]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/fec_mxc.c
phylib: phy_startup() should return an error code on failure
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
0b23fb36
IY
1/*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <malloc.h>
26#include <net.h>
27#include <miiphy.h>
28#include "fec_mxc.h"
29
30#include <asm/arch/clock.h>
31#include <asm/arch/imx-regs.h>
32#include <asm/io.h>
33#include <asm/errno.h>
34
35DECLARE_GLOBAL_DATA_PTR;
36
37#ifndef CONFIG_MII
38#error "CONFIG_MII has to be defined!"
39#endif
40
5c1ad3e6
EN
41#ifndef CONFIG_FEC_XCV_TYPE
42#define CONFIG_FEC_XCV_TYPE MII100
392b8502
MV
43#endif
44
be7e87e2
MV
45/*
46 * The i.MX28 operates with packets in big endian. We need to swap them before
47 * sending and after receiving.
48 */
5c1ad3e6
EN
49#ifdef CONFIG_MX28
50#define CONFIG_FEC_MXC_SWAP_PACKET
51#endif
52
53#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
54
55/* Check various alignment issues at compile time */
56#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
57#error "ARCH_DMA_MINALIGN must be multiple of 16!"
58#endif
59
60#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
61 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
62#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
be7e87e2
MV
63#endif
64
0b23fb36
IY
65#undef DEBUG
66
67struct nbuf {
68 uint8_t data[1500]; /**< actual data */
69 int length; /**< actual length */
70 int used; /**< buffer in use or not */
71 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
72};
73
5c1ad3e6 74#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
75static void swap_packet(uint32_t *packet, int length)
76{
77 int i;
78
79 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
80 packet[i] = __swab32(packet[i]);
81}
82#endif
83
0b23fb36
IY
84/*
85 * MII-interface related functions
86 */
13947f43
TK
87static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
88 uint8_t regAddr)
0b23fb36 89{
0b23fb36
IY
90 uint32_t reg; /* convenient holder for the PHY register */
91 uint32_t phy; /* convenient holder for the PHY */
92 uint32_t start;
13947f43 93 int val;
0b23fb36
IY
94
95 /*
96 * reading from any PHY's register is done by properly
97 * programming the FEC's MII data register.
98 */
d133b881 99 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
100 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
101 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
102
103 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 104 phy | reg, &eth->mii_data);
0b23fb36
IY
105
106 /*
107 * wait for the related interrupt
108 */
a60d1e5b 109 start = get_timer(0);
d133b881 110 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
111 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
112 printf("Read MDIO failed...\n");
113 return -1;
114 }
115 }
116
117 /*
118 * clear mii interrupt bit
119 */
d133b881 120 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
121
122 /*
123 * it's now safe to read the PHY's register
124 */
13947f43
TK
125 val = (unsigned short)readl(&eth->mii_data);
126 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
127 regAddr, val);
128 return val;
0b23fb36
IY
129}
130
4294b248
SB
131static void fec_mii_setspeed(struct fec_priv *fec)
132{
133 /*
134 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
135 * and do not drop the Preamble.
136 */
137 writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
138 &fec->eth->mii_speed);
13947f43 139 debug("%s: mii_speed %08x\n", __func__, readl(&fec->eth->mii_speed));
4294b248 140}
0b23fb36 141
13947f43
TK
142static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
143 uint8_t regAddr, uint16_t data)
144{
0b23fb36
IY
145 uint32_t reg; /* convenient holder for the PHY register */
146 uint32_t phy; /* convenient holder for the PHY */
147 uint32_t start;
148
149 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
150 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
151
152 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 153 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36
IY
154
155 /*
156 * wait for the MII interrupt
157 */
a60d1e5b 158 start = get_timer(0);
d133b881 159 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
160 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
161 printf("Write MDIO failed...\n");
162 return -1;
163 }
164 }
165
166 /*
167 * clear MII interrupt bit
168 */
d133b881 169 writel(FEC_IEVENT_MII, &eth->ievent);
13947f43 170 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
0b23fb36
IY
171 regAddr, data);
172
173 return 0;
174}
175
13947f43
TK
176int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
177{
178 return fec_mdio_read(bus->priv, phyAddr, regAddr);
179}
180
181int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
182 u16 data)
183{
184 return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
185}
186
187#ifndef CONFIG_PHYLIB
0b23fb36
IY
188static int miiphy_restart_aneg(struct eth_device *dev)
189{
b774fe9d
SB
190 int ret = 0;
191#if !defined(CONFIG_FEC_MXC_NO_ANEG)
9e27e9dc 192 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 193 struct ethernet_regs *eth = fec->bus->priv;
9e27e9dc 194
0b23fb36
IY
195 /*
196 * Wake up from sleep if necessary
197 * Reset PHY, then delay 300ns
198 */
cb17b92d 199#ifdef CONFIG_MX27
13947f43 200 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
cb17b92d 201#endif
13947f43 202 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
0b23fb36
IY
203 udelay(1000);
204
205 /*
206 * Set the auto-negotiation advertisement register bits
207 */
13947f43 208 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
8ef583a0
MF
209 LPA_100FULL | LPA_100HALF | LPA_10FULL |
210 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
13947f43 211 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
8ef583a0 212 BMCR_ANENABLE | BMCR_ANRESTART);
2e5f4421
MV
213
214 if (fec->mii_postcall)
215 ret = fec->mii_postcall(fec->phy_id);
216
b774fe9d 217#endif
2e5f4421 218 return ret;
0b23fb36
IY
219}
220
221static int miiphy_wait_aneg(struct eth_device *dev)
222{
223 uint32_t start;
13947f43 224 int status;
9e27e9dc 225 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 226 struct ethernet_regs *eth = fec->bus->priv;
0b23fb36
IY
227
228 /*
229 * Wait for AN completion
230 */
a60d1e5b 231 start = get_timer(0);
0b23fb36
IY
232 do {
233 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
234 printf("%s: Autonegotiation timeout\n", dev->name);
235 return -1;
236 }
237
13947f43
TK
238 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
239 if (status < 0) {
240 printf("%s: Autonegotiation failed. status: %d\n",
0b23fb36
IY
241 dev->name, status);
242 return -1;
243 }
8ef583a0 244 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
245
246 return 0;
247}
13947f43
TK
248#endif
249
0b23fb36
IY
250static int fec_rx_task_enable(struct fec_priv *fec)
251{
252 writel(1 << 24, &fec->eth->r_des_active);
253 return 0;
254}
255
256static int fec_rx_task_disable(struct fec_priv *fec)
257{
258 return 0;
259}
260
261static int fec_tx_task_enable(struct fec_priv *fec)
262{
263 writel(1 << 24, &fec->eth->x_des_active);
264 return 0;
265}
266
267static int fec_tx_task_disable(struct fec_priv *fec)
268{
269 return 0;
270}
271
272/**
273 * Initialize receive task's buffer descriptors
274 * @param[in] fec all we know about the device yet
275 * @param[in] count receive buffer count to be allocated
5c1ad3e6 276 * @param[in] dsize desired size of each receive buffer
0b23fb36
IY
277 * @return 0 on success
278 *
279 * For this task we need additional memory for the data buffers. And each
280 * data buffer requires some alignment. Thy must be aligned to a specific
5c1ad3e6 281 * boundary each.
0b23fb36 282 */
5c1ad3e6 283static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
0b23fb36 284{
5c1ad3e6
EN
285 uint32_t size;
286 int i;
287
0b23fb36 288 /*
5c1ad3e6
EN
289 * Allocate memory for the buffers. This allocation respects the
290 * alignment
0b23fb36 291 */
5c1ad3e6
EN
292 size = roundup(dsize, ARCH_DMA_MINALIGN);
293 for (i = 0; i < count; i++) {
294 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
295 if (data_ptr == 0) {
296 uint8_t *data = memalign(ARCH_DMA_MINALIGN,
297 size);
298 if (!data) {
299 printf("%s: error allocating rxbuf %d\n",
300 __func__, i);
301 goto err;
302 }
303 writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
304 } /* needs allocation */
305 writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
306 writew(0, &fec->rbd_base[i].data_length);
307 }
308
309 /* Mark the last RBD to close the ring. */
310 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
0b23fb36
IY
311 fec->rbd_index = 0;
312
313 return 0;
5c1ad3e6
EN
314
315err:
316 for (; i >= 0; i--) {
317 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
318 free((void *)data_ptr);
319 }
320
321 return -ENOMEM;
0b23fb36
IY
322}
323
324/**
325 * Initialize transmit task's buffer descriptors
326 * @param[in] fec all we know about the device yet
327 *
328 * Transmit buffers are created externally. We only have to init the BDs here.\n
329 * Note: There is a race condition in the hardware. When only one BD is in
330 * use it must be marked with the WRAP bit to use it for every transmitt.
331 * This bit in combination with the READY bit results into double transmit
332 * of each data buffer. It seems the state machine checks READY earlier then
333 * resetting it after the first transfer.
334 * Using two BDs solves this issue.
335 */
336static void fec_tbd_init(struct fec_priv *fec)
337{
5c1ad3e6
EN
338 unsigned addr = (unsigned)fec->tbd_base;
339 unsigned size = roundup(2 * sizeof(struct fec_bd),
340 ARCH_DMA_MINALIGN);
0b23fb36
IY
341 writew(0x0000, &fec->tbd_base[0].status);
342 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
343 fec->tbd_index = 0;
5c1ad3e6 344 flush_dcache_range(addr, addr+size);
0b23fb36
IY
345}
346
347/**
348 * Mark the given read buffer descriptor as free
349 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
350 * @param[in] pRbd buffer descriptor to mark free again
351 */
352static void fec_rbd_clean(int last, struct fec_bd *pRbd)
353{
5c1ad3e6 354 unsigned short flags = FEC_RBD_EMPTY;
0b23fb36 355 if (last)
5c1ad3e6
EN
356 flags |= FEC_RBD_WRAP;
357 writew(flags, &pRbd->status);
0b23fb36
IY
358 writew(0, &pRbd->data_length);
359}
360
be252b65
FE
361static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
362 unsigned char *mac)
0b23fb36 363{
be252b65 364 imx_get_mac_from_fuse(dev_id, mac);
2e236bf2 365 return !is_valid_ether_addr(mac);
0b23fb36
IY
366}
367
4294b248 368static int fec_set_hwaddr(struct eth_device *dev)
0b23fb36 369{
4294b248 370 uchar *mac = dev->enetaddr;
0b23fb36
IY
371 struct fec_priv *fec = (struct fec_priv *)dev->priv;
372
373 writel(0, &fec->eth->iaddr1);
374 writel(0, &fec->eth->iaddr2);
375 writel(0, &fec->eth->gaddr1);
376 writel(0, &fec->eth->gaddr2);
377
378 /*
379 * Set physical address
380 */
381 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
382 &fec->eth->paddr1);
383 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
384
385 return 0;
386}
387
13947f43
TK
388static void fec_eth_phy_config(struct eth_device *dev)
389{
390#ifdef CONFIG_PHYLIB
391 struct fec_priv *fec = (struct fec_priv *)dev->priv;
392 struct phy_device *phydev;
393
394 phydev = phy_connect(fec->bus, fec->phy_id, dev,
395 PHY_INTERFACE_MODE_RGMII);
396 if (phydev) {
397 fec->phydev = phydev;
398 phy_config(phydev);
399 }
400#endif
401}
402
a5990b26
MV
403/*
404 * Do initial configuration of the FEC registers
405 */
406static void fec_reg_setup(struct fec_priv *fec)
407{
408 uint32_t rcntrl;
409
410 /*
411 * Set interrupt mask register
412 */
413 writel(0x00000000, &fec->eth->imask);
414
415 /*
416 * Clear FEC-Lite interrupt event register(IEVENT)
417 */
418 writel(0xffffffff, &fec->eth->ievent);
419
420
421 /*
422 * Set FEC-Lite receive control register(R_CNTRL):
423 */
424
425 /* Start with frame length = 1518, common for all modes. */
426 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
427 if (fec->xcv_type == SEVENWIRE)
428 rcntrl |= FEC_RCNTRL_FCE;
429 else if (fec->xcv_type == RGMII)
430 rcntrl |= FEC_RCNTRL_RGMII;
431 else if (fec->xcv_type == RMII)
432 rcntrl |= FEC_RCNTRL_RMII;
433 else /* MII mode */
434 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
435
436 writel(rcntrl, &fec->eth->r_cntrl);
437}
438
0b23fb36
IY
439/**
440 * Start the FEC engine
441 * @param[in] dev Our device to handle
442 */
443static int fec_open(struct eth_device *edev)
444{
445 struct fec_priv *fec = (struct fec_priv *)edev->priv;
28774cba 446 int speed;
5c1ad3e6
EN
447 uint32_t addr, size;
448 int i;
0b23fb36
IY
449
450 debug("fec_open: fec_open(dev)\n");
451 /* full-duplex, heartbeat disabled */
452 writel(1 << 2, &fec->eth->x_cntrl);
453 fec->rbd_index = 0;
454
5c1ad3e6
EN
455 /* Invalidate all descriptors */
456 for (i = 0; i < FEC_RBD_NUM - 1; i++)
457 fec_rbd_clean(0, &fec->rbd_base[i]);
458 fec_rbd_clean(1, &fec->rbd_base[i]);
459
460 /* Flush the descriptors into RAM */
461 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
462 ARCH_DMA_MINALIGN);
463 addr = (uint32_t)fec->rbd_base;
464 flush_dcache_range(addr, addr + size);
465
28774cba 466#ifdef FEC_QUIRK_ENET_MAC
2ef2b950
JL
467 /* Enable ENET HW endian SWAP */
468 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
469 &fec->eth->ecntrl);
470 /* Enable ENET store and forward mode */
471 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
472 &fec->eth->x_wmrk);
473#endif
0b23fb36
IY
474 /*
475 * Enable FEC-Lite controller
476 */
cb17b92d
JR
477 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
478 &fec->eth->ecntrl);
96912453 479#if defined(CONFIG_MX25) || defined(CONFIG_MX53)
740d6ae5
JR
480 udelay(100);
481 /*
482 * setup the MII gasket for RMII mode
483 */
484
485 /* disable the gasket */
486 writew(0, &fec->eth->miigsk_enr);
487
488 /* wait for the gasket to be disabled */
489 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
490 udelay(2);
491
492 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
493 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
494
495 /* re-enable the gasket */
496 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
497
498 /* wait until MII gasket is ready */
499 int max_loops = 10;
500 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
501 if (--max_loops <= 0) {
502 printf("WAIT for MII Gasket ready timed out\n");
503 break;
504 }
505 }
506#endif
0b23fb36 507
13947f43
TK
508#ifdef CONFIG_PHYLIB
509 if (!fec->phydev)
510 fec_eth_phy_config(edev);
511 if (fec->phydev) {
512 /* Start up the PHY */
513 phy_startup(fec->phydev);
514 speed = fec->phydev->speed;
515 } else {
516 speed = _100BASET;
517 }
518#else
0b23fb36 519 miiphy_wait_aneg(edev);
28774cba 520 speed = miiphy_speed(edev->name, fec->phy_id);
9e27e9dc 521 miiphy_duplex(edev->name, fec->phy_id);
13947f43 522#endif
0b23fb36 523
28774cba
TK
524#ifdef FEC_QUIRK_ENET_MAC
525 {
526 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
527 u32 rcr = (readl(&fec->eth->r_cntrl) &
528 ~(FEC_RCNTRL_RMII | FEC_RCNTRL_RMII_10T)) |
529 FEC_RCNTRL_RGMII | FEC_RCNTRL_MII_MODE;
530 if (speed == _1000BASET)
531 ecr |= FEC_ECNTRL_SPEED;
532 else if (speed != _100BASET)
533 rcr |= FEC_RCNTRL_RMII_10T;
534 writel(ecr, &fec->eth->ecntrl);
535 writel(rcr, &fec->eth->r_cntrl);
536 }
537#endif
538 debug("%s:Speed=%i\n", __func__, speed);
539
0b23fb36
IY
540 /*
541 * Enable SmartDMA receive task
542 */
543 fec_rx_task_enable(fec);
544
545 udelay(100000);
546 return 0;
547}
548
549static int fec_init(struct eth_device *dev, bd_t* bd)
550{
0b23fb36 551 struct fec_priv *fec = (struct fec_priv *)dev->priv;
9e27e9dc 552 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
5c1ad3e6
EN
553 uint32_t size;
554 int i, ret;
0b23fb36 555
e9319f11
JR
556 /* Initialize MAC address */
557 fec_set_hwaddr(dev);
558
0b23fb36 559 /*
5c1ad3e6
EN
560 * Allocate transmit descriptors, there are two in total. This
561 * allocation respects cache alignment.
0b23fb36 562 */
5c1ad3e6
EN
563 if (!fec->tbd_base) {
564 size = roundup(2 * sizeof(struct fec_bd),
565 ARCH_DMA_MINALIGN);
566 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
567 if (!fec->tbd_base) {
568 ret = -ENOMEM;
569 goto err1;
570 }
571 memset(fec->tbd_base, 0, size);
572 fec_tbd_init(fec);
573 flush_dcache_range((unsigned)fec->tbd_base, size);
0b23fb36 574 }
0b23fb36 575
5c1ad3e6
EN
576 /*
577 * Allocate receive descriptors. This allocation respects cache
578 * alignment.
579 */
580 if (!fec->rbd_base) {
581 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
582 ARCH_DMA_MINALIGN);
583 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
584 if (!fec->rbd_base) {
585 ret = -ENOMEM;
586 goto err2;
587 }
588 memset(fec->rbd_base, 0, size);
589 /*
590 * Initialize RxBD ring
591 */
592 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
593 ret = -ENOMEM;
594 goto err3;
595 }
596 flush_dcache_range((unsigned)fec->rbd_base,
597 (unsigned)fec->rbd_base + size);
598 }
0b23fb36 599
a5990b26 600 fec_reg_setup(fec);
9eb3770b
MV
601
602 if (fec->xcv_type == MII10 || fec->xcv_type == MII100)
4294b248 603 fec_mii_setspeed(fec);
9eb3770b 604
0b23fb36
IY
605 /*
606 * Set Opcode/Pause Duration Register
607 */
608 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
609 writel(0x2, &fec->eth->x_wmrk);
610 /*
611 * Set multicast address filter
612 */
613 writel(0x00000000, &fec->eth->gaddr1);
614 writel(0x00000000, &fec->eth->gaddr2);
615
616
617 /* clear MIB RAM */
9e27e9dc
MV
618 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
619 writel(0, i);
0b23fb36
IY
620
621 /* FIFO receive start register */
622 writel(0x520, &fec->eth->r_fstart);
623
624 /* size and address of each buffer */
625 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
626 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
627 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
628
13947f43 629#ifndef CONFIG_PHYLIB
0b23fb36
IY
630 if (fec->xcv_type != SEVENWIRE)
631 miiphy_restart_aneg(dev);
13947f43 632#endif
0b23fb36
IY
633 fec_open(dev);
634 return 0;
5c1ad3e6
EN
635
636err3:
637 free(fec->rbd_base);
638err2:
639 free(fec->tbd_base);
640err1:
641 return ret;
0b23fb36
IY
642}
643
644/**
645 * Halt the FEC engine
646 * @param[in] dev Our device to handle
647 */
648static void fec_halt(struct eth_device *dev)
649{
9e27e9dc 650 struct fec_priv *fec = (struct fec_priv *)dev->priv;
0b23fb36
IY
651 int counter = 0xffff;
652
653 /*
654 * issue graceful stop command to the FEC transmitter if necessary
655 */
cb17b92d 656 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
0b23fb36
IY
657 &fec->eth->x_cntrl);
658
659 debug("eth_halt: wait for stop regs\n");
660 /*
661 * wait for graceful stop to register
662 */
663 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 664 udelay(1);
0b23fb36
IY
665
666 /*
667 * Disable SmartDMA tasks
668 */
669 fec_tx_task_disable(fec);
670 fec_rx_task_disable(fec);
671
672 /*
673 * Disable the Ethernet Controller
674 * Note: this will also reset the BD index counter!
675 */
740d6ae5
JR
676 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
677 &fec->eth->ecntrl);
0b23fb36
IY
678 fec->rbd_index = 0;
679 fec->tbd_index = 0;
0b23fb36
IY
680 debug("eth_halt: done\n");
681}
682
683/**
684 * Transmit one frame
685 * @param[in] dev Our ethernet device to handle
686 * @param[in] packet Pointer to the data to be transmitted
687 * @param[in] length Data count in bytes
688 * @return 0 on success
689 */
442dac4c 690static int fec_send(struct eth_device *dev, void *packet, int length)
0b23fb36
IY
691{
692 unsigned int status;
5c1ad3e6
EN
693 uint32_t size;
694 uint32_t addr;
0b23fb36
IY
695
696 /*
697 * This routine transmits one frame. This routine only accepts
698 * 6-byte Ethernet addresses.
699 */
700 struct fec_priv *fec = (struct fec_priv *)dev->priv;
701
702 /*
703 * Check for valid length of data.
704 */
705 if ((length > 1500) || (length <= 0)) {
4294b248 706 printf("Payload (%d) too large\n", length);
0b23fb36
IY
707 return -1;
708 }
709
710 /*
5c1ad3e6
EN
711 * Setup the transmit buffer. We are always using the first buffer for
712 * transmission, the second will be empty and only used to stop the DMA
713 * engine. We also flush the packet to RAM here to avoid cache trouble.
0b23fb36 714 */
5c1ad3e6 715#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
716 swap_packet((uint32_t *)packet, length);
717#endif
5c1ad3e6
EN
718
719 addr = (uint32_t)packet;
720 size = roundup(length, ARCH_DMA_MINALIGN);
721 flush_dcache_range(addr, addr + size);
722
0b23fb36 723 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
5c1ad3e6
EN
724 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
725
0b23fb36
IY
726 /*
727 * update BD's status now
728 * This block:
729 * - is always the last in a chain (means no chain)
730 * - should transmitt the CRC
731 * - might be the last BD in the list, so the address counter should
732 * wrap (-> keep the WRAP flag)
733 */
734 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
735 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
736 writew(status, &fec->tbd_base[fec->tbd_index].status);
737
5c1ad3e6
EN
738 /*
739 * Flush data cache. This code flushes both TX descriptors to RAM.
740 * After this code, the descriptors will be safely in RAM and we
741 * can start DMA.
742 */
743 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
744 addr = (uint32_t)fec->tbd_base;
745 flush_dcache_range(addr, addr + size);
746
0b23fb36
IY
747 /*
748 * Enable SmartDMA transmit task
749 */
750 fec_tx_task_enable(fec);
751
752 /*
5c1ad3e6
EN
753 * Wait until frame is sent. On each turn of the wait cycle, we must
754 * invalidate data cache to see what's really in RAM. Also, we need
755 * barrier here.
0b23fb36 756 */
5c1ad3e6 757 invalidate_dcache_range(addr, addr + size);
0b23fb36 758 while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
cb17b92d 759 udelay(1);
5c1ad3e6 760 invalidate_dcache_range(addr, addr + size);
0b23fb36 761 }
5c1ad3e6 762
0b23fb36
IY
763 debug("fec_send: status 0x%x index %d\n",
764 readw(&fec->tbd_base[fec->tbd_index].status),
765 fec->tbd_index);
766 /* for next transmission use the other buffer */
767 if (fec->tbd_index)
768 fec->tbd_index = 0;
769 else
770 fec->tbd_index = 1;
771
772 return 0;
773}
774
775/**
776 * Pull one frame from the card
777 * @param[in] dev Our ethernet device to handle
778 * @return Length of packet read
779 */
780static int fec_recv(struct eth_device *dev)
781{
782 struct fec_priv *fec = (struct fec_priv *)dev->priv;
783 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
784 unsigned long ievent;
785 int frame_length, len = 0;
786 struct nbuf *frame;
787 uint16_t bd_status;
5c1ad3e6
EN
788 uint32_t addr, size;
789 int i;
0b23fb36
IY
790 uchar buff[FEC_MAX_PKT_SIZE];
791
792 /*
793 * Check if any critical events have happened
794 */
795 ievent = readl(&fec->eth->ievent);
796 writel(ievent, &fec->eth->ievent);
eda959f3 797 debug("fec_recv: ievent 0x%lx\n", ievent);
0b23fb36
IY
798 if (ievent & FEC_IEVENT_BABR) {
799 fec_halt(dev);
800 fec_init(dev, fec->bd);
801 printf("some error: 0x%08lx\n", ievent);
802 return 0;
803 }
804 if (ievent & FEC_IEVENT_HBERR) {
805 /* Heartbeat error */
806 writel(0x00000001 | readl(&fec->eth->x_cntrl),
807 &fec->eth->x_cntrl);
808 }
809 if (ievent & FEC_IEVENT_GRA) {
810 /* Graceful stop complete */
811 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
812 fec_halt(dev);
813 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
814 &fec->eth->x_cntrl);
815 fec_init(dev, fec->bd);
816 }
817 }
818
819 /*
5c1ad3e6
EN
820 * Read the buffer status. Before the status can be read, the data cache
821 * must be invalidated, because the data in RAM might have been changed
822 * by DMA. The descriptors are properly aligned to cachelines so there's
823 * no need to worry they'd overlap.
824 *
825 * WARNING: By invalidating the descriptor here, we also invalidate
826 * the descriptors surrounding this one. Therefore we can NOT change the
827 * contents of this descriptor nor the surrounding ones. The problem is
828 * that in order to mark the descriptor as processed, we need to change
829 * the descriptor. The solution is to mark the whole cache line when all
830 * descriptors in the cache line are processed.
0b23fb36 831 */
5c1ad3e6
EN
832 addr = (uint32_t)rbd;
833 addr &= ~(ARCH_DMA_MINALIGN - 1);
834 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
835 invalidate_dcache_range(addr, addr + size);
836
0b23fb36
IY
837 bd_status = readw(&rbd->status);
838 debug("fec_recv: status 0x%x\n", bd_status);
839
840 if (!(bd_status & FEC_RBD_EMPTY)) {
841 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
842 ((readw(&rbd->data_length) - 4) > 14)) {
843 /*
844 * Get buffer address and size
845 */
846 frame = (struct nbuf *)readl(&rbd->data_pointer);
847 frame_length = readw(&rbd->data_length) - 4;
5c1ad3e6
EN
848 /*
849 * Invalidate data cache over the buffer
850 */
851 addr = (uint32_t)frame;
852 size = roundup(frame_length, ARCH_DMA_MINALIGN);
853 invalidate_dcache_range(addr, addr + size);
854
0b23fb36
IY
855 /*
856 * Fill the buffer and pass it to upper layers
857 */
5c1ad3e6 858#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
859 swap_packet((uint32_t *)frame->data, frame_length);
860#endif
0b23fb36
IY
861 memcpy(buff, frame->data, frame_length);
862 NetReceive(buff, frame_length);
863 len = frame_length;
864 } else {
865 if (bd_status & FEC_RBD_ERR)
866 printf("error frame: 0x%08lx 0x%08x\n",
867 (ulong)rbd->data_pointer,
868 bd_status);
869 }
5c1ad3e6 870
0b23fb36 871 /*
5c1ad3e6
EN
872 * Free the current buffer, restart the engine and move forward
873 * to the next buffer. Here we check if the whole cacheline of
874 * descriptors was already processed and if so, we mark it free
875 * as whole.
0b23fb36 876 */
5c1ad3e6
EN
877 size = RXDESC_PER_CACHELINE - 1;
878 if ((fec->rbd_index & size) == size) {
879 i = fec->rbd_index - size;
880 addr = (uint32_t)&fec->rbd_base[i];
881 for (; i <= fec->rbd_index ; i++) {
882 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
883 &fec->rbd_base[i]);
884 }
885 flush_dcache_range(addr,
886 addr + ARCH_DMA_MINALIGN);
887 }
888
0b23fb36
IY
889 fec_rx_task_enable(fec);
890 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
891 }
892 debug("fec_recv: stop\n");
893
894 return len;
895}
896
9e27e9dc 897static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
0b23fb36 898{
0b23fb36 899 struct eth_device *edev;
9e27e9dc 900 struct fec_priv *fec;
13947f43 901 struct mii_dev *bus;
0b23fb36 902 unsigned char ethaddr[6];
e382fb48
MV
903 uint32_t start;
904 int ret = 0;
0b23fb36
IY
905
906 /* create and fill edev struct */
907 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
908 if (!edev) {
9e27e9dc 909 puts("fec_mxc: not enough malloc memory for eth_device\n");
e382fb48
MV
910 ret = -ENOMEM;
911 goto err1;
9e27e9dc
MV
912 }
913
914 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
915 if (!fec) {
916 puts("fec_mxc: not enough malloc memory for fec_priv\n");
e382fb48
MV
917 ret = -ENOMEM;
918 goto err2;
0b23fb36 919 }
9e27e9dc 920
de0b9576 921 memset(edev, 0, sizeof(*edev));
9e27e9dc
MV
922 memset(fec, 0, sizeof(*fec));
923
0b23fb36
IY
924 edev->priv = fec;
925 edev->init = fec_init;
926 edev->send = fec_send;
927 edev->recv = fec_recv;
928 edev->halt = fec_halt;
fb57ec97 929 edev->write_hwaddr = fec_set_hwaddr;
0b23fb36 930
9e27e9dc 931 fec->eth = (struct ethernet_regs *)base_addr;
0b23fb36
IY
932 fec->bd = bd;
933
392b8502 934 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
0b23fb36
IY
935
936 /* Reset chip. */
cb17b92d 937 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
e382fb48
MV
938 start = get_timer(0);
939 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
940 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
941 printf("FEC MXC: Timeout reseting chip\n");
942 goto err3;
943 }
0b23fb36 944 udelay(10);
e382fb48 945 }
0b23fb36 946
a5990b26 947 fec_reg_setup(fec);
4294b248 948 fec_mii_setspeed(fec);
0b23fb36 949
9e27e9dc
MV
950 if (dev_id == -1) {
951 sprintf(edev->name, "FEC");
952 fec->dev_id = 0;
953 } else {
954 sprintf(edev->name, "FEC%i", dev_id);
955 fec->dev_id = dev_id;
956 }
957 fec->phy_id = phy_id;
0b23fb36 958
13947f43
TK
959 bus = mdio_alloc();
960 if (!bus) {
961 printf("mdio_alloc failed\n");
962 ret = -ENOMEM;
963 goto err3;
964 }
965 bus->read = fec_phy_read;
966 bus->write = fec_phy_write;
967 sprintf(bus->name, edev->name);
5c1ad3e6 968#ifdef CONFIG_MX28
13947f43
TK
969 /*
970 * The i.MX28 has two ethernet interfaces, but they are not equal.
971 * Only the first one can access the MDIO bus.
972 */
973 bus->priv = (struct ethernet_regs *)MXS_ENET0_BASE;
974#else
975 bus->priv = fec->eth;
976#endif
977 ret = mdio_register(bus);
978 if (ret) {
979 printf("mdio_register failed\n");
980 free(bus);
981 ret = -ENOMEM;
982 goto err3;
983 }
984 fec->bus = bus;
0b23fb36
IY
985 eth_register(edev);
986
be252b65
FE
987 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
988 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
4294b248 989 memcpy(edev->enetaddr, ethaddr, 6);
0b23fb36 990 }
13947f43
TK
991 /* Configure phy */
992 fec_eth_phy_config(edev);
e382fb48
MV
993 return ret;
994
995err3:
996 free(fec);
997err2:
998 free(edev);
999err1:
1000 return ret;
0b23fb36
IY
1001}
1002
5c1ad3e6 1003#ifndef CONFIG_FEC_MXC_MULTI
0b23fb36
IY
1004int fecmxc_initialize(bd_t *bd)
1005{
1006 int lout = 1;
1007
1008 debug("eth_init: fec_probe(bd)\n");
9e27e9dc
MV
1009 lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
1010
1011 return lout;
1012}
1013#endif
1014
1015int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1016{
1017 int lout = 1;
1018
1019 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1020 lout = fec_probe(bd, dev_id, phy_id, addr);
0b23fb36
IY
1021
1022 return lout;
1023}
2e5f4421 1024
13947f43 1025#ifndef CONFIG_PHYLIB
2e5f4421
MV
1026int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1027{
1028 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1029 fec->mii_postcall = cb;
1030 return 0;
1031}
13947f43 1032#endif