]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/alpha-tdep.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
d01e8234 3 Copyright (C) 1993-2025 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
ec452525 20#include "extract-store-integer.h"
d55e5aa6 21#include "frame.h"
4de283e4
TT
22#include "frame-unwind.h"
23#include "frame-base.h"
82ca8957 24#include "dwarf2/frame.h"
4de283e4
TT
25#include "inferior.h"
26#include "symtab.h"
27#include "value.h"
5b9707eb 28#include "cli/cli-cmds.h"
c906108c 29#include "gdbcore.h"
4de283e4
TT
30#include "dis-asm.h"
31#include "symfile.h"
d55e5aa6 32#include "objfiles.h"
4de283e4 33#include "linespec.h"
4e052eda 34#include "regcache.h"
615967cb 35#include "reggroups.h"
4de283e4
TT
36#include "arch-utils.h"
37#include "osabi.h"
4de283e4 38#include "infcall.h"
07ea644b 39#include "trad-frame.h"
4de283e4
TT
40
41#include "elf-bfd.h"
42
43#include "alpha-tdep.h"
44#include <algorithm>
dc129d82 45
fb2b6256
YE
46#include "target-descriptions.h"
47#include "features/alpha.c"
48
3a48e6ff
JG
49/* Instruction decoding. The notations for registers, immediates and
50 opcodes are the same as the one used in Compaq's Alpha architecture
51 handbook. */
52
53#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
54
55/* Memory instruction format */
56#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
57#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
58#define MEM_DISP(insn) \
59 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
60
61static const int lda_opcode = 0x08;
62static const int stq_opcode = 0x2d;
63
64/* Branch instruction format */
65#define BR_RA(insn) MEM_RA(insn)
66
46ad3598 67static const int br_opcode = 0x30;
3a48e6ff
JG
68static const int bne_opcode = 0x3d;
69
70/* Operate instruction format */
71#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
72#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
73#define OPR_RA(insn) MEM_RA(insn)
74#define OPR_RC(insn) ((insn & 0x1f))
75#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
76
77static const int subq_opcode = 0x10;
78static const int subq_function = 0x29;
79
c906108c 80\f
fb2b6256 81/* Alpha registers using their software names.
515921d7
JB
82
83 An empty name corresponds to a register number that used to
0963b4bd 84 be used for a virtual register. That virtual register has
515921d7
JB
85 been removed, but the index is still reserved to maintain
86 compatibility with existing remote alpha targets. */
87
fb2b6256 88static const char * const alpha_register_names[] =
636a6dfc 89{
fb2b6256
YE
90 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
91 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
92 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
93 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
94 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
95 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
96 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
97 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
98 "pc", "", "unique"
99};
100static_assert (ALPHA_NUM_REGS == ARRAY_SIZE (alpha_register_names));
d734c450 101
dc129d82 102static int
64a3914f 103alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 104{
fb2b6256 105 return (strlen (alpha_register_names[regno]) == 0);
d734c450
JT
106}
107
dc129d82 108static int
64a3914f 109alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 110{
515921d7 111 return (regno == ALPHA_ZERO_REGNUM
fb2b6256 112 || strlen (alpha_register_names[regno]) == 0);
0d056799 113}
f8453e34 114
615967cb
RH
115/* Is REGNUM a member of REGGROUP? */
116
117static int
118alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
dbf5d61b 119 const struct reggroup *group)
615967cb
RH
120{
121 /* Filter out any registers eliminated, but whose regnum is
122 reserved for backward compatibility, e.g. the vfp. */
637b2f86 123 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
124 return 0;
125
df4a182b
RH
126 if (group == all_reggroup)
127 return 1;
128
129 /* Zero should not be saved or restored. Technically it is a general
130 register (just as $f31 would be a float if we represented it), but
131 there's no point displaying it during "info regs", so leave it out
132 of all groups except for "all". */
133 if (regnum == ALPHA_ZERO_REGNUM)
134 return 0;
135
136 /* All other registers are saved and restored. */
137 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
138 return 1;
139
140 /* All other groups are non-overlapping. */
141
142 /* Since this is really a PALcode memory slot... */
143 if (regnum == ALPHA_UNIQUE_REGNUM)
144 return group == system_reggroup;
145
146 /* Force the FPCR to be considered part of the floating point state. */
147 if (regnum == ALPHA_FPCR_REGNUM)
148 return group == float_reggroup;
149
150 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
151 return group == float_reggroup;
152 else
153 return group == general_reggroup;
154}
155
c483c494
RH
156/* The following represents exactly the conversion performed by
157 the LDS instruction. This applies to both single-precision
158 floating point and 32-bit integers. */
159
160static void
e17a4113 161alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 162{
e17a4113 163 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9a3c8263
SM
164 ULONGEST mem
165 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
c483c494
RH
166 ULONGEST frac = (mem >> 0) & 0x7fffff;
167 ULONGEST sign = (mem >> 31) & 1;
168 ULONGEST exp_msb = (mem >> 30) & 1;
169 ULONGEST exp_low = (mem >> 23) & 0x7f;
170 ULONGEST exp, reg;
171
172 exp = (exp_msb << 10) | exp_low;
173 if (exp_msb)
174 {
175 if (exp_low == 0x7f)
176 exp = 0x7ff;
177 }
178 else
179 {
180 if (exp_low != 0x00)
181 exp |= 0x380;
182 }
183
184 reg = (sign << 63) | (exp << 52) | (frac << 29);
9a3c8263 185 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
c483c494
RH
186}
187
188/* Similarly, this represents exactly the conversion performed by
189 the STS instruction. */
190
39efb398 191static void
e17a4113 192alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 193{
e17a4113 194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
195 ULONGEST reg, mem;
196
9a3c8263 197 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
c483c494 198 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
9a3c8263 199 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
c483c494
RH
200}
201
d2427a71
RH
202/* The alpha needs a conversion between register and memory format if the
203 register is a floating point register and memory format is float, as the
204 register format must be double or memory format is an integer with 4
68fce50f 205 bytes, as the representation of integers in floating point
0963b4bd 206 registers is different. */
d2427a71 207
c483c494 208static int
0963b4bd
MS
209alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
210 struct type *type)
14696584 211{
83acabca 212 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
df86565b 213 && type->length () == 4);
14696584
RH
214}
215
8dccd430 216static int
8480a37e 217alpha_register_to_value (const frame_info_ptr &frame, int regnum,
8dccd430
PA
218 struct type *valtype, gdb_byte *out,
219 int *optimizedp, int *unavailablep)
5868c862 220{
8dccd430 221 struct gdbarch *gdbarch = get_frame_arch (frame);
fbe654c8 222 struct value *value = get_frame_register_value (frame, regnum);
2a1ce6ec 223
fbe654c8 224 gdb_assert (value != NULL);
d00664db
TT
225 *optimizedp = value->optimized_out ();
226 *unavailablep = !value->entirely_available ();
fbe654c8
AH
227
228 if (*optimizedp || *unavailablep)
229 {
230 release_value (value);
fbe654c8
AH
231 return 0;
232 }
233
234 /* Convert to VALTYPE. */
8dccd430 235
df86565b 236 gdb_assert (valtype->length () == 4);
efaf1ae0 237 alpha_sts (gdbarch, out, value->contents_all ().data ());
fbe654c8
AH
238
239 release_value (value);
68fce50f 240 return 1;
d2427a71 241}
5868c862 242
d2427a71 243static void
8480a37e 244alpha_value_to_register (const frame_info_ptr &frame, int regnum,
5b819568 245 struct type *valtype, const gdb_byte *in)
d2427a71 246{
f6e3d557 247 int reg_size = register_size (get_frame_arch (frame), regnum);
df86565b 248 gdb_assert (valtype->length () == 4);
f6e3d557 249 gdb_assert (reg_size <= ALPHA_REGISTER_SIZE);
68fce50f 250
f6e3d557
SM
251 gdb_byte out[ALPHA_REGISTER_SIZE];
252 alpha_lds (get_frame_arch (frame), out, in);
584468de 253
f6e3d557 254 auto out_view = gdb::make_array_view (out, reg_size);
584468de 255 put_frame_register (get_next_frame_sentinel_okay (frame), regnum, out_view);
5868c862
JT
256}
257
d2427a71
RH
258\f
259/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
260 the stack. The register arguments are stored in ARG_REG_BUFFER, and
261 then moved into the register file; this simplifies the passing of a
262 large struct which extends from the registers to the stack, plus avoids
263 three ptrace invocations per word.
264
265 We don't bother tracking which register values should go in integer
266 regs or fp regs; we load the same values into both.
267
d2427a71
RH
268 If the called function is returning a structure, the address of the
269 structure to be returned is passed as a hidden first argument. */
c906108c 270
d2427a71 271static CORE_ADDR
7d9b040b 272alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
273 struct regcache *regcache, CORE_ADDR bp_addr,
274 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
275 function_call_return_method return_method,
276 CORE_ADDR struct_addr)
c906108c 277{
e17a4113 278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 279 int i;
cf84fa6b 280 int accumulate_size = (return_method == return_method_struct) ? 8 : 0;
d2427a71 281 struct alpha_arg
c906108c 282 {
f42a0a33 283 const gdb_byte *contents;
d2427a71
RH
284 int len;
285 int offset;
286 };
8d749320 287 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
52f0bd74 288 struct alpha_arg *m_arg;
2a1ce6ec 289 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 290 int required_arg_regs;
7d9b040b 291 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 292
c88e30c0
RH
293 /* The ABI places the address of the called function in T12. */
294 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
295
296 /* Set the return address register to point to the entry point
297 of the program, where a breakpoint lies in wait. */
298 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
299
300 /* Lay out the arguments in memory. */
d2427a71
RH
301 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
302 {
303 struct value *arg = args[i];
d0c97917 304 struct type *arg_type = check_typedef (arg->type ());
c88e30c0 305
d2427a71 306 /* Cast argument to long if necessary as the compiler does it too. */
78134374 307 switch (arg_type->code ())
c906108c 308 {
d2427a71
RH
309 case TYPE_CODE_INT:
310 case TYPE_CODE_BOOL:
311 case TYPE_CODE_CHAR:
312 case TYPE_CODE_RANGE:
313 case TYPE_CODE_ENUM:
df86565b 314 if (arg_type->length () == 4)
d2427a71 315 {
0ede8eca
RH
316 /* 32-bit values must be sign-extended to 64 bits
317 even if the base data type is unsigned. */
df4df182 318 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
319 arg = value_cast (arg_type, arg);
320 }
df86565b 321 if (arg_type->length () < ALPHA_REGISTER_SIZE)
0ede8eca 322 {
df4df182 323 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
324 arg = value_cast (arg_type, arg);
325 }
326 break;
7b5e1cb3 327
c88e30c0
RH
328 case TYPE_CODE_FLT:
329 /* "float" arguments loaded in registers must be passed in
330 register format, aka "double". */
331 if (accumulate_size < sizeof (arg_reg_buffer)
df86565b 332 && arg_type->length () == 4)
c88e30c0 333 {
27067745 334 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
335 arg = value_cast (arg_type, arg);
336 }
337 /* Tru64 5.1 has a 128-bit long double, and passes this by
338 invisible reference. No one else uses this data type. */
df86565b 339 else if (arg_type->length () == 16)
c88e30c0
RH
340 {
341 /* Allocate aligned storage. */
342 sp = (sp & -16) - 16;
343
344 /* Write the real data into the stack. */
efaf1ae0 345 write_memory (sp, arg->contents ().data (), 16);
c88e30c0
RH
346
347 /* Construct the indirection. */
348 arg_type = lookup_pointer_type (arg_type);
349 arg = value_from_pointer (arg_type, sp);
350 }
351 break;
7b5e1cb3
RH
352
353 case TYPE_CODE_COMPLEX:
354 /* ??? The ABI says that complex values are passed as two
355 separate scalar values. This distinction only matters
356 for complex float. However, GCC does not implement this. */
357
358 /* Tru64 5.1 has a 128-bit long double, and passes this by
359 invisible reference. */
df86565b 360 if (arg_type->length () == 32)
7b5e1cb3
RH
361 {
362 /* Allocate aligned storage. */
363 sp = (sp & -16) - 16;
364
365 /* Write the real data into the stack. */
efaf1ae0 366 write_memory (sp, arg->contents ().data (), 32);
7b5e1cb3
RH
367
368 /* Construct the indirection. */
369 arg_type = lookup_pointer_type (arg_type);
370 arg = value_from_pointer (arg_type, sp);
371 }
372 break;
373
d2427a71
RH
374 default:
375 break;
c906108c 376 }
df86565b 377 m_arg->len = arg_type->length ();
d2427a71
RH
378 m_arg->offset = accumulate_size;
379 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
efaf1ae0 380 m_arg->contents = arg->contents ().data ();
c906108c
SS
381 }
382
d2427a71
RH
383 /* Determine required argument register loads, loading an argument register
384 is expensive as it uses three ptrace calls. */
385 required_arg_regs = accumulate_size / 8;
386 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
387 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 388
d2427a71 389 /* Make room for the arguments on the stack. */
c88e30c0
RH
390 if (accumulate_size < sizeof(arg_reg_buffer))
391 accumulate_size = 0;
392 else
393 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 394 sp -= accumulate_size;
c906108c 395
c88e30c0 396 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 397 sp &= ~15;
c906108c 398
d2427a71
RH
399 /* `Push' arguments on the stack. */
400 for (i = nargs; m_arg--, --i >= 0;)
c906108c 401 {
f42a0a33 402 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
403 int offset = m_arg->offset;
404 int len = m_arg->len;
405
406 /* Copy the bytes destined for registers into arg_reg_buffer. */
407 if (offset < sizeof(arg_reg_buffer))
408 {
409 if (offset + len <= sizeof(arg_reg_buffer))
410 {
411 memcpy (arg_reg_buffer + offset, contents, len);
412 continue;
413 }
414 else
415 {
416 int tlen = sizeof(arg_reg_buffer) - offset;
417 memcpy (arg_reg_buffer + offset, contents, tlen);
418 offset += tlen;
419 contents += tlen;
420 len -= tlen;
421 }
422 }
423
424 /* Everything else goes to the stack. */
425 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 426 }
cf84fa6b 427 if (return_method == return_method_struct)
e17a4113
UW
428 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
429 byte_order, struct_addr);
c906108c 430
d2427a71
RH
431 /* Load the argument registers. */
432 for (i = 0; i < required_arg_regs; i++)
433 {
b66f5587
SM
434 regcache->cooked_write (ALPHA_A0_REGNUM + i,
435 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
436 regcache->cooked_write (ALPHA_FPA0_REGNUM + i,
437 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
d2427a71 438 }
c906108c 439
09cc52fd
RH
440 /* Finally, update the stack pointer. */
441 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
442
c88e30c0 443 return sp;
c906108c
SS
444}
445
5ec2bb99
RH
446/* Extract from REGCACHE the value about to be returned from a function
447 and copy it into VALBUF. */
d2427a71 448
dc129d82 449static void
5ec2bb99 450alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 451 gdb_byte *valbuf)
140f9984 452{
ac7936df 453 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 454 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2a1ce6ec 455 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
456 ULONGEST l;
457
78134374 458 switch (valtype->code ())
5ec2bb99
RH
459 {
460 case TYPE_CODE_FLT:
df86565b 461 switch (valtype->length ())
5ec2bb99
RH
462 {
463 case 4:
dca08e1f 464 regcache->cooked_read (ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 465 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
466 break;
467
468 case 8:
dca08e1f 469 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
5ec2bb99
RH
470 break;
471
24064b5c
RH
472 case 16:
473 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
474 read_memory (l, valbuf, 16);
475 break;
476
5ec2bb99 477 default:
f34652de 478 internal_error (_("unknown floating point width"));
5ec2bb99
RH
479 }
480 break;
481
7b5e1cb3 482 case TYPE_CODE_COMPLEX:
df86565b 483 switch (valtype->length ())
7b5e1cb3
RH
484 {
485 case 8:
486 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
dca08e1f 487 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
7b5e1cb3
RH
488 break;
489
490 case 16:
dca08e1f
SM
491 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
492 regcache->cooked_read (ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
493 break;
494
495 case 32:
a9933661 496 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3
RH
497 read_memory (l, valbuf, 32);
498 break;
499
500 default:
f34652de 501 internal_error (_("unknown floating point width"));
7b5e1cb3
RH
502 }
503 break;
504
5ec2bb99
RH
505 default:
506 /* Assume everything else degenerates to an integer. */
507 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
df86565b 508 store_unsigned_integer (valbuf, valtype->length (), byte_order, l);
5ec2bb99
RH
509 break;
510 }
140f9984
JT
511}
512
5ec2bb99
RH
513/* Insert the given value into REGCACHE as if it was being
514 returned by a function. */
0d056799 515
d2427a71 516static void
5ec2bb99 517alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 518 const gdb_byte *valbuf)
c906108c 519{
ac7936df 520 struct gdbarch *gdbarch = regcache->arch ();
2a1ce6ec 521 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 522 ULONGEST l;
d2427a71 523
78134374 524 switch (valtype->code ())
c906108c 525 {
5ec2bb99 526 case TYPE_CODE_FLT:
df86565b 527 switch (valtype->length ())
5ec2bb99
RH
528 {
529 case 4:
e17a4113 530 alpha_lds (gdbarch, raw_buffer, valbuf);
b66f5587 531 regcache->cooked_write (ALPHA_FP0_REGNUM, raw_buffer);
f75d70cc 532 break;
5ec2bb99
RH
533
534 case 8:
b66f5587 535 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
5ec2bb99
RH
536 break;
537
24064b5c
RH
538 case 16:
539 /* FIXME: 128-bit long doubles are returned like structures:
540 by writing into indirect storage provided by the caller
541 as the first argument. */
323e0a4a 542 error (_("Cannot set a 128-bit long double return value."));
24064b5c 543
5ec2bb99 544 default:
f34652de 545 internal_error (_("unknown floating point width"));
5ec2bb99
RH
546 }
547 break;
d2427a71 548
7b5e1cb3 549 case TYPE_CODE_COMPLEX:
df86565b 550 switch (valtype->length ())
7b5e1cb3
RH
551 {
552 case 8:
553 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
b66f5587 554 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
7b5e1cb3
RH
555 break;
556
557 case 16:
b66f5587
SM
558 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
559 regcache->cooked_write (ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
560 break;
561
562 case 32:
563 /* FIXME: 128-bit long doubles are returned like structures:
564 by writing into indirect storage provided by the caller
565 as the first argument. */
323e0a4a 566 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
567
568 default:
f34652de 569 internal_error (_("unknown floating point width"));
7b5e1cb3
RH
570 }
571 break;
572
5ec2bb99
RH
573 default:
574 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
575 /* 32-bit values must be sign-extended to 64 bits
576 even if the base data type is unsigned. */
df86565b 577 if (valtype->length () == 4)
df4df182 578 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
579 l = unpack_long (valtype, valbuf);
580 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
581 break;
582 }
c906108c
SS
583}
584
9823e921 585static enum return_value_convention
6a3a010b 586alpha_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
587 struct type *type, struct regcache *regcache,
588 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921 589{
78134374 590 enum type_code code = type->code ();
08106042 591 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
9823e921
RH
592
593 if ((code == TYPE_CODE_STRUCT
594 || code == TYPE_CODE_UNION
595 || code == TYPE_CODE_ARRAY)
345bd07c 596 && tdep->return_in_memory (type))
9823e921
RH
597 {
598 if (readbuf)
599 {
600 ULONGEST addr;
601 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
df86565b 602 read_memory (addr, readbuf, type->length ());
9823e921
RH
603 }
604
605 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
606 }
607
608 if (readbuf)
609 alpha_extract_return_value (type, regcache, readbuf);
610 if (writebuf)
611 alpha_store_return_value (type, regcache, writebuf);
612
613 return RETURN_VALUE_REGISTER_CONVENTION;
614}
615
616static int
617alpha_return_in_memory_always (struct type *type)
618{
619 return 1;
620}
d2427a71 621\f
c906108c 622
04180708 623constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
598cc9dc 624
04180708 625typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
c906108c 626
d2427a71
RH
627\f
628/* This returns the PC of the first insn after the prologue.
629 If we can't find the prologue, then return 0. */
c906108c 630
d2427a71
RH
631CORE_ADDR
632alpha_after_prologue (CORE_ADDR pc)
c906108c 633{
d2427a71
RH
634 struct symtab_and_line sal;
635 CORE_ADDR func_addr, func_end;
c906108c 636
d2427a71 637 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 638 return 0;
c906108c 639
d2427a71
RH
640 sal = find_pc_line (func_addr, 0);
641 if (sal.end < func_end)
642 return sal.end;
c5aa993b 643
d2427a71
RH
644 /* The line after the prologue is after the end of the function. In this
645 case, tell the caller to find the prologue the hard way. */
646 return 0;
c906108c
SS
647}
648
d2427a71
RH
649/* Read an instruction from memory at PC, looking through breakpoints. */
650
651unsigned int
e17a4113 652alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 653{
e17a4113 654 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 655 gdb_byte buf[ALPHA_INSN_SIZE];
d09f2c3f 656 int res;
c5aa993b 657
d09f2c3f
PA
658 res = target_read_memory (pc, buf, sizeof (buf));
659 if (res != 0)
660 memory_error (TARGET_XFER_E_IO, pc);
e17a4113 661 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 662}
c5aa993b 663
d2427a71
RH
664/* To skip prologues, I use this predicate. Returns either PC itself
665 if the code at PC does not look like a function prologue; otherwise
666 returns an address that (if we're lucky) follows the prologue. If
667 LENIENT, then we must skip everything which is involved in setting
668 up the frame (it's OK to skip more, just so long as we don't skip
669 anything which might clobber the registers which are being saved. */
c906108c 670
d2427a71 671static CORE_ADDR
6093d2eb 672alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
673{
674 unsigned long inst;
675 int offset;
676 CORE_ADDR post_prologue_pc;
e8d2d628 677 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 678
d2427a71
RH
679 /* Silently return the unaltered pc upon memory errors.
680 This could happen on OSF/1 if decode_line_1 tries to skip the
681 prologue for quickstarted shared library functions when the
682 shared library is not yet mapped in.
683 Reading target memory is slow over serial lines, so we perform
684 this check only if the target has shared libraries (which all
685 Alpha targets do). */
e8d2d628 686 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 687 return pc;
c906108c 688
d2427a71
RH
689 /* See if we can determine the end of the prologue via the symbol table.
690 If so, then return either PC, or the PC after the prologue, whichever
691 is greater. */
c906108c 692
d2427a71
RH
693 post_prologue_pc = alpha_after_prologue (pc);
694 if (post_prologue_pc != 0)
325fac50 695 return std::max (pc, post_prologue_pc);
c906108c 696
d2427a71
RH
697 /* Can't determine prologue from the symbol table, need to examine
698 instructions. */
dc1b0db2 699
0963b4bd 700 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
701 instruction and the instructions that save registers on the stack
702 or in the gcc frame. */
e8d2d628 703 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 704 {
e17a4113 705 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 706
d2427a71
RH
707 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
708 continue;
709 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
710 continue;
711 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
712 continue;
713 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
714 continue;
c906108c 715
d2427a71
RH
716 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
717 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
718 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
719 continue;
c906108c 720
d2427a71
RH
721 if (inst == 0x47de040f) /* bis sp,sp,fp */
722 continue;
723 if (inst == 0x47fe040f) /* bis zero,sp,fp */
724 continue;
c906108c 725
d2427a71 726 break;
c906108c 727 }
d2427a71
RH
728 return pc + offset;
729}
c906108c 730
46ad3598
UW
731\f
732static const int ldl_l_opcode = 0x2a;
733static const int ldq_l_opcode = 0x2b;
734static const int stl_c_opcode = 0x2e;
735static const int stq_c_opcode = 0x2f;
736
737/* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
738 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
739 is found, attempt to step through it. A breakpoint is placed at the end of
740 the sequence. */
741
a0ff9e1a 742static std::vector<CORE_ADDR>
68f81d60 743alpha_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
46ad3598 744{
70ab8ccd 745 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
46ad3598
UW
746 CORE_ADDR loc = pc;
747 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
748 unsigned int insn = alpha_read_insn (gdbarch, loc);
749 int insn_count;
750 int index;
751 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
752 const int atomic_sequence_length = 16; /* Instruction sequence length. */
753 int bc_insn_count = 0; /* Conditional branch instruction count. */
754
755 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
756 if (INSN_OPCODE (insn) != ldl_l_opcode
757 && INSN_OPCODE (insn) != ldq_l_opcode)
a0ff9e1a 758 return {};
46ad3598
UW
759
760 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
761 instructions. */
762 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
763 {
764 loc += ALPHA_INSN_SIZE;
765 insn = alpha_read_insn (gdbarch, loc);
766
767 /* Assume that there is at most one branch in the atomic
768 sequence. If a branch is found, put a breakpoint in
769 its destination address. */
770 if (INSN_OPCODE (insn) >= br_opcode)
771 {
772 int immediate = (insn & 0x001fffff) << 2;
773
774 immediate = (immediate ^ 0x400000) - 0x400000;
775
776 if (bc_insn_count >= 1)
a0ff9e1a
SM
777 return {}; /* More than one branch found, fallback
778 to the standard single-step code. */
46ad3598
UW
779
780 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
781
782 bc_insn_count++;
783 last_breakpoint++;
784 }
785
786 if (INSN_OPCODE (insn) == stl_c_opcode
787 || INSN_OPCODE (insn) == stq_c_opcode)
788 break;
789 }
790
791 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
792 if (INSN_OPCODE (insn) != stl_c_opcode
793 && INSN_OPCODE (insn) != stq_c_opcode)
a0ff9e1a 794 return {};
46ad3598
UW
795
796 closing_insn = loc;
797 loc += ALPHA_INSN_SIZE;
798
799 /* Insert a breakpoint right after the end of the atomic sequence. */
800 breaks[0] = loc;
801
802 /* Check for duplicated breakpoints. Check also for a breakpoint
803 placed (branch instruction's destination) anywhere in sequence. */
804 if (last_breakpoint
805 && (breaks[1] == breaks[0]
806 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
807 last_breakpoint = 0;
808
a0ff9e1a
SM
809 std::vector<CORE_ADDR> next_pcs;
810
46ad3598 811 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 812 next_pcs.push_back (breaks[index]);
46ad3598 813
93f9a11f 814 return next_pcs;
46ad3598
UW
815}
816
d2427a71
RH
817\f
818/* Figure out where the longjmp will land.
819 We expect the first arg to be a pointer to the jmp_buf structure from
820 which we extract the PC (JB_PC) that we will land at. The PC is copied
821 into the "pc". This routine returns true on success. */
c906108c
SS
822
823static int
8480a37e 824alpha_get_longjmp_target (const frame_info_ptr &frame, CORE_ADDR *pc)
c906108c 825{
e17a4113 826 struct gdbarch *gdbarch = get_frame_arch (frame);
08106042 827 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
e17a4113 828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 829 CORE_ADDR jb_addr;
2a1ce6ec 830 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 831
60ade65d 832 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 833
d2427a71
RH
834 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
835 raw_buffer, tdep->jb_elt_size))
c906108c 836 return 0;
d2427a71 837
e17a4113 838 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 839 return 1;
c906108c
SS
840}
841
d2427a71
RH
842\f
843/* Frame unwinder for signal trampolines. We use alpha tdep bits that
844 describe the location and shape of the sigcontext structure. After
845 that, all registers are in memory, so it's easy. */
846/* ??? Shouldn't we be able to do this generically, rather than with
847 OSABI data specific to Alpha? */
848
849struct alpha_sigtramp_unwind_cache
c906108c 850{
d2427a71
RH
851 CORE_ADDR sigcontext_addr;
852};
c906108c 853
d2427a71 854static struct alpha_sigtramp_unwind_cache *
8480a37e 855alpha_sigtramp_frame_unwind_cache (const frame_info_ptr &this_frame,
d2427a71
RH
856 void **this_prologue_cache)
857{
858 struct alpha_sigtramp_unwind_cache *info;
c906108c 859
d2427a71 860 if (*this_prologue_cache)
9a3c8263 861 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
c906108c 862
d2427a71
RH
863 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
864 *this_prologue_cache = info;
c906108c 865
345bd07c 866 gdbarch *arch = get_frame_arch (this_frame);
08106042 867 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (arch);
6834c9bb 868 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 869
d2427a71 870 return info;
c906108c
SS
871}
872
138e7be5
MK
873/* Return the address of REGNUM in a sigtramp frame. Since this is
874 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 875
d2427a71 876static CORE_ADDR
be8626e0
MD
877alpha_sigtramp_register_address (struct gdbarch *gdbarch,
878 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 879{
08106042 880 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
138e7be5
MK
881
882 if (regnum >= 0 && regnum < 32)
883 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
884 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
885 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
886 else if (regnum == ALPHA_PC_REGNUM)
887 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 888
d2427a71 889 return 0;
c906108c
SS
890}
891
d2427a71
RH
892/* Given a GDB frame, determine the address of the calling function's
893 frame. This will be used to create a new GDB frame struct. */
140f9984 894
dc129d82 895static void
8480a37e 896alpha_sigtramp_frame_this_id (const frame_info_ptr &this_frame,
d2427a71
RH
897 void **this_prologue_cache,
898 struct frame_id *this_id)
c906108c 899{
6834c9bb 900 struct gdbarch *gdbarch = get_frame_arch (this_frame);
08106042 901 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
d2427a71 902 struct alpha_sigtramp_unwind_cache *info
6834c9bb 903 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
904 CORE_ADDR stack_addr, code_addr;
905
906 /* If the OSABI couldn't locate the sigcontext, give up. */
907 if (info->sigcontext_addr == 0)
908 return;
909
910 /* If we have dynamic signal trampolines, find their start.
911 If we do not, then we must assume there is a symbol record
912 that can provide the start address. */
d2427a71 913 if (tdep->dynamic_sigtramp_offset)
c906108c 914 {
d2427a71 915 int offset;
6834c9bb 916 code_addr = get_frame_pc (this_frame);
e17a4113 917 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
918 if (offset >= 0)
919 code_addr -= offset;
c906108c 920 else
d2427a71 921 code_addr = 0;
c906108c 922 }
d2427a71 923 else
6834c9bb 924 code_addr = get_frame_func (this_frame);
c906108c 925
d2427a71 926 /* The stack address is trivially read from the sigcontext. */
be8626e0 927 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 928 ALPHA_SP_REGNUM);
6834c9bb 929 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 930 ALPHA_REGISTER_SIZE);
c906108c 931
d2427a71 932 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
933}
934
d2427a71 935/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 936
6834c9bb 937static struct value *
8480a37e 938alpha_sigtramp_frame_prev_register (const frame_info_ptr &this_frame,
6834c9bb 939 void **this_prologue_cache, int regnum)
c906108c 940{
d2427a71 941 struct alpha_sigtramp_unwind_cache *info
6834c9bb 942 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 943 CORE_ADDR addr;
c906108c 944
d2427a71 945 if (info->sigcontext_addr != 0)
c906108c 946 {
d2427a71 947 /* All integer and fp registers are stored in memory. */
6834c9bb 948 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 949 info->sigcontext_addr, regnum);
d2427a71 950 if (addr != 0)
dda83cd7 951 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
952 }
953
d2427a71
RH
954 /* This extra register may actually be in the sigcontext, but our
955 current description of it in alpha_sigtramp_frame_unwind_cache
956 doesn't include it. Too bad. Fall back on whatever's in the
957 outer frame. */
6834c9bb 958 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 959}
c906108c 960
6834c9bb
JB
961static int
962alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
8480a37e 963 const frame_info_ptr &this_frame,
dda83cd7 964 void **this_prologue_cache)
d2427a71 965{
6834c9bb
JB
966 struct gdbarch *gdbarch = get_frame_arch (this_frame);
967 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 968 const char *name;
c906108c 969
f2524b93 970 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
85102364 971 look at tramp-frame.h and other simpler per-architecture
f2524b93
AC
972 sigtramp unwinders. */
973
974 /* We shouldn't even bother to try if the OSABI didn't register a
85102364 975 sigcontext_addr handler or pc_in_sigtramp handler. */
08106042 976 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
345bd07c 977 if (tdep->sigcontext_addr == NULL)
6834c9bb 978 return 0;
345bd07c
SM
979
980 if (tdep->pc_in_sigtramp == NULL)
6834c9bb 981 return 0;
c906108c 982
d2427a71
RH
983 /* Otherwise we should be in a signal frame. */
984 find_pc_partial_function (pc, &name, NULL, NULL);
345bd07c 985 if (tdep->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 986 return 1;
c906108c 987
6834c9bb 988 return 0;
c906108c 989}
6834c9bb 990
1239e7cf 991static const struct frame_unwind_legacy alpha_sigtramp_frame_unwind (
a154d838 992 "alpha sigtramp",
6834c9bb 993 SIGTRAMP_FRAME,
ce36ef63 994 FRAME_UNWIND_ARCH,
8fbca658 995 default_frame_unwind_stop_reason,
6834c9bb
JB
996 alpha_sigtramp_frame_this_id,
997 alpha_sigtramp_frame_prev_register,
998 NULL,
999 alpha_sigtramp_frame_sniffer
1239e7cf 1000);
6834c9bb 1001
d2427a71 1002\f
c906108c 1003
d2427a71
RH
1004/* Heuristic_proc_start may hunt through the text section for a long
1005 time across a 2400 baud serial line. Allows the user to limit this
1006 search. */
44096aee 1007static int heuristic_fence_post = 0;
c906108c 1008
d2427a71
RH
1009/* Attempt to locate the start of the function containing PC. We assume that
1010 the previous function ends with an about_to_return insn. Not foolproof by
1011 any means, since gcc is happy to put the epilogue in the middle of a
1012 function. But we're guessing anyway... */
c906108c 1013
d2427a71 1014static CORE_ADDR
be8626e0 1015alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 1016{
08106042 1017 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
d2427a71
RH
1018 CORE_ADDR last_non_nop = pc;
1019 CORE_ADDR fence = pc - heuristic_fence_post;
1020 CORE_ADDR orig_pc = pc;
fbe586ae 1021 CORE_ADDR func;
d6b48e9c 1022 struct inferior *inf;
9e0b60a8 1023
d2427a71
RH
1024 if (pc == 0)
1025 return 0;
9e0b60a8 1026
fbe586ae
RH
1027 /* First see if we can find the start of the function from minimal
1028 symbol information. This can succeed with a binary that doesn't
1029 have debug info, but hasn't been stripped. */
1030 func = get_pc_function_start (pc);
1031 if (func)
1032 return func;
1033
44096aee 1034 if (heuristic_fence_post == -1
d2427a71
RH
1035 || fence < tdep->vm_min_address)
1036 fence = tdep->vm_min_address;
c906108c 1037
d2427a71
RH
1038 /* Search back for previous return; also stop at a 0, which might be
1039 seen for instance before the start of a code section. Don't include
1040 nops, since this usually indicates padding between functions. */
e8d2d628 1041 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 1042 {
e17a4113 1043 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 1044 switch (insn)
c906108c 1045 {
d2427a71
RH
1046 case 0: /* invalid insn */
1047 case 0x6bfa8001: /* ret $31,($26),1 */
1048 return last_non_nop;
1049
1050 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1051 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1052 break;
1053
1054 default:
1055 last_non_nop = pc;
1056 break;
c906108c 1057 }
d2427a71 1058 }
c906108c 1059
d6b48e9c
PA
1060 inf = current_inferior ();
1061
d2427a71
RH
1062 /* It's not clear to me why we reach this point when stopping quietly,
1063 but with this test, at least we don't print out warnings for every
1064 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1065 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1066 {
1067 static int blurb_printed = 0;
c906108c 1068
d2427a71 1069 if (fence == tdep->vm_min_address)
323e0a4a 1070 warning (_("Hit beginning of text section without finding \
5af949e3 1071enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1072 else
323e0a4a 1073 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1074enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1075
d2427a71
RH
1076 if (!blurb_printed)
1077 {
6cb06a8c 1078 gdb_printf (_("\
d2427a71
RH
1079This warning occurs if you are debugging a function without any symbols\n\
1080(for example, in a stripped executable). In that case, you may wish to\n\
1081increase the size of the search with the `set heuristic-fence-post' command.\n\
1082\n\
1083Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1084(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1085 blurb_printed = 1;
1086 }
1087 }
c906108c 1088
d2427a71
RH
1089 return 0;
1090}
c906108c 1091
07ea644b
MD
1092/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1093 something about the traditional layout of alpha stack frames. */
1094
1095struct alpha_heuristic_unwind_cache
1096{
1097 CORE_ADDR vfp;
1098 CORE_ADDR start_pc;
098caef4 1099 trad_frame_saved_reg *saved_regs;
07ea644b
MD
1100 int return_reg;
1101};
1102
3a48e6ff
JG
1103/* If a probing loop sequence starts at PC, simulate it and compute
1104 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1105 FRAME_SIZE unchanged. */
1106
1107static void
1108alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1109 int *frame_size)
1110{
1111 CORE_ADDR cur_pc = *pc;
1112 int cur_frame_size = *frame_size;
1113 int nb_of_iterations, reg_index, reg_probe;
1114 unsigned int insn;
1115
1116 /* The following pattern is recognized as a probing loop:
1117
dda83cd7
SM
1118 lda REG_INDEX,NB_OF_ITERATIONS
1119 lda REG_PROBE,<immediate>(sp)
3a48e6ff
JG
1120
1121 LOOP_START:
dda83cd7
SM
1122 stq zero,<immediate>(REG_PROBE)
1123 subq REG_INDEX,0x1,REG_INDEX
1124 lda REG_PROBE,<immediate>(REG_PROBE)
1125 bne REG_INDEX, LOOP_START
3a48e6ff 1126
dda83cd7 1127 lda sp,<immediate>(REG_PROBE)
3a48e6ff
JG
1128
1129 If anything different is found, the function returns without
1130 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1131 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1132
1133 /* lda REG_INDEX,NB_OF_ITERATIONS */
1134
1135 insn = alpha_read_insn (gdbarch, cur_pc);
1136 if (INSN_OPCODE (insn) != lda_opcode)
1137 return;
1138 reg_index = MEM_RA (insn);
1139 nb_of_iterations = MEM_DISP (insn);
1140
1141 /* lda REG_PROBE,<immediate>(sp) */
1142
1143 cur_pc += ALPHA_INSN_SIZE;
1144 insn = alpha_read_insn (gdbarch, cur_pc);
1145 if (INSN_OPCODE (insn) != lda_opcode
1146 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1147 return;
1148 reg_probe = MEM_RA (insn);
1149 cur_frame_size -= MEM_DISP (insn);
1150
1151 /* stq zero,<immediate>(REG_PROBE) */
1152
1153 cur_pc += ALPHA_INSN_SIZE;
1154 insn = alpha_read_insn (gdbarch, cur_pc);
1155 if (INSN_OPCODE (insn) != stq_opcode
1156 || MEM_RA (insn) != 0x1f
1157 || MEM_RB (insn) != reg_probe)
1158 return;
1159
1160 /* subq REG_INDEX,0x1,REG_INDEX */
1161
1162 cur_pc += ALPHA_INSN_SIZE;
1163 insn = alpha_read_insn (gdbarch, cur_pc);
1164 if (INSN_OPCODE (insn) != subq_opcode
1165 || !OPR_HAS_IMMEDIATE (insn)
1166 || OPR_FUNCTION (insn) != subq_function
1167 || OPR_LIT(insn) != 1
1168 || OPR_RA (insn) != reg_index
1169 || OPR_RC (insn) != reg_index)
1170 return;
1171
1172 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1173
1174 cur_pc += ALPHA_INSN_SIZE;
1175 insn = alpha_read_insn (gdbarch, cur_pc);
1176 if (INSN_OPCODE (insn) != lda_opcode
1177 || MEM_RA (insn) != reg_probe
1178 || MEM_RB (insn) != reg_probe)
1179 return;
1180 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1181
1182 /* bne REG_INDEX, LOOP_START */
1183
1184 cur_pc += ALPHA_INSN_SIZE;
1185 insn = alpha_read_insn (gdbarch, cur_pc);
1186 if (INSN_OPCODE (insn) != bne_opcode
1187 || MEM_RA (insn) != reg_index)
1188 return;
1189
1190 /* lda sp,<immediate>(REG_PROBE) */
1191
1192 cur_pc += ALPHA_INSN_SIZE;
1193 insn = alpha_read_insn (gdbarch, cur_pc);
1194 if (INSN_OPCODE (insn) != lda_opcode
1195 || MEM_RA (insn) != ALPHA_SP_REGNUM
1196 || MEM_RB (insn) != reg_probe)
1197 return;
1198 cur_frame_size -= MEM_DISP (insn);
1199
1200 *pc = cur_pc;
1201 *frame_size = cur_frame_size;
1202}
1203
fbe586ae 1204static struct alpha_heuristic_unwind_cache *
8480a37e 1205alpha_heuristic_frame_unwind_cache (const frame_info_ptr &this_frame,
d2427a71
RH
1206 void **this_prologue_cache,
1207 CORE_ADDR start_pc)
1208{
6834c9bb 1209 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1210 struct alpha_heuristic_unwind_cache *info;
1211 ULONGEST val;
1212 CORE_ADDR limit_pc, cur_pc;
1213 int frame_reg, frame_size, return_reg, reg;
c906108c 1214
d2427a71 1215 if (*this_prologue_cache)
9a3c8263 1216 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
c906108c 1217
d2427a71
RH
1218 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1219 *this_prologue_cache = info;
6834c9bb 1220 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1221
6834c9bb 1222 limit_pc = get_frame_pc (this_frame);
d2427a71 1223 if (start_pc == 0)
be8626e0 1224 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1225 info->start_pc = start_pc;
c906108c 1226
d2427a71
RH
1227 frame_reg = ALPHA_SP_REGNUM;
1228 frame_size = 0;
1229 return_reg = -1;
c906108c 1230
d2427a71
RH
1231 /* If we've identified a likely place to start, do code scanning. */
1232 if (start_pc != 0)
c5aa993b 1233 {
d2427a71
RH
1234 /* Limit the forward search to 50 instructions. */
1235 if (start_pc + 200 < limit_pc)
1236 limit_pc = start_pc + 200;
c5aa993b 1237
e8d2d628 1238 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1239 {
e17a4113 1240 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1241
d2427a71
RH
1242 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1243 {
1244 if (word & 0x8000)
1245 {
1246 /* Consider only the first stack allocation instruction
0963b4bd 1247 to contain the static size of the frame. */
d2427a71
RH
1248 if (frame_size == 0)
1249 frame_size = (-word) & 0xffff;
1250 }
1251 else
1252 {
1253 /* Exit loop if a positive stack adjustment is found, which
1254 usually means that the stack cleanup code in the function
1255 epilogue is reached. */
1256 break;
1257 }
1258 }
1259 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1260 {
1261 reg = (word & 0x03e00000) >> 21;
1262
dda83cd7
SM
1263 /* Ignore this instruction if we have already encountered
1264 an instruction saving the same register earlier in the
1265 function code. The current instruction does not tell
1266 us where the original value upon function entry is saved.
1267 All it says is that the function we are scanning reused
1268 that register for some computation of its own, and is now
1269 saving its result. */
a9a87d35 1270 if (info->saved_regs[reg].is_addr ())
dda83cd7 1271 continue;
d15bfd3a 1272
d2427a71
RH
1273 if (reg == 31)
1274 continue;
1275
1276 /* Do not compute the address where the register was saved yet,
1277 because we don't know yet if the offset will need to be
1278 relative to $sp or $fp (we can not compute the address
1279 relative to $sp if $sp is updated during the execution of
1280 the current subroutine, for instance when doing some alloca).
1281 So just store the offset for the moment, and compute the
1282 address later when we know whether this frame has a frame
1283 pointer or not. */
1284 /* Hack: temporarily add one, so that the offset is non-zero
1285 and we can tell which registers have save offsets below. */
098caef4 1286 info->saved_regs[reg].set_addr ((word & 0xffff) + 1);
d2427a71
RH
1287
1288 /* Starting with OSF/1-3.2C, the system libraries are shipped
1289 without local symbols, but they still contain procedure
1290 descriptors without a symbol reference. GDB is currently
1291 unable to find these procedure descriptors and uses
1292 heuristic_proc_desc instead.
1293 As some low level compiler support routines (__div*, __add*)
1294 use a non-standard return address register, we have to
1295 add some heuristics to determine the return address register,
1296 or stepping over these routines will fail.
1297 Usually the return address register is the first register
1298 saved on the stack, but assembler optimization might
1299 rearrange the register saves.
1300 So we recognize only a few registers (t7, t9, ra) within
1301 the procedure prologue as valid return address registers.
1302 If we encounter a return instruction, we extract the
7a9dd1b2 1303 return address register from it.
d2427a71
RH
1304
1305 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1306 e.g. via the minimal symbol table, might obviate this
1307 hack. */
d2427a71
RH
1308 if (return_reg == -1
1309 && cur_pc < (start_pc + 80)
1310 && (reg == ALPHA_T7_REGNUM
1311 || reg == ALPHA_T9_REGNUM
1312 || reg == ALPHA_RA_REGNUM))
1313 return_reg = reg;
1314 }
1315 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1316 return_reg = (word >> 16) & 0x1f;
1317 else if (word == 0x47de040f) /* bis sp,sp,fp */
1318 frame_reg = ALPHA_GCC_FP_REGNUM;
1319 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1320 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1321
1322 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1323 }
c5aa993b 1324
d2427a71
RH
1325 /* If we haven't found a valid return address register yet, keep
1326 searching in the procedure prologue. */
1327 if (return_reg == -1)
1328 {
1329 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1330 {
e17a4113 1331 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1332
d2427a71
RH
1333 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1334 {
1335 reg = (word & 0x03e00000) >> 21;
1336 if (reg == ALPHA_T7_REGNUM
1337 || reg == ALPHA_T9_REGNUM
1338 || reg == ALPHA_RA_REGNUM)
1339 {
1340 return_reg = reg;
1341 break;
1342 }
1343 }
1344 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1345 {
1346 return_reg = (word >> 16) & 0x1f;
1347 break;
1348 }
85b32d22 1349
e8d2d628 1350 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1351 }
1352 }
c906108c 1353 }
c906108c 1354
d2427a71
RH
1355 /* Failing that, do default to the customary RA. */
1356 if (return_reg == -1)
1357 return_reg = ALPHA_RA_REGNUM;
1358 info->return_reg = return_reg;
f8453e34 1359
6834c9bb 1360 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1361 info->vfp = val + frame_size;
c906108c 1362
d2427a71
RH
1363 /* Convert offsets to absolute addresses. See above about adding
1364 one to the offsets to make all detected offsets non-zero. */
1365 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
a9a87d35 1366 if (info->saved_regs[reg].is_addr ())
098caef4
LM
1367 info->saved_regs[reg].set_addr (info->saved_regs[reg].addr ()
1368 + val - 1);
d2427a71 1369
bfd66dd9
JB
1370 /* The stack pointer of the previous frame is computed by popping
1371 the current stack frame. */
a9a87d35
LM
1372 if (!info->saved_regs[ALPHA_SP_REGNUM].is_addr ())
1373 info->saved_regs[ALPHA_SP_REGNUM].set_value (info->vfp);
bfd66dd9 1374
d2427a71 1375 return info;
c906108c 1376}
c906108c 1377
d2427a71
RH
1378/* Given a GDB frame, determine the address of the calling function's
1379 frame. This will be used to create a new GDB frame struct. */
1380
fbe586ae 1381static void
8480a37e 1382alpha_heuristic_frame_this_id (const frame_info_ptr &this_frame,
6834c9bb
JB
1383 void **this_prologue_cache,
1384 struct frame_id *this_id)
c906108c 1385{
d2427a71 1386 struct alpha_heuristic_unwind_cache *info
6834c9bb 1387 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1388
d2427a71 1389 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1390}
1391
d2427a71
RH
1392/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1393
6834c9bb 1394static struct value *
8480a37e 1395alpha_heuristic_frame_prev_register (const frame_info_ptr &this_frame,
6834c9bb 1396 void **this_prologue_cache, int regnum)
c906108c 1397{
d2427a71 1398 struct alpha_heuristic_unwind_cache *info
6834c9bb 1399 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1400
1401 /* The PC of the previous frame is stored in the link register of
1402 the current frame. Frob regnum so that we pull the value from
1403 the correct place. */
1404 if (regnum == ALPHA_PC_REGNUM)
1405 regnum = info->return_reg;
1406
6834c9bb 1407 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1408}
1409
1239e7cf 1410static const struct frame_unwind_legacy alpha_heuristic_frame_unwind (
a154d838 1411 "alpha prologue",
d2427a71 1412 NORMAL_FRAME,
ce36ef63 1413 FRAME_UNWIND_ARCH,
8fbca658 1414 default_frame_unwind_stop_reason,
d2427a71 1415 alpha_heuristic_frame_this_id,
6834c9bb
JB
1416 alpha_heuristic_frame_prev_register,
1417 NULL,
1418 default_frame_sniffer
1239e7cf 1419);
c906108c 1420
fbe586ae 1421static CORE_ADDR
8480a37e 1422alpha_heuristic_frame_base_address (const frame_info_ptr &this_frame,
d2427a71 1423 void **this_prologue_cache)
c906108c 1424{
d2427a71 1425 struct alpha_heuristic_unwind_cache *info
6834c9bb 1426 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1427
d2427a71 1428 return info->vfp;
c906108c
SS
1429}
1430
d2427a71
RH
1431static const struct frame_base alpha_heuristic_frame_base = {
1432 &alpha_heuristic_frame_unwind,
1433 alpha_heuristic_frame_base_address,
1434 alpha_heuristic_frame_base_address,
1435 alpha_heuristic_frame_base_address
1436};
1437
c906108c 1438/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1439 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1440
1441static void
eb4c3f4a
TT
1442reinit_frame_cache_sfunc (const char *args,
1443 int from_tty, struct cmd_list_element *c)
c906108c
SS
1444{
1445 reinit_frame_cache ();
1446}
98a8e1e5
RH
1447\f
1448/* Helper routines for alpha*-nat.c files to move register sets to and
1449 from core files. The UNIQUE pointer is allowed to be NULL, as most
1450 targets don't supply this value in their core files. */
1451
1452void
390c1522
UW
1453alpha_supply_int_regs (struct regcache *regcache, int regno,
1454 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1455{
9a3c8263 1456 const gdb_byte *regs = (const gdb_byte *) r0_r30;
98a8e1e5
RH
1457 int i;
1458
1459 for (i = 0; i < 31; ++i)
1460 if (regno == i || regno == -1)
73e1c03f 1461 regcache->raw_supply (i, regs + i * 8);
98a8e1e5
RH
1462
1463 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
221d3ac9 1464 regcache->raw_supply_zeroed (ALPHA_ZERO_REGNUM);
98a8e1e5
RH
1465
1466 if (regno == ALPHA_PC_REGNUM || regno == -1)
73e1c03f 1467 regcache->raw_supply (ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1468
1469 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
73e1c03f 1470 regcache->raw_supply (ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1471}
1472
1473void
390c1522
UW
1474alpha_fill_int_regs (const struct regcache *regcache,
1475 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1476{
9a3c8263 1477 gdb_byte *regs = (gdb_byte *) r0_r30;
98a8e1e5
RH
1478 int i;
1479
1480 for (i = 0; i < 31; ++i)
1481 if (regno == i || regno == -1)
34a79281 1482 regcache->raw_collect (i, regs + i * 8);
98a8e1e5
RH
1483
1484 if (regno == ALPHA_PC_REGNUM || regno == -1)
34a79281 1485 regcache->raw_collect (ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1486
1487 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
34a79281 1488 regcache->raw_collect (ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1489}
1490
1491void
390c1522
UW
1492alpha_supply_fp_regs (struct regcache *regcache, int regno,
1493 const void *f0_f30, const void *fpcr)
98a8e1e5 1494{
9a3c8263 1495 const gdb_byte *regs = (const gdb_byte *) f0_f30;
98a8e1e5
RH
1496 int i;
1497
1498 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1499 if (regno == i || regno == -1)
73e1c03f 1500 regcache->raw_supply (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1501
1502 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
73e1c03f 1503 regcache->raw_supply (ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1504}
1505
1506void
390c1522
UW
1507alpha_fill_fp_regs (const struct regcache *regcache,
1508 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1509{
9a3c8263 1510 gdb_byte *regs = (gdb_byte *) f0_f30;
98a8e1e5
RH
1511 int i;
1512
1513 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1514 if (regno == i || regno == -1)
34a79281 1515 regcache->raw_collect (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1516
1517 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
34a79281 1518 regcache->raw_collect (ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1519}
1520
d2427a71 1521\f
0de94d4b
JB
1522
1523/* Return nonzero if the G_floating register value in REG is equal to
1524 zero for FP control instructions. */
1525
1526static int
1527fp_register_zero_p (LONGEST reg)
1528{
1529 /* Check that all bits except the sign bit are zero. */
1530 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1531
1532 return ((reg & zero_mask) == 0);
1533}
1534
1535/* Return the value of the sign bit for the G_floating register
1536 value held in REG. */
1537
1538static int
1539fp_register_sign_bit (LONGEST reg)
1540{
1541 const LONGEST sign_mask = (LONGEST) 1 << 63;
1542
1543 return ((reg & sign_mask) != 0);
1544}
1545
ec32e4be
JT
1546/* alpha_software_single_step() is called just before we want to resume
1547 the inferior, if we want to single-step it but there is no hardware
1548 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1549 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1550
1551static CORE_ADDR
7ab2d087 1552alpha_next_pc (struct regcache *regcache, CORE_ADDR pc)
ec32e4be 1553{
ac7936df 1554 struct gdbarch *gdbarch = regcache->arch ();
ec32e4be
JT
1555 unsigned int insn;
1556 unsigned int op;
551e4f2e 1557 int regno;
ec32e4be
JT
1558 int offset;
1559 LONGEST rav;
1560
e17a4113 1561 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1562
0963b4bd 1563 /* Opcode is top 6 bits. */
ec32e4be
JT
1564 op = (insn >> 26) & 0x3f;
1565
1566 if (op == 0x1a)
1567 {
1568 /* Jump format: target PC is:
1569 RB & ~3 */
7ab2d087 1570 return (regcache_raw_get_unsigned (regcache, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1571 }
1572
1573 if ((op & 0x30) == 0x30)
1574 {
1575 /* Branch format: target PC is:
1576 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1577 if (op == 0x30 /* BR */
1578 || op == 0x34) /* BSR */
ec32e4be
JT
1579 {
1580 branch_taken:
dda83cd7 1581 offset = (insn & 0x001fffff);
ec32e4be
JT
1582 if (offset & 0x00100000)
1583 offset |= 0xffe00000;
e8d2d628
MK
1584 offset *= ALPHA_INSN_SIZE;
1585 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1586 }
1587
1588 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1589 regno = (insn >> 21) & 0x1f;
1590 switch (op)
dda83cd7
SM
1591 {
1592 case 0x31: /* FBEQ */
1593 case 0x36: /* FBGE */
1594 case 0x37: /* FBGT */
1595 case 0x33: /* FBLE */
1596 case 0x32: /* FBLT */
1597 case 0x35: /* FBNE */
1598 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1599 }
1600
7ab2d087 1601 rav = regcache_raw_get_signed (regcache, regno);
0de94d4b 1602
ec32e4be
JT
1603 switch (op)
1604 {
1605 case 0x38: /* BLBC */
1606 if ((rav & 1) == 0)
1607 goto branch_taken;
1608 break;
1609 case 0x3c: /* BLBS */
1610 if (rav & 1)
1611 goto branch_taken;
1612 break;
1613 case 0x39: /* BEQ */
1614 if (rav == 0)
1615 goto branch_taken;
1616 break;
1617 case 0x3d: /* BNE */
1618 if (rav != 0)
1619 goto branch_taken;
1620 break;
1621 case 0x3a: /* BLT */
1622 if (rav < 0)
1623 goto branch_taken;
1624 break;
1625 case 0x3b: /* BLE */
1626 if (rav <= 0)
1627 goto branch_taken;
1628 break;
1629 case 0x3f: /* BGT */
1630 if (rav > 0)
1631 goto branch_taken;
1632 break;
1633 case 0x3e: /* BGE */
1634 if (rav >= 0)
1635 goto branch_taken;
1636 break;
d2427a71 1637
dda83cd7
SM
1638 /* Floating point branches. */
1639
1640 case 0x31: /* FBEQ */
1641 if (fp_register_zero_p (rav))
1642 goto branch_taken;
1643 break;
1644 case 0x36: /* FBGE */
1645 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1646 goto branch_taken;
1647 break;
1648 case 0x37: /* FBGT */
1649 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1650 goto branch_taken;
1651 break;
1652 case 0x33: /* FBLE */
1653 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1654 goto branch_taken;
1655 break;
1656 case 0x32: /* FBLT */
1657 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1658 goto branch_taken;
1659 break;
1660 case 0x35: /* FBNE */
1661 if (! fp_register_zero_p (rav))
1662 goto branch_taken;
1663 break;
ec32e4be
JT
1664 }
1665 }
1666
1667 /* Not a branch or branch not taken; target PC is:
1668 pc + 4 */
e8d2d628 1669 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1670}
1671
a0ff9e1a 1672std::vector<CORE_ADDR>
f5ea389a 1673alpha_software_single_step (struct regcache *regcache)
ec32e4be 1674{
68f81d60
RH
1675 struct gdbarch *gdbarch = regcache->arch ();
1676
1677 CORE_ADDR pc = regcache_read_pc (regcache);
1678
1679 std::vector<CORE_ADDR> next_pcs
1680 = alpha_deal_with_atomic_sequence (gdbarch, pc);
1681 if (!next_pcs.empty ())
1682 return next_pcs;
ec32e4be 1683
68f81d60
RH
1684 CORE_ADDR next_pc = alpha_next_pc (regcache, pc);
1685 return {next_pc};
c906108c
SS
1686}
1687
dc129d82 1688\f
973c5759 1689/* Initialize the current architecture based on INFO. If possible, reuse an
dc129d82
JT
1690 architecture from ARCHES, which is a list of architectures already created
1691 during this debugging session.
1692
1693 Called e.g. at program startup, when reading a core file, and when reading
1694 a binary file. */
1695
1696static struct gdbarch *
1697alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1698{
fb2b6256
YE
1699 tdesc_arch_data_up tdesc_data;
1700 const struct target_desc *tdesc = info.target_desc;
1701
dc129d82 1702 /* Find a candidate among extant architectures. */
4be87837
DJ
1703 arches = gdbarch_list_lookup_by_info (arches, &info);
1704 if (arches != NULL)
1705 return arches->gdbarch;
dc129d82 1706
fb2b6256
YE
1707 if (tdesc == nullptr)
1708 tdesc = tdesc_alpha;
1709
1710 /* Validate target description. */
1711 if (tdesc_has_registers (tdesc))
1712 {
1713 const struct tdesc_feature *feature;
1714 bool valid_p;
1715
1716 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.alpha.core");
1717 if (feature == nullptr)
1718 return nullptr;
1719
1720 tdesc_data = tdesc_data_alloc ();
1721 valid_p = true;
1722 for (int i = 0; i < ALPHA_NUM_REGS; ++i)
1723 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
1724 alpha_register_names[i]);
1725
1726 if (!valid_p)
1727 return nullptr;
1728 }
1729
1730 gdb_assert (tdesc_data != nullptr);
1731
2b16913c
SM
1732 gdbarch *gdbarch
1733 = gdbarch_alloc (&info, gdbarch_tdep_up (new alpha_gdbarch_tdep));
1734 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
dc129d82 1735
d2427a71
RH
1736 /* Lowest text address. This is used by heuristic_proc_start()
1737 to decide when to stop looking. */
594706e6 1738 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1739
36a6271d 1740 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1741 tdep->sigcontext_addr = NULL;
138e7be5
MK
1742 tdep->sc_pc_offset = 2 * 8;
1743 tdep->sc_regs_offset = 4 * 8;
1744 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1745
0963b4bd 1746 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1747
9823e921
RH
1748 tdep->return_in_memory = alpha_return_in_memory_always;
1749
dc129d82
JT
1750 /* Type sizes */
1751 set_gdbarch_short_bit (gdbarch, 16);
1752 set_gdbarch_int_bit (gdbarch, 32);
1753 set_gdbarch_long_bit (gdbarch, 64);
1754 set_gdbarch_long_long_bit (gdbarch, 64);
53375380
PA
1755 set_gdbarch_wchar_bit (gdbarch, 64);
1756 set_gdbarch_wchar_signed (gdbarch, 0);
dc129d82
JT
1757 set_gdbarch_float_bit (gdbarch, 32);
1758 set_gdbarch_double_bit (gdbarch, 64);
1759 set_gdbarch_long_double_bit (gdbarch, 64);
1760 set_gdbarch_ptr_bit (gdbarch, 64);
1761
1762 /* Register info */
1763 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1764 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1765 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1766 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1767
fb2b6256 1768 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
dc129d82
JT
1769
1770 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1771 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1772
c483c494
RH
1773 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1774 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1775 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1776
615967cb
RH
1777 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1778
d2427a71 1779 /* Prologue heuristics. */
dc129d82
JT
1780 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1781
d2427a71 1782 /* Call info. */
dc129d82 1783
9823e921 1784 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1785
1786 /* Settings for calling functions in the inferior. */
c88e30c0 1787 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71 1788
dc129d82 1789 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1790 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1791
04180708
YQ
1792 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1793 alpha_breakpoint::kind_from_pc);
1794 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1795 alpha_breakpoint::bp_from_kind);
e8d2d628 1796 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1797 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1798
46ad3598 1799 /* Handles single stepping of atomic sequences. */
68f81d60 1800 set_gdbarch_software_single_step (gdbarch, alpha_software_single_step);
46ad3598 1801
44dffaac 1802 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1803 gdbarch_init_osabi (info, gdbarch);
44dffaac 1804
accc6d1f
JT
1805 /* Now that we have tuned the configuration, set a few final things
1806 based on what the OS ABI has told us. */
1807
1808 if (tdep->jb_pc >= 0)
1809 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1810
6834c9bb
JB
1811 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1812 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1813
d2427a71 1814 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1815
d2427a71 1816 return gdbarch;
dc129d82
JT
1817}
1818
baa490c4
RH
1819void
1820alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1821{
6834c9bb 1822 dwarf2_append_unwinders (gdbarch);
336d1bba 1823 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1824}
1825
5fe70629 1826INIT_GDB_FILE (alpha_tdep)
c906108c 1827{
c906108c 1828
d2427a71 1829 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c 1830
fb2b6256 1831 initialize_tdesc_alpha ();
01d8dc11 1832
c906108c
SS
1833 /* Let the user set the fence post for heuristic_proc_start. */
1834
1835 /* We really would like to have both "0" and "unlimited" work, but
1836 command.c doesn't deal with that. So make it a var_zinteger
1837 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1838 /* We need to throw away the frame cache when we set this, since it
1839 might change our ability to get backtraces. */
1840 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1841 &heuristic_fence_post, _("\
1842Set the distance searched for the start of a function."), _("\
1843Show the distance searched for the start of a function."), _("\
c906108c
SS
1844If you are debugging a stripped executable, GDB needs to search through the\n\
1845program for the start of a function. This command sets the distance of the\n\
323e0a4a 1846search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1847 reinit_frame_cache_sfunc,
0963b4bd
MS
1848 NULL, /* FIXME: i18n: The distance searched for
1849 the start of a function is \"%d\". */
edefbb7c 1850 &setlist, &showlist);
c906108c 1851}