]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
mnt_set_expiry() doesn't need vfsmount_lock
[people/ms/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8 19#include <linux/acct.h> /* acct_auto_close_mnt */
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
07b20889 26#include "pnode.h"
948730b0 27#include "internal.h"
1da177e4 28
13f14b4d
ED
29#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30#define HASH_SIZE (1UL << HASH_SHIFT)
31
5addc5dd 32static int event;
73cd49ec 33static DEFINE_IDA(mnt_id_ida);
719f5d7f 34static DEFINE_IDA(mnt_group_ida);
99b7db7b 35static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
36static int mnt_id_start = 0;
37static int mnt_group_start = 1;
1da177e4 38
fa3536cc 39static struct list_head *mount_hashtable __read_mostly;
84d17192 40static struct list_head *mountpoint_hashtable __read_mostly;
e18b890b 41static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 42static DECLARE_RWSEM(namespace_sem);
1da177e4 43
f87fd4c2 44/* /sys/fs */
00d26666
GKH
45struct kobject *fs_kobj;
46EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 47
99b7db7b
NP
48/*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56DEFINE_BRLOCK(vfsmount_lock);
57
1da177e4
LT
58static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59{
b58fed8b
RP
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
1da177e4
LT
64}
65
99b7db7b
NP
66/*
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
69 */
b105e270 70static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
71{
72 int res;
73
74retry:
75 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 76 spin_lock(&mnt_id_lock);
15169fe7 77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 78 if (!res)
15169fe7 79 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 80 spin_unlock(&mnt_id_lock);
73cd49ec
MS
81 if (res == -EAGAIN)
82 goto retry;
83
84 return res;
85}
86
b105e270 87static void mnt_free_id(struct mount *mnt)
73cd49ec 88{
15169fe7 89 int id = mnt->mnt_id;
99b7db7b 90 spin_lock(&mnt_id_lock);
f21f6220
AV
91 ida_remove(&mnt_id_ida, id);
92 if (mnt_id_start > id)
93 mnt_id_start = id;
99b7db7b 94 spin_unlock(&mnt_id_lock);
73cd49ec
MS
95}
96
719f5d7f
MS
97/*
98 * Allocate a new peer group ID
99 *
100 * mnt_group_ida is protected by namespace_sem
101 */
4b8b21f4 102static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 103{
f21f6220
AV
104 int res;
105
719f5d7f
MS
106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 return -ENOMEM;
108
f21f6220
AV
109 res = ida_get_new_above(&mnt_group_ida,
110 mnt_group_start,
15169fe7 111 &mnt->mnt_group_id);
f21f6220 112 if (!res)
15169fe7 113 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
114
115 return res;
719f5d7f
MS
116}
117
118/*
119 * Release a peer group ID
120 */
4b8b21f4 121void mnt_release_group_id(struct mount *mnt)
719f5d7f 122{
15169fe7 123 int id = mnt->mnt_group_id;
f21f6220
AV
124 ida_remove(&mnt_group_ida, id);
125 if (mnt_group_start > id)
126 mnt_group_start = id;
15169fe7 127 mnt->mnt_group_id = 0;
719f5d7f
MS
128}
129
b3e19d92
NP
130/*
131 * vfsmount lock must be held for read
132 */
83adc753 133static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
134{
135#ifdef CONFIG_SMP
68e8a9fe 136 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
137#else
138 preempt_disable();
68e8a9fe 139 mnt->mnt_count += n;
b3e19d92
NP
140 preempt_enable();
141#endif
142}
143
b3e19d92
NP
144/*
145 * vfsmount lock must be held for write
146 */
83adc753 147unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
148{
149#ifdef CONFIG_SMP
f03c6599 150 unsigned int count = 0;
b3e19d92
NP
151 int cpu;
152
153 for_each_possible_cpu(cpu) {
68e8a9fe 154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
155 }
156
157 return count;
158#else
68e8a9fe 159 return mnt->mnt_count;
b3e19d92
NP
160#endif
161}
162
b105e270 163static struct mount *alloc_vfsmnt(const char *name)
1da177e4 164{
c63181e6
AV
165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 if (mnt) {
73cd49ec
MS
167 int err;
168
c63181e6 169 err = mnt_alloc_id(mnt);
88b38782
LZ
170 if (err)
171 goto out_free_cache;
172
173 if (name) {
c63181e6
AV
174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 if (!mnt->mnt_devname)
88b38782 176 goto out_free_id;
73cd49ec
MS
177 }
178
b3e19d92 179#ifdef CONFIG_SMP
c63181e6
AV
180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 if (!mnt->mnt_pcp)
b3e19d92
NP
182 goto out_free_devname;
183
c63181e6 184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 185#else
c63181e6
AV
186 mnt->mnt_count = 1;
187 mnt->mnt_writers = 0;
b3e19d92
NP
188#endif
189
c63181e6
AV
190 INIT_LIST_HEAD(&mnt->mnt_hash);
191 INIT_LIST_HEAD(&mnt->mnt_child);
192 INIT_LIST_HEAD(&mnt->mnt_mounts);
193 INIT_LIST_HEAD(&mnt->mnt_list);
194 INIT_LIST_HEAD(&mnt->mnt_expire);
195 INIT_LIST_HEAD(&mnt->mnt_share);
196 INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
198#ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 200#endif
1da177e4 201 }
c63181e6 202 return mnt;
88b38782 203
d3ef3d73
NP
204#ifdef CONFIG_SMP
205out_free_devname:
c63181e6 206 kfree(mnt->mnt_devname);
d3ef3d73 207#endif
88b38782 208out_free_id:
c63181e6 209 mnt_free_id(mnt);
88b38782 210out_free_cache:
c63181e6 211 kmem_cache_free(mnt_cache, mnt);
88b38782 212 return NULL;
1da177e4
LT
213}
214
3d733633
DH
215/*
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
221 * a filesystem.
222 */
223/*
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
226 *
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
232 * r/w.
233 */
234int __mnt_is_readonly(struct vfsmount *mnt)
235{
2e4b7fcd
DH
236 if (mnt->mnt_flags & MNT_READONLY)
237 return 1;
238 if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 return 1;
240 return 0;
3d733633
DH
241}
242EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243
83adc753 244static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
245{
246#ifdef CONFIG_SMP
68e8a9fe 247 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 248#else
68e8a9fe 249 mnt->mnt_writers++;
d3ef3d73
NP
250#endif
251}
3d733633 252
83adc753 253static inline void mnt_dec_writers(struct mount *mnt)
3d733633 254{
d3ef3d73 255#ifdef CONFIG_SMP
68e8a9fe 256 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 257#else
68e8a9fe 258 mnt->mnt_writers--;
d3ef3d73 259#endif
3d733633 260}
3d733633 261
83adc753 262static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 263{
d3ef3d73
NP
264#ifdef CONFIG_SMP
265 unsigned int count = 0;
3d733633 266 int cpu;
3d733633
DH
267
268 for_each_possible_cpu(cpu) {
68e8a9fe 269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 270 }
3d733633 271
d3ef3d73
NP
272 return count;
273#else
274 return mnt->mnt_writers;
275#endif
3d733633
DH
276}
277
4ed5e82f
MS
278static int mnt_is_readonly(struct vfsmount *mnt)
279{
280 if (mnt->mnt_sb->s_readonly_remount)
281 return 1;
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 smp_rmb();
284 return __mnt_is_readonly(mnt);
285}
286
8366025e 287/*
eb04c282
JK
288 * Most r/o & frozen checks on a fs are for operations that take discrete
289 * amounts of time, like a write() or unlink(). We must keep track of when
290 * those operations start (for permission checks) and when they end, so that we
291 * can determine when writes are able to occur to a filesystem.
8366025e
DH
292 */
293/**
eb04c282 294 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 295 * @m: the mount on which to take a write
8366025e 296 *
eb04c282
JK
297 * This tells the low-level filesystem that a write is about to be performed to
298 * it, and makes sure that writes are allowed (mnt it read-write) before
299 * returning success. This operation does not protect against filesystem being
300 * frozen. When the write operation is finished, __mnt_drop_write() must be
301 * called. This is effectively a refcount.
8366025e 302 */
eb04c282 303int __mnt_want_write(struct vfsmount *m)
8366025e 304{
83adc753 305 struct mount *mnt = real_mount(m);
3d733633 306 int ret = 0;
3d733633 307
d3ef3d73 308 preempt_disable();
c6653a83 309 mnt_inc_writers(mnt);
d3ef3d73 310 /*
c6653a83 311 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
1e75529e 316 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
4ed5e82f 324 if (mnt_is_readonly(m)) {
c6653a83 325 mnt_dec_writers(mnt);
3d733633 326 ret = -EROFS;
3d733633 327 }
d3ef3d73 328 preempt_enable();
eb04c282
JK
329
330 return ret;
331}
332
333/**
334 * mnt_want_write - get write access to a mount
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mount is read-write, filesystem
339 * is not frozen) before returning success. When the write operation is
340 * finished, mnt_drop_write() must be called. This is effectively a refcount.
341 */
342int mnt_want_write(struct vfsmount *m)
343{
344 int ret;
345
346 sb_start_write(m->mnt_sb);
347 ret = __mnt_want_write(m);
348 if (ret)
349 sb_end_write(m->mnt_sb);
3d733633 350 return ret;
8366025e
DH
351}
352EXPORT_SYMBOL_GPL(mnt_want_write);
353
96029c4e
NP
354/**
355 * mnt_clone_write - get write access to a mount
356 * @mnt: the mount on which to take a write
357 *
358 * This is effectively like mnt_want_write, except
359 * it must only be used to take an extra write reference
360 * on a mountpoint that we already know has a write reference
361 * on it. This allows some optimisation.
362 *
363 * After finished, mnt_drop_write must be called as usual to
364 * drop the reference.
365 */
366int mnt_clone_write(struct vfsmount *mnt)
367{
368 /* superblock may be r/o */
369 if (__mnt_is_readonly(mnt))
370 return -EROFS;
371 preempt_disable();
83adc753 372 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
373 preempt_enable();
374 return 0;
375}
376EXPORT_SYMBOL_GPL(mnt_clone_write);
377
378/**
eb04c282 379 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
380 * @file: the file who's mount on which to take a write
381 *
eb04c282 382 * This is like __mnt_want_write, but it takes a file and can
96029c4e
NP
383 * do some optimisations if the file is open for write already
384 */
eb04c282 385int __mnt_want_write_file(struct file *file)
96029c4e 386{
496ad9aa 387 struct inode *inode = file_inode(file);
eb04c282 388
2d8dd38a 389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 390 return __mnt_want_write(file->f_path.mnt);
96029c4e
NP
391 else
392 return mnt_clone_write(file->f_path.mnt);
393}
eb04c282
JK
394
395/**
396 * mnt_want_write_file - get write access to a file's mount
397 * @file: the file who's mount on which to take a write
398 *
399 * This is like mnt_want_write, but it takes a file and can
400 * do some optimisations if the file is open for write already
401 */
402int mnt_want_write_file(struct file *file)
403{
404 int ret;
405
406 sb_start_write(file->f_path.mnt->mnt_sb);
407 ret = __mnt_want_write_file(file);
408 if (ret)
409 sb_end_write(file->f_path.mnt->mnt_sb);
410 return ret;
411}
96029c4e
NP
412EXPORT_SYMBOL_GPL(mnt_want_write_file);
413
8366025e 414/**
eb04c282 415 * __mnt_drop_write - give up write access to a mount
8366025e
DH
416 * @mnt: the mount on which to give up write access
417 *
418 * Tells the low-level filesystem that we are done
419 * performing writes to it. Must be matched with
eb04c282 420 * __mnt_want_write() call above.
8366025e 421 */
eb04c282 422void __mnt_drop_write(struct vfsmount *mnt)
8366025e 423{
d3ef3d73 424 preempt_disable();
83adc753 425 mnt_dec_writers(real_mount(mnt));
d3ef3d73 426 preempt_enable();
8366025e 427}
eb04c282
JK
428
429/**
430 * mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
432 *
433 * Tells the low-level filesystem that we are done performing writes to it and
434 * also allows filesystem to be frozen again. Must be matched with
435 * mnt_want_write() call above.
436 */
437void mnt_drop_write(struct vfsmount *mnt)
438{
439 __mnt_drop_write(mnt);
440 sb_end_write(mnt->mnt_sb);
441}
8366025e
DH
442EXPORT_SYMBOL_GPL(mnt_drop_write);
443
eb04c282
JK
444void __mnt_drop_write_file(struct file *file)
445{
446 __mnt_drop_write(file->f_path.mnt);
447}
448
2a79f17e
AV
449void mnt_drop_write_file(struct file *file)
450{
451 mnt_drop_write(file->f_path.mnt);
452}
453EXPORT_SYMBOL(mnt_drop_write_file);
454
83adc753 455static int mnt_make_readonly(struct mount *mnt)
8366025e 456{
3d733633
DH
457 int ret = 0;
458
962830df 459 br_write_lock(&vfsmount_lock);
83adc753 460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 461 /*
d3ef3d73
NP
462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 * should be visible before we do.
3d733633 464 */
d3ef3d73
NP
465 smp_mb();
466
3d733633 467 /*
d3ef3d73
NP
468 * With writers on hold, if this value is zero, then there are
469 * definitely no active writers (although held writers may subsequently
470 * increment the count, they'll have to wait, and decrement it after
471 * seeing MNT_READONLY).
472 *
473 * It is OK to have counter incremented on one CPU and decremented on
474 * another: the sum will add up correctly. The danger would be when we
475 * sum up each counter, if we read a counter before it is incremented,
476 * but then read another CPU's count which it has been subsequently
477 * decremented from -- we would see more decrements than we should.
478 * MNT_WRITE_HOLD protects against this scenario, because
479 * mnt_want_write first increments count, then smp_mb, then spins on
480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 * we're counting up here.
3d733633 482 */
c6653a83 483 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
484 ret = -EBUSY;
485 else
83adc753 486 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
487 /*
488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 * that become unheld will see MNT_READONLY.
490 */
491 smp_wmb();
83adc753 492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 493 br_write_unlock(&vfsmount_lock);
3d733633 494 return ret;
8366025e 495}
8366025e 496
83adc753 497static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 498{
962830df 499 br_write_lock(&vfsmount_lock);
83adc753 500 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 501 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
502}
503
4ed5e82f
MS
504int sb_prepare_remount_readonly(struct super_block *sb)
505{
506 struct mount *mnt;
507 int err = 0;
508
8e8b8796
MS
509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
510 if (atomic_long_read(&sb->s_remove_count))
511 return -EBUSY;
512
962830df 513 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 smp_mb();
518 if (mnt_get_writers(mnt) > 0) {
519 err = -EBUSY;
520 break;
521 }
522 }
523 }
8e8b8796
MS
524 if (!err && atomic_long_read(&sb->s_remove_count))
525 err = -EBUSY;
526
4ed5e82f
MS
527 if (!err) {
528 sb->s_readonly_remount = 1;
529 smp_wmb();
530 }
531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 }
962830df 535 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
536
537 return err;
538}
539
b105e270 540static void free_vfsmnt(struct mount *mnt)
1da177e4 541{
52ba1621 542 kfree(mnt->mnt_devname);
73cd49ec 543 mnt_free_id(mnt);
d3ef3d73 544#ifdef CONFIG_SMP
68e8a9fe 545 free_percpu(mnt->mnt_pcp);
d3ef3d73 546#endif
b105e270 547 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
548}
549
550/*
a05964f3
RP
551 * find the first or last mount at @dentry on vfsmount @mnt depending on
552 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 553 * vfsmount_lock must be held for read or write.
1da177e4 554 */
c7105365 555struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 556 int dir)
1da177e4 557{
b58fed8b
RP
558 struct list_head *head = mount_hashtable + hash(mnt, dentry);
559 struct list_head *tmp = head;
c7105365 560 struct mount *p, *found = NULL;
1da177e4 561
1da177e4 562 for (;;) {
a05964f3 563 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
564 p = NULL;
565 if (tmp == head)
566 break;
1b8e5564 567 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 568 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 569 found = p;
1da177e4
LT
570 break;
571 }
572 }
1da177e4
LT
573 return found;
574}
575
a05964f3 576/*
f015f126
DH
577 * lookup_mnt - Return the first child mount mounted at path
578 *
579 * "First" means first mounted chronologically. If you create the
580 * following mounts:
581 *
582 * mount /dev/sda1 /mnt
583 * mount /dev/sda2 /mnt
584 * mount /dev/sda3 /mnt
585 *
586 * Then lookup_mnt() on the base /mnt dentry in the root mount will
587 * return successively the root dentry and vfsmount of /dev/sda1, then
588 * /dev/sda2, then /dev/sda3, then NULL.
589 *
590 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 591 */
1c755af4 592struct vfsmount *lookup_mnt(struct path *path)
a05964f3 593{
c7105365 594 struct mount *child_mnt;
99b7db7b 595
962830df 596 br_read_lock(&vfsmount_lock);
c7105365
AV
597 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
598 if (child_mnt) {
599 mnt_add_count(child_mnt, 1);
962830df 600 br_read_unlock(&vfsmount_lock);
c7105365
AV
601 return &child_mnt->mnt;
602 } else {
962830df 603 br_read_unlock(&vfsmount_lock);
c7105365
AV
604 return NULL;
605 }
a05964f3
RP
606}
607
84d17192
AV
608static struct mountpoint *new_mountpoint(struct dentry *dentry)
609{
610 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
611 struct mountpoint *mp;
eed81007 612 int ret;
84d17192
AV
613
614 list_for_each_entry(mp, chain, m_hash) {
615 if (mp->m_dentry == dentry) {
616 /* might be worth a WARN_ON() */
617 if (d_unlinked(dentry))
618 return ERR_PTR(-ENOENT);
619 mp->m_count++;
620 return mp;
621 }
622 }
623
624 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
625 if (!mp)
626 return ERR_PTR(-ENOMEM);
627
eed81007
MS
628 ret = d_set_mounted(dentry);
629 if (ret) {
84d17192 630 kfree(mp);
eed81007 631 return ERR_PTR(ret);
84d17192 632 }
eed81007 633
84d17192
AV
634 mp->m_dentry = dentry;
635 mp->m_count = 1;
636 list_add(&mp->m_hash, chain);
637 return mp;
638}
639
640static void put_mountpoint(struct mountpoint *mp)
641{
642 if (!--mp->m_count) {
643 struct dentry *dentry = mp->m_dentry;
644 spin_lock(&dentry->d_lock);
645 dentry->d_flags &= ~DCACHE_MOUNTED;
646 spin_unlock(&dentry->d_lock);
647 list_del(&mp->m_hash);
648 kfree(mp);
649 }
650}
651
143c8c91 652static inline int check_mnt(struct mount *mnt)
1da177e4 653{
6b3286ed 654 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
655}
656
99b7db7b
NP
657/*
658 * vfsmount lock must be held for write
659 */
6b3286ed 660static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
661{
662 if (ns) {
663 ns->event = ++event;
664 wake_up_interruptible(&ns->poll);
665 }
666}
667
99b7db7b
NP
668/*
669 * vfsmount lock must be held for write
670 */
6b3286ed 671static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
672{
673 if (ns && ns->event != event) {
674 ns->event = event;
675 wake_up_interruptible(&ns->poll);
676 }
677}
678
99b7db7b
NP
679/*
680 * vfsmount lock must be held for write
681 */
419148da
AV
682static void detach_mnt(struct mount *mnt, struct path *old_path)
683{
a73324da 684 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
685 old_path->mnt = &mnt->mnt_parent->mnt;
686 mnt->mnt_parent = mnt;
a73324da 687 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 688 list_del_init(&mnt->mnt_child);
1b8e5564 689 list_del_init(&mnt->mnt_hash);
84d17192
AV
690 put_mountpoint(mnt->mnt_mp);
691 mnt->mnt_mp = NULL;
1da177e4
LT
692}
693
99b7db7b
NP
694/*
695 * vfsmount lock must be held for write
696 */
84d17192
AV
697void mnt_set_mountpoint(struct mount *mnt,
698 struct mountpoint *mp,
44d964d6 699 struct mount *child_mnt)
b90fa9ae 700{
84d17192 701 mp->m_count++;
3a2393d7 702 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 703 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 704 child_mnt->mnt_parent = mnt;
84d17192 705 child_mnt->mnt_mp = mp;
b90fa9ae
RP
706}
707
99b7db7b
NP
708/*
709 * vfsmount lock must be held for write
710 */
84d17192
AV
711static void attach_mnt(struct mount *mnt,
712 struct mount *parent,
713 struct mountpoint *mp)
1da177e4 714{
84d17192 715 mnt_set_mountpoint(parent, mp, mnt);
1b8e5564 716 list_add_tail(&mnt->mnt_hash, mount_hashtable +
84d17192
AV
717 hash(&parent->mnt, mp->m_dentry));
718 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
719}
720
721/*
99b7db7b 722 * vfsmount lock must be held for write
b90fa9ae 723 */
4b2619a5 724static void commit_tree(struct mount *mnt)
b90fa9ae 725{
0714a533 726 struct mount *parent = mnt->mnt_parent;
83adc753 727 struct mount *m;
b90fa9ae 728 LIST_HEAD(head);
143c8c91 729 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 730
0714a533 731 BUG_ON(parent == mnt);
b90fa9ae 732
1a4eeaf2 733 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 734 list_for_each_entry(m, &head, mnt_list)
143c8c91 735 m->mnt_ns = n;
f03c6599 736
b90fa9ae
RP
737 list_splice(&head, n->list.prev);
738
1b8e5564 739 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 740 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 741 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 742 touch_mnt_namespace(n);
1da177e4
LT
743}
744
909b0a88 745static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 746{
6b41d536
AV
747 struct list_head *next = p->mnt_mounts.next;
748 if (next == &p->mnt_mounts) {
1da177e4 749 while (1) {
909b0a88 750 if (p == root)
1da177e4 751 return NULL;
6b41d536
AV
752 next = p->mnt_child.next;
753 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 754 break;
0714a533 755 p = p->mnt_parent;
1da177e4
LT
756 }
757 }
6b41d536 758 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
759}
760
315fc83e 761static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 762{
6b41d536
AV
763 struct list_head *prev = p->mnt_mounts.prev;
764 while (prev != &p->mnt_mounts) {
765 p = list_entry(prev, struct mount, mnt_child);
766 prev = p->mnt_mounts.prev;
9676f0c6
RP
767 }
768 return p;
769}
770
9d412a43
AV
771struct vfsmount *
772vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
773{
b105e270 774 struct mount *mnt;
9d412a43
AV
775 struct dentry *root;
776
777 if (!type)
778 return ERR_PTR(-ENODEV);
779
780 mnt = alloc_vfsmnt(name);
781 if (!mnt)
782 return ERR_PTR(-ENOMEM);
783
784 if (flags & MS_KERNMOUNT)
b105e270 785 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
786
787 root = mount_fs(type, flags, name, data);
788 if (IS_ERR(root)) {
789 free_vfsmnt(mnt);
790 return ERR_CAST(root);
791 }
792
b105e270
AV
793 mnt->mnt.mnt_root = root;
794 mnt->mnt.mnt_sb = root->d_sb;
a73324da 795 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 796 mnt->mnt_parent = mnt;
962830df 797 br_write_lock(&vfsmount_lock);
39f7c4db 798 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 799 br_write_unlock(&vfsmount_lock);
b105e270 800 return &mnt->mnt;
9d412a43
AV
801}
802EXPORT_SYMBOL_GPL(vfs_kern_mount);
803
87129cc0 804static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 805 int flag)
1da177e4 806{
87129cc0 807 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
808 struct mount *mnt;
809 int err;
1da177e4 810
be34d1a3
DH
811 mnt = alloc_vfsmnt(old->mnt_devname);
812 if (!mnt)
813 return ERR_PTR(-ENOMEM);
719f5d7f 814
7a472ef4 815 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
816 mnt->mnt_group_id = 0; /* not a peer of original */
817 else
818 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 819
be34d1a3
DH
820 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
821 err = mnt_alloc_group_id(mnt);
822 if (err)
823 goto out_free;
1da177e4 824 }
be34d1a3
DH
825
826 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
132c94e3
EB
827 /* Don't allow unprivileged users to change mount flags */
828 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
829 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
830
5ff9d8a6
EB
831 /* Don't allow unprivileged users to reveal what is under a mount */
832 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
833 mnt->mnt.mnt_flags |= MNT_LOCKED;
834
be34d1a3
DH
835 atomic_inc(&sb->s_active);
836 mnt->mnt.mnt_sb = sb;
837 mnt->mnt.mnt_root = dget(root);
838 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
839 mnt->mnt_parent = mnt;
840 br_write_lock(&vfsmount_lock);
841 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
842 br_write_unlock(&vfsmount_lock);
843
7a472ef4
EB
844 if ((flag & CL_SLAVE) ||
845 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
846 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
847 mnt->mnt_master = old;
848 CLEAR_MNT_SHARED(mnt);
849 } else if (!(flag & CL_PRIVATE)) {
850 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
851 list_add(&mnt->mnt_share, &old->mnt_share);
852 if (IS_MNT_SLAVE(old))
853 list_add(&mnt->mnt_slave, &old->mnt_slave);
854 mnt->mnt_master = old->mnt_master;
855 }
856 if (flag & CL_MAKE_SHARED)
857 set_mnt_shared(mnt);
858
859 /* stick the duplicate mount on the same expiry list
860 * as the original if that was on one */
861 if (flag & CL_EXPIRE) {
862 if (!list_empty(&old->mnt_expire))
863 list_add(&mnt->mnt_expire, &old->mnt_expire);
864 }
865
cb338d06 866 return mnt;
719f5d7f
MS
867
868 out_free:
869 free_vfsmnt(mnt);
be34d1a3 870 return ERR_PTR(err);
1da177e4
LT
871}
872
900148dc 873static void mntput_no_expire(struct mount *mnt)
b3e19d92 874{
b3e19d92 875put_again:
f03c6599 876#ifdef CONFIG_SMP
962830df 877 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
878 if (likely(mnt->mnt_ns)) {
879 /* shouldn't be the last one */
aa9c0e07 880 mnt_add_count(mnt, -1);
962830df 881 br_read_unlock(&vfsmount_lock);
f03c6599 882 return;
b3e19d92 883 }
962830df 884 br_read_unlock(&vfsmount_lock);
b3e19d92 885
962830df 886 br_write_lock(&vfsmount_lock);
aa9c0e07 887 mnt_add_count(mnt, -1);
b3e19d92 888 if (mnt_get_count(mnt)) {
962830df 889 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
890 return;
891 }
b3e19d92 892#else
aa9c0e07 893 mnt_add_count(mnt, -1);
b3e19d92 894 if (likely(mnt_get_count(mnt)))
99b7db7b 895 return;
962830df 896 br_write_lock(&vfsmount_lock);
f03c6599 897#endif
863d684f
AV
898 if (unlikely(mnt->mnt_pinned)) {
899 mnt_add_count(mnt, mnt->mnt_pinned + 1);
900 mnt->mnt_pinned = 0;
962830df 901 br_write_unlock(&vfsmount_lock);
900148dc 902 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 903 goto put_again;
7b7b1ace 904 }
962830df 905
39f7c4db 906 list_del(&mnt->mnt_instance);
962830df 907 br_write_unlock(&vfsmount_lock);
649a795a
AV
908
909 /*
910 * This probably indicates that somebody messed
911 * up a mnt_want/drop_write() pair. If this
912 * happens, the filesystem was probably unable
913 * to make r/w->r/o transitions.
914 */
915 /*
916 * The locking used to deal with mnt_count decrement provides barriers,
917 * so mnt_get_writers() below is safe.
918 */
919 WARN_ON(mnt_get_writers(mnt));
920 fsnotify_vfsmount_delete(&mnt->mnt);
921 dput(mnt->mnt.mnt_root);
922 deactivate_super(mnt->mnt.mnt_sb);
923 free_vfsmnt(mnt);
b3e19d92 924}
b3e19d92
NP
925
926void mntput(struct vfsmount *mnt)
927{
928 if (mnt) {
863d684f 929 struct mount *m = real_mount(mnt);
b3e19d92 930 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
931 if (unlikely(m->mnt_expiry_mark))
932 m->mnt_expiry_mark = 0;
933 mntput_no_expire(m);
b3e19d92
NP
934 }
935}
936EXPORT_SYMBOL(mntput);
937
938struct vfsmount *mntget(struct vfsmount *mnt)
939{
940 if (mnt)
83adc753 941 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
942 return mnt;
943}
944EXPORT_SYMBOL(mntget);
945
7b7b1ace
AV
946void mnt_pin(struct vfsmount *mnt)
947{
962830df 948 br_write_lock(&vfsmount_lock);
863d684f 949 real_mount(mnt)->mnt_pinned++;
962830df 950 br_write_unlock(&vfsmount_lock);
7b7b1ace 951}
7b7b1ace
AV
952EXPORT_SYMBOL(mnt_pin);
953
863d684f 954void mnt_unpin(struct vfsmount *m)
7b7b1ace 955{
863d684f 956 struct mount *mnt = real_mount(m);
962830df 957 br_write_lock(&vfsmount_lock);
7b7b1ace 958 if (mnt->mnt_pinned) {
863d684f 959 mnt_add_count(mnt, 1);
7b7b1ace
AV
960 mnt->mnt_pinned--;
961 }
962830df 962 br_write_unlock(&vfsmount_lock);
7b7b1ace 963}
7b7b1ace 964EXPORT_SYMBOL(mnt_unpin);
1da177e4 965
b3b304a2
MS
966static inline void mangle(struct seq_file *m, const char *s)
967{
968 seq_escape(m, s, " \t\n\\");
969}
970
971/*
972 * Simple .show_options callback for filesystems which don't want to
973 * implement more complex mount option showing.
974 *
975 * See also save_mount_options().
976 */
34c80b1d 977int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 978{
2a32cebd
AV
979 const char *options;
980
981 rcu_read_lock();
34c80b1d 982 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
983
984 if (options != NULL && options[0]) {
985 seq_putc(m, ',');
986 mangle(m, options);
987 }
2a32cebd 988 rcu_read_unlock();
b3b304a2
MS
989
990 return 0;
991}
992EXPORT_SYMBOL(generic_show_options);
993
994/*
995 * If filesystem uses generic_show_options(), this function should be
996 * called from the fill_super() callback.
997 *
998 * The .remount_fs callback usually needs to be handled in a special
999 * way, to make sure, that previous options are not overwritten if the
1000 * remount fails.
1001 *
1002 * Also note, that if the filesystem's .remount_fs function doesn't
1003 * reset all options to their default value, but changes only newly
1004 * given options, then the displayed options will not reflect reality
1005 * any more.
1006 */
1007void save_mount_options(struct super_block *sb, char *options)
1008{
2a32cebd
AV
1009 BUG_ON(sb->s_options);
1010 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1011}
1012EXPORT_SYMBOL(save_mount_options);
1013
2a32cebd
AV
1014void replace_mount_options(struct super_block *sb, char *options)
1015{
1016 char *old = sb->s_options;
1017 rcu_assign_pointer(sb->s_options, options);
1018 if (old) {
1019 synchronize_rcu();
1020 kfree(old);
1021 }
1022}
1023EXPORT_SYMBOL(replace_mount_options);
1024
a1a2c409 1025#ifdef CONFIG_PROC_FS
0226f492 1026/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1027static void *m_start(struct seq_file *m, loff_t *pos)
1028{
6ce6e24e 1029 struct proc_mounts *p = proc_mounts(m);
1da177e4 1030
390c6843 1031 down_read(&namespace_sem);
a1a2c409 1032 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1033}
1034
1035static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1036{
6ce6e24e 1037 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1038
a1a2c409 1039 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1040}
1041
1042static void m_stop(struct seq_file *m, void *v)
1043{
390c6843 1044 up_read(&namespace_sem);
1da177e4
LT
1045}
1046
0226f492 1047static int m_show(struct seq_file *m, void *v)
2d4d4864 1048{
6ce6e24e 1049 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1050 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1051 return p->show(m, &r->mnt);
1da177e4
LT
1052}
1053
a1a2c409 1054const struct seq_operations mounts_op = {
1da177e4
LT
1055 .start = m_start,
1056 .next = m_next,
1057 .stop = m_stop,
0226f492 1058 .show = m_show,
b4629fe2 1059};
a1a2c409 1060#endif /* CONFIG_PROC_FS */
b4629fe2 1061
1da177e4
LT
1062/**
1063 * may_umount_tree - check if a mount tree is busy
1064 * @mnt: root of mount tree
1065 *
1066 * This is called to check if a tree of mounts has any
1067 * open files, pwds, chroots or sub mounts that are
1068 * busy.
1069 */
909b0a88 1070int may_umount_tree(struct vfsmount *m)
1da177e4 1071{
909b0a88 1072 struct mount *mnt = real_mount(m);
36341f64
RP
1073 int actual_refs = 0;
1074 int minimum_refs = 0;
315fc83e 1075 struct mount *p;
909b0a88 1076 BUG_ON(!m);
1da177e4 1077
b3e19d92 1078 /* write lock needed for mnt_get_count */
962830df 1079 br_write_lock(&vfsmount_lock);
909b0a88 1080 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1081 actual_refs += mnt_get_count(p);
1da177e4 1082 minimum_refs += 2;
1da177e4 1083 }
962830df 1084 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1085
1086 if (actual_refs > minimum_refs)
e3474a8e 1087 return 0;
1da177e4 1088
e3474a8e 1089 return 1;
1da177e4
LT
1090}
1091
1092EXPORT_SYMBOL(may_umount_tree);
1093
1094/**
1095 * may_umount - check if a mount point is busy
1096 * @mnt: root of mount
1097 *
1098 * This is called to check if a mount point has any
1099 * open files, pwds, chroots or sub mounts. If the
1100 * mount has sub mounts this will return busy
1101 * regardless of whether the sub mounts are busy.
1102 *
1103 * Doesn't take quota and stuff into account. IOW, in some cases it will
1104 * give false negatives. The main reason why it's here is that we need
1105 * a non-destructive way to look for easily umountable filesystems.
1106 */
1107int may_umount(struct vfsmount *mnt)
1108{
e3474a8e 1109 int ret = 1;
8ad08d8a 1110 down_read(&namespace_sem);
962830df 1111 br_write_lock(&vfsmount_lock);
1ab59738 1112 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1113 ret = 0;
962830df 1114 br_write_unlock(&vfsmount_lock);
8ad08d8a 1115 up_read(&namespace_sem);
a05964f3 1116 return ret;
1da177e4
LT
1117}
1118
1119EXPORT_SYMBOL(may_umount);
1120
e3197d83
AV
1121static LIST_HEAD(unmounted); /* protected by namespace_sem */
1122
97216be0 1123static void namespace_unlock(void)
70fbcdf4 1124{
d5e50f74 1125 struct mount *mnt;
97216be0
AV
1126 LIST_HEAD(head);
1127
1128 if (likely(list_empty(&unmounted))) {
1129 up_write(&namespace_sem);
1130 return;
1131 }
1132
1133 list_splice_init(&unmounted, &head);
1134 up_write(&namespace_sem);
1135
1136 while (!list_empty(&head)) {
1137 mnt = list_first_entry(&head, struct mount, mnt_hash);
1b8e5564 1138 list_del_init(&mnt->mnt_hash);
676da58d 1139 if (mnt_has_parent(mnt)) {
70fbcdf4 1140 struct dentry *dentry;
863d684f 1141 struct mount *m;
99b7db7b 1142
962830df 1143 br_write_lock(&vfsmount_lock);
a73324da 1144 dentry = mnt->mnt_mountpoint;
863d684f 1145 m = mnt->mnt_parent;
a73324da 1146 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1147 mnt->mnt_parent = mnt;
7c4b93d8 1148 m->mnt_ghosts--;
962830df 1149 br_write_unlock(&vfsmount_lock);
70fbcdf4 1150 dput(dentry);
863d684f 1151 mntput(&m->mnt);
70fbcdf4 1152 }
d5e50f74 1153 mntput(&mnt->mnt);
70fbcdf4
RP
1154 }
1155}
1156
97216be0 1157static inline void namespace_lock(void)
e3197d83 1158{
97216be0 1159 down_write(&namespace_sem);
e3197d83
AV
1160}
1161
99b7db7b
NP
1162/*
1163 * vfsmount lock must be held for write
1164 * namespace_sem must be held for write
1165 */
328e6d90 1166void umount_tree(struct mount *mnt, int propagate)
1da177e4 1167{
7b8a53fd 1168 LIST_HEAD(tmp_list);
315fc83e 1169 struct mount *p;
1da177e4 1170
909b0a88 1171 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1172 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1173
a05964f3 1174 if (propagate)
7b8a53fd 1175 propagate_umount(&tmp_list);
a05964f3 1176
1b8e5564 1177 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1178 list_del_init(&p->mnt_expire);
1a4eeaf2 1179 list_del_init(&p->mnt_list);
143c8c91
AV
1180 __touch_mnt_namespace(p->mnt_ns);
1181 p->mnt_ns = NULL;
6b41d536 1182 list_del_init(&p->mnt_child);
676da58d 1183 if (mnt_has_parent(p)) {
863d684f 1184 p->mnt_parent->mnt_ghosts++;
84d17192
AV
1185 put_mountpoint(p->mnt_mp);
1186 p->mnt_mp = NULL;
7c4b93d8 1187 }
0f0afb1d 1188 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1189 }
328e6d90 1190 list_splice(&tmp_list, &unmounted);
1da177e4
LT
1191}
1192
b54b9be7 1193static void shrink_submounts(struct mount *mnt);
c35038be 1194
1ab59738 1195static int do_umount(struct mount *mnt, int flags)
1da177e4 1196{
1ab59738 1197 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1198 int retval;
1199
1ab59738 1200 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1201 if (retval)
1202 return retval;
1203
1204 /*
1205 * Allow userspace to request a mountpoint be expired rather than
1206 * unmounting unconditionally. Unmount only happens if:
1207 * (1) the mark is already set (the mark is cleared by mntput())
1208 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1209 */
1210 if (flags & MNT_EXPIRE) {
1ab59738 1211 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1212 flags & (MNT_FORCE | MNT_DETACH))
1213 return -EINVAL;
1214
b3e19d92
NP
1215 /*
1216 * probably don't strictly need the lock here if we examined
1217 * all race cases, but it's a slowpath.
1218 */
962830df 1219 br_write_lock(&vfsmount_lock);
83adc753 1220 if (mnt_get_count(mnt) != 2) {
962830df 1221 br_write_unlock(&vfsmount_lock);
1da177e4 1222 return -EBUSY;
b3e19d92 1223 }
962830df 1224 br_write_unlock(&vfsmount_lock);
1da177e4 1225
863d684f 1226 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1227 return -EAGAIN;
1228 }
1229
1230 /*
1231 * If we may have to abort operations to get out of this
1232 * mount, and they will themselves hold resources we must
1233 * allow the fs to do things. In the Unix tradition of
1234 * 'Gee thats tricky lets do it in userspace' the umount_begin
1235 * might fail to complete on the first run through as other tasks
1236 * must return, and the like. Thats for the mount program to worry
1237 * about for the moment.
1238 */
1239
42faad99 1240 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1241 sb->s_op->umount_begin(sb);
42faad99 1242 }
1da177e4
LT
1243
1244 /*
1245 * No sense to grab the lock for this test, but test itself looks
1246 * somewhat bogus. Suggestions for better replacement?
1247 * Ho-hum... In principle, we might treat that as umount + switch
1248 * to rootfs. GC would eventually take care of the old vfsmount.
1249 * Actually it makes sense, especially if rootfs would contain a
1250 * /reboot - static binary that would close all descriptors and
1251 * call reboot(9). Then init(8) could umount root and exec /reboot.
1252 */
1ab59738 1253 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1254 /*
1255 * Special case for "unmounting" root ...
1256 * we just try to remount it readonly.
1257 */
1258 down_write(&sb->s_umount);
4aa98cf7 1259 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1260 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1261 up_write(&sb->s_umount);
1262 return retval;
1263 }
1264
97216be0 1265 namespace_lock();
962830df 1266 br_write_lock(&vfsmount_lock);
5addc5dd 1267 event++;
1da177e4 1268
c35038be 1269 if (!(flags & MNT_DETACH))
b54b9be7 1270 shrink_submounts(mnt);
c35038be 1271
1da177e4 1272 retval = -EBUSY;
a05964f3 1273 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1274 if (!list_empty(&mnt->mnt_list))
328e6d90 1275 umount_tree(mnt, 1);
1da177e4
LT
1276 retval = 0;
1277 }
962830df 1278 br_write_unlock(&vfsmount_lock);
e3197d83 1279 namespace_unlock();
1da177e4
LT
1280 return retval;
1281}
1282
9b40bc90
AV
1283/*
1284 * Is the caller allowed to modify his namespace?
1285 */
1286static inline bool may_mount(void)
1287{
1288 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1289}
1290
1da177e4
LT
1291/*
1292 * Now umount can handle mount points as well as block devices.
1293 * This is important for filesystems which use unnamed block devices.
1294 *
1295 * We now support a flag for forced unmount like the other 'big iron'
1296 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1297 */
1298
bdc480e3 1299SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1300{
2d8f3038 1301 struct path path;
900148dc 1302 struct mount *mnt;
1da177e4 1303 int retval;
db1f05bb 1304 int lookup_flags = 0;
1da177e4 1305
db1f05bb
MS
1306 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1307 return -EINVAL;
1308
9b40bc90
AV
1309 if (!may_mount())
1310 return -EPERM;
1311
db1f05bb
MS
1312 if (!(flags & UMOUNT_NOFOLLOW))
1313 lookup_flags |= LOOKUP_FOLLOW;
1314
197df04c 1315 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1316 if (retval)
1317 goto out;
900148dc 1318 mnt = real_mount(path.mnt);
1da177e4 1319 retval = -EINVAL;
2d8f3038 1320 if (path.dentry != path.mnt->mnt_root)
1da177e4 1321 goto dput_and_out;
143c8c91 1322 if (!check_mnt(mnt))
1da177e4 1323 goto dput_and_out;
5ff9d8a6
EB
1324 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1325 goto dput_and_out;
1da177e4 1326
900148dc 1327 retval = do_umount(mnt, flags);
1da177e4 1328dput_and_out:
429731b1 1329 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1330 dput(path.dentry);
900148dc 1331 mntput_no_expire(mnt);
1da177e4
LT
1332out:
1333 return retval;
1334}
1335
1336#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1337
1338/*
b58fed8b 1339 * The 2.0 compatible umount. No flags.
1da177e4 1340 */
bdc480e3 1341SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1342{
b58fed8b 1343 return sys_umount(name, 0);
1da177e4
LT
1344}
1345
1346#endif
1347
4ce5d2b1 1348static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1349{
4ce5d2b1
EB
1350 /* Is this a proxy for a mount namespace? */
1351 struct inode *inode = dentry->d_inode;
0bb80f24 1352 struct proc_ns *ei;
8823c079
EB
1353
1354 if (!proc_ns_inode(inode))
1355 return false;
1356
0bb80f24 1357 ei = get_proc_ns(inode);
8823c079
EB
1358 if (ei->ns_ops != &mntns_operations)
1359 return false;
1360
4ce5d2b1
EB
1361 return true;
1362}
1363
1364static bool mnt_ns_loop(struct dentry *dentry)
1365{
1366 /* Could bind mounting the mount namespace inode cause a
1367 * mount namespace loop?
1368 */
1369 struct mnt_namespace *mnt_ns;
1370 if (!is_mnt_ns_file(dentry))
1371 return false;
1372
1373 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1374 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1375}
1376
87129cc0 1377struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1378 int flag)
1da177e4 1379{
84d17192 1380 struct mount *res, *p, *q, *r, *parent;
1da177e4 1381
4ce5d2b1
EB
1382 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1383 return ERR_PTR(-EINVAL);
1384
1385 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1386 return ERR_PTR(-EINVAL);
9676f0c6 1387
36341f64 1388 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1389 if (IS_ERR(q))
1390 return q;
1391
5ff9d8a6 1392 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1393 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1394
1395 p = mnt;
6b41d536 1396 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1397 struct mount *s;
7ec02ef1 1398 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1399 continue;
1400
909b0a88 1401 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1402 if (!(flag & CL_COPY_UNBINDABLE) &&
1403 IS_MNT_UNBINDABLE(s)) {
1404 s = skip_mnt_tree(s);
1405 continue;
1406 }
1407 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1408 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1409 s = skip_mnt_tree(s);
1410 continue;
1411 }
0714a533
AV
1412 while (p != s->mnt_parent) {
1413 p = p->mnt_parent;
1414 q = q->mnt_parent;
1da177e4 1415 }
87129cc0 1416 p = s;
84d17192 1417 parent = q;
87129cc0 1418 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1419 if (IS_ERR(q))
1420 goto out;
962830df 1421 br_write_lock(&vfsmount_lock);
1a4eeaf2 1422 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1423 attach_mnt(q, parent, p->mnt_mp);
962830df 1424 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1425 }
1426 }
1427 return res;
be34d1a3 1428out:
1da177e4 1429 if (res) {
962830df 1430 br_write_lock(&vfsmount_lock);
328e6d90 1431 umount_tree(res, 0);
962830df 1432 br_write_unlock(&vfsmount_lock);
1da177e4 1433 }
be34d1a3 1434 return q;
1da177e4
LT
1435}
1436
be34d1a3
DH
1437/* Caller should check returned pointer for errors */
1438
589ff870 1439struct vfsmount *collect_mounts(struct path *path)
8aec0809 1440{
cb338d06 1441 struct mount *tree;
97216be0 1442 namespace_lock();
87129cc0
AV
1443 tree = copy_tree(real_mount(path->mnt), path->dentry,
1444 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1445 namespace_unlock();
be34d1a3 1446 if (IS_ERR(tree))
52e220d3 1447 return ERR_CAST(tree);
be34d1a3 1448 return &tree->mnt;
8aec0809
AV
1449}
1450
1451void drop_collected_mounts(struct vfsmount *mnt)
1452{
97216be0 1453 namespace_lock();
962830df 1454 br_write_lock(&vfsmount_lock);
328e6d90 1455 umount_tree(real_mount(mnt), 0);
962830df 1456 br_write_unlock(&vfsmount_lock);
3ab6abee 1457 namespace_unlock();
8aec0809
AV
1458}
1459
1f707137
AV
1460int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1461 struct vfsmount *root)
1462{
1a4eeaf2 1463 struct mount *mnt;
1f707137
AV
1464 int res = f(root, arg);
1465 if (res)
1466 return res;
1a4eeaf2
AV
1467 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1468 res = f(&mnt->mnt, arg);
1f707137
AV
1469 if (res)
1470 return res;
1471 }
1472 return 0;
1473}
1474
4b8b21f4 1475static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1476{
315fc83e 1477 struct mount *p;
719f5d7f 1478
909b0a88 1479 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1480 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1481 mnt_release_group_id(p);
719f5d7f
MS
1482 }
1483}
1484
4b8b21f4 1485static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1486{
315fc83e 1487 struct mount *p;
719f5d7f 1488
909b0a88 1489 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1490 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1491 int err = mnt_alloc_group_id(p);
719f5d7f 1492 if (err) {
4b8b21f4 1493 cleanup_group_ids(mnt, p);
719f5d7f
MS
1494 return err;
1495 }
1496 }
1497 }
1498
1499 return 0;
1500}
1501
b90fa9ae
RP
1502/*
1503 * @source_mnt : mount tree to be attached
21444403
RP
1504 * @nd : place the mount tree @source_mnt is attached
1505 * @parent_nd : if non-null, detach the source_mnt from its parent and
1506 * store the parent mount and mountpoint dentry.
1507 * (done when source_mnt is moved)
b90fa9ae
RP
1508 *
1509 * NOTE: in the table below explains the semantics when a source mount
1510 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1511 * ---------------------------------------------------------------------------
1512 * | BIND MOUNT OPERATION |
1513 * |**************************************************************************
1514 * | source-->| shared | private | slave | unbindable |
1515 * | dest | | | | |
1516 * | | | | | | |
1517 * | v | | | | |
1518 * |**************************************************************************
1519 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1520 * | | | | | |
1521 * |non-shared| shared (+) | private | slave (*) | invalid |
1522 * ***************************************************************************
b90fa9ae
RP
1523 * A bind operation clones the source mount and mounts the clone on the
1524 * destination mount.
1525 *
1526 * (++) the cloned mount is propagated to all the mounts in the propagation
1527 * tree of the destination mount and the cloned mount is added to
1528 * the peer group of the source mount.
1529 * (+) the cloned mount is created under the destination mount and is marked
1530 * as shared. The cloned mount is added to the peer group of the source
1531 * mount.
5afe0022
RP
1532 * (+++) the mount is propagated to all the mounts in the propagation tree
1533 * of the destination mount and the cloned mount is made slave
1534 * of the same master as that of the source mount. The cloned mount
1535 * is marked as 'shared and slave'.
1536 * (*) the cloned mount is made a slave of the same master as that of the
1537 * source mount.
1538 *
9676f0c6
RP
1539 * ---------------------------------------------------------------------------
1540 * | MOVE MOUNT OPERATION |
1541 * |**************************************************************************
1542 * | source-->| shared | private | slave | unbindable |
1543 * | dest | | | | |
1544 * | | | | | | |
1545 * | v | | | | |
1546 * |**************************************************************************
1547 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1548 * | | | | | |
1549 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1550 * ***************************************************************************
5afe0022
RP
1551 *
1552 * (+) the mount is moved to the destination. And is then propagated to
1553 * all the mounts in the propagation tree of the destination mount.
21444403 1554 * (+*) the mount is moved to the destination.
5afe0022
RP
1555 * (+++) the mount is moved to the destination and is then propagated to
1556 * all the mounts belonging to the destination mount's propagation tree.
1557 * the mount is marked as 'shared and slave'.
1558 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1559 *
1560 * if the source mount is a tree, the operations explained above is
1561 * applied to each mount in the tree.
1562 * Must be called without spinlocks held, since this function can sleep
1563 * in allocations.
1564 */
0fb54e50 1565static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1566 struct mount *dest_mnt,
1567 struct mountpoint *dest_mp,
1568 struct path *parent_path)
b90fa9ae
RP
1569{
1570 LIST_HEAD(tree_list);
315fc83e 1571 struct mount *child, *p;
719f5d7f 1572 int err;
b90fa9ae 1573
fc7be130 1574 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1575 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1576 if (err)
1577 goto out;
1578 }
84d17192 1579 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
719f5d7f
MS
1580 if (err)
1581 goto out_cleanup_ids;
b90fa9ae 1582
962830df 1583 br_write_lock(&vfsmount_lock);
df1a1ad2 1584
fc7be130 1585 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1586 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1587 set_mnt_shared(p);
b90fa9ae 1588 }
1a390689 1589 if (parent_path) {
0fb54e50 1590 detach_mnt(source_mnt, parent_path);
84d17192 1591 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1592 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1593 } else {
84d17192 1594 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
0fb54e50 1595 commit_tree(source_mnt);
21444403 1596 }
b90fa9ae 1597
1b8e5564
AV
1598 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1599 list_del_init(&child->mnt_hash);
4b2619a5 1600 commit_tree(child);
b90fa9ae 1601 }
962830df 1602 br_write_unlock(&vfsmount_lock);
99b7db7b 1603
b90fa9ae 1604 return 0;
719f5d7f
MS
1605
1606 out_cleanup_ids:
fc7be130 1607 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1608 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1609 out:
1610 return err;
b90fa9ae
RP
1611}
1612
84d17192 1613static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1614{
1615 struct vfsmount *mnt;
84d17192 1616 struct dentry *dentry = path->dentry;
b12cea91 1617retry:
84d17192
AV
1618 mutex_lock(&dentry->d_inode->i_mutex);
1619 if (unlikely(cant_mount(dentry))) {
1620 mutex_unlock(&dentry->d_inode->i_mutex);
1621 return ERR_PTR(-ENOENT);
b12cea91 1622 }
97216be0 1623 namespace_lock();
b12cea91 1624 mnt = lookup_mnt(path);
84d17192
AV
1625 if (likely(!mnt)) {
1626 struct mountpoint *mp = new_mountpoint(dentry);
1627 if (IS_ERR(mp)) {
97216be0 1628 namespace_unlock();
84d17192
AV
1629 mutex_unlock(&dentry->d_inode->i_mutex);
1630 return mp;
1631 }
1632 return mp;
1633 }
97216be0 1634 namespace_unlock();
b12cea91
AV
1635 mutex_unlock(&path->dentry->d_inode->i_mutex);
1636 path_put(path);
1637 path->mnt = mnt;
84d17192 1638 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1639 goto retry;
1640}
1641
84d17192 1642static void unlock_mount(struct mountpoint *where)
b12cea91 1643{
84d17192
AV
1644 struct dentry *dentry = where->m_dentry;
1645 put_mountpoint(where);
328e6d90 1646 namespace_unlock();
84d17192 1647 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1648}
1649
84d17192 1650static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1651{
95bc5f25 1652 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1653 return -EINVAL;
1654
84d17192 1655 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1656 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1657 return -ENOTDIR;
1658
84d17192 1659 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1660}
1661
7a2e8a8f
VA
1662/*
1663 * Sanity check the flags to change_mnt_propagation.
1664 */
1665
1666static int flags_to_propagation_type(int flags)
1667{
7c6e984d 1668 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1669
1670 /* Fail if any non-propagation flags are set */
1671 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1672 return 0;
1673 /* Only one propagation flag should be set */
1674 if (!is_power_of_2(type))
1675 return 0;
1676 return type;
1677}
1678
07b20889
RP
1679/*
1680 * recursively change the type of the mountpoint.
1681 */
0a0d8a46 1682static int do_change_type(struct path *path, int flag)
07b20889 1683{
315fc83e 1684 struct mount *m;
4b8b21f4 1685 struct mount *mnt = real_mount(path->mnt);
07b20889 1686 int recurse = flag & MS_REC;
7a2e8a8f 1687 int type;
719f5d7f 1688 int err = 0;
07b20889 1689
2d92ab3c 1690 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1691 return -EINVAL;
1692
7a2e8a8f
VA
1693 type = flags_to_propagation_type(flag);
1694 if (!type)
1695 return -EINVAL;
1696
97216be0 1697 namespace_lock();
719f5d7f
MS
1698 if (type == MS_SHARED) {
1699 err = invent_group_ids(mnt, recurse);
1700 if (err)
1701 goto out_unlock;
1702 }
1703
962830df 1704 br_write_lock(&vfsmount_lock);
909b0a88 1705 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1706 change_mnt_propagation(m, type);
962830df 1707 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1708
1709 out_unlock:
97216be0 1710 namespace_unlock();
719f5d7f 1711 return err;
07b20889
RP
1712}
1713
5ff9d8a6
EB
1714static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1715{
1716 struct mount *child;
1717 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1718 if (!is_subdir(child->mnt_mountpoint, dentry))
1719 continue;
1720
1721 if (child->mnt.mnt_flags & MNT_LOCKED)
1722 return true;
1723 }
1724 return false;
1725}
1726
1da177e4
LT
1727/*
1728 * do loopback mount.
1729 */
808d4e3c 1730static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1731 int recurse)
1da177e4 1732{
2d92ab3c 1733 struct path old_path;
84d17192
AV
1734 struct mount *mnt = NULL, *old, *parent;
1735 struct mountpoint *mp;
57eccb83 1736 int err;
1da177e4
LT
1737 if (!old_name || !*old_name)
1738 return -EINVAL;
815d405c 1739 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1740 if (err)
1741 return err;
1742
8823c079 1743 err = -EINVAL;
4ce5d2b1 1744 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1745 goto out;
1746
84d17192
AV
1747 mp = lock_mount(path);
1748 err = PTR_ERR(mp);
1749 if (IS_ERR(mp))
b12cea91
AV
1750 goto out;
1751
87129cc0 1752 old = real_mount(old_path.mnt);
84d17192 1753 parent = real_mount(path->mnt);
87129cc0 1754
1da177e4 1755 err = -EINVAL;
fc7be130 1756 if (IS_MNT_UNBINDABLE(old))
b12cea91 1757 goto out2;
9676f0c6 1758
84d17192 1759 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1760 goto out2;
1da177e4 1761
5ff9d8a6
EB
1762 if (!recurse && has_locked_children(old, old_path.dentry))
1763 goto out2;
1764
ccd48bc7 1765 if (recurse)
4ce5d2b1 1766 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1767 else
87129cc0 1768 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1769
be34d1a3
DH
1770 if (IS_ERR(mnt)) {
1771 err = PTR_ERR(mnt);
e9c5d8a5 1772 goto out2;
be34d1a3 1773 }
ccd48bc7 1774
5ff9d8a6
EB
1775 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1776
84d17192 1777 err = graft_tree(mnt, parent, mp);
ccd48bc7 1778 if (err) {
962830df 1779 br_write_lock(&vfsmount_lock);
328e6d90 1780 umount_tree(mnt, 0);
962830df 1781 br_write_unlock(&vfsmount_lock);
5b83d2c5 1782 }
b12cea91 1783out2:
84d17192 1784 unlock_mount(mp);
ccd48bc7 1785out:
2d92ab3c 1786 path_put(&old_path);
1da177e4
LT
1787 return err;
1788}
1789
2e4b7fcd
DH
1790static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1791{
1792 int error = 0;
1793 int readonly_request = 0;
1794
1795 if (ms_flags & MS_RDONLY)
1796 readonly_request = 1;
1797 if (readonly_request == __mnt_is_readonly(mnt))
1798 return 0;
1799
90563b19
EB
1800 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1801 return -EPERM;
1802
2e4b7fcd 1803 if (readonly_request)
83adc753 1804 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1805 else
83adc753 1806 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1807 return error;
1808}
1809
1da177e4
LT
1810/*
1811 * change filesystem flags. dir should be a physical root of filesystem.
1812 * If you've mounted a non-root directory somewhere and want to do remount
1813 * on it - tough luck.
1814 */
0a0d8a46 1815static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1816 void *data)
1817{
1818 int err;
2d92ab3c 1819 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1820 struct mount *mnt = real_mount(path->mnt);
1da177e4 1821
143c8c91 1822 if (!check_mnt(mnt))
1da177e4
LT
1823 return -EINVAL;
1824
2d92ab3c 1825 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1826 return -EINVAL;
1827
ff36fe2c
EP
1828 err = security_sb_remount(sb, data);
1829 if (err)
1830 return err;
1831
1da177e4 1832 down_write(&sb->s_umount);
2e4b7fcd 1833 if (flags & MS_BIND)
2d92ab3c 1834 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1835 else if (!capable(CAP_SYS_ADMIN))
1836 err = -EPERM;
4aa98cf7 1837 else
2e4b7fcd 1838 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1839 if (!err) {
962830df 1840 br_write_lock(&vfsmount_lock);
143c8c91
AV
1841 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1842 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 1843 touch_mnt_namespace(mnt->mnt_ns);
962830df 1844 br_write_unlock(&vfsmount_lock);
0e55a7cc 1845 }
6339dab8 1846 up_write(&sb->s_umount);
1da177e4
LT
1847 return err;
1848}
1849
cbbe362c 1850static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1851{
315fc83e 1852 struct mount *p;
909b0a88 1853 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1854 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1855 return 1;
1856 }
1857 return 0;
1858}
1859
808d4e3c 1860static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1861{
2d92ab3c 1862 struct path old_path, parent_path;
676da58d 1863 struct mount *p;
0fb54e50 1864 struct mount *old;
84d17192 1865 struct mountpoint *mp;
57eccb83 1866 int err;
1da177e4
LT
1867 if (!old_name || !*old_name)
1868 return -EINVAL;
2d92ab3c 1869 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1870 if (err)
1871 return err;
1872
84d17192
AV
1873 mp = lock_mount(path);
1874 err = PTR_ERR(mp);
1875 if (IS_ERR(mp))
cc53ce53
DH
1876 goto out;
1877
143c8c91 1878 old = real_mount(old_path.mnt);
fc7be130 1879 p = real_mount(path->mnt);
143c8c91 1880
1da177e4 1881 err = -EINVAL;
fc7be130 1882 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1883 goto out1;
1884
5ff9d8a6
EB
1885 if (old->mnt.mnt_flags & MNT_LOCKED)
1886 goto out1;
1887
1da177e4 1888 err = -EINVAL;
2d92ab3c 1889 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1890 goto out1;
1da177e4 1891
676da58d 1892 if (!mnt_has_parent(old))
21444403 1893 goto out1;
1da177e4 1894
2d92ab3c
AV
1895 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1896 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1897 goto out1;
1898 /*
1899 * Don't move a mount residing in a shared parent.
1900 */
fc7be130 1901 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1902 goto out1;
9676f0c6
RP
1903 /*
1904 * Don't move a mount tree containing unbindable mounts to a destination
1905 * mount which is shared.
1906 */
fc7be130 1907 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1908 goto out1;
1da177e4 1909 err = -ELOOP;
fc7be130 1910 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1911 if (p == old)
21444403 1912 goto out1;
1da177e4 1913
84d17192 1914 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1915 if (err)
21444403 1916 goto out1;
1da177e4
LT
1917
1918 /* if the mount is moved, it should no longer be expire
1919 * automatically */
6776db3d 1920 list_del_init(&old->mnt_expire);
1da177e4 1921out1:
84d17192 1922 unlock_mount(mp);
1da177e4 1923out:
1da177e4 1924 if (!err)
1a390689 1925 path_put(&parent_path);
2d92ab3c 1926 path_put(&old_path);
1da177e4
LT
1927 return err;
1928}
1929
9d412a43
AV
1930static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1931{
1932 int err;
1933 const char *subtype = strchr(fstype, '.');
1934 if (subtype) {
1935 subtype++;
1936 err = -EINVAL;
1937 if (!subtype[0])
1938 goto err;
1939 } else
1940 subtype = "";
1941
1942 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1943 err = -ENOMEM;
1944 if (!mnt->mnt_sb->s_subtype)
1945 goto err;
1946 return mnt;
1947
1948 err:
1949 mntput(mnt);
1950 return ERR_PTR(err);
1951}
1952
9d412a43
AV
1953/*
1954 * add a mount into a namespace's mount tree
1955 */
95bc5f25 1956static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 1957{
84d17192
AV
1958 struct mountpoint *mp;
1959 struct mount *parent;
9d412a43
AV
1960 int err;
1961
1962 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1963
84d17192
AV
1964 mp = lock_mount(path);
1965 if (IS_ERR(mp))
1966 return PTR_ERR(mp);
9d412a43 1967
84d17192 1968 parent = real_mount(path->mnt);
9d412a43 1969 err = -EINVAL;
84d17192 1970 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
1971 /* that's acceptable only for automounts done in private ns */
1972 if (!(mnt_flags & MNT_SHRINKABLE))
1973 goto unlock;
1974 /* ... and for those we'd better have mountpoint still alive */
84d17192 1975 if (!parent->mnt_ns)
156cacb1
AV
1976 goto unlock;
1977 }
9d412a43
AV
1978
1979 /* Refuse the same filesystem on the same mount point */
1980 err = -EBUSY;
95bc5f25 1981 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1982 path->mnt->mnt_root == path->dentry)
1983 goto unlock;
1984
1985 err = -EINVAL;
95bc5f25 1986 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1987 goto unlock;
1988
95bc5f25 1989 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 1990 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
1991
1992unlock:
84d17192 1993 unlock_mount(mp);
9d412a43
AV
1994 return err;
1995}
b1e75df4 1996
1da177e4
LT
1997/*
1998 * create a new mount for userspace and request it to be added into the
1999 * namespace's tree
2000 */
0c55cfc4 2001static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2002 int mnt_flags, const char *name, void *data)
1da177e4 2003{
0c55cfc4 2004 struct file_system_type *type;
9b40bc90 2005 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2006 struct vfsmount *mnt;
15f9a3f3 2007 int err;
1da177e4 2008
0c55cfc4 2009 if (!fstype)
1da177e4
LT
2010 return -EINVAL;
2011
0c55cfc4
EB
2012 type = get_fs_type(fstype);
2013 if (!type)
2014 return -ENODEV;
2015
2016 if (user_ns != &init_user_ns) {
2017 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2018 put_filesystem(type);
2019 return -EPERM;
2020 }
2021 /* Only in special cases allow devices from mounts
2022 * created outside the initial user namespace.
2023 */
2024 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2025 flags |= MS_NODEV;
2026 mnt_flags |= MNT_NODEV;
2027 }
2028 }
2029
2030 mnt = vfs_kern_mount(type, flags, name, data);
2031 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2032 !mnt->mnt_sb->s_subtype)
2033 mnt = fs_set_subtype(mnt, fstype);
2034
2035 put_filesystem(type);
1da177e4
LT
2036 if (IS_ERR(mnt))
2037 return PTR_ERR(mnt);
2038
95bc5f25 2039 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2040 if (err)
2041 mntput(mnt);
2042 return err;
1da177e4
LT
2043}
2044
19a167af
AV
2045int finish_automount(struct vfsmount *m, struct path *path)
2046{
6776db3d 2047 struct mount *mnt = real_mount(m);
19a167af
AV
2048 int err;
2049 /* The new mount record should have at least 2 refs to prevent it being
2050 * expired before we get a chance to add it
2051 */
6776db3d 2052 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2053
2054 if (m->mnt_sb == path->mnt->mnt_sb &&
2055 m->mnt_root == path->dentry) {
b1e75df4
AV
2056 err = -ELOOP;
2057 goto fail;
19a167af
AV
2058 }
2059
95bc5f25 2060 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2061 if (!err)
2062 return 0;
2063fail:
2064 /* remove m from any expiration list it may be on */
6776db3d 2065 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2066 namespace_lock();
6776db3d 2067 list_del_init(&mnt->mnt_expire);
97216be0 2068 namespace_unlock();
19a167af 2069 }
b1e75df4
AV
2070 mntput(m);
2071 mntput(m);
19a167af
AV
2072 return err;
2073}
2074
ea5b778a
DH
2075/**
2076 * mnt_set_expiry - Put a mount on an expiration list
2077 * @mnt: The mount to list.
2078 * @expiry_list: The list to add the mount to.
2079 */
2080void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2081{
97216be0 2082 namespace_lock();
ea5b778a 2083
6776db3d 2084 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2085
97216be0 2086 namespace_unlock();
ea5b778a
DH
2087}
2088EXPORT_SYMBOL(mnt_set_expiry);
2089
1da177e4
LT
2090/*
2091 * process a list of expirable mountpoints with the intent of discarding any
2092 * mountpoints that aren't in use and haven't been touched since last we came
2093 * here
2094 */
2095void mark_mounts_for_expiry(struct list_head *mounts)
2096{
761d5c38 2097 struct mount *mnt, *next;
1da177e4
LT
2098 LIST_HEAD(graveyard);
2099
2100 if (list_empty(mounts))
2101 return;
2102
97216be0 2103 namespace_lock();
962830df 2104 br_write_lock(&vfsmount_lock);
1da177e4
LT
2105
2106 /* extract from the expiration list every vfsmount that matches the
2107 * following criteria:
2108 * - only referenced by its parent vfsmount
2109 * - still marked for expiry (marked on the last call here; marks are
2110 * cleared by mntput())
2111 */
6776db3d 2112 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2113 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2114 propagate_mount_busy(mnt, 1))
1da177e4 2115 continue;
6776db3d 2116 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2117 }
bcc5c7d2 2118 while (!list_empty(&graveyard)) {
6776db3d 2119 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2120 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2121 umount_tree(mnt, 1);
bcc5c7d2 2122 }
962830df 2123 br_write_unlock(&vfsmount_lock);
3ab6abee 2124 namespace_unlock();
5528f911
TM
2125}
2126
2127EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2128
2129/*
2130 * Ripoff of 'select_parent()'
2131 *
2132 * search the list of submounts for a given mountpoint, and move any
2133 * shrinkable submounts to the 'graveyard' list.
2134 */
692afc31 2135static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2136{
692afc31 2137 struct mount *this_parent = parent;
5528f911
TM
2138 struct list_head *next;
2139 int found = 0;
2140
2141repeat:
6b41d536 2142 next = this_parent->mnt_mounts.next;
5528f911 2143resume:
6b41d536 2144 while (next != &this_parent->mnt_mounts) {
5528f911 2145 struct list_head *tmp = next;
6b41d536 2146 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2147
2148 next = tmp->next;
692afc31 2149 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2150 continue;
5528f911
TM
2151 /*
2152 * Descend a level if the d_mounts list is non-empty.
2153 */
6b41d536 2154 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2155 this_parent = mnt;
2156 goto repeat;
2157 }
1da177e4 2158
1ab59738 2159 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2160 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2161 found++;
2162 }
1da177e4 2163 }
5528f911
TM
2164 /*
2165 * All done at this level ... ascend and resume the search
2166 */
2167 if (this_parent != parent) {
6b41d536 2168 next = this_parent->mnt_child.next;
0714a533 2169 this_parent = this_parent->mnt_parent;
5528f911
TM
2170 goto resume;
2171 }
2172 return found;
2173}
2174
2175/*
2176 * process a list of expirable mountpoints with the intent of discarding any
2177 * submounts of a specific parent mountpoint
99b7db7b
NP
2178 *
2179 * vfsmount_lock must be held for write
5528f911 2180 */
b54b9be7 2181static void shrink_submounts(struct mount *mnt)
5528f911
TM
2182{
2183 LIST_HEAD(graveyard);
761d5c38 2184 struct mount *m;
5528f911 2185
5528f911 2186 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2187 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2188 while (!list_empty(&graveyard)) {
761d5c38 2189 m = list_first_entry(&graveyard, struct mount,
6776db3d 2190 mnt_expire);
143c8c91 2191 touch_mnt_namespace(m->mnt_ns);
328e6d90 2192 umount_tree(m, 1);
bcc5c7d2
AV
2193 }
2194 }
1da177e4
LT
2195}
2196
1da177e4
LT
2197/*
2198 * Some copy_from_user() implementations do not return the exact number of
2199 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2200 * Note that this function differs from copy_from_user() in that it will oops
2201 * on bad values of `to', rather than returning a short copy.
2202 */
b58fed8b
RP
2203static long exact_copy_from_user(void *to, const void __user * from,
2204 unsigned long n)
1da177e4
LT
2205{
2206 char *t = to;
2207 const char __user *f = from;
2208 char c;
2209
2210 if (!access_ok(VERIFY_READ, from, n))
2211 return n;
2212
2213 while (n) {
2214 if (__get_user(c, f)) {
2215 memset(t, 0, n);
2216 break;
2217 }
2218 *t++ = c;
2219 f++;
2220 n--;
2221 }
2222 return n;
2223}
2224
b58fed8b 2225int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2226{
2227 int i;
2228 unsigned long page;
2229 unsigned long size;
b58fed8b 2230
1da177e4
LT
2231 *where = 0;
2232 if (!data)
2233 return 0;
2234
2235 if (!(page = __get_free_page(GFP_KERNEL)))
2236 return -ENOMEM;
2237
2238 /* We only care that *some* data at the address the user
2239 * gave us is valid. Just in case, we'll zero
2240 * the remainder of the page.
2241 */
2242 /* copy_from_user cannot cross TASK_SIZE ! */
2243 size = TASK_SIZE - (unsigned long)data;
2244 if (size > PAGE_SIZE)
2245 size = PAGE_SIZE;
2246
2247 i = size - exact_copy_from_user((void *)page, data, size);
2248 if (!i) {
b58fed8b 2249 free_page(page);
1da177e4
LT
2250 return -EFAULT;
2251 }
2252 if (i != PAGE_SIZE)
2253 memset((char *)page + i, 0, PAGE_SIZE - i);
2254 *where = page;
2255 return 0;
2256}
2257
eca6f534
VN
2258int copy_mount_string(const void __user *data, char **where)
2259{
2260 char *tmp;
2261
2262 if (!data) {
2263 *where = NULL;
2264 return 0;
2265 }
2266
2267 tmp = strndup_user(data, PAGE_SIZE);
2268 if (IS_ERR(tmp))
2269 return PTR_ERR(tmp);
2270
2271 *where = tmp;
2272 return 0;
2273}
2274
1da177e4
LT
2275/*
2276 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2277 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2278 *
2279 * data is a (void *) that can point to any structure up to
2280 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2281 * information (or be NULL).
2282 *
2283 * Pre-0.97 versions of mount() didn't have a flags word.
2284 * When the flags word was introduced its top half was required
2285 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2286 * Therefore, if this magic number is present, it carries no information
2287 * and must be discarded.
2288 */
808d4e3c
AV
2289long do_mount(const char *dev_name, const char *dir_name,
2290 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2291{
2d92ab3c 2292 struct path path;
1da177e4
LT
2293 int retval = 0;
2294 int mnt_flags = 0;
2295
2296 /* Discard magic */
2297 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2298 flags &= ~MS_MGC_MSK;
2299
2300 /* Basic sanity checks */
2301
2302 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2303 return -EINVAL;
1da177e4
LT
2304
2305 if (data_page)
2306 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2307
a27ab9f2
TH
2308 /* ... and get the mountpoint */
2309 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2310 if (retval)
2311 return retval;
2312
2313 retval = security_sb_mount(dev_name, &path,
2314 type_page, flags, data_page);
0d5cadb8
AV
2315 if (!retval && !may_mount())
2316 retval = -EPERM;
a27ab9f2
TH
2317 if (retval)
2318 goto dput_out;
2319
613cbe3d
AK
2320 /* Default to relatime unless overriden */
2321 if (!(flags & MS_NOATIME))
2322 mnt_flags |= MNT_RELATIME;
0a1c01c9 2323
1da177e4
LT
2324 /* Separate the per-mountpoint flags */
2325 if (flags & MS_NOSUID)
2326 mnt_flags |= MNT_NOSUID;
2327 if (flags & MS_NODEV)
2328 mnt_flags |= MNT_NODEV;
2329 if (flags & MS_NOEXEC)
2330 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2331 if (flags & MS_NOATIME)
2332 mnt_flags |= MNT_NOATIME;
2333 if (flags & MS_NODIRATIME)
2334 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2335 if (flags & MS_STRICTATIME)
2336 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2337 if (flags & MS_RDONLY)
2338 mnt_flags |= MNT_READONLY;
fc33a7bb 2339
7a4dec53 2340 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2341 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2342 MS_STRICTATIME);
1da177e4 2343
1da177e4 2344 if (flags & MS_REMOUNT)
2d92ab3c 2345 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2346 data_page);
2347 else if (flags & MS_BIND)
2d92ab3c 2348 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2349 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2350 retval = do_change_type(&path, flags);
1da177e4 2351 else if (flags & MS_MOVE)
2d92ab3c 2352 retval = do_move_mount(&path, dev_name);
1da177e4 2353 else
2d92ab3c 2354 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2355 dev_name, data_page);
2356dput_out:
2d92ab3c 2357 path_put(&path);
1da177e4
LT
2358 return retval;
2359}
2360
771b1371
EB
2361static void free_mnt_ns(struct mnt_namespace *ns)
2362{
98f842e6 2363 proc_free_inum(ns->proc_inum);
771b1371
EB
2364 put_user_ns(ns->user_ns);
2365 kfree(ns);
2366}
2367
8823c079
EB
2368/*
2369 * Assign a sequence number so we can detect when we attempt to bind
2370 * mount a reference to an older mount namespace into the current
2371 * mount namespace, preventing reference counting loops. A 64bit
2372 * number incrementing at 10Ghz will take 12,427 years to wrap which
2373 * is effectively never, so we can ignore the possibility.
2374 */
2375static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2376
771b1371 2377static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2378{
2379 struct mnt_namespace *new_ns;
98f842e6 2380 int ret;
cf8d2c11
TM
2381
2382 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2383 if (!new_ns)
2384 return ERR_PTR(-ENOMEM);
98f842e6
EB
2385 ret = proc_alloc_inum(&new_ns->proc_inum);
2386 if (ret) {
2387 kfree(new_ns);
2388 return ERR_PTR(ret);
2389 }
8823c079 2390 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2391 atomic_set(&new_ns->count, 1);
2392 new_ns->root = NULL;
2393 INIT_LIST_HEAD(&new_ns->list);
2394 init_waitqueue_head(&new_ns->poll);
2395 new_ns->event = 0;
771b1371 2396 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2397 return new_ns;
2398}
2399
741a2951
JD
2400/*
2401 * Allocate a new namespace structure and populate it with contents
2402 * copied from the namespace of the passed in task structure.
2403 */
e3222c4e 2404static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2405 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2406{
6b3286ed 2407 struct mnt_namespace *new_ns;
7f2da1e7 2408 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2409 struct mount *p, *q;
be08d6d2 2410 struct mount *old = mnt_ns->root;
cb338d06 2411 struct mount *new;
7a472ef4 2412 int copy_flags;
1da177e4 2413
771b1371 2414 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2415 if (IS_ERR(new_ns))
2416 return new_ns;
1da177e4 2417
97216be0 2418 namespace_lock();
1da177e4 2419 /* First pass: copy the tree topology */
4ce5d2b1 2420 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
7a472ef4 2421 if (user_ns != mnt_ns->user_ns)
132c94e3 2422 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2423 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2424 if (IS_ERR(new)) {
328e6d90 2425 namespace_unlock();
771b1371 2426 free_mnt_ns(new_ns);
be34d1a3 2427 return ERR_CAST(new);
1da177e4 2428 }
be08d6d2 2429 new_ns->root = new;
1a4eeaf2 2430 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2431
2432 /*
2433 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2434 * as belonging to new namespace. We have already acquired a private
2435 * fs_struct, so tsk->fs->lock is not needed.
2436 */
909b0a88 2437 p = old;
cb338d06 2438 q = new;
1da177e4 2439 while (p) {
143c8c91 2440 q->mnt_ns = new_ns;
1da177e4 2441 if (fs) {
315fc83e
AV
2442 if (&p->mnt == fs->root.mnt) {
2443 fs->root.mnt = mntget(&q->mnt);
315fc83e 2444 rootmnt = &p->mnt;
1da177e4 2445 }
315fc83e
AV
2446 if (&p->mnt == fs->pwd.mnt) {
2447 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2448 pwdmnt = &p->mnt;
1da177e4 2449 }
1da177e4 2450 }
909b0a88
AV
2451 p = next_mnt(p, old);
2452 q = next_mnt(q, new);
4ce5d2b1
EB
2453 if (!q)
2454 break;
2455 while (p->mnt.mnt_root != q->mnt.mnt_root)
2456 p = next_mnt(p, old);
1da177e4 2457 }
328e6d90 2458 namespace_unlock();
1da177e4 2459
1da177e4 2460 if (rootmnt)
f03c6599 2461 mntput(rootmnt);
1da177e4 2462 if (pwdmnt)
f03c6599 2463 mntput(pwdmnt);
1da177e4 2464
741a2951
JD
2465 return new_ns;
2466}
2467
213dd266 2468struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2469 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2470{
6b3286ed 2471 struct mnt_namespace *new_ns;
741a2951 2472
e3222c4e 2473 BUG_ON(!ns);
6b3286ed 2474 get_mnt_ns(ns);
741a2951
JD
2475
2476 if (!(flags & CLONE_NEWNS))
e3222c4e 2477 return ns;
741a2951 2478
771b1371 2479 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2480
6b3286ed 2481 put_mnt_ns(ns);
e3222c4e 2482 return new_ns;
1da177e4
LT
2483}
2484
cf8d2c11
TM
2485/**
2486 * create_mnt_ns - creates a private namespace and adds a root filesystem
2487 * @mnt: pointer to the new root filesystem mountpoint
2488 */
1a4eeaf2 2489static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2490{
771b1371 2491 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2492 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2493 struct mount *mnt = real_mount(m);
2494 mnt->mnt_ns = new_ns;
be08d6d2 2495 new_ns->root = mnt;
b1983cd8 2496 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2497 } else {
1a4eeaf2 2498 mntput(m);
cf8d2c11
TM
2499 }
2500 return new_ns;
2501}
cf8d2c11 2502
ea441d11
AV
2503struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2504{
2505 struct mnt_namespace *ns;
d31da0f0 2506 struct super_block *s;
ea441d11
AV
2507 struct path path;
2508 int err;
2509
2510 ns = create_mnt_ns(mnt);
2511 if (IS_ERR(ns))
2512 return ERR_CAST(ns);
2513
2514 err = vfs_path_lookup(mnt->mnt_root, mnt,
2515 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2516
2517 put_mnt_ns(ns);
2518
2519 if (err)
2520 return ERR_PTR(err);
2521
2522 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2523 s = path.mnt->mnt_sb;
2524 atomic_inc(&s->s_active);
ea441d11
AV
2525 mntput(path.mnt);
2526 /* lock the sucker */
d31da0f0 2527 down_write(&s->s_umount);
ea441d11
AV
2528 /* ... and return the root of (sub)tree on it */
2529 return path.dentry;
2530}
2531EXPORT_SYMBOL(mount_subtree);
2532
bdc480e3
HC
2533SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2534 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2535{
eca6f534
VN
2536 int ret;
2537 char *kernel_type;
91a27b2a 2538 struct filename *kernel_dir;
eca6f534 2539 char *kernel_dev;
1da177e4 2540 unsigned long data_page;
1da177e4 2541
eca6f534
VN
2542 ret = copy_mount_string(type, &kernel_type);
2543 if (ret < 0)
2544 goto out_type;
1da177e4 2545
eca6f534
VN
2546 kernel_dir = getname(dir_name);
2547 if (IS_ERR(kernel_dir)) {
2548 ret = PTR_ERR(kernel_dir);
2549 goto out_dir;
2550 }
1da177e4 2551
eca6f534
VN
2552 ret = copy_mount_string(dev_name, &kernel_dev);
2553 if (ret < 0)
2554 goto out_dev;
1da177e4 2555
eca6f534
VN
2556 ret = copy_mount_options(data, &data_page);
2557 if (ret < 0)
2558 goto out_data;
1da177e4 2559
91a27b2a 2560 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2561 (void *) data_page);
1da177e4 2562
eca6f534
VN
2563 free_page(data_page);
2564out_data:
2565 kfree(kernel_dev);
2566out_dev:
2567 putname(kernel_dir);
2568out_dir:
2569 kfree(kernel_type);
2570out_type:
2571 return ret;
1da177e4
LT
2572}
2573
afac7cba
AV
2574/*
2575 * Return true if path is reachable from root
2576 *
2577 * namespace_sem or vfsmount_lock is held
2578 */
643822b4 2579bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2580 const struct path *root)
2581{
643822b4 2582 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2583 dentry = mnt->mnt_mountpoint;
0714a533 2584 mnt = mnt->mnt_parent;
afac7cba 2585 }
643822b4 2586 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2587}
2588
2589int path_is_under(struct path *path1, struct path *path2)
2590{
2591 int res;
962830df 2592 br_read_lock(&vfsmount_lock);
643822b4 2593 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2594 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2595 return res;
2596}
2597EXPORT_SYMBOL(path_is_under);
2598
1da177e4
LT
2599/*
2600 * pivot_root Semantics:
2601 * Moves the root file system of the current process to the directory put_old,
2602 * makes new_root as the new root file system of the current process, and sets
2603 * root/cwd of all processes which had them on the current root to new_root.
2604 *
2605 * Restrictions:
2606 * The new_root and put_old must be directories, and must not be on the
2607 * same file system as the current process root. The put_old must be
2608 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2609 * pointed to by put_old must yield the same directory as new_root. No other
2610 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2611 *
4a0d11fa
NB
2612 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2613 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2614 * in this situation.
2615 *
1da177e4
LT
2616 * Notes:
2617 * - we don't move root/cwd if they are not at the root (reason: if something
2618 * cared enough to change them, it's probably wrong to force them elsewhere)
2619 * - it's okay to pick a root that isn't the root of a file system, e.g.
2620 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2621 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2622 * first.
2623 */
3480b257
HC
2624SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2625 const char __user *, put_old)
1da177e4 2626{
2d8f3038 2627 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2628 struct mount *new_mnt, *root_mnt, *old_mnt;
2629 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2630 int error;
2631
9b40bc90 2632 if (!may_mount())
1da177e4
LT
2633 return -EPERM;
2634
2d8f3038 2635 error = user_path_dir(new_root, &new);
1da177e4
LT
2636 if (error)
2637 goto out0;
1da177e4 2638
2d8f3038 2639 error = user_path_dir(put_old, &old);
1da177e4
LT
2640 if (error)
2641 goto out1;
2642
2d8f3038 2643 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2644 if (error)
2645 goto out2;
1da177e4 2646
f7ad3c6b 2647 get_fs_root(current->fs, &root);
84d17192
AV
2648 old_mp = lock_mount(&old);
2649 error = PTR_ERR(old_mp);
2650 if (IS_ERR(old_mp))
b12cea91
AV
2651 goto out3;
2652
1da177e4 2653 error = -EINVAL;
419148da
AV
2654 new_mnt = real_mount(new.mnt);
2655 root_mnt = real_mount(root.mnt);
84d17192
AV
2656 old_mnt = real_mount(old.mnt);
2657 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2658 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2659 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2660 goto out4;
143c8c91 2661 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2662 goto out4;
5ff9d8a6
EB
2663 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2664 goto out4;
1da177e4 2665 error = -ENOENT;
f3da392e 2666 if (d_unlinked(new.dentry))
b12cea91 2667 goto out4;
1da177e4 2668 error = -EBUSY;
84d17192 2669 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2670 goto out4; /* loop, on the same file system */
1da177e4 2671 error = -EINVAL;
8c3ee42e 2672 if (root.mnt->mnt_root != root.dentry)
b12cea91 2673 goto out4; /* not a mountpoint */
676da58d 2674 if (!mnt_has_parent(root_mnt))
b12cea91 2675 goto out4; /* not attached */
84d17192 2676 root_mp = root_mnt->mnt_mp;
2d8f3038 2677 if (new.mnt->mnt_root != new.dentry)
b12cea91 2678 goto out4; /* not a mountpoint */
676da58d 2679 if (!mnt_has_parent(new_mnt))
b12cea91 2680 goto out4; /* not attached */
4ac91378 2681 /* make sure we can reach put_old from new_root */
84d17192 2682 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2683 goto out4;
84d17192 2684 root_mp->m_count++; /* pin it so it won't go away */
962830df 2685 br_write_lock(&vfsmount_lock);
419148da
AV
2686 detach_mnt(new_mnt, &parent_path);
2687 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2688 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2689 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2690 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2691 }
4ac91378 2692 /* mount old root on put_old */
84d17192 2693 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2694 /* mount new_root on / */
84d17192 2695 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2696 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2697 br_write_unlock(&vfsmount_lock);
2d8f3038 2698 chroot_fs_refs(&root, &new);
84d17192 2699 put_mountpoint(root_mp);
1da177e4 2700 error = 0;
b12cea91 2701out4:
84d17192 2702 unlock_mount(old_mp);
b12cea91
AV
2703 if (!error) {
2704 path_put(&root_parent);
2705 path_put(&parent_path);
2706 }
2707out3:
8c3ee42e 2708 path_put(&root);
b12cea91 2709out2:
2d8f3038 2710 path_put(&old);
1da177e4 2711out1:
2d8f3038 2712 path_put(&new);
1da177e4 2713out0:
1da177e4 2714 return error;
1da177e4
LT
2715}
2716
2717static void __init init_mount_tree(void)
2718{
2719 struct vfsmount *mnt;
6b3286ed 2720 struct mnt_namespace *ns;
ac748a09 2721 struct path root;
0c55cfc4 2722 struct file_system_type *type;
1da177e4 2723
0c55cfc4
EB
2724 type = get_fs_type("rootfs");
2725 if (!type)
2726 panic("Can't find rootfs type");
2727 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2728 put_filesystem(type);
1da177e4
LT
2729 if (IS_ERR(mnt))
2730 panic("Can't create rootfs");
b3e19d92 2731
3b22edc5
TM
2732 ns = create_mnt_ns(mnt);
2733 if (IS_ERR(ns))
1da177e4 2734 panic("Can't allocate initial namespace");
6b3286ed
KK
2735
2736 init_task.nsproxy->mnt_ns = ns;
2737 get_mnt_ns(ns);
2738
be08d6d2
AV
2739 root.mnt = mnt;
2740 root.dentry = mnt->mnt_root;
ac748a09
JB
2741
2742 set_fs_pwd(current->fs, &root);
2743 set_fs_root(current->fs, &root);
1da177e4
LT
2744}
2745
74bf17cf 2746void __init mnt_init(void)
1da177e4 2747{
13f14b4d 2748 unsigned u;
15a67dd8 2749 int err;
1da177e4 2750
7d6fec45 2751 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2752 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2753
b58fed8b 2754 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
84d17192 2755 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4 2756
84d17192 2757 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2758 panic("Failed to allocate mount hash table\n");
2759
80cdc6da 2760 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2761
2762 for (u = 0; u < HASH_SIZE; u++)
2763 INIT_LIST_HEAD(&mount_hashtable[u]);
84d17192
AV
2764 for (u = 0; u < HASH_SIZE; u++)
2765 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2766
962830df 2767 br_lock_init(&vfsmount_lock);
99b7db7b 2768
15a67dd8
RD
2769 err = sysfs_init();
2770 if (err)
2771 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2772 __func__, err);
00d26666
GKH
2773 fs_kobj = kobject_create_and_add("fs", NULL);
2774 if (!fs_kobj)
8e24eea7 2775 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2776 init_rootfs();
2777 init_mount_tree();
2778}
2779
616511d0 2780void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2781{
d498b25a 2782 if (!atomic_dec_and_test(&ns->count))
616511d0 2783 return;
7b00ed6f 2784 drop_collected_mounts(&ns->root->mnt);
771b1371 2785 free_mnt_ns(ns);
1da177e4 2786}
9d412a43
AV
2787
2788struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2789{
423e0ab0
TC
2790 struct vfsmount *mnt;
2791 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2792 if (!IS_ERR(mnt)) {
2793 /*
2794 * it is a longterm mount, don't release mnt until
2795 * we unmount before file sys is unregistered
2796 */
f7a99c5b 2797 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2798 }
2799 return mnt;
9d412a43
AV
2800}
2801EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2802
2803void kern_unmount(struct vfsmount *mnt)
2804{
2805 /* release long term mount so mount point can be released */
2806 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2807 br_write_lock(&vfsmount_lock);
2808 real_mount(mnt)->mnt_ns = NULL;
2809 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2810 mntput(mnt);
2811 }
2812}
2813EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2814
2815bool our_mnt(struct vfsmount *mnt)
2816{
143c8c91 2817 return check_mnt(real_mount(mnt));
02125a82 2818}
8823c079 2819
3151527e
EB
2820bool current_chrooted(void)
2821{
2822 /* Does the current process have a non-standard root */
2823 struct path ns_root;
2824 struct path fs_root;
2825 bool chrooted;
2826
2827 /* Find the namespace root */
2828 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2829 ns_root.dentry = ns_root.mnt->mnt_root;
2830 path_get(&ns_root);
2831 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2832 ;
2833
2834 get_fs_root(current->fs, &fs_root);
2835
2836 chrooted = !path_equal(&fs_root, &ns_root);
2837
2838 path_put(&fs_root);
2839 path_put(&ns_root);
2840
2841 return chrooted;
2842}
2843
e51db735 2844bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
2845{
2846 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2847 struct mount *mnt;
e51db735 2848 bool visible = false;
87a8ebd6 2849
e51db735
EB
2850 if (unlikely(!ns))
2851 return false;
2852
44bb4385 2853 down_read(&namespace_sem);
87a8ebd6 2854 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
2855 struct mount *child;
2856 if (mnt->mnt.mnt_sb->s_type != type)
2857 continue;
2858
2859 /* This mount is not fully visible if there are any child mounts
2860 * that cover anything except for empty directories.
2861 */
2862 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2863 struct inode *inode = child->mnt_mountpoint->d_inode;
2864 if (!S_ISDIR(inode->i_mode))
2865 goto next;
2866 if (inode->i_nlink != 2)
2867 goto next;
87a8ebd6 2868 }
e51db735
EB
2869 visible = true;
2870 goto found;
2871 next: ;
87a8ebd6 2872 }
e51db735 2873found:
44bb4385 2874 up_read(&namespace_sem);
e51db735 2875 return visible;
87a8ebd6
EB
2876}
2877
8823c079
EB
2878static void *mntns_get(struct task_struct *task)
2879{
2880 struct mnt_namespace *ns = NULL;
2881 struct nsproxy *nsproxy;
2882
2883 rcu_read_lock();
2884 nsproxy = task_nsproxy(task);
2885 if (nsproxy) {
2886 ns = nsproxy->mnt_ns;
2887 get_mnt_ns(ns);
2888 }
2889 rcu_read_unlock();
2890
2891 return ns;
2892}
2893
2894static void mntns_put(void *ns)
2895{
2896 put_mnt_ns(ns);
2897}
2898
2899static int mntns_install(struct nsproxy *nsproxy, void *ns)
2900{
2901 struct fs_struct *fs = current->fs;
2902 struct mnt_namespace *mnt_ns = ns;
2903 struct path root;
2904
0c55cfc4 2905 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
2906 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2907 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 2908 return -EPERM;
8823c079
EB
2909
2910 if (fs->users != 1)
2911 return -EINVAL;
2912
2913 get_mnt_ns(mnt_ns);
2914 put_mnt_ns(nsproxy->mnt_ns);
2915 nsproxy->mnt_ns = mnt_ns;
2916
2917 /* Find the root */
2918 root.mnt = &mnt_ns->root->mnt;
2919 root.dentry = mnt_ns->root->mnt.mnt_root;
2920 path_get(&root);
2921 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2922 ;
2923
2924 /* Update the pwd and root */
2925 set_fs_pwd(fs, &root);
2926 set_fs_root(fs, &root);
2927
2928 path_put(&root);
2929 return 0;
2930}
2931
98f842e6
EB
2932static unsigned int mntns_inum(void *ns)
2933{
2934 struct mnt_namespace *mnt_ns = ns;
2935 return mnt_ns->proc_inum;
2936}
2937
8823c079
EB
2938const struct proc_ns_operations mntns_operations = {
2939 .name = "mnt",
2940 .type = CLONE_NEWNS,
2941 .get = mntns_get,
2942 .put = mntns_put,
2943 .install = mntns_install,
98f842e6 2944 .inum = mntns_inum,
8823c079 2945};