]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: FIX: Opened handle is not closed
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb
DW
43
44#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45#define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
8e59f3d8 54#define MPB_SECTOR_CNT 2210
c2c087e6 55#define IMSM_RESERVED_SECTORS 4096
979d38be 56#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
57
58/* Disk configuration info. */
59#define IMSM_MAX_DEVICES 255
60struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
64#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 67 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71};
72
73/* RAID map configuration infos. */
74struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80#define IMSM_T_STATE_NORMAL 0
81#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
82#define IMSM_T_STATE_DEGRADED 2
83#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
84 __u8 raid_level;
85#define IMSM_T_RAID0 0
86#define IMSM_T_RAID1 1
87#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 91 __u8 ddf;
cdddbdbc 92 __u32 filler[7]; /* expansion area */
7eef0453 93#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
95 * top byte contains some flags
96 */
cdddbdbc
DW
97} __attribute__ ((packed));
98
99struct imsm_vol {
f8f603f1 100 __u32 curr_migr_unit;
fe7ed8cb 101 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 102 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
103#define MIGR_INIT 0
104#define MIGR_REBUILD 1
105#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106#define MIGR_GEN_MIGR 3
107#define MIGR_STATE_CHANGE 4
1484e727 108#define MIGR_REPAIR 5
cdddbdbc
DW
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
fe7ed8cb
DW
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
cdddbdbc
DW
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117} __attribute__ ((packed));
118
119struct imsm_dev {
fe7ed8cb 120 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
121 __u32 size_low;
122 __u32 size_high;
fe7ed8cb
DW
123#define DEV_BOOTABLE __cpu_to_le32(0x01)
124#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125#define DEV_READ_COALESCING __cpu_to_le32(0x04)
126#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148} __attribute__ ((packed));
149
150struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166#define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
604b746f 170 /* here comes BBM logs */
cdddbdbc
DW
171} __attribute__ ((packed));
172
604b746f
JD
173#define BBM_LOG_MAX_ENTRIES 254
174
175struct bbm_log_entry {
176 __u64 defective_block_start;
177#define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181} __attribute__ ((__packed__));
182
183struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190} __attribute__ ((__packed__));
191
192
cdddbdbc
DW
193#ifndef MDASSEMBLE
194static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195#endif
196
8e59f3d8
AK
197#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
198
199#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
200
201#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
202 * be recovered using srcMap */
203#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
204 * already been migrated and must
205 * be recovered from checkpoint area */
206struct migr_record {
207 __u32 rec_status; /* Status used to determine how to restart
208 * migration in case it aborts
209 * in some fashion */
210 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
211 __u32 family_num; /* Family number of MPB
212 * containing the RaidDev
213 * that is migrating */
214 __u32 ascending_migr; /* True if migrating in increasing
215 * order of lbas */
216 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
217 __u32 dest_depth_per_unit; /* Num member blocks each destMap
218 * member disk
219 * advances per unit-of-operation */
220 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
221 __u32 dest_1st_member_lba; /* First member lba on first
222 * stripe of destination */
223 __u32 num_migr_units; /* Total num migration units-of-op */
224 __u32 post_migr_vol_cap; /* Size of volume after
225 * migration completes */
226 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
227 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
228 * migration ckpt record was read from
229 * (for recovered migrations) */
230} __attribute__ ((__packed__));
231
1484e727
DW
232static __u8 migr_type(struct imsm_dev *dev)
233{
234 if (dev->vol.migr_type == MIGR_VERIFY &&
235 dev->status & DEV_VERIFY_AND_FIX)
236 return MIGR_REPAIR;
237 else
238 return dev->vol.migr_type;
239}
240
241static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
242{
243 /* for compatibility with older oroms convert MIGR_REPAIR, into
244 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
245 */
246 if (migr_type == MIGR_REPAIR) {
247 dev->vol.migr_type = MIGR_VERIFY;
248 dev->status |= DEV_VERIFY_AND_FIX;
249 } else {
250 dev->vol.migr_type = migr_type;
251 dev->status &= ~DEV_VERIFY_AND_FIX;
252 }
253}
254
87eb16df 255static unsigned int sector_count(__u32 bytes)
cdddbdbc 256{
87eb16df
DW
257 return ((bytes + (512-1)) & (~(512-1))) / 512;
258}
cdddbdbc 259
87eb16df
DW
260static unsigned int mpb_sectors(struct imsm_super *mpb)
261{
262 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
263}
264
ba2de7ba
DW
265struct intel_dev {
266 struct imsm_dev *dev;
267 struct intel_dev *next;
f21e18ca 268 unsigned index;
ba2de7ba
DW
269};
270
88654014
LM
271struct intel_hba {
272 enum sys_dev_type type;
273 char *path;
274 char *pci_id;
275 struct intel_hba *next;
276};
277
1a64be56
LM
278enum action {
279 DISK_REMOVE = 1,
280 DISK_ADD
281};
cdddbdbc
DW
282/* internal representation of IMSM metadata */
283struct intel_super {
284 union {
949c47a0
DW
285 void *buf; /* O_DIRECT buffer for reading/writing metadata */
286 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 287 };
8e59f3d8
AK
288 union {
289 void *migr_rec_buf; /* buffer for I/O operations */
290 struct migr_record *migr_rec; /* migration record */
291 };
949c47a0 292 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
293 void *next_buf; /* for realloc'ing buf from the manager */
294 size_t next_len;
c2c087e6 295 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 296 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 297 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 298 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 299 struct intel_dev *devlist;
cdddbdbc
DW
300 struct dl {
301 struct dl *next;
302 int index;
303 __u8 serial[MAX_RAID_SERIAL_LEN];
304 int major, minor;
305 char *devname;
b9f594fe 306 struct imsm_disk disk;
cdddbdbc 307 int fd;
0dcecb2e
DW
308 int extent_cnt;
309 struct extent *e; /* for determining freespace @ create */
efb30e7f 310 int raiddisk; /* slot to fill in autolayout */
1a64be56 311 enum action action;
cdddbdbc 312 } *disks;
1a64be56
LM
313 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
314 active */
47ee5a45 315 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 316 struct bbm_log *bbm_log;
88654014 317 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 318 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
319 struct intel_super *next; /* (temp) list for disambiguating family_num */
320};
321
322struct intel_disk {
323 struct imsm_disk disk;
324 #define IMSM_UNKNOWN_OWNER (-1)
325 int owner;
326 struct intel_disk *next;
cdddbdbc
DW
327};
328
c2c087e6
DW
329struct extent {
330 unsigned long long start, size;
331};
332
694575e7
KW
333/* definitions of reshape process types */
334enum imsm_reshape_type {
335 CH_TAKEOVER,
b5347799 336 CH_MIGRATION,
694575e7
KW
337};
338
88758e9d
DW
339/* definition of messages passed to imsm_process_update */
340enum imsm_update_type {
341 update_activate_spare,
8273f55e 342 update_create_array,
33414a01 343 update_kill_array,
aa534678 344 update_rename_array,
1a64be56 345 update_add_remove_disk,
78b10e66 346 update_reshape_container_disks,
48c5303a 347 update_reshape_migration,
2d40f3a1
AK
348 update_takeover,
349 update_general_migration_checkpoint,
88758e9d
DW
350};
351
352struct imsm_update_activate_spare {
353 enum imsm_update_type type;
d23fe947 354 struct dl *dl;
88758e9d
DW
355 int slot;
356 int array;
357 struct imsm_update_activate_spare *next;
358};
359
78b10e66
N
360struct geo_params {
361 int dev_id;
362 char *dev_name;
363 long long size;
364 int level;
365 int layout;
366 int chunksize;
367 int raid_disks;
368};
369
bb025c2f
KW
370enum takeover_direction {
371 R10_TO_R0,
372 R0_TO_R10
373};
374struct imsm_update_takeover {
375 enum imsm_update_type type;
376 int subarray;
377 enum takeover_direction direction;
378};
78b10e66
N
379
380struct imsm_update_reshape {
381 enum imsm_update_type type;
382 int old_raid_disks;
383 int new_raid_disks;
48c5303a
PC
384
385 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
386};
387
388struct imsm_update_reshape_migration {
389 enum imsm_update_type type;
390 int old_raid_disks;
391 int new_raid_disks;
392 /* fields for array migration changes
393 */
394 int subdev;
395 int new_level;
396 int new_layout;
4bba0439 397 int new_chunksize;
48c5303a 398
d195167d 399 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
400};
401
2d40f3a1
AK
402struct imsm_update_general_migration_checkpoint {
403 enum imsm_update_type type;
404 __u32 curr_migr_unit;
405};
406
54c2c1ea
DW
407struct disk_info {
408 __u8 serial[MAX_RAID_SERIAL_LEN];
409};
410
8273f55e
DW
411struct imsm_update_create_array {
412 enum imsm_update_type type;
8273f55e 413 int dev_idx;
6a3e913e 414 struct imsm_dev dev;
8273f55e
DW
415};
416
33414a01
DW
417struct imsm_update_kill_array {
418 enum imsm_update_type type;
419 int dev_idx;
420};
421
aa534678
DW
422struct imsm_update_rename_array {
423 enum imsm_update_type type;
424 __u8 name[MAX_RAID_SERIAL_LEN];
425 int dev_idx;
426};
427
1a64be56 428struct imsm_update_add_remove_disk {
43dad3d6
DW
429 enum imsm_update_type type;
430};
431
88654014
LM
432
433static const char *_sys_dev_type[] = {
434 [SYS_DEV_UNKNOWN] = "Unknown",
435 [SYS_DEV_SAS] = "SAS",
436 [SYS_DEV_SATA] = "SATA"
437};
438
439const char *get_sys_dev_type(enum sys_dev_type type)
440{
441 if (type >= SYS_DEV_MAX)
442 type = SYS_DEV_UNKNOWN;
443
444 return _sys_dev_type[type];
445}
446
447static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
448{
449 struct intel_hba *result = malloc(sizeof(*result));
450 if (result) {
451 result->type = device->type;
452 result->path = strdup(device->path);
453 result->next = NULL;
454 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
455 result->pci_id++;
456 }
457 return result;
458}
459
460static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
461{
462 struct intel_hba *result=NULL;
463 for (result = hba; result; result = result->next) {
464 if (result->type == device->type && strcmp(result->path, device->path) == 0)
465 break;
466 }
467 return result;
468}
469
b4cf4cba 470static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
471{
472 struct intel_hba *hba;
473
474 /* check if disk attached to Intel HBA */
475 hba = find_intel_hba(super->hba, device);
476 if (hba != NULL)
477 return 1;
478 /* Check if HBA is already attached to super */
479 if (super->hba == NULL) {
480 super->hba = alloc_intel_hba(device);
481 return 1;
482 }
483
484 hba = super->hba;
485 /* Intel metadata allows for all disks attached to the same type HBA.
486 * Do not sypport odf HBA types mixing
487 */
488 if (device->type != hba->type)
489 return 2;
490
491 while (hba->next)
492 hba = hba->next;
493
494 hba->next = alloc_intel_hba(device);
495 return 1;
496}
497
498static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
499{
500 struct sys_dev *list, *elem, *prev;
501 char *disk_path;
502
503 if ((list = find_intel_devices()) == NULL)
504 return 0;
505
506 if (fd < 0)
507 disk_path = (char *) devname;
508 else
509 disk_path = diskfd_to_devpath(fd);
510
511 if (!disk_path) {
512 free_sys_dev(&list);
513 return 0;
514 }
515
516 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
517 if (path_attached_to_hba(disk_path, elem->path)) {
518 if (prev == NULL)
519 list = list->next;
520 else
521 prev->next = elem->next;
522 elem->next = NULL;
523 if (disk_path != devname)
524 free(disk_path);
525 free_sys_dev(&list);
526 return elem;
527 }
528 }
529 if (disk_path != devname)
530 free(disk_path);
531 free_sys_dev(&list);
532
533 return NULL;
534}
535
536
d424212e
N
537static int find_intel_hba_capability(int fd, struct intel_super *super,
538 char *devname);
f2f5c343 539
cdddbdbc
DW
540static struct supertype *match_metadata_desc_imsm(char *arg)
541{
542 struct supertype *st;
543
544 if (strcmp(arg, "imsm") != 0 &&
545 strcmp(arg, "default") != 0
546 )
547 return NULL;
548
549 st = malloc(sizeof(*st));
4e9d2186
AW
550 if (!st)
551 return NULL;
ef609477 552 memset(st, 0, sizeof(*st));
d1d599ea 553 st->container_dev = NoMdDev;
cdddbdbc
DW
554 st->ss = &super_imsm;
555 st->max_devs = IMSM_MAX_DEVICES;
556 st->minor_version = 0;
557 st->sb = NULL;
558 return st;
559}
560
0e600426 561#ifndef MDASSEMBLE
cdddbdbc
DW
562static __u8 *get_imsm_version(struct imsm_super *mpb)
563{
564 return &mpb->sig[MPB_SIG_LEN];
565}
0e600426 566#endif
cdddbdbc 567
949c47a0
DW
568/* retrieve a disk directly from the anchor when the anchor is known to be
569 * up-to-date, currently only at load time
570 */
571static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 572{
949c47a0 573 if (index >= mpb->num_disks)
cdddbdbc
DW
574 return NULL;
575 return &mpb->disk[index];
576}
577
95d07a2c
LM
578/* retrieve the disk description based on a index of the disk
579 * in the sub-array
580 */
581static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 582{
b9f594fe
DW
583 struct dl *d;
584
585 for (d = super->disks; d; d = d->next)
586 if (d->index == index)
95d07a2c
LM
587 return d;
588
589 return NULL;
590}
591/* retrieve a disk from the parsed metadata */
592static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
593{
594 struct dl *dl;
595
596 dl = get_imsm_dl_disk(super, index);
597 if (dl)
598 return &dl->disk;
599
b9f594fe 600 return NULL;
949c47a0
DW
601}
602
603/* generate a checksum directly from the anchor when the anchor is known to be
604 * up-to-date, currently only at load or write_super after coalescing
605 */
606static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
607{
608 __u32 end = mpb->mpb_size / sizeof(end);
609 __u32 *p = (__u32 *) mpb;
610 __u32 sum = 0;
611
97f734fd
N
612 while (end--) {
613 sum += __le32_to_cpu(*p);
614 p++;
615 }
cdddbdbc
DW
616
617 return sum - __le32_to_cpu(mpb->check_sum);
618}
619
a965f303
DW
620static size_t sizeof_imsm_map(struct imsm_map *map)
621{
622 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
623}
624
625struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 626{
5e7b0330
AK
627 /* A device can have 2 maps if it is in the middle of a migration.
628 * If second_map is:
629 * 0 - we return the first map
630 * 1 - we return the second map if it exists, else NULL
631 * -1 - we return the second map if it exists, else the first
632 */
a965f303
DW
633 struct imsm_map *map = &dev->vol.map[0];
634
5e7b0330 635 if (second_map == 1 && !dev->vol.migr_state)
a965f303 636 return NULL;
5e7b0330
AK
637 else if (second_map == 1 ||
638 (second_map < 0 && dev->vol.migr_state)) {
a965f303
DW
639 void *ptr = map;
640
641 return ptr + sizeof_imsm_map(map);
642 } else
643 return map;
5e7b0330 644
a965f303 645}
cdddbdbc 646
3393c6af
DW
647/* return the size of the device.
648 * migr_state increases the returned size if map[0] were to be duplicated
649 */
650static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
651{
652 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
653 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
654
655 /* migrating means an additional map */
a965f303
DW
656 if (dev->vol.migr_state)
657 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
658 else if (migr_state)
659 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
660
661 return size;
662}
663
54c2c1ea
DW
664#ifndef MDASSEMBLE
665/* retrieve disk serial number list from a metadata update */
666static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
667{
668 void *u = update;
669 struct disk_info *inf;
670
671 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
672 sizeof_imsm_dev(&update->dev, 0);
673
674 return inf;
675}
676#endif
677
949c47a0 678static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
679{
680 int offset;
681 int i;
682 void *_mpb = mpb;
683
949c47a0 684 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
685 return NULL;
686
687 /* devices start after all disks */
688 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
689
690 for (i = 0; i <= index; i++)
691 if (i == index)
692 return _mpb + offset;
693 else
3393c6af 694 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
695
696 return NULL;
697}
698
949c47a0
DW
699static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
700{
ba2de7ba
DW
701 struct intel_dev *dv;
702
949c47a0
DW
703 if (index >= super->anchor->num_raid_devs)
704 return NULL;
ba2de7ba
DW
705 for (dv = super->devlist; dv; dv = dv->next)
706 if (dv->index == index)
707 return dv->dev;
708 return NULL;
949c47a0
DW
709}
710
98130f40
AK
711/*
712 * for second_map:
713 * == 0 get first map
714 * == 1 get second map
715 * == -1 than get map according to the current migr_state
716 */
717static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
718 int slot,
719 int second_map)
7eef0453
DW
720{
721 struct imsm_map *map;
722
5e7b0330 723 map = get_imsm_map(dev, second_map);
7eef0453 724
ff077194
DW
725 /* top byte identifies disk under rebuild */
726 return __le32_to_cpu(map->disk_ord_tbl[slot]);
727}
728
729#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 730static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 731{
98130f40 732 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
733
734 return ord_to_idx(ord);
7eef0453
DW
735}
736
be73972f
DW
737static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
738{
739 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
740}
741
f21e18ca 742static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
743{
744 int slot;
745 __u32 ord;
746
747 for (slot = 0; slot < map->num_members; slot++) {
748 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
749 if (ord_to_idx(ord) == idx)
750 return slot;
751 }
752
753 return -1;
754}
755
cdddbdbc
DW
756static int get_imsm_raid_level(struct imsm_map *map)
757{
758 if (map->raid_level == 1) {
759 if (map->num_members == 2)
760 return 1;
761 else
762 return 10;
763 }
764
765 return map->raid_level;
766}
767
c2c087e6
DW
768static int cmp_extent(const void *av, const void *bv)
769{
770 const struct extent *a = av;
771 const struct extent *b = bv;
772 if (a->start < b->start)
773 return -1;
774 if (a->start > b->start)
775 return 1;
776 return 0;
777}
778
0dcecb2e 779static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 780{
c2c087e6 781 int memberships = 0;
620b1713 782 int i;
c2c087e6 783
949c47a0
DW
784 for (i = 0; i < super->anchor->num_raid_devs; i++) {
785 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 786 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 787
620b1713
DW
788 if (get_imsm_disk_slot(map, dl->index) >= 0)
789 memberships++;
c2c087e6 790 }
0dcecb2e
DW
791
792 return memberships;
793}
794
795static struct extent *get_extents(struct intel_super *super, struct dl *dl)
796{
797 /* find a list of used extents on the given physical device */
798 struct extent *rv, *e;
620b1713 799 int i;
0dcecb2e
DW
800 int memberships = count_memberships(dl, super);
801 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
802
c2c087e6
DW
803 rv = malloc(sizeof(struct extent) * (memberships + 1));
804 if (!rv)
805 return NULL;
806 e = rv;
807
949c47a0
DW
808 for (i = 0; i < super->anchor->num_raid_devs; i++) {
809 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 810 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 811
620b1713
DW
812 if (get_imsm_disk_slot(map, dl->index) >= 0) {
813 e->start = __le32_to_cpu(map->pba_of_lba0);
814 e->size = __le32_to_cpu(map->blocks_per_member);
815 e++;
c2c087e6
DW
816 }
817 }
818 qsort(rv, memberships, sizeof(*rv), cmp_extent);
819
14e8215b
DW
820 /* determine the start of the metadata
821 * when no raid devices are defined use the default
822 * ...otherwise allow the metadata to truncate the value
823 * as is the case with older versions of imsm
824 */
825 if (memberships) {
826 struct extent *last = &rv[memberships - 1];
827 __u32 remainder;
828
829 remainder = __le32_to_cpu(dl->disk.total_blocks) -
830 (last->start + last->size);
dda5855f
DW
831 /* round down to 1k block to satisfy precision of the kernel
832 * 'size' interface
833 */
834 remainder &= ~1UL;
835 /* make sure remainder is still sane */
f21e18ca 836 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 837 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
838 if (reservation > remainder)
839 reservation = remainder;
840 }
841 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
842 e->size = 0;
843 return rv;
844}
845
14e8215b
DW
846/* try to determine how much space is reserved for metadata from
847 * the last get_extents() entry, otherwise fallback to the
848 * default
849 */
850static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
851{
852 struct extent *e;
853 int i;
854 __u32 rv;
855
856 /* for spares just return a minimal reservation which will grow
857 * once the spare is picked up by an array
858 */
859 if (dl->index == -1)
860 return MPB_SECTOR_CNT;
861
862 e = get_extents(super, dl);
863 if (!e)
864 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
865
866 /* scroll to last entry */
867 for (i = 0; e[i].size; i++)
868 continue;
869
870 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
871
872 free(e);
873
874 return rv;
875}
876
25ed7e59
DW
877static int is_spare(struct imsm_disk *disk)
878{
879 return (disk->status & SPARE_DISK) == SPARE_DISK;
880}
881
882static int is_configured(struct imsm_disk *disk)
883{
884 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
885}
886
887static int is_failed(struct imsm_disk *disk)
888{
889 return (disk->status & FAILED_DISK) == FAILED_DISK;
890}
891
80e7f8c3
AC
892/* Return minimum size of a spare that can be used in this array*/
893static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
894{
895 struct intel_super *super = st->sb;
896 struct dl *dl;
897 struct extent *e;
898 int i;
899 unsigned long long rv = 0;
900
901 if (!super)
902 return rv;
903 /* find first active disk in array */
904 dl = super->disks;
905 while (dl && (is_failed(&dl->disk) || dl->index == -1))
906 dl = dl->next;
907 if (!dl)
908 return rv;
909 /* find last lba used by subarrays */
910 e = get_extents(super, dl);
911 if (!e)
912 return rv;
913 for (i = 0; e[i].size; i++)
914 continue;
915 if (i > 0)
916 rv = e[i-1].start + e[i-1].size;
917 free(e);
918 /* add the amount of space needed for metadata */
919 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
920 return rv * 512;
921}
922
1799c9e8 923#ifndef MDASSEMBLE
c47b0ff6
AK
924static __u64 blocks_per_migr_unit(struct intel_super *super,
925 struct imsm_dev *dev);
1e5c6983 926
c47b0ff6
AK
927static void print_imsm_dev(struct intel_super *super,
928 struct imsm_dev *dev,
929 char *uuid,
930 int disk_idx)
cdddbdbc
DW
931{
932 __u64 sz;
0d80bb2f 933 int slot, i;
a965f303 934 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 935 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 936 __u32 ord;
cdddbdbc
DW
937
938 printf("\n");
1e7bc0ed 939 printf("[%.16s]:\n", dev->volume);
44470971 940 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
941 printf(" RAID Level : %d", get_imsm_raid_level(map));
942 if (map2)
943 printf(" <-- %d", get_imsm_raid_level(map2));
944 printf("\n");
945 printf(" Members : %d", map->num_members);
946 if (map2)
947 printf(" <-- %d", map2->num_members);
948 printf("\n");
0d80bb2f
DW
949 printf(" Slots : [");
950 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 951 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
952 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
953 }
dd8bcb3b
AK
954 printf("]");
955 if (map2) {
956 printf(" <-- [");
957 for (i = 0; i < map2->num_members; i++) {
958 ord = get_imsm_ord_tbl_ent(dev, i, 1);
959 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
960 }
961 printf("]");
962 }
963 printf("\n");
7095bccb
AK
964 printf(" Failed disk : ");
965 if (map->failed_disk_num == 0xff)
966 printf("none");
967 else
968 printf("%i", map->failed_disk_num);
969 printf("\n");
620b1713
DW
970 slot = get_imsm_disk_slot(map, disk_idx);
971 if (slot >= 0) {
98130f40 972 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
973 printf(" This Slot : %d%s\n", slot,
974 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
975 } else
cdddbdbc
DW
976 printf(" This Slot : ?\n");
977 sz = __le32_to_cpu(dev->size_high);
978 sz <<= 32;
979 sz += __le32_to_cpu(dev->size_low);
980 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
981 human_size(sz * 512));
982 sz = __le32_to_cpu(map->blocks_per_member);
983 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
984 human_size(sz * 512));
985 printf(" Sector Offset : %u\n",
986 __le32_to_cpu(map->pba_of_lba0));
987 printf(" Num Stripes : %u\n",
988 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 989 printf(" Chunk Size : %u KiB",
cdddbdbc 990 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
991 if (map2)
992 printf(" <-- %u KiB",
993 __le16_to_cpu(map2->blocks_per_strip) / 2);
994 printf("\n");
cdddbdbc 995 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 996 printf(" Migrate State : ");
1484e727
DW
997 if (dev->vol.migr_state) {
998 if (migr_type(dev) == MIGR_INIT)
8655a7b1 999 printf("initialize\n");
1484e727 1000 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1001 printf("rebuild\n");
1484e727 1002 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1003 printf("check\n");
1484e727 1004 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1005 printf("general migration\n");
1484e727 1006 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1007 printf("state change\n");
1484e727 1008 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1009 printf("repair\n");
1484e727 1010 else
8655a7b1
DW
1011 printf("<unknown:%d>\n", migr_type(dev));
1012 } else
1013 printf("idle\n");
3393c6af
DW
1014 printf(" Map State : %s", map_state_str[map->map_state]);
1015 if (dev->vol.migr_state) {
1016 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1017
b10b37b8 1018 printf(" <-- %s", map_state_str[map->map_state]);
1e5c6983
DW
1019 printf("\n Checkpoint : %u (%llu)",
1020 __le32_to_cpu(dev->vol.curr_migr_unit),
c47b0ff6 1021 (unsigned long long)blocks_per_migr_unit(super, dev));
3393c6af
DW
1022 }
1023 printf("\n");
cdddbdbc 1024 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1025}
1026
14e8215b 1027static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
cdddbdbc 1028{
949c47a0 1029 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1f24f035 1030 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1031 __u64 sz;
1032
d362da3d 1033 if (index < 0 || !disk)
e9d82038
DW
1034 return;
1035
cdddbdbc 1036 printf("\n");
1f24f035 1037 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
cdddbdbc 1038 printf(" Disk%02d Serial : %s\n", index, str);
25ed7e59
DW
1039 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1040 is_configured(disk) ? " active" : "",
1041 is_failed(disk) ? " failed" : "");
cdddbdbc 1042 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1043 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1044 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1045 human_size(sz * 512));
1046}
1047
520e69e2
AK
1048static int is_gen_migration(struct imsm_dev *dev);
1049
1050void examine_migr_rec_imsm(struct intel_super *super)
1051{
1052 struct migr_record *migr_rec = super->migr_rec;
1053 struct imsm_super *mpb = super->anchor;
1054 int i;
1055
1056 for (i = 0; i < mpb->num_raid_devs; i++) {
1057 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1058 if (is_gen_migration(dev) == 0)
1059 continue;
1060
1061 printf("\nMigration Record Information:");
1062 if (super->disks->index > 1) {
1063 printf(" Empty\n ");
1064 printf("Examine one of first two disks in array\n");
1065 break;
1066 }
1067 printf("\n Status : ");
1068 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1069 printf("Normal\n");
1070 else
1071 printf("Contains Data\n");
1072 printf(" Current Unit : %u\n",
1073 __le32_to_cpu(migr_rec->curr_migr_unit));
1074 printf(" Family : %u\n",
1075 __le32_to_cpu(migr_rec->family_num));
1076 printf(" Ascending : %u\n",
1077 __le32_to_cpu(migr_rec->ascending_migr));
1078 printf(" Blocks Per Unit : %u\n",
1079 __le32_to_cpu(migr_rec->blocks_per_unit));
1080 printf(" Dest. Depth Per Unit : %u\n",
1081 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1082 printf(" Checkpoint Area pba : %u\n",
1083 __le32_to_cpu(migr_rec->ckpt_area_pba));
1084 printf(" First member lba : %u\n",
1085 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1086 printf(" Total Number of Units : %u\n",
1087 __le32_to_cpu(migr_rec->num_migr_units));
1088 printf(" Size of volume : %u\n",
1089 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1090 printf(" Expansion space for LBA64 : %u\n",
1091 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1092 printf(" Record was read from : %u\n",
1093 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1094
1095 break;
1096 }
1097}
1098
a5d85af7 1099static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1100
cdddbdbc
DW
1101static void examine_super_imsm(struct supertype *st, char *homehost)
1102{
1103 struct intel_super *super = st->sb;
949c47a0 1104 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1105 char str[MAX_SIGNATURE_LENGTH];
1106 int i;
27fd6274
DW
1107 struct mdinfo info;
1108 char nbuf[64];
cdddbdbc 1109 __u32 sum;
14e8215b 1110 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1111 struct dl *dl;
27fd6274 1112
cdddbdbc
DW
1113 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1114 printf(" Magic : %s\n", str);
1115 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1116 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1117 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1118 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1119 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
a5d85af7 1120 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1121 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1122 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1123 sum = __le32_to_cpu(mpb->check_sum);
1124 printf(" Checksum : %08x %s\n", sum,
949c47a0 1125 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1126 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1127 printf(" Disks : %d\n", mpb->num_disks);
1128 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
14e8215b 1129 print_imsm_disk(mpb, super->disks->index, reserved);
604b746f
JD
1130 if (super->bbm_log) {
1131 struct bbm_log *log = super->bbm_log;
1132
1133 printf("\n");
1134 printf("Bad Block Management Log:\n");
1135 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1136 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1137 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1138 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1139 printf(" First Spare : %llx\n",
1140 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1141 }
44470971
DW
1142 for (i = 0; i < mpb->num_raid_devs; i++) {
1143 struct mdinfo info;
1144 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1145
1146 super->current_vol = i;
a5d85af7 1147 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1148 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1149 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1150 }
cdddbdbc
DW
1151 for (i = 0; i < mpb->num_disks; i++) {
1152 if (i == super->disks->index)
1153 continue;
14e8215b 1154 print_imsm_disk(mpb, i, reserved);
cdddbdbc 1155 }
94827db3
N
1156 for (dl = super->disks ; dl; dl = dl->next) {
1157 struct imsm_disk *disk;
1158 char str[MAX_RAID_SERIAL_LEN + 1];
1159 __u64 sz;
1160
1161 if (dl->index >= 0)
1162 continue;
1163
1164 disk = &dl->disk;
1165 printf("\n");
1166 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1167 printf(" Disk Serial : %s\n", str);
1168 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1169 is_configured(disk) ? " active" : "",
1170 is_failed(disk) ? " failed" : "");
1171 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1172 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1173 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1174 human_size(sz * 512));
1175 }
520e69e2
AK
1176
1177 examine_migr_rec_imsm(super);
cdddbdbc
DW
1178}
1179
061f2c6a 1180static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1181{
27fd6274 1182 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1183 struct mdinfo info;
1184 char nbuf[64];
1e7bc0ed 1185 struct intel_super *super = st->sb;
1e7bc0ed 1186
0d5a423f
DW
1187 if (!super->anchor->num_raid_devs) {
1188 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1189 return;
0d5a423f 1190 }
ff54de6e 1191
a5d85af7 1192 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1193 fname_from_uuid(st, &info, nbuf, ':');
1194 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1195}
1196
1197static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1198{
1199 /* We just write a generic IMSM ARRAY entry */
1200 struct mdinfo info;
1201 char nbuf[64];
1202 char nbuf1[64];
1203 struct intel_super *super = st->sb;
1204 int i;
1205
1206 if (!super->anchor->num_raid_devs)
1207 return;
1208
a5d85af7 1209 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1210 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1211 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1212 struct imsm_dev *dev = get_imsm_dev(super, i);
1213
1214 super->current_vol = i;
a5d85af7 1215 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1216 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1217 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1218 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1219 }
cdddbdbc
DW
1220}
1221
9d84c8ea
DW
1222static void export_examine_super_imsm(struct supertype *st)
1223{
1224 struct intel_super *super = st->sb;
1225 struct imsm_super *mpb = super->anchor;
1226 struct mdinfo info;
1227 char nbuf[64];
1228
a5d85af7 1229 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1230 fname_from_uuid(st, &info, nbuf, ':');
1231 printf("MD_METADATA=imsm\n");
1232 printf("MD_LEVEL=container\n");
1233 printf("MD_UUID=%s\n", nbuf+5);
1234 printf("MD_DEVICES=%u\n", mpb->num_disks);
1235}
1236
cdddbdbc
DW
1237static void detail_super_imsm(struct supertype *st, char *homehost)
1238{
3ebe00a1
DW
1239 struct mdinfo info;
1240 char nbuf[64];
1241
a5d85af7 1242 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1243 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1244 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1245}
1246
1247static void brief_detail_super_imsm(struct supertype *st)
1248{
ff54de6e
N
1249 struct mdinfo info;
1250 char nbuf[64];
a5d85af7 1251 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1252 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1253 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1254}
d665cc31
DW
1255
1256static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1257static void fd2devname(int fd, char *name);
1258
120dc887 1259static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1260{
120dc887
LM
1261 /* dump an unsorted list of devices attached to AHCI Intel storage
1262 * controller, as well as non-connected ports
d665cc31
DW
1263 */
1264 int hba_len = strlen(hba_path) + 1;
1265 struct dirent *ent;
1266 DIR *dir;
1267 char *path = NULL;
1268 int err = 0;
1269 unsigned long port_mask = (1 << port_count) - 1;
1270
f21e18ca 1271 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1272 if (verbose)
1273 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1274 return 2;
1275 }
1276
1277 /* scroll through /sys/dev/block looking for devices attached to
1278 * this hba
1279 */
1280 dir = opendir("/sys/dev/block");
1281 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1282 int fd;
1283 char model[64];
1284 char vendor[64];
1285 char buf[1024];
1286 int major, minor;
1287 char *device;
1288 char *c;
1289 int port;
1290 int type;
1291
1292 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1293 continue;
1294 path = devt_to_devpath(makedev(major, minor));
1295 if (!path)
1296 continue;
1297 if (!path_attached_to_hba(path, hba_path)) {
1298 free(path);
1299 path = NULL;
1300 continue;
1301 }
1302
1303 /* retrieve the scsi device type */
1304 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1305 if (verbose)
1306 fprintf(stderr, Name ": failed to allocate 'device'\n");
1307 err = 2;
1308 break;
1309 }
1310 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1311 if (load_sys(device, buf) != 0) {
1312 if (verbose)
1313 fprintf(stderr, Name ": failed to read device type for %s\n",
1314 path);
1315 err = 2;
1316 free(device);
1317 break;
1318 }
1319 type = strtoul(buf, NULL, 10);
1320
1321 /* if it's not a disk print the vendor and model */
1322 if (!(type == 0 || type == 7 || type == 14)) {
1323 vendor[0] = '\0';
1324 model[0] = '\0';
1325 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1326 if (load_sys(device, buf) == 0) {
1327 strncpy(vendor, buf, sizeof(vendor));
1328 vendor[sizeof(vendor) - 1] = '\0';
1329 c = (char *) &vendor[sizeof(vendor) - 1];
1330 while (isspace(*c) || *c == '\0')
1331 *c-- = '\0';
1332
1333 }
1334 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1335 if (load_sys(device, buf) == 0) {
1336 strncpy(model, buf, sizeof(model));
1337 model[sizeof(model) - 1] = '\0';
1338 c = (char *) &model[sizeof(model) - 1];
1339 while (isspace(*c) || *c == '\0')
1340 *c-- = '\0';
1341 }
1342
1343 if (vendor[0] && model[0])
1344 sprintf(buf, "%.64s %.64s", vendor, model);
1345 else
1346 switch (type) { /* numbers from hald/linux/device.c */
1347 case 1: sprintf(buf, "tape"); break;
1348 case 2: sprintf(buf, "printer"); break;
1349 case 3: sprintf(buf, "processor"); break;
1350 case 4:
1351 case 5: sprintf(buf, "cdrom"); break;
1352 case 6: sprintf(buf, "scanner"); break;
1353 case 8: sprintf(buf, "media_changer"); break;
1354 case 9: sprintf(buf, "comm"); break;
1355 case 12: sprintf(buf, "raid"); break;
1356 default: sprintf(buf, "unknown");
1357 }
1358 } else
1359 buf[0] = '\0';
1360 free(device);
1361
1362 /* chop device path to 'host%d' and calculate the port number */
1363 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1364 if (!c) {
1365 if (verbose)
1366 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1367 err = 2;
1368 break;
1369 }
d665cc31
DW
1370 *c = '\0';
1371 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1372 port -= host_base;
1373 else {
1374 if (verbose) {
1375 *c = '/'; /* repair the full string */
1376 fprintf(stderr, Name ": failed to determine port number for %s\n",
1377 path);
1378 }
1379 err = 2;
1380 break;
1381 }
1382
1383 /* mark this port as used */
1384 port_mask &= ~(1 << port);
1385
1386 /* print out the device information */
1387 if (buf[0]) {
1388 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1389 continue;
1390 }
1391
1392 fd = dev_open(ent->d_name, O_RDONLY);
1393 if (fd < 0)
1394 printf(" Port%d : - disk info unavailable -\n", port);
1395 else {
1396 fd2devname(fd, buf);
1397 printf(" Port%d : %s", port, buf);
1398 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1399 printf(" (%s)\n", buf);
1400 else
1401 printf("()\n");
1402 }
1403 close(fd);
1404 free(path);
1405 path = NULL;
1406 }
1407 if (path)
1408 free(path);
1409 if (dir)
1410 closedir(dir);
1411 if (err == 0) {
1412 int i;
1413
1414 for (i = 0; i < port_count; i++)
1415 if (port_mask & (1 << i))
1416 printf(" Port%d : - no device attached -\n", i);
1417 }
1418
1419 return err;
1420}
1421
120dc887 1422
155cbb4c 1423
120dc887
LM
1424static void print_found_intel_controllers(struct sys_dev *elem)
1425{
1426 for (; elem; elem = elem->next) {
1427 fprintf(stderr, Name ": found Intel(R) ");
1428 if (elem->type == SYS_DEV_SATA)
1429 fprintf(stderr, "SATA ");
155cbb4c
LM
1430 else if (elem->type == SYS_DEV_SAS)
1431 fprintf(stderr, "SAS ");
120dc887
LM
1432 fprintf(stderr, "RAID controller");
1433 if (elem->pci_id)
1434 fprintf(stderr, " at %s", elem->pci_id);
1435 fprintf(stderr, ".\n");
1436 }
1437 fflush(stderr);
1438}
1439
120dc887
LM
1440static int ahci_get_port_count(const char *hba_path, int *port_count)
1441{
1442 struct dirent *ent;
1443 DIR *dir;
1444 int host_base = -1;
1445
1446 *port_count = 0;
1447 if ((dir = opendir(hba_path)) == NULL)
1448 return -1;
1449
1450 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1451 int host;
1452
1453 if (sscanf(ent->d_name, "host%d", &host) != 1)
1454 continue;
1455 if (*port_count == 0)
1456 host_base = host;
1457 else if (host < host_base)
1458 host_base = host;
1459
1460 if (host + 1 > *port_count + host_base)
1461 *port_count = host + 1 - host_base;
1462 }
1463 closedir(dir);
1464 return host_base;
1465}
1466
a891a3c2
LM
1467static void print_imsm_capability(const struct imsm_orom *orom)
1468{
1469 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1470 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1471 orom->hotfix_ver, orom->build);
1472 printf(" RAID Levels :%s%s%s%s%s\n",
1473 imsm_orom_has_raid0(orom) ? " raid0" : "",
1474 imsm_orom_has_raid1(orom) ? " raid1" : "",
1475 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1476 imsm_orom_has_raid10(orom) ? " raid10" : "",
1477 imsm_orom_has_raid5(orom) ? " raid5" : "");
1478 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1479 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1480 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1481 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1482 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1483 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1484 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1485 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1486 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1487 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1488 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1489 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1490 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1491 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1492 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1493 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1494 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1495 printf(" Max Disks : %d\n", orom->tds);
1496 printf(" Max Volumes : %d\n", orom->vpa);
1497 return;
1498}
1499
5615172f 1500static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1501{
1502 /* There are two components to imsm platform support, the ahci SATA
1503 * controller and the option-rom. To find the SATA controller we
1504 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1505 * controller with the Intel vendor id is present. This approach
1506 * allows mdadm to leverage the kernel's ahci detection logic, with the
1507 * caveat that if ahci.ko is not loaded mdadm will not be able to
1508 * detect platform raid capabilities. The option-rom resides in a
1509 * platform "Adapter ROM". We scan for its signature to retrieve the
1510 * platform capabilities. If raid support is disabled in the BIOS the
1511 * option-rom capability structure will not be available.
1512 */
1513 const struct imsm_orom *orom;
1514 struct sys_dev *list, *hba;
d665cc31
DW
1515 int host_base = 0;
1516 int port_count = 0;
120dc887 1517 int result=0;
d665cc31 1518
5615172f 1519 if (enumerate_only) {
a891a3c2 1520 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1521 return 0;
a891a3c2
LM
1522 list = find_intel_devices();
1523 if (!list)
1524 return 2;
1525 for (hba = list; hba; hba = hba->next) {
1526 orom = find_imsm_capability(hba->type);
1527 if (!orom) {
1528 result = 2;
1529 break;
1530 }
1531 }
1532 free_sys_dev(&list);
1533 return result;
5615172f
DW
1534 }
1535
155cbb4c
LM
1536 list = find_intel_devices();
1537 if (!list) {
d665cc31 1538 if (verbose)
155cbb4c
LM
1539 fprintf(stderr, Name ": no active Intel(R) RAID "
1540 "controller found.\n");
d665cc31
DW
1541 free_sys_dev(&list);
1542 return 2;
1543 } else if (verbose)
155cbb4c 1544 print_found_intel_controllers(list);
d665cc31 1545
a891a3c2
LM
1546 for (hba = list; hba; hba = hba->next) {
1547 orom = find_imsm_capability(hba->type);
1548 if (!orom)
1549 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1550 hba->path, get_sys_dev_type(hba->type));
1551 else
1552 print_imsm_capability(orom);
d665cc31
DW
1553 }
1554
120dc887
LM
1555 for (hba = list; hba; hba = hba->next) {
1556 printf(" I/O Controller : %s (%s)\n",
1557 hba->path, get_sys_dev_type(hba->type));
d665cc31 1558
120dc887
LM
1559 if (hba->type == SYS_DEV_SATA) {
1560 host_base = ahci_get_port_count(hba->path, &port_count);
1561 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1562 if (verbose)
1563 fprintf(stderr, Name ": failed to enumerate "
1564 "ports on SATA controller at %s.", hba->pci_id);
1565 result |= 2;
1566 }
1567 }
d665cc31 1568 }
155cbb4c 1569
120dc887
LM
1570 free_sys_dev(&list);
1571 return result;
d665cc31 1572}
cdddbdbc
DW
1573#endif
1574
1575static int match_home_imsm(struct supertype *st, char *homehost)
1576{
5115ca67
DW
1577 /* the imsm metadata format does not specify any host
1578 * identification information. We return -1 since we can never
1579 * confirm nor deny whether a given array is "meant" for this
148acb7b 1580 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1581 * exclude member disks that do not belong, and we rely on
1582 * mdadm.conf to specify the arrays that should be assembled.
1583 * Auto-assembly may still pick up "foreign" arrays.
1584 */
cdddbdbc 1585
9362c1c8 1586 return -1;
cdddbdbc
DW
1587}
1588
1589static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1590{
51006d85
N
1591 /* The uuid returned here is used for:
1592 * uuid to put into bitmap file (Create, Grow)
1593 * uuid for backup header when saving critical section (Grow)
1594 * comparing uuids when re-adding a device into an array
1595 * In these cases the uuid required is that of the data-array,
1596 * not the device-set.
1597 * uuid to recognise same set when adding a missing device back
1598 * to an array. This is a uuid for the device-set.
1599 *
1600 * For each of these we can make do with a truncated
1601 * or hashed uuid rather than the original, as long as
1602 * everyone agrees.
1603 * In each case the uuid required is that of the data-array,
1604 * not the device-set.
43dad3d6 1605 */
51006d85
N
1606 /* imsm does not track uuid's so we synthesis one using sha1 on
1607 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1608 * - the orig_family_num of the container
51006d85
N
1609 * - the index number of the volume
1610 * - the 'serial' number of the volume.
1611 * Hopefully these are all constant.
1612 */
1613 struct intel_super *super = st->sb;
43dad3d6 1614
51006d85
N
1615 char buf[20];
1616 struct sha1_ctx ctx;
1617 struct imsm_dev *dev = NULL;
148acb7b 1618 __u32 family_num;
51006d85 1619
148acb7b
DW
1620 /* some mdadm versions failed to set ->orig_family_num, in which
1621 * case fall back to ->family_num. orig_family_num will be
1622 * fixed up with the first metadata update.
1623 */
1624 family_num = super->anchor->orig_family_num;
1625 if (family_num == 0)
1626 family_num = super->anchor->family_num;
51006d85 1627 sha1_init_ctx(&ctx);
92bd8f8d 1628 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1629 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1630 if (super->current_vol >= 0)
1631 dev = get_imsm_dev(super, super->current_vol);
1632 if (dev) {
1633 __u32 vol = super->current_vol;
1634 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1635 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1636 }
1637 sha1_finish_ctx(&ctx, buf);
1638 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1639}
1640
0d481d37 1641#if 0
4f5bc454
DW
1642static void
1643get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1644{
cdddbdbc
DW
1645 __u8 *v = get_imsm_version(mpb);
1646 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1647 char major[] = { 0, 0, 0 };
1648 char minor[] = { 0 ,0, 0 };
1649 char patch[] = { 0, 0, 0 };
1650 char *ver_parse[] = { major, minor, patch };
1651 int i, j;
1652
1653 i = j = 0;
1654 while (*v != '\0' && v < end) {
1655 if (*v != '.' && j < 2)
1656 ver_parse[i][j++] = *v;
1657 else {
1658 i++;
1659 j = 0;
1660 }
1661 v++;
1662 }
1663
4f5bc454
DW
1664 *m = strtol(minor, NULL, 0);
1665 *p = strtol(patch, NULL, 0);
1666}
0d481d37 1667#endif
4f5bc454 1668
1e5c6983
DW
1669static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1670{
1671 /* migr_strip_size when repairing or initializing parity */
1672 struct imsm_map *map = get_imsm_map(dev, 0);
1673 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1674
1675 switch (get_imsm_raid_level(map)) {
1676 case 5:
1677 case 10:
1678 return chunk;
1679 default:
1680 return 128*1024 >> 9;
1681 }
1682}
1683
1684static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1685{
1686 /* migr_strip_size when rebuilding a degraded disk, no idea why
1687 * this is different than migr_strip_size_resync(), but it's good
1688 * to be compatible
1689 */
1690 struct imsm_map *map = get_imsm_map(dev, 1);
1691 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1692
1693 switch (get_imsm_raid_level(map)) {
1694 case 1:
1695 case 10:
1696 if (map->num_members % map->num_domains == 0)
1697 return 128*1024 >> 9;
1698 else
1699 return chunk;
1700 case 5:
1701 return max((__u32) 64*1024 >> 9, chunk);
1702 default:
1703 return 128*1024 >> 9;
1704 }
1705}
1706
1707static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1708{
1709 struct imsm_map *lo = get_imsm_map(dev, 0);
1710 struct imsm_map *hi = get_imsm_map(dev, 1);
1711 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1712 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1713
1714 return max((__u32) 1, hi_chunk / lo_chunk);
1715}
1716
1717static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1718{
1719 struct imsm_map *lo = get_imsm_map(dev, 0);
1720 int level = get_imsm_raid_level(lo);
1721
1722 if (level == 1 || level == 10) {
1723 struct imsm_map *hi = get_imsm_map(dev, 1);
1724
1725 return hi->num_domains;
1726 } else
1727 return num_stripes_per_unit_resync(dev);
1728}
1729
98130f40 1730static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1731{
1732 /* named 'imsm_' because raid0, raid1 and raid10
1733 * counter-intuitively have the same number of data disks
1734 */
98130f40 1735 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1736
1737 switch (get_imsm_raid_level(map)) {
1738 case 0:
1739 case 1:
1740 case 10:
1741 return map->num_members;
1742 case 5:
1743 return map->num_members - 1;
1744 default:
1745 dprintf("%s: unsupported raid level\n", __func__);
1746 return 0;
1747 }
1748}
1749
1750static __u32 parity_segment_depth(struct imsm_dev *dev)
1751{
1752 struct imsm_map *map = get_imsm_map(dev, 0);
1753 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1754
1755 switch(get_imsm_raid_level(map)) {
1756 case 1:
1757 case 10:
1758 return chunk * map->num_domains;
1759 case 5:
1760 return chunk * map->num_members;
1761 default:
1762 return chunk;
1763 }
1764}
1765
1766static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1767{
1768 struct imsm_map *map = get_imsm_map(dev, 1);
1769 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1770 __u32 strip = block / chunk;
1771
1772 switch (get_imsm_raid_level(map)) {
1773 case 1:
1774 case 10: {
1775 __u32 vol_strip = (strip * map->num_domains) + 1;
1776 __u32 vol_stripe = vol_strip / map->num_members;
1777
1778 return vol_stripe * chunk + block % chunk;
1779 } case 5: {
1780 __u32 stripe = strip / (map->num_members - 1);
1781
1782 return stripe * chunk + block % chunk;
1783 }
1784 default:
1785 return 0;
1786 }
1787}
1788
c47b0ff6
AK
1789static __u64 blocks_per_migr_unit(struct intel_super *super,
1790 struct imsm_dev *dev)
1e5c6983
DW
1791{
1792 /* calculate the conversion factor between per member 'blocks'
1793 * (md/{resync,rebuild}_start) and imsm migration units, return
1794 * 0 for the 'not migrating' and 'unsupported migration' cases
1795 */
1796 if (!dev->vol.migr_state)
1797 return 0;
1798
1799 switch (migr_type(dev)) {
c47b0ff6
AK
1800 case MIGR_GEN_MIGR: {
1801 struct migr_record *migr_rec = super->migr_rec;
1802 return __le32_to_cpu(migr_rec->blocks_per_unit);
1803 }
1e5c6983
DW
1804 case MIGR_VERIFY:
1805 case MIGR_REPAIR:
1806 case MIGR_INIT: {
1807 struct imsm_map *map = get_imsm_map(dev, 0);
1808 __u32 stripes_per_unit;
1809 __u32 blocks_per_unit;
1810 __u32 parity_depth;
1811 __u32 migr_chunk;
1812 __u32 block_map;
1813 __u32 block_rel;
1814 __u32 segment;
1815 __u32 stripe;
1816 __u8 disks;
1817
1818 /* yes, this is really the translation of migr_units to
1819 * per-member blocks in the 'resync' case
1820 */
1821 stripes_per_unit = num_stripes_per_unit_resync(dev);
1822 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 1823 disks = imsm_num_data_members(dev, 0);
1e5c6983
DW
1824 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1825 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1826 segment = blocks_per_unit / stripe;
1827 block_rel = blocks_per_unit - segment * stripe;
1828 parity_depth = parity_segment_depth(dev);
1829 block_map = map_migr_block(dev, block_rel);
1830 return block_map + parity_depth * segment;
1831 }
1832 case MIGR_REBUILD: {
1833 __u32 stripes_per_unit;
1834 __u32 migr_chunk;
1835
1836 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1837 migr_chunk = migr_strip_blocks_rebuild(dev);
1838 return migr_chunk * stripes_per_unit;
1839 }
1e5c6983
DW
1840 case MIGR_STATE_CHANGE:
1841 default:
1842 return 0;
1843 }
1844}
1845
c2c087e6
DW
1846static int imsm_level_to_layout(int level)
1847{
1848 switch (level) {
1849 case 0:
1850 case 1:
1851 return 0;
1852 case 5:
1853 case 6:
a380c027 1854 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 1855 case 10:
c92a2527 1856 return 0x102;
c2c087e6 1857 }
a18a888e 1858 return UnSet;
c2c087e6
DW
1859}
1860
8e59f3d8
AK
1861/*******************************************************************************
1862 * Function: read_imsm_migr_rec
1863 * Description: Function reads imsm migration record from last sector of disk
1864 * Parameters:
1865 * fd : disk descriptor
1866 * super : metadata info
1867 * Returns:
1868 * 0 : success,
1869 * -1 : fail
1870 ******************************************************************************/
1871static int read_imsm_migr_rec(int fd, struct intel_super *super)
1872{
1873 int ret_val = -1;
1874 unsigned long long dsize;
1875
1876 get_dev_size(fd, NULL, &dsize);
1877 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
1878 fprintf(stderr,
1879 Name ": Cannot seek to anchor block: %s\n",
1880 strerror(errno));
1881 goto out;
1882 }
1883 if (read(fd, super->migr_rec_buf, 512) != 512) {
1884 fprintf(stderr,
1885 Name ": Cannot read migr record block: %s\n",
1886 strerror(errno));
1887 goto out;
1888 }
1889 ret_val = 0;
1890
1891out:
1892 return ret_val;
1893}
1894
1895/*******************************************************************************
1896 * Function: load_imsm_migr_rec
1897 * Description: Function reads imsm migration record (it is stored at the last
1898 * sector of disk)
1899 * Parameters:
1900 * super : imsm internal array info
1901 * info : general array info
1902 * Returns:
1903 * 0 : success
1904 * -1 : fail
1905 ******************************************************************************/
1906static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
1907{
1908 struct mdinfo *sd;
1909 struct dl *dl = NULL;
1910 char nm[30];
1911 int retval = -1;
1912 int fd = -1;
1913
1914 if (info) {
1915 for (sd = info->devs ; sd ; sd = sd->next) {
1916 /* read only from one of the first two slots */
1917 if ((sd->disk.raid_disk > 1) ||
1918 (sd->disk.raid_disk < 0))
1919 continue;
1920 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1921 fd = dev_open(nm, O_RDONLY);
1922 if (fd >= 0)
1923 break;
1924 }
1925 }
1926 if (fd < 0) {
1927 for (dl = super->disks; dl; dl = dl->next) {
1928 /* read only from one of the first two slots */
1929 if (dl->index > 1)
1930 continue;
1931 sprintf(nm, "%d:%d", dl->major, dl->minor);
1932 fd = dev_open(nm, O_RDONLY);
1933 if (fd >= 0)
1934 break;
1935 }
1936 }
1937 if (fd < 0)
1938 goto out;
1939 retval = read_imsm_migr_rec(fd, super);
1940
1941out:
1942 if (fd >= 0)
1943 close(fd);
1944 return retval;
1945}
1946
c17608ea
AK
1947/*******************************************************************************
1948 * function: imsm_create_metadata_checkpoint_update
1949 * Description: It creates update for checkpoint change.
1950 * Parameters:
1951 * super : imsm internal array info
1952 * u : pointer to prepared update
1953 * Returns:
1954 * Uptate length.
1955 * If length is equal to 0, input pointer u contains no update
1956 ******************************************************************************/
1957static int imsm_create_metadata_checkpoint_update(
1958 struct intel_super *super,
1959 struct imsm_update_general_migration_checkpoint **u)
1960{
1961
1962 int update_memory_size = 0;
1963
1964 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
1965
1966 if (u == NULL)
1967 return 0;
1968 *u = NULL;
1969
1970 /* size of all update data without anchor */
1971 update_memory_size =
1972 sizeof(struct imsm_update_general_migration_checkpoint);
1973
1974 *u = calloc(1, update_memory_size);
1975 if (*u == NULL) {
1976 dprintf("error: cannot get memory for "
1977 "imsm_create_metadata_checkpoint_update update\n");
1978 return 0;
1979 }
1980 (*u)->type = update_general_migration_checkpoint;
1981 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
1982 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
1983 (*u)->curr_migr_unit);
1984
1985 return update_memory_size;
1986}
1987
1988
1989static void imsm_update_metadata_locally(struct supertype *st,
1990 void *buf, int len);
1991
687629c2
AK
1992/*******************************************************************************
1993 * Function: write_imsm_migr_rec
1994 * Description: Function writes imsm migration record
1995 * (at the last sector of disk)
1996 * Parameters:
1997 * super : imsm internal array info
1998 * Returns:
1999 * 0 : success
2000 * -1 : if fail
2001 ******************************************************************************/
2002static int write_imsm_migr_rec(struct supertype *st)
2003{
2004 struct intel_super *super = st->sb;
2005 unsigned long long dsize;
2006 char nm[30];
2007 int fd = -1;
2008 int retval = -1;
2009 struct dl *sd;
c17608ea
AK
2010 int len;
2011 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2012
2013 for (sd = super->disks ; sd ; sd = sd->next) {
2014 /* write to 2 first slots only */
2015 if ((sd->index < 0) || (sd->index > 1))
2016 continue;
2017 sprintf(nm, "%d:%d", sd->major, sd->minor);
2018 fd = dev_open(nm, O_RDWR);
2019 if (fd < 0)
2020 continue;
2021 get_dev_size(fd, NULL, &dsize);
2022 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2023 fprintf(stderr,
2024 Name ": Cannot seek to anchor block: %s\n",
2025 strerror(errno));
2026 goto out;
2027 }
2028 if (write(fd, super->migr_rec_buf, 512) != 512) {
2029 fprintf(stderr,
2030 Name ": Cannot write migr record block: %s\n",
2031 strerror(errno));
2032 goto out;
2033 }
2034 close(fd);
2035 fd = -1;
2036 }
c17608ea
AK
2037 /* update checkpoint information in metadata */
2038 len = imsm_create_metadata_checkpoint_update(super, &u);
2039
2040 if (len <= 0) {
2041 dprintf("imsm: Cannot prepare update\n");
2042 goto out;
2043 }
2044 /* update metadata locally */
2045 imsm_update_metadata_locally(st, u, len);
2046 /* and possibly remotely */
2047 if (st->update_tail) {
2048 append_metadata_update(st, u, len);
2049 /* during reshape we do all work inside metadata handler
2050 * manage_reshape(), so metadata update has to be triggered
2051 * insida it
2052 */
2053 flush_metadata_updates(st);
2054 st->update_tail = &st->updates;
2055 } else
2056 free(u);
687629c2
AK
2057
2058 retval = 0;
2059 out:
2060 if (fd >= 0)
2061 close(fd);
2062 return retval;
2063}
2064
a5d85af7 2065static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2066{
2067 struct intel_super *super = st->sb;
c47b0ff6 2068 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2069 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 2070 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 2071 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 2072 struct imsm_map *map_to_analyse = map;
efb30e7f 2073 struct dl *dl;
e207da2f 2074 char *devname;
139dae11 2075 unsigned int component_size_alligment;
a5d85af7 2076 int map_disks = info->array.raid_disks;
bf5a934a 2077
95eeceeb 2078 memset(info, 0, sizeof(*info));
b335e593
AK
2079 if (prev_map)
2080 map_to_analyse = prev_map;
2081
9894ec0d
N
2082 dl = super->disks;
2083
bf5a934a 2084 info->container_member = super->current_vol;
cd0430a1 2085 info->array.raid_disks = map->num_members;
b335e593 2086 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2087 info->array.layout = imsm_level_to_layout(info->array.level);
2088 info->array.md_minor = -1;
2089 info->array.ctime = 0;
2090 info->array.utime = 0;
b335e593
AK
2091 info->array.chunk_size =
2092 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2093 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2094 info->custom_array_size = __le32_to_cpu(dev->size_high);
2095 info->custom_array_size <<= 32;
2096 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3f83228a
N
2097 if (prev_map && map->map_state == prev_map->map_state) {
2098 info->reshape_active = 1;
b335e593
AK
2099 info->new_level = get_imsm_raid_level(map);
2100 info->new_layout = imsm_level_to_layout(info->new_level);
2101 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2102 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2103 if (info->delta_disks) {
2104 /* this needs to be applied to every array
2105 * in the container.
2106 */
2107 info->reshape_active = 2;
2108 }
3f83228a
N
2109 /* We shape information that we give to md might have to be
2110 * modify to cope with md's requirement for reshaping arrays.
2111 * For example, when reshaping a RAID0, md requires it to be
2112 * presented as a degraded RAID4.
2113 * Also if a RAID0 is migrating to a RAID5 we need to specify
2114 * the array as already being RAID5, but the 'before' layout
2115 * is a RAID4-like layout.
2116 */
2117 switch (info->array.level) {
2118 case 0:
2119 switch(info->new_level) {
2120 case 0:
2121 /* conversion is happening as RAID4 */
2122 info->array.level = 4;
2123 info->array.raid_disks += 1;
2124 break;
2125 case 5:
2126 /* conversion is happening as RAID5 */
2127 info->array.level = 5;
2128 info->array.layout = ALGORITHM_PARITY_N;
2129 info->array.raid_disks += 1;
2130 info->delta_disks -= 1;
2131 break;
2132 default:
2133 /* FIXME error message */
2134 info->array.level = UnSet;
2135 break;
2136 }
2137 break;
2138 }
b335e593
AK
2139 } else {
2140 info->new_level = UnSet;
2141 info->new_layout = UnSet;
2142 info->new_chunk = info->array.chunk_size;
3f83228a 2143 info->delta_disks = 0;
b335e593 2144 }
301406c9
DW
2145 info->disk.major = 0;
2146 info->disk.minor = 0;
efb30e7f
DW
2147 if (dl) {
2148 info->disk.major = dl->major;
2149 info->disk.minor = dl->minor;
2150 }
bf5a934a 2151
b335e593
AK
2152 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2153 info->component_size =
2154 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2155
2156 /* check component size aligment
2157 */
2158 component_size_alligment =
2159 info->component_size % (info->array.chunk_size/512);
2160
2161 if (component_size_alligment &&
2162 (info->array.level != 1) && (info->array.level != UnSet)) {
2163 dprintf("imsm: reported component size alligned from %llu ",
2164 info->component_size);
2165 info->component_size -= component_size_alligment;
2166 dprintf("to %llu (%i).\n",
2167 info->component_size, component_size_alligment);
2168 }
2169
301406c9 2170 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2171 info->recovery_start = MaxSector;
bf5a934a 2172
d2e6d5d6 2173 info->reshape_progress = 0;
b6796ce1 2174 info->resync_start = MaxSector;
b335e593
AK
2175 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2176 dev->vol.dirty) {
301406c9 2177 info->resync_start = 0;
b6796ce1
AK
2178 }
2179 if (dev->vol.migr_state) {
1e5c6983
DW
2180 switch (migr_type(dev)) {
2181 case MIGR_REPAIR:
2182 case MIGR_INIT: {
c47b0ff6
AK
2183 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2184 dev);
1e5c6983
DW
2185 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2186
2187 info->resync_start = blocks_per_unit * units;
2188 break;
2189 }
d2e6d5d6 2190 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2191 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2192 dev);
2193 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2194 unsigned long long array_blocks;
2195 int used_disks;
d2e6d5d6
AK
2196
2197 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2198
d2e6d5d6
AK
2199 dprintf("IMSM: General Migration checkpoint : %llu "
2200 "(%llu) -> read reshape progress : %llu\n",
2201 units, blocks_per_unit, info->reshape_progress);
75156c46
AK
2202
2203 used_disks = imsm_num_data_members(dev, 1);
2204 if (used_disks > 0) {
2205 array_blocks = map->blocks_per_member *
2206 used_disks;
2207 /* round array size down to closest MB
2208 */
2209 info->custom_array_size = (array_blocks
2210 >> SECT_PER_MB_SHIFT)
2211 << SECT_PER_MB_SHIFT;
2212 }
d2e6d5d6 2213 }
1e5c6983
DW
2214 case MIGR_VERIFY:
2215 /* we could emulate the checkpointing of
2216 * 'sync_action=check' migrations, but for now
2217 * we just immediately complete them
2218 */
2219 case MIGR_REBUILD:
2220 /* this is handled by container_content_imsm() */
1e5c6983
DW
2221 case MIGR_STATE_CHANGE:
2222 /* FIXME handle other migrations */
2223 default:
2224 /* we are not dirty, so... */
2225 info->resync_start = MaxSector;
2226 }
b6796ce1 2227 }
301406c9
DW
2228
2229 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2230 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2231
f35f2525
N
2232 info->array.major_version = -1;
2233 info->array.minor_version = -2;
e207da2f
AW
2234 devname = devnum2devname(st->container_dev);
2235 *info->text_version = '\0';
2236 if (devname)
2237 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2238 free(devname);
a67dd8cc 2239 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2240 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2241
2242 if (dmap) {
2243 int i, j;
2244 for (i=0; i<map_disks; i++) {
2245 dmap[i] = 0;
2246 if (i < info->array.raid_disks) {
2247 struct imsm_disk *dsk;
98130f40 2248 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2249 dsk = get_imsm_disk(super, j);
2250 if (dsk && (dsk->status & CONFIGURED_DISK))
2251 dmap[i] = 1;
2252 }
2253 }
2254 }
81ac8b4d 2255}
bf5a934a 2256
97b4d0e9
DW
2257static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2258static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2259
2260static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2261{
2262 struct dl *d;
2263
2264 for (d = super->missing; d; d = d->next)
2265 if (d->index == index)
2266 return &d->disk;
2267 return NULL;
2268}
2269
a5d85af7 2270static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2271{
2272 struct intel_super *super = st->sb;
4f5bc454 2273 struct imsm_disk *disk;
a5d85af7 2274 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2275 int max_enough = -1;
2276 int i;
2277 struct imsm_super *mpb;
4f5bc454 2278
bf5a934a 2279 if (super->current_vol >= 0) {
a5d85af7 2280 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2281 return;
2282 }
95eeceeb 2283 memset(info, 0, sizeof(*info));
d23fe947
DW
2284
2285 /* Set raid_disks to zero so that Assemble will always pull in valid
2286 * spares
2287 */
2288 info->array.raid_disks = 0;
cdddbdbc
DW
2289 info->array.level = LEVEL_CONTAINER;
2290 info->array.layout = 0;
2291 info->array.md_minor = -1;
c2c087e6 2292 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2293 info->array.utime = 0;
2294 info->array.chunk_size = 0;
2295
2296 info->disk.major = 0;
2297 info->disk.minor = 0;
cdddbdbc 2298 info->disk.raid_disk = -1;
c2c087e6 2299 info->reshape_active = 0;
f35f2525
N
2300 info->array.major_version = -1;
2301 info->array.minor_version = -2;
c2c087e6 2302 strcpy(info->text_version, "imsm");
a67dd8cc 2303 info->safe_mode_delay = 0;
c2c087e6
DW
2304 info->disk.number = -1;
2305 info->disk.state = 0;
c5afc314 2306 info->name[0] = 0;
921d9e16 2307 info->recovery_start = MaxSector;
c2c087e6 2308
97b4d0e9 2309 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2310 mpb = super->anchor;
97b4d0e9 2311
ab3cb6b3
N
2312 for (i = 0; i < mpb->num_raid_devs; i++) {
2313 struct imsm_dev *dev = get_imsm_dev(super, i);
2314 int failed, enough, j, missing = 0;
2315 struct imsm_map *map;
2316 __u8 state;
97b4d0e9 2317
ab3cb6b3
N
2318 failed = imsm_count_failed(super, dev);
2319 state = imsm_check_degraded(super, dev, failed);
2320 map = get_imsm_map(dev, dev->vol.migr_state);
2321
2322 /* any newly missing disks?
2323 * (catches single-degraded vs double-degraded)
2324 */
2325 for (j = 0; j < map->num_members; j++) {
98130f40 2326 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
ab3cb6b3
N
2327 __u32 idx = ord_to_idx(ord);
2328
2329 if (!(ord & IMSM_ORD_REBUILD) &&
2330 get_imsm_missing(super, idx)) {
2331 missing = 1;
2332 break;
2333 }
97b4d0e9 2334 }
ab3cb6b3
N
2335
2336 if (state == IMSM_T_STATE_FAILED)
2337 enough = -1;
2338 else if (state == IMSM_T_STATE_DEGRADED &&
2339 (state != map->map_state || missing))
2340 enough = 0;
2341 else /* we're normal, or already degraded */
2342 enough = 1;
2343
2344 /* in the missing/failed disk case check to see
2345 * if at least one array is runnable
2346 */
2347 max_enough = max(max_enough, enough);
2348 }
2349 dprintf("%s: enough: %d\n", __func__, max_enough);
2350 info->container_enough = max_enough;
97b4d0e9 2351
4a04ec6c 2352 if (super->disks) {
14e8215b
DW
2353 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2354
b9f594fe 2355 disk = &super->disks->disk;
14e8215b
DW
2356 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2357 info->component_size = reserved;
25ed7e59 2358 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2359 /* we don't change info->disk.raid_disk here because
2360 * this state will be finalized in mdmon after we have
2361 * found the 'most fresh' version of the metadata
2362 */
25ed7e59
DW
2363 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2364 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2365 }
a575e2a7
DW
2366
2367 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2368 * ->compare_super may have updated the 'num_raid_devs' field for spares
2369 */
2370 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2371 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2372 else
2373 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2374
2375 /* I don't know how to compute 'map' on imsm, so use safe default */
2376 if (map) {
2377 int i;
2378 for (i = 0; i < map_disks; i++)
2379 map[i] = 1;
2380 }
2381
cdddbdbc
DW
2382}
2383
5c4cd5da
AC
2384/* allocates memory and fills disk in mdinfo structure
2385 * for each disk in array */
2386struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2387{
2388 struct mdinfo *mddev = NULL;
2389 struct intel_super *super = st->sb;
2390 struct imsm_disk *disk;
2391 int count = 0;
2392 struct dl *dl;
2393 if (!super || !super->disks)
2394 return NULL;
2395 dl = super->disks;
2396 mddev = malloc(sizeof(*mddev));
2397 if (!mddev) {
2398 fprintf(stderr, Name ": Failed to allocate memory.\n");
2399 return NULL;
2400 }
2401 memset(mddev, 0, sizeof(*mddev));
2402 while (dl) {
2403 struct mdinfo *tmp;
2404 disk = &dl->disk;
2405 tmp = malloc(sizeof(*tmp));
2406 if (!tmp) {
2407 fprintf(stderr, Name ": Failed to allocate memory.\n");
2408 if (mddev)
2409 sysfs_free(mddev);
2410 return NULL;
2411 }
2412 memset(tmp, 0, sizeof(*tmp));
2413 if (mddev->devs)
2414 tmp->next = mddev->devs;
2415 mddev->devs = tmp;
2416 tmp->disk.number = count++;
2417 tmp->disk.major = dl->major;
2418 tmp->disk.minor = dl->minor;
2419 tmp->disk.state = is_configured(disk) ?
2420 (1 << MD_DISK_ACTIVE) : 0;
2421 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2422 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2423 tmp->disk.raid_disk = -1;
2424 dl = dl->next;
2425 }
2426 return mddev;
2427}
2428
cdddbdbc
DW
2429static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2430 char *update, char *devname, int verbose,
2431 int uuid_set, char *homehost)
2432{
f352c545
DW
2433 /* For 'assemble' and 'force' we need to return non-zero if any
2434 * change was made. For others, the return value is ignored.
2435 * Update options are:
2436 * force-one : This device looks a bit old but needs to be included,
2437 * update age info appropriately.
2438 * assemble: clear any 'faulty' flag to allow this device to
2439 * be assembled.
2440 * force-array: Array is degraded but being forced, mark it clean
2441 * if that will be needed to assemble it.
2442 *
2443 * newdev: not used ????
2444 * grow: Array has gained a new device - this is currently for
2445 * linear only
2446 * resync: mark as dirty so a resync will happen.
2447 * name: update the name - preserving the homehost
6e46bf34 2448 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2449 *
2450 * Following are not relevant for this imsm:
2451 * sparc2.2 : update from old dodgey metadata
2452 * super-minor: change the preferred_minor number
2453 * summaries: update redundant counters.
f352c545
DW
2454 * homehost: update the recorded homehost
2455 * _reshape_progress: record new reshape_progress position.
2456 */
6e46bf34
DW
2457 int rv = 1;
2458 struct intel_super *super = st->sb;
2459 struct imsm_super *mpb;
f352c545 2460
6e46bf34
DW
2461 /* we can only update container info */
2462 if (!super || super->current_vol >= 0 || !super->anchor)
2463 return 1;
2464
2465 mpb = super->anchor;
2466
2467 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2468 rv = -1;
6e46bf34
DW
2469 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2470 mpb->orig_family_num = *((__u32 *) info->update_private);
2471 rv = 0;
2472 } else if (strcmp(update, "uuid") == 0) {
2473 __u32 *new_family = malloc(sizeof(*new_family));
2474
2475 /* update orig_family_number with the incoming random
2476 * data, report the new effective uuid, and store the
2477 * new orig_family_num for future updates.
2478 */
2479 if (new_family) {
2480 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2481 uuid_from_super_imsm(st, info->uuid);
2482 *new_family = mpb->orig_family_num;
2483 info->update_private = new_family;
2484 rv = 0;
2485 }
2486 } else if (strcmp(update, "assemble") == 0)
2487 rv = 0;
2488 else
1e2b2765 2489 rv = -1;
f352c545 2490
6e46bf34
DW
2491 /* successful update? recompute checksum */
2492 if (rv == 0)
2493 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2494
2495 return rv;
cdddbdbc
DW
2496}
2497
c2c087e6 2498static size_t disks_to_mpb_size(int disks)
cdddbdbc 2499{
c2c087e6 2500 size_t size;
cdddbdbc 2501
c2c087e6
DW
2502 size = sizeof(struct imsm_super);
2503 size += (disks - 1) * sizeof(struct imsm_disk);
2504 size += 2 * sizeof(struct imsm_dev);
2505 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2506 size += (4 - 2) * sizeof(struct imsm_map);
2507 /* 4 possible disk_ord_tbl's */
2508 size += 4 * (disks - 1) * sizeof(__u32);
2509
2510 return size;
2511}
2512
2513static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2514{
2515 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2516 return 0;
2517
2518 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2519}
2520
ba2de7ba
DW
2521static void free_devlist(struct intel_super *super)
2522{
2523 struct intel_dev *dv;
2524
2525 while (super->devlist) {
2526 dv = super->devlist->next;
2527 free(super->devlist->dev);
2528 free(super->devlist);
2529 super->devlist = dv;
2530 }
2531}
2532
2533static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2534{
2535 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2536}
2537
cdddbdbc
DW
2538static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2539{
2540 /*
2541 * return:
2542 * 0 same, or first was empty, and second was copied
2543 * 1 second had wrong number
2544 * 2 wrong uuid
2545 * 3 wrong other info
2546 */
2547 struct intel_super *first = st->sb;
2548 struct intel_super *sec = tst->sb;
2549
2550 if (!first) {
2551 st->sb = tst->sb;
2552 tst->sb = NULL;
2553 return 0;
2554 }
8603ea6f
LM
2555 /* in platform dependent environment test if the disks
2556 * use the same Intel hba
2557 */
2558 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2559 if (!first->hba || !sec->hba ||
2560 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2561 fprintf(stderr,
2562 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2563 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2564 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2565 return 3;
2566 }
2567 }
cdddbdbc 2568
d23fe947
DW
2569 /* if an anchor does not have num_raid_devs set then it is a free
2570 * floating spare
2571 */
2572 if (first->anchor->num_raid_devs > 0 &&
2573 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2574 /* Determine if these disks might ever have been
2575 * related. Further disambiguation can only take place
2576 * in load_super_imsm_all
2577 */
2578 __u32 first_family = first->anchor->orig_family_num;
2579 __u32 sec_family = sec->anchor->orig_family_num;
2580
f796af5d
DW
2581 if (memcmp(first->anchor->sig, sec->anchor->sig,
2582 MAX_SIGNATURE_LENGTH) != 0)
2583 return 3;
2584
a2b97981
DW
2585 if (first_family == 0)
2586 first_family = first->anchor->family_num;
2587 if (sec_family == 0)
2588 sec_family = sec->anchor->family_num;
2589
2590 if (first_family != sec_family)
d23fe947 2591 return 3;
f796af5d 2592
d23fe947 2593 }
cdddbdbc 2594
f796af5d 2595
3e372e5a
DW
2596 /* if 'first' is a spare promote it to a populated mpb with sec's
2597 * family number
2598 */
2599 if (first->anchor->num_raid_devs == 0 &&
2600 sec->anchor->num_raid_devs > 0) {
78d30f94 2601 int i;
ba2de7ba
DW
2602 struct intel_dev *dv;
2603 struct imsm_dev *dev;
78d30f94
DW
2604
2605 /* we need to copy raid device info from sec if an allocation
2606 * fails here we don't associate the spare
2607 */
2608 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2609 dv = malloc(sizeof(*dv));
2610 if (!dv)
2611 break;
2612 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2613 if (!dev) {
2614 free(dv);
2615 break;
78d30f94 2616 }
ba2de7ba
DW
2617 dv->dev = dev;
2618 dv->index = i;
2619 dv->next = first->devlist;
2620 first->devlist = dv;
78d30f94 2621 }
709743c5 2622 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2623 /* allocation failure */
2624 free_devlist(first);
2625 fprintf(stderr, "imsm: failed to associate spare\n");
2626 return 3;
78d30f94 2627 }
3e372e5a 2628 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2629 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2630 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2631 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2632 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2633 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2634 }
2635
cdddbdbc
DW
2636 return 0;
2637}
2638
0030e8d6
DW
2639static void fd2devname(int fd, char *name)
2640{
2641 struct stat st;
2642 char path[256];
33a6535d 2643 char dname[PATH_MAX];
0030e8d6
DW
2644 char *nm;
2645 int rv;
2646
2647 name[0] = '\0';
2648 if (fstat(fd, &st) != 0)
2649 return;
2650 sprintf(path, "/sys/dev/block/%d:%d",
2651 major(st.st_rdev), minor(st.st_rdev));
2652
2653 rv = readlink(path, dname, sizeof(dname));
2654 if (rv <= 0)
2655 return;
2656
2657 dname[rv] = '\0';
2658 nm = strrchr(dname, '/');
2659 nm++;
2660 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2661}
2662
cdddbdbc
DW
2663extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2664
2665static int imsm_read_serial(int fd, char *devname,
2666 __u8 serial[MAX_RAID_SERIAL_LEN])
2667{
2668 unsigned char scsi_serial[255];
cdddbdbc
DW
2669 int rv;
2670 int rsp_len;
1f24f035 2671 int len;
316e2bf4
DW
2672 char *dest;
2673 char *src;
2674 char *rsp_buf;
2675 int i;
cdddbdbc
DW
2676
2677 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2678
f9ba0ff1
DW
2679 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2680
40ebbb9c 2681 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2682 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2683 fd2devname(fd, (char *) serial);
0030e8d6
DW
2684 return 0;
2685 }
2686
cdddbdbc
DW
2687 if (rv != 0) {
2688 if (devname)
2689 fprintf(stderr,
2690 Name ": Failed to retrieve serial for %s\n",
2691 devname);
2692 return rv;
2693 }
2694
2695 rsp_len = scsi_serial[3];
03cd4cc8
DW
2696 if (!rsp_len) {
2697 if (devname)
2698 fprintf(stderr,
2699 Name ": Failed to retrieve serial for %s\n",
2700 devname);
2701 return 2;
2702 }
1f24f035 2703 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2704
316e2bf4
DW
2705 /* trim all whitespace and non-printable characters and convert
2706 * ':' to ';'
2707 */
2708 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2709 src = &rsp_buf[i];
2710 if (*src > 0x20) {
2711 /* ':' is reserved for use in placeholder serial
2712 * numbers for missing disks
2713 */
2714 if (*src == ':')
2715 *dest++ = ';';
2716 else
2717 *dest++ = *src;
2718 }
2719 }
2720 len = dest - rsp_buf;
2721 dest = rsp_buf;
2722
2723 /* truncate leading characters */
2724 if (len > MAX_RAID_SERIAL_LEN) {
2725 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2726 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2727 }
5c3db629 2728
5c3db629 2729 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2730 memcpy(serial, dest, len);
cdddbdbc
DW
2731
2732 return 0;
2733}
2734
1f24f035
DW
2735static int serialcmp(__u8 *s1, __u8 *s2)
2736{
2737 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2738}
2739
2740static void serialcpy(__u8 *dest, __u8 *src)
2741{
2742 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2743}
2744
1799c9e8 2745#ifndef MDASSEMBLE
54c2c1ea
DW
2746static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2747{
2748 struct dl *dl;
2749
2750 for (dl = super->disks; dl; dl = dl->next)
2751 if (serialcmp(dl->serial, serial) == 0)
2752 break;
2753
2754 return dl;
2755}
1799c9e8 2756#endif
54c2c1ea 2757
a2b97981
DW
2758static struct imsm_disk *
2759__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2760{
2761 int i;
2762
2763 for (i = 0; i < mpb->num_disks; i++) {
2764 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2765
2766 if (serialcmp(disk->serial, serial) == 0) {
2767 if (idx)
2768 *idx = i;
2769 return disk;
2770 }
2771 }
2772
2773 return NULL;
2774}
2775
cdddbdbc
DW
2776static int
2777load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2778{
a2b97981 2779 struct imsm_disk *disk;
cdddbdbc
DW
2780 struct dl *dl;
2781 struct stat stb;
cdddbdbc 2782 int rv;
a2b97981 2783 char name[40];
d23fe947
DW
2784 __u8 serial[MAX_RAID_SERIAL_LEN];
2785
2786 rv = imsm_read_serial(fd, devname, serial);
2787
2788 if (rv != 0)
2789 return 2;
2790
a2b97981 2791 dl = calloc(1, sizeof(*dl));
b9f594fe 2792 if (!dl) {
cdddbdbc
DW
2793 if (devname)
2794 fprintf(stderr,
2795 Name ": failed to allocate disk buffer for %s\n",
2796 devname);
2797 return 2;
2798 }
cdddbdbc 2799
a2b97981
DW
2800 fstat(fd, &stb);
2801 dl->major = major(stb.st_rdev);
2802 dl->minor = minor(stb.st_rdev);
2803 dl->next = super->disks;
2804 dl->fd = keep_fd ? fd : -1;
2805 assert(super->disks == NULL);
2806 super->disks = dl;
2807 serialcpy(dl->serial, serial);
2808 dl->index = -2;
2809 dl->e = NULL;
2810 fd2devname(fd, name);
2811 if (devname)
2812 dl->devname = strdup(devname);
2813 else
2814 dl->devname = strdup(name);
cdddbdbc 2815
d23fe947 2816 /* look up this disk's index in the current anchor */
a2b97981
DW
2817 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2818 if (disk) {
2819 dl->disk = *disk;
2820 /* only set index on disks that are a member of a
2821 * populated contianer, i.e. one with raid_devs
2822 */
2823 if (is_failed(&dl->disk))
3f6efecc 2824 dl->index = -2;
a2b97981
DW
2825 else if (is_spare(&dl->disk))
2826 dl->index = -1;
3f6efecc
DW
2827 }
2828
949c47a0
DW
2829 return 0;
2830}
2831
0e600426 2832#ifndef MDASSEMBLE
0c046afd
DW
2833/* When migrating map0 contains the 'destination' state while map1
2834 * contains the current state. When not migrating map0 contains the
2835 * current state. This routine assumes that map[0].map_state is set to
2836 * the current array state before being called.
2837 *
2838 * Migration is indicated by one of the following states
2839 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 2840 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 2841 * map1state=unitialized)
1484e727 2842 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 2843 * map1state=normal)
e3bba0e0 2844 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 2845 * map1state=degraded)
8e59f3d8
AK
2846 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
2847 * map1state=normal)
0c046afd 2848 */
8e59f3d8
AK
2849static void migrate(struct imsm_dev *dev, struct intel_super *super,
2850 __u8 to_state, int migr_type)
3393c6af 2851{
0c046afd 2852 struct imsm_map *dest;
3393c6af
DW
2853 struct imsm_map *src = get_imsm_map(dev, 0);
2854
0c046afd 2855 dev->vol.migr_state = 1;
1484e727 2856 set_migr_type(dev, migr_type);
f8f603f1 2857 dev->vol.curr_migr_unit = 0;
0c046afd
DW
2858 dest = get_imsm_map(dev, 1);
2859
0556e1a2 2860 /* duplicate and then set the target end state in map[0] */
3393c6af 2861 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
2862 if ((migr_type == MIGR_REBUILD) ||
2863 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
2864 __u32 ord;
2865 int i;
2866
2867 for (i = 0; i < src->num_members; i++) {
2868 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2869 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2870 }
2871 }
2872
8e59f3d8
AK
2873 if (migr_type == MIGR_GEN_MIGR)
2874 /* Clear migration record */
2875 memset(super->migr_rec, 0, sizeof(struct migr_record));
2876
0c046afd 2877 src->map_state = to_state;
949c47a0 2878}
f8f603f1
DW
2879
2880static void end_migration(struct imsm_dev *dev, __u8 map_state)
2881{
2882 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 2883 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 2884 int i, j;
0556e1a2
DW
2885
2886 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2887 * completed in the last migration.
2888 *
28bce06f 2889 * FIXME add support for raid-level-migration
0556e1a2
DW
2890 */
2891 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
2892 for (j = 0; j < map->num_members; j++)
2893 /* during online capacity expansion
2894 * disks position can be changed if takeover is used
2895 */
2896 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2897 ord_to_idx(prev->disk_ord_tbl[i])) {
2898 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2899 break;
2900 }
f8f603f1
DW
2901
2902 dev->vol.migr_state = 0;
28bce06f 2903 dev->vol.migr_type = 0;
f8f603f1
DW
2904 dev->vol.curr_migr_unit = 0;
2905 map->map_state = map_state;
2906}
0e600426 2907#endif
949c47a0
DW
2908
2909static int parse_raid_devices(struct intel_super *super)
2910{
2911 int i;
2912 struct imsm_dev *dev_new;
4d7b1503 2913 size_t len, len_migr;
401d313b 2914 size_t max_len = 0;
4d7b1503
DW
2915 size_t space_needed = 0;
2916 struct imsm_super *mpb = super->anchor;
949c47a0
DW
2917
2918 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2919 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 2920 struct intel_dev *dv;
949c47a0 2921
4d7b1503
DW
2922 len = sizeof_imsm_dev(dev_iter, 0);
2923 len_migr = sizeof_imsm_dev(dev_iter, 1);
2924 if (len_migr > len)
2925 space_needed += len_migr - len;
2926
ba2de7ba
DW
2927 dv = malloc(sizeof(*dv));
2928 if (!dv)
2929 return 1;
401d313b
AK
2930 if (max_len < len_migr)
2931 max_len = len_migr;
2932 if (max_len > len_migr)
2933 space_needed += max_len - len_migr;
2934 dev_new = malloc(max_len);
ba2de7ba
DW
2935 if (!dev_new) {
2936 free(dv);
949c47a0 2937 return 1;
ba2de7ba 2938 }
949c47a0 2939 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
2940 dv->dev = dev_new;
2941 dv->index = i;
2942 dv->next = super->devlist;
2943 super->devlist = dv;
949c47a0 2944 }
cdddbdbc 2945
4d7b1503
DW
2946 /* ensure that super->buf is large enough when all raid devices
2947 * are migrating
2948 */
2949 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2950 void *buf;
2951
2952 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2953 if (posix_memalign(&buf, 512, len) != 0)
2954 return 1;
2955
1f45a8ad
DW
2956 memcpy(buf, super->buf, super->len);
2957 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
2958 free(super->buf);
2959 super->buf = buf;
2960 super->len = len;
2961 }
2962
cdddbdbc
DW
2963 return 0;
2964}
2965
604b746f
JD
2966/* retrieve a pointer to the bbm log which starts after all raid devices */
2967struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2968{
2969 void *ptr = NULL;
2970
2971 if (__le32_to_cpu(mpb->bbm_log_size)) {
2972 ptr = mpb;
2973 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2974 }
2975
2976 return ptr;
2977}
2978
e2f41b2c
AK
2979/*******************************************************************************
2980 * Function: check_mpb_migr_compatibility
2981 * Description: Function checks for unsupported migration features:
2982 * - migration optimization area (pba_of_lba0)
2983 * - descending reshape (ascending_migr)
2984 * Parameters:
2985 * super : imsm metadata information
2986 * Returns:
2987 * 0 : migration is compatible
2988 * -1 : migration is not compatible
2989 ******************************************************************************/
2990int check_mpb_migr_compatibility(struct intel_super *super)
2991{
2992 struct imsm_map *map0, *map1;
2993 struct migr_record *migr_rec = super->migr_rec;
2994 int i;
2995
2996 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2997 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2998
2999 if (dev_iter &&
3000 dev_iter->vol.migr_state == 1 &&
3001 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3002 /* This device is migrating */
3003 map0 = get_imsm_map(dev_iter, 0);
3004 map1 = get_imsm_map(dev_iter, 1);
3005 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3006 /* migration optimization area was used */
3007 return -1;
3008 if (migr_rec->ascending_migr == 0
3009 && migr_rec->dest_depth_per_unit > 0)
3010 /* descending reshape not supported yet */
3011 return -1;
3012 }
3013 }
3014 return 0;
3015}
3016
d23fe947 3017static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3018
cdddbdbc 3019/* load_imsm_mpb - read matrix metadata
f2f5c343 3020 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3021 */
3022static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3023{
3024 unsigned long long dsize;
cdddbdbc
DW
3025 unsigned long long sectors;
3026 struct stat;
6416d527 3027 struct imsm_super *anchor;
cdddbdbc
DW
3028 __u32 check_sum;
3029
cdddbdbc 3030 get_dev_size(fd, NULL, &dsize);
64436f06
N
3031 if (dsize < 1024) {
3032 if (devname)
3033 fprintf(stderr,
3034 Name ": %s: device to small for imsm\n",
3035 devname);
3036 return 1;
3037 }
cdddbdbc
DW
3038
3039 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3040 if (devname)
3041 fprintf(stderr,
3042 Name ": Cannot seek to anchor block on %s: %s\n",
3043 devname, strerror(errno));
3044 return 1;
3045 }
3046
949c47a0 3047 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3048 if (devname)
3049 fprintf(stderr,
3050 Name ": Failed to allocate imsm anchor buffer"
3051 " on %s\n", devname);
3052 return 1;
3053 }
949c47a0 3054 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3055 if (devname)
3056 fprintf(stderr,
3057 Name ": Cannot read anchor block on %s: %s\n",
3058 devname, strerror(errno));
6416d527 3059 free(anchor);
cdddbdbc
DW
3060 return 1;
3061 }
3062
6416d527 3063 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3064 if (devname)
3065 fprintf(stderr,
3066 Name ": no IMSM anchor on %s\n", devname);
6416d527 3067 free(anchor);
cdddbdbc
DW
3068 return 2;
3069 }
3070
d23fe947 3071 __free_imsm(super, 0);
f2f5c343
LM
3072 /* reload capability and hba */
3073
3074 /* capability and hba must be updated with new super allocation */
d424212e 3075 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3076 super->len = ROUND_UP(anchor->mpb_size, 512);
3077 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3078 if (devname)
3079 fprintf(stderr,
3080 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3081 super->len);
6416d527 3082 free(anchor);
cdddbdbc
DW
3083 return 2;
3084 }
949c47a0 3085 memcpy(super->buf, anchor, 512);
cdddbdbc 3086
6416d527
NB
3087 sectors = mpb_sectors(anchor) - 1;
3088 free(anchor);
8e59f3d8
AK
3089
3090 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3091 fprintf(stderr, Name
3092 ": %s could not allocate migr_rec buffer\n", __func__);
3093 free(super->buf);
3094 return 2;
3095 }
3096
949c47a0 3097 if (!sectors) {
ecf45690
DW
3098 check_sum = __gen_imsm_checksum(super->anchor);
3099 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3100 if (devname)
3101 fprintf(stderr,
3102 Name ": IMSM checksum %x != %x on %s\n",
3103 check_sum,
3104 __le32_to_cpu(super->anchor->check_sum),
3105 devname);
3106 return 2;
3107 }
3108
a2b97981 3109 return 0;
949c47a0 3110 }
cdddbdbc
DW
3111
3112 /* read the extended mpb */
3113 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3114 if (devname)
3115 fprintf(stderr,
3116 Name ": Cannot seek to extended mpb on %s: %s\n",
3117 devname, strerror(errno));
3118 return 1;
3119 }
3120
f21e18ca 3121 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3122 if (devname)
3123 fprintf(stderr,
3124 Name ": Cannot read extended mpb on %s: %s\n",
3125 devname, strerror(errno));
3126 return 2;
3127 }
3128
949c47a0
DW
3129 check_sum = __gen_imsm_checksum(super->anchor);
3130 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3131 if (devname)
3132 fprintf(stderr,
3133 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3134 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3135 devname);
db575f3b 3136 return 3;
cdddbdbc
DW
3137 }
3138
604b746f
JD
3139 /* FIXME the BBM log is disk specific so we cannot use this global
3140 * buffer for all disks. Ok for now since we only look at the global
3141 * bbm_log_size parameter to gate assembly
3142 */
3143 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3144
a2b97981
DW
3145 return 0;
3146}
3147
8e59f3d8
AK
3148static int read_imsm_migr_rec(int fd, struct intel_super *super);
3149
a2b97981
DW
3150static int
3151load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3152{
3153 int err;
3154
3155 err = load_imsm_mpb(fd, super, devname);
3156 if (err)
3157 return err;
3158 err = load_imsm_disk(fd, super, devname, keep_fd);
3159 if (err)
3160 return err;
3161 err = parse_raid_devices(super);
4d7b1503 3162
a2b97981 3163 return err;
cdddbdbc
DW
3164}
3165
ae6aad82
DW
3166static void __free_imsm_disk(struct dl *d)
3167{
3168 if (d->fd >= 0)
3169 close(d->fd);
3170 if (d->devname)
3171 free(d->devname);
0dcecb2e
DW
3172 if (d->e)
3173 free(d->e);
ae6aad82
DW
3174 free(d);
3175
3176}
1a64be56 3177
cdddbdbc
DW
3178static void free_imsm_disks(struct intel_super *super)
3179{
47ee5a45 3180 struct dl *d;
cdddbdbc 3181
47ee5a45
DW
3182 while (super->disks) {
3183 d = super->disks;
cdddbdbc 3184 super->disks = d->next;
ae6aad82 3185 __free_imsm_disk(d);
cdddbdbc 3186 }
cb82edca
AK
3187 while (super->disk_mgmt_list) {
3188 d = super->disk_mgmt_list;
3189 super->disk_mgmt_list = d->next;
3190 __free_imsm_disk(d);
3191 }
47ee5a45
DW
3192 while (super->missing) {
3193 d = super->missing;
3194 super->missing = d->next;
3195 __free_imsm_disk(d);
3196 }
3197
cdddbdbc
DW
3198}
3199
9ca2c81c 3200/* free all the pieces hanging off of a super pointer */
d23fe947 3201static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3202{
88654014
LM
3203 struct intel_hba *elem, *next;
3204
9ca2c81c 3205 if (super->buf) {
949c47a0 3206 free(super->buf);
9ca2c81c
DW
3207 super->buf = NULL;
3208 }
f2f5c343
LM
3209 /* unlink capability description */
3210 super->orom = NULL;
8e59f3d8
AK
3211 if (super->migr_rec_buf) {
3212 free(super->migr_rec_buf);
3213 super->migr_rec_buf = NULL;
3214 }
d23fe947
DW
3215 if (free_disks)
3216 free_imsm_disks(super);
ba2de7ba 3217 free_devlist(super);
88654014
LM
3218 elem = super->hba;
3219 while (elem) {
3220 if (elem->path)
3221 free((void *)elem->path);
3222 next = elem->next;
3223 free(elem);
3224 elem = next;
88c32bb1 3225 }
88654014 3226 super->hba = NULL;
cdddbdbc
DW
3227}
3228
9ca2c81c
DW
3229static void free_imsm(struct intel_super *super)
3230{
d23fe947 3231 __free_imsm(super, 1);
9ca2c81c
DW
3232 free(super);
3233}
cdddbdbc
DW
3234
3235static void free_super_imsm(struct supertype *st)
3236{
3237 struct intel_super *super = st->sb;
3238
3239 if (!super)
3240 return;
3241
3242 free_imsm(super);
3243 st->sb = NULL;
3244}
3245
49133e57 3246static struct intel_super *alloc_super(void)
c2c087e6
DW
3247{
3248 struct intel_super *super = malloc(sizeof(*super));
3249
3250 if (super) {
3251 memset(super, 0, sizeof(*super));
bf5a934a 3252 super->current_vol = -1;
0dcecb2e 3253 super->create_offset = ~((__u32 ) 0);
c2c087e6 3254 }
c2c087e6
DW
3255 return super;
3256}
3257
f0f5a016
LM
3258/*
3259 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3260 */
d424212e 3261static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3262{
3263 struct sys_dev *hba_name;
3264 int rv = 0;
3265
3266 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3267 super->orom = NULL;
f0f5a016
LM
3268 super->hba = NULL;
3269 return 0;
3270 }
3271 hba_name = find_disk_attached_hba(fd, NULL);
3272 if (!hba_name) {
d424212e 3273 if (devname)
f0f5a016
LM
3274 fprintf(stderr,
3275 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3276 devname);
f0f5a016
LM
3277 return 1;
3278 }
3279 rv = attach_hba_to_super(super, hba_name);
3280 if (rv == 2) {
d424212e
N
3281 if (devname) {
3282 struct intel_hba *hba = super->hba;
f0f5a016 3283
f0f5a016
LM
3284 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3285 "controller (%s),\n"
3286 " but the container is assigned to Intel(R) "
3287 "%s RAID controller (",
d424212e 3288 devname,
f0f5a016
LM
3289 hba_name->path,
3290 hba_name->pci_id ? : "Err!",
3291 get_sys_dev_type(hba_name->type));
3292
f0f5a016
LM
3293 while (hba) {
3294 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3295 if (hba->next)
3296 fprintf(stderr, ", ");
3297 hba = hba->next;
3298 }
3299
3300 fprintf(stderr, ").\n"
3301 " Mixing devices attached to different controllers "
3302 "is not allowed.\n");
3303 }
3304 free_sys_dev(&hba_name);
3305 return 2;
3306 }
f2f5c343 3307 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3308 free_sys_dev(&hba_name);
f2f5c343
LM
3309 if (!super->orom)
3310 return 3;
f0f5a016
LM
3311 return 0;
3312}
3313
cdddbdbc 3314#ifndef MDASSEMBLE
47ee5a45
DW
3315/* find_missing - helper routine for load_super_imsm_all that identifies
3316 * disks that have disappeared from the system. This routine relies on
3317 * the mpb being uptodate, which it is at load time.
3318 */
3319static int find_missing(struct intel_super *super)
3320{
3321 int i;
3322 struct imsm_super *mpb = super->anchor;
3323 struct dl *dl;
3324 struct imsm_disk *disk;
47ee5a45
DW
3325
3326 for (i = 0; i < mpb->num_disks; i++) {
3327 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3328 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3329 if (dl)
3330 continue;
47ee5a45
DW
3331
3332 dl = malloc(sizeof(*dl));
3333 if (!dl)
3334 return 1;
3335 dl->major = 0;
3336 dl->minor = 0;
3337 dl->fd = -1;
3338 dl->devname = strdup("missing");
3339 dl->index = i;
3340 serialcpy(dl->serial, disk->serial);
3341 dl->disk = *disk;
689c9bf3 3342 dl->e = NULL;
47ee5a45
DW
3343 dl->next = super->missing;
3344 super->missing = dl;
3345 }
3346
3347 return 0;
3348}
3349
a2b97981
DW
3350static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3351{
3352 struct intel_disk *idisk = disk_list;
3353
3354 while (idisk) {
3355 if (serialcmp(idisk->disk.serial, serial) == 0)
3356 break;
3357 idisk = idisk->next;
3358 }
3359
3360 return idisk;
3361}
3362
3363static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3364 struct intel_super *super,
3365 struct intel_disk **disk_list)
3366{
3367 struct imsm_disk *d = &super->disks->disk;
3368 struct imsm_super *mpb = super->anchor;
3369 int i, j;
3370
3371 for (i = 0; i < tbl_size; i++) {
3372 struct imsm_super *tbl_mpb = table[i]->anchor;
3373 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3374
3375 if (tbl_mpb->family_num == mpb->family_num) {
3376 if (tbl_mpb->check_sum == mpb->check_sum) {
3377 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3378 __func__, super->disks->major,
3379 super->disks->minor,
3380 table[i]->disks->major,
3381 table[i]->disks->minor);
3382 break;
3383 }
3384
3385 if (((is_configured(d) && !is_configured(tbl_d)) ||
3386 is_configured(d) == is_configured(tbl_d)) &&
3387 tbl_mpb->generation_num < mpb->generation_num) {
3388 /* current version of the mpb is a
3389 * better candidate than the one in
3390 * super_table, but copy over "cross
3391 * generational" status
3392 */
3393 struct intel_disk *idisk;
3394
3395 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3396 __func__, super->disks->major,
3397 super->disks->minor,
3398 table[i]->disks->major,
3399 table[i]->disks->minor);
3400
3401 idisk = disk_list_get(tbl_d->serial, *disk_list);
3402 if (idisk && is_failed(&idisk->disk))
3403 tbl_d->status |= FAILED_DISK;
3404 break;
3405 } else {
3406 struct intel_disk *idisk;
3407 struct imsm_disk *disk;
3408
3409 /* tbl_mpb is more up to date, but copy
3410 * over cross generational status before
3411 * returning
3412 */
3413 disk = __serial_to_disk(d->serial, mpb, NULL);
3414 if (disk && is_failed(disk))
3415 d->status |= FAILED_DISK;
3416
3417 idisk = disk_list_get(d->serial, *disk_list);
3418 if (idisk) {
3419 idisk->owner = i;
3420 if (disk && is_configured(disk))
3421 idisk->disk.status |= CONFIGURED_DISK;
3422 }
3423
3424 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3425 __func__, super->disks->major,
3426 super->disks->minor,
3427 table[i]->disks->major,
3428 table[i]->disks->minor);
3429
3430 return tbl_size;
3431 }
3432 }
3433 }
3434
3435 if (i >= tbl_size)
3436 table[tbl_size++] = super;
3437 else
3438 table[i] = super;
3439
3440 /* update/extend the merged list of imsm_disk records */
3441 for (j = 0; j < mpb->num_disks; j++) {
3442 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3443 struct intel_disk *idisk;
3444
3445 idisk = disk_list_get(disk->serial, *disk_list);
3446 if (idisk) {
3447 idisk->disk.status |= disk->status;
3448 if (is_configured(&idisk->disk) ||
3449 is_failed(&idisk->disk))
3450 idisk->disk.status &= ~(SPARE_DISK);
3451 } else {
3452 idisk = calloc(1, sizeof(*idisk));
3453 if (!idisk)
3454 return -1;
3455 idisk->owner = IMSM_UNKNOWN_OWNER;
3456 idisk->disk = *disk;
3457 idisk->next = *disk_list;
3458 *disk_list = idisk;
3459 }
3460
3461 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3462 idisk->owner = i;
3463 }
3464
3465 return tbl_size;
3466}
3467
3468static struct intel_super *
3469validate_members(struct intel_super *super, struct intel_disk *disk_list,
3470 const int owner)
3471{
3472 struct imsm_super *mpb = super->anchor;
3473 int ok_count = 0;
3474 int i;
3475
3476 for (i = 0; i < mpb->num_disks; i++) {
3477 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3478 struct intel_disk *idisk;
3479
3480 idisk = disk_list_get(disk->serial, disk_list);
3481 if (idisk) {
3482 if (idisk->owner == owner ||
3483 idisk->owner == IMSM_UNKNOWN_OWNER)
3484 ok_count++;
3485 else
3486 dprintf("%s: '%.16s' owner %d != %d\n",
3487 __func__, disk->serial, idisk->owner,
3488 owner);
3489 } else {
3490 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3491 __func__, __le32_to_cpu(mpb->family_num), i,
3492 disk->serial);
3493 break;
3494 }
3495 }
3496
3497 if (ok_count == mpb->num_disks)
3498 return super;
3499 return NULL;
3500}
3501
3502static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3503{
3504 struct intel_super *s;
3505
3506 for (s = super_list; s; s = s->next) {
3507 if (family_num != s->anchor->family_num)
3508 continue;
3509 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3510 __le32_to_cpu(family_num), s->disks->devname);
3511 }
3512}
3513
3514static struct intel_super *
3515imsm_thunderdome(struct intel_super **super_list, int len)
3516{
3517 struct intel_super *super_table[len];
3518 struct intel_disk *disk_list = NULL;
3519 struct intel_super *champion, *spare;
3520 struct intel_super *s, **del;
3521 int tbl_size = 0;
3522 int conflict;
3523 int i;
3524
3525 memset(super_table, 0, sizeof(super_table));
3526 for (s = *super_list; s; s = s->next)
3527 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3528
3529 for (i = 0; i < tbl_size; i++) {
3530 struct imsm_disk *d;
3531 struct intel_disk *idisk;
3532 struct imsm_super *mpb = super_table[i]->anchor;
3533
3534 s = super_table[i];
3535 d = &s->disks->disk;
3536
3537 /* 'd' must appear in merged disk list for its
3538 * configuration to be valid
3539 */
3540 idisk = disk_list_get(d->serial, disk_list);
3541 if (idisk && idisk->owner == i)
3542 s = validate_members(s, disk_list, i);
3543 else
3544 s = NULL;
3545
3546 if (!s)
3547 dprintf("%s: marking family: %#x from %d:%d offline\n",
3548 __func__, mpb->family_num,
3549 super_table[i]->disks->major,
3550 super_table[i]->disks->minor);
3551 super_table[i] = s;
3552 }
3553
3554 /* This is where the mdadm implementation differs from the Windows
3555 * driver which has no strict concept of a container. We can only
3556 * assemble one family from a container, so when returning a prodigal
3557 * array member to this system the code will not be able to disambiguate
3558 * the container contents that should be assembled ("foreign" versus
3559 * "local"). It requires user intervention to set the orig_family_num
3560 * to a new value to establish a new container. The Windows driver in
3561 * this situation fixes up the volume name in place and manages the
3562 * foreign array as an independent entity.
3563 */
3564 s = NULL;
3565 spare = NULL;
3566 conflict = 0;
3567 for (i = 0; i < tbl_size; i++) {
3568 struct intel_super *tbl_ent = super_table[i];
3569 int is_spare = 0;
3570
3571 if (!tbl_ent)
3572 continue;
3573
3574 if (tbl_ent->anchor->num_raid_devs == 0) {
3575 spare = tbl_ent;
3576 is_spare = 1;
3577 }
3578
3579 if (s && !is_spare) {
3580 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3581 conflict++;
3582 } else if (!s && !is_spare)
3583 s = tbl_ent;
3584 }
3585
3586 if (!s)
3587 s = spare;
3588 if (!s) {
3589 champion = NULL;
3590 goto out;
3591 }
3592 champion = s;
3593
3594 if (conflict)
3595 fprintf(stderr, "Chose family %#x on '%s', "
3596 "assemble conflicts to new container with '--update=uuid'\n",
3597 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3598
3599 /* collect all dl's onto 'champion', and update them to
3600 * champion's version of the status
3601 */
3602 for (s = *super_list; s; s = s->next) {
3603 struct imsm_super *mpb = champion->anchor;
3604 struct dl *dl = s->disks;
3605
3606 if (s == champion)
3607 continue;
3608
3609 for (i = 0; i < mpb->num_disks; i++) {
3610 struct imsm_disk *disk;
3611
3612 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3613 if (disk) {
3614 dl->disk = *disk;
3615 /* only set index on disks that are a member of
3616 * a populated contianer, i.e. one with
3617 * raid_devs
3618 */
3619 if (is_failed(&dl->disk))
3620 dl->index = -2;
3621 else if (is_spare(&dl->disk))
3622 dl->index = -1;
3623 break;
3624 }
3625 }
3626
3627 if (i >= mpb->num_disks) {
3628 struct intel_disk *idisk;
3629
3630 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3631 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3632 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3633 dl->index = -1;
3634 else {
3635 dl->index = -2;
3636 continue;
3637 }
3638 }
3639
3640 dl->next = champion->disks;
3641 champion->disks = dl;
3642 s->disks = NULL;
3643 }
3644
3645 /* delete 'champion' from super_list */
3646 for (del = super_list; *del; ) {
3647 if (*del == champion) {
3648 *del = (*del)->next;
3649 break;
3650 } else
3651 del = &(*del)->next;
3652 }
3653 champion->next = NULL;
3654
3655 out:
3656 while (disk_list) {
3657 struct intel_disk *idisk = disk_list;
3658
3659 disk_list = disk_list->next;
3660 free(idisk);
3661 }
3662
3663 return champion;
3664}
3665
cdddbdbc 3666static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3667 char *devname)
cdddbdbc
DW
3668{
3669 struct mdinfo *sra;
a2b97981
DW
3670 struct intel_super *super_list = NULL;
3671 struct intel_super *super = NULL;
db575f3b 3672 int devnum = fd2devnum(fd);
a2b97981 3673 struct mdinfo *sd;
db575f3b 3674 int retry;
a2b97981
DW
3675 int err = 0;
3676 int i;
dab4a513
DW
3677
3678 /* check if 'fd' an opened container */
b526e52d 3679 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3680 if (!sra)
3681 return 1;
3682
3683 if (sra->array.major_version != -1 ||
3684 sra->array.minor_version != -2 ||
1602d52c
AW
3685 strcmp(sra->text_version, "imsm") != 0) {
3686 err = 1;
3687 goto error;
3688 }
a2b97981
DW
3689 /* load all mpbs */
3690 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3691 struct intel_super *s = alloc_super();
7a6ecd55 3692 char nm[32];
a2b97981 3693 int dfd;
f2f5c343 3694 int rv;
a2b97981
DW
3695
3696 err = 1;
3697 if (!s)
3698 goto error;
3699 s->next = super_list;
3700 super_list = s;
cdddbdbc 3701
a2b97981 3702 err = 2;
cdddbdbc 3703 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3704 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3705 if (dfd < 0)
3706 goto error;
3707
d424212e 3708 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3709 /* no orom/efi or non-intel hba of the disk */
3710 if (rv != 0)
3711 goto error;
3712
e1902a7b 3713 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3714
3715 /* retry the load if we might have raced against mdmon */
a2b97981 3716 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3717 for (retry = 0; retry < 3; retry++) {
3718 usleep(3000);
e1902a7b 3719 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3720 if (err != 3)
db575f3b
DW
3721 break;
3722 }
a2b97981
DW
3723 if (err)
3724 goto error;
cdddbdbc
DW
3725 }
3726
a2b97981
DW
3727 /* all mpbs enter, maybe one leaves */
3728 super = imsm_thunderdome(&super_list, i);
3729 if (!super) {
3730 err = 1;
3731 goto error;
cdddbdbc
DW
3732 }
3733
47ee5a45
DW
3734 if (find_missing(super) != 0) {
3735 free_imsm(super);
a2b97981
DW
3736 err = 2;
3737 goto error;
47ee5a45 3738 }
8e59f3d8
AK
3739
3740 /* load migration record */
3741 err = load_imsm_migr_rec(super, NULL);
3742 if (err) {
3743 err = 4;
3744 goto error;
3745 }
e2f41b2c
AK
3746
3747 /* Check migration compatibility */
3748 if (check_mpb_migr_compatibility(super) != 0) {
3749 fprintf(stderr, Name ": Unsupported migration detected");
3750 if (devname)
3751 fprintf(stderr, " on %s\n", devname);
3752 else
3753 fprintf(stderr, " (IMSM).\n");
3754
3755 err = 5;
3756 goto error;
3757 }
3758
a2b97981
DW
3759 err = 0;
3760
3761 error:
3762 while (super_list) {
3763 struct intel_super *s = super_list;
3764
3765 super_list = super_list->next;
3766 free_imsm(s);
3767 }
1602d52c 3768 sysfs_free(sra);
a2b97981
DW
3769
3770 if (err)
3771 return err;
f7e7067b 3772
cdddbdbc 3773 *sbp = super;
db575f3b 3774 st->container_dev = devnum;
a2b97981 3775 if (err == 0 && st->ss == NULL) {
bf5a934a 3776 st->ss = &super_imsm;
cdddbdbc
DW
3777 st->minor_version = 0;
3778 st->max_devs = IMSM_MAX_DEVICES;
3779 }
cdddbdbc
DW
3780 return 0;
3781}
2b959fbf
N
3782
3783static int load_container_imsm(struct supertype *st, int fd, char *devname)
3784{
3785 return load_super_imsm_all(st, fd, &st->sb, devname);
3786}
cdddbdbc
DW
3787#endif
3788
3789static int load_super_imsm(struct supertype *st, int fd, char *devname)
3790{
3791 struct intel_super *super;
3792 int rv;
3793
691c6ee1
N
3794 if (test_partition(fd))
3795 /* IMSM not allowed on partitions */
3796 return 1;
3797
37424f13
DW
3798 free_super_imsm(st);
3799
49133e57 3800 super = alloc_super();
cdddbdbc
DW
3801 if (!super) {
3802 fprintf(stderr,
3803 Name ": malloc of %zu failed.\n",
3804 sizeof(*super));
3805 return 1;
3806 }
ea2bc72b
LM
3807 /* Load hba and capabilities if they exist.
3808 * But do not preclude loading metadata in case capabilities or hba are
3809 * non-compliant and ignore_hw_compat is set.
3810 */
d424212e 3811 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 3812 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 3813 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
3814 if (devname)
3815 fprintf(stderr,
3816 Name ": No OROM/EFI properties for %s\n", devname);
3817 free_imsm(super);
3818 return 2;
3819 }
a2b97981 3820 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
3821
3822 if (rv) {
3823 if (devname)
3824 fprintf(stderr,
3825 Name ": Failed to load all information "
3826 "sections on %s\n", devname);
3827 free_imsm(super);
3828 return rv;
3829 }
3830
3831 st->sb = super;
3832 if (st->ss == NULL) {
3833 st->ss = &super_imsm;
3834 st->minor_version = 0;
3835 st->max_devs = IMSM_MAX_DEVICES;
3836 }
8e59f3d8
AK
3837
3838 /* load migration record */
3839 load_imsm_migr_rec(super, NULL);
3840
e2f41b2c
AK
3841 /* Check for unsupported migration features */
3842 if (check_mpb_migr_compatibility(super) != 0) {
3843 fprintf(stderr, Name ": Unsupported migration detected");
3844 if (devname)
3845 fprintf(stderr, " on %s\n", devname);
3846 else
3847 fprintf(stderr, " (IMSM).\n");
3848 return 3;
3849 }
3850
cdddbdbc
DW
3851 return 0;
3852}
3853
ef6ffade
DW
3854static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3855{
3856 if (info->level == 1)
3857 return 128;
3858 return info->chunk_size >> 9;
3859}
3860
ff596308 3861static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
3862{
3863 __u32 num_stripes;
3864
3865 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 3866 num_stripes /= num_domains;
ef6ffade
DW
3867
3868 return num_stripes;
3869}
3870
fcfd9599
DW
3871static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3872{
4025c288
DW
3873 if (info->level == 1)
3874 return info->size * 2;
3875 else
3876 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
3877}
3878
4d1313e9
DW
3879static void imsm_update_version_info(struct intel_super *super)
3880{
3881 /* update the version and attributes */
3882 struct imsm_super *mpb = super->anchor;
3883 char *version;
3884 struct imsm_dev *dev;
3885 struct imsm_map *map;
3886 int i;
3887
3888 for (i = 0; i < mpb->num_raid_devs; i++) {
3889 dev = get_imsm_dev(super, i);
3890 map = get_imsm_map(dev, 0);
3891 if (__le32_to_cpu(dev->size_high) > 0)
3892 mpb->attributes |= MPB_ATTRIB_2TB;
3893
3894 /* FIXME detect when an array spans a port multiplier */
3895 #if 0
3896 mpb->attributes |= MPB_ATTRIB_PM;
3897 #endif
3898
3899 if (mpb->num_raid_devs > 1 ||
3900 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3901 version = MPB_VERSION_ATTRIBS;
3902 switch (get_imsm_raid_level(map)) {
3903 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3904 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3905 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3906 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3907 }
3908 } else {
3909 if (map->num_members >= 5)
3910 version = MPB_VERSION_5OR6_DISK_ARRAY;
3911 else if (dev->status == DEV_CLONE_N_GO)
3912 version = MPB_VERSION_CNG;
3913 else if (get_imsm_raid_level(map) == 5)
3914 version = MPB_VERSION_RAID5;
3915 else if (map->num_members >= 3)
3916 version = MPB_VERSION_3OR4_DISK_ARRAY;
3917 else if (get_imsm_raid_level(map) == 1)
3918 version = MPB_VERSION_RAID1;
3919 else
3920 version = MPB_VERSION_RAID0;
3921 }
3922 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3923 }
3924}
3925
aa534678
DW
3926static int check_name(struct intel_super *super, char *name, int quiet)
3927{
3928 struct imsm_super *mpb = super->anchor;
3929 char *reason = NULL;
3930 int i;
3931
3932 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3933 reason = "must be 16 characters or less";
3934
3935 for (i = 0; i < mpb->num_raid_devs; i++) {
3936 struct imsm_dev *dev = get_imsm_dev(super, i);
3937
3938 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3939 reason = "already exists";
3940 break;
3941 }
3942 }
3943
3944 if (reason && !quiet)
3945 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3946
3947 return !reason;
3948}
3949
8b353278
DW
3950static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3951 unsigned long long size, char *name,
3952 char *homehost, int *uuid)
cdddbdbc 3953{
c2c087e6
DW
3954 /* We are creating a volume inside a pre-existing container.
3955 * so st->sb is already set.
3956 */
3957 struct intel_super *super = st->sb;
949c47a0 3958 struct imsm_super *mpb = super->anchor;
ba2de7ba 3959 struct intel_dev *dv;
c2c087e6
DW
3960 struct imsm_dev *dev;
3961 struct imsm_vol *vol;
3962 struct imsm_map *map;
3963 int idx = mpb->num_raid_devs;
3964 int i;
3965 unsigned long long array_blocks;
2c092cad 3966 size_t size_old, size_new;
ff596308 3967 __u32 num_data_stripes;
cdddbdbc 3968
88c32bb1 3969 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 3970 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 3971 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
3972 return 0;
3973 }
3974
2c092cad
DW
3975 /* ensure the mpb is large enough for the new data */
3976 size_old = __le32_to_cpu(mpb->mpb_size);
3977 size_new = disks_to_mpb_size(info->nr_disks);
3978 if (size_new > size_old) {
3979 void *mpb_new;
3980 size_t size_round = ROUND_UP(size_new, 512);
3981
3982 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3983 fprintf(stderr, Name": could not allocate new mpb\n");
3984 return 0;
3985 }
8e59f3d8
AK
3986 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3987 fprintf(stderr, Name
3988 ": %s could not allocate migr_rec buffer\n",
3989 __func__);
3990 free(super->buf);
3991 free(super);
3992 return 0;
3993 }
2c092cad
DW
3994 memcpy(mpb_new, mpb, size_old);
3995 free(mpb);
3996 mpb = mpb_new;
949c47a0 3997 super->anchor = mpb_new;
2c092cad
DW
3998 mpb->mpb_size = __cpu_to_le32(size_new);
3999 memset(mpb_new + size_old, 0, size_round - size_old);
4000 }
bf5a934a 4001 super->current_vol = idx;
d23fe947
DW
4002 /* when creating the first raid device in this container set num_disks
4003 * to zero, i.e. delete this spare and add raid member devices in
4004 * add_to_super_imsm_volume()
4005 */
4006 if (super->current_vol == 0)
4007 mpb->num_disks = 0;
5a038140 4008
aa534678
DW
4009 if (!check_name(super, name, 0))
4010 return 0;
ba2de7ba
DW
4011 dv = malloc(sizeof(*dv));
4012 if (!dv) {
4013 fprintf(stderr, Name ": failed to allocate device list entry\n");
4014 return 0;
4015 }
1a2487c2 4016 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4017 if (!dev) {
ba2de7ba 4018 free(dv);
949c47a0
DW
4019 fprintf(stderr, Name": could not allocate raid device\n");
4020 return 0;
4021 }
1a2487c2 4022
c2c087e6 4023 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4024 if (info->level == 1)
4025 array_blocks = info_to_blocks_per_member(info);
4026 else
4027 array_blocks = calc_array_size(info->level, info->raid_disks,
4028 info->layout, info->chunk_size,
4029 info->size*2);
979d38be
DW
4030 /* round array size down to closest MB */
4031 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4032
c2c087e6
DW
4033 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4034 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4035 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4036 vol = &dev->vol;
4037 vol->migr_state = 0;
1484e727 4038 set_migr_type(dev, MIGR_INIT);
c2c087e6 4039 vol->dirty = 0;
f8f603f1 4040 vol->curr_migr_unit = 0;
a965f303 4041 map = get_imsm_map(dev, 0);
0dcecb2e 4042 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4043 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4044 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4045 map->failed_disk_num = ~0;
c2c087e6
DW
4046 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
4047 IMSM_T_STATE_NORMAL;
252d23c0 4048 map->ddf = 1;
ef6ffade
DW
4049
4050 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4051 free(dev);
4052 free(dv);
ef6ffade
DW
4053 fprintf(stderr, Name": imsm does not support more than 2 disks"
4054 "in a raid1 volume\n");
4055 return 0;
4056 }
81062a36
DW
4057
4058 map->raid_level = info->level;
4d1313e9 4059 if (info->level == 10) {
c2c087e6 4060 map->raid_level = 1;
4d1313e9 4061 map->num_domains = info->raid_disks / 2;
81062a36
DW
4062 } else if (info->level == 1)
4063 map->num_domains = info->raid_disks;
4064 else
ff596308 4065 map->num_domains = 1;
81062a36 4066
ff596308
DW
4067 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4068 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4069
c2c087e6
DW
4070 map->num_members = info->raid_disks;
4071 for (i = 0; i < map->num_members; i++) {
4072 /* initialized in add_to_super */
4eb26970 4073 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4074 }
949c47a0 4075 mpb->num_raid_devs++;
ba2de7ba
DW
4076
4077 dv->dev = dev;
4078 dv->index = super->current_vol;
4079 dv->next = super->devlist;
4080 super->devlist = dv;
c2c087e6 4081
4d1313e9
DW
4082 imsm_update_version_info(super);
4083
c2c087e6 4084 return 1;
cdddbdbc
DW
4085}
4086
bf5a934a
DW
4087static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4088 unsigned long long size, char *name,
4089 char *homehost, int *uuid)
4090{
4091 /* This is primarily called by Create when creating a new array.
4092 * We will then get add_to_super called for each component, and then
4093 * write_init_super called to write it out to each device.
4094 * For IMSM, Create can create on fresh devices or on a pre-existing
4095 * array.
4096 * To create on a pre-existing array a different method will be called.
4097 * This one is just for fresh drives.
4098 */
4099 struct intel_super *super;
4100 struct imsm_super *mpb;
4101 size_t mpb_size;
4d1313e9 4102 char *version;
bf5a934a 4103
bf5a934a 4104 if (st->sb)
e683ca88
DW
4105 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4106
4107 if (info)
4108 mpb_size = disks_to_mpb_size(info->nr_disks);
4109 else
4110 mpb_size = 512;
bf5a934a 4111
49133e57 4112 super = alloc_super();
e683ca88 4113 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4114 free(super);
e683ca88
DW
4115 super = NULL;
4116 }
4117 if (!super) {
4118 fprintf(stderr, Name
4119 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4120 return 0;
4121 }
8e59f3d8
AK
4122 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4123 fprintf(stderr, Name
4124 ": %s could not allocate migr_rec buffer\n", __func__);
4125 free(super->buf);
4126 free(super);
4127 return 0;
4128 }
e683ca88 4129 memset(super->buf, 0, mpb_size);
ef649044 4130 mpb = super->buf;
e683ca88
DW
4131 mpb->mpb_size = __cpu_to_le32(mpb_size);
4132 st->sb = super;
4133
4134 if (info == NULL) {
4135 /* zeroing superblock */
4136 return 0;
4137 }
bf5a934a 4138
4d1313e9
DW
4139 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4140
4141 version = (char *) mpb->sig;
4142 strcpy(version, MPB_SIGNATURE);
4143 version += strlen(MPB_SIGNATURE);
4144 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4145
bf5a934a
DW
4146 return 1;
4147}
4148
0e600426 4149#ifndef MDASSEMBLE
f20c3968 4150static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4151 int fd, char *devname)
4152{
4153 struct intel_super *super = st->sb;
d23fe947 4154 struct imsm_super *mpb = super->anchor;
bf5a934a
DW
4155 struct dl *dl;
4156 struct imsm_dev *dev;
4157 struct imsm_map *map;
4eb26970 4158 int slot;
bf5a934a 4159
949c47a0 4160 dev = get_imsm_dev(super, super->current_vol);
a965f303 4161 map = get_imsm_map(dev, 0);
bf5a934a 4162
208933a7
N
4163 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4164 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4165 devname);
4166 return 1;
4167 }
4168
efb30e7f
DW
4169 if (fd == -1) {
4170 /* we're doing autolayout so grab the pre-marked (in
4171 * validate_geometry) raid_disk
4172 */
4173 for (dl = super->disks; dl; dl = dl->next)
4174 if (dl->raiddisk == dk->raid_disk)
4175 break;
4176 } else {
4177 for (dl = super->disks; dl ; dl = dl->next)
4178 if (dl->major == dk->major &&
4179 dl->minor == dk->minor)
4180 break;
4181 }
d23fe947 4182
208933a7
N
4183 if (!dl) {
4184 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4185 return 1;
208933a7 4186 }
bf5a934a 4187
d23fe947
DW
4188 /* add a pristine spare to the metadata */
4189 if (dl->index < 0) {
4190 dl->index = super->anchor->num_disks;
4191 super->anchor->num_disks++;
4192 }
4eb26970
DW
4193 /* Check the device has not already been added */
4194 slot = get_imsm_disk_slot(map, dl->index);
4195 if (slot >= 0 &&
98130f40 4196 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4197 fprintf(stderr, Name ": %s has been included in this array twice\n",
4198 devname);
4199 return 1;
4200 }
be73972f 4201 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
ee5aad5a 4202 dl->disk.status = CONFIGURED_DISK;
d23fe947
DW
4203
4204 /* if we are creating the first raid device update the family number */
4205 if (super->current_vol == 0) {
4206 __u32 sum;
4207 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4208 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
4209
791b666a
AW
4210 if (!_dev || !_disk) {
4211 fprintf(stderr, Name ": BUG mpb setup error\n");
4212 return 1;
4213 }
d23fe947
DW
4214 *_dev = *dev;
4215 *_disk = dl->disk;
148acb7b
DW
4216 sum = random32();
4217 sum += __gen_imsm_checksum(mpb);
d23fe947 4218 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4219 mpb->orig_family_num = mpb->family_num;
d23fe947 4220 }
f20c3968
DW
4221
4222 return 0;
bf5a934a
DW
4223}
4224
88654014 4225
f20c3968 4226static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4227 int fd, char *devname)
cdddbdbc 4228{
c2c087e6 4229 struct intel_super *super = st->sb;
c2c087e6
DW
4230 struct dl *dd;
4231 unsigned long long size;
f2f27e63 4232 __u32 id;
c2c087e6
DW
4233 int rv;
4234 struct stat stb;
4235
88654014
LM
4236 /* If we are on an RAID enabled platform check that the disk is
4237 * attached to the raid controller.
4238 * We do not need to test disks attachment for container based additions,
4239 * they shall be already tested when container was created/assembled.
88c32bb1 4240 */
d424212e 4241 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4242 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4243 if (rv != 0) {
4244 dprintf("capability: %p fd: %d ret: %d\n",
4245 super->orom, fd, rv);
4246 return 1;
88c32bb1
DW
4247 }
4248
f20c3968
DW
4249 if (super->current_vol >= 0)
4250 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4251
c2c087e6
DW
4252 fstat(fd, &stb);
4253 dd = malloc(sizeof(*dd));
b9f594fe 4254 if (!dd) {
c2c087e6
DW
4255 fprintf(stderr,
4256 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4257 return 1;
c2c087e6
DW
4258 }
4259 memset(dd, 0, sizeof(*dd));
4260 dd->major = major(stb.st_rdev);
4261 dd->minor = minor(stb.st_rdev);
b9f594fe 4262 dd->index = -1;
c2c087e6 4263 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4264 dd->fd = fd;
689c9bf3 4265 dd->e = NULL;
1a64be56 4266 dd->action = DISK_ADD;
c2c087e6 4267 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4268 if (rv) {
c2c087e6 4269 fprintf(stderr,
0030e8d6 4270 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4271 free(dd);
0030e8d6 4272 abort();
c2c087e6
DW
4273 }
4274
c2c087e6
DW
4275 get_dev_size(fd, NULL, &size);
4276 size /= 512;
1f24f035 4277 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4278 dd->disk.total_blocks = __cpu_to_le32(size);
ee5aad5a 4279 dd->disk.status = SPARE_DISK;
c2c087e6 4280 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4281 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4282 else
b9f594fe 4283 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4284
4285 if (st->update_tail) {
1a64be56
LM
4286 dd->next = super->disk_mgmt_list;
4287 super->disk_mgmt_list = dd;
43dad3d6
DW
4288 } else {
4289 dd->next = super->disks;
4290 super->disks = dd;
ceaf0ee1 4291 super->updates_pending++;
43dad3d6 4292 }
f20c3968
DW
4293
4294 return 0;
cdddbdbc
DW
4295}
4296
1a64be56
LM
4297
4298static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4299{
4300 struct intel_super *super = st->sb;
4301 struct dl *dd;
4302
4303 /* remove from super works only in mdmon - for communication
4304 * manager - monitor. Check if communication memory buffer
4305 * is prepared.
4306 */
4307 if (!st->update_tail) {
4308 fprintf(stderr,
4309 Name ": %s shall be used in mdmon context only"
4310 "(line %d).\n", __func__, __LINE__);
4311 return 1;
4312 }
4313 dd = malloc(sizeof(*dd));
4314 if (!dd) {
4315 fprintf(stderr,
4316 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4317 return 1;
4318 }
4319 memset(dd, 0, sizeof(*dd));
4320 dd->major = dk->major;
4321 dd->minor = dk->minor;
4322 dd->index = -1;
4323 dd->fd = -1;
4324 dd->disk.status = SPARE_DISK;
4325 dd->action = DISK_REMOVE;
4326
4327 dd->next = super->disk_mgmt_list;
4328 super->disk_mgmt_list = dd;
4329
4330
4331 return 0;
4332}
4333
f796af5d
DW
4334static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4335
4336static union {
4337 char buf[512];
4338 struct imsm_super anchor;
4339} spare_record __attribute__ ((aligned(512)));
c2c087e6 4340
d23fe947
DW
4341/* spare records have their own family number and do not have any defined raid
4342 * devices
4343 */
4344static int write_super_imsm_spares(struct intel_super *super, int doclose)
4345{
d23fe947 4346 struct imsm_super *mpb = super->anchor;
f796af5d 4347 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4348 __u32 sum;
4349 struct dl *d;
4350
f796af5d
DW
4351 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4352 spare->generation_num = __cpu_to_le32(1UL),
4353 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4354 spare->num_disks = 1,
4355 spare->num_raid_devs = 0,
4356 spare->cache_size = mpb->cache_size,
4357 spare->pwr_cycle_count = __cpu_to_le32(1),
4358
4359 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4360 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4361
4362 for (d = super->disks; d; d = d->next) {
8796fdc4 4363 if (d->index != -1)
d23fe947
DW
4364 continue;
4365
f796af5d
DW
4366 spare->disk[0] = d->disk;
4367 sum = __gen_imsm_checksum(spare);
4368 spare->family_num = __cpu_to_le32(sum);
4369 spare->orig_family_num = 0;
4370 sum = __gen_imsm_checksum(spare);
4371 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4372
f796af5d 4373 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4374 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4375 __func__, d->major, d->minor, strerror(errno));
e74255d9 4376 return 1;
d23fe947
DW
4377 }
4378 if (doclose) {
4379 close(d->fd);
4380 d->fd = -1;
4381 }
4382 }
4383
e74255d9 4384 return 0;
d23fe947
DW
4385}
4386
146c6260
AK
4387static int is_gen_migration(struct imsm_dev *dev);
4388
36988a3d 4389static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4390{
36988a3d 4391 struct intel_super *super = st->sb;
949c47a0 4392 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4393 struct dl *d;
4394 __u32 generation;
4395 __u32 sum;
d23fe947 4396 int spares = 0;
949c47a0 4397 int i;
a48ac0a8 4398 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4399 int num_disks = 0;
146c6260 4400 int clear_migration_record = 1;
cdddbdbc 4401
c2c087e6
DW
4402 /* 'generation' is incremented everytime the metadata is written */
4403 generation = __le32_to_cpu(mpb->generation_num);
4404 generation++;
4405 mpb->generation_num = __cpu_to_le32(generation);
4406
148acb7b
DW
4407 /* fix up cases where previous mdadm releases failed to set
4408 * orig_family_num
4409 */
4410 if (mpb->orig_family_num == 0)
4411 mpb->orig_family_num = mpb->family_num;
4412
d23fe947 4413 for (d = super->disks; d; d = d->next) {
8796fdc4 4414 if (d->index == -1)
d23fe947 4415 spares++;
36988a3d 4416 else {
d23fe947 4417 mpb->disk[d->index] = d->disk;
36988a3d
AK
4418 num_disks++;
4419 }
d23fe947 4420 }
36988a3d 4421 for (d = super->missing; d; d = d->next) {
47ee5a45 4422 mpb->disk[d->index] = d->disk;
36988a3d
AK
4423 num_disks++;
4424 }
4425 mpb->num_disks = num_disks;
4426 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4427
949c47a0
DW
4428 for (i = 0; i < mpb->num_raid_devs; i++) {
4429 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4430 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4431 if (dev && dev2) {
4432 imsm_copy_dev(dev, dev2);
4433 mpb_size += sizeof_imsm_dev(dev, 0);
4434 }
146c6260
AK
4435 if (is_gen_migration(dev2))
4436 clear_migration_record = 0;
949c47a0 4437 }
a48ac0a8
DW
4438 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4439 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4440
c2c087e6 4441 /* recalculate checksum */
949c47a0 4442 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4443 mpb->check_sum = __cpu_to_le32(sum);
4444
146c6260
AK
4445 if (clear_migration_record)
4446 memset(super->migr_rec_buf, 0, 512);
4447
d23fe947 4448 /* write the mpb for disks that compose raid devices */
c2c087e6 4449 for (d = super->disks; d ; d = d->next) {
d23fe947
DW
4450 if (d->index < 0)
4451 continue;
f796af5d 4452 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4453 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4454 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4455 if (clear_migration_record) {
4456 unsigned long long dsize;
4457
4458 get_dev_size(d->fd, NULL, &dsize);
4459 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4460 write(d->fd, super->migr_rec_buf, 512);
4461 }
4462 }
c2c087e6
DW
4463 if (doclose) {
4464 close(d->fd);
4465 d->fd = -1;
4466 }
4467 }
4468
d23fe947
DW
4469 if (spares)
4470 return write_super_imsm_spares(super, doclose);
4471
e74255d9 4472 return 0;
c2c087e6
DW
4473}
4474
0e600426 4475
9b1fb677 4476static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4477{
4478 size_t len;
4479 struct imsm_update_create_array *u;
4480 struct intel_super *super = st->sb;
9b1fb677 4481 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4482 struct imsm_map *map = get_imsm_map(dev, 0);
4483 struct disk_info *inf;
4484 struct imsm_disk *disk;
4485 int i;
43dad3d6 4486
54c2c1ea
DW
4487 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4488 sizeof(*inf) * map->num_members;
43dad3d6
DW
4489 u = malloc(len);
4490 if (!u) {
4491 fprintf(stderr, "%s: failed to allocate update buffer\n",
4492 __func__);
4493 return 1;
4494 }
4495
4496 u->type = update_create_array;
9b1fb677 4497 u->dev_idx = dev_idx;
43dad3d6 4498 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4499 inf = get_disk_info(u);
4500 for (i = 0; i < map->num_members; i++) {
98130f40 4501 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4502
54c2c1ea
DW
4503 disk = get_imsm_disk(super, idx);
4504 serialcpy(inf[i].serial, disk->serial);
4505 }
43dad3d6
DW
4506 append_metadata_update(st, u, len);
4507
4508 return 0;
4509}
4510
1a64be56 4511static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4512{
4513 struct intel_super *super = st->sb;
4514 size_t len;
1a64be56 4515 struct imsm_update_add_remove_disk *u;
43dad3d6 4516
1a64be56 4517 if (!super->disk_mgmt_list)
43dad3d6
DW
4518 return 0;
4519
4520 len = sizeof(*u);
4521 u = malloc(len);
4522 if (!u) {
4523 fprintf(stderr, "%s: failed to allocate update buffer\n",
4524 __func__);
4525 return 1;
4526 }
4527
1a64be56 4528 u->type = update_add_remove_disk;
43dad3d6
DW
4529 append_metadata_update(st, u, len);
4530
4531 return 0;
4532}
4533
c2c087e6
DW
4534static int write_init_super_imsm(struct supertype *st)
4535{
9b1fb677
DW
4536 struct intel_super *super = st->sb;
4537 int current_vol = super->current_vol;
4538
4539 /* we are done with current_vol reset it to point st at the container */
4540 super->current_vol = -1;
4541
8273f55e 4542 if (st->update_tail) {
43dad3d6
DW
4543 /* queue the recently created array / added disk
4544 * as a metadata update */
43dad3d6 4545 int rv;
8273f55e 4546
43dad3d6 4547 /* determine if we are creating a volume or adding a disk */
9b1fb677 4548 if (current_vol < 0) {
1a64be56
LM
4549 /* in the mgmt (add/remove) disk case we are running
4550 * in mdmon context, so don't close fd's
43dad3d6 4551 */
1a64be56 4552 return mgmt_disk(st);
43dad3d6 4553 } else
9b1fb677 4554 rv = create_array(st, current_vol);
8273f55e 4555
43dad3d6 4556 return rv;
d682f344
N
4557 } else {
4558 struct dl *d;
4559 for (d = super->disks; d; d = d->next)
4560 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4561 return write_super_imsm(st, 1);
d682f344 4562 }
cdddbdbc 4563}
0e600426 4564#endif
cdddbdbc 4565
e683ca88 4566static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4567{
e683ca88
DW
4568 struct intel_super *super = st->sb;
4569 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4570
e683ca88 4571 if (!mpb)
ad97895e
DW
4572 return 1;
4573
1799c9e8 4574#ifndef MDASSEMBLE
e683ca88 4575 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4576#else
4577 return 1;
4578#endif
cdddbdbc
DW
4579}
4580
0e600426
N
4581static int imsm_bbm_log_size(struct imsm_super *mpb)
4582{
4583 return __le32_to_cpu(mpb->bbm_log_size);
4584}
4585
4586#ifndef MDASSEMBLE
cdddbdbc
DW
4587static int validate_geometry_imsm_container(struct supertype *st, int level,
4588 int layout, int raiddisks, int chunk,
c2c087e6 4589 unsigned long long size, char *dev,
2c514b71
NB
4590 unsigned long long *freesize,
4591 int verbose)
cdddbdbc 4592{
c2c087e6
DW
4593 int fd;
4594 unsigned long long ldsize;
f2f5c343
LM
4595 struct intel_super *super=NULL;
4596 int rv = 0;
cdddbdbc 4597
c2c087e6
DW
4598 if (level != LEVEL_CONTAINER)
4599 return 0;
4600 if (!dev)
4601 return 1;
4602
4603 fd = open(dev, O_RDONLY|O_EXCL, 0);
4604 if (fd < 0) {
2c514b71
NB
4605 if (verbose)
4606 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4607 dev, strerror(errno));
c2c087e6
DW
4608 return 0;
4609 }
4610 if (!get_dev_size(fd, dev, &ldsize)) {
4611 close(fd);
4612 return 0;
4613 }
f2f5c343
LM
4614
4615 /* capabilities retrieve could be possible
4616 * note that there is no fd for the disks in array.
4617 */
4618 super = alloc_super();
4619 if (!super) {
4620 fprintf(stderr,
4621 Name ": malloc of %zu failed.\n",
4622 sizeof(*super));
4623 close(fd);
4624 return 0;
4625 }
4626
d424212e 4627 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4628 if (rv != 0) {
4629#if DEBUG
4630 char str[256];
4631 fd2devname(fd, str);
4632 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4633 fd, str, super->orom, rv, raiddisks);
4634#endif
4635 /* no orom/efi or non-intel hba of the disk */
4636 close(fd);
4637 free_imsm(super);
4638 return 0;
4639 }
c2c087e6 4640 close(fd);
f2f5c343
LM
4641 if (super->orom && raiddisks > super->orom->tds) {
4642 if (verbose)
4643 fprintf(stderr, Name ": %d exceeds maximum number of"
4644 " platform supported disks: %d\n",
4645 raiddisks, super->orom->tds);
4646
4647 free_imsm(super);
4648 return 0;
4649 }
c2c087e6
DW
4650
4651 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 4652 free_imsm(super);
c2c087e6
DW
4653
4654 return 1;
cdddbdbc
DW
4655}
4656
0dcecb2e
DW
4657static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4658{
4659 const unsigned long long base_start = e[*idx].start;
4660 unsigned long long end = base_start + e[*idx].size;
4661 int i;
4662
4663 if (base_start == end)
4664 return 0;
4665
4666 *idx = *idx + 1;
4667 for (i = *idx; i < num_extents; i++) {
4668 /* extend overlapping extents */
4669 if (e[i].start >= base_start &&
4670 e[i].start <= end) {
4671 if (e[i].size == 0)
4672 return 0;
4673 if (e[i].start + e[i].size > end)
4674 end = e[i].start + e[i].size;
4675 } else if (e[i].start > end) {
4676 *idx = i;
4677 break;
4678 }
4679 }
4680
4681 return end - base_start;
4682}
4683
4684static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4685{
4686 /* build a composite disk with all known extents and generate a new
4687 * 'maxsize' given the "all disks in an array must share a common start
4688 * offset" constraint
4689 */
4690 struct extent *e = calloc(sum_extents, sizeof(*e));
4691 struct dl *dl;
4692 int i, j;
4693 int start_extent;
4694 unsigned long long pos;
b9d77223 4695 unsigned long long start = 0;
0dcecb2e
DW
4696 unsigned long long maxsize;
4697 unsigned long reserve;
4698
4699 if (!e)
a7dd165b 4700 return 0;
0dcecb2e
DW
4701
4702 /* coalesce and sort all extents. also, check to see if we need to
4703 * reserve space between member arrays
4704 */
4705 j = 0;
4706 for (dl = super->disks; dl; dl = dl->next) {
4707 if (!dl->e)
4708 continue;
4709 for (i = 0; i < dl->extent_cnt; i++)
4710 e[j++] = dl->e[i];
4711 }
4712 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4713
4714 /* merge extents */
4715 i = 0;
4716 j = 0;
4717 while (i < sum_extents) {
4718 e[j].start = e[i].start;
4719 e[j].size = find_size(e, &i, sum_extents);
4720 j++;
4721 if (e[j-1].size == 0)
4722 break;
4723 }
4724
4725 pos = 0;
4726 maxsize = 0;
4727 start_extent = 0;
4728 i = 0;
4729 do {
4730 unsigned long long esize;
4731
4732 esize = e[i].start - pos;
4733 if (esize >= maxsize) {
4734 maxsize = esize;
4735 start = pos;
4736 start_extent = i;
4737 }
4738 pos = e[i].start + e[i].size;
4739 i++;
4740 } while (e[i-1].size);
4741 free(e);
4742
a7dd165b
DW
4743 if (maxsize == 0)
4744 return 0;
4745
4746 /* FIXME assumes volume at offset 0 is the first volume in a
4747 * container
4748 */
0dcecb2e
DW
4749 if (start_extent > 0)
4750 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4751 else
4752 reserve = 0;
4753
4754 if (maxsize < reserve)
a7dd165b 4755 return 0;
0dcecb2e
DW
4756
4757 super->create_offset = ~((__u32) 0);
4758 if (start + reserve > super->create_offset)
a7dd165b 4759 return 0; /* start overflows create_offset */
0dcecb2e
DW
4760 super->create_offset = start + reserve;
4761
4762 return maxsize - reserve;
4763}
4764
88c32bb1
DW
4765static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4766{
4767 if (level < 0 || level == 6 || level == 4)
4768 return 0;
4769
4770 /* if we have an orom prevent invalid raid levels */
4771 if (orom)
4772 switch (level) {
4773 case 0: return imsm_orom_has_raid0(orom);
4774 case 1:
4775 if (raiddisks > 2)
4776 return imsm_orom_has_raid1e(orom);
1c556e92
DW
4777 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4778 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4779 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
4780 }
4781 else
4782 return 1; /* not on an Intel RAID platform so anything goes */
4783
4784 return 0;
4785}
4786
73408129 4787
35f81cbb 4788#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
73408129
LM
4789/*
4790 * validate volume parameters with OROM/EFI capabilities
4791 */
6592ce37
DW
4792static int
4793validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 4794 int raiddisks, int *chunk, int verbose)
6592ce37 4795{
73408129
LM
4796#if DEBUG
4797 verbose = 1;
4798#endif
4799 /* validate container capabilities */
4800 if (super->orom && raiddisks > super->orom->tds) {
4801 if (verbose)
4802 fprintf(stderr, Name ": %d exceeds maximum number of"
4803 " platform supported disks: %d\n",
4804 raiddisks, super->orom->tds);
4805 return 0;
4806 }
4807
4808 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
4809 if (super->orom && (!is_raid_level_supported(super->orom, level,
4810 raiddisks))) {
6592ce37
DW
4811 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4812 level, raiddisks, raiddisks > 1 ? "s" : "");
4813 return 0;
4814 }
c21e737b
CA
4815 if (super->orom && level != 1) {
4816 if (chunk && (*chunk == 0 || *chunk == UnSet))
4817 *chunk = imsm_orom_default_chunk(super->orom);
4818 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4819 pr_vrb(": platform does not support a chunk size of: "
4820 "%d\n", *chunk);
4821 return 0;
4822 }
6592ce37
DW
4823 }
4824 if (layout != imsm_level_to_layout(level)) {
4825 if (level == 5)
4826 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4827 else if (level == 10)
4828 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4829 else
4830 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4831 layout, level);
4832 return 0;
4833 }
6592ce37
DW
4834 return 1;
4835}
4836
c2c087e6
DW
4837/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4838 * FIX ME add ahci details
4839 */
8b353278 4840static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 4841 int layout, int raiddisks, int *chunk,
c2c087e6 4842 unsigned long long size, char *dev,
2c514b71
NB
4843 unsigned long long *freesize,
4844 int verbose)
cdddbdbc 4845{
c2c087e6
DW
4846 struct stat stb;
4847 struct intel_super *super = st->sb;
a20d2ba5 4848 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4849 struct dl *dl;
4850 unsigned long long pos = 0;
4851 unsigned long long maxsize;
4852 struct extent *e;
4853 int i;
cdddbdbc 4854
88c32bb1
DW
4855 /* We must have the container info already read in. */
4856 if (!super)
c2c087e6
DW
4857 return 0;
4858
d54559f0
LM
4859 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
4860 fprintf(stderr, Name ": RAID gemetry validation failed. "
4861 "Cannot proceed with the action(s).\n");
c2c087e6 4862 return 0;
d54559f0 4863 }
c2c087e6
DW
4864 if (!dev) {
4865 /* General test: make sure there is space for
2da8544a
DW
4866 * 'raiddisks' device extents of size 'size' at a given
4867 * offset
c2c087e6 4868 */
e46273eb 4869 unsigned long long minsize = size;
b7528a20 4870 unsigned long long start_offset = MaxSector;
c2c087e6
DW
4871 int dcnt = 0;
4872 if (minsize == 0)
4873 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4874 for (dl = super->disks; dl ; dl = dl->next) {
4875 int found = 0;
4876
bf5a934a 4877 pos = 0;
c2c087e6
DW
4878 i = 0;
4879 e = get_extents(super, dl);
4880 if (!e) continue;
4881 do {
4882 unsigned long long esize;
4883 esize = e[i].start - pos;
4884 if (esize >= minsize)
4885 found = 1;
b7528a20 4886 if (found && start_offset == MaxSector) {
2da8544a
DW
4887 start_offset = pos;
4888 break;
4889 } else if (found && pos != start_offset) {
4890 found = 0;
4891 break;
4892 }
c2c087e6
DW
4893 pos = e[i].start + e[i].size;
4894 i++;
4895 } while (e[i-1].size);
4896 if (found)
4897 dcnt++;
4898 free(e);
4899 }
4900 if (dcnt < raiddisks) {
2c514b71
NB
4901 if (verbose)
4902 fprintf(stderr, Name ": imsm: Not enough "
4903 "devices with space for this array "
4904 "(%d < %d)\n",
4905 dcnt, raiddisks);
c2c087e6
DW
4906 return 0;
4907 }
4908 return 1;
4909 }
0dcecb2e 4910
c2c087e6
DW
4911 /* This device must be a member of the set */
4912 if (stat(dev, &stb) < 0)
4913 return 0;
4914 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4915 return 0;
4916 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
4917 if (dl->major == (int)major(stb.st_rdev) &&
4918 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
4919 break;
4920 }
4921 if (!dl) {
2c514b71
NB
4922 if (verbose)
4923 fprintf(stderr, Name ": %s is not in the "
4924 "same imsm set\n", dev);
c2c087e6 4925 return 0;
a20d2ba5
DW
4926 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4927 /* If a volume is present then the current creation attempt
4928 * cannot incorporate new spares because the orom may not
4929 * understand this configuration (all member disks must be
4930 * members of each array in the container).
4931 */
4932 fprintf(stderr, Name ": %s is a spare and a volume"
4933 " is already defined for this container\n", dev);
4934 fprintf(stderr, Name ": The option-rom requires all member"
4935 " disks to be a member of all volumes\n");
4936 return 0;
c2c087e6 4937 }
0dcecb2e
DW
4938
4939 /* retrieve the largest free space block */
c2c087e6
DW
4940 e = get_extents(super, dl);
4941 maxsize = 0;
4942 i = 0;
0dcecb2e
DW
4943 if (e) {
4944 do {
4945 unsigned long long esize;
4946
4947 esize = e[i].start - pos;
4948 if (esize >= maxsize)
4949 maxsize = esize;
4950 pos = e[i].start + e[i].size;
4951 i++;
4952 } while (e[i-1].size);
4953 dl->e = e;
4954 dl->extent_cnt = i;
4955 } else {
4956 if (verbose)
4957 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4958 dev);
4959 return 0;
4960 }
4961 if (maxsize < size) {
4962 if (verbose)
4963 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4964 dev, maxsize, size);
4965 return 0;
4966 }
4967
4968 /* count total number of extents for merge */
4969 i = 0;
4970 for (dl = super->disks; dl; dl = dl->next)
4971 if (dl->e)
4972 i += dl->extent_cnt;
4973
4974 maxsize = merge_extents(super, i);
a7dd165b 4975 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
4976 if (verbose)
4977 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4978 maxsize, size);
4979 return 0;
0dcecb2e
DW
4980 }
4981
c2c087e6
DW
4982 *freesize = maxsize;
4983
4984 return 1;
cdddbdbc
DW
4985}
4986
efb30e7f
DW
4987static int reserve_space(struct supertype *st, int raiddisks,
4988 unsigned long long size, int chunk,
4989 unsigned long long *freesize)
4990{
4991 struct intel_super *super = st->sb;
4992 struct imsm_super *mpb = super->anchor;
4993 struct dl *dl;
4994 int i;
4995 int extent_cnt;
4996 struct extent *e;
4997 unsigned long long maxsize;
4998 unsigned long long minsize;
4999 int cnt;
5000 int used;
5001
5002 /* find the largest common start free region of the possible disks */
5003 used = 0;
5004 extent_cnt = 0;
5005 cnt = 0;
5006 for (dl = super->disks; dl; dl = dl->next) {
5007 dl->raiddisk = -1;
5008
5009 if (dl->index >= 0)
5010 used++;
5011
5012 /* don't activate new spares if we are orom constrained
5013 * and there is already a volume active in the container
5014 */
5015 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5016 continue;
5017
5018 e = get_extents(super, dl);
5019 if (!e)
5020 continue;
5021 for (i = 1; e[i-1].size; i++)
5022 ;
5023 dl->e = e;
5024 dl->extent_cnt = i;
5025 extent_cnt += i;
5026 cnt++;
5027 }
5028
5029 maxsize = merge_extents(super, extent_cnt);
5030 minsize = size;
5031 if (size == 0)
612e59d8
CA
5032 /* chunk is in K */
5033 minsize = chunk * 2;
efb30e7f
DW
5034
5035 if (cnt < raiddisks ||
5036 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5037 maxsize < minsize ||
5038 maxsize == 0) {
efb30e7f
DW
5039 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5040 return 0; /* No enough free spaces large enough */
5041 }
5042
5043 if (size == 0) {
5044 size = maxsize;
5045 if (chunk) {
612e59d8
CA
5046 size /= 2 * chunk;
5047 size *= 2 * chunk;
efb30e7f
DW
5048 }
5049 }
5050
5051 cnt = 0;
5052 for (dl = super->disks; dl; dl = dl->next)
5053 if (dl->e)
5054 dl->raiddisk = cnt++;
5055
5056 *freesize = size;
5057
5058 return 1;
5059}
5060
bf5a934a 5061static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5062 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5063 char *dev, unsigned long long *freesize,
5064 int verbose)
5065{
5066 int fd, cfd;
5067 struct mdinfo *sra;
20cbe8d2 5068 int is_member = 0;
bf5a934a 5069
d54559f0
LM
5070 /* load capability
5071 * if given unused devices create a container
bf5a934a
DW
5072 * if given given devices in a container create a member volume
5073 */
5074 if (level == LEVEL_CONTAINER) {
5075 /* Must be a fresh device to add to a container */
5076 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5077 raiddisks,
5078 chunk?*chunk:0, size,
bf5a934a
DW
5079 dev, freesize,
5080 verbose);
5081 }
5082
8592f29d
N
5083 if (!dev) {
5084 if (st->sb && freesize) {
efb30e7f
DW
5085 /* we are being asked to automatically layout a
5086 * new volume based on the current contents of
5087 * the container. If the the parameters can be
5088 * satisfied reserve_space will record the disks,
5089 * start offset, and size of the volume to be
5090 * created. add_to_super and getinfo_super
5091 * detect when autolayout is in progress.
5092 */
6592ce37
DW
5093 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5094 raiddisks, chunk,
5095 verbose))
5096 return 0;
c21e737b
CA
5097 return reserve_space(st, raiddisks, size,
5098 chunk?*chunk:0, freesize);
8592f29d
N
5099 }
5100 return 1;
5101 }
bf5a934a
DW
5102 if (st->sb) {
5103 /* creating in a given container */
5104 return validate_geometry_imsm_volume(st, level, layout,
5105 raiddisks, chunk, size,
5106 dev, freesize, verbose);
5107 }
5108
bf5a934a
DW
5109 /* This device needs to be a device in an 'imsm' container */
5110 fd = open(dev, O_RDONLY|O_EXCL, 0);
5111 if (fd >= 0) {
5112 if (verbose)
5113 fprintf(stderr,
5114 Name ": Cannot create this array on device %s\n",
5115 dev);
5116 close(fd);
5117 return 0;
5118 }
5119 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5120 if (verbose)
5121 fprintf(stderr, Name ": Cannot open %s: %s\n",
5122 dev, strerror(errno));
5123 return 0;
5124 }
5125 /* Well, it is in use by someone, maybe an 'imsm' container. */
5126 cfd = open_container(fd);
20cbe8d2 5127 close(fd);
bf5a934a 5128 if (cfd < 0) {
bf5a934a
DW
5129 if (verbose)
5130 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5131 dev);
5132 return 0;
5133 }
5134 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5135 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5136 strcmp(sra->text_version, "imsm") == 0)
5137 is_member = 1;
5138 sysfs_free(sra);
5139 if (is_member) {
bf5a934a
DW
5140 /* This is a member of a imsm container. Load the container
5141 * and try to create a volume
5142 */
5143 struct intel_super *super;
5144
e1902a7b 5145 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5146 st->sb = super;
5147 st->container_dev = fd2devnum(cfd);
5148 close(cfd);
5149 return validate_geometry_imsm_volume(st, level, layout,
5150 raiddisks, chunk,
5151 size, dev,
5152 freesize, verbose);
5153 }
20cbe8d2 5154 }
bf5a934a 5155
20cbe8d2
AW
5156 if (verbose)
5157 fprintf(stderr, Name ": failed container membership check\n");
5158
5159 close(cfd);
5160 return 0;
bf5a934a 5161}
0bd16cf2 5162
30f58b22 5163static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5164{
5165 struct intel_super *super = st->sb;
5166
30f58b22
DW
5167 if (level && *level == UnSet)
5168 *level = LEVEL_CONTAINER;
5169
5170 if (level && layout && *layout == UnSet)
5171 *layout = imsm_level_to_layout(*level);
0bd16cf2 5172
1d54f286
N
5173 if (chunk && (*chunk == UnSet || *chunk == 0) &&
5174 super && super->orom)
30f58b22 5175 *chunk = imsm_orom_default_chunk(super->orom);
0bd16cf2
DJ
5176}
5177
33414a01
DW
5178static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5179
5180static int kill_subarray_imsm(struct supertype *st)
5181{
5182 /* remove the subarray currently referenced by ->current_vol */
5183 __u8 i;
5184 struct intel_dev **dp;
5185 struct intel_super *super = st->sb;
5186 __u8 current_vol = super->current_vol;
5187 struct imsm_super *mpb = super->anchor;
5188
5189 if (super->current_vol < 0)
5190 return 2;
5191 super->current_vol = -1; /* invalidate subarray cursor */
5192
5193 /* block deletions that would change the uuid of active subarrays
5194 *
5195 * FIXME when immutable ids are available, but note that we'll
5196 * also need to fixup the invalidated/active subarray indexes in
5197 * mdstat
5198 */
5199 for (i = 0; i < mpb->num_raid_devs; i++) {
5200 char subarray[4];
5201
5202 if (i < current_vol)
5203 continue;
5204 sprintf(subarray, "%u", i);
5205 if (is_subarray_active(subarray, st->devname)) {
5206 fprintf(stderr,
5207 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5208 current_vol, i);
5209
5210 return 2;
5211 }
5212 }
5213
5214 if (st->update_tail) {
5215 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5216
5217 if (!u)
5218 return 2;
5219 u->type = update_kill_array;
5220 u->dev_idx = current_vol;
5221 append_metadata_update(st, u, sizeof(*u));
5222
5223 return 0;
5224 }
5225
5226 for (dp = &super->devlist; *dp;)
5227 if ((*dp)->index == current_vol) {
5228 *dp = (*dp)->next;
5229 } else {
5230 handle_missing(super, (*dp)->dev);
5231 if ((*dp)->index > current_vol)
5232 (*dp)->index--;
5233 dp = &(*dp)->next;
5234 }
5235
5236 /* no more raid devices, all active components are now spares,
5237 * but of course failed are still failed
5238 */
5239 if (--mpb->num_raid_devs == 0) {
5240 struct dl *d;
5241
5242 for (d = super->disks; d; d = d->next)
5243 if (d->index > -2) {
5244 d->index = -1;
5245 d->disk.status = SPARE_DISK;
5246 }
5247 }
5248
5249 super->updates_pending++;
5250
5251 return 0;
5252}
aa534678 5253
a951a4f7 5254static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5255 char *update, struct mddev_ident *ident)
aa534678
DW
5256{
5257 /* update the subarray currently referenced by ->current_vol */
5258 struct intel_super *super = st->sb;
5259 struct imsm_super *mpb = super->anchor;
5260
aa534678
DW
5261 if (strcmp(update, "name") == 0) {
5262 char *name = ident->name;
a951a4f7
N
5263 char *ep;
5264 int vol;
aa534678 5265
a951a4f7 5266 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5267 fprintf(stderr,
5268 Name ": Unable to update name of active subarray\n");
5269 return 2;
5270 }
5271
5272 if (!check_name(super, name, 0))
5273 return 2;
5274
a951a4f7
N
5275 vol = strtoul(subarray, &ep, 10);
5276 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5277 return 2;
5278
aa534678
DW
5279 if (st->update_tail) {
5280 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5281
5282 if (!u)
5283 return 2;
5284 u->type = update_rename_array;
a951a4f7 5285 u->dev_idx = vol;
aa534678
DW
5286 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5287 append_metadata_update(st, u, sizeof(*u));
5288 } else {
5289 struct imsm_dev *dev;
5290 int i;
5291
a951a4f7 5292 dev = get_imsm_dev(super, vol);
aa534678
DW
5293 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5294 for (i = 0; i < mpb->num_raid_devs; i++) {
5295 dev = get_imsm_dev(super, i);
5296 handle_missing(super, dev);
5297 }
5298 super->updates_pending++;
5299 }
5300 } else
5301 return 2;
5302
5303 return 0;
5304}
bf5a934a 5305
28bce06f
AK
5306static int is_gen_migration(struct imsm_dev *dev)
5307{
5308 if (!dev->vol.migr_state)
5309 return 0;
5310
5311 if (migr_type(dev) == MIGR_GEN_MIGR)
5312 return 1;
5313
5314 return 0;
5315}
71204a50 5316#endif /* MDASSEMBLE */
28bce06f 5317
1e5c6983
DW
5318static int is_rebuilding(struct imsm_dev *dev)
5319{
5320 struct imsm_map *migr_map;
5321
5322 if (!dev->vol.migr_state)
5323 return 0;
5324
5325 if (migr_type(dev) != MIGR_REBUILD)
5326 return 0;
5327
5328 migr_map = get_imsm_map(dev, 1);
5329
5330 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5331 return 1;
5332 else
5333 return 0;
5334}
5335
c47b0ff6
AK
5336static void update_recovery_start(struct intel_super *super,
5337 struct imsm_dev *dev,
5338 struct mdinfo *array)
1e5c6983
DW
5339{
5340 struct mdinfo *rebuild = NULL;
5341 struct mdinfo *d;
5342 __u32 units;
5343
5344 if (!is_rebuilding(dev))
5345 return;
5346
5347 /* Find the rebuild target, but punt on the dual rebuild case */
5348 for (d = array->devs; d; d = d->next)
5349 if (d->recovery_start == 0) {
5350 if (rebuild)
5351 return;
5352 rebuild = d;
5353 }
5354
4363fd80
DW
5355 if (!rebuild) {
5356 /* (?) none of the disks are marked with
5357 * IMSM_ORD_REBUILD, so assume they are missing and the
5358 * disk_ord_tbl was not correctly updated
5359 */
5360 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5361 return;
5362 }
5363
1e5c6983 5364 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5365 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5366}
5367
276d77db 5368static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 5369
00bbdbda 5370static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5371{
4f5bc454
DW
5372 /* Given a container loaded by load_super_imsm_all,
5373 * extract information about all the arrays into
5374 * an mdinfo tree.
00bbdbda 5375 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5376 *
5377 * For each imsm_dev create an mdinfo, fill it in,
5378 * then look for matching devices in super->disks
5379 * and create appropriate device mdinfo.
5380 */
5381 struct intel_super *super = st->sb;
949c47a0 5382 struct imsm_super *mpb = super->anchor;
4f5bc454 5383 struct mdinfo *rest = NULL;
00bbdbda 5384 unsigned int i;
a06d022d 5385 int bbm_errors = 0;
abef11a3
AK
5386 struct dl *d;
5387 int spare_disks = 0;
cdddbdbc 5388
a06d022d
KW
5389 /* check for bad blocks */
5390 if (imsm_bbm_log_size(super->anchor))
5391 bbm_errors = 1;
604b746f 5392
abef11a3
AK
5393 /* count spare devices, not used in maps
5394 */
5395 for (d = super->disks; d; d = d->next)
5396 if (d->index == -1)
5397 spare_disks++;
5398
4f5bc454 5399 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5400 struct imsm_dev *dev;
5401 struct imsm_map *map;
86e3692b 5402 struct imsm_map *map2;
4f5bc454 5403 struct mdinfo *this;
2db86302 5404 int slot, chunk;
00bbdbda
N
5405 char *ep;
5406
5407 if (subarray &&
5408 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5409 continue;
5410
5411 dev = get_imsm_dev(super, i);
5412 map = get_imsm_map(dev, 0);
86e3692b 5413 map2 = get_imsm_map(dev, 1);
4f5bc454 5414
1ce0101c
DW
5415 /* do not publish arrays that are in the middle of an
5416 * unsupported migration
5417 */
5418 if (dev->vol.migr_state &&
28bce06f 5419 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5420 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5421 " unsupported migration in progress\n",
5422 dev->volume);
5423 continue;
5424 }
2db86302
LM
5425 /* do not publish arrays that are not support by controller's
5426 * OROM/EFI
5427 */
1ce0101c 5428
2db86302 5429 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
7b0bbd0f 5430#ifndef MDASSEMBLE
2db86302
LM
5431 if (!validate_geometry_imsm_orom(super,
5432 get_imsm_raid_level(map), /* RAID level */
5433 imsm_level_to_layout(get_imsm_raid_level(map)),
5434 map->num_members, /* raid disks */
5435 &chunk,
5436 1 /* verbose */)) {
5437 fprintf(stderr, Name ": RAID gemetry validation failed. "
5438 "Cannot proceed with the action(s).\n");
5439 continue;
5440 }
7b0bbd0f 5441#endif /* MDASSEMBLE */
4f5bc454 5442 this = malloc(sizeof(*this));
0fbd635c 5443 if (!this) {
cf1be220 5444 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5445 sizeof(*this));
5446 break;
5447 }
4f5bc454 5448
301406c9 5449 super->current_vol = i;
a5d85af7 5450 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5451 this->next = rest;
4f5bc454 5452 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5453 unsigned long long recovery_start;
4f5bc454
DW
5454 struct mdinfo *info_d;
5455 struct dl *d;
5456 int idx;
9a1608e5 5457 int skip;
7eef0453 5458 __u32 ord;
4f5bc454 5459
9a1608e5 5460 skip = 0;
98130f40 5461 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5462 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5463 for (d = super->disks; d ; d = d->next)
5464 if (d->index == idx)
0fbd635c 5465 break;
4f5bc454 5466
1e5c6983 5467 recovery_start = MaxSector;
4f5bc454 5468 if (d == NULL)
9a1608e5 5469 skip = 1;
25ed7e59 5470 if (d && is_failed(&d->disk))
9a1608e5 5471 skip = 1;
7eef0453 5472 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5473 recovery_start = 0;
9a1608e5
DW
5474
5475 /*
5476 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5477 * reset resync start to avoid a dirty-degraded
5478 * situation when performing the intial sync
9a1608e5
DW
5479 *
5480 * FIXME handle dirty degraded
5481 */
1e5c6983 5482 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5483 this->resync_start = MaxSector;
9a1608e5
DW
5484 if (skip)
5485 continue;
4f5bc454 5486
1e5c6983 5487 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5488 if (!info_d) {
5489 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5490 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5491 info_d = this->devs;
5492 while (info_d) {
5493 struct mdinfo *d = info_d->next;
5494
5495 free(info_d);
5496 info_d = d;
5497 }
9a1608e5
DW
5498 free(this);
5499 this = rest;
5500 break;
5501 }
4f5bc454
DW
5502 info_d->next = this->devs;
5503 this->devs = info_d;
5504
4f5bc454
DW
5505 info_d->disk.number = d->index;
5506 info_d->disk.major = d->major;
5507 info_d->disk.minor = d->minor;
5508 info_d->disk.raid_disk = slot;
1e5c6983 5509 info_d->recovery_start = recovery_start;
86e3692b
AK
5510 if (map2) {
5511 if (slot < map2->num_members)
5512 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5513 else
5514 this->array.spare_disks++;
86e3692b
AK
5515 } else {
5516 if (slot < map->num_members)
5517 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5518 else
5519 this->array.spare_disks++;
86e3692b 5520 }
1e5c6983
DW
5521 if (info_d->recovery_start == MaxSector)
5522 this->array.working_disks++;
4f5bc454
DW
5523
5524 info_d->events = __le32_to_cpu(mpb->generation_num);
5525 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5526 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5527 }
1e5c6983 5528 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5529 update_recovery_start(super, dev, this);
abef11a3 5530 this->array.spare_disks += spare_disks;
276d77db
AK
5531
5532 /* check for reshape */
5533 if (this->reshape_active == 1)
5534 recover_backup_imsm(st, this);
5535
9a1608e5 5536 rest = this;
4f5bc454
DW
5537 }
5538
a06d022d
KW
5539 /* if array has bad blocks, set suitable bit in array status */
5540 if (bbm_errors)
5541 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5542
4f5bc454 5543 return rest;
cdddbdbc
DW
5544}
5545
845dea95 5546
fb49eef2 5547static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 5548{
a965f303 5549 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
5550
5551 if (!failed)
3393c6af
DW
5552 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5553 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5554
5555 switch (get_imsm_raid_level(map)) {
5556 case 0:
5557 return IMSM_T_STATE_FAILED;
5558 break;
5559 case 1:
5560 if (failed < map->num_members)
5561 return IMSM_T_STATE_DEGRADED;
5562 else
5563 return IMSM_T_STATE_FAILED;
5564 break;
5565 case 10:
5566 {
5567 /**
c92a2527
DW
5568 * check to see if any mirrors have failed, otherwise we
5569 * are degraded. Even numbered slots are mirrored on
5570 * slot+1
c2a1e7da 5571 */
c2a1e7da 5572 int i;
d9b420a5
N
5573 /* gcc -Os complains that this is unused */
5574 int insync = insync;
c2a1e7da
DW
5575
5576 for (i = 0; i < map->num_members; i++) {
98130f40 5577 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5578 int idx = ord_to_idx(ord);
5579 struct imsm_disk *disk;
c2a1e7da 5580
c92a2527
DW
5581 /* reset the potential in-sync count on even-numbered
5582 * slots. num_copies is always 2 for imsm raid10
5583 */
5584 if ((i & 1) == 0)
5585 insync = 2;
c2a1e7da 5586
c92a2527 5587 disk = get_imsm_disk(super, idx);
25ed7e59 5588 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5589 insync--;
c2a1e7da 5590
c92a2527
DW
5591 /* no in-sync disks left in this mirror the
5592 * array has failed
5593 */
5594 if (insync == 0)
5595 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5596 }
5597
5598 return IMSM_T_STATE_DEGRADED;
5599 }
5600 case 5:
5601 if (failed < 2)
5602 return IMSM_T_STATE_DEGRADED;
5603 else
5604 return IMSM_T_STATE_FAILED;
5605 break;
5606 default:
5607 break;
5608 }
5609
5610 return map->map_state;
5611}
5612
ff077194 5613static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
5614{
5615 int i;
5616 int failed = 0;
5617 struct imsm_disk *disk;
ff077194 5618 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
5619 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5620 __u32 ord;
5621 int idx;
c2a1e7da 5622
0556e1a2
DW
5623 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5624 * disks that are being rebuilt. New failures are recorded to
5625 * map[0]. So we look through all the disks we started with and
5626 * see if any failures are still present, or if any new ones
5627 * have arrived
5628 *
5629 * FIXME add support for online capacity expansion and
5630 * raid-level-migration
5631 */
5632 for (i = 0; i < prev->num_members; i++) {
5633 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5634 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5635 idx = ord_to_idx(ord);
c2a1e7da 5636
949c47a0 5637 disk = get_imsm_disk(super, idx);
25ed7e59 5638 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 5639 failed++;
c2a1e7da
DW
5640 }
5641
5642 return failed;
845dea95
NB
5643}
5644
97b4d0e9
DW
5645#ifndef MDASSEMBLE
5646static int imsm_open_new(struct supertype *c, struct active_array *a,
5647 char *inst)
5648{
5649 struct intel_super *super = c->sb;
5650 struct imsm_super *mpb = super->anchor;
5651
5652 if (atoi(inst) >= mpb->num_raid_devs) {
5653 fprintf(stderr, "%s: subarry index %d, out of range\n",
5654 __func__, atoi(inst));
5655 return -ENODEV;
5656 }
5657
5658 dprintf("imsm: open_new %s\n", inst);
5659 a->info.container_member = atoi(inst);
5660 return 0;
5661}
5662
0c046afd
DW
5663static int is_resyncing(struct imsm_dev *dev)
5664{
5665 struct imsm_map *migr_map;
5666
5667 if (!dev->vol.migr_state)
5668 return 0;
5669
1484e727
DW
5670 if (migr_type(dev) == MIGR_INIT ||
5671 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
5672 return 1;
5673
4c9bc37b
AK
5674 if (migr_type(dev) == MIGR_GEN_MIGR)
5675 return 0;
5676
0c046afd
DW
5677 migr_map = get_imsm_map(dev, 1);
5678
4c9bc37b
AK
5679 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5680 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
5681 return 1;
5682 else
5683 return 0;
5684}
5685
0556e1a2
DW
5686/* return true if we recorded new information */
5687static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 5688{
0556e1a2
DW
5689 __u32 ord;
5690 int slot;
5691 struct imsm_map *map;
5692
5693 /* new failures are always set in map[0] */
5694 map = get_imsm_map(dev, 0);
5695
5696 slot = get_imsm_disk_slot(map, idx);
5697 if (slot < 0)
5698 return 0;
5699
5700 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 5701 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
5702 return 0;
5703
f2f27e63 5704 disk->status |= FAILED_DISK;
0556e1a2 5705 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
f21e18ca 5706 if (map->failed_disk_num == 0xff)
0556e1a2
DW
5707 map->failed_disk_num = slot;
5708 return 1;
5709}
5710
5711static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5712{
5713 mark_failure(dev, disk, idx);
5714
5715 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5716 return;
5717
47ee5a45
DW
5718 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5719 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5720}
5721
33414a01
DW
5722static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5723{
5724 __u8 map_state;
5725 struct dl *dl;
5726 int failed;
5727
5728 if (!super->missing)
5729 return;
5730 failed = imsm_count_failed(super, dev);
5731 map_state = imsm_check_degraded(super, dev, failed);
5732
5733 dprintf("imsm: mark missing\n");
5734 end_migration(dev, map_state);
5735 for (dl = super->missing; dl; dl = dl->next)
5736 mark_missing(dev, &dl->disk, dl->index);
5737 super->updates_pending++;
5738}
5739
70bdf0dc
AK
5740static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5741{
5742 int used_disks = imsm_num_data_members(dev, 0);
5743 unsigned long long array_blocks;
5744 struct imsm_map *map;
5745
5746 if (used_disks == 0) {
5747 /* when problems occures
5748 * return current array_blocks value
5749 */
5750 array_blocks = __le32_to_cpu(dev->size_high);
5751 array_blocks = array_blocks << 32;
5752 array_blocks += __le32_to_cpu(dev->size_low);
5753
5754 return array_blocks;
5755 }
5756
5757 /* set array size in metadata
5758 */
5759 map = get_imsm_map(dev, 0);
5760 array_blocks = map->blocks_per_member * used_disks;
5761
5762 /* round array size down to closest MB
5763 */
5764 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5765 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5766 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5767
5768 return array_blocks;
5769}
5770
28bce06f
AK
5771static void imsm_set_disk(struct active_array *a, int n, int state);
5772
0e2d1a4e
AK
5773static void imsm_progress_container_reshape(struct intel_super *super)
5774{
5775 /* if no device has a migr_state, but some device has a
5776 * different number of members than the previous device, start
5777 * changing the number of devices in this device to match
5778 * previous.
5779 */
5780 struct imsm_super *mpb = super->anchor;
5781 int prev_disks = -1;
5782 int i;
1dfaa380 5783 int copy_map_size;
0e2d1a4e
AK
5784
5785 for (i = 0; i < mpb->num_raid_devs; i++) {
5786 struct imsm_dev *dev = get_imsm_dev(super, i);
5787 struct imsm_map *map = get_imsm_map(dev, 0);
5788 struct imsm_map *map2;
5789 int prev_num_members;
0e2d1a4e
AK
5790
5791 if (dev->vol.migr_state)
5792 return;
5793
5794 if (prev_disks == -1)
5795 prev_disks = map->num_members;
5796 if (prev_disks == map->num_members)
5797 continue;
5798
5799 /* OK, this array needs to enter reshape mode.
5800 * i.e it needs a migr_state
5801 */
5802
1dfaa380 5803 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
5804 prev_num_members = map->num_members;
5805 map->num_members = prev_disks;
5806 dev->vol.migr_state = 1;
5807 dev->vol.curr_migr_unit = 0;
5808 dev->vol.migr_type = MIGR_GEN_MIGR;
5809 for (i = prev_num_members;
5810 i < map->num_members; i++)
5811 set_imsm_ord_tbl_ent(map, i, i);
5812 map2 = get_imsm_map(dev, 1);
5813 /* Copy the current map */
1dfaa380 5814 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
5815 map2->num_members = prev_num_members;
5816
70bdf0dc 5817 imsm_set_array_size(dev);
0e2d1a4e
AK
5818 super->updates_pending++;
5819 }
5820}
5821
aad6f216 5822/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
5823 * states are handled in imsm_set_disk() with one exception, when a
5824 * resync is stopped due to a new failure this routine will set the
5825 * 'degraded' state for the array.
5826 */
01f157d7 5827static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
5828{
5829 int inst = a->info.container_member;
5830 struct intel_super *super = a->container->sb;
949c47a0 5831 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 5832 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
5833 int failed = imsm_count_failed(super, dev);
5834 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 5835 __u32 blocks_per_unit;
a862209d 5836
1af97990
AK
5837 if (dev->vol.migr_state &&
5838 dev->vol.migr_type == MIGR_GEN_MIGR) {
5839 /* array state change is blocked due to reshape action
aad6f216
N
5840 * We might need to
5841 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5842 * - finish the reshape (if last_checkpoint is big and action != reshape)
5843 * - update curr_migr_unit
1af97990 5844 */
aad6f216
N
5845 if (a->curr_action == reshape) {
5846 /* still reshaping, maybe update curr_migr_unit */
633b5610 5847 goto mark_checkpoint;
aad6f216
N
5848 } else {
5849 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5850 /* for some reason we aborted the reshape.
5851 * Better clean up
5852 */
5853 struct imsm_map *map2 = get_imsm_map(dev, 1);
5854 dev->vol.migr_state = 0;
5855 dev->vol.migr_type = 0;
5856 dev->vol.curr_migr_unit = 0;
5857 memcpy(map, map2, sizeof_imsm_map(map2));
5858 super->updates_pending++;
5859 }
5860 if (a->last_checkpoint >= a->info.component_size) {
5861 unsigned long long array_blocks;
5862 int used_disks;
e154ced3 5863 struct mdinfo *mdi;
aad6f216 5864
9653001d 5865 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
5866 if (used_disks > 0) {
5867 array_blocks =
5868 map->blocks_per_member *
5869 used_disks;
5870 /* round array size down to closest MB
5871 */
5872 array_blocks = (array_blocks
5873 >> SECT_PER_MB_SHIFT)
5874 << SECT_PER_MB_SHIFT;
d55adef9
AK
5875 a->info.custom_array_size = array_blocks;
5876 /* encourage manager to update array
5877 * size
5878 */
e154ced3 5879
d55adef9 5880 a->check_reshape = 1;
633b5610 5881 }
e154ced3
AK
5882 /* finalize online capacity expansion/reshape */
5883 for (mdi = a->info.devs; mdi; mdi = mdi->next)
5884 imsm_set_disk(a,
5885 mdi->disk.raid_disk,
5886 mdi->curr_state);
5887
0e2d1a4e 5888 imsm_progress_container_reshape(super);
e154ced3 5889 }
aad6f216 5890 }
1af97990
AK
5891 }
5892
47ee5a45 5893 /* before we activate this array handle any missing disks */
33414a01
DW
5894 if (consistent == 2)
5895 handle_missing(super, dev);
1e5c6983 5896
0c046afd 5897 if (consistent == 2 &&
b7941fd6 5898 (!is_resync_complete(&a->info) ||
0c046afd
DW
5899 map_state != IMSM_T_STATE_NORMAL ||
5900 dev->vol.migr_state))
01f157d7 5901 consistent = 0;
272906ef 5902
b7941fd6 5903 if (is_resync_complete(&a->info)) {
0c046afd 5904 /* complete intialization / resync,
0556e1a2
DW
5905 * recovery and interrupted recovery is completed in
5906 * ->set_disk
0c046afd
DW
5907 */
5908 if (is_resyncing(dev)) {
5909 dprintf("imsm: mark resync done\n");
f8f603f1 5910 end_migration(dev, map_state);
115c3803 5911 super->updates_pending++;
484240d8 5912 a->last_checkpoint = 0;
115c3803 5913 }
0c046afd
DW
5914 } else if (!is_resyncing(dev) && !failed) {
5915 /* mark the start of the init process if nothing is failed */
b7941fd6 5916 dprintf("imsm: mark resync start\n");
1484e727 5917 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 5918 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 5919 else
8e59f3d8 5920 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 5921 super->updates_pending++;
115c3803 5922 }
a862209d 5923
633b5610 5924mark_checkpoint:
5b83bacf
AK
5925 /* skip checkpointing for general migration,
5926 * it is controlled in mdadm
5927 */
5928 if (is_gen_migration(dev))
5929 goto skip_mark_checkpoint;
5930
1e5c6983 5931 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 5932 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 5933 if (blocks_per_unit) {
1e5c6983
DW
5934 __u32 units32;
5935 __u64 units;
5936
4f0a7acc 5937 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
5938 units32 = units;
5939
5940 /* check that we did not overflow 32-bits, and that
5941 * curr_migr_unit needs updating
5942 */
5943 if (units32 == units &&
bfd80a56 5944 units32 != 0 &&
1e5c6983
DW
5945 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
5946 dprintf("imsm: mark checkpoint (%u)\n", units32);
5947 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
5948 super->updates_pending++;
5949 }
5950 }
f8f603f1 5951
5b83bacf 5952skip_mark_checkpoint:
3393c6af 5953 /* mark dirty / clean */
0c046afd 5954 if (dev->vol.dirty != !consistent) {
b7941fd6 5955 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
5956 if (consistent)
5957 dev->vol.dirty = 0;
5958 else
5959 dev->vol.dirty = 1;
a862209d
DW
5960 super->updates_pending++;
5961 }
28bce06f 5962
01f157d7 5963 return consistent;
a862209d
DW
5964}
5965
8d45d196 5966static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 5967{
8d45d196
DW
5968 int inst = a->info.container_member;
5969 struct intel_super *super = a->container->sb;
949c47a0 5970 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 5971 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 5972 struct imsm_disk *disk;
0c046afd 5973 int failed;
b10b37b8 5974 __u32 ord;
0c046afd 5975 __u8 map_state;
8d45d196
DW
5976
5977 if (n > map->num_members)
5978 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
5979 n, map->num_members - 1);
5980
5981 if (n < 0)
5982 return;
5983
4e6e574a 5984 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 5985
98130f40 5986 ord = get_imsm_ord_tbl_ent(dev, n, -1);
b10b37b8 5987 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 5988
5802a811 5989 /* check for new failures */
0556e1a2
DW
5990 if (state & DS_FAULTY) {
5991 if (mark_failure(dev, disk, ord_to_idx(ord)))
5992 super->updates_pending++;
8d45d196 5993 }
47ee5a45 5994
19859edc 5995 /* check if in_sync */
0556e1a2 5996 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
5997 struct imsm_map *migr_map = get_imsm_map(dev, 1);
5998
5999 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6000 super->updates_pending++;
6001 }
8d45d196 6002
0c046afd
DW
6003 failed = imsm_count_failed(super, dev);
6004 map_state = imsm_check_degraded(super, dev, failed);
5802a811 6005
0c046afd
DW
6006 /* check if recovery complete, newly degraded, or failed */
6007 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 6008 end_migration(dev, map_state);
0556e1a2
DW
6009 map = get_imsm_map(dev, 0);
6010 map->failed_disk_num = ~0;
0c046afd 6011 super->updates_pending++;
484240d8 6012 a->last_checkpoint = 0;
0c046afd
DW
6013 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6014 map->map_state != map_state &&
6015 !dev->vol.migr_state) {
6016 dprintf("imsm: mark degraded\n");
6017 map->map_state = map_state;
6018 super->updates_pending++;
484240d8 6019 a->last_checkpoint = 0;
0c046afd
DW
6020 } else if (map_state == IMSM_T_STATE_FAILED &&
6021 map->map_state != map_state) {
6022 dprintf("imsm: mark failed\n");
f8f603f1 6023 end_migration(dev, map_state);
0c046afd 6024 super->updates_pending++;
484240d8 6025 a->last_checkpoint = 0;
28bce06f
AK
6026 } else if (is_gen_migration(dev)) {
6027 dprintf("imsm: Detected General Migration in state: ");
6028 if (map_state == IMSM_T_STATE_NORMAL) {
6029 end_migration(dev, map_state);
6030 map = get_imsm_map(dev, 0);
6031 map->failed_disk_num = ~0;
6032 dprintf("normal\n");
6033 } else {
6034 if (map_state == IMSM_T_STATE_DEGRADED) {
6035 printf("degraded\n");
6036 end_migration(dev, map_state);
6037 } else {
6038 dprintf("failed\n");
6039 }
6040 map->map_state = map_state;
6041 }
6042 super->updates_pending++;
5802a811 6043 }
845dea95
NB
6044}
6045
f796af5d 6046static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6047{
f796af5d 6048 void *buf = mpb;
c2a1e7da
DW
6049 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6050 unsigned long long dsize;
6051 unsigned long long sectors;
6052
6053 get_dev_size(fd, NULL, &dsize);
6054
272f648f
DW
6055 if (mpb_size > 512) {
6056 /* -1 to account for anchor */
6057 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6058
272f648f
DW
6059 /* write the extended mpb to the sectors preceeding the anchor */
6060 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6061 return 1;
c2a1e7da 6062
f21e18ca
N
6063 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6064 != 512 * sectors)
272f648f
DW
6065 return 1;
6066 }
c2a1e7da 6067
272f648f
DW
6068 /* first block is stored on second to last sector of the disk */
6069 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6070 return 1;
6071
f796af5d 6072 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6073 return 1;
6074
c2a1e7da
DW
6075 return 0;
6076}
6077
2e735d19 6078static void imsm_sync_metadata(struct supertype *container)
845dea95 6079{
2e735d19 6080 struct intel_super *super = container->sb;
c2a1e7da 6081
1a64be56 6082 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6083 if (!super->updates_pending)
6084 return;
6085
36988a3d 6086 write_super_imsm(container, 0);
c2a1e7da
DW
6087
6088 super->updates_pending = 0;
845dea95
NB
6089}
6090
272906ef
DW
6091static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6092{
6093 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6094 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6095 struct dl *dl;
6096
6097 for (dl = super->disks; dl; dl = dl->next)
6098 if (dl->index == i)
6099 break;
6100
25ed7e59 6101 if (dl && is_failed(&dl->disk))
272906ef
DW
6102 dl = NULL;
6103
6104 if (dl)
6105 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6106
6107 return dl;
6108}
6109
a20d2ba5 6110static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6111 struct active_array *a, int activate_new,
6112 struct mdinfo *additional_test_list)
272906ef
DW
6113{
6114 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6115 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6116 struct imsm_super *mpb = super->anchor;
6117 struct imsm_map *map;
272906ef
DW
6118 unsigned long long pos;
6119 struct mdinfo *d;
6120 struct extent *ex;
a20d2ba5 6121 int i, j;
272906ef 6122 int found;
569cc43f
DW
6123 __u32 array_start = 0;
6124 __u32 array_end = 0;
272906ef 6125 struct dl *dl;
6c932028 6126 struct mdinfo *test_list;
272906ef
DW
6127
6128 for (dl = super->disks; dl; dl = dl->next) {
6129 /* If in this array, skip */
6130 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6131 if (d->state_fd >= 0 &&
6132 d->disk.major == dl->major &&
272906ef 6133 d->disk.minor == dl->minor) {
8ba77d32
AK
6134 dprintf("%x:%x already in array\n",
6135 dl->major, dl->minor);
272906ef
DW
6136 break;
6137 }
6138 if (d)
6139 continue;
6c932028
AK
6140 test_list = additional_test_list;
6141 while (test_list) {
6142 if (test_list->disk.major == dl->major &&
6143 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6144 dprintf("%x:%x already in additional test list\n",
6145 dl->major, dl->minor);
6146 break;
6147 }
6c932028 6148 test_list = test_list->next;
8ba77d32 6149 }
6c932028 6150 if (test_list)
8ba77d32 6151 continue;
272906ef 6152
e553d2a4 6153 /* skip in use or failed drives */
25ed7e59 6154 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6155 dl->index == -2) {
6156 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6157 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6158 continue;
6159 }
6160
a20d2ba5
DW
6161 /* skip pure spares when we are looking for partially
6162 * assimilated drives
6163 */
6164 if (dl->index == -1 && !activate_new)
6165 continue;
6166
272906ef 6167 /* Does this unused device have the requisite free space?
a20d2ba5 6168 * It needs to be able to cover all member volumes
272906ef
DW
6169 */
6170 ex = get_extents(super, dl);
6171 if (!ex) {
6172 dprintf("cannot get extents\n");
6173 continue;
6174 }
a20d2ba5
DW
6175 for (i = 0; i < mpb->num_raid_devs; i++) {
6176 dev = get_imsm_dev(super, i);
6177 map = get_imsm_map(dev, 0);
272906ef 6178
a20d2ba5
DW
6179 /* check if this disk is already a member of
6180 * this array
272906ef 6181 */
620b1713 6182 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6183 continue;
6184
6185 found = 0;
6186 j = 0;
6187 pos = 0;
6188 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6189 array_end = array_start +
6190 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6191
6192 do {
6193 /* check that we can start at pba_of_lba0 with
6194 * blocks_per_member of space
6195 */
329c8278 6196 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6197 found = 1;
6198 break;
6199 }
6200 pos = ex[j].start + ex[j].size;
6201 j++;
6202 } while (ex[j-1].size);
6203
6204 if (!found)
272906ef 6205 break;
a20d2ba5 6206 }
272906ef
DW
6207
6208 free(ex);
a20d2ba5 6209 if (i < mpb->num_raid_devs) {
329c8278
DW
6210 dprintf("%x:%x does not have %u to %u available\n",
6211 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6212 /* No room */
6213 continue;
a20d2ba5
DW
6214 }
6215 return dl;
272906ef
DW
6216 }
6217
6218 return dl;
6219}
6220
95d07a2c
LM
6221
6222static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6223{
6224 struct imsm_dev *dev2;
6225 struct imsm_map *map;
6226 struct dl *idisk;
6227 int slot;
6228 int idx;
6229 __u8 state;
6230
6231 dev2 = get_imsm_dev(cont->sb, dev_idx);
6232 if (dev2) {
6233 state = imsm_check_degraded(cont->sb, dev2, failed);
6234 if (state == IMSM_T_STATE_FAILED) {
6235 map = get_imsm_map(dev2, 0);
6236 if (!map)
6237 return 1;
6238 for (slot = 0; slot < map->num_members; slot++) {
6239 /*
6240 * Check if failed disks are deleted from intel
6241 * disk list or are marked to be deleted
6242 */
98130f40 6243 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6244 idisk = get_imsm_dl_disk(cont->sb, idx);
6245 /*
6246 * Do not rebuild the array if failed disks
6247 * from failed sub-array are not removed from
6248 * container.
6249 */
6250 if (idisk &&
6251 is_failed(&idisk->disk) &&
6252 (idisk->action != DISK_REMOVE))
6253 return 0;
6254 }
6255 }
6256 }
6257 return 1;
6258}
6259
88758e9d
DW
6260static struct mdinfo *imsm_activate_spare(struct active_array *a,
6261 struct metadata_update **updates)
6262{
6263 /**
d23fe947
DW
6264 * Find a device with unused free space and use it to replace a
6265 * failed/vacant region in an array. We replace failed regions one a
6266 * array at a time. The result is that a new spare disk will be added
6267 * to the first failed array and after the monitor has finished
6268 * propagating failures the remainder will be consumed.
88758e9d 6269 *
d23fe947
DW
6270 * FIXME add a capability for mdmon to request spares from another
6271 * container.
88758e9d
DW
6272 */
6273
6274 struct intel_super *super = a->container->sb;
88758e9d 6275 int inst = a->info.container_member;
949c47a0 6276 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6277 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6278 int failed = a->info.array.raid_disks;
6279 struct mdinfo *rv = NULL;
6280 struct mdinfo *d;
6281 struct mdinfo *di;
6282 struct metadata_update *mu;
6283 struct dl *dl;
6284 struct imsm_update_activate_spare *u;
6285 int num_spares = 0;
6286 int i;
95d07a2c 6287 int allowed;
88758e9d
DW
6288
6289 for (d = a->info.devs ; d ; d = d->next) {
6290 if ((d->curr_state & DS_FAULTY) &&
6291 d->state_fd >= 0)
6292 /* wait for Removal to happen */
6293 return NULL;
6294 if (d->state_fd >= 0)
6295 failed--;
6296 }
6297
6298 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6299 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990
AK
6300
6301 if (dev->vol.migr_state &&
6302 dev->vol.migr_type == MIGR_GEN_MIGR)
6303 /* No repair during migration */
6304 return NULL;
6305
89c67882
AK
6306 if (a->info.array.level == 4)
6307 /* No repair for takeovered array
6308 * imsm doesn't support raid4
6309 */
6310 return NULL;
6311
fb49eef2 6312 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
6313 return NULL;
6314
95d07a2c
LM
6315 /*
6316 * If there are any failed disks check state of the other volume.
6317 * Block rebuild if the another one is failed until failed disks
6318 * are removed from container.
6319 */
6320 if (failed) {
6321 dprintf("found failed disks in %s, check if there another"
6322 "failed sub-array.\n",
6323 dev->volume);
6324 /* check if states of the other volumes allow for rebuild */
6325 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6326 if (i != inst) {
6327 allowed = imsm_rebuild_allowed(a->container,
6328 i, failed);
6329 if (!allowed)
6330 return NULL;
6331 }
6332 }
6333 }
6334
88758e9d 6335 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6336 for (i = 0; i < a->info.array.raid_disks; i++) {
6337 for (d = a->info.devs ; d ; d = d->next)
6338 if (d->disk.raid_disk == i)
6339 break;
6340 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6341 if (d && (d->state_fd >= 0))
6342 continue;
6343
272906ef 6344 /*
a20d2ba5
DW
6345 * OK, this device needs recovery. Try to re-add the
6346 * previous occupant of this slot, if this fails see if
6347 * we can continue the assimilation of a spare that was
6348 * partially assimilated, finally try to activate a new
6349 * spare.
272906ef
DW
6350 */
6351 dl = imsm_readd(super, i, a);
6352 if (!dl)
8ba77d32 6353 dl = imsm_add_spare(super, i, a, 0, NULL);
a20d2ba5 6354 if (!dl)
8ba77d32 6355 dl = imsm_add_spare(super, i, a, 1, NULL);
272906ef
DW
6356 if (!dl)
6357 continue;
6358
6359 /* found a usable disk with enough space */
6360 di = malloc(sizeof(*di));
79244939
DW
6361 if (!di)
6362 continue;
272906ef
DW
6363 memset(di, 0, sizeof(*di));
6364
6365 /* dl->index will be -1 in the case we are activating a
6366 * pristine spare. imsm_process_update() will create a
6367 * new index in this case. Once a disk is found to be
6368 * failed in all member arrays it is kicked from the
6369 * metadata
6370 */
6371 di->disk.number = dl->index;
d23fe947 6372
272906ef
DW
6373 /* (ab)use di->devs to store a pointer to the device
6374 * we chose
6375 */
6376 di->devs = (struct mdinfo *) dl;
6377
6378 di->disk.raid_disk = i;
6379 di->disk.major = dl->major;
6380 di->disk.minor = dl->minor;
6381 di->disk.state = 0;
d23534e4 6382 di->recovery_start = 0;
272906ef
DW
6383 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6384 di->component_size = a->info.component_size;
6385 di->container_member = inst;
148acb7b 6386 super->random = random32();
272906ef
DW
6387 di->next = rv;
6388 rv = di;
6389 num_spares++;
6390 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6391 i, di->data_offset);
88758e9d 6392
272906ef 6393 break;
88758e9d
DW
6394 }
6395
6396 if (!rv)
6397 /* No spares found */
6398 return rv;
6399 /* Now 'rv' has a list of devices to return.
6400 * Create a metadata_update record to update the
6401 * disk_ord_tbl for the array
6402 */
6403 mu = malloc(sizeof(*mu));
79244939
DW
6404 if (mu) {
6405 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6406 if (mu->buf == NULL) {
6407 free(mu);
6408 mu = NULL;
6409 }
6410 }
6411 if (!mu) {
6412 while (rv) {
6413 struct mdinfo *n = rv->next;
6414
6415 free(rv);
6416 rv = n;
6417 }
6418 return NULL;
6419 }
6420
88758e9d 6421 mu->space = NULL;
cb23f1f4 6422 mu->space_list = NULL;
88758e9d
DW
6423 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6424 mu->next = *updates;
6425 u = (struct imsm_update_activate_spare *) mu->buf;
6426
6427 for (di = rv ; di ; di = di->next) {
6428 u->type = update_activate_spare;
d23fe947
DW
6429 u->dl = (struct dl *) di->devs;
6430 di->devs = NULL;
88758e9d
DW
6431 u->slot = di->disk.raid_disk;
6432 u->array = inst;
6433 u->next = u + 1;
6434 u++;
6435 }
6436 (u-1)->next = NULL;
6437 *updates = mu;
6438
6439 return rv;
6440}
6441
54c2c1ea 6442static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6443{
54c2c1ea
DW
6444 struct imsm_dev *dev = get_imsm_dev(super, idx);
6445 struct imsm_map *map = get_imsm_map(dev, 0);
6446 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6447 struct disk_info *inf = get_disk_info(u);
6448 struct imsm_disk *disk;
8273f55e
DW
6449 int i;
6450 int j;
8273f55e 6451
54c2c1ea 6452 for (i = 0; i < map->num_members; i++) {
98130f40 6453 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6454 for (j = 0; j < new_map->num_members; j++)
6455 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6456 return 1;
6457 }
6458
6459 return 0;
6460}
6461
1a64be56
LM
6462
6463static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6464{
6465 struct dl *dl = NULL;
6466 for (dl = super->disks; dl; dl = dl->next)
6467 if ((dl->major == major) && (dl->minor == minor))
6468 return dl;
6469 return NULL;
6470}
6471
6472static int remove_disk_super(struct intel_super *super, int major, int minor)
6473{
6474 struct dl *prev = NULL;
6475 struct dl *dl;
6476
6477 prev = NULL;
6478 for (dl = super->disks; dl; dl = dl->next) {
6479 if ((dl->major == major) && (dl->minor == minor)) {
6480 /* remove */
6481 if (prev)
6482 prev->next = dl->next;
6483 else
6484 super->disks = dl->next;
6485 dl->next = NULL;
6486 __free_imsm_disk(dl);
6487 dprintf("%s: removed %x:%x\n",
6488 __func__, major, minor);
6489 break;
6490 }
6491 prev = dl;
6492 }
6493 return 0;
6494}
6495
f21e18ca 6496static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6497
1a64be56
LM
6498static int add_remove_disk_update(struct intel_super *super)
6499{
6500 int check_degraded = 0;
6501 struct dl *disk = NULL;
6502 /* add/remove some spares to/from the metadata/contrainer */
6503 while (super->disk_mgmt_list) {
6504 struct dl *disk_cfg;
6505
6506 disk_cfg = super->disk_mgmt_list;
6507 super->disk_mgmt_list = disk_cfg->next;
6508 disk_cfg->next = NULL;
6509
6510 if (disk_cfg->action == DISK_ADD) {
6511 disk_cfg->next = super->disks;
6512 super->disks = disk_cfg;
6513 check_degraded = 1;
6514 dprintf("%s: added %x:%x\n",
6515 __func__, disk_cfg->major,
6516 disk_cfg->minor);
6517 } else if (disk_cfg->action == DISK_REMOVE) {
6518 dprintf("Disk remove action processed: %x.%x\n",
6519 disk_cfg->major, disk_cfg->minor);
6520 disk = get_disk_super(super,
6521 disk_cfg->major,
6522 disk_cfg->minor);
6523 if (disk) {
6524 /* store action status */
6525 disk->action = DISK_REMOVE;
6526 /* remove spare disks only */
6527 if (disk->index == -1) {
6528 remove_disk_super(super,
6529 disk_cfg->major,
6530 disk_cfg->minor);
6531 }
6532 }
6533 /* release allocate disk structure */
6534 __free_imsm_disk(disk_cfg);
6535 }
6536 }
6537 return check_degraded;
6538}
6539
a29911da
PC
6540
6541static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6542 struct intel_super *super,
6543 void ***space_list)
6544{
6545 struct intel_dev *id;
6546 void **tofree = NULL;
6547 int ret_val = 0;
6548
6549 dprintf("apply_reshape_migration_update()\n");
6550 if ((u->subdev < 0) ||
6551 (u->subdev > 1)) {
6552 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6553 return ret_val;
6554 }
6555 if ((space_list == NULL) || (*space_list == NULL)) {
6556 dprintf("imsm: Error: Memory is not allocated\n");
6557 return ret_val;
6558 }
6559
6560 for (id = super->devlist ; id; id = id->next) {
6561 if (id->index == (unsigned)u->subdev) {
6562 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6563 struct imsm_map *map;
6564 struct imsm_dev *new_dev =
6565 (struct imsm_dev *)*space_list;
6566 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6567 int to_state;
6568 struct dl *new_disk;
6569
6570 if (new_dev == NULL)
6571 return ret_val;
6572 *space_list = **space_list;
6573 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6574 map = get_imsm_map(new_dev, 0);
6575 if (migr_map) {
6576 dprintf("imsm: Error: migration in progress");
6577 return ret_val;
6578 }
6579
6580 to_state = map->map_state;
6581 if ((u->new_level == 5) && (map->raid_level == 0)) {
6582 map->num_members++;
6583 /* this should not happen */
6584 if (u->new_disks[0] < 0) {
6585 map->failed_disk_num =
6586 map->num_members - 1;
6587 to_state = IMSM_T_STATE_DEGRADED;
6588 } else
6589 to_state = IMSM_T_STATE_NORMAL;
6590 }
8e59f3d8 6591 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
6592 if (u->new_level > -1)
6593 map->raid_level = u->new_level;
6594 migr_map = get_imsm_map(new_dev, 1);
6595 if ((u->new_level == 5) &&
6596 (migr_map->raid_level == 0)) {
6597 int ord = map->num_members - 1;
6598 migr_map->num_members--;
6599 if (u->new_disks[0] < 0)
6600 ord |= IMSM_ORD_REBUILD;
6601 set_imsm_ord_tbl_ent(map,
6602 map->num_members - 1,
6603 ord);
6604 }
6605 id->dev = new_dev;
6606 tofree = (void **)dev;
6607
4bba0439
PC
6608 /* update chunk size
6609 */
6610 if (u->new_chunksize > 0)
6611 map->blocks_per_strip =
6612 __cpu_to_le16(u->new_chunksize * 2);
6613
a29911da
PC
6614 /* add disk
6615 */
6616 if ((u->new_level != 5) ||
6617 (migr_map->raid_level != 0) ||
6618 (migr_map->raid_level == map->raid_level))
6619 goto skip_disk_add;
6620
6621 if (u->new_disks[0] >= 0) {
6622 /* use passes spare
6623 */
6624 new_disk = get_disk_super(super,
6625 major(u->new_disks[0]),
6626 minor(u->new_disks[0]));
6627 dprintf("imsm: new disk for reshape is: %i:%i "
6628 "(%p, index = %i)\n",
6629 major(u->new_disks[0]),
6630 minor(u->new_disks[0]),
6631 new_disk, new_disk->index);
6632 if (new_disk == NULL)
6633 goto error_disk_add;
6634
6635 new_disk->index = map->num_members - 1;
6636 /* slot to fill in autolayout
6637 */
6638 new_disk->raiddisk = new_disk->index;
6639 new_disk->disk.status |= CONFIGURED_DISK;
6640 new_disk->disk.status &= ~SPARE_DISK;
6641 } else
6642 goto error_disk_add;
6643
6644skip_disk_add:
6645 *tofree = *space_list;
6646 /* calculate new size
6647 */
6648 imsm_set_array_size(new_dev);
6649
6650 ret_val = 1;
6651 }
6652 }
6653
6654 if (tofree)
6655 *space_list = tofree;
6656 return ret_val;
6657
6658error_disk_add:
6659 dprintf("Error: imsm: Cannot find disk.\n");
6660 return ret_val;
6661}
6662
6663
2e5dc010
N
6664static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6665 struct intel_super *super,
6666 void ***space_list)
6667{
6668 struct dl *new_disk;
6669 struct intel_dev *id;
6670 int i;
6671 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 6672 int disk_count = u->old_raid_disks;
2e5dc010
N
6673 void **tofree = NULL;
6674 int devices_to_reshape = 1;
6675 struct imsm_super *mpb = super->anchor;
6676 int ret_val = 0;
d098291a 6677 unsigned int dev_id;
2e5dc010 6678
ed7333bd 6679 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
6680
6681 /* enable spares to use in array */
6682 for (i = 0; i < delta_disks; i++) {
6683 new_disk = get_disk_super(super,
6684 major(u->new_disks[i]),
6685 minor(u->new_disks[i]));
ed7333bd
AK
6686 dprintf("imsm: new disk for reshape is: %i:%i "
6687 "(%p, index = %i)\n",
2e5dc010
N
6688 major(u->new_disks[i]), minor(u->new_disks[i]),
6689 new_disk, new_disk->index);
6690 if ((new_disk == NULL) ||
6691 ((new_disk->index >= 0) &&
6692 (new_disk->index < u->old_raid_disks)))
6693 goto update_reshape_exit;
ee4beede 6694 new_disk->index = disk_count++;
2e5dc010
N
6695 /* slot to fill in autolayout
6696 */
6697 new_disk->raiddisk = new_disk->index;
6698 new_disk->disk.status |=
6699 CONFIGURED_DISK;
6700 new_disk->disk.status &= ~SPARE_DISK;
6701 }
6702
ed7333bd
AK
6703 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6704 mpb->num_raid_devs);
2e5dc010
N
6705 /* manage changes in volume
6706 */
d098291a 6707 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
6708 void **sp = *space_list;
6709 struct imsm_dev *newdev;
6710 struct imsm_map *newmap, *oldmap;
6711
d098291a
AK
6712 for (id = super->devlist ; id; id = id->next) {
6713 if (id->index == dev_id)
6714 break;
6715 }
6716 if (id == NULL)
6717 break;
2e5dc010
N
6718 if (!sp)
6719 continue;
6720 *space_list = *sp;
6721 newdev = (void*)sp;
6722 /* Copy the dev, but not (all of) the map */
6723 memcpy(newdev, id->dev, sizeof(*newdev));
6724 oldmap = get_imsm_map(id->dev, 0);
6725 newmap = get_imsm_map(newdev, 0);
6726 /* Copy the current map */
6727 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6728 /* update one device only
6729 */
6730 if (devices_to_reshape) {
ed7333bd
AK
6731 dprintf("imsm: modifying subdev: %i\n",
6732 id->index);
2e5dc010
N
6733 devices_to_reshape--;
6734 newdev->vol.migr_state = 1;
6735 newdev->vol.curr_migr_unit = 0;
6736 newdev->vol.migr_type = MIGR_GEN_MIGR;
6737 newmap->num_members = u->new_raid_disks;
6738 for (i = 0; i < delta_disks; i++) {
6739 set_imsm_ord_tbl_ent(newmap,
6740 u->old_raid_disks + i,
6741 u->old_raid_disks + i);
6742 }
6743 /* New map is correct, now need to save old map
6744 */
6745 newmap = get_imsm_map(newdev, 1);
6746 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6747
70bdf0dc 6748 imsm_set_array_size(newdev);
2e5dc010
N
6749 }
6750
6751 sp = (void **)id->dev;
6752 id->dev = newdev;
6753 *sp = tofree;
6754 tofree = sp;
8e59f3d8
AK
6755
6756 /* Clear migration record */
6757 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 6758 }
819bc634
AK
6759 if (tofree)
6760 *space_list = tofree;
2e5dc010
N
6761 ret_val = 1;
6762
6763update_reshape_exit:
6764
6765 return ret_val;
6766}
6767
bb025c2f 6768static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
6769 struct intel_super *super,
6770 void ***space_list)
bb025c2f
KW
6771{
6772 struct imsm_dev *dev = NULL;
8ca6df95
KW
6773 struct intel_dev *dv;
6774 struct imsm_dev *dev_new;
bb025c2f
KW
6775 struct imsm_map *map;
6776 struct dl *dm, *du;
8ca6df95 6777 int i;
bb025c2f
KW
6778
6779 for (dv = super->devlist; dv; dv = dv->next)
6780 if (dv->index == (unsigned int)u->subarray) {
6781 dev = dv->dev;
6782 break;
6783 }
6784
6785 if (dev == NULL)
6786 return 0;
6787
6788 map = get_imsm_map(dev, 0);
6789
6790 if (u->direction == R10_TO_R0) {
43d5ec18
KW
6791 /* Number of failed disks must be half of initial disk number */
6792 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6793 return 0;
6794
bb025c2f
KW
6795 /* iterate through devices to mark removed disks as spare */
6796 for (dm = super->disks; dm; dm = dm->next) {
6797 if (dm->disk.status & FAILED_DISK) {
6798 int idx = dm->index;
6799 /* update indexes on the disk list */
6800/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6801 the index values will end up being correct.... NB */
6802 for (du = super->disks; du; du = du->next)
6803 if (du->index > idx)
6804 du->index--;
6805 /* mark as spare disk */
6806 dm->disk.status = SPARE_DISK;
6807 dm->index = -1;
6808 }
6809 }
bb025c2f
KW
6810 /* update map */
6811 map->num_members = map->num_members / 2;
6812 map->map_state = IMSM_T_STATE_NORMAL;
6813 map->num_domains = 1;
6814 map->raid_level = 0;
6815 map->failed_disk_num = -1;
6816 }
6817
8ca6df95
KW
6818 if (u->direction == R0_TO_R10) {
6819 void **space;
6820 /* update slots in current disk list */
6821 for (dm = super->disks; dm; dm = dm->next) {
6822 if (dm->index >= 0)
6823 dm->index *= 2;
6824 }
6825 /* create new *missing* disks */
6826 for (i = 0; i < map->num_members; i++) {
6827 space = *space_list;
6828 if (!space)
6829 continue;
6830 *space_list = *space;
6831 du = (void *)space;
6832 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
6833 du->fd = -1;
6834 du->minor = 0;
6835 du->major = 0;
6836 du->index = (i * 2) + 1;
6837 sprintf((char *)du->disk.serial,
6838 " MISSING_%d", du->index);
6839 sprintf((char *)du->serial,
6840 "MISSING_%d", du->index);
6841 du->next = super->missing;
6842 super->missing = du;
6843 }
6844 /* create new dev and map */
6845 space = *space_list;
6846 if (!space)
6847 return 0;
6848 *space_list = *space;
6849 dev_new = (void *)space;
6850 memcpy(dev_new, dev, sizeof(*dev));
6851 /* update new map */
6852 map = get_imsm_map(dev_new, 0);
8ca6df95 6853 map->num_members = map->num_members * 2;
1a2487c2 6854 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
6855 map->num_domains = 2;
6856 map->raid_level = 1;
6857 /* replace dev<->dev_new */
6858 dv->dev = dev_new;
6859 }
bb025c2f
KW
6860 /* update disk order table */
6861 for (du = super->disks; du; du = du->next)
6862 if (du->index >= 0)
6863 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 6864 for (du = super->missing; du; du = du->next)
1a2487c2
KW
6865 if (du->index >= 0) {
6866 set_imsm_ord_tbl_ent(map, du->index, du->index);
6867 mark_missing(dev_new, &du->disk, du->index);
6868 }
bb025c2f
KW
6869
6870 return 1;
6871}
6872
e8319a19
DW
6873static void imsm_process_update(struct supertype *st,
6874 struct metadata_update *update)
6875{
6876 /**
6877 * crack open the metadata_update envelope to find the update record
6878 * update can be one of:
d195167d
AK
6879 * update_reshape_container_disks - all the arrays in the container
6880 * are being reshaped to have more devices. We need to mark
6881 * the arrays for general migration and convert selected spares
6882 * into active devices.
6883 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
6884 * device in an array, update the disk_ord_tbl. If this disk is
6885 * present in all member arrays then also clear the SPARE_DISK
6886 * flag
d195167d
AK
6887 * update_create_array
6888 * update_kill_array
6889 * update_rename_array
6890 * update_add_remove_disk
e8319a19
DW
6891 */
6892 struct intel_super *super = st->sb;
4d7b1503 6893 struct imsm_super *mpb;
e8319a19
DW
6894 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6895
4d7b1503
DW
6896 /* update requires a larger buf but the allocation failed */
6897 if (super->next_len && !super->next_buf) {
6898 super->next_len = 0;
6899 return;
6900 }
6901
6902 if (super->next_buf) {
6903 memcpy(super->next_buf, super->buf, super->len);
6904 free(super->buf);
6905 super->len = super->next_len;
6906 super->buf = super->next_buf;
6907
6908 super->next_len = 0;
6909 super->next_buf = NULL;
6910 }
6911
6912 mpb = super->anchor;
6913
e8319a19 6914 switch (type) {
0ec5d470
AK
6915 case update_general_migration_checkpoint: {
6916 struct intel_dev *id;
6917 struct imsm_update_general_migration_checkpoint *u =
6918 (void *)update->buf;
6919
6920 dprintf("imsm: process_update() "
6921 "for update_general_migration_checkpoint called\n");
6922
6923 /* find device under general migration */
6924 for (id = super->devlist ; id; id = id->next) {
6925 if (is_gen_migration(id->dev)) {
6926 id->dev->vol.curr_migr_unit =
6927 __cpu_to_le32(u->curr_migr_unit);
6928 super->updates_pending++;
6929 }
6930 }
6931 break;
6932 }
bb025c2f
KW
6933 case update_takeover: {
6934 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
6935 if (apply_takeover_update(u, super, &update->space_list)) {
6936 imsm_update_version_info(super);
bb025c2f 6937 super->updates_pending++;
1a2487c2 6938 }
bb025c2f
KW
6939 break;
6940 }
6941
78b10e66 6942 case update_reshape_container_disks: {
d195167d 6943 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
6944 if (apply_reshape_container_disks_update(
6945 u, super, &update->space_list))
6946 super->updates_pending++;
78b10e66
N
6947 break;
6948 }
48c5303a 6949 case update_reshape_migration: {
a29911da
PC
6950 struct imsm_update_reshape_migration *u = (void *)update->buf;
6951 if (apply_reshape_migration_update(
6952 u, super, &update->space_list))
6953 super->updates_pending++;
48c5303a
PC
6954 break;
6955 }
e8319a19
DW
6956 case update_activate_spare: {
6957 struct imsm_update_activate_spare *u = (void *) update->buf;
949c47a0 6958 struct imsm_dev *dev = get_imsm_dev(super, u->array);
a965f303 6959 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd 6960 struct imsm_map *migr_map;
e8319a19
DW
6961 struct active_array *a;
6962 struct imsm_disk *disk;
0c046afd 6963 __u8 to_state;
e8319a19 6964 struct dl *dl;
e8319a19 6965 unsigned int found;
0c046afd 6966 int failed;
98130f40 6967 int victim = get_imsm_disk_idx(dev, u->slot, -1);
e8319a19
DW
6968 int i;
6969
6970 for (dl = super->disks; dl; dl = dl->next)
d23fe947 6971 if (dl == u->dl)
e8319a19
DW
6972 break;
6973
6974 if (!dl) {
6975 fprintf(stderr, "error: imsm_activate_spare passed "
1f24f035
DW
6976 "an unknown disk (index: %d)\n",
6977 u->dl->index);
e8319a19
DW
6978 return;
6979 }
6980
6981 super->updates_pending++;
0c046afd
DW
6982 /* count failures (excluding rebuilds and the victim)
6983 * to determine map[0] state
6984 */
6985 failed = 0;
6986 for (i = 0; i < map->num_members; i++) {
6987 if (i == u->slot)
6988 continue;
98130f40
AK
6989 disk = get_imsm_disk(super,
6990 get_imsm_disk_idx(dev, i, -1));
25ed7e59 6991 if (!disk || is_failed(disk))
0c046afd
DW
6992 failed++;
6993 }
6994
d23fe947
DW
6995 /* adding a pristine spare, assign a new index */
6996 if (dl->index < 0) {
6997 dl->index = super->anchor->num_disks;
6998 super->anchor->num_disks++;
6999 }
d23fe947 7000 disk = &dl->disk;
f2f27e63
DW
7001 disk->status |= CONFIGURED_DISK;
7002 disk->status &= ~SPARE_DISK;
e8319a19 7003
0c046afd
DW
7004 /* mark rebuild */
7005 to_state = imsm_check_degraded(super, dev, failed);
7006 map->map_state = IMSM_T_STATE_DEGRADED;
8e59f3d8 7007 migrate(dev, super, to_state, MIGR_REBUILD);
0c046afd
DW
7008 migr_map = get_imsm_map(dev, 1);
7009 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7010 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
7011
148acb7b
DW
7012 /* update the family_num to mark a new container
7013 * generation, being careful to record the existing
7014 * family_num in orig_family_num to clean up after
7015 * earlier mdadm versions that neglected to set it.
7016 */
7017 if (mpb->orig_family_num == 0)
7018 mpb->orig_family_num = mpb->family_num;
7019 mpb->family_num += super->random;
7020
e8319a19
DW
7021 /* count arrays using the victim in the metadata */
7022 found = 0;
7023 for (a = st->arrays; a ; a = a->next) {
949c47a0 7024 dev = get_imsm_dev(super, a->info.container_member);
620b1713
DW
7025 map = get_imsm_map(dev, 0);
7026
7027 if (get_imsm_disk_slot(map, victim) >= 0)
7028 found++;
e8319a19
DW
7029 }
7030
24565c9a 7031 /* delete the victim if it is no longer being
e8319a19
DW
7032 * utilized anywhere
7033 */
e8319a19 7034 if (!found) {
ae6aad82 7035 struct dl **dlp;
24565c9a 7036
47ee5a45
DW
7037 /* We know that 'manager' isn't touching anything,
7038 * so it is safe to delete
7039 */
24565c9a 7040 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
ae6aad82
DW
7041 if ((*dlp)->index == victim)
7042 break;
47ee5a45
DW
7043
7044 /* victim may be on the missing list */
7045 if (!*dlp)
7046 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
7047 if ((*dlp)->index == victim)
7048 break;
24565c9a 7049 imsm_delete(super, dlp, victim);
e8319a19 7050 }
8273f55e
DW
7051 break;
7052 }
7053 case update_create_array: {
7054 /* someone wants to create a new array, we need to be aware of
7055 * a few races/collisions:
7056 * 1/ 'Create' called by two separate instances of mdadm
7057 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7058 * devices that have since been assimilated via
7059 * activate_spare.
7060 * In the event this update can not be carried out mdadm will
7061 * (FIX ME) notice that its update did not take hold.
7062 */
7063 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7064 struct intel_dev *dv;
8273f55e
DW
7065 struct imsm_dev *dev;
7066 struct imsm_map *map, *new_map;
7067 unsigned long long start, end;
7068 unsigned long long new_start, new_end;
7069 int i;
54c2c1ea
DW
7070 struct disk_info *inf;
7071 struct dl *dl;
8273f55e
DW
7072
7073 /* handle racing creates: first come first serve */
7074 if (u->dev_idx < mpb->num_raid_devs) {
7075 dprintf("%s: subarray %d already defined\n",
7076 __func__, u->dev_idx);
ba2de7ba 7077 goto create_error;
8273f55e
DW
7078 }
7079
7080 /* check update is next in sequence */
7081 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7082 dprintf("%s: can not create array %d expected index %d\n",
7083 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7084 goto create_error;
8273f55e
DW
7085 }
7086
a965f303 7087 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
7088 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7089 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7090 inf = get_disk_info(u);
8273f55e
DW
7091
7092 /* handle activate_spare versus create race:
7093 * check to make sure that overlapping arrays do not include
7094 * overalpping disks
7095 */
7096 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7097 dev = get_imsm_dev(super, i);
a965f303 7098 map = get_imsm_map(dev, 0);
8273f55e
DW
7099 start = __le32_to_cpu(map->pba_of_lba0);
7100 end = start + __le32_to_cpu(map->blocks_per_member);
7101 if ((new_start >= start && new_start <= end) ||
7102 (start >= new_start && start <= new_end))
54c2c1ea
DW
7103 /* overlap */;
7104 else
7105 continue;
7106
7107 if (disks_overlap(super, i, u)) {
8273f55e 7108 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7109 goto create_error;
8273f55e
DW
7110 }
7111 }
8273f55e 7112
949c47a0
DW
7113 /* check that prepare update was successful */
7114 if (!update->space) {
7115 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7116 goto create_error;
949c47a0
DW
7117 }
7118
54c2c1ea
DW
7119 /* check that all disks are still active before committing
7120 * changes. FIXME: could we instead handle this by creating a
7121 * degraded array? That's probably not what the user expects,
7122 * so better to drop this update on the floor.
7123 */
7124 for (i = 0; i < new_map->num_members; i++) {
7125 dl = serial_to_dl(inf[i].serial, super);
7126 if (!dl) {
7127 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7128 goto create_error;
54c2c1ea 7129 }
949c47a0
DW
7130 }
7131
8273f55e 7132 super->updates_pending++;
54c2c1ea
DW
7133
7134 /* convert spares to members and fixup ord_tbl */
7135 for (i = 0; i < new_map->num_members; i++) {
7136 dl = serial_to_dl(inf[i].serial, super);
7137 if (dl->index == -1) {
7138 dl->index = mpb->num_disks;
7139 mpb->num_disks++;
7140 dl->disk.status |= CONFIGURED_DISK;
7141 dl->disk.status &= ~SPARE_DISK;
7142 }
7143 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7144 }
7145
ba2de7ba
DW
7146 dv = update->space;
7147 dev = dv->dev;
949c47a0
DW
7148 update->space = NULL;
7149 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7150 dv->index = u->dev_idx;
7151 dv->next = super->devlist;
7152 super->devlist = dv;
8273f55e 7153 mpb->num_raid_devs++;
8273f55e 7154
4d1313e9 7155 imsm_update_version_info(super);
8273f55e 7156 break;
ba2de7ba
DW
7157 create_error:
7158 /* mdmon knows how to release update->space, but not
7159 * ((struct intel_dev *) update->space)->dev
7160 */
7161 if (update->space) {
7162 dv = update->space;
7163 free(dv->dev);
7164 }
8273f55e 7165 break;
e8319a19 7166 }
33414a01
DW
7167 case update_kill_array: {
7168 struct imsm_update_kill_array *u = (void *) update->buf;
7169 int victim = u->dev_idx;
7170 struct active_array *a;
7171 struct intel_dev **dp;
7172 struct imsm_dev *dev;
7173
7174 /* sanity check that we are not affecting the uuid of
7175 * active arrays, or deleting an active array
7176 *
7177 * FIXME when immutable ids are available, but note that
7178 * we'll also need to fixup the invalidated/active
7179 * subarray indexes in mdstat
7180 */
7181 for (a = st->arrays; a; a = a->next)
7182 if (a->info.container_member >= victim)
7183 break;
7184 /* by definition if mdmon is running at least one array
7185 * is active in the container, so checking
7186 * mpb->num_raid_devs is just extra paranoia
7187 */
7188 dev = get_imsm_dev(super, victim);
7189 if (a || !dev || mpb->num_raid_devs == 1) {
7190 dprintf("failed to delete subarray-%d\n", victim);
7191 break;
7192 }
7193
7194 for (dp = &super->devlist; *dp;)
f21e18ca 7195 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7196 *dp = (*dp)->next;
7197 } else {
f21e18ca 7198 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7199 (*dp)->index--;
7200 dp = &(*dp)->next;
7201 }
7202 mpb->num_raid_devs--;
7203 super->updates_pending++;
7204 break;
7205 }
aa534678
DW
7206 case update_rename_array: {
7207 struct imsm_update_rename_array *u = (void *) update->buf;
7208 char name[MAX_RAID_SERIAL_LEN+1];
7209 int target = u->dev_idx;
7210 struct active_array *a;
7211 struct imsm_dev *dev;
7212
7213 /* sanity check that we are not affecting the uuid of
7214 * an active array
7215 */
7216 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7217 name[MAX_RAID_SERIAL_LEN] = '\0';
7218 for (a = st->arrays; a; a = a->next)
7219 if (a->info.container_member == target)
7220 break;
7221 dev = get_imsm_dev(super, u->dev_idx);
7222 if (a || !dev || !check_name(super, name, 1)) {
7223 dprintf("failed to rename subarray-%d\n", target);
7224 break;
7225 }
7226
cdbe98cd 7227 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7228 super->updates_pending++;
7229 break;
7230 }
1a64be56 7231 case update_add_remove_disk: {
43dad3d6 7232 /* we may be able to repair some arrays if disks are
1a64be56
LM
7233 * being added, check teh status of add_remove_disk
7234 * if discs has been added.
7235 */
7236 if (add_remove_disk_update(super)) {
43dad3d6 7237 struct active_array *a;
072b727f
DW
7238
7239 super->updates_pending++;
1a64be56 7240 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7241 a->check_degraded = 1;
7242 }
43dad3d6 7243 break;
e8319a19 7244 }
1a64be56
LM
7245 default:
7246 fprintf(stderr, "error: unsuported process update type:"
7247 "(type: %d)\n", type);
7248 }
e8319a19 7249}
88758e9d 7250
bc0b9d34
PC
7251static struct mdinfo *get_spares_for_grow(struct supertype *st);
7252
8273f55e
DW
7253static void imsm_prepare_update(struct supertype *st,
7254 struct metadata_update *update)
7255{
949c47a0 7256 /**
4d7b1503
DW
7257 * Allocate space to hold new disk entries, raid-device entries or a new
7258 * mpb if necessary. The manager synchronously waits for updates to
7259 * complete in the monitor, so new mpb buffers allocated here can be
7260 * integrated by the monitor thread without worrying about live pointers
7261 * in the manager thread.
8273f55e 7262 */
949c47a0 7263 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7264 struct intel_super *super = st->sb;
7265 struct imsm_super *mpb = super->anchor;
7266 size_t buf_len;
7267 size_t len = 0;
949c47a0
DW
7268
7269 switch (type) {
0ec5d470
AK
7270 case update_general_migration_checkpoint:
7271 dprintf("imsm: prepare_update() "
7272 "for update_general_migration_checkpoint called\n");
7273 break;
abedf5fc
KW
7274 case update_takeover: {
7275 struct imsm_update_takeover *u = (void *)update->buf;
7276 if (u->direction == R0_TO_R10) {
7277 void **tail = (void **)&update->space_list;
7278 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7279 struct imsm_map *map = get_imsm_map(dev, 0);
7280 int num_members = map->num_members;
7281 void *space;
7282 int size, i;
7283 int err = 0;
7284 /* allocate memory for added disks */
7285 for (i = 0; i < num_members; i++) {
7286 size = sizeof(struct dl);
7287 space = malloc(size);
7288 if (!space) {
7289 err++;
7290 break;
7291 }
7292 *tail = space;
7293 tail = space;
7294 *tail = NULL;
7295 }
7296 /* allocate memory for new device */
7297 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7298 (num_members * sizeof(__u32));
7299 space = malloc(size);
7300 if (!space)
7301 err++;
7302 else {
7303 *tail = space;
7304 tail = space;
7305 *tail = NULL;
7306 }
7307 if (!err) {
7308 len = disks_to_mpb_size(num_members * 2);
7309 } else {
7310 /* if allocation didn't success, free buffer */
7311 while (update->space_list) {
7312 void **sp = update->space_list;
7313 update->space_list = *sp;
7314 free(sp);
7315 }
7316 }
7317 }
7318
7319 break;
7320 }
78b10e66 7321 case update_reshape_container_disks: {
d195167d
AK
7322 /* Every raid device in the container is about to
7323 * gain some more devices, and we will enter a
7324 * reconfiguration.
7325 * So each 'imsm_map' will be bigger, and the imsm_vol
7326 * will now hold 2 of them.
7327 * Thus we need new 'struct imsm_dev' allocations sized
7328 * as sizeof_imsm_dev but with more devices in both maps.
7329 */
7330 struct imsm_update_reshape *u = (void *)update->buf;
7331 struct intel_dev *dl;
7332 void **space_tail = (void**)&update->space_list;
7333
7334 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7335
7336 for (dl = super->devlist; dl; dl = dl->next) {
7337 int size = sizeof_imsm_dev(dl->dev, 1);
7338 void *s;
d677e0b8
AK
7339 if (u->new_raid_disks > u->old_raid_disks)
7340 size += sizeof(__u32)*2*
7341 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7342 s = malloc(size);
7343 if (!s)
7344 break;
7345 *space_tail = s;
7346 space_tail = s;
7347 *space_tail = NULL;
7348 }
7349
7350 len = disks_to_mpb_size(u->new_raid_disks);
7351 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7352 break;
7353 }
48c5303a 7354 case update_reshape_migration: {
bc0b9d34
PC
7355 /* for migration level 0->5 we need to add disks
7356 * so the same as for container operation we will copy
7357 * device to the bigger location.
7358 * in memory prepared device and new disk area are prepared
7359 * for usage in process update
7360 */
7361 struct imsm_update_reshape_migration *u = (void *)update->buf;
7362 struct intel_dev *id;
7363 void **space_tail = (void **)&update->space_list;
7364 int size;
7365 void *s;
7366 int current_level = -1;
7367
7368 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7369
7370 /* add space for bigger array in update
7371 */
7372 for (id = super->devlist; id; id = id->next) {
7373 if (id->index == (unsigned)u->subdev) {
7374 size = sizeof_imsm_dev(id->dev, 1);
7375 if (u->new_raid_disks > u->old_raid_disks)
7376 size += sizeof(__u32)*2*
7377 (u->new_raid_disks - u->old_raid_disks);
7378 s = malloc(size);
7379 if (!s)
7380 break;
7381 *space_tail = s;
7382 space_tail = s;
7383 *space_tail = NULL;
7384 break;
7385 }
7386 }
7387 if (update->space_list == NULL)
7388 break;
7389
7390 /* add space for disk in update
7391 */
7392 size = sizeof(struct dl);
7393 s = malloc(size);
7394 if (!s) {
7395 free(update->space_list);
7396 update->space_list = NULL;
7397 break;
7398 }
7399 *space_tail = s;
7400 space_tail = s;
7401 *space_tail = NULL;
7402
7403 /* add spare device to update
7404 */
7405 for (id = super->devlist ; id; id = id->next)
7406 if (id->index == (unsigned)u->subdev) {
7407 struct imsm_dev *dev;
7408 struct imsm_map *map;
7409
7410 dev = get_imsm_dev(super, u->subdev);
7411 map = get_imsm_map(dev, 0);
7412 current_level = map->raid_level;
7413 break;
7414 }
7415 if ((u->new_level == 5) && (u->new_level != current_level)) {
7416 struct mdinfo *spares;
7417
7418 spares = get_spares_for_grow(st);
7419 if (spares) {
7420 struct dl *dl;
7421 struct mdinfo *dev;
7422
7423 dev = spares->devs;
7424 if (dev) {
7425 u->new_disks[0] =
7426 makedev(dev->disk.major,
7427 dev->disk.minor);
7428 dl = get_disk_super(super,
7429 dev->disk.major,
7430 dev->disk.minor);
7431 dl->index = u->old_raid_disks;
7432 dev = dev->next;
7433 }
7434 sysfs_free(spares);
7435 }
7436 }
7437 len = disks_to_mpb_size(u->new_raid_disks);
7438 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7439 break;
7440 }
949c47a0
DW
7441 case update_create_array: {
7442 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7443 struct intel_dev *dv;
54c2c1ea
DW
7444 struct imsm_dev *dev = &u->dev;
7445 struct imsm_map *map = get_imsm_map(dev, 0);
7446 struct dl *dl;
7447 struct disk_info *inf;
7448 int i;
7449 int activate = 0;
949c47a0 7450
54c2c1ea
DW
7451 inf = get_disk_info(u);
7452 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7453 /* allocate a new super->devlist entry */
7454 dv = malloc(sizeof(*dv));
7455 if (dv) {
7456 dv->dev = malloc(len);
7457 if (dv->dev)
7458 update->space = dv;
7459 else {
7460 free(dv);
7461 update->space = NULL;
7462 }
7463 }
949c47a0 7464
54c2c1ea
DW
7465 /* count how many spares will be converted to members */
7466 for (i = 0; i < map->num_members; i++) {
7467 dl = serial_to_dl(inf[i].serial, super);
7468 if (!dl) {
7469 /* hmm maybe it failed?, nothing we can do about
7470 * it here
7471 */
7472 continue;
7473 }
7474 if (count_memberships(dl, super) == 0)
7475 activate++;
7476 }
7477 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7478 break;
7479 default:
7480 break;
7481 }
7482 }
8273f55e 7483
4d7b1503
DW
7484 /* check if we need a larger metadata buffer */
7485 if (super->next_buf)
7486 buf_len = super->next_len;
7487 else
7488 buf_len = super->len;
7489
7490 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7491 /* ok we need a larger buf than what is currently allocated
7492 * if this allocation fails process_update will notice that
7493 * ->next_len is set and ->next_buf is NULL
7494 */
7495 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7496 if (super->next_buf)
7497 free(super->next_buf);
7498
7499 super->next_len = buf_len;
1f45a8ad
DW
7500 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7501 memset(super->next_buf, 0, buf_len);
7502 else
4d7b1503
DW
7503 super->next_buf = NULL;
7504 }
8273f55e
DW
7505}
7506
ae6aad82 7507/* must be called while manager is quiesced */
f21e18ca 7508static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7509{
7510 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7511 struct dl *iter;
7512 struct imsm_dev *dev;
7513 struct imsm_map *map;
24565c9a
DW
7514 int i, j, num_members;
7515 __u32 ord;
ae6aad82 7516
24565c9a
DW
7517 dprintf("%s: deleting device[%d] from imsm_super\n",
7518 __func__, index);
ae6aad82
DW
7519
7520 /* shift all indexes down one */
7521 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7522 if (iter->index > (int)index)
ae6aad82 7523 iter->index--;
47ee5a45 7524 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7525 if (iter->index > (int)index)
47ee5a45 7526 iter->index--;
ae6aad82
DW
7527
7528 for (i = 0; i < mpb->num_raid_devs; i++) {
7529 dev = get_imsm_dev(super, i);
7530 map = get_imsm_map(dev, 0);
24565c9a
DW
7531 num_members = map->num_members;
7532 for (j = 0; j < num_members; j++) {
7533 /* update ord entries being careful not to propagate
7534 * ord-flags to the first map
7535 */
98130f40 7536 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7537
24565c9a
DW
7538 if (ord_to_idx(ord) <= index)
7539 continue;
ae6aad82 7540
24565c9a
DW
7541 map = get_imsm_map(dev, 0);
7542 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7543 map = get_imsm_map(dev, 1);
7544 if (map)
7545 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
7546 }
7547 }
7548
7549 mpb->num_disks--;
7550 super->updates_pending++;
24565c9a
DW
7551 if (*dlp) {
7552 struct dl *dl = *dlp;
7553
7554 *dlp = (*dlp)->next;
7555 __free_imsm_disk(dl);
7556 }
ae6aad82
DW
7557}
7558
687629c2
AK
7559/*******************************************************************************
7560 * Function: open_backup_targets
7561 * Description: Function opens file descriptors for all devices given in
7562 * info->devs
7563 * Parameters:
7564 * info : general array info
7565 * raid_disks : number of disks
7566 * raid_fds : table of device's file descriptors
7567 * Returns:
7568 * 0 : success
7569 * -1 : fail
7570 ******************************************************************************/
7571int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7572{
7573 struct mdinfo *sd;
7574
7575 for (sd = info->devs ; sd ; sd = sd->next) {
7576 char *dn;
7577
7578 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7579 dprintf("disk is faulty!!\n");
7580 continue;
7581 }
7582
7583 if ((sd->disk.raid_disk >= raid_disks) ||
7584 (sd->disk.raid_disk < 0))
7585 continue;
7586
7587 dn = map_dev(sd->disk.major,
7588 sd->disk.minor, 1);
7589 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7590 if (raid_fds[sd->disk.raid_disk] < 0) {
7591 fprintf(stderr, "cannot open component\n");
7592 return -1;
7593 }
7594 }
7595 return 0;
7596}
7597
7598/*******************************************************************************
7599 * Function: init_migr_record_imsm
7600 * Description: Function inits imsm migration record
7601 * Parameters:
7602 * super : imsm internal array info
7603 * dev : device under migration
7604 * info : general array info to find the smallest device
7605 * Returns:
7606 * none
7607 ******************************************************************************/
7608void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7609 struct mdinfo *info)
7610{
7611 struct intel_super *super = st->sb;
7612 struct migr_record *migr_rec = super->migr_rec;
7613 int new_data_disks;
7614 unsigned long long dsize, dev_sectors;
7615 long long unsigned min_dev_sectors = -1LLU;
7616 struct mdinfo *sd;
7617 char nm[30];
7618 int fd;
7619 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7620 struct imsm_map *map_src = get_imsm_map(dev, 1);
7621 unsigned long long num_migr_units;
7622
7623 unsigned long long array_blocks =
7624 (((unsigned long long)__le32_to_cpu(dev->size_high)) << 32) +
7625 __le32_to_cpu(dev->size_low);
7626
7627 memset(migr_rec, 0, sizeof(struct migr_record));
7628 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7629
7630 /* only ascending reshape supported now */
7631 migr_rec->ascending_migr = __cpu_to_le32(1);
7632
7633 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7634 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7635 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7636 new_data_disks = imsm_num_data_members(dev, 0);
7637 migr_rec->blocks_per_unit =
7638 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7639 migr_rec->dest_depth_per_unit =
7640 __cpu_to_le32(migr_rec->dest_depth_per_unit);
7641
7642 num_migr_units =
7643 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7644
7645 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7646 num_migr_units++;
7647 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7648
7649 migr_rec->post_migr_vol_cap = dev->size_low;
7650 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7651
7652
7653 /* Find the smallest dev */
7654 for (sd = info->devs ; sd ; sd = sd->next) {
7655 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7656 fd = dev_open(nm, O_RDONLY);
7657 if (fd < 0)
7658 continue;
7659 get_dev_size(fd, NULL, &dsize);
7660 dev_sectors = dsize / 512;
7661 if (dev_sectors < min_dev_sectors)
7662 min_dev_sectors = dev_sectors;
7663 close(fd);
7664 }
7665 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7666 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7667
7668 write_imsm_migr_rec(st);
7669
7670 return;
7671}
7672
7673/*******************************************************************************
7674 * Function: save_backup_imsm
7675 * Description: Function saves critical data stripes to Migration Copy Area
7676 * and updates the current migration unit status.
7677 * Use restore_stripes() to form a destination stripe,
7678 * and to write it to the Copy Area.
7679 * Parameters:
7680 * st : supertype information
7681 * info : general array info
7682 * buf : input buffer
7683 * write_offset : address of data to backup
7684 * length : length of data to backup (blocks_per_unit)
7685 * Returns:
7686 * 0 : success
7687 *, -1 : fail
7688 ******************************************************************************/
7689int save_backup_imsm(struct supertype *st,
7690 struct imsm_dev *dev,
7691 struct mdinfo *info,
7692 void *buf,
7693 int new_data,
7694 int length)
7695{
7696 int rv = -1;
7697 struct intel_super *super = st->sb;
7698 unsigned long long *target_offsets = NULL;
7699 int *targets = NULL;
7700 int i;
7701 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7702 int new_disks = map_dest->num_members;
7703
7704 targets = malloc(new_disks * sizeof(int));
7705 if (!targets)
7706 goto abort;
7707
7708 target_offsets = malloc(new_disks * sizeof(unsigned long long));
7709 if (!target_offsets)
7710 goto abort;
7711
7712 for (i = 0; i < new_disks; i++) {
7713 targets[i] = -1;
7714 target_offsets[i] = (unsigned long long)
7715 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
7716 }
7717
7718 if (open_backup_targets(info, new_disks, targets))
7719 goto abort;
7720
7721 if (restore_stripes(targets, /* list of dest devices */
7722 target_offsets, /* migration record offsets */
7723 new_disks,
7724 info->new_chunk,
7725 info->new_level,
7726 info->new_layout,
7727 -1, /* source backup file descriptor */
7728 0, /* input buf offset
7729 * always 0 buf is already offset */
7730 0,
7731 length,
7732 buf) != 0) {
7733 fprintf(stderr, Name ": Error restoring stripes\n");
7734 goto abort;
7735 }
7736
7737 rv = 0;
7738
7739abort:
7740 if (targets) {
7741 for (i = 0; i < new_disks; i++)
7742 if (targets[i] >= 0)
7743 close(targets[i]);
7744 free(targets);
7745 }
7746 free(target_offsets);
7747
7748 return rv;
7749}
7750
7751/*******************************************************************************
7752 * Function: save_checkpoint_imsm
7753 * Description: Function called for current unit status update
7754 * in the migration record. It writes it to disk.
7755 * Parameters:
7756 * super : imsm internal array info
7757 * info : general array info
7758 * Returns:
7759 * 0: success
7760 * 1: failure
7761 ******************************************************************************/
7762int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
7763{
7764 struct intel_super *super = st->sb;
7765 load_imsm_migr_rec(super, info);
7766 if (__le32_to_cpu(super->migr_rec->blocks_per_unit) == 0) {
7767 dprintf("ERROR: blocks_per_unit = 0!!!\n");
7768 return 1;
7769 }
7770
7771 super->migr_rec->curr_migr_unit =
7772 __cpu_to_le32(info->reshape_progress /
7773 __le32_to_cpu(super->migr_rec->blocks_per_unit));
7774 super->migr_rec->rec_status = __cpu_to_le32(state);
7775 super->migr_rec->dest_1st_member_lba =
7776 __cpu_to_le32((__le32_to_cpu(super->migr_rec->curr_migr_unit))
7777 * __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
7778 if (write_imsm_migr_rec(st) < 0) {
7779 dprintf("imsm: Cannot write migration record "
7780 "outside backup area\n");
7781 return 1;
7782 }
7783
7784 return 0;
7785}
7786
276d77db
AK
7787static __u64 blocks_per_migr_unit(struct intel_super *super,
7788 struct imsm_dev *dev);
7789
7790/*******************************************************************************
7791 * Function: recover_backup_imsm
7792 * Description: Function recovers critical data from the Migration Copy Area
7793 * while assembling an array.
7794 * Parameters:
7795 * super : imsm internal array info
7796 * info : general array info
7797 * Returns:
7798 * 0 : success (or there is no data to recover)
7799 * 1 : fail
7800 ******************************************************************************/
7801int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
7802{
7803 struct intel_super *super = st->sb;
7804 struct migr_record *migr_rec = super->migr_rec;
7805 struct imsm_map *map_dest = NULL;
7806 struct intel_dev *id = NULL;
7807 unsigned long long read_offset;
7808 unsigned long long write_offset;
7809 unsigned unit_len;
7810 int *targets = NULL;
7811 int new_disks, i, err;
7812 char *buf = NULL;
7813 int retval = 1;
7814 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
7815 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
7816 int ascending = __le32_to_cpu(migr_rec->ascending_migr);
7817 char buffer[20];
7818
7819 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
7820 if (err < 1)
7821 return 1;
7822
7823 /* recover data only during assemblation */
7824 if (strncmp(buffer, "inactive", 8) != 0)
7825 return 0;
7826 /* no data to recover */
7827 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
7828 return 0;
7829 if (curr_migr_unit >= num_migr_units)
7830 return 1;
7831
7832 /* find device during reshape */
7833 for (id = super->devlist; id; id = id->next)
7834 if (is_gen_migration(id->dev))
7835 break;
7836 if (id == NULL)
7837 return 1;
7838
7839 map_dest = get_imsm_map(id->dev, 0);
7840 new_disks = map_dest->num_members;
7841
7842 read_offset = (unsigned long long)
7843 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
7844
7845 write_offset = ((unsigned long long)
7846 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
7847 info->data_offset) * 512;
7848
7849 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
7850 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
7851 goto abort;
7852 targets = malloc(new_disks * sizeof(int));
7853 if (!targets)
7854 goto abort;
7855
7856 open_backup_targets(info, new_disks, targets);
7857
7858 for (i = 0; i < new_disks; i++) {
7859 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
7860 fprintf(stderr,
7861 Name ": Cannot seek to block: %s\n",
7862 strerror(errno));
7863 goto abort;
7864 }
7865 if (read(targets[i], buf, unit_len) != unit_len) {
7866 fprintf(stderr,
7867 Name ": Cannot read copy area block: %s\n",
7868 strerror(errno));
7869 goto abort;
7870 }
7871 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
7872 fprintf(stderr,
7873 Name ": Cannot seek to block: %s\n",
7874 strerror(errno));
7875 goto abort;
7876 }
7877 if (write(targets[i], buf, unit_len) != unit_len) {
7878 fprintf(stderr,
7879 Name ": Cannot restore block: %s\n",
7880 strerror(errno));
7881 goto abort;
7882 }
7883 }
7884
7885 if (ascending && curr_migr_unit < (num_migr_units-1))
7886 curr_migr_unit++;
7887
7888 migr_rec->curr_migr_unit = __le32_to_cpu(curr_migr_unit);
7889 super->migr_rec->rec_status = __cpu_to_le32(UNIT_SRC_NORMAL);
7890 if (write_imsm_migr_rec(st) == 0) {
7891 __u64 blocks_per_unit = blocks_per_migr_unit(super, id->dev);
7892 info->reshape_progress = curr_migr_unit * blocks_per_unit;
7893 retval = 0;
7894 }
7895
7896abort:
7897 if (targets) {
7898 for (i = 0; i < new_disks; i++)
7899 if (targets[i])
7900 close(targets[i]);
7901 free(targets);
7902 }
7903 free(buf);
7904 return retval;
7905}
7906
2cda7640
ML
7907static char disk_by_path[] = "/dev/disk/by-path/";
7908
7909static const char *imsm_get_disk_controller_domain(const char *path)
7910{
2cda7640 7911 char disk_path[PATH_MAX];
96234762
LM
7912 char *drv=NULL;
7913 struct stat st;
2cda7640 7914
96234762
LM
7915 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
7916 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
7917 if (stat(disk_path, &st) == 0) {
7918 struct sys_dev* hba;
7919 char *path=NULL;
7920
7921 path = devt_to_devpath(st.st_rdev);
7922 if (path == NULL)
7923 return "unknown";
7924 hba = find_disk_attached_hba(-1, path);
7925 if (hba && hba->type == SYS_DEV_SAS)
7926 drv = "isci";
7927 else if (hba && hba->type == SYS_DEV_SATA)
7928 drv = "ahci";
7929 else
7930 drv = "unknown";
7931 dprintf("path: %s hba: %s attached: %s\n",
7932 path, (hba) ? hba->path : "NULL", drv);
7933 free(path);
7934 if (hba)
7935 free_sys_dev(&hba);
2cda7640 7936 }
96234762 7937 return drv;
2cda7640
ML
7938}
7939
78b10e66
N
7940static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
7941{
7942 char subdev_name[20];
7943 struct mdstat_ent *mdstat;
7944
7945 sprintf(subdev_name, "%d", subdev);
7946 mdstat = mdstat_by_subdev(subdev_name, container);
7947 if (!mdstat)
7948 return -1;
7949
7950 *minor = mdstat->devnum;
7951 free_mdstat(mdstat);
7952 return 0;
7953}
7954
7955static int imsm_reshape_is_allowed_on_container(struct supertype *st,
7956 struct geo_params *geo,
7957 int *old_raid_disks)
7958{
694575e7
KW
7959 /* currently we only support increasing the number of devices
7960 * for a container. This increases the number of device for each
7961 * member array. They must all be RAID0 or RAID5.
7962 */
78b10e66
N
7963 int ret_val = 0;
7964 struct mdinfo *info, *member;
7965 int devices_that_can_grow = 0;
7966
7967 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
7968 "st->devnum = (%i)\n",
7969 st->devnum);
7970
7971 if (geo->size != -1 ||
7972 geo->level != UnSet ||
7973 geo->layout != UnSet ||
7974 geo->chunksize != 0 ||
7975 geo->raid_disks == UnSet) {
7976 dprintf("imsm: Container operation is allowed for "
7977 "raid disks number change only.\n");
7978 return ret_val;
7979 }
7980
7981 info = container_content_imsm(st, NULL);
7982 for (member = info; member; member = member->next) {
7983 int result;
7984 int minor;
7985
7986 dprintf("imsm: checking device_num: %i\n",
7987 member->container_member);
7988
d7d205bd 7989 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
7990 /* we work on container for Online Capacity Expansion
7991 * only so raid_disks has to grow
7992 */
7993 dprintf("imsm: for container operation raid disks "
7994 "increase is required\n");
7995 break;
7996 }
7997
7998 if ((info->array.level != 0) &&
7999 (info->array.level != 5)) {
8000 /* we cannot use this container with other raid level
8001 */
690aae1a 8002 dprintf("imsm: for container operation wrong"
78b10e66
N
8003 " raid level (%i) detected\n",
8004 info->array.level);
8005 break;
8006 } else {
8007 /* check for platform support
8008 * for this raid level configuration
8009 */
8010 struct intel_super *super = st->sb;
8011 if (!is_raid_level_supported(super->orom,
8012 member->array.level,
8013 geo->raid_disks)) {
690aae1a 8014 dprintf("platform does not support raid%d with"
78b10e66
N
8015 " %d disk%s\n",
8016 info->array.level,
8017 geo->raid_disks,
8018 geo->raid_disks > 1 ? "s" : "");
8019 break;
8020 }
2a4a08e7
AK
8021 /* check if component size is aligned to chunk size
8022 */
8023 if (info->component_size %
8024 (info->array.chunk_size/512)) {
8025 dprintf("Component size is not aligned to "
8026 "chunk size\n");
8027 break;
8028 }
78b10e66
N
8029 }
8030
8031 if (*old_raid_disks &&
8032 info->array.raid_disks != *old_raid_disks)
8033 break;
8034 *old_raid_disks = info->array.raid_disks;
8035
8036 /* All raid5 and raid0 volumes in container
8037 * have to be ready for Online Capacity Expansion
8038 * so they need to be assembled. We have already
8039 * checked that no recovery etc is happening.
8040 */
8041 result = imsm_find_array_minor_by_subdev(member->container_member,
8042 st->container_dev,
8043 &minor);
8044 if (result < 0) {
8045 dprintf("imsm: cannot find array\n");
8046 break;
8047 }
8048 devices_that_can_grow++;
8049 }
8050 sysfs_free(info);
8051 if (!member && devices_that_can_grow)
8052 ret_val = 1;
8053
8054 if (ret_val)
8055 dprintf("\tContainer operation allowed\n");
8056 else
8057 dprintf("\tError: %i\n", ret_val);
8058
8059 return ret_val;
8060}
8061
8062/* Function: get_spares_for_grow
8063 * Description: Allocates memory and creates list of spare devices
8064 * avaliable in container. Checks if spare drive size is acceptable.
8065 * Parameters: Pointer to the supertype structure
8066 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8067 * NULL if fail
8068 */
8069static struct mdinfo *get_spares_for_grow(struct supertype *st)
8070{
78b10e66 8071 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8072 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8073}
8074
8075/******************************************************************************
8076 * function: imsm_create_metadata_update_for_reshape
8077 * Function creates update for whole IMSM container.
8078 *
8079 ******************************************************************************/
8080static int imsm_create_metadata_update_for_reshape(
8081 struct supertype *st,
8082 struct geo_params *geo,
8083 int old_raid_disks,
8084 struct imsm_update_reshape **updatep)
8085{
8086 struct intel_super *super = st->sb;
8087 struct imsm_super *mpb = super->anchor;
8088 int update_memory_size = 0;
8089 struct imsm_update_reshape *u = NULL;
8090 struct mdinfo *spares = NULL;
8091 int i;
8092 int delta_disks = 0;
bbd24d86 8093 struct mdinfo *dev;
78b10e66
N
8094
8095 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8096 geo->raid_disks);
8097
8098 delta_disks = geo->raid_disks - old_raid_disks;
8099
8100 /* size of all update data without anchor */
8101 update_memory_size = sizeof(struct imsm_update_reshape);
8102
8103 /* now add space for spare disks that we need to add. */
8104 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8105
8106 u = calloc(1, update_memory_size);
8107 if (u == NULL) {
8108 dprintf("error: "
8109 "cannot get memory for imsm_update_reshape update\n");
8110 return 0;
8111 }
8112 u->type = update_reshape_container_disks;
8113 u->old_raid_disks = old_raid_disks;
8114 u->new_raid_disks = geo->raid_disks;
8115
8116 /* now get spare disks list
8117 */
8118 spares = get_spares_for_grow(st);
8119
8120 if (spares == NULL
8121 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8122 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8123 "for %s.\n", geo->dev_name);
78b10e66
N
8124 goto abort;
8125 }
8126
8127 /* we have got spares
8128 * update disk list in imsm_disk list table in anchor
8129 */
8130 dprintf("imsm: %i spares are available.\n\n",
8131 spares->array.spare_disks);
8132
bbd24d86 8133 dev = spares->devs;
78b10e66 8134 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8135 struct dl *dl;
8136
bbd24d86
AK
8137 if (dev == NULL)
8138 break;
78b10e66
N
8139 u->new_disks[i] = makedev(dev->disk.major,
8140 dev->disk.minor);
8141 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8142 dl->index = mpb->num_disks;
8143 mpb->num_disks++;
bbd24d86 8144 dev = dev->next;
78b10e66 8145 }
78b10e66
N
8146
8147abort:
8148 /* free spares
8149 */
8150 sysfs_free(spares);
8151
d677e0b8 8152 dprintf("imsm: reshape update preparation :");
78b10e66 8153 if (i == delta_disks) {
d677e0b8 8154 dprintf(" OK\n");
78b10e66
N
8155 *updatep = u;
8156 return update_memory_size;
8157 }
8158 free(u);
d677e0b8 8159 dprintf(" Error\n");
78b10e66
N
8160
8161 return 0;
8162}
8163
48c5303a
PC
8164/******************************************************************************
8165 * function: imsm_create_metadata_update_for_migration()
8166 * Creates update for IMSM array.
8167 *
8168 ******************************************************************************/
8169static int imsm_create_metadata_update_for_migration(
8170 struct supertype *st,
8171 struct geo_params *geo,
8172 struct imsm_update_reshape_migration **updatep)
8173{
8174 struct intel_super *super = st->sb;
8175 int update_memory_size = 0;
8176 struct imsm_update_reshape_migration *u = NULL;
8177 struct imsm_dev *dev;
8178 int previous_level = -1;
8179
8180 dprintf("imsm_create_metadata_update_for_migration(enter)"
8181 " New Level = %i\n", geo->level);
8182
8183 /* size of all update data without anchor */
8184 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8185
8186 u = calloc(1, update_memory_size);
8187 if (u == NULL) {
8188 dprintf("error: cannot get memory for "
8189 "imsm_create_metadata_update_for_migration\n");
8190 return 0;
8191 }
8192 u->type = update_reshape_migration;
8193 u->subdev = super->current_vol;
8194 u->new_level = geo->level;
8195 u->new_layout = geo->layout;
8196 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8197 u->new_disks[0] = -1;
4bba0439 8198 u->new_chunksize = -1;
48c5303a
PC
8199
8200 dev = get_imsm_dev(super, u->subdev);
8201 if (dev) {
8202 struct imsm_map *map;
8203
8204 map = get_imsm_map(dev, 0);
4bba0439
PC
8205 if (map) {
8206 int current_chunk_size =
8207 __le16_to_cpu(map->blocks_per_strip) / 2;
8208
8209 if (geo->chunksize != current_chunk_size) {
8210 u->new_chunksize = geo->chunksize / 1024;
8211 dprintf("imsm: "
8212 "chunk size change from %i to %i\n",
8213 current_chunk_size, u->new_chunksize);
8214 }
48c5303a 8215 previous_level = map->raid_level;
4bba0439 8216 }
48c5303a
PC
8217 }
8218 if ((geo->level == 5) && (previous_level == 0)) {
8219 struct mdinfo *spares = NULL;
8220
8221 u->new_raid_disks++;
8222 spares = get_spares_for_grow(st);
8223 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8224 free(u);
8225 sysfs_free(spares);
8226 update_memory_size = 0;
8227 dprintf("error: cannot get spare device "
8228 "for requested migration");
8229 return 0;
8230 }
8231 sysfs_free(spares);
8232 }
8233 dprintf("imsm: reshape update preparation : OK\n");
8234 *updatep = u;
8235
8236 return update_memory_size;
8237}
8238
8dd70bce
AK
8239static void imsm_update_metadata_locally(struct supertype *st,
8240 void *buf, int len)
8241{
8242 struct metadata_update mu;
8243
8244 mu.buf = buf;
8245 mu.len = len;
8246 mu.space = NULL;
8247 mu.space_list = NULL;
8248 mu.next = NULL;
8249 imsm_prepare_update(st, &mu);
8250 imsm_process_update(st, &mu);
8251
8252 while (mu.space_list) {
8253 void **space = mu.space_list;
8254 mu.space_list = *space;
8255 free(space);
8256 }
8257}
78b10e66 8258
471bceb6 8259/***************************************************************************
694575e7 8260* Function: imsm_analyze_change
471bceb6
KW
8261* Description: Function analyze change for single volume
8262* and validate if transition is supported
694575e7
KW
8263* Parameters: Geometry parameters, supertype structure
8264* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8265****************************************************************************/
8266enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8267 struct geo_params *geo)
694575e7 8268{
471bceb6
KW
8269 struct mdinfo info;
8270 int change = -1;
8271 int check_devs = 0;
c21e737b 8272 int chunk;
471bceb6
KW
8273
8274 getinfo_super_imsm_volume(st, &info, NULL);
8275
8276 if ((geo->level != info.array.level) &&
8277 (geo->level >= 0) &&
8278 (geo->level != UnSet)) {
8279 switch (info.array.level) {
8280 case 0:
8281 if (geo->level == 5) {
b5347799 8282 change = CH_MIGRATION;
471bceb6
KW
8283 check_devs = 1;
8284 }
8285 if (geo->level == 10) {
8286 change = CH_TAKEOVER;
8287 check_devs = 1;
8288 }
dfe77a9e
KW
8289 break;
8290 case 1:
8291 if (geo->level == 0) {
8292 change = CH_TAKEOVER;
8293 check_devs = 1;
8294 }
471bceb6 8295 break;
471bceb6
KW
8296 case 10:
8297 if (geo->level == 0) {
8298 change = CH_TAKEOVER;
8299 check_devs = 1;
8300 }
8301 break;
8302 }
8303 if (change == -1) {
8304 fprintf(stderr,
8305 Name " Error. Level Migration from %d to %d "
8306 "not supported!\n",
8307 info.array.level, geo->level);
8308 goto analyse_change_exit;
8309 }
8310 } else
8311 geo->level = info.array.level;
8312
8313 if ((geo->layout != info.array.layout)
8314 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8315 change = CH_MIGRATION;
471bceb6
KW
8316 if ((info.array.layout == 0)
8317 && (info.array.level == 5)
8318 && (geo->layout == 5)) {
8319 /* reshape 5 -> 4 */
8320 } else if ((info.array.layout == 5)
8321 && (info.array.level == 5)
8322 && (geo->layout == 0)) {
8323 /* reshape 4 -> 5 */
8324 geo->layout = 0;
8325 geo->level = 5;
8326 } else {
8327 fprintf(stderr,
8328 Name " Error. Layout Migration from %d to %d "
8329 "not supported!\n",
8330 info.array.layout, geo->layout);
8331 change = -1;
8332 goto analyse_change_exit;
8333 }
8334 } else
8335 geo->layout = info.array.layout;
8336
8337 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8338 && (geo->chunksize != info.array.chunk_size))
b5347799 8339 change = CH_MIGRATION;
471bceb6
KW
8340 else
8341 geo->chunksize = info.array.chunk_size;
8342
c21e737b 8343 chunk = geo->chunksize / 1024;
471bceb6
KW
8344 if (!validate_geometry_imsm(st,
8345 geo->level,
8346 geo->layout,
8347 geo->raid_disks,
c21e737b 8348 &chunk,
471bceb6
KW
8349 geo->size,
8350 0, 0, 1))
8351 change = -1;
8352
8353 if (check_devs) {
8354 struct intel_super *super = st->sb;
8355 struct imsm_super *mpb = super->anchor;
8356
8357 if (mpb->num_raid_devs > 1) {
8358 fprintf(stderr,
8359 Name " Error. Cannot perform operation on %s"
8360 "- for this operation it MUST be single "
8361 "array in container\n",
8362 geo->dev_name);
8363 change = -1;
8364 }
8365 }
8366
8367analyse_change_exit:
8368
8369 return change;
694575e7
KW
8370}
8371
bb025c2f
KW
8372int imsm_takeover(struct supertype *st, struct geo_params *geo)
8373{
8374 struct intel_super *super = st->sb;
8375 struct imsm_update_takeover *u;
8376
8377 u = malloc(sizeof(struct imsm_update_takeover));
8378 if (u == NULL)
8379 return 1;
8380
8381 u->type = update_takeover;
8382 u->subarray = super->current_vol;
8383
8384 /* 10->0 transition */
8385 if (geo->level == 0)
8386 u->direction = R10_TO_R0;
8387
0529c688
KW
8388 /* 0->10 transition */
8389 if (geo->level == 10)
8390 u->direction = R0_TO_R10;
8391
bb025c2f
KW
8392 /* update metadata locally */
8393 imsm_update_metadata_locally(st, u,
8394 sizeof(struct imsm_update_takeover));
8395 /* and possibly remotely */
8396 if (st->update_tail)
8397 append_metadata_update(st, u,
8398 sizeof(struct imsm_update_takeover));
8399 else
8400 free(u);
8401
8402 return 0;
8403}
8404
78b10e66
N
8405static int imsm_reshape_super(struct supertype *st, long long size, int level,
8406 int layout, int chunksize, int raid_disks,
41784c88
AK
8407 int delta_disks, char *backup, char *dev,
8408 int verbose)
78b10e66 8409{
78b10e66
N
8410 int ret_val = 1;
8411 struct geo_params geo;
8412
8413 dprintf("imsm: reshape_super called.\n");
8414
71204a50 8415 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
8416
8417 geo.dev_name = dev;
694575e7 8418 geo.dev_id = st->devnum;
78b10e66
N
8419 geo.size = size;
8420 geo.level = level;
8421 geo.layout = layout;
8422 geo.chunksize = chunksize;
8423 geo.raid_disks = raid_disks;
41784c88
AK
8424 if (delta_disks != UnSet)
8425 geo.raid_disks += delta_disks;
78b10e66
N
8426
8427 dprintf("\tfor level : %i\n", geo.level);
8428 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8429
8430 if (experimental() == 0)
8431 return ret_val;
8432
78b10e66 8433 if (st->container_dev == st->devnum) {
694575e7
KW
8434 /* On container level we can only increase number of devices. */
8435 dprintf("imsm: info: Container operation\n");
78b10e66 8436 int old_raid_disks = 0;
6dc0be30 8437
78b10e66
N
8438 if (imsm_reshape_is_allowed_on_container(
8439 st, &geo, &old_raid_disks)) {
8440 struct imsm_update_reshape *u = NULL;
8441 int len;
8442
8443 len = imsm_create_metadata_update_for_reshape(
8444 st, &geo, old_raid_disks, &u);
8445
ed08d51c
AK
8446 if (len <= 0) {
8447 dprintf("imsm: Cannot prepare update\n");
8448 goto exit_imsm_reshape_super;
8449 }
8450
8dd70bce
AK
8451 ret_val = 0;
8452 /* update metadata locally */
8453 imsm_update_metadata_locally(st, u, len);
8454 /* and possibly remotely */
8455 if (st->update_tail)
8456 append_metadata_update(st, u, len);
8457 else
ed08d51c 8458 free(u);
8dd70bce 8459
694575e7 8460 } else {
e7ff7e40
AK
8461 fprintf(stderr, Name ": (imsm) Operation "
8462 "is not allowed on this container\n");
694575e7
KW
8463 }
8464 } else {
8465 /* On volume level we support following operations
471bceb6
KW
8466 * - takeover: raid10 -> raid0; raid0 -> raid10
8467 * - chunk size migration
8468 * - migration: raid5 -> raid0; raid0 -> raid5
8469 */
8470 struct intel_super *super = st->sb;
8471 struct intel_dev *dev = super->devlist;
8472 int change, devnum;
694575e7 8473 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
8474 /* find requested device */
8475 while (dev) {
8476 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
8477 if (devnum == geo.dev_id)
8478 break;
8479 dev = dev->next;
8480 }
8481 if (dev == NULL) {
8482 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8483 geo.dev_name, geo.dev_id);
8484 goto exit_imsm_reshape_super;
8485 }
8486 super->current_vol = dev->index;
694575e7
KW
8487 change = imsm_analyze_change(st, &geo);
8488 switch (change) {
471bceb6 8489 case CH_TAKEOVER:
bb025c2f 8490 ret_val = imsm_takeover(st, &geo);
694575e7 8491 break;
48c5303a
PC
8492 case CH_MIGRATION: {
8493 struct imsm_update_reshape_migration *u = NULL;
8494 int len =
8495 imsm_create_metadata_update_for_migration(
8496 st, &geo, &u);
8497 if (len < 1) {
8498 dprintf("imsm: "
8499 "Cannot prepare update\n");
8500 break;
8501 }
471bceb6 8502 ret_val = 0;
48c5303a
PC
8503 /* update metadata locally */
8504 imsm_update_metadata_locally(st, u, len);
8505 /* and possibly remotely */
8506 if (st->update_tail)
8507 append_metadata_update(st, u, len);
8508 else
8509 free(u);
8510 }
8511 break;
471bceb6
KW
8512 default:
8513 ret_val = 1;
694575e7 8514 }
694575e7 8515 }
78b10e66 8516
ed08d51c 8517exit_imsm_reshape_super:
78b10e66
N
8518 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8519 return ret_val;
8520}
2cda7640 8521
eee67a47
AK
8522/*******************************************************************************
8523 * Function: wait_for_reshape_imsm
8524 * Description: Function writes new sync_max value and waits until
8525 * reshape process reach new position
8526 * Parameters:
8527 * sra : general array info
8528 * to_complete : new sync_max position
8529 * ndata : number of disks in new array's layout
8530 * Returns:
8531 * 0 : success,
8532 * 1 : there is no reshape in progress,
8533 * -1 : fail
8534 ******************************************************************************/
8535int wait_for_reshape_imsm(struct mdinfo *sra, unsigned long long to_complete,
8536 int ndata)
8537{
8538 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8539 unsigned long long completed;
8540
8541 struct timeval timeout;
8542
8543 if (fd < 0)
8544 return 1;
8545
8546 sysfs_fd_get_ll(fd, &completed);
8547
8548 if (to_complete == 0) {/* reshape till the end of array */
8549 sysfs_set_str(sra, NULL, "sync_max", "max");
8550 to_complete = MaxSector;
8551 } else {
6b7a407d
AK
8552 if (completed > to_complete) {
8553 close(fd);
eee67a47 8554 return -1;
6b7a407d 8555 }
eee67a47
AK
8556 if (sysfs_set_num(sra, NULL, "sync_max",
8557 to_complete / ndata) != 0) {
8558 close(fd);
8559 return -1;
8560 }
8561 }
8562
8563 /* FIXME should not need a timeout at all */
8564 timeout.tv_sec = 30;
8565 timeout.tv_usec = 0;
8566 do {
8567 char action[20];
8568 fd_set rfds;
8569 FD_ZERO(&rfds);
8570 FD_SET(fd, &rfds);
8571 select(fd+1, NULL, NULL, &rfds, &timeout);
8572 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8573 close(fd);
8574 return 1;
8575 }
8576 if (sysfs_get_str(sra, NULL, "sync_action",
8577 action, 20) > 0 &&
8578 strncmp(action, "reshape", 7) != 0)
8579 break;
8580 } while (completed < to_complete);
8581 close(fd);
8582 return 0;
8583
8584}
8585
b915c95f
AK
8586/*******************************************************************************
8587 * Function: check_degradation_change
8588 * Description: Check that array hasn't become failed.
8589 * Parameters:
8590 * info : for sysfs access
8591 * sources : source disks descriptors
8592 * degraded: previous degradation level
8593 * Returns:
8594 * degradation level
8595 ******************************************************************************/
8596int check_degradation_change(struct mdinfo *info,
8597 int *sources,
8598 int degraded)
8599{
8600 unsigned long long new_degraded;
8601 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8602 if (new_degraded != (unsigned long long)degraded) {
8603 /* check each device to ensure it is still working */
8604 struct mdinfo *sd;
8605 new_degraded = 0;
8606 for (sd = info->devs ; sd ; sd = sd->next) {
8607 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8608 continue;
8609 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8610 char sbuf[20];
8611 if (sysfs_get_str(info,
8612 sd, "state", sbuf, 20) < 0 ||
8613 strstr(sbuf, "faulty") ||
8614 strstr(sbuf, "in_sync") == NULL) {
8615 /* this device is dead */
8616 sd->disk.state = (1<<MD_DISK_FAULTY);
8617 if (sd->disk.raid_disk >= 0 &&
8618 sources[sd->disk.raid_disk] >= 0) {
8619 close(sources[
8620 sd->disk.raid_disk]);
8621 sources[sd->disk.raid_disk] =
8622 -1;
8623 }
8624 new_degraded++;
8625 }
8626 }
8627 }
8628 }
8629
8630 return new_degraded;
8631}
8632
10f22854
AK
8633/*******************************************************************************
8634 * Function: imsm_manage_reshape
8635 * Description: Function finds array under reshape and it manages reshape
8636 * process. It creates stripes backups (if required) and sets
8637 * checheckpoits.
8638 * Parameters:
8639 * afd : Backup handle (nattive) - not used
8640 * sra : general array info
8641 * reshape : reshape parameters - not used
8642 * st : supertype structure
8643 * blocks : size of critical section [blocks]
8644 * fds : table of source device descriptor
8645 * offsets : start of array (offest per devices)
8646 * dests : not used
8647 * destfd : table of destination device descriptor
8648 * destoffsets : table of destination offsets (per device)
8649 * Returns:
8650 * 1 : success, reshape is done
8651 * 0 : fail
8652 ******************************************************************************/
999b4972
N
8653static int imsm_manage_reshape(
8654 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 8655 struct supertype *st, unsigned long backup_blocks,
999b4972
N
8656 int *fds, unsigned long long *offsets,
8657 int dests, int *destfd, unsigned long long *destoffsets)
8658{
10f22854
AK
8659 int ret_val = 0;
8660 struct intel_super *super = st->sb;
8661 struct intel_dev *dv = NULL;
8662 struct imsm_dev *dev = NULL;
8663 struct imsm_map *map_src, *map_dest;
8664 int migr_vol_qan = 0;
8665 int ndata, odata; /* [bytes] */
8666 int chunk; /* [bytes] */
8667 struct migr_record *migr_rec;
8668 char *buf = NULL;
8669 unsigned int buf_size; /* [bytes] */
8670 unsigned long long max_position; /* array size [bytes] */
8671 unsigned long long next_step; /* [blocks]/[bytes] */
8672 unsigned long long old_data_stripe_length;
8673 unsigned long long new_data_stripe_length;
8674 unsigned long long start_src; /* [bytes] */
8675 unsigned long long start; /* [bytes] */
8676 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 8677 int degraded = 0;
10f22854
AK
8678
8679 if (!fds || !offsets || !destfd || !destoffsets || !sra)
8680 goto abort;
8681
8682 /* Find volume during the reshape */
8683 for (dv = super->devlist; dv; dv = dv->next) {
8684 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
8685 && dv->dev->vol.migr_state == 1) {
8686 dev = dv->dev;
8687 migr_vol_qan++;
8688 }
8689 }
8690 /* Only one volume can migrate at the same time */
8691 if (migr_vol_qan != 1) {
8692 fprintf(stderr, Name " : %s", migr_vol_qan ?
8693 "Number of migrating volumes greater than 1\n" :
8694 "There is no volume during migrationg\n");
8695 goto abort;
8696 }
8697
8698 map_src = get_imsm_map(dev, 1);
8699 if (map_src == NULL)
8700 goto abort;
8701 map_dest = get_imsm_map(dev, 0);
8702
8703 ndata = imsm_num_data_members(dev, 0);
8704 odata = imsm_num_data_members(dev, 1);
8705
8706 chunk = map_src->blocks_per_strip * 512;
8707 old_data_stripe_length = odata * chunk;
8708
8709 migr_rec = super->migr_rec;
8710
8711 /* [bytes] */
8712 sra->new_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8713 sra->new_level = map_dest->raid_level;
8714 new_data_stripe_length = sra->new_chunk * ndata;
8715
8716 /* initialize migration record for start condition */
8717 if (sra->reshape_progress == 0)
8718 init_migr_record_imsm(st, dev, sra);
8719
8720 /* size for data */
8721 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
8722 /* extend buffer size for parity disk */
8723 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8724 /* add space for stripe aligment */
8725 buf_size += old_data_stripe_length;
8726 if (posix_memalign((void **)&buf, 4096, buf_size)) {
8727 dprintf("imsm: Cannot allocate checpoint buffer\n");
8728 goto abort;
8729 }
8730
8731 max_position =
8732 __le32_to_cpu(migr_rec->post_migr_vol_cap) +
8733 ((unsigned long long)__le32_to_cpu(
8734 migr_rec->post_migr_vol_cap_hi) << 32);
8735
8736 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
8737 __le32_to_cpu(migr_rec->num_migr_units)) {
8738 /* current reshape position [blocks] */
8739 unsigned long long current_position =
8740 __le32_to_cpu(migr_rec->blocks_per_unit)
8741 * __le32_to_cpu(migr_rec->curr_migr_unit);
8742 unsigned long long border;
8743
b915c95f
AK
8744 /* Check that array hasn't become failed.
8745 */
8746 degraded = check_degradation_change(sra, fds, degraded);
8747 if (degraded > 1) {
8748 dprintf("imsm: Abort reshape due to degradation"
8749 " level (%i)\n", degraded);
8750 goto abort;
8751 }
8752
10f22854
AK
8753 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
8754
8755 if ((current_position + next_step) > max_position)
8756 next_step = max_position - current_position;
8757
8758 start = (map_src->pba_of_lba0 + dev->reserved_blocks +
8759 current_position) * 512;
8760
8761 /* allign reading start to old geometry */
8762 start_buf_shift = start % old_data_stripe_length;
8763 start_src = start - start_buf_shift;
8764
8765 border = (start_src / odata) - (start / ndata);
8766 border /= 512;
8767 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
8768 /* save critical stripes to buf
8769 * start - start address of current unit
8770 * to backup [bytes]
8771 * start_src - start address of current unit
8772 * to backup alligned to source array
8773 * [bytes]
8774 */
8775 unsigned long long next_step_filler = 0;
8776 unsigned long long copy_length = next_step * 512;
8777
8778 /* allign copy area length to stripe in old geometry */
8779 next_step_filler = ((copy_length + start_buf_shift)
8780 % old_data_stripe_length);
8781 if (next_step_filler)
8782 next_step_filler = (old_data_stripe_length
8783 - next_step_filler);
8784 dprintf("save_stripes() parameters: start = %llu,"
8785 "\tstart_src = %llu,\tnext_step*512 = %llu,"
8786 "\tstart_in_buf_shift = %llu,"
8787 "\tnext_step_filler = %llu\n",
8788 start, start_src, copy_length,
8789 start_buf_shift, next_step_filler);
8790
8791 if (save_stripes(fds, offsets, map_src->num_members,
8792 chunk, sra->array.level,
8793 sra->array.layout, 0, NULL, start_src,
8794 copy_length +
8795 next_step_filler + start_buf_shift,
8796 buf)) {
8797 dprintf("imsm: Cannot save stripes"
8798 " to buffer\n");
8799 goto abort;
8800 }
8801 /* Convert data to destination format and store it
8802 * in backup general migration area
8803 */
8804 if (save_backup_imsm(st, dev, sra,
8805 buf + start_buf_shift,
8806 ndata, copy_length)) {
8807 dprintf("imsm: Cannot save stripes to "
8808 "target devices\n");
8809 goto abort;
8810 }
8811 if (save_checkpoint_imsm(st, sra,
8812 UNIT_SRC_IN_CP_AREA)) {
8813 dprintf("imsm: Cannot write checkpoint to "
8814 "migration record (UNIT_SRC_IN_CP_AREA)\n");
8815 goto abort;
8816 }
8817 /* decrease backup_blocks */
8818 if (backup_blocks > (unsigned long)next_step)
8819 backup_blocks -= next_step;
8820 else
8821 backup_blocks = 0;
8822 }
8823 /* When data backed up, checkpoint stored,
8824 * kick the kernel to reshape unit of data
8825 */
8826 next_step = next_step + sra->reshape_progress;
8827 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
8828 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
8829
8830 /* wait until reshape finish */
c47b0ff6
AK
8831 if (wait_for_reshape_imsm(sra, next_step, ndata) < 0) {
8832 dprintf("wait_for_reshape_imsm returned error!\n");
8833 goto abort;
8834 }
10f22854
AK
8835
8836 sra->reshape_progress = next_step;
8837
8838 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL)) {
8839 dprintf("imsm: Cannot write checkpoint to "
8840 "migration record (UNIT_SRC_NORMAL)\n");
8841 goto abort;
8842 }
8843
8844 }
8845
8846 /* return '1' if done */
8847 ret_val = 1;
8848abort:
8849 free(buf);
8850 abort_reshape(sra);
8851
8852 return ret_val;
999b4972 8853}
71204a50 8854#endif /* MDASSEMBLE */
999b4972 8855
cdddbdbc
DW
8856struct superswitch super_imsm = {
8857#ifndef MDASSEMBLE
8858 .examine_super = examine_super_imsm,
8859 .brief_examine_super = brief_examine_super_imsm,
4737ae25 8860 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 8861 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
8862 .detail_super = detail_super_imsm,
8863 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 8864 .write_init_super = write_init_super_imsm,
0e600426
N
8865 .validate_geometry = validate_geometry_imsm,
8866 .add_to_super = add_to_super_imsm,
1a64be56 8867 .remove_from_super = remove_from_super_imsm,
d665cc31 8868 .detail_platform = detail_platform_imsm,
33414a01 8869 .kill_subarray = kill_subarray_imsm,
aa534678 8870 .update_subarray = update_subarray_imsm,
2b959fbf 8871 .load_container = load_container_imsm,
71204a50
N
8872 .default_geometry = default_geometry_imsm,
8873 .get_disk_controller_domain = imsm_get_disk_controller_domain,
8874 .reshape_super = imsm_reshape_super,
8875 .manage_reshape = imsm_manage_reshape,
cdddbdbc
DW
8876#endif
8877 .match_home = match_home_imsm,
8878 .uuid_from_super= uuid_from_super_imsm,
8879 .getinfo_super = getinfo_super_imsm,
5c4cd5da 8880 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
8881 .update_super = update_super_imsm,
8882
8883 .avail_size = avail_size_imsm,
80e7f8c3 8884 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
8885
8886 .compare_super = compare_super_imsm,
8887
8888 .load_super = load_super_imsm,
bf5a934a 8889 .init_super = init_super_imsm,
e683ca88 8890 .store_super = store_super_imsm,
cdddbdbc
DW
8891 .free_super = free_super_imsm,
8892 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 8893 .container_content = container_content_imsm,
cdddbdbc 8894
276d77db
AK
8895 .recover_backup = recover_backup_imsm,
8896
cdddbdbc 8897 .external = 1,
4cce4069 8898 .name = "imsm",
845dea95 8899
0e600426 8900#ifndef MDASSEMBLE
845dea95
NB
8901/* for mdmon */
8902 .open_new = imsm_open_new,
ed9d66aa 8903 .set_array_state= imsm_set_array_state,
845dea95
NB
8904 .set_disk = imsm_set_disk,
8905 .sync_metadata = imsm_sync_metadata,
88758e9d 8906 .activate_spare = imsm_activate_spare,
e8319a19 8907 .process_update = imsm_process_update,
8273f55e 8908 .prepare_update = imsm_prepare_update,
0e600426 8909#endif /* MDASSEMBLE */
cdddbdbc 8910};