]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: incorrect incremental behavior because of wrong index used
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107};
108
109/* RAID map configuration infos. */
110struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116#define IMSM_T_STATE_NORMAL 0
117#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
118#define IMSM_T_STATE_DEGRADED 2
119#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
120 __u8 raid_level;
121#define IMSM_T_RAID0 0
122#define IMSM_T_RAID1 1
123#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 127 __u8 ddf;
cdddbdbc 128 __u32 filler[7]; /* expansion area */
7eef0453 129#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
131 * top byte contains some flags
132 */
cdddbdbc
DW
133} __attribute__ ((packed));
134
135struct imsm_vol {
f8f603f1 136 __u32 curr_migr_unit;
fe7ed8cb 137 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 138 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
139#define MIGR_INIT 0
140#define MIGR_REBUILD 1
141#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142#define MIGR_GEN_MIGR 3
143#define MIGR_STATE_CHANGE 4
1484e727 144#define MIGR_REPAIR 5
cdddbdbc
DW
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
fe7ed8cb
DW
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
cdddbdbc
DW
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153} __attribute__ ((packed));
154
155struct imsm_dev {
fe7ed8cb 156 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
157 __u32 size_low;
158 __u32 size_high;
fe7ed8cb
DW
159#define DEV_BOOTABLE __cpu_to_le32(0x01)
160#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161#define DEV_READ_COALESCING __cpu_to_le32(0x04)
162#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184} __attribute__ ((packed));
185
186struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202#define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
604b746f 206 /* here comes BBM logs */
cdddbdbc
DW
207} __attribute__ ((packed));
208
604b746f
JD
209#define BBM_LOG_MAX_ENTRIES 254
210
211struct bbm_log_entry {
212 __u64 defective_block_start;
213#define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217} __attribute__ ((__packed__));
218
219struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226} __attribute__ ((__packed__));
227
228
cdddbdbc
DW
229#ifndef MDASSEMBLE
230static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231#endif
232
8e59f3d8
AK
233#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266} __attribute__ ((__packed__));
267
1484e727
DW
268static __u8 migr_type(struct imsm_dev *dev)
269{
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275}
276
277static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278{
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289}
290
87eb16df 291static unsigned int sector_count(__u32 bytes)
cdddbdbc 292{
87eb16df
DW
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294}
cdddbdbc 295
87eb16df
DW
296static unsigned int mpb_sectors(struct imsm_super *mpb)
297{
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
299}
300
ba2de7ba
DW
301struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
f21e18ca 304 unsigned index;
ba2de7ba
DW
305};
306
88654014
LM
307struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312};
313
1a64be56
LM
314enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317};
cdddbdbc
DW
318/* internal representation of IMSM metadata */
319struct intel_super {
320 union {
949c47a0
DW
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 323 };
8e59f3d8
AK
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
949c47a0 328 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
c2c087e6 331 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 332 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 333 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 334 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 335 struct intel_dev *devlist;
cdddbdbc
DW
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
b9f594fe 342 struct imsm_disk disk;
cdddbdbc 343 int fd;
0dcecb2e
DW
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
efb30e7f 346 int raiddisk; /* slot to fill in autolayout */
1a64be56 347 enum action action;
ca0748fa 348 } *disks, *current_disk;
1a64be56
LM
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
47ee5a45 351 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 352 struct bbm_log *bbm_log;
88654014 353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 354 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356};
357
358struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
cdddbdbc
DW
363};
364
c2c087e6
DW
365struct extent {
366 unsigned long long start, size;
367};
368
694575e7
KW
369/* definitions of reshape process types */
370enum imsm_reshape_type {
371 CH_TAKEOVER,
b5347799 372 CH_MIGRATION,
694575e7
KW
373};
374
88758e9d
DW
375/* definition of messages passed to imsm_process_update */
376enum imsm_update_type {
377 update_activate_spare,
8273f55e 378 update_create_array,
33414a01 379 update_kill_array,
aa534678 380 update_rename_array,
1a64be56 381 update_add_remove_disk,
78b10e66 382 update_reshape_container_disks,
48c5303a 383 update_reshape_migration,
2d40f3a1
AK
384 update_takeover,
385 update_general_migration_checkpoint,
88758e9d
DW
386};
387
388struct imsm_update_activate_spare {
389 enum imsm_update_type type;
d23fe947 390 struct dl *dl;
88758e9d
DW
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394};
395
78b10e66
N
396struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404};
405
bb025c2f
KW
406enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409};
410struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414};
78b10e66
N
415
416struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
48c5303a
PC
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422};
423
424struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
4bba0439 433 int new_chunksize;
48c5303a 434
d195167d 435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
436};
437
2d40f3a1
AK
438struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441};
442
54c2c1ea
DW
443struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445};
446
8273f55e
DW
447struct imsm_update_create_array {
448 enum imsm_update_type type;
8273f55e 449 int dev_idx;
6a3e913e 450 struct imsm_dev dev;
8273f55e
DW
451};
452
33414a01
DW
453struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456};
457
aa534678
DW
458struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462};
463
1a64be56 464struct imsm_update_add_remove_disk {
43dad3d6
DW
465 enum imsm_update_type type;
466};
467
88654014
LM
468
469static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473};
474
475const char *get_sys_dev_type(enum sys_dev_type type)
476{
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481}
482
483static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484{
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494}
495
496static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497{
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504}
505
b4cf4cba 506static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
507{
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532}
533
534static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535{
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570}
571
572
d424212e
N
573static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
f2f5c343 575
cdddbdbc
DW
576static struct supertype *match_metadata_desc_imsm(char *arg)
577{
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
4e9d2186
AW
586 if (!st)
587 return NULL;
ef609477 588 memset(st, 0, sizeof(*st));
d1d599ea 589 st->container_dev = NoMdDev;
cdddbdbc
DW
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595}
596
0e600426 597#ifndef MDASSEMBLE
cdddbdbc
DW
598static __u8 *get_imsm_version(struct imsm_super *mpb)
599{
600 return &mpb->sig[MPB_SIG_LEN];
601}
9e2d750d 602#endif
cdddbdbc 603
949c47a0
DW
604/* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 608{
949c47a0 609 if (index >= mpb->num_disks)
cdddbdbc
DW
610 return NULL;
611 return &mpb->disk[index];
612}
613
95d07a2c
LM
614/* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 618{
b9f594fe
DW
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
95d07a2c
LM
623 return d;
624
625 return NULL;
626}
627/* retrieve a disk from the parsed metadata */
628static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629{
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
b9f594fe 636 return NULL;
949c47a0
DW
637}
638
639/* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
643{
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
97f734fd
N
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
cdddbdbc
DW
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654}
655
a965f303
DW
656static size_t sizeof_imsm_map(struct imsm_map *map)
657{
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659}
660
661struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 662{
5e7b0330
AK
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
668 */
a965f303
DW
669 struct imsm_map *map = &dev->vol.map[0];
670
5e7b0330 671 if (second_map == 1 && !dev->vol.migr_state)
a965f303 672 return NULL;
5e7b0330
AK
673 else if (second_map == 1 ||
674 (second_map < 0 && dev->vol.migr_state)) {
a965f303
DW
675 void *ptr = map;
676
677 return ptr + sizeof_imsm_map(map);
678 } else
679 return map;
5e7b0330 680
a965f303 681}
cdddbdbc 682
3393c6af
DW
683/* return the size of the device.
684 * migr_state increases the returned size if map[0] were to be duplicated
685 */
686static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
687{
688 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
689 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
690
691 /* migrating means an additional map */
a965f303
DW
692 if (dev->vol.migr_state)
693 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
694 else if (migr_state)
695 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
696
697 return size;
698}
699
54c2c1ea
DW
700#ifndef MDASSEMBLE
701/* retrieve disk serial number list from a metadata update */
702static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
703{
704 void *u = update;
705 struct disk_info *inf;
706
707 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
708 sizeof_imsm_dev(&update->dev, 0);
709
710 return inf;
711}
712#endif
713
949c47a0 714static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
715{
716 int offset;
717 int i;
718 void *_mpb = mpb;
719
949c47a0 720 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
721 return NULL;
722
723 /* devices start after all disks */
724 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
725
726 for (i = 0; i <= index; i++)
727 if (i == index)
728 return _mpb + offset;
729 else
3393c6af 730 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
731
732 return NULL;
733}
734
949c47a0
DW
735static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
736{
ba2de7ba
DW
737 struct intel_dev *dv;
738
949c47a0
DW
739 if (index >= super->anchor->num_raid_devs)
740 return NULL;
ba2de7ba
DW
741 for (dv = super->devlist; dv; dv = dv->next)
742 if (dv->index == index)
743 return dv->dev;
744 return NULL;
949c47a0
DW
745}
746
98130f40
AK
747/*
748 * for second_map:
749 * == 0 get first map
750 * == 1 get second map
751 * == -1 than get map according to the current migr_state
752 */
753static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
754 int slot,
755 int second_map)
7eef0453
DW
756{
757 struct imsm_map *map;
758
5e7b0330 759 map = get_imsm_map(dev, second_map);
7eef0453 760
ff077194
DW
761 /* top byte identifies disk under rebuild */
762 return __le32_to_cpu(map->disk_ord_tbl[slot]);
763}
764
765#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 766static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 767{
98130f40 768 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
769
770 return ord_to_idx(ord);
7eef0453
DW
771}
772
be73972f
DW
773static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
774{
775 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
776}
777
f21e18ca 778static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
779{
780 int slot;
781 __u32 ord;
782
783 for (slot = 0; slot < map->num_members; slot++) {
784 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
785 if (ord_to_idx(ord) == idx)
786 return slot;
787 }
788
789 return -1;
790}
791
cdddbdbc
DW
792static int get_imsm_raid_level(struct imsm_map *map)
793{
794 if (map->raid_level == 1) {
795 if (map->num_members == 2)
796 return 1;
797 else
798 return 10;
799 }
800
801 return map->raid_level;
802}
803
c2c087e6
DW
804static int cmp_extent(const void *av, const void *bv)
805{
806 const struct extent *a = av;
807 const struct extent *b = bv;
808 if (a->start < b->start)
809 return -1;
810 if (a->start > b->start)
811 return 1;
812 return 0;
813}
814
0dcecb2e 815static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 816{
c2c087e6 817 int memberships = 0;
620b1713 818 int i;
c2c087e6 819
949c47a0
DW
820 for (i = 0; i < super->anchor->num_raid_devs; i++) {
821 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 822 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 823
620b1713
DW
824 if (get_imsm_disk_slot(map, dl->index) >= 0)
825 memberships++;
c2c087e6 826 }
0dcecb2e
DW
827
828 return memberships;
829}
830
b81221b7
CA
831static __u32 imsm_min_reserved_sectors(struct intel_super *super);
832
0dcecb2e
DW
833static struct extent *get_extents(struct intel_super *super, struct dl *dl)
834{
835 /* find a list of used extents on the given physical device */
836 struct extent *rv, *e;
620b1713 837 int i;
0dcecb2e 838 int memberships = count_memberships(dl, super);
b276dd33
DW
839 __u32 reservation;
840
841 /* trim the reserved area for spares, so they can join any array
842 * regardless of whether the OROM has assigned sectors from the
843 * IMSM_RESERVED_SECTORS region
844 */
845 if (dl->index == -1)
b81221b7 846 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
847 else
848 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 849
c2c087e6
DW
850 rv = malloc(sizeof(struct extent) * (memberships + 1));
851 if (!rv)
852 return NULL;
853 e = rv;
854
949c47a0
DW
855 for (i = 0; i < super->anchor->num_raid_devs; i++) {
856 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 857 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 858
620b1713
DW
859 if (get_imsm_disk_slot(map, dl->index) >= 0) {
860 e->start = __le32_to_cpu(map->pba_of_lba0);
861 e->size = __le32_to_cpu(map->blocks_per_member);
862 e++;
c2c087e6
DW
863 }
864 }
865 qsort(rv, memberships, sizeof(*rv), cmp_extent);
866
14e8215b
DW
867 /* determine the start of the metadata
868 * when no raid devices are defined use the default
869 * ...otherwise allow the metadata to truncate the value
870 * as is the case with older versions of imsm
871 */
872 if (memberships) {
873 struct extent *last = &rv[memberships - 1];
874 __u32 remainder;
875
876 remainder = __le32_to_cpu(dl->disk.total_blocks) -
877 (last->start + last->size);
dda5855f
DW
878 /* round down to 1k block to satisfy precision of the kernel
879 * 'size' interface
880 */
881 remainder &= ~1UL;
882 /* make sure remainder is still sane */
f21e18ca 883 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 884 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
885 if (reservation > remainder)
886 reservation = remainder;
887 }
888 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
889 e->size = 0;
890 return rv;
891}
892
14e8215b
DW
893/* try to determine how much space is reserved for metadata from
894 * the last get_extents() entry, otherwise fallback to the
895 * default
896 */
897static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
898{
899 struct extent *e;
900 int i;
901 __u32 rv;
902
903 /* for spares just return a minimal reservation which will grow
904 * once the spare is picked up by an array
905 */
906 if (dl->index == -1)
907 return MPB_SECTOR_CNT;
908
909 e = get_extents(super, dl);
910 if (!e)
911 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
912
913 /* scroll to last entry */
914 for (i = 0; e[i].size; i++)
915 continue;
916
917 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
918
919 free(e);
920
921 return rv;
922}
923
25ed7e59
DW
924static int is_spare(struct imsm_disk *disk)
925{
926 return (disk->status & SPARE_DISK) == SPARE_DISK;
927}
928
929static int is_configured(struct imsm_disk *disk)
930{
931 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
932}
933
934static int is_failed(struct imsm_disk *disk)
935{
936 return (disk->status & FAILED_DISK) == FAILED_DISK;
937}
938
b81221b7
CA
939/* try to determine how much space is reserved for metadata from
940 * the last get_extents() entry on the smallest active disk,
941 * otherwise fallback to the default
942 */
943static __u32 imsm_min_reserved_sectors(struct intel_super *super)
944{
945 struct extent *e;
946 int i;
947 __u32 min_active, remainder;
948 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
949 struct dl *dl, *dl_min = NULL;
950
951 if (!super)
952 return rv;
953
954 min_active = 0;
955 for (dl = super->disks; dl; dl = dl->next) {
956 if (dl->index < 0)
957 continue;
958 if (dl->disk.total_blocks < min_active || min_active == 0) {
959 dl_min = dl;
960 min_active = dl->disk.total_blocks;
961 }
962 }
963 if (!dl_min)
964 return rv;
965
966 /* find last lba used by subarrays on the smallest active disk */
967 e = get_extents(super, dl_min);
968 if (!e)
969 return rv;
970 for (i = 0; e[i].size; i++)
971 continue;
972
973 remainder = min_active - e[i].start;
974 free(e);
975
976 /* to give priority to recovery we should not require full
977 IMSM_RESERVED_SECTORS from the spare */
978 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
979
980 /* if real reservation is smaller use that value */
981 return (remainder < rv) ? remainder : rv;
982}
983
80e7f8c3
AC
984/* Return minimum size of a spare that can be used in this array*/
985static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
986{
987 struct intel_super *super = st->sb;
988 struct dl *dl;
989 struct extent *e;
990 int i;
991 unsigned long long rv = 0;
992
993 if (!super)
994 return rv;
995 /* find first active disk in array */
996 dl = super->disks;
997 while (dl && (is_failed(&dl->disk) || dl->index == -1))
998 dl = dl->next;
999 if (!dl)
1000 return rv;
1001 /* find last lba used by subarrays */
1002 e = get_extents(super, dl);
1003 if (!e)
1004 return rv;
1005 for (i = 0; e[i].size; i++)
1006 continue;
1007 if (i > 0)
1008 rv = e[i-1].start + e[i-1].size;
1009 free(e);
b81221b7 1010
80e7f8c3 1011 /* add the amount of space needed for metadata */
b81221b7
CA
1012 rv = rv + imsm_min_reserved_sectors(super);
1013
80e7f8c3
AC
1014 return rv * 512;
1015}
1016
1799c9e8 1017#ifndef MDASSEMBLE
c47b0ff6
AK
1018static __u64 blocks_per_migr_unit(struct intel_super *super,
1019 struct imsm_dev *dev);
1e5c6983 1020
464d40e8
LD
1021static int is_gen_migration(struct imsm_dev *dev);
1022
c47b0ff6
AK
1023static void print_imsm_dev(struct intel_super *super,
1024 struct imsm_dev *dev,
1025 char *uuid,
1026 int disk_idx)
cdddbdbc
DW
1027{
1028 __u64 sz;
0d80bb2f 1029 int slot, i;
a965f303 1030 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 1031 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 1032 __u32 ord;
cdddbdbc
DW
1033
1034 printf("\n");
1e7bc0ed 1035 printf("[%.16s]:\n", dev->volume);
44470971 1036 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1037 printf(" RAID Level : %d", get_imsm_raid_level(map));
1038 if (map2)
1039 printf(" <-- %d", get_imsm_raid_level(map2));
1040 printf("\n");
1041 printf(" Members : %d", map->num_members);
1042 if (map2)
1043 printf(" <-- %d", map2->num_members);
1044 printf("\n");
0d80bb2f
DW
1045 printf(" Slots : [");
1046 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 1047 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
1048 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1049 }
dd8bcb3b
AK
1050 printf("]");
1051 if (map2) {
1052 printf(" <-- [");
1053 for (i = 0; i < map2->num_members; i++) {
1054 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1055 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1056 }
1057 printf("]");
1058 }
1059 printf("\n");
7095bccb
AK
1060 printf(" Failed disk : ");
1061 if (map->failed_disk_num == 0xff)
1062 printf("none");
1063 else
1064 printf("%i", map->failed_disk_num);
1065 printf("\n");
620b1713
DW
1066 slot = get_imsm_disk_slot(map, disk_idx);
1067 if (slot >= 0) {
98130f40 1068 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
1069 printf(" This Slot : %d%s\n", slot,
1070 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1071 } else
cdddbdbc
DW
1072 printf(" This Slot : ?\n");
1073 sz = __le32_to_cpu(dev->size_high);
1074 sz <<= 32;
1075 sz += __le32_to_cpu(dev->size_low);
1076 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1077 human_size(sz * 512));
1078 sz = __le32_to_cpu(map->blocks_per_member);
1079 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1080 human_size(sz * 512));
1081 printf(" Sector Offset : %u\n",
1082 __le32_to_cpu(map->pba_of_lba0));
1083 printf(" Num Stripes : %u\n",
1084 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 1085 printf(" Chunk Size : %u KiB",
cdddbdbc 1086 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1087 if (map2)
1088 printf(" <-- %u KiB",
1089 __le16_to_cpu(map2->blocks_per_strip) / 2);
1090 printf("\n");
cdddbdbc 1091 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1092 printf(" Migrate State : ");
1484e727
DW
1093 if (dev->vol.migr_state) {
1094 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1095 printf("initialize\n");
1484e727 1096 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1097 printf("rebuild\n");
1484e727 1098 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1099 printf("check\n");
1484e727 1100 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1101 printf("general migration\n");
1484e727 1102 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1103 printf("state change\n");
1484e727 1104 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1105 printf("repair\n");
1484e727 1106 else
8655a7b1
DW
1107 printf("<unknown:%d>\n", migr_type(dev));
1108 } else
1109 printf("idle\n");
3393c6af
DW
1110 printf(" Map State : %s", map_state_str[map->map_state]);
1111 if (dev->vol.migr_state) {
1112 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1113
b10b37b8 1114 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1115 printf("\n Checkpoint : %u ",
1116 __le32_to_cpu(dev->vol.curr_migr_unit));
1117 if ((is_gen_migration(dev)) && (super->disks->index > 1))
1118 printf("(N/A)");
1119 else
1120 printf("(%llu)", (unsigned long long)
1121 blocks_per_migr_unit(super, dev));
3393c6af
DW
1122 }
1123 printf("\n");
cdddbdbc 1124 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1125}
1126
0ec1f4e8 1127static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1128{
1f24f035 1129 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1130 __u64 sz;
1131
0ec1f4e8 1132 if (index < -1 || !disk)
e9d82038
DW
1133 return;
1134
cdddbdbc 1135 printf("\n");
1f24f035 1136 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1137 if (index >= 0)
1138 printf(" Disk%02d Serial : %s\n", index, str);
1139 else
1140 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1141 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1142 is_configured(disk) ? " active" : "",
1143 is_failed(disk) ? " failed" : "");
cdddbdbc 1144 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1145 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1146 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1147 human_size(sz * 512));
1148}
1149
520e69e2
AK
1150void examine_migr_rec_imsm(struct intel_super *super)
1151{
1152 struct migr_record *migr_rec = super->migr_rec;
1153 struct imsm_super *mpb = super->anchor;
1154 int i;
1155
1156 for (i = 0; i < mpb->num_raid_devs; i++) {
1157 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1158 if (is_gen_migration(dev) == 0)
1159 continue;
1160
1161 printf("\nMigration Record Information:");
1162 if (super->disks->index > 1) {
1163 printf(" Empty\n ");
1164 printf("Examine one of first two disks in array\n");
1165 break;
1166 }
1167 printf("\n Status : ");
1168 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1169 printf("Normal\n");
1170 else
1171 printf("Contains Data\n");
1172 printf(" Current Unit : %u\n",
1173 __le32_to_cpu(migr_rec->curr_migr_unit));
1174 printf(" Family : %u\n",
1175 __le32_to_cpu(migr_rec->family_num));
1176 printf(" Ascending : %u\n",
1177 __le32_to_cpu(migr_rec->ascending_migr));
1178 printf(" Blocks Per Unit : %u\n",
1179 __le32_to_cpu(migr_rec->blocks_per_unit));
1180 printf(" Dest. Depth Per Unit : %u\n",
1181 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1182 printf(" Checkpoint Area pba : %u\n",
1183 __le32_to_cpu(migr_rec->ckpt_area_pba));
1184 printf(" First member lba : %u\n",
1185 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1186 printf(" Total Number of Units : %u\n",
1187 __le32_to_cpu(migr_rec->num_migr_units));
1188 printf(" Size of volume : %u\n",
1189 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1190 printf(" Expansion space for LBA64 : %u\n",
1191 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1192 printf(" Record was read from : %u\n",
1193 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1194
1195 break;
1196 }
1197}
9e2d750d 1198#endif /* MDASSEMBLE */
19482bcc
AK
1199/*******************************************************************************
1200 * function: imsm_check_attributes
1201 * Description: Function checks if features represented by attributes flags
1202 * are supported by mdadm.
1203 * Parameters:
1204 * attributes - Attributes read from metadata
1205 * Returns:
1206 * 0 - passed attributes contains unsupported features flags
1207 * 1 - all features are supported
1208 ******************************************************************************/
1209static int imsm_check_attributes(__u32 attributes)
1210{
1211 int ret_val = 1;
418f9b36
N
1212 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1213
1214 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1215
1216 not_supported &= attributes;
1217 if (not_supported) {
418f9b36
N
1218 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1219 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1220 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1221 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1222 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1223 }
1224 if (not_supported & MPB_ATTRIB_2TB) {
1225 dprintf("\t\tMPB_ATTRIB_2TB\n");
1226 not_supported ^= MPB_ATTRIB_2TB;
1227 }
1228 if (not_supported & MPB_ATTRIB_RAID0) {
1229 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1230 not_supported ^= MPB_ATTRIB_RAID0;
1231 }
1232 if (not_supported & MPB_ATTRIB_RAID1) {
1233 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1234 not_supported ^= MPB_ATTRIB_RAID1;
1235 }
1236 if (not_supported & MPB_ATTRIB_RAID10) {
1237 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1238 not_supported ^= MPB_ATTRIB_RAID10;
1239 }
1240 if (not_supported & MPB_ATTRIB_RAID1E) {
1241 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1242 not_supported ^= MPB_ATTRIB_RAID1E;
1243 }
1244 if (not_supported & MPB_ATTRIB_RAID5) {
1245 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1246 not_supported ^= MPB_ATTRIB_RAID5;
1247 }
1248 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1249 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1250 not_supported ^= MPB_ATTRIB_RAIDCNG;
1251 }
1252 if (not_supported & MPB_ATTRIB_BBM) {
1253 dprintf("\t\tMPB_ATTRIB_BBM\n");
1254 not_supported ^= MPB_ATTRIB_BBM;
1255 }
1256 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1257 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1258 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1259 }
1260 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1261 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1262 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1263 }
1264 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1265 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1266 not_supported ^= MPB_ATTRIB_2TB_DISK;
1267 }
1268 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1269 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1270 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1271 }
1272 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1273 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1274 not_supported ^= MPB_ATTRIB_NEVER_USE;
1275 }
1276
1277 if (not_supported)
1278 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1279
1280 ret_val = 0;
1281 }
1282
1283 return ret_val;
1284}
1285
9e2d750d 1286#ifndef MDASSEMBLE
a5d85af7 1287static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1288
cdddbdbc
DW
1289static void examine_super_imsm(struct supertype *st, char *homehost)
1290{
1291 struct intel_super *super = st->sb;
949c47a0 1292 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1293 char str[MAX_SIGNATURE_LENGTH];
1294 int i;
27fd6274
DW
1295 struct mdinfo info;
1296 char nbuf[64];
cdddbdbc 1297 __u32 sum;
14e8215b 1298 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1299 struct dl *dl;
27fd6274 1300
cdddbdbc
DW
1301 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1302 printf(" Magic : %s\n", str);
1303 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1304 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1305 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1306 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1307 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1308 printf(" Attributes : ");
1309 if (imsm_check_attributes(mpb->attributes))
1310 printf("All supported\n");
1311 else
1312 printf("not supported\n");
a5d85af7 1313 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1314 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1315 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1316 sum = __le32_to_cpu(mpb->check_sum);
1317 printf(" Checksum : %08x %s\n", sum,
949c47a0 1318 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1319 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1320 printf(" Disks : %d\n", mpb->num_disks);
1321 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1322 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1323 if (super->bbm_log) {
1324 struct bbm_log *log = super->bbm_log;
1325
1326 printf("\n");
1327 printf("Bad Block Management Log:\n");
1328 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1329 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1330 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1331 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1332 printf(" First Spare : %llx\n",
1333 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1334 }
44470971
DW
1335 for (i = 0; i < mpb->num_raid_devs; i++) {
1336 struct mdinfo info;
1337 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1338
1339 super->current_vol = i;
a5d85af7 1340 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1341 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1342 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1343 }
cdddbdbc
DW
1344 for (i = 0; i < mpb->num_disks; i++) {
1345 if (i == super->disks->index)
1346 continue;
0ec1f4e8 1347 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1348 }
94827db3 1349
0ec1f4e8
DW
1350 for (dl = super->disks; dl; dl = dl->next)
1351 if (dl->index == -1)
1352 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1353
1354 examine_migr_rec_imsm(super);
cdddbdbc
DW
1355}
1356
061f2c6a 1357static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1358{
27fd6274 1359 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1360 struct mdinfo info;
1361 char nbuf[64];
1e7bc0ed 1362 struct intel_super *super = st->sb;
1e7bc0ed 1363
0d5a423f
DW
1364 if (!super->anchor->num_raid_devs) {
1365 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1366 return;
0d5a423f 1367 }
ff54de6e 1368
a5d85af7 1369 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1370 fname_from_uuid(st, &info, nbuf, ':');
1371 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1372}
1373
1374static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1375{
1376 /* We just write a generic IMSM ARRAY entry */
1377 struct mdinfo info;
1378 char nbuf[64];
1379 char nbuf1[64];
1380 struct intel_super *super = st->sb;
1381 int i;
1382
1383 if (!super->anchor->num_raid_devs)
1384 return;
1385
a5d85af7 1386 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1387 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1388 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1389 struct imsm_dev *dev = get_imsm_dev(super, i);
1390
1391 super->current_vol = i;
a5d85af7 1392 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1393 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1394 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1395 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1396 }
cdddbdbc
DW
1397}
1398
9d84c8ea
DW
1399static void export_examine_super_imsm(struct supertype *st)
1400{
1401 struct intel_super *super = st->sb;
1402 struct imsm_super *mpb = super->anchor;
1403 struct mdinfo info;
1404 char nbuf[64];
1405
a5d85af7 1406 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1407 fname_from_uuid(st, &info, nbuf, ':');
1408 printf("MD_METADATA=imsm\n");
1409 printf("MD_LEVEL=container\n");
1410 printf("MD_UUID=%s\n", nbuf+5);
1411 printf("MD_DEVICES=%u\n", mpb->num_disks);
1412}
1413
cdddbdbc
DW
1414static void detail_super_imsm(struct supertype *st, char *homehost)
1415{
3ebe00a1
DW
1416 struct mdinfo info;
1417 char nbuf[64];
1418
a5d85af7 1419 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1420 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1421 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1422}
1423
1424static void brief_detail_super_imsm(struct supertype *st)
1425{
ff54de6e
N
1426 struct mdinfo info;
1427 char nbuf[64];
a5d85af7 1428 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1429 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1430 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1431}
d665cc31
DW
1432
1433static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1434static void fd2devname(int fd, char *name);
1435
120dc887 1436static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1437{
120dc887
LM
1438 /* dump an unsorted list of devices attached to AHCI Intel storage
1439 * controller, as well as non-connected ports
d665cc31
DW
1440 */
1441 int hba_len = strlen(hba_path) + 1;
1442 struct dirent *ent;
1443 DIR *dir;
1444 char *path = NULL;
1445 int err = 0;
1446 unsigned long port_mask = (1 << port_count) - 1;
1447
f21e18ca 1448 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1449 if (verbose)
1450 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1451 return 2;
1452 }
1453
1454 /* scroll through /sys/dev/block looking for devices attached to
1455 * this hba
1456 */
1457 dir = opendir("/sys/dev/block");
1458 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1459 int fd;
1460 char model[64];
1461 char vendor[64];
1462 char buf[1024];
1463 int major, minor;
1464 char *device;
1465 char *c;
1466 int port;
1467 int type;
1468
1469 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1470 continue;
1471 path = devt_to_devpath(makedev(major, minor));
1472 if (!path)
1473 continue;
1474 if (!path_attached_to_hba(path, hba_path)) {
1475 free(path);
1476 path = NULL;
1477 continue;
1478 }
1479
1480 /* retrieve the scsi device type */
1481 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1482 if (verbose)
1483 fprintf(stderr, Name ": failed to allocate 'device'\n");
1484 err = 2;
1485 break;
1486 }
1487 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1488 if (load_sys(device, buf) != 0) {
1489 if (verbose)
1490 fprintf(stderr, Name ": failed to read device type for %s\n",
1491 path);
1492 err = 2;
1493 free(device);
1494 break;
1495 }
1496 type = strtoul(buf, NULL, 10);
1497
1498 /* if it's not a disk print the vendor and model */
1499 if (!(type == 0 || type == 7 || type == 14)) {
1500 vendor[0] = '\0';
1501 model[0] = '\0';
1502 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1503 if (load_sys(device, buf) == 0) {
1504 strncpy(vendor, buf, sizeof(vendor));
1505 vendor[sizeof(vendor) - 1] = '\0';
1506 c = (char *) &vendor[sizeof(vendor) - 1];
1507 while (isspace(*c) || *c == '\0')
1508 *c-- = '\0';
1509
1510 }
1511 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1512 if (load_sys(device, buf) == 0) {
1513 strncpy(model, buf, sizeof(model));
1514 model[sizeof(model) - 1] = '\0';
1515 c = (char *) &model[sizeof(model) - 1];
1516 while (isspace(*c) || *c == '\0')
1517 *c-- = '\0';
1518 }
1519
1520 if (vendor[0] && model[0])
1521 sprintf(buf, "%.64s %.64s", vendor, model);
1522 else
1523 switch (type) { /* numbers from hald/linux/device.c */
1524 case 1: sprintf(buf, "tape"); break;
1525 case 2: sprintf(buf, "printer"); break;
1526 case 3: sprintf(buf, "processor"); break;
1527 case 4:
1528 case 5: sprintf(buf, "cdrom"); break;
1529 case 6: sprintf(buf, "scanner"); break;
1530 case 8: sprintf(buf, "media_changer"); break;
1531 case 9: sprintf(buf, "comm"); break;
1532 case 12: sprintf(buf, "raid"); break;
1533 default: sprintf(buf, "unknown");
1534 }
1535 } else
1536 buf[0] = '\0';
1537 free(device);
1538
1539 /* chop device path to 'host%d' and calculate the port number */
1540 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1541 if (!c) {
1542 if (verbose)
1543 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1544 err = 2;
1545 break;
1546 }
d665cc31
DW
1547 *c = '\0';
1548 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1549 port -= host_base;
1550 else {
1551 if (verbose) {
1552 *c = '/'; /* repair the full string */
1553 fprintf(stderr, Name ": failed to determine port number for %s\n",
1554 path);
1555 }
1556 err = 2;
1557 break;
1558 }
1559
1560 /* mark this port as used */
1561 port_mask &= ~(1 << port);
1562
1563 /* print out the device information */
1564 if (buf[0]) {
1565 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1566 continue;
1567 }
1568
1569 fd = dev_open(ent->d_name, O_RDONLY);
1570 if (fd < 0)
1571 printf(" Port%d : - disk info unavailable -\n", port);
1572 else {
1573 fd2devname(fd, buf);
1574 printf(" Port%d : %s", port, buf);
1575 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1576 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1577 else
664d5325 1578 printf(" ()\n");
4dab422a 1579 close(fd);
d665cc31 1580 }
d665cc31
DW
1581 free(path);
1582 path = NULL;
1583 }
1584 if (path)
1585 free(path);
1586 if (dir)
1587 closedir(dir);
1588 if (err == 0) {
1589 int i;
1590
1591 for (i = 0; i < port_count; i++)
1592 if (port_mask & (1 << i))
1593 printf(" Port%d : - no device attached -\n", i);
1594 }
1595
1596 return err;
1597}
1598
120dc887
LM
1599static void print_found_intel_controllers(struct sys_dev *elem)
1600{
1601 for (; elem; elem = elem->next) {
1602 fprintf(stderr, Name ": found Intel(R) ");
1603 if (elem->type == SYS_DEV_SATA)
1604 fprintf(stderr, "SATA ");
155cbb4c
LM
1605 else if (elem->type == SYS_DEV_SAS)
1606 fprintf(stderr, "SAS ");
120dc887
LM
1607 fprintf(stderr, "RAID controller");
1608 if (elem->pci_id)
1609 fprintf(stderr, " at %s", elem->pci_id);
1610 fprintf(stderr, ".\n");
1611 }
1612 fflush(stderr);
1613}
1614
120dc887
LM
1615static int ahci_get_port_count(const char *hba_path, int *port_count)
1616{
1617 struct dirent *ent;
1618 DIR *dir;
1619 int host_base = -1;
1620
1621 *port_count = 0;
1622 if ((dir = opendir(hba_path)) == NULL)
1623 return -1;
1624
1625 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1626 int host;
1627
1628 if (sscanf(ent->d_name, "host%d", &host) != 1)
1629 continue;
1630 if (*port_count == 0)
1631 host_base = host;
1632 else if (host < host_base)
1633 host_base = host;
1634
1635 if (host + 1 > *port_count + host_base)
1636 *port_count = host + 1 - host_base;
1637 }
1638 closedir(dir);
1639 return host_base;
1640}
1641
a891a3c2
LM
1642static void print_imsm_capability(const struct imsm_orom *orom)
1643{
1644 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1645 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1646 orom->hotfix_ver, orom->build);
1647 printf(" RAID Levels :%s%s%s%s%s\n",
1648 imsm_orom_has_raid0(orom) ? " raid0" : "",
1649 imsm_orom_has_raid1(orom) ? " raid1" : "",
1650 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1651 imsm_orom_has_raid10(orom) ? " raid10" : "",
1652 imsm_orom_has_raid5(orom) ? " raid5" : "");
1653 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1654 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1655 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1656 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1657 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1658 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1659 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1660 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1661 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1662 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1663 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1664 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1665 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1666 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1667 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1668 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1669 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1670 printf(" Max Disks : %d\n", orom->tds);
1671 printf(" Max Volumes : %d\n", orom->vpa);
1672 return;
1673}
1674
5615172f 1675static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1676{
1677 /* There are two components to imsm platform support, the ahci SATA
1678 * controller and the option-rom. To find the SATA controller we
1679 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1680 * controller with the Intel vendor id is present. This approach
1681 * allows mdadm to leverage the kernel's ahci detection logic, with the
1682 * caveat that if ahci.ko is not loaded mdadm will not be able to
1683 * detect platform raid capabilities. The option-rom resides in a
1684 * platform "Adapter ROM". We scan for its signature to retrieve the
1685 * platform capabilities. If raid support is disabled in the BIOS the
1686 * option-rom capability structure will not be available.
1687 */
1688 const struct imsm_orom *orom;
1689 struct sys_dev *list, *hba;
d665cc31
DW
1690 int host_base = 0;
1691 int port_count = 0;
120dc887 1692 int result=0;
d665cc31 1693
5615172f 1694 if (enumerate_only) {
a891a3c2 1695 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1696 return 0;
a891a3c2
LM
1697 list = find_intel_devices();
1698 if (!list)
1699 return 2;
1700 for (hba = list; hba; hba = hba->next) {
1701 orom = find_imsm_capability(hba->type);
1702 if (!orom) {
1703 result = 2;
1704 break;
1705 }
1706 }
1707 free_sys_dev(&list);
1708 return result;
5615172f
DW
1709 }
1710
155cbb4c
LM
1711 list = find_intel_devices();
1712 if (!list) {
d665cc31 1713 if (verbose)
155cbb4c
LM
1714 fprintf(stderr, Name ": no active Intel(R) RAID "
1715 "controller found.\n");
d665cc31
DW
1716 free_sys_dev(&list);
1717 return 2;
1718 } else if (verbose)
155cbb4c 1719 print_found_intel_controllers(list);
d665cc31 1720
a891a3c2
LM
1721 for (hba = list; hba; hba = hba->next) {
1722 orom = find_imsm_capability(hba->type);
1723 if (!orom)
1724 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1725 hba->path, get_sys_dev_type(hba->type));
1726 else
1727 print_imsm_capability(orom);
d665cc31
DW
1728 }
1729
120dc887
LM
1730 for (hba = list; hba; hba = hba->next) {
1731 printf(" I/O Controller : %s (%s)\n",
1732 hba->path, get_sys_dev_type(hba->type));
d665cc31 1733
120dc887
LM
1734 if (hba->type == SYS_DEV_SATA) {
1735 host_base = ahci_get_port_count(hba->path, &port_count);
1736 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1737 if (verbose)
1738 fprintf(stderr, Name ": failed to enumerate "
1739 "ports on SATA controller at %s.", hba->pci_id);
1740 result |= 2;
1741 }
1742 }
d665cc31 1743 }
155cbb4c 1744
120dc887
LM
1745 free_sys_dev(&list);
1746 return result;
d665cc31 1747}
cdddbdbc
DW
1748#endif
1749
1750static int match_home_imsm(struct supertype *st, char *homehost)
1751{
5115ca67
DW
1752 /* the imsm metadata format does not specify any host
1753 * identification information. We return -1 since we can never
1754 * confirm nor deny whether a given array is "meant" for this
148acb7b 1755 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1756 * exclude member disks that do not belong, and we rely on
1757 * mdadm.conf to specify the arrays that should be assembled.
1758 * Auto-assembly may still pick up "foreign" arrays.
1759 */
cdddbdbc 1760
9362c1c8 1761 return -1;
cdddbdbc
DW
1762}
1763
1764static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1765{
51006d85
N
1766 /* The uuid returned here is used for:
1767 * uuid to put into bitmap file (Create, Grow)
1768 * uuid for backup header when saving critical section (Grow)
1769 * comparing uuids when re-adding a device into an array
1770 * In these cases the uuid required is that of the data-array,
1771 * not the device-set.
1772 * uuid to recognise same set when adding a missing device back
1773 * to an array. This is a uuid for the device-set.
1774 *
1775 * For each of these we can make do with a truncated
1776 * or hashed uuid rather than the original, as long as
1777 * everyone agrees.
1778 * In each case the uuid required is that of the data-array,
1779 * not the device-set.
43dad3d6 1780 */
51006d85
N
1781 /* imsm does not track uuid's so we synthesis one using sha1 on
1782 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1783 * - the orig_family_num of the container
51006d85
N
1784 * - the index number of the volume
1785 * - the 'serial' number of the volume.
1786 * Hopefully these are all constant.
1787 */
1788 struct intel_super *super = st->sb;
43dad3d6 1789
51006d85
N
1790 char buf[20];
1791 struct sha1_ctx ctx;
1792 struct imsm_dev *dev = NULL;
148acb7b 1793 __u32 family_num;
51006d85 1794
148acb7b
DW
1795 /* some mdadm versions failed to set ->orig_family_num, in which
1796 * case fall back to ->family_num. orig_family_num will be
1797 * fixed up with the first metadata update.
1798 */
1799 family_num = super->anchor->orig_family_num;
1800 if (family_num == 0)
1801 family_num = super->anchor->family_num;
51006d85 1802 sha1_init_ctx(&ctx);
92bd8f8d 1803 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1804 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1805 if (super->current_vol >= 0)
1806 dev = get_imsm_dev(super, super->current_vol);
1807 if (dev) {
1808 __u32 vol = super->current_vol;
1809 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1810 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1811 }
1812 sha1_finish_ctx(&ctx, buf);
1813 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1814}
1815
0d481d37 1816#if 0
4f5bc454
DW
1817static void
1818get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1819{
cdddbdbc
DW
1820 __u8 *v = get_imsm_version(mpb);
1821 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1822 char major[] = { 0, 0, 0 };
1823 char minor[] = { 0 ,0, 0 };
1824 char patch[] = { 0, 0, 0 };
1825 char *ver_parse[] = { major, minor, patch };
1826 int i, j;
1827
1828 i = j = 0;
1829 while (*v != '\0' && v < end) {
1830 if (*v != '.' && j < 2)
1831 ver_parse[i][j++] = *v;
1832 else {
1833 i++;
1834 j = 0;
1835 }
1836 v++;
1837 }
1838
4f5bc454
DW
1839 *m = strtol(minor, NULL, 0);
1840 *p = strtol(patch, NULL, 0);
1841}
0d481d37 1842#endif
4f5bc454 1843
1e5c6983
DW
1844static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1845{
1846 /* migr_strip_size when repairing or initializing parity */
1847 struct imsm_map *map = get_imsm_map(dev, 0);
1848 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1849
1850 switch (get_imsm_raid_level(map)) {
1851 case 5:
1852 case 10:
1853 return chunk;
1854 default:
1855 return 128*1024 >> 9;
1856 }
1857}
1858
1859static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1860{
1861 /* migr_strip_size when rebuilding a degraded disk, no idea why
1862 * this is different than migr_strip_size_resync(), but it's good
1863 * to be compatible
1864 */
1865 struct imsm_map *map = get_imsm_map(dev, 1);
1866 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1867
1868 switch (get_imsm_raid_level(map)) {
1869 case 1:
1870 case 10:
1871 if (map->num_members % map->num_domains == 0)
1872 return 128*1024 >> 9;
1873 else
1874 return chunk;
1875 case 5:
1876 return max((__u32) 64*1024 >> 9, chunk);
1877 default:
1878 return 128*1024 >> 9;
1879 }
1880}
1881
1882static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1883{
1884 struct imsm_map *lo = get_imsm_map(dev, 0);
1885 struct imsm_map *hi = get_imsm_map(dev, 1);
1886 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1887 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1888
1889 return max((__u32) 1, hi_chunk / lo_chunk);
1890}
1891
1892static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1893{
1894 struct imsm_map *lo = get_imsm_map(dev, 0);
1895 int level = get_imsm_raid_level(lo);
1896
1897 if (level == 1 || level == 10) {
1898 struct imsm_map *hi = get_imsm_map(dev, 1);
1899
1900 return hi->num_domains;
1901 } else
1902 return num_stripes_per_unit_resync(dev);
1903}
1904
98130f40 1905static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1906{
1907 /* named 'imsm_' because raid0, raid1 and raid10
1908 * counter-intuitively have the same number of data disks
1909 */
98130f40 1910 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1911
1912 switch (get_imsm_raid_level(map)) {
1913 case 0:
1914 case 1:
1915 case 10:
1916 return map->num_members;
1917 case 5:
1918 return map->num_members - 1;
1919 default:
1920 dprintf("%s: unsupported raid level\n", __func__);
1921 return 0;
1922 }
1923}
1924
1925static __u32 parity_segment_depth(struct imsm_dev *dev)
1926{
1927 struct imsm_map *map = get_imsm_map(dev, 0);
1928 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1929
1930 switch(get_imsm_raid_level(map)) {
1931 case 1:
1932 case 10:
1933 return chunk * map->num_domains;
1934 case 5:
1935 return chunk * map->num_members;
1936 default:
1937 return chunk;
1938 }
1939}
1940
1941static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1942{
1943 struct imsm_map *map = get_imsm_map(dev, 1);
1944 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1945 __u32 strip = block / chunk;
1946
1947 switch (get_imsm_raid_level(map)) {
1948 case 1:
1949 case 10: {
1950 __u32 vol_strip = (strip * map->num_domains) + 1;
1951 __u32 vol_stripe = vol_strip / map->num_members;
1952
1953 return vol_stripe * chunk + block % chunk;
1954 } case 5: {
1955 __u32 stripe = strip / (map->num_members - 1);
1956
1957 return stripe * chunk + block % chunk;
1958 }
1959 default:
1960 return 0;
1961 }
1962}
1963
c47b0ff6
AK
1964static __u64 blocks_per_migr_unit(struct intel_super *super,
1965 struct imsm_dev *dev)
1e5c6983
DW
1966{
1967 /* calculate the conversion factor between per member 'blocks'
1968 * (md/{resync,rebuild}_start) and imsm migration units, return
1969 * 0 for the 'not migrating' and 'unsupported migration' cases
1970 */
1971 if (!dev->vol.migr_state)
1972 return 0;
1973
1974 switch (migr_type(dev)) {
c47b0ff6
AK
1975 case MIGR_GEN_MIGR: {
1976 struct migr_record *migr_rec = super->migr_rec;
1977 return __le32_to_cpu(migr_rec->blocks_per_unit);
1978 }
1e5c6983
DW
1979 case MIGR_VERIFY:
1980 case MIGR_REPAIR:
1981 case MIGR_INIT: {
1982 struct imsm_map *map = get_imsm_map(dev, 0);
1983 __u32 stripes_per_unit;
1984 __u32 blocks_per_unit;
1985 __u32 parity_depth;
1986 __u32 migr_chunk;
1987 __u32 block_map;
1988 __u32 block_rel;
1989 __u32 segment;
1990 __u32 stripe;
1991 __u8 disks;
1992
1993 /* yes, this is really the translation of migr_units to
1994 * per-member blocks in the 'resync' case
1995 */
1996 stripes_per_unit = num_stripes_per_unit_resync(dev);
1997 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 1998 disks = imsm_num_data_members(dev, 0);
1e5c6983 1999 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2000 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2001 segment = blocks_per_unit / stripe;
2002 block_rel = blocks_per_unit - segment * stripe;
2003 parity_depth = parity_segment_depth(dev);
2004 block_map = map_migr_block(dev, block_rel);
2005 return block_map + parity_depth * segment;
2006 }
2007 case MIGR_REBUILD: {
2008 __u32 stripes_per_unit;
2009 __u32 migr_chunk;
2010
2011 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2012 migr_chunk = migr_strip_blocks_rebuild(dev);
2013 return migr_chunk * stripes_per_unit;
2014 }
1e5c6983
DW
2015 case MIGR_STATE_CHANGE:
2016 default:
2017 return 0;
2018 }
2019}
2020
c2c087e6
DW
2021static int imsm_level_to_layout(int level)
2022{
2023 switch (level) {
2024 case 0:
2025 case 1:
2026 return 0;
2027 case 5:
2028 case 6:
a380c027 2029 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2030 case 10:
c92a2527 2031 return 0x102;
c2c087e6 2032 }
a18a888e 2033 return UnSet;
c2c087e6
DW
2034}
2035
8e59f3d8
AK
2036/*******************************************************************************
2037 * Function: read_imsm_migr_rec
2038 * Description: Function reads imsm migration record from last sector of disk
2039 * Parameters:
2040 * fd : disk descriptor
2041 * super : metadata info
2042 * Returns:
2043 * 0 : success,
2044 * -1 : fail
2045 ******************************************************************************/
2046static int read_imsm_migr_rec(int fd, struct intel_super *super)
2047{
2048 int ret_val = -1;
2049 unsigned long long dsize;
2050
2051 get_dev_size(fd, NULL, &dsize);
2052 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2053 fprintf(stderr,
2054 Name ": Cannot seek to anchor block: %s\n",
2055 strerror(errno));
2056 goto out;
2057 }
2058 if (read(fd, super->migr_rec_buf, 512) != 512) {
2059 fprintf(stderr,
2060 Name ": Cannot read migr record block: %s\n",
2061 strerror(errno));
2062 goto out;
2063 }
2064 ret_val = 0;
2065
2066out:
2067 return ret_val;
2068}
2069
2070/*******************************************************************************
2071 * Function: load_imsm_migr_rec
2072 * Description: Function reads imsm migration record (it is stored at the last
2073 * sector of disk)
2074 * Parameters:
2075 * super : imsm internal array info
2076 * info : general array info
2077 * Returns:
2078 * 0 : success
2079 * -1 : fail
2080 ******************************************************************************/
2081static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2082{
2083 struct mdinfo *sd;
2084 struct dl *dl = NULL;
2085 char nm[30];
2086 int retval = -1;
2087 int fd = -1;
2088
2089 if (info) {
2090 for (sd = info->devs ; sd ; sd = sd->next) {
2091 /* read only from one of the first two slots */
2092 if ((sd->disk.raid_disk > 1) ||
2093 (sd->disk.raid_disk < 0))
2094 continue;
2095 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2096 fd = dev_open(nm, O_RDONLY);
2097 if (fd >= 0)
2098 break;
2099 }
2100 }
2101 if (fd < 0) {
2102 for (dl = super->disks; dl; dl = dl->next) {
2103 /* read only from one of the first two slots */
2104 if (dl->index > 1)
2105 continue;
2106 sprintf(nm, "%d:%d", dl->major, dl->minor);
2107 fd = dev_open(nm, O_RDONLY);
2108 if (fd >= 0)
2109 break;
2110 }
2111 }
2112 if (fd < 0)
2113 goto out;
2114 retval = read_imsm_migr_rec(fd, super);
2115
2116out:
2117 if (fd >= 0)
2118 close(fd);
2119 return retval;
2120}
2121
9e2d750d 2122#ifndef MDASSEMBLE
c17608ea
AK
2123/*******************************************************************************
2124 * function: imsm_create_metadata_checkpoint_update
2125 * Description: It creates update for checkpoint change.
2126 * Parameters:
2127 * super : imsm internal array info
2128 * u : pointer to prepared update
2129 * Returns:
2130 * Uptate length.
2131 * If length is equal to 0, input pointer u contains no update
2132 ******************************************************************************/
2133static int imsm_create_metadata_checkpoint_update(
2134 struct intel_super *super,
2135 struct imsm_update_general_migration_checkpoint **u)
2136{
2137
2138 int update_memory_size = 0;
2139
2140 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2141
2142 if (u == NULL)
2143 return 0;
2144 *u = NULL;
2145
2146 /* size of all update data without anchor */
2147 update_memory_size =
2148 sizeof(struct imsm_update_general_migration_checkpoint);
2149
2150 *u = calloc(1, update_memory_size);
2151 if (*u == NULL) {
2152 dprintf("error: cannot get memory for "
2153 "imsm_create_metadata_checkpoint_update update\n");
2154 return 0;
2155 }
2156 (*u)->type = update_general_migration_checkpoint;
2157 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2158 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2159 (*u)->curr_migr_unit);
2160
2161 return update_memory_size;
2162}
2163
2164
2165static void imsm_update_metadata_locally(struct supertype *st,
2166 void *buf, int len);
2167
687629c2
AK
2168/*******************************************************************************
2169 * Function: write_imsm_migr_rec
2170 * Description: Function writes imsm migration record
2171 * (at the last sector of disk)
2172 * Parameters:
2173 * super : imsm internal array info
2174 * Returns:
2175 * 0 : success
2176 * -1 : if fail
2177 ******************************************************************************/
2178static int write_imsm_migr_rec(struct supertype *st)
2179{
2180 struct intel_super *super = st->sb;
2181 unsigned long long dsize;
2182 char nm[30];
2183 int fd = -1;
2184 int retval = -1;
2185 struct dl *sd;
c17608ea
AK
2186 int len;
2187 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2188
2189 for (sd = super->disks ; sd ; sd = sd->next) {
2190 /* write to 2 first slots only */
2191 if ((sd->index < 0) || (sd->index > 1))
2192 continue;
2193 sprintf(nm, "%d:%d", sd->major, sd->minor);
2194 fd = dev_open(nm, O_RDWR);
2195 if (fd < 0)
2196 continue;
2197 get_dev_size(fd, NULL, &dsize);
2198 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2199 fprintf(stderr,
2200 Name ": Cannot seek to anchor block: %s\n",
2201 strerror(errno));
2202 goto out;
2203 }
2204 if (write(fd, super->migr_rec_buf, 512) != 512) {
2205 fprintf(stderr,
2206 Name ": Cannot write migr record block: %s\n",
2207 strerror(errno));
2208 goto out;
2209 }
2210 close(fd);
2211 fd = -1;
2212 }
c17608ea
AK
2213 /* update checkpoint information in metadata */
2214 len = imsm_create_metadata_checkpoint_update(super, &u);
2215
2216 if (len <= 0) {
2217 dprintf("imsm: Cannot prepare update\n");
2218 goto out;
2219 }
2220 /* update metadata locally */
2221 imsm_update_metadata_locally(st, u, len);
2222 /* and possibly remotely */
2223 if (st->update_tail) {
2224 append_metadata_update(st, u, len);
2225 /* during reshape we do all work inside metadata handler
2226 * manage_reshape(), so metadata update has to be triggered
2227 * insida it
2228 */
2229 flush_metadata_updates(st);
2230 st->update_tail = &st->updates;
2231 } else
2232 free(u);
687629c2
AK
2233
2234 retval = 0;
2235 out:
2236 if (fd >= 0)
2237 close(fd);
2238 return retval;
2239}
9e2d750d 2240#endif /* MDASSEMBLE */
687629c2 2241
e2962bfc
AK
2242/* spare/missing disks activations are not allowe when
2243 * array/container performs reshape operation, because
2244 * all arrays in container works on the same disks set
2245 */
2246int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2247{
2248 int rv = 0;
2249 struct intel_dev *i_dev;
2250 struct imsm_dev *dev;
2251
2252 /* check whole container
2253 */
2254 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2255 dev = i_dev->dev;
3ad25638 2256 if (is_gen_migration(dev)) {
e2962bfc
AK
2257 /* No repair during any migration in container
2258 */
2259 rv = 1;
2260 break;
2261 }
2262 }
2263 return rv;
2264}
2265
a5d85af7 2266static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2267{
2268 struct intel_super *super = st->sb;
c47b0ff6 2269 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2270 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 2271 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 2272 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 2273 struct imsm_map *map_to_analyse = map;
efb30e7f 2274 struct dl *dl;
e207da2f 2275 char *devname;
139dae11 2276 unsigned int component_size_alligment;
a5d85af7 2277 int map_disks = info->array.raid_disks;
bf5a934a 2278
95eeceeb 2279 memset(info, 0, sizeof(*info));
b335e593
AK
2280 if (prev_map)
2281 map_to_analyse = prev_map;
2282
ca0748fa 2283 dl = super->current_disk;
9894ec0d 2284
bf5a934a 2285 info->container_member = super->current_vol;
cd0430a1 2286 info->array.raid_disks = map->num_members;
b335e593 2287 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2288 info->array.layout = imsm_level_to_layout(info->array.level);
2289 info->array.md_minor = -1;
2290 info->array.ctime = 0;
2291 info->array.utime = 0;
b335e593
AK
2292 info->array.chunk_size =
2293 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2294 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2295 info->custom_array_size = __le32_to_cpu(dev->size_high);
2296 info->custom_array_size <<= 32;
2297 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
2298 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2299
b601104e
LD
2300 if (prev_map && map->map_state == prev_map->map_state &&
2301 (migr_type(dev) == MIGR_GEN_MIGR)) {
3f83228a 2302 info->reshape_active = 1;
b335e593
AK
2303 info->new_level = get_imsm_raid_level(map);
2304 info->new_layout = imsm_level_to_layout(info->new_level);
2305 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2306 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2307 if (info->delta_disks) {
2308 /* this needs to be applied to every array
2309 * in the container.
2310 */
81219e70 2311 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 2312 }
3f83228a
N
2313 /* We shape information that we give to md might have to be
2314 * modify to cope with md's requirement for reshaping arrays.
2315 * For example, when reshaping a RAID0, md requires it to be
2316 * presented as a degraded RAID4.
2317 * Also if a RAID0 is migrating to a RAID5 we need to specify
2318 * the array as already being RAID5, but the 'before' layout
2319 * is a RAID4-like layout.
2320 */
2321 switch (info->array.level) {
2322 case 0:
2323 switch(info->new_level) {
2324 case 0:
2325 /* conversion is happening as RAID4 */
2326 info->array.level = 4;
2327 info->array.raid_disks += 1;
2328 break;
2329 case 5:
2330 /* conversion is happening as RAID5 */
2331 info->array.level = 5;
2332 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2333 info->delta_disks -= 1;
2334 break;
2335 default:
2336 /* FIXME error message */
2337 info->array.level = UnSet;
2338 break;
2339 }
2340 break;
2341 }
b335e593
AK
2342 } else {
2343 info->new_level = UnSet;
2344 info->new_layout = UnSet;
2345 info->new_chunk = info->array.chunk_size;
3f83228a 2346 info->delta_disks = 0;
b335e593 2347 }
ca0748fa 2348
efb30e7f
DW
2349 if (dl) {
2350 info->disk.major = dl->major;
2351 info->disk.minor = dl->minor;
ca0748fa 2352 info->disk.number = dl->index;
656b6b5a
N
2353 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2354 dl->index);
efb30e7f 2355 }
bf5a934a 2356
b335e593
AK
2357 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2358 info->component_size =
2359 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2360
2361 /* check component size aligment
2362 */
2363 component_size_alligment =
2364 info->component_size % (info->array.chunk_size/512);
2365
2366 if (component_size_alligment &&
2367 (info->array.level != 1) && (info->array.level != UnSet)) {
2368 dprintf("imsm: reported component size alligned from %llu ",
2369 info->component_size);
2370 info->component_size -= component_size_alligment;
2371 dprintf("to %llu (%i).\n",
2372 info->component_size, component_size_alligment);
2373 }
2374
301406c9 2375 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2376 info->recovery_start = MaxSector;
bf5a934a 2377
d2e6d5d6 2378 info->reshape_progress = 0;
b6796ce1 2379 info->resync_start = MaxSector;
b9172665
AK
2380 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2381 dev->vol.dirty) &&
2382 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 2383 info->resync_start = 0;
b6796ce1
AK
2384 }
2385 if (dev->vol.migr_state) {
1e5c6983
DW
2386 switch (migr_type(dev)) {
2387 case MIGR_REPAIR:
2388 case MIGR_INIT: {
c47b0ff6
AK
2389 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2390 dev);
1e5c6983
DW
2391 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2392
2393 info->resync_start = blocks_per_unit * units;
2394 break;
2395 }
d2e6d5d6 2396 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2397 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2398 dev);
2399 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2400 unsigned long long array_blocks;
2401 int used_disks;
d2e6d5d6 2402
befb629b
AK
2403 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2404 (units <
2405 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2406 (super->migr_rec->rec_status ==
2407 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2408 units++;
2409
d2e6d5d6 2410 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2411
d2e6d5d6
AK
2412 dprintf("IMSM: General Migration checkpoint : %llu "
2413 "(%llu) -> read reshape progress : %llu\n",
19986c72
MB
2414 (unsigned long long)units,
2415 (unsigned long long)blocks_per_unit,
2416 info->reshape_progress);
75156c46
AK
2417
2418 used_disks = imsm_num_data_members(dev, 1);
2419 if (used_disks > 0) {
2420 array_blocks = map->blocks_per_member *
2421 used_disks;
2422 /* round array size down to closest MB
2423 */
2424 info->custom_array_size = (array_blocks
2425 >> SECT_PER_MB_SHIFT)
2426 << SECT_PER_MB_SHIFT;
2427 }
d2e6d5d6 2428 }
1e5c6983
DW
2429 case MIGR_VERIFY:
2430 /* we could emulate the checkpointing of
2431 * 'sync_action=check' migrations, but for now
2432 * we just immediately complete them
2433 */
2434 case MIGR_REBUILD:
2435 /* this is handled by container_content_imsm() */
1e5c6983
DW
2436 case MIGR_STATE_CHANGE:
2437 /* FIXME handle other migrations */
2438 default:
2439 /* we are not dirty, so... */
2440 info->resync_start = MaxSector;
2441 }
b6796ce1 2442 }
301406c9
DW
2443
2444 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2445 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2446
f35f2525
N
2447 info->array.major_version = -1;
2448 info->array.minor_version = -2;
e207da2f
AW
2449 devname = devnum2devname(st->container_dev);
2450 *info->text_version = '\0';
2451 if (devname)
2452 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2453 free(devname);
a67dd8cc 2454 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2455 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2456
2457 if (dmap) {
2458 int i, j;
2459 for (i=0; i<map_disks; i++) {
2460 dmap[i] = 0;
2461 if (i < info->array.raid_disks) {
2462 struct imsm_disk *dsk;
98130f40 2463 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2464 dsk = get_imsm_disk(super, j);
2465 if (dsk && (dsk->status & CONFIGURED_DISK))
2466 dmap[i] = 1;
2467 }
2468 }
2469 }
81ac8b4d 2470}
bf5a934a 2471
97b4d0e9
DW
2472static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2473static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2474
2475static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2476{
2477 struct dl *d;
2478
2479 for (d = super->missing; d; d = d->next)
2480 if (d->index == index)
2481 return &d->disk;
2482 return NULL;
2483}
2484
a5d85af7 2485static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2486{
2487 struct intel_super *super = st->sb;
4f5bc454 2488 struct imsm_disk *disk;
a5d85af7 2489 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2490 int max_enough = -1;
2491 int i;
2492 struct imsm_super *mpb;
4f5bc454 2493
bf5a934a 2494 if (super->current_vol >= 0) {
a5d85af7 2495 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2496 return;
2497 }
95eeceeb 2498 memset(info, 0, sizeof(*info));
d23fe947
DW
2499
2500 /* Set raid_disks to zero so that Assemble will always pull in valid
2501 * spares
2502 */
2503 info->array.raid_disks = 0;
cdddbdbc
DW
2504 info->array.level = LEVEL_CONTAINER;
2505 info->array.layout = 0;
2506 info->array.md_minor = -1;
c2c087e6 2507 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2508 info->array.utime = 0;
2509 info->array.chunk_size = 0;
2510
2511 info->disk.major = 0;
2512 info->disk.minor = 0;
cdddbdbc 2513 info->disk.raid_disk = -1;
c2c087e6 2514 info->reshape_active = 0;
f35f2525
N
2515 info->array.major_version = -1;
2516 info->array.minor_version = -2;
c2c087e6 2517 strcpy(info->text_version, "imsm");
a67dd8cc 2518 info->safe_mode_delay = 0;
c2c087e6
DW
2519 info->disk.number = -1;
2520 info->disk.state = 0;
c5afc314 2521 info->name[0] = 0;
921d9e16 2522 info->recovery_start = MaxSector;
3ad25638 2523 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
c2c087e6 2524
97b4d0e9 2525 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2526 mpb = super->anchor;
97b4d0e9 2527
ab3cb6b3
N
2528 for (i = 0; i < mpb->num_raid_devs; i++) {
2529 struct imsm_dev *dev = get_imsm_dev(super, i);
2530 int failed, enough, j, missing = 0;
2531 struct imsm_map *map;
2532 __u8 state;
97b4d0e9 2533
ab3cb6b3
N
2534 failed = imsm_count_failed(super, dev);
2535 state = imsm_check_degraded(super, dev, failed);
a510b1c7 2536 map = get_imsm_map(dev, 0);
ab3cb6b3
N
2537
2538 /* any newly missing disks?
2539 * (catches single-degraded vs double-degraded)
2540 */
2541 for (j = 0; j < map->num_members; j++) {
9645010f 2542 __u32 ord = get_imsm_ord_tbl_ent(dev, j, 0);
ab3cb6b3
N
2543 __u32 idx = ord_to_idx(ord);
2544
2545 if (!(ord & IMSM_ORD_REBUILD) &&
2546 get_imsm_missing(super, idx)) {
2547 missing = 1;
2548 break;
2549 }
97b4d0e9 2550 }
ab3cb6b3
N
2551
2552 if (state == IMSM_T_STATE_FAILED)
2553 enough = -1;
2554 else if (state == IMSM_T_STATE_DEGRADED &&
2555 (state != map->map_state || missing))
2556 enough = 0;
2557 else /* we're normal, or already degraded */
2558 enough = 1;
2559
2560 /* in the missing/failed disk case check to see
2561 * if at least one array is runnable
2562 */
2563 max_enough = max(max_enough, enough);
2564 }
2565 dprintf("%s: enough: %d\n", __func__, max_enough);
2566 info->container_enough = max_enough;
97b4d0e9 2567
4a04ec6c 2568 if (super->disks) {
14e8215b
DW
2569 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2570
b9f594fe 2571 disk = &super->disks->disk;
14e8215b
DW
2572 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2573 info->component_size = reserved;
25ed7e59 2574 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2575 /* we don't change info->disk.raid_disk here because
2576 * this state will be finalized in mdmon after we have
2577 * found the 'most fresh' version of the metadata
2578 */
25ed7e59
DW
2579 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2580 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2581 }
a575e2a7
DW
2582
2583 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2584 * ->compare_super may have updated the 'num_raid_devs' field for spares
2585 */
2586 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2587 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2588 else
2589 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2590
2591 /* I don't know how to compute 'map' on imsm, so use safe default */
2592 if (map) {
2593 int i;
2594 for (i = 0; i < map_disks; i++)
2595 map[i] = 1;
2596 }
2597
cdddbdbc
DW
2598}
2599
5c4cd5da
AC
2600/* allocates memory and fills disk in mdinfo structure
2601 * for each disk in array */
2602struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2603{
2604 struct mdinfo *mddev = NULL;
2605 struct intel_super *super = st->sb;
2606 struct imsm_disk *disk;
2607 int count = 0;
2608 struct dl *dl;
2609 if (!super || !super->disks)
2610 return NULL;
2611 dl = super->disks;
2612 mddev = malloc(sizeof(*mddev));
2613 if (!mddev) {
2614 fprintf(stderr, Name ": Failed to allocate memory.\n");
2615 return NULL;
2616 }
2617 memset(mddev, 0, sizeof(*mddev));
2618 while (dl) {
2619 struct mdinfo *tmp;
2620 disk = &dl->disk;
2621 tmp = malloc(sizeof(*tmp));
2622 if (!tmp) {
2623 fprintf(stderr, Name ": Failed to allocate memory.\n");
2624 if (mddev)
2625 sysfs_free(mddev);
2626 return NULL;
2627 }
2628 memset(tmp, 0, sizeof(*tmp));
2629 if (mddev->devs)
2630 tmp->next = mddev->devs;
2631 mddev->devs = tmp;
2632 tmp->disk.number = count++;
2633 tmp->disk.major = dl->major;
2634 tmp->disk.minor = dl->minor;
2635 tmp->disk.state = is_configured(disk) ?
2636 (1 << MD_DISK_ACTIVE) : 0;
2637 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2638 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2639 tmp->disk.raid_disk = -1;
2640 dl = dl->next;
2641 }
2642 return mddev;
2643}
2644
cdddbdbc
DW
2645static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2646 char *update, char *devname, int verbose,
2647 int uuid_set, char *homehost)
2648{
f352c545
DW
2649 /* For 'assemble' and 'force' we need to return non-zero if any
2650 * change was made. For others, the return value is ignored.
2651 * Update options are:
2652 * force-one : This device looks a bit old but needs to be included,
2653 * update age info appropriately.
2654 * assemble: clear any 'faulty' flag to allow this device to
2655 * be assembled.
2656 * force-array: Array is degraded but being forced, mark it clean
2657 * if that will be needed to assemble it.
2658 *
2659 * newdev: not used ????
2660 * grow: Array has gained a new device - this is currently for
2661 * linear only
2662 * resync: mark as dirty so a resync will happen.
2663 * name: update the name - preserving the homehost
6e46bf34 2664 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2665 *
2666 * Following are not relevant for this imsm:
2667 * sparc2.2 : update from old dodgey metadata
2668 * super-minor: change the preferred_minor number
2669 * summaries: update redundant counters.
f352c545
DW
2670 * homehost: update the recorded homehost
2671 * _reshape_progress: record new reshape_progress position.
2672 */
6e46bf34
DW
2673 int rv = 1;
2674 struct intel_super *super = st->sb;
2675 struct imsm_super *mpb;
f352c545 2676
6e46bf34
DW
2677 /* we can only update container info */
2678 if (!super || super->current_vol >= 0 || !super->anchor)
2679 return 1;
2680
2681 mpb = super->anchor;
2682
2683 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2684 rv = -1;
6e46bf34
DW
2685 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2686 mpb->orig_family_num = *((__u32 *) info->update_private);
2687 rv = 0;
2688 } else if (strcmp(update, "uuid") == 0) {
2689 __u32 *new_family = malloc(sizeof(*new_family));
2690
2691 /* update orig_family_number with the incoming random
2692 * data, report the new effective uuid, and store the
2693 * new orig_family_num for future updates.
2694 */
2695 if (new_family) {
2696 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2697 uuid_from_super_imsm(st, info->uuid);
2698 *new_family = mpb->orig_family_num;
2699 info->update_private = new_family;
2700 rv = 0;
2701 }
2702 } else if (strcmp(update, "assemble") == 0)
2703 rv = 0;
2704 else
1e2b2765 2705 rv = -1;
f352c545 2706
6e46bf34
DW
2707 /* successful update? recompute checksum */
2708 if (rv == 0)
2709 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2710
2711 return rv;
cdddbdbc
DW
2712}
2713
c2c087e6 2714static size_t disks_to_mpb_size(int disks)
cdddbdbc 2715{
c2c087e6 2716 size_t size;
cdddbdbc 2717
c2c087e6
DW
2718 size = sizeof(struct imsm_super);
2719 size += (disks - 1) * sizeof(struct imsm_disk);
2720 size += 2 * sizeof(struct imsm_dev);
2721 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2722 size += (4 - 2) * sizeof(struct imsm_map);
2723 /* 4 possible disk_ord_tbl's */
2724 size += 4 * (disks - 1) * sizeof(__u32);
2725
2726 return size;
2727}
2728
2729static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2730{
2731 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2732 return 0;
2733
2734 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2735}
2736
ba2de7ba
DW
2737static void free_devlist(struct intel_super *super)
2738{
2739 struct intel_dev *dv;
2740
2741 while (super->devlist) {
2742 dv = super->devlist->next;
2743 free(super->devlist->dev);
2744 free(super->devlist);
2745 super->devlist = dv;
2746 }
2747}
2748
2749static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2750{
2751 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2752}
2753
cdddbdbc
DW
2754static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2755{
2756 /*
2757 * return:
2758 * 0 same, or first was empty, and second was copied
2759 * 1 second had wrong number
2760 * 2 wrong uuid
2761 * 3 wrong other info
2762 */
2763 struct intel_super *first = st->sb;
2764 struct intel_super *sec = tst->sb;
2765
2766 if (!first) {
2767 st->sb = tst->sb;
2768 tst->sb = NULL;
2769 return 0;
2770 }
8603ea6f
LM
2771 /* in platform dependent environment test if the disks
2772 * use the same Intel hba
2773 */
2774 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2775 if (!first->hba || !sec->hba ||
2776 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2777 fprintf(stderr,
2778 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2779 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2780 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2781 return 3;
2782 }
2783 }
cdddbdbc 2784
d23fe947
DW
2785 /* if an anchor does not have num_raid_devs set then it is a free
2786 * floating spare
2787 */
2788 if (first->anchor->num_raid_devs > 0 &&
2789 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2790 /* Determine if these disks might ever have been
2791 * related. Further disambiguation can only take place
2792 * in load_super_imsm_all
2793 */
2794 __u32 first_family = first->anchor->orig_family_num;
2795 __u32 sec_family = sec->anchor->orig_family_num;
2796
f796af5d
DW
2797 if (memcmp(first->anchor->sig, sec->anchor->sig,
2798 MAX_SIGNATURE_LENGTH) != 0)
2799 return 3;
2800
a2b97981
DW
2801 if (first_family == 0)
2802 first_family = first->anchor->family_num;
2803 if (sec_family == 0)
2804 sec_family = sec->anchor->family_num;
2805
2806 if (first_family != sec_family)
d23fe947 2807 return 3;
f796af5d 2808
d23fe947 2809 }
cdddbdbc 2810
f796af5d 2811
3e372e5a
DW
2812 /* if 'first' is a spare promote it to a populated mpb with sec's
2813 * family number
2814 */
2815 if (first->anchor->num_raid_devs == 0 &&
2816 sec->anchor->num_raid_devs > 0) {
78d30f94 2817 int i;
ba2de7ba
DW
2818 struct intel_dev *dv;
2819 struct imsm_dev *dev;
78d30f94
DW
2820
2821 /* we need to copy raid device info from sec if an allocation
2822 * fails here we don't associate the spare
2823 */
2824 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2825 dv = malloc(sizeof(*dv));
2826 if (!dv)
2827 break;
2828 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2829 if (!dev) {
2830 free(dv);
2831 break;
78d30f94 2832 }
ba2de7ba
DW
2833 dv->dev = dev;
2834 dv->index = i;
2835 dv->next = first->devlist;
2836 first->devlist = dv;
78d30f94 2837 }
709743c5 2838 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2839 /* allocation failure */
2840 free_devlist(first);
2841 fprintf(stderr, "imsm: failed to associate spare\n");
2842 return 3;
78d30f94 2843 }
3e372e5a 2844 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2845 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2846 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2847 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2848 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2849 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2850 }
2851
cdddbdbc
DW
2852 return 0;
2853}
2854
0030e8d6
DW
2855static void fd2devname(int fd, char *name)
2856{
2857 struct stat st;
2858 char path[256];
33a6535d 2859 char dname[PATH_MAX];
0030e8d6
DW
2860 char *nm;
2861 int rv;
2862
2863 name[0] = '\0';
2864 if (fstat(fd, &st) != 0)
2865 return;
2866 sprintf(path, "/sys/dev/block/%d:%d",
2867 major(st.st_rdev), minor(st.st_rdev));
2868
9cf014ec 2869 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
2870 if (rv <= 0)
2871 return;
2872
2873 dname[rv] = '\0';
2874 nm = strrchr(dname, '/');
7897de29
JS
2875 if (nm) {
2876 nm++;
2877 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2878 }
0030e8d6
DW
2879}
2880
cdddbdbc
DW
2881extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2882
2883static int imsm_read_serial(int fd, char *devname,
2884 __u8 serial[MAX_RAID_SERIAL_LEN])
2885{
2886 unsigned char scsi_serial[255];
cdddbdbc
DW
2887 int rv;
2888 int rsp_len;
1f24f035 2889 int len;
316e2bf4
DW
2890 char *dest;
2891 char *src;
2892 char *rsp_buf;
2893 int i;
cdddbdbc
DW
2894
2895 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2896
f9ba0ff1
DW
2897 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2898
40ebbb9c 2899 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2900 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2901 fd2devname(fd, (char *) serial);
0030e8d6
DW
2902 return 0;
2903 }
2904
cdddbdbc
DW
2905 if (rv != 0) {
2906 if (devname)
2907 fprintf(stderr,
2908 Name ": Failed to retrieve serial for %s\n",
2909 devname);
2910 return rv;
2911 }
2912
2913 rsp_len = scsi_serial[3];
03cd4cc8
DW
2914 if (!rsp_len) {
2915 if (devname)
2916 fprintf(stderr,
2917 Name ": Failed to retrieve serial for %s\n",
2918 devname);
2919 return 2;
2920 }
1f24f035 2921 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2922
316e2bf4
DW
2923 /* trim all whitespace and non-printable characters and convert
2924 * ':' to ';'
2925 */
2926 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2927 src = &rsp_buf[i];
2928 if (*src > 0x20) {
2929 /* ':' is reserved for use in placeholder serial
2930 * numbers for missing disks
2931 */
2932 if (*src == ':')
2933 *dest++ = ';';
2934 else
2935 *dest++ = *src;
2936 }
2937 }
2938 len = dest - rsp_buf;
2939 dest = rsp_buf;
2940
2941 /* truncate leading characters */
2942 if (len > MAX_RAID_SERIAL_LEN) {
2943 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2944 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2945 }
5c3db629 2946
5c3db629 2947 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2948 memcpy(serial, dest, len);
cdddbdbc
DW
2949
2950 return 0;
2951}
2952
1f24f035
DW
2953static int serialcmp(__u8 *s1, __u8 *s2)
2954{
2955 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2956}
2957
2958static void serialcpy(__u8 *dest, __u8 *src)
2959{
2960 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2961}
2962
54c2c1ea
DW
2963static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2964{
2965 struct dl *dl;
2966
2967 for (dl = super->disks; dl; dl = dl->next)
2968 if (serialcmp(dl->serial, serial) == 0)
2969 break;
2970
2971 return dl;
2972}
2973
a2b97981
DW
2974static struct imsm_disk *
2975__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2976{
2977 int i;
2978
2979 for (i = 0; i < mpb->num_disks; i++) {
2980 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2981
2982 if (serialcmp(disk->serial, serial) == 0) {
2983 if (idx)
2984 *idx = i;
2985 return disk;
2986 }
2987 }
2988
2989 return NULL;
2990}
2991
cdddbdbc
DW
2992static int
2993load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2994{
a2b97981 2995 struct imsm_disk *disk;
cdddbdbc
DW
2996 struct dl *dl;
2997 struct stat stb;
cdddbdbc 2998 int rv;
a2b97981 2999 char name[40];
d23fe947
DW
3000 __u8 serial[MAX_RAID_SERIAL_LEN];
3001
3002 rv = imsm_read_serial(fd, devname, serial);
3003
3004 if (rv != 0)
3005 return 2;
3006
a2b97981 3007 dl = calloc(1, sizeof(*dl));
b9f594fe 3008 if (!dl) {
cdddbdbc
DW
3009 if (devname)
3010 fprintf(stderr,
3011 Name ": failed to allocate disk buffer for %s\n",
3012 devname);
3013 return 2;
3014 }
cdddbdbc 3015
a2b97981
DW
3016 fstat(fd, &stb);
3017 dl->major = major(stb.st_rdev);
3018 dl->minor = minor(stb.st_rdev);
3019 dl->next = super->disks;
3020 dl->fd = keep_fd ? fd : -1;
3021 assert(super->disks == NULL);
3022 super->disks = dl;
3023 serialcpy(dl->serial, serial);
3024 dl->index = -2;
3025 dl->e = NULL;
3026 fd2devname(fd, name);
3027 if (devname)
3028 dl->devname = strdup(devname);
3029 else
3030 dl->devname = strdup(name);
cdddbdbc 3031
d23fe947 3032 /* look up this disk's index in the current anchor */
a2b97981
DW
3033 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3034 if (disk) {
3035 dl->disk = *disk;
3036 /* only set index on disks that are a member of a
3037 * populated contianer, i.e. one with raid_devs
3038 */
3039 if (is_failed(&dl->disk))
3f6efecc 3040 dl->index = -2;
a2b97981
DW
3041 else if (is_spare(&dl->disk))
3042 dl->index = -1;
3f6efecc
DW
3043 }
3044
949c47a0
DW
3045 return 0;
3046}
3047
0e600426 3048#ifndef MDASSEMBLE
0c046afd
DW
3049/* When migrating map0 contains the 'destination' state while map1
3050 * contains the current state. When not migrating map0 contains the
3051 * current state. This routine assumes that map[0].map_state is set to
3052 * the current array state before being called.
3053 *
3054 * Migration is indicated by one of the following states
3055 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3056 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3057 * map1state=unitialized)
1484e727 3058 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3059 * map1state=normal)
e3bba0e0 3060 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3061 * map1state=degraded)
8e59f3d8
AK
3062 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3063 * map1state=normal)
0c046afd 3064 */
8e59f3d8
AK
3065static void migrate(struct imsm_dev *dev, struct intel_super *super,
3066 __u8 to_state, int migr_type)
3393c6af 3067{
0c046afd 3068 struct imsm_map *dest;
3393c6af
DW
3069 struct imsm_map *src = get_imsm_map(dev, 0);
3070
0c046afd 3071 dev->vol.migr_state = 1;
1484e727 3072 set_migr_type(dev, migr_type);
f8f603f1 3073 dev->vol.curr_migr_unit = 0;
0c046afd
DW
3074 dest = get_imsm_map(dev, 1);
3075
0556e1a2 3076 /* duplicate and then set the target end state in map[0] */
3393c6af 3077 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3078 if ((migr_type == MIGR_REBUILD) ||
3079 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3080 __u32 ord;
3081 int i;
3082
3083 for (i = 0; i < src->num_members; i++) {
3084 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3085 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3086 }
3087 }
3088
8e59f3d8
AK
3089 if (migr_type == MIGR_GEN_MIGR)
3090 /* Clear migration record */
3091 memset(super->migr_rec, 0, sizeof(struct migr_record));
3092
0c046afd 3093 src->map_state = to_state;
949c47a0 3094}
f8f603f1
DW
3095
3096static void end_migration(struct imsm_dev *dev, __u8 map_state)
3097{
3098 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 3099 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 3100 int i, j;
0556e1a2
DW
3101
3102 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3103 * completed in the last migration.
3104 *
28bce06f 3105 * FIXME add support for raid-level-migration
0556e1a2
DW
3106 */
3107 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
3108 for (j = 0; j < map->num_members; j++)
3109 /* during online capacity expansion
3110 * disks position can be changed if takeover is used
3111 */
3112 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3113 ord_to_idx(prev->disk_ord_tbl[i])) {
3114 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3115 break;
3116 }
f8f603f1
DW
3117
3118 dev->vol.migr_state = 0;
ea672ee1 3119 set_migr_type(dev, 0);
f8f603f1
DW
3120 dev->vol.curr_migr_unit = 0;
3121 map->map_state = map_state;
3122}
0e600426 3123#endif
949c47a0
DW
3124
3125static int parse_raid_devices(struct intel_super *super)
3126{
3127 int i;
3128 struct imsm_dev *dev_new;
4d7b1503 3129 size_t len, len_migr;
401d313b 3130 size_t max_len = 0;
4d7b1503
DW
3131 size_t space_needed = 0;
3132 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3133
3134 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3135 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3136 struct intel_dev *dv;
949c47a0 3137
4d7b1503
DW
3138 len = sizeof_imsm_dev(dev_iter, 0);
3139 len_migr = sizeof_imsm_dev(dev_iter, 1);
3140 if (len_migr > len)
3141 space_needed += len_migr - len;
3142
ba2de7ba
DW
3143 dv = malloc(sizeof(*dv));
3144 if (!dv)
3145 return 1;
401d313b
AK
3146 if (max_len < len_migr)
3147 max_len = len_migr;
3148 if (max_len > len_migr)
3149 space_needed += max_len - len_migr;
3150 dev_new = malloc(max_len);
ba2de7ba
DW
3151 if (!dev_new) {
3152 free(dv);
949c47a0 3153 return 1;
ba2de7ba 3154 }
949c47a0 3155 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3156 dv->dev = dev_new;
3157 dv->index = i;
3158 dv->next = super->devlist;
3159 super->devlist = dv;
949c47a0 3160 }
cdddbdbc 3161
4d7b1503
DW
3162 /* ensure that super->buf is large enough when all raid devices
3163 * are migrating
3164 */
3165 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3166 void *buf;
3167
3168 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3169 if (posix_memalign(&buf, 512, len) != 0)
3170 return 1;
3171
1f45a8ad
DW
3172 memcpy(buf, super->buf, super->len);
3173 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3174 free(super->buf);
3175 super->buf = buf;
3176 super->len = len;
3177 }
3178
cdddbdbc
DW
3179 return 0;
3180}
3181
604b746f
JD
3182/* retrieve a pointer to the bbm log which starts after all raid devices */
3183struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3184{
3185 void *ptr = NULL;
3186
3187 if (__le32_to_cpu(mpb->bbm_log_size)) {
3188 ptr = mpb;
3189 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3190 }
3191
3192 return ptr;
3193}
3194
e2f41b2c
AK
3195/*******************************************************************************
3196 * Function: check_mpb_migr_compatibility
3197 * Description: Function checks for unsupported migration features:
3198 * - migration optimization area (pba_of_lba0)
3199 * - descending reshape (ascending_migr)
3200 * Parameters:
3201 * super : imsm metadata information
3202 * Returns:
3203 * 0 : migration is compatible
3204 * -1 : migration is not compatible
3205 ******************************************************************************/
3206int check_mpb_migr_compatibility(struct intel_super *super)
3207{
3208 struct imsm_map *map0, *map1;
3209 struct migr_record *migr_rec = super->migr_rec;
3210 int i;
3211
3212 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3213 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3214
3215 if (dev_iter &&
3216 dev_iter->vol.migr_state == 1 &&
3217 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3218 /* This device is migrating */
3219 map0 = get_imsm_map(dev_iter, 0);
3220 map1 = get_imsm_map(dev_iter, 1);
3221 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3222 /* migration optimization area was used */
3223 return -1;
3224 if (migr_rec->ascending_migr == 0
3225 && migr_rec->dest_depth_per_unit > 0)
3226 /* descending reshape not supported yet */
3227 return -1;
3228 }
3229 }
3230 return 0;
3231}
3232
d23fe947 3233static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3234
cdddbdbc 3235/* load_imsm_mpb - read matrix metadata
f2f5c343 3236 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3237 */
3238static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3239{
3240 unsigned long long dsize;
cdddbdbc
DW
3241 unsigned long long sectors;
3242 struct stat;
6416d527 3243 struct imsm_super *anchor;
cdddbdbc
DW
3244 __u32 check_sum;
3245
cdddbdbc 3246 get_dev_size(fd, NULL, &dsize);
64436f06
N
3247 if (dsize < 1024) {
3248 if (devname)
3249 fprintf(stderr,
3250 Name ": %s: device to small for imsm\n",
3251 devname);
3252 return 1;
3253 }
cdddbdbc
DW
3254
3255 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3256 if (devname)
2e062e82
AK
3257 fprintf(stderr, Name
3258 ": Cannot seek to anchor block on %s: %s\n",
cdddbdbc
DW
3259 devname, strerror(errno));
3260 return 1;
3261 }
3262
949c47a0 3263 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3264 if (devname)
3265 fprintf(stderr,
3266 Name ": Failed to allocate imsm anchor buffer"
3267 " on %s\n", devname);
3268 return 1;
3269 }
949c47a0 3270 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3271 if (devname)
3272 fprintf(stderr,
3273 Name ": Cannot read anchor block on %s: %s\n",
3274 devname, strerror(errno));
6416d527 3275 free(anchor);
cdddbdbc
DW
3276 return 1;
3277 }
3278
6416d527 3279 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3280 if (devname)
3281 fprintf(stderr,
3282 Name ": no IMSM anchor on %s\n", devname);
6416d527 3283 free(anchor);
cdddbdbc
DW
3284 return 2;
3285 }
3286
d23fe947 3287 __free_imsm(super, 0);
f2f5c343
LM
3288 /* reload capability and hba */
3289
3290 /* capability and hba must be updated with new super allocation */
d424212e 3291 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3292 super->len = ROUND_UP(anchor->mpb_size, 512);
3293 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3294 if (devname)
3295 fprintf(stderr,
3296 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3297 super->len);
6416d527 3298 free(anchor);
cdddbdbc
DW
3299 return 2;
3300 }
949c47a0 3301 memcpy(super->buf, anchor, 512);
cdddbdbc 3302
6416d527
NB
3303 sectors = mpb_sectors(anchor) - 1;
3304 free(anchor);
8e59f3d8
AK
3305
3306 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3307 fprintf(stderr, Name
3308 ": %s could not allocate migr_rec buffer\n", __func__);
3309 free(super->buf);
3310 return 2;
3311 }
3312
949c47a0 3313 if (!sectors) {
ecf45690
DW
3314 check_sum = __gen_imsm_checksum(super->anchor);
3315 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3316 if (devname)
3317 fprintf(stderr,
3318 Name ": IMSM checksum %x != %x on %s\n",
3319 check_sum,
3320 __le32_to_cpu(super->anchor->check_sum),
3321 devname);
3322 return 2;
3323 }
3324
a2b97981 3325 return 0;
949c47a0 3326 }
cdddbdbc
DW
3327
3328 /* read the extended mpb */
3329 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3330 if (devname)
3331 fprintf(stderr,
3332 Name ": Cannot seek to extended mpb on %s: %s\n",
3333 devname, strerror(errno));
3334 return 1;
3335 }
3336
f21e18ca 3337 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3338 if (devname)
3339 fprintf(stderr,
3340 Name ": Cannot read extended mpb on %s: %s\n",
3341 devname, strerror(errno));
3342 return 2;
3343 }
3344
949c47a0
DW
3345 check_sum = __gen_imsm_checksum(super->anchor);
3346 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3347 if (devname)
3348 fprintf(stderr,
3349 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3350 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3351 devname);
db575f3b 3352 return 3;
cdddbdbc
DW
3353 }
3354
604b746f
JD
3355 /* FIXME the BBM log is disk specific so we cannot use this global
3356 * buffer for all disks. Ok for now since we only look at the global
3357 * bbm_log_size parameter to gate assembly
3358 */
3359 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3360
a2b97981
DW
3361 return 0;
3362}
3363
8e59f3d8
AK
3364static int read_imsm_migr_rec(int fd, struct intel_super *super);
3365
a2b97981
DW
3366static int
3367load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3368{
3369 int err;
3370
3371 err = load_imsm_mpb(fd, super, devname);
3372 if (err)
3373 return err;
3374 err = load_imsm_disk(fd, super, devname, keep_fd);
3375 if (err)
3376 return err;
3377 err = parse_raid_devices(super);
4d7b1503 3378
a2b97981 3379 return err;
cdddbdbc
DW
3380}
3381
ae6aad82
DW
3382static void __free_imsm_disk(struct dl *d)
3383{
3384 if (d->fd >= 0)
3385 close(d->fd);
3386 if (d->devname)
3387 free(d->devname);
0dcecb2e
DW
3388 if (d->e)
3389 free(d->e);
ae6aad82
DW
3390 free(d);
3391
3392}
1a64be56 3393
cdddbdbc
DW
3394static void free_imsm_disks(struct intel_super *super)
3395{
47ee5a45 3396 struct dl *d;
cdddbdbc 3397
47ee5a45
DW
3398 while (super->disks) {
3399 d = super->disks;
cdddbdbc 3400 super->disks = d->next;
ae6aad82 3401 __free_imsm_disk(d);
cdddbdbc 3402 }
cb82edca
AK
3403 while (super->disk_mgmt_list) {
3404 d = super->disk_mgmt_list;
3405 super->disk_mgmt_list = d->next;
3406 __free_imsm_disk(d);
3407 }
47ee5a45
DW
3408 while (super->missing) {
3409 d = super->missing;
3410 super->missing = d->next;
3411 __free_imsm_disk(d);
3412 }
3413
cdddbdbc
DW
3414}
3415
9ca2c81c 3416/* free all the pieces hanging off of a super pointer */
d23fe947 3417static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3418{
88654014
LM
3419 struct intel_hba *elem, *next;
3420
9ca2c81c 3421 if (super->buf) {
949c47a0 3422 free(super->buf);
9ca2c81c
DW
3423 super->buf = NULL;
3424 }
f2f5c343
LM
3425 /* unlink capability description */
3426 super->orom = NULL;
8e59f3d8
AK
3427 if (super->migr_rec_buf) {
3428 free(super->migr_rec_buf);
3429 super->migr_rec_buf = NULL;
3430 }
d23fe947
DW
3431 if (free_disks)
3432 free_imsm_disks(super);
ba2de7ba 3433 free_devlist(super);
88654014
LM
3434 elem = super->hba;
3435 while (elem) {
3436 if (elem->path)
3437 free((void *)elem->path);
3438 next = elem->next;
3439 free(elem);
3440 elem = next;
88c32bb1 3441 }
88654014 3442 super->hba = NULL;
cdddbdbc
DW
3443}
3444
9ca2c81c
DW
3445static void free_imsm(struct intel_super *super)
3446{
d23fe947 3447 __free_imsm(super, 1);
9ca2c81c
DW
3448 free(super);
3449}
cdddbdbc
DW
3450
3451static void free_super_imsm(struct supertype *st)
3452{
3453 struct intel_super *super = st->sb;
3454
3455 if (!super)
3456 return;
3457
3458 free_imsm(super);
3459 st->sb = NULL;
3460}
3461
49133e57 3462static struct intel_super *alloc_super(void)
c2c087e6
DW
3463{
3464 struct intel_super *super = malloc(sizeof(*super));
3465
3466 if (super) {
3467 memset(super, 0, sizeof(*super));
bf5a934a 3468 super->current_vol = -1;
0dcecb2e 3469 super->create_offset = ~((__u32 ) 0);
c2c087e6 3470 }
c2c087e6
DW
3471 return super;
3472}
3473
f0f5a016
LM
3474/*
3475 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3476 */
d424212e 3477static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3478{
3479 struct sys_dev *hba_name;
3480 int rv = 0;
3481
3482 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3483 super->orom = NULL;
f0f5a016
LM
3484 super->hba = NULL;
3485 return 0;
3486 }
3487 hba_name = find_disk_attached_hba(fd, NULL);
3488 if (!hba_name) {
d424212e 3489 if (devname)
f0f5a016
LM
3490 fprintf(stderr,
3491 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3492 devname);
f0f5a016
LM
3493 return 1;
3494 }
3495 rv = attach_hba_to_super(super, hba_name);
3496 if (rv == 2) {
d424212e
N
3497 if (devname) {
3498 struct intel_hba *hba = super->hba;
f0f5a016 3499
f0f5a016
LM
3500 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3501 "controller (%s),\n"
3502 " but the container is assigned to Intel(R) "
3503 "%s RAID controller (",
d424212e 3504 devname,
f0f5a016
LM
3505 hba_name->path,
3506 hba_name->pci_id ? : "Err!",
3507 get_sys_dev_type(hba_name->type));
3508
f0f5a016
LM
3509 while (hba) {
3510 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3511 if (hba->next)
3512 fprintf(stderr, ", ");
3513 hba = hba->next;
3514 }
3515
3516 fprintf(stderr, ").\n"
3517 " Mixing devices attached to different controllers "
3518 "is not allowed.\n");
3519 }
3520 free_sys_dev(&hba_name);
3521 return 2;
3522 }
f2f5c343 3523 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3524 free_sys_dev(&hba_name);
f2f5c343
LM
3525 if (!super->orom)
3526 return 3;
f0f5a016
LM
3527 return 0;
3528}
3529
47ee5a45
DW
3530/* find_missing - helper routine for load_super_imsm_all that identifies
3531 * disks that have disappeared from the system. This routine relies on
3532 * the mpb being uptodate, which it is at load time.
3533 */
3534static int find_missing(struct intel_super *super)
3535{
3536 int i;
3537 struct imsm_super *mpb = super->anchor;
3538 struct dl *dl;
3539 struct imsm_disk *disk;
47ee5a45
DW
3540
3541 for (i = 0; i < mpb->num_disks; i++) {
3542 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3543 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3544 if (dl)
3545 continue;
47ee5a45
DW
3546
3547 dl = malloc(sizeof(*dl));
3548 if (!dl)
3549 return 1;
3550 dl->major = 0;
3551 dl->minor = 0;
3552 dl->fd = -1;
3553 dl->devname = strdup("missing");
3554 dl->index = i;
3555 serialcpy(dl->serial, disk->serial);
3556 dl->disk = *disk;
689c9bf3 3557 dl->e = NULL;
47ee5a45
DW
3558 dl->next = super->missing;
3559 super->missing = dl;
3560 }
3561
3562 return 0;
3563}
3564
3960e579 3565#ifndef MDASSEMBLE
a2b97981
DW
3566static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3567{
3568 struct intel_disk *idisk = disk_list;
3569
3570 while (idisk) {
3571 if (serialcmp(idisk->disk.serial, serial) == 0)
3572 break;
3573 idisk = idisk->next;
3574 }
3575
3576 return idisk;
3577}
3578
3579static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3580 struct intel_super *super,
3581 struct intel_disk **disk_list)
3582{
3583 struct imsm_disk *d = &super->disks->disk;
3584 struct imsm_super *mpb = super->anchor;
3585 int i, j;
3586
3587 for (i = 0; i < tbl_size; i++) {
3588 struct imsm_super *tbl_mpb = table[i]->anchor;
3589 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3590
3591 if (tbl_mpb->family_num == mpb->family_num) {
3592 if (tbl_mpb->check_sum == mpb->check_sum) {
3593 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3594 __func__, super->disks->major,
3595 super->disks->minor,
3596 table[i]->disks->major,
3597 table[i]->disks->minor);
3598 break;
3599 }
3600
3601 if (((is_configured(d) && !is_configured(tbl_d)) ||
3602 is_configured(d) == is_configured(tbl_d)) &&
3603 tbl_mpb->generation_num < mpb->generation_num) {
3604 /* current version of the mpb is a
3605 * better candidate than the one in
3606 * super_table, but copy over "cross
3607 * generational" status
3608 */
3609 struct intel_disk *idisk;
3610
3611 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3612 __func__, super->disks->major,
3613 super->disks->minor,
3614 table[i]->disks->major,
3615 table[i]->disks->minor);
3616
3617 idisk = disk_list_get(tbl_d->serial, *disk_list);
3618 if (idisk && is_failed(&idisk->disk))
3619 tbl_d->status |= FAILED_DISK;
3620 break;
3621 } else {
3622 struct intel_disk *idisk;
3623 struct imsm_disk *disk;
3624
3625 /* tbl_mpb is more up to date, but copy
3626 * over cross generational status before
3627 * returning
3628 */
3629 disk = __serial_to_disk(d->serial, mpb, NULL);
3630 if (disk && is_failed(disk))
3631 d->status |= FAILED_DISK;
3632
3633 idisk = disk_list_get(d->serial, *disk_list);
3634 if (idisk) {
3635 idisk->owner = i;
3636 if (disk && is_configured(disk))
3637 idisk->disk.status |= CONFIGURED_DISK;
3638 }
3639
3640 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3641 __func__, super->disks->major,
3642 super->disks->minor,
3643 table[i]->disks->major,
3644 table[i]->disks->minor);
3645
3646 return tbl_size;
3647 }
3648 }
3649 }
3650
3651 if (i >= tbl_size)
3652 table[tbl_size++] = super;
3653 else
3654 table[i] = super;
3655
3656 /* update/extend the merged list of imsm_disk records */
3657 for (j = 0; j < mpb->num_disks; j++) {
3658 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3659 struct intel_disk *idisk;
3660
3661 idisk = disk_list_get(disk->serial, *disk_list);
3662 if (idisk) {
3663 idisk->disk.status |= disk->status;
3664 if (is_configured(&idisk->disk) ||
3665 is_failed(&idisk->disk))
3666 idisk->disk.status &= ~(SPARE_DISK);
3667 } else {
3668 idisk = calloc(1, sizeof(*idisk));
3669 if (!idisk)
3670 return -1;
3671 idisk->owner = IMSM_UNKNOWN_OWNER;
3672 idisk->disk = *disk;
3673 idisk->next = *disk_list;
3674 *disk_list = idisk;
3675 }
3676
3677 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3678 idisk->owner = i;
3679 }
3680
3681 return tbl_size;
3682}
3683
3684static struct intel_super *
3685validate_members(struct intel_super *super, struct intel_disk *disk_list,
3686 const int owner)
3687{
3688 struct imsm_super *mpb = super->anchor;
3689 int ok_count = 0;
3690 int i;
3691
3692 for (i = 0; i < mpb->num_disks; i++) {
3693 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3694 struct intel_disk *idisk;
3695
3696 idisk = disk_list_get(disk->serial, disk_list);
3697 if (idisk) {
3698 if (idisk->owner == owner ||
3699 idisk->owner == IMSM_UNKNOWN_OWNER)
3700 ok_count++;
3701 else
3702 dprintf("%s: '%.16s' owner %d != %d\n",
3703 __func__, disk->serial, idisk->owner,
3704 owner);
3705 } else {
3706 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3707 __func__, __le32_to_cpu(mpb->family_num), i,
3708 disk->serial);
3709 break;
3710 }
3711 }
3712
3713 if (ok_count == mpb->num_disks)
3714 return super;
3715 return NULL;
3716}
3717
3718static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3719{
3720 struct intel_super *s;
3721
3722 for (s = super_list; s; s = s->next) {
3723 if (family_num != s->anchor->family_num)
3724 continue;
3725 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3726 __le32_to_cpu(family_num), s->disks->devname);
3727 }
3728}
3729
3730static struct intel_super *
3731imsm_thunderdome(struct intel_super **super_list, int len)
3732{
3733 struct intel_super *super_table[len];
3734 struct intel_disk *disk_list = NULL;
3735 struct intel_super *champion, *spare;
3736 struct intel_super *s, **del;
3737 int tbl_size = 0;
3738 int conflict;
3739 int i;
3740
3741 memset(super_table, 0, sizeof(super_table));
3742 for (s = *super_list; s; s = s->next)
3743 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3744
3745 for (i = 0; i < tbl_size; i++) {
3746 struct imsm_disk *d;
3747 struct intel_disk *idisk;
3748 struct imsm_super *mpb = super_table[i]->anchor;
3749
3750 s = super_table[i];
3751 d = &s->disks->disk;
3752
3753 /* 'd' must appear in merged disk list for its
3754 * configuration to be valid
3755 */
3756 idisk = disk_list_get(d->serial, disk_list);
3757 if (idisk && idisk->owner == i)
3758 s = validate_members(s, disk_list, i);
3759 else
3760 s = NULL;
3761
3762 if (!s)
3763 dprintf("%s: marking family: %#x from %d:%d offline\n",
3764 __func__, mpb->family_num,
3765 super_table[i]->disks->major,
3766 super_table[i]->disks->minor);
3767 super_table[i] = s;
3768 }
3769
3770 /* This is where the mdadm implementation differs from the Windows
3771 * driver which has no strict concept of a container. We can only
3772 * assemble one family from a container, so when returning a prodigal
3773 * array member to this system the code will not be able to disambiguate
3774 * the container contents that should be assembled ("foreign" versus
3775 * "local"). It requires user intervention to set the orig_family_num
3776 * to a new value to establish a new container. The Windows driver in
3777 * this situation fixes up the volume name in place and manages the
3778 * foreign array as an independent entity.
3779 */
3780 s = NULL;
3781 spare = NULL;
3782 conflict = 0;
3783 for (i = 0; i < tbl_size; i++) {
3784 struct intel_super *tbl_ent = super_table[i];
3785 int is_spare = 0;
3786
3787 if (!tbl_ent)
3788 continue;
3789
3790 if (tbl_ent->anchor->num_raid_devs == 0) {
3791 spare = tbl_ent;
3792 is_spare = 1;
3793 }
3794
3795 if (s && !is_spare) {
3796 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3797 conflict++;
3798 } else if (!s && !is_spare)
3799 s = tbl_ent;
3800 }
3801
3802 if (!s)
3803 s = spare;
3804 if (!s) {
3805 champion = NULL;
3806 goto out;
3807 }
3808 champion = s;
3809
3810 if (conflict)
3811 fprintf(stderr, "Chose family %#x on '%s', "
3812 "assemble conflicts to new container with '--update=uuid'\n",
3813 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3814
3815 /* collect all dl's onto 'champion', and update them to
3816 * champion's version of the status
3817 */
3818 for (s = *super_list; s; s = s->next) {
3819 struct imsm_super *mpb = champion->anchor;
3820 struct dl *dl = s->disks;
3821
3822 if (s == champion)
3823 continue;
3824
3825 for (i = 0; i < mpb->num_disks; i++) {
3826 struct imsm_disk *disk;
3827
3828 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3829 if (disk) {
3830 dl->disk = *disk;
3831 /* only set index on disks that are a member of
3832 * a populated contianer, i.e. one with
3833 * raid_devs
3834 */
3835 if (is_failed(&dl->disk))
3836 dl->index = -2;
3837 else if (is_spare(&dl->disk))
3838 dl->index = -1;
3839 break;
3840 }
3841 }
3842
3843 if (i >= mpb->num_disks) {
3844 struct intel_disk *idisk;
3845
3846 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3847 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3848 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3849 dl->index = -1;
3850 else {
3851 dl->index = -2;
3852 continue;
3853 }
3854 }
3855
3856 dl->next = champion->disks;
3857 champion->disks = dl;
3858 s->disks = NULL;
3859 }
3860
3861 /* delete 'champion' from super_list */
3862 for (del = super_list; *del; ) {
3863 if (*del == champion) {
3864 *del = (*del)->next;
3865 break;
3866 } else
3867 del = &(*del)->next;
3868 }
3869 champion->next = NULL;
3870
3871 out:
3872 while (disk_list) {
3873 struct intel_disk *idisk = disk_list;
3874
3875 disk_list = disk_list->next;
3876 free(idisk);
3877 }
3878
3879 return champion;
3880}
3881
cdddbdbc 3882static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3883 char *devname)
cdddbdbc
DW
3884{
3885 struct mdinfo *sra;
a2b97981
DW
3886 struct intel_super *super_list = NULL;
3887 struct intel_super *super = NULL;
db575f3b 3888 int devnum = fd2devnum(fd);
a2b97981 3889 struct mdinfo *sd;
db575f3b 3890 int retry;
a2b97981
DW
3891 int err = 0;
3892 int i;
dab4a513
DW
3893
3894 /* check if 'fd' an opened container */
b526e52d 3895 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3896 if (!sra)
3897 return 1;
3898
3899 if (sra->array.major_version != -1 ||
3900 sra->array.minor_version != -2 ||
1602d52c
AW
3901 strcmp(sra->text_version, "imsm") != 0) {
3902 err = 1;
3903 goto error;
3904 }
a2b97981
DW
3905 /* load all mpbs */
3906 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3907 struct intel_super *s = alloc_super();
7a6ecd55 3908 char nm[32];
a2b97981 3909 int dfd;
f2f5c343 3910 int rv;
a2b97981
DW
3911
3912 err = 1;
3913 if (!s)
3914 goto error;
3915 s->next = super_list;
3916 super_list = s;
cdddbdbc 3917
a2b97981 3918 err = 2;
cdddbdbc 3919 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3920 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3921 if (dfd < 0)
3922 goto error;
3923
d424212e 3924 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3925 /* no orom/efi or non-intel hba of the disk */
3926 if (rv != 0)
3927 goto error;
3928
e1902a7b 3929 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3930
3931 /* retry the load if we might have raced against mdmon */
a2b97981 3932 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3933 for (retry = 0; retry < 3; retry++) {
3934 usleep(3000);
e1902a7b 3935 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3936 if (err != 3)
db575f3b
DW
3937 break;
3938 }
a2b97981
DW
3939 if (err)
3940 goto error;
cdddbdbc
DW
3941 }
3942
a2b97981
DW
3943 /* all mpbs enter, maybe one leaves */
3944 super = imsm_thunderdome(&super_list, i);
3945 if (!super) {
3946 err = 1;
3947 goto error;
cdddbdbc
DW
3948 }
3949
47ee5a45
DW
3950 if (find_missing(super) != 0) {
3951 free_imsm(super);
a2b97981
DW
3952 err = 2;
3953 goto error;
47ee5a45 3954 }
8e59f3d8
AK
3955
3956 /* load migration record */
3957 err = load_imsm_migr_rec(super, NULL);
3958 if (err) {
3959 err = 4;
3960 goto error;
3961 }
e2f41b2c
AK
3962
3963 /* Check migration compatibility */
3964 if (check_mpb_migr_compatibility(super) != 0) {
3965 fprintf(stderr, Name ": Unsupported migration detected");
3966 if (devname)
3967 fprintf(stderr, " on %s\n", devname);
3968 else
3969 fprintf(stderr, " (IMSM).\n");
3970
3971 err = 5;
3972 goto error;
3973 }
3974
a2b97981
DW
3975 err = 0;
3976
3977 error:
3978 while (super_list) {
3979 struct intel_super *s = super_list;
3980
3981 super_list = super_list->next;
3982 free_imsm(s);
3983 }
1602d52c 3984 sysfs_free(sra);
a2b97981
DW
3985
3986 if (err)
3987 return err;
f7e7067b 3988
cdddbdbc 3989 *sbp = super;
db575f3b 3990 st->container_dev = devnum;
a2b97981 3991 if (err == 0 && st->ss == NULL) {
bf5a934a 3992 st->ss = &super_imsm;
cdddbdbc
DW
3993 st->minor_version = 0;
3994 st->max_devs = IMSM_MAX_DEVICES;
3995 }
cdddbdbc
DW
3996 return 0;
3997}
2b959fbf
N
3998
3999static int load_container_imsm(struct supertype *st, int fd, char *devname)
4000{
4001 return load_super_imsm_all(st, fd, &st->sb, devname);
4002}
cdddbdbc
DW
4003#endif
4004
4005static int load_super_imsm(struct supertype *st, int fd, char *devname)
4006{
4007 struct intel_super *super;
4008 int rv;
4009
691c6ee1
N
4010 if (test_partition(fd))
4011 /* IMSM not allowed on partitions */
4012 return 1;
4013
37424f13
DW
4014 free_super_imsm(st);
4015
49133e57 4016 super = alloc_super();
cdddbdbc
DW
4017 if (!super) {
4018 fprintf(stderr,
4019 Name ": malloc of %zu failed.\n",
4020 sizeof(*super));
4021 return 1;
4022 }
ea2bc72b
LM
4023 /* Load hba and capabilities if they exist.
4024 * But do not preclude loading metadata in case capabilities or hba are
4025 * non-compliant and ignore_hw_compat is set.
4026 */
d424212e 4027 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4028 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4029 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
4030 if (devname)
4031 fprintf(stderr,
4032 Name ": No OROM/EFI properties for %s\n", devname);
4033 free_imsm(super);
4034 return 2;
4035 }
a2b97981 4036 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
4037
4038 if (rv) {
4039 if (devname)
4040 fprintf(stderr,
4041 Name ": Failed to load all information "
4042 "sections on %s\n", devname);
4043 free_imsm(super);
4044 return rv;
4045 }
4046
4047 st->sb = super;
4048 if (st->ss == NULL) {
4049 st->ss = &super_imsm;
4050 st->minor_version = 0;
4051 st->max_devs = IMSM_MAX_DEVICES;
4052 }
8e59f3d8
AK
4053
4054 /* load migration record */
2e062e82
AK
4055 if (load_imsm_migr_rec(super, NULL) == 0) {
4056 /* Check for unsupported migration features */
4057 if (check_mpb_migr_compatibility(super) != 0) {
4058 fprintf(stderr,
4059 Name ": Unsupported migration detected");
4060 if (devname)
4061 fprintf(stderr, " on %s\n", devname);
4062 else
4063 fprintf(stderr, " (IMSM).\n");
4064 return 3;
4065 }
e2f41b2c
AK
4066 }
4067
cdddbdbc
DW
4068 return 0;
4069}
4070
ef6ffade
DW
4071static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4072{
4073 if (info->level == 1)
4074 return 128;
4075 return info->chunk_size >> 9;
4076}
4077
ff596308 4078static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
4079{
4080 __u32 num_stripes;
4081
4082 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 4083 num_stripes /= num_domains;
ef6ffade
DW
4084
4085 return num_stripes;
4086}
4087
fcfd9599
DW
4088static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4089{
4025c288
DW
4090 if (info->level == 1)
4091 return info->size * 2;
4092 else
4093 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4094}
4095
4d1313e9
DW
4096static void imsm_update_version_info(struct intel_super *super)
4097{
4098 /* update the version and attributes */
4099 struct imsm_super *mpb = super->anchor;
4100 char *version;
4101 struct imsm_dev *dev;
4102 struct imsm_map *map;
4103 int i;
4104
4105 for (i = 0; i < mpb->num_raid_devs; i++) {
4106 dev = get_imsm_dev(super, i);
4107 map = get_imsm_map(dev, 0);
4108 if (__le32_to_cpu(dev->size_high) > 0)
4109 mpb->attributes |= MPB_ATTRIB_2TB;
4110
4111 /* FIXME detect when an array spans a port multiplier */
4112 #if 0
4113 mpb->attributes |= MPB_ATTRIB_PM;
4114 #endif
4115
4116 if (mpb->num_raid_devs > 1 ||
4117 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4118 version = MPB_VERSION_ATTRIBS;
4119 switch (get_imsm_raid_level(map)) {
4120 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4121 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4122 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4123 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4124 }
4125 } else {
4126 if (map->num_members >= 5)
4127 version = MPB_VERSION_5OR6_DISK_ARRAY;
4128 else if (dev->status == DEV_CLONE_N_GO)
4129 version = MPB_VERSION_CNG;
4130 else if (get_imsm_raid_level(map) == 5)
4131 version = MPB_VERSION_RAID5;
4132 else if (map->num_members >= 3)
4133 version = MPB_VERSION_3OR4_DISK_ARRAY;
4134 else if (get_imsm_raid_level(map) == 1)
4135 version = MPB_VERSION_RAID1;
4136 else
4137 version = MPB_VERSION_RAID0;
4138 }
4139 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4140 }
4141}
4142
aa534678
DW
4143static int check_name(struct intel_super *super, char *name, int quiet)
4144{
4145 struct imsm_super *mpb = super->anchor;
4146 char *reason = NULL;
4147 int i;
4148
4149 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4150 reason = "must be 16 characters or less";
4151
4152 for (i = 0; i < mpb->num_raid_devs; i++) {
4153 struct imsm_dev *dev = get_imsm_dev(super, i);
4154
4155 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4156 reason = "already exists";
4157 break;
4158 }
4159 }
4160
4161 if (reason && !quiet)
4162 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4163
4164 return !reason;
4165}
4166
8b353278
DW
4167static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4168 unsigned long long size, char *name,
4169 char *homehost, int *uuid)
cdddbdbc 4170{
c2c087e6
DW
4171 /* We are creating a volume inside a pre-existing container.
4172 * so st->sb is already set.
4173 */
4174 struct intel_super *super = st->sb;
949c47a0 4175 struct imsm_super *mpb = super->anchor;
ba2de7ba 4176 struct intel_dev *dv;
c2c087e6
DW
4177 struct imsm_dev *dev;
4178 struct imsm_vol *vol;
4179 struct imsm_map *map;
4180 int idx = mpb->num_raid_devs;
4181 int i;
4182 unsigned long long array_blocks;
2c092cad 4183 size_t size_old, size_new;
ff596308 4184 __u32 num_data_stripes;
cdddbdbc 4185
88c32bb1 4186 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 4187 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 4188 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4189 return 0;
4190 }
4191
2c092cad
DW
4192 /* ensure the mpb is large enough for the new data */
4193 size_old = __le32_to_cpu(mpb->mpb_size);
4194 size_new = disks_to_mpb_size(info->nr_disks);
4195 if (size_new > size_old) {
4196 void *mpb_new;
4197 size_t size_round = ROUND_UP(size_new, 512);
4198
4199 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4200 fprintf(stderr, Name": could not allocate new mpb\n");
4201 return 0;
4202 }
8e59f3d8
AK
4203 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4204 fprintf(stderr, Name
4205 ": %s could not allocate migr_rec buffer\n",
4206 __func__);
4207 free(super->buf);
4208 free(super);
ea944c8f 4209 free(mpb_new);
8e59f3d8
AK
4210 return 0;
4211 }
2c092cad
DW
4212 memcpy(mpb_new, mpb, size_old);
4213 free(mpb);
4214 mpb = mpb_new;
949c47a0 4215 super->anchor = mpb_new;
2c092cad
DW
4216 mpb->mpb_size = __cpu_to_le32(size_new);
4217 memset(mpb_new + size_old, 0, size_round - size_old);
4218 }
bf5a934a 4219 super->current_vol = idx;
3960e579
DW
4220
4221 /* handle 'failed_disks' by either:
4222 * a) create dummy disk entries in the table if this the first
4223 * volume in the array. We add them here as this is the only
4224 * opportunity to add them. add_to_super_imsm_volume()
4225 * handles the non-failed disks and continues incrementing
4226 * mpb->num_disks.
4227 * b) validate that 'failed_disks' matches the current number
4228 * of missing disks if the container is populated
d23fe947 4229 */
3960e579 4230 if (super->current_vol == 0) {
d23fe947 4231 mpb->num_disks = 0;
3960e579
DW
4232 for (i = 0; i < info->failed_disks; i++) {
4233 struct imsm_disk *disk;
4234
4235 mpb->num_disks++;
4236 disk = __get_imsm_disk(mpb, i);
4237 disk->status = CONFIGURED_DISK | FAILED_DISK;
4238 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4239 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4240 "missing:%d", i);
4241 }
4242 find_missing(super);
4243 } else {
4244 int missing = 0;
4245 struct dl *d;
4246
4247 for (d = super->missing; d; d = d->next)
4248 missing++;
4249 if (info->failed_disks > missing) {
4250 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4251 return 0;
4252 }
4253 }
5a038140 4254
aa534678
DW
4255 if (!check_name(super, name, 0))
4256 return 0;
ba2de7ba
DW
4257 dv = malloc(sizeof(*dv));
4258 if (!dv) {
4259 fprintf(stderr, Name ": failed to allocate device list entry\n");
4260 return 0;
4261 }
1a2487c2 4262 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4263 if (!dev) {
ba2de7ba 4264 free(dv);
949c47a0
DW
4265 fprintf(stderr, Name": could not allocate raid device\n");
4266 return 0;
4267 }
1a2487c2 4268
c2c087e6 4269 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4270 if (info->level == 1)
4271 array_blocks = info_to_blocks_per_member(info);
4272 else
4273 array_blocks = calc_array_size(info->level, info->raid_disks,
4274 info->layout, info->chunk_size,
4275 info->size*2);
979d38be
DW
4276 /* round array size down to closest MB */
4277 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4278
c2c087e6
DW
4279 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4280 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4281 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4282 vol = &dev->vol;
4283 vol->migr_state = 0;
1484e727 4284 set_migr_type(dev, MIGR_INIT);
3960e579 4285 vol->dirty = !info->state;
f8f603f1 4286 vol->curr_migr_unit = 0;
a965f303 4287 map = get_imsm_map(dev, 0);
0dcecb2e 4288 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4289 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4290 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4291 map->failed_disk_num = ~0;
3960e579 4292 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
252d23c0 4293 map->ddf = 1;
ef6ffade
DW
4294
4295 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4296 free(dev);
4297 free(dv);
ef6ffade
DW
4298 fprintf(stderr, Name": imsm does not support more than 2 disks"
4299 "in a raid1 volume\n");
4300 return 0;
4301 }
81062a36
DW
4302
4303 map->raid_level = info->level;
4d1313e9 4304 if (info->level == 10) {
c2c087e6 4305 map->raid_level = 1;
4d1313e9 4306 map->num_domains = info->raid_disks / 2;
81062a36
DW
4307 } else if (info->level == 1)
4308 map->num_domains = info->raid_disks;
4309 else
ff596308 4310 map->num_domains = 1;
81062a36 4311
ff596308
DW
4312 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4313 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4314
c2c087e6
DW
4315 map->num_members = info->raid_disks;
4316 for (i = 0; i < map->num_members; i++) {
4317 /* initialized in add_to_super */
4eb26970 4318 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4319 }
949c47a0 4320 mpb->num_raid_devs++;
ba2de7ba
DW
4321
4322 dv->dev = dev;
4323 dv->index = super->current_vol;
4324 dv->next = super->devlist;
4325 super->devlist = dv;
c2c087e6 4326
4d1313e9
DW
4327 imsm_update_version_info(super);
4328
c2c087e6 4329 return 1;
cdddbdbc
DW
4330}
4331
bf5a934a
DW
4332static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4333 unsigned long long size, char *name,
4334 char *homehost, int *uuid)
4335{
4336 /* This is primarily called by Create when creating a new array.
4337 * We will then get add_to_super called for each component, and then
4338 * write_init_super called to write it out to each device.
4339 * For IMSM, Create can create on fresh devices or on a pre-existing
4340 * array.
4341 * To create on a pre-existing array a different method will be called.
4342 * This one is just for fresh drives.
4343 */
4344 struct intel_super *super;
4345 struct imsm_super *mpb;
4346 size_t mpb_size;
4d1313e9 4347 char *version;
bf5a934a 4348
bf5a934a 4349 if (st->sb)
e683ca88
DW
4350 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4351
4352 if (info)
4353 mpb_size = disks_to_mpb_size(info->nr_disks);
4354 else
4355 mpb_size = 512;
bf5a934a 4356
49133e57 4357 super = alloc_super();
e683ca88 4358 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4359 free(super);
e683ca88
DW
4360 super = NULL;
4361 }
4362 if (!super) {
4363 fprintf(stderr, Name
4364 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4365 return 0;
4366 }
8e59f3d8
AK
4367 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4368 fprintf(stderr, Name
4369 ": %s could not allocate migr_rec buffer\n", __func__);
4370 free(super->buf);
4371 free(super);
4372 return 0;
4373 }
e683ca88 4374 memset(super->buf, 0, mpb_size);
ef649044 4375 mpb = super->buf;
e683ca88
DW
4376 mpb->mpb_size = __cpu_to_le32(mpb_size);
4377 st->sb = super;
4378
4379 if (info == NULL) {
4380 /* zeroing superblock */
4381 return 0;
4382 }
bf5a934a 4383
4d1313e9
DW
4384 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4385
4386 version = (char *) mpb->sig;
4387 strcpy(version, MPB_SIGNATURE);
4388 version += strlen(MPB_SIGNATURE);
4389 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4390
bf5a934a
DW
4391 return 1;
4392}
4393
0e600426 4394#ifndef MDASSEMBLE
f20c3968 4395static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4396 int fd, char *devname)
4397{
4398 struct intel_super *super = st->sb;
d23fe947 4399 struct imsm_super *mpb = super->anchor;
3960e579 4400 struct imsm_disk *_disk;
bf5a934a
DW
4401 struct imsm_dev *dev;
4402 struct imsm_map *map;
3960e579 4403 struct dl *dl, *df;
4eb26970 4404 int slot;
bf5a934a 4405
949c47a0 4406 dev = get_imsm_dev(super, super->current_vol);
a965f303 4407 map = get_imsm_map(dev, 0);
bf5a934a 4408
208933a7
N
4409 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4410 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4411 devname);
4412 return 1;
4413 }
4414
efb30e7f
DW
4415 if (fd == -1) {
4416 /* we're doing autolayout so grab the pre-marked (in
4417 * validate_geometry) raid_disk
4418 */
4419 for (dl = super->disks; dl; dl = dl->next)
4420 if (dl->raiddisk == dk->raid_disk)
4421 break;
4422 } else {
4423 for (dl = super->disks; dl ; dl = dl->next)
4424 if (dl->major == dk->major &&
4425 dl->minor == dk->minor)
4426 break;
4427 }
d23fe947 4428
208933a7
N
4429 if (!dl) {
4430 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4431 return 1;
208933a7 4432 }
bf5a934a 4433
d23fe947
DW
4434 /* add a pristine spare to the metadata */
4435 if (dl->index < 0) {
4436 dl->index = super->anchor->num_disks;
4437 super->anchor->num_disks++;
4438 }
4eb26970
DW
4439 /* Check the device has not already been added */
4440 slot = get_imsm_disk_slot(map, dl->index);
4441 if (slot >= 0 &&
98130f40 4442 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4443 fprintf(stderr, Name ": %s has been included in this array twice\n",
4444 devname);
4445 return 1;
4446 }
656b6b5a 4447 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 4448 dl->disk.status = CONFIGURED_DISK;
d23fe947 4449
3960e579
DW
4450 /* update size of 'missing' disks to be at least as large as the
4451 * largest acitve member (we only have dummy missing disks when
4452 * creating the first volume)
4453 */
4454 if (super->current_vol == 0) {
4455 for (df = super->missing; df; df = df->next) {
4456 if (dl->disk.total_blocks > df->disk.total_blocks)
4457 df->disk.total_blocks = dl->disk.total_blocks;
4458 _disk = __get_imsm_disk(mpb, df->index);
4459 *_disk = df->disk;
4460 }
4461 }
4462
4463 /* refresh unset/failed slots to point to valid 'missing' entries */
4464 for (df = super->missing; df; df = df->next)
4465 for (slot = 0; slot < mpb->num_disks; slot++) {
4466 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4467
4468 if ((ord & IMSM_ORD_REBUILD) == 0)
4469 continue;
4470 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4471 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4472 break;
4473 }
4474
d23fe947
DW
4475 /* if we are creating the first raid device update the family number */
4476 if (super->current_vol == 0) {
4477 __u32 sum;
4478 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 4479
3960e579 4480 _disk = __get_imsm_disk(mpb, dl->index);
791b666a
AW
4481 if (!_dev || !_disk) {
4482 fprintf(stderr, Name ": BUG mpb setup error\n");
4483 return 1;
4484 }
d23fe947
DW
4485 *_dev = *dev;
4486 *_disk = dl->disk;
148acb7b
DW
4487 sum = random32();
4488 sum += __gen_imsm_checksum(mpb);
d23fe947 4489 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4490 mpb->orig_family_num = mpb->family_num;
d23fe947 4491 }
ca0748fa 4492 super->current_disk = dl;
f20c3968 4493 return 0;
bf5a934a
DW
4494}
4495
a8619d23
AK
4496/* mark_spare()
4497 * Function marks disk as spare and restores disk serial
4498 * in case it was previously marked as failed by takeover operation
4499 * reruns:
4500 * -1 : critical error
4501 * 0 : disk is marked as spare but serial is not set
4502 * 1 : success
4503 */
4504int mark_spare(struct dl *disk)
4505{
4506 __u8 serial[MAX_RAID_SERIAL_LEN];
4507 int ret_val = -1;
4508
4509 if (!disk)
4510 return ret_val;
4511
4512 ret_val = 0;
4513 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4514 /* Restore disk serial number, because takeover marks disk
4515 * as failed and adds to serial ':0' before it becomes
4516 * a spare disk.
4517 */
4518 serialcpy(disk->serial, serial);
4519 serialcpy(disk->disk.serial, serial);
4520 ret_val = 1;
4521 }
4522 disk->disk.status = SPARE_DISK;
4523 disk->index = -1;
4524
4525 return ret_val;
4526}
88654014 4527
f20c3968 4528static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4529 int fd, char *devname)
cdddbdbc 4530{
c2c087e6 4531 struct intel_super *super = st->sb;
c2c087e6
DW
4532 struct dl *dd;
4533 unsigned long long size;
f2f27e63 4534 __u32 id;
c2c087e6
DW
4535 int rv;
4536 struct stat stb;
4537
88654014
LM
4538 /* If we are on an RAID enabled platform check that the disk is
4539 * attached to the raid controller.
4540 * We do not need to test disks attachment for container based additions,
4541 * they shall be already tested when container was created/assembled.
88c32bb1 4542 */
d424212e 4543 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4544 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4545 if (rv != 0) {
4546 dprintf("capability: %p fd: %d ret: %d\n",
4547 super->orom, fd, rv);
4548 return 1;
88c32bb1
DW
4549 }
4550
f20c3968
DW
4551 if (super->current_vol >= 0)
4552 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4553
c2c087e6
DW
4554 fstat(fd, &stb);
4555 dd = malloc(sizeof(*dd));
b9f594fe 4556 if (!dd) {
c2c087e6
DW
4557 fprintf(stderr,
4558 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4559 return 1;
c2c087e6
DW
4560 }
4561 memset(dd, 0, sizeof(*dd));
4562 dd->major = major(stb.st_rdev);
4563 dd->minor = minor(stb.st_rdev);
c2c087e6 4564 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4565 dd->fd = fd;
689c9bf3 4566 dd->e = NULL;
1a64be56 4567 dd->action = DISK_ADD;
c2c087e6 4568 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4569 if (rv) {
c2c087e6 4570 fprintf(stderr,
0030e8d6 4571 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4572 free(dd);
0030e8d6 4573 abort();
c2c087e6
DW
4574 }
4575
c2c087e6
DW
4576 get_dev_size(fd, NULL, &size);
4577 size /= 512;
1f24f035 4578 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4579 dd->disk.total_blocks = __cpu_to_le32(size);
a8619d23 4580 mark_spare(dd);
c2c087e6 4581 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4582 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4583 else
b9f594fe 4584 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4585
4586 if (st->update_tail) {
1a64be56
LM
4587 dd->next = super->disk_mgmt_list;
4588 super->disk_mgmt_list = dd;
43dad3d6
DW
4589 } else {
4590 dd->next = super->disks;
4591 super->disks = dd;
ceaf0ee1 4592 super->updates_pending++;
43dad3d6 4593 }
f20c3968
DW
4594
4595 return 0;
cdddbdbc
DW
4596}
4597
1a64be56
LM
4598
4599static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4600{
4601 struct intel_super *super = st->sb;
4602 struct dl *dd;
4603
4604 /* remove from super works only in mdmon - for communication
4605 * manager - monitor. Check if communication memory buffer
4606 * is prepared.
4607 */
4608 if (!st->update_tail) {
4609 fprintf(stderr,
4610 Name ": %s shall be used in mdmon context only"
4611 "(line %d).\n", __func__, __LINE__);
4612 return 1;
4613 }
4614 dd = malloc(sizeof(*dd));
4615 if (!dd) {
4616 fprintf(stderr,
4617 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4618 return 1;
4619 }
4620 memset(dd, 0, sizeof(*dd));
4621 dd->major = dk->major;
4622 dd->minor = dk->minor;
1a64be56 4623 dd->fd = -1;
a8619d23 4624 mark_spare(dd);
1a64be56
LM
4625 dd->action = DISK_REMOVE;
4626
4627 dd->next = super->disk_mgmt_list;
4628 super->disk_mgmt_list = dd;
4629
4630
4631 return 0;
4632}
4633
f796af5d
DW
4634static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4635
4636static union {
4637 char buf[512];
4638 struct imsm_super anchor;
4639} spare_record __attribute__ ((aligned(512)));
c2c087e6 4640
d23fe947
DW
4641/* spare records have their own family number and do not have any defined raid
4642 * devices
4643 */
4644static int write_super_imsm_spares(struct intel_super *super, int doclose)
4645{
d23fe947 4646 struct imsm_super *mpb = super->anchor;
f796af5d 4647 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4648 __u32 sum;
4649 struct dl *d;
4650
f796af5d
DW
4651 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4652 spare->generation_num = __cpu_to_le32(1UL),
4653 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4654 spare->num_disks = 1,
4655 spare->num_raid_devs = 0,
4656 spare->cache_size = mpb->cache_size,
4657 spare->pwr_cycle_count = __cpu_to_le32(1),
4658
4659 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4660 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4661
4662 for (d = super->disks; d; d = d->next) {
8796fdc4 4663 if (d->index != -1)
d23fe947
DW
4664 continue;
4665
f796af5d
DW
4666 spare->disk[0] = d->disk;
4667 sum = __gen_imsm_checksum(spare);
4668 spare->family_num = __cpu_to_le32(sum);
4669 spare->orig_family_num = 0;
4670 sum = __gen_imsm_checksum(spare);
4671 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4672
f796af5d 4673 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4674 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4675 __func__, d->major, d->minor, strerror(errno));
e74255d9 4676 return 1;
d23fe947
DW
4677 }
4678 if (doclose) {
4679 close(d->fd);
4680 d->fd = -1;
4681 }
4682 }
4683
e74255d9 4684 return 0;
d23fe947
DW
4685}
4686
36988a3d 4687static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4688{
36988a3d 4689 struct intel_super *super = st->sb;
949c47a0 4690 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4691 struct dl *d;
4692 __u32 generation;
4693 __u32 sum;
d23fe947 4694 int spares = 0;
949c47a0 4695 int i;
a48ac0a8 4696 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4697 int num_disks = 0;
146c6260 4698 int clear_migration_record = 1;
cdddbdbc 4699
c2c087e6
DW
4700 /* 'generation' is incremented everytime the metadata is written */
4701 generation = __le32_to_cpu(mpb->generation_num);
4702 generation++;
4703 mpb->generation_num = __cpu_to_le32(generation);
4704
148acb7b
DW
4705 /* fix up cases where previous mdadm releases failed to set
4706 * orig_family_num
4707 */
4708 if (mpb->orig_family_num == 0)
4709 mpb->orig_family_num = mpb->family_num;
4710
d23fe947 4711 for (d = super->disks; d; d = d->next) {
8796fdc4 4712 if (d->index == -1)
d23fe947 4713 spares++;
36988a3d 4714 else {
d23fe947 4715 mpb->disk[d->index] = d->disk;
36988a3d
AK
4716 num_disks++;
4717 }
d23fe947 4718 }
36988a3d 4719 for (d = super->missing; d; d = d->next) {
47ee5a45 4720 mpb->disk[d->index] = d->disk;
36988a3d
AK
4721 num_disks++;
4722 }
4723 mpb->num_disks = num_disks;
4724 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4725
949c47a0
DW
4726 for (i = 0; i < mpb->num_raid_devs; i++) {
4727 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4728 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4729 if (dev && dev2) {
4730 imsm_copy_dev(dev, dev2);
4731 mpb_size += sizeof_imsm_dev(dev, 0);
4732 }
146c6260
AK
4733 if (is_gen_migration(dev2))
4734 clear_migration_record = 0;
949c47a0 4735 }
a48ac0a8
DW
4736 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4737 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4738
c2c087e6 4739 /* recalculate checksum */
949c47a0 4740 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4741 mpb->check_sum = __cpu_to_le32(sum);
4742
146c6260
AK
4743 if (clear_migration_record)
4744 memset(super->migr_rec_buf, 0, 512);
4745
d23fe947 4746 /* write the mpb for disks that compose raid devices */
c2c087e6 4747 for (d = super->disks; d ; d = d->next) {
86c54047 4748 if (d->index < 0 || is_failed(&d->disk))
d23fe947 4749 continue;
f796af5d 4750 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4751 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4752 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4753 if (clear_migration_record) {
4754 unsigned long long dsize;
4755
4756 get_dev_size(d->fd, NULL, &dsize);
4757 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
9e2d750d
N
4758 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4759 perror("Write migr_rec failed");
146c6260
AK
4760 }
4761 }
c2c087e6
DW
4762 if (doclose) {
4763 close(d->fd);
4764 d->fd = -1;
4765 }
4766 }
4767
d23fe947
DW
4768 if (spares)
4769 return write_super_imsm_spares(super, doclose);
4770
e74255d9 4771 return 0;
c2c087e6
DW
4772}
4773
0e600426 4774
9b1fb677 4775static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4776{
4777 size_t len;
4778 struct imsm_update_create_array *u;
4779 struct intel_super *super = st->sb;
9b1fb677 4780 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4781 struct imsm_map *map = get_imsm_map(dev, 0);
4782 struct disk_info *inf;
4783 struct imsm_disk *disk;
4784 int i;
43dad3d6 4785
54c2c1ea
DW
4786 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4787 sizeof(*inf) * map->num_members;
43dad3d6
DW
4788 u = malloc(len);
4789 if (!u) {
4790 fprintf(stderr, "%s: failed to allocate update buffer\n",
4791 __func__);
4792 return 1;
4793 }
4794
4795 u->type = update_create_array;
9b1fb677 4796 u->dev_idx = dev_idx;
43dad3d6 4797 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4798 inf = get_disk_info(u);
4799 for (i = 0; i < map->num_members; i++) {
98130f40 4800 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4801
54c2c1ea
DW
4802 disk = get_imsm_disk(super, idx);
4803 serialcpy(inf[i].serial, disk->serial);
4804 }
43dad3d6
DW
4805 append_metadata_update(st, u, len);
4806
4807 return 0;
4808}
4809
1a64be56 4810static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4811{
4812 struct intel_super *super = st->sb;
4813 size_t len;
1a64be56 4814 struct imsm_update_add_remove_disk *u;
43dad3d6 4815
1a64be56 4816 if (!super->disk_mgmt_list)
43dad3d6
DW
4817 return 0;
4818
4819 len = sizeof(*u);
4820 u = malloc(len);
4821 if (!u) {
4822 fprintf(stderr, "%s: failed to allocate update buffer\n",
4823 __func__);
4824 return 1;
4825 }
4826
1a64be56 4827 u->type = update_add_remove_disk;
43dad3d6
DW
4828 append_metadata_update(st, u, len);
4829
4830 return 0;
4831}
4832
c2c087e6
DW
4833static int write_init_super_imsm(struct supertype *st)
4834{
9b1fb677
DW
4835 struct intel_super *super = st->sb;
4836 int current_vol = super->current_vol;
4837
4838 /* we are done with current_vol reset it to point st at the container */
4839 super->current_vol = -1;
4840
8273f55e 4841 if (st->update_tail) {
43dad3d6
DW
4842 /* queue the recently created array / added disk
4843 * as a metadata update */
43dad3d6 4844 int rv;
8273f55e 4845
43dad3d6 4846 /* determine if we are creating a volume or adding a disk */
9b1fb677 4847 if (current_vol < 0) {
1a64be56
LM
4848 /* in the mgmt (add/remove) disk case we are running
4849 * in mdmon context, so don't close fd's
43dad3d6 4850 */
1a64be56 4851 return mgmt_disk(st);
43dad3d6 4852 } else
9b1fb677 4853 rv = create_array(st, current_vol);
8273f55e 4854
43dad3d6 4855 return rv;
d682f344
N
4856 } else {
4857 struct dl *d;
4858 for (d = super->disks; d; d = d->next)
4859 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4860 return write_super_imsm(st, 1);
d682f344 4861 }
cdddbdbc 4862}
0e600426 4863#endif
cdddbdbc 4864
e683ca88 4865static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4866{
e683ca88
DW
4867 struct intel_super *super = st->sb;
4868 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4869
e683ca88 4870 if (!mpb)
ad97895e
DW
4871 return 1;
4872
1799c9e8 4873#ifndef MDASSEMBLE
e683ca88 4874 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4875#else
4876 return 1;
4877#endif
cdddbdbc
DW
4878}
4879
0e600426
N
4880static int imsm_bbm_log_size(struct imsm_super *mpb)
4881{
4882 return __le32_to_cpu(mpb->bbm_log_size);
4883}
4884
4885#ifndef MDASSEMBLE
cdddbdbc
DW
4886static int validate_geometry_imsm_container(struct supertype *st, int level,
4887 int layout, int raiddisks, int chunk,
c2c087e6 4888 unsigned long long size, char *dev,
2c514b71
NB
4889 unsigned long long *freesize,
4890 int verbose)
cdddbdbc 4891{
c2c087e6
DW
4892 int fd;
4893 unsigned long long ldsize;
f2f5c343
LM
4894 struct intel_super *super=NULL;
4895 int rv = 0;
cdddbdbc 4896
c2c087e6
DW
4897 if (level != LEVEL_CONTAINER)
4898 return 0;
4899 if (!dev)
4900 return 1;
4901
4902 fd = open(dev, O_RDONLY|O_EXCL, 0);
4903 if (fd < 0) {
2c514b71
NB
4904 if (verbose)
4905 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4906 dev, strerror(errno));
c2c087e6
DW
4907 return 0;
4908 }
4909 if (!get_dev_size(fd, dev, &ldsize)) {
4910 close(fd);
4911 return 0;
4912 }
f2f5c343
LM
4913
4914 /* capabilities retrieve could be possible
4915 * note that there is no fd for the disks in array.
4916 */
4917 super = alloc_super();
4918 if (!super) {
4919 fprintf(stderr,
4920 Name ": malloc of %zu failed.\n",
4921 sizeof(*super));
4922 close(fd);
4923 return 0;
4924 }
4925
d424212e 4926 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4927 if (rv != 0) {
4928#if DEBUG
4929 char str[256];
4930 fd2devname(fd, str);
4931 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4932 fd, str, super->orom, rv, raiddisks);
4933#endif
4934 /* no orom/efi or non-intel hba of the disk */
4935 close(fd);
4936 free_imsm(super);
4937 return 0;
4938 }
c2c087e6 4939 close(fd);
f2f5c343
LM
4940 if (super->orom && raiddisks > super->orom->tds) {
4941 if (verbose)
4942 fprintf(stderr, Name ": %d exceeds maximum number of"
4943 " platform supported disks: %d\n",
4944 raiddisks, super->orom->tds);
4945
4946 free_imsm(super);
4947 return 0;
4948 }
c2c087e6
DW
4949
4950 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 4951 free_imsm(super);
c2c087e6
DW
4952
4953 return 1;
cdddbdbc
DW
4954}
4955
0dcecb2e
DW
4956static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4957{
4958 const unsigned long long base_start = e[*idx].start;
4959 unsigned long long end = base_start + e[*idx].size;
4960 int i;
4961
4962 if (base_start == end)
4963 return 0;
4964
4965 *idx = *idx + 1;
4966 for (i = *idx; i < num_extents; i++) {
4967 /* extend overlapping extents */
4968 if (e[i].start >= base_start &&
4969 e[i].start <= end) {
4970 if (e[i].size == 0)
4971 return 0;
4972 if (e[i].start + e[i].size > end)
4973 end = e[i].start + e[i].size;
4974 } else if (e[i].start > end) {
4975 *idx = i;
4976 break;
4977 }
4978 }
4979
4980 return end - base_start;
4981}
4982
4983static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4984{
4985 /* build a composite disk with all known extents and generate a new
4986 * 'maxsize' given the "all disks in an array must share a common start
4987 * offset" constraint
4988 */
4989 struct extent *e = calloc(sum_extents, sizeof(*e));
4990 struct dl *dl;
4991 int i, j;
4992 int start_extent;
4993 unsigned long long pos;
b9d77223 4994 unsigned long long start = 0;
0dcecb2e
DW
4995 unsigned long long maxsize;
4996 unsigned long reserve;
4997
4998 if (!e)
a7dd165b 4999 return 0;
0dcecb2e
DW
5000
5001 /* coalesce and sort all extents. also, check to see if we need to
5002 * reserve space between member arrays
5003 */
5004 j = 0;
5005 for (dl = super->disks; dl; dl = dl->next) {
5006 if (!dl->e)
5007 continue;
5008 for (i = 0; i < dl->extent_cnt; i++)
5009 e[j++] = dl->e[i];
5010 }
5011 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5012
5013 /* merge extents */
5014 i = 0;
5015 j = 0;
5016 while (i < sum_extents) {
5017 e[j].start = e[i].start;
5018 e[j].size = find_size(e, &i, sum_extents);
5019 j++;
5020 if (e[j-1].size == 0)
5021 break;
5022 }
5023
5024 pos = 0;
5025 maxsize = 0;
5026 start_extent = 0;
5027 i = 0;
5028 do {
5029 unsigned long long esize;
5030
5031 esize = e[i].start - pos;
5032 if (esize >= maxsize) {
5033 maxsize = esize;
5034 start = pos;
5035 start_extent = i;
5036 }
5037 pos = e[i].start + e[i].size;
5038 i++;
5039 } while (e[i-1].size);
5040 free(e);
5041
a7dd165b
DW
5042 if (maxsize == 0)
5043 return 0;
5044
5045 /* FIXME assumes volume at offset 0 is the first volume in a
5046 * container
5047 */
0dcecb2e
DW
5048 if (start_extent > 0)
5049 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5050 else
5051 reserve = 0;
5052
5053 if (maxsize < reserve)
a7dd165b 5054 return 0;
0dcecb2e
DW
5055
5056 super->create_offset = ~((__u32) 0);
5057 if (start + reserve > super->create_offset)
a7dd165b 5058 return 0; /* start overflows create_offset */
0dcecb2e
DW
5059 super->create_offset = start + reserve;
5060
5061 return maxsize - reserve;
5062}
5063
88c32bb1
DW
5064static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5065{
5066 if (level < 0 || level == 6 || level == 4)
5067 return 0;
5068
5069 /* if we have an orom prevent invalid raid levels */
5070 if (orom)
5071 switch (level) {
5072 case 0: return imsm_orom_has_raid0(orom);
5073 case 1:
5074 if (raiddisks > 2)
5075 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5076 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5077 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5078 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5079 }
5080 else
5081 return 1; /* not on an Intel RAID platform so anything goes */
5082
5083 return 0;
5084}
5085
cd9d1ac7
DW
5086static int imsm_default_chunk(const struct imsm_orom *orom)
5087{
5088 /* up to 512 if the plaform supports it, otherwise the platform max.
5089 * 128 if no platform detected
5090 */
5091 int fs = max(7, orom ? fls(orom->sss) : 0);
5092
5093 return min(512, (1 << fs));
5094}
73408129 5095
35f81cbb 5096#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
5097static int
5098validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 5099 int raiddisks, int *chunk, int verbose)
6592ce37 5100{
660260d0
DW
5101 /* check/set platform and metadata limits/defaults */
5102 if (super->orom && raiddisks > super->orom->dpa) {
5103 pr_vrb(": platform supports a maximum of %d disks per array\n",
5104 super->orom->dpa);
73408129
LM
5105 return 0;
5106 }
5107
5108 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 5109 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
5110 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5111 level, raiddisks, raiddisks > 1 ? "s" : "");
5112 return 0;
5113 }
cd9d1ac7
DW
5114
5115 if (chunk && (*chunk == 0 || *chunk == UnSet))
5116 *chunk = imsm_default_chunk(super->orom);
5117
5118 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5119 pr_vrb(": platform does not support a chunk size of: "
5120 "%d\n", *chunk);
5121 return 0;
6592ce37 5122 }
cd9d1ac7 5123
6592ce37
DW
5124 if (layout != imsm_level_to_layout(level)) {
5125 if (level == 5)
5126 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5127 else if (level == 10)
5128 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5129 else
5130 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5131 layout, level);
5132 return 0;
5133 }
6592ce37
DW
5134 return 1;
5135}
5136
c2c087e6
DW
5137/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5138 * FIX ME add ahci details
5139 */
8b353278 5140static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 5141 int layout, int raiddisks, int *chunk,
c2c087e6 5142 unsigned long long size, char *dev,
2c514b71
NB
5143 unsigned long long *freesize,
5144 int verbose)
cdddbdbc 5145{
c2c087e6
DW
5146 struct stat stb;
5147 struct intel_super *super = st->sb;
b2916f25 5148 struct imsm_super *mpb;
c2c087e6
DW
5149 struct dl *dl;
5150 unsigned long long pos = 0;
5151 unsigned long long maxsize;
5152 struct extent *e;
5153 int i;
cdddbdbc 5154
88c32bb1
DW
5155 /* We must have the container info already read in. */
5156 if (!super)
c2c087e6
DW
5157 return 0;
5158
b2916f25
JS
5159 mpb = super->anchor;
5160
e7cb06c8
LO
5161 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5162 fprintf(stderr, Name ": the option-rom requires all "
5163 "member disks to be a member of all volumes.\n");
5164 return 0;
5165 }
5166
d54559f0
LM
5167 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5168 fprintf(stderr, Name ": RAID gemetry validation failed. "
5169 "Cannot proceed with the action(s).\n");
c2c087e6 5170 return 0;
d54559f0 5171 }
c2c087e6
DW
5172 if (!dev) {
5173 /* General test: make sure there is space for
2da8544a
DW
5174 * 'raiddisks' device extents of size 'size' at a given
5175 * offset
c2c087e6 5176 */
e46273eb 5177 unsigned long long minsize = size;
b7528a20 5178 unsigned long long start_offset = MaxSector;
c2c087e6
DW
5179 int dcnt = 0;
5180 if (minsize == 0)
5181 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5182 for (dl = super->disks; dl ; dl = dl->next) {
5183 int found = 0;
5184
bf5a934a 5185 pos = 0;
c2c087e6
DW
5186 i = 0;
5187 e = get_extents(super, dl);
5188 if (!e) continue;
5189 do {
5190 unsigned long long esize;
5191 esize = e[i].start - pos;
5192 if (esize >= minsize)
5193 found = 1;
b7528a20 5194 if (found && start_offset == MaxSector) {
2da8544a
DW
5195 start_offset = pos;
5196 break;
5197 } else if (found && pos != start_offset) {
5198 found = 0;
5199 break;
5200 }
c2c087e6
DW
5201 pos = e[i].start + e[i].size;
5202 i++;
5203 } while (e[i-1].size);
5204 if (found)
5205 dcnt++;
5206 free(e);
5207 }
5208 if (dcnt < raiddisks) {
2c514b71
NB
5209 if (verbose)
5210 fprintf(stderr, Name ": imsm: Not enough "
5211 "devices with space for this array "
5212 "(%d < %d)\n",
5213 dcnt, raiddisks);
c2c087e6
DW
5214 return 0;
5215 }
5216 return 1;
5217 }
0dcecb2e 5218
c2c087e6
DW
5219 /* This device must be a member of the set */
5220 if (stat(dev, &stb) < 0)
5221 return 0;
5222 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5223 return 0;
5224 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5225 if (dl->major == (int)major(stb.st_rdev) &&
5226 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5227 break;
5228 }
5229 if (!dl) {
2c514b71
NB
5230 if (verbose)
5231 fprintf(stderr, Name ": %s is not in the "
5232 "same imsm set\n", dev);
c2c087e6 5233 return 0;
a20d2ba5
DW
5234 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5235 /* If a volume is present then the current creation attempt
5236 * cannot incorporate new spares because the orom may not
5237 * understand this configuration (all member disks must be
5238 * members of each array in the container).
5239 */
5240 fprintf(stderr, Name ": %s is a spare and a volume"
5241 " is already defined for this container\n", dev);
5242 fprintf(stderr, Name ": The option-rom requires all member"
5243 " disks to be a member of all volumes\n");
5244 return 0;
c2c087e6 5245 }
0dcecb2e
DW
5246
5247 /* retrieve the largest free space block */
c2c087e6
DW
5248 e = get_extents(super, dl);
5249 maxsize = 0;
5250 i = 0;
0dcecb2e
DW
5251 if (e) {
5252 do {
5253 unsigned long long esize;
5254
5255 esize = e[i].start - pos;
5256 if (esize >= maxsize)
5257 maxsize = esize;
5258 pos = e[i].start + e[i].size;
5259 i++;
5260 } while (e[i-1].size);
5261 dl->e = e;
5262 dl->extent_cnt = i;
5263 } else {
5264 if (verbose)
5265 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5266 dev);
5267 return 0;
5268 }
5269 if (maxsize < size) {
5270 if (verbose)
5271 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5272 dev, maxsize, size);
5273 return 0;
5274 }
5275
5276 /* count total number of extents for merge */
5277 i = 0;
5278 for (dl = super->disks; dl; dl = dl->next)
5279 if (dl->e)
5280 i += dl->extent_cnt;
5281
5282 maxsize = merge_extents(super, i);
3baa56ab
LO
5283
5284 if (!check_env("IMSM_NO_PLATFORM") &&
5285 mpb->num_raid_devs > 0 && size && size != maxsize) {
5286 fprintf(stderr, Name ": attempting to create a second "
5287 "volume with size less then remaining space. "
5288 "Aborting...\n");
5289 return 0;
5290 }
5291
a7dd165b 5292 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
5293 if (verbose)
5294 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5295 maxsize, size);
5296 return 0;
0dcecb2e
DW
5297 }
5298
c2c087e6
DW
5299 *freesize = maxsize;
5300
5301 return 1;
cdddbdbc
DW
5302}
5303
efb30e7f
DW
5304static int reserve_space(struct supertype *st, int raiddisks,
5305 unsigned long long size, int chunk,
5306 unsigned long long *freesize)
5307{
5308 struct intel_super *super = st->sb;
5309 struct imsm_super *mpb = super->anchor;
5310 struct dl *dl;
5311 int i;
5312 int extent_cnt;
5313 struct extent *e;
5314 unsigned long long maxsize;
5315 unsigned long long minsize;
5316 int cnt;
5317 int used;
5318
5319 /* find the largest common start free region of the possible disks */
5320 used = 0;
5321 extent_cnt = 0;
5322 cnt = 0;
5323 for (dl = super->disks; dl; dl = dl->next) {
5324 dl->raiddisk = -1;
5325
5326 if (dl->index >= 0)
5327 used++;
5328
5329 /* don't activate new spares if we are orom constrained
5330 * and there is already a volume active in the container
5331 */
5332 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5333 continue;
5334
5335 e = get_extents(super, dl);
5336 if (!e)
5337 continue;
5338 for (i = 1; e[i-1].size; i++)
5339 ;
5340 dl->e = e;
5341 dl->extent_cnt = i;
5342 extent_cnt += i;
5343 cnt++;
5344 }
5345
5346 maxsize = merge_extents(super, extent_cnt);
5347 minsize = size;
5348 if (size == 0)
612e59d8
CA
5349 /* chunk is in K */
5350 minsize = chunk * 2;
efb30e7f
DW
5351
5352 if (cnt < raiddisks ||
5353 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5354 maxsize < minsize ||
5355 maxsize == 0) {
efb30e7f
DW
5356 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5357 return 0; /* No enough free spaces large enough */
5358 }
5359
5360 if (size == 0) {
5361 size = maxsize;
5362 if (chunk) {
612e59d8
CA
5363 size /= 2 * chunk;
5364 size *= 2 * chunk;
efb30e7f
DW
5365 }
5366 }
5367
5368 cnt = 0;
5369 for (dl = super->disks; dl; dl = dl->next)
5370 if (dl->e)
5371 dl->raiddisk = cnt++;
5372
5373 *freesize = size;
5374
5375 return 1;
5376}
5377
bf5a934a 5378static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5379 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5380 char *dev, unsigned long long *freesize,
5381 int verbose)
5382{
5383 int fd, cfd;
5384 struct mdinfo *sra;
20cbe8d2 5385 int is_member = 0;
bf5a934a 5386
d54559f0
LM
5387 /* load capability
5388 * if given unused devices create a container
bf5a934a
DW
5389 * if given given devices in a container create a member volume
5390 */
5391 if (level == LEVEL_CONTAINER) {
5392 /* Must be a fresh device to add to a container */
5393 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5394 raiddisks,
5395 chunk?*chunk:0, size,
bf5a934a
DW
5396 dev, freesize,
5397 verbose);
5398 }
5399
8592f29d 5400 if (!dev) {
e91a3bad
LM
5401 if (st->sb) {
5402 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5403 raiddisks, chunk,
5404 verbose))
5405 return 0;
efb30e7f
DW
5406 /* we are being asked to automatically layout a
5407 * new volume based on the current contents of
5408 * the container. If the the parameters can be
5409 * satisfied reserve_space will record the disks,
5410 * start offset, and size of the volume to be
5411 * created. add_to_super and getinfo_super
5412 * detect when autolayout is in progress.
5413 */
e91a3bad
LM
5414 if (freesize)
5415 return reserve_space(st, raiddisks, size,
5416 chunk?*chunk:0, freesize);
8592f29d
N
5417 }
5418 return 1;
5419 }
bf5a934a
DW
5420 if (st->sb) {
5421 /* creating in a given container */
5422 return validate_geometry_imsm_volume(st, level, layout,
5423 raiddisks, chunk, size,
5424 dev, freesize, verbose);
5425 }
5426
bf5a934a
DW
5427 /* This device needs to be a device in an 'imsm' container */
5428 fd = open(dev, O_RDONLY|O_EXCL, 0);
5429 if (fd >= 0) {
5430 if (verbose)
5431 fprintf(stderr,
5432 Name ": Cannot create this array on device %s\n",
5433 dev);
5434 close(fd);
5435 return 0;
5436 }
5437 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5438 if (verbose)
5439 fprintf(stderr, Name ": Cannot open %s: %s\n",
5440 dev, strerror(errno));
5441 return 0;
5442 }
5443 /* Well, it is in use by someone, maybe an 'imsm' container. */
5444 cfd = open_container(fd);
20cbe8d2 5445 close(fd);
bf5a934a 5446 if (cfd < 0) {
bf5a934a
DW
5447 if (verbose)
5448 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5449 dev);
5450 return 0;
5451 }
5452 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5453 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5454 strcmp(sra->text_version, "imsm") == 0)
5455 is_member = 1;
5456 sysfs_free(sra);
5457 if (is_member) {
bf5a934a
DW
5458 /* This is a member of a imsm container. Load the container
5459 * and try to create a volume
5460 */
5461 struct intel_super *super;
5462
e1902a7b 5463 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5464 st->sb = super;
5465 st->container_dev = fd2devnum(cfd);
5466 close(cfd);
5467 return validate_geometry_imsm_volume(st, level, layout,
5468 raiddisks, chunk,
5469 size, dev,
ecbd9e81
N
5470 freesize, 1)
5471 ? 1 : -1;
bf5a934a 5472 }
20cbe8d2 5473 }
bf5a934a 5474
20cbe8d2
AW
5475 if (verbose)
5476 fprintf(stderr, Name ": failed container membership check\n");
5477
5478 close(cfd);
5479 return 0;
bf5a934a 5480}
0bd16cf2 5481
30f58b22 5482static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5483{
5484 struct intel_super *super = st->sb;
5485
30f58b22
DW
5486 if (level && *level == UnSet)
5487 *level = LEVEL_CONTAINER;
5488
5489 if (level && layout && *layout == UnSet)
5490 *layout = imsm_level_to_layout(*level);
0bd16cf2 5491
cd9d1ac7
DW
5492 if (chunk && (*chunk == UnSet || *chunk == 0))
5493 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
5494}
5495
33414a01
DW
5496static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5497
5498static int kill_subarray_imsm(struct supertype *st)
5499{
5500 /* remove the subarray currently referenced by ->current_vol */
5501 __u8 i;
5502 struct intel_dev **dp;
5503 struct intel_super *super = st->sb;
5504 __u8 current_vol = super->current_vol;
5505 struct imsm_super *mpb = super->anchor;
5506
5507 if (super->current_vol < 0)
5508 return 2;
5509 super->current_vol = -1; /* invalidate subarray cursor */
5510
5511 /* block deletions that would change the uuid of active subarrays
5512 *
5513 * FIXME when immutable ids are available, but note that we'll
5514 * also need to fixup the invalidated/active subarray indexes in
5515 * mdstat
5516 */
5517 for (i = 0; i < mpb->num_raid_devs; i++) {
5518 char subarray[4];
5519
5520 if (i < current_vol)
5521 continue;
5522 sprintf(subarray, "%u", i);
5523 if (is_subarray_active(subarray, st->devname)) {
5524 fprintf(stderr,
5525 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5526 current_vol, i);
5527
5528 return 2;
5529 }
5530 }
5531
5532 if (st->update_tail) {
5533 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5534
5535 if (!u)
5536 return 2;
5537 u->type = update_kill_array;
5538 u->dev_idx = current_vol;
5539 append_metadata_update(st, u, sizeof(*u));
5540
5541 return 0;
5542 }
5543
5544 for (dp = &super->devlist; *dp;)
5545 if ((*dp)->index == current_vol) {
5546 *dp = (*dp)->next;
5547 } else {
5548 handle_missing(super, (*dp)->dev);
5549 if ((*dp)->index > current_vol)
5550 (*dp)->index--;
5551 dp = &(*dp)->next;
5552 }
5553
5554 /* no more raid devices, all active components are now spares,
5555 * but of course failed are still failed
5556 */
5557 if (--mpb->num_raid_devs == 0) {
5558 struct dl *d;
5559
5560 for (d = super->disks; d; d = d->next)
a8619d23
AK
5561 if (d->index > -2)
5562 mark_spare(d);
33414a01
DW
5563 }
5564
5565 super->updates_pending++;
5566
5567 return 0;
5568}
aa534678 5569
a951a4f7 5570static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5571 char *update, struct mddev_ident *ident)
aa534678
DW
5572{
5573 /* update the subarray currently referenced by ->current_vol */
5574 struct intel_super *super = st->sb;
5575 struct imsm_super *mpb = super->anchor;
5576
aa534678
DW
5577 if (strcmp(update, "name") == 0) {
5578 char *name = ident->name;
a951a4f7
N
5579 char *ep;
5580 int vol;
aa534678 5581
a951a4f7 5582 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5583 fprintf(stderr,
5584 Name ": Unable to update name of active subarray\n");
5585 return 2;
5586 }
5587
5588 if (!check_name(super, name, 0))
5589 return 2;
5590
a951a4f7
N
5591 vol = strtoul(subarray, &ep, 10);
5592 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5593 return 2;
5594
aa534678
DW
5595 if (st->update_tail) {
5596 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5597
5598 if (!u)
5599 return 2;
5600 u->type = update_rename_array;
a951a4f7 5601 u->dev_idx = vol;
aa534678
DW
5602 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5603 append_metadata_update(st, u, sizeof(*u));
5604 } else {
5605 struct imsm_dev *dev;
5606 int i;
5607
a951a4f7 5608 dev = get_imsm_dev(super, vol);
aa534678
DW
5609 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5610 for (i = 0; i < mpb->num_raid_devs; i++) {
5611 dev = get_imsm_dev(super, i);
5612 handle_missing(super, dev);
5613 }
5614 super->updates_pending++;
5615 }
5616 } else
5617 return 2;
5618
5619 return 0;
5620}
bf5a934a 5621
28bce06f
AK
5622static int is_gen_migration(struct imsm_dev *dev)
5623{
7534230b
AK
5624 if (dev == NULL)
5625 return 0;
5626
28bce06f
AK
5627 if (!dev->vol.migr_state)
5628 return 0;
5629
5630 if (migr_type(dev) == MIGR_GEN_MIGR)
5631 return 1;
5632
5633 return 0;
5634}
71204a50 5635#endif /* MDASSEMBLE */
28bce06f 5636
1e5c6983
DW
5637static int is_rebuilding(struct imsm_dev *dev)
5638{
5639 struct imsm_map *migr_map;
5640
5641 if (!dev->vol.migr_state)
5642 return 0;
5643
5644 if (migr_type(dev) != MIGR_REBUILD)
5645 return 0;
5646
5647 migr_map = get_imsm_map(dev, 1);
5648
5649 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5650 return 1;
5651 else
5652 return 0;
5653}
5654
c47b0ff6
AK
5655static void update_recovery_start(struct intel_super *super,
5656 struct imsm_dev *dev,
5657 struct mdinfo *array)
1e5c6983
DW
5658{
5659 struct mdinfo *rebuild = NULL;
5660 struct mdinfo *d;
5661 __u32 units;
5662
5663 if (!is_rebuilding(dev))
5664 return;
5665
5666 /* Find the rebuild target, but punt on the dual rebuild case */
5667 for (d = array->devs; d; d = d->next)
5668 if (d->recovery_start == 0) {
5669 if (rebuild)
5670 return;
5671 rebuild = d;
5672 }
5673
4363fd80
DW
5674 if (!rebuild) {
5675 /* (?) none of the disks are marked with
5676 * IMSM_ORD_REBUILD, so assume they are missing and the
5677 * disk_ord_tbl was not correctly updated
5678 */
5679 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5680 return;
5681 }
5682
1e5c6983 5683 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5684 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5685}
5686
9e2d750d 5687#ifndef MDASSEMBLE
276d77db 5688static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 5689#endif
1e5c6983 5690
00bbdbda 5691static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5692{
4f5bc454
DW
5693 /* Given a container loaded by load_super_imsm_all,
5694 * extract information about all the arrays into
5695 * an mdinfo tree.
00bbdbda 5696 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5697 *
5698 * For each imsm_dev create an mdinfo, fill it in,
5699 * then look for matching devices in super->disks
5700 * and create appropriate device mdinfo.
5701 */
5702 struct intel_super *super = st->sb;
949c47a0 5703 struct imsm_super *mpb = super->anchor;
4f5bc454 5704 struct mdinfo *rest = NULL;
00bbdbda 5705 unsigned int i;
81219e70 5706 int sb_errors = 0;
abef11a3
AK
5707 struct dl *d;
5708 int spare_disks = 0;
cdddbdbc 5709
19482bcc
AK
5710 /* do not assemble arrays when not all attributes are supported */
5711 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70
LM
5712 sb_errors = 1;
5713 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5714 "Arrays activation is blocked.\n");
19482bcc
AK
5715 }
5716
a06d022d 5717 /* check for bad blocks */
81219e70
LM
5718 if (imsm_bbm_log_size(super->anchor)) {
5719 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5720 "Arrays activation is blocked.\n");
5721 sb_errors = 1;
5722 }
5723
604b746f 5724
abef11a3
AK
5725 /* count spare devices, not used in maps
5726 */
5727 for (d = super->disks; d; d = d->next)
5728 if (d->index == -1)
5729 spare_disks++;
5730
4f5bc454 5731 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5732 struct imsm_dev *dev;
5733 struct imsm_map *map;
86e3692b 5734 struct imsm_map *map2;
4f5bc454 5735 struct mdinfo *this;
2db86302 5736 int slot, chunk;
00bbdbda
N
5737 char *ep;
5738
5739 if (subarray &&
5740 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5741 continue;
5742
5743 dev = get_imsm_dev(super, i);
5744 map = get_imsm_map(dev, 0);
86e3692b 5745 map2 = get_imsm_map(dev, 1);
4f5bc454 5746
1ce0101c
DW
5747 /* do not publish arrays that are in the middle of an
5748 * unsupported migration
5749 */
5750 if (dev->vol.migr_state &&
28bce06f 5751 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5752 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5753 " unsupported migration in progress\n",
5754 dev->volume);
5755 continue;
5756 }
2db86302
LM
5757 /* do not publish arrays that are not support by controller's
5758 * OROM/EFI
5759 */
1ce0101c 5760
2db86302 5761 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
4f5bc454 5762 this = malloc(sizeof(*this));
0fbd635c 5763 if (!this) {
cf1be220 5764 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5765 sizeof(*this));
5766 break;
5767 }
4f5bc454 5768
301406c9 5769 super->current_vol = i;
a5d85af7 5770 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5771 this->next = rest;
81219e70
LM
5772#ifndef MDASSEMBLE
5773 /* mdadm does not support all metadata features- set the bit in all arrays state */
5774 if (!validate_geometry_imsm_orom(super,
5775 get_imsm_raid_level(map), /* RAID level */
5776 imsm_level_to_layout(get_imsm_raid_level(map)),
5777 map->num_members, /* raid disks */
5778 &chunk,
5779 1 /* verbose */)) {
446894ea
N
5780 fprintf(stderr, Name ": IMSM RAID geometry validation"
5781 " failed. Array %s activation is blocked.\n",
81219e70
LM
5782 dev->volume);
5783 this->array.state |=
5784 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5785 (1<<MD_SB_BLOCK_VOLUME);
5786 }
5787#endif
5788
5789 /* if array has bad blocks, set suitable bit in all arrays state */
5790 if (sb_errors)
5791 this->array.state |=
5792 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5793 (1<<MD_SB_BLOCK_VOLUME);
5794
4f5bc454 5795 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5796 unsigned long long recovery_start;
4f5bc454
DW
5797 struct mdinfo *info_d;
5798 struct dl *d;
5799 int idx;
9a1608e5 5800 int skip;
7eef0453 5801 __u32 ord;
4f5bc454 5802
9a1608e5 5803 skip = 0;
98130f40 5804 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5805 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5806 for (d = super->disks; d ; d = d->next)
5807 if (d->index == idx)
0fbd635c 5808 break;
4f5bc454 5809
1e5c6983 5810 recovery_start = MaxSector;
4f5bc454 5811 if (d == NULL)
9a1608e5 5812 skip = 1;
25ed7e59 5813 if (d && is_failed(&d->disk))
9a1608e5 5814 skip = 1;
7eef0453 5815 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5816 recovery_start = 0;
9a1608e5
DW
5817
5818 /*
5819 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5820 * reset resync start to avoid a dirty-degraded
5821 * situation when performing the intial sync
9a1608e5
DW
5822 *
5823 * FIXME handle dirty degraded
5824 */
1e5c6983 5825 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5826 this->resync_start = MaxSector;
9a1608e5
DW
5827 if (skip)
5828 continue;
4f5bc454 5829
1e5c6983 5830 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5831 if (!info_d) {
5832 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5833 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5834 info_d = this->devs;
5835 while (info_d) {
5836 struct mdinfo *d = info_d->next;
5837
5838 free(info_d);
5839 info_d = d;
5840 }
9a1608e5
DW
5841 free(this);
5842 this = rest;
5843 break;
5844 }
4f5bc454
DW
5845 info_d->next = this->devs;
5846 this->devs = info_d;
5847
4f5bc454
DW
5848 info_d->disk.number = d->index;
5849 info_d->disk.major = d->major;
5850 info_d->disk.minor = d->minor;
5851 info_d->disk.raid_disk = slot;
1e5c6983 5852 info_d->recovery_start = recovery_start;
86e3692b
AK
5853 if (map2) {
5854 if (slot < map2->num_members)
5855 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5856 else
5857 this->array.spare_disks++;
86e3692b
AK
5858 } else {
5859 if (slot < map->num_members)
5860 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5861 else
5862 this->array.spare_disks++;
86e3692b 5863 }
1e5c6983
DW
5864 if (info_d->recovery_start == MaxSector)
5865 this->array.working_disks++;
4f5bc454
DW
5866
5867 info_d->events = __le32_to_cpu(mpb->generation_num);
5868 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5869 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5870 }
1e5c6983 5871 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5872 update_recovery_start(super, dev, this);
abef11a3 5873 this->array.spare_disks += spare_disks;
276d77db 5874
9e2d750d 5875#ifndef MDASSEMBLE
276d77db
AK
5876 /* check for reshape */
5877 if (this->reshape_active == 1)
5878 recover_backup_imsm(st, this);
9e2d750d 5879#endif
9a1608e5 5880 rest = this;
4f5bc454
DW
5881 }
5882
5883 return rest;
cdddbdbc
DW
5884}
5885
845dea95 5886
fb49eef2 5887static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 5888{
a965f303 5889 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
5890
5891 if (!failed)
3393c6af
DW
5892 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5893 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5894
5895 switch (get_imsm_raid_level(map)) {
5896 case 0:
5897 return IMSM_T_STATE_FAILED;
5898 break;
5899 case 1:
5900 if (failed < map->num_members)
5901 return IMSM_T_STATE_DEGRADED;
5902 else
5903 return IMSM_T_STATE_FAILED;
5904 break;
5905 case 10:
5906 {
5907 /**
c92a2527
DW
5908 * check to see if any mirrors have failed, otherwise we
5909 * are degraded. Even numbered slots are mirrored on
5910 * slot+1
c2a1e7da 5911 */
c2a1e7da 5912 int i;
d9b420a5
N
5913 /* gcc -Os complains that this is unused */
5914 int insync = insync;
c2a1e7da
DW
5915
5916 for (i = 0; i < map->num_members; i++) {
98130f40 5917 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5918 int idx = ord_to_idx(ord);
5919 struct imsm_disk *disk;
c2a1e7da 5920
c92a2527
DW
5921 /* reset the potential in-sync count on even-numbered
5922 * slots. num_copies is always 2 for imsm raid10
5923 */
5924 if ((i & 1) == 0)
5925 insync = 2;
c2a1e7da 5926
c92a2527 5927 disk = get_imsm_disk(super, idx);
25ed7e59 5928 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5929 insync--;
c2a1e7da 5930
c92a2527
DW
5931 /* no in-sync disks left in this mirror the
5932 * array has failed
5933 */
5934 if (insync == 0)
5935 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5936 }
5937
5938 return IMSM_T_STATE_DEGRADED;
5939 }
5940 case 5:
5941 if (failed < 2)
5942 return IMSM_T_STATE_DEGRADED;
5943 else
5944 return IMSM_T_STATE_FAILED;
5945 break;
5946 default:
5947 break;
5948 }
5949
5950 return map->map_state;
5951}
5952
ff077194 5953static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
5954{
5955 int i;
5956 int failed = 0;
5957 struct imsm_disk *disk;
ff077194 5958 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 5959 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
68fe4598 5960 struct imsm_map *map_for_loop;
0556e1a2
DW
5961 __u32 ord;
5962 int idx;
c2a1e7da 5963
0556e1a2
DW
5964 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5965 * disks that are being rebuilt. New failures are recorded to
5966 * map[0]. So we look through all the disks we started with and
5967 * see if any failures are still present, or if any new ones
5968 * have arrived
0556e1a2 5969 */
68fe4598
LD
5970 map_for_loop = prev;
5971 if (is_gen_migration(dev))
5972 if (prev && (map->num_members > prev->num_members))
5973 map_for_loop = map;
5974
5975 for (i = 0; i < map_for_loop->num_members; i++) {
5976 ord = 0;
5977 if (i < prev->num_members)
5978 ord |= __le32_to_cpu(prev->disk_ord_tbl[i]);
5979 if (i < map->num_members)
5980 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
0556e1a2 5981 idx = ord_to_idx(ord);
c2a1e7da 5982
949c47a0 5983 disk = get_imsm_disk(super, idx);
25ed7e59 5984 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 5985 failed++;
c2a1e7da
DW
5986 }
5987
5988 return failed;
845dea95
NB
5989}
5990
97b4d0e9
DW
5991#ifndef MDASSEMBLE
5992static int imsm_open_new(struct supertype *c, struct active_array *a,
5993 char *inst)
5994{
5995 struct intel_super *super = c->sb;
5996 struct imsm_super *mpb = super->anchor;
5997
5998 if (atoi(inst) >= mpb->num_raid_devs) {
5999 fprintf(stderr, "%s: subarry index %d, out of range\n",
6000 __func__, atoi(inst));
6001 return -ENODEV;
6002 }
6003
6004 dprintf("imsm: open_new %s\n", inst);
6005 a->info.container_member = atoi(inst);
6006 return 0;
6007}
6008
0c046afd
DW
6009static int is_resyncing(struct imsm_dev *dev)
6010{
6011 struct imsm_map *migr_map;
6012
6013 if (!dev->vol.migr_state)
6014 return 0;
6015
1484e727
DW
6016 if (migr_type(dev) == MIGR_INIT ||
6017 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
6018 return 1;
6019
4c9bc37b
AK
6020 if (migr_type(dev) == MIGR_GEN_MIGR)
6021 return 0;
6022
0c046afd
DW
6023 migr_map = get_imsm_map(dev, 1);
6024
4c9bc37b
AK
6025 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6026 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
6027 return 1;
6028 else
6029 return 0;
6030}
6031
0556e1a2
DW
6032/* return true if we recorded new information */
6033static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 6034{
0556e1a2
DW
6035 __u32 ord;
6036 int slot;
6037 struct imsm_map *map;
86c54047
DW
6038 char buf[MAX_RAID_SERIAL_LEN+3];
6039 unsigned int len, shift = 0;
0556e1a2
DW
6040
6041 /* new failures are always set in map[0] */
6042 map = get_imsm_map(dev, 0);
6043
6044 slot = get_imsm_disk_slot(map, idx);
6045 if (slot < 0)
6046 return 0;
6047
6048 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 6049 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
6050 return 0;
6051
7d0c5e24
LD
6052 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6053 buf[MAX_RAID_SERIAL_LEN] = '\000';
6054 strcat(buf, ":0");
86c54047
DW
6055 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6056 shift = len - MAX_RAID_SERIAL_LEN + 1;
6057 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6058
f2f27e63 6059 disk->status |= FAILED_DISK;
0556e1a2 6060 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
f21e18ca 6061 if (map->failed_disk_num == 0xff)
0556e1a2
DW
6062 map->failed_disk_num = slot;
6063 return 1;
6064}
6065
6066static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6067{
6068 mark_failure(dev, disk, idx);
6069
6070 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6071 return;
6072
47ee5a45
DW
6073 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6074 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6075}
6076
33414a01
DW
6077static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6078{
6079 __u8 map_state;
6080 struct dl *dl;
6081 int failed;
6082
6083 if (!super->missing)
6084 return;
6085 failed = imsm_count_failed(super, dev);
6086 map_state = imsm_check_degraded(super, dev, failed);
6087
6088 dprintf("imsm: mark missing\n");
6089 end_migration(dev, map_state);
6090 for (dl = super->missing; dl; dl = dl->next)
6091 mark_missing(dev, &dl->disk, dl->index);
6092 super->updates_pending++;
6093}
6094
70bdf0dc
AK
6095static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6096{
6097 int used_disks = imsm_num_data_members(dev, 0);
6098 unsigned long long array_blocks;
6099 struct imsm_map *map;
6100
6101 if (used_disks == 0) {
6102 /* when problems occures
6103 * return current array_blocks value
6104 */
6105 array_blocks = __le32_to_cpu(dev->size_high);
6106 array_blocks = array_blocks << 32;
6107 array_blocks += __le32_to_cpu(dev->size_low);
6108
6109 return array_blocks;
6110 }
6111
6112 /* set array size in metadata
6113 */
6114 map = get_imsm_map(dev, 0);
6115 array_blocks = map->blocks_per_member * used_disks;
6116
6117 /* round array size down to closest MB
6118 */
6119 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6120 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6121 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6122
6123 return array_blocks;
6124}
6125
28bce06f
AK
6126static void imsm_set_disk(struct active_array *a, int n, int state);
6127
0e2d1a4e
AK
6128static void imsm_progress_container_reshape(struct intel_super *super)
6129{
6130 /* if no device has a migr_state, but some device has a
6131 * different number of members than the previous device, start
6132 * changing the number of devices in this device to match
6133 * previous.
6134 */
6135 struct imsm_super *mpb = super->anchor;
6136 int prev_disks = -1;
6137 int i;
1dfaa380 6138 int copy_map_size;
0e2d1a4e
AK
6139
6140 for (i = 0; i < mpb->num_raid_devs; i++) {
6141 struct imsm_dev *dev = get_imsm_dev(super, i);
6142 struct imsm_map *map = get_imsm_map(dev, 0);
6143 struct imsm_map *map2;
6144 int prev_num_members;
0e2d1a4e
AK
6145
6146 if (dev->vol.migr_state)
6147 return;
6148
6149 if (prev_disks == -1)
6150 prev_disks = map->num_members;
6151 if (prev_disks == map->num_members)
6152 continue;
6153
6154 /* OK, this array needs to enter reshape mode.
6155 * i.e it needs a migr_state
6156 */
6157
1dfaa380 6158 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
6159 prev_num_members = map->num_members;
6160 map->num_members = prev_disks;
6161 dev->vol.migr_state = 1;
6162 dev->vol.curr_migr_unit = 0;
ea672ee1 6163 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
6164 for (i = prev_num_members;
6165 i < map->num_members; i++)
6166 set_imsm_ord_tbl_ent(map, i, i);
6167 map2 = get_imsm_map(dev, 1);
6168 /* Copy the current map */
1dfaa380 6169 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
6170 map2->num_members = prev_num_members;
6171
70bdf0dc 6172 imsm_set_array_size(dev);
0e2d1a4e
AK
6173 super->updates_pending++;
6174 }
6175}
6176
aad6f216 6177/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
6178 * states are handled in imsm_set_disk() with one exception, when a
6179 * resync is stopped due to a new failure this routine will set the
6180 * 'degraded' state for the array.
6181 */
01f157d7 6182static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
6183{
6184 int inst = a->info.container_member;
6185 struct intel_super *super = a->container->sb;
949c47a0 6186 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6187 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
6188 int failed = imsm_count_failed(super, dev);
6189 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 6190 __u32 blocks_per_unit;
a862209d 6191
1af97990
AK
6192 if (dev->vol.migr_state &&
6193 dev->vol.migr_type == MIGR_GEN_MIGR) {
6194 /* array state change is blocked due to reshape action
aad6f216
N
6195 * We might need to
6196 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6197 * - finish the reshape (if last_checkpoint is big and action != reshape)
6198 * - update curr_migr_unit
1af97990 6199 */
aad6f216
N
6200 if (a->curr_action == reshape) {
6201 /* still reshaping, maybe update curr_migr_unit */
633b5610 6202 goto mark_checkpoint;
aad6f216
N
6203 } else {
6204 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6205 /* for some reason we aborted the reshape.
b66e591b
AK
6206 *
6207 * disable automatic metadata rollback
6208 * user action is required to recover process
aad6f216 6209 */
b66e591b 6210 if (0) {
aad6f216
N
6211 struct imsm_map *map2 = get_imsm_map(dev, 1);
6212 dev->vol.migr_state = 0;
ea672ee1 6213 set_migr_type(dev, 0);
aad6f216
N
6214 dev->vol.curr_migr_unit = 0;
6215 memcpy(map, map2, sizeof_imsm_map(map2));
6216 super->updates_pending++;
b66e591b 6217 }
aad6f216
N
6218 }
6219 if (a->last_checkpoint >= a->info.component_size) {
6220 unsigned long long array_blocks;
6221 int used_disks;
e154ced3 6222 struct mdinfo *mdi;
aad6f216 6223
9653001d 6224 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
6225 if (used_disks > 0) {
6226 array_blocks =
6227 map->blocks_per_member *
6228 used_disks;
6229 /* round array size down to closest MB
6230 */
6231 array_blocks = (array_blocks
6232 >> SECT_PER_MB_SHIFT)
6233 << SECT_PER_MB_SHIFT;
d55adef9
AK
6234 a->info.custom_array_size = array_blocks;
6235 /* encourage manager to update array
6236 * size
6237 */
e154ced3 6238
d55adef9 6239 a->check_reshape = 1;
633b5610 6240 }
e154ced3
AK
6241 /* finalize online capacity expansion/reshape */
6242 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6243 imsm_set_disk(a,
6244 mdi->disk.raid_disk,
6245 mdi->curr_state);
6246
0e2d1a4e 6247 imsm_progress_container_reshape(super);
e154ced3 6248 }
aad6f216 6249 }
1af97990
AK
6250 }
6251
47ee5a45 6252 /* before we activate this array handle any missing disks */
33414a01
DW
6253 if (consistent == 2)
6254 handle_missing(super, dev);
1e5c6983 6255
0c046afd 6256 if (consistent == 2 &&
b7941fd6 6257 (!is_resync_complete(&a->info) ||
0c046afd
DW
6258 map_state != IMSM_T_STATE_NORMAL ||
6259 dev->vol.migr_state))
01f157d7 6260 consistent = 0;
272906ef 6261
b7941fd6 6262 if (is_resync_complete(&a->info)) {
0c046afd 6263 /* complete intialization / resync,
0556e1a2
DW
6264 * recovery and interrupted recovery is completed in
6265 * ->set_disk
0c046afd
DW
6266 */
6267 if (is_resyncing(dev)) {
6268 dprintf("imsm: mark resync done\n");
f8f603f1 6269 end_migration(dev, map_state);
115c3803 6270 super->updates_pending++;
484240d8 6271 a->last_checkpoint = 0;
115c3803 6272 }
b9172665
AK
6273 } else if ((!is_resyncing(dev) && !failed) &&
6274 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 6275 /* mark the start of the init process if nothing is failed */
b7941fd6 6276 dprintf("imsm: mark resync start\n");
1484e727 6277 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 6278 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 6279 else
8e59f3d8 6280 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 6281 super->updates_pending++;
115c3803 6282 }
a862209d 6283
633b5610 6284mark_checkpoint:
5b83bacf
AK
6285 /* skip checkpointing for general migration,
6286 * it is controlled in mdadm
6287 */
6288 if (is_gen_migration(dev))
6289 goto skip_mark_checkpoint;
6290
1e5c6983 6291 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 6292 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 6293 if (blocks_per_unit) {
1e5c6983
DW
6294 __u32 units32;
6295 __u64 units;
6296
4f0a7acc 6297 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
6298 units32 = units;
6299
6300 /* check that we did not overflow 32-bits, and that
6301 * curr_migr_unit needs updating
6302 */
6303 if (units32 == units &&
bfd80a56 6304 units32 != 0 &&
1e5c6983
DW
6305 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6306 dprintf("imsm: mark checkpoint (%u)\n", units32);
6307 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6308 super->updates_pending++;
6309 }
6310 }
f8f603f1 6311
5b83bacf 6312skip_mark_checkpoint:
3393c6af 6313 /* mark dirty / clean */
0c046afd 6314 if (dev->vol.dirty != !consistent) {
b7941fd6 6315 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
6316 if (consistent)
6317 dev->vol.dirty = 0;
6318 else
6319 dev->vol.dirty = 1;
a862209d
DW
6320 super->updates_pending++;
6321 }
28bce06f 6322
01f157d7 6323 return consistent;
a862209d
DW
6324}
6325
8d45d196 6326static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 6327{
8d45d196
DW
6328 int inst = a->info.container_member;
6329 struct intel_super *super = a->container->sb;
949c47a0 6330 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6331 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 6332 struct imsm_disk *disk;
0c046afd 6333 int failed;
b10b37b8 6334 __u32 ord;
0c046afd 6335 __u8 map_state;
8d45d196
DW
6336
6337 if (n > map->num_members)
6338 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6339 n, map->num_members - 1);
6340
6341 if (n < 0)
6342 return;
6343
4e6e574a 6344 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 6345
98130f40 6346 ord = get_imsm_ord_tbl_ent(dev, n, -1);
b10b37b8 6347 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 6348
5802a811 6349 /* check for new failures */
0556e1a2
DW
6350 if (state & DS_FAULTY) {
6351 if (mark_failure(dev, disk, ord_to_idx(ord)))
6352 super->updates_pending++;
8d45d196 6353 }
47ee5a45 6354
19859edc 6355 /* check if in_sync */
0556e1a2 6356 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
6357 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6358
6359 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6360 super->updates_pending++;
6361 }
8d45d196 6362
0c046afd
DW
6363 failed = imsm_count_failed(super, dev);
6364 map_state = imsm_check_degraded(super, dev, failed);
5802a811 6365
0c046afd
DW
6366 /* check if recovery complete, newly degraded, or failed */
6367 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 6368 end_migration(dev, map_state);
0556e1a2
DW
6369 map = get_imsm_map(dev, 0);
6370 map->failed_disk_num = ~0;
0c046afd 6371 super->updates_pending++;
484240d8 6372 a->last_checkpoint = 0;
0c046afd
DW
6373 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6374 map->map_state != map_state &&
6375 !dev->vol.migr_state) {
6376 dprintf("imsm: mark degraded\n");
6377 map->map_state = map_state;
6378 super->updates_pending++;
484240d8 6379 a->last_checkpoint = 0;
0c046afd
DW
6380 } else if (map_state == IMSM_T_STATE_FAILED &&
6381 map->map_state != map_state) {
6382 dprintf("imsm: mark failed\n");
f8f603f1 6383 end_migration(dev, map_state);
0c046afd 6384 super->updates_pending++;
484240d8 6385 a->last_checkpoint = 0;
28bce06f
AK
6386 } else if (is_gen_migration(dev)) {
6387 dprintf("imsm: Detected General Migration in state: ");
6388 if (map_state == IMSM_T_STATE_NORMAL) {
6389 end_migration(dev, map_state);
6390 map = get_imsm_map(dev, 0);
6391 map->failed_disk_num = ~0;
6392 dprintf("normal\n");
6393 } else {
6394 if (map_state == IMSM_T_STATE_DEGRADED) {
6395 printf("degraded\n");
6396 end_migration(dev, map_state);
6397 } else {
6398 dprintf("failed\n");
6399 }
6400 map->map_state = map_state;
6401 }
6402 super->updates_pending++;
5802a811 6403 }
845dea95
NB
6404}
6405
f796af5d 6406static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6407{
f796af5d 6408 void *buf = mpb;
c2a1e7da
DW
6409 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6410 unsigned long long dsize;
6411 unsigned long long sectors;
6412
6413 get_dev_size(fd, NULL, &dsize);
6414
272f648f
DW
6415 if (mpb_size > 512) {
6416 /* -1 to account for anchor */
6417 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6418
272f648f
DW
6419 /* write the extended mpb to the sectors preceeding the anchor */
6420 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6421 return 1;
c2a1e7da 6422
f21e18ca
N
6423 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6424 != 512 * sectors)
272f648f
DW
6425 return 1;
6426 }
c2a1e7da 6427
272f648f
DW
6428 /* first block is stored on second to last sector of the disk */
6429 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6430 return 1;
6431
f796af5d 6432 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6433 return 1;
6434
c2a1e7da
DW
6435 return 0;
6436}
6437
2e735d19 6438static void imsm_sync_metadata(struct supertype *container)
845dea95 6439{
2e735d19 6440 struct intel_super *super = container->sb;
c2a1e7da 6441
1a64be56 6442 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6443 if (!super->updates_pending)
6444 return;
6445
36988a3d 6446 write_super_imsm(container, 0);
c2a1e7da
DW
6447
6448 super->updates_pending = 0;
845dea95
NB
6449}
6450
272906ef
DW
6451static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6452{
6453 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6454 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6455 struct dl *dl;
6456
6457 for (dl = super->disks; dl; dl = dl->next)
6458 if (dl->index == i)
6459 break;
6460
25ed7e59 6461 if (dl && is_failed(&dl->disk))
272906ef
DW
6462 dl = NULL;
6463
6464 if (dl)
6465 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6466
6467 return dl;
6468}
6469
a20d2ba5 6470static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6471 struct active_array *a, int activate_new,
6472 struct mdinfo *additional_test_list)
272906ef
DW
6473{
6474 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6475 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6476 struct imsm_super *mpb = super->anchor;
6477 struct imsm_map *map;
272906ef
DW
6478 unsigned long long pos;
6479 struct mdinfo *d;
6480 struct extent *ex;
a20d2ba5 6481 int i, j;
272906ef 6482 int found;
569cc43f
DW
6483 __u32 array_start = 0;
6484 __u32 array_end = 0;
272906ef 6485 struct dl *dl;
6c932028 6486 struct mdinfo *test_list;
272906ef
DW
6487
6488 for (dl = super->disks; dl; dl = dl->next) {
6489 /* If in this array, skip */
6490 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6491 if (d->state_fd >= 0 &&
6492 d->disk.major == dl->major &&
272906ef 6493 d->disk.minor == dl->minor) {
8ba77d32
AK
6494 dprintf("%x:%x already in array\n",
6495 dl->major, dl->minor);
272906ef
DW
6496 break;
6497 }
6498 if (d)
6499 continue;
6c932028
AK
6500 test_list = additional_test_list;
6501 while (test_list) {
6502 if (test_list->disk.major == dl->major &&
6503 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6504 dprintf("%x:%x already in additional test list\n",
6505 dl->major, dl->minor);
6506 break;
6507 }
6c932028 6508 test_list = test_list->next;
8ba77d32 6509 }
6c932028 6510 if (test_list)
8ba77d32 6511 continue;
272906ef 6512
e553d2a4 6513 /* skip in use or failed drives */
25ed7e59 6514 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6515 dl->index == -2) {
6516 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6517 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6518 continue;
6519 }
6520
a20d2ba5
DW
6521 /* skip pure spares when we are looking for partially
6522 * assimilated drives
6523 */
6524 if (dl->index == -1 && !activate_new)
6525 continue;
6526
272906ef 6527 /* Does this unused device have the requisite free space?
a20d2ba5 6528 * It needs to be able to cover all member volumes
272906ef
DW
6529 */
6530 ex = get_extents(super, dl);
6531 if (!ex) {
6532 dprintf("cannot get extents\n");
6533 continue;
6534 }
a20d2ba5
DW
6535 for (i = 0; i < mpb->num_raid_devs; i++) {
6536 dev = get_imsm_dev(super, i);
6537 map = get_imsm_map(dev, 0);
272906ef 6538
a20d2ba5
DW
6539 /* check if this disk is already a member of
6540 * this array
272906ef 6541 */
620b1713 6542 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6543 continue;
6544
6545 found = 0;
6546 j = 0;
6547 pos = 0;
6548 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6549 array_end = array_start +
6550 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6551
6552 do {
6553 /* check that we can start at pba_of_lba0 with
6554 * blocks_per_member of space
6555 */
329c8278 6556 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6557 found = 1;
6558 break;
6559 }
6560 pos = ex[j].start + ex[j].size;
6561 j++;
6562 } while (ex[j-1].size);
6563
6564 if (!found)
272906ef 6565 break;
a20d2ba5 6566 }
272906ef
DW
6567
6568 free(ex);
a20d2ba5 6569 if (i < mpb->num_raid_devs) {
329c8278
DW
6570 dprintf("%x:%x does not have %u to %u available\n",
6571 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6572 /* No room */
6573 continue;
a20d2ba5
DW
6574 }
6575 return dl;
272906ef
DW
6576 }
6577
6578 return dl;
6579}
6580
95d07a2c
LM
6581
6582static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6583{
6584 struct imsm_dev *dev2;
6585 struct imsm_map *map;
6586 struct dl *idisk;
6587 int slot;
6588 int idx;
6589 __u8 state;
6590
6591 dev2 = get_imsm_dev(cont->sb, dev_idx);
6592 if (dev2) {
6593 state = imsm_check_degraded(cont->sb, dev2, failed);
6594 if (state == IMSM_T_STATE_FAILED) {
6595 map = get_imsm_map(dev2, 0);
6596 if (!map)
6597 return 1;
6598 for (slot = 0; slot < map->num_members; slot++) {
6599 /*
6600 * Check if failed disks are deleted from intel
6601 * disk list or are marked to be deleted
6602 */
98130f40 6603 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6604 idisk = get_imsm_dl_disk(cont->sb, idx);
6605 /*
6606 * Do not rebuild the array if failed disks
6607 * from failed sub-array are not removed from
6608 * container.
6609 */
6610 if (idisk &&
6611 is_failed(&idisk->disk) &&
6612 (idisk->action != DISK_REMOVE))
6613 return 0;
6614 }
6615 }
6616 }
6617 return 1;
6618}
6619
88758e9d
DW
6620static struct mdinfo *imsm_activate_spare(struct active_array *a,
6621 struct metadata_update **updates)
6622{
6623 /**
d23fe947
DW
6624 * Find a device with unused free space and use it to replace a
6625 * failed/vacant region in an array. We replace failed regions one a
6626 * array at a time. The result is that a new spare disk will be added
6627 * to the first failed array and after the monitor has finished
6628 * propagating failures the remainder will be consumed.
88758e9d 6629 *
d23fe947
DW
6630 * FIXME add a capability for mdmon to request spares from another
6631 * container.
88758e9d
DW
6632 */
6633
6634 struct intel_super *super = a->container->sb;
88758e9d 6635 int inst = a->info.container_member;
949c47a0 6636 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6637 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6638 int failed = a->info.array.raid_disks;
6639 struct mdinfo *rv = NULL;
6640 struct mdinfo *d;
6641 struct mdinfo *di;
6642 struct metadata_update *mu;
6643 struct dl *dl;
6644 struct imsm_update_activate_spare *u;
6645 int num_spares = 0;
6646 int i;
95d07a2c 6647 int allowed;
88758e9d
DW
6648
6649 for (d = a->info.devs ; d ; d = d->next) {
6650 if ((d->curr_state & DS_FAULTY) &&
6651 d->state_fd >= 0)
6652 /* wait for Removal to happen */
6653 return NULL;
6654 if (d->state_fd >= 0)
6655 failed--;
6656 }
6657
6658 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6659 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 6660
e2962bfc
AK
6661 if (imsm_reshape_blocks_arrays_changes(super))
6662 return NULL;
1af97990 6663
89c67882
AK
6664 if (a->info.array.level == 4)
6665 /* No repair for takeovered array
6666 * imsm doesn't support raid4
6667 */
6668 return NULL;
6669
fb49eef2 6670 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
6671 return NULL;
6672
95d07a2c
LM
6673 /*
6674 * If there are any failed disks check state of the other volume.
6675 * Block rebuild if the another one is failed until failed disks
6676 * are removed from container.
6677 */
6678 if (failed) {
c4acd1e5 6679 dprintf("found failed disks in %.*s, check if there another"
95d07a2c 6680 "failed sub-array.\n",
c4acd1e5 6681 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
6682 /* check if states of the other volumes allow for rebuild */
6683 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6684 if (i != inst) {
6685 allowed = imsm_rebuild_allowed(a->container,
6686 i, failed);
6687 if (!allowed)
6688 return NULL;
6689 }
6690 }
6691 }
6692
88758e9d 6693 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6694 for (i = 0; i < a->info.array.raid_disks; i++) {
6695 for (d = a->info.devs ; d ; d = d->next)
6696 if (d->disk.raid_disk == i)
6697 break;
6698 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6699 if (d && (d->state_fd >= 0))
6700 continue;
6701
272906ef 6702 /*
a20d2ba5
DW
6703 * OK, this device needs recovery. Try to re-add the
6704 * previous occupant of this slot, if this fails see if
6705 * we can continue the assimilation of a spare that was
6706 * partially assimilated, finally try to activate a new
6707 * spare.
272906ef
DW
6708 */
6709 dl = imsm_readd(super, i, a);
6710 if (!dl)
b303fe21 6711 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 6712 if (!dl)
b303fe21 6713 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
6714 if (!dl)
6715 continue;
6716
6717 /* found a usable disk with enough space */
6718 di = malloc(sizeof(*di));
79244939
DW
6719 if (!di)
6720 continue;
272906ef
DW
6721 memset(di, 0, sizeof(*di));
6722
6723 /* dl->index will be -1 in the case we are activating a
6724 * pristine spare. imsm_process_update() will create a
6725 * new index in this case. Once a disk is found to be
6726 * failed in all member arrays it is kicked from the
6727 * metadata
6728 */
6729 di->disk.number = dl->index;
d23fe947 6730
272906ef
DW
6731 /* (ab)use di->devs to store a pointer to the device
6732 * we chose
6733 */
6734 di->devs = (struct mdinfo *) dl;
6735
6736 di->disk.raid_disk = i;
6737 di->disk.major = dl->major;
6738 di->disk.minor = dl->minor;
6739 di->disk.state = 0;
d23534e4 6740 di->recovery_start = 0;
272906ef
DW
6741 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6742 di->component_size = a->info.component_size;
6743 di->container_member = inst;
148acb7b 6744 super->random = random32();
272906ef
DW
6745 di->next = rv;
6746 rv = di;
6747 num_spares++;
6748 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6749 i, di->data_offset);
88758e9d
DW
6750 }
6751
6752 if (!rv)
6753 /* No spares found */
6754 return rv;
6755 /* Now 'rv' has a list of devices to return.
6756 * Create a metadata_update record to update the
6757 * disk_ord_tbl for the array
6758 */
6759 mu = malloc(sizeof(*mu));
79244939
DW
6760 if (mu) {
6761 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6762 if (mu->buf == NULL) {
6763 free(mu);
6764 mu = NULL;
6765 }
6766 }
6767 if (!mu) {
6768 while (rv) {
6769 struct mdinfo *n = rv->next;
6770
6771 free(rv);
6772 rv = n;
6773 }
6774 return NULL;
6775 }
6776
88758e9d 6777 mu->space = NULL;
cb23f1f4 6778 mu->space_list = NULL;
88758e9d
DW
6779 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6780 mu->next = *updates;
6781 u = (struct imsm_update_activate_spare *) mu->buf;
6782
6783 for (di = rv ; di ; di = di->next) {
6784 u->type = update_activate_spare;
d23fe947
DW
6785 u->dl = (struct dl *) di->devs;
6786 di->devs = NULL;
88758e9d
DW
6787 u->slot = di->disk.raid_disk;
6788 u->array = inst;
6789 u->next = u + 1;
6790 u++;
6791 }
6792 (u-1)->next = NULL;
6793 *updates = mu;
6794
6795 return rv;
6796}
6797
54c2c1ea 6798static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6799{
54c2c1ea
DW
6800 struct imsm_dev *dev = get_imsm_dev(super, idx);
6801 struct imsm_map *map = get_imsm_map(dev, 0);
6802 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6803 struct disk_info *inf = get_disk_info(u);
6804 struct imsm_disk *disk;
8273f55e
DW
6805 int i;
6806 int j;
8273f55e 6807
54c2c1ea 6808 for (i = 0; i < map->num_members; i++) {
98130f40 6809 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6810 for (j = 0; j < new_map->num_members; j++)
6811 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6812 return 1;
6813 }
6814
6815 return 0;
6816}
6817
1a64be56
LM
6818
6819static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6820{
6821 struct dl *dl = NULL;
6822 for (dl = super->disks; dl; dl = dl->next)
6823 if ((dl->major == major) && (dl->minor == minor))
6824 return dl;
6825 return NULL;
6826}
6827
6828static int remove_disk_super(struct intel_super *super, int major, int minor)
6829{
6830 struct dl *prev = NULL;
6831 struct dl *dl;
6832
6833 prev = NULL;
6834 for (dl = super->disks; dl; dl = dl->next) {
6835 if ((dl->major == major) && (dl->minor == minor)) {
6836 /* remove */
6837 if (prev)
6838 prev->next = dl->next;
6839 else
6840 super->disks = dl->next;
6841 dl->next = NULL;
6842 __free_imsm_disk(dl);
6843 dprintf("%s: removed %x:%x\n",
6844 __func__, major, minor);
6845 break;
6846 }
6847 prev = dl;
6848 }
6849 return 0;
6850}
6851
f21e18ca 6852static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6853
1a64be56
LM
6854static int add_remove_disk_update(struct intel_super *super)
6855{
6856 int check_degraded = 0;
6857 struct dl *disk = NULL;
6858 /* add/remove some spares to/from the metadata/contrainer */
6859 while (super->disk_mgmt_list) {
6860 struct dl *disk_cfg;
6861
6862 disk_cfg = super->disk_mgmt_list;
6863 super->disk_mgmt_list = disk_cfg->next;
6864 disk_cfg->next = NULL;
6865
6866 if (disk_cfg->action == DISK_ADD) {
6867 disk_cfg->next = super->disks;
6868 super->disks = disk_cfg;
6869 check_degraded = 1;
6870 dprintf("%s: added %x:%x\n",
6871 __func__, disk_cfg->major,
6872 disk_cfg->minor);
6873 } else if (disk_cfg->action == DISK_REMOVE) {
6874 dprintf("Disk remove action processed: %x.%x\n",
6875 disk_cfg->major, disk_cfg->minor);
6876 disk = get_disk_super(super,
6877 disk_cfg->major,
6878 disk_cfg->minor);
6879 if (disk) {
6880 /* store action status */
6881 disk->action = DISK_REMOVE;
6882 /* remove spare disks only */
6883 if (disk->index == -1) {
6884 remove_disk_super(super,
6885 disk_cfg->major,
6886 disk_cfg->minor);
6887 }
6888 }
6889 /* release allocate disk structure */
6890 __free_imsm_disk(disk_cfg);
6891 }
6892 }
6893 return check_degraded;
6894}
6895
a29911da
PC
6896
6897static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6898 struct intel_super *super,
6899 void ***space_list)
6900{
6901 struct intel_dev *id;
6902 void **tofree = NULL;
6903 int ret_val = 0;
6904
6905 dprintf("apply_reshape_migration_update()\n");
6906 if ((u->subdev < 0) ||
6907 (u->subdev > 1)) {
6908 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6909 return ret_val;
6910 }
6911 if ((space_list == NULL) || (*space_list == NULL)) {
6912 dprintf("imsm: Error: Memory is not allocated\n");
6913 return ret_val;
6914 }
6915
6916 for (id = super->devlist ; id; id = id->next) {
6917 if (id->index == (unsigned)u->subdev) {
6918 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6919 struct imsm_map *map;
6920 struct imsm_dev *new_dev =
6921 (struct imsm_dev *)*space_list;
6922 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6923 int to_state;
6924 struct dl *new_disk;
6925
6926 if (new_dev == NULL)
6927 return ret_val;
6928 *space_list = **space_list;
6929 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6930 map = get_imsm_map(new_dev, 0);
6931 if (migr_map) {
6932 dprintf("imsm: Error: migration in progress");
6933 return ret_val;
6934 }
6935
6936 to_state = map->map_state;
6937 if ((u->new_level == 5) && (map->raid_level == 0)) {
6938 map->num_members++;
6939 /* this should not happen */
6940 if (u->new_disks[0] < 0) {
6941 map->failed_disk_num =
6942 map->num_members - 1;
6943 to_state = IMSM_T_STATE_DEGRADED;
6944 } else
6945 to_state = IMSM_T_STATE_NORMAL;
6946 }
8e59f3d8 6947 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
6948 if (u->new_level > -1)
6949 map->raid_level = u->new_level;
6950 migr_map = get_imsm_map(new_dev, 1);
6951 if ((u->new_level == 5) &&
6952 (migr_map->raid_level == 0)) {
6953 int ord = map->num_members - 1;
6954 migr_map->num_members--;
6955 if (u->new_disks[0] < 0)
6956 ord |= IMSM_ORD_REBUILD;
6957 set_imsm_ord_tbl_ent(map,
6958 map->num_members - 1,
6959 ord);
6960 }
6961 id->dev = new_dev;
6962 tofree = (void **)dev;
6963
4bba0439
PC
6964 /* update chunk size
6965 */
6966 if (u->new_chunksize > 0)
6967 map->blocks_per_strip =
6968 __cpu_to_le16(u->new_chunksize * 2);
6969
a29911da
PC
6970 /* add disk
6971 */
6972 if ((u->new_level != 5) ||
6973 (migr_map->raid_level != 0) ||
6974 (migr_map->raid_level == map->raid_level))
6975 goto skip_disk_add;
6976
6977 if (u->new_disks[0] >= 0) {
6978 /* use passes spare
6979 */
6980 new_disk = get_disk_super(super,
6981 major(u->new_disks[0]),
6982 minor(u->new_disks[0]));
6983 dprintf("imsm: new disk for reshape is: %i:%i "
6984 "(%p, index = %i)\n",
6985 major(u->new_disks[0]),
6986 minor(u->new_disks[0]),
6987 new_disk, new_disk->index);
6988 if (new_disk == NULL)
6989 goto error_disk_add;
6990
6991 new_disk->index = map->num_members - 1;
6992 /* slot to fill in autolayout
6993 */
6994 new_disk->raiddisk = new_disk->index;
6995 new_disk->disk.status |= CONFIGURED_DISK;
6996 new_disk->disk.status &= ~SPARE_DISK;
6997 } else
6998 goto error_disk_add;
6999
7000skip_disk_add:
7001 *tofree = *space_list;
7002 /* calculate new size
7003 */
7004 imsm_set_array_size(new_dev);
7005
7006 ret_val = 1;
7007 }
7008 }
7009
7010 if (tofree)
7011 *space_list = tofree;
7012 return ret_val;
7013
7014error_disk_add:
7015 dprintf("Error: imsm: Cannot find disk.\n");
7016 return ret_val;
7017}
7018
061d7da3
LO
7019static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7020 struct intel_super *super,
7021 struct active_array *active_array)
7022{
7023 struct imsm_super *mpb = super->anchor;
7024 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7025 struct imsm_map *map = get_imsm_map(dev, 0);
7026 struct imsm_map *migr_map;
7027 struct active_array *a;
7028 struct imsm_disk *disk;
7029 __u8 to_state;
7030 struct dl *dl;
7031 unsigned int found;
7032 int failed;
5961eeec 7033 int victim;
061d7da3 7034 int i;
5961eeec 7035 int second_map_created = 0;
061d7da3 7036
5961eeec 7037 for (; u; u = u->next) {
7038 victim = get_imsm_disk_idx(dev, u->slot, -1);
061d7da3 7039
5961eeec 7040 if (victim < 0)
7041 return 0;
061d7da3 7042
5961eeec 7043 for (dl = super->disks; dl; dl = dl->next)
7044 if (dl == u->dl)
7045 break;
061d7da3 7046
5961eeec 7047 if (!dl) {
7048 fprintf(stderr, "error: imsm_activate_spare passed "
7049 "an unknown disk (index: %d)\n",
7050 u->dl->index);
7051 return 0;
7052 }
061d7da3 7053
5961eeec 7054 /* count failures (excluding rebuilds and the victim)
7055 * to determine map[0] state
7056 */
7057 failed = 0;
7058 for (i = 0; i < map->num_members; i++) {
7059 if (i == u->slot)
7060 continue;
7061 disk = get_imsm_disk(super,
7062 get_imsm_disk_idx(dev, i, -1));
7063 if (!disk || is_failed(disk))
7064 failed++;
7065 }
061d7da3 7066
5961eeec 7067 /* adding a pristine spare, assign a new index */
7068 if (dl->index < 0) {
7069 dl->index = super->anchor->num_disks;
7070 super->anchor->num_disks++;
7071 }
7072 disk = &dl->disk;
7073 disk->status |= CONFIGURED_DISK;
7074 disk->status &= ~SPARE_DISK;
7075
7076 /* mark rebuild */
7077 to_state = imsm_check_degraded(super, dev, failed);
7078 if (!second_map_created) {
7079 second_map_created = 1;
7080 map->map_state = IMSM_T_STATE_DEGRADED;
7081 migrate(dev, super, to_state, MIGR_REBUILD);
7082 } else
7083 map->map_state = to_state;
7084 migr_map = get_imsm_map(dev, 1);
7085 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7086 set_imsm_ord_tbl_ent(migr_map, u->slot,
7087 dl->index | IMSM_ORD_REBUILD);
7088
7089 /* update the family_num to mark a new container
7090 * generation, being careful to record the existing
7091 * family_num in orig_family_num to clean up after
7092 * earlier mdadm versions that neglected to set it.
7093 */
7094 if (mpb->orig_family_num == 0)
7095 mpb->orig_family_num = mpb->family_num;
7096 mpb->family_num += super->random;
7097
7098 /* count arrays using the victim in the metadata */
7099 found = 0;
7100 for (a = active_array; a ; a = a->next) {
7101 dev = get_imsm_dev(super, a->info.container_member);
7102 map = get_imsm_map(dev, 0);
061d7da3 7103
5961eeec 7104 if (get_imsm_disk_slot(map, victim) >= 0)
7105 found++;
7106 }
061d7da3 7107
5961eeec 7108 /* delete the victim if it is no longer being
7109 * utilized anywhere
061d7da3 7110 */
5961eeec 7111 if (!found) {
7112 struct dl **dlp;
061d7da3 7113
5961eeec 7114 /* We know that 'manager' isn't touching anything,
7115 * so it is safe to delete
7116 */
7117 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
7118 if ((*dlp)->index == victim)
7119 break;
5961eeec 7120
7121 /* victim may be on the missing list */
7122 if (!*dlp)
7123 for (dlp = &super->missing; *dlp;
7124 dlp = &(*dlp)->next)
7125 if ((*dlp)->index == victim)
7126 break;
7127 imsm_delete(super, dlp, victim);
7128 }
061d7da3
LO
7129 }
7130
7131 return 1;
7132}
a29911da 7133
2e5dc010
N
7134static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7135 struct intel_super *super,
7136 void ***space_list)
7137{
7138 struct dl *new_disk;
7139 struct intel_dev *id;
7140 int i;
7141 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 7142 int disk_count = u->old_raid_disks;
2e5dc010
N
7143 void **tofree = NULL;
7144 int devices_to_reshape = 1;
7145 struct imsm_super *mpb = super->anchor;
7146 int ret_val = 0;
d098291a 7147 unsigned int dev_id;
2e5dc010 7148
ed7333bd 7149 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
7150
7151 /* enable spares to use in array */
7152 for (i = 0; i < delta_disks; i++) {
7153 new_disk = get_disk_super(super,
7154 major(u->new_disks[i]),
7155 minor(u->new_disks[i]));
ed7333bd
AK
7156 dprintf("imsm: new disk for reshape is: %i:%i "
7157 "(%p, index = %i)\n",
2e5dc010
N
7158 major(u->new_disks[i]), minor(u->new_disks[i]),
7159 new_disk, new_disk->index);
7160 if ((new_disk == NULL) ||
7161 ((new_disk->index >= 0) &&
7162 (new_disk->index < u->old_raid_disks)))
7163 goto update_reshape_exit;
ee4beede 7164 new_disk->index = disk_count++;
2e5dc010
N
7165 /* slot to fill in autolayout
7166 */
7167 new_disk->raiddisk = new_disk->index;
7168 new_disk->disk.status |=
7169 CONFIGURED_DISK;
7170 new_disk->disk.status &= ~SPARE_DISK;
7171 }
7172
ed7333bd
AK
7173 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7174 mpb->num_raid_devs);
2e5dc010
N
7175 /* manage changes in volume
7176 */
d098291a 7177 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
7178 void **sp = *space_list;
7179 struct imsm_dev *newdev;
7180 struct imsm_map *newmap, *oldmap;
7181
d098291a
AK
7182 for (id = super->devlist ; id; id = id->next) {
7183 if (id->index == dev_id)
7184 break;
7185 }
7186 if (id == NULL)
7187 break;
2e5dc010
N
7188 if (!sp)
7189 continue;
7190 *space_list = *sp;
7191 newdev = (void*)sp;
7192 /* Copy the dev, but not (all of) the map */
7193 memcpy(newdev, id->dev, sizeof(*newdev));
7194 oldmap = get_imsm_map(id->dev, 0);
7195 newmap = get_imsm_map(newdev, 0);
7196 /* Copy the current map */
7197 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7198 /* update one device only
7199 */
7200 if (devices_to_reshape) {
ed7333bd
AK
7201 dprintf("imsm: modifying subdev: %i\n",
7202 id->index);
2e5dc010
N
7203 devices_to_reshape--;
7204 newdev->vol.migr_state = 1;
7205 newdev->vol.curr_migr_unit = 0;
ea672ee1 7206 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
7207 newmap->num_members = u->new_raid_disks;
7208 for (i = 0; i < delta_disks; i++) {
7209 set_imsm_ord_tbl_ent(newmap,
7210 u->old_raid_disks + i,
7211 u->old_raid_disks + i);
7212 }
7213 /* New map is correct, now need to save old map
7214 */
7215 newmap = get_imsm_map(newdev, 1);
7216 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7217
70bdf0dc 7218 imsm_set_array_size(newdev);
2e5dc010
N
7219 }
7220
7221 sp = (void **)id->dev;
7222 id->dev = newdev;
7223 *sp = tofree;
7224 tofree = sp;
8e59f3d8
AK
7225
7226 /* Clear migration record */
7227 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 7228 }
819bc634
AK
7229 if (tofree)
7230 *space_list = tofree;
2e5dc010
N
7231 ret_val = 1;
7232
7233update_reshape_exit:
7234
7235 return ret_val;
7236}
7237
bb025c2f 7238static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
7239 struct intel_super *super,
7240 void ***space_list)
bb025c2f
KW
7241{
7242 struct imsm_dev *dev = NULL;
8ca6df95
KW
7243 struct intel_dev *dv;
7244 struct imsm_dev *dev_new;
bb025c2f
KW
7245 struct imsm_map *map;
7246 struct dl *dm, *du;
8ca6df95 7247 int i;
bb025c2f
KW
7248
7249 for (dv = super->devlist; dv; dv = dv->next)
7250 if (dv->index == (unsigned int)u->subarray) {
7251 dev = dv->dev;
7252 break;
7253 }
7254
7255 if (dev == NULL)
7256 return 0;
7257
7258 map = get_imsm_map(dev, 0);
7259
7260 if (u->direction == R10_TO_R0) {
43d5ec18
KW
7261 /* Number of failed disks must be half of initial disk number */
7262 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7263 return 0;
7264
bb025c2f
KW
7265 /* iterate through devices to mark removed disks as spare */
7266 for (dm = super->disks; dm; dm = dm->next) {
7267 if (dm->disk.status & FAILED_DISK) {
7268 int idx = dm->index;
7269 /* update indexes on the disk list */
7270/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7271 the index values will end up being correct.... NB */
7272 for (du = super->disks; du; du = du->next)
7273 if (du->index > idx)
7274 du->index--;
7275 /* mark as spare disk */
a8619d23 7276 mark_spare(dm);
bb025c2f
KW
7277 }
7278 }
bb025c2f
KW
7279 /* update map */
7280 map->num_members = map->num_members / 2;
7281 map->map_state = IMSM_T_STATE_NORMAL;
7282 map->num_domains = 1;
7283 map->raid_level = 0;
7284 map->failed_disk_num = -1;
7285 }
7286
8ca6df95
KW
7287 if (u->direction == R0_TO_R10) {
7288 void **space;
7289 /* update slots in current disk list */
7290 for (dm = super->disks; dm; dm = dm->next) {
7291 if (dm->index >= 0)
7292 dm->index *= 2;
7293 }
7294 /* create new *missing* disks */
7295 for (i = 0; i < map->num_members; i++) {
7296 space = *space_list;
7297 if (!space)
7298 continue;
7299 *space_list = *space;
7300 du = (void *)space;
7301 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
7302 du->fd = -1;
7303 du->minor = 0;
7304 du->major = 0;
7305 du->index = (i * 2) + 1;
7306 sprintf((char *)du->disk.serial,
7307 " MISSING_%d", du->index);
7308 sprintf((char *)du->serial,
7309 "MISSING_%d", du->index);
7310 du->next = super->missing;
7311 super->missing = du;
7312 }
7313 /* create new dev and map */
7314 space = *space_list;
7315 if (!space)
7316 return 0;
7317 *space_list = *space;
7318 dev_new = (void *)space;
7319 memcpy(dev_new, dev, sizeof(*dev));
7320 /* update new map */
7321 map = get_imsm_map(dev_new, 0);
8ca6df95 7322 map->num_members = map->num_members * 2;
1a2487c2 7323 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
7324 map->num_domains = 2;
7325 map->raid_level = 1;
7326 /* replace dev<->dev_new */
7327 dv->dev = dev_new;
7328 }
bb025c2f
KW
7329 /* update disk order table */
7330 for (du = super->disks; du; du = du->next)
7331 if (du->index >= 0)
7332 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 7333 for (du = super->missing; du; du = du->next)
1a2487c2
KW
7334 if (du->index >= 0) {
7335 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 7336 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 7337 }
bb025c2f
KW
7338
7339 return 1;
7340}
7341
e8319a19
DW
7342static void imsm_process_update(struct supertype *st,
7343 struct metadata_update *update)
7344{
7345 /**
7346 * crack open the metadata_update envelope to find the update record
7347 * update can be one of:
d195167d
AK
7348 * update_reshape_container_disks - all the arrays in the container
7349 * are being reshaped to have more devices. We need to mark
7350 * the arrays for general migration and convert selected spares
7351 * into active devices.
7352 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
7353 * device in an array, update the disk_ord_tbl. If this disk is
7354 * present in all member arrays then also clear the SPARE_DISK
7355 * flag
d195167d
AK
7356 * update_create_array
7357 * update_kill_array
7358 * update_rename_array
7359 * update_add_remove_disk
e8319a19
DW
7360 */
7361 struct intel_super *super = st->sb;
4d7b1503 7362 struct imsm_super *mpb;
e8319a19
DW
7363 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7364
4d7b1503
DW
7365 /* update requires a larger buf but the allocation failed */
7366 if (super->next_len && !super->next_buf) {
7367 super->next_len = 0;
7368 return;
7369 }
7370
7371 if (super->next_buf) {
7372 memcpy(super->next_buf, super->buf, super->len);
7373 free(super->buf);
7374 super->len = super->next_len;
7375 super->buf = super->next_buf;
7376
7377 super->next_len = 0;
7378 super->next_buf = NULL;
7379 }
7380
7381 mpb = super->anchor;
7382
e8319a19 7383 switch (type) {
0ec5d470
AK
7384 case update_general_migration_checkpoint: {
7385 struct intel_dev *id;
7386 struct imsm_update_general_migration_checkpoint *u =
7387 (void *)update->buf;
7388
7389 dprintf("imsm: process_update() "
7390 "for update_general_migration_checkpoint called\n");
7391
7392 /* find device under general migration */
7393 for (id = super->devlist ; id; id = id->next) {
7394 if (is_gen_migration(id->dev)) {
7395 id->dev->vol.curr_migr_unit =
7396 __cpu_to_le32(u->curr_migr_unit);
7397 super->updates_pending++;
7398 }
7399 }
7400 break;
7401 }
bb025c2f
KW
7402 case update_takeover: {
7403 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
7404 if (apply_takeover_update(u, super, &update->space_list)) {
7405 imsm_update_version_info(super);
bb025c2f 7406 super->updates_pending++;
1a2487c2 7407 }
bb025c2f
KW
7408 break;
7409 }
7410
78b10e66 7411 case update_reshape_container_disks: {
d195167d 7412 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
7413 if (apply_reshape_container_disks_update(
7414 u, super, &update->space_list))
7415 super->updates_pending++;
78b10e66
N
7416 break;
7417 }
48c5303a 7418 case update_reshape_migration: {
a29911da
PC
7419 struct imsm_update_reshape_migration *u = (void *)update->buf;
7420 if (apply_reshape_migration_update(
7421 u, super, &update->space_list))
7422 super->updates_pending++;
48c5303a
PC
7423 break;
7424 }
e8319a19
DW
7425 case update_activate_spare: {
7426 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
7427 if (apply_update_activate_spare(u, super, st->arrays))
7428 super->updates_pending++;
8273f55e
DW
7429 break;
7430 }
7431 case update_create_array: {
7432 /* someone wants to create a new array, we need to be aware of
7433 * a few races/collisions:
7434 * 1/ 'Create' called by two separate instances of mdadm
7435 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7436 * devices that have since been assimilated via
7437 * activate_spare.
7438 * In the event this update can not be carried out mdadm will
7439 * (FIX ME) notice that its update did not take hold.
7440 */
7441 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7442 struct intel_dev *dv;
8273f55e
DW
7443 struct imsm_dev *dev;
7444 struct imsm_map *map, *new_map;
7445 unsigned long long start, end;
7446 unsigned long long new_start, new_end;
7447 int i;
54c2c1ea
DW
7448 struct disk_info *inf;
7449 struct dl *dl;
8273f55e
DW
7450
7451 /* handle racing creates: first come first serve */
7452 if (u->dev_idx < mpb->num_raid_devs) {
7453 dprintf("%s: subarray %d already defined\n",
7454 __func__, u->dev_idx);
ba2de7ba 7455 goto create_error;
8273f55e
DW
7456 }
7457
7458 /* check update is next in sequence */
7459 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7460 dprintf("%s: can not create array %d expected index %d\n",
7461 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7462 goto create_error;
8273f55e
DW
7463 }
7464
a965f303 7465 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
7466 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7467 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7468 inf = get_disk_info(u);
8273f55e
DW
7469
7470 /* handle activate_spare versus create race:
7471 * check to make sure that overlapping arrays do not include
7472 * overalpping disks
7473 */
7474 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7475 dev = get_imsm_dev(super, i);
a965f303 7476 map = get_imsm_map(dev, 0);
8273f55e
DW
7477 start = __le32_to_cpu(map->pba_of_lba0);
7478 end = start + __le32_to_cpu(map->blocks_per_member);
7479 if ((new_start >= start && new_start <= end) ||
7480 (start >= new_start && start <= new_end))
54c2c1ea
DW
7481 /* overlap */;
7482 else
7483 continue;
7484
7485 if (disks_overlap(super, i, u)) {
8273f55e 7486 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7487 goto create_error;
8273f55e
DW
7488 }
7489 }
8273f55e 7490
949c47a0
DW
7491 /* check that prepare update was successful */
7492 if (!update->space) {
7493 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7494 goto create_error;
949c47a0
DW
7495 }
7496
54c2c1ea
DW
7497 /* check that all disks are still active before committing
7498 * changes. FIXME: could we instead handle this by creating a
7499 * degraded array? That's probably not what the user expects,
7500 * so better to drop this update on the floor.
7501 */
7502 for (i = 0; i < new_map->num_members; i++) {
7503 dl = serial_to_dl(inf[i].serial, super);
7504 if (!dl) {
7505 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7506 goto create_error;
54c2c1ea 7507 }
949c47a0
DW
7508 }
7509
8273f55e 7510 super->updates_pending++;
54c2c1ea
DW
7511
7512 /* convert spares to members and fixup ord_tbl */
7513 for (i = 0; i < new_map->num_members; i++) {
7514 dl = serial_to_dl(inf[i].serial, super);
7515 if (dl->index == -1) {
7516 dl->index = mpb->num_disks;
7517 mpb->num_disks++;
7518 dl->disk.status |= CONFIGURED_DISK;
7519 dl->disk.status &= ~SPARE_DISK;
7520 }
7521 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7522 }
7523
ba2de7ba
DW
7524 dv = update->space;
7525 dev = dv->dev;
949c47a0
DW
7526 update->space = NULL;
7527 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7528 dv->index = u->dev_idx;
7529 dv->next = super->devlist;
7530 super->devlist = dv;
8273f55e 7531 mpb->num_raid_devs++;
8273f55e 7532
4d1313e9 7533 imsm_update_version_info(super);
8273f55e 7534 break;
ba2de7ba
DW
7535 create_error:
7536 /* mdmon knows how to release update->space, but not
7537 * ((struct intel_dev *) update->space)->dev
7538 */
7539 if (update->space) {
7540 dv = update->space;
7541 free(dv->dev);
7542 }
8273f55e 7543 break;
e8319a19 7544 }
33414a01
DW
7545 case update_kill_array: {
7546 struct imsm_update_kill_array *u = (void *) update->buf;
7547 int victim = u->dev_idx;
7548 struct active_array *a;
7549 struct intel_dev **dp;
7550 struct imsm_dev *dev;
7551
7552 /* sanity check that we are not affecting the uuid of
7553 * active arrays, or deleting an active array
7554 *
7555 * FIXME when immutable ids are available, but note that
7556 * we'll also need to fixup the invalidated/active
7557 * subarray indexes in mdstat
7558 */
7559 for (a = st->arrays; a; a = a->next)
7560 if (a->info.container_member >= victim)
7561 break;
7562 /* by definition if mdmon is running at least one array
7563 * is active in the container, so checking
7564 * mpb->num_raid_devs is just extra paranoia
7565 */
7566 dev = get_imsm_dev(super, victim);
7567 if (a || !dev || mpb->num_raid_devs == 1) {
7568 dprintf("failed to delete subarray-%d\n", victim);
7569 break;
7570 }
7571
7572 for (dp = &super->devlist; *dp;)
f21e18ca 7573 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7574 *dp = (*dp)->next;
7575 } else {
f21e18ca 7576 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7577 (*dp)->index--;
7578 dp = &(*dp)->next;
7579 }
7580 mpb->num_raid_devs--;
7581 super->updates_pending++;
7582 break;
7583 }
aa534678
DW
7584 case update_rename_array: {
7585 struct imsm_update_rename_array *u = (void *) update->buf;
7586 char name[MAX_RAID_SERIAL_LEN+1];
7587 int target = u->dev_idx;
7588 struct active_array *a;
7589 struct imsm_dev *dev;
7590
7591 /* sanity check that we are not affecting the uuid of
7592 * an active array
7593 */
7594 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7595 name[MAX_RAID_SERIAL_LEN] = '\0';
7596 for (a = st->arrays; a; a = a->next)
7597 if (a->info.container_member == target)
7598 break;
7599 dev = get_imsm_dev(super, u->dev_idx);
7600 if (a || !dev || !check_name(super, name, 1)) {
7601 dprintf("failed to rename subarray-%d\n", target);
7602 break;
7603 }
7604
cdbe98cd 7605 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7606 super->updates_pending++;
7607 break;
7608 }
1a64be56 7609 case update_add_remove_disk: {
43dad3d6 7610 /* we may be able to repair some arrays if disks are
1a64be56
LM
7611 * being added, check teh status of add_remove_disk
7612 * if discs has been added.
7613 */
7614 if (add_remove_disk_update(super)) {
43dad3d6 7615 struct active_array *a;
072b727f
DW
7616
7617 super->updates_pending++;
1a64be56 7618 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7619 a->check_degraded = 1;
7620 }
43dad3d6 7621 break;
e8319a19 7622 }
1a64be56
LM
7623 default:
7624 fprintf(stderr, "error: unsuported process update type:"
7625 "(type: %d)\n", type);
7626 }
e8319a19 7627}
88758e9d 7628
bc0b9d34
PC
7629static struct mdinfo *get_spares_for_grow(struct supertype *st);
7630
8273f55e
DW
7631static void imsm_prepare_update(struct supertype *st,
7632 struct metadata_update *update)
7633{
949c47a0 7634 /**
4d7b1503
DW
7635 * Allocate space to hold new disk entries, raid-device entries or a new
7636 * mpb if necessary. The manager synchronously waits for updates to
7637 * complete in the monitor, so new mpb buffers allocated here can be
7638 * integrated by the monitor thread without worrying about live pointers
7639 * in the manager thread.
8273f55e 7640 */
949c47a0 7641 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7642 struct intel_super *super = st->sb;
7643 struct imsm_super *mpb = super->anchor;
7644 size_t buf_len;
7645 size_t len = 0;
949c47a0
DW
7646
7647 switch (type) {
0ec5d470
AK
7648 case update_general_migration_checkpoint:
7649 dprintf("imsm: prepare_update() "
7650 "for update_general_migration_checkpoint called\n");
7651 break;
abedf5fc
KW
7652 case update_takeover: {
7653 struct imsm_update_takeover *u = (void *)update->buf;
7654 if (u->direction == R0_TO_R10) {
7655 void **tail = (void **)&update->space_list;
7656 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7657 struct imsm_map *map = get_imsm_map(dev, 0);
7658 int num_members = map->num_members;
7659 void *space;
7660 int size, i;
7661 int err = 0;
7662 /* allocate memory for added disks */
7663 for (i = 0; i < num_members; i++) {
7664 size = sizeof(struct dl);
7665 space = malloc(size);
7666 if (!space) {
7667 err++;
7668 break;
7669 }
7670 *tail = space;
7671 tail = space;
7672 *tail = NULL;
7673 }
7674 /* allocate memory for new device */
7675 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7676 (num_members * sizeof(__u32));
7677 space = malloc(size);
7678 if (!space)
7679 err++;
7680 else {
7681 *tail = space;
7682 tail = space;
7683 *tail = NULL;
7684 }
7685 if (!err) {
7686 len = disks_to_mpb_size(num_members * 2);
7687 } else {
7688 /* if allocation didn't success, free buffer */
7689 while (update->space_list) {
7690 void **sp = update->space_list;
7691 update->space_list = *sp;
7692 free(sp);
7693 }
7694 }
7695 }
7696
7697 break;
7698 }
78b10e66 7699 case update_reshape_container_disks: {
d195167d
AK
7700 /* Every raid device in the container is about to
7701 * gain some more devices, and we will enter a
7702 * reconfiguration.
7703 * So each 'imsm_map' will be bigger, and the imsm_vol
7704 * will now hold 2 of them.
7705 * Thus we need new 'struct imsm_dev' allocations sized
7706 * as sizeof_imsm_dev but with more devices in both maps.
7707 */
7708 struct imsm_update_reshape *u = (void *)update->buf;
7709 struct intel_dev *dl;
7710 void **space_tail = (void**)&update->space_list;
7711
7712 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7713
7714 for (dl = super->devlist; dl; dl = dl->next) {
7715 int size = sizeof_imsm_dev(dl->dev, 1);
7716 void *s;
d677e0b8
AK
7717 if (u->new_raid_disks > u->old_raid_disks)
7718 size += sizeof(__u32)*2*
7719 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7720 s = malloc(size);
7721 if (!s)
7722 break;
7723 *space_tail = s;
7724 space_tail = s;
7725 *space_tail = NULL;
7726 }
7727
7728 len = disks_to_mpb_size(u->new_raid_disks);
7729 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7730 break;
7731 }
48c5303a 7732 case update_reshape_migration: {
bc0b9d34
PC
7733 /* for migration level 0->5 we need to add disks
7734 * so the same as for container operation we will copy
7735 * device to the bigger location.
7736 * in memory prepared device and new disk area are prepared
7737 * for usage in process update
7738 */
7739 struct imsm_update_reshape_migration *u = (void *)update->buf;
7740 struct intel_dev *id;
7741 void **space_tail = (void **)&update->space_list;
7742 int size;
7743 void *s;
7744 int current_level = -1;
7745
7746 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7747
7748 /* add space for bigger array in update
7749 */
7750 for (id = super->devlist; id; id = id->next) {
7751 if (id->index == (unsigned)u->subdev) {
7752 size = sizeof_imsm_dev(id->dev, 1);
7753 if (u->new_raid_disks > u->old_raid_disks)
7754 size += sizeof(__u32)*2*
7755 (u->new_raid_disks - u->old_raid_disks);
7756 s = malloc(size);
7757 if (!s)
7758 break;
7759 *space_tail = s;
7760 space_tail = s;
7761 *space_tail = NULL;
7762 break;
7763 }
7764 }
7765 if (update->space_list == NULL)
7766 break;
7767
7768 /* add space for disk in update
7769 */
7770 size = sizeof(struct dl);
7771 s = malloc(size);
7772 if (!s) {
7773 free(update->space_list);
7774 update->space_list = NULL;
7775 break;
7776 }
7777 *space_tail = s;
7778 space_tail = s;
7779 *space_tail = NULL;
7780
7781 /* add spare device to update
7782 */
7783 for (id = super->devlist ; id; id = id->next)
7784 if (id->index == (unsigned)u->subdev) {
7785 struct imsm_dev *dev;
7786 struct imsm_map *map;
7787
7788 dev = get_imsm_dev(super, u->subdev);
7789 map = get_imsm_map(dev, 0);
7790 current_level = map->raid_level;
7791 break;
7792 }
7793 if ((u->new_level == 5) && (u->new_level != current_level)) {
7794 struct mdinfo *spares;
7795
7796 spares = get_spares_for_grow(st);
7797 if (spares) {
7798 struct dl *dl;
7799 struct mdinfo *dev;
7800
7801 dev = spares->devs;
7802 if (dev) {
7803 u->new_disks[0] =
7804 makedev(dev->disk.major,
7805 dev->disk.minor);
7806 dl = get_disk_super(super,
7807 dev->disk.major,
7808 dev->disk.minor);
7809 dl->index = u->old_raid_disks;
7810 dev = dev->next;
7811 }
7812 sysfs_free(spares);
7813 }
7814 }
7815 len = disks_to_mpb_size(u->new_raid_disks);
7816 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7817 break;
7818 }
949c47a0
DW
7819 case update_create_array: {
7820 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7821 struct intel_dev *dv;
54c2c1ea
DW
7822 struct imsm_dev *dev = &u->dev;
7823 struct imsm_map *map = get_imsm_map(dev, 0);
7824 struct dl *dl;
7825 struct disk_info *inf;
7826 int i;
7827 int activate = 0;
949c47a0 7828
54c2c1ea
DW
7829 inf = get_disk_info(u);
7830 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7831 /* allocate a new super->devlist entry */
7832 dv = malloc(sizeof(*dv));
7833 if (dv) {
7834 dv->dev = malloc(len);
7835 if (dv->dev)
7836 update->space = dv;
7837 else {
7838 free(dv);
7839 update->space = NULL;
7840 }
7841 }
949c47a0 7842
54c2c1ea
DW
7843 /* count how many spares will be converted to members */
7844 for (i = 0; i < map->num_members; i++) {
7845 dl = serial_to_dl(inf[i].serial, super);
7846 if (!dl) {
7847 /* hmm maybe it failed?, nothing we can do about
7848 * it here
7849 */
7850 continue;
7851 }
7852 if (count_memberships(dl, super) == 0)
7853 activate++;
7854 }
7855 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7856 break;
7857 default:
7858 break;
7859 }
7860 }
8273f55e 7861
4d7b1503
DW
7862 /* check if we need a larger metadata buffer */
7863 if (super->next_buf)
7864 buf_len = super->next_len;
7865 else
7866 buf_len = super->len;
7867
7868 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7869 /* ok we need a larger buf than what is currently allocated
7870 * if this allocation fails process_update will notice that
7871 * ->next_len is set and ->next_buf is NULL
7872 */
7873 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7874 if (super->next_buf)
7875 free(super->next_buf);
7876
7877 super->next_len = buf_len;
1f45a8ad
DW
7878 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7879 memset(super->next_buf, 0, buf_len);
7880 else
4d7b1503
DW
7881 super->next_buf = NULL;
7882 }
8273f55e
DW
7883}
7884
ae6aad82 7885/* must be called while manager is quiesced */
f21e18ca 7886static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7887{
7888 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7889 struct dl *iter;
7890 struct imsm_dev *dev;
7891 struct imsm_map *map;
24565c9a
DW
7892 int i, j, num_members;
7893 __u32 ord;
ae6aad82 7894
24565c9a
DW
7895 dprintf("%s: deleting device[%d] from imsm_super\n",
7896 __func__, index);
ae6aad82
DW
7897
7898 /* shift all indexes down one */
7899 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7900 if (iter->index > (int)index)
ae6aad82 7901 iter->index--;
47ee5a45 7902 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7903 if (iter->index > (int)index)
47ee5a45 7904 iter->index--;
ae6aad82
DW
7905
7906 for (i = 0; i < mpb->num_raid_devs; i++) {
7907 dev = get_imsm_dev(super, i);
7908 map = get_imsm_map(dev, 0);
24565c9a
DW
7909 num_members = map->num_members;
7910 for (j = 0; j < num_members; j++) {
7911 /* update ord entries being careful not to propagate
7912 * ord-flags to the first map
7913 */
98130f40 7914 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7915
24565c9a
DW
7916 if (ord_to_idx(ord) <= index)
7917 continue;
ae6aad82 7918
24565c9a
DW
7919 map = get_imsm_map(dev, 0);
7920 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7921 map = get_imsm_map(dev, 1);
7922 if (map)
7923 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
7924 }
7925 }
7926
7927 mpb->num_disks--;
7928 super->updates_pending++;
24565c9a
DW
7929 if (*dlp) {
7930 struct dl *dl = *dlp;
7931
7932 *dlp = (*dlp)->next;
7933 __free_imsm_disk(dl);
7934 }
ae6aad82 7935}
9e2d750d 7936#endif /* MDASSEMBLE */
687629c2
AK
7937/*******************************************************************************
7938 * Function: open_backup_targets
7939 * Description: Function opens file descriptors for all devices given in
7940 * info->devs
7941 * Parameters:
7942 * info : general array info
7943 * raid_disks : number of disks
7944 * raid_fds : table of device's file descriptors
7945 * Returns:
7946 * 0 : success
7947 * -1 : fail
7948 ******************************************************************************/
7949int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7950{
7951 struct mdinfo *sd;
7952
7953 for (sd = info->devs ; sd ; sd = sd->next) {
7954 char *dn;
7955
7956 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7957 dprintf("disk is faulty!!\n");
7958 continue;
7959 }
7960
7961 if ((sd->disk.raid_disk >= raid_disks) ||
7962 (sd->disk.raid_disk < 0))
7963 continue;
7964
7965 dn = map_dev(sd->disk.major,
7966 sd->disk.minor, 1);
7967 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7968 if (raid_fds[sd->disk.raid_disk] < 0) {
7969 fprintf(stderr, "cannot open component\n");
7970 return -1;
7971 }
7972 }
7973 return 0;
7974}
7975
9e2d750d 7976#ifndef MDASSEMBLE
687629c2
AK
7977/*******************************************************************************
7978 * Function: init_migr_record_imsm
7979 * Description: Function inits imsm migration record
7980 * Parameters:
7981 * super : imsm internal array info
7982 * dev : device under migration
7983 * info : general array info to find the smallest device
7984 * Returns:
7985 * none
7986 ******************************************************************************/
7987void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7988 struct mdinfo *info)
7989{
7990 struct intel_super *super = st->sb;
7991 struct migr_record *migr_rec = super->migr_rec;
7992 int new_data_disks;
7993 unsigned long long dsize, dev_sectors;
7994 long long unsigned min_dev_sectors = -1LLU;
7995 struct mdinfo *sd;
7996 char nm[30];
7997 int fd;
7998 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7999 struct imsm_map *map_src = get_imsm_map(dev, 1);
8000 unsigned long long num_migr_units;
3ef4403c 8001 unsigned long long array_blocks;
687629c2
AK
8002
8003 memset(migr_rec, 0, sizeof(struct migr_record));
8004 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8005
8006 /* only ascending reshape supported now */
8007 migr_rec->ascending_migr = __cpu_to_le32(1);
8008
8009 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8010 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8011 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
8012 new_data_disks = imsm_num_data_members(dev, 0);
8013 migr_rec->blocks_per_unit =
8014 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8015 migr_rec->dest_depth_per_unit =
8016 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 8017 array_blocks = info->component_size * new_data_disks;
687629c2
AK
8018 num_migr_units =
8019 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8020
8021 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8022 num_migr_units++;
8023 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8024
8025 migr_rec->post_migr_vol_cap = dev->size_low;
8026 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8027
8028
8029 /* Find the smallest dev */
8030 for (sd = info->devs ; sd ; sd = sd->next) {
8031 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8032 fd = dev_open(nm, O_RDONLY);
8033 if (fd < 0)
8034 continue;
8035 get_dev_size(fd, NULL, &dsize);
8036 dev_sectors = dsize / 512;
8037 if (dev_sectors < min_dev_sectors)
8038 min_dev_sectors = dev_sectors;
8039 close(fd);
8040 }
8041 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8042 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8043
8044 write_imsm_migr_rec(st);
8045
8046 return;
8047}
8048
8049/*******************************************************************************
8050 * Function: save_backup_imsm
8051 * Description: Function saves critical data stripes to Migration Copy Area
8052 * and updates the current migration unit status.
8053 * Use restore_stripes() to form a destination stripe,
8054 * and to write it to the Copy Area.
8055 * Parameters:
8056 * st : supertype information
aea93171 8057 * dev : imsm device that backup is saved for
687629c2
AK
8058 * info : general array info
8059 * buf : input buffer
687629c2
AK
8060 * length : length of data to backup (blocks_per_unit)
8061 * Returns:
8062 * 0 : success
8063 *, -1 : fail
8064 ******************************************************************************/
8065int save_backup_imsm(struct supertype *st,
8066 struct imsm_dev *dev,
8067 struct mdinfo *info,
8068 void *buf,
687629c2
AK
8069 int length)
8070{
8071 int rv = -1;
8072 struct intel_super *super = st->sb;
8073 unsigned long long *target_offsets = NULL;
8074 int *targets = NULL;
8075 int i;
8076 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8077 int new_disks = map_dest->num_members;
ab724b98
AK
8078 int dest_layout = 0;
8079 int dest_chunk;
d1877f69
AK
8080 unsigned long long start;
8081 int data_disks = imsm_num_data_members(dev, 0);
687629c2
AK
8082
8083 targets = malloc(new_disks * sizeof(int));
8084 if (!targets)
8085 goto abort;
8086
7e45b550
AK
8087 for (i = 0; i < new_disks; i++)
8088 targets[i] = -1;
8089
687629c2
AK
8090 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8091 if (!target_offsets)
8092 goto abort;
8093
d1877f69 8094 start = info->reshape_progress * 512;
687629c2 8095 for (i = 0; i < new_disks; i++) {
687629c2
AK
8096 target_offsets[i] = (unsigned long long)
8097 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
8098 /* move back copy area adderss, it will be moved forward
8099 * in restore_stripes() using start input variable
8100 */
8101 target_offsets[i] -= start/data_disks;
687629c2
AK
8102 }
8103
8104 if (open_backup_targets(info, new_disks, targets))
8105 goto abort;
8106
68eb8bc6 8107 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
8108 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8109
687629c2
AK
8110 if (restore_stripes(targets, /* list of dest devices */
8111 target_offsets, /* migration record offsets */
8112 new_disks,
ab724b98
AK
8113 dest_chunk,
8114 map_dest->raid_level,
8115 dest_layout,
8116 -1, /* source backup file descriptor */
8117 0, /* input buf offset
8118 * always 0 buf is already offseted */
d1877f69 8119 start,
687629c2
AK
8120 length,
8121 buf) != 0) {
8122 fprintf(stderr, Name ": Error restoring stripes\n");
8123 goto abort;
8124 }
8125
8126 rv = 0;
8127
8128abort:
8129 if (targets) {
8130 for (i = 0; i < new_disks; i++)
8131 if (targets[i] >= 0)
8132 close(targets[i]);
8133 free(targets);
8134 }
8135 free(target_offsets);
8136
8137 return rv;
8138}
8139
8140/*******************************************************************************
8141 * Function: save_checkpoint_imsm
8142 * Description: Function called for current unit status update
8143 * in the migration record. It writes it to disk.
8144 * Parameters:
8145 * super : imsm internal array info
8146 * info : general array info
8147 * Returns:
8148 * 0: success
8149 * 1: failure
0228d92c
AK
8150 * 2: failure, means no valid migration record
8151 * / no general migration in progress /
687629c2
AK
8152 ******************************************************************************/
8153int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8154{
8155 struct intel_super *super = st->sb;
f8b72ef5
AK
8156 unsigned long long blocks_per_unit;
8157 unsigned long long curr_migr_unit;
8158
2e062e82
AK
8159 if (load_imsm_migr_rec(super, info) != 0) {
8160 dprintf("imsm: ERROR: Cannot read migration record "
8161 "for checkpoint save.\n");
8162 return 1;
8163 }
8164
f8b72ef5
AK
8165 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8166 if (blocks_per_unit == 0) {
0228d92c
AK
8167 dprintf("imsm: no migration in progress.\n");
8168 return 2;
687629c2 8169 }
f8b72ef5
AK
8170 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8171 /* check if array is alligned to copy area
8172 * if it is not alligned, add one to current migration unit value
8173 * this can happend on array reshape finish only
8174 */
8175 if (info->reshape_progress % blocks_per_unit)
8176 curr_migr_unit++;
687629c2
AK
8177
8178 super->migr_rec->curr_migr_unit =
f8b72ef5 8179 __cpu_to_le32(curr_migr_unit);
687629c2
AK
8180 super->migr_rec->rec_status = __cpu_to_le32(state);
8181 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
8182 __cpu_to_le32(curr_migr_unit *
8183 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
8184 if (write_imsm_migr_rec(st) < 0) {
8185 dprintf("imsm: Cannot write migration record "
8186 "outside backup area\n");
8187 return 1;
8188 }
8189
8190 return 0;
8191}
8192
276d77db
AK
8193/*******************************************************************************
8194 * Function: recover_backup_imsm
8195 * Description: Function recovers critical data from the Migration Copy Area
8196 * while assembling an array.
8197 * Parameters:
8198 * super : imsm internal array info
8199 * info : general array info
8200 * Returns:
8201 * 0 : success (or there is no data to recover)
8202 * 1 : fail
8203 ******************************************************************************/
8204int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8205{
8206 struct intel_super *super = st->sb;
8207 struct migr_record *migr_rec = super->migr_rec;
8208 struct imsm_map *map_dest = NULL;
8209 struct intel_dev *id = NULL;
8210 unsigned long long read_offset;
8211 unsigned long long write_offset;
8212 unsigned unit_len;
8213 int *targets = NULL;
8214 int new_disks, i, err;
8215 char *buf = NULL;
8216 int retval = 1;
8217 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8218 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 8219 char buffer[20];
6c3560c0
AK
8220 int skipped_disks = 0;
8221 int max_degradation;
276d77db
AK
8222
8223 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8224 if (err < 1)
8225 return 1;
8226
8227 /* recover data only during assemblation */
8228 if (strncmp(buffer, "inactive", 8) != 0)
8229 return 0;
8230 /* no data to recover */
8231 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8232 return 0;
8233 if (curr_migr_unit >= num_migr_units)
8234 return 1;
8235
8236 /* find device during reshape */
8237 for (id = super->devlist; id; id = id->next)
8238 if (is_gen_migration(id->dev))
8239 break;
8240 if (id == NULL)
8241 return 1;
8242
8243 map_dest = get_imsm_map(id->dev, 0);
8244 new_disks = map_dest->num_members;
6c3560c0 8245 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
276d77db
AK
8246
8247 read_offset = (unsigned long long)
8248 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8249
8250 write_offset = ((unsigned long long)
8251 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
75b69ea4 8252 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
276d77db
AK
8253
8254 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8255 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8256 goto abort;
8257 targets = malloc(new_disks * sizeof(int));
8258 if (!targets)
8259 goto abort;
8260
8261 open_backup_targets(info, new_disks, targets);
8262
8263 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
8264 if (targets[i] < 0) {
8265 skipped_disks++;
8266 continue;
8267 }
276d77db
AK
8268 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8269 fprintf(stderr,
8270 Name ": Cannot seek to block: %s\n",
8271 strerror(errno));
8272 goto abort;
8273 }
9ec11d1a 8274 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8275 fprintf(stderr,
8276 Name ": Cannot read copy area block: %s\n",
8277 strerror(errno));
8278 goto abort;
8279 }
8280 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8281 fprintf(stderr,
8282 Name ": Cannot seek to block: %s\n",
8283 strerror(errno));
8284 goto abort;
8285 }
9ec11d1a 8286 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8287 fprintf(stderr,
8288 Name ": Cannot restore block: %s\n",
8289 strerror(errno));
8290 goto abort;
8291 }
8292 }
8293
6c3560c0
AK
8294 if (skipped_disks > max_degradation) {
8295 fprintf(stderr,
8296 Name ": Cannot restore data from backup."
8297 " Too many failed disks\n");
8298 goto abort;
8299 }
8300
befb629b
AK
8301 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8302 /* ignore error == 2, this can mean end of reshape here
8303 */
8304 dprintf("imsm: Cannot write checkpoint to "
8305 "migration record (UNIT_SRC_NORMAL) during restart\n");
8306 } else
276d77db 8307 retval = 0;
276d77db
AK
8308
8309abort:
8310 if (targets) {
8311 for (i = 0; i < new_disks; i++)
8312 if (targets[i])
8313 close(targets[i]);
8314 free(targets);
8315 }
8316 free(buf);
8317 return retval;
8318}
8319
2cda7640
ML
8320static char disk_by_path[] = "/dev/disk/by-path/";
8321
8322static const char *imsm_get_disk_controller_domain(const char *path)
8323{
2cda7640 8324 char disk_path[PATH_MAX];
96234762
LM
8325 char *drv=NULL;
8326 struct stat st;
2cda7640 8327
96234762
LM
8328 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8329 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8330 if (stat(disk_path, &st) == 0) {
8331 struct sys_dev* hba;
8332 char *path=NULL;
8333
8334 path = devt_to_devpath(st.st_rdev);
8335 if (path == NULL)
8336 return "unknown";
8337 hba = find_disk_attached_hba(-1, path);
8338 if (hba && hba->type == SYS_DEV_SAS)
8339 drv = "isci";
8340 else if (hba && hba->type == SYS_DEV_SATA)
8341 drv = "ahci";
8342 else
8343 drv = "unknown";
8344 dprintf("path: %s hba: %s attached: %s\n",
8345 path, (hba) ? hba->path : "NULL", drv);
8346 free(path);
8347 if (hba)
8348 free_sys_dev(&hba);
2cda7640 8349 }
96234762 8350 return drv;
2cda7640
ML
8351}
8352
78b10e66
N
8353static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8354{
8355 char subdev_name[20];
8356 struct mdstat_ent *mdstat;
8357
8358 sprintf(subdev_name, "%d", subdev);
8359 mdstat = mdstat_by_subdev(subdev_name, container);
8360 if (!mdstat)
8361 return -1;
8362
8363 *minor = mdstat->devnum;
8364 free_mdstat(mdstat);
8365 return 0;
8366}
8367
8368static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8369 struct geo_params *geo,
8370 int *old_raid_disks)
8371{
694575e7
KW
8372 /* currently we only support increasing the number of devices
8373 * for a container. This increases the number of device for each
8374 * member array. They must all be RAID0 or RAID5.
8375 */
78b10e66
N
8376 int ret_val = 0;
8377 struct mdinfo *info, *member;
8378 int devices_that_can_grow = 0;
8379
8380 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8381 "st->devnum = (%i)\n",
8382 st->devnum);
8383
8384 if (geo->size != -1 ||
8385 geo->level != UnSet ||
8386 geo->layout != UnSet ||
8387 geo->chunksize != 0 ||
8388 geo->raid_disks == UnSet) {
8389 dprintf("imsm: Container operation is allowed for "
8390 "raid disks number change only.\n");
8391 return ret_val;
8392 }
8393
8394 info = container_content_imsm(st, NULL);
8395 for (member = info; member; member = member->next) {
8396 int result;
8397 int minor;
8398
8399 dprintf("imsm: checking device_num: %i\n",
8400 member->container_member);
8401
d7d205bd 8402 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
8403 /* we work on container for Online Capacity Expansion
8404 * only so raid_disks has to grow
8405 */
8406 dprintf("imsm: for container operation raid disks "
8407 "increase is required\n");
8408 break;
8409 }
8410
8411 if ((info->array.level != 0) &&
8412 (info->array.level != 5)) {
8413 /* we cannot use this container with other raid level
8414 */
690aae1a 8415 dprintf("imsm: for container operation wrong"
78b10e66
N
8416 " raid level (%i) detected\n",
8417 info->array.level);
8418 break;
8419 } else {
8420 /* check for platform support
8421 * for this raid level configuration
8422 */
8423 struct intel_super *super = st->sb;
8424 if (!is_raid_level_supported(super->orom,
8425 member->array.level,
8426 geo->raid_disks)) {
690aae1a 8427 dprintf("platform does not support raid%d with"
78b10e66
N
8428 " %d disk%s\n",
8429 info->array.level,
8430 geo->raid_disks,
8431 geo->raid_disks > 1 ? "s" : "");
8432 break;
8433 }
2a4a08e7
AK
8434 /* check if component size is aligned to chunk size
8435 */
8436 if (info->component_size %
8437 (info->array.chunk_size/512)) {
8438 dprintf("Component size is not aligned to "
8439 "chunk size\n");
8440 break;
8441 }
78b10e66
N
8442 }
8443
8444 if (*old_raid_disks &&
8445 info->array.raid_disks != *old_raid_disks)
8446 break;
8447 *old_raid_disks = info->array.raid_disks;
8448
8449 /* All raid5 and raid0 volumes in container
8450 * have to be ready for Online Capacity Expansion
8451 * so they need to be assembled. We have already
8452 * checked that no recovery etc is happening.
8453 */
8454 result = imsm_find_array_minor_by_subdev(member->container_member,
8455 st->container_dev,
8456 &minor);
8457 if (result < 0) {
8458 dprintf("imsm: cannot find array\n");
8459 break;
8460 }
8461 devices_that_can_grow++;
8462 }
8463 sysfs_free(info);
8464 if (!member && devices_that_can_grow)
8465 ret_val = 1;
8466
8467 if (ret_val)
8468 dprintf("\tContainer operation allowed\n");
8469 else
8470 dprintf("\tError: %i\n", ret_val);
8471
8472 return ret_val;
8473}
8474
8475/* Function: get_spares_for_grow
8476 * Description: Allocates memory and creates list of spare devices
8477 * avaliable in container. Checks if spare drive size is acceptable.
8478 * Parameters: Pointer to the supertype structure
8479 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8480 * NULL if fail
8481 */
8482static struct mdinfo *get_spares_for_grow(struct supertype *st)
8483{
78b10e66 8484 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8485 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8486}
8487
8488/******************************************************************************
8489 * function: imsm_create_metadata_update_for_reshape
8490 * Function creates update for whole IMSM container.
8491 *
8492 ******************************************************************************/
8493static int imsm_create_metadata_update_for_reshape(
8494 struct supertype *st,
8495 struct geo_params *geo,
8496 int old_raid_disks,
8497 struct imsm_update_reshape **updatep)
8498{
8499 struct intel_super *super = st->sb;
8500 struct imsm_super *mpb = super->anchor;
8501 int update_memory_size = 0;
8502 struct imsm_update_reshape *u = NULL;
8503 struct mdinfo *spares = NULL;
8504 int i;
8505 int delta_disks = 0;
bbd24d86 8506 struct mdinfo *dev;
78b10e66
N
8507
8508 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8509 geo->raid_disks);
8510
8511 delta_disks = geo->raid_disks - old_raid_disks;
8512
8513 /* size of all update data without anchor */
8514 update_memory_size = sizeof(struct imsm_update_reshape);
8515
8516 /* now add space for spare disks that we need to add. */
8517 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8518
8519 u = calloc(1, update_memory_size);
8520 if (u == NULL) {
8521 dprintf("error: "
8522 "cannot get memory for imsm_update_reshape update\n");
8523 return 0;
8524 }
8525 u->type = update_reshape_container_disks;
8526 u->old_raid_disks = old_raid_disks;
8527 u->new_raid_disks = geo->raid_disks;
8528
8529 /* now get spare disks list
8530 */
8531 spares = get_spares_for_grow(st);
8532
8533 if (spares == NULL
8534 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8535 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8536 "for %s.\n", geo->dev_name);
e4c72d1d 8537 i = -1;
78b10e66
N
8538 goto abort;
8539 }
8540
8541 /* we have got spares
8542 * update disk list in imsm_disk list table in anchor
8543 */
8544 dprintf("imsm: %i spares are available.\n\n",
8545 spares->array.spare_disks);
8546
bbd24d86 8547 dev = spares->devs;
78b10e66 8548 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8549 struct dl *dl;
8550
bbd24d86
AK
8551 if (dev == NULL)
8552 break;
78b10e66
N
8553 u->new_disks[i] = makedev(dev->disk.major,
8554 dev->disk.minor);
8555 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8556 dl->index = mpb->num_disks;
8557 mpb->num_disks++;
bbd24d86 8558 dev = dev->next;
78b10e66 8559 }
78b10e66
N
8560
8561abort:
8562 /* free spares
8563 */
8564 sysfs_free(spares);
8565
d677e0b8 8566 dprintf("imsm: reshape update preparation :");
78b10e66 8567 if (i == delta_disks) {
d677e0b8 8568 dprintf(" OK\n");
78b10e66
N
8569 *updatep = u;
8570 return update_memory_size;
8571 }
8572 free(u);
d677e0b8 8573 dprintf(" Error\n");
78b10e66
N
8574
8575 return 0;
8576}
8577
48c5303a
PC
8578/******************************************************************************
8579 * function: imsm_create_metadata_update_for_migration()
8580 * Creates update for IMSM array.
8581 *
8582 ******************************************************************************/
8583static int imsm_create_metadata_update_for_migration(
8584 struct supertype *st,
8585 struct geo_params *geo,
8586 struct imsm_update_reshape_migration **updatep)
8587{
8588 struct intel_super *super = st->sb;
8589 int update_memory_size = 0;
8590 struct imsm_update_reshape_migration *u = NULL;
8591 struct imsm_dev *dev;
8592 int previous_level = -1;
8593
8594 dprintf("imsm_create_metadata_update_for_migration(enter)"
8595 " New Level = %i\n", geo->level);
8596
8597 /* size of all update data without anchor */
8598 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8599
8600 u = calloc(1, update_memory_size);
8601 if (u == NULL) {
8602 dprintf("error: cannot get memory for "
8603 "imsm_create_metadata_update_for_migration\n");
8604 return 0;
8605 }
8606 u->type = update_reshape_migration;
8607 u->subdev = super->current_vol;
8608 u->new_level = geo->level;
8609 u->new_layout = geo->layout;
8610 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8611 u->new_disks[0] = -1;
4bba0439 8612 u->new_chunksize = -1;
48c5303a
PC
8613
8614 dev = get_imsm_dev(super, u->subdev);
8615 if (dev) {
8616 struct imsm_map *map;
8617
8618 map = get_imsm_map(dev, 0);
4bba0439
PC
8619 if (map) {
8620 int current_chunk_size =
8621 __le16_to_cpu(map->blocks_per_strip) / 2;
8622
8623 if (geo->chunksize != current_chunk_size) {
8624 u->new_chunksize = geo->chunksize / 1024;
8625 dprintf("imsm: "
8626 "chunk size change from %i to %i\n",
8627 current_chunk_size, u->new_chunksize);
8628 }
48c5303a 8629 previous_level = map->raid_level;
4bba0439 8630 }
48c5303a
PC
8631 }
8632 if ((geo->level == 5) && (previous_level == 0)) {
8633 struct mdinfo *spares = NULL;
8634
8635 u->new_raid_disks++;
8636 spares = get_spares_for_grow(st);
8637 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8638 free(u);
8639 sysfs_free(spares);
8640 update_memory_size = 0;
8641 dprintf("error: cannot get spare device "
8642 "for requested migration");
8643 return 0;
8644 }
8645 sysfs_free(spares);
8646 }
8647 dprintf("imsm: reshape update preparation : OK\n");
8648 *updatep = u;
8649
8650 return update_memory_size;
8651}
8652
8dd70bce
AK
8653static void imsm_update_metadata_locally(struct supertype *st,
8654 void *buf, int len)
8655{
8656 struct metadata_update mu;
8657
8658 mu.buf = buf;
8659 mu.len = len;
8660 mu.space = NULL;
8661 mu.space_list = NULL;
8662 mu.next = NULL;
8663 imsm_prepare_update(st, &mu);
8664 imsm_process_update(st, &mu);
8665
8666 while (mu.space_list) {
8667 void **space = mu.space_list;
8668 mu.space_list = *space;
8669 free(space);
8670 }
8671}
78b10e66 8672
471bceb6 8673/***************************************************************************
694575e7 8674* Function: imsm_analyze_change
471bceb6
KW
8675* Description: Function analyze change for single volume
8676* and validate if transition is supported
694575e7
KW
8677* Parameters: Geometry parameters, supertype structure
8678* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8679****************************************************************************/
8680enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8681 struct geo_params *geo)
694575e7 8682{
471bceb6
KW
8683 struct mdinfo info;
8684 int change = -1;
8685 int check_devs = 0;
c21e737b 8686 int chunk;
e91a3bad
LM
8687 int devNumChange=0;
8688 int layout = -1;
471bceb6
KW
8689
8690 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
8691 if ((geo->level != info.array.level) &&
8692 (geo->level >= 0) &&
8693 (geo->level != UnSet)) {
8694 switch (info.array.level) {
8695 case 0:
8696 if (geo->level == 5) {
b5347799 8697 change = CH_MIGRATION;
e13ce846
AK
8698 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8699 fprintf(stderr,
8700 Name " Error. Requested Layout "
8701 "not supported (left-asymmetric layout "
8702 "is supported only)!\n");
8703 change = -1;
8704 goto analyse_change_exit;
8705 }
e91a3bad 8706 layout = geo->layout;
471bceb6 8707 check_devs = 1;
e91a3bad
LM
8708 devNumChange = 1; /* parity disk added */
8709 } else if (geo->level == 10) {
471bceb6
KW
8710 change = CH_TAKEOVER;
8711 check_devs = 1;
e91a3bad
LM
8712 devNumChange = 2; /* two mirrors added */
8713 layout = 0x102; /* imsm supported layout */
471bceb6 8714 }
dfe77a9e
KW
8715 break;
8716 case 1:
471bceb6
KW
8717 case 10:
8718 if (geo->level == 0) {
8719 change = CH_TAKEOVER;
8720 check_devs = 1;
e91a3bad
LM
8721 devNumChange = -(geo->raid_disks/2);
8722 layout = 0; /* imsm raid0 layout */
471bceb6
KW
8723 }
8724 break;
8725 }
8726 if (change == -1) {
8727 fprintf(stderr,
8728 Name " Error. Level Migration from %d to %d "
8729 "not supported!\n",
8730 info.array.level, geo->level);
8731 goto analyse_change_exit;
8732 }
8733 } else
8734 geo->level = info.array.level;
8735
8736 if ((geo->layout != info.array.layout)
8737 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8738 change = CH_MIGRATION;
471bceb6
KW
8739 if ((info.array.layout == 0)
8740 && (info.array.level == 5)
8741 && (geo->layout == 5)) {
8742 /* reshape 5 -> 4 */
8743 } else if ((info.array.layout == 5)
8744 && (info.array.level == 5)
8745 && (geo->layout == 0)) {
8746 /* reshape 4 -> 5 */
8747 geo->layout = 0;
8748 geo->level = 5;
8749 } else {
8750 fprintf(stderr,
8751 Name " Error. Layout Migration from %d to %d "
8752 "not supported!\n",
8753 info.array.layout, geo->layout);
8754 change = -1;
8755 goto analyse_change_exit;
8756 }
8757 } else
8758 geo->layout = info.array.layout;
8759
8760 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8761 && (geo->chunksize != info.array.chunk_size))
b5347799 8762 change = CH_MIGRATION;
471bceb6
KW
8763 else
8764 geo->chunksize = info.array.chunk_size;
8765
c21e737b 8766 chunk = geo->chunksize / 1024;
471bceb6
KW
8767 if (!validate_geometry_imsm(st,
8768 geo->level,
e91a3bad
LM
8769 layout,
8770 geo->raid_disks + devNumChange,
c21e737b 8771 &chunk,
471bceb6
KW
8772 geo->size,
8773 0, 0, 1))
8774 change = -1;
8775
8776 if (check_devs) {
8777 struct intel_super *super = st->sb;
8778 struct imsm_super *mpb = super->anchor;
8779
8780 if (mpb->num_raid_devs > 1) {
8781 fprintf(stderr,
8782 Name " Error. Cannot perform operation on %s"
8783 "- for this operation it MUST be single "
8784 "array in container\n",
8785 geo->dev_name);
8786 change = -1;
8787 }
8788 }
8789
8790analyse_change_exit:
8791
8792 return change;
694575e7
KW
8793}
8794
bb025c2f
KW
8795int imsm_takeover(struct supertype *st, struct geo_params *geo)
8796{
8797 struct intel_super *super = st->sb;
8798 struct imsm_update_takeover *u;
8799
8800 u = malloc(sizeof(struct imsm_update_takeover));
8801 if (u == NULL)
8802 return 1;
8803
8804 u->type = update_takeover;
8805 u->subarray = super->current_vol;
8806
8807 /* 10->0 transition */
8808 if (geo->level == 0)
8809 u->direction = R10_TO_R0;
8810
0529c688
KW
8811 /* 0->10 transition */
8812 if (geo->level == 10)
8813 u->direction = R0_TO_R10;
8814
bb025c2f
KW
8815 /* update metadata locally */
8816 imsm_update_metadata_locally(st, u,
8817 sizeof(struct imsm_update_takeover));
8818 /* and possibly remotely */
8819 if (st->update_tail)
8820 append_metadata_update(st, u,
8821 sizeof(struct imsm_update_takeover));
8822 else
8823 free(u);
8824
8825 return 0;
8826}
8827
78b10e66
N
8828static int imsm_reshape_super(struct supertype *st, long long size, int level,
8829 int layout, int chunksize, int raid_disks,
41784c88
AK
8830 int delta_disks, char *backup, char *dev,
8831 int verbose)
78b10e66 8832{
78b10e66
N
8833 int ret_val = 1;
8834 struct geo_params geo;
8835
8836 dprintf("imsm: reshape_super called.\n");
8837
71204a50 8838 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
8839
8840 geo.dev_name = dev;
694575e7 8841 geo.dev_id = st->devnum;
78b10e66
N
8842 geo.size = size;
8843 geo.level = level;
8844 geo.layout = layout;
8845 geo.chunksize = chunksize;
8846 geo.raid_disks = raid_disks;
41784c88
AK
8847 if (delta_disks != UnSet)
8848 geo.raid_disks += delta_disks;
78b10e66
N
8849
8850 dprintf("\tfor level : %i\n", geo.level);
8851 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8852
8853 if (experimental() == 0)
8854 return ret_val;
8855
78b10e66 8856 if (st->container_dev == st->devnum) {
694575e7
KW
8857 /* On container level we can only increase number of devices. */
8858 dprintf("imsm: info: Container operation\n");
78b10e66 8859 int old_raid_disks = 0;
6dc0be30 8860
78b10e66
N
8861 if (imsm_reshape_is_allowed_on_container(
8862 st, &geo, &old_raid_disks)) {
8863 struct imsm_update_reshape *u = NULL;
8864 int len;
8865
8866 len = imsm_create_metadata_update_for_reshape(
8867 st, &geo, old_raid_disks, &u);
8868
ed08d51c
AK
8869 if (len <= 0) {
8870 dprintf("imsm: Cannot prepare update\n");
8871 goto exit_imsm_reshape_super;
8872 }
8873
8dd70bce
AK
8874 ret_val = 0;
8875 /* update metadata locally */
8876 imsm_update_metadata_locally(st, u, len);
8877 /* and possibly remotely */
8878 if (st->update_tail)
8879 append_metadata_update(st, u, len);
8880 else
ed08d51c 8881 free(u);
8dd70bce 8882
694575e7 8883 } else {
e7ff7e40
AK
8884 fprintf(stderr, Name ": (imsm) Operation "
8885 "is not allowed on this container\n");
694575e7
KW
8886 }
8887 } else {
8888 /* On volume level we support following operations
471bceb6
KW
8889 * - takeover: raid10 -> raid0; raid0 -> raid10
8890 * - chunk size migration
8891 * - migration: raid5 -> raid0; raid0 -> raid5
8892 */
8893 struct intel_super *super = st->sb;
8894 struct intel_dev *dev = super->devlist;
8895 int change, devnum;
694575e7 8896 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
8897 /* find requested device */
8898 while (dev) {
19986c72
MB
8899 if (imsm_find_array_minor_by_subdev(
8900 dev->index, st->container_dev, &devnum) == 0
8901 && devnum == geo.dev_id)
471bceb6
KW
8902 break;
8903 dev = dev->next;
8904 }
8905 if (dev == NULL) {
8906 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8907 geo.dev_name, geo.dev_id);
8908 goto exit_imsm_reshape_super;
8909 }
8910 super->current_vol = dev->index;
694575e7
KW
8911 change = imsm_analyze_change(st, &geo);
8912 switch (change) {
471bceb6 8913 case CH_TAKEOVER:
bb025c2f 8914 ret_val = imsm_takeover(st, &geo);
694575e7 8915 break;
48c5303a
PC
8916 case CH_MIGRATION: {
8917 struct imsm_update_reshape_migration *u = NULL;
8918 int len =
8919 imsm_create_metadata_update_for_migration(
8920 st, &geo, &u);
8921 if (len < 1) {
8922 dprintf("imsm: "
8923 "Cannot prepare update\n");
8924 break;
8925 }
471bceb6 8926 ret_val = 0;
48c5303a
PC
8927 /* update metadata locally */
8928 imsm_update_metadata_locally(st, u, len);
8929 /* and possibly remotely */
8930 if (st->update_tail)
8931 append_metadata_update(st, u, len);
8932 else
8933 free(u);
8934 }
8935 break;
471bceb6
KW
8936 default:
8937 ret_val = 1;
694575e7 8938 }
694575e7 8939 }
78b10e66 8940
ed08d51c 8941exit_imsm_reshape_super:
78b10e66
N
8942 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8943 return ret_val;
8944}
2cda7640 8945
eee67a47
AK
8946/*******************************************************************************
8947 * Function: wait_for_reshape_imsm
8948 * Description: Function writes new sync_max value and waits until
8949 * reshape process reach new position
8950 * Parameters:
8951 * sra : general array info
eee67a47
AK
8952 * ndata : number of disks in new array's layout
8953 * Returns:
8954 * 0 : success,
8955 * 1 : there is no reshape in progress,
8956 * -1 : fail
8957 ******************************************************************************/
ae9f01f8 8958int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
8959{
8960 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8961 unsigned long long completed;
ae9f01f8
AK
8962 /* to_complete : new sync_max position */
8963 unsigned long long to_complete = sra->reshape_progress;
8964 unsigned long long position_to_set = to_complete / ndata;
eee67a47 8965
ae9f01f8
AK
8966 if (fd < 0) {
8967 dprintf("imsm: wait_for_reshape_imsm() "
8968 "cannot open reshape_position\n");
eee67a47 8969 return 1;
ae9f01f8 8970 }
eee67a47 8971
ae9f01f8
AK
8972 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8973 dprintf("imsm: wait_for_reshape_imsm() "
8974 "cannot read reshape_position (no reshape in progres)\n");
8975 close(fd);
8976 return 0;
8977 }
eee67a47 8978
ae9f01f8
AK
8979 if (completed > to_complete) {
8980 dprintf("imsm: wait_for_reshape_imsm() "
8981 "wrong next position to set %llu (%llu)\n",
8982 to_complete, completed);
8983 close(fd);
8984 return -1;
8985 }
8986 dprintf("Position set: %llu\n", position_to_set);
8987 if (sysfs_set_num(sra, NULL, "sync_max",
8988 position_to_set) != 0) {
8989 dprintf("imsm: wait_for_reshape_imsm() "
8990 "cannot set reshape position to %llu\n",
8991 position_to_set);
8992 close(fd);
8993 return -1;
eee67a47
AK
8994 }
8995
eee67a47
AK
8996 do {
8997 char action[20];
8998 fd_set rfds;
8999 FD_ZERO(&rfds);
9000 FD_SET(fd, &rfds);
a47e44fb
AK
9001 select(fd+1, &rfds, NULL, NULL, NULL);
9002 if (sysfs_get_str(sra, NULL, "sync_action",
9003 action, 20) > 0 &&
9004 strncmp(action, "reshape", 7) != 0)
9005 break;
eee67a47 9006 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
9007 dprintf("imsm: wait_for_reshape_imsm() "
9008 "cannot read reshape_position (in loop)\n");
eee67a47
AK
9009 close(fd);
9010 return 1;
9011 }
eee67a47
AK
9012 } while (completed < to_complete);
9013 close(fd);
9014 return 0;
9015
9016}
9017
b915c95f
AK
9018/*******************************************************************************
9019 * Function: check_degradation_change
9020 * Description: Check that array hasn't become failed.
9021 * Parameters:
9022 * info : for sysfs access
9023 * sources : source disks descriptors
9024 * degraded: previous degradation level
9025 * Returns:
9026 * degradation level
9027 ******************************************************************************/
9028int check_degradation_change(struct mdinfo *info,
9029 int *sources,
9030 int degraded)
9031{
9032 unsigned long long new_degraded;
9033 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9034 if (new_degraded != (unsigned long long)degraded) {
9035 /* check each device to ensure it is still working */
9036 struct mdinfo *sd;
9037 new_degraded = 0;
9038 for (sd = info->devs ; sd ; sd = sd->next) {
9039 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9040 continue;
9041 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9042 char sbuf[20];
9043 if (sysfs_get_str(info,
9044 sd, "state", sbuf, 20) < 0 ||
9045 strstr(sbuf, "faulty") ||
9046 strstr(sbuf, "in_sync") == NULL) {
9047 /* this device is dead */
9048 sd->disk.state = (1<<MD_DISK_FAULTY);
9049 if (sd->disk.raid_disk >= 0 &&
9050 sources[sd->disk.raid_disk] >= 0) {
9051 close(sources[
9052 sd->disk.raid_disk]);
9053 sources[sd->disk.raid_disk] =
9054 -1;
9055 }
9056 new_degraded++;
9057 }
9058 }
9059 }
9060 }
9061
9062 return new_degraded;
9063}
9064
10f22854
AK
9065/*******************************************************************************
9066 * Function: imsm_manage_reshape
9067 * Description: Function finds array under reshape and it manages reshape
9068 * process. It creates stripes backups (if required) and sets
9069 * checheckpoits.
9070 * Parameters:
9071 * afd : Backup handle (nattive) - not used
9072 * sra : general array info
9073 * reshape : reshape parameters - not used
9074 * st : supertype structure
9075 * blocks : size of critical section [blocks]
9076 * fds : table of source device descriptor
9077 * offsets : start of array (offest per devices)
9078 * dests : not used
9079 * destfd : table of destination device descriptor
9080 * destoffsets : table of destination offsets (per device)
9081 * Returns:
9082 * 1 : success, reshape is done
9083 * 0 : fail
9084 ******************************************************************************/
999b4972
N
9085static int imsm_manage_reshape(
9086 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 9087 struct supertype *st, unsigned long backup_blocks,
999b4972
N
9088 int *fds, unsigned long long *offsets,
9089 int dests, int *destfd, unsigned long long *destoffsets)
9090{
10f22854
AK
9091 int ret_val = 0;
9092 struct intel_super *super = st->sb;
9093 struct intel_dev *dv = NULL;
9094 struct imsm_dev *dev = NULL;
a6b6d984 9095 struct imsm_map *map_src;
10f22854
AK
9096 int migr_vol_qan = 0;
9097 int ndata, odata; /* [bytes] */
9098 int chunk; /* [bytes] */
9099 struct migr_record *migr_rec;
9100 char *buf = NULL;
9101 unsigned int buf_size; /* [bytes] */
9102 unsigned long long max_position; /* array size [bytes] */
9103 unsigned long long next_step; /* [blocks]/[bytes] */
9104 unsigned long long old_data_stripe_length;
10f22854
AK
9105 unsigned long long start_src; /* [bytes] */
9106 unsigned long long start; /* [bytes] */
9107 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 9108 int degraded = 0;
ab724b98 9109 int source_layout = 0;
10f22854 9110
1ab242d8 9111 if (!fds || !offsets || !sra)
10f22854
AK
9112 goto abort;
9113
9114 /* Find volume during the reshape */
9115 for (dv = super->devlist; dv; dv = dv->next) {
9116 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9117 && dv->dev->vol.migr_state == 1) {
9118 dev = dv->dev;
9119 migr_vol_qan++;
9120 }
9121 }
9122 /* Only one volume can migrate at the same time */
9123 if (migr_vol_qan != 1) {
9124 fprintf(stderr, Name " : %s", migr_vol_qan ?
9125 "Number of migrating volumes greater than 1\n" :
9126 "There is no volume during migrationg\n");
9127 goto abort;
9128 }
9129
9130 map_src = get_imsm_map(dev, 1);
9131 if (map_src == NULL)
9132 goto abort;
10f22854
AK
9133
9134 ndata = imsm_num_data_members(dev, 0);
9135 odata = imsm_num_data_members(dev, 1);
9136
7b1ab482 9137 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
9138 old_data_stripe_length = odata * chunk;
9139
9140 migr_rec = super->migr_rec;
9141
10f22854
AK
9142 /* initialize migration record for start condition */
9143 if (sra->reshape_progress == 0)
9144 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
9145 else {
9146 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9147 dprintf("imsm: cannot restart migration when data "
9148 "are present in copy area.\n");
9149 goto abort;
9150 }
9151 }
10f22854
AK
9152
9153 /* size for data */
9154 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9155 /* extend buffer size for parity disk */
9156 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9157 /* add space for stripe aligment */
9158 buf_size += old_data_stripe_length;
9159 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9160 dprintf("imsm: Cannot allocate checpoint buffer\n");
9161 goto abort;
9162 }
9163
3ef4403c 9164 max_position = sra->component_size * ndata;
68eb8bc6 9165 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
9166
9167 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9168 __le32_to_cpu(migr_rec->num_migr_units)) {
9169 /* current reshape position [blocks] */
9170 unsigned long long current_position =
9171 __le32_to_cpu(migr_rec->blocks_per_unit)
9172 * __le32_to_cpu(migr_rec->curr_migr_unit);
9173 unsigned long long border;
9174
b915c95f
AK
9175 /* Check that array hasn't become failed.
9176 */
9177 degraded = check_degradation_change(sra, fds, degraded);
9178 if (degraded > 1) {
9179 dprintf("imsm: Abort reshape due to degradation"
9180 " level (%i)\n", degraded);
9181 goto abort;
9182 }
9183
10f22854
AK
9184 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9185
9186 if ((current_position + next_step) > max_position)
9187 next_step = max_position - current_position;
9188
92144abf 9189 start = current_position * 512;
10f22854
AK
9190
9191 /* allign reading start to old geometry */
9192 start_buf_shift = start % old_data_stripe_length;
9193 start_src = start - start_buf_shift;
9194
9195 border = (start_src / odata) - (start / ndata);
9196 border /= 512;
9197 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9198 /* save critical stripes to buf
9199 * start - start address of current unit
9200 * to backup [bytes]
9201 * start_src - start address of current unit
9202 * to backup alligned to source array
9203 * [bytes]
9204 */
9205 unsigned long long next_step_filler = 0;
9206 unsigned long long copy_length = next_step * 512;
9207
9208 /* allign copy area length to stripe in old geometry */
9209 next_step_filler = ((copy_length + start_buf_shift)
9210 % old_data_stripe_length);
9211 if (next_step_filler)
9212 next_step_filler = (old_data_stripe_length
9213 - next_step_filler);
9214 dprintf("save_stripes() parameters: start = %llu,"
9215 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9216 "\tstart_in_buf_shift = %llu,"
9217 "\tnext_step_filler = %llu\n",
9218 start, start_src, copy_length,
9219 start_buf_shift, next_step_filler);
9220
9221 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
9222 chunk, map_src->raid_level,
9223 source_layout, 0, NULL, start_src,
10f22854
AK
9224 copy_length +
9225 next_step_filler + start_buf_shift,
9226 buf)) {
9227 dprintf("imsm: Cannot save stripes"
9228 " to buffer\n");
9229 goto abort;
9230 }
9231 /* Convert data to destination format and store it
9232 * in backup general migration area
9233 */
9234 if (save_backup_imsm(st, dev, sra,
aea93171 9235 buf + start_buf_shift, copy_length)) {
10f22854
AK
9236 dprintf("imsm: Cannot save stripes to "
9237 "target devices\n");
9238 goto abort;
9239 }
9240 if (save_checkpoint_imsm(st, sra,
9241 UNIT_SRC_IN_CP_AREA)) {
9242 dprintf("imsm: Cannot write checkpoint to "
9243 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9244 goto abort;
9245 }
8016a6d4
AK
9246 } else {
9247 /* set next step to use whole border area */
9248 border /= next_step;
9249 if (border > 1)
9250 next_step *= border;
10f22854
AK
9251 }
9252 /* When data backed up, checkpoint stored,
9253 * kick the kernel to reshape unit of data
9254 */
9255 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
9256 /* limit next step to array max position */
9257 if (next_step > max_position)
9258 next_step = max_position;
10f22854
AK
9259 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9260 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 9261 sra->reshape_progress = next_step;
10f22854
AK
9262
9263 /* wait until reshape finish */
ae9f01f8 9264 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
9265 dprintf("wait_for_reshape_imsm returned error!\n");
9266 goto abort;
9267 }
10f22854 9268
0228d92c
AK
9269 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9270 /* ignore error == 2, this can mean end of reshape here
9271 */
10f22854
AK
9272 dprintf("imsm: Cannot write checkpoint to "
9273 "migration record (UNIT_SRC_NORMAL)\n");
9274 goto abort;
9275 }
9276
9277 }
9278
9279 /* return '1' if done */
9280 ret_val = 1;
9281abort:
9282 free(buf);
9283 abort_reshape(sra);
9284
9285 return ret_val;
999b4972 9286}
71204a50 9287#endif /* MDASSEMBLE */
999b4972 9288
cdddbdbc
DW
9289struct superswitch super_imsm = {
9290#ifndef MDASSEMBLE
9291 .examine_super = examine_super_imsm,
9292 .brief_examine_super = brief_examine_super_imsm,
4737ae25 9293 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 9294 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
9295 .detail_super = detail_super_imsm,
9296 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 9297 .write_init_super = write_init_super_imsm,
0e600426
N
9298 .validate_geometry = validate_geometry_imsm,
9299 .add_to_super = add_to_super_imsm,
1a64be56 9300 .remove_from_super = remove_from_super_imsm,
d665cc31 9301 .detail_platform = detail_platform_imsm,
33414a01 9302 .kill_subarray = kill_subarray_imsm,
aa534678 9303 .update_subarray = update_subarray_imsm,
2b959fbf 9304 .load_container = load_container_imsm,
71204a50
N
9305 .default_geometry = default_geometry_imsm,
9306 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9307 .reshape_super = imsm_reshape_super,
9308 .manage_reshape = imsm_manage_reshape,
9e2d750d 9309 .recover_backup = recover_backup_imsm,
cdddbdbc
DW
9310#endif
9311 .match_home = match_home_imsm,
9312 .uuid_from_super= uuid_from_super_imsm,
9313 .getinfo_super = getinfo_super_imsm,
5c4cd5da 9314 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
9315 .update_super = update_super_imsm,
9316
9317 .avail_size = avail_size_imsm,
80e7f8c3 9318 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
9319
9320 .compare_super = compare_super_imsm,
9321
9322 .load_super = load_super_imsm,
bf5a934a 9323 .init_super = init_super_imsm,
e683ca88 9324 .store_super = store_super_imsm,
cdddbdbc
DW
9325 .free_super = free_super_imsm,
9326 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 9327 .container_content = container_content_imsm,
cdddbdbc 9328
276d77db 9329
cdddbdbc 9330 .external = 1,
4cce4069 9331 .name = "imsm",
845dea95 9332
0e600426 9333#ifndef MDASSEMBLE
845dea95
NB
9334/* for mdmon */
9335 .open_new = imsm_open_new,
ed9d66aa 9336 .set_array_state= imsm_set_array_state,
845dea95
NB
9337 .set_disk = imsm_set_disk,
9338 .sync_metadata = imsm_sync_metadata,
88758e9d 9339 .activate_spare = imsm_activate_spare,
e8319a19 9340 .process_update = imsm_process_update,
8273f55e 9341 .prepare_update = imsm_prepare_update,
0e600426 9342#endif /* MDASSEMBLE */
cdddbdbc 9343};