]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
2010-02-26 Jie Zhang <jie@codesourcery.com>
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
f31fef98 3 2004, 2005, 2006, 2007, 2008, 2009
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3
MGD
100/* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
188static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470
PB
198static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
e74cfd16
PB
200
201static const arm_feature_set arm_arch_any = ARM_ANY;
202static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
203static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
204static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
205
2d447fca
JM
206static const arm_feature_set arm_cext_iwmmxt2 =
207 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
208static const arm_feature_set arm_cext_iwmmxt =
209 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
210static const arm_feature_set arm_cext_xscale =
211 ARM_FEATURE (0, ARM_CEXT_XSCALE);
212static const arm_feature_set arm_cext_maverick =
213 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
214static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
215static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
216static const arm_feature_set fpu_vfp_ext_v1xd =
217 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
218static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
219static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 220static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 221static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
222static const arm_feature_set fpu_vfp_ext_d32 =
223 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
224static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
225static const arm_feature_set fpu_vfp_v3_or_neon_ext =
226 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
227static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
228static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
229static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 230
33a392fb 231static int mfloat_abi_opt = -1;
e74cfd16
PB
232/* Record user cpu selection for object attributes. */
233static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
234/* Must be long enough to hold any of the names in arm_cpus. */
235static char selected_cpu_name[16];
7cc69913 236#ifdef OBJ_ELF
deeaaff8
DJ
237# ifdef EABI_DEFAULT
238static int meabi_flags = EABI_DEFAULT;
239# else
d507cf36 240static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 241# endif
e1da3f5b 242
ee3c0378
AS
243static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
244
e1da3f5b 245bfd_boolean
5f4273c7 246arm_is_eabi (void)
e1da3f5b
PB
247{
248 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
249}
7cc69913 250#endif
b99bd4ef 251
b99bd4ef 252#ifdef OBJ_ELF
c19d1205 253/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
254symbolS * GOT_symbol;
255#endif
256
b99bd4ef
NC
257/* 0: assemble for ARM,
258 1: assemble for Thumb,
259 2: assemble for Thumb even though target CPU does not support thumb
260 instructions. */
261static int thumb_mode = 0;
8dc2430f
NC
262/* A value distinct from the possible values for thumb_mode that we
263 can use to record whether thumb_mode has been copied into the
264 tc_frag_data field of a frag. */
265#define MODE_RECORDED (1 << 4)
b99bd4ef 266
e07e6e58
NC
267/* Specifies the intrinsic IT insn behavior mode. */
268enum implicit_it_mode
269{
270 IMPLICIT_IT_MODE_NEVER = 0x00,
271 IMPLICIT_IT_MODE_ARM = 0x01,
272 IMPLICIT_IT_MODE_THUMB = 0x02,
273 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
274};
275static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
276
c19d1205
ZW
277/* If unified_syntax is true, we are processing the new unified
278 ARM/Thumb syntax. Important differences from the old ARM mode:
279
280 - Immediate operands do not require a # prefix.
281 - Conditional affixes always appear at the end of the
282 instruction. (For backward compatibility, those instructions
283 that formerly had them in the middle, continue to accept them
284 there.)
285 - The IT instruction may appear, and if it does is validated
286 against subsequent conditional affixes. It does not generate
287 machine code.
288
289 Important differences from the old Thumb mode:
290
291 - Immediate operands do not require a # prefix.
292 - Most of the V6T2 instructions are only available in unified mode.
293 - The .N and .W suffixes are recognized and honored (it is an error
294 if they cannot be honored).
295 - All instructions set the flags if and only if they have an 's' affix.
296 - Conditional affixes may be used. They are validated against
297 preceding IT instructions. Unlike ARM mode, you cannot use a
298 conditional affix except in the scope of an IT instruction. */
299
300static bfd_boolean unified_syntax = FALSE;
b99bd4ef 301
5287ad62
JB
302enum neon_el_type
303{
dcbf9037 304 NT_invtype,
5287ad62
JB
305 NT_untyped,
306 NT_integer,
307 NT_float,
308 NT_poly,
309 NT_signed,
dcbf9037 310 NT_unsigned
5287ad62
JB
311};
312
313struct neon_type_el
314{
315 enum neon_el_type type;
316 unsigned size;
317};
318
319#define NEON_MAX_TYPE_ELS 4
320
321struct neon_type
322{
323 struct neon_type_el el[NEON_MAX_TYPE_ELS];
324 unsigned elems;
325};
326
e07e6e58
NC
327enum it_instruction_type
328{
329 OUTSIDE_IT_INSN,
330 INSIDE_IT_INSN,
331 INSIDE_IT_LAST_INSN,
332 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
333 if inside, should be the last one. */
334 NEUTRAL_IT_INSN, /* This could be either inside or outside,
335 i.e. BKPT and NOP. */
336 IT_INSN /* The IT insn has been parsed. */
337};
338
b99bd4ef
NC
339struct arm_it
340{
c19d1205 341 const char * error;
b99bd4ef 342 unsigned long instruction;
c19d1205
ZW
343 int size;
344 int size_req;
345 int cond;
037e8744
JB
346 /* "uncond_value" is set to the value in place of the conditional field in
347 unconditional versions of the instruction, or -1 if nothing is
348 appropriate. */
349 int uncond_value;
5287ad62 350 struct neon_type vectype;
88714cb8
DG
351 /* This does not indicate an actual NEON instruction, only that
352 the mnemonic accepts neon-style type suffixes. */
353 int is_neon;
0110f2b8
PB
354 /* Set to the opcode if the instruction needs relaxation.
355 Zero if the instruction is not relaxed. */
356 unsigned long relax;
b99bd4ef
NC
357 struct
358 {
359 bfd_reloc_code_real_type type;
c19d1205
ZW
360 expressionS exp;
361 int pc_rel;
b99bd4ef 362 } reloc;
b99bd4ef 363
e07e6e58
NC
364 enum it_instruction_type it_insn_type;
365
c19d1205
ZW
366 struct
367 {
368 unsigned reg;
ca3f61f7 369 signed int imm;
dcbf9037 370 struct neon_type_el vectype;
ca3f61f7
NC
371 unsigned present : 1; /* Operand present. */
372 unsigned isreg : 1; /* Operand was a register. */
373 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
374 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
375 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 376 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
377 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
378 instructions. This allows us to disambiguate ARM <-> vector insns. */
379 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 380 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 381 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 382 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
383 unsigned hasreloc : 1; /* Operand has relocation suffix. */
384 unsigned writeback : 1; /* Operand has trailing ! */
385 unsigned preind : 1; /* Preindexed address. */
386 unsigned postind : 1; /* Postindexed address. */
387 unsigned negative : 1; /* Index register was negated. */
388 unsigned shifted : 1; /* Shift applied to operation. */
389 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 390 } operands[6];
b99bd4ef
NC
391};
392
c19d1205 393static struct arm_it inst;
b99bd4ef
NC
394
395#define NUM_FLOAT_VALS 8
396
05d2d07e 397const char * fp_const[] =
b99bd4ef
NC
398{
399 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
400};
401
c19d1205 402/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
403#define MAX_LITTLENUMS 6
404
405LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
406
407#define FAIL (-1)
408#define SUCCESS (0)
409
410#define SUFF_S 1
411#define SUFF_D 2
412#define SUFF_E 3
413#define SUFF_P 4
414
c19d1205
ZW
415#define CP_T_X 0x00008000
416#define CP_T_Y 0x00400000
b99bd4ef 417
c19d1205
ZW
418#define CONDS_BIT 0x00100000
419#define LOAD_BIT 0x00100000
b99bd4ef
NC
420
421#define DOUBLE_LOAD_FLAG 0x00000001
422
423struct asm_cond
424{
d3ce72d0 425 const char * template_name;
c921be7d 426 unsigned long value;
b99bd4ef
NC
427};
428
c19d1205 429#define COND_ALWAYS 0xE
b99bd4ef 430
b99bd4ef
NC
431struct asm_psr
432{
d3ce72d0 433 const char * template_name;
c921be7d 434 unsigned long field;
b99bd4ef
NC
435};
436
62b3e311
PB
437struct asm_barrier_opt
438{
d3ce72d0 439 const char * template_name;
c921be7d 440 unsigned long value;
62b3e311
PB
441};
442
2d2255b5 443/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
444#define SPSR_BIT (1 << 22)
445
c19d1205
ZW
446/* The individual PSR flag bits. */
447#define PSR_c (1 << 16)
448#define PSR_x (1 << 17)
449#define PSR_s (1 << 18)
450#define PSR_f (1 << 19)
b99bd4ef 451
c19d1205 452struct reloc_entry
bfae80f2 453{
c921be7d
NC
454 char * name;
455 bfd_reloc_code_real_type reloc;
bfae80f2
RE
456};
457
5287ad62 458enum vfp_reg_pos
bfae80f2 459{
5287ad62
JB
460 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
461 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
462};
463
464enum vfp_ldstm_type
465{
466 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
467};
468
dcbf9037
JB
469/* Bits for DEFINED field in neon_typed_alias. */
470#define NTA_HASTYPE 1
471#define NTA_HASINDEX 2
472
473struct neon_typed_alias
474{
c921be7d
NC
475 unsigned char defined;
476 unsigned char index;
477 struct neon_type_el eltype;
dcbf9037
JB
478};
479
c19d1205
ZW
480/* ARM register categories. This includes coprocessor numbers and various
481 architecture extensions' registers. */
482enum arm_reg_type
bfae80f2 483{
c19d1205
ZW
484 REG_TYPE_RN,
485 REG_TYPE_CP,
486 REG_TYPE_CN,
487 REG_TYPE_FN,
488 REG_TYPE_VFS,
489 REG_TYPE_VFD,
5287ad62 490 REG_TYPE_NQ,
037e8744 491 REG_TYPE_VFSD,
5287ad62 492 REG_TYPE_NDQ,
037e8744 493 REG_TYPE_NSDQ,
c19d1205
ZW
494 REG_TYPE_VFC,
495 REG_TYPE_MVF,
496 REG_TYPE_MVD,
497 REG_TYPE_MVFX,
498 REG_TYPE_MVDX,
499 REG_TYPE_MVAX,
500 REG_TYPE_DSPSC,
501 REG_TYPE_MMXWR,
502 REG_TYPE_MMXWC,
503 REG_TYPE_MMXWCG,
504 REG_TYPE_XSCALE,
bfae80f2
RE
505};
506
dcbf9037
JB
507/* Structure for a hash table entry for a register.
508 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
509 information which states whether a vector type or index is specified (for a
510 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
511struct reg_entry
512{
c921be7d
NC
513 const char * name;
514 unsigned char number;
515 unsigned char type;
516 unsigned char builtin;
517 struct neon_typed_alias * neon;
6c43fab6
RE
518};
519
c19d1205 520/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 521const char * const reg_expected_msgs[] =
c19d1205
ZW
522{
523 N_("ARM register expected"),
524 N_("bad or missing co-processor number"),
525 N_("co-processor register expected"),
526 N_("FPA register expected"),
527 N_("VFP single precision register expected"),
5287ad62
JB
528 N_("VFP/Neon double precision register expected"),
529 N_("Neon quad precision register expected"),
037e8744 530 N_("VFP single or double precision register expected"),
5287ad62 531 N_("Neon double or quad precision register expected"),
037e8744 532 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
533 N_("VFP system register expected"),
534 N_("Maverick MVF register expected"),
535 N_("Maverick MVD register expected"),
536 N_("Maverick MVFX register expected"),
537 N_("Maverick MVDX register expected"),
538 N_("Maverick MVAX register expected"),
539 N_("Maverick DSPSC register expected"),
540 N_("iWMMXt data register expected"),
541 N_("iWMMXt control register expected"),
542 N_("iWMMXt scalar register expected"),
543 N_("XScale accumulator register expected"),
6c43fab6
RE
544};
545
c19d1205
ZW
546/* Some well known registers that we refer to directly elsewhere. */
547#define REG_SP 13
548#define REG_LR 14
549#define REG_PC 15
404ff6b5 550
b99bd4ef
NC
551/* ARM instructions take 4bytes in the object file, Thumb instructions
552 take 2: */
c19d1205 553#define INSN_SIZE 4
b99bd4ef
NC
554
555struct asm_opcode
556{
557 /* Basic string to match. */
d3ce72d0 558 const char * template_name;
c19d1205
ZW
559
560 /* Parameters to instruction. */
5be8be5d 561 unsigned int operands[8];
c19d1205
ZW
562
563 /* Conditional tag - see opcode_lookup. */
564 unsigned int tag : 4;
b99bd4ef
NC
565
566 /* Basic instruction code. */
c19d1205 567 unsigned int avalue : 28;
b99bd4ef 568
c19d1205
ZW
569 /* Thumb-format instruction code. */
570 unsigned int tvalue;
b99bd4ef 571
90e4755a 572 /* Which architecture variant provides this instruction. */
c921be7d
NC
573 const arm_feature_set * avariant;
574 const arm_feature_set * tvariant;
c19d1205
ZW
575
576 /* Function to call to encode instruction in ARM format. */
577 void (* aencode) (void);
b99bd4ef 578
c19d1205
ZW
579 /* Function to call to encode instruction in Thumb format. */
580 void (* tencode) (void);
b99bd4ef
NC
581};
582
a737bd4d
NC
583/* Defines for various bits that we will want to toggle. */
584#define INST_IMMEDIATE 0x02000000
585#define OFFSET_REG 0x02000000
c19d1205 586#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
587#define SHIFT_BY_REG 0x00000010
588#define PRE_INDEX 0x01000000
589#define INDEX_UP 0x00800000
590#define WRITE_BACK 0x00200000
591#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 592#define CPSI_MMOD 0x00020000
90e4755a 593
a737bd4d
NC
594#define LITERAL_MASK 0xf000f000
595#define OPCODE_MASK 0xfe1fffff
596#define V4_STR_BIT 0x00000020
90e4755a 597
efd81785
PB
598#define T2_SUBS_PC_LR 0xf3de8f00
599
a737bd4d 600#define DATA_OP_SHIFT 21
90e4755a 601
ef8d22e6
PB
602#define T2_OPCODE_MASK 0xfe1fffff
603#define T2_DATA_OP_SHIFT 21
604
a737bd4d
NC
605/* Codes to distinguish the arithmetic instructions. */
606#define OPCODE_AND 0
607#define OPCODE_EOR 1
608#define OPCODE_SUB 2
609#define OPCODE_RSB 3
610#define OPCODE_ADD 4
611#define OPCODE_ADC 5
612#define OPCODE_SBC 6
613#define OPCODE_RSC 7
614#define OPCODE_TST 8
615#define OPCODE_TEQ 9
616#define OPCODE_CMP 10
617#define OPCODE_CMN 11
618#define OPCODE_ORR 12
619#define OPCODE_MOV 13
620#define OPCODE_BIC 14
621#define OPCODE_MVN 15
90e4755a 622
ef8d22e6
PB
623#define T2_OPCODE_AND 0
624#define T2_OPCODE_BIC 1
625#define T2_OPCODE_ORR 2
626#define T2_OPCODE_ORN 3
627#define T2_OPCODE_EOR 4
628#define T2_OPCODE_ADD 8
629#define T2_OPCODE_ADC 10
630#define T2_OPCODE_SBC 11
631#define T2_OPCODE_SUB 13
632#define T2_OPCODE_RSB 14
633
a737bd4d
NC
634#define T_OPCODE_MUL 0x4340
635#define T_OPCODE_TST 0x4200
636#define T_OPCODE_CMN 0x42c0
637#define T_OPCODE_NEG 0x4240
638#define T_OPCODE_MVN 0x43c0
90e4755a 639
a737bd4d
NC
640#define T_OPCODE_ADD_R3 0x1800
641#define T_OPCODE_SUB_R3 0x1a00
642#define T_OPCODE_ADD_HI 0x4400
643#define T_OPCODE_ADD_ST 0xb000
644#define T_OPCODE_SUB_ST 0xb080
645#define T_OPCODE_ADD_SP 0xa800
646#define T_OPCODE_ADD_PC 0xa000
647#define T_OPCODE_ADD_I8 0x3000
648#define T_OPCODE_SUB_I8 0x3800
649#define T_OPCODE_ADD_I3 0x1c00
650#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 651
a737bd4d
NC
652#define T_OPCODE_ASR_R 0x4100
653#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
654#define T_OPCODE_LSR_R 0x40c0
655#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
656#define T_OPCODE_ASR_I 0x1000
657#define T_OPCODE_LSL_I 0x0000
658#define T_OPCODE_LSR_I 0x0800
b99bd4ef 659
a737bd4d
NC
660#define T_OPCODE_MOV_I8 0x2000
661#define T_OPCODE_CMP_I8 0x2800
662#define T_OPCODE_CMP_LR 0x4280
663#define T_OPCODE_MOV_HR 0x4600
664#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 665
a737bd4d
NC
666#define T_OPCODE_LDR_PC 0x4800
667#define T_OPCODE_LDR_SP 0x9800
668#define T_OPCODE_STR_SP 0x9000
669#define T_OPCODE_LDR_IW 0x6800
670#define T_OPCODE_STR_IW 0x6000
671#define T_OPCODE_LDR_IH 0x8800
672#define T_OPCODE_STR_IH 0x8000
673#define T_OPCODE_LDR_IB 0x7800
674#define T_OPCODE_STR_IB 0x7000
675#define T_OPCODE_LDR_RW 0x5800
676#define T_OPCODE_STR_RW 0x5000
677#define T_OPCODE_LDR_RH 0x5a00
678#define T_OPCODE_STR_RH 0x5200
679#define T_OPCODE_LDR_RB 0x5c00
680#define T_OPCODE_STR_RB 0x5400
c9b604bd 681
a737bd4d
NC
682#define T_OPCODE_PUSH 0xb400
683#define T_OPCODE_POP 0xbc00
b99bd4ef 684
2fc8bdac 685#define T_OPCODE_BRANCH 0xe000
b99bd4ef 686
a737bd4d 687#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 688#define THUMB_PP_PC_LR 0x0100
c19d1205 689#define THUMB_LOAD_BIT 0x0800
53365c0d 690#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
691
692#define BAD_ARGS _("bad arguments to instruction")
fdfde340 693#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
694#define BAD_PC _("r15 not allowed here")
695#define BAD_COND _("instruction cannot be conditional")
696#define BAD_OVERLAP _("registers may not be the same")
697#define BAD_HIREG _("lo register required")
698#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 699#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
700#define BAD_BRANCH _("branch must be last instruction in IT block")
701#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 702#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
703#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
704#define BAD_IT_COND _("incorrect condition in IT block")
705#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 706#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
707#define BAD_PC_ADDRESSING \
708 _("cannot use register index with PC-relative addressing")
709#define BAD_PC_WRITEBACK \
710 _("cannot use writeback with PC-relative addressing")
c19d1205 711
c921be7d
NC
712static struct hash_control * arm_ops_hsh;
713static struct hash_control * arm_cond_hsh;
714static struct hash_control * arm_shift_hsh;
715static struct hash_control * arm_psr_hsh;
716static struct hash_control * arm_v7m_psr_hsh;
717static struct hash_control * arm_reg_hsh;
718static struct hash_control * arm_reloc_hsh;
719static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 720
b99bd4ef
NC
721/* Stuff needed to resolve the label ambiguity
722 As:
723 ...
724 label: <insn>
725 may differ from:
726 ...
727 label:
5f4273c7 728 <insn> */
b99bd4ef
NC
729
730symbolS * last_label_seen;
b34976b6 731static int label_is_thumb_function_name = FALSE;
e07e6e58 732
3d0c9500
NC
733/* Literal pool structure. Held on a per-section
734 and per-sub-section basis. */
a737bd4d 735
c19d1205 736#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 737typedef struct literal_pool
b99bd4ef 738{
c921be7d
NC
739 expressionS literals [MAX_LITERAL_POOL_SIZE];
740 unsigned int next_free_entry;
741 unsigned int id;
742 symbolS * symbol;
743 segT section;
744 subsegT sub_section;
745 struct literal_pool * next;
3d0c9500 746} literal_pool;
b99bd4ef 747
3d0c9500
NC
748/* Pointer to a linked list of literal pools. */
749literal_pool * list_of_pools = NULL;
e27ec89e 750
e07e6e58
NC
751#ifdef OBJ_ELF
752# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
753#else
754static struct current_it now_it;
755#endif
756
757static inline int
758now_it_compatible (int cond)
759{
760 return (cond & ~1) == (now_it.cc & ~1);
761}
762
763static inline int
764conditional_insn (void)
765{
766 return inst.cond != COND_ALWAYS;
767}
768
769static int in_it_block (void);
770
771static int handle_it_state (void);
772
773static void force_automatic_it_block_close (void);
774
c921be7d
NC
775static void it_fsm_post_encode (void);
776
e07e6e58
NC
777#define set_it_insn_type(type) \
778 do \
779 { \
780 inst.it_insn_type = type; \
781 if (handle_it_state () == FAIL) \
782 return; \
783 } \
784 while (0)
785
c921be7d
NC
786#define set_it_insn_type_nonvoid(type, failret) \
787 do \
788 { \
789 inst.it_insn_type = type; \
790 if (handle_it_state () == FAIL) \
791 return failret; \
792 } \
793 while(0)
794
e07e6e58
NC
795#define set_it_insn_type_last() \
796 do \
797 { \
798 if (inst.cond == COND_ALWAYS) \
799 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
800 else \
801 set_it_insn_type (INSIDE_IT_LAST_INSN); \
802 } \
803 while (0)
804
c19d1205 805/* Pure syntax. */
b99bd4ef 806
c19d1205
ZW
807/* This array holds the chars that always start a comment. If the
808 pre-processor is disabled, these aren't very useful. */
809const char comment_chars[] = "@";
3d0c9500 810
c19d1205
ZW
811/* This array holds the chars that only start a comment at the beginning of
812 a line. If the line seems to have the form '# 123 filename'
813 .line and .file directives will appear in the pre-processed output. */
814/* Note that input_file.c hand checks for '#' at the beginning of the
815 first line of the input file. This is because the compiler outputs
816 #NO_APP at the beginning of its output. */
817/* Also note that comments like this one will always work. */
818const char line_comment_chars[] = "#";
3d0c9500 819
c19d1205 820const char line_separator_chars[] = ";";
b99bd4ef 821
c19d1205
ZW
822/* Chars that can be used to separate mant
823 from exp in floating point numbers. */
824const char EXP_CHARS[] = "eE";
3d0c9500 825
c19d1205
ZW
826/* Chars that mean this number is a floating point constant. */
827/* As in 0f12.456 */
828/* or 0d1.2345e12 */
b99bd4ef 829
c19d1205 830const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 831
c19d1205
ZW
832/* Prefix characters that indicate the start of an immediate
833 value. */
834#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 835
c19d1205
ZW
836/* Separator character handling. */
837
838#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
839
840static inline int
841skip_past_char (char ** str, char c)
842{
843 if (**str == c)
844 {
845 (*str)++;
846 return SUCCESS;
3d0c9500 847 }
c19d1205
ZW
848 else
849 return FAIL;
850}
c921be7d 851
c19d1205 852#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 853
c19d1205
ZW
854/* Arithmetic expressions (possibly involving symbols). */
855
856/* Return TRUE if anything in the expression is a bignum. */
857
858static int
859walk_no_bignums (symbolS * sp)
860{
861 if (symbol_get_value_expression (sp)->X_op == O_big)
862 return 1;
863
864 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 865 {
c19d1205
ZW
866 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
867 || (symbol_get_value_expression (sp)->X_op_symbol
868 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
869 }
870
c19d1205 871 return 0;
3d0c9500
NC
872}
873
c19d1205
ZW
874static int in_my_get_expression = 0;
875
876/* Third argument to my_get_expression. */
877#define GE_NO_PREFIX 0
878#define GE_IMM_PREFIX 1
879#define GE_OPT_PREFIX 2
5287ad62
JB
880/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
881 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
882#define GE_OPT_PREFIX_BIG 3
a737bd4d 883
b99bd4ef 884static int
c19d1205 885my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 886{
c19d1205
ZW
887 char * save_in;
888 segT seg;
b99bd4ef 889
c19d1205
ZW
890 /* In unified syntax, all prefixes are optional. */
891 if (unified_syntax)
5287ad62
JB
892 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
893 : GE_OPT_PREFIX;
b99bd4ef 894
c19d1205 895 switch (prefix_mode)
b99bd4ef 896 {
c19d1205
ZW
897 case GE_NO_PREFIX: break;
898 case GE_IMM_PREFIX:
899 if (!is_immediate_prefix (**str))
900 {
901 inst.error = _("immediate expression requires a # prefix");
902 return FAIL;
903 }
904 (*str)++;
905 break;
906 case GE_OPT_PREFIX:
5287ad62 907 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
908 if (is_immediate_prefix (**str))
909 (*str)++;
910 break;
911 default: abort ();
912 }
b99bd4ef 913
c19d1205 914 memset (ep, 0, sizeof (expressionS));
b99bd4ef 915
c19d1205
ZW
916 save_in = input_line_pointer;
917 input_line_pointer = *str;
918 in_my_get_expression = 1;
919 seg = expression (ep);
920 in_my_get_expression = 0;
921
f86adc07 922 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 923 {
f86adc07 924 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
925 *str = input_line_pointer;
926 input_line_pointer = save_in;
927 if (inst.error == NULL)
f86adc07
NS
928 inst.error = (ep->X_op == O_absent
929 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
930 return 1;
931 }
b99bd4ef 932
c19d1205
ZW
933#ifdef OBJ_AOUT
934 if (seg != absolute_section
935 && seg != text_section
936 && seg != data_section
937 && seg != bss_section
938 && seg != undefined_section)
939 {
940 inst.error = _("bad segment");
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 return 1;
b99bd4ef 944 }
c19d1205 945#endif
b99bd4ef 946
c19d1205
ZW
947 /* Get rid of any bignums now, so that we don't generate an error for which
948 we can't establish a line number later on. Big numbers are never valid
949 in instructions, which is where this routine is always called. */
5287ad62
JB
950 if (prefix_mode != GE_OPT_PREFIX_BIG
951 && (ep->X_op == O_big
952 || (ep->X_add_symbol
953 && (walk_no_bignums (ep->X_add_symbol)
954 || (ep->X_op_symbol
955 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
956 {
957 inst.error = _("invalid constant");
958 *str = input_line_pointer;
959 input_line_pointer = save_in;
960 return 1;
961 }
b99bd4ef 962
c19d1205
ZW
963 *str = input_line_pointer;
964 input_line_pointer = save_in;
965 return 0;
b99bd4ef
NC
966}
967
c19d1205
ZW
968/* Turn a string in input_line_pointer into a floating point constant
969 of type TYPE, and store the appropriate bytes in *LITP. The number
970 of LITTLENUMS emitted is stored in *SIZEP. An error message is
971 returned, or NULL on OK.
b99bd4ef 972
c19d1205
ZW
973 Note that fp constants aren't represent in the normal way on the ARM.
974 In big endian mode, things are as expected. However, in little endian
975 mode fp constants are big-endian word-wise, and little-endian byte-wise
976 within the words. For example, (double) 1.1 in big endian mode is
977 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
978 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 979
c19d1205 980 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 981
c19d1205
ZW
982char *
983md_atof (int type, char * litP, int * sizeP)
984{
985 int prec;
986 LITTLENUM_TYPE words[MAX_LITTLENUMS];
987 char *t;
988 int i;
b99bd4ef 989
c19d1205
ZW
990 switch (type)
991 {
992 case 'f':
993 case 'F':
994 case 's':
995 case 'S':
996 prec = 2;
997 break;
b99bd4ef 998
c19d1205
ZW
999 case 'd':
1000 case 'D':
1001 case 'r':
1002 case 'R':
1003 prec = 4;
1004 break;
b99bd4ef 1005
c19d1205
ZW
1006 case 'x':
1007 case 'X':
499ac353 1008 prec = 5;
c19d1205 1009 break;
b99bd4ef 1010
c19d1205
ZW
1011 case 'p':
1012 case 'P':
499ac353 1013 prec = 5;
c19d1205 1014 break;
a737bd4d 1015
c19d1205
ZW
1016 default:
1017 *sizeP = 0;
499ac353 1018 return _("Unrecognized or unsupported floating point constant");
c19d1205 1019 }
b99bd4ef 1020
c19d1205
ZW
1021 t = atof_ieee (input_line_pointer, type, words);
1022 if (t)
1023 input_line_pointer = t;
499ac353 1024 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1025
c19d1205
ZW
1026 if (target_big_endian)
1027 {
1028 for (i = 0; i < prec; i++)
1029 {
499ac353
NC
1030 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1031 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1032 }
1033 }
1034 else
1035 {
e74cfd16 1036 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1037 for (i = prec - 1; i >= 0; i--)
1038 {
499ac353
NC
1039 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1040 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1041 }
1042 else
1043 /* For a 4 byte float the order of elements in `words' is 1 0.
1044 For an 8 byte float the order is 1 0 3 2. */
1045 for (i = 0; i < prec; i += 2)
1046 {
499ac353
NC
1047 md_number_to_chars (litP, (valueT) words[i + 1],
1048 sizeof (LITTLENUM_TYPE));
1049 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1050 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1051 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1052 }
1053 }
b99bd4ef 1054
499ac353 1055 return NULL;
c19d1205 1056}
b99bd4ef 1057
c19d1205
ZW
1058/* We handle all bad expressions here, so that we can report the faulty
1059 instruction in the error message. */
1060void
91d6fa6a 1061md_operand (expressionS * exp)
c19d1205
ZW
1062{
1063 if (in_my_get_expression)
91d6fa6a 1064 exp->X_op = O_illegal;
b99bd4ef
NC
1065}
1066
c19d1205 1067/* Immediate values. */
b99bd4ef 1068
c19d1205
ZW
1069/* Generic immediate-value read function for use in directives.
1070 Accepts anything that 'expression' can fold to a constant.
1071 *val receives the number. */
1072#ifdef OBJ_ELF
1073static int
1074immediate_for_directive (int *val)
b99bd4ef 1075{
c19d1205
ZW
1076 expressionS exp;
1077 exp.X_op = O_illegal;
b99bd4ef 1078
c19d1205
ZW
1079 if (is_immediate_prefix (*input_line_pointer))
1080 {
1081 input_line_pointer++;
1082 expression (&exp);
1083 }
b99bd4ef 1084
c19d1205
ZW
1085 if (exp.X_op != O_constant)
1086 {
1087 as_bad (_("expected #constant"));
1088 ignore_rest_of_line ();
1089 return FAIL;
1090 }
1091 *val = exp.X_add_number;
1092 return SUCCESS;
b99bd4ef 1093}
c19d1205 1094#endif
b99bd4ef 1095
c19d1205 1096/* Register parsing. */
b99bd4ef 1097
c19d1205
ZW
1098/* Generic register parser. CCP points to what should be the
1099 beginning of a register name. If it is indeed a valid register
1100 name, advance CCP over it and return the reg_entry structure;
1101 otherwise return NULL. Does not issue diagnostics. */
1102
1103static struct reg_entry *
1104arm_reg_parse_multi (char **ccp)
b99bd4ef 1105{
c19d1205
ZW
1106 char *start = *ccp;
1107 char *p;
1108 struct reg_entry *reg;
b99bd4ef 1109
c19d1205
ZW
1110#ifdef REGISTER_PREFIX
1111 if (*start != REGISTER_PREFIX)
01cfc07f 1112 return NULL;
c19d1205
ZW
1113 start++;
1114#endif
1115#ifdef OPTIONAL_REGISTER_PREFIX
1116 if (*start == OPTIONAL_REGISTER_PREFIX)
1117 start++;
1118#endif
b99bd4ef 1119
c19d1205
ZW
1120 p = start;
1121 if (!ISALPHA (*p) || !is_name_beginner (*p))
1122 return NULL;
b99bd4ef 1123
c19d1205
ZW
1124 do
1125 p++;
1126 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1127
1128 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1129
1130 if (!reg)
1131 return NULL;
1132
1133 *ccp = p;
1134 return reg;
b99bd4ef
NC
1135}
1136
1137static int
dcbf9037
JB
1138arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1139 enum arm_reg_type type)
b99bd4ef 1140{
c19d1205
ZW
1141 /* Alternative syntaxes are accepted for a few register classes. */
1142 switch (type)
1143 {
1144 case REG_TYPE_MVF:
1145 case REG_TYPE_MVD:
1146 case REG_TYPE_MVFX:
1147 case REG_TYPE_MVDX:
1148 /* Generic coprocessor register names are allowed for these. */
79134647 1149 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1150 return reg->number;
1151 break;
69b97547 1152
c19d1205
ZW
1153 case REG_TYPE_CP:
1154 /* For backward compatibility, a bare number is valid here. */
1155 {
1156 unsigned long processor = strtoul (start, ccp, 10);
1157 if (*ccp != start && processor <= 15)
1158 return processor;
1159 }
6057a28f 1160
c19d1205
ZW
1161 case REG_TYPE_MMXWC:
1162 /* WC includes WCG. ??? I'm not sure this is true for all
1163 instructions that take WC registers. */
79134647 1164 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1165 return reg->number;
6057a28f 1166 break;
c19d1205 1167
6057a28f 1168 default:
c19d1205 1169 break;
6057a28f
NC
1170 }
1171
dcbf9037
JB
1172 return FAIL;
1173}
1174
1175/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1176 return value is the register number or FAIL. */
1177
1178static int
1179arm_reg_parse (char **ccp, enum arm_reg_type type)
1180{
1181 char *start = *ccp;
1182 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1183 int ret;
1184
1185 /* Do not allow a scalar (reg+index) to parse as a register. */
1186 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1187 return FAIL;
1188
1189 if (reg && reg->type == type)
1190 return reg->number;
1191
1192 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1193 return ret;
1194
c19d1205
ZW
1195 *ccp = start;
1196 return FAIL;
1197}
69b97547 1198
dcbf9037
JB
1199/* Parse a Neon type specifier. *STR should point at the leading '.'
1200 character. Does no verification at this stage that the type fits the opcode
1201 properly. E.g.,
1202
1203 .i32.i32.s16
1204 .s32.f32
1205 .u16
1206
1207 Can all be legally parsed by this function.
1208
1209 Fills in neon_type struct pointer with parsed information, and updates STR
1210 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1211 type, FAIL if not. */
1212
1213static int
1214parse_neon_type (struct neon_type *type, char **str)
1215{
1216 char *ptr = *str;
1217
1218 if (type)
1219 type->elems = 0;
1220
1221 while (type->elems < NEON_MAX_TYPE_ELS)
1222 {
1223 enum neon_el_type thistype = NT_untyped;
1224 unsigned thissize = -1u;
1225
1226 if (*ptr != '.')
1227 break;
1228
1229 ptr++;
1230
1231 /* Just a size without an explicit type. */
1232 if (ISDIGIT (*ptr))
1233 goto parsesize;
1234
1235 switch (TOLOWER (*ptr))
1236 {
1237 case 'i': thistype = NT_integer; break;
1238 case 'f': thistype = NT_float; break;
1239 case 'p': thistype = NT_poly; break;
1240 case 's': thistype = NT_signed; break;
1241 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1242 case 'd':
1243 thistype = NT_float;
1244 thissize = 64;
1245 ptr++;
1246 goto done;
dcbf9037
JB
1247 default:
1248 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1249 return FAIL;
1250 }
1251
1252 ptr++;
1253
1254 /* .f is an abbreviation for .f32. */
1255 if (thistype == NT_float && !ISDIGIT (*ptr))
1256 thissize = 32;
1257 else
1258 {
1259 parsesize:
1260 thissize = strtoul (ptr, &ptr, 10);
1261
1262 if (thissize != 8 && thissize != 16 && thissize != 32
1263 && thissize != 64)
1264 {
1265 as_bad (_("bad size %d in type specifier"), thissize);
1266 return FAIL;
1267 }
1268 }
1269
037e8744 1270 done:
dcbf9037
JB
1271 if (type)
1272 {
1273 type->el[type->elems].type = thistype;
1274 type->el[type->elems].size = thissize;
1275 type->elems++;
1276 }
1277 }
1278
1279 /* Empty/missing type is not a successful parse. */
1280 if (type->elems == 0)
1281 return FAIL;
1282
1283 *str = ptr;
1284
1285 return SUCCESS;
1286}
1287
1288/* Errors may be set multiple times during parsing or bit encoding
1289 (particularly in the Neon bits), but usually the earliest error which is set
1290 will be the most meaningful. Avoid overwriting it with later (cascading)
1291 errors by calling this function. */
1292
1293static void
1294first_error (const char *err)
1295{
1296 if (!inst.error)
1297 inst.error = err;
1298}
1299
1300/* Parse a single type, e.g. ".s32", leading period included. */
1301static int
1302parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1303{
1304 char *str = *ccp;
1305 struct neon_type optype;
1306
1307 if (*str == '.')
1308 {
1309 if (parse_neon_type (&optype, &str) == SUCCESS)
1310 {
1311 if (optype.elems == 1)
1312 *vectype = optype.el[0];
1313 else
1314 {
1315 first_error (_("only one type should be specified for operand"));
1316 return FAIL;
1317 }
1318 }
1319 else
1320 {
1321 first_error (_("vector type expected"));
1322 return FAIL;
1323 }
1324 }
1325 else
1326 return FAIL;
5f4273c7 1327
dcbf9037 1328 *ccp = str;
5f4273c7 1329
dcbf9037
JB
1330 return SUCCESS;
1331}
1332
1333/* Special meanings for indices (which have a range of 0-7), which will fit into
1334 a 4-bit integer. */
1335
1336#define NEON_ALL_LANES 15
1337#define NEON_INTERLEAVE_LANES 14
1338
1339/* Parse either a register or a scalar, with an optional type. Return the
1340 register number, and optionally fill in the actual type of the register
1341 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1342 type/index information in *TYPEINFO. */
1343
1344static int
1345parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1346 enum arm_reg_type *rtype,
1347 struct neon_typed_alias *typeinfo)
1348{
1349 char *str = *ccp;
1350 struct reg_entry *reg = arm_reg_parse_multi (&str);
1351 struct neon_typed_alias atype;
1352 struct neon_type_el parsetype;
1353
1354 atype.defined = 0;
1355 atype.index = -1;
1356 atype.eltype.type = NT_invtype;
1357 atype.eltype.size = -1;
1358
1359 /* Try alternate syntax for some types of register. Note these are mutually
1360 exclusive with the Neon syntax extensions. */
1361 if (reg == NULL)
1362 {
1363 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1364 if (altreg != FAIL)
1365 *ccp = str;
1366 if (typeinfo)
1367 *typeinfo = atype;
1368 return altreg;
1369 }
1370
037e8744
JB
1371 /* Undo polymorphism when a set of register types may be accepted. */
1372 if ((type == REG_TYPE_NDQ
1373 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1374 || (type == REG_TYPE_VFSD
1375 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1376 || (type == REG_TYPE_NSDQ
1377 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1378 || reg->type == REG_TYPE_NQ))
1379 || (type == REG_TYPE_MMXWC
1380 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1381 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1382
1383 if (type != reg->type)
1384 return FAIL;
1385
1386 if (reg->neon)
1387 atype = *reg->neon;
5f4273c7 1388
dcbf9037
JB
1389 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1390 {
1391 if ((atype.defined & NTA_HASTYPE) != 0)
1392 {
1393 first_error (_("can't redefine type for operand"));
1394 return FAIL;
1395 }
1396 atype.defined |= NTA_HASTYPE;
1397 atype.eltype = parsetype;
1398 }
5f4273c7 1399
dcbf9037
JB
1400 if (skip_past_char (&str, '[') == SUCCESS)
1401 {
1402 if (type != REG_TYPE_VFD)
1403 {
1404 first_error (_("only D registers may be indexed"));
1405 return FAIL;
1406 }
5f4273c7 1407
dcbf9037
JB
1408 if ((atype.defined & NTA_HASINDEX) != 0)
1409 {
1410 first_error (_("can't change index for operand"));
1411 return FAIL;
1412 }
1413
1414 atype.defined |= NTA_HASINDEX;
1415
1416 if (skip_past_char (&str, ']') == SUCCESS)
1417 atype.index = NEON_ALL_LANES;
1418 else
1419 {
1420 expressionS exp;
1421
1422 my_get_expression (&exp, &str, GE_NO_PREFIX);
1423
1424 if (exp.X_op != O_constant)
1425 {
1426 first_error (_("constant expression required"));
1427 return FAIL;
1428 }
1429
1430 if (skip_past_char (&str, ']') == FAIL)
1431 return FAIL;
1432
1433 atype.index = exp.X_add_number;
1434 }
1435 }
5f4273c7 1436
dcbf9037
JB
1437 if (typeinfo)
1438 *typeinfo = atype;
5f4273c7 1439
dcbf9037
JB
1440 if (rtype)
1441 *rtype = type;
5f4273c7 1442
dcbf9037 1443 *ccp = str;
5f4273c7 1444
dcbf9037
JB
1445 return reg->number;
1446}
1447
1448/* Like arm_reg_parse, but allow allow the following extra features:
1449 - If RTYPE is non-zero, return the (possibly restricted) type of the
1450 register (e.g. Neon double or quad reg when either has been requested).
1451 - If this is a Neon vector type with additional type information, fill
1452 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1453 This function will fault on encountering a scalar. */
dcbf9037
JB
1454
1455static int
1456arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1457 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1458{
1459 struct neon_typed_alias atype;
1460 char *str = *ccp;
1461 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1462
1463 if (reg == FAIL)
1464 return FAIL;
1465
1466 /* Do not allow a scalar (reg+index) to parse as a register. */
1467 if ((atype.defined & NTA_HASINDEX) != 0)
1468 {
1469 first_error (_("register operand expected, but got scalar"));
1470 return FAIL;
1471 }
1472
1473 if (vectype)
1474 *vectype = atype.eltype;
1475
1476 *ccp = str;
1477
1478 return reg;
1479}
1480
1481#define NEON_SCALAR_REG(X) ((X) >> 4)
1482#define NEON_SCALAR_INDEX(X) ((X) & 15)
1483
5287ad62
JB
1484/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1485 have enough information to be able to do a good job bounds-checking. So, we
1486 just do easy checks here, and do further checks later. */
1487
1488static int
dcbf9037 1489parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1490{
dcbf9037 1491 int reg;
5287ad62 1492 char *str = *ccp;
dcbf9037 1493 struct neon_typed_alias atype;
5f4273c7 1494
dcbf9037 1495 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1496
dcbf9037 1497 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1498 return FAIL;
5f4273c7 1499
dcbf9037 1500 if (atype.index == NEON_ALL_LANES)
5287ad62 1501 {
dcbf9037 1502 first_error (_("scalar must have an index"));
5287ad62
JB
1503 return FAIL;
1504 }
dcbf9037 1505 else if (atype.index >= 64 / elsize)
5287ad62 1506 {
dcbf9037 1507 first_error (_("scalar index out of range"));
5287ad62
JB
1508 return FAIL;
1509 }
5f4273c7 1510
dcbf9037
JB
1511 if (type)
1512 *type = atype.eltype;
5f4273c7 1513
5287ad62 1514 *ccp = str;
5f4273c7 1515
dcbf9037 1516 return reg * 16 + atype.index;
5287ad62
JB
1517}
1518
c19d1205 1519/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1520
c19d1205
ZW
1521static long
1522parse_reg_list (char ** strp)
1523{
1524 char * str = * strp;
1525 long range = 0;
1526 int another_range;
a737bd4d 1527
c19d1205
ZW
1528 /* We come back here if we get ranges concatenated by '+' or '|'. */
1529 do
6057a28f 1530 {
c19d1205 1531 another_range = 0;
a737bd4d 1532
c19d1205
ZW
1533 if (*str == '{')
1534 {
1535 int in_range = 0;
1536 int cur_reg = -1;
a737bd4d 1537
c19d1205
ZW
1538 str++;
1539 do
1540 {
1541 int reg;
6057a28f 1542
dcbf9037 1543 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1544 {
dcbf9037 1545 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1546 return FAIL;
1547 }
a737bd4d 1548
c19d1205
ZW
1549 if (in_range)
1550 {
1551 int i;
a737bd4d 1552
c19d1205
ZW
1553 if (reg <= cur_reg)
1554 {
dcbf9037 1555 first_error (_("bad range in register list"));
c19d1205
ZW
1556 return FAIL;
1557 }
40a18ebd 1558
c19d1205
ZW
1559 for (i = cur_reg + 1; i < reg; i++)
1560 {
1561 if (range & (1 << i))
1562 as_tsktsk
1563 (_("Warning: duplicated register (r%d) in register list"),
1564 i);
1565 else
1566 range |= 1 << i;
1567 }
1568 in_range = 0;
1569 }
a737bd4d 1570
c19d1205
ZW
1571 if (range & (1 << reg))
1572 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1573 reg);
1574 else if (reg <= cur_reg)
1575 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1576
c19d1205
ZW
1577 range |= 1 << reg;
1578 cur_reg = reg;
1579 }
1580 while (skip_past_comma (&str) != FAIL
1581 || (in_range = 1, *str++ == '-'));
1582 str--;
a737bd4d 1583
c19d1205
ZW
1584 if (*str++ != '}')
1585 {
dcbf9037 1586 first_error (_("missing `}'"));
c19d1205
ZW
1587 return FAIL;
1588 }
1589 }
1590 else
1591 {
91d6fa6a 1592 expressionS exp;
40a18ebd 1593
91d6fa6a 1594 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1595 return FAIL;
40a18ebd 1596
91d6fa6a 1597 if (exp.X_op == O_constant)
c19d1205 1598 {
91d6fa6a
NC
1599 if (exp.X_add_number
1600 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1601 {
1602 inst.error = _("invalid register mask");
1603 return FAIL;
1604 }
a737bd4d 1605
91d6fa6a 1606 if ((range & exp.X_add_number) != 0)
c19d1205 1607 {
91d6fa6a 1608 int regno = range & exp.X_add_number;
a737bd4d 1609
c19d1205
ZW
1610 regno &= -regno;
1611 regno = (1 << regno) - 1;
1612 as_tsktsk
1613 (_("Warning: duplicated register (r%d) in register list"),
1614 regno);
1615 }
a737bd4d 1616
91d6fa6a 1617 range |= exp.X_add_number;
c19d1205
ZW
1618 }
1619 else
1620 {
1621 if (inst.reloc.type != 0)
1622 {
1623 inst.error = _("expression too complex");
1624 return FAIL;
1625 }
a737bd4d 1626
91d6fa6a 1627 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1628 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1629 inst.reloc.pc_rel = 0;
1630 }
1631 }
a737bd4d 1632
c19d1205
ZW
1633 if (*str == '|' || *str == '+')
1634 {
1635 str++;
1636 another_range = 1;
1637 }
a737bd4d 1638 }
c19d1205 1639 while (another_range);
a737bd4d 1640
c19d1205
ZW
1641 *strp = str;
1642 return range;
a737bd4d
NC
1643}
1644
5287ad62
JB
1645/* Types of registers in a list. */
1646
1647enum reg_list_els
1648{
1649 REGLIST_VFP_S,
1650 REGLIST_VFP_D,
1651 REGLIST_NEON_D
1652};
1653
c19d1205
ZW
1654/* Parse a VFP register list. If the string is invalid return FAIL.
1655 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1656 register. Parses registers of type ETYPE.
1657 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1658 - Q registers can be used to specify pairs of D registers
1659 - { } can be omitted from around a singleton register list
1660 FIXME: This is not implemented, as it would require backtracking in
1661 some cases, e.g.:
1662 vtbl.8 d3,d4,d5
1663 This could be done (the meaning isn't really ambiguous), but doesn't
1664 fit in well with the current parsing framework.
dcbf9037
JB
1665 - 32 D registers may be used (also true for VFPv3).
1666 FIXME: Types are ignored in these register lists, which is probably a
1667 bug. */
6057a28f 1668
c19d1205 1669static int
037e8744 1670parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1671{
037e8744 1672 char *str = *ccp;
c19d1205
ZW
1673 int base_reg;
1674 int new_base;
21d799b5 1675 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1676 int max_regs = 0;
c19d1205
ZW
1677 int count = 0;
1678 int warned = 0;
1679 unsigned long mask = 0;
a737bd4d 1680 int i;
6057a28f 1681
037e8744 1682 if (*str != '{')
5287ad62
JB
1683 {
1684 inst.error = _("expecting {");
1685 return FAIL;
1686 }
6057a28f 1687
037e8744 1688 str++;
6057a28f 1689
5287ad62 1690 switch (etype)
c19d1205 1691 {
5287ad62 1692 case REGLIST_VFP_S:
c19d1205
ZW
1693 regtype = REG_TYPE_VFS;
1694 max_regs = 32;
5287ad62 1695 break;
5f4273c7 1696
5287ad62
JB
1697 case REGLIST_VFP_D:
1698 regtype = REG_TYPE_VFD;
b7fc2769 1699 break;
5f4273c7 1700
b7fc2769
JB
1701 case REGLIST_NEON_D:
1702 regtype = REG_TYPE_NDQ;
1703 break;
1704 }
1705
1706 if (etype != REGLIST_VFP_S)
1707 {
b1cc4aeb
PB
1708 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1709 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1710 {
1711 max_regs = 32;
1712 if (thumb_mode)
1713 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1714 fpu_vfp_ext_d32);
5287ad62
JB
1715 else
1716 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1717 fpu_vfp_ext_d32);
5287ad62
JB
1718 }
1719 else
1720 max_regs = 16;
c19d1205 1721 }
6057a28f 1722
c19d1205 1723 base_reg = max_regs;
a737bd4d 1724
c19d1205
ZW
1725 do
1726 {
5287ad62 1727 int setmask = 1, addregs = 1;
dcbf9037 1728
037e8744 1729 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1730
c19d1205 1731 if (new_base == FAIL)
a737bd4d 1732 {
dcbf9037 1733 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1734 return FAIL;
1735 }
5f4273c7 1736
b7fc2769
JB
1737 if (new_base >= max_regs)
1738 {
1739 first_error (_("register out of range in list"));
1740 return FAIL;
1741 }
5f4273c7 1742
5287ad62
JB
1743 /* Note: a value of 2 * n is returned for the register Q<n>. */
1744 if (regtype == REG_TYPE_NQ)
1745 {
1746 setmask = 3;
1747 addregs = 2;
1748 }
1749
c19d1205
ZW
1750 if (new_base < base_reg)
1751 base_reg = new_base;
a737bd4d 1752
5287ad62 1753 if (mask & (setmask << new_base))
c19d1205 1754 {
dcbf9037 1755 first_error (_("invalid register list"));
c19d1205 1756 return FAIL;
a737bd4d 1757 }
a737bd4d 1758
c19d1205
ZW
1759 if ((mask >> new_base) != 0 && ! warned)
1760 {
1761 as_tsktsk (_("register list not in ascending order"));
1762 warned = 1;
1763 }
0bbf2aa4 1764
5287ad62
JB
1765 mask |= setmask << new_base;
1766 count += addregs;
0bbf2aa4 1767
037e8744 1768 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1769 {
1770 int high_range;
0bbf2aa4 1771
037e8744 1772 str++;
0bbf2aa4 1773
037e8744 1774 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1775 == FAIL)
c19d1205
ZW
1776 {
1777 inst.error = gettext (reg_expected_msgs[regtype]);
1778 return FAIL;
1779 }
0bbf2aa4 1780
b7fc2769
JB
1781 if (high_range >= max_regs)
1782 {
1783 first_error (_("register out of range in list"));
1784 return FAIL;
1785 }
1786
5287ad62
JB
1787 if (regtype == REG_TYPE_NQ)
1788 high_range = high_range + 1;
1789
c19d1205
ZW
1790 if (high_range <= new_base)
1791 {
1792 inst.error = _("register range not in ascending order");
1793 return FAIL;
1794 }
0bbf2aa4 1795
5287ad62 1796 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1797 {
5287ad62 1798 if (mask & (setmask << new_base))
0bbf2aa4 1799 {
c19d1205
ZW
1800 inst.error = _("invalid register list");
1801 return FAIL;
0bbf2aa4 1802 }
c19d1205 1803
5287ad62
JB
1804 mask |= setmask << new_base;
1805 count += addregs;
0bbf2aa4 1806 }
0bbf2aa4 1807 }
0bbf2aa4 1808 }
037e8744 1809 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1810
037e8744 1811 str++;
0bbf2aa4 1812
c19d1205
ZW
1813 /* Sanity check -- should have raised a parse error above. */
1814 if (count == 0 || count > max_regs)
1815 abort ();
1816
1817 *pbase = base_reg;
1818
1819 /* Final test -- the registers must be consecutive. */
1820 mask >>= base_reg;
1821 for (i = 0; i < count; i++)
1822 {
1823 if ((mask & (1u << i)) == 0)
1824 {
1825 inst.error = _("non-contiguous register range");
1826 return FAIL;
1827 }
1828 }
1829
037e8744
JB
1830 *ccp = str;
1831
c19d1205 1832 return count;
b99bd4ef
NC
1833}
1834
dcbf9037
JB
1835/* True if two alias types are the same. */
1836
c921be7d 1837static bfd_boolean
dcbf9037
JB
1838neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1839{
1840 if (!a && !b)
c921be7d 1841 return TRUE;
5f4273c7 1842
dcbf9037 1843 if (!a || !b)
c921be7d 1844 return FALSE;
dcbf9037
JB
1845
1846 if (a->defined != b->defined)
c921be7d 1847 return FALSE;
5f4273c7 1848
dcbf9037
JB
1849 if ((a->defined & NTA_HASTYPE) != 0
1850 && (a->eltype.type != b->eltype.type
1851 || a->eltype.size != b->eltype.size))
c921be7d 1852 return FALSE;
dcbf9037
JB
1853
1854 if ((a->defined & NTA_HASINDEX) != 0
1855 && (a->index != b->index))
c921be7d 1856 return FALSE;
5f4273c7 1857
c921be7d 1858 return TRUE;
dcbf9037
JB
1859}
1860
5287ad62
JB
1861/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1862 The base register is put in *PBASE.
dcbf9037 1863 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1864 the return value.
1865 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1866 Bits [6:5] encode the list length (minus one).
1867 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1868
5287ad62 1869#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1870#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1871#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1872
1873static int
dcbf9037
JB
1874parse_neon_el_struct_list (char **str, unsigned *pbase,
1875 struct neon_type_el *eltype)
5287ad62
JB
1876{
1877 char *ptr = *str;
1878 int base_reg = -1;
1879 int reg_incr = -1;
1880 int count = 0;
1881 int lane = -1;
1882 int leading_brace = 0;
1883 enum arm_reg_type rtype = REG_TYPE_NDQ;
1884 int addregs = 1;
20203fb9
NC
1885 const char *const incr_error = _("register stride must be 1 or 2");
1886 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1887 struct neon_typed_alias firsttype;
5f4273c7 1888
5287ad62
JB
1889 if (skip_past_char (&ptr, '{') == SUCCESS)
1890 leading_brace = 1;
5f4273c7 1891
5287ad62
JB
1892 do
1893 {
dcbf9037
JB
1894 struct neon_typed_alias atype;
1895 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1896
5287ad62
JB
1897 if (getreg == FAIL)
1898 {
dcbf9037 1899 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1900 return FAIL;
1901 }
5f4273c7 1902
5287ad62
JB
1903 if (base_reg == -1)
1904 {
1905 base_reg = getreg;
1906 if (rtype == REG_TYPE_NQ)
1907 {
1908 reg_incr = 1;
1909 addregs = 2;
1910 }
dcbf9037 1911 firsttype = atype;
5287ad62
JB
1912 }
1913 else if (reg_incr == -1)
1914 {
1915 reg_incr = getreg - base_reg;
1916 if (reg_incr < 1 || reg_incr > 2)
1917 {
dcbf9037 1918 first_error (_(incr_error));
5287ad62
JB
1919 return FAIL;
1920 }
1921 }
1922 else if (getreg != base_reg + reg_incr * count)
1923 {
dcbf9037
JB
1924 first_error (_(incr_error));
1925 return FAIL;
1926 }
1927
c921be7d 1928 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1929 {
1930 first_error (_(type_error));
5287ad62
JB
1931 return FAIL;
1932 }
5f4273c7 1933
5287ad62
JB
1934 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1935 modes. */
1936 if (ptr[0] == '-')
1937 {
dcbf9037 1938 struct neon_typed_alias htype;
5287ad62
JB
1939 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1940 if (lane == -1)
1941 lane = NEON_INTERLEAVE_LANES;
1942 else if (lane != NEON_INTERLEAVE_LANES)
1943 {
dcbf9037 1944 first_error (_(type_error));
5287ad62
JB
1945 return FAIL;
1946 }
1947 if (reg_incr == -1)
1948 reg_incr = 1;
1949 else if (reg_incr != 1)
1950 {
dcbf9037 1951 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1952 return FAIL;
1953 }
1954 ptr++;
dcbf9037 1955 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1956 if (hireg == FAIL)
1957 {
dcbf9037
JB
1958 first_error (_(reg_expected_msgs[rtype]));
1959 return FAIL;
1960 }
c921be7d 1961 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1962 {
1963 first_error (_(type_error));
5287ad62
JB
1964 return FAIL;
1965 }
1966 count += hireg + dregs - getreg;
1967 continue;
1968 }
5f4273c7 1969
5287ad62
JB
1970 /* If we're using Q registers, we can't use [] or [n] syntax. */
1971 if (rtype == REG_TYPE_NQ)
1972 {
1973 count += 2;
1974 continue;
1975 }
5f4273c7 1976
dcbf9037 1977 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1978 {
dcbf9037
JB
1979 if (lane == -1)
1980 lane = atype.index;
1981 else if (lane != atype.index)
5287ad62 1982 {
dcbf9037
JB
1983 first_error (_(type_error));
1984 return FAIL;
5287ad62
JB
1985 }
1986 }
1987 else if (lane == -1)
1988 lane = NEON_INTERLEAVE_LANES;
1989 else if (lane != NEON_INTERLEAVE_LANES)
1990 {
dcbf9037 1991 first_error (_(type_error));
5287ad62
JB
1992 return FAIL;
1993 }
1994 count++;
1995 }
1996 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 1997
5287ad62
JB
1998 /* No lane set by [x]. We must be interleaving structures. */
1999 if (lane == -1)
2000 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2001
5287ad62
JB
2002 /* Sanity check. */
2003 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2004 || (count > 1 && reg_incr == -1))
2005 {
dcbf9037 2006 first_error (_("error parsing element/structure list"));
5287ad62
JB
2007 return FAIL;
2008 }
2009
2010 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2011 {
dcbf9037 2012 first_error (_("expected }"));
5287ad62
JB
2013 return FAIL;
2014 }
5f4273c7 2015
5287ad62
JB
2016 if (reg_incr == -1)
2017 reg_incr = 1;
2018
dcbf9037
JB
2019 if (eltype)
2020 *eltype = firsttype.eltype;
2021
5287ad62
JB
2022 *pbase = base_reg;
2023 *str = ptr;
5f4273c7 2024
5287ad62
JB
2025 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2026}
2027
c19d1205
ZW
2028/* Parse an explicit relocation suffix on an expression. This is
2029 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2030 arm_reloc_hsh contains no entries, so this function can only
2031 succeed if there is no () after the word. Returns -1 on error,
2032 BFD_RELOC_UNUSED if there wasn't any suffix. */
2033static int
2034parse_reloc (char **str)
b99bd4ef 2035{
c19d1205
ZW
2036 struct reloc_entry *r;
2037 char *p, *q;
b99bd4ef 2038
c19d1205
ZW
2039 if (**str != '(')
2040 return BFD_RELOC_UNUSED;
b99bd4ef 2041
c19d1205
ZW
2042 p = *str + 1;
2043 q = p;
2044
2045 while (*q && *q != ')' && *q != ',')
2046 q++;
2047 if (*q != ')')
2048 return -1;
2049
21d799b5
NC
2050 if ((r = (struct reloc_entry *)
2051 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2052 return -1;
2053
2054 *str = q + 1;
2055 return r->reloc;
b99bd4ef
NC
2056}
2057
c19d1205
ZW
2058/* Directives: register aliases. */
2059
dcbf9037 2060static struct reg_entry *
c19d1205 2061insert_reg_alias (char *str, int number, int type)
b99bd4ef 2062{
d3ce72d0 2063 struct reg_entry *new_reg;
c19d1205 2064 const char *name;
b99bd4ef 2065
d3ce72d0 2066 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2067 {
d3ce72d0 2068 if (new_reg->builtin)
c19d1205 2069 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2070
c19d1205
ZW
2071 /* Only warn about a redefinition if it's not defined as the
2072 same register. */
d3ce72d0 2073 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2074 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2075
d929913e 2076 return NULL;
c19d1205 2077 }
b99bd4ef 2078
c19d1205 2079 name = xstrdup (str);
d3ce72d0 2080 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2081
d3ce72d0
NC
2082 new_reg->name = name;
2083 new_reg->number = number;
2084 new_reg->type = type;
2085 new_reg->builtin = FALSE;
2086 new_reg->neon = NULL;
b99bd4ef 2087
d3ce72d0 2088 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2089 abort ();
5f4273c7 2090
d3ce72d0 2091 return new_reg;
dcbf9037
JB
2092}
2093
2094static void
2095insert_neon_reg_alias (char *str, int number, int type,
2096 struct neon_typed_alias *atype)
2097{
2098 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2099
dcbf9037
JB
2100 if (!reg)
2101 {
2102 first_error (_("attempt to redefine typed alias"));
2103 return;
2104 }
5f4273c7 2105
dcbf9037
JB
2106 if (atype)
2107 {
21d799b5
NC
2108 reg->neon = (struct neon_typed_alias *)
2109 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2110 *reg->neon = *atype;
2111 }
c19d1205 2112}
b99bd4ef 2113
c19d1205 2114/* Look for the .req directive. This is of the form:
b99bd4ef 2115
c19d1205 2116 new_register_name .req existing_register_name
b99bd4ef 2117
c19d1205 2118 If we find one, or if it looks sufficiently like one that we want to
d929913e 2119 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2120
d929913e 2121static bfd_boolean
c19d1205
ZW
2122create_register_alias (char * newname, char *p)
2123{
2124 struct reg_entry *old;
2125 char *oldname, *nbuf;
2126 size_t nlen;
b99bd4ef 2127
c19d1205
ZW
2128 /* The input scrubber ensures that whitespace after the mnemonic is
2129 collapsed to single spaces. */
2130 oldname = p;
2131 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2132 return FALSE;
b99bd4ef 2133
c19d1205
ZW
2134 oldname += 6;
2135 if (*oldname == '\0')
d929913e 2136 return FALSE;
b99bd4ef 2137
21d799b5 2138 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2139 if (!old)
b99bd4ef 2140 {
c19d1205 2141 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2142 return TRUE;
b99bd4ef
NC
2143 }
2144
c19d1205
ZW
2145 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2146 the desired alias name, and p points to its end. If not, then
2147 the desired alias name is in the global original_case_string. */
2148#ifdef TC_CASE_SENSITIVE
2149 nlen = p - newname;
2150#else
2151 newname = original_case_string;
2152 nlen = strlen (newname);
2153#endif
b99bd4ef 2154
21d799b5 2155 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2156 memcpy (nbuf, newname, nlen);
2157 nbuf[nlen] = '\0';
b99bd4ef 2158
c19d1205
ZW
2159 /* Create aliases under the new name as stated; an all-lowercase
2160 version of the new name; and an all-uppercase version of the new
2161 name. */
d929913e
NC
2162 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2163 {
2164 for (p = nbuf; *p; p++)
2165 *p = TOUPPER (*p);
c19d1205 2166
d929913e
NC
2167 if (strncmp (nbuf, newname, nlen))
2168 {
2169 /* If this attempt to create an additional alias fails, do not bother
2170 trying to create the all-lower case alias. We will fail and issue
2171 a second, duplicate error message. This situation arises when the
2172 programmer does something like:
2173 foo .req r0
2174 Foo .req r1
2175 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2176 the artificial FOO alias because it has already been created by the
d929913e
NC
2177 first .req. */
2178 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2179 return TRUE;
2180 }
c19d1205 2181
d929913e
NC
2182 for (p = nbuf; *p; p++)
2183 *p = TOLOWER (*p);
c19d1205 2184
d929913e
NC
2185 if (strncmp (nbuf, newname, nlen))
2186 insert_reg_alias (nbuf, old->number, old->type);
2187 }
c19d1205 2188
d929913e 2189 return TRUE;
b99bd4ef
NC
2190}
2191
dcbf9037
JB
2192/* Create a Neon typed/indexed register alias using directives, e.g.:
2193 X .dn d5.s32[1]
2194 Y .qn 6.s16
2195 Z .dn d7
2196 T .dn Z[0]
2197 These typed registers can be used instead of the types specified after the
2198 Neon mnemonic, so long as all operands given have types. Types can also be
2199 specified directly, e.g.:
5f4273c7 2200 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2201
c921be7d 2202static bfd_boolean
dcbf9037
JB
2203create_neon_reg_alias (char *newname, char *p)
2204{
2205 enum arm_reg_type basetype;
2206 struct reg_entry *basereg;
2207 struct reg_entry mybasereg;
2208 struct neon_type ntype;
2209 struct neon_typed_alias typeinfo;
2210 char *namebuf, *nameend;
2211 int namelen;
5f4273c7 2212
dcbf9037
JB
2213 typeinfo.defined = 0;
2214 typeinfo.eltype.type = NT_invtype;
2215 typeinfo.eltype.size = -1;
2216 typeinfo.index = -1;
5f4273c7 2217
dcbf9037 2218 nameend = p;
5f4273c7 2219
dcbf9037
JB
2220 if (strncmp (p, " .dn ", 5) == 0)
2221 basetype = REG_TYPE_VFD;
2222 else if (strncmp (p, " .qn ", 5) == 0)
2223 basetype = REG_TYPE_NQ;
2224 else
c921be7d 2225 return FALSE;
5f4273c7 2226
dcbf9037 2227 p += 5;
5f4273c7 2228
dcbf9037 2229 if (*p == '\0')
c921be7d 2230 return FALSE;
5f4273c7 2231
dcbf9037
JB
2232 basereg = arm_reg_parse_multi (&p);
2233
2234 if (basereg && basereg->type != basetype)
2235 {
2236 as_bad (_("bad type for register"));
c921be7d 2237 return FALSE;
dcbf9037
JB
2238 }
2239
2240 if (basereg == NULL)
2241 {
2242 expressionS exp;
2243 /* Try parsing as an integer. */
2244 my_get_expression (&exp, &p, GE_NO_PREFIX);
2245 if (exp.X_op != O_constant)
2246 {
2247 as_bad (_("expression must be constant"));
c921be7d 2248 return FALSE;
dcbf9037
JB
2249 }
2250 basereg = &mybasereg;
2251 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2252 : exp.X_add_number;
2253 basereg->neon = 0;
2254 }
2255
2256 if (basereg->neon)
2257 typeinfo = *basereg->neon;
2258
2259 if (parse_neon_type (&ntype, &p) == SUCCESS)
2260 {
2261 /* We got a type. */
2262 if (typeinfo.defined & NTA_HASTYPE)
2263 {
2264 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2265 return FALSE;
dcbf9037 2266 }
5f4273c7 2267
dcbf9037
JB
2268 typeinfo.defined |= NTA_HASTYPE;
2269 if (ntype.elems != 1)
2270 {
2271 as_bad (_("you must specify a single type only"));
c921be7d 2272 return FALSE;
dcbf9037
JB
2273 }
2274 typeinfo.eltype = ntype.el[0];
2275 }
5f4273c7 2276
dcbf9037
JB
2277 if (skip_past_char (&p, '[') == SUCCESS)
2278 {
2279 expressionS exp;
2280 /* We got a scalar index. */
5f4273c7 2281
dcbf9037
JB
2282 if (typeinfo.defined & NTA_HASINDEX)
2283 {
2284 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2285 return FALSE;
dcbf9037 2286 }
5f4273c7 2287
dcbf9037 2288 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2289
dcbf9037
JB
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("scalar index must be constant"));
c921be7d 2293 return FALSE;
dcbf9037 2294 }
5f4273c7 2295
dcbf9037
JB
2296 typeinfo.defined |= NTA_HASINDEX;
2297 typeinfo.index = exp.X_add_number;
5f4273c7 2298
dcbf9037
JB
2299 if (skip_past_char (&p, ']') == FAIL)
2300 {
2301 as_bad (_("expecting ]"));
c921be7d 2302 return FALSE;
dcbf9037
JB
2303 }
2304 }
2305
2306 namelen = nameend - newname;
21d799b5 2307 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2308 strncpy (namebuf, newname, namelen);
2309 namebuf[namelen] = '\0';
5f4273c7 2310
dcbf9037
JB
2311 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2312 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2313
dcbf9037
JB
2314 /* Insert name in all uppercase. */
2315 for (p = namebuf; *p; p++)
2316 *p = TOUPPER (*p);
5f4273c7 2317
dcbf9037
JB
2318 if (strncmp (namebuf, newname, namelen))
2319 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2320 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2321
dcbf9037
JB
2322 /* Insert name in all lowercase. */
2323 for (p = namebuf; *p; p++)
2324 *p = TOLOWER (*p);
5f4273c7 2325
dcbf9037
JB
2326 if (strncmp (namebuf, newname, namelen))
2327 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2328 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2329
c921be7d 2330 return TRUE;
dcbf9037
JB
2331}
2332
c19d1205
ZW
2333/* Should never be called, as .req goes between the alias and the
2334 register name, not at the beginning of the line. */
c921be7d 2335
b99bd4ef 2336static void
c19d1205 2337s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2338{
c19d1205
ZW
2339 as_bad (_("invalid syntax for .req directive"));
2340}
b99bd4ef 2341
dcbf9037
JB
2342static void
2343s_dn (int a ATTRIBUTE_UNUSED)
2344{
2345 as_bad (_("invalid syntax for .dn directive"));
2346}
2347
2348static void
2349s_qn (int a ATTRIBUTE_UNUSED)
2350{
2351 as_bad (_("invalid syntax for .qn directive"));
2352}
2353
c19d1205
ZW
2354/* The .unreq directive deletes an alias which was previously defined
2355 by .req. For example:
b99bd4ef 2356
c19d1205
ZW
2357 my_alias .req r11
2358 .unreq my_alias */
b99bd4ef
NC
2359
2360static void
c19d1205 2361s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2362{
c19d1205
ZW
2363 char * name;
2364 char saved_char;
b99bd4ef 2365
c19d1205
ZW
2366 name = input_line_pointer;
2367
2368 while (*input_line_pointer != 0
2369 && *input_line_pointer != ' '
2370 && *input_line_pointer != '\n')
2371 ++input_line_pointer;
2372
2373 saved_char = *input_line_pointer;
2374 *input_line_pointer = 0;
2375
2376 if (!*name)
2377 as_bad (_("invalid syntax for .unreq directive"));
2378 else
2379 {
21d799b5
NC
2380 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2381 name);
c19d1205
ZW
2382
2383 if (!reg)
2384 as_bad (_("unknown register alias '%s'"), name);
2385 else if (reg->builtin)
2386 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2387 name);
2388 else
2389 {
d929913e
NC
2390 char * p;
2391 char * nbuf;
2392
db0bc284 2393 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2394 free ((char *) reg->name);
dcbf9037
JB
2395 if (reg->neon)
2396 free (reg->neon);
c19d1205 2397 free (reg);
d929913e
NC
2398
2399 /* Also locate the all upper case and all lower case versions.
2400 Do not complain if we cannot find one or the other as it
2401 was probably deleted above. */
5f4273c7 2402
d929913e
NC
2403 nbuf = strdup (name);
2404 for (p = nbuf; *p; p++)
2405 *p = TOUPPER (*p);
21d799b5 2406 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2407 if (reg)
2408 {
db0bc284 2409 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2410 free ((char *) reg->name);
2411 if (reg->neon)
2412 free (reg->neon);
2413 free (reg);
2414 }
2415
2416 for (p = nbuf; *p; p++)
2417 *p = TOLOWER (*p);
21d799b5 2418 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2419 if (reg)
2420 {
db0bc284 2421 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2422 free ((char *) reg->name);
2423 if (reg->neon)
2424 free (reg->neon);
2425 free (reg);
2426 }
2427
2428 free (nbuf);
c19d1205
ZW
2429 }
2430 }
b99bd4ef 2431
c19d1205 2432 *input_line_pointer = saved_char;
b99bd4ef
NC
2433 demand_empty_rest_of_line ();
2434}
2435
c19d1205
ZW
2436/* Directives: Instruction set selection. */
2437
2438#ifdef OBJ_ELF
2439/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2440 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2441 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2442 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2443
cd000bff
DJ
2444/* Create a new mapping symbol for the transition to STATE. */
2445
2446static void
2447make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2448{
a737bd4d 2449 symbolS * symbolP;
c19d1205
ZW
2450 const char * symname;
2451 int type;
b99bd4ef 2452
c19d1205 2453 switch (state)
b99bd4ef 2454 {
c19d1205
ZW
2455 case MAP_DATA:
2456 symname = "$d";
2457 type = BSF_NO_FLAGS;
2458 break;
2459 case MAP_ARM:
2460 symname = "$a";
2461 type = BSF_NO_FLAGS;
2462 break;
2463 case MAP_THUMB:
2464 symname = "$t";
2465 type = BSF_NO_FLAGS;
2466 break;
c19d1205
ZW
2467 default:
2468 abort ();
2469 }
2470
cd000bff 2471 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2472 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2473
2474 switch (state)
2475 {
2476 case MAP_ARM:
2477 THUMB_SET_FUNC (symbolP, 0);
2478 ARM_SET_THUMB (symbolP, 0);
2479 ARM_SET_INTERWORK (symbolP, support_interwork);
2480 break;
2481
2482 case MAP_THUMB:
2483 THUMB_SET_FUNC (symbolP, 1);
2484 ARM_SET_THUMB (symbolP, 1);
2485 ARM_SET_INTERWORK (symbolP, support_interwork);
2486 break;
2487
2488 case MAP_DATA:
2489 default:
cd000bff
DJ
2490 break;
2491 }
2492
2493 /* Save the mapping symbols for future reference. Also check that
2494 we do not place two mapping symbols at the same offset within a
2495 frag. We'll handle overlap between frags in
2496 check_mapping_symbols. */
2497 if (value == 0)
2498 {
2499 know (frag->tc_frag_data.first_map == NULL);
2500 frag->tc_frag_data.first_map = symbolP;
2501 }
2502 if (frag->tc_frag_data.last_map != NULL)
c5ed243b 2503 know (S_GET_VALUE (frag->tc_frag_data.last_map) < S_GET_VALUE (symbolP));
cd000bff
DJ
2504 frag->tc_frag_data.last_map = symbolP;
2505}
2506
2507/* We must sometimes convert a region marked as code to data during
2508 code alignment, if an odd number of bytes have to be padded. The
2509 code mapping symbol is pushed to an aligned address. */
2510
2511static void
2512insert_data_mapping_symbol (enum mstate state,
2513 valueT value, fragS *frag, offsetT bytes)
2514{
2515 /* If there was already a mapping symbol, remove it. */
2516 if (frag->tc_frag_data.last_map != NULL
2517 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2518 {
2519 symbolS *symp = frag->tc_frag_data.last_map;
2520
2521 if (value == 0)
2522 {
2523 know (frag->tc_frag_data.first_map == symp);
2524 frag->tc_frag_data.first_map = NULL;
2525 }
2526 frag->tc_frag_data.last_map = NULL;
2527 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2528 }
cd000bff
DJ
2529
2530 make_mapping_symbol (MAP_DATA, value, frag);
2531 make_mapping_symbol (state, value + bytes, frag);
2532}
2533
2534static void mapping_state_2 (enum mstate state, int max_chars);
2535
2536/* Set the mapping state to STATE. Only call this when about to
2537 emit some STATE bytes to the file. */
2538
2539void
2540mapping_state (enum mstate state)
2541{
940b5ce0
DJ
2542 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2543
cd000bff
DJ
2544#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2545
2546 if (mapstate == state)
2547 /* The mapping symbol has already been emitted.
2548 There is nothing else to do. */
2549 return;
2550 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2551 /* This case will be evaluated later in the next else. */
2552 return;
2553 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2554 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2555 {
2556 /* Only add the symbol if the offset is > 0:
2557 if we're at the first frag, check it's size > 0;
2558 if we're not at the first frag, then for sure
2559 the offset is > 0. */
2560 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2561 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2562
2563 if (add_symbol)
2564 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2565 }
2566
2567 mapping_state_2 (state, 0);
2568#undef TRANSITION
2569}
2570
2571/* Same as mapping_state, but MAX_CHARS bytes have already been
2572 allocated. Put the mapping symbol that far back. */
2573
2574static void
2575mapping_state_2 (enum mstate state, int max_chars)
2576{
940b5ce0
DJ
2577 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2578
2579 if (!SEG_NORMAL (now_seg))
2580 return;
2581
cd000bff
DJ
2582 if (mapstate == state)
2583 /* The mapping symbol has already been emitted.
2584 There is nothing else to do. */
2585 return;
2586
cd000bff
DJ
2587 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2588 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2589}
2590#else
d3106081
NS
2591#define mapping_state(x) ((void)0)
2592#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2593#endif
2594
2595/* Find the real, Thumb encoded start of a Thumb function. */
2596
4343666d 2597#ifdef OBJ_COFF
c19d1205
ZW
2598static symbolS *
2599find_real_start (symbolS * symbolP)
2600{
2601 char * real_start;
2602 const char * name = S_GET_NAME (symbolP);
2603 symbolS * new_target;
2604
2605 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2606#define STUB_NAME ".real_start_of"
2607
2608 if (name == NULL)
2609 abort ();
2610
37f6032b
ZW
2611 /* The compiler may generate BL instructions to local labels because
2612 it needs to perform a branch to a far away location. These labels
2613 do not have a corresponding ".real_start_of" label. We check
2614 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2615 the ".real_start_of" convention for nonlocal branches. */
2616 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2617 return symbolP;
2618
37f6032b 2619 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2620 new_target = symbol_find (real_start);
2621
2622 if (new_target == NULL)
2623 {
bd3ba5d1 2624 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2625 new_target = symbolP;
2626 }
2627
c19d1205
ZW
2628 return new_target;
2629}
4343666d 2630#endif
c19d1205
ZW
2631
2632static void
2633opcode_select (int width)
2634{
2635 switch (width)
2636 {
2637 case 16:
2638 if (! thumb_mode)
2639 {
e74cfd16 2640 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2641 as_bad (_("selected processor does not support THUMB opcodes"));
2642
2643 thumb_mode = 1;
2644 /* No need to force the alignment, since we will have been
2645 coming from ARM mode, which is word-aligned. */
2646 record_alignment (now_seg, 1);
2647 }
c19d1205
ZW
2648 break;
2649
2650 case 32:
2651 if (thumb_mode)
2652 {
e74cfd16 2653 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2654 as_bad (_("selected processor does not support ARM opcodes"));
2655
2656 thumb_mode = 0;
2657
2658 if (!need_pass_2)
2659 frag_align (2, 0, 0);
2660
2661 record_alignment (now_seg, 1);
2662 }
c19d1205
ZW
2663 break;
2664
2665 default:
2666 as_bad (_("invalid instruction size selected (%d)"), width);
2667 }
2668}
2669
2670static void
2671s_arm (int ignore ATTRIBUTE_UNUSED)
2672{
2673 opcode_select (32);
2674 demand_empty_rest_of_line ();
2675}
2676
2677static void
2678s_thumb (int ignore ATTRIBUTE_UNUSED)
2679{
2680 opcode_select (16);
2681 demand_empty_rest_of_line ();
2682}
2683
2684static void
2685s_code (int unused ATTRIBUTE_UNUSED)
2686{
2687 int temp;
2688
2689 temp = get_absolute_expression ();
2690 switch (temp)
2691 {
2692 case 16:
2693 case 32:
2694 opcode_select (temp);
2695 break;
2696
2697 default:
2698 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2699 }
2700}
2701
2702static void
2703s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2704{
2705 /* If we are not already in thumb mode go into it, EVEN if
2706 the target processor does not support thumb instructions.
2707 This is used by gcc/config/arm/lib1funcs.asm for example
2708 to compile interworking support functions even if the
2709 target processor should not support interworking. */
2710 if (! thumb_mode)
2711 {
2712 thumb_mode = 2;
2713 record_alignment (now_seg, 1);
2714 }
2715
2716 demand_empty_rest_of_line ();
2717}
2718
2719static void
2720s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2721{
2722 s_thumb (0);
2723
2724 /* The following label is the name/address of the start of a Thumb function.
2725 We need to know this for the interworking support. */
2726 label_is_thumb_function_name = TRUE;
2727}
2728
2729/* Perform a .set directive, but also mark the alias as
2730 being a thumb function. */
2731
2732static void
2733s_thumb_set (int equiv)
2734{
2735 /* XXX the following is a duplicate of the code for s_set() in read.c
2736 We cannot just call that code as we need to get at the symbol that
2737 is created. */
2738 char * name;
2739 char delim;
2740 char * end_name;
2741 symbolS * symbolP;
2742
2743 /* Especial apologies for the random logic:
2744 This just grew, and could be parsed much more simply!
2745 Dean - in haste. */
2746 name = input_line_pointer;
2747 delim = get_symbol_end ();
2748 end_name = input_line_pointer;
2749 *end_name = delim;
2750
2751 if (*input_line_pointer != ',')
2752 {
2753 *end_name = 0;
2754 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2755 *end_name = delim;
2756 ignore_rest_of_line ();
2757 return;
2758 }
2759
2760 input_line_pointer++;
2761 *end_name = 0;
2762
2763 if (name[0] == '.' && name[1] == '\0')
2764 {
2765 /* XXX - this should not happen to .thumb_set. */
2766 abort ();
2767 }
2768
2769 if ((symbolP = symbol_find (name)) == NULL
2770 && (symbolP = md_undefined_symbol (name)) == NULL)
2771 {
2772#ifndef NO_LISTING
2773 /* When doing symbol listings, play games with dummy fragments living
2774 outside the normal fragment chain to record the file and line info
c19d1205 2775 for this symbol. */
b99bd4ef
NC
2776 if (listing & LISTING_SYMBOLS)
2777 {
2778 extern struct list_info_struct * listing_tail;
21d799b5 2779 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2780
2781 memset (dummy_frag, 0, sizeof (fragS));
2782 dummy_frag->fr_type = rs_fill;
2783 dummy_frag->line = listing_tail;
2784 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2785 dummy_frag->fr_symbol = symbolP;
2786 }
2787 else
2788#endif
2789 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2790
2791#ifdef OBJ_COFF
2792 /* "set" symbols are local unless otherwise specified. */
2793 SF_SET_LOCAL (symbolP);
2794#endif /* OBJ_COFF */
2795 } /* Make a new symbol. */
2796
2797 symbol_table_insert (symbolP);
2798
2799 * end_name = delim;
2800
2801 if (equiv
2802 && S_IS_DEFINED (symbolP)
2803 && S_GET_SEGMENT (symbolP) != reg_section)
2804 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2805
2806 pseudo_set (symbolP);
2807
2808 demand_empty_rest_of_line ();
2809
c19d1205 2810 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2811
2812 THUMB_SET_FUNC (symbolP, 1);
2813 ARM_SET_THUMB (symbolP, 1);
2814#if defined OBJ_ELF || defined OBJ_COFF
2815 ARM_SET_INTERWORK (symbolP, support_interwork);
2816#endif
2817}
2818
c19d1205 2819/* Directives: Mode selection. */
b99bd4ef 2820
c19d1205
ZW
2821/* .syntax [unified|divided] - choose the new unified syntax
2822 (same for Arm and Thumb encoding, modulo slight differences in what
2823 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2824static void
c19d1205 2825s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2826{
c19d1205
ZW
2827 char *name, delim;
2828
2829 name = input_line_pointer;
2830 delim = get_symbol_end ();
2831
2832 if (!strcasecmp (name, "unified"))
2833 unified_syntax = TRUE;
2834 else if (!strcasecmp (name, "divided"))
2835 unified_syntax = FALSE;
2836 else
2837 {
2838 as_bad (_("unrecognized syntax mode \"%s\""), name);
2839 return;
2840 }
2841 *input_line_pointer = delim;
b99bd4ef
NC
2842 demand_empty_rest_of_line ();
2843}
2844
c19d1205
ZW
2845/* Directives: sectioning and alignment. */
2846
2847/* Same as s_align_ptwo but align 0 => align 2. */
2848
b99bd4ef 2849static void
c19d1205 2850s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2851{
a737bd4d 2852 int temp;
dce323d1 2853 bfd_boolean fill_p;
c19d1205
ZW
2854 long temp_fill;
2855 long max_alignment = 15;
b99bd4ef
NC
2856
2857 temp = get_absolute_expression ();
c19d1205
ZW
2858 if (temp > max_alignment)
2859 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2860 else if (temp < 0)
b99bd4ef 2861 {
c19d1205
ZW
2862 as_bad (_("alignment negative. 0 assumed."));
2863 temp = 0;
2864 }
b99bd4ef 2865
c19d1205
ZW
2866 if (*input_line_pointer == ',')
2867 {
2868 input_line_pointer++;
2869 temp_fill = get_absolute_expression ();
dce323d1 2870 fill_p = TRUE;
b99bd4ef 2871 }
c19d1205 2872 else
dce323d1
PB
2873 {
2874 fill_p = FALSE;
2875 temp_fill = 0;
2876 }
b99bd4ef 2877
c19d1205
ZW
2878 if (!temp)
2879 temp = 2;
b99bd4ef 2880
c19d1205
ZW
2881 /* Only make a frag if we HAVE to. */
2882 if (temp && !need_pass_2)
dce323d1
PB
2883 {
2884 if (!fill_p && subseg_text_p (now_seg))
2885 frag_align_code (temp, 0);
2886 else
2887 frag_align (temp, (int) temp_fill, 0);
2888 }
c19d1205
ZW
2889 demand_empty_rest_of_line ();
2890
2891 record_alignment (now_seg, temp);
b99bd4ef
NC
2892}
2893
c19d1205
ZW
2894static void
2895s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2896{
c19d1205
ZW
2897 /* We don't support putting frags in the BSS segment, we fake it by
2898 marking in_bss, then looking at s_skip for clues. */
2899 subseg_set (bss_section, 0);
2900 demand_empty_rest_of_line ();
cd000bff
DJ
2901
2902#ifdef md_elf_section_change_hook
2903 md_elf_section_change_hook ();
2904#endif
c19d1205 2905}
b99bd4ef 2906
c19d1205
ZW
2907static void
2908s_even (int ignore ATTRIBUTE_UNUSED)
2909{
2910 /* Never make frag if expect extra pass. */
2911 if (!need_pass_2)
2912 frag_align (1, 0, 0);
b99bd4ef 2913
c19d1205 2914 record_alignment (now_seg, 1);
b99bd4ef 2915
c19d1205 2916 demand_empty_rest_of_line ();
b99bd4ef
NC
2917}
2918
c19d1205 2919/* Directives: Literal pools. */
a737bd4d 2920
c19d1205
ZW
2921static literal_pool *
2922find_literal_pool (void)
a737bd4d 2923{
c19d1205 2924 literal_pool * pool;
a737bd4d 2925
c19d1205 2926 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2927 {
c19d1205
ZW
2928 if (pool->section == now_seg
2929 && pool->sub_section == now_subseg)
2930 break;
a737bd4d
NC
2931 }
2932
c19d1205 2933 return pool;
a737bd4d
NC
2934}
2935
c19d1205
ZW
2936static literal_pool *
2937find_or_make_literal_pool (void)
a737bd4d 2938{
c19d1205
ZW
2939 /* Next literal pool ID number. */
2940 static unsigned int latest_pool_num = 1;
2941 literal_pool * pool;
a737bd4d 2942
c19d1205 2943 pool = find_literal_pool ();
a737bd4d 2944
c19d1205 2945 if (pool == NULL)
a737bd4d 2946 {
c19d1205 2947 /* Create a new pool. */
21d799b5 2948 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
2949 if (! pool)
2950 return NULL;
a737bd4d 2951
c19d1205
ZW
2952 pool->next_free_entry = 0;
2953 pool->section = now_seg;
2954 pool->sub_section = now_subseg;
2955 pool->next = list_of_pools;
2956 pool->symbol = NULL;
2957
2958 /* Add it to the list. */
2959 list_of_pools = pool;
a737bd4d 2960 }
a737bd4d 2961
c19d1205
ZW
2962 /* New pools, and emptied pools, will have a NULL symbol. */
2963 if (pool->symbol == NULL)
a737bd4d 2964 {
c19d1205
ZW
2965 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2966 (valueT) 0, &zero_address_frag);
2967 pool->id = latest_pool_num ++;
a737bd4d
NC
2968 }
2969
c19d1205
ZW
2970 /* Done. */
2971 return pool;
a737bd4d
NC
2972}
2973
c19d1205 2974/* Add the literal in the global 'inst'
5f4273c7 2975 structure to the relevant literal pool. */
b99bd4ef
NC
2976
2977static int
c19d1205 2978add_to_lit_pool (void)
b99bd4ef 2979{
c19d1205
ZW
2980 literal_pool * pool;
2981 unsigned int entry;
b99bd4ef 2982
c19d1205
ZW
2983 pool = find_or_make_literal_pool ();
2984
2985 /* Check if this literal value is already in the pool. */
2986 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2987 {
c19d1205
ZW
2988 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2989 && (inst.reloc.exp.X_op == O_constant)
2990 && (pool->literals[entry].X_add_number
2991 == inst.reloc.exp.X_add_number)
2992 && (pool->literals[entry].X_unsigned
2993 == inst.reloc.exp.X_unsigned))
2994 break;
2995
2996 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2997 && (inst.reloc.exp.X_op == O_symbol)
2998 && (pool->literals[entry].X_add_number
2999 == inst.reloc.exp.X_add_number)
3000 && (pool->literals[entry].X_add_symbol
3001 == inst.reloc.exp.X_add_symbol)
3002 && (pool->literals[entry].X_op_symbol
3003 == inst.reloc.exp.X_op_symbol))
3004 break;
b99bd4ef
NC
3005 }
3006
c19d1205
ZW
3007 /* Do we need to create a new entry? */
3008 if (entry == pool->next_free_entry)
3009 {
3010 if (entry >= MAX_LITERAL_POOL_SIZE)
3011 {
3012 inst.error = _("literal pool overflow");
3013 return FAIL;
3014 }
3015
3016 pool->literals[entry] = inst.reloc.exp;
3017 pool->next_free_entry += 1;
3018 }
b99bd4ef 3019
c19d1205
ZW
3020 inst.reloc.exp.X_op = O_symbol;
3021 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3022 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3023
c19d1205 3024 return SUCCESS;
b99bd4ef
NC
3025}
3026
c19d1205
ZW
3027/* Can't use symbol_new here, so have to create a symbol and then at
3028 a later date assign it a value. Thats what these functions do. */
e16bb312 3029
c19d1205
ZW
3030static void
3031symbol_locate (symbolS * symbolP,
3032 const char * name, /* It is copied, the caller can modify. */
3033 segT segment, /* Segment identifier (SEG_<something>). */
3034 valueT valu, /* Symbol value. */
3035 fragS * frag) /* Associated fragment. */
3036{
3037 unsigned int name_length;
3038 char * preserved_copy_of_name;
e16bb312 3039
c19d1205
ZW
3040 name_length = strlen (name) + 1; /* +1 for \0. */
3041 obstack_grow (&notes, name, name_length);
21d799b5 3042 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3043
c19d1205
ZW
3044#ifdef tc_canonicalize_symbol_name
3045 preserved_copy_of_name =
3046 tc_canonicalize_symbol_name (preserved_copy_of_name);
3047#endif
b99bd4ef 3048
c19d1205 3049 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3050
c19d1205
ZW
3051 S_SET_SEGMENT (symbolP, segment);
3052 S_SET_VALUE (symbolP, valu);
3053 symbol_clear_list_pointers (symbolP);
b99bd4ef 3054
c19d1205 3055 symbol_set_frag (symbolP, frag);
b99bd4ef 3056
c19d1205
ZW
3057 /* Link to end of symbol chain. */
3058 {
3059 extern int symbol_table_frozen;
b99bd4ef 3060
c19d1205
ZW
3061 if (symbol_table_frozen)
3062 abort ();
3063 }
b99bd4ef 3064
c19d1205 3065 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3066
c19d1205 3067 obj_symbol_new_hook (symbolP);
b99bd4ef 3068
c19d1205
ZW
3069#ifdef tc_symbol_new_hook
3070 tc_symbol_new_hook (symbolP);
3071#endif
3072
3073#ifdef DEBUG_SYMS
3074 verify_symbol_chain (symbol_rootP, symbol_lastP);
3075#endif /* DEBUG_SYMS */
b99bd4ef
NC
3076}
3077
b99bd4ef 3078
c19d1205
ZW
3079static void
3080s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3081{
c19d1205
ZW
3082 unsigned int entry;
3083 literal_pool * pool;
3084 char sym_name[20];
b99bd4ef 3085
c19d1205
ZW
3086 pool = find_literal_pool ();
3087 if (pool == NULL
3088 || pool->symbol == NULL
3089 || pool->next_free_entry == 0)
3090 return;
b99bd4ef 3091
c19d1205 3092 mapping_state (MAP_DATA);
b99bd4ef 3093
c19d1205
ZW
3094 /* Align pool as you have word accesses.
3095 Only make a frag if we have to. */
3096 if (!need_pass_2)
3097 frag_align (2, 0, 0);
b99bd4ef 3098
c19d1205 3099 record_alignment (now_seg, 2);
b99bd4ef 3100
c19d1205 3101 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3102
c19d1205
ZW
3103 symbol_locate (pool->symbol, sym_name, now_seg,
3104 (valueT) frag_now_fix (), frag_now);
3105 symbol_table_insert (pool->symbol);
b99bd4ef 3106
c19d1205 3107 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3108
c19d1205
ZW
3109#if defined OBJ_COFF || defined OBJ_ELF
3110 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3111#endif
6c43fab6 3112
c19d1205
ZW
3113 for (entry = 0; entry < pool->next_free_entry; entry ++)
3114 /* First output the expression in the instruction to the pool. */
3115 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 3116
c19d1205
ZW
3117 /* Mark the pool as empty. */
3118 pool->next_free_entry = 0;
3119 pool->symbol = NULL;
b99bd4ef
NC
3120}
3121
c19d1205
ZW
3122#ifdef OBJ_ELF
3123/* Forward declarations for functions below, in the MD interface
3124 section. */
3125static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3126static valueT create_unwind_entry (int);
3127static void start_unwind_section (const segT, int);
3128static void add_unwind_opcode (valueT, int);
3129static void flush_pending_unwind (void);
b99bd4ef 3130
c19d1205 3131/* Directives: Data. */
b99bd4ef 3132
c19d1205
ZW
3133static void
3134s_arm_elf_cons (int nbytes)
3135{
3136 expressionS exp;
b99bd4ef 3137
c19d1205
ZW
3138#ifdef md_flush_pending_output
3139 md_flush_pending_output ();
3140#endif
b99bd4ef 3141
c19d1205 3142 if (is_it_end_of_statement ())
b99bd4ef 3143 {
c19d1205
ZW
3144 demand_empty_rest_of_line ();
3145 return;
b99bd4ef
NC
3146 }
3147
c19d1205
ZW
3148#ifdef md_cons_align
3149 md_cons_align (nbytes);
3150#endif
b99bd4ef 3151
c19d1205
ZW
3152 mapping_state (MAP_DATA);
3153 do
b99bd4ef 3154 {
c19d1205
ZW
3155 int reloc;
3156 char *base = input_line_pointer;
b99bd4ef 3157
c19d1205 3158 expression (& exp);
b99bd4ef 3159
c19d1205
ZW
3160 if (exp.X_op != O_symbol)
3161 emit_expr (&exp, (unsigned int) nbytes);
3162 else
3163 {
3164 char *before_reloc = input_line_pointer;
3165 reloc = parse_reloc (&input_line_pointer);
3166 if (reloc == -1)
3167 {
3168 as_bad (_("unrecognized relocation suffix"));
3169 ignore_rest_of_line ();
3170 return;
3171 }
3172 else if (reloc == BFD_RELOC_UNUSED)
3173 emit_expr (&exp, (unsigned int) nbytes);
3174 else
3175 {
21d799b5
NC
3176 reloc_howto_type *howto = (reloc_howto_type *)
3177 bfd_reloc_type_lookup (stdoutput,
3178 (bfd_reloc_code_real_type) reloc);
c19d1205 3179 int size = bfd_get_reloc_size (howto);
b99bd4ef 3180
2fc8bdac
ZW
3181 if (reloc == BFD_RELOC_ARM_PLT32)
3182 {
3183 as_bad (_("(plt) is only valid on branch targets"));
3184 reloc = BFD_RELOC_UNUSED;
3185 size = 0;
3186 }
3187
c19d1205 3188 if (size > nbytes)
2fc8bdac 3189 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3190 howto->name, nbytes);
3191 else
3192 {
3193 /* We've parsed an expression stopping at O_symbol.
3194 But there may be more expression left now that we
3195 have parsed the relocation marker. Parse it again.
3196 XXX Surely there is a cleaner way to do this. */
3197 char *p = input_line_pointer;
3198 int offset;
21d799b5 3199 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3200 memcpy (save_buf, base, input_line_pointer - base);
3201 memmove (base + (input_line_pointer - before_reloc),
3202 base, before_reloc - base);
3203
3204 input_line_pointer = base + (input_line_pointer-before_reloc);
3205 expression (&exp);
3206 memcpy (base, save_buf, p - base);
3207
3208 offset = nbytes - size;
3209 p = frag_more ((int) nbytes);
3210 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3211 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3212 }
3213 }
3214 }
b99bd4ef 3215 }
c19d1205 3216 while (*input_line_pointer++ == ',');
b99bd4ef 3217
c19d1205
ZW
3218 /* Put terminator back into stream. */
3219 input_line_pointer --;
3220 demand_empty_rest_of_line ();
b99bd4ef
NC
3221}
3222
c921be7d
NC
3223/* Emit an expression containing a 32-bit thumb instruction.
3224 Implementation based on put_thumb32_insn. */
3225
3226static void
3227emit_thumb32_expr (expressionS * exp)
3228{
3229 expressionS exp_high = *exp;
3230
3231 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3232 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3233 exp->X_add_number &= 0xffff;
3234 emit_expr (exp, (unsigned int) THUMB_SIZE);
3235}
3236
3237/* Guess the instruction size based on the opcode. */
3238
3239static int
3240thumb_insn_size (int opcode)
3241{
3242 if ((unsigned int) opcode < 0xe800u)
3243 return 2;
3244 else if ((unsigned int) opcode >= 0xe8000000u)
3245 return 4;
3246 else
3247 return 0;
3248}
3249
3250static bfd_boolean
3251emit_insn (expressionS *exp, int nbytes)
3252{
3253 int size = 0;
3254
3255 if (exp->X_op == O_constant)
3256 {
3257 size = nbytes;
3258
3259 if (size == 0)
3260 size = thumb_insn_size (exp->X_add_number);
3261
3262 if (size != 0)
3263 {
3264 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3265 {
3266 as_bad (_(".inst.n operand too big. "\
3267 "Use .inst.w instead"));
3268 size = 0;
3269 }
3270 else
3271 {
3272 if (now_it.state == AUTOMATIC_IT_BLOCK)
3273 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3274 else
3275 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3276
3277 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3278 emit_thumb32_expr (exp);
3279 else
3280 emit_expr (exp, (unsigned int) size);
3281
3282 it_fsm_post_encode ();
3283 }
3284 }
3285 else
3286 as_bad (_("cannot determine Thumb instruction size. " \
3287 "Use .inst.n/.inst.w instead"));
3288 }
3289 else
3290 as_bad (_("constant expression required"));
3291
3292 return (size != 0);
3293}
3294
3295/* Like s_arm_elf_cons but do not use md_cons_align and
3296 set the mapping state to MAP_ARM/MAP_THUMB. */
3297
3298static void
3299s_arm_elf_inst (int nbytes)
3300{
3301 if (is_it_end_of_statement ())
3302 {
3303 demand_empty_rest_of_line ();
3304 return;
3305 }
3306
3307 /* Calling mapping_state () here will not change ARM/THUMB,
3308 but will ensure not to be in DATA state. */
3309
3310 if (thumb_mode)
3311 mapping_state (MAP_THUMB);
3312 else
3313 {
3314 if (nbytes != 0)
3315 {
3316 as_bad (_("width suffixes are invalid in ARM mode"));
3317 ignore_rest_of_line ();
3318 return;
3319 }
3320
3321 nbytes = 4;
3322
3323 mapping_state (MAP_ARM);
3324 }
3325
3326 do
3327 {
3328 expressionS exp;
3329
3330 expression (& exp);
3331
3332 if (! emit_insn (& exp, nbytes))
3333 {
3334 ignore_rest_of_line ();
3335 return;
3336 }
3337 }
3338 while (*input_line_pointer++ == ',');
3339
3340 /* Put terminator back into stream. */
3341 input_line_pointer --;
3342 demand_empty_rest_of_line ();
3343}
b99bd4ef 3344
c19d1205 3345/* Parse a .rel31 directive. */
b99bd4ef 3346
c19d1205
ZW
3347static void
3348s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3349{
3350 expressionS exp;
3351 char *p;
3352 valueT highbit;
b99bd4ef 3353
c19d1205
ZW
3354 highbit = 0;
3355 if (*input_line_pointer == '1')
3356 highbit = 0x80000000;
3357 else if (*input_line_pointer != '0')
3358 as_bad (_("expected 0 or 1"));
b99bd4ef 3359
c19d1205
ZW
3360 input_line_pointer++;
3361 if (*input_line_pointer != ',')
3362 as_bad (_("missing comma"));
3363 input_line_pointer++;
b99bd4ef 3364
c19d1205
ZW
3365#ifdef md_flush_pending_output
3366 md_flush_pending_output ();
3367#endif
b99bd4ef 3368
c19d1205
ZW
3369#ifdef md_cons_align
3370 md_cons_align (4);
3371#endif
b99bd4ef 3372
c19d1205 3373 mapping_state (MAP_DATA);
b99bd4ef 3374
c19d1205 3375 expression (&exp);
b99bd4ef 3376
c19d1205
ZW
3377 p = frag_more (4);
3378 md_number_to_chars (p, highbit, 4);
3379 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3380 BFD_RELOC_ARM_PREL31);
b99bd4ef 3381
c19d1205 3382 demand_empty_rest_of_line ();
b99bd4ef
NC
3383}
3384
c19d1205 3385/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3386
c19d1205 3387/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3388
c19d1205
ZW
3389static void
3390s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3391{
3392 demand_empty_rest_of_line ();
921e5f0a
PB
3393 if (unwind.proc_start)
3394 {
c921be7d 3395 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3396 return;
3397 }
3398
c19d1205
ZW
3399 /* Mark the start of the function. */
3400 unwind.proc_start = expr_build_dot ();
b99bd4ef 3401
c19d1205
ZW
3402 /* Reset the rest of the unwind info. */
3403 unwind.opcode_count = 0;
3404 unwind.table_entry = NULL;
3405 unwind.personality_routine = NULL;
3406 unwind.personality_index = -1;
3407 unwind.frame_size = 0;
3408 unwind.fp_offset = 0;
fdfde340 3409 unwind.fp_reg = REG_SP;
c19d1205
ZW
3410 unwind.fp_used = 0;
3411 unwind.sp_restored = 0;
3412}
b99bd4ef 3413
b99bd4ef 3414
c19d1205
ZW
3415/* Parse a handlerdata directive. Creates the exception handling table entry
3416 for the function. */
b99bd4ef 3417
c19d1205
ZW
3418static void
3419s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3420{
3421 demand_empty_rest_of_line ();
921e5f0a 3422 if (!unwind.proc_start)
c921be7d 3423 as_bad (MISSING_FNSTART);
921e5f0a 3424
c19d1205 3425 if (unwind.table_entry)
6decc662 3426 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3427
c19d1205
ZW
3428 create_unwind_entry (1);
3429}
a737bd4d 3430
c19d1205 3431/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3432
c19d1205
ZW
3433static void
3434s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3435{
3436 long where;
3437 char *ptr;
3438 valueT val;
940b5ce0 3439 unsigned int marked_pr_dependency;
f02232aa 3440
c19d1205 3441 demand_empty_rest_of_line ();
f02232aa 3442
921e5f0a
PB
3443 if (!unwind.proc_start)
3444 {
c921be7d 3445 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3446 return;
3447 }
3448
c19d1205
ZW
3449 /* Add eh table entry. */
3450 if (unwind.table_entry == NULL)
3451 val = create_unwind_entry (0);
3452 else
3453 val = 0;
f02232aa 3454
c19d1205
ZW
3455 /* Add index table entry. This is two words. */
3456 start_unwind_section (unwind.saved_seg, 1);
3457 frag_align (2, 0, 0);
3458 record_alignment (now_seg, 2);
b99bd4ef 3459
c19d1205
ZW
3460 ptr = frag_more (8);
3461 where = frag_now_fix () - 8;
f02232aa 3462
c19d1205
ZW
3463 /* Self relative offset of the function start. */
3464 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3465 BFD_RELOC_ARM_PREL31);
f02232aa 3466
c19d1205
ZW
3467 /* Indicate dependency on EHABI-defined personality routines to the
3468 linker, if it hasn't been done already. */
940b5ce0
DJ
3469 marked_pr_dependency
3470 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3471 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3472 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3473 {
5f4273c7
NC
3474 static const char *const name[] =
3475 {
3476 "__aeabi_unwind_cpp_pr0",
3477 "__aeabi_unwind_cpp_pr1",
3478 "__aeabi_unwind_cpp_pr2"
3479 };
c19d1205
ZW
3480 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3481 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3482 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3483 |= 1 << unwind.personality_index;
c19d1205 3484 }
f02232aa 3485
c19d1205
ZW
3486 if (val)
3487 /* Inline exception table entry. */
3488 md_number_to_chars (ptr + 4, val, 4);
3489 else
3490 /* Self relative offset of the table entry. */
3491 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3492 BFD_RELOC_ARM_PREL31);
f02232aa 3493
c19d1205
ZW
3494 /* Restore the original section. */
3495 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3496
3497 unwind.proc_start = NULL;
c19d1205 3498}
f02232aa 3499
f02232aa 3500
c19d1205 3501/* Parse an unwind_cantunwind directive. */
b99bd4ef 3502
c19d1205
ZW
3503static void
3504s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3505{
3506 demand_empty_rest_of_line ();
921e5f0a 3507 if (!unwind.proc_start)
c921be7d 3508 as_bad (MISSING_FNSTART);
921e5f0a 3509
c19d1205
ZW
3510 if (unwind.personality_routine || unwind.personality_index != -1)
3511 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3512
c19d1205
ZW
3513 unwind.personality_index = -2;
3514}
b99bd4ef 3515
b99bd4ef 3516
c19d1205 3517/* Parse a personalityindex directive. */
b99bd4ef 3518
c19d1205
ZW
3519static void
3520s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3521{
3522 expressionS exp;
b99bd4ef 3523
921e5f0a 3524 if (!unwind.proc_start)
c921be7d 3525 as_bad (MISSING_FNSTART);
921e5f0a 3526
c19d1205
ZW
3527 if (unwind.personality_routine || unwind.personality_index != -1)
3528 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3529
c19d1205 3530 expression (&exp);
b99bd4ef 3531
c19d1205
ZW
3532 if (exp.X_op != O_constant
3533 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3534 {
c19d1205
ZW
3535 as_bad (_("bad personality routine number"));
3536 ignore_rest_of_line ();
3537 return;
b99bd4ef
NC
3538 }
3539
c19d1205 3540 unwind.personality_index = exp.X_add_number;
b99bd4ef 3541
c19d1205
ZW
3542 demand_empty_rest_of_line ();
3543}
e16bb312 3544
e16bb312 3545
c19d1205 3546/* Parse a personality directive. */
e16bb312 3547
c19d1205
ZW
3548static void
3549s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3550{
3551 char *name, *p, c;
a737bd4d 3552
921e5f0a 3553 if (!unwind.proc_start)
c921be7d 3554 as_bad (MISSING_FNSTART);
921e5f0a 3555
c19d1205
ZW
3556 if (unwind.personality_routine || unwind.personality_index != -1)
3557 as_bad (_("duplicate .personality directive"));
a737bd4d 3558
c19d1205
ZW
3559 name = input_line_pointer;
3560 c = get_symbol_end ();
3561 p = input_line_pointer;
3562 unwind.personality_routine = symbol_find_or_make (name);
3563 *p = c;
3564 demand_empty_rest_of_line ();
3565}
e16bb312 3566
e16bb312 3567
c19d1205 3568/* Parse a directive saving core registers. */
e16bb312 3569
c19d1205
ZW
3570static void
3571s_arm_unwind_save_core (void)
e16bb312 3572{
c19d1205
ZW
3573 valueT op;
3574 long range;
3575 int n;
e16bb312 3576
c19d1205
ZW
3577 range = parse_reg_list (&input_line_pointer);
3578 if (range == FAIL)
e16bb312 3579 {
c19d1205
ZW
3580 as_bad (_("expected register list"));
3581 ignore_rest_of_line ();
3582 return;
3583 }
e16bb312 3584
c19d1205 3585 demand_empty_rest_of_line ();
e16bb312 3586
c19d1205
ZW
3587 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3588 into .unwind_save {..., sp...}. We aren't bothered about the value of
3589 ip because it is clobbered by calls. */
3590 if (unwind.sp_restored && unwind.fp_reg == 12
3591 && (range & 0x3000) == 0x1000)
3592 {
3593 unwind.opcode_count--;
3594 unwind.sp_restored = 0;
3595 range = (range | 0x2000) & ~0x1000;
3596 unwind.pending_offset = 0;
3597 }
e16bb312 3598
01ae4198
DJ
3599 /* Pop r4-r15. */
3600 if (range & 0xfff0)
c19d1205 3601 {
01ae4198
DJ
3602 /* See if we can use the short opcodes. These pop a block of up to 8
3603 registers starting with r4, plus maybe r14. */
3604 for (n = 0; n < 8; n++)
3605 {
3606 /* Break at the first non-saved register. */
3607 if ((range & (1 << (n + 4))) == 0)
3608 break;
3609 }
3610 /* See if there are any other bits set. */
3611 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3612 {
3613 /* Use the long form. */
3614 op = 0x8000 | ((range >> 4) & 0xfff);
3615 add_unwind_opcode (op, 2);
3616 }
0dd132b6 3617 else
01ae4198
DJ
3618 {
3619 /* Use the short form. */
3620 if (range & 0x4000)
3621 op = 0xa8; /* Pop r14. */
3622 else
3623 op = 0xa0; /* Do not pop r14. */
3624 op |= (n - 1);
3625 add_unwind_opcode (op, 1);
3626 }
c19d1205 3627 }
0dd132b6 3628
c19d1205
ZW
3629 /* Pop r0-r3. */
3630 if (range & 0xf)
3631 {
3632 op = 0xb100 | (range & 0xf);
3633 add_unwind_opcode (op, 2);
0dd132b6
NC
3634 }
3635
c19d1205
ZW
3636 /* Record the number of bytes pushed. */
3637 for (n = 0; n < 16; n++)
3638 {
3639 if (range & (1 << n))
3640 unwind.frame_size += 4;
3641 }
0dd132b6
NC
3642}
3643
c19d1205
ZW
3644
3645/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3646
3647static void
c19d1205 3648s_arm_unwind_save_fpa (int reg)
b99bd4ef 3649{
c19d1205
ZW
3650 expressionS exp;
3651 int num_regs;
3652 valueT op;
b99bd4ef 3653
c19d1205
ZW
3654 /* Get Number of registers to transfer. */
3655 if (skip_past_comma (&input_line_pointer) != FAIL)
3656 expression (&exp);
3657 else
3658 exp.X_op = O_illegal;
b99bd4ef 3659
c19d1205 3660 if (exp.X_op != O_constant)
b99bd4ef 3661 {
c19d1205
ZW
3662 as_bad (_("expected , <constant>"));
3663 ignore_rest_of_line ();
b99bd4ef
NC
3664 return;
3665 }
3666
c19d1205
ZW
3667 num_regs = exp.X_add_number;
3668
3669 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3670 {
c19d1205
ZW
3671 as_bad (_("number of registers must be in the range [1:4]"));
3672 ignore_rest_of_line ();
b99bd4ef
NC
3673 return;
3674 }
3675
c19d1205 3676 demand_empty_rest_of_line ();
b99bd4ef 3677
c19d1205
ZW
3678 if (reg == 4)
3679 {
3680 /* Short form. */
3681 op = 0xb4 | (num_regs - 1);
3682 add_unwind_opcode (op, 1);
3683 }
b99bd4ef
NC
3684 else
3685 {
c19d1205
ZW
3686 /* Long form. */
3687 op = 0xc800 | (reg << 4) | (num_regs - 1);
3688 add_unwind_opcode (op, 2);
b99bd4ef 3689 }
c19d1205 3690 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3691}
3692
c19d1205 3693
fa073d69
MS
3694/* Parse a directive saving VFP registers for ARMv6 and above. */
3695
3696static void
3697s_arm_unwind_save_vfp_armv6 (void)
3698{
3699 int count;
3700 unsigned int start;
3701 valueT op;
3702 int num_vfpv3_regs = 0;
3703 int num_regs_below_16;
3704
3705 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3706 if (count == FAIL)
3707 {
3708 as_bad (_("expected register list"));
3709 ignore_rest_of_line ();
3710 return;
3711 }
3712
3713 demand_empty_rest_of_line ();
3714
3715 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3716 than FSTMX/FLDMX-style ones). */
3717
3718 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3719 if (start >= 16)
3720 num_vfpv3_regs = count;
3721 else if (start + count > 16)
3722 num_vfpv3_regs = start + count - 16;
3723
3724 if (num_vfpv3_regs > 0)
3725 {
3726 int start_offset = start > 16 ? start - 16 : 0;
3727 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3728 add_unwind_opcode (op, 2);
3729 }
3730
3731 /* Generate opcode for registers numbered in the range 0 .. 15. */
3732 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3733 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3734 if (num_regs_below_16 > 0)
3735 {
3736 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3737 add_unwind_opcode (op, 2);
3738 }
3739
3740 unwind.frame_size += count * 8;
3741}
3742
3743
3744/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3745
3746static void
c19d1205 3747s_arm_unwind_save_vfp (void)
b99bd4ef 3748{
c19d1205 3749 int count;
ca3f61f7 3750 unsigned int reg;
c19d1205 3751 valueT op;
b99bd4ef 3752
5287ad62 3753 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3754 if (count == FAIL)
b99bd4ef 3755 {
c19d1205
ZW
3756 as_bad (_("expected register list"));
3757 ignore_rest_of_line ();
b99bd4ef
NC
3758 return;
3759 }
3760
c19d1205 3761 demand_empty_rest_of_line ();
b99bd4ef 3762
c19d1205 3763 if (reg == 8)
b99bd4ef 3764 {
c19d1205
ZW
3765 /* Short form. */
3766 op = 0xb8 | (count - 1);
3767 add_unwind_opcode (op, 1);
b99bd4ef 3768 }
c19d1205 3769 else
b99bd4ef 3770 {
c19d1205
ZW
3771 /* Long form. */
3772 op = 0xb300 | (reg << 4) | (count - 1);
3773 add_unwind_opcode (op, 2);
b99bd4ef 3774 }
c19d1205
ZW
3775 unwind.frame_size += count * 8 + 4;
3776}
b99bd4ef 3777
b99bd4ef 3778
c19d1205
ZW
3779/* Parse a directive saving iWMMXt data registers. */
3780
3781static void
3782s_arm_unwind_save_mmxwr (void)
3783{
3784 int reg;
3785 int hi_reg;
3786 int i;
3787 unsigned mask = 0;
3788 valueT op;
b99bd4ef 3789
c19d1205
ZW
3790 if (*input_line_pointer == '{')
3791 input_line_pointer++;
b99bd4ef 3792
c19d1205 3793 do
b99bd4ef 3794 {
dcbf9037 3795 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3796
c19d1205 3797 if (reg == FAIL)
b99bd4ef 3798 {
9b7132d3 3799 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3800 goto error;
b99bd4ef
NC
3801 }
3802
c19d1205
ZW
3803 if (mask >> reg)
3804 as_tsktsk (_("register list not in ascending order"));
3805 mask |= 1 << reg;
b99bd4ef 3806
c19d1205
ZW
3807 if (*input_line_pointer == '-')
3808 {
3809 input_line_pointer++;
dcbf9037 3810 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3811 if (hi_reg == FAIL)
3812 {
9b7132d3 3813 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3814 goto error;
3815 }
3816 else if (reg >= hi_reg)
3817 {
3818 as_bad (_("bad register range"));
3819 goto error;
3820 }
3821 for (; reg < hi_reg; reg++)
3822 mask |= 1 << reg;
3823 }
3824 }
3825 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3826
c19d1205
ZW
3827 if (*input_line_pointer == '}')
3828 input_line_pointer++;
b99bd4ef 3829
c19d1205 3830 demand_empty_rest_of_line ();
b99bd4ef 3831
708587a4 3832 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3833 the list. */
3834 flush_pending_unwind ();
b99bd4ef 3835
c19d1205 3836 for (i = 0; i < 16; i++)
b99bd4ef 3837 {
c19d1205
ZW
3838 if (mask & (1 << i))
3839 unwind.frame_size += 8;
b99bd4ef
NC
3840 }
3841
c19d1205
ZW
3842 /* Attempt to combine with a previous opcode. We do this because gcc
3843 likes to output separate unwind directives for a single block of
3844 registers. */
3845 if (unwind.opcode_count > 0)
b99bd4ef 3846 {
c19d1205
ZW
3847 i = unwind.opcodes[unwind.opcode_count - 1];
3848 if ((i & 0xf8) == 0xc0)
3849 {
3850 i &= 7;
3851 /* Only merge if the blocks are contiguous. */
3852 if (i < 6)
3853 {
3854 if ((mask & 0xfe00) == (1 << 9))
3855 {
3856 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3857 unwind.opcode_count--;
3858 }
3859 }
3860 else if (i == 6 && unwind.opcode_count >= 2)
3861 {
3862 i = unwind.opcodes[unwind.opcode_count - 2];
3863 reg = i >> 4;
3864 i &= 0xf;
b99bd4ef 3865
c19d1205
ZW
3866 op = 0xffff << (reg - 1);
3867 if (reg > 0
87a1fd79 3868 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3869 {
3870 op = (1 << (reg + i + 1)) - 1;
3871 op &= ~((1 << reg) - 1);
3872 mask |= op;
3873 unwind.opcode_count -= 2;
3874 }
3875 }
3876 }
b99bd4ef
NC
3877 }
3878
c19d1205
ZW
3879 hi_reg = 15;
3880 /* We want to generate opcodes in the order the registers have been
3881 saved, ie. descending order. */
3882 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3883 {
c19d1205
ZW
3884 /* Save registers in blocks. */
3885 if (reg < 0
3886 || !(mask & (1 << reg)))
3887 {
3888 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3889 preceding block. */
c19d1205
ZW
3890 if (reg != hi_reg)
3891 {
3892 if (reg == 9)
3893 {
3894 /* Short form. */
3895 op = 0xc0 | (hi_reg - 10);
3896 add_unwind_opcode (op, 1);
3897 }
3898 else
3899 {
3900 /* Long form. */
3901 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3902 add_unwind_opcode (op, 2);
3903 }
3904 }
3905 hi_reg = reg - 1;
3906 }
b99bd4ef
NC
3907 }
3908
c19d1205
ZW
3909 return;
3910error:
3911 ignore_rest_of_line ();
b99bd4ef
NC
3912}
3913
3914static void
c19d1205 3915s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3916{
c19d1205
ZW
3917 int reg;
3918 int hi_reg;
3919 unsigned mask = 0;
3920 valueT op;
b99bd4ef 3921
c19d1205
ZW
3922 if (*input_line_pointer == '{')
3923 input_line_pointer++;
b99bd4ef 3924
c19d1205 3925 do
b99bd4ef 3926 {
dcbf9037 3927 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3928
c19d1205
ZW
3929 if (reg == FAIL)
3930 {
9b7132d3 3931 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3932 goto error;
3933 }
b99bd4ef 3934
c19d1205
ZW
3935 reg -= 8;
3936 if (mask >> reg)
3937 as_tsktsk (_("register list not in ascending order"));
3938 mask |= 1 << reg;
b99bd4ef 3939
c19d1205
ZW
3940 if (*input_line_pointer == '-')
3941 {
3942 input_line_pointer++;
dcbf9037 3943 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3944 if (hi_reg == FAIL)
3945 {
9b7132d3 3946 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3947 goto error;
3948 }
3949 else if (reg >= hi_reg)
3950 {
3951 as_bad (_("bad register range"));
3952 goto error;
3953 }
3954 for (; reg < hi_reg; reg++)
3955 mask |= 1 << reg;
3956 }
b99bd4ef 3957 }
c19d1205 3958 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3959
c19d1205
ZW
3960 if (*input_line_pointer == '}')
3961 input_line_pointer++;
b99bd4ef 3962
c19d1205
ZW
3963 demand_empty_rest_of_line ();
3964
708587a4 3965 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3966 the list. */
3967 flush_pending_unwind ();
b99bd4ef 3968
c19d1205 3969 for (reg = 0; reg < 16; reg++)
b99bd4ef 3970 {
c19d1205
ZW
3971 if (mask & (1 << reg))
3972 unwind.frame_size += 4;
b99bd4ef 3973 }
c19d1205
ZW
3974 op = 0xc700 | mask;
3975 add_unwind_opcode (op, 2);
3976 return;
3977error:
3978 ignore_rest_of_line ();
b99bd4ef
NC
3979}
3980
c19d1205 3981
fa073d69
MS
3982/* Parse an unwind_save directive.
3983 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3984
b99bd4ef 3985static void
fa073d69 3986s_arm_unwind_save (int arch_v6)
b99bd4ef 3987{
c19d1205
ZW
3988 char *peek;
3989 struct reg_entry *reg;
3990 bfd_boolean had_brace = FALSE;
b99bd4ef 3991
921e5f0a 3992 if (!unwind.proc_start)
c921be7d 3993 as_bad (MISSING_FNSTART);
921e5f0a 3994
c19d1205
ZW
3995 /* Figure out what sort of save we have. */
3996 peek = input_line_pointer;
b99bd4ef 3997
c19d1205 3998 if (*peek == '{')
b99bd4ef 3999 {
c19d1205
ZW
4000 had_brace = TRUE;
4001 peek++;
b99bd4ef
NC
4002 }
4003
c19d1205 4004 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4005
c19d1205 4006 if (!reg)
b99bd4ef 4007 {
c19d1205
ZW
4008 as_bad (_("register expected"));
4009 ignore_rest_of_line ();
b99bd4ef
NC
4010 return;
4011 }
4012
c19d1205 4013 switch (reg->type)
b99bd4ef 4014 {
c19d1205
ZW
4015 case REG_TYPE_FN:
4016 if (had_brace)
4017 {
4018 as_bad (_("FPA .unwind_save does not take a register list"));
4019 ignore_rest_of_line ();
4020 return;
4021 }
93ac2687 4022 input_line_pointer = peek;
c19d1205 4023 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4024 return;
c19d1205
ZW
4025
4026 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4027 case REG_TYPE_VFD:
4028 if (arch_v6)
4029 s_arm_unwind_save_vfp_armv6 ();
4030 else
4031 s_arm_unwind_save_vfp ();
4032 return;
c19d1205
ZW
4033 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4034 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4035
4036 default:
4037 as_bad (_(".unwind_save does not support this kind of register"));
4038 ignore_rest_of_line ();
b99bd4ef 4039 }
c19d1205 4040}
b99bd4ef 4041
b99bd4ef 4042
c19d1205
ZW
4043/* Parse an unwind_movsp directive. */
4044
4045static void
4046s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4047{
4048 int reg;
4049 valueT op;
4fa3602b 4050 int offset;
c19d1205 4051
921e5f0a 4052 if (!unwind.proc_start)
c921be7d 4053 as_bad (MISSING_FNSTART);
921e5f0a 4054
dcbf9037 4055 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4056 if (reg == FAIL)
b99bd4ef 4057 {
9b7132d3 4058 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4059 ignore_rest_of_line ();
b99bd4ef
NC
4060 return;
4061 }
4fa3602b
PB
4062
4063 /* Optional constant. */
4064 if (skip_past_comma (&input_line_pointer) != FAIL)
4065 {
4066 if (immediate_for_directive (&offset) == FAIL)
4067 return;
4068 }
4069 else
4070 offset = 0;
4071
c19d1205 4072 demand_empty_rest_of_line ();
b99bd4ef 4073
c19d1205 4074 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4075 {
c19d1205 4076 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4077 return;
4078 }
4079
c19d1205
ZW
4080 if (unwind.fp_reg != REG_SP)
4081 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4082
c19d1205
ZW
4083 /* Generate opcode to restore the value. */
4084 op = 0x90 | reg;
4085 add_unwind_opcode (op, 1);
4086
4087 /* Record the information for later. */
4088 unwind.fp_reg = reg;
4fa3602b 4089 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4090 unwind.sp_restored = 1;
b05fe5cf
ZW
4091}
4092
c19d1205
ZW
4093/* Parse an unwind_pad directive. */
4094
b05fe5cf 4095static void
c19d1205 4096s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4097{
c19d1205 4098 int offset;
b05fe5cf 4099
921e5f0a 4100 if (!unwind.proc_start)
c921be7d 4101 as_bad (MISSING_FNSTART);
921e5f0a 4102
c19d1205
ZW
4103 if (immediate_for_directive (&offset) == FAIL)
4104 return;
b99bd4ef 4105
c19d1205
ZW
4106 if (offset & 3)
4107 {
4108 as_bad (_("stack increment must be multiple of 4"));
4109 ignore_rest_of_line ();
4110 return;
4111 }
b99bd4ef 4112
c19d1205
ZW
4113 /* Don't generate any opcodes, just record the details for later. */
4114 unwind.frame_size += offset;
4115 unwind.pending_offset += offset;
4116
4117 demand_empty_rest_of_line ();
4118}
4119
4120/* Parse an unwind_setfp directive. */
4121
4122static void
4123s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4124{
c19d1205
ZW
4125 int sp_reg;
4126 int fp_reg;
4127 int offset;
4128
921e5f0a 4129 if (!unwind.proc_start)
c921be7d 4130 as_bad (MISSING_FNSTART);
921e5f0a 4131
dcbf9037 4132 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4133 if (skip_past_comma (&input_line_pointer) == FAIL)
4134 sp_reg = FAIL;
4135 else
dcbf9037 4136 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4137
c19d1205
ZW
4138 if (fp_reg == FAIL || sp_reg == FAIL)
4139 {
4140 as_bad (_("expected <reg>, <reg>"));
4141 ignore_rest_of_line ();
4142 return;
4143 }
b99bd4ef 4144
c19d1205
ZW
4145 /* Optional constant. */
4146 if (skip_past_comma (&input_line_pointer) != FAIL)
4147 {
4148 if (immediate_for_directive (&offset) == FAIL)
4149 return;
4150 }
4151 else
4152 offset = 0;
a737bd4d 4153
c19d1205 4154 demand_empty_rest_of_line ();
a737bd4d 4155
fdfde340 4156 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4157 {
c19d1205
ZW
4158 as_bad (_("register must be either sp or set by a previous"
4159 "unwind_movsp directive"));
4160 return;
a737bd4d
NC
4161 }
4162
c19d1205
ZW
4163 /* Don't generate any opcodes, just record the information for later. */
4164 unwind.fp_reg = fp_reg;
4165 unwind.fp_used = 1;
fdfde340 4166 if (sp_reg == REG_SP)
c19d1205
ZW
4167 unwind.fp_offset = unwind.frame_size - offset;
4168 else
4169 unwind.fp_offset -= offset;
a737bd4d
NC
4170}
4171
c19d1205
ZW
4172/* Parse an unwind_raw directive. */
4173
4174static void
4175s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4176{
c19d1205 4177 expressionS exp;
708587a4 4178 /* This is an arbitrary limit. */
c19d1205
ZW
4179 unsigned char op[16];
4180 int count;
a737bd4d 4181
921e5f0a 4182 if (!unwind.proc_start)
c921be7d 4183 as_bad (MISSING_FNSTART);
921e5f0a 4184
c19d1205
ZW
4185 expression (&exp);
4186 if (exp.X_op == O_constant
4187 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4188 {
c19d1205
ZW
4189 unwind.frame_size += exp.X_add_number;
4190 expression (&exp);
4191 }
4192 else
4193 exp.X_op = O_illegal;
a737bd4d 4194
c19d1205
ZW
4195 if (exp.X_op != O_constant)
4196 {
4197 as_bad (_("expected <offset>, <opcode>"));
4198 ignore_rest_of_line ();
4199 return;
4200 }
a737bd4d 4201
c19d1205 4202 count = 0;
a737bd4d 4203
c19d1205
ZW
4204 /* Parse the opcode. */
4205 for (;;)
4206 {
4207 if (count >= 16)
4208 {
4209 as_bad (_("unwind opcode too long"));
4210 ignore_rest_of_line ();
a737bd4d 4211 }
c19d1205 4212 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4213 {
c19d1205
ZW
4214 as_bad (_("invalid unwind opcode"));
4215 ignore_rest_of_line ();
4216 return;
a737bd4d 4217 }
c19d1205 4218 op[count++] = exp.X_add_number;
a737bd4d 4219
c19d1205
ZW
4220 /* Parse the next byte. */
4221 if (skip_past_comma (&input_line_pointer) == FAIL)
4222 break;
a737bd4d 4223
c19d1205
ZW
4224 expression (&exp);
4225 }
b99bd4ef 4226
c19d1205
ZW
4227 /* Add the opcode bytes in reverse order. */
4228 while (count--)
4229 add_unwind_opcode (op[count], 1);
b99bd4ef 4230
c19d1205 4231 demand_empty_rest_of_line ();
b99bd4ef 4232}
ee065d83
PB
4233
4234
4235/* Parse a .eabi_attribute directive. */
4236
4237static void
4238s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4239{
ee3c0378
AS
4240 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4241
4242 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4243 attributes_set_explicitly[tag] = 1;
ee065d83 4244}
8463be01 4245#endif /* OBJ_ELF */
ee065d83
PB
4246
4247static void s_arm_arch (int);
7a1d4c38 4248static void s_arm_object_arch (int);
ee065d83
PB
4249static void s_arm_cpu (int);
4250static void s_arm_fpu (int);
b99bd4ef 4251
f0927246
NC
4252#ifdef TE_PE
4253
4254static void
5f4273c7 4255pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4256{
4257 expressionS exp;
4258
4259 do
4260 {
4261 expression (&exp);
4262 if (exp.X_op == O_symbol)
4263 exp.X_op = O_secrel;
4264
4265 emit_expr (&exp, 4);
4266 }
4267 while (*input_line_pointer++ == ',');
4268
4269 input_line_pointer--;
4270 demand_empty_rest_of_line ();
4271}
4272#endif /* TE_PE */
4273
c19d1205
ZW
4274/* This table describes all the machine specific pseudo-ops the assembler
4275 has to support. The fields are:
4276 pseudo-op name without dot
4277 function to call to execute this pseudo-op
4278 Integer arg to pass to the function. */
b99bd4ef 4279
c19d1205 4280const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4281{
c19d1205
ZW
4282 /* Never called because '.req' does not start a line. */
4283 { "req", s_req, 0 },
dcbf9037
JB
4284 /* Following two are likewise never called. */
4285 { "dn", s_dn, 0 },
4286 { "qn", s_qn, 0 },
c19d1205
ZW
4287 { "unreq", s_unreq, 0 },
4288 { "bss", s_bss, 0 },
4289 { "align", s_align, 0 },
4290 { "arm", s_arm, 0 },
4291 { "thumb", s_thumb, 0 },
4292 { "code", s_code, 0 },
4293 { "force_thumb", s_force_thumb, 0 },
4294 { "thumb_func", s_thumb_func, 0 },
4295 { "thumb_set", s_thumb_set, 0 },
4296 { "even", s_even, 0 },
4297 { "ltorg", s_ltorg, 0 },
4298 { "pool", s_ltorg, 0 },
4299 { "syntax", s_syntax, 0 },
8463be01
PB
4300 { "cpu", s_arm_cpu, 0 },
4301 { "arch", s_arm_arch, 0 },
7a1d4c38 4302 { "object_arch", s_arm_object_arch, 0 },
8463be01 4303 { "fpu", s_arm_fpu, 0 },
c19d1205 4304#ifdef OBJ_ELF
c921be7d
NC
4305 { "word", s_arm_elf_cons, 4 },
4306 { "long", s_arm_elf_cons, 4 },
4307 { "inst.n", s_arm_elf_inst, 2 },
4308 { "inst.w", s_arm_elf_inst, 4 },
4309 { "inst", s_arm_elf_inst, 0 },
4310 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4311 { "fnstart", s_arm_unwind_fnstart, 0 },
4312 { "fnend", s_arm_unwind_fnend, 0 },
4313 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4314 { "personality", s_arm_unwind_personality, 0 },
4315 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4316 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4317 { "save", s_arm_unwind_save, 0 },
fa073d69 4318 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4319 { "movsp", s_arm_unwind_movsp, 0 },
4320 { "pad", s_arm_unwind_pad, 0 },
4321 { "setfp", s_arm_unwind_setfp, 0 },
4322 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4323 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
4324#else
4325 { "word", cons, 4},
f0927246
NC
4326
4327 /* These are used for dwarf. */
4328 {"2byte", cons, 2},
4329 {"4byte", cons, 4},
4330 {"8byte", cons, 8},
4331 /* These are used for dwarf2. */
4332 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4333 { "loc", dwarf2_directive_loc, 0 },
4334 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4335#endif
4336 { "extend", float_cons, 'x' },
4337 { "ldouble", float_cons, 'x' },
4338 { "packed", float_cons, 'p' },
f0927246
NC
4339#ifdef TE_PE
4340 {"secrel32", pe_directive_secrel, 0},
4341#endif
c19d1205
ZW
4342 { 0, 0, 0 }
4343};
4344\f
4345/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4346
c19d1205
ZW
4347/* Generic immediate-value read function for use in insn parsing.
4348 STR points to the beginning of the immediate (the leading #);
4349 VAL receives the value; if the value is outside [MIN, MAX]
4350 issue an error. PREFIX_OPT is true if the immediate prefix is
4351 optional. */
b99bd4ef 4352
c19d1205
ZW
4353static int
4354parse_immediate (char **str, int *val, int min, int max,
4355 bfd_boolean prefix_opt)
4356{
4357 expressionS exp;
4358 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4359 if (exp.X_op != O_constant)
b99bd4ef 4360 {
c19d1205
ZW
4361 inst.error = _("constant expression required");
4362 return FAIL;
4363 }
b99bd4ef 4364
c19d1205
ZW
4365 if (exp.X_add_number < min || exp.X_add_number > max)
4366 {
4367 inst.error = _("immediate value out of range");
4368 return FAIL;
4369 }
b99bd4ef 4370
c19d1205
ZW
4371 *val = exp.X_add_number;
4372 return SUCCESS;
4373}
b99bd4ef 4374
5287ad62 4375/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4376 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4377 instructions. Puts the result directly in inst.operands[i]. */
4378
4379static int
4380parse_big_immediate (char **str, int i)
4381{
4382 expressionS exp;
4383 char *ptr = *str;
4384
4385 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4386
4387 if (exp.X_op == O_constant)
036dc3f7
PB
4388 {
4389 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4390 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4391 O_constant. We have to be careful not to break compilation for
4392 32-bit X_add_number, though. */
4393 if ((exp.X_add_number & ~0xffffffffl) != 0)
4394 {
4395 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4396 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4397 inst.operands[i].regisimm = 1;
4398 }
4399 }
5287ad62
JB
4400 else if (exp.X_op == O_big
4401 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4402 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4403 {
4404 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4405 /* Bignums have their least significant bits in
4406 generic_bignum[0]. Make sure we put 32 bits in imm and
4407 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4408 gas_assert (parts != 0);
5287ad62
JB
4409 inst.operands[i].imm = 0;
4410 for (j = 0; j < parts; j++, idx++)
4411 inst.operands[i].imm |= generic_bignum[idx]
4412 << (LITTLENUM_NUMBER_OF_BITS * j);
4413 inst.operands[i].reg = 0;
4414 for (j = 0; j < parts; j++, idx++)
4415 inst.operands[i].reg |= generic_bignum[idx]
4416 << (LITTLENUM_NUMBER_OF_BITS * j);
4417 inst.operands[i].regisimm = 1;
4418 }
4419 else
4420 return FAIL;
5f4273c7 4421
5287ad62
JB
4422 *str = ptr;
4423
4424 return SUCCESS;
4425}
4426
c19d1205
ZW
4427/* Returns the pseudo-register number of an FPA immediate constant,
4428 or FAIL if there isn't a valid constant here. */
b99bd4ef 4429
c19d1205
ZW
4430static int
4431parse_fpa_immediate (char ** str)
4432{
4433 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4434 char * save_in;
4435 expressionS exp;
4436 int i;
4437 int j;
b99bd4ef 4438
c19d1205
ZW
4439 /* First try and match exact strings, this is to guarantee
4440 that some formats will work even for cross assembly. */
b99bd4ef 4441
c19d1205
ZW
4442 for (i = 0; fp_const[i]; i++)
4443 {
4444 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4445 {
c19d1205 4446 char *start = *str;
b99bd4ef 4447
c19d1205
ZW
4448 *str += strlen (fp_const[i]);
4449 if (is_end_of_line[(unsigned char) **str])
4450 return i + 8;
4451 *str = start;
4452 }
4453 }
b99bd4ef 4454
c19d1205
ZW
4455 /* Just because we didn't get a match doesn't mean that the constant
4456 isn't valid, just that it is in a format that we don't
4457 automatically recognize. Try parsing it with the standard
4458 expression routines. */
b99bd4ef 4459
c19d1205 4460 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4461
c19d1205
ZW
4462 /* Look for a raw floating point number. */
4463 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4464 && is_end_of_line[(unsigned char) *save_in])
4465 {
4466 for (i = 0; i < NUM_FLOAT_VALS; i++)
4467 {
4468 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4469 {
c19d1205
ZW
4470 if (words[j] != fp_values[i][j])
4471 break;
b99bd4ef
NC
4472 }
4473
c19d1205 4474 if (j == MAX_LITTLENUMS)
b99bd4ef 4475 {
c19d1205
ZW
4476 *str = save_in;
4477 return i + 8;
b99bd4ef
NC
4478 }
4479 }
4480 }
b99bd4ef 4481
c19d1205
ZW
4482 /* Try and parse a more complex expression, this will probably fail
4483 unless the code uses a floating point prefix (eg "0f"). */
4484 save_in = input_line_pointer;
4485 input_line_pointer = *str;
4486 if (expression (&exp) == absolute_section
4487 && exp.X_op == O_big
4488 && exp.X_add_number < 0)
4489 {
4490 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4491 Ditto for 15. */
4492 if (gen_to_words (words, 5, (long) 15) == 0)
4493 {
4494 for (i = 0; i < NUM_FLOAT_VALS; i++)
4495 {
4496 for (j = 0; j < MAX_LITTLENUMS; j++)
4497 {
4498 if (words[j] != fp_values[i][j])
4499 break;
4500 }
b99bd4ef 4501
c19d1205
ZW
4502 if (j == MAX_LITTLENUMS)
4503 {
4504 *str = input_line_pointer;
4505 input_line_pointer = save_in;
4506 return i + 8;
4507 }
4508 }
4509 }
b99bd4ef
NC
4510 }
4511
c19d1205
ZW
4512 *str = input_line_pointer;
4513 input_line_pointer = save_in;
4514 inst.error = _("invalid FPA immediate expression");
4515 return FAIL;
b99bd4ef
NC
4516}
4517
136da414
JB
4518/* Returns 1 if a number has "quarter-precision" float format
4519 0baBbbbbbc defgh000 00000000 00000000. */
4520
4521static int
4522is_quarter_float (unsigned imm)
4523{
4524 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4525 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4526}
4527
4528/* Parse an 8-bit "quarter-precision" floating point number of the form:
4529 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4530 The zero and minus-zero cases need special handling, since they can't be
4531 encoded in the "quarter-precision" float format, but can nonetheless be
4532 loaded as integer constants. */
136da414
JB
4533
4534static unsigned
4535parse_qfloat_immediate (char **ccp, int *immed)
4536{
4537 char *str = *ccp;
c96612cc 4538 char *fpnum;
136da414 4539 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4540 int found_fpchar = 0;
5f4273c7 4541
136da414 4542 skip_past_char (&str, '#');
5f4273c7 4543
c96612cc
JB
4544 /* We must not accidentally parse an integer as a floating-point number. Make
4545 sure that the value we parse is not an integer by checking for special
4546 characters '.' or 'e'.
4547 FIXME: This is a horrible hack, but doing better is tricky because type
4548 information isn't in a very usable state at parse time. */
4549 fpnum = str;
4550 skip_whitespace (fpnum);
4551
4552 if (strncmp (fpnum, "0x", 2) == 0)
4553 return FAIL;
4554 else
4555 {
4556 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4557 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4558 {
4559 found_fpchar = 1;
4560 break;
4561 }
4562
4563 if (!found_fpchar)
4564 return FAIL;
4565 }
5f4273c7 4566
136da414
JB
4567 if ((str = atof_ieee (str, 's', words)) != NULL)
4568 {
4569 unsigned fpword = 0;
4570 int i;
5f4273c7 4571
136da414
JB
4572 /* Our FP word must be 32 bits (single-precision FP). */
4573 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4574 {
4575 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4576 fpword |= words[i];
4577 }
5f4273c7 4578
c96612cc 4579 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4580 *immed = fpword;
4581 else
4582 return FAIL;
4583
4584 *ccp = str;
5f4273c7 4585
136da414
JB
4586 return SUCCESS;
4587 }
5f4273c7 4588
136da414
JB
4589 return FAIL;
4590}
4591
c19d1205
ZW
4592/* Shift operands. */
4593enum shift_kind
b99bd4ef 4594{
c19d1205
ZW
4595 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4596};
b99bd4ef 4597
c19d1205
ZW
4598struct asm_shift_name
4599{
4600 const char *name;
4601 enum shift_kind kind;
4602};
b99bd4ef 4603
c19d1205
ZW
4604/* Third argument to parse_shift. */
4605enum parse_shift_mode
4606{
4607 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4608 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4609 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4610 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4611 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4612};
b99bd4ef 4613
c19d1205
ZW
4614/* Parse a <shift> specifier on an ARM data processing instruction.
4615 This has three forms:
b99bd4ef 4616
c19d1205
ZW
4617 (LSL|LSR|ASL|ASR|ROR) Rs
4618 (LSL|LSR|ASL|ASR|ROR) #imm
4619 RRX
b99bd4ef 4620
c19d1205
ZW
4621 Note that ASL is assimilated to LSL in the instruction encoding, and
4622 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4623
c19d1205
ZW
4624static int
4625parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4626{
c19d1205
ZW
4627 const struct asm_shift_name *shift_name;
4628 enum shift_kind shift;
4629 char *s = *str;
4630 char *p = s;
4631 int reg;
b99bd4ef 4632
c19d1205
ZW
4633 for (p = *str; ISALPHA (*p); p++)
4634 ;
b99bd4ef 4635
c19d1205 4636 if (p == *str)
b99bd4ef 4637 {
c19d1205
ZW
4638 inst.error = _("shift expression expected");
4639 return FAIL;
b99bd4ef
NC
4640 }
4641
21d799b5
NC
4642 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4643 p - *str);
c19d1205
ZW
4644
4645 if (shift_name == NULL)
b99bd4ef 4646 {
c19d1205
ZW
4647 inst.error = _("shift expression expected");
4648 return FAIL;
b99bd4ef
NC
4649 }
4650
c19d1205 4651 shift = shift_name->kind;
b99bd4ef 4652
c19d1205
ZW
4653 switch (mode)
4654 {
4655 case NO_SHIFT_RESTRICT:
4656 case SHIFT_IMMEDIATE: break;
b99bd4ef 4657
c19d1205
ZW
4658 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4659 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4660 {
4661 inst.error = _("'LSL' or 'ASR' required");
4662 return FAIL;
4663 }
4664 break;
b99bd4ef 4665
c19d1205
ZW
4666 case SHIFT_LSL_IMMEDIATE:
4667 if (shift != SHIFT_LSL)
4668 {
4669 inst.error = _("'LSL' required");
4670 return FAIL;
4671 }
4672 break;
b99bd4ef 4673
c19d1205
ZW
4674 case SHIFT_ASR_IMMEDIATE:
4675 if (shift != SHIFT_ASR)
4676 {
4677 inst.error = _("'ASR' required");
4678 return FAIL;
4679 }
4680 break;
b99bd4ef 4681
c19d1205
ZW
4682 default: abort ();
4683 }
b99bd4ef 4684
c19d1205
ZW
4685 if (shift != SHIFT_RRX)
4686 {
4687 /* Whitespace can appear here if the next thing is a bare digit. */
4688 skip_whitespace (p);
b99bd4ef 4689
c19d1205 4690 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4691 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4692 {
4693 inst.operands[i].imm = reg;
4694 inst.operands[i].immisreg = 1;
4695 }
4696 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4697 return FAIL;
4698 }
4699 inst.operands[i].shift_kind = shift;
4700 inst.operands[i].shifted = 1;
4701 *str = p;
4702 return SUCCESS;
b99bd4ef
NC
4703}
4704
c19d1205 4705/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4706
c19d1205
ZW
4707 #<immediate>
4708 #<immediate>, <rotate>
4709 <Rm>
4710 <Rm>, <shift>
b99bd4ef 4711
c19d1205
ZW
4712 where <shift> is defined by parse_shift above, and <rotate> is a
4713 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4714 is deferred to md_apply_fix. */
b99bd4ef 4715
c19d1205
ZW
4716static int
4717parse_shifter_operand (char **str, int i)
4718{
4719 int value;
91d6fa6a 4720 expressionS exp;
b99bd4ef 4721
dcbf9037 4722 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4723 {
4724 inst.operands[i].reg = value;
4725 inst.operands[i].isreg = 1;
b99bd4ef 4726
c19d1205
ZW
4727 /* parse_shift will override this if appropriate */
4728 inst.reloc.exp.X_op = O_constant;
4729 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4730
c19d1205
ZW
4731 if (skip_past_comma (str) == FAIL)
4732 return SUCCESS;
b99bd4ef 4733
c19d1205
ZW
4734 /* Shift operation on register. */
4735 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4736 }
4737
c19d1205
ZW
4738 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4739 return FAIL;
b99bd4ef 4740
c19d1205 4741 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4742 {
c19d1205 4743 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4744 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4745 return FAIL;
b99bd4ef 4746
91d6fa6a 4747 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4748 {
4749 inst.error = _("constant expression expected");
4750 return FAIL;
4751 }
b99bd4ef 4752
91d6fa6a 4753 value = exp.X_add_number;
c19d1205
ZW
4754 if (value < 0 || value > 30 || value % 2 != 0)
4755 {
4756 inst.error = _("invalid rotation");
4757 return FAIL;
4758 }
4759 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4760 {
4761 inst.error = _("invalid constant");
4762 return FAIL;
4763 }
09d92015 4764
55cf6793 4765 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4766 inst.reloc.exp.X_add_number
4767 = (((inst.reloc.exp.X_add_number << (32 - value))
4768 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4769 }
4770
c19d1205
ZW
4771 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4772 inst.reloc.pc_rel = 0;
4773 return SUCCESS;
09d92015
MM
4774}
4775
4962c51a
MS
4776/* Group relocation information. Each entry in the table contains the
4777 textual name of the relocation as may appear in assembler source
4778 and must end with a colon.
4779 Along with this textual name are the relocation codes to be used if
4780 the corresponding instruction is an ALU instruction (ADD or SUB only),
4781 an LDR, an LDRS, or an LDC. */
4782
4783struct group_reloc_table_entry
4784{
4785 const char *name;
4786 int alu_code;
4787 int ldr_code;
4788 int ldrs_code;
4789 int ldc_code;
4790};
4791
4792typedef enum
4793{
4794 /* Varieties of non-ALU group relocation. */
4795
4796 GROUP_LDR,
4797 GROUP_LDRS,
4798 GROUP_LDC
4799} group_reloc_type;
4800
4801static struct group_reloc_table_entry group_reloc_table[] =
4802 { /* Program counter relative: */
4803 { "pc_g0_nc",
4804 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4805 0, /* LDR */
4806 0, /* LDRS */
4807 0 }, /* LDC */
4808 { "pc_g0",
4809 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4810 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4811 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4812 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4813 { "pc_g1_nc",
4814 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4815 0, /* LDR */
4816 0, /* LDRS */
4817 0 }, /* LDC */
4818 { "pc_g1",
4819 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4820 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4821 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4822 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4823 { "pc_g2",
4824 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4825 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4826 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4827 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4828 /* Section base relative */
4829 { "sb_g0_nc",
4830 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4831 0, /* LDR */
4832 0, /* LDRS */
4833 0 }, /* LDC */
4834 { "sb_g0",
4835 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4836 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4837 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4838 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4839 { "sb_g1_nc",
4840 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4841 0, /* LDR */
4842 0, /* LDRS */
4843 0 }, /* LDC */
4844 { "sb_g1",
4845 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4846 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4847 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4848 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4849 { "sb_g2",
4850 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4851 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4852 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4853 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4854
4855/* Given the address of a pointer pointing to the textual name of a group
4856 relocation as may appear in assembler source, attempt to find its details
4857 in group_reloc_table. The pointer will be updated to the character after
4858 the trailing colon. On failure, FAIL will be returned; SUCCESS
4859 otherwise. On success, *entry will be updated to point at the relevant
4860 group_reloc_table entry. */
4861
4862static int
4863find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4864{
4865 unsigned int i;
4866 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4867 {
4868 int length = strlen (group_reloc_table[i].name);
4869
5f4273c7
NC
4870 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4871 && (*str)[length] == ':')
4962c51a
MS
4872 {
4873 *out = &group_reloc_table[i];
4874 *str += (length + 1);
4875 return SUCCESS;
4876 }
4877 }
4878
4879 return FAIL;
4880}
4881
4882/* Parse a <shifter_operand> for an ARM data processing instruction
4883 (as for parse_shifter_operand) where group relocations are allowed:
4884
4885 #<immediate>
4886 #<immediate>, <rotate>
4887 #:<group_reloc>:<expression>
4888 <Rm>
4889 <Rm>, <shift>
4890
4891 where <group_reloc> is one of the strings defined in group_reloc_table.
4892 The hashes are optional.
4893
4894 Everything else is as for parse_shifter_operand. */
4895
4896static parse_operand_result
4897parse_shifter_operand_group_reloc (char **str, int i)
4898{
4899 /* Determine if we have the sequence of characters #: or just :
4900 coming next. If we do, then we check for a group relocation.
4901 If we don't, punt the whole lot to parse_shifter_operand. */
4902
4903 if (((*str)[0] == '#' && (*str)[1] == ':')
4904 || (*str)[0] == ':')
4905 {
4906 struct group_reloc_table_entry *entry;
4907
4908 if ((*str)[0] == '#')
4909 (*str) += 2;
4910 else
4911 (*str)++;
4912
4913 /* Try to parse a group relocation. Anything else is an error. */
4914 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4915 {
4916 inst.error = _("unknown group relocation");
4917 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4918 }
4919
4920 /* We now have the group relocation table entry corresponding to
4921 the name in the assembler source. Next, we parse the expression. */
4922 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4923 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4924
4925 /* Record the relocation type (always the ALU variant here). */
21d799b5 4926 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 4927 gas_assert (inst.reloc.type != 0);
4962c51a
MS
4928
4929 return PARSE_OPERAND_SUCCESS;
4930 }
4931 else
4932 return parse_shifter_operand (str, i) == SUCCESS
4933 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4934
4935 /* Never reached. */
4936}
4937
c19d1205
ZW
4938/* Parse all forms of an ARM address expression. Information is written
4939 to inst.operands[i] and/or inst.reloc.
09d92015 4940
c19d1205 4941 Preindexed addressing (.preind=1):
09d92015 4942
c19d1205
ZW
4943 [Rn, #offset] .reg=Rn .reloc.exp=offset
4944 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4945 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4946 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4947
c19d1205 4948 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4949
c19d1205 4950 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4951
c19d1205
ZW
4952 [Rn], #offset .reg=Rn .reloc.exp=offset
4953 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4954 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4955 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4956
c19d1205 4957 Unindexed addressing (.preind=0, .postind=0):
09d92015 4958
c19d1205 4959 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4960
c19d1205 4961 Other:
09d92015 4962
c19d1205
ZW
4963 [Rn]{!} shorthand for [Rn,#0]{!}
4964 =immediate .isreg=0 .reloc.exp=immediate
4965 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4966
c19d1205
ZW
4967 It is the caller's responsibility to check for addressing modes not
4968 supported by the instruction, and to set inst.reloc.type. */
4969
4962c51a
MS
4970static parse_operand_result
4971parse_address_main (char **str, int i, int group_relocations,
4972 group_reloc_type group_type)
09d92015 4973{
c19d1205
ZW
4974 char *p = *str;
4975 int reg;
09d92015 4976
c19d1205 4977 if (skip_past_char (&p, '[') == FAIL)
09d92015 4978 {
c19d1205
ZW
4979 if (skip_past_char (&p, '=') == FAIL)
4980 {
974da60d 4981 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
4982 inst.reloc.pc_rel = 1;
4983 inst.operands[i].reg = REG_PC;
4984 inst.operands[i].isreg = 1;
4985 inst.operands[i].preind = 1;
4986 }
974da60d 4987 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 4988
c19d1205 4989 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 4990 return PARSE_OPERAND_FAIL;
09d92015 4991
c19d1205 4992 *str = p;
4962c51a 4993 return PARSE_OPERAND_SUCCESS;
09d92015
MM
4994 }
4995
dcbf9037 4996 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4997 {
c19d1205 4998 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 4999 return PARSE_OPERAND_FAIL;
09d92015 5000 }
c19d1205
ZW
5001 inst.operands[i].reg = reg;
5002 inst.operands[i].isreg = 1;
09d92015 5003
c19d1205 5004 if (skip_past_comma (&p) == SUCCESS)
09d92015 5005 {
c19d1205 5006 inst.operands[i].preind = 1;
09d92015 5007
c19d1205
ZW
5008 if (*p == '+') p++;
5009 else if (*p == '-') p++, inst.operands[i].negative = 1;
5010
dcbf9037 5011 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5012 {
c19d1205
ZW
5013 inst.operands[i].imm = reg;
5014 inst.operands[i].immisreg = 1;
5015
5016 if (skip_past_comma (&p) == SUCCESS)
5017 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5018 return PARSE_OPERAND_FAIL;
c19d1205 5019 }
5287ad62
JB
5020 else if (skip_past_char (&p, ':') == SUCCESS)
5021 {
5022 /* FIXME: '@' should be used here, but it's filtered out by generic
5023 code before we get to see it here. This may be subject to
5024 change. */
5025 expressionS exp;
5026 my_get_expression (&exp, &p, GE_NO_PREFIX);
5027 if (exp.X_op != O_constant)
5028 {
5029 inst.error = _("alignment must be constant");
4962c51a 5030 return PARSE_OPERAND_FAIL;
5287ad62
JB
5031 }
5032 inst.operands[i].imm = exp.X_add_number << 8;
5033 inst.operands[i].immisalign = 1;
5034 /* Alignments are not pre-indexes. */
5035 inst.operands[i].preind = 0;
5036 }
c19d1205
ZW
5037 else
5038 {
5039 if (inst.operands[i].negative)
5040 {
5041 inst.operands[i].negative = 0;
5042 p--;
5043 }
4962c51a 5044
5f4273c7
NC
5045 if (group_relocations
5046 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5047 {
5048 struct group_reloc_table_entry *entry;
5049
5050 /* Skip over the #: or : sequence. */
5051 if (*p == '#')
5052 p += 2;
5053 else
5054 p++;
5055
5056 /* Try to parse a group relocation. Anything else is an
5057 error. */
5058 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5059 {
5060 inst.error = _("unknown group relocation");
5061 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5062 }
5063
5064 /* We now have the group relocation table entry corresponding to
5065 the name in the assembler source. Next, we parse the
5066 expression. */
5067 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5068 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5069
5070 /* Record the relocation type. */
5071 switch (group_type)
5072 {
5073 case GROUP_LDR:
21d799b5 5074 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5075 break;
5076
5077 case GROUP_LDRS:
21d799b5 5078 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5079 break;
5080
5081 case GROUP_LDC:
21d799b5 5082 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5083 break;
5084
5085 default:
9c2799c2 5086 gas_assert (0);
4962c51a
MS
5087 }
5088
5089 if (inst.reloc.type == 0)
5090 {
5091 inst.error = _("this group relocation is not allowed on this instruction");
5092 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5093 }
5094 }
5095 else
5096 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5097 return PARSE_OPERAND_FAIL;
09d92015
MM
5098 }
5099 }
5100
c19d1205 5101 if (skip_past_char (&p, ']') == FAIL)
09d92015 5102 {
c19d1205 5103 inst.error = _("']' expected");
4962c51a 5104 return PARSE_OPERAND_FAIL;
09d92015
MM
5105 }
5106
c19d1205
ZW
5107 if (skip_past_char (&p, '!') == SUCCESS)
5108 inst.operands[i].writeback = 1;
09d92015 5109
c19d1205 5110 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5111 {
c19d1205
ZW
5112 if (skip_past_char (&p, '{') == SUCCESS)
5113 {
5114 /* [Rn], {expr} - unindexed, with option */
5115 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5116 0, 255, TRUE) == FAIL)
4962c51a 5117 return PARSE_OPERAND_FAIL;
09d92015 5118
c19d1205
ZW
5119 if (skip_past_char (&p, '}') == FAIL)
5120 {
5121 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5122 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5123 }
5124 if (inst.operands[i].preind)
5125 {
5126 inst.error = _("cannot combine index with option");
4962c51a 5127 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5128 }
5129 *str = p;
4962c51a 5130 return PARSE_OPERAND_SUCCESS;
09d92015 5131 }
c19d1205
ZW
5132 else
5133 {
5134 inst.operands[i].postind = 1;
5135 inst.operands[i].writeback = 1;
09d92015 5136
c19d1205
ZW
5137 if (inst.operands[i].preind)
5138 {
5139 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5140 return PARSE_OPERAND_FAIL;
c19d1205 5141 }
09d92015 5142
c19d1205
ZW
5143 if (*p == '+') p++;
5144 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5145
dcbf9037 5146 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5147 {
5287ad62
JB
5148 /* We might be using the immediate for alignment already. If we
5149 are, OR the register number into the low-order bits. */
5150 if (inst.operands[i].immisalign)
5151 inst.operands[i].imm |= reg;
5152 else
5153 inst.operands[i].imm = reg;
c19d1205 5154 inst.operands[i].immisreg = 1;
a737bd4d 5155
c19d1205
ZW
5156 if (skip_past_comma (&p) == SUCCESS)
5157 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5158 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5159 }
5160 else
5161 {
5162 if (inst.operands[i].negative)
5163 {
5164 inst.operands[i].negative = 0;
5165 p--;
5166 }
5167 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5168 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5169 }
5170 }
a737bd4d
NC
5171 }
5172
c19d1205
ZW
5173 /* If at this point neither .preind nor .postind is set, we have a
5174 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5175 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5176 {
5177 inst.operands[i].preind = 1;
5178 inst.reloc.exp.X_op = O_constant;
5179 inst.reloc.exp.X_add_number = 0;
5180 }
5181 *str = p;
4962c51a
MS
5182 return PARSE_OPERAND_SUCCESS;
5183}
5184
5185static int
5186parse_address (char **str, int i)
5187{
21d799b5 5188 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5189 ? SUCCESS : FAIL;
5190}
5191
5192static parse_operand_result
5193parse_address_group_reloc (char **str, int i, group_reloc_type type)
5194{
5195 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5196}
5197
b6895b4f
PB
5198/* Parse an operand for a MOVW or MOVT instruction. */
5199static int
5200parse_half (char **str)
5201{
5202 char * p;
5f4273c7 5203
b6895b4f
PB
5204 p = *str;
5205 skip_past_char (&p, '#');
5f4273c7 5206 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5207 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5208 else if (strncasecmp (p, ":upper16:", 9) == 0)
5209 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5210
5211 if (inst.reloc.type != BFD_RELOC_UNUSED)
5212 {
5213 p += 9;
5f4273c7 5214 skip_whitespace (p);
b6895b4f
PB
5215 }
5216
5217 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5218 return FAIL;
5219
5220 if (inst.reloc.type == BFD_RELOC_UNUSED)
5221 {
5222 if (inst.reloc.exp.X_op != O_constant)
5223 {
5224 inst.error = _("constant expression expected");
5225 return FAIL;
5226 }
5227 if (inst.reloc.exp.X_add_number < 0
5228 || inst.reloc.exp.X_add_number > 0xffff)
5229 {
5230 inst.error = _("immediate value out of range");
5231 return FAIL;
5232 }
5233 }
5234 *str = p;
5235 return SUCCESS;
5236}
5237
c19d1205 5238/* Miscellaneous. */
a737bd4d 5239
c19d1205
ZW
5240/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5241 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5242static int
5243parse_psr (char **str)
09d92015 5244{
c19d1205
ZW
5245 char *p;
5246 unsigned long psr_field;
62b3e311
PB
5247 const struct asm_psr *psr;
5248 char *start;
09d92015 5249
c19d1205
ZW
5250 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5251 feature for ease of use and backwards compatibility. */
5252 p = *str;
62b3e311 5253 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 5254 psr_field = SPSR_BIT;
62b3e311 5255 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
5256 psr_field = 0;
5257 else
62b3e311
PB
5258 {
5259 start = p;
5260 do
5261 p++;
5262 while (ISALNUM (*p) || *p == '_');
5263
21d799b5
NC
5264 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5265 p - start);
62b3e311
PB
5266 if (!psr)
5267 return FAIL;
09d92015 5268
62b3e311
PB
5269 *str = p;
5270 return psr->field;
5271 }
09d92015 5272
62b3e311 5273 p += 4;
c19d1205
ZW
5274 if (*p == '_')
5275 {
5276 /* A suffix follows. */
c19d1205
ZW
5277 p++;
5278 start = p;
a737bd4d 5279
c19d1205
ZW
5280 do
5281 p++;
5282 while (ISALNUM (*p) || *p == '_');
a737bd4d 5283
21d799b5
NC
5284 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5285 p - start);
c19d1205
ZW
5286 if (!psr)
5287 goto error;
a737bd4d 5288
c19d1205 5289 psr_field |= psr->field;
a737bd4d 5290 }
c19d1205 5291 else
a737bd4d 5292 {
c19d1205
ZW
5293 if (ISALNUM (*p))
5294 goto error; /* Garbage after "[CS]PSR". */
5295
5296 psr_field |= (PSR_c | PSR_f);
a737bd4d 5297 }
c19d1205
ZW
5298 *str = p;
5299 return psr_field;
a737bd4d 5300
c19d1205
ZW
5301 error:
5302 inst.error = _("flag for {c}psr instruction expected");
5303 return FAIL;
a737bd4d
NC
5304}
5305
c19d1205
ZW
5306/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5307 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5308
c19d1205
ZW
5309static int
5310parse_cps_flags (char **str)
a737bd4d 5311{
c19d1205
ZW
5312 int val = 0;
5313 int saw_a_flag = 0;
5314 char *s = *str;
a737bd4d 5315
c19d1205
ZW
5316 for (;;)
5317 switch (*s++)
5318 {
5319 case '\0': case ',':
5320 goto done;
a737bd4d 5321
c19d1205
ZW
5322 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5323 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5324 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5325
c19d1205
ZW
5326 default:
5327 inst.error = _("unrecognized CPS flag");
5328 return FAIL;
5329 }
a737bd4d 5330
c19d1205
ZW
5331 done:
5332 if (saw_a_flag == 0)
a737bd4d 5333 {
c19d1205
ZW
5334 inst.error = _("missing CPS flags");
5335 return FAIL;
a737bd4d 5336 }
a737bd4d 5337
c19d1205
ZW
5338 *str = s - 1;
5339 return val;
a737bd4d
NC
5340}
5341
c19d1205
ZW
5342/* Parse an endian specifier ("BE" or "LE", case insensitive);
5343 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5344
5345static int
c19d1205 5346parse_endian_specifier (char **str)
a737bd4d 5347{
c19d1205
ZW
5348 int little_endian;
5349 char *s = *str;
a737bd4d 5350
c19d1205
ZW
5351 if (strncasecmp (s, "BE", 2))
5352 little_endian = 0;
5353 else if (strncasecmp (s, "LE", 2))
5354 little_endian = 1;
5355 else
a737bd4d 5356 {
c19d1205 5357 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5358 return FAIL;
5359 }
5360
c19d1205 5361 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5362 {
c19d1205 5363 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5364 return FAIL;
5365 }
5366
c19d1205
ZW
5367 *str = s + 2;
5368 return little_endian;
5369}
a737bd4d 5370
c19d1205
ZW
5371/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5372 value suitable for poking into the rotate field of an sxt or sxta
5373 instruction, or FAIL on error. */
5374
5375static int
5376parse_ror (char **str)
5377{
5378 int rot;
5379 char *s = *str;
5380
5381 if (strncasecmp (s, "ROR", 3) == 0)
5382 s += 3;
5383 else
a737bd4d 5384 {
c19d1205 5385 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5386 return FAIL;
5387 }
c19d1205
ZW
5388
5389 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5390 return FAIL;
5391
5392 switch (rot)
a737bd4d 5393 {
c19d1205
ZW
5394 case 0: *str = s; return 0x0;
5395 case 8: *str = s; return 0x1;
5396 case 16: *str = s; return 0x2;
5397 case 24: *str = s; return 0x3;
5398
5399 default:
5400 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5401 return FAIL;
5402 }
c19d1205 5403}
a737bd4d 5404
c19d1205
ZW
5405/* Parse a conditional code (from conds[] below). The value returned is in the
5406 range 0 .. 14, or FAIL. */
5407static int
5408parse_cond (char **str)
5409{
c462b453 5410 char *q;
c19d1205 5411 const struct asm_cond *c;
c462b453
PB
5412 int n;
5413 /* Condition codes are always 2 characters, so matching up to
5414 3 characters is sufficient. */
5415 char cond[3];
a737bd4d 5416
c462b453
PB
5417 q = *str;
5418 n = 0;
5419 while (ISALPHA (*q) && n < 3)
5420 {
e07e6e58 5421 cond[n] = TOLOWER (*q);
c462b453
PB
5422 q++;
5423 n++;
5424 }
a737bd4d 5425
21d799b5 5426 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5427 if (!c)
a737bd4d 5428 {
c19d1205 5429 inst.error = _("condition required");
a737bd4d
NC
5430 return FAIL;
5431 }
5432
c19d1205
ZW
5433 *str = q;
5434 return c->value;
5435}
5436
62b3e311
PB
5437/* Parse an option for a barrier instruction. Returns the encoding for the
5438 option, or FAIL. */
5439static int
5440parse_barrier (char **str)
5441{
5442 char *p, *q;
5443 const struct asm_barrier_opt *o;
5444
5445 p = q = *str;
5446 while (ISALPHA (*q))
5447 q++;
5448
21d799b5
NC
5449 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5450 q - p);
62b3e311
PB
5451 if (!o)
5452 return FAIL;
5453
5454 *str = q;
5455 return o->value;
5456}
5457
92e90b6e
PB
5458/* Parse the operands of a table branch instruction. Similar to a memory
5459 operand. */
5460static int
5461parse_tb (char **str)
5462{
5463 char * p = *str;
5464 int reg;
5465
5466 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5467 {
5468 inst.error = _("'[' expected");
5469 return FAIL;
5470 }
92e90b6e 5471
dcbf9037 5472 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5473 {
5474 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5475 return FAIL;
5476 }
5477 inst.operands[0].reg = reg;
5478
5479 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5480 {
5481 inst.error = _("',' expected");
5482 return FAIL;
5483 }
5f4273c7 5484
dcbf9037 5485 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5486 {
5487 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5488 return FAIL;
5489 }
5490 inst.operands[0].imm = reg;
5491
5492 if (skip_past_comma (&p) == SUCCESS)
5493 {
5494 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5495 return FAIL;
5496 if (inst.reloc.exp.X_add_number != 1)
5497 {
5498 inst.error = _("invalid shift");
5499 return FAIL;
5500 }
5501 inst.operands[0].shifted = 1;
5502 }
5503
5504 if (skip_past_char (&p, ']') == FAIL)
5505 {
5506 inst.error = _("']' expected");
5507 return FAIL;
5508 }
5509 *str = p;
5510 return SUCCESS;
5511}
5512
5287ad62
JB
5513/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5514 information on the types the operands can take and how they are encoded.
037e8744
JB
5515 Up to four operands may be read; this function handles setting the
5516 ".present" field for each read operand itself.
5287ad62
JB
5517 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5518 else returns FAIL. */
5519
5520static int
5521parse_neon_mov (char **str, int *which_operand)
5522{
5523 int i = *which_operand, val;
5524 enum arm_reg_type rtype;
5525 char *ptr = *str;
dcbf9037 5526 struct neon_type_el optype;
5f4273c7 5527
dcbf9037 5528 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5529 {
5530 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5531 inst.operands[i].reg = val;
5532 inst.operands[i].isscalar = 1;
dcbf9037 5533 inst.operands[i].vectype = optype;
5287ad62
JB
5534 inst.operands[i++].present = 1;
5535
5536 if (skip_past_comma (&ptr) == FAIL)
5537 goto wanted_comma;
5f4273c7 5538
dcbf9037 5539 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5540 goto wanted_arm;
5f4273c7 5541
5287ad62
JB
5542 inst.operands[i].reg = val;
5543 inst.operands[i].isreg = 1;
5544 inst.operands[i].present = 1;
5545 }
037e8744 5546 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5547 != FAIL)
5287ad62
JB
5548 {
5549 /* Cases 0, 1, 2, 3, 5 (D only). */
5550 if (skip_past_comma (&ptr) == FAIL)
5551 goto wanted_comma;
5f4273c7 5552
5287ad62
JB
5553 inst.operands[i].reg = val;
5554 inst.operands[i].isreg = 1;
5555 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5556 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5557 inst.operands[i].isvec = 1;
dcbf9037 5558 inst.operands[i].vectype = optype;
5287ad62
JB
5559 inst.operands[i++].present = 1;
5560
dcbf9037 5561 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5562 {
037e8744
JB
5563 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5564 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5565 inst.operands[i].reg = val;
5566 inst.operands[i].isreg = 1;
037e8744 5567 inst.operands[i].present = 1;
5287ad62
JB
5568
5569 if (rtype == REG_TYPE_NQ)
5570 {
dcbf9037 5571 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5572 return FAIL;
5573 }
037e8744
JB
5574 else if (rtype != REG_TYPE_VFS)
5575 {
5576 i++;
5577 if (skip_past_comma (&ptr) == FAIL)
5578 goto wanted_comma;
5579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5580 goto wanted_arm;
5581 inst.operands[i].reg = val;
5582 inst.operands[i].isreg = 1;
5583 inst.operands[i].present = 1;
5584 }
5287ad62 5585 }
037e8744
JB
5586 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5587 &optype)) != FAIL)
5287ad62
JB
5588 {
5589 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5590 Case 1: VMOV<c><q> <Dd>, <Dm>
5591 Case 8: VMOV.F32 <Sd>, <Sm>
5592 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5593
5594 inst.operands[i].reg = val;
5595 inst.operands[i].isreg = 1;
5596 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5597 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5598 inst.operands[i].isvec = 1;
dcbf9037 5599 inst.operands[i].vectype = optype;
5287ad62 5600 inst.operands[i].present = 1;
5f4273c7 5601
037e8744
JB
5602 if (skip_past_comma (&ptr) == SUCCESS)
5603 {
5604 /* Case 15. */
5605 i++;
5606
5607 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5608 goto wanted_arm;
5609
5610 inst.operands[i].reg = val;
5611 inst.operands[i].isreg = 1;
5612 inst.operands[i++].present = 1;
5f4273c7 5613
037e8744
JB
5614 if (skip_past_comma (&ptr) == FAIL)
5615 goto wanted_comma;
5f4273c7 5616
037e8744
JB
5617 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5618 goto wanted_arm;
5f4273c7 5619
037e8744
JB
5620 inst.operands[i].reg = val;
5621 inst.operands[i].isreg = 1;
5622 inst.operands[i++].present = 1;
5623 }
5287ad62 5624 }
4641781c
PB
5625 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5626 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5627 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5628 Case 10: VMOV.F32 <Sd>, #<imm>
5629 Case 11: VMOV.F64 <Dd>, #<imm> */
5630 inst.operands[i].immisfloat = 1;
5631 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5632 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5633 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5634 ;
5287ad62
JB
5635 else
5636 {
dcbf9037 5637 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5638 return FAIL;
5639 }
5640 }
dcbf9037 5641 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5642 {
5643 /* Cases 6, 7. */
5644 inst.operands[i].reg = val;
5645 inst.operands[i].isreg = 1;
5646 inst.operands[i++].present = 1;
5f4273c7 5647
5287ad62
JB
5648 if (skip_past_comma (&ptr) == FAIL)
5649 goto wanted_comma;
5f4273c7 5650
dcbf9037 5651 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5652 {
5653 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5654 inst.operands[i].reg = val;
5655 inst.operands[i].isscalar = 1;
5656 inst.operands[i].present = 1;
dcbf9037 5657 inst.operands[i].vectype = optype;
5287ad62 5658 }
dcbf9037 5659 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5660 {
5661 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5662 inst.operands[i].reg = val;
5663 inst.operands[i].isreg = 1;
5664 inst.operands[i++].present = 1;
5f4273c7 5665
5287ad62
JB
5666 if (skip_past_comma (&ptr) == FAIL)
5667 goto wanted_comma;
5f4273c7 5668
037e8744 5669 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5670 == FAIL)
5287ad62 5671 {
037e8744 5672 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5673 return FAIL;
5674 }
5675
5676 inst.operands[i].reg = val;
5677 inst.operands[i].isreg = 1;
037e8744
JB
5678 inst.operands[i].isvec = 1;
5679 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5680 inst.operands[i].vectype = optype;
5287ad62 5681 inst.operands[i].present = 1;
5f4273c7 5682
037e8744
JB
5683 if (rtype == REG_TYPE_VFS)
5684 {
5685 /* Case 14. */
5686 i++;
5687 if (skip_past_comma (&ptr) == FAIL)
5688 goto wanted_comma;
5689 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5690 &optype)) == FAIL)
5691 {
5692 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5693 return FAIL;
5694 }
5695 inst.operands[i].reg = val;
5696 inst.operands[i].isreg = 1;
5697 inst.operands[i].isvec = 1;
5698 inst.operands[i].issingle = 1;
5699 inst.operands[i].vectype = optype;
5700 inst.operands[i].present = 1;
5701 }
5702 }
5703 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5704 != FAIL)
5705 {
5706 /* Case 13. */
5707 inst.operands[i].reg = val;
5708 inst.operands[i].isreg = 1;
5709 inst.operands[i].isvec = 1;
5710 inst.operands[i].issingle = 1;
5711 inst.operands[i].vectype = optype;
5712 inst.operands[i++].present = 1;
5287ad62
JB
5713 }
5714 }
5715 else
5716 {
dcbf9037 5717 first_error (_("parse error"));
5287ad62
JB
5718 return FAIL;
5719 }
5720
5721 /* Successfully parsed the operands. Update args. */
5722 *which_operand = i;
5723 *str = ptr;
5724 return SUCCESS;
5725
5f4273c7 5726 wanted_comma:
dcbf9037 5727 first_error (_("expected comma"));
5287ad62 5728 return FAIL;
5f4273c7
NC
5729
5730 wanted_arm:
dcbf9037 5731 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5732 return FAIL;
5287ad62
JB
5733}
5734
5be8be5d
DG
5735/* Use this macro when the operand constraints are different
5736 for ARM and THUMB (e.g. ldrd). */
5737#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5738 ((arm_operand) | ((thumb_operand) << 16))
5739
c19d1205
ZW
5740/* Matcher codes for parse_operands. */
5741enum operand_parse_code
5742{
5743 OP_stop, /* end of line */
5744
5745 OP_RR, /* ARM register */
5746 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 5747 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205
ZW
5748 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5749 OP_RRw, /* ARM register, not r15, optional trailing ! */
5750 OP_RCP, /* Coprocessor number */
5751 OP_RCN, /* Coprocessor register */
5752 OP_RF, /* FPA register */
5753 OP_RVS, /* VFP single precision register */
5287ad62
JB
5754 OP_RVD, /* VFP double precision register (0..15) */
5755 OP_RND, /* Neon double precision register (0..31) */
5756 OP_RNQ, /* Neon quad precision register */
037e8744 5757 OP_RVSD, /* VFP single or double precision register */
5287ad62 5758 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5759 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5760 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5761 OP_RVC, /* VFP control register */
5762 OP_RMF, /* Maverick F register */
5763 OP_RMD, /* Maverick D register */
5764 OP_RMFX, /* Maverick FX register */
5765 OP_RMDX, /* Maverick DX register */
5766 OP_RMAX, /* Maverick AX register */
5767 OP_RMDS, /* Maverick DSPSC register */
5768 OP_RIWR, /* iWMMXt wR register */
5769 OP_RIWC, /* iWMMXt wC register */
5770 OP_RIWG, /* iWMMXt wCG register */
5771 OP_RXA, /* XScale accumulator register */
5772
5773 OP_REGLST, /* ARM register list */
5774 OP_VRSLST, /* VFP single-precision register list */
5775 OP_VRDLST, /* VFP double-precision register list */
037e8744 5776 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5777 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5778 OP_NSTRLST, /* Neon element/structure list */
5779
5287ad62 5780 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5781 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5782 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5783 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5784 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5785 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5786 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 5787 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 5788 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5789 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5790
5791 OP_I0, /* immediate zero */
c19d1205
ZW
5792 OP_I7, /* immediate value 0 .. 7 */
5793 OP_I15, /* 0 .. 15 */
5794 OP_I16, /* 1 .. 16 */
5287ad62 5795 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5796 OP_I31, /* 0 .. 31 */
5797 OP_I31w, /* 0 .. 31, optional trailing ! */
5798 OP_I32, /* 1 .. 32 */
5287ad62
JB
5799 OP_I32z, /* 0 .. 32 */
5800 OP_I63, /* 0 .. 63 */
c19d1205 5801 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5802 OP_I64, /* 1 .. 64 */
5803 OP_I64z, /* 0 .. 64 */
c19d1205 5804 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5805
5806 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5807 OP_I7b, /* 0 .. 7 */
5808 OP_I15b, /* 0 .. 15 */
5809 OP_I31b, /* 0 .. 31 */
5810
5811 OP_SH, /* shifter operand */
4962c51a 5812 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5813 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5814 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5815 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5816 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5817 OP_EXP, /* arbitrary expression */
5818 OP_EXPi, /* same, with optional immediate prefix */
5819 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5820 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5821
5822 OP_CPSF, /* CPS flags */
5823 OP_ENDI, /* Endianness specifier */
5824 OP_PSR, /* CPSR/SPSR mask for msr */
5825 OP_COND, /* conditional code */
92e90b6e 5826 OP_TB, /* Table branch. */
c19d1205 5827
037e8744
JB
5828 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5829 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5830
c19d1205
ZW
5831 OP_RRnpc_I0, /* ARM register or literal 0 */
5832 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5833 OP_RR_EXi, /* ARM register or expression with imm prefix */
5834 OP_RF_IF, /* FPA register or immediate */
5835 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5836 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5837
5838 /* Optional operands. */
5839 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5840 OP_oI31b, /* 0 .. 31 */
5287ad62 5841 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5842 OP_oIffffb, /* 0 .. 65535 */
5843 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5844
5845 OP_oRR, /* ARM register */
5846 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 5847 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 5848 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5849 OP_oRND, /* Optional Neon double precision register */
5850 OP_oRNQ, /* Optional Neon quad precision register */
5851 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5852 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5853 OP_oSHll, /* LSL immediate */
5854 OP_oSHar, /* ASR immediate */
5855 OP_oSHllar, /* LSL or ASR immediate */
5856 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5857 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205 5858
5be8be5d
DG
5859 /* Some pre-defined mixed (ARM/THUMB) operands. */
5860 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
5861 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
5862 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
5863
c19d1205
ZW
5864 OP_FIRST_OPTIONAL = OP_oI7b
5865};
a737bd4d 5866
c19d1205
ZW
5867/* Generic instruction operand parser. This does no encoding and no
5868 semantic validation; it merely squirrels values away in the inst
5869 structure. Returns SUCCESS or FAIL depending on whether the
5870 specified grammar matched. */
5871static int
5be8be5d 5872parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 5873{
5be8be5d 5874 unsigned const int *upat = pattern;
c19d1205
ZW
5875 char *backtrack_pos = 0;
5876 const char *backtrack_error = 0;
5877 int i, val, backtrack_index = 0;
5287ad62 5878 enum arm_reg_type rtype;
4962c51a 5879 parse_operand_result result;
5be8be5d 5880 unsigned int op_parse_code;
c19d1205 5881
e07e6e58
NC
5882#define po_char_or_fail(chr) \
5883 do \
5884 { \
5885 if (skip_past_char (&str, chr) == FAIL) \
5886 goto bad_args; \
5887 } \
5888 while (0)
c19d1205 5889
e07e6e58
NC
5890#define po_reg_or_fail(regtype) \
5891 do \
dcbf9037 5892 { \
e07e6e58
NC
5893 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5894 & inst.operands[i].vectype); \
5895 if (val == FAIL) \
5896 { \
5897 first_error (_(reg_expected_msgs[regtype])); \
5898 goto failure; \
5899 } \
5900 inst.operands[i].reg = val; \
5901 inst.operands[i].isreg = 1; \
5902 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5903 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5904 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5905 || rtype == REG_TYPE_VFD \
5906 || rtype == REG_TYPE_NQ); \
dcbf9037 5907 } \
e07e6e58
NC
5908 while (0)
5909
5910#define po_reg_or_goto(regtype, label) \
5911 do \
5912 { \
5913 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5914 & inst.operands[i].vectype); \
5915 if (val == FAIL) \
5916 goto label; \
dcbf9037 5917 \
e07e6e58
NC
5918 inst.operands[i].reg = val; \
5919 inst.operands[i].isreg = 1; \
5920 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5921 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5922 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5923 || rtype == REG_TYPE_VFD \
5924 || rtype == REG_TYPE_NQ); \
5925 } \
5926 while (0)
5927
5928#define po_imm_or_fail(min, max, popt) \
5929 do \
5930 { \
5931 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5932 goto failure; \
5933 inst.operands[i].imm = val; \
5934 } \
5935 while (0)
5936
5937#define po_scalar_or_goto(elsz, label) \
5938 do \
5939 { \
5940 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5941 if (val == FAIL) \
5942 goto label; \
5943 inst.operands[i].reg = val; \
5944 inst.operands[i].isscalar = 1; \
5945 } \
5946 while (0)
5947
5948#define po_misc_or_fail(expr) \
5949 do \
5950 { \
5951 if (expr) \
5952 goto failure; \
5953 } \
5954 while (0)
5955
5956#define po_misc_or_fail_no_backtrack(expr) \
5957 do \
5958 { \
5959 result = expr; \
5960 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
5961 backtrack_pos = 0; \
5962 if (result != PARSE_OPERAND_SUCCESS) \
5963 goto failure; \
5964 } \
5965 while (0)
4962c51a 5966
c19d1205
ZW
5967 skip_whitespace (str);
5968
5969 for (i = 0; upat[i] != OP_stop; i++)
5970 {
5be8be5d
DG
5971 op_parse_code = upat[i];
5972 if (op_parse_code >= 1<<16)
5973 op_parse_code = thumb ? (op_parse_code >> 16)
5974 : (op_parse_code & ((1<<16)-1));
5975
5976 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
5977 {
5978 /* Remember where we are in case we need to backtrack. */
9c2799c2 5979 gas_assert (!backtrack_pos);
c19d1205
ZW
5980 backtrack_pos = str;
5981 backtrack_error = inst.error;
5982 backtrack_index = i;
5983 }
5984
b6702015 5985 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
5986 po_char_or_fail (',');
5987
5be8be5d 5988 switch (op_parse_code)
c19d1205
ZW
5989 {
5990 /* Registers */
5991 case OP_oRRnpc:
5be8be5d 5992 case OP_oRRnpcsp:
c19d1205 5993 case OP_RRnpc:
5be8be5d 5994 case OP_RRnpcsp:
c19d1205
ZW
5995 case OP_oRR:
5996 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5997 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5998 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5999 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6000 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6001 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6002 case OP_oRND:
6003 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6004 case OP_RVC:
6005 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6006 break;
6007 /* Also accept generic coprocessor regs for unknown registers. */
6008 coproc_reg:
6009 po_reg_or_fail (REG_TYPE_CN);
6010 break;
c19d1205
ZW
6011 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6012 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6013 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6014 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6015 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6016 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6017 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6018 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6019 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6020 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6021 case OP_oRNQ:
6022 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6023 case OP_oRNDQ:
6024 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6025 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6026 case OP_oRNSDQ:
6027 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6028
6029 /* Neon scalar. Using an element size of 8 means that some invalid
6030 scalars are accepted here, so deal with those in later code. */
6031 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6032
5287ad62
JB
6033 case OP_RNDQ_I0:
6034 {
6035 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6036 break;
6037 try_imm0:
6038 po_imm_or_fail (0, 0, TRUE);
6039 }
6040 break;
6041
037e8744
JB
6042 case OP_RVSD_I0:
6043 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6044 break;
6045
5287ad62
JB
6046 case OP_RR_RNSC:
6047 {
6048 po_scalar_or_goto (8, try_rr);
6049 break;
6050 try_rr:
6051 po_reg_or_fail (REG_TYPE_RN);
6052 }
6053 break;
6054
037e8744
JB
6055 case OP_RNSDQ_RNSC:
6056 {
6057 po_scalar_or_goto (8, try_nsdq);
6058 break;
6059 try_nsdq:
6060 po_reg_or_fail (REG_TYPE_NSDQ);
6061 }
6062 break;
6063
5287ad62
JB
6064 case OP_RNDQ_RNSC:
6065 {
6066 po_scalar_or_goto (8, try_ndq);
6067 break;
6068 try_ndq:
6069 po_reg_or_fail (REG_TYPE_NDQ);
6070 }
6071 break;
6072
6073 case OP_RND_RNSC:
6074 {
6075 po_scalar_or_goto (8, try_vfd);
6076 break;
6077 try_vfd:
6078 po_reg_or_fail (REG_TYPE_VFD);
6079 }
6080 break;
6081
6082 case OP_VMOV:
6083 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6084 not careful then bad things might happen. */
6085 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6086 break;
6087
4316f0d2 6088 case OP_RNDQ_Ibig:
5287ad62 6089 {
4316f0d2 6090 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6091 break;
4316f0d2 6092 try_immbig:
5287ad62
JB
6093 /* There's a possibility of getting a 64-bit immediate here, so
6094 we need special handling. */
6095 if (parse_big_immediate (&str, i) == FAIL)
6096 {
6097 inst.error = _("immediate value is out of range");
6098 goto failure;
6099 }
6100 }
6101 break;
6102
6103 case OP_RNDQ_I63b:
6104 {
6105 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6106 break;
6107 try_shimm:
6108 po_imm_or_fail (0, 63, TRUE);
6109 }
6110 break;
c19d1205
ZW
6111
6112 case OP_RRnpcb:
6113 po_char_or_fail ('[');
6114 po_reg_or_fail (REG_TYPE_RN);
6115 po_char_or_fail (']');
6116 break;
a737bd4d 6117
c19d1205 6118 case OP_RRw:
b6702015 6119 case OP_oRRw:
c19d1205
ZW
6120 po_reg_or_fail (REG_TYPE_RN);
6121 if (skip_past_char (&str, '!') == SUCCESS)
6122 inst.operands[i].writeback = 1;
6123 break;
6124
6125 /* Immediates */
6126 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6127 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6128 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6129 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6130 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6131 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6132 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6133 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6134 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6135 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6136 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6137 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6138
6139 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6140 case OP_oI7b:
6141 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6142 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6143 case OP_oI31b:
6144 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6145 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
6146 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6147
6148 /* Immediate variants */
6149 case OP_oI255c:
6150 po_char_or_fail ('{');
6151 po_imm_or_fail (0, 255, TRUE);
6152 po_char_or_fail ('}');
6153 break;
6154
6155 case OP_I31w:
6156 /* The expression parser chokes on a trailing !, so we have
6157 to find it first and zap it. */
6158 {
6159 char *s = str;
6160 while (*s && *s != ',')
6161 s++;
6162 if (s[-1] == '!')
6163 {
6164 s[-1] = '\0';
6165 inst.operands[i].writeback = 1;
6166 }
6167 po_imm_or_fail (0, 31, TRUE);
6168 if (str == s - 1)
6169 str = s;
6170 }
6171 break;
6172
6173 /* Expressions */
6174 case OP_EXPi: EXPi:
6175 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6176 GE_OPT_PREFIX));
6177 break;
6178
6179 case OP_EXP:
6180 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6181 GE_NO_PREFIX));
6182 break;
6183
6184 case OP_EXPr: EXPr:
6185 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6186 GE_NO_PREFIX));
6187 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6188 {
c19d1205
ZW
6189 val = parse_reloc (&str);
6190 if (val == -1)
6191 {
6192 inst.error = _("unrecognized relocation suffix");
6193 goto failure;
6194 }
6195 else if (val != BFD_RELOC_UNUSED)
6196 {
6197 inst.operands[i].imm = val;
6198 inst.operands[i].hasreloc = 1;
6199 }
a737bd4d 6200 }
c19d1205 6201 break;
a737bd4d 6202
b6895b4f
PB
6203 /* Operand for MOVW or MOVT. */
6204 case OP_HALF:
6205 po_misc_or_fail (parse_half (&str));
6206 break;
6207
e07e6e58 6208 /* Register or expression. */
c19d1205
ZW
6209 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6210 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6211
e07e6e58 6212 /* Register or immediate. */
c19d1205
ZW
6213 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6214 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6215
c19d1205
ZW
6216 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6217 IF:
6218 if (!is_immediate_prefix (*str))
6219 goto bad_args;
6220 str++;
6221 val = parse_fpa_immediate (&str);
6222 if (val == FAIL)
6223 goto failure;
6224 /* FPA immediates are encoded as registers 8-15.
6225 parse_fpa_immediate has already applied the offset. */
6226 inst.operands[i].reg = val;
6227 inst.operands[i].isreg = 1;
6228 break;
09d92015 6229
2d447fca
JM
6230 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6231 I32z: po_imm_or_fail (0, 32, FALSE); break;
6232
e07e6e58 6233 /* Two kinds of register. */
c19d1205
ZW
6234 case OP_RIWR_RIWC:
6235 {
6236 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6237 if (!rege
6238 || (rege->type != REG_TYPE_MMXWR
6239 && rege->type != REG_TYPE_MMXWC
6240 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6241 {
6242 inst.error = _("iWMMXt data or control register expected");
6243 goto failure;
6244 }
6245 inst.operands[i].reg = rege->number;
6246 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6247 }
6248 break;
09d92015 6249
41adaa5c
JM
6250 case OP_RIWC_RIWG:
6251 {
6252 struct reg_entry *rege = arm_reg_parse_multi (&str);
6253 if (!rege
6254 || (rege->type != REG_TYPE_MMXWC
6255 && rege->type != REG_TYPE_MMXWCG))
6256 {
6257 inst.error = _("iWMMXt control register expected");
6258 goto failure;
6259 }
6260 inst.operands[i].reg = rege->number;
6261 inst.operands[i].isreg = 1;
6262 }
6263 break;
6264
c19d1205
ZW
6265 /* Misc */
6266 case OP_CPSF: val = parse_cps_flags (&str); break;
6267 case OP_ENDI: val = parse_endian_specifier (&str); break;
6268 case OP_oROR: val = parse_ror (&str); break;
6269 case OP_PSR: val = parse_psr (&str); break;
6270 case OP_COND: val = parse_cond (&str); break;
62b3e311 6271 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 6272
037e8744
JB
6273 case OP_RVC_PSR:
6274 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6275 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6276 break;
6277 try_psr:
6278 val = parse_psr (&str);
6279 break;
6280
6281 case OP_APSR_RR:
6282 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6283 break;
6284 try_apsr:
6285 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6286 instruction). */
6287 if (strncasecmp (str, "APSR_", 5) == 0)
6288 {
6289 unsigned found = 0;
6290 str += 5;
6291 while (found < 15)
6292 switch (*str++)
6293 {
6294 case 'c': found = (found & 1) ? 16 : found | 1; break;
6295 case 'n': found = (found & 2) ? 16 : found | 2; break;
6296 case 'z': found = (found & 4) ? 16 : found | 4; break;
6297 case 'v': found = (found & 8) ? 16 : found | 8; break;
6298 default: found = 16;
6299 }
6300 if (found != 15)
6301 goto failure;
6302 inst.operands[i].isvec = 1;
f7c21dc7
NC
6303 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6304 inst.operands[i].reg = REG_PC;
037e8744
JB
6305 }
6306 else
6307 goto failure;
6308 break;
6309
92e90b6e
PB
6310 case OP_TB:
6311 po_misc_or_fail (parse_tb (&str));
6312 break;
6313
e07e6e58 6314 /* Register lists. */
c19d1205
ZW
6315 case OP_REGLST:
6316 val = parse_reg_list (&str);
6317 if (*str == '^')
6318 {
6319 inst.operands[1].writeback = 1;
6320 str++;
6321 }
6322 break;
09d92015 6323
c19d1205 6324 case OP_VRSLST:
5287ad62 6325 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6326 break;
09d92015 6327
c19d1205 6328 case OP_VRDLST:
5287ad62 6329 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6330 break;
a737bd4d 6331
037e8744
JB
6332 case OP_VRSDLST:
6333 /* Allow Q registers too. */
6334 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6335 REGLIST_NEON_D);
6336 if (val == FAIL)
6337 {
6338 inst.error = NULL;
6339 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6340 REGLIST_VFP_S);
6341 inst.operands[i].issingle = 1;
6342 }
6343 break;
6344
5287ad62
JB
6345 case OP_NRDLST:
6346 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6347 REGLIST_NEON_D);
6348 break;
6349
6350 case OP_NSTRLST:
dcbf9037
JB
6351 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6352 &inst.operands[i].vectype);
5287ad62
JB
6353 break;
6354
c19d1205
ZW
6355 /* Addressing modes */
6356 case OP_ADDR:
6357 po_misc_or_fail (parse_address (&str, i));
6358 break;
09d92015 6359
4962c51a
MS
6360 case OP_ADDRGLDR:
6361 po_misc_or_fail_no_backtrack (
6362 parse_address_group_reloc (&str, i, GROUP_LDR));
6363 break;
6364
6365 case OP_ADDRGLDRS:
6366 po_misc_or_fail_no_backtrack (
6367 parse_address_group_reloc (&str, i, GROUP_LDRS));
6368 break;
6369
6370 case OP_ADDRGLDC:
6371 po_misc_or_fail_no_backtrack (
6372 parse_address_group_reloc (&str, i, GROUP_LDC));
6373 break;
6374
c19d1205
ZW
6375 case OP_SH:
6376 po_misc_or_fail (parse_shifter_operand (&str, i));
6377 break;
09d92015 6378
4962c51a
MS
6379 case OP_SHG:
6380 po_misc_or_fail_no_backtrack (
6381 parse_shifter_operand_group_reloc (&str, i));
6382 break;
6383
c19d1205
ZW
6384 case OP_oSHll:
6385 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6386 break;
09d92015 6387
c19d1205
ZW
6388 case OP_oSHar:
6389 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6390 break;
09d92015 6391
c19d1205
ZW
6392 case OP_oSHllar:
6393 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6394 break;
09d92015 6395
c19d1205 6396 default:
5be8be5d 6397 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6398 }
09d92015 6399
c19d1205
ZW
6400 /* Various value-based sanity checks and shared operations. We
6401 do not signal immediate failures for the register constraints;
6402 this allows a syntax error to take precedence. */
5be8be5d 6403 switch (op_parse_code)
c19d1205
ZW
6404 {
6405 case OP_oRRnpc:
6406 case OP_RRnpc:
6407 case OP_RRnpcb:
6408 case OP_RRw:
b6702015 6409 case OP_oRRw:
c19d1205
ZW
6410 case OP_RRnpc_I0:
6411 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6412 inst.error = BAD_PC;
6413 break;
09d92015 6414
5be8be5d
DG
6415 case OP_oRRnpcsp:
6416 case OP_RRnpcsp:
6417 if (inst.operands[i].isreg)
6418 {
6419 if (inst.operands[i].reg == REG_PC)
6420 inst.error = BAD_PC;
6421 else if (inst.operands[i].reg == REG_SP)
6422 inst.error = BAD_SP;
6423 }
6424 break;
6425
c19d1205
ZW
6426 case OP_CPSF:
6427 case OP_ENDI:
6428 case OP_oROR:
6429 case OP_PSR:
037e8744 6430 case OP_RVC_PSR:
c19d1205 6431 case OP_COND:
62b3e311 6432 case OP_oBARRIER:
c19d1205
ZW
6433 case OP_REGLST:
6434 case OP_VRSLST:
6435 case OP_VRDLST:
037e8744 6436 case OP_VRSDLST:
5287ad62
JB
6437 case OP_NRDLST:
6438 case OP_NSTRLST:
c19d1205
ZW
6439 if (val == FAIL)
6440 goto failure;
6441 inst.operands[i].imm = val;
6442 break;
a737bd4d 6443
c19d1205
ZW
6444 default:
6445 break;
6446 }
09d92015 6447
c19d1205
ZW
6448 /* If we get here, this operand was successfully parsed. */
6449 inst.operands[i].present = 1;
6450 continue;
09d92015 6451
c19d1205 6452 bad_args:
09d92015 6453 inst.error = BAD_ARGS;
c19d1205
ZW
6454
6455 failure:
6456 if (!backtrack_pos)
d252fdde
PB
6457 {
6458 /* The parse routine should already have set inst.error, but set a
5f4273c7 6459 default here just in case. */
d252fdde
PB
6460 if (!inst.error)
6461 inst.error = _("syntax error");
6462 return FAIL;
6463 }
c19d1205
ZW
6464
6465 /* Do not backtrack over a trailing optional argument that
6466 absorbed some text. We will only fail again, with the
6467 'garbage following instruction' error message, which is
6468 probably less helpful than the current one. */
6469 if (backtrack_index == i && backtrack_pos != str
6470 && upat[i+1] == OP_stop)
d252fdde
PB
6471 {
6472 if (!inst.error)
6473 inst.error = _("syntax error");
6474 return FAIL;
6475 }
c19d1205
ZW
6476
6477 /* Try again, skipping the optional argument at backtrack_pos. */
6478 str = backtrack_pos;
6479 inst.error = backtrack_error;
6480 inst.operands[backtrack_index].present = 0;
6481 i = backtrack_index;
6482 backtrack_pos = 0;
09d92015 6483 }
09d92015 6484
c19d1205
ZW
6485 /* Check that we have parsed all the arguments. */
6486 if (*str != '\0' && !inst.error)
6487 inst.error = _("garbage following instruction");
09d92015 6488
c19d1205 6489 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6490}
6491
c19d1205
ZW
6492#undef po_char_or_fail
6493#undef po_reg_or_fail
6494#undef po_reg_or_goto
6495#undef po_imm_or_fail
5287ad62 6496#undef po_scalar_or_fail
e07e6e58 6497
c19d1205 6498/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6499#define constraint(expr, err) \
6500 do \
c19d1205 6501 { \
e07e6e58
NC
6502 if (expr) \
6503 { \
6504 inst.error = err; \
6505 return; \
6506 } \
c19d1205 6507 } \
e07e6e58 6508 while (0)
c19d1205 6509
fdfde340
JM
6510/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6511 instructions are unpredictable if these registers are used. This
6512 is the BadReg predicate in ARM's Thumb-2 documentation. */
6513#define reject_bad_reg(reg) \
6514 do \
6515 if (reg == REG_SP || reg == REG_PC) \
6516 { \
6517 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6518 return; \
6519 } \
6520 while (0)
6521
94206790
MM
6522/* If REG is R13 (the stack pointer), warn that its use is
6523 deprecated. */
6524#define warn_deprecated_sp(reg) \
6525 do \
6526 if (warn_on_deprecated && reg == REG_SP) \
6527 as_warn (_("use of r13 is deprecated")); \
6528 while (0)
6529
c19d1205
ZW
6530/* Functions for operand encoding. ARM, then Thumb. */
6531
6532#define rotate_left(v, n) (v << n | v >> (32 - n))
6533
6534/* If VAL can be encoded in the immediate field of an ARM instruction,
6535 return the encoded form. Otherwise, return FAIL. */
6536
6537static unsigned int
6538encode_arm_immediate (unsigned int val)
09d92015 6539{
c19d1205
ZW
6540 unsigned int a, i;
6541
6542 for (i = 0; i < 32; i += 2)
6543 if ((a = rotate_left (val, i)) <= 0xff)
6544 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6545
6546 return FAIL;
09d92015
MM
6547}
6548
c19d1205
ZW
6549/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6550 return the encoded form. Otherwise, return FAIL. */
6551static unsigned int
6552encode_thumb32_immediate (unsigned int val)
09d92015 6553{
c19d1205 6554 unsigned int a, i;
09d92015 6555
9c3c69f2 6556 if (val <= 0xff)
c19d1205 6557 return val;
a737bd4d 6558
9c3c69f2 6559 for (i = 1; i <= 24; i++)
09d92015 6560 {
9c3c69f2
PB
6561 a = val >> i;
6562 if ((val & ~(0xff << i)) == 0)
6563 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6564 }
a737bd4d 6565
c19d1205
ZW
6566 a = val & 0xff;
6567 if (val == ((a << 16) | a))
6568 return 0x100 | a;
6569 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6570 return 0x300 | a;
09d92015 6571
c19d1205
ZW
6572 a = val & 0xff00;
6573 if (val == ((a << 16) | a))
6574 return 0x200 | (a >> 8);
a737bd4d 6575
c19d1205 6576 return FAIL;
09d92015 6577}
5287ad62 6578/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6579
6580static void
5287ad62
JB
6581encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6582{
6583 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6584 && reg > 15)
6585 {
b1cc4aeb 6586 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6587 {
6588 if (thumb_mode)
6589 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6590 fpu_vfp_ext_d32);
5287ad62
JB
6591 else
6592 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6593 fpu_vfp_ext_d32);
5287ad62
JB
6594 }
6595 else
6596 {
dcbf9037 6597 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6598 return;
6599 }
6600 }
6601
c19d1205 6602 switch (pos)
09d92015 6603 {
c19d1205
ZW
6604 case VFP_REG_Sd:
6605 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6606 break;
6607
6608 case VFP_REG_Sn:
6609 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6610 break;
6611
6612 case VFP_REG_Sm:
6613 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6614 break;
6615
5287ad62
JB
6616 case VFP_REG_Dd:
6617 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6618 break;
5f4273c7 6619
5287ad62
JB
6620 case VFP_REG_Dn:
6621 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6622 break;
5f4273c7 6623
5287ad62
JB
6624 case VFP_REG_Dm:
6625 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6626 break;
6627
c19d1205
ZW
6628 default:
6629 abort ();
09d92015 6630 }
09d92015
MM
6631}
6632
c19d1205 6633/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6634 if any, is handled by md_apply_fix. */
09d92015 6635static void
c19d1205 6636encode_arm_shift (int i)
09d92015 6637{
c19d1205
ZW
6638 if (inst.operands[i].shift_kind == SHIFT_RRX)
6639 inst.instruction |= SHIFT_ROR << 5;
6640 else
09d92015 6641 {
c19d1205
ZW
6642 inst.instruction |= inst.operands[i].shift_kind << 5;
6643 if (inst.operands[i].immisreg)
6644 {
6645 inst.instruction |= SHIFT_BY_REG;
6646 inst.instruction |= inst.operands[i].imm << 8;
6647 }
6648 else
6649 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6650 }
c19d1205 6651}
09d92015 6652
c19d1205
ZW
6653static void
6654encode_arm_shifter_operand (int i)
6655{
6656 if (inst.operands[i].isreg)
09d92015 6657 {
c19d1205
ZW
6658 inst.instruction |= inst.operands[i].reg;
6659 encode_arm_shift (i);
09d92015 6660 }
c19d1205
ZW
6661 else
6662 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6663}
6664
c19d1205 6665/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6666static void
c19d1205 6667encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6668{
9c2799c2 6669 gas_assert (inst.operands[i].isreg);
c19d1205 6670 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6671
c19d1205 6672 if (inst.operands[i].preind)
09d92015 6673 {
c19d1205
ZW
6674 if (is_t)
6675 {
6676 inst.error = _("instruction does not accept preindexed addressing");
6677 return;
6678 }
6679 inst.instruction |= PRE_INDEX;
6680 if (inst.operands[i].writeback)
6681 inst.instruction |= WRITE_BACK;
09d92015 6682
c19d1205
ZW
6683 }
6684 else if (inst.operands[i].postind)
6685 {
9c2799c2 6686 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
6687 if (is_t)
6688 inst.instruction |= WRITE_BACK;
6689 }
6690 else /* unindexed - only for coprocessor */
09d92015 6691 {
c19d1205 6692 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6693 return;
6694 }
6695
c19d1205
ZW
6696 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6697 && (((inst.instruction & 0x000f0000) >> 16)
6698 == ((inst.instruction & 0x0000f000) >> 12)))
6699 as_warn ((inst.instruction & LOAD_BIT)
6700 ? _("destination register same as write-back base")
6701 : _("source register same as write-back base"));
09d92015
MM
6702}
6703
c19d1205
ZW
6704/* inst.operands[i] was set up by parse_address. Encode it into an
6705 ARM-format mode 2 load or store instruction. If is_t is true,
6706 reject forms that cannot be used with a T instruction (i.e. not
6707 post-indexed). */
a737bd4d 6708static void
c19d1205 6709encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6710{
5be8be5d
DG
6711 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6712
c19d1205 6713 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6714
c19d1205 6715 if (inst.operands[i].immisreg)
09d92015 6716 {
5be8be5d
DG
6717 constraint ((inst.operands[i].imm == REG_PC
6718 || (is_pc && inst.operands[i].writeback)),
6719 BAD_PC_ADDRESSING);
c19d1205
ZW
6720 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6721 inst.instruction |= inst.operands[i].imm;
6722 if (!inst.operands[i].negative)
6723 inst.instruction |= INDEX_UP;
6724 if (inst.operands[i].shifted)
6725 {
6726 if (inst.operands[i].shift_kind == SHIFT_RRX)
6727 inst.instruction |= SHIFT_ROR << 5;
6728 else
6729 {
6730 inst.instruction |= inst.operands[i].shift_kind << 5;
6731 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6732 }
6733 }
09d92015 6734 }
c19d1205 6735 else /* immediate offset in inst.reloc */
09d92015 6736 {
5be8be5d
DG
6737 if (is_pc && !inst.reloc.pc_rel)
6738 {
6739 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
6740 /* BAD_PC_ADDRESSING Condition =
6741 is_load => is_t
6742 which becomes !is_load || is_t. */
6743 constraint ((!is_load || is_t),
6744 BAD_PC_ADDRESSING);
6745 }
6746
c19d1205
ZW
6747 if (inst.reloc.type == BFD_RELOC_UNUSED)
6748 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6749 }
09d92015
MM
6750}
6751
c19d1205
ZW
6752/* inst.operands[i] was set up by parse_address. Encode it into an
6753 ARM-format mode 3 load or store instruction. Reject forms that
6754 cannot be used with such instructions. If is_t is true, reject
6755 forms that cannot be used with a T instruction (i.e. not
6756 post-indexed). */
6757static void
6758encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6759{
c19d1205 6760 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6761 {
c19d1205
ZW
6762 inst.error = _("instruction does not accept scaled register index");
6763 return;
09d92015 6764 }
a737bd4d 6765
c19d1205 6766 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6767
c19d1205
ZW
6768 if (inst.operands[i].immisreg)
6769 {
5be8be5d
DG
6770 constraint ((inst.operands[i].imm == REG_PC
6771 || inst.operands[i].reg == REG_PC),
6772 BAD_PC_ADDRESSING);
c19d1205
ZW
6773 inst.instruction |= inst.operands[i].imm;
6774 if (!inst.operands[i].negative)
6775 inst.instruction |= INDEX_UP;
6776 }
6777 else /* immediate offset in inst.reloc */
6778 {
5be8be5d
DG
6779 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
6780 && inst.operands[i].writeback),
6781 BAD_PC_WRITEBACK);
c19d1205
ZW
6782 inst.instruction |= HWOFFSET_IMM;
6783 if (inst.reloc.type == BFD_RELOC_UNUSED)
6784 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6785 }
a737bd4d
NC
6786}
6787
c19d1205
ZW
6788/* inst.operands[i] was set up by parse_address. Encode it into an
6789 ARM-format instruction. Reject all forms which cannot be encoded
6790 into a coprocessor load/store instruction. If wb_ok is false,
6791 reject use of writeback; if unind_ok is false, reject use of
6792 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6793 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6794 (in which case it is preserved). */
09d92015 6795
c19d1205
ZW
6796static int
6797encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6798{
c19d1205 6799 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6800
9c2799c2 6801 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6802
c19d1205 6803 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6804 {
9c2799c2 6805 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
6806 if (!unind_ok)
6807 {
6808 inst.error = _("instruction does not support unindexed addressing");
6809 return FAIL;
6810 }
6811 inst.instruction |= inst.operands[i].imm;
6812 inst.instruction |= INDEX_UP;
6813 return SUCCESS;
09d92015 6814 }
a737bd4d 6815
c19d1205
ZW
6816 if (inst.operands[i].preind)
6817 inst.instruction |= PRE_INDEX;
a737bd4d 6818
c19d1205 6819 if (inst.operands[i].writeback)
09d92015 6820 {
c19d1205
ZW
6821 if (inst.operands[i].reg == REG_PC)
6822 {
6823 inst.error = _("pc may not be used with write-back");
6824 return FAIL;
6825 }
6826 if (!wb_ok)
6827 {
6828 inst.error = _("instruction does not support writeback");
6829 return FAIL;
6830 }
6831 inst.instruction |= WRITE_BACK;
09d92015 6832 }
a737bd4d 6833
c19d1205 6834 if (reloc_override)
21d799b5 6835 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
6836 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6837 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6838 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6839 {
6840 if (thumb_mode)
6841 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6842 else
6843 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6844 }
6845
c19d1205
ZW
6846 return SUCCESS;
6847}
a737bd4d 6848
c19d1205
ZW
6849/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6850 Determine whether it can be performed with a move instruction; if
6851 it can, convert inst.instruction to that move instruction and
c921be7d
NC
6852 return TRUE; if it can't, convert inst.instruction to a literal-pool
6853 load and return FALSE. If this is not a valid thing to do in the
6854 current context, set inst.error and return TRUE.
a737bd4d 6855
c19d1205
ZW
6856 inst.operands[i] describes the destination register. */
6857
c921be7d 6858static bfd_boolean
c19d1205
ZW
6859move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6860{
53365c0d
PB
6861 unsigned long tbit;
6862
6863 if (thumb_p)
6864 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6865 else
6866 tbit = LOAD_BIT;
6867
6868 if ((inst.instruction & tbit) == 0)
09d92015 6869 {
c19d1205 6870 inst.error = _("invalid pseudo operation");
c921be7d 6871 return TRUE;
09d92015 6872 }
c19d1205 6873 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6874 {
6875 inst.error = _("constant expression expected");
c921be7d 6876 return TRUE;
09d92015 6877 }
c19d1205 6878 if (inst.reloc.exp.X_op == O_constant)
09d92015 6879 {
c19d1205
ZW
6880 if (thumb_p)
6881 {
53365c0d 6882 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6883 {
6884 /* This can be done with a mov(1) instruction. */
6885 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6886 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 6887 return TRUE;
c19d1205
ZW
6888 }
6889 }
6890 else
6891 {
6892 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6893 if (value != FAIL)
6894 {
6895 /* This can be done with a mov instruction. */
6896 inst.instruction &= LITERAL_MASK;
6897 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6898 inst.instruction |= value & 0xfff;
c921be7d 6899 return TRUE;
c19d1205 6900 }
09d92015 6901
c19d1205
ZW
6902 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6903 if (value != FAIL)
6904 {
6905 /* This can be done with a mvn instruction. */
6906 inst.instruction &= LITERAL_MASK;
6907 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6908 inst.instruction |= value & 0xfff;
c921be7d 6909 return TRUE;
c19d1205
ZW
6910 }
6911 }
09d92015
MM
6912 }
6913
c19d1205
ZW
6914 if (add_to_lit_pool () == FAIL)
6915 {
6916 inst.error = _("literal pool insertion failed");
c921be7d 6917 return TRUE;
c19d1205
ZW
6918 }
6919 inst.operands[1].reg = REG_PC;
6920 inst.operands[1].isreg = 1;
6921 inst.operands[1].preind = 1;
6922 inst.reloc.pc_rel = 1;
6923 inst.reloc.type = (thumb_p
6924 ? BFD_RELOC_ARM_THUMB_OFFSET
6925 : (mode_3
6926 ? BFD_RELOC_ARM_HWLITERAL
6927 : BFD_RELOC_ARM_LITERAL));
c921be7d 6928 return FALSE;
09d92015
MM
6929}
6930
5f4273c7 6931/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
6932 First some generics; their names are taken from the conventional
6933 bit positions for register arguments in ARM format instructions. */
09d92015 6934
a737bd4d 6935static void
c19d1205 6936do_noargs (void)
09d92015 6937{
c19d1205 6938}
a737bd4d 6939
c19d1205
ZW
6940static void
6941do_rd (void)
6942{
6943 inst.instruction |= inst.operands[0].reg << 12;
6944}
a737bd4d 6945
c19d1205
ZW
6946static void
6947do_rd_rm (void)
6948{
6949 inst.instruction |= inst.operands[0].reg << 12;
6950 inst.instruction |= inst.operands[1].reg;
6951}
09d92015 6952
c19d1205
ZW
6953static void
6954do_rd_rn (void)
6955{
6956 inst.instruction |= inst.operands[0].reg << 12;
6957 inst.instruction |= inst.operands[1].reg << 16;
6958}
a737bd4d 6959
c19d1205
ZW
6960static void
6961do_rn_rd (void)
6962{
6963 inst.instruction |= inst.operands[0].reg << 16;
6964 inst.instruction |= inst.operands[1].reg << 12;
6965}
09d92015 6966
c19d1205
ZW
6967static void
6968do_rd_rm_rn (void)
6969{
9a64e435 6970 unsigned Rn = inst.operands[2].reg;
708587a4 6971 /* Enforce restrictions on SWP instruction. */
9a64e435 6972 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
6973 {
6974 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6975 _("Rn must not overlap other operands"));
6976
6977 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
6978 if (warn_on_deprecated
6979 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
6980 as_warn (_("swp{b} use is deprecated for this architecture"));
6981
6982 }
c19d1205
ZW
6983 inst.instruction |= inst.operands[0].reg << 12;
6984 inst.instruction |= inst.operands[1].reg;
9a64e435 6985 inst.instruction |= Rn << 16;
c19d1205 6986}
09d92015 6987
c19d1205
ZW
6988static void
6989do_rd_rn_rm (void)
6990{
6991 inst.instruction |= inst.operands[0].reg << 12;
6992 inst.instruction |= inst.operands[1].reg << 16;
6993 inst.instruction |= inst.operands[2].reg;
6994}
a737bd4d 6995
c19d1205
ZW
6996static void
6997do_rm_rd_rn (void)
6998{
5be8be5d
DG
6999 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7000 constraint (((inst.reloc.exp.X_op != O_constant
7001 && inst.reloc.exp.X_op != O_illegal)
7002 || inst.reloc.exp.X_add_number != 0),
7003 BAD_ADDR_MODE);
c19d1205
ZW
7004 inst.instruction |= inst.operands[0].reg;
7005 inst.instruction |= inst.operands[1].reg << 12;
7006 inst.instruction |= inst.operands[2].reg << 16;
7007}
09d92015 7008
c19d1205
ZW
7009static void
7010do_imm0 (void)
7011{
7012 inst.instruction |= inst.operands[0].imm;
7013}
09d92015 7014
c19d1205
ZW
7015static void
7016do_rd_cpaddr (void)
7017{
7018 inst.instruction |= inst.operands[0].reg << 12;
7019 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7020}
a737bd4d 7021
c19d1205
ZW
7022/* ARM instructions, in alphabetical order by function name (except
7023 that wrapper functions appear immediately after the function they
7024 wrap). */
09d92015 7025
c19d1205
ZW
7026/* This is a pseudo-op of the form "adr rd, label" to be converted
7027 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7028
7029static void
c19d1205 7030do_adr (void)
09d92015 7031{
c19d1205 7032 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7033
c19d1205
ZW
7034 /* Frag hacking will turn this into a sub instruction if the offset turns
7035 out to be negative. */
7036 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7037 inst.reloc.pc_rel = 1;
2fc8bdac 7038 inst.reloc.exp.X_add_number -= 8;
c19d1205 7039}
b99bd4ef 7040
c19d1205
ZW
7041/* This is a pseudo-op of the form "adrl rd, label" to be converted
7042 into a relative address of the form:
7043 add rd, pc, #low(label-.-8)"
7044 add rd, rd, #high(label-.-8)" */
b99bd4ef 7045
c19d1205
ZW
7046static void
7047do_adrl (void)
7048{
7049 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7050
c19d1205
ZW
7051 /* Frag hacking will turn this into a sub instruction if the offset turns
7052 out to be negative. */
7053 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7054 inst.reloc.pc_rel = 1;
7055 inst.size = INSN_SIZE * 2;
2fc8bdac 7056 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7057}
7058
b99bd4ef 7059static void
c19d1205 7060do_arit (void)
b99bd4ef 7061{
c19d1205
ZW
7062 if (!inst.operands[1].present)
7063 inst.operands[1].reg = inst.operands[0].reg;
7064 inst.instruction |= inst.operands[0].reg << 12;
7065 inst.instruction |= inst.operands[1].reg << 16;
7066 encode_arm_shifter_operand (2);
7067}
b99bd4ef 7068
62b3e311
PB
7069static void
7070do_barrier (void)
7071{
7072 if (inst.operands[0].present)
7073 {
7074 constraint ((inst.instruction & 0xf0) != 0x40
7075 && inst.operands[0].imm != 0xf,
bd3ba5d1 7076 _("bad barrier type"));
62b3e311
PB
7077 inst.instruction |= inst.operands[0].imm;
7078 }
7079 else
7080 inst.instruction |= 0xf;
7081}
7082
c19d1205
ZW
7083static void
7084do_bfc (void)
7085{
7086 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7087 constraint (msb > 32, _("bit-field extends past end of register"));
7088 /* The instruction encoding stores the LSB and MSB,
7089 not the LSB and width. */
7090 inst.instruction |= inst.operands[0].reg << 12;
7091 inst.instruction |= inst.operands[1].imm << 7;
7092 inst.instruction |= (msb - 1) << 16;
7093}
b99bd4ef 7094
c19d1205
ZW
7095static void
7096do_bfi (void)
7097{
7098 unsigned int msb;
b99bd4ef 7099
c19d1205
ZW
7100 /* #0 in second position is alternative syntax for bfc, which is
7101 the same instruction but with REG_PC in the Rm field. */
7102 if (!inst.operands[1].isreg)
7103 inst.operands[1].reg = REG_PC;
b99bd4ef 7104
c19d1205
ZW
7105 msb = inst.operands[2].imm + inst.operands[3].imm;
7106 constraint (msb > 32, _("bit-field extends past end of register"));
7107 /* The instruction encoding stores the LSB and MSB,
7108 not the LSB and width. */
7109 inst.instruction |= inst.operands[0].reg << 12;
7110 inst.instruction |= inst.operands[1].reg;
7111 inst.instruction |= inst.operands[2].imm << 7;
7112 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7113}
7114
b99bd4ef 7115static void
c19d1205 7116do_bfx (void)
b99bd4ef 7117{
c19d1205
ZW
7118 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7119 _("bit-field extends past end of register"));
7120 inst.instruction |= inst.operands[0].reg << 12;
7121 inst.instruction |= inst.operands[1].reg;
7122 inst.instruction |= inst.operands[2].imm << 7;
7123 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7124}
09d92015 7125
c19d1205
ZW
7126/* ARM V5 breakpoint instruction (argument parse)
7127 BKPT <16 bit unsigned immediate>
7128 Instruction is not conditional.
7129 The bit pattern given in insns[] has the COND_ALWAYS condition,
7130 and it is an error if the caller tried to override that. */
b99bd4ef 7131
c19d1205
ZW
7132static void
7133do_bkpt (void)
7134{
7135 /* Top 12 of 16 bits to bits 19:8. */
7136 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7137
c19d1205
ZW
7138 /* Bottom 4 of 16 bits to bits 3:0. */
7139 inst.instruction |= inst.operands[0].imm & 0xf;
7140}
09d92015 7141
c19d1205
ZW
7142static void
7143encode_branch (int default_reloc)
7144{
7145 if (inst.operands[0].hasreloc)
7146 {
7147 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7148 _("the only suffix valid here is '(plt)'"));
267bf995 7149 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 7150 }
b99bd4ef 7151 else
c19d1205 7152 {
21d799b5 7153 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
c19d1205 7154 }
2fc8bdac 7155 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7156}
7157
b99bd4ef 7158static void
c19d1205 7159do_branch (void)
b99bd4ef 7160{
39b41c9c
PB
7161#ifdef OBJ_ELF
7162 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7163 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7164 else
7165#endif
7166 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7167}
7168
7169static void
7170do_bl (void)
7171{
7172#ifdef OBJ_ELF
7173 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7174 {
7175 if (inst.cond == COND_ALWAYS)
7176 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7177 else
7178 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7179 }
7180 else
7181#endif
7182 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7183}
b99bd4ef 7184
c19d1205
ZW
7185/* ARM V5 branch-link-exchange instruction (argument parse)
7186 BLX <target_addr> ie BLX(1)
7187 BLX{<condition>} <Rm> ie BLX(2)
7188 Unfortunately, there are two different opcodes for this mnemonic.
7189 So, the insns[].value is not used, and the code here zaps values
7190 into inst.instruction.
7191 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7192
c19d1205
ZW
7193static void
7194do_blx (void)
7195{
7196 if (inst.operands[0].isreg)
b99bd4ef 7197 {
c19d1205
ZW
7198 /* Arg is a register; the opcode provided by insns[] is correct.
7199 It is not illegal to do "blx pc", just useless. */
7200 if (inst.operands[0].reg == REG_PC)
7201 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7202
c19d1205
ZW
7203 inst.instruction |= inst.operands[0].reg;
7204 }
7205 else
b99bd4ef 7206 {
c19d1205 7207 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7208 conditionally, and the opcode must be adjusted.
7209 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7210 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7211 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7212 inst.instruction = 0xfa000000;
267bf995 7213 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7214 }
c19d1205
ZW
7215}
7216
7217static void
7218do_bx (void)
7219{
845b51d6
PB
7220 bfd_boolean want_reloc;
7221
c19d1205
ZW
7222 if (inst.operands[0].reg == REG_PC)
7223 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7224
c19d1205 7225 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7226 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7227 it is for ARMv4t or earlier. */
7228 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7229 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7230 want_reloc = TRUE;
7231
5ad34203 7232#ifdef OBJ_ELF
845b51d6 7233 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7234#endif
584206db 7235 want_reloc = FALSE;
845b51d6
PB
7236
7237 if (want_reloc)
7238 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7239}
7240
c19d1205
ZW
7241
7242/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7243
7244static void
c19d1205 7245do_bxj (void)
a737bd4d 7246{
c19d1205
ZW
7247 if (inst.operands[0].reg == REG_PC)
7248 as_tsktsk (_("use of r15 in bxj is not really useful"));
7249
7250 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7251}
7252
c19d1205
ZW
7253/* Co-processor data operation:
7254 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7255 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7256static void
7257do_cdp (void)
7258{
7259 inst.instruction |= inst.operands[0].reg << 8;
7260 inst.instruction |= inst.operands[1].imm << 20;
7261 inst.instruction |= inst.operands[2].reg << 12;
7262 inst.instruction |= inst.operands[3].reg << 16;
7263 inst.instruction |= inst.operands[4].reg;
7264 inst.instruction |= inst.operands[5].imm << 5;
7265}
a737bd4d
NC
7266
7267static void
c19d1205 7268do_cmp (void)
a737bd4d 7269{
c19d1205
ZW
7270 inst.instruction |= inst.operands[0].reg << 16;
7271 encode_arm_shifter_operand (1);
a737bd4d
NC
7272}
7273
c19d1205
ZW
7274/* Transfer between coprocessor and ARM registers.
7275 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7276 MRC2
7277 MCR{cond}
7278 MCR2
7279
7280 No special properties. */
09d92015
MM
7281
7282static void
c19d1205 7283do_co_reg (void)
09d92015 7284{
fdfde340
JM
7285 unsigned Rd;
7286
7287 Rd = inst.operands[2].reg;
7288 if (thumb_mode)
7289 {
7290 if (inst.instruction == 0xee000010
7291 || inst.instruction == 0xfe000010)
7292 /* MCR, MCR2 */
7293 reject_bad_reg (Rd);
7294 else
7295 /* MRC, MRC2 */
7296 constraint (Rd == REG_SP, BAD_SP);
7297 }
7298 else
7299 {
7300 /* MCR */
7301 if (inst.instruction == 0xe000010)
7302 constraint (Rd == REG_PC, BAD_PC);
7303 }
7304
7305
c19d1205
ZW
7306 inst.instruction |= inst.operands[0].reg << 8;
7307 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7308 inst.instruction |= Rd << 12;
c19d1205
ZW
7309 inst.instruction |= inst.operands[3].reg << 16;
7310 inst.instruction |= inst.operands[4].reg;
7311 inst.instruction |= inst.operands[5].imm << 5;
7312}
09d92015 7313
c19d1205
ZW
7314/* Transfer between coprocessor register and pair of ARM registers.
7315 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7316 MCRR2
7317 MRRC{cond}
7318 MRRC2
b99bd4ef 7319
c19d1205 7320 Two XScale instructions are special cases of these:
09d92015 7321
c19d1205
ZW
7322 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7323 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7324
5f4273c7 7325 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7326
c19d1205
ZW
7327static void
7328do_co_reg2c (void)
7329{
fdfde340
JM
7330 unsigned Rd, Rn;
7331
7332 Rd = inst.operands[2].reg;
7333 Rn = inst.operands[3].reg;
7334
7335 if (thumb_mode)
7336 {
7337 reject_bad_reg (Rd);
7338 reject_bad_reg (Rn);
7339 }
7340 else
7341 {
7342 constraint (Rd == REG_PC, BAD_PC);
7343 constraint (Rn == REG_PC, BAD_PC);
7344 }
7345
c19d1205
ZW
7346 inst.instruction |= inst.operands[0].reg << 8;
7347 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7348 inst.instruction |= Rd << 12;
7349 inst.instruction |= Rn << 16;
c19d1205 7350 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7351}
7352
c19d1205
ZW
7353static void
7354do_cpsi (void)
7355{
7356 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7357 if (inst.operands[1].present)
7358 {
7359 inst.instruction |= CPSI_MMOD;
7360 inst.instruction |= inst.operands[1].imm;
7361 }
c19d1205 7362}
b99bd4ef 7363
62b3e311
PB
7364static void
7365do_dbg (void)
7366{
7367 inst.instruction |= inst.operands[0].imm;
7368}
7369
b99bd4ef 7370static void
c19d1205 7371do_it (void)
b99bd4ef 7372{
c19d1205 7373 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7374 process it to do the validation as if in
7375 thumb mode, just in case the code gets
7376 assembled for thumb using the unified syntax. */
7377
c19d1205 7378 inst.size = 0;
e07e6e58
NC
7379 if (unified_syntax)
7380 {
7381 set_it_insn_type (IT_INSN);
7382 now_it.mask = (inst.instruction & 0xf) | 0x10;
7383 now_it.cc = inst.operands[0].imm;
7384 }
09d92015 7385}
b99bd4ef 7386
09d92015 7387static void
c19d1205 7388do_ldmstm (void)
ea6ef066 7389{
c19d1205
ZW
7390 int base_reg = inst.operands[0].reg;
7391 int range = inst.operands[1].imm;
ea6ef066 7392
c19d1205
ZW
7393 inst.instruction |= base_reg << 16;
7394 inst.instruction |= range;
ea6ef066 7395
c19d1205
ZW
7396 if (inst.operands[1].writeback)
7397 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7398
c19d1205 7399 if (inst.operands[0].writeback)
ea6ef066 7400 {
c19d1205
ZW
7401 inst.instruction |= WRITE_BACK;
7402 /* Check for unpredictable uses of writeback. */
7403 if (inst.instruction & LOAD_BIT)
09d92015 7404 {
c19d1205
ZW
7405 /* Not allowed in LDM type 2. */
7406 if ((inst.instruction & LDM_TYPE_2_OR_3)
7407 && ((range & (1 << REG_PC)) == 0))
7408 as_warn (_("writeback of base register is UNPREDICTABLE"));
7409 /* Only allowed if base reg not in list for other types. */
7410 else if (range & (1 << base_reg))
7411 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7412 }
7413 else /* STM. */
7414 {
7415 /* Not allowed for type 2. */
7416 if (inst.instruction & LDM_TYPE_2_OR_3)
7417 as_warn (_("writeback of base register is UNPREDICTABLE"));
7418 /* Only allowed if base reg not in list, or first in list. */
7419 else if ((range & (1 << base_reg))
7420 && (range & ((1 << base_reg) - 1)))
7421 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7422 }
ea6ef066 7423 }
a737bd4d
NC
7424}
7425
c19d1205
ZW
7426/* ARMv5TE load-consecutive (argument parse)
7427 Mode is like LDRH.
7428
7429 LDRccD R, mode
7430 STRccD R, mode. */
7431
a737bd4d 7432static void
c19d1205 7433do_ldrd (void)
a737bd4d 7434{
c19d1205
ZW
7435 constraint (inst.operands[0].reg % 2 != 0,
7436 _("first destination register must be even"));
7437 constraint (inst.operands[1].present
7438 && inst.operands[1].reg != inst.operands[0].reg + 1,
7439 _("can only load two consecutive registers"));
7440 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7441 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7442
c19d1205
ZW
7443 if (!inst.operands[1].present)
7444 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7445
c19d1205 7446 if (inst.instruction & LOAD_BIT)
a737bd4d 7447 {
c19d1205
ZW
7448 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7449 register and the first register written; we have to diagnose
7450 overlap between the base and the second register written here. */
ea6ef066 7451
c19d1205
ZW
7452 if (inst.operands[2].reg == inst.operands[1].reg
7453 && (inst.operands[2].writeback || inst.operands[2].postind))
7454 as_warn (_("base register written back, and overlaps "
7455 "second destination register"));
b05fe5cf 7456
c19d1205
ZW
7457 /* For an index-register load, the index register must not overlap the
7458 destination (even if not write-back). */
7459 else if (inst.operands[2].immisreg
ca3f61f7
NC
7460 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7461 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 7462 as_warn (_("index register overlaps destination register"));
b05fe5cf 7463 }
c19d1205
ZW
7464
7465 inst.instruction |= inst.operands[0].reg << 12;
7466 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7467}
7468
7469static void
c19d1205 7470do_ldrex (void)
b05fe5cf 7471{
c19d1205
ZW
7472 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7473 || inst.operands[1].postind || inst.operands[1].writeback
7474 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7475 || inst.operands[1].negative
7476 /* This can arise if the programmer has written
7477 strex rN, rM, foo
7478 or if they have mistakenly used a register name as the last
7479 operand, eg:
7480 strex rN, rM, rX
7481 It is very difficult to distinguish between these two cases
7482 because "rX" might actually be a label. ie the register
7483 name has been occluded by a symbol of the same name. So we
7484 just generate a general 'bad addressing mode' type error
7485 message and leave it up to the programmer to discover the
7486 true cause and fix their mistake. */
7487 || (inst.operands[1].reg == REG_PC),
7488 BAD_ADDR_MODE);
b05fe5cf 7489
c19d1205
ZW
7490 constraint (inst.reloc.exp.X_op != O_constant
7491 || inst.reloc.exp.X_add_number != 0,
7492 _("offset must be zero in ARM encoding"));
b05fe5cf 7493
5be8be5d
DG
7494 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7495
c19d1205
ZW
7496 inst.instruction |= inst.operands[0].reg << 12;
7497 inst.instruction |= inst.operands[1].reg << 16;
7498 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7499}
7500
7501static void
c19d1205 7502do_ldrexd (void)
b05fe5cf 7503{
c19d1205
ZW
7504 constraint (inst.operands[0].reg % 2 != 0,
7505 _("even register required"));
7506 constraint (inst.operands[1].present
7507 && inst.operands[1].reg != inst.operands[0].reg + 1,
7508 _("can only load two consecutive registers"));
7509 /* If op 1 were present and equal to PC, this function wouldn't
7510 have been called in the first place. */
7511 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7512
c19d1205
ZW
7513 inst.instruction |= inst.operands[0].reg << 12;
7514 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7515}
7516
7517static void
c19d1205 7518do_ldst (void)
b05fe5cf 7519{
c19d1205
ZW
7520 inst.instruction |= inst.operands[0].reg << 12;
7521 if (!inst.operands[1].isreg)
7522 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7523 return;
c19d1205 7524 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7525}
7526
7527static void
c19d1205 7528do_ldstt (void)
b05fe5cf 7529{
c19d1205
ZW
7530 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7531 reject [Rn,...]. */
7532 if (inst.operands[1].preind)
b05fe5cf 7533 {
bd3ba5d1
NC
7534 constraint (inst.reloc.exp.X_op != O_constant
7535 || inst.reloc.exp.X_add_number != 0,
c19d1205 7536 _("this instruction requires a post-indexed address"));
b05fe5cf 7537
c19d1205
ZW
7538 inst.operands[1].preind = 0;
7539 inst.operands[1].postind = 1;
7540 inst.operands[1].writeback = 1;
b05fe5cf 7541 }
c19d1205
ZW
7542 inst.instruction |= inst.operands[0].reg << 12;
7543 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7544}
b05fe5cf 7545
c19d1205 7546/* Halfword and signed-byte load/store operations. */
b05fe5cf 7547
c19d1205
ZW
7548static void
7549do_ldstv4 (void)
7550{
ff4a8d2b 7551 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7552 inst.instruction |= inst.operands[0].reg << 12;
7553 if (!inst.operands[1].isreg)
7554 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7555 return;
c19d1205 7556 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7557}
7558
7559static void
c19d1205 7560do_ldsttv4 (void)
b05fe5cf 7561{
c19d1205
ZW
7562 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7563 reject [Rn,...]. */
7564 if (inst.operands[1].preind)
b05fe5cf 7565 {
bd3ba5d1
NC
7566 constraint (inst.reloc.exp.X_op != O_constant
7567 || inst.reloc.exp.X_add_number != 0,
c19d1205 7568 _("this instruction requires a post-indexed address"));
b05fe5cf 7569
c19d1205
ZW
7570 inst.operands[1].preind = 0;
7571 inst.operands[1].postind = 1;
7572 inst.operands[1].writeback = 1;
b05fe5cf 7573 }
c19d1205
ZW
7574 inst.instruction |= inst.operands[0].reg << 12;
7575 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7576}
b05fe5cf 7577
c19d1205
ZW
7578/* Co-processor register load/store.
7579 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7580static void
7581do_lstc (void)
7582{
7583 inst.instruction |= inst.operands[0].reg << 8;
7584 inst.instruction |= inst.operands[1].reg << 12;
7585 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7586}
7587
b05fe5cf 7588static void
c19d1205 7589do_mlas (void)
b05fe5cf 7590{
8fb9d7b9 7591 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7592 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7593 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7594 && !(inst.instruction & 0x00400000))
8fb9d7b9 7595 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7596
c19d1205
ZW
7597 inst.instruction |= inst.operands[0].reg << 16;
7598 inst.instruction |= inst.operands[1].reg;
7599 inst.instruction |= inst.operands[2].reg << 8;
7600 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7601}
b05fe5cf 7602
c19d1205
ZW
7603static void
7604do_mov (void)
7605{
7606 inst.instruction |= inst.operands[0].reg << 12;
7607 encode_arm_shifter_operand (1);
7608}
b05fe5cf 7609
c19d1205
ZW
7610/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7611static void
7612do_mov16 (void)
7613{
b6895b4f
PB
7614 bfd_vma imm;
7615 bfd_boolean top;
7616
7617 top = (inst.instruction & 0x00400000) != 0;
7618 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7619 _(":lower16: not allowed this instruction"));
7620 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7621 _(":upper16: not allowed instruction"));
c19d1205 7622 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7623 if (inst.reloc.type == BFD_RELOC_UNUSED)
7624 {
7625 imm = inst.reloc.exp.X_add_number;
7626 /* The value is in two pieces: 0:11, 16:19. */
7627 inst.instruction |= (imm & 0x00000fff);
7628 inst.instruction |= (imm & 0x0000f000) << 4;
7629 }
b05fe5cf 7630}
b99bd4ef 7631
037e8744
JB
7632static void do_vfp_nsyn_opcode (const char *);
7633
7634static int
7635do_vfp_nsyn_mrs (void)
7636{
7637 if (inst.operands[0].isvec)
7638 {
7639 if (inst.operands[1].reg != 1)
7640 first_error (_("operand 1 must be FPSCR"));
7641 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7642 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7643 do_vfp_nsyn_opcode ("fmstat");
7644 }
7645 else if (inst.operands[1].isvec)
7646 do_vfp_nsyn_opcode ("fmrx");
7647 else
7648 return FAIL;
5f4273c7 7649
037e8744
JB
7650 return SUCCESS;
7651}
7652
7653static int
7654do_vfp_nsyn_msr (void)
7655{
7656 if (inst.operands[0].isvec)
7657 do_vfp_nsyn_opcode ("fmxr");
7658 else
7659 return FAIL;
7660
7661 return SUCCESS;
7662}
7663
f7c21dc7
NC
7664static void
7665do_vmrs (void)
7666{
7667 unsigned Rt = inst.operands[0].reg;
7668
7669 if (thumb_mode && inst.operands[0].reg == REG_SP)
7670 {
7671 inst.error = BAD_SP;
7672 return;
7673 }
7674
7675 /* APSR_ sets isvec. All other refs to PC are illegal. */
7676 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7677 {
7678 inst.error = BAD_PC;
7679 return;
7680 }
7681
7682 if (inst.operands[1].reg != 1)
7683 first_error (_("operand 1 must be FPSCR"));
7684
7685 inst.instruction |= (Rt << 12);
7686}
7687
7688static void
7689do_vmsr (void)
7690{
7691 unsigned Rt = inst.operands[1].reg;
7692
7693 if (thumb_mode)
7694 reject_bad_reg (Rt);
7695 else if (Rt == REG_PC)
7696 {
7697 inst.error = BAD_PC;
7698 return;
7699 }
7700
7701 if (inst.operands[0].reg != 1)
7702 first_error (_("operand 0 must be FPSCR"));
7703
7704 inst.instruction |= (Rt << 12);
7705}
7706
b99bd4ef 7707static void
c19d1205 7708do_mrs (void)
b99bd4ef 7709{
037e8744
JB
7710 if (do_vfp_nsyn_mrs () == SUCCESS)
7711 return;
7712
c19d1205
ZW
7713 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7714 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7715 != (PSR_c|PSR_f),
7716 _("'CPSR' or 'SPSR' expected"));
ff4a8d2b 7717 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7718 inst.instruction |= inst.operands[0].reg << 12;
7719 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7720}
b99bd4ef 7721
c19d1205
ZW
7722/* Two possible forms:
7723 "{C|S}PSR_<field>, Rm",
7724 "{C|S}PSR_f, #expression". */
b99bd4ef 7725
c19d1205
ZW
7726static void
7727do_msr (void)
7728{
037e8744
JB
7729 if (do_vfp_nsyn_msr () == SUCCESS)
7730 return;
7731
c19d1205
ZW
7732 inst.instruction |= inst.operands[0].imm;
7733 if (inst.operands[1].isreg)
7734 inst.instruction |= inst.operands[1].reg;
7735 else
b99bd4ef 7736 {
c19d1205
ZW
7737 inst.instruction |= INST_IMMEDIATE;
7738 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7739 inst.reloc.pc_rel = 0;
b99bd4ef 7740 }
b99bd4ef
NC
7741}
7742
c19d1205
ZW
7743static void
7744do_mul (void)
a737bd4d 7745{
ff4a8d2b
NC
7746 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7747
c19d1205
ZW
7748 if (!inst.operands[2].present)
7749 inst.operands[2].reg = inst.operands[0].reg;
7750 inst.instruction |= inst.operands[0].reg << 16;
7751 inst.instruction |= inst.operands[1].reg;
7752 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7753
8fb9d7b9
MS
7754 if (inst.operands[0].reg == inst.operands[1].reg
7755 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7756 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7757}
7758
c19d1205
ZW
7759/* Long Multiply Parser
7760 UMULL RdLo, RdHi, Rm, Rs
7761 SMULL RdLo, RdHi, Rm, Rs
7762 UMLAL RdLo, RdHi, Rm, Rs
7763 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7764
7765static void
c19d1205 7766do_mull (void)
b99bd4ef 7767{
c19d1205
ZW
7768 inst.instruction |= inst.operands[0].reg << 12;
7769 inst.instruction |= inst.operands[1].reg << 16;
7770 inst.instruction |= inst.operands[2].reg;
7771 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7772
682b27ad
PB
7773 /* rdhi and rdlo must be different. */
7774 if (inst.operands[0].reg == inst.operands[1].reg)
7775 as_tsktsk (_("rdhi and rdlo must be different"));
7776
7777 /* rdhi, rdlo and rm must all be different before armv6. */
7778 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 7779 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 7780 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
7781 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7782}
b99bd4ef 7783
c19d1205
ZW
7784static void
7785do_nop (void)
7786{
e7495e45
NS
7787 if (inst.operands[0].present
7788 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
7789 {
7790 /* Architectural NOP hints are CPSR sets with no bits selected. */
7791 inst.instruction &= 0xf0000000;
e7495e45
NS
7792 inst.instruction |= 0x0320f000;
7793 if (inst.operands[0].present)
7794 inst.instruction |= inst.operands[0].imm;
c19d1205 7795 }
b99bd4ef
NC
7796}
7797
c19d1205
ZW
7798/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7799 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7800 Condition defaults to COND_ALWAYS.
7801 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7802
7803static void
c19d1205 7804do_pkhbt (void)
b99bd4ef 7805{
c19d1205
ZW
7806 inst.instruction |= inst.operands[0].reg << 12;
7807 inst.instruction |= inst.operands[1].reg << 16;
7808 inst.instruction |= inst.operands[2].reg;
7809 if (inst.operands[3].present)
7810 encode_arm_shift (3);
7811}
b99bd4ef 7812
c19d1205 7813/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7814
c19d1205
ZW
7815static void
7816do_pkhtb (void)
7817{
7818 if (!inst.operands[3].present)
b99bd4ef 7819 {
c19d1205
ZW
7820 /* If the shift specifier is omitted, turn the instruction
7821 into pkhbt rd, rm, rn. */
7822 inst.instruction &= 0xfff00010;
7823 inst.instruction |= inst.operands[0].reg << 12;
7824 inst.instruction |= inst.operands[1].reg;
7825 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7826 }
7827 else
7828 {
c19d1205
ZW
7829 inst.instruction |= inst.operands[0].reg << 12;
7830 inst.instruction |= inst.operands[1].reg << 16;
7831 inst.instruction |= inst.operands[2].reg;
7832 encode_arm_shift (3);
b99bd4ef
NC
7833 }
7834}
7835
c19d1205
ZW
7836/* ARMv5TE: Preload-Cache
7837
7838 PLD <addr_mode>
7839
7840 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7841
7842static void
c19d1205 7843do_pld (void)
b99bd4ef 7844{
c19d1205
ZW
7845 constraint (!inst.operands[0].isreg,
7846 _("'[' expected after PLD mnemonic"));
7847 constraint (inst.operands[0].postind,
7848 _("post-indexed expression used in preload instruction"));
7849 constraint (inst.operands[0].writeback,
7850 _("writeback used in preload instruction"));
7851 constraint (!inst.operands[0].preind,
7852 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7853 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7854}
b99bd4ef 7855
62b3e311
PB
7856/* ARMv7: PLI <addr_mode> */
7857static void
7858do_pli (void)
7859{
7860 constraint (!inst.operands[0].isreg,
7861 _("'[' expected after PLI mnemonic"));
7862 constraint (inst.operands[0].postind,
7863 _("post-indexed expression used in preload instruction"));
7864 constraint (inst.operands[0].writeback,
7865 _("writeback used in preload instruction"));
7866 constraint (!inst.operands[0].preind,
7867 _("unindexed addressing used in preload instruction"));
7868 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7869 inst.instruction &= ~PRE_INDEX;
7870}
7871
c19d1205
ZW
7872static void
7873do_push_pop (void)
7874{
7875 inst.operands[1] = inst.operands[0];
7876 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7877 inst.operands[0].isreg = 1;
7878 inst.operands[0].writeback = 1;
7879 inst.operands[0].reg = REG_SP;
7880 do_ldmstm ();
7881}
b99bd4ef 7882
c19d1205
ZW
7883/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7884 word at the specified address and the following word
7885 respectively.
7886 Unconditionally executed.
7887 Error if Rn is R15. */
b99bd4ef 7888
c19d1205
ZW
7889static void
7890do_rfe (void)
7891{
7892 inst.instruction |= inst.operands[0].reg << 16;
7893 if (inst.operands[0].writeback)
7894 inst.instruction |= WRITE_BACK;
7895}
b99bd4ef 7896
c19d1205 7897/* ARM V6 ssat (argument parse). */
b99bd4ef 7898
c19d1205
ZW
7899static void
7900do_ssat (void)
7901{
7902 inst.instruction |= inst.operands[0].reg << 12;
7903 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7904 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7905
c19d1205
ZW
7906 if (inst.operands[3].present)
7907 encode_arm_shift (3);
b99bd4ef
NC
7908}
7909
c19d1205 7910/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7911
7912static void
c19d1205 7913do_usat (void)
b99bd4ef 7914{
c19d1205
ZW
7915 inst.instruction |= inst.operands[0].reg << 12;
7916 inst.instruction |= inst.operands[1].imm << 16;
7917 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7918
c19d1205
ZW
7919 if (inst.operands[3].present)
7920 encode_arm_shift (3);
b99bd4ef
NC
7921}
7922
c19d1205 7923/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7924
7925static void
c19d1205 7926do_ssat16 (void)
09d92015 7927{
c19d1205
ZW
7928 inst.instruction |= inst.operands[0].reg << 12;
7929 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7930 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7931}
7932
c19d1205
ZW
7933static void
7934do_usat16 (void)
a737bd4d 7935{
c19d1205
ZW
7936 inst.instruction |= inst.operands[0].reg << 12;
7937 inst.instruction |= inst.operands[1].imm << 16;
7938 inst.instruction |= inst.operands[2].reg;
7939}
a737bd4d 7940
c19d1205
ZW
7941/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7942 preserving the other bits.
a737bd4d 7943
c19d1205
ZW
7944 setend <endian_specifier>, where <endian_specifier> is either
7945 BE or LE. */
a737bd4d 7946
c19d1205
ZW
7947static void
7948do_setend (void)
7949{
7950 if (inst.operands[0].imm)
7951 inst.instruction |= 0x200;
a737bd4d
NC
7952}
7953
7954static void
c19d1205 7955do_shift (void)
a737bd4d 7956{
c19d1205
ZW
7957 unsigned int Rm = (inst.operands[1].present
7958 ? inst.operands[1].reg
7959 : inst.operands[0].reg);
a737bd4d 7960
c19d1205
ZW
7961 inst.instruction |= inst.operands[0].reg << 12;
7962 inst.instruction |= Rm;
7963 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7964 {
c19d1205
ZW
7965 inst.instruction |= inst.operands[2].reg << 8;
7966 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7967 }
7968 else
c19d1205 7969 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7970}
7971
09d92015 7972static void
3eb17e6b 7973do_smc (void)
09d92015 7974{
3eb17e6b 7975 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7976 inst.reloc.pc_rel = 0;
09d92015
MM
7977}
7978
09d92015 7979static void
c19d1205 7980do_swi (void)
09d92015 7981{
c19d1205
ZW
7982 inst.reloc.type = BFD_RELOC_ARM_SWI;
7983 inst.reloc.pc_rel = 0;
09d92015
MM
7984}
7985
c19d1205
ZW
7986/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7987 SMLAxy{cond} Rd,Rm,Rs,Rn
7988 SMLAWy{cond} Rd,Rm,Rs,Rn
7989 Error if any register is R15. */
e16bb312 7990
c19d1205
ZW
7991static void
7992do_smla (void)
e16bb312 7993{
c19d1205
ZW
7994 inst.instruction |= inst.operands[0].reg << 16;
7995 inst.instruction |= inst.operands[1].reg;
7996 inst.instruction |= inst.operands[2].reg << 8;
7997 inst.instruction |= inst.operands[3].reg << 12;
7998}
a737bd4d 7999
c19d1205
ZW
8000/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8001 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8002 Error if any register is R15.
8003 Warning if Rdlo == Rdhi. */
a737bd4d 8004
c19d1205
ZW
8005static void
8006do_smlal (void)
8007{
8008 inst.instruction |= inst.operands[0].reg << 12;
8009 inst.instruction |= inst.operands[1].reg << 16;
8010 inst.instruction |= inst.operands[2].reg;
8011 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8012
c19d1205
ZW
8013 if (inst.operands[0].reg == inst.operands[1].reg)
8014 as_tsktsk (_("rdhi and rdlo must be different"));
8015}
a737bd4d 8016
c19d1205
ZW
8017/* ARM V5E (El Segundo) signed-multiply (argument parse)
8018 SMULxy{cond} Rd,Rm,Rs
8019 Error if any register is R15. */
a737bd4d 8020
c19d1205
ZW
8021static void
8022do_smul (void)
8023{
8024 inst.instruction |= inst.operands[0].reg << 16;
8025 inst.instruction |= inst.operands[1].reg;
8026 inst.instruction |= inst.operands[2].reg << 8;
8027}
a737bd4d 8028
b6702015
PB
8029/* ARM V6 srs (argument parse). The variable fields in the encoding are
8030 the same for both ARM and Thumb-2. */
a737bd4d 8031
c19d1205
ZW
8032static void
8033do_srs (void)
8034{
b6702015
PB
8035 int reg;
8036
8037 if (inst.operands[0].present)
8038 {
8039 reg = inst.operands[0].reg;
fdfde340 8040 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8041 }
8042 else
fdfde340 8043 reg = REG_SP;
b6702015
PB
8044
8045 inst.instruction |= reg << 16;
8046 inst.instruction |= inst.operands[1].imm;
8047 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8048 inst.instruction |= WRITE_BACK;
8049}
a737bd4d 8050
c19d1205 8051/* ARM V6 strex (argument parse). */
a737bd4d 8052
c19d1205
ZW
8053static void
8054do_strex (void)
8055{
8056 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8057 || inst.operands[2].postind || inst.operands[2].writeback
8058 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8059 || inst.operands[2].negative
8060 /* See comment in do_ldrex(). */
8061 || (inst.operands[2].reg == REG_PC),
8062 BAD_ADDR_MODE);
a737bd4d 8063
c19d1205
ZW
8064 constraint (inst.operands[0].reg == inst.operands[1].reg
8065 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8066
c19d1205
ZW
8067 constraint (inst.reloc.exp.X_op != O_constant
8068 || inst.reloc.exp.X_add_number != 0,
8069 _("offset must be zero in ARM encoding"));
a737bd4d 8070
c19d1205
ZW
8071 inst.instruction |= inst.operands[0].reg << 12;
8072 inst.instruction |= inst.operands[1].reg;
8073 inst.instruction |= inst.operands[2].reg << 16;
8074 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8075}
8076
8077static void
c19d1205 8078do_strexd (void)
e16bb312 8079{
c19d1205
ZW
8080 constraint (inst.operands[1].reg % 2 != 0,
8081 _("even register required"));
8082 constraint (inst.operands[2].present
8083 && inst.operands[2].reg != inst.operands[1].reg + 1,
8084 _("can only store two consecutive registers"));
8085 /* If op 2 were present and equal to PC, this function wouldn't
8086 have been called in the first place. */
8087 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8088
c19d1205
ZW
8089 constraint (inst.operands[0].reg == inst.operands[1].reg
8090 || inst.operands[0].reg == inst.operands[1].reg + 1
8091 || inst.operands[0].reg == inst.operands[3].reg,
8092 BAD_OVERLAP);
e16bb312 8093
c19d1205
ZW
8094 inst.instruction |= inst.operands[0].reg << 12;
8095 inst.instruction |= inst.operands[1].reg;
8096 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8097}
8098
c19d1205
ZW
8099/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8100 extends it to 32-bits, and adds the result to a value in another
8101 register. You can specify a rotation by 0, 8, 16, or 24 bits
8102 before extracting the 16-bit value.
8103 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8104 Condition defaults to COND_ALWAYS.
8105 Error if any register uses R15. */
8106
e16bb312 8107static void
c19d1205 8108do_sxtah (void)
e16bb312 8109{
c19d1205
ZW
8110 inst.instruction |= inst.operands[0].reg << 12;
8111 inst.instruction |= inst.operands[1].reg << 16;
8112 inst.instruction |= inst.operands[2].reg;
8113 inst.instruction |= inst.operands[3].imm << 10;
8114}
e16bb312 8115
c19d1205 8116/* ARM V6 SXTH.
e16bb312 8117
c19d1205
ZW
8118 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8119 Condition defaults to COND_ALWAYS.
8120 Error if any register uses R15. */
e16bb312
NC
8121
8122static void
c19d1205 8123do_sxth (void)
e16bb312 8124{
c19d1205
ZW
8125 inst.instruction |= inst.operands[0].reg << 12;
8126 inst.instruction |= inst.operands[1].reg;
8127 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8128}
c19d1205
ZW
8129\f
8130/* VFP instructions. In a logical order: SP variant first, monad
8131 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8132
8133static void
c19d1205 8134do_vfp_sp_monadic (void)
e16bb312 8135{
5287ad62
JB
8136 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8137 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8138}
8139
8140static void
c19d1205 8141do_vfp_sp_dyadic (void)
e16bb312 8142{
5287ad62
JB
8143 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8144 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8145 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8146}
8147
8148static void
c19d1205 8149do_vfp_sp_compare_z (void)
e16bb312 8150{
5287ad62 8151 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8152}
8153
8154static void
c19d1205 8155do_vfp_dp_sp_cvt (void)
e16bb312 8156{
5287ad62
JB
8157 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8158 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8159}
8160
8161static void
c19d1205 8162do_vfp_sp_dp_cvt (void)
e16bb312 8163{
5287ad62
JB
8164 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8165 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8166}
8167
8168static void
c19d1205 8169do_vfp_reg_from_sp (void)
e16bb312 8170{
c19d1205 8171 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8172 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8173}
8174
8175static void
c19d1205 8176do_vfp_reg2_from_sp2 (void)
e16bb312 8177{
c19d1205
ZW
8178 constraint (inst.operands[2].imm != 2,
8179 _("only two consecutive VFP SP registers allowed here"));
8180 inst.instruction |= inst.operands[0].reg << 12;
8181 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8182 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8183}
8184
8185static void
c19d1205 8186do_vfp_sp_from_reg (void)
e16bb312 8187{
5287ad62 8188 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8189 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8190}
8191
8192static void
c19d1205 8193do_vfp_sp2_from_reg2 (void)
e16bb312 8194{
c19d1205
ZW
8195 constraint (inst.operands[0].imm != 2,
8196 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8197 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8198 inst.instruction |= inst.operands[1].reg << 12;
8199 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8200}
8201
8202static void
c19d1205 8203do_vfp_sp_ldst (void)
e16bb312 8204{
5287ad62 8205 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8206 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8207}
8208
8209static void
c19d1205 8210do_vfp_dp_ldst (void)
e16bb312 8211{
5287ad62 8212 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8213 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8214}
8215
c19d1205 8216
e16bb312 8217static void
c19d1205 8218vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8219{
c19d1205
ZW
8220 if (inst.operands[0].writeback)
8221 inst.instruction |= WRITE_BACK;
8222 else
8223 constraint (ldstm_type != VFP_LDSTMIA,
8224 _("this addressing mode requires base-register writeback"));
8225 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8226 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8227 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8228}
8229
8230static void
c19d1205 8231vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8232{
c19d1205 8233 int count;
e16bb312 8234
c19d1205
ZW
8235 if (inst.operands[0].writeback)
8236 inst.instruction |= WRITE_BACK;
8237 else
8238 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8239 _("this addressing mode requires base-register writeback"));
e16bb312 8240
c19d1205 8241 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8242 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8243
c19d1205
ZW
8244 count = inst.operands[1].imm << 1;
8245 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8246 count += 1;
e16bb312 8247
c19d1205 8248 inst.instruction |= count;
e16bb312
NC
8249}
8250
8251static void
c19d1205 8252do_vfp_sp_ldstmia (void)
e16bb312 8253{
c19d1205 8254 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8255}
8256
8257static void
c19d1205 8258do_vfp_sp_ldstmdb (void)
e16bb312 8259{
c19d1205 8260 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8261}
8262
8263static void
c19d1205 8264do_vfp_dp_ldstmia (void)
e16bb312 8265{
c19d1205 8266 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8267}
8268
8269static void
c19d1205 8270do_vfp_dp_ldstmdb (void)
e16bb312 8271{
c19d1205 8272 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8273}
8274
8275static void
c19d1205 8276do_vfp_xp_ldstmia (void)
e16bb312 8277{
c19d1205
ZW
8278 vfp_dp_ldstm (VFP_LDSTMIAX);
8279}
e16bb312 8280
c19d1205
ZW
8281static void
8282do_vfp_xp_ldstmdb (void)
8283{
8284 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8285}
5287ad62
JB
8286
8287static void
8288do_vfp_dp_rd_rm (void)
8289{
8290 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8291 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8292}
8293
8294static void
8295do_vfp_dp_rn_rd (void)
8296{
8297 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8298 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8299}
8300
8301static void
8302do_vfp_dp_rd_rn (void)
8303{
8304 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8305 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8306}
8307
8308static void
8309do_vfp_dp_rd_rn_rm (void)
8310{
8311 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8312 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8313 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8314}
8315
8316static void
8317do_vfp_dp_rd (void)
8318{
8319 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8320}
8321
8322static void
8323do_vfp_dp_rm_rd_rn (void)
8324{
8325 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8326 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8327 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8328}
8329
8330/* VFPv3 instructions. */
8331static void
8332do_vfp_sp_const (void)
8333{
8334 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8335 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8336 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8337}
8338
8339static void
8340do_vfp_dp_const (void)
8341{
8342 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8343 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8344 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8345}
8346
8347static void
8348vfp_conv (int srcsize)
8349{
8350 unsigned immbits = srcsize - inst.operands[1].imm;
8351 inst.instruction |= (immbits & 1) << 5;
8352 inst.instruction |= (immbits >> 1);
8353}
8354
8355static void
8356do_vfp_sp_conv_16 (void)
8357{
8358 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8359 vfp_conv (16);
8360}
8361
8362static void
8363do_vfp_dp_conv_16 (void)
8364{
8365 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8366 vfp_conv (16);
8367}
8368
8369static void
8370do_vfp_sp_conv_32 (void)
8371{
8372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8373 vfp_conv (32);
8374}
8375
8376static void
8377do_vfp_dp_conv_32 (void)
8378{
8379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8380 vfp_conv (32);
8381}
c19d1205
ZW
8382\f
8383/* FPA instructions. Also in a logical order. */
e16bb312 8384
c19d1205
ZW
8385static void
8386do_fpa_cmp (void)
8387{
8388 inst.instruction |= inst.operands[0].reg << 16;
8389 inst.instruction |= inst.operands[1].reg;
8390}
b99bd4ef
NC
8391
8392static void
c19d1205 8393do_fpa_ldmstm (void)
b99bd4ef 8394{
c19d1205
ZW
8395 inst.instruction |= inst.operands[0].reg << 12;
8396 switch (inst.operands[1].imm)
8397 {
8398 case 1: inst.instruction |= CP_T_X; break;
8399 case 2: inst.instruction |= CP_T_Y; break;
8400 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8401 case 4: break;
8402 default: abort ();
8403 }
b99bd4ef 8404
c19d1205
ZW
8405 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8406 {
8407 /* The instruction specified "ea" or "fd", so we can only accept
8408 [Rn]{!}. The instruction does not really support stacking or
8409 unstacking, so we have to emulate these by setting appropriate
8410 bits and offsets. */
8411 constraint (inst.reloc.exp.X_op != O_constant
8412 || inst.reloc.exp.X_add_number != 0,
8413 _("this instruction does not support indexing"));
b99bd4ef 8414
c19d1205
ZW
8415 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8416 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8417
c19d1205
ZW
8418 if (!(inst.instruction & INDEX_UP))
8419 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8420
c19d1205
ZW
8421 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8422 {
8423 inst.operands[2].preind = 0;
8424 inst.operands[2].postind = 1;
8425 }
8426 }
b99bd4ef 8427
c19d1205 8428 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8429}
c19d1205
ZW
8430\f
8431/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8432
c19d1205
ZW
8433static void
8434do_iwmmxt_tandorc (void)
8435{
8436 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8437}
b99bd4ef 8438
c19d1205
ZW
8439static void
8440do_iwmmxt_textrc (void)
8441{
8442 inst.instruction |= inst.operands[0].reg << 12;
8443 inst.instruction |= inst.operands[1].imm;
8444}
b99bd4ef
NC
8445
8446static void
c19d1205 8447do_iwmmxt_textrm (void)
b99bd4ef 8448{
c19d1205
ZW
8449 inst.instruction |= inst.operands[0].reg << 12;
8450 inst.instruction |= inst.operands[1].reg << 16;
8451 inst.instruction |= inst.operands[2].imm;
8452}
b99bd4ef 8453
c19d1205
ZW
8454static void
8455do_iwmmxt_tinsr (void)
8456{
8457 inst.instruction |= inst.operands[0].reg << 16;
8458 inst.instruction |= inst.operands[1].reg << 12;
8459 inst.instruction |= inst.operands[2].imm;
8460}
b99bd4ef 8461
c19d1205
ZW
8462static void
8463do_iwmmxt_tmia (void)
8464{
8465 inst.instruction |= inst.operands[0].reg << 5;
8466 inst.instruction |= inst.operands[1].reg;
8467 inst.instruction |= inst.operands[2].reg << 12;
8468}
b99bd4ef 8469
c19d1205
ZW
8470static void
8471do_iwmmxt_waligni (void)
8472{
8473 inst.instruction |= inst.operands[0].reg << 12;
8474 inst.instruction |= inst.operands[1].reg << 16;
8475 inst.instruction |= inst.operands[2].reg;
8476 inst.instruction |= inst.operands[3].imm << 20;
8477}
b99bd4ef 8478
2d447fca
JM
8479static void
8480do_iwmmxt_wmerge (void)
8481{
8482 inst.instruction |= inst.operands[0].reg << 12;
8483 inst.instruction |= inst.operands[1].reg << 16;
8484 inst.instruction |= inst.operands[2].reg;
8485 inst.instruction |= inst.operands[3].imm << 21;
8486}
8487
c19d1205
ZW
8488static void
8489do_iwmmxt_wmov (void)
8490{
8491 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8492 inst.instruction |= inst.operands[0].reg << 12;
8493 inst.instruction |= inst.operands[1].reg << 16;
8494 inst.instruction |= inst.operands[1].reg;
8495}
b99bd4ef 8496
c19d1205
ZW
8497static void
8498do_iwmmxt_wldstbh (void)
8499{
8f06b2d8 8500 int reloc;
c19d1205 8501 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8502 if (thumb_mode)
8503 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8504 else
8505 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8506 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8507}
8508
c19d1205
ZW
8509static void
8510do_iwmmxt_wldstw (void)
8511{
8512 /* RIWR_RIWC clears .isreg for a control register. */
8513 if (!inst.operands[0].isreg)
8514 {
8515 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8516 inst.instruction |= 0xf0000000;
8517 }
b99bd4ef 8518
c19d1205
ZW
8519 inst.instruction |= inst.operands[0].reg << 12;
8520 encode_arm_cp_address (1, TRUE, TRUE, 0);
8521}
b99bd4ef
NC
8522
8523static void
c19d1205 8524do_iwmmxt_wldstd (void)
b99bd4ef 8525{
c19d1205 8526 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8527 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8528 && inst.operands[1].immisreg)
8529 {
8530 inst.instruction &= ~0x1a000ff;
8531 inst.instruction |= (0xf << 28);
8532 if (inst.operands[1].preind)
8533 inst.instruction |= PRE_INDEX;
8534 if (!inst.operands[1].negative)
8535 inst.instruction |= INDEX_UP;
8536 if (inst.operands[1].writeback)
8537 inst.instruction |= WRITE_BACK;
8538 inst.instruction |= inst.operands[1].reg << 16;
8539 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8540 inst.instruction |= inst.operands[1].imm;
8541 }
8542 else
8543 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8544}
b99bd4ef 8545
c19d1205
ZW
8546static void
8547do_iwmmxt_wshufh (void)
8548{
8549 inst.instruction |= inst.operands[0].reg << 12;
8550 inst.instruction |= inst.operands[1].reg << 16;
8551 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8552 inst.instruction |= (inst.operands[2].imm & 0x0f);
8553}
b99bd4ef 8554
c19d1205
ZW
8555static void
8556do_iwmmxt_wzero (void)
8557{
8558 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8559 inst.instruction |= inst.operands[0].reg;
8560 inst.instruction |= inst.operands[0].reg << 12;
8561 inst.instruction |= inst.operands[0].reg << 16;
8562}
2d447fca
JM
8563
8564static void
8565do_iwmmxt_wrwrwr_or_imm5 (void)
8566{
8567 if (inst.operands[2].isreg)
8568 do_rd_rn_rm ();
8569 else {
8570 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8571 _("immediate operand requires iWMMXt2"));
8572 do_rd_rn ();
8573 if (inst.operands[2].imm == 0)
8574 {
8575 switch ((inst.instruction >> 20) & 0xf)
8576 {
8577 case 4:
8578 case 5:
8579 case 6:
5f4273c7 8580 case 7:
2d447fca
JM
8581 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8582 inst.operands[2].imm = 16;
8583 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8584 break;
8585 case 8:
8586 case 9:
8587 case 10:
8588 case 11:
8589 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8590 inst.operands[2].imm = 32;
8591 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8592 break;
8593 case 12:
8594 case 13:
8595 case 14:
8596 case 15:
8597 {
8598 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8599 unsigned long wrn;
8600 wrn = (inst.instruction >> 16) & 0xf;
8601 inst.instruction &= 0xff0fff0f;
8602 inst.instruction |= wrn;
8603 /* Bail out here; the instruction is now assembled. */
8604 return;
8605 }
8606 }
8607 }
8608 /* Map 32 -> 0, etc. */
8609 inst.operands[2].imm &= 0x1f;
8610 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8611 }
8612}
c19d1205
ZW
8613\f
8614/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8615 operations first, then control, shift, and load/store. */
b99bd4ef 8616
c19d1205 8617/* Insns like "foo X,Y,Z". */
b99bd4ef 8618
c19d1205
ZW
8619static void
8620do_mav_triple (void)
8621{
8622 inst.instruction |= inst.operands[0].reg << 16;
8623 inst.instruction |= inst.operands[1].reg;
8624 inst.instruction |= inst.operands[2].reg << 12;
8625}
b99bd4ef 8626
c19d1205
ZW
8627/* Insns like "foo W,X,Y,Z".
8628 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8629
c19d1205
ZW
8630static void
8631do_mav_quad (void)
8632{
8633 inst.instruction |= inst.operands[0].reg << 5;
8634 inst.instruction |= inst.operands[1].reg << 12;
8635 inst.instruction |= inst.operands[2].reg << 16;
8636 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8637}
8638
c19d1205
ZW
8639/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8640static void
8641do_mav_dspsc (void)
a737bd4d 8642{
c19d1205
ZW
8643 inst.instruction |= inst.operands[1].reg << 12;
8644}
a737bd4d 8645
c19d1205
ZW
8646/* Maverick shift immediate instructions.
8647 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8648 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8649
c19d1205
ZW
8650static void
8651do_mav_shift (void)
8652{
8653 int imm = inst.operands[2].imm;
a737bd4d 8654
c19d1205
ZW
8655 inst.instruction |= inst.operands[0].reg << 12;
8656 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8657
c19d1205
ZW
8658 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8659 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8660 Bit 4 should be 0. */
8661 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8662
c19d1205
ZW
8663 inst.instruction |= imm;
8664}
8665\f
8666/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8667
c19d1205
ZW
8668/* Xscale multiply-accumulate (argument parse)
8669 MIAcc acc0,Rm,Rs
8670 MIAPHcc acc0,Rm,Rs
8671 MIAxycc acc0,Rm,Rs. */
a737bd4d 8672
c19d1205
ZW
8673static void
8674do_xsc_mia (void)
8675{
8676 inst.instruction |= inst.operands[1].reg;
8677 inst.instruction |= inst.operands[2].reg << 12;
8678}
a737bd4d 8679
c19d1205 8680/* Xscale move-accumulator-register (argument parse)
a737bd4d 8681
c19d1205 8682 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8683
c19d1205
ZW
8684static void
8685do_xsc_mar (void)
8686{
8687 inst.instruction |= inst.operands[1].reg << 12;
8688 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8689}
8690
c19d1205 8691/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8692
c19d1205 8693 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8694
8695static void
c19d1205 8696do_xsc_mra (void)
b99bd4ef 8697{
c19d1205
ZW
8698 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8699 inst.instruction |= inst.operands[0].reg << 12;
8700 inst.instruction |= inst.operands[1].reg << 16;
8701}
8702\f
8703/* Encoding functions relevant only to Thumb. */
b99bd4ef 8704
c19d1205
ZW
8705/* inst.operands[i] is a shifted-register operand; encode
8706 it into inst.instruction in the format used by Thumb32. */
8707
8708static void
8709encode_thumb32_shifted_operand (int i)
8710{
8711 unsigned int value = inst.reloc.exp.X_add_number;
8712 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8713
9c3c69f2
PB
8714 constraint (inst.operands[i].immisreg,
8715 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8716 inst.instruction |= inst.operands[i].reg;
8717 if (shift == SHIFT_RRX)
8718 inst.instruction |= SHIFT_ROR << 4;
8719 else
b99bd4ef 8720 {
c19d1205
ZW
8721 constraint (inst.reloc.exp.X_op != O_constant,
8722 _("expression too complex"));
8723
8724 constraint (value > 32
8725 || (value == 32 && (shift == SHIFT_LSL
8726 || shift == SHIFT_ROR)),
8727 _("shift expression is too large"));
8728
8729 if (value == 0)
8730 shift = SHIFT_LSL;
8731 else if (value == 32)
8732 value = 0;
8733
8734 inst.instruction |= shift << 4;
8735 inst.instruction |= (value & 0x1c) << 10;
8736 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8737 }
c19d1205 8738}
b99bd4ef 8739
b99bd4ef 8740
c19d1205
ZW
8741/* inst.operands[i] was set up by parse_address. Encode it into a
8742 Thumb32 format load or store instruction. Reject forms that cannot
8743 be used with such instructions. If is_t is true, reject forms that
8744 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
8745 that cannot be used with a D instruction. If it is a store insn,
8746 reject PC in Rn. */
b99bd4ef 8747
c19d1205
ZW
8748static void
8749encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8750{
5be8be5d 8751 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
8752
8753 constraint (!inst.operands[i].isreg,
53365c0d 8754 _("Instruction does not support =N addresses"));
b99bd4ef 8755
c19d1205
ZW
8756 inst.instruction |= inst.operands[i].reg << 16;
8757 if (inst.operands[i].immisreg)
b99bd4ef 8758 {
5be8be5d 8759 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
8760 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8761 constraint (inst.operands[i].negative,
8762 _("Thumb does not support negative register indexing"));
8763 constraint (inst.operands[i].postind,
8764 _("Thumb does not support register post-indexing"));
8765 constraint (inst.operands[i].writeback,
8766 _("Thumb does not support register indexing with writeback"));
8767 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8768 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8769
f40d1643 8770 inst.instruction |= inst.operands[i].imm;
c19d1205 8771 if (inst.operands[i].shifted)
b99bd4ef 8772 {
c19d1205
ZW
8773 constraint (inst.reloc.exp.X_op != O_constant,
8774 _("expression too complex"));
9c3c69f2
PB
8775 constraint (inst.reloc.exp.X_add_number < 0
8776 || inst.reloc.exp.X_add_number > 3,
c19d1205 8777 _("shift out of range"));
9c3c69f2 8778 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8779 }
8780 inst.reloc.type = BFD_RELOC_UNUSED;
8781 }
8782 else if (inst.operands[i].preind)
8783 {
5be8be5d 8784 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 8785 constraint (is_t && inst.operands[i].writeback,
c19d1205 8786 _("cannot use writeback with this instruction"));
5be8be5d
DG
8787 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
8788 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
8789
8790 if (is_d)
8791 {
8792 inst.instruction |= 0x01000000;
8793 if (inst.operands[i].writeback)
8794 inst.instruction |= 0x00200000;
b99bd4ef 8795 }
c19d1205 8796 else
b99bd4ef 8797 {
c19d1205
ZW
8798 inst.instruction |= 0x00000c00;
8799 if (inst.operands[i].writeback)
8800 inst.instruction |= 0x00000100;
b99bd4ef 8801 }
c19d1205 8802 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8803 }
c19d1205 8804 else if (inst.operands[i].postind)
b99bd4ef 8805 {
9c2799c2 8806 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8807 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8808 constraint (is_t, _("cannot use post-indexing with this instruction"));
8809
8810 if (is_d)
8811 inst.instruction |= 0x00200000;
8812 else
8813 inst.instruction |= 0x00000900;
8814 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8815 }
8816 else /* unindexed - only for coprocessor */
8817 inst.error = _("instruction does not accept unindexed addressing");
8818}
8819
8820/* Table of Thumb instructions which exist in both 16- and 32-bit
8821 encodings (the latter only in post-V6T2 cores). The index is the
8822 value used in the insns table below. When there is more than one
8823 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8824 holds variant (1).
8825 Also contains several pseudo-instructions used during relaxation. */
c19d1205 8826#define T16_32_TAB \
21d799b5
NC
8827 X(_adc, 4140, eb400000), \
8828 X(_adcs, 4140, eb500000), \
8829 X(_add, 1c00, eb000000), \
8830 X(_adds, 1c00, eb100000), \
8831 X(_addi, 0000, f1000000), \
8832 X(_addis, 0000, f1100000), \
8833 X(_add_pc,000f, f20f0000), \
8834 X(_add_sp,000d, f10d0000), \
8835 X(_adr, 000f, f20f0000), \
8836 X(_and, 4000, ea000000), \
8837 X(_ands, 4000, ea100000), \
8838 X(_asr, 1000, fa40f000), \
8839 X(_asrs, 1000, fa50f000), \
8840 X(_b, e000, f000b000), \
8841 X(_bcond, d000, f0008000), \
8842 X(_bic, 4380, ea200000), \
8843 X(_bics, 4380, ea300000), \
8844 X(_cmn, 42c0, eb100f00), \
8845 X(_cmp, 2800, ebb00f00), \
8846 X(_cpsie, b660, f3af8400), \
8847 X(_cpsid, b670, f3af8600), \
8848 X(_cpy, 4600, ea4f0000), \
8849 X(_dec_sp,80dd, f1ad0d00), \
8850 X(_eor, 4040, ea800000), \
8851 X(_eors, 4040, ea900000), \
8852 X(_inc_sp,00dd, f10d0d00), \
8853 X(_ldmia, c800, e8900000), \
8854 X(_ldr, 6800, f8500000), \
8855 X(_ldrb, 7800, f8100000), \
8856 X(_ldrh, 8800, f8300000), \
8857 X(_ldrsb, 5600, f9100000), \
8858 X(_ldrsh, 5e00, f9300000), \
8859 X(_ldr_pc,4800, f85f0000), \
8860 X(_ldr_pc2,4800, f85f0000), \
8861 X(_ldr_sp,9800, f85d0000), \
8862 X(_lsl, 0000, fa00f000), \
8863 X(_lsls, 0000, fa10f000), \
8864 X(_lsr, 0800, fa20f000), \
8865 X(_lsrs, 0800, fa30f000), \
8866 X(_mov, 2000, ea4f0000), \
8867 X(_movs, 2000, ea5f0000), \
8868 X(_mul, 4340, fb00f000), \
8869 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8870 X(_mvn, 43c0, ea6f0000), \
8871 X(_mvns, 43c0, ea7f0000), \
8872 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8873 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8874 X(_orr, 4300, ea400000), \
8875 X(_orrs, 4300, ea500000), \
8876 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8877 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8878 X(_rev, ba00, fa90f080), \
8879 X(_rev16, ba40, fa90f090), \
8880 X(_revsh, bac0, fa90f0b0), \
8881 X(_ror, 41c0, fa60f000), \
8882 X(_rors, 41c0, fa70f000), \
8883 X(_sbc, 4180, eb600000), \
8884 X(_sbcs, 4180, eb700000), \
8885 X(_stmia, c000, e8800000), \
8886 X(_str, 6000, f8400000), \
8887 X(_strb, 7000, f8000000), \
8888 X(_strh, 8000, f8200000), \
8889 X(_str_sp,9000, f84d0000), \
8890 X(_sub, 1e00, eba00000), \
8891 X(_subs, 1e00, ebb00000), \
8892 X(_subi, 8000, f1a00000), \
8893 X(_subis, 8000, f1b00000), \
8894 X(_sxtb, b240, fa4ff080), \
8895 X(_sxth, b200, fa0ff080), \
8896 X(_tst, 4200, ea100f00), \
8897 X(_uxtb, b2c0, fa5ff080), \
8898 X(_uxth, b280, fa1ff080), \
8899 X(_nop, bf00, f3af8000), \
8900 X(_yield, bf10, f3af8001), \
8901 X(_wfe, bf20, f3af8002), \
8902 X(_wfi, bf30, f3af8003), \
8903 X(_sev, bf40, f3af8004),
c19d1205
ZW
8904
8905/* To catch errors in encoding functions, the codes are all offset by
8906 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8907 as 16-bit instructions. */
21d799b5 8908#define X(a,b,c) T_MNEM##a
c19d1205
ZW
8909enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8910#undef X
8911
8912#define X(a,b,c) 0x##b
8913static const unsigned short thumb_op16[] = { T16_32_TAB };
8914#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8915#undef X
8916
8917#define X(a,b,c) 0x##c
8918static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
8919#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8920#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
8921#undef X
8922#undef T16_32_TAB
8923
8924/* Thumb instruction encoders, in alphabetical order. */
8925
92e90b6e 8926/* ADDW or SUBW. */
c921be7d 8927
92e90b6e
PB
8928static void
8929do_t_add_sub_w (void)
8930{
8931 int Rd, Rn;
8932
8933 Rd = inst.operands[0].reg;
8934 Rn = inst.operands[1].reg;
8935
539d4391
NC
8936 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
8937 is the SP-{plus,minus}-immediate form of the instruction. */
8938 if (Rn == REG_SP)
8939 constraint (Rd == REG_PC, BAD_PC);
8940 else
8941 reject_bad_reg (Rd);
fdfde340 8942
92e90b6e
PB
8943 inst.instruction |= (Rn << 16) | (Rd << 8);
8944 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8945}
8946
c19d1205
ZW
8947/* Parse an add or subtract instruction. We get here with inst.instruction
8948 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8949
8950static void
8951do_t_add_sub (void)
8952{
8953 int Rd, Rs, Rn;
8954
8955 Rd = inst.operands[0].reg;
8956 Rs = (inst.operands[1].present
8957 ? inst.operands[1].reg /* Rd, Rs, foo */
8958 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8959
e07e6e58
NC
8960 if (Rd == REG_PC)
8961 set_it_insn_type_last ();
8962
c19d1205
ZW
8963 if (unified_syntax)
8964 {
0110f2b8
PB
8965 bfd_boolean flags;
8966 bfd_boolean narrow;
8967 int opcode;
8968
8969 flags = (inst.instruction == T_MNEM_adds
8970 || inst.instruction == T_MNEM_subs);
8971 if (flags)
e07e6e58 8972 narrow = !in_it_block ();
0110f2b8 8973 else
e07e6e58 8974 narrow = in_it_block ();
c19d1205 8975 if (!inst.operands[2].isreg)
b99bd4ef 8976 {
16805f35
PB
8977 int add;
8978
fdfde340
JM
8979 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8980
16805f35
PB
8981 add = (inst.instruction == T_MNEM_add
8982 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8983 opcode = 0;
8984 if (inst.size_req != 4)
8985 {
0110f2b8
PB
8986 /* Attempt to use a narrow opcode, with relaxation if
8987 appropriate. */
8988 if (Rd == REG_SP && Rs == REG_SP && !flags)
8989 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8990 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8991 opcode = T_MNEM_add_sp;
8992 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8993 opcode = T_MNEM_add_pc;
8994 else if (Rd <= 7 && Rs <= 7 && narrow)
8995 {
8996 if (flags)
8997 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8998 else
8999 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9000 }
9001 if (opcode)
9002 {
9003 inst.instruction = THUMB_OP16(opcode);
9004 inst.instruction |= (Rd << 4) | Rs;
9005 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9006 if (inst.size_req != 2)
9007 inst.relax = opcode;
9008 }
9009 else
9010 constraint (inst.size_req == 2, BAD_HIREG);
9011 }
9012 if (inst.size_req == 4
9013 || (inst.size_req != 2 && !opcode))
9014 {
efd81785
PB
9015 if (Rd == REG_PC)
9016 {
fdfde340 9017 constraint (add, BAD_PC);
efd81785
PB
9018 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9019 _("only SUBS PC, LR, #const allowed"));
9020 constraint (inst.reloc.exp.X_op != O_constant,
9021 _("expression too complex"));
9022 constraint (inst.reloc.exp.X_add_number < 0
9023 || inst.reloc.exp.X_add_number > 0xff,
9024 _("immediate value out of range"));
9025 inst.instruction = T2_SUBS_PC_LR
9026 | inst.reloc.exp.X_add_number;
9027 inst.reloc.type = BFD_RELOC_UNUSED;
9028 return;
9029 }
9030 else if (Rs == REG_PC)
16805f35
PB
9031 {
9032 /* Always use addw/subw. */
9033 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9034 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9035 }
9036 else
9037 {
9038 inst.instruction = THUMB_OP32 (inst.instruction);
9039 inst.instruction = (inst.instruction & 0xe1ffffff)
9040 | 0x10000000;
9041 if (flags)
9042 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9043 else
9044 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9045 }
dc4503c6
PB
9046 inst.instruction |= Rd << 8;
9047 inst.instruction |= Rs << 16;
0110f2b8 9048 }
b99bd4ef 9049 }
c19d1205
ZW
9050 else
9051 {
9052 Rn = inst.operands[2].reg;
9053 /* See if we can do this with a 16-bit instruction. */
9054 if (!inst.operands[2].shifted && inst.size_req != 4)
9055 {
e27ec89e
PB
9056 if (Rd > 7 || Rs > 7 || Rn > 7)
9057 narrow = FALSE;
9058
9059 if (narrow)
c19d1205 9060 {
e27ec89e
PB
9061 inst.instruction = ((inst.instruction == T_MNEM_adds
9062 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9063 ? T_OPCODE_ADD_R3
9064 : T_OPCODE_SUB_R3);
9065 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9066 return;
9067 }
b99bd4ef 9068
7e806470 9069 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9070 {
7e806470
PB
9071 /* Thumb-1 cores (except v6-M) require at least one high
9072 register in a narrow non flag setting add. */
9073 if (Rd > 7 || Rn > 7
9074 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9075 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9076 {
7e806470
PB
9077 if (Rd == Rn)
9078 {
9079 Rn = Rs;
9080 Rs = Rd;
9081 }
c19d1205
ZW
9082 inst.instruction = T_OPCODE_ADD_HI;
9083 inst.instruction |= (Rd & 8) << 4;
9084 inst.instruction |= (Rd & 7);
9085 inst.instruction |= Rn << 3;
9086 return;
9087 }
c19d1205
ZW
9088 }
9089 }
c921be7d 9090
fdfde340
JM
9091 constraint (Rd == REG_PC, BAD_PC);
9092 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9093 constraint (Rs == REG_PC, BAD_PC);
9094 reject_bad_reg (Rn);
9095
c19d1205
ZW
9096 /* If we get here, it can't be done in 16 bits. */
9097 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9098 _("shift must be constant"));
9099 inst.instruction = THUMB_OP32 (inst.instruction);
9100 inst.instruction |= Rd << 8;
9101 inst.instruction |= Rs << 16;
9102 encode_thumb32_shifted_operand (2);
9103 }
9104 }
9105 else
9106 {
9107 constraint (inst.instruction == T_MNEM_adds
9108 || inst.instruction == T_MNEM_subs,
9109 BAD_THUMB32);
b99bd4ef 9110
c19d1205 9111 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9112 {
c19d1205
ZW
9113 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9114 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9115 BAD_HIREG);
9116
9117 inst.instruction = (inst.instruction == T_MNEM_add
9118 ? 0x0000 : 0x8000);
9119 inst.instruction |= (Rd << 4) | Rs;
9120 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9121 return;
9122 }
9123
c19d1205
ZW
9124 Rn = inst.operands[2].reg;
9125 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9126
c19d1205
ZW
9127 /* We now have Rd, Rs, and Rn set to registers. */
9128 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9129 {
c19d1205
ZW
9130 /* Can't do this for SUB. */
9131 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9132 inst.instruction = T_OPCODE_ADD_HI;
9133 inst.instruction |= (Rd & 8) << 4;
9134 inst.instruction |= (Rd & 7);
9135 if (Rs == Rd)
9136 inst.instruction |= Rn << 3;
9137 else if (Rn == Rd)
9138 inst.instruction |= Rs << 3;
9139 else
9140 constraint (1, _("dest must overlap one source register"));
9141 }
9142 else
9143 {
9144 inst.instruction = (inst.instruction == T_MNEM_add
9145 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9146 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9147 }
b99bd4ef 9148 }
b99bd4ef
NC
9149}
9150
c19d1205
ZW
9151static void
9152do_t_adr (void)
9153{
fdfde340
JM
9154 unsigned Rd;
9155
9156 Rd = inst.operands[0].reg;
9157 reject_bad_reg (Rd);
9158
9159 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9160 {
9161 /* Defer to section relaxation. */
9162 inst.relax = inst.instruction;
9163 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9164 inst.instruction |= Rd << 4;
0110f2b8
PB
9165 }
9166 else if (unified_syntax && inst.size_req != 2)
e9f89963 9167 {
0110f2b8 9168 /* Generate a 32-bit opcode. */
e9f89963 9169 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9170 inst.instruction |= Rd << 8;
e9f89963
PB
9171 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9172 inst.reloc.pc_rel = 1;
9173 }
9174 else
9175 {
0110f2b8 9176 /* Generate a 16-bit opcode. */
e9f89963
PB
9177 inst.instruction = THUMB_OP16 (inst.instruction);
9178 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9179 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9180 inst.reloc.pc_rel = 1;
b99bd4ef 9181
fdfde340 9182 inst.instruction |= Rd << 4;
e9f89963 9183 }
c19d1205 9184}
b99bd4ef 9185
c19d1205
ZW
9186/* Arithmetic instructions for which there is just one 16-bit
9187 instruction encoding, and it allows only two low registers.
9188 For maximal compatibility with ARM syntax, we allow three register
9189 operands even when Thumb-32 instructions are not available, as long
9190 as the first two are identical. For instance, both "sbc r0,r1" and
9191 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9192static void
c19d1205 9193do_t_arit3 (void)
b99bd4ef 9194{
c19d1205 9195 int Rd, Rs, Rn;
b99bd4ef 9196
c19d1205
ZW
9197 Rd = inst.operands[0].reg;
9198 Rs = (inst.operands[1].present
9199 ? inst.operands[1].reg /* Rd, Rs, foo */
9200 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9201 Rn = inst.operands[2].reg;
b99bd4ef 9202
fdfde340
JM
9203 reject_bad_reg (Rd);
9204 reject_bad_reg (Rs);
9205 if (inst.operands[2].isreg)
9206 reject_bad_reg (Rn);
9207
c19d1205 9208 if (unified_syntax)
b99bd4ef 9209 {
c19d1205
ZW
9210 if (!inst.operands[2].isreg)
9211 {
9212 /* For an immediate, we always generate a 32-bit opcode;
9213 section relaxation will shrink it later if possible. */
9214 inst.instruction = THUMB_OP32 (inst.instruction);
9215 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9216 inst.instruction |= Rd << 8;
9217 inst.instruction |= Rs << 16;
9218 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9219 }
9220 else
9221 {
e27ec89e
PB
9222 bfd_boolean narrow;
9223
c19d1205 9224 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9225 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9226 narrow = !in_it_block ();
e27ec89e 9227 else
e07e6e58 9228 narrow = in_it_block ();
e27ec89e
PB
9229
9230 if (Rd > 7 || Rn > 7 || Rs > 7)
9231 narrow = FALSE;
9232 if (inst.operands[2].shifted)
9233 narrow = FALSE;
9234 if (inst.size_req == 4)
9235 narrow = FALSE;
9236
9237 if (narrow
c19d1205
ZW
9238 && Rd == Rs)
9239 {
9240 inst.instruction = THUMB_OP16 (inst.instruction);
9241 inst.instruction |= Rd;
9242 inst.instruction |= Rn << 3;
9243 return;
9244 }
b99bd4ef 9245
c19d1205
ZW
9246 /* If we get here, it can't be done in 16 bits. */
9247 constraint (inst.operands[2].shifted
9248 && inst.operands[2].immisreg,
9249 _("shift must be constant"));
9250 inst.instruction = THUMB_OP32 (inst.instruction);
9251 inst.instruction |= Rd << 8;
9252 inst.instruction |= Rs << 16;
9253 encode_thumb32_shifted_operand (2);
9254 }
a737bd4d 9255 }
c19d1205 9256 else
b99bd4ef 9257 {
c19d1205
ZW
9258 /* On its face this is a lie - the instruction does set the
9259 flags. However, the only supported mnemonic in this mode
9260 says it doesn't. */
9261 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9262
c19d1205
ZW
9263 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9264 _("unshifted register required"));
9265 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9266 constraint (Rd != Rs,
9267 _("dest and source1 must be the same register"));
a737bd4d 9268
c19d1205
ZW
9269 inst.instruction = THUMB_OP16 (inst.instruction);
9270 inst.instruction |= Rd;
9271 inst.instruction |= Rn << 3;
b99bd4ef 9272 }
a737bd4d 9273}
b99bd4ef 9274
c19d1205
ZW
9275/* Similarly, but for instructions where the arithmetic operation is
9276 commutative, so we can allow either of them to be different from
9277 the destination operand in a 16-bit instruction. For instance, all
9278 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9279 accepted. */
9280static void
9281do_t_arit3c (void)
a737bd4d 9282{
c19d1205 9283 int Rd, Rs, Rn;
b99bd4ef 9284
c19d1205
ZW
9285 Rd = inst.operands[0].reg;
9286 Rs = (inst.operands[1].present
9287 ? inst.operands[1].reg /* Rd, Rs, foo */
9288 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9289 Rn = inst.operands[2].reg;
c921be7d 9290
fdfde340
JM
9291 reject_bad_reg (Rd);
9292 reject_bad_reg (Rs);
9293 if (inst.operands[2].isreg)
9294 reject_bad_reg (Rn);
a737bd4d 9295
c19d1205 9296 if (unified_syntax)
a737bd4d 9297 {
c19d1205 9298 if (!inst.operands[2].isreg)
b99bd4ef 9299 {
c19d1205
ZW
9300 /* For an immediate, we always generate a 32-bit opcode;
9301 section relaxation will shrink it later if possible. */
9302 inst.instruction = THUMB_OP32 (inst.instruction);
9303 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9304 inst.instruction |= Rd << 8;
9305 inst.instruction |= Rs << 16;
9306 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9307 }
c19d1205 9308 else
a737bd4d 9309 {
e27ec89e
PB
9310 bfd_boolean narrow;
9311
c19d1205 9312 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9313 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9314 narrow = !in_it_block ();
e27ec89e 9315 else
e07e6e58 9316 narrow = in_it_block ();
e27ec89e
PB
9317
9318 if (Rd > 7 || Rn > 7 || Rs > 7)
9319 narrow = FALSE;
9320 if (inst.operands[2].shifted)
9321 narrow = FALSE;
9322 if (inst.size_req == 4)
9323 narrow = FALSE;
9324
9325 if (narrow)
a737bd4d 9326 {
c19d1205 9327 if (Rd == Rs)
a737bd4d 9328 {
c19d1205
ZW
9329 inst.instruction = THUMB_OP16 (inst.instruction);
9330 inst.instruction |= Rd;
9331 inst.instruction |= Rn << 3;
9332 return;
a737bd4d 9333 }
c19d1205 9334 if (Rd == Rn)
a737bd4d 9335 {
c19d1205
ZW
9336 inst.instruction = THUMB_OP16 (inst.instruction);
9337 inst.instruction |= Rd;
9338 inst.instruction |= Rs << 3;
9339 return;
a737bd4d
NC
9340 }
9341 }
c19d1205
ZW
9342
9343 /* If we get here, it can't be done in 16 bits. */
9344 constraint (inst.operands[2].shifted
9345 && inst.operands[2].immisreg,
9346 _("shift must be constant"));
9347 inst.instruction = THUMB_OP32 (inst.instruction);
9348 inst.instruction |= Rd << 8;
9349 inst.instruction |= Rs << 16;
9350 encode_thumb32_shifted_operand (2);
a737bd4d 9351 }
b99bd4ef 9352 }
c19d1205
ZW
9353 else
9354 {
9355 /* On its face this is a lie - the instruction does set the
9356 flags. However, the only supported mnemonic in this mode
9357 says it doesn't. */
9358 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9359
c19d1205
ZW
9360 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9361 _("unshifted register required"));
9362 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9363
9364 inst.instruction = THUMB_OP16 (inst.instruction);
9365 inst.instruction |= Rd;
9366
9367 if (Rd == Rs)
9368 inst.instruction |= Rn << 3;
9369 else if (Rd == Rn)
9370 inst.instruction |= Rs << 3;
9371 else
9372 constraint (1, _("dest must overlap one source register"));
9373 }
a737bd4d
NC
9374}
9375
62b3e311
PB
9376static void
9377do_t_barrier (void)
9378{
9379 if (inst.operands[0].present)
9380 {
9381 constraint ((inst.instruction & 0xf0) != 0x40
9382 && inst.operands[0].imm != 0xf,
bd3ba5d1 9383 _("bad barrier type"));
62b3e311
PB
9384 inst.instruction |= inst.operands[0].imm;
9385 }
9386 else
9387 inst.instruction |= 0xf;
9388}
9389
c19d1205
ZW
9390static void
9391do_t_bfc (void)
a737bd4d 9392{
fdfde340 9393 unsigned Rd;
c19d1205
ZW
9394 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9395 constraint (msb > 32, _("bit-field extends past end of register"));
9396 /* The instruction encoding stores the LSB and MSB,
9397 not the LSB and width. */
fdfde340
JM
9398 Rd = inst.operands[0].reg;
9399 reject_bad_reg (Rd);
9400 inst.instruction |= Rd << 8;
c19d1205
ZW
9401 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9402 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9403 inst.instruction |= msb - 1;
b99bd4ef
NC
9404}
9405
c19d1205
ZW
9406static void
9407do_t_bfi (void)
b99bd4ef 9408{
fdfde340 9409 int Rd, Rn;
c19d1205 9410 unsigned int msb;
b99bd4ef 9411
fdfde340
JM
9412 Rd = inst.operands[0].reg;
9413 reject_bad_reg (Rd);
9414
c19d1205
ZW
9415 /* #0 in second position is alternative syntax for bfc, which is
9416 the same instruction but with REG_PC in the Rm field. */
9417 if (!inst.operands[1].isreg)
fdfde340
JM
9418 Rn = REG_PC;
9419 else
9420 {
9421 Rn = inst.operands[1].reg;
9422 reject_bad_reg (Rn);
9423 }
b99bd4ef 9424
c19d1205
ZW
9425 msb = inst.operands[2].imm + inst.operands[3].imm;
9426 constraint (msb > 32, _("bit-field extends past end of register"));
9427 /* The instruction encoding stores the LSB and MSB,
9428 not the LSB and width. */
fdfde340
JM
9429 inst.instruction |= Rd << 8;
9430 inst.instruction |= Rn << 16;
c19d1205
ZW
9431 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9432 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9433 inst.instruction |= msb - 1;
b99bd4ef
NC
9434}
9435
c19d1205
ZW
9436static void
9437do_t_bfx (void)
b99bd4ef 9438{
fdfde340
JM
9439 unsigned Rd, Rn;
9440
9441 Rd = inst.operands[0].reg;
9442 Rn = inst.operands[1].reg;
9443
9444 reject_bad_reg (Rd);
9445 reject_bad_reg (Rn);
9446
c19d1205
ZW
9447 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9448 _("bit-field extends past end of register"));
fdfde340
JM
9449 inst.instruction |= Rd << 8;
9450 inst.instruction |= Rn << 16;
c19d1205
ZW
9451 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9452 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9453 inst.instruction |= inst.operands[3].imm - 1;
9454}
b99bd4ef 9455
c19d1205
ZW
9456/* ARM V5 Thumb BLX (argument parse)
9457 BLX <target_addr> which is BLX(1)
9458 BLX <Rm> which is BLX(2)
9459 Unfortunately, there are two different opcodes for this mnemonic.
9460 So, the insns[].value is not used, and the code here zaps values
9461 into inst.instruction.
b99bd4ef 9462
c19d1205
ZW
9463 ??? How to take advantage of the additional two bits of displacement
9464 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9465
c19d1205
ZW
9466static void
9467do_t_blx (void)
9468{
e07e6e58
NC
9469 set_it_insn_type_last ();
9470
c19d1205 9471 if (inst.operands[0].isreg)
fdfde340
JM
9472 {
9473 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9474 /* We have a register, so this is BLX(2). */
9475 inst.instruction |= inst.operands[0].reg << 3;
9476 }
b99bd4ef
NC
9477 else
9478 {
c19d1205 9479 /* No register. This must be BLX(1). */
2fc8bdac 9480 inst.instruction = 0xf000e800;
00adf2d4 9481 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 9482 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9483 }
9484}
9485
c19d1205
ZW
9486static void
9487do_t_branch (void)
b99bd4ef 9488{
0110f2b8 9489 int opcode;
dfa9f0d5
PB
9490 int cond;
9491
e07e6e58
NC
9492 cond = inst.cond;
9493 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9494
9495 if (in_it_block ())
dfa9f0d5
PB
9496 {
9497 /* Conditional branches inside IT blocks are encoded as unconditional
9498 branches. */
9499 cond = COND_ALWAYS;
dfa9f0d5
PB
9500 }
9501 else
9502 cond = inst.cond;
9503
9504 if (cond != COND_ALWAYS)
0110f2b8
PB
9505 opcode = T_MNEM_bcond;
9506 else
9507 opcode = inst.instruction;
9508
9509 if (unified_syntax && inst.size_req == 4)
c19d1205 9510 {
0110f2b8 9511 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9512 if (cond == COND_ALWAYS)
0110f2b8 9513 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9514 else
9515 {
9c2799c2 9516 gas_assert (cond != 0xF);
dfa9f0d5 9517 inst.instruction |= cond << 22;
c19d1205
ZW
9518 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9519 }
9520 }
b99bd4ef
NC
9521 else
9522 {
0110f2b8 9523 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9524 if (cond == COND_ALWAYS)
c19d1205
ZW
9525 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9526 else
b99bd4ef 9527 {
dfa9f0d5 9528 inst.instruction |= cond << 8;
c19d1205 9529 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9530 }
0110f2b8
PB
9531 /* Allow section relaxation. */
9532 if (unified_syntax && inst.size_req != 2)
9533 inst.relax = opcode;
b99bd4ef 9534 }
c19d1205
ZW
9535
9536 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9537}
9538
9539static void
c19d1205 9540do_t_bkpt (void)
b99bd4ef 9541{
dfa9f0d5
PB
9542 constraint (inst.cond != COND_ALWAYS,
9543 _("instruction is always unconditional"));
c19d1205 9544 if (inst.operands[0].present)
b99bd4ef 9545 {
c19d1205
ZW
9546 constraint (inst.operands[0].imm > 255,
9547 _("immediate value out of range"));
9548 inst.instruction |= inst.operands[0].imm;
e07e6e58 9549 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 9550 }
b99bd4ef
NC
9551}
9552
9553static void
c19d1205 9554do_t_branch23 (void)
b99bd4ef 9555{
e07e6e58 9556 set_it_insn_type_last ();
c19d1205 9557 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
9558 inst.reloc.pc_rel = 1;
9559
4343666d 9560#if defined(OBJ_COFF)
c19d1205
ZW
9561 /* If the destination of the branch is a defined symbol which does not have
9562 the THUMB_FUNC attribute, then we must be calling a function which has
9563 the (interfacearm) attribute. We look for the Thumb entry point to that
9564 function and change the branch to refer to that function instead. */
9565 if ( inst.reloc.exp.X_op == O_symbol
9566 && inst.reloc.exp.X_add_symbol != NULL
9567 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9568 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9569 inst.reloc.exp.X_add_symbol =
9570 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9571#endif
90e4755a
RE
9572}
9573
9574static void
c19d1205 9575do_t_bx (void)
90e4755a 9576{
e07e6e58 9577 set_it_insn_type_last ();
c19d1205
ZW
9578 inst.instruction |= inst.operands[0].reg << 3;
9579 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9580 should cause the alignment to be checked once it is known. This is
9581 because BX PC only works if the instruction is word aligned. */
9582}
90e4755a 9583
c19d1205
ZW
9584static void
9585do_t_bxj (void)
9586{
fdfde340 9587 int Rm;
90e4755a 9588
e07e6e58 9589 set_it_insn_type_last ();
fdfde340
JM
9590 Rm = inst.operands[0].reg;
9591 reject_bad_reg (Rm);
9592 inst.instruction |= Rm << 16;
90e4755a
RE
9593}
9594
9595static void
c19d1205 9596do_t_clz (void)
90e4755a 9597{
fdfde340
JM
9598 unsigned Rd;
9599 unsigned Rm;
9600
9601 Rd = inst.operands[0].reg;
9602 Rm = inst.operands[1].reg;
9603
9604 reject_bad_reg (Rd);
9605 reject_bad_reg (Rm);
9606
9607 inst.instruction |= Rd << 8;
9608 inst.instruction |= Rm << 16;
9609 inst.instruction |= Rm;
c19d1205 9610}
90e4755a 9611
dfa9f0d5
PB
9612static void
9613do_t_cps (void)
9614{
e07e6e58 9615 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
9616 inst.instruction |= inst.operands[0].imm;
9617}
9618
c19d1205
ZW
9619static void
9620do_t_cpsi (void)
9621{
e07e6e58 9622 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 9623 if (unified_syntax
62b3e311
PB
9624 && (inst.operands[1].present || inst.size_req == 4)
9625 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9626 {
c19d1205
ZW
9627 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9628 inst.instruction = 0xf3af8000;
9629 inst.instruction |= imod << 9;
9630 inst.instruction |= inst.operands[0].imm << 5;
9631 if (inst.operands[1].present)
9632 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9633 }
c19d1205 9634 else
90e4755a 9635 {
62b3e311
PB
9636 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9637 && (inst.operands[0].imm & 4),
9638 _("selected processor does not support 'A' form "
9639 "of this instruction"));
9640 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9641 _("Thumb does not support the 2-argument "
9642 "form of this instruction"));
9643 inst.instruction |= inst.operands[0].imm;
90e4755a 9644 }
90e4755a
RE
9645}
9646
c19d1205
ZW
9647/* THUMB CPY instruction (argument parse). */
9648
90e4755a 9649static void
c19d1205 9650do_t_cpy (void)
90e4755a 9651{
c19d1205 9652 if (inst.size_req == 4)
90e4755a 9653 {
c19d1205
ZW
9654 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9655 inst.instruction |= inst.operands[0].reg << 8;
9656 inst.instruction |= inst.operands[1].reg;
90e4755a 9657 }
c19d1205 9658 else
90e4755a 9659 {
c19d1205
ZW
9660 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9661 inst.instruction |= (inst.operands[0].reg & 0x7);
9662 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9663 }
90e4755a
RE
9664}
9665
90e4755a 9666static void
25fe350b 9667do_t_cbz (void)
90e4755a 9668{
e07e6e58 9669 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
9670 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9671 inst.instruction |= inst.operands[0].reg;
9672 inst.reloc.pc_rel = 1;
9673 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9674}
90e4755a 9675
62b3e311
PB
9676static void
9677do_t_dbg (void)
9678{
9679 inst.instruction |= inst.operands[0].imm;
9680}
9681
9682static void
9683do_t_div (void)
9684{
fdfde340
JM
9685 unsigned Rd, Rn, Rm;
9686
9687 Rd = inst.operands[0].reg;
9688 Rn = (inst.operands[1].present
9689 ? inst.operands[1].reg : Rd);
9690 Rm = inst.operands[2].reg;
9691
9692 reject_bad_reg (Rd);
9693 reject_bad_reg (Rn);
9694 reject_bad_reg (Rm);
9695
9696 inst.instruction |= Rd << 8;
9697 inst.instruction |= Rn << 16;
9698 inst.instruction |= Rm;
62b3e311
PB
9699}
9700
c19d1205
ZW
9701static void
9702do_t_hint (void)
9703{
9704 if (unified_syntax && inst.size_req == 4)
9705 inst.instruction = THUMB_OP32 (inst.instruction);
9706 else
9707 inst.instruction = THUMB_OP16 (inst.instruction);
9708}
90e4755a 9709
c19d1205
ZW
9710static void
9711do_t_it (void)
9712{
9713 unsigned int cond = inst.operands[0].imm;
e27ec89e 9714
e07e6e58
NC
9715 set_it_insn_type (IT_INSN);
9716 now_it.mask = (inst.instruction & 0xf) | 0x10;
9717 now_it.cc = cond;
e27ec89e
PB
9718
9719 /* If the condition is a negative condition, invert the mask. */
c19d1205 9720 if ((cond & 0x1) == 0x0)
90e4755a 9721 {
c19d1205 9722 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9723
c19d1205
ZW
9724 if ((mask & 0x7) == 0)
9725 /* no conversion needed */;
9726 else if ((mask & 0x3) == 0)
e27ec89e
PB
9727 mask ^= 0x8;
9728 else if ((mask & 0x1) == 0)
9729 mask ^= 0xC;
c19d1205 9730 else
e27ec89e 9731 mask ^= 0xE;
90e4755a 9732
e27ec89e
PB
9733 inst.instruction &= 0xfff0;
9734 inst.instruction |= mask;
c19d1205 9735 }
90e4755a 9736
c19d1205
ZW
9737 inst.instruction |= cond << 4;
9738}
90e4755a 9739
3c707909
PB
9740/* Helper function used for both push/pop and ldm/stm. */
9741static void
9742encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9743{
9744 bfd_boolean load;
9745
9746 load = (inst.instruction & (1 << 20)) != 0;
9747
9748 if (mask & (1 << 13))
9749 inst.error = _("SP not allowed in register list");
9750 if (load)
9751 {
e07e6e58
NC
9752 if (mask & (1 << 15))
9753 {
9754 if (mask & (1 << 14))
9755 inst.error = _("LR and PC should not both be in register list");
9756 else
9757 set_it_insn_type_last ();
9758 }
3c707909
PB
9759
9760 if ((mask & (1 << base)) != 0
9761 && writeback)
9762 as_warn (_("base register should not be in register list "
9763 "when written back"));
9764 }
9765 else
9766 {
9767 if (mask & (1 << 15))
9768 inst.error = _("PC not allowed in register list");
9769
9770 if (mask & (1 << base))
9771 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9772 }
9773
9774 if ((mask & (mask - 1)) == 0)
9775 {
9776 /* Single register transfers implemented as str/ldr. */
9777 if (writeback)
9778 {
9779 if (inst.instruction & (1 << 23))
9780 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9781 else
9782 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9783 }
9784 else
9785 {
9786 if (inst.instruction & (1 << 23))
9787 inst.instruction = 0x00800000; /* ia -> [base] */
9788 else
9789 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9790 }
9791
9792 inst.instruction |= 0xf8400000;
9793 if (load)
9794 inst.instruction |= 0x00100000;
9795
5f4273c7 9796 mask = ffs (mask) - 1;
3c707909
PB
9797 mask <<= 12;
9798 }
9799 else if (writeback)
9800 inst.instruction |= WRITE_BACK;
9801
9802 inst.instruction |= mask;
9803 inst.instruction |= base << 16;
9804}
9805
c19d1205
ZW
9806static void
9807do_t_ldmstm (void)
9808{
9809 /* This really doesn't seem worth it. */
9810 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9811 _("expression too complex"));
9812 constraint (inst.operands[1].writeback,
9813 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9814
c19d1205
ZW
9815 if (unified_syntax)
9816 {
3c707909
PB
9817 bfd_boolean narrow;
9818 unsigned mask;
9819
9820 narrow = FALSE;
c19d1205
ZW
9821 /* See if we can use a 16-bit instruction. */
9822 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9823 && inst.size_req != 4
3c707909 9824 && !(inst.operands[1].imm & ~0xff))
90e4755a 9825 {
3c707909 9826 mask = 1 << inst.operands[0].reg;
90e4755a 9827
3c707909
PB
9828 if (inst.operands[0].reg <= 7
9829 && (inst.instruction == T_MNEM_stmia
9830 ? inst.operands[0].writeback
9831 : (inst.operands[0].writeback
9832 == !(inst.operands[1].imm & mask))))
90e4755a 9833 {
3c707909
PB
9834 if (inst.instruction == T_MNEM_stmia
9835 && (inst.operands[1].imm & mask)
9836 && (inst.operands[1].imm & (mask - 1)))
c19d1205
ZW
9837 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9838 inst.operands[0].reg);
3c707909
PB
9839
9840 inst.instruction = THUMB_OP16 (inst.instruction);
9841 inst.instruction |= inst.operands[0].reg << 8;
9842 inst.instruction |= inst.operands[1].imm;
9843 narrow = TRUE;
90e4755a 9844 }
3c707909
PB
9845 else if (inst.operands[0] .reg == REG_SP
9846 && inst.operands[0].writeback)
90e4755a 9847 {
3c707909
PB
9848 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9849 ? T_MNEM_push : T_MNEM_pop);
9850 inst.instruction |= inst.operands[1].imm;
9851 narrow = TRUE;
90e4755a 9852 }
3c707909
PB
9853 }
9854
9855 if (!narrow)
9856 {
c19d1205
ZW
9857 if (inst.instruction < 0xffff)
9858 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 9859
5f4273c7
NC
9860 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9861 inst.operands[0].writeback);
90e4755a
RE
9862 }
9863 }
c19d1205 9864 else
90e4755a 9865 {
c19d1205
ZW
9866 constraint (inst.operands[0].reg > 7
9867 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9868 constraint (inst.instruction != T_MNEM_ldmia
9869 && inst.instruction != T_MNEM_stmia,
9870 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9871 if (inst.instruction == T_MNEM_stmia)
f03698e6 9872 {
c19d1205
ZW
9873 if (!inst.operands[0].writeback)
9874 as_warn (_("this instruction will write back the base register"));
9875 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9876 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9877 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9878 inst.operands[0].reg);
f03698e6 9879 }
c19d1205 9880 else
90e4755a 9881 {
c19d1205
ZW
9882 if (!inst.operands[0].writeback
9883 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9884 as_warn (_("this instruction will write back the base register"));
9885 else if (inst.operands[0].writeback
9886 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9887 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9888 }
9889
c19d1205
ZW
9890 inst.instruction = THUMB_OP16 (inst.instruction);
9891 inst.instruction |= inst.operands[0].reg << 8;
9892 inst.instruction |= inst.operands[1].imm;
9893 }
9894}
e28cd48c 9895
c19d1205
ZW
9896static void
9897do_t_ldrex (void)
9898{
9899 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9900 || inst.operands[1].postind || inst.operands[1].writeback
9901 || inst.operands[1].immisreg || inst.operands[1].shifted
9902 || inst.operands[1].negative,
01cfc07f 9903 BAD_ADDR_MODE);
e28cd48c 9904
5be8be5d
DG
9905 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9906
c19d1205
ZW
9907 inst.instruction |= inst.operands[0].reg << 12;
9908 inst.instruction |= inst.operands[1].reg << 16;
9909 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9910}
e28cd48c 9911
c19d1205
ZW
9912static void
9913do_t_ldrexd (void)
9914{
9915 if (!inst.operands[1].present)
1cac9012 9916 {
c19d1205
ZW
9917 constraint (inst.operands[0].reg == REG_LR,
9918 _("r14 not allowed as first register "
9919 "when second register is omitted"));
9920 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9921 }
c19d1205
ZW
9922 constraint (inst.operands[0].reg == inst.operands[1].reg,
9923 BAD_OVERLAP);
b99bd4ef 9924
c19d1205
ZW
9925 inst.instruction |= inst.operands[0].reg << 12;
9926 inst.instruction |= inst.operands[1].reg << 8;
9927 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9928}
9929
9930static void
c19d1205 9931do_t_ldst (void)
b99bd4ef 9932{
0110f2b8
PB
9933 unsigned long opcode;
9934 int Rn;
9935
e07e6e58
NC
9936 if (inst.operands[0].isreg
9937 && !inst.operands[0].preind
9938 && inst.operands[0].reg == REG_PC)
9939 set_it_insn_type_last ();
9940
0110f2b8 9941 opcode = inst.instruction;
c19d1205 9942 if (unified_syntax)
b99bd4ef 9943 {
53365c0d
PB
9944 if (!inst.operands[1].isreg)
9945 {
9946 if (opcode <= 0xffff)
9947 inst.instruction = THUMB_OP32 (opcode);
9948 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9949 return;
9950 }
0110f2b8
PB
9951 if (inst.operands[1].isreg
9952 && !inst.operands[1].writeback
c19d1205
ZW
9953 && !inst.operands[1].shifted && !inst.operands[1].postind
9954 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9955 && opcode <= 0xffff
9956 && inst.size_req != 4)
c19d1205 9957 {
0110f2b8
PB
9958 /* Insn may have a 16-bit form. */
9959 Rn = inst.operands[1].reg;
9960 if (inst.operands[1].immisreg)
9961 {
9962 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 9963 /* [Rn, Rik] */
0110f2b8
PB
9964 if (Rn <= 7 && inst.operands[1].imm <= 7)
9965 goto op16;
5be8be5d
DG
9966 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
9967 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
9968 }
9969 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9970 && opcode != T_MNEM_ldrsb)
9971 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9972 || (Rn == REG_SP && opcode == T_MNEM_str))
9973 {
9974 /* [Rn, #const] */
9975 if (Rn > 7)
9976 {
9977 if (Rn == REG_PC)
9978 {
9979 if (inst.reloc.pc_rel)
9980 opcode = T_MNEM_ldr_pc2;
9981 else
9982 opcode = T_MNEM_ldr_pc;
9983 }
9984 else
9985 {
9986 if (opcode == T_MNEM_ldr)
9987 opcode = T_MNEM_ldr_sp;
9988 else
9989 opcode = T_MNEM_str_sp;
9990 }
9991 inst.instruction = inst.operands[0].reg << 8;
9992 }
9993 else
9994 {
9995 inst.instruction = inst.operands[0].reg;
9996 inst.instruction |= inst.operands[1].reg << 3;
9997 }
9998 inst.instruction |= THUMB_OP16 (opcode);
9999 if (inst.size_req == 2)
10000 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10001 else
10002 inst.relax = opcode;
10003 return;
10004 }
c19d1205 10005 }
0110f2b8 10006 /* Definitely a 32-bit variant. */
5be8be5d
DG
10007
10008 /* Do some validations regarding addressing modes. */
10009 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10010 && opcode != T_MNEM_str)
10011 reject_bad_reg (inst.operands[1].imm);
10012
0110f2b8 10013 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10014 inst.instruction |= inst.operands[0].reg << 12;
10015 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
10016 return;
10017 }
10018
c19d1205
ZW
10019 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10020
10021 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10022 {
c19d1205
ZW
10023 /* Only [Rn,Rm] is acceptable. */
10024 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10025 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10026 || inst.operands[1].postind || inst.operands[1].shifted
10027 || inst.operands[1].negative,
10028 _("Thumb does not support this addressing mode"));
10029 inst.instruction = THUMB_OP16 (inst.instruction);
10030 goto op16;
b99bd4ef 10031 }
5f4273c7 10032
c19d1205
ZW
10033 inst.instruction = THUMB_OP16 (inst.instruction);
10034 if (!inst.operands[1].isreg)
10035 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10036 return;
b99bd4ef 10037
c19d1205
ZW
10038 constraint (!inst.operands[1].preind
10039 || inst.operands[1].shifted
10040 || inst.operands[1].writeback,
10041 _("Thumb does not support this addressing mode"));
10042 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10043 {
c19d1205
ZW
10044 constraint (inst.instruction & 0x0600,
10045 _("byte or halfword not valid for base register"));
10046 constraint (inst.operands[1].reg == REG_PC
10047 && !(inst.instruction & THUMB_LOAD_BIT),
10048 _("r15 based store not allowed"));
10049 constraint (inst.operands[1].immisreg,
10050 _("invalid base register for register offset"));
b99bd4ef 10051
c19d1205
ZW
10052 if (inst.operands[1].reg == REG_PC)
10053 inst.instruction = T_OPCODE_LDR_PC;
10054 else if (inst.instruction & THUMB_LOAD_BIT)
10055 inst.instruction = T_OPCODE_LDR_SP;
10056 else
10057 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10058
c19d1205
ZW
10059 inst.instruction |= inst.operands[0].reg << 8;
10060 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10061 return;
10062 }
90e4755a 10063
c19d1205
ZW
10064 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10065 if (!inst.operands[1].immisreg)
10066 {
10067 /* Immediate offset. */
10068 inst.instruction |= inst.operands[0].reg;
10069 inst.instruction |= inst.operands[1].reg << 3;
10070 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10071 return;
10072 }
90e4755a 10073
c19d1205
ZW
10074 /* Register offset. */
10075 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10076 constraint (inst.operands[1].negative,
10077 _("Thumb does not support this addressing mode"));
90e4755a 10078
c19d1205
ZW
10079 op16:
10080 switch (inst.instruction)
10081 {
10082 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10083 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10084 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10085 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10086 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10087 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10088 case 0x5600 /* ldrsb */:
10089 case 0x5e00 /* ldrsh */: break;
10090 default: abort ();
10091 }
90e4755a 10092
c19d1205
ZW
10093 inst.instruction |= inst.operands[0].reg;
10094 inst.instruction |= inst.operands[1].reg << 3;
10095 inst.instruction |= inst.operands[1].imm << 6;
10096}
90e4755a 10097
c19d1205
ZW
10098static void
10099do_t_ldstd (void)
10100{
10101 if (!inst.operands[1].present)
b99bd4ef 10102 {
c19d1205
ZW
10103 inst.operands[1].reg = inst.operands[0].reg + 1;
10104 constraint (inst.operands[0].reg == REG_LR,
10105 _("r14 not allowed here"));
b99bd4ef 10106 }
c19d1205
ZW
10107 inst.instruction |= inst.operands[0].reg << 12;
10108 inst.instruction |= inst.operands[1].reg << 8;
10109 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10110}
10111
c19d1205
ZW
10112static void
10113do_t_ldstt (void)
10114{
10115 inst.instruction |= inst.operands[0].reg << 12;
10116 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10117}
a737bd4d 10118
b99bd4ef 10119static void
c19d1205 10120do_t_mla (void)
b99bd4ef 10121{
fdfde340 10122 unsigned Rd, Rn, Rm, Ra;
c921be7d 10123
fdfde340
JM
10124 Rd = inst.operands[0].reg;
10125 Rn = inst.operands[1].reg;
10126 Rm = inst.operands[2].reg;
10127 Ra = inst.operands[3].reg;
10128
10129 reject_bad_reg (Rd);
10130 reject_bad_reg (Rn);
10131 reject_bad_reg (Rm);
10132 reject_bad_reg (Ra);
10133
10134 inst.instruction |= Rd << 8;
10135 inst.instruction |= Rn << 16;
10136 inst.instruction |= Rm;
10137 inst.instruction |= Ra << 12;
c19d1205 10138}
b99bd4ef 10139
c19d1205
ZW
10140static void
10141do_t_mlal (void)
10142{
fdfde340
JM
10143 unsigned RdLo, RdHi, Rn, Rm;
10144
10145 RdLo = inst.operands[0].reg;
10146 RdHi = inst.operands[1].reg;
10147 Rn = inst.operands[2].reg;
10148 Rm = inst.operands[3].reg;
10149
10150 reject_bad_reg (RdLo);
10151 reject_bad_reg (RdHi);
10152 reject_bad_reg (Rn);
10153 reject_bad_reg (Rm);
10154
10155 inst.instruction |= RdLo << 12;
10156 inst.instruction |= RdHi << 8;
10157 inst.instruction |= Rn << 16;
10158 inst.instruction |= Rm;
c19d1205 10159}
b99bd4ef 10160
c19d1205
ZW
10161static void
10162do_t_mov_cmp (void)
10163{
fdfde340
JM
10164 unsigned Rn, Rm;
10165
10166 Rn = inst.operands[0].reg;
10167 Rm = inst.operands[1].reg;
10168
e07e6e58
NC
10169 if (Rn == REG_PC)
10170 set_it_insn_type_last ();
10171
c19d1205 10172 if (unified_syntax)
b99bd4ef 10173 {
c19d1205
ZW
10174 int r0off = (inst.instruction == T_MNEM_mov
10175 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10176 unsigned long opcode;
3d388997
PB
10177 bfd_boolean narrow;
10178 bfd_boolean low_regs;
10179
fdfde340 10180 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10181 opcode = inst.instruction;
e07e6e58 10182 if (in_it_block ())
0110f2b8 10183 narrow = opcode != T_MNEM_movs;
3d388997 10184 else
0110f2b8 10185 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10186 if (inst.size_req == 4
10187 || inst.operands[1].shifted)
10188 narrow = FALSE;
10189
efd81785
PB
10190 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10191 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10192 && !inst.operands[1].shifted
fdfde340
JM
10193 && Rn == REG_PC
10194 && Rm == REG_LR)
efd81785
PB
10195 {
10196 inst.instruction = T2_SUBS_PC_LR;
10197 return;
10198 }
10199
fdfde340
JM
10200 if (opcode == T_MNEM_cmp)
10201 {
10202 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10203 if (narrow)
10204 {
10205 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10206 but valid. */
10207 warn_deprecated_sp (Rm);
10208 /* R15 was documented as a valid choice for Rm in ARMv6,
10209 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10210 tools reject R15, so we do too. */
10211 constraint (Rm == REG_PC, BAD_PC);
10212 }
10213 else
10214 reject_bad_reg (Rm);
fdfde340
JM
10215 }
10216 else if (opcode == T_MNEM_mov
10217 || opcode == T_MNEM_movs)
10218 {
10219 if (inst.operands[1].isreg)
10220 {
10221 if (opcode == T_MNEM_movs)
10222 {
10223 reject_bad_reg (Rn);
10224 reject_bad_reg (Rm);
10225 }
10226 else if ((Rn == REG_SP || Rn == REG_PC)
10227 && (Rm == REG_SP || Rm == REG_PC))
10228 reject_bad_reg (Rm);
10229 }
10230 else
10231 reject_bad_reg (Rn);
10232 }
10233
c19d1205
ZW
10234 if (!inst.operands[1].isreg)
10235 {
0110f2b8 10236 /* Immediate operand. */
e07e6e58 10237 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10238 narrow = 0;
10239 if (low_regs && narrow)
10240 {
10241 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10242 inst.instruction |= Rn << 8;
0110f2b8
PB
10243 if (inst.size_req == 2)
10244 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10245 else
10246 inst.relax = opcode;
10247 }
10248 else
10249 {
10250 inst.instruction = THUMB_OP32 (inst.instruction);
10251 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10252 inst.instruction |= Rn << r0off;
0110f2b8
PB
10253 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10254 }
c19d1205 10255 }
728ca7c9
PB
10256 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10257 && (inst.instruction == T_MNEM_mov
10258 || inst.instruction == T_MNEM_movs))
10259 {
10260 /* Register shifts are encoded as separate shift instructions. */
10261 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10262
e07e6e58 10263 if (in_it_block ())
728ca7c9
PB
10264 narrow = !flags;
10265 else
10266 narrow = flags;
10267
10268 if (inst.size_req == 4)
10269 narrow = FALSE;
10270
10271 if (!low_regs || inst.operands[1].imm > 7)
10272 narrow = FALSE;
10273
fdfde340 10274 if (Rn != Rm)
728ca7c9
PB
10275 narrow = FALSE;
10276
10277 switch (inst.operands[1].shift_kind)
10278 {
10279 case SHIFT_LSL:
10280 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10281 break;
10282 case SHIFT_ASR:
10283 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10284 break;
10285 case SHIFT_LSR:
10286 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10287 break;
10288 case SHIFT_ROR:
10289 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10290 break;
10291 default:
5f4273c7 10292 abort ();
728ca7c9
PB
10293 }
10294
10295 inst.instruction = opcode;
10296 if (narrow)
10297 {
fdfde340 10298 inst.instruction |= Rn;
728ca7c9
PB
10299 inst.instruction |= inst.operands[1].imm << 3;
10300 }
10301 else
10302 {
10303 if (flags)
10304 inst.instruction |= CONDS_BIT;
10305
fdfde340
JM
10306 inst.instruction |= Rn << 8;
10307 inst.instruction |= Rm << 16;
728ca7c9
PB
10308 inst.instruction |= inst.operands[1].imm;
10309 }
10310 }
3d388997 10311 else if (!narrow)
c19d1205 10312 {
728ca7c9
PB
10313 /* Some mov with immediate shift have narrow variants.
10314 Register shifts are handled above. */
10315 if (low_regs && inst.operands[1].shifted
10316 && (inst.instruction == T_MNEM_mov
10317 || inst.instruction == T_MNEM_movs))
10318 {
e07e6e58 10319 if (in_it_block ())
728ca7c9
PB
10320 narrow = (inst.instruction == T_MNEM_mov);
10321 else
10322 narrow = (inst.instruction == T_MNEM_movs);
10323 }
10324
10325 if (narrow)
10326 {
10327 switch (inst.operands[1].shift_kind)
10328 {
10329 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10330 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10331 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10332 default: narrow = FALSE; break;
10333 }
10334 }
10335
10336 if (narrow)
10337 {
fdfde340
JM
10338 inst.instruction |= Rn;
10339 inst.instruction |= Rm << 3;
728ca7c9
PB
10340 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10341 }
10342 else
10343 {
10344 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10345 inst.instruction |= Rn << r0off;
728ca7c9
PB
10346 encode_thumb32_shifted_operand (1);
10347 }
c19d1205
ZW
10348 }
10349 else
10350 switch (inst.instruction)
10351 {
10352 case T_MNEM_mov:
10353 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10354 inst.instruction |= (Rn & 0x8) << 4;
10355 inst.instruction |= (Rn & 0x7);
10356 inst.instruction |= Rm << 3;
c19d1205 10357 break;
b99bd4ef 10358
c19d1205
ZW
10359 case T_MNEM_movs:
10360 /* We know we have low registers at this point.
10361 Generate ADD Rd, Rs, #0. */
10362 inst.instruction = T_OPCODE_ADD_I3;
fdfde340
JM
10363 inst.instruction |= Rn;
10364 inst.instruction |= Rm << 3;
c19d1205
ZW
10365 break;
10366
10367 case T_MNEM_cmp:
3d388997 10368 if (low_regs)
c19d1205
ZW
10369 {
10370 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10371 inst.instruction |= Rn;
10372 inst.instruction |= Rm << 3;
c19d1205
ZW
10373 }
10374 else
10375 {
10376 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10377 inst.instruction |= (Rn & 0x8) << 4;
10378 inst.instruction |= (Rn & 0x7);
10379 inst.instruction |= Rm << 3;
c19d1205
ZW
10380 }
10381 break;
10382 }
b99bd4ef
NC
10383 return;
10384 }
10385
c19d1205 10386 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10387
10388 /* PR 10443: Do not silently ignore shifted operands. */
10389 constraint (inst.operands[1].shifted,
10390 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10391
c19d1205 10392 if (inst.operands[1].isreg)
b99bd4ef 10393 {
fdfde340 10394 if (Rn < 8 && Rm < 8)
b99bd4ef 10395 {
c19d1205
ZW
10396 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10397 since a MOV instruction produces unpredictable results. */
10398 if (inst.instruction == T_OPCODE_MOV_I8)
10399 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10400 else
c19d1205 10401 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10402
fdfde340
JM
10403 inst.instruction |= Rn;
10404 inst.instruction |= Rm << 3;
b99bd4ef
NC
10405 }
10406 else
10407 {
c19d1205
ZW
10408 if (inst.instruction == T_OPCODE_MOV_I8)
10409 inst.instruction = T_OPCODE_MOV_HR;
10410 else
10411 inst.instruction = T_OPCODE_CMP_HR;
10412 do_t_cpy ();
b99bd4ef
NC
10413 }
10414 }
c19d1205 10415 else
b99bd4ef 10416 {
fdfde340 10417 constraint (Rn > 7,
c19d1205 10418 _("only lo regs allowed with immediate"));
fdfde340 10419 inst.instruction |= Rn << 8;
c19d1205
ZW
10420 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10421 }
10422}
b99bd4ef 10423
c19d1205
ZW
10424static void
10425do_t_mov16 (void)
10426{
fdfde340 10427 unsigned Rd;
b6895b4f
PB
10428 bfd_vma imm;
10429 bfd_boolean top;
10430
10431 top = (inst.instruction & 0x00800000) != 0;
10432 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10433 {
10434 constraint (top, _(":lower16: not allowed this instruction"));
10435 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10436 }
10437 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10438 {
10439 constraint (!top, _(":upper16: not allowed this instruction"));
10440 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10441 }
10442
fdfde340
JM
10443 Rd = inst.operands[0].reg;
10444 reject_bad_reg (Rd);
10445
10446 inst.instruction |= Rd << 8;
b6895b4f
PB
10447 if (inst.reloc.type == BFD_RELOC_UNUSED)
10448 {
10449 imm = inst.reloc.exp.X_add_number;
10450 inst.instruction |= (imm & 0xf000) << 4;
10451 inst.instruction |= (imm & 0x0800) << 15;
10452 inst.instruction |= (imm & 0x0700) << 4;
10453 inst.instruction |= (imm & 0x00ff);
10454 }
c19d1205 10455}
b99bd4ef 10456
c19d1205
ZW
10457static void
10458do_t_mvn_tst (void)
10459{
fdfde340 10460 unsigned Rn, Rm;
c921be7d 10461
fdfde340
JM
10462 Rn = inst.operands[0].reg;
10463 Rm = inst.operands[1].reg;
10464
10465 if (inst.instruction == T_MNEM_cmp
10466 || inst.instruction == T_MNEM_cmn)
10467 constraint (Rn == REG_PC, BAD_PC);
10468 else
10469 reject_bad_reg (Rn);
10470 reject_bad_reg (Rm);
10471
c19d1205
ZW
10472 if (unified_syntax)
10473 {
10474 int r0off = (inst.instruction == T_MNEM_mvn
10475 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
10476 bfd_boolean narrow;
10477
10478 if (inst.size_req == 4
10479 || inst.instruction > 0xffff
10480 || inst.operands[1].shifted
fdfde340 10481 || Rn > 7 || Rm > 7)
3d388997
PB
10482 narrow = FALSE;
10483 else if (inst.instruction == T_MNEM_cmn)
10484 narrow = TRUE;
10485 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10486 narrow = !in_it_block ();
3d388997 10487 else
e07e6e58 10488 narrow = in_it_block ();
3d388997 10489
c19d1205 10490 if (!inst.operands[1].isreg)
b99bd4ef 10491 {
c19d1205
ZW
10492 /* For an immediate, we always generate a 32-bit opcode;
10493 section relaxation will shrink it later if possible. */
10494 if (inst.instruction < 0xffff)
10495 inst.instruction = THUMB_OP32 (inst.instruction);
10496 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10497 inst.instruction |= Rn << r0off;
c19d1205 10498 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10499 }
c19d1205 10500 else
b99bd4ef 10501 {
c19d1205 10502 /* See if we can do this with a 16-bit instruction. */
3d388997 10503 if (narrow)
b99bd4ef 10504 {
c19d1205 10505 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10506 inst.instruction |= Rn;
10507 inst.instruction |= Rm << 3;
b99bd4ef 10508 }
c19d1205 10509 else
b99bd4ef 10510 {
c19d1205
ZW
10511 constraint (inst.operands[1].shifted
10512 && inst.operands[1].immisreg,
10513 _("shift must be constant"));
10514 if (inst.instruction < 0xffff)
10515 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10516 inst.instruction |= Rn << r0off;
c19d1205 10517 encode_thumb32_shifted_operand (1);
b99bd4ef 10518 }
b99bd4ef
NC
10519 }
10520 }
10521 else
10522 {
c19d1205
ZW
10523 constraint (inst.instruction > 0xffff
10524 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10525 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10526 _("unshifted register required"));
fdfde340 10527 constraint (Rn > 7 || Rm > 7,
c19d1205 10528 BAD_HIREG);
b99bd4ef 10529
c19d1205 10530 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10531 inst.instruction |= Rn;
10532 inst.instruction |= Rm << 3;
b99bd4ef 10533 }
b99bd4ef
NC
10534}
10535
b05fe5cf 10536static void
c19d1205 10537do_t_mrs (void)
b05fe5cf 10538{
fdfde340 10539 unsigned Rd;
62b3e311 10540 int flags;
037e8744
JB
10541
10542 if (do_vfp_nsyn_mrs () == SUCCESS)
10543 return;
10544
62b3e311
PB
10545 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10546 if (flags == 0)
10547 {
7e806470 10548 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10549 _("selected processor does not support "
10550 "requested special purpose register"));
10551 }
10552 else
10553 {
10554 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10555 _("selected processor does not support "
44bf2362 10556 "requested special purpose register"));
62b3e311
PB
10557 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10558 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10559 _("'CPSR' or 'SPSR' expected"));
10560 }
5f4273c7 10561
fdfde340
JM
10562 Rd = inst.operands[0].reg;
10563 reject_bad_reg (Rd);
10564
10565 inst.instruction |= Rd << 8;
62b3e311
PB
10566 inst.instruction |= (flags & SPSR_BIT) >> 2;
10567 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 10568}
b05fe5cf 10569
c19d1205
ZW
10570static void
10571do_t_msr (void)
10572{
62b3e311 10573 int flags;
fdfde340 10574 unsigned Rn;
62b3e311 10575
037e8744
JB
10576 if (do_vfp_nsyn_msr () == SUCCESS)
10577 return;
10578
c19d1205
ZW
10579 constraint (!inst.operands[1].isreg,
10580 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
10581 flags = inst.operands[0].imm;
10582 if (flags & ~0xff)
10583 {
10584 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10585 _("selected processor does not support "
10586 "requested special purpose register"));
10587 }
10588 else
10589 {
7e806470 10590 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10591 _("selected processor does not support "
10592 "requested special purpose register"));
10593 flags |= PSR_f;
10594 }
c921be7d 10595
fdfde340
JM
10596 Rn = inst.operands[1].reg;
10597 reject_bad_reg (Rn);
10598
62b3e311
PB
10599 inst.instruction |= (flags & SPSR_BIT) >> 2;
10600 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10601 inst.instruction |= (flags & 0xff);
fdfde340 10602 inst.instruction |= Rn << 16;
c19d1205 10603}
b05fe5cf 10604
c19d1205
ZW
10605static void
10606do_t_mul (void)
10607{
17828f45 10608 bfd_boolean narrow;
fdfde340 10609 unsigned Rd, Rn, Rm;
17828f45 10610
c19d1205
ZW
10611 if (!inst.operands[2].present)
10612 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 10613
fdfde340
JM
10614 Rd = inst.operands[0].reg;
10615 Rn = inst.operands[1].reg;
10616 Rm = inst.operands[2].reg;
10617
17828f45 10618 if (unified_syntax)
b05fe5cf 10619 {
17828f45 10620 if (inst.size_req == 4
fdfde340
JM
10621 || (Rd != Rn
10622 && Rd != Rm)
10623 || Rn > 7
10624 || Rm > 7)
17828f45
JM
10625 narrow = FALSE;
10626 else if (inst.instruction == T_MNEM_muls)
e07e6e58 10627 narrow = !in_it_block ();
17828f45 10628 else
e07e6e58 10629 narrow = in_it_block ();
b05fe5cf 10630 }
c19d1205 10631 else
b05fe5cf 10632 {
17828f45 10633 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 10634 constraint (Rn > 7 || Rm > 7,
c19d1205 10635 BAD_HIREG);
17828f45
JM
10636 narrow = TRUE;
10637 }
b05fe5cf 10638
17828f45
JM
10639 if (narrow)
10640 {
10641 /* 16-bit MULS/Conditional MUL. */
c19d1205 10642 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10643 inst.instruction |= Rd;
b05fe5cf 10644
fdfde340
JM
10645 if (Rd == Rn)
10646 inst.instruction |= Rm << 3;
10647 else if (Rd == Rm)
10648 inst.instruction |= Rn << 3;
c19d1205
ZW
10649 else
10650 constraint (1, _("dest must overlap one source register"));
10651 }
17828f45
JM
10652 else
10653 {
e07e6e58
NC
10654 constraint (inst.instruction != T_MNEM_mul,
10655 _("Thumb-2 MUL must not set flags"));
17828f45
JM
10656 /* 32-bit MUL. */
10657 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10658 inst.instruction |= Rd << 8;
10659 inst.instruction |= Rn << 16;
10660 inst.instruction |= Rm << 0;
10661
10662 reject_bad_reg (Rd);
10663 reject_bad_reg (Rn);
10664 reject_bad_reg (Rm);
17828f45 10665 }
c19d1205 10666}
b05fe5cf 10667
c19d1205
ZW
10668static void
10669do_t_mull (void)
10670{
fdfde340 10671 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 10672
fdfde340
JM
10673 RdLo = inst.operands[0].reg;
10674 RdHi = inst.operands[1].reg;
10675 Rn = inst.operands[2].reg;
10676 Rm = inst.operands[3].reg;
10677
10678 reject_bad_reg (RdLo);
10679 reject_bad_reg (RdHi);
10680 reject_bad_reg (Rn);
10681 reject_bad_reg (Rm);
10682
10683 inst.instruction |= RdLo << 12;
10684 inst.instruction |= RdHi << 8;
10685 inst.instruction |= Rn << 16;
10686 inst.instruction |= Rm;
10687
10688 if (RdLo == RdHi)
c19d1205
ZW
10689 as_tsktsk (_("rdhi and rdlo must be different"));
10690}
b05fe5cf 10691
c19d1205
ZW
10692static void
10693do_t_nop (void)
10694{
e07e6e58
NC
10695 set_it_insn_type (NEUTRAL_IT_INSN);
10696
c19d1205
ZW
10697 if (unified_syntax)
10698 {
10699 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 10700 {
c19d1205
ZW
10701 inst.instruction = THUMB_OP32 (inst.instruction);
10702 inst.instruction |= inst.operands[0].imm;
10703 }
10704 else
10705 {
bc2d1808
NC
10706 /* PR9722: Check for Thumb2 availability before
10707 generating a thumb2 nop instruction. */
afa62d5e 10708 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
10709 {
10710 inst.instruction = THUMB_OP16 (inst.instruction);
10711 inst.instruction |= inst.operands[0].imm << 4;
10712 }
10713 else
10714 inst.instruction = 0x46c0;
c19d1205
ZW
10715 }
10716 }
10717 else
10718 {
10719 constraint (inst.operands[0].present,
10720 _("Thumb does not support NOP with hints"));
10721 inst.instruction = 0x46c0;
10722 }
10723}
b05fe5cf 10724
c19d1205
ZW
10725static void
10726do_t_neg (void)
10727{
10728 if (unified_syntax)
10729 {
3d388997
PB
10730 bfd_boolean narrow;
10731
10732 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10733 narrow = !in_it_block ();
3d388997 10734 else
e07e6e58 10735 narrow = in_it_block ();
3d388997
PB
10736 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10737 narrow = FALSE;
10738 if (inst.size_req == 4)
10739 narrow = FALSE;
10740
10741 if (!narrow)
c19d1205
ZW
10742 {
10743 inst.instruction = THUMB_OP32 (inst.instruction);
10744 inst.instruction |= inst.operands[0].reg << 8;
10745 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
10746 }
10747 else
10748 {
c19d1205
ZW
10749 inst.instruction = THUMB_OP16 (inst.instruction);
10750 inst.instruction |= inst.operands[0].reg;
10751 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
10752 }
10753 }
10754 else
10755 {
c19d1205
ZW
10756 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10757 BAD_HIREG);
10758 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10759
10760 inst.instruction = THUMB_OP16 (inst.instruction);
10761 inst.instruction |= inst.operands[0].reg;
10762 inst.instruction |= inst.operands[1].reg << 3;
10763 }
10764}
10765
1c444d06
JM
10766static void
10767do_t_orn (void)
10768{
10769 unsigned Rd, Rn;
10770
10771 Rd = inst.operands[0].reg;
10772 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10773
fdfde340
JM
10774 reject_bad_reg (Rd);
10775 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10776 reject_bad_reg (Rn);
10777
1c444d06
JM
10778 inst.instruction |= Rd << 8;
10779 inst.instruction |= Rn << 16;
10780
10781 if (!inst.operands[2].isreg)
10782 {
10783 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10784 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10785 }
10786 else
10787 {
10788 unsigned Rm;
10789
10790 Rm = inst.operands[2].reg;
fdfde340 10791 reject_bad_reg (Rm);
1c444d06
JM
10792
10793 constraint (inst.operands[2].shifted
10794 && inst.operands[2].immisreg,
10795 _("shift must be constant"));
10796 encode_thumb32_shifted_operand (2);
10797 }
10798}
10799
c19d1205
ZW
10800static void
10801do_t_pkhbt (void)
10802{
fdfde340
JM
10803 unsigned Rd, Rn, Rm;
10804
10805 Rd = inst.operands[0].reg;
10806 Rn = inst.operands[1].reg;
10807 Rm = inst.operands[2].reg;
10808
10809 reject_bad_reg (Rd);
10810 reject_bad_reg (Rn);
10811 reject_bad_reg (Rm);
10812
10813 inst.instruction |= Rd << 8;
10814 inst.instruction |= Rn << 16;
10815 inst.instruction |= Rm;
c19d1205
ZW
10816 if (inst.operands[3].present)
10817 {
10818 unsigned int val = inst.reloc.exp.X_add_number;
10819 constraint (inst.reloc.exp.X_op != O_constant,
10820 _("expression too complex"));
10821 inst.instruction |= (val & 0x1c) << 10;
10822 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 10823 }
c19d1205 10824}
b05fe5cf 10825
c19d1205
ZW
10826static void
10827do_t_pkhtb (void)
10828{
10829 if (!inst.operands[3].present)
1ef52f49
NC
10830 {
10831 unsigned Rtmp;
10832
10833 inst.instruction &= ~0x00000020;
10834
10835 /* PR 10168. Swap the Rm and Rn registers. */
10836 Rtmp = inst.operands[1].reg;
10837 inst.operands[1].reg = inst.operands[2].reg;
10838 inst.operands[2].reg = Rtmp;
10839 }
c19d1205 10840 do_t_pkhbt ();
b05fe5cf
ZW
10841}
10842
c19d1205
ZW
10843static void
10844do_t_pld (void)
10845{
fdfde340
JM
10846 if (inst.operands[0].immisreg)
10847 reject_bad_reg (inst.operands[0].imm);
10848
c19d1205
ZW
10849 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10850}
b05fe5cf 10851
c19d1205
ZW
10852static void
10853do_t_push_pop (void)
b99bd4ef 10854{
e9f89963 10855 unsigned mask;
5f4273c7 10856
c19d1205
ZW
10857 constraint (inst.operands[0].writeback,
10858 _("push/pop do not support {reglist}^"));
10859 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10860 _("expression too complex"));
b99bd4ef 10861
e9f89963
PB
10862 mask = inst.operands[0].imm;
10863 if ((mask & ~0xff) == 0)
3c707909 10864 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 10865 else if ((inst.instruction == T_MNEM_push
e9f89963 10866 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 10867 || (inst.instruction == T_MNEM_pop
e9f89963 10868 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 10869 {
c19d1205
ZW
10870 inst.instruction = THUMB_OP16 (inst.instruction);
10871 inst.instruction |= THUMB_PP_PC_LR;
3c707909 10872 inst.instruction |= mask & 0xff;
c19d1205
ZW
10873 }
10874 else if (unified_syntax)
10875 {
3c707909 10876 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 10877 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
10878 }
10879 else
10880 {
10881 inst.error = _("invalid register list to push/pop instruction");
10882 return;
10883 }
c19d1205 10884}
b99bd4ef 10885
c19d1205
ZW
10886static void
10887do_t_rbit (void)
10888{
fdfde340
JM
10889 unsigned Rd, Rm;
10890
10891 Rd = inst.operands[0].reg;
10892 Rm = inst.operands[1].reg;
10893
10894 reject_bad_reg (Rd);
10895 reject_bad_reg (Rm);
10896
10897 inst.instruction |= Rd << 8;
10898 inst.instruction |= Rm << 16;
10899 inst.instruction |= Rm;
c19d1205 10900}
b99bd4ef 10901
c19d1205
ZW
10902static void
10903do_t_rev (void)
10904{
fdfde340
JM
10905 unsigned Rd, Rm;
10906
10907 Rd = inst.operands[0].reg;
10908 Rm = inst.operands[1].reg;
10909
10910 reject_bad_reg (Rd);
10911 reject_bad_reg (Rm);
10912
10913 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
10914 && inst.size_req != 4)
10915 {
10916 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10917 inst.instruction |= Rd;
10918 inst.instruction |= Rm << 3;
c19d1205
ZW
10919 }
10920 else if (unified_syntax)
10921 {
10922 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10923 inst.instruction |= Rd << 8;
10924 inst.instruction |= Rm << 16;
10925 inst.instruction |= Rm;
c19d1205
ZW
10926 }
10927 else
10928 inst.error = BAD_HIREG;
10929}
b99bd4ef 10930
1c444d06
JM
10931static void
10932do_t_rrx (void)
10933{
10934 unsigned Rd, Rm;
10935
10936 Rd = inst.operands[0].reg;
10937 Rm = inst.operands[1].reg;
10938
fdfde340
JM
10939 reject_bad_reg (Rd);
10940 reject_bad_reg (Rm);
c921be7d 10941
1c444d06
JM
10942 inst.instruction |= Rd << 8;
10943 inst.instruction |= Rm;
10944}
10945
c19d1205
ZW
10946static void
10947do_t_rsb (void)
10948{
fdfde340 10949 unsigned Rd, Rs;
b99bd4ef 10950
c19d1205
ZW
10951 Rd = inst.operands[0].reg;
10952 Rs = (inst.operands[1].present
10953 ? inst.operands[1].reg /* Rd, Rs, foo */
10954 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 10955
fdfde340
JM
10956 reject_bad_reg (Rd);
10957 reject_bad_reg (Rs);
10958 if (inst.operands[2].isreg)
10959 reject_bad_reg (inst.operands[2].reg);
10960
c19d1205
ZW
10961 inst.instruction |= Rd << 8;
10962 inst.instruction |= Rs << 16;
10963 if (!inst.operands[2].isreg)
10964 {
026d3abb
PB
10965 bfd_boolean narrow;
10966
10967 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 10968 narrow = !in_it_block ();
026d3abb 10969 else
e07e6e58 10970 narrow = in_it_block ();
026d3abb
PB
10971
10972 if (Rd > 7 || Rs > 7)
10973 narrow = FALSE;
10974
10975 if (inst.size_req == 4 || !unified_syntax)
10976 narrow = FALSE;
10977
10978 if (inst.reloc.exp.X_op != O_constant
10979 || inst.reloc.exp.X_add_number != 0)
10980 narrow = FALSE;
10981
10982 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10983 relaxation, but it doesn't seem worth the hassle. */
10984 if (narrow)
10985 {
10986 inst.reloc.type = BFD_RELOC_UNUSED;
10987 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10988 inst.instruction |= Rs << 3;
10989 inst.instruction |= Rd;
10990 }
10991 else
10992 {
10993 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10994 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10995 }
c19d1205
ZW
10996 }
10997 else
10998 encode_thumb32_shifted_operand (2);
10999}
b99bd4ef 11000
c19d1205
ZW
11001static void
11002do_t_setend (void)
11003{
e07e6e58 11004 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11005 if (inst.operands[0].imm)
11006 inst.instruction |= 0x8;
11007}
b99bd4ef 11008
c19d1205
ZW
11009static void
11010do_t_shift (void)
11011{
11012 if (!inst.operands[1].present)
11013 inst.operands[1].reg = inst.operands[0].reg;
11014
11015 if (unified_syntax)
11016 {
3d388997
PB
11017 bfd_boolean narrow;
11018 int shift_kind;
11019
11020 switch (inst.instruction)
11021 {
11022 case T_MNEM_asr:
11023 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11024 case T_MNEM_lsl:
11025 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11026 case T_MNEM_lsr:
11027 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11028 case T_MNEM_ror:
11029 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11030 default: abort ();
11031 }
11032
11033 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11034 narrow = !in_it_block ();
3d388997 11035 else
e07e6e58 11036 narrow = in_it_block ();
3d388997
PB
11037 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11038 narrow = FALSE;
11039 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11040 narrow = FALSE;
11041 if (inst.operands[2].isreg
11042 && (inst.operands[1].reg != inst.operands[0].reg
11043 || inst.operands[2].reg > 7))
11044 narrow = FALSE;
11045 if (inst.size_req == 4)
11046 narrow = FALSE;
11047
fdfde340
JM
11048 reject_bad_reg (inst.operands[0].reg);
11049 reject_bad_reg (inst.operands[1].reg);
c921be7d 11050
3d388997 11051 if (!narrow)
c19d1205
ZW
11052 {
11053 if (inst.operands[2].isreg)
b99bd4ef 11054 {
fdfde340 11055 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11056 inst.instruction = THUMB_OP32 (inst.instruction);
11057 inst.instruction |= inst.operands[0].reg << 8;
11058 inst.instruction |= inst.operands[1].reg << 16;
11059 inst.instruction |= inst.operands[2].reg;
11060 }
11061 else
11062 {
11063 inst.operands[1].shifted = 1;
3d388997 11064 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11065 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11066 ? T_MNEM_movs : T_MNEM_mov);
11067 inst.instruction |= inst.operands[0].reg << 8;
11068 encode_thumb32_shifted_operand (1);
11069 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11070 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11071 }
11072 }
11073 else
11074 {
c19d1205 11075 if (inst.operands[2].isreg)
b99bd4ef 11076 {
3d388997 11077 switch (shift_kind)
b99bd4ef 11078 {
3d388997
PB
11079 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11080 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11081 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11082 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11083 default: abort ();
b99bd4ef 11084 }
5f4273c7 11085
c19d1205
ZW
11086 inst.instruction |= inst.operands[0].reg;
11087 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
11088 }
11089 else
11090 {
3d388997 11091 switch (shift_kind)
b99bd4ef 11092 {
3d388997
PB
11093 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11094 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11095 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11096 default: abort ();
b99bd4ef 11097 }
c19d1205
ZW
11098 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11099 inst.instruction |= inst.operands[0].reg;
11100 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11101 }
11102 }
c19d1205
ZW
11103 }
11104 else
11105 {
11106 constraint (inst.operands[0].reg > 7
11107 || inst.operands[1].reg > 7, BAD_HIREG);
11108 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11109
c19d1205
ZW
11110 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11111 {
11112 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11113 constraint (inst.operands[0].reg != inst.operands[1].reg,
11114 _("source1 and dest must be same register"));
b99bd4ef 11115
c19d1205
ZW
11116 switch (inst.instruction)
11117 {
11118 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11119 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11120 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11121 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11122 default: abort ();
11123 }
5f4273c7 11124
c19d1205
ZW
11125 inst.instruction |= inst.operands[0].reg;
11126 inst.instruction |= inst.operands[2].reg << 3;
11127 }
11128 else
b99bd4ef 11129 {
c19d1205
ZW
11130 switch (inst.instruction)
11131 {
11132 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11133 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11134 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11135 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11136 default: abort ();
11137 }
11138 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11139 inst.instruction |= inst.operands[0].reg;
11140 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11141 }
11142 }
b99bd4ef
NC
11143}
11144
11145static void
c19d1205 11146do_t_simd (void)
b99bd4ef 11147{
fdfde340
JM
11148 unsigned Rd, Rn, Rm;
11149
11150 Rd = inst.operands[0].reg;
11151 Rn = inst.operands[1].reg;
11152 Rm = inst.operands[2].reg;
11153
11154 reject_bad_reg (Rd);
11155 reject_bad_reg (Rn);
11156 reject_bad_reg (Rm);
11157
11158 inst.instruction |= Rd << 8;
11159 inst.instruction |= Rn << 16;
11160 inst.instruction |= Rm;
c19d1205 11161}
b99bd4ef 11162
03ee1b7f
NC
11163static void
11164do_t_simd2 (void)
11165{
11166 unsigned Rd, Rn, Rm;
11167
11168 Rd = inst.operands[0].reg;
11169 Rm = inst.operands[1].reg;
11170 Rn = inst.operands[2].reg;
11171
11172 reject_bad_reg (Rd);
11173 reject_bad_reg (Rn);
11174 reject_bad_reg (Rm);
11175
11176 inst.instruction |= Rd << 8;
11177 inst.instruction |= Rn << 16;
11178 inst.instruction |= Rm;
11179}
11180
c19d1205 11181static void
3eb17e6b 11182do_t_smc (void)
c19d1205
ZW
11183{
11184 unsigned int value = inst.reloc.exp.X_add_number;
11185 constraint (inst.reloc.exp.X_op != O_constant,
11186 _("expression too complex"));
11187 inst.reloc.type = BFD_RELOC_UNUSED;
11188 inst.instruction |= (value & 0xf000) >> 12;
11189 inst.instruction |= (value & 0x0ff0);
11190 inst.instruction |= (value & 0x000f) << 16;
11191}
b99bd4ef 11192
c19d1205 11193static void
3a21c15a 11194do_t_ssat_usat (int bias)
c19d1205 11195{
fdfde340
JM
11196 unsigned Rd, Rn;
11197
11198 Rd = inst.operands[0].reg;
11199 Rn = inst.operands[2].reg;
11200
11201 reject_bad_reg (Rd);
11202 reject_bad_reg (Rn);
11203
11204 inst.instruction |= Rd << 8;
3a21c15a 11205 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11206 inst.instruction |= Rn << 16;
b99bd4ef 11207
c19d1205 11208 if (inst.operands[3].present)
b99bd4ef 11209 {
3a21c15a
NC
11210 offsetT shift_amount = inst.reloc.exp.X_add_number;
11211
11212 inst.reloc.type = BFD_RELOC_UNUSED;
11213
c19d1205
ZW
11214 constraint (inst.reloc.exp.X_op != O_constant,
11215 _("expression too complex"));
b99bd4ef 11216
3a21c15a 11217 if (shift_amount != 0)
6189168b 11218 {
3a21c15a
NC
11219 constraint (shift_amount > 31,
11220 _("shift expression is too large"));
11221
c19d1205 11222 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11223 inst.instruction |= 0x00200000; /* sh bit. */
11224
11225 inst.instruction |= (shift_amount & 0x1c) << 10;
11226 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11227 }
11228 }
b99bd4ef 11229}
c921be7d 11230
3a21c15a
NC
11231static void
11232do_t_ssat (void)
11233{
11234 do_t_ssat_usat (1);
11235}
b99bd4ef 11236
0dd132b6 11237static void
c19d1205 11238do_t_ssat16 (void)
0dd132b6 11239{
fdfde340
JM
11240 unsigned Rd, Rn;
11241
11242 Rd = inst.operands[0].reg;
11243 Rn = inst.operands[2].reg;
11244
11245 reject_bad_reg (Rd);
11246 reject_bad_reg (Rn);
11247
11248 inst.instruction |= Rd << 8;
c19d1205 11249 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11250 inst.instruction |= Rn << 16;
c19d1205 11251}
0dd132b6 11252
c19d1205
ZW
11253static void
11254do_t_strex (void)
11255{
11256 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11257 || inst.operands[2].postind || inst.operands[2].writeback
11258 || inst.operands[2].immisreg || inst.operands[2].shifted
11259 || inst.operands[2].negative,
01cfc07f 11260 BAD_ADDR_MODE);
0dd132b6 11261
5be8be5d
DG
11262 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11263
c19d1205
ZW
11264 inst.instruction |= inst.operands[0].reg << 8;
11265 inst.instruction |= inst.operands[1].reg << 12;
11266 inst.instruction |= inst.operands[2].reg << 16;
11267 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11268}
11269
b99bd4ef 11270static void
c19d1205 11271do_t_strexd (void)
b99bd4ef 11272{
c19d1205
ZW
11273 if (!inst.operands[2].present)
11274 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11275
c19d1205
ZW
11276 constraint (inst.operands[0].reg == inst.operands[1].reg
11277 || inst.operands[0].reg == inst.operands[2].reg
11278 || inst.operands[0].reg == inst.operands[3].reg
11279 || inst.operands[1].reg == inst.operands[2].reg,
11280 BAD_OVERLAP);
b99bd4ef 11281
c19d1205
ZW
11282 inst.instruction |= inst.operands[0].reg;
11283 inst.instruction |= inst.operands[1].reg << 12;
11284 inst.instruction |= inst.operands[2].reg << 8;
11285 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11286}
11287
11288static void
c19d1205 11289do_t_sxtah (void)
b99bd4ef 11290{
fdfde340
JM
11291 unsigned Rd, Rn, Rm;
11292
11293 Rd = inst.operands[0].reg;
11294 Rn = inst.operands[1].reg;
11295 Rm = inst.operands[2].reg;
11296
11297 reject_bad_reg (Rd);
11298 reject_bad_reg (Rn);
11299 reject_bad_reg (Rm);
11300
11301 inst.instruction |= Rd << 8;
11302 inst.instruction |= Rn << 16;
11303 inst.instruction |= Rm;
c19d1205
ZW
11304 inst.instruction |= inst.operands[3].imm << 4;
11305}
b99bd4ef 11306
c19d1205
ZW
11307static void
11308do_t_sxth (void)
11309{
fdfde340
JM
11310 unsigned Rd, Rm;
11311
11312 Rd = inst.operands[0].reg;
11313 Rm = inst.operands[1].reg;
11314
11315 reject_bad_reg (Rd);
11316 reject_bad_reg (Rm);
c921be7d
NC
11317
11318 if (inst.instruction <= 0xffff
11319 && inst.size_req != 4
fdfde340 11320 && Rd <= 7 && Rm <= 7
c19d1205 11321 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11322 {
c19d1205 11323 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11324 inst.instruction |= Rd;
11325 inst.instruction |= Rm << 3;
b99bd4ef 11326 }
c19d1205 11327 else if (unified_syntax)
b99bd4ef 11328 {
c19d1205
ZW
11329 if (inst.instruction <= 0xffff)
11330 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11331 inst.instruction |= Rd << 8;
11332 inst.instruction |= Rm;
c19d1205 11333 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11334 }
c19d1205 11335 else
b99bd4ef 11336 {
c19d1205
ZW
11337 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11338 _("Thumb encoding does not support rotation"));
11339 constraint (1, BAD_HIREG);
b99bd4ef 11340 }
c19d1205 11341}
b99bd4ef 11342
c19d1205
ZW
11343static void
11344do_t_swi (void)
11345{
11346 inst.reloc.type = BFD_RELOC_ARM_SWI;
11347}
b99bd4ef 11348
92e90b6e
PB
11349static void
11350do_t_tb (void)
11351{
fdfde340 11352 unsigned Rn, Rm;
92e90b6e
PB
11353 int half;
11354
11355 half = (inst.instruction & 0x10) != 0;
e07e6e58 11356 set_it_insn_type_last ();
dfa9f0d5
PB
11357 constraint (inst.operands[0].immisreg,
11358 _("instruction requires register index"));
fdfde340
JM
11359
11360 Rn = inst.operands[0].reg;
11361 Rm = inst.operands[0].imm;
c921be7d 11362
fdfde340
JM
11363 constraint (Rn == REG_SP, BAD_SP);
11364 reject_bad_reg (Rm);
11365
92e90b6e
PB
11366 constraint (!half && inst.operands[0].shifted,
11367 _("instruction does not allow shifted index"));
fdfde340 11368 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11369}
11370
c19d1205
ZW
11371static void
11372do_t_usat (void)
11373{
3a21c15a 11374 do_t_ssat_usat (0);
b99bd4ef
NC
11375}
11376
11377static void
c19d1205 11378do_t_usat16 (void)
b99bd4ef 11379{
fdfde340
JM
11380 unsigned Rd, Rn;
11381
11382 Rd = inst.operands[0].reg;
11383 Rn = inst.operands[2].reg;
11384
11385 reject_bad_reg (Rd);
11386 reject_bad_reg (Rn);
11387
11388 inst.instruction |= Rd << 8;
c19d1205 11389 inst.instruction |= inst.operands[1].imm;
fdfde340 11390 inst.instruction |= Rn << 16;
b99bd4ef 11391}
c19d1205 11392
5287ad62 11393/* Neon instruction encoder helpers. */
5f4273c7 11394
5287ad62 11395/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 11396
5287ad62
JB
11397/* An "invalid" code for the following tables. */
11398#define N_INV -1u
11399
11400struct neon_tab_entry
b99bd4ef 11401{
5287ad62
JB
11402 unsigned integer;
11403 unsigned float_or_poly;
11404 unsigned scalar_or_imm;
11405};
5f4273c7 11406
5287ad62
JB
11407/* Map overloaded Neon opcodes to their respective encodings. */
11408#define NEON_ENC_TAB \
11409 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11410 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11411 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11412 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11413 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11414 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11415 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11416 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11417 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11418 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11419 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11420 /* Register variants of the following two instructions are encoded as
e07e6e58 11421 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
11422 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11423 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
11424 X(vfma, N_INV, 0x0000c10, N_INV), \
11425 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
11426 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11427 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11428 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11429 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11430 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11431 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11432 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11433 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11434 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11435 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11436 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11437 X(vshl, 0x0000400, N_INV, 0x0800510), \
11438 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11439 X(vand, 0x0000110, N_INV, 0x0800030), \
11440 X(vbic, 0x0100110, N_INV, 0x0800030), \
11441 X(veor, 0x1000110, N_INV, N_INV), \
11442 X(vorn, 0x0300110, N_INV, 0x0800010), \
11443 X(vorr, 0x0200110, N_INV, 0x0800010), \
11444 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11445 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11446 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11447 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11448 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11449 X(vst1, 0x0000000, 0x0800000, N_INV), \
11450 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11451 X(vst2, 0x0000100, 0x0800100, N_INV), \
11452 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11453 X(vst3, 0x0000200, 0x0800200, N_INV), \
11454 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11455 X(vst4, 0x0000300, 0x0800300, N_INV), \
11456 X(vmovn, 0x1b20200, N_INV, N_INV), \
11457 X(vtrn, 0x1b20080, N_INV, N_INV), \
11458 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
11459 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11460 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
11461 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11462 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
11463 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11464 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
11465 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11466 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11467 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11468 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
11469
11470enum neon_opc
11471{
11472#define X(OPC,I,F,S) N_MNEM_##OPC
11473NEON_ENC_TAB
11474#undef X
11475};
b99bd4ef 11476
5287ad62
JB
11477static const struct neon_tab_entry neon_enc_tab[] =
11478{
11479#define X(OPC,I,F,S) { (I), (F), (S) }
11480NEON_ENC_TAB
11481#undef X
11482};
b99bd4ef 11483
88714cb8
DG
11484/* Do not use these macros; instead, use NEON_ENCODE defined below. */
11485#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11486#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11487#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11488#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11489#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11490#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11491#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11492#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11493#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11494#define NEON_ENC_SINGLE_(X) \
037e8744 11495 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 11496#define NEON_ENC_DOUBLE_(X) \
037e8744 11497 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 11498
88714cb8
DG
11499#define NEON_ENCODE(type, inst) \
11500 do \
11501 { \
11502 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11503 inst.is_neon = 1; \
11504 } \
11505 while (0)
11506
11507#define check_neon_suffixes \
11508 do \
11509 { \
11510 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11511 { \
11512 as_bad (_("invalid neon suffix for non neon instruction")); \
11513 return; \
11514 } \
11515 } \
11516 while (0)
11517
037e8744
JB
11518/* Define shapes for instruction operands. The following mnemonic characters
11519 are used in this table:
5287ad62 11520
037e8744 11521 F - VFP S<n> register
5287ad62
JB
11522 D - Neon D<n> register
11523 Q - Neon Q<n> register
11524 I - Immediate
11525 S - Scalar
11526 R - ARM register
11527 L - D<n> register list
5f4273c7 11528
037e8744
JB
11529 This table is used to generate various data:
11530 - enumerations of the form NS_DDR to be used as arguments to
11531 neon_select_shape.
11532 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 11533 - a table used to drive neon_select_shape. */
b99bd4ef 11534
037e8744
JB
11535#define NEON_SHAPE_DEF \
11536 X(3, (D, D, D), DOUBLE), \
11537 X(3, (Q, Q, Q), QUAD), \
11538 X(3, (D, D, I), DOUBLE), \
11539 X(3, (Q, Q, I), QUAD), \
11540 X(3, (D, D, S), DOUBLE), \
11541 X(3, (Q, Q, S), QUAD), \
11542 X(2, (D, D), DOUBLE), \
11543 X(2, (Q, Q), QUAD), \
11544 X(2, (D, S), DOUBLE), \
11545 X(2, (Q, S), QUAD), \
11546 X(2, (D, R), DOUBLE), \
11547 X(2, (Q, R), QUAD), \
11548 X(2, (D, I), DOUBLE), \
11549 X(2, (Q, I), QUAD), \
11550 X(3, (D, L, D), DOUBLE), \
11551 X(2, (D, Q), MIXED), \
11552 X(2, (Q, D), MIXED), \
11553 X(3, (D, Q, I), MIXED), \
11554 X(3, (Q, D, I), MIXED), \
11555 X(3, (Q, D, D), MIXED), \
11556 X(3, (D, Q, Q), MIXED), \
11557 X(3, (Q, Q, D), MIXED), \
11558 X(3, (Q, D, S), MIXED), \
11559 X(3, (D, Q, S), MIXED), \
11560 X(4, (D, D, D, I), DOUBLE), \
11561 X(4, (Q, Q, Q, I), QUAD), \
11562 X(2, (F, F), SINGLE), \
11563 X(3, (F, F, F), SINGLE), \
11564 X(2, (F, I), SINGLE), \
11565 X(2, (F, D), MIXED), \
11566 X(2, (D, F), MIXED), \
11567 X(3, (F, F, I), MIXED), \
11568 X(4, (R, R, F, F), SINGLE), \
11569 X(4, (F, F, R, R), SINGLE), \
11570 X(3, (D, R, R), DOUBLE), \
11571 X(3, (R, R, D), DOUBLE), \
11572 X(2, (S, R), SINGLE), \
11573 X(2, (R, S), SINGLE), \
11574 X(2, (F, R), SINGLE), \
11575 X(2, (R, F), SINGLE)
11576
11577#define S2(A,B) NS_##A##B
11578#define S3(A,B,C) NS_##A##B##C
11579#define S4(A,B,C,D) NS_##A##B##C##D
11580
11581#define X(N, L, C) S##N L
11582
5287ad62
JB
11583enum neon_shape
11584{
037e8744
JB
11585 NEON_SHAPE_DEF,
11586 NS_NULL
5287ad62 11587};
b99bd4ef 11588
037e8744
JB
11589#undef X
11590#undef S2
11591#undef S3
11592#undef S4
11593
11594enum neon_shape_class
11595{
11596 SC_SINGLE,
11597 SC_DOUBLE,
11598 SC_QUAD,
11599 SC_MIXED
11600};
11601
11602#define X(N, L, C) SC_##C
11603
11604static enum neon_shape_class neon_shape_class[] =
11605{
11606 NEON_SHAPE_DEF
11607};
11608
11609#undef X
11610
11611enum neon_shape_el
11612{
11613 SE_F,
11614 SE_D,
11615 SE_Q,
11616 SE_I,
11617 SE_S,
11618 SE_R,
11619 SE_L
11620};
11621
11622/* Register widths of above. */
11623static unsigned neon_shape_el_size[] =
11624{
11625 32,
11626 64,
11627 128,
11628 0,
11629 32,
11630 32,
11631 0
11632};
11633
11634struct neon_shape_info
11635{
11636 unsigned els;
11637 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11638};
11639
11640#define S2(A,B) { SE_##A, SE_##B }
11641#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11642#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11643
11644#define X(N, L, C) { N, S##N L }
11645
11646static struct neon_shape_info neon_shape_tab[] =
11647{
11648 NEON_SHAPE_DEF
11649};
11650
11651#undef X
11652#undef S2
11653#undef S3
11654#undef S4
11655
5287ad62
JB
11656/* Bit masks used in type checking given instructions.
11657 'N_EQK' means the type must be the same as (or based on in some way) the key
11658 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11659 set, various other bits can be set as well in order to modify the meaning of
11660 the type constraint. */
11661
11662enum neon_type_mask
11663{
8e79c3df
CM
11664 N_S8 = 0x0000001,
11665 N_S16 = 0x0000002,
11666 N_S32 = 0x0000004,
11667 N_S64 = 0x0000008,
11668 N_U8 = 0x0000010,
11669 N_U16 = 0x0000020,
11670 N_U32 = 0x0000040,
11671 N_U64 = 0x0000080,
11672 N_I8 = 0x0000100,
11673 N_I16 = 0x0000200,
11674 N_I32 = 0x0000400,
11675 N_I64 = 0x0000800,
11676 N_8 = 0x0001000,
11677 N_16 = 0x0002000,
11678 N_32 = 0x0004000,
11679 N_64 = 0x0008000,
11680 N_P8 = 0x0010000,
11681 N_P16 = 0x0020000,
11682 N_F16 = 0x0040000,
11683 N_F32 = 0x0080000,
11684 N_F64 = 0x0100000,
c921be7d
NC
11685 N_KEY = 0x1000000, /* Key element (main type specifier). */
11686 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 11687 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
11688 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11689 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11690 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11691 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11692 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11693 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11694 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 11695 N_UTYP = 0,
037e8744 11696 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
11697};
11698
dcbf9037
JB
11699#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11700
5287ad62
JB
11701#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11702#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11703#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11704#define N_SUF_32 (N_SU_32 | N_F32)
11705#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11706#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11707
11708/* Pass this as the first type argument to neon_check_type to ignore types
11709 altogether. */
11710#define N_IGNORE_TYPE (N_KEY | N_EQK)
11711
037e8744
JB
11712/* Select a "shape" for the current instruction (describing register types or
11713 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11714 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11715 function of operand parsing, so this function doesn't need to be called.
11716 Shapes should be listed in order of decreasing length. */
5287ad62
JB
11717
11718static enum neon_shape
037e8744 11719neon_select_shape (enum neon_shape shape, ...)
5287ad62 11720{
037e8744
JB
11721 va_list ap;
11722 enum neon_shape first_shape = shape;
5287ad62
JB
11723
11724 /* Fix missing optional operands. FIXME: we don't know at this point how
11725 many arguments we should have, so this makes the assumption that we have
11726 > 1. This is true of all current Neon opcodes, I think, but may not be
11727 true in the future. */
11728 if (!inst.operands[1].present)
11729 inst.operands[1] = inst.operands[0];
11730
037e8744 11731 va_start (ap, shape);
5f4273c7 11732
21d799b5 11733 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
11734 {
11735 unsigned j;
11736 int matches = 1;
11737
11738 for (j = 0; j < neon_shape_tab[shape].els; j++)
11739 {
11740 if (!inst.operands[j].present)
11741 {
11742 matches = 0;
11743 break;
11744 }
11745
11746 switch (neon_shape_tab[shape].el[j])
11747 {
11748 case SE_F:
11749 if (!(inst.operands[j].isreg
11750 && inst.operands[j].isvec
11751 && inst.operands[j].issingle
11752 && !inst.operands[j].isquad))
11753 matches = 0;
11754 break;
11755
11756 case SE_D:
11757 if (!(inst.operands[j].isreg
11758 && inst.operands[j].isvec
11759 && !inst.operands[j].isquad
11760 && !inst.operands[j].issingle))
11761 matches = 0;
11762 break;
11763
11764 case SE_R:
11765 if (!(inst.operands[j].isreg
11766 && !inst.operands[j].isvec))
11767 matches = 0;
11768 break;
11769
11770 case SE_Q:
11771 if (!(inst.operands[j].isreg
11772 && inst.operands[j].isvec
11773 && inst.operands[j].isquad
11774 && !inst.operands[j].issingle))
11775 matches = 0;
11776 break;
11777
11778 case SE_I:
11779 if (!(!inst.operands[j].isreg
11780 && !inst.operands[j].isscalar))
11781 matches = 0;
11782 break;
11783
11784 case SE_S:
11785 if (!(!inst.operands[j].isreg
11786 && inst.operands[j].isscalar))
11787 matches = 0;
11788 break;
11789
11790 case SE_L:
11791 break;
11792 }
11793 }
11794 if (matches)
5287ad62 11795 break;
037e8744 11796 }
5f4273c7 11797
037e8744 11798 va_end (ap);
5287ad62 11799
037e8744
JB
11800 if (shape == NS_NULL && first_shape != NS_NULL)
11801 first_error (_("invalid instruction shape"));
5287ad62 11802
037e8744
JB
11803 return shape;
11804}
5287ad62 11805
037e8744
JB
11806/* True if SHAPE is predominantly a quadword operation (most of the time, this
11807 means the Q bit should be set). */
11808
11809static int
11810neon_quad (enum neon_shape shape)
11811{
11812 return neon_shape_class[shape] == SC_QUAD;
5287ad62 11813}
037e8744 11814
5287ad62
JB
11815static void
11816neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11817 unsigned *g_size)
11818{
11819 /* Allow modification to be made to types which are constrained to be
11820 based on the key element, based on bits set alongside N_EQK. */
11821 if ((typebits & N_EQK) != 0)
11822 {
11823 if ((typebits & N_HLF) != 0)
11824 *g_size /= 2;
11825 else if ((typebits & N_DBL) != 0)
11826 *g_size *= 2;
11827 if ((typebits & N_SGN) != 0)
11828 *g_type = NT_signed;
11829 else if ((typebits & N_UNS) != 0)
11830 *g_type = NT_unsigned;
11831 else if ((typebits & N_INT) != 0)
11832 *g_type = NT_integer;
11833 else if ((typebits & N_FLT) != 0)
11834 *g_type = NT_float;
dcbf9037
JB
11835 else if ((typebits & N_SIZ) != 0)
11836 *g_type = NT_untyped;
5287ad62
JB
11837 }
11838}
5f4273c7 11839
5287ad62
JB
11840/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11841 operand type, i.e. the single type specified in a Neon instruction when it
11842 is the only one given. */
11843
11844static struct neon_type_el
11845neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11846{
11847 struct neon_type_el dest = *key;
5f4273c7 11848
9c2799c2 11849 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 11850
5287ad62
JB
11851 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11852
11853 return dest;
11854}
11855
11856/* Convert Neon type and size into compact bitmask representation. */
11857
11858static enum neon_type_mask
11859type_chk_of_el_type (enum neon_el_type type, unsigned size)
11860{
11861 switch (type)
11862 {
11863 case NT_untyped:
11864 switch (size)
11865 {
11866 case 8: return N_8;
11867 case 16: return N_16;
11868 case 32: return N_32;
11869 case 64: return N_64;
11870 default: ;
11871 }
11872 break;
11873
11874 case NT_integer:
11875 switch (size)
11876 {
11877 case 8: return N_I8;
11878 case 16: return N_I16;
11879 case 32: return N_I32;
11880 case 64: return N_I64;
11881 default: ;
11882 }
11883 break;
11884
11885 case NT_float:
037e8744
JB
11886 switch (size)
11887 {
8e79c3df 11888 case 16: return N_F16;
037e8744
JB
11889 case 32: return N_F32;
11890 case 64: return N_F64;
11891 default: ;
11892 }
5287ad62
JB
11893 break;
11894
11895 case NT_poly:
11896 switch (size)
11897 {
11898 case 8: return N_P8;
11899 case 16: return N_P16;
11900 default: ;
11901 }
11902 break;
11903
11904 case NT_signed:
11905 switch (size)
11906 {
11907 case 8: return N_S8;
11908 case 16: return N_S16;
11909 case 32: return N_S32;
11910 case 64: return N_S64;
11911 default: ;
11912 }
11913 break;
11914
11915 case NT_unsigned:
11916 switch (size)
11917 {
11918 case 8: return N_U8;
11919 case 16: return N_U16;
11920 case 32: return N_U32;
11921 case 64: return N_U64;
11922 default: ;
11923 }
11924 break;
11925
11926 default: ;
11927 }
5f4273c7 11928
5287ad62
JB
11929 return N_UTYP;
11930}
11931
11932/* Convert compact Neon bitmask type representation to a type and size. Only
11933 handles the case where a single bit is set in the mask. */
11934
dcbf9037 11935static int
5287ad62
JB
11936el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11937 enum neon_type_mask mask)
11938{
dcbf9037
JB
11939 if ((mask & N_EQK) != 0)
11940 return FAIL;
11941
5287ad62
JB
11942 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11943 *size = 8;
dcbf9037 11944 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 11945 *size = 16;
dcbf9037 11946 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 11947 *size = 32;
037e8744 11948 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 11949 *size = 64;
dcbf9037
JB
11950 else
11951 return FAIL;
11952
5287ad62
JB
11953 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11954 *type = NT_signed;
dcbf9037 11955 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 11956 *type = NT_unsigned;
dcbf9037 11957 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 11958 *type = NT_integer;
dcbf9037 11959 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 11960 *type = NT_untyped;
dcbf9037 11961 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 11962 *type = NT_poly;
037e8744 11963 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 11964 *type = NT_float;
dcbf9037
JB
11965 else
11966 return FAIL;
5f4273c7 11967
dcbf9037 11968 return SUCCESS;
5287ad62
JB
11969}
11970
11971/* Modify a bitmask of allowed types. This is only needed for type
11972 relaxation. */
11973
11974static unsigned
11975modify_types_allowed (unsigned allowed, unsigned mods)
11976{
11977 unsigned size;
11978 enum neon_el_type type;
11979 unsigned destmask;
11980 int i;
5f4273c7 11981
5287ad62 11982 destmask = 0;
5f4273c7 11983
5287ad62
JB
11984 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11985 {
21d799b5
NC
11986 if (el_type_of_type_chk (&type, &size,
11987 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
11988 {
11989 neon_modify_type_size (mods, &type, &size);
11990 destmask |= type_chk_of_el_type (type, size);
11991 }
5287ad62 11992 }
5f4273c7 11993
5287ad62
JB
11994 return destmask;
11995}
11996
11997/* Check type and return type classification.
11998 The manual states (paraphrase): If one datatype is given, it indicates the
11999 type given in:
12000 - the second operand, if there is one
12001 - the operand, if there is no second operand
12002 - the result, if there are no operands.
12003 This isn't quite good enough though, so we use a concept of a "key" datatype
12004 which is set on a per-instruction basis, which is the one which matters when
12005 only one data type is written.
12006 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12007 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12008
12009static struct neon_type_el
12010neon_check_type (unsigned els, enum neon_shape ns, ...)
12011{
12012 va_list ap;
12013 unsigned i, pass, key_el = 0;
12014 unsigned types[NEON_MAX_TYPE_ELS];
12015 enum neon_el_type k_type = NT_invtype;
12016 unsigned k_size = -1u;
12017 struct neon_type_el badtype = {NT_invtype, -1};
12018 unsigned key_allowed = 0;
12019
12020 /* Optional registers in Neon instructions are always (not) in operand 1.
12021 Fill in the missing operand here, if it was omitted. */
12022 if (els > 1 && !inst.operands[1].present)
12023 inst.operands[1] = inst.operands[0];
12024
12025 /* Suck up all the varargs. */
12026 va_start (ap, ns);
12027 for (i = 0; i < els; i++)
12028 {
12029 unsigned thisarg = va_arg (ap, unsigned);
12030 if (thisarg == N_IGNORE_TYPE)
12031 {
12032 va_end (ap);
12033 return badtype;
12034 }
12035 types[i] = thisarg;
12036 if ((thisarg & N_KEY) != 0)
12037 key_el = i;
12038 }
12039 va_end (ap);
12040
dcbf9037
JB
12041 if (inst.vectype.elems > 0)
12042 for (i = 0; i < els; i++)
12043 if (inst.operands[i].vectype.type != NT_invtype)
12044 {
12045 first_error (_("types specified in both the mnemonic and operands"));
12046 return badtype;
12047 }
12048
5287ad62
JB
12049 /* Duplicate inst.vectype elements here as necessary.
12050 FIXME: No idea if this is exactly the same as the ARM assembler,
12051 particularly when an insn takes one register and one non-register
12052 operand. */
12053 if (inst.vectype.elems == 1 && els > 1)
12054 {
12055 unsigned j;
12056 inst.vectype.elems = els;
12057 inst.vectype.el[key_el] = inst.vectype.el[0];
12058 for (j = 0; j < els; j++)
dcbf9037
JB
12059 if (j != key_el)
12060 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12061 types[j]);
12062 }
12063 else if (inst.vectype.elems == 0 && els > 0)
12064 {
12065 unsigned j;
12066 /* No types were given after the mnemonic, so look for types specified
12067 after each operand. We allow some flexibility here; as long as the
12068 "key" operand has a type, we can infer the others. */
12069 for (j = 0; j < els; j++)
12070 if (inst.operands[j].vectype.type != NT_invtype)
12071 inst.vectype.el[j] = inst.operands[j].vectype;
12072
12073 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12074 {
dcbf9037
JB
12075 for (j = 0; j < els; j++)
12076 if (inst.operands[j].vectype.type == NT_invtype)
12077 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12078 types[j]);
12079 }
12080 else
12081 {
12082 first_error (_("operand types can't be inferred"));
12083 return badtype;
5287ad62
JB
12084 }
12085 }
12086 else if (inst.vectype.elems != els)
12087 {
dcbf9037 12088 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12089 return badtype;
12090 }
12091
12092 for (pass = 0; pass < 2; pass++)
12093 {
12094 for (i = 0; i < els; i++)
12095 {
12096 unsigned thisarg = types[i];
12097 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12098 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12099 enum neon_el_type g_type = inst.vectype.el[i].type;
12100 unsigned g_size = inst.vectype.el[i].size;
12101
12102 /* Decay more-specific signed & unsigned types to sign-insensitive
12103 integer types if sign-specific variants are unavailable. */
12104 if ((g_type == NT_signed || g_type == NT_unsigned)
12105 && (types_allowed & N_SU_ALL) == 0)
12106 g_type = NT_integer;
12107
12108 /* If only untyped args are allowed, decay any more specific types to
12109 them. Some instructions only care about signs for some element
12110 sizes, so handle that properly. */
12111 if ((g_size == 8 && (types_allowed & N_8) != 0)
12112 || (g_size == 16 && (types_allowed & N_16) != 0)
12113 || (g_size == 32 && (types_allowed & N_32) != 0)
12114 || (g_size == 64 && (types_allowed & N_64) != 0))
12115 g_type = NT_untyped;
12116
12117 if (pass == 0)
12118 {
12119 if ((thisarg & N_KEY) != 0)
12120 {
12121 k_type = g_type;
12122 k_size = g_size;
12123 key_allowed = thisarg & ~N_KEY;
12124 }
12125 }
12126 else
12127 {
037e8744
JB
12128 if ((thisarg & N_VFP) != 0)
12129 {
99b253c5
NC
12130 enum neon_shape_el regshape;
12131 unsigned regwidth, match;
12132
12133 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12134 if (ns == NS_NULL)
12135 {
12136 first_error (_("invalid instruction shape"));
12137 return badtype;
12138 }
12139 regshape = neon_shape_tab[ns].el[i];
12140 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12141
12142 /* In VFP mode, operands must match register widths. If we
12143 have a key operand, use its width, else use the width of
12144 the current operand. */
12145 if (k_size != -1u)
12146 match = k_size;
12147 else
12148 match = g_size;
12149
12150 if (regwidth != match)
12151 {
12152 first_error (_("operand size must match register width"));
12153 return badtype;
12154 }
12155 }
5f4273c7 12156
5287ad62
JB
12157 if ((thisarg & N_EQK) == 0)
12158 {
12159 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12160
12161 if ((given_type & types_allowed) == 0)
12162 {
dcbf9037 12163 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12164 return badtype;
12165 }
12166 }
12167 else
12168 {
12169 enum neon_el_type mod_k_type = k_type;
12170 unsigned mod_k_size = k_size;
12171 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12172 if (g_type != mod_k_type || g_size != mod_k_size)
12173 {
dcbf9037 12174 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12175 return badtype;
12176 }
12177 }
12178 }
12179 }
12180 }
12181
12182 return inst.vectype.el[key_el];
12183}
12184
037e8744 12185/* Neon-style VFP instruction forwarding. */
5287ad62 12186
037e8744
JB
12187/* Thumb VFP instructions have 0xE in the condition field. */
12188
12189static void
12190do_vfp_cond_or_thumb (void)
5287ad62 12191{
88714cb8
DG
12192 inst.is_neon = 1;
12193
5287ad62 12194 if (thumb_mode)
037e8744 12195 inst.instruction |= 0xe0000000;
5287ad62 12196 else
037e8744 12197 inst.instruction |= inst.cond << 28;
5287ad62
JB
12198}
12199
037e8744
JB
12200/* Look up and encode a simple mnemonic, for use as a helper function for the
12201 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12202 etc. It is assumed that operand parsing has already been done, and that the
12203 operands are in the form expected by the given opcode (this isn't necessarily
12204 the same as the form in which they were parsed, hence some massaging must
12205 take place before this function is called).
12206 Checks current arch version against that in the looked-up opcode. */
5287ad62 12207
037e8744
JB
12208static void
12209do_vfp_nsyn_opcode (const char *opname)
5287ad62 12210{
037e8744 12211 const struct asm_opcode *opcode;
5f4273c7 12212
21d799b5 12213 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12214
037e8744
JB
12215 if (!opcode)
12216 abort ();
5287ad62 12217
037e8744
JB
12218 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12219 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12220 _(BAD_FPU));
5287ad62 12221
88714cb8
DG
12222 inst.is_neon = 1;
12223
037e8744
JB
12224 if (thumb_mode)
12225 {
12226 inst.instruction = opcode->tvalue;
12227 opcode->tencode ();
12228 }
12229 else
12230 {
12231 inst.instruction = (inst.cond << 28) | opcode->avalue;
12232 opcode->aencode ();
12233 }
12234}
5287ad62
JB
12235
12236static void
037e8744 12237do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12238{
037e8744
JB
12239 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12240
12241 if (rs == NS_FFF)
12242 {
12243 if (is_add)
12244 do_vfp_nsyn_opcode ("fadds");
12245 else
12246 do_vfp_nsyn_opcode ("fsubs");
12247 }
12248 else
12249 {
12250 if (is_add)
12251 do_vfp_nsyn_opcode ("faddd");
12252 else
12253 do_vfp_nsyn_opcode ("fsubd");
12254 }
12255}
12256
12257/* Check operand types to see if this is a VFP instruction, and if so call
12258 PFN (). */
12259
12260static int
12261try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12262{
12263 enum neon_shape rs;
12264 struct neon_type_el et;
12265
12266 switch (args)
12267 {
12268 case 2:
12269 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12270 et = neon_check_type (2, rs,
12271 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12272 break;
5f4273c7 12273
037e8744
JB
12274 case 3:
12275 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12276 et = neon_check_type (3, rs,
12277 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12278 break;
12279
12280 default:
12281 abort ();
12282 }
12283
12284 if (et.type != NT_invtype)
12285 {
12286 pfn (rs);
12287 return SUCCESS;
12288 }
037e8744 12289
99b253c5 12290 inst.error = NULL;
037e8744
JB
12291 return FAIL;
12292}
12293
12294static void
12295do_vfp_nsyn_mla_mls (enum neon_shape rs)
12296{
12297 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12298
037e8744
JB
12299 if (rs == NS_FFF)
12300 {
12301 if (is_mla)
12302 do_vfp_nsyn_opcode ("fmacs");
12303 else
1ee69515 12304 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12305 }
12306 else
12307 {
12308 if (is_mla)
12309 do_vfp_nsyn_opcode ("fmacd");
12310 else
1ee69515 12311 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12312 }
12313}
12314
62f3b8c8
PB
12315static void
12316do_vfp_nsyn_fma_fms (enum neon_shape rs)
12317{
12318 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12319
12320 if (rs == NS_FFF)
12321 {
12322 if (is_fma)
12323 do_vfp_nsyn_opcode ("ffmas");
12324 else
12325 do_vfp_nsyn_opcode ("ffnmas");
12326 }
12327 else
12328 {
12329 if (is_fma)
12330 do_vfp_nsyn_opcode ("ffmad");
12331 else
12332 do_vfp_nsyn_opcode ("ffnmad");
12333 }
12334}
12335
037e8744
JB
12336static void
12337do_vfp_nsyn_mul (enum neon_shape rs)
12338{
12339 if (rs == NS_FFF)
12340 do_vfp_nsyn_opcode ("fmuls");
12341 else
12342 do_vfp_nsyn_opcode ("fmuld");
12343}
12344
12345static void
12346do_vfp_nsyn_abs_neg (enum neon_shape rs)
12347{
12348 int is_neg = (inst.instruction & 0x80) != 0;
12349 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12350
12351 if (rs == NS_FF)
12352 {
12353 if (is_neg)
12354 do_vfp_nsyn_opcode ("fnegs");
12355 else
12356 do_vfp_nsyn_opcode ("fabss");
12357 }
12358 else
12359 {
12360 if (is_neg)
12361 do_vfp_nsyn_opcode ("fnegd");
12362 else
12363 do_vfp_nsyn_opcode ("fabsd");
12364 }
12365}
12366
12367/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12368 insns belong to Neon, and are handled elsewhere. */
12369
12370static void
12371do_vfp_nsyn_ldm_stm (int is_dbmode)
12372{
12373 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12374 if (is_ldm)
12375 {
12376 if (is_dbmode)
12377 do_vfp_nsyn_opcode ("fldmdbs");
12378 else
12379 do_vfp_nsyn_opcode ("fldmias");
12380 }
12381 else
12382 {
12383 if (is_dbmode)
12384 do_vfp_nsyn_opcode ("fstmdbs");
12385 else
12386 do_vfp_nsyn_opcode ("fstmias");
12387 }
12388}
12389
037e8744
JB
12390static void
12391do_vfp_nsyn_sqrt (void)
12392{
12393 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12394 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12395
037e8744
JB
12396 if (rs == NS_FF)
12397 do_vfp_nsyn_opcode ("fsqrts");
12398 else
12399 do_vfp_nsyn_opcode ("fsqrtd");
12400}
12401
12402static void
12403do_vfp_nsyn_div (void)
12404{
12405 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12406 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12407 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12408
037e8744
JB
12409 if (rs == NS_FFF)
12410 do_vfp_nsyn_opcode ("fdivs");
12411 else
12412 do_vfp_nsyn_opcode ("fdivd");
12413}
12414
12415static void
12416do_vfp_nsyn_nmul (void)
12417{
12418 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12419 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12420 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12421
037e8744
JB
12422 if (rs == NS_FFF)
12423 {
88714cb8 12424 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12425 do_vfp_sp_dyadic ();
12426 }
12427 else
12428 {
88714cb8 12429 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12430 do_vfp_dp_rd_rn_rm ();
12431 }
12432 do_vfp_cond_or_thumb ();
12433}
12434
12435static void
12436do_vfp_nsyn_cmp (void)
12437{
12438 if (inst.operands[1].isreg)
12439 {
12440 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12441 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12442
037e8744
JB
12443 if (rs == NS_FF)
12444 {
88714cb8 12445 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12446 do_vfp_sp_monadic ();
12447 }
12448 else
12449 {
88714cb8 12450 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12451 do_vfp_dp_rd_rm ();
12452 }
12453 }
12454 else
12455 {
12456 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12457 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12458
12459 switch (inst.instruction & 0x0fffffff)
12460 {
12461 case N_MNEM_vcmp:
12462 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12463 break;
12464 case N_MNEM_vcmpe:
12465 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12466 break;
12467 default:
12468 abort ();
12469 }
5f4273c7 12470
037e8744
JB
12471 if (rs == NS_FI)
12472 {
88714cb8 12473 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12474 do_vfp_sp_compare_z ();
12475 }
12476 else
12477 {
88714cb8 12478 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12479 do_vfp_dp_rd ();
12480 }
12481 }
12482 do_vfp_cond_or_thumb ();
12483}
12484
12485static void
12486nsyn_insert_sp (void)
12487{
12488 inst.operands[1] = inst.operands[0];
12489 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 12490 inst.operands[0].reg = REG_SP;
037e8744
JB
12491 inst.operands[0].isreg = 1;
12492 inst.operands[0].writeback = 1;
12493 inst.operands[0].present = 1;
12494}
12495
12496static void
12497do_vfp_nsyn_push (void)
12498{
12499 nsyn_insert_sp ();
12500 if (inst.operands[1].issingle)
12501 do_vfp_nsyn_opcode ("fstmdbs");
12502 else
12503 do_vfp_nsyn_opcode ("fstmdbd");
12504}
12505
12506static void
12507do_vfp_nsyn_pop (void)
12508{
12509 nsyn_insert_sp ();
12510 if (inst.operands[1].issingle)
22b5b651 12511 do_vfp_nsyn_opcode ("fldmias");
037e8744 12512 else
22b5b651 12513 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
12514}
12515
12516/* Fix up Neon data-processing instructions, ORing in the correct bits for
12517 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12518
88714cb8
DG
12519static void
12520neon_dp_fixup (struct arm_it* insn)
037e8744 12521{
88714cb8
DG
12522 unsigned int i = insn->instruction;
12523 insn->is_neon = 1;
12524
037e8744
JB
12525 if (thumb_mode)
12526 {
12527 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12528 if (i & (1 << 24))
12529 i |= 1 << 28;
5f4273c7 12530
037e8744 12531 i &= ~(1 << 24);
5f4273c7 12532
037e8744
JB
12533 i |= 0xef000000;
12534 }
12535 else
12536 i |= 0xf2000000;
5f4273c7 12537
88714cb8 12538 insn->instruction = i;
037e8744
JB
12539}
12540
12541/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12542 (0, 1, 2, 3). */
12543
12544static unsigned
12545neon_logbits (unsigned x)
12546{
12547 return ffs (x) - 4;
12548}
12549
12550#define LOW4(R) ((R) & 0xf)
12551#define HI1(R) (((R) >> 4) & 1)
12552
12553/* Encode insns with bit pattern:
12554
12555 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12556 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 12557
037e8744
JB
12558 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12559 different meaning for some instruction. */
12560
12561static void
12562neon_three_same (int isquad, int ubit, int size)
12563{
12564 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12565 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12566 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12567 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12568 inst.instruction |= LOW4 (inst.operands[2].reg);
12569 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12570 inst.instruction |= (isquad != 0) << 6;
12571 inst.instruction |= (ubit != 0) << 24;
12572 if (size != -1)
12573 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 12574
88714cb8 12575 neon_dp_fixup (&inst);
037e8744
JB
12576}
12577
12578/* Encode instructions of the form:
12579
12580 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12581 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
12582
12583 Don't write size if SIZE == -1. */
12584
12585static void
12586neon_two_same (int qbit, int ubit, int size)
12587{
12588 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12589 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12590 inst.instruction |= LOW4 (inst.operands[1].reg);
12591 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12592 inst.instruction |= (qbit != 0) << 6;
12593 inst.instruction |= (ubit != 0) << 24;
12594
12595 if (size != -1)
12596 inst.instruction |= neon_logbits (size) << 18;
12597
88714cb8 12598 neon_dp_fixup (&inst);
5287ad62
JB
12599}
12600
12601/* Neon instruction encoders, in approximate order of appearance. */
12602
12603static void
12604do_neon_dyadic_i_su (void)
12605{
037e8744 12606 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12607 struct neon_type_el et = neon_check_type (3, rs,
12608 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 12609 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12610}
12611
12612static void
12613do_neon_dyadic_i64_su (void)
12614{
037e8744 12615 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12616 struct neon_type_el et = neon_check_type (3, rs,
12617 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 12618 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12619}
12620
12621static void
12622neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12623 unsigned immbits)
12624{
12625 unsigned size = et.size >> 3;
12626 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12627 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12628 inst.instruction |= LOW4 (inst.operands[1].reg);
12629 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12630 inst.instruction |= (isquad != 0) << 6;
12631 inst.instruction |= immbits << 16;
12632 inst.instruction |= (size >> 3) << 7;
12633 inst.instruction |= (size & 0x7) << 19;
12634 if (write_ubit)
12635 inst.instruction |= (uval != 0) << 24;
12636
88714cb8 12637 neon_dp_fixup (&inst);
5287ad62
JB
12638}
12639
12640static void
12641do_neon_shl_imm (void)
12642{
12643 if (!inst.operands[2].isreg)
12644 {
037e8744 12645 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12646 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 12647 NEON_ENCODE (IMMED, inst);
037e8744 12648 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
12649 }
12650 else
12651 {
037e8744 12652 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12653 struct neon_type_el et = neon_check_type (3, rs,
12654 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12655 unsigned int tmp;
12656
12657 /* VSHL/VQSHL 3-register variants have syntax such as:
12658 vshl.xx Dd, Dm, Dn
12659 whereas other 3-register operations encoded by neon_three_same have
12660 syntax like:
12661 vadd.xx Dd, Dn, Dm
12662 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12663 here. */
12664 tmp = inst.operands[2].reg;
12665 inst.operands[2].reg = inst.operands[1].reg;
12666 inst.operands[1].reg = tmp;
88714cb8 12667 NEON_ENCODE (INTEGER, inst);
037e8744 12668 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12669 }
12670}
12671
12672static void
12673do_neon_qshl_imm (void)
12674{
12675 if (!inst.operands[2].isreg)
12676 {
037e8744 12677 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12678 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 12679
88714cb8 12680 NEON_ENCODE (IMMED, inst);
037e8744 12681 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
12682 inst.operands[2].imm);
12683 }
12684 else
12685 {
037e8744 12686 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12687 struct neon_type_el et = neon_check_type (3, rs,
12688 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12689 unsigned int tmp;
12690
12691 /* See note in do_neon_shl_imm. */
12692 tmp = inst.operands[2].reg;
12693 inst.operands[2].reg = inst.operands[1].reg;
12694 inst.operands[1].reg = tmp;
88714cb8 12695 NEON_ENCODE (INTEGER, inst);
037e8744 12696 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12697 }
12698}
12699
627907b7
JB
12700static void
12701do_neon_rshl (void)
12702{
12703 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12704 struct neon_type_el et = neon_check_type (3, rs,
12705 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12706 unsigned int tmp;
12707
12708 tmp = inst.operands[2].reg;
12709 inst.operands[2].reg = inst.operands[1].reg;
12710 inst.operands[1].reg = tmp;
12711 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12712}
12713
5287ad62
JB
12714static int
12715neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12716{
036dc3f7
PB
12717 /* Handle .I8 pseudo-instructions. */
12718 if (size == 8)
5287ad62 12719 {
5287ad62
JB
12720 /* Unfortunately, this will make everything apart from zero out-of-range.
12721 FIXME is this the intended semantics? There doesn't seem much point in
12722 accepting .I8 if so. */
12723 immediate |= immediate << 8;
12724 size = 16;
036dc3f7
PB
12725 }
12726
12727 if (size >= 32)
12728 {
12729 if (immediate == (immediate & 0x000000ff))
12730 {
12731 *immbits = immediate;
12732 return 0x1;
12733 }
12734 else if (immediate == (immediate & 0x0000ff00))
12735 {
12736 *immbits = immediate >> 8;
12737 return 0x3;
12738 }
12739 else if (immediate == (immediate & 0x00ff0000))
12740 {
12741 *immbits = immediate >> 16;
12742 return 0x5;
12743 }
12744 else if (immediate == (immediate & 0xff000000))
12745 {
12746 *immbits = immediate >> 24;
12747 return 0x7;
12748 }
12749 if ((immediate & 0xffff) != (immediate >> 16))
12750 goto bad_immediate;
12751 immediate &= 0xffff;
5287ad62
JB
12752 }
12753
12754 if (immediate == (immediate & 0x000000ff))
12755 {
12756 *immbits = immediate;
036dc3f7 12757 return 0x9;
5287ad62
JB
12758 }
12759 else if (immediate == (immediate & 0x0000ff00))
12760 {
12761 *immbits = immediate >> 8;
036dc3f7 12762 return 0xb;
5287ad62
JB
12763 }
12764
12765 bad_immediate:
dcbf9037 12766 first_error (_("immediate value out of range"));
5287ad62
JB
12767 return FAIL;
12768}
12769
12770/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12771 A, B, C, D. */
12772
12773static int
12774neon_bits_same_in_bytes (unsigned imm)
12775{
12776 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12777 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12778 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12779 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12780}
12781
12782/* For immediate of above form, return 0bABCD. */
12783
12784static unsigned
12785neon_squash_bits (unsigned imm)
12786{
12787 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12788 | ((imm & 0x01000000) >> 21);
12789}
12790
136da414 12791/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
12792
12793static unsigned
12794neon_qfloat_bits (unsigned imm)
12795{
136da414 12796 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
12797}
12798
12799/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12800 the instruction. *OP is passed as the initial value of the op field, and
12801 may be set to a different value depending on the constant (i.e.
12802 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 12803 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 12804 try smaller element sizes. */
5287ad62
JB
12805
12806static int
c96612cc
JB
12807neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12808 unsigned *immbits, int *op, int size,
12809 enum neon_el_type type)
5287ad62 12810{
c96612cc
JB
12811 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12812 float. */
12813 if (type == NT_float && !float_p)
12814 return FAIL;
12815
136da414
JB
12816 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12817 {
12818 if (size != 32 || *op == 1)
12819 return FAIL;
12820 *immbits = neon_qfloat_bits (immlo);
12821 return 0xf;
12822 }
036dc3f7
PB
12823
12824 if (size == 64)
5287ad62 12825 {
036dc3f7
PB
12826 if (neon_bits_same_in_bytes (immhi)
12827 && neon_bits_same_in_bytes (immlo))
12828 {
12829 if (*op == 1)
12830 return FAIL;
12831 *immbits = (neon_squash_bits (immhi) << 4)
12832 | neon_squash_bits (immlo);
12833 *op = 1;
12834 return 0xe;
12835 }
12836
12837 if (immhi != immlo)
12838 return FAIL;
5287ad62 12839 }
036dc3f7
PB
12840
12841 if (size >= 32)
5287ad62 12842 {
036dc3f7
PB
12843 if (immlo == (immlo & 0x000000ff))
12844 {
12845 *immbits = immlo;
12846 return 0x0;
12847 }
12848 else if (immlo == (immlo & 0x0000ff00))
12849 {
12850 *immbits = immlo >> 8;
12851 return 0x2;
12852 }
12853 else if (immlo == (immlo & 0x00ff0000))
12854 {
12855 *immbits = immlo >> 16;
12856 return 0x4;
12857 }
12858 else if (immlo == (immlo & 0xff000000))
12859 {
12860 *immbits = immlo >> 24;
12861 return 0x6;
12862 }
12863 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12864 {
12865 *immbits = (immlo >> 8) & 0xff;
12866 return 0xc;
12867 }
12868 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12869 {
12870 *immbits = (immlo >> 16) & 0xff;
12871 return 0xd;
12872 }
12873
12874 if ((immlo & 0xffff) != (immlo >> 16))
12875 return FAIL;
12876 immlo &= 0xffff;
5287ad62 12877 }
036dc3f7
PB
12878
12879 if (size >= 16)
5287ad62 12880 {
036dc3f7
PB
12881 if (immlo == (immlo & 0x000000ff))
12882 {
12883 *immbits = immlo;
12884 return 0x8;
12885 }
12886 else if (immlo == (immlo & 0x0000ff00))
12887 {
12888 *immbits = immlo >> 8;
12889 return 0xa;
12890 }
12891
12892 if ((immlo & 0xff) != (immlo >> 8))
12893 return FAIL;
12894 immlo &= 0xff;
5287ad62 12895 }
036dc3f7
PB
12896
12897 if (immlo == (immlo & 0x000000ff))
5287ad62 12898 {
036dc3f7
PB
12899 /* Don't allow MVN with 8-bit immediate. */
12900 if (*op == 1)
12901 return FAIL;
12902 *immbits = immlo;
12903 return 0xe;
5287ad62 12904 }
5287ad62
JB
12905
12906 return FAIL;
12907}
12908
12909/* Write immediate bits [7:0] to the following locations:
12910
12911 |28/24|23 19|18 16|15 4|3 0|
12912 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12913
12914 This function is used by VMOV/VMVN/VORR/VBIC. */
12915
12916static void
12917neon_write_immbits (unsigned immbits)
12918{
12919 inst.instruction |= immbits & 0xf;
12920 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12921 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12922}
12923
12924/* Invert low-order SIZE bits of XHI:XLO. */
12925
12926static void
12927neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12928{
12929 unsigned immlo = xlo ? *xlo : 0;
12930 unsigned immhi = xhi ? *xhi : 0;
12931
12932 switch (size)
12933 {
12934 case 8:
12935 immlo = (~immlo) & 0xff;
12936 break;
12937
12938 case 16:
12939 immlo = (~immlo) & 0xffff;
12940 break;
12941
12942 case 64:
12943 immhi = (~immhi) & 0xffffffff;
12944 /* fall through. */
12945
12946 case 32:
12947 immlo = (~immlo) & 0xffffffff;
12948 break;
12949
12950 default:
12951 abort ();
12952 }
12953
12954 if (xlo)
12955 *xlo = immlo;
12956
12957 if (xhi)
12958 *xhi = immhi;
12959}
12960
12961static void
12962do_neon_logic (void)
12963{
12964 if (inst.operands[2].present && inst.operands[2].isreg)
12965 {
037e8744 12966 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12967 neon_check_type (3, rs, N_IGNORE_TYPE);
12968 /* U bit and size field were set as part of the bitmask. */
88714cb8 12969 NEON_ENCODE (INTEGER, inst);
037e8744 12970 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12971 }
12972 else
12973 {
4316f0d2
DG
12974 const int three_ops_form = (inst.operands[2].present
12975 && !inst.operands[2].isreg);
12976 const int immoperand = (three_ops_form ? 2 : 1);
12977 enum neon_shape rs = (three_ops_form
12978 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
12979 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
12980 struct neon_type_el et = neon_check_type (2, rs,
12981 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 12982 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
12983 unsigned immbits;
12984 int cmode;
5f4273c7 12985
5287ad62
JB
12986 if (et.type == NT_invtype)
12987 return;
5f4273c7 12988
4316f0d2
DG
12989 if (three_ops_form)
12990 constraint (inst.operands[0].reg != inst.operands[1].reg,
12991 _("first and second operands shall be the same register"));
12992
88714cb8 12993 NEON_ENCODE (IMMED, inst);
5287ad62 12994
4316f0d2 12995 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
12996 if (et.size == 64)
12997 {
12998 /* .i64 is a pseudo-op, so the immediate must be a repeating
12999 pattern. */
4316f0d2
DG
13000 if (immbits != (inst.operands[immoperand].regisimm ?
13001 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13002 {
13003 /* Set immbits to an invalid constant. */
13004 immbits = 0xdeadbeef;
13005 }
13006 }
13007
5287ad62
JB
13008 switch (opcode)
13009 {
13010 case N_MNEM_vbic:
036dc3f7 13011 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13012 break;
5f4273c7 13013
5287ad62 13014 case N_MNEM_vorr:
036dc3f7 13015 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13016 break;
5f4273c7 13017
5287ad62
JB
13018 case N_MNEM_vand:
13019 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13020 neon_invert_size (&immbits, 0, et.size);
13021 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13022 break;
5f4273c7 13023
5287ad62
JB
13024 case N_MNEM_vorn:
13025 /* Pseudo-instruction for VORR. */
5287ad62
JB
13026 neon_invert_size (&immbits, 0, et.size);
13027 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13028 break;
5f4273c7 13029
5287ad62
JB
13030 default:
13031 abort ();
13032 }
13033
13034 if (cmode == FAIL)
13035 return;
13036
037e8744 13037 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13038 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13039 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13040 inst.instruction |= cmode << 8;
13041 neon_write_immbits (immbits);
5f4273c7 13042
88714cb8 13043 neon_dp_fixup (&inst);
5287ad62
JB
13044 }
13045}
13046
13047static void
13048do_neon_bitfield (void)
13049{
037e8744 13050 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13051 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13052 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13053}
13054
13055static void
dcbf9037
JB
13056neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13057 unsigned destbits)
5287ad62 13058{
037e8744 13059 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13060 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13061 types | N_KEY);
5287ad62
JB
13062 if (et.type == NT_float)
13063 {
88714cb8 13064 NEON_ENCODE (FLOAT, inst);
037e8744 13065 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13066 }
13067 else
13068 {
88714cb8 13069 NEON_ENCODE (INTEGER, inst);
037e8744 13070 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13071 }
13072}
13073
13074static void
13075do_neon_dyadic_if_su (void)
13076{
dcbf9037 13077 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13078}
13079
13080static void
13081do_neon_dyadic_if_su_d (void)
13082{
13083 /* This version only allow D registers, but that constraint is enforced during
13084 operand parsing so we don't need to do anything extra here. */
dcbf9037 13085 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13086}
13087
5287ad62
JB
13088static void
13089do_neon_dyadic_if_i_d (void)
13090{
428e3f1f
PB
13091 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13092 affected if we specify unsigned args. */
13093 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13094}
13095
037e8744
JB
13096enum vfp_or_neon_is_neon_bits
13097{
13098 NEON_CHECK_CC = 1,
13099 NEON_CHECK_ARCH = 2
13100};
13101
13102/* Call this function if an instruction which may have belonged to the VFP or
13103 Neon instruction sets, but turned out to be a Neon instruction (due to the
13104 operand types involved, etc.). We have to check and/or fix-up a couple of
13105 things:
13106
13107 - Make sure the user hasn't attempted to make a Neon instruction
13108 conditional.
13109 - Alter the value in the condition code field if necessary.
13110 - Make sure that the arch supports Neon instructions.
13111
13112 Which of these operations take place depends on bits from enum
13113 vfp_or_neon_is_neon_bits.
13114
13115 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13116 current instruction's condition is COND_ALWAYS, the condition field is
13117 changed to inst.uncond_value. This is necessary because instructions shared
13118 between VFP and Neon may be conditional for the VFP variants only, and the
13119 unconditional Neon version must have, e.g., 0xF in the condition field. */
13120
13121static int
13122vfp_or_neon_is_neon (unsigned check)
13123{
13124 /* Conditions are always legal in Thumb mode (IT blocks). */
13125 if (!thumb_mode && (check & NEON_CHECK_CC))
13126 {
13127 if (inst.cond != COND_ALWAYS)
13128 {
13129 first_error (_(BAD_COND));
13130 return FAIL;
13131 }
13132 if (inst.uncond_value != -1)
13133 inst.instruction |= inst.uncond_value << 28;
13134 }
5f4273c7 13135
037e8744
JB
13136 if ((check & NEON_CHECK_ARCH)
13137 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13138 {
13139 first_error (_(BAD_FPU));
13140 return FAIL;
13141 }
5f4273c7 13142
037e8744
JB
13143 return SUCCESS;
13144}
13145
5287ad62
JB
13146static void
13147do_neon_addsub_if_i (void)
13148{
037e8744
JB
13149 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13150 return;
13151
13152 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13153 return;
13154
5287ad62
JB
13155 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13156 affected if we specify unsigned args. */
dcbf9037 13157 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13158}
13159
13160/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13161 result to be:
13162 V<op> A,B (A is operand 0, B is operand 2)
13163 to mean:
13164 V<op> A,B,A
13165 not:
13166 V<op> A,B,B
13167 so handle that case specially. */
13168
13169static void
13170neon_exchange_operands (void)
13171{
13172 void *scratch = alloca (sizeof (inst.operands[0]));
13173 if (inst.operands[1].present)
13174 {
13175 /* Swap operands[1] and operands[2]. */
13176 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13177 inst.operands[1] = inst.operands[2];
13178 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13179 }
13180 else
13181 {
13182 inst.operands[1] = inst.operands[2];
13183 inst.operands[2] = inst.operands[0];
13184 }
13185}
13186
13187static void
13188neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13189{
13190 if (inst.operands[2].isreg)
13191 {
13192 if (invert)
13193 neon_exchange_operands ();
dcbf9037 13194 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13195 }
13196 else
13197 {
037e8744 13198 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13199 struct neon_type_el et = neon_check_type (2, rs,
13200 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 13201
88714cb8 13202 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13203 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13204 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13205 inst.instruction |= LOW4 (inst.operands[1].reg);
13206 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13207 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13208 inst.instruction |= (et.type == NT_float) << 10;
13209 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13210
88714cb8 13211 neon_dp_fixup (&inst);
5287ad62
JB
13212 }
13213}
13214
13215static void
13216do_neon_cmp (void)
13217{
13218 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13219}
13220
13221static void
13222do_neon_cmp_inv (void)
13223{
13224 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13225}
13226
13227static void
13228do_neon_ceq (void)
13229{
13230 neon_compare (N_IF_32, N_IF_32, FALSE);
13231}
13232
13233/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13234 scalars, which are encoded in 5 bits, M : Rm.
13235 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13236 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13237 index in M. */
13238
13239static unsigned
13240neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13241{
dcbf9037
JB
13242 unsigned regno = NEON_SCALAR_REG (scalar);
13243 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13244
13245 switch (elsize)
13246 {
13247 case 16:
13248 if (regno > 7 || elno > 3)
13249 goto bad_scalar;
13250 return regno | (elno << 3);
5f4273c7 13251
5287ad62
JB
13252 case 32:
13253 if (regno > 15 || elno > 1)
13254 goto bad_scalar;
13255 return regno | (elno << 4);
13256
13257 default:
13258 bad_scalar:
dcbf9037 13259 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13260 }
13261
13262 return 0;
13263}
13264
13265/* Encode multiply / multiply-accumulate scalar instructions. */
13266
13267static void
13268neon_mul_mac (struct neon_type_el et, int ubit)
13269{
dcbf9037
JB
13270 unsigned scalar;
13271
13272 /* Give a more helpful error message if we have an invalid type. */
13273 if (et.type == NT_invtype)
13274 return;
5f4273c7 13275
dcbf9037 13276 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13277 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13278 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13279 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13280 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13281 inst.instruction |= LOW4 (scalar);
13282 inst.instruction |= HI1 (scalar) << 5;
13283 inst.instruction |= (et.type == NT_float) << 8;
13284 inst.instruction |= neon_logbits (et.size) << 20;
13285 inst.instruction |= (ubit != 0) << 24;
13286
88714cb8 13287 neon_dp_fixup (&inst);
5287ad62
JB
13288}
13289
13290static void
13291do_neon_mac_maybe_scalar (void)
13292{
037e8744
JB
13293 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13294 return;
13295
13296 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13297 return;
13298
5287ad62
JB
13299 if (inst.operands[2].isscalar)
13300 {
037e8744 13301 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13302 struct neon_type_el et = neon_check_type (3, rs,
13303 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 13304 NEON_ENCODE (SCALAR, inst);
037e8744 13305 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13306 }
13307 else
428e3f1f
PB
13308 {
13309 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13310 affected if we specify unsigned args. */
13311 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13312 }
5287ad62
JB
13313}
13314
62f3b8c8
PB
13315static void
13316do_neon_fmac (void)
13317{
13318 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13319 return;
13320
13321 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13322 return;
13323
13324 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13325}
13326
5287ad62
JB
13327static void
13328do_neon_tst (void)
13329{
037e8744 13330 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13331 struct neon_type_el et = neon_check_type (3, rs,
13332 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13333 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13334}
13335
13336/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13337 same types as the MAC equivalents. The polynomial type for this instruction
13338 is encoded the same as the integer type. */
13339
13340static void
13341do_neon_mul (void)
13342{
037e8744
JB
13343 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13344 return;
13345
13346 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13347 return;
13348
5287ad62
JB
13349 if (inst.operands[2].isscalar)
13350 do_neon_mac_maybe_scalar ();
13351 else
dcbf9037 13352 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13353}
13354
13355static void
13356do_neon_qdmulh (void)
13357{
13358 if (inst.operands[2].isscalar)
13359 {
037e8744 13360 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13361 struct neon_type_el et = neon_check_type (3, rs,
13362 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13363 NEON_ENCODE (SCALAR, inst);
037e8744 13364 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13365 }
13366 else
13367 {
037e8744 13368 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13369 struct neon_type_el et = neon_check_type (3, rs,
13370 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13371 NEON_ENCODE (INTEGER, inst);
5287ad62 13372 /* The U bit (rounding) comes from bit mask. */
037e8744 13373 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13374 }
13375}
13376
13377static void
13378do_neon_fcmp_absolute (void)
13379{
037e8744 13380 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13381 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13382 /* Size field comes from bit mask. */
037e8744 13383 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
13384}
13385
13386static void
13387do_neon_fcmp_absolute_inv (void)
13388{
13389 neon_exchange_operands ();
13390 do_neon_fcmp_absolute ();
13391}
13392
13393static void
13394do_neon_step (void)
13395{
037e8744 13396 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 13397 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 13398 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13399}
13400
13401static void
13402do_neon_abs_neg (void)
13403{
037e8744
JB
13404 enum neon_shape rs;
13405 struct neon_type_el et;
5f4273c7 13406
037e8744
JB
13407 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13408 return;
13409
13410 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13411 return;
13412
13413 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13414 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 13415
5287ad62
JB
13416 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13417 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13418 inst.instruction |= LOW4 (inst.operands[1].reg);
13419 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13420 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13421 inst.instruction |= (et.type == NT_float) << 10;
13422 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13423
88714cb8 13424 neon_dp_fixup (&inst);
5287ad62
JB
13425}
13426
13427static void
13428do_neon_sli (void)
13429{
037e8744 13430 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13431 struct neon_type_el et = neon_check_type (2, rs,
13432 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13433 int imm = inst.operands[2].imm;
13434 constraint (imm < 0 || (unsigned)imm >= et.size,
13435 _("immediate out of range for insert"));
037e8744 13436 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13437}
13438
13439static void
13440do_neon_sri (void)
13441{
037e8744 13442 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13443 struct neon_type_el et = neon_check_type (2, rs,
13444 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13445 int imm = inst.operands[2].imm;
13446 constraint (imm < 1 || (unsigned)imm > et.size,
13447 _("immediate out of range for insert"));
037e8744 13448 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
13449}
13450
13451static void
13452do_neon_qshlu_imm (void)
13453{
037e8744 13454 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13455 struct neon_type_el et = neon_check_type (2, rs,
13456 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13457 int imm = inst.operands[2].imm;
13458 constraint (imm < 0 || (unsigned)imm >= et.size,
13459 _("immediate out of range for shift"));
13460 /* Only encodes the 'U present' variant of the instruction.
13461 In this case, signed types have OP (bit 8) set to 0.
13462 Unsigned types have OP set to 1. */
13463 inst.instruction |= (et.type == NT_unsigned) << 8;
13464 /* The rest of the bits are the same as other immediate shifts. */
037e8744 13465 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13466}
13467
13468static void
13469do_neon_qmovn (void)
13470{
13471 struct neon_type_el et = neon_check_type (2, NS_DQ,
13472 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13473 /* Saturating move where operands can be signed or unsigned, and the
13474 destination has the same signedness. */
88714cb8 13475 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13476 if (et.type == NT_unsigned)
13477 inst.instruction |= 0xc0;
13478 else
13479 inst.instruction |= 0x80;
13480 neon_two_same (0, 1, et.size / 2);
13481}
13482
13483static void
13484do_neon_qmovun (void)
13485{
13486 struct neon_type_el et = neon_check_type (2, NS_DQ,
13487 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13488 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 13489 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13490 neon_two_same (0, 1, et.size / 2);
13491}
13492
13493static void
13494do_neon_rshift_sat_narrow (void)
13495{
13496 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13497 or unsigned. If operands are unsigned, results must also be unsigned. */
13498 struct neon_type_el et = neon_check_type (2, NS_DQI,
13499 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13500 int imm = inst.operands[2].imm;
13501 /* This gets the bounds check, size encoding and immediate bits calculation
13502 right. */
13503 et.size /= 2;
5f4273c7 13504
5287ad62
JB
13505 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13506 VQMOVN.I<size> <Dd>, <Qm>. */
13507 if (imm == 0)
13508 {
13509 inst.operands[2].present = 0;
13510 inst.instruction = N_MNEM_vqmovn;
13511 do_neon_qmovn ();
13512 return;
13513 }
5f4273c7 13514
5287ad62
JB
13515 constraint (imm < 1 || (unsigned)imm > et.size,
13516 _("immediate out of range"));
13517 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13518}
13519
13520static void
13521do_neon_rshift_sat_narrow_u (void)
13522{
13523 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13524 or unsigned. If operands are unsigned, results must also be unsigned. */
13525 struct neon_type_el et = neon_check_type (2, NS_DQI,
13526 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13527 int imm = inst.operands[2].imm;
13528 /* This gets the bounds check, size encoding and immediate bits calculation
13529 right. */
13530 et.size /= 2;
13531
13532 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13533 VQMOVUN.I<size> <Dd>, <Qm>. */
13534 if (imm == 0)
13535 {
13536 inst.operands[2].present = 0;
13537 inst.instruction = N_MNEM_vqmovun;
13538 do_neon_qmovun ();
13539 return;
13540 }
13541
13542 constraint (imm < 1 || (unsigned)imm > et.size,
13543 _("immediate out of range"));
13544 /* FIXME: The manual is kind of unclear about what value U should have in
13545 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13546 must be 1. */
13547 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13548}
13549
13550static void
13551do_neon_movn (void)
13552{
13553 struct neon_type_el et = neon_check_type (2, NS_DQ,
13554 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 13555 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13556 neon_two_same (0, 1, et.size / 2);
13557}
13558
13559static void
13560do_neon_rshift_narrow (void)
13561{
13562 struct neon_type_el et = neon_check_type (2, NS_DQI,
13563 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13564 int imm = inst.operands[2].imm;
13565 /* This gets the bounds check, size encoding and immediate bits calculation
13566 right. */
13567 et.size /= 2;
5f4273c7 13568
5287ad62
JB
13569 /* If immediate is zero then we are a pseudo-instruction for
13570 VMOVN.I<size> <Dd>, <Qm> */
13571 if (imm == 0)
13572 {
13573 inst.operands[2].present = 0;
13574 inst.instruction = N_MNEM_vmovn;
13575 do_neon_movn ();
13576 return;
13577 }
5f4273c7 13578
5287ad62
JB
13579 constraint (imm < 1 || (unsigned)imm > et.size,
13580 _("immediate out of range for narrowing operation"));
13581 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13582}
13583
13584static void
13585do_neon_shll (void)
13586{
13587 /* FIXME: Type checking when lengthening. */
13588 struct neon_type_el et = neon_check_type (2, NS_QDI,
13589 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13590 unsigned imm = inst.operands[2].imm;
13591
13592 if (imm == et.size)
13593 {
13594 /* Maximum shift variant. */
88714cb8 13595 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13596 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13597 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13598 inst.instruction |= LOW4 (inst.operands[1].reg);
13599 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13600 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13601
88714cb8 13602 neon_dp_fixup (&inst);
5287ad62
JB
13603 }
13604 else
13605 {
13606 /* A more-specific type check for non-max versions. */
13607 et = neon_check_type (2, NS_QDI,
13608 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 13609 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13610 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13611 }
13612}
13613
037e8744 13614/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
13615 the current instruction is. */
13616
13617static int
13618neon_cvt_flavour (enum neon_shape rs)
13619{
037e8744
JB
13620#define CVT_VAR(C,X,Y) \
13621 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13622 if (et.type != NT_invtype) \
13623 { \
13624 inst.error = NULL; \
13625 return (C); \
5287ad62
JB
13626 }
13627 struct neon_type_el et;
037e8744
JB
13628 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13629 || rs == NS_FF) ? N_VFP : 0;
13630 /* The instruction versions which take an immediate take one register
13631 argument, which is extended to the width of the full register. Thus the
13632 "source" and "destination" registers must have the same width. Hack that
13633 here by making the size equal to the key (wider, in this case) operand. */
13634 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 13635
5287ad62
JB
13636 CVT_VAR (0, N_S32, N_F32);
13637 CVT_VAR (1, N_U32, N_F32);
13638 CVT_VAR (2, N_F32, N_S32);
13639 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
13640 /* Half-precision conversions. */
13641 CVT_VAR (4, N_F32, N_F16);
13642 CVT_VAR (5, N_F16, N_F32);
5f4273c7 13643
037e8744 13644 whole_reg = N_VFP;
5f4273c7 13645
037e8744 13646 /* VFP instructions. */
8e79c3df
CM
13647 CVT_VAR (6, N_F32, N_F64);
13648 CVT_VAR (7, N_F64, N_F32);
13649 CVT_VAR (8, N_S32, N_F64 | key);
13650 CVT_VAR (9, N_U32, N_F64 | key);
13651 CVT_VAR (10, N_F64 | key, N_S32);
13652 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 13653 /* VFP instructions with bitshift. */
8e79c3df
CM
13654 CVT_VAR (12, N_F32 | key, N_S16);
13655 CVT_VAR (13, N_F32 | key, N_U16);
13656 CVT_VAR (14, N_F64 | key, N_S16);
13657 CVT_VAR (15, N_F64 | key, N_U16);
13658 CVT_VAR (16, N_S16, N_F32 | key);
13659 CVT_VAR (17, N_U16, N_F32 | key);
13660 CVT_VAR (18, N_S16, N_F64 | key);
13661 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 13662
5287ad62
JB
13663 return -1;
13664#undef CVT_VAR
13665}
13666
037e8744
JB
13667/* Neon-syntax VFP conversions. */
13668
5287ad62 13669static void
037e8744 13670do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 13671{
037e8744 13672 const char *opname = 0;
5f4273c7 13673
037e8744 13674 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 13675 {
037e8744
JB
13676 /* Conversions with immediate bitshift. */
13677 const char *enc[] =
13678 {
13679 "ftosls",
13680 "ftouls",
13681 "fsltos",
13682 "fultos",
13683 NULL,
13684 NULL,
8e79c3df
CM
13685 NULL,
13686 NULL,
037e8744
JB
13687 "ftosld",
13688 "ftould",
13689 "fsltod",
13690 "fultod",
13691 "fshtos",
13692 "fuhtos",
13693 "fshtod",
13694 "fuhtod",
13695 "ftoshs",
13696 "ftouhs",
13697 "ftoshd",
13698 "ftouhd"
13699 };
13700
13701 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13702 {
13703 opname = enc[flavour];
13704 constraint (inst.operands[0].reg != inst.operands[1].reg,
13705 _("operands 0 and 1 must be the same register"));
13706 inst.operands[1] = inst.operands[2];
13707 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13708 }
5287ad62
JB
13709 }
13710 else
13711 {
037e8744
JB
13712 /* Conversions without bitshift. */
13713 const char *enc[] =
13714 {
13715 "ftosis",
13716 "ftouis",
13717 "fsitos",
13718 "fuitos",
8e79c3df
CM
13719 "NULL",
13720 "NULL",
037e8744
JB
13721 "fcvtsd",
13722 "fcvtds",
13723 "ftosid",
13724 "ftouid",
13725 "fsitod",
13726 "fuitod"
13727 };
13728
13729 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13730 opname = enc[flavour];
13731 }
13732
13733 if (opname)
13734 do_vfp_nsyn_opcode (opname);
13735}
13736
13737static void
13738do_vfp_nsyn_cvtz (void)
13739{
13740 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13741 int flavour = neon_cvt_flavour (rs);
13742 const char *enc[] =
13743 {
13744 "ftosizs",
13745 "ftouizs",
13746 NULL,
13747 NULL,
13748 NULL,
13749 NULL,
8e79c3df
CM
13750 NULL,
13751 NULL,
037e8744
JB
13752 "ftosizd",
13753 "ftouizd"
13754 };
13755
13756 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13757 do_vfp_nsyn_opcode (enc[flavour]);
13758}
f31fef98 13759
037e8744 13760static void
e3e535bc 13761do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
13762{
13763 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 13764 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
13765 int flavour = neon_cvt_flavour (rs);
13766
e3e535bc
NC
13767 /* PR11109: Handle round-to-zero for VCVT conversions. */
13768 if (round_to_zero
13769 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
13770 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
13771 && (rs == NS_FD || rs == NS_FF))
13772 {
13773 do_vfp_nsyn_cvtz ();
13774 return;
13775 }
13776
037e8744 13777 /* VFP rather than Neon conversions. */
8e79c3df 13778 if (flavour >= 6)
037e8744
JB
13779 {
13780 do_vfp_nsyn_cvt (rs, flavour);
13781 return;
13782 }
13783
13784 switch (rs)
13785 {
13786 case NS_DDI:
13787 case NS_QQI:
13788 {
35997600
NC
13789 unsigned immbits;
13790 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13791
037e8744
JB
13792 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13793 return;
13794
13795 /* Fixed-point conversion with #0 immediate is encoded as an
13796 integer conversion. */
13797 if (inst.operands[2].present && inst.operands[2].imm == 0)
13798 goto int_encode;
35997600 13799 immbits = 32 - inst.operands[2].imm;
88714cb8 13800 NEON_ENCODE (IMMED, inst);
037e8744
JB
13801 if (flavour != -1)
13802 inst.instruction |= enctab[flavour];
13803 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13804 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13805 inst.instruction |= LOW4 (inst.operands[1].reg);
13806 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13807 inst.instruction |= neon_quad (rs) << 6;
13808 inst.instruction |= 1 << 21;
13809 inst.instruction |= immbits << 16;
13810
88714cb8 13811 neon_dp_fixup (&inst);
037e8744
JB
13812 }
13813 break;
13814
13815 case NS_DD:
13816 case NS_QQ:
13817 int_encode:
13818 {
13819 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13820
88714cb8 13821 NEON_ENCODE (INTEGER, inst);
037e8744
JB
13822
13823 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13824 return;
13825
13826 if (flavour != -1)
13827 inst.instruction |= enctab[flavour];
13828
13829 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13830 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13831 inst.instruction |= LOW4 (inst.operands[1].reg);
13832 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13833 inst.instruction |= neon_quad (rs) << 6;
13834 inst.instruction |= 2 << 18;
13835
88714cb8 13836 neon_dp_fixup (&inst);
037e8744
JB
13837 }
13838 break;
13839
8e79c3df
CM
13840 /* Half-precision conversions for Advanced SIMD -- neon. */
13841 case NS_QD:
13842 case NS_DQ:
13843
13844 if ((rs == NS_DQ)
13845 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13846 {
13847 as_bad (_("operand size must match register width"));
13848 break;
13849 }
13850
13851 if ((rs == NS_QD)
13852 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13853 {
13854 as_bad (_("operand size must match register width"));
13855 break;
13856 }
13857
13858 if (rs == NS_DQ)
13859 inst.instruction = 0x3b60600;
13860 else
13861 inst.instruction = 0x3b60700;
13862
13863 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13864 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13865 inst.instruction |= LOW4 (inst.operands[1].reg);
13866 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 13867 neon_dp_fixup (&inst);
8e79c3df
CM
13868 break;
13869
037e8744
JB
13870 default:
13871 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13872 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 13873 }
5287ad62
JB
13874}
13875
e3e535bc
NC
13876static void
13877do_neon_cvtr (void)
13878{
13879 do_neon_cvt_1 (FALSE);
13880}
13881
13882static void
13883do_neon_cvt (void)
13884{
13885 do_neon_cvt_1 (TRUE);
13886}
13887
8e79c3df
CM
13888static void
13889do_neon_cvtb (void)
13890{
13891 inst.instruction = 0xeb20a40;
13892
13893 /* The sizes are attached to the mnemonic. */
13894 if (inst.vectype.el[0].type != NT_invtype
13895 && inst.vectype.el[0].size == 16)
13896 inst.instruction |= 0x00010000;
13897
13898 /* Programmer's syntax: the sizes are attached to the operands. */
13899 else if (inst.operands[0].vectype.type != NT_invtype
13900 && inst.operands[0].vectype.size == 16)
13901 inst.instruction |= 0x00010000;
13902
13903 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13904 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13905 do_vfp_cond_or_thumb ();
13906}
13907
13908
13909static void
13910do_neon_cvtt (void)
13911{
13912 do_neon_cvtb ();
13913 inst.instruction |= 0x80;
13914}
13915
5287ad62
JB
13916static void
13917neon_move_immediate (void)
13918{
037e8744
JB
13919 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13920 struct neon_type_el et = neon_check_type (2, rs,
13921 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 13922 unsigned immlo, immhi = 0, immbits;
c96612cc 13923 int op, cmode, float_p;
5287ad62 13924
037e8744
JB
13925 constraint (et.type == NT_invtype,
13926 _("operand size must be specified for immediate VMOV"));
13927
5287ad62
JB
13928 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13929 op = (inst.instruction & (1 << 5)) != 0;
13930
13931 immlo = inst.operands[1].imm;
13932 if (inst.operands[1].regisimm)
13933 immhi = inst.operands[1].reg;
13934
13935 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13936 _("immediate has bits set outside the operand size"));
13937
c96612cc
JB
13938 float_p = inst.operands[1].immisfloat;
13939
13940 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 13941 et.size, et.type)) == FAIL)
5287ad62
JB
13942 {
13943 /* Invert relevant bits only. */
13944 neon_invert_size (&immlo, &immhi, et.size);
13945 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13946 with one or the other; those cases are caught by
13947 neon_cmode_for_move_imm. */
13948 op = !op;
c96612cc
JB
13949 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13950 &op, et.size, et.type)) == FAIL)
5287ad62 13951 {
dcbf9037 13952 first_error (_("immediate out of range"));
5287ad62
JB
13953 return;
13954 }
13955 }
13956
13957 inst.instruction &= ~(1 << 5);
13958 inst.instruction |= op << 5;
13959
13960 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13961 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 13962 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13963 inst.instruction |= cmode << 8;
13964
13965 neon_write_immbits (immbits);
13966}
13967
13968static void
13969do_neon_mvn (void)
13970{
13971 if (inst.operands[1].isreg)
13972 {
037e8744 13973 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 13974
88714cb8 13975 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13976 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13977 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13978 inst.instruction |= LOW4 (inst.operands[1].reg);
13979 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13980 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13981 }
13982 else
13983 {
88714cb8 13984 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13985 neon_move_immediate ();
13986 }
13987
88714cb8 13988 neon_dp_fixup (&inst);
5287ad62
JB
13989}
13990
13991/* Encode instructions of form:
13992
13993 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 13994 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
13995
13996static void
13997neon_mixed_length (struct neon_type_el et, unsigned size)
13998{
13999 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14000 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14001 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14002 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14003 inst.instruction |= LOW4 (inst.operands[2].reg);
14004 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14005 inst.instruction |= (et.type == NT_unsigned) << 24;
14006 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14007
88714cb8 14008 neon_dp_fixup (&inst);
5287ad62
JB
14009}
14010
14011static void
14012do_neon_dyadic_long (void)
14013{
14014 /* FIXME: Type checking for lengthening op. */
14015 struct neon_type_el et = neon_check_type (3, NS_QDD,
14016 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14017 neon_mixed_length (et, et.size);
14018}
14019
14020static void
14021do_neon_abal (void)
14022{
14023 struct neon_type_el et = neon_check_type (3, NS_QDD,
14024 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14025 neon_mixed_length (et, et.size);
14026}
14027
14028static void
14029neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14030{
14031 if (inst.operands[2].isscalar)
14032 {
dcbf9037
JB
14033 struct neon_type_el et = neon_check_type (3, NS_QDS,
14034 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14035 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14036 neon_mul_mac (et, et.type == NT_unsigned);
14037 }
14038 else
14039 {
14040 struct neon_type_el et = neon_check_type (3, NS_QDD,
14041 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14042 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14043 neon_mixed_length (et, et.size);
14044 }
14045}
14046
14047static void
14048do_neon_mac_maybe_scalar_long (void)
14049{
14050 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14051}
14052
14053static void
14054do_neon_dyadic_wide (void)
14055{
14056 struct neon_type_el et = neon_check_type (3, NS_QQD,
14057 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14058 neon_mixed_length (et, et.size);
14059}
14060
14061static void
14062do_neon_dyadic_narrow (void)
14063{
14064 struct neon_type_el et = neon_check_type (3, NS_QDD,
14065 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14066 /* Operand sign is unimportant, and the U bit is part of the opcode,
14067 so force the operand type to integer. */
14068 et.type = NT_integer;
5287ad62
JB
14069 neon_mixed_length (et, et.size / 2);
14070}
14071
14072static void
14073do_neon_mul_sat_scalar_long (void)
14074{
14075 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14076}
14077
14078static void
14079do_neon_vmull (void)
14080{
14081 if (inst.operands[2].isscalar)
14082 do_neon_mac_maybe_scalar_long ();
14083 else
14084 {
14085 struct neon_type_el et = neon_check_type (3, NS_QDD,
14086 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14087 if (et.type == NT_poly)
88714cb8 14088 NEON_ENCODE (POLY, inst);
5287ad62 14089 else
88714cb8 14090 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14091 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14092 zero. Should be OK as-is. */
14093 neon_mixed_length (et, et.size);
14094 }
14095}
14096
14097static void
14098do_neon_ext (void)
14099{
037e8744 14100 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14101 struct neon_type_el et = neon_check_type (3, rs,
14102 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14103 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14104
14105 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14106 _("shift out of range"));
5287ad62
JB
14107 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14108 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14109 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14110 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14111 inst.instruction |= LOW4 (inst.operands[2].reg);
14112 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14113 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14114 inst.instruction |= imm << 8;
5f4273c7 14115
88714cb8 14116 neon_dp_fixup (&inst);
5287ad62
JB
14117}
14118
14119static void
14120do_neon_rev (void)
14121{
037e8744 14122 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14123 struct neon_type_el et = neon_check_type (2, rs,
14124 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14125 unsigned op = (inst.instruction >> 7) & 3;
14126 /* N (width of reversed regions) is encoded as part of the bitmask. We
14127 extract it here to check the elements to be reversed are smaller.
14128 Otherwise we'd get a reserved instruction. */
14129 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14130 gas_assert (elsize != 0);
5287ad62
JB
14131 constraint (et.size >= elsize,
14132 _("elements must be smaller than reversal region"));
037e8744 14133 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14134}
14135
14136static void
14137do_neon_dup (void)
14138{
14139 if (inst.operands[1].isscalar)
14140 {
037e8744 14141 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14142 struct neon_type_el et = neon_check_type (2, rs,
14143 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14144 unsigned sizebits = et.size >> 3;
dcbf9037 14145 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14146 int logsize = neon_logbits (et.size);
dcbf9037 14147 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14148
14149 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14150 return;
14151
88714cb8 14152 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14153 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14154 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14155 inst.instruction |= LOW4 (dm);
14156 inst.instruction |= HI1 (dm) << 5;
037e8744 14157 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14158 inst.instruction |= x << 17;
14159 inst.instruction |= sizebits << 16;
5f4273c7 14160
88714cb8 14161 neon_dp_fixup (&inst);
5287ad62
JB
14162 }
14163 else
14164 {
037e8744
JB
14165 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14166 struct neon_type_el et = neon_check_type (2, rs,
14167 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 14168 /* Duplicate ARM register to lanes of vector. */
88714cb8 14169 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
14170 switch (et.size)
14171 {
14172 case 8: inst.instruction |= 0x400000; break;
14173 case 16: inst.instruction |= 0x000020; break;
14174 case 32: inst.instruction |= 0x000000; break;
14175 default: break;
14176 }
14177 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14178 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14179 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14180 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14181 /* The encoding for this instruction is identical for the ARM and Thumb
14182 variants, except for the condition field. */
037e8744 14183 do_vfp_cond_or_thumb ();
5287ad62
JB
14184 }
14185}
14186
14187/* VMOV has particularly many variations. It can be one of:
14188 0. VMOV<c><q> <Qd>, <Qm>
14189 1. VMOV<c><q> <Dd>, <Dm>
14190 (Register operations, which are VORR with Rm = Rn.)
14191 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14192 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14193 (Immediate loads.)
14194 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14195 (ARM register to scalar.)
14196 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14197 (Two ARM registers to vector.)
14198 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14199 (Scalar to ARM register.)
14200 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14201 (Vector to two ARM registers.)
037e8744
JB
14202 8. VMOV.F32 <Sd>, <Sm>
14203 9. VMOV.F64 <Dd>, <Dm>
14204 (VFP register moves.)
14205 10. VMOV.F32 <Sd>, #imm
14206 11. VMOV.F64 <Dd>, #imm
14207 (VFP float immediate load.)
14208 12. VMOV <Rd>, <Sm>
14209 (VFP single to ARM reg.)
14210 13. VMOV <Sd>, <Rm>
14211 (ARM reg to VFP single.)
14212 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14213 (Two ARM regs to two VFP singles.)
14214 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14215 (Two VFP singles to two ARM regs.)
5f4273c7 14216
037e8744
JB
14217 These cases can be disambiguated using neon_select_shape, except cases 1/9
14218 and 3/11 which depend on the operand type too.
5f4273c7 14219
5287ad62 14220 All the encoded bits are hardcoded by this function.
5f4273c7 14221
b7fc2769
JB
14222 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14223 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14224
5287ad62 14225 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14226 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14227
14228static void
14229do_neon_mov (void)
14230{
037e8744
JB
14231 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14232 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14233 NS_NULL);
14234 struct neon_type_el et;
14235 const char *ldconst = 0;
5287ad62 14236
037e8744 14237 switch (rs)
5287ad62 14238 {
037e8744
JB
14239 case NS_DD: /* case 1/9. */
14240 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14241 /* It is not an error here if no type is given. */
14242 inst.error = NULL;
14243 if (et.type == NT_float && et.size == 64)
5287ad62 14244 {
037e8744
JB
14245 do_vfp_nsyn_opcode ("fcpyd");
14246 break;
5287ad62 14247 }
037e8744 14248 /* fall through. */
5287ad62 14249
037e8744
JB
14250 case NS_QQ: /* case 0/1. */
14251 {
14252 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14253 return;
14254 /* The architecture manual I have doesn't explicitly state which
14255 value the U bit should have for register->register moves, but
14256 the equivalent VORR instruction has U = 0, so do that. */
14257 inst.instruction = 0x0200110;
14258 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14259 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14260 inst.instruction |= LOW4 (inst.operands[1].reg);
14261 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14262 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14263 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14264 inst.instruction |= neon_quad (rs) << 6;
14265
88714cb8 14266 neon_dp_fixup (&inst);
037e8744
JB
14267 }
14268 break;
5f4273c7 14269
037e8744
JB
14270 case NS_DI: /* case 3/11. */
14271 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14272 inst.error = NULL;
14273 if (et.type == NT_float && et.size == 64)
5287ad62 14274 {
037e8744
JB
14275 /* case 11 (fconstd). */
14276 ldconst = "fconstd";
14277 goto encode_fconstd;
5287ad62 14278 }
037e8744
JB
14279 /* fall through. */
14280
14281 case NS_QI: /* case 2/3. */
14282 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14283 return;
14284 inst.instruction = 0x0800010;
14285 neon_move_immediate ();
88714cb8 14286 neon_dp_fixup (&inst);
5287ad62 14287 break;
5f4273c7 14288
037e8744
JB
14289 case NS_SR: /* case 4. */
14290 {
14291 unsigned bcdebits = 0;
91d6fa6a 14292 int logsize;
037e8744
JB
14293 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14294 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14295
91d6fa6a
NC
14296 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14297 logsize = neon_logbits (et.size);
14298
037e8744
JB
14299 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14300 _(BAD_FPU));
14301 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14302 && et.size != 32, _(BAD_FPU));
14303 constraint (et.type == NT_invtype, _("bad type for scalar"));
14304 constraint (x >= 64 / et.size, _("scalar index out of range"));
14305
14306 switch (et.size)
14307 {
14308 case 8: bcdebits = 0x8; break;
14309 case 16: bcdebits = 0x1; break;
14310 case 32: bcdebits = 0x0; break;
14311 default: ;
14312 }
14313
14314 bcdebits |= x << logsize;
14315
14316 inst.instruction = 0xe000b10;
14317 do_vfp_cond_or_thumb ();
14318 inst.instruction |= LOW4 (dn) << 16;
14319 inst.instruction |= HI1 (dn) << 7;
14320 inst.instruction |= inst.operands[1].reg << 12;
14321 inst.instruction |= (bcdebits & 3) << 5;
14322 inst.instruction |= (bcdebits >> 2) << 21;
14323 }
14324 break;
5f4273c7 14325
037e8744 14326 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14327 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14328 _(BAD_FPU));
b7fc2769 14329
037e8744
JB
14330 inst.instruction = 0xc400b10;
14331 do_vfp_cond_or_thumb ();
14332 inst.instruction |= LOW4 (inst.operands[0].reg);
14333 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14334 inst.instruction |= inst.operands[1].reg << 12;
14335 inst.instruction |= inst.operands[2].reg << 16;
14336 break;
5f4273c7 14337
037e8744
JB
14338 case NS_RS: /* case 6. */
14339 {
91d6fa6a 14340 unsigned logsize;
037e8744
JB
14341 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14342 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14343 unsigned abcdebits = 0;
14344
91d6fa6a
NC
14345 et = neon_check_type (2, NS_NULL,
14346 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14347 logsize = neon_logbits (et.size);
14348
037e8744
JB
14349 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14350 _(BAD_FPU));
14351 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14352 && et.size != 32, _(BAD_FPU));
14353 constraint (et.type == NT_invtype, _("bad type for scalar"));
14354 constraint (x >= 64 / et.size, _("scalar index out of range"));
14355
14356 switch (et.size)
14357 {
14358 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14359 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14360 case 32: abcdebits = 0x00; break;
14361 default: ;
14362 }
14363
14364 abcdebits |= x << logsize;
14365 inst.instruction = 0xe100b10;
14366 do_vfp_cond_or_thumb ();
14367 inst.instruction |= LOW4 (dn) << 16;
14368 inst.instruction |= HI1 (dn) << 7;
14369 inst.instruction |= inst.operands[0].reg << 12;
14370 inst.instruction |= (abcdebits & 3) << 5;
14371 inst.instruction |= (abcdebits >> 2) << 21;
14372 }
14373 break;
5f4273c7 14374
037e8744
JB
14375 case NS_RRD: /* case 7 (fmrrd). */
14376 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14377 _(BAD_FPU));
14378
14379 inst.instruction = 0xc500b10;
14380 do_vfp_cond_or_thumb ();
14381 inst.instruction |= inst.operands[0].reg << 12;
14382 inst.instruction |= inst.operands[1].reg << 16;
14383 inst.instruction |= LOW4 (inst.operands[2].reg);
14384 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14385 break;
5f4273c7 14386
037e8744
JB
14387 case NS_FF: /* case 8 (fcpys). */
14388 do_vfp_nsyn_opcode ("fcpys");
14389 break;
5f4273c7 14390
037e8744
JB
14391 case NS_FI: /* case 10 (fconsts). */
14392 ldconst = "fconsts";
14393 encode_fconstd:
14394 if (is_quarter_float (inst.operands[1].imm))
5287ad62 14395 {
037e8744
JB
14396 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14397 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
14398 }
14399 else
037e8744
JB
14400 first_error (_("immediate out of range"));
14401 break;
5f4273c7 14402
037e8744
JB
14403 case NS_RF: /* case 12 (fmrs). */
14404 do_vfp_nsyn_opcode ("fmrs");
14405 break;
5f4273c7 14406
037e8744
JB
14407 case NS_FR: /* case 13 (fmsr). */
14408 do_vfp_nsyn_opcode ("fmsr");
14409 break;
5f4273c7 14410
037e8744
JB
14411 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14412 (one of which is a list), but we have parsed four. Do some fiddling to
14413 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14414 expect. */
14415 case NS_RRFF: /* case 14 (fmrrs). */
14416 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14417 _("VFP registers must be adjacent"));
14418 inst.operands[2].imm = 2;
14419 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14420 do_vfp_nsyn_opcode ("fmrrs");
14421 break;
5f4273c7 14422
037e8744
JB
14423 case NS_FFRR: /* case 15 (fmsrr). */
14424 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14425 _("VFP registers must be adjacent"));
14426 inst.operands[1] = inst.operands[2];
14427 inst.operands[2] = inst.operands[3];
14428 inst.operands[0].imm = 2;
14429 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14430 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 14431 break;
5f4273c7 14432
5287ad62
JB
14433 default:
14434 abort ();
14435 }
14436}
14437
14438static void
14439do_neon_rshift_round_imm (void)
14440{
037e8744 14441 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14442 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14443 int imm = inst.operands[2].imm;
14444
14445 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14446 if (imm == 0)
14447 {
14448 inst.operands[2].present = 0;
14449 do_neon_mov ();
14450 return;
14451 }
14452
14453 constraint (imm < 1 || (unsigned)imm > et.size,
14454 _("immediate out of range for shift"));
037e8744 14455 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
14456 et.size - imm);
14457}
14458
14459static void
14460do_neon_movl (void)
14461{
14462 struct neon_type_el et = neon_check_type (2, NS_QD,
14463 N_EQK | N_DBL, N_SU_32 | N_KEY);
14464 unsigned sizebits = et.size >> 3;
14465 inst.instruction |= sizebits << 19;
14466 neon_two_same (0, et.type == NT_unsigned, -1);
14467}
14468
14469static void
14470do_neon_trn (void)
14471{
037e8744 14472 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14473 struct neon_type_el et = neon_check_type (2, rs,
14474 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 14475 NEON_ENCODE (INTEGER, inst);
037e8744 14476 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14477}
14478
14479static void
14480do_neon_zip_uzp (void)
14481{
037e8744 14482 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14483 struct neon_type_el et = neon_check_type (2, rs,
14484 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14485 if (rs == NS_DD && et.size == 32)
14486 {
14487 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14488 inst.instruction = N_MNEM_vtrn;
14489 do_neon_trn ();
14490 return;
14491 }
037e8744 14492 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14493}
14494
14495static void
14496do_neon_sat_abs_neg (void)
14497{
037e8744 14498 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14499 struct neon_type_el et = neon_check_type (2, rs,
14500 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14501 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14502}
14503
14504static void
14505do_neon_pair_long (void)
14506{
037e8744 14507 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14508 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14509 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14510 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 14511 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14512}
14513
14514static void
14515do_neon_recip_est (void)
14516{
037e8744 14517 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14518 struct neon_type_el et = neon_check_type (2, rs,
14519 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14520 inst.instruction |= (et.type == NT_float) << 8;
037e8744 14521 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14522}
14523
14524static void
14525do_neon_cls (void)
14526{
037e8744 14527 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14528 struct neon_type_el et = neon_check_type (2, rs,
14529 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14530 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14531}
14532
14533static void
14534do_neon_clz (void)
14535{
037e8744 14536 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14537 struct neon_type_el et = neon_check_type (2, rs,
14538 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 14539 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14540}
14541
14542static void
14543do_neon_cnt (void)
14544{
037e8744 14545 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14546 struct neon_type_el et = neon_check_type (2, rs,
14547 N_EQK | N_INT, N_8 | N_KEY);
037e8744 14548 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14549}
14550
14551static void
14552do_neon_swp (void)
14553{
037e8744
JB
14554 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14555 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
14556}
14557
14558static void
14559do_neon_tbl_tbx (void)
14560{
14561 unsigned listlenbits;
dcbf9037 14562 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 14563
5287ad62
JB
14564 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14565 {
dcbf9037 14566 first_error (_("bad list length for table lookup"));
5287ad62
JB
14567 return;
14568 }
5f4273c7 14569
5287ad62
JB
14570 listlenbits = inst.operands[1].imm - 1;
14571 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14572 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14573 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14574 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14575 inst.instruction |= LOW4 (inst.operands[2].reg);
14576 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14577 inst.instruction |= listlenbits << 8;
5f4273c7 14578
88714cb8 14579 neon_dp_fixup (&inst);
5287ad62
JB
14580}
14581
14582static void
14583do_neon_ldm_stm (void)
14584{
14585 /* P, U and L bits are part of bitmask. */
14586 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14587 unsigned offsetbits = inst.operands[1].imm * 2;
14588
037e8744
JB
14589 if (inst.operands[1].issingle)
14590 {
14591 do_vfp_nsyn_ldm_stm (is_dbmode);
14592 return;
14593 }
14594
5287ad62
JB
14595 constraint (is_dbmode && !inst.operands[0].writeback,
14596 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14597
14598 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14599 _("register list must contain at least 1 and at most 16 "
14600 "registers"));
14601
14602 inst.instruction |= inst.operands[0].reg << 16;
14603 inst.instruction |= inst.operands[0].writeback << 21;
14604 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14605 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14606
14607 inst.instruction |= offsetbits;
5f4273c7 14608
037e8744 14609 do_vfp_cond_or_thumb ();
5287ad62
JB
14610}
14611
14612static void
14613do_neon_ldr_str (void)
14614{
5287ad62 14615 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 14616
037e8744
JB
14617 if (inst.operands[0].issingle)
14618 {
cd2f129f
JB
14619 if (is_ldr)
14620 do_vfp_nsyn_opcode ("flds");
14621 else
14622 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
14623 }
14624 else
5287ad62 14625 {
cd2f129f
JB
14626 if (is_ldr)
14627 do_vfp_nsyn_opcode ("fldd");
5287ad62 14628 else
cd2f129f 14629 do_vfp_nsyn_opcode ("fstd");
5287ad62 14630 }
5287ad62
JB
14631}
14632
14633/* "interleave" version also handles non-interleaving register VLD1/VST1
14634 instructions. */
14635
14636static void
14637do_neon_ld_st_interleave (void)
14638{
037e8744 14639 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
14640 N_8 | N_16 | N_32 | N_64);
14641 unsigned alignbits = 0;
14642 unsigned idx;
14643 /* The bits in this table go:
14644 0: register stride of one (0) or two (1)
14645 1,2: register list length, minus one (1, 2, 3, 4).
14646 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14647 We use -1 for invalid entries. */
14648 const int typetable[] =
14649 {
14650 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14651 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14652 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14653 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14654 };
14655 int typebits;
14656
dcbf9037
JB
14657 if (et.type == NT_invtype)
14658 return;
14659
5287ad62
JB
14660 if (inst.operands[1].immisalign)
14661 switch (inst.operands[1].imm >> 8)
14662 {
14663 case 64: alignbits = 1; break;
14664 case 128:
e23c0ad8
JZ
14665 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
14666 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
14667 goto bad_alignment;
14668 alignbits = 2;
14669 break;
14670 case 256:
e23c0ad8 14671 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
14672 goto bad_alignment;
14673 alignbits = 3;
14674 break;
14675 default:
14676 bad_alignment:
dcbf9037 14677 first_error (_("bad alignment"));
5287ad62
JB
14678 return;
14679 }
14680
14681 inst.instruction |= alignbits << 4;
14682 inst.instruction |= neon_logbits (et.size) << 6;
14683
14684 /* Bits [4:6] of the immediate in a list specifier encode register stride
14685 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14686 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14687 up the right value for "type" in a table based on this value and the given
14688 list style, then stick it back. */
14689 idx = ((inst.operands[0].imm >> 4) & 7)
14690 | (((inst.instruction >> 8) & 3) << 3);
14691
14692 typebits = typetable[idx];
5f4273c7 14693
5287ad62
JB
14694 constraint (typebits == -1, _("bad list type for instruction"));
14695
14696 inst.instruction &= ~0xf00;
14697 inst.instruction |= typebits << 8;
14698}
14699
14700/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14701 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14702 otherwise. The variable arguments are a list of pairs of legal (size, align)
14703 values, terminated with -1. */
14704
14705static int
14706neon_alignment_bit (int size, int align, int *do_align, ...)
14707{
14708 va_list ap;
14709 int result = FAIL, thissize, thisalign;
5f4273c7 14710
5287ad62
JB
14711 if (!inst.operands[1].immisalign)
14712 {
14713 *do_align = 0;
14714 return SUCCESS;
14715 }
5f4273c7 14716
5287ad62
JB
14717 va_start (ap, do_align);
14718
14719 do
14720 {
14721 thissize = va_arg (ap, int);
14722 if (thissize == -1)
14723 break;
14724 thisalign = va_arg (ap, int);
14725
14726 if (size == thissize && align == thisalign)
14727 result = SUCCESS;
14728 }
14729 while (result != SUCCESS);
14730
14731 va_end (ap);
14732
14733 if (result == SUCCESS)
14734 *do_align = 1;
14735 else
dcbf9037 14736 first_error (_("unsupported alignment for instruction"));
5f4273c7 14737
5287ad62
JB
14738 return result;
14739}
14740
14741static void
14742do_neon_ld_st_lane (void)
14743{
037e8744 14744 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14745 int align_good, do_align = 0;
14746 int logsize = neon_logbits (et.size);
14747 int align = inst.operands[1].imm >> 8;
14748 int n = (inst.instruction >> 8) & 3;
14749 int max_el = 64 / et.size;
5f4273c7 14750
dcbf9037
JB
14751 if (et.type == NT_invtype)
14752 return;
5f4273c7 14753
5287ad62
JB
14754 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14755 _("bad list length"));
14756 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14757 _("scalar index out of range"));
14758 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14759 && et.size == 8,
14760 _("stride of 2 unavailable when element size is 8"));
5f4273c7 14761
5287ad62
JB
14762 switch (n)
14763 {
14764 case 0: /* VLD1 / VST1. */
14765 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14766 32, 32, -1);
14767 if (align_good == FAIL)
14768 return;
14769 if (do_align)
14770 {
14771 unsigned alignbits = 0;
14772 switch (et.size)
14773 {
14774 case 16: alignbits = 0x1; break;
14775 case 32: alignbits = 0x3; break;
14776 default: ;
14777 }
14778 inst.instruction |= alignbits << 4;
14779 }
14780 break;
14781
14782 case 1: /* VLD2 / VST2. */
14783 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14784 32, 64, -1);
14785 if (align_good == FAIL)
14786 return;
14787 if (do_align)
14788 inst.instruction |= 1 << 4;
14789 break;
14790
14791 case 2: /* VLD3 / VST3. */
14792 constraint (inst.operands[1].immisalign,
14793 _("can't use alignment with this instruction"));
14794 break;
14795
14796 case 3: /* VLD4 / VST4. */
14797 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14798 16, 64, 32, 64, 32, 128, -1);
14799 if (align_good == FAIL)
14800 return;
14801 if (do_align)
14802 {
14803 unsigned alignbits = 0;
14804 switch (et.size)
14805 {
14806 case 8: alignbits = 0x1; break;
14807 case 16: alignbits = 0x1; break;
14808 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14809 default: ;
14810 }
14811 inst.instruction |= alignbits << 4;
14812 }
14813 break;
14814
14815 default: ;
14816 }
14817
14818 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14819 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14820 inst.instruction |= 1 << (4 + logsize);
5f4273c7 14821
5287ad62
JB
14822 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14823 inst.instruction |= logsize << 10;
14824}
14825
14826/* Encode single n-element structure to all lanes VLD<n> instructions. */
14827
14828static void
14829do_neon_ld_dup (void)
14830{
037e8744 14831 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14832 int align_good, do_align = 0;
14833
dcbf9037
JB
14834 if (et.type == NT_invtype)
14835 return;
14836
5287ad62
JB
14837 switch ((inst.instruction >> 8) & 3)
14838 {
14839 case 0: /* VLD1. */
9c2799c2 14840 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
14841 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14842 &do_align, 16, 16, 32, 32, -1);
14843 if (align_good == FAIL)
14844 return;
14845 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14846 {
14847 case 1: break;
14848 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 14849 default: first_error (_("bad list length")); return;
5287ad62
JB
14850 }
14851 inst.instruction |= neon_logbits (et.size) << 6;
14852 break;
14853
14854 case 1: /* VLD2. */
14855 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14856 &do_align, 8, 16, 16, 32, 32, 64, -1);
14857 if (align_good == FAIL)
14858 return;
14859 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14860 _("bad list length"));
14861 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14862 inst.instruction |= 1 << 5;
14863 inst.instruction |= neon_logbits (et.size) << 6;
14864 break;
14865
14866 case 2: /* VLD3. */
14867 constraint (inst.operands[1].immisalign,
14868 _("can't use alignment with this instruction"));
14869 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14870 _("bad list length"));
14871 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14872 inst.instruction |= 1 << 5;
14873 inst.instruction |= neon_logbits (et.size) << 6;
14874 break;
14875
14876 case 3: /* VLD4. */
14877 {
14878 int align = inst.operands[1].imm >> 8;
14879 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14880 16, 64, 32, 64, 32, 128, -1);
14881 if (align_good == FAIL)
14882 return;
14883 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14884 _("bad list length"));
14885 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14886 inst.instruction |= 1 << 5;
14887 if (et.size == 32 && align == 128)
14888 inst.instruction |= 0x3 << 6;
14889 else
14890 inst.instruction |= neon_logbits (et.size) << 6;
14891 }
14892 break;
14893
14894 default: ;
14895 }
14896
14897 inst.instruction |= do_align << 4;
14898}
14899
14900/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14901 apart from bits [11:4]. */
14902
14903static void
14904do_neon_ldx_stx (void)
14905{
b1a769ed
DG
14906 if (inst.operands[1].isreg)
14907 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
14908
5287ad62
JB
14909 switch (NEON_LANE (inst.operands[0].imm))
14910 {
14911 case NEON_INTERLEAVE_LANES:
88714cb8 14912 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
14913 do_neon_ld_st_interleave ();
14914 break;
5f4273c7 14915
5287ad62 14916 case NEON_ALL_LANES:
88714cb8 14917 NEON_ENCODE (DUP, inst);
5287ad62
JB
14918 do_neon_ld_dup ();
14919 break;
5f4273c7 14920
5287ad62 14921 default:
88714cb8 14922 NEON_ENCODE (LANE, inst);
5287ad62
JB
14923 do_neon_ld_st_lane ();
14924 }
14925
14926 /* L bit comes from bit mask. */
14927 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14928 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14929 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 14930
5287ad62
JB
14931 if (inst.operands[1].postind)
14932 {
14933 int postreg = inst.operands[1].imm & 0xf;
14934 constraint (!inst.operands[1].immisreg,
14935 _("post-index must be a register"));
14936 constraint (postreg == 0xd || postreg == 0xf,
14937 _("bad register for post-index"));
14938 inst.instruction |= postreg;
14939 }
14940 else if (inst.operands[1].writeback)
14941 {
14942 inst.instruction |= 0xd;
14943 }
14944 else
5f4273c7
NC
14945 inst.instruction |= 0xf;
14946
5287ad62
JB
14947 if (thumb_mode)
14948 inst.instruction |= 0xf9000000;
14949 else
14950 inst.instruction |= 0xf4000000;
14951}
5287ad62
JB
14952\f
14953/* Overall per-instruction processing. */
14954
14955/* We need to be able to fix up arbitrary expressions in some statements.
14956 This is so that we can handle symbols that are an arbitrary distance from
14957 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14958 which returns part of an address in a form which will be valid for
14959 a data instruction. We do this by pushing the expression into a symbol
14960 in the expr_section, and creating a fix for that. */
14961
14962static void
14963fix_new_arm (fragS * frag,
14964 int where,
14965 short int size,
14966 expressionS * exp,
14967 int pc_rel,
14968 int reloc)
14969{
14970 fixS * new_fix;
14971
14972 switch (exp->X_op)
14973 {
14974 case O_constant:
14975 case O_symbol:
14976 case O_add:
14977 case O_subtract:
21d799b5
NC
14978 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
14979 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
14980 break;
14981
14982 default:
21d799b5
NC
14983 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
14984 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
14985 break;
14986 }
14987
14988 /* Mark whether the fix is to a THUMB instruction, or an ARM
14989 instruction. */
14990 new_fix->tc_fix_data = thumb_mode;
14991}
14992
14993/* Create a frg for an instruction requiring relaxation. */
14994static void
14995output_relax_insn (void)
14996{
14997 char * to;
14998 symbolS *sym;
0110f2b8
PB
14999 int offset;
15000
6e1cb1a6
PB
15001 /* The size of the instruction is unknown, so tie the debug info to the
15002 start of the instruction. */
15003 dwarf2_emit_insn (0);
6e1cb1a6 15004
0110f2b8
PB
15005 switch (inst.reloc.exp.X_op)
15006 {
15007 case O_symbol:
15008 sym = inst.reloc.exp.X_add_symbol;
15009 offset = inst.reloc.exp.X_add_number;
15010 break;
15011 case O_constant:
15012 sym = NULL;
15013 offset = inst.reloc.exp.X_add_number;
15014 break;
15015 default:
15016 sym = make_expr_symbol (&inst.reloc.exp);
15017 offset = 0;
15018 break;
15019 }
15020 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15021 inst.relax, sym, offset, NULL/*offset, opcode*/);
15022 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15023}
15024
15025/* Write a 32-bit thumb instruction to buf. */
15026static void
15027put_thumb32_insn (char * buf, unsigned long insn)
15028{
15029 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15030 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15031}
15032
b99bd4ef 15033static void
c19d1205 15034output_inst (const char * str)
b99bd4ef 15035{
c19d1205 15036 char * to = NULL;
b99bd4ef 15037
c19d1205 15038 if (inst.error)
b99bd4ef 15039 {
c19d1205 15040 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15041 return;
15042 }
5f4273c7
NC
15043 if (inst.relax)
15044 {
15045 output_relax_insn ();
0110f2b8 15046 return;
5f4273c7 15047 }
c19d1205
ZW
15048 if (inst.size == 0)
15049 return;
b99bd4ef 15050
c19d1205 15051 to = frag_more (inst.size);
8dc2430f
NC
15052 /* PR 9814: Record the thumb mode into the current frag so that we know
15053 what type of NOP padding to use, if necessary. We override any previous
15054 setting so that if the mode has changed then the NOPS that we use will
15055 match the encoding of the last instruction in the frag. */
cd000bff 15056 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15057
15058 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15059 {
9c2799c2 15060 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15061 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15062 }
c19d1205 15063 else if (inst.size > INSN_SIZE)
b99bd4ef 15064 {
9c2799c2 15065 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15066 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15067 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15068 }
c19d1205
ZW
15069 else
15070 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15071
c19d1205
ZW
15072 if (inst.reloc.type != BFD_RELOC_UNUSED)
15073 fix_new_arm (frag_now, to - frag_now->fr_literal,
15074 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15075 inst.reloc.type);
b99bd4ef 15076
c19d1205 15077 dwarf2_emit_insn (inst.size);
c19d1205 15078}
b99bd4ef 15079
e07e6e58
NC
15080static char *
15081output_it_inst (int cond, int mask, char * to)
15082{
15083 unsigned long instruction = 0xbf00;
15084
15085 mask &= 0xf;
15086 instruction |= mask;
15087 instruction |= cond << 4;
15088
15089 if (to == NULL)
15090 {
15091 to = frag_more (2);
15092#ifdef OBJ_ELF
15093 dwarf2_emit_insn (2);
15094#endif
15095 }
15096
15097 md_number_to_chars (to, instruction, 2);
15098
15099 return to;
15100}
15101
c19d1205
ZW
15102/* Tag values used in struct asm_opcode's tag field. */
15103enum opcode_tag
15104{
15105 OT_unconditional, /* Instruction cannot be conditionalized.
15106 The ARM condition field is still 0xE. */
15107 OT_unconditionalF, /* Instruction cannot be conditionalized
15108 and carries 0xF in its ARM condition field. */
15109 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15110 OT_csuffixF, /* Some forms of the instruction take a conditional
15111 suffix, others place 0xF where the condition field
15112 would be. */
c19d1205
ZW
15113 OT_cinfix3, /* Instruction takes a conditional infix,
15114 beginning at character index 3. (In
15115 unified mode, it becomes a suffix.) */
088fa78e
KH
15116 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15117 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
15118 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15119 character index 3, even in unified mode. Used for
15120 legacy instructions where suffix and infix forms
15121 may be ambiguous. */
c19d1205 15122 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 15123 suffix or an infix at character index 3. */
c19d1205
ZW
15124 OT_odd_infix_unc, /* This is the unconditional variant of an
15125 instruction that takes a conditional infix
15126 at an unusual position. In unified mode,
15127 this variant will accept a suffix. */
15128 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15129 are the conditional variants of instructions that
15130 take conditional infixes in unusual positions.
15131 The infix appears at character index
15132 (tag - OT_odd_infix_0). These are not accepted
15133 in unified mode. */
15134};
b99bd4ef 15135
c19d1205
ZW
15136/* Subroutine of md_assemble, responsible for looking up the primary
15137 opcode from the mnemonic the user wrote. STR points to the
15138 beginning of the mnemonic.
15139
15140 This is not simply a hash table lookup, because of conditional
15141 variants. Most instructions have conditional variants, which are
15142 expressed with a _conditional affix_ to the mnemonic. If we were
15143 to encode each conditional variant as a literal string in the opcode
15144 table, it would have approximately 20,000 entries.
15145
15146 Most mnemonics take this affix as a suffix, and in unified syntax,
15147 'most' is upgraded to 'all'. However, in the divided syntax, some
15148 instructions take the affix as an infix, notably the s-variants of
15149 the arithmetic instructions. Of those instructions, all but six
15150 have the infix appear after the third character of the mnemonic.
15151
15152 Accordingly, the algorithm for looking up primary opcodes given
15153 an identifier is:
15154
15155 1. Look up the identifier in the opcode table.
15156 If we find a match, go to step U.
15157
15158 2. Look up the last two characters of the identifier in the
15159 conditions table. If we find a match, look up the first N-2
15160 characters of the identifier in the opcode table. If we
15161 find a match, go to step CE.
15162
15163 3. Look up the fourth and fifth characters of the identifier in
15164 the conditions table. If we find a match, extract those
15165 characters from the identifier, and look up the remaining
15166 characters in the opcode table. If we find a match, go
15167 to step CM.
15168
15169 4. Fail.
15170
15171 U. Examine the tag field of the opcode structure, in case this is
15172 one of the six instructions with its conditional infix in an
15173 unusual place. If it is, the tag tells us where to find the
15174 infix; look it up in the conditions table and set inst.cond
15175 accordingly. Otherwise, this is an unconditional instruction.
15176 Again set inst.cond accordingly. Return the opcode structure.
15177
15178 CE. Examine the tag field to make sure this is an instruction that
15179 should receive a conditional suffix. If it is not, fail.
15180 Otherwise, set inst.cond from the suffix we already looked up,
15181 and return the opcode structure.
15182
15183 CM. Examine the tag field to make sure this is an instruction that
15184 should receive a conditional infix after the third character.
15185 If it is not, fail. Otherwise, undo the edits to the current
15186 line of input and proceed as for case CE. */
15187
15188static const struct asm_opcode *
15189opcode_lookup (char **str)
15190{
15191 char *end, *base;
15192 char *affix;
15193 const struct asm_opcode *opcode;
15194 const struct asm_cond *cond;
e3cb604e 15195 char save[2];
c19d1205
ZW
15196
15197 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15198 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15199 for (base = end = *str; *end != '\0'; end++)
721a8186 15200 if (*end == ' ' || *end == '.')
c19d1205 15201 break;
b99bd4ef 15202
c19d1205 15203 if (end == base)
c921be7d 15204 return NULL;
b99bd4ef 15205
5287ad62 15206 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15207 if (end[0] == '.')
b99bd4ef 15208 {
5287ad62 15209 int offset = 2;
5f4273c7 15210
267d2029
JB
15211 /* The .w and .n suffixes are only valid if the unified syntax is in
15212 use. */
15213 if (unified_syntax && end[1] == 'w')
c19d1205 15214 inst.size_req = 4;
267d2029 15215 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15216 inst.size_req = 2;
15217 else
5287ad62
JB
15218 offset = 0;
15219
15220 inst.vectype.elems = 0;
15221
15222 *str = end + offset;
b99bd4ef 15223
5f4273c7 15224 if (end[offset] == '.')
5287ad62 15225 {
267d2029
JB
15226 /* See if we have a Neon type suffix (possible in either unified or
15227 non-unified ARM syntax mode). */
dcbf9037 15228 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15229 return NULL;
5287ad62
JB
15230 }
15231 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15232 return NULL;
b99bd4ef 15233 }
c19d1205
ZW
15234 else
15235 *str = end;
b99bd4ef 15236
c19d1205 15237 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15238 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15239 end - base);
c19d1205 15240 if (opcode)
b99bd4ef 15241 {
c19d1205
ZW
15242 /* step U */
15243 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15244 {
c19d1205
ZW
15245 inst.cond = COND_ALWAYS;
15246 return opcode;
b99bd4ef 15247 }
b99bd4ef 15248
278df34e 15249 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15250 as_warn (_("conditional infixes are deprecated in unified syntax"));
15251 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15252 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15253 gas_assert (cond);
b99bd4ef 15254
c19d1205
ZW
15255 inst.cond = cond->value;
15256 return opcode;
15257 }
b99bd4ef 15258
c19d1205
ZW
15259 /* Cannot have a conditional suffix on a mnemonic of less than two
15260 characters. */
15261 if (end - base < 3)
c921be7d 15262 return NULL;
b99bd4ef 15263
c19d1205
ZW
15264 /* Look for suffixed mnemonic. */
15265 affix = end - 2;
21d799b5
NC
15266 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15267 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15268 affix - base);
c19d1205
ZW
15269 if (opcode && cond)
15270 {
15271 /* step CE */
15272 switch (opcode->tag)
15273 {
e3cb604e
PB
15274 case OT_cinfix3_legacy:
15275 /* Ignore conditional suffixes matched on infix only mnemonics. */
15276 break;
15277
c19d1205 15278 case OT_cinfix3:
088fa78e 15279 case OT_cinfix3_deprecated:
c19d1205
ZW
15280 case OT_odd_infix_unc:
15281 if (!unified_syntax)
e3cb604e 15282 return 0;
c19d1205
ZW
15283 /* else fall through */
15284
15285 case OT_csuffix:
037e8744 15286 case OT_csuffixF:
c19d1205
ZW
15287 case OT_csuf_or_in3:
15288 inst.cond = cond->value;
15289 return opcode;
15290
15291 case OT_unconditional:
15292 case OT_unconditionalF:
dfa9f0d5 15293 if (thumb_mode)
c921be7d 15294 inst.cond = cond->value;
dfa9f0d5
PB
15295 else
15296 {
c921be7d 15297 /* Delayed diagnostic. */
dfa9f0d5
PB
15298 inst.error = BAD_COND;
15299 inst.cond = COND_ALWAYS;
15300 }
c19d1205 15301 return opcode;
b99bd4ef 15302
c19d1205 15303 default:
c921be7d 15304 return NULL;
c19d1205
ZW
15305 }
15306 }
b99bd4ef 15307
c19d1205
ZW
15308 /* Cannot have a usual-position infix on a mnemonic of less than
15309 six characters (five would be a suffix). */
15310 if (end - base < 6)
c921be7d 15311 return NULL;
b99bd4ef 15312
c19d1205
ZW
15313 /* Look for infixed mnemonic in the usual position. */
15314 affix = base + 3;
21d799b5 15315 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15316 if (!cond)
c921be7d 15317 return NULL;
e3cb604e
PB
15318
15319 memcpy (save, affix, 2);
15320 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15321 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15322 (end - base) - 2);
e3cb604e
PB
15323 memmove (affix + 2, affix, (end - affix) - 2);
15324 memcpy (affix, save, 2);
15325
088fa78e
KH
15326 if (opcode
15327 && (opcode->tag == OT_cinfix3
15328 || opcode->tag == OT_cinfix3_deprecated
15329 || opcode->tag == OT_csuf_or_in3
15330 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15331 {
c921be7d 15332 /* Step CM. */
278df34e 15333 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15334 && (opcode->tag == OT_cinfix3
15335 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15336 as_warn (_("conditional infixes are deprecated in unified syntax"));
15337
15338 inst.cond = cond->value;
15339 return opcode;
b99bd4ef
NC
15340 }
15341
c921be7d 15342 return NULL;
b99bd4ef
NC
15343}
15344
e07e6e58
NC
15345/* This function generates an initial IT instruction, leaving its block
15346 virtually open for the new instructions. Eventually,
15347 the mask will be updated by now_it_add_mask () each time
15348 a new instruction needs to be included in the IT block.
15349 Finally, the block is closed with close_automatic_it_block ().
15350 The block closure can be requested either from md_assemble (),
15351 a tencode (), or due to a label hook. */
15352
15353static void
15354new_automatic_it_block (int cond)
15355{
15356 now_it.state = AUTOMATIC_IT_BLOCK;
15357 now_it.mask = 0x18;
15358 now_it.cc = cond;
15359 now_it.block_length = 1;
cd000bff 15360 mapping_state (MAP_THUMB);
e07e6e58
NC
15361 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15362}
15363
15364/* Close an automatic IT block.
15365 See comments in new_automatic_it_block (). */
15366
15367static void
15368close_automatic_it_block (void)
15369{
15370 now_it.mask = 0x10;
15371 now_it.block_length = 0;
15372}
15373
15374/* Update the mask of the current automatically-generated IT
15375 instruction. See comments in new_automatic_it_block (). */
15376
15377static void
15378now_it_add_mask (int cond)
15379{
15380#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15381#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15382 | ((bitvalue) << (nbit)))
e07e6e58 15383 const int resulting_bit = (cond & 1);
c921be7d 15384
e07e6e58
NC
15385 now_it.mask &= 0xf;
15386 now_it.mask = SET_BIT_VALUE (now_it.mask,
15387 resulting_bit,
15388 (5 - now_it.block_length));
15389 now_it.mask = SET_BIT_VALUE (now_it.mask,
15390 1,
15391 ((5 - now_it.block_length) - 1) );
15392 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15393
15394#undef CLEAR_BIT
15395#undef SET_BIT_VALUE
e07e6e58
NC
15396}
15397
15398/* The IT blocks handling machinery is accessed through the these functions:
15399 it_fsm_pre_encode () from md_assemble ()
15400 set_it_insn_type () optional, from the tencode functions
15401 set_it_insn_type_last () ditto
15402 in_it_block () ditto
15403 it_fsm_post_encode () from md_assemble ()
15404 force_automatic_it_block_close () from label habdling functions
15405
15406 Rationale:
15407 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15408 initializing the IT insn type with a generic initial value depending
15409 on the inst.condition.
15410 2) During the tencode function, two things may happen:
15411 a) The tencode function overrides the IT insn type by
15412 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15413 b) The tencode function queries the IT block state by
15414 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15415
15416 Both set_it_insn_type and in_it_block run the internal FSM state
15417 handling function (handle_it_state), because: a) setting the IT insn
15418 type may incur in an invalid state (exiting the function),
15419 and b) querying the state requires the FSM to be updated.
15420 Specifically we want to avoid creating an IT block for conditional
15421 branches, so it_fsm_pre_encode is actually a guess and we can't
15422 determine whether an IT block is required until the tencode () routine
15423 has decided what type of instruction this actually it.
15424 Because of this, if set_it_insn_type and in_it_block have to be used,
15425 set_it_insn_type has to be called first.
15426
15427 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15428 determines the insn IT type depending on the inst.cond code.
15429 When a tencode () routine encodes an instruction that can be
15430 either outside an IT block, or, in the case of being inside, has to be
15431 the last one, set_it_insn_type_last () will determine the proper
15432 IT instruction type based on the inst.cond code. Otherwise,
15433 set_it_insn_type can be called for overriding that logic or
15434 for covering other cases.
15435
15436 Calling handle_it_state () may not transition the IT block state to
15437 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15438 still queried. Instead, if the FSM determines that the state should
15439 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15440 after the tencode () function: that's what it_fsm_post_encode () does.
15441
15442 Since in_it_block () calls the state handling function to get an
15443 updated state, an error may occur (due to invalid insns combination).
15444 In that case, inst.error is set.
15445 Therefore, inst.error has to be checked after the execution of
15446 the tencode () routine.
15447
15448 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15449 any pending state change (if any) that didn't take place in
15450 handle_it_state () as explained above. */
15451
15452static void
15453it_fsm_pre_encode (void)
15454{
15455 if (inst.cond != COND_ALWAYS)
15456 inst.it_insn_type = INSIDE_IT_INSN;
15457 else
15458 inst.it_insn_type = OUTSIDE_IT_INSN;
15459
15460 now_it.state_handled = 0;
15461}
15462
15463/* IT state FSM handling function. */
15464
15465static int
15466handle_it_state (void)
15467{
15468 now_it.state_handled = 1;
15469
15470 switch (now_it.state)
15471 {
15472 case OUTSIDE_IT_BLOCK:
15473 switch (inst.it_insn_type)
15474 {
15475 case OUTSIDE_IT_INSN:
15476 break;
15477
15478 case INSIDE_IT_INSN:
15479 case INSIDE_IT_LAST_INSN:
15480 if (thumb_mode == 0)
15481 {
c921be7d 15482 if (unified_syntax
e07e6e58
NC
15483 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15484 as_tsktsk (_("Warning: conditional outside an IT block"\
15485 " for Thumb."));
15486 }
15487 else
15488 {
15489 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15490 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15491 {
15492 /* Automatically generate the IT instruction. */
15493 new_automatic_it_block (inst.cond);
15494 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15495 close_automatic_it_block ();
15496 }
15497 else
15498 {
15499 inst.error = BAD_OUT_IT;
15500 return FAIL;
15501 }
15502 }
15503 break;
15504
15505 case IF_INSIDE_IT_LAST_INSN:
15506 case NEUTRAL_IT_INSN:
15507 break;
15508
15509 case IT_INSN:
15510 now_it.state = MANUAL_IT_BLOCK;
15511 now_it.block_length = 0;
15512 break;
15513 }
15514 break;
15515
15516 case AUTOMATIC_IT_BLOCK:
15517 /* Three things may happen now:
15518 a) We should increment current it block size;
15519 b) We should close current it block (closing insn or 4 insns);
15520 c) We should close current it block and start a new one (due
15521 to incompatible conditions or
15522 4 insns-length block reached). */
15523
15524 switch (inst.it_insn_type)
15525 {
15526 case OUTSIDE_IT_INSN:
15527 /* The closure of the block shall happen immediatelly,
15528 so any in_it_block () call reports the block as closed. */
15529 force_automatic_it_block_close ();
15530 break;
15531
15532 case INSIDE_IT_INSN:
15533 case INSIDE_IT_LAST_INSN:
15534 case IF_INSIDE_IT_LAST_INSN:
15535 now_it.block_length++;
15536
15537 if (now_it.block_length > 4
15538 || !now_it_compatible (inst.cond))
15539 {
15540 force_automatic_it_block_close ();
15541 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15542 new_automatic_it_block (inst.cond);
15543 }
15544 else
15545 {
15546 now_it_add_mask (inst.cond);
15547 }
15548
15549 if (now_it.state == AUTOMATIC_IT_BLOCK
15550 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15551 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15552 close_automatic_it_block ();
15553 break;
15554
15555 case NEUTRAL_IT_INSN:
15556 now_it.block_length++;
15557
15558 if (now_it.block_length > 4)
15559 force_automatic_it_block_close ();
15560 else
15561 now_it_add_mask (now_it.cc & 1);
15562 break;
15563
15564 case IT_INSN:
15565 close_automatic_it_block ();
15566 now_it.state = MANUAL_IT_BLOCK;
15567 break;
15568 }
15569 break;
15570
15571 case MANUAL_IT_BLOCK:
15572 {
15573 /* Check conditional suffixes. */
15574 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15575 int is_last;
15576 now_it.mask <<= 1;
15577 now_it.mask &= 0x1f;
15578 is_last = (now_it.mask == 0x10);
15579
15580 switch (inst.it_insn_type)
15581 {
15582 case OUTSIDE_IT_INSN:
15583 inst.error = BAD_NOT_IT;
15584 return FAIL;
15585
15586 case INSIDE_IT_INSN:
15587 if (cond != inst.cond)
15588 {
15589 inst.error = BAD_IT_COND;
15590 return FAIL;
15591 }
15592 break;
15593
15594 case INSIDE_IT_LAST_INSN:
15595 case IF_INSIDE_IT_LAST_INSN:
15596 if (cond != inst.cond)
15597 {
15598 inst.error = BAD_IT_COND;
15599 return FAIL;
15600 }
15601 if (!is_last)
15602 {
15603 inst.error = BAD_BRANCH;
15604 return FAIL;
15605 }
15606 break;
15607
15608 case NEUTRAL_IT_INSN:
15609 /* The BKPT instruction is unconditional even in an IT block. */
15610 break;
15611
15612 case IT_INSN:
15613 inst.error = BAD_IT_IT;
15614 return FAIL;
15615 }
15616 }
15617 break;
15618 }
15619
15620 return SUCCESS;
15621}
15622
15623static void
15624it_fsm_post_encode (void)
15625{
15626 int is_last;
15627
15628 if (!now_it.state_handled)
15629 handle_it_state ();
15630
15631 is_last = (now_it.mask == 0x10);
15632 if (is_last)
15633 {
15634 now_it.state = OUTSIDE_IT_BLOCK;
15635 now_it.mask = 0;
15636 }
15637}
15638
15639static void
15640force_automatic_it_block_close (void)
15641{
15642 if (now_it.state == AUTOMATIC_IT_BLOCK)
15643 {
15644 close_automatic_it_block ();
15645 now_it.state = OUTSIDE_IT_BLOCK;
15646 now_it.mask = 0;
15647 }
15648}
15649
15650static int
15651in_it_block (void)
15652{
15653 if (!now_it.state_handled)
15654 handle_it_state ();
15655
15656 return now_it.state != OUTSIDE_IT_BLOCK;
15657}
15658
c19d1205
ZW
15659void
15660md_assemble (char *str)
b99bd4ef 15661{
c19d1205
ZW
15662 char *p = str;
15663 const struct asm_opcode * opcode;
b99bd4ef 15664
c19d1205
ZW
15665 /* Align the previous label if needed. */
15666 if (last_label_seen != NULL)
b99bd4ef 15667 {
c19d1205
ZW
15668 symbol_set_frag (last_label_seen, frag_now);
15669 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15670 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
15671 }
15672
c19d1205
ZW
15673 memset (&inst, '\0', sizeof (inst));
15674 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 15675
c19d1205
ZW
15676 opcode = opcode_lookup (&p);
15677 if (!opcode)
b99bd4ef 15678 {
c19d1205 15679 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 15680 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
15681 if (! create_register_alias (str, p)
15682 && ! create_neon_reg_alias (str, p))
c19d1205 15683 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 15684
b99bd4ef
NC
15685 return;
15686 }
15687
278df34e 15688 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
15689 as_warn (_("s suffix on comparison instruction is deprecated"));
15690
037e8744
JB
15691 /* The value which unconditional instructions should have in place of the
15692 condition field. */
15693 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15694
c19d1205 15695 if (thumb_mode)
b99bd4ef 15696 {
e74cfd16 15697 arm_feature_set variant;
8f06b2d8
PB
15698
15699 variant = cpu_variant;
15700 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
15701 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15702 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 15703 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
15704 if (!opcode->tvariant
15705 || (thumb_mode == 1
15706 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 15707 {
c19d1205 15708 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
15709 return;
15710 }
c19d1205
ZW
15711 if (inst.cond != COND_ALWAYS && !unified_syntax
15712 && opcode->tencode != do_t_branch)
b99bd4ef 15713 {
c19d1205 15714 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
15715 return;
15716 }
15717
752d5da4 15718 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 15719 {
7e806470 15720 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
15721 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15722 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15723 {
15724 /* Two things are addressed here.
15725 1) Implicit require narrow instructions on Thumb-1.
15726 This avoids relaxation accidentally introducing Thumb-2
15727 instructions.
15728 2) Reject wide instructions in non Thumb-2 cores. */
15729 if (inst.size_req == 0)
15730 inst.size_req = 2;
15731 else if (inst.size_req == 4)
15732 {
15733 as_bad (_("selected processor does not support `%s'"), str);
15734 return;
15735 }
15736 }
076d447c
PB
15737 }
15738
c19d1205
ZW
15739 inst.instruction = opcode->tvalue;
15740
5be8be5d 15741 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
15742 {
15743 /* Prepare the it_insn_type for those encodings that don't set
15744 it. */
15745 it_fsm_pre_encode ();
c19d1205 15746
e07e6e58
NC
15747 opcode->tencode ();
15748
15749 it_fsm_post_encode ();
15750 }
e27ec89e 15751
0110f2b8 15752 if (!(inst.error || inst.relax))
b99bd4ef 15753 {
9c2799c2 15754 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
15755 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15756 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 15757 {
c19d1205 15758 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
15759 return;
15760 }
15761 }
076d447c
PB
15762
15763 /* Something has gone badly wrong if we try to relax a fixed size
15764 instruction. */
9c2799c2 15765 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 15766
e74cfd16
PB
15767 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15768 *opcode->tvariant);
ee065d83 15769 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 15770 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 15771 anything other than bl/blx and v6-M instructions.
ee065d83 15772 This is overly pessimistic for relaxable instructions. */
7e806470
PB
15773 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15774 || inst.relax)
e07e6e58
NC
15775 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15776 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
15777 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15778 arm_ext_v6t2);
cd000bff 15779
88714cb8
DG
15780 check_neon_suffixes;
15781
cd000bff 15782 if (!inst.error)
c877a2f2
NC
15783 {
15784 mapping_state (MAP_THUMB);
15785 }
c19d1205 15786 }
3e9e4fcf 15787 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 15788 {
845b51d6
PB
15789 bfd_boolean is_bx;
15790
15791 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15792 is_bx = (opcode->aencode == do_bx);
15793
c19d1205 15794 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
15795 if (!(is_bx && fix_v4bx)
15796 && !(opcode->avariant &&
15797 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 15798 {
c19d1205
ZW
15799 as_bad (_("selected processor does not support `%s'"), str);
15800 return;
b99bd4ef 15801 }
c19d1205 15802 if (inst.size_req)
b99bd4ef 15803 {
c19d1205
ZW
15804 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15805 return;
b99bd4ef
NC
15806 }
15807
c19d1205
ZW
15808 inst.instruction = opcode->avalue;
15809 if (opcode->tag == OT_unconditionalF)
15810 inst.instruction |= 0xF << 28;
15811 else
15812 inst.instruction |= inst.cond << 28;
15813 inst.size = INSN_SIZE;
5be8be5d 15814 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
15815 {
15816 it_fsm_pre_encode ();
15817 opcode->aencode ();
15818 it_fsm_post_encode ();
15819 }
ee065d83
PB
15820 /* Arm mode bx is marked as both v4T and v5 because it's still required
15821 on a hypothetical non-thumb v5 core. */
845b51d6 15822 if (is_bx)
e74cfd16 15823 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 15824 else
e74cfd16
PB
15825 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15826 *opcode->avariant);
88714cb8
DG
15827
15828 check_neon_suffixes;
15829
cd000bff 15830 if (!inst.error)
c877a2f2
NC
15831 {
15832 mapping_state (MAP_ARM);
15833 }
b99bd4ef 15834 }
3e9e4fcf
JB
15835 else
15836 {
15837 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15838 "-- `%s'"), str);
15839 return;
15840 }
c19d1205
ZW
15841 output_inst (str);
15842}
b99bd4ef 15843
e07e6e58
NC
15844static void
15845check_it_blocks_finished (void)
15846{
15847#ifdef OBJ_ELF
15848 asection *sect;
15849
15850 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15851 if (seg_info (sect)->tc_segment_info_data.current_it.state
15852 == MANUAL_IT_BLOCK)
15853 {
15854 as_warn (_("section '%s' finished with an open IT block."),
15855 sect->name);
15856 }
15857#else
15858 if (now_it.state == MANUAL_IT_BLOCK)
15859 as_warn (_("file finished with an open IT block."));
15860#endif
15861}
15862
c19d1205
ZW
15863/* Various frobbings of labels and their addresses. */
15864
15865void
15866arm_start_line_hook (void)
15867{
15868 last_label_seen = NULL;
b99bd4ef
NC
15869}
15870
c19d1205
ZW
15871void
15872arm_frob_label (symbolS * sym)
b99bd4ef 15873{
c19d1205 15874 last_label_seen = sym;
b99bd4ef 15875
c19d1205 15876 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 15877
c19d1205
ZW
15878#if defined OBJ_COFF || defined OBJ_ELF
15879 ARM_SET_INTERWORK (sym, support_interwork);
15880#endif
b99bd4ef 15881
e07e6e58
NC
15882 force_automatic_it_block_close ();
15883
5f4273c7 15884 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
15885 as Thumb functions. This is because these labels, whilst
15886 they exist inside Thumb code, are not the entry points for
15887 possible ARM->Thumb calls. Also, these labels can be used
15888 as part of a computed goto or switch statement. eg gcc
15889 can generate code that looks like this:
b99bd4ef 15890
c19d1205
ZW
15891 ldr r2, [pc, .Laaa]
15892 lsl r3, r3, #2
15893 ldr r2, [r3, r2]
15894 mov pc, r2
b99bd4ef 15895
c19d1205
ZW
15896 .Lbbb: .word .Lxxx
15897 .Lccc: .word .Lyyy
15898 ..etc...
15899 .Laaa: .word Lbbb
b99bd4ef 15900
c19d1205
ZW
15901 The first instruction loads the address of the jump table.
15902 The second instruction converts a table index into a byte offset.
15903 The third instruction gets the jump address out of the table.
15904 The fourth instruction performs the jump.
b99bd4ef 15905
c19d1205
ZW
15906 If the address stored at .Laaa is that of a symbol which has the
15907 Thumb_Func bit set, then the linker will arrange for this address
15908 to have the bottom bit set, which in turn would mean that the
15909 address computation performed by the third instruction would end
15910 up with the bottom bit set. Since the ARM is capable of unaligned
15911 word loads, the instruction would then load the incorrect address
15912 out of the jump table, and chaos would ensue. */
15913 if (label_is_thumb_function_name
15914 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
15915 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 15916 {
c19d1205
ZW
15917 /* When the address of a Thumb function is taken the bottom
15918 bit of that address should be set. This will allow
15919 interworking between Arm and Thumb functions to work
15920 correctly. */
b99bd4ef 15921
c19d1205 15922 THUMB_SET_FUNC (sym, 1);
b99bd4ef 15923
c19d1205 15924 label_is_thumb_function_name = FALSE;
b99bd4ef 15925 }
07a53e5c 15926
07a53e5c 15927 dwarf2_emit_label (sym);
b99bd4ef
NC
15928}
15929
c921be7d 15930bfd_boolean
c19d1205 15931arm_data_in_code (void)
b99bd4ef 15932{
c19d1205 15933 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 15934 {
c19d1205
ZW
15935 *input_line_pointer = '/';
15936 input_line_pointer += 5;
15937 *input_line_pointer = 0;
c921be7d 15938 return TRUE;
b99bd4ef
NC
15939 }
15940
c921be7d 15941 return FALSE;
b99bd4ef
NC
15942}
15943
c19d1205
ZW
15944char *
15945arm_canonicalize_symbol_name (char * name)
b99bd4ef 15946{
c19d1205 15947 int len;
b99bd4ef 15948
c19d1205
ZW
15949 if (thumb_mode && (len = strlen (name)) > 5
15950 && streq (name + len - 5, "/data"))
15951 *(name + len - 5) = 0;
b99bd4ef 15952
c19d1205 15953 return name;
b99bd4ef 15954}
c19d1205
ZW
15955\f
15956/* Table of all register names defined by default. The user can
15957 define additional names with .req. Note that all register names
15958 should appear in both upper and lowercase variants. Some registers
15959 also have mixed-case names. */
b99bd4ef 15960
dcbf9037 15961#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 15962#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 15963#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
15964#define REGSET(p,t) \
15965 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
15966 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
15967 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
15968 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
15969#define REGSETH(p,t) \
15970 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
15971 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
15972 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
15973 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
15974#define REGSET2(p,t) \
15975 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
15976 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
15977 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
15978 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 15979
c19d1205 15980static const struct reg_entry reg_names[] =
7ed4c4c5 15981{
c19d1205
ZW
15982 /* ARM integer registers. */
15983 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 15984
c19d1205
ZW
15985 /* ATPCS synonyms. */
15986 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
15987 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
15988 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 15989
c19d1205
ZW
15990 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
15991 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
15992 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 15993
c19d1205
ZW
15994 /* Well-known aliases. */
15995 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
15996 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
15997
15998 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
15999 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16000
16001 /* Coprocessor numbers. */
16002 REGSET(p, CP), REGSET(P, CP),
16003
16004 /* Coprocessor register numbers. The "cr" variants are for backward
16005 compatibility. */
16006 REGSET(c, CN), REGSET(C, CN),
16007 REGSET(cr, CN), REGSET(CR, CN),
16008
16009 /* FPA registers. */
16010 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16011 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16012
16013 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16014 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16015
16016 /* VFP SP registers. */
5287ad62
JB
16017 REGSET(s,VFS), REGSET(S,VFS),
16018 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
16019
16020 /* VFP DP Registers. */
5287ad62
JB
16021 REGSET(d,VFD), REGSET(D,VFD),
16022 /* Extra Neon DP registers. */
16023 REGSETH(d,VFD), REGSETH(D,VFD),
16024
16025 /* Neon QP registers. */
16026 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
16027
16028 /* VFP control registers. */
16029 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16030 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
16031 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16032 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16033 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16034 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
16035
16036 /* Maverick DSP coprocessor registers. */
16037 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16038 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16039
16040 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16041 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16042 REGDEF(dspsc,0,DSPSC),
16043
16044 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16045 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16046 REGDEF(DSPSC,0,DSPSC),
16047
16048 /* iWMMXt data registers - p0, c0-15. */
16049 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16050
16051 /* iWMMXt control registers - p1, c0-3. */
16052 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16053 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16054 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16055 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16056
16057 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16058 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16059 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16060 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16061 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16062
16063 /* XScale accumulator registers. */
16064 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16065};
16066#undef REGDEF
16067#undef REGNUM
16068#undef REGSET
7ed4c4c5 16069
c19d1205
ZW
16070/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16071 within psr_required_here. */
16072static const struct asm_psr psrs[] =
16073{
16074 /* Backward compatibility notation. Note that "all" is no longer
16075 truly all possible PSR bits. */
16076 {"all", PSR_c | PSR_f},
16077 {"flg", PSR_f},
16078 {"ctl", PSR_c},
16079
16080 /* Individual flags. */
16081 {"f", PSR_f},
16082 {"c", PSR_c},
16083 {"x", PSR_x},
16084 {"s", PSR_s},
16085 /* Combinations of flags. */
16086 {"fs", PSR_f | PSR_s},
16087 {"fx", PSR_f | PSR_x},
16088 {"fc", PSR_f | PSR_c},
16089 {"sf", PSR_s | PSR_f},
16090 {"sx", PSR_s | PSR_x},
16091 {"sc", PSR_s | PSR_c},
16092 {"xf", PSR_x | PSR_f},
16093 {"xs", PSR_x | PSR_s},
16094 {"xc", PSR_x | PSR_c},
16095 {"cf", PSR_c | PSR_f},
16096 {"cs", PSR_c | PSR_s},
16097 {"cx", PSR_c | PSR_x},
16098 {"fsx", PSR_f | PSR_s | PSR_x},
16099 {"fsc", PSR_f | PSR_s | PSR_c},
16100 {"fxs", PSR_f | PSR_x | PSR_s},
16101 {"fxc", PSR_f | PSR_x | PSR_c},
16102 {"fcs", PSR_f | PSR_c | PSR_s},
16103 {"fcx", PSR_f | PSR_c | PSR_x},
16104 {"sfx", PSR_s | PSR_f | PSR_x},
16105 {"sfc", PSR_s | PSR_f | PSR_c},
16106 {"sxf", PSR_s | PSR_x | PSR_f},
16107 {"sxc", PSR_s | PSR_x | PSR_c},
16108 {"scf", PSR_s | PSR_c | PSR_f},
16109 {"scx", PSR_s | PSR_c | PSR_x},
16110 {"xfs", PSR_x | PSR_f | PSR_s},
16111 {"xfc", PSR_x | PSR_f | PSR_c},
16112 {"xsf", PSR_x | PSR_s | PSR_f},
16113 {"xsc", PSR_x | PSR_s | PSR_c},
16114 {"xcf", PSR_x | PSR_c | PSR_f},
16115 {"xcs", PSR_x | PSR_c | PSR_s},
16116 {"cfs", PSR_c | PSR_f | PSR_s},
16117 {"cfx", PSR_c | PSR_f | PSR_x},
16118 {"csf", PSR_c | PSR_s | PSR_f},
16119 {"csx", PSR_c | PSR_s | PSR_x},
16120 {"cxf", PSR_c | PSR_x | PSR_f},
16121 {"cxs", PSR_c | PSR_x | PSR_s},
16122 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16123 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16124 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16125 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16126 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16127 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16128 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16129 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16130 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16131 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16132 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16133 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16134 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16135 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16136 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16137 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16138 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16139 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16140 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16141 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16142 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16143 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16144 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16145 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16146};
16147
62b3e311
PB
16148/* Table of V7M psr names. */
16149static const struct asm_psr v7m_psrs[] =
16150{
2b744c99
PB
16151 {"apsr", 0 }, {"APSR", 0 },
16152 {"iapsr", 1 }, {"IAPSR", 1 },
16153 {"eapsr", 2 }, {"EAPSR", 2 },
16154 {"psr", 3 }, {"PSR", 3 },
16155 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16156 {"ipsr", 5 }, {"IPSR", 5 },
16157 {"epsr", 6 }, {"EPSR", 6 },
16158 {"iepsr", 7 }, {"IEPSR", 7 },
16159 {"msp", 8 }, {"MSP", 8 },
16160 {"psp", 9 }, {"PSP", 9 },
16161 {"primask", 16}, {"PRIMASK", 16},
16162 {"basepri", 17}, {"BASEPRI", 17},
16163 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16164 {"faultmask", 19}, {"FAULTMASK", 19},
16165 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16166};
16167
c19d1205
ZW
16168/* Table of all shift-in-operand names. */
16169static const struct asm_shift_name shift_names [] =
b99bd4ef 16170{
c19d1205
ZW
16171 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16172 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16173 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16174 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16175 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16176 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16177};
b99bd4ef 16178
c19d1205
ZW
16179/* Table of all explicit relocation names. */
16180#ifdef OBJ_ELF
16181static struct reloc_entry reloc_names[] =
16182{
16183 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16184 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16185 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16186 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16187 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16188 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16189 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16190 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16191 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16192 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16193 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
16194};
16195#endif
b99bd4ef 16196
c19d1205
ZW
16197/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16198static const struct asm_cond conds[] =
16199{
16200 {"eq", 0x0},
16201 {"ne", 0x1},
16202 {"cs", 0x2}, {"hs", 0x2},
16203 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16204 {"mi", 0x4},
16205 {"pl", 0x5},
16206 {"vs", 0x6},
16207 {"vc", 0x7},
16208 {"hi", 0x8},
16209 {"ls", 0x9},
16210 {"ge", 0xa},
16211 {"lt", 0xb},
16212 {"gt", 0xc},
16213 {"le", 0xd},
16214 {"al", 0xe}
16215};
bfae80f2 16216
62b3e311
PB
16217static struct asm_barrier_opt barrier_opt_names[] =
16218{
16219 { "sy", 0xf },
16220 { "un", 0x7 },
16221 { "st", 0xe },
16222 { "unst", 0x6 }
16223};
16224
c19d1205
ZW
16225/* Table of ARM-format instructions. */
16226
16227/* Macros for gluing together operand strings. N.B. In all cases
16228 other than OPS0, the trailing OP_stop comes from default
16229 zero-initialization of the unspecified elements of the array. */
16230#define OPS0() { OP_stop, }
16231#define OPS1(a) { OP_##a, }
16232#define OPS2(a,b) { OP_##a,OP_##b, }
16233#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16234#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16235#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16236#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16237
5be8be5d
DG
16238/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16239 This is useful when mixing operands for ARM and THUMB, i.e. using the
16240 MIX_ARM_THUMB_OPERANDS macro.
16241 In order to use these macros, prefix the number of operands with _
16242 e.g. _3. */
16243#define OPS_1(a) { a, }
16244#define OPS_2(a,b) { a,b, }
16245#define OPS_3(a,b,c) { a,b,c, }
16246#define OPS_4(a,b,c,d) { a,b,c,d, }
16247#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16248#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16249
c19d1205
ZW
16250/* These macros abstract out the exact format of the mnemonic table and
16251 save some repeated characters. */
16252
16253/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16254#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16255 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16256 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16257
16258/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16259 a T_MNEM_xyz enumerator. */
16260#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16261 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16262#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16263 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16264
16265/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16266 infix after the third character. */
16267#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16268 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16269 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16270#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16271 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16272 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16273#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16274 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16275#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16276 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16277#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16278 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16279#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16280 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16281
16282/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16283 appear in the condition table. */
16284#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16285 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16286 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16287
16288#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16289 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16290 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16291 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16292 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16293 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16294 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16295 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16296 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16297 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16298 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16299 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16300 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16301 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16302 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16303 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16304 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16305 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16306 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16307 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
16308
16309#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
16310 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16311#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 16312 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16313
16314/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
16315 field is still 0xE. Many of the Thumb variants can be executed
16316 conditionally, so this is checked separately. */
c19d1205 16317#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16318 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16319 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16320
16321/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16322 condition code field. */
16323#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 16324 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16325 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16326
16327/* ARM-only variants of all the above. */
6a86118a 16328#define CE(mnem, op, nops, ops, ae) \
21d799b5 16329 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
16330
16331#define C3(mnem, op, nops, ops, ae) \
16332 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16333
e3cb604e
PB
16334/* Legacy mnemonics that always have conditional infix after the third
16335 character. */
16336#define CL(mnem, op, nops, ops, ae) \
21d799b5 16337 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16338 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16339
8f06b2d8
PB
16340/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16341#define cCE(mnem, op, nops, ops, ae) \
21d799b5 16342 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16343
e3cb604e
PB
16344/* Legacy coprocessor instructions where conditional infix and conditional
16345 suffix are ambiguous. For consistency this includes all FPA instructions,
16346 not just the potentially ambiguous ones. */
16347#define cCL(mnem, op, nops, ops, ae) \
21d799b5 16348 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16349 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16350
16351/* Coprocessor, takes either a suffix or a position-3 infix
16352 (for an FPA corner case). */
16353#define C3E(mnem, op, nops, ops, ae) \
21d799b5 16354 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 16355 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16356
6a86118a 16357#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
16358 { m1 #m2 m3, OPS##nops ops, \
16359 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
16360 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16361
16362#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
16363 xCM_ (m1, , m2, op, nops, ops, ae), \
16364 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16365 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16366 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16367 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16368 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16369 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16370 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16371 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16372 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16373 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16374 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16375 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16376 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16377 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16378 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16379 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16380 xCM_ (m1, le, m2, op, nops, ops, ae), \
16381 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
16382
16383#define UE(mnem, op, nops, ops, ae) \
16384 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16385
16386#define UF(mnem, op, nops, ops, ae) \
16387 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16388
5287ad62
JB
16389/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16390 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16391 use the same encoding function for each. */
16392#define NUF(mnem, op, nops, ops, enc) \
16393 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16394 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16395
16396/* Neon data processing, version which indirects through neon_enc_tab for
16397 the various overloaded versions of opcodes. */
16398#define nUF(mnem, op, nops, ops, enc) \
21d799b5 16399 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16400 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16401
16402/* Neon insn with conditional suffix for the ARM version, non-overloaded
16403 version. */
037e8744
JB
16404#define NCE_tag(mnem, op, nops, ops, enc, tag) \
16405 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
16406 THUMB_VARIANT, do_##enc, do_##enc }
16407
037e8744 16408#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 16409 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16410
16411#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 16412 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16413
5287ad62 16414/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 16415#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 16416 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16417 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16418
037e8744 16419#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 16420 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16421
16422#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 16423 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16424
c19d1205
ZW
16425#define do_0 0
16426
16427/* Thumb-only, unconditional. */
e07e6e58 16428#define UT(mnem, op, nops, ops, te) TUE (mnem, 0, op, nops, ops, 0, te)
c19d1205 16429
c19d1205 16430static const struct asm_opcode insns[] =
bfae80f2 16431{
e74cfd16
PB
16432#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16433#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
16434 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16435 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16436 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16437 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16438 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16439 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16440 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16441 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16442 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16443 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16444 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16445 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16446 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16447 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16448 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16449 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
16450
16451 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16452 for setting PSR flag bits. They are obsolete in V6 and do not
16453 have Thumb equivalents. */
21d799b5
NC
16454 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16455 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16456 CL("tstp", 110f000, 2, (RR, SH), cmp),
16457 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16458 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16459 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16460 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16461 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16462 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16463
16464 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16465 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16466 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16467 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16468
16469 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
16470 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16471 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16472 OP_RRnpc),
16473 OP_ADDRGLDR),ldst, t_ldst),
16474 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
16475
16476 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16477 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16478 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16479 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16480 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16481 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16482
16483 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16484 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16485 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16486 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 16487
c19d1205 16488 /* Pseudo ops. */
21d799b5 16489 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 16490 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 16491 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
16492
16493 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
16494 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16495 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16496 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16497 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16498 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16499 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16500 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16501 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16502 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16503 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16504 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16505 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 16506
16a4cf17 16507 /* These may simplify to neg. */
21d799b5
NC
16508 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16509 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 16510
c921be7d
NC
16511#undef THUMB_VARIANT
16512#define THUMB_VARIANT & arm_ext_v6
16513
21d799b5 16514 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
16515
16516 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
16517#undef THUMB_VARIANT
16518#define THUMB_VARIANT & arm_ext_v6t2
16519
21d799b5
NC
16520 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16521 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16522 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 16523
5be8be5d
DG
16524 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16525 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16526 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
16527 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 16528
21d799b5
NC
16529 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16530 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 16531
21d799b5
NC
16532 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16533 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
16534
16535 /* V1 instructions with no Thumb analogue at all. */
21d799b5 16536 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
16537 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16538
16539 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16540 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16541 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16542 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16543 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16544 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16545 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16546 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16547
c921be7d
NC
16548#undef ARM_VARIANT
16549#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16550#undef THUMB_VARIANT
16551#define THUMB_VARIANT & arm_ext_v4t
16552
21d799b5
NC
16553 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16554 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 16555
c921be7d
NC
16556#undef THUMB_VARIANT
16557#define THUMB_VARIANT & arm_ext_v6t2
16558
21d799b5 16559 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
16560 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16561
16562 /* Generic coprocessor instructions. */
21d799b5
NC
16563 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16564 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16565 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16566 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16567 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16568 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16569 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16570
c921be7d
NC
16571#undef ARM_VARIANT
16572#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16573
21d799b5 16574 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
16575 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16576
c921be7d
NC
16577#undef ARM_VARIANT
16578#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16579#undef THUMB_VARIANT
16580#define THUMB_VARIANT & arm_ext_msr
16581
21d799b5
NC
16582 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16583 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205 16584
c921be7d
NC
16585#undef ARM_VARIANT
16586#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16587#undef THUMB_VARIANT
16588#define THUMB_VARIANT & arm_ext_v6t2
16589
21d799b5
NC
16590 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16591 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16592 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16593 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16594 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16595 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16596 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16597 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 16598
c921be7d
NC
16599#undef ARM_VARIANT
16600#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16601#undef THUMB_VARIANT
16602#define THUMB_VARIANT & arm_ext_v4t
16603
5be8be5d
DG
16604 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16605 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16606 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16607 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16608 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16609 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 16610
c921be7d
NC
16611#undef ARM_VARIANT
16612#define ARM_VARIANT & arm_ext_v4t_5
16613
c19d1205
ZW
16614 /* ARM Architecture 4T. */
16615 /* Note: bx (and blx) are required on V5, even if the processor does
16616 not support Thumb. */
21d799b5 16617 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 16618
c921be7d
NC
16619#undef ARM_VARIANT
16620#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16621#undef THUMB_VARIANT
16622#define THUMB_VARIANT & arm_ext_v5t
16623
c19d1205
ZW
16624 /* Note: blx has 2 variants; the .value coded here is for
16625 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
16626 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16627 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 16628
c921be7d
NC
16629#undef THUMB_VARIANT
16630#define THUMB_VARIANT & arm_ext_v6t2
16631
21d799b5
NC
16632 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16633 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16634 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16635 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16636 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16637 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16638 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16639 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16640
c921be7d
NC
16641#undef ARM_VARIANT
16642#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
16643#undef THUMB_VARIANT
16644#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 16645
21d799b5
NC
16646 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16647 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16648 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16649 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16650
21d799b5
NC
16651 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16652 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16653
21d799b5
NC
16654 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16655 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16656 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16657 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 16658
21d799b5
NC
16659 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16660 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16661 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16662 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16663
21d799b5
NC
16664 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16665 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16666
03ee1b7f
NC
16667 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16668 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16669 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16670 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 16671
c921be7d
NC
16672#undef ARM_VARIANT
16673#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
16674#undef THUMB_VARIANT
16675#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 16676
21d799b5 16677 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
16678 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
16679 ldrd, t_ldstd),
16680 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
16681 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 16682
21d799b5
NC
16683 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16684 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 16685
c921be7d
NC
16686#undef ARM_VARIANT
16687#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16688
21d799b5 16689 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 16690
c921be7d
NC
16691#undef ARM_VARIANT
16692#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16693#undef THUMB_VARIANT
16694#define THUMB_VARIANT & arm_ext_v6
16695
21d799b5
NC
16696 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16697 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16698 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16699 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16700 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16701 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16702 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16703 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16704 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16705 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 16706
c921be7d
NC
16707#undef THUMB_VARIANT
16708#define THUMB_VARIANT & arm_ext_v6t2
16709
5be8be5d
DG
16710 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
16711 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16712 strex, t_strex),
21d799b5
NC
16713 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16714 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 16715
21d799b5
NC
16716 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16717 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 16718
9e3c6df6 16719/* ARM V6 not included in V7M. */
c921be7d
NC
16720#undef THUMB_VARIANT
16721#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
16722 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16723 UF(rfeib, 9900a00, 1, (RRw), rfe),
16724 UF(rfeda, 8100a00, 1, (RRw), rfe),
16725 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16726 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16727 UF(rfefa, 9900a00, 1, (RRw), rfe),
16728 UF(rfeea, 8100a00, 1, (RRw), rfe),
16729 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16730 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16731 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16732 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16733 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 16734
9e3c6df6
PB
16735/* ARM V6 not included in V7M (eg. integer SIMD). */
16736#undef THUMB_VARIANT
16737#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
16738 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16739 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16740 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16741 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16742 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16743 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16744 /* Old name for QASX. */
21d799b5
NC
16745 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16746 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16747 /* Old name for QSAX. */
21d799b5
NC
16748 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16749 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16750 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16751 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16752 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16753 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16754 /* Old name for SASX. */
21d799b5
NC
16755 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16756 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16757 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16758 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16759 /* Old name for SHASX. */
21d799b5
NC
16760 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16761 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16762 /* Old name for SHSAX. */
21d799b5
NC
16763 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16764 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16765 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16766 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16767 /* Old name for SSAX. */
21d799b5
NC
16768 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16769 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16770 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16771 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16772 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16773 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16774 /* Old name for UASX. */
21d799b5
NC
16775 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16776 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16777 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16778 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16779 /* Old name for UHASX. */
21d799b5
NC
16780 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16781 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16782 /* Old name for UHSAX. */
21d799b5
NC
16783 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16784 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16785 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16786 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16787 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16788 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16789 /* Old name for UQASX. */
21d799b5
NC
16790 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16791 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16792 /* Old name for UQSAX. */
21d799b5
NC
16793 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16794 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16795 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16796 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16797 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16798 /* Old name for USAX. */
21d799b5
NC
16799 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16800 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
16801 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16802 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16803 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16804 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16805 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16806 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16807 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16808 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16809 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16810 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16811 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16812 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16813 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16814 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16815 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16816 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16817 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16818 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16819 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16820 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16821 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16822 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16823 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16824 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16825 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16826 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16827 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
16828 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16829 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16830 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16831 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16832 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 16833
c921be7d
NC
16834#undef ARM_VARIANT
16835#define ARM_VARIANT & arm_ext_v6k
16836#undef THUMB_VARIANT
16837#define THUMB_VARIANT & arm_ext_v6k
16838
21d799b5
NC
16839 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16840 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16841 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16842 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 16843
c921be7d
NC
16844#undef THUMB_VARIANT
16845#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
16846 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
16847 ldrexd, t_ldrexd),
16848 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
16849 RRnpcb), strexd, t_strexd),
ebdca51a 16850
c921be7d
NC
16851#undef THUMB_VARIANT
16852#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
16853 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
16854 rd_rn, rd_rn),
16855 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
16856 rd_rn, rd_rn),
16857 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16858 strex, rm_rd_rn),
16859 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16860 strex, rm_rd_rn),
21d799b5 16861 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 16862
c921be7d
NC
16863#undef ARM_VARIANT
16864#define ARM_VARIANT & arm_ext_v6z
16865
21d799b5 16866 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 16867
c921be7d
NC
16868#undef ARM_VARIANT
16869#define ARM_VARIANT & arm_ext_v6t2
16870
21d799b5
NC
16871 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16872 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16873 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16874 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 16875
21d799b5
NC
16876 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16877 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16878 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16879 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 16880
5be8be5d
DG
16881 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16882 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16883 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16884 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 16885
21d799b5
NC
16886 UT("cbnz", b900, 2, (RR, EXP), t_cbz),
16887 UT("cbz", b100, 2, (RR, EXP), t_cbz),
c921be7d
NC
16888
16889 /* ARM does not really have an IT instruction, so always allow it.
16890 The opcode is copied from Thumb in order to allow warnings in
16891 -mimplicit-it=[never | arm] modes. */
16892#undef ARM_VARIANT
16893#define ARM_VARIANT & arm_ext_v1
16894
21d799b5
NC
16895 TUE("it", bf08, bf08, 1, (COND), it, t_it),
16896 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
16897 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
16898 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
16899 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
16900 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
16901 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
16902 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
16903 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
16904 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
16905 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
16906 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
16907 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
16908 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
16909 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 16910 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
16911 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
16912 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 16913
92e90b6e 16914 /* Thumb2 only instructions. */
c921be7d
NC
16915#undef ARM_VARIANT
16916#define ARM_VARIANT NULL
92e90b6e 16917
21d799b5
NC
16918 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16919 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16920 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
16921 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
16922 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
16923 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 16924
62b3e311 16925 /* Thumb-2 hardware division instructions (R and M profiles only). */
c921be7d
NC
16926#undef THUMB_VARIANT
16927#define THUMB_VARIANT & arm_ext_div
16928
21d799b5
NC
16929 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
16930 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
62b3e311 16931
7e806470 16932 /* ARM V6M/V7 instructions. */
c921be7d
NC
16933#undef ARM_VARIANT
16934#define ARM_VARIANT & arm_ext_barrier
16935#undef THUMB_VARIANT
16936#define THUMB_VARIANT & arm_ext_barrier
16937
21d799b5
NC
16938 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
16939 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
16940 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
7e806470 16941
62b3e311 16942 /* ARM V7 instructions. */
c921be7d
NC
16943#undef ARM_VARIANT
16944#define ARM_VARIANT & arm_ext_v7
16945#undef THUMB_VARIANT
16946#define THUMB_VARIANT & arm_ext_v7
16947
21d799b5
NC
16948 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
16949 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 16950
c921be7d
NC
16951#undef ARM_VARIANT
16952#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
16953
21d799b5
NC
16954 cCE("wfs", e200110, 1, (RR), rd),
16955 cCE("rfs", e300110, 1, (RR), rd),
16956 cCE("wfc", e400110, 1, (RR), rd),
16957 cCE("rfc", e500110, 1, (RR), rd),
16958
16959 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
16960 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
16961 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
16962 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
16963
16964 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
16965 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
16966 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
16967 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
16968
16969 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
16970 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
16971 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
16972 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
16973 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
16974 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
16975 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
16976 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
16977 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
16978 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
16979 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
16980 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
16981
16982 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
16983 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
16984 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
16985 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
16986 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
16987 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
16988 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
16989 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
16990 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
16991 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
16992 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
16993 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
16994
16995 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
16996 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
16997 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
16998 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
16999 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17000 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17001 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17002 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17003 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17004 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17005 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17006 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17007
17008 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17009 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17010 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17011 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17012 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17013 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17014 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17015 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17016 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17017 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17018 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17019 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17020
17021 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17022 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17023 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17024 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17025 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17026 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17027 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17028 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17029 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17030 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17031 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17032 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17033
17034 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17035 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17036 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17037 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17038 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17039 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17040 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17041 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17042 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17043 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17044 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17045 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17046
17047 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17048 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17049 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17050 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17051 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17052 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17053 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17054 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17055 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17056 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17057 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17058 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17059
17060 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17061 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17062 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17063 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17064 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17065 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17066 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17067 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17068 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17069 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17070 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17071 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17072
17073 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17074 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17075 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17076 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17077 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17078 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17079 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17080 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17081 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17082 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17083 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17084 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17085
17086 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17087 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17088 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17089 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17090 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17091 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17092 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17093 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17094 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17095 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17096 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17097 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17098
17099 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17100 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17101 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17102 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17103 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17104 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17105 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17106 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17107 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17108 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17109 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17110 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17111
17112 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17113 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17114 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17115 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17116 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17117 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17118 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17119 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17120 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17121 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17122 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17123 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17124
17125 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17126 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17127 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17128 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17129 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17130 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17131 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17132 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17133 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17134 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17135 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17136 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17137
17138 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17139 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17140 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17141 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17142 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17143 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17144 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17145 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17146 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17147 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17148 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17149 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17150
17151 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17152 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17153 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17154 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17155 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17156 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17157 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17158 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17159 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17160 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17161 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17162 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17163
17164 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17165 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17166 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17167 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17168 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17169 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17170 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17171 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17172 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17173 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17174 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17175 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17176
17177 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17178 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17179 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17180 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17181 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17182 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17183 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17184 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17185 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17186 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17187 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17188 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17189
17190 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17191 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17192 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17193 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17194 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17195 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17196 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17197 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17198 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17199 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17200 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17201 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17202
17203 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17204 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17205 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17206 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17207 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17208 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17209 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17210 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17211 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17212 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17213 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17214 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17215
17216 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17217 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17218 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17219 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17220 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17221 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17222 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17223 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17224 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17225 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17226 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17227 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17228
17229 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17230 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17231 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17232 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17233 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17234 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17235 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17236 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17237 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17238 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17239 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17240 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17241
17242 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17243 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17244 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17245 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17246 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17247 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17248 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17249 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17250 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17251 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17252 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17253 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17254
17255 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17256 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17257 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17258 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17259 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17260 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17261 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17262 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17263 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17264 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17265 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17266 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17267
17268 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17269 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17270 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17271 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17272 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17273 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17274 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17275 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17276 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17277 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17278 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17279 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17280
17281 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17282 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17283 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17284 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17285 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17286 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17287 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17288 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17289 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17290 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17291 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17292 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17293
17294 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17295 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17296 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17297 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17298 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17299 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17300 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17301 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17302 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17303 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17304 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17305 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17306
17307 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17308 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17309 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17310 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17311 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17312 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17313 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17314 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17315 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17316 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17317 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17318 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17319
17320 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17321 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17322 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17323 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17324 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17325 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17326 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17327 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17328 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17329 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17330 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17331 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17332
17333 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17334 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17335 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17336 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17337 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17338 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17339 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17340 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17341 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17342 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17343 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17344 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17345
17346 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17347 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17348 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17349 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17350
17351 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17352 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17353 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17354 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17355 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17356 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17357 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17358 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17359 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17360 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17361 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17362 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 17363
c19d1205
ZW
17364 /* The implementation of the FIX instruction is broken on some
17365 assemblers, in that it accepts a precision specifier as well as a
17366 rounding specifier, despite the fact that this is meaningless.
17367 To be more compatible, we accept it as well, though of course it
17368 does not set any bits. */
21d799b5
NC
17369 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17370 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17371 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17372 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17373 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17374 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17375 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17376 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17377 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17378 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17379 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17380 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17381 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 17382
c19d1205 17383 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
17384#undef ARM_VARIANT
17385#define ARM_VARIANT & fpu_fpa_ext_v2
17386
21d799b5
NC
17387 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17388 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17389 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17390 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17391 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17392 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 17393
c921be7d
NC
17394#undef ARM_VARIANT
17395#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17396
c19d1205 17397 /* Moves and type conversions. */
21d799b5
NC
17398 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17399 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17400 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17401 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
17402 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17403 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
17404 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17405 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17406 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17407 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17408 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17409 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17410 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17411 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
17412
17413 /* Memory operations. */
21d799b5
NC
17414 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17415 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17416 cCE("fldmias", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17417 cCE("fldmfds", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17418 cCE("fldmdbs", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17419 cCE("fldmeas", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17420 cCE("fldmiax", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17421 cCE("fldmfdx", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17422 cCE("fldmdbx", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17423 cCE("fldmeax", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17424 cCE("fstmias", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17425 cCE("fstmeas", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17426 cCE("fstmdbs", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17427 cCE("fstmfds", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17428 cCE("fstmiax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17429 cCE("fstmeax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17430 cCE("fstmdbx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17431 cCE("fstmfdx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 17432
c19d1205 17433 /* Monadic operations. */
21d799b5
NC
17434 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17435 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17436 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
17437
17438 /* Dyadic operations. */
21d799b5
NC
17439 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17440 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17441 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17442 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17443 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17444 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17445 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17446 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17447 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 17448
c19d1205 17449 /* Comparisons. */
21d799b5
NC
17450 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17451 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17452 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17453 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 17454
62f3b8c8
PB
17455 /* Double precision load/store are still present on single precision
17456 implementations. */
17457 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17458 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17459 cCE("fldmiad", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17460 cCE("fldmfdd", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17461 cCE("fldmdbd", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17462 cCE("fldmead", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17463 cCE("fstmiad", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17464 cCE("fstmead", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17465 cCE("fstmdbd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17466 cCE("fstmfdd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17467
c921be7d
NC
17468#undef ARM_VARIANT
17469#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17470
c19d1205 17471 /* Moves and type conversions. */
21d799b5
NC
17472 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17473 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17474 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17475 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17476 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17477 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17478 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17479 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17480 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17481 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17482 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17483 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17484 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 17485
c19d1205 17486 /* Monadic operations. */
21d799b5
NC
17487 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17488 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17489 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
17490
17491 /* Dyadic operations. */
21d799b5
NC
17492 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17493 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17494 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17495 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17496 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17497 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17498 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17499 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17500 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 17501
c19d1205 17502 /* Comparisons. */
21d799b5
NC
17503 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17504 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17505 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17506 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 17507
c921be7d
NC
17508#undef ARM_VARIANT
17509#define ARM_VARIANT & fpu_vfp_ext_v2
17510
21d799b5
NC
17511 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17512 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17513 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17514 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 17515
037e8744
JB
17516/* Instructions which may belong to either the Neon or VFP instruction sets.
17517 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
17518#undef ARM_VARIANT
17519#define ARM_VARIANT & fpu_vfp_ext_v1xd
17520#undef THUMB_VARIANT
17521#define THUMB_VARIANT & fpu_vfp_ext_v1xd
17522
037e8744
JB
17523 /* These mnemonics are unique to VFP. */
17524 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17525 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
17526 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17527 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17528 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17529 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17530 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
17531 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17532 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17533 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17534
17535 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
17536 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17537 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17538 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 17539
21d799b5
NC
17540 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17541 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
17542
17543 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17544 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17545
17546 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17547 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17548 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17549 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17550 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17551 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
17552 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17553 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 17554
e3e535bc
NC
17555 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17556 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
17557 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17558 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 17559
037e8744
JB
17560
17561 /* NOTE: All VMOV encoding is special-cased! */
17562 NCE(vmov, 0, 1, (VMOV), neon_mov),
17563 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17564
c921be7d
NC
17565#undef THUMB_VARIANT
17566#define THUMB_VARIANT & fpu_neon_ext_v1
17567#undef ARM_VARIANT
17568#define ARM_VARIANT & fpu_neon_ext_v1
17569
5287ad62
JB
17570 /* Data processing with three registers of the same length. */
17571 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17572 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17573 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17574 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17575 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17576 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17577 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17578 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17579 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17580 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17581 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17582 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17583 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17584 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
17585 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17586 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17587 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17588 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
17589 /* If not immediate, fall back to neon_dyadic_i64_su.
17590 shl_imm should accept I8 I16 I32 I64,
17591 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
17592 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17593 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17594 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17595 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 17596 /* Logic ops, types optional & ignored. */
4316f0d2
DG
17597 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17598 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17599 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17600 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17601 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17602 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17603 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17604 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17605 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17606 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
17607 /* Bitfield ops, untyped. */
17608 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17609 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17610 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17611 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17612 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17613 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17614 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
17615 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17616 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17617 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17618 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17619 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17620 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
17621 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17622 back to neon_dyadic_if_su. */
21d799b5
NC
17623 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17624 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17625 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17626 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17627 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17628 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17629 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17630 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 17631 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
17632 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17633 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 17634 /* As above, D registers only. */
21d799b5
NC
17635 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17636 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 17637 /* Int and float variants, signedness unimportant. */
21d799b5
NC
17638 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17639 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17640 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 17641 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
17642 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17643 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
17644 /* vtst takes sizes 8, 16, 32. */
17645 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17646 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17647 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 17648 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 17649 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
17650 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17651 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17652 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17653 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
17654 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17655 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17656 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17657 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
17658 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17659 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17660 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17661 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
17662 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17663 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17664 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17665 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17666
17667 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 17668 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
17669 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17670
17671 /* Data processing with two registers and a shift amount. */
17672 /* Right shifts, and variants with rounding.
17673 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17674 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17675 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17676 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17677 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17678 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17679 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17680 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17681 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17682 /* Shift and insert. Sizes accepted 8 16 32 64. */
17683 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17684 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17685 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17686 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17687 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17688 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17689 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17690 /* Right shift immediate, saturating & narrowing, with rounding variants.
17691 Types accepted S16 S32 S64 U16 U32 U64. */
17692 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17693 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17694 /* As above, unsigned. Types accepted S16 S32 S64. */
17695 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17696 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17697 /* Right shift narrowing. Types accepted I16 I32 I64. */
17698 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17699 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17700 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 17701 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 17702 /* CVT with optional immediate for fixed-point variant. */
21d799b5 17703 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 17704
4316f0d2
DG
17705 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
17706 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
17707
17708 /* Data processing, three registers of different lengths. */
17709 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17710 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17711 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17712 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17713 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17714 /* If not scalar, fall back to neon_dyadic_long.
17715 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
17716 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17717 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
17718 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17719 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17720 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17721 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17722 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17723 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17724 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17725 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17726 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
17727 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17728 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17729 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
17730 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17731 S16 S32 U16 U32. */
21d799b5 17732 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
17733
17734 /* Extract. Size 8. */
3b8d421e
PB
17735 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17736 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
17737
17738 /* Two registers, miscellaneous. */
17739 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17740 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17741 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17742 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17743 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17744 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17745 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17746 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
17747 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17748 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
17749 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17750 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17751 /* VMOVN. Types I16 I32 I64. */
21d799b5 17752 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 17753 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 17754 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 17755 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 17756 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
17757 /* VZIP / VUZP. Sizes 8 16 32. */
17758 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17759 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17760 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17761 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17762 /* VQABS / VQNEG. Types S8 S16 S32. */
17763 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17764 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17765 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17766 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17767 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17768 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17769 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17770 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17771 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17772 /* Reciprocal estimates. Types U32 F32. */
17773 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17774 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17775 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17776 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17777 /* VCLS. Types S8 S16 S32. */
17778 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17779 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17780 /* VCLZ. Types I8 I16 I32. */
17781 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17782 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17783 /* VCNT. Size 8. */
17784 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17785 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17786 /* Two address, untyped. */
17787 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17788 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17789 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
17790 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17791 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
17792
17793 /* Table lookup. Size 8. */
17794 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17795 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17796
c921be7d
NC
17797#undef THUMB_VARIANT
17798#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17799#undef ARM_VARIANT
17800#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17801
5287ad62 17802 /* Neon element/structure load/store. */
21d799b5
NC
17803 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17804 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17805 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17806 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17807 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17808 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17809 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17810 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 17811
c921be7d 17812#undef THUMB_VARIANT
62f3b8c8
PB
17813#define THUMB_VARIANT &fpu_vfp_ext_v3xd
17814#undef ARM_VARIANT
17815#define ARM_VARIANT &fpu_vfp_ext_v3xd
17816 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17817 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17818 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17819 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17820 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17821 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17822 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17823 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17824 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17825
17826#undef THUMB_VARIANT
c921be7d
NC
17827#define THUMB_VARIANT & fpu_vfp_ext_v3
17828#undef ARM_VARIANT
17829#define ARM_VARIANT & fpu_vfp_ext_v3
17830
21d799b5 17831 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 17832 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17833 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17834 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17835 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17836 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17837 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17838 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17839 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 17840
62f3b8c8
PB
17841#undef ARM_VARIANT
17842#define ARM_VARIANT &fpu_vfp_ext_fma
17843#undef THUMB_VARIANT
17844#define THUMB_VARIANT &fpu_vfp_ext_fma
17845 /* Mnemonics shared by Neon and VFP. These are included in the
17846 VFP FMA variant; NEON and VFP FMA always includes the NEON
17847 FMA instructions. */
17848 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17849 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17850 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17851 the v form should always be used. */
17852 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17853 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17854 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17855 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17856 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17857 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17858
5287ad62 17859#undef THUMB_VARIANT
c921be7d
NC
17860#undef ARM_VARIANT
17861#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17862
21d799b5
NC
17863 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17864 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17865 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17866 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17867 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17868 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17869 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17870 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 17871
c921be7d
NC
17872#undef ARM_VARIANT
17873#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17874
21d799b5
NC
17875 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
17876 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
17877 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
17878 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
17879 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
17880 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
17881 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
17882 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
17883 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
17884 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17885 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17886 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17887 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17888 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17889 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17890 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17891 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17892 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17893 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
17894 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
17895 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17896 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17897 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17898 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17899 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17900 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17901 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
17902 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
17903 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
17904 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
17905 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
17906 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
17907 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
17908 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
17909 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
17910 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
17911 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
17912 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17913 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17914 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17915 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17916 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17917 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17918 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17919 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17920 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17921 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
17922 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17923 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17924 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17925 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17926 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17927 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17928 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17929 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17930 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17931 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17932 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17933 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17934 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17935 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17936 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17937 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17938 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17939 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17940 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17941 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17942 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17943 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17944 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17945 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17946 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17947 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17948 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17949 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17950 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17951 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17952 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17953 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17954 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17955 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17956 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17957 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17958 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17959 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17960 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17961 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17962 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17963 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
17964 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17965 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17966 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17967 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17968 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17969 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17970 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17971 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17972 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17973 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17974 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17975 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17976 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17977 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17978 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17979 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17980 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17981 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17982 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17983 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17984 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17985 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
17986 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17987 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17988 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17989 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17990 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17991 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17992 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17993 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17994 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17995 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17996 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17997 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17998 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17999 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18000 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18001 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18002 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18003 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18004 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18005 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18006 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18007 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18008 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18009 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18010 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18011 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18012 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18013 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18014 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18015 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18016 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18017 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18018 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18019 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18020 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18021 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18022 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18023 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18024 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18025 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18026 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18027 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18028 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18029 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18030 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18031 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18032 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18033 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18034 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18035 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18036 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 18037
c921be7d
NC
18038#undef ARM_VARIANT
18039#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18040
21d799b5
NC
18041 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18042 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18043 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18044 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18045 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18046 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18047 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18048 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18049 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18050 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18051 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18052 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18053 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18054 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18055 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18056 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18057 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18058 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18059 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18060 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18061 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18062 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18063 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18064 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18065 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18066 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18067 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18068 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18069 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18070 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18071 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18072 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18073 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18074 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18075 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18076 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18077 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18078 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18079 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18080 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18081 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18082 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18083 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18084 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18085 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18086 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18087 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18088 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18089 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18090 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18091 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18092 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18093 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18094 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18095 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18096 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18097 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 18098
c921be7d
NC
18099#undef ARM_VARIANT
18100#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18101
21d799b5
NC
18102 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18103 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18104 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18105 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18106 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18107 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18108 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18109 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18110 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18111 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18112 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18113 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18114 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18115 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18116 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18117 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18118 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18119 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18120 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18121 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18122 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18123 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18124 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18125 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18126 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18127 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18128 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18129 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18130 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18131 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18132 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18133 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18134 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18135 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18136 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18137 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18138 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18139 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18140 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18141 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18142 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18143 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18144 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18145 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18146 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18147 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18148 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18149 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18150 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18151 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18152 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18153 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18154 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18155 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18156 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18157 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18158 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18159 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18160 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18161 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18162 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18163 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18164 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18165 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18166 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18167 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18168 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18169 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18170 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18171 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18172 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18173 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18174 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18175 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18176 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18177 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18178};
18179#undef ARM_VARIANT
18180#undef THUMB_VARIANT
18181#undef TCE
18182#undef TCM
18183#undef TUE
18184#undef TUF
18185#undef TCC
8f06b2d8 18186#undef cCE
e3cb604e
PB
18187#undef cCL
18188#undef C3E
c19d1205
ZW
18189#undef CE
18190#undef CM
18191#undef UE
18192#undef UF
18193#undef UT
5287ad62
JB
18194#undef NUF
18195#undef nUF
18196#undef NCE
18197#undef nCE
c19d1205
ZW
18198#undef OPS0
18199#undef OPS1
18200#undef OPS2
18201#undef OPS3
18202#undef OPS4
18203#undef OPS5
18204#undef OPS6
18205#undef do_0
18206\f
18207/* MD interface: bits in the object file. */
bfae80f2 18208
c19d1205
ZW
18209/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18210 for use in the a.out file, and stores them in the array pointed to by buf.
18211 This knows about the endian-ness of the target machine and does
18212 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18213 2 (short) and 4 (long) Floating numbers are put out as a series of
18214 LITTLENUMS (shorts, here at least). */
b99bd4ef 18215
c19d1205
ZW
18216void
18217md_number_to_chars (char * buf, valueT val, int n)
18218{
18219 if (target_big_endian)
18220 number_to_chars_bigendian (buf, val, n);
18221 else
18222 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18223}
18224
c19d1205
ZW
18225static valueT
18226md_chars_to_number (char * buf, int n)
bfae80f2 18227{
c19d1205
ZW
18228 valueT result = 0;
18229 unsigned char * where = (unsigned char *) buf;
bfae80f2 18230
c19d1205 18231 if (target_big_endian)
b99bd4ef 18232 {
c19d1205
ZW
18233 while (n--)
18234 {
18235 result <<= 8;
18236 result |= (*where++ & 255);
18237 }
b99bd4ef 18238 }
c19d1205 18239 else
b99bd4ef 18240 {
c19d1205
ZW
18241 while (n--)
18242 {
18243 result <<= 8;
18244 result |= (where[n] & 255);
18245 }
bfae80f2 18246 }
b99bd4ef 18247
c19d1205 18248 return result;
bfae80f2 18249}
b99bd4ef 18250
c19d1205 18251/* MD interface: Sections. */
b99bd4ef 18252
0110f2b8
PB
18253/* Estimate the size of a frag before relaxing. Assume everything fits in
18254 2 bytes. */
18255
c19d1205 18256int
0110f2b8 18257md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18258 segT segtype ATTRIBUTE_UNUSED)
18259{
0110f2b8
PB
18260 fragp->fr_var = 2;
18261 return 2;
18262}
18263
18264/* Convert a machine dependent frag. */
18265
18266void
18267md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18268{
18269 unsigned long insn;
18270 unsigned long old_op;
18271 char *buf;
18272 expressionS exp;
18273 fixS *fixp;
18274 int reloc_type;
18275 int pc_rel;
18276 int opcode;
18277
18278 buf = fragp->fr_literal + fragp->fr_fix;
18279
18280 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
18281 if (fragp->fr_symbol)
18282 {
0110f2b8
PB
18283 exp.X_op = O_symbol;
18284 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
18285 }
18286 else
18287 {
0110f2b8 18288 exp.X_op = O_constant;
5f4273c7 18289 }
0110f2b8
PB
18290 exp.X_add_number = fragp->fr_offset;
18291 opcode = fragp->fr_subtype;
18292 switch (opcode)
18293 {
18294 case T_MNEM_ldr_pc:
18295 case T_MNEM_ldr_pc2:
18296 case T_MNEM_ldr_sp:
18297 case T_MNEM_str_sp:
18298 case T_MNEM_ldr:
18299 case T_MNEM_ldrb:
18300 case T_MNEM_ldrh:
18301 case T_MNEM_str:
18302 case T_MNEM_strb:
18303 case T_MNEM_strh:
18304 if (fragp->fr_var == 4)
18305 {
5f4273c7 18306 insn = THUMB_OP32 (opcode);
0110f2b8
PB
18307 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18308 {
18309 insn |= (old_op & 0x700) << 4;
18310 }
18311 else
18312 {
18313 insn |= (old_op & 7) << 12;
18314 insn |= (old_op & 0x38) << 13;
18315 }
18316 insn |= 0x00000c00;
18317 put_thumb32_insn (buf, insn);
18318 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18319 }
18320 else
18321 {
18322 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18323 }
18324 pc_rel = (opcode == T_MNEM_ldr_pc2);
18325 break;
18326 case T_MNEM_adr:
18327 if (fragp->fr_var == 4)
18328 {
18329 insn = THUMB_OP32 (opcode);
18330 insn |= (old_op & 0xf0) << 4;
18331 put_thumb32_insn (buf, insn);
18332 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18333 }
18334 else
18335 {
18336 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18337 exp.X_add_number -= 4;
18338 }
18339 pc_rel = 1;
18340 break;
18341 case T_MNEM_mov:
18342 case T_MNEM_movs:
18343 case T_MNEM_cmp:
18344 case T_MNEM_cmn:
18345 if (fragp->fr_var == 4)
18346 {
18347 int r0off = (opcode == T_MNEM_mov
18348 || opcode == T_MNEM_movs) ? 0 : 8;
18349 insn = THUMB_OP32 (opcode);
18350 insn = (insn & 0xe1ffffff) | 0x10000000;
18351 insn |= (old_op & 0x700) << r0off;
18352 put_thumb32_insn (buf, insn);
18353 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18354 }
18355 else
18356 {
18357 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18358 }
18359 pc_rel = 0;
18360 break;
18361 case T_MNEM_b:
18362 if (fragp->fr_var == 4)
18363 {
18364 insn = THUMB_OP32(opcode);
18365 put_thumb32_insn (buf, insn);
18366 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18367 }
18368 else
18369 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18370 pc_rel = 1;
18371 break;
18372 case T_MNEM_bcond:
18373 if (fragp->fr_var == 4)
18374 {
18375 insn = THUMB_OP32(opcode);
18376 insn |= (old_op & 0xf00) << 14;
18377 put_thumb32_insn (buf, insn);
18378 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18379 }
18380 else
18381 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18382 pc_rel = 1;
18383 break;
18384 case T_MNEM_add_sp:
18385 case T_MNEM_add_pc:
18386 case T_MNEM_inc_sp:
18387 case T_MNEM_dec_sp:
18388 if (fragp->fr_var == 4)
18389 {
18390 /* ??? Choose between add and addw. */
18391 insn = THUMB_OP32 (opcode);
18392 insn |= (old_op & 0xf0) << 4;
18393 put_thumb32_insn (buf, insn);
16805f35
PB
18394 if (opcode == T_MNEM_add_pc)
18395 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18396 else
18397 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
18398 }
18399 else
18400 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18401 pc_rel = 0;
18402 break;
18403
18404 case T_MNEM_addi:
18405 case T_MNEM_addis:
18406 case T_MNEM_subi:
18407 case T_MNEM_subis:
18408 if (fragp->fr_var == 4)
18409 {
18410 insn = THUMB_OP32 (opcode);
18411 insn |= (old_op & 0xf0) << 4;
18412 insn |= (old_op & 0xf) << 16;
18413 put_thumb32_insn (buf, insn);
16805f35
PB
18414 if (insn & (1 << 20))
18415 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18416 else
18417 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
18418 }
18419 else
18420 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18421 pc_rel = 0;
18422 break;
18423 default:
5f4273c7 18424 abort ();
0110f2b8
PB
18425 }
18426 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 18427 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
18428 fixp->fx_file = fragp->fr_file;
18429 fixp->fx_line = fragp->fr_line;
18430 fragp->fr_fix += fragp->fr_var;
18431}
18432
18433/* Return the size of a relaxable immediate operand instruction.
18434 SHIFT and SIZE specify the form of the allowable immediate. */
18435static int
18436relax_immediate (fragS *fragp, int size, int shift)
18437{
18438 offsetT offset;
18439 offsetT mask;
18440 offsetT low;
18441
18442 /* ??? Should be able to do better than this. */
18443 if (fragp->fr_symbol)
18444 return 4;
18445
18446 low = (1 << shift) - 1;
18447 mask = (1 << (shift + size)) - (1 << shift);
18448 offset = fragp->fr_offset;
18449 /* Force misaligned offsets to 32-bit variant. */
18450 if (offset & low)
5e77afaa 18451 return 4;
0110f2b8
PB
18452 if (offset & ~mask)
18453 return 4;
18454 return 2;
18455}
18456
5e77afaa
PB
18457/* Get the address of a symbol during relaxation. */
18458static addressT
5f4273c7 18459relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
18460{
18461 fragS *sym_frag;
18462 addressT addr;
18463 symbolS *sym;
18464
18465 sym = fragp->fr_symbol;
18466 sym_frag = symbol_get_frag (sym);
18467 know (S_GET_SEGMENT (sym) != absolute_section
18468 || sym_frag == &zero_address_frag);
18469 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18470
18471 /* If frag has yet to be reached on this pass, assume it will
18472 move by STRETCH just as we did. If this is not so, it will
18473 be because some frag between grows, and that will force
18474 another pass. */
18475
18476 if (stretch != 0
18477 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
18478 {
18479 fragS *f;
18480
18481 /* Adjust stretch for any alignment frag. Note that if have
18482 been expanding the earlier code, the symbol may be
18483 defined in what appears to be an earlier frag. FIXME:
18484 This doesn't handle the fr_subtype field, which specifies
18485 a maximum number of bytes to skip when doing an
18486 alignment. */
18487 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18488 {
18489 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18490 {
18491 if (stretch < 0)
18492 stretch = - ((- stretch)
18493 & ~ ((1 << (int) f->fr_offset) - 1));
18494 else
18495 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18496 if (stretch == 0)
18497 break;
18498 }
18499 }
18500 if (f != NULL)
18501 addr += stretch;
18502 }
5e77afaa
PB
18503
18504 return addr;
18505}
18506
0110f2b8
PB
18507/* Return the size of a relaxable adr pseudo-instruction or PC-relative
18508 load. */
18509static int
5e77afaa 18510relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
18511{
18512 addressT addr;
18513 offsetT val;
18514
18515 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
18516 if (fragp->fr_symbol == NULL
18517 || !S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
18518 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18519 return 4;
18520
5f4273c7 18521 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18522 addr = fragp->fr_address + fragp->fr_fix;
18523 addr = (addr + 4) & ~3;
5e77afaa 18524 /* Force misaligned targets to 32-bit variant. */
0110f2b8 18525 if (val & 3)
5e77afaa 18526 return 4;
0110f2b8
PB
18527 val -= addr;
18528 if (val < 0 || val > 1020)
18529 return 4;
18530 return 2;
18531}
18532
18533/* Return the size of a relaxable add/sub immediate instruction. */
18534static int
18535relax_addsub (fragS *fragp, asection *sec)
18536{
18537 char *buf;
18538 int op;
18539
18540 buf = fragp->fr_literal + fragp->fr_fix;
18541 op = bfd_get_16(sec->owner, buf);
18542 if ((op & 0xf) == ((op >> 4) & 0xf))
18543 return relax_immediate (fragp, 8, 0);
18544 else
18545 return relax_immediate (fragp, 3, 0);
18546}
18547
18548
18549/* Return the size of a relaxable branch instruction. BITS is the
18550 size of the offset field in the narrow instruction. */
18551
18552static int
5e77afaa 18553relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
18554{
18555 addressT addr;
18556 offsetT val;
18557 offsetT limit;
18558
18559 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 18560 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
18561 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18562 return 4;
18563
267bf995
RR
18564#ifdef OBJ_ELF
18565 if (S_IS_DEFINED (fragp->fr_symbol)
18566 && ARM_IS_FUNC (fragp->fr_symbol))
18567 return 4;
18568#endif
18569
5f4273c7 18570 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18571 addr = fragp->fr_address + fragp->fr_fix + 4;
18572 val -= addr;
18573
18574 /* Offset is a signed value *2 */
18575 limit = 1 << bits;
18576 if (val >= limit || val < -limit)
18577 return 4;
18578 return 2;
18579}
18580
18581
18582/* Relax a machine dependent frag. This returns the amount by which
18583 the current size of the frag should change. */
18584
18585int
5e77afaa 18586arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
18587{
18588 int oldsize;
18589 int newsize;
18590
18591 oldsize = fragp->fr_var;
18592 switch (fragp->fr_subtype)
18593 {
18594 case T_MNEM_ldr_pc2:
5f4273c7 18595 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18596 break;
18597 case T_MNEM_ldr_pc:
18598 case T_MNEM_ldr_sp:
18599 case T_MNEM_str_sp:
5f4273c7 18600 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
18601 break;
18602 case T_MNEM_ldr:
18603 case T_MNEM_str:
5f4273c7 18604 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
18605 break;
18606 case T_MNEM_ldrh:
18607 case T_MNEM_strh:
5f4273c7 18608 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
18609 break;
18610 case T_MNEM_ldrb:
18611 case T_MNEM_strb:
5f4273c7 18612 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
18613 break;
18614 case T_MNEM_adr:
5f4273c7 18615 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18616 break;
18617 case T_MNEM_mov:
18618 case T_MNEM_movs:
18619 case T_MNEM_cmp:
18620 case T_MNEM_cmn:
5f4273c7 18621 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
18622 break;
18623 case T_MNEM_b:
5f4273c7 18624 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
18625 break;
18626 case T_MNEM_bcond:
5f4273c7 18627 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
18628 break;
18629 case T_MNEM_add_sp:
18630 case T_MNEM_add_pc:
18631 newsize = relax_immediate (fragp, 8, 2);
18632 break;
18633 case T_MNEM_inc_sp:
18634 case T_MNEM_dec_sp:
18635 newsize = relax_immediate (fragp, 7, 2);
18636 break;
18637 case T_MNEM_addi:
18638 case T_MNEM_addis:
18639 case T_MNEM_subi:
18640 case T_MNEM_subis:
18641 newsize = relax_addsub (fragp, sec);
18642 break;
18643 default:
5f4273c7 18644 abort ();
0110f2b8 18645 }
5e77afaa
PB
18646
18647 fragp->fr_var = newsize;
18648 /* Freeze wide instructions that are at or before the same location as
18649 in the previous pass. This avoids infinite loops.
5f4273c7
NC
18650 Don't freeze them unconditionally because targets may be artificially
18651 misaligned by the expansion of preceding frags. */
5e77afaa 18652 if (stretch <= 0 && newsize > 2)
0110f2b8 18653 {
0110f2b8 18654 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 18655 frag_wane (fragp);
0110f2b8 18656 }
5e77afaa 18657
0110f2b8 18658 return newsize - oldsize;
c19d1205 18659}
b99bd4ef 18660
c19d1205 18661/* Round up a section size to the appropriate boundary. */
b99bd4ef 18662
c19d1205
ZW
18663valueT
18664md_section_align (segT segment ATTRIBUTE_UNUSED,
18665 valueT size)
18666{
f0927246
NC
18667#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18668 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18669 {
18670 /* For a.out, force the section size to be aligned. If we don't do
18671 this, BFD will align it for us, but it will not write out the
18672 final bytes of the section. This may be a bug in BFD, but it is
18673 easier to fix it here since that is how the other a.out targets
18674 work. */
18675 int align;
18676
18677 align = bfd_get_section_alignment (stdoutput, segment);
18678 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18679 }
c19d1205 18680#endif
f0927246
NC
18681
18682 return size;
bfae80f2 18683}
b99bd4ef 18684
c19d1205
ZW
18685/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18686 of an rs_align_code fragment. */
18687
18688void
18689arm_handle_align (fragS * fragP)
bfae80f2 18690{
e7495e45
NS
18691 static char const arm_noop[2][2][4] =
18692 {
18693 { /* ARMv1 */
18694 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18695 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18696 },
18697 { /* ARMv6k */
18698 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18699 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18700 },
18701 };
18702 static char const thumb_noop[2][2][2] =
18703 {
18704 { /* Thumb-1 */
18705 {0xc0, 0x46}, /* LE */
18706 {0x46, 0xc0}, /* BE */
18707 },
18708 { /* Thumb-2 */
18709 {0x00, 0xbf}, /* LE */
18710 {0xbf, 0x00} /* BE */
18711 }
18712 };
18713 static char const wide_thumb_noop[2][4] =
18714 { /* Wide Thumb-2 */
18715 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18716 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18717 };
c921be7d 18718
e7495e45 18719 unsigned bytes, fix, noop_size;
c19d1205
ZW
18720 char * p;
18721 const char * noop;
e7495e45 18722 const char *narrow_noop = NULL;
cd000bff
DJ
18723#ifdef OBJ_ELF
18724 enum mstate state;
18725#endif
bfae80f2 18726
c19d1205 18727 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
18728 return;
18729
c19d1205
ZW
18730 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18731 p = fragP->fr_literal + fragP->fr_fix;
18732 fix = 0;
bfae80f2 18733
c19d1205
ZW
18734 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18735 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 18736
cd000bff 18737 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 18738
cd000bff 18739 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 18740 {
e7495e45
NS
18741 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18742 {
18743 narrow_noop = thumb_noop[1][target_big_endian];
18744 noop = wide_thumb_noop[target_big_endian];
18745 }
c19d1205 18746 else
e7495e45
NS
18747 noop = thumb_noop[0][target_big_endian];
18748 noop_size = 2;
cd000bff
DJ
18749#ifdef OBJ_ELF
18750 state = MAP_THUMB;
18751#endif
7ed4c4c5
NC
18752 }
18753 else
18754 {
e7495e45
NS
18755 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18756 [target_big_endian];
18757 noop_size = 4;
cd000bff
DJ
18758#ifdef OBJ_ELF
18759 state = MAP_ARM;
18760#endif
7ed4c4c5 18761 }
c921be7d 18762
e7495e45 18763 fragP->fr_var = noop_size;
c921be7d 18764
c19d1205 18765 if (bytes & (noop_size - 1))
7ed4c4c5 18766 {
c19d1205 18767 fix = bytes & (noop_size - 1);
cd000bff
DJ
18768#ifdef OBJ_ELF
18769 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18770#endif
c19d1205
ZW
18771 memset (p, 0, fix);
18772 p += fix;
18773 bytes -= fix;
a737bd4d 18774 }
a737bd4d 18775
e7495e45
NS
18776 if (narrow_noop)
18777 {
18778 if (bytes & noop_size)
18779 {
18780 /* Insert a narrow noop. */
18781 memcpy (p, narrow_noop, noop_size);
18782 p += noop_size;
18783 bytes -= noop_size;
18784 fix += noop_size;
18785 }
18786
18787 /* Use wide noops for the remainder */
18788 noop_size = 4;
18789 }
18790
c19d1205 18791 while (bytes >= noop_size)
a737bd4d 18792 {
c19d1205
ZW
18793 memcpy (p, noop, noop_size);
18794 p += noop_size;
18795 bytes -= noop_size;
18796 fix += noop_size;
a737bd4d
NC
18797 }
18798
c19d1205 18799 fragP->fr_fix += fix;
a737bd4d
NC
18800}
18801
c19d1205
ZW
18802/* Called from md_do_align. Used to create an alignment
18803 frag in a code section. */
18804
18805void
18806arm_frag_align_code (int n, int max)
bfae80f2 18807{
c19d1205 18808 char * p;
7ed4c4c5 18809
c19d1205 18810 /* We assume that there will never be a requirement
6ec8e702 18811 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 18812 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
18813 {
18814 char err_msg[128];
18815
18816 sprintf (err_msg,
18817 _("alignments greater than %d bytes not supported in .text sections."),
18818 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 18819 as_fatal ("%s", err_msg);
6ec8e702 18820 }
bfae80f2 18821
c19d1205
ZW
18822 p = frag_var (rs_align_code,
18823 MAX_MEM_FOR_RS_ALIGN_CODE,
18824 1,
18825 (relax_substateT) max,
18826 (symbolS *) NULL,
18827 (offsetT) n,
18828 (char *) NULL);
18829 *p = 0;
18830}
bfae80f2 18831
8dc2430f
NC
18832/* Perform target specific initialisation of a frag.
18833 Note - despite the name this initialisation is not done when the frag
18834 is created, but only when its type is assigned. A frag can be created
18835 and used a long time before its type is set, so beware of assuming that
18836 this initialisationis performed first. */
bfae80f2 18837
cd000bff
DJ
18838#ifndef OBJ_ELF
18839void
18840arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18841{
18842 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 18843 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
18844}
18845
18846#else /* OBJ_ELF is defined. */
c19d1205 18847void
cd000bff 18848arm_init_frag (fragS * fragP, int max_chars)
c19d1205 18849{
8dc2430f
NC
18850 /* If the current ARM vs THUMB mode has not already
18851 been recorded into this frag then do so now. */
cd000bff
DJ
18852 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18853 {
18854 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18855
18856 /* Record a mapping symbol for alignment frags. We will delete this
18857 later if the alignment ends up empty. */
18858 switch (fragP->fr_type)
18859 {
18860 case rs_align:
18861 case rs_align_test:
18862 case rs_fill:
18863 mapping_state_2 (MAP_DATA, max_chars);
18864 break;
18865 case rs_align_code:
18866 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
18867 break;
18868 default:
18869 break;
18870 }
18871 }
bfae80f2
RE
18872}
18873
c19d1205
ZW
18874/* When we change sections we need to issue a new mapping symbol. */
18875
18876void
18877arm_elf_change_section (void)
bfae80f2 18878{
c19d1205
ZW
18879 /* Link an unlinked unwind index table section to the .text section. */
18880 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18881 && elf_linked_to_section (now_seg) == NULL)
18882 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
18883}
18884
c19d1205
ZW
18885int
18886arm_elf_section_type (const char * str, size_t len)
e45d0630 18887{
c19d1205
ZW
18888 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18889 return SHT_ARM_EXIDX;
e45d0630 18890
c19d1205
ZW
18891 return -1;
18892}
18893\f
18894/* Code to deal with unwinding tables. */
e45d0630 18895
c19d1205 18896static void add_unwind_adjustsp (offsetT);
e45d0630 18897
5f4273c7 18898/* Generate any deferred unwind frame offset. */
e45d0630 18899
bfae80f2 18900static void
c19d1205 18901flush_pending_unwind (void)
bfae80f2 18902{
c19d1205 18903 offsetT offset;
bfae80f2 18904
c19d1205
ZW
18905 offset = unwind.pending_offset;
18906 unwind.pending_offset = 0;
18907 if (offset != 0)
18908 add_unwind_adjustsp (offset);
bfae80f2
RE
18909}
18910
c19d1205
ZW
18911/* Add an opcode to this list for this function. Two-byte opcodes should
18912 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18913 order. */
18914
bfae80f2 18915static void
c19d1205 18916add_unwind_opcode (valueT op, int length)
bfae80f2 18917{
c19d1205
ZW
18918 /* Add any deferred stack adjustment. */
18919 if (unwind.pending_offset)
18920 flush_pending_unwind ();
bfae80f2 18921
c19d1205 18922 unwind.sp_restored = 0;
bfae80f2 18923
c19d1205 18924 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 18925 {
c19d1205
ZW
18926 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
18927 if (unwind.opcodes)
21d799b5
NC
18928 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
18929 unwind.opcode_alloc);
c19d1205 18930 else
21d799b5 18931 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 18932 }
c19d1205 18933 while (length > 0)
bfae80f2 18934 {
c19d1205
ZW
18935 length--;
18936 unwind.opcodes[unwind.opcode_count] = op & 0xff;
18937 op >>= 8;
18938 unwind.opcode_count++;
bfae80f2 18939 }
bfae80f2
RE
18940}
18941
c19d1205
ZW
18942/* Add unwind opcodes to adjust the stack pointer. */
18943
bfae80f2 18944static void
c19d1205 18945add_unwind_adjustsp (offsetT offset)
bfae80f2 18946{
c19d1205 18947 valueT op;
bfae80f2 18948
c19d1205 18949 if (offset > 0x200)
bfae80f2 18950 {
c19d1205
ZW
18951 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
18952 char bytes[5];
18953 int n;
18954 valueT o;
bfae80f2 18955
c19d1205
ZW
18956 /* Long form: 0xb2, uleb128. */
18957 /* This might not fit in a word so add the individual bytes,
18958 remembering the list is built in reverse order. */
18959 o = (valueT) ((offset - 0x204) >> 2);
18960 if (o == 0)
18961 add_unwind_opcode (0, 1);
bfae80f2 18962
c19d1205
ZW
18963 /* Calculate the uleb128 encoding of the offset. */
18964 n = 0;
18965 while (o)
18966 {
18967 bytes[n] = o & 0x7f;
18968 o >>= 7;
18969 if (o)
18970 bytes[n] |= 0x80;
18971 n++;
18972 }
18973 /* Add the insn. */
18974 for (; n; n--)
18975 add_unwind_opcode (bytes[n - 1], 1);
18976 add_unwind_opcode (0xb2, 1);
18977 }
18978 else if (offset > 0x100)
bfae80f2 18979 {
c19d1205
ZW
18980 /* Two short opcodes. */
18981 add_unwind_opcode (0x3f, 1);
18982 op = (offset - 0x104) >> 2;
18983 add_unwind_opcode (op, 1);
bfae80f2 18984 }
c19d1205
ZW
18985 else if (offset > 0)
18986 {
18987 /* Short opcode. */
18988 op = (offset - 4) >> 2;
18989 add_unwind_opcode (op, 1);
18990 }
18991 else if (offset < 0)
bfae80f2 18992 {
c19d1205
ZW
18993 offset = -offset;
18994 while (offset > 0x100)
bfae80f2 18995 {
c19d1205
ZW
18996 add_unwind_opcode (0x7f, 1);
18997 offset -= 0x100;
bfae80f2 18998 }
c19d1205
ZW
18999 op = ((offset - 4) >> 2) | 0x40;
19000 add_unwind_opcode (op, 1);
bfae80f2 19001 }
bfae80f2
RE
19002}
19003
c19d1205
ZW
19004/* Finish the list of unwind opcodes for this function. */
19005static void
19006finish_unwind_opcodes (void)
bfae80f2 19007{
c19d1205 19008 valueT op;
bfae80f2 19009
c19d1205 19010 if (unwind.fp_used)
bfae80f2 19011 {
708587a4 19012 /* Adjust sp as necessary. */
c19d1205
ZW
19013 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19014 flush_pending_unwind ();
bfae80f2 19015
c19d1205
ZW
19016 /* After restoring sp from the frame pointer. */
19017 op = 0x90 | unwind.fp_reg;
19018 add_unwind_opcode (op, 1);
19019 }
19020 else
19021 flush_pending_unwind ();
bfae80f2
RE
19022}
19023
bfae80f2 19024
c19d1205
ZW
19025/* Start an exception table entry. If idx is nonzero this is an index table
19026 entry. */
bfae80f2
RE
19027
19028static void
c19d1205 19029start_unwind_section (const segT text_seg, int idx)
bfae80f2 19030{
c19d1205
ZW
19031 const char * text_name;
19032 const char * prefix;
19033 const char * prefix_once;
19034 const char * group_name;
19035 size_t prefix_len;
19036 size_t text_len;
19037 char * sec_name;
19038 size_t sec_name_len;
19039 int type;
19040 int flags;
19041 int linkonce;
bfae80f2 19042
c19d1205 19043 if (idx)
bfae80f2 19044 {
c19d1205
ZW
19045 prefix = ELF_STRING_ARM_unwind;
19046 prefix_once = ELF_STRING_ARM_unwind_once;
19047 type = SHT_ARM_EXIDX;
bfae80f2 19048 }
c19d1205 19049 else
bfae80f2 19050 {
c19d1205
ZW
19051 prefix = ELF_STRING_ARM_unwind_info;
19052 prefix_once = ELF_STRING_ARM_unwind_info_once;
19053 type = SHT_PROGBITS;
bfae80f2
RE
19054 }
19055
c19d1205
ZW
19056 text_name = segment_name (text_seg);
19057 if (streq (text_name, ".text"))
19058 text_name = "";
19059
19060 if (strncmp (text_name, ".gnu.linkonce.t.",
19061 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 19062 {
c19d1205
ZW
19063 prefix = prefix_once;
19064 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
19065 }
19066
c19d1205
ZW
19067 prefix_len = strlen (prefix);
19068 text_len = strlen (text_name);
19069 sec_name_len = prefix_len + text_len;
21d799b5 19070 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
19071 memcpy (sec_name, prefix, prefix_len);
19072 memcpy (sec_name + prefix_len, text_name, text_len);
19073 sec_name[prefix_len + text_len] = '\0';
bfae80f2 19074
c19d1205
ZW
19075 flags = SHF_ALLOC;
19076 linkonce = 0;
19077 group_name = 0;
bfae80f2 19078
c19d1205
ZW
19079 /* Handle COMDAT group. */
19080 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 19081 {
c19d1205
ZW
19082 group_name = elf_group_name (text_seg);
19083 if (group_name == NULL)
19084 {
bd3ba5d1 19085 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
19086 segment_name (text_seg));
19087 ignore_rest_of_line ();
19088 return;
19089 }
19090 flags |= SHF_GROUP;
19091 linkonce = 1;
bfae80f2
RE
19092 }
19093
c19d1205 19094 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 19095
5f4273c7 19096 /* Set the section link for index tables. */
c19d1205
ZW
19097 if (idx)
19098 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
19099}
19100
bfae80f2 19101
c19d1205
ZW
19102/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19103 personality routine data. Returns zero, or the index table value for
19104 and inline entry. */
19105
19106static valueT
19107create_unwind_entry (int have_data)
bfae80f2 19108{
c19d1205
ZW
19109 int size;
19110 addressT where;
19111 char *ptr;
19112 /* The current word of data. */
19113 valueT data;
19114 /* The number of bytes left in this word. */
19115 int n;
bfae80f2 19116
c19d1205 19117 finish_unwind_opcodes ();
bfae80f2 19118
c19d1205
ZW
19119 /* Remember the current text section. */
19120 unwind.saved_seg = now_seg;
19121 unwind.saved_subseg = now_subseg;
bfae80f2 19122
c19d1205 19123 start_unwind_section (now_seg, 0);
bfae80f2 19124
c19d1205 19125 if (unwind.personality_routine == NULL)
bfae80f2 19126 {
c19d1205
ZW
19127 if (unwind.personality_index == -2)
19128 {
19129 if (have_data)
5f4273c7 19130 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
19131 return 1; /* EXIDX_CANTUNWIND. */
19132 }
bfae80f2 19133
c19d1205
ZW
19134 /* Use a default personality routine if none is specified. */
19135 if (unwind.personality_index == -1)
19136 {
19137 if (unwind.opcode_count > 3)
19138 unwind.personality_index = 1;
19139 else
19140 unwind.personality_index = 0;
19141 }
bfae80f2 19142
c19d1205
ZW
19143 /* Space for the personality routine entry. */
19144 if (unwind.personality_index == 0)
19145 {
19146 if (unwind.opcode_count > 3)
19147 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 19148
c19d1205
ZW
19149 if (!have_data)
19150 {
19151 /* All the data is inline in the index table. */
19152 data = 0x80;
19153 n = 3;
19154 while (unwind.opcode_count > 0)
19155 {
19156 unwind.opcode_count--;
19157 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19158 n--;
19159 }
bfae80f2 19160
c19d1205
ZW
19161 /* Pad with "finish" opcodes. */
19162 while (n--)
19163 data = (data << 8) | 0xb0;
bfae80f2 19164
c19d1205
ZW
19165 return data;
19166 }
19167 size = 0;
19168 }
19169 else
19170 /* We get two opcodes "free" in the first word. */
19171 size = unwind.opcode_count - 2;
19172 }
19173 else
19174 /* An extra byte is required for the opcode count. */
19175 size = unwind.opcode_count + 1;
bfae80f2 19176
c19d1205
ZW
19177 size = (size + 3) >> 2;
19178 if (size > 0xff)
19179 as_bad (_("too many unwind opcodes"));
bfae80f2 19180
c19d1205
ZW
19181 frag_align (2, 0, 0);
19182 record_alignment (now_seg, 2);
19183 unwind.table_entry = expr_build_dot ();
19184
19185 /* Allocate the table entry. */
19186 ptr = frag_more ((size << 2) + 4);
19187 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19188
c19d1205 19189 switch (unwind.personality_index)
bfae80f2 19190 {
c19d1205
ZW
19191 case -1:
19192 /* ??? Should this be a PLT generating relocation? */
19193 /* Custom personality routine. */
19194 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19195 BFD_RELOC_ARM_PREL31);
bfae80f2 19196
c19d1205
ZW
19197 where += 4;
19198 ptr += 4;
bfae80f2 19199
c19d1205
ZW
19200 /* Set the first byte to the number of additional words. */
19201 data = size - 1;
19202 n = 3;
19203 break;
bfae80f2 19204
c19d1205
ZW
19205 /* ABI defined personality routines. */
19206 case 0:
19207 /* Three opcodes bytes are packed into the first word. */
19208 data = 0x80;
19209 n = 3;
19210 break;
bfae80f2 19211
c19d1205
ZW
19212 case 1:
19213 case 2:
19214 /* The size and first two opcode bytes go in the first word. */
19215 data = ((0x80 + unwind.personality_index) << 8) | size;
19216 n = 2;
19217 break;
bfae80f2 19218
c19d1205
ZW
19219 default:
19220 /* Should never happen. */
19221 abort ();
19222 }
bfae80f2 19223
c19d1205
ZW
19224 /* Pack the opcodes into words (MSB first), reversing the list at the same
19225 time. */
19226 while (unwind.opcode_count > 0)
19227 {
19228 if (n == 0)
19229 {
19230 md_number_to_chars (ptr, data, 4);
19231 ptr += 4;
19232 n = 4;
19233 data = 0;
19234 }
19235 unwind.opcode_count--;
19236 n--;
19237 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19238 }
19239
19240 /* Finish off the last word. */
19241 if (n < 4)
19242 {
19243 /* Pad with "finish" opcodes. */
19244 while (n--)
19245 data = (data << 8) | 0xb0;
19246
19247 md_number_to_chars (ptr, data, 4);
19248 }
19249
19250 if (!have_data)
19251 {
19252 /* Add an empty descriptor if there is no user-specified data. */
19253 ptr = frag_more (4);
19254 md_number_to_chars (ptr, 0, 4);
19255 }
19256
19257 return 0;
bfae80f2
RE
19258}
19259
f0927246
NC
19260
19261/* Initialize the DWARF-2 unwind information for this procedure. */
19262
19263void
19264tc_arm_frame_initial_instructions (void)
19265{
19266 cfi_add_CFA_def_cfa (REG_SP, 0);
19267}
19268#endif /* OBJ_ELF */
19269
c19d1205
ZW
19270/* Convert REGNAME to a DWARF-2 register number. */
19271
19272int
1df69f4f 19273tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 19274{
1df69f4f 19275 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
19276
19277 if (reg == FAIL)
19278 return -1;
19279
19280 return reg;
bfae80f2
RE
19281}
19282
f0927246 19283#ifdef TE_PE
c19d1205 19284void
f0927246 19285tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 19286{
91d6fa6a 19287 expressionS exp;
bfae80f2 19288
91d6fa6a
NC
19289 exp.X_op = O_secrel;
19290 exp.X_add_symbol = symbol;
19291 exp.X_add_number = 0;
19292 emit_expr (&exp, size);
f0927246
NC
19293}
19294#endif
bfae80f2 19295
c19d1205 19296/* MD interface: Symbol and relocation handling. */
bfae80f2 19297
2fc8bdac
ZW
19298/* Return the address within the segment that a PC-relative fixup is
19299 relative to. For ARM, PC-relative fixups applied to instructions
19300 are generally relative to the location of the fixup plus 8 bytes.
19301 Thumb branches are offset by 4, and Thumb loads relative to PC
19302 require special handling. */
bfae80f2 19303
c19d1205 19304long
2fc8bdac 19305md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 19306{
2fc8bdac
ZW
19307 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19308
19309 /* If this is pc-relative and we are going to emit a relocation
19310 then we just want to put out any pipeline compensation that the linker
53baae48
NC
19311 will need. Otherwise we want to use the calculated base.
19312 For WinCE we skip the bias for externals as well, since this
19313 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 19314 if (fixP->fx_pcrel
2fc8bdac 19315 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
19316 || (arm_force_relocation (fixP)
19317#ifdef TE_WINCE
19318 && !S_IS_EXTERNAL (fixP->fx_addsy)
19319#endif
19320 )))
2fc8bdac 19321 base = 0;
bfae80f2 19322
267bf995 19323
c19d1205 19324 switch (fixP->fx_r_type)
bfae80f2 19325 {
2fc8bdac
ZW
19326 /* PC relative addressing on the Thumb is slightly odd as the
19327 bottom two bits of the PC are forced to zero for the
19328 calculation. This happens *after* application of the
19329 pipeline offset. However, Thumb adrl already adjusts for
19330 this, so we need not do it again. */
c19d1205 19331 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 19332 return base & ~3;
c19d1205
ZW
19333
19334 case BFD_RELOC_ARM_THUMB_OFFSET:
19335 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 19336 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 19337 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 19338 return (base + 4) & ~3;
c19d1205 19339
2fc8bdac
ZW
19340 /* Thumb branches are simply offset by +4. */
19341 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19342 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19343 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19344 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 19345 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 19346 return base + 4;
bfae80f2 19347
267bf995 19348 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
19349 if (fixP->fx_addsy
19350 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19351 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19352 && ARM_IS_FUNC (fixP->fx_addsy)
19353 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19354 base = fixP->fx_where + fixP->fx_frag->fr_address;
19355 return base + 4;
19356
00adf2d4
JB
19357 /* BLX is like branches above, but forces the low two bits of PC to
19358 zero. */
486499d0
CL
19359 case BFD_RELOC_THUMB_PCREL_BLX:
19360 if (fixP->fx_addsy
19361 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19362 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19363 && THUMB_IS_FUNC (fixP->fx_addsy)
19364 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19365 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
19366 return (base + 4) & ~3;
19367
2fc8bdac
ZW
19368 /* ARM mode branches are offset by +8. However, the Windows CE
19369 loader expects the relocation not to take this into account. */
267bf995 19370 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
19371 if (fixP->fx_addsy
19372 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19373 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19374 && ARM_IS_FUNC (fixP->fx_addsy)
19375 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19376 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19377 return base + 8;
267bf995 19378
486499d0
CL
19379 case BFD_RELOC_ARM_PCREL_CALL:
19380 if (fixP->fx_addsy
19381 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19382 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19383 && THUMB_IS_FUNC (fixP->fx_addsy)
19384 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19385 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19386 return base + 8;
267bf995 19387
2fc8bdac 19388 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 19389 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 19390 case BFD_RELOC_ARM_PLT32:
c19d1205 19391#ifdef TE_WINCE
5f4273c7 19392 /* When handling fixups immediately, because we have already
53baae48
NC
19393 discovered the value of a symbol, or the address of the frag involved
19394 we must account for the offset by +8, as the OS loader will never see the reloc.
19395 see fixup_segment() in write.c
19396 The S_IS_EXTERNAL test handles the case of global symbols.
19397 Those need the calculated base, not just the pipe compensation the linker will need. */
19398 if (fixP->fx_pcrel
19399 && fixP->fx_addsy != NULL
19400 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19401 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19402 return base + 8;
2fc8bdac 19403 return base;
c19d1205 19404#else
2fc8bdac 19405 return base + 8;
c19d1205 19406#endif
2fc8bdac 19407
267bf995 19408
2fc8bdac
ZW
19409 /* ARM mode loads relative to PC are also offset by +8. Unlike
19410 branches, the Windows CE loader *does* expect the relocation
19411 to take this into account. */
19412 case BFD_RELOC_ARM_OFFSET_IMM:
19413 case BFD_RELOC_ARM_OFFSET_IMM8:
19414 case BFD_RELOC_ARM_HWLITERAL:
19415 case BFD_RELOC_ARM_LITERAL:
19416 case BFD_RELOC_ARM_CP_OFF_IMM:
19417 return base + 8;
19418
19419
19420 /* Other PC-relative relocations are un-offset. */
19421 default:
19422 return base;
19423 }
bfae80f2
RE
19424}
19425
c19d1205
ZW
19426/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19427 Otherwise we have no need to default values of symbols. */
19428
19429symbolS *
19430md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 19431{
c19d1205
ZW
19432#ifdef OBJ_ELF
19433 if (name[0] == '_' && name[1] == 'G'
19434 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19435 {
19436 if (!GOT_symbol)
19437 {
19438 if (symbol_find (name))
bd3ba5d1 19439 as_bad (_("GOT already in the symbol table"));
bfae80f2 19440
c19d1205
ZW
19441 GOT_symbol = symbol_new (name, undefined_section,
19442 (valueT) 0, & zero_address_frag);
19443 }
bfae80f2 19444
c19d1205 19445 return GOT_symbol;
bfae80f2 19446 }
c19d1205 19447#endif
bfae80f2 19448
c921be7d 19449 return NULL;
bfae80f2
RE
19450}
19451
55cf6793 19452/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
19453 computed as two separate immediate values, added together. We
19454 already know that this value cannot be computed by just one ARM
19455 instruction. */
19456
19457static unsigned int
19458validate_immediate_twopart (unsigned int val,
19459 unsigned int * highpart)
bfae80f2 19460{
c19d1205
ZW
19461 unsigned int a;
19462 unsigned int i;
bfae80f2 19463
c19d1205
ZW
19464 for (i = 0; i < 32; i += 2)
19465 if (((a = rotate_left (val, i)) & 0xff) != 0)
19466 {
19467 if (a & 0xff00)
19468 {
19469 if (a & ~ 0xffff)
19470 continue;
19471 * highpart = (a >> 8) | ((i + 24) << 7);
19472 }
19473 else if (a & 0xff0000)
19474 {
19475 if (a & 0xff000000)
19476 continue;
19477 * highpart = (a >> 16) | ((i + 16) << 7);
19478 }
19479 else
19480 {
9c2799c2 19481 gas_assert (a & 0xff000000);
c19d1205
ZW
19482 * highpart = (a >> 24) | ((i + 8) << 7);
19483 }
bfae80f2 19484
c19d1205
ZW
19485 return (a & 0xff) | (i << 7);
19486 }
bfae80f2 19487
c19d1205 19488 return FAIL;
bfae80f2
RE
19489}
19490
c19d1205
ZW
19491static int
19492validate_offset_imm (unsigned int val, int hwse)
19493{
19494 if ((hwse && val > 255) || val > 4095)
19495 return FAIL;
19496 return val;
19497}
bfae80f2 19498
55cf6793 19499/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
19500 negative immediate constant by altering the instruction. A bit of
19501 a hack really.
19502 MOV <-> MVN
19503 AND <-> BIC
19504 ADC <-> SBC
19505 by inverting the second operand, and
19506 ADD <-> SUB
19507 CMP <-> CMN
19508 by negating the second operand. */
bfae80f2 19509
c19d1205
ZW
19510static int
19511negate_data_op (unsigned long * instruction,
19512 unsigned long value)
bfae80f2 19513{
c19d1205
ZW
19514 int op, new_inst;
19515 unsigned long negated, inverted;
bfae80f2 19516
c19d1205
ZW
19517 negated = encode_arm_immediate (-value);
19518 inverted = encode_arm_immediate (~value);
bfae80f2 19519
c19d1205
ZW
19520 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19521 switch (op)
bfae80f2 19522 {
c19d1205
ZW
19523 /* First negates. */
19524 case OPCODE_SUB: /* ADD <-> SUB */
19525 new_inst = OPCODE_ADD;
19526 value = negated;
19527 break;
bfae80f2 19528
c19d1205
ZW
19529 case OPCODE_ADD:
19530 new_inst = OPCODE_SUB;
19531 value = negated;
19532 break;
bfae80f2 19533
c19d1205
ZW
19534 case OPCODE_CMP: /* CMP <-> CMN */
19535 new_inst = OPCODE_CMN;
19536 value = negated;
19537 break;
bfae80f2 19538
c19d1205
ZW
19539 case OPCODE_CMN:
19540 new_inst = OPCODE_CMP;
19541 value = negated;
19542 break;
bfae80f2 19543
c19d1205
ZW
19544 /* Now Inverted ops. */
19545 case OPCODE_MOV: /* MOV <-> MVN */
19546 new_inst = OPCODE_MVN;
19547 value = inverted;
19548 break;
bfae80f2 19549
c19d1205
ZW
19550 case OPCODE_MVN:
19551 new_inst = OPCODE_MOV;
19552 value = inverted;
19553 break;
bfae80f2 19554
c19d1205
ZW
19555 case OPCODE_AND: /* AND <-> BIC */
19556 new_inst = OPCODE_BIC;
19557 value = inverted;
19558 break;
bfae80f2 19559
c19d1205
ZW
19560 case OPCODE_BIC:
19561 new_inst = OPCODE_AND;
19562 value = inverted;
19563 break;
bfae80f2 19564
c19d1205
ZW
19565 case OPCODE_ADC: /* ADC <-> SBC */
19566 new_inst = OPCODE_SBC;
19567 value = inverted;
19568 break;
bfae80f2 19569
c19d1205
ZW
19570 case OPCODE_SBC:
19571 new_inst = OPCODE_ADC;
19572 value = inverted;
19573 break;
bfae80f2 19574
c19d1205
ZW
19575 /* We cannot do anything. */
19576 default:
19577 return FAIL;
b99bd4ef
NC
19578 }
19579
c19d1205
ZW
19580 if (value == (unsigned) FAIL)
19581 return FAIL;
19582
19583 *instruction &= OPCODE_MASK;
19584 *instruction |= new_inst << DATA_OP_SHIFT;
19585 return value;
b99bd4ef
NC
19586}
19587
ef8d22e6
PB
19588/* Like negate_data_op, but for Thumb-2. */
19589
19590static unsigned int
16dd5e42 19591thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
19592{
19593 int op, new_inst;
19594 int rd;
16dd5e42 19595 unsigned int negated, inverted;
ef8d22e6
PB
19596
19597 negated = encode_thumb32_immediate (-value);
19598 inverted = encode_thumb32_immediate (~value);
19599
19600 rd = (*instruction >> 8) & 0xf;
19601 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19602 switch (op)
19603 {
19604 /* ADD <-> SUB. Includes CMP <-> CMN. */
19605 case T2_OPCODE_SUB:
19606 new_inst = T2_OPCODE_ADD;
19607 value = negated;
19608 break;
19609
19610 case T2_OPCODE_ADD:
19611 new_inst = T2_OPCODE_SUB;
19612 value = negated;
19613 break;
19614
19615 /* ORR <-> ORN. Includes MOV <-> MVN. */
19616 case T2_OPCODE_ORR:
19617 new_inst = T2_OPCODE_ORN;
19618 value = inverted;
19619 break;
19620
19621 case T2_OPCODE_ORN:
19622 new_inst = T2_OPCODE_ORR;
19623 value = inverted;
19624 break;
19625
19626 /* AND <-> BIC. TST has no inverted equivalent. */
19627 case T2_OPCODE_AND:
19628 new_inst = T2_OPCODE_BIC;
19629 if (rd == 15)
19630 value = FAIL;
19631 else
19632 value = inverted;
19633 break;
19634
19635 case T2_OPCODE_BIC:
19636 new_inst = T2_OPCODE_AND;
19637 value = inverted;
19638 break;
19639
19640 /* ADC <-> SBC */
19641 case T2_OPCODE_ADC:
19642 new_inst = T2_OPCODE_SBC;
19643 value = inverted;
19644 break;
19645
19646 case T2_OPCODE_SBC:
19647 new_inst = T2_OPCODE_ADC;
19648 value = inverted;
19649 break;
19650
19651 /* We cannot do anything. */
19652 default:
19653 return FAIL;
19654 }
19655
16dd5e42 19656 if (value == (unsigned int)FAIL)
ef8d22e6
PB
19657 return FAIL;
19658
19659 *instruction &= T2_OPCODE_MASK;
19660 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19661 return value;
19662}
19663
8f06b2d8
PB
19664/* Read a 32-bit thumb instruction from buf. */
19665static unsigned long
19666get_thumb32_insn (char * buf)
19667{
19668 unsigned long insn;
19669 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19670 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19671
19672 return insn;
19673}
19674
a8bc6c78
PB
19675
19676/* We usually want to set the low bit on the address of thumb function
19677 symbols. In particular .word foo - . should have the low bit set.
19678 Generic code tries to fold the difference of two symbols to
19679 a constant. Prevent this and force a relocation when the first symbols
19680 is a thumb function. */
c921be7d
NC
19681
19682bfd_boolean
a8bc6c78
PB
19683arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19684{
19685 if (op == O_subtract
19686 && l->X_op == O_symbol
19687 && r->X_op == O_symbol
19688 && THUMB_IS_FUNC (l->X_add_symbol))
19689 {
19690 l->X_op = O_subtract;
19691 l->X_op_symbol = r->X_add_symbol;
19692 l->X_add_number -= r->X_add_number;
c921be7d 19693 return TRUE;
a8bc6c78 19694 }
c921be7d 19695
a8bc6c78 19696 /* Process as normal. */
c921be7d 19697 return FALSE;
a8bc6c78
PB
19698}
19699
4a42ebbc
RR
19700/* Encode Thumb2 unconditional branches and calls. The encoding
19701 for the 2 are identical for the immediate values. */
19702
19703static void
19704encode_thumb2_b_bl_offset (char * buf, offsetT value)
19705{
19706#define T2I1I2MASK ((1 << 13) | (1 << 11))
19707 offsetT newval;
19708 offsetT newval2;
19709 addressT S, I1, I2, lo, hi;
19710
19711 S = (value >> 24) & 0x01;
19712 I1 = (value >> 23) & 0x01;
19713 I2 = (value >> 22) & 0x01;
19714 hi = (value >> 12) & 0x3ff;
19715 lo = (value >> 1) & 0x7ff;
19716 newval = md_chars_to_number (buf, THUMB_SIZE);
19717 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19718 newval |= (S << 10) | hi;
19719 newval2 &= ~T2I1I2MASK;
19720 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
19721 md_number_to_chars (buf, newval, THUMB_SIZE);
19722 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19723}
19724
c19d1205 19725void
55cf6793 19726md_apply_fix (fixS * fixP,
c19d1205
ZW
19727 valueT * valP,
19728 segT seg)
19729{
19730 offsetT value = * valP;
19731 offsetT newval;
19732 unsigned int newimm;
19733 unsigned long temp;
19734 int sign;
19735 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 19736
9c2799c2 19737 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 19738
c19d1205 19739 /* Note whether this will delete the relocation. */
4962c51a 19740
c19d1205
ZW
19741 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19742 fixP->fx_done = 1;
b99bd4ef 19743
adbaf948 19744 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 19745 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
19746 for emit_reloc. */
19747 value &= 0xffffffff;
19748 value ^= 0x80000000;
5f4273c7 19749 value -= 0x80000000;
adbaf948
ZW
19750
19751 *valP = value;
c19d1205 19752 fixP->fx_addnumber = value;
b99bd4ef 19753
adbaf948
ZW
19754 /* Same treatment for fixP->fx_offset. */
19755 fixP->fx_offset &= 0xffffffff;
19756 fixP->fx_offset ^= 0x80000000;
19757 fixP->fx_offset -= 0x80000000;
19758
c19d1205 19759 switch (fixP->fx_r_type)
b99bd4ef 19760 {
c19d1205
ZW
19761 case BFD_RELOC_NONE:
19762 /* This will need to go in the object file. */
19763 fixP->fx_done = 0;
19764 break;
b99bd4ef 19765
c19d1205
ZW
19766 case BFD_RELOC_ARM_IMMEDIATE:
19767 /* We claim that this fixup has been processed here,
19768 even if in fact we generate an error because we do
19769 not have a reloc for it, so tc_gen_reloc will reject it. */
19770 fixP->fx_done = 1;
b99bd4ef 19771
c19d1205
ZW
19772 if (fixP->fx_addsy
19773 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 19774 {
c19d1205
ZW
19775 as_bad_where (fixP->fx_file, fixP->fx_line,
19776 _("undefined symbol %s used as an immediate value"),
19777 S_GET_NAME (fixP->fx_addsy));
19778 break;
b99bd4ef
NC
19779 }
19780
42e5fcbf
AS
19781 if (fixP->fx_addsy
19782 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19783 {
19784 as_bad_where (fixP->fx_file, fixP->fx_line,
19785 _("symbol %s is in a different section"),
19786 S_GET_NAME (fixP->fx_addsy));
19787 break;
19788 }
19789
c19d1205
ZW
19790 newimm = encode_arm_immediate (value);
19791 temp = md_chars_to_number (buf, INSN_SIZE);
19792
19793 /* If the instruction will fail, see if we can fix things up by
19794 changing the opcode. */
19795 if (newimm == (unsigned int) FAIL
19796 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 19797 {
c19d1205
ZW
19798 as_bad_where (fixP->fx_file, fixP->fx_line,
19799 _("invalid constant (%lx) after fixup"),
19800 (unsigned long) value);
19801 break;
b99bd4ef 19802 }
b99bd4ef 19803
c19d1205
ZW
19804 newimm |= (temp & 0xfffff000);
19805 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19806 break;
b99bd4ef 19807
c19d1205
ZW
19808 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19809 {
19810 unsigned int highpart = 0;
19811 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 19812
42e5fcbf
AS
19813 if (fixP->fx_addsy
19814 && ! S_IS_DEFINED (fixP->fx_addsy))
19815 {
19816 as_bad_where (fixP->fx_file, fixP->fx_line,
19817 _("undefined symbol %s used as an immediate value"),
19818 S_GET_NAME (fixP->fx_addsy));
19819 break;
19820 }
19821
19822 if (fixP->fx_addsy
19823 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19824 {
19825 as_bad_where (fixP->fx_file, fixP->fx_line,
19826 _("symbol %s is in a different section"),
19827 S_GET_NAME (fixP->fx_addsy));
19828 break;
19829 }
19830
c19d1205
ZW
19831 newimm = encode_arm_immediate (value);
19832 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 19833
c19d1205
ZW
19834 /* If the instruction will fail, see if we can fix things up by
19835 changing the opcode. */
19836 if (newimm == (unsigned int) FAIL
19837 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19838 {
19839 /* No ? OK - try using two ADD instructions to generate
19840 the value. */
19841 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 19842
c19d1205
ZW
19843 /* Yes - then make sure that the second instruction is
19844 also an add. */
19845 if (newimm != (unsigned int) FAIL)
19846 newinsn = temp;
19847 /* Still No ? Try using a negated value. */
19848 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19849 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19850 /* Otherwise - give up. */
19851 else
19852 {
19853 as_bad_where (fixP->fx_file, fixP->fx_line,
19854 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19855 (long) value);
19856 break;
19857 }
b99bd4ef 19858
c19d1205
ZW
19859 /* Replace the first operand in the 2nd instruction (which
19860 is the PC) with the destination register. We have
19861 already added in the PC in the first instruction and we
19862 do not want to do it again. */
19863 newinsn &= ~ 0xf0000;
19864 newinsn |= ((newinsn & 0x0f000) << 4);
19865 }
b99bd4ef 19866
c19d1205
ZW
19867 newimm |= (temp & 0xfffff000);
19868 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 19869
c19d1205
ZW
19870 highpart |= (newinsn & 0xfffff000);
19871 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19872 }
19873 break;
b99bd4ef 19874
c19d1205 19875 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
19876 if (!fixP->fx_done && seg->use_rela_p)
19877 value = 0;
19878
c19d1205
ZW
19879 case BFD_RELOC_ARM_LITERAL:
19880 sign = value >= 0;
b99bd4ef 19881
c19d1205
ZW
19882 if (value < 0)
19883 value = - value;
b99bd4ef 19884
c19d1205 19885 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 19886 {
c19d1205
ZW
19887 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19888 as_bad_where (fixP->fx_file, fixP->fx_line,
19889 _("invalid literal constant: pool needs to be closer"));
19890 else
19891 as_bad_where (fixP->fx_file, fixP->fx_line,
19892 _("bad immediate value for offset (%ld)"),
19893 (long) value);
19894 break;
f03698e6
RE
19895 }
19896
c19d1205
ZW
19897 newval = md_chars_to_number (buf, INSN_SIZE);
19898 newval &= 0xff7ff000;
19899 newval |= value | (sign ? INDEX_UP : 0);
19900 md_number_to_chars (buf, newval, INSN_SIZE);
19901 break;
b99bd4ef 19902
c19d1205
ZW
19903 case BFD_RELOC_ARM_OFFSET_IMM8:
19904 case BFD_RELOC_ARM_HWLITERAL:
19905 sign = value >= 0;
b99bd4ef 19906
c19d1205
ZW
19907 if (value < 0)
19908 value = - value;
b99bd4ef 19909
c19d1205 19910 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 19911 {
c19d1205
ZW
19912 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
19913 as_bad_where (fixP->fx_file, fixP->fx_line,
19914 _("invalid literal constant: pool needs to be closer"));
19915 else
f9d4405b 19916 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
19917 (long) value);
19918 break;
b99bd4ef
NC
19919 }
19920
c19d1205
ZW
19921 newval = md_chars_to_number (buf, INSN_SIZE);
19922 newval &= 0xff7ff0f0;
19923 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
19924 md_number_to_chars (buf, newval, INSN_SIZE);
19925 break;
b99bd4ef 19926
c19d1205
ZW
19927 case BFD_RELOC_ARM_T32_OFFSET_U8:
19928 if (value < 0 || value > 1020 || value % 4 != 0)
19929 as_bad_where (fixP->fx_file, fixP->fx_line,
19930 _("bad immediate value for offset (%ld)"), (long) value);
19931 value /= 4;
b99bd4ef 19932
c19d1205 19933 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
19934 newval |= value;
19935 md_number_to_chars (buf+2, newval, THUMB_SIZE);
19936 break;
b99bd4ef 19937
c19d1205
ZW
19938 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19939 /* This is a complicated relocation used for all varieties of Thumb32
19940 load/store instruction with immediate offset:
19941
19942 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
19943 *4, optional writeback(W)
19944 (doubleword load/store)
19945
19946 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
19947 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
19948 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
19949 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
19950 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
19951
19952 Uppercase letters indicate bits that are already encoded at
19953 this point. Lowercase letters are our problem. For the
19954 second block of instructions, the secondary opcode nybble
19955 (bits 8..11) is present, and bit 23 is zero, even if this is
19956 a PC-relative operation. */
19957 newval = md_chars_to_number (buf, THUMB_SIZE);
19958 newval <<= 16;
19959 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 19960
c19d1205 19961 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 19962 {
c19d1205
ZW
19963 /* Doubleword load/store: 8-bit offset, scaled by 4. */
19964 if (value >= 0)
19965 newval |= (1 << 23);
19966 else
19967 value = -value;
19968 if (value % 4 != 0)
19969 {
19970 as_bad_where (fixP->fx_file, fixP->fx_line,
19971 _("offset not a multiple of 4"));
19972 break;
19973 }
19974 value /= 4;
216d22bc 19975 if (value > 0xff)
c19d1205
ZW
19976 {
19977 as_bad_where (fixP->fx_file, fixP->fx_line,
19978 _("offset out of range"));
19979 break;
19980 }
19981 newval &= ~0xff;
b99bd4ef 19982 }
c19d1205 19983 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 19984 {
c19d1205
ZW
19985 /* PC-relative, 12-bit offset. */
19986 if (value >= 0)
19987 newval |= (1 << 23);
19988 else
19989 value = -value;
216d22bc 19990 if (value > 0xfff)
c19d1205
ZW
19991 {
19992 as_bad_where (fixP->fx_file, fixP->fx_line,
19993 _("offset out of range"));
19994 break;
19995 }
19996 newval &= ~0xfff;
b99bd4ef 19997 }
c19d1205 19998 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 19999 {
c19d1205
ZW
20000 /* Writeback: 8-bit, +/- offset. */
20001 if (value >= 0)
20002 newval |= (1 << 9);
20003 else
20004 value = -value;
216d22bc 20005 if (value > 0xff)
c19d1205
ZW
20006 {
20007 as_bad_where (fixP->fx_file, fixP->fx_line,
20008 _("offset out of range"));
20009 break;
20010 }
20011 newval &= ~0xff;
b99bd4ef 20012 }
c19d1205 20013 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 20014 {
c19d1205 20015 /* T-instruction: positive 8-bit offset. */
216d22bc 20016 if (value < 0 || value > 0xff)
b99bd4ef 20017 {
c19d1205
ZW
20018 as_bad_where (fixP->fx_file, fixP->fx_line,
20019 _("offset out of range"));
20020 break;
b99bd4ef 20021 }
c19d1205
ZW
20022 newval &= ~0xff;
20023 newval |= value;
b99bd4ef
NC
20024 }
20025 else
b99bd4ef 20026 {
c19d1205
ZW
20027 /* Positive 12-bit or negative 8-bit offset. */
20028 int limit;
20029 if (value >= 0)
b99bd4ef 20030 {
c19d1205
ZW
20031 newval |= (1 << 23);
20032 limit = 0xfff;
20033 }
20034 else
20035 {
20036 value = -value;
20037 limit = 0xff;
20038 }
20039 if (value > limit)
20040 {
20041 as_bad_where (fixP->fx_file, fixP->fx_line,
20042 _("offset out of range"));
20043 break;
b99bd4ef 20044 }
c19d1205 20045 newval &= ~limit;
b99bd4ef 20046 }
b99bd4ef 20047
c19d1205
ZW
20048 newval |= value;
20049 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20050 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20051 break;
404ff6b5 20052
c19d1205
ZW
20053 case BFD_RELOC_ARM_SHIFT_IMM:
20054 newval = md_chars_to_number (buf, INSN_SIZE);
20055 if (((unsigned long) value) > 32
20056 || (value == 32
20057 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20058 {
20059 as_bad_where (fixP->fx_file, fixP->fx_line,
20060 _("shift expression is too large"));
20061 break;
20062 }
404ff6b5 20063
c19d1205
ZW
20064 if (value == 0)
20065 /* Shifts of zero must be done as lsl. */
20066 newval &= ~0x60;
20067 else if (value == 32)
20068 value = 0;
20069 newval &= 0xfffff07f;
20070 newval |= (value & 0x1f) << 7;
20071 md_number_to_chars (buf, newval, INSN_SIZE);
20072 break;
404ff6b5 20073
c19d1205 20074 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 20075 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 20076 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 20077 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
20078 /* We claim that this fixup has been processed here,
20079 even if in fact we generate an error because we do
20080 not have a reloc for it, so tc_gen_reloc will reject it. */
20081 fixP->fx_done = 1;
404ff6b5 20082
c19d1205
ZW
20083 if (fixP->fx_addsy
20084 && ! S_IS_DEFINED (fixP->fx_addsy))
20085 {
20086 as_bad_where (fixP->fx_file, fixP->fx_line,
20087 _("undefined symbol %s used as an immediate value"),
20088 S_GET_NAME (fixP->fx_addsy));
20089 break;
20090 }
404ff6b5 20091
c19d1205
ZW
20092 newval = md_chars_to_number (buf, THUMB_SIZE);
20093 newval <<= 16;
20094 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 20095
16805f35
PB
20096 newimm = FAIL;
20097 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20098 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
20099 {
20100 newimm = encode_thumb32_immediate (value);
20101 if (newimm == (unsigned int) FAIL)
20102 newimm = thumb32_negate_data_op (&newval, value);
20103 }
16805f35
PB
20104 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20105 && newimm == (unsigned int) FAIL)
92e90b6e 20106 {
16805f35
PB
20107 /* Turn add/sum into addw/subw. */
20108 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20109 newval = (newval & 0xfeffffff) | 0x02000000;
20110
e9f89963
PB
20111 /* 12 bit immediate for addw/subw. */
20112 if (value < 0)
20113 {
20114 value = -value;
20115 newval ^= 0x00a00000;
20116 }
92e90b6e
PB
20117 if (value > 0xfff)
20118 newimm = (unsigned int) FAIL;
20119 else
20120 newimm = value;
20121 }
cc8a6dd0 20122
c19d1205 20123 if (newimm == (unsigned int)FAIL)
3631a3c8 20124 {
c19d1205
ZW
20125 as_bad_where (fixP->fx_file, fixP->fx_line,
20126 _("invalid constant (%lx) after fixup"),
20127 (unsigned long) value);
20128 break;
3631a3c8
NC
20129 }
20130
c19d1205
ZW
20131 newval |= (newimm & 0x800) << 15;
20132 newval |= (newimm & 0x700) << 4;
20133 newval |= (newimm & 0x0ff);
cc8a6dd0 20134
c19d1205
ZW
20135 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20136 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20137 break;
a737bd4d 20138
3eb17e6b 20139 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
20140 if (((unsigned long) value) > 0xffff)
20141 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 20142 _("invalid smc expression"));
2fc8bdac 20143 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20144 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20145 md_number_to_chars (buf, newval, INSN_SIZE);
20146 break;
a737bd4d 20147
c19d1205 20148 case BFD_RELOC_ARM_SWI:
adbaf948 20149 if (fixP->tc_fix_data != 0)
c19d1205
ZW
20150 {
20151 if (((unsigned long) value) > 0xff)
20152 as_bad_where (fixP->fx_file, fixP->fx_line,
20153 _("invalid swi expression"));
2fc8bdac 20154 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
20155 newval |= value;
20156 md_number_to_chars (buf, newval, THUMB_SIZE);
20157 }
20158 else
20159 {
20160 if (((unsigned long) value) > 0x00ffffff)
20161 as_bad_where (fixP->fx_file, fixP->fx_line,
20162 _("invalid swi expression"));
2fc8bdac 20163 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20164 newval |= value;
20165 md_number_to_chars (buf, newval, INSN_SIZE);
20166 }
20167 break;
a737bd4d 20168
c19d1205
ZW
20169 case BFD_RELOC_ARM_MULTI:
20170 if (((unsigned long) value) > 0xffff)
20171 as_bad_where (fixP->fx_file, fixP->fx_line,
20172 _("invalid expression in load/store multiple"));
20173 newval = value | md_chars_to_number (buf, INSN_SIZE);
20174 md_number_to_chars (buf, newval, INSN_SIZE);
20175 break;
a737bd4d 20176
c19d1205 20177#ifdef OBJ_ELF
39b41c9c 20178 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20179
20180 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20181 && fixP->fx_addsy
20182 && !S_IS_EXTERNAL (fixP->fx_addsy)
20183 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20184 && THUMB_IS_FUNC (fixP->fx_addsy))
20185 /* Flip the bl to blx. This is a simple flip
20186 bit here because we generate PCREL_CALL for
20187 unconditional bls. */
20188 {
20189 newval = md_chars_to_number (buf, INSN_SIZE);
20190 newval = newval | 0x10000000;
20191 md_number_to_chars (buf, newval, INSN_SIZE);
20192 temp = 1;
20193 fixP->fx_done = 1;
20194 }
39b41c9c
PB
20195 else
20196 temp = 3;
20197 goto arm_branch_common;
20198
20199 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20200 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20201 && fixP->fx_addsy
20202 && !S_IS_EXTERNAL (fixP->fx_addsy)
20203 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20204 && THUMB_IS_FUNC (fixP->fx_addsy))
20205 {
20206 /* This would map to a bl<cond>, b<cond>,
20207 b<always> to a Thumb function. We
20208 need to force a relocation for this particular
20209 case. */
20210 newval = md_chars_to_number (buf, INSN_SIZE);
20211 fixP->fx_done = 0;
20212 }
20213
2fc8bdac 20214 case BFD_RELOC_ARM_PLT32:
c19d1205 20215#endif
39b41c9c
PB
20216 case BFD_RELOC_ARM_PCREL_BRANCH:
20217 temp = 3;
20218 goto arm_branch_common;
a737bd4d 20219
39b41c9c 20220 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20221
39b41c9c 20222 temp = 1;
267bf995
RR
20223 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20224 && fixP->fx_addsy
20225 && !S_IS_EXTERNAL (fixP->fx_addsy)
20226 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20227 && ARM_IS_FUNC (fixP->fx_addsy))
20228 {
20229 /* Flip the blx to a bl and warn. */
20230 const char *name = S_GET_NAME (fixP->fx_addsy);
20231 newval = 0xeb000000;
20232 as_warn_where (fixP->fx_file, fixP->fx_line,
20233 _("blx to '%s' an ARM ISA state function changed to bl"),
20234 name);
20235 md_number_to_chars (buf, newval, INSN_SIZE);
20236 temp = 3;
20237 fixP->fx_done = 1;
20238 }
20239
20240#ifdef OBJ_ELF
20241 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20242 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20243#endif
20244
39b41c9c 20245 arm_branch_common:
c19d1205 20246 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
20247 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20248 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20249 also be be clear. */
20250 if (value & temp)
c19d1205 20251 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
20252 _("misaligned branch destination"));
20253 if ((value & (offsetT)0xfe000000) != (offsetT)0
20254 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20255 as_bad_where (fixP->fx_file, fixP->fx_line,
20256 _("branch out of range"));
a737bd4d 20257
2fc8bdac 20258 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20259 {
2fc8bdac
ZW
20260 newval = md_chars_to_number (buf, INSN_SIZE);
20261 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
20262 /* Set the H bit on BLX instructions. */
20263 if (temp == 1)
20264 {
20265 if (value & 2)
20266 newval |= 0x01000000;
20267 else
20268 newval &= ~0x01000000;
20269 }
2fc8bdac 20270 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 20271 }
c19d1205 20272 break;
a737bd4d 20273
25fe350b
MS
20274 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20275 /* CBZ can only branch forward. */
a737bd4d 20276
738755b0
MS
20277 /* Attempts to use CBZ to branch to the next instruction
20278 (which, strictly speaking, are prohibited) will be turned into
20279 no-ops.
20280
20281 FIXME: It may be better to remove the instruction completely and
20282 perform relaxation. */
20283 if (value == -2)
2fc8bdac
ZW
20284 {
20285 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 20286 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
20287 md_number_to_chars (buf, newval, THUMB_SIZE);
20288 }
738755b0
MS
20289 else
20290 {
20291 if (value & ~0x7e)
20292 as_bad_where (fixP->fx_file, fixP->fx_line,
20293 _("branch out of range"));
20294
20295 if (fixP->fx_done || !seg->use_rela_p)
20296 {
20297 newval = md_chars_to_number (buf, THUMB_SIZE);
20298 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20299 md_number_to_chars (buf, newval, THUMB_SIZE);
20300 }
20301 }
c19d1205 20302 break;
a737bd4d 20303
c19d1205 20304 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
20305 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20306 as_bad_where (fixP->fx_file, fixP->fx_line,
20307 _("branch out of range"));
a737bd4d 20308
2fc8bdac
ZW
20309 if (fixP->fx_done || !seg->use_rela_p)
20310 {
20311 newval = md_chars_to_number (buf, THUMB_SIZE);
20312 newval |= (value & 0x1ff) >> 1;
20313 md_number_to_chars (buf, newval, THUMB_SIZE);
20314 }
c19d1205 20315 break;
a737bd4d 20316
c19d1205 20317 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
20318 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20319 as_bad_where (fixP->fx_file, fixP->fx_line,
20320 _("branch out of range"));
a737bd4d 20321
2fc8bdac
ZW
20322 if (fixP->fx_done || !seg->use_rela_p)
20323 {
20324 newval = md_chars_to_number (buf, THUMB_SIZE);
20325 newval |= (value & 0xfff) >> 1;
20326 md_number_to_chars (buf, newval, THUMB_SIZE);
20327 }
c19d1205 20328 break;
a737bd4d 20329
c19d1205 20330 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
20331 if (fixP->fx_addsy
20332 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20333 && !S_IS_EXTERNAL (fixP->fx_addsy)
20334 && S_IS_DEFINED (fixP->fx_addsy)
20335 && ARM_IS_FUNC (fixP->fx_addsy)
20336 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20337 {
20338 /* Force a relocation for a branch 20 bits wide. */
20339 fixP->fx_done = 0;
20340 }
2fc8bdac
ZW
20341 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20342 as_bad_where (fixP->fx_file, fixP->fx_line,
20343 _("conditional branch out of range"));
404ff6b5 20344
2fc8bdac
ZW
20345 if (fixP->fx_done || !seg->use_rela_p)
20346 {
20347 offsetT newval2;
20348 addressT S, J1, J2, lo, hi;
404ff6b5 20349
2fc8bdac
ZW
20350 S = (value & 0x00100000) >> 20;
20351 J2 = (value & 0x00080000) >> 19;
20352 J1 = (value & 0x00040000) >> 18;
20353 hi = (value & 0x0003f000) >> 12;
20354 lo = (value & 0x00000ffe) >> 1;
6c43fab6 20355
2fc8bdac
ZW
20356 newval = md_chars_to_number (buf, THUMB_SIZE);
20357 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20358 newval |= (S << 10) | hi;
20359 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20360 md_number_to_chars (buf, newval, THUMB_SIZE);
20361 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20362 }
c19d1205 20363 break;
6c43fab6 20364
c19d1205 20365 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
20366
20367 /* If there is a blx from a thumb state function to
20368 another thumb function flip this to a bl and warn
20369 about it. */
20370
20371 if (fixP->fx_addsy
20372 && S_IS_DEFINED (fixP->fx_addsy)
20373 && !S_IS_EXTERNAL (fixP->fx_addsy)
20374 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20375 && THUMB_IS_FUNC (fixP->fx_addsy))
20376 {
20377 const char *name = S_GET_NAME (fixP->fx_addsy);
20378 as_warn_where (fixP->fx_file, fixP->fx_line,
20379 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20380 name);
20381 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20382 newval = newval | 0x1000;
20383 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20384 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20385 fixP->fx_done = 1;
20386 }
20387
20388
20389 goto thumb_bl_common;
20390
c19d1205 20391 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
20392
20393 /* A bl from Thumb state ISA to an internal ARM state function
20394 is converted to a blx. */
20395 if (fixP->fx_addsy
20396 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20397 && !S_IS_EXTERNAL (fixP->fx_addsy)
20398 && S_IS_DEFINED (fixP->fx_addsy)
20399 && ARM_IS_FUNC (fixP->fx_addsy)
20400 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20401 {
20402 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20403 newval = newval & ~0x1000;
20404 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20405 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20406 fixP->fx_done = 1;
20407 }
20408
20409 thumb_bl_common:
20410
20411#ifdef OBJ_ELF
20412 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20413 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20414 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20415#endif
20416
2fc8bdac
ZW
20417 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20418 /* For a BLX instruction, make sure that the relocation is rounded up
20419 to a word boundary. This follows the semantics of the instruction
20420 which specifies that bit 1 of the target address will come from bit
20421 1 of the base address. */
20422 value = (value + 1) & ~ 1;
404ff6b5 20423
2fc8bdac 20424
4a42ebbc
RR
20425 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20426 {
20427 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20428 {
20429 as_bad_where (fixP->fx_file, fixP->fx_line,
20430 _("branch out of range"));
20431 }
20432 else if ((value & ~0x1ffffff)
20433 && ((value & ~0x1ffffff) != ~0x1ffffff))
20434 {
20435 as_bad_where (fixP->fx_file, fixP->fx_line,
20436 _("Thumb2 branch out of range"));
20437 }
c19d1205 20438 }
4a42ebbc
RR
20439
20440 if (fixP->fx_done || !seg->use_rela_p)
20441 encode_thumb2_b_bl_offset (buf, value);
20442
c19d1205 20443 break;
404ff6b5 20444
c19d1205 20445 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
20446 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20447 as_bad_where (fixP->fx_file, fixP->fx_line,
20448 _("branch out of range"));
6c43fab6 20449
2fc8bdac 20450 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 20451 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 20452
2fc8bdac 20453 break;
a737bd4d 20454
2fc8bdac
ZW
20455 case BFD_RELOC_8:
20456 if (fixP->fx_done || !seg->use_rela_p)
20457 md_number_to_chars (buf, value, 1);
c19d1205 20458 break;
a737bd4d 20459
c19d1205 20460 case BFD_RELOC_16:
2fc8bdac 20461 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20462 md_number_to_chars (buf, value, 2);
c19d1205 20463 break;
a737bd4d 20464
c19d1205
ZW
20465#ifdef OBJ_ELF
20466 case BFD_RELOC_ARM_TLS_GD32:
20467 case BFD_RELOC_ARM_TLS_LE32:
20468 case BFD_RELOC_ARM_TLS_IE32:
20469 case BFD_RELOC_ARM_TLS_LDM32:
20470 case BFD_RELOC_ARM_TLS_LDO32:
20471 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20472 /* fall through */
6c43fab6 20473
c19d1205
ZW
20474 case BFD_RELOC_ARM_GOT32:
20475 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
20476 if (fixP->fx_done || !seg->use_rela_p)
20477 md_number_to_chars (buf, 0, 4);
c19d1205 20478 break;
9a6f4e97
NS
20479
20480 case BFD_RELOC_ARM_TARGET2:
20481 /* TARGET2 is not partial-inplace, so we need to write the
20482 addend here for REL targets, because it won't be written out
20483 during reloc processing later. */
20484 if (fixP->fx_done || !seg->use_rela_p)
20485 md_number_to_chars (buf, fixP->fx_offset, 4);
20486 break;
c19d1205 20487#endif
6c43fab6 20488
c19d1205
ZW
20489 case BFD_RELOC_RVA:
20490 case BFD_RELOC_32:
20491 case BFD_RELOC_ARM_TARGET1:
20492 case BFD_RELOC_ARM_ROSEGREL32:
20493 case BFD_RELOC_ARM_SBREL32:
20494 case BFD_RELOC_32_PCREL:
f0927246
NC
20495#ifdef TE_PE
20496 case BFD_RELOC_32_SECREL:
20497#endif
2fc8bdac 20498 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
20499#ifdef TE_WINCE
20500 /* For WinCE we only do this for pcrel fixups. */
20501 if (fixP->fx_done || fixP->fx_pcrel)
20502#endif
20503 md_number_to_chars (buf, value, 4);
c19d1205 20504 break;
6c43fab6 20505
c19d1205
ZW
20506#ifdef OBJ_ELF
20507 case BFD_RELOC_ARM_PREL31:
2fc8bdac 20508 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
20509 {
20510 newval = md_chars_to_number (buf, 4) & 0x80000000;
20511 if ((value ^ (value >> 1)) & 0x40000000)
20512 {
20513 as_bad_where (fixP->fx_file, fixP->fx_line,
20514 _("rel31 relocation overflow"));
20515 }
20516 newval |= value & 0x7fffffff;
20517 md_number_to_chars (buf, newval, 4);
20518 }
20519 break;
c19d1205 20520#endif
a737bd4d 20521
c19d1205 20522 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 20523 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
20524 if (value < -1023 || value > 1023 || (value & 3))
20525 as_bad_where (fixP->fx_file, fixP->fx_line,
20526 _("co-processor offset out of range"));
20527 cp_off_common:
20528 sign = value >= 0;
20529 if (value < 0)
20530 value = -value;
8f06b2d8
PB
20531 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20532 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20533 newval = md_chars_to_number (buf, INSN_SIZE);
20534 else
20535 newval = get_thumb32_insn (buf);
20536 newval &= 0xff7fff00;
c19d1205 20537 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
20538 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20539 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20540 md_number_to_chars (buf, newval, INSN_SIZE);
20541 else
20542 put_thumb32_insn (buf, newval);
c19d1205 20543 break;
a737bd4d 20544
c19d1205 20545 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 20546 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
20547 if (value < -255 || value > 255)
20548 as_bad_where (fixP->fx_file, fixP->fx_line,
20549 _("co-processor offset out of range"));
df7849c5 20550 value *= 4;
c19d1205 20551 goto cp_off_common;
6c43fab6 20552
c19d1205
ZW
20553 case BFD_RELOC_ARM_THUMB_OFFSET:
20554 newval = md_chars_to_number (buf, THUMB_SIZE);
20555 /* Exactly what ranges, and where the offset is inserted depends
20556 on the type of instruction, we can establish this from the
20557 top 4 bits. */
20558 switch (newval >> 12)
20559 {
20560 case 4: /* PC load. */
20561 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20562 forced to zero for these loads; md_pcrel_from has already
20563 compensated for this. */
20564 if (value & 3)
20565 as_bad_where (fixP->fx_file, fixP->fx_line,
20566 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
20567 (((unsigned long) fixP->fx_frag->fr_address
20568 + (unsigned long) fixP->fx_where) & ~3)
20569 + (unsigned long) value);
a737bd4d 20570
c19d1205
ZW
20571 if (value & ~0x3fc)
20572 as_bad_where (fixP->fx_file, fixP->fx_line,
20573 _("invalid offset, value too big (0x%08lX)"),
20574 (long) value);
a737bd4d 20575
c19d1205
ZW
20576 newval |= value >> 2;
20577 break;
a737bd4d 20578
c19d1205
ZW
20579 case 9: /* SP load/store. */
20580 if (value & ~0x3fc)
20581 as_bad_where (fixP->fx_file, fixP->fx_line,
20582 _("invalid offset, value too big (0x%08lX)"),
20583 (long) value);
20584 newval |= value >> 2;
20585 break;
6c43fab6 20586
c19d1205
ZW
20587 case 6: /* Word load/store. */
20588 if (value & ~0x7c)
20589 as_bad_where (fixP->fx_file, fixP->fx_line,
20590 _("invalid offset, value too big (0x%08lX)"),
20591 (long) value);
20592 newval |= value << 4; /* 6 - 2. */
20593 break;
a737bd4d 20594
c19d1205
ZW
20595 case 7: /* Byte load/store. */
20596 if (value & ~0x1f)
20597 as_bad_where (fixP->fx_file, fixP->fx_line,
20598 _("invalid offset, value too big (0x%08lX)"),
20599 (long) value);
20600 newval |= value << 6;
20601 break;
a737bd4d 20602
c19d1205
ZW
20603 case 8: /* Halfword load/store. */
20604 if (value & ~0x3e)
20605 as_bad_where (fixP->fx_file, fixP->fx_line,
20606 _("invalid offset, value too big (0x%08lX)"),
20607 (long) value);
20608 newval |= value << 5; /* 6 - 1. */
20609 break;
a737bd4d 20610
c19d1205
ZW
20611 default:
20612 as_bad_where (fixP->fx_file, fixP->fx_line,
20613 "Unable to process relocation for thumb opcode: %lx",
20614 (unsigned long) newval);
20615 break;
20616 }
20617 md_number_to_chars (buf, newval, THUMB_SIZE);
20618 break;
a737bd4d 20619
c19d1205
ZW
20620 case BFD_RELOC_ARM_THUMB_ADD:
20621 /* This is a complicated relocation, since we use it for all of
20622 the following immediate relocations:
a737bd4d 20623
c19d1205
ZW
20624 3bit ADD/SUB
20625 8bit ADD/SUB
20626 9bit ADD/SUB SP word-aligned
20627 10bit ADD PC/SP word-aligned
a737bd4d 20628
c19d1205
ZW
20629 The type of instruction being processed is encoded in the
20630 instruction field:
a737bd4d 20631
c19d1205
ZW
20632 0x8000 SUB
20633 0x00F0 Rd
20634 0x000F Rs
20635 */
20636 newval = md_chars_to_number (buf, THUMB_SIZE);
20637 {
20638 int rd = (newval >> 4) & 0xf;
20639 int rs = newval & 0xf;
20640 int subtract = !!(newval & 0x8000);
a737bd4d 20641
c19d1205
ZW
20642 /* Check for HI regs, only very restricted cases allowed:
20643 Adjusting SP, and using PC or SP to get an address. */
20644 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20645 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20646 as_bad_where (fixP->fx_file, fixP->fx_line,
20647 _("invalid Hi register with immediate"));
a737bd4d 20648
c19d1205
ZW
20649 /* If value is negative, choose the opposite instruction. */
20650 if (value < 0)
20651 {
20652 value = -value;
20653 subtract = !subtract;
20654 if (value < 0)
20655 as_bad_where (fixP->fx_file, fixP->fx_line,
20656 _("immediate value out of range"));
20657 }
a737bd4d 20658
c19d1205
ZW
20659 if (rd == REG_SP)
20660 {
20661 if (value & ~0x1fc)
20662 as_bad_where (fixP->fx_file, fixP->fx_line,
20663 _("invalid immediate for stack address calculation"));
20664 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20665 newval |= value >> 2;
20666 }
20667 else if (rs == REG_PC || rs == REG_SP)
20668 {
20669 if (subtract || value & ~0x3fc)
20670 as_bad_where (fixP->fx_file, fixP->fx_line,
20671 _("invalid immediate for address calculation (value = 0x%08lX)"),
20672 (unsigned long) value);
20673 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20674 newval |= rd << 8;
20675 newval |= value >> 2;
20676 }
20677 else if (rs == rd)
20678 {
20679 if (value & ~0xff)
20680 as_bad_where (fixP->fx_file, fixP->fx_line,
20681 _("immediate value out of range"));
20682 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20683 newval |= (rd << 8) | value;
20684 }
20685 else
20686 {
20687 if (value & ~0x7)
20688 as_bad_where (fixP->fx_file, fixP->fx_line,
20689 _("immediate value out of range"));
20690 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20691 newval |= rd | (rs << 3) | (value << 6);
20692 }
20693 }
20694 md_number_to_chars (buf, newval, THUMB_SIZE);
20695 break;
a737bd4d 20696
c19d1205
ZW
20697 case BFD_RELOC_ARM_THUMB_IMM:
20698 newval = md_chars_to_number (buf, THUMB_SIZE);
20699 if (value < 0 || value > 255)
20700 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 20701 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
20702 (long) value);
20703 newval |= value;
20704 md_number_to_chars (buf, newval, THUMB_SIZE);
20705 break;
a737bd4d 20706
c19d1205
ZW
20707 case BFD_RELOC_ARM_THUMB_SHIFT:
20708 /* 5bit shift value (0..32). LSL cannot take 32. */
20709 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20710 temp = newval & 0xf800;
20711 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20712 as_bad_where (fixP->fx_file, fixP->fx_line,
20713 _("invalid shift value: %ld"), (long) value);
20714 /* Shifts of zero must be encoded as LSL. */
20715 if (value == 0)
20716 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20717 /* Shifts of 32 are encoded as zero. */
20718 else if (value == 32)
20719 value = 0;
20720 newval |= value << 6;
20721 md_number_to_chars (buf, newval, THUMB_SIZE);
20722 break;
a737bd4d 20723
c19d1205
ZW
20724 case BFD_RELOC_VTABLE_INHERIT:
20725 case BFD_RELOC_VTABLE_ENTRY:
20726 fixP->fx_done = 0;
20727 return;
6c43fab6 20728
b6895b4f
PB
20729 case BFD_RELOC_ARM_MOVW:
20730 case BFD_RELOC_ARM_MOVT:
20731 case BFD_RELOC_ARM_THUMB_MOVW:
20732 case BFD_RELOC_ARM_THUMB_MOVT:
20733 if (fixP->fx_done || !seg->use_rela_p)
20734 {
20735 /* REL format relocations are limited to a 16-bit addend. */
20736 if (!fixP->fx_done)
20737 {
39623e12 20738 if (value < -0x8000 || value > 0x7fff)
b6895b4f 20739 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 20740 _("offset out of range"));
b6895b4f
PB
20741 }
20742 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20743 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20744 {
20745 value >>= 16;
20746 }
20747
20748 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20749 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20750 {
20751 newval = get_thumb32_insn (buf);
20752 newval &= 0xfbf08f00;
20753 newval |= (value & 0xf000) << 4;
20754 newval |= (value & 0x0800) << 15;
20755 newval |= (value & 0x0700) << 4;
20756 newval |= (value & 0x00ff);
20757 put_thumb32_insn (buf, newval);
20758 }
20759 else
20760 {
20761 newval = md_chars_to_number (buf, 4);
20762 newval &= 0xfff0f000;
20763 newval |= value & 0x0fff;
20764 newval |= (value & 0xf000) << 4;
20765 md_number_to_chars (buf, newval, 4);
20766 }
20767 }
20768 return;
20769
4962c51a
MS
20770 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20771 case BFD_RELOC_ARM_ALU_PC_G0:
20772 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20773 case BFD_RELOC_ARM_ALU_PC_G1:
20774 case BFD_RELOC_ARM_ALU_PC_G2:
20775 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20776 case BFD_RELOC_ARM_ALU_SB_G0:
20777 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20778 case BFD_RELOC_ARM_ALU_SB_G1:
20779 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 20780 gas_assert (!fixP->fx_done);
4962c51a
MS
20781 if (!seg->use_rela_p)
20782 {
20783 bfd_vma insn;
20784 bfd_vma encoded_addend;
20785 bfd_vma addend_abs = abs (value);
20786
20787 /* Check that the absolute value of the addend can be
20788 expressed as an 8-bit constant plus a rotation. */
20789 encoded_addend = encode_arm_immediate (addend_abs);
20790 if (encoded_addend == (unsigned int) FAIL)
20791 as_bad_where (fixP->fx_file, fixP->fx_line,
20792 _("the offset 0x%08lX is not representable"),
495bde8e 20793 (unsigned long) addend_abs);
4962c51a
MS
20794
20795 /* Extract the instruction. */
20796 insn = md_chars_to_number (buf, INSN_SIZE);
20797
20798 /* If the addend is positive, use an ADD instruction.
20799 Otherwise use a SUB. Take care not to destroy the S bit. */
20800 insn &= 0xff1fffff;
20801 if (value < 0)
20802 insn |= 1 << 22;
20803 else
20804 insn |= 1 << 23;
20805
20806 /* Place the encoded addend into the first 12 bits of the
20807 instruction. */
20808 insn &= 0xfffff000;
20809 insn |= encoded_addend;
5f4273c7
NC
20810
20811 /* Update the instruction. */
4962c51a
MS
20812 md_number_to_chars (buf, insn, INSN_SIZE);
20813 }
20814 break;
20815
20816 case BFD_RELOC_ARM_LDR_PC_G0:
20817 case BFD_RELOC_ARM_LDR_PC_G1:
20818 case BFD_RELOC_ARM_LDR_PC_G2:
20819 case BFD_RELOC_ARM_LDR_SB_G0:
20820 case BFD_RELOC_ARM_LDR_SB_G1:
20821 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 20822 gas_assert (!fixP->fx_done);
4962c51a
MS
20823 if (!seg->use_rela_p)
20824 {
20825 bfd_vma insn;
20826 bfd_vma addend_abs = abs (value);
20827
20828 /* Check that the absolute value of the addend can be
20829 encoded in 12 bits. */
20830 if (addend_abs >= 0x1000)
20831 as_bad_where (fixP->fx_file, fixP->fx_line,
20832 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 20833 (unsigned long) addend_abs);
4962c51a
MS
20834
20835 /* Extract the instruction. */
20836 insn = md_chars_to_number (buf, INSN_SIZE);
20837
20838 /* If the addend is negative, clear bit 23 of the instruction.
20839 Otherwise set it. */
20840 if (value < 0)
20841 insn &= ~(1 << 23);
20842 else
20843 insn |= 1 << 23;
20844
20845 /* Place the absolute value of the addend into the first 12 bits
20846 of the instruction. */
20847 insn &= 0xfffff000;
20848 insn |= addend_abs;
5f4273c7
NC
20849
20850 /* Update the instruction. */
4962c51a
MS
20851 md_number_to_chars (buf, insn, INSN_SIZE);
20852 }
20853 break;
20854
20855 case BFD_RELOC_ARM_LDRS_PC_G0:
20856 case BFD_RELOC_ARM_LDRS_PC_G1:
20857 case BFD_RELOC_ARM_LDRS_PC_G2:
20858 case BFD_RELOC_ARM_LDRS_SB_G0:
20859 case BFD_RELOC_ARM_LDRS_SB_G1:
20860 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 20861 gas_assert (!fixP->fx_done);
4962c51a
MS
20862 if (!seg->use_rela_p)
20863 {
20864 bfd_vma insn;
20865 bfd_vma addend_abs = abs (value);
20866
20867 /* Check that the absolute value of the addend can be
20868 encoded in 8 bits. */
20869 if (addend_abs >= 0x100)
20870 as_bad_where (fixP->fx_file, fixP->fx_line,
20871 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 20872 (unsigned long) addend_abs);
4962c51a
MS
20873
20874 /* Extract the instruction. */
20875 insn = md_chars_to_number (buf, INSN_SIZE);
20876
20877 /* If the addend is negative, clear bit 23 of the instruction.
20878 Otherwise set it. */
20879 if (value < 0)
20880 insn &= ~(1 << 23);
20881 else
20882 insn |= 1 << 23;
20883
20884 /* Place the first four bits of the absolute value of the addend
20885 into the first 4 bits of the instruction, and the remaining
20886 four into bits 8 .. 11. */
20887 insn &= 0xfffff0f0;
20888 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
20889
20890 /* Update the instruction. */
4962c51a
MS
20891 md_number_to_chars (buf, insn, INSN_SIZE);
20892 }
20893 break;
20894
20895 case BFD_RELOC_ARM_LDC_PC_G0:
20896 case BFD_RELOC_ARM_LDC_PC_G1:
20897 case BFD_RELOC_ARM_LDC_PC_G2:
20898 case BFD_RELOC_ARM_LDC_SB_G0:
20899 case BFD_RELOC_ARM_LDC_SB_G1:
20900 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 20901 gas_assert (!fixP->fx_done);
4962c51a
MS
20902 if (!seg->use_rela_p)
20903 {
20904 bfd_vma insn;
20905 bfd_vma addend_abs = abs (value);
20906
20907 /* Check that the absolute value of the addend is a multiple of
20908 four and, when divided by four, fits in 8 bits. */
20909 if (addend_abs & 0x3)
20910 as_bad_where (fixP->fx_file, fixP->fx_line,
20911 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 20912 (unsigned long) addend_abs);
4962c51a
MS
20913
20914 if ((addend_abs >> 2) > 0xff)
20915 as_bad_where (fixP->fx_file, fixP->fx_line,
20916 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 20917 (unsigned long) addend_abs);
4962c51a
MS
20918
20919 /* Extract the instruction. */
20920 insn = md_chars_to_number (buf, INSN_SIZE);
20921
20922 /* If the addend is negative, clear bit 23 of the instruction.
20923 Otherwise set it. */
20924 if (value < 0)
20925 insn &= ~(1 << 23);
20926 else
20927 insn |= 1 << 23;
20928
20929 /* Place the addend (divided by four) into the first eight
20930 bits of the instruction. */
20931 insn &= 0xfffffff0;
20932 insn |= addend_abs >> 2;
5f4273c7
NC
20933
20934 /* Update the instruction. */
4962c51a
MS
20935 md_number_to_chars (buf, insn, INSN_SIZE);
20936 }
20937 break;
20938
845b51d6
PB
20939 case BFD_RELOC_ARM_V4BX:
20940 /* This will need to go in the object file. */
20941 fixP->fx_done = 0;
20942 break;
20943
c19d1205
ZW
20944 case BFD_RELOC_UNUSED:
20945 default:
20946 as_bad_where (fixP->fx_file, fixP->fx_line,
20947 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
20948 }
6c43fab6
RE
20949}
20950
c19d1205
ZW
20951/* Translate internal representation of relocation info to BFD target
20952 format. */
a737bd4d 20953
c19d1205 20954arelent *
00a97672 20955tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 20956{
c19d1205
ZW
20957 arelent * reloc;
20958 bfd_reloc_code_real_type code;
a737bd4d 20959
21d799b5 20960 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 20961
21d799b5 20962 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
20963 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
20964 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 20965
2fc8bdac 20966 if (fixp->fx_pcrel)
00a97672
RS
20967 {
20968 if (section->use_rela_p)
20969 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
20970 else
20971 fixp->fx_offset = reloc->address;
20972 }
c19d1205 20973 reloc->addend = fixp->fx_offset;
a737bd4d 20974
c19d1205 20975 switch (fixp->fx_r_type)
a737bd4d 20976 {
c19d1205
ZW
20977 case BFD_RELOC_8:
20978 if (fixp->fx_pcrel)
20979 {
20980 code = BFD_RELOC_8_PCREL;
20981 break;
20982 }
a737bd4d 20983
c19d1205
ZW
20984 case BFD_RELOC_16:
20985 if (fixp->fx_pcrel)
20986 {
20987 code = BFD_RELOC_16_PCREL;
20988 break;
20989 }
6c43fab6 20990
c19d1205
ZW
20991 case BFD_RELOC_32:
20992 if (fixp->fx_pcrel)
20993 {
20994 code = BFD_RELOC_32_PCREL;
20995 break;
20996 }
a737bd4d 20997
b6895b4f
PB
20998 case BFD_RELOC_ARM_MOVW:
20999 if (fixp->fx_pcrel)
21000 {
21001 code = BFD_RELOC_ARM_MOVW_PCREL;
21002 break;
21003 }
21004
21005 case BFD_RELOC_ARM_MOVT:
21006 if (fixp->fx_pcrel)
21007 {
21008 code = BFD_RELOC_ARM_MOVT_PCREL;
21009 break;
21010 }
21011
21012 case BFD_RELOC_ARM_THUMB_MOVW:
21013 if (fixp->fx_pcrel)
21014 {
21015 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21016 break;
21017 }
21018
21019 case BFD_RELOC_ARM_THUMB_MOVT:
21020 if (fixp->fx_pcrel)
21021 {
21022 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21023 break;
21024 }
21025
c19d1205
ZW
21026 case BFD_RELOC_NONE:
21027 case BFD_RELOC_ARM_PCREL_BRANCH:
21028 case BFD_RELOC_ARM_PCREL_BLX:
21029 case BFD_RELOC_RVA:
21030 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21031 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21032 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21033 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21034 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21035 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
21036 case BFD_RELOC_VTABLE_ENTRY:
21037 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
21038#ifdef TE_PE
21039 case BFD_RELOC_32_SECREL:
21040#endif
c19d1205
ZW
21041 code = fixp->fx_r_type;
21042 break;
a737bd4d 21043
00adf2d4
JB
21044 case BFD_RELOC_THUMB_PCREL_BLX:
21045#ifdef OBJ_ELF
21046 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21047 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21048 else
21049#endif
21050 code = BFD_RELOC_THUMB_PCREL_BLX;
21051 break;
21052
c19d1205
ZW
21053 case BFD_RELOC_ARM_LITERAL:
21054 case BFD_RELOC_ARM_HWLITERAL:
21055 /* If this is called then the a literal has
21056 been referenced across a section boundary. */
21057 as_bad_where (fixp->fx_file, fixp->fx_line,
21058 _("literal referenced across section boundary"));
21059 return NULL;
a737bd4d 21060
c19d1205
ZW
21061#ifdef OBJ_ELF
21062 case BFD_RELOC_ARM_GOT32:
21063 case BFD_RELOC_ARM_GOTOFF:
21064 case BFD_RELOC_ARM_PLT32:
21065 case BFD_RELOC_ARM_TARGET1:
21066 case BFD_RELOC_ARM_ROSEGREL32:
21067 case BFD_RELOC_ARM_SBREL32:
21068 case BFD_RELOC_ARM_PREL31:
21069 case BFD_RELOC_ARM_TARGET2:
21070 case BFD_RELOC_ARM_TLS_LE32:
21071 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
21072 case BFD_RELOC_ARM_PCREL_CALL:
21073 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
21074 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21075 case BFD_RELOC_ARM_ALU_PC_G0:
21076 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21077 case BFD_RELOC_ARM_ALU_PC_G1:
21078 case BFD_RELOC_ARM_ALU_PC_G2:
21079 case BFD_RELOC_ARM_LDR_PC_G0:
21080 case BFD_RELOC_ARM_LDR_PC_G1:
21081 case BFD_RELOC_ARM_LDR_PC_G2:
21082 case BFD_RELOC_ARM_LDRS_PC_G0:
21083 case BFD_RELOC_ARM_LDRS_PC_G1:
21084 case BFD_RELOC_ARM_LDRS_PC_G2:
21085 case BFD_RELOC_ARM_LDC_PC_G0:
21086 case BFD_RELOC_ARM_LDC_PC_G1:
21087 case BFD_RELOC_ARM_LDC_PC_G2:
21088 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21089 case BFD_RELOC_ARM_ALU_SB_G0:
21090 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21091 case BFD_RELOC_ARM_ALU_SB_G1:
21092 case BFD_RELOC_ARM_ALU_SB_G2:
21093 case BFD_RELOC_ARM_LDR_SB_G0:
21094 case BFD_RELOC_ARM_LDR_SB_G1:
21095 case BFD_RELOC_ARM_LDR_SB_G2:
21096 case BFD_RELOC_ARM_LDRS_SB_G0:
21097 case BFD_RELOC_ARM_LDRS_SB_G1:
21098 case BFD_RELOC_ARM_LDRS_SB_G2:
21099 case BFD_RELOC_ARM_LDC_SB_G0:
21100 case BFD_RELOC_ARM_LDC_SB_G1:
21101 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 21102 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
21103 code = fixp->fx_r_type;
21104 break;
a737bd4d 21105
c19d1205
ZW
21106 case BFD_RELOC_ARM_TLS_GD32:
21107 case BFD_RELOC_ARM_TLS_IE32:
21108 case BFD_RELOC_ARM_TLS_LDM32:
21109 /* BFD will include the symbol's address in the addend.
21110 But we don't want that, so subtract it out again here. */
21111 if (!S_IS_COMMON (fixp->fx_addsy))
21112 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21113 code = fixp->fx_r_type;
21114 break;
21115#endif
a737bd4d 21116
c19d1205
ZW
21117 case BFD_RELOC_ARM_IMMEDIATE:
21118 as_bad_where (fixp->fx_file, fixp->fx_line,
21119 _("internal relocation (type: IMMEDIATE) not fixed up"));
21120 return NULL;
a737bd4d 21121
c19d1205
ZW
21122 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21123 as_bad_where (fixp->fx_file, fixp->fx_line,
21124 _("ADRL used for a symbol not defined in the same file"));
21125 return NULL;
a737bd4d 21126
c19d1205 21127 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21128 if (section->use_rela_p)
21129 {
21130 code = fixp->fx_r_type;
21131 break;
21132 }
21133
c19d1205
ZW
21134 if (fixp->fx_addsy != NULL
21135 && !S_IS_DEFINED (fixp->fx_addsy)
21136 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 21137 {
c19d1205
ZW
21138 as_bad_where (fixp->fx_file, fixp->fx_line,
21139 _("undefined local label `%s'"),
21140 S_GET_NAME (fixp->fx_addsy));
21141 return NULL;
a737bd4d
NC
21142 }
21143
c19d1205
ZW
21144 as_bad_where (fixp->fx_file, fixp->fx_line,
21145 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21146 return NULL;
a737bd4d 21147
c19d1205
ZW
21148 default:
21149 {
21150 char * type;
6c43fab6 21151
c19d1205
ZW
21152 switch (fixp->fx_r_type)
21153 {
21154 case BFD_RELOC_NONE: type = "NONE"; break;
21155 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21156 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 21157 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
21158 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21159 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21160 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 21161 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21162 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21163 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21164 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21165 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21166 default: type = _("<unknown>"); break;
21167 }
21168 as_bad_where (fixp->fx_file, fixp->fx_line,
21169 _("cannot represent %s relocation in this object file format"),
21170 type);
21171 return NULL;
21172 }
a737bd4d 21173 }
6c43fab6 21174
c19d1205
ZW
21175#ifdef OBJ_ELF
21176 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21177 && GOT_symbol
21178 && fixp->fx_addsy == GOT_symbol)
21179 {
21180 code = BFD_RELOC_ARM_GOTPC;
21181 reloc->addend = fixp->fx_offset = reloc->address;
21182 }
21183#endif
6c43fab6 21184
c19d1205 21185 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21186
c19d1205
ZW
21187 if (reloc->howto == NULL)
21188 {
21189 as_bad_where (fixp->fx_file, fixp->fx_line,
21190 _("cannot represent %s relocation in this object file format"),
21191 bfd_get_reloc_code_name (code));
21192 return NULL;
21193 }
6c43fab6 21194
c19d1205
ZW
21195 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21196 vtable entry to be used in the relocation's section offset. */
21197 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21198 reloc->address = fixp->fx_offset;
6c43fab6 21199
c19d1205 21200 return reloc;
6c43fab6
RE
21201}
21202
c19d1205 21203/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21204
c19d1205
ZW
21205void
21206cons_fix_new_arm (fragS * frag,
21207 int where,
21208 int size,
21209 expressionS * exp)
6c43fab6 21210{
c19d1205
ZW
21211 bfd_reloc_code_real_type type;
21212 int pcrel = 0;
6c43fab6 21213
c19d1205
ZW
21214 /* Pick a reloc.
21215 FIXME: @@ Should look at CPU word size. */
21216 switch (size)
21217 {
21218 case 1:
21219 type = BFD_RELOC_8;
21220 break;
21221 case 2:
21222 type = BFD_RELOC_16;
21223 break;
21224 case 4:
21225 default:
21226 type = BFD_RELOC_32;
21227 break;
21228 case 8:
21229 type = BFD_RELOC_64;
21230 break;
21231 }
6c43fab6 21232
f0927246
NC
21233#ifdef TE_PE
21234 if (exp->X_op == O_secrel)
21235 {
21236 exp->X_op = O_symbol;
21237 type = BFD_RELOC_32_SECREL;
21238 }
21239#endif
21240
c19d1205
ZW
21241 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21242}
6c43fab6 21243
4343666d 21244#if defined (OBJ_COFF)
c19d1205
ZW
21245void
21246arm_validate_fix (fixS * fixP)
6c43fab6 21247{
c19d1205
ZW
21248 /* If the destination of the branch is a defined symbol which does not have
21249 the THUMB_FUNC attribute, then we must be calling a function which has
21250 the (interfacearm) attribute. We look for the Thumb entry point to that
21251 function and change the branch to refer to that function instead. */
21252 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21253 && fixP->fx_addsy != NULL
21254 && S_IS_DEFINED (fixP->fx_addsy)
21255 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 21256 {
c19d1205 21257 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 21258 }
c19d1205
ZW
21259}
21260#endif
6c43fab6 21261
267bf995 21262
c19d1205
ZW
21263int
21264arm_force_relocation (struct fix * fixp)
21265{
21266#if defined (OBJ_COFF) && defined (TE_PE)
21267 if (fixp->fx_r_type == BFD_RELOC_RVA)
21268 return 1;
21269#endif
6c43fab6 21270
267bf995
RR
21271 /* In case we have a call or a branch to a function in ARM ISA mode from
21272 a thumb function or vice-versa force the relocation. These relocations
21273 are cleared off for some cores that might have blx and simple transformations
21274 are possible. */
21275
21276#ifdef OBJ_ELF
21277 switch (fixp->fx_r_type)
21278 {
21279 case BFD_RELOC_ARM_PCREL_JUMP:
21280 case BFD_RELOC_ARM_PCREL_CALL:
21281 case BFD_RELOC_THUMB_PCREL_BLX:
21282 if (THUMB_IS_FUNC (fixp->fx_addsy))
21283 return 1;
21284 break;
21285
21286 case BFD_RELOC_ARM_PCREL_BLX:
21287 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21288 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21289 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21290 if (ARM_IS_FUNC (fixp->fx_addsy))
21291 return 1;
21292 break;
21293
21294 default:
21295 break;
21296 }
21297#endif
21298
c19d1205
ZW
21299 /* Resolve these relocations even if the symbol is extern or weak. */
21300 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21301 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 21302 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 21303 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
21304 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21305 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21306 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 21307 return 0;
a737bd4d 21308
4962c51a
MS
21309 /* Always leave these relocations for the linker. */
21310 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21311 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21312 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21313 return 1;
21314
f0291e4c
PB
21315 /* Always generate relocations against function symbols. */
21316 if (fixp->fx_r_type == BFD_RELOC_32
21317 && fixp->fx_addsy
21318 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21319 return 1;
21320
c19d1205 21321 return generic_force_reloc (fixp);
404ff6b5
AH
21322}
21323
0ffdc86c 21324#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
21325/* Relocations against function names must be left unadjusted,
21326 so that the linker can use this information to generate interworking
21327 stubs. The MIPS version of this function
c19d1205
ZW
21328 also prevents relocations that are mips-16 specific, but I do not
21329 know why it does this.
404ff6b5 21330
c19d1205
ZW
21331 FIXME:
21332 There is one other problem that ought to be addressed here, but
21333 which currently is not: Taking the address of a label (rather
21334 than a function) and then later jumping to that address. Such
21335 addresses also ought to have their bottom bit set (assuming that
21336 they reside in Thumb code), but at the moment they will not. */
404ff6b5 21337
c19d1205
ZW
21338bfd_boolean
21339arm_fix_adjustable (fixS * fixP)
404ff6b5 21340{
c19d1205
ZW
21341 if (fixP->fx_addsy == NULL)
21342 return 1;
404ff6b5 21343
e28387c3
PB
21344 /* Preserve relocations against symbols with function type. */
21345 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 21346 return FALSE;
e28387c3 21347
c19d1205
ZW
21348 if (THUMB_IS_FUNC (fixP->fx_addsy)
21349 && fixP->fx_subsy == NULL)
c921be7d 21350 return FALSE;
a737bd4d 21351
c19d1205
ZW
21352 /* We need the symbol name for the VTABLE entries. */
21353 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21354 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 21355 return FALSE;
404ff6b5 21356
c19d1205
ZW
21357 /* Don't allow symbols to be discarded on GOT related relocs. */
21358 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21359 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21360 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21361 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21362 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21363 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21364 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21365 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21366 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 21367 return FALSE;
a737bd4d 21368
4962c51a
MS
21369 /* Similarly for group relocations. */
21370 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21371 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21372 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 21373 return FALSE;
4962c51a 21374
79947c54
CD
21375 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21376 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21377 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21378 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21379 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21380 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21381 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21382 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21383 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 21384 return FALSE;
79947c54 21385
c921be7d 21386 return TRUE;
a737bd4d 21387}
0ffdc86c
NC
21388#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21389
21390#ifdef OBJ_ELF
404ff6b5 21391
c19d1205
ZW
21392const char *
21393elf32_arm_target_format (void)
404ff6b5 21394{
c19d1205
ZW
21395#ifdef TE_SYMBIAN
21396 return (target_big_endian
21397 ? "elf32-bigarm-symbian"
21398 : "elf32-littlearm-symbian");
21399#elif defined (TE_VXWORKS)
21400 return (target_big_endian
21401 ? "elf32-bigarm-vxworks"
21402 : "elf32-littlearm-vxworks");
21403#else
21404 if (target_big_endian)
21405 return "elf32-bigarm";
21406 else
21407 return "elf32-littlearm";
21408#endif
404ff6b5
AH
21409}
21410
c19d1205
ZW
21411void
21412armelf_frob_symbol (symbolS * symp,
21413 int * puntp)
404ff6b5 21414{
c19d1205
ZW
21415 elf_frob_symbol (symp, puntp);
21416}
21417#endif
404ff6b5 21418
c19d1205 21419/* MD interface: Finalization. */
a737bd4d 21420
c19d1205
ZW
21421void
21422arm_cleanup (void)
21423{
21424 literal_pool * pool;
a737bd4d 21425
e07e6e58
NC
21426 /* Ensure that all the IT blocks are properly closed. */
21427 check_it_blocks_finished ();
21428
c19d1205
ZW
21429 for (pool = list_of_pools; pool; pool = pool->next)
21430 {
5f4273c7 21431 /* Put it at the end of the relevant section. */
c19d1205
ZW
21432 subseg_set (pool->section, pool->sub_section);
21433#ifdef OBJ_ELF
21434 arm_elf_change_section ();
21435#endif
21436 s_ltorg (0);
21437 }
404ff6b5
AH
21438}
21439
cd000bff
DJ
21440#ifdef OBJ_ELF
21441/* Remove any excess mapping symbols generated for alignment frags in
21442 SEC. We may have created a mapping symbol before a zero byte
21443 alignment; remove it if there's a mapping symbol after the
21444 alignment. */
21445static void
21446check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21447 void *dummy ATTRIBUTE_UNUSED)
21448{
21449 segment_info_type *seginfo = seg_info (sec);
21450 fragS *fragp;
21451
21452 if (seginfo == NULL || seginfo->frchainP == NULL)
21453 return;
21454
21455 for (fragp = seginfo->frchainP->frch_root;
21456 fragp != NULL;
21457 fragp = fragp->fr_next)
21458 {
21459 symbolS *sym = fragp->tc_frag_data.last_map;
21460 fragS *next = fragp->fr_next;
21461
21462 /* Variable-sized frags have been converted to fixed size by
21463 this point. But if this was variable-sized to start with,
21464 there will be a fixed-size frag after it. So don't handle
21465 next == NULL. */
21466 if (sym == NULL || next == NULL)
21467 continue;
21468
21469 if (S_GET_VALUE (sym) < next->fr_address)
21470 /* Not at the end of this frag. */
21471 continue;
21472 know (S_GET_VALUE (sym) == next->fr_address);
21473
21474 do
21475 {
21476 if (next->tc_frag_data.first_map != NULL)
21477 {
21478 /* Next frag starts with a mapping symbol. Discard this
21479 one. */
21480 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21481 break;
21482 }
21483
21484 if (next->fr_next == NULL)
21485 {
21486 /* This mapping symbol is at the end of the section. Discard
21487 it. */
21488 know (next->fr_fix == 0 && next->fr_var == 0);
21489 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21490 break;
21491 }
21492
21493 /* As long as we have empty frags without any mapping symbols,
21494 keep looking. */
21495 /* If the next frag is non-empty and does not start with a
21496 mapping symbol, then this mapping symbol is required. */
21497 if (next->fr_address != next->fr_next->fr_address)
21498 break;
21499
21500 next = next->fr_next;
21501 }
21502 while (next != NULL);
21503 }
21504}
21505#endif
21506
c19d1205
ZW
21507/* Adjust the symbol table. This marks Thumb symbols as distinct from
21508 ARM ones. */
404ff6b5 21509
c19d1205
ZW
21510void
21511arm_adjust_symtab (void)
404ff6b5 21512{
c19d1205
ZW
21513#ifdef OBJ_COFF
21514 symbolS * sym;
404ff6b5 21515
c19d1205
ZW
21516 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21517 {
21518 if (ARM_IS_THUMB (sym))
21519 {
21520 if (THUMB_IS_FUNC (sym))
21521 {
21522 /* Mark the symbol as a Thumb function. */
21523 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21524 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21525 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 21526
c19d1205
ZW
21527 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21528 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21529 else
21530 as_bad (_("%s: unexpected function type: %d"),
21531 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21532 }
21533 else switch (S_GET_STORAGE_CLASS (sym))
21534 {
21535 case C_EXT:
21536 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21537 break;
21538 case C_STAT:
21539 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21540 break;
21541 case C_LABEL:
21542 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21543 break;
21544 default:
21545 /* Do nothing. */
21546 break;
21547 }
21548 }
a737bd4d 21549
c19d1205
ZW
21550 if (ARM_IS_INTERWORK (sym))
21551 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 21552 }
c19d1205
ZW
21553#endif
21554#ifdef OBJ_ELF
21555 symbolS * sym;
21556 char bind;
404ff6b5 21557
c19d1205 21558 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 21559 {
c19d1205
ZW
21560 if (ARM_IS_THUMB (sym))
21561 {
21562 elf_symbol_type * elf_sym;
404ff6b5 21563
c19d1205
ZW
21564 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21565 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 21566
b0796911
PB
21567 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21568 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
21569 {
21570 /* If it's a .thumb_func, declare it as so,
21571 otherwise tag label as .code 16. */
21572 if (THUMB_IS_FUNC (sym))
21573 elf_sym->internal_elf_sym.st_info =
21574 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 21575 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
21576 elf_sym->internal_elf_sym.st_info =
21577 ELF_ST_INFO (bind, STT_ARM_16BIT);
21578 }
21579 }
21580 }
cd000bff
DJ
21581
21582 /* Remove any overlapping mapping symbols generated by alignment frags. */
21583 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
c19d1205 21584#endif
404ff6b5
AH
21585}
21586
c19d1205 21587/* MD interface: Initialization. */
404ff6b5 21588
a737bd4d 21589static void
c19d1205 21590set_constant_flonums (void)
a737bd4d 21591{
c19d1205 21592 int i;
404ff6b5 21593
c19d1205
ZW
21594 for (i = 0; i < NUM_FLOAT_VALS; i++)
21595 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21596 abort ();
a737bd4d 21597}
404ff6b5 21598
3e9e4fcf
JB
21599/* Auto-select Thumb mode if it's the only available instruction set for the
21600 given architecture. */
21601
21602static void
21603autoselect_thumb_from_cpu_variant (void)
21604{
21605 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21606 opcode_select (16);
21607}
21608
c19d1205
ZW
21609void
21610md_begin (void)
a737bd4d 21611{
c19d1205
ZW
21612 unsigned mach;
21613 unsigned int i;
404ff6b5 21614
c19d1205
ZW
21615 if ( (arm_ops_hsh = hash_new ()) == NULL
21616 || (arm_cond_hsh = hash_new ()) == NULL
21617 || (arm_shift_hsh = hash_new ()) == NULL
21618 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 21619 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 21620 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
21621 || (arm_reloc_hsh = hash_new ()) == NULL
21622 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
21623 as_fatal (_("virtual memory exhausted"));
21624
21625 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 21626 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 21627 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 21628 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 21629 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 21630 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 21631 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 21632 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 21633 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
21634 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21635 (void *) (v7m_psrs + i));
c19d1205 21636 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 21637 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
21638 for (i = 0;
21639 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21640 i++)
d3ce72d0 21641 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 21642 (void *) (barrier_opt_names + i));
c19d1205
ZW
21643#ifdef OBJ_ELF
21644 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 21645 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
21646#endif
21647
21648 set_constant_flonums ();
404ff6b5 21649
c19d1205
ZW
21650 /* Set the cpu variant based on the command-line options. We prefer
21651 -mcpu= over -march= if both are set (as for GCC); and we prefer
21652 -mfpu= over any other way of setting the floating point unit.
21653 Use of legacy options with new options are faulted. */
e74cfd16 21654 if (legacy_cpu)
404ff6b5 21655 {
e74cfd16 21656 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
21657 as_bad (_("use of old and new-style options to set CPU type"));
21658
21659 mcpu_cpu_opt = legacy_cpu;
404ff6b5 21660 }
e74cfd16 21661 else if (!mcpu_cpu_opt)
c19d1205 21662 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 21663
e74cfd16 21664 if (legacy_fpu)
c19d1205 21665 {
e74cfd16 21666 if (mfpu_opt)
c19d1205 21667 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
21668
21669 mfpu_opt = legacy_fpu;
21670 }
e74cfd16 21671 else if (!mfpu_opt)
03b1477f 21672 {
45eb4c1b
NS
21673#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21674 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
21675 /* Some environments specify a default FPU. If they don't, infer it
21676 from the processor. */
e74cfd16 21677 if (mcpu_fpu_opt)
03b1477f
RE
21678 mfpu_opt = mcpu_fpu_opt;
21679 else
21680 mfpu_opt = march_fpu_opt;
39c2da32 21681#else
e74cfd16 21682 mfpu_opt = &fpu_default;
39c2da32 21683#endif
03b1477f
RE
21684 }
21685
e74cfd16 21686 if (!mfpu_opt)
03b1477f 21687 {
493cb6ef 21688 if (mcpu_cpu_opt != NULL)
e74cfd16 21689 mfpu_opt = &fpu_default;
493cb6ef 21690 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 21691 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 21692 else
e74cfd16 21693 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
21694 }
21695
ee065d83 21696#ifdef CPU_DEFAULT
e74cfd16 21697 if (!mcpu_cpu_opt)
ee065d83 21698 {
e74cfd16
PB
21699 mcpu_cpu_opt = &cpu_default;
21700 selected_cpu = cpu_default;
ee065d83 21701 }
e74cfd16
PB
21702#else
21703 if (mcpu_cpu_opt)
21704 selected_cpu = *mcpu_cpu_opt;
ee065d83 21705 else
e74cfd16 21706 mcpu_cpu_opt = &arm_arch_any;
ee065d83 21707#endif
03b1477f 21708
e74cfd16 21709 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 21710
3e9e4fcf
JB
21711 autoselect_thumb_from_cpu_variant ();
21712
e74cfd16 21713 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 21714
f17c130b 21715#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 21716 {
7cc69913
NC
21717 unsigned int flags = 0;
21718
21719#if defined OBJ_ELF
21720 flags = meabi_flags;
d507cf36
PB
21721
21722 switch (meabi_flags)
33a392fb 21723 {
d507cf36 21724 case EF_ARM_EABI_UNKNOWN:
7cc69913 21725#endif
d507cf36
PB
21726 /* Set the flags in the private structure. */
21727 if (uses_apcs_26) flags |= F_APCS26;
21728 if (support_interwork) flags |= F_INTERWORK;
21729 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 21730 if (pic_code) flags |= F_PIC;
e74cfd16 21731 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
21732 flags |= F_SOFT_FLOAT;
21733
d507cf36
PB
21734 switch (mfloat_abi_opt)
21735 {
21736 case ARM_FLOAT_ABI_SOFT:
21737 case ARM_FLOAT_ABI_SOFTFP:
21738 flags |= F_SOFT_FLOAT;
21739 break;
33a392fb 21740
d507cf36
PB
21741 case ARM_FLOAT_ABI_HARD:
21742 if (flags & F_SOFT_FLOAT)
21743 as_bad (_("hard-float conflicts with specified fpu"));
21744 break;
21745 }
03b1477f 21746
e74cfd16
PB
21747 /* Using pure-endian doubles (even if soft-float). */
21748 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 21749 flags |= F_VFP_FLOAT;
f17c130b 21750
fde78edd 21751#if defined OBJ_ELF
e74cfd16 21752 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 21753 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
21754 break;
21755
8cb51566 21756 case EF_ARM_EABI_VER4:
3a4a14e9 21757 case EF_ARM_EABI_VER5:
c19d1205 21758 /* No additional flags to set. */
d507cf36
PB
21759 break;
21760
21761 default:
21762 abort ();
21763 }
7cc69913 21764#endif
b99bd4ef
NC
21765 bfd_set_private_flags (stdoutput, flags);
21766
21767 /* We have run out flags in the COFF header to encode the
21768 status of ATPCS support, so instead we create a dummy,
c19d1205 21769 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
21770 if (atpcs)
21771 {
21772 asection * sec;
21773
21774 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21775
21776 if (sec != NULL)
21777 {
21778 bfd_set_section_flags
21779 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21780 bfd_set_section_size (stdoutput, sec, 0);
21781 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21782 }
21783 }
7cc69913 21784 }
f17c130b 21785#endif
b99bd4ef
NC
21786
21787 /* Record the CPU type as well. */
2d447fca
JM
21788 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21789 mach = bfd_mach_arm_iWMMXt2;
21790 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 21791 mach = bfd_mach_arm_iWMMXt;
e74cfd16 21792 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 21793 mach = bfd_mach_arm_XScale;
e74cfd16 21794 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 21795 mach = bfd_mach_arm_ep9312;
e74cfd16 21796 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 21797 mach = bfd_mach_arm_5TE;
e74cfd16 21798 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 21799 {
e74cfd16 21800 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
21801 mach = bfd_mach_arm_5T;
21802 else
21803 mach = bfd_mach_arm_5;
21804 }
e74cfd16 21805 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 21806 {
e74cfd16 21807 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
21808 mach = bfd_mach_arm_4T;
21809 else
21810 mach = bfd_mach_arm_4;
21811 }
e74cfd16 21812 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 21813 mach = bfd_mach_arm_3M;
e74cfd16
PB
21814 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21815 mach = bfd_mach_arm_3;
21816 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21817 mach = bfd_mach_arm_2a;
21818 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21819 mach = bfd_mach_arm_2;
21820 else
21821 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
21822
21823 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21824}
21825
c19d1205 21826/* Command line processing. */
b99bd4ef 21827
c19d1205
ZW
21828/* md_parse_option
21829 Invocation line includes a switch not recognized by the base assembler.
21830 See if it's a processor-specific option.
b99bd4ef 21831
c19d1205
ZW
21832 This routine is somewhat complicated by the need for backwards
21833 compatibility (since older releases of gcc can't be changed).
21834 The new options try to make the interface as compatible as
21835 possible with GCC.
b99bd4ef 21836
c19d1205 21837 New options (supported) are:
b99bd4ef 21838
c19d1205
ZW
21839 -mcpu=<cpu name> Assemble for selected processor
21840 -march=<architecture name> Assemble for selected architecture
21841 -mfpu=<fpu architecture> Assemble for selected FPU.
21842 -EB/-mbig-endian Big-endian
21843 -EL/-mlittle-endian Little-endian
21844 -k Generate PIC code
21845 -mthumb Start in Thumb mode
21846 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 21847
278df34e 21848 -m[no-]warn-deprecated Warn about deprecated features
267bf995 21849
c19d1205 21850 For now we will also provide support for:
b99bd4ef 21851
c19d1205
ZW
21852 -mapcs-32 32-bit Program counter
21853 -mapcs-26 26-bit Program counter
21854 -macps-float Floats passed in FP registers
21855 -mapcs-reentrant Reentrant code
21856 -matpcs
21857 (sometime these will probably be replaced with -mapcs=<list of options>
21858 and -matpcs=<list of options>)
b99bd4ef 21859
c19d1205
ZW
21860 The remaining options are only supported for back-wards compatibility.
21861 Cpu variants, the arm part is optional:
21862 -m[arm]1 Currently not supported.
21863 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21864 -m[arm]3 Arm 3 processor
21865 -m[arm]6[xx], Arm 6 processors
21866 -m[arm]7[xx][t][[d]m] Arm 7 processors
21867 -m[arm]8[10] Arm 8 processors
21868 -m[arm]9[20][tdmi] Arm 9 processors
21869 -mstrongarm[110[0]] StrongARM processors
21870 -mxscale XScale processors
21871 -m[arm]v[2345[t[e]]] Arm architectures
21872 -mall All (except the ARM1)
21873 FP variants:
21874 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21875 -mfpe-old (No float load/store multiples)
21876 -mvfpxd VFP Single precision
21877 -mvfp All VFP
21878 -mno-fpu Disable all floating point instructions
b99bd4ef 21879
c19d1205
ZW
21880 The following CPU names are recognized:
21881 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21882 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21883 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21884 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21885 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21886 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21887 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 21888
c19d1205 21889 */
b99bd4ef 21890
c19d1205 21891const char * md_shortopts = "m:k";
b99bd4ef 21892
c19d1205
ZW
21893#ifdef ARM_BI_ENDIAN
21894#define OPTION_EB (OPTION_MD_BASE + 0)
21895#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 21896#else
c19d1205
ZW
21897#if TARGET_BYTES_BIG_ENDIAN
21898#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 21899#else
c19d1205
ZW
21900#define OPTION_EL (OPTION_MD_BASE + 1)
21901#endif
b99bd4ef 21902#endif
845b51d6 21903#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 21904
c19d1205 21905struct option md_longopts[] =
b99bd4ef 21906{
c19d1205
ZW
21907#ifdef OPTION_EB
21908 {"EB", no_argument, NULL, OPTION_EB},
21909#endif
21910#ifdef OPTION_EL
21911 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 21912#endif
845b51d6 21913 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
21914 {NULL, no_argument, NULL, 0}
21915};
b99bd4ef 21916
c19d1205 21917size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 21918
c19d1205 21919struct arm_option_table
b99bd4ef 21920{
c19d1205
ZW
21921 char *option; /* Option name to match. */
21922 char *help; /* Help information. */
21923 int *var; /* Variable to change. */
21924 int value; /* What to change it to. */
21925 char *deprecated; /* If non-null, print this message. */
21926};
b99bd4ef 21927
c19d1205
ZW
21928struct arm_option_table arm_opts[] =
21929{
21930 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
21931 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
21932 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
21933 &support_interwork, 1, NULL},
21934 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
21935 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
21936 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
21937 1, NULL},
21938 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
21939 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
21940 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
21941 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
21942 NULL},
b99bd4ef 21943
c19d1205
ZW
21944 /* These are recognized by the assembler, but have no affect on code. */
21945 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
21946 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
21947
21948 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
21949 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
21950 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
21951 {NULL, NULL, NULL, 0, NULL}
21952};
21953
21954struct arm_legacy_option_table
21955{
21956 char *option; /* Option name to match. */
21957 const arm_feature_set **var; /* Variable to change. */
21958 const arm_feature_set value; /* What to change it to. */
21959 char *deprecated; /* If non-null, print this message. */
21960};
b99bd4ef 21961
e74cfd16
PB
21962const struct arm_legacy_option_table arm_legacy_opts[] =
21963{
c19d1205
ZW
21964 /* DON'T add any new processors to this list -- we want the whole list
21965 to go away... Add them to the processors table instead. */
e74cfd16
PB
21966 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21967 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21968 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21969 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21970 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21971 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21972 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21973 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21974 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21975 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21976 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21977 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21978 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21979 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21980 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21981 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21982 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21983 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21984 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21985 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21986 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21987 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21988 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21989 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21990 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21991 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21992 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21993 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21994 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21995 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21996 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21997 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21998 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21999 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22000 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22001 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22002 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22003 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22004 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22005 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22006 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22007 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22008 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22009 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22010 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22011 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22012 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22013 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22014 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22015 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22016 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22017 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22018 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22019 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22020 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22021 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22022 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22023 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22024 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22025 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22026 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22027 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22028 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22029 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22030 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22031 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22032 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22033 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22034 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22035 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22036 N_("use -mcpu=strongarm110")},
e74cfd16 22037 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22038 N_("use -mcpu=strongarm1100")},
e74cfd16 22039 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22040 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
22041 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22042 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22043 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 22044
c19d1205 22045 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
22046 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22047 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22048 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22049 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22050 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22051 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22052 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22053 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22054 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22055 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22056 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22057 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22058 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22059 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22060 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22061 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22062 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22063 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 22064
c19d1205 22065 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
22066 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22067 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22068 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22069 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 22070 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 22071
e74cfd16 22072 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 22073};
7ed4c4c5 22074
c19d1205 22075struct arm_cpu_option_table
7ed4c4c5 22076{
c19d1205 22077 char *name;
e74cfd16 22078 const arm_feature_set value;
c19d1205
ZW
22079 /* For some CPUs we assume an FPU unless the user explicitly sets
22080 -mfpu=... */
e74cfd16 22081 const arm_feature_set default_fpu;
ee065d83
PB
22082 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22083 case. */
22084 const char *canonical_name;
c19d1205 22085};
7ed4c4c5 22086
c19d1205
ZW
22087/* This list should, at a minimum, contain all the cpu names
22088 recognized by GCC. */
e74cfd16 22089static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 22090{
ee065d83
PB
22091 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22092 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22093 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22094 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22095 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22096 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22097 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22098 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22099 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22100 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22101 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22102 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22103 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22104 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22105 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22106 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22107 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22108 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22109 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22110 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22111 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22112 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22113 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22114 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22115 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22116 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22117 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22118 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22119 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22120 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22121 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22122 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22123 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22124 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22125 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22126 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22127 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22128 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22129 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22130 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22131 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22132 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22133 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22134 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
22135 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22136 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
22137 /* For V5 or later processors we default to using VFP; but the user
22138 should really set the FPU type explicitly. */
ee065d83
PB
22139 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22140 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22141 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22142 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22143 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22144 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22145 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22146 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22147 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22148 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22149 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22150 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22151 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22152 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22153 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22154 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22155 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22156 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22157 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22158 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22159 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
7fac0536
NC
22160 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22161 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
22162 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22163 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22164 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22165 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22166 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
22167 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
22168 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22169 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22170 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22171 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
b38f9f31 22172 {"cortex-a5", ARM_ARCH_V7A, FPU_NONE, NULL},
e07e6e58 22173 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22174 | FPU_NEON_EXT_V1),
15290f0a 22175 NULL},
e07e6e58 22176 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22177 | FPU_NEON_EXT_V1),
5287ad62 22178 NULL},
62b3e311 22179 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
307c948d 22180 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
62b3e311 22181 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
7e806470 22182 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
5b19eaba 22183 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
c19d1205 22184 /* ??? XSCALE is really an architecture. */
ee065d83 22185 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22186 /* ??? iwmmxt is not a processor. */
ee065d83 22187 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 22188 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 22189 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22190 /* Maverick */
e07e6e58 22191 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 22192 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 22193};
7ed4c4c5 22194
c19d1205 22195struct arm_arch_option_table
7ed4c4c5 22196{
c19d1205 22197 char *name;
e74cfd16
PB
22198 const arm_feature_set value;
22199 const arm_feature_set default_fpu;
c19d1205 22200};
7ed4c4c5 22201
c19d1205
ZW
22202/* This list should, at a minimum, contain all the architecture names
22203 recognized by GCC. */
e74cfd16 22204static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
22205{
22206 {"all", ARM_ANY, FPU_ARCH_FPA},
22207 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22208 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22209 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22210 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22211 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22212 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22213 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22214 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22215 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22216 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22217 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22218 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22219 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22220 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22221 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22222 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22223 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22224 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22225 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22226 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22227 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22228 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22229 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22230 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22231 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 22232 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
62b3e311 22233 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
22234 /* The official spelling of the ARMv7 profile variants is the dashed form.
22235 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
22236 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22237 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22238 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
22239 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22240 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22241 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
9e3c6df6 22242 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
c19d1205
ZW
22243 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22244 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 22245 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 22246 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 22247};
7ed4c4c5 22248
c19d1205 22249/* ISA extensions in the co-processor space. */
e74cfd16 22250struct arm_option_cpu_value_table
c19d1205
ZW
22251{
22252 char *name;
e74cfd16 22253 const arm_feature_set value;
c19d1205 22254};
7ed4c4c5 22255
e74cfd16 22256static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 22257{
e74cfd16
PB
22258 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
22259 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
22260 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 22261 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 22262 {NULL, ARM_ARCH_NONE}
c19d1205 22263};
7ed4c4c5 22264
c19d1205
ZW
22265/* This list should, at a minimum, contain all the fpu names
22266 recognized by GCC. */
e74cfd16 22267static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
22268{
22269 {"softfpa", FPU_NONE},
22270 {"fpe", FPU_ARCH_FPE},
22271 {"fpe2", FPU_ARCH_FPE},
22272 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22273 {"fpa", FPU_ARCH_FPA},
22274 {"fpa10", FPU_ARCH_FPA},
22275 {"fpa11", FPU_ARCH_FPA},
22276 {"arm7500fe", FPU_ARCH_FPA},
22277 {"softvfp", FPU_ARCH_VFP},
22278 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22279 {"vfp", FPU_ARCH_VFP_V2},
22280 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 22281 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
22282 {"vfp10", FPU_ARCH_VFP_V2},
22283 {"vfp10-r0", FPU_ARCH_VFP_V1},
22284 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
22285 {"vfpv2", FPU_ARCH_VFP_V2},
22286 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 22287 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 22288 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
22289 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22290 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22291 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
22292 {"arm1020t", FPU_ARCH_VFP_V1},
22293 {"arm1020e", FPU_ARCH_VFP_V2},
22294 {"arm1136jfs", FPU_ARCH_VFP_V2},
22295 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22296 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 22297 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 22298 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
22299 {"vfpv4", FPU_ARCH_VFP_V4},
22300 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 22301 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 22302 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
22303 {NULL, ARM_ARCH_NONE}
22304};
22305
22306struct arm_option_value_table
22307{
22308 char *name;
22309 long value;
c19d1205 22310};
7ed4c4c5 22311
e74cfd16 22312static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
22313{
22314 {"hard", ARM_FLOAT_ABI_HARD},
22315 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22316 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 22317 {NULL, 0}
c19d1205 22318};
7ed4c4c5 22319
c19d1205 22320#ifdef OBJ_ELF
3a4a14e9 22321/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 22322static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
22323{
22324 {"gnu", EF_ARM_EABI_UNKNOWN},
22325 {"4", EF_ARM_EABI_VER4},
3a4a14e9 22326 {"5", EF_ARM_EABI_VER5},
e74cfd16 22327 {NULL, 0}
c19d1205
ZW
22328};
22329#endif
7ed4c4c5 22330
c19d1205
ZW
22331struct arm_long_option_table
22332{
22333 char * option; /* Substring to match. */
22334 char * help; /* Help information. */
22335 int (* func) (char * subopt); /* Function to decode sub-option. */
22336 char * deprecated; /* If non-null, print this message. */
22337};
7ed4c4c5 22338
c921be7d 22339static bfd_boolean
e74cfd16 22340arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 22341{
21d799b5
NC
22342 arm_feature_set *ext_set = (arm_feature_set *)
22343 xmalloc (sizeof (arm_feature_set));
e74cfd16
PB
22344
22345 /* Copy the feature set, so that we can modify it. */
22346 *ext_set = **opt_p;
22347 *opt_p = ext_set;
22348
c19d1205 22349 while (str != NULL && *str != 0)
7ed4c4c5 22350 {
e74cfd16 22351 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
22352 char * ext;
22353 int optlen;
7ed4c4c5 22354
c19d1205
ZW
22355 if (*str != '+')
22356 {
22357 as_bad (_("invalid architectural extension"));
c921be7d 22358 return FALSE;
c19d1205 22359 }
7ed4c4c5 22360
c19d1205
ZW
22361 str++;
22362 ext = strchr (str, '+');
7ed4c4c5 22363
c19d1205
ZW
22364 if (ext != NULL)
22365 optlen = ext - str;
22366 else
22367 optlen = strlen (str);
7ed4c4c5 22368
c19d1205
ZW
22369 if (optlen == 0)
22370 {
22371 as_bad (_("missing architectural extension"));
c921be7d 22372 return FALSE;
c19d1205 22373 }
7ed4c4c5 22374
c19d1205
ZW
22375 for (opt = arm_extensions; opt->name != NULL; opt++)
22376 if (strncmp (opt->name, str, optlen) == 0)
22377 {
e74cfd16 22378 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
22379 break;
22380 }
7ed4c4c5 22381
c19d1205
ZW
22382 if (opt->name == NULL)
22383 {
5f4273c7 22384 as_bad (_("unknown architectural extension `%s'"), str);
c921be7d 22385 return FALSE;
c19d1205 22386 }
7ed4c4c5 22387
c19d1205
ZW
22388 str = ext;
22389 };
7ed4c4c5 22390
c921be7d 22391 return TRUE;
c19d1205 22392}
7ed4c4c5 22393
c921be7d 22394static bfd_boolean
c19d1205 22395arm_parse_cpu (char * str)
7ed4c4c5 22396{
e74cfd16 22397 const struct arm_cpu_option_table * opt;
c19d1205
ZW
22398 char * ext = strchr (str, '+');
22399 int optlen;
7ed4c4c5 22400
c19d1205
ZW
22401 if (ext != NULL)
22402 optlen = ext - str;
7ed4c4c5 22403 else
c19d1205 22404 optlen = strlen (str);
7ed4c4c5 22405
c19d1205 22406 if (optlen == 0)
7ed4c4c5 22407 {
c19d1205 22408 as_bad (_("missing cpu name `%s'"), str);
c921be7d 22409 return FALSE;
7ed4c4c5
NC
22410 }
22411
c19d1205
ZW
22412 for (opt = arm_cpus; opt->name != NULL; opt++)
22413 if (strncmp (opt->name, str, optlen) == 0)
22414 {
e74cfd16
PB
22415 mcpu_cpu_opt = &opt->value;
22416 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 22417 if (opt->canonical_name)
5f4273c7 22418 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
22419 else
22420 {
22421 int i;
c921be7d 22422
ee065d83
PB
22423 for (i = 0; i < optlen; i++)
22424 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22425 selected_cpu_name[i] = 0;
22426 }
7ed4c4c5 22427
c19d1205
ZW
22428 if (ext != NULL)
22429 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 22430
c921be7d 22431 return TRUE;
c19d1205 22432 }
7ed4c4c5 22433
c19d1205 22434 as_bad (_("unknown cpu `%s'"), str);
c921be7d 22435 return FALSE;
7ed4c4c5
NC
22436}
22437
c921be7d 22438static bfd_boolean
c19d1205 22439arm_parse_arch (char * str)
7ed4c4c5 22440{
e74cfd16 22441 const struct arm_arch_option_table *opt;
c19d1205
ZW
22442 char *ext = strchr (str, '+');
22443 int optlen;
7ed4c4c5 22444
c19d1205
ZW
22445 if (ext != NULL)
22446 optlen = ext - str;
7ed4c4c5 22447 else
c19d1205 22448 optlen = strlen (str);
7ed4c4c5 22449
c19d1205 22450 if (optlen == 0)
7ed4c4c5 22451 {
c19d1205 22452 as_bad (_("missing architecture name `%s'"), str);
c921be7d 22453 return FALSE;
7ed4c4c5
NC
22454 }
22455
c19d1205
ZW
22456 for (opt = arm_archs; opt->name != NULL; opt++)
22457 if (streq (opt->name, str))
22458 {
e74cfd16
PB
22459 march_cpu_opt = &opt->value;
22460 march_fpu_opt = &opt->default_fpu;
5f4273c7 22461 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 22462
c19d1205
ZW
22463 if (ext != NULL)
22464 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 22465
c921be7d 22466 return TRUE;
c19d1205
ZW
22467 }
22468
22469 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 22470 return FALSE;
7ed4c4c5 22471}
eb043451 22472
c921be7d 22473static bfd_boolean
c19d1205
ZW
22474arm_parse_fpu (char * str)
22475{
e74cfd16 22476 const struct arm_option_cpu_value_table * opt;
b99bd4ef 22477
c19d1205
ZW
22478 for (opt = arm_fpus; opt->name != NULL; opt++)
22479 if (streq (opt->name, str))
22480 {
e74cfd16 22481 mfpu_opt = &opt->value;
c921be7d 22482 return TRUE;
c19d1205 22483 }
b99bd4ef 22484
c19d1205 22485 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 22486 return FALSE;
c19d1205
ZW
22487}
22488
c921be7d 22489static bfd_boolean
c19d1205 22490arm_parse_float_abi (char * str)
b99bd4ef 22491{
e74cfd16 22492 const struct arm_option_value_table * opt;
b99bd4ef 22493
c19d1205
ZW
22494 for (opt = arm_float_abis; opt->name != NULL; opt++)
22495 if (streq (opt->name, str))
22496 {
22497 mfloat_abi_opt = opt->value;
c921be7d 22498 return TRUE;
c19d1205 22499 }
cc8a6dd0 22500
c19d1205 22501 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 22502 return FALSE;
c19d1205 22503}
b99bd4ef 22504
c19d1205 22505#ifdef OBJ_ELF
c921be7d 22506static bfd_boolean
c19d1205
ZW
22507arm_parse_eabi (char * str)
22508{
e74cfd16 22509 const struct arm_option_value_table *opt;
cc8a6dd0 22510
c19d1205
ZW
22511 for (opt = arm_eabis; opt->name != NULL; opt++)
22512 if (streq (opt->name, str))
22513 {
22514 meabi_flags = opt->value;
c921be7d 22515 return TRUE;
c19d1205
ZW
22516 }
22517 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 22518 return FALSE;
c19d1205
ZW
22519}
22520#endif
cc8a6dd0 22521
c921be7d 22522static bfd_boolean
e07e6e58
NC
22523arm_parse_it_mode (char * str)
22524{
c921be7d 22525 bfd_boolean ret = TRUE;
e07e6e58
NC
22526
22527 if (streq ("arm", str))
22528 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22529 else if (streq ("thumb", str))
22530 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22531 else if (streq ("always", str))
22532 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22533 else if (streq ("never", str))
22534 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22535 else
22536 {
22537 as_bad (_("unknown implicit IT mode `%s', should be "\
22538 "arm, thumb, always, or never."), str);
c921be7d 22539 ret = FALSE;
e07e6e58
NC
22540 }
22541
22542 return ret;
22543}
22544
c19d1205
ZW
22545struct arm_long_option_table arm_long_opts[] =
22546{
22547 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22548 arm_parse_cpu, NULL},
22549 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22550 arm_parse_arch, NULL},
22551 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22552 arm_parse_fpu, NULL},
22553 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22554 arm_parse_float_abi, NULL},
22555#ifdef OBJ_ELF
7fac0536 22556 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
22557 arm_parse_eabi, NULL},
22558#endif
e07e6e58
NC
22559 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22560 arm_parse_it_mode, NULL},
c19d1205
ZW
22561 {NULL, NULL, 0, NULL}
22562};
cc8a6dd0 22563
c19d1205
ZW
22564int
22565md_parse_option (int c, char * arg)
22566{
22567 struct arm_option_table *opt;
e74cfd16 22568 const struct arm_legacy_option_table *fopt;
c19d1205 22569 struct arm_long_option_table *lopt;
b99bd4ef 22570
c19d1205 22571 switch (c)
b99bd4ef 22572 {
c19d1205
ZW
22573#ifdef OPTION_EB
22574 case OPTION_EB:
22575 target_big_endian = 1;
22576 break;
22577#endif
cc8a6dd0 22578
c19d1205
ZW
22579#ifdef OPTION_EL
22580 case OPTION_EL:
22581 target_big_endian = 0;
22582 break;
22583#endif
b99bd4ef 22584
845b51d6
PB
22585 case OPTION_FIX_V4BX:
22586 fix_v4bx = TRUE;
22587 break;
22588
c19d1205
ZW
22589 case 'a':
22590 /* Listing option. Just ignore these, we don't support additional
22591 ones. */
22592 return 0;
b99bd4ef 22593
c19d1205
ZW
22594 default:
22595 for (opt = arm_opts; opt->option != NULL; opt++)
22596 {
22597 if (c == opt->option[0]
22598 && ((arg == NULL && opt->option[1] == 0)
22599 || streq (arg, opt->option + 1)))
22600 {
c19d1205 22601 /* If the option is deprecated, tell the user. */
278df34e 22602 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
22603 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22604 arg ? arg : "", _(opt->deprecated));
b99bd4ef 22605
c19d1205
ZW
22606 if (opt->var != NULL)
22607 *opt->var = opt->value;
cc8a6dd0 22608
c19d1205
ZW
22609 return 1;
22610 }
22611 }
b99bd4ef 22612
e74cfd16
PB
22613 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22614 {
22615 if (c == fopt->option[0]
22616 && ((arg == NULL && fopt->option[1] == 0)
22617 || streq (arg, fopt->option + 1)))
22618 {
e74cfd16 22619 /* If the option is deprecated, tell the user. */
278df34e 22620 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
22621 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22622 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
22623
22624 if (fopt->var != NULL)
22625 *fopt->var = &fopt->value;
22626
22627 return 1;
22628 }
22629 }
22630
c19d1205
ZW
22631 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22632 {
22633 /* These options are expected to have an argument. */
22634 if (c == lopt->option[0]
22635 && arg != NULL
22636 && strncmp (arg, lopt->option + 1,
22637 strlen (lopt->option + 1)) == 0)
22638 {
c19d1205 22639 /* If the option is deprecated, tell the user. */
278df34e 22640 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
22641 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22642 _(lopt->deprecated));
b99bd4ef 22643
c19d1205
ZW
22644 /* Call the sup-option parser. */
22645 return lopt->func (arg + strlen (lopt->option) - 1);
22646 }
22647 }
a737bd4d 22648
c19d1205
ZW
22649 return 0;
22650 }
a394c00f 22651
c19d1205
ZW
22652 return 1;
22653}
a394c00f 22654
c19d1205
ZW
22655void
22656md_show_usage (FILE * fp)
a394c00f 22657{
c19d1205
ZW
22658 struct arm_option_table *opt;
22659 struct arm_long_option_table *lopt;
a394c00f 22660
c19d1205 22661 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 22662
c19d1205
ZW
22663 for (opt = arm_opts; opt->option != NULL; opt++)
22664 if (opt->help != NULL)
22665 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 22666
c19d1205
ZW
22667 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22668 if (lopt->help != NULL)
22669 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 22670
c19d1205
ZW
22671#ifdef OPTION_EB
22672 fprintf (fp, _("\
22673 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
22674#endif
22675
c19d1205
ZW
22676#ifdef OPTION_EL
22677 fprintf (fp, _("\
22678 -EL assemble code for a little-endian cpu\n"));
a737bd4d 22679#endif
845b51d6
PB
22680
22681 fprintf (fp, _("\
22682 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 22683}
ee065d83
PB
22684
22685
22686#ifdef OBJ_ELF
62b3e311
PB
22687typedef struct
22688{
22689 int val;
22690 arm_feature_set flags;
22691} cpu_arch_ver_table;
22692
22693/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22694 least features first. */
22695static const cpu_arch_ver_table cpu_arch_ver[] =
22696{
22697 {1, ARM_ARCH_V4},
22698 {2, ARM_ARCH_V4T},
22699 {3, ARM_ARCH_V5},
ee3c0378 22700 {3, ARM_ARCH_V5T},
62b3e311
PB
22701 {4, ARM_ARCH_V5TE},
22702 {5, ARM_ARCH_V5TEJ},
22703 {6, ARM_ARCH_V6},
22704 {7, ARM_ARCH_V6Z},
7e806470 22705 {9, ARM_ARCH_V6K},
91e22acd 22706 {11, ARM_ARCH_V6M},
7e806470 22707 {8, ARM_ARCH_V6T2},
62b3e311
PB
22708 {10, ARM_ARCH_V7A},
22709 {10, ARM_ARCH_V7R},
22710 {10, ARM_ARCH_V7M},
22711 {0, ARM_ARCH_NONE}
22712};
22713
ee3c0378
AS
22714/* Set an attribute if it has not already been set by the user. */
22715static void
22716aeabi_set_attribute_int (int tag, int value)
22717{
22718 if (tag < 1
22719 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22720 || !attributes_set_explicitly[tag])
22721 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22722}
22723
22724static void
22725aeabi_set_attribute_string (int tag, const char *value)
22726{
22727 if (tag < 1
22728 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22729 || !attributes_set_explicitly[tag])
22730 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22731}
22732
ee065d83
PB
22733/* Set the public EABI object attributes. */
22734static void
22735aeabi_set_public_attributes (void)
22736{
22737 int arch;
e74cfd16 22738 arm_feature_set flags;
62b3e311
PB
22739 arm_feature_set tmp;
22740 const cpu_arch_ver_table *p;
ee065d83
PB
22741
22742 /* Choose the architecture based on the capabilities of the requested cpu
22743 (if any) and/or the instructions actually used. */
e74cfd16
PB
22744 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22745 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22746 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
22747 /*Allow the user to override the reported architecture. */
22748 if (object_arch)
22749 {
22750 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22751 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22752 }
22753
62b3e311
PB
22754 tmp = flags;
22755 arch = 0;
22756 for (p = cpu_arch_ver; p->val; p++)
22757 {
22758 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22759 {
22760 arch = p->val;
22761 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22762 }
22763 }
ee065d83 22764
9e3c6df6
PB
22765 /* The table lookup above finds the last architecture to contribute
22766 a new feature. Unfortunately, Tag13 is a subset of the union of
22767 v6T2 and v7-M, so it is never seen as contributing a new feature.
22768 We can not search for the last entry which is entirely used,
22769 because if no CPU is specified we build up only those flags
22770 actually used. Perhaps we should separate out the specified
22771 and implicit cases. Avoid taking this path for -march=all by
22772 checking for contradictory v7-A / v7-M features. */
22773 if (arch == 10
22774 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
22775 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
22776 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
22777 arch = 13;
22778
ee065d83
PB
22779 /* Tag_CPU_name. */
22780 if (selected_cpu_name[0])
22781 {
91d6fa6a 22782 char *q;
ee065d83 22783
91d6fa6a
NC
22784 q = selected_cpu_name;
22785 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
22786 {
22787 int i;
5f4273c7 22788
91d6fa6a
NC
22789 q += 4;
22790 for (i = 0; q[i]; i++)
22791 q[i] = TOUPPER (q[i]);
ee065d83 22792 }
91d6fa6a 22793 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 22794 }
62f3b8c8 22795
ee065d83 22796 /* Tag_CPU_arch. */
ee3c0378 22797 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 22798
62b3e311
PB
22799 /* Tag_CPU_arch_profile. */
22800 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 22801 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 22802 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 22803 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 22804 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 22805 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 22806
ee065d83 22807 /* Tag_ARM_ISA_use. */
ee3c0378
AS
22808 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22809 || arch == 0)
22810 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 22811
ee065d83 22812 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
22813 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22814 || arch == 0)
22815 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22816 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 22817
ee065d83 22818 /* Tag_VFP_arch. */
62f3b8c8
PB
22819 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
22820 aeabi_set_attribute_int (Tag_VFP_arch,
22821 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
22822 ? 5 : 6);
22823 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 22824 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 22825 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
22826 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22827 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22828 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22829 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22830 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22831 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 22832
ee065d83 22833 /* Tag_WMMX_arch. */
ee3c0378
AS
22834 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22835 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22836 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22837 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 22838
ee3c0378 22839 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 22840 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
22841 aeabi_set_attribute_int
22842 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
22843 ? 2 : 1));
22844
ee3c0378 22845 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 22846 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 22847 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
ee065d83
PB
22848}
22849
104d59d1 22850/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
22851void
22852arm_md_end (void)
22853{
ee065d83
PB
22854 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22855 return;
22856
22857 aeabi_set_public_attributes ();
ee065d83 22858}
8463be01 22859#endif /* OBJ_ELF */
ee065d83
PB
22860
22861
22862/* Parse a .cpu directive. */
22863
22864static void
22865s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22866{
e74cfd16 22867 const struct arm_cpu_option_table *opt;
ee065d83
PB
22868 char *name;
22869 char saved_char;
22870
22871 name = input_line_pointer;
5f4273c7 22872 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
22873 input_line_pointer++;
22874 saved_char = *input_line_pointer;
22875 *input_line_pointer = 0;
22876
22877 /* Skip the first "all" entry. */
22878 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
22879 if (streq (opt->name, name))
22880 {
e74cfd16
PB
22881 mcpu_cpu_opt = &opt->value;
22882 selected_cpu = opt->value;
ee065d83 22883 if (opt->canonical_name)
5f4273c7 22884 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
22885 else
22886 {
22887 int i;
22888 for (i = 0; opt->name[i]; i++)
22889 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22890 selected_cpu_name[i] = 0;
22891 }
e74cfd16 22892 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
22893 *input_line_pointer = saved_char;
22894 demand_empty_rest_of_line ();
22895 return;
22896 }
22897 as_bad (_("unknown cpu `%s'"), name);
22898 *input_line_pointer = saved_char;
22899 ignore_rest_of_line ();
22900}
22901
22902
22903/* Parse a .arch directive. */
22904
22905static void
22906s_arm_arch (int ignored ATTRIBUTE_UNUSED)
22907{
e74cfd16 22908 const struct arm_arch_option_table *opt;
ee065d83
PB
22909 char saved_char;
22910 char *name;
22911
22912 name = input_line_pointer;
5f4273c7 22913 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
22914 input_line_pointer++;
22915 saved_char = *input_line_pointer;
22916 *input_line_pointer = 0;
22917
22918 /* Skip the first "all" entry. */
22919 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22920 if (streq (opt->name, name))
22921 {
e74cfd16
PB
22922 mcpu_cpu_opt = &opt->value;
22923 selected_cpu = opt->value;
5f4273c7 22924 strcpy (selected_cpu_name, opt->name);
e74cfd16 22925 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
22926 *input_line_pointer = saved_char;
22927 demand_empty_rest_of_line ();
22928 return;
22929 }
22930
22931 as_bad (_("unknown architecture `%s'\n"), name);
22932 *input_line_pointer = saved_char;
22933 ignore_rest_of_line ();
22934}
22935
22936
7a1d4c38
PB
22937/* Parse a .object_arch directive. */
22938
22939static void
22940s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
22941{
22942 const struct arm_arch_option_table *opt;
22943 char saved_char;
22944 char *name;
22945
22946 name = input_line_pointer;
5f4273c7 22947 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
22948 input_line_pointer++;
22949 saved_char = *input_line_pointer;
22950 *input_line_pointer = 0;
22951
22952 /* Skip the first "all" entry. */
22953 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22954 if (streq (opt->name, name))
22955 {
22956 object_arch = &opt->value;
22957 *input_line_pointer = saved_char;
22958 demand_empty_rest_of_line ();
22959 return;
22960 }
22961
22962 as_bad (_("unknown architecture `%s'\n"), name);
22963 *input_line_pointer = saved_char;
22964 ignore_rest_of_line ();
22965}
22966
ee065d83
PB
22967/* Parse a .fpu directive. */
22968
22969static void
22970s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
22971{
e74cfd16 22972 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
22973 char saved_char;
22974 char *name;
22975
22976 name = input_line_pointer;
5f4273c7 22977 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
22978 input_line_pointer++;
22979 saved_char = *input_line_pointer;
22980 *input_line_pointer = 0;
5f4273c7 22981
ee065d83
PB
22982 for (opt = arm_fpus; opt->name != NULL; opt++)
22983 if (streq (opt->name, name))
22984 {
e74cfd16
PB
22985 mfpu_opt = &opt->value;
22986 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
22987 *input_line_pointer = saved_char;
22988 demand_empty_rest_of_line ();
22989 return;
22990 }
22991
22992 as_bad (_("unknown floating point format `%s'\n"), name);
22993 *input_line_pointer = saved_char;
22994 ignore_rest_of_line ();
22995}
ee065d83 22996
794ba86a 22997/* Copy symbol information. */
f31fef98 22998
794ba86a
DJ
22999void
23000arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23001{
23002 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23003}
e04befd0 23004
f31fef98 23005#ifdef OBJ_ELF
e04befd0
AS
23006/* Given a symbolic attribute NAME, return the proper integer value.
23007 Returns -1 if the attribute is not known. */
f31fef98 23008
e04befd0
AS
23009int
23010arm_convert_symbolic_attribute (const char *name)
23011{
f31fef98
NC
23012 static const struct
23013 {
23014 const char * name;
23015 const int tag;
23016 }
23017 attribute_table[] =
23018 {
23019 /* When you modify this table you should
23020 also modify the list in doc/c-arm.texi. */
e04befd0 23021#define T(tag) {#tag, tag}
f31fef98
NC
23022 T (Tag_CPU_raw_name),
23023 T (Tag_CPU_name),
23024 T (Tag_CPU_arch),
23025 T (Tag_CPU_arch_profile),
23026 T (Tag_ARM_ISA_use),
23027 T (Tag_THUMB_ISA_use),
23028 T (Tag_VFP_arch),
23029 T (Tag_WMMX_arch),
23030 T (Tag_Advanced_SIMD_arch),
23031 T (Tag_PCS_config),
23032 T (Tag_ABI_PCS_R9_use),
23033 T (Tag_ABI_PCS_RW_data),
23034 T (Tag_ABI_PCS_RO_data),
23035 T (Tag_ABI_PCS_GOT_use),
23036 T (Tag_ABI_PCS_wchar_t),
23037 T (Tag_ABI_FP_rounding),
23038 T (Tag_ABI_FP_denormal),
23039 T (Tag_ABI_FP_exceptions),
23040 T (Tag_ABI_FP_user_exceptions),
23041 T (Tag_ABI_FP_number_model),
23042 T (Tag_ABI_align8_needed),
23043 T (Tag_ABI_align8_preserved),
23044 T (Tag_ABI_enum_size),
23045 T (Tag_ABI_HardFP_use),
23046 T (Tag_ABI_VFP_args),
23047 T (Tag_ABI_WMMX_args),
23048 T (Tag_ABI_optimization_goals),
23049 T (Tag_ABI_FP_optimization_goals),
23050 T (Tag_compatibility),
23051 T (Tag_CPU_unaligned_access),
23052 T (Tag_VFP_HP_extension),
23053 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
23054 T (Tag_MPextension_use),
23055 T (Tag_DIV_use),
f31fef98
NC
23056 T (Tag_nodefaults),
23057 T (Tag_also_compatible_with),
23058 T (Tag_conformance),
23059 T (Tag_T2EE_use),
23060 T (Tag_Virtualization_use),
cd21e546 23061 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 23062#undef T
f31fef98 23063 };
e04befd0
AS
23064 unsigned int i;
23065
23066 if (name == NULL)
23067 return -1;
23068
f31fef98 23069 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 23070 if (streq (name, attribute_table[i].name))
e04befd0
AS
23071 return attribute_table[i].tag;
23072
23073 return -1;
23074}
267bf995
RR
23075
23076
23077/* Apply sym value for relocations only in the case that
23078 they are for local symbols and you have the respective
23079 architectural feature for blx and simple switches. */
23080int
23081arm_apply_sym_value (struct fix * fixP)
23082{
23083 if (fixP->fx_addsy
23084 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23085 && !S_IS_EXTERNAL (fixP->fx_addsy))
23086 {
23087 switch (fixP->fx_r_type)
23088 {
23089 case BFD_RELOC_ARM_PCREL_BLX:
23090 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23091 if (ARM_IS_FUNC (fixP->fx_addsy))
23092 return 1;
23093 break;
23094
23095 case BFD_RELOC_ARM_PCREL_CALL:
23096 case BFD_RELOC_THUMB_PCREL_BLX:
23097 if (THUMB_IS_FUNC (fixP->fx_addsy))
23098 return 1;
23099 break;
23100
23101 default:
23102 break;
23103 }
23104
23105 }
23106 return 0;
23107}
f31fef98 23108#endif /* OBJ_ELF */