]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
super-intel: fix buffer overflow in detail-platform.
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
77#define MPB_ATTRIB_SUPPORTED MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE
fe7ed8cb 85
8e59f3d8 86#define MPB_SECTOR_CNT 2210
c2c087e6 87#define IMSM_RESERVED_SECTORS 4096
979d38be 88#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
89
90/* Disk configuration info. */
91#define IMSM_MAX_DEVICES 255
92struct imsm_disk {
93 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
94 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
95 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
96#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
97#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
98#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 99 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
100 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
101#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
102 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
103};
104
105/* RAID map configuration infos. */
106struct imsm_map {
107 __u32 pba_of_lba0; /* start address of partition */
108 __u32 blocks_per_member;/* blocks per member */
109 __u32 num_data_stripes; /* number of data stripes */
110 __u16 blocks_per_strip;
111 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
112#define IMSM_T_STATE_NORMAL 0
113#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
114#define IMSM_T_STATE_DEGRADED 2
115#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
116 __u8 raid_level;
117#define IMSM_T_RAID0 0
118#define IMSM_T_RAID1 1
119#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
120 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
121 __u8 num_domains; /* number of parity domains */
122 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 123 __u8 ddf;
cdddbdbc 124 __u32 filler[7]; /* expansion area */
7eef0453 125#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 126 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
127 * top byte contains some flags
128 */
cdddbdbc
DW
129} __attribute__ ((packed));
130
131struct imsm_vol {
f8f603f1 132 __u32 curr_migr_unit;
fe7ed8cb 133 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 134 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
135#define MIGR_INIT 0
136#define MIGR_REBUILD 1
137#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
138#define MIGR_GEN_MIGR 3
139#define MIGR_STATE_CHANGE 4
1484e727 140#define MIGR_REPAIR 5
cdddbdbc
DW
141 __u8 migr_type; /* Initializing, Rebuilding, ... */
142 __u8 dirty;
fe7ed8cb
DW
143 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
144 __u16 verify_errors; /* number of mismatches */
145 __u16 bad_blocks; /* number of bad blocks during verify */
146 __u32 filler[4];
cdddbdbc
DW
147 struct imsm_map map[1];
148 /* here comes another one if migr_state */
149} __attribute__ ((packed));
150
151struct imsm_dev {
fe7ed8cb 152 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
153 __u32 size_low;
154 __u32 size_high;
fe7ed8cb
DW
155#define DEV_BOOTABLE __cpu_to_le32(0x01)
156#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
157#define DEV_READ_COALESCING __cpu_to_le32(0x04)
158#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
159#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
160#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
161#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
162#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
163#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
164#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
165#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
166#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
167#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
168 __u32 status; /* Persistent RaidDev status */
169 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
170 __u8 migr_priority;
171 __u8 num_sub_vols;
172 __u8 tid;
173 __u8 cng_master_disk;
174 __u16 cache_policy;
175 __u8 cng_state;
176 __u8 cng_sub_state;
177#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
178 __u32 filler[IMSM_DEV_FILLERS];
179 struct imsm_vol vol;
180} __attribute__ ((packed));
181
182struct imsm_super {
183 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
184 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
185 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
186 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
187 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
188 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
189 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
190 __u8 num_disks; /* 0x38 Number of configured disks */
191 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
192 __u8 error_log_pos; /* 0x3A */
193 __u8 fill[1]; /* 0x3B */
194 __u32 cache_size; /* 0x3c - 0x40 in mb */
195 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
196 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
197 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
198#define IMSM_FILLERS 35
199 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
200 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
201 /* here comes imsm_dev[num_raid_devs] */
604b746f 202 /* here comes BBM logs */
cdddbdbc
DW
203} __attribute__ ((packed));
204
604b746f
JD
205#define BBM_LOG_MAX_ENTRIES 254
206
207struct bbm_log_entry {
208 __u64 defective_block_start;
209#define UNREADABLE 0xFFFFFFFF
210 __u32 spare_block_offset;
211 __u16 remapped_marked_count;
212 __u16 disk_ordinal;
213} __attribute__ ((__packed__));
214
215struct bbm_log {
216 __u32 signature; /* 0xABADB10C */
217 __u32 entry_count;
218 __u32 reserved_spare_block_count; /* 0 */
219 __u32 reserved; /* 0xFFFF */
220 __u64 first_spare_lba;
221 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
222} __attribute__ ((__packed__));
223
224
cdddbdbc
DW
225#ifndef MDASSEMBLE
226static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
227#endif
228
8e59f3d8
AK
229#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
230
231#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
232
233#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
234 * be recovered using srcMap */
235#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
236 * already been migrated and must
237 * be recovered from checkpoint area */
238struct migr_record {
239 __u32 rec_status; /* Status used to determine how to restart
240 * migration in case it aborts
241 * in some fashion */
242 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
243 __u32 family_num; /* Family number of MPB
244 * containing the RaidDev
245 * that is migrating */
246 __u32 ascending_migr; /* True if migrating in increasing
247 * order of lbas */
248 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
249 __u32 dest_depth_per_unit; /* Num member blocks each destMap
250 * member disk
251 * advances per unit-of-operation */
252 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
253 __u32 dest_1st_member_lba; /* First member lba on first
254 * stripe of destination */
255 __u32 num_migr_units; /* Total num migration units-of-op */
256 __u32 post_migr_vol_cap; /* Size of volume after
257 * migration completes */
258 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
259 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
260 * migration ckpt record was read from
261 * (for recovered migrations) */
262} __attribute__ ((__packed__));
263
1484e727
DW
264static __u8 migr_type(struct imsm_dev *dev)
265{
266 if (dev->vol.migr_type == MIGR_VERIFY &&
267 dev->status & DEV_VERIFY_AND_FIX)
268 return MIGR_REPAIR;
269 else
270 return dev->vol.migr_type;
271}
272
273static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
274{
275 /* for compatibility with older oroms convert MIGR_REPAIR, into
276 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
277 */
278 if (migr_type == MIGR_REPAIR) {
279 dev->vol.migr_type = MIGR_VERIFY;
280 dev->status |= DEV_VERIFY_AND_FIX;
281 } else {
282 dev->vol.migr_type = migr_type;
283 dev->status &= ~DEV_VERIFY_AND_FIX;
284 }
285}
286
87eb16df 287static unsigned int sector_count(__u32 bytes)
cdddbdbc 288{
87eb16df
DW
289 return ((bytes + (512-1)) & (~(512-1))) / 512;
290}
cdddbdbc 291
87eb16df
DW
292static unsigned int mpb_sectors(struct imsm_super *mpb)
293{
294 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
295}
296
ba2de7ba
DW
297struct intel_dev {
298 struct imsm_dev *dev;
299 struct intel_dev *next;
f21e18ca 300 unsigned index;
ba2de7ba
DW
301};
302
88654014
LM
303struct intel_hba {
304 enum sys_dev_type type;
305 char *path;
306 char *pci_id;
307 struct intel_hba *next;
308};
309
1a64be56
LM
310enum action {
311 DISK_REMOVE = 1,
312 DISK_ADD
313};
cdddbdbc
DW
314/* internal representation of IMSM metadata */
315struct intel_super {
316 union {
949c47a0
DW
317 void *buf; /* O_DIRECT buffer for reading/writing metadata */
318 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 319 };
8e59f3d8
AK
320 union {
321 void *migr_rec_buf; /* buffer for I/O operations */
322 struct migr_record *migr_rec; /* migration record */
323 };
949c47a0 324 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
325 void *next_buf; /* for realloc'ing buf from the manager */
326 size_t next_len;
c2c087e6 327 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 328 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 329 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 330 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 331 struct intel_dev *devlist;
cdddbdbc
DW
332 struct dl {
333 struct dl *next;
334 int index;
335 __u8 serial[MAX_RAID_SERIAL_LEN];
336 int major, minor;
337 char *devname;
b9f594fe 338 struct imsm_disk disk;
cdddbdbc 339 int fd;
0dcecb2e
DW
340 int extent_cnt;
341 struct extent *e; /* for determining freespace @ create */
efb30e7f 342 int raiddisk; /* slot to fill in autolayout */
1a64be56 343 enum action action;
cdddbdbc 344 } *disks;
1a64be56
LM
345 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
346 active */
47ee5a45 347 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 348 struct bbm_log *bbm_log;
88654014 349 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 350 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
351 struct intel_super *next; /* (temp) list for disambiguating family_num */
352};
353
354struct intel_disk {
355 struct imsm_disk disk;
356 #define IMSM_UNKNOWN_OWNER (-1)
357 int owner;
358 struct intel_disk *next;
cdddbdbc
DW
359};
360
c2c087e6
DW
361struct extent {
362 unsigned long long start, size;
363};
364
694575e7
KW
365/* definitions of reshape process types */
366enum imsm_reshape_type {
367 CH_TAKEOVER,
b5347799 368 CH_MIGRATION,
694575e7
KW
369};
370
88758e9d
DW
371/* definition of messages passed to imsm_process_update */
372enum imsm_update_type {
373 update_activate_spare,
8273f55e 374 update_create_array,
33414a01 375 update_kill_array,
aa534678 376 update_rename_array,
1a64be56 377 update_add_remove_disk,
78b10e66 378 update_reshape_container_disks,
48c5303a 379 update_reshape_migration,
2d40f3a1
AK
380 update_takeover,
381 update_general_migration_checkpoint,
88758e9d
DW
382};
383
384struct imsm_update_activate_spare {
385 enum imsm_update_type type;
d23fe947 386 struct dl *dl;
88758e9d
DW
387 int slot;
388 int array;
389 struct imsm_update_activate_spare *next;
390};
391
78b10e66
N
392struct geo_params {
393 int dev_id;
394 char *dev_name;
395 long long size;
396 int level;
397 int layout;
398 int chunksize;
399 int raid_disks;
400};
401
bb025c2f
KW
402enum takeover_direction {
403 R10_TO_R0,
404 R0_TO_R10
405};
406struct imsm_update_takeover {
407 enum imsm_update_type type;
408 int subarray;
409 enum takeover_direction direction;
410};
78b10e66
N
411
412struct imsm_update_reshape {
413 enum imsm_update_type type;
414 int old_raid_disks;
415 int new_raid_disks;
48c5303a
PC
416
417 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
418};
419
420struct imsm_update_reshape_migration {
421 enum imsm_update_type type;
422 int old_raid_disks;
423 int new_raid_disks;
424 /* fields for array migration changes
425 */
426 int subdev;
427 int new_level;
428 int new_layout;
4bba0439 429 int new_chunksize;
48c5303a 430
d195167d 431 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
432};
433
2d40f3a1
AK
434struct imsm_update_general_migration_checkpoint {
435 enum imsm_update_type type;
436 __u32 curr_migr_unit;
437};
438
54c2c1ea
DW
439struct disk_info {
440 __u8 serial[MAX_RAID_SERIAL_LEN];
441};
442
8273f55e
DW
443struct imsm_update_create_array {
444 enum imsm_update_type type;
8273f55e 445 int dev_idx;
6a3e913e 446 struct imsm_dev dev;
8273f55e
DW
447};
448
33414a01
DW
449struct imsm_update_kill_array {
450 enum imsm_update_type type;
451 int dev_idx;
452};
453
aa534678
DW
454struct imsm_update_rename_array {
455 enum imsm_update_type type;
456 __u8 name[MAX_RAID_SERIAL_LEN];
457 int dev_idx;
458};
459
1a64be56 460struct imsm_update_add_remove_disk {
43dad3d6
DW
461 enum imsm_update_type type;
462};
463
88654014
LM
464
465static const char *_sys_dev_type[] = {
466 [SYS_DEV_UNKNOWN] = "Unknown",
467 [SYS_DEV_SAS] = "SAS",
468 [SYS_DEV_SATA] = "SATA"
469};
470
471const char *get_sys_dev_type(enum sys_dev_type type)
472{
473 if (type >= SYS_DEV_MAX)
474 type = SYS_DEV_UNKNOWN;
475
476 return _sys_dev_type[type];
477}
478
479static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
480{
481 struct intel_hba *result = malloc(sizeof(*result));
482 if (result) {
483 result->type = device->type;
484 result->path = strdup(device->path);
485 result->next = NULL;
486 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
487 result->pci_id++;
488 }
489 return result;
490}
491
492static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
493{
494 struct intel_hba *result=NULL;
495 for (result = hba; result; result = result->next) {
496 if (result->type == device->type && strcmp(result->path, device->path) == 0)
497 break;
498 }
499 return result;
500}
501
b4cf4cba 502static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
503{
504 struct intel_hba *hba;
505
506 /* check if disk attached to Intel HBA */
507 hba = find_intel_hba(super->hba, device);
508 if (hba != NULL)
509 return 1;
510 /* Check if HBA is already attached to super */
511 if (super->hba == NULL) {
512 super->hba = alloc_intel_hba(device);
513 return 1;
514 }
515
516 hba = super->hba;
517 /* Intel metadata allows for all disks attached to the same type HBA.
518 * Do not sypport odf HBA types mixing
519 */
520 if (device->type != hba->type)
521 return 2;
522
523 while (hba->next)
524 hba = hba->next;
525
526 hba->next = alloc_intel_hba(device);
527 return 1;
528}
529
530static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
531{
532 struct sys_dev *list, *elem, *prev;
533 char *disk_path;
534
535 if ((list = find_intel_devices()) == NULL)
536 return 0;
537
538 if (fd < 0)
539 disk_path = (char *) devname;
540 else
541 disk_path = diskfd_to_devpath(fd);
542
543 if (!disk_path) {
544 free_sys_dev(&list);
545 return 0;
546 }
547
548 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
549 if (path_attached_to_hba(disk_path, elem->path)) {
550 if (prev == NULL)
551 list = list->next;
552 else
553 prev->next = elem->next;
554 elem->next = NULL;
555 if (disk_path != devname)
556 free(disk_path);
557 free_sys_dev(&list);
558 return elem;
559 }
560 }
561 if (disk_path != devname)
562 free(disk_path);
563 free_sys_dev(&list);
564
565 return NULL;
566}
567
568
d424212e
N
569static int find_intel_hba_capability(int fd, struct intel_super *super,
570 char *devname);
f2f5c343 571
cdddbdbc
DW
572static struct supertype *match_metadata_desc_imsm(char *arg)
573{
574 struct supertype *st;
575
576 if (strcmp(arg, "imsm") != 0 &&
577 strcmp(arg, "default") != 0
578 )
579 return NULL;
580
581 st = malloc(sizeof(*st));
4e9d2186
AW
582 if (!st)
583 return NULL;
ef609477 584 memset(st, 0, sizeof(*st));
d1d599ea 585 st->container_dev = NoMdDev;
cdddbdbc
DW
586 st->ss = &super_imsm;
587 st->max_devs = IMSM_MAX_DEVICES;
588 st->minor_version = 0;
589 st->sb = NULL;
590 return st;
591}
592
0e600426 593#ifndef MDASSEMBLE
cdddbdbc
DW
594static __u8 *get_imsm_version(struct imsm_super *mpb)
595{
596 return &mpb->sig[MPB_SIG_LEN];
597}
9e2d750d 598#endif
cdddbdbc 599
949c47a0
DW
600/* retrieve a disk directly from the anchor when the anchor is known to be
601 * up-to-date, currently only at load time
602 */
603static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 604{
949c47a0 605 if (index >= mpb->num_disks)
cdddbdbc
DW
606 return NULL;
607 return &mpb->disk[index];
608}
609
95d07a2c
LM
610/* retrieve the disk description based on a index of the disk
611 * in the sub-array
612 */
613static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 614{
b9f594fe
DW
615 struct dl *d;
616
617 for (d = super->disks; d; d = d->next)
618 if (d->index == index)
95d07a2c
LM
619 return d;
620
621 return NULL;
622}
623/* retrieve a disk from the parsed metadata */
624static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
625{
626 struct dl *dl;
627
628 dl = get_imsm_dl_disk(super, index);
629 if (dl)
630 return &dl->disk;
631
b9f594fe 632 return NULL;
949c47a0
DW
633}
634
635/* generate a checksum directly from the anchor when the anchor is known to be
636 * up-to-date, currently only at load or write_super after coalescing
637 */
638static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
639{
640 __u32 end = mpb->mpb_size / sizeof(end);
641 __u32 *p = (__u32 *) mpb;
642 __u32 sum = 0;
643
97f734fd
N
644 while (end--) {
645 sum += __le32_to_cpu(*p);
646 p++;
647 }
cdddbdbc
DW
648
649 return sum - __le32_to_cpu(mpb->check_sum);
650}
651
a965f303
DW
652static size_t sizeof_imsm_map(struct imsm_map *map)
653{
654 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
655}
656
657struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 658{
5e7b0330
AK
659 /* A device can have 2 maps if it is in the middle of a migration.
660 * If second_map is:
661 * 0 - we return the first map
662 * 1 - we return the second map if it exists, else NULL
663 * -1 - we return the second map if it exists, else the first
664 */
a965f303
DW
665 struct imsm_map *map = &dev->vol.map[0];
666
5e7b0330 667 if (second_map == 1 && !dev->vol.migr_state)
a965f303 668 return NULL;
5e7b0330
AK
669 else if (second_map == 1 ||
670 (second_map < 0 && dev->vol.migr_state)) {
a965f303
DW
671 void *ptr = map;
672
673 return ptr + sizeof_imsm_map(map);
674 } else
675 return map;
5e7b0330 676
a965f303 677}
cdddbdbc 678
3393c6af
DW
679/* return the size of the device.
680 * migr_state increases the returned size if map[0] were to be duplicated
681 */
682static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
683{
684 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
685 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
686
687 /* migrating means an additional map */
a965f303
DW
688 if (dev->vol.migr_state)
689 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
690 else if (migr_state)
691 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
692
693 return size;
694}
695
54c2c1ea
DW
696#ifndef MDASSEMBLE
697/* retrieve disk serial number list from a metadata update */
698static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
699{
700 void *u = update;
701 struct disk_info *inf;
702
703 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
704 sizeof_imsm_dev(&update->dev, 0);
705
706 return inf;
707}
708#endif
709
949c47a0 710static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
711{
712 int offset;
713 int i;
714 void *_mpb = mpb;
715
949c47a0 716 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
717 return NULL;
718
719 /* devices start after all disks */
720 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
721
722 for (i = 0; i <= index; i++)
723 if (i == index)
724 return _mpb + offset;
725 else
3393c6af 726 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
727
728 return NULL;
729}
730
949c47a0
DW
731static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
732{
ba2de7ba
DW
733 struct intel_dev *dv;
734
949c47a0
DW
735 if (index >= super->anchor->num_raid_devs)
736 return NULL;
ba2de7ba
DW
737 for (dv = super->devlist; dv; dv = dv->next)
738 if (dv->index == index)
739 return dv->dev;
740 return NULL;
949c47a0
DW
741}
742
98130f40
AK
743/*
744 * for second_map:
745 * == 0 get first map
746 * == 1 get second map
747 * == -1 than get map according to the current migr_state
748 */
749static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
750 int slot,
751 int second_map)
7eef0453
DW
752{
753 struct imsm_map *map;
754
5e7b0330 755 map = get_imsm_map(dev, second_map);
7eef0453 756
ff077194
DW
757 /* top byte identifies disk under rebuild */
758 return __le32_to_cpu(map->disk_ord_tbl[slot]);
759}
760
761#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 762static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 763{
98130f40 764 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
765
766 return ord_to_idx(ord);
7eef0453
DW
767}
768
be73972f
DW
769static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
770{
771 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
772}
773
f21e18ca 774static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
775{
776 int slot;
777 __u32 ord;
778
779 for (slot = 0; slot < map->num_members; slot++) {
780 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
781 if (ord_to_idx(ord) == idx)
782 return slot;
783 }
784
785 return -1;
786}
787
cdddbdbc
DW
788static int get_imsm_raid_level(struct imsm_map *map)
789{
790 if (map->raid_level == 1) {
791 if (map->num_members == 2)
792 return 1;
793 else
794 return 10;
795 }
796
797 return map->raid_level;
798}
799
c2c087e6
DW
800static int cmp_extent(const void *av, const void *bv)
801{
802 const struct extent *a = av;
803 const struct extent *b = bv;
804 if (a->start < b->start)
805 return -1;
806 if (a->start > b->start)
807 return 1;
808 return 0;
809}
810
0dcecb2e 811static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 812{
c2c087e6 813 int memberships = 0;
620b1713 814 int i;
c2c087e6 815
949c47a0
DW
816 for (i = 0; i < super->anchor->num_raid_devs; i++) {
817 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 818 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 819
620b1713
DW
820 if (get_imsm_disk_slot(map, dl->index) >= 0)
821 memberships++;
c2c087e6 822 }
0dcecb2e
DW
823
824 return memberships;
825}
826
827static struct extent *get_extents(struct intel_super *super, struct dl *dl)
828{
829 /* find a list of used extents on the given physical device */
830 struct extent *rv, *e;
620b1713 831 int i;
0dcecb2e
DW
832 int memberships = count_memberships(dl, super);
833 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
834
c2c087e6
DW
835 rv = malloc(sizeof(struct extent) * (memberships + 1));
836 if (!rv)
837 return NULL;
838 e = rv;
839
949c47a0
DW
840 for (i = 0; i < super->anchor->num_raid_devs; i++) {
841 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 842 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 843
620b1713
DW
844 if (get_imsm_disk_slot(map, dl->index) >= 0) {
845 e->start = __le32_to_cpu(map->pba_of_lba0);
846 e->size = __le32_to_cpu(map->blocks_per_member);
847 e++;
c2c087e6
DW
848 }
849 }
850 qsort(rv, memberships, sizeof(*rv), cmp_extent);
851
14e8215b
DW
852 /* determine the start of the metadata
853 * when no raid devices are defined use the default
854 * ...otherwise allow the metadata to truncate the value
855 * as is the case with older versions of imsm
856 */
857 if (memberships) {
858 struct extent *last = &rv[memberships - 1];
859 __u32 remainder;
860
861 remainder = __le32_to_cpu(dl->disk.total_blocks) -
862 (last->start + last->size);
dda5855f
DW
863 /* round down to 1k block to satisfy precision of the kernel
864 * 'size' interface
865 */
866 remainder &= ~1UL;
867 /* make sure remainder is still sane */
f21e18ca 868 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 869 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
870 if (reservation > remainder)
871 reservation = remainder;
872 }
873 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
874 e->size = 0;
875 return rv;
876}
877
14e8215b
DW
878/* try to determine how much space is reserved for metadata from
879 * the last get_extents() entry, otherwise fallback to the
880 * default
881 */
882static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
883{
884 struct extent *e;
885 int i;
886 __u32 rv;
887
888 /* for spares just return a minimal reservation which will grow
889 * once the spare is picked up by an array
890 */
891 if (dl->index == -1)
892 return MPB_SECTOR_CNT;
893
894 e = get_extents(super, dl);
895 if (!e)
896 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
897
898 /* scroll to last entry */
899 for (i = 0; e[i].size; i++)
900 continue;
901
902 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
903
904 free(e);
905
906 return rv;
907}
908
25ed7e59
DW
909static int is_spare(struct imsm_disk *disk)
910{
911 return (disk->status & SPARE_DISK) == SPARE_DISK;
912}
913
914static int is_configured(struct imsm_disk *disk)
915{
916 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
917}
918
919static int is_failed(struct imsm_disk *disk)
920{
921 return (disk->status & FAILED_DISK) == FAILED_DISK;
922}
923
80e7f8c3
AC
924/* Return minimum size of a spare that can be used in this array*/
925static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
926{
927 struct intel_super *super = st->sb;
928 struct dl *dl;
929 struct extent *e;
930 int i;
931 unsigned long long rv = 0;
932
933 if (!super)
934 return rv;
935 /* find first active disk in array */
936 dl = super->disks;
937 while (dl && (is_failed(&dl->disk) || dl->index == -1))
938 dl = dl->next;
939 if (!dl)
940 return rv;
941 /* find last lba used by subarrays */
942 e = get_extents(super, dl);
943 if (!e)
944 return rv;
945 for (i = 0; e[i].size; i++)
946 continue;
947 if (i > 0)
948 rv = e[i-1].start + e[i-1].size;
949 free(e);
950 /* add the amount of space needed for metadata */
951 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
952 return rv * 512;
953}
954
1799c9e8 955#ifndef MDASSEMBLE
c47b0ff6
AK
956static __u64 blocks_per_migr_unit(struct intel_super *super,
957 struct imsm_dev *dev);
1e5c6983 958
c47b0ff6
AK
959static void print_imsm_dev(struct intel_super *super,
960 struct imsm_dev *dev,
961 char *uuid,
962 int disk_idx)
cdddbdbc
DW
963{
964 __u64 sz;
0d80bb2f 965 int slot, i;
a965f303 966 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 967 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 968 __u32 ord;
cdddbdbc
DW
969
970 printf("\n");
1e7bc0ed 971 printf("[%.16s]:\n", dev->volume);
44470971 972 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
973 printf(" RAID Level : %d", get_imsm_raid_level(map));
974 if (map2)
975 printf(" <-- %d", get_imsm_raid_level(map2));
976 printf("\n");
977 printf(" Members : %d", map->num_members);
978 if (map2)
979 printf(" <-- %d", map2->num_members);
980 printf("\n");
0d80bb2f
DW
981 printf(" Slots : [");
982 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 983 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
984 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
985 }
dd8bcb3b
AK
986 printf("]");
987 if (map2) {
988 printf(" <-- [");
989 for (i = 0; i < map2->num_members; i++) {
990 ord = get_imsm_ord_tbl_ent(dev, i, 1);
991 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
992 }
993 printf("]");
994 }
995 printf("\n");
7095bccb
AK
996 printf(" Failed disk : ");
997 if (map->failed_disk_num == 0xff)
998 printf("none");
999 else
1000 printf("%i", map->failed_disk_num);
1001 printf("\n");
620b1713
DW
1002 slot = get_imsm_disk_slot(map, disk_idx);
1003 if (slot >= 0) {
98130f40 1004 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
1005 printf(" This Slot : %d%s\n", slot,
1006 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1007 } else
cdddbdbc
DW
1008 printf(" This Slot : ?\n");
1009 sz = __le32_to_cpu(dev->size_high);
1010 sz <<= 32;
1011 sz += __le32_to_cpu(dev->size_low);
1012 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1013 human_size(sz * 512));
1014 sz = __le32_to_cpu(map->blocks_per_member);
1015 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1016 human_size(sz * 512));
1017 printf(" Sector Offset : %u\n",
1018 __le32_to_cpu(map->pba_of_lba0));
1019 printf(" Num Stripes : %u\n",
1020 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 1021 printf(" Chunk Size : %u KiB",
cdddbdbc 1022 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1023 if (map2)
1024 printf(" <-- %u KiB",
1025 __le16_to_cpu(map2->blocks_per_strip) / 2);
1026 printf("\n");
cdddbdbc 1027 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1028 printf(" Migrate State : ");
1484e727
DW
1029 if (dev->vol.migr_state) {
1030 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1031 printf("initialize\n");
1484e727 1032 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1033 printf("rebuild\n");
1484e727 1034 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1035 printf("check\n");
1484e727 1036 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1037 printf("general migration\n");
1484e727 1038 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1039 printf("state change\n");
1484e727 1040 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1041 printf("repair\n");
1484e727 1042 else
8655a7b1
DW
1043 printf("<unknown:%d>\n", migr_type(dev));
1044 } else
1045 printf("idle\n");
3393c6af
DW
1046 printf(" Map State : %s", map_state_str[map->map_state]);
1047 if (dev->vol.migr_state) {
1048 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1049
b10b37b8 1050 printf(" <-- %s", map_state_str[map->map_state]);
1e5c6983
DW
1051 printf("\n Checkpoint : %u (%llu)",
1052 __le32_to_cpu(dev->vol.curr_migr_unit),
c47b0ff6 1053 (unsigned long long)blocks_per_migr_unit(super, dev));
3393c6af
DW
1054 }
1055 printf("\n");
cdddbdbc 1056 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1057}
1058
14e8215b 1059static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
cdddbdbc 1060{
949c47a0 1061 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1f24f035 1062 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1063 __u64 sz;
1064
d362da3d 1065 if (index < 0 || !disk)
e9d82038
DW
1066 return;
1067
cdddbdbc 1068 printf("\n");
1f24f035 1069 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
cdddbdbc 1070 printf(" Disk%02d Serial : %s\n", index, str);
25ed7e59
DW
1071 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1072 is_configured(disk) ? " active" : "",
1073 is_failed(disk) ? " failed" : "");
cdddbdbc 1074 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1075 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1076 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1077 human_size(sz * 512));
1078}
1079
520e69e2
AK
1080static int is_gen_migration(struct imsm_dev *dev);
1081
1082void examine_migr_rec_imsm(struct intel_super *super)
1083{
1084 struct migr_record *migr_rec = super->migr_rec;
1085 struct imsm_super *mpb = super->anchor;
1086 int i;
1087
1088 for (i = 0; i < mpb->num_raid_devs; i++) {
1089 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1090 if (is_gen_migration(dev) == 0)
1091 continue;
1092
1093 printf("\nMigration Record Information:");
1094 if (super->disks->index > 1) {
1095 printf(" Empty\n ");
1096 printf("Examine one of first two disks in array\n");
1097 break;
1098 }
1099 printf("\n Status : ");
1100 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1101 printf("Normal\n");
1102 else
1103 printf("Contains Data\n");
1104 printf(" Current Unit : %u\n",
1105 __le32_to_cpu(migr_rec->curr_migr_unit));
1106 printf(" Family : %u\n",
1107 __le32_to_cpu(migr_rec->family_num));
1108 printf(" Ascending : %u\n",
1109 __le32_to_cpu(migr_rec->ascending_migr));
1110 printf(" Blocks Per Unit : %u\n",
1111 __le32_to_cpu(migr_rec->blocks_per_unit));
1112 printf(" Dest. Depth Per Unit : %u\n",
1113 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1114 printf(" Checkpoint Area pba : %u\n",
1115 __le32_to_cpu(migr_rec->ckpt_area_pba));
1116 printf(" First member lba : %u\n",
1117 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1118 printf(" Total Number of Units : %u\n",
1119 __le32_to_cpu(migr_rec->num_migr_units));
1120 printf(" Size of volume : %u\n",
1121 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1122 printf(" Expansion space for LBA64 : %u\n",
1123 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1124 printf(" Record was read from : %u\n",
1125 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1126
1127 break;
1128 }
1129}
9e2d750d 1130#endif /* MDASSEMBLE */
19482bcc
AK
1131/*******************************************************************************
1132 * function: imsm_check_attributes
1133 * Description: Function checks if features represented by attributes flags
1134 * are supported by mdadm.
1135 * Parameters:
1136 * attributes - Attributes read from metadata
1137 * Returns:
1138 * 0 - passed attributes contains unsupported features flags
1139 * 1 - all features are supported
1140 ******************************************************************************/
1141static int imsm_check_attributes(__u32 attributes)
1142{
1143 int ret_val = 1;
1144 __u32 not_supported = (MPB_ATTRIB_SUPPORTED)^0xffffffff;
1145
1146 not_supported &= attributes;
1147 if (not_supported) {
1148 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n", not_supported);
1149 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1150 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1151 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1152 }
1153 if (not_supported & MPB_ATTRIB_2TB) {
1154 dprintf("\t\tMPB_ATTRIB_2TB\n");
1155 not_supported ^= MPB_ATTRIB_2TB;
1156 }
1157 if (not_supported & MPB_ATTRIB_RAID0) {
1158 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1159 not_supported ^= MPB_ATTRIB_RAID0;
1160 }
1161 if (not_supported & MPB_ATTRIB_RAID1) {
1162 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1163 not_supported ^= MPB_ATTRIB_RAID1;
1164 }
1165 if (not_supported & MPB_ATTRIB_RAID10) {
1166 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1167 not_supported ^= MPB_ATTRIB_RAID10;
1168 }
1169 if (not_supported & MPB_ATTRIB_RAID1E) {
1170 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1171 not_supported ^= MPB_ATTRIB_RAID1E;
1172 }
1173 if (not_supported & MPB_ATTRIB_RAID5) {
1174 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1175 not_supported ^= MPB_ATTRIB_RAID5;
1176 }
1177 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1178 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1179 not_supported ^= MPB_ATTRIB_RAIDCNG;
1180 }
1181 if (not_supported & MPB_ATTRIB_BBM) {
1182 dprintf("\t\tMPB_ATTRIB_BBM\n");
1183 not_supported ^= MPB_ATTRIB_BBM;
1184 }
1185 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1186 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1187 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1188 }
1189 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1190 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1191 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1192 }
1193 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1194 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1195 not_supported ^= MPB_ATTRIB_2TB_DISK;
1196 }
1197 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1198 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1199 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1200 }
1201 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1202 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1203 not_supported ^= MPB_ATTRIB_NEVER_USE;
1204 }
1205
1206 if (not_supported)
1207 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1208
1209 ret_val = 0;
1210 }
1211
1212 return ret_val;
1213}
1214
9e2d750d 1215#ifndef MDASSEMBLE
a5d85af7 1216static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1217
cdddbdbc
DW
1218static void examine_super_imsm(struct supertype *st, char *homehost)
1219{
1220 struct intel_super *super = st->sb;
949c47a0 1221 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1222 char str[MAX_SIGNATURE_LENGTH];
1223 int i;
27fd6274
DW
1224 struct mdinfo info;
1225 char nbuf[64];
cdddbdbc 1226 __u32 sum;
14e8215b 1227 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1228 struct dl *dl;
27fd6274 1229
cdddbdbc
DW
1230 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1231 printf(" Magic : %s\n", str);
1232 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1233 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1234 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1235 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1236 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1237 printf(" Attributes : ");
1238 if (imsm_check_attributes(mpb->attributes))
1239 printf("All supported\n");
1240 else
1241 printf("not supported\n");
a5d85af7 1242 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1243 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1244 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1245 sum = __le32_to_cpu(mpb->check_sum);
1246 printf(" Checksum : %08x %s\n", sum,
949c47a0 1247 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1248 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1249 printf(" Disks : %d\n", mpb->num_disks);
1250 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
14e8215b 1251 print_imsm_disk(mpb, super->disks->index, reserved);
604b746f
JD
1252 if (super->bbm_log) {
1253 struct bbm_log *log = super->bbm_log;
1254
1255 printf("\n");
1256 printf("Bad Block Management Log:\n");
1257 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1258 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1259 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1260 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1261 printf(" First Spare : %llx\n",
1262 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1263 }
44470971
DW
1264 for (i = 0; i < mpb->num_raid_devs; i++) {
1265 struct mdinfo info;
1266 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1267
1268 super->current_vol = i;
a5d85af7 1269 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1270 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1271 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1272 }
cdddbdbc
DW
1273 for (i = 0; i < mpb->num_disks; i++) {
1274 if (i == super->disks->index)
1275 continue;
14e8215b 1276 print_imsm_disk(mpb, i, reserved);
cdddbdbc 1277 }
94827db3
N
1278 for (dl = super->disks ; dl; dl = dl->next) {
1279 struct imsm_disk *disk;
1280 char str[MAX_RAID_SERIAL_LEN + 1];
1281 __u64 sz;
1282
1283 if (dl->index >= 0)
1284 continue;
1285
1286 disk = &dl->disk;
1287 printf("\n");
1288 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1289 printf(" Disk Serial : %s\n", str);
1290 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1291 is_configured(disk) ? " active" : "",
1292 is_failed(disk) ? " failed" : "");
1293 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1294 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1295 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1296 human_size(sz * 512));
1297 }
520e69e2
AK
1298
1299 examine_migr_rec_imsm(super);
cdddbdbc
DW
1300}
1301
061f2c6a 1302static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1303{
27fd6274 1304 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1305 struct mdinfo info;
1306 char nbuf[64];
1e7bc0ed 1307 struct intel_super *super = st->sb;
1e7bc0ed 1308
0d5a423f
DW
1309 if (!super->anchor->num_raid_devs) {
1310 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1311 return;
0d5a423f 1312 }
ff54de6e 1313
a5d85af7 1314 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1315 fname_from_uuid(st, &info, nbuf, ':');
1316 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1317}
1318
1319static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1320{
1321 /* We just write a generic IMSM ARRAY entry */
1322 struct mdinfo info;
1323 char nbuf[64];
1324 char nbuf1[64];
1325 struct intel_super *super = st->sb;
1326 int i;
1327
1328 if (!super->anchor->num_raid_devs)
1329 return;
1330
a5d85af7 1331 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1332 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1333 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1334 struct imsm_dev *dev = get_imsm_dev(super, i);
1335
1336 super->current_vol = i;
a5d85af7 1337 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1338 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1339 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1340 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1341 }
cdddbdbc
DW
1342}
1343
9d84c8ea
DW
1344static void export_examine_super_imsm(struct supertype *st)
1345{
1346 struct intel_super *super = st->sb;
1347 struct imsm_super *mpb = super->anchor;
1348 struct mdinfo info;
1349 char nbuf[64];
1350
a5d85af7 1351 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1352 fname_from_uuid(st, &info, nbuf, ':');
1353 printf("MD_METADATA=imsm\n");
1354 printf("MD_LEVEL=container\n");
1355 printf("MD_UUID=%s\n", nbuf+5);
1356 printf("MD_DEVICES=%u\n", mpb->num_disks);
1357}
1358
cdddbdbc
DW
1359static void detail_super_imsm(struct supertype *st, char *homehost)
1360{
3ebe00a1
DW
1361 struct mdinfo info;
1362 char nbuf[64];
1363
a5d85af7 1364 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1365 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1366 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1367}
1368
1369static void brief_detail_super_imsm(struct supertype *st)
1370{
ff54de6e
N
1371 struct mdinfo info;
1372 char nbuf[64];
a5d85af7 1373 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1374 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1375 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1376}
d665cc31
DW
1377
1378static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1379static void fd2devname(int fd, char *name);
1380
120dc887 1381static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1382{
120dc887
LM
1383 /* dump an unsorted list of devices attached to AHCI Intel storage
1384 * controller, as well as non-connected ports
d665cc31
DW
1385 */
1386 int hba_len = strlen(hba_path) + 1;
1387 struct dirent *ent;
1388 DIR *dir;
1389 char *path = NULL;
1390 int err = 0;
1391 unsigned long port_mask = (1 << port_count) - 1;
1392
f21e18ca 1393 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1394 if (verbose)
1395 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1396 return 2;
1397 }
1398
1399 /* scroll through /sys/dev/block looking for devices attached to
1400 * this hba
1401 */
1402 dir = opendir("/sys/dev/block");
1403 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1404 int fd;
1405 char model[64];
1406 char vendor[64];
1407 char buf[1024];
1408 int major, minor;
1409 char *device;
1410 char *c;
1411 int port;
1412 int type;
1413
1414 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1415 continue;
1416 path = devt_to_devpath(makedev(major, minor));
1417 if (!path)
1418 continue;
1419 if (!path_attached_to_hba(path, hba_path)) {
1420 free(path);
1421 path = NULL;
1422 continue;
1423 }
1424
1425 /* retrieve the scsi device type */
1426 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1427 if (verbose)
1428 fprintf(stderr, Name ": failed to allocate 'device'\n");
1429 err = 2;
1430 break;
1431 }
1432 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1433 if (load_sys(device, buf) != 0) {
1434 if (verbose)
1435 fprintf(stderr, Name ": failed to read device type for %s\n",
1436 path);
1437 err = 2;
1438 free(device);
1439 break;
1440 }
1441 type = strtoul(buf, NULL, 10);
1442
1443 /* if it's not a disk print the vendor and model */
1444 if (!(type == 0 || type == 7 || type == 14)) {
1445 vendor[0] = '\0';
1446 model[0] = '\0';
1447 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1448 if (load_sys(device, buf) == 0) {
1449 strncpy(vendor, buf, sizeof(vendor));
1450 vendor[sizeof(vendor) - 1] = '\0';
1451 c = (char *) &vendor[sizeof(vendor) - 1];
1452 while (isspace(*c) || *c == '\0')
1453 *c-- = '\0';
1454
1455 }
1456 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1457 if (load_sys(device, buf) == 0) {
1458 strncpy(model, buf, sizeof(model));
1459 model[sizeof(model) - 1] = '\0';
1460 c = (char *) &model[sizeof(model) - 1];
1461 while (isspace(*c) || *c == '\0')
1462 *c-- = '\0';
1463 }
1464
1465 if (vendor[0] && model[0])
1466 sprintf(buf, "%.64s %.64s", vendor, model);
1467 else
1468 switch (type) { /* numbers from hald/linux/device.c */
1469 case 1: sprintf(buf, "tape"); break;
1470 case 2: sprintf(buf, "printer"); break;
1471 case 3: sprintf(buf, "processor"); break;
1472 case 4:
1473 case 5: sprintf(buf, "cdrom"); break;
1474 case 6: sprintf(buf, "scanner"); break;
1475 case 8: sprintf(buf, "media_changer"); break;
1476 case 9: sprintf(buf, "comm"); break;
1477 case 12: sprintf(buf, "raid"); break;
1478 default: sprintf(buf, "unknown");
1479 }
1480 } else
1481 buf[0] = '\0';
1482 free(device);
1483
1484 /* chop device path to 'host%d' and calculate the port number */
1485 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1486 if (!c) {
1487 if (verbose)
1488 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1489 err = 2;
1490 break;
1491 }
d665cc31
DW
1492 *c = '\0';
1493 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1494 port -= host_base;
1495 else {
1496 if (verbose) {
1497 *c = '/'; /* repair the full string */
1498 fprintf(stderr, Name ": failed to determine port number for %s\n",
1499 path);
1500 }
1501 err = 2;
1502 break;
1503 }
1504
1505 /* mark this port as used */
1506 port_mask &= ~(1 << port);
1507
1508 /* print out the device information */
1509 if (buf[0]) {
1510 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1511 continue;
1512 }
1513
1514 fd = dev_open(ent->d_name, O_RDONLY);
1515 if (fd < 0)
1516 printf(" Port%d : - disk info unavailable -\n", port);
1517 else {
1518 fd2devname(fd, buf);
1519 printf(" Port%d : %s", port, buf);
1520 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1521 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1522 else
664d5325 1523 printf(" ()\n");
d665cc31
DW
1524 }
1525 close(fd);
1526 free(path);
1527 path = NULL;
1528 }
1529 if (path)
1530 free(path);
1531 if (dir)
1532 closedir(dir);
1533 if (err == 0) {
1534 int i;
1535
1536 for (i = 0; i < port_count; i++)
1537 if (port_mask & (1 << i))
1538 printf(" Port%d : - no device attached -\n", i);
1539 }
1540
1541 return err;
1542}
1543
120dc887
LM
1544static void print_found_intel_controllers(struct sys_dev *elem)
1545{
1546 for (; elem; elem = elem->next) {
1547 fprintf(stderr, Name ": found Intel(R) ");
1548 if (elem->type == SYS_DEV_SATA)
1549 fprintf(stderr, "SATA ");
155cbb4c
LM
1550 else if (elem->type == SYS_DEV_SAS)
1551 fprintf(stderr, "SAS ");
120dc887
LM
1552 fprintf(stderr, "RAID controller");
1553 if (elem->pci_id)
1554 fprintf(stderr, " at %s", elem->pci_id);
1555 fprintf(stderr, ".\n");
1556 }
1557 fflush(stderr);
1558}
1559
120dc887
LM
1560static int ahci_get_port_count(const char *hba_path, int *port_count)
1561{
1562 struct dirent *ent;
1563 DIR *dir;
1564 int host_base = -1;
1565
1566 *port_count = 0;
1567 if ((dir = opendir(hba_path)) == NULL)
1568 return -1;
1569
1570 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1571 int host;
1572
1573 if (sscanf(ent->d_name, "host%d", &host) != 1)
1574 continue;
1575 if (*port_count == 0)
1576 host_base = host;
1577 else if (host < host_base)
1578 host_base = host;
1579
1580 if (host + 1 > *port_count + host_base)
1581 *port_count = host + 1 - host_base;
1582 }
1583 closedir(dir);
1584 return host_base;
1585}
1586
a891a3c2
LM
1587static void print_imsm_capability(const struct imsm_orom *orom)
1588{
1589 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1590 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1591 orom->hotfix_ver, orom->build);
1592 printf(" RAID Levels :%s%s%s%s%s\n",
1593 imsm_orom_has_raid0(orom) ? " raid0" : "",
1594 imsm_orom_has_raid1(orom) ? " raid1" : "",
1595 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1596 imsm_orom_has_raid10(orom) ? " raid10" : "",
1597 imsm_orom_has_raid5(orom) ? " raid5" : "");
1598 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1599 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1600 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1601 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1602 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1603 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1604 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1605 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1606 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1607 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1608 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1609 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1610 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1611 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1612 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1613 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1614 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1615 printf(" Max Disks : %d\n", orom->tds);
1616 printf(" Max Volumes : %d\n", orom->vpa);
1617 return;
1618}
1619
5615172f 1620static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1621{
1622 /* There are two components to imsm platform support, the ahci SATA
1623 * controller and the option-rom. To find the SATA controller we
1624 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1625 * controller with the Intel vendor id is present. This approach
1626 * allows mdadm to leverage the kernel's ahci detection logic, with the
1627 * caveat that if ahci.ko is not loaded mdadm will not be able to
1628 * detect platform raid capabilities. The option-rom resides in a
1629 * platform "Adapter ROM". We scan for its signature to retrieve the
1630 * platform capabilities. If raid support is disabled in the BIOS the
1631 * option-rom capability structure will not be available.
1632 */
1633 const struct imsm_orom *orom;
1634 struct sys_dev *list, *hba;
d665cc31
DW
1635 int host_base = 0;
1636 int port_count = 0;
120dc887 1637 int result=0;
d665cc31 1638
5615172f 1639 if (enumerate_only) {
a891a3c2 1640 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1641 return 0;
a891a3c2
LM
1642 list = find_intel_devices();
1643 if (!list)
1644 return 2;
1645 for (hba = list; hba; hba = hba->next) {
1646 orom = find_imsm_capability(hba->type);
1647 if (!orom) {
1648 result = 2;
1649 break;
1650 }
1651 }
1652 free_sys_dev(&list);
1653 return result;
5615172f
DW
1654 }
1655
155cbb4c
LM
1656 list = find_intel_devices();
1657 if (!list) {
d665cc31 1658 if (verbose)
155cbb4c
LM
1659 fprintf(stderr, Name ": no active Intel(R) RAID "
1660 "controller found.\n");
d665cc31
DW
1661 free_sys_dev(&list);
1662 return 2;
1663 } else if (verbose)
155cbb4c 1664 print_found_intel_controllers(list);
d665cc31 1665
a891a3c2
LM
1666 for (hba = list; hba; hba = hba->next) {
1667 orom = find_imsm_capability(hba->type);
1668 if (!orom)
1669 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1670 hba->path, get_sys_dev_type(hba->type));
1671 else
1672 print_imsm_capability(orom);
d665cc31
DW
1673 }
1674
120dc887
LM
1675 for (hba = list; hba; hba = hba->next) {
1676 printf(" I/O Controller : %s (%s)\n",
1677 hba->path, get_sys_dev_type(hba->type));
d665cc31 1678
120dc887
LM
1679 if (hba->type == SYS_DEV_SATA) {
1680 host_base = ahci_get_port_count(hba->path, &port_count);
1681 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1682 if (verbose)
1683 fprintf(stderr, Name ": failed to enumerate "
1684 "ports on SATA controller at %s.", hba->pci_id);
1685 result |= 2;
1686 }
1687 }
d665cc31 1688 }
155cbb4c 1689
120dc887
LM
1690 free_sys_dev(&list);
1691 return result;
d665cc31 1692}
cdddbdbc
DW
1693#endif
1694
1695static int match_home_imsm(struct supertype *st, char *homehost)
1696{
5115ca67
DW
1697 /* the imsm metadata format does not specify any host
1698 * identification information. We return -1 since we can never
1699 * confirm nor deny whether a given array is "meant" for this
148acb7b 1700 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1701 * exclude member disks that do not belong, and we rely on
1702 * mdadm.conf to specify the arrays that should be assembled.
1703 * Auto-assembly may still pick up "foreign" arrays.
1704 */
cdddbdbc 1705
9362c1c8 1706 return -1;
cdddbdbc
DW
1707}
1708
1709static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1710{
51006d85
N
1711 /* The uuid returned here is used for:
1712 * uuid to put into bitmap file (Create, Grow)
1713 * uuid for backup header when saving critical section (Grow)
1714 * comparing uuids when re-adding a device into an array
1715 * In these cases the uuid required is that of the data-array,
1716 * not the device-set.
1717 * uuid to recognise same set when adding a missing device back
1718 * to an array. This is a uuid for the device-set.
1719 *
1720 * For each of these we can make do with a truncated
1721 * or hashed uuid rather than the original, as long as
1722 * everyone agrees.
1723 * In each case the uuid required is that of the data-array,
1724 * not the device-set.
43dad3d6 1725 */
51006d85
N
1726 /* imsm does not track uuid's so we synthesis one using sha1 on
1727 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1728 * - the orig_family_num of the container
51006d85
N
1729 * - the index number of the volume
1730 * - the 'serial' number of the volume.
1731 * Hopefully these are all constant.
1732 */
1733 struct intel_super *super = st->sb;
43dad3d6 1734
51006d85
N
1735 char buf[20];
1736 struct sha1_ctx ctx;
1737 struct imsm_dev *dev = NULL;
148acb7b 1738 __u32 family_num;
51006d85 1739
148acb7b
DW
1740 /* some mdadm versions failed to set ->orig_family_num, in which
1741 * case fall back to ->family_num. orig_family_num will be
1742 * fixed up with the first metadata update.
1743 */
1744 family_num = super->anchor->orig_family_num;
1745 if (family_num == 0)
1746 family_num = super->anchor->family_num;
51006d85 1747 sha1_init_ctx(&ctx);
92bd8f8d 1748 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1749 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1750 if (super->current_vol >= 0)
1751 dev = get_imsm_dev(super, super->current_vol);
1752 if (dev) {
1753 __u32 vol = super->current_vol;
1754 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1755 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1756 }
1757 sha1_finish_ctx(&ctx, buf);
1758 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1759}
1760
0d481d37 1761#if 0
4f5bc454
DW
1762static void
1763get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1764{
cdddbdbc
DW
1765 __u8 *v = get_imsm_version(mpb);
1766 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1767 char major[] = { 0, 0, 0 };
1768 char minor[] = { 0 ,0, 0 };
1769 char patch[] = { 0, 0, 0 };
1770 char *ver_parse[] = { major, minor, patch };
1771 int i, j;
1772
1773 i = j = 0;
1774 while (*v != '\0' && v < end) {
1775 if (*v != '.' && j < 2)
1776 ver_parse[i][j++] = *v;
1777 else {
1778 i++;
1779 j = 0;
1780 }
1781 v++;
1782 }
1783
4f5bc454
DW
1784 *m = strtol(minor, NULL, 0);
1785 *p = strtol(patch, NULL, 0);
1786}
0d481d37 1787#endif
4f5bc454 1788
1e5c6983
DW
1789static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1790{
1791 /* migr_strip_size when repairing or initializing parity */
1792 struct imsm_map *map = get_imsm_map(dev, 0);
1793 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1794
1795 switch (get_imsm_raid_level(map)) {
1796 case 5:
1797 case 10:
1798 return chunk;
1799 default:
1800 return 128*1024 >> 9;
1801 }
1802}
1803
1804static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1805{
1806 /* migr_strip_size when rebuilding a degraded disk, no idea why
1807 * this is different than migr_strip_size_resync(), but it's good
1808 * to be compatible
1809 */
1810 struct imsm_map *map = get_imsm_map(dev, 1);
1811 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1812
1813 switch (get_imsm_raid_level(map)) {
1814 case 1:
1815 case 10:
1816 if (map->num_members % map->num_domains == 0)
1817 return 128*1024 >> 9;
1818 else
1819 return chunk;
1820 case 5:
1821 return max((__u32) 64*1024 >> 9, chunk);
1822 default:
1823 return 128*1024 >> 9;
1824 }
1825}
1826
1827static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1828{
1829 struct imsm_map *lo = get_imsm_map(dev, 0);
1830 struct imsm_map *hi = get_imsm_map(dev, 1);
1831 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1832 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1833
1834 return max((__u32) 1, hi_chunk / lo_chunk);
1835}
1836
1837static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1838{
1839 struct imsm_map *lo = get_imsm_map(dev, 0);
1840 int level = get_imsm_raid_level(lo);
1841
1842 if (level == 1 || level == 10) {
1843 struct imsm_map *hi = get_imsm_map(dev, 1);
1844
1845 return hi->num_domains;
1846 } else
1847 return num_stripes_per_unit_resync(dev);
1848}
1849
98130f40 1850static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1851{
1852 /* named 'imsm_' because raid0, raid1 and raid10
1853 * counter-intuitively have the same number of data disks
1854 */
98130f40 1855 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1856
1857 switch (get_imsm_raid_level(map)) {
1858 case 0:
1859 case 1:
1860 case 10:
1861 return map->num_members;
1862 case 5:
1863 return map->num_members - 1;
1864 default:
1865 dprintf("%s: unsupported raid level\n", __func__);
1866 return 0;
1867 }
1868}
1869
1870static __u32 parity_segment_depth(struct imsm_dev *dev)
1871{
1872 struct imsm_map *map = get_imsm_map(dev, 0);
1873 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1874
1875 switch(get_imsm_raid_level(map)) {
1876 case 1:
1877 case 10:
1878 return chunk * map->num_domains;
1879 case 5:
1880 return chunk * map->num_members;
1881 default:
1882 return chunk;
1883 }
1884}
1885
1886static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1887{
1888 struct imsm_map *map = get_imsm_map(dev, 1);
1889 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1890 __u32 strip = block / chunk;
1891
1892 switch (get_imsm_raid_level(map)) {
1893 case 1:
1894 case 10: {
1895 __u32 vol_strip = (strip * map->num_domains) + 1;
1896 __u32 vol_stripe = vol_strip / map->num_members;
1897
1898 return vol_stripe * chunk + block % chunk;
1899 } case 5: {
1900 __u32 stripe = strip / (map->num_members - 1);
1901
1902 return stripe * chunk + block % chunk;
1903 }
1904 default:
1905 return 0;
1906 }
1907}
1908
c47b0ff6
AK
1909static __u64 blocks_per_migr_unit(struct intel_super *super,
1910 struct imsm_dev *dev)
1e5c6983
DW
1911{
1912 /* calculate the conversion factor between per member 'blocks'
1913 * (md/{resync,rebuild}_start) and imsm migration units, return
1914 * 0 for the 'not migrating' and 'unsupported migration' cases
1915 */
1916 if (!dev->vol.migr_state)
1917 return 0;
1918
1919 switch (migr_type(dev)) {
c47b0ff6
AK
1920 case MIGR_GEN_MIGR: {
1921 struct migr_record *migr_rec = super->migr_rec;
1922 return __le32_to_cpu(migr_rec->blocks_per_unit);
1923 }
1e5c6983
DW
1924 case MIGR_VERIFY:
1925 case MIGR_REPAIR:
1926 case MIGR_INIT: {
1927 struct imsm_map *map = get_imsm_map(dev, 0);
1928 __u32 stripes_per_unit;
1929 __u32 blocks_per_unit;
1930 __u32 parity_depth;
1931 __u32 migr_chunk;
1932 __u32 block_map;
1933 __u32 block_rel;
1934 __u32 segment;
1935 __u32 stripe;
1936 __u8 disks;
1937
1938 /* yes, this is really the translation of migr_units to
1939 * per-member blocks in the 'resync' case
1940 */
1941 stripes_per_unit = num_stripes_per_unit_resync(dev);
1942 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 1943 disks = imsm_num_data_members(dev, 0);
1e5c6983 1944 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 1945 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
1946 segment = blocks_per_unit / stripe;
1947 block_rel = blocks_per_unit - segment * stripe;
1948 parity_depth = parity_segment_depth(dev);
1949 block_map = map_migr_block(dev, block_rel);
1950 return block_map + parity_depth * segment;
1951 }
1952 case MIGR_REBUILD: {
1953 __u32 stripes_per_unit;
1954 __u32 migr_chunk;
1955
1956 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1957 migr_chunk = migr_strip_blocks_rebuild(dev);
1958 return migr_chunk * stripes_per_unit;
1959 }
1e5c6983
DW
1960 case MIGR_STATE_CHANGE:
1961 default:
1962 return 0;
1963 }
1964}
1965
c2c087e6
DW
1966static int imsm_level_to_layout(int level)
1967{
1968 switch (level) {
1969 case 0:
1970 case 1:
1971 return 0;
1972 case 5:
1973 case 6:
a380c027 1974 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 1975 case 10:
c92a2527 1976 return 0x102;
c2c087e6 1977 }
a18a888e 1978 return UnSet;
c2c087e6
DW
1979}
1980
8e59f3d8
AK
1981/*******************************************************************************
1982 * Function: read_imsm_migr_rec
1983 * Description: Function reads imsm migration record from last sector of disk
1984 * Parameters:
1985 * fd : disk descriptor
1986 * super : metadata info
1987 * Returns:
1988 * 0 : success,
1989 * -1 : fail
1990 ******************************************************************************/
1991static int read_imsm_migr_rec(int fd, struct intel_super *super)
1992{
1993 int ret_val = -1;
1994 unsigned long long dsize;
1995
1996 get_dev_size(fd, NULL, &dsize);
1997 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
1998 fprintf(stderr,
1999 Name ": Cannot seek to anchor block: %s\n",
2000 strerror(errno));
2001 goto out;
2002 }
2003 if (read(fd, super->migr_rec_buf, 512) != 512) {
2004 fprintf(stderr,
2005 Name ": Cannot read migr record block: %s\n",
2006 strerror(errno));
2007 goto out;
2008 }
2009 ret_val = 0;
2010
2011out:
2012 return ret_val;
2013}
2014
2015/*******************************************************************************
2016 * Function: load_imsm_migr_rec
2017 * Description: Function reads imsm migration record (it is stored at the last
2018 * sector of disk)
2019 * Parameters:
2020 * super : imsm internal array info
2021 * info : general array info
2022 * Returns:
2023 * 0 : success
2024 * -1 : fail
2025 ******************************************************************************/
2026static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2027{
2028 struct mdinfo *sd;
2029 struct dl *dl = NULL;
2030 char nm[30];
2031 int retval = -1;
2032 int fd = -1;
2033
2034 if (info) {
2035 for (sd = info->devs ; sd ; sd = sd->next) {
2036 /* read only from one of the first two slots */
2037 if ((sd->disk.raid_disk > 1) ||
2038 (sd->disk.raid_disk < 0))
2039 continue;
2040 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2041 fd = dev_open(nm, O_RDONLY);
2042 if (fd >= 0)
2043 break;
2044 }
2045 }
2046 if (fd < 0) {
2047 for (dl = super->disks; dl; dl = dl->next) {
2048 /* read only from one of the first two slots */
2049 if (dl->index > 1)
2050 continue;
2051 sprintf(nm, "%d:%d", dl->major, dl->minor);
2052 fd = dev_open(nm, O_RDONLY);
2053 if (fd >= 0)
2054 break;
2055 }
2056 }
2057 if (fd < 0)
2058 goto out;
2059 retval = read_imsm_migr_rec(fd, super);
2060
2061out:
2062 if (fd >= 0)
2063 close(fd);
2064 return retval;
2065}
2066
9e2d750d 2067#ifndef MDASSEMBLE
c17608ea
AK
2068/*******************************************************************************
2069 * function: imsm_create_metadata_checkpoint_update
2070 * Description: It creates update for checkpoint change.
2071 * Parameters:
2072 * super : imsm internal array info
2073 * u : pointer to prepared update
2074 * Returns:
2075 * Uptate length.
2076 * If length is equal to 0, input pointer u contains no update
2077 ******************************************************************************/
2078static int imsm_create_metadata_checkpoint_update(
2079 struct intel_super *super,
2080 struct imsm_update_general_migration_checkpoint **u)
2081{
2082
2083 int update_memory_size = 0;
2084
2085 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2086
2087 if (u == NULL)
2088 return 0;
2089 *u = NULL;
2090
2091 /* size of all update data without anchor */
2092 update_memory_size =
2093 sizeof(struct imsm_update_general_migration_checkpoint);
2094
2095 *u = calloc(1, update_memory_size);
2096 if (*u == NULL) {
2097 dprintf("error: cannot get memory for "
2098 "imsm_create_metadata_checkpoint_update update\n");
2099 return 0;
2100 }
2101 (*u)->type = update_general_migration_checkpoint;
2102 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2103 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2104 (*u)->curr_migr_unit);
2105
2106 return update_memory_size;
2107}
2108
2109
2110static void imsm_update_metadata_locally(struct supertype *st,
2111 void *buf, int len);
2112
687629c2
AK
2113/*******************************************************************************
2114 * Function: write_imsm_migr_rec
2115 * Description: Function writes imsm migration record
2116 * (at the last sector of disk)
2117 * Parameters:
2118 * super : imsm internal array info
2119 * Returns:
2120 * 0 : success
2121 * -1 : if fail
2122 ******************************************************************************/
2123static int write_imsm_migr_rec(struct supertype *st)
2124{
2125 struct intel_super *super = st->sb;
2126 unsigned long long dsize;
2127 char nm[30];
2128 int fd = -1;
2129 int retval = -1;
2130 struct dl *sd;
c17608ea
AK
2131 int len;
2132 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2133
2134 for (sd = super->disks ; sd ; sd = sd->next) {
2135 /* write to 2 first slots only */
2136 if ((sd->index < 0) || (sd->index > 1))
2137 continue;
2138 sprintf(nm, "%d:%d", sd->major, sd->minor);
2139 fd = dev_open(nm, O_RDWR);
2140 if (fd < 0)
2141 continue;
2142 get_dev_size(fd, NULL, &dsize);
2143 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2144 fprintf(stderr,
2145 Name ": Cannot seek to anchor block: %s\n",
2146 strerror(errno));
2147 goto out;
2148 }
2149 if (write(fd, super->migr_rec_buf, 512) != 512) {
2150 fprintf(stderr,
2151 Name ": Cannot write migr record block: %s\n",
2152 strerror(errno));
2153 goto out;
2154 }
2155 close(fd);
2156 fd = -1;
2157 }
c17608ea
AK
2158 /* update checkpoint information in metadata */
2159 len = imsm_create_metadata_checkpoint_update(super, &u);
2160
2161 if (len <= 0) {
2162 dprintf("imsm: Cannot prepare update\n");
2163 goto out;
2164 }
2165 /* update metadata locally */
2166 imsm_update_metadata_locally(st, u, len);
2167 /* and possibly remotely */
2168 if (st->update_tail) {
2169 append_metadata_update(st, u, len);
2170 /* during reshape we do all work inside metadata handler
2171 * manage_reshape(), so metadata update has to be triggered
2172 * insida it
2173 */
2174 flush_metadata_updates(st);
2175 st->update_tail = &st->updates;
2176 } else
2177 free(u);
687629c2
AK
2178
2179 retval = 0;
2180 out:
2181 if (fd >= 0)
2182 close(fd);
2183 return retval;
2184}
9e2d750d 2185#endif /* MDASSEMBLE */
687629c2 2186
a5d85af7 2187static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2188{
2189 struct intel_super *super = st->sb;
c47b0ff6 2190 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2191 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 2192 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 2193 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 2194 struct imsm_map *map_to_analyse = map;
efb30e7f 2195 struct dl *dl;
e207da2f 2196 char *devname;
139dae11 2197 unsigned int component_size_alligment;
a5d85af7 2198 int map_disks = info->array.raid_disks;
bf5a934a 2199
95eeceeb 2200 memset(info, 0, sizeof(*info));
b335e593
AK
2201 if (prev_map)
2202 map_to_analyse = prev_map;
2203
9894ec0d
N
2204 dl = super->disks;
2205
bf5a934a 2206 info->container_member = super->current_vol;
cd0430a1 2207 info->array.raid_disks = map->num_members;
b335e593 2208 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2209 info->array.layout = imsm_level_to_layout(info->array.level);
2210 info->array.md_minor = -1;
2211 info->array.ctime = 0;
2212 info->array.utime = 0;
b335e593
AK
2213 info->array.chunk_size =
2214 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2215 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2216 info->custom_array_size = __le32_to_cpu(dev->size_high);
2217 info->custom_array_size <<= 32;
2218 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3f83228a
N
2219 if (prev_map && map->map_state == prev_map->map_state) {
2220 info->reshape_active = 1;
b335e593
AK
2221 info->new_level = get_imsm_raid_level(map);
2222 info->new_layout = imsm_level_to_layout(info->new_level);
2223 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2224 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2225 if (info->delta_disks) {
2226 /* this needs to be applied to every array
2227 * in the container.
2228 */
2229 info->reshape_active = 2;
2230 }
3f83228a
N
2231 /* We shape information that we give to md might have to be
2232 * modify to cope with md's requirement for reshaping arrays.
2233 * For example, when reshaping a RAID0, md requires it to be
2234 * presented as a degraded RAID4.
2235 * Also if a RAID0 is migrating to a RAID5 we need to specify
2236 * the array as already being RAID5, but the 'before' layout
2237 * is a RAID4-like layout.
2238 */
2239 switch (info->array.level) {
2240 case 0:
2241 switch(info->new_level) {
2242 case 0:
2243 /* conversion is happening as RAID4 */
2244 info->array.level = 4;
2245 info->array.raid_disks += 1;
2246 break;
2247 case 5:
2248 /* conversion is happening as RAID5 */
2249 info->array.level = 5;
2250 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2251 info->delta_disks -= 1;
2252 break;
2253 default:
2254 /* FIXME error message */
2255 info->array.level = UnSet;
2256 break;
2257 }
2258 break;
2259 }
b335e593
AK
2260 } else {
2261 info->new_level = UnSet;
2262 info->new_layout = UnSet;
2263 info->new_chunk = info->array.chunk_size;
3f83228a 2264 info->delta_disks = 0;
b335e593 2265 }
301406c9
DW
2266 info->disk.major = 0;
2267 info->disk.minor = 0;
efb30e7f
DW
2268 if (dl) {
2269 info->disk.major = dl->major;
2270 info->disk.minor = dl->minor;
2271 }
bf5a934a 2272
b335e593
AK
2273 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2274 info->component_size =
2275 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2276
2277 /* check component size aligment
2278 */
2279 component_size_alligment =
2280 info->component_size % (info->array.chunk_size/512);
2281
2282 if (component_size_alligment &&
2283 (info->array.level != 1) && (info->array.level != UnSet)) {
2284 dprintf("imsm: reported component size alligned from %llu ",
2285 info->component_size);
2286 info->component_size -= component_size_alligment;
2287 dprintf("to %llu (%i).\n",
2288 info->component_size, component_size_alligment);
2289 }
2290
301406c9 2291 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2292 info->recovery_start = MaxSector;
bf5a934a 2293
d2e6d5d6 2294 info->reshape_progress = 0;
b6796ce1 2295 info->resync_start = MaxSector;
b335e593
AK
2296 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2297 dev->vol.dirty) {
301406c9 2298 info->resync_start = 0;
b6796ce1
AK
2299 }
2300 if (dev->vol.migr_state) {
1e5c6983
DW
2301 switch (migr_type(dev)) {
2302 case MIGR_REPAIR:
2303 case MIGR_INIT: {
c47b0ff6
AK
2304 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2305 dev);
1e5c6983
DW
2306 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2307
2308 info->resync_start = blocks_per_unit * units;
2309 break;
2310 }
d2e6d5d6 2311 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2312 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2313 dev);
2314 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2315 unsigned long long array_blocks;
2316 int used_disks;
d2e6d5d6 2317
befb629b
AK
2318 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2319 (units <
2320 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2321 (super->migr_rec->rec_status ==
2322 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2323 units++;
2324
d2e6d5d6 2325 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2326
d2e6d5d6
AK
2327 dprintf("IMSM: General Migration checkpoint : %llu "
2328 "(%llu) -> read reshape progress : %llu\n",
2329 units, blocks_per_unit, info->reshape_progress);
75156c46
AK
2330
2331 used_disks = imsm_num_data_members(dev, 1);
2332 if (used_disks > 0) {
2333 array_blocks = map->blocks_per_member *
2334 used_disks;
2335 /* round array size down to closest MB
2336 */
2337 info->custom_array_size = (array_blocks
2338 >> SECT_PER_MB_SHIFT)
2339 << SECT_PER_MB_SHIFT;
2340 }
d2e6d5d6 2341 }
1e5c6983
DW
2342 case MIGR_VERIFY:
2343 /* we could emulate the checkpointing of
2344 * 'sync_action=check' migrations, but for now
2345 * we just immediately complete them
2346 */
2347 case MIGR_REBUILD:
2348 /* this is handled by container_content_imsm() */
1e5c6983
DW
2349 case MIGR_STATE_CHANGE:
2350 /* FIXME handle other migrations */
2351 default:
2352 /* we are not dirty, so... */
2353 info->resync_start = MaxSector;
2354 }
b6796ce1 2355 }
301406c9
DW
2356
2357 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2358 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2359
f35f2525
N
2360 info->array.major_version = -1;
2361 info->array.minor_version = -2;
e207da2f
AW
2362 devname = devnum2devname(st->container_dev);
2363 *info->text_version = '\0';
2364 if (devname)
2365 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2366 free(devname);
a67dd8cc 2367 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2368 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2369
2370 if (dmap) {
2371 int i, j;
2372 for (i=0; i<map_disks; i++) {
2373 dmap[i] = 0;
2374 if (i < info->array.raid_disks) {
2375 struct imsm_disk *dsk;
98130f40 2376 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2377 dsk = get_imsm_disk(super, j);
2378 if (dsk && (dsk->status & CONFIGURED_DISK))
2379 dmap[i] = 1;
2380 }
2381 }
2382 }
81ac8b4d 2383}
bf5a934a 2384
97b4d0e9
DW
2385static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2386static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2387
2388static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2389{
2390 struct dl *d;
2391
2392 for (d = super->missing; d; d = d->next)
2393 if (d->index == index)
2394 return &d->disk;
2395 return NULL;
2396}
2397
a5d85af7 2398static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2399{
2400 struct intel_super *super = st->sb;
4f5bc454 2401 struct imsm_disk *disk;
a5d85af7 2402 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2403 int max_enough = -1;
2404 int i;
2405 struct imsm_super *mpb;
4f5bc454 2406
bf5a934a 2407 if (super->current_vol >= 0) {
a5d85af7 2408 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2409 return;
2410 }
95eeceeb 2411 memset(info, 0, sizeof(*info));
d23fe947
DW
2412
2413 /* Set raid_disks to zero so that Assemble will always pull in valid
2414 * spares
2415 */
2416 info->array.raid_disks = 0;
cdddbdbc
DW
2417 info->array.level = LEVEL_CONTAINER;
2418 info->array.layout = 0;
2419 info->array.md_minor = -1;
c2c087e6 2420 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2421 info->array.utime = 0;
2422 info->array.chunk_size = 0;
2423
2424 info->disk.major = 0;
2425 info->disk.minor = 0;
cdddbdbc 2426 info->disk.raid_disk = -1;
c2c087e6 2427 info->reshape_active = 0;
f35f2525
N
2428 info->array.major_version = -1;
2429 info->array.minor_version = -2;
c2c087e6 2430 strcpy(info->text_version, "imsm");
a67dd8cc 2431 info->safe_mode_delay = 0;
c2c087e6
DW
2432 info->disk.number = -1;
2433 info->disk.state = 0;
c5afc314 2434 info->name[0] = 0;
921d9e16 2435 info->recovery_start = MaxSector;
c2c087e6 2436
97b4d0e9 2437 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2438 mpb = super->anchor;
97b4d0e9 2439
ab3cb6b3
N
2440 for (i = 0; i < mpb->num_raid_devs; i++) {
2441 struct imsm_dev *dev = get_imsm_dev(super, i);
2442 int failed, enough, j, missing = 0;
2443 struct imsm_map *map;
2444 __u8 state;
97b4d0e9 2445
ab3cb6b3
N
2446 failed = imsm_count_failed(super, dev);
2447 state = imsm_check_degraded(super, dev, failed);
2448 map = get_imsm_map(dev, dev->vol.migr_state);
2449
2450 /* any newly missing disks?
2451 * (catches single-degraded vs double-degraded)
2452 */
2453 for (j = 0; j < map->num_members; j++) {
98130f40 2454 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
ab3cb6b3
N
2455 __u32 idx = ord_to_idx(ord);
2456
2457 if (!(ord & IMSM_ORD_REBUILD) &&
2458 get_imsm_missing(super, idx)) {
2459 missing = 1;
2460 break;
2461 }
97b4d0e9 2462 }
ab3cb6b3
N
2463
2464 if (state == IMSM_T_STATE_FAILED)
2465 enough = -1;
2466 else if (state == IMSM_T_STATE_DEGRADED &&
2467 (state != map->map_state || missing))
2468 enough = 0;
2469 else /* we're normal, or already degraded */
2470 enough = 1;
2471
2472 /* in the missing/failed disk case check to see
2473 * if at least one array is runnable
2474 */
2475 max_enough = max(max_enough, enough);
2476 }
2477 dprintf("%s: enough: %d\n", __func__, max_enough);
2478 info->container_enough = max_enough;
97b4d0e9 2479
4a04ec6c 2480 if (super->disks) {
14e8215b
DW
2481 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2482
b9f594fe 2483 disk = &super->disks->disk;
14e8215b
DW
2484 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2485 info->component_size = reserved;
25ed7e59 2486 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2487 /* we don't change info->disk.raid_disk here because
2488 * this state will be finalized in mdmon after we have
2489 * found the 'most fresh' version of the metadata
2490 */
25ed7e59
DW
2491 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2492 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2493 }
a575e2a7
DW
2494
2495 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2496 * ->compare_super may have updated the 'num_raid_devs' field for spares
2497 */
2498 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2499 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2500 else
2501 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2502
2503 /* I don't know how to compute 'map' on imsm, so use safe default */
2504 if (map) {
2505 int i;
2506 for (i = 0; i < map_disks; i++)
2507 map[i] = 1;
2508 }
2509
cdddbdbc
DW
2510}
2511
5c4cd5da
AC
2512/* allocates memory and fills disk in mdinfo structure
2513 * for each disk in array */
2514struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2515{
2516 struct mdinfo *mddev = NULL;
2517 struct intel_super *super = st->sb;
2518 struct imsm_disk *disk;
2519 int count = 0;
2520 struct dl *dl;
2521 if (!super || !super->disks)
2522 return NULL;
2523 dl = super->disks;
2524 mddev = malloc(sizeof(*mddev));
2525 if (!mddev) {
2526 fprintf(stderr, Name ": Failed to allocate memory.\n");
2527 return NULL;
2528 }
2529 memset(mddev, 0, sizeof(*mddev));
2530 while (dl) {
2531 struct mdinfo *tmp;
2532 disk = &dl->disk;
2533 tmp = malloc(sizeof(*tmp));
2534 if (!tmp) {
2535 fprintf(stderr, Name ": Failed to allocate memory.\n");
2536 if (mddev)
2537 sysfs_free(mddev);
2538 return NULL;
2539 }
2540 memset(tmp, 0, sizeof(*tmp));
2541 if (mddev->devs)
2542 tmp->next = mddev->devs;
2543 mddev->devs = tmp;
2544 tmp->disk.number = count++;
2545 tmp->disk.major = dl->major;
2546 tmp->disk.minor = dl->minor;
2547 tmp->disk.state = is_configured(disk) ?
2548 (1 << MD_DISK_ACTIVE) : 0;
2549 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2550 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2551 tmp->disk.raid_disk = -1;
2552 dl = dl->next;
2553 }
2554 return mddev;
2555}
2556
cdddbdbc
DW
2557static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2558 char *update, char *devname, int verbose,
2559 int uuid_set, char *homehost)
2560{
f352c545
DW
2561 /* For 'assemble' and 'force' we need to return non-zero if any
2562 * change was made. For others, the return value is ignored.
2563 * Update options are:
2564 * force-one : This device looks a bit old but needs to be included,
2565 * update age info appropriately.
2566 * assemble: clear any 'faulty' flag to allow this device to
2567 * be assembled.
2568 * force-array: Array is degraded but being forced, mark it clean
2569 * if that will be needed to assemble it.
2570 *
2571 * newdev: not used ????
2572 * grow: Array has gained a new device - this is currently for
2573 * linear only
2574 * resync: mark as dirty so a resync will happen.
2575 * name: update the name - preserving the homehost
6e46bf34 2576 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2577 *
2578 * Following are not relevant for this imsm:
2579 * sparc2.2 : update from old dodgey metadata
2580 * super-minor: change the preferred_minor number
2581 * summaries: update redundant counters.
f352c545
DW
2582 * homehost: update the recorded homehost
2583 * _reshape_progress: record new reshape_progress position.
2584 */
6e46bf34
DW
2585 int rv = 1;
2586 struct intel_super *super = st->sb;
2587 struct imsm_super *mpb;
f352c545 2588
6e46bf34
DW
2589 /* we can only update container info */
2590 if (!super || super->current_vol >= 0 || !super->anchor)
2591 return 1;
2592
2593 mpb = super->anchor;
2594
2595 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2596 rv = -1;
6e46bf34
DW
2597 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2598 mpb->orig_family_num = *((__u32 *) info->update_private);
2599 rv = 0;
2600 } else if (strcmp(update, "uuid") == 0) {
2601 __u32 *new_family = malloc(sizeof(*new_family));
2602
2603 /* update orig_family_number with the incoming random
2604 * data, report the new effective uuid, and store the
2605 * new orig_family_num for future updates.
2606 */
2607 if (new_family) {
2608 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2609 uuid_from_super_imsm(st, info->uuid);
2610 *new_family = mpb->orig_family_num;
2611 info->update_private = new_family;
2612 rv = 0;
2613 }
2614 } else if (strcmp(update, "assemble") == 0)
2615 rv = 0;
2616 else
1e2b2765 2617 rv = -1;
f352c545 2618
6e46bf34
DW
2619 /* successful update? recompute checksum */
2620 if (rv == 0)
2621 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2622
2623 return rv;
cdddbdbc
DW
2624}
2625
c2c087e6 2626static size_t disks_to_mpb_size(int disks)
cdddbdbc 2627{
c2c087e6 2628 size_t size;
cdddbdbc 2629
c2c087e6
DW
2630 size = sizeof(struct imsm_super);
2631 size += (disks - 1) * sizeof(struct imsm_disk);
2632 size += 2 * sizeof(struct imsm_dev);
2633 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2634 size += (4 - 2) * sizeof(struct imsm_map);
2635 /* 4 possible disk_ord_tbl's */
2636 size += 4 * (disks - 1) * sizeof(__u32);
2637
2638 return size;
2639}
2640
2641static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2642{
2643 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2644 return 0;
2645
2646 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2647}
2648
ba2de7ba
DW
2649static void free_devlist(struct intel_super *super)
2650{
2651 struct intel_dev *dv;
2652
2653 while (super->devlist) {
2654 dv = super->devlist->next;
2655 free(super->devlist->dev);
2656 free(super->devlist);
2657 super->devlist = dv;
2658 }
2659}
2660
2661static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2662{
2663 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2664}
2665
cdddbdbc
DW
2666static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2667{
2668 /*
2669 * return:
2670 * 0 same, or first was empty, and second was copied
2671 * 1 second had wrong number
2672 * 2 wrong uuid
2673 * 3 wrong other info
2674 */
2675 struct intel_super *first = st->sb;
2676 struct intel_super *sec = tst->sb;
2677
2678 if (!first) {
2679 st->sb = tst->sb;
2680 tst->sb = NULL;
2681 return 0;
2682 }
8603ea6f
LM
2683 /* in platform dependent environment test if the disks
2684 * use the same Intel hba
2685 */
2686 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2687 if (!first->hba || !sec->hba ||
2688 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2689 fprintf(stderr,
2690 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2691 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2692 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2693 return 3;
2694 }
2695 }
cdddbdbc 2696
d23fe947
DW
2697 /* if an anchor does not have num_raid_devs set then it is a free
2698 * floating spare
2699 */
2700 if (first->anchor->num_raid_devs > 0 &&
2701 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2702 /* Determine if these disks might ever have been
2703 * related. Further disambiguation can only take place
2704 * in load_super_imsm_all
2705 */
2706 __u32 first_family = first->anchor->orig_family_num;
2707 __u32 sec_family = sec->anchor->orig_family_num;
2708
f796af5d
DW
2709 if (memcmp(first->anchor->sig, sec->anchor->sig,
2710 MAX_SIGNATURE_LENGTH) != 0)
2711 return 3;
2712
a2b97981
DW
2713 if (first_family == 0)
2714 first_family = first->anchor->family_num;
2715 if (sec_family == 0)
2716 sec_family = sec->anchor->family_num;
2717
2718 if (first_family != sec_family)
d23fe947 2719 return 3;
f796af5d 2720
d23fe947 2721 }
cdddbdbc 2722
f796af5d 2723
3e372e5a
DW
2724 /* if 'first' is a spare promote it to a populated mpb with sec's
2725 * family number
2726 */
2727 if (first->anchor->num_raid_devs == 0 &&
2728 sec->anchor->num_raid_devs > 0) {
78d30f94 2729 int i;
ba2de7ba
DW
2730 struct intel_dev *dv;
2731 struct imsm_dev *dev;
78d30f94
DW
2732
2733 /* we need to copy raid device info from sec if an allocation
2734 * fails here we don't associate the spare
2735 */
2736 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2737 dv = malloc(sizeof(*dv));
2738 if (!dv)
2739 break;
2740 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2741 if (!dev) {
2742 free(dv);
2743 break;
78d30f94 2744 }
ba2de7ba
DW
2745 dv->dev = dev;
2746 dv->index = i;
2747 dv->next = first->devlist;
2748 first->devlist = dv;
78d30f94 2749 }
709743c5 2750 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2751 /* allocation failure */
2752 free_devlist(first);
2753 fprintf(stderr, "imsm: failed to associate spare\n");
2754 return 3;
78d30f94 2755 }
3e372e5a 2756 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2757 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2758 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2759 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2760 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2761 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2762 }
2763
cdddbdbc
DW
2764 return 0;
2765}
2766
0030e8d6
DW
2767static void fd2devname(int fd, char *name)
2768{
2769 struct stat st;
2770 char path[256];
33a6535d 2771 char dname[PATH_MAX];
0030e8d6
DW
2772 char *nm;
2773 int rv;
2774
2775 name[0] = '\0';
2776 if (fstat(fd, &st) != 0)
2777 return;
2778 sprintf(path, "/sys/dev/block/%d:%d",
2779 major(st.st_rdev), minor(st.st_rdev));
2780
2781 rv = readlink(path, dname, sizeof(dname));
2782 if (rv <= 0)
2783 return;
2784
2785 dname[rv] = '\0';
2786 nm = strrchr(dname, '/');
2787 nm++;
2788 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2789}
2790
cdddbdbc
DW
2791extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2792
2793static int imsm_read_serial(int fd, char *devname,
2794 __u8 serial[MAX_RAID_SERIAL_LEN])
2795{
2796 unsigned char scsi_serial[255];
cdddbdbc
DW
2797 int rv;
2798 int rsp_len;
1f24f035 2799 int len;
316e2bf4
DW
2800 char *dest;
2801 char *src;
2802 char *rsp_buf;
2803 int i;
cdddbdbc
DW
2804
2805 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2806
f9ba0ff1
DW
2807 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2808
40ebbb9c 2809 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2810 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2811 fd2devname(fd, (char *) serial);
0030e8d6
DW
2812 return 0;
2813 }
2814
cdddbdbc
DW
2815 if (rv != 0) {
2816 if (devname)
2817 fprintf(stderr,
2818 Name ": Failed to retrieve serial for %s\n",
2819 devname);
2820 return rv;
2821 }
2822
2823 rsp_len = scsi_serial[3];
03cd4cc8
DW
2824 if (!rsp_len) {
2825 if (devname)
2826 fprintf(stderr,
2827 Name ": Failed to retrieve serial for %s\n",
2828 devname);
2829 return 2;
2830 }
1f24f035 2831 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2832
316e2bf4
DW
2833 /* trim all whitespace and non-printable characters and convert
2834 * ':' to ';'
2835 */
2836 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2837 src = &rsp_buf[i];
2838 if (*src > 0x20) {
2839 /* ':' is reserved for use in placeholder serial
2840 * numbers for missing disks
2841 */
2842 if (*src == ':')
2843 *dest++ = ';';
2844 else
2845 *dest++ = *src;
2846 }
2847 }
2848 len = dest - rsp_buf;
2849 dest = rsp_buf;
2850
2851 /* truncate leading characters */
2852 if (len > MAX_RAID_SERIAL_LEN) {
2853 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2854 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2855 }
5c3db629 2856
5c3db629 2857 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2858 memcpy(serial, dest, len);
cdddbdbc
DW
2859
2860 return 0;
2861}
2862
1f24f035
DW
2863static int serialcmp(__u8 *s1, __u8 *s2)
2864{
2865 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2866}
2867
2868static void serialcpy(__u8 *dest, __u8 *src)
2869{
2870 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2871}
2872
1799c9e8 2873#ifndef MDASSEMBLE
54c2c1ea
DW
2874static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2875{
2876 struct dl *dl;
2877
2878 for (dl = super->disks; dl; dl = dl->next)
2879 if (serialcmp(dl->serial, serial) == 0)
2880 break;
2881
2882 return dl;
2883}
1799c9e8 2884#endif
54c2c1ea 2885
a2b97981
DW
2886static struct imsm_disk *
2887__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2888{
2889 int i;
2890
2891 for (i = 0; i < mpb->num_disks; i++) {
2892 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2893
2894 if (serialcmp(disk->serial, serial) == 0) {
2895 if (idx)
2896 *idx = i;
2897 return disk;
2898 }
2899 }
2900
2901 return NULL;
2902}
2903
cdddbdbc
DW
2904static int
2905load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2906{
a2b97981 2907 struct imsm_disk *disk;
cdddbdbc
DW
2908 struct dl *dl;
2909 struct stat stb;
cdddbdbc 2910 int rv;
a2b97981 2911 char name[40];
d23fe947
DW
2912 __u8 serial[MAX_RAID_SERIAL_LEN];
2913
2914 rv = imsm_read_serial(fd, devname, serial);
2915
2916 if (rv != 0)
2917 return 2;
2918
a2b97981 2919 dl = calloc(1, sizeof(*dl));
b9f594fe 2920 if (!dl) {
cdddbdbc
DW
2921 if (devname)
2922 fprintf(stderr,
2923 Name ": failed to allocate disk buffer for %s\n",
2924 devname);
2925 return 2;
2926 }
cdddbdbc 2927
a2b97981
DW
2928 fstat(fd, &stb);
2929 dl->major = major(stb.st_rdev);
2930 dl->minor = minor(stb.st_rdev);
2931 dl->next = super->disks;
2932 dl->fd = keep_fd ? fd : -1;
2933 assert(super->disks == NULL);
2934 super->disks = dl;
2935 serialcpy(dl->serial, serial);
2936 dl->index = -2;
2937 dl->e = NULL;
2938 fd2devname(fd, name);
2939 if (devname)
2940 dl->devname = strdup(devname);
2941 else
2942 dl->devname = strdup(name);
cdddbdbc 2943
d23fe947 2944 /* look up this disk's index in the current anchor */
a2b97981
DW
2945 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2946 if (disk) {
2947 dl->disk = *disk;
2948 /* only set index on disks that are a member of a
2949 * populated contianer, i.e. one with raid_devs
2950 */
2951 if (is_failed(&dl->disk))
3f6efecc 2952 dl->index = -2;
a2b97981
DW
2953 else if (is_spare(&dl->disk))
2954 dl->index = -1;
3f6efecc
DW
2955 }
2956
949c47a0
DW
2957 return 0;
2958}
2959
0e600426 2960#ifndef MDASSEMBLE
0c046afd
DW
2961/* When migrating map0 contains the 'destination' state while map1
2962 * contains the current state. When not migrating map0 contains the
2963 * current state. This routine assumes that map[0].map_state is set to
2964 * the current array state before being called.
2965 *
2966 * Migration is indicated by one of the following states
2967 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 2968 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 2969 * map1state=unitialized)
1484e727 2970 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 2971 * map1state=normal)
e3bba0e0 2972 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 2973 * map1state=degraded)
8e59f3d8
AK
2974 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
2975 * map1state=normal)
0c046afd 2976 */
8e59f3d8
AK
2977static void migrate(struct imsm_dev *dev, struct intel_super *super,
2978 __u8 to_state, int migr_type)
3393c6af 2979{
0c046afd 2980 struct imsm_map *dest;
3393c6af
DW
2981 struct imsm_map *src = get_imsm_map(dev, 0);
2982
0c046afd 2983 dev->vol.migr_state = 1;
1484e727 2984 set_migr_type(dev, migr_type);
f8f603f1 2985 dev->vol.curr_migr_unit = 0;
0c046afd
DW
2986 dest = get_imsm_map(dev, 1);
2987
0556e1a2 2988 /* duplicate and then set the target end state in map[0] */
3393c6af 2989 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
2990 if ((migr_type == MIGR_REBUILD) ||
2991 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
2992 __u32 ord;
2993 int i;
2994
2995 for (i = 0; i < src->num_members; i++) {
2996 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2997 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2998 }
2999 }
3000
8e59f3d8
AK
3001 if (migr_type == MIGR_GEN_MIGR)
3002 /* Clear migration record */
3003 memset(super->migr_rec, 0, sizeof(struct migr_record));
3004
0c046afd 3005 src->map_state = to_state;
949c47a0 3006}
f8f603f1
DW
3007
3008static void end_migration(struct imsm_dev *dev, __u8 map_state)
3009{
3010 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 3011 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 3012 int i, j;
0556e1a2
DW
3013
3014 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3015 * completed in the last migration.
3016 *
28bce06f 3017 * FIXME add support for raid-level-migration
0556e1a2
DW
3018 */
3019 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
3020 for (j = 0; j < map->num_members; j++)
3021 /* during online capacity expansion
3022 * disks position can be changed if takeover is used
3023 */
3024 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3025 ord_to_idx(prev->disk_ord_tbl[i])) {
3026 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3027 break;
3028 }
f8f603f1
DW
3029
3030 dev->vol.migr_state = 0;
28bce06f 3031 dev->vol.migr_type = 0;
f8f603f1
DW
3032 dev->vol.curr_migr_unit = 0;
3033 map->map_state = map_state;
3034}
0e600426 3035#endif
949c47a0
DW
3036
3037static int parse_raid_devices(struct intel_super *super)
3038{
3039 int i;
3040 struct imsm_dev *dev_new;
4d7b1503 3041 size_t len, len_migr;
401d313b 3042 size_t max_len = 0;
4d7b1503
DW
3043 size_t space_needed = 0;
3044 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3045
3046 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3047 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3048 struct intel_dev *dv;
949c47a0 3049
4d7b1503
DW
3050 len = sizeof_imsm_dev(dev_iter, 0);
3051 len_migr = sizeof_imsm_dev(dev_iter, 1);
3052 if (len_migr > len)
3053 space_needed += len_migr - len;
3054
ba2de7ba
DW
3055 dv = malloc(sizeof(*dv));
3056 if (!dv)
3057 return 1;
401d313b
AK
3058 if (max_len < len_migr)
3059 max_len = len_migr;
3060 if (max_len > len_migr)
3061 space_needed += max_len - len_migr;
3062 dev_new = malloc(max_len);
ba2de7ba
DW
3063 if (!dev_new) {
3064 free(dv);
949c47a0 3065 return 1;
ba2de7ba 3066 }
949c47a0 3067 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3068 dv->dev = dev_new;
3069 dv->index = i;
3070 dv->next = super->devlist;
3071 super->devlist = dv;
949c47a0 3072 }
cdddbdbc 3073
4d7b1503
DW
3074 /* ensure that super->buf is large enough when all raid devices
3075 * are migrating
3076 */
3077 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3078 void *buf;
3079
3080 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3081 if (posix_memalign(&buf, 512, len) != 0)
3082 return 1;
3083
1f45a8ad
DW
3084 memcpy(buf, super->buf, super->len);
3085 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3086 free(super->buf);
3087 super->buf = buf;
3088 super->len = len;
3089 }
3090
cdddbdbc
DW
3091 return 0;
3092}
3093
604b746f
JD
3094/* retrieve a pointer to the bbm log which starts after all raid devices */
3095struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3096{
3097 void *ptr = NULL;
3098
3099 if (__le32_to_cpu(mpb->bbm_log_size)) {
3100 ptr = mpb;
3101 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3102 }
3103
3104 return ptr;
3105}
3106
e2f41b2c
AK
3107/*******************************************************************************
3108 * Function: check_mpb_migr_compatibility
3109 * Description: Function checks for unsupported migration features:
3110 * - migration optimization area (pba_of_lba0)
3111 * - descending reshape (ascending_migr)
3112 * Parameters:
3113 * super : imsm metadata information
3114 * Returns:
3115 * 0 : migration is compatible
3116 * -1 : migration is not compatible
3117 ******************************************************************************/
3118int check_mpb_migr_compatibility(struct intel_super *super)
3119{
3120 struct imsm_map *map0, *map1;
3121 struct migr_record *migr_rec = super->migr_rec;
3122 int i;
3123
3124 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3125 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3126
3127 if (dev_iter &&
3128 dev_iter->vol.migr_state == 1 &&
3129 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3130 /* This device is migrating */
3131 map0 = get_imsm_map(dev_iter, 0);
3132 map1 = get_imsm_map(dev_iter, 1);
3133 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3134 /* migration optimization area was used */
3135 return -1;
3136 if (migr_rec->ascending_migr == 0
3137 && migr_rec->dest_depth_per_unit > 0)
3138 /* descending reshape not supported yet */
3139 return -1;
3140 }
3141 }
3142 return 0;
3143}
3144
d23fe947 3145static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3146
cdddbdbc 3147/* load_imsm_mpb - read matrix metadata
f2f5c343 3148 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3149 */
3150static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3151{
3152 unsigned long long dsize;
cdddbdbc
DW
3153 unsigned long long sectors;
3154 struct stat;
6416d527 3155 struct imsm_super *anchor;
cdddbdbc
DW
3156 __u32 check_sum;
3157
cdddbdbc 3158 get_dev_size(fd, NULL, &dsize);
64436f06
N
3159 if (dsize < 1024) {
3160 if (devname)
3161 fprintf(stderr,
3162 Name ": %s: device to small for imsm\n",
3163 devname);
3164 return 1;
3165 }
cdddbdbc
DW
3166
3167 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3168 if (devname)
2e062e82
AK
3169 fprintf(stderr, Name
3170 ": Cannot seek to anchor block on %s: %s\n",
cdddbdbc
DW
3171 devname, strerror(errno));
3172 return 1;
3173 }
3174
949c47a0 3175 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3176 if (devname)
3177 fprintf(stderr,
3178 Name ": Failed to allocate imsm anchor buffer"
3179 " on %s\n", devname);
3180 return 1;
3181 }
949c47a0 3182 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3183 if (devname)
3184 fprintf(stderr,
3185 Name ": Cannot read anchor block on %s: %s\n",
3186 devname, strerror(errno));
6416d527 3187 free(anchor);
cdddbdbc
DW
3188 return 1;
3189 }
3190
6416d527 3191 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3192 if (devname)
3193 fprintf(stderr,
3194 Name ": no IMSM anchor on %s\n", devname);
6416d527 3195 free(anchor);
cdddbdbc
DW
3196 return 2;
3197 }
3198
d23fe947 3199 __free_imsm(super, 0);
f2f5c343
LM
3200 /* reload capability and hba */
3201
3202 /* capability and hba must be updated with new super allocation */
d424212e 3203 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3204 super->len = ROUND_UP(anchor->mpb_size, 512);
3205 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3206 if (devname)
3207 fprintf(stderr,
3208 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3209 super->len);
6416d527 3210 free(anchor);
cdddbdbc
DW
3211 return 2;
3212 }
949c47a0 3213 memcpy(super->buf, anchor, 512);
cdddbdbc 3214
6416d527
NB
3215 sectors = mpb_sectors(anchor) - 1;
3216 free(anchor);
8e59f3d8
AK
3217
3218 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3219 fprintf(stderr, Name
3220 ": %s could not allocate migr_rec buffer\n", __func__);
3221 free(super->buf);
3222 return 2;
3223 }
3224
949c47a0 3225 if (!sectors) {
ecf45690
DW
3226 check_sum = __gen_imsm_checksum(super->anchor);
3227 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3228 if (devname)
3229 fprintf(stderr,
3230 Name ": IMSM checksum %x != %x on %s\n",
3231 check_sum,
3232 __le32_to_cpu(super->anchor->check_sum),
3233 devname);
3234 return 2;
3235 }
3236
a2b97981 3237 return 0;
949c47a0 3238 }
cdddbdbc
DW
3239
3240 /* read the extended mpb */
3241 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3242 if (devname)
3243 fprintf(stderr,
3244 Name ": Cannot seek to extended mpb on %s: %s\n",
3245 devname, strerror(errno));
3246 return 1;
3247 }
3248
f21e18ca 3249 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3250 if (devname)
3251 fprintf(stderr,
3252 Name ": Cannot read extended mpb on %s: %s\n",
3253 devname, strerror(errno));
3254 return 2;
3255 }
3256
949c47a0
DW
3257 check_sum = __gen_imsm_checksum(super->anchor);
3258 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3259 if (devname)
3260 fprintf(stderr,
3261 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3262 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3263 devname);
db575f3b 3264 return 3;
cdddbdbc
DW
3265 }
3266
604b746f
JD
3267 /* FIXME the BBM log is disk specific so we cannot use this global
3268 * buffer for all disks. Ok for now since we only look at the global
3269 * bbm_log_size parameter to gate assembly
3270 */
3271 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3272
a2b97981
DW
3273 return 0;
3274}
3275
8e59f3d8
AK
3276static int read_imsm_migr_rec(int fd, struct intel_super *super);
3277
a2b97981
DW
3278static int
3279load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3280{
3281 int err;
3282
3283 err = load_imsm_mpb(fd, super, devname);
3284 if (err)
3285 return err;
3286 err = load_imsm_disk(fd, super, devname, keep_fd);
3287 if (err)
3288 return err;
3289 err = parse_raid_devices(super);
4d7b1503 3290
a2b97981 3291 return err;
cdddbdbc
DW
3292}
3293
ae6aad82
DW
3294static void __free_imsm_disk(struct dl *d)
3295{
3296 if (d->fd >= 0)
3297 close(d->fd);
3298 if (d->devname)
3299 free(d->devname);
0dcecb2e
DW
3300 if (d->e)
3301 free(d->e);
ae6aad82
DW
3302 free(d);
3303
3304}
1a64be56 3305
cdddbdbc
DW
3306static void free_imsm_disks(struct intel_super *super)
3307{
47ee5a45 3308 struct dl *d;
cdddbdbc 3309
47ee5a45
DW
3310 while (super->disks) {
3311 d = super->disks;
cdddbdbc 3312 super->disks = d->next;
ae6aad82 3313 __free_imsm_disk(d);
cdddbdbc 3314 }
cb82edca
AK
3315 while (super->disk_mgmt_list) {
3316 d = super->disk_mgmt_list;
3317 super->disk_mgmt_list = d->next;
3318 __free_imsm_disk(d);
3319 }
47ee5a45
DW
3320 while (super->missing) {
3321 d = super->missing;
3322 super->missing = d->next;
3323 __free_imsm_disk(d);
3324 }
3325
cdddbdbc
DW
3326}
3327
9ca2c81c 3328/* free all the pieces hanging off of a super pointer */
d23fe947 3329static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3330{
88654014
LM
3331 struct intel_hba *elem, *next;
3332
9ca2c81c 3333 if (super->buf) {
949c47a0 3334 free(super->buf);
9ca2c81c
DW
3335 super->buf = NULL;
3336 }
f2f5c343
LM
3337 /* unlink capability description */
3338 super->orom = NULL;
8e59f3d8
AK
3339 if (super->migr_rec_buf) {
3340 free(super->migr_rec_buf);
3341 super->migr_rec_buf = NULL;
3342 }
d23fe947
DW
3343 if (free_disks)
3344 free_imsm_disks(super);
ba2de7ba 3345 free_devlist(super);
88654014
LM
3346 elem = super->hba;
3347 while (elem) {
3348 if (elem->path)
3349 free((void *)elem->path);
3350 next = elem->next;
3351 free(elem);
3352 elem = next;
88c32bb1 3353 }
88654014 3354 super->hba = NULL;
cdddbdbc
DW
3355}
3356
9ca2c81c
DW
3357static void free_imsm(struct intel_super *super)
3358{
d23fe947 3359 __free_imsm(super, 1);
9ca2c81c
DW
3360 free(super);
3361}
cdddbdbc
DW
3362
3363static void free_super_imsm(struct supertype *st)
3364{
3365 struct intel_super *super = st->sb;
3366
3367 if (!super)
3368 return;
3369
3370 free_imsm(super);
3371 st->sb = NULL;
3372}
3373
49133e57 3374static struct intel_super *alloc_super(void)
c2c087e6
DW
3375{
3376 struct intel_super *super = malloc(sizeof(*super));
3377
3378 if (super) {
3379 memset(super, 0, sizeof(*super));
bf5a934a 3380 super->current_vol = -1;
0dcecb2e 3381 super->create_offset = ~((__u32 ) 0);
c2c087e6 3382 }
c2c087e6
DW
3383 return super;
3384}
3385
f0f5a016
LM
3386/*
3387 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3388 */
d424212e 3389static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3390{
3391 struct sys_dev *hba_name;
3392 int rv = 0;
3393
3394 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3395 super->orom = NULL;
f0f5a016
LM
3396 super->hba = NULL;
3397 return 0;
3398 }
3399 hba_name = find_disk_attached_hba(fd, NULL);
3400 if (!hba_name) {
d424212e 3401 if (devname)
f0f5a016
LM
3402 fprintf(stderr,
3403 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3404 devname);
f0f5a016
LM
3405 return 1;
3406 }
3407 rv = attach_hba_to_super(super, hba_name);
3408 if (rv == 2) {
d424212e
N
3409 if (devname) {
3410 struct intel_hba *hba = super->hba;
f0f5a016 3411
f0f5a016
LM
3412 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3413 "controller (%s),\n"
3414 " but the container is assigned to Intel(R) "
3415 "%s RAID controller (",
d424212e 3416 devname,
f0f5a016
LM
3417 hba_name->path,
3418 hba_name->pci_id ? : "Err!",
3419 get_sys_dev_type(hba_name->type));
3420
f0f5a016
LM
3421 while (hba) {
3422 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3423 if (hba->next)
3424 fprintf(stderr, ", ");
3425 hba = hba->next;
3426 }
3427
3428 fprintf(stderr, ").\n"
3429 " Mixing devices attached to different controllers "
3430 "is not allowed.\n");
3431 }
3432 free_sys_dev(&hba_name);
3433 return 2;
3434 }
f2f5c343 3435 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3436 free_sys_dev(&hba_name);
f2f5c343
LM
3437 if (!super->orom)
3438 return 3;
f0f5a016
LM
3439 return 0;
3440}
3441
cdddbdbc 3442#ifndef MDASSEMBLE
47ee5a45
DW
3443/* find_missing - helper routine for load_super_imsm_all that identifies
3444 * disks that have disappeared from the system. This routine relies on
3445 * the mpb being uptodate, which it is at load time.
3446 */
3447static int find_missing(struct intel_super *super)
3448{
3449 int i;
3450 struct imsm_super *mpb = super->anchor;
3451 struct dl *dl;
3452 struct imsm_disk *disk;
47ee5a45
DW
3453
3454 for (i = 0; i < mpb->num_disks; i++) {
3455 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3456 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3457 if (dl)
3458 continue;
47ee5a45
DW
3459
3460 dl = malloc(sizeof(*dl));
3461 if (!dl)
3462 return 1;
3463 dl->major = 0;
3464 dl->minor = 0;
3465 dl->fd = -1;
3466 dl->devname = strdup("missing");
3467 dl->index = i;
3468 serialcpy(dl->serial, disk->serial);
3469 dl->disk = *disk;
689c9bf3 3470 dl->e = NULL;
47ee5a45
DW
3471 dl->next = super->missing;
3472 super->missing = dl;
3473 }
3474
3475 return 0;
3476}
3477
a2b97981
DW
3478static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3479{
3480 struct intel_disk *idisk = disk_list;
3481
3482 while (idisk) {
3483 if (serialcmp(idisk->disk.serial, serial) == 0)
3484 break;
3485 idisk = idisk->next;
3486 }
3487
3488 return idisk;
3489}
3490
3491static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3492 struct intel_super *super,
3493 struct intel_disk **disk_list)
3494{
3495 struct imsm_disk *d = &super->disks->disk;
3496 struct imsm_super *mpb = super->anchor;
3497 int i, j;
3498
3499 for (i = 0; i < tbl_size; i++) {
3500 struct imsm_super *tbl_mpb = table[i]->anchor;
3501 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3502
3503 if (tbl_mpb->family_num == mpb->family_num) {
3504 if (tbl_mpb->check_sum == mpb->check_sum) {
3505 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3506 __func__, super->disks->major,
3507 super->disks->minor,
3508 table[i]->disks->major,
3509 table[i]->disks->minor);
3510 break;
3511 }
3512
3513 if (((is_configured(d) && !is_configured(tbl_d)) ||
3514 is_configured(d) == is_configured(tbl_d)) &&
3515 tbl_mpb->generation_num < mpb->generation_num) {
3516 /* current version of the mpb is a
3517 * better candidate than the one in
3518 * super_table, but copy over "cross
3519 * generational" status
3520 */
3521 struct intel_disk *idisk;
3522
3523 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3524 __func__, super->disks->major,
3525 super->disks->minor,
3526 table[i]->disks->major,
3527 table[i]->disks->minor);
3528
3529 idisk = disk_list_get(tbl_d->serial, *disk_list);
3530 if (idisk && is_failed(&idisk->disk))
3531 tbl_d->status |= FAILED_DISK;
3532 break;
3533 } else {
3534 struct intel_disk *idisk;
3535 struct imsm_disk *disk;
3536
3537 /* tbl_mpb is more up to date, but copy
3538 * over cross generational status before
3539 * returning
3540 */
3541 disk = __serial_to_disk(d->serial, mpb, NULL);
3542 if (disk && is_failed(disk))
3543 d->status |= FAILED_DISK;
3544
3545 idisk = disk_list_get(d->serial, *disk_list);
3546 if (idisk) {
3547 idisk->owner = i;
3548 if (disk && is_configured(disk))
3549 idisk->disk.status |= CONFIGURED_DISK;
3550 }
3551
3552 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3553 __func__, super->disks->major,
3554 super->disks->minor,
3555 table[i]->disks->major,
3556 table[i]->disks->minor);
3557
3558 return tbl_size;
3559 }
3560 }
3561 }
3562
3563 if (i >= tbl_size)
3564 table[tbl_size++] = super;
3565 else
3566 table[i] = super;
3567
3568 /* update/extend the merged list of imsm_disk records */
3569 for (j = 0; j < mpb->num_disks; j++) {
3570 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3571 struct intel_disk *idisk;
3572
3573 idisk = disk_list_get(disk->serial, *disk_list);
3574 if (idisk) {
3575 idisk->disk.status |= disk->status;
3576 if (is_configured(&idisk->disk) ||
3577 is_failed(&idisk->disk))
3578 idisk->disk.status &= ~(SPARE_DISK);
3579 } else {
3580 idisk = calloc(1, sizeof(*idisk));
3581 if (!idisk)
3582 return -1;
3583 idisk->owner = IMSM_UNKNOWN_OWNER;
3584 idisk->disk = *disk;
3585 idisk->next = *disk_list;
3586 *disk_list = idisk;
3587 }
3588
3589 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3590 idisk->owner = i;
3591 }
3592
3593 return tbl_size;
3594}
3595
3596static struct intel_super *
3597validate_members(struct intel_super *super, struct intel_disk *disk_list,
3598 const int owner)
3599{
3600 struct imsm_super *mpb = super->anchor;
3601 int ok_count = 0;
3602 int i;
3603
3604 for (i = 0; i < mpb->num_disks; i++) {
3605 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3606 struct intel_disk *idisk;
3607
3608 idisk = disk_list_get(disk->serial, disk_list);
3609 if (idisk) {
3610 if (idisk->owner == owner ||
3611 idisk->owner == IMSM_UNKNOWN_OWNER)
3612 ok_count++;
3613 else
3614 dprintf("%s: '%.16s' owner %d != %d\n",
3615 __func__, disk->serial, idisk->owner,
3616 owner);
3617 } else {
3618 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3619 __func__, __le32_to_cpu(mpb->family_num), i,
3620 disk->serial);
3621 break;
3622 }
3623 }
3624
3625 if (ok_count == mpb->num_disks)
3626 return super;
3627 return NULL;
3628}
3629
3630static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3631{
3632 struct intel_super *s;
3633
3634 for (s = super_list; s; s = s->next) {
3635 if (family_num != s->anchor->family_num)
3636 continue;
3637 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3638 __le32_to_cpu(family_num), s->disks->devname);
3639 }
3640}
3641
3642static struct intel_super *
3643imsm_thunderdome(struct intel_super **super_list, int len)
3644{
3645 struct intel_super *super_table[len];
3646 struct intel_disk *disk_list = NULL;
3647 struct intel_super *champion, *spare;
3648 struct intel_super *s, **del;
3649 int tbl_size = 0;
3650 int conflict;
3651 int i;
3652
3653 memset(super_table, 0, sizeof(super_table));
3654 for (s = *super_list; s; s = s->next)
3655 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3656
3657 for (i = 0; i < tbl_size; i++) {
3658 struct imsm_disk *d;
3659 struct intel_disk *idisk;
3660 struct imsm_super *mpb = super_table[i]->anchor;
3661
3662 s = super_table[i];
3663 d = &s->disks->disk;
3664
3665 /* 'd' must appear in merged disk list for its
3666 * configuration to be valid
3667 */
3668 idisk = disk_list_get(d->serial, disk_list);
3669 if (idisk && idisk->owner == i)
3670 s = validate_members(s, disk_list, i);
3671 else
3672 s = NULL;
3673
3674 if (!s)
3675 dprintf("%s: marking family: %#x from %d:%d offline\n",
3676 __func__, mpb->family_num,
3677 super_table[i]->disks->major,
3678 super_table[i]->disks->minor);
3679 super_table[i] = s;
3680 }
3681
3682 /* This is where the mdadm implementation differs from the Windows
3683 * driver which has no strict concept of a container. We can only
3684 * assemble one family from a container, so when returning a prodigal
3685 * array member to this system the code will not be able to disambiguate
3686 * the container contents that should be assembled ("foreign" versus
3687 * "local"). It requires user intervention to set the orig_family_num
3688 * to a new value to establish a new container. The Windows driver in
3689 * this situation fixes up the volume name in place and manages the
3690 * foreign array as an independent entity.
3691 */
3692 s = NULL;
3693 spare = NULL;
3694 conflict = 0;
3695 for (i = 0; i < tbl_size; i++) {
3696 struct intel_super *tbl_ent = super_table[i];
3697 int is_spare = 0;
3698
3699 if (!tbl_ent)
3700 continue;
3701
3702 if (tbl_ent->anchor->num_raid_devs == 0) {
3703 spare = tbl_ent;
3704 is_spare = 1;
3705 }
3706
3707 if (s && !is_spare) {
3708 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3709 conflict++;
3710 } else if (!s && !is_spare)
3711 s = tbl_ent;
3712 }
3713
3714 if (!s)
3715 s = spare;
3716 if (!s) {
3717 champion = NULL;
3718 goto out;
3719 }
3720 champion = s;
3721
3722 if (conflict)
3723 fprintf(stderr, "Chose family %#x on '%s', "
3724 "assemble conflicts to new container with '--update=uuid'\n",
3725 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3726
3727 /* collect all dl's onto 'champion', and update them to
3728 * champion's version of the status
3729 */
3730 for (s = *super_list; s; s = s->next) {
3731 struct imsm_super *mpb = champion->anchor;
3732 struct dl *dl = s->disks;
3733
3734 if (s == champion)
3735 continue;
3736
3737 for (i = 0; i < mpb->num_disks; i++) {
3738 struct imsm_disk *disk;
3739
3740 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3741 if (disk) {
3742 dl->disk = *disk;
3743 /* only set index on disks that are a member of
3744 * a populated contianer, i.e. one with
3745 * raid_devs
3746 */
3747 if (is_failed(&dl->disk))
3748 dl->index = -2;
3749 else if (is_spare(&dl->disk))
3750 dl->index = -1;
3751 break;
3752 }
3753 }
3754
3755 if (i >= mpb->num_disks) {
3756 struct intel_disk *idisk;
3757
3758 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3759 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3760 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3761 dl->index = -1;
3762 else {
3763 dl->index = -2;
3764 continue;
3765 }
3766 }
3767
3768 dl->next = champion->disks;
3769 champion->disks = dl;
3770 s->disks = NULL;
3771 }
3772
3773 /* delete 'champion' from super_list */
3774 for (del = super_list; *del; ) {
3775 if (*del == champion) {
3776 *del = (*del)->next;
3777 break;
3778 } else
3779 del = &(*del)->next;
3780 }
3781 champion->next = NULL;
3782
3783 out:
3784 while (disk_list) {
3785 struct intel_disk *idisk = disk_list;
3786
3787 disk_list = disk_list->next;
3788 free(idisk);
3789 }
3790
3791 return champion;
3792}
3793
cdddbdbc 3794static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3795 char *devname)
cdddbdbc
DW
3796{
3797 struct mdinfo *sra;
a2b97981
DW
3798 struct intel_super *super_list = NULL;
3799 struct intel_super *super = NULL;
db575f3b 3800 int devnum = fd2devnum(fd);
a2b97981 3801 struct mdinfo *sd;
db575f3b 3802 int retry;
a2b97981
DW
3803 int err = 0;
3804 int i;
dab4a513
DW
3805
3806 /* check if 'fd' an opened container */
b526e52d 3807 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3808 if (!sra)
3809 return 1;
3810
3811 if (sra->array.major_version != -1 ||
3812 sra->array.minor_version != -2 ||
1602d52c
AW
3813 strcmp(sra->text_version, "imsm") != 0) {
3814 err = 1;
3815 goto error;
3816 }
a2b97981
DW
3817 /* load all mpbs */
3818 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3819 struct intel_super *s = alloc_super();
7a6ecd55 3820 char nm[32];
a2b97981 3821 int dfd;
f2f5c343 3822 int rv;
a2b97981
DW
3823
3824 err = 1;
3825 if (!s)
3826 goto error;
3827 s->next = super_list;
3828 super_list = s;
cdddbdbc 3829
a2b97981 3830 err = 2;
cdddbdbc 3831 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3832 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3833 if (dfd < 0)
3834 goto error;
3835
d424212e 3836 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3837 /* no orom/efi or non-intel hba of the disk */
3838 if (rv != 0)
3839 goto error;
3840
e1902a7b 3841 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3842
3843 /* retry the load if we might have raced against mdmon */
a2b97981 3844 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3845 for (retry = 0; retry < 3; retry++) {
3846 usleep(3000);
e1902a7b 3847 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3848 if (err != 3)
db575f3b
DW
3849 break;
3850 }
a2b97981
DW
3851 if (err)
3852 goto error;
cdddbdbc
DW
3853 }
3854
a2b97981
DW
3855 /* all mpbs enter, maybe one leaves */
3856 super = imsm_thunderdome(&super_list, i);
3857 if (!super) {
3858 err = 1;
3859 goto error;
cdddbdbc
DW
3860 }
3861
47ee5a45
DW
3862 if (find_missing(super) != 0) {
3863 free_imsm(super);
a2b97981
DW
3864 err = 2;
3865 goto error;
47ee5a45 3866 }
8e59f3d8
AK
3867
3868 /* load migration record */
3869 err = load_imsm_migr_rec(super, NULL);
3870 if (err) {
3871 err = 4;
3872 goto error;
3873 }
e2f41b2c
AK
3874
3875 /* Check migration compatibility */
3876 if (check_mpb_migr_compatibility(super) != 0) {
3877 fprintf(stderr, Name ": Unsupported migration detected");
3878 if (devname)
3879 fprintf(stderr, " on %s\n", devname);
3880 else
3881 fprintf(stderr, " (IMSM).\n");
3882
3883 err = 5;
3884 goto error;
3885 }
3886
a2b97981
DW
3887 err = 0;
3888
3889 error:
3890 while (super_list) {
3891 struct intel_super *s = super_list;
3892
3893 super_list = super_list->next;
3894 free_imsm(s);
3895 }
1602d52c 3896 sysfs_free(sra);
a2b97981
DW
3897
3898 if (err)
3899 return err;
f7e7067b 3900
cdddbdbc 3901 *sbp = super;
db575f3b 3902 st->container_dev = devnum;
a2b97981 3903 if (err == 0 && st->ss == NULL) {
bf5a934a 3904 st->ss = &super_imsm;
cdddbdbc
DW
3905 st->minor_version = 0;
3906 st->max_devs = IMSM_MAX_DEVICES;
3907 }
cdddbdbc
DW
3908 return 0;
3909}
2b959fbf
N
3910
3911static int load_container_imsm(struct supertype *st, int fd, char *devname)
3912{
3913 return load_super_imsm_all(st, fd, &st->sb, devname);
3914}
cdddbdbc
DW
3915#endif
3916
3917static int load_super_imsm(struct supertype *st, int fd, char *devname)
3918{
3919 struct intel_super *super;
3920 int rv;
3921
691c6ee1
N
3922 if (test_partition(fd))
3923 /* IMSM not allowed on partitions */
3924 return 1;
3925
37424f13
DW
3926 free_super_imsm(st);
3927
49133e57 3928 super = alloc_super();
cdddbdbc
DW
3929 if (!super) {
3930 fprintf(stderr,
3931 Name ": malloc of %zu failed.\n",
3932 sizeof(*super));
3933 return 1;
3934 }
ea2bc72b
LM
3935 /* Load hba and capabilities if they exist.
3936 * But do not preclude loading metadata in case capabilities or hba are
3937 * non-compliant and ignore_hw_compat is set.
3938 */
d424212e 3939 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 3940 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 3941 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
3942 if (devname)
3943 fprintf(stderr,
3944 Name ": No OROM/EFI properties for %s\n", devname);
3945 free_imsm(super);
3946 return 2;
3947 }
a2b97981 3948 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
3949
3950 if (rv) {
3951 if (devname)
3952 fprintf(stderr,
3953 Name ": Failed to load all information "
3954 "sections on %s\n", devname);
3955 free_imsm(super);
3956 return rv;
3957 }
3958
3959 st->sb = super;
3960 if (st->ss == NULL) {
3961 st->ss = &super_imsm;
3962 st->minor_version = 0;
3963 st->max_devs = IMSM_MAX_DEVICES;
3964 }
8e59f3d8
AK
3965
3966 /* load migration record */
2e062e82
AK
3967 if (load_imsm_migr_rec(super, NULL) == 0) {
3968 /* Check for unsupported migration features */
3969 if (check_mpb_migr_compatibility(super) != 0) {
3970 fprintf(stderr,
3971 Name ": Unsupported migration detected");
3972 if (devname)
3973 fprintf(stderr, " on %s\n", devname);
3974 else
3975 fprintf(stderr, " (IMSM).\n");
3976 return 3;
3977 }
e2f41b2c
AK
3978 }
3979
cdddbdbc
DW
3980 return 0;
3981}
3982
ef6ffade
DW
3983static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3984{
3985 if (info->level == 1)
3986 return 128;
3987 return info->chunk_size >> 9;
3988}
3989
ff596308 3990static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
3991{
3992 __u32 num_stripes;
3993
3994 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 3995 num_stripes /= num_domains;
ef6ffade
DW
3996
3997 return num_stripes;
3998}
3999
fcfd9599
DW
4000static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4001{
4025c288
DW
4002 if (info->level == 1)
4003 return info->size * 2;
4004 else
4005 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4006}
4007
4d1313e9
DW
4008static void imsm_update_version_info(struct intel_super *super)
4009{
4010 /* update the version and attributes */
4011 struct imsm_super *mpb = super->anchor;
4012 char *version;
4013 struct imsm_dev *dev;
4014 struct imsm_map *map;
4015 int i;
4016
4017 for (i = 0; i < mpb->num_raid_devs; i++) {
4018 dev = get_imsm_dev(super, i);
4019 map = get_imsm_map(dev, 0);
4020 if (__le32_to_cpu(dev->size_high) > 0)
4021 mpb->attributes |= MPB_ATTRIB_2TB;
4022
4023 /* FIXME detect when an array spans a port multiplier */
4024 #if 0
4025 mpb->attributes |= MPB_ATTRIB_PM;
4026 #endif
4027
4028 if (mpb->num_raid_devs > 1 ||
4029 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4030 version = MPB_VERSION_ATTRIBS;
4031 switch (get_imsm_raid_level(map)) {
4032 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4033 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4034 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4035 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4036 }
4037 } else {
4038 if (map->num_members >= 5)
4039 version = MPB_VERSION_5OR6_DISK_ARRAY;
4040 else if (dev->status == DEV_CLONE_N_GO)
4041 version = MPB_VERSION_CNG;
4042 else if (get_imsm_raid_level(map) == 5)
4043 version = MPB_VERSION_RAID5;
4044 else if (map->num_members >= 3)
4045 version = MPB_VERSION_3OR4_DISK_ARRAY;
4046 else if (get_imsm_raid_level(map) == 1)
4047 version = MPB_VERSION_RAID1;
4048 else
4049 version = MPB_VERSION_RAID0;
4050 }
4051 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4052 }
4053}
4054
aa534678
DW
4055static int check_name(struct intel_super *super, char *name, int quiet)
4056{
4057 struct imsm_super *mpb = super->anchor;
4058 char *reason = NULL;
4059 int i;
4060
4061 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4062 reason = "must be 16 characters or less";
4063
4064 for (i = 0; i < mpb->num_raid_devs; i++) {
4065 struct imsm_dev *dev = get_imsm_dev(super, i);
4066
4067 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4068 reason = "already exists";
4069 break;
4070 }
4071 }
4072
4073 if (reason && !quiet)
4074 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4075
4076 return !reason;
4077}
4078
8b353278
DW
4079static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4080 unsigned long long size, char *name,
4081 char *homehost, int *uuid)
cdddbdbc 4082{
c2c087e6
DW
4083 /* We are creating a volume inside a pre-existing container.
4084 * so st->sb is already set.
4085 */
4086 struct intel_super *super = st->sb;
949c47a0 4087 struct imsm_super *mpb = super->anchor;
ba2de7ba 4088 struct intel_dev *dv;
c2c087e6
DW
4089 struct imsm_dev *dev;
4090 struct imsm_vol *vol;
4091 struct imsm_map *map;
4092 int idx = mpb->num_raid_devs;
4093 int i;
4094 unsigned long long array_blocks;
2c092cad 4095 size_t size_old, size_new;
ff596308 4096 __u32 num_data_stripes;
cdddbdbc 4097
88c32bb1 4098 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 4099 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 4100 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4101 return 0;
4102 }
4103
2c092cad
DW
4104 /* ensure the mpb is large enough for the new data */
4105 size_old = __le32_to_cpu(mpb->mpb_size);
4106 size_new = disks_to_mpb_size(info->nr_disks);
4107 if (size_new > size_old) {
4108 void *mpb_new;
4109 size_t size_round = ROUND_UP(size_new, 512);
4110
4111 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4112 fprintf(stderr, Name": could not allocate new mpb\n");
4113 return 0;
4114 }
8e59f3d8
AK
4115 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4116 fprintf(stderr, Name
4117 ": %s could not allocate migr_rec buffer\n",
4118 __func__);
4119 free(super->buf);
4120 free(super);
4121 return 0;
4122 }
2c092cad
DW
4123 memcpy(mpb_new, mpb, size_old);
4124 free(mpb);
4125 mpb = mpb_new;
949c47a0 4126 super->anchor = mpb_new;
2c092cad
DW
4127 mpb->mpb_size = __cpu_to_le32(size_new);
4128 memset(mpb_new + size_old, 0, size_round - size_old);
4129 }
bf5a934a 4130 super->current_vol = idx;
d23fe947
DW
4131 /* when creating the first raid device in this container set num_disks
4132 * to zero, i.e. delete this spare and add raid member devices in
4133 * add_to_super_imsm_volume()
4134 */
4135 if (super->current_vol == 0)
4136 mpb->num_disks = 0;
5a038140 4137
aa534678
DW
4138 if (!check_name(super, name, 0))
4139 return 0;
ba2de7ba
DW
4140 dv = malloc(sizeof(*dv));
4141 if (!dv) {
4142 fprintf(stderr, Name ": failed to allocate device list entry\n");
4143 return 0;
4144 }
1a2487c2 4145 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4146 if (!dev) {
ba2de7ba 4147 free(dv);
949c47a0
DW
4148 fprintf(stderr, Name": could not allocate raid device\n");
4149 return 0;
4150 }
1a2487c2 4151
c2c087e6 4152 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4153 if (info->level == 1)
4154 array_blocks = info_to_blocks_per_member(info);
4155 else
4156 array_blocks = calc_array_size(info->level, info->raid_disks,
4157 info->layout, info->chunk_size,
4158 info->size*2);
979d38be
DW
4159 /* round array size down to closest MB */
4160 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4161
c2c087e6
DW
4162 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4163 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4164 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4165 vol = &dev->vol;
4166 vol->migr_state = 0;
1484e727 4167 set_migr_type(dev, MIGR_INIT);
c2c087e6 4168 vol->dirty = 0;
f8f603f1 4169 vol->curr_migr_unit = 0;
a965f303 4170 map = get_imsm_map(dev, 0);
0dcecb2e 4171 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4172 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4173 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4174 map->failed_disk_num = ~0;
c2c087e6
DW
4175 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
4176 IMSM_T_STATE_NORMAL;
252d23c0 4177 map->ddf = 1;
ef6ffade
DW
4178
4179 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4180 free(dev);
4181 free(dv);
ef6ffade
DW
4182 fprintf(stderr, Name": imsm does not support more than 2 disks"
4183 "in a raid1 volume\n");
4184 return 0;
4185 }
81062a36
DW
4186
4187 map->raid_level = info->level;
4d1313e9 4188 if (info->level == 10) {
c2c087e6 4189 map->raid_level = 1;
4d1313e9 4190 map->num_domains = info->raid_disks / 2;
81062a36
DW
4191 } else if (info->level == 1)
4192 map->num_domains = info->raid_disks;
4193 else
ff596308 4194 map->num_domains = 1;
81062a36 4195
ff596308
DW
4196 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4197 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4198
c2c087e6
DW
4199 map->num_members = info->raid_disks;
4200 for (i = 0; i < map->num_members; i++) {
4201 /* initialized in add_to_super */
4eb26970 4202 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4203 }
949c47a0 4204 mpb->num_raid_devs++;
ba2de7ba
DW
4205
4206 dv->dev = dev;
4207 dv->index = super->current_vol;
4208 dv->next = super->devlist;
4209 super->devlist = dv;
c2c087e6 4210
4d1313e9
DW
4211 imsm_update_version_info(super);
4212
c2c087e6 4213 return 1;
cdddbdbc
DW
4214}
4215
bf5a934a
DW
4216static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4217 unsigned long long size, char *name,
4218 char *homehost, int *uuid)
4219{
4220 /* This is primarily called by Create when creating a new array.
4221 * We will then get add_to_super called for each component, and then
4222 * write_init_super called to write it out to each device.
4223 * For IMSM, Create can create on fresh devices or on a pre-existing
4224 * array.
4225 * To create on a pre-existing array a different method will be called.
4226 * This one is just for fresh drives.
4227 */
4228 struct intel_super *super;
4229 struct imsm_super *mpb;
4230 size_t mpb_size;
4d1313e9 4231 char *version;
bf5a934a 4232
bf5a934a 4233 if (st->sb)
e683ca88
DW
4234 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4235
4236 if (info)
4237 mpb_size = disks_to_mpb_size(info->nr_disks);
4238 else
4239 mpb_size = 512;
bf5a934a 4240
49133e57 4241 super = alloc_super();
e683ca88 4242 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4243 free(super);
e683ca88
DW
4244 super = NULL;
4245 }
4246 if (!super) {
4247 fprintf(stderr, Name
4248 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4249 return 0;
4250 }
8e59f3d8
AK
4251 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4252 fprintf(stderr, Name
4253 ": %s could not allocate migr_rec buffer\n", __func__);
4254 free(super->buf);
4255 free(super);
4256 return 0;
4257 }
e683ca88 4258 memset(super->buf, 0, mpb_size);
ef649044 4259 mpb = super->buf;
e683ca88
DW
4260 mpb->mpb_size = __cpu_to_le32(mpb_size);
4261 st->sb = super;
4262
4263 if (info == NULL) {
4264 /* zeroing superblock */
4265 return 0;
4266 }
bf5a934a 4267
4d1313e9
DW
4268 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4269
4270 version = (char *) mpb->sig;
4271 strcpy(version, MPB_SIGNATURE);
4272 version += strlen(MPB_SIGNATURE);
4273 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4274
bf5a934a
DW
4275 return 1;
4276}
4277
0e600426 4278#ifndef MDASSEMBLE
f20c3968 4279static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4280 int fd, char *devname)
4281{
4282 struct intel_super *super = st->sb;
d23fe947 4283 struct imsm_super *mpb = super->anchor;
bf5a934a
DW
4284 struct dl *dl;
4285 struct imsm_dev *dev;
4286 struct imsm_map *map;
4eb26970 4287 int slot;
bf5a934a 4288
949c47a0 4289 dev = get_imsm_dev(super, super->current_vol);
a965f303 4290 map = get_imsm_map(dev, 0);
bf5a934a 4291
208933a7
N
4292 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4293 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4294 devname);
4295 return 1;
4296 }
4297
efb30e7f
DW
4298 if (fd == -1) {
4299 /* we're doing autolayout so grab the pre-marked (in
4300 * validate_geometry) raid_disk
4301 */
4302 for (dl = super->disks; dl; dl = dl->next)
4303 if (dl->raiddisk == dk->raid_disk)
4304 break;
4305 } else {
4306 for (dl = super->disks; dl ; dl = dl->next)
4307 if (dl->major == dk->major &&
4308 dl->minor == dk->minor)
4309 break;
4310 }
d23fe947 4311
208933a7
N
4312 if (!dl) {
4313 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4314 return 1;
208933a7 4315 }
bf5a934a 4316
d23fe947
DW
4317 /* add a pristine spare to the metadata */
4318 if (dl->index < 0) {
4319 dl->index = super->anchor->num_disks;
4320 super->anchor->num_disks++;
4321 }
4eb26970
DW
4322 /* Check the device has not already been added */
4323 slot = get_imsm_disk_slot(map, dl->index);
4324 if (slot >= 0 &&
98130f40 4325 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4326 fprintf(stderr, Name ": %s has been included in this array twice\n",
4327 devname);
4328 return 1;
4329 }
be73972f 4330 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
ee5aad5a 4331 dl->disk.status = CONFIGURED_DISK;
d23fe947
DW
4332
4333 /* if we are creating the first raid device update the family number */
4334 if (super->current_vol == 0) {
4335 __u32 sum;
4336 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4337 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
4338
791b666a
AW
4339 if (!_dev || !_disk) {
4340 fprintf(stderr, Name ": BUG mpb setup error\n");
4341 return 1;
4342 }
d23fe947
DW
4343 *_dev = *dev;
4344 *_disk = dl->disk;
148acb7b
DW
4345 sum = random32();
4346 sum += __gen_imsm_checksum(mpb);
d23fe947 4347 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4348 mpb->orig_family_num = mpb->family_num;
d23fe947 4349 }
f20c3968
DW
4350
4351 return 0;
bf5a934a
DW
4352}
4353
88654014 4354
f20c3968 4355static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4356 int fd, char *devname)
cdddbdbc 4357{
c2c087e6 4358 struct intel_super *super = st->sb;
c2c087e6
DW
4359 struct dl *dd;
4360 unsigned long long size;
f2f27e63 4361 __u32 id;
c2c087e6
DW
4362 int rv;
4363 struct stat stb;
4364
88654014
LM
4365 /* If we are on an RAID enabled platform check that the disk is
4366 * attached to the raid controller.
4367 * We do not need to test disks attachment for container based additions,
4368 * they shall be already tested when container was created/assembled.
88c32bb1 4369 */
d424212e 4370 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4371 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4372 if (rv != 0) {
4373 dprintf("capability: %p fd: %d ret: %d\n",
4374 super->orom, fd, rv);
4375 return 1;
88c32bb1
DW
4376 }
4377
f20c3968
DW
4378 if (super->current_vol >= 0)
4379 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4380
c2c087e6
DW
4381 fstat(fd, &stb);
4382 dd = malloc(sizeof(*dd));
b9f594fe 4383 if (!dd) {
c2c087e6
DW
4384 fprintf(stderr,
4385 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4386 return 1;
c2c087e6
DW
4387 }
4388 memset(dd, 0, sizeof(*dd));
4389 dd->major = major(stb.st_rdev);
4390 dd->minor = minor(stb.st_rdev);
b9f594fe 4391 dd->index = -1;
c2c087e6 4392 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4393 dd->fd = fd;
689c9bf3 4394 dd->e = NULL;
1a64be56 4395 dd->action = DISK_ADD;
c2c087e6 4396 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4397 if (rv) {
c2c087e6 4398 fprintf(stderr,
0030e8d6 4399 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4400 free(dd);
0030e8d6 4401 abort();
c2c087e6
DW
4402 }
4403
c2c087e6
DW
4404 get_dev_size(fd, NULL, &size);
4405 size /= 512;
1f24f035 4406 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4407 dd->disk.total_blocks = __cpu_to_le32(size);
ee5aad5a 4408 dd->disk.status = SPARE_DISK;
c2c087e6 4409 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4410 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4411 else
b9f594fe 4412 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4413
4414 if (st->update_tail) {
1a64be56
LM
4415 dd->next = super->disk_mgmt_list;
4416 super->disk_mgmt_list = dd;
43dad3d6
DW
4417 } else {
4418 dd->next = super->disks;
4419 super->disks = dd;
ceaf0ee1 4420 super->updates_pending++;
43dad3d6 4421 }
f20c3968
DW
4422
4423 return 0;
cdddbdbc
DW
4424}
4425
1a64be56
LM
4426
4427static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4428{
4429 struct intel_super *super = st->sb;
4430 struct dl *dd;
4431
4432 /* remove from super works only in mdmon - for communication
4433 * manager - monitor. Check if communication memory buffer
4434 * is prepared.
4435 */
4436 if (!st->update_tail) {
4437 fprintf(stderr,
4438 Name ": %s shall be used in mdmon context only"
4439 "(line %d).\n", __func__, __LINE__);
4440 return 1;
4441 }
4442 dd = malloc(sizeof(*dd));
4443 if (!dd) {
4444 fprintf(stderr,
4445 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4446 return 1;
4447 }
4448 memset(dd, 0, sizeof(*dd));
4449 dd->major = dk->major;
4450 dd->minor = dk->minor;
4451 dd->index = -1;
4452 dd->fd = -1;
4453 dd->disk.status = SPARE_DISK;
4454 dd->action = DISK_REMOVE;
4455
4456 dd->next = super->disk_mgmt_list;
4457 super->disk_mgmt_list = dd;
4458
4459
4460 return 0;
4461}
4462
f796af5d
DW
4463static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4464
4465static union {
4466 char buf[512];
4467 struct imsm_super anchor;
4468} spare_record __attribute__ ((aligned(512)));
c2c087e6 4469
d23fe947
DW
4470/* spare records have their own family number and do not have any defined raid
4471 * devices
4472 */
4473static int write_super_imsm_spares(struct intel_super *super, int doclose)
4474{
d23fe947 4475 struct imsm_super *mpb = super->anchor;
f796af5d 4476 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4477 __u32 sum;
4478 struct dl *d;
4479
f796af5d
DW
4480 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4481 spare->generation_num = __cpu_to_le32(1UL),
4482 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4483 spare->num_disks = 1,
4484 spare->num_raid_devs = 0,
4485 spare->cache_size = mpb->cache_size,
4486 spare->pwr_cycle_count = __cpu_to_le32(1),
4487
4488 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4489 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4490
4491 for (d = super->disks; d; d = d->next) {
8796fdc4 4492 if (d->index != -1)
d23fe947
DW
4493 continue;
4494
f796af5d
DW
4495 spare->disk[0] = d->disk;
4496 sum = __gen_imsm_checksum(spare);
4497 spare->family_num = __cpu_to_le32(sum);
4498 spare->orig_family_num = 0;
4499 sum = __gen_imsm_checksum(spare);
4500 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4501
f796af5d 4502 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4503 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4504 __func__, d->major, d->minor, strerror(errno));
e74255d9 4505 return 1;
d23fe947
DW
4506 }
4507 if (doclose) {
4508 close(d->fd);
4509 d->fd = -1;
4510 }
4511 }
4512
e74255d9 4513 return 0;
d23fe947
DW
4514}
4515
36988a3d 4516static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4517{
36988a3d 4518 struct intel_super *super = st->sb;
949c47a0 4519 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4520 struct dl *d;
4521 __u32 generation;
4522 __u32 sum;
d23fe947 4523 int spares = 0;
949c47a0 4524 int i;
a48ac0a8 4525 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4526 int num_disks = 0;
146c6260 4527 int clear_migration_record = 1;
cdddbdbc 4528
c2c087e6
DW
4529 /* 'generation' is incremented everytime the metadata is written */
4530 generation = __le32_to_cpu(mpb->generation_num);
4531 generation++;
4532 mpb->generation_num = __cpu_to_le32(generation);
4533
148acb7b
DW
4534 /* fix up cases where previous mdadm releases failed to set
4535 * orig_family_num
4536 */
4537 if (mpb->orig_family_num == 0)
4538 mpb->orig_family_num = mpb->family_num;
4539
d23fe947 4540 for (d = super->disks; d; d = d->next) {
8796fdc4 4541 if (d->index == -1)
d23fe947 4542 spares++;
36988a3d 4543 else {
d23fe947 4544 mpb->disk[d->index] = d->disk;
36988a3d
AK
4545 num_disks++;
4546 }
d23fe947 4547 }
36988a3d 4548 for (d = super->missing; d; d = d->next) {
47ee5a45 4549 mpb->disk[d->index] = d->disk;
36988a3d
AK
4550 num_disks++;
4551 }
4552 mpb->num_disks = num_disks;
4553 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4554
949c47a0
DW
4555 for (i = 0; i < mpb->num_raid_devs; i++) {
4556 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4557 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4558 if (dev && dev2) {
4559 imsm_copy_dev(dev, dev2);
4560 mpb_size += sizeof_imsm_dev(dev, 0);
4561 }
146c6260
AK
4562 if (is_gen_migration(dev2))
4563 clear_migration_record = 0;
949c47a0 4564 }
a48ac0a8
DW
4565 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4566 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4567
c2c087e6 4568 /* recalculate checksum */
949c47a0 4569 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4570 mpb->check_sum = __cpu_to_le32(sum);
4571
146c6260
AK
4572 if (clear_migration_record)
4573 memset(super->migr_rec_buf, 0, 512);
4574
d23fe947 4575 /* write the mpb for disks that compose raid devices */
c2c087e6 4576 for (d = super->disks; d ; d = d->next) {
d23fe947
DW
4577 if (d->index < 0)
4578 continue;
f796af5d 4579 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4580 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4581 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4582 if (clear_migration_record) {
4583 unsigned long long dsize;
4584
4585 get_dev_size(d->fd, NULL, &dsize);
4586 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
9e2d750d
N
4587 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4588 perror("Write migr_rec failed");
146c6260
AK
4589 }
4590 }
c2c087e6
DW
4591 if (doclose) {
4592 close(d->fd);
4593 d->fd = -1;
4594 }
4595 }
4596
d23fe947
DW
4597 if (spares)
4598 return write_super_imsm_spares(super, doclose);
4599
e74255d9 4600 return 0;
c2c087e6
DW
4601}
4602
0e600426 4603
9b1fb677 4604static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4605{
4606 size_t len;
4607 struct imsm_update_create_array *u;
4608 struct intel_super *super = st->sb;
9b1fb677 4609 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4610 struct imsm_map *map = get_imsm_map(dev, 0);
4611 struct disk_info *inf;
4612 struct imsm_disk *disk;
4613 int i;
43dad3d6 4614
54c2c1ea
DW
4615 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4616 sizeof(*inf) * map->num_members;
43dad3d6
DW
4617 u = malloc(len);
4618 if (!u) {
4619 fprintf(stderr, "%s: failed to allocate update buffer\n",
4620 __func__);
4621 return 1;
4622 }
4623
4624 u->type = update_create_array;
9b1fb677 4625 u->dev_idx = dev_idx;
43dad3d6 4626 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4627 inf = get_disk_info(u);
4628 for (i = 0; i < map->num_members; i++) {
98130f40 4629 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4630
54c2c1ea
DW
4631 disk = get_imsm_disk(super, idx);
4632 serialcpy(inf[i].serial, disk->serial);
4633 }
43dad3d6
DW
4634 append_metadata_update(st, u, len);
4635
4636 return 0;
4637}
4638
1a64be56 4639static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4640{
4641 struct intel_super *super = st->sb;
4642 size_t len;
1a64be56 4643 struct imsm_update_add_remove_disk *u;
43dad3d6 4644
1a64be56 4645 if (!super->disk_mgmt_list)
43dad3d6
DW
4646 return 0;
4647
4648 len = sizeof(*u);
4649 u = malloc(len);
4650 if (!u) {
4651 fprintf(stderr, "%s: failed to allocate update buffer\n",
4652 __func__);
4653 return 1;
4654 }
4655
1a64be56 4656 u->type = update_add_remove_disk;
43dad3d6
DW
4657 append_metadata_update(st, u, len);
4658
4659 return 0;
4660}
4661
c2c087e6
DW
4662static int write_init_super_imsm(struct supertype *st)
4663{
9b1fb677
DW
4664 struct intel_super *super = st->sb;
4665 int current_vol = super->current_vol;
4666
4667 /* we are done with current_vol reset it to point st at the container */
4668 super->current_vol = -1;
4669
8273f55e 4670 if (st->update_tail) {
43dad3d6
DW
4671 /* queue the recently created array / added disk
4672 * as a metadata update */
43dad3d6 4673 int rv;
8273f55e 4674
43dad3d6 4675 /* determine if we are creating a volume or adding a disk */
9b1fb677 4676 if (current_vol < 0) {
1a64be56
LM
4677 /* in the mgmt (add/remove) disk case we are running
4678 * in mdmon context, so don't close fd's
43dad3d6 4679 */
1a64be56 4680 return mgmt_disk(st);
43dad3d6 4681 } else
9b1fb677 4682 rv = create_array(st, current_vol);
8273f55e 4683
43dad3d6 4684 return rv;
d682f344
N
4685 } else {
4686 struct dl *d;
4687 for (d = super->disks; d; d = d->next)
4688 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4689 return write_super_imsm(st, 1);
d682f344 4690 }
cdddbdbc 4691}
0e600426 4692#endif
cdddbdbc 4693
e683ca88 4694static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4695{
e683ca88
DW
4696 struct intel_super *super = st->sb;
4697 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4698
e683ca88 4699 if (!mpb)
ad97895e
DW
4700 return 1;
4701
1799c9e8 4702#ifndef MDASSEMBLE
e683ca88 4703 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4704#else
4705 return 1;
4706#endif
cdddbdbc
DW
4707}
4708
0e600426
N
4709static int imsm_bbm_log_size(struct imsm_super *mpb)
4710{
4711 return __le32_to_cpu(mpb->bbm_log_size);
4712}
4713
4714#ifndef MDASSEMBLE
cdddbdbc
DW
4715static int validate_geometry_imsm_container(struct supertype *st, int level,
4716 int layout, int raiddisks, int chunk,
c2c087e6 4717 unsigned long long size, char *dev,
2c514b71
NB
4718 unsigned long long *freesize,
4719 int verbose)
cdddbdbc 4720{
c2c087e6
DW
4721 int fd;
4722 unsigned long long ldsize;
f2f5c343
LM
4723 struct intel_super *super=NULL;
4724 int rv = 0;
cdddbdbc 4725
c2c087e6
DW
4726 if (level != LEVEL_CONTAINER)
4727 return 0;
4728 if (!dev)
4729 return 1;
4730
4731 fd = open(dev, O_RDONLY|O_EXCL, 0);
4732 if (fd < 0) {
2c514b71
NB
4733 if (verbose)
4734 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4735 dev, strerror(errno));
c2c087e6
DW
4736 return 0;
4737 }
4738 if (!get_dev_size(fd, dev, &ldsize)) {
4739 close(fd);
4740 return 0;
4741 }
f2f5c343
LM
4742
4743 /* capabilities retrieve could be possible
4744 * note that there is no fd for the disks in array.
4745 */
4746 super = alloc_super();
4747 if (!super) {
4748 fprintf(stderr,
4749 Name ": malloc of %zu failed.\n",
4750 sizeof(*super));
4751 close(fd);
4752 return 0;
4753 }
4754
d424212e 4755 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4756 if (rv != 0) {
4757#if DEBUG
4758 char str[256];
4759 fd2devname(fd, str);
4760 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4761 fd, str, super->orom, rv, raiddisks);
4762#endif
4763 /* no orom/efi or non-intel hba of the disk */
4764 close(fd);
4765 free_imsm(super);
4766 return 0;
4767 }
c2c087e6 4768 close(fd);
f2f5c343
LM
4769 if (super->orom && raiddisks > super->orom->tds) {
4770 if (verbose)
4771 fprintf(stderr, Name ": %d exceeds maximum number of"
4772 " platform supported disks: %d\n",
4773 raiddisks, super->orom->tds);
4774
4775 free_imsm(super);
4776 return 0;
4777 }
c2c087e6
DW
4778
4779 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 4780 free_imsm(super);
c2c087e6
DW
4781
4782 return 1;
cdddbdbc
DW
4783}
4784
0dcecb2e
DW
4785static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4786{
4787 const unsigned long long base_start = e[*idx].start;
4788 unsigned long long end = base_start + e[*idx].size;
4789 int i;
4790
4791 if (base_start == end)
4792 return 0;
4793
4794 *idx = *idx + 1;
4795 for (i = *idx; i < num_extents; i++) {
4796 /* extend overlapping extents */
4797 if (e[i].start >= base_start &&
4798 e[i].start <= end) {
4799 if (e[i].size == 0)
4800 return 0;
4801 if (e[i].start + e[i].size > end)
4802 end = e[i].start + e[i].size;
4803 } else if (e[i].start > end) {
4804 *idx = i;
4805 break;
4806 }
4807 }
4808
4809 return end - base_start;
4810}
4811
4812static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4813{
4814 /* build a composite disk with all known extents and generate a new
4815 * 'maxsize' given the "all disks in an array must share a common start
4816 * offset" constraint
4817 */
4818 struct extent *e = calloc(sum_extents, sizeof(*e));
4819 struct dl *dl;
4820 int i, j;
4821 int start_extent;
4822 unsigned long long pos;
b9d77223 4823 unsigned long long start = 0;
0dcecb2e
DW
4824 unsigned long long maxsize;
4825 unsigned long reserve;
4826
4827 if (!e)
a7dd165b 4828 return 0;
0dcecb2e
DW
4829
4830 /* coalesce and sort all extents. also, check to see if we need to
4831 * reserve space between member arrays
4832 */
4833 j = 0;
4834 for (dl = super->disks; dl; dl = dl->next) {
4835 if (!dl->e)
4836 continue;
4837 for (i = 0; i < dl->extent_cnt; i++)
4838 e[j++] = dl->e[i];
4839 }
4840 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4841
4842 /* merge extents */
4843 i = 0;
4844 j = 0;
4845 while (i < sum_extents) {
4846 e[j].start = e[i].start;
4847 e[j].size = find_size(e, &i, sum_extents);
4848 j++;
4849 if (e[j-1].size == 0)
4850 break;
4851 }
4852
4853 pos = 0;
4854 maxsize = 0;
4855 start_extent = 0;
4856 i = 0;
4857 do {
4858 unsigned long long esize;
4859
4860 esize = e[i].start - pos;
4861 if (esize >= maxsize) {
4862 maxsize = esize;
4863 start = pos;
4864 start_extent = i;
4865 }
4866 pos = e[i].start + e[i].size;
4867 i++;
4868 } while (e[i-1].size);
4869 free(e);
4870
a7dd165b
DW
4871 if (maxsize == 0)
4872 return 0;
4873
4874 /* FIXME assumes volume at offset 0 is the first volume in a
4875 * container
4876 */
0dcecb2e
DW
4877 if (start_extent > 0)
4878 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4879 else
4880 reserve = 0;
4881
4882 if (maxsize < reserve)
a7dd165b 4883 return 0;
0dcecb2e
DW
4884
4885 super->create_offset = ~((__u32) 0);
4886 if (start + reserve > super->create_offset)
a7dd165b 4887 return 0; /* start overflows create_offset */
0dcecb2e
DW
4888 super->create_offset = start + reserve;
4889
4890 return maxsize - reserve;
4891}
4892
88c32bb1
DW
4893static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4894{
4895 if (level < 0 || level == 6 || level == 4)
4896 return 0;
4897
4898 /* if we have an orom prevent invalid raid levels */
4899 if (orom)
4900 switch (level) {
4901 case 0: return imsm_orom_has_raid0(orom);
4902 case 1:
4903 if (raiddisks > 2)
4904 return imsm_orom_has_raid1e(orom);
1c556e92
DW
4905 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4906 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4907 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
4908 }
4909 else
4910 return 1; /* not on an Intel RAID platform so anything goes */
4911
4912 return 0;
4913}
4914
73408129 4915
35f81cbb 4916#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
73408129
LM
4917/*
4918 * validate volume parameters with OROM/EFI capabilities
4919 */
6592ce37
DW
4920static int
4921validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 4922 int raiddisks, int *chunk, int verbose)
6592ce37 4923{
73408129
LM
4924#if DEBUG
4925 verbose = 1;
4926#endif
4927 /* validate container capabilities */
4928 if (super->orom && raiddisks > super->orom->tds) {
4929 if (verbose)
4930 fprintf(stderr, Name ": %d exceeds maximum number of"
4931 " platform supported disks: %d\n",
4932 raiddisks, super->orom->tds);
4933 return 0;
4934 }
4935
4936 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
4937 if (super->orom && (!is_raid_level_supported(super->orom, level,
4938 raiddisks))) {
6592ce37
DW
4939 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4940 level, raiddisks, raiddisks > 1 ? "s" : "");
4941 return 0;
4942 }
c21e737b
CA
4943 if (super->orom && level != 1) {
4944 if (chunk && (*chunk == 0 || *chunk == UnSet))
4945 *chunk = imsm_orom_default_chunk(super->orom);
4946 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4947 pr_vrb(": platform does not support a chunk size of: "
4948 "%d\n", *chunk);
4949 return 0;
4950 }
6592ce37
DW
4951 }
4952 if (layout != imsm_level_to_layout(level)) {
4953 if (level == 5)
4954 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4955 else if (level == 10)
4956 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4957 else
4958 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4959 layout, level);
4960 return 0;
4961 }
6592ce37
DW
4962 return 1;
4963}
4964
c2c087e6
DW
4965/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4966 * FIX ME add ahci details
4967 */
8b353278 4968static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 4969 int layout, int raiddisks, int *chunk,
c2c087e6 4970 unsigned long long size, char *dev,
2c514b71
NB
4971 unsigned long long *freesize,
4972 int verbose)
cdddbdbc 4973{
c2c087e6
DW
4974 struct stat stb;
4975 struct intel_super *super = st->sb;
a20d2ba5 4976 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4977 struct dl *dl;
4978 unsigned long long pos = 0;
4979 unsigned long long maxsize;
4980 struct extent *e;
4981 int i;
cdddbdbc 4982
88c32bb1
DW
4983 /* We must have the container info already read in. */
4984 if (!super)
c2c087e6
DW
4985 return 0;
4986
d54559f0
LM
4987 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
4988 fprintf(stderr, Name ": RAID gemetry validation failed. "
4989 "Cannot proceed with the action(s).\n");
c2c087e6 4990 return 0;
d54559f0 4991 }
c2c087e6
DW
4992 if (!dev) {
4993 /* General test: make sure there is space for
2da8544a
DW
4994 * 'raiddisks' device extents of size 'size' at a given
4995 * offset
c2c087e6 4996 */
e46273eb 4997 unsigned long long minsize = size;
b7528a20 4998 unsigned long long start_offset = MaxSector;
c2c087e6
DW
4999 int dcnt = 0;
5000 if (minsize == 0)
5001 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5002 for (dl = super->disks; dl ; dl = dl->next) {
5003 int found = 0;
5004
bf5a934a 5005 pos = 0;
c2c087e6
DW
5006 i = 0;
5007 e = get_extents(super, dl);
5008 if (!e) continue;
5009 do {
5010 unsigned long long esize;
5011 esize = e[i].start - pos;
5012 if (esize >= minsize)
5013 found = 1;
b7528a20 5014 if (found && start_offset == MaxSector) {
2da8544a
DW
5015 start_offset = pos;
5016 break;
5017 } else if (found && pos != start_offset) {
5018 found = 0;
5019 break;
5020 }
c2c087e6
DW
5021 pos = e[i].start + e[i].size;
5022 i++;
5023 } while (e[i-1].size);
5024 if (found)
5025 dcnt++;
5026 free(e);
5027 }
5028 if (dcnt < raiddisks) {
2c514b71
NB
5029 if (verbose)
5030 fprintf(stderr, Name ": imsm: Not enough "
5031 "devices with space for this array "
5032 "(%d < %d)\n",
5033 dcnt, raiddisks);
c2c087e6
DW
5034 return 0;
5035 }
5036 return 1;
5037 }
0dcecb2e 5038
c2c087e6
DW
5039 /* This device must be a member of the set */
5040 if (stat(dev, &stb) < 0)
5041 return 0;
5042 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5043 return 0;
5044 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5045 if (dl->major == (int)major(stb.st_rdev) &&
5046 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5047 break;
5048 }
5049 if (!dl) {
2c514b71
NB
5050 if (verbose)
5051 fprintf(stderr, Name ": %s is not in the "
5052 "same imsm set\n", dev);
c2c087e6 5053 return 0;
a20d2ba5
DW
5054 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5055 /* If a volume is present then the current creation attempt
5056 * cannot incorporate new spares because the orom may not
5057 * understand this configuration (all member disks must be
5058 * members of each array in the container).
5059 */
5060 fprintf(stderr, Name ": %s is a spare and a volume"
5061 " is already defined for this container\n", dev);
5062 fprintf(stderr, Name ": The option-rom requires all member"
5063 " disks to be a member of all volumes\n");
5064 return 0;
c2c087e6 5065 }
0dcecb2e
DW
5066
5067 /* retrieve the largest free space block */
c2c087e6
DW
5068 e = get_extents(super, dl);
5069 maxsize = 0;
5070 i = 0;
0dcecb2e
DW
5071 if (e) {
5072 do {
5073 unsigned long long esize;
5074
5075 esize = e[i].start - pos;
5076 if (esize >= maxsize)
5077 maxsize = esize;
5078 pos = e[i].start + e[i].size;
5079 i++;
5080 } while (e[i-1].size);
5081 dl->e = e;
5082 dl->extent_cnt = i;
5083 } else {
5084 if (verbose)
5085 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5086 dev);
5087 return 0;
5088 }
5089 if (maxsize < size) {
5090 if (verbose)
5091 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5092 dev, maxsize, size);
5093 return 0;
5094 }
5095
5096 /* count total number of extents for merge */
5097 i = 0;
5098 for (dl = super->disks; dl; dl = dl->next)
5099 if (dl->e)
5100 i += dl->extent_cnt;
5101
5102 maxsize = merge_extents(super, i);
a7dd165b 5103 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
5104 if (verbose)
5105 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5106 maxsize, size);
5107 return 0;
0dcecb2e
DW
5108 }
5109
c2c087e6
DW
5110 *freesize = maxsize;
5111
5112 return 1;
cdddbdbc
DW
5113}
5114
efb30e7f
DW
5115static int reserve_space(struct supertype *st, int raiddisks,
5116 unsigned long long size, int chunk,
5117 unsigned long long *freesize)
5118{
5119 struct intel_super *super = st->sb;
5120 struct imsm_super *mpb = super->anchor;
5121 struct dl *dl;
5122 int i;
5123 int extent_cnt;
5124 struct extent *e;
5125 unsigned long long maxsize;
5126 unsigned long long minsize;
5127 int cnt;
5128 int used;
5129
5130 /* find the largest common start free region of the possible disks */
5131 used = 0;
5132 extent_cnt = 0;
5133 cnt = 0;
5134 for (dl = super->disks; dl; dl = dl->next) {
5135 dl->raiddisk = -1;
5136
5137 if (dl->index >= 0)
5138 used++;
5139
5140 /* don't activate new spares if we are orom constrained
5141 * and there is already a volume active in the container
5142 */
5143 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5144 continue;
5145
5146 e = get_extents(super, dl);
5147 if (!e)
5148 continue;
5149 for (i = 1; e[i-1].size; i++)
5150 ;
5151 dl->e = e;
5152 dl->extent_cnt = i;
5153 extent_cnt += i;
5154 cnt++;
5155 }
5156
5157 maxsize = merge_extents(super, extent_cnt);
5158 minsize = size;
5159 if (size == 0)
612e59d8
CA
5160 /* chunk is in K */
5161 minsize = chunk * 2;
efb30e7f
DW
5162
5163 if (cnt < raiddisks ||
5164 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5165 maxsize < minsize ||
5166 maxsize == 0) {
efb30e7f
DW
5167 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5168 return 0; /* No enough free spaces large enough */
5169 }
5170
5171 if (size == 0) {
5172 size = maxsize;
5173 if (chunk) {
612e59d8
CA
5174 size /= 2 * chunk;
5175 size *= 2 * chunk;
efb30e7f
DW
5176 }
5177 }
5178
5179 cnt = 0;
5180 for (dl = super->disks; dl; dl = dl->next)
5181 if (dl->e)
5182 dl->raiddisk = cnt++;
5183
5184 *freesize = size;
5185
5186 return 1;
5187}
5188
bf5a934a 5189static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5190 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5191 char *dev, unsigned long long *freesize,
5192 int verbose)
5193{
5194 int fd, cfd;
5195 struct mdinfo *sra;
20cbe8d2 5196 int is_member = 0;
bf5a934a 5197
d54559f0
LM
5198 /* load capability
5199 * if given unused devices create a container
bf5a934a
DW
5200 * if given given devices in a container create a member volume
5201 */
5202 if (level == LEVEL_CONTAINER) {
5203 /* Must be a fresh device to add to a container */
5204 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5205 raiddisks,
5206 chunk?*chunk:0, size,
bf5a934a
DW
5207 dev, freesize,
5208 verbose);
5209 }
5210
8592f29d
N
5211 if (!dev) {
5212 if (st->sb && freesize) {
efb30e7f
DW
5213 /* we are being asked to automatically layout a
5214 * new volume based on the current contents of
5215 * the container. If the the parameters can be
5216 * satisfied reserve_space will record the disks,
5217 * start offset, and size of the volume to be
5218 * created. add_to_super and getinfo_super
5219 * detect when autolayout is in progress.
5220 */
6592ce37
DW
5221 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5222 raiddisks, chunk,
5223 verbose))
5224 return 0;
c21e737b
CA
5225 return reserve_space(st, raiddisks, size,
5226 chunk?*chunk:0, freesize);
8592f29d
N
5227 }
5228 return 1;
5229 }
bf5a934a
DW
5230 if (st->sb) {
5231 /* creating in a given container */
5232 return validate_geometry_imsm_volume(st, level, layout,
5233 raiddisks, chunk, size,
5234 dev, freesize, verbose);
5235 }
5236
bf5a934a
DW
5237 /* This device needs to be a device in an 'imsm' container */
5238 fd = open(dev, O_RDONLY|O_EXCL, 0);
5239 if (fd >= 0) {
5240 if (verbose)
5241 fprintf(stderr,
5242 Name ": Cannot create this array on device %s\n",
5243 dev);
5244 close(fd);
5245 return 0;
5246 }
5247 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5248 if (verbose)
5249 fprintf(stderr, Name ": Cannot open %s: %s\n",
5250 dev, strerror(errno));
5251 return 0;
5252 }
5253 /* Well, it is in use by someone, maybe an 'imsm' container. */
5254 cfd = open_container(fd);
20cbe8d2 5255 close(fd);
bf5a934a 5256 if (cfd < 0) {
bf5a934a
DW
5257 if (verbose)
5258 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5259 dev);
5260 return 0;
5261 }
5262 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5263 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5264 strcmp(sra->text_version, "imsm") == 0)
5265 is_member = 1;
5266 sysfs_free(sra);
5267 if (is_member) {
bf5a934a
DW
5268 /* This is a member of a imsm container. Load the container
5269 * and try to create a volume
5270 */
5271 struct intel_super *super;
5272
e1902a7b 5273 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5274 st->sb = super;
5275 st->container_dev = fd2devnum(cfd);
5276 close(cfd);
5277 return validate_geometry_imsm_volume(st, level, layout,
5278 raiddisks, chunk,
5279 size, dev,
5280 freesize, verbose);
5281 }
20cbe8d2 5282 }
bf5a934a 5283
20cbe8d2
AW
5284 if (verbose)
5285 fprintf(stderr, Name ": failed container membership check\n");
5286
5287 close(cfd);
5288 return 0;
bf5a934a 5289}
0bd16cf2 5290
30f58b22 5291static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5292{
5293 struct intel_super *super = st->sb;
5294
30f58b22
DW
5295 if (level && *level == UnSet)
5296 *level = LEVEL_CONTAINER;
5297
5298 if (level && layout && *layout == UnSet)
5299 *layout = imsm_level_to_layout(*level);
0bd16cf2 5300
1d54f286
N
5301 if (chunk && (*chunk == UnSet || *chunk == 0) &&
5302 super && super->orom)
30f58b22 5303 *chunk = imsm_orom_default_chunk(super->orom);
0bd16cf2
DJ
5304}
5305
33414a01
DW
5306static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5307
5308static int kill_subarray_imsm(struct supertype *st)
5309{
5310 /* remove the subarray currently referenced by ->current_vol */
5311 __u8 i;
5312 struct intel_dev **dp;
5313 struct intel_super *super = st->sb;
5314 __u8 current_vol = super->current_vol;
5315 struct imsm_super *mpb = super->anchor;
5316
5317 if (super->current_vol < 0)
5318 return 2;
5319 super->current_vol = -1; /* invalidate subarray cursor */
5320
5321 /* block deletions that would change the uuid of active subarrays
5322 *
5323 * FIXME when immutable ids are available, but note that we'll
5324 * also need to fixup the invalidated/active subarray indexes in
5325 * mdstat
5326 */
5327 for (i = 0; i < mpb->num_raid_devs; i++) {
5328 char subarray[4];
5329
5330 if (i < current_vol)
5331 continue;
5332 sprintf(subarray, "%u", i);
5333 if (is_subarray_active(subarray, st->devname)) {
5334 fprintf(stderr,
5335 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5336 current_vol, i);
5337
5338 return 2;
5339 }
5340 }
5341
5342 if (st->update_tail) {
5343 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5344
5345 if (!u)
5346 return 2;
5347 u->type = update_kill_array;
5348 u->dev_idx = current_vol;
5349 append_metadata_update(st, u, sizeof(*u));
5350
5351 return 0;
5352 }
5353
5354 for (dp = &super->devlist; *dp;)
5355 if ((*dp)->index == current_vol) {
5356 *dp = (*dp)->next;
5357 } else {
5358 handle_missing(super, (*dp)->dev);
5359 if ((*dp)->index > current_vol)
5360 (*dp)->index--;
5361 dp = &(*dp)->next;
5362 }
5363
5364 /* no more raid devices, all active components are now spares,
5365 * but of course failed are still failed
5366 */
5367 if (--mpb->num_raid_devs == 0) {
5368 struct dl *d;
5369
5370 for (d = super->disks; d; d = d->next)
5371 if (d->index > -2) {
5372 d->index = -1;
5373 d->disk.status = SPARE_DISK;
5374 }
5375 }
5376
5377 super->updates_pending++;
5378
5379 return 0;
5380}
aa534678 5381
a951a4f7 5382static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5383 char *update, struct mddev_ident *ident)
aa534678
DW
5384{
5385 /* update the subarray currently referenced by ->current_vol */
5386 struct intel_super *super = st->sb;
5387 struct imsm_super *mpb = super->anchor;
5388
aa534678
DW
5389 if (strcmp(update, "name") == 0) {
5390 char *name = ident->name;
a951a4f7
N
5391 char *ep;
5392 int vol;
aa534678 5393
a951a4f7 5394 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5395 fprintf(stderr,
5396 Name ": Unable to update name of active subarray\n");
5397 return 2;
5398 }
5399
5400 if (!check_name(super, name, 0))
5401 return 2;
5402
a951a4f7
N
5403 vol = strtoul(subarray, &ep, 10);
5404 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5405 return 2;
5406
aa534678
DW
5407 if (st->update_tail) {
5408 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5409
5410 if (!u)
5411 return 2;
5412 u->type = update_rename_array;
a951a4f7 5413 u->dev_idx = vol;
aa534678
DW
5414 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5415 append_metadata_update(st, u, sizeof(*u));
5416 } else {
5417 struct imsm_dev *dev;
5418 int i;
5419
a951a4f7 5420 dev = get_imsm_dev(super, vol);
aa534678
DW
5421 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5422 for (i = 0; i < mpb->num_raid_devs; i++) {
5423 dev = get_imsm_dev(super, i);
5424 handle_missing(super, dev);
5425 }
5426 super->updates_pending++;
5427 }
5428 } else
5429 return 2;
5430
5431 return 0;
5432}
bf5a934a 5433
28bce06f
AK
5434static int is_gen_migration(struct imsm_dev *dev)
5435{
7534230b
AK
5436 if (dev == NULL)
5437 return 0;
5438
28bce06f
AK
5439 if (!dev->vol.migr_state)
5440 return 0;
5441
5442 if (migr_type(dev) == MIGR_GEN_MIGR)
5443 return 1;
5444
5445 return 0;
5446}
71204a50 5447#endif /* MDASSEMBLE */
28bce06f 5448
1e5c6983
DW
5449static int is_rebuilding(struct imsm_dev *dev)
5450{
5451 struct imsm_map *migr_map;
5452
5453 if (!dev->vol.migr_state)
5454 return 0;
5455
5456 if (migr_type(dev) != MIGR_REBUILD)
5457 return 0;
5458
5459 migr_map = get_imsm_map(dev, 1);
5460
5461 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5462 return 1;
5463 else
5464 return 0;
5465}
5466
c47b0ff6
AK
5467static void update_recovery_start(struct intel_super *super,
5468 struct imsm_dev *dev,
5469 struct mdinfo *array)
1e5c6983
DW
5470{
5471 struct mdinfo *rebuild = NULL;
5472 struct mdinfo *d;
5473 __u32 units;
5474
5475 if (!is_rebuilding(dev))
5476 return;
5477
5478 /* Find the rebuild target, but punt on the dual rebuild case */
5479 for (d = array->devs; d; d = d->next)
5480 if (d->recovery_start == 0) {
5481 if (rebuild)
5482 return;
5483 rebuild = d;
5484 }
5485
4363fd80
DW
5486 if (!rebuild) {
5487 /* (?) none of the disks are marked with
5488 * IMSM_ORD_REBUILD, so assume they are missing and the
5489 * disk_ord_tbl was not correctly updated
5490 */
5491 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5492 return;
5493 }
5494
1e5c6983 5495 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5496 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5497}
5498
9e2d750d 5499#ifndef MDASSEMBLE
276d77db 5500static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 5501#endif
1e5c6983 5502
00bbdbda 5503static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5504{
4f5bc454
DW
5505 /* Given a container loaded by load_super_imsm_all,
5506 * extract information about all the arrays into
5507 * an mdinfo tree.
00bbdbda 5508 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5509 *
5510 * For each imsm_dev create an mdinfo, fill it in,
5511 * then look for matching devices in super->disks
5512 * and create appropriate device mdinfo.
5513 */
5514 struct intel_super *super = st->sb;
949c47a0 5515 struct imsm_super *mpb = super->anchor;
4f5bc454 5516 struct mdinfo *rest = NULL;
00bbdbda 5517 unsigned int i;
a06d022d 5518 int bbm_errors = 0;
abef11a3
AK
5519 struct dl *d;
5520 int spare_disks = 0;
cdddbdbc 5521
19482bcc
AK
5522 /* do not assemble arrays when not all attributes are supported */
5523 if (imsm_check_attributes(mpb->attributes) == 0) {
5524 fprintf(stderr, Name ": IMSM metadata loading not allowed "
5525 "due to attributes incompatibility.\n");
5526 return NULL;
5527 }
5528
a06d022d
KW
5529 /* check for bad blocks */
5530 if (imsm_bbm_log_size(super->anchor))
5531 bbm_errors = 1;
604b746f 5532
abef11a3
AK
5533 /* count spare devices, not used in maps
5534 */
5535 for (d = super->disks; d; d = d->next)
5536 if (d->index == -1)
5537 spare_disks++;
5538
4f5bc454 5539 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5540 struct imsm_dev *dev;
5541 struct imsm_map *map;
86e3692b 5542 struct imsm_map *map2;
4f5bc454 5543 struct mdinfo *this;
2db86302 5544 int slot, chunk;
00bbdbda
N
5545 char *ep;
5546
5547 if (subarray &&
5548 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5549 continue;
5550
5551 dev = get_imsm_dev(super, i);
5552 map = get_imsm_map(dev, 0);
86e3692b 5553 map2 = get_imsm_map(dev, 1);
4f5bc454 5554
1ce0101c
DW
5555 /* do not publish arrays that are in the middle of an
5556 * unsupported migration
5557 */
5558 if (dev->vol.migr_state &&
28bce06f 5559 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5560 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5561 " unsupported migration in progress\n",
5562 dev->volume);
5563 continue;
5564 }
2db86302
LM
5565 /* do not publish arrays that are not support by controller's
5566 * OROM/EFI
5567 */
1ce0101c 5568
2db86302 5569 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
7b0bbd0f 5570#ifndef MDASSEMBLE
2db86302
LM
5571 if (!validate_geometry_imsm_orom(super,
5572 get_imsm_raid_level(map), /* RAID level */
5573 imsm_level_to_layout(get_imsm_raid_level(map)),
5574 map->num_members, /* raid disks */
5575 &chunk,
5576 1 /* verbose */)) {
5577 fprintf(stderr, Name ": RAID gemetry validation failed. "
5578 "Cannot proceed with the action(s).\n");
5579 continue;
5580 }
7b0bbd0f 5581#endif /* MDASSEMBLE */
4f5bc454 5582 this = malloc(sizeof(*this));
0fbd635c 5583 if (!this) {
cf1be220 5584 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5585 sizeof(*this));
5586 break;
5587 }
4f5bc454 5588
301406c9 5589 super->current_vol = i;
a5d85af7 5590 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5591 this->next = rest;
4f5bc454 5592 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5593 unsigned long long recovery_start;
4f5bc454
DW
5594 struct mdinfo *info_d;
5595 struct dl *d;
5596 int idx;
9a1608e5 5597 int skip;
7eef0453 5598 __u32 ord;
4f5bc454 5599
9a1608e5 5600 skip = 0;
98130f40 5601 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5602 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5603 for (d = super->disks; d ; d = d->next)
5604 if (d->index == idx)
0fbd635c 5605 break;
4f5bc454 5606
1e5c6983 5607 recovery_start = MaxSector;
4f5bc454 5608 if (d == NULL)
9a1608e5 5609 skip = 1;
25ed7e59 5610 if (d && is_failed(&d->disk))
9a1608e5 5611 skip = 1;
7eef0453 5612 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5613 recovery_start = 0;
9a1608e5
DW
5614
5615 /*
5616 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5617 * reset resync start to avoid a dirty-degraded
5618 * situation when performing the intial sync
9a1608e5
DW
5619 *
5620 * FIXME handle dirty degraded
5621 */
1e5c6983 5622 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5623 this->resync_start = MaxSector;
9a1608e5
DW
5624 if (skip)
5625 continue;
4f5bc454 5626
1e5c6983 5627 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5628 if (!info_d) {
5629 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5630 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5631 info_d = this->devs;
5632 while (info_d) {
5633 struct mdinfo *d = info_d->next;
5634
5635 free(info_d);
5636 info_d = d;
5637 }
9a1608e5
DW
5638 free(this);
5639 this = rest;
5640 break;
5641 }
4f5bc454
DW
5642 info_d->next = this->devs;
5643 this->devs = info_d;
5644
4f5bc454
DW
5645 info_d->disk.number = d->index;
5646 info_d->disk.major = d->major;
5647 info_d->disk.minor = d->minor;
5648 info_d->disk.raid_disk = slot;
1e5c6983 5649 info_d->recovery_start = recovery_start;
86e3692b
AK
5650 if (map2) {
5651 if (slot < map2->num_members)
5652 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5653 else
5654 this->array.spare_disks++;
86e3692b
AK
5655 } else {
5656 if (slot < map->num_members)
5657 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5658 else
5659 this->array.spare_disks++;
86e3692b 5660 }
1e5c6983
DW
5661 if (info_d->recovery_start == MaxSector)
5662 this->array.working_disks++;
4f5bc454
DW
5663
5664 info_d->events = __le32_to_cpu(mpb->generation_num);
5665 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5666 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5667 }
1e5c6983 5668 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5669 update_recovery_start(super, dev, this);
abef11a3 5670 this->array.spare_disks += spare_disks;
276d77db 5671
9e2d750d 5672#ifndef MDASSEMBLE
276d77db
AK
5673 /* check for reshape */
5674 if (this->reshape_active == 1)
5675 recover_backup_imsm(st, this);
9e2d750d 5676#endif
9a1608e5 5677 rest = this;
4f5bc454
DW
5678 }
5679
a06d022d
KW
5680 /* if array has bad blocks, set suitable bit in array status */
5681 if (bbm_errors)
5682 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5683
4f5bc454 5684 return rest;
cdddbdbc
DW
5685}
5686
845dea95 5687
fb49eef2 5688static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 5689{
a965f303 5690 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
5691
5692 if (!failed)
3393c6af
DW
5693 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5694 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5695
5696 switch (get_imsm_raid_level(map)) {
5697 case 0:
5698 return IMSM_T_STATE_FAILED;
5699 break;
5700 case 1:
5701 if (failed < map->num_members)
5702 return IMSM_T_STATE_DEGRADED;
5703 else
5704 return IMSM_T_STATE_FAILED;
5705 break;
5706 case 10:
5707 {
5708 /**
c92a2527
DW
5709 * check to see if any mirrors have failed, otherwise we
5710 * are degraded. Even numbered slots are mirrored on
5711 * slot+1
c2a1e7da 5712 */
c2a1e7da 5713 int i;
d9b420a5
N
5714 /* gcc -Os complains that this is unused */
5715 int insync = insync;
c2a1e7da
DW
5716
5717 for (i = 0; i < map->num_members; i++) {
98130f40 5718 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5719 int idx = ord_to_idx(ord);
5720 struct imsm_disk *disk;
c2a1e7da 5721
c92a2527
DW
5722 /* reset the potential in-sync count on even-numbered
5723 * slots. num_copies is always 2 for imsm raid10
5724 */
5725 if ((i & 1) == 0)
5726 insync = 2;
c2a1e7da 5727
c92a2527 5728 disk = get_imsm_disk(super, idx);
25ed7e59 5729 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5730 insync--;
c2a1e7da 5731
c92a2527
DW
5732 /* no in-sync disks left in this mirror the
5733 * array has failed
5734 */
5735 if (insync == 0)
5736 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5737 }
5738
5739 return IMSM_T_STATE_DEGRADED;
5740 }
5741 case 5:
5742 if (failed < 2)
5743 return IMSM_T_STATE_DEGRADED;
5744 else
5745 return IMSM_T_STATE_FAILED;
5746 break;
5747 default:
5748 break;
5749 }
5750
5751 return map->map_state;
5752}
5753
ff077194 5754static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
5755{
5756 int i;
5757 int failed = 0;
5758 struct imsm_disk *disk;
ff077194 5759 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
5760 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5761 __u32 ord;
5762 int idx;
c2a1e7da 5763
0556e1a2
DW
5764 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5765 * disks that are being rebuilt. New failures are recorded to
5766 * map[0]. So we look through all the disks we started with and
5767 * see if any failures are still present, or if any new ones
5768 * have arrived
5769 *
5770 * FIXME add support for online capacity expansion and
5771 * raid-level-migration
5772 */
5773 for (i = 0; i < prev->num_members; i++) {
5774 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5775 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5776 idx = ord_to_idx(ord);
c2a1e7da 5777
949c47a0 5778 disk = get_imsm_disk(super, idx);
25ed7e59 5779 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 5780 failed++;
c2a1e7da
DW
5781 }
5782
5783 return failed;
845dea95
NB
5784}
5785
97b4d0e9
DW
5786#ifndef MDASSEMBLE
5787static int imsm_open_new(struct supertype *c, struct active_array *a,
5788 char *inst)
5789{
5790 struct intel_super *super = c->sb;
5791 struct imsm_super *mpb = super->anchor;
5792
5793 if (atoi(inst) >= mpb->num_raid_devs) {
5794 fprintf(stderr, "%s: subarry index %d, out of range\n",
5795 __func__, atoi(inst));
5796 return -ENODEV;
5797 }
5798
5799 dprintf("imsm: open_new %s\n", inst);
5800 a->info.container_member = atoi(inst);
5801 return 0;
5802}
5803
0c046afd
DW
5804static int is_resyncing(struct imsm_dev *dev)
5805{
5806 struct imsm_map *migr_map;
5807
5808 if (!dev->vol.migr_state)
5809 return 0;
5810
1484e727
DW
5811 if (migr_type(dev) == MIGR_INIT ||
5812 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
5813 return 1;
5814
4c9bc37b
AK
5815 if (migr_type(dev) == MIGR_GEN_MIGR)
5816 return 0;
5817
0c046afd
DW
5818 migr_map = get_imsm_map(dev, 1);
5819
4c9bc37b
AK
5820 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5821 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
5822 return 1;
5823 else
5824 return 0;
5825}
5826
0556e1a2
DW
5827/* return true if we recorded new information */
5828static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 5829{
0556e1a2
DW
5830 __u32 ord;
5831 int slot;
5832 struct imsm_map *map;
5833
5834 /* new failures are always set in map[0] */
5835 map = get_imsm_map(dev, 0);
5836
5837 slot = get_imsm_disk_slot(map, idx);
5838 if (slot < 0)
5839 return 0;
5840
5841 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 5842 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
5843 return 0;
5844
f2f27e63 5845 disk->status |= FAILED_DISK;
0556e1a2 5846 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
f21e18ca 5847 if (map->failed_disk_num == 0xff)
0556e1a2
DW
5848 map->failed_disk_num = slot;
5849 return 1;
5850}
5851
5852static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5853{
5854 mark_failure(dev, disk, idx);
5855
5856 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5857 return;
5858
47ee5a45
DW
5859 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5860 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5861}
5862
33414a01
DW
5863static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5864{
5865 __u8 map_state;
5866 struct dl *dl;
5867 int failed;
5868
5869 if (!super->missing)
5870 return;
5871 failed = imsm_count_failed(super, dev);
5872 map_state = imsm_check_degraded(super, dev, failed);
5873
5874 dprintf("imsm: mark missing\n");
5875 end_migration(dev, map_state);
5876 for (dl = super->missing; dl; dl = dl->next)
5877 mark_missing(dev, &dl->disk, dl->index);
5878 super->updates_pending++;
5879}
5880
70bdf0dc
AK
5881static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5882{
5883 int used_disks = imsm_num_data_members(dev, 0);
5884 unsigned long long array_blocks;
5885 struct imsm_map *map;
5886
5887 if (used_disks == 0) {
5888 /* when problems occures
5889 * return current array_blocks value
5890 */
5891 array_blocks = __le32_to_cpu(dev->size_high);
5892 array_blocks = array_blocks << 32;
5893 array_blocks += __le32_to_cpu(dev->size_low);
5894
5895 return array_blocks;
5896 }
5897
5898 /* set array size in metadata
5899 */
5900 map = get_imsm_map(dev, 0);
5901 array_blocks = map->blocks_per_member * used_disks;
5902
5903 /* round array size down to closest MB
5904 */
5905 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5906 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5907 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5908
5909 return array_blocks;
5910}
5911
28bce06f
AK
5912static void imsm_set_disk(struct active_array *a, int n, int state);
5913
0e2d1a4e
AK
5914static void imsm_progress_container_reshape(struct intel_super *super)
5915{
5916 /* if no device has a migr_state, but some device has a
5917 * different number of members than the previous device, start
5918 * changing the number of devices in this device to match
5919 * previous.
5920 */
5921 struct imsm_super *mpb = super->anchor;
5922 int prev_disks = -1;
5923 int i;
1dfaa380 5924 int copy_map_size;
0e2d1a4e
AK
5925
5926 for (i = 0; i < mpb->num_raid_devs; i++) {
5927 struct imsm_dev *dev = get_imsm_dev(super, i);
5928 struct imsm_map *map = get_imsm_map(dev, 0);
5929 struct imsm_map *map2;
5930 int prev_num_members;
0e2d1a4e
AK
5931
5932 if (dev->vol.migr_state)
5933 return;
5934
5935 if (prev_disks == -1)
5936 prev_disks = map->num_members;
5937 if (prev_disks == map->num_members)
5938 continue;
5939
5940 /* OK, this array needs to enter reshape mode.
5941 * i.e it needs a migr_state
5942 */
5943
1dfaa380 5944 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
5945 prev_num_members = map->num_members;
5946 map->num_members = prev_disks;
5947 dev->vol.migr_state = 1;
5948 dev->vol.curr_migr_unit = 0;
5949 dev->vol.migr_type = MIGR_GEN_MIGR;
5950 for (i = prev_num_members;
5951 i < map->num_members; i++)
5952 set_imsm_ord_tbl_ent(map, i, i);
5953 map2 = get_imsm_map(dev, 1);
5954 /* Copy the current map */
1dfaa380 5955 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
5956 map2->num_members = prev_num_members;
5957
70bdf0dc 5958 imsm_set_array_size(dev);
0e2d1a4e
AK
5959 super->updates_pending++;
5960 }
5961}
5962
aad6f216 5963/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
5964 * states are handled in imsm_set_disk() with one exception, when a
5965 * resync is stopped due to a new failure this routine will set the
5966 * 'degraded' state for the array.
5967 */
01f157d7 5968static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
5969{
5970 int inst = a->info.container_member;
5971 struct intel_super *super = a->container->sb;
949c47a0 5972 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 5973 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
5974 int failed = imsm_count_failed(super, dev);
5975 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 5976 __u32 blocks_per_unit;
a862209d 5977
1af97990
AK
5978 if (dev->vol.migr_state &&
5979 dev->vol.migr_type == MIGR_GEN_MIGR) {
5980 /* array state change is blocked due to reshape action
aad6f216
N
5981 * We might need to
5982 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5983 * - finish the reshape (if last_checkpoint is big and action != reshape)
5984 * - update curr_migr_unit
1af97990 5985 */
aad6f216
N
5986 if (a->curr_action == reshape) {
5987 /* still reshaping, maybe update curr_migr_unit */
633b5610 5988 goto mark_checkpoint;
aad6f216
N
5989 } else {
5990 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5991 /* for some reason we aborted the reshape.
b66e591b
AK
5992 *
5993 * disable automatic metadata rollback
5994 * user action is required to recover process
aad6f216 5995 */
b66e591b 5996 if (0) {
aad6f216
N
5997 struct imsm_map *map2 = get_imsm_map(dev, 1);
5998 dev->vol.migr_state = 0;
5999 dev->vol.migr_type = 0;
6000 dev->vol.curr_migr_unit = 0;
6001 memcpy(map, map2, sizeof_imsm_map(map2));
6002 super->updates_pending++;
b66e591b 6003 }
aad6f216
N
6004 }
6005 if (a->last_checkpoint >= a->info.component_size) {
6006 unsigned long long array_blocks;
6007 int used_disks;
e154ced3 6008 struct mdinfo *mdi;
aad6f216 6009
9653001d 6010 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
6011 if (used_disks > 0) {
6012 array_blocks =
6013 map->blocks_per_member *
6014 used_disks;
6015 /* round array size down to closest MB
6016 */
6017 array_blocks = (array_blocks
6018 >> SECT_PER_MB_SHIFT)
6019 << SECT_PER_MB_SHIFT;
d55adef9
AK
6020 a->info.custom_array_size = array_blocks;
6021 /* encourage manager to update array
6022 * size
6023 */
e154ced3 6024
d55adef9 6025 a->check_reshape = 1;
633b5610 6026 }
e154ced3
AK
6027 /* finalize online capacity expansion/reshape */
6028 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6029 imsm_set_disk(a,
6030 mdi->disk.raid_disk,
6031 mdi->curr_state);
6032
0e2d1a4e 6033 imsm_progress_container_reshape(super);
e154ced3 6034 }
aad6f216 6035 }
1af97990
AK
6036 }
6037
47ee5a45 6038 /* before we activate this array handle any missing disks */
33414a01
DW
6039 if (consistent == 2)
6040 handle_missing(super, dev);
1e5c6983 6041
0c046afd 6042 if (consistent == 2 &&
b7941fd6 6043 (!is_resync_complete(&a->info) ||
0c046afd
DW
6044 map_state != IMSM_T_STATE_NORMAL ||
6045 dev->vol.migr_state))
01f157d7 6046 consistent = 0;
272906ef 6047
b7941fd6 6048 if (is_resync_complete(&a->info)) {
0c046afd 6049 /* complete intialization / resync,
0556e1a2
DW
6050 * recovery and interrupted recovery is completed in
6051 * ->set_disk
0c046afd
DW
6052 */
6053 if (is_resyncing(dev)) {
6054 dprintf("imsm: mark resync done\n");
f8f603f1 6055 end_migration(dev, map_state);
115c3803 6056 super->updates_pending++;
484240d8 6057 a->last_checkpoint = 0;
115c3803 6058 }
0c046afd
DW
6059 } else if (!is_resyncing(dev) && !failed) {
6060 /* mark the start of the init process if nothing is failed */
b7941fd6 6061 dprintf("imsm: mark resync start\n");
1484e727 6062 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 6063 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 6064 else
8e59f3d8 6065 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 6066 super->updates_pending++;
115c3803 6067 }
a862209d 6068
633b5610 6069mark_checkpoint:
5b83bacf
AK
6070 /* skip checkpointing for general migration,
6071 * it is controlled in mdadm
6072 */
6073 if (is_gen_migration(dev))
6074 goto skip_mark_checkpoint;
6075
1e5c6983 6076 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 6077 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 6078 if (blocks_per_unit) {
1e5c6983
DW
6079 __u32 units32;
6080 __u64 units;
6081
4f0a7acc 6082 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
6083 units32 = units;
6084
6085 /* check that we did not overflow 32-bits, and that
6086 * curr_migr_unit needs updating
6087 */
6088 if (units32 == units &&
bfd80a56 6089 units32 != 0 &&
1e5c6983
DW
6090 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6091 dprintf("imsm: mark checkpoint (%u)\n", units32);
6092 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6093 super->updates_pending++;
6094 }
6095 }
f8f603f1 6096
5b83bacf 6097skip_mark_checkpoint:
3393c6af 6098 /* mark dirty / clean */
0c046afd 6099 if (dev->vol.dirty != !consistent) {
b7941fd6 6100 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
6101 if (consistent)
6102 dev->vol.dirty = 0;
6103 else
6104 dev->vol.dirty = 1;
a862209d
DW
6105 super->updates_pending++;
6106 }
28bce06f 6107
01f157d7 6108 return consistent;
a862209d
DW
6109}
6110
8d45d196 6111static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 6112{
8d45d196
DW
6113 int inst = a->info.container_member;
6114 struct intel_super *super = a->container->sb;
949c47a0 6115 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6116 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 6117 struct imsm_disk *disk;
0c046afd 6118 int failed;
b10b37b8 6119 __u32 ord;
0c046afd 6120 __u8 map_state;
8d45d196
DW
6121
6122 if (n > map->num_members)
6123 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6124 n, map->num_members - 1);
6125
6126 if (n < 0)
6127 return;
6128
4e6e574a 6129 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 6130
98130f40 6131 ord = get_imsm_ord_tbl_ent(dev, n, -1);
b10b37b8 6132 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 6133
5802a811 6134 /* check for new failures */
0556e1a2
DW
6135 if (state & DS_FAULTY) {
6136 if (mark_failure(dev, disk, ord_to_idx(ord)))
6137 super->updates_pending++;
8d45d196 6138 }
47ee5a45 6139
19859edc 6140 /* check if in_sync */
0556e1a2 6141 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
6142 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6143
6144 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6145 super->updates_pending++;
6146 }
8d45d196 6147
0c046afd
DW
6148 failed = imsm_count_failed(super, dev);
6149 map_state = imsm_check_degraded(super, dev, failed);
5802a811 6150
0c046afd
DW
6151 /* check if recovery complete, newly degraded, or failed */
6152 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 6153 end_migration(dev, map_state);
0556e1a2
DW
6154 map = get_imsm_map(dev, 0);
6155 map->failed_disk_num = ~0;
0c046afd 6156 super->updates_pending++;
484240d8 6157 a->last_checkpoint = 0;
0c046afd
DW
6158 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6159 map->map_state != map_state &&
6160 !dev->vol.migr_state) {
6161 dprintf("imsm: mark degraded\n");
6162 map->map_state = map_state;
6163 super->updates_pending++;
484240d8 6164 a->last_checkpoint = 0;
0c046afd
DW
6165 } else if (map_state == IMSM_T_STATE_FAILED &&
6166 map->map_state != map_state) {
6167 dprintf("imsm: mark failed\n");
f8f603f1 6168 end_migration(dev, map_state);
0c046afd 6169 super->updates_pending++;
484240d8 6170 a->last_checkpoint = 0;
28bce06f
AK
6171 } else if (is_gen_migration(dev)) {
6172 dprintf("imsm: Detected General Migration in state: ");
6173 if (map_state == IMSM_T_STATE_NORMAL) {
6174 end_migration(dev, map_state);
6175 map = get_imsm_map(dev, 0);
6176 map->failed_disk_num = ~0;
6177 dprintf("normal\n");
6178 } else {
6179 if (map_state == IMSM_T_STATE_DEGRADED) {
6180 printf("degraded\n");
6181 end_migration(dev, map_state);
6182 } else {
6183 dprintf("failed\n");
6184 }
6185 map->map_state = map_state;
6186 }
6187 super->updates_pending++;
5802a811 6188 }
845dea95
NB
6189}
6190
f796af5d 6191static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6192{
f796af5d 6193 void *buf = mpb;
c2a1e7da
DW
6194 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6195 unsigned long long dsize;
6196 unsigned long long sectors;
6197
6198 get_dev_size(fd, NULL, &dsize);
6199
272f648f
DW
6200 if (mpb_size > 512) {
6201 /* -1 to account for anchor */
6202 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6203
272f648f
DW
6204 /* write the extended mpb to the sectors preceeding the anchor */
6205 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6206 return 1;
c2a1e7da 6207
f21e18ca
N
6208 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6209 != 512 * sectors)
272f648f
DW
6210 return 1;
6211 }
c2a1e7da 6212
272f648f
DW
6213 /* first block is stored on second to last sector of the disk */
6214 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6215 return 1;
6216
f796af5d 6217 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6218 return 1;
6219
c2a1e7da
DW
6220 return 0;
6221}
6222
2e735d19 6223static void imsm_sync_metadata(struct supertype *container)
845dea95 6224{
2e735d19 6225 struct intel_super *super = container->sb;
c2a1e7da 6226
1a64be56 6227 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6228 if (!super->updates_pending)
6229 return;
6230
36988a3d 6231 write_super_imsm(container, 0);
c2a1e7da
DW
6232
6233 super->updates_pending = 0;
845dea95
NB
6234}
6235
272906ef
DW
6236static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6237{
6238 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6239 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6240 struct dl *dl;
6241
6242 for (dl = super->disks; dl; dl = dl->next)
6243 if (dl->index == i)
6244 break;
6245
25ed7e59 6246 if (dl && is_failed(&dl->disk))
272906ef
DW
6247 dl = NULL;
6248
6249 if (dl)
6250 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6251
6252 return dl;
6253}
6254
a20d2ba5 6255static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6256 struct active_array *a, int activate_new,
6257 struct mdinfo *additional_test_list)
272906ef
DW
6258{
6259 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6260 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6261 struct imsm_super *mpb = super->anchor;
6262 struct imsm_map *map;
272906ef
DW
6263 unsigned long long pos;
6264 struct mdinfo *d;
6265 struct extent *ex;
a20d2ba5 6266 int i, j;
272906ef 6267 int found;
569cc43f
DW
6268 __u32 array_start = 0;
6269 __u32 array_end = 0;
272906ef 6270 struct dl *dl;
6c932028 6271 struct mdinfo *test_list;
272906ef
DW
6272
6273 for (dl = super->disks; dl; dl = dl->next) {
6274 /* If in this array, skip */
6275 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6276 if (d->state_fd >= 0 &&
6277 d->disk.major == dl->major &&
272906ef 6278 d->disk.minor == dl->minor) {
8ba77d32
AK
6279 dprintf("%x:%x already in array\n",
6280 dl->major, dl->minor);
272906ef
DW
6281 break;
6282 }
6283 if (d)
6284 continue;
6c932028
AK
6285 test_list = additional_test_list;
6286 while (test_list) {
6287 if (test_list->disk.major == dl->major &&
6288 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6289 dprintf("%x:%x already in additional test list\n",
6290 dl->major, dl->minor);
6291 break;
6292 }
6c932028 6293 test_list = test_list->next;
8ba77d32 6294 }
6c932028 6295 if (test_list)
8ba77d32 6296 continue;
272906ef 6297
e553d2a4 6298 /* skip in use or failed drives */
25ed7e59 6299 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6300 dl->index == -2) {
6301 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6302 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6303 continue;
6304 }
6305
a20d2ba5
DW
6306 /* skip pure spares when we are looking for partially
6307 * assimilated drives
6308 */
6309 if (dl->index == -1 && !activate_new)
6310 continue;
6311
272906ef 6312 /* Does this unused device have the requisite free space?
a20d2ba5 6313 * It needs to be able to cover all member volumes
272906ef
DW
6314 */
6315 ex = get_extents(super, dl);
6316 if (!ex) {
6317 dprintf("cannot get extents\n");
6318 continue;
6319 }
a20d2ba5
DW
6320 for (i = 0; i < mpb->num_raid_devs; i++) {
6321 dev = get_imsm_dev(super, i);
6322 map = get_imsm_map(dev, 0);
272906ef 6323
a20d2ba5
DW
6324 /* check if this disk is already a member of
6325 * this array
272906ef 6326 */
620b1713 6327 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6328 continue;
6329
6330 found = 0;
6331 j = 0;
6332 pos = 0;
6333 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6334 array_end = array_start +
6335 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6336
6337 do {
6338 /* check that we can start at pba_of_lba0 with
6339 * blocks_per_member of space
6340 */
329c8278 6341 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6342 found = 1;
6343 break;
6344 }
6345 pos = ex[j].start + ex[j].size;
6346 j++;
6347 } while (ex[j-1].size);
6348
6349 if (!found)
272906ef 6350 break;
a20d2ba5 6351 }
272906ef
DW
6352
6353 free(ex);
a20d2ba5 6354 if (i < mpb->num_raid_devs) {
329c8278
DW
6355 dprintf("%x:%x does not have %u to %u available\n",
6356 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6357 /* No room */
6358 continue;
a20d2ba5
DW
6359 }
6360 return dl;
272906ef
DW
6361 }
6362
6363 return dl;
6364}
6365
95d07a2c
LM
6366
6367static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6368{
6369 struct imsm_dev *dev2;
6370 struct imsm_map *map;
6371 struct dl *idisk;
6372 int slot;
6373 int idx;
6374 __u8 state;
6375
6376 dev2 = get_imsm_dev(cont->sb, dev_idx);
6377 if (dev2) {
6378 state = imsm_check_degraded(cont->sb, dev2, failed);
6379 if (state == IMSM_T_STATE_FAILED) {
6380 map = get_imsm_map(dev2, 0);
6381 if (!map)
6382 return 1;
6383 for (slot = 0; slot < map->num_members; slot++) {
6384 /*
6385 * Check if failed disks are deleted from intel
6386 * disk list or are marked to be deleted
6387 */
98130f40 6388 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6389 idisk = get_imsm_dl_disk(cont->sb, idx);
6390 /*
6391 * Do not rebuild the array if failed disks
6392 * from failed sub-array are not removed from
6393 * container.
6394 */
6395 if (idisk &&
6396 is_failed(&idisk->disk) &&
6397 (idisk->action != DISK_REMOVE))
6398 return 0;
6399 }
6400 }
6401 }
6402 return 1;
6403}
6404
88758e9d
DW
6405static struct mdinfo *imsm_activate_spare(struct active_array *a,
6406 struct metadata_update **updates)
6407{
6408 /**
d23fe947
DW
6409 * Find a device with unused free space and use it to replace a
6410 * failed/vacant region in an array. We replace failed regions one a
6411 * array at a time. The result is that a new spare disk will be added
6412 * to the first failed array and after the monitor has finished
6413 * propagating failures the remainder will be consumed.
88758e9d 6414 *
d23fe947
DW
6415 * FIXME add a capability for mdmon to request spares from another
6416 * container.
88758e9d
DW
6417 */
6418
6419 struct intel_super *super = a->container->sb;
88758e9d 6420 int inst = a->info.container_member;
949c47a0 6421 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6422 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6423 int failed = a->info.array.raid_disks;
6424 struct mdinfo *rv = NULL;
6425 struct mdinfo *d;
6426 struct mdinfo *di;
6427 struct metadata_update *mu;
6428 struct dl *dl;
6429 struct imsm_update_activate_spare *u;
6430 int num_spares = 0;
6431 int i;
95d07a2c 6432 int allowed;
88758e9d
DW
6433
6434 for (d = a->info.devs ; d ; d = d->next) {
6435 if ((d->curr_state & DS_FAULTY) &&
6436 d->state_fd >= 0)
6437 /* wait for Removal to happen */
6438 return NULL;
6439 if (d->state_fd >= 0)
6440 failed--;
6441 }
6442
6443 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6444 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990
AK
6445
6446 if (dev->vol.migr_state &&
6447 dev->vol.migr_type == MIGR_GEN_MIGR)
6448 /* No repair during migration */
6449 return NULL;
6450
89c67882
AK
6451 if (a->info.array.level == 4)
6452 /* No repair for takeovered array
6453 * imsm doesn't support raid4
6454 */
6455 return NULL;
6456
fb49eef2 6457 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
6458 return NULL;
6459
95d07a2c
LM
6460 /*
6461 * If there are any failed disks check state of the other volume.
6462 * Block rebuild if the another one is failed until failed disks
6463 * are removed from container.
6464 */
6465 if (failed) {
6466 dprintf("found failed disks in %s, check if there another"
6467 "failed sub-array.\n",
6468 dev->volume);
6469 /* check if states of the other volumes allow for rebuild */
6470 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6471 if (i != inst) {
6472 allowed = imsm_rebuild_allowed(a->container,
6473 i, failed);
6474 if (!allowed)
6475 return NULL;
6476 }
6477 }
6478 }
6479
88758e9d 6480 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6481 for (i = 0; i < a->info.array.raid_disks; i++) {
6482 for (d = a->info.devs ; d ; d = d->next)
6483 if (d->disk.raid_disk == i)
6484 break;
6485 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6486 if (d && (d->state_fd >= 0))
6487 continue;
6488
272906ef 6489 /*
a20d2ba5
DW
6490 * OK, this device needs recovery. Try to re-add the
6491 * previous occupant of this slot, if this fails see if
6492 * we can continue the assimilation of a spare that was
6493 * partially assimilated, finally try to activate a new
6494 * spare.
272906ef
DW
6495 */
6496 dl = imsm_readd(super, i, a);
6497 if (!dl)
8ba77d32 6498 dl = imsm_add_spare(super, i, a, 0, NULL);
a20d2ba5 6499 if (!dl)
8ba77d32 6500 dl = imsm_add_spare(super, i, a, 1, NULL);
272906ef
DW
6501 if (!dl)
6502 continue;
6503
6504 /* found a usable disk with enough space */
6505 di = malloc(sizeof(*di));
79244939
DW
6506 if (!di)
6507 continue;
272906ef
DW
6508 memset(di, 0, sizeof(*di));
6509
6510 /* dl->index will be -1 in the case we are activating a
6511 * pristine spare. imsm_process_update() will create a
6512 * new index in this case. Once a disk is found to be
6513 * failed in all member arrays it is kicked from the
6514 * metadata
6515 */
6516 di->disk.number = dl->index;
d23fe947 6517
272906ef
DW
6518 /* (ab)use di->devs to store a pointer to the device
6519 * we chose
6520 */
6521 di->devs = (struct mdinfo *) dl;
6522
6523 di->disk.raid_disk = i;
6524 di->disk.major = dl->major;
6525 di->disk.minor = dl->minor;
6526 di->disk.state = 0;
d23534e4 6527 di->recovery_start = 0;
272906ef
DW
6528 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6529 di->component_size = a->info.component_size;
6530 di->container_member = inst;
148acb7b 6531 super->random = random32();
272906ef
DW
6532 di->next = rv;
6533 rv = di;
6534 num_spares++;
6535 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6536 i, di->data_offset);
88758e9d 6537
272906ef 6538 break;
88758e9d
DW
6539 }
6540
6541 if (!rv)
6542 /* No spares found */
6543 return rv;
6544 /* Now 'rv' has a list of devices to return.
6545 * Create a metadata_update record to update the
6546 * disk_ord_tbl for the array
6547 */
6548 mu = malloc(sizeof(*mu));
79244939
DW
6549 if (mu) {
6550 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6551 if (mu->buf == NULL) {
6552 free(mu);
6553 mu = NULL;
6554 }
6555 }
6556 if (!mu) {
6557 while (rv) {
6558 struct mdinfo *n = rv->next;
6559
6560 free(rv);
6561 rv = n;
6562 }
6563 return NULL;
6564 }
6565
88758e9d 6566 mu->space = NULL;
cb23f1f4 6567 mu->space_list = NULL;
88758e9d
DW
6568 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6569 mu->next = *updates;
6570 u = (struct imsm_update_activate_spare *) mu->buf;
6571
6572 for (di = rv ; di ; di = di->next) {
6573 u->type = update_activate_spare;
d23fe947
DW
6574 u->dl = (struct dl *) di->devs;
6575 di->devs = NULL;
88758e9d
DW
6576 u->slot = di->disk.raid_disk;
6577 u->array = inst;
6578 u->next = u + 1;
6579 u++;
6580 }
6581 (u-1)->next = NULL;
6582 *updates = mu;
6583
6584 return rv;
6585}
6586
54c2c1ea 6587static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6588{
54c2c1ea
DW
6589 struct imsm_dev *dev = get_imsm_dev(super, idx);
6590 struct imsm_map *map = get_imsm_map(dev, 0);
6591 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6592 struct disk_info *inf = get_disk_info(u);
6593 struct imsm_disk *disk;
8273f55e
DW
6594 int i;
6595 int j;
8273f55e 6596
54c2c1ea 6597 for (i = 0; i < map->num_members; i++) {
98130f40 6598 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6599 for (j = 0; j < new_map->num_members; j++)
6600 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6601 return 1;
6602 }
6603
6604 return 0;
6605}
6606
1a64be56
LM
6607
6608static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6609{
6610 struct dl *dl = NULL;
6611 for (dl = super->disks; dl; dl = dl->next)
6612 if ((dl->major == major) && (dl->minor == minor))
6613 return dl;
6614 return NULL;
6615}
6616
6617static int remove_disk_super(struct intel_super *super, int major, int minor)
6618{
6619 struct dl *prev = NULL;
6620 struct dl *dl;
6621
6622 prev = NULL;
6623 for (dl = super->disks; dl; dl = dl->next) {
6624 if ((dl->major == major) && (dl->minor == minor)) {
6625 /* remove */
6626 if (prev)
6627 prev->next = dl->next;
6628 else
6629 super->disks = dl->next;
6630 dl->next = NULL;
6631 __free_imsm_disk(dl);
6632 dprintf("%s: removed %x:%x\n",
6633 __func__, major, minor);
6634 break;
6635 }
6636 prev = dl;
6637 }
6638 return 0;
6639}
6640
f21e18ca 6641static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6642
1a64be56
LM
6643static int add_remove_disk_update(struct intel_super *super)
6644{
6645 int check_degraded = 0;
6646 struct dl *disk = NULL;
6647 /* add/remove some spares to/from the metadata/contrainer */
6648 while (super->disk_mgmt_list) {
6649 struct dl *disk_cfg;
6650
6651 disk_cfg = super->disk_mgmt_list;
6652 super->disk_mgmt_list = disk_cfg->next;
6653 disk_cfg->next = NULL;
6654
6655 if (disk_cfg->action == DISK_ADD) {
6656 disk_cfg->next = super->disks;
6657 super->disks = disk_cfg;
6658 check_degraded = 1;
6659 dprintf("%s: added %x:%x\n",
6660 __func__, disk_cfg->major,
6661 disk_cfg->minor);
6662 } else if (disk_cfg->action == DISK_REMOVE) {
6663 dprintf("Disk remove action processed: %x.%x\n",
6664 disk_cfg->major, disk_cfg->minor);
6665 disk = get_disk_super(super,
6666 disk_cfg->major,
6667 disk_cfg->minor);
6668 if (disk) {
6669 /* store action status */
6670 disk->action = DISK_REMOVE;
6671 /* remove spare disks only */
6672 if (disk->index == -1) {
6673 remove_disk_super(super,
6674 disk_cfg->major,
6675 disk_cfg->minor);
6676 }
6677 }
6678 /* release allocate disk structure */
6679 __free_imsm_disk(disk_cfg);
6680 }
6681 }
6682 return check_degraded;
6683}
6684
a29911da
PC
6685
6686static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6687 struct intel_super *super,
6688 void ***space_list)
6689{
6690 struct intel_dev *id;
6691 void **tofree = NULL;
6692 int ret_val = 0;
6693
6694 dprintf("apply_reshape_migration_update()\n");
6695 if ((u->subdev < 0) ||
6696 (u->subdev > 1)) {
6697 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6698 return ret_val;
6699 }
6700 if ((space_list == NULL) || (*space_list == NULL)) {
6701 dprintf("imsm: Error: Memory is not allocated\n");
6702 return ret_val;
6703 }
6704
6705 for (id = super->devlist ; id; id = id->next) {
6706 if (id->index == (unsigned)u->subdev) {
6707 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6708 struct imsm_map *map;
6709 struct imsm_dev *new_dev =
6710 (struct imsm_dev *)*space_list;
6711 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6712 int to_state;
6713 struct dl *new_disk;
6714
6715 if (new_dev == NULL)
6716 return ret_val;
6717 *space_list = **space_list;
6718 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6719 map = get_imsm_map(new_dev, 0);
6720 if (migr_map) {
6721 dprintf("imsm: Error: migration in progress");
6722 return ret_val;
6723 }
6724
6725 to_state = map->map_state;
6726 if ((u->new_level == 5) && (map->raid_level == 0)) {
6727 map->num_members++;
6728 /* this should not happen */
6729 if (u->new_disks[0] < 0) {
6730 map->failed_disk_num =
6731 map->num_members - 1;
6732 to_state = IMSM_T_STATE_DEGRADED;
6733 } else
6734 to_state = IMSM_T_STATE_NORMAL;
6735 }
8e59f3d8 6736 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
6737 if (u->new_level > -1)
6738 map->raid_level = u->new_level;
6739 migr_map = get_imsm_map(new_dev, 1);
6740 if ((u->new_level == 5) &&
6741 (migr_map->raid_level == 0)) {
6742 int ord = map->num_members - 1;
6743 migr_map->num_members--;
6744 if (u->new_disks[0] < 0)
6745 ord |= IMSM_ORD_REBUILD;
6746 set_imsm_ord_tbl_ent(map,
6747 map->num_members - 1,
6748 ord);
6749 }
6750 id->dev = new_dev;
6751 tofree = (void **)dev;
6752
4bba0439
PC
6753 /* update chunk size
6754 */
6755 if (u->new_chunksize > 0)
6756 map->blocks_per_strip =
6757 __cpu_to_le16(u->new_chunksize * 2);
6758
a29911da
PC
6759 /* add disk
6760 */
6761 if ((u->new_level != 5) ||
6762 (migr_map->raid_level != 0) ||
6763 (migr_map->raid_level == map->raid_level))
6764 goto skip_disk_add;
6765
6766 if (u->new_disks[0] >= 0) {
6767 /* use passes spare
6768 */
6769 new_disk = get_disk_super(super,
6770 major(u->new_disks[0]),
6771 minor(u->new_disks[0]));
6772 dprintf("imsm: new disk for reshape is: %i:%i "
6773 "(%p, index = %i)\n",
6774 major(u->new_disks[0]),
6775 minor(u->new_disks[0]),
6776 new_disk, new_disk->index);
6777 if (new_disk == NULL)
6778 goto error_disk_add;
6779
6780 new_disk->index = map->num_members - 1;
6781 /* slot to fill in autolayout
6782 */
6783 new_disk->raiddisk = new_disk->index;
6784 new_disk->disk.status |= CONFIGURED_DISK;
6785 new_disk->disk.status &= ~SPARE_DISK;
6786 } else
6787 goto error_disk_add;
6788
6789skip_disk_add:
6790 *tofree = *space_list;
6791 /* calculate new size
6792 */
6793 imsm_set_array_size(new_dev);
6794
6795 ret_val = 1;
6796 }
6797 }
6798
6799 if (tofree)
6800 *space_list = tofree;
6801 return ret_val;
6802
6803error_disk_add:
6804 dprintf("Error: imsm: Cannot find disk.\n");
6805 return ret_val;
6806}
6807
6808
2e5dc010
N
6809static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6810 struct intel_super *super,
6811 void ***space_list)
6812{
6813 struct dl *new_disk;
6814 struct intel_dev *id;
6815 int i;
6816 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 6817 int disk_count = u->old_raid_disks;
2e5dc010
N
6818 void **tofree = NULL;
6819 int devices_to_reshape = 1;
6820 struct imsm_super *mpb = super->anchor;
6821 int ret_val = 0;
d098291a 6822 unsigned int dev_id;
2e5dc010 6823
ed7333bd 6824 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
6825
6826 /* enable spares to use in array */
6827 for (i = 0; i < delta_disks; i++) {
6828 new_disk = get_disk_super(super,
6829 major(u->new_disks[i]),
6830 minor(u->new_disks[i]));
ed7333bd
AK
6831 dprintf("imsm: new disk for reshape is: %i:%i "
6832 "(%p, index = %i)\n",
2e5dc010
N
6833 major(u->new_disks[i]), minor(u->new_disks[i]),
6834 new_disk, new_disk->index);
6835 if ((new_disk == NULL) ||
6836 ((new_disk->index >= 0) &&
6837 (new_disk->index < u->old_raid_disks)))
6838 goto update_reshape_exit;
ee4beede 6839 new_disk->index = disk_count++;
2e5dc010
N
6840 /* slot to fill in autolayout
6841 */
6842 new_disk->raiddisk = new_disk->index;
6843 new_disk->disk.status |=
6844 CONFIGURED_DISK;
6845 new_disk->disk.status &= ~SPARE_DISK;
6846 }
6847
ed7333bd
AK
6848 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6849 mpb->num_raid_devs);
2e5dc010
N
6850 /* manage changes in volume
6851 */
d098291a 6852 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
6853 void **sp = *space_list;
6854 struct imsm_dev *newdev;
6855 struct imsm_map *newmap, *oldmap;
6856
d098291a
AK
6857 for (id = super->devlist ; id; id = id->next) {
6858 if (id->index == dev_id)
6859 break;
6860 }
6861 if (id == NULL)
6862 break;
2e5dc010
N
6863 if (!sp)
6864 continue;
6865 *space_list = *sp;
6866 newdev = (void*)sp;
6867 /* Copy the dev, but not (all of) the map */
6868 memcpy(newdev, id->dev, sizeof(*newdev));
6869 oldmap = get_imsm_map(id->dev, 0);
6870 newmap = get_imsm_map(newdev, 0);
6871 /* Copy the current map */
6872 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6873 /* update one device only
6874 */
6875 if (devices_to_reshape) {
ed7333bd
AK
6876 dprintf("imsm: modifying subdev: %i\n",
6877 id->index);
2e5dc010
N
6878 devices_to_reshape--;
6879 newdev->vol.migr_state = 1;
6880 newdev->vol.curr_migr_unit = 0;
6881 newdev->vol.migr_type = MIGR_GEN_MIGR;
6882 newmap->num_members = u->new_raid_disks;
6883 for (i = 0; i < delta_disks; i++) {
6884 set_imsm_ord_tbl_ent(newmap,
6885 u->old_raid_disks + i,
6886 u->old_raid_disks + i);
6887 }
6888 /* New map is correct, now need to save old map
6889 */
6890 newmap = get_imsm_map(newdev, 1);
6891 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6892
70bdf0dc 6893 imsm_set_array_size(newdev);
2e5dc010
N
6894 }
6895
6896 sp = (void **)id->dev;
6897 id->dev = newdev;
6898 *sp = tofree;
6899 tofree = sp;
8e59f3d8
AK
6900
6901 /* Clear migration record */
6902 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 6903 }
819bc634
AK
6904 if (tofree)
6905 *space_list = tofree;
2e5dc010
N
6906 ret_val = 1;
6907
6908update_reshape_exit:
6909
6910 return ret_val;
6911}
6912
bb025c2f 6913static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
6914 struct intel_super *super,
6915 void ***space_list)
bb025c2f
KW
6916{
6917 struct imsm_dev *dev = NULL;
8ca6df95
KW
6918 struct intel_dev *dv;
6919 struct imsm_dev *dev_new;
bb025c2f
KW
6920 struct imsm_map *map;
6921 struct dl *dm, *du;
8ca6df95 6922 int i;
bb025c2f
KW
6923
6924 for (dv = super->devlist; dv; dv = dv->next)
6925 if (dv->index == (unsigned int)u->subarray) {
6926 dev = dv->dev;
6927 break;
6928 }
6929
6930 if (dev == NULL)
6931 return 0;
6932
6933 map = get_imsm_map(dev, 0);
6934
6935 if (u->direction == R10_TO_R0) {
43d5ec18
KW
6936 /* Number of failed disks must be half of initial disk number */
6937 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6938 return 0;
6939
bb025c2f
KW
6940 /* iterate through devices to mark removed disks as spare */
6941 for (dm = super->disks; dm; dm = dm->next) {
6942 if (dm->disk.status & FAILED_DISK) {
6943 int idx = dm->index;
6944 /* update indexes on the disk list */
6945/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6946 the index values will end up being correct.... NB */
6947 for (du = super->disks; du; du = du->next)
6948 if (du->index > idx)
6949 du->index--;
6950 /* mark as spare disk */
6951 dm->disk.status = SPARE_DISK;
6952 dm->index = -1;
6953 }
6954 }
bb025c2f
KW
6955 /* update map */
6956 map->num_members = map->num_members / 2;
6957 map->map_state = IMSM_T_STATE_NORMAL;
6958 map->num_domains = 1;
6959 map->raid_level = 0;
6960 map->failed_disk_num = -1;
6961 }
6962
8ca6df95
KW
6963 if (u->direction == R0_TO_R10) {
6964 void **space;
6965 /* update slots in current disk list */
6966 for (dm = super->disks; dm; dm = dm->next) {
6967 if (dm->index >= 0)
6968 dm->index *= 2;
6969 }
6970 /* create new *missing* disks */
6971 for (i = 0; i < map->num_members; i++) {
6972 space = *space_list;
6973 if (!space)
6974 continue;
6975 *space_list = *space;
6976 du = (void *)space;
6977 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
6978 du->fd = -1;
6979 du->minor = 0;
6980 du->major = 0;
6981 du->index = (i * 2) + 1;
6982 sprintf((char *)du->disk.serial,
6983 " MISSING_%d", du->index);
6984 sprintf((char *)du->serial,
6985 "MISSING_%d", du->index);
6986 du->next = super->missing;
6987 super->missing = du;
6988 }
6989 /* create new dev and map */
6990 space = *space_list;
6991 if (!space)
6992 return 0;
6993 *space_list = *space;
6994 dev_new = (void *)space;
6995 memcpy(dev_new, dev, sizeof(*dev));
6996 /* update new map */
6997 map = get_imsm_map(dev_new, 0);
8ca6df95 6998 map->num_members = map->num_members * 2;
1a2487c2 6999 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
7000 map->num_domains = 2;
7001 map->raid_level = 1;
7002 /* replace dev<->dev_new */
7003 dv->dev = dev_new;
7004 }
bb025c2f
KW
7005 /* update disk order table */
7006 for (du = super->disks; du; du = du->next)
7007 if (du->index >= 0)
7008 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 7009 for (du = super->missing; du; du = du->next)
1a2487c2
KW
7010 if (du->index >= 0) {
7011 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 7012 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 7013 }
bb025c2f
KW
7014
7015 return 1;
7016}
7017
e8319a19
DW
7018static void imsm_process_update(struct supertype *st,
7019 struct metadata_update *update)
7020{
7021 /**
7022 * crack open the metadata_update envelope to find the update record
7023 * update can be one of:
d195167d
AK
7024 * update_reshape_container_disks - all the arrays in the container
7025 * are being reshaped to have more devices. We need to mark
7026 * the arrays for general migration and convert selected spares
7027 * into active devices.
7028 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
7029 * device in an array, update the disk_ord_tbl. If this disk is
7030 * present in all member arrays then also clear the SPARE_DISK
7031 * flag
d195167d
AK
7032 * update_create_array
7033 * update_kill_array
7034 * update_rename_array
7035 * update_add_remove_disk
e8319a19
DW
7036 */
7037 struct intel_super *super = st->sb;
4d7b1503 7038 struct imsm_super *mpb;
e8319a19
DW
7039 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7040
4d7b1503
DW
7041 /* update requires a larger buf but the allocation failed */
7042 if (super->next_len && !super->next_buf) {
7043 super->next_len = 0;
7044 return;
7045 }
7046
7047 if (super->next_buf) {
7048 memcpy(super->next_buf, super->buf, super->len);
7049 free(super->buf);
7050 super->len = super->next_len;
7051 super->buf = super->next_buf;
7052
7053 super->next_len = 0;
7054 super->next_buf = NULL;
7055 }
7056
7057 mpb = super->anchor;
7058
e8319a19 7059 switch (type) {
0ec5d470
AK
7060 case update_general_migration_checkpoint: {
7061 struct intel_dev *id;
7062 struct imsm_update_general_migration_checkpoint *u =
7063 (void *)update->buf;
7064
7065 dprintf("imsm: process_update() "
7066 "for update_general_migration_checkpoint called\n");
7067
7068 /* find device under general migration */
7069 for (id = super->devlist ; id; id = id->next) {
7070 if (is_gen_migration(id->dev)) {
7071 id->dev->vol.curr_migr_unit =
7072 __cpu_to_le32(u->curr_migr_unit);
7073 super->updates_pending++;
7074 }
7075 }
7076 break;
7077 }
bb025c2f
KW
7078 case update_takeover: {
7079 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
7080 if (apply_takeover_update(u, super, &update->space_list)) {
7081 imsm_update_version_info(super);
bb025c2f 7082 super->updates_pending++;
1a2487c2 7083 }
bb025c2f
KW
7084 break;
7085 }
7086
78b10e66 7087 case update_reshape_container_disks: {
d195167d 7088 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
7089 if (apply_reshape_container_disks_update(
7090 u, super, &update->space_list))
7091 super->updates_pending++;
78b10e66
N
7092 break;
7093 }
48c5303a 7094 case update_reshape_migration: {
a29911da
PC
7095 struct imsm_update_reshape_migration *u = (void *)update->buf;
7096 if (apply_reshape_migration_update(
7097 u, super, &update->space_list))
7098 super->updates_pending++;
48c5303a
PC
7099 break;
7100 }
e8319a19
DW
7101 case update_activate_spare: {
7102 struct imsm_update_activate_spare *u = (void *) update->buf;
949c47a0 7103 struct imsm_dev *dev = get_imsm_dev(super, u->array);
a965f303 7104 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd 7105 struct imsm_map *migr_map;
e8319a19
DW
7106 struct active_array *a;
7107 struct imsm_disk *disk;
0c046afd 7108 __u8 to_state;
e8319a19 7109 struct dl *dl;
e8319a19 7110 unsigned int found;
0c046afd 7111 int failed;
98130f40 7112 int victim = get_imsm_disk_idx(dev, u->slot, -1);
e8319a19
DW
7113 int i;
7114
7115 for (dl = super->disks; dl; dl = dl->next)
d23fe947 7116 if (dl == u->dl)
e8319a19
DW
7117 break;
7118
7119 if (!dl) {
7120 fprintf(stderr, "error: imsm_activate_spare passed "
1f24f035
DW
7121 "an unknown disk (index: %d)\n",
7122 u->dl->index);
e8319a19
DW
7123 return;
7124 }
7125
7126 super->updates_pending++;
0c046afd
DW
7127 /* count failures (excluding rebuilds and the victim)
7128 * to determine map[0] state
7129 */
7130 failed = 0;
7131 for (i = 0; i < map->num_members; i++) {
7132 if (i == u->slot)
7133 continue;
98130f40
AK
7134 disk = get_imsm_disk(super,
7135 get_imsm_disk_idx(dev, i, -1));
25ed7e59 7136 if (!disk || is_failed(disk))
0c046afd
DW
7137 failed++;
7138 }
7139
d23fe947
DW
7140 /* adding a pristine spare, assign a new index */
7141 if (dl->index < 0) {
7142 dl->index = super->anchor->num_disks;
7143 super->anchor->num_disks++;
7144 }
d23fe947 7145 disk = &dl->disk;
f2f27e63
DW
7146 disk->status |= CONFIGURED_DISK;
7147 disk->status &= ~SPARE_DISK;
e8319a19 7148
0c046afd
DW
7149 /* mark rebuild */
7150 to_state = imsm_check_degraded(super, dev, failed);
7151 map->map_state = IMSM_T_STATE_DEGRADED;
8e59f3d8 7152 migrate(dev, super, to_state, MIGR_REBUILD);
0c046afd
DW
7153 migr_map = get_imsm_map(dev, 1);
7154 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7155 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
7156
148acb7b
DW
7157 /* update the family_num to mark a new container
7158 * generation, being careful to record the existing
7159 * family_num in orig_family_num to clean up after
7160 * earlier mdadm versions that neglected to set it.
7161 */
7162 if (mpb->orig_family_num == 0)
7163 mpb->orig_family_num = mpb->family_num;
7164 mpb->family_num += super->random;
7165
e8319a19
DW
7166 /* count arrays using the victim in the metadata */
7167 found = 0;
7168 for (a = st->arrays; a ; a = a->next) {
949c47a0 7169 dev = get_imsm_dev(super, a->info.container_member);
620b1713
DW
7170 map = get_imsm_map(dev, 0);
7171
7172 if (get_imsm_disk_slot(map, victim) >= 0)
7173 found++;
e8319a19
DW
7174 }
7175
24565c9a 7176 /* delete the victim if it is no longer being
e8319a19
DW
7177 * utilized anywhere
7178 */
e8319a19 7179 if (!found) {
ae6aad82 7180 struct dl **dlp;
24565c9a 7181
47ee5a45
DW
7182 /* We know that 'manager' isn't touching anything,
7183 * so it is safe to delete
7184 */
24565c9a 7185 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
ae6aad82
DW
7186 if ((*dlp)->index == victim)
7187 break;
47ee5a45
DW
7188
7189 /* victim may be on the missing list */
7190 if (!*dlp)
7191 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
7192 if ((*dlp)->index == victim)
7193 break;
24565c9a 7194 imsm_delete(super, dlp, victim);
e8319a19 7195 }
8273f55e
DW
7196 break;
7197 }
7198 case update_create_array: {
7199 /* someone wants to create a new array, we need to be aware of
7200 * a few races/collisions:
7201 * 1/ 'Create' called by two separate instances of mdadm
7202 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7203 * devices that have since been assimilated via
7204 * activate_spare.
7205 * In the event this update can not be carried out mdadm will
7206 * (FIX ME) notice that its update did not take hold.
7207 */
7208 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7209 struct intel_dev *dv;
8273f55e
DW
7210 struct imsm_dev *dev;
7211 struct imsm_map *map, *new_map;
7212 unsigned long long start, end;
7213 unsigned long long new_start, new_end;
7214 int i;
54c2c1ea
DW
7215 struct disk_info *inf;
7216 struct dl *dl;
8273f55e
DW
7217
7218 /* handle racing creates: first come first serve */
7219 if (u->dev_idx < mpb->num_raid_devs) {
7220 dprintf("%s: subarray %d already defined\n",
7221 __func__, u->dev_idx);
ba2de7ba 7222 goto create_error;
8273f55e
DW
7223 }
7224
7225 /* check update is next in sequence */
7226 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7227 dprintf("%s: can not create array %d expected index %d\n",
7228 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7229 goto create_error;
8273f55e
DW
7230 }
7231
a965f303 7232 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
7233 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7234 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7235 inf = get_disk_info(u);
8273f55e
DW
7236
7237 /* handle activate_spare versus create race:
7238 * check to make sure that overlapping arrays do not include
7239 * overalpping disks
7240 */
7241 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7242 dev = get_imsm_dev(super, i);
a965f303 7243 map = get_imsm_map(dev, 0);
8273f55e
DW
7244 start = __le32_to_cpu(map->pba_of_lba0);
7245 end = start + __le32_to_cpu(map->blocks_per_member);
7246 if ((new_start >= start && new_start <= end) ||
7247 (start >= new_start && start <= new_end))
54c2c1ea
DW
7248 /* overlap */;
7249 else
7250 continue;
7251
7252 if (disks_overlap(super, i, u)) {
8273f55e 7253 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7254 goto create_error;
8273f55e
DW
7255 }
7256 }
8273f55e 7257
949c47a0
DW
7258 /* check that prepare update was successful */
7259 if (!update->space) {
7260 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7261 goto create_error;
949c47a0
DW
7262 }
7263
54c2c1ea
DW
7264 /* check that all disks are still active before committing
7265 * changes. FIXME: could we instead handle this by creating a
7266 * degraded array? That's probably not what the user expects,
7267 * so better to drop this update on the floor.
7268 */
7269 for (i = 0; i < new_map->num_members; i++) {
7270 dl = serial_to_dl(inf[i].serial, super);
7271 if (!dl) {
7272 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7273 goto create_error;
54c2c1ea 7274 }
949c47a0
DW
7275 }
7276
8273f55e 7277 super->updates_pending++;
54c2c1ea
DW
7278
7279 /* convert spares to members and fixup ord_tbl */
7280 for (i = 0; i < new_map->num_members; i++) {
7281 dl = serial_to_dl(inf[i].serial, super);
7282 if (dl->index == -1) {
7283 dl->index = mpb->num_disks;
7284 mpb->num_disks++;
7285 dl->disk.status |= CONFIGURED_DISK;
7286 dl->disk.status &= ~SPARE_DISK;
7287 }
7288 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7289 }
7290
ba2de7ba
DW
7291 dv = update->space;
7292 dev = dv->dev;
949c47a0
DW
7293 update->space = NULL;
7294 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7295 dv->index = u->dev_idx;
7296 dv->next = super->devlist;
7297 super->devlist = dv;
8273f55e 7298 mpb->num_raid_devs++;
8273f55e 7299
4d1313e9 7300 imsm_update_version_info(super);
8273f55e 7301 break;
ba2de7ba
DW
7302 create_error:
7303 /* mdmon knows how to release update->space, but not
7304 * ((struct intel_dev *) update->space)->dev
7305 */
7306 if (update->space) {
7307 dv = update->space;
7308 free(dv->dev);
7309 }
8273f55e 7310 break;
e8319a19 7311 }
33414a01
DW
7312 case update_kill_array: {
7313 struct imsm_update_kill_array *u = (void *) update->buf;
7314 int victim = u->dev_idx;
7315 struct active_array *a;
7316 struct intel_dev **dp;
7317 struct imsm_dev *dev;
7318
7319 /* sanity check that we are not affecting the uuid of
7320 * active arrays, or deleting an active array
7321 *
7322 * FIXME when immutable ids are available, but note that
7323 * we'll also need to fixup the invalidated/active
7324 * subarray indexes in mdstat
7325 */
7326 for (a = st->arrays; a; a = a->next)
7327 if (a->info.container_member >= victim)
7328 break;
7329 /* by definition if mdmon is running at least one array
7330 * is active in the container, so checking
7331 * mpb->num_raid_devs is just extra paranoia
7332 */
7333 dev = get_imsm_dev(super, victim);
7334 if (a || !dev || mpb->num_raid_devs == 1) {
7335 dprintf("failed to delete subarray-%d\n", victim);
7336 break;
7337 }
7338
7339 for (dp = &super->devlist; *dp;)
f21e18ca 7340 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7341 *dp = (*dp)->next;
7342 } else {
f21e18ca 7343 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7344 (*dp)->index--;
7345 dp = &(*dp)->next;
7346 }
7347 mpb->num_raid_devs--;
7348 super->updates_pending++;
7349 break;
7350 }
aa534678
DW
7351 case update_rename_array: {
7352 struct imsm_update_rename_array *u = (void *) update->buf;
7353 char name[MAX_RAID_SERIAL_LEN+1];
7354 int target = u->dev_idx;
7355 struct active_array *a;
7356 struct imsm_dev *dev;
7357
7358 /* sanity check that we are not affecting the uuid of
7359 * an active array
7360 */
7361 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7362 name[MAX_RAID_SERIAL_LEN] = '\0';
7363 for (a = st->arrays; a; a = a->next)
7364 if (a->info.container_member == target)
7365 break;
7366 dev = get_imsm_dev(super, u->dev_idx);
7367 if (a || !dev || !check_name(super, name, 1)) {
7368 dprintf("failed to rename subarray-%d\n", target);
7369 break;
7370 }
7371
cdbe98cd 7372 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7373 super->updates_pending++;
7374 break;
7375 }
1a64be56 7376 case update_add_remove_disk: {
43dad3d6 7377 /* we may be able to repair some arrays if disks are
1a64be56
LM
7378 * being added, check teh status of add_remove_disk
7379 * if discs has been added.
7380 */
7381 if (add_remove_disk_update(super)) {
43dad3d6 7382 struct active_array *a;
072b727f
DW
7383
7384 super->updates_pending++;
1a64be56 7385 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7386 a->check_degraded = 1;
7387 }
43dad3d6 7388 break;
e8319a19 7389 }
1a64be56
LM
7390 default:
7391 fprintf(stderr, "error: unsuported process update type:"
7392 "(type: %d)\n", type);
7393 }
e8319a19 7394}
88758e9d 7395
bc0b9d34
PC
7396static struct mdinfo *get_spares_for_grow(struct supertype *st);
7397
8273f55e
DW
7398static void imsm_prepare_update(struct supertype *st,
7399 struct metadata_update *update)
7400{
949c47a0 7401 /**
4d7b1503
DW
7402 * Allocate space to hold new disk entries, raid-device entries or a new
7403 * mpb if necessary. The manager synchronously waits for updates to
7404 * complete in the monitor, so new mpb buffers allocated here can be
7405 * integrated by the monitor thread without worrying about live pointers
7406 * in the manager thread.
8273f55e 7407 */
949c47a0 7408 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7409 struct intel_super *super = st->sb;
7410 struct imsm_super *mpb = super->anchor;
7411 size_t buf_len;
7412 size_t len = 0;
949c47a0
DW
7413
7414 switch (type) {
0ec5d470
AK
7415 case update_general_migration_checkpoint:
7416 dprintf("imsm: prepare_update() "
7417 "for update_general_migration_checkpoint called\n");
7418 break;
abedf5fc
KW
7419 case update_takeover: {
7420 struct imsm_update_takeover *u = (void *)update->buf;
7421 if (u->direction == R0_TO_R10) {
7422 void **tail = (void **)&update->space_list;
7423 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7424 struct imsm_map *map = get_imsm_map(dev, 0);
7425 int num_members = map->num_members;
7426 void *space;
7427 int size, i;
7428 int err = 0;
7429 /* allocate memory for added disks */
7430 for (i = 0; i < num_members; i++) {
7431 size = sizeof(struct dl);
7432 space = malloc(size);
7433 if (!space) {
7434 err++;
7435 break;
7436 }
7437 *tail = space;
7438 tail = space;
7439 *tail = NULL;
7440 }
7441 /* allocate memory for new device */
7442 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7443 (num_members * sizeof(__u32));
7444 space = malloc(size);
7445 if (!space)
7446 err++;
7447 else {
7448 *tail = space;
7449 tail = space;
7450 *tail = NULL;
7451 }
7452 if (!err) {
7453 len = disks_to_mpb_size(num_members * 2);
7454 } else {
7455 /* if allocation didn't success, free buffer */
7456 while (update->space_list) {
7457 void **sp = update->space_list;
7458 update->space_list = *sp;
7459 free(sp);
7460 }
7461 }
7462 }
7463
7464 break;
7465 }
78b10e66 7466 case update_reshape_container_disks: {
d195167d
AK
7467 /* Every raid device in the container is about to
7468 * gain some more devices, and we will enter a
7469 * reconfiguration.
7470 * So each 'imsm_map' will be bigger, and the imsm_vol
7471 * will now hold 2 of them.
7472 * Thus we need new 'struct imsm_dev' allocations sized
7473 * as sizeof_imsm_dev but with more devices in both maps.
7474 */
7475 struct imsm_update_reshape *u = (void *)update->buf;
7476 struct intel_dev *dl;
7477 void **space_tail = (void**)&update->space_list;
7478
7479 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7480
7481 for (dl = super->devlist; dl; dl = dl->next) {
7482 int size = sizeof_imsm_dev(dl->dev, 1);
7483 void *s;
d677e0b8
AK
7484 if (u->new_raid_disks > u->old_raid_disks)
7485 size += sizeof(__u32)*2*
7486 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7487 s = malloc(size);
7488 if (!s)
7489 break;
7490 *space_tail = s;
7491 space_tail = s;
7492 *space_tail = NULL;
7493 }
7494
7495 len = disks_to_mpb_size(u->new_raid_disks);
7496 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7497 break;
7498 }
48c5303a 7499 case update_reshape_migration: {
bc0b9d34
PC
7500 /* for migration level 0->5 we need to add disks
7501 * so the same as for container operation we will copy
7502 * device to the bigger location.
7503 * in memory prepared device and new disk area are prepared
7504 * for usage in process update
7505 */
7506 struct imsm_update_reshape_migration *u = (void *)update->buf;
7507 struct intel_dev *id;
7508 void **space_tail = (void **)&update->space_list;
7509 int size;
7510 void *s;
7511 int current_level = -1;
7512
7513 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7514
7515 /* add space for bigger array in update
7516 */
7517 for (id = super->devlist; id; id = id->next) {
7518 if (id->index == (unsigned)u->subdev) {
7519 size = sizeof_imsm_dev(id->dev, 1);
7520 if (u->new_raid_disks > u->old_raid_disks)
7521 size += sizeof(__u32)*2*
7522 (u->new_raid_disks - u->old_raid_disks);
7523 s = malloc(size);
7524 if (!s)
7525 break;
7526 *space_tail = s;
7527 space_tail = s;
7528 *space_tail = NULL;
7529 break;
7530 }
7531 }
7532 if (update->space_list == NULL)
7533 break;
7534
7535 /* add space for disk in update
7536 */
7537 size = sizeof(struct dl);
7538 s = malloc(size);
7539 if (!s) {
7540 free(update->space_list);
7541 update->space_list = NULL;
7542 break;
7543 }
7544 *space_tail = s;
7545 space_tail = s;
7546 *space_tail = NULL;
7547
7548 /* add spare device to update
7549 */
7550 for (id = super->devlist ; id; id = id->next)
7551 if (id->index == (unsigned)u->subdev) {
7552 struct imsm_dev *dev;
7553 struct imsm_map *map;
7554
7555 dev = get_imsm_dev(super, u->subdev);
7556 map = get_imsm_map(dev, 0);
7557 current_level = map->raid_level;
7558 break;
7559 }
7560 if ((u->new_level == 5) && (u->new_level != current_level)) {
7561 struct mdinfo *spares;
7562
7563 spares = get_spares_for_grow(st);
7564 if (spares) {
7565 struct dl *dl;
7566 struct mdinfo *dev;
7567
7568 dev = spares->devs;
7569 if (dev) {
7570 u->new_disks[0] =
7571 makedev(dev->disk.major,
7572 dev->disk.minor);
7573 dl = get_disk_super(super,
7574 dev->disk.major,
7575 dev->disk.minor);
7576 dl->index = u->old_raid_disks;
7577 dev = dev->next;
7578 }
7579 sysfs_free(spares);
7580 }
7581 }
7582 len = disks_to_mpb_size(u->new_raid_disks);
7583 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7584 break;
7585 }
949c47a0
DW
7586 case update_create_array: {
7587 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7588 struct intel_dev *dv;
54c2c1ea
DW
7589 struct imsm_dev *dev = &u->dev;
7590 struct imsm_map *map = get_imsm_map(dev, 0);
7591 struct dl *dl;
7592 struct disk_info *inf;
7593 int i;
7594 int activate = 0;
949c47a0 7595
54c2c1ea
DW
7596 inf = get_disk_info(u);
7597 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7598 /* allocate a new super->devlist entry */
7599 dv = malloc(sizeof(*dv));
7600 if (dv) {
7601 dv->dev = malloc(len);
7602 if (dv->dev)
7603 update->space = dv;
7604 else {
7605 free(dv);
7606 update->space = NULL;
7607 }
7608 }
949c47a0 7609
54c2c1ea
DW
7610 /* count how many spares will be converted to members */
7611 for (i = 0; i < map->num_members; i++) {
7612 dl = serial_to_dl(inf[i].serial, super);
7613 if (!dl) {
7614 /* hmm maybe it failed?, nothing we can do about
7615 * it here
7616 */
7617 continue;
7618 }
7619 if (count_memberships(dl, super) == 0)
7620 activate++;
7621 }
7622 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7623 break;
7624 default:
7625 break;
7626 }
7627 }
8273f55e 7628
4d7b1503
DW
7629 /* check if we need a larger metadata buffer */
7630 if (super->next_buf)
7631 buf_len = super->next_len;
7632 else
7633 buf_len = super->len;
7634
7635 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7636 /* ok we need a larger buf than what is currently allocated
7637 * if this allocation fails process_update will notice that
7638 * ->next_len is set and ->next_buf is NULL
7639 */
7640 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7641 if (super->next_buf)
7642 free(super->next_buf);
7643
7644 super->next_len = buf_len;
1f45a8ad
DW
7645 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7646 memset(super->next_buf, 0, buf_len);
7647 else
4d7b1503
DW
7648 super->next_buf = NULL;
7649 }
8273f55e
DW
7650}
7651
ae6aad82 7652/* must be called while manager is quiesced */
f21e18ca 7653static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7654{
7655 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7656 struct dl *iter;
7657 struct imsm_dev *dev;
7658 struct imsm_map *map;
24565c9a
DW
7659 int i, j, num_members;
7660 __u32 ord;
ae6aad82 7661
24565c9a
DW
7662 dprintf("%s: deleting device[%d] from imsm_super\n",
7663 __func__, index);
ae6aad82
DW
7664
7665 /* shift all indexes down one */
7666 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7667 if (iter->index > (int)index)
ae6aad82 7668 iter->index--;
47ee5a45 7669 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7670 if (iter->index > (int)index)
47ee5a45 7671 iter->index--;
ae6aad82
DW
7672
7673 for (i = 0; i < mpb->num_raid_devs; i++) {
7674 dev = get_imsm_dev(super, i);
7675 map = get_imsm_map(dev, 0);
24565c9a
DW
7676 num_members = map->num_members;
7677 for (j = 0; j < num_members; j++) {
7678 /* update ord entries being careful not to propagate
7679 * ord-flags to the first map
7680 */
98130f40 7681 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7682
24565c9a
DW
7683 if (ord_to_idx(ord) <= index)
7684 continue;
ae6aad82 7685
24565c9a
DW
7686 map = get_imsm_map(dev, 0);
7687 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7688 map = get_imsm_map(dev, 1);
7689 if (map)
7690 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
7691 }
7692 }
7693
7694 mpb->num_disks--;
7695 super->updates_pending++;
24565c9a
DW
7696 if (*dlp) {
7697 struct dl *dl = *dlp;
7698
7699 *dlp = (*dlp)->next;
7700 __free_imsm_disk(dl);
7701 }
ae6aad82 7702}
9e2d750d 7703#endif /* MDASSEMBLE */
687629c2
AK
7704/*******************************************************************************
7705 * Function: open_backup_targets
7706 * Description: Function opens file descriptors for all devices given in
7707 * info->devs
7708 * Parameters:
7709 * info : general array info
7710 * raid_disks : number of disks
7711 * raid_fds : table of device's file descriptors
7712 * Returns:
7713 * 0 : success
7714 * -1 : fail
7715 ******************************************************************************/
7716int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7717{
7718 struct mdinfo *sd;
7719
7720 for (sd = info->devs ; sd ; sd = sd->next) {
7721 char *dn;
7722
7723 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7724 dprintf("disk is faulty!!\n");
7725 continue;
7726 }
7727
7728 if ((sd->disk.raid_disk >= raid_disks) ||
7729 (sd->disk.raid_disk < 0))
7730 continue;
7731
7732 dn = map_dev(sd->disk.major,
7733 sd->disk.minor, 1);
7734 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7735 if (raid_fds[sd->disk.raid_disk] < 0) {
7736 fprintf(stderr, "cannot open component\n");
7737 return -1;
7738 }
7739 }
7740 return 0;
7741}
7742
9e2d750d 7743#ifndef MDASSEMBLE
687629c2
AK
7744/*******************************************************************************
7745 * Function: init_migr_record_imsm
7746 * Description: Function inits imsm migration record
7747 * Parameters:
7748 * super : imsm internal array info
7749 * dev : device under migration
7750 * info : general array info to find the smallest device
7751 * Returns:
7752 * none
7753 ******************************************************************************/
7754void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7755 struct mdinfo *info)
7756{
7757 struct intel_super *super = st->sb;
7758 struct migr_record *migr_rec = super->migr_rec;
7759 int new_data_disks;
7760 unsigned long long dsize, dev_sectors;
7761 long long unsigned min_dev_sectors = -1LLU;
7762 struct mdinfo *sd;
7763 char nm[30];
7764 int fd;
7765 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7766 struct imsm_map *map_src = get_imsm_map(dev, 1);
7767 unsigned long long num_migr_units;
3ef4403c 7768 unsigned long long array_blocks;
687629c2
AK
7769
7770 memset(migr_rec, 0, sizeof(struct migr_record));
7771 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7772
7773 /* only ascending reshape supported now */
7774 migr_rec->ascending_migr = __cpu_to_le32(1);
7775
7776 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7777 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7778 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7779 new_data_disks = imsm_num_data_members(dev, 0);
7780 migr_rec->blocks_per_unit =
7781 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7782 migr_rec->dest_depth_per_unit =
7783 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 7784 array_blocks = info->component_size * new_data_disks;
687629c2
AK
7785 num_migr_units =
7786 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7787
7788 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7789 num_migr_units++;
7790 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7791
7792 migr_rec->post_migr_vol_cap = dev->size_low;
7793 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7794
7795
7796 /* Find the smallest dev */
7797 for (sd = info->devs ; sd ; sd = sd->next) {
7798 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7799 fd = dev_open(nm, O_RDONLY);
7800 if (fd < 0)
7801 continue;
7802 get_dev_size(fd, NULL, &dsize);
7803 dev_sectors = dsize / 512;
7804 if (dev_sectors < min_dev_sectors)
7805 min_dev_sectors = dev_sectors;
7806 close(fd);
7807 }
7808 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7809 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7810
7811 write_imsm_migr_rec(st);
7812
7813 return;
7814}
7815
7816/*******************************************************************************
7817 * Function: save_backup_imsm
7818 * Description: Function saves critical data stripes to Migration Copy Area
7819 * and updates the current migration unit status.
7820 * Use restore_stripes() to form a destination stripe,
7821 * and to write it to the Copy Area.
7822 * Parameters:
7823 * st : supertype information
aea93171 7824 * dev : imsm device that backup is saved for
687629c2
AK
7825 * info : general array info
7826 * buf : input buffer
687629c2
AK
7827 * length : length of data to backup (blocks_per_unit)
7828 * Returns:
7829 * 0 : success
7830 *, -1 : fail
7831 ******************************************************************************/
7832int save_backup_imsm(struct supertype *st,
7833 struct imsm_dev *dev,
7834 struct mdinfo *info,
7835 void *buf,
687629c2
AK
7836 int length)
7837{
7838 int rv = -1;
7839 struct intel_super *super = st->sb;
7840 unsigned long long *target_offsets = NULL;
7841 int *targets = NULL;
7842 int i;
7843 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7844 int new_disks = map_dest->num_members;
ab724b98
AK
7845 int dest_layout = 0;
7846 int dest_chunk;
d1877f69
AK
7847 unsigned long long start;
7848 int data_disks = imsm_num_data_members(dev, 0);
687629c2
AK
7849
7850 targets = malloc(new_disks * sizeof(int));
7851 if (!targets)
7852 goto abort;
7853
7e45b550
AK
7854 for (i = 0; i < new_disks; i++)
7855 targets[i] = -1;
7856
687629c2
AK
7857 target_offsets = malloc(new_disks * sizeof(unsigned long long));
7858 if (!target_offsets)
7859 goto abort;
7860
d1877f69 7861 start = info->reshape_progress * 512;
687629c2 7862 for (i = 0; i < new_disks; i++) {
687629c2
AK
7863 target_offsets[i] = (unsigned long long)
7864 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
7865 /* move back copy area adderss, it will be moved forward
7866 * in restore_stripes() using start input variable
7867 */
7868 target_offsets[i] -= start/data_disks;
687629c2
AK
7869 }
7870
7871 if (open_backup_targets(info, new_disks, targets))
7872 goto abort;
7873
68eb8bc6 7874 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
7875 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
7876
687629c2
AK
7877 if (restore_stripes(targets, /* list of dest devices */
7878 target_offsets, /* migration record offsets */
7879 new_disks,
ab724b98
AK
7880 dest_chunk,
7881 map_dest->raid_level,
7882 dest_layout,
7883 -1, /* source backup file descriptor */
7884 0, /* input buf offset
7885 * always 0 buf is already offseted */
d1877f69 7886 start,
687629c2
AK
7887 length,
7888 buf) != 0) {
7889 fprintf(stderr, Name ": Error restoring stripes\n");
7890 goto abort;
7891 }
7892
7893 rv = 0;
7894
7895abort:
7896 if (targets) {
7897 for (i = 0; i < new_disks; i++)
7898 if (targets[i] >= 0)
7899 close(targets[i]);
7900 free(targets);
7901 }
7902 free(target_offsets);
7903
7904 return rv;
7905}
7906
7907/*******************************************************************************
7908 * Function: save_checkpoint_imsm
7909 * Description: Function called for current unit status update
7910 * in the migration record. It writes it to disk.
7911 * Parameters:
7912 * super : imsm internal array info
7913 * info : general array info
7914 * Returns:
7915 * 0: success
7916 * 1: failure
0228d92c
AK
7917 * 2: failure, means no valid migration record
7918 * / no general migration in progress /
687629c2
AK
7919 ******************************************************************************/
7920int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
7921{
7922 struct intel_super *super = st->sb;
f8b72ef5
AK
7923 unsigned long long blocks_per_unit;
7924 unsigned long long curr_migr_unit;
7925
2e062e82
AK
7926 if (load_imsm_migr_rec(super, info) != 0) {
7927 dprintf("imsm: ERROR: Cannot read migration record "
7928 "for checkpoint save.\n");
7929 return 1;
7930 }
7931
f8b72ef5
AK
7932 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
7933 if (blocks_per_unit == 0) {
0228d92c
AK
7934 dprintf("imsm: no migration in progress.\n");
7935 return 2;
687629c2 7936 }
f8b72ef5
AK
7937 curr_migr_unit = info->reshape_progress / blocks_per_unit;
7938 /* check if array is alligned to copy area
7939 * if it is not alligned, add one to current migration unit value
7940 * this can happend on array reshape finish only
7941 */
7942 if (info->reshape_progress % blocks_per_unit)
7943 curr_migr_unit++;
687629c2
AK
7944
7945 super->migr_rec->curr_migr_unit =
f8b72ef5 7946 __cpu_to_le32(curr_migr_unit);
687629c2
AK
7947 super->migr_rec->rec_status = __cpu_to_le32(state);
7948 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
7949 __cpu_to_le32(curr_migr_unit *
7950 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
7951 if (write_imsm_migr_rec(st) < 0) {
7952 dprintf("imsm: Cannot write migration record "
7953 "outside backup area\n");
7954 return 1;
7955 }
7956
7957 return 0;
7958}
7959
276d77db
AK
7960/*******************************************************************************
7961 * Function: recover_backup_imsm
7962 * Description: Function recovers critical data from the Migration Copy Area
7963 * while assembling an array.
7964 * Parameters:
7965 * super : imsm internal array info
7966 * info : general array info
7967 * Returns:
7968 * 0 : success (or there is no data to recover)
7969 * 1 : fail
7970 ******************************************************************************/
7971int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
7972{
7973 struct intel_super *super = st->sb;
7974 struct migr_record *migr_rec = super->migr_rec;
7975 struct imsm_map *map_dest = NULL;
7976 struct intel_dev *id = NULL;
7977 unsigned long long read_offset;
7978 unsigned long long write_offset;
7979 unsigned unit_len;
7980 int *targets = NULL;
7981 int new_disks, i, err;
7982 char *buf = NULL;
7983 int retval = 1;
7984 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
7985 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 7986 char buffer[20];
6c3560c0
AK
7987 int skipped_disks = 0;
7988 int max_degradation;
276d77db
AK
7989
7990 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
7991 if (err < 1)
7992 return 1;
7993
7994 /* recover data only during assemblation */
7995 if (strncmp(buffer, "inactive", 8) != 0)
7996 return 0;
7997 /* no data to recover */
7998 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
7999 return 0;
8000 if (curr_migr_unit >= num_migr_units)
8001 return 1;
8002
8003 /* find device during reshape */
8004 for (id = super->devlist; id; id = id->next)
8005 if (is_gen_migration(id->dev))
8006 break;
8007 if (id == NULL)
8008 return 1;
8009
8010 map_dest = get_imsm_map(id->dev, 0);
8011 new_disks = map_dest->num_members;
6c3560c0 8012 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
276d77db
AK
8013
8014 read_offset = (unsigned long long)
8015 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8016
8017 write_offset = ((unsigned long long)
8018 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
75b69ea4 8019 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
276d77db
AK
8020
8021 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8022 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8023 goto abort;
8024 targets = malloc(new_disks * sizeof(int));
8025 if (!targets)
8026 goto abort;
8027
8028 open_backup_targets(info, new_disks, targets);
8029
8030 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
8031 if (targets[i] < 0) {
8032 skipped_disks++;
8033 continue;
8034 }
276d77db
AK
8035 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8036 fprintf(stderr,
8037 Name ": Cannot seek to block: %s\n",
8038 strerror(errno));
8039 goto abort;
8040 }
9ec11d1a 8041 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8042 fprintf(stderr,
8043 Name ": Cannot read copy area block: %s\n",
8044 strerror(errno));
8045 goto abort;
8046 }
8047 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8048 fprintf(stderr,
8049 Name ": Cannot seek to block: %s\n",
8050 strerror(errno));
8051 goto abort;
8052 }
9ec11d1a 8053 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8054 fprintf(stderr,
8055 Name ": Cannot restore block: %s\n",
8056 strerror(errno));
8057 goto abort;
8058 }
8059 }
8060
6c3560c0
AK
8061 if (skipped_disks > max_degradation) {
8062 fprintf(stderr,
8063 Name ": Cannot restore data from backup."
8064 " Too many failed disks\n");
8065 goto abort;
8066 }
8067
befb629b
AK
8068 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8069 /* ignore error == 2, this can mean end of reshape here
8070 */
8071 dprintf("imsm: Cannot write checkpoint to "
8072 "migration record (UNIT_SRC_NORMAL) during restart\n");
8073 } else
276d77db 8074 retval = 0;
276d77db
AK
8075
8076abort:
8077 if (targets) {
8078 for (i = 0; i < new_disks; i++)
8079 if (targets[i])
8080 close(targets[i]);
8081 free(targets);
8082 }
8083 free(buf);
8084 return retval;
8085}
8086
2cda7640
ML
8087static char disk_by_path[] = "/dev/disk/by-path/";
8088
8089static const char *imsm_get_disk_controller_domain(const char *path)
8090{
2cda7640 8091 char disk_path[PATH_MAX];
96234762
LM
8092 char *drv=NULL;
8093 struct stat st;
2cda7640 8094
96234762
LM
8095 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8096 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8097 if (stat(disk_path, &st) == 0) {
8098 struct sys_dev* hba;
8099 char *path=NULL;
8100
8101 path = devt_to_devpath(st.st_rdev);
8102 if (path == NULL)
8103 return "unknown";
8104 hba = find_disk_attached_hba(-1, path);
8105 if (hba && hba->type == SYS_DEV_SAS)
8106 drv = "isci";
8107 else if (hba && hba->type == SYS_DEV_SATA)
8108 drv = "ahci";
8109 else
8110 drv = "unknown";
8111 dprintf("path: %s hba: %s attached: %s\n",
8112 path, (hba) ? hba->path : "NULL", drv);
8113 free(path);
8114 if (hba)
8115 free_sys_dev(&hba);
2cda7640 8116 }
96234762 8117 return drv;
2cda7640
ML
8118}
8119
78b10e66
N
8120static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8121{
8122 char subdev_name[20];
8123 struct mdstat_ent *mdstat;
8124
8125 sprintf(subdev_name, "%d", subdev);
8126 mdstat = mdstat_by_subdev(subdev_name, container);
8127 if (!mdstat)
8128 return -1;
8129
8130 *minor = mdstat->devnum;
8131 free_mdstat(mdstat);
8132 return 0;
8133}
8134
8135static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8136 struct geo_params *geo,
8137 int *old_raid_disks)
8138{
694575e7
KW
8139 /* currently we only support increasing the number of devices
8140 * for a container. This increases the number of device for each
8141 * member array. They must all be RAID0 or RAID5.
8142 */
78b10e66
N
8143 int ret_val = 0;
8144 struct mdinfo *info, *member;
8145 int devices_that_can_grow = 0;
8146
8147 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8148 "st->devnum = (%i)\n",
8149 st->devnum);
8150
8151 if (geo->size != -1 ||
8152 geo->level != UnSet ||
8153 geo->layout != UnSet ||
8154 geo->chunksize != 0 ||
8155 geo->raid_disks == UnSet) {
8156 dprintf("imsm: Container operation is allowed for "
8157 "raid disks number change only.\n");
8158 return ret_val;
8159 }
8160
8161 info = container_content_imsm(st, NULL);
8162 for (member = info; member; member = member->next) {
8163 int result;
8164 int minor;
8165
8166 dprintf("imsm: checking device_num: %i\n",
8167 member->container_member);
8168
d7d205bd 8169 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
8170 /* we work on container for Online Capacity Expansion
8171 * only so raid_disks has to grow
8172 */
8173 dprintf("imsm: for container operation raid disks "
8174 "increase is required\n");
8175 break;
8176 }
8177
8178 if ((info->array.level != 0) &&
8179 (info->array.level != 5)) {
8180 /* we cannot use this container with other raid level
8181 */
690aae1a 8182 dprintf("imsm: for container operation wrong"
78b10e66
N
8183 " raid level (%i) detected\n",
8184 info->array.level);
8185 break;
8186 } else {
8187 /* check for platform support
8188 * for this raid level configuration
8189 */
8190 struct intel_super *super = st->sb;
8191 if (!is_raid_level_supported(super->orom,
8192 member->array.level,
8193 geo->raid_disks)) {
690aae1a 8194 dprintf("platform does not support raid%d with"
78b10e66
N
8195 " %d disk%s\n",
8196 info->array.level,
8197 geo->raid_disks,
8198 geo->raid_disks > 1 ? "s" : "");
8199 break;
8200 }
2a4a08e7
AK
8201 /* check if component size is aligned to chunk size
8202 */
8203 if (info->component_size %
8204 (info->array.chunk_size/512)) {
8205 dprintf("Component size is not aligned to "
8206 "chunk size\n");
8207 break;
8208 }
78b10e66
N
8209 }
8210
8211 if (*old_raid_disks &&
8212 info->array.raid_disks != *old_raid_disks)
8213 break;
8214 *old_raid_disks = info->array.raid_disks;
8215
8216 /* All raid5 and raid0 volumes in container
8217 * have to be ready for Online Capacity Expansion
8218 * so they need to be assembled. We have already
8219 * checked that no recovery etc is happening.
8220 */
8221 result = imsm_find_array_minor_by_subdev(member->container_member,
8222 st->container_dev,
8223 &minor);
8224 if (result < 0) {
8225 dprintf("imsm: cannot find array\n");
8226 break;
8227 }
8228 devices_that_can_grow++;
8229 }
8230 sysfs_free(info);
8231 if (!member && devices_that_can_grow)
8232 ret_val = 1;
8233
8234 if (ret_val)
8235 dprintf("\tContainer operation allowed\n");
8236 else
8237 dprintf("\tError: %i\n", ret_val);
8238
8239 return ret_val;
8240}
8241
8242/* Function: get_spares_for_grow
8243 * Description: Allocates memory and creates list of spare devices
8244 * avaliable in container. Checks if spare drive size is acceptable.
8245 * Parameters: Pointer to the supertype structure
8246 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8247 * NULL if fail
8248 */
8249static struct mdinfo *get_spares_for_grow(struct supertype *st)
8250{
78b10e66 8251 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8252 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8253}
8254
8255/******************************************************************************
8256 * function: imsm_create_metadata_update_for_reshape
8257 * Function creates update for whole IMSM container.
8258 *
8259 ******************************************************************************/
8260static int imsm_create_metadata_update_for_reshape(
8261 struct supertype *st,
8262 struct geo_params *geo,
8263 int old_raid_disks,
8264 struct imsm_update_reshape **updatep)
8265{
8266 struct intel_super *super = st->sb;
8267 struct imsm_super *mpb = super->anchor;
8268 int update_memory_size = 0;
8269 struct imsm_update_reshape *u = NULL;
8270 struct mdinfo *spares = NULL;
8271 int i;
8272 int delta_disks = 0;
bbd24d86 8273 struct mdinfo *dev;
78b10e66
N
8274
8275 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8276 geo->raid_disks);
8277
8278 delta_disks = geo->raid_disks - old_raid_disks;
8279
8280 /* size of all update data without anchor */
8281 update_memory_size = sizeof(struct imsm_update_reshape);
8282
8283 /* now add space for spare disks that we need to add. */
8284 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8285
8286 u = calloc(1, update_memory_size);
8287 if (u == NULL) {
8288 dprintf("error: "
8289 "cannot get memory for imsm_update_reshape update\n");
8290 return 0;
8291 }
8292 u->type = update_reshape_container_disks;
8293 u->old_raid_disks = old_raid_disks;
8294 u->new_raid_disks = geo->raid_disks;
8295
8296 /* now get spare disks list
8297 */
8298 spares = get_spares_for_grow(st);
8299
8300 if (spares == NULL
8301 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8302 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8303 "for %s.\n", geo->dev_name);
e4c72d1d 8304 i = -1;
78b10e66
N
8305 goto abort;
8306 }
8307
8308 /* we have got spares
8309 * update disk list in imsm_disk list table in anchor
8310 */
8311 dprintf("imsm: %i spares are available.\n\n",
8312 spares->array.spare_disks);
8313
bbd24d86 8314 dev = spares->devs;
78b10e66 8315 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8316 struct dl *dl;
8317
bbd24d86
AK
8318 if (dev == NULL)
8319 break;
78b10e66
N
8320 u->new_disks[i] = makedev(dev->disk.major,
8321 dev->disk.minor);
8322 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8323 dl->index = mpb->num_disks;
8324 mpb->num_disks++;
bbd24d86 8325 dev = dev->next;
78b10e66 8326 }
78b10e66
N
8327
8328abort:
8329 /* free spares
8330 */
8331 sysfs_free(spares);
8332
d677e0b8 8333 dprintf("imsm: reshape update preparation :");
78b10e66 8334 if (i == delta_disks) {
d677e0b8 8335 dprintf(" OK\n");
78b10e66
N
8336 *updatep = u;
8337 return update_memory_size;
8338 }
8339 free(u);
d677e0b8 8340 dprintf(" Error\n");
78b10e66
N
8341
8342 return 0;
8343}
8344
48c5303a
PC
8345/******************************************************************************
8346 * function: imsm_create_metadata_update_for_migration()
8347 * Creates update for IMSM array.
8348 *
8349 ******************************************************************************/
8350static int imsm_create_metadata_update_for_migration(
8351 struct supertype *st,
8352 struct geo_params *geo,
8353 struct imsm_update_reshape_migration **updatep)
8354{
8355 struct intel_super *super = st->sb;
8356 int update_memory_size = 0;
8357 struct imsm_update_reshape_migration *u = NULL;
8358 struct imsm_dev *dev;
8359 int previous_level = -1;
8360
8361 dprintf("imsm_create_metadata_update_for_migration(enter)"
8362 " New Level = %i\n", geo->level);
8363
8364 /* size of all update data without anchor */
8365 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8366
8367 u = calloc(1, update_memory_size);
8368 if (u == NULL) {
8369 dprintf("error: cannot get memory for "
8370 "imsm_create_metadata_update_for_migration\n");
8371 return 0;
8372 }
8373 u->type = update_reshape_migration;
8374 u->subdev = super->current_vol;
8375 u->new_level = geo->level;
8376 u->new_layout = geo->layout;
8377 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8378 u->new_disks[0] = -1;
4bba0439 8379 u->new_chunksize = -1;
48c5303a
PC
8380
8381 dev = get_imsm_dev(super, u->subdev);
8382 if (dev) {
8383 struct imsm_map *map;
8384
8385 map = get_imsm_map(dev, 0);
4bba0439
PC
8386 if (map) {
8387 int current_chunk_size =
8388 __le16_to_cpu(map->blocks_per_strip) / 2;
8389
8390 if (geo->chunksize != current_chunk_size) {
8391 u->new_chunksize = geo->chunksize / 1024;
8392 dprintf("imsm: "
8393 "chunk size change from %i to %i\n",
8394 current_chunk_size, u->new_chunksize);
8395 }
48c5303a 8396 previous_level = map->raid_level;
4bba0439 8397 }
48c5303a
PC
8398 }
8399 if ((geo->level == 5) && (previous_level == 0)) {
8400 struct mdinfo *spares = NULL;
8401
8402 u->new_raid_disks++;
8403 spares = get_spares_for_grow(st);
8404 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8405 free(u);
8406 sysfs_free(spares);
8407 update_memory_size = 0;
8408 dprintf("error: cannot get spare device "
8409 "for requested migration");
8410 return 0;
8411 }
8412 sysfs_free(spares);
8413 }
8414 dprintf("imsm: reshape update preparation : OK\n");
8415 *updatep = u;
8416
8417 return update_memory_size;
8418}
8419
8dd70bce
AK
8420static void imsm_update_metadata_locally(struct supertype *st,
8421 void *buf, int len)
8422{
8423 struct metadata_update mu;
8424
8425 mu.buf = buf;
8426 mu.len = len;
8427 mu.space = NULL;
8428 mu.space_list = NULL;
8429 mu.next = NULL;
8430 imsm_prepare_update(st, &mu);
8431 imsm_process_update(st, &mu);
8432
8433 while (mu.space_list) {
8434 void **space = mu.space_list;
8435 mu.space_list = *space;
8436 free(space);
8437 }
8438}
78b10e66 8439
471bceb6 8440/***************************************************************************
694575e7 8441* Function: imsm_analyze_change
471bceb6
KW
8442* Description: Function analyze change for single volume
8443* and validate if transition is supported
694575e7
KW
8444* Parameters: Geometry parameters, supertype structure
8445* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8446****************************************************************************/
8447enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8448 struct geo_params *geo)
694575e7 8449{
471bceb6
KW
8450 struct mdinfo info;
8451 int change = -1;
8452 int check_devs = 0;
c21e737b 8453 int chunk;
471bceb6
KW
8454
8455 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
8456 if ((geo->level != info.array.level) &&
8457 (geo->level >= 0) &&
8458 (geo->level != UnSet)) {
8459 switch (info.array.level) {
8460 case 0:
8461 if (geo->level == 5) {
b5347799 8462 change = CH_MIGRATION;
e13ce846
AK
8463 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8464 fprintf(stderr,
8465 Name " Error. Requested Layout "
8466 "not supported (left-asymmetric layout "
8467 "is supported only)!\n");
8468 change = -1;
8469 goto analyse_change_exit;
8470 }
471bceb6
KW
8471 check_devs = 1;
8472 }
8473 if (geo->level == 10) {
8474 change = CH_TAKEOVER;
8475 check_devs = 1;
8476 }
dfe77a9e
KW
8477 break;
8478 case 1:
8479 if (geo->level == 0) {
8480 change = CH_TAKEOVER;
8481 check_devs = 1;
8482 }
471bceb6 8483 break;
471bceb6
KW
8484 case 10:
8485 if (geo->level == 0) {
8486 change = CH_TAKEOVER;
8487 check_devs = 1;
8488 }
8489 break;
8490 }
8491 if (change == -1) {
8492 fprintf(stderr,
8493 Name " Error. Level Migration from %d to %d "
8494 "not supported!\n",
8495 info.array.level, geo->level);
8496 goto analyse_change_exit;
8497 }
8498 } else
8499 geo->level = info.array.level;
8500
8501 if ((geo->layout != info.array.layout)
8502 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8503 change = CH_MIGRATION;
471bceb6
KW
8504 if ((info.array.layout == 0)
8505 && (info.array.level == 5)
8506 && (geo->layout == 5)) {
8507 /* reshape 5 -> 4 */
8508 } else if ((info.array.layout == 5)
8509 && (info.array.level == 5)
8510 && (geo->layout == 0)) {
8511 /* reshape 4 -> 5 */
8512 geo->layout = 0;
8513 geo->level = 5;
8514 } else {
8515 fprintf(stderr,
8516 Name " Error. Layout Migration from %d to %d "
8517 "not supported!\n",
8518 info.array.layout, geo->layout);
8519 change = -1;
8520 goto analyse_change_exit;
8521 }
8522 } else
8523 geo->layout = info.array.layout;
8524
8525 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8526 && (geo->chunksize != info.array.chunk_size))
b5347799 8527 change = CH_MIGRATION;
471bceb6
KW
8528 else
8529 geo->chunksize = info.array.chunk_size;
8530
c21e737b 8531 chunk = geo->chunksize / 1024;
471bceb6
KW
8532 if (!validate_geometry_imsm(st,
8533 geo->level,
8534 geo->layout,
8535 geo->raid_disks,
c21e737b 8536 &chunk,
471bceb6
KW
8537 geo->size,
8538 0, 0, 1))
8539 change = -1;
8540
8541 if (check_devs) {
8542 struct intel_super *super = st->sb;
8543 struct imsm_super *mpb = super->anchor;
8544
8545 if (mpb->num_raid_devs > 1) {
8546 fprintf(stderr,
8547 Name " Error. Cannot perform operation on %s"
8548 "- for this operation it MUST be single "
8549 "array in container\n",
8550 geo->dev_name);
8551 change = -1;
8552 }
8553 }
8554
8555analyse_change_exit:
8556
8557 return change;
694575e7
KW
8558}
8559
bb025c2f
KW
8560int imsm_takeover(struct supertype *st, struct geo_params *geo)
8561{
8562 struct intel_super *super = st->sb;
8563 struct imsm_update_takeover *u;
8564
8565 u = malloc(sizeof(struct imsm_update_takeover));
8566 if (u == NULL)
8567 return 1;
8568
8569 u->type = update_takeover;
8570 u->subarray = super->current_vol;
8571
8572 /* 10->0 transition */
8573 if (geo->level == 0)
8574 u->direction = R10_TO_R0;
8575
0529c688
KW
8576 /* 0->10 transition */
8577 if (geo->level == 10)
8578 u->direction = R0_TO_R10;
8579
bb025c2f
KW
8580 /* update metadata locally */
8581 imsm_update_metadata_locally(st, u,
8582 sizeof(struct imsm_update_takeover));
8583 /* and possibly remotely */
8584 if (st->update_tail)
8585 append_metadata_update(st, u,
8586 sizeof(struct imsm_update_takeover));
8587 else
8588 free(u);
8589
8590 return 0;
8591}
8592
78b10e66
N
8593static int imsm_reshape_super(struct supertype *st, long long size, int level,
8594 int layout, int chunksize, int raid_disks,
41784c88
AK
8595 int delta_disks, char *backup, char *dev,
8596 int verbose)
78b10e66 8597{
78b10e66
N
8598 int ret_val = 1;
8599 struct geo_params geo;
8600
8601 dprintf("imsm: reshape_super called.\n");
8602
71204a50 8603 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
8604
8605 geo.dev_name = dev;
694575e7 8606 geo.dev_id = st->devnum;
78b10e66
N
8607 geo.size = size;
8608 geo.level = level;
8609 geo.layout = layout;
8610 geo.chunksize = chunksize;
8611 geo.raid_disks = raid_disks;
41784c88
AK
8612 if (delta_disks != UnSet)
8613 geo.raid_disks += delta_disks;
78b10e66
N
8614
8615 dprintf("\tfor level : %i\n", geo.level);
8616 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8617
8618 if (experimental() == 0)
8619 return ret_val;
8620
78b10e66 8621 if (st->container_dev == st->devnum) {
694575e7
KW
8622 /* On container level we can only increase number of devices. */
8623 dprintf("imsm: info: Container operation\n");
78b10e66 8624 int old_raid_disks = 0;
6dc0be30 8625
78b10e66
N
8626 if (imsm_reshape_is_allowed_on_container(
8627 st, &geo, &old_raid_disks)) {
8628 struct imsm_update_reshape *u = NULL;
8629 int len;
8630
8631 len = imsm_create_metadata_update_for_reshape(
8632 st, &geo, old_raid_disks, &u);
8633
ed08d51c
AK
8634 if (len <= 0) {
8635 dprintf("imsm: Cannot prepare update\n");
8636 goto exit_imsm_reshape_super;
8637 }
8638
8dd70bce
AK
8639 ret_val = 0;
8640 /* update metadata locally */
8641 imsm_update_metadata_locally(st, u, len);
8642 /* and possibly remotely */
8643 if (st->update_tail)
8644 append_metadata_update(st, u, len);
8645 else
ed08d51c 8646 free(u);
8dd70bce 8647
694575e7 8648 } else {
e7ff7e40
AK
8649 fprintf(stderr, Name ": (imsm) Operation "
8650 "is not allowed on this container\n");
694575e7
KW
8651 }
8652 } else {
8653 /* On volume level we support following operations
471bceb6
KW
8654 * - takeover: raid10 -> raid0; raid0 -> raid10
8655 * - chunk size migration
8656 * - migration: raid5 -> raid0; raid0 -> raid5
8657 */
8658 struct intel_super *super = st->sb;
8659 struct intel_dev *dev = super->devlist;
8660 int change, devnum;
694575e7 8661 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
8662 /* find requested device */
8663 while (dev) {
8664 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
8665 if (devnum == geo.dev_id)
8666 break;
8667 dev = dev->next;
8668 }
8669 if (dev == NULL) {
8670 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8671 geo.dev_name, geo.dev_id);
8672 goto exit_imsm_reshape_super;
8673 }
8674 super->current_vol = dev->index;
694575e7
KW
8675 change = imsm_analyze_change(st, &geo);
8676 switch (change) {
471bceb6 8677 case CH_TAKEOVER:
bb025c2f 8678 ret_val = imsm_takeover(st, &geo);
694575e7 8679 break;
48c5303a
PC
8680 case CH_MIGRATION: {
8681 struct imsm_update_reshape_migration *u = NULL;
8682 int len =
8683 imsm_create_metadata_update_for_migration(
8684 st, &geo, &u);
8685 if (len < 1) {
8686 dprintf("imsm: "
8687 "Cannot prepare update\n");
8688 break;
8689 }
471bceb6 8690 ret_val = 0;
48c5303a
PC
8691 /* update metadata locally */
8692 imsm_update_metadata_locally(st, u, len);
8693 /* and possibly remotely */
8694 if (st->update_tail)
8695 append_metadata_update(st, u, len);
8696 else
8697 free(u);
8698 }
8699 break;
471bceb6
KW
8700 default:
8701 ret_val = 1;
694575e7 8702 }
694575e7 8703 }
78b10e66 8704
ed08d51c 8705exit_imsm_reshape_super:
78b10e66
N
8706 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8707 return ret_val;
8708}
2cda7640 8709
eee67a47
AK
8710/*******************************************************************************
8711 * Function: wait_for_reshape_imsm
8712 * Description: Function writes new sync_max value and waits until
8713 * reshape process reach new position
8714 * Parameters:
8715 * sra : general array info
eee67a47
AK
8716 * ndata : number of disks in new array's layout
8717 * Returns:
8718 * 0 : success,
8719 * 1 : there is no reshape in progress,
8720 * -1 : fail
8721 ******************************************************************************/
ae9f01f8 8722int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
8723{
8724 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8725 unsigned long long completed;
ae9f01f8
AK
8726 /* to_complete : new sync_max position */
8727 unsigned long long to_complete = sra->reshape_progress;
8728 unsigned long long position_to_set = to_complete / ndata;
eee67a47 8729
ae9f01f8
AK
8730 if (fd < 0) {
8731 dprintf("imsm: wait_for_reshape_imsm() "
8732 "cannot open reshape_position\n");
eee67a47 8733 return 1;
ae9f01f8 8734 }
eee67a47 8735
ae9f01f8
AK
8736 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8737 dprintf("imsm: wait_for_reshape_imsm() "
8738 "cannot read reshape_position (no reshape in progres)\n");
8739 close(fd);
8740 return 0;
8741 }
eee67a47 8742
ae9f01f8
AK
8743 if (completed > to_complete) {
8744 dprintf("imsm: wait_for_reshape_imsm() "
8745 "wrong next position to set %llu (%llu)\n",
8746 to_complete, completed);
8747 close(fd);
8748 return -1;
8749 }
8750 dprintf("Position set: %llu\n", position_to_set);
8751 if (sysfs_set_num(sra, NULL, "sync_max",
8752 position_to_set) != 0) {
8753 dprintf("imsm: wait_for_reshape_imsm() "
8754 "cannot set reshape position to %llu\n",
8755 position_to_set);
8756 close(fd);
8757 return -1;
eee67a47
AK
8758 }
8759
eee67a47
AK
8760 do {
8761 char action[20];
8762 fd_set rfds;
8763 FD_ZERO(&rfds);
8764 FD_SET(fd, &rfds);
a47e44fb
AK
8765 select(fd+1, &rfds, NULL, NULL, NULL);
8766 if (sysfs_get_str(sra, NULL, "sync_action",
8767 action, 20) > 0 &&
8768 strncmp(action, "reshape", 7) != 0)
8769 break;
eee67a47 8770 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
8771 dprintf("imsm: wait_for_reshape_imsm() "
8772 "cannot read reshape_position (in loop)\n");
eee67a47
AK
8773 close(fd);
8774 return 1;
8775 }
eee67a47
AK
8776 } while (completed < to_complete);
8777 close(fd);
8778 return 0;
8779
8780}
8781
b915c95f
AK
8782/*******************************************************************************
8783 * Function: check_degradation_change
8784 * Description: Check that array hasn't become failed.
8785 * Parameters:
8786 * info : for sysfs access
8787 * sources : source disks descriptors
8788 * degraded: previous degradation level
8789 * Returns:
8790 * degradation level
8791 ******************************************************************************/
8792int check_degradation_change(struct mdinfo *info,
8793 int *sources,
8794 int degraded)
8795{
8796 unsigned long long new_degraded;
8797 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8798 if (new_degraded != (unsigned long long)degraded) {
8799 /* check each device to ensure it is still working */
8800 struct mdinfo *sd;
8801 new_degraded = 0;
8802 for (sd = info->devs ; sd ; sd = sd->next) {
8803 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8804 continue;
8805 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8806 char sbuf[20];
8807 if (sysfs_get_str(info,
8808 sd, "state", sbuf, 20) < 0 ||
8809 strstr(sbuf, "faulty") ||
8810 strstr(sbuf, "in_sync") == NULL) {
8811 /* this device is dead */
8812 sd->disk.state = (1<<MD_DISK_FAULTY);
8813 if (sd->disk.raid_disk >= 0 &&
8814 sources[sd->disk.raid_disk] >= 0) {
8815 close(sources[
8816 sd->disk.raid_disk]);
8817 sources[sd->disk.raid_disk] =
8818 -1;
8819 }
8820 new_degraded++;
8821 }
8822 }
8823 }
8824 }
8825
8826 return new_degraded;
8827}
8828
10f22854
AK
8829/*******************************************************************************
8830 * Function: imsm_manage_reshape
8831 * Description: Function finds array under reshape and it manages reshape
8832 * process. It creates stripes backups (if required) and sets
8833 * checheckpoits.
8834 * Parameters:
8835 * afd : Backup handle (nattive) - not used
8836 * sra : general array info
8837 * reshape : reshape parameters - not used
8838 * st : supertype structure
8839 * blocks : size of critical section [blocks]
8840 * fds : table of source device descriptor
8841 * offsets : start of array (offest per devices)
8842 * dests : not used
8843 * destfd : table of destination device descriptor
8844 * destoffsets : table of destination offsets (per device)
8845 * Returns:
8846 * 1 : success, reshape is done
8847 * 0 : fail
8848 ******************************************************************************/
999b4972
N
8849static int imsm_manage_reshape(
8850 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 8851 struct supertype *st, unsigned long backup_blocks,
999b4972
N
8852 int *fds, unsigned long long *offsets,
8853 int dests, int *destfd, unsigned long long *destoffsets)
8854{
10f22854
AK
8855 int ret_val = 0;
8856 struct intel_super *super = st->sb;
8857 struct intel_dev *dv = NULL;
8858 struct imsm_dev *dev = NULL;
a6b6d984 8859 struct imsm_map *map_src;
10f22854
AK
8860 int migr_vol_qan = 0;
8861 int ndata, odata; /* [bytes] */
8862 int chunk; /* [bytes] */
8863 struct migr_record *migr_rec;
8864 char *buf = NULL;
8865 unsigned int buf_size; /* [bytes] */
8866 unsigned long long max_position; /* array size [bytes] */
8867 unsigned long long next_step; /* [blocks]/[bytes] */
8868 unsigned long long old_data_stripe_length;
10f22854
AK
8869 unsigned long long start_src; /* [bytes] */
8870 unsigned long long start; /* [bytes] */
8871 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 8872 int degraded = 0;
ab724b98 8873 int source_layout = 0;
10f22854 8874
1ab242d8 8875 if (!fds || !offsets || !sra)
10f22854
AK
8876 goto abort;
8877
8878 /* Find volume during the reshape */
8879 for (dv = super->devlist; dv; dv = dv->next) {
8880 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
8881 && dv->dev->vol.migr_state == 1) {
8882 dev = dv->dev;
8883 migr_vol_qan++;
8884 }
8885 }
8886 /* Only one volume can migrate at the same time */
8887 if (migr_vol_qan != 1) {
8888 fprintf(stderr, Name " : %s", migr_vol_qan ?
8889 "Number of migrating volumes greater than 1\n" :
8890 "There is no volume during migrationg\n");
8891 goto abort;
8892 }
8893
8894 map_src = get_imsm_map(dev, 1);
8895 if (map_src == NULL)
8896 goto abort;
10f22854
AK
8897
8898 ndata = imsm_num_data_members(dev, 0);
8899 odata = imsm_num_data_members(dev, 1);
8900
7b1ab482 8901 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
8902 old_data_stripe_length = odata * chunk;
8903
8904 migr_rec = super->migr_rec;
8905
10f22854
AK
8906 /* initialize migration record for start condition */
8907 if (sra->reshape_progress == 0)
8908 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
8909 else {
8910 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
8911 dprintf("imsm: cannot restart migration when data "
8912 "are present in copy area.\n");
8913 goto abort;
8914 }
8915 }
10f22854
AK
8916
8917 /* size for data */
8918 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
8919 /* extend buffer size for parity disk */
8920 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8921 /* add space for stripe aligment */
8922 buf_size += old_data_stripe_length;
8923 if (posix_memalign((void **)&buf, 4096, buf_size)) {
8924 dprintf("imsm: Cannot allocate checpoint buffer\n");
8925 goto abort;
8926 }
8927
3ef4403c 8928 max_position = sra->component_size * ndata;
68eb8bc6 8929 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
8930
8931 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
8932 __le32_to_cpu(migr_rec->num_migr_units)) {
8933 /* current reshape position [blocks] */
8934 unsigned long long current_position =
8935 __le32_to_cpu(migr_rec->blocks_per_unit)
8936 * __le32_to_cpu(migr_rec->curr_migr_unit);
8937 unsigned long long border;
8938
b915c95f
AK
8939 /* Check that array hasn't become failed.
8940 */
8941 degraded = check_degradation_change(sra, fds, degraded);
8942 if (degraded > 1) {
8943 dprintf("imsm: Abort reshape due to degradation"
8944 " level (%i)\n", degraded);
8945 goto abort;
8946 }
8947
10f22854
AK
8948 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
8949
8950 if ((current_position + next_step) > max_position)
8951 next_step = max_position - current_position;
8952
92144abf 8953 start = current_position * 512;
10f22854
AK
8954
8955 /* allign reading start to old geometry */
8956 start_buf_shift = start % old_data_stripe_length;
8957 start_src = start - start_buf_shift;
8958
8959 border = (start_src / odata) - (start / ndata);
8960 border /= 512;
8961 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
8962 /* save critical stripes to buf
8963 * start - start address of current unit
8964 * to backup [bytes]
8965 * start_src - start address of current unit
8966 * to backup alligned to source array
8967 * [bytes]
8968 */
8969 unsigned long long next_step_filler = 0;
8970 unsigned long long copy_length = next_step * 512;
8971
8972 /* allign copy area length to stripe in old geometry */
8973 next_step_filler = ((copy_length + start_buf_shift)
8974 % old_data_stripe_length);
8975 if (next_step_filler)
8976 next_step_filler = (old_data_stripe_length
8977 - next_step_filler);
8978 dprintf("save_stripes() parameters: start = %llu,"
8979 "\tstart_src = %llu,\tnext_step*512 = %llu,"
8980 "\tstart_in_buf_shift = %llu,"
8981 "\tnext_step_filler = %llu\n",
8982 start, start_src, copy_length,
8983 start_buf_shift, next_step_filler);
8984
8985 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
8986 chunk, map_src->raid_level,
8987 source_layout, 0, NULL, start_src,
10f22854
AK
8988 copy_length +
8989 next_step_filler + start_buf_shift,
8990 buf)) {
8991 dprintf("imsm: Cannot save stripes"
8992 " to buffer\n");
8993 goto abort;
8994 }
8995 /* Convert data to destination format and store it
8996 * in backup general migration area
8997 */
8998 if (save_backup_imsm(st, dev, sra,
aea93171 8999 buf + start_buf_shift, copy_length)) {
10f22854
AK
9000 dprintf("imsm: Cannot save stripes to "
9001 "target devices\n");
9002 goto abort;
9003 }
9004 if (save_checkpoint_imsm(st, sra,
9005 UNIT_SRC_IN_CP_AREA)) {
9006 dprintf("imsm: Cannot write checkpoint to "
9007 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9008 goto abort;
9009 }
8016a6d4
AK
9010 } else {
9011 /* set next step to use whole border area */
9012 border /= next_step;
9013 if (border > 1)
9014 next_step *= border;
10f22854
AK
9015 }
9016 /* When data backed up, checkpoint stored,
9017 * kick the kernel to reshape unit of data
9018 */
9019 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
9020 /* limit next step to array max position */
9021 if (next_step > max_position)
9022 next_step = max_position;
10f22854
AK
9023 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9024 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 9025 sra->reshape_progress = next_step;
10f22854
AK
9026
9027 /* wait until reshape finish */
ae9f01f8 9028 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
9029 dprintf("wait_for_reshape_imsm returned error!\n");
9030 goto abort;
9031 }
10f22854 9032
0228d92c
AK
9033 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9034 /* ignore error == 2, this can mean end of reshape here
9035 */
10f22854
AK
9036 dprintf("imsm: Cannot write checkpoint to "
9037 "migration record (UNIT_SRC_NORMAL)\n");
9038 goto abort;
9039 }
9040
9041 }
9042
9043 /* return '1' if done */
9044 ret_val = 1;
9045abort:
9046 free(buf);
9047 abort_reshape(sra);
9048
9049 return ret_val;
999b4972 9050}
71204a50 9051#endif /* MDASSEMBLE */
999b4972 9052
cdddbdbc
DW
9053struct superswitch super_imsm = {
9054#ifndef MDASSEMBLE
9055 .examine_super = examine_super_imsm,
9056 .brief_examine_super = brief_examine_super_imsm,
4737ae25 9057 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 9058 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
9059 .detail_super = detail_super_imsm,
9060 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 9061 .write_init_super = write_init_super_imsm,
0e600426
N
9062 .validate_geometry = validate_geometry_imsm,
9063 .add_to_super = add_to_super_imsm,
1a64be56 9064 .remove_from_super = remove_from_super_imsm,
d665cc31 9065 .detail_platform = detail_platform_imsm,
33414a01 9066 .kill_subarray = kill_subarray_imsm,
aa534678 9067 .update_subarray = update_subarray_imsm,
2b959fbf 9068 .load_container = load_container_imsm,
71204a50
N
9069 .default_geometry = default_geometry_imsm,
9070 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9071 .reshape_super = imsm_reshape_super,
9072 .manage_reshape = imsm_manage_reshape,
9e2d750d 9073 .recover_backup = recover_backup_imsm,
cdddbdbc
DW
9074#endif
9075 .match_home = match_home_imsm,
9076 .uuid_from_super= uuid_from_super_imsm,
9077 .getinfo_super = getinfo_super_imsm,
5c4cd5da 9078 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
9079 .update_super = update_super_imsm,
9080
9081 .avail_size = avail_size_imsm,
80e7f8c3 9082 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
9083
9084 .compare_super = compare_super_imsm,
9085
9086 .load_super = load_super_imsm,
bf5a934a 9087 .init_super = init_super_imsm,
e683ca88 9088 .store_super = store_super_imsm,
cdddbdbc
DW
9089 .free_super = free_super_imsm,
9090 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 9091 .container_content = container_content_imsm,
cdddbdbc 9092
276d77db 9093
cdddbdbc 9094 .external = 1,
4cce4069 9095 .name = "imsm",
845dea95 9096
0e600426 9097#ifndef MDASSEMBLE
845dea95
NB
9098/* for mdmon */
9099 .open_new = imsm_open_new,
ed9d66aa 9100 .set_array_state= imsm_set_array_state,
845dea95
NB
9101 .set_disk = imsm_set_disk,
9102 .sync_metadata = imsm_sync_metadata,
88758e9d 9103 .activate_spare = imsm_activate_spare,
e8319a19 9104 .process_update = imsm_process_update,
8273f55e 9105 .prepare_update = imsm_prepare_update,
0e600426 9106#endif /* MDASSEMBLE */
cdddbdbc 9107};