3219 return -1;
3220 if (migr_rec->ascending_migr == 0
3221 && migr_rec->dest_depth_per_unit > 0)
3222 /* descending reshape not supported yet */
3223 return -1;
3224 }
3225 }
3226 return 0;
3227}
3228
d23fe947 3229static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3230
cdddbdbc 3231/* load_imsm_mpb - read matrix metadata
f2f5c343 3232 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3233 */
3234static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3235{
3236 unsigned long long dsize;
cdddbdbc
DW
3237 unsigned long long sectors;
3238 struct stat;
6416d527 3239 struct imsm_super *anchor;
cdddbdbc
DW
3240 __u32 check_sum;
3241
cdddbdbc 3242 get_dev_size(fd, NULL, &dsize);
64436f06
N
3243 if (dsize < 1024) {
3244 if (devname)
3245 fprintf(stderr,
3246 Name ": %s: device to small for imsm\n",
3247 devname);
3248 return 1;
3249 }
cdddbdbc
DW
3250
3251 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3252 if (devname)
2e062e82
AK
3253 fprintf(stderr, Name
3254 ": Cannot seek to anchor block on %s: %s\n",
cdddbdbc
DW
3255 devname, strerror(errno));
3256 return 1;
3257 }
3258
949c47a0 3259 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3260 if (devname)
3261 fprintf(stderr,
3262 Name ": Failed to allocate imsm anchor buffer"
3263 " on %s\n", devname);
3264 return 1;
3265 }
949c47a0 3266 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3267 if (devname)
3268 fprintf(stderr,
3269 Name ": Cannot read anchor block on %s: %s\n",
3270 devname, strerror(errno));
6416d527 3271 free(anchor);
cdddbdbc
DW
3272 return 1;
3273 }
3274
6416d527 3275 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3276 if (devname)
3277 fprintf(stderr,
3278 Name ": no IMSM anchor on %s\n", devname);
6416d527 3279 free(anchor);
cdddbdbc
DW
3280 return 2;
3281 }
3282
d23fe947 3283 __free_imsm(super, 0);
f2f5c343
LM
3284 /* reload capability and hba */
3285
3286 /* capability and hba must be updated with new super allocation */
d424212e 3287 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3288 super->len = ROUND_UP(anchor->mpb_size, 512);
3289 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3290 if (devname)
3291 fprintf(stderr,
3292 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3293 super->len);
6416d527 3294 free(anchor);
cdddbdbc
DW
3295 return 2;
3296 }
949c47a0 3297 memcpy(super->buf, anchor, 512);
cdddbdbc 3298
6416d527
NB
3299 sectors = mpb_sectors(anchor) - 1;
3300 free(anchor);
8e59f3d8
AK
3301
3302 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3303 fprintf(stderr, Name
3304 ": %s could not allocate migr_rec buffer\n", __func__);
3305 free(super->buf);
3306 return 2;
3307 }
3308
949c47a0 3309 if (!sectors) {
ecf45690
DW
3310 check_sum = __gen_imsm_checksum(super->anchor);
3311 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3312 if (devname)
3313 fprintf(stderr,
3314 Name ": IMSM checksum %x != %x on %s\n",
3315 check_sum,
3316 __le32_to_cpu(super->anchor->check_sum),
3317 devname);
3318 return 2;
3319 }
3320
a2b97981 3321 return 0;
949c47a0 3322 }
cdddbdbc
DW
3323
3324 /* read the extended mpb */
3325 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3326 if (devname)
3327 fprintf(stderr,
3328 Name ": Cannot seek to extended mpb on %s: %s\n",
3329 devname, strerror(errno));
3330 return 1;
3331 }
3332
f21e18ca 3333 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3334 if (devname)
3335 fprintf(stderr,
3336 Name ": Cannot read extended mpb on %s: %s\n",
3337 devname, strerror(errno));
3338 return 2;
3339 }
3340
949c47a0
DW
3341 check_sum = __gen_imsm_checksum(super->anchor);
3342 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3343 if (devname)
3344 fprintf(stderr,
3345 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3346 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3347 devname);
db575f3b 3348 return 3;
cdddbdbc
DW
3349 }
3350
604b746f
JD
3351 /* FIXME the BBM log is disk specific so we cannot use this global
3352 * buffer for all disks. Ok for now since we only look at the global
3353 * bbm_log_size parameter to gate assembly
3354 */
3355 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3356
a2b97981
DW
3357 return 0;
3358}
3359
8e59f3d8
AK
3360static int read_imsm_migr_rec(int fd, struct intel_super *super);
3361
a2b97981
DW
3362static int
3363load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3364{
3365 int err;
3366
3367 err = load_imsm_mpb(fd, super, devname);
3368 if (err)
3369 return err;
3370 err = load_imsm_disk(fd, super, devname, keep_fd);
3371 if (err)
3372 return err;
3373 err = parse_raid_devices(super);
4d7b1503 3374
a2b97981 3375 return err;
cdddbdbc
DW
3376}
3377
ae6aad82
DW
3378static void __free_imsm_disk(struct dl *d)
3379{
3380 if (d->fd >= 0)
3381 close(d->fd);
3382 if (d->devname)
3383 free(d->devname);
0dcecb2e
DW
3384 if (d->e)
3385 free(d->e);
ae6aad82
DW
3386 free(d);
3387
3388}
1a64be56 3389
cdddbdbc
DW
3390static void free_imsm_disks(struct intel_super *super)
3391{
47ee5a45 3392 struct dl *d;
cdddbdbc 3393
47ee5a45
DW
3394 while (super->disks) {
3395 d = super->disks;
cdddbdbc 3396 super->disks = d->next;
ae6aad82 3397 __free_imsm_disk(d);
cdddbdbc 3398 }
cb82edca
AK
3399 while (super->disk_mgmt_list) {
3400 d = super->disk_mgmt_list;
3401 super->disk_mgmt_list = d->next;
3402 __free_imsm_disk(d);
3403 }
47ee5a45
DW
3404 while (super->missing) {
3405 d = super->missing;
3406 super->missing = d->next;
3407 __free_imsm_disk(d);
3408 }
3409
cdddbdbc
DW
3410}
3411
9ca2c81c 3412/* free all the pieces hanging off of a super pointer */
d23fe947 3413static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3414{
88654014
LM
3415 struct intel_hba *elem, *next;
3416
9ca2c81c 3417 if (super->buf) {
949c47a0 3418 free(super->buf);
9ca2c81c
DW
3419 super->buf = NULL;
3420 }
f2f5c343
LM
3421 /* unlink capability description */
3422 super->orom = NULL;
8e59f3d8
AK
3423 if (super->migr_rec_buf) {
3424 free(super->migr_rec_buf);
3425 super->migr_rec_buf = NULL;
3426 }
d23fe947
DW
3427 if (free_disks)
3428 free_imsm_disks(super);
ba2de7ba 3429 free_devlist(super);
88654014
LM
3430 elem = super->hba;
3431 while (elem) {
3432 if (elem->path)
3433 free((void *)elem->path);
3434 next = elem->next;
3435 free(elem);
3436 elem = next;
88c32bb1 3437 }
88654014 3438 super->hba = NULL;
cdddbdbc
DW
3439}
3440
9ca2c81c
DW
3441static void free_imsm(struct intel_super *super)
3442{
d23fe947 3443 __free_imsm(super, 1);
9ca2c81c
DW
3444 free(super);
3445}
cdddbdbc
DW
3446
3447static void free_super_imsm(struct supertype *st)
3448{
3449 struct intel_super *super = st->sb;
3450
3451 if (!super)
3452 return;
3453
3454 free_imsm(super);
3455 st->sb = NULL;
3456}
3457
49133e57 3458static struct intel_super *alloc_super(void)
c2c087e6
DW
3459{
3460 struct intel_super *super = malloc(sizeof(*super));
3461
3462 if (super) {
3463 memset(super, 0, sizeof(*super));
bf5a934a 3464 super->current_vol = -1;
0dcecb2e 3465 super->create_offset = ~((__u32 ) 0);
c2c087e6 3466 }
c2c087e6
DW
3467 return super;
3468}
3469
f0f5a016
LM
3470/*
3471 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3472 */
d424212e 3473static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3474{
3475 struct sys_dev *hba_name;
3476 int rv = 0;
3477
3478 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3479 super->orom = NULL;
f0f5a016
LM
3480 super->hba = NULL;
3481 return 0;
3482 }
3483 hba_name = find_disk_attached_hba(fd, NULL);
3484 if (!hba_name) {
d424212e 3485 if (devname)
f0f5a016
LM
3486 fprintf(stderr,
3487 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3488 devname);
f0f5a016
LM
3489 return 1;
3490 }
3491 rv = attach_hba_to_super(super, hba_name);
3492 if (rv == 2) {
d424212e
N
3493 if (devname) {
3494 struct intel_hba *hba = super->hba;
f0f5a016 3495
f0f5a016
LM
3496 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3497 "controller (%s),\n"
3498 " but the container is assigned to Intel(R) "
3499 "%s RAID controller (",
d424212e 3500 devname,
f0f5a016
LM
3501 hba_name->path,
3502 hba_name->pci_id ? : "Err!",
3503 get_sys_dev_type(hba_name->type));
3504
f0f5a016
LM
3505 while (hba) {
3506 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3507 if (hba->next)
3508 fprintf(stderr, ", ");
3509 hba = hba->next;
3510 }
3511
3512 fprintf(stderr, ").\n"
3513 " Mixing devices attached to different controllers "
3514 "is not allowed.\n");
3515 }
3516 free_sys_dev(&hba_name);
3517 return 2;
3518 }
f2f5c343 3519 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3520 free_sys_dev(&hba_name);
f2f5c343
LM
3521 if (!super->orom)
3522 return 3;
f0f5a016
LM
3523 return 0;
3524}
3525
47ee5a45
DW
3526/* find_missing - helper routine for load_super_imsm_all that identifies
3527 * disks that have disappeared from the system. This routine relies on
3528 * the mpb being uptodate, which it is at load time.
3529 */
3530static int find_missing(struct intel_super *super)
3531{
3532 int i;
3533 struct imsm_super *mpb = super->anchor;
3534 struct dl *dl;
3535 struct imsm_disk *disk;
47ee5a45
DW
3536
3537 for (i = 0; i < mpb->num_disks; i++) {
3538 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3539 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3540 if (dl)
3541 continue;
47ee5a45
DW
3542
3543 dl = malloc(sizeof(*dl));
3544 if (!dl)
3545 return 1;
3546 dl->major = 0;
3547 dl->minor = 0;
3548 dl->fd = -1;
3549 dl->devname = strdup("missing");
3550 dl->index = i;
3551 serialcpy(dl->serial, disk->serial);
3552 dl->disk = *disk;
689c9bf3 3553 dl->e = NULL;
47ee5a45
DW
3554 dl->next = super->missing;
3555 super->missing = dl;
3556 }
3557
3558 return 0;
3559}
3560
3960e579 3561#ifndef MDASSEMBLE
a2b97981
DW
3562static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3563{
3564 struct intel_disk *idisk = disk_list;
3565
3566 while (idisk) {
3567 if (serialcmp(idisk->disk.serial, serial) == 0)
3568 break;
3569 idisk = idisk->next;
3570 }
3571
3572 return idisk;
3573}
3574
3575static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3576 struct intel_super *super,
3577 struct intel_disk **disk_list)
3578{
3579 struct imsm_disk *d = &super->disks->disk;
3580 struct imsm_super *mpb = super->anchor;
3581 int i, j;
3582
3583 for (i = 0; i < tbl_size; i++) {
3584 struct imsm_super *tbl_mpb = table[i]->anchor;
3585 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3586
3587 if (tbl_mpb->family_num == mpb->family_num) {
3588 if (tbl_mpb->check_sum == mpb->check_sum) {
3589 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3590 __func__, super->disks->major,
3591 super->disks->minor,
3592 table[i]->disks->major,
3593 table[i]->disks->minor);
3594 break;
3595 }
3596
3597 if (((is_configured(d) && !is_configured(tbl_d)) ||
3598 is_configured(d) == is_configured(tbl_d)) &&
3599 tbl_mpb->generation_num < mpb->generation_num) {
3600 /* current version of the mpb is a
3601 * better candidate than the one in
3602 * super_table, but copy over "cross
3603 * generational" status
3604 */
3605 struct intel_disk *idisk;
3606
3607 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3608 __func__, super->disks->major,
3609 super->disks->minor,
3610 table[i]->disks->major,
3611 table[i]->disks->minor);
3612
3613 idisk = disk_list_get(tbl_d->serial, *disk_list);
3614 if (idisk && is_failed(&idisk->disk))
3615 tbl_d->status |= FAILED_DISK;
3616 break;
3617 } else {
3618 struct intel_disk *idisk;
3619 struct imsm_disk *disk;
3620
3621 /* tbl_mpb is more up to date, but copy
3622 * over cross generational status before
3623 * returning
3624 */
3625 disk = __serial_to_disk(d->serial, mpb, NULL);
3626 if (disk && is_failed(disk))
3627 d->status |= FAILED_DISK;
3628
3629 idisk = disk_list_get(d->serial, *disk_list);
3630 if (idisk) {
3631 idisk->owner = i;
3632 if (disk && is_configured(disk))
3633 idisk->disk.status |= CONFIGURED_DISK;
3634 }
3635
3636 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3637 __func__, super->disks->major,
3638 super->disks->minor,
3639 table[i]->disks->major,
3640 table[i]->disks->minor);
3641
3642 return tbl_size;
3643 }
3644 }
3645 }
3646
3647 if (i >= tbl_size)
3648 table[tbl_size++] = super;
3649 else
3650 table[i] = super;
3651
3652 /* update/extend the merged list of imsm_disk records */
3653 for (j = 0; j < mpb->num_disks; j++) {
3654 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3655 struct intel_disk *idisk;
3656
3657 idisk = disk_list_get(disk->serial, *disk_list);
3658 if (idisk) {
3659 idisk->disk.status |= disk->status;
3660 if (is_configured(&idisk->disk) ||
3661 is_failed(&idisk->disk))
3662 idisk->disk.status &= ~(SPARE_DISK);
3663 } else {
3664 idisk = calloc(1, sizeof(*idisk));
3665 if (!idisk)
3666 return -1;
3667 idisk->owner = IMSM_UNKNOWN_OWNER;
3668 idisk->disk = *disk;
3669 idisk->next = *disk_list;
3670 *disk_list = idisk;
3671 }
3672
3673 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3674 idisk->owner = i;
3675 }
3676
3677 return tbl_size;
3678}
3679
3680static struct intel_super *
3681validate_members(struct intel_super *super, struct intel_disk *disk_list,
3682 const int owner)
3683{
3684 struct imsm_super *mpb = super->anchor;
3685 int ok_count = 0;
3686 int i;
3687
3688 for (i = 0; i < mpb->num_disks; i++) {
3689 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3690 struct intel_disk *idisk;
3691
3692 idisk = disk_list_get(disk->serial, disk_list);
3693 if (idisk) {
3694 if (idisk->owner == owner ||
3695 idisk->owner == IMSM_UNKNOWN_OWNER)
3696 ok_count++;
3697 else
3698 dprintf("%s: '%.16s' owner %d != %d\n",
3699 __func__, disk->serial, idisk->owner,
3700 owner);
3701 } else {
3702 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3703 __func__, __le32_to_cpu(mpb->family_num), i,
3704 disk->serial);
3705 break;
3706 }
3707 }
3708
3709 if (ok_count == mpb->num_disks)
3710 return super;
3711 return NULL;
3712}
3713
3714static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3715{
3716 struct intel_super *s;
3717
3718 for (s = super_list; s; s = s->next) {
3719 if (family_num != s->anchor->family_num)
3720 continue;
3721 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3722 __le32_to_cpu(family_num), s->disks->devname);
3723 }
3724}
3725
3726static struct intel_super *
3727imsm_thunderdome(struct intel_super **super_list, int len)
3728{
3729 struct intel_super *super_table[len];
3730 struct intel_disk *disk_list = NULL;
3731 struct intel_super *champion, *spare;
3732 struct intel_super *s, **del;
3733 int tbl_size = 0;
3734 int conflict;
3735 int i;
3736
3737 memset(super_table, 0, sizeof(super_table));
3738 for (s = *super_list; s; s = s->next)
3739 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3740
3741 for (i = 0; i < tbl_size; i++) {
3742 struct imsm_disk *d;
3743 struct intel_disk *idisk;
3744 struct imsm_super *mpb = super_table[i]->anchor;
3745
3746 s = super_table[i];
3747 d = &s->disks->disk;
3748
3749 /* 'd' must appear in merged disk list for its
3750 * configuration to be valid
3751 */
3752 idisk = disk_list_get(d->serial, disk_list);
3753 if (idisk && idisk->owner == i)
3754 s = validate_members(s, disk_list, i);
3755 else
3756 s = NULL;
3757
3758 if (!s)
3759 dprintf("%s: marking family: %#x from %d:%d offline\n",
3760 __func__, mpb->family_num,
3761 super_table[i]->disks->major,
3762 super_table[i]->disks->minor);
3763 super_table[i] = s;
3764 }
3765
3766 /* This is where the mdadm implementation differs from the Windows
3767 * driver which has no strict concept of a container. We can only
3768 * assemble one family from a container, so when returning a prodigal
3769 * array member to this system the code will not be able to disambiguate
3770 * the container contents that should be assembled ("foreign" versus
3771 * "local"). It requires user intervention to set the orig_family_num
3772 * to a new value to establish a new container. The Windows driver in
3773 * this situation fixes up the volume name in place and manages the
3774 * foreign array as an independent entity.
3775 */
3776 s = NULL;
3777 spare = NULL;
3778 conflict = 0;
3779 for (i = 0; i < tbl_size; i++) {
3780 struct intel_super *tbl_ent = super_table[i];
3781 int is_spare = 0;
3782
3783 if (!tbl_ent)
3784 continue;
3785
3786 if (tbl_ent->anchor->num_raid_devs == 0) {
3787 spare = tbl_ent;
3788 is_spare = 1;
3789 }
3790
3791 if (s && !is_spare) {
3792 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3793 conflict++;
3794 } else if (!s && !is_spare)
3795 s = tbl_ent;
3796 }
3797
3798 if (!s)
3799 s = spare;
3800 if (!s) {
3801 champion = NULL;
3802 goto out;
3803 }
3804 champion = s;
3805
3806 if (conflict)
3807 fprintf(stderr, "Chose family %#x on '%s', "
3808 "assemble conflicts to new container with '--update=uuid'\n",
3809 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3810
3811 /* collect all dl's onto 'champion', and update them to
3812 * champion's version of the status
3813 */
3814 for (s = *super_list; s; s = s->next) {
3815 struct imsm_super *mpb = champion->anchor;
3816 struct dl *dl = s->disks;
3817
3818 if (s == champion)
3819 continue;
3820
3821 for (i = 0; i < mpb->num_disks; i++) {
3822 struct imsm_disk *disk;
3823
3824 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3825 if (disk) {
3826 dl->disk = *disk;
3827 /* only set index on disks that are a member of
3828 * a populated contianer, i.e. one with
3829 * raid_devs
3830 */
3831 if (is_failed(&dl->disk))
3832 dl->index = -2;
3833 else if (is_spare(&dl->disk))
3834 dl->index = -1;
3835 break;
3836 }
3837 }
3838
3839 if (i >= mpb->num_disks) {
3840 struct intel_disk *idisk;
3841
3842 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3843 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3844 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3845 dl->index = -1;
3846 else {
3847 dl->index = -2;
3848 continue;
3849 }
3850 }
3851
3852 dl->next = champion->disks;
3853 champion->disks = dl;
3854 s->disks = NULL;
3855 }
3856
3857 /* delete 'champion' from super_list */
3858 for (del = super_list; *del; ) {
3859 if (*del == champion) {
3860 *del = (*del)->next;
3861 break;
3862 } else
3863 del = &(*del)->next;
3864 }
3865 champion->next = NULL;
3866
3867 out:
3868 while (disk_list) {
3869 struct intel_disk *idisk = disk_list;
3870
3871 disk_list = disk_list->next;
3872 free(idisk);
3873 }
3874
3875 return champion;
3876}
3877
cdddbdbc 3878static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3879 char *devname)
cdddbdbc
DW
3880{
3881 struct mdinfo *sra;
a2b97981
DW
3882 struct intel_super *super_list = NULL;
3883 struct intel_super *super = NULL;
db575f3b 3884 int devnum = fd2devnum(fd);
a2b97981 3885 struct mdinfo *sd;
db575f3b 3886 int retry;
a2b97981
DW
3887 int err = 0;
3888 int i;
dab4a513
DW
3889
3890 /* check if 'fd' an opened container */
b526e52d 3891 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3892 if (!sra)
3893 return 1;
3894
3895 if (sra->array.major_version != -1 ||
3896 sra->array.minor_version != -2 ||
1602d52c
AW
3897 strcmp(sra->text_version, "imsm") != 0) {
3898 err = 1;
3899 goto error;
3900 }
a2b97981
DW
3901 /* load all mpbs */
3902 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3903 struct intel_super *s = alloc_super();
7a6ecd55 3904 char nm[32];
a2b97981 3905 int dfd;
f2f5c343 3906 int rv;
a2b97981
DW
3907
3908 err = 1;
3909 if (!s)
3910 goto error;
3911 s->next = super_list;
3912 super_list = s;
cdddbdbc 3913
a2b97981 3914 err = 2;
cdddbdbc 3915 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3916 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3917 if (dfd < 0)
3918 goto error;
3919
d424212e 3920 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3921 /* no orom/efi or non-intel hba of the disk */
3922 if (rv != 0)
3923 goto error;
3924
e1902a7b 3925 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3926
3927 /* retry the load if we might have raced against mdmon */
a2b97981 3928 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3929 for (retry = 0; retry < 3; retry++) {
3930 usleep(3000);
e1902a7b 3931 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3932 if (err != 3)
db575f3b
DW
3933 break;
3934 }
a2b97981
DW
3935 if (err)
3936 goto error;
cdddbdbc
DW
3937 }
3938
a2b97981
DW
3939 /* all mpbs enter, maybe one leaves */
3940 super = imsm_thunderdome(&super_list, i);
3941 if (!super) {
3942 err = 1;
3943 goto error;
cdddbdbc
DW
3944 }
3945
47ee5a45
DW
3946 if (find_missing(super) != 0) {
3947 free_imsm(super);
a2b97981
DW
3948 err = 2;
3949 goto error;
47ee5a45 3950 }
8e59f3d8
AK
3951
3952 /* load migration record */
3953 err = load_imsm_migr_rec(super, NULL);
3954 if (err) {
3955 err = 4;
3956 goto error;
3957 }
e2f41b2c
AK
3958
3959 /* Check migration compatibility */
3960 if (check_mpb_migr_compatibility(super) != 0) {
3961 fprintf(stderr, Name ": Unsupported migration detected");
3962 if (devname)
3963 fprintf(stderr, " on %s\n", devname);
3964 else
3965 fprintf(stderr, " (IMSM).\n");
3966
3967 err = 5;
3968 goto error;
3969 }
3970
a2b97981
DW
3971 err = 0;
3972
3973 error:
3974 while (super_list) {
3975 struct intel_super *s = super_list;
3976
3977 super_list = super_list->next;
3978 free_imsm(s);
3979 }
1602d52c 3980 sysfs_free(sra);
a2b97981
DW
3981
3982 if (err)
3983 return err;
f7e7067b 3984
cdddbdbc 3985 *sbp = super;
db575f3b 3986 st->container_dev = devnum;
a2b97981 3987 if (err == 0 && st->ss == NULL) {
bf5a934a 3988 st->ss = &super_imsm;
cdddbdbc
DW
3989 st->minor_version = 0;
3990 st->max_devs = IMSM_MAX_DEVICES;
3991 }
cdddbdbc
DW
3992 return 0;
3993}
2b959fbf
N
3994
3995static int load_container_imsm(struct supertype *st, int fd, char *devname)
3996{
3997 return load_super_imsm_all(st, fd, &st->sb, devname);
3998}
cdddbdbc
DW
3999#endif
4000
4001static int load_super_imsm(struct supertype *st, int fd, char *devname)
4002{
4003 struct intel_super *super;
4004 int rv;
4005
691c6ee1
N
4006 if (test_partition(fd))
4007 /* IMSM not allowed on partitions */
4008 return 1;
4009
37424f13
DW
4010 free_super_imsm(st);
4011
49133e57 4012 super = alloc_super();
cdddbdbc
DW
4013 if (!super) {
4014 fprintf(stderr,
4015 Name ": malloc of %zu failed.\n",
4016 sizeof(*super));
4017 return 1;
4018 }
ea2bc72b
LM
4019 /* Load hba and capabilities if they exist.
4020 * But do not preclude loading metadata in case capabilities or hba are
4021 * non-compliant and ignore_hw_compat is set.
4022 */
d424212e 4023 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4024 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4025 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
4026 if (devname)
4027 fprintf(stderr,
4028 Name ": No OROM/EFI properties for %s\n", devname);
4029 free_imsm(super);
4030 return 2;
4031 }
a2b97981 4032 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
4033
4034 if (rv) {
4035 if (devname)
4036 fprintf(stderr,
4037 Name ": Failed to load all information "
4038 "sections on %s\n", devname);
4039 free_imsm(super);
4040 return rv;
4041 }
4042
4043 st->sb = super;
4044 if (st->ss == NULL) {
4045 st->ss = &super_imsm;
4046 st->minor_version = 0;
4047 st->max_devs = IMSM_MAX_DEVICES;
4048 }
8e59f3d8
AK
4049
4050 /* load migration record */
2e062e82
AK
4051 if (load_imsm_migr_rec(super, NULL) == 0) {
4052 /* Check for unsupported migration features */
4053 if (check_mpb_migr_compatibility(super) != 0) {
4054 fprintf(stderr,
4055 Name ": Unsupported migration detected");
4056 if (devname)
4057 fprintf(stderr, " on %s\n", devname);
4058 else
4059 fprintf(stderr, " (IMSM).\n");
4060 return 3;
4061 }
e2f41b2c
AK
4062 }
4063
cdddbdbc
DW
4064 return 0;
4065}
4066
ef6ffade
DW
4067static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4068{
4069 if (info->level == 1)
4070 return 128;
4071 return info->chunk_size >> 9;
4072}
4073
ff596308 4074static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
4075{
4076 __u32 num_stripes;
4077
4078 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 4079 num_stripes /= num_domains;
ef6ffade
DW
4080
4081 return num_stripes;
4082}
4083
fcfd9599
DW
4084static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4085{
4025c288
DW
4086 if (info->level == 1)
4087 return info->size * 2;
4088 else
4089 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4090}
4091
4d1313e9
DW
4092static void imsm_update_version_info(struct intel_super *super)
4093{
4094 /* update the version and attributes */
4095 struct imsm_super *mpb = super->anchor;
4096 char *version;
4097 struct imsm_dev *dev;
4098 struct imsm_map *map;
4099 int i;
4100
4101 for (i = 0; i < mpb->num_raid_devs; i++) {
4102 dev = get_imsm_dev(super, i);
4103 map = get_imsm_map(dev, 0);
4104 if (__le32_to_cpu(dev->size_high) > 0)
4105 mpb->attributes |= MPB_ATTRIB_2TB;
4106
4107 /* FIXME detect when an array spans a port multiplier */
4108 #if 0
4109 mpb->attributes |= MPB_ATTRIB_PM;
4110 #endif
4111
4112 if (mpb->num_raid_devs > 1 ||
4113 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4114 version = MPB_VERSION_ATTRIBS;
4115 switch (get_imsm_raid_level(map)) {
4116 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4117 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4118 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4119 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4120 }
4121 } else {
4122 if (map->num_members >= 5)
4123 version = MPB_VERSION_5OR6_DISK_ARRAY;
4124 else if (dev->status == DEV_CLONE_N_GO)
4125 version = MPB_VERSION_CNG;
4126 else if (get_imsm_raid_level(map) == 5)
4127 version = MPB_VERSION_RAID5;
4128 else if (map->num_members >= 3)
4129 version = MPB_VERSION_3OR4_DISK_ARRAY;
4130 else if (get_imsm_raid_level(map) == 1)
4131 version = MPB_VERSION_RAID1;
4132 else
4133 version = MPB_VERSION_RAID0;
4134 }
4135 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4136 }
4137}
4138
aa534678
DW
4139static int check_name(struct intel_super *super, char *name, int quiet)
4140{
4141 struct imsm_super *mpb = super->anchor;
4142 char *reason = NULL;
4143 int i;
4144
4145 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4146 reason = "must be 16 characters or less";
4147
4148 for (i = 0; i < mpb->num_raid_devs; i++) {
4149 struct imsm_dev *dev = get_imsm_dev(super, i);
4150
4151 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4152 reason = "already exists";
4153 break;
4154 }
4155 }
4156
4157 if (reason && !quiet)
4158 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4159
4160 return !reason;
4161}
4162
8b353278
DW
4163static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4164 unsigned long long size, char *name,
4165 char *homehost, int *uuid)
cdddbdbc 4166{
c2c087e6
DW
4167 /* We are creating a volume inside a pre-existing container.
4168 * so st->sb is already set.
4169 */
4170 struct intel_super *super = st->sb;
949c47a0 4171 struct imsm_super *mpb = super->anchor;
ba2de7ba 4172 struct intel_dev *dv;
c2c087e6
DW
4173 struct imsm_dev *dev;
4174 struct imsm_vol *vol;
4175 struct imsm_map *map;
4176 int idx = mpb->num_raid_devs;
4177 int i;
4178 unsigned long long array_blocks;
2c092cad 4179 size_t size_old, size_new;
ff596308 4180 __u32 num_data_stripes;
cdddbdbc 4181
88c32bb1 4182 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 4183 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 4184 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4185 return 0;
4186 }
4187
2c092cad
DW
4188 /* ensure the mpb is large enough for the new data */
4189 size_old = __le32_to_cpu(mpb->mpb_size);
4190 size_new = disks_to_mpb_size(info->nr_disks);
4191 if (size_new > size_old) {
4192 void *mpb_new;
4193 size_t size_round = ROUND_UP(size_new, 512);
4194
4195 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4196 fprintf(stderr, Name": could not allocate new mpb\n");
4197 return 0;
4198 }
8e59f3d8
AK
4199 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4200 fprintf(stderr, Name
4201 ": %s could not allocate migr_rec buffer\n",
4202 __func__);
4203 free(super->buf);
4204 free(super);
ea944c8f 4205 free(mpb_new);
8e59f3d8
AK
4206 return 0;
4207 }
2c092cad
DW
4208 memcpy(mpb_new, mpb, size_old);
4209 free(mpb);
4210 mpb = mpb_new;
949c47a0 4211 super->anchor = mpb_new;
2c092cad
DW
4212 mpb->mpb_size = __cpu_to_le32(size_new);
4213 memset(mpb_new + size_old, 0, size_round - size_old);
4214 }
bf5a934a 4215 super->current_vol = idx;
3960e579
DW
4216
4217 /* handle 'failed_disks' by either:
4218 * a) create dummy disk entries in the table if this the first
4219 * volume in the array. We add them here as this is the only
4220 * opportunity to add them. add_to_super_imsm_volume()
4221 * handles the non-failed disks and continues incrementing
4222 * mpb->num_disks.
4223 * b) validate that 'failed_disks' matches the current number
4224 * of missing disks if the container is populated
d23fe947 4225 */
3960e579 4226 if (super->current_vol == 0) {
d23fe947 4227 mpb->num_disks = 0;
3960e579
DW
4228 for (i = 0; i < info->failed_disks; i++) {
4229 struct imsm_disk *disk;
4230
4231 mpb->num_disks++;
4232 disk = __get_imsm_disk(mpb, i);
4233 disk->status = CONFIGURED_DISK | FAILED_DISK;
4234 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4235 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4236 "missing:%d", i);
4237 }
4238 find_missing(super);
4239 } else {
4240 int missing = 0;
4241 struct dl *d;
4242
4243 for (d = super->missing; d; d = d->next)
4244 missing++;
4245 if (info->failed_disks > missing) {
4246 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4247 return 0;
4248 }
4249 }
5a038140 4250
aa534678
DW
4251 if (!check_name(super, name, 0))
4252 return 0;
ba2de7ba
DW
4253 dv = malloc(sizeof(*dv));
4254 if (!dv) {
4255 fprintf(stderr, Name ": failed to allocate device list entry\n");
4256 return 0;
4257 }
1a2487c2 4258 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4259 if (!dev) {
ba2de7ba 4260 free(dv);
949c47a0
DW
4261 fprintf(stderr, Name": could not allocate raid device\n");
4262 return 0;
4263 }
1a2487c2 4264
c2c087e6 4265 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4266 if (info->level == 1)
4267 array_blocks = info_to_blocks_per_member(info);
4268 else
4269 array_blocks = calc_array_size(info->level, info->raid_disks,
4270 info->layout, info->chunk_size,
4271 info->size*2);
979d38be
DW
4272 /* round array size down to closest MB */
4273 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4274
c2c087e6
DW
4275 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4276 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4277 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4278 vol = &dev->vol;
4279 vol->migr_state = 0;
1484e727 4280 set_migr_type(dev, MIGR_INIT);
3960e579 4281 vol->dirty = !info->state;
f8f603f1 4282 vol->curr_migr_unit = 0;
a965f303 4283 map = get_imsm_map(dev, 0);
0dcecb2e 4284 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4285 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4286 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4287 map->failed_disk_num = ~0;
3960e579 4288 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
252d23c0 4289 map->ddf = 1;
ef6ffade
DW
4290
4291 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4292 free(dev);
4293 free(dv);
ef6ffade
DW
4294 fprintf(stderr, Name": imsm does not support more than 2 disks"
4295 "in a raid1 volume\n");
4296 return 0;
4297 }
81062a36
DW
4298
4299 map->raid_level = info->level;
4d1313e9 4300 if (info->level == 10) {
c2c087e6 4301 map->raid_level = 1;
4d1313e9 4302 map->num_domains = info->raid_disks / 2;
81062a36
DW
4303 } else if (info->level == 1)
4304 map->num_domains = info->raid_disks;
4305 else
ff596308 4306 map->num_domains = 1;
81062a36 4307
ff596308
DW
4308 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4309 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4310
c2c087e6
DW
4311 map->num_members = info->raid_disks;
4312 for (i = 0; i < map->num_members; i++) {
4313 /* initialized in add_to_super */
4eb26970 4314 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4315 }
949c47a0 4316 mpb->num_raid_devs++;
ba2de7ba
DW
4317
4318 dv->dev = dev;
4319 dv->index = super->current_vol;
4320 dv->next = super->devlist;
4321 super->devlist = dv;
c2c087e6 4322
4d1313e9
DW
4323 imsm_update_version_info(super);
4324
c2c087e6 4325 return 1;
cdddbdbc
DW
4326}
4327
bf5a934a
DW
4328static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4329 unsigned long long size, char *name,
4330 char *homehost, int *uuid)
4331{
4332 /* This is primarily called by Create when creating a new array.
4333 * We will then get add_to_super called for each component, and then
4334 * write_init_super called to write it out to each device.
4335 * For IMSM, Create can create on fresh devices or on a pre-existing
4336 * array.
4337 * To create on a pre-existing array a different method will be called.
4338 * This one is just for fresh drives.
4339 */
4340 struct intel_super *super;
4341 struct imsm_super *mpb;
4342 size_t mpb_size;
4d1313e9 4343 char *version;
bf5a934a 4344
bf5a934a 4345 if (st->sb)
e683ca88
DW
4346 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4347
4348 if (info)
4349 mpb_size = disks_to_mpb_size(info->nr_disks);
4350 else
4351 mpb_size = 512;
bf5a934a 4352
49133e57 4353 super = alloc_super();
e683ca88 4354 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4355 free(super);
e683ca88
DW
4356 super = NULL;
4357 }
4358 if (!super) {
4359 fprintf(stderr, Name
4360 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4361 return 0;
4362 }
8e59f3d8
AK
4363 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4364 fprintf(stderr, Name
4365 ": %s could not allocate migr_rec buffer\n", __func__);
4366 free(super->buf);
4367 free(super);
4368 return 0;
4369 }
e683ca88 4370 memset(super->buf, 0, mpb_size);
ef649044 4371 mpb = super->buf;
e683ca88
DW
4372 mpb->mpb_size = __cpu_to_le32(mpb_size);
4373 st->sb = super;
4374
4375 if (info == NULL) {
4376 /* zeroing superblock */
4377 return 0;
4378 }
bf5a934a 4379
4d1313e9
DW
4380 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4381
4382 version = (char *) mpb->sig;
4383 strcpy(version, MPB_SIGNATURE);
4384 version += strlen(MPB_SIGNATURE);
4385 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4386
bf5a934a
DW
4387 return 1;
4388}
4389
0e600426 4390#ifndef MDASSEMBLE
f20c3968 4391static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4392 int fd, char *devname)
4393{
4394 struct intel_super *super = st->sb;
d23fe947 4395 struct imsm_super *mpb = super->anchor;
3960e579 4396 struct imsm_disk *_disk;
bf5a934a
DW
4397 struct imsm_dev *dev;
4398 struct imsm_map *map;
3960e579 4399 struct dl *dl, *df;
4eb26970 4400 int slot;
bf5a934a 4401
949c47a0 4402 dev = get_imsm_dev(super, super->current_vol);
a965f303 4403 map = get_imsm_map(dev, 0);
bf5a934a 4404
208933a7
N
4405 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4406 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4407 devname);
4408 return 1;
4409 }
4410
efb30e7f
DW
4411 if (fd == -1) {
4412 /* we're doing autolayout so grab the pre-marked (in
4413 * validate_geometry) raid_disk
4414 */
4415 for (dl = super->disks; dl; dl = dl->next)
4416 if (dl->raiddisk == dk->raid_disk)
4417 break;
4418 } else {
4419 for (dl = super->disks; dl ; dl = dl->next)
4420 if (dl->major == dk->major &&
4421 dl->minor == dk->minor)
4422 break;
4423 }
d23fe947 4424
208933a7
N
4425 if (!dl) {
4426 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4427 return 1;
208933a7 4428 }
bf5a934a 4429
d23fe947
DW
4430 /* add a pristine spare to the metadata */
4431 if (dl->index < 0) {
4432 dl->index = super->anchor->num_disks;
4433 super->anchor->num_disks++;
4434 }
4eb26970
DW
4435 /* Check the device has not already been added */
4436 slot = get_imsm_disk_slot(map, dl->index);
4437 if (slot >= 0 &&
98130f40 4438 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4439 fprintf(stderr, Name ": %s has been included in this array twice\n",
4440 devname);
4441 return 1;
4442 }
656b6b5a 4443 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 4444 dl->disk.status = CONFIGURED_DISK;
d23fe947 4445
3960e579
DW
4446 /* update size of 'missing' disks to be at least as large as the
4447 * largest acitve member (we only have dummy missing disks when
4448 * creating the first volume)
4449 */
4450 if (super->current_vol == 0) {
4451 for (df = super->missing; df; df = df->next) {
4452 if (dl->disk.total_blocks > df->disk.total_blocks)
4453 df->disk.total_blocks = dl->disk.total_blocks;
4454 _disk = __get_imsm_disk(mpb, df->index);
4455 *_disk = df->disk;
4456 }
4457 }
4458
4459 /* refresh unset/failed slots to point to valid 'missing' entries */
4460 for (df = super->missing; df; df = df->next)
4461 for (slot = 0; slot < mpb->num_disks; slot++) {
4462 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4463
4464 if ((ord & IMSM_ORD_REBUILD) == 0)
4465 continue;
4466 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4467 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4468 break;
4469 }
4470
d23fe947
DW
4471 /* if we are creating the first raid device update the family number */
4472 if (super->current_vol == 0) {
4473 __u32 sum;
4474 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 4475
3960e579 4476 _disk = __get_imsm_disk(mpb, dl->index);
791b666a
AW
4477 if (!_dev || !_disk) {
4478 fprintf(stderr, Name ": BUG mpb setup error\n");
4479 return 1;
4480 }
d23fe947
DW
4481 *_dev = *dev;
4482 *_disk = dl->disk;
148acb7b
DW
4483 sum = random32();
4484 sum += __gen_imsm_checksum(mpb);
d23fe947 4485 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4486 mpb->orig_family_num = mpb->family_num;
d23fe947 4487 }
ca0748fa 4488 super->current_disk = dl;
f20c3968 4489 return 0;
bf5a934a
DW
4490}
4491
a8619d23
AK
4492/* mark_spare()
4493 * Function marks disk as spare and restores disk serial
4494 * in case it was previously marked as failed by takeover operation
4495 * reruns:
4496 * -1 : critical error
4497 * 0 : disk is marked as spare but serial is not set
4498 * 1 : success
4499 */
4500int mark_spare(struct dl *disk)
4501{
4502 __u8 serial[MAX_RAID_SERIAL_LEN];
4503 int ret_val = -1;
4504
4505 if (!disk)
4506 return ret_val;
4507
4508 ret_val = 0;
4509 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4510 /* Restore disk serial number, because takeover marks disk
4511 * as failed and adds to serial ':0' before it becomes
4512 * a spare disk.
4513 */
4514 serialcpy(disk->serial, serial);
4515 serialcpy(disk->disk.serial, serial);
4516 ret_val = 1;
4517 }
4518 disk->disk.status = SPARE_DISK;
4519 disk->index = -1;
4520
4521 return ret_val;
4522}
88654014 4523
f20c3968 4524static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4525 int fd, char *devname)
cdddbdbc 4526{
c2c087e6 4527 struct intel_super *super = st->sb;
c2c087e6
DW
4528 struct dl *dd;
4529 unsigned long long size;
f2f27e63 4530 __u32 id;
c2c087e6
DW
4531 int rv;
4532 struct stat stb;
4533
88654014
LM
4534 /* If we are on an RAID enabled platform check that the disk is
4535 * attached to the raid controller.
4536 * We do not need to test disks attachment for container based additions,
4537 * they shall be already tested when container was created/assembled.
88c32bb1 4538 */
d424212e 4539 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4540 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4541 if (rv != 0) {
4542 dprintf("capability: %p fd: %d ret: %d\n",
4543 super->orom, fd, rv);
4544 return 1;
88c32bb1
DW
4545 }
4546
f20c3968
DW
4547 if (super->current_vol >= 0)
4548 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4549
c2c087e6
DW
4550 fstat(fd, &stb);
4551 dd = malloc(sizeof(*dd));
b9f594fe 4552 if (!dd) {
c2c087e6
DW
4553 fprintf(stderr,
4554 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4555 return 1;
c2c087e6
DW
4556 }
4557 memset(dd, 0, sizeof(*dd));
4558 dd->major = major(stb.st_rdev);
4559 dd->minor = minor(stb.st_rdev);
c2c087e6 4560 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4561 dd->fd = fd;
689c9bf3 4562 dd->e = NULL;
1a64be56 4563 dd->action = DISK_ADD;
c2c087e6 4564 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4565 if (rv) {
c2c087e6 4566 fprintf(stderr,
0030e8d6 4567 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4568 free(dd);
0030e8d6 4569 abort();
c2c087e6
DW
4570 }
4571
c2c087e6
DW
4572 get_dev_size(fd, NULL, &size);
4573 size /= 512;
1f24f035 4574 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4575 dd->disk.total_blocks = __cpu_to_le32(size);
a8619d23 4576 mark_spare(dd);
c2c087e6 4577 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4578 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4579 else
b9f594fe 4580 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4581
4582 if (st->update_tail) {
1a64be56
LM
4583 dd->next = super->disk_mgmt_list;
4584 super->disk_mgmt_list = dd;
43dad3d6
DW
4585 } else {
4586 dd->next = super->disks;
4587 super->disks = dd;
ceaf0ee1 4588 super->updates_pending++;
43dad3d6 4589 }
f20c3968
DW
4590
4591 return 0;
cdddbdbc
DW
4592}
4593
1a64be56
LM
4594
4595static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4596{
4597 struct intel_super *super = st->sb;
4598 struct dl *dd;
4599
4600 /* remove from super works only in mdmon - for communication
4601 * manager - monitor. Check if communication memory buffer
4602 * is prepared.
4603 */
4604 if (!st->update_tail) {
4605 fprintf(stderr,
4606 Name ": %s shall be used in mdmon context only"
4607 "(line %d).\n", __func__, __LINE__);
4608 return 1;
4609 }
4610 dd = malloc(sizeof(*dd));
4611 if (!dd) {
4612 fprintf(stderr,
4613 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4614 return 1;
4615 }
4616 memset(dd, 0, sizeof(*dd));
4617 dd->major = dk->major;
4618 dd->minor = dk->minor;
1a64be56 4619 dd->fd = -1;
a8619d23 4620 mark_spare(dd);
1a64be56
LM
4621 dd->action = DISK_REMOVE;
4622
4623 dd->next = super->disk_mgmt_list;
4624 super->disk_mgmt_list = dd;
4625
4626
4627 return 0;
4628}
4629
f796af5d
DW
4630static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4631
4632static union {
4633 char buf[512];
4634 struct imsm_super anchor;
4635} spare_record __attribute__ ((aligned(512)));
c2c087e6 4636
d23fe947
DW
4637/* spare records have their own family number and do not have any defined raid
4638 * devices
4639 */
4640static int write_super_imsm_spares(struct intel_super *super, int doclose)
4641{
d23fe947 4642 struct imsm_super *mpb = super->anchor;
f796af5d 4643 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4644 __u32 sum;
4645 struct dl *d;
4646
f796af5d
DW
4647 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4648 spare->generation_num = __cpu_to_le32(1UL),
4649 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4650 spare->num_disks = 1,
4651 spare->num_raid_devs = 0,
4652 spare->cache_size = mpb->cache_size,
4653 spare->pwr_cycle_count = __cpu_to_le32(1),
4654
4655 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4656 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4657
4658 for (d = super->disks; d; d = d->next) {
8796fdc4 4659 if (d->index != -1)
d23fe947
DW
4660 continue;
4661
f796af5d
DW
4662 spare->disk[0] = d->disk;
4663 sum = __gen_imsm_checksum(spare);
4664 spare->family_num = __cpu_to_le32(sum);
4665 spare->orig_family_num = 0;
4666 sum = __gen_imsm_checksum(spare);
4667 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4668
f796af5d 4669 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4670 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4671 __func__, d->major, d->minor, strerror(errno));
e74255d9 4672 return 1;
d23fe947
DW
4673 }
4674 if (doclose) {
4675 close(d->fd);
4676 d->fd = -1;
4677 }
4678 }
4679
e74255d9 4680 return 0;
d23fe947
DW
4681}
4682
36988a3d 4683static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4684{
36988a3d 4685 struct intel_super *super = st->sb;
949c47a0 4686 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4687 struct dl *d;
4688 __u32 generation;
4689 __u32 sum;
d23fe947 4690 int spares = 0;
949c47a0 4691 int i;
a48ac0a8 4692 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4693 int num_disks = 0;
146c6260 4694 int clear_migration_record = 1;
cdddbdbc 4695
c2c087e6
DW
4696 /* 'generation' is incremented everytime the metadata is written */
4697 generation = __le32_to_cpu(mpb->generation_num);
4698 generation++;
4699 mpb->generation_num = __cpu_to_le32(generation);
4700
148acb7b
DW
4701 /* fix up cases where previous mdadm releases failed to set
4702 * orig_family_num
4703 */
4704 if (mpb->orig_family_num == 0)
4705 mpb->orig_family_num = mpb->family_num;
4706
d23fe947 4707 for (d = super->disks; d; d = d->next) {
8796fdc4 4708 if (d->index == -1)
d23fe947 4709 spares++;
36988a3d 4710 else {
d23fe947 4711 mpb->disk[d->index] = d->disk;
36988a3d
AK
4712 num_disks++;
4713 }
d23fe947 4714 }
36988a3d 4715 for (d = super->missing; d; d = d->next) {
47ee5a45 4716 mpb->disk[d->index] = d->disk;
36988a3d
AK
4717 num_disks++;
4718 }
4719 mpb->num_disks = num_disks;
4720 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4721
949c47a0
DW
4722 for (i = 0; i < mpb->num_raid_devs; i++) {
4723 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4724 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4725 if (dev && dev2) {
4726 imsm_copy_dev(dev, dev2);
4727 mpb_size += sizeof_imsm_dev(dev, 0);
4728 }
146c6260
AK
4729 if (is_gen_migration(dev2))
4730 clear_migration_record = 0;
949c47a0 4731 }
a48ac0a8
DW
4732 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4733 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4734
c2c087e6 4735 /* recalculate checksum */
949c47a0 4736 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4737 mpb->check_sum = __cpu_to_le32(sum);
4738
146c6260
AK
4739 if (clear_migration_record)
4740 memset(super->migr_rec_buf, 0, 512);
4741
d23fe947 4742 /* write the mpb for disks that compose raid devices */
c2c087e6 4743 for (d = super->disks; d ; d = d->next) {
86c54047 4744 if (d->index < 0 || is_failed(&d->disk))
d23fe947 4745 continue;
f796af5d 4746 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4747 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4748 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4749 if (clear_migration_record) {
4750 unsigned long long dsize;
4751
4752 get_dev_size(d->fd, NULL, &dsize);
4753 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
9e2d750d
N
4754 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4755 perror("Write migr_rec failed");
146c6260
AK
4756 }
4757 }
c2c087e6
DW
4758 if (doclose) {
4759 close(d->fd);
4760 d->fd = -1;
4761 }
4762 }
4763
d23fe947
DW
4764 if (spares)
4765 return write_super_imsm_spares(super, doclose);
4766
e74255d9 4767 return 0;
c2c087e6
DW
4768}
4769
0e600426 4770
9b1fb677 4771static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4772{
4773 size_t len;
4774 struct imsm_update_create_array *u;
4775 struct intel_super *super = st->sb;
9b1fb677 4776 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4777 struct imsm_map *map = get_imsm_map(dev, 0);
4778 struct disk_info *inf;
4779 struct imsm_disk *disk;
4780 int i;
43dad3d6 4781
54c2c1ea
DW
4782 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4783 sizeof(*inf) * map->num_members;
43dad3d6
DW
4784 u = malloc(len);
4785 if (!u) {
4786 fprintf(stderr, "%s: failed to allocate update buffer\n",
4787 __func__);
4788 return 1;
4789 }
4790
4791 u->type = update_create_array;
9b1fb677 4792 u->dev_idx = dev_idx;
43dad3d6 4793 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4794 inf = get_disk_info(u);
4795 for (i = 0; i < map->num_members; i++) {
98130f40 4796 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4797
54c2c1ea
DW
4798 disk = get_imsm_disk(super, idx);
4799 serialcpy(inf[i].serial, disk->serial);
4800 }
43dad3d6
DW
4801 append_metadata_update(st, u, len);
4802
4803 return 0;
4804}
4805
1a64be56 4806static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4807{
4808 struct intel_super *super = st->sb;
4809 size_t len;
1a64be56 4810 struct imsm_update_add_remove_disk *u;
43dad3d6 4811
1a64be56 4812 if (!super->disk_mgmt_list)
43dad3d6
DW
4813 return 0;
4814
4815 len = sizeof(*u);
4816 u = malloc(len);
4817 if (!u) {
4818 fprintf(stderr, "%s: failed to allocate update buffer\n",
4819 __func__);
4820 return 1;
4821 }
4822
1a64be56 4823 u->type = update_add_remove_disk;
43dad3d6
DW
4824 append_metadata_update(st, u, len);
4825
4826 return 0;
4827}
4828
c2c087e6
DW
4829static int write_init_super_imsm(struct supertype *st)
4830{
9b1fb677
DW
4831 struct intel_super *super = st->sb;
4832 int current_vol = super->current_vol;
4833
4834 /* we are done with current_vol reset it to point st at the container */
4835 super->current_vol = -1;
4836
8273f55e 4837 if (st->update_tail) {
43dad3d6
DW
4838 /* queue the recently created array / added disk
4839 * as a metadata update */
43dad3d6 4840 int rv;
8273f55e 4841
43dad3d6 4842 /* determine if we are creating a volume or adding a disk */
9b1fb677 4843 if (current_vol < 0) {
1a64be56
LM
4844 /* in the mgmt (add/remove) disk case we are running
4845 * in mdmon context, so don't close fd's
43dad3d6 4846 */
1a64be56 4847 return mgmt_disk(st);
43dad3d6 4848 } else
9b1fb677 4849 rv = create_array(st, current_vol);
8273f55e 4850
43dad3d6 4851 return rv;
d682f344
N
4852 } else {
4853 struct dl *d;
4854 for (d = super->disks; d; d = d->next)
4855 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4856 return write_super_imsm(st, 1);
d682f344 4857 }
cdddbdbc 4858}
0e600426 4859#endif
cdddbdbc 4860
e683ca88 4861static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4862{
e683ca88
DW
4863 struct intel_super *super = st->sb;
4864 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4865
e683ca88 4866 if (!mpb)
ad97895e
DW
4867 return 1;
4868
1799c9e8 4869#ifndef MDASSEMBLE
e683ca88 4870 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4871#else
4872 return 1;
4873#endif
cdddbdbc
DW
4874}
4875
0e600426
N
4876static int imsm_bbm_log_size(struct imsm_super *mpb)
4877{
4878 return __le32_to_cpu(mpb->bbm_log_size);
4879}
4880
4881#ifndef MDASSEMBLE
cdddbdbc
DW
4882static int validate_geometry_imsm_container(struct supertype *st, int level,
4883 int layout, int raiddisks, int chunk,
c2c087e6 4884 unsigned long long size, char *dev,
2c514b71
NB
4885 unsigned long long *freesize,
4886 int verbose)
cdddbdbc 4887{
c2c087e6
DW
4888 int fd;
4889 unsigned long long ldsize;
f2f5c343
LM
4890 struct intel_super *super=NULL;
4891 int rv = 0;
cdddbdbc 4892
c2c087e6
DW
4893 if (level != LEVEL_CONTAINER)
4894 return 0;
4895 if (!dev)
4896 return 1;
4897
4898 fd = open(dev, O_RDONLY|O_EXCL, 0);
4899 if (fd < 0) {
2c514b71
NB
4900 if (verbose)
4901 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4902 dev, strerror(errno));
c2c087e6
DW
4903 return 0;
4904 }
4905 if (!get_dev_size(fd, dev, &ldsize)) {
4906 close(fd);
4907 return 0;
4908 }
f2f5c343
LM
4909
4910 /* capabilities retrieve could be possible
4911 * note that there is no fd for the disks in array.
4912 */
4913 super = alloc_super();
4914 if (!super) {
4915 fprintf(stderr,
4916 Name ": malloc of %zu failed.\n",
4917 sizeof(*super));
4918 close(fd);
4919 return 0;
4920 }
4921
d424212e 4922 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4923 if (rv != 0) {
4924#if DEBUG
4925 char str[256];
4926 fd2devname(fd, str);
4927 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4928 fd, str, super->orom, rv, raiddisks);
4929#endif
4930 /* no orom/efi or non-intel hba of the disk */
4931 close(fd);
4932 free_imsm(super);
4933 return 0;
4934 }
c2c087e6 4935 close(fd);
f2f5c343
LM
4936 if (super->orom && raiddisks > super->orom->tds) {
4937 if (verbose)
4938 fprintf(stderr, Name ": %d exceeds maximum number of"
4939 " platform supported disks: %d\n",
4940 raiddisks, super->orom->tds);
4941
4942 free_imsm(super);
4943 return 0;
4944 }
c2c087e6
DW
4945
4946 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 4947 free_imsm(super);
c2c087e6
DW
4948
4949 return 1;
cdddbdbc
DW
4950}
4951
0dcecb2e
DW
4952static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4953{
4954 const unsigned long long base_start = e[*idx].start;
4955 unsigned long long end = base_start + e[*idx].size;
4956 int i;
4957
4958 if (base_start == end)
4959 return 0;
4960
4961 *idx = *idx + 1;
4962 for (i = *idx; i < num_extents; i++) {
4963 /* extend overlapping extents */
4964 if (e[i].start >= base_start &&
4965 e[i].start <= end) {
4966 if (e[i].size == 0)
4967 return 0;
4968 if (e[i].start + e[i].size > end)
4969 end = e[i].start + e[i].size;
4970 } else if (e[i].start > end) {
4971 *idx = i;
4972 break;
4973 }
4974 }
4975
4976 return end - base_start;
4977}
4978
4979static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4980{
4981 /* build a composite disk with all known extents and generate a new
4982 * 'maxsize' given the "all disks in an array must share a common start
4983 * offset" constraint
4984 */
4985 struct extent *e = calloc(sum_extents, sizeof(*e));
4986 struct dl *dl;
4987 int i, j;
4988 int start_extent;
4989 unsigned long long pos;
b9d77223 4990 unsigned long long start = 0;
0dcecb2e
DW
4991 unsigned long long maxsize;
4992 unsigned long reserve;
4993
4994 if (!e)
a7dd165b 4995 return 0;
0dcecb2e
DW
4996
4997 /* coalesce and sort all extents. also, check to see if we need to
4998 * reserve space between member arrays
4999 */
5000 j = 0;
5001 for (dl = super->disks; dl; dl = dl->next) {
5002 if (!dl->e)
5003 continue;
5004 for (i = 0; i < dl->extent_cnt; i++)
5005 e[j++] = dl->e[i];
5006 }
5007 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5008
5009 /* merge extents */
5010 i = 0;
5011 j = 0;
5012 while (i < sum_extents) {
5013 e[j].start = e[i].start;
5014 e[j].size = find_size(e, &i, sum_extents);
5015 j++;
5016 if (e[j-1].size == 0)
5017 break;
5018 }
5019
5020 pos = 0;
5021 maxsize = 0;
5022 start_extent = 0;
5023 i = 0;
5024 do {
5025 unsigned long long esize;
5026
5027 esize = e[i].start - pos;
5028 if (esize >= maxsize) {
5029 maxsize = esize;
5030 start = pos;
5031 start_extent = i;
5032 }
5033 pos = e[i].start + e[i].size;
5034 i++;
5035 } while (e[i-1].size);
5036 free(e);
5037
a7dd165b
DW
5038 if (maxsize == 0)
5039 return 0;
5040
5041 /* FIXME assumes volume at offset 0 is the first volume in a
5042 * container
5043 */
0dcecb2e
DW
5044 if (start_extent > 0)
5045 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5046 else
5047 reserve = 0;
5048
5049 if (maxsize < reserve)
a7dd165b 5050 return 0;
0dcecb2e
DW
5051
5052 super->create_offset = ~((__u32) 0);
5053 if (start + reserve > super->create_offset)
a7dd165b 5054 return 0; /* start overflows create_offset */
0dcecb2e
DW
5055 super->create_offset = start + reserve;
5056
5057 return maxsize - reserve;
5058}
5059
88c32bb1
DW
5060static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5061{
5062 if (level < 0 || level == 6 || level == 4)
5063 return 0;
5064
5065 /* if we have an orom prevent invalid raid levels */
5066 if (orom)
5067 switch (level) {
5068 case 0: return imsm_orom_has_raid0(orom);
5069 case 1:
5070 if (raiddisks > 2)
5071 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5072 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5073 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5074 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5075 }
5076 else
5077 return 1; /* not on an Intel RAID platform so anything goes */
5078
5079 return 0;
5080}
5081
cd9d1ac7
DW
5082static int imsm_default_chunk(const struct imsm_orom *orom)
5083{
5084 /* up to 512 if the plaform supports it, otherwise the platform max.
5085 * 128 if no platform detected
5086 */
5087 int fs = max(7, orom ? fls(orom->sss) : 0);
5088
5089 return min(512, (1 << fs));
5090}
73408129 5091
35f81cbb 5092#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
5093static int
5094validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 5095 int raiddisks, int *chunk, int verbose)
6592ce37 5096{
660260d0
DW
5097 /* check/set platform and metadata limits/defaults */
5098 if (super->orom && raiddisks > super->orom->dpa) {
5099 pr_vrb(": platform supports a maximum of %d disks per array\n",
5100 super->orom->dpa);
73408129
LM
5101 return 0;
5102 }
5103
5104 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 5105 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
5106 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5107 level, raiddisks, raiddisks > 1 ? "s" : "");
5108 return 0;
5109 }
cd9d1ac7
DW
5110
5111 if (chunk && (*chunk == 0 || *chunk == UnSet))
5112 *chunk = imsm_default_chunk(super->orom);
5113
5114 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5115 pr_vrb(": platform does not support a chunk size of: "
5116 "%d\n", *chunk);
5117 return 0;
6592ce37 5118 }
cd9d1ac7 5119
6592ce37
DW
5120 if (layout != imsm_level_to_layout(level)) {
5121 if (level == 5)
5122 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5123 else if (level == 10)
5124 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5125 else
5126 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5127 layout, level);
5128 return 0;
5129 }
6592ce37
DW
5130 return 1;
5131}
5132
c2c087e6
DW
5133/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5134 * FIX ME add ahci details
5135 */
8b353278 5136static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 5137 int layout, int raiddisks, int *chunk,
c2c087e6 5138 unsigned long long size, char *dev,
2c514b71
NB
5139 unsigned long long *freesize,
5140 int verbose)
cdddbdbc 5141{
c2c087e6
DW
5142 struct stat stb;
5143 struct intel_super *super = st->sb;
b2916f25 5144 struct imsm_super *mpb;
c2c087e6
DW
5145 struct dl *dl;
5146 unsigned long long pos = 0;
5147 unsigned long long maxsize;
5148 struct extent *e;
5149 int i;
cdddbdbc 5150
88c32bb1
DW
5151 /* We must have the container info already read in. */
5152 if (!super)
c2c087e6
DW
5153 return 0;
5154
b2916f25
JS
5155 mpb = super->anchor;
5156
e7cb06c8
LO
5157 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5158 fprintf(stderr, Name ": the option-rom requires all "
5159 "member disks to be a member of all volumes.\n");
5160 return 0;
5161 }
5162
d54559f0
LM
5163 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5164 fprintf(stderr, Name ": RAID gemetry validation failed. "
5165 "Cannot proceed with the action(s).\n");
c2c087e6 5166 return 0;
d54559f0 5167 }
c2c087e6
DW
5168 if (!dev) {
5169 /* General test: make sure there is space for
2da8544a
DW
5170 * 'raiddisks' device extents of size 'size' at a given
5171 * offset
c2c087e6 5172 */
e46273eb 5173 unsigned long long minsize = size;
b7528a20 5174 unsigned long long start_offset = MaxSector;
c2c087e6
DW
5175 int dcnt = 0;
5176 if (minsize == 0)
5177 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5178 for (dl = super->disks; dl ; dl = dl->next) {
5179 int found = 0;
5180
bf5a934a 5181 pos = 0;
c2c087e6
DW
5182 i = 0;
5183 e = get_extents(super, dl);
5184 if (!e) continue;
5185 do {
5186 unsigned long long esize;
5187 esize = e[i].start - pos;
5188 if (esize >= minsize)
5189 found = 1;
b7528a20 5190 if (found && start_offset == MaxSector) {
2da8544a
DW
5191 start_offset = pos;
5192 break;
5193 } else if (found && pos != start_offset) {
5194 found = 0;
5195 break;
5196 }
c2c087e6
DW
5197 pos = e[i].start + e[i].size;
5198 i++;
5199 } while (e[i-1].size);
5200 if (found)
5201 dcnt++;
5202 free(e);
5203 }
5204 if (dcnt < raiddisks) {
2c514b71
NB
5205 if (verbose)
5206 fprintf(stderr, Name ": imsm: Not enough "
5207 "devices with space for this array "
5208 "(%d < %d)\n",
5209 dcnt, raiddisks);
c2c087e6
DW
5210 return 0;
5211 }
5212 return 1;
5213 }
0dcecb2e 5214
c2c087e6
DW
5215 /* This device must be a member of the set */
5216 if (stat(dev, &stb) < 0)
5217 return 0;
5218 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5219 return 0;
5220 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5221 if (dl->major == (int)major(stb.st_rdev) &&
5222 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5223 break;
5224 }
5225 if (!dl) {
2c514b71
NB
5226 if (verbose)
5227 fprintf(stderr, Name ": %s is not in the "
5228 "same imsm set\n", dev);
c2c087e6 5229 return 0;
a20d2ba5
DW
5230 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5231 /* If a volume is present then the current creation attempt
5232 * cannot incorporate new spares because the orom may not
5233 * understand this configuration (all member disks must be
5234 * members of each array in the container).
5235 */
5236 fprintf(stderr, Name ": %s is a spare and a volume"
5237 " is already defined for this container\n", dev);
5238 fprintf(stderr, Name ": The option-rom requires all member"
5239 " disks to be a member of all volumes\n");
5240 return 0;
c2c087e6 5241 }
0dcecb2e
DW
5242
5243 /* retrieve the largest free space block */
c2c087e6
DW
5244 e = get_extents(super, dl);
5245 maxsize = 0;
5246 i = 0;
0dcecb2e
DW
5247 if (e) {
5248 do {
5249 unsigned long long esize;
5250
5251 esize = e[i].start - pos;
5252 if (esize >= maxsize)
5253 maxsize = esize;
5254 pos = e[i].start + e[i].size;
5255 i++;
5256 } while (e[i-1].size);
5257 dl->e = e;
5258 dl->extent_cnt = i;
5259 } else {
5260 if (verbose)
5261 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5262 dev);
5263 return 0;
5264 }
5265 if (maxsize < size) {
5266 if (verbose)
5267 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5268 dev, maxsize, size);
5269 return 0;
5270 }
5271
5272 /* count total number of extents for merge */
5273 i = 0;
5274 for (dl = super->disks; dl; dl = dl->next)
5275 if (dl->e)
5276 i += dl->extent_cnt;
5277
5278 maxsize = merge_extents(super, i);
3baa56ab
LO
5279
5280 if (!check_env("IMSM_NO_PLATFORM") &&
5281 mpb->num_raid_devs > 0 && size && size != maxsize) {
5282 fprintf(stderr, Name ": attempting to create a second "
5283 "volume with size less then remaining space. "
5284 "Aborting...\n");
5285 return 0;
5286 }
5287
a7dd165b 5288 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
5289 if (verbose)
5290 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5291 maxsize, size);
5292 return 0;
0dcecb2e
DW
5293 }
5294
c2c087e6
DW
5295 *freesize = maxsize;
5296
5297 return 1;
cdddbdbc
DW
5298}
5299
efb30e7f
DW
5300static int reserve_space(struct supertype *st, int raiddisks,
5301 unsigned long long size, int chunk,
5302 unsigned long long *freesize)
5303{
5304 struct intel_super *super = st->sb;
5305 struct imsm_super *mpb = super->anchor;
5306 struct dl *dl;
5307 int i;
5308 int extent_cnt;
5309 struct extent *e;
5310 unsigned long long maxsize;
5311 unsigned long long minsize;
5312 int cnt;
5313 int used;
5314
5315 /* find the largest common start free region of the possible disks */
5316 used = 0;
5317 extent_cnt = 0;
5318 cnt = 0;
5319 for (dl = super->disks; dl; dl = dl->next) {
5320 dl->raiddisk = -1;
5321
5322 if (dl->index >= 0)
5323 used++;
5324
5325 /* don't activate new spares if we are orom constrained
5326 * and there is already a volume active in the container
5327 */
5328 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5329 continue;
5330
5331 e = get_extents(super, dl);
5332 if (!e)
5333 continue;
5334 for (i = 1; e[i-1].size; i++)
5335 ;
5336 dl->e = e;
5337 dl->extent_cnt = i;
5338 extent_cnt += i;
5339 cnt++;
5340 }
5341
5342 maxsize = merge_extents(super, extent_cnt);
5343 minsize = size;
5344 if (size == 0)
612e59d8
CA
5345 /* chunk is in K */
5346 minsize = chunk * 2;
efb30e7f
DW
5347
5348 if (cnt < raiddisks ||
5349 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5350 maxsize < minsize ||
5351 maxsize == 0) {
efb30e7f
DW
5352 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5353 return 0; /* No enough free spaces large enough */
5354 }
5355
5356 if (size == 0) {
5357 size = maxsize;
5358 if (chunk) {
612e59d8
CA
5359 size /= 2 * chunk;
5360 size *= 2 * chunk;
efb30e7f
DW
5361 }
5362 }
5363
5364 cnt = 0;
5365 for (dl = super->disks; dl; dl = dl->next)
5366 if (dl->e)
5367 dl->raiddisk = cnt++;
5368
5369 *freesize = size;
5370
5371 return 1;
5372}
5373
bf5a934a 5374static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5375 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5376 char *dev, unsigned long long *freesize,
5377 int verbose)
5378{
5379 int fd, cfd;
5380 struct mdinfo *sra;
20cbe8d2 5381 int is_member = 0;
bf5a934a 5382
d54559f0
LM
5383 /* load capability
5384 * if given unused devices create a container
bf5a934a
DW
5385 * if given given devices in a container create a member volume
5386 */
5387 if (level == LEVEL_CONTAINER) {
5388 /* Must be a fresh device to add to a container */
5389 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5390 raiddisks,
5391 chunk?*chunk:0, size,
bf5a934a
DW
5392 dev, freesize,
5393 verbose);
5394 }
5395
8592f29d
N
5396 if (!dev) {
5397 if (st->sb && freesize) {
efb30e7f
DW
5398 /* we are being asked to automatically layout a
5399 * new volume based on the current contents of
5400 * the container. If the the parameters can be
5401 * satisfied reserve_space will record the disks,
5402 * start offset, and size of the volume to be
5403 * created. add_to_super and getinfo_super
5404 * detect when autolayout is in progress.
5405 */
6592ce37
DW
5406 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5407 raiddisks, chunk,
5408 verbose))
5409 return 0;
c21e737b
CA
5410 return reserve_space(st, raiddisks, size,
5411 chunk?*chunk:0, freesize);
8592f29d
N
5412 }
5413 return 1;
5414 }
bf5a934a
DW
5415 if (st->sb) {
5416 /* creating in a given container */
5417 return validate_geometry_imsm_volume(st, level, layout,
5418 raiddisks, chunk, size,
5419 dev, freesize, verbose);
5420 }
5421
bf5a934a
DW
5422 /* This device needs to be a device in an 'imsm' container */
5423 fd = open(dev, O_RDONLY|O_EXCL, 0);
5424 if (fd >= 0) {
5425 if (verbose)
5426 fprintf(stderr,
5427 Name ": Cannot create this array on device %s\n",
5428 dev);
5429 close(fd);
5430 return 0;
5431 }
5432 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5433 if (verbose)
5434 fprintf(stderr, Name ": Cannot open %s: %s\n",
5435 dev, strerror(errno));
5436 return 0;
5437 }
5438 /* Well, it is in use by someone, maybe an 'imsm' container. */
5439 cfd = open_container(fd);
20cbe8d2 5440 close(fd);
bf5a934a 5441 if (cfd < 0) {
bf5a934a
DW
5442 if (verbose)
5443 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5444 dev);
5445 return 0;
5446 }
5447 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5448 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5449 strcmp(sra->text_version, "imsm") == 0)
5450 is_member = 1;
5451 sysfs_free(sra);
5452 if (is_member) {
bf5a934a
DW
5453 /* This is a member of a imsm container. Load the container
5454 * and try to create a volume
5455 */
5456 struct intel_super *super;
5457
e1902a7b 5458 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5459 st->sb = super;
5460 st->container_dev = fd2devnum(cfd);
5461 close(cfd);
5462 return validate_geometry_imsm_volume(st, level, layout,
5463 raiddisks, chunk,
5464 size, dev,
ecbd9e81
N
5465 freesize, 1)
5466 ? 1 : -1;
bf5a934a 5467 }
20cbe8d2 5468 }
bf5a934a 5469
20cbe8d2
AW
5470 if (verbose)
5471 fprintf(stderr, Name ": failed container membership check\n");
5472
5473 close(cfd);
5474 return 0;
bf5a934a 5475}
0bd16cf2 5476
30f58b22 5477static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5478{
5479 struct intel_super *super = st->sb;
5480
30f58b22
DW
5481 if (level && *level == UnSet)
5482 *level = LEVEL_CONTAINER;
5483
5484 if (level && layout && *layout == UnSet)
5485 *layout = imsm_level_to_layout(*level);
0bd16cf2 5486
cd9d1ac7
DW
5487 if (chunk && (*chunk == UnSet || *chunk == 0))
5488 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
5489}
5490
33414a01
DW
5491static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5492
5493static int kill_subarray_imsm(struct supertype *st)
5494{
5495 /* remove the subarray currently referenced by ->current_vol */
5496 __u8 i;
5497 struct intel_dev **dp;
5498 struct intel_super *super = st->sb;
5499 __u8 current_vol = super->current_vol;
5500 struct imsm_super *mpb = super->anchor;
5501
5502 if (super->current_vol < 0)
5503 return 2;
5504 super->current_vol = -1; /* invalidate subarray cursor */
5505
5506 /* block deletions that would change the uuid of active subarrays
5507 *
5508 * FIXME when immutable ids are available, but note that we'll
5509 * also need to fixup the invalidated/active subarray indexes in
5510 * mdstat
5511 */
5512 for (i = 0; i < mpb->num_raid_devs; i++) {
5513 char subarray[4];
5514
5515 if (i < current_vol)
5516 continue;
5517 sprintf(subarray, "%u", i);
5518 if (is_subarray_active(subarray, st->devname)) {
5519 fprintf(stderr,
5520 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5521 current_vol, i);
5522
5523 return 2;
5524 }
5525 }
5526
5527 if (st->update_tail) {
5528 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5529
5530 if (!u)
5531 return 2;
5532 u->type = update_kill_array;
5533 u->dev_idx = current_vol;
5534 append_metadata_update(st, u, sizeof(*u));
5535
5536 return 0;
5537 }
5538
5539 for (dp = &super->devlist; *dp;)
5540 if ((*dp)->index == current_vol) {
5541 *dp = (*dp)->next;
5542 } else {
5543 handle_missing(super, (*dp)->dev);
5544 if ((*dp)->index > current_vol)
5545 (*dp)->index--;
5546 dp = &(*dp)->next;
5547 }
5548
5549 /* no more raid devices, all active components are now spares,
5550 * but of course failed are still failed
5551 */
5552 if (--mpb->num_raid_devs == 0) {
5553 struct dl *d;
5554
5555 for (d = super->disks; d; d = d->next)
a8619d23
AK
5556 if (d->index > -2)
5557 mark_spare(d);
33414a01
DW
5558 }
5559
5560 super->updates_pending++;
5561
5562 return 0;
5563}
aa534678 5564
a951a4f7 5565static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5566 char *update, struct mddev_ident *ident)
aa534678
DW
5567{
5568 /* update the subarray currently referenced by ->current_vol */
5569 struct intel_super *super = st->sb;
5570 struct imsm_super *mpb = super->anchor;
5571
aa534678
DW
5572 if (strcmp(update, "name") == 0) {
5573 char *name = ident->name;
a951a4f7
N
5574 char *ep;
5575 int vol;
aa534678 5576
a951a4f7 5577 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5578 fprintf(stderr,
5579 Name ": Unable to update name of active subarray\n");
5580 return 2;
5581 }
5582
5583 if (!check_name(super, name, 0))
5584 return 2;
5585
a951a4f7
N
5586 vol = strtoul(subarray, &ep, 10);
5587 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5588 return 2;
5589
aa534678
DW
5590 if (st->update_tail) {
5591 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5592
5593 if (!u)
5594 return 2;
5595 u->type = update_rename_array;
a951a4f7 5596 u->dev_idx = vol;
aa534678
DW
5597 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5598 append_metadata_update(st, u, sizeof(*u));
5599 } else {
5600 struct imsm_dev *dev;
5601 int i;
5602
a951a4f7 5603 dev = get_imsm_dev(super, vol);
aa534678
DW
5604 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5605 for (i = 0; i < mpb->num_raid_devs; i++) {
5606 dev = get_imsm_dev(super, i);
5607 handle_missing(super, dev);
5608 }
5609 super->updates_pending++;
5610 }
5611 } else
5612 return 2;
5613
5614 return 0;
5615}
bf5a934a 5616
28bce06f
AK
5617static int is_gen_migration(struct imsm_dev *dev)
5618{
7534230b
AK
5619 if (dev == NULL)
5620 return 0;
5621
28bce06f
AK
5622 if (!dev->vol.migr_state)
5623 return 0;
5624
5625 if (migr_type(dev) == MIGR_GEN_MIGR)
5626 return 1;
5627
5628 return 0;
5629}
71204a50 5630#endif /* MDASSEMBLE */
28bce06f 5631
1e5c6983
DW
5632static int is_rebuilding(struct imsm_dev *dev)
5633{
5634 struct imsm_map *migr_map;
5635
5636 if (!dev->vol.migr_state)
5637 return 0;
5638
5639 if (migr_type(dev) != MIGR_REBUILD)
5640 return 0;
5641
5642 migr_map = get_imsm_map(dev, 1);
5643
5644 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5645 return 1;
5646 else
5647 return 0;
5648}
5649
c47b0ff6
AK
5650static void update_recovery_start(struct intel_super *super,
5651 struct imsm_dev *dev,
5652 struct mdinfo *array)
1e5c6983
DW
5653{
5654 struct mdinfo *rebuild = NULL;
5655 struct mdinfo *d;
5656 __u32 units;
5657
5658 if (!is_rebuilding(dev))
5659 return;
5660
5661 /* Find the rebuild target, but punt on the dual rebuild case */
5662 for (d = array->devs; d; d = d->next)
5663 if (d->recovery_start == 0) {
5664 if (rebuild)
5665 return;
5666 rebuild = d;
5667 }
5668
4363fd80
DW
5669 if (!rebuild) {
5670 /* (?) none of the disks are marked with
5671 * IMSM_ORD_REBUILD, so assume they are missing and the
5672 * disk_ord_tbl was not correctly updated
5673 */
5674 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5675 return;
5676 }
5677
1e5c6983 5678 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5679 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5680}
5681
9e2d750d 5682#ifndef MDASSEMBLE
276d77db 5683static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 5684#endif
1e5c6983 5685
00bbdbda 5686static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5687{
4f5bc454
DW
5688 /* Given a container loaded by load_super_imsm_all,
5689 * extract information about all the arrays into
5690 * an mdinfo tree.
00bbdbda 5691 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5692 *
5693 * For each imsm_dev create an mdinfo, fill it in,
5694 * then look for matching devices in super->disks
5695 * and create appropriate device mdinfo.
5696 */
5697 struct intel_super *super = st->sb;
949c47a0 5698 struct imsm_super *mpb = super->anchor;
4f5bc454 5699 struct mdinfo *rest = NULL;
00bbdbda 5700 unsigned int i;
81219e70 5701 int sb_errors = 0;
abef11a3
AK
5702 struct dl *d;
5703 int spare_disks = 0;
cdddbdbc 5704
19482bcc
AK
5705 /* do not assemble arrays when not all attributes are supported */
5706 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70
LM
5707 sb_errors = 1;
5708 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5709 "Arrays activation is blocked.\n");
19482bcc
AK
5710 }
5711
a06d022d 5712 /* check for bad blocks */
81219e70
LM
5713 if (imsm_bbm_log_size(super->anchor)) {
5714 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5715 "Arrays activation is blocked.\n");
5716 sb_errors = 1;
5717 }
5718
604b746f 5719
abef11a3
AK
5720 /* count spare devices, not used in maps
5721 */
5722 for (d = super->disks; d; d = d->next)
5723 if (d->index == -1)
5724 spare_disks++;
5725
4f5bc454 5726 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5727 struct imsm_dev *dev;
5728 struct imsm_map *map;
86e3692b 5729 struct imsm_map *map2;
4f5bc454 5730 struct mdinfo *this;
2db86302 5731 int slot, chunk;
00bbdbda
N
5732 char *ep;
5733
5734 if (subarray &&
5735 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5736 continue;
5737
5738 dev = get_imsm_dev(super, i);
5739 map = get_imsm_map(dev, 0);
86e3692b 5740 map2 = get_imsm_map(dev, 1);
4f5bc454 5741
1ce0101c
DW
5742 /* do not publish arrays that are in the middle of an
5743 * unsupported migration
5744 */
5745 if (dev->vol.migr_state &&
28bce06f 5746 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5747 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5748 " unsupported migration in progress\n",
5749 dev->volume);
5750 continue;
5751 }
2db86302
LM
5752 /* do not publish arrays that are not support by controller's
5753 * OROM/EFI
5754 */
1ce0101c 5755
2db86302 5756 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
4f5bc454 5757 this = malloc(sizeof(*this));
0fbd635c 5758 if (!this) {
cf1be220 5759 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5760 sizeof(*this));
5761 break;
5762 }
4f5bc454 5763
301406c9 5764 super->current_vol = i;
a5d85af7 5765 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5766 this->next = rest;
81219e70
LM
5767#ifndef MDASSEMBLE
5768 /* mdadm does not support all metadata features- set the bit in all arrays state */
5769 if (!validate_geometry_imsm_orom(super,
5770 get_imsm_raid_level(map), /* RAID level */
5771 imsm_level_to_layout(get_imsm_raid_level(map)),
5772 map->num_members, /* raid disks */
5773 &chunk,
5774 1 /* verbose */)) {
446894ea
N
5775 fprintf(stderr, Name ": IMSM RAID geometry validation"
5776 " failed. Array %s activation is blocked.\n",
81219e70
LM
5777 dev->volume);
5778 this->array.state |=
5779 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5780 (1<<MD_SB_BLOCK_VOLUME);
5781 }
5782#endif
5783
5784 /* if array has bad blocks, set suitable bit in all arrays state */
5785 if (sb_errors)
5786 this->array.state |=
5787 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5788 (1<<MD_SB_BLOCK_VOLUME);
5789
4f5bc454 5790 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5791 unsigned long long recovery_start;
4f5bc454
DW
5792 struct mdinfo *info_d;
5793 struct dl *d;
5794 int idx;
9a1608e5 5795 int skip;
7eef0453 5796 __u32 ord;
4f5bc454 5797
9a1608e5 5798 skip = 0;
98130f40 5799 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5800 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5801 for (d = super->disks; d ; d = d->next)
5802 if (d->index == idx)
0fbd635c 5803 break;
4f5bc454 5804
1e5c6983 5805 recovery_start = MaxSector;
4f5bc454 5806 if (d == NULL)
9a1608e5 5807 skip = 1;
25ed7e59 5808 if (d && is_failed(&d->disk))
9a1608e5 5809 skip = 1;
7eef0453 5810 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5811 recovery_start = 0;
9a1608e5
DW
5812
5813 /*
5814 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5815 * reset resync start to avoid a dirty-degraded
5816 * situation when performing the intial sync
9a1608e5
DW
5817 *
5818 * FIXME handle dirty degraded
5819 */
1e5c6983 5820 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5821 this->resync_start = MaxSector;
9a1608e5
DW
5822 if (skip)
5823 continue;
4f5bc454 5824
1e5c6983 5825 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5826 if (!info_d) {
5827 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5828 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5829 info_d = this->devs;
5830 while (info_d) {
5831 struct mdinfo *d = info_d->next;
5832
5833 free(info_d);
5834 info_d = d;
5835 }
9a1608e5
DW
5836 free(this);
5837 this = rest;
5838 break;
5839 }
4f5bc454
DW
5840 info_d->next = this->devs;
5841 this->devs = info_d;
5842
4f5bc454
DW
5843 info_d->disk.number = d->index;
5844 info_d->disk.major = d->major;
5845 info_d->disk.minor = d->minor;
5846 info_d->disk.raid_disk = slot;
1e5c6983 5847 info_d->recovery_start = recovery_start;
86e3692b
AK
5848 if (map2) {
5849 if (slot < map2->num_members)
5850 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5851 else
5852 this->array.spare_disks++;
86e3692b
AK
5853 } else {
5854 if (slot < map->num_members)
5855 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5856 else
5857 this->array.spare_disks++;
86e3692b 5858 }
1e5c6983
DW
5859 if (info_d->recovery_start == MaxSector)
5860 this->array.working_disks++;
4f5bc454
DW
5861
5862 info_d->events = __le32_to_cpu(mpb->generation_num);
5863 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5864 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5865 }
1e5c6983 5866 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5867 update_recovery_start(super, dev, this);
abef11a3 5868 this->array.spare_disks += spare_disks;
276d77db 5869
9e2d750d 5870#ifndef MDASSEMBLE
276d77db
AK
5871 /* check for reshape */
5872 if (this->reshape_active == 1)
5873 recover_backup_imsm(st, this);
9e2d750d 5874#endif
9a1608e5 5875 rest = this;
4f5bc454
DW
5876 }
5877
5878 return rest;
cdddbdbc
DW
5879}
5880
845dea95 5881
fb49eef2 5882static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 5883{
a965f303 5884 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
5885
5886 if (!failed)
3393c6af
DW
5887 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5888 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5889
5890 switch (get_imsm_raid_level(map)) {
5891 case 0:
5892 return IMSM_T_STATE_FAILED;
5893 break;
5894 case 1:
5895 if (failed < map->num_members)
5896 return IMSM_T_STATE_DEGRADED;
5897 else
5898 return IMSM_T_STATE_FAILED;
5899 break;
5900 case 10:
5901 {
5902 /**
c92a2527
DW
5903 * check to see if any mirrors have failed, otherwise we
5904 * are degraded. Even numbered slots are mirrored on
5905 * slot+1
c2a1e7da 5906 */
c2a1e7da 5907 int i;
d9b420a5
N
5908 /* gcc -Os complains that this is unused */
5909 int insync = insync;
c2a1e7da
DW
5910
5911 for (i = 0; i < map->num_members; i++) {
98130f40 5912 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5913 int idx = ord_to_idx(ord);
5914 struct imsm_disk *disk;
c2a1e7da 5915
c92a2527
DW
5916 /* reset the potential in-sync count on even-numbered
5917 * slots. num_copies is always 2 for imsm raid10
5918 */
5919 if ((i & 1) == 0)
5920 insync = 2;
c2a1e7da 5921
c92a2527 5922 disk = get_imsm_disk(super, idx);
25ed7e59 5923 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5924 insync--;
c2a1e7da 5925
c92a2527
DW
5926 /* no in-sync disks left in this mirror the
5927 * array has failed
5928 */
5929 if (insync == 0)
5930 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5931 }
5932
5933 return IMSM_T_STATE_DEGRADED;
5934 }
5935 case 5:
5936 if (failed < 2)
5937 return IMSM_T_STATE_DEGRADED;
5938 else
5939 return IMSM_T_STATE_FAILED;
5940 break;
5941 default:
5942 break;
5943 }
5944
5945 return map->map_state;
5946}
5947
ff077194 5948static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
5949{
5950 int i;
5951 int failed = 0;
5952 struct imsm_disk *disk;
ff077194 5953 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 5954 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
68fe4598 5955 struct imsm_map *map_for_loop;
0556e1a2
DW
5956 __u32 ord;
5957 int idx;
c2a1e7da 5958
0556e1a2
DW
5959 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5960 * disks that are being rebuilt. New failures are recorded to
5961 * map[0]. So we look through all the disks we started with and
5962 * see if any failures are still present, or if any new ones
5963 * have arrived
0556e1a2 5964 */
68fe4598
LD
5965 map_for_loop = prev;
5966 if (is_gen_migration(dev))
5967 if (prev && (map->num_members > prev->num_members))
5968 map_for_loop = map;
5969
5970 for (i = 0; i < map_for_loop->num_members; i++) {
5971 ord = 0;
5972 if (i < prev->num_members)
5973 ord |= __le32_to_cpu(prev->disk_ord_tbl[i]);
5974 if (i < map->num_members)
5975 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
0556e1a2 5976 idx = ord_to_idx(ord);
c2a1e7da 5977
949c47a0 5978 disk = get_imsm_disk(super, idx);
25ed7e59 5979 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 5980 failed++;
c2a1e7da
DW
5981 }
5982
5983 return failed;
845dea95
NB
5984}
5985
97b4d0e9
DW
5986#ifndef MDASSEMBLE
5987static int imsm_open_new(struct supertype *c, struct active_array *a,
5988 char *inst)
5989{
5990 struct intel_super *super = c->sb;
5991 struct imsm_super *mpb = super->anchor;
5992
5993 if (atoi(inst) >= mpb->num_raid_devs) {
5994 fprintf(stderr, "%s: subarry index %d, out of range\n",
5995 __func__, atoi(inst));
5996 return -ENODEV;
5997 }
5998
5999 dprintf("imsm: open_new %s\n", inst);
6000 a->info.container_member = atoi(inst);
6001 return 0;
6002}
6003
0c046afd
DW
6004static int is_resyncing(struct imsm_dev *dev)
6005{
6006 struct imsm_map *migr_map;
6007
6008 if (!dev->vol.migr_state)
6009 return 0;
6010
1484e727
DW
6011 if (migr_type(dev) == MIGR_INIT ||
6012 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
6013 return 1;
6014
4c9bc37b
AK
6015 if (migr_type(dev) == MIGR_GEN_MIGR)
6016 return 0;
6017
0c046afd
DW
6018 migr_map = get_imsm_map(dev, 1);
6019
4c9bc37b
AK
6020 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6021 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
6022 return 1;
6023 else
6024 return 0;
6025}
6026
0556e1a2
DW
6027/* return true if we recorded new information */
6028static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 6029{
0556e1a2
DW
6030 __u32 ord;
6031 int slot;
6032 struct imsm_map *map;
86c54047
DW
6033 char buf[MAX_RAID_SERIAL_LEN+3];
6034 unsigned int len, shift = 0;
0556e1a2
DW
6035
6036 /* new failures are always set in map[0] */
6037 map = get_imsm_map(dev, 0);
6038
6039 slot = get_imsm_disk_slot(map, idx);
6040 if (slot < 0)
6041 return 0;
6042
6043 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 6044 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
6045 return 0;
6046
7d0c5e24
LD
6047 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6048 buf[MAX_RAID_SERIAL_LEN] = '\000';
6049 strcat(buf, ":0");
86c54047
DW
6050 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6051 shift = len - MAX_RAID_SERIAL_LEN + 1;
6052 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6053
f2f27e63 6054 disk->status |= FAILED_DISK;
0556e1a2 6055 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
f21e18ca 6056 if (map->failed_disk_num == 0xff)
0556e1a2
DW
6057 map->failed_disk_num = slot;
6058 return 1;
6059}
6060
6061static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6062{
6063 mark_failure(dev, disk, idx);
6064
6065 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6066 return;
6067
47ee5a45
DW
6068 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6069 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6070}
6071
33414a01
DW
6072static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6073{
6074 __u8 map_state;
6075 struct dl *dl;
6076 int failed;
6077
6078 if (!super->missing)
6079 return;
6080 failed = imsm_count_failed(super, dev);
6081 map_state = imsm_check_degraded(super, dev, failed);
6082
6083 dprintf("imsm: mark missing\n");
6084 end_migration(dev, map_state);
6085 for (dl = super->missing; dl; dl = dl->next)
6086 mark_missing(dev, &dl->disk, dl->index);
6087 super->updates_pending++;
6088}
6089
70bdf0dc
AK
6090static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6091{
6092 int used_disks = imsm_num_data_members(dev, 0);
6093 unsigned long long array_blocks;
6094 struct imsm_map *map;
6095
6096 if (used_disks == 0) {
6097 /* when problems occures
6098 * return current array_blocks value
6099 */
6100 array_blocks = __le32_to_cpu(dev->size_high);
6101 array_blocks = array_blocks << 32;
6102 array_blocks += __le32_to_cpu(dev->size_low);
6103
6104 return array_blocks;
6105 }
6106
6107 /* set array size in metadata
6108 */
6109 map = get_imsm_map(dev, 0);
6110 array_blocks = map->blocks_per_member * used_disks;
6111
6112 /* round array size down to closest MB
6113 */
6114 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6115 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6116 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6117
6118 return array_blocks;
6119}
6120
28bce06f
AK
6121static void imsm_set_disk(struct active_array *a, int n, int state);
6122
0e2d1a4e
AK
6123static void imsm_progress_container_reshape(struct intel_super *super)
6124{
6125 /* if no device has a migr_state, but some device has a
6126 * different number of members than the previous device, start
6127 * changing the number of devices in this device to match
6128 * previous.
6129 */
6130 struct imsm_super *mpb = super->anchor;
6131 int prev_disks = -1;
6132 int i;
1dfaa380 6133 int copy_map_size;
0e2d1a4e
AK
6134
6135 for (i = 0; i < mpb->num_raid_devs; i++) {
6136 struct imsm_dev *dev = get_imsm_dev(super, i);
6137 struct imsm_map *map = get_imsm_map(dev, 0);
6138 struct imsm_map *map2;
6139 int prev_num_members;
0e2d1a4e
AK
6140
6141 if (dev->vol.migr_state)
6142 return;
6143
6144 if (prev_disks == -1)
6145 prev_disks = map->num_members;
6146 if (prev_disks == map->num_members)
6147 continue;
6148
6149 /* OK, this array needs to enter reshape mode.
6150 * i.e it needs a migr_state
6151 */
6152
1dfaa380 6153 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
6154 prev_num_members = map->num_members;
6155 map->num_members = prev_disks;
6156 dev->vol.migr_state = 1;
6157 dev->vol.curr_migr_unit = 0;
ea672ee1 6158 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
6159 for (i = prev_num_members;
6160 i < map->num_members; i++)
6161 set_imsm_ord_tbl_ent(map, i, i);
6162 map2 = get_imsm_map(dev, 1);
6163 /* Copy the current map */
1dfaa380 6164 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
6165 map2->num_members = prev_num_members;
6166
70bdf0dc 6167 imsm_set_array_size(dev);
0e2d1a4e
AK
6168 super->updates_pending++;
6169 }
6170}
6171
aad6f216 6172/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
6173 * states are handled in imsm_set_disk() with one exception, when a
6174 * resync is stopped due to a new failure this routine will set the
6175 * 'degraded' state for the array.
6176 */
01f157d7 6177static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
6178{
6179 int inst = a->info.container_member;
6180 struct intel_super *super = a->container->sb;
949c47a0 6181 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6182 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
6183 int failed = imsm_count_failed(super, dev);
6184 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 6185 __u32 blocks_per_unit;
a862209d 6186
1af97990
AK
6187 if (dev->vol.migr_state &&
6188 dev->vol.migr_type == MIGR_GEN_MIGR) {
6189 /* array state change is blocked due to reshape action
aad6f216
N
6190 * We might need to
6191 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6192 * - finish the reshape (if last_checkpoint is big and action != reshape)
6193 * - update curr_migr_unit
1af97990 6194 */
aad6f216
N
6195 if (a->curr_action == reshape) {
6196 /* still reshaping, maybe update curr_migr_unit */
633b5610 6197 goto mark_checkpoint;
aad6f216
N
6198 } else {
6199 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6200 /* for some reason we aborted the reshape.
b66e591b
AK
6201 *
6202 * disable automatic metadata rollback
6203 * user action is required to recover process
aad6f216 6204 */
b66e591b 6205 if (0) {
aad6f216
N
6206 struct imsm_map *map2 = get_imsm_map(dev, 1);
6207 dev->vol.migr_state = 0;
ea672ee1 6208 set_migr_type(dev, 0);
aad6f216
N
6209 dev->vol.curr_migr_unit = 0;
6210 memcpy(map, map2, sizeof_imsm_map(map2));
6211 super->updates_pending++;
b66e591b 6212 }
aad6f216
N
6213 }
6214 if (a->last_checkpoint >= a->info.component_size) {
6215 unsigned long long array_blocks;
6216 int used_disks;
e154ced3 6217 struct mdinfo *mdi;
aad6f216 6218
9653001d 6219 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
6220 if (used_disks > 0) {
6221 array_blocks =
6222 map->blocks_per_member *
6223 used_disks;
6224 /* round array size down to closest MB
6225 */
6226 array_blocks = (array_blocks
6227 >> SECT_PER_MB_SHIFT)
6228 << SECT_PER_MB_SHIFT;
d55adef9
AK
6229 a->info.custom_array_size = array_blocks;
6230 /* encourage manager to update array
6231 * size
6232 */
e154ced3 6233
d55adef9 6234 a->check_reshape = 1;
633b5610 6235 }
e154ced3
AK
6236 /* finalize online capacity expansion/reshape */
6237 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6238 imsm_set_disk(a,
6239 mdi->disk.raid_disk,
6240 mdi->curr_state);
6241
0e2d1a4e 6242 imsm_progress_container_reshape(super);
e154ced3 6243 }
aad6f216 6244 }
1af97990
AK
6245 }
6246
47ee5a45 6247 /* before we activate this array handle any missing disks */
33414a01
DW
6248 if (consistent == 2)
6249 handle_missing(super, dev);
1e5c6983 6250
0c046afd 6251 if (consistent == 2 &&
b7941fd6 6252 (!is_resync_complete(&a->info) ||
0c046afd
DW
6253 map_state != IMSM_T_STATE_NORMAL ||
6254 dev->vol.migr_state))
01f157d7 6255 consistent = 0;
272906ef 6256
b7941fd6 6257 if (is_resync_complete(&a->info)) {
0c046afd 6258 /* complete intialization / resync,
0556e1a2
DW
6259 * recovery and interrupted recovery is completed in
6260 * ->set_disk
0c046afd
DW
6261 */
6262 if (is_resyncing(dev)) {
6263 dprintf("imsm: mark resync done\n");
f8f603f1 6264 end_migration(dev, map_state);
115c3803 6265 super->updates_pending++;
484240d8 6266 a->last_checkpoint = 0;
115c3803 6267 }
b9172665
AK
6268 } else if ((!is_resyncing(dev) && !failed) &&
6269 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 6270 /* mark the start of the init process if nothing is failed */
b7941fd6 6271 dprintf("imsm: mark resync start\n");
1484e727 6272 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 6273 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 6274 else
8e59f3d8 6275 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 6276 super->updates_pending++;
115c3803 6277 }
a862209d 6278
633b5610 6279mark_checkpoint:
5b83bacf
AK
6280 /* skip checkpointing for general migration,
6281 * it is controlled in mdadm
6282 */
6283 if (is_gen_migration(dev))
6284 goto skip_mark_checkpoint;
6285
1e5c6983 6286 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 6287 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 6288 if (blocks_per_unit) {
1e5c6983
DW
6289 __u32 units32;
6290 __u64 units;
6291
4f0a7acc 6292 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
6293 units32 = units;
6294
6295 /* check that we did not overflow 32-bits, and that
6296 * curr_migr_unit needs updating
6297 */
6298 if (units32 == units &&
bfd80a56 6299 units32 != 0 &&
1e5c6983
DW
6300 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6301 dprintf("imsm: mark checkpoint (%u)\n", units32);
6302 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6303 super->updates_pending++;
6304 }
6305 }
f8f603f1 6306
5b83bacf 6307skip_mark_checkpoint:
3393c6af 6308 /* mark dirty / clean */
0c046afd 6309 if (dev->vol.dirty != !consistent) {
b7941fd6 6310 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
6311 if (consistent)
6312 dev->vol.dirty = 0;
6313 else
6314 dev->vol.dirty = 1;
a862209d
DW
6315 super->updates_pending++;
6316 }
28bce06f 6317
01f157d7 6318 return consistent;
a862209d
DW
6319}
6320
8d45d196 6321static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 6322{
8d45d196
DW
6323 int inst = a->info.container_member;
6324 struct intel_super *super = a->container->sb;
949c47a0 6325 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6326 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 6327 struct imsm_disk *disk;
0c046afd 6328 int failed;
b10b37b8 6329 __u32 ord;
0c046afd 6330 __u8 map_state;
8d45d196
DW
6331
6332 if (n > map->num_members)
6333 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6334 n, map->num_members - 1);
6335
6336 if (n < 0)
6337 return;
6338
4e6e574a 6339 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 6340
98130f40 6341 ord = get_imsm_ord_tbl_ent(dev, n, -1);
b10b37b8 6342 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 6343
5802a811 6344 /* check for new failures */
0556e1a2
DW
6345 if (state & DS_FAULTY) {
6346 if (mark_failure(dev, disk, ord_to_idx(ord)))
6347 super->updates_pending++;
8d45d196 6348 }
47ee5a45 6349
19859edc 6350 /* check if in_sync */
0556e1a2 6351 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
6352 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6353
6354 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6355 super->updates_pending++;
6356 }
8d45d196 6357
0c046afd
DW
6358 failed = imsm_count_failed(super, dev);
6359 map_state = imsm_check_degraded(super, dev, failed);
5802a811 6360
0c046afd
DW
6361 /* check if recovery complete, newly degraded, or failed */
6362 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 6363 end_migration(dev, map_state);
0556e1a2
DW
6364 map = get_imsm_map(dev, 0);
6365 map->failed_disk_num = ~0;
0c046afd 6366 super->updates_pending++;
484240d8 6367 a->last_checkpoint = 0;
0c046afd
DW
6368 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6369 map->map_state != map_state &&
6370 !dev->vol.migr_state) {
6371 dprintf("imsm: mark degraded\n");
6372 map->map_state = map_state;
6373 super->updates_pending++;
484240d8 6374 a->last_checkpoint = 0;
0c046afd
DW
6375 } else if (map_state == IMSM_T_STATE_FAILED &&
6376 map->map_state != map_state) {
6377 dprintf("imsm: mark failed\n");
f8f603f1 6378 end_migration(dev, map_state);
0c046afd 6379 super->updates_pending++;
484240d8 6380 a->last_checkpoint = 0;
28bce06f
AK
6381 } else if (is_gen_migration(dev)) {
6382 dprintf("imsm: Detected General Migration in state: ");
6383 if (map_state == IMSM_T_STATE_NORMAL) {
6384 end_migration(dev, map_state);
6385 map = get_imsm_map(dev, 0);
6386 map->failed_disk_num = ~0;
6387 dprintf("normal\n");
6388 } else {
6389 if (map_state == IMSM_T_STATE_DEGRADED) {
6390 printf("degraded\n");
6391 end_migration(dev, map_state);
6392 } else {
6393 dprintf("failed\n");
6394 }
6395 map->map_state = map_state;
6396 }
6397 super->updates_pending++;
5802a811 6398 }
845dea95
NB
6399}
6400
f796af5d 6401static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6402{
f796af5d 6403 void *buf = mpb;
c2a1e7da
DW
6404 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6405 unsigned long long dsize;
6406 unsigned long long sectors;
6407
6408 get_dev_size(fd, NULL, &dsize);
6409
272f648f
DW
6410 if (mpb_size > 512) {
6411 /* -1 to account for anchor */
6412 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6413
272f648f
DW
6414 /* write the extended mpb to the sectors preceeding the anchor */
6415 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6416 return 1;
c2a1e7da 6417
f21e18ca
N
6418 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6419 != 512 * sectors)
272f648f
DW
6420 return 1;
6421 }
c2a1e7da 6422
272f648f
DW
6423 /* first block is stored on second to last sector of the disk */
6424 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6425 return 1;
6426
f796af5d 6427 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6428 return 1;
6429
c2a1e7da
DW
6430 return 0;
6431}
6432
2e735d19 6433static void imsm_sync_metadata(struct supertype *container)
845dea95 6434{
2e735d19 6435 struct intel_super *super = container->sb;
c2a1e7da 6436
1a64be56 6437 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6438 if (!super->updates_pending)
6439 return;
6440
36988a3d 6441 write_super_imsm(container, 0);
c2a1e7da
DW
6442
6443 super->updates_pending = 0;
845dea95
NB
6444}
6445
272906ef
DW
6446static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6447{
6448 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6449 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6450 struct dl *dl;
6451
6452 for (dl = super->disks; dl; dl = dl->next)
6453 if (dl->index == i)
6454 break;
6455
25ed7e59 6456 if (dl && is_failed(&dl->disk))
272906ef
DW
6457 dl = NULL;
6458
6459 if (dl)
6460 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6461
6462 return dl;
6463}
6464
a20d2ba5 6465static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6466 struct active_array *a, int activate_new,
6467 struct mdinfo *additional_test_list)
272906ef
DW
6468{
6469 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6470 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6471 struct imsm_super *mpb = super->anchor;
6472 struct imsm_map *map;
272906ef
DW
6473 unsigned long long pos;
6474 struct mdinfo *d;
6475 struct extent *ex;
a20d2ba5 6476 int i, j;
272906ef 6477 int found;
569cc43f
DW
6478 __u32 array_start = 0;
6479 __u32 array_end = 0;
272906ef 6480 struct dl *dl;
6c932028 6481 struct mdinfo *test_list;
272906ef
DW
6482
6483 for (dl = super->disks; dl; dl = dl->next) {
6484 /* If in this array, skip */
6485 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6486 if (d->state_fd >= 0 &&
6487 d->disk.major == dl->major &&
272906ef 6488 d->disk.minor == dl->minor) {
8ba77d32
AK
6489 dprintf("%x:%x already in array\n",
6490 dl->major, dl->minor);
272906ef
DW
6491 break;
6492 }
6493 if (d)
6494 continue;
6c932028
AK
6495 test_list = additional_test_list;
6496 while (test_list) {
6497 if (test_list->disk.major == dl->major &&
6498 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6499 dprintf("%x:%x already in additional test list\n",
6500 dl->major, dl->minor);
6501 break;
6502 }
6c932028 6503 test_list = test_list->next;
8ba77d32 6504 }
6c932028 6505 if (test_list)
8ba77d32 6506 continue;
272906ef 6507
e553d2a4 6508 /* skip in use or failed drives */
25ed7e59 6509 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6510 dl->index == -2) {
6511 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6512 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6513 continue;
6514 }
6515
a20d2ba5
DW
6516 /* skip pure spares when we are looking for partially
6517 * assimilated drives
6518 */
6519 if (dl->index == -1 && !activate_new)
6520 continue;
6521
272906ef 6522 /* Does this unused device have the requisite free space?
a20d2ba5 6523 * It needs to be able to cover all member volumes
272906ef
DW
6524 */
6525 ex = get_extents(super, dl);
6526 if (!ex) {
6527 dprintf("cannot get extents\n");
6528 continue;
6529 }
a20d2ba5
DW
6530 for (i = 0; i < mpb->num_raid_devs; i++) {
6531 dev = get_imsm_dev(super, i);
6532 map = get_imsm_map(dev, 0);
272906ef 6533
a20d2ba5
DW
6534 /* check if this disk is already a member of
6535 * this array
272906ef 6536 */
620b1713 6537 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6538 continue;
6539
6540 found = 0;
6541 j = 0;
6542 pos = 0;
6543 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6544 array_end = array_start +
6545 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6546
6547 do {
6548 /* check that we can start at pba_of_lba0 with
6549 * blocks_per_member of space
6550 */
329c8278 6551 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6552 found = 1;
6553 break;
6554 }
6555 pos = ex[j].start + ex[j].size;
6556 j++;
6557 } while (ex[j-1].size);
6558
6559 if (!found)
272906ef 6560 break;
a20d2ba5 6561 }
272906ef
DW
6562
6563 free(ex);
a20d2ba5 6564 if (i < mpb->num_raid_devs) {
329c8278
DW
6565 dprintf("%x:%x does not have %u to %u available\n",
6566 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6567 /* No room */
6568 continue;
a20d2ba5
DW
6569 }
6570 return dl;
272906ef
DW
6571 }
6572
6573 return dl;
6574}
6575
95d07a2c
LM
6576
6577static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6578{
6579 struct imsm_dev *dev2;
6580 struct imsm_map *map;
6581 struct dl *idisk;
6582 int slot;
6583 int idx;
6584 __u8 state;
6585
6586 dev2 = get_imsm_dev(cont->sb, dev_idx);
6587 if (dev2) {
6588 state = imsm_check_degraded(cont->sb, dev2, failed);
6589 if (state == IMSM_T_STATE_FAILED) {
6590 map = get_imsm_map(dev2, 0);
6591 if (!map)
6592 return 1;
6593 for (slot = 0; slot < map->num_members; slot++) {
6594 /*
6595 * Check if failed disks are deleted from intel
6596 * disk list or are marked to be deleted
6597 */
98130f40 6598 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6599 idisk = get_imsm_dl_disk(cont->sb, idx);
6600 /*
6601 * Do not rebuild the array if failed disks
6602 * from failed sub-array are not removed from
6603 * container.
6604 */
6605 if (idisk &&
6606 is_failed(&idisk->disk) &&
6607 (idisk->action != DISK_REMOVE))
6608 return 0;
6609 }
6610 }
6611 }
6612 return 1;
6613}
6614
88758e9d
DW
6615static struct mdinfo *imsm_activate_spare(struct active_array *a,
6616 struct metadata_update **updates)
6617{
6618 /**
d23fe947
DW
6619 * Find a device with unused free space and use it to replace a
6620 * failed/vacant region in an array. We replace failed regions one a
6621 * array at a time. The result is that a new spare disk will be added
6622 * to the first failed array and after the monitor has finished
6623 * propagating failures the remainder will be consumed.
88758e9d 6624 *
d23fe947
DW
6625 * FIXME add a capability for mdmon to request spares from another
6626 * container.
88758e9d
DW
6627 */
6628
6629 struct intel_super *super = a->container->sb;
88758e9d 6630 int inst = a->info.container_member;
949c47a0 6631 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6632 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6633 int failed = a->info.array.raid_disks;
6634 struct mdinfo *rv = NULL;
6635 struct mdinfo *d;
6636 struct mdinfo *di;
6637 struct metadata_update *mu;
6638 struct dl *dl;
6639 struct imsm_update_activate_spare *u;
6640 int num_spares = 0;
6641 int i;
95d07a2c 6642 int allowed;
88758e9d
DW
6643
6644 for (d = a->info.devs ; d ; d = d->next) {
6645 if ((d->curr_state & DS_FAULTY) &&
6646 d->state_fd >= 0)
6647 /* wait for Removal to happen */
6648 return NULL;
6649 if (d->state_fd >= 0)
6650 failed--;
6651 }
6652
6653 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6654 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 6655
e2962bfc
AK
6656 if (imsm_reshape_blocks_arrays_changes(super))
6657 return NULL;
1af97990 6658
89c67882
AK
6659 if (a->info.array.level == 4)
6660 /* No repair for takeovered array
6661 * imsm doesn't support raid4
6662 */
6663 return NULL;
6664
fb49eef2 6665 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
6666 return NULL;
6667
95d07a2c
LM
6668 /*
6669 * If there are any failed disks check state of the other volume.
6670 * Block rebuild if the another one is failed until failed disks
6671 * are removed from container.
6672 */
6673 if (failed) {
c4acd1e5 6674 dprintf("found failed disks in %.*s, check if there another"
95d07a2c 6675 "failed sub-array.\n",
c4acd1e5 6676 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
6677 /* check if states of the other volumes allow for rebuild */
6678 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6679 if (i != inst) {
6680 allowed = imsm_rebuild_allowed(a->container,
6681 i, failed);
6682 if (!allowed)
6683 return NULL;
6684 }
6685 }
6686 }
6687
88758e9d 6688 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6689 for (i = 0; i < a->info.array.raid_disks; i++) {
6690 for (d = a->info.devs ; d ; d = d->next)
6691 if (d->disk.raid_disk == i)
6692 break;
6693 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6694 if (d && (d->state_fd >= 0))
6695 continue;
6696
272906ef 6697 /*
a20d2ba5
DW
6698 * OK, this device needs recovery. Try to re-add the
6699 * previous occupant of this slot, if this fails see if
6700 * we can continue the assimilation of a spare that was
6701 * partially assimilated, finally try to activate a new
6702 * spare.
272906ef
DW
6703 */
6704 dl = imsm_readd(super, i, a);
6705 if (!dl)
b303fe21 6706 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 6707 if (!dl)
b303fe21 6708 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
6709 if (!dl)
6710 continue;
6711
6712 /* found a usable disk with enough space */
6713 di = malloc(sizeof(*di));
79244939
DW
6714 if (!di)
6715 continue;
272906ef
DW
6716 memset(di, 0, sizeof(*di));
6717
6718 /* dl->index will be -1 in the case we are activating a
6719 * pristine spare. imsm_process_update() will create a
6720 * new index in this case. Once a disk is found to be
6721 * failed in all member arrays it is kicked from the
6722 * metadata
6723 */
6724 di->disk.number = dl->index;
d23fe947 6725
272906ef
DW
6726 /* (ab)use di->devs to store a pointer to the device
6727 * we chose
6728 */
6729 di->devs = (struct mdinfo *) dl;
6730
6731 di->disk.raid_disk = i;
6732 di->disk.major = dl->major;
6733 di->disk.minor = dl->minor;
6734 di->disk.state = 0;
d23534e4 6735 di->recovery_start = 0;
272906ef
DW
6736 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6737 di->component_size = a->info.component_size;
6738 di->container_member = inst;
148acb7b 6739 super->random = random32();
272906ef
DW
6740 di->next = rv;
6741 rv = di;
6742 num_spares++;
6743 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6744 i, di->data_offset);
88758e9d
DW
6745 }
6746
6747 if (!rv)
6748 /* No spares found */
6749 return rv;
6750 /* Now 'rv' has a list of devices to return.
6751 * Create a metadata_update record to update the
6752 * disk_ord_tbl for the array
6753 */
6754 mu = malloc(sizeof(*mu));
79244939
DW
6755 if (mu) {
6756 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6757 if (mu->buf == NULL) {
6758 free(mu);
6759 mu = NULL;
6760 }
6761 }
6762 if (!mu) {
6763 while (rv) {
6764 struct mdinfo *n = rv->next;
6765
6766 free(rv);
6767 rv = n;
6768 }
6769 return NULL;
6770 }
6771
88758e9d 6772 mu->space = NULL;
cb23f1f4 6773 mu->space_list = NULL;
88758e9d
DW
6774 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6775 mu->next = *updates;
6776 u = (struct imsm_update_activate_spare *) mu->buf;
6777
6778 for (di = rv ; di ; di = di->next) {
6779 u->type = update_activate_spare;
d23fe947
DW
6780 u->dl = (struct dl *) di->devs;
6781 di->devs = NULL;
88758e9d
DW
6782 u->slot = di->disk.raid_disk;
6783 u->array = inst;
6784 u->next = u + 1;
6785 u++;
6786 }
6787 (u-1)->next = NULL;
6788 *updates = mu;
6789
6790 return rv;
6791}
6792
54c2c1ea 6793static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6794{
54c2c1ea
DW
6795 struct imsm_dev *dev = get_imsm_dev(super, idx);
6796 struct imsm_map *map = get_imsm_map(dev, 0);
6797 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6798 struct disk_info *inf = get_disk_info(u);
6799 struct imsm_disk *disk;
8273f55e
DW
6800 int i;
6801 int j;
8273f55e 6802
54c2c1ea 6803 for (i = 0; i < map->num_members; i++) {
98130f40 6804 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6805 for (j = 0; j < new_map->num_members; j++)
6806 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6807 return 1;
6808 }
6809
6810 return 0;
6811}
6812
1a64be56
LM
6813
6814static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6815{
6816 struct dl *dl = NULL;
6817 for (dl = super->disks; dl; dl = dl->next)
6818 if ((dl->major == major) && (dl->minor == minor))
6819 return dl;
6820 return NULL;
6821}
6822
6823static int remove_disk_super(struct intel_super *super, int major, int minor)
6824{
6825 struct dl *prev = NULL;
6826 struct dl *dl;
6827
6828 prev = NULL;
6829 for (dl = super->disks; dl; dl = dl->next) {
6830 if ((dl->major == major) && (dl->minor == minor)) {
6831 /* remove */
6832 if (prev)
6833 prev->next = dl->next;
6834 else
6835 super->disks = dl->next;
6836 dl->next = NULL;
6837 __free_imsm_disk(dl);
6838 dprintf("%s: removed %x:%x\n",
6839 __func__, major, minor);
6840 break;
6841 }
6842 prev = dl;
6843 }
6844 return 0;
6845}
6846
f21e18ca 6847static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6848
1a64be56
LM
6849static int add_remove_disk_update(struct intel_super *super)
6850{
6851 int check_degraded = 0;
6852 struct dl *disk = NULL;
6853 /* add/remove some spares to/from the metadata/contrainer */
6854 while (super->disk_mgmt_list) {
6855 struct dl *disk_cfg;
6856
6857 disk_cfg = super->disk_mgmt_list;
6858 super->disk_mgmt_list = disk_cfg->next;
6859 disk_cfg->next = NULL;
6860
6861 if (disk_cfg->action == DISK_ADD) {
6862 disk_cfg->next = super->disks;
6863 super->disks = disk_cfg;
6864 check_degraded = 1;
6865 dprintf("%s: added %x:%x\n",
6866 __func__, disk_cfg->major,
6867 disk_cfg->minor);
6868 } else if (disk_cfg->action == DISK_REMOVE) {
6869 dprintf("Disk remove action processed: %x.%x\n",
6870 disk_cfg->major, disk_cfg->minor);
6871 disk = get_disk_super(super,
6872 disk_cfg->major,
6873 disk_cfg->minor);
6874 if (disk) {
6875 /* store action status */
6876 disk->action = DISK_REMOVE;
6877 /* remove spare disks only */
6878 if (disk->index == -1) {
6879 remove_disk_super(super,
6880 disk_cfg->major,
6881 disk_cfg->minor);
6882 }
6883 }
6884 /* release allocate disk structure */
6885 __free_imsm_disk(disk_cfg);
6886 }
6887 }
6888 return check_degraded;
6889}
6890
a29911da
PC
6891
6892static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6893 struct intel_super *super,
6894 void ***space_list)
6895{
6896 struct intel_dev *id;
6897 void **tofree = NULL;
6898 int ret_val = 0;
6899
6900 dprintf("apply_reshape_migration_update()\n");
6901 if ((u->subdev < 0) ||
6902 (u->subdev > 1)) {
6903 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6904 return ret_val;
6905 }
6906 if ((space_list == NULL) || (*space_list == NULL)) {
6907 dprintf("imsm: Error: Memory is not allocated\n");
6908 return ret_val;
6909 }
6910
6911 for (id = super->devlist ; id; id = id->next) {
6912 if (id->index == (unsigned)u->subdev) {
6913 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6914 struct imsm_map *map;
6915 struct imsm_dev *new_dev =
6916 (struct imsm_dev *)*space_list;
6917 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6918 int to_state;
6919 struct dl *new_disk;
6920
6921 if (new_dev == NULL)
6922 return ret_val;
6923 *space_list = **space_list;
6924 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6925 map = get_imsm_map(new_dev, 0);
6926 if (migr_map) {
6927 dprintf("imsm: Error: migration in progress");
6928 return ret_val;
6929 }
6930
6931 to_state = map->map_state;
6932 if ((u->new_level == 5) && (map->raid_level == 0)) {
6933 map->num_members++;
6934 /* this should not happen */
6935 if (u->new_disks[0] < 0) {
6936 map->failed_disk_num =
6937 map->num_members - 1;
6938 to_state = IMSM_T_STATE_DEGRADED;
6939 } else
6940 to_state = IMSM_T_STATE_NORMAL;
6941 }
8e59f3d8 6942 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
6943 if (u->new_level > -1)
6944 map->raid_level = u->new_level;
6945 migr_map = get_imsm_map(new_dev, 1);
6946 if ((u->new_level == 5) &&
6947 (migr_map->raid_level == 0)) {
6948 int ord = map->num_members - 1;
6949 migr_map->num_members--;
6950 if (u->new_disks[0] < 0)
6951 ord |= IMSM_ORD_REBUILD;
6952 set_imsm_ord_tbl_ent(map,
6953 map->num_members - 1,
6954 ord);
6955 }
6956 id->dev = new_dev;
6957 tofree = (void **)dev;
6958
4bba0439
PC
6959 /* update chunk size
6960 */
6961 if (u->new_chunksize > 0)
6962 map->blocks_per_strip =
6963 __cpu_to_le16(u->new_chunksize * 2);
6964
a29911da
PC
6965 /* add disk
6966 */
6967 if ((u->new_level != 5) ||
6968 (migr_map->raid_level != 0) ||
6969 (migr_map->raid_level == map->raid_level))
6970 goto skip_disk_add;
6971
6972 if (u->new_disks[0] >= 0) {
6973 /* use passes spare
6974 */
6975 new_disk = get_disk_super(super,
6976 major(u->new_disks[0]),
6977 minor(u->new_disks[0]));
6978 dprintf("imsm: new disk for reshape is: %i:%i "
6979 "(%p, index = %i)\n",
6980 major(u->new_disks[0]),
6981 minor(u->new_disks[0]),
6982 new_disk, new_disk->index);
6983 if (new_disk == NULL)
6984 goto error_disk_add;
6985
6986 new_disk->index = map->num_members - 1;
6987 /* slot to fill in autolayout
6988 */
6989 new_disk->raiddisk = new_disk->index;
6990 new_disk->disk.status |= CONFIGURED_DISK;
6991 new_disk->disk.status &= ~SPARE_DISK;
6992 } else
6993 goto error_disk_add;
6994
6995skip_disk_add:
6996 *tofree = *space_list;
6997 /* calculate new size
6998 */
6999 imsm_set_array_size(new_dev);
7000
7001 ret_val = 1;
7002 }
7003 }
7004
7005 if (tofree)
7006 *space_list = tofree;
7007 return ret_val;
7008
7009error_disk_add:
7010 dprintf("Error: imsm: Cannot find disk.\n");
7011 return ret_val;
7012}
7013
061d7da3
LO
7014static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7015 struct intel_super *super,
7016 struct active_array *active_array)
7017{
7018 struct imsm_super *mpb = super->anchor;
7019 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7020 struct imsm_map *map = get_imsm_map(dev, 0);
7021 struct imsm_map *migr_map;
7022 struct active_array *a;
7023 struct imsm_disk *disk;
7024 __u8 to_state;
7025 struct dl *dl;
7026 unsigned int found;
7027 int failed;
5961eeec 7028 int victim;
061d7da3 7029 int i;
5961eeec 7030 int second_map_created = 0;
061d7da3 7031
5961eeec 7032 for (; u; u = u->next) {
7033 victim = get_imsm_disk_idx(dev, u->slot, -1);
061d7da3 7034
5961eeec 7035 if (victim < 0)
7036 return 0;
061d7da3 7037
5961eeec 7038 for (dl = super->disks; dl; dl = dl->next)
7039 if (dl == u->dl)
7040 break;
061d7da3 7041
5961eeec 7042 if (!dl) {
7043 fprintf(stderr, "error: imsm_activate_spare passed "
7044 "an unknown disk (index: %d)\n",
7045 u->dl->index);
7046 return 0;
7047 }
061d7da3 7048
5961eeec 7049 /* count failures (excluding rebuilds and the victim)
7050 * to determine map[0] state
7051 */
7052 failed = 0;
7053 for (i = 0; i < map->num_members; i++) {
7054 if (i == u->slot)
7055 continue;
7056 disk = get_imsm_disk(super,
7057 get_imsm_disk_idx(dev, i, -1));
7058 if (!disk || is_failed(disk))
7059 failed++;
7060 }
061d7da3 7061
5961eeec 7062 /* adding a pristine spare, assign a new index */
7063 if (dl->index < 0) {
7064 dl->index = super->anchor->num_disks;
7065 super->anchor->num_disks++;
7066 }
7067 disk = &dl->disk;
7068 disk->status |= CONFIGURED_DISK;
7069 disk->status &= ~SPARE_DISK;
7070
7071 /* mark rebuild */
7072 to_state = imsm_check_degraded(super, dev, failed);
7073 if (!second_map_created) {
7074 second_map_created = 1;
7075 map->map_state = IMSM_T_STATE_DEGRADED;
7076 migrate(dev, super, to_state, MIGR_REBUILD);
7077 } else
7078 map->map_state = to_state;
7079 migr_map = get_imsm_map(dev, 1);
7080 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7081 set_imsm_ord_tbl_ent(migr_map, u->slot,
7082 dl->index | IMSM_ORD_REBUILD);
7083
7084 /* update the family_num to mark a new container
7085 * generation, being careful to record the existing
7086 * family_num in orig_family_num to clean up after
7087 * earlier mdadm versions that neglected to set it.
7088 */
7089 if (mpb->orig_family_num == 0)
7090 mpb->orig_family_num = mpb->family_num;
7091 mpb->family_num += super->random;
7092
7093 /* count arrays using the victim in the metadata */
7094 found = 0;
7095 for (a = active_array; a ; a = a->next) {
7096 dev = get_imsm_dev(super, a->info.container_member);
7097 map = get_imsm_map(dev, 0);
061d7da3 7098
5961eeec 7099 if (get_imsm_disk_slot(map, victim) >= 0)
7100 found++;
7101 }
061d7da3 7102
5961eeec 7103 /* delete the victim if it is no longer being
7104 * utilized anywhere
061d7da3 7105 */
5961eeec 7106 if (!found) {
7107 struct dl **dlp;
061d7da3 7108
5961eeec 7109 /* We know that 'manager' isn't touching anything,
7110 * so it is safe to delete
7111 */
7112 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
7113 if ((*dlp)->index == victim)
7114 break;
5961eeec 7115
7116 /* victim may be on the missing list */
7117 if (!*dlp)
7118 for (dlp = &super->missing; *dlp;
7119 dlp = &(*dlp)->next)
7120 if ((*dlp)->index == victim)
7121 break;
7122 imsm_delete(super, dlp, victim);
7123 }
061d7da3
LO
7124 }
7125
7126 return 1;
7127}
a29911da 7128
2e5dc010
N
7129static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7130 struct intel_super *super,
7131 void ***space_list)
7132{
7133 struct dl *new_disk;
7134 struct intel_dev *id;
7135 int i;
7136 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 7137 int disk_count = u->old_raid_disks;
2e5dc010
N
7138 void **tofree = NULL;
7139 int devices_to_reshape = 1;
7140 struct imsm_super *mpb = super->anchor;
7141 int ret_val = 0;
d098291a 7142 unsigned int dev_id;
2e5dc010 7143
ed7333bd 7144 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
7145
7146 /* enable spares to use in array */
7147 for (i = 0; i < delta_disks; i++) {
7148 new_disk = get_disk_super(super,
7149 major(u->new_disks[i]),
7150 minor(u->new_disks[i]));
ed7333bd
AK
7151 dprintf("imsm: new disk for reshape is: %i:%i "
7152 "(%p, index = %i)\n",
2e5dc010
N
7153 major(u->new_disks[i]), minor(u->new_disks[i]),
7154 new_disk, new_disk->index);
7155 if ((new_disk == NULL) ||
7156 ((new_disk->index >= 0) &&
7157 (new_disk->index < u->old_raid_disks)))
7158 goto update_reshape_exit;
ee4beede 7159 new_disk->index = disk_count++;
2e5dc010
N
7160 /* slot to fill in autolayout
7161 */
7162 new_disk->raiddisk = new_disk->index;
7163 new_disk->disk.status |=
7164 CONFIGURED_DISK;
7165 new_disk->disk.status &= ~SPARE_DISK;
7166 }
7167
ed7333bd
AK
7168 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7169 mpb->num_raid_devs);
2e5dc010
N
7170 /* manage changes in volume
7171 */
d098291a 7172 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
7173 void **sp = *space_list;
7174 struct imsm_dev *newdev;
7175 struct imsm_map *newmap, *oldmap;
7176
d098291a
AK
7177 for (id = super->devlist ; id; id = id->next) {
7178 if (id->index == dev_id)
7179 break;
7180 }
7181 if (id == NULL)
7182 break;
2e5dc010
N
7183 if (!sp)
7184 continue;
7185 *space_list = *sp;
7186 newdev = (void*)sp;
7187 /* Copy the dev, but not (all of) the map */
7188 memcpy(newdev, id->dev, sizeof(*newdev));
7189 oldmap = get_imsm_map(id->dev, 0);
7190 newmap = get_imsm_map(newdev, 0);
7191 /* Copy the current map */
7192 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7193 /* update one device only
7194 */
7195 if (devices_to_reshape) {
ed7333bd
AK
7196 dprintf("imsm: modifying subdev: %i\n",
7197 id->index);
2e5dc010
N
7198 devices_to_reshape--;
7199 newdev->vol.migr_state = 1;
7200 newdev->vol.curr_migr_unit = 0;
ea672ee1 7201 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
7202 newmap->num_members = u->new_raid_disks;
7203 for (i = 0; i < delta_disks; i++) {
7204 set_imsm_ord_tbl_ent(newmap,
7205 u->old_raid_disks + i,
7206 u->old_raid_disks + i);
7207 }
7208 /* New map is correct, now need to save old map
7209 */
7210 newmap = get_imsm_map(newdev, 1);
7211 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7212
70bdf0dc 7213 imsm_set_array_size(newdev);
2e5dc010
N
7214 }
7215
7216 sp = (void **)id->dev;
7217 id->dev = newdev;
7218 *sp = tofree;
7219 tofree = sp;
8e59f3d8
AK
7220
7221 /* Clear migration record */
7222 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 7223 }
819bc634
AK
7224 if (tofree)
7225 *space_list = tofree;
2e5dc010
N
7226 ret_val = 1;
7227
7228update_reshape_exit:
7229
7230 return ret_val;
7231}
7232
bb025c2f 7233static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
7234 struct intel_super *super,
7235 void ***space_list)
bb025c2f
KW
7236{
7237 struct imsm_dev *dev = NULL;
8ca6df95
KW
7238 struct intel_dev *dv;
7239 struct imsm_dev *dev_new;
bb025c2f
KW
7240 struct imsm_map *map;
7241 struct dl *dm, *du;
8ca6df95 7242 int i;
bb025c2f
KW
7243
7244 for (dv = super->devlist; dv; dv = dv->next)
7245 if (dv->index == (unsigned int)u->subarray) {
7246 dev = dv->dev;
7247 break;
7248 }
7249
7250 if (dev == NULL)
7251 return 0;
7252
7253 map = get_imsm_map(dev, 0);
7254
7255 if (u->direction == R10_TO_R0) {
43d5ec18
KW
7256 /* Number of failed disks must be half of initial disk number */
7257 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7258 return 0;
7259
bb025c2f
KW
7260 /* iterate through devices to mark removed disks as spare */
7261 for (dm = super->disks; dm; dm = dm->next) {
7262 if (dm->disk.status & FAILED_DISK) {
7263 int idx = dm->index;
7264 /* update indexes on the disk list */
7265/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7266 the index values will end up being correct.... NB */
7267 for (du = super->disks; du; du = du->next)
7268 if (du->index > idx)
7269 du->index--;
7270 /* mark as spare disk */
a8619d23 7271 mark_spare(dm);
bb025c2f
KW
7272 }
7273 }
bb025c2f
KW
7274 /* update map */
7275 map->num_members = map->num_members / 2;
7276 map->map_state = IMSM_T_STATE_NORMAL;
7277 map->num_domains = 1;
7278 map->raid_level = 0;
7279 map->failed_disk_num = -1;
7280 }
7281
8ca6df95
KW
7282 if (u->direction == R0_TO_R10) {
7283 void **space;
7284 /* update slots in current disk list */
7285 for (dm = super->disks; dm; dm = dm->next) {
7286 if (dm->index >= 0)
7287 dm->index *= 2;
7288 }
7289 /* create new *missing* disks */
7290 for (i = 0; i < map->num_members; i++) {
7291 space = *space_list;
7292 if (!space)
7293 continue;
7294 *space_list = *space;
7295 du = (void *)space;
7296 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
7297 du->fd = -1;
7298 du->minor = 0;
7299 du->major = 0;
7300 du->index = (i * 2) + 1;
7301 sprintf((char *)du->disk.serial,
7302 " MISSING_%d", du->index);
7303 sprintf((char *)du->serial,
7304 "MISSING_%d", du->index);
7305 du->next = super->missing;
7306 super->missing = du;
7307 }
7308 /* create new dev and map */
7309 space = *space_list;
7310 if (!space)
7311 return 0;
7312 *space_list = *space;
7313 dev_new = (void *)space;
7314 memcpy(dev_new, dev, sizeof(*dev));
7315 /* update new map */
7316 map = get_imsm_map(dev_new, 0);
8ca6df95 7317 map->num_members = map->num_members * 2;
1a2487c2 7318 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
7319 map->num_domains = 2;
7320 map->raid_level = 1;
7321 /* replace dev<->dev_new */
7322 dv->dev = dev_new;
7323 }
bb025c2f
KW
7324 /* update disk order table */
7325 for (du = super->disks; du; du = du->next)
7326 if (du->index >= 0)
7327 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 7328 for (du = super->missing; du; du = du->next)
1a2487c2
KW
7329 if (du->index >= 0) {
7330 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 7331 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 7332 }
bb025c2f
KW
7333
7334 return 1;
7335}
7336
e8319a19
DW
7337static void imsm_process_update(struct supertype *st,
7338 struct metadata_update *update)
7339{
7340 /**
7341 * crack open the metadata_update envelope to find the update record
7342 * update can be one of:
d195167d
AK
7343 * update_reshape_container_disks - all the arrays in the container
7344 * are being reshaped to have more devices. We need to mark
7345 * the arrays for general migration and convert selected spares
7346 * into active devices.
7347 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
7348 * device in an array, update the disk_ord_tbl. If this disk is
7349 * present in all member arrays then also clear the SPARE_DISK
7350 * flag
d195167d
AK
7351 * update_create_array
7352 * update_kill_array
7353 * update_rename_array
7354 * update_add_remove_disk
e8319a19
DW
7355 */
7356 struct intel_super *super = st->sb;
4d7b1503 7357 struct imsm_super *mpb;
e8319a19
DW
7358 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7359
4d7b1503
DW
7360 /* update requires a larger buf but the allocation failed */
7361 if (super->next_len && !super->next_buf) {
7362 super->next_len = 0;
7363 return;
7364 }
7365
7366 if (super->next_buf) {
7367 memcpy(super->next_buf, super->buf, super->len);
7368 free(super->buf);
7369 super->len = super->next_len;
7370 super->buf = super->next_buf;
7371
7372 super->next_len = 0;
7373 super->next_buf = NULL;
7374 }
7375
7376 mpb = super->anchor;
7377
e8319a19 7378 switch (type) {
0ec5d470
AK
7379 case update_general_migration_checkpoint: {
7380 struct intel_dev *id;
7381 struct imsm_update_general_migration_checkpoint *u =
7382 (void *)update->buf;
7383
7384 dprintf("imsm: process_update() "
7385 "for update_general_migration_checkpoint called\n");
7386
7387 /* find device under general migration */
7388 for (id = super->devlist ; id; id = id->next) {
7389 if (is_gen_migration(id->dev)) {
7390 id->dev->vol.curr_migr_unit =
7391 __cpu_to_le32(u->curr_migr_unit);
7392 super->updates_pending++;
7393 }
7394 }
7395 break;
7396 }
bb025c2f
KW
7397 case update_takeover: {
7398 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
7399 if (apply_takeover_update(u, super, &update->space_list)) {
7400 imsm_update_version_info(super);
bb025c2f 7401 super->updates_pending++;
1a2487c2 7402 }
bb025c2f
KW
7403 break;
7404 }
7405
78b10e66 7406 case update_reshape_container_disks: {
d195167d 7407 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
7408 if (apply_reshape_container_disks_update(
7409 u, super, &update->space_list))
7410 super->updates_pending++;
78b10e66
N
7411 break;
7412 }
48c5303a 7413 case update_reshape_migration: {
a29911da
PC
7414 struct imsm_update_reshape_migration *u = (void *)update->buf;
7415 if (apply_reshape_migration_update(
7416 u, super, &update->space_list))
7417 super->updates_pending++;
48c5303a
PC
7418 break;
7419 }
e8319a19
DW
7420 case update_activate_spare: {
7421 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
7422 if (apply_update_activate_spare(u, super, st->arrays))
7423 super->updates_pending++;
8273f55e
DW
7424 break;
7425 }
7426 case update_create_array: {
7427 /* someone wants to create a new array, we need to be aware of
7428 * a few races/collisions:
7429 * 1/ 'Create' called by two separate instances of mdadm
7430 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7431 * devices that have since been assimilated via
7432 * activate_spare.
7433 * In the event this update can not be carried out mdadm will
7434 * (FIX ME) notice that its update did not take hold.
7435 */
7436 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7437 struct intel_dev *dv;
8273f55e
DW
7438 struct imsm_dev *dev;
7439 struct imsm_map *map, *new_map;
7440 unsigned long long start, end;
7441 unsigned long long new_start, new_end;
7442 int i;
54c2c1ea
DW
7443 struct disk_info *inf;
7444 struct dl *dl;
8273f55e
DW
7445
7446 /* handle racing creates: first come first serve */
7447 if (u->dev_idx < mpb->num_raid_devs) {
7448 dprintf("%s: subarray %d already defined\n",
7449 __func__, u->dev_idx);
ba2de7ba 7450 goto create_error;
8273f55e
DW
7451 }
7452
7453 /* check update is next in sequence */
7454 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7455 dprintf("%s: can not create array %d expected index %d\n",
7456 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7457 goto create_error;
8273f55e
DW
7458 }
7459
a965f303 7460 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
7461 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7462 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7463 inf = get_disk_info(u);
8273f55e
DW
7464
7465 /* handle activate_spare versus create race:
7466 * check to make sure that overlapping arrays do not include
7467 * overalpping disks
7468 */
7469 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7470 dev = get_imsm_dev(super, i);
a965f303 7471 map = get_imsm_map(dev, 0);
8273f55e
DW
7472 start = __le32_to_cpu(map->pba_of_lba0);
7473 end = start + __le32_to_cpu(map->blocks_per_member);
7474 if ((new_start >= start && new_start <= end) ||
7475 (start >= new_start && start <= new_end))
54c2c1ea
DW
7476 /* overlap */;
7477 else
7478 continue;
7479
7480 if (disks_overlap(super, i, u)) {
8273f55e 7481 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7482 goto create_error;
8273f55e
DW
7483 }
7484 }
8273f55e 7485
949c47a0
DW
7486 /* check that prepare update was successful */
7487 if (!update->space) {
7488 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7489 goto create_error;
949c47a0
DW
7490 }
7491
54c2c1ea
DW
7492 /* check that all disks are still active before committing
7493 * changes. FIXME: could we instead handle this by creating a
7494 * degraded array? That's probably not what the user expects,
7495 * so better to drop this update on the floor.
7496 */
7497 for (i = 0; i < new_map->num_members; i++) {
7498 dl = serial_to_dl(inf[i].serial, super);
7499 if (!dl) {
7500 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7501 goto create_error;
54c2c1ea 7502 }
949c47a0
DW
7503 }
7504
8273f55e 7505 super->updates_pending++;
54c2c1ea
DW
7506
7507 /* convert spares to members and fixup ord_tbl */
7508 for (i = 0; i < new_map->num_members; i++) {
7509 dl = serial_to_dl(inf[i].serial, super);
7510 if (dl->index == -1) {
7511 dl->index = mpb->num_disks;
7512 mpb->num_disks++;
7513 dl->disk.status |= CONFIGURED_DISK;
7514 dl->disk.status &= ~SPARE_DISK;
7515 }
7516 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7517 }
7518
ba2de7ba
DW
7519 dv = update->space;
7520 dev = dv->dev;
949c47a0
DW
7521 update->space = NULL;
7522 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7523 dv->index = u->dev_idx;
7524 dv->next = super->devlist;
7525 super->devlist = dv;
8273f55e 7526 mpb->num_raid_devs++;
8273f55e 7527
4d1313e9 7528 imsm_update_version_info(super);
8273f55e 7529 break;
ba2de7ba
DW
7530 create_error:
7531 /* mdmon knows how to release update->space, but not
7532 * ((struct intel_dev *) update->space)->dev
7533 */
7534 if (update->space) {
7535 dv = update->space;
7536 free(dv->dev);
7537 }
8273f55e 7538 break;
e8319a19 7539 }
33414a01
DW
7540 case update_kill_array: {
7541 struct imsm_update_kill_array *u = (void *) update->buf;
7542 int victim = u->dev_idx;
7543 struct active_array *a;
7544 struct intel_dev **dp;
7545 struct imsm_dev *dev;
7546
7547 /* sanity check that we are not affecting the uuid of
7548 * active arrays, or deleting an active array
7549 *
7550 * FIXME when immutable ids are available, but note that
7551 * we'll also need to fixup the invalidated/active
7552 * subarray indexes in mdstat
7553 */
7554 for (a = st->arrays; a; a = a->next)
7555 if (a->info.container_member >= victim)
7556 break;
7557 /* by definition if mdmon is running at least one array
7558 * is active in the container, so checking
7559 * mpb->num_raid_devs is just extra paranoia
7560 */
7561 dev = get_imsm_dev(super, victim);
7562 if (a || !dev || mpb->num_raid_devs == 1) {
7563 dprintf("failed to delete subarray-%d\n", victim);
7564 break;
7565 }
7566
7567 for (dp = &super->devlist; *dp;)
f21e18ca 7568 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7569 *dp = (*dp)->next;
7570 } else {
f21e18ca 7571 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7572 (*dp)->index--;
7573 dp = &(*dp)->next;
7574 }
7575 mpb->num_raid_devs--;
7576 super->updates_pending++;
7577 break;
7578 }
aa534678
DW
7579 case update_rename_array: {
7580 struct imsm_update_rename_array *u = (void *) update->buf;
7581 char name[MAX_RAID_SERIAL_LEN+1];
7582 int target = u->dev_idx;
7583 struct active_array *a;
7584 struct imsm_dev *dev;
7585
7586 /* sanity check that we are not affecting the uuid of
7587 * an active array
7588 */
7589 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7590 name[MAX_RAID_SERIAL_LEN] = '\0';
7591 for (a = st->arrays; a; a = a->next)
7592 if (a->info.container_member == target)
7593 break;
7594 dev = get_imsm_dev(super, u->dev_idx);
7595 if (a || !dev || !check_name(super, name, 1)) {
7596 dprintf("failed to rename subarray-%d\n", target);
7597 break;
7598 }
7599
cdbe98cd 7600 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7601 super->updates_pending++;
7602 break;
7603 }
1a64be56 7604 case update_add_remove_disk: {
43dad3d6 7605 /* we may be able to repair some arrays if disks are
1a64be56
LM
7606 * being added, check teh status of add_remove_disk
7607 * if discs has been added.
7608 */
7609 if (add_remove_disk_update(super)) {
43dad3d6 7610 struct active_array *a;
072b727f
DW
7611
7612 super->updates_pending++;
1a64be56 7613 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7614 a->check_degraded = 1;
7615 }
43dad3d6 7616 break;
e8319a19 7617 }
1a64be56
LM
7618 default:
7619 fprintf(stderr, "error: unsuported process update type:"
7620 "(type: %d)\n", type);
7621 }
e8319a19 7622}
88758e9d 7623
bc0b9d34
PC
7624static struct mdinfo *get_spares_for_grow(struct supertype *st);
7625
8273f55e
DW
7626static void imsm_prepare_update(struct supertype *st,
7627 struct metadata_update *update)
7628{
949c47a0 7629 /**
4d7b1503
DW
7630 * Allocate space to hold new disk entries, raid-device entries or a new
7631 * mpb if necessary. The manager synchronously waits for updates to
7632 * complete in the monitor, so new mpb buffers allocated here can be
7633 * integrated by the monitor thread without worrying about live pointers
7634 * in the manager thread.
8273f55e 7635 */
949c47a0 7636 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7637 struct intel_super *super = st->sb;
7638 struct imsm_super *mpb = super->anchor;
7639 size_t buf_len;
7640 size_t len = 0;
949c47a0
DW
7641
7642 switch (type) {
0ec5d470
AK
7643 case update_general_migration_checkpoint:
7644 dprintf("imsm: prepare_update() "
7645 "for update_general_migration_checkpoint called\n");
7646 break;
abedf5fc
KW
7647 case update_takeover: {
7648 struct imsm_update_takeover *u = (void *)update->buf;
7649 if (u->direction == R0_TO_R10) {
7650 void **tail = (void **)&update->space_list;
7651 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7652 struct imsm_map *map = get_imsm_map(dev, 0);
7653 int num_members = map->num_members;
7654 void *space;
7655 int size, i;
7656 int err = 0;
7657 /* allocate memory for added disks */
7658 for (i = 0; i < num_members; i++) {
7659 size = sizeof(struct dl);
7660 space = malloc(size);
7661 if (!space) {
7662 err++;
7663 break;
7664 }
7665 *tail = space;
7666 tail = space;
7667 *tail = NULL;
7668 }
7669 /* allocate memory for new device */
7670 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7671 (num_members * sizeof(__u32));
7672 space = malloc(size);
7673 if (!space)
7674 err++;
7675 else {
7676 *tail = space;
7677 tail = space;
7678 *tail = NULL;
7679 }
7680 if (!err) {
7681 len = disks_to_mpb_size(num_members * 2);
7682 } else {
7683 /* if allocation didn't success, free buffer */
7684 while (update->space_list) {
7685 void **sp = update->space_list;
7686 update->space_list = *sp;
7687 free(sp);
7688 }
7689 }
7690 }
7691
7692 break;
7693 }
78b10e66 7694 case update_reshape_container_disks: {
d195167d
AK
7695 /* Every raid device in the container is about to
7696 * gain some more devices, and we will enter a
7697 * reconfiguration.
7698 * So each 'imsm_map' will be bigger, and the imsm_vol
7699 * will now hold 2 of them.
7700 * Thus we need new 'struct imsm_dev' allocations sized
7701 * as sizeof_imsm_dev but with more devices in both maps.
7702 */
7703 struct imsm_update_reshape *u = (void *)update->buf;
7704 struct intel_dev *dl;
7705 void **space_tail = (void**)&update->space_list;
7706
7707 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7708
7709 for (dl = super->devlist; dl; dl = dl->next) {
7710 int size = sizeof_imsm_dev(dl->dev, 1);
7711 void *s;
d677e0b8
AK
7712 if (u->new_raid_disks > u->old_raid_disks)
7713 size += sizeof(__u32)*2*
7714 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7715 s = malloc(size);
7716 if (!s)
7717 break;
7718 *space_tail = s;
7719 space_tail = s;
7720 *space_tail = NULL;
7721 }
7722
7723 len = disks_to_mpb_size(u->new_raid_disks);
7724 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7725 break;
7726 }
48c5303a 7727 case update_reshape_migration: {
bc0b9d34
PC
7728 /* for migration level 0->5 we need to add disks
7729 * so the same as for container operation we will copy
7730 * device to the bigger location.
7731 * in memory prepared device and new disk area are prepared
7732 * for usage in process update
7733 */
7734 struct imsm_update_reshape_migration *u = (void *)update->buf;
7735 struct intel_dev *id;
7736 void **space_tail = (void **)&update->space_list;
7737 int size;
7738 void *s;
7739 int current_level = -1;
7740
7741 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7742
7743 /* add space for bigger array in update
7744 */
7745 for (id = super->devlist; id; id = id->next) {
7746 if (id->index == (unsigned)u->subdev) {
7747 size = sizeof_imsm_dev(id->dev, 1);
7748 if (u->new_raid_disks > u->old_raid_disks)
7749 size += sizeof(__u32)*2*
7750 (u->new_raid_disks - u->old_raid_disks);
7751 s = malloc(size);
7752 if (!s)
7753 break;
7754 *space_tail = s;
7755 space_tail = s;
7756 *space_tail = NULL;
7757 break;
7758 }
7759 }
7760 if (update->space_list == NULL)
7761 break;
7762
7763 /* add space for disk in update
7764 */
7765 size = sizeof(struct dl);
7766 s = malloc(size);
7767 if (!s) {
7768 free(update->space_list);
7769 update->space_list = NULL;
7770 break;
7771 }
7772 *space_tail = s;
7773 space_tail = s;
7774 *space_tail = NULL;
7775
7776 /* add spare device to update
7777 */
7778 for (id = super->devlist ; id; id = id->next)
7779 if (id->index == (unsigned)u->subdev) {
7780 struct imsm_dev *dev;
7781 struct imsm_map *map;
7782
7783 dev = get_imsm_dev(super, u->subdev);
7784 map = get_imsm_map(dev, 0);
7785 current_level = map->raid_level;
7786 break;
7787 }
7788 if ((u->new_level == 5) && (u->new_level != current_level)) {
7789 struct mdinfo *spares;
7790
7791 spares = get_spares_for_grow(st);
7792 if (spares) {
7793 struct dl *dl;
7794 struct mdinfo *dev;
7795
7796 dev = spares->devs;
7797 if (dev) {
7798 u->new_disks[0] =
7799 makedev(dev->disk.major,
7800 dev->disk.minor);
7801 dl = get_disk_super(super,
7802 dev->disk.major,
7803 dev->disk.minor);
7804 dl->index = u->old_raid_disks;
7805 dev = dev->next;
7806 }
7807 sysfs_free(spares);
7808 }
7809 }
7810 len = disks_to_mpb_size(u->new_raid_disks);
7811 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7812 break;
7813 }
949c47a0
DW
7814 case update_create_array: {
7815 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7816 struct intel_dev *dv;
54c2c1ea
DW
7817 struct imsm_dev *dev = &u->dev;
7818 struct imsm_map *map = get_imsm_map(dev, 0);
7819 struct dl *dl;
7820 struct disk_info *inf;
7821 int i;
7822 int activate = 0;
949c47a0 7823
54c2c1ea
DW
7824 inf = get_disk_info(u);
7825 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7826 /* allocate a new super->devlist entry */
7827 dv = malloc(sizeof(*dv));
7828 if (dv) {
7829 dv->dev = malloc(len);
7830 if (dv->dev)
7831 update->space = dv;
7832 else {
7833 free(dv);
7834 update->space = NULL;
7835 }
7836 }
949c47a0 7837
54c2c1ea
DW
7838 /* count how many spares will be converted to members */
7839 for (i = 0; i < map->num_members; i++) {
7840 dl = serial_to_dl(inf[i].serial, super);
7841 if (!dl) {
7842 /* hmm maybe it failed?, nothing we can do about
7843 * it here
7844 */
7845 continue;
7846 }
7847 if (count_memberships(dl, super) == 0)
7848 activate++;
7849 }
7850 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7851 break;
7852 default:
7853 break;
7854 }
7855 }
8273f55e 7856
4d7b1503
DW
7857 /* check if we need a larger metadata buffer */
7858 if (super->next_buf)
7859 buf_len = super->next_len;
7860 else
7861 buf_len = super->len;
7862
7863 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7864 /* ok we need a larger buf than what is currently allocated
7865 * if this allocation fails process_update will notice that
7866 * ->next_len is set and ->next_buf is NULL
7867 */
7868 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7869 if (super->next_buf)
7870 free(super->next_buf);
7871
7872 super->next_len = buf_len;
1f45a8ad
DW
7873 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7874 memset(super->next_buf, 0, buf_len);
7875 else
4d7b1503
DW
7876 super->next_buf = NULL;
7877 }
8273f55e
DW
7878}
7879
ae6aad82 7880/* must be called while manager is quiesced */
f21e18ca 7881static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7882{
7883 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7884 struct dl *iter;
7885 struct imsm_dev *dev;
7886 struct imsm_map *map;
24565c9a
DW
7887 int i, j, num_members;
7888 __u32 ord;
ae6aad82 7889
24565c9a
DW
7890 dprintf("%s: deleting device[%d] from imsm_super\n",
7891 __func__, index);
ae6aad82
DW
7892
7893 /* shift all indexes down one */
7894 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7895 if (iter->index > (int)index)
ae6aad82 7896 iter->index--;
47ee5a45 7897 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7898 if (iter->index > (int)index)
47ee5a45 7899 iter->index--;
ae6aad82
DW
7900
7901 for (i = 0; i < mpb->num_raid_devs; i++) {
7902 dev = get_imsm_dev(super, i);
7903 map = get_imsm_map(dev, 0);
24565c9a
DW
7904 num_members = map->num_members;
7905 for (j = 0; j < num_members; j++) {
7906 /* update ord entries being careful not to propagate
7907 * ord-flags to the first map
7908 */
98130f40 7909 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7910
24565c9a
DW
7911 if (ord_to_idx(ord) <= index)
7912 continue;
ae6aad82 7913
24565c9a
DW
7914 map = get_imsm_map(dev, 0);
7915 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7916 map = get_imsm_map(dev, 1);
7917 if (map)
7918 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
7919 }
7920 }
7921
7922 mpb->num_disks--;
7923 super->updates_pending++;
24565c9a
DW
7924 if (*dlp) {
7925 struct dl *dl = *dlp;
7926
7927 *dlp = (*dlp)->next;
7928 __free_imsm_disk(dl);
7929 }
ae6aad82 7930}
9e2d750d 7931#endif /* MDASSEMBLE */
687629c2
AK
7932/*******************************************************************************
7933 * Function: open_backup_targets
7934 * Description: Function opens file descriptors for all devices given in
7935 * info->devs
7936 * Parameters:
7937 * info : general array info
7938 * raid_disks : number of disks
7939 * raid_fds : table of device's file descriptors
7940 * Returns:
7941 * 0 : success
7942 * -1 : fail
7943 ******************************************************************************/
7944int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7945{
7946 struct mdinfo *sd;
7947
7948 for (sd = info->devs ; sd ; sd = sd->next) {
7949 char *dn;
7950
7951 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7952 dprintf("disk is faulty!!\n");
7953 continue;
7954 }
7955
7956 if ((sd->disk.raid_disk >= raid_disks) ||
7957 (sd->disk.raid_disk < 0))
7958 continue;
7959
7960 dn = map_dev(sd->disk.major,
7961 sd->disk.minor, 1);
7962 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7963 if (raid_fds[sd->disk.raid_disk] < 0) {
7964 fprintf(stderr, "cannot open component\n");
7965 return -1;
7966 }
7967 }
7968 return 0;
7969}
7970
9e2d750d 7971#ifndef MDASSEMBLE
687629c2
AK
7972/*******************************************************************************
7973 * Function: init_migr_record_imsm
7974 * Description: Function inits imsm migration record
7975 * Parameters:
7976 * super : imsm internal array info
7977 * dev : device under migration
7978 * info : general array info to find the smallest device
7979 * Returns:
7980 * none
7981 ******************************************************************************/
7982void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7983 struct mdinfo *info)
7984{
7985 struct intel_super *super = st->sb;
7986 struct migr_record *migr_rec = super->migr_rec;
7987 int new_data_disks;
7988 unsigned long long dsize, dev_sectors;
7989 long long unsigned min_dev_sectors = -1LLU;
7990 struct mdinfo *sd;
7991 char nm[30];
7992 int fd;
7993 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7994 struct imsm_map *map_src = get_imsm_map(dev, 1);
7995 unsigned long long num_migr_units;
3ef4403c 7996 unsigned long long array_blocks;
687629c2
AK
7997
7998 memset(migr_rec, 0, sizeof(struct migr_record));
7999 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8000
8001 /* only ascending reshape supported now */
8002 migr_rec->ascending_migr = __cpu_to_le32(1);
8003
8004 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8005 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8006 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
8007 new_data_disks = imsm_num_data_members(dev, 0);
8008 migr_rec->blocks_per_unit =
8009 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8010 migr_rec->dest_depth_per_unit =
8011 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 8012 array_blocks = info->component_size * new_data_disks;
687629c2
AK
8013 num_migr_units =
8014 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8015
8016 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8017 num_migr_units++;
8018 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8019
8020 migr_rec->post_migr_vol_cap = dev->size_low;
8021 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8022
8023
8024 /* Find the smallest dev */
8025 for (sd = info->devs ; sd ; sd = sd->next) {
8026 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8027 fd = dev_open(nm, O_RDONLY);
8028 if (fd < 0)
8029 continue;
8030 get_dev_size(fd, NULL, &dsize);
8031 dev_sectors = dsize / 512;
8032 if (dev_sectors < min_dev_sectors)
8033 min_dev_sectors = dev_sectors;
8034 close(fd);
8035 }
8036 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8037 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8038
8039 write_imsm_migr_rec(st);
8040
8041 return;
8042}
8043
8044/*******************************************************************************
8045 * Function: save_backup_imsm
8046 * Description: Function saves critical data stripes to Migration Copy Area
8047 * and updates the current migration unit status.
8048 * Use restore_stripes() to form a destination stripe,
8049 * and to write it to the Copy Area.
8050 * Parameters:
8051 * st : supertype information
aea93171 8052 * dev : imsm device that backup is saved for
687629c2
AK
8053 * info : general array info
8054 * buf : input buffer
687629c2
AK
8055 * length : length of data to backup (blocks_per_unit)
8056 * Returns:
8057 * 0 : success
8058 *, -1 : fail
8059 ******************************************************************************/
8060int save_backup_imsm(struct supertype *st,
8061 struct imsm_dev *dev,
8062 struct mdinfo *info,
8063 void *buf,
687629c2
AK
8064 int length)
8065{
8066 int rv = -1;
8067 struct intel_super *super = st->sb;
8068 unsigned long long *target_offsets = NULL;
8069 int *targets = NULL;
8070 int i;
8071 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8072 int new_disks = map_dest->num_members;
ab724b98
AK
8073 int dest_layout = 0;
8074 int dest_chunk;
d1877f69
AK
8075 unsigned long long start;
8076 int data_disks = imsm_num_data_members(dev, 0);
687629c2
AK
8077
8078 targets = malloc(new_disks * sizeof(int));
8079 if (!targets)
8080 goto abort;
8081
7e45b550
AK
8082 for (i = 0; i < new_disks; i++)
8083 targets[i] = -1;
8084
687629c2
AK
8085 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8086 if (!target_offsets)
8087 goto abort;
8088
d1877f69 8089 start = info->reshape_progress * 512;
687629c2 8090 for (i = 0; i < new_disks; i++) {
687629c2
AK
8091 target_offsets[i] = (unsigned long long)
8092 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
8093 /* move back copy area adderss, it will be moved forward
8094 * in restore_stripes() using start input variable
8095 */
8096 target_offsets[i] -= start/data_disks;
687629c2
AK
8097 }
8098
8099 if (open_backup_targets(info, new_disks, targets))
8100 goto abort;
8101
68eb8bc6 8102 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
8103 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8104
687629c2
AK
8105 if (restore_stripes(targets, /* list of dest devices */
8106 target_offsets, /* migration record offsets */
8107 new_disks,
ab724b98
AK
8108 dest_chunk,
8109 map_dest->raid_level,
8110 dest_layout,
8111 -1, /* source backup file descriptor */
8112 0, /* input buf offset
8113 * always 0 buf is already offseted */
d1877f69 8114 start,
687629c2
AK
8115 length,
8116 buf) != 0) {
8117 fprintf(stderr, Name ": Error restoring stripes\n");
8118 goto abort;
8119 }
8120
8121 rv = 0;
8122
8123abort:
8124 if (targets) {
8125 for (i = 0; i < new_disks; i++)
8126 if (targets[i] >= 0)
8127 close(targets[i]);
8128 free(targets);
8129 }
8130 free(target_offsets);
8131
8132 return rv;
8133}
8134
8135/*******************************************************************************
8136 * Function: save_checkpoint_imsm
8137 * Description: Function called for current unit status update
8138 * in the migration record. It writes it to disk.
8139 * Parameters:
8140 * super : imsm internal array info
8141 * info : general array info
8142 * Returns:
8143 * 0: success
8144 * 1: failure
0228d92c
AK
8145 * 2: failure, means no valid migration record
8146 * / no general migration in progress /
687629c2
AK
8147 ******************************************************************************/
8148int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8149{
8150 struct intel_super *super = st->sb;
f8b72ef5
AK
8151 unsigned long long blocks_per_unit;
8152 unsigned long long curr_migr_unit;
8153
2e062e82
AK
8154 if (load_imsm_migr_rec(super, info) != 0) {
8155 dprintf("imsm: ERROR: Cannot read migration record "
8156 "for checkpoint save.\n");
8157 return 1;
8158 }
8159
f8b72ef5
AK
8160 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8161 if (blocks_per_unit == 0) {
0228d92c
AK
8162 dprintf("imsm: no migration in progress.\n");
8163 return 2;
687629c2 8164 }
f8b72ef5
AK
8165 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8166 /* check if array is alligned to copy area
8167 * if it is not alligned, add one to current migration unit value
8168 * this can happend on array reshape finish only
8169 */
8170 if (info->reshape_progress % blocks_per_unit)
8171 curr_migr_unit++;
687629c2
AK
8172
8173 super->migr_rec->curr_migr_unit =
f8b72ef5 8174 __cpu_to_le32(curr_migr_unit);
687629c2
AK
8175 super->migr_rec->rec_status = __cpu_to_le32(state);
8176 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
8177 __cpu_to_le32(curr_migr_unit *
8178 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
8179 if (write_imsm_migr_rec(st) < 0) {
8180 dprintf("imsm: Cannot write migration record "
8181 "outside backup area\n");
8182 return 1;
8183 }
8184
8185 return 0;
8186}
8187
276d77db
AK
8188/*******************************************************************************
8189 * Function: recover_backup_imsm
8190 * Description: Function recovers critical data from the Migration Copy Area
8191 * while assembling an array.
8192 * Parameters:
8193 * super : imsm internal array info
8194 * info : general array info
8195 * Returns:
8196 * 0 : success (or there is no data to recover)
8197 * 1 : fail
8198 ******************************************************************************/
8199int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8200{
8201 struct intel_super *super = st->sb;
8202 struct migr_record *migr_rec = super->migr_rec;
8203 struct imsm_map *map_dest = NULL;
8204 struct intel_dev *id = NULL;
8205 unsigned long long read_offset;
8206 unsigned long long write_offset;
8207 unsigned unit_len;
8208 int *targets = NULL;
8209 int new_disks, i, err;
8210 char *buf = NULL;
8211 int retval = 1;
8212 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8213 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 8214 char buffer[20];
6c3560c0
AK
8215 int skipped_disks = 0;
8216 int max_degradation;
276d77db
AK
8217
8218 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8219 if (err < 1)
8220 return 1;
8221
8222 /* recover data only during assemblation */
8223 if (strncmp(buffer, "inactive", 8) != 0)
8224 return 0;
8225 /* no data to recover */
8226 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8227 return 0;
8228 if (curr_migr_unit >= num_migr_units)
8229 return 1;
8230
8231 /* find device during reshape */
8232 for (id = super->devlist; id; id = id->next)
8233 if (is_gen_migration(id->dev))
8234 break;
8235 if (id == NULL)
8236 return 1;
8237
8238 map_dest = get_imsm_map(id->dev, 0);
8239 new_disks = map_dest->num_members;
6c3560c0 8240 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
276d77db
AK
8241
8242 read_offset = (unsigned long long)
8243 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8244
8245 write_offset = ((unsigned long long)
8246 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
75b69ea4 8247 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
276d77db
AK
8248
8249 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8250 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8251 goto abort;
8252 targets = malloc(new_disks * sizeof(int));
8253 if (!targets)
8254 goto abort;
8255
8256 open_backup_targets(info, new_disks, targets);
8257
8258 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
8259 if (targets[i] < 0) {
8260 skipped_disks++;
8261 continue;
8262 }
276d77db
AK
8263 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8264 fprintf(stderr,
8265 Name ": Cannot seek to block: %s\n",
8266 strerror(errno));
8267 goto abort;
8268 }
9ec11d1a 8269 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8270 fprintf(stderr,
8271 Name ": Cannot read copy area block: %s\n",
8272 strerror(errno));
8273 goto abort;
8274 }
8275 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8276 fprintf(stderr,
8277 Name ": Cannot seek to block: %s\n",
8278 strerror(errno));
8279 goto abort;
8280 }
9ec11d1a 8281 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8282 fprintf(stderr,
8283 Name ": Cannot restore block: %s\n",
8284 strerror(errno));
8285 goto abort;
8286 }
8287 }
8288
6c3560c0
AK
8289 if (skipped_disks > max_degradation) {
8290 fprintf(stderr,
8291 Name ": Cannot restore data from backup."
8292 " Too many failed disks\n");
8293 goto abort;
8294 }
8295
befb629b
AK
8296 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8297 /* ignore error == 2, this can mean end of reshape here
8298 */
8299 dprintf("imsm: Cannot write checkpoint to "
8300 "migration record (UNIT_SRC_NORMAL) during restart\n");
8301 } else
276d77db 8302 retval = 0;
276d77db
AK
8303
8304abort:
8305 if (targets) {
8306 for (i = 0; i < new_disks; i++)
8307 if (targets[i])
8308 close(targets[i]);
8309 free(targets);
8310 }
8311 free(buf);
8312 return retval;
8313}
8314
2cda7640
ML
8315static char disk_by_path[] = "/dev/disk/by-path/";
8316
8317static const char *imsm_get_disk_controller_domain(const char *path)
8318{
2cda7640 8319 char disk_path[PATH_MAX];
96234762
LM
8320 char *drv=NULL;
8321 struct stat st;
2cda7640 8322
96234762
LM
8323 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8324 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8325 if (stat(disk_path, &st) == 0) {
8326 struct sys_dev* hba;
8327 char *path=NULL;
8328
8329 path = devt_to_devpath(st.st_rdev);
8330 if (path == NULL)
8331 return "unknown";
8332 hba = find_disk_attached_hba(-1, path);
8333 if (hba && hba->type == SYS_DEV_SAS)
8334 drv = "isci";
8335 else if (hba && hba->type == SYS_DEV_SATA)
8336 drv = "ahci";
8337 else
8338 drv = "unknown";
8339 dprintf("path: %s hba: %s attached: %s\n",
8340 path, (hba) ? hba->path : "NULL", drv);
8341 free(path);
8342 if (hba)
8343 free_sys_dev(&hba);
2cda7640 8344 }
96234762 8345 return drv;
2cda7640
ML
8346}
8347
78b10e66
N
8348static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8349{
8350 char subdev_name[20];
8351 struct mdstat_ent *mdstat;
8352
8353 sprintf(subdev_name, "%d", subdev);
8354 mdstat = mdstat_by_subdev(subdev_name, container);
8355 if (!mdstat)
8356 return -1;
8357
8358 *minor = mdstat->devnum;
8359 free_mdstat(mdstat);
8360 return 0;
8361}
8362
8363static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8364 struct geo_params *geo,
8365 int *old_raid_disks)
8366{
694575e7
KW
8367 /* currently we only support increasing the number of devices
8368 * for a container. This increases the number of device for each
8369 * member array. They must all be RAID0 or RAID5.
8370 */
78b10e66
N
8371 int ret_val = 0;
8372 struct mdinfo *info, *member;
8373 int devices_that_can_grow = 0;
8374
8375 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8376 "st->devnum = (%i)\n",
8377 st->devnum);
8378
8379 if (geo->size != -1 ||
8380 geo->level != UnSet ||
8381 geo->layout != UnSet ||
8382 geo->chunksize != 0 ||
8383 geo->raid_disks == UnSet) {
8384 dprintf("imsm: Container operation is allowed for "
8385 "raid disks number change only.\n");
8386 return ret_val;
8387 }
8388
8389 info = container_content_imsm(st, NULL);
8390 for (member = info; member; member = member->next) {
8391 int result;
8392 int minor;
8393
8394 dprintf("imsm: checking device_num: %i\n",
8395 member->container_member);
8396
d7d205bd 8397 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
8398 /* we work on container for Online Capacity Expansion
8399 * only so raid_disks has to grow
8400 */
8401 dprintf("imsm: for container operation raid disks "
8402 "increase is required\n");
8403 break;
8404 }
8405
8406 if ((info->array.level != 0) &&
8407 (info->array.level != 5)) {
8408 /* we cannot use this container with other raid level
8409 */
690aae1a 8410 dprintf("imsm: for container operation wrong"
78b10e66
N
8411 " raid level (%i) detected\n",
8412 info->array.level);
8413 break;
8414 } else {
8415 /* check for platform support
8416 * for this raid level configuration
8417 */
8418 struct intel_super *super = st->sb;
8419 if (!is_raid_level_supported(super->orom,
8420 member->array.level,
8421 geo->raid_disks)) {
690aae1a 8422 dprintf("platform does not support raid%d with"
78b10e66
N
8423 " %d disk%s\n",
8424 info->array.level,
8425 geo->raid_disks,
8426 geo->raid_disks > 1 ? "s" : "");
8427 break;
8428 }
2a4a08e7
AK
8429 /* check if component size is aligned to chunk size
8430 */
8431 if (info->component_size %
8432 (info->array.chunk_size/512)) {
8433 dprintf("Component size is not aligned to "
8434 "chunk size\n");
8435 break;
8436 }
78b10e66
N
8437 }
8438
8439 if (*old_raid_disks &&
8440 info->array.raid_disks != *old_raid_disks)
8441 break;
8442 *old_raid_disks = info->array.raid_disks;
8443
8444 /* All raid5 and raid0 volumes in container
8445 * have to be ready for Online Capacity Expansion
8446 * so they need to be assembled. We have already
8447 * checked that no recovery etc is happening.
8448 */
8449 result = imsm_find_array_minor_by_subdev(member->container_member,
8450 st->container_dev,
8451 &minor);
8452 if (result < 0) {
8453 dprintf("imsm: cannot find array\n");
8454 break;
8455 }
8456 devices_that_can_grow++;
8457 }
8458 sysfs_free(info);
8459 if (!member && devices_that_can_grow)
8460 ret_val = 1;
8461
8462 if (ret_val)
8463 dprintf("\tContainer operation allowed\n");
8464 else
8465 dprintf("\tError: %i\n", ret_val);
8466
8467 return ret_val;
8468}
8469
8470/* Function: get_spares_for_grow
8471 * Description: Allocates memory and creates list of spare devices
8472 * avaliable in container. Checks if spare drive size is acceptable.
8473 * Parameters: Pointer to the supertype structure
8474 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8475 * NULL if fail
8476 */
8477static struct mdinfo *get_spares_for_grow(struct supertype *st)
8478{
78b10e66 8479 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8480 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8481}
8482
8483/******************************************************************************
8484 * function: imsm_create_metadata_update_for_reshape
8485 * Function creates update for whole IMSM container.
8486 *
8487 ******************************************************************************/
8488static int imsm_create_metadata_update_for_reshape(
8489 struct supertype *st,
8490 struct geo_params *geo,
8491 int old_raid_disks,
8492 struct imsm_update_reshape **updatep)
8493{
8494 struct intel_super *super = st->sb;
8495 struct imsm_super *mpb = super->anchor;
8496 int update_memory_size = 0;
8497 struct imsm_update_reshape *u = NULL;
8498 struct mdinfo *spares = NULL;
8499 int i;
8500 int delta_disks = 0;
bbd24d86 8501 struct mdinfo *dev;
78b10e66
N
8502
8503 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8504 geo->raid_disks);
8505
8506 delta_disks = geo->raid_disks - old_raid_disks;
8507
8508 /* size of all update data without anchor */
8509 update_memory_size = sizeof(struct imsm_update_reshape);
8510
8511 /* now add space for spare disks that we need to add. */
8512 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8513
8514 u = calloc(1, update_memory_size);
8515 if (u == NULL) {
8516 dprintf("error: "
8517 "cannot get memory for imsm_update_reshape update\n");
8518 return 0;
8519 }
8520 u->type = update_reshape_container_disks;
8521 u->old_raid_disks = old_raid_disks;
8522 u->new_raid_disks = geo->raid_disks;
8523
8524 /* now get spare disks list
8525 */
8526 spares = get_spares_for_grow(st);
8527
8528 if (spares == NULL
8529 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8530 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8531 "for %s.\n", geo->dev_name);
e4c72d1d 8532 i = -1;
78b10e66
N
8533 goto abort;
8534 }
8535
8536 /* we have got spares
8537 * update disk list in imsm_disk list table in anchor
8538 */
8539 dprintf("imsm: %i spares are available.\n\n",
8540 spares->array.spare_disks);
8541
bbd24d86 8542 dev = spares->devs;
78b10e66 8543 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8544 struct dl *dl;
8545
bbd24d86
AK
8546 if (dev == NULL)
8547 break;
78b10e66
N
8548 u->new_disks[i] = makedev(dev->disk.major,
8549 dev->disk.minor);
8550 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8551 dl->index = mpb->num_disks;
8552 mpb->num_disks++;
bbd24d86 8553 dev = dev->next;
78b10e66 8554 }
78b10e66
N
8555
8556abort:
8557 /* free spares
8558 */
8559 sysfs_free(spares);
8560
d677e0b8 8561 dprintf("imsm: reshape update preparation :");
78b10e66 8562 if (i == delta_disks) {
d677e0b8 8563 dprintf(" OK\n");
78b10e66
N
8564 *updatep = u;
8565 return update_memory_size;
8566 }
8567 free(u);
d677e0b8 8568 dprintf(" Error\n");
78b10e66
N
8569
8570 return 0;
8571}
8572
48c5303a
PC
8573/******************************************************************************
8574 * function: imsm_create_metadata_update_for_migration()
8575 * Creates update for IMSM array.
8576 *
8577 ******************************************************************************/
8578static int imsm_create_metadata_update_for_migration(
8579 struct supertype *st,
8580 struct geo_params *geo,
8581 struct imsm_update_reshape_migration **updatep)
8582{
8583 struct intel_super *super = st->sb;
8584 int update_memory_size = 0;
8585 struct imsm_update_reshape_migration *u = NULL;
8586 struct imsm_dev *dev;
8587 int previous_level = -1;
8588
8589 dprintf("imsm_create_metadata_update_for_migration(enter)"
8590 " New Level = %i\n", geo->level);
8591
8592 /* size of all update data without anchor */
8593 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8594
8595 u = calloc(1, update_memory_size);
8596 if (u == NULL) {
8597 dprintf("error: cannot get memory for "
8598 "imsm_create_metadata_update_for_migration\n");
8599 return 0;
8600 }
8601 u->type = update_reshape_migration;
8602 u->subdev = super->current_vol;
8603 u->new_level = geo->level;
8604 u->new_layout = geo->layout;
8605 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8606 u->new_disks[0] = -1;
4bba0439 8607 u->new_chunksize = -1;
48c5303a
PC
8608
8609 dev = get_imsm_dev(super, u->subdev);
8610 if (dev) {
8611 struct imsm_map *map;
8612
8613 map = get_imsm_map(dev, 0);
4bba0439
PC
8614 if (map) {
8615 int current_chunk_size =
8616 __le16_to_cpu(map->blocks_per_strip) / 2;
8617
8618 if (geo->chunksize != current_chunk_size) {
8619 u->new_chunksize = geo->chunksize / 1024;
8620 dprintf("imsm: "
8621 "chunk size change from %i to %i\n",
8622 current_chunk_size, u->new_chunksize);
8623 }
48c5303a 8624 previous_level = map->raid_level;
4bba0439 8625 }
48c5303a
PC
8626 }
8627 if ((geo->level == 5) && (previous_level == 0)) {
8628 struct mdinfo *spares = NULL;
8629
8630 u->new_raid_disks++;
8631 spares = get_spares_for_grow(st);
8632 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8633 free(u);
8634 sysfs_free(spares);
8635 update_memory_size = 0;
8636 dprintf("error: cannot get spare device "
8637 "for requested migration");
8638 return 0;
8639 }
8640 sysfs_free(spares);
8641 }
8642 dprintf("imsm: reshape update preparation : OK\n");
8643 *updatep = u;
8644
8645 return update_memory_size;
8646}
8647
8dd70bce
AK
8648static void imsm_update_metadata_locally(struct supertype *st,
8649 void *buf, int len)
8650{
8651 struct metadata_update mu;
8652
8653 mu.buf = buf;
8654 mu.len = len;
8655 mu.space = NULL;
8656 mu.space_list = NULL;
8657 mu.next = NULL;
8658 imsm_prepare_update(st, &mu);
8659 imsm_process_update(st, &mu);
8660
8661 while (mu.space_list) {
8662 void **space = mu.space_list;
8663 mu.space_list = *space;
8664 free(space);
8665 }
8666}
78b10e66 8667
471bceb6 8668/***************************************************************************
694575e7 8669* Function: imsm_analyze_change
471bceb6
KW
8670* Description: Function analyze change for single volume
8671* and validate if transition is supported
694575e7
KW
8672* Parameters: Geometry parameters, supertype structure
8673* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8674****************************************************************************/
8675enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8676 struct geo_params *geo)
694575e7 8677{
471bceb6
KW
8678 struct mdinfo info;
8679 int change = -1;
8680 int check_devs = 0;
c21e737b 8681 int chunk;
471bceb6
KW
8682
8683 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
8684 if ((geo->level != info.array.level) &&
8685 (geo->level >= 0) &&
8686 (geo->level != UnSet)) {
8687 switch (info.array.level) {
8688 case 0:
8689 if (geo->level == 5) {
b5347799 8690 change = CH_MIGRATION;
e13ce846
AK
8691 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8692 fprintf(stderr,
8693 Name " Error. Requested Layout "
8694 "not supported (left-asymmetric layout "
8695 "is supported only)!\n");
8696 change = -1;
8697 goto analyse_change_exit;
8698 }
471bceb6
KW
8699 check_devs = 1;
8700 }
8701 if (geo->level == 10) {
8702 change = CH_TAKEOVER;
8703 check_devs = 1;
8704 }
dfe77a9e
KW
8705 break;
8706 case 1:
8707 if (geo->level == 0) {
8708 change = CH_TAKEOVER;
8709 check_devs = 1;
8710 }
471bceb6 8711 break;
471bceb6
KW
8712 case 10:
8713 if (geo->level == 0) {
8714 change = CH_TAKEOVER;
8715 check_devs = 1;
8716 }
8717 break;
8718 }
8719 if (change == -1) {
8720 fprintf(stderr,
8721 Name " Error. Level Migration from %d to %d "
8722 "not supported!\n",
8723 info.array.level, geo->level);
8724 goto analyse_change_exit;
8725 }
8726 } else
8727 geo->level = info.array.level;
8728
8729 if ((geo->layout != info.array.layout)
8730 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8731 change = CH_MIGRATION;
471bceb6
KW
8732 if ((info.array.layout == 0)
8733 && (info.array.level == 5)
8734 && (geo->layout == 5)) {
8735 /* reshape 5 -> 4 */
8736 } else if ((info.array.layout == 5)
8737 && (info.array.level == 5)
8738 && (geo->layout == 0)) {
8739 /* reshape 4 -> 5 */
8740 geo->layout = 0;
8741 geo->level = 5;
8742 } else {
8743 fprintf(stderr,
8744 Name " Error. Layout Migration from %d to %d "
8745 "not supported!\n",
8746 info.array.layout, geo->layout);
8747 change = -1;
8748 goto analyse_change_exit;
8749 }
8750 } else
8751 geo->layout = info.array.layout;
8752
8753 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8754 && (geo->chunksize != info.array.chunk_size))
b5347799 8755 change = CH_MIGRATION;
471bceb6
KW
8756 else
8757 geo->chunksize = info.array.chunk_size;
8758
c21e737b 8759 chunk = geo->chunksize / 1024;
471bceb6
KW
8760 if (!validate_geometry_imsm(st,
8761 geo->level,
8762 geo->layout,
8763 geo->raid_disks,
c21e737b 8764 &chunk,
471bceb6
KW
8765 geo->size,
8766 0, 0, 1))
8767 change = -1;
8768
8769 if (check_devs) {
8770 struct intel_super *super = st->sb;
8771 struct imsm_super *mpb = super->anchor;
8772
8773 if (mpb->num_raid_devs > 1) {
8774 fprintf(stderr,
8775 Name " Error. Cannot perform operation on %s"
8776 "- for this operation it MUST be single "
8777 "array in container\n",
8778 geo->dev_name);
8779 change = -1;
8780 }
8781 }
8782
8783analyse_change_exit:
8784
8785 return change;
694575e7
KW
8786}
8787
bb025c2f
KW
8788int imsm_takeover(struct supertype *st, struct geo_params *geo)
8789{
8790 struct intel_super *super = st->sb;
8791 struct imsm_update_takeover *u;
8792
8793 u = malloc(sizeof(struct imsm_update_takeover));
8794 if (u == NULL)
8795 return 1;
8796
8797 u->type = update_takeover;
8798 u->subarray = super->current_vol;
8799
8800 /* 10->0 transition */
8801 if (geo->level == 0)
8802 u->direction = R10_TO_R0;
8803
0529c688
KW
8804 /* 0->10 transition */
8805 if (geo->level == 10)
8806 u->direction = R0_TO_R10;
8807
bb025c2f
KW
8808 /* update metadata locally */
8809 imsm_update_metadata_locally(st, u,
8810 sizeof(struct imsm_update_takeover));
8811 /* and possibly remotely */
8812 if (st->update_tail)
8813 append_metadata_update(st, u,
8814 sizeof(struct imsm_update_takeover));
8815 else
8816 free(u);
8817
8818 return 0;
8819}
8820
78b10e66
N
8821static int imsm_reshape_super(struct supertype *st, long long size, int level,
8822 int layout, int chunksize, int raid_disks,
41784c88
AK
8823 int delta_disks, char *backup, char *dev,
8824 int verbose)
78b10e66 8825{
78b10e66
N
8826 int ret_val = 1;
8827 struct geo_params geo;
8828
8829 dprintf("imsm: reshape_super called.\n");
8830
71204a50 8831 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
8832
8833 geo.dev_name = dev;
694575e7 8834 geo.dev_id = st->devnum;
78b10e66
N
8835 geo.size = size;
8836 geo.level = level;
8837 geo.layout = layout;
8838 geo.chunksize = chunksize;
8839 geo.raid_disks = raid_disks;
41784c88
AK
8840 if (delta_disks != UnSet)
8841 geo.raid_disks += delta_disks;
78b10e66
N
8842
8843 dprintf("\tfor level : %i\n", geo.level);
8844 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8845
8846 if (experimental() == 0)
8847 return ret_val;
8848
78b10e66 8849 if (st->container_dev == st->devnum) {
694575e7
KW
8850 /* On container level we can only increase number of devices. */
8851 dprintf("imsm: info: Container operation\n");
78b10e66 8852 int old_raid_disks = 0;
6dc0be30 8853
78b10e66
N
8854 if (imsm_reshape_is_allowed_on_container(
8855 st, &geo, &old_raid_disks)) {
8856 struct imsm_update_reshape *u = NULL;
8857 int len;
8858
8859 len = imsm_create_metadata_update_for_reshape(
8860 st, &geo, old_raid_disks, &u);
8861
ed08d51c
AK
8862 if (len <= 0) {
8863 dprintf("imsm: Cannot prepare update\n");
8864 goto exit_imsm_reshape_super;
8865 }
8866
8dd70bce
AK
8867 ret_val = 0;
8868 /* update metadata locally */
8869 imsm_update_metadata_locally(st, u, len);
8870 /* and possibly remotely */
8871 if (st->update_tail)
8872 append_metadata_update(st, u, len);
8873 else
ed08d51c 8874 free(u);
8dd70bce 8875
694575e7 8876 } else {
e7ff7e40
AK
8877 fprintf(stderr, Name ": (imsm) Operation "
8878 "is not allowed on this container\n");
694575e7
KW
8879 }
8880 } else {
8881 /* On volume level we support following operations
471bceb6
KW
8882 * - takeover: raid10 -> raid0; raid0 -> raid10
8883 * - chunk size migration
8884 * - migration: raid5 -> raid0; raid0 -> raid5
8885 */
8886 struct intel_super *super = st->sb;
8887 struct intel_dev *dev = super->devlist;
8888 int change, devnum;
694575e7 8889 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
8890 /* find requested device */
8891 while (dev) {
19986c72
MB
8892 if (imsm_find_array_minor_by_subdev(
8893 dev->index, st->container_dev, &devnum) == 0
8894 && devnum == geo.dev_id)
471bceb6
KW
8895 break;
8896 dev = dev->next;
8897 }
8898 if (dev == NULL) {
8899 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8900 geo.dev_name, geo.dev_id);
8901 goto exit_imsm_reshape_super;
8902 }
8903 super->current_vol = dev->index;
694575e7
KW
8904 change = imsm_analyze_change(st, &geo);
8905 switch (change) {
471bceb6 8906 case CH_TAKEOVER:
bb025c2f 8907 ret_val = imsm_takeover(st, &geo);
694575e7 8908 break;
48c5303a
PC
8909 case CH_MIGRATION: {
8910 struct imsm_update_reshape_migration *u = NULL;
8911 int len =
8912 imsm_create_metadata_update_for_migration(
8913 st, &geo, &u);
8914 if (len < 1) {
8915 dprintf("imsm: "
8916 "Cannot prepare update\n");
8917 break;
8918 }
471bceb6 8919 ret_val = 0;
48c5303a
PC
8920 /* update metadata locally */
8921 imsm_update_metadata_locally(st, u, len);
8922 /* and possibly remotely */
8923 if (st->update_tail)
8924 append_metadata_update(st, u, len);
8925 else
8926 free(u);
8927 }
8928 break;
471bceb6
KW
8929 default:
8930 ret_val = 1;
694575e7 8931 }
694575e7 8932 }
78b10e66 8933
ed08d51c 8934exit_imsm_reshape_super:
78b10e66
N
8935 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8936 return ret_val;
8937}
2cda7640 8938
eee67a47
AK
8939/*******************************************************************************
8940 * Function: wait_for_reshape_imsm
8941 * Description: Function writes new sync_max value and waits until
8942 * reshape process reach new position
8943 * Parameters:
8944 * sra : general array info
eee67a47
AK
8945 * ndata : number of disks in new array's layout
8946 * Returns:
8947 * 0 : success,
8948 * 1 : there is no reshape in progress,
8949 * -1 : fail
8950 ******************************************************************************/
ae9f01f8 8951int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
8952{
8953 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8954 unsigned long long completed;
ae9f01f8
AK
8955 /* to_complete : new sync_max position */
8956 unsigned long long to_complete = sra->reshape_progress;
8957 unsigned long long position_to_set = to_complete / ndata;
eee67a47 8958
ae9f01f8
AK
8959 if (fd < 0) {
8960 dprintf("imsm: wait_for_reshape_imsm() "
8961 "cannot open reshape_position\n");
eee67a47 8962 return 1;
ae9f01f8 8963 }
eee67a47 8964
ae9f01f8
AK
8965 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8966 dprintf("imsm: wait_for_reshape_imsm() "
8967 "cannot read reshape_position (no reshape in progres)\n");
8968 close(fd);
8969 return 0;
8970 }
eee67a47 8971
ae9f01f8
AK
8972 if (completed > to_complete) {
8973 dprintf("imsm: wait_for_reshape_imsm() "
8974 "wrong next position to set %llu (%llu)\n",
8975 to_complete, completed);
8976 close(fd);
8977 return -1;
8978 }
8979 dprintf("Position set: %llu\n", position_to_set);
8980 if (sysfs_set_num(sra, NULL, "sync_max",
8981 position_to_set) != 0) {
8982 dprintf("imsm: wait_for_reshape_imsm() "
8983 "cannot set reshape position to %llu\n",
8984 position_to_set);
8985 close(fd);
8986 return -1;
eee67a47
AK
8987 }
8988
eee67a47
AK
8989 do {
8990 char action[20];
8991 fd_set rfds;
8992 FD_ZERO(&rfds);
8993 FD_SET(fd, &rfds);
a47e44fb
AK
8994 select(fd+1, &rfds, NULL, NULL, NULL);
8995 if (sysfs_get_str(sra, NULL, "sync_action",
8996 action, 20) > 0 &&
8997 strncmp(action, "reshape", 7) != 0)
8998 break;
eee67a47 8999 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
9000 dprintf("imsm: wait_for_reshape_imsm() "
9001 "cannot read reshape_position (in loop)\n");
eee67a47
AK
9002 close(fd);
9003 return 1;
9004 }
eee67a47
AK
9005 } while (completed < to_complete);
9006 close(fd);
9007 return 0;
9008
9009}
9010
b915c95f
AK
9011/*******************************************************************************
9012 * Function: check_degradation_change
9013 * Description: Check that array hasn't become failed.
9014 * Parameters:
9015 * info : for sysfs access
9016 * sources : source disks descriptors
9017 * degraded: previous degradation level
9018 * Returns:
9019 * degradation level
9020 ******************************************************************************/
9021int check_degradation_change(struct mdinfo *info,
9022 int *sources,
9023 int degraded)
9024{
9025 unsigned long long new_degraded;
9026 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9027 if (new_degraded != (unsigned long long)degraded) {
9028 /* check each device to ensure it is still working */
9029 struct mdinfo *sd;
9030 new_degraded = 0;
9031 for (sd = info->devs ; sd ; sd = sd->next) {
9032 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9033 continue;
9034 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9035 char sbuf[20];
9036 if (sysfs_get_str(info,
9037 sd, "state", sbuf, 20) < 0 ||
9038 strstr(sbuf, "faulty") ||
9039 strstr(sbuf, "in_sync") == NULL) {
9040 /* this device is dead */
9041 sd->disk.state = (1<<MD_DISK_FAULTY);
9042 if (sd->disk.raid_disk >= 0 &&
9043 sources[sd->disk.raid_disk] >= 0) {
9044 close(sources[
9045 sd->disk.raid_disk]);
9046 sources[sd->disk.raid_disk] =
9047 -1;
9048 }
9049 new_degraded++;
9050 }
9051 }
9052 }
9053 }
9054
9055 return new_degraded;
9056}
9057
10f22854
AK
9058/*******************************************************************************
9059 * Function: imsm_manage_reshape
9060 * Description: Function finds array under reshape and it manages reshape
9061 * process. It creates stripes backups (if required) and sets
9062 * checheckpoits.
9063 * Parameters:
9064 * afd : Backup handle (nattive) - not used
9065 * sra : general array info
9066 * reshape : reshape parameters - not used
9067 * st : supertype structure
9068 * blocks : size of critical section [blocks]
9069 * fds : table of source device descriptor
9070 * offsets : start of array (offest per devices)
9071 * dests : not used
9072 * destfd : table of destination device descriptor
9073 * destoffsets : table of destination offsets (per device)
9074 * Returns:
9075 * 1 : success, reshape is done
9076 * 0 : fail
9077 ******************************************************************************/
999b4972
N
9078static int imsm_manage_reshape(
9079 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 9080 struct supertype *st, unsigned long backup_blocks,
999b4972
N
9081 int *fds, unsigned long long *offsets,
9082 int dests, int *destfd, unsigned long long *destoffsets)
9083{
10f22854
AK
9084 int ret_val = 0;
9085 struct intel_super *super = st->sb;
9086 struct intel_dev *dv = NULL;
9087 struct imsm_dev *dev = NULL;
a6b6d984 9088 struct imsm_map *map_src;
10f22854
AK
9089 int migr_vol_qan = 0;
9090 int ndata, odata; /* [bytes] */
9091 int chunk; /* [bytes] */
9092 struct migr_record *migr_rec;
9093 char *buf = NULL;
9094 unsigned int buf_size; /* [bytes] */
9095 unsigned long long max_position; /* array size [bytes] */
9096 unsigned long long next_step; /* [blocks]/[bytes] */
9097 unsigned long long old_data_stripe_length;
10f22854
AK
9098 unsigned long long start_src; /* [bytes] */
9099 unsigned long long start; /* [bytes] */
9100 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 9101 int degraded = 0;
ab724b98 9102 int source_layout = 0;
10f22854 9103
1ab242d8 9104 if (!fds || !offsets || !sra)
10f22854
AK
9105 goto abort;
9106
9107 /* Find volume during the reshape */
9108 for (dv = super->devlist; dv; dv = dv->next) {
9109 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9110 && dv->dev->vol.migr_state == 1) {
9111 dev = dv->dev;
9112 migr_vol_qan++;
9113 }
9114 }
9115 /* Only one volume can migrate at the same time */
9116 if (migr_vol_qan != 1) {
9117 fprintf(stderr, Name " : %s", migr_vol_qan ?
9118 "Number of migrating volumes greater than 1\n" :
9119 "There is no volume during migrationg\n");
9120 goto abort;
9121 }
9122
9123 map_src = get_imsm_map(dev, 1);
9124 if (map_src == NULL)
9125 goto abort;
10f22854
AK
9126
9127 ndata = imsm_num_data_members(dev, 0);
9128 odata = imsm_num_data_members(dev, 1);
9129
7b1ab482 9130 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
9131 old_data_stripe_length = odata * chunk;
9132
9133 migr_rec = super->migr_rec;
9134
10f22854
AK
9135 /* initialize migration record for start condition */
9136 if (sra->reshape_progress == 0)
9137 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
9138 else {
9139 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9140 dprintf("imsm: cannot restart migration when data "
9141 "are present in copy area.\n");
9142 goto abort;
9143 }
9144 }
10f22854
AK
9145
9146 /* size for data */
9147 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9148 /* extend buffer size for parity disk */
9149 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9150 /* add space for stripe aligment */
9151 buf_size += old_data_stripe_length;
9152 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9153 dprintf("imsm: Cannot allocate checpoint buffer\n");
9154 goto abort;
9155 }
9156
3ef4403c 9157 max_position = sra->component_size * ndata;
68eb8bc6 9158 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
9159
9160 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9161 __le32_to_cpu(migr_rec->num_migr_units)) {
9162 /* current reshape position [blocks] */
9163 unsigned long long current_position =
9164 __le32_to_cpu(migr_rec->blocks_per_unit)
9165 * __le32_to_cpu(migr_rec->curr_migr_unit);
9166 unsigned long long border;
9167
b915c95f
AK
9168 /* Check that array hasn't become failed.
9169 */
9170 degraded = check_degradation_change(sra, fds, degraded);
9171 if (degraded > 1) {
9172 dprintf("imsm: Abort reshape due to degradation"
9173 " level (%i)\n", degraded);
9174 goto abort;
9175 }
9176
10f22854
AK
9177 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9178
9179 if ((current_position + next_step) > max_position)
9180 next_step = max_position - current_position;
9181
92144abf 9182 start = current_position * 512;
10f22854
AK
9183
9184 /* allign reading start to old geometry */
9185 start_buf_shift = start % old_data_stripe_length;
9186 start_src = start - start_buf_shift;
9187
9188 border = (start_src / odata) - (start / ndata);
9189 border /= 512;
9190 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9191 /* save critical stripes to buf
9192 * start - start address of current unit
9193 * to backup [bytes]
9194 * start_src - start address of current unit
9195 * to backup alligned to source array
9196 * [bytes]
9197 */
9198 unsigned long long next_step_filler = 0;
9199 unsigned long long copy_length = next_step * 512;
9200
9201 /* allign copy area length to stripe in old geometry */
9202 next_step_filler = ((copy_length + start_buf_shift)
9203 % old_data_stripe_length);
9204 if (next_step_filler)
9205 next_step_filler = (old_data_stripe_length
9206 - next_step_filler);
9207 dprintf("save_stripes() parameters: start = %llu,"
9208 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9209 "\tstart_in_buf_shift = %llu,"
9210 "\tnext_step_filler = %llu\n",
9211 start, start_src, copy_length,
9212 start_buf_shift, next_step_filler);
9213
9214 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
9215 chunk, map_src->raid_level,
9216 source_layout, 0, NULL, start_src,
10f22854
AK
9217 copy_length +
9218 next_step_filler + start_buf_shift,
9219 buf)) {
9220 dprintf("imsm: Cannot save stripes"
9221 " to buffer\n");
9222 goto abort;
9223 }
9224 /* Convert data to destination format and store it
9225 * in backup general migration area
9226 */
9227 if (save_backup_imsm(st, dev, sra,
aea93171 9228 buf + start_buf_shift, copy_length)) {
10f22854
AK
9229 dprintf("imsm: Cannot save stripes to "
9230 "target devices\n");
9231 goto abort;
9232 }
9233 if (save_checkpoint_imsm(st, sra,
9234 UNIT_SRC_IN_CP_AREA)) {
9235 dprintf("imsm: Cannot write checkpoint to "
9236 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9237 goto abort;
9238 }
8016a6d4
AK
9239 } else {
9240 /* set next step to use whole border area */
9241 border /= next_step;
9242 if (border > 1)
9243 next_step *= border;
10f22854
AK
9244 }
9245 /* When data backed up, checkpoint stored,
9246 * kick the kernel to reshape unit of data
9247 */
9248 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
9249 /* limit next step to array max position */
9250 if (next_step > max_position)
9251 next_step = max_position;
10f22854
AK
9252 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9253 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 9254 sra->reshape_progress = next_step;
10f22854
AK
9255
9256 /* wait until reshape finish */
ae9f01f8 9257 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
9258 dprintf("wait_for_reshape_imsm returned error!\n");
9259 goto abort;
9260 }
10f22854 9261
0228d92c
AK
9262 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9263 /* ignore error == 2, this can mean end of reshape here
9264 */
10f22854
AK
9265 dprintf("imsm: Cannot write checkpoint to "
9266 "migration record (UNIT_SRC_NORMAL)\n");
9267 goto abort;
9268 }
9269
9270 }
9271
9272 /* return '1' if done */
9273 ret_val = 1;
9274abort:
9275 free(buf);
9276 abort_reshape(sra);
9277
9278 return ret_val;
999b4972 9279}
71204a50 9280#endif /* MDASSEMBLE */
999b4972 9281
cdddbdbc
DW
9282struct superswitch super_imsm = {
9283#ifndef MDASSEMBLE
9284 .examine_super = examine_super_imsm,
9285 .brief_examine_super = brief_examine_super_imsm,
4737ae25 9286 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 9287 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
9288 .detail_super = detail_super_imsm,
9289 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 9290 .write_init_super = write_init_super_imsm,
0e600426
N
9291 .validate_geometry = validate_geometry_imsm,
9292 .add_to_super = add_to_super_imsm,
1a64be56 9293 .remove_from_super = remove_from_super_imsm,
d665cc31 9294 .detail_platform = detail_platform_imsm,
33414a01 9295 .kill_subarray = kill_subarray_imsm,
aa534678 9296 .update_subarray = update_subarray_imsm,
2b959fbf 9297 .load_container = load_container_imsm,
71204a50
N
9298 .default_geometry = default_geometry_imsm,
9299 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9300 .reshape_super = imsm_reshape_super,
9301 .manage_reshape = imsm_manage_reshape,
9e2d750d 9302 .recover_backup = recover_backup_imsm,
cdddbdbc
DW
9303#endif
9304 .match_home = match_home_imsm,
9305 .uuid_from_super= uuid_from_super_imsm,
9306 .getinfo_super = getinfo_super_imsm,
5c4cd5da 9307 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
9308 .update_super = update_super_imsm,
9309
9310 .avail_size = avail_size_imsm,
80e7f8c3 9311 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
9312
9313 .compare_super = compare_super_imsm,
9314
9315 .load_super = load_super_imsm,
bf5a934a 9316 .init_super = init_super_imsm,
e683ca88 9317 .store_super = store_super_imsm,
cdddbdbc
DW
9318 .free_super = free_super_imsm,
9319 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 9320 .container_content = container_content_imsm,
cdddbdbc 9321
276d77db 9322
cdddbdbc 9323 .external = 1,
4cce4069 9324 .name = "imsm",
845dea95 9325
0e600426 9326#ifndef MDASSEMBLE
845dea95
NB
9327/* for mdmon */
9328 .open_new = imsm_open_new,
ed9d66aa 9329 .set_array_state= imsm_set_array_state,
845dea95
NB
9330 .set_disk = imsm_set_disk,
9331 .sync_metadata = imsm_sync_metadata,
88758e9d 9332 .activate_spare = imsm_activate_spare,
e8319a19 9333 .process_update = imsm_process_update,
8273f55e 9334 .prepare_update = imsm_prepare_update,
0e600426 9335#endif /* MDASSEMBLE */
cdddbdbc 9336};