]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
copy address of proc_ns_ops into ns_common
[people/ms/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
b105e270 193static struct mount *alloc_vfsmnt(const char *name)
1da177e4 194{
c63181e6
AV
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
73cd49ec
MS
197 int err;
198
c63181e6 199 err = mnt_alloc_id(mnt);
88b38782
LZ
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
c63181e6
AV
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
88b38782 206 goto out_free_id;
73cd49ec
MS
207 }
208
b3e19d92 209#ifdef CONFIG_SMP
c63181e6
AV
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
b3e19d92
NP
212 goto out_free_devname;
213
c63181e6 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 215#else
c63181e6
AV
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
b3e19d92
NP
218#endif
219
38129a13 220 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 228 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
229#ifdef CONFIG_FSNOTIFY
230 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 231#endif
1da177e4 232 }
c63181e6 233 return mnt;
88b38782 234
d3ef3d73
NP
235#ifdef CONFIG_SMP
236out_free_devname:
c63181e6 237 kfree(mnt->mnt_devname);
d3ef3d73 238#endif
88b38782 239out_free_id:
c63181e6 240 mnt_free_id(mnt);
88b38782 241out_free_cache:
c63181e6 242 kmem_cache_free(mnt_cache, mnt);
88b38782 243 return NULL;
1da177e4
LT
244}
245
3d733633
DH
246/*
247 * Most r/o checks on a fs are for operations that take
248 * discrete amounts of time, like a write() or unlink().
249 * We must keep track of when those operations start
250 * (for permission checks) and when they end, so that
251 * we can determine when writes are able to occur to
252 * a filesystem.
253 */
254/*
255 * __mnt_is_readonly: check whether a mount is read-only
256 * @mnt: the mount to check for its write status
257 *
258 * This shouldn't be used directly ouside of the VFS.
259 * It does not guarantee that the filesystem will stay
260 * r/w, just that it is right *now*. This can not and
261 * should not be used in place of IS_RDONLY(inode).
262 * mnt_want/drop_write() will _keep_ the filesystem
263 * r/w.
264 */
265int __mnt_is_readonly(struct vfsmount *mnt)
266{
2e4b7fcd
DH
267 if (mnt->mnt_flags & MNT_READONLY)
268 return 1;
269 if (mnt->mnt_sb->s_flags & MS_RDONLY)
270 return 1;
271 return 0;
3d733633
DH
272}
273EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274
83adc753 275static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
276{
277#ifdef CONFIG_SMP
68e8a9fe 278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 279#else
68e8a9fe 280 mnt->mnt_writers++;
d3ef3d73
NP
281#endif
282}
3d733633 283
83adc753 284static inline void mnt_dec_writers(struct mount *mnt)
3d733633 285{
d3ef3d73 286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers--;
d3ef3d73 290#endif
3d733633 291}
3d733633 292
83adc753 293static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 294{
d3ef3d73
NP
295#ifdef CONFIG_SMP
296 unsigned int count = 0;
3d733633 297 int cpu;
3d733633
DH
298
299 for_each_possible_cpu(cpu) {
68e8a9fe 300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 301 }
3d733633 302
d3ef3d73
NP
303 return count;
304#else
305 return mnt->mnt_writers;
306#endif
3d733633
DH
307}
308
4ed5e82f
MS
309static int mnt_is_readonly(struct vfsmount *mnt)
310{
311 if (mnt->mnt_sb->s_readonly_remount)
312 return 1;
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 smp_rmb();
315 return __mnt_is_readonly(mnt);
316}
317
8366025e 318/*
eb04c282
JK
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
8366025e
DH
323 */
324/**
eb04c282 325 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 326 * @m: the mount on which to take a write
8366025e 327 *
eb04c282
JK
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
8366025e 333 */
eb04c282 334int __mnt_want_write(struct vfsmount *m)
8366025e 335{
83adc753 336 struct mount *mnt = real_mount(m);
3d733633 337 int ret = 0;
3d733633 338
d3ef3d73 339 preempt_disable();
c6653a83 340 mnt_inc_writers(mnt);
d3ef3d73 341 /*
c6653a83 342 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
345 */
346 smp_mb();
1e75529e 347 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
348 cpu_relax();
349 /*
350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 * be set to match its requirements. So we must not load that until
352 * MNT_WRITE_HOLD is cleared.
353 */
354 smp_rmb();
4ed5e82f 355 if (mnt_is_readonly(m)) {
c6653a83 356 mnt_dec_writers(mnt);
3d733633 357 ret = -EROFS;
3d733633 358 }
d3ef3d73 359 preempt_enable();
eb04c282
JK
360
361 return ret;
362}
363
364/**
365 * mnt_want_write - get write access to a mount
366 * @m: the mount on which to take a write
367 *
368 * This tells the low-level filesystem that a write is about to be performed to
369 * it, and makes sure that writes are allowed (mount is read-write, filesystem
370 * is not frozen) before returning success. When the write operation is
371 * finished, mnt_drop_write() must be called. This is effectively a refcount.
372 */
373int mnt_want_write(struct vfsmount *m)
374{
375 int ret;
376
377 sb_start_write(m->mnt_sb);
378 ret = __mnt_want_write(m);
379 if (ret)
380 sb_end_write(m->mnt_sb);
3d733633 381 return ret;
8366025e
DH
382}
383EXPORT_SYMBOL_GPL(mnt_want_write);
384
96029c4e
NP
385/**
386 * mnt_clone_write - get write access to a mount
387 * @mnt: the mount on which to take a write
388 *
389 * This is effectively like mnt_want_write, except
390 * it must only be used to take an extra write reference
391 * on a mountpoint that we already know has a write reference
392 * on it. This allows some optimisation.
393 *
394 * After finished, mnt_drop_write must be called as usual to
395 * drop the reference.
396 */
397int mnt_clone_write(struct vfsmount *mnt)
398{
399 /* superblock may be r/o */
400 if (__mnt_is_readonly(mnt))
401 return -EROFS;
402 preempt_disable();
83adc753 403 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
404 preempt_enable();
405 return 0;
406}
407EXPORT_SYMBOL_GPL(mnt_clone_write);
408
409/**
eb04c282 410 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
411 * @file: the file who's mount on which to take a write
412 *
eb04c282 413 * This is like __mnt_want_write, but it takes a file and can
96029c4e
NP
414 * do some optimisations if the file is open for write already
415 */
eb04c282 416int __mnt_want_write_file(struct file *file)
96029c4e 417{
83f936c7 418 if (!(file->f_mode & FMODE_WRITER))
eb04c282 419 return __mnt_want_write(file->f_path.mnt);
96029c4e
NP
420 else
421 return mnt_clone_write(file->f_path.mnt);
422}
eb04c282
JK
423
424/**
425 * mnt_want_write_file - get write access to a file's mount
426 * @file: the file who's mount on which to take a write
427 *
428 * This is like mnt_want_write, but it takes a file and can
429 * do some optimisations if the file is open for write already
430 */
431int mnt_want_write_file(struct file *file)
432{
433 int ret;
434
435 sb_start_write(file->f_path.mnt->mnt_sb);
436 ret = __mnt_want_write_file(file);
437 if (ret)
438 sb_end_write(file->f_path.mnt->mnt_sb);
439 return ret;
440}
96029c4e
NP
441EXPORT_SYMBOL_GPL(mnt_want_write_file);
442
8366025e 443/**
eb04c282 444 * __mnt_drop_write - give up write access to a mount
8366025e
DH
445 * @mnt: the mount on which to give up write access
446 *
447 * Tells the low-level filesystem that we are done
448 * performing writes to it. Must be matched with
eb04c282 449 * __mnt_want_write() call above.
8366025e 450 */
eb04c282 451void __mnt_drop_write(struct vfsmount *mnt)
8366025e 452{
d3ef3d73 453 preempt_disable();
83adc753 454 mnt_dec_writers(real_mount(mnt));
d3ef3d73 455 preempt_enable();
8366025e 456}
eb04c282
JK
457
458/**
459 * mnt_drop_write - give up write access to a mount
460 * @mnt: the mount on which to give up write access
461 *
462 * Tells the low-level filesystem that we are done performing writes to it and
463 * also allows filesystem to be frozen again. Must be matched with
464 * mnt_want_write() call above.
465 */
466void mnt_drop_write(struct vfsmount *mnt)
467{
468 __mnt_drop_write(mnt);
469 sb_end_write(mnt->mnt_sb);
470}
8366025e
DH
471EXPORT_SYMBOL_GPL(mnt_drop_write);
472
eb04c282
JK
473void __mnt_drop_write_file(struct file *file)
474{
475 __mnt_drop_write(file->f_path.mnt);
476}
477
2a79f17e
AV
478void mnt_drop_write_file(struct file *file)
479{
480 mnt_drop_write(file->f_path.mnt);
481}
482EXPORT_SYMBOL(mnt_drop_write_file);
483
83adc753 484static int mnt_make_readonly(struct mount *mnt)
8366025e 485{
3d733633
DH
486 int ret = 0;
487
719ea2fb 488 lock_mount_hash();
83adc753 489 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 490 /*
d3ef3d73
NP
491 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
492 * should be visible before we do.
3d733633 493 */
d3ef3d73
NP
494 smp_mb();
495
3d733633 496 /*
d3ef3d73
NP
497 * With writers on hold, if this value is zero, then there are
498 * definitely no active writers (although held writers may subsequently
499 * increment the count, they'll have to wait, and decrement it after
500 * seeing MNT_READONLY).
501 *
502 * It is OK to have counter incremented on one CPU and decremented on
503 * another: the sum will add up correctly. The danger would be when we
504 * sum up each counter, if we read a counter before it is incremented,
505 * but then read another CPU's count which it has been subsequently
506 * decremented from -- we would see more decrements than we should.
507 * MNT_WRITE_HOLD protects against this scenario, because
508 * mnt_want_write first increments count, then smp_mb, then spins on
509 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
510 * we're counting up here.
3d733633 511 */
c6653a83 512 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
513 ret = -EBUSY;
514 else
83adc753 515 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
516 /*
517 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
518 * that become unheld will see MNT_READONLY.
519 */
520 smp_wmb();
83adc753 521 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 522 unlock_mount_hash();
3d733633 523 return ret;
8366025e 524}
8366025e 525
83adc753 526static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 527{
719ea2fb 528 lock_mount_hash();
83adc753 529 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 530 unlock_mount_hash();
2e4b7fcd
DH
531}
532
4ed5e82f
MS
533int sb_prepare_remount_readonly(struct super_block *sb)
534{
535 struct mount *mnt;
536 int err = 0;
537
8e8b8796
MS
538 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
539 if (atomic_long_read(&sb->s_remove_count))
540 return -EBUSY;
541
719ea2fb 542 lock_mount_hash();
4ed5e82f
MS
543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
545 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
546 smp_mb();
547 if (mnt_get_writers(mnt) > 0) {
548 err = -EBUSY;
549 break;
550 }
551 }
552 }
8e8b8796
MS
553 if (!err && atomic_long_read(&sb->s_remove_count))
554 err = -EBUSY;
555
4ed5e82f
MS
556 if (!err) {
557 sb->s_readonly_remount = 1;
558 smp_wmb();
559 }
560 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
561 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
562 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
563 }
719ea2fb 564 unlock_mount_hash();
4ed5e82f
MS
565
566 return err;
567}
568
b105e270 569static void free_vfsmnt(struct mount *mnt)
1da177e4 570{
52ba1621 571 kfree(mnt->mnt_devname);
d3ef3d73 572#ifdef CONFIG_SMP
68e8a9fe 573 free_percpu(mnt->mnt_pcp);
d3ef3d73 574#endif
b105e270 575 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
576}
577
8ffcb32e
DH
578static void delayed_free_vfsmnt(struct rcu_head *head)
579{
580 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
581}
582
48a066e7
AV
583/* call under rcu_read_lock */
584bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
585{
586 struct mount *mnt;
587 if (read_seqretry(&mount_lock, seq))
588 return false;
589 if (bastard == NULL)
590 return true;
591 mnt = real_mount(bastard);
592 mnt_add_count(mnt, 1);
593 if (likely(!read_seqretry(&mount_lock, seq)))
594 return true;
595 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
596 mnt_add_count(mnt, -1);
597 return false;
598 }
599 rcu_read_unlock();
600 mntput(bastard);
601 rcu_read_lock();
602 return false;
603}
604
1da177e4 605/*
474279dc 606 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 607 * call under rcu_read_lock()
1da177e4 608 */
474279dc 609struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 610{
38129a13 611 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
612 struct mount *p;
613
38129a13 614 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 return p;
617 return NULL;
618}
619
620/*
621 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 622 * mount_lock must be held.
474279dc
AV
623 */
624struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
625{
38129a13
AV
626 struct mount *p, *res;
627 res = p = __lookup_mnt(mnt, dentry);
628 if (!p)
629 goto out;
630 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
631 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
632 break;
633 res = p;
634 }
38129a13 635out:
1d6a32ac 636 return res;
1da177e4
LT
637}
638
a05964f3 639/*
f015f126
DH
640 * lookup_mnt - Return the first child mount mounted at path
641 *
642 * "First" means first mounted chronologically. If you create the
643 * following mounts:
644 *
645 * mount /dev/sda1 /mnt
646 * mount /dev/sda2 /mnt
647 * mount /dev/sda3 /mnt
648 *
649 * Then lookup_mnt() on the base /mnt dentry in the root mount will
650 * return successively the root dentry and vfsmount of /dev/sda1, then
651 * /dev/sda2, then /dev/sda3, then NULL.
652 *
653 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 654 */
1c755af4 655struct vfsmount *lookup_mnt(struct path *path)
a05964f3 656{
c7105365 657 struct mount *child_mnt;
48a066e7
AV
658 struct vfsmount *m;
659 unsigned seq;
99b7db7b 660
48a066e7
AV
661 rcu_read_lock();
662 do {
663 seq = read_seqbegin(&mount_lock);
664 child_mnt = __lookup_mnt(path->mnt, path->dentry);
665 m = child_mnt ? &child_mnt->mnt : NULL;
666 } while (!legitimize_mnt(m, seq));
667 rcu_read_unlock();
668 return m;
a05964f3
RP
669}
670
7af1364f
EB
671/*
672 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
673 * current mount namespace.
674 *
675 * The common case is dentries are not mountpoints at all and that
676 * test is handled inline. For the slow case when we are actually
677 * dealing with a mountpoint of some kind, walk through all of the
678 * mounts in the current mount namespace and test to see if the dentry
679 * is a mountpoint.
680 *
681 * The mount_hashtable is not usable in the context because we
682 * need to identify all mounts that may be in the current mount
683 * namespace not just a mount that happens to have some specified
684 * parent mount.
685 */
686bool __is_local_mountpoint(struct dentry *dentry)
687{
688 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
689 struct mount *mnt;
690 bool is_covered = false;
691
692 if (!d_mountpoint(dentry))
693 goto out;
694
695 down_read(&namespace_sem);
696 list_for_each_entry(mnt, &ns->list, mnt_list) {
697 is_covered = (mnt->mnt_mountpoint == dentry);
698 if (is_covered)
699 break;
700 }
701 up_read(&namespace_sem);
702out:
703 return is_covered;
704}
705
e2dfa935 706static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 707{
0818bf27 708 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
709 struct mountpoint *mp;
710
0818bf27 711 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
712 if (mp->m_dentry == dentry) {
713 /* might be worth a WARN_ON() */
714 if (d_unlinked(dentry))
715 return ERR_PTR(-ENOENT);
716 mp->m_count++;
717 return mp;
718 }
719 }
e2dfa935
EB
720 return NULL;
721}
722
723static struct mountpoint *new_mountpoint(struct dentry *dentry)
724{
725 struct hlist_head *chain = mp_hash(dentry);
726 struct mountpoint *mp;
727 int ret;
84d17192
AV
728
729 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
730 if (!mp)
731 return ERR_PTR(-ENOMEM);
732
eed81007
MS
733 ret = d_set_mounted(dentry);
734 if (ret) {
84d17192 735 kfree(mp);
eed81007 736 return ERR_PTR(ret);
84d17192 737 }
eed81007 738
84d17192
AV
739 mp->m_dentry = dentry;
740 mp->m_count = 1;
0818bf27 741 hlist_add_head(&mp->m_hash, chain);
0a5eb7c8 742 INIT_HLIST_HEAD(&mp->m_list);
84d17192
AV
743 return mp;
744}
745
746static void put_mountpoint(struct mountpoint *mp)
747{
748 if (!--mp->m_count) {
749 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 750 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
751 spin_lock(&dentry->d_lock);
752 dentry->d_flags &= ~DCACHE_MOUNTED;
753 spin_unlock(&dentry->d_lock);
0818bf27 754 hlist_del(&mp->m_hash);
84d17192
AV
755 kfree(mp);
756 }
757}
758
143c8c91 759static inline int check_mnt(struct mount *mnt)
1da177e4 760{
6b3286ed 761 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
762}
763
99b7db7b
NP
764/*
765 * vfsmount lock must be held for write
766 */
6b3286ed 767static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
768{
769 if (ns) {
770 ns->event = ++event;
771 wake_up_interruptible(&ns->poll);
772 }
773}
774
99b7db7b
NP
775/*
776 * vfsmount lock must be held for write
777 */
6b3286ed 778static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
779{
780 if (ns && ns->event != event) {
781 ns->event = event;
782 wake_up_interruptible(&ns->poll);
783 }
784}
785
99b7db7b
NP
786/*
787 * vfsmount lock must be held for write
788 */
419148da
AV
789static void detach_mnt(struct mount *mnt, struct path *old_path)
790{
a73324da 791 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
792 old_path->mnt = &mnt->mnt_parent->mnt;
793 mnt->mnt_parent = mnt;
a73324da 794 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 795 list_del_init(&mnt->mnt_child);
38129a13 796 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 797 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
798 put_mountpoint(mnt->mnt_mp);
799 mnt->mnt_mp = NULL;
1da177e4
LT
800}
801
99b7db7b
NP
802/*
803 * vfsmount lock must be held for write
804 */
84d17192
AV
805void mnt_set_mountpoint(struct mount *mnt,
806 struct mountpoint *mp,
44d964d6 807 struct mount *child_mnt)
b90fa9ae 808{
84d17192 809 mp->m_count++;
3a2393d7 810 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 811 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 812 child_mnt->mnt_parent = mnt;
84d17192 813 child_mnt->mnt_mp = mp;
0a5eb7c8 814 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
815}
816
99b7db7b
NP
817/*
818 * vfsmount lock must be held for write
819 */
84d17192
AV
820static void attach_mnt(struct mount *mnt,
821 struct mount *parent,
822 struct mountpoint *mp)
1da177e4 823{
84d17192 824 mnt_set_mountpoint(parent, mp, mnt);
38129a13 825 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 826 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
827}
828
12a5b529
AV
829static void attach_shadowed(struct mount *mnt,
830 struct mount *parent,
831 struct mount *shadows)
832{
833 if (shadows) {
f6f99332 834 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
835 list_add(&mnt->mnt_child, &shadows->mnt_child);
836 } else {
837 hlist_add_head_rcu(&mnt->mnt_hash,
838 m_hash(&parent->mnt, mnt->mnt_mountpoint));
839 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
840 }
841}
842
b90fa9ae 843/*
99b7db7b 844 * vfsmount lock must be held for write
b90fa9ae 845 */
1d6a32ac 846static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 847{
0714a533 848 struct mount *parent = mnt->mnt_parent;
83adc753 849 struct mount *m;
b90fa9ae 850 LIST_HEAD(head);
143c8c91 851 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 852
0714a533 853 BUG_ON(parent == mnt);
b90fa9ae 854
1a4eeaf2 855 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 856 list_for_each_entry(m, &head, mnt_list)
143c8c91 857 m->mnt_ns = n;
f03c6599 858
b90fa9ae
RP
859 list_splice(&head, n->list.prev);
860
12a5b529 861 attach_shadowed(mnt, parent, shadows);
6b3286ed 862 touch_mnt_namespace(n);
1da177e4
LT
863}
864
909b0a88 865static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 866{
6b41d536
AV
867 struct list_head *next = p->mnt_mounts.next;
868 if (next == &p->mnt_mounts) {
1da177e4 869 while (1) {
909b0a88 870 if (p == root)
1da177e4 871 return NULL;
6b41d536
AV
872 next = p->mnt_child.next;
873 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 874 break;
0714a533 875 p = p->mnt_parent;
1da177e4
LT
876 }
877 }
6b41d536 878 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
879}
880
315fc83e 881static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 882{
6b41d536
AV
883 struct list_head *prev = p->mnt_mounts.prev;
884 while (prev != &p->mnt_mounts) {
885 p = list_entry(prev, struct mount, mnt_child);
886 prev = p->mnt_mounts.prev;
9676f0c6
RP
887 }
888 return p;
889}
890
9d412a43
AV
891struct vfsmount *
892vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
893{
b105e270 894 struct mount *mnt;
9d412a43
AV
895 struct dentry *root;
896
897 if (!type)
898 return ERR_PTR(-ENODEV);
899
900 mnt = alloc_vfsmnt(name);
901 if (!mnt)
902 return ERR_PTR(-ENOMEM);
903
904 if (flags & MS_KERNMOUNT)
b105e270 905 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
906
907 root = mount_fs(type, flags, name, data);
908 if (IS_ERR(root)) {
8ffcb32e 909 mnt_free_id(mnt);
9d412a43
AV
910 free_vfsmnt(mnt);
911 return ERR_CAST(root);
912 }
913
b105e270
AV
914 mnt->mnt.mnt_root = root;
915 mnt->mnt.mnt_sb = root->d_sb;
a73324da 916 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 917 mnt->mnt_parent = mnt;
719ea2fb 918 lock_mount_hash();
39f7c4db 919 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 920 unlock_mount_hash();
b105e270 921 return &mnt->mnt;
9d412a43
AV
922}
923EXPORT_SYMBOL_GPL(vfs_kern_mount);
924
87129cc0 925static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 926 int flag)
1da177e4 927{
87129cc0 928 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
929 struct mount *mnt;
930 int err;
1da177e4 931
be34d1a3
DH
932 mnt = alloc_vfsmnt(old->mnt_devname);
933 if (!mnt)
934 return ERR_PTR(-ENOMEM);
719f5d7f 935
7a472ef4 936 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
937 mnt->mnt_group_id = 0; /* not a peer of original */
938 else
939 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 940
be34d1a3
DH
941 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
942 err = mnt_alloc_group_id(mnt);
943 if (err)
944 goto out_free;
1da177e4 945 }
be34d1a3 946
f2ebb3a9 947 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 948 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
949 if (flag & CL_UNPRIVILEGED) {
950 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
951
952 if (mnt->mnt.mnt_flags & MNT_READONLY)
953 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
954
955 if (mnt->mnt.mnt_flags & MNT_NODEV)
956 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
957
958 if (mnt->mnt.mnt_flags & MNT_NOSUID)
959 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
960
961 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
962 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
963 }
132c94e3 964
5ff9d8a6
EB
965 /* Don't allow unprivileged users to reveal what is under a mount */
966 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
967 mnt->mnt.mnt_flags |= MNT_LOCKED;
968
be34d1a3
DH
969 atomic_inc(&sb->s_active);
970 mnt->mnt.mnt_sb = sb;
971 mnt->mnt.mnt_root = dget(root);
972 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
973 mnt->mnt_parent = mnt;
719ea2fb 974 lock_mount_hash();
be34d1a3 975 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 976 unlock_mount_hash();
be34d1a3 977
7a472ef4
EB
978 if ((flag & CL_SLAVE) ||
979 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
980 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
981 mnt->mnt_master = old;
982 CLEAR_MNT_SHARED(mnt);
983 } else if (!(flag & CL_PRIVATE)) {
984 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
985 list_add(&mnt->mnt_share, &old->mnt_share);
986 if (IS_MNT_SLAVE(old))
987 list_add(&mnt->mnt_slave, &old->mnt_slave);
988 mnt->mnt_master = old->mnt_master;
989 }
990 if (flag & CL_MAKE_SHARED)
991 set_mnt_shared(mnt);
992
993 /* stick the duplicate mount on the same expiry list
994 * as the original if that was on one */
995 if (flag & CL_EXPIRE) {
996 if (!list_empty(&old->mnt_expire))
997 list_add(&mnt->mnt_expire, &old->mnt_expire);
998 }
999
cb338d06 1000 return mnt;
719f5d7f
MS
1001
1002 out_free:
8ffcb32e 1003 mnt_free_id(mnt);
719f5d7f 1004 free_vfsmnt(mnt);
be34d1a3 1005 return ERR_PTR(err);
1da177e4
LT
1006}
1007
9ea459e1
AV
1008static void cleanup_mnt(struct mount *mnt)
1009{
1010 /*
1011 * This probably indicates that somebody messed
1012 * up a mnt_want/drop_write() pair. If this
1013 * happens, the filesystem was probably unable
1014 * to make r/w->r/o transitions.
1015 */
1016 /*
1017 * The locking used to deal with mnt_count decrement provides barriers,
1018 * so mnt_get_writers() below is safe.
1019 */
1020 WARN_ON(mnt_get_writers(mnt));
1021 if (unlikely(mnt->mnt_pins.first))
1022 mnt_pin_kill(mnt);
1023 fsnotify_vfsmount_delete(&mnt->mnt);
1024 dput(mnt->mnt.mnt_root);
1025 deactivate_super(mnt->mnt.mnt_sb);
1026 mnt_free_id(mnt);
1027 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1028}
1029
1030static void __cleanup_mnt(struct rcu_head *head)
1031{
1032 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1033}
1034
1035static LLIST_HEAD(delayed_mntput_list);
1036static void delayed_mntput(struct work_struct *unused)
1037{
1038 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1039 struct llist_node *next;
1040
1041 for (; node; node = next) {
1042 next = llist_next(node);
1043 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1044 }
1045}
1046static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1047
900148dc 1048static void mntput_no_expire(struct mount *mnt)
b3e19d92 1049{
48a066e7
AV
1050 rcu_read_lock();
1051 mnt_add_count(mnt, -1);
1052 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1053 rcu_read_unlock();
f03c6599 1054 return;
b3e19d92 1055 }
719ea2fb 1056 lock_mount_hash();
b3e19d92 1057 if (mnt_get_count(mnt)) {
48a066e7 1058 rcu_read_unlock();
719ea2fb 1059 unlock_mount_hash();
99b7db7b
NP
1060 return;
1061 }
48a066e7
AV
1062 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1063 rcu_read_unlock();
1064 unlock_mount_hash();
1065 return;
1066 }
1067 mnt->mnt.mnt_flags |= MNT_DOOMED;
1068 rcu_read_unlock();
962830df 1069
39f7c4db 1070 list_del(&mnt->mnt_instance);
719ea2fb 1071 unlock_mount_hash();
649a795a 1072
9ea459e1
AV
1073 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1074 struct task_struct *task = current;
1075 if (likely(!(task->flags & PF_KTHREAD))) {
1076 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1077 if (!task_work_add(task, &mnt->mnt_rcu, true))
1078 return;
1079 }
1080 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1081 schedule_delayed_work(&delayed_mntput_work, 1);
1082 return;
1083 }
1084 cleanup_mnt(mnt);
b3e19d92 1085}
b3e19d92
NP
1086
1087void mntput(struct vfsmount *mnt)
1088{
1089 if (mnt) {
863d684f 1090 struct mount *m = real_mount(mnt);
b3e19d92 1091 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1092 if (unlikely(m->mnt_expiry_mark))
1093 m->mnt_expiry_mark = 0;
1094 mntput_no_expire(m);
b3e19d92
NP
1095 }
1096}
1097EXPORT_SYMBOL(mntput);
1098
1099struct vfsmount *mntget(struct vfsmount *mnt)
1100{
1101 if (mnt)
83adc753 1102 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1103 return mnt;
1104}
1105EXPORT_SYMBOL(mntget);
1106
3064c356 1107struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1108{
3064c356
AV
1109 struct mount *p;
1110 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1111 if (IS_ERR(p))
1112 return ERR_CAST(p);
1113 p->mnt.mnt_flags |= MNT_INTERNAL;
1114 return &p->mnt;
7b7b1ace 1115}
1da177e4 1116
b3b304a2
MS
1117static inline void mangle(struct seq_file *m, const char *s)
1118{
1119 seq_escape(m, s, " \t\n\\");
1120}
1121
1122/*
1123 * Simple .show_options callback for filesystems which don't want to
1124 * implement more complex mount option showing.
1125 *
1126 * See also save_mount_options().
1127 */
34c80b1d 1128int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1129{
2a32cebd
AV
1130 const char *options;
1131
1132 rcu_read_lock();
34c80b1d 1133 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1134
1135 if (options != NULL && options[0]) {
1136 seq_putc(m, ',');
1137 mangle(m, options);
1138 }
2a32cebd 1139 rcu_read_unlock();
b3b304a2
MS
1140
1141 return 0;
1142}
1143EXPORT_SYMBOL(generic_show_options);
1144
1145/*
1146 * If filesystem uses generic_show_options(), this function should be
1147 * called from the fill_super() callback.
1148 *
1149 * The .remount_fs callback usually needs to be handled in a special
1150 * way, to make sure, that previous options are not overwritten if the
1151 * remount fails.
1152 *
1153 * Also note, that if the filesystem's .remount_fs function doesn't
1154 * reset all options to their default value, but changes only newly
1155 * given options, then the displayed options will not reflect reality
1156 * any more.
1157 */
1158void save_mount_options(struct super_block *sb, char *options)
1159{
2a32cebd
AV
1160 BUG_ON(sb->s_options);
1161 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1162}
1163EXPORT_SYMBOL(save_mount_options);
1164
2a32cebd
AV
1165void replace_mount_options(struct super_block *sb, char *options)
1166{
1167 char *old = sb->s_options;
1168 rcu_assign_pointer(sb->s_options, options);
1169 if (old) {
1170 synchronize_rcu();
1171 kfree(old);
1172 }
1173}
1174EXPORT_SYMBOL(replace_mount_options);
1175
a1a2c409 1176#ifdef CONFIG_PROC_FS
0226f492 1177/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1178static void *m_start(struct seq_file *m, loff_t *pos)
1179{
6ce6e24e 1180 struct proc_mounts *p = proc_mounts(m);
1da177e4 1181
390c6843 1182 down_read(&namespace_sem);
c7999c36
AV
1183 if (p->cached_event == p->ns->event) {
1184 void *v = p->cached_mount;
1185 if (*pos == p->cached_index)
1186 return v;
1187 if (*pos == p->cached_index + 1) {
1188 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1189 return p->cached_mount = v;
1190 }
1191 }
1192
1193 p->cached_event = p->ns->event;
1194 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1195 p->cached_index = *pos;
1196 return p->cached_mount;
1da177e4
LT
1197}
1198
1199static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1200{
6ce6e24e 1201 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1202
c7999c36
AV
1203 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1204 p->cached_index = *pos;
1205 return p->cached_mount;
1da177e4
LT
1206}
1207
1208static void m_stop(struct seq_file *m, void *v)
1209{
390c6843 1210 up_read(&namespace_sem);
1da177e4
LT
1211}
1212
0226f492 1213static int m_show(struct seq_file *m, void *v)
2d4d4864 1214{
6ce6e24e 1215 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1216 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1217 return p->show(m, &r->mnt);
1da177e4
LT
1218}
1219
a1a2c409 1220const struct seq_operations mounts_op = {
1da177e4
LT
1221 .start = m_start,
1222 .next = m_next,
1223 .stop = m_stop,
0226f492 1224 .show = m_show,
b4629fe2 1225};
a1a2c409 1226#endif /* CONFIG_PROC_FS */
b4629fe2 1227
1da177e4
LT
1228/**
1229 * may_umount_tree - check if a mount tree is busy
1230 * @mnt: root of mount tree
1231 *
1232 * This is called to check if a tree of mounts has any
1233 * open files, pwds, chroots or sub mounts that are
1234 * busy.
1235 */
909b0a88 1236int may_umount_tree(struct vfsmount *m)
1da177e4 1237{
909b0a88 1238 struct mount *mnt = real_mount(m);
36341f64
RP
1239 int actual_refs = 0;
1240 int minimum_refs = 0;
315fc83e 1241 struct mount *p;
909b0a88 1242 BUG_ON(!m);
1da177e4 1243
b3e19d92 1244 /* write lock needed for mnt_get_count */
719ea2fb 1245 lock_mount_hash();
909b0a88 1246 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1247 actual_refs += mnt_get_count(p);
1da177e4 1248 minimum_refs += 2;
1da177e4 1249 }
719ea2fb 1250 unlock_mount_hash();
1da177e4
LT
1251
1252 if (actual_refs > minimum_refs)
e3474a8e 1253 return 0;
1da177e4 1254
e3474a8e 1255 return 1;
1da177e4
LT
1256}
1257
1258EXPORT_SYMBOL(may_umount_tree);
1259
1260/**
1261 * may_umount - check if a mount point is busy
1262 * @mnt: root of mount
1263 *
1264 * This is called to check if a mount point has any
1265 * open files, pwds, chroots or sub mounts. If the
1266 * mount has sub mounts this will return busy
1267 * regardless of whether the sub mounts are busy.
1268 *
1269 * Doesn't take quota and stuff into account. IOW, in some cases it will
1270 * give false negatives. The main reason why it's here is that we need
1271 * a non-destructive way to look for easily umountable filesystems.
1272 */
1273int may_umount(struct vfsmount *mnt)
1274{
e3474a8e 1275 int ret = 1;
8ad08d8a 1276 down_read(&namespace_sem);
719ea2fb 1277 lock_mount_hash();
1ab59738 1278 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1279 ret = 0;
719ea2fb 1280 unlock_mount_hash();
8ad08d8a 1281 up_read(&namespace_sem);
a05964f3 1282 return ret;
1da177e4
LT
1283}
1284
1285EXPORT_SYMBOL(may_umount);
1286
38129a13 1287static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1288
97216be0 1289static void namespace_unlock(void)
70fbcdf4 1290{
d5e50f74 1291 struct mount *mnt;
38129a13 1292 struct hlist_head head = unmounted;
97216be0 1293
38129a13 1294 if (likely(hlist_empty(&head))) {
97216be0
AV
1295 up_write(&namespace_sem);
1296 return;
1297 }
1298
38129a13
AV
1299 head.first->pprev = &head.first;
1300 INIT_HLIST_HEAD(&unmounted);
1301
81b6b061
AV
1302 /* undo decrements we'd done in umount_tree() */
1303 hlist_for_each_entry(mnt, &head, mnt_hash)
1304 if (mnt->mnt_ex_mountpoint.mnt)
1305 mntget(mnt->mnt_ex_mountpoint.mnt);
1306
97216be0
AV
1307 up_write(&namespace_sem);
1308
48a066e7
AV
1309 synchronize_rcu();
1310
38129a13
AV
1311 while (!hlist_empty(&head)) {
1312 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1313 hlist_del_init(&mnt->mnt_hash);
aba809cf
AV
1314 if (mnt->mnt_ex_mountpoint.mnt)
1315 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1316 mntput(&mnt->mnt);
70fbcdf4
RP
1317 }
1318}
1319
97216be0 1320static inline void namespace_lock(void)
e3197d83 1321{
97216be0 1322 down_write(&namespace_sem);
e3197d83
AV
1323}
1324
99b7db7b 1325/*
48a066e7 1326 * mount_lock must be held
99b7db7b 1327 * namespace_sem must be held for write
48a066e7
AV
1328 * how = 0 => just this tree, don't propagate
1329 * how = 1 => propagate; we know that nobody else has reference to any victims
1330 * how = 2 => lazy umount
99b7db7b 1331 */
48a066e7 1332void umount_tree(struct mount *mnt, int how)
1da177e4 1333{
38129a13 1334 HLIST_HEAD(tmp_list);
315fc83e 1335 struct mount *p;
38129a13 1336 struct mount *last = NULL;
1da177e4 1337
38129a13
AV
1338 for (p = mnt; p; p = next_mnt(p, mnt)) {
1339 hlist_del_init_rcu(&p->mnt_hash);
1340 hlist_add_head(&p->mnt_hash, &tmp_list);
1341 }
1da177e4 1342
88b368f2
AV
1343 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1344 list_del_init(&p->mnt_child);
1345
48a066e7 1346 if (how)
7b8a53fd 1347 propagate_umount(&tmp_list);
a05964f3 1348
38129a13 1349 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1350 list_del_init(&p->mnt_expire);
1a4eeaf2 1351 list_del_init(&p->mnt_list);
143c8c91
AV
1352 __touch_mnt_namespace(p->mnt_ns);
1353 p->mnt_ns = NULL;
48a066e7
AV
1354 if (how < 2)
1355 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
676da58d 1356 if (mnt_has_parent(p)) {
0a5eb7c8 1357 hlist_del_init(&p->mnt_mp_list);
84d17192 1358 put_mountpoint(p->mnt_mp);
81b6b061 1359 mnt_add_count(p->mnt_parent, -1);
aba809cf
AV
1360 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1361 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1362 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1363 p->mnt_mountpoint = p->mnt.mnt_root;
1364 p->mnt_parent = p;
84d17192 1365 p->mnt_mp = NULL;
7c4b93d8 1366 }
0f0afb1d 1367 change_mnt_propagation(p, MS_PRIVATE);
38129a13
AV
1368 last = p;
1369 }
1370 if (last) {
1371 last->mnt_hash.next = unmounted.first;
1372 unmounted.first = tmp_list.first;
1373 unmounted.first->pprev = &unmounted.first;
1da177e4
LT
1374 }
1375}
1376
b54b9be7 1377static void shrink_submounts(struct mount *mnt);
c35038be 1378
1ab59738 1379static int do_umount(struct mount *mnt, int flags)
1da177e4 1380{
1ab59738 1381 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1382 int retval;
1383
1ab59738 1384 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1385 if (retval)
1386 return retval;
1387
1388 /*
1389 * Allow userspace to request a mountpoint be expired rather than
1390 * unmounting unconditionally. Unmount only happens if:
1391 * (1) the mark is already set (the mark is cleared by mntput())
1392 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1393 */
1394 if (flags & MNT_EXPIRE) {
1ab59738 1395 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1396 flags & (MNT_FORCE | MNT_DETACH))
1397 return -EINVAL;
1398
b3e19d92
NP
1399 /*
1400 * probably don't strictly need the lock here if we examined
1401 * all race cases, but it's a slowpath.
1402 */
719ea2fb 1403 lock_mount_hash();
83adc753 1404 if (mnt_get_count(mnt) != 2) {
719ea2fb 1405 unlock_mount_hash();
1da177e4 1406 return -EBUSY;
b3e19d92 1407 }
719ea2fb 1408 unlock_mount_hash();
1da177e4 1409
863d684f 1410 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1411 return -EAGAIN;
1412 }
1413
1414 /*
1415 * If we may have to abort operations to get out of this
1416 * mount, and they will themselves hold resources we must
1417 * allow the fs to do things. In the Unix tradition of
1418 * 'Gee thats tricky lets do it in userspace' the umount_begin
1419 * might fail to complete on the first run through as other tasks
1420 * must return, and the like. Thats for the mount program to worry
1421 * about for the moment.
1422 */
1423
42faad99 1424 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1425 sb->s_op->umount_begin(sb);
42faad99 1426 }
1da177e4
LT
1427
1428 /*
1429 * No sense to grab the lock for this test, but test itself looks
1430 * somewhat bogus. Suggestions for better replacement?
1431 * Ho-hum... In principle, we might treat that as umount + switch
1432 * to rootfs. GC would eventually take care of the old vfsmount.
1433 * Actually it makes sense, especially if rootfs would contain a
1434 * /reboot - static binary that would close all descriptors and
1435 * call reboot(9). Then init(8) could umount root and exec /reboot.
1436 */
1ab59738 1437 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1438 /*
1439 * Special case for "unmounting" root ...
1440 * we just try to remount it readonly.
1441 */
a1480dcc
AL
1442 if (!capable(CAP_SYS_ADMIN))
1443 return -EPERM;
1da177e4 1444 down_write(&sb->s_umount);
4aa98cf7 1445 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1446 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1447 up_write(&sb->s_umount);
1448 return retval;
1449 }
1450
97216be0 1451 namespace_lock();
719ea2fb 1452 lock_mount_hash();
5addc5dd 1453 event++;
1da177e4 1454
48a066e7 1455 if (flags & MNT_DETACH) {
1a4eeaf2 1456 if (!list_empty(&mnt->mnt_list))
48a066e7 1457 umount_tree(mnt, 2);
1da177e4 1458 retval = 0;
48a066e7
AV
1459 } else {
1460 shrink_submounts(mnt);
1461 retval = -EBUSY;
1462 if (!propagate_mount_busy(mnt, 2)) {
1463 if (!list_empty(&mnt->mnt_list))
1464 umount_tree(mnt, 1);
1465 retval = 0;
1466 }
1da177e4 1467 }
719ea2fb 1468 unlock_mount_hash();
e3197d83 1469 namespace_unlock();
1da177e4
LT
1470 return retval;
1471}
1472
80b5dce8
EB
1473/*
1474 * __detach_mounts - lazily unmount all mounts on the specified dentry
1475 *
1476 * During unlink, rmdir, and d_drop it is possible to loose the path
1477 * to an existing mountpoint, and wind up leaking the mount.
1478 * detach_mounts allows lazily unmounting those mounts instead of
1479 * leaking them.
1480 *
1481 * The caller may hold dentry->d_inode->i_mutex.
1482 */
1483void __detach_mounts(struct dentry *dentry)
1484{
1485 struct mountpoint *mp;
1486 struct mount *mnt;
1487
1488 namespace_lock();
1489 mp = lookup_mountpoint(dentry);
1490 if (!mp)
1491 goto out_unlock;
1492
1493 lock_mount_hash();
1494 while (!hlist_empty(&mp->m_list)) {
1495 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1496 umount_tree(mnt, 2);
1497 }
1498 unlock_mount_hash();
1499 put_mountpoint(mp);
1500out_unlock:
1501 namespace_unlock();
1502}
1503
9b40bc90
AV
1504/*
1505 * Is the caller allowed to modify his namespace?
1506 */
1507static inline bool may_mount(void)
1508{
1509 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1510}
1511
1da177e4
LT
1512/*
1513 * Now umount can handle mount points as well as block devices.
1514 * This is important for filesystems which use unnamed block devices.
1515 *
1516 * We now support a flag for forced unmount like the other 'big iron'
1517 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1518 */
1519
bdc480e3 1520SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1521{
2d8f3038 1522 struct path path;
900148dc 1523 struct mount *mnt;
1da177e4 1524 int retval;
db1f05bb 1525 int lookup_flags = 0;
1da177e4 1526
db1f05bb
MS
1527 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1528 return -EINVAL;
1529
9b40bc90
AV
1530 if (!may_mount())
1531 return -EPERM;
1532
db1f05bb
MS
1533 if (!(flags & UMOUNT_NOFOLLOW))
1534 lookup_flags |= LOOKUP_FOLLOW;
1535
197df04c 1536 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1537 if (retval)
1538 goto out;
900148dc 1539 mnt = real_mount(path.mnt);
1da177e4 1540 retval = -EINVAL;
2d8f3038 1541 if (path.dentry != path.mnt->mnt_root)
1da177e4 1542 goto dput_and_out;
143c8c91 1543 if (!check_mnt(mnt))
1da177e4 1544 goto dput_and_out;
5ff9d8a6
EB
1545 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1546 goto dput_and_out;
1da177e4 1547
900148dc 1548 retval = do_umount(mnt, flags);
1da177e4 1549dput_and_out:
429731b1 1550 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1551 dput(path.dentry);
900148dc 1552 mntput_no_expire(mnt);
1da177e4
LT
1553out:
1554 return retval;
1555}
1556
1557#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1558
1559/*
b58fed8b 1560 * The 2.0 compatible umount. No flags.
1da177e4 1561 */
bdc480e3 1562SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1563{
b58fed8b 1564 return sys_umount(name, 0);
1da177e4
LT
1565}
1566
1567#endif
1568
4ce5d2b1 1569static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1570{
4ce5d2b1
EB
1571 /* Is this a proxy for a mount namespace? */
1572 struct inode *inode = dentry->d_inode;
0bb80f24 1573 struct proc_ns *ei;
8823c079
EB
1574
1575 if (!proc_ns_inode(inode))
1576 return false;
1577
0bb80f24 1578 ei = get_proc_ns(inode);
8823c079
EB
1579 if (ei->ns_ops != &mntns_operations)
1580 return false;
1581
4ce5d2b1
EB
1582 return true;
1583}
1584
58be2825
AV
1585struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1586{
1587 return container_of(ns, struct mnt_namespace, ns);
1588}
1589
4ce5d2b1
EB
1590static bool mnt_ns_loop(struct dentry *dentry)
1591{
1592 /* Could bind mounting the mount namespace inode cause a
1593 * mount namespace loop?
1594 */
1595 struct mnt_namespace *mnt_ns;
1596 if (!is_mnt_ns_file(dentry))
1597 return false;
1598
58be2825 1599 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)->ns);
8823c079
EB
1600 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1601}
1602
87129cc0 1603struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1604 int flag)
1da177e4 1605{
84d17192 1606 struct mount *res, *p, *q, *r, *parent;
1da177e4 1607
4ce5d2b1
EB
1608 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1609 return ERR_PTR(-EINVAL);
1610
1611 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1612 return ERR_PTR(-EINVAL);
9676f0c6 1613
36341f64 1614 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1615 if (IS_ERR(q))
1616 return q;
1617
5ff9d8a6 1618 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1619 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1620
1621 p = mnt;
6b41d536 1622 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1623 struct mount *s;
7ec02ef1 1624 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1625 continue;
1626
909b0a88 1627 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1628 struct mount *t = NULL;
4ce5d2b1
EB
1629 if (!(flag & CL_COPY_UNBINDABLE) &&
1630 IS_MNT_UNBINDABLE(s)) {
1631 s = skip_mnt_tree(s);
1632 continue;
1633 }
1634 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1635 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1636 s = skip_mnt_tree(s);
1637 continue;
1638 }
0714a533
AV
1639 while (p != s->mnt_parent) {
1640 p = p->mnt_parent;
1641 q = q->mnt_parent;
1da177e4 1642 }
87129cc0 1643 p = s;
84d17192 1644 parent = q;
87129cc0 1645 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1646 if (IS_ERR(q))
1647 goto out;
719ea2fb 1648 lock_mount_hash();
1a4eeaf2 1649 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1650 mnt_set_mountpoint(parent, p->mnt_mp, q);
1651 if (!list_empty(&parent->mnt_mounts)) {
1652 t = list_last_entry(&parent->mnt_mounts,
1653 struct mount, mnt_child);
1654 if (t->mnt_mp != p->mnt_mp)
1655 t = NULL;
1656 }
1657 attach_shadowed(q, parent, t);
719ea2fb 1658 unlock_mount_hash();
1da177e4
LT
1659 }
1660 }
1661 return res;
be34d1a3 1662out:
1da177e4 1663 if (res) {
719ea2fb 1664 lock_mount_hash();
328e6d90 1665 umount_tree(res, 0);
719ea2fb 1666 unlock_mount_hash();
1da177e4 1667 }
be34d1a3 1668 return q;
1da177e4
LT
1669}
1670
be34d1a3
DH
1671/* Caller should check returned pointer for errors */
1672
589ff870 1673struct vfsmount *collect_mounts(struct path *path)
8aec0809 1674{
cb338d06 1675 struct mount *tree;
97216be0 1676 namespace_lock();
87129cc0
AV
1677 tree = copy_tree(real_mount(path->mnt), path->dentry,
1678 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1679 namespace_unlock();
be34d1a3 1680 if (IS_ERR(tree))
52e220d3 1681 return ERR_CAST(tree);
be34d1a3 1682 return &tree->mnt;
8aec0809
AV
1683}
1684
1685void drop_collected_mounts(struct vfsmount *mnt)
1686{
97216be0 1687 namespace_lock();
719ea2fb 1688 lock_mount_hash();
328e6d90 1689 umount_tree(real_mount(mnt), 0);
719ea2fb 1690 unlock_mount_hash();
3ab6abee 1691 namespace_unlock();
8aec0809
AV
1692}
1693
c771d683
MS
1694/**
1695 * clone_private_mount - create a private clone of a path
1696 *
1697 * This creates a new vfsmount, which will be the clone of @path. The new will
1698 * not be attached anywhere in the namespace and will be private (i.e. changes
1699 * to the originating mount won't be propagated into this).
1700 *
1701 * Release with mntput().
1702 */
1703struct vfsmount *clone_private_mount(struct path *path)
1704{
1705 struct mount *old_mnt = real_mount(path->mnt);
1706 struct mount *new_mnt;
1707
1708 if (IS_MNT_UNBINDABLE(old_mnt))
1709 return ERR_PTR(-EINVAL);
1710
1711 down_read(&namespace_sem);
1712 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1713 up_read(&namespace_sem);
1714 if (IS_ERR(new_mnt))
1715 return ERR_CAST(new_mnt);
1716
1717 return &new_mnt->mnt;
1718}
1719EXPORT_SYMBOL_GPL(clone_private_mount);
1720
1f707137
AV
1721int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1722 struct vfsmount *root)
1723{
1a4eeaf2 1724 struct mount *mnt;
1f707137
AV
1725 int res = f(root, arg);
1726 if (res)
1727 return res;
1a4eeaf2
AV
1728 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1729 res = f(&mnt->mnt, arg);
1f707137
AV
1730 if (res)
1731 return res;
1732 }
1733 return 0;
1734}
1735
4b8b21f4 1736static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1737{
315fc83e 1738 struct mount *p;
719f5d7f 1739
909b0a88 1740 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1741 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1742 mnt_release_group_id(p);
719f5d7f
MS
1743 }
1744}
1745
4b8b21f4 1746static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1747{
315fc83e 1748 struct mount *p;
719f5d7f 1749
909b0a88 1750 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1751 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1752 int err = mnt_alloc_group_id(p);
719f5d7f 1753 if (err) {
4b8b21f4 1754 cleanup_group_ids(mnt, p);
719f5d7f
MS
1755 return err;
1756 }
1757 }
1758 }
1759
1760 return 0;
1761}
1762
b90fa9ae
RP
1763/*
1764 * @source_mnt : mount tree to be attached
21444403
RP
1765 * @nd : place the mount tree @source_mnt is attached
1766 * @parent_nd : if non-null, detach the source_mnt from its parent and
1767 * store the parent mount and mountpoint dentry.
1768 * (done when source_mnt is moved)
b90fa9ae
RP
1769 *
1770 * NOTE: in the table below explains the semantics when a source mount
1771 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1772 * ---------------------------------------------------------------------------
1773 * | BIND MOUNT OPERATION |
1774 * |**************************************************************************
1775 * | source-->| shared | private | slave | unbindable |
1776 * | dest | | | | |
1777 * | | | | | | |
1778 * | v | | | | |
1779 * |**************************************************************************
1780 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1781 * | | | | | |
1782 * |non-shared| shared (+) | private | slave (*) | invalid |
1783 * ***************************************************************************
b90fa9ae
RP
1784 * A bind operation clones the source mount and mounts the clone on the
1785 * destination mount.
1786 *
1787 * (++) the cloned mount is propagated to all the mounts in the propagation
1788 * tree of the destination mount and the cloned mount is added to
1789 * the peer group of the source mount.
1790 * (+) the cloned mount is created under the destination mount and is marked
1791 * as shared. The cloned mount is added to the peer group of the source
1792 * mount.
5afe0022
RP
1793 * (+++) the mount is propagated to all the mounts in the propagation tree
1794 * of the destination mount and the cloned mount is made slave
1795 * of the same master as that of the source mount. The cloned mount
1796 * is marked as 'shared and slave'.
1797 * (*) the cloned mount is made a slave of the same master as that of the
1798 * source mount.
1799 *
9676f0c6
RP
1800 * ---------------------------------------------------------------------------
1801 * | MOVE MOUNT OPERATION |
1802 * |**************************************************************************
1803 * | source-->| shared | private | slave | unbindable |
1804 * | dest | | | | |
1805 * | | | | | | |
1806 * | v | | | | |
1807 * |**************************************************************************
1808 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1809 * | | | | | |
1810 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1811 * ***************************************************************************
5afe0022
RP
1812 *
1813 * (+) the mount is moved to the destination. And is then propagated to
1814 * all the mounts in the propagation tree of the destination mount.
21444403 1815 * (+*) the mount is moved to the destination.
5afe0022
RP
1816 * (+++) the mount is moved to the destination and is then propagated to
1817 * all the mounts belonging to the destination mount's propagation tree.
1818 * the mount is marked as 'shared and slave'.
1819 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1820 *
1821 * if the source mount is a tree, the operations explained above is
1822 * applied to each mount in the tree.
1823 * Must be called without spinlocks held, since this function can sleep
1824 * in allocations.
1825 */
0fb54e50 1826static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1827 struct mount *dest_mnt,
1828 struct mountpoint *dest_mp,
1829 struct path *parent_path)
b90fa9ae 1830{
38129a13 1831 HLIST_HEAD(tree_list);
315fc83e 1832 struct mount *child, *p;
38129a13 1833 struct hlist_node *n;
719f5d7f 1834 int err;
b90fa9ae 1835
fc7be130 1836 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1837 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1838 if (err)
1839 goto out;
0b1b901b 1840 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1841 lock_mount_hash();
0b1b901b
AV
1842 if (err)
1843 goto out_cleanup_ids;
909b0a88 1844 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1845 set_mnt_shared(p);
0b1b901b
AV
1846 } else {
1847 lock_mount_hash();
b90fa9ae 1848 }
1a390689 1849 if (parent_path) {
0fb54e50 1850 detach_mnt(source_mnt, parent_path);
84d17192 1851 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1852 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1853 } else {
84d17192 1854 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1855 commit_tree(source_mnt, NULL);
21444403 1856 }
b90fa9ae 1857
38129a13 1858 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1859 struct mount *q;
38129a13 1860 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1861 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1862 child->mnt_mountpoint);
1863 commit_tree(child, q);
b90fa9ae 1864 }
719ea2fb 1865 unlock_mount_hash();
99b7db7b 1866
b90fa9ae 1867 return 0;
719f5d7f
MS
1868
1869 out_cleanup_ids:
f2ebb3a9
AV
1870 while (!hlist_empty(&tree_list)) {
1871 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1872 umount_tree(child, 0);
1873 }
1874 unlock_mount_hash();
0b1b901b 1875 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1876 out:
1877 return err;
b90fa9ae
RP
1878}
1879
84d17192 1880static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1881{
1882 struct vfsmount *mnt;
84d17192 1883 struct dentry *dentry = path->dentry;
b12cea91 1884retry:
84d17192
AV
1885 mutex_lock(&dentry->d_inode->i_mutex);
1886 if (unlikely(cant_mount(dentry))) {
1887 mutex_unlock(&dentry->d_inode->i_mutex);
1888 return ERR_PTR(-ENOENT);
b12cea91 1889 }
97216be0 1890 namespace_lock();
b12cea91 1891 mnt = lookup_mnt(path);
84d17192 1892 if (likely(!mnt)) {
e2dfa935
EB
1893 struct mountpoint *mp = lookup_mountpoint(dentry);
1894 if (!mp)
1895 mp = new_mountpoint(dentry);
84d17192 1896 if (IS_ERR(mp)) {
97216be0 1897 namespace_unlock();
84d17192
AV
1898 mutex_unlock(&dentry->d_inode->i_mutex);
1899 return mp;
1900 }
1901 return mp;
1902 }
97216be0 1903 namespace_unlock();
b12cea91
AV
1904 mutex_unlock(&path->dentry->d_inode->i_mutex);
1905 path_put(path);
1906 path->mnt = mnt;
84d17192 1907 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1908 goto retry;
1909}
1910
84d17192 1911static void unlock_mount(struct mountpoint *where)
b12cea91 1912{
84d17192
AV
1913 struct dentry *dentry = where->m_dentry;
1914 put_mountpoint(where);
328e6d90 1915 namespace_unlock();
84d17192 1916 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1917}
1918
84d17192 1919static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1920{
95bc5f25 1921 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1922 return -EINVAL;
1923
84d17192 1924 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1925 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1926 return -ENOTDIR;
1927
84d17192 1928 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1929}
1930
7a2e8a8f
VA
1931/*
1932 * Sanity check the flags to change_mnt_propagation.
1933 */
1934
1935static int flags_to_propagation_type(int flags)
1936{
7c6e984d 1937 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1938
1939 /* Fail if any non-propagation flags are set */
1940 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1941 return 0;
1942 /* Only one propagation flag should be set */
1943 if (!is_power_of_2(type))
1944 return 0;
1945 return type;
1946}
1947
07b20889
RP
1948/*
1949 * recursively change the type of the mountpoint.
1950 */
0a0d8a46 1951static int do_change_type(struct path *path, int flag)
07b20889 1952{
315fc83e 1953 struct mount *m;
4b8b21f4 1954 struct mount *mnt = real_mount(path->mnt);
07b20889 1955 int recurse = flag & MS_REC;
7a2e8a8f 1956 int type;
719f5d7f 1957 int err = 0;
07b20889 1958
2d92ab3c 1959 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1960 return -EINVAL;
1961
7a2e8a8f
VA
1962 type = flags_to_propagation_type(flag);
1963 if (!type)
1964 return -EINVAL;
1965
97216be0 1966 namespace_lock();
719f5d7f
MS
1967 if (type == MS_SHARED) {
1968 err = invent_group_ids(mnt, recurse);
1969 if (err)
1970 goto out_unlock;
1971 }
1972
719ea2fb 1973 lock_mount_hash();
909b0a88 1974 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1975 change_mnt_propagation(m, type);
719ea2fb 1976 unlock_mount_hash();
719f5d7f
MS
1977
1978 out_unlock:
97216be0 1979 namespace_unlock();
719f5d7f 1980 return err;
07b20889
RP
1981}
1982
5ff9d8a6
EB
1983static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1984{
1985 struct mount *child;
1986 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1987 if (!is_subdir(child->mnt_mountpoint, dentry))
1988 continue;
1989
1990 if (child->mnt.mnt_flags & MNT_LOCKED)
1991 return true;
1992 }
1993 return false;
1994}
1995
1da177e4
LT
1996/*
1997 * do loopback mount.
1998 */
808d4e3c 1999static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2000 int recurse)
1da177e4 2001{
2d92ab3c 2002 struct path old_path;
84d17192
AV
2003 struct mount *mnt = NULL, *old, *parent;
2004 struct mountpoint *mp;
57eccb83 2005 int err;
1da177e4
LT
2006 if (!old_name || !*old_name)
2007 return -EINVAL;
815d405c 2008 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2009 if (err)
2010 return err;
2011
8823c079 2012 err = -EINVAL;
4ce5d2b1 2013 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2014 goto out;
2015
84d17192
AV
2016 mp = lock_mount(path);
2017 err = PTR_ERR(mp);
2018 if (IS_ERR(mp))
b12cea91
AV
2019 goto out;
2020
87129cc0 2021 old = real_mount(old_path.mnt);
84d17192 2022 parent = real_mount(path->mnt);
87129cc0 2023
1da177e4 2024 err = -EINVAL;
fc7be130 2025 if (IS_MNT_UNBINDABLE(old))
b12cea91 2026 goto out2;
9676f0c6 2027
84d17192 2028 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 2029 goto out2;
1da177e4 2030
5ff9d8a6
EB
2031 if (!recurse && has_locked_children(old, old_path.dentry))
2032 goto out2;
2033
ccd48bc7 2034 if (recurse)
4ce5d2b1 2035 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2036 else
87129cc0 2037 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2038
be34d1a3
DH
2039 if (IS_ERR(mnt)) {
2040 err = PTR_ERR(mnt);
e9c5d8a5 2041 goto out2;
be34d1a3 2042 }
ccd48bc7 2043
5ff9d8a6
EB
2044 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2045
84d17192 2046 err = graft_tree(mnt, parent, mp);
ccd48bc7 2047 if (err) {
719ea2fb 2048 lock_mount_hash();
328e6d90 2049 umount_tree(mnt, 0);
719ea2fb 2050 unlock_mount_hash();
5b83d2c5 2051 }
b12cea91 2052out2:
84d17192 2053 unlock_mount(mp);
ccd48bc7 2054out:
2d92ab3c 2055 path_put(&old_path);
1da177e4
LT
2056 return err;
2057}
2058
2e4b7fcd
DH
2059static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2060{
2061 int error = 0;
2062 int readonly_request = 0;
2063
2064 if (ms_flags & MS_RDONLY)
2065 readonly_request = 1;
2066 if (readonly_request == __mnt_is_readonly(mnt))
2067 return 0;
2068
2069 if (readonly_request)
83adc753 2070 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2071 else
83adc753 2072 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2073 return error;
2074}
2075
1da177e4
LT
2076/*
2077 * change filesystem flags. dir should be a physical root of filesystem.
2078 * If you've mounted a non-root directory somewhere and want to do remount
2079 * on it - tough luck.
2080 */
0a0d8a46 2081static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2082 void *data)
2083{
2084 int err;
2d92ab3c 2085 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2086 struct mount *mnt = real_mount(path->mnt);
1da177e4 2087
143c8c91 2088 if (!check_mnt(mnt))
1da177e4
LT
2089 return -EINVAL;
2090
2d92ab3c 2091 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2092 return -EINVAL;
2093
07b64558
EB
2094 /* Don't allow changing of locked mnt flags.
2095 *
2096 * No locks need to be held here while testing the various
2097 * MNT_LOCK flags because those flags can never be cleared
2098 * once they are set.
2099 */
2100 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2101 !(mnt_flags & MNT_READONLY)) {
2102 return -EPERM;
2103 }
9566d674
EB
2104 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2105 !(mnt_flags & MNT_NODEV)) {
2106 return -EPERM;
2107 }
2108 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2109 !(mnt_flags & MNT_NOSUID)) {
2110 return -EPERM;
2111 }
2112 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2113 !(mnt_flags & MNT_NOEXEC)) {
2114 return -EPERM;
2115 }
2116 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2117 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2118 return -EPERM;
2119 }
2120
ff36fe2c
EP
2121 err = security_sb_remount(sb, data);
2122 if (err)
2123 return err;
2124
1da177e4 2125 down_write(&sb->s_umount);
2e4b7fcd 2126 if (flags & MS_BIND)
2d92ab3c 2127 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2128 else if (!capable(CAP_SYS_ADMIN))
2129 err = -EPERM;
4aa98cf7 2130 else
2e4b7fcd 2131 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2132 if (!err) {
719ea2fb 2133 lock_mount_hash();
a6138db8 2134 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2135 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2136 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2137 unlock_mount_hash();
0e55a7cc 2138 }
6339dab8 2139 up_write(&sb->s_umount);
1da177e4
LT
2140 return err;
2141}
2142
cbbe362c 2143static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2144{
315fc83e 2145 struct mount *p;
909b0a88 2146 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2147 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2148 return 1;
2149 }
2150 return 0;
2151}
2152
808d4e3c 2153static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2154{
2d92ab3c 2155 struct path old_path, parent_path;
676da58d 2156 struct mount *p;
0fb54e50 2157 struct mount *old;
84d17192 2158 struct mountpoint *mp;
57eccb83 2159 int err;
1da177e4
LT
2160 if (!old_name || !*old_name)
2161 return -EINVAL;
2d92ab3c 2162 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2163 if (err)
2164 return err;
2165
84d17192
AV
2166 mp = lock_mount(path);
2167 err = PTR_ERR(mp);
2168 if (IS_ERR(mp))
cc53ce53
DH
2169 goto out;
2170
143c8c91 2171 old = real_mount(old_path.mnt);
fc7be130 2172 p = real_mount(path->mnt);
143c8c91 2173
1da177e4 2174 err = -EINVAL;
fc7be130 2175 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2176 goto out1;
2177
5ff9d8a6
EB
2178 if (old->mnt.mnt_flags & MNT_LOCKED)
2179 goto out1;
2180
1da177e4 2181 err = -EINVAL;
2d92ab3c 2182 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2183 goto out1;
1da177e4 2184
676da58d 2185 if (!mnt_has_parent(old))
21444403 2186 goto out1;
1da177e4 2187
2d92ab3c
AV
2188 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2189 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
2190 goto out1;
2191 /*
2192 * Don't move a mount residing in a shared parent.
2193 */
fc7be130 2194 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2195 goto out1;
9676f0c6
RP
2196 /*
2197 * Don't move a mount tree containing unbindable mounts to a destination
2198 * mount which is shared.
2199 */
fc7be130 2200 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2201 goto out1;
1da177e4 2202 err = -ELOOP;
fc7be130 2203 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2204 if (p == old)
21444403 2205 goto out1;
1da177e4 2206
84d17192 2207 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2208 if (err)
21444403 2209 goto out1;
1da177e4
LT
2210
2211 /* if the mount is moved, it should no longer be expire
2212 * automatically */
6776db3d 2213 list_del_init(&old->mnt_expire);
1da177e4 2214out1:
84d17192 2215 unlock_mount(mp);
1da177e4 2216out:
1da177e4 2217 if (!err)
1a390689 2218 path_put(&parent_path);
2d92ab3c 2219 path_put(&old_path);
1da177e4
LT
2220 return err;
2221}
2222
9d412a43
AV
2223static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2224{
2225 int err;
2226 const char *subtype = strchr(fstype, '.');
2227 if (subtype) {
2228 subtype++;
2229 err = -EINVAL;
2230 if (!subtype[0])
2231 goto err;
2232 } else
2233 subtype = "";
2234
2235 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2236 err = -ENOMEM;
2237 if (!mnt->mnt_sb->s_subtype)
2238 goto err;
2239 return mnt;
2240
2241 err:
2242 mntput(mnt);
2243 return ERR_PTR(err);
2244}
2245
9d412a43
AV
2246/*
2247 * add a mount into a namespace's mount tree
2248 */
95bc5f25 2249static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2250{
84d17192
AV
2251 struct mountpoint *mp;
2252 struct mount *parent;
9d412a43
AV
2253 int err;
2254
f2ebb3a9 2255 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2256
84d17192
AV
2257 mp = lock_mount(path);
2258 if (IS_ERR(mp))
2259 return PTR_ERR(mp);
9d412a43 2260
84d17192 2261 parent = real_mount(path->mnt);
9d412a43 2262 err = -EINVAL;
84d17192 2263 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2264 /* that's acceptable only for automounts done in private ns */
2265 if (!(mnt_flags & MNT_SHRINKABLE))
2266 goto unlock;
2267 /* ... and for those we'd better have mountpoint still alive */
84d17192 2268 if (!parent->mnt_ns)
156cacb1
AV
2269 goto unlock;
2270 }
9d412a43
AV
2271
2272 /* Refuse the same filesystem on the same mount point */
2273 err = -EBUSY;
95bc5f25 2274 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2275 path->mnt->mnt_root == path->dentry)
2276 goto unlock;
2277
2278 err = -EINVAL;
95bc5f25 2279 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2280 goto unlock;
2281
95bc5f25 2282 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2283 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2284
2285unlock:
84d17192 2286 unlock_mount(mp);
9d412a43
AV
2287 return err;
2288}
b1e75df4 2289
1da177e4
LT
2290/*
2291 * create a new mount for userspace and request it to be added into the
2292 * namespace's tree
2293 */
0c55cfc4 2294static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2295 int mnt_flags, const char *name, void *data)
1da177e4 2296{
0c55cfc4 2297 struct file_system_type *type;
9b40bc90 2298 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2299 struct vfsmount *mnt;
15f9a3f3 2300 int err;
1da177e4 2301
0c55cfc4 2302 if (!fstype)
1da177e4
LT
2303 return -EINVAL;
2304
0c55cfc4
EB
2305 type = get_fs_type(fstype);
2306 if (!type)
2307 return -ENODEV;
2308
2309 if (user_ns != &init_user_ns) {
2310 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2311 put_filesystem(type);
2312 return -EPERM;
2313 }
2314 /* Only in special cases allow devices from mounts
2315 * created outside the initial user namespace.
2316 */
2317 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2318 flags |= MS_NODEV;
9566d674 2319 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2320 }
2321 }
2322
2323 mnt = vfs_kern_mount(type, flags, name, data);
2324 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2325 !mnt->mnt_sb->s_subtype)
2326 mnt = fs_set_subtype(mnt, fstype);
2327
2328 put_filesystem(type);
1da177e4
LT
2329 if (IS_ERR(mnt))
2330 return PTR_ERR(mnt);
2331
95bc5f25 2332 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2333 if (err)
2334 mntput(mnt);
2335 return err;
1da177e4
LT
2336}
2337
19a167af
AV
2338int finish_automount(struct vfsmount *m, struct path *path)
2339{
6776db3d 2340 struct mount *mnt = real_mount(m);
19a167af
AV
2341 int err;
2342 /* The new mount record should have at least 2 refs to prevent it being
2343 * expired before we get a chance to add it
2344 */
6776db3d 2345 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2346
2347 if (m->mnt_sb == path->mnt->mnt_sb &&
2348 m->mnt_root == path->dentry) {
b1e75df4
AV
2349 err = -ELOOP;
2350 goto fail;
19a167af
AV
2351 }
2352
95bc5f25 2353 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2354 if (!err)
2355 return 0;
2356fail:
2357 /* remove m from any expiration list it may be on */
6776db3d 2358 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2359 namespace_lock();
6776db3d 2360 list_del_init(&mnt->mnt_expire);
97216be0 2361 namespace_unlock();
19a167af 2362 }
b1e75df4
AV
2363 mntput(m);
2364 mntput(m);
19a167af
AV
2365 return err;
2366}
2367
ea5b778a
DH
2368/**
2369 * mnt_set_expiry - Put a mount on an expiration list
2370 * @mnt: The mount to list.
2371 * @expiry_list: The list to add the mount to.
2372 */
2373void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2374{
97216be0 2375 namespace_lock();
ea5b778a 2376
6776db3d 2377 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2378
97216be0 2379 namespace_unlock();
ea5b778a
DH
2380}
2381EXPORT_SYMBOL(mnt_set_expiry);
2382
1da177e4
LT
2383/*
2384 * process a list of expirable mountpoints with the intent of discarding any
2385 * mountpoints that aren't in use and haven't been touched since last we came
2386 * here
2387 */
2388void mark_mounts_for_expiry(struct list_head *mounts)
2389{
761d5c38 2390 struct mount *mnt, *next;
1da177e4
LT
2391 LIST_HEAD(graveyard);
2392
2393 if (list_empty(mounts))
2394 return;
2395
97216be0 2396 namespace_lock();
719ea2fb 2397 lock_mount_hash();
1da177e4
LT
2398
2399 /* extract from the expiration list every vfsmount that matches the
2400 * following criteria:
2401 * - only referenced by its parent vfsmount
2402 * - still marked for expiry (marked on the last call here; marks are
2403 * cleared by mntput())
2404 */
6776db3d 2405 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2406 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2407 propagate_mount_busy(mnt, 1))
1da177e4 2408 continue;
6776db3d 2409 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2410 }
bcc5c7d2 2411 while (!list_empty(&graveyard)) {
6776db3d 2412 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2413 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2414 umount_tree(mnt, 1);
bcc5c7d2 2415 }
719ea2fb 2416 unlock_mount_hash();
3ab6abee 2417 namespace_unlock();
5528f911
TM
2418}
2419
2420EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2421
2422/*
2423 * Ripoff of 'select_parent()'
2424 *
2425 * search the list of submounts for a given mountpoint, and move any
2426 * shrinkable submounts to the 'graveyard' list.
2427 */
692afc31 2428static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2429{
692afc31 2430 struct mount *this_parent = parent;
5528f911
TM
2431 struct list_head *next;
2432 int found = 0;
2433
2434repeat:
6b41d536 2435 next = this_parent->mnt_mounts.next;
5528f911 2436resume:
6b41d536 2437 while (next != &this_parent->mnt_mounts) {
5528f911 2438 struct list_head *tmp = next;
6b41d536 2439 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2440
2441 next = tmp->next;
692afc31 2442 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2443 continue;
5528f911
TM
2444 /*
2445 * Descend a level if the d_mounts list is non-empty.
2446 */
6b41d536 2447 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2448 this_parent = mnt;
2449 goto repeat;
2450 }
1da177e4 2451
1ab59738 2452 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2453 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2454 found++;
2455 }
1da177e4 2456 }
5528f911
TM
2457 /*
2458 * All done at this level ... ascend and resume the search
2459 */
2460 if (this_parent != parent) {
6b41d536 2461 next = this_parent->mnt_child.next;
0714a533 2462 this_parent = this_parent->mnt_parent;
5528f911
TM
2463 goto resume;
2464 }
2465 return found;
2466}
2467
2468/*
2469 * process a list of expirable mountpoints with the intent of discarding any
2470 * submounts of a specific parent mountpoint
99b7db7b 2471 *
48a066e7 2472 * mount_lock must be held for write
5528f911 2473 */
b54b9be7 2474static void shrink_submounts(struct mount *mnt)
5528f911
TM
2475{
2476 LIST_HEAD(graveyard);
761d5c38 2477 struct mount *m;
5528f911 2478
5528f911 2479 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2480 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2481 while (!list_empty(&graveyard)) {
761d5c38 2482 m = list_first_entry(&graveyard, struct mount,
6776db3d 2483 mnt_expire);
143c8c91 2484 touch_mnt_namespace(m->mnt_ns);
328e6d90 2485 umount_tree(m, 1);
bcc5c7d2
AV
2486 }
2487 }
1da177e4
LT
2488}
2489
1da177e4
LT
2490/*
2491 * Some copy_from_user() implementations do not return the exact number of
2492 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2493 * Note that this function differs from copy_from_user() in that it will oops
2494 * on bad values of `to', rather than returning a short copy.
2495 */
b58fed8b
RP
2496static long exact_copy_from_user(void *to, const void __user * from,
2497 unsigned long n)
1da177e4
LT
2498{
2499 char *t = to;
2500 const char __user *f = from;
2501 char c;
2502
2503 if (!access_ok(VERIFY_READ, from, n))
2504 return n;
2505
2506 while (n) {
2507 if (__get_user(c, f)) {
2508 memset(t, 0, n);
2509 break;
2510 }
2511 *t++ = c;
2512 f++;
2513 n--;
2514 }
2515 return n;
2516}
2517
b58fed8b 2518int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2519{
2520 int i;
2521 unsigned long page;
2522 unsigned long size;
b58fed8b 2523
1da177e4
LT
2524 *where = 0;
2525 if (!data)
2526 return 0;
2527
2528 if (!(page = __get_free_page(GFP_KERNEL)))
2529 return -ENOMEM;
2530
2531 /* We only care that *some* data at the address the user
2532 * gave us is valid. Just in case, we'll zero
2533 * the remainder of the page.
2534 */
2535 /* copy_from_user cannot cross TASK_SIZE ! */
2536 size = TASK_SIZE - (unsigned long)data;
2537 if (size > PAGE_SIZE)
2538 size = PAGE_SIZE;
2539
2540 i = size - exact_copy_from_user((void *)page, data, size);
2541 if (!i) {
b58fed8b 2542 free_page(page);
1da177e4
LT
2543 return -EFAULT;
2544 }
2545 if (i != PAGE_SIZE)
2546 memset((char *)page + i, 0, PAGE_SIZE - i);
2547 *where = page;
2548 return 0;
2549}
2550
b8850d1f 2551char *copy_mount_string(const void __user *data)
eca6f534 2552{
b8850d1f 2553 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2554}
2555
1da177e4
LT
2556/*
2557 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2558 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2559 *
2560 * data is a (void *) that can point to any structure up to
2561 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2562 * information (or be NULL).
2563 *
2564 * Pre-0.97 versions of mount() didn't have a flags word.
2565 * When the flags word was introduced its top half was required
2566 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2567 * Therefore, if this magic number is present, it carries no information
2568 * and must be discarded.
2569 */
5e6123f3 2570long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2571 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2572{
2d92ab3c 2573 struct path path;
1da177e4
LT
2574 int retval = 0;
2575 int mnt_flags = 0;
2576
2577 /* Discard magic */
2578 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2579 flags &= ~MS_MGC_MSK;
2580
2581 /* Basic sanity checks */
1da177e4
LT
2582 if (data_page)
2583 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2584
a27ab9f2 2585 /* ... and get the mountpoint */
5e6123f3 2586 retval = user_path(dir_name, &path);
a27ab9f2
TH
2587 if (retval)
2588 return retval;
2589
2590 retval = security_sb_mount(dev_name, &path,
2591 type_page, flags, data_page);
0d5cadb8
AV
2592 if (!retval && !may_mount())
2593 retval = -EPERM;
a27ab9f2
TH
2594 if (retval)
2595 goto dput_out;
2596
613cbe3d
AK
2597 /* Default to relatime unless overriden */
2598 if (!(flags & MS_NOATIME))
2599 mnt_flags |= MNT_RELATIME;
0a1c01c9 2600
1da177e4
LT
2601 /* Separate the per-mountpoint flags */
2602 if (flags & MS_NOSUID)
2603 mnt_flags |= MNT_NOSUID;
2604 if (flags & MS_NODEV)
2605 mnt_flags |= MNT_NODEV;
2606 if (flags & MS_NOEXEC)
2607 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2608 if (flags & MS_NOATIME)
2609 mnt_flags |= MNT_NOATIME;
2610 if (flags & MS_NODIRATIME)
2611 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2612 if (flags & MS_STRICTATIME)
2613 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2614 if (flags & MS_RDONLY)
2615 mnt_flags |= MNT_READONLY;
fc33a7bb 2616
ffbc6f0e
EB
2617 /* The default atime for remount is preservation */
2618 if ((flags & MS_REMOUNT) &&
2619 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2620 MS_STRICTATIME)) == 0)) {
2621 mnt_flags &= ~MNT_ATIME_MASK;
2622 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2623 }
2624
7a4dec53 2625 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2626 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2627 MS_STRICTATIME);
1da177e4 2628
1da177e4 2629 if (flags & MS_REMOUNT)
2d92ab3c 2630 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2631 data_page);
2632 else if (flags & MS_BIND)
2d92ab3c 2633 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2634 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2635 retval = do_change_type(&path, flags);
1da177e4 2636 else if (flags & MS_MOVE)
2d92ab3c 2637 retval = do_move_mount(&path, dev_name);
1da177e4 2638 else
2d92ab3c 2639 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2640 dev_name, data_page);
2641dput_out:
2d92ab3c 2642 path_put(&path);
1da177e4
LT
2643 return retval;
2644}
2645
771b1371
EB
2646static void free_mnt_ns(struct mnt_namespace *ns)
2647{
6344c433 2648 ns_free_inum(&ns->ns);
771b1371
EB
2649 put_user_ns(ns->user_ns);
2650 kfree(ns);
2651}
2652
8823c079
EB
2653/*
2654 * Assign a sequence number so we can detect when we attempt to bind
2655 * mount a reference to an older mount namespace into the current
2656 * mount namespace, preventing reference counting loops. A 64bit
2657 * number incrementing at 10Ghz will take 12,427 years to wrap which
2658 * is effectively never, so we can ignore the possibility.
2659 */
2660static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2661
771b1371 2662static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2663{
2664 struct mnt_namespace *new_ns;
98f842e6 2665 int ret;
cf8d2c11
TM
2666
2667 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2668 if (!new_ns)
2669 return ERR_PTR(-ENOMEM);
6344c433 2670 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2671 if (ret) {
2672 kfree(new_ns);
2673 return ERR_PTR(ret);
2674 }
33c42940 2675 new_ns->ns.ops = &mntns_operations;
8823c079 2676 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2677 atomic_set(&new_ns->count, 1);
2678 new_ns->root = NULL;
2679 INIT_LIST_HEAD(&new_ns->list);
2680 init_waitqueue_head(&new_ns->poll);
2681 new_ns->event = 0;
771b1371 2682 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2683 return new_ns;
2684}
2685
9559f689
AV
2686struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2687 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2688{
6b3286ed 2689 struct mnt_namespace *new_ns;
7f2da1e7 2690 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2691 struct mount *p, *q;
9559f689 2692 struct mount *old;
cb338d06 2693 struct mount *new;
7a472ef4 2694 int copy_flags;
1da177e4 2695
9559f689
AV
2696 BUG_ON(!ns);
2697
2698 if (likely(!(flags & CLONE_NEWNS))) {
2699 get_mnt_ns(ns);
2700 return ns;
2701 }
2702
2703 old = ns->root;
2704
771b1371 2705 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2706 if (IS_ERR(new_ns))
2707 return new_ns;
1da177e4 2708
97216be0 2709 namespace_lock();
1da177e4 2710 /* First pass: copy the tree topology */
4ce5d2b1 2711 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2712 if (user_ns != ns->user_ns)
132c94e3 2713 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2714 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2715 if (IS_ERR(new)) {
328e6d90 2716 namespace_unlock();
771b1371 2717 free_mnt_ns(new_ns);
be34d1a3 2718 return ERR_CAST(new);
1da177e4 2719 }
be08d6d2 2720 new_ns->root = new;
1a4eeaf2 2721 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2722
2723 /*
2724 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2725 * as belonging to new namespace. We have already acquired a private
2726 * fs_struct, so tsk->fs->lock is not needed.
2727 */
909b0a88 2728 p = old;
cb338d06 2729 q = new;
1da177e4 2730 while (p) {
143c8c91 2731 q->mnt_ns = new_ns;
9559f689
AV
2732 if (new_fs) {
2733 if (&p->mnt == new_fs->root.mnt) {
2734 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2735 rootmnt = &p->mnt;
1da177e4 2736 }
9559f689
AV
2737 if (&p->mnt == new_fs->pwd.mnt) {
2738 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2739 pwdmnt = &p->mnt;
1da177e4 2740 }
1da177e4 2741 }
909b0a88
AV
2742 p = next_mnt(p, old);
2743 q = next_mnt(q, new);
4ce5d2b1
EB
2744 if (!q)
2745 break;
2746 while (p->mnt.mnt_root != q->mnt.mnt_root)
2747 p = next_mnt(p, old);
1da177e4 2748 }
328e6d90 2749 namespace_unlock();
1da177e4 2750
1da177e4 2751 if (rootmnt)
f03c6599 2752 mntput(rootmnt);
1da177e4 2753 if (pwdmnt)
f03c6599 2754 mntput(pwdmnt);
1da177e4 2755
741a2951 2756 return new_ns;
1da177e4
LT
2757}
2758
cf8d2c11
TM
2759/**
2760 * create_mnt_ns - creates a private namespace and adds a root filesystem
2761 * @mnt: pointer to the new root filesystem mountpoint
2762 */
1a4eeaf2 2763static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2764{
771b1371 2765 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2766 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2767 struct mount *mnt = real_mount(m);
2768 mnt->mnt_ns = new_ns;
be08d6d2 2769 new_ns->root = mnt;
b1983cd8 2770 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2771 } else {
1a4eeaf2 2772 mntput(m);
cf8d2c11
TM
2773 }
2774 return new_ns;
2775}
cf8d2c11 2776
ea441d11
AV
2777struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2778{
2779 struct mnt_namespace *ns;
d31da0f0 2780 struct super_block *s;
ea441d11
AV
2781 struct path path;
2782 int err;
2783
2784 ns = create_mnt_ns(mnt);
2785 if (IS_ERR(ns))
2786 return ERR_CAST(ns);
2787
2788 err = vfs_path_lookup(mnt->mnt_root, mnt,
2789 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2790
2791 put_mnt_ns(ns);
2792
2793 if (err)
2794 return ERR_PTR(err);
2795
2796 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2797 s = path.mnt->mnt_sb;
2798 atomic_inc(&s->s_active);
ea441d11
AV
2799 mntput(path.mnt);
2800 /* lock the sucker */
d31da0f0 2801 down_write(&s->s_umount);
ea441d11
AV
2802 /* ... and return the root of (sub)tree on it */
2803 return path.dentry;
2804}
2805EXPORT_SYMBOL(mount_subtree);
2806
bdc480e3
HC
2807SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2808 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2809{
eca6f534
VN
2810 int ret;
2811 char *kernel_type;
eca6f534 2812 char *kernel_dev;
1da177e4 2813 unsigned long data_page;
1da177e4 2814
b8850d1f
TG
2815 kernel_type = copy_mount_string(type);
2816 ret = PTR_ERR(kernel_type);
2817 if (IS_ERR(kernel_type))
eca6f534 2818 goto out_type;
1da177e4 2819
b8850d1f
TG
2820 kernel_dev = copy_mount_string(dev_name);
2821 ret = PTR_ERR(kernel_dev);
2822 if (IS_ERR(kernel_dev))
eca6f534 2823 goto out_dev;
1da177e4 2824
eca6f534
VN
2825 ret = copy_mount_options(data, &data_page);
2826 if (ret < 0)
2827 goto out_data;
1da177e4 2828
5e6123f3 2829 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
eca6f534 2830 (void *) data_page);
1da177e4 2831
eca6f534
VN
2832 free_page(data_page);
2833out_data:
2834 kfree(kernel_dev);
2835out_dev:
eca6f534
VN
2836 kfree(kernel_type);
2837out_type:
2838 return ret;
1da177e4
LT
2839}
2840
afac7cba
AV
2841/*
2842 * Return true if path is reachable from root
2843 *
48a066e7 2844 * namespace_sem or mount_lock is held
afac7cba 2845 */
643822b4 2846bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2847 const struct path *root)
2848{
643822b4 2849 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2850 dentry = mnt->mnt_mountpoint;
0714a533 2851 mnt = mnt->mnt_parent;
afac7cba 2852 }
643822b4 2853 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2854}
2855
2856int path_is_under(struct path *path1, struct path *path2)
2857{
2858 int res;
48a066e7 2859 read_seqlock_excl(&mount_lock);
643822b4 2860 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2861 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2862 return res;
2863}
2864EXPORT_SYMBOL(path_is_under);
2865
1da177e4
LT
2866/*
2867 * pivot_root Semantics:
2868 * Moves the root file system of the current process to the directory put_old,
2869 * makes new_root as the new root file system of the current process, and sets
2870 * root/cwd of all processes which had them on the current root to new_root.
2871 *
2872 * Restrictions:
2873 * The new_root and put_old must be directories, and must not be on the
2874 * same file system as the current process root. The put_old must be
2875 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2876 * pointed to by put_old must yield the same directory as new_root. No other
2877 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2878 *
4a0d11fa
NB
2879 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2880 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2881 * in this situation.
2882 *
1da177e4
LT
2883 * Notes:
2884 * - we don't move root/cwd if they are not at the root (reason: if something
2885 * cared enough to change them, it's probably wrong to force them elsewhere)
2886 * - it's okay to pick a root that isn't the root of a file system, e.g.
2887 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2888 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2889 * first.
2890 */
3480b257
HC
2891SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2892 const char __user *, put_old)
1da177e4 2893{
2d8f3038 2894 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2895 struct mount *new_mnt, *root_mnt, *old_mnt;
2896 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2897 int error;
2898
9b40bc90 2899 if (!may_mount())
1da177e4
LT
2900 return -EPERM;
2901
2d8f3038 2902 error = user_path_dir(new_root, &new);
1da177e4
LT
2903 if (error)
2904 goto out0;
1da177e4 2905
2d8f3038 2906 error = user_path_dir(put_old, &old);
1da177e4
LT
2907 if (error)
2908 goto out1;
2909
2d8f3038 2910 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2911 if (error)
2912 goto out2;
1da177e4 2913
f7ad3c6b 2914 get_fs_root(current->fs, &root);
84d17192
AV
2915 old_mp = lock_mount(&old);
2916 error = PTR_ERR(old_mp);
2917 if (IS_ERR(old_mp))
b12cea91
AV
2918 goto out3;
2919
1da177e4 2920 error = -EINVAL;
419148da
AV
2921 new_mnt = real_mount(new.mnt);
2922 root_mnt = real_mount(root.mnt);
84d17192
AV
2923 old_mnt = real_mount(old.mnt);
2924 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2925 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2926 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2927 goto out4;
143c8c91 2928 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2929 goto out4;
5ff9d8a6
EB
2930 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2931 goto out4;
1da177e4 2932 error = -ENOENT;
f3da392e 2933 if (d_unlinked(new.dentry))
b12cea91 2934 goto out4;
1da177e4 2935 error = -EBUSY;
84d17192 2936 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2937 goto out4; /* loop, on the same file system */
1da177e4 2938 error = -EINVAL;
8c3ee42e 2939 if (root.mnt->mnt_root != root.dentry)
b12cea91 2940 goto out4; /* not a mountpoint */
676da58d 2941 if (!mnt_has_parent(root_mnt))
b12cea91 2942 goto out4; /* not attached */
84d17192 2943 root_mp = root_mnt->mnt_mp;
2d8f3038 2944 if (new.mnt->mnt_root != new.dentry)
b12cea91 2945 goto out4; /* not a mountpoint */
676da58d 2946 if (!mnt_has_parent(new_mnt))
b12cea91 2947 goto out4; /* not attached */
4ac91378 2948 /* make sure we can reach put_old from new_root */
84d17192 2949 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2950 goto out4;
0d082601
EB
2951 /* make certain new is below the root */
2952 if (!is_path_reachable(new_mnt, new.dentry, &root))
2953 goto out4;
84d17192 2954 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2955 lock_mount_hash();
419148da
AV
2956 detach_mnt(new_mnt, &parent_path);
2957 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2958 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2959 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2960 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2961 }
4ac91378 2962 /* mount old root on put_old */
84d17192 2963 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2964 /* mount new_root on / */
84d17192 2965 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2966 touch_mnt_namespace(current->nsproxy->mnt_ns);
719ea2fb 2967 unlock_mount_hash();
2d8f3038 2968 chroot_fs_refs(&root, &new);
84d17192 2969 put_mountpoint(root_mp);
1da177e4 2970 error = 0;
b12cea91 2971out4:
84d17192 2972 unlock_mount(old_mp);
b12cea91
AV
2973 if (!error) {
2974 path_put(&root_parent);
2975 path_put(&parent_path);
2976 }
2977out3:
8c3ee42e 2978 path_put(&root);
b12cea91 2979out2:
2d8f3038 2980 path_put(&old);
1da177e4 2981out1:
2d8f3038 2982 path_put(&new);
1da177e4 2983out0:
1da177e4 2984 return error;
1da177e4
LT
2985}
2986
2987static void __init init_mount_tree(void)
2988{
2989 struct vfsmount *mnt;
6b3286ed 2990 struct mnt_namespace *ns;
ac748a09 2991 struct path root;
0c55cfc4 2992 struct file_system_type *type;
1da177e4 2993
0c55cfc4
EB
2994 type = get_fs_type("rootfs");
2995 if (!type)
2996 panic("Can't find rootfs type");
2997 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2998 put_filesystem(type);
1da177e4
LT
2999 if (IS_ERR(mnt))
3000 panic("Can't create rootfs");
b3e19d92 3001
3b22edc5
TM
3002 ns = create_mnt_ns(mnt);
3003 if (IS_ERR(ns))
1da177e4 3004 panic("Can't allocate initial namespace");
6b3286ed
KK
3005
3006 init_task.nsproxy->mnt_ns = ns;
3007 get_mnt_ns(ns);
3008
be08d6d2
AV
3009 root.mnt = mnt;
3010 root.dentry = mnt->mnt_root;
ac748a09
JB
3011
3012 set_fs_pwd(current->fs, &root);
3013 set_fs_root(current->fs, &root);
1da177e4
LT
3014}
3015
74bf17cf 3016void __init mnt_init(void)
1da177e4 3017{
13f14b4d 3018 unsigned u;
15a67dd8 3019 int err;
1da177e4 3020
7d6fec45 3021 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3022 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3023
0818bf27 3024 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3025 sizeof(struct hlist_head),
0818bf27
AV
3026 mhash_entries, 19,
3027 0,
3028 &m_hash_shift, &m_hash_mask, 0, 0);
3029 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3030 sizeof(struct hlist_head),
3031 mphash_entries, 19,
3032 0,
3033 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3034
84d17192 3035 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3036 panic("Failed to allocate mount hash table\n");
3037
0818bf27 3038 for (u = 0; u <= m_hash_mask; u++)
38129a13 3039 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3040 for (u = 0; u <= mp_hash_mask; u++)
3041 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3042
4b93dc9b
TH
3043 kernfs_init();
3044
15a67dd8
RD
3045 err = sysfs_init();
3046 if (err)
3047 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3048 __func__, err);
00d26666
GKH
3049 fs_kobj = kobject_create_and_add("fs", NULL);
3050 if (!fs_kobj)
8e24eea7 3051 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3052 init_rootfs();
3053 init_mount_tree();
3054}
3055
616511d0 3056void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3057{
d498b25a 3058 if (!atomic_dec_and_test(&ns->count))
616511d0 3059 return;
7b00ed6f 3060 drop_collected_mounts(&ns->root->mnt);
771b1371 3061 free_mnt_ns(ns);
1da177e4 3062}
9d412a43
AV
3063
3064struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3065{
423e0ab0
TC
3066 struct vfsmount *mnt;
3067 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3068 if (!IS_ERR(mnt)) {
3069 /*
3070 * it is a longterm mount, don't release mnt until
3071 * we unmount before file sys is unregistered
3072 */
f7a99c5b 3073 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3074 }
3075 return mnt;
9d412a43
AV
3076}
3077EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3078
3079void kern_unmount(struct vfsmount *mnt)
3080{
3081 /* release long term mount so mount point can be released */
3082 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3083 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3084 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3085 mntput(mnt);
3086 }
3087}
3088EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3089
3090bool our_mnt(struct vfsmount *mnt)
3091{
143c8c91 3092 return check_mnt(real_mount(mnt));
02125a82 3093}
8823c079 3094
3151527e
EB
3095bool current_chrooted(void)
3096{
3097 /* Does the current process have a non-standard root */
3098 struct path ns_root;
3099 struct path fs_root;
3100 bool chrooted;
3101
3102 /* Find the namespace root */
3103 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3104 ns_root.dentry = ns_root.mnt->mnt_root;
3105 path_get(&ns_root);
3106 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3107 ;
3108
3109 get_fs_root(current->fs, &fs_root);
3110
3111 chrooted = !path_equal(&fs_root, &ns_root);
3112
3113 path_put(&fs_root);
3114 path_put(&ns_root);
3115
3116 return chrooted;
3117}
3118
e51db735 3119bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
3120{
3121 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3122 struct mount *mnt;
e51db735 3123 bool visible = false;
87a8ebd6 3124
e51db735
EB
3125 if (unlikely(!ns))
3126 return false;
3127
44bb4385 3128 down_read(&namespace_sem);
87a8ebd6 3129 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
3130 struct mount *child;
3131 if (mnt->mnt.mnt_sb->s_type != type)
3132 continue;
3133
3134 /* This mount is not fully visible if there are any child mounts
3135 * that cover anything except for empty directories.
3136 */
3137 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3138 struct inode *inode = child->mnt_mountpoint->d_inode;
3139 if (!S_ISDIR(inode->i_mode))
3140 goto next;
41301ae7 3141 if (inode->i_nlink > 2)
e51db735 3142 goto next;
87a8ebd6 3143 }
e51db735
EB
3144 visible = true;
3145 goto found;
3146 next: ;
87a8ebd6 3147 }
e51db735 3148found:
44bb4385 3149 up_read(&namespace_sem);
e51db735 3150 return visible;
87a8ebd6
EB
3151}
3152
64964528 3153static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3154{
58be2825 3155 struct ns_common *ns = NULL;
8823c079
EB
3156 struct nsproxy *nsproxy;
3157
728dba3a
EB
3158 task_lock(task);
3159 nsproxy = task->nsproxy;
8823c079 3160 if (nsproxy) {
58be2825
AV
3161 ns = &nsproxy->mnt_ns->ns;
3162 get_mnt_ns(to_mnt_ns(ns));
8823c079 3163 }
728dba3a 3164 task_unlock(task);
8823c079
EB
3165
3166 return ns;
3167}
3168
64964528 3169static void mntns_put(struct ns_common *ns)
8823c079 3170{
58be2825 3171 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3172}
3173
64964528 3174static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3175{
3176 struct fs_struct *fs = current->fs;
58be2825 3177 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3178 struct path root;
3179
0c55cfc4 3180 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3181 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3182 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3183 return -EPERM;
8823c079
EB
3184
3185 if (fs->users != 1)
3186 return -EINVAL;
3187
3188 get_mnt_ns(mnt_ns);
3189 put_mnt_ns(nsproxy->mnt_ns);
3190 nsproxy->mnt_ns = mnt_ns;
3191
3192 /* Find the root */
3193 root.mnt = &mnt_ns->root->mnt;
3194 root.dentry = mnt_ns->root->mnt.mnt_root;
3195 path_get(&root);
3196 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3197 ;
3198
3199 /* Update the pwd and root */
3200 set_fs_pwd(fs, &root);
3201 set_fs_root(fs, &root);
3202
3203 path_put(&root);
3204 return 0;
3205}
3206
3207const struct proc_ns_operations mntns_operations = {
3208 .name = "mnt",
3209 .type = CLONE_NEWNS,
3210 .get = mntns_get,
3211 .put = mntns_put,
3212 .install = mntns_install,
3213};