]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
32d0add0 3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
45741a9c 31#include "infrun.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
df7e5265 49#include "x86-xstate.h"
d2a7c97a 50
7ad10968 51#include "record.h"
d02ed0bb 52#include "record-full.h"
90884b2b 53#include "features/i386/i386.c"
c131fcee 54#include "features/i386/i386-avx.c"
1dbcd68c 55#include "features/i386/i386-mpx.c"
01f9f808 56#include "features/i386/i386-avx512.c"
3a13a53b 57#include "features/i386/i386-mmx.c"
90884b2b 58
6710bf39
SS
59#include "ax.h"
60#include "ax-gdb.h"
61
55aa24fb
SDJ
62#include "stap-probe.h"
63#include "user-regs.h"
64#include "cli/cli-utils.h"
65#include "expression.h"
66#include "parser-defs.h"
67#include <ctype.h>
68
c4fc7f1b 69/* Register names. */
c40e1eab 70
90884b2b 71static const char *i386_register_names[] =
fc633446
MK
72{
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
83 "mxcsr"
84};
85
01f9f808
MS
86static const char *i386_zmm_names[] =
87{
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
90};
91
92static const char *i386_zmmh_names[] =
93{
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
96};
97
98static const char *i386_k_names[] =
99{
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
102};
103
c131fcee
L
104static const char *i386_ymm_names[] =
105{
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
108};
109
110static const char *i386_ymmh_names[] =
111{
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
114};
115
1dbcd68c
WT
116static const char *i386_mpx_names[] =
117{
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119};
120
121/* Register names for MPX pseudo-registers. */
122
123static const char *i386_bnd_names[] =
124{
125 "bnd0", "bnd1", "bnd2", "bnd3"
126};
127
c4fc7f1b 128/* Register names for MMX pseudo-registers. */
28fc6740 129
90884b2b 130static const char *i386_mmx_names[] =
28fc6740
AC
131{
132 "mm0", "mm1", "mm2", "mm3",
133 "mm4", "mm5", "mm6", "mm7"
134};
c40e1eab 135
1ba53b71
L
136/* Register names for byte pseudo-registers. */
137
138static const char *i386_byte_names[] =
139{
140 "al", "cl", "dl", "bl",
141 "ah", "ch", "dh", "bh"
142};
143
144/* Register names for word pseudo-registers. */
145
146static const char *i386_word_names[] =
147{
148 "ax", "cx", "dx", "bx",
9cad29ac 149 "", "bp", "si", "di"
1ba53b71
L
150};
151
01f9f808
MS
152/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
153 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
154 we have 16 upper ZMM regs that have to be handled differently. */
155
156const int num_lower_zmm_regs = 16;
157
1ba53b71 158/* MMX register? */
c40e1eab 159
28fc6740 160static int
5716833c 161i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 162{
1ba53b71
L
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
165
166 if (mm0_regnum < 0)
167 return 0;
168
1ba53b71
L
169 regnum -= mm0_regnum;
170 return regnum >= 0 && regnum < tdep->num_mmx_regs;
171}
172
173/* Byte register? */
174
175int
176i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
177{
178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
179
180 regnum -= tdep->al_regnum;
181 return regnum >= 0 && regnum < tdep->num_byte_regs;
182}
183
184/* Word register? */
185
186int
187i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
188{
189 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
190
191 regnum -= tdep->ax_regnum;
192 return regnum >= 0 && regnum < tdep->num_word_regs;
193}
194
195/* Dword register? */
196
197int
198i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
199{
200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
201 int eax_regnum = tdep->eax_regnum;
202
203 if (eax_regnum < 0)
204 return 0;
205
206 regnum -= eax_regnum;
207 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
208}
209
01f9f808
MS
210/* AVX512 register? */
211
212int
213i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
214{
215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
216 int zmm0h_regnum = tdep->zmm0h_regnum;
217
218 if (zmm0h_regnum < 0)
219 return 0;
220
221 regnum -= zmm0h_regnum;
222 return regnum >= 0 && regnum < tdep->num_zmm_regs;
223}
224
225int
226i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
227{
228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
229 int zmm0_regnum = tdep->zmm0_regnum;
230
231 if (zmm0_regnum < 0)
232 return 0;
233
234 regnum -= zmm0_regnum;
235 return regnum >= 0 && regnum < tdep->num_zmm_regs;
236}
237
238int
239i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
240{
241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
242 int k0_regnum = tdep->k0_regnum;
243
244 if (k0_regnum < 0)
245 return 0;
246
247 regnum -= k0_regnum;
248 return regnum >= 0 && regnum < I387_NUM_K_REGS;
249}
250
9191d390 251static int
c131fcee
L
252i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
253{
254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255 int ymm0h_regnum = tdep->ymm0h_regnum;
256
257 if (ymm0h_regnum < 0)
258 return 0;
259
260 regnum -= ymm0h_regnum;
261 return regnum >= 0 && regnum < tdep->num_ymm_regs;
262}
263
264/* AVX register? */
265
266int
267i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
268{
269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
270 int ymm0_regnum = tdep->ymm0_regnum;
271
272 if (ymm0_regnum < 0)
273 return 0;
274
275 regnum -= ymm0_regnum;
276 return regnum >= 0 && regnum < tdep->num_ymm_regs;
277}
278
01f9f808
MS
279static int
280i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
281{
282 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
283 int ymm16h_regnum = tdep->ymm16h_regnum;
284
285 if (ymm16h_regnum < 0)
286 return 0;
287
288 regnum -= ymm16h_regnum;
289 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
290}
291
292int
293i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
294{
295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
296 int ymm16_regnum = tdep->ymm16_regnum;
297
298 if (ymm16_regnum < 0)
299 return 0;
300
301 regnum -= ymm16_regnum;
302 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
303}
304
1dbcd68c
WT
305/* BND register? */
306
307int
308i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
309{
310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
311 int bnd0_regnum = tdep->bnd0_regnum;
312
313 if (bnd0_regnum < 0)
314 return 0;
315
316 regnum -= bnd0_regnum;
317 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
318}
319
5716833c 320/* SSE register? */
23a34459 321
c131fcee
L
322int
323i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 324{
5716833c 325 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 326 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 327
c131fcee 328 if (num_xmm_regs == 0)
5716833c
MK
329 return 0;
330
c131fcee
L
331 regnum -= I387_XMM0_REGNUM (tdep);
332 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
333}
334
01f9f808
MS
335/* XMM_512 register? */
336
337int
338i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
339{
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
342
343 if (num_xmm_avx512_regs == 0)
344 return 0;
345
346 regnum -= I387_XMM16_REGNUM (tdep);
347 return regnum >= 0 && regnum < num_xmm_avx512_regs;
348}
349
5716833c
MK
350static int
351i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 352{
5716833c
MK
353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
354
20a6ec49 355 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
356 return 0;
357
20a6ec49 358 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
359}
360
5716833c 361/* FP register? */
23a34459
AC
362
363int
20a6ec49 364i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 365{
20a6ec49
MD
366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
367
368 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
369 return 0;
370
20a6ec49
MD
371 return (I387_ST0_REGNUM (tdep) <= regnum
372 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
373}
374
375int
20a6ec49 376i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 377{
20a6ec49
MD
378 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
379
380 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
381 return 0;
382
20a6ec49
MD
383 return (I387_FCTRL_REGNUM (tdep) <= regnum
384 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
385}
386
1dbcd68c
WT
387/* BNDr (raw) register? */
388
389static int
390i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
391{
392 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
393
394 if (I387_BND0R_REGNUM (tdep) < 0)
395 return 0;
396
397 regnum -= tdep->bnd0r_regnum;
398 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
399}
400
401/* BND control register? */
402
403static int
404i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
405{
406 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
407
408 if (I387_BNDCFGU_REGNUM (tdep) < 0)
409 return 0;
410
411 regnum -= I387_BNDCFGU_REGNUM (tdep);
412 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
413}
414
c131fcee
L
415/* Return the name of register REGNUM, or the empty string if it is
416 an anonymous register. */
417
418static const char *
419i386_register_name (struct gdbarch *gdbarch, int regnum)
420{
421 /* Hide the upper YMM registers. */
422 if (i386_ymmh_regnum_p (gdbarch, regnum))
423 return "";
424
01f9f808
MS
425 /* Hide the upper YMM16-31 registers. */
426 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
427 return "";
428
429 /* Hide the upper ZMM registers. */
430 if (i386_zmmh_regnum_p (gdbarch, regnum))
431 return "";
432
c131fcee
L
433 return tdesc_register_name (gdbarch, regnum);
434}
435
30b0e2d8 436/* Return the name of register REGNUM. */
fc633446 437
1ba53b71 438const char *
90884b2b 439i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 440{
1ba53b71 441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
442 if (i386_bnd_regnum_p (gdbarch, regnum))
443 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
444 if (i386_mmx_regnum_p (gdbarch, regnum))
445 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
446 else if (i386_ymm_regnum_p (gdbarch, regnum))
447 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
448 else if (i386_zmm_regnum_p (gdbarch, regnum))
449 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
450 else if (i386_byte_regnum_p (gdbarch, regnum))
451 return i386_byte_names[regnum - tdep->al_regnum];
452 else if (i386_word_regnum_p (gdbarch, regnum))
453 return i386_word_names[regnum - tdep->ax_regnum];
454
455 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
456}
457
c4fc7f1b 458/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
459 number used by GDB. */
460
8201327c 461static int
d3f73121 462i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 463{
20a6ec49
MD
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465
c4fc7f1b
MK
466 /* This implements what GCC calls the "default" register map
467 (dbx_register_map[]). */
468
85540d8c
MK
469 if (reg >= 0 && reg <= 7)
470 {
9872ad24
JB
471 /* General-purpose registers. The debug info calls %ebp
472 register 4, and %esp register 5. */
473 if (reg == 4)
474 return 5;
475 else if (reg == 5)
476 return 4;
477 else return reg;
85540d8c
MK
478 }
479 else if (reg >= 12 && reg <= 19)
480 {
481 /* Floating-point registers. */
20a6ec49 482 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
483 }
484 else if (reg >= 21 && reg <= 28)
485 {
486 /* SSE registers. */
c131fcee
L
487 int ymm0_regnum = tdep->ymm0_regnum;
488
489 if (ymm0_regnum >= 0
490 && i386_xmm_regnum_p (gdbarch, reg))
491 return reg - 21 + ymm0_regnum;
492 else
493 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
494 }
495 else if (reg >= 29 && reg <= 36)
496 {
497 /* MMX registers. */
20a6ec49 498 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
499 }
500
501 /* This will hopefully provoke a warning. */
d3f73121 502 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
503}
504
c4fc7f1b
MK
505/* Convert SVR4 register number REG to the appropriate register number
506 used by GDB. */
85540d8c 507
8201327c 508static int
d3f73121 509i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 510{
20a6ec49
MD
511 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
512
c4fc7f1b
MK
513 /* This implements the GCC register map that tries to be compatible
514 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
515
516 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
517 numbers the floating point registers differently. */
518 if (reg >= 0 && reg <= 9)
519 {
acd5c798 520 /* General-purpose registers. */
85540d8c
MK
521 return reg;
522 }
523 else if (reg >= 11 && reg <= 18)
524 {
525 /* Floating-point registers. */
20a6ec49 526 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 527 }
c6f4c129 528 else if (reg >= 21 && reg <= 36)
85540d8c 529 {
c4fc7f1b 530 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 531 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
532 }
533
c6f4c129
JB
534 switch (reg)
535 {
20a6ec49
MD
536 case 37: return I387_FCTRL_REGNUM (tdep);
537 case 38: return I387_FSTAT_REGNUM (tdep);
538 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
539 case 40: return I386_ES_REGNUM;
540 case 41: return I386_CS_REGNUM;
541 case 42: return I386_SS_REGNUM;
542 case 43: return I386_DS_REGNUM;
543 case 44: return I386_FS_REGNUM;
544 case 45: return I386_GS_REGNUM;
545 }
546
85540d8c 547 /* This will hopefully provoke a warning. */
d3f73121 548 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 549}
5716833c 550
fc338970 551\f
917317f4 552
fc338970
MK
553/* This is the variable that is set with "set disassembly-flavor", and
554 its legitimate values. */
53904c9e
AC
555static const char att_flavor[] = "att";
556static const char intel_flavor[] = "intel";
40478521 557static const char *const valid_flavors[] =
c5aa993b 558{
c906108c
SS
559 att_flavor,
560 intel_flavor,
561 NULL
562};
53904c9e 563static const char *disassembly_flavor = att_flavor;
acd5c798 564\f
c906108c 565
acd5c798
MK
566/* Use the program counter to determine the contents and size of a
567 breakpoint instruction. Return a pointer to a string of bytes that
568 encode a breakpoint instruction, store the length of the string in
569 *LEN and optionally adjust *PC to point to the correct memory
570 location for inserting the breakpoint.
c906108c 571
acd5c798
MK
572 On the i386 we have a single breakpoint that fits in a single byte
573 and can be inserted anywhere.
c906108c 574
acd5c798 575 This function is 64-bit safe. */
63c0089f
MK
576
577static const gdb_byte *
67d57894 578i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 579{
63c0089f
MK
580 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
581
acd5c798
MK
582 *len = sizeof (break_insn);
583 return break_insn;
c906108c 584}
237fc4c9
PA
585\f
586/* Displaced instruction handling. */
587
1903f0e6
DE
588/* Skip the legacy instruction prefixes in INSN.
589 Not all prefixes are valid for any particular insn
590 but we needn't care, the insn will fault if it's invalid.
591 The result is a pointer to the first opcode byte,
592 or NULL if we run off the end of the buffer. */
593
594static gdb_byte *
595i386_skip_prefixes (gdb_byte *insn, size_t max_len)
596{
597 gdb_byte *end = insn + max_len;
598
599 while (insn < end)
600 {
601 switch (*insn)
602 {
603 case DATA_PREFIX_OPCODE:
604 case ADDR_PREFIX_OPCODE:
605 case CS_PREFIX_OPCODE:
606 case DS_PREFIX_OPCODE:
607 case ES_PREFIX_OPCODE:
608 case FS_PREFIX_OPCODE:
609 case GS_PREFIX_OPCODE:
610 case SS_PREFIX_OPCODE:
611 case LOCK_PREFIX_OPCODE:
612 case REPE_PREFIX_OPCODE:
613 case REPNE_PREFIX_OPCODE:
614 ++insn;
615 continue;
616 default:
617 return insn;
618 }
619 }
620
621 return NULL;
622}
237fc4c9
PA
623
624static int
1903f0e6 625i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 626{
1777feb0 627 /* jmp far (absolute address in operand). */
237fc4c9
PA
628 if (insn[0] == 0xea)
629 return 1;
630
631 if (insn[0] == 0xff)
632 {
1777feb0 633 /* jump near, absolute indirect (/4). */
237fc4c9
PA
634 if ((insn[1] & 0x38) == 0x20)
635 return 1;
636
1777feb0 637 /* jump far, absolute indirect (/5). */
237fc4c9
PA
638 if ((insn[1] & 0x38) == 0x28)
639 return 1;
640 }
641
642 return 0;
643}
644
c2170eef
MM
645/* Return non-zero if INSN is a jump, zero otherwise. */
646
647static int
648i386_jmp_p (const gdb_byte *insn)
649{
650 /* jump short, relative. */
651 if (insn[0] == 0xeb)
652 return 1;
653
654 /* jump near, relative. */
655 if (insn[0] == 0xe9)
656 return 1;
657
658 return i386_absolute_jmp_p (insn);
659}
660
237fc4c9 661static int
1903f0e6 662i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 663{
1777feb0 664 /* call far, absolute. */
237fc4c9
PA
665 if (insn[0] == 0x9a)
666 return 1;
667
668 if (insn[0] == 0xff)
669 {
1777feb0 670 /* Call near, absolute indirect (/2). */
237fc4c9
PA
671 if ((insn[1] & 0x38) == 0x10)
672 return 1;
673
1777feb0 674 /* Call far, absolute indirect (/3). */
237fc4c9
PA
675 if ((insn[1] & 0x38) == 0x18)
676 return 1;
677 }
678
679 return 0;
680}
681
682static int
1903f0e6 683i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
684{
685 switch (insn[0])
686 {
1777feb0 687 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 688 case 0xc3: /* ret near */
1777feb0 689 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
690 case 0xcb: /* ret far */
691 case 0xcf: /* iret */
692 return 1;
693
694 default:
695 return 0;
696 }
697}
698
699static int
1903f0e6 700i386_call_p (const gdb_byte *insn)
237fc4c9
PA
701{
702 if (i386_absolute_call_p (insn))
703 return 1;
704
1777feb0 705 /* call near, relative. */
237fc4c9
PA
706 if (insn[0] == 0xe8)
707 return 1;
708
709 return 0;
710}
711
237fc4c9
PA
712/* Return non-zero if INSN is a system call, and set *LENGTHP to its
713 length in bytes. Otherwise, return zero. */
1903f0e6 714
237fc4c9 715static int
b55078be 716i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 717{
9a7f938f
JK
718 /* Is it 'int $0x80'? */
719 if ((insn[0] == 0xcd && insn[1] == 0x80)
720 /* Or is it 'sysenter'? */
721 || (insn[0] == 0x0f && insn[1] == 0x34)
722 /* Or is it 'syscall'? */
723 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
724 {
725 *lengthp = 2;
726 return 1;
727 }
728
729 return 0;
730}
731
c2170eef
MM
732/* The gdbarch insn_is_call method. */
733
734static int
735i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
736{
737 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
738
739 read_code (addr, buf, I386_MAX_INSN_LEN);
740 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
741
742 return i386_call_p (insn);
743}
744
745/* The gdbarch insn_is_ret method. */
746
747static int
748i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
749{
750 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
751
752 read_code (addr, buf, I386_MAX_INSN_LEN);
753 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
754
755 return i386_ret_p (insn);
756}
757
758/* The gdbarch insn_is_jump method. */
759
760static int
761i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
762{
763 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
764
765 read_code (addr, buf, I386_MAX_INSN_LEN);
766 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
767
768 return i386_jmp_p (insn);
769}
770
b55078be
DE
771/* Some kernels may run one past a syscall insn, so we have to cope.
772 Otherwise this is just simple_displaced_step_copy_insn. */
773
774struct displaced_step_closure *
775i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
776 CORE_ADDR from, CORE_ADDR to,
777 struct regcache *regs)
778{
779 size_t len = gdbarch_max_insn_length (gdbarch);
780 gdb_byte *buf = xmalloc (len);
781
782 read_memory (from, buf, len);
783
784 /* GDB may get control back after the insn after the syscall.
785 Presumably this is a kernel bug.
786 If this is a syscall, make sure there's a nop afterwards. */
787 {
788 int syscall_length;
789 gdb_byte *insn;
790
791 insn = i386_skip_prefixes (buf, len);
792 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
793 insn[syscall_length] = NOP_OPCODE;
794 }
795
796 write_memory (to, buf, len);
797
798 if (debug_displaced)
799 {
800 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
801 paddress (gdbarch, from), paddress (gdbarch, to));
802 displaced_step_dump_bytes (gdb_stdlog, buf, len);
803 }
804
805 return (struct displaced_step_closure *) buf;
806}
807
237fc4c9
PA
808/* Fix up the state of registers and memory after having single-stepped
809 a displaced instruction. */
1903f0e6 810
237fc4c9
PA
811void
812i386_displaced_step_fixup (struct gdbarch *gdbarch,
813 struct displaced_step_closure *closure,
814 CORE_ADDR from, CORE_ADDR to,
815 struct regcache *regs)
816{
e17a4113
UW
817 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
818
237fc4c9
PA
819 /* The offset we applied to the instruction's address.
820 This could well be negative (when viewed as a signed 32-bit
821 value), but ULONGEST won't reflect that, so take care when
822 applying it. */
823 ULONGEST insn_offset = to - from;
824
825 /* Since we use simple_displaced_step_copy_insn, our closure is a
826 copy of the instruction. */
827 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
828 /* The start of the insn, needed in case we see some prefixes. */
829 gdb_byte *insn_start = insn;
237fc4c9
PA
830
831 if (debug_displaced)
832 fprintf_unfiltered (gdb_stdlog,
5af949e3 833 "displaced: fixup (%s, %s), "
237fc4c9 834 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
835 paddress (gdbarch, from), paddress (gdbarch, to),
836 insn[0], insn[1]);
237fc4c9
PA
837
838 /* The list of issues to contend with here is taken from
839 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
840 Yay for Free Software! */
841
842 /* Relocate the %eip, if necessary. */
843
1903f0e6
DE
844 /* The instruction recognizers we use assume any leading prefixes
845 have been skipped. */
846 {
847 /* This is the size of the buffer in closure. */
848 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
849 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
850 /* If there are too many prefixes, just ignore the insn.
851 It will fault when run. */
852 if (opcode != NULL)
853 insn = opcode;
854 }
855
237fc4c9
PA
856 /* Except in the case of absolute or indirect jump or call
857 instructions, or a return instruction, the new eip is relative to
858 the displaced instruction; make it relative. Well, signal
859 handler returns don't need relocation either, but we use the
860 value of %eip to recognize those; see below. */
861 if (! i386_absolute_jmp_p (insn)
862 && ! i386_absolute_call_p (insn)
863 && ! i386_ret_p (insn))
864 {
865 ULONGEST orig_eip;
b55078be 866 int insn_len;
237fc4c9
PA
867
868 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
869
870 /* A signal trampoline system call changes the %eip, resuming
871 execution of the main program after the signal handler has
872 returned. That makes them like 'return' instructions; we
873 shouldn't relocate %eip.
874
875 But most system calls don't, and we do need to relocate %eip.
876
877 Our heuristic for distinguishing these cases: if stepping
878 over the system call instruction left control directly after
879 the instruction, the we relocate --- control almost certainly
880 doesn't belong in the displaced copy. Otherwise, we assume
881 the instruction has put control where it belongs, and leave
882 it unrelocated. Goodness help us if there are PC-relative
883 system calls. */
884 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
885 && orig_eip != to + (insn - insn_start) + insn_len
886 /* GDB can get control back after the insn after the syscall.
887 Presumably this is a kernel bug.
888 i386_displaced_step_copy_insn ensures its a nop,
889 we add one to the length for it. */
890 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
891 {
892 if (debug_displaced)
893 fprintf_unfiltered (gdb_stdlog,
894 "displaced: syscall changed %%eip; "
895 "not relocating\n");
896 }
897 else
898 {
899 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
900
1903f0e6
DE
901 /* If we just stepped over a breakpoint insn, we don't backup
902 the pc on purpose; this is to match behaviour without
903 stepping. */
237fc4c9
PA
904
905 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
906
907 if (debug_displaced)
908 fprintf_unfiltered (gdb_stdlog,
909 "displaced: "
5af949e3
UW
910 "relocated %%eip from %s to %s\n",
911 paddress (gdbarch, orig_eip),
912 paddress (gdbarch, eip));
237fc4c9
PA
913 }
914 }
915
916 /* If the instruction was PUSHFL, then the TF bit will be set in the
917 pushed value, and should be cleared. We'll leave this for later,
918 since GDB already messes up the TF flag when stepping over a
919 pushfl. */
920
921 /* If the instruction was a call, the return address now atop the
922 stack is the address following the copied instruction. We need
923 to make it the address following the original instruction. */
924 if (i386_call_p (insn))
925 {
926 ULONGEST esp;
927 ULONGEST retaddr;
928 const ULONGEST retaddr_len = 4;
929
930 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 931 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 932 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 933 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
934
935 if (debug_displaced)
936 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
937 "displaced: relocated return addr at %s to %s\n",
938 paddress (gdbarch, esp),
939 paddress (gdbarch, retaddr));
237fc4c9
PA
940 }
941}
dde08ee1
PA
942
943static void
944append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
945{
946 target_write_memory (*to, buf, len);
947 *to += len;
948}
949
950static void
951i386_relocate_instruction (struct gdbarch *gdbarch,
952 CORE_ADDR *to, CORE_ADDR oldloc)
953{
954 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
955 gdb_byte buf[I386_MAX_INSN_LEN];
956 int offset = 0, rel32, newrel;
957 int insn_length;
958 gdb_byte *insn = buf;
959
960 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
961
962 insn_length = gdb_buffered_insn_length (gdbarch, insn,
963 I386_MAX_INSN_LEN, oldloc);
964
965 /* Get past the prefixes. */
966 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
967
968 /* Adjust calls with 32-bit relative addresses as push/jump, with
969 the address pushed being the location where the original call in
970 the user program would return to. */
971 if (insn[0] == 0xe8)
972 {
973 gdb_byte push_buf[16];
974 unsigned int ret_addr;
975
976 /* Where "ret" in the original code will return to. */
977 ret_addr = oldloc + insn_length;
1777feb0 978 push_buf[0] = 0x68; /* pushq $... */
144db827 979 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
980 /* Push the push. */
981 append_insns (to, 5, push_buf);
982
983 /* Convert the relative call to a relative jump. */
984 insn[0] = 0xe9;
985
986 /* Adjust the destination offset. */
987 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
988 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
989 store_signed_integer (insn + 1, 4, byte_order, newrel);
990
991 if (debug_displaced)
992 fprintf_unfiltered (gdb_stdlog,
993 "Adjusted insn rel32=%s at %s to"
994 " rel32=%s at %s\n",
995 hex_string (rel32), paddress (gdbarch, oldloc),
996 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
997
998 /* Write the adjusted jump into its displaced location. */
999 append_insns (to, 5, insn);
1000 return;
1001 }
1002
1003 /* Adjust jumps with 32-bit relative addresses. Calls are already
1004 handled above. */
1005 if (insn[0] == 0xe9)
1006 offset = 1;
1007 /* Adjust conditional jumps. */
1008 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1009 offset = 2;
1010
1011 if (offset)
1012 {
1013 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1014 newrel = (oldloc - *to) + rel32;
f4a1794a 1015 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1016 if (debug_displaced)
1017 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1018 "Adjusted insn rel32=%s at %s to"
1019 " rel32=%s at %s\n",
dde08ee1
PA
1020 hex_string (rel32), paddress (gdbarch, oldloc),
1021 hex_string (newrel), paddress (gdbarch, *to));
1022 }
1023
1024 /* Write the adjusted instructions into their displaced
1025 location. */
1026 append_insns (to, insn_length, buf);
1027}
1028
fc338970 1029\f
acd5c798
MK
1030#ifdef I386_REGNO_TO_SYMMETRY
1031#error "The Sequent Symmetry is no longer supported."
1032#endif
c906108c 1033
acd5c798
MK
1034/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1035 and %esp "belong" to the calling function. Therefore these
1036 registers should be saved if they're going to be modified. */
c906108c 1037
acd5c798
MK
1038/* The maximum number of saved registers. This should include all
1039 registers mentioned above, and %eip. */
a3386186 1040#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1041
1042struct i386_frame_cache
c906108c 1043{
acd5c798
MK
1044 /* Base address. */
1045 CORE_ADDR base;
8fbca658 1046 int base_p;
772562f8 1047 LONGEST sp_offset;
acd5c798
MK
1048 CORE_ADDR pc;
1049
fd13a04a
AC
1050 /* Saved registers. */
1051 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1052 CORE_ADDR saved_sp;
e0c62198 1053 int saved_sp_reg;
acd5c798
MK
1054 int pc_in_eax;
1055
1056 /* Stack space reserved for local variables. */
1057 long locals;
1058};
1059
1060/* Allocate and initialize a frame cache. */
1061
1062static struct i386_frame_cache *
fd13a04a 1063i386_alloc_frame_cache (void)
acd5c798
MK
1064{
1065 struct i386_frame_cache *cache;
1066 int i;
1067
1068 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1069
1070 /* Base address. */
8fbca658 1071 cache->base_p = 0;
acd5c798
MK
1072 cache->base = 0;
1073 cache->sp_offset = -4;
1074 cache->pc = 0;
1075
fd13a04a
AC
1076 /* Saved registers. We initialize these to -1 since zero is a valid
1077 offset (that's where %ebp is supposed to be stored). */
1078 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1079 cache->saved_regs[i] = -1;
acd5c798 1080 cache->saved_sp = 0;
e0c62198 1081 cache->saved_sp_reg = -1;
acd5c798
MK
1082 cache->pc_in_eax = 0;
1083
1084 /* Frameless until proven otherwise. */
1085 cache->locals = -1;
1086
1087 return cache;
1088}
c906108c 1089
acd5c798
MK
1090/* If the instruction at PC is a jump, return the address of its
1091 target. Otherwise, return PC. */
c906108c 1092
acd5c798 1093static CORE_ADDR
e17a4113 1094i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1095{
e17a4113 1096 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1097 gdb_byte op;
acd5c798
MK
1098 long delta = 0;
1099 int data16 = 0;
c906108c 1100
0865b04a 1101 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1102 return pc;
1103
acd5c798 1104 if (op == 0x66)
c906108c 1105 {
c906108c 1106 data16 = 1;
0865b04a
YQ
1107
1108 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1109 }
1110
acd5c798 1111 switch (op)
c906108c
SS
1112 {
1113 case 0xe9:
fc338970 1114 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1115 if (data16)
1116 {
e17a4113 1117 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1118
fc338970
MK
1119 /* Include the size of the jmp instruction (including the
1120 0x66 prefix). */
acd5c798 1121 delta += 4;
c906108c
SS
1122 }
1123 else
1124 {
e17a4113 1125 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1126
acd5c798
MK
1127 /* Include the size of the jmp instruction. */
1128 delta += 5;
c906108c
SS
1129 }
1130 break;
1131 case 0xeb:
fc338970 1132 /* Relative jump, disp8 (ignore data16). */
e17a4113 1133 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1134
acd5c798 1135 delta += data16 + 2;
c906108c
SS
1136 break;
1137 }
c906108c 1138
acd5c798
MK
1139 return pc + delta;
1140}
fc338970 1141
acd5c798
MK
1142/* Check whether PC points at a prologue for a function returning a
1143 structure or union. If so, it updates CACHE and returns the
1144 address of the first instruction after the code sequence that
1145 removes the "hidden" argument from the stack or CURRENT_PC,
1146 whichever is smaller. Otherwise, return PC. */
c906108c 1147
acd5c798
MK
1148static CORE_ADDR
1149i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1150 struct i386_frame_cache *cache)
c906108c 1151{
acd5c798
MK
1152 /* Functions that return a structure or union start with:
1153
1154 popl %eax 0x58
1155 xchgl %eax, (%esp) 0x87 0x04 0x24
1156 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1157
1158 (the System V compiler puts out the second `xchg' instruction,
1159 and the assembler doesn't try to optimize it, so the 'sib' form
1160 gets generated). This sequence is used to get the address of the
1161 return buffer for a function that returns a structure. */
63c0089f
MK
1162 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1163 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1164 gdb_byte buf[4];
1165 gdb_byte op;
c906108c 1166
acd5c798
MK
1167 if (current_pc <= pc)
1168 return pc;
1169
0865b04a 1170 if (target_read_code (pc, &op, 1))
3dcabaa8 1171 return pc;
c906108c 1172
acd5c798
MK
1173 if (op != 0x58) /* popl %eax */
1174 return pc;
c906108c 1175
0865b04a 1176 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1177 return pc;
1178
acd5c798
MK
1179 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1180 return pc;
c906108c 1181
acd5c798 1182 if (current_pc == pc)
c906108c 1183 {
acd5c798
MK
1184 cache->sp_offset += 4;
1185 return current_pc;
c906108c
SS
1186 }
1187
acd5c798 1188 if (current_pc == pc + 1)
c906108c 1189 {
acd5c798
MK
1190 cache->pc_in_eax = 1;
1191 return current_pc;
1192 }
1193
1194 if (buf[1] == proto1[1])
1195 return pc + 4;
1196 else
1197 return pc + 5;
1198}
1199
1200static CORE_ADDR
1201i386_skip_probe (CORE_ADDR pc)
1202{
1203 /* A function may start with
fc338970 1204
acd5c798
MK
1205 pushl constant
1206 call _probe
1207 addl $4, %esp
fc338970 1208
acd5c798
MK
1209 followed by
1210
1211 pushl %ebp
fc338970 1212
acd5c798 1213 etc. */
63c0089f
MK
1214 gdb_byte buf[8];
1215 gdb_byte op;
fc338970 1216
0865b04a 1217 if (target_read_code (pc, &op, 1))
3dcabaa8 1218 return pc;
acd5c798
MK
1219
1220 if (op == 0x68 || op == 0x6a)
1221 {
1222 int delta;
c906108c 1223
acd5c798
MK
1224 /* Skip past the `pushl' instruction; it has either a one-byte or a
1225 four-byte operand, depending on the opcode. */
c906108c 1226 if (op == 0x68)
acd5c798 1227 delta = 5;
c906108c 1228 else
acd5c798 1229 delta = 2;
c906108c 1230
acd5c798
MK
1231 /* Read the following 8 bytes, which should be `call _probe' (6
1232 bytes) followed by `addl $4,%esp' (2 bytes). */
1233 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1234 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1235 pc += delta + sizeof (buf);
c906108c
SS
1236 }
1237
acd5c798
MK
1238 return pc;
1239}
1240
92dd43fa
MK
1241/* GCC 4.1 and later, can put code in the prologue to realign the
1242 stack pointer. Check whether PC points to such code, and update
1243 CACHE accordingly. Return the first instruction after the code
1244 sequence or CURRENT_PC, whichever is smaller. If we don't
1245 recognize the code, return PC. */
1246
1247static CORE_ADDR
1248i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1249 struct i386_frame_cache *cache)
1250{
e0c62198
L
1251 /* There are 2 code sequences to re-align stack before the frame
1252 gets set up:
1253
1254 1. Use a caller-saved saved register:
1255
1256 leal 4(%esp), %reg
1257 andl $-XXX, %esp
1258 pushl -4(%reg)
1259
1260 2. Use a callee-saved saved register:
1261
1262 pushl %reg
1263 leal 8(%esp), %reg
1264 andl $-XXX, %esp
1265 pushl -4(%reg)
1266
1267 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1268
1269 0x83 0xe4 0xf0 andl $-16, %esp
1270 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1271 */
1272
1273 gdb_byte buf[14];
1274 int reg;
1275 int offset, offset_and;
1276 static int regnums[8] = {
1277 I386_EAX_REGNUM, /* %eax */
1278 I386_ECX_REGNUM, /* %ecx */
1279 I386_EDX_REGNUM, /* %edx */
1280 I386_EBX_REGNUM, /* %ebx */
1281 I386_ESP_REGNUM, /* %esp */
1282 I386_EBP_REGNUM, /* %ebp */
1283 I386_ESI_REGNUM, /* %esi */
1284 I386_EDI_REGNUM /* %edi */
92dd43fa 1285 };
92dd43fa 1286
0865b04a 1287 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1288 return pc;
1289
1290 /* Check caller-saved saved register. The first instruction has
1291 to be "leal 4(%esp), %reg". */
1292 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1293 {
1294 /* MOD must be binary 10 and R/M must be binary 100. */
1295 if ((buf[1] & 0xc7) != 0x44)
1296 return pc;
1297
1298 /* REG has register number. */
1299 reg = (buf[1] >> 3) & 7;
1300 offset = 4;
1301 }
1302 else
1303 {
1304 /* Check callee-saved saved register. The first instruction
1305 has to be "pushl %reg". */
1306 if ((buf[0] & 0xf8) != 0x50)
1307 return pc;
1308
1309 /* Get register. */
1310 reg = buf[0] & 0x7;
1311
1312 /* The next instruction has to be "leal 8(%esp), %reg". */
1313 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1314 return pc;
1315
1316 /* MOD must be binary 10 and R/M must be binary 100. */
1317 if ((buf[2] & 0xc7) != 0x44)
1318 return pc;
1319
1320 /* REG has register number. Registers in pushl and leal have to
1321 be the same. */
1322 if (reg != ((buf[2] >> 3) & 7))
1323 return pc;
1324
1325 offset = 5;
1326 }
1327
1328 /* Rigister can't be %esp nor %ebp. */
1329 if (reg == 4 || reg == 5)
1330 return pc;
1331
1332 /* The next instruction has to be "andl $-XXX, %esp". */
1333 if (buf[offset + 1] != 0xe4
1334 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1335 return pc;
1336
1337 offset_and = offset;
1338 offset += buf[offset] == 0x81 ? 6 : 3;
1339
1340 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1341 0xfc. REG must be binary 110 and MOD must be binary 01. */
1342 if (buf[offset] != 0xff
1343 || buf[offset + 2] != 0xfc
1344 || (buf[offset + 1] & 0xf8) != 0x70)
1345 return pc;
1346
1347 /* R/M has register. Registers in leal and pushl have to be the
1348 same. */
1349 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1350 return pc;
1351
e0c62198
L
1352 if (current_pc > pc + offset_and)
1353 cache->saved_sp_reg = regnums[reg];
92dd43fa 1354
e0c62198 1355 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1356}
1357
37bdc87e 1358/* Maximum instruction length we need to handle. */
237fc4c9 1359#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1360
1361/* Instruction description. */
1362struct i386_insn
1363{
1364 size_t len;
237fc4c9
PA
1365 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1366 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1367};
1368
a3fcb948 1369/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1370
a3fcb948
JG
1371static int
1372i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1373{
63c0089f 1374 gdb_byte op;
37bdc87e 1375
0865b04a 1376 if (target_read_code (pc, &op, 1))
a3fcb948 1377 return 0;
37bdc87e 1378
a3fcb948 1379 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1380 {
a3fcb948
JG
1381 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1382 int insn_matched = 1;
1383 size_t i;
37bdc87e 1384
a3fcb948
JG
1385 gdb_assert (pattern.len > 1);
1386 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1387
0865b04a 1388 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1389 return 0;
613e8135 1390
a3fcb948
JG
1391 for (i = 1; i < pattern.len; i++)
1392 {
1393 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1394 insn_matched = 0;
37bdc87e 1395 }
a3fcb948
JG
1396 return insn_matched;
1397 }
1398 return 0;
1399}
1400
1401/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1402 the first instruction description that matches. Otherwise, return
1403 NULL. */
1404
1405static struct i386_insn *
1406i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1407{
1408 struct i386_insn *pattern;
1409
1410 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1411 {
1412 if (i386_match_pattern (pc, *pattern))
1413 return pattern;
37bdc87e
MK
1414 }
1415
1416 return NULL;
1417}
1418
a3fcb948
JG
1419/* Return whether PC points inside a sequence of instructions that
1420 matches INSN_PATTERNS. */
1421
1422static int
1423i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1424{
1425 CORE_ADDR current_pc;
1426 int ix, i;
a3fcb948
JG
1427 struct i386_insn *insn;
1428
1429 insn = i386_match_insn (pc, insn_patterns);
1430 if (insn == NULL)
1431 return 0;
1432
8bbdd3f4 1433 current_pc = pc;
a3fcb948
JG
1434 ix = insn - insn_patterns;
1435 for (i = ix - 1; i >= 0; i--)
1436 {
8bbdd3f4
MK
1437 current_pc -= insn_patterns[i].len;
1438
a3fcb948
JG
1439 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1440 return 0;
a3fcb948
JG
1441 }
1442
1443 current_pc = pc + insn->len;
1444 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1445 {
1446 if (!i386_match_pattern (current_pc, *insn))
1447 return 0;
1448
1449 current_pc += insn->len;
1450 }
1451
1452 return 1;
1453}
1454
37bdc87e
MK
1455/* Some special instructions that might be migrated by GCC into the
1456 part of the prologue that sets up the new stack frame. Because the
1457 stack frame hasn't been setup yet, no registers have been saved
1458 yet, and only the scratch registers %eax, %ecx and %edx can be
1459 touched. */
1460
1461struct i386_insn i386_frame_setup_skip_insns[] =
1462{
1777feb0 1463 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1464
1465 ??? Should we handle 16-bit operand-sizes here? */
1466
1467 /* `movb imm8, %al' and `movb imm8, %ah' */
1468 /* `movb imm8, %cl' and `movb imm8, %ch' */
1469 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1470 /* `movb imm8, %dl' and `movb imm8, %dh' */
1471 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1472 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1473 { 5, { 0xb8 }, { 0xfe } },
1474 /* `movl imm32, %edx' */
1475 { 5, { 0xba }, { 0xff } },
1476
1477 /* Check for `mov imm32, r32'. Note that there is an alternative
1478 encoding for `mov m32, %eax'.
1479
1480 ??? Should we handle SIB adressing here?
1481 ??? Should we handle 16-bit operand-sizes here? */
1482
1483 /* `movl m32, %eax' */
1484 { 5, { 0xa1 }, { 0xff } },
1485 /* `movl m32, %eax' and `mov; m32, %ecx' */
1486 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1487 /* `movl m32, %edx' */
1488 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1489
1490 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1491 Because of the symmetry, there are actually two ways to encode
1492 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1493 opcode bytes 0x31 and 0x33 for `xorl'. */
1494
1495 /* `subl %eax, %eax' */
1496 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1497 /* `subl %ecx, %ecx' */
1498 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1499 /* `subl %edx, %edx' */
1500 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1501 /* `xorl %eax, %eax' */
1502 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1503 /* `xorl %ecx, %ecx' */
1504 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1505 /* `xorl %edx, %edx' */
1506 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1507 { 0 }
1508};
1509
e11481da
PM
1510
1511/* Check whether PC points to a no-op instruction. */
1512static CORE_ADDR
1513i386_skip_noop (CORE_ADDR pc)
1514{
1515 gdb_byte op;
1516 int check = 1;
1517
0865b04a 1518 if (target_read_code (pc, &op, 1))
3dcabaa8 1519 return pc;
e11481da
PM
1520
1521 while (check)
1522 {
1523 check = 0;
1524 /* Ignore `nop' instruction. */
1525 if (op == 0x90)
1526 {
1527 pc += 1;
0865b04a 1528 if (target_read_code (pc, &op, 1))
3dcabaa8 1529 return pc;
e11481da
PM
1530 check = 1;
1531 }
1532 /* Ignore no-op instruction `mov %edi, %edi'.
1533 Microsoft system dlls often start with
1534 a `mov %edi,%edi' instruction.
1535 The 5 bytes before the function start are
1536 filled with `nop' instructions.
1537 This pattern can be used for hot-patching:
1538 The `mov %edi, %edi' instruction can be replaced by a
1539 near jump to the location of the 5 `nop' instructions
1540 which can be replaced by a 32-bit jump to anywhere
1541 in the 32-bit address space. */
1542
1543 else if (op == 0x8b)
1544 {
0865b04a 1545 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1546 return pc;
1547
e11481da
PM
1548 if (op == 0xff)
1549 {
1550 pc += 2;
0865b04a 1551 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1552 return pc;
1553
e11481da
PM
1554 check = 1;
1555 }
1556 }
1557 }
1558 return pc;
1559}
1560
acd5c798
MK
1561/* Check whether PC points at a code that sets up a new stack frame.
1562 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1563 instruction after the sequence that sets up the frame or LIMIT,
1564 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1565
1566static CORE_ADDR
e17a4113
UW
1567i386_analyze_frame_setup (struct gdbarch *gdbarch,
1568 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1569 struct i386_frame_cache *cache)
1570{
e17a4113 1571 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1572 struct i386_insn *insn;
63c0089f 1573 gdb_byte op;
26604a34 1574 int skip = 0;
acd5c798 1575
37bdc87e
MK
1576 if (limit <= pc)
1577 return limit;
acd5c798 1578
0865b04a 1579 if (target_read_code (pc, &op, 1))
3dcabaa8 1580 return pc;
acd5c798 1581
c906108c 1582 if (op == 0x55) /* pushl %ebp */
c5aa993b 1583 {
acd5c798
MK
1584 /* Take into account that we've executed the `pushl %ebp' that
1585 starts this instruction sequence. */
fd13a04a 1586 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1587 cache->sp_offset += 4;
37bdc87e 1588 pc++;
acd5c798
MK
1589
1590 /* If that's all, return now. */
37bdc87e
MK
1591 if (limit <= pc)
1592 return limit;
26604a34 1593
b4632131 1594 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1595 GCC into the prologue and skip them. At this point in the
1596 prologue, code should only touch the scratch registers %eax,
1597 %ecx and %edx, so while the number of posibilities is sheer,
1598 it is limited.
5daa5b4e 1599
26604a34
MK
1600 Make sure we only skip these instructions if we later see the
1601 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1602 while (pc + skip < limit)
26604a34 1603 {
37bdc87e
MK
1604 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1605 if (insn == NULL)
1606 break;
b4632131 1607
37bdc87e 1608 skip += insn->len;
26604a34
MK
1609 }
1610
37bdc87e
MK
1611 /* If that's all, return now. */
1612 if (limit <= pc + skip)
1613 return limit;
1614
0865b04a 1615 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1616 return pc + skip;
37bdc87e 1617
30f8135b
YQ
1618 /* The i386 prologue looks like
1619
1620 push %ebp
1621 mov %esp,%ebp
1622 sub $0x10,%esp
1623
1624 and a different prologue can be generated for atom.
1625
1626 push %ebp
1627 lea (%esp),%ebp
1628 lea -0x10(%esp),%esp
1629
1630 We handle both of them here. */
1631
acd5c798 1632 switch (op)
c906108c 1633 {
30f8135b 1634 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1635 case 0x8b:
0865b04a 1636 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1637 != 0xec)
37bdc87e 1638 return pc;
30f8135b 1639 pc += (skip + 2);
c906108c
SS
1640 break;
1641 case 0x89:
0865b04a 1642 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1643 != 0xe5)
37bdc87e 1644 return pc;
30f8135b
YQ
1645 pc += (skip + 2);
1646 break;
1647 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1648 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1649 != 0x242c)
1650 return pc;
1651 pc += (skip + 3);
c906108c
SS
1652 break;
1653 default:
37bdc87e 1654 return pc;
c906108c 1655 }
acd5c798 1656
26604a34
MK
1657 /* OK, we actually have a frame. We just don't know how large
1658 it is yet. Set its size to zero. We'll adjust it if
1659 necessary. We also now commit to skipping the special
1660 instructions mentioned before. */
acd5c798
MK
1661 cache->locals = 0;
1662
1663 /* If that's all, return now. */
37bdc87e
MK
1664 if (limit <= pc)
1665 return limit;
acd5c798 1666
fc338970
MK
1667 /* Check for stack adjustment
1668
acd5c798 1669 subl $XXX, %esp
30f8135b
YQ
1670 or
1671 lea -XXX(%esp),%esp
fc338970 1672
fd35795f 1673 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1674 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1675 if (target_read_code (pc, &op, 1))
3dcabaa8 1676 return pc;
c906108c
SS
1677 if (op == 0x83)
1678 {
fd35795f 1679 /* `subl' with 8-bit immediate. */
0865b04a 1680 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1681 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1682 return pc;
acd5c798 1683
37bdc87e
MK
1684 /* `subl' with signed 8-bit immediate (though it wouldn't
1685 make sense to be negative). */
0865b04a 1686 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1687 return pc + 3;
c906108c
SS
1688 }
1689 else if (op == 0x81)
1690 {
fd35795f 1691 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1692 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1693 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1694 return pc;
acd5c798 1695
fd35795f 1696 /* It is `subl' with a 32-bit immediate. */
0865b04a 1697 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1698 return pc + 6;
c906108c 1699 }
30f8135b
YQ
1700 else if (op == 0x8d)
1701 {
1702 /* The ModR/M byte is 0x64. */
0865b04a 1703 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1704 return pc;
1705 /* 'lea' with 8-bit displacement. */
0865b04a 1706 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1707 return pc + 4;
1708 }
c906108c
SS
1709 else
1710 {
30f8135b 1711 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1712 return pc;
c906108c
SS
1713 }
1714 }
37bdc87e 1715 else if (op == 0xc8) /* enter */
c906108c 1716 {
0865b04a 1717 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1718 return pc + 4;
c906108c 1719 }
21d0e8a4 1720
acd5c798 1721 return pc;
21d0e8a4
MK
1722}
1723
acd5c798
MK
1724/* Check whether PC points at code that saves registers on the stack.
1725 If so, it updates CACHE and returns the address of the first
1726 instruction after the register saves or CURRENT_PC, whichever is
1727 smaller. Otherwise, return PC. */
6bff26de
MK
1728
1729static CORE_ADDR
acd5c798
MK
1730i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1731 struct i386_frame_cache *cache)
6bff26de 1732{
99ab4326 1733 CORE_ADDR offset = 0;
63c0089f 1734 gdb_byte op;
99ab4326 1735 int i;
c0d1d883 1736
99ab4326
MK
1737 if (cache->locals > 0)
1738 offset -= cache->locals;
1739 for (i = 0; i < 8 && pc < current_pc; i++)
1740 {
0865b04a 1741 if (target_read_code (pc, &op, 1))
3dcabaa8 1742 return pc;
99ab4326
MK
1743 if (op < 0x50 || op > 0x57)
1744 break;
0d17c81d 1745
99ab4326
MK
1746 offset -= 4;
1747 cache->saved_regs[op - 0x50] = offset;
1748 cache->sp_offset += 4;
1749 pc++;
6bff26de
MK
1750 }
1751
acd5c798 1752 return pc;
22797942
AC
1753}
1754
acd5c798
MK
1755/* Do a full analysis of the prologue at PC and update CACHE
1756 accordingly. Bail out early if CURRENT_PC is reached. Return the
1757 address where the analysis stopped.
ed84f6c1 1758
fc338970
MK
1759 We handle these cases:
1760
1761 The startup sequence can be at the start of the function, or the
1762 function can start with a branch to startup code at the end.
1763
1764 %ebp can be set up with either the 'enter' instruction, or "pushl
1765 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1766 once used in the System V compiler).
1767
1768 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1769 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1770 16-bit unsigned argument for space to allocate, and the 'addl'
1771 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1772
1773 Next, the registers used by this function are pushed. With the
1774 System V compiler they will always be in the order: %edi, %esi,
1775 %ebx (and sometimes a harmless bug causes it to also save but not
1776 restore %eax); however, the code below is willing to see the pushes
1777 in any order, and will handle up to 8 of them.
1778
1779 If the setup sequence is at the end of the function, then the next
1780 instruction will be a branch back to the start. */
c906108c 1781
acd5c798 1782static CORE_ADDR
e17a4113
UW
1783i386_analyze_prologue (struct gdbarch *gdbarch,
1784 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1785 struct i386_frame_cache *cache)
c906108c 1786{
e11481da 1787 pc = i386_skip_noop (pc);
e17a4113 1788 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1789 pc = i386_analyze_struct_return (pc, current_pc, cache);
1790 pc = i386_skip_probe (pc);
92dd43fa 1791 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1792 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1793 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1794}
1795
fc338970 1796/* Return PC of first real instruction. */
c906108c 1797
3a1e71e3 1798static CORE_ADDR
6093d2eb 1799i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1800{
e17a4113
UW
1801 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1802
63c0089f 1803 static gdb_byte pic_pat[6] =
acd5c798
MK
1804 {
1805 0xe8, 0, 0, 0, 0, /* call 0x0 */
1806 0x5b, /* popl %ebx */
c5aa993b 1807 };
acd5c798
MK
1808 struct i386_frame_cache cache;
1809 CORE_ADDR pc;
63c0089f 1810 gdb_byte op;
acd5c798 1811 int i;
56bf0743 1812 CORE_ADDR func_addr;
4e879fc2 1813
56bf0743
KB
1814 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1815 {
1816 CORE_ADDR post_prologue_pc
1817 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1818 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
1819
1820 /* Clang always emits a line note before the prologue and another
1821 one after. We trust clang to emit usable line notes. */
1822 if (post_prologue_pc
43f3e411
DE
1823 && (cust != NULL
1824 && COMPUNIT_PRODUCER (cust) != NULL
61012eef 1825 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
56bf0743
KB
1826 return max (start_pc, post_prologue_pc);
1827 }
1828
e0f33b1f 1829 cache.locals = -1;
e17a4113 1830 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1831 if (cache.locals < 0)
1832 return start_pc;
c5aa993b 1833
acd5c798 1834 /* Found valid frame setup. */
c906108c 1835
fc338970
MK
1836 /* The native cc on SVR4 in -K PIC mode inserts the following code
1837 to get the address of the global offset table (GOT) into register
acd5c798
MK
1838 %ebx:
1839
fc338970
MK
1840 call 0x0
1841 popl %ebx
1842 movl %ebx,x(%ebp) (optional)
1843 addl y,%ebx
1844
c906108c
SS
1845 This code is with the rest of the prologue (at the end of the
1846 function), so we have to skip it to get to the first real
1847 instruction at the start of the function. */
c5aa993b 1848
c906108c
SS
1849 for (i = 0; i < 6; i++)
1850 {
0865b04a 1851 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1852 return pc;
1853
c5aa993b 1854 if (pic_pat[i] != op)
c906108c
SS
1855 break;
1856 }
1857 if (i == 6)
1858 {
acd5c798
MK
1859 int delta = 6;
1860
0865b04a 1861 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1862 return pc;
c906108c 1863
c5aa993b 1864 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1865 {
0865b04a 1866 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1867
fc338970 1868 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1869 delta += 3;
fc338970 1870 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1871 delta += 6;
fc338970 1872 else /* Unexpected instruction. */
acd5c798
MK
1873 delta = 0;
1874
0865b04a 1875 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1876 return pc;
c906108c 1877 }
acd5c798 1878
c5aa993b 1879 /* addl y,%ebx */
acd5c798 1880 if (delta > 0 && op == 0x81
0865b04a 1881 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1882 == 0xc3)
c906108c 1883 {
acd5c798 1884 pc += delta + 6;
c906108c
SS
1885 }
1886 }
c5aa993b 1887
e63bbc88
MK
1888 /* If the function starts with a branch (to startup code at the end)
1889 the last instruction should bring us back to the first
1890 instruction of the real code. */
e17a4113
UW
1891 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1892 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1893
1894 return pc;
c906108c
SS
1895}
1896
4309257c
PM
1897/* Check that the code pointed to by PC corresponds to a call to
1898 __main, skip it if so. Return PC otherwise. */
1899
1900CORE_ADDR
1901i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1902{
e17a4113 1903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1904 gdb_byte op;
1905
0865b04a 1906 if (target_read_code (pc, &op, 1))
3dcabaa8 1907 return pc;
4309257c
PM
1908 if (op == 0xe8)
1909 {
1910 gdb_byte buf[4];
1911
0865b04a 1912 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1913 {
1914 /* Make sure address is computed correctly as a 32bit
1915 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1916 struct bound_minimal_symbol s;
e17a4113 1917 CORE_ADDR call_dest;
4309257c 1918
e17a4113 1919 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1920 call_dest = call_dest & 0xffffffffU;
1921 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1922 if (s.minsym != NULL
efd66ac6
TT
1923 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1924 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1925 pc += 5;
1926 }
1927 }
1928
1929 return pc;
1930}
1931
acd5c798 1932/* This function is 64-bit safe. */
93924b6b 1933
acd5c798
MK
1934static CORE_ADDR
1935i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1936{
63c0089f 1937 gdb_byte buf[8];
acd5c798 1938
875f8d0e 1939 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1940 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1941}
acd5c798 1942\f
93924b6b 1943
acd5c798 1944/* Normal frames. */
c5aa993b 1945
8fbca658
PA
1946static void
1947i386_frame_cache_1 (struct frame_info *this_frame,
1948 struct i386_frame_cache *cache)
a7769679 1949{
e17a4113
UW
1950 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1951 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1952 gdb_byte buf[4];
acd5c798
MK
1953 int i;
1954
8fbca658 1955 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1956
1957 /* In principle, for normal frames, %ebp holds the frame pointer,
1958 which holds the base address for the current stack frame.
1959 However, for functions that don't need it, the frame pointer is
1960 optional. For these "frameless" functions the frame pointer is
1961 actually the frame pointer of the calling frame. Signal
1962 trampolines are just a special case of a "frameless" function.
1963 They (usually) share their frame pointer with the frame that was
1964 in progress when the signal occurred. */
1965
10458914 1966 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1967 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1968 if (cache->base == 0)
620fa63a
PA
1969 {
1970 cache->base_p = 1;
1971 return;
1972 }
acd5c798
MK
1973
1974 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1975 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1976
acd5c798 1977 if (cache->pc != 0)
e17a4113
UW
1978 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1979 cache);
acd5c798
MK
1980
1981 if (cache->locals < 0)
1982 {
1983 /* We didn't find a valid frame, which means that CACHE->base
1984 currently holds the frame pointer for our calling frame. If
1985 we're at the start of a function, or somewhere half-way its
1986 prologue, the function's frame probably hasn't been fully
1987 setup yet. Try to reconstruct the base address for the stack
1988 frame by looking at the stack pointer. For truly "frameless"
1989 functions this might work too. */
1990
e0c62198 1991 if (cache->saved_sp_reg != -1)
92dd43fa 1992 {
8fbca658
PA
1993 /* Saved stack pointer has been saved. */
1994 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1995 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1996
92dd43fa
MK
1997 /* We're halfway aligning the stack. */
1998 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1999 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2000
2001 /* This will be added back below. */
2002 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2003 }
7618e12b 2004 else if (cache->pc != 0
0865b04a 2005 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2006 {
7618e12b
DJ
2007 /* We're in a known function, but did not find a frame
2008 setup. Assume that the function does not use %ebp.
2009 Alternatively, we may have jumped to an invalid
2010 address; in that case there is definitely no new
2011 frame in %ebp. */
10458914 2012 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2013 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2014 + cache->sp_offset;
92dd43fa 2015 }
7618e12b
DJ
2016 else
2017 /* We're in an unknown function. We could not find the start
2018 of the function to analyze the prologue; our best option is
2019 to assume a typical frame layout with the caller's %ebp
2020 saved. */
2021 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2022 }
2023
8fbca658
PA
2024 if (cache->saved_sp_reg != -1)
2025 {
2026 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2027 register may be unavailable). */
2028 if (cache->saved_sp == 0
ca9d61b9
JB
2029 && deprecated_frame_register_read (this_frame,
2030 cache->saved_sp_reg, buf))
8fbca658
PA
2031 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2032 }
acd5c798
MK
2033 /* Now that we have the base address for the stack frame we can
2034 calculate the value of %esp in the calling frame. */
8fbca658 2035 else if (cache->saved_sp == 0)
92dd43fa 2036 cache->saved_sp = cache->base + 8;
a7769679 2037
acd5c798
MK
2038 /* Adjust all the saved registers such that they contain addresses
2039 instead of offsets. */
2040 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2041 if (cache->saved_regs[i] != -1)
2042 cache->saved_regs[i] += cache->base;
acd5c798 2043
8fbca658
PA
2044 cache->base_p = 1;
2045}
2046
2047static struct i386_frame_cache *
2048i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2049{
8fbca658
PA
2050 struct i386_frame_cache *cache;
2051
2052 if (*this_cache)
2053 return *this_cache;
2054
2055 cache = i386_alloc_frame_cache ();
2056 *this_cache = cache;
2057
492d29ea 2058 TRY
8fbca658
PA
2059 {
2060 i386_frame_cache_1 (this_frame, cache);
2061 }
492d29ea 2062 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2063 {
2064 if (ex.error != NOT_AVAILABLE_ERROR)
2065 throw_exception (ex);
2066 }
492d29ea 2067 END_CATCH
8fbca658 2068
acd5c798 2069 return cache;
a7769679
MK
2070}
2071
3a1e71e3 2072static void
10458914 2073i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2074 struct frame_id *this_id)
c906108c 2075{
10458914 2076 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2077
5ce0145d
PA
2078 if (!cache->base_p)
2079 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2080 else if (cache->base == 0)
2081 {
2082 /* This marks the outermost frame. */
2083 }
2084 else
2085 {
2086 /* See the end of i386_push_dummy_call. */
2087 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2088 }
acd5c798
MK
2089}
2090
8fbca658
PA
2091static enum unwind_stop_reason
2092i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2093 void **this_cache)
2094{
2095 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2096
2097 if (!cache->base_p)
2098 return UNWIND_UNAVAILABLE;
2099
2100 /* This marks the outermost frame. */
2101 if (cache->base == 0)
2102 return UNWIND_OUTERMOST;
2103
2104 return UNWIND_NO_REASON;
2105}
2106
10458914
DJ
2107static struct value *
2108i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2109 int regnum)
acd5c798 2110{
10458914 2111 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2112
2113 gdb_assert (regnum >= 0);
2114
2115 /* The System V ABI says that:
2116
2117 "The flags register contains the system flags, such as the
2118 direction flag and the carry flag. The direction flag must be
2119 set to the forward (that is, zero) direction before entry and
2120 upon exit from a function. Other user flags have no specified
2121 role in the standard calling sequence and are not preserved."
2122
2123 To guarantee the "upon exit" part of that statement we fake a
2124 saved flags register that has its direction flag cleared.
2125
2126 Note that GCC doesn't seem to rely on the fact that the direction
2127 flag is cleared after a function return; it always explicitly
2128 clears the flag before operations where it matters.
2129
2130 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2131 right thing to do. The way we fake the flags register here makes
2132 it impossible to change it. */
2133
2134 if (regnum == I386_EFLAGS_REGNUM)
2135 {
10458914 2136 ULONGEST val;
c5aa993b 2137
10458914
DJ
2138 val = get_frame_register_unsigned (this_frame, regnum);
2139 val &= ~(1 << 10);
2140 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2141 }
1211c4e4 2142
acd5c798 2143 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2144 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2145
fcf250e2
UW
2146 if (regnum == I386_ESP_REGNUM
2147 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2148 {
2149 /* If the SP has been saved, but we don't know where, then this
2150 means that SAVED_SP_REG register was found unavailable back
2151 when we built the cache. */
fcf250e2 2152 if (cache->saved_sp == 0)
8fbca658
PA
2153 return frame_unwind_got_register (this_frame, regnum,
2154 cache->saved_sp_reg);
2155 else
2156 return frame_unwind_got_constant (this_frame, regnum,
2157 cache->saved_sp);
2158 }
acd5c798 2159
fd13a04a 2160 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2161 return frame_unwind_got_memory (this_frame, regnum,
2162 cache->saved_regs[regnum]);
fd13a04a 2163
10458914 2164 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2165}
2166
2167static const struct frame_unwind i386_frame_unwind =
2168{
2169 NORMAL_FRAME,
8fbca658 2170 i386_frame_unwind_stop_reason,
acd5c798 2171 i386_frame_this_id,
10458914
DJ
2172 i386_frame_prev_register,
2173 NULL,
2174 default_frame_sniffer
acd5c798 2175};
06da04c6
MS
2176
2177/* Normal frames, but in a function epilogue. */
2178
c9cf6e20
MG
2179/* Implement the stack_frame_destroyed_p gdbarch method.
2180
2181 The epilogue is defined here as the 'ret' instruction, which will
06da04c6
MS
2182 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2183 the function's stack frame. */
2184
2185static int
c9cf6e20 2186i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
06da04c6
MS
2187{
2188 gdb_byte insn;
43f3e411 2189 struct compunit_symtab *cust;
e0d00bc7 2190
43f3e411
DE
2191 cust = find_pc_compunit_symtab (pc);
2192 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2193 return 0;
06da04c6
MS
2194
2195 if (target_read_memory (pc, &insn, 1))
2196 return 0; /* Can't read memory at pc. */
2197
2198 if (insn != 0xc3) /* 'ret' instruction. */
2199 return 0;
2200
2201 return 1;
2202}
2203
2204static int
2205i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2206 struct frame_info *this_frame,
2207 void **this_prologue_cache)
2208{
2209 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2210 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2211 get_frame_pc (this_frame));
06da04c6
MS
2212 else
2213 return 0;
2214}
2215
2216static struct i386_frame_cache *
2217i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2218{
06da04c6 2219 struct i386_frame_cache *cache;
0d6c2135 2220 CORE_ADDR sp;
06da04c6
MS
2221
2222 if (*this_cache)
2223 return *this_cache;
2224
2225 cache = i386_alloc_frame_cache ();
2226 *this_cache = cache;
2227
492d29ea 2228 TRY
8fbca658 2229 {
0d6c2135 2230 cache->pc = get_frame_func (this_frame);
06da04c6 2231
0d6c2135
MK
2232 /* At this point the stack looks as if we just entered the
2233 function, with the return address at the top of the
2234 stack. */
2235 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2236 cache->base = sp + cache->sp_offset;
8fbca658 2237 cache->saved_sp = cache->base + 8;
8fbca658 2238 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2239
8fbca658
PA
2240 cache->base_p = 1;
2241 }
492d29ea 2242 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2243 {
2244 if (ex.error != NOT_AVAILABLE_ERROR)
2245 throw_exception (ex);
2246 }
492d29ea 2247 END_CATCH
06da04c6
MS
2248
2249 return cache;
2250}
2251
8fbca658
PA
2252static enum unwind_stop_reason
2253i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2254 void **this_cache)
2255{
0d6c2135
MK
2256 struct i386_frame_cache *cache =
2257 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2258
2259 if (!cache->base_p)
2260 return UNWIND_UNAVAILABLE;
2261
2262 return UNWIND_NO_REASON;
2263}
2264
06da04c6
MS
2265static void
2266i386_epilogue_frame_this_id (struct frame_info *this_frame,
2267 void **this_cache,
2268 struct frame_id *this_id)
2269{
0d6c2135
MK
2270 struct i386_frame_cache *cache =
2271 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2272
8fbca658 2273 if (!cache->base_p)
5ce0145d
PA
2274 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2275 else
2276 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2277}
2278
0d6c2135
MK
2279static struct value *
2280i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2281 void **this_cache, int regnum)
2282{
2283 /* Make sure we've initialized the cache. */
2284 i386_epilogue_frame_cache (this_frame, this_cache);
2285
2286 return i386_frame_prev_register (this_frame, this_cache, regnum);
2287}
2288
06da04c6
MS
2289static const struct frame_unwind i386_epilogue_frame_unwind =
2290{
2291 NORMAL_FRAME,
8fbca658 2292 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2293 i386_epilogue_frame_this_id,
0d6c2135 2294 i386_epilogue_frame_prev_register,
06da04c6
MS
2295 NULL,
2296 i386_epilogue_frame_sniffer
2297};
acd5c798
MK
2298\f
2299
a3fcb948
JG
2300/* Stack-based trampolines. */
2301
2302/* These trampolines are used on cross x86 targets, when taking the
2303 address of a nested function. When executing these trampolines,
2304 no stack frame is set up, so we are in a similar situation as in
2305 epilogues and i386_epilogue_frame_this_id can be re-used. */
2306
2307/* Static chain passed in register. */
2308
2309struct i386_insn i386_tramp_chain_in_reg_insns[] =
2310{
2311 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2312 { 5, { 0xb8 }, { 0xfe } },
2313
2314 /* `jmp imm32' */
2315 { 5, { 0xe9 }, { 0xff } },
2316
2317 {0}
2318};
2319
2320/* Static chain passed on stack (when regparm=3). */
2321
2322struct i386_insn i386_tramp_chain_on_stack_insns[] =
2323{
2324 /* `push imm32' */
2325 { 5, { 0x68 }, { 0xff } },
2326
2327 /* `jmp imm32' */
2328 { 5, { 0xe9 }, { 0xff } },
2329
2330 {0}
2331};
2332
2333/* Return whether PC points inside a stack trampoline. */
2334
2335static int
6df81a63 2336i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2337{
2338 gdb_byte insn;
2c02bd72 2339 const char *name;
a3fcb948
JG
2340
2341 /* A stack trampoline is detected if no name is associated
2342 to the current pc and if it points inside a trampoline
2343 sequence. */
2344
2345 find_pc_partial_function (pc, &name, NULL, NULL);
2346 if (name)
2347 return 0;
2348
2349 if (target_read_memory (pc, &insn, 1))
2350 return 0;
2351
2352 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2353 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2354 return 0;
2355
2356 return 1;
2357}
2358
2359static int
2360i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2361 struct frame_info *this_frame,
2362 void **this_cache)
a3fcb948
JG
2363{
2364 if (frame_relative_level (this_frame) == 0)
6df81a63 2365 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2366 else
2367 return 0;
2368}
2369
2370static const struct frame_unwind i386_stack_tramp_frame_unwind =
2371{
2372 NORMAL_FRAME,
2373 i386_epilogue_frame_unwind_stop_reason,
2374 i386_epilogue_frame_this_id,
0d6c2135 2375 i386_epilogue_frame_prev_register,
a3fcb948
JG
2376 NULL,
2377 i386_stack_tramp_frame_sniffer
2378};
2379\f
6710bf39
SS
2380/* Generate a bytecode expression to get the value of the saved PC. */
2381
2382static void
2383i386_gen_return_address (struct gdbarch *gdbarch,
2384 struct agent_expr *ax, struct axs_value *value,
2385 CORE_ADDR scope)
2386{
2387 /* The following sequence assumes the traditional use of the base
2388 register. */
2389 ax_reg (ax, I386_EBP_REGNUM);
2390 ax_const_l (ax, 4);
2391 ax_simple (ax, aop_add);
2392 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2393 value->kind = axs_lvalue_memory;
2394}
2395\f
a3fcb948 2396
acd5c798
MK
2397/* Signal trampolines. */
2398
2399static struct i386_frame_cache *
10458914 2400i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2401{
e17a4113
UW
2402 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 2405 struct i386_frame_cache *cache;
acd5c798 2406 CORE_ADDR addr;
63c0089f 2407 gdb_byte buf[4];
acd5c798
MK
2408
2409 if (*this_cache)
2410 return *this_cache;
2411
fd13a04a 2412 cache = i386_alloc_frame_cache ();
acd5c798 2413
492d29ea 2414 TRY
a3386186 2415 {
8fbca658
PA
2416 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2417 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2418
8fbca658
PA
2419 addr = tdep->sigcontext_addr (this_frame);
2420 if (tdep->sc_reg_offset)
2421 {
2422 int i;
a3386186 2423
8fbca658
PA
2424 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2425
2426 for (i = 0; i < tdep->sc_num_regs; i++)
2427 if (tdep->sc_reg_offset[i] != -1)
2428 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2429 }
2430 else
2431 {
2432 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2433 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2434 }
2435
2436 cache->base_p = 1;
a3386186 2437 }
492d29ea 2438 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2439 {
2440 if (ex.error != NOT_AVAILABLE_ERROR)
2441 throw_exception (ex);
2442 }
492d29ea 2443 END_CATCH
acd5c798
MK
2444
2445 *this_cache = cache;
2446 return cache;
2447}
2448
8fbca658
PA
2449static enum unwind_stop_reason
2450i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2451 void **this_cache)
2452{
2453 struct i386_frame_cache *cache =
2454 i386_sigtramp_frame_cache (this_frame, this_cache);
2455
2456 if (!cache->base_p)
2457 return UNWIND_UNAVAILABLE;
2458
2459 return UNWIND_NO_REASON;
2460}
2461
acd5c798 2462static void
10458914 2463i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2464 struct frame_id *this_id)
2465{
2466 struct i386_frame_cache *cache =
10458914 2467 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2468
8fbca658 2469 if (!cache->base_p)
5ce0145d
PA
2470 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2471 else
2472 {
2473 /* See the end of i386_push_dummy_call. */
2474 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2475 }
acd5c798
MK
2476}
2477
10458914
DJ
2478static struct value *
2479i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2480 void **this_cache, int regnum)
acd5c798
MK
2481{
2482 /* Make sure we've initialized the cache. */
10458914 2483 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2484
10458914 2485 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2486}
c0d1d883 2487
10458914
DJ
2488static int
2489i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2490 struct frame_info *this_frame,
2491 void **this_prologue_cache)
acd5c798 2492{
10458914 2493 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2494
911bc6ee
MK
2495 /* We shouldn't even bother if we don't have a sigcontext_addr
2496 handler. */
2497 if (tdep->sigcontext_addr == NULL)
10458914 2498 return 0;
1c3545ae 2499
911bc6ee
MK
2500 if (tdep->sigtramp_p != NULL)
2501 {
10458914
DJ
2502 if (tdep->sigtramp_p (this_frame))
2503 return 1;
911bc6ee
MK
2504 }
2505
2506 if (tdep->sigtramp_start != 0)
2507 {
10458914 2508 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2509
2510 gdb_assert (tdep->sigtramp_end != 0);
2511 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2512 return 1;
911bc6ee 2513 }
acd5c798 2514
10458914 2515 return 0;
acd5c798 2516}
10458914
DJ
2517
2518static const struct frame_unwind i386_sigtramp_frame_unwind =
2519{
2520 SIGTRAMP_FRAME,
8fbca658 2521 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2522 i386_sigtramp_frame_this_id,
2523 i386_sigtramp_frame_prev_register,
2524 NULL,
2525 i386_sigtramp_frame_sniffer
2526};
acd5c798
MK
2527\f
2528
2529static CORE_ADDR
10458914 2530i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2531{
10458914 2532 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2533
2534 return cache->base;
2535}
2536
2537static const struct frame_base i386_frame_base =
2538{
2539 &i386_frame_unwind,
2540 i386_frame_base_address,
2541 i386_frame_base_address,
2542 i386_frame_base_address
2543};
2544
acd5c798 2545static struct frame_id
10458914 2546i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2547{
acd5c798
MK
2548 CORE_ADDR fp;
2549
10458914 2550 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2551
3e210248 2552 /* See the end of i386_push_dummy_call. */
10458914 2553 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2554}
e04e5beb
JM
2555
2556/* _Decimal128 function return values need 16-byte alignment on the
2557 stack. */
2558
2559static CORE_ADDR
2560i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2561{
2562 return sp & -(CORE_ADDR)16;
2563}
fc338970 2564\f
c906108c 2565
fc338970
MK
2566/* Figure out where the longjmp will land. Slurp the args out of the
2567 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2568 structure from which we extract the address that we will land at.
28bcfd30 2569 This address is copied into PC. This routine returns non-zero on
436675d3 2570 success. */
c906108c 2571
8201327c 2572static int
60ade65d 2573i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2574{
436675d3 2575 gdb_byte buf[4];
c906108c 2576 CORE_ADDR sp, jb_addr;
20a6ec49 2577 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2579 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2580
8201327c
MK
2581 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2582 longjmp will land. */
2583 if (jb_pc_offset == -1)
c906108c
SS
2584 return 0;
2585
436675d3 2586 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2587 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2588 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2589 return 0;
2590
e17a4113 2591 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2592 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2593 return 0;
c906108c 2594
e17a4113 2595 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2596 return 1;
2597}
fc338970 2598\f
c906108c 2599
7ccc1c74
JM
2600/* Check whether TYPE must be 16-byte-aligned when passed as a
2601 function argument. 16-byte vectors, _Decimal128 and structures or
2602 unions containing such types must be 16-byte-aligned; other
2603 arguments are 4-byte-aligned. */
2604
2605static int
2606i386_16_byte_align_p (struct type *type)
2607{
2608 type = check_typedef (type);
2609 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2610 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2611 && TYPE_LENGTH (type) == 16)
2612 return 1;
2613 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2614 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2615 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2616 || TYPE_CODE (type) == TYPE_CODE_UNION)
2617 {
2618 int i;
2619 for (i = 0; i < TYPE_NFIELDS (type); i++)
2620 {
2621 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2622 return 1;
2623 }
2624 }
2625 return 0;
2626}
2627
a9b8d892
JK
2628/* Implementation for set_gdbarch_push_dummy_code. */
2629
2630static CORE_ADDR
2631i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2632 struct value **args, int nargs, struct type *value_type,
2633 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2634 struct regcache *regcache)
2635{
2636 /* Use 0xcc breakpoint - 1 byte. */
2637 *bp_addr = sp - 1;
2638 *real_pc = funaddr;
2639
2640 /* Keep the stack aligned. */
2641 return sp - 16;
2642}
2643
3a1e71e3 2644static CORE_ADDR
7d9b040b 2645i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2646 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2647 struct value **args, CORE_ADDR sp, int struct_return,
2648 CORE_ADDR struct_addr)
22f8ba57 2649{
e17a4113 2650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2651 gdb_byte buf[4];
acd5c798 2652 int i;
7ccc1c74
JM
2653 int write_pass;
2654 int args_space = 0;
acd5c798 2655
7ccc1c74
JM
2656 /* Determine the total space required for arguments and struct
2657 return address in a first pass (allowing for 16-byte-aligned
2658 arguments), then push arguments in a second pass. */
2659
2660 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2661 {
7ccc1c74 2662 int args_space_used = 0;
7ccc1c74
JM
2663
2664 if (struct_return)
2665 {
2666 if (write_pass)
2667 {
2668 /* Push value address. */
e17a4113 2669 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2670 write_memory (sp, buf, 4);
2671 args_space_used += 4;
2672 }
2673 else
2674 args_space += 4;
2675 }
2676
2677 for (i = 0; i < nargs; i++)
2678 {
2679 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2680
7ccc1c74
JM
2681 if (write_pass)
2682 {
2683 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2684 args_space_used = align_up (args_space_used, 16);
acd5c798 2685
7ccc1c74
JM
2686 write_memory (sp + args_space_used,
2687 value_contents_all (args[i]), len);
2688 /* The System V ABI says that:
acd5c798 2689
7ccc1c74
JM
2690 "An argument's size is increased, if necessary, to make it a
2691 multiple of [32-bit] words. This may require tail padding,
2692 depending on the size of the argument."
22f8ba57 2693
7ccc1c74
JM
2694 This makes sure the stack stays word-aligned. */
2695 args_space_used += align_up (len, 4);
2696 }
2697 else
2698 {
2699 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2700 args_space = align_up (args_space, 16);
7ccc1c74
JM
2701 args_space += align_up (len, 4);
2702 }
2703 }
2704
2705 if (!write_pass)
2706 {
7ccc1c74 2707 sp -= args_space;
284c5a60
MK
2708
2709 /* The original System V ABI only requires word alignment,
2710 but modern incarnations need 16-byte alignment in order
2711 to support SSE. Since wasting a few bytes here isn't
2712 harmful we unconditionally enforce 16-byte alignment. */
2713 sp &= ~0xf;
7ccc1c74 2714 }
22f8ba57
MK
2715 }
2716
acd5c798
MK
2717 /* Store return address. */
2718 sp -= 4;
e17a4113 2719 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2720 write_memory (sp, buf, 4);
2721
2722 /* Finally, update the stack pointer... */
e17a4113 2723 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2724 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2725
2726 /* ...and fake a frame pointer. */
2727 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2728
3e210248
AC
2729 /* MarkK wrote: This "+ 8" is all over the place:
2730 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2731 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2732 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2733 definition of the stack address of a frame. Otherwise frame id
2734 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2735 stack address *before* the function call as a frame's CFA. On
2736 the i386, when %ebp is used as a frame pointer, the offset
2737 between the contents %ebp and the CFA as defined by GCC. */
2738 return sp + 8;
22f8ba57
MK
2739}
2740
1a309862
MK
2741/* These registers are used for returning integers (and on some
2742 targets also for returning `struct' and `union' values when their
ef9dff19 2743 size and alignment match an integer type). */
acd5c798
MK
2744#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2745#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2746
c5e656c1
MK
2747/* Read, for architecture GDBARCH, a function return value of TYPE
2748 from REGCACHE, and copy that into VALBUF. */
1a309862 2749
3a1e71e3 2750static void
c5e656c1 2751i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2752 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2753{
c5e656c1 2754 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2755 int len = TYPE_LENGTH (type);
63c0089f 2756 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2757
1e8d0a7b 2758 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2759 {
5716833c 2760 if (tdep->st0_regnum < 0)
1a309862 2761 {
8a3fe4f8 2762 warning (_("Cannot find floating-point return value."));
1a309862 2763 memset (valbuf, 0, len);
ef9dff19 2764 return;
1a309862
MK
2765 }
2766
c6ba6f0d
MK
2767 /* Floating-point return values can be found in %st(0). Convert
2768 its contents to the desired type. This is probably not
2769 exactly how it would happen on the target itself, but it is
2770 the best we can do. */
acd5c798 2771 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2772 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2773 }
2774 else
c5aa993b 2775 {
875f8d0e
UW
2776 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2777 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2778
2779 if (len <= low_size)
00f8375e 2780 {
0818c12a 2781 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2782 memcpy (valbuf, buf, len);
2783 }
d4f3574e
SS
2784 else if (len <= (low_size + high_size))
2785 {
0818c12a 2786 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2787 memcpy (valbuf, buf, low_size);
0818c12a 2788 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2789 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2790 }
2791 else
8e65ff28 2792 internal_error (__FILE__, __LINE__,
1777feb0
MS
2793 _("Cannot extract return value of %d bytes long."),
2794 len);
c906108c
SS
2795 }
2796}
2797
c5e656c1
MK
2798/* Write, for architecture GDBARCH, a function return value of TYPE
2799 from VALBUF into REGCACHE. */
ef9dff19 2800
3a1e71e3 2801static void
c5e656c1 2802i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2803 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2804{
c5e656c1 2805 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2806 int len = TYPE_LENGTH (type);
2807
1e8d0a7b 2808 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2809 {
3d7f4f49 2810 ULONGEST fstat;
63c0089f 2811 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2812
5716833c 2813 if (tdep->st0_regnum < 0)
ef9dff19 2814 {
8a3fe4f8 2815 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2816 return;
2817 }
2818
635b0cc1
MK
2819 /* Returning floating-point values is a bit tricky. Apart from
2820 storing the return value in %st(0), we have to simulate the
2821 state of the FPU at function return point. */
2822
c6ba6f0d
MK
2823 /* Convert the value found in VALBUF to the extended
2824 floating-point format used by the FPU. This is probably
2825 not exactly how it would happen on the target itself, but
2826 it is the best we can do. */
27067745 2827 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2828 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2829
635b0cc1
MK
2830 /* Set the top of the floating-point register stack to 7. The
2831 actual value doesn't really matter, but 7 is what a normal
2832 function return would end up with if the program started out
2833 with a freshly initialized FPU. */
20a6ec49 2834 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2835 fstat |= (7 << 11);
20a6ec49 2836 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2837
635b0cc1
MK
2838 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2839 the floating-point register stack to 7, the appropriate value
2840 for the tag word is 0x3fff. */
20a6ec49 2841 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2842 }
2843 else
2844 {
875f8d0e
UW
2845 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2846 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2847
2848 if (len <= low_size)
3d7f4f49 2849 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2850 else if (len <= (low_size + high_size))
2851 {
3d7f4f49
MK
2852 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2853 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2854 len - low_size, valbuf + low_size);
ef9dff19
MK
2855 }
2856 else
8e65ff28 2857 internal_error (__FILE__, __LINE__,
e2e0b3e5 2858 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2859 }
2860}
fc338970 2861\f
ef9dff19 2862
8201327c
MK
2863/* This is the variable that is set with "set struct-convention", and
2864 its legitimate values. */
2865static const char default_struct_convention[] = "default";
2866static const char pcc_struct_convention[] = "pcc";
2867static const char reg_struct_convention[] = "reg";
40478521 2868static const char *const valid_conventions[] =
8201327c
MK
2869{
2870 default_struct_convention,
2871 pcc_struct_convention,
2872 reg_struct_convention,
2873 NULL
2874};
2875static const char *struct_convention = default_struct_convention;
2876
0e4377e1
JB
2877/* Return non-zero if TYPE, which is assumed to be a structure,
2878 a union type, or an array type, should be returned in registers
2879 for architecture GDBARCH. */
c5e656c1 2880
8201327c 2881static int
c5e656c1 2882i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2883{
c5e656c1
MK
2884 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2885 enum type_code code = TYPE_CODE (type);
2886 int len = TYPE_LENGTH (type);
8201327c 2887
0e4377e1
JB
2888 gdb_assert (code == TYPE_CODE_STRUCT
2889 || code == TYPE_CODE_UNION
2890 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2891
2892 if (struct_convention == pcc_struct_convention
2893 || (struct_convention == default_struct_convention
2894 && tdep->struct_return == pcc_struct_return))
2895 return 0;
2896
9edde48e
MK
2897 /* Structures consisting of a single `float', `double' or 'long
2898 double' member are returned in %st(0). */
2899 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2900 {
2901 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2902 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2903 return (len == 4 || len == 8 || len == 12);
2904 }
2905
c5e656c1
MK
2906 return (len == 1 || len == 2 || len == 4 || len == 8);
2907}
2908
2909/* Determine, for architecture GDBARCH, how a return value of TYPE
2910 should be returned. If it is supposed to be returned in registers,
2911 and READBUF is non-zero, read the appropriate value from REGCACHE,
2912 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2913 from WRITEBUF into REGCACHE. */
2914
2915static enum return_value_convention
6a3a010b 2916i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2917 struct type *type, struct regcache *regcache,
2918 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2919{
2920 enum type_code code = TYPE_CODE (type);
2921
5daa78cc
TJB
2922 if (((code == TYPE_CODE_STRUCT
2923 || code == TYPE_CODE_UNION
2924 || code == TYPE_CODE_ARRAY)
2925 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2926 /* Complex double and long double uses the struct return covention. */
2927 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2928 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2929 /* 128-bit decimal float uses the struct return convention. */
2930 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2931 {
2932 /* The System V ABI says that:
2933
2934 "A function that returns a structure or union also sets %eax
2935 to the value of the original address of the caller's area
2936 before it returns. Thus when the caller receives control
2937 again, the address of the returned object resides in register
2938 %eax and can be used to access the object."
2939
2940 So the ABI guarantees that we can always find the return
2941 value just after the function has returned. */
2942
0e4377e1
JB
2943 /* Note that the ABI doesn't mention functions returning arrays,
2944 which is something possible in certain languages such as Ada.
2945 In this case, the value is returned as if it was wrapped in
2946 a record, so the convention applied to records also applies
2947 to arrays. */
2948
31db7b6c
MK
2949 if (readbuf)
2950 {
2951 ULONGEST addr;
2952
2953 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2954 read_memory (addr, readbuf, TYPE_LENGTH (type));
2955 }
2956
2957 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2958 }
c5e656c1
MK
2959
2960 /* This special case is for structures consisting of a single
9edde48e
MK
2961 `float', `double' or 'long double' member. These structures are
2962 returned in %st(0). For these structures, we call ourselves
2963 recursively, changing TYPE into the type of the first member of
2964 the structure. Since that should work for all structures that
2965 have only one member, we don't bother to check the member's type
2966 here. */
c5e656c1
MK
2967 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2968 {
2969 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2970 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2971 readbuf, writebuf);
c5e656c1
MK
2972 }
2973
2974 if (readbuf)
2975 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2976 if (writebuf)
2977 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2978
c5e656c1 2979 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2980}
2981\f
2982
27067745
UW
2983struct type *
2984i387_ext_type (struct gdbarch *gdbarch)
2985{
2986 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2987
2988 if (!tdep->i387_ext_type)
90884b2b
L
2989 {
2990 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2991 gdb_assert (tdep->i387_ext_type != NULL);
2992 }
27067745
UW
2993
2994 return tdep->i387_ext_type;
2995}
2996
1dbcd68c
WT
2997/* Construct type for pseudo BND registers. We can't use
2998 tdesc_find_type since a complement of one value has to be used
2999 to describe the upper bound. */
3000
3001static struct type *
3002i386_bnd_type (struct gdbarch *gdbarch)
3003{
3004 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3005
3006
3007 if (!tdep->i386_bnd_type)
3008 {
3009 struct type *t, *bound_t;
3010 const struct builtin_type *bt = builtin_type (gdbarch);
3011
3012 /* The type we're building is described bellow: */
3013#if 0
3014 struct __bound128
3015 {
3016 void *lbound;
3017 void *ubound; /* One complement of raw ubound field. */
3018 };
3019#endif
3020
3021 t = arch_composite_type (gdbarch,
3022 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3023
3024 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3025 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3026
3027 TYPE_NAME (t) = "builtin_type_bound128";
3028 tdep->i386_bnd_type = t;
3029 }
3030
3031 return tdep->i386_bnd_type;
3032}
3033
01f9f808
MS
3034/* Construct vector type for pseudo ZMM registers. We can't use
3035 tdesc_find_type since ZMM isn't described in target description. */
3036
3037static struct type *
3038i386_zmm_type (struct gdbarch *gdbarch)
3039{
3040 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3041
3042 if (!tdep->i386_zmm_type)
3043 {
3044 const struct builtin_type *bt = builtin_type (gdbarch);
3045
3046 /* The type we're building is this: */
3047#if 0
3048 union __gdb_builtin_type_vec512i
3049 {
3050 int128_t uint128[4];
3051 int64_t v4_int64[8];
3052 int32_t v8_int32[16];
3053 int16_t v16_int16[32];
3054 int8_t v32_int8[64];
3055 double v4_double[8];
3056 float v8_float[16];
3057 };
3058#endif
3059
3060 struct type *t;
3061
3062 t = arch_composite_type (gdbarch,
3063 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3064 append_composite_type_field (t, "v16_float",
3065 init_vector_type (bt->builtin_float, 16));
3066 append_composite_type_field (t, "v8_double",
3067 init_vector_type (bt->builtin_double, 8));
3068 append_composite_type_field (t, "v64_int8",
3069 init_vector_type (bt->builtin_int8, 64));
3070 append_composite_type_field (t, "v32_int16",
3071 init_vector_type (bt->builtin_int16, 32));
3072 append_composite_type_field (t, "v16_int32",
3073 init_vector_type (bt->builtin_int32, 16));
3074 append_composite_type_field (t, "v8_int64",
3075 init_vector_type (bt->builtin_int64, 8));
3076 append_composite_type_field (t, "v4_int128",
3077 init_vector_type (bt->builtin_int128, 4));
3078
3079 TYPE_VECTOR (t) = 1;
3080 TYPE_NAME (t) = "builtin_type_vec512i";
3081 tdep->i386_zmm_type = t;
3082 }
3083
3084 return tdep->i386_zmm_type;
3085}
3086
c131fcee
L
3087/* Construct vector type for pseudo YMM registers. We can't use
3088 tdesc_find_type since YMM isn't described in target description. */
3089
3090static struct type *
3091i386_ymm_type (struct gdbarch *gdbarch)
3092{
3093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3094
3095 if (!tdep->i386_ymm_type)
3096 {
3097 const struct builtin_type *bt = builtin_type (gdbarch);
3098
3099 /* The type we're building is this: */
3100#if 0
3101 union __gdb_builtin_type_vec256i
3102 {
3103 int128_t uint128[2];
3104 int64_t v2_int64[4];
3105 int32_t v4_int32[8];
3106 int16_t v8_int16[16];
3107 int8_t v16_int8[32];
3108 double v2_double[4];
3109 float v4_float[8];
3110 };
3111#endif
3112
3113 struct type *t;
3114
3115 t = arch_composite_type (gdbarch,
3116 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3117 append_composite_type_field (t, "v8_float",
3118 init_vector_type (bt->builtin_float, 8));
3119 append_composite_type_field (t, "v4_double",
3120 init_vector_type (bt->builtin_double, 4));
3121 append_composite_type_field (t, "v32_int8",
3122 init_vector_type (bt->builtin_int8, 32));
3123 append_composite_type_field (t, "v16_int16",
3124 init_vector_type (bt->builtin_int16, 16));
3125 append_composite_type_field (t, "v8_int32",
3126 init_vector_type (bt->builtin_int32, 8));
3127 append_composite_type_field (t, "v4_int64",
3128 init_vector_type (bt->builtin_int64, 4));
3129 append_composite_type_field (t, "v2_int128",
3130 init_vector_type (bt->builtin_int128, 2));
3131
3132 TYPE_VECTOR (t) = 1;
0c5acf93 3133 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3134 tdep->i386_ymm_type = t;
3135 }
3136
3137 return tdep->i386_ymm_type;
3138}
3139
794ac428 3140/* Construct vector type for MMX registers. */
90884b2b 3141static struct type *
794ac428
UW
3142i386_mmx_type (struct gdbarch *gdbarch)
3143{
3144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3145
3146 if (!tdep->i386_mmx_type)
3147 {
df4df182
UW
3148 const struct builtin_type *bt = builtin_type (gdbarch);
3149
794ac428
UW
3150 /* The type we're building is this: */
3151#if 0
3152 union __gdb_builtin_type_vec64i
3153 {
3154 int64_t uint64;
3155 int32_t v2_int32[2];
3156 int16_t v4_int16[4];
3157 int8_t v8_int8[8];
3158 };
3159#endif
3160
3161 struct type *t;
3162
e9bb382b
UW
3163 t = arch_composite_type (gdbarch,
3164 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3165
3166 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3167 append_composite_type_field (t, "v2_int32",
df4df182 3168 init_vector_type (bt->builtin_int32, 2));
794ac428 3169 append_composite_type_field (t, "v4_int16",
df4df182 3170 init_vector_type (bt->builtin_int16, 4));
794ac428 3171 append_composite_type_field (t, "v8_int8",
df4df182 3172 init_vector_type (bt->builtin_int8, 8));
794ac428 3173
876cecd0 3174 TYPE_VECTOR (t) = 1;
794ac428
UW
3175 TYPE_NAME (t) = "builtin_type_vec64i";
3176 tdep->i386_mmx_type = t;
3177 }
3178
3179 return tdep->i386_mmx_type;
3180}
3181
d7a0d72c 3182/* Return the GDB type object for the "standard" data type of data in
1777feb0 3183 register REGNUM. */
d7a0d72c 3184
fff4548b 3185struct type *
90884b2b 3186i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3187{
1dbcd68c
WT
3188 if (i386_bnd_regnum_p (gdbarch, regnum))
3189 return i386_bnd_type (gdbarch);
1ba53b71
L
3190 if (i386_mmx_regnum_p (gdbarch, regnum))
3191 return i386_mmx_type (gdbarch);
c131fcee
L
3192 else if (i386_ymm_regnum_p (gdbarch, regnum))
3193 return i386_ymm_type (gdbarch);
01f9f808
MS
3194 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3195 return i386_ymm_type (gdbarch);
3196 else if (i386_zmm_regnum_p (gdbarch, regnum))
3197 return i386_zmm_type (gdbarch);
1ba53b71
L
3198 else
3199 {
3200 const struct builtin_type *bt = builtin_type (gdbarch);
3201 if (i386_byte_regnum_p (gdbarch, regnum))
3202 return bt->builtin_int8;
3203 else if (i386_word_regnum_p (gdbarch, regnum))
3204 return bt->builtin_int16;
3205 else if (i386_dword_regnum_p (gdbarch, regnum))
3206 return bt->builtin_int32;
01f9f808
MS
3207 else if (i386_k_regnum_p (gdbarch, regnum))
3208 return bt->builtin_int64;
1ba53b71
L
3209 }
3210
3211 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3212}
3213
28fc6740 3214/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3215 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3216
3217static int
c86c27af 3218i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 3219{
5716833c
MK
3220 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3221 int mmxreg, fpreg;
28fc6740
AC
3222 ULONGEST fstat;
3223 int tos;
c86c27af 3224
5716833c 3225 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 3226 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3227 tos = (fstat >> 11) & 0x7;
5716833c
MK
3228 fpreg = (mmxreg + tos) % 8;
3229
20a6ec49 3230 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3231}
3232
3543a589
TT
3233/* A helper function for us by i386_pseudo_register_read_value and
3234 amd64_pseudo_register_read_value. It does all the work but reads
3235 the data into an already-allocated value. */
3236
3237void
3238i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3239 struct regcache *regcache,
3240 int regnum,
3241 struct value *result_value)
28fc6740 3242{
1ba53b71 3243 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 3244 enum register_status status;
3543a589 3245 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3246
5716833c 3247 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3248 {
c86c27af
MK
3249 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3250
28fc6740 3251 /* Extract (always little endian). */
05d1431c
PA
3252 status = regcache_raw_read (regcache, fpnum, raw_buf);
3253 if (status != REG_VALID)
3543a589
TT
3254 mark_value_bytes_unavailable (result_value, 0,
3255 TYPE_LENGTH (value_type (result_value)));
3256 else
3257 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3258 }
3259 else
1ba53b71
L
3260 {
3261 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3262 if (i386_bnd_regnum_p (gdbarch, regnum))
3263 {
3264 regnum -= tdep->bnd0_regnum;
1ba53b71 3265
1dbcd68c
WT
3266 /* Extract (always little endian). Read lower 128bits. */
3267 status = regcache_raw_read (regcache,
3268 I387_BND0R_REGNUM (tdep) + regnum,
3269 raw_buf);
3270 if (status != REG_VALID)
3271 mark_value_bytes_unavailable (result_value, 0, 16);
3272 else
3273 {
3274 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3275 LONGEST upper, lower;
3276 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3277
3278 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3279 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3280 upper = ~upper;
3281
3282 memcpy (buf, &lower, size);
3283 memcpy (buf + size, &upper, size);
3284 }
3285 }
01f9f808
MS
3286 else if (i386_k_regnum_p (gdbarch, regnum))
3287 {
3288 regnum -= tdep->k0_regnum;
3289
3290 /* Extract (always little endian). */
3291 status = regcache_raw_read (regcache,
3292 tdep->k0_regnum + regnum,
3293 raw_buf);
3294 if (status != REG_VALID)
3295 mark_value_bytes_unavailable (result_value, 0, 8);
3296 else
3297 memcpy (buf, raw_buf, 8);
3298 }
3299 else if (i386_zmm_regnum_p (gdbarch, regnum))
3300 {
3301 regnum -= tdep->zmm0_regnum;
3302
3303 if (regnum < num_lower_zmm_regs)
3304 {
3305 /* Extract (always little endian). Read lower 128bits. */
3306 status = regcache_raw_read (regcache,
3307 I387_XMM0_REGNUM (tdep) + regnum,
3308 raw_buf);
3309 if (status != REG_VALID)
3310 mark_value_bytes_unavailable (result_value, 0, 16);
3311 else
3312 memcpy (buf, raw_buf, 16);
3313
3314 /* Extract (always little endian). Read upper 128bits. */
3315 status = regcache_raw_read (regcache,
3316 tdep->ymm0h_regnum + regnum,
3317 raw_buf);
3318 if (status != REG_VALID)
3319 mark_value_bytes_unavailable (result_value, 16, 16);
3320 else
3321 memcpy (buf + 16, raw_buf, 16);
3322 }
3323 else
3324 {
3325 /* Extract (always little endian). Read lower 128bits. */
3326 status = regcache_raw_read (regcache,
3327 I387_XMM16_REGNUM (tdep) + regnum
3328 - num_lower_zmm_regs,
3329 raw_buf);
3330 if (status != REG_VALID)
3331 mark_value_bytes_unavailable (result_value, 0, 16);
3332 else
3333 memcpy (buf, raw_buf, 16);
3334
3335 /* Extract (always little endian). Read upper 128bits. */
3336 status = regcache_raw_read (regcache,
3337 I387_YMM16H_REGNUM (tdep) + regnum
3338 - num_lower_zmm_regs,
3339 raw_buf);
3340 if (status != REG_VALID)
3341 mark_value_bytes_unavailable (result_value, 16, 16);
3342 else
3343 memcpy (buf + 16, raw_buf, 16);
3344 }
3345
3346 /* Read upper 256bits. */
3347 status = regcache_raw_read (regcache,
3348 tdep->zmm0h_regnum + regnum,
3349 raw_buf);
3350 if (status != REG_VALID)
3351 mark_value_bytes_unavailable (result_value, 32, 32);
3352 else
3353 memcpy (buf + 32, raw_buf, 32);
3354 }
1dbcd68c 3355 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3356 {
3357 regnum -= tdep->ymm0_regnum;
3358
1777feb0 3359 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3360 status = regcache_raw_read (regcache,
3361 I387_XMM0_REGNUM (tdep) + regnum,
3362 raw_buf);
3363 if (status != REG_VALID)
3543a589
TT
3364 mark_value_bytes_unavailable (result_value, 0, 16);
3365 else
3366 memcpy (buf, raw_buf, 16);
c131fcee 3367 /* Read upper 128bits. */
05d1431c
PA
3368 status = regcache_raw_read (regcache,
3369 tdep->ymm0h_regnum + regnum,
3370 raw_buf);
3371 if (status != REG_VALID)
3543a589
TT
3372 mark_value_bytes_unavailable (result_value, 16, 32);
3373 else
3374 memcpy (buf + 16, raw_buf, 16);
c131fcee 3375 }
01f9f808
MS
3376 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3377 {
3378 regnum -= tdep->ymm16_regnum;
3379 /* Extract (always little endian). Read lower 128bits. */
3380 status = regcache_raw_read (regcache,
3381 I387_XMM16_REGNUM (tdep) + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 0, 16);
3385 else
3386 memcpy (buf, raw_buf, 16);
3387 /* Read upper 128bits. */
3388 status = regcache_raw_read (regcache,
3389 tdep->ymm16h_regnum + regnum,
3390 raw_buf);
3391 if (status != REG_VALID)
3392 mark_value_bytes_unavailable (result_value, 16, 16);
3393 else
3394 memcpy (buf + 16, raw_buf, 16);
3395 }
c131fcee 3396 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3397 {
3398 int gpnum = regnum - tdep->ax_regnum;
3399
3400 /* Extract (always little endian). */
05d1431c
PA
3401 status = regcache_raw_read (regcache, gpnum, raw_buf);
3402 if (status != REG_VALID)
3543a589
TT
3403 mark_value_bytes_unavailable (result_value, 0,
3404 TYPE_LENGTH (value_type (result_value)));
3405 else
3406 memcpy (buf, raw_buf, 2);
1ba53b71
L
3407 }
3408 else if (i386_byte_regnum_p (gdbarch, regnum))
3409 {
3410 /* Check byte pseudo registers last since this function will
3411 be called from amd64_pseudo_register_read, which handles
3412 byte pseudo registers differently. */
3413 int gpnum = regnum - tdep->al_regnum;
3414
3415 /* Extract (always little endian). We read both lower and
3416 upper registers. */
05d1431c
PA
3417 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3418 if (status != REG_VALID)
3543a589
TT
3419 mark_value_bytes_unavailable (result_value, 0,
3420 TYPE_LENGTH (value_type (result_value)));
3421 else if (gpnum >= 4)
1ba53b71
L
3422 memcpy (buf, raw_buf + 1, 1);
3423 else
3424 memcpy (buf, raw_buf, 1);
3425 }
3426 else
3427 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3428 }
3543a589
TT
3429}
3430
3431static struct value *
3432i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3433 struct regcache *regcache,
3434 int regnum)
3435{
3436 struct value *result;
3437
3438 result = allocate_value (register_type (gdbarch, regnum));
3439 VALUE_LVAL (result) = lval_register;
3440 VALUE_REGNUM (result) = regnum;
3441
3442 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3443
3543a589 3444 return result;
28fc6740
AC
3445}
3446
1ba53b71 3447void
28fc6740 3448i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3449 int regnum, const gdb_byte *buf)
28fc6740 3450{
1ba53b71
L
3451 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3452
5716833c 3453 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3454 {
c86c27af
MK
3455 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3456
28fc6740 3457 /* Read ... */
1ba53b71 3458 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3459 /* ... Modify ... (always little endian). */
1ba53b71 3460 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3461 /* ... Write. */
1ba53b71 3462 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3463 }
3464 else
1ba53b71
L
3465 {
3466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3467
1dbcd68c
WT
3468 if (i386_bnd_regnum_p (gdbarch, regnum))
3469 {
3470 ULONGEST upper, lower;
3471 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3472 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3473
3474 /* New values from input value. */
3475 regnum -= tdep->bnd0_regnum;
3476 lower = extract_unsigned_integer (buf, size, byte_order);
3477 upper = extract_unsigned_integer (buf + size, size, byte_order);
3478
3479 /* Fetching register buffer. */
3480 regcache_raw_read (regcache,
3481 I387_BND0R_REGNUM (tdep) + regnum,
3482 raw_buf);
3483
3484 upper = ~upper;
3485
3486 /* Set register bits. */
3487 memcpy (raw_buf, &lower, 8);
3488 memcpy (raw_buf + 8, &upper, 8);
3489
3490
3491 regcache_raw_write (regcache,
3492 I387_BND0R_REGNUM (tdep) + regnum,
3493 raw_buf);
3494 }
01f9f808
MS
3495 else if (i386_k_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->k0_regnum;
3498
3499 regcache_raw_write (regcache,
3500 tdep->k0_regnum + regnum,
3501 buf);
3502 }
3503 else if (i386_zmm_regnum_p (gdbarch, regnum))
3504 {
3505 regnum -= tdep->zmm0_regnum;
3506
3507 if (regnum < num_lower_zmm_regs)
3508 {
3509 /* Write lower 128bits. */
3510 regcache_raw_write (regcache,
3511 I387_XMM0_REGNUM (tdep) + regnum,
3512 buf);
3513 /* Write upper 128bits. */
3514 regcache_raw_write (regcache,
3515 I387_YMM0_REGNUM (tdep) + regnum,
3516 buf + 16);
3517 }
3518 else
3519 {
3520 /* Write lower 128bits. */
3521 regcache_raw_write (regcache,
3522 I387_XMM16_REGNUM (tdep) + regnum
3523 - num_lower_zmm_regs,
3524 buf);
3525 /* Write upper 128bits. */
3526 regcache_raw_write (regcache,
3527 I387_YMM16H_REGNUM (tdep) + regnum
3528 - num_lower_zmm_regs,
3529 buf + 16);
3530 }
3531 /* Write upper 256bits. */
3532 regcache_raw_write (regcache,
3533 tdep->zmm0h_regnum + regnum,
3534 buf + 32);
3535 }
1dbcd68c 3536 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3537 {
3538 regnum -= tdep->ymm0_regnum;
3539
3540 /* ... Write lower 128bits. */
3541 regcache_raw_write (regcache,
3542 I387_XMM0_REGNUM (tdep) + regnum,
3543 buf);
3544 /* ... Write upper 128bits. */
3545 regcache_raw_write (regcache,
3546 tdep->ymm0h_regnum + regnum,
3547 buf + 16);
3548 }
01f9f808
MS
3549 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3550 {
3551 regnum -= tdep->ymm16_regnum;
3552
3553 /* ... Write lower 128bits. */
3554 regcache_raw_write (regcache,
3555 I387_XMM16_REGNUM (tdep) + regnum,
3556 buf);
3557 /* ... Write upper 128bits. */
3558 regcache_raw_write (regcache,
3559 tdep->ymm16h_regnum + regnum,
3560 buf + 16);
3561 }
c131fcee 3562 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3563 {
3564 int gpnum = regnum - tdep->ax_regnum;
3565
3566 /* Read ... */
3567 regcache_raw_read (regcache, gpnum, raw_buf);
3568 /* ... Modify ... (always little endian). */
3569 memcpy (raw_buf, buf, 2);
3570 /* ... Write. */
3571 regcache_raw_write (regcache, gpnum, raw_buf);
3572 }
3573 else if (i386_byte_regnum_p (gdbarch, regnum))
3574 {
3575 /* Check byte pseudo registers last since this function will
3576 be called from amd64_pseudo_register_read, which handles
3577 byte pseudo registers differently. */
3578 int gpnum = regnum - tdep->al_regnum;
3579
3580 /* Read ... We read both lower and upper registers. */
3581 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3582 /* ... Modify ... (always little endian). */
3583 if (gpnum >= 4)
3584 memcpy (raw_buf + 1, buf, 1);
3585 else
3586 memcpy (raw_buf, buf, 1);
3587 /* ... Write. */
3588 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3589 }
3590 else
3591 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3592 }
28fc6740 3593}
ff2e87ac
AC
3594\f
3595
ff2e87ac
AC
3596/* Return the register number of the register allocated by GCC after
3597 REGNUM, or -1 if there is no such register. */
3598
3599static int
3600i386_next_regnum (int regnum)
3601{
3602 /* GCC allocates the registers in the order:
3603
3604 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3605
3606 Since storing a variable in %esp doesn't make any sense we return
3607 -1 for %ebp and for %esp itself. */
3608 static int next_regnum[] =
3609 {
3610 I386_EDX_REGNUM, /* Slot for %eax. */
3611 I386_EBX_REGNUM, /* Slot for %ecx. */
3612 I386_ECX_REGNUM, /* Slot for %edx. */
3613 I386_ESI_REGNUM, /* Slot for %ebx. */
3614 -1, -1, /* Slots for %esp and %ebp. */
3615 I386_EDI_REGNUM, /* Slot for %esi. */
3616 I386_EBP_REGNUM /* Slot for %edi. */
3617 };
3618
de5b9bb9 3619 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3620 return next_regnum[regnum];
28fc6740 3621
ff2e87ac
AC
3622 return -1;
3623}
3624
3625/* Return nonzero if a value of type TYPE stored in register REGNUM
3626 needs any special handling. */
d7a0d72c 3627
3a1e71e3 3628static int
1777feb0
MS
3629i386_convert_register_p (struct gdbarch *gdbarch,
3630 int regnum, struct type *type)
d7a0d72c 3631{
de5b9bb9
MK
3632 int len = TYPE_LENGTH (type);
3633
ff2e87ac
AC
3634 /* Values may be spread across multiple registers. Most debugging
3635 formats aren't expressive enough to specify the locations, so
3636 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3637 have a length that is a multiple of the word size, since GCC
3638 doesn't seem to put any other types into registers. */
3639 if (len > 4 && len % 4 == 0)
3640 {
3641 int last_regnum = regnum;
3642
3643 while (len > 4)
3644 {
3645 last_regnum = i386_next_regnum (last_regnum);
3646 len -= 4;
3647 }
3648
3649 if (last_regnum != -1)
3650 return 1;
3651 }
ff2e87ac 3652
0abe36f5 3653 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3654}
3655
ff2e87ac
AC
3656/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3657 return its contents in TO. */
ac27f131 3658
8dccd430 3659static int
ff2e87ac 3660i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3661 struct type *type, gdb_byte *to,
3662 int *optimizedp, int *unavailablep)
ac27f131 3663{
20a6ec49 3664 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3665 int len = TYPE_LENGTH (type);
de5b9bb9 3666
20a6ec49 3667 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3668 return i387_register_to_value (frame, regnum, type, to,
3669 optimizedp, unavailablep);
ff2e87ac 3670
fd35795f 3671 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3672
3673 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3674
de5b9bb9
MK
3675 while (len > 0)
3676 {
3677 gdb_assert (regnum != -1);
20a6ec49 3678 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3679
8dccd430
PA
3680 if (!get_frame_register_bytes (frame, regnum, 0,
3681 register_size (gdbarch, regnum),
3682 to, optimizedp, unavailablep))
3683 return 0;
3684
de5b9bb9
MK
3685 regnum = i386_next_regnum (regnum);
3686 len -= 4;
42835c2b 3687 to += 4;
de5b9bb9 3688 }
8dccd430
PA
3689
3690 *optimizedp = *unavailablep = 0;
3691 return 1;
ac27f131
MK
3692}
3693
ff2e87ac
AC
3694/* Write the contents FROM of a value of type TYPE into register
3695 REGNUM in frame FRAME. */
ac27f131 3696
3a1e71e3 3697static void
ff2e87ac 3698i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3699 struct type *type, const gdb_byte *from)
ac27f131 3700{
de5b9bb9 3701 int len = TYPE_LENGTH (type);
de5b9bb9 3702
20a6ec49 3703 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3704 {
d532c08f
MK
3705 i387_value_to_register (frame, regnum, type, from);
3706 return;
3707 }
3d261580 3708
fd35795f 3709 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3710
3711 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3712
de5b9bb9
MK
3713 while (len > 0)
3714 {
3715 gdb_assert (regnum != -1);
875f8d0e 3716 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3717
42835c2b 3718 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3719 regnum = i386_next_regnum (regnum);
3720 len -= 4;
42835c2b 3721 from += 4;
de5b9bb9 3722 }
ac27f131 3723}
ff2e87ac 3724\f
7fdafb5a
MK
3725/* Supply register REGNUM from the buffer specified by GREGS and LEN
3726 in the general-purpose register set REGSET to register cache
3727 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3728
20187ed5 3729void
473f17b0
MK
3730i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3731 int regnum, const void *gregs, size_t len)
3732{
09424cff
AA
3733 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3734 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3735 const gdb_byte *regs = gregs;
473f17b0
MK
3736 int i;
3737
1528345d 3738 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3739
3740 for (i = 0; i < tdep->gregset_num_regs; i++)
3741 {
3742 if ((regnum == i || regnum == -1)
3743 && tdep->gregset_reg_offset[i] != -1)
3744 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3745 }
3746}
3747
7fdafb5a
MK
3748/* Collect register REGNUM from the register cache REGCACHE and store
3749 it in the buffer specified by GREGS and LEN as described by the
3750 general-purpose register set REGSET. If REGNUM is -1, do this for
3751 all registers in REGSET. */
3752
ecc37a5a 3753static void
7fdafb5a
MK
3754i386_collect_gregset (const struct regset *regset,
3755 const struct regcache *regcache,
3756 int regnum, void *gregs, size_t len)
3757{
09424cff
AA
3758 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3759 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3760 gdb_byte *regs = gregs;
7fdafb5a
MK
3761 int i;
3762
1528345d 3763 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3764
3765 for (i = 0; i < tdep->gregset_num_regs; i++)
3766 {
3767 if ((regnum == i || regnum == -1)
3768 && tdep->gregset_reg_offset[i] != -1)
3769 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3770 }
3771}
3772
3773/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3774 in the floating-point register set REGSET to register cache
3775 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3776
3777static void
3778i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3779 int regnum, const void *fpregs, size_t len)
3780{
09424cff
AA
3781 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3782 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3783
66a72d25
MK
3784 if (len == I387_SIZEOF_FXSAVE)
3785 {
3786 i387_supply_fxsave (regcache, regnum, fpregs);
3787 return;
3788 }
3789
1528345d 3790 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3791 i387_supply_fsave (regcache, regnum, fpregs);
3792}
8446b36a 3793
2f305df1
MK
3794/* Collect register REGNUM from the register cache REGCACHE and store
3795 it in the buffer specified by FPREGS and LEN as described by the
3796 floating-point register set REGSET. If REGNUM is -1, do this for
3797 all registers in REGSET. */
7fdafb5a
MK
3798
3799static void
3800i386_collect_fpregset (const struct regset *regset,
3801 const struct regcache *regcache,
3802 int regnum, void *fpregs, size_t len)
3803{
09424cff
AA
3804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3805 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3806
3807 if (len == I387_SIZEOF_FXSAVE)
3808 {
3809 i387_collect_fxsave (regcache, regnum, fpregs);
3810 return;
3811 }
3812
1528345d 3813 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3814 i387_collect_fsave (regcache, regnum, fpregs);
3815}
3816
ecc37a5a
AA
3817/* Register set definitions. */
3818
3819const struct regset i386_gregset =
3820 {
3821 NULL, i386_supply_gregset, i386_collect_gregset
3822 };
3823
8f0435f7 3824const struct regset i386_fpregset =
ecc37a5a
AA
3825 {
3826 NULL, i386_supply_fpregset, i386_collect_fpregset
3827 };
3828
490496c3 3829/* Default iterator over core file register note sections. */
8446b36a 3830
490496c3
AA
3831void
3832i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3833 iterate_over_regset_sections_cb *cb,
3834 void *cb_data,
3835 const struct regcache *regcache)
8446b36a
MK
3836{
3837 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3838
490496c3
AA
3839 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3840 if (tdep->sizeof_fpregset)
3841 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
8446b36a 3842}
473f17b0 3843\f
fc338970 3844
fc338970 3845/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3846
3847CORE_ADDR
e17a4113
UW
3848i386_pe_skip_trampoline_code (struct frame_info *frame,
3849 CORE_ADDR pc, char *name)
c906108c 3850{
e17a4113
UW
3851 struct gdbarch *gdbarch = get_frame_arch (frame);
3852 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3853
3854 /* jmp *(dest) */
3855 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3856 {
e17a4113
UW
3857 unsigned long indirect =
3858 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3859 struct minimal_symbol *indsym =
7cbd4a93 3860 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3861 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3862
c5aa993b 3863 if (symname)
c906108c 3864 {
61012eef
GB
3865 if (startswith (symname, "__imp_")
3866 || startswith (symname, "_imp_"))
e17a4113
UW
3867 return name ? 1 :
3868 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3869 }
3870 }
fc338970 3871 return 0; /* Not a trampoline. */
c906108c 3872}
fc338970
MK
3873\f
3874
10458914
DJ
3875/* Return whether the THIS_FRAME corresponds to a sigtramp
3876 routine. */
8201327c 3877
4bd207ef 3878int
10458914 3879i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3880{
10458914 3881 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3882 const char *name;
911bc6ee
MK
3883
3884 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3885 return (name && strcmp ("_sigtramp", name) == 0);
3886}
3887\f
3888
fc338970
MK
3889/* We have two flavours of disassembly. The machinery on this page
3890 deals with switching between those. */
c906108c
SS
3891
3892static int
a89aa300 3893i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3894{
5e3397bb
MK
3895 gdb_assert (disassembly_flavor == att_flavor
3896 || disassembly_flavor == intel_flavor);
3897
3898 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3899 constified, cast to prevent a compiler warning. */
3900 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3901
3902 return print_insn_i386 (pc, info);
7a292a7a 3903}
fc338970 3904\f
3ce1502b 3905
8201327c
MK
3906/* There are a few i386 architecture variants that differ only
3907 slightly from the generic i386 target. For now, we don't give them
3908 their own source file, but include them here. As a consequence,
3909 they'll always be included. */
3ce1502b 3910
8201327c 3911/* System V Release 4 (SVR4). */
3ce1502b 3912
10458914
DJ
3913/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3914 routine. */
911bc6ee 3915
8201327c 3916static int
10458914 3917i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3918{
10458914 3919 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3920 const char *name;
911bc6ee 3921
05b4bd79 3922 /* The origin of these symbols is currently unknown. */
911bc6ee 3923 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3924 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
3925 || strcmp ("sigvechandler", name) == 0));
3926}
d2a7c97a 3927
10458914
DJ
3928/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3929 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3930
3a1e71e3 3931static CORE_ADDR
10458914 3932i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3933{
e17a4113
UW
3934 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3935 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3936 gdb_byte buf[4];
acd5c798 3937 CORE_ADDR sp;
3ce1502b 3938
10458914 3939 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3940 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3941
e17a4113 3942 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3943}
55aa24fb
SDJ
3944
3945\f
3946
3947/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3948 gdbarch.h. */
3949
3950int
3951i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3952{
3953 return (*s == '$' /* Literal number. */
3954 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3955 || (*s == '(' && s[1] == '%') /* Register indirection. */
3956 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3957}
3958
5acfdbae
SDJ
3959/* Helper function for i386_stap_parse_special_token.
3960
3961 This function parses operands of the form `-8+3+1(%rbp)', which
3962 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3963
3964 Return 1 if the operand was parsed successfully, zero
3965 otherwise. */
3966
3967static int
3968i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3969 struct stap_parse_info *p)
3970{
3971 const char *s = p->arg;
3972
3973 if (isdigit (*s) || *s == '-' || *s == '+')
3974 {
3975 int got_minus[3];
3976 int i;
3977 long displacements[3];
3978 const char *start;
3979 char *regname;
3980 int len;
3981 struct stoken str;
3982 char *endp;
3983
3984 got_minus[0] = 0;
3985 if (*s == '+')
3986 ++s;
3987 else if (*s == '-')
3988 {
3989 ++s;
3990 got_minus[0] = 1;
3991 }
3992
d7b30f67
SDJ
3993 if (!isdigit ((unsigned char) *s))
3994 return 0;
3995
5acfdbae
SDJ
3996 displacements[0] = strtol (s, &endp, 10);
3997 s = endp;
3998
3999 if (*s != '+' && *s != '-')
4000 {
4001 /* We are not dealing with a triplet. */
4002 return 0;
4003 }
4004
4005 got_minus[1] = 0;
4006 if (*s == '+')
4007 ++s;
4008 else
4009 {
4010 ++s;
4011 got_minus[1] = 1;
4012 }
4013
d7b30f67
SDJ
4014 if (!isdigit ((unsigned char) *s))
4015 return 0;
4016
5acfdbae
SDJ
4017 displacements[1] = strtol (s, &endp, 10);
4018 s = endp;
4019
4020 if (*s != '+' && *s != '-')
4021 {
4022 /* We are not dealing with a triplet. */
4023 return 0;
4024 }
4025
4026 got_minus[2] = 0;
4027 if (*s == '+')
4028 ++s;
4029 else
4030 {
4031 ++s;
4032 got_minus[2] = 1;
4033 }
4034
d7b30f67
SDJ
4035 if (!isdigit ((unsigned char) *s))
4036 return 0;
4037
5acfdbae
SDJ
4038 displacements[2] = strtol (s, &endp, 10);
4039 s = endp;
4040
4041 if (*s != '(' || s[1] != '%')
4042 return 0;
4043
4044 s += 2;
4045 start = s;
4046
4047 while (isalnum (*s))
4048 ++s;
4049
4050 if (*s++ != ')')
4051 return 0;
4052
d7b30f67 4053 len = s - start - 1;
5acfdbae
SDJ
4054 regname = alloca (len + 1);
4055
4056 strncpy (regname, start, len);
4057 regname[len] = '\0';
4058
4059 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4060 error (_("Invalid register name `%s' on expression `%s'."),
4061 regname, p->saved_arg);
4062
4063 for (i = 0; i < 3; i++)
4064 {
410a0ff2
SDJ
4065 write_exp_elt_opcode (&p->pstate, OP_LONG);
4066 write_exp_elt_type
4067 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4068 write_exp_elt_longcst (&p->pstate, displacements[i]);
4069 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4070 if (got_minus[i])
410a0ff2 4071 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4072 }
4073
410a0ff2 4074 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4075 str.ptr = regname;
4076 str.length = len;
410a0ff2
SDJ
4077 write_exp_string (&p->pstate, str);
4078 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4079
410a0ff2
SDJ
4080 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4081 write_exp_elt_type (&p->pstate,
4082 builtin_type (gdbarch)->builtin_data_ptr);
4083 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4084
410a0ff2
SDJ
4085 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4086 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4087 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4088
410a0ff2
SDJ
4089 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4090 write_exp_elt_type (&p->pstate,
4091 lookup_pointer_type (p->arg_type));
4092 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4093
410a0ff2 4094 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4095
4096 p->arg = s;
4097
4098 return 1;
4099 }
4100
4101 return 0;
4102}
4103
4104/* Helper function for i386_stap_parse_special_token.
4105
4106 This function parses operands of the form `register base +
4107 (register index * size) + offset', as represented in
4108 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4109
4110 Return 1 if the operand was parsed successfully, zero
4111 otherwise. */
4112
4113static int
4114i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4115 struct stap_parse_info *p)
4116{
4117 const char *s = p->arg;
4118
4119 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4120 {
4121 int offset_minus = 0;
4122 long offset = 0;
4123 int size_minus = 0;
4124 long size = 0;
4125 const char *start;
4126 char *base;
4127 int len_base;
4128 char *index;
4129 int len_index;
4130 struct stoken base_token, index_token;
4131
4132 if (*s == '+')
4133 ++s;
4134 else if (*s == '-')
4135 {
4136 ++s;
4137 offset_minus = 1;
4138 }
4139
4140 if (offset_minus && !isdigit (*s))
4141 return 0;
4142
4143 if (isdigit (*s))
4144 {
4145 char *endp;
4146
4147 offset = strtol (s, &endp, 10);
4148 s = endp;
4149 }
4150
4151 if (*s != '(' || s[1] != '%')
4152 return 0;
4153
4154 s += 2;
4155 start = s;
4156
4157 while (isalnum (*s))
4158 ++s;
4159
4160 if (*s != ',' || s[1] != '%')
4161 return 0;
4162
4163 len_base = s - start;
4164 base = alloca (len_base + 1);
4165 strncpy (base, start, len_base);
4166 base[len_base] = '\0';
4167
4168 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4169 error (_("Invalid register name `%s' on expression `%s'."),
4170 base, p->saved_arg);
4171
4172 s += 2;
4173 start = s;
4174
4175 while (isalnum (*s))
4176 ++s;
4177
4178 len_index = s - start;
4179 index = alloca (len_index + 1);
4180 strncpy (index, start, len_index);
4181 index[len_index] = '\0';
4182
4183 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4184 error (_("Invalid register name `%s' on expression `%s'."),
4185 index, p->saved_arg);
4186
4187 if (*s != ',' && *s != ')')
4188 return 0;
4189
4190 if (*s == ',')
4191 {
4192 char *endp;
4193
4194 ++s;
4195 if (*s == '+')
4196 ++s;
4197 else if (*s == '-')
4198 {
4199 ++s;
4200 size_minus = 1;
4201 }
4202
4203 size = strtol (s, &endp, 10);
4204 s = endp;
4205
4206 if (*s != ')')
4207 return 0;
4208 }
4209
4210 ++s;
4211
4212 if (offset)
4213 {
410a0ff2
SDJ
4214 write_exp_elt_opcode (&p->pstate, OP_LONG);
4215 write_exp_elt_type (&p->pstate,
4216 builtin_type (gdbarch)->builtin_long);
4217 write_exp_elt_longcst (&p->pstate, offset);
4218 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4219 if (offset_minus)
410a0ff2 4220 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4221 }
4222
410a0ff2 4223 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4224 base_token.ptr = base;
4225 base_token.length = len_base;
410a0ff2
SDJ
4226 write_exp_string (&p->pstate, base_token);
4227 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4228
4229 if (offset)
410a0ff2 4230 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4231
410a0ff2 4232 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4233 index_token.ptr = index;
4234 index_token.length = len_index;
410a0ff2
SDJ
4235 write_exp_string (&p->pstate, index_token);
4236 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4237
4238 if (size)
4239 {
410a0ff2
SDJ
4240 write_exp_elt_opcode (&p->pstate, OP_LONG);
4241 write_exp_elt_type (&p->pstate,
4242 builtin_type (gdbarch)->builtin_long);
4243 write_exp_elt_longcst (&p->pstate, size);
4244 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4245 if (size_minus)
410a0ff2
SDJ
4246 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4247 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4248 }
4249
410a0ff2 4250 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4251
410a0ff2
SDJ
4252 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4253 write_exp_elt_type (&p->pstate,
4254 lookup_pointer_type (p->arg_type));
4255 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4256
410a0ff2 4257 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4258
4259 p->arg = s;
4260
4261 return 1;
4262 }
4263
4264 return 0;
4265}
4266
55aa24fb
SDJ
4267/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4268 gdbarch.h. */
4269
4270int
4271i386_stap_parse_special_token (struct gdbarch *gdbarch,
4272 struct stap_parse_info *p)
4273{
55aa24fb
SDJ
4274 /* In order to parse special tokens, we use a state-machine that go
4275 through every known token and try to get a match. */
4276 enum
4277 {
4278 TRIPLET,
4279 THREE_ARG_DISPLACEMENT,
4280 DONE
570dc176
TT
4281 };
4282 int current_state;
55aa24fb
SDJ
4283
4284 current_state = TRIPLET;
4285
4286 /* The special tokens to be parsed here are:
4287
4288 - `register base + (register index * size) + offset', as represented
4289 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4290
4291 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4292 `*(-8 + 3 - 1 + (void *) $eax)'. */
4293
4294 while (current_state != DONE)
4295 {
55aa24fb
SDJ
4296 switch (current_state)
4297 {
4298 case TRIPLET:
5acfdbae
SDJ
4299 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4300 return 1;
4301 break;
4302
55aa24fb 4303 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4304 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4305 return 1;
4306 break;
55aa24fb
SDJ
4307 }
4308
4309 /* Advancing to the next state. */
4310 ++current_state;
4311 }
4312
4313 return 0;
4314}
4315
8201327c 4316\f
3ce1502b 4317
ac04f72b
TT
4318/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4319 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4320
4321static const char *
4322i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4323{
4324 return "(x86_64|i.86)";
4325}
4326
4327\f
4328
8201327c 4329/* Generic ELF. */
d2a7c97a 4330
8201327c
MK
4331void
4332i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4333{
05c0465e
SDJ
4334 static const char *const stap_integer_prefixes[] = { "$", NULL };
4335 static const char *const stap_register_prefixes[] = { "%", NULL };
4336 static const char *const stap_register_indirection_prefixes[] = { "(",
4337 NULL };
4338 static const char *const stap_register_indirection_suffixes[] = { ")",
4339 NULL };
4340
c4fc7f1b
MK
4341 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4342 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4343
4344 /* Registering SystemTap handlers. */
05c0465e
SDJ
4345 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4346 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4347 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4348 stap_register_indirection_prefixes);
4349 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4350 stap_register_indirection_suffixes);
55aa24fb
SDJ
4351 set_gdbarch_stap_is_single_operand (gdbarch,
4352 i386_stap_is_single_operand);
4353 set_gdbarch_stap_parse_special_token (gdbarch,
4354 i386_stap_parse_special_token);
ac04f72b
TT
4355
4356 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8201327c 4357}
3ce1502b 4358
8201327c 4359/* System V Release 4 (SVR4). */
3ce1502b 4360
8201327c
MK
4361void
4362i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4363{
4364 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4365
8201327c
MK
4366 /* System V Release 4 uses ELF. */
4367 i386_elf_init_abi (info, gdbarch);
3ce1502b 4368
dfe01d39 4369 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4370 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4371
911bc6ee 4372 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4373 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4374 tdep->sc_pc_offset = 36 + 14 * 4;
4375 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4376
8201327c 4377 tdep->jb_pc_offset = 20;
3ce1502b
MK
4378}
4379
8201327c 4380/* DJGPP. */
3ce1502b 4381
3a1e71e3 4382static void
8201327c 4383i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 4384{
8201327c 4385 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4386
911bc6ee
MK
4387 /* DJGPP doesn't have any special frames for signal handlers. */
4388 tdep->sigtramp_p = NULL;
3ce1502b 4389
8201327c 4390 tdep->jb_pc_offset = 36;
15430fc0
EZ
4391
4392 /* DJGPP does not support the SSE registers. */
3a13a53b
L
4393 if (! tdesc_has_registers (info.target_desc))
4394 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
4395
4396 /* Native compiler is GCC, which uses the SVR4 register numbering
4397 even in COFF and STABS. See the comment in i386_gdbarch_init,
4398 before the calls to set_gdbarch_stab_reg_to_regnum and
4399 set_gdbarch_sdb_reg_to_regnum. */
4400 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4401 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
4402
4403 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
ac04f72b
TT
4404
4405 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
3ce1502b 4406}
8201327c 4407\f
2acceee2 4408
38c968cf
AC
4409/* i386 register groups. In addition to the normal groups, add "mmx"
4410 and "sse". */
4411
4412static struct reggroup *i386_sse_reggroup;
4413static struct reggroup *i386_mmx_reggroup;
4414
4415static void
4416i386_init_reggroups (void)
4417{
4418 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4419 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4420}
4421
4422static void
4423i386_add_reggroups (struct gdbarch *gdbarch)
4424{
4425 reggroup_add (gdbarch, i386_sse_reggroup);
4426 reggroup_add (gdbarch, i386_mmx_reggroup);
4427 reggroup_add (gdbarch, general_reggroup);
4428 reggroup_add (gdbarch, float_reggroup);
4429 reggroup_add (gdbarch, all_reggroup);
4430 reggroup_add (gdbarch, save_reggroup);
4431 reggroup_add (gdbarch, restore_reggroup);
4432 reggroup_add (gdbarch, vector_reggroup);
4433 reggroup_add (gdbarch, system_reggroup);
4434}
4435
4436int
4437i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4438 struct reggroup *group)
4439{
c131fcee
L
4440 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4441 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808
MS
4442 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4443 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4444 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4445 avx512_p, avx_p, sse_p;
acd5c798 4446
1ba53b71
L
4447 /* Don't include pseudo registers, except for MMX, in any register
4448 groups. */
c131fcee 4449 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4450 return 0;
4451
c131fcee 4452 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4453 return 0;
4454
c131fcee 4455 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4456 return 0;
4457
4458 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4459 if (group == i386_mmx_reggroup)
4460 return mmx_regnum_p;
1ba53b71 4461
c131fcee 4462 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4463 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4464 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4465 if (group == i386_sse_reggroup)
01f9f808 4466 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4467
4468 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4469 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4470 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4471
df7e5265
GB
4472 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4473 == X86_XSTATE_AVX512_MASK);
4474 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4475 == X86_XSTATE_AVX_MASK) && !avx512_p;
4476 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4477 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4478
38c968cf 4479 if (group == vector_reggroup)
c131fcee 4480 return (mmx_regnum_p
01f9f808
MS
4481 || (zmm_regnum_p && avx512_p)
4482 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4483 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4484 || mxcsr_regnum_p);
1ba53b71
L
4485
4486 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4487 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4488 if (group == float_reggroup)
4489 return fp_regnum_p;
1ba53b71 4490
c131fcee
L
4491 /* For "info reg all", don't include upper YMM registers nor XMM
4492 registers when AVX is supported. */
4493 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4494 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4495 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4496 if (group == all_reggroup
01f9f808
MS
4497 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4498 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4499 || ymmh_regnum_p
4500 || ymmh_avx512_regnum_p
4501 || zmmh_regnum_p))
c131fcee
L
4502 return 0;
4503
1dbcd68c
WT
4504 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4505 if (group == all_reggroup
df7e5265 4506 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4507 return bnd_regnum_p;
4508
4509 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4510 if (group == all_reggroup
df7e5265 4511 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4512 return 0;
4513
4514 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4515 if (group == all_reggroup
df7e5265 4516 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4517 return mpx_ctrl_regnum_p;
4518
38c968cf 4519 if (group == general_reggroup)
1ba53b71
L
4520 return (!fp_regnum_p
4521 && !mmx_regnum_p
c131fcee
L
4522 && !mxcsr_regnum_p
4523 && !xmm_regnum_p
01f9f808 4524 && !xmm_avx512_regnum_p
c131fcee 4525 && !ymm_regnum_p
1dbcd68c 4526 && !ymmh_regnum_p
01f9f808
MS
4527 && !ymm_avx512_regnum_p
4528 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4529 && !bndr_regnum_p
4530 && !bnd_regnum_p
01f9f808
MS
4531 && !mpx_ctrl_regnum_p
4532 && !zmm_regnum_p
4533 && !zmmh_regnum_p);
acd5c798 4534
38c968cf
AC
4535 return default_register_reggroup_p (gdbarch, regnum, group);
4536}
38c968cf 4537\f
acd5c798 4538
f837910f
MK
4539/* Get the ARGIth function argument for the current function. */
4540
42c466d7 4541static CORE_ADDR
143985b7
AF
4542i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4543 struct type *type)
4544{
e17a4113
UW
4545 struct gdbarch *gdbarch = get_frame_arch (frame);
4546 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4547 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4548 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4549}
4550
7ad10968
HZ
4551#define PREFIX_REPZ 0x01
4552#define PREFIX_REPNZ 0x02
4553#define PREFIX_LOCK 0x04
4554#define PREFIX_DATA 0x08
4555#define PREFIX_ADDR 0x10
473f17b0 4556
7ad10968
HZ
4557/* operand size */
4558enum
4559{
4560 OT_BYTE = 0,
4561 OT_WORD,
4562 OT_LONG,
cf648174 4563 OT_QUAD,
a3c4230a 4564 OT_DQUAD,
7ad10968 4565};
473f17b0 4566
7ad10968
HZ
4567/* i386 arith/logic operations */
4568enum
4569{
4570 OP_ADDL,
4571 OP_ORL,
4572 OP_ADCL,
4573 OP_SBBL,
4574 OP_ANDL,
4575 OP_SUBL,
4576 OP_XORL,
4577 OP_CMPL,
4578};
5716833c 4579
7ad10968
HZ
4580struct i386_record_s
4581{
cf648174 4582 struct gdbarch *gdbarch;
7ad10968 4583 struct regcache *regcache;
df61f520 4584 CORE_ADDR orig_addr;
7ad10968
HZ
4585 CORE_ADDR addr;
4586 int aflag;
4587 int dflag;
4588 int override;
4589 uint8_t modrm;
4590 uint8_t mod, reg, rm;
4591 int ot;
cf648174
HZ
4592 uint8_t rex_x;
4593 uint8_t rex_b;
4594 int rip_offset;
4595 int popl_esp_hack;
4596 const int *regmap;
7ad10968 4597};
5716833c 4598
99c1624c
PA
4599/* Parse the "modrm" part of the memory address irp->addr points at.
4600 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4601
7ad10968
HZ
4602static int
4603i386_record_modrm (struct i386_record_s *irp)
4604{
cf648174 4605 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4606
4ffa4fc7
PA
4607 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4608 return -1;
4609
7ad10968
HZ
4610 irp->addr++;
4611 irp->mod = (irp->modrm >> 6) & 3;
4612 irp->reg = (irp->modrm >> 3) & 7;
4613 irp->rm = irp->modrm & 7;
5716833c 4614
7ad10968
HZ
4615 return 0;
4616}
d2a7c97a 4617
99c1624c
PA
4618/* Extract the memory address that the current instruction writes to,
4619 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4620
7ad10968 4621static int
cf648174 4622i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4623{
cf648174 4624 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4625 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4626 gdb_byte buf[4];
4627 ULONGEST offset64;
21d0e8a4 4628
7ad10968 4629 *addr = 0;
1e87984a 4630 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4631 {
1e87984a 4632 /* 32/64 bits */
7ad10968
HZ
4633 int havesib = 0;
4634 uint8_t scale = 0;
648d0c8b 4635 uint8_t byte;
7ad10968
HZ
4636 uint8_t index = 0;
4637 uint8_t base = irp->rm;
896fb97d 4638
7ad10968
HZ
4639 if (base == 4)
4640 {
4641 havesib = 1;
4ffa4fc7
PA
4642 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4643 return -1;
7ad10968 4644 irp->addr++;
648d0c8b
MS
4645 scale = (byte >> 6) & 3;
4646 index = ((byte >> 3) & 7) | irp->rex_x;
4647 base = (byte & 7);
7ad10968 4648 }
cf648174 4649 base |= irp->rex_b;
21d0e8a4 4650
7ad10968
HZ
4651 switch (irp->mod)
4652 {
4653 case 0:
4654 if ((base & 7) == 5)
4655 {
4656 base = 0xff;
4ffa4fc7
PA
4657 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4658 return -1;
7ad10968 4659 irp->addr += 4;
60a1502a 4660 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4661 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4662 *addr += irp->addr + irp->rip_offset;
7ad10968 4663 }
7ad10968
HZ
4664 break;
4665 case 1:
4ffa4fc7
PA
4666 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4667 return -1;
7ad10968 4668 irp->addr++;
60a1502a 4669 *addr = (int8_t) buf[0];
7ad10968
HZ
4670 break;
4671 case 2:
4ffa4fc7
PA
4672 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4673 return -1;
60a1502a 4674 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4675 irp->addr += 4;
4676 break;
4677 }
356a6b3e 4678
60a1502a 4679 offset64 = 0;
7ad10968 4680 if (base != 0xff)
cf648174
HZ
4681 {
4682 if (base == 4 && irp->popl_esp_hack)
4683 *addr += irp->popl_esp_hack;
4684 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4685 &offset64);
7ad10968 4686 }
cf648174
HZ
4687 if (irp->aflag == 2)
4688 {
60a1502a 4689 *addr += offset64;
cf648174
HZ
4690 }
4691 else
60a1502a 4692 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4693
7ad10968
HZ
4694 if (havesib && (index != 4 || scale != 0))
4695 {
cf648174 4696 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4697 &offset64);
cf648174 4698 if (irp->aflag == 2)
60a1502a 4699 *addr += offset64 << scale;
cf648174 4700 else
60a1502a 4701 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4702 }
e85596e0
L
4703
4704 if (!irp->aflag)
4705 {
4706 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4707 address from 32-bit to 64-bit. */
4708 *addr = (uint32_t) *addr;
4709 }
7ad10968
HZ
4710 }
4711 else
4712 {
4713 /* 16 bits */
4714 switch (irp->mod)
4715 {
4716 case 0:
4717 if (irp->rm == 6)
4718 {
4ffa4fc7
PA
4719 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4720 return -1;
7ad10968 4721 irp->addr += 2;
60a1502a 4722 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4723 irp->rm = 0;
4724 goto no_rm;
4725 }
7ad10968
HZ
4726 break;
4727 case 1:
4ffa4fc7
PA
4728 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4729 return -1;
7ad10968 4730 irp->addr++;
60a1502a 4731 *addr = (int8_t) buf[0];
7ad10968
HZ
4732 break;
4733 case 2:
4ffa4fc7
PA
4734 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4735 return -1;
7ad10968 4736 irp->addr += 2;
60a1502a 4737 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4738 break;
4739 }
c4fc7f1b 4740
7ad10968
HZ
4741 switch (irp->rm)
4742 {
4743 case 0:
cf648174
HZ
4744 regcache_raw_read_unsigned (irp->regcache,
4745 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4746 &offset64);
4747 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4748 regcache_raw_read_unsigned (irp->regcache,
4749 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4750 &offset64);
4751 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4752 break;
4753 case 1:
cf648174
HZ
4754 regcache_raw_read_unsigned (irp->regcache,
4755 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4756 &offset64);
4757 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4758 regcache_raw_read_unsigned (irp->regcache,
4759 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4760 &offset64);
4761 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4762 break;
4763 case 2:
cf648174
HZ
4764 regcache_raw_read_unsigned (irp->regcache,
4765 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4766 &offset64);
4767 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4768 regcache_raw_read_unsigned (irp->regcache,
4769 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4770 &offset64);
4771 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4772 break;
4773 case 3:
cf648174
HZ
4774 regcache_raw_read_unsigned (irp->regcache,
4775 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4776 &offset64);
4777 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4778 regcache_raw_read_unsigned (irp->regcache,
4779 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4780 &offset64);
4781 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4782 break;
4783 case 4:
cf648174
HZ
4784 regcache_raw_read_unsigned (irp->regcache,
4785 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4786 &offset64);
4787 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4788 break;
4789 case 5:
cf648174
HZ
4790 regcache_raw_read_unsigned (irp->regcache,
4791 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4792 &offset64);
4793 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4794 break;
4795 case 6:
cf648174
HZ
4796 regcache_raw_read_unsigned (irp->regcache,
4797 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4798 &offset64);
4799 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4800 break;
4801 case 7:
cf648174
HZ
4802 regcache_raw_read_unsigned (irp->regcache,
4803 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4804 &offset64);
4805 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4806 break;
4807 }
4808 *addr &= 0xffff;
4809 }
c4fc7f1b 4810
01fe1b41 4811 no_rm:
7ad10968
HZ
4812 return 0;
4813}
c4fc7f1b 4814
99c1624c
PA
4815/* Record the address and contents of the memory that will be changed
4816 by the current instruction. Return -1 if something goes wrong, 0
4817 otherwise. */
356a6b3e 4818
7ad10968
HZ
4819static int
4820i386_record_lea_modrm (struct i386_record_s *irp)
4821{
cf648174
HZ
4822 struct gdbarch *gdbarch = irp->gdbarch;
4823 uint64_t addr;
356a6b3e 4824
d7877f7e 4825 if (irp->override >= 0)
7ad10968 4826 {
25ea693b 4827 if (record_full_memory_query)
bb08c432
HZ
4828 {
4829 int q;
4830
4831 target_terminal_ours ();
4832 q = yquery (_("\
4833Process record ignores the memory change of instruction at address %s\n\
4834because it can't get the value of the segment register.\n\
4835Do you want to stop the program?"),
4836 paddress (gdbarch, irp->orig_addr));
4837 target_terminal_inferior ();
4838 if (q)
4839 return -1;
4840 }
4841
7ad10968
HZ
4842 return 0;
4843 }
61113f8b 4844
7ad10968
HZ
4845 if (i386_record_lea_modrm_addr (irp, &addr))
4846 return -1;
96297dab 4847
25ea693b 4848 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4849 return -1;
a62cc96e 4850
7ad10968
HZ
4851 return 0;
4852}
b6197528 4853
99c1624c
PA
4854/* Record the effects of a push operation. Return -1 if something
4855 goes wrong, 0 otherwise. */
cf648174
HZ
4856
4857static int
4858i386_record_push (struct i386_record_s *irp, int size)
4859{
648d0c8b 4860 ULONGEST addr;
cf648174 4861
25ea693b
MM
4862 if (record_full_arch_list_add_reg (irp->regcache,
4863 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4864 return -1;
4865 regcache_raw_read_unsigned (irp->regcache,
4866 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4867 &addr);
25ea693b 4868 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4869 return -1;
4870
4871 return 0;
4872}
4873
0289bdd7
MS
4874
4875/* Defines contents to record. */
4876#define I386_SAVE_FPU_REGS 0xfffd
4877#define I386_SAVE_FPU_ENV 0xfffe
4878#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4879
99c1624c
PA
4880/* Record the values of the floating point registers which will be
4881 changed by the current instruction. Returns -1 if something is
4882 wrong, 0 otherwise. */
0289bdd7
MS
4883
4884static int i386_record_floats (struct gdbarch *gdbarch,
4885 struct i386_record_s *ir,
4886 uint32_t iregnum)
4887{
4888 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4889 int i;
4890
4891 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4892 happen. Currently we store st0-st7 registers, but we need not store all
4893 registers all the time, in future we use ftag register and record only
4894 those who are not marked as an empty. */
4895
4896 if (I386_SAVE_FPU_REGS == iregnum)
4897 {
4898 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4899 {
25ea693b 4900 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4901 return -1;
4902 }
4903 }
4904 else if (I386_SAVE_FPU_ENV == iregnum)
4905 {
4906 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4907 {
25ea693b 4908 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4909 return -1;
4910 }
4911 }
4912 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4913 {
4914 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4915 {
25ea693b 4916 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4917 return -1;
4918 }
4919 }
4920 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4921 (iregnum <= I387_FOP_REGNUM (tdep)))
4922 {
25ea693b 4923 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
4924 return -1;
4925 }
4926 else
4927 {
4928 /* Parameter error. */
4929 return -1;
4930 }
4931 if(I386_SAVE_FPU_ENV != iregnum)
4932 {
4933 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4934 {
25ea693b 4935 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4936 return -1;
4937 }
4938 }
4939 return 0;
4940}
4941
99c1624c
PA
4942/* Parse the current instruction, and record the values of the
4943 registers and memory that will be changed by the current
4944 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4945
25ea693b
MM
4946#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4947 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 4948
a6b808b4 4949int
7ad10968 4950i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4951 CORE_ADDR input_addr)
7ad10968 4952{
60a1502a 4953 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4954 int prefixes = 0;
580879fc 4955 int regnum = 0;
425b824a 4956 uint32_t opcode;
f4644a3f 4957 uint8_t opcode8;
648d0c8b 4958 ULONGEST addr;
60a1502a 4959 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4960 struct i386_record_s ir;
0289bdd7 4961 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4962 uint8_t rex_w = -1;
4963 uint8_t rex_r = 0;
7ad10968 4964
8408d274 4965 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4966 ir.regcache = regcache;
648d0c8b
MS
4967 ir.addr = input_addr;
4968 ir.orig_addr = input_addr;
7ad10968
HZ
4969 ir.aflag = 1;
4970 ir.dflag = 1;
cf648174
HZ
4971 ir.override = -1;
4972 ir.popl_esp_hack = 0;
a3c4230a 4973 ir.regmap = tdep->record_regmap;
cf648174 4974 ir.gdbarch = gdbarch;
7ad10968
HZ
4975
4976 if (record_debug > 1)
4977 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4978 "addr = %s\n",
4979 paddress (gdbarch, ir.addr));
7ad10968
HZ
4980
4981 /* prefixes */
4982 while (1)
4983 {
4ffa4fc7
PA
4984 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4985 return -1;
7ad10968 4986 ir.addr++;
425b824a 4987 switch (opcode8) /* Instruction prefixes */
7ad10968 4988 {
01fe1b41 4989 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4990 prefixes |= PREFIX_REPZ;
4991 break;
01fe1b41 4992 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4993 prefixes |= PREFIX_REPNZ;
4994 break;
01fe1b41 4995 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4996 prefixes |= PREFIX_LOCK;
4997 break;
01fe1b41 4998 case CS_PREFIX_OPCODE:
cf648174 4999 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5000 break;
01fe1b41 5001 case SS_PREFIX_OPCODE:
cf648174 5002 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5003 break;
01fe1b41 5004 case DS_PREFIX_OPCODE:
cf648174 5005 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5006 break;
01fe1b41 5007 case ES_PREFIX_OPCODE:
cf648174 5008 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5009 break;
01fe1b41 5010 case FS_PREFIX_OPCODE:
cf648174 5011 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5012 break;
01fe1b41 5013 case GS_PREFIX_OPCODE:
cf648174 5014 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5015 break;
01fe1b41 5016 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5017 prefixes |= PREFIX_DATA;
5018 break;
01fe1b41 5019 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5020 prefixes |= PREFIX_ADDR;
5021 break;
d691bec7
MS
5022 case 0x40: /* i386 inc %eax */
5023 case 0x41: /* i386 inc %ecx */
5024 case 0x42: /* i386 inc %edx */
5025 case 0x43: /* i386 inc %ebx */
5026 case 0x44: /* i386 inc %esp */
5027 case 0x45: /* i386 inc %ebp */
5028 case 0x46: /* i386 inc %esi */
5029 case 0x47: /* i386 inc %edi */
5030 case 0x48: /* i386 dec %eax */
5031 case 0x49: /* i386 dec %ecx */
5032 case 0x4a: /* i386 dec %edx */
5033 case 0x4b: /* i386 dec %ebx */
5034 case 0x4c: /* i386 dec %esp */
5035 case 0x4d: /* i386 dec %ebp */
5036 case 0x4e: /* i386 dec %esi */
5037 case 0x4f: /* i386 dec %edi */
5038 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5039 {
5040 /* REX */
425b824a
MS
5041 rex_w = (opcode8 >> 3) & 1;
5042 rex_r = (opcode8 & 0x4) << 1;
5043 ir.rex_x = (opcode8 & 0x2) << 2;
5044 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5045 }
d691bec7
MS
5046 else /* 32 bit target */
5047 goto out_prefixes;
cf648174 5048 break;
7ad10968
HZ
5049 default:
5050 goto out_prefixes;
5051 break;
5052 }
5053 }
01fe1b41 5054 out_prefixes:
cf648174
HZ
5055 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5056 {
5057 ir.dflag = 2;
5058 }
5059 else
5060 {
5061 if (prefixes & PREFIX_DATA)
5062 ir.dflag ^= 1;
5063 }
7ad10968
HZ
5064 if (prefixes & PREFIX_ADDR)
5065 ir.aflag ^= 1;
cf648174
HZ
5066 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5067 ir.aflag = 2;
7ad10968 5068
1777feb0 5069 /* Now check op code. */
425b824a 5070 opcode = (uint32_t) opcode8;
01fe1b41 5071 reswitch:
7ad10968
HZ
5072 switch (opcode)
5073 {
5074 case 0x0f:
4ffa4fc7
PA
5075 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5076 return -1;
7ad10968 5077 ir.addr++;
a3c4230a 5078 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5079 goto reswitch;
5080 break;
93924b6b 5081
a38bba38 5082 case 0x00: /* arith & logic */
7ad10968
HZ
5083 case 0x01:
5084 case 0x02:
5085 case 0x03:
5086 case 0x04:
5087 case 0x05:
5088 case 0x08:
5089 case 0x09:
5090 case 0x0a:
5091 case 0x0b:
5092 case 0x0c:
5093 case 0x0d:
5094 case 0x10:
5095 case 0x11:
5096 case 0x12:
5097 case 0x13:
5098 case 0x14:
5099 case 0x15:
5100 case 0x18:
5101 case 0x19:
5102 case 0x1a:
5103 case 0x1b:
5104 case 0x1c:
5105 case 0x1d:
5106 case 0x20:
5107 case 0x21:
5108 case 0x22:
5109 case 0x23:
5110 case 0x24:
5111 case 0x25:
5112 case 0x28:
5113 case 0x29:
5114 case 0x2a:
5115 case 0x2b:
5116 case 0x2c:
5117 case 0x2d:
5118 case 0x30:
5119 case 0x31:
5120 case 0x32:
5121 case 0x33:
5122 case 0x34:
5123 case 0x35:
5124 case 0x38:
5125 case 0x39:
5126 case 0x3a:
5127 case 0x3b:
5128 case 0x3c:
5129 case 0x3d:
5130 if (((opcode >> 3) & 7) != OP_CMPL)
5131 {
5132 if ((opcode & 1) == 0)
5133 ir.ot = OT_BYTE;
5134 else
5135 ir.ot = ir.dflag + OT_WORD;
93924b6b 5136
7ad10968
HZ
5137 switch ((opcode >> 1) & 3)
5138 {
a38bba38 5139 case 0: /* OP Ev, Gv */
7ad10968
HZ
5140 if (i386_record_modrm (&ir))
5141 return -1;
5142 if (ir.mod != 3)
5143 {
5144 if (i386_record_lea_modrm (&ir))
5145 return -1;
5146 }
5147 else
5148 {
cf648174
HZ
5149 ir.rm |= ir.rex_b;
5150 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5151 ir.rm &= 0x3;
25ea693b 5152 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5153 }
5154 break;
a38bba38 5155 case 1: /* OP Gv, Ev */
7ad10968
HZ
5156 if (i386_record_modrm (&ir))
5157 return -1;
cf648174
HZ
5158 ir.reg |= rex_r;
5159 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5160 ir.reg &= 0x3;
25ea693b 5161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5162 break;
a38bba38 5163 case 2: /* OP A, Iv */
25ea693b 5164 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5165 break;
5166 }
5167 }
25ea693b 5168 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5169 break;
42fdc8df 5170
a38bba38 5171 case 0x80: /* GRP1 */
7ad10968
HZ
5172 case 0x81:
5173 case 0x82:
5174 case 0x83:
5175 if (i386_record_modrm (&ir))
5176 return -1;
8201327c 5177
7ad10968
HZ
5178 if (ir.reg != OP_CMPL)
5179 {
5180 if ((opcode & 1) == 0)
5181 ir.ot = OT_BYTE;
5182 else
5183 ir.ot = ir.dflag + OT_WORD;
28fc6740 5184
7ad10968
HZ
5185 if (ir.mod != 3)
5186 {
cf648174
HZ
5187 if (opcode == 0x83)
5188 ir.rip_offset = 1;
5189 else
5190 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5191 if (i386_record_lea_modrm (&ir))
5192 return -1;
5193 }
5194 else
25ea693b 5195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5196 }
25ea693b 5197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5198 break;
5e3397bb 5199
a38bba38 5200 case 0x40: /* inc */
7ad10968
HZ
5201 case 0x41:
5202 case 0x42:
5203 case 0x43:
5204 case 0x44:
5205 case 0x45:
5206 case 0x46:
5207 case 0x47:
a38bba38
MS
5208
5209 case 0x48: /* dec */
7ad10968
HZ
5210 case 0x49:
5211 case 0x4a:
5212 case 0x4b:
5213 case 0x4c:
5214 case 0x4d:
5215 case 0x4e:
5216 case 0x4f:
a38bba38 5217
25ea693b
MM
5218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5219 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5220 break;
acd5c798 5221
a38bba38 5222 case 0xf6: /* GRP3 */
7ad10968
HZ
5223 case 0xf7:
5224 if ((opcode & 1) == 0)
5225 ir.ot = OT_BYTE;
5226 else
5227 ir.ot = ir.dflag + OT_WORD;
5228 if (i386_record_modrm (&ir))
5229 return -1;
acd5c798 5230
cf648174
HZ
5231 if (ir.mod != 3 && ir.reg == 0)
5232 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5233
7ad10968
HZ
5234 switch (ir.reg)
5235 {
a38bba38 5236 case 0: /* test */
25ea693b 5237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5238 break;
a38bba38
MS
5239 case 2: /* not */
5240 case 3: /* neg */
7ad10968
HZ
5241 if (ir.mod != 3)
5242 {
5243 if (i386_record_lea_modrm (&ir))
5244 return -1;
5245 }
5246 else
5247 {
cf648174
HZ
5248 ir.rm |= ir.rex_b;
5249 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5250 ir.rm &= 0x3;
25ea693b 5251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5252 }
a38bba38 5253 if (ir.reg == 3) /* neg */
25ea693b 5254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5255 break;
a38bba38
MS
5256 case 4: /* mul */
5257 case 5: /* imul */
5258 case 6: /* div */
5259 case 7: /* idiv */
25ea693b 5260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5261 if (ir.ot != OT_BYTE)
25ea693b
MM
5262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5264 break;
5265 default:
5266 ir.addr -= 2;
5267 opcode = opcode << 8 | ir.modrm;
5268 goto no_support;
5269 break;
5270 }
5271 break;
5272
a38bba38
MS
5273 case 0xfe: /* GRP4 */
5274 case 0xff: /* GRP5 */
7ad10968
HZ
5275 if (i386_record_modrm (&ir))
5276 return -1;
5277 if (ir.reg >= 2 && opcode == 0xfe)
5278 {
5279 ir.addr -= 2;
5280 opcode = opcode << 8 | ir.modrm;
5281 goto no_support;
5282 }
7ad10968
HZ
5283 switch (ir.reg)
5284 {
a38bba38
MS
5285 case 0: /* inc */
5286 case 1: /* dec */
cf648174
HZ
5287 if ((opcode & 1) == 0)
5288 ir.ot = OT_BYTE;
5289 else
5290 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5291 if (ir.mod != 3)
5292 {
5293 if (i386_record_lea_modrm (&ir))
5294 return -1;
5295 }
5296 else
5297 {
cf648174
HZ
5298 ir.rm |= ir.rex_b;
5299 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5300 ir.rm &= 0x3;
25ea693b 5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5302 }
25ea693b 5303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5304 break;
a38bba38 5305 case 2: /* call */
cf648174
HZ
5306 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5307 ir.dflag = 2;
5308 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5309 return -1;
25ea693b 5310 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5311 break;
a38bba38 5312 case 3: /* lcall */
25ea693b 5313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5314 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5315 return -1;
25ea693b 5316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5317 break;
a38bba38
MS
5318 case 4: /* jmp */
5319 case 5: /* ljmp */
25ea693b 5320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5321 break;
a38bba38 5322 case 6: /* push */
cf648174
HZ
5323 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5324 ir.dflag = 2;
5325 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5326 return -1;
7ad10968
HZ
5327 break;
5328 default:
5329 ir.addr -= 2;
5330 opcode = opcode << 8 | ir.modrm;
5331 goto no_support;
5332 break;
5333 }
5334 break;
5335
a38bba38 5336 case 0x84: /* test */
7ad10968
HZ
5337 case 0x85:
5338 case 0xa8:
5339 case 0xa9:
25ea693b 5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5341 break;
5342
a38bba38 5343 case 0x98: /* CWDE/CBW */
25ea693b 5344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5345 break;
5346
a38bba38 5347 case 0x99: /* CDQ/CWD */
25ea693b
MM
5348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5350 break;
5351
a38bba38 5352 case 0x0faf: /* imul */
7ad10968
HZ
5353 case 0x69:
5354 case 0x6b:
5355 ir.ot = ir.dflag + OT_WORD;
5356 if (i386_record_modrm (&ir))
5357 return -1;
cf648174
HZ
5358 if (opcode == 0x69)
5359 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5360 else if (opcode == 0x6b)
5361 ir.rip_offset = 1;
5362 ir.reg |= rex_r;
5363 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5364 ir.reg &= 0x3;
25ea693b
MM
5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5367 break;
5368
a38bba38 5369 case 0x0fc0: /* xadd */
7ad10968
HZ
5370 case 0x0fc1:
5371 if ((opcode & 1) == 0)
5372 ir.ot = OT_BYTE;
5373 else
5374 ir.ot = ir.dflag + OT_WORD;
5375 if (i386_record_modrm (&ir))
5376 return -1;
cf648174 5377 ir.reg |= rex_r;
7ad10968
HZ
5378 if (ir.mod == 3)
5379 {
cf648174 5380 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5381 ir.reg &= 0x3;
25ea693b 5382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5383 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5384 ir.rm &= 0x3;
25ea693b 5385 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5386 }
5387 else
5388 {
5389 if (i386_record_lea_modrm (&ir))
5390 return -1;
cf648174 5391 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5392 ir.reg &= 0x3;
25ea693b 5393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5394 }
25ea693b 5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5396 break;
5397
a38bba38 5398 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5399 case 0x0fb1:
5400 if ((opcode & 1) == 0)
5401 ir.ot = OT_BYTE;
5402 else
5403 ir.ot = ir.dflag + OT_WORD;
5404 if (i386_record_modrm (&ir))
5405 return -1;
5406 if (ir.mod == 3)
5407 {
cf648174 5408 ir.reg |= rex_r;
25ea693b 5409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5410 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5411 ir.reg &= 0x3;
25ea693b 5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5413 }
5414 else
5415 {
25ea693b 5416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5417 if (i386_record_lea_modrm (&ir))
5418 return -1;
5419 }
25ea693b 5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5421 break;
5422
a38bba38 5423 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
5424 if (i386_record_modrm (&ir))
5425 return -1;
5426 if (ir.mod == 3)
5427 {
5428 ir.addr -= 2;
5429 opcode = opcode << 8 | ir.modrm;
5430 goto no_support;
5431 }
25ea693b
MM
5432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5434 if (i386_record_lea_modrm (&ir))
5435 return -1;
25ea693b 5436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5437 break;
5438
a38bba38 5439 case 0x50: /* push */
7ad10968
HZ
5440 case 0x51:
5441 case 0x52:
5442 case 0x53:
5443 case 0x54:
5444 case 0x55:
5445 case 0x56:
5446 case 0x57:
5447 case 0x68:
5448 case 0x6a:
cf648174
HZ
5449 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5450 ir.dflag = 2;
5451 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5452 return -1;
5453 break;
5454
a38bba38
MS
5455 case 0x06: /* push es */
5456 case 0x0e: /* push cs */
5457 case 0x16: /* push ss */
5458 case 0x1e: /* push ds */
cf648174
HZ
5459 if (ir.regmap[X86_RECORD_R8_REGNUM])
5460 {
5461 ir.addr -= 1;
5462 goto no_support;
5463 }
5464 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5465 return -1;
5466 break;
5467
a38bba38
MS
5468 case 0x0fa0: /* push fs */
5469 case 0x0fa8: /* push gs */
cf648174
HZ
5470 if (ir.regmap[X86_RECORD_R8_REGNUM])
5471 {
5472 ir.addr -= 2;
5473 goto no_support;
5474 }
5475 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5476 return -1;
cf648174
HZ
5477 break;
5478
a38bba38 5479 case 0x60: /* pusha */
cf648174
HZ
5480 if (ir.regmap[X86_RECORD_R8_REGNUM])
5481 {
5482 ir.addr -= 1;
5483 goto no_support;
5484 }
5485 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5486 return -1;
5487 break;
5488
a38bba38 5489 case 0x58: /* pop */
7ad10968
HZ
5490 case 0x59:
5491 case 0x5a:
5492 case 0x5b:
5493 case 0x5c:
5494 case 0x5d:
5495 case 0x5e:
5496 case 0x5f:
25ea693b
MM
5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5498 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5499 break;
5500
a38bba38 5501 case 0x61: /* popa */
cf648174
HZ
5502 if (ir.regmap[X86_RECORD_R8_REGNUM])
5503 {
5504 ir.addr -= 1;
5505 goto no_support;
7ad10968 5506 }
425b824a
MS
5507 for (regnum = X86_RECORD_REAX_REGNUM;
5508 regnum <= X86_RECORD_REDI_REGNUM;
5509 regnum++)
25ea693b 5510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5511 break;
5512
a38bba38 5513 case 0x8f: /* pop */
cf648174
HZ
5514 if (ir.regmap[X86_RECORD_R8_REGNUM])
5515 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5516 else
5517 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5518 if (i386_record_modrm (&ir))
5519 return -1;
5520 if (ir.mod == 3)
25ea693b 5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5522 else
5523 {
cf648174 5524 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5525 if (i386_record_lea_modrm (&ir))
5526 return -1;
5527 }
25ea693b 5528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5529 break;
5530
a38bba38 5531 case 0xc8: /* enter */
25ea693b 5532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5533 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5534 ir.dflag = 2;
5535 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5536 return -1;
5537 break;
5538
a38bba38 5539 case 0xc9: /* leave */
25ea693b
MM
5540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5542 break;
5543
a38bba38 5544 case 0x07: /* pop es */
cf648174
HZ
5545 if (ir.regmap[X86_RECORD_R8_REGNUM])
5546 {
5547 ir.addr -= 1;
5548 goto no_support;
5549 }
25ea693b
MM
5550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5553 break;
5554
a38bba38 5555 case 0x17: /* pop ss */
cf648174
HZ
5556 if (ir.regmap[X86_RECORD_R8_REGNUM])
5557 {
5558 ir.addr -= 1;
5559 goto no_support;
5560 }
25ea693b
MM
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5564 break;
5565
a38bba38 5566 case 0x1f: /* pop ds */
cf648174
HZ
5567 if (ir.regmap[X86_RECORD_R8_REGNUM])
5568 {
5569 ir.addr -= 1;
5570 goto no_support;
5571 }
25ea693b
MM
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5575 break;
5576
a38bba38 5577 case 0x0fa1: /* pop fs */
25ea693b
MM
5578 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5579 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5581 break;
5582
a38bba38 5583 case 0x0fa9: /* pop gs */
25ea693b
MM
5584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5585 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5587 break;
5588
a38bba38 5589 case 0x88: /* mov */
7ad10968
HZ
5590 case 0x89:
5591 case 0xc6:
5592 case 0xc7:
5593 if ((opcode & 1) == 0)
5594 ir.ot = OT_BYTE;
5595 else
5596 ir.ot = ir.dflag + OT_WORD;
5597
5598 if (i386_record_modrm (&ir))
5599 return -1;
5600
5601 if (ir.mod != 3)
5602 {
cf648174
HZ
5603 if (opcode == 0xc6 || opcode == 0xc7)
5604 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5605 if (i386_record_lea_modrm (&ir))
5606 return -1;
5607 }
5608 else
5609 {
cf648174
HZ
5610 if (opcode == 0xc6 || opcode == 0xc7)
5611 ir.rm |= ir.rex_b;
5612 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5613 ir.rm &= 0x3;
25ea693b 5614 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5615 }
7ad10968 5616 break;
cf648174 5617
a38bba38 5618 case 0x8a: /* mov */
7ad10968
HZ
5619 case 0x8b:
5620 if ((opcode & 1) == 0)
5621 ir.ot = OT_BYTE;
5622 else
5623 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5624 if (i386_record_modrm (&ir))
5625 return -1;
cf648174
HZ
5626 ir.reg |= rex_r;
5627 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5628 ir.reg &= 0x3;
25ea693b 5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5630 break;
7ad10968 5631
a38bba38 5632 case 0x8c: /* mov seg */
cf648174 5633 if (i386_record_modrm (&ir))
7ad10968 5634 return -1;
cf648174
HZ
5635 if (ir.reg > 5)
5636 {
5637 ir.addr -= 2;
5638 opcode = opcode << 8 | ir.modrm;
5639 goto no_support;
5640 }
5641
5642 if (ir.mod == 3)
25ea693b 5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5644 else
5645 {
5646 ir.ot = OT_WORD;
5647 if (i386_record_lea_modrm (&ir))
5648 return -1;
5649 }
7ad10968
HZ
5650 break;
5651
a38bba38 5652 case 0x8e: /* mov seg */
7ad10968
HZ
5653 if (i386_record_modrm (&ir))
5654 return -1;
7ad10968
HZ
5655 switch (ir.reg)
5656 {
5657 case 0:
425b824a 5658 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5659 break;
5660 case 2:
425b824a 5661 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5662 break;
5663 case 3:
425b824a 5664 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5665 break;
5666 case 4:
425b824a 5667 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5668 break;
5669 case 5:
425b824a 5670 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5671 break;
5672 default:
5673 ir.addr -= 2;
5674 opcode = opcode << 8 | ir.modrm;
5675 goto no_support;
5676 break;
5677 }
25ea693b
MM
5678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5680 break;
5681
a38bba38
MS
5682 case 0x0fb6: /* movzbS */
5683 case 0x0fb7: /* movzwS */
5684 case 0x0fbe: /* movsbS */
5685 case 0x0fbf: /* movswS */
7ad10968
HZ
5686 if (i386_record_modrm (&ir))
5687 return -1;
25ea693b 5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5689 break;
5690
a38bba38 5691 case 0x8d: /* lea */
7ad10968
HZ
5692 if (i386_record_modrm (&ir))
5693 return -1;
5694 if (ir.mod == 3)
5695 {
5696 ir.addr -= 2;
5697 opcode = opcode << 8 | ir.modrm;
5698 goto no_support;
5699 }
7ad10968 5700 ir.ot = ir.dflag;
cf648174
HZ
5701 ir.reg |= rex_r;
5702 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5703 ir.reg &= 0x3;
25ea693b 5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5705 break;
5706
a38bba38 5707 case 0xa0: /* mov EAX */
7ad10968 5708 case 0xa1:
a38bba38
MS
5709
5710 case 0xd7: /* xlat */
25ea693b 5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5712 break;
5713
a38bba38 5714 case 0xa2: /* mov EAX */
7ad10968 5715 case 0xa3:
d7877f7e 5716 if (ir.override >= 0)
cf648174 5717 {
25ea693b 5718 if (record_full_memory_query)
bb08c432
HZ
5719 {
5720 int q;
5721
5722 target_terminal_ours ();
5723 q = yquery (_("\
5724Process record ignores the memory change of instruction at address %s\n\
5725because it can't get the value of the segment register.\n\
5726Do you want to stop the program?"),
5727 paddress (gdbarch, ir.orig_addr));
5728 target_terminal_inferior ();
5729 if (q)
5730 return -1;
5731 }
cf648174
HZ
5732 }
5733 else
5734 {
5735 if ((opcode & 1) == 0)
5736 ir.ot = OT_BYTE;
5737 else
5738 ir.ot = ir.dflag + OT_WORD;
5739 if (ir.aflag == 2)
5740 {
4ffa4fc7
PA
5741 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5742 return -1;
cf648174 5743 ir.addr += 8;
60a1502a 5744 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5745 }
5746 else if (ir.aflag)
5747 {
4ffa4fc7
PA
5748 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5749 return -1;
cf648174 5750 ir.addr += 4;
60a1502a 5751 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5752 }
5753 else
5754 {
4ffa4fc7
PA
5755 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5756 return -1;
cf648174 5757 ir.addr += 2;
60a1502a 5758 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5759 }
25ea693b 5760 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5761 return -1;
5762 }
7ad10968
HZ
5763 break;
5764
a38bba38 5765 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5766 case 0xb1:
5767 case 0xb2:
5768 case 0xb3:
5769 case 0xb4:
5770 case 0xb5:
5771 case 0xb6:
5772 case 0xb7:
25ea693b
MM
5773 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5774 ? ((opcode & 0x7) | ir.rex_b)
5775 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5776 break;
5777
a38bba38 5778 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5779 case 0xb9:
5780 case 0xba:
5781 case 0xbb:
5782 case 0xbc:
5783 case 0xbd:
5784 case 0xbe:
5785 case 0xbf:
25ea693b 5786 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5787 break;
5788
a38bba38 5789 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5790 case 0x92:
5791 case 0x93:
5792 case 0x94:
5793 case 0x95:
5794 case 0x96:
5795 case 0x97:
25ea693b
MM
5796 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5797 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5798 break;
5799
a38bba38 5800 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5801 case 0x87:
5802 if ((opcode & 1) == 0)
5803 ir.ot = OT_BYTE;
5804 else
5805 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5806 if (i386_record_modrm (&ir))
5807 return -1;
7ad10968
HZ
5808 if (ir.mod == 3)
5809 {
86839d38 5810 ir.rm |= ir.rex_b;
cf648174
HZ
5811 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5812 ir.rm &= 0x3;
25ea693b 5813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5814 }
5815 else
5816 {
5817 if (i386_record_lea_modrm (&ir))
5818 return -1;
5819 }
cf648174
HZ
5820 ir.reg |= rex_r;
5821 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5822 ir.reg &= 0x3;
25ea693b 5823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5824 break;
5825
a38bba38
MS
5826 case 0xc4: /* les Gv */
5827 case 0xc5: /* lds Gv */
cf648174
HZ
5828 if (ir.regmap[X86_RECORD_R8_REGNUM])
5829 {
5830 ir.addr -= 1;
5831 goto no_support;
5832 }
d3f323f3 5833 /* FALLTHROUGH */
a38bba38
MS
5834 case 0x0fb2: /* lss Gv */
5835 case 0x0fb4: /* lfs Gv */
5836 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5837 if (i386_record_modrm (&ir))
5838 return -1;
5839 if (ir.mod == 3)
5840 {
5841 if (opcode > 0xff)
5842 ir.addr -= 3;
5843 else
5844 ir.addr -= 2;
5845 opcode = opcode << 8 | ir.modrm;
5846 goto no_support;
5847 }
7ad10968
HZ
5848 switch (opcode)
5849 {
a38bba38 5850 case 0xc4: /* les Gv */
425b824a 5851 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5852 break;
a38bba38 5853 case 0xc5: /* lds Gv */
425b824a 5854 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5855 break;
a38bba38 5856 case 0x0fb2: /* lss Gv */
425b824a 5857 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5858 break;
a38bba38 5859 case 0x0fb4: /* lfs Gv */
425b824a 5860 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5861 break;
a38bba38 5862 case 0x0fb5: /* lgs Gv */
425b824a 5863 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5864 break;
5865 }
25ea693b
MM
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5867 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5869 break;
5870
a38bba38 5871 case 0xc0: /* shifts */
7ad10968
HZ
5872 case 0xc1:
5873 case 0xd0:
5874 case 0xd1:
5875 case 0xd2:
5876 case 0xd3:
5877 if ((opcode & 1) == 0)
5878 ir.ot = OT_BYTE;
5879 else
5880 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5881 if (i386_record_modrm (&ir))
5882 return -1;
7ad10968
HZ
5883 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5884 {
5885 if (i386_record_lea_modrm (&ir))
5886 return -1;
5887 }
5888 else
5889 {
cf648174
HZ
5890 ir.rm |= ir.rex_b;
5891 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5892 ir.rm &= 0x3;
25ea693b 5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5894 }
25ea693b 5895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5896 break;
5897
5898 case 0x0fa4:
5899 case 0x0fa5:
5900 case 0x0fac:
5901 case 0x0fad:
5902 if (i386_record_modrm (&ir))
5903 return -1;
5904 if (ir.mod == 3)
5905 {
25ea693b 5906 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5907 return -1;
5908 }
5909 else
5910 {
5911 if (i386_record_lea_modrm (&ir))
5912 return -1;
5913 }
5914 break;
5915
a38bba38 5916 case 0xd8: /* Floats. */
7ad10968
HZ
5917 case 0xd9:
5918 case 0xda:
5919 case 0xdb:
5920 case 0xdc:
5921 case 0xdd:
5922 case 0xde:
5923 case 0xdf:
5924 if (i386_record_modrm (&ir))
5925 return -1;
5926 ir.reg |= ((opcode & 7) << 3);
5927 if (ir.mod != 3)
5928 {
1777feb0 5929 /* Memory. */
955db0c0 5930 uint64_t addr64;
7ad10968 5931
955db0c0 5932 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5933 return -1;
5934 switch (ir.reg)
5935 {
7ad10968 5936 case 0x02:
0289bdd7
MS
5937 case 0x12:
5938 case 0x22:
5939 case 0x32:
5940 /* For fcom, ficom nothing to do. */
5941 break;
7ad10968 5942 case 0x03:
0289bdd7
MS
5943 case 0x13:
5944 case 0x23:
5945 case 0x33:
5946 /* For fcomp, ficomp pop FPU stack, store all. */
5947 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5948 return -1;
5949 break;
5950 case 0x00:
5951 case 0x01:
7ad10968
HZ
5952 case 0x04:
5953 case 0x05:
5954 case 0x06:
5955 case 0x07:
5956 case 0x10:
5957 case 0x11:
7ad10968
HZ
5958 case 0x14:
5959 case 0x15:
5960 case 0x16:
5961 case 0x17:
5962 case 0x20:
5963 case 0x21:
7ad10968
HZ
5964 case 0x24:
5965 case 0x25:
5966 case 0x26:
5967 case 0x27:
5968 case 0x30:
5969 case 0x31:
7ad10968
HZ
5970 case 0x34:
5971 case 0x35:
5972 case 0x36:
5973 case 0x37:
0289bdd7
MS
5974 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5975 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5976 of code, always affects st(0) register. */
5977 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5978 return -1;
7ad10968
HZ
5979 break;
5980 case 0x08:
5981 case 0x0a:
5982 case 0x0b:
5983 case 0x18:
5984 case 0x19:
5985 case 0x1a:
5986 case 0x1b:
0289bdd7 5987 case 0x1d:
7ad10968
HZ
5988 case 0x28:
5989 case 0x29:
5990 case 0x2a:
5991 case 0x2b:
5992 case 0x38:
5993 case 0x39:
5994 case 0x3a:
5995 case 0x3b:
0289bdd7
MS
5996 case 0x3c:
5997 case 0x3d:
7ad10968
HZ
5998 switch (ir.reg & 7)
5999 {
6000 case 0:
0289bdd7
MS
6001 /* Handling fld, fild. */
6002 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6003 return -1;
7ad10968
HZ
6004 break;
6005 case 1:
6006 switch (ir.reg >> 4)
6007 {
6008 case 0:
25ea693b 6009 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6010 return -1;
6011 break;
6012 case 2:
25ea693b 6013 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6014 return -1;
6015 break;
6016 case 3:
0289bdd7 6017 break;
7ad10968 6018 default:
25ea693b 6019 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6020 return -1;
6021 break;
6022 }
6023 break;
6024 default:
6025 switch (ir.reg >> 4)
6026 {
6027 case 0:
25ea693b 6028 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6029 return -1;
6030 if (3 == (ir.reg & 7))
6031 {
6032 /* For fstp m32fp. */
6033 if (i386_record_floats (gdbarch, &ir,
6034 I386_SAVE_FPU_REGS))
6035 return -1;
6036 }
6037 break;
7ad10968 6038 case 1:
25ea693b 6039 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6040 return -1;
0289bdd7
MS
6041 if ((3 == (ir.reg & 7))
6042 || (5 == (ir.reg & 7))
6043 || (7 == (ir.reg & 7)))
6044 {
6045 /* For fstp insn. */
6046 if (i386_record_floats (gdbarch, &ir,
6047 I386_SAVE_FPU_REGS))
6048 return -1;
6049 }
7ad10968
HZ
6050 break;
6051 case 2:
25ea693b 6052 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6053 return -1;
0289bdd7
MS
6054 if (3 == (ir.reg & 7))
6055 {
6056 /* For fstp m64fp. */
6057 if (i386_record_floats (gdbarch, &ir,
6058 I386_SAVE_FPU_REGS))
6059 return -1;
6060 }
7ad10968
HZ
6061 break;
6062 case 3:
0289bdd7
MS
6063 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6064 {
6065 /* For fistp, fbld, fild, fbstp. */
6066 if (i386_record_floats (gdbarch, &ir,
6067 I386_SAVE_FPU_REGS))
6068 return -1;
6069 }
6070 /* Fall through */
7ad10968 6071 default:
25ea693b 6072 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6073 return -1;
6074 break;
6075 }
6076 break;
6077 }
6078 break;
6079 case 0x0c:
0289bdd7
MS
6080 /* Insn fldenv. */
6081 if (i386_record_floats (gdbarch, &ir,
6082 I386_SAVE_FPU_ENV_REG_STACK))
6083 return -1;
6084 break;
7ad10968 6085 case 0x0d:
0289bdd7
MS
6086 /* Insn fldcw. */
6087 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6088 return -1;
6089 break;
7ad10968 6090 case 0x2c:
0289bdd7
MS
6091 /* Insn frstor. */
6092 if (i386_record_floats (gdbarch, &ir,
6093 I386_SAVE_FPU_ENV_REG_STACK))
6094 return -1;
7ad10968
HZ
6095 break;
6096 case 0x0e:
6097 if (ir.dflag)
6098 {
25ea693b 6099 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6100 return -1;
6101 }
6102 else
6103 {
25ea693b 6104 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6105 return -1;
6106 }
6107 break;
6108 case 0x0f:
6109 case 0x2f:
25ea693b 6110 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6111 return -1;
0289bdd7
MS
6112 /* Insn fstp, fbstp. */
6113 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6114 return -1;
7ad10968
HZ
6115 break;
6116 case 0x1f:
6117 case 0x3e:
25ea693b 6118 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6119 return -1;
6120 break;
6121 case 0x2e:
6122 if (ir.dflag)
6123 {
25ea693b 6124 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6125 return -1;
955db0c0 6126 addr64 += 28;
7ad10968
HZ
6127 }
6128 else
6129 {
25ea693b 6130 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6131 return -1;
955db0c0 6132 addr64 += 14;
7ad10968 6133 }
25ea693b 6134 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6135 return -1;
0289bdd7
MS
6136 /* Insn fsave. */
6137 if (i386_record_floats (gdbarch, &ir,
6138 I386_SAVE_FPU_ENV_REG_STACK))
6139 return -1;
7ad10968
HZ
6140 break;
6141 case 0x3f:
25ea693b 6142 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6143 return -1;
0289bdd7
MS
6144 /* Insn fistp. */
6145 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6146 return -1;
7ad10968
HZ
6147 break;
6148 default:
6149 ir.addr -= 2;
6150 opcode = opcode << 8 | ir.modrm;
6151 goto no_support;
6152 break;
6153 }
6154 }
0289bdd7
MS
6155 /* Opcode is an extension of modR/M byte. */
6156 else
6157 {
6158 switch (opcode)
6159 {
6160 case 0xd8:
6161 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6162 return -1;
6163 break;
6164 case 0xd9:
6165 if (0x0c == (ir.modrm >> 4))
6166 {
6167 if ((ir.modrm & 0x0f) <= 7)
6168 {
6169 if (i386_record_floats (gdbarch, &ir,
6170 I386_SAVE_FPU_REGS))
6171 return -1;
6172 }
6173 else
6174 {
6175 if (i386_record_floats (gdbarch, &ir,
6176 I387_ST0_REGNUM (tdep)))
6177 return -1;
6178 /* If only st(0) is changing, then we have already
6179 recorded. */
6180 if ((ir.modrm & 0x0f) - 0x08)
6181 {
6182 if (i386_record_floats (gdbarch, &ir,
6183 I387_ST0_REGNUM (tdep) +
6184 ((ir.modrm & 0x0f) - 0x08)))
6185 return -1;
6186 }
6187 }
6188 }
6189 else
6190 {
6191 switch (ir.modrm)
6192 {
6193 case 0xe0:
6194 case 0xe1:
6195 case 0xf0:
6196 case 0xf5:
6197 case 0xf8:
6198 case 0xfa:
6199 case 0xfc:
6200 case 0xfe:
6201 case 0xff:
6202 if (i386_record_floats (gdbarch, &ir,
6203 I387_ST0_REGNUM (tdep)))
6204 return -1;
6205 break;
6206 case 0xf1:
6207 case 0xf2:
6208 case 0xf3:
6209 case 0xf4:
6210 case 0xf6:
6211 case 0xf7:
6212 case 0xe8:
6213 case 0xe9:
6214 case 0xea:
6215 case 0xeb:
6216 case 0xec:
6217 case 0xed:
6218 case 0xee:
6219 case 0xf9:
6220 case 0xfb:
6221 if (i386_record_floats (gdbarch, &ir,
6222 I386_SAVE_FPU_REGS))
6223 return -1;
6224 break;
6225 case 0xfd:
6226 if (i386_record_floats (gdbarch, &ir,
6227 I387_ST0_REGNUM (tdep)))
6228 return -1;
6229 if (i386_record_floats (gdbarch, &ir,
6230 I387_ST0_REGNUM (tdep) + 1))
6231 return -1;
6232 break;
6233 }
6234 }
6235 break;
6236 case 0xda:
6237 if (0xe9 == ir.modrm)
6238 {
6239 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6240 return -1;
6241 }
6242 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6243 {
6244 if (i386_record_floats (gdbarch, &ir,
6245 I387_ST0_REGNUM (tdep)))
6246 return -1;
6247 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6248 {
6249 if (i386_record_floats (gdbarch, &ir,
6250 I387_ST0_REGNUM (tdep) +
6251 (ir.modrm & 0x0f)))
6252 return -1;
6253 }
6254 else if ((ir.modrm & 0x0f) - 0x08)
6255 {
6256 if (i386_record_floats (gdbarch, &ir,
6257 I387_ST0_REGNUM (tdep) +
6258 ((ir.modrm & 0x0f) - 0x08)))
6259 return -1;
6260 }
6261 }
6262 break;
6263 case 0xdb:
6264 if (0xe3 == ir.modrm)
6265 {
6266 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6267 return -1;
6268 }
6269 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6270 {
6271 if (i386_record_floats (gdbarch, &ir,
6272 I387_ST0_REGNUM (tdep)))
6273 return -1;
6274 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6275 {
6276 if (i386_record_floats (gdbarch, &ir,
6277 I387_ST0_REGNUM (tdep) +
6278 (ir.modrm & 0x0f)))
6279 return -1;
6280 }
6281 else if ((ir.modrm & 0x0f) - 0x08)
6282 {
6283 if (i386_record_floats (gdbarch, &ir,
6284 I387_ST0_REGNUM (tdep) +
6285 ((ir.modrm & 0x0f) - 0x08)))
6286 return -1;
6287 }
6288 }
6289 break;
6290 case 0xdc:
6291 if ((0x0c == ir.modrm >> 4)
6292 || (0x0d == ir.modrm >> 4)
6293 || (0x0f == ir.modrm >> 4))
6294 {
6295 if ((ir.modrm & 0x0f) <= 7)
6296 {
6297 if (i386_record_floats (gdbarch, &ir,
6298 I387_ST0_REGNUM (tdep) +
6299 (ir.modrm & 0x0f)))
6300 return -1;
6301 }
6302 else
6303 {
6304 if (i386_record_floats (gdbarch, &ir,
6305 I387_ST0_REGNUM (tdep) +
6306 ((ir.modrm & 0x0f) - 0x08)))
6307 return -1;
6308 }
6309 }
6310 break;
6311 case 0xdd:
6312 if (0x0c == ir.modrm >> 4)
6313 {
6314 if (i386_record_floats (gdbarch, &ir,
6315 I387_FTAG_REGNUM (tdep)))
6316 return -1;
6317 }
6318 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6319 {
6320 if ((ir.modrm & 0x0f) <= 7)
6321 {
6322 if (i386_record_floats (gdbarch, &ir,
6323 I387_ST0_REGNUM (tdep) +
6324 (ir.modrm & 0x0f)))
6325 return -1;
6326 }
6327 else
6328 {
6329 if (i386_record_floats (gdbarch, &ir,
6330 I386_SAVE_FPU_REGS))
6331 return -1;
6332 }
6333 }
6334 break;
6335 case 0xde:
6336 if ((0x0c == ir.modrm >> 4)
6337 || (0x0e == ir.modrm >> 4)
6338 || (0x0f == ir.modrm >> 4)
6339 || (0xd9 == ir.modrm))
6340 {
6341 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6342 return -1;
6343 }
6344 break;
6345 case 0xdf:
6346 if (0xe0 == ir.modrm)
6347 {
25ea693b
MM
6348 if (record_full_arch_list_add_reg (ir.regcache,
6349 I386_EAX_REGNUM))
0289bdd7
MS
6350 return -1;
6351 }
6352 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6353 {
6354 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6355 return -1;
6356 }
6357 break;
6358 }
6359 }
7ad10968 6360 break;
7ad10968 6361 /* string ops */
a38bba38 6362 case 0xa4: /* movsS */
7ad10968 6363 case 0xa5:
a38bba38 6364 case 0xaa: /* stosS */
7ad10968 6365 case 0xab:
a38bba38 6366 case 0x6c: /* insS */
7ad10968 6367 case 0x6d:
cf648174 6368 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6369 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6370 &addr);
6371 if (addr)
cf648174 6372 {
77d7dc92
HZ
6373 ULONGEST es, ds;
6374
6375 if ((opcode & 1) == 0)
6376 ir.ot = OT_BYTE;
6377 else
6378 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6379 regcache_raw_read_unsigned (ir.regcache,
6380 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6381 &addr);
77d7dc92 6382
d7877f7e
HZ
6383 regcache_raw_read_unsigned (ir.regcache,
6384 ir.regmap[X86_RECORD_ES_REGNUM],
6385 &es);
6386 regcache_raw_read_unsigned (ir.regcache,
6387 ir.regmap[X86_RECORD_DS_REGNUM],
6388 &ds);
6389 if (ir.aflag && (es != ds))
77d7dc92
HZ
6390 {
6391 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6392 if (record_full_memory_query)
bb08c432
HZ
6393 {
6394 int q;
6395
6396 target_terminal_ours ();
6397 q = yquery (_("\
6398Process record ignores the memory change of instruction at address %s\n\
6399because it can't get the value of the segment register.\n\
6400Do you want to stop the program?"),
6401 paddress (gdbarch, ir.orig_addr));
6402 target_terminal_inferior ();
6403 if (q)
6404 return -1;
6405 }
df61f520
HZ
6406 }
6407 else
6408 {
25ea693b 6409 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6410 return -1;
77d7dc92
HZ
6411 }
6412
6413 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6415 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6417 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6419 }
cf648174 6420 break;
7ad10968 6421
a38bba38 6422 case 0xa6: /* cmpsS */
cf648174 6423 case 0xa7:
25ea693b
MM
6424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6426 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6429 break;
6430
a38bba38 6431 case 0xac: /* lodsS */
7ad10968 6432 case 0xad:
25ea693b
MM
6433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6434 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6435 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6438 break;
6439
a38bba38 6440 case 0xae: /* scasS */
7ad10968 6441 case 0xaf:
25ea693b 6442 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6443 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6446 break;
6447
a38bba38 6448 case 0x6e: /* outsS */
cf648174 6449 case 0x6f:
25ea693b 6450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6451 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6454 break;
6455
a38bba38 6456 case 0xe4: /* port I/O */
7ad10968
HZ
6457 case 0xe5:
6458 case 0xec:
6459 case 0xed:
25ea693b
MM
6460 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6462 break;
6463
6464 case 0xe6:
6465 case 0xe7:
6466 case 0xee:
6467 case 0xef:
6468 break;
6469
6470 /* control */
a38bba38
MS
6471 case 0xc2: /* ret im */
6472 case 0xc3: /* ret */
25ea693b
MM
6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6475 break;
6476
a38bba38
MS
6477 case 0xca: /* lret im */
6478 case 0xcb: /* lret */
6479 case 0xcf: /* iret */
25ea693b
MM
6480 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6481 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6483 break;
6484
a38bba38 6485 case 0xe8: /* call im */
cf648174
HZ
6486 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6487 ir.dflag = 2;
6488 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6489 return -1;
7ad10968
HZ
6490 break;
6491
a38bba38 6492 case 0x9a: /* lcall im */
cf648174
HZ
6493 if (ir.regmap[X86_RECORD_R8_REGNUM])
6494 {
6495 ir.addr -= 1;
6496 goto no_support;
6497 }
25ea693b 6498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6499 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6500 return -1;
7ad10968
HZ
6501 break;
6502
a38bba38
MS
6503 case 0xe9: /* jmp im */
6504 case 0xea: /* ljmp im */
6505 case 0xeb: /* jmp Jb */
6506 case 0x70: /* jcc Jb */
7ad10968
HZ
6507 case 0x71:
6508 case 0x72:
6509 case 0x73:
6510 case 0x74:
6511 case 0x75:
6512 case 0x76:
6513 case 0x77:
6514 case 0x78:
6515 case 0x79:
6516 case 0x7a:
6517 case 0x7b:
6518 case 0x7c:
6519 case 0x7d:
6520 case 0x7e:
6521 case 0x7f:
a38bba38 6522 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6523 case 0x0f81:
6524 case 0x0f82:
6525 case 0x0f83:
6526 case 0x0f84:
6527 case 0x0f85:
6528 case 0x0f86:
6529 case 0x0f87:
6530 case 0x0f88:
6531 case 0x0f89:
6532 case 0x0f8a:
6533 case 0x0f8b:
6534 case 0x0f8c:
6535 case 0x0f8d:
6536 case 0x0f8e:
6537 case 0x0f8f:
6538 break;
6539
a38bba38 6540 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6541 case 0x0f91:
6542 case 0x0f92:
6543 case 0x0f93:
6544 case 0x0f94:
6545 case 0x0f95:
6546 case 0x0f96:
6547 case 0x0f97:
6548 case 0x0f98:
6549 case 0x0f99:
6550 case 0x0f9a:
6551 case 0x0f9b:
6552 case 0x0f9c:
6553 case 0x0f9d:
6554 case 0x0f9e:
6555 case 0x0f9f:
25ea693b 6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6557 ir.ot = OT_BYTE;
6558 if (i386_record_modrm (&ir))
6559 return -1;
6560 if (ir.mod == 3)
25ea693b
MM
6561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6562 : (ir.rm & 0x3));
7ad10968
HZ
6563 else
6564 {
6565 if (i386_record_lea_modrm (&ir))
6566 return -1;
6567 }
6568 break;
6569
a38bba38 6570 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6571 case 0x0f41:
6572 case 0x0f42:
6573 case 0x0f43:
6574 case 0x0f44:
6575 case 0x0f45:
6576 case 0x0f46:
6577 case 0x0f47:
6578 case 0x0f48:
6579 case 0x0f49:
6580 case 0x0f4a:
6581 case 0x0f4b:
6582 case 0x0f4c:
6583 case 0x0f4d:
6584 case 0x0f4e:
6585 case 0x0f4f:
6586 if (i386_record_modrm (&ir))
6587 return -1;
cf648174 6588 ir.reg |= rex_r;
7ad10968
HZ
6589 if (ir.dflag == OT_BYTE)
6590 ir.reg &= 0x3;
25ea693b 6591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6592 break;
6593
6594 /* flags */
a38bba38 6595 case 0x9c: /* pushf */
25ea693b 6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6597 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6598 ir.dflag = 2;
6599 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6600 return -1;
7ad10968
HZ
6601 break;
6602
a38bba38 6603 case 0x9d: /* popf */
25ea693b
MM
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6606 break;
6607
a38bba38 6608 case 0x9e: /* sahf */
cf648174
HZ
6609 if (ir.regmap[X86_RECORD_R8_REGNUM])
6610 {
6611 ir.addr -= 1;
6612 goto no_support;
6613 }
d3f323f3 6614 /* FALLTHROUGH */
a38bba38
MS
6615 case 0xf5: /* cmc */
6616 case 0xf8: /* clc */
6617 case 0xf9: /* stc */
6618 case 0xfc: /* cld */
6619 case 0xfd: /* std */
25ea693b 6620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6621 break;
6622
a38bba38 6623 case 0x9f: /* lahf */
cf648174
HZ
6624 if (ir.regmap[X86_RECORD_R8_REGNUM])
6625 {
6626 ir.addr -= 1;
6627 goto no_support;
6628 }
25ea693b
MM
6629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6631 break;
6632
6633 /* bit operations */
a38bba38 6634 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6635 ir.ot = ir.dflag + OT_WORD;
6636 if (i386_record_modrm (&ir))
6637 return -1;
6638 if (ir.reg < 4)
6639 {
cf648174 6640 ir.addr -= 2;
7ad10968
HZ
6641 opcode = opcode << 8 | ir.modrm;
6642 goto no_support;
6643 }
cf648174 6644 if (ir.reg != 4)
7ad10968 6645 {
cf648174 6646 if (ir.mod == 3)
25ea693b 6647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6648 else
6649 {
cf648174 6650 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6651 return -1;
6652 }
6653 }
25ea693b 6654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6655 break;
6656
a38bba38 6657 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6659 break;
6660
a38bba38
MS
6661 case 0x0fab: /* bts */
6662 case 0x0fb3: /* btr */
6663 case 0x0fbb: /* btc */
cf648174
HZ
6664 ir.ot = ir.dflag + OT_WORD;
6665 if (i386_record_modrm (&ir))
6666 return -1;
6667 if (ir.mod == 3)
25ea693b 6668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6669 else
6670 {
955db0c0
MS
6671 uint64_t addr64;
6672 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6673 return -1;
6674 regcache_raw_read_unsigned (ir.regcache,
6675 ir.regmap[ir.reg | rex_r],
648d0c8b 6676 &addr);
cf648174
HZ
6677 switch (ir.dflag)
6678 {
6679 case 0:
648d0c8b 6680 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6681 break;
6682 case 1:
648d0c8b 6683 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6684 break;
6685 case 2:
648d0c8b 6686 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6687 break;
6688 }
25ea693b 6689 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6690 return -1;
6691 if (i386_record_lea_modrm (&ir))
6692 return -1;
6693 }
25ea693b 6694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6695 break;
6696
a38bba38
MS
6697 case 0x0fbc: /* bsf */
6698 case 0x0fbd: /* bsr */
25ea693b
MM
6699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6700 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6701 break;
6702
6703 /* bcd */
a38bba38
MS
6704 case 0x27: /* daa */
6705 case 0x2f: /* das */
6706 case 0x37: /* aaa */
6707 case 0x3f: /* aas */
6708 case 0xd4: /* aam */
6709 case 0xd5: /* aad */
cf648174
HZ
6710 if (ir.regmap[X86_RECORD_R8_REGNUM])
6711 {
6712 ir.addr -= 1;
6713 goto no_support;
6714 }
25ea693b
MM
6715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6717 break;
6718
6719 /* misc */
a38bba38 6720 case 0x90: /* nop */
7ad10968
HZ
6721 if (prefixes & PREFIX_LOCK)
6722 {
6723 ir.addr -= 1;
6724 goto no_support;
6725 }
6726 break;
6727
a38bba38 6728 case 0x9b: /* fwait */
4ffa4fc7
PA
6729 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6730 return -1;
425b824a 6731 opcode = (uint32_t) opcode8;
0289bdd7
MS
6732 ir.addr++;
6733 goto reswitch;
7ad10968
HZ
6734 break;
6735
7ad10968 6736 /* XXX */
a38bba38 6737 case 0xcc: /* int3 */
a3c4230a 6738 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6739 "int3.\n"));
6740 ir.addr -= 1;
6741 goto no_support;
6742 break;
6743
7ad10968 6744 /* XXX */
a38bba38 6745 case 0xcd: /* int */
7ad10968
HZ
6746 {
6747 int ret;
425b824a 6748 uint8_t interrupt;
4ffa4fc7
PA
6749 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6750 return -1;
7ad10968 6751 ir.addr++;
425b824a 6752 if (interrupt != 0x80
a3c4230a 6753 || tdep->i386_intx80_record == NULL)
7ad10968 6754 {
a3c4230a 6755 printf_unfiltered (_("Process record does not support "
7ad10968 6756 "instruction int 0x%02x.\n"),
425b824a 6757 interrupt);
7ad10968
HZ
6758 ir.addr -= 2;
6759 goto no_support;
6760 }
a3c4230a 6761 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6762 if (ret)
6763 return ret;
6764 }
6765 break;
6766
7ad10968 6767 /* XXX */
a38bba38 6768 case 0xce: /* into */
a3c4230a 6769 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6770 "instruction into.\n"));
6771 ir.addr -= 1;
6772 goto no_support;
6773 break;
6774
a38bba38
MS
6775 case 0xfa: /* cli */
6776 case 0xfb: /* sti */
7ad10968
HZ
6777 break;
6778
a38bba38 6779 case 0x62: /* bound */
a3c4230a 6780 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6781 "instruction bound.\n"));
6782 ir.addr -= 1;
6783 goto no_support;
6784 break;
6785
a38bba38 6786 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6787 case 0x0fc9:
6788 case 0x0fca:
6789 case 0x0fcb:
6790 case 0x0fcc:
6791 case 0x0fcd:
6792 case 0x0fce:
6793 case 0x0fcf:
25ea693b 6794 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6795 break;
6796
a38bba38 6797 case 0xd6: /* salc */
cf648174
HZ
6798 if (ir.regmap[X86_RECORD_R8_REGNUM])
6799 {
6800 ir.addr -= 1;
6801 goto no_support;
6802 }
25ea693b
MM
6803 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6805 break;
6806
a38bba38
MS
6807 case 0xe0: /* loopnz */
6808 case 0xe1: /* loopz */
6809 case 0xe2: /* loop */
6810 case 0xe3: /* jecxz */
25ea693b
MM
6811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6813 break;
6814
a38bba38 6815 case 0x0f30: /* wrmsr */
a3c4230a 6816 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6817 "instruction wrmsr.\n"));
6818 ir.addr -= 2;
6819 goto no_support;
6820 break;
6821
a38bba38 6822 case 0x0f32: /* rdmsr */
a3c4230a 6823 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6824 "instruction rdmsr.\n"));
6825 ir.addr -= 2;
6826 goto no_support;
6827 break;
6828
a38bba38 6829 case 0x0f31: /* rdtsc */
25ea693b
MM
6830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6831 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6832 break;
6833
a38bba38 6834 case 0x0f34: /* sysenter */
7ad10968
HZ
6835 {
6836 int ret;
cf648174
HZ
6837 if (ir.regmap[X86_RECORD_R8_REGNUM])
6838 {
6839 ir.addr -= 2;
6840 goto no_support;
6841 }
a3c4230a 6842 if (tdep->i386_sysenter_record == NULL)
7ad10968 6843 {
a3c4230a 6844 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6845 "instruction sysenter.\n"));
6846 ir.addr -= 2;
6847 goto no_support;
6848 }
a3c4230a 6849 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6850 if (ret)
6851 return ret;
6852 }
6853 break;
6854
a38bba38 6855 case 0x0f35: /* sysexit */
a3c4230a 6856 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6857 "instruction sysexit.\n"));
6858 ir.addr -= 2;
6859 goto no_support;
6860 break;
6861
a38bba38 6862 case 0x0f05: /* syscall */
cf648174
HZ
6863 {
6864 int ret;
a3c4230a 6865 if (tdep->i386_syscall_record == NULL)
cf648174 6866 {
a3c4230a 6867 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6868 "instruction syscall.\n"));
6869 ir.addr -= 2;
6870 goto no_support;
6871 }
a3c4230a 6872 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6873 if (ret)
6874 return ret;
6875 }
6876 break;
6877
a38bba38 6878 case 0x0f07: /* sysret */
a3c4230a 6879 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6880 "instruction sysret.\n"));
6881 ir.addr -= 2;
6882 goto no_support;
6883 break;
6884
a38bba38 6885 case 0x0fa2: /* cpuid */
25ea693b
MM
6886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6888 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6889 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6890 break;
6891
a38bba38 6892 case 0xf4: /* hlt */
a3c4230a 6893 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6894 "instruction hlt.\n"));
6895 ir.addr -= 1;
6896 goto no_support;
6897 break;
6898
6899 case 0x0f00:
6900 if (i386_record_modrm (&ir))
6901 return -1;
6902 switch (ir.reg)
6903 {
a38bba38
MS
6904 case 0: /* sldt */
6905 case 1: /* str */
7ad10968 6906 if (ir.mod == 3)
25ea693b 6907 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6908 else
6909 {
6910 ir.ot = OT_WORD;
6911 if (i386_record_lea_modrm (&ir))
6912 return -1;
6913 }
6914 break;
a38bba38
MS
6915 case 2: /* lldt */
6916 case 3: /* ltr */
7ad10968 6917 break;
a38bba38
MS
6918 case 4: /* verr */
6919 case 5: /* verw */
25ea693b 6920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6921 break;
6922 default:
6923 ir.addr -= 3;
6924 opcode = opcode << 8 | ir.modrm;
6925 goto no_support;
6926 break;
6927 }
6928 break;
6929
6930 case 0x0f01:
6931 if (i386_record_modrm (&ir))
6932 return -1;
6933 switch (ir.reg)
6934 {
a38bba38 6935 case 0: /* sgdt */
7ad10968 6936 {
955db0c0 6937 uint64_t addr64;
7ad10968
HZ
6938
6939 if (ir.mod == 3)
6940 {
6941 ir.addr -= 3;
6942 opcode = opcode << 8 | ir.modrm;
6943 goto no_support;
6944 }
d7877f7e 6945 if (ir.override >= 0)
7ad10968 6946 {
25ea693b 6947 if (record_full_memory_query)
bb08c432
HZ
6948 {
6949 int q;
6950
6951 target_terminal_ours ();
6952 q = yquery (_("\
6953Process record ignores the memory change of instruction at address %s\n\
6954because it can't get the value of the segment register.\n\
6955Do you want to stop the program?"),
6956 paddress (gdbarch, ir.orig_addr));
6957 target_terminal_inferior ();
6958 if (q)
6959 return -1;
6960 }
7ad10968
HZ
6961 }
6962 else
6963 {
955db0c0 6964 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6965 return -1;
25ea693b 6966 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6967 return -1;
955db0c0 6968 addr64 += 2;
cf648174
HZ
6969 if (ir.regmap[X86_RECORD_R8_REGNUM])
6970 {
25ea693b 6971 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6972 return -1;
6973 }
6974 else
6975 {
25ea693b 6976 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6977 return -1;
6978 }
7ad10968
HZ
6979 }
6980 }
6981 break;
6982 case 1:
6983 if (ir.mod == 3)
6984 {
6985 switch (ir.rm)
6986 {
a38bba38 6987 case 0: /* monitor */
7ad10968 6988 break;
a38bba38 6989 case 1: /* mwait */
25ea693b 6990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6991 break;
6992 default:
6993 ir.addr -= 3;
6994 opcode = opcode << 8 | ir.modrm;
6995 goto no_support;
6996 break;
6997 }
6998 }
6999 else
7000 {
7001 /* sidt */
d7877f7e 7002 if (ir.override >= 0)
7ad10968 7003 {
25ea693b 7004 if (record_full_memory_query)
bb08c432
HZ
7005 {
7006 int q;
7007
7008 target_terminal_ours ();
7009 q = yquery (_("\
7010Process record ignores the memory change of instruction at address %s\n\
7011because it can't get the value of the segment register.\n\
7012Do you want to stop the program?"),
7013 paddress (gdbarch, ir.orig_addr));
7014 target_terminal_inferior ();
7015 if (q)
7016 return -1;
7017 }
7ad10968
HZ
7018 }
7019 else
7020 {
955db0c0 7021 uint64_t addr64;
7ad10968 7022
955db0c0 7023 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7024 return -1;
25ea693b 7025 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7026 return -1;
955db0c0 7027 addr64 += 2;
cf648174
HZ
7028 if (ir.regmap[X86_RECORD_R8_REGNUM])
7029 {
25ea693b 7030 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7031 return -1;
7032 }
7033 else
7034 {
25ea693b 7035 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7036 return -1;
7037 }
7ad10968
HZ
7038 }
7039 }
7040 break;
a38bba38 7041 case 2: /* lgdt */
3800e645
MS
7042 if (ir.mod == 3)
7043 {
7044 /* xgetbv */
7045 if (ir.rm == 0)
7046 {
25ea693b
MM
7047 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7048 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7049 break;
7050 }
7051 /* xsetbv */
7052 else if (ir.rm == 1)
7053 break;
7054 }
a38bba38 7055 case 3: /* lidt */
7ad10968
HZ
7056 if (ir.mod == 3)
7057 {
7058 ir.addr -= 3;
7059 opcode = opcode << 8 | ir.modrm;
7060 goto no_support;
7061 }
7062 break;
a38bba38 7063 case 4: /* smsw */
7ad10968
HZ
7064 if (ir.mod == 3)
7065 {
25ea693b 7066 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7067 return -1;
7068 }
7069 else
7070 {
7071 ir.ot = OT_WORD;
7072 if (i386_record_lea_modrm (&ir))
7073 return -1;
7074 }
25ea693b 7075 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7076 break;
a38bba38 7077 case 6: /* lmsw */
25ea693b 7078 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7079 break;
a38bba38 7080 case 7: /* invlpg */
cf648174
HZ
7081 if (ir.mod == 3)
7082 {
7083 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7084 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7085 else
7086 {
7087 ir.addr -= 3;
7088 opcode = opcode << 8 | ir.modrm;
7089 goto no_support;
7090 }
7091 }
7092 else
25ea693b 7093 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7094 break;
7095 default:
7096 ir.addr -= 3;
7097 opcode = opcode << 8 | ir.modrm;
7098 goto no_support;
7ad10968
HZ
7099 break;
7100 }
7101 break;
7102
a38bba38
MS
7103 case 0x0f08: /* invd */
7104 case 0x0f09: /* wbinvd */
7ad10968
HZ
7105 break;
7106
a38bba38 7107 case 0x63: /* arpl */
7ad10968
HZ
7108 if (i386_record_modrm (&ir))
7109 return -1;
cf648174
HZ
7110 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7111 {
25ea693b
MM
7112 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7113 ? (ir.reg | rex_r) : ir.rm);
cf648174 7114 }
7ad10968 7115 else
cf648174
HZ
7116 {
7117 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7118 if (i386_record_lea_modrm (&ir))
7119 return -1;
7120 }
7121 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7122 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7123 break;
7124
a38bba38
MS
7125 case 0x0f02: /* lar */
7126 case 0x0f03: /* lsl */
7ad10968
HZ
7127 if (i386_record_modrm (&ir))
7128 return -1;
25ea693b
MM
7129 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7131 break;
7132
7133 case 0x0f18:
cf648174
HZ
7134 if (i386_record_modrm (&ir))
7135 return -1;
7136 if (ir.mod == 3 && ir.reg == 3)
7137 {
7138 ir.addr -= 3;
7139 opcode = opcode << 8 | ir.modrm;
7140 goto no_support;
7141 }
7ad10968
HZ
7142 break;
7143
7ad10968
HZ
7144 case 0x0f19:
7145 case 0x0f1a:
7146 case 0x0f1b:
7147 case 0x0f1c:
7148 case 0x0f1d:
7149 case 0x0f1e:
7150 case 0x0f1f:
a38bba38 7151 /* nop (multi byte) */
7ad10968
HZ
7152 break;
7153
a38bba38
MS
7154 case 0x0f20: /* mov reg, crN */
7155 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7156 if (i386_record_modrm (&ir))
7157 return -1;
7158 if ((ir.modrm & 0xc0) != 0xc0)
7159 {
cf648174 7160 ir.addr -= 3;
7ad10968
HZ
7161 opcode = opcode << 8 | ir.modrm;
7162 goto no_support;
7163 }
7164 switch (ir.reg)
7165 {
7166 case 0:
7167 case 2:
7168 case 3:
7169 case 4:
7170 case 8:
7171 if (opcode & 2)
25ea693b 7172 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7173 else
25ea693b 7174 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7175 break;
7176 default:
cf648174 7177 ir.addr -= 3;
7ad10968
HZ
7178 opcode = opcode << 8 | ir.modrm;
7179 goto no_support;
7180 break;
7181 }
7182 break;
7183
a38bba38
MS
7184 case 0x0f21: /* mov reg, drN */
7185 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7186 if (i386_record_modrm (&ir))
7187 return -1;
7188 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7189 || ir.reg == 5 || ir.reg >= 8)
7190 {
cf648174 7191 ir.addr -= 3;
7ad10968
HZ
7192 opcode = opcode << 8 | ir.modrm;
7193 goto no_support;
7194 }
7195 if (opcode & 2)
25ea693b 7196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7197 else
25ea693b 7198 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7199 break;
7200
a38bba38 7201 case 0x0f06: /* clts */
25ea693b 7202 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7203 break;
7204
a3c4230a
HZ
7205 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7206
7207 case 0x0f0d: /* 3DNow! prefetch */
7208 break;
7209
7210 case 0x0f0e: /* 3DNow! femms */
7211 case 0x0f77: /* emms */
7212 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7213 goto no_support;
25ea693b 7214 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7215 break;
7216
7217 case 0x0f0f: /* 3DNow! data */
7218 if (i386_record_modrm (&ir))
7219 return -1;
4ffa4fc7
PA
7220 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7221 return -1;
a3c4230a
HZ
7222 ir.addr++;
7223 switch (opcode8)
7224 {
7225 case 0x0c: /* 3DNow! pi2fw */
7226 case 0x0d: /* 3DNow! pi2fd */
7227 case 0x1c: /* 3DNow! pf2iw */
7228 case 0x1d: /* 3DNow! pf2id */
7229 case 0x8a: /* 3DNow! pfnacc */
7230 case 0x8e: /* 3DNow! pfpnacc */
7231 case 0x90: /* 3DNow! pfcmpge */
7232 case 0x94: /* 3DNow! pfmin */
7233 case 0x96: /* 3DNow! pfrcp */
7234 case 0x97: /* 3DNow! pfrsqrt */
7235 case 0x9a: /* 3DNow! pfsub */
7236 case 0x9e: /* 3DNow! pfadd */
7237 case 0xa0: /* 3DNow! pfcmpgt */
7238 case 0xa4: /* 3DNow! pfmax */
7239 case 0xa6: /* 3DNow! pfrcpit1 */
7240 case 0xa7: /* 3DNow! pfrsqit1 */
7241 case 0xaa: /* 3DNow! pfsubr */
7242 case 0xae: /* 3DNow! pfacc */
7243 case 0xb0: /* 3DNow! pfcmpeq */
7244 case 0xb4: /* 3DNow! pfmul */
7245 case 0xb6: /* 3DNow! pfrcpit2 */
7246 case 0xb7: /* 3DNow! pmulhrw */
7247 case 0xbb: /* 3DNow! pswapd */
7248 case 0xbf: /* 3DNow! pavgusb */
7249 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7250 goto no_support_3dnow_data;
25ea693b 7251 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7252 break;
7253
7254 default:
7255no_support_3dnow_data:
7256 opcode = (opcode << 8) | opcode8;
7257 goto no_support;
7258 break;
7259 }
7260 break;
7261
7262 case 0x0faa: /* rsm */
25ea693b
MM
7263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7264 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7265 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7266 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7267 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7268 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7272 break;
7273
7274 case 0x0fae:
7275 if (i386_record_modrm (&ir))
7276 return -1;
7277 switch(ir.reg)
7278 {
7279 case 0: /* fxsave */
7280 {
7281 uint64_t tmpu64;
7282
25ea693b 7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7284 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7285 return -1;
25ea693b 7286 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7287 return -1;
7288 }
7289 break;
7290
7291 case 1: /* fxrstor */
7292 {
7293 int i;
7294
25ea693b 7295 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7296
7297 for (i = I387_MM0_REGNUM (tdep);
7298 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7299 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7300
7301 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7302 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7303 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7304
7305 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7306 record_full_arch_list_add_reg (ir.regcache,
7307 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7308
7309 for (i = I387_ST0_REGNUM (tdep);
7310 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7311 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7312
7313 for (i = I387_FCTRL_REGNUM (tdep);
7314 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7315 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7316 }
7317 break;
7318
7319 case 2: /* ldmxcsr */
7320 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7321 goto no_support;
25ea693b 7322 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7323 break;
7324
7325 case 3: /* stmxcsr */
7326 ir.ot = OT_LONG;
7327 if (i386_record_lea_modrm (&ir))
7328 return -1;
7329 break;
7330
7331 case 5: /* lfence */
7332 case 6: /* mfence */
7333 case 7: /* sfence clflush */
7334 break;
7335
7336 default:
7337 opcode = (opcode << 8) | ir.modrm;
7338 goto no_support;
7339 break;
7340 }
7341 break;
7342
7343 case 0x0fc3: /* movnti */
7344 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7345 if (i386_record_modrm (&ir))
7346 return -1;
7347 if (ir.mod == 3)
7348 goto no_support;
7349 ir.reg |= rex_r;
7350 if (i386_record_lea_modrm (&ir))
7351 return -1;
7352 break;
7353
7354 /* Add prefix to opcode. */
7355 case 0x0f10:
7356 case 0x0f11:
7357 case 0x0f12:
7358 case 0x0f13:
7359 case 0x0f14:
7360 case 0x0f15:
7361 case 0x0f16:
7362 case 0x0f17:
7363 case 0x0f28:
7364 case 0x0f29:
7365 case 0x0f2a:
7366 case 0x0f2b:
7367 case 0x0f2c:
7368 case 0x0f2d:
7369 case 0x0f2e:
7370 case 0x0f2f:
7371 case 0x0f38:
7372 case 0x0f39:
7373 case 0x0f3a:
7374 case 0x0f50:
7375 case 0x0f51:
7376 case 0x0f52:
7377 case 0x0f53:
7378 case 0x0f54:
7379 case 0x0f55:
7380 case 0x0f56:
7381 case 0x0f57:
7382 case 0x0f58:
7383 case 0x0f59:
7384 case 0x0f5a:
7385 case 0x0f5b:
7386 case 0x0f5c:
7387 case 0x0f5d:
7388 case 0x0f5e:
7389 case 0x0f5f:
7390 case 0x0f60:
7391 case 0x0f61:
7392 case 0x0f62:
7393 case 0x0f63:
7394 case 0x0f64:
7395 case 0x0f65:
7396 case 0x0f66:
7397 case 0x0f67:
7398 case 0x0f68:
7399 case 0x0f69:
7400 case 0x0f6a:
7401 case 0x0f6b:
7402 case 0x0f6c:
7403 case 0x0f6d:
7404 case 0x0f6e:
7405 case 0x0f6f:
7406 case 0x0f70:
7407 case 0x0f71:
7408 case 0x0f72:
7409 case 0x0f73:
7410 case 0x0f74:
7411 case 0x0f75:
7412 case 0x0f76:
7413 case 0x0f7c:
7414 case 0x0f7d:
7415 case 0x0f7e:
7416 case 0x0f7f:
7417 case 0x0fb8:
7418 case 0x0fc2:
7419 case 0x0fc4:
7420 case 0x0fc5:
7421 case 0x0fc6:
7422 case 0x0fd0:
7423 case 0x0fd1:
7424 case 0x0fd2:
7425 case 0x0fd3:
7426 case 0x0fd4:
7427 case 0x0fd5:
7428 case 0x0fd6:
7429 case 0x0fd7:
7430 case 0x0fd8:
7431 case 0x0fd9:
7432 case 0x0fda:
7433 case 0x0fdb:
7434 case 0x0fdc:
7435 case 0x0fdd:
7436 case 0x0fde:
7437 case 0x0fdf:
7438 case 0x0fe0:
7439 case 0x0fe1:
7440 case 0x0fe2:
7441 case 0x0fe3:
7442 case 0x0fe4:
7443 case 0x0fe5:
7444 case 0x0fe6:
7445 case 0x0fe7:
7446 case 0x0fe8:
7447 case 0x0fe9:
7448 case 0x0fea:
7449 case 0x0feb:
7450 case 0x0fec:
7451 case 0x0fed:
7452 case 0x0fee:
7453 case 0x0fef:
7454 case 0x0ff0:
7455 case 0x0ff1:
7456 case 0x0ff2:
7457 case 0x0ff3:
7458 case 0x0ff4:
7459 case 0x0ff5:
7460 case 0x0ff6:
7461 case 0x0ff7:
7462 case 0x0ff8:
7463 case 0x0ff9:
7464 case 0x0ffa:
7465 case 0x0ffb:
7466 case 0x0ffc:
7467 case 0x0ffd:
7468 case 0x0ffe:
f9fda3f5
L
7469 /* Mask out PREFIX_ADDR. */
7470 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7471 {
7472 case PREFIX_REPNZ:
7473 opcode |= 0xf20000;
7474 break;
7475 case PREFIX_DATA:
7476 opcode |= 0x660000;
7477 break;
7478 case PREFIX_REPZ:
7479 opcode |= 0xf30000;
7480 break;
7481 }
7482reswitch_prefix_add:
7483 switch (opcode)
7484 {
7485 case 0x0f38:
7486 case 0x660f38:
7487 case 0xf20f38:
7488 case 0x0f3a:
7489 case 0x660f3a:
4ffa4fc7
PA
7490 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7491 return -1;
a3c4230a
HZ
7492 ir.addr++;
7493 opcode = (uint32_t) opcode8 | opcode << 8;
7494 goto reswitch_prefix_add;
7495 break;
7496
7497 case 0x0f10: /* movups */
7498 case 0x660f10: /* movupd */
7499 case 0xf30f10: /* movss */
7500 case 0xf20f10: /* movsd */
7501 case 0x0f12: /* movlps */
7502 case 0x660f12: /* movlpd */
7503 case 0xf30f12: /* movsldup */
7504 case 0xf20f12: /* movddup */
7505 case 0x0f14: /* unpcklps */
7506 case 0x660f14: /* unpcklpd */
7507 case 0x0f15: /* unpckhps */
7508 case 0x660f15: /* unpckhpd */
7509 case 0x0f16: /* movhps */
7510 case 0x660f16: /* movhpd */
7511 case 0xf30f16: /* movshdup */
7512 case 0x0f28: /* movaps */
7513 case 0x660f28: /* movapd */
7514 case 0x0f2a: /* cvtpi2ps */
7515 case 0x660f2a: /* cvtpi2pd */
7516 case 0xf30f2a: /* cvtsi2ss */
7517 case 0xf20f2a: /* cvtsi2sd */
7518 case 0x0f2c: /* cvttps2pi */
7519 case 0x660f2c: /* cvttpd2pi */
7520 case 0x0f2d: /* cvtps2pi */
7521 case 0x660f2d: /* cvtpd2pi */
7522 case 0x660f3800: /* pshufb */
7523 case 0x660f3801: /* phaddw */
7524 case 0x660f3802: /* phaddd */
7525 case 0x660f3803: /* phaddsw */
7526 case 0x660f3804: /* pmaddubsw */
7527 case 0x660f3805: /* phsubw */
7528 case 0x660f3806: /* phsubd */
4f7d61a8 7529 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7530 case 0x660f3808: /* psignb */
7531 case 0x660f3809: /* psignw */
7532 case 0x660f380a: /* psignd */
7533 case 0x660f380b: /* pmulhrsw */
7534 case 0x660f3810: /* pblendvb */
7535 case 0x660f3814: /* blendvps */
7536 case 0x660f3815: /* blendvpd */
7537 case 0x660f381c: /* pabsb */
7538 case 0x660f381d: /* pabsw */
7539 case 0x660f381e: /* pabsd */
7540 case 0x660f3820: /* pmovsxbw */
7541 case 0x660f3821: /* pmovsxbd */
7542 case 0x660f3822: /* pmovsxbq */
7543 case 0x660f3823: /* pmovsxwd */
7544 case 0x660f3824: /* pmovsxwq */
7545 case 0x660f3825: /* pmovsxdq */
7546 case 0x660f3828: /* pmuldq */
7547 case 0x660f3829: /* pcmpeqq */
7548 case 0x660f382a: /* movntdqa */
7549 case 0x660f3a08: /* roundps */
7550 case 0x660f3a09: /* roundpd */
7551 case 0x660f3a0a: /* roundss */
7552 case 0x660f3a0b: /* roundsd */
7553 case 0x660f3a0c: /* blendps */
7554 case 0x660f3a0d: /* blendpd */
7555 case 0x660f3a0e: /* pblendw */
7556 case 0x660f3a0f: /* palignr */
7557 case 0x660f3a20: /* pinsrb */
7558 case 0x660f3a21: /* insertps */
7559 case 0x660f3a22: /* pinsrd pinsrq */
7560 case 0x660f3a40: /* dpps */
7561 case 0x660f3a41: /* dppd */
7562 case 0x660f3a42: /* mpsadbw */
7563 case 0x660f3a60: /* pcmpestrm */
7564 case 0x660f3a61: /* pcmpestri */
7565 case 0x660f3a62: /* pcmpistrm */
7566 case 0x660f3a63: /* pcmpistri */
7567 case 0x0f51: /* sqrtps */
7568 case 0x660f51: /* sqrtpd */
7569 case 0xf20f51: /* sqrtsd */
7570 case 0xf30f51: /* sqrtss */
7571 case 0x0f52: /* rsqrtps */
7572 case 0xf30f52: /* rsqrtss */
7573 case 0x0f53: /* rcpps */
7574 case 0xf30f53: /* rcpss */
7575 case 0x0f54: /* andps */
7576 case 0x660f54: /* andpd */
7577 case 0x0f55: /* andnps */
7578 case 0x660f55: /* andnpd */
7579 case 0x0f56: /* orps */
7580 case 0x660f56: /* orpd */
7581 case 0x0f57: /* xorps */
7582 case 0x660f57: /* xorpd */
7583 case 0x0f58: /* addps */
7584 case 0x660f58: /* addpd */
7585 case 0xf20f58: /* addsd */
7586 case 0xf30f58: /* addss */
7587 case 0x0f59: /* mulps */
7588 case 0x660f59: /* mulpd */
7589 case 0xf20f59: /* mulsd */
7590 case 0xf30f59: /* mulss */
7591 case 0x0f5a: /* cvtps2pd */
7592 case 0x660f5a: /* cvtpd2ps */
7593 case 0xf20f5a: /* cvtsd2ss */
7594 case 0xf30f5a: /* cvtss2sd */
7595 case 0x0f5b: /* cvtdq2ps */
7596 case 0x660f5b: /* cvtps2dq */
7597 case 0xf30f5b: /* cvttps2dq */
7598 case 0x0f5c: /* subps */
7599 case 0x660f5c: /* subpd */
7600 case 0xf20f5c: /* subsd */
7601 case 0xf30f5c: /* subss */
7602 case 0x0f5d: /* minps */
7603 case 0x660f5d: /* minpd */
7604 case 0xf20f5d: /* minsd */
7605 case 0xf30f5d: /* minss */
7606 case 0x0f5e: /* divps */
7607 case 0x660f5e: /* divpd */
7608 case 0xf20f5e: /* divsd */
7609 case 0xf30f5e: /* divss */
7610 case 0x0f5f: /* maxps */
7611 case 0x660f5f: /* maxpd */
7612 case 0xf20f5f: /* maxsd */
7613 case 0xf30f5f: /* maxss */
7614 case 0x660f60: /* punpcklbw */
7615 case 0x660f61: /* punpcklwd */
7616 case 0x660f62: /* punpckldq */
7617 case 0x660f63: /* packsswb */
7618 case 0x660f64: /* pcmpgtb */
7619 case 0x660f65: /* pcmpgtw */
56d2815c 7620 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7621 case 0x660f67: /* packuswb */
7622 case 0x660f68: /* punpckhbw */
7623 case 0x660f69: /* punpckhwd */
7624 case 0x660f6a: /* punpckhdq */
7625 case 0x660f6b: /* packssdw */
7626 case 0x660f6c: /* punpcklqdq */
7627 case 0x660f6d: /* punpckhqdq */
7628 case 0x660f6e: /* movd */
7629 case 0x660f6f: /* movdqa */
7630 case 0xf30f6f: /* movdqu */
7631 case 0x660f70: /* pshufd */
7632 case 0xf20f70: /* pshuflw */
7633 case 0xf30f70: /* pshufhw */
7634 case 0x660f74: /* pcmpeqb */
7635 case 0x660f75: /* pcmpeqw */
56d2815c 7636 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7637 case 0x660f7c: /* haddpd */
7638 case 0xf20f7c: /* haddps */
7639 case 0x660f7d: /* hsubpd */
7640 case 0xf20f7d: /* hsubps */
7641 case 0xf30f7e: /* movq */
7642 case 0x0fc2: /* cmpps */
7643 case 0x660fc2: /* cmppd */
7644 case 0xf20fc2: /* cmpsd */
7645 case 0xf30fc2: /* cmpss */
7646 case 0x660fc4: /* pinsrw */
7647 case 0x0fc6: /* shufps */
7648 case 0x660fc6: /* shufpd */
7649 case 0x660fd0: /* addsubpd */
7650 case 0xf20fd0: /* addsubps */
7651 case 0x660fd1: /* psrlw */
7652 case 0x660fd2: /* psrld */
7653 case 0x660fd3: /* psrlq */
7654 case 0x660fd4: /* paddq */
7655 case 0x660fd5: /* pmullw */
7656 case 0xf30fd6: /* movq2dq */
7657 case 0x660fd8: /* psubusb */
7658 case 0x660fd9: /* psubusw */
7659 case 0x660fda: /* pminub */
7660 case 0x660fdb: /* pand */
7661 case 0x660fdc: /* paddusb */
7662 case 0x660fdd: /* paddusw */
7663 case 0x660fde: /* pmaxub */
7664 case 0x660fdf: /* pandn */
7665 case 0x660fe0: /* pavgb */
7666 case 0x660fe1: /* psraw */
7667 case 0x660fe2: /* psrad */
7668 case 0x660fe3: /* pavgw */
7669 case 0x660fe4: /* pmulhuw */
7670 case 0x660fe5: /* pmulhw */
7671 case 0x660fe6: /* cvttpd2dq */
7672 case 0xf20fe6: /* cvtpd2dq */
7673 case 0xf30fe6: /* cvtdq2pd */
7674 case 0x660fe8: /* psubsb */
7675 case 0x660fe9: /* psubsw */
7676 case 0x660fea: /* pminsw */
7677 case 0x660feb: /* por */
7678 case 0x660fec: /* paddsb */
7679 case 0x660fed: /* paddsw */
7680 case 0x660fee: /* pmaxsw */
7681 case 0x660fef: /* pxor */
4f7d61a8 7682 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7683 case 0x660ff1: /* psllw */
7684 case 0x660ff2: /* pslld */
7685 case 0x660ff3: /* psllq */
7686 case 0x660ff4: /* pmuludq */
7687 case 0x660ff5: /* pmaddwd */
7688 case 0x660ff6: /* psadbw */
7689 case 0x660ff8: /* psubb */
7690 case 0x660ff9: /* psubw */
56d2815c 7691 case 0x660ffa: /* psubd */
a3c4230a
HZ
7692 case 0x660ffb: /* psubq */
7693 case 0x660ffc: /* paddb */
7694 case 0x660ffd: /* paddw */
56d2815c 7695 case 0x660ffe: /* paddd */
a3c4230a
HZ
7696 if (i386_record_modrm (&ir))
7697 return -1;
7698 ir.reg |= rex_r;
c131fcee 7699 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7700 goto no_support;
25ea693b
MM
7701 record_full_arch_list_add_reg (ir.regcache,
7702 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7703 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7705 break;
7706
7707 case 0x0f11: /* movups */
7708 case 0x660f11: /* movupd */
7709 case 0xf30f11: /* movss */
7710 case 0xf20f11: /* movsd */
7711 case 0x0f13: /* movlps */
7712 case 0x660f13: /* movlpd */
7713 case 0x0f17: /* movhps */
7714 case 0x660f17: /* movhpd */
7715 case 0x0f29: /* movaps */
7716 case 0x660f29: /* movapd */
7717 case 0x660f3a14: /* pextrb */
7718 case 0x660f3a15: /* pextrw */
7719 case 0x660f3a16: /* pextrd pextrq */
7720 case 0x660f3a17: /* extractps */
7721 case 0x660f7f: /* movdqa */
7722 case 0xf30f7f: /* movdqu */
7723 if (i386_record_modrm (&ir))
7724 return -1;
7725 if (ir.mod == 3)
7726 {
7727 if (opcode == 0x0f13 || opcode == 0x660f13
7728 || opcode == 0x0f17 || opcode == 0x660f17)
7729 goto no_support;
7730 ir.rm |= ir.rex_b;
1777feb0
MS
7731 if (!i386_xmm_regnum_p (gdbarch,
7732 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7733 goto no_support;
25ea693b
MM
7734 record_full_arch_list_add_reg (ir.regcache,
7735 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7736 }
7737 else
7738 {
7739 switch (opcode)
7740 {
7741 case 0x660f3a14:
7742 ir.ot = OT_BYTE;
7743 break;
7744 case 0x660f3a15:
7745 ir.ot = OT_WORD;
7746 break;
7747 case 0x660f3a16:
7748 ir.ot = OT_LONG;
7749 break;
7750 case 0x660f3a17:
7751 ir.ot = OT_QUAD;
7752 break;
7753 default:
7754 ir.ot = OT_DQUAD;
7755 break;
7756 }
7757 if (i386_record_lea_modrm (&ir))
7758 return -1;
7759 }
7760 break;
7761
7762 case 0x0f2b: /* movntps */
7763 case 0x660f2b: /* movntpd */
7764 case 0x0fe7: /* movntq */
7765 case 0x660fe7: /* movntdq */
7766 if (ir.mod == 3)
7767 goto no_support;
7768 if (opcode == 0x0fe7)
7769 ir.ot = OT_QUAD;
7770 else
7771 ir.ot = OT_DQUAD;
7772 if (i386_record_lea_modrm (&ir))
7773 return -1;
7774 break;
7775
7776 case 0xf30f2c: /* cvttss2si */
7777 case 0xf20f2c: /* cvttsd2si */
7778 case 0xf30f2d: /* cvtss2si */
7779 case 0xf20f2d: /* cvtsd2si */
7780 case 0xf20f38f0: /* crc32 */
7781 case 0xf20f38f1: /* crc32 */
7782 case 0x0f50: /* movmskps */
7783 case 0x660f50: /* movmskpd */
7784 case 0x0fc5: /* pextrw */
7785 case 0x660fc5: /* pextrw */
7786 case 0x0fd7: /* pmovmskb */
7787 case 0x660fd7: /* pmovmskb */
25ea693b 7788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7789 break;
7790
7791 case 0x0f3800: /* pshufb */
7792 case 0x0f3801: /* phaddw */
7793 case 0x0f3802: /* phaddd */
7794 case 0x0f3803: /* phaddsw */
7795 case 0x0f3804: /* pmaddubsw */
7796 case 0x0f3805: /* phsubw */
7797 case 0x0f3806: /* phsubd */
4f7d61a8 7798 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7799 case 0x0f3808: /* psignb */
7800 case 0x0f3809: /* psignw */
7801 case 0x0f380a: /* psignd */
7802 case 0x0f380b: /* pmulhrsw */
7803 case 0x0f381c: /* pabsb */
7804 case 0x0f381d: /* pabsw */
7805 case 0x0f381e: /* pabsd */
7806 case 0x0f382b: /* packusdw */
7807 case 0x0f3830: /* pmovzxbw */
7808 case 0x0f3831: /* pmovzxbd */
7809 case 0x0f3832: /* pmovzxbq */
7810 case 0x0f3833: /* pmovzxwd */
7811 case 0x0f3834: /* pmovzxwq */
7812 case 0x0f3835: /* pmovzxdq */
7813 case 0x0f3837: /* pcmpgtq */
7814 case 0x0f3838: /* pminsb */
7815 case 0x0f3839: /* pminsd */
7816 case 0x0f383a: /* pminuw */
7817 case 0x0f383b: /* pminud */
7818 case 0x0f383c: /* pmaxsb */
7819 case 0x0f383d: /* pmaxsd */
7820 case 0x0f383e: /* pmaxuw */
7821 case 0x0f383f: /* pmaxud */
7822 case 0x0f3840: /* pmulld */
7823 case 0x0f3841: /* phminposuw */
7824 case 0x0f3a0f: /* palignr */
7825 case 0x0f60: /* punpcklbw */
7826 case 0x0f61: /* punpcklwd */
7827 case 0x0f62: /* punpckldq */
7828 case 0x0f63: /* packsswb */
7829 case 0x0f64: /* pcmpgtb */
7830 case 0x0f65: /* pcmpgtw */
56d2815c 7831 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7832 case 0x0f67: /* packuswb */
7833 case 0x0f68: /* punpckhbw */
7834 case 0x0f69: /* punpckhwd */
7835 case 0x0f6a: /* punpckhdq */
7836 case 0x0f6b: /* packssdw */
7837 case 0x0f6e: /* movd */
7838 case 0x0f6f: /* movq */
7839 case 0x0f70: /* pshufw */
7840 case 0x0f74: /* pcmpeqb */
7841 case 0x0f75: /* pcmpeqw */
56d2815c 7842 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7843 case 0x0fc4: /* pinsrw */
7844 case 0x0fd1: /* psrlw */
7845 case 0x0fd2: /* psrld */
7846 case 0x0fd3: /* psrlq */
7847 case 0x0fd4: /* paddq */
7848 case 0x0fd5: /* pmullw */
7849 case 0xf20fd6: /* movdq2q */
7850 case 0x0fd8: /* psubusb */
7851 case 0x0fd9: /* psubusw */
7852 case 0x0fda: /* pminub */
7853 case 0x0fdb: /* pand */
7854 case 0x0fdc: /* paddusb */
7855 case 0x0fdd: /* paddusw */
7856 case 0x0fde: /* pmaxub */
7857 case 0x0fdf: /* pandn */
7858 case 0x0fe0: /* pavgb */
7859 case 0x0fe1: /* psraw */
7860 case 0x0fe2: /* psrad */
7861 case 0x0fe3: /* pavgw */
7862 case 0x0fe4: /* pmulhuw */
7863 case 0x0fe5: /* pmulhw */
7864 case 0x0fe8: /* psubsb */
7865 case 0x0fe9: /* psubsw */
7866 case 0x0fea: /* pminsw */
7867 case 0x0feb: /* por */
7868 case 0x0fec: /* paddsb */
7869 case 0x0fed: /* paddsw */
7870 case 0x0fee: /* pmaxsw */
7871 case 0x0fef: /* pxor */
7872 case 0x0ff1: /* psllw */
7873 case 0x0ff2: /* pslld */
7874 case 0x0ff3: /* psllq */
7875 case 0x0ff4: /* pmuludq */
7876 case 0x0ff5: /* pmaddwd */
7877 case 0x0ff6: /* psadbw */
7878 case 0x0ff8: /* psubb */
7879 case 0x0ff9: /* psubw */
56d2815c 7880 case 0x0ffa: /* psubd */
a3c4230a
HZ
7881 case 0x0ffb: /* psubq */
7882 case 0x0ffc: /* paddb */
7883 case 0x0ffd: /* paddw */
56d2815c 7884 case 0x0ffe: /* paddd */
a3c4230a
HZ
7885 if (i386_record_modrm (&ir))
7886 return -1;
7887 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7888 goto no_support;
25ea693b
MM
7889 record_full_arch_list_add_reg (ir.regcache,
7890 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7891 break;
7892
7893 case 0x0f71: /* psllw */
7894 case 0x0f72: /* pslld */
7895 case 0x0f73: /* psllq */
7896 if (i386_record_modrm (&ir))
7897 return -1;
7898 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7899 goto no_support;
25ea693b
MM
7900 record_full_arch_list_add_reg (ir.regcache,
7901 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7902 break;
7903
7904 case 0x660f71: /* psllw */
7905 case 0x660f72: /* pslld */
7906 case 0x660f73: /* psllq */
7907 if (i386_record_modrm (&ir))
7908 return -1;
7909 ir.rm |= ir.rex_b;
c131fcee 7910 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7911 goto no_support;
25ea693b
MM
7912 record_full_arch_list_add_reg (ir.regcache,
7913 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7914 break;
7915
7916 case 0x0f7e: /* movd */
7917 case 0x660f7e: /* movd */
7918 if (i386_record_modrm (&ir))
7919 return -1;
7920 if (ir.mod == 3)
25ea693b 7921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
7922 else
7923 {
7924 if (ir.dflag == 2)
7925 ir.ot = OT_QUAD;
7926 else
7927 ir.ot = OT_LONG;
7928 if (i386_record_lea_modrm (&ir))
7929 return -1;
7930 }
7931 break;
7932
7933 case 0x0f7f: /* movq */
7934 if (i386_record_modrm (&ir))
7935 return -1;
7936 if (ir.mod == 3)
7937 {
7938 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7939 goto no_support;
25ea693b
MM
7940 record_full_arch_list_add_reg (ir.regcache,
7941 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7942 }
7943 else
7944 {
7945 ir.ot = OT_QUAD;
7946 if (i386_record_lea_modrm (&ir))
7947 return -1;
7948 }
7949 break;
7950
7951 case 0xf30fb8: /* popcnt */
7952 if (i386_record_modrm (&ir))
7953 return -1;
25ea693b
MM
7954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7956 break;
7957
7958 case 0x660fd6: /* movq */
7959 if (i386_record_modrm (&ir))
7960 return -1;
7961 if (ir.mod == 3)
7962 {
7963 ir.rm |= ir.rex_b;
1777feb0
MS
7964 if (!i386_xmm_regnum_p (gdbarch,
7965 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7966 goto no_support;
25ea693b
MM
7967 record_full_arch_list_add_reg (ir.regcache,
7968 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7969 }
7970 else
7971 {
7972 ir.ot = OT_QUAD;
7973 if (i386_record_lea_modrm (&ir))
7974 return -1;
7975 }
7976 break;
7977
7978 case 0x660f3817: /* ptest */
7979 case 0x0f2e: /* ucomiss */
7980 case 0x660f2e: /* ucomisd */
7981 case 0x0f2f: /* comiss */
7982 case 0x660f2f: /* comisd */
25ea693b 7983 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7984 break;
7985
7986 case 0x0ff7: /* maskmovq */
7987 regcache_raw_read_unsigned (ir.regcache,
7988 ir.regmap[X86_RECORD_REDI_REGNUM],
7989 &addr);
25ea693b 7990 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
7991 return -1;
7992 break;
7993
7994 case 0x660ff7: /* maskmovdqu */
7995 regcache_raw_read_unsigned (ir.regcache,
7996 ir.regmap[X86_RECORD_REDI_REGNUM],
7997 &addr);
25ea693b 7998 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
7999 return -1;
8000 break;
8001
8002 default:
8003 goto no_support;
8004 break;
8005 }
8006 break;
7ad10968
HZ
8007
8008 default:
7ad10968
HZ
8009 goto no_support;
8010 break;
8011 }
8012
cf648174 8013 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8014 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8015 if (record_full_arch_list_add_end ())
7ad10968
HZ
8016 return -1;
8017
8018 return 0;
8019
01fe1b41 8020 no_support:
a3c4230a
HZ
8021 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8022 "at address %s.\n"),
8023 (unsigned int) (opcode),
8024 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8025 return -1;
8026}
8027
cf648174
HZ
8028static const int i386_record_regmap[] =
8029{
8030 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8031 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8032 0, 0, 0, 0, 0, 0, 0, 0,
8033 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8034 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8035};
8036
7a697b8d 8037/* Check that the given address appears suitable for a fast
405f8e94 8038 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8039 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8040 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8041 middle of the tracepoint jump. On x86, it may be possible to use
8042 4-byte jumps with a 2-byte offset to a trampoline located in the
8043 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8044 of instruction to replace, and 0 if not, plus an explanatory
8045 string. */
8046
8047static int
8048i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8049 CORE_ADDR addr, int *isize, char **msg)
8050{
8051 int len, jumplen;
8052 static struct ui_file *gdb_null = NULL;
8053
405f8e94
SS
8054 /* Ask the target for the minimum instruction length supported. */
8055 jumplen = target_get_min_fast_tracepoint_insn_len ();
8056
8057 if (jumplen < 0)
8058 {
8059 /* If the target does not support the get_min_fast_tracepoint_insn_len
8060 operation, assume that fast tracepoints will always be implemented
8061 using 4-byte relative jumps on both x86 and x86-64. */
8062 jumplen = 5;
8063 }
8064 else if (jumplen == 0)
8065 {
8066 /* If the target does support get_min_fast_tracepoint_insn_len but
8067 returns zero, then the IPA has not loaded yet. In this case,
8068 we optimistically assume that truncated 2-byte relative jumps
8069 will be available on x86, and compensate later if this assumption
8070 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8071 jumps will always be used. */
8072 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8073 }
7a697b8d
SS
8074
8075 /* Dummy file descriptor for the disassembler. */
8076 if (!gdb_null)
8077 gdb_null = ui_file_new ();
8078
8079 /* Check for fit. */
8080 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
8081 if (isize)
8082 *isize = len;
8083
7a697b8d
SS
8084 if (len < jumplen)
8085 {
8086 /* Return a bit of target-specific detail to add to the caller's
8087 generic failure message. */
8088 if (msg)
1777feb0
MS
8089 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8090 "need at least %d bytes for the jump"),
7a697b8d
SS
8091 len, jumplen);
8092 return 0;
8093 }
405f8e94
SS
8094 else
8095 {
8096 if (msg)
8097 *msg = NULL;
8098 return 1;
8099 }
7a697b8d
SS
8100}
8101
90884b2b
L
8102static int
8103i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8104 struct tdesc_arch_data *tdesc_data)
8105{
8106 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8107 const struct tdesc_feature *feature_core;
01f9f808
MS
8108
8109 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8110 *feature_avx512;
90884b2b
L
8111 int i, num_regs, valid_p;
8112
8113 if (! tdesc_has_registers (tdesc))
8114 return 0;
8115
8116 /* Get core registers. */
8117 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8118 if (feature_core == NULL)
8119 return 0;
90884b2b
L
8120
8121 /* Get SSE registers. */
c131fcee 8122 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8123
c131fcee
L
8124 /* Try AVX registers. */
8125 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8126
1dbcd68c
WT
8127 /* Try MPX registers. */
8128 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8129
01f9f808
MS
8130 /* Try AVX512 registers. */
8131 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8132
90884b2b
L
8133 valid_p = 1;
8134
c131fcee 8135 /* The XCR0 bits. */
01f9f808
MS
8136 if (feature_avx512)
8137 {
8138 /* AVX512 register description requires AVX register description. */
8139 if (!feature_avx)
8140 return 0;
8141
df7e5265 8142 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
01f9f808
MS
8143
8144 /* It may have been set by OSABI initialization function. */
8145 if (tdep->k0_regnum < 0)
8146 {
8147 tdep->k_register_names = i386_k_names;
8148 tdep->k0_regnum = I386_K0_REGNUM;
8149 }
8150
8151 for (i = 0; i < I387_NUM_K_REGS; i++)
8152 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8153 tdep->k0_regnum + i,
8154 i386_k_names[i]);
8155
8156 if (tdep->num_zmm_regs == 0)
8157 {
8158 tdep->zmmh_register_names = i386_zmmh_names;
8159 tdep->num_zmm_regs = 8;
8160 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8161 }
8162
8163 for (i = 0; i < tdep->num_zmm_regs; i++)
8164 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8165 tdep->zmm0h_regnum + i,
8166 tdep->zmmh_register_names[i]);
8167
8168 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8169 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8170 tdep->xmm16_regnum + i,
8171 tdep->xmm_avx512_register_names[i]);
8172
8173 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8174 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8175 tdep->ymm16h_regnum + i,
8176 tdep->ymm16h_register_names[i]);
8177 }
c131fcee
L
8178 if (feature_avx)
8179 {
3a13a53b
L
8180 /* AVX register description requires SSE register description. */
8181 if (!feature_sse)
8182 return 0;
8183
01f9f808 8184 if (!feature_avx512)
df7e5265 8185 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8186
8187 /* It may have been set by OSABI initialization function. */
8188 if (tdep->num_ymm_regs == 0)
8189 {
8190 tdep->ymmh_register_names = i386_ymmh_names;
8191 tdep->num_ymm_regs = 8;
8192 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8193 }
8194
8195 for (i = 0; i < tdep->num_ymm_regs; i++)
8196 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8197 tdep->ymm0h_regnum + i,
8198 tdep->ymmh_register_names[i]);
8199 }
3a13a53b 8200 else if (feature_sse)
df7e5265 8201 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8202 else
8203 {
df7e5265 8204 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8205 tdep->num_xmm_regs = 0;
8206 }
c131fcee 8207
90884b2b
L
8208 num_regs = tdep->num_core_regs;
8209 for (i = 0; i < num_regs; i++)
8210 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8211 tdep->register_names[i]);
8212
3a13a53b
L
8213 if (feature_sse)
8214 {
8215 /* Need to include %mxcsr, so add one. */
8216 num_regs += tdep->num_xmm_regs + 1;
8217 for (; i < num_regs; i++)
8218 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8219 tdep->register_names[i]);
8220 }
90884b2b 8221
1dbcd68c
WT
8222 if (feature_mpx)
8223 {
df7e5265 8224 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8225
8226 if (tdep->bnd0r_regnum < 0)
8227 {
8228 tdep->mpx_register_names = i386_mpx_names;
8229 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8230 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8231 }
8232
8233 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8234 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8235 I387_BND0R_REGNUM (tdep) + i,
8236 tdep->mpx_register_names[i]);
8237 }
8238
90884b2b
L
8239 return valid_p;
8240}
8241
7ad10968
HZ
8242\f
8243static struct gdbarch *
8244i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8245{
8246 struct gdbarch_tdep *tdep;
8247 struct gdbarch *gdbarch;
90884b2b
L
8248 struct tdesc_arch_data *tdesc_data;
8249 const struct target_desc *tdesc;
1ba53b71 8250 int mm0_regnum;
c131fcee 8251 int ymm0_regnum;
1dbcd68c
WT
8252 int bnd0_regnum;
8253 int num_bnd_cooked;
01f9f808
MS
8254 int k0_regnum;
8255 int zmm0_regnum;
7ad10968
HZ
8256
8257 /* If there is already a candidate, use it. */
8258 arches = gdbarch_list_lookup_by_info (arches, &info);
8259 if (arches != NULL)
8260 return arches->gdbarch;
8261
8262 /* Allocate space for the new architecture. */
fc270c35 8263 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8264 gdbarch = gdbarch_alloc (&info, tdep);
8265
8266 /* General-purpose registers. */
7ad10968
HZ
8267 tdep->gregset_reg_offset = NULL;
8268 tdep->gregset_num_regs = I386_NUM_GREGS;
8269 tdep->sizeof_gregset = 0;
8270
8271 /* Floating-point registers. */
7ad10968 8272 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8273 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8274
8275 /* The default settings include the FPU registers, the MMX registers
8276 and the SSE registers. This can be overridden for a specific ABI
8277 by adjusting the members `st0_regnum', `mm0_regnum' and
8278 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8279 will show up in the output of "info all-registers". */
7ad10968
HZ
8280
8281 tdep->st0_regnum = I386_ST0_REGNUM;
8282
7ad10968
HZ
8283 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8284 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8285
8286 tdep->jb_pc_offset = -1;
8287 tdep->struct_return = pcc_struct_return;
8288 tdep->sigtramp_start = 0;
8289 tdep->sigtramp_end = 0;
8290 tdep->sigtramp_p = i386_sigtramp_p;
8291 tdep->sigcontext_addr = NULL;
8292 tdep->sc_reg_offset = NULL;
8293 tdep->sc_pc_offset = -1;
8294 tdep->sc_sp_offset = -1;
8295
c131fcee
L
8296 tdep->xsave_xcr0_offset = -1;
8297
cf648174
HZ
8298 tdep->record_regmap = i386_record_regmap;
8299
205c306f
DM
8300 set_gdbarch_long_long_align_bit (gdbarch, 32);
8301
7ad10968
HZ
8302 /* The format used for `long double' on almost all i386 targets is
8303 the i387 extended floating-point format. In fact, of all targets
8304 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8305 on having a `long double' that's not `long' at all. */
8306 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8307
8308 /* Although the i387 extended floating-point has only 80 significant
8309 bits, a `long double' actually takes up 96, probably to enforce
8310 alignment. */
8311 set_gdbarch_long_double_bit (gdbarch, 96);
8312
7ad10968
HZ
8313 /* Register numbers of various important registers. */
8314 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8315 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8316 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8317 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8318
8319 /* NOTE: kettenis/20040418: GCC does have two possible register
8320 numbering schemes on the i386: dbx and SVR4. These schemes
8321 differ in how they number %ebp, %esp, %eflags, and the
8322 floating-point registers, and are implemented by the arrays
8323 dbx_register_map[] and svr4_dbx_register_map in
8324 gcc/config/i386.c. GCC also defines a third numbering scheme in
8325 gcc/config/i386.c, which it designates as the "default" register
8326 map used in 64bit mode. This last register numbering scheme is
8327 implemented in dbx64_register_map, and is used for AMD64; see
8328 amd64-tdep.c.
8329
8330 Currently, each GCC i386 target always uses the same register
8331 numbering scheme across all its supported debugging formats
8332 i.e. SDB (COFF), stabs and DWARF 2. This is because
8333 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8334 DBX_REGISTER_NUMBER macro which is defined by each target's
8335 respective config header in a manner independent of the requested
8336 output debugging format.
8337
8338 This does not match the arrangement below, which presumes that
8339 the SDB and stabs numbering schemes differ from the DWARF and
8340 DWARF 2 ones. The reason for this arrangement is that it is
8341 likely to get the numbering scheme for the target's
8342 default/native debug format right. For targets where GCC is the
8343 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8344 targets where the native toolchain uses a different numbering
8345 scheme for a particular debug format (stabs-in-ELF on Solaris)
8346 the defaults below will have to be overridden, like
8347 i386_elf_init_abi() does. */
8348
8349 /* Use the dbx register numbering scheme for stabs and COFF. */
8350 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8351 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8352
8353 /* Use the SVR4 register numbering scheme for DWARF 2. */
8354 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8355
8356 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8357 be in use on any of the supported i386 targets. */
8358
8359 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8360
8361 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8362
8363 /* Call dummy code. */
a9b8d892
JK
8364 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8365 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8366 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8367 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8368
8369 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8370 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8371 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8372
8373 set_gdbarch_return_value (gdbarch, i386_return_value);
8374
8375 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8376
8377 /* Stack grows downward. */
8378 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8379
8380 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8381 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8382 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8383
8384 set_gdbarch_frame_args_skip (gdbarch, 8);
8385
7ad10968
HZ
8386 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8387
8388 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8389
8390 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8391
8392 /* Add the i386 register groups. */
8393 i386_add_reggroups (gdbarch);
90884b2b 8394 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8395
143985b7
AF
8396 /* Helper for function argument information. */
8397 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8398
06da04c6 8399 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8400 appended to the list first, so that it supercedes the DWARF
8401 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8402 currently fails). */
8403 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8404
8405 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8406 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8407 CFI info will be used if it is available. */
10458914 8408 dwarf2_append_unwinders (gdbarch);
6405b0a6 8409
acd5c798 8410 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8411
1ba53b71 8412 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8413 set_gdbarch_pseudo_register_read_value (gdbarch,
8414 i386_pseudo_register_read_value);
90884b2b
L
8415 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8416
8417 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8418 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8419
c131fcee
L
8420 /* Override the normal target description method to make the AVX
8421 upper halves anonymous. */
8422 set_gdbarch_register_name (gdbarch, i386_register_name);
8423
8424 /* Even though the default ABI only includes general-purpose registers,
8425 floating-point registers and the SSE registers, we have to leave a
01f9f808
MS
8426 gap for the upper AVX, MPX and AVX512 registers. */
8427 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
90884b2b 8428
ac04f72b
TT
8429 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8430
90884b2b
L
8431 /* Get the x86 target description from INFO. */
8432 tdesc = info.target_desc;
8433 if (! tdesc_has_registers (tdesc))
8434 tdesc = tdesc_i386;
8435 tdep->tdesc = tdesc;
8436
8437 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8438 tdep->register_names = i386_register_names;
8439
c131fcee
L
8440 /* No upper YMM registers. */
8441 tdep->ymmh_register_names = NULL;
8442 tdep->ymm0h_regnum = -1;
8443
01f9f808
MS
8444 /* No upper ZMM registers. */
8445 tdep->zmmh_register_names = NULL;
8446 tdep->zmm0h_regnum = -1;
8447
8448 /* No high XMM registers. */
8449 tdep->xmm_avx512_register_names = NULL;
8450 tdep->xmm16_regnum = -1;
8451
8452 /* No upper YMM16-31 registers. */
8453 tdep->ymm16h_register_names = NULL;
8454 tdep->ymm16h_regnum = -1;
8455
1ba53b71
L
8456 tdep->num_byte_regs = 8;
8457 tdep->num_word_regs = 8;
8458 tdep->num_dword_regs = 0;
8459 tdep->num_mmx_regs = 8;
c131fcee 8460 tdep->num_ymm_regs = 0;
1ba53b71 8461
1dbcd68c
WT
8462 /* No MPX registers. */
8463 tdep->bnd0r_regnum = -1;
8464 tdep->bndcfgu_regnum = -1;
8465
01f9f808
MS
8466 /* No AVX512 registers. */
8467 tdep->k0_regnum = -1;
8468 tdep->num_zmm_regs = 0;
8469 tdep->num_ymm_avx512_regs = 0;
8470 tdep->num_xmm_avx512_regs = 0;
8471
90884b2b
L
8472 tdesc_data = tdesc_data_alloc ();
8473
dde08ee1
PA
8474 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8475
6710bf39
SS
8476 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8477
c2170eef
MM
8478 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8479 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8480 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8481
3ce1502b 8482 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 8483 info.tdep_info = (void *) tdesc_data;
4be87837 8484 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8485
c131fcee
L
8486 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8487 {
8488 tdesc_data_cleanup (tdesc_data);
8489 xfree (tdep);
8490 gdbarch_free (gdbarch);
8491 return NULL;
8492 }
8493
1dbcd68c
WT
8494 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8495
1ba53b71
L
8496 /* Wire in pseudo registers. Number of pseudo registers may be
8497 changed. */
8498 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8499 + tdep->num_word_regs
8500 + tdep->num_dword_regs
c131fcee 8501 + tdep->num_mmx_regs
1dbcd68c 8502 + tdep->num_ymm_regs
01f9f808
MS
8503 + num_bnd_cooked
8504 + tdep->num_ymm_avx512_regs
8505 + tdep->num_zmm_regs));
1ba53b71 8506
90884b2b
L
8507 /* Target description may be changed. */
8508 tdesc = tdep->tdesc;
8509
90884b2b
L
8510 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8511
8512 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8513 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8514
1ba53b71
L
8515 /* Make %al the first pseudo-register. */
8516 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8517 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8518
c131fcee 8519 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8520 if (tdep->num_dword_regs)
8521 {
1c6272a6 8522 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8523 tdep->eax_regnum = ymm0_regnum;
8524 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8525 }
8526 else
8527 tdep->eax_regnum = -1;
8528
c131fcee
L
8529 mm0_regnum = ymm0_regnum;
8530 if (tdep->num_ymm_regs)
8531 {
1c6272a6 8532 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8533 tdep->ymm0_regnum = ymm0_regnum;
8534 mm0_regnum += tdep->num_ymm_regs;
8535 }
8536 else
8537 tdep->ymm0_regnum = -1;
8538
01f9f808
MS
8539 if (tdep->num_ymm_avx512_regs)
8540 {
8541 /* Support YMM16-31 pseudo registers if available. */
8542 tdep->ymm16_regnum = mm0_regnum;
8543 mm0_regnum += tdep->num_ymm_avx512_regs;
8544 }
8545 else
8546 tdep->ymm16_regnum = -1;
8547
8548 if (tdep->num_zmm_regs)
8549 {
8550 /* Support ZMM pseudo-register if it is available. */
8551 tdep->zmm0_regnum = mm0_regnum;
8552 mm0_regnum += tdep->num_zmm_regs;
8553 }
8554 else
8555 tdep->zmm0_regnum = -1;
8556
1dbcd68c 8557 bnd0_regnum = mm0_regnum;
1ba53b71
L
8558 if (tdep->num_mmx_regs != 0)
8559 {
1c6272a6 8560 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8561 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8562 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8563 }
8564 else
8565 tdep->mm0_regnum = -1;
8566
1dbcd68c
WT
8567 if (tdep->bnd0r_regnum > 0)
8568 tdep->bnd0_regnum = bnd0_regnum;
8569 else
8570 tdep-> bnd0_regnum = -1;
8571
06da04c6 8572 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8573 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8574 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8575 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8576
8446b36a
MK
8577 /* If we have a register mapping, enable the generic core file
8578 support, unless it has already been enabled. */
8579 if (tdep->gregset_reg_offset
8f0435f7 8580 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8581 set_gdbarch_iterate_over_regset_sections
8582 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8583
7a697b8d
SS
8584 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8585 i386_fast_tracepoint_valid_at);
8586
a62cc96e
AC
8587 return gdbarch;
8588}
8589
8201327c
MK
8590static enum gdb_osabi
8591i386_coff_osabi_sniffer (bfd *abfd)
8592{
762c5349
MK
8593 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8594 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
8595 return GDB_OSABI_GO32;
8596
8597 return GDB_OSABI_UNKNOWN;
8598}
8201327c
MK
8599\f
8600
97de3545
JB
8601/* Return the target description for a specified XSAVE feature mask. */
8602
8603const struct target_desc *
8604i386_target_description (uint64_t xcr0)
8605{
8606 switch (xcr0 & X86_XSTATE_ALL_MASK)
8607 {
8608 case X86_XSTATE_MPX_AVX512_MASK:
8609 case X86_XSTATE_AVX512_MASK:
8610 return tdesc_i386_avx512;
8611 case X86_XSTATE_MPX_MASK:
8612 return tdesc_i386_mpx;
8613 case X86_XSTATE_AVX_MASK:
8614 return tdesc_i386_avx;
8615 default:
8616 return tdesc_i386;
8617 }
8618}
8619
29c1c244
WT
8620#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8621
8622/* Find the bound directory base address. */
8623
8624static unsigned long
8625i386_mpx_bd_base (void)
8626{
8627 struct regcache *rcache;
8628 struct gdbarch_tdep *tdep;
8629 ULONGEST ret;
8630 enum register_status regstatus;
8631 struct gdb_exception except;
8632
8633 rcache = get_current_regcache ();
8634 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8635
8636 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8637
8638 if (regstatus != REG_VALID)
8639 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8640
8641 return ret & MPX_BASE_MASK;
8642}
8643
8644/* Check if the current target is MPX enabled. */
8645
8646static int
8647i386_mpx_enabled (void)
8648{
8649 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8650 const struct target_desc *tdesc = tdep->tdesc;
8651
8652 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8653}
8654
8655#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8656#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8657#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8658#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8659
8660/* Find the bound table entry given the pointer location and the base
8661 address of the table. */
8662
8663static CORE_ADDR
8664i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8665{
8666 CORE_ADDR offset1;
8667 CORE_ADDR offset2;
8668 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8669 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8670 CORE_ADDR bd_entry_addr;
8671 CORE_ADDR bt_addr;
8672 CORE_ADDR bd_entry;
8673 struct gdbarch *gdbarch = get_current_arch ();
8674 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8675
8676
8677 if (gdbarch_ptr_bit (gdbarch) == 64)
8678 {
966f0aef 8679 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
29c1c244
WT
8680 bd_ptr_r_shift = 20;
8681 bd_ptr_l_shift = 3;
8682 bt_select_r_shift = 3;
8683 bt_select_l_shift = 5;
966f0aef
WT
8684 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8685
8686 if ( sizeof (CORE_ADDR) == 4)
8687 error (_("operation not supported"));
29c1c244
WT
8688 }
8689 else
8690 {
8691 mpx_bd_mask = MPX_BD_MASK_32;
8692 bd_ptr_r_shift = 12;
8693 bd_ptr_l_shift = 2;
8694 bt_select_r_shift = 2;
8695 bt_select_l_shift = 4;
8696 bt_mask = MPX_BT_MASK_32;
8697 }
8698
8699 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8700 bd_entry_addr = bd_base + offset1;
8701 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8702
8703 if ((bd_entry & 0x1) == 0)
8704 error (_("Invalid bounds directory entry at %s."),
8705 paddress (get_current_arch (), bd_entry_addr));
8706
8707 /* Clearing status bit. */
8708 bd_entry--;
8709 bt_addr = bd_entry & ~bt_select_r_shift;
8710 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8711
8712 return bt_addr + offset2;
8713}
8714
8715/* Print routine for the mpx bounds. */
8716
8717static void
8718i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8719{
8720 struct ui_out *uiout = current_uiout;
34f8ac9f 8721 LONGEST size;
29c1c244
WT
8722 struct gdbarch *gdbarch = get_current_arch ();
8723 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8724 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8725
8726 if (bounds_in_map == 1)
8727 {
8728 ui_out_text (uiout, "Null bounds on map:");
8729 ui_out_text (uiout, " pointer value = ");
8730 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8731 ui_out_text (uiout, ".");
8732 ui_out_text (uiout, "\n");
8733 }
8734 else
8735 {
8736 ui_out_text (uiout, "{lbound = ");
8737 ui_out_field_core_addr (uiout, "lower-bound", gdbarch, bt_entry[0]);
8738 ui_out_text (uiout, ", ubound = ");
8739
8740 /* The upper bound is stored in 1's complement. */
8741 ui_out_field_core_addr (uiout, "upper-bound", gdbarch, ~bt_entry[1]);
8742 ui_out_text (uiout, "}: pointer value = ");
8743 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8744
8745 if (gdbarch_ptr_bit (gdbarch) == 64)
8746 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8747 else
8748 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8749
8750 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8751 -1 represents in this sense full memory access, and there is no need
8752 one to the size. */
8753
8754 size = (size > -1 ? size + 1 : size);
8755 ui_out_text (uiout, ", size = ");
34f8ac9f 8756 ui_out_field_fmt (uiout, "size", "%s", plongest (size));
29c1c244
WT
8757
8758 ui_out_text (uiout, ", metadata = ");
8759 ui_out_field_core_addr (uiout, "metadata", gdbarch, bt_entry[3]);
8760 ui_out_text (uiout, "\n");
8761 }
8762}
8763
8764/* Implement the command "show mpx bound". */
8765
8766static void
8767i386_mpx_info_bounds (char *args, int from_tty)
8768{
8769 CORE_ADDR bd_base = 0;
8770 CORE_ADDR addr;
8771 CORE_ADDR bt_entry_addr = 0;
8772 CORE_ADDR bt_entry[4];
8773 int i;
8774 struct gdbarch *gdbarch = get_current_arch ();
8775 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8776
8777 if (!i386_mpx_enabled ())
8778 error (_("Intel(R) Memory Protection Extensions not\
8779 supported on this target."));
8780
8781 if (args == NULL)
8782 error (_("Address of pointer variable expected."));
8783
8784 addr = parse_and_eval_address (args);
8785
8786 bd_base = i386_mpx_bd_base ();
8787 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8788
8789 memset (bt_entry, 0, sizeof (bt_entry));
8790
8791 for (i = 0; i < 4; i++)
8792 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8793 + i * data_ptr_type->length,
8794 data_ptr_type);
8795
8796 i386_mpx_print_bounds (bt_entry);
8797}
8798
8799/* Implement the command "set mpx bound". */
8800
8801static void
8802i386_mpx_set_bounds (char *args, int from_tty)
8803{
8804 CORE_ADDR bd_base = 0;
8805 CORE_ADDR addr, lower, upper;
8806 CORE_ADDR bt_entry_addr = 0;
8807 CORE_ADDR bt_entry[2];
8808 const char *input = args;
8809 int i;
8810 struct gdbarch *gdbarch = get_current_arch ();
8811 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8812 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8813
8814 if (!i386_mpx_enabled ())
8815 error (_("Intel(R) Memory Protection Extensions not supported\
8816 on this target."));
8817
8818 if (args == NULL)
8819 error (_("Pointer value expected."));
8820
8821 addr = value_as_address (parse_to_comma_and_eval (&input));
8822
8823 if (input[0] == ',')
8824 ++input;
8825 if (input[0] == '\0')
8826 error (_("wrong number of arguments: missing lower and upper bound."));
8827 lower = value_as_address (parse_to_comma_and_eval (&input));
8828
8829 if (input[0] == ',')
8830 ++input;
8831 if (input[0] == '\0')
8832 error (_("Wrong number of arguments; Missing upper bound."));
8833 upper = value_as_address (parse_to_comma_and_eval (&input));
8834
8835 bd_base = i386_mpx_bd_base ();
8836 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8837 for (i = 0; i < 2; i++)
8838 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8839 + i * data_ptr_type->length,
8840 data_ptr_type);
8841 bt_entry[0] = (uint64_t) lower;
8842 bt_entry[1] = ~(uint64_t) upper;
8843
8844 for (i = 0; i < 2; i++)
8845 write_memory_unsigned_integer (bt_entry_addr + i * data_ptr_type->length,
8846 data_ptr_type->length, byte_order,
8847 bt_entry[i]);
8848}
8849
8850static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8851
8852/* Helper function for the CLI commands. */
8853
8854static void
8855set_mpx_cmd (char *args, int from_tty)
8856{
8857 help_list (mpx_set_cmdlist, "set mpx", all_commands, gdb_stdout);
8858}
8859
8860/* Helper function for the CLI commands. */
8861
8862static void
8863show_mpx_cmd (char *args, int from_tty)
8864{
8865 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8866}
8867
28e9e0f0
MK
8868/* Provide a prototype to silence -Wmissing-prototypes. */
8869void _initialize_i386_tdep (void);
8870
c906108c 8871void
fba45db2 8872_initialize_i386_tdep (void)
c906108c 8873{
a62cc96e
AC
8874 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8875
fc338970 8876 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
8877 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8878 &disassembly_flavor, _("\
8879Set the disassembly flavor."), _("\
8880Show the disassembly flavor."), _("\
8881The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8882 NULL,
8883 NULL, /* FIXME: i18n: */
8884 &setlist, &showlist);
8201327c
MK
8885
8886 /* Add the variable that controls the convention for returning
8887 structs. */
7ab04401
AC
8888 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8889 &struct_convention, _("\
8890Set the convention for returning small structs."), _("\
8891Show the convention for returning small structs."), _("\
8892Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8893is \"default\"."),
8894 NULL,
8895 NULL, /* FIXME: i18n: */
8896 &setlist, &showlist);
8201327c 8897
29c1c244
WT
8898 /* Add "mpx" prefix for the set commands. */
8899
8900 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
8901Set Intel(R) Memory Protection Extensions specific variables."),
8902 &mpx_set_cmdlist, "set tdesc ",
8903 0 /* allow-unknown */, &setlist);
8904
8905 /* Add "mpx" prefix for the show commands. */
8906
8907 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
8908Show Intel(R) Memory Protection Extensions specific variables."),
8909 &mpx_show_cmdlist, "show mpx ",
8910 0 /* allow-unknown */, &showlist);
8911
8912 /* Add "bound" command for the show mpx commands list. */
8913
8914 add_cmd ("bound", no_class, i386_mpx_info_bounds,
8915 "Show the memory bounds for a given array/pointer storage\
8916 in the bound table.",
8917 &mpx_show_cmdlist);
8918
8919 /* Add "bound" command for the set mpx commands list. */
8920
8921 add_cmd ("bound", no_class, i386_mpx_set_bounds,
8922 "Set the memory bounds for a given array/pointer storage\
8923 in the bound table.",
8924 &mpx_set_cmdlist);
8925
8201327c
MK
8926 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8927 i386_coff_osabi_sniffer);
8201327c 8928
05816f70 8929 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 8930 i386_svr4_init_abi);
05816f70 8931 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 8932 i386_go32_init_abi);
38c968cf 8933
209bd28e 8934 /* Initialize the i386-specific register groups. */
38c968cf 8935 i386_init_reggroups ();
90884b2b
L
8936
8937 /* Initialize the standard target descriptions. */
8938 initialize_tdesc_i386 ();
3a13a53b 8939 initialize_tdesc_i386_mmx ();
c131fcee 8940 initialize_tdesc_i386_avx ();
1dbcd68c 8941 initialize_tdesc_i386_mpx ();
01f9f808 8942 initialize_tdesc_i386_avx512 ();
c8d5aac9
L
8943
8944 /* Tell remote stub that we support XML target description. */
8945 register_remote_support_xml ("i386");
c906108c 8946}