]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
2010-05-27 Tristan Gingold <gingold@adacore.com>
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
b43420e6 3 2004, 2005, 2006, 2007, 2008, 2009, 2010
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3
MGD
100/* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
188static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470
PB
198static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
e74cfd16
PB
200
201static const arm_feature_set arm_arch_any = ARM_ANY;
202static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
203static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
204static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
205
2d447fca
JM
206static const arm_feature_set arm_cext_iwmmxt2 =
207 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
208static const arm_feature_set arm_cext_iwmmxt =
209 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
210static const arm_feature_set arm_cext_xscale =
211 ARM_FEATURE (0, ARM_CEXT_XSCALE);
212static const arm_feature_set arm_cext_maverick =
213 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
214static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
215static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
216static const arm_feature_set fpu_vfp_ext_v1xd =
217 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
218static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
219static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 220static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 221static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
222static const arm_feature_set fpu_vfp_ext_d32 =
223 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
224static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
225static const arm_feature_set fpu_vfp_v3_or_neon_ext =
226 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
227static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
228static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
229static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 230
33a392fb 231static int mfloat_abi_opt = -1;
e74cfd16
PB
232/* Record user cpu selection for object attributes. */
233static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
234/* Must be long enough to hold any of the names in arm_cpus. */
235static char selected_cpu_name[16];
7cc69913 236#ifdef OBJ_ELF
deeaaff8
DJ
237# ifdef EABI_DEFAULT
238static int meabi_flags = EABI_DEFAULT;
239# else
d507cf36 240static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 241# endif
e1da3f5b 242
ee3c0378
AS
243static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
244
e1da3f5b 245bfd_boolean
5f4273c7 246arm_is_eabi (void)
e1da3f5b
PB
247{
248 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
249}
7cc69913 250#endif
b99bd4ef 251
b99bd4ef 252#ifdef OBJ_ELF
c19d1205 253/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
254symbolS * GOT_symbol;
255#endif
256
b99bd4ef
NC
257/* 0: assemble for ARM,
258 1: assemble for Thumb,
259 2: assemble for Thumb even though target CPU does not support thumb
260 instructions. */
261static int thumb_mode = 0;
8dc2430f
NC
262/* A value distinct from the possible values for thumb_mode that we
263 can use to record whether thumb_mode has been copied into the
264 tc_frag_data field of a frag. */
265#define MODE_RECORDED (1 << 4)
b99bd4ef 266
e07e6e58
NC
267/* Specifies the intrinsic IT insn behavior mode. */
268enum implicit_it_mode
269{
270 IMPLICIT_IT_MODE_NEVER = 0x00,
271 IMPLICIT_IT_MODE_ARM = 0x01,
272 IMPLICIT_IT_MODE_THUMB = 0x02,
273 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
274};
275static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
276
c19d1205
ZW
277/* If unified_syntax is true, we are processing the new unified
278 ARM/Thumb syntax. Important differences from the old ARM mode:
279
280 - Immediate operands do not require a # prefix.
281 - Conditional affixes always appear at the end of the
282 instruction. (For backward compatibility, those instructions
283 that formerly had them in the middle, continue to accept them
284 there.)
285 - The IT instruction may appear, and if it does is validated
286 against subsequent conditional affixes. It does not generate
287 machine code.
288
289 Important differences from the old Thumb mode:
290
291 - Immediate operands do not require a # prefix.
292 - Most of the V6T2 instructions are only available in unified mode.
293 - The .N and .W suffixes are recognized and honored (it is an error
294 if they cannot be honored).
295 - All instructions set the flags if and only if they have an 's' affix.
296 - Conditional affixes may be used. They are validated against
297 preceding IT instructions. Unlike ARM mode, you cannot use a
298 conditional affix except in the scope of an IT instruction. */
299
300static bfd_boolean unified_syntax = FALSE;
b99bd4ef 301
5287ad62
JB
302enum neon_el_type
303{
dcbf9037 304 NT_invtype,
5287ad62
JB
305 NT_untyped,
306 NT_integer,
307 NT_float,
308 NT_poly,
309 NT_signed,
dcbf9037 310 NT_unsigned
5287ad62
JB
311};
312
313struct neon_type_el
314{
315 enum neon_el_type type;
316 unsigned size;
317};
318
319#define NEON_MAX_TYPE_ELS 4
320
321struct neon_type
322{
323 struct neon_type_el el[NEON_MAX_TYPE_ELS];
324 unsigned elems;
325};
326
e07e6e58
NC
327enum it_instruction_type
328{
329 OUTSIDE_IT_INSN,
330 INSIDE_IT_INSN,
331 INSIDE_IT_LAST_INSN,
332 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
333 if inside, should be the last one. */
334 NEUTRAL_IT_INSN, /* This could be either inside or outside,
335 i.e. BKPT and NOP. */
336 IT_INSN /* The IT insn has been parsed. */
337};
338
b99bd4ef
NC
339struct arm_it
340{
c19d1205 341 const char * error;
b99bd4ef 342 unsigned long instruction;
c19d1205
ZW
343 int size;
344 int size_req;
345 int cond;
037e8744
JB
346 /* "uncond_value" is set to the value in place of the conditional field in
347 unconditional versions of the instruction, or -1 if nothing is
348 appropriate. */
349 int uncond_value;
5287ad62 350 struct neon_type vectype;
88714cb8
DG
351 /* This does not indicate an actual NEON instruction, only that
352 the mnemonic accepts neon-style type suffixes. */
353 int is_neon;
0110f2b8
PB
354 /* Set to the opcode if the instruction needs relaxation.
355 Zero if the instruction is not relaxed. */
356 unsigned long relax;
b99bd4ef
NC
357 struct
358 {
359 bfd_reloc_code_real_type type;
c19d1205
ZW
360 expressionS exp;
361 int pc_rel;
b99bd4ef 362 } reloc;
b99bd4ef 363
e07e6e58
NC
364 enum it_instruction_type it_insn_type;
365
c19d1205
ZW
366 struct
367 {
368 unsigned reg;
ca3f61f7 369 signed int imm;
dcbf9037 370 struct neon_type_el vectype;
ca3f61f7
NC
371 unsigned present : 1; /* Operand present. */
372 unsigned isreg : 1; /* Operand was a register. */
373 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
374 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
375 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 376 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
377 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
378 instructions. This allows us to disambiguate ARM <-> vector insns. */
379 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 380 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 381 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 382 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
383 unsigned hasreloc : 1; /* Operand has relocation suffix. */
384 unsigned writeback : 1; /* Operand has trailing ! */
385 unsigned preind : 1; /* Preindexed address. */
386 unsigned postind : 1; /* Postindexed address. */
387 unsigned negative : 1; /* Index register was negated. */
388 unsigned shifted : 1; /* Shift applied to operation. */
389 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 390 } operands[6];
b99bd4ef
NC
391};
392
c19d1205 393static struct arm_it inst;
b99bd4ef
NC
394
395#define NUM_FLOAT_VALS 8
396
05d2d07e 397const char * fp_const[] =
b99bd4ef
NC
398{
399 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
400};
401
c19d1205 402/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
403#define MAX_LITTLENUMS 6
404
405LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
406
407#define FAIL (-1)
408#define SUCCESS (0)
409
410#define SUFF_S 1
411#define SUFF_D 2
412#define SUFF_E 3
413#define SUFF_P 4
414
c19d1205
ZW
415#define CP_T_X 0x00008000
416#define CP_T_Y 0x00400000
b99bd4ef 417
c19d1205
ZW
418#define CONDS_BIT 0x00100000
419#define LOAD_BIT 0x00100000
b99bd4ef
NC
420
421#define DOUBLE_LOAD_FLAG 0x00000001
422
423struct asm_cond
424{
d3ce72d0 425 const char * template_name;
c921be7d 426 unsigned long value;
b99bd4ef
NC
427};
428
c19d1205 429#define COND_ALWAYS 0xE
b99bd4ef 430
b99bd4ef
NC
431struct asm_psr
432{
d3ce72d0 433 const char * template_name;
c921be7d 434 unsigned long field;
b99bd4ef
NC
435};
436
62b3e311
PB
437struct asm_barrier_opt
438{
d3ce72d0 439 const char * template_name;
c921be7d 440 unsigned long value;
62b3e311
PB
441};
442
2d2255b5 443/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
444#define SPSR_BIT (1 << 22)
445
c19d1205
ZW
446/* The individual PSR flag bits. */
447#define PSR_c (1 << 16)
448#define PSR_x (1 << 17)
449#define PSR_s (1 << 18)
450#define PSR_f (1 << 19)
b99bd4ef 451
c19d1205 452struct reloc_entry
bfae80f2 453{
c921be7d
NC
454 char * name;
455 bfd_reloc_code_real_type reloc;
bfae80f2
RE
456};
457
5287ad62 458enum vfp_reg_pos
bfae80f2 459{
5287ad62
JB
460 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
461 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
462};
463
464enum vfp_ldstm_type
465{
466 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
467};
468
dcbf9037
JB
469/* Bits for DEFINED field in neon_typed_alias. */
470#define NTA_HASTYPE 1
471#define NTA_HASINDEX 2
472
473struct neon_typed_alias
474{
c921be7d
NC
475 unsigned char defined;
476 unsigned char index;
477 struct neon_type_el eltype;
dcbf9037
JB
478};
479
c19d1205
ZW
480/* ARM register categories. This includes coprocessor numbers and various
481 architecture extensions' registers. */
482enum arm_reg_type
bfae80f2 483{
c19d1205
ZW
484 REG_TYPE_RN,
485 REG_TYPE_CP,
486 REG_TYPE_CN,
487 REG_TYPE_FN,
488 REG_TYPE_VFS,
489 REG_TYPE_VFD,
5287ad62 490 REG_TYPE_NQ,
037e8744 491 REG_TYPE_VFSD,
5287ad62 492 REG_TYPE_NDQ,
037e8744 493 REG_TYPE_NSDQ,
c19d1205
ZW
494 REG_TYPE_VFC,
495 REG_TYPE_MVF,
496 REG_TYPE_MVD,
497 REG_TYPE_MVFX,
498 REG_TYPE_MVDX,
499 REG_TYPE_MVAX,
500 REG_TYPE_DSPSC,
501 REG_TYPE_MMXWR,
502 REG_TYPE_MMXWC,
503 REG_TYPE_MMXWCG,
504 REG_TYPE_XSCALE,
bfae80f2
RE
505};
506
dcbf9037
JB
507/* Structure for a hash table entry for a register.
508 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
509 information which states whether a vector type or index is specified (for a
510 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
511struct reg_entry
512{
c921be7d
NC
513 const char * name;
514 unsigned char number;
515 unsigned char type;
516 unsigned char builtin;
517 struct neon_typed_alias * neon;
6c43fab6
RE
518};
519
c19d1205 520/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 521const char * const reg_expected_msgs[] =
c19d1205
ZW
522{
523 N_("ARM register expected"),
524 N_("bad or missing co-processor number"),
525 N_("co-processor register expected"),
526 N_("FPA register expected"),
527 N_("VFP single precision register expected"),
5287ad62
JB
528 N_("VFP/Neon double precision register expected"),
529 N_("Neon quad precision register expected"),
037e8744 530 N_("VFP single or double precision register expected"),
5287ad62 531 N_("Neon double or quad precision register expected"),
037e8744 532 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
533 N_("VFP system register expected"),
534 N_("Maverick MVF register expected"),
535 N_("Maverick MVD register expected"),
536 N_("Maverick MVFX register expected"),
537 N_("Maverick MVDX register expected"),
538 N_("Maverick MVAX register expected"),
539 N_("Maverick DSPSC register expected"),
540 N_("iWMMXt data register expected"),
541 N_("iWMMXt control register expected"),
542 N_("iWMMXt scalar register expected"),
543 N_("XScale accumulator register expected"),
6c43fab6
RE
544};
545
c19d1205
ZW
546/* Some well known registers that we refer to directly elsewhere. */
547#define REG_SP 13
548#define REG_LR 14
549#define REG_PC 15
404ff6b5 550
b99bd4ef
NC
551/* ARM instructions take 4bytes in the object file, Thumb instructions
552 take 2: */
c19d1205 553#define INSN_SIZE 4
b99bd4ef
NC
554
555struct asm_opcode
556{
557 /* Basic string to match. */
d3ce72d0 558 const char * template_name;
c19d1205
ZW
559
560 /* Parameters to instruction. */
5be8be5d 561 unsigned int operands[8];
c19d1205
ZW
562
563 /* Conditional tag - see opcode_lookup. */
564 unsigned int tag : 4;
b99bd4ef
NC
565
566 /* Basic instruction code. */
c19d1205 567 unsigned int avalue : 28;
b99bd4ef 568
c19d1205
ZW
569 /* Thumb-format instruction code. */
570 unsigned int tvalue;
b99bd4ef 571
90e4755a 572 /* Which architecture variant provides this instruction. */
c921be7d
NC
573 const arm_feature_set * avariant;
574 const arm_feature_set * tvariant;
c19d1205
ZW
575
576 /* Function to call to encode instruction in ARM format. */
577 void (* aencode) (void);
b99bd4ef 578
c19d1205
ZW
579 /* Function to call to encode instruction in Thumb format. */
580 void (* tencode) (void);
b99bd4ef
NC
581};
582
a737bd4d
NC
583/* Defines for various bits that we will want to toggle. */
584#define INST_IMMEDIATE 0x02000000
585#define OFFSET_REG 0x02000000
c19d1205 586#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
587#define SHIFT_BY_REG 0x00000010
588#define PRE_INDEX 0x01000000
589#define INDEX_UP 0x00800000
590#define WRITE_BACK 0x00200000
591#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 592#define CPSI_MMOD 0x00020000
90e4755a 593
a737bd4d
NC
594#define LITERAL_MASK 0xf000f000
595#define OPCODE_MASK 0xfe1fffff
596#define V4_STR_BIT 0x00000020
90e4755a 597
efd81785
PB
598#define T2_SUBS_PC_LR 0xf3de8f00
599
a737bd4d 600#define DATA_OP_SHIFT 21
90e4755a 601
ef8d22e6
PB
602#define T2_OPCODE_MASK 0xfe1fffff
603#define T2_DATA_OP_SHIFT 21
604
a737bd4d
NC
605/* Codes to distinguish the arithmetic instructions. */
606#define OPCODE_AND 0
607#define OPCODE_EOR 1
608#define OPCODE_SUB 2
609#define OPCODE_RSB 3
610#define OPCODE_ADD 4
611#define OPCODE_ADC 5
612#define OPCODE_SBC 6
613#define OPCODE_RSC 7
614#define OPCODE_TST 8
615#define OPCODE_TEQ 9
616#define OPCODE_CMP 10
617#define OPCODE_CMN 11
618#define OPCODE_ORR 12
619#define OPCODE_MOV 13
620#define OPCODE_BIC 14
621#define OPCODE_MVN 15
90e4755a 622
ef8d22e6
PB
623#define T2_OPCODE_AND 0
624#define T2_OPCODE_BIC 1
625#define T2_OPCODE_ORR 2
626#define T2_OPCODE_ORN 3
627#define T2_OPCODE_EOR 4
628#define T2_OPCODE_ADD 8
629#define T2_OPCODE_ADC 10
630#define T2_OPCODE_SBC 11
631#define T2_OPCODE_SUB 13
632#define T2_OPCODE_RSB 14
633
a737bd4d
NC
634#define T_OPCODE_MUL 0x4340
635#define T_OPCODE_TST 0x4200
636#define T_OPCODE_CMN 0x42c0
637#define T_OPCODE_NEG 0x4240
638#define T_OPCODE_MVN 0x43c0
90e4755a 639
a737bd4d
NC
640#define T_OPCODE_ADD_R3 0x1800
641#define T_OPCODE_SUB_R3 0x1a00
642#define T_OPCODE_ADD_HI 0x4400
643#define T_OPCODE_ADD_ST 0xb000
644#define T_OPCODE_SUB_ST 0xb080
645#define T_OPCODE_ADD_SP 0xa800
646#define T_OPCODE_ADD_PC 0xa000
647#define T_OPCODE_ADD_I8 0x3000
648#define T_OPCODE_SUB_I8 0x3800
649#define T_OPCODE_ADD_I3 0x1c00
650#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 651
a737bd4d
NC
652#define T_OPCODE_ASR_R 0x4100
653#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
654#define T_OPCODE_LSR_R 0x40c0
655#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
656#define T_OPCODE_ASR_I 0x1000
657#define T_OPCODE_LSL_I 0x0000
658#define T_OPCODE_LSR_I 0x0800
b99bd4ef 659
a737bd4d
NC
660#define T_OPCODE_MOV_I8 0x2000
661#define T_OPCODE_CMP_I8 0x2800
662#define T_OPCODE_CMP_LR 0x4280
663#define T_OPCODE_MOV_HR 0x4600
664#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 665
a737bd4d
NC
666#define T_OPCODE_LDR_PC 0x4800
667#define T_OPCODE_LDR_SP 0x9800
668#define T_OPCODE_STR_SP 0x9000
669#define T_OPCODE_LDR_IW 0x6800
670#define T_OPCODE_STR_IW 0x6000
671#define T_OPCODE_LDR_IH 0x8800
672#define T_OPCODE_STR_IH 0x8000
673#define T_OPCODE_LDR_IB 0x7800
674#define T_OPCODE_STR_IB 0x7000
675#define T_OPCODE_LDR_RW 0x5800
676#define T_OPCODE_STR_RW 0x5000
677#define T_OPCODE_LDR_RH 0x5a00
678#define T_OPCODE_STR_RH 0x5200
679#define T_OPCODE_LDR_RB 0x5c00
680#define T_OPCODE_STR_RB 0x5400
c9b604bd 681
a737bd4d
NC
682#define T_OPCODE_PUSH 0xb400
683#define T_OPCODE_POP 0xbc00
b99bd4ef 684
2fc8bdac 685#define T_OPCODE_BRANCH 0xe000
b99bd4ef 686
a737bd4d 687#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 688#define THUMB_PP_PC_LR 0x0100
c19d1205 689#define THUMB_LOAD_BIT 0x0800
53365c0d 690#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
691
692#define BAD_ARGS _("bad arguments to instruction")
fdfde340 693#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
694#define BAD_PC _("r15 not allowed here")
695#define BAD_COND _("instruction cannot be conditional")
696#define BAD_OVERLAP _("registers may not be the same")
697#define BAD_HIREG _("lo register required")
698#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 699#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
700#define BAD_BRANCH _("branch must be last instruction in IT block")
701#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 702#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
703#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
704#define BAD_IT_COND _("incorrect condition in IT block")
705#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 706#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
707#define BAD_PC_ADDRESSING \
708 _("cannot use register index with PC-relative addressing")
709#define BAD_PC_WRITEBACK \
710 _("cannot use writeback with PC-relative addressing")
c19d1205 711
c921be7d
NC
712static struct hash_control * arm_ops_hsh;
713static struct hash_control * arm_cond_hsh;
714static struct hash_control * arm_shift_hsh;
715static struct hash_control * arm_psr_hsh;
716static struct hash_control * arm_v7m_psr_hsh;
717static struct hash_control * arm_reg_hsh;
718static struct hash_control * arm_reloc_hsh;
719static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 720
b99bd4ef
NC
721/* Stuff needed to resolve the label ambiguity
722 As:
723 ...
724 label: <insn>
725 may differ from:
726 ...
727 label:
5f4273c7 728 <insn> */
b99bd4ef
NC
729
730symbolS * last_label_seen;
b34976b6 731static int label_is_thumb_function_name = FALSE;
e07e6e58 732
3d0c9500
NC
733/* Literal pool structure. Held on a per-section
734 and per-sub-section basis. */
a737bd4d 735
c19d1205 736#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 737typedef struct literal_pool
b99bd4ef 738{
c921be7d
NC
739 expressionS literals [MAX_LITERAL_POOL_SIZE];
740 unsigned int next_free_entry;
741 unsigned int id;
742 symbolS * symbol;
743 segT section;
744 subsegT sub_section;
745 struct literal_pool * next;
3d0c9500 746} literal_pool;
b99bd4ef 747
3d0c9500
NC
748/* Pointer to a linked list of literal pools. */
749literal_pool * list_of_pools = NULL;
e27ec89e 750
e07e6e58
NC
751#ifdef OBJ_ELF
752# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
753#else
754static struct current_it now_it;
755#endif
756
757static inline int
758now_it_compatible (int cond)
759{
760 return (cond & ~1) == (now_it.cc & ~1);
761}
762
763static inline int
764conditional_insn (void)
765{
766 return inst.cond != COND_ALWAYS;
767}
768
769static int in_it_block (void);
770
771static int handle_it_state (void);
772
773static void force_automatic_it_block_close (void);
774
c921be7d
NC
775static void it_fsm_post_encode (void);
776
e07e6e58
NC
777#define set_it_insn_type(type) \
778 do \
779 { \
780 inst.it_insn_type = type; \
781 if (handle_it_state () == FAIL) \
782 return; \
783 } \
784 while (0)
785
c921be7d
NC
786#define set_it_insn_type_nonvoid(type, failret) \
787 do \
788 { \
789 inst.it_insn_type = type; \
790 if (handle_it_state () == FAIL) \
791 return failret; \
792 } \
793 while(0)
794
e07e6e58
NC
795#define set_it_insn_type_last() \
796 do \
797 { \
798 if (inst.cond == COND_ALWAYS) \
799 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
800 else \
801 set_it_insn_type (INSIDE_IT_LAST_INSN); \
802 } \
803 while (0)
804
c19d1205 805/* Pure syntax. */
b99bd4ef 806
c19d1205
ZW
807/* This array holds the chars that always start a comment. If the
808 pre-processor is disabled, these aren't very useful. */
809const char comment_chars[] = "@";
3d0c9500 810
c19d1205
ZW
811/* This array holds the chars that only start a comment at the beginning of
812 a line. If the line seems to have the form '# 123 filename'
813 .line and .file directives will appear in the pre-processed output. */
814/* Note that input_file.c hand checks for '#' at the beginning of the
815 first line of the input file. This is because the compiler outputs
816 #NO_APP at the beginning of its output. */
817/* Also note that comments like this one will always work. */
818const char line_comment_chars[] = "#";
3d0c9500 819
c19d1205 820const char line_separator_chars[] = ";";
b99bd4ef 821
c19d1205
ZW
822/* Chars that can be used to separate mant
823 from exp in floating point numbers. */
824const char EXP_CHARS[] = "eE";
3d0c9500 825
c19d1205
ZW
826/* Chars that mean this number is a floating point constant. */
827/* As in 0f12.456 */
828/* or 0d1.2345e12 */
b99bd4ef 829
c19d1205 830const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 831
c19d1205
ZW
832/* Prefix characters that indicate the start of an immediate
833 value. */
834#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 835
c19d1205
ZW
836/* Separator character handling. */
837
838#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
839
840static inline int
841skip_past_char (char ** str, char c)
842{
843 if (**str == c)
844 {
845 (*str)++;
846 return SUCCESS;
3d0c9500 847 }
c19d1205
ZW
848 else
849 return FAIL;
850}
c921be7d 851
c19d1205 852#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 853
c19d1205
ZW
854/* Arithmetic expressions (possibly involving symbols). */
855
856/* Return TRUE if anything in the expression is a bignum. */
857
858static int
859walk_no_bignums (symbolS * sp)
860{
861 if (symbol_get_value_expression (sp)->X_op == O_big)
862 return 1;
863
864 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 865 {
c19d1205
ZW
866 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
867 || (symbol_get_value_expression (sp)->X_op_symbol
868 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
869 }
870
c19d1205 871 return 0;
3d0c9500
NC
872}
873
c19d1205
ZW
874static int in_my_get_expression = 0;
875
876/* Third argument to my_get_expression. */
877#define GE_NO_PREFIX 0
878#define GE_IMM_PREFIX 1
879#define GE_OPT_PREFIX 2
5287ad62
JB
880/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
881 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
882#define GE_OPT_PREFIX_BIG 3
a737bd4d 883
b99bd4ef 884static int
c19d1205 885my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 886{
c19d1205
ZW
887 char * save_in;
888 segT seg;
b99bd4ef 889
c19d1205
ZW
890 /* In unified syntax, all prefixes are optional. */
891 if (unified_syntax)
5287ad62
JB
892 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
893 : GE_OPT_PREFIX;
b99bd4ef 894
c19d1205 895 switch (prefix_mode)
b99bd4ef 896 {
c19d1205
ZW
897 case GE_NO_PREFIX: break;
898 case GE_IMM_PREFIX:
899 if (!is_immediate_prefix (**str))
900 {
901 inst.error = _("immediate expression requires a # prefix");
902 return FAIL;
903 }
904 (*str)++;
905 break;
906 case GE_OPT_PREFIX:
5287ad62 907 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
908 if (is_immediate_prefix (**str))
909 (*str)++;
910 break;
911 default: abort ();
912 }
b99bd4ef 913
c19d1205 914 memset (ep, 0, sizeof (expressionS));
b99bd4ef 915
c19d1205
ZW
916 save_in = input_line_pointer;
917 input_line_pointer = *str;
918 in_my_get_expression = 1;
919 seg = expression (ep);
920 in_my_get_expression = 0;
921
f86adc07 922 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 923 {
f86adc07 924 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
925 *str = input_line_pointer;
926 input_line_pointer = save_in;
927 if (inst.error == NULL)
f86adc07
NS
928 inst.error = (ep->X_op == O_absent
929 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
930 return 1;
931 }
b99bd4ef 932
c19d1205
ZW
933#ifdef OBJ_AOUT
934 if (seg != absolute_section
935 && seg != text_section
936 && seg != data_section
937 && seg != bss_section
938 && seg != undefined_section)
939 {
940 inst.error = _("bad segment");
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 return 1;
b99bd4ef 944 }
c19d1205 945#endif
b99bd4ef 946
c19d1205
ZW
947 /* Get rid of any bignums now, so that we don't generate an error for which
948 we can't establish a line number later on. Big numbers are never valid
949 in instructions, which is where this routine is always called. */
5287ad62
JB
950 if (prefix_mode != GE_OPT_PREFIX_BIG
951 && (ep->X_op == O_big
952 || (ep->X_add_symbol
953 && (walk_no_bignums (ep->X_add_symbol)
954 || (ep->X_op_symbol
955 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
956 {
957 inst.error = _("invalid constant");
958 *str = input_line_pointer;
959 input_line_pointer = save_in;
960 return 1;
961 }
b99bd4ef 962
c19d1205
ZW
963 *str = input_line_pointer;
964 input_line_pointer = save_in;
965 return 0;
b99bd4ef
NC
966}
967
c19d1205
ZW
968/* Turn a string in input_line_pointer into a floating point constant
969 of type TYPE, and store the appropriate bytes in *LITP. The number
970 of LITTLENUMS emitted is stored in *SIZEP. An error message is
971 returned, or NULL on OK.
b99bd4ef 972
c19d1205
ZW
973 Note that fp constants aren't represent in the normal way on the ARM.
974 In big endian mode, things are as expected. However, in little endian
975 mode fp constants are big-endian word-wise, and little-endian byte-wise
976 within the words. For example, (double) 1.1 in big endian mode is
977 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
978 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 979
c19d1205 980 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 981
c19d1205
ZW
982char *
983md_atof (int type, char * litP, int * sizeP)
984{
985 int prec;
986 LITTLENUM_TYPE words[MAX_LITTLENUMS];
987 char *t;
988 int i;
b99bd4ef 989
c19d1205
ZW
990 switch (type)
991 {
992 case 'f':
993 case 'F':
994 case 's':
995 case 'S':
996 prec = 2;
997 break;
b99bd4ef 998
c19d1205
ZW
999 case 'd':
1000 case 'D':
1001 case 'r':
1002 case 'R':
1003 prec = 4;
1004 break;
b99bd4ef 1005
c19d1205
ZW
1006 case 'x':
1007 case 'X':
499ac353 1008 prec = 5;
c19d1205 1009 break;
b99bd4ef 1010
c19d1205
ZW
1011 case 'p':
1012 case 'P':
499ac353 1013 prec = 5;
c19d1205 1014 break;
a737bd4d 1015
c19d1205
ZW
1016 default:
1017 *sizeP = 0;
499ac353 1018 return _("Unrecognized or unsupported floating point constant");
c19d1205 1019 }
b99bd4ef 1020
c19d1205
ZW
1021 t = atof_ieee (input_line_pointer, type, words);
1022 if (t)
1023 input_line_pointer = t;
499ac353 1024 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1025
c19d1205
ZW
1026 if (target_big_endian)
1027 {
1028 for (i = 0; i < prec; i++)
1029 {
499ac353
NC
1030 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1031 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1032 }
1033 }
1034 else
1035 {
e74cfd16 1036 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1037 for (i = prec - 1; i >= 0; i--)
1038 {
499ac353
NC
1039 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1040 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1041 }
1042 else
1043 /* For a 4 byte float the order of elements in `words' is 1 0.
1044 For an 8 byte float the order is 1 0 3 2. */
1045 for (i = 0; i < prec; i += 2)
1046 {
499ac353
NC
1047 md_number_to_chars (litP, (valueT) words[i + 1],
1048 sizeof (LITTLENUM_TYPE));
1049 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1050 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1051 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1052 }
1053 }
b99bd4ef 1054
499ac353 1055 return NULL;
c19d1205 1056}
b99bd4ef 1057
c19d1205
ZW
1058/* We handle all bad expressions here, so that we can report the faulty
1059 instruction in the error message. */
1060void
91d6fa6a 1061md_operand (expressionS * exp)
c19d1205
ZW
1062{
1063 if (in_my_get_expression)
91d6fa6a 1064 exp->X_op = O_illegal;
b99bd4ef
NC
1065}
1066
c19d1205 1067/* Immediate values. */
b99bd4ef 1068
c19d1205
ZW
1069/* Generic immediate-value read function for use in directives.
1070 Accepts anything that 'expression' can fold to a constant.
1071 *val receives the number. */
1072#ifdef OBJ_ELF
1073static int
1074immediate_for_directive (int *val)
b99bd4ef 1075{
c19d1205
ZW
1076 expressionS exp;
1077 exp.X_op = O_illegal;
b99bd4ef 1078
c19d1205
ZW
1079 if (is_immediate_prefix (*input_line_pointer))
1080 {
1081 input_line_pointer++;
1082 expression (&exp);
1083 }
b99bd4ef 1084
c19d1205
ZW
1085 if (exp.X_op != O_constant)
1086 {
1087 as_bad (_("expected #constant"));
1088 ignore_rest_of_line ();
1089 return FAIL;
1090 }
1091 *val = exp.X_add_number;
1092 return SUCCESS;
b99bd4ef 1093}
c19d1205 1094#endif
b99bd4ef 1095
c19d1205 1096/* Register parsing. */
b99bd4ef 1097
c19d1205
ZW
1098/* Generic register parser. CCP points to what should be the
1099 beginning of a register name. If it is indeed a valid register
1100 name, advance CCP over it and return the reg_entry structure;
1101 otherwise return NULL. Does not issue diagnostics. */
1102
1103static struct reg_entry *
1104arm_reg_parse_multi (char **ccp)
b99bd4ef 1105{
c19d1205
ZW
1106 char *start = *ccp;
1107 char *p;
1108 struct reg_entry *reg;
b99bd4ef 1109
c19d1205
ZW
1110#ifdef REGISTER_PREFIX
1111 if (*start != REGISTER_PREFIX)
01cfc07f 1112 return NULL;
c19d1205
ZW
1113 start++;
1114#endif
1115#ifdef OPTIONAL_REGISTER_PREFIX
1116 if (*start == OPTIONAL_REGISTER_PREFIX)
1117 start++;
1118#endif
b99bd4ef 1119
c19d1205
ZW
1120 p = start;
1121 if (!ISALPHA (*p) || !is_name_beginner (*p))
1122 return NULL;
b99bd4ef 1123
c19d1205
ZW
1124 do
1125 p++;
1126 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1127
1128 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1129
1130 if (!reg)
1131 return NULL;
1132
1133 *ccp = p;
1134 return reg;
b99bd4ef
NC
1135}
1136
1137static int
dcbf9037
JB
1138arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1139 enum arm_reg_type type)
b99bd4ef 1140{
c19d1205
ZW
1141 /* Alternative syntaxes are accepted for a few register classes. */
1142 switch (type)
1143 {
1144 case REG_TYPE_MVF:
1145 case REG_TYPE_MVD:
1146 case REG_TYPE_MVFX:
1147 case REG_TYPE_MVDX:
1148 /* Generic coprocessor register names are allowed for these. */
79134647 1149 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1150 return reg->number;
1151 break;
69b97547 1152
c19d1205
ZW
1153 case REG_TYPE_CP:
1154 /* For backward compatibility, a bare number is valid here. */
1155 {
1156 unsigned long processor = strtoul (start, ccp, 10);
1157 if (*ccp != start && processor <= 15)
1158 return processor;
1159 }
6057a28f 1160
c19d1205
ZW
1161 case REG_TYPE_MMXWC:
1162 /* WC includes WCG. ??? I'm not sure this is true for all
1163 instructions that take WC registers. */
79134647 1164 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1165 return reg->number;
6057a28f 1166 break;
c19d1205 1167
6057a28f 1168 default:
c19d1205 1169 break;
6057a28f
NC
1170 }
1171
dcbf9037
JB
1172 return FAIL;
1173}
1174
1175/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1176 return value is the register number or FAIL. */
1177
1178static int
1179arm_reg_parse (char **ccp, enum arm_reg_type type)
1180{
1181 char *start = *ccp;
1182 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1183 int ret;
1184
1185 /* Do not allow a scalar (reg+index) to parse as a register. */
1186 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1187 return FAIL;
1188
1189 if (reg && reg->type == type)
1190 return reg->number;
1191
1192 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1193 return ret;
1194
c19d1205
ZW
1195 *ccp = start;
1196 return FAIL;
1197}
69b97547 1198
dcbf9037
JB
1199/* Parse a Neon type specifier. *STR should point at the leading '.'
1200 character. Does no verification at this stage that the type fits the opcode
1201 properly. E.g.,
1202
1203 .i32.i32.s16
1204 .s32.f32
1205 .u16
1206
1207 Can all be legally parsed by this function.
1208
1209 Fills in neon_type struct pointer with parsed information, and updates STR
1210 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1211 type, FAIL if not. */
1212
1213static int
1214parse_neon_type (struct neon_type *type, char **str)
1215{
1216 char *ptr = *str;
1217
1218 if (type)
1219 type->elems = 0;
1220
1221 while (type->elems < NEON_MAX_TYPE_ELS)
1222 {
1223 enum neon_el_type thistype = NT_untyped;
1224 unsigned thissize = -1u;
1225
1226 if (*ptr != '.')
1227 break;
1228
1229 ptr++;
1230
1231 /* Just a size without an explicit type. */
1232 if (ISDIGIT (*ptr))
1233 goto parsesize;
1234
1235 switch (TOLOWER (*ptr))
1236 {
1237 case 'i': thistype = NT_integer; break;
1238 case 'f': thistype = NT_float; break;
1239 case 'p': thistype = NT_poly; break;
1240 case 's': thistype = NT_signed; break;
1241 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1242 case 'd':
1243 thistype = NT_float;
1244 thissize = 64;
1245 ptr++;
1246 goto done;
dcbf9037
JB
1247 default:
1248 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1249 return FAIL;
1250 }
1251
1252 ptr++;
1253
1254 /* .f is an abbreviation for .f32. */
1255 if (thistype == NT_float && !ISDIGIT (*ptr))
1256 thissize = 32;
1257 else
1258 {
1259 parsesize:
1260 thissize = strtoul (ptr, &ptr, 10);
1261
1262 if (thissize != 8 && thissize != 16 && thissize != 32
1263 && thissize != 64)
1264 {
1265 as_bad (_("bad size %d in type specifier"), thissize);
1266 return FAIL;
1267 }
1268 }
1269
037e8744 1270 done:
dcbf9037
JB
1271 if (type)
1272 {
1273 type->el[type->elems].type = thistype;
1274 type->el[type->elems].size = thissize;
1275 type->elems++;
1276 }
1277 }
1278
1279 /* Empty/missing type is not a successful parse. */
1280 if (type->elems == 0)
1281 return FAIL;
1282
1283 *str = ptr;
1284
1285 return SUCCESS;
1286}
1287
1288/* Errors may be set multiple times during parsing or bit encoding
1289 (particularly in the Neon bits), but usually the earliest error which is set
1290 will be the most meaningful. Avoid overwriting it with later (cascading)
1291 errors by calling this function. */
1292
1293static void
1294first_error (const char *err)
1295{
1296 if (!inst.error)
1297 inst.error = err;
1298}
1299
1300/* Parse a single type, e.g. ".s32", leading period included. */
1301static int
1302parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1303{
1304 char *str = *ccp;
1305 struct neon_type optype;
1306
1307 if (*str == '.')
1308 {
1309 if (parse_neon_type (&optype, &str) == SUCCESS)
1310 {
1311 if (optype.elems == 1)
1312 *vectype = optype.el[0];
1313 else
1314 {
1315 first_error (_("only one type should be specified for operand"));
1316 return FAIL;
1317 }
1318 }
1319 else
1320 {
1321 first_error (_("vector type expected"));
1322 return FAIL;
1323 }
1324 }
1325 else
1326 return FAIL;
5f4273c7 1327
dcbf9037 1328 *ccp = str;
5f4273c7 1329
dcbf9037
JB
1330 return SUCCESS;
1331}
1332
1333/* Special meanings for indices (which have a range of 0-7), which will fit into
1334 a 4-bit integer. */
1335
1336#define NEON_ALL_LANES 15
1337#define NEON_INTERLEAVE_LANES 14
1338
1339/* Parse either a register or a scalar, with an optional type. Return the
1340 register number, and optionally fill in the actual type of the register
1341 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1342 type/index information in *TYPEINFO. */
1343
1344static int
1345parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1346 enum arm_reg_type *rtype,
1347 struct neon_typed_alias *typeinfo)
1348{
1349 char *str = *ccp;
1350 struct reg_entry *reg = arm_reg_parse_multi (&str);
1351 struct neon_typed_alias atype;
1352 struct neon_type_el parsetype;
1353
1354 atype.defined = 0;
1355 atype.index = -1;
1356 atype.eltype.type = NT_invtype;
1357 atype.eltype.size = -1;
1358
1359 /* Try alternate syntax for some types of register. Note these are mutually
1360 exclusive with the Neon syntax extensions. */
1361 if (reg == NULL)
1362 {
1363 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1364 if (altreg != FAIL)
1365 *ccp = str;
1366 if (typeinfo)
1367 *typeinfo = atype;
1368 return altreg;
1369 }
1370
037e8744
JB
1371 /* Undo polymorphism when a set of register types may be accepted. */
1372 if ((type == REG_TYPE_NDQ
1373 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1374 || (type == REG_TYPE_VFSD
1375 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1376 || (type == REG_TYPE_NSDQ
1377 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1378 || reg->type == REG_TYPE_NQ))
1379 || (type == REG_TYPE_MMXWC
1380 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1381 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1382
1383 if (type != reg->type)
1384 return FAIL;
1385
1386 if (reg->neon)
1387 atype = *reg->neon;
5f4273c7 1388
dcbf9037
JB
1389 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1390 {
1391 if ((atype.defined & NTA_HASTYPE) != 0)
1392 {
1393 first_error (_("can't redefine type for operand"));
1394 return FAIL;
1395 }
1396 atype.defined |= NTA_HASTYPE;
1397 atype.eltype = parsetype;
1398 }
5f4273c7 1399
dcbf9037
JB
1400 if (skip_past_char (&str, '[') == SUCCESS)
1401 {
1402 if (type != REG_TYPE_VFD)
1403 {
1404 first_error (_("only D registers may be indexed"));
1405 return FAIL;
1406 }
5f4273c7 1407
dcbf9037
JB
1408 if ((atype.defined & NTA_HASINDEX) != 0)
1409 {
1410 first_error (_("can't change index for operand"));
1411 return FAIL;
1412 }
1413
1414 atype.defined |= NTA_HASINDEX;
1415
1416 if (skip_past_char (&str, ']') == SUCCESS)
1417 atype.index = NEON_ALL_LANES;
1418 else
1419 {
1420 expressionS exp;
1421
1422 my_get_expression (&exp, &str, GE_NO_PREFIX);
1423
1424 if (exp.X_op != O_constant)
1425 {
1426 first_error (_("constant expression required"));
1427 return FAIL;
1428 }
1429
1430 if (skip_past_char (&str, ']') == FAIL)
1431 return FAIL;
1432
1433 atype.index = exp.X_add_number;
1434 }
1435 }
5f4273c7 1436
dcbf9037
JB
1437 if (typeinfo)
1438 *typeinfo = atype;
5f4273c7 1439
dcbf9037
JB
1440 if (rtype)
1441 *rtype = type;
5f4273c7 1442
dcbf9037 1443 *ccp = str;
5f4273c7 1444
dcbf9037
JB
1445 return reg->number;
1446}
1447
1448/* Like arm_reg_parse, but allow allow the following extra features:
1449 - If RTYPE is non-zero, return the (possibly restricted) type of the
1450 register (e.g. Neon double or quad reg when either has been requested).
1451 - If this is a Neon vector type with additional type information, fill
1452 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1453 This function will fault on encountering a scalar. */
dcbf9037
JB
1454
1455static int
1456arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1457 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1458{
1459 struct neon_typed_alias atype;
1460 char *str = *ccp;
1461 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1462
1463 if (reg == FAIL)
1464 return FAIL;
1465
1466 /* Do not allow a scalar (reg+index) to parse as a register. */
1467 if ((atype.defined & NTA_HASINDEX) != 0)
1468 {
1469 first_error (_("register operand expected, but got scalar"));
1470 return FAIL;
1471 }
1472
1473 if (vectype)
1474 *vectype = atype.eltype;
1475
1476 *ccp = str;
1477
1478 return reg;
1479}
1480
1481#define NEON_SCALAR_REG(X) ((X) >> 4)
1482#define NEON_SCALAR_INDEX(X) ((X) & 15)
1483
5287ad62
JB
1484/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1485 have enough information to be able to do a good job bounds-checking. So, we
1486 just do easy checks here, and do further checks later. */
1487
1488static int
dcbf9037 1489parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1490{
dcbf9037 1491 int reg;
5287ad62 1492 char *str = *ccp;
dcbf9037 1493 struct neon_typed_alias atype;
5f4273c7 1494
dcbf9037 1495 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1496
dcbf9037 1497 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1498 return FAIL;
5f4273c7 1499
dcbf9037 1500 if (atype.index == NEON_ALL_LANES)
5287ad62 1501 {
dcbf9037 1502 first_error (_("scalar must have an index"));
5287ad62
JB
1503 return FAIL;
1504 }
dcbf9037 1505 else if (atype.index >= 64 / elsize)
5287ad62 1506 {
dcbf9037 1507 first_error (_("scalar index out of range"));
5287ad62
JB
1508 return FAIL;
1509 }
5f4273c7 1510
dcbf9037
JB
1511 if (type)
1512 *type = atype.eltype;
5f4273c7 1513
5287ad62 1514 *ccp = str;
5f4273c7 1515
dcbf9037 1516 return reg * 16 + atype.index;
5287ad62
JB
1517}
1518
c19d1205 1519/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1520
c19d1205
ZW
1521static long
1522parse_reg_list (char ** strp)
1523{
1524 char * str = * strp;
1525 long range = 0;
1526 int another_range;
a737bd4d 1527
c19d1205
ZW
1528 /* We come back here if we get ranges concatenated by '+' or '|'. */
1529 do
6057a28f 1530 {
c19d1205 1531 another_range = 0;
a737bd4d 1532
c19d1205
ZW
1533 if (*str == '{')
1534 {
1535 int in_range = 0;
1536 int cur_reg = -1;
a737bd4d 1537
c19d1205
ZW
1538 str++;
1539 do
1540 {
1541 int reg;
6057a28f 1542
dcbf9037 1543 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1544 {
dcbf9037 1545 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1546 return FAIL;
1547 }
a737bd4d 1548
c19d1205
ZW
1549 if (in_range)
1550 {
1551 int i;
a737bd4d 1552
c19d1205
ZW
1553 if (reg <= cur_reg)
1554 {
dcbf9037 1555 first_error (_("bad range in register list"));
c19d1205
ZW
1556 return FAIL;
1557 }
40a18ebd 1558
c19d1205
ZW
1559 for (i = cur_reg + 1; i < reg; i++)
1560 {
1561 if (range & (1 << i))
1562 as_tsktsk
1563 (_("Warning: duplicated register (r%d) in register list"),
1564 i);
1565 else
1566 range |= 1 << i;
1567 }
1568 in_range = 0;
1569 }
a737bd4d 1570
c19d1205
ZW
1571 if (range & (1 << reg))
1572 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1573 reg);
1574 else if (reg <= cur_reg)
1575 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1576
c19d1205
ZW
1577 range |= 1 << reg;
1578 cur_reg = reg;
1579 }
1580 while (skip_past_comma (&str) != FAIL
1581 || (in_range = 1, *str++ == '-'));
1582 str--;
a737bd4d 1583
c19d1205
ZW
1584 if (*str++ != '}')
1585 {
dcbf9037 1586 first_error (_("missing `}'"));
c19d1205
ZW
1587 return FAIL;
1588 }
1589 }
1590 else
1591 {
91d6fa6a 1592 expressionS exp;
40a18ebd 1593
91d6fa6a 1594 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1595 return FAIL;
40a18ebd 1596
91d6fa6a 1597 if (exp.X_op == O_constant)
c19d1205 1598 {
91d6fa6a
NC
1599 if (exp.X_add_number
1600 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1601 {
1602 inst.error = _("invalid register mask");
1603 return FAIL;
1604 }
a737bd4d 1605
91d6fa6a 1606 if ((range & exp.X_add_number) != 0)
c19d1205 1607 {
91d6fa6a 1608 int regno = range & exp.X_add_number;
a737bd4d 1609
c19d1205
ZW
1610 regno &= -regno;
1611 regno = (1 << regno) - 1;
1612 as_tsktsk
1613 (_("Warning: duplicated register (r%d) in register list"),
1614 regno);
1615 }
a737bd4d 1616
91d6fa6a 1617 range |= exp.X_add_number;
c19d1205
ZW
1618 }
1619 else
1620 {
1621 if (inst.reloc.type != 0)
1622 {
1623 inst.error = _("expression too complex");
1624 return FAIL;
1625 }
a737bd4d 1626
91d6fa6a 1627 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1628 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1629 inst.reloc.pc_rel = 0;
1630 }
1631 }
a737bd4d 1632
c19d1205
ZW
1633 if (*str == '|' || *str == '+')
1634 {
1635 str++;
1636 another_range = 1;
1637 }
a737bd4d 1638 }
c19d1205 1639 while (another_range);
a737bd4d 1640
c19d1205
ZW
1641 *strp = str;
1642 return range;
a737bd4d
NC
1643}
1644
5287ad62
JB
1645/* Types of registers in a list. */
1646
1647enum reg_list_els
1648{
1649 REGLIST_VFP_S,
1650 REGLIST_VFP_D,
1651 REGLIST_NEON_D
1652};
1653
c19d1205
ZW
1654/* Parse a VFP register list. If the string is invalid return FAIL.
1655 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1656 register. Parses registers of type ETYPE.
1657 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1658 - Q registers can be used to specify pairs of D registers
1659 - { } can be omitted from around a singleton register list
1660 FIXME: This is not implemented, as it would require backtracking in
1661 some cases, e.g.:
1662 vtbl.8 d3,d4,d5
1663 This could be done (the meaning isn't really ambiguous), but doesn't
1664 fit in well with the current parsing framework.
dcbf9037
JB
1665 - 32 D registers may be used (also true for VFPv3).
1666 FIXME: Types are ignored in these register lists, which is probably a
1667 bug. */
6057a28f 1668
c19d1205 1669static int
037e8744 1670parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1671{
037e8744 1672 char *str = *ccp;
c19d1205
ZW
1673 int base_reg;
1674 int new_base;
21d799b5 1675 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1676 int max_regs = 0;
c19d1205
ZW
1677 int count = 0;
1678 int warned = 0;
1679 unsigned long mask = 0;
a737bd4d 1680 int i;
6057a28f 1681
037e8744 1682 if (*str != '{')
5287ad62
JB
1683 {
1684 inst.error = _("expecting {");
1685 return FAIL;
1686 }
6057a28f 1687
037e8744 1688 str++;
6057a28f 1689
5287ad62 1690 switch (etype)
c19d1205 1691 {
5287ad62 1692 case REGLIST_VFP_S:
c19d1205
ZW
1693 regtype = REG_TYPE_VFS;
1694 max_regs = 32;
5287ad62 1695 break;
5f4273c7 1696
5287ad62
JB
1697 case REGLIST_VFP_D:
1698 regtype = REG_TYPE_VFD;
b7fc2769 1699 break;
5f4273c7 1700
b7fc2769
JB
1701 case REGLIST_NEON_D:
1702 regtype = REG_TYPE_NDQ;
1703 break;
1704 }
1705
1706 if (etype != REGLIST_VFP_S)
1707 {
b1cc4aeb
PB
1708 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1709 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1710 {
1711 max_regs = 32;
1712 if (thumb_mode)
1713 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1714 fpu_vfp_ext_d32);
5287ad62
JB
1715 else
1716 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1717 fpu_vfp_ext_d32);
5287ad62
JB
1718 }
1719 else
1720 max_regs = 16;
c19d1205 1721 }
6057a28f 1722
c19d1205 1723 base_reg = max_regs;
a737bd4d 1724
c19d1205
ZW
1725 do
1726 {
5287ad62 1727 int setmask = 1, addregs = 1;
dcbf9037 1728
037e8744 1729 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1730
c19d1205 1731 if (new_base == FAIL)
a737bd4d 1732 {
dcbf9037 1733 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1734 return FAIL;
1735 }
5f4273c7 1736
b7fc2769
JB
1737 if (new_base >= max_regs)
1738 {
1739 first_error (_("register out of range in list"));
1740 return FAIL;
1741 }
5f4273c7 1742
5287ad62
JB
1743 /* Note: a value of 2 * n is returned for the register Q<n>. */
1744 if (regtype == REG_TYPE_NQ)
1745 {
1746 setmask = 3;
1747 addregs = 2;
1748 }
1749
c19d1205
ZW
1750 if (new_base < base_reg)
1751 base_reg = new_base;
a737bd4d 1752
5287ad62 1753 if (mask & (setmask << new_base))
c19d1205 1754 {
dcbf9037 1755 first_error (_("invalid register list"));
c19d1205 1756 return FAIL;
a737bd4d 1757 }
a737bd4d 1758
c19d1205
ZW
1759 if ((mask >> new_base) != 0 && ! warned)
1760 {
1761 as_tsktsk (_("register list not in ascending order"));
1762 warned = 1;
1763 }
0bbf2aa4 1764
5287ad62
JB
1765 mask |= setmask << new_base;
1766 count += addregs;
0bbf2aa4 1767
037e8744 1768 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1769 {
1770 int high_range;
0bbf2aa4 1771
037e8744 1772 str++;
0bbf2aa4 1773
037e8744 1774 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1775 == FAIL)
c19d1205
ZW
1776 {
1777 inst.error = gettext (reg_expected_msgs[regtype]);
1778 return FAIL;
1779 }
0bbf2aa4 1780
b7fc2769
JB
1781 if (high_range >= max_regs)
1782 {
1783 first_error (_("register out of range in list"));
1784 return FAIL;
1785 }
1786
5287ad62
JB
1787 if (regtype == REG_TYPE_NQ)
1788 high_range = high_range + 1;
1789
c19d1205
ZW
1790 if (high_range <= new_base)
1791 {
1792 inst.error = _("register range not in ascending order");
1793 return FAIL;
1794 }
0bbf2aa4 1795
5287ad62 1796 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1797 {
5287ad62 1798 if (mask & (setmask << new_base))
0bbf2aa4 1799 {
c19d1205
ZW
1800 inst.error = _("invalid register list");
1801 return FAIL;
0bbf2aa4 1802 }
c19d1205 1803
5287ad62
JB
1804 mask |= setmask << new_base;
1805 count += addregs;
0bbf2aa4 1806 }
0bbf2aa4 1807 }
0bbf2aa4 1808 }
037e8744 1809 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1810
037e8744 1811 str++;
0bbf2aa4 1812
c19d1205
ZW
1813 /* Sanity check -- should have raised a parse error above. */
1814 if (count == 0 || count > max_regs)
1815 abort ();
1816
1817 *pbase = base_reg;
1818
1819 /* Final test -- the registers must be consecutive. */
1820 mask >>= base_reg;
1821 for (i = 0; i < count; i++)
1822 {
1823 if ((mask & (1u << i)) == 0)
1824 {
1825 inst.error = _("non-contiguous register range");
1826 return FAIL;
1827 }
1828 }
1829
037e8744
JB
1830 *ccp = str;
1831
c19d1205 1832 return count;
b99bd4ef
NC
1833}
1834
dcbf9037
JB
1835/* True if two alias types are the same. */
1836
c921be7d 1837static bfd_boolean
dcbf9037
JB
1838neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1839{
1840 if (!a && !b)
c921be7d 1841 return TRUE;
5f4273c7 1842
dcbf9037 1843 if (!a || !b)
c921be7d 1844 return FALSE;
dcbf9037
JB
1845
1846 if (a->defined != b->defined)
c921be7d 1847 return FALSE;
5f4273c7 1848
dcbf9037
JB
1849 if ((a->defined & NTA_HASTYPE) != 0
1850 && (a->eltype.type != b->eltype.type
1851 || a->eltype.size != b->eltype.size))
c921be7d 1852 return FALSE;
dcbf9037
JB
1853
1854 if ((a->defined & NTA_HASINDEX) != 0
1855 && (a->index != b->index))
c921be7d 1856 return FALSE;
5f4273c7 1857
c921be7d 1858 return TRUE;
dcbf9037
JB
1859}
1860
5287ad62
JB
1861/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1862 The base register is put in *PBASE.
dcbf9037 1863 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1864 the return value.
1865 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1866 Bits [6:5] encode the list length (minus one).
1867 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1868
5287ad62 1869#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1870#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1871#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1872
1873static int
dcbf9037
JB
1874parse_neon_el_struct_list (char **str, unsigned *pbase,
1875 struct neon_type_el *eltype)
5287ad62
JB
1876{
1877 char *ptr = *str;
1878 int base_reg = -1;
1879 int reg_incr = -1;
1880 int count = 0;
1881 int lane = -1;
1882 int leading_brace = 0;
1883 enum arm_reg_type rtype = REG_TYPE_NDQ;
1884 int addregs = 1;
20203fb9
NC
1885 const char *const incr_error = _("register stride must be 1 or 2");
1886 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1887 struct neon_typed_alias firsttype;
5f4273c7 1888
5287ad62
JB
1889 if (skip_past_char (&ptr, '{') == SUCCESS)
1890 leading_brace = 1;
5f4273c7 1891
5287ad62
JB
1892 do
1893 {
dcbf9037
JB
1894 struct neon_typed_alias atype;
1895 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1896
5287ad62
JB
1897 if (getreg == FAIL)
1898 {
dcbf9037 1899 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1900 return FAIL;
1901 }
5f4273c7 1902
5287ad62
JB
1903 if (base_reg == -1)
1904 {
1905 base_reg = getreg;
1906 if (rtype == REG_TYPE_NQ)
1907 {
1908 reg_incr = 1;
1909 addregs = 2;
1910 }
dcbf9037 1911 firsttype = atype;
5287ad62
JB
1912 }
1913 else if (reg_incr == -1)
1914 {
1915 reg_incr = getreg - base_reg;
1916 if (reg_incr < 1 || reg_incr > 2)
1917 {
dcbf9037 1918 first_error (_(incr_error));
5287ad62
JB
1919 return FAIL;
1920 }
1921 }
1922 else if (getreg != base_reg + reg_incr * count)
1923 {
dcbf9037
JB
1924 first_error (_(incr_error));
1925 return FAIL;
1926 }
1927
c921be7d 1928 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1929 {
1930 first_error (_(type_error));
5287ad62
JB
1931 return FAIL;
1932 }
5f4273c7 1933
5287ad62
JB
1934 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1935 modes. */
1936 if (ptr[0] == '-')
1937 {
dcbf9037 1938 struct neon_typed_alias htype;
5287ad62
JB
1939 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1940 if (lane == -1)
1941 lane = NEON_INTERLEAVE_LANES;
1942 else if (lane != NEON_INTERLEAVE_LANES)
1943 {
dcbf9037 1944 first_error (_(type_error));
5287ad62
JB
1945 return FAIL;
1946 }
1947 if (reg_incr == -1)
1948 reg_incr = 1;
1949 else if (reg_incr != 1)
1950 {
dcbf9037 1951 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1952 return FAIL;
1953 }
1954 ptr++;
dcbf9037 1955 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1956 if (hireg == FAIL)
1957 {
dcbf9037
JB
1958 first_error (_(reg_expected_msgs[rtype]));
1959 return FAIL;
1960 }
c921be7d 1961 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1962 {
1963 first_error (_(type_error));
5287ad62
JB
1964 return FAIL;
1965 }
1966 count += hireg + dregs - getreg;
1967 continue;
1968 }
5f4273c7 1969
5287ad62
JB
1970 /* If we're using Q registers, we can't use [] or [n] syntax. */
1971 if (rtype == REG_TYPE_NQ)
1972 {
1973 count += 2;
1974 continue;
1975 }
5f4273c7 1976
dcbf9037 1977 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1978 {
dcbf9037
JB
1979 if (lane == -1)
1980 lane = atype.index;
1981 else if (lane != atype.index)
5287ad62 1982 {
dcbf9037
JB
1983 first_error (_(type_error));
1984 return FAIL;
5287ad62
JB
1985 }
1986 }
1987 else if (lane == -1)
1988 lane = NEON_INTERLEAVE_LANES;
1989 else if (lane != NEON_INTERLEAVE_LANES)
1990 {
dcbf9037 1991 first_error (_(type_error));
5287ad62
JB
1992 return FAIL;
1993 }
1994 count++;
1995 }
1996 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 1997
5287ad62
JB
1998 /* No lane set by [x]. We must be interleaving structures. */
1999 if (lane == -1)
2000 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2001
5287ad62
JB
2002 /* Sanity check. */
2003 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2004 || (count > 1 && reg_incr == -1))
2005 {
dcbf9037 2006 first_error (_("error parsing element/structure list"));
5287ad62
JB
2007 return FAIL;
2008 }
2009
2010 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2011 {
dcbf9037 2012 first_error (_("expected }"));
5287ad62
JB
2013 return FAIL;
2014 }
5f4273c7 2015
5287ad62
JB
2016 if (reg_incr == -1)
2017 reg_incr = 1;
2018
dcbf9037
JB
2019 if (eltype)
2020 *eltype = firsttype.eltype;
2021
5287ad62
JB
2022 *pbase = base_reg;
2023 *str = ptr;
5f4273c7 2024
5287ad62
JB
2025 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2026}
2027
c19d1205
ZW
2028/* Parse an explicit relocation suffix on an expression. This is
2029 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2030 arm_reloc_hsh contains no entries, so this function can only
2031 succeed if there is no () after the word. Returns -1 on error,
2032 BFD_RELOC_UNUSED if there wasn't any suffix. */
2033static int
2034parse_reloc (char **str)
b99bd4ef 2035{
c19d1205
ZW
2036 struct reloc_entry *r;
2037 char *p, *q;
b99bd4ef 2038
c19d1205
ZW
2039 if (**str != '(')
2040 return BFD_RELOC_UNUSED;
b99bd4ef 2041
c19d1205
ZW
2042 p = *str + 1;
2043 q = p;
2044
2045 while (*q && *q != ')' && *q != ',')
2046 q++;
2047 if (*q != ')')
2048 return -1;
2049
21d799b5
NC
2050 if ((r = (struct reloc_entry *)
2051 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2052 return -1;
2053
2054 *str = q + 1;
2055 return r->reloc;
b99bd4ef
NC
2056}
2057
c19d1205
ZW
2058/* Directives: register aliases. */
2059
dcbf9037 2060static struct reg_entry *
c19d1205 2061insert_reg_alias (char *str, int number, int type)
b99bd4ef 2062{
d3ce72d0 2063 struct reg_entry *new_reg;
c19d1205 2064 const char *name;
b99bd4ef 2065
d3ce72d0 2066 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2067 {
d3ce72d0 2068 if (new_reg->builtin)
c19d1205 2069 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2070
c19d1205
ZW
2071 /* Only warn about a redefinition if it's not defined as the
2072 same register. */
d3ce72d0 2073 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2074 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2075
d929913e 2076 return NULL;
c19d1205 2077 }
b99bd4ef 2078
c19d1205 2079 name = xstrdup (str);
d3ce72d0 2080 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2081
d3ce72d0
NC
2082 new_reg->name = name;
2083 new_reg->number = number;
2084 new_reg->type = type;
2085 new_reg->builtin = FALSE;
2086 new_reg->neon = NULL;
b99bd4ef 2087
d3ce72d0 2088 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2089 abort ();
5f4273c7 2090
d3ce72d0 2091 return new_reg;
dcbf9037
JB
2092}
2093
2094static void
2095insert_neon_reg_alias (char *str, int number, int type,
2096 struct neon_typed_alias *atype)
2097{
2098 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2099
dcbf9037
JB
2100 if (!reg)
2101 {
2102 first_error (_("attempt to redefine typed alias"));
2103 return;
2104 }
5f4273c7 2105
dcbf9037
JB
2106 if (atype)
2107 {
21d799b5
NC
2108 reg->neon = (struct neon_typed_alias *)
2109 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2110 *reg->neon = *atype;
2111 }
c19d1205 2112}
b99bd4ef 2113
c19d1205 2114/* Look for the .req directive. This is of the form:
b99bd4ef 2115
c19d1205 2116 new_register_name .req existing_register_name
b99bd4ef 2117
c19d1205 2118 If we find one, or if it looks sufficiently like one that we want to
d929913e 2119 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2120
d929913e 2121static bfd_boolean
c19d1205
ZW
2122create_register_alias (char * newname, char *p)
2123{
2124 struct reg_entry *old;
2125 char *oldname, *nbuf;
2126 size_t nlen;
b99bd4ef 2127
c19d1205
ZW
2128 /* The input scrubber ensures that whitespace after the mnemonic is
2129 collapsed to single spaces. */
2130 oldname = p;
2131 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2132 return FALSE;
b99bd4ef 2133
c19d1205
ZW
2134 oldname += 6;
2135 if (*oldname == '\0')
d929913e 2136 return FALSE;
b99bd4ef 2137
21d799b5 2138 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2139 if (!old)
b99bd4ef 2140 {
c19d1205 2141 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2142 return TRUE;
b99bd4ef
NC
2143 }
2144
c19d1205
ZW
2145 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2146 the desired alias name, and p points to its end. If not, then
2147 the desired alias name is in the global original_case_string. */
2148#ifdef TC_CASE_SENSITIVE
2149 nlen = p - newname;
2150#else
2151 newname = original_case_string;
2152 nlen = strlen (newname);
2153#endif
b99bd4ef 2154
21d799b5 2155 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2156 memcpy (nbuf, newname, nlen);
2157 nbuf[nlen] = '\0';
b99bd4ef 2158
c19d1205
ZW
2159 /* Create aliases under the new name as stated; an all-lowercase
2160 version of the new name; and an all-uppercase version of the new
2161 name. */
d929913e
NC
2162 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2163 {
2164 for (p = nbuf; *p; p++)
2165 *p = TOUPPER (*p);
c19d1205 2166
d929913e
NC
2167 if (strncmp (nbuf, newname, nlen))
2168 {
2169 /* If this attempt to create an additional alias fails, do not bother
2170 trying to create the all-lower case alias. We will fail and issue
2171 a second, duplicate error message. This situation arises when the
2172 programmer does something like:
2173 foo .req r0
2174 Foo .req r1
2175 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2176 the artificial FOO alias because it has already been created by the
d929913e
NC
2177 first .req. */
2178 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2179 return TRUE;
2180 }
c19d1205 2181
d929913e
NC
2182 for (p = nbuf; *p; p++)
2183 *p = TOLOWER (*p);
c19d1205 2184
d929913e
NC
2185 if (strncmp (nbuf, newname, nlen))
2186 insert_reg_alias (nbuf, old->number, old->type);
2187 }
c19d1205 2188
d929913e 2189 return TRUE;
b99bd4ef
NC
2190}
2191
dcbf9037
JB
2192/* Create a Neon typed/indexed register alias using directives, e.g.:
2193 X .dn d5.s32[1]
2194 Y .qn 6.s16
2195 Z .dn d7
2196 T .dn Z[0]
2197 These typed registers can be used instead of the types specified after the
2198 Neon mnemonic, so long as all operands given have types. Types can also be
2199 specified directly, e.g.:
5f4273c7 2200 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2201
c921be7d 2202static bfd_boolean
dcbf9037
JB
2203create_neon_reg_alias (char *newname, char *p)
2204{
2205 enum arm_reg_type basetype;
2206 struct reg_entry *basereg;
2207 struct reg_entry mybasereg;
2208 struct neon_type ntype;
2209 struct neon_typed_alias typeinfo;
2210 char *namebuf, *nameend;
2211 int namelen;
5f4273c7 2212
dcbf9037
JB
2213 typeinfo.defined = 0;
2214 typeinfo.eltype.type = NT_invtype;
2215 typeinfo.eltype.size = -1;
2216 typeinfo.index = -1;
5f4273c7 2217
dcbf9037 2218 nameend = p;
5f4273c7 2219
dcbf9037
JB
2220 if (strncmp (p, " .dn ", 5) == 0)
2221 basetype = REG_TYPE_VFD;
2222 else if (strncmp (p, " .qn ", 5) == 0)
2223 basetype = REG_TYPE_NQ;
2224 else
c921be7d 2225 return FALSE;
5f4273c7 2226
dcbf9037 2227 p += 5;
5f4273c7 2228
dcbf9037 2229 if (*p == '\0')
c921be7d 2230 return FALSE;
5f4273c7 2231
dcbf9037
JB
2232 basereg = arm_reg_parse_multi (&p);
2233
2234 if (basereg && basereg->type != basetype)
2235 {
2236 as_bad (_("bad type for register"));
c921be7d 2237 return FALSE;
dcbf9037
JB
2238 }
2239
2240 if (basereg == NULL)
2241 {
2242 expressionS exp;
2243 /* Try parsing as an integer. */
2244 my_get_expression (&exp, &p, GE_NO_PREFIX);
2245 if (exp.X_op != O_constant)
2246 {
2247 as_bad (_("expression must be constant"));
c921be7d 2248 return FALSE;
dcbf9037
JB
2249 }
2250 basereg = &mybasereg;
2251 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2252 : exp.X_add_number;
2253 basereg->neon = 0;
2254 }
2255
2256 if (basereg->neon)
2257 typeinfo = *basereg->neon;
2258
2259 if (parse_neon_type (&ntype, &p) == SUCCESS)
2260 {
2261 /* We got a type. */
2262 if (typeinfo.defined & NTA_HASTYPE)
2263 {
2264 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2265 return FALSE;
dcbf9037 2266 }
5f4273c7 2267
dcbf9037
JB
2268 typeinfo.defined |= NTA_HASTYPE;
2269 if (ntype.elems != 1)
2270 {
2271 as_bad (_("you must specify a single type only"));
c921be7d 2272 return FALSE;
dcbf9037
JB
2273 }
2274 typeinfo.eltype = ntype.el[0];
2275 }
5f4273c7 2276
dcbf9037
JB
2277 if (skip_past_char (&p, '[') == SUCCESS)
2278 {
2279 expressionS exp;
2280 /* We got a scalar index. */
5f4273c7 2281
dcbf9037
JB
2282 if (typeinfo.defined & NTA_HASINDEX)
2283 {
2284 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2285 return FALSE;
dcbf9037 2286 }
5f4273c7 2287
dcbf9037 2288 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2289
dcbf9037
JB
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("scalar index must be constant"));
c921be7d 2293 return FALSE;
dcbf9037 2294 }
5f4273c7 2295
dcbf9037
JB
2296 typeinfo.defined |= NTA_HASINDEX;
2297 typeinfo.index = exp.X_add_number;
5f4273c7 2298
dcbf9037
JB
2299 if (skip_past_char (&p, ']') == FAIL)
2300 {
2301 as_bad (_("expecting ]"));
c921be7d 2302 return FALSE;
dcbf9037
JB
2303 }
2304 }
2305
2306 namelen = nameend - newname;
21d799b5 2307 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2308 strncpy (namebuf, newname, namelen);
2309 namebuf[namelen] = '\0';
5f4273c7 2310
dcbf9037
JB
2311 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2312 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2313
dcbf9037
JB
2314 /* Insert name in all uppercase. */
2315 for (p = namebuf; *p; p++)
2316 *p = TOUPPER (*p);
5f4273c7 2317
dcbf9037
JB
2318 if (strncmp (namebuf, newname, namelen))
2319 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2320 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2321
dcbf9037
JB
2322 /* Insert name in all lowercase. */
2323 for (p = namebuf; *p; p++)
2324 *p = TOLOWER (*p);
5f4273c7 2325
dcbf9037
JB
2326 if (strncmp (namebuf, newname, namelen))
2327 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2328 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2329
c921be7d 2330 return TRUE;
dcbf9037
JB
2331}
2332
c19d1205
ZW
2333/* Should never be called, as .req goes between the alias and the
2334 register name, not at the beginning of the line. */
c921be7d 2335
b99bd4ef 2336static void
c19d1205 2337s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2338{
c19d1205
ZW
2339 as_bad (_("invalid syntax for .req directive"));
2340}
b99bd4ef 2341
dcbf9037
JB
2342static void
2343s_dn (int a ATTRIBUTE_UNUSED)
2344{
2345 as_bad (_("invalid syntax for .dn directive"));
2346}
2347
2348static void
2349s_qn (int a ATTRIBUTE_UNUSED)
2350{
2351 as_bad (_("invalid syntax for .qn directive"));
2352}
2353
c19d1205
ZW
2354/* The .unreq directive deletes an alias which was previously defined
2355 by .req. For example:
b99bd4ef 2356
c19d1205
ZW
2357 my_alias .req r11
2358 .unreq my_alias */
b99bd4ef
NC
2359
2360static void
c19d1205 2361s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2362{
c19d1205
ZW
2363 char * name;
2364 char saved_char;
b99bd4ef 2365
c19d1205
ZW
2366 name = input_line_pointer;
2367
2368 while (*input_line_pointer != 0
2369 && *input_line_pointer != ' '
2370 && *input_line_pointer != '\n')
2371 ++input_line_pointer;
2372
2373 saved_char = *input_line_pointer;
2374 *input_line_pointer = 0;
2375
2376 if (!*name)
2377 as_bad (_("invalid syntax for .unreq directive"));
2378 else
2379 {
21d799b5
NC
2380 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2381 name);
c19d1205
ZW
2382
2383 if (!reg)
2384 as_bad (_("unknown register alias '%s'"), name);
2385 else if (reg->builtin)
2386 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2387 name);
2388 else
2389 {
d929913e
NC
2390 char * p;
2391 char * nbuf;
2392
db0bc284 2393 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2394 free ((char *) reg->name);
dcbf9037
JB
2395 if (reg->neon)
2396 free (reg->neon);
c19d1205 2397 free (reg);
d929913e
NC
2398
2399 /* Also locate the all upper case and all lower case versions.
2400 Do not complain if we cannot find one or the other as it
2401 was probably deleted above. */
5f4273c7 2402
d929913e
NC
2403 nbuf = strdup (name);
2404 for (p = nbuf; *p; p++)
2405 *p = TOUPPER (*p);
21d799b5 2406 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2407 if (reg)
2408 {
db0bc284 2409 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2410 free ((char *) reg->name);
2411 if (reg->neon)
2412 free (reg->neon);
2413 free (reg);
2414 }
2415
2416 for (p = nbuf; *p; p++)
2417 *p = TOLOWER (*p);
21d799b5 2418 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2419 if (reg)
2420 {
db0bc284 2421 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2422 free ((char *) reg->name);
2423 if (reg->neon)
2424 free (reg->neon);
2425 free (reg);
2426 }
2427
2428 free (nbuf);
c19d1205
ZW
2429 }
2430 }
b99bd4ef 2431
c19d1205 2432 *input_line_pointer = saved_char;
b99bd4ef
NC
2433 demand_empty_rest_of_line ();
2434}
2435
c19d1205
ZW
2436/* Directives: Instruction set selection. */
2437
2438#ifdef OBJ_ELF
2439/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2440 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2441 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2442 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2443
cd000bff
DJ
2444/* Create a new mapping symbol for the transition to STATE. */
2445
2446static void
2447make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2448{
a737bd4d 2449 symbolS * symbolP;
c19d1205
ZW
2450 const char * symname;
2451 int type;
b99bd4ef 2452
c19d1205 2453 switch (state)
b99bd4ef 2454 {
c19d1205
ZW
2455 case MAP_DATA:
2456 symname = "$d";
2457 type = BSF_NO_FLAGS;
2458 break;
2459 case MAP_ARM:
2460 symname = "$a";
2461 type = BSF_NO_FLAGS;
2462 break;
2463 case MAP_THUMB:
2464 symname = "$t";
2465 type = BSF_NO_FLAGS;
2466 break;
c19d1205
ZW
2467 default:
2468 abort ();
2469 }
2470
cd000bff 2471 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2472 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2473
2474 switch (state)
2475 {
2476 case MAP_ARM:
2477 THUMB_SET_FUNC (symbolP, 0);
2478 ARM_SET_THUMB (symbolP, 0);
2479 ARM_SET_INTERWORK (symbolP, support_interwork);
2480 break;
2481
2482 case MAP_THUMB:
2483 THUMB_SET_FUNC (symbolP, 1);
2484 ARM_SET_THUMB (symbolP, 1);
2485 ARM_SET_INTERWORK (symbolP, support_interwork);
2486 break;
2487
2488 case MAP_DATA:
2489 default:
cd000bff
DJ
2490 break;
2491 }
2492
2493 /* Save the mapping symbols for future reference. Also check that
2494 we do not place two mapping symbols at the same offset within a
2495 frag. We'll handle overlap between frags in
2de7820f
JZ
2496 check_mapping_symbols.
2497
2498 If .fill or other data filling directive generates zero sized data,
2499 the mapping symbol for the following code will have the same value
2500 as the one generated for the data filling directive. In this case,
2501 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2502 if (value == 0)
2503 {
2de7820f
JZ
2504 if (frag->tc_frag_data.first_map != NULL)
2505 {
2506 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2507 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2508 }
cd000bff
DJ
2509 frag->tc_frag_data.first_map = symbolP;
2510 }
2511 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2512 {
2513 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2514 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2515 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2516 }
cd000bff
DJ
2517 frag->tc_frag_data.last_map = symbolP;
2518}
2519
2520/* We must sometimes convert a region marked as code to data during
2521 code alignment, if an odd number of bytes have to be padded. The
2522 code mapping symbol is pushed to an aligned address. */
2523
2524static void
2525insert_data_mapping_symbol (enum mstate state,
2526 valueT value, fragS *frag, offsetT bytes)
2527{
2528 /* If there was already a mapping symbol, remove it. */
2529 if (frag->tc_frag_data.last_map != NULL
2530 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2531 {
2532 symbolS *symp = frag->tc_frag_data.last_map;
2533
2534 if (value == 0)
2535 {
2536 know (frag->tc_frag_data.first_map == symp);
2537 frag->tc_frag_data.first_map = NULL;
2538 }
2539 frag->tc_frag_data.last_map = NULL;
2540 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2541 }
cd000bff
DJ
2542
2543 make_mapping_symbol (MAP_DATA, value, frag);
2544 make_mapping_symbol (state, value + bytes, frag);
2545}
2546
2547static void mapping_state_2 (enum mstate state, int max_chars);
2548
2549/* Set the mapping state to STATE. Only call this when about to
2550 emit some STATE bytes to the file. */
2551
2552void
2553mapping_state (enum mstate state)
2554{
940b5ce0
DJ
2555 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2556
cd000bff
DJ
2557#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2558
2559 if (mapstate == state)
2560 /* The mapping symbol has already been emitted.
2561 There is nothing else to do. */
2562 return;
2563 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2564 /* This case will be evaluated later in the next else. */
2565 return;
2566 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2567 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2568 {
2569 /* Only add the symbol if the offset is > 0:
2570 if we're at the first frag, check it's size > 0;
2571 if we're not at the first frag, then for sure
2572 the offset is > 0. */
2573 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2574 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2575
2576 if (add_symbol)
2577 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2578 }
2579
2580 mapping_state_2 (state, 0);
2581#undef TRANSITION
2582}
2583
2584/* Same as mapping_state, but MAX_CHARS bytes have already been
2585 allocated. Put the mapping symbol that far back. */
2586
2587static void
2588mapping_state_2 (enum mstate state, int max_chars)
2589{
940b5ce0
DJ
2590 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2591
2592 if (!SEG_NORMAL (now_seg))
2593 return;
2594
cd000bff
DJ
2595 if (mapstate == state)
2596 /* The mapping symbol has already been emitted.
2597 There is nothing else to do. */
2598 return;
2599
cd000bff
DJ
2600 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2601 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2602}
2603#else
d3106081
NS
2604#define mapping_state(x) ((void)0)
2605#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2606#endif
2607
2608/* Find the real, Thumb encoded start of a Thumb function. */
2609
4343666d 2610#ifdef OBJ_COFF
c19d1205
ZW
2611static symbolS *
2612find_real_start (symbolS * symbolP)
2613{
2614 char * real_start;
2615 const char * name = S_GET_NAME (symbolP);
2616 symbolS * new_target;
2617
2618 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2619#define STUB_NAME ".real_start_of"
2620
2621 if (name == NULL)
2622 abort ();
2623
37f6032b
ZW
2624 /* The compiler may generate BL instructions to local labels because
2625 it needs to perform a branch to a far away location. These labels
2626 do not have a corresponding ".real_start_of" label. We check
2627 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2628 the ".real_start_of" convention for nonlocal branches. */
2629 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2630 return symbolP;
2631
37f6032b 2632 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2633 new_target = symbol_find (real_start);
2634
2635 if (new_target == NULL)
2636 {
bd3ba5d1 2637 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2638 new_target = symbolP;
2639 }
2640
c19d1205
ZW
2641 return new_target;
2642}
4343666d 2643#endif
c19d1205
ZW
2644
2645static void
2646opcode_select (int width)
2647{
2648 switch (width)
2649 {
2650 case 16:
2651 if (! thumb_mode)
2652 {
e74cfd16 2653 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2654 as_bad (_("selected processor does not support THUMB opcodes"));
2655
2656 thumb_mode = 1;
2657 /* No need to force the alignment, since we will have been
2658 coming from ARM mode, which is word-aligned. */
2659 record_alignment (now_seg, 1);
2660 }
c19d1205
ZW
2661 break;
2662
2663 case 32:
2664 if (thumb_mode)
2665 {
e74cfd16 2666 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2667 as_bad (_("selected processor does not support ARM opcodes"));
2668
2669 thumb_mode = 0;
2670
2671 if (!need_pass_2)
2672 frag_align (2, 0, 0);
2673
2674 record_alignment (now_seg, 1);
2675 }
c19d1205
ZW
2676 break;
2677
2678 default:
2679 as_bad (_("invalid instruction size selected (%d)"), width);
2680 }
2681}
2682
2683static void
2684s_arm (int ignore ATTRIBUTE_UNUSED)
2685{
2686 opcode_select (32);
2687 demand_empty_rest_of_line ();
2688}
2689
2690static void
2691s_thumb (int ignore ATTRIBUTE_UNUSED)
2692{
2693 opcode_select (16);
2694 demand_empty_rest_of_line ();
2695}
2696
2697static void
2698s_code (int unused ATTRIBUTE_UNUSED)
2699{
2700 int temp;
2701
2702 temp = get_absolute_expression ();
2703 switch (temp)
2704 {
2705 case 16:
2706 case 32:
2707 opcode_select (temp);
2708 break;
2709
2710 default:
2711 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2712 }
2713}
2714
2715static void
2716s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2717{
2718 /* If we are not already in thumb mode go into it, EVEN if
2719 the target processor does not support thumb instructions.
2720 This is used by gcc/config/arm/lib1funcs.asm for example
2721 to compile interworking support functions even if the
2722 target processor should not support interworking. */
2723 if (! thumb_mode)
2724 {
2725 thumb_mode = 2;
2726 record_alignment (now_seg, 1);
2727 }
2728
2729 demand_empty_rest_of_line ();
2730}
2731
2732static void
2733s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2734{
2735 s_thumb (0);
2736
2737 /* The following label is the name/address of the start of a Thumb function.
2738 We need to know this for the interworking support. */
2739 label_is_thumb_function_name = TRUE;
2740}
2741
2742/* Perform a .set directive, but also mark the alias as
2743 being a thumb function. */
2744
2745static void
2746s_thumb_set (int equiv)
2747{
2748 /* XXX the following is a duplicate of the code for s_set() in read.c
2749 We cannot just call that code as we need to get at the symbol that
2750 is created. */
2751 char * name;
2752 char delim;
2753 char * end_name;
2754 symbolS * symbolP;
2755
2756 /* Especial apologies for the random logic:
2757 This just grew, and could be parsed much more simply!
2758 Dean - in haste. */
2759 name = input_line_pointer;
2760 delim = get_symbol_end ();
2761 end_name = input_line_pointer;
2762 *end_name = delim;
2763
2764 if (*input_line_pointer != ',')
2765 {
2766 *end_name = 0;
2767 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2768 *end_name = delim;
2769 ignore_rest_of_line ();
2770 return;
2771 }
2772
2773 input_line_pointer++;
2774 *end_name = 0;
2775
2776 if (name[0] == '.' && name[1] == '\0')
2777 {
2778 /* XXX - this should not happen to .thumb_set. */
2779 abort ();
2780 }
2781
2782 if ((symbolP = symbol_find (name)) == NULL
2783 && (symbolP = md_undefined_symbol (name)) == NULL)
2784 {
2785#ifndef NO_LISTING
2786 /* When doing symbol listings, play games with dummy fragments living
2787 outside the normal fragment chain to record the file and line info
c19d1205 2788 for this symbol. */
b99bd4ef
NC
2789 if (listing & LISTING_SYMBOLS)
2790 {
2791 extern struct list_info_struct * listing_tail;
21d799b5 2792 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2793
2794 memset (dummy_frag, 0, sizeof (fragS));
2795 dummy_frag->fr_type = rs_fill;
2796 dummy_frag->line = listing_tail;
2797 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2798 dummy_frag->fr_symbol = symbolP;
2799 }
2800 else
2801#endif
2802 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2803
2804#ifdef OBJ_COFF
2805 /* "set" symbols are local unless otherwise specified. */
2806 SF_SET_LOCAL (symbolP);
2807#endif /* OBJ_COFF */
2808 } /* Make a new symbol. */
2809
2810 symbol_table_insert (symbolP);
2811
2812 * end_name = delim;
2813
2814 if (equiv
2815 && S_IS_DEFINED (symbolP)
2816 && S_GET_SEGMENT (symbolP) != reg_section)
2817 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2818
2819 pseudo_set (symbolP);
2820
2821 demand_empty_rest_of_line ();
2822
c19d1205 2823 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2824
2825 THUMB_SET_FUNC (symbolP, 1);
2826 ARM_SET_THUMB (symbolP, 1);
2827#if defined OBJ_ELF || defined OBJ_COFF
2828 ARM_SET_INTERWORK (symbolP, support_interwork);
2829#endif
2830}
2831
c19d1205 2832/* Directives: Mode selection. */
b99bd4ef 2833
c19d1205
ZW
2834/* .syntax [unified|divided] - choose the new unified syntax
2835 (same for Arm and Thumb encoding, modulo slight differences in what
2836 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2837static void
c19d1205 2838s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2839{
c19d1205
ZW
2840 char *name, delim;
2841
2842 name = input_line_pointer;
2843 delim = get_symbol_end ();
2844
2845 if (!strcasecmp (name, "unified"))
2846 unified_syntax = TRUE;
2847 else if (!strcasecmp (name, "divided"))
2848 unified_syntax = FALSE;
2849 else
2850 {
2851 as_bad (_("unrecognized syntax mode \"%s\""), name);
2852 return;
2853 }
2854 *input_line_pointer = delim;
b99bd4ef
NC
2855 demand_empty_rest_of_line ();
2856}
2857
c19d1205
ZW
2858/* Directives: sectioning and alignment. */
2859
2860/* Same as s_align_ptwo but align 0 => align 2. */
2861
b99bd4ef 2862static void
c19d1205 2863s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2864{
a737bd4d 2865 int temp;
dce323d1 2866 bfd_boolean fill_p;
c19d1205
ZW
2867 long temp_fill;
2868 long max_alignment = 15;
b99bd4ef
NC
2869
2870 temp = get_absolute_expression ();
c19d1205
ZW
2871 if (temp > max_alignment)
2872 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2873 else if (temp < 0)
b99bd4ef 2874 {
c19d1205
ZW
2875 as_bad (_("alignment negative. 0 assumed."));
2876 temp = 0;
2877 }
b99bd4ef 2878
c19d1205
ZW
2879 if (*input_line_pointer == ',')
2880 {
2881 input_line_pointer++;
2882 temp_fill = get_absolute_expression ();
dce323d1 2883 fill_p = TRUE;
b99bd4ef 2884 }
c19d1205 2885 else
dce323d1
PB
2886 {
2887 fill_p = FALSE;
2888 temp_fill = 0;
2889 }
b99bd4ef 2890
c19d1205
ZW
2891 if (!temp)
2892 temp = 2;
b99bd4ef 2893
c19d1205
ZW
2894 /* Only make a frag if we HAVE to. */
2895 if (temp && !need_pass_2)
dce323d1
PB
2896 {
2897 if (!fill_p && subseg_text_p (now_seg))
2898 frag_align_code (temp, 0);
2899 else
2900 frag_align (temp, (int) temp_fill, 0);
2901 }
c19d1205
ZW
2902 demand_empty_rest_of_line ();
2903
2904 record_alignment (now_seg, temp);
b99bd4ef
NC
2905}
2906
c19d1205
ZW
2907static void
2908s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2909{
c19d1205
ZW
2910 /* We don't support putting frags in the BSS segment, we fake it by
2911 marking in_bss, then looking at s_skip for clues. */
2912 subseg_set (bss_section, 0);
2913 demand_empty_rest_of_line ();
cd000bff
DJ
2914
2915#ifdef md_elf_section_change_hook
2916 md_elf_section_change_hook ();
2917#endif
c19d1205 2918}
b99bd4ef 2919
c19d1205
ZW
2920static void
2921s_even (int ignore ATTRIBUTE_UNUSED)
2922{
2923 /* Never make frag if expect extra pass. */
2924 if (!need_pass_2)
2925 frag_align (1, 0, 0);
b99bd4ef 2926
c19d1205 2927 record_alignment (now_seg, 1);
b99bd4ef 2928
c19d1205 2929 demand_empty_rest_of_line ();
b99bd4ef
NC
2930}
2931
c19d1205 2932/* Directives: Literal pools. */
a737bd4d 2933
c19d1205
ZW
2934static literal_pool *
2935find_literal_pool (void)
a737bd4d 2936{
c19d1205 2937 literal_pool * pool;
a737bd4d 2938
c19d1205 2939 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2940 {
c19d1205
ZW
2941 if (pool->section == now_seg
2942 && pool->sub_section == now_subseg)
2943 break;
a737bd4d
NC
2944 }
2945
c19d1205 2946 return pool;
a737bd4d
NC
2947}
2948
c19d1205
ZW
2949static literal_pool *
2950find_or_make_literal_pool (void)
a737bd4d 2951{
c19d1205
ZW
2952 /* Next literal pool ID number. */
2953 static unsigned int latest_pool_num = 1;
2954 literal_pool * pool;
a737bd4d 2955
c19d1205 2956 pool = find_literal_pool ();
a737bd4d 2957
c19d1205 2958 if (pool == NULL)
a737bd4d 2959 {
c19d1205 2960 /* Create a new pool. */
21d799b5 2961 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
2962 if (! pool)
2963 return NULL;
a737bd4d 2964
c19d1205
ZW
2965 pool->next_free_entry = 0;
2966 pool->section = now_seg;
2967 pool->sub_section = now_subseg;
2968 pool->next = list_of_pools;
2969 pool->symbol = NULL;
2970
2971 /* Add it to the list. */
2972 list_of_pools = pool;
a737bd4d 2973 }
a737bd4d 2974
c19d1205
ZW
2975 /* New pools, and emptied pools, will have a NULL symbol. */
2976 if (pool->symbol == NULL)
a737bd4d 2977 {
c19d1205
ZW
2978 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2979 (valueT) 0, &zero_address_frag);
2980 pool->id = latest_pool_num ++;
a737bd4d
NC
2981 }
2982
c19d1205
ZW
2983 /* Done. */
2984 return pool;
a737bd4d
NC
2985}
2986
c19d1205 2987/* Add the literal in the global 'inst'
5f4273c7 2988 structure to the relevant literal pool. */
b99bd4ef
NC
2989
2990static int
c19d1205 2991add_to_lit_pool (void)
b99bd4ef 2992{
c19d1205
ZW
2993 literal_pool * pool;
2994 unsigned int entry;
b99bd4ef 2995
c19d1205
ZW
2996 pool = find_or_make_literal_pool ();
2997
2998 /* Check if this literal value is already in the pool. */
2999 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3000 {
c19d1205
ZW
3001 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3002 && (inst.reloc.exp.X_op == O_constant)
3003 && (pool->literals[entry].X_add_number
3004 == inst.reloc.exp.X_add_number)
3005 && (pool->literals[entry].X_unsigned
3006 == inst.reloc.exp.X_unsigned))
3007 break;
3008
3009 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3010 && (inst.reloc.exp.X_op == O_symbol)
3011 && (pool->literals[entry].X_add_number
3012 == inst.reloc.exp.X_add_number)
3013 && (pool->literals[entry].X_add_symbol
3014 == inst.reloc.exp.X_add_symbol)
3015 && (pool->literals[entry].X_op_symbol
3016 == inst.reloc.exp.X_op_symbol))
3017 break;
b99bd4ef
NC
3018 }
3019
c19d1205
ZW
3020 /* Do we need to create a new entry? */
3021 if (entry == pool->next_free_entry)
3022 {
3023 if (entry >= MAX_LITERAL_POOL_SIZE)
3024 {
3025 inst.error = _("literal pool overflow");
3026 return FAIL;
3027 }
3028
3029 pool->literals[entry] = inst.reloc.exp;
3030 pool->next_free_entry += 1;
3031 }
b99bd4ef 3032
c19d1205
ZW
3033 inst.reloc.exp.X_op = O_symbol;
3034 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3035 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3036
c19d1205 3037 return SUCCESS;
b99bd4ef
NC
3038}
3039
c19d1205
ZW
3040/* Can't use symbol_new here, so have to create a symbol and then at
3041 a later date assign it a value. Thats what these functions do. */
e16bb312 3042
c19d1205
ZW
3043static void
3044symbol_locate (symbolS * symbolP,
3045 const char * name, /* It is copied, the caller can modify. */
3046 segT segment, /* Segment identifier (SEG_<something>). */
3047 valueT valu, /* Symbol value. */
3048 fragS * frag) /* Associated fragment. */
3049{
3050 unsigned int name_length;
3051 char * preserved_copy_of_name;
e16bb312 3052
c19d1205
ZW
3053 name_length = strlen (name) + 1; /* +1 for \0. */
3054 obstack_grow (&notes, name, name_length);
21d799b5 3055 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3056
c19d1205
ZW
3057#ifdef tc_canonicalize_symbol_name
3058 preserved_copy_of_name =
3059 tc_canonicalize_symbol_name (preserved_copy_of_name);
3060#endif
b99bd4ef 3061
c19d1205 3062 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3063
c19d1205
ZW
3064 S_SET_SEGMENT (symbolP, segment);
3065 S_SET_VALUE (symbolP, valu);
3066 symbol_clear_list_pointers (symbolP);
b99bd4ef 3067
c19d1205 3068 symbol_set_frag (symbolP, frag);
b99bd4ef 3069
c19d1205
ZW
3070 /* Link to end of symbol chain. */
3071 {
3072 extern int symbol_table_frozen;
b99bd4ef 3073
c19d1205
ZW
3074 if (symbol_table_frozen)
3075 abort ();
3076 }
b99bd4ef 3077
c19d1205 3078 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3079
c19d1205 3080 obj_symbol_new_hook (symbolP);
b99bd4ef 3081
c19d1205
ZW
3082#ifdef tc_symbol_new_hook
3083 tc_symbol_new_hook (symbolP);
3084#endif
3085
3086#ifdef DEBUG_SYMS
3087 verify_symbol_chain (symbol_rootP, symbol_lastP);
3088#endif /* DEBUG_SYMS */
b99bd4ef
NC
3089}
3090
b99bd4ef 3091
c19d1205
ZW
3092static void
3093s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3094{
c19d1205
ZW
3095 unsigned int entry;
3096 literal_pool * pool;
3097 char sym_name[20];
b99bd4ef 3098
c19d1205
ZW
3099 pool = find_literal_pool ();
3100 if (pool == NULL
3101 || pool->symbol == NULL
3102 || pool->next_free_entry == 0)
3103 return;
b99bd4ef 3104
c19d1205 3105 mapping_state (MAP_DATA);
b99bd4ef 3106
c19d1205
ZW
3107 /* Align pool as you have word accesses.
3108 Only make a frag if we have to. */
3109 if (!need_pass_2)
3110 frag_align (2, 0, 0);
b99bd4ef 3111
c19d1205 3112 record_alignment (now_seg, 2);
b99bd4ef 3113
c19d1205 3114 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3115
c19d1205
ZW
3116 symbol_locate (pool->symbol, sym_name, now_seg,
3117 (valueT) frag_now_fix (), frag_now);
3118 symbol_table_insert (pool->symbol);
b99bd4ef 3119
c19d1205 3120 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3121
c19d1205
ZW
3122#if defined OBJ_COFF || defined OBJ_ELF
3123 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3124#endif
6c43fab6 3125
c19d1205
ZW
3126 for (entry = 0; entry < pool->next_free_entry; entry ++)
3127 /* First output the expression in the instruction to the pool. */
3128 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 3129
c19d1205
ZW
3130 /* Mark the pool as empty. */
3131 pool->next_free_entry = 0;
3132 pool->symbol = NULL;
b99bd4ef
NC
3133}
3134
c19d1205
ZW
3135#ifdef OBJ_ELF
3136/* Forward declarations for functions below, in the MD interface
3137 section. */
3138static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3139static valueT create_unwind_entry (int);
3140static void start_unwind_section (const segT, int);
3141static void add_unwind_opcode (valueT, int);
3142static void flush_pending_unwind (void);
b99bd4ef 3143
c19d1205 3144/* Directives: Data. */
b99bd4ef 3145
c19d1205
ZW
3146static void
3147s_arm_elf_cons (int nbytes)
3148{
3149 expressionS exp;
b99bd4ef 3150
c19d1205
ZW
3151#ifdef md_flush_pending_output
3152 md_flush_pending_output ();
3153#endif
b99bd4ef 3154
c19d1205 3155 if (is_it_end_of_statement ())
b99bd4ef 3156 {
c19d1205
ZW
3157 demand_empty_rest_of_line ();
3158 return;
b99bd4ef
NC
3159 }
3160
c19d1205
ZW
3161#ifdef md_cons_align
3162 md_cons_align (nbytes);
3163#endif
b99bd4ef 3164
c19d1205
ZW
3165 mapping_state (MAP_DATA);
3166 do
b99bd4ef 3167 {
c19d1205
ZW
3168 int reloc;
3169 char *base = input_line_pointer;
b99bd4ef 3170
c19d1205 3171 expression (& exp);
b99bd4ef 3172
c19d1205
ZW
3173 if (exp.X_op != O_symbol)
3174 emit_expr (&exp, (unsigned int) nbytes);
3175 else
3176 {
3177 char *before_reloc = input_line_pointer;
3178 reloc = parse_reloc (&input_line_pointer);
3179 if (reloc == -1)
3180 {
3181 as_bad (_("unrecognized relocation suffix"));
3182 ignore_rest_of_line ();
3183 return;
3184 }
3185 else if (reloc == BFD_RELOC_UNUSED)
3186 emit_expr (&exp, (unsigned int) nbytes);
3187 else
3188 {
21d799b5
NC
3189 reloc_howto_type *howto = (reloc_howto_type *)
3190 bfd_reloc_type_lookup (stdoutput,
3191 (bfd_reloc_code_real_type) reloc);
c19d1205 3192 int size = bfd_get_reloc_size (howto);
b99bd4ef 3193
2fc8bdac
ZW
3194 if (reloc == BFD_RELOC_ARM_PLT32)
3195 {
3196 as_bad (_("(plt) is only valid on branch targets"));
3197 reloc = BFD_RELOC_UNUSED;
3198 size = 0;
3199 }
3200
c19d1205 3201 if (size > nbytes)
2fc8bdac 3202 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3203 howto->name, nbytes);
3204 else
3205 {
3206 /* We've parsed an expression stopping at O_symbol.
3207 But there may be more expression left now that we
3208 have parsed the relocation marker. Parse it again.
3209 XXX Surely there is a cleaner way to do this. */
3210 char *p = input_line_pointer;
3211 int offset;
21d799b5 3212 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3213 memcpy (save_buf, base, input_line_pointer - base);
3214 memmove (base + (input_line_pointer - before_reloc),
3215 base, before_reloc - base);
3216
3217 input_line_pointer = base + (input_line_pointer-before_reloc);
3218 expression (&exp);
3219 memcpy (base, save_buf, p - base);
3220
3221 offset = nbytes - size;
3222 p = frag_more ((int) nbytes);
3223 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3224 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3225 }
3226 }
3227 }
b99bd4ef 3228 }
c19d1205 3229 while (*input_line_pointer++ == ',');
b99bd4ef 3230
c19d1205
ZW
3231 /* Put terminator back into stream. */
3232 input_line_pointer --;
3233 demand_empty_rest_of_line ();
b99bd4ef
NC
3234}
3235
c921be7d
NC
3236/* Emit an expression containing a 32-bit thumb instruction.
3237 Implementation based on put_thumb32_insn. */
3238
3239static void
3240emit_thumb32_expr (expressionS * exp)
3241{
3242 expressionS exp_high = *exp;
3243
3244 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3245 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3246 exp->X_add_number &= 0xffff;
3247 emit_expr (exp, (unsigned int) THUMB_SIZE);
3248}
3249
3250/* Guess the instruction size based on the opcode. */
3251
3252static int
3253thumb_insn_size (int opcode)
3254{
3255 if ((unsigned int) opcode < 0xe800u)
3256 return 2;
3257 else if ((unsigned int) opcode >= 0xe8000000u)
3258 return 4;
3259 else
3260 return 0;
3261}
3262
3263static bfd_boolean
3264emit_insn (expressionS *exp, int nbytes)
3265{
3266 int size = 0;
3267
3268 if (exp->X_op == O_constant)
3269 {
3270 size = nbytes;
3271
3272 if (size == 0)
3273 size = thumb_insn_size (exp->X_add_number);
3274
3275 if (size != 0)
3276 {
3277 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3278 {
3279 as_bad (_(".inst.n operand too big. "\
3280 "Use .inst.w instead"));
3281 size = 0;
3282 }
3283 else
3284 {
3285 if (now_it.state == AUTOMATIC_IT_BLOCK)
3286 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3287 else
3288 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3289
3290 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3291 emit_thumb32_expr (exp);
3292 else
3293 emit_expr (exp, (unsigned int) size);
3294
3295 it_fsm_post_encode ();
3296 }
3297 }
3298 else
3299 as_bad (_("cannot determine Thumb instruction size. " \
3300 "Use .inst.n/.inst.w instead"));
3301 }
3302 else
3303 as_bad (_("constant expression required"));
3304
3305 return (size != 0);
3306}
3307
3308/* Like s_arm_elf_cons but do not use md_cons_align and
3309 set the mapping state to MAP_ARM/MAP_THUMB. */
3310
3311static void
3312s_arm_elf_inst (int nbytes)
3313{
3314 if (is_it_end_of_statement ())
3315 {
3316 demand_empty_rest_of_line ();
3317 return;
3318 }
3319
3320 /* Calling mapping_state () here will not change ARM/THUMB,
3321 but will ensure not to be in DATA state. */
3322
3323 if (thumb_mode)
3324 mapping_state (MAP_THUMB);
3325 else
3326 {
3327 if (nbytes != 0)
3328 {
3329 as_bad (_("width suffixes are invalid in ARM mode"));
3330 ignore_rest_of_line ();
3331 return;
3332 }
3333
3334 nbytes = 4;
3335
3336 mapping_state (MAP_ARM);
3337 }
3338
3339 do
3340 {
3341 expressionS exp;
3342
3343 expression (& exp);
3344
3345 if (! emit_insn (& exp, nbytes))
3346 {
3347 ignore_rest_of_line ();
3348 return;
3349 }
3350 }
3351 while (*input_line_pointer++ == ',');
3352
3353 /* Put terminator back into stream. */
3354 input_line_pointer --;
3355 demand_empty_rest_of_line ();
3356}
b99bd4ef 3357
c19d1205 3358/* Parse a .rel31 directive. */
b99bd4ef 3359
c19d1205
ZW
3360static void
3361s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3362{
3363 expressionS exp;
3364 char *p;
3365 valueT highbit;
b99bd4ef 3366
c19d1205
ZW
3367 highbit = 0;
3368 if (*input_line_pointer == '1')
3369 highbit = 0x80000000;
3370 else if (*input_line_pointer != '0')
3371 as_bad (_("expected 0 or 1"));
b99bd4ef 3372
c19d1205
ZW
3373 input_line_pointer++;
3374 if (*input_line_pointer != ',')
3375 as_bad (_("missing comma"));
3376 input_line_pointer++;
b99bd4ef 3377
c19d1205
ZW
3378#ifdef md_flush_pending_output
3379 md_flush_pending_output ();
3380#endif
b99bd4ef 3381
c19d1205
ZW
3382#ifdef md_cons_align
3383 md_cons_align (4);
3384#endif
b99bd4ef 3385
c19d1205 3386 mapping_state (MAP_DATA);
b99bd4ef 3387
c19d1205 3388 expression (&exp);
b99bd4ef 3389
c19d1205
ZW
3390 p = frag_more (4);
3391 md_number_to_chars (p, highbit, 4);
3392 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3393 BFD_RELOC_ARM_PREL31);
b99bd4ef 3394
c19d1205 3395 demand_empty_rest_of_line ();
b99bd4ef
NC
3396}
3397
c19d1205 3398/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3399
c19d1205 3400/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3401
c19d1205
ZW
3402static void
3403s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3404{
3405 demand_empty_rest_of_line ();
921e5f0a
PB
3406 if (unwind.proc_start)
3407 {
c921be7d 3408 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3409 return;
3410 }
3411
c19d1205
ZW
3412 /* Mark the start of the function. */
3413 unwind.proc_start = expr_build_dot ();
b99bd4ef 3414
c19d1205
ZW
3415 /* Reset the rest of the unwind info. */
3416 unwind.opcode_count = 0;
3417 unwind.table_entry = NULL;
3418 unwind.personality_routine = NULL;
3419 unwind.personality_index = -1;
3420 unwind.frame_size = 0;
3421 unwind.fp_offset = 0;
fdfde340 3422 unwind.fp_reg = REG_SP;
c19d1205
ZW
3423 unwind.fp_used = 0;
3424 unwind.sp_restored = 0;
3425}
b99bd4ef 3426
b99bd4ef 3427
c19d1205
ZW
3428/* Parse a handlerdata directive. Creates the exception handling table entry
3429 for the function. */
b99bd4ef 3430
c19d1205
ZW
3431static void
3432s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3433{
3434 demand_empty_rest_of_line ();
921e5f0a 3435 if (!unwind.proc_start)
c921be7d 3436 as_bad (MISSING_FNSTART);
921e5f0a 3437
c19d1205 3438 if (unwind.table_entry)
6decc662 3439 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3440
c19d1205
ZW
3441 create_unwind_entry (1);
3442}
a737bd4d 3443
c19d1205 3444/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3445
c19d1205
ZW
3446static void
3447s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3448{
3449 long where;
3450 char *ptr;
3451 valueT val;
940b5ce0 3452 unsigned int marked_pr_dependency;
f02232aa 3453
c19d1205 3454 demand_empty_rest_of_line ();
f02232aa 3455
921e5f0a
PB
3456 if (!unwind.proc_start)
3457 {
c921be7d 3458 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3459 return;
3460 }
3461
c19d1205
ZW
3462 /* Add eh table entry. */
3463 if (unwind.table_entry == NULL)
3464 val = create_unwind_entry (0);
3465 else
3466 val = 0;
f02232aa 3467
c19d1205
ZW
3468 /* Add index table entry. This is two words. */
3469 start_unwind_section (unwind.saved_seg, 1);
3470 frag_align (2, 0, 0);
3471 record_alignment (now_seg, 2);
b99bd4ef 3472
c19d1205
ZW
3473 ptr = frag_more (8);
3474 where = frag_now_fix () - 8;
f02232aa 3475
c19d1205
ZW
3476 /* Self relative offset of the function start. */
3477 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3478 BFD_RELOC_ARM_PREL31);
f02232aa 3479
c19d1205
ZW
3480 /* Indicate dependency on EHABI-defined personality routines to the
3481 linker, if it hasn't been done already. */
940b5ce0
DJ
3482 marked_pr_dependency
3483 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3484 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3485 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3486 {
5f4273c7
NC
3487 static const char *const name[] =
3488 {
3489 "__aeabi_unwind_cpp_pr0",
3490 "__aeabi_unwind_cpp_pr1",
3491 "__aeabi_unwind_cpp_pr2"
3492 };
c19d1205
ZW
3493 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3494 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3495 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3496 |= 1 << unwind.personality_index;
c19d1205 3497 }
f02232aa 3498
c19d1205
ZW
3499 if (val)
3500 /* Inline exception table entry. */
3501 md_number_to_chars (ptr + 4, val, 4);
3502 else
3503 /* Self relative offset of the table entry. */
3504 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3505 BFD_RELOC_ARM_PREL31);
f02232aa 3506
c19d1205
ZW
3507 /* Restore the original section. */
3508 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3509
3510 unwind.proc_start = NULL;
c19d1205 3511}
f02232aa 3512
f02232aa 3513
c19d1205 3514/* Parse an unwind_cantunwind directive. */
b99bd4ef 3515
c19d1205
ZW
3516static void
3517s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3518{
3519 demand_empty_rest_of_line ();
921e5f0a 3520 if (!unwind.proc_start)
c921be7d 3521 as_bad (MISSING_FNSTART);
921e5f0a 3522
c19d1205
ZW
3523 if (unwind.personality_routine || unwind.personality_index != -1)
3524 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3525
c19d1205
ZW
3526 unwind.personality_index = -2;
3527}
b99bd4ef 3528
b99bd4ef 3529
c19d1205 3530/* Parse a personalityindex directive. */
b99bd4ef 3531
c19d1205
ZW
3532static void
3533s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3534{
3535 expressionS exp;
b99bd4ef 3536
921e5f0a 3537 if (!unwind.proc_start)
c921be7d 3538 as_bad (MISSING_FNSTART);
921e5f0a 3539
c19d1205
ZW
3540 if (unwind.personality_routine || unwind.personality_index != -1)
3541 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3542
c19d1205 3543 expression (&exp);
b99bd4ef 3544
c19d1205
ZW
3545 if (exp.X_op != O_constant
3546 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3547 {
c19d1205
ZW
3548 as_bad (_("bad personality routine number"));
3549 ignore_rest_of_line ();
3550 return;
b99bd4ef
NC
3551 }
3552
c19d1205 3553 unwind.personality_index = exp.X_add_number;
b99bd4ef 3554
c19d1205
ZW
3555 demand_empty_rest_of_line ();
3556}
e16bb312 3557
e16bb312 3558
c19d1205 3559/* Parse a personality directive. */
e16bb312 3560
c19d1205
ZW
3561static void
3562s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3563{
3564 char *name, *p, c;
a737bd4d 3565
921e5f0a 3566 if (!unwind.proc_start)
c921be7d 3567 as_bad (MISSING_FNSTART);
921e5f0a 3568
c19d1205
ZW
3569 if (unwind.personality_routine || unwind.personality_index != -1)
3570 as_bad (_("duplicate .personality directive"));
a737bd4d 3571
c19d1205
ZW
3572 name = input_line_pointer;
3573 c = get_symbol_end ();
3574 p = input_line_pointer;
3575 unwind.personality_routine = symbol_find_or_make (name);
3576 *p = c;
3577 demand_empty_rest_of_line ();
3578}
e16bb312 3579
e16bb312 3580
c19d1205 3581/* Parse a directive saving core registers. */
e16bb312 3582
c19d1205
ZW
3583static void
3584s_arm_unwind_save_core (void)
e16bb312 3585{
c19d1205
ZW
3586 valueT op;
3587 long range;
3588 int n;
e16bb312 3589
c19d1205
ZW
3590 range = parse_reg_list (&input_line_pointer);
3591 if (range == FAIL)
e16bb312 3592 {
c19d1205
ZW
3593 as_bad (_("expected register list"));
3594 ignore_rest_of_line ();
3595 return;
3596 }
e16bb312 3597
c19d1205 3598 demand_empty_rest_of_line ();
e16bb312 3599
c19d1205
ZW
3600 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3601 into .unwind_save {..., sp...}. We aren't bothered about the value of
3602 ip because it is clobbered by calls. */
3603 if (unwind.sp_restored && unwind.fp_reg == 12
3604 && (range & 0x3000) == 0x1000)
3605 {
3606 unwind.opcode_count--;
3607 unwind.sp_restored = 0;
3608 range = (range | 0x2000) & ~0x1000;
3609 unwind.pending_offset = 0;
3610 }
e16bb312 3611
01ae4198
DJ
3612 /* Pop r4-r15. */
3613 if (range & 0xfff0)
c19d1205 3614 {
01ae4198
DJ
3615 /* See if we can use the short opcodes. These pop a block of up to 8
3616 registers starting with r4, plus maybe r14. */
3617 for (n = 0; n < 8; n++)
3618 {
3619 /* Break at the first non-saved register. */
3620 if ((range & (1 << (n + 4))) == 0)
3621 break;
3622 }
3623 /* See if there are any other bits set. */
3624 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3625 {
3626 /* Use the long form. */
3627 op = 0x8000 | ((range >> 4) & 0xfff);
3628 add_unwind_opcode (op, 2);
3629 }
0dd132b6 3630 else
01ae4198
DJ
3631 {
3632 /* Use the short form. */
3633 if (range & 0x4000)
3634 op = 0xa8; /* Pop r14. */
3635 else
3636 op = 0xa0; /* Do not pop r14. */
3637 op |= (n - 1);
3638 add_unwind_opcode (op, 1);
3639 }
c19d1205 3640 }
0dd132b6 3641
c19d1205
ZW
3642 /* Pop r0-r3. */
3643 if (range & 0xf)
3644 {
3645 op = 0xb100 | (range & 0xf);
3646 add_unwind_opcode (op, 2);
0dd132b6
NC
3647 }
3648
c19d1205
ZW
3649 /* Record the number of bytes pushed. */
3650 for (n = 0; n < 16; n++)
3651 {
3652 if (range & (1 << n))
3653 unwind.frame_size += 4;
3654 }
0dd132b6
NC
3655}
3656
c19d1205
ZW
3657
3658/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3659
3660static void
c19d1205 3661s_arm_unwind_save_fpa (int reg)
b99bd4ef 3662{
c19d1205
ZW
3663 expressionS exp;
3664 int num_regs;
3665 valueT op;
b99bd4ef 3666
c19d1205
ZW
3667 /* Get Number of registers to transfer. */
3668 if (skip_past_comma (&input_line_pointer) != FAIL)
3669 expression (&exp);
3670 else
3671 exp.X_op = O_illegal;
b99bd4ef 3672
c19d1205 3673 if (exp.X_op != O_constant)
b99bd4ef 3674 {
c19d1205
ZW
3675 as_bad (_("expected , <constant>"));
3676 ignore_rest_of_line ();
b99bd4ef
NC
3677 return;
3678 }
3679
c19d1205
ZW
3680 num_regs = exp.X_add_number;
3681
3682 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3683 {
c19d1205
ZW
3684 as_bad (_("number of registers must be in the range [1:4]"));
3685 ignore_rest_of_line ();
b99bd4ef
NC
3686 return;
3687 }
3688
c19d1205 3689 demand_empty_rest_of_line ();
b99bd4ef 3690
c19d1205
ZW
3691 if (reg == 4)
3692 {
3693 /* Short form. */
3694 op = 0xb4 | (num_regs - 1);
3695 add_unwind_opcode (op, 1);
3696 }
b99bd4ef
NC
3697 else
3698 {
c19d1205
ZW
3699 /* Long form. */
3700 op = 0xc800 | (reg << 4) | (num_regs - 1);
3701 add_unwind_opcode (op, 2);
b99bd4ef 3702 }
c19d1205 3703 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3704}
3705
c19d1205 3706
fa073d69
MS
3707/* Parse a directive saving VFP registers for ARMv6 and above. */
3708
3709static void
3710s_arm_unwind_save_vfp_armv6 (void)
3711{
3712 int count;
3713 unsigned int start;
3714 valueT op;
3715 int num_vfpv3_regs = 0;
3716 int num_regs_below_16;
3717
3718 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3719 if (count == FAIL)
3720 {
3721 as_bad (_("expected register list"));
3722 ignore_rest_of_line ();
3723 return;
3724 }
3725
3726 demand_empty_rest_of_line ();
3727
3728 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3729 than FSTMX/FLDMX-style ones). */
3730
3731 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3732 if (start >= 16)
3733 num_vfpv3_regs = count;
3734 else if (start + count > 16)
3735 num_vfpv3_regs = start + count - 16;
3736
3737 if (num_vfpv3_regs > 0)
3738 {
3739 int start_offset = start > 16 ? start - 16 : 0;
3740 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3741 add_unwind_opcode (op, 2);
3742 }
3743
3744 /* Generate opcode for registers numbered in the range 0 .. 15. */
3745 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3746 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3747 if (num_regs_below_16 > 0)
3748 {
3749 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3750 add_unwind_opcode (op, 2);
3751 }
3752
3753 unwind.frame_size += count * 8;
3754}
3755
3756
3757/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3758
3759static void
c19d1205 3760s_arm_unwind_save_vfp (void)
b99bd4ef 3761{
c19d1205 3762 int count;
ca3f61f7 3763 unsigned int reg;
c19d1205 3764 valueT op;
b99bd4ef 3765
5287ad62 3766 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3767 if (count == FAIL)
b99bd4ef 3768 {
c19d1205
ZW
3769 as_bad (_("expected register list"));
3770 ignore_rest_of_line ();
b99bd4ef
NC
3771 return;
3772 }
3773
c19d1205 3774 demand_empty_rest_of_line ();
b99bd4ef 3775
c19d1205 3776 if (reg == 8)
b99bd4ef 3777 {
c19d1205
ZW
3778 /* Short form. */
3779 op = 0xb8 | (count - 1);
3780 add_unwind_opcode (op, 1);
b99bd4ef 3781 }
c19d1205 3782 else
b99bd4ef 3783 {
c19d1205
ZW
3784 /* Long form. */
3785 op = 0xb300 | (reg << 4) | (count - 1);
3786 add_unwind_opcode (op, 2);
b99bd4ef 3787 }
c19d1205
ZW
3788 unwind.frame_size += count * 8 + 4;
3789}
b99bd4ef 3790
b99bd4ef 3791
c19d1205
ZW
3792/* Parse a directive saving iWMMXt data registers. */
3793
3794static void
3795s_arm_unwind_save_mmxwr (void)
3796{
3797 int reg;
3798 int hi_reg;
3799 int i;
3800 unsigned mask = 0;
3801 valueT op;
b99bd4ef 3802
c19d1205
ZW
3803 if (*input_line_pointer == '{')
3804 input_line_pointer++;
b99bd4ef 3805
c19d1205 3806 do
b99bd4ef 3807 {
dcbf9037 3808 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3809
c19d1205 3810 if (reg == FAIL)
b99bd4ef 3811 {
9b7132d3 3812 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3813 goto error;
b99bd4ef
NC
3814 }
3815
c19d1205
ZW
3816 if (mask >> reg)
3817 as_tsktsk (_("register list not in ascending order"));
3818 mask |= 1 << reg;
b99bd4ef 3819
c19d1205
ZW
3820 if (*input_line_pointer == '-')
3821 {
3822 input_line_pointer++;
dcbf9037 3823 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3824 if (hi_reg == FAIL)
3825 {
9b7132d3 3826 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3827 goto error;
3828 }
3829 else if (reg >= hi_reg)
3830 {
3831 as_bad (_("bad register range"));
3832 goto error;
3833 }
3834 for (; reg < hi_reg; reg++)
3835 mask |= 1 << reg;
3836 }
3837 }
3838 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3839
c19d1205
ZW
3840 if (*input_line_pointer == '}')
3841 input_line_pointer++;
b99bd4ef 3842
c19d1205 3843 demand_empty_rest_of_line ();
b99bd4ef 3844
708587a4 3845 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3846 the list. */
3847 flush_pending_unwind ();
b99bd4ef 3848
c19d1205 3849 for (i = 0; i < 16; i++)
b99bd4ef 3850 {
c19d1205
ZW
3851 if (mask & (1 << i))
3852 unwind.frame_size += 8;
b99bd4ef
NC
3853 }
3854
c19d1205
ZW
3855 /* Attempt to combine with a previous opcode. We do this because gcc
3856 likes to output separate unwind directives for a single block of
3857 registers. */
3858 if (unwind.opcode_count > 0)
b99bd4ef 3859 {
c19d1205
ZW
3860 i = unwind.opcodes[unwind.opcode_count - 1];
3861 if ((i & 0xf8) == 0xc0)
3862 {
3863 i &= 7;
3864 /* Only merge if the blocks are contiguous. */
3865 if (i < 6)
3866 {
3867 if ((mask & 0xfe00) == (1 << 9))
3868 {
3869 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3870 unwind.opcode_count--;
3871 }
3872 }
3873 else if (i == 6 && unwind.opcode_count >= 2)
3874 {
3875 i = unwind.opcodes[unwind.opcode_count - 2];
3876 reg = i >> 4;
3877 i &= 0xf;
b99bd4ef 3878
c19d1205
ZW
3879 op = 0xffff << (reg - 1);
3880 if (reg > 0
87a1fd79 3881 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3882 {
3883 op = (1 << (reg + i + 1)) - 1;
3884 op &= ~((1 << reg) - 1);
3885 mask |= op;
3886 unwind.opcode_count -= 2;
3887 }
3888 }
3889 }
b99bd4ef
NC
3890 }
3891
c19d1205
ZW
3892 hi_reg = 15;
3893 /* We want to generate opcodes in the order the registers have been
3894 saved, ie. descending order. */
3895 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3896 {
c19d1205
ZW
3897 /* Save registers in blocks. */
3898 if (reg < 0
3899 || !(mask & (1 << reg)))
3900 {
3901 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3902 preceding block. */
c19d1205
ZW
3903 if (reg != hi_reg)
3904 {
3905 if (reg == 9)
3906 {
3907 /* Short form. */
3908 op = 0xc0 | (hi_reg - 10);
3909 add_unwind_opcode (op, 1);
3910 }
3911 else
3912 {
3913 /* Long form. */
3914 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3915 add_unwind_opcode (op, 2);
3916 }
3917 }
3918 hi_reg = reg - 1;
3919 }
b99bd4ef
NC
3920 }
3921
c19d1205
ZW
3922 return;
3923error:
3924 ignore_rest_of_line ();
b99bd4ef
NC
3925}
3926
3927static void
c19d1205 3928s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3929{
c19d1205
ZW
3930 int reg;
3931 int hi_reg;
3932 unsigned mask = 0;
3933 valueT op;
b99bd4ef 3934
c19d1205
ZW
3935 if (*input_line_pointer == '{')
3936 input_line_pointer++;
b99bd4ef 3937
c19d1205 3938 do
b99bd4ef 3939 {
dcbf9037 3940 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3941
c19d1205
ZW
3942 if (reg == FAIL)
3943 {
9b7132d3 3944 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3945 goto error;
3946 }
b99bd4ef 3947
c19d1205
ZW
3948 reg -= 8;
3949 if (mask >> reg)
3950 as_tsktsk (_("register list not in ascending order"));
3951 mask |= 1 << reg;
b99bd4ef 3952
c19d1205
ZW
3953 if (*input_line_pointer == '-')
3954 {
3955 input_line_pointer++;
dcbf9037 3956 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3957 if (hi_reg == FAIL)
3958 {
9b7132d3 3959 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3960 goto error;
3961 }
3962 else if (reg >= hi_reg)
3963 {
3964 as_bad (_("bad register range"));
3965 goto error;
3966 }
3967 for (; reg < hi_reg; reg++)
3968 mask |= 1 << reg;
3969 }
b99bd4ef 3970 }
c19d1205 3971 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3972
c19d1205
ZW
3973 if (*input_line_pointer == '}')
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976 demand_empty_rest_of_line ();
3977
708587a4 3978 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3979 the list. */
3980 flush_pending_unwind ();
b99bd4ef 3981
c19d1205 3982 for (reg = 0; reg < 16; reg++)
b99bd4ef 3983 {
c19d1205
ZW
3984 if (mask & (1 << reg))
3985 unwind.frame_size += 4;
b99bd4ef 3986 }
c19d1205
ZW
3987 op = 0xc700 | mask;
3988 add_unwind_opcode (op, 2);
3989 return;
3990error:
3991 ignore_rest_of_line ();
b99bd4ef
NC
3992}
3993
c19d1205 3994
fa073d69
MS
3995/* Parse an unwind_save directive.
3996 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3997
b99bd4ef 3998static void
fa073d69 3999s_arm_unwind_save (int arch_v6)
b99bd4ef 4000{
c19d1205
ZW
4001 char *peek;
4002 struct reg_entry *reg;
4003 bfd_boolean had_brace = FALSE;
b99bd4ef 4004
921e5f0a 4005 if (!unwind.proc_start)
c921be7d 4006 as_bad (MISSING_FNSTART);
921e5f0a 4007
c19d1205
ZW
4008 /* Figure out what sort of save we have. */
4009 peek = input_line_pointer;
b99bd4ef 4010
c19d1205 4011 if (*peek == '{')
b99bd4ef 4012 {
c19d1205
ZW
4013 had_brace = TRUE;
4014 peek++;
b99bd4ef
NC
4015 }
4016
c19d1205 4017 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4018
c19d1205 4019 if (!reg)
b99bd4ef 4020 {
c19d1205
ZW
4021 as_bad (_("register expected"));
4022 ignore_rest_of_line ();
b99bd4ef
NC
4023 return;
4024 }
4025
c19d1205 4026 switch (reg->type)
b99bd4ef 4027 {
c19d1205
ZW
4028 case REG_TYPE_FN:
4029 if (had_brace)
4030 {
4031 as_bad (_("FPA .unwind_save does not take a register list"));
4032 ignore_rest_of_line ();
4033 return;
4034 }
93ac2687 4035 input_line_pointer = peek;
c19d1205 4036 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4037 return;
c19d1205
ZW
4038
4039 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4040 case REG_TYPE_VFD:
4041 if (arch_v6)
4042 s_arm_unwind_save_vfp_armv6 ();
4043 else
4044 s_arm_unwind_save_vfp ();
4045 return;
c19d1205
ZW
4046 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4047 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4048
4049 default:
4050 as_bad (_(".unwind_save does not support this kind of register"));
4051 ignore_rest_of_line ();
b99bd4ef 4052 }
c19d1205 4053}
b99bd4ef 4054
b99bd4ef 4055
c19d1205
ZW
4056/* Parse an unwind_movsp directive. */
4057
4058static void
4059s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4060{
4061 int reg;
4062 valueT op;
4fa3602b 4063 int offset;
c19d1205 4064
921e5f0a 4065 if (!unwind.proc_start)
c921be7d 4066 as_bad (MISSING_FNSTART);
921e5f0a 4067
dcbf9037 4068 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4069 if (reg == FAIL)
b99bd4ef 4070 {
9b7132d3 4071 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4072 ignore_rest_of_line ();
b99bd4ef
NC
4073 return;
4074 }
4fa3602b
PB
4075
4076 /* Optional constant. */
4077 if (skip_past_comma (&input_line_pointer) != FAIL)
4078 {
4079 if (immediate_for_directive (&offset) == FAIL)
4080 return;
4081 }
4082 else
4083 offset = 0;
4084
c19d1205 4085 demand_empty_rest_of_line ();
b99bd4ef 4086
c19d1205 4087 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4088 {
c19d1205 4089 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4090 return;
4091 }
4092
c19d1205
ZW
4093 if (unwind.fp_reg != REG_SP)
4094 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4095
c19d1205
ZW
4096 /* Generate opcode to restore the value. */
4097 op = 0x90 | reg;
4098 add_unwind_opcode (op, 1);
4099
4100 /* Record the information for later. */
4101 unwind.fp_reg = reg;
4fa3602b 4102 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4103 unwind.sp_restored = 1;
b05fe5cf
ZW
4104}
4105
c19d1205
ZW
4106/* Parse an unwind_pad directive. */
4107
b05fe5cf 4108static void
c19d1205 4109s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4110{
c19d1205 4111 int offset;
b05fe5cf 4112
921e5f0a 4113 if (!unwind.proc_start)
c921be7d 4114 as_bad (MISSING_FNSTART);
921e5f0a 4115
c19d1205
ZW
4116 if (immediate_for_directive (&offset) == FAIL)
4117 return;
b99bd4ef 4118
c19d1205
ZW
4119 if (offset & 3)
4120 {
4121 as_bad (_("stack increment must be multiple of 4"));
4122 ignore_rest_of_line ();
4123 return;
4124 }
b99bd4ef 4125
c19d1205
ZW
4126 /* Don't generate any opcodes, just record the details for later. */
4127 unwind.frame_size += offset;
4128 unwind.pending_offset += offset;
4129
4130 demand_empty_rest_of_line ();
4131}
4132
4133/* Parse an unwind_setfp directive. */
4134
4135static void
4136s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4137{
c19d1205
ZW
4138 int sp_reg;
4139 int fp_reg;
4140 int offset;
4141
921e5f0a 4142 if (!unwind.proc_start)
c921be7d 4143 as_bad (MISSING_FNSTART);
921e5f0a 4144
dcbf9037 4145 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4146 if (skip_past_comma (&input_line_pointer) == FAIL)
4147 sp_reg = FAIL;
4148 else
dcbf9037 4149 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4150
c19d1205
ZW
4151 if (fp_reg == FAIL || sp_reg == FAIL)
4152 {
4153 as_bad (_("expected <reg>, <reg>"));
4154 ignore_rest_of_line ();
4155 return;
4156 }
b99bd4ef 4157
c19d1205
ZW
4158 /* Optional constant. */
4159 if (skip_past_comma (&input_line_pointer) != FAIL)
4160 {
4161 if (immediate_for_directive (&offset) == FAIL)
4162 return;
4163 }
4164 else
4165 offset = 0;
a737bd4d 4166
c19d1205 4167 demand_empty_rest_of_line ();
a737bd4d 4168
fdfde340 4169 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4170 {
c19d1205
ZW
4171 as_bad (_("register must be either sp or set by a previous"
4172 "unwind_movsp directive"));
4173 return;
a737bd4d
NC
4174 }
4175
c19d1205
ZW
4176 /* Don't generate any opcodes, just record the information for later. */
4177 unwind.fp_reg = fp_reg;
4178 unwind.fp_used = 1;
fdfde340 4179 if (sp_reg == REG_SP)
c19d1205
ZW
4180 unwind.fp_offset = unwind.frame_size - offset;
4181 else
4182 unwind.fp_offset -= offset;
a737bd4d
NC
4183}
4184
c19d1205
ZW
4185/* Parse an unwind_raw directive. */
4186
4187static void
4188s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4189{
c19d1205 4190 expressionS exp;
708587a4 4191 /* This is an arbitrary limit. */
c19d1205
ZW
4192 unsigned char op[16];
4193 int count;
a737bd4d 4194
921e5f0a 4195 if (!unwind.proc_start)
c921be7d 4196 as_bad (MISSING_FNSTART);
921e5f0a 4197
c19d1205
ZW
4198 expression (&exp);
4199 if (exp.X_op == O_constant
4200 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4201 {
c19d1205
ZW
4202 unwind.frame_size += exp.X_add_number;
4203 expression (&exp);
4204 }
4205 else
4206 exp.X_op = O_illegal;
a737bd4d 4207
c19d1205
ZW
4208 if (exp.X_op != O_constant)
4209 {
4210 as_bad (_("expected <offset>, <opcode>"));
4211 ignore_rest_of_line ();
4212 return;
4213 }
a737bd4d 4214
c19d1205 4215 count = 0;
a737bd4d 4216
c19d1205
ZW
4217 /* Parse the opcode. */
4218 for (;;)
4219 {
4220 if (count >= 16)
4221 {
4222 as_bad (_("unwind opcode too long"));
4223 ignore_rest_of_line ();
a737bd4d 4224 }
c19d1205 4225 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4226 {
c19d1205
ZW
4227 as_bad (_("invalid unwind opcode"));
4228 ignore_rest_of_line ();
4229 return;
a737bd4d 4230 }
c19d1205 4231 op[count++] = exp.X_add_number;
a737bd4d 4232
c19d1205
ZW
4233 /* Parse the next byte. */
4234 if (skip_past_comma (&input_line_pointer) == FAIL)
4235 break;
a737bd4d 4236
c19d1205
ZW
4237 expression (&exp);
4238 }
b99bd4ef 4239
c19d1205
ZW
4240 /* Add the opcode bytes in reverse order. */
4241 while (count--)
4242 add_unwind_opcode (op[count], 1);
b99bd4ef 4243
c19d1205 4244 demand_empty_rest_of_line ();
b99bd4ef 4245}
ee065d83
PB
4246
4247
4248/* Parse a .eabi_attribute directive. */
4249
4250static void
4251s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4252{
ee3c0378
AS
4253 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4254
4255 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4256 attributes_set_explicitly[tag] = 1;
ee065d83 4257}
8463be01 4258#endif /* OBJ_ELF */
ee065d83
PB
4259
4260static void s_arm_arch (int);
7a1d4c38 4261static void s_arm_object_arch (int);
ee065d83
PB
4262static void s_arm_cpu (int);
4263static void s_arm_fpu (int);
b99bd4ef 4264
f0927246
NC
4265#ifdef TE_PE
4266
4267static void
5f4273c7 4268pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4269{
4270 expressionS exp;
4271
4272 do
4273 {
4274 expression (&exp);
4275 if (exp.X_op == O_symbol)
4276 exp.X_op = O_secrel;
4277
4278 emit_expr (&exp, 4);
4279 }
4280 while (*input_line_pointer++ == ',');
4281
4282 input_line_pointer--;
4283 demand_empty_rest_of_line ();
4284}
4285#endif /* TE_PE */
4286
c19d1205
ZW
4287/* This table describes all the machine specific pseudo-ops the assembler
4288 has to support. The fields are:
4289 pseudo-op name without dot
4290 function to call to execute this pseudo-op
4291 Integer arg to pass to the function. */
b99bd4ef 4292
c19d1205 4293const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4294{
c19d1205
ZW
4295 /* Never called because '.req' does not start a line. */
4296 { "req", s_req, 0 },
dcbf9037
JB
4297 /* Following two are likewise never called. */
4298 { "dn", s_dn, 0 },
4299 { "qn", s_qn, 0 },
c19d1205
ZW
4300 { "unreq", s_unreq, 0 },
4301 { "bss", s_bss, 0 },
4302 { "align", s_align, 0 },
4303 { "arm", s_arm, 0 },
4304 { "thumb", s_thumb, 0 },
4305 { "code", s_code, 0 },
4306 { "force_thumb", s_force_thumb, 0 },
4307 { "thumb_func", s_thumb_func, 0 },
4308 { "thumb_set", s_thumb_set, 0 },
4309 { "even", s_even, 0 },
4310 { "ltorg", s_ltorg, 0 },
4311 { "pool", s_ltorg, 0 },
4312 { "syntax", s_syntax, 0 },
8463be01
PB
4313 { "cpu", s_arm_cpu, 0 },
4314 { "arch", s_arm_arch, 0 },
7a1d4c38 4315 { "object_arch", s_arm_object_arch, 0 },
8463be01 4316 { "fpu", s_arm_fpu, 0 },
c19d1205 4317#ifdef OBJ_ELF
c921be7d
NC
4318 { "word", s_arm_elf_cons, 4 },
4319 { "long", s_arm_elf_cons, 4 },
4320 { "inst.n", s_arm_elf_inst, 2 },
4321 { "inst.w", s_arm_elf_inst, 4 },
4322 { "inst", s_arm_elf_inst, 0 },
4323 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4324 { "fnstart", s_arm_unwind_fnstart, 0 },
4325 { "fnend", s_arm_unwind_fnend, 0 },
4326 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4327 { "personality", s_arm_unwind_personality, 0 },
4328 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4329 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4330 { "save", s_arm_unwind_save, 0 },
fa073d69 4331 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4332 { "movsp", s_arm_unwind_movsp, 0 },
4333 { "pad", s_arm_unwind_pad, 0 },
4334 { "setfp", s_arm_unwind_setfp, 0 },
4335 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4336 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
4337#else
4338 { "word", cons, 4},
f0927246
NC
4339
4340 /* These are used for dwarf. */
4341 {"2byte", cons, 2},
4342 {"4byte", cons, 4},
4343 {"8byte", cons, 8},
4344 /* These are used for dwarf2. */
4345 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4346 { "loc", dwarf2_directive_loc, 0 },
4347 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4348#endif
4349 { "extend", float_cons, 'x' },
4350 { "ldouble", float_cons, 'x' },
4351 { "packed", float_cons, 'p' },
f0927246
NC
4352#ifdef TE_PE
4353 {"secrel32", pe_directive_secrel, 0},
4354#endif
c19d1205
ZW
4355 { 0, 0, 0 }
4356};
4357\f
4358/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4359
c19d1205
ZW
4360/* Generic immediate-value read function for use in insn parsing.
4361 STR points to the beginning of the immediate (the leading #);
4362 VAL receives the value; if the value is outside [MIN, MAX]
4363 issue an error. PREFIX_OPT is true if the immediate prefix is
4364 optional. */
b99bd4ef 4365
c19d1205
ZW
4366static int
4367parse_immediate (char **str, int *val, int min, int max,
4368 bfd_boolean prefix_opt)
4369{
4370 expressionS exp;
4371 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4372 if (exp.X_op != O_constant)
b99bd4ef 4373 {
c19d1205
ZW
4374 inst.error = _("constant expression required");
4375 return FAIL;
4376 }
b99bd4ef 4377
c19d1205
ZW
4378 if (exp.X_add_number < min || exp.X_add_number > max)
4379 {
4380 inst.error = _("immediate value out of range");
4381 return FAIL;
4382 }
b99bd4ef 4383
c19d1205
ZW
4384 *val = exp.X_add_number;
4385 return SUCCESS;
4386}
b99bd4ef 4387
5287ad62 4388/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4389 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4390 instructions. Puts the result directly in inst.operands[i]. */
4391
4392static int
4393parse_big_immediate (char **str, int i)
4394{
4395 expressionS exp;
4396 char *ptr = *str;
4397
4398 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4399
4400 if (exp.X_op == O_constant)
036dc3f7
PB
4401 {
4402 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4403 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4404 O_constant. We have to be careful not to break compilation for
4405 32-bit X_add_number, though. */
4406 if ((exp.X_add_number & ~0xffffffffl) != 0)
4407 {
4408 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4409 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4410 inst.operands[i].regisimm = 1;
4411 }
4412 }
5287ad62
JB
4413 else if (exp.X_op == O_big
4414 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4415 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4416 {
4417 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4418 /* Bignums have their least significant bits in
4419 generic_bignum[0]. Make sure we put 32 bits in imm and
4420 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4421 gas_assert (parts != 0);
5287ad62
JB
4422 inst.operands[i].imm = 0;
4423 for (j = 0; j < parts; j++, idx++)
4424 inst.operands[i].imm |= generic_bignum[idx]
4425 << (LITTLENUM_NUMBER_OF_BITS * j);
4426 inst.operands[i].reg = 0;
4427 for (j = 0; j < parts; j++, idx++)
4428 inst.operands[i].reg |= generic_bignum[idx]
4429 << (LITTLENUM_NUMBER_OF_BITS * j);
4430 inst.operands[i].regisimm = 1;
4431 }
4432 else
4433 return FAIL;
5f4273c7 4434
5287ad62
JB
4435 *str = ptr;
4436
4437 return SUCCESS;
4438}
4439
c19d1205
ZW
4440/* Returns the pseudo-register number of an FPA immediate constant,
4441 or FAIL if there isn't a valid constant here. */
b99bd4ef 4442
c19d1205
ZW
4443static int
4444parse_fpa_immediate (char ** str)
4445{
4446 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4447 char * save_in;
4448 expressionS exp;
4449 int i;
4450 int j;
b99bd4ef 4451
c19d1205
ZW
4452 /* First try and match exact strings, this is to guarantee
4453 that some formats will work even for cross assembly. */
b99bd4ef 4454
c19d1205
ZW
4455 for (i = 0; fp_const[i]; i++)
4456 {
4457 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4458 {
c19d1205 4459 char *start = *str;
b99bd4ef 4460
c19d1205
ZW
4461 *str += strlen (fp_const[i]);
4462 if (is_end_of_line[(unsigned char) **str])
4463 return i + 8;
4464 *str = start;
4465 }
4466 }
b99bd4ef 4467
c19d1205
ZW
4468 /* Just because we didn't get a match doesn't mean that the constant
4469 isn't valid, just that it is in a format that we don't
4470 automatically recognize. Try parsing it with the standard
4471 expression routines. */
b99bd4ef 4472
c19d1205 4473 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4474
c19d1205
ZW
4475 /* Look for a raw floating point number. */
4476 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4477 && is_end_of_line[(unsigned char) *save_in])
4478 {
4479 for (i = 0; i < NUM_FLOAT_VALS; i++)
4480 {
4481 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4482 {
c19d1205
ZW
4483 if (words[j] != fp_values[i][j])
4484 break;
b99bd4ef
NC
4485 }
4486
c19d1205 4487 if (j == MAX_LITTLENUMS)
b99bd4ef 4488 {
c19d1205
ZW
4489 *str = save_in;
4490 return i + 8;
b99bd4ef
NC
4491 }
4492 }
4493 }
b99bd4ef 4494
c19d1205
ZW
4495 /* Try and parse a more complex expression, this will probably fail
4496 unless the code uses a floating point prefix (eg "0f"). */
4497 save_in = input_line_pointer;
4498 input_line_pointer = *str;
4499 if (expression (&exp) == absolute_section
4500 && exp.X_op == O_big
4501 && exp.X_add_number < 0)
4502 {
4503 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4504 Ditto for 15. */
4505 if (gen_to_words (words, 5, (long) 15) == 0)
4506 {
4507 for (i = 0; i < NUM_FLOAT_VALS; i++)
4508 {
4509 for (j = 0; j < MAX_LITTLENUMS; j++)
4510 {
4511 if (words[j] != fp_values[i][j])
4512 break;
4513 }
b99bd4ef 4514
c19d1205
ZW
4515 if (j == MAX_LITTLENUMS)
4516 {
4517 *str = input_line_pointer;
4518 input_line_pointer = save_in;
4519 return i + 8;
4520 }
4521 }
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 *str = input_line_pointer;
4526 input_line_pointer = save_in;
4527 inst.error = _("invalid FPA immediate expression");
4528 return FAIL;
b99bd4ef
NC
4529}
4530
136da414
JB
4531/* Returns 1 if a number has "quarter-precision" float format
4532 0baBbbbbbc defgh000 00000000 00000000. */
4533
4534static int
4535is_quarter_float (unsigned imm)
4536{
4537 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4538 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4539}
4540
4541/* Parse an 8-bit "quarter-precision" floating point number of the form:
4542 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4543 The zero and minus-zero cases need special handling, since they can't be
4544 encoded in the "quarter-precision" float format, but can nonetheless be
4545 loaded as integer constants. */
136da414
JB
4546
4547static unsigned
4548parse_qfloat_immediate (char **ccp, int *immed)
4549{
4550 char *str = *ccp;
c96612cc 4551 char *fpnum;
136da414 4552 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4553 int found_fpchar = 0;
5f4273c7 4554
136da414 4555 skip_past_char (&str, '#');
5f4273c7 4556
c96612cc
JB
4557 /* We must not accidentally parse an integer as a floating-point number. Make
4558 sure that the value we parse is not an integer by checking for special
4559 characters '.' or 'e'.
4560 FIXME: This is a horrible hack, but doing better is tricky because type
4561 information isn't in a very usable state at parse time. */
4562 fpnum = str;
4563 skip_whitespace (fpnum);
4564
4565 if (strncmp (fpnum, "0x", 2) == 0)
4566 return FAIL;
4567 else
4568 {
4569 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4570 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4571 {
4572 found_fpchar = 1;
4573 break;
4574 }
4575
4576 if (!found_fpchar)
4577 return FAIL;
4578 }
5f4273c7 4579
136da414
JB
4580 if ((str = atof_ieee (str, 's', words)) != NULL)
4581 {
4582 unsigned fpword = 0;
4583 int i;
5f4273c7 4584
136da414
JB
4585 /* Our FP word must be 32 bits (single-precision FP). */
4586 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4587 {
4588 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4589 fpword |= words[i];
4590 }
5f4273c7 4591
c96612cc 4592 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4593 *immed = fpword;
4594 else
4595 return FAIL;
4596
4597 *ccp = str;
5f4273c7 4598
136da414
JB
4599 return SUCCESS;
4600 }
5f4273c7 4601
136da414
JB
4602 return FAIL;
4603}
4604
c19d1205
ZW
4605/* Shift operands. */
4606enum shift_kind
b99bd4ef 4607{
c19d1205
ZW
4608 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4609};
b99bd4ef 4610
c19d1205
ZW
4611struct asm_shift_name
4612{
4613 const char *name;
4614 enum shift_kind kind;
4615};
b99bd4ef 4616
c19d1205
ZW
4617/* Third argument to parse_shift. */
4618enum parse_shift_mode
4619{
4620 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4621 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4622 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4623 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4624 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4625};
b99bd4ef 4626
c19d1205
ZW
4627/* Parse a <shift> specifier on an ARM data processing instruction.
4628 This has three forms:
b99bd4ef 4629
c19d1205
ZW
4630 (LSL|LSR|ASL|ASR|ROR) Rs
4631 (LSL|LSR|ASL|ASR|ROR) #imm
4632 RRX
b99bd4ef 4633
c19d1205
ZW
4634 Note that ASL is assimilated to LSL in the instruction encoding, and
4635 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4636
c19d1205
ZW
4637static int
4638parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4639{
c19d1205
ZW
4640 const struct asm_shift_name *shift_name;
4641 enum shift_kind shift;
4642 char *s = *str;
4643 char *p = s;
4644 int reg;
b99bd4ef 4645
c19d1205
ZW
4646 for (p = *str; ISALPHA (*p); p++)
4647 ;
b99bd4ef 4648
c19d1205 4649 if (p == *str)
b99bd4ef 4650 {
c19d1205
ZW
4651 inst.error = _("shift expression expected");
4652 return FAIL;
b99bd4ef
NC
4653 }
4654
21d799b5
NC
4655 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4656 p - *str);
c19d1205
ZW
4657
4658 if (shift_name == NULL)
b99bd4ef 4659 {
c19d1205
ZW
4660 inst.error = _("shift expression expected");
4661 return FAIL;
b99bd4ef
NC
4662 }
4663
c19d1205 4664 shift = shift_name->kind;
b99bd4ef 4665
c19d1205
ZW
4666 switch (mode)
4667 {
4668 case NO_SHIFT_RESTRICT:
4669 case SHIFT_IMMEDIATE: break;
b99bd4ef 4670
c19d1205
ZW
4671 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4672 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4673 {
4674 inst.error = _("'LSL' or 'ASR' required");
4675 return FAIL;
4676 }
4677 break;
b99bd4ef 4678
c19d1205
ZW
4679 case SHIFT_LSL_IMMEDIATE:
4680 if (shift != SHIFT_LSL)
4681 {
4682 inst.error = _("'LSL' required");
4683 return FAIL;
4684 }
4685 break;
b99bd4ef 4686
c19d1205
ZW
4687 case SHIFT_ASR_IMMEDIATE:
4688 if (shift != SHIFT_ASR)
4689 {
4690 inst.error = _("'ASR' required");
4691 return FAIL;
4692 }
4693 break;
b99bd4ef 4694
c19d1205
ZW
4695 default: abort ();
4696 }
b99bd4ef 4697
c19d1205
ZW
4698 if (shift != SHIFT_RRX)
4699 {
4700 /* Whitespace can appear here if the next thing is a bare digit. */
4701 skip_whitespace (p);
b99bd4ef 4702
c19d1205 4703 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4704 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4705 {
4706 inst.operands[i].imm = reg;
4707 inst.operands[i].immisreg = 1;
4708 }
4709 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4710 return FAIL;
4711 }
4712 inst.operands[i].shift_kind = shift;
4713 inst.operands[i].shifted = 1;
4714 *str = p;
4715 return SUCCESS;
b99bd4ef
NC
4716}
4717
c19d1205 4718/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4719
c19d1205
ZW
4720 #<immediate>
4721 #<immediate>, <rotate>
4722 <Rm>
4723 <Rm>, <shift>
b99bd4ef 4724
c19d1205
ZW
4725 where <shift> is defined by parse_shift above, and <rotate> is a
4726 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4727 is deferred to md_apply_fix. */
b99bd4ef 4728
c19d1205
ZW
4729static int
4730parse_shifter_operand (char **str, int i)
4731{
4732 int value;
91d6fa6a 4733 expressionS exp;
b99bd4ef 4734
dcbf9037 4735 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4736 {
4737 inst.operands[i].reg = value;
4738 inst.operands[i].isreg = 1;
b99bd4ef 4739
c19d1205
ZW
4740 /* parse_shift will override this if appropriate */
4741 inst.reloc.exp.X_op = O_constant;
4742 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4743
c19d1205
ZW
4744 if (skip_past_comma (str) == FAIL)
4745 return SUCCESS;
b99bd4ef 4746
c19d1205
ZW
4747 /* Shift operation on register. */
4748 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4749 }
4750
c19d1205
ZW
4751 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4752 return FAIL;
b99bd4ef 4753
c19d1205 4754 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4755 {
c19d1205 4756 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4757 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4758 return FAIL;
b99bd4ef 4759
91d6fa6a 4760 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4761 {
4762 inst.error = _("constant expression expected");
4763 return FAIL;
4764 }
b99bd4ef 4765
91d6fa6a 4766 value = exp.X_add_number;
c19d1205
ZW
4767 if (value < 0 || value > 30 || value % 2 != 0)
4768 {
4769 inst.error = _("invalid rotation");
4770 return FAIL;
4771 }
4772 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4773 {
4774 inst.error = _("invalid constant");
4775 return FAIL;
4776 }
09d92015 4777
55cf6793 4778 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4779 inst.reloc.exp.X_add_number
4780 = (((inst.reloc.exp.X_add_number << (32 - value))
4781 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4782 }
4783
c19d1205
ZW
4784 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4785 inst.reloc.pc_rel = 0;
4786 return SUCCESS;
09d92015
MM
4787}
4788
4962c51a
MS
4789/* Group relocation information. Each entry in the table contains the
4790 textual name of the relocation as may appear in assembler source
4791 and must end with a colon.
4792 Along with this textual name are the relocation codes to be used if
4793 the corresponding instruction is an ALU instruction (ADD or SUB only),
4794 an LDR, an LDRS, or an LDC. */
4795
4796struct group_reloc_table_entry
4797{
4798 const char *name;
4799 int alu_code;
4800 int ldr_code;
4801 int ldrs_code;
4802 int ldc_code;
4803};
4804
4805typedef enum
4806{
4807 /* Varieties of non-ALU group relocation. */
4808
4809 GROUP_LDR,
4810 GROUP_LDRS,
4811 GROUP_LDC
4812} group_reloc_type;
4813
4814static struct group_reloc_table_entry group_reloc_table[] =
4815 { /* Program counter relative: */
4816 { "pc_g0_nc",
4817 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4818 0, /* LDR */
4819 0, /* LDRS */
4820 0 }, /* LDC */
4821 { "pc_g0",
4822 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4823 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4824 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4825 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4826 { "pc_g1_nc",
4827 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4828 0, /* LDR */
4829 0, /* LDRS */
4830 0 }, /* LDC */
4831 { "pc_g1",
4832 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4833 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4834 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4835 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4836 { "pc_g2",
4837 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4838 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4839 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4840 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4841 /* Section base relative */
4842 { "sb_g0_nc",
4843 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4844 0, /* LDR */
4845 0, /* LDRS */
4846 0 }, /* LDC */
4847 { "sb_g0",
4848 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4849 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4850 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4851 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4852 { "sb_g1_nc",
4853 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4854 0, /* LDR */
4855 0, /* LDRS */
4856 0 }, /* LDC */
4857 { "sb_g1",
4858 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4859 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4860 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4861 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4862 { "sb_g2",
4863 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4864 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4865 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4866 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4867
4868/* Given the address of a pointer pointing to the textual name of a group
4869 relocation as may appear in assembler source, attempt to find its details
4870 in group_reloc_table. The pointer will be updated to the character after
4871 the trailing colon. On failure, FAIL will be returned; SUCCESS
4872 otherwise. On success, *entry will be updated to point at the relevant
4873 group_reloc_table entry. */
4874
4875static int
4876find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4877{
4878 unsigned int i;
4879 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4880 {
4881 int length = strlen (group_reloc_table[i].name);
4882
5f4273c7
NC
4883 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4884 && (*str)[length] == ':')
4962c51a
MS
4885 {
4886 *out = &group_reloc_table[i];
4887 *str += (length + 1);
4888 return SUCCESS;
4889 }
4890 }
4891
4892 return FAIL;
4893}
4894
4895/* Parse a <shifter_operand> for an ARM data processing instruction
4896 (as for parse_shifter_operand) where group relocations are allowed:
4897
4898 #<immediate>
4899 #<immediate>, <rotate>
4900 #:<group_reloc>:<expression>
4901 <Rm>
4902 <Rm>, <shift>
4903
4904 where <group_reloc> is one of the strings defined in group_reloc_table.
4905 The hashes are optional.
4906
4907 Everything else is as for parse_shifter_operand. */
4908
4909static parse_operand_result
4910parse_shifter_operand_group_reloc (char **str, int i)
4911{
4912 /* Determine if we have the sequence of characters #: or just :
4913 coming next. If we do, then we check for a group relocation.
4914 If we don't, punt the whole lot to parse_shifter_operand. */
4915
4916 if (((*str)[0] == '#' && (*str)[1] == ':')
4917 || (*str)[0] == ':')
4918 {
4919 struct group_reloc_table_entry *entry;
4920
4921 if ((*str)[0] == '#')
4922 (*str) += 2;
4923 else
4924 (*str)++;
4925
4926 /* Try to parse a group relocation. Anything else is an error. */
4927 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4928 {
4929 inst.error = _("unknown group relocation");
4930 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4931 }
4932
4933 /* We now have the group relocation table entry corresponding to
4934 the name in the assembler source. Next, we parse the expression. */
4935 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4936 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4937
4938 /* Record the relocation type (always the ALU variant here). */
21d799b5 4939 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 4940 gas_assert (inst.reloc.type != 0);
4962c51a
MS
4941
4942 return PARSE_OPERAND_SUCCESS;
4943 }
4944 else
4945 return parse_shifter_operand (str, i) == SUCCESS
4946 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4947
4948 /* Never reached. */
4949}
4950
c19d1205
ZW
4951/* Parse all forms of an ARM address expression. Information is written
4952 to inst.operands[i] and/or inst.reloc.
09d92015 4953
c19d1205 4954 Preindexed addressing (.preind=1):
09d92015 4955
c19d1205
ZW
4956 [Rn, #offset] .reg=Rn .reloc.exp=offset
4957 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4958 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4959 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4960
c19d1205 4961 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4962
c19d1205 4963 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4964
c19d1205
ZW
4965 [Rn], #offset .reg=Rn .reloc.exp=offset
4966 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4967 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4968 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4969
c19d1205 4970 Unindexed addressing (.preind=0, .postind=0):
09d92015 4971
c19d1205 4972 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4973
c19d1205 4974 Other:
09d92015 4975
c19d1205
ZW
4976 [Rn]{!} shorthand for [Rn,#0]{!}
4977 =immediate .isreg=0 .reloc.exp=immediate
4978 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4979
c19d1205
ZW
4980 It is the caller's responsibility to check for addressing modes not
4981 supported by the instruction, and to set inst.reloc.type. */
4982
4962c51a
MS
4983static parse_operand_result
4984parse_address_main (char **str, int i, int group_relocations,
4985 group_reloc_type group_type)
09d92015 4986{
c19d1205
ZW
4987 char *p = *str;
4988 int reg;
09d92015 4989
c19d1205 4990 if (skip_past_char (&p, '[') == FAIL)
09d92015 4991 {
c19d1205
ZW
4992 if (skip_past_char (&p, '=') == FAIL)
4993 {
974da60d 4994 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
4995 inst.reloc.pc_rel = 1;
4996 inst.operands[i].reg = REG_PC;
4997 inst.operands[i].isreg = 1;
4998 inst.operands[i].preind = 1;
4999 }
974da60d 5000 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5001
c19d1205 5002 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5003 return PARSE_OPERAND_FAIL;
09d92015 5004
c19d1205 5005 *str = p;
4962c51a 5006 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5007 }
5008
dcbf9037 5009 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5010 {
c19d1205 5011 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5012 return PARSE_OPERAND_FAIL;
09d92015 5013 }
c19d1205
ZW
5014 inst.operands[i].reg = reg;
5015 inst.operands[i].isreg = 1;
09d92015 5016
c19d1205 5017 if (skip_past_comma (&p) == SUCCESS)
09d92015 5018 {
c19d1205 5019 inst.operands[i].preind = 1;
09d92015 5020
c19d1205
ZW
5021 if (*p == '+') p++;
5022 else if (*p == '-') p++, inst.operands[i].negative = 1;
5023
dcbf9037 5024 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5025 {
c19d1205
ZW
5026 inst.operands[i].imm = reg;
5027 inst.operands[i].immisreg = 1;
5028
5029 if (skip_past_comma (&p) == SUCCESS)
5030 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5031 return PARSE_OPERAND_FAIL;
c19d1205 5032 }
5287ad62
JB
5033 else if (skip_past_char (&p, ':') == SUCCESS)
5034 {
5035 /* FIXME: '@' should be used here, but it's filtered out by generic
5036 code before we get to see it here. This may be subject to
5037 change. */
5038 expressionS exp;
5039 my_get_expression (&exp, &p, GE_NO_PREFIX);
5040 if (exp.X_op != O_constant)
5041 {
5042 inst.error = _("alignment must be constant");
4962c51a 5043 return PARSE_OPERAND_FAIL;
5287ad62
JB
5044 }
5045 inst.operands[i].imm = exp.X_add_number << 8;
5046 inst.operands[i].immisalign = 1;
5047 /* Alignments are not pre-indexes. */
5048 inst.operands[i].preind = 0;
5049 }
c19d1205
ZW
5050 else
5051 {
5052 if (inst.operands[i].negative)
5053 {
5054 inst.operands[i].negative = 0;
5055 p--;
5056 }
4962c51a 5057
5f4273c7
NC
5058 if (group_relocations
5059 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5060 {
5061 struct group_reloc_table_entry *entry;
5062
5063 /* Skip over the #: or : sequence. */
5064 if (*p == '#')
5065 p += 2;
5066 else
5067 p++;
5068
5069 /* Try to parse a group relocation. Anything else is an
5070 error. */
5071 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5072 {
5073 inst.error = _("unknown group relocation");
5074 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5075 }
5076
5077 /* We now have the group relocation table entry corresponding to
5078 the name in the assembler source. Next, we parse the
5079 expression. */
5080 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5081 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5082
5083 /* Record the relocation type. */
5084 switch (group_type)
5085 {
5086 case GROUP_LDR:
21d799b5 5087 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5088 break;
5089
5090 case GROUP_LDRS:
21d799b5 5091 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5092 break;
5093
5094 case GROUP_LDC:
21d799b5 5095 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5096 break;
5097
5098 default:
9c2799c2 5099 gas_assert (0);
4962c51a
MS
5100 }
5101
5102 if (inst.reloc.type == 0)
5103 {
5104 inst.error = _("this group relocation is not allowed on this instruction");
5105 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5106 }
5107 }
5108 else
5109 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5110 return PARSE_OPERAND_FAIL;
09d92015
MM
5111 }
5112 }
5113
c19d1205 5114 if (skip_past_char (&p, ']') == FAIL)
09d92015 5115 {
c19d1205 5116 inst.error = _("']' expected");
4962c51a 5117 return PARSE_OPERAND_FAIL;
09d92015
MM
5118 }
5119
c19d1205
ZW
5120 if (skip_past_char (&p, '!') == SUCCESS)
5121 inst.operands[i].writeback = 1;
09d92015 5122
c19d1205 5123 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5124 {
c19d1205
ZW
5125 if (skip_past_char (&p, '{') == SUCCESS)
5126 {
5127 /* [Rn], {expr} - unindexed, with option */
5128 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5129 0, 255, TRUE) == FAIL)
4962c51a 5130 return PARSE_OPERAND_FAIL;
09d92015 5131
c19d1205
ZW
5132 if (skip_past_char (&p, '}') == FAIL)
5133 {
5134 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5135 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5136 }
5137 if (inst.operands[i].preind)
5138 {
5139 inst.error = _("cannot combine index with option");
4962c51a 5140 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5141 }
5142 *str = p;
4962c51a 5143 return PARSE_OPERAND_SUCCESS;
09d92015 5144 }
c19d1205
ZW
5145 else
5146 {
5147 inst.operands[i].postind = 1;
5148 inst.operands[i].writeback = 1;
09d92015 5149
c19d1205
ZW
5150 if (inst.operands[i].preind)
5151 {
5152 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5153 return PARSE_OPERAND_FAIL;
c19d1205 5154 }
09d92015 5155
c19d1205
ZW
5156 if (*p == '+') p++;
5157 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5158
dcbf9037 5159 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5160 {
5287ad62
JB
5161 /* We might be using the immediate for alignment already. If we
5162 are, OR the register number into the low-order bits. */
5163 if (inst.operands[i].immisalign)
5164 inst.operands[i].imm |= reg;
5165 else
5166 inst.operands[i].imm = reg;
c19d1205 5167 inst.operands[i].immisreg = 1;
a737bd4d 5168
c19d1205
ZW
5169 if (skip_past_comma (&p) == SUCCESS)
5170 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5171 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5172 }
5173 else
5174 {
5175 if (inst.operands[i].negative)
5176 {
5177 inst.operands[i].negative = 0;
5178 p--;
5179 }
5180 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5181 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5182 }
5183 }
a737bd4d
NC
5184 }
5185
c19d1205
ZW
5186 /* If at this point neither .preind nor .postind is set, we have a
5187 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5188 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5189 {
5190 inst.operands[i].preind = 1;
5191 inst.reloc.exp.X_op = O_constant;
5192 inst.reloc.exp.X_add_number = 0;
5193 }
5194 *str = p;
4962c51a
MS
5195 return PARSE_OPERAND_SUCCESS;
5196}
5197
5198static int
5199parse_address (char **str, int i)
5200{
21d799b5 5201 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5202 ? SUCCESS : FAIL;
5203}
5204
5205static parse_operand_result
5206parse_address_group_reloc (char **str, int i, group_reloc_type type)
5207{
5208 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5209}
5210
b6895b4f
PB
5211/* Parse an operand for a MOVW or MOVT instruction. */
5212static int
5213parse_half (char **str)
5214{
5215 char * p;
5f4273c7 5216
b6895b4f
PB
5217 p = *str;
5218 skip_past_char (&p, '#');
5f4273c7 5219 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5220 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5221 else if (strncasecmp (p, ":upper16:", 9) == 0)
5222 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5223
5224 if (inst.reloc.type != BFD_RELOC_UNUSED)
5225 {
5226 p += 9;
5f4273c7 5227 skip_whitespace (p);
b6895b4f
PB
5228 }
5229
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return FAIL;
5232
5233 if (inst.reloc.type == BFD_RELOC_UNUSED)
5234 {
5235 if (inst.reloc.exp.X_op != O_constant)
5236 {
5237 inst.error = _("constant expression expected");
5238 return FAIL;
5239 }
5240 if (inst.reloc.exp.X_add_number < 0
5241 || inst.reloc.exp.X_add_number > 0xffff)
5242 {
5243 inst.error = _("immediate value out of range");
5244 return FAIL;
5245 }
5246 }
5247 *str = p;
5248 return SUCCESS;
5249}
5250
c19d1205 5251/* Miscellaneous. */
a737bd4d 5252
c19d1205
ZW
5253/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5254 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5255static int
5256parse_psr (char **str)
09d92015 5257{
c19d1205
ZW
5258 char *p;
5259 unsigned long psr_field;
62b3e311
PB
5260 const struct asm_psr *psr;
5261 char *start;
09d92015 5262
c19d1205
ZW
5263 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5264 feature for ease of use and backwards compatibility. */
5265 p = *str;
62b3e311 5266 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 5267 psr_field = SPSR_BIT;
62b3e311 5268 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
5269 psr_field = 0;
5270 else
62b3e311
PB
5271 {
5272 start = p;
5273 do
5274 p++;
5275 while (ISALNUM (*p) || *p == '_');
5276
21d799b5
NC
5277 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5278 p - start);
62b3e311
PB
5279 if (!psr)
5280 return FAIL;
09d92015 5281
62b3e311
PB
5282 *str = p;
5283 return psr->field;
5284 }
09d92015 5285
62b3e311 5286 p += 4;
c19d1205
ZW
5287 if (*p == '_')
5288 {
5289 /* A suffix follows. */
c19d1205
ZW
5290 p++;
5291 start = p;
a737bd4d 5292
c19d1205
ZW
5293 do
5294 p++;
5295 while (ISALNUM (*p) || *p == '_');
a737bd4d 5296
21d799b5
NC
5297 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5298 p - start);
c19d1205
ZW
5299 if (!psr)
5300 goto error;
a737bd4d 5301
c19d1205 5302 psr_field |= psr->field;
a737bd4d 5303 }
c19d1205 5304 else
a737bd4d 5305 {
c19d1205
ZW
5306 if (ISALNUM (*p))
5307 goto error; /* Garbage after "[CS]PSR". */
5308
5309 psr_field |= (PSR_c | PSR_f);
a737bd4d 5310 }
c19d1205
ZW
5311 *str = p;
5312 return psr_field;
a737bd4d 5313
c19d1205
ZW
5314 error:
5315 inst.error = _("flag for {c}psr instruction expected");
5316 return FAIL;
a737bd4d
NC
5317}
5318
c19d1205
ZW
5319/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5320 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5321
c19d1205
ZW
5322static int
5323parse_cps_flags (char **str)
a737bd4d 5324{
c19d1205
ZW
5325 int val = 0;
5326 int saw_a_flag = 0;
5327 char *s = *str;
a737bd4d 5328
c19d1205
ZW
5329 for (;;)
5330 switch (*s++)
5331 {
5332 case '\0': case ',':
5333 goto done;
a737bd4d 5334
c19d1205
ZW
5335 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5336 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5337 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5338
c19d1205
ZW
5339 default:
5340 inst.error = _("unrecognized CPS flag");
5341 return FAIL;
5342 }
a737bd4d 5343
c19d1205
ZW
5344 done:
5345 if (saw_a_flag == 0)
a737bd4d 5346 {
c19d1205
ZW
5347 inst.error = _("missing CPS flags");
5348 return FAIL;
a737bd4d 5349 }
a737bd4d 5350
c19d1205
ZW
5351 *str = s - 1;
5352 return val;
a737bd4d
NC
5353}
5354
c19d1205
ZW
5355/* Parse an endian specifier ("BE" or "LE", case insensitive);
5356 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5357
5358static int
c19d1205 5359parse_endian_specifier (char **str)
a737bd4d 5360{
c19d1205
ZW
5361 int little_endian;
5362 char *s = *str;
a737bd4d 5363
c19d1205
ZW
5364 if (strncasecmp (s, "BE", 2))
5365 little_endian = 0;
5366 else if (strncasecmp (s, "LE", 2))
5367 little_endian = 1;
5368 else
a737bd4d 5369 {
c19d1205 5370 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5371 return FAIL;
5372 }
5373
c19d1205 5374 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5375 {
c19d1205 5376 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5377 return FAIL;
5378 }
5379
c19d1205
ZW
5380 *str = s + 2;
5381 return little_endian;
5382}
a737bd4d 5383
c19d1205
ZW
5384/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5385 value suitable for poking into the rotate field of an sxt or sxta
5386 instruction, or FAIL on error. */
5387
5388static int
5389parse_ror (char **str)
5390{
5391 int rot;
5392 char *s = *str;
5393
5394 if (strncasecmp (s, "ROR", 3) == 0)
5395 s += 3;
5396 else
a737bd4d 5397 {
c19d1205 5398 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5399 return FAIL;
5400 }
c19d1205
ZW
5401
5402 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5403 return FAIL;
5404
5405 switch (rot)
a737bd4d 5406 {
c19d1205
ZW
5407 case 0: *str = s; return 0x0;
5408 case 8: *str = s; return 0x1;
5409 case 16: *str = s; return 0x2;
5410 case 24: *str = s; return 0x3;
5411
5412 default:
5413 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5414 return FAIL;
5415 }
c19d1205 5416}
a737bd4d 5417
c19d1205
ZW
5418/* Parse a conditional code (from conds[] below). The value returned is in the
5419 range 0 .. 14, or FAIL. */
5420static int
5421parse_cond (char **str)
5422{
c462b453 5423 char *q;
c19d1205 5424 const struct asm_cond *c;
c462b453
PB
5425 int n;
5426 /* Condition codes are always 2 characters, so matching up to
5427 3 characters is sufficient. */
5428 char cond[3];
a737bd4d 5429
c462b453
PB
5430 q = *str;
5431 n = 0;
5432 while (ISALPHA (*q) && n < 3)
5433 {
e07e6e58 5434 cond[n] = TOLOWER (*q);
c462b453
PB
5435 q++;
5436 n++;
5437 }
a737bd4d 5438
21d799b5 5439 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5440 if (!c)
a737bd4d 5441 {
c19d1205 5442 inst.error = _("condition required");
a737bd4d
NC
5443 return FAIL;
5444 }
5445
c19d1205
ZW
5446 *str = q;
5447 return c->value;
5448}
5449
62b3e311
PB
5450/* Parse an option for a barrier instruction. Returns the encoding for the
5451 option, or FAIL. */
5452static int
5453parse_barrier (char **str)
5454{
5455 char *p, *q;
5456 const struct asm_barrier_opt *o;
5457
5458 p = q = *str;
5459 while (ISALPHA (*q))
5460 q++;
5461
21d799b5
NC
5462 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5463 q - p);
62b3e311
PB
5464 if (!o)
5465 return FAIL;
5466
5467 *str = q;
5468 return o->value;
5469}
5470
92e90b6e
PB
5471/* Parse the operands of a table branch instruction. Similar to a memory
5472 operand. */
5473static int
5474parse_tb (char **str)
5475{
5476 char * p = *str;
5477 int reg;
5478
5479 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5480 {
5481 inst.error = _("'[' expected");
5482 return FAIL;
5483 }
92e90b6e 5484
dcbf9037 5485 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5486 {
5487 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5488 return FAIL;
5489 }
5490 inst.operands[0].reg = reg;
5491
5492 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5493 {
5494 inst.error = _("',' expected");
5495 return FAIL;
5496 }
5f4273c7 5497
dcbf9037 5498 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5499 {
5500 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5501 return FAIL;
5502 }
5503 inst.operands[0].imm = reg;
5504
5505 if (skip_past_comma (&p) == SUCCESS)
5506 {
5507 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5508 return FAIL;
5509 if (inst.reloc.exp.X_add_number != 1)
5510 {
5511 inst.error = _("invalid shift");
5512 return FAIL;
5513 }
5514 inst.operands[0].shifted = 1;
5515 }
5516
5517 if (skip_past_char (&p, ']') == FAIL)
5518 {
5519 inst.error = _("']' expected");
5520 return FAIL;
5521 }
5522 *str = p;
5523 return SUCCESS;
5524}
5525
5287ad62
JB
5526/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5527 information on the types the operands can take and how they are encoded.
037e8744
JB
5528 Up to four operands may be read; this function handles setting the
5529 ".present" field for each read operand itself.
5287ad62
JB
5530 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5531 else returns FAIL. */
5532
5533static int
5534parse_neon_mov (char **str, int *which_operand)
5535{
5536 int i = *which_operand, val;
5537 enum arm_reg_type rtype;
5538 char *ptr = *str;
dcbf9037 5539 struct neon_type_el optype;
5f4273c7 5540
dcbf9037 5541 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5542 {
5543 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5544 inst.operands[i].reg = val;
5545 inst.operands[i].isscalar = 1;
dcbf9037 5546 inst.operands[i].vectype = optype;
5287ad62
JB
5547 inst.operands[i++].present = 1;
5548
5549 if (skip_past_comma (&ptr) == FAIL)
5550 goto wanted_comma;
5f4273c7 5551
dcbf9037 5552 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5553 goto wanted_arm;
5f4273c7 5554
5287ad62
JB
5555 inst.operands[i].reg = val;
5556 inst.operands[i].isreg = 1;
5557 inst.operands[i].present = 1;
5558 }
037e8744 5559 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5560 != FAIL)
5287ad62
JB
5561 {
5562 /* Cases 0, 1, 2, 3, 5 (D only). */
5563 if (skip_past_comma (&ptr) == FAIL)
5564 goto wanted_comma;
5f4273c7 5565
5287ad62
JB
5566 inst.operands[i].reg = val;
5567 inst.operands[i].isreg = 1;
5568 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5569 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5570 inst.operands[i].isvec = 1;
dcbf9037 5571 inst.operands[i].vectype = optype;
5287ad62
JB
5572 inst.operands[i++].present = 1;
5573
dcbf9037 5574 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5575 {
037e8744
JB
5576 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5577 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5578 inst.operands[i].reg = val;
5579 inst.operands[i].isreg = 1;
037e8744 5580 inst.operands[i].present = 1;
5287ad62
JB
5581
5582 if (rtype == REG_TYPE_NQ)
5583 {
dcbf9037 5584 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5585 return FAIL;
5586 }
037e8744
JB
5587 else if (rtype != REG_TYPE_VFS)
5588 {
5589 i++;
5590 if (skip_past_comma (&ptr) == FAIL)
5591 goto wanted_comma;
5592 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5593 goto wanted_arm;
5594 inst.operands[i].reg = val;
5595 inst.operands[i].isreg = 1;
5596 inst.operands[i].present = 1;
5597 }
5287ad62 5598 }
037e8744
JB
5599 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5600 &optype)) != FAIL)
5287ad62
JB
5601 {
5602 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5603 Case 1: VMOV<c><q> <Dd>, <Dm>
5604 Case 8: VMOV.F32 <Sd>, <Sm>
5605 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5606
5607 inst.operands[i].reg = val;
5608 inst.operands[i].isreg = 1;
5609 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5610 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5611 inst.operands[i].isvec = 1;
dcbf9037 5612 inst.operands[i].vectype = optype;
5287ad62 5613 inst.operands[i].present = 1;
5f4273c7 5614
037e8744
JB
5615 if (skip_past_comma (&ptr) == SUCCESS)
5616 {
5617 /* Case 15. */
5618 i++;
5619
5620 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5621 goto wanted_arm;
5622
5623 inst.operands[i].reg = val;
5624 inst.operands[i].isreg = 1;
5625 inst.operands[i++].present = 1;
5f4273c7 5626
037e8744
JB
5627 if (skip_past_comma (&ptr) == FAIL)
5628 goto wanted_comma;
5f4273c7 5629
037e8744
JB
5630 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5631 goto wanted_arm;
5f4273c7 5632
037e8744
JB
5633 inst.operands[i].reg = val;
5634 inst.operands[i].isreg = 1;
5635 inst.operands[i++].present = 1;
5636 }
5287ad62 5637 }
4641781c
PB
5638 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5639 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5640 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5641 Case 10: VMOV.F32 <Sd>, #<imm>
5642 Case 11: VMOV.F64 <Dd>, #<imm> */
5643 inst.operands[i].immisfloat = 1;
5644 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5645 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5646 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5647 ;
5287ad62
JB
5648 else
5649 {
dcbf9037 5650 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5651 return FAIL;
5652 }
5653 }
dcbf9037 5654 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5655 {
5656 /* Cases 6, 7. */
5657 inst.operands[i].reg = val;
5658 inst.operands[i].isreg = 1;
5659 inst.operands[i++].present = 1;
5f4273c7 5660
5287ad62
JB
5661 if (skip_past_comma (&ptr) == FAIL)
5662 goto wanted_comma;
5f4273c7 5663
dcbf9037 5664 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5665 {
5666 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5667 inst.operands[i].reg = val;
5668 inst.operands[i].isscalar = 1;
5669 inst.operands[i].present = 1;
dcbf9037 5670 inst.operands[i].vectype = optype;
5287ad62 5671 }
dcbf9037 5672 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5673 {
5674 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5675 inst.operands[i].reg = val;
5676 inst.operands[i].isreg = 1;
5677 inst.operands[i++].present = 1;
5f4273c7 5678
5287ad62
JB
5679 if (skip_past_comma (&ptr) == FAIL)
5680 goto wanted_comma;
5f4273c7 5681
037e8744 5682 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5683 == FAIL)
5287ad62 5684 {
037e8744 5685 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5686 return FAIL;
5687 }
5688
5689 inst.operands[i].reg = val;
5690 inst.operands[i].isreg = 1;
037e8744
JB
5691 inst.operands[i].isvec = 1;
5692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5693 inst.operands[i].vectype = optype;
5287ad62 5694 inst.operands[i].present = 1;
5f4273c7 5695
037e8744
JB
5696 if (rtype == REG_TYPE_VFS)
5697 {
5698 /* Case 14. */
5699 i++;
5700 if (skip_past_comma (&ptr) == FAIL)
5701 goto wanted_comma;
5702 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5703 &optype)) == FAIL)
5704 {
5705 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5706 return FAIL;
5707 }
5708 inst.operands[i].reg = val;
5709 inst.operands[i].isreg = 1;
5710 inst.operands[i].isvec = 1;
5711 inst.operands[i].issingle = 1;
5712 inst.operands[i].vectype = optype;
5713 inst.operands[i].present = 1;
5714 }
5715 }
5716 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5717 != FAIL)
5718 {
5719 /* Case 13. */
5720 inst.operands[i].reg = val;
5721 inst.operands[i].isreg = 1;
5722 inst.operands[i].isvec = 1;
5723 inst.operands[i].issingle = 1;
5724 inst.operands[i].vectype = optype;
5725 inst.operands[i++].present = 1;
5287ad62
JB
5726 }
5727 }
5728 else
5729 {
dcbf9037 5730 first_error (_("parse error"));
5287ad62
JB
5731 return FAIL;
5732 }
5733
5734 /* Successfully parsed the operands. Update args. */
5735 *which_operand = i;
5736 *str = ptr;
5737 return SUCCESS;
5738
5f4273c7 5739 wanted_comma:
dcbf9037 5740 first_error (_("expected comma"));
5287ad62 5741 return FAIL;
5f4273c7
NC
5742
5743 wanted_arm:
dcbf9037 5744 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5745 return FAIL;
5287ad62
JB
5746}
5747
5be8be5d
DG
5748/* Use this macro when the operand constraints are different
5749 for ARM and THUMB (e.g. ldrd). */
5750#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5751 ((arm_operand) | ((thumb_operand) << 16))
5752
c19d1205
ZW
5753/* Matcher codes for parse_operands. */
5754enum operand_parse_code
5755{
5756 OP_stop, /* end of line */
5757
5758 OP_RR, /* ARM register */
5759 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 5760 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205
ZW
5761 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5762 OP_RRw, /* ARM register, not r15, optional trailing ! */
5763 OP_RCP, /* Coprocessor number */
5764 OP_RCN, /* Coprocessor register */
5765 OP_RF, /* FPA register */
5766 OP_RVS, /* VFP single precision register */
5287ad62
JB
5767 OP_RVD, /* VFP double precision register (0..15) */
5768 OP_RND, /* Neon double precision register (0..31) */
5769 OP_RNQ, /* Neon quad precision register */
037e8744 5770 OP_RVSD, /* VFP single or double precision register */
5287ad62 5771 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5772 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5773 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5774 OP_RVC, /* VFP control register */
5775 OP_RMF, /* Maverick F register */
5776 OP_RMD, /* Maverick D register */
5777 OP_RMFX, /* Maverick FX register */
5778 OP_RMDX, /* Maverick DX register */
5779 OP_RMAX, /* Maverick AX register */
5780 OP_RMDS, /* Maverick DSPSC register */
5781 OP_RIWR, /* iWMMXt wR register */
5782 OP_RIWC, /* iWMMXt wC register */
5783 OP_RIWG, /* iWMMXt wCG register */
5784 OP_RXA, /* XScale accumulator register */
5785
5786 OP_REGLST, /* ARM register list */
5787 OP_VRSLST, /* VFP single-precision register list */
5788 OP_VRDLST, /* VFP double-precision register list */
037e8744 5789 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5790 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5791 OP_NSTRLST, /* Neon element/structure list */
5792
5287ad62 5793 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5794 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5795 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5796 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5797 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5798 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5799 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 5800 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 5801 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5802 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5803
5804 OP_I0, /* immediate zero */
c19d1205
ZW
5805 OP_I7, /* immediate value 0 .. 7 */
5806 OP_I15, /* 0 .. 15 */
5807 OP_I16, /* 1 .. 16 */
5287ad62 5808 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5809 OP_I31, /* 0 .. 31 */
5810 OP_I31w, /* 0 .. 31, optional trailing ! */
5811 OP_I32, /* 1 .. 32 */
5287ad62
JB
5812 OP_I32z, /* 0 .. 32 */
5813 OP_I63, /* 0 .. 63 */
c19d1205 5814 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5815 OP_I64, /* 1 .. 64 */
5816 OP_I64z, /* 0 .. 64 */
c19d1205 5817 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5818
5819 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5820 OP_I7b, /* 0 .. 7 */
5821 OP_I15b, /* 0 .. 15 */
5822 OP_I31b, /* 0 .. 31 */
5823
5824 OP_SH, /* shifter operand */
4962c51a 5825 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5826 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5827 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5828 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5829 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5830 OP_EXP, /* arbitrary expression */
5831 OP_EXPi, /* same, with optional immediate prefix */
5832 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5833 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5834
5835 OP_CPSF, /* CPS flags */
5836 OP_ENDI, /* Endianness specifier */
5837 OP_PSR, /* CPSR/SPSR mask for msr */
5838 OP_COND, /* conditional code */
92e90b6e 5839 OP_TB, /* Table branch. */
c19d1205 5840
037e8744
JB
5841 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5842 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5843
c19d1205
ZW
5844 OP_RRnpc_I0, /* ARM register or literal 0 */
5845 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5846 OP_RR_EXi, /* ARM register or expression with imm prefix */
5847 OP_RF_IF, /* FPA register or immediate */
5848 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5849 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5850
5851 /* Optional operands. */
5852 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5853 OP_oI31b, /* 0 .. 31 */
5287ad62 5854 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5855 OP_oIffffb, /* 0 .. 65535 */
5856 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5857
5858 OP_oRR, /* ARM register */
5859 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 5860 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 5861 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5862 OP_oRND, /* Optional Neon double precision register */
5863 OP_oRNQ, /* Optional Neon quad precision register */
5864 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5865 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5866 OP_oSHll, /* LSL immediate */
5867 OP_oSHar, /* ASR immediate */
5868 OP_oSHllar, /* LSL or ASR immediate */
5869 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5870 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205 5871
5be8be5d
DG
5872 /* Some pre-defined mixed (ARM/THUMB) operands. */
5873 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
5874 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
5875 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
5876
c19d1205
ZW
5877 OP_FIRST_OPTIONAL = OP_oI7b
5878};
a737bd4d 5879
c19d1205
ZW
5880/* Generic instruction operand parser. This does no encoding and no
5881 semantic validation; it merely squirrels values away in the inst
5882 structure. Returns SUCCESS or FAIL depending on whether the
5883 specified grammar matched. */
5884static int
5be8be5d 5885parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 5886{
5be8be5d 5887 unsigned const int *upat = pattern;
c19d1205
ZW
5888 char *backtrack_pos = 0;
5889 const char *backtrack_error = 0;
5890 int i, val, backtrack_index = 0;
5287ad62 5891 enum arm_reg_type rtype;
4962c51a 5892 parse_operand_result result;
5be8be5d 5893 unsigned int op_parse_code;
c19d1205 5894
e07e6e58
NC
5895#define po_char_or_fail(chr) \
5896 do \
5897 { \
5898 if (skip_past_char (&str, chr) == FAIL) \
5899 goto bad_args; \
5900 } \
5901 while (0)
c19d1205 5902
e07e6e58
NC
5903#define po_reg_or_fail(regtype) \
5904 do \
dcbf9037 5905 { \
e07e6e58
NC
5906 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5907 & inst.operands[i].vectype); \
5908 if (val == FAIL) \
5909 { \
5910 first_error (_(reg_expected_msgs[regtype])); \
5911 goto failure; \
5912 } \
5913 inst.operands[i].reg = val; \
5914 inst.operands[i].isreg = 1; \
5915 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5916 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5917 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5918 || rtype == REG_TYPE_VFD \
5919 || rtype == REG_TYPE_NQ); \
dcbf9037 5920 } \
e07e6e58
NC
5921 while (0)
5922
5923#define po_reg_or_goto(regtype, label) \
5924 do \
5925 { \
5926 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5927 & inst.operands[i].vectype); \
5928 if (val == FAIL) \
5929 goto label; \
dcbf9037 5930 \
e07e6e58
NC
5931 inst.operands[i].reg = val; \
5932 inst.operands[i].isreg = 1; \
5933 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5934 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5935 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5936 || rtype == REG_TYPE_VFD \
5937 || rtype == REG_TYPE_NQ); \
5938 } \
5939 while (0)
5940
5941#define po_imm_or_fail(min, max, popt) \
5942 do \
5943 { \
5944 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5945 goto failure; \
5946 inst.operands[i].imm = val; \
5947 } \
5948 while (0)
5949
5950#define po_scalar_or_goto(elsz, label) \
5951 do \
5952 { \
5953 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5954 if (val == FAIL) \
5955 goto label; \
5956 inst.operands[i].reg = val; \
5957 inst.operands[i].isscalar = 1; \
5958 } \
5959 while (0)
5960
5961#define po_misc_or_fail(expr) \
5962 do \
5963 { \
5964 if (expr) \
5965 goto failure; \
5966 } \
5967 while (0)
5968
5969#define po_misc_or_fail_no_backtrack(expr) \
5970 do \
5971 { \
5972 result = expr; \
5973 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
5974 backtrack_pos = 0; \
5975 if (result != PARSE_OPERAND_SUCCESS) \
5976 goto failure; \
5977 } \
5978 while (0)
4962c51a 5979
c19d1205
ZW
5980 skip_whitespace (str);
5981
5982 for (i = 0; upat[i] != OP_stop; i++)
5983 {
5be8be5d
DG
5984 op_parse_code = upat[i];
5985 if (op_parse_code >= 1<<16)
5986 op_parse_code = thumb ? (op_parse_code >> 16)
5987 : (op_parse_code & ((1<<16)-1));
5988
5989 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
5990 {
5991 /* Remember where we are in case we need to backtrack. */
9c2799c2 5992 gas_assert (!backtrack_pos);
c19d1205
ZW
5993 backtrack_pos = str;
5994 backtrack_error = inst.error;
5995 backtrack_index = i;
5996 }
5997
b6702015 5998 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
5999 po_char_or_fail (',');
6000
5be8be5d 6001 switch (op_parse_code)
c19d1205
ZW
6002 {
6003 /* Registers */
6004 case OP_oRRnpc:
5be8be5d 6005 case OP_oRRnpcsp:
c19d1205 6006 case OP_RRnpc:
5be8be5d 6007 case OP_RRnpcsp:
c19d1205
ZW
6008 case OP_oRR:
6009 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6010 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6011 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6012 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6013 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6014 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6015 case OP_oRND:
6016 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6017 case OP_RVC:
6018 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6019 break;
6020 /* Also accept generic coprocessor regs for unknown registers. */
6021 coproc_reg:
6022 po_reg_or_fail (REG_TYPE_CN);
6023 break;
c19d1205
ZW
6024 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6025 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6026 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6027 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6028 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6029 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6030 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6031 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6032 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6033 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6034 case OP_oRNQ:
6035 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6036 case OP_oRNDQ:
6037 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6038 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6039 case OP_oRNSDQ:
6040 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6041
6042 /* Neon scalar. Using an element size of 8 means that some invalid
6043 scalars are accepted here, so deal with those in later code. */
6044 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6045
5287ad62
JB
6046 case OP_RNDQ_I0:
6047 {
6048 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6049 break;
6050 try_imm0:
6051 po_imm_or_fail (0, 0, TRUE);
6052 }
6053 break;
6054
037e8744
JB
6055 case OP_RVSD_I0:
6056 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6057 break;
6058
5287ad62
JB
6059 case OP_RR_RNSC:
6060 {
6061 po_scalar_or_goto (8, try_rr);
6062 break;
6063 try_rr:
6064 po_reg_or_fail (REG_TYPE_RN);
6065 }
6066 break;
6067
037e8744
JB
6068 case OP_RNSDQ_RNSC:
6069 {
6070 po_scalar_or_goto (8, try_nsdq);
6071 break;
6072 try_nsdq:
6073 po_reg_or_fail (REG_TYPE_NSDQ);
6074 }
6075 break;
6076
5287ad62
JB
6077 case OP_RNDQ_RNSC:
6078 {
6079 po_scalar_or_goto (8, try_ndq);
6080 break;
6081 try_ndq:
6082 po_reg_or_fail (REG_TYPE_NDQ);
6083 }
6084 break;
6085
6086 case OP_RND_RNSC:
6087 {
6088 po_scalar_or_goto (8, try_vfd);
6089 break;
6090 try_vfd:
6091 po_reg_or_fail (REG_TYPE_VFD);
6092 }
6093 break;
6094
6095 case OP_VMOV:
6096 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6097 not careful then bad things might happen. */
6098 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6099 break;
6100
4316f0d2 6101 case OP_RNDQ_Ibig:
5287ad62 6102 {
4316f0d2 6103 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6104 break;
4316f0d2 6105 try_immbig:
5287ad62
JB
6106 /* There's a possibility of getting a 64-bit immediate here, so
6107 we need special handling. */
6108 if (parse_big_immediate (&str, i) == FAIL)
6109 {
6110 inst.error = _("immediate value is out of range");
6111 goto failure;
6112 }
6113 }
6114 break;
6115
6116 case OP_RNDQ_I63b:
6117 {
6118 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6119 break;
6120 try_shimm:
6121 po_imm_or_fail (0, 63, TRUE);
6122 }
6123 break;
c19d1205
ZW
6124
6125 case OP_RRnpcb:
6126 po_char_or_fail ('[');
6127 po_reg_or_fail (REG_TYPE_RN);
6128 po_char_or_fail (']');
6129 break;
a737bd4d 6130
c19d1205 6131 case OP_RRw:
b6702015 6132 case OP_oRRw:
c19d1205
ZW
6133 po_reg_or_fail (REG_TYPE_RN);
6134 if (skip_past_char (&str, '!') == SUCCESS)
6135 inst.operands[i].writeback = 1;
6136 break;
6137
6138 /* Immediates */
6139 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6140 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6141 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6142 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6143 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6144 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6145 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6146 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6147 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6148 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6149 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6150 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6151
6152 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6153 case OP_oI7b:
6154 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6155 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6156 case OP_oI31b:
6157 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6158 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
6159 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6160
6161 /* Immediate variants */
6162 case OP_oI255c:
6163 po_char_or_fail ('{');
6164 po_imm_or_fail (0, 255, TRUE);
6165 po_char_or_fail ('}');
6166 break;
6167
6168 case OP_I31w:
6169 /* The expression parser chokes on a trailing !, so we have
6170 to find it first and zap it. */
6171 {
6172 char *s = str;
6173 while (*s && *s != ',')
6174 s++;
6175 if (s[-1] == '!')
6176 {
6177 s[-1] = '\0';
6178 inst.operands[i].writeback = 1;
6179 }
6180 po_imm_or_fail (0, 31, TRUE);
6181 if (str == s - 1)
6182 str = s;
6183 }
6184 break;
6185
6186 /* Expressions */
6187 case OP_EXPi: EXPi:
6188 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6189 GE_OPT_PREFIX));
6190 break;
6191
6192 case OP_EXP:
6193 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6194 GE_NO_PREFIX));
6195 break;
6196
6197 case OP_EXPr: EXPr:
6198 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6199 GE_NO_PREFIX));
6200 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6201 {
c19d1205
ZW
6202 val = parse_reloc (&str);
6203 if (val == -1)
6204 {
6205 inst.error = _("unrecognized relocation suffix");
6206 goto failure;
6207 }
6208 else if (val != BFD_RELOC_UNUSED)
6209 {
6210 inst.operands[i].imm = val;
6211 inst.operands[i].hasreloc = 1;
6212 }
a737bd4d 6213 }
c19d1205 6214 break;
a737bd4d 6215
b6895b4f
PB
6216 /* Operand for MOVW or MOVT. */
6217 case OP_HALF:
6218 po_misc_or_fail (parse_half (&str));
6219 break;
6220
e07e6e58 6221 /* Register or expression. */
c19d1205
ZW
6222 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6223 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6224
e07e6e58 6225 /* Register or immediate. */
c19d1205
ZW
6226 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6227 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6228
c19d1205
ZW
6229 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6230 IF:
6231 if (!is_immediate_prefix (*str))
6232 goto bad_args;
6233 str++;
6234 val = parse_fpa_immediate (&str);
6235 if (val == FAIL)
6236 goto failure;
6237 /* FPA immediates are encoded as registers 8-15.
6238 parse_fpa_immediate has already applied the offset. */
6239 inst.operands[i].reg = val;
6240 inst.operands[i].isreg = 1;
6241 break;
09d92015 6242
2d447fca
JM
6243 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6244 I32z: po_imm_or_fail (0, 32, FALSE); break;
6245
e07e6e58 6246 /* Two kinds of register. */
c19d1205
ZW
6247 case OP_RIWR_RIWC:
6248 {
6249 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6250 if (!rege
6251 || (rege->type != REG_TYPE_MMXWR
6252 && rege->type != REG_TYPE_MMXWC
6253 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6254 {
6255 inst.error = _("iWMMXt data or control register expected");
6256 goto failure;
6257 }
6258 inst.operands[i].reg = rege->number;
6259 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6260 }
6261 break;
09d92015 6262
41adaa5c
JM
6263 case OP_RIWC_RIWG:
6264 {
6265 struct reg_entry *rege = arm_reg_parse_multi (&str);
6266 if (!rege
6267 || (rege->type != REG_TYPE_MMXWC
6268 && rege->type != REG_TYPE_MMXWCG))
6269 {
6270 inst.error = _("iWMMXt control register expected");
6271 goto failure;
6272 }
6273 inst.operands[i].reg = rege->number;
6274 inst.operands[i].isreg = 1;
6275 }
6276 break;
6277
c19d1205
ZW
6278 /* Misc */
6279 case OP_CPSF: val = parse_cps_flags (&str); break;
6280 case OP_ENDI: val = parse_endian_specifier (&str); break;
6281 case OP_oROR: val = parse_ror (&str); break;
6282 case OP_PSR: val = parse_psr (&str); break;
6283 case OP_COND: val = parse_cond (&str); break;
62b3e311 6284 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 6285
037e8744
JB
6286 case OP_RVC_PSR:
6287 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6288 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6289 break;
6290 try_psr:
6291 val = parse_psr (&str);
6292 break;
6293
6294 case OP_APSR_RR:
6295 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6296 break;
6297 try_apsr:
6298 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6299 instruction). */
6300 if (strncasecmp (str, "APSR_", 5) == 0)
6301 {
6302 unsigned found = 0;
6303 str += 5;
6304 while (found < 15)
6305 switch (*str++)
6306 {
6307 case 'c': found = (found & 1) ? 16 : found | 1; break;
6308 case 'n': found = (found & 2) ? 16 : found | 2; break;
6309 case 'z': found = (found & 4) ? 16 : found | 4; break;
6310 case 'v': found = (found & 8) ? 16 : found | 8; break;
6311 default: found = 16;
6312 }
6313 if (found != 15)
6314 goto failure;
6315 inst.operands[i].isvec = 1;
f7c21dc7
NC
6316 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6317 inst.operands[i].reg = REG_PC;
037e8744
JB
6318 }
6319 else
6320 goto failure;
6321 break;
6322
92e90b6e
PB
6323 case OP_TB:
6324 po_misc_or_fail (parse_tb (&str));
6325 break;
6326
e07e6e58 6327 /* Register lists. */
c19d1205
ZW
6328 case OP_REGLST:
6329 val = parse_reg_list (&str);
6330 if (*str == '^')
6331 {
6332 inst.operands[1].writeback = 1;
6333 str++;
6334 }
6335 break;
09d92015 6336
c19d1205 6337 case OP_VRSLST:
5287ad62 6338 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6339 break;
09d92015 6340
c19d1205 6341 case OP_VRDLST:
5287ad62 6342 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6343 break;
a737bd4d 6344
037e8744
JB
6345 case OP_VRSDLST:
6346 /* Allow Q registers too. */
6347 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6348 REGLIST_NEON_D);
6349 if (val == FAIL)
6350 {
6351 inst.error = NULL;
6352 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6353 REGLIST_VFP_S);
6354 inst.operands[i].issingle = 1;
6355 }
6356 break;
6357
5287ad62
JB
6358 case OP_NRDLST:
6359 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6360 REGLIST_NEON_D);
6361 break;
6362
6363 case OP_NSTRLST:
dcbf9037
JB
6364 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6365 &inst.operands[i].vectype);
5287ad62
JB
6366 break;
6367
c19d1205
ZW
6368 /* Addressing modes */
6369 case OP_ADDR:
6370 po_misc_or_fail (parse_address (&str, i));
6371 break;
09d92015 6372
4962c51a
MS
6373 case OP_ADDRGLDR:
6374 po_misc_or_fail_no_backtrack (
6375 parse_address_group_reloc (&str, i, GROUP_LDR));
6376 break;
6377
6378 case OP_ADDRGLDRS:
6379 po_misc_or_fail_no_backtrack (
6380 parse_address_group_reloc (&str, i, GROUP_LDRS));
6381 break;
6382
6383 case OP_ADDRGLDC:
6384 po_misc_or_fail_no_backtrack (
6385 parse_address_group_reloc (&str, i, GROUP_LDC));
6386 break;
6387
c19d1205
ZW
6388 case OP_SH:
6389 po_misc_or_fail (parse_shifter_operand (&str, i));
6390 break;
09d92015 6391
4962c51a
MS
6392 case OP_SHG:
6393 po_misc_or_fail_no_backtrack (
6394 parse_shifter_operand_group_reloc (&str, i));
6395 break;
6396
c19d1205
ZW
6397 case OP_oSHll:
6398 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6399 break;
09d92015 6400
c19d1205
ZW
6401 case OP_oSHar:
6402 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6403 break;
09d92015 6404
c19d1205
ZW
6405 case OP_oSHllar:
6406 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6407 break;
09d92015 6408
c19d1205 6409 default:
5be8be5d 6410 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6411 }
09d92015 6412
c19d1205
ZW
6413 /* Various value-based sanity checks and shared operations. We
6414 do not signal immediate failures for the register constraints;
6415 this allows a syntax error to take precedence. */
5be8be5d 6416 switch (op_parse_code)
c19d1205
ZW
6417 {
6418 case OP_oRRnpc:
6419 case OP_RRnpc:
6420 case OP_RRnpcb:
6421 case OP_RRw:
b6702015 6422 case OP_oRRw:
c19d1205
ZW
6423 case OP_RRnpc_I0:
6424 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6425 inst.error = BAD_PC;
6426 break;
09d92015 6427
5be8be5d
DG
6428 case OP_oRRnpcsp:
6429 case OP_RRnpcsp:
6430 if (inst.operands[i].isreg)
6431 {
6432 if (inst.operands[i].reg == REG_PC)
6433 inst.error = BAD_PC;
6434 else if (inst.operands[i].reg == REG_SP)
6435 inst.error = BAD_SP;
6436 }
6437 break;
6438
c19d1205
ZW
6439 case OP_CPSF:
6440 case OP_ENDI:
6441 case OP_oROR:
6442 case OP_PSR:
037e8744 6443 case OP_RVC_PSR:
c19d1205 6444 case OP_COND:
62b3e311 6445 case OP_oBARRIER:
c19d1205
ZW
6446 case OP_REGLST:
6447 case OP_VRSLST:
6448 case OP_VRDLST:
037e8744 6449 case OP_VRSDLST:
5287ad62
JB
6450 case OP_NRDLST:
6451 case OP_NSTRLST:
c19d1205
ZW
6452 if (val == FAIL)
6453 goto failure;
6454 inst.operands[i].imm = val;
6455 break;
a737bd4d 6456
c19d1205
ZW
6457 default:
6458 break;
6459 }
09d92015 6460
c19d1205
ZW
6461 /* If we get here, this operand was successfully parsed. */
6462 inst.operands[i].present = 1;
6463 continue;
09d92015 6464
c19d1205 6465 bad_args:
09d92015 6466 inst.error = BAD_ARGS;
c19d1205
ZW
6467
6468 failure:
6469 if (!backtrack_pos)
d252fdde
PB
6470 {
6471 /* The parse routine should already have set inst.error, but set a
5f4273c7 6472 default here just in case. */
d252fdde
PB
6473 if (!inst.error)
6474 inst.error = _("syntax error");
6475 return FAIL;
6476 }
c19d1205
ZW
6477
6478 /* Do not backtrack over a trailing optional argument that
6479 absorbed some text. We will only fail again, with the
6480 'garbage following instruction' error message, which is
6481 probably less helpful than the current one. */
6482 if (backtrack_index == i && backtrack_pos != str
6483 && upat[i+1] == OP_stop)
d252fdde
PB
6484 {
6485 if (!inst.error)
6486 inst.error = _("syntax error");
6487 return FAIL;
6488 }
c19d1205
ZW
6489
6490 /* Try again, skipping the optional argument at backtrack_pos. */
6491 str = backtrack_pos;
6492 inst.error = backtrack_error;
6493 inst.operands[backtrack_index].present = 0;
6494 i = backtrack_index;
6495 backtrack_pos = 0;
09d92015 6496 }
09d92015 6497
c19d1205
ZW
6498 /* Check that we have parsed all the arguments. */
6499 if (*str != '\0' && !inst.error)
6500 inst.error = _("garbage following instruction");
09d92015 6501
c19d1205 6502 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6503}
6504
c19d1205
ZW
6505#undef po_char_or_fail
6506#undef po_reg_or_fail
6507#undef po_reg_or_goto
6508#undef po_imm_or_fail
5287ad62 6509#undef po_scalar_or_fail
e07e6e58 6510
c19d1205 6511/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6512#define constraint(expr, err) \
6513 do \
c19d1205 6514 { \
e07e6e58
NC
6515 if (expr) \
6516 { \
6517 inst.error = err; \
6518 return; \
6519 } \
c19d1205 6520 } \
e07e6e58 6521 while (0)
c19d1205 6522
fdfde340
JM
6523/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6524 instructions are unpredictable if these registers are used. This
6525 is the BadReg predicate in ARM's Thumb-2 documentation. */
6526#define reject_bad_reg(reg) \
6527 do \
6528 if (reg == REG_SP || reg == REG_PC) \
6529 { \
6530 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6531 return; \
6532 } \
6533 while (0)
6534
94206790
MM
6535/* If REG is R13 (the stack pointer), warn that its use is
6536 deprecated. */
6537#define warn_deprecated_sp(reg) \
6538 do \
6539 if (warn_on_deprecated && reg == REG_SP) \
6540 as_warn (_("use of r13 is deprecated")); \
6541 while (0)
6542
c19d1205
ZW
6543/* Functions for operand encoding. ARM, then Thumb. */
6544
6545#define rotate_left(v, n) (v << n | v >> (32 - n))
6546
6547/* If VAL can be encoded in the immediate field of an ARM instruction,
6548 return the encoded form. Otherwise, return FAIL. */
6549
6550static unsigned int
6551encode_arm_immediate (unsigned int val)
09d92015 6552{
c19d1205
ZW
6553 unsigned int a, i;
6554
6555 for (i = 0; i < 32; i += 2)
6556 if ((a = rotate_left (val, i)) <= 0xff)
6557 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6558
6559 return FAIL;
09d92015
MM
6560}
6561
c19d1205
ZW
6562/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6563 return the encoded form. Otherwise, return FAIL. */
6564static unsigned int
6565encode_thumb32_immediate (unsigned int val)
09d92015 6566{
c19d1205 6567 unsigned int a, i;
09d92015 6568
9c3c69f2 6569 if (val <= 0xff)
c19d1205 6570 return val;
a737bd4d 6571
9c3c69f2 6572 for (i = 1; i <= 24; i++)
09d92015 6573 {
9c3c69f2
PB
6574 a = val >> i;
6575 if ((val & ~(0xff << i)) == 0)
6576 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6577 }
a737bd4d 6578
c19d1205
ZW
6579 a = val & 0xff;
6580 if (val == ((a << 16) | a))
6581 return 0x100 | a;
6582 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6583 return 0x300 | a;
09d92015 6584
c19d1205
ZW
6585 a = val & 0xff00;
6586 if (val == ((a << 16) | a))
6587 return 0x200 | (a >> 8);
a737bd4d 6588
c19d1205 6589 return FAIL;
09d92015 6590}
5287ad62 6591/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6592
6593static void
5287ad62
JB
6594encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6595{
6596 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6597 && reg > 15)
6598 {
b1cc4aeb 6599 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6600 {
6601 if (thumb_mode)
6602 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6603 fpu_vfp_ext_d32);
5287ad62
JB
6604 else
6605 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6606 fpu_vfp_ext_d32);
5287ad62
JB
6607 }
6608 else
6609 {
dcbf9037 6610 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6611 return;
6612 }
6613 }
6614
c19d1205 6615 switch (pos)
09d92015 6616 {
c19d1205
ZW
6617 case VFP_REG_Sd:
6618 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6619 break;
6620
6621 case VFP_REG_Sn:
6622 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6623 break;
6624
6625 case VFP_REG_Sm:
6626 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6627 break;
6628
5287ad62
JB
6629 case VFP_REG_Dd:
6630 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6631 break;
5f4273c7 6632
5287ad62
JB
6633 case VFP_REG_Dn:
6634 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6635 break;
5f4273c7 6636
5287ad62
JB
6637 case VFP_REG_Dm:
6638 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6639 break;
6640
c19d1205
ZW
6641 default:
6642 abort ();
09d92015 6643 }
09d92015
MM
6644}
6645
c19d1205 6646/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6647 if any, is handled by md_apply_fix. */
09d92015 6648static void
c19d1205 6649encode_arm_shift (int i)
09d92015 6650{
c19d1205
ZW
6651 if (inst.operands[i].shift_kind == SHIFT_RRX)
6652 inst.instruction |= SHIFT_ROR << 5;
6653 else
09d92015 6654 {
c19d1205
ZW
6655 inst.instruction |= inst.operands[i].shift_kind << 5;
6656 if (inst.operands[i].immisreg)
6657 {
6658 inst.instruction |= SHIFT_BY_REG;
6659 inst.instruction |= inst.operands[i].imm << 8;
6660 }
6661 else
6662 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6663 }
c19d1205 6664}
09d92015 6665
c19d1205
ZW
6666static void
6667encode_arm_shifter_operand (int i)
6668{
6669 if (inst.operands[i].isreg)
09d92015 6670 {
c19d1205
ZW
6671 inst.instruction |= inst.operands[i].reg;
6672 encode_arm_shift (i);
09d92015 6673 }
c19d1205
ZW
6674 else
6675 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6676}
6677
c19d1205 6678/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6679static void
c19d1205 6680encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6681{
9c2799c2 6682 gas_assert (inst.operands[i].isreg);
c19d1205 6683 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6684
c19d1205 6685 if (inst.operands[i].preind)
09d92015 6686 {
c19d1205
ZW
6687 if (is_t)
6688 {
6689 inst.error = _("instruction does not accept preindexed addressing");
6690 return;
6691 }
6692 inst.instruction |= PRE_INDEX;
6693 if (inst.operands[i].writeback)
6694 inst.instruction |= WRITE_BACK;
09d92015 6695
c19d1205
ZW
6696 }
6697 else if (inst.operands[i].postind)
6698 {
9c2799c2 6699 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
6700 if (is_t)
6701 inst.instruction |= WRITE_BACK;
6702 }
6703 else /* unindexed - only for coprocessor */
09d92015 6704 {
c19d1205 6705 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6706 return;
6707 }
6708
c19d1205
ZW
6709 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6710 && (((inst.instruction & 0x000f0000) >> 16)
6711 == ((inst.instruction & 0x0000f000) >> 12)))
6712 as_warn ((inst.instruction & LOAD_BIT)
6713 ? _("destination register same as write-back base")
6714 : _("source register same as write-back base"));
09d92015
MM
6715}
6716
c19d1205
ZW
6717/* inst.operands[i] was set up by parse_address. Encode it into an
6718 ARM-format mode 2 load or store instruction. If is_t is true,
6719 reject forms that cannot be used with a T instruction (i.e. not
6720 post-indexed). */
a737bd4d 6721static void
c19d1205 6722encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6723{
5be8be5d
DG
6724 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6725
c19d1205 6726 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6727
c19d1205 6728 if (inst.operands[i].immisreg)
09d92015 6729 {
5be8be5d
DG
6730 constraint ((inst.operands[i].imm == REG_PC
6731 || (is_pc && inst.operands[i].writeback)),
6732 BAD_PC_ADDRESSING);
c19d1205
ZW
6733 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6734 inst.instruction |= inst.operands[i].imm;
6735 if (!inst.operands[i].negative)
6736 inst.instruction |= INDEX_UP;
6737 if (inst.operands[i].shifted)
6738 {
6739 if (inst.operands[i].shift_kind == SHIFT_RRX)
6740 inst.instruction |= SHIFT_ROR << 5;
6741 else
6742 {
6743 inst.instruction |= inst.operands[i].shift_kind << 5;
6744 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6745 }
6746 }
09d92015 6747 }
c19d1205 6748 else /* immediate offset in inst.reloc */
09d92015 6749 {
5be8be5d
DG
6750 if (is_pc && !inst.reloc.pc_rel)
6751 {
6752 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
6753 /* BAD_PC_ADDRESSING Condition =
6754 is_load => is_t
6755 which becomes !is_load || is_t. */
6756 constraint ((!is_load || is_t),
6757 BAD_PC_ADDRESSING);
6758 }
6759
c19d1205
ZW
6760 if (inst.reloc.type == BFD_RELOC_UNUSED)
6761 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6762 }
09d92015
MM
6763}
6764
c19d1205
ZW
6765/* inst.operands[i] was set up by parse_address. Encode it into an
6766 ARM-format mode 3 load or store instruction. Reject forms that
6767 cannot be used with such instructions. If is_t is true, reject
6768 forms that cannot be used with a T instruction (i.e. not
6769 post-indexed). */
6770static void
6771encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6772{
c19d1205 6773 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6774 {
c19d1205
ZW
6775 inst.error = _("instruction does not accept scaled register index");
6776 return;
09d92015 6777 }
a737bd4d 6778
c19d1205 6779 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6780
c19d1205
ZW
6781 if (inst.operands[i].immisreg)
6782 {
5be8be5d
DG
6783 constraint ((inst.operands[i].imm == REG_PC
6784 || inst.operands[i].reg == REG_PC),
6785 BAD_PC_ADDRESSING);
c19d1205
ZW
6786 inst.instruction |= inst.operands[i].imm;
6787 if (!inst.operands[i].negative)
6788 inst.instruction |= INDEX_UP;
6789 }
6790 else /* immediate offset in inst.reloc */
6791 {
5be8be5d
DG
6792 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
6793 && inst.operands[i].writeback),
6794 BAD_PC_WRITEBACK);
c19d1205
ZW
6795 inst.instruction |= HWOFFSET_IMM;
6796 if (inst.reloc.type == BFD_RELOC_UNUSED)
6797 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6798 }
a737bd4d
NC
6799}
6800
c19d1205
ZW
6801/* inst.operands[i] was set up by parse_address. Encode it into an
6802 ARM-format instruction. Reject all forms which cannot be encoded
6803 into a coprocessor load/store instruction. If wb_ok is false,
6804 reject use of writeback; if unind_ok is false, reject use of
6805 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6806 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6807 (in which case it is preserved). */
09d92015 6808
c19d1205
ZW
6809static int
6810encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6811{
c19d1205 6812 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6813
9c2799c2 6814 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6815
c19d1205 6816 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6817 {
9c2799c2 6818 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
6819 if (!unind_ok)
6820 {
6821 inst.error = _("instruction does not support unindexed addressing");
6822 return FAIL;
6823 }
6824 inst.instruction |= inst.operands[i].imm;
6825 inst.instruction |= INDEX_UP;
6826 return SUCCESS;
09d92015 6827 }
a737bd4d 6828
c19d1205
ZW
6829 if (inst.operands[i].preind)
6830 inst.instruction |= PRE_INDEX;
a737bd4d 6831
c19d1205 6832 if (inst.operands[i].writeback)
09d92015 6833 {
c19d1205
ZW
6834 if (inst.operands[i].reg == REG_PC)
6835 {
6836 inst.error = _("pc may not be used with write-back");
6837 return FAIL;
6838 }
6839 if (!wb_ok)
6840 {
6841 inst.error = _("instruction does not support writeback");
6842 return FAIL;
6843 }
6844 inst.instruction |= WRITE_BACK;
09d92015 6845 }
a737bd4d 6846
c19d1205 6847 if (reloc_override)
21d799b5 6848 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
6849 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6850 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6851 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6852 {
6853 if (thumb_mode)
6854 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6855 else
6856 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6857 }
6858
c19d1205
ZW
6859 return SUCCESS;
6860}
a737bd4d 6861
c19d1205
ZW
6862/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6863 Determine whether it can be performed with a move instruction; if
6864 it can, convert inst.instruction to that move instruction and
c921be7d
NC
6865 return TRUE; if it can't, convert inst.instruction to a literal-pool
6866 load and return FALSE. If this is not a valid thing to do in the
6867 current context, set inst.error and return TRUE.
a737bd4d 6868
c19d1205
ZW
6869 inst.operands[i] describes the destination register. */
6870
c921be7d 6871static bfd_boolean
c19d1205
ZW
6872move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6873{
53365c0d
PB
6874 unsigned long tbit;
6875
6876 if (thumb_p)
6877 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6878 else
6879 tbit = LOAD_BIT;
6880
6881 if ((inst.instruction & tbit) == 0)
09d92015 6882 {
c19d1205 6883 inst.error = _("invalid pseudo operation");
c921be7d 6884 return TRUE;
09d92015 6885 }
c19d1205 6886 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6887 {
6888 inst.error = _("constant expression expected");
c921be7d 6889 return TRUE;
09d92015 6890 }
c19d1205 6891 if (inst.reloc.exp.X_op == O_constant)
09d92015 6892 {
c19d1205
ZW
6893 if (thumb_p)
6894 {
53365c0d 6895 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6896 {
6897 /* This can be done with a mov(1) instruction. */
6898 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6899 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 6900 return TRUE;
c19d1205
ZW
6901 }
6902 }
6903 else
6904 {
6905 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6906 if (value != FAIL)
6907 {
6908 /* This can be done with a mov instruction. */
6909 inst.instruction &= LITERAL_MASK;
6910 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6911 inst.instruction |= value & 0xfff;
c921be7d 6912 return TRUE;
c19d1205 6913 }
09d92015 6914
c19d1205
ZW
6915 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6916 if (value != FAIL)
6917 {
6918 /* This can be done with a mvn instruction. */
6919 inst.instruction &= LITERAL_MASK;
6920 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6921 inst.instruction |= value & 0xfff;
c921be7d 6922 return TRUE;
c19d1205
ZW
6923 }
6924 }
09d92015
MM
6925 }
6926
c19d1205
ZW
6927 if (add_to_lit_pool () == FAIL)
6928 {
6929 inst.error = _("literal pool insertion failed");
c921be7d 6930 return TRUE;
c19d1205
ZW
6931 }
6932 inst.operands[1].reg = REG_PC;
6933 inst.operands[1].isreg = 1;
6934 inst.operands[1].preind = 1;
6935 inst.reloc.pc_rel = 1;
6936 inst.reloc.type = (thumb_p
6937 ? BFD_RELOC_ARM_THUMB_OFFSET
6938 : (mode_3
6939 ? BFD_RELOC_ARM_HWLITERAL
6940 : BFD_RELOC_ARM_LITERAL));
c921be7d 6941 return FALSE;
09d92015
MM
6942}
6943
5f4273c7 6944/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
6945 First some generics; their names are taken from the conventional
6946 bit positions for register arguments in ARM format instructions. */
09d92015 6947
a737bd4d 6948static void
c19d1205 6949do_noargs (void)
09d92015 6950{
c19d1205 6951}
a737bd4d 6952
c19d1205
ZW
6953static void
6954do_rd (void)
6955{
6956 inst.instruction |= inst.operands[0].reg << 12;
6957}
a737bd4d 6958
c19d1205
ZW
6959static void
6960do_rd_rm (void)
6961{
6962 inst.instruction |= inst.operands[0].reg << 12;
6963 inst.instruction |= inst.operands[1].reg;
6964}
09d92015 6965
c19d1205
ZW
6966static void
6967do_rd_rn (void)
6968{
6969 inst.instruction |= inst.operands[0].reg << 12;
6970 inst.instruction |= inst.operands[1].reg << 16;
6971}
a737bd4d 6972
c19d1205
ZW
6973static void
6974do_rn_rd (void)
6975{
6976 inst.instruction |= inst.operands[0].reg << 16;
6977 inst.instruction |= inst.operands[1].reg << 12;
6978}
09d92015 6979
c19d1205
ZW
6980static void
6981do_rd_rm_rn (void)
6982{
9a64e435 6983 unsigned Rn = inst.operands[2].reg;
708587a4 6984 /* Enforce restrictions on SWP instruction. */
9a64e435 6985 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
6986 {
6987 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6988 _("Rn must not overlap other operands"));
6989
6990 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
6991 if (warn_on_deprecated
6992 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
6993 as_warn (_("swp{b} use is deprecated for this architecture"));
6994
6995 }
c19d1205
ZW
6996 inst.instruction |= inst.operands[0].reg << 12;
6997 inst.instruction |= inst.operands[1].reg;
9a64e435 6998 inst.instruction |= Rn << 16;
c19d1205 6999}
09d92015 7000
c19d1205
ZW
7001static void
7002do_rd_rn_rm (void)
7003{
7004 inst.instruction |= inst.operands[0].reg << 12;
7005 inst.instruction |= inst.operands[1].reg << 16;
7006 inst.instruction |= inst.operands[2].reg;
7007}
a737bd4d 7008
c19d1205
ZW
7009static void
7010do_rm_rd_rn (void)
7011{
5be8be5d
DG
7012 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7013 constraint (((inst.reloc.exp.X_op != O_constant
7014 && inst.reloc.exp.X_op != O_illegal)
7015 || inst.reloc.exp.X_add_number != 0),
7016 BAD_ADDR_MODE);
c19d1205
ZW
7017 inst.instruction |= inst.operands[0].reg;
7018 inst.instruction |= inst.operands[1].reg << 12;
7019 inst.instruction |= inst.operands[2].reg << 16;
7020}
09d92015 7021
c19d1205
ZW
7022static void
7023do_imm0 (void)
7024{
7025 inst.instruction |= inst.operands[0].imm;
7026}
09d92015 7027
c19d1205
ZW
7028static void
7029do_rd_cpaddr (void)
7030{
7031 inst.instruction |= inst.operands[0].reg << 12;
7032 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7033}
a737bd4d 7034
c19d1205
ZW
7035/* ARM instructions, in alphabetical order by function name (except
7036 that wrapper functions appear immediately after the function they
7037 wrap). */
09d92015 7038
c19d1205
ZW
7039/* This is a pseudo-op of the form "adr rd, label" to be converted
7040 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7041
7042static void
c19d1205 7043do_adr (void)
09d92015 7044{
c19d1205 7045 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7046
c19d1205
ZW
7047 /* Frag hacking will turn this into a sub instruction if the offset turns
7048 out to be negative. */
7049 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7050 inst.reloc.pc_rel = 1;
2fc8bdac 7051 inst.reloc.exp.X_add_number -= 8;
c19d1205 7052}
b99bd4ef 7053
c19d1205
ZW
7054/* This is a pseudo-op of the form "adrl rd, label" to be converted
7055 into a relative address of the form:
7056 add rd, pc, #low(label-.-8)"
7057 add rd, rd, #high(label-.-8)" */
b99bd4ef 7058
c19d1205
ZW
7059static void
7060do_adrl (void)
7061{
7062 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7063
c19d1205
ZW
7064 /* Frag hacking will turn this into a sub instruction if the offset turns
7065 out to be negative. */
7066 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7067 inst.reloc.pc_rel = 1;
7068 inst.size = INSN_SIZE * 2;
2fc8bdac 7069 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7070}
7071
b99bd4ef 7072static void
c19d1205 7073do_arit (void)
b99bd4ef 7074{
c19d1205
ZW
7075 if (!inst.operands[1].present)
7076 inst.operands[1].reg = inst.operands[0].reg;
7077 inst.instruction |= inst.operands[0].reg << 12;
7078 inst.instruction |= inst.operands[1].reg << 16;
7079 encode_arm_shifter_operand (2);
7080}
b99bd4ef 7081
62b3e311
PB
7082static void
7083do_barrier (void)
7084{
7085 if (inst.operands[0].present)
7086 {
7087 constraint ((inst.instruction & 0xf0) != 0x40
7088 && inst.operands[0].imm != 0xf,
bd3ba5d1 7089 _("bad barrier type"));
62b3e311
PB
7090 inst.instruction |= inst.operands[0].imm;
7091 }
7092 else
7093 inst.instruction |= 0xf;
7094}
7095
c19d1205
ZW
7096static void
7097do_bfc (void)
7098{
7099 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7100 constraint (msb > 32, _("bit-field extends past end of register"));
7101 /* The instruction encoding stores the LSB and MSB,
7102 not the LSB and width. */
7103 inst.instruction |= inst.operands[0].reg << 12;
7104 inst.instruction |= inst.operands[1].imm << 7;
7105 inst.instruction |= (msb - 1) << 16;
7106}
b99bd4ef 7107
c19d1205
ZW
7108static void
7109do_bfi (void)
7110{
7111 unsigned int msb;
b99bd4ef 7112
c19d1205
ZW
7113 /* #0 in second position is alternative syntax for bfc, which is
7114 the same instruction but with REG_PC in the Rm field. */
7115 if (!inst.operands[1].isreg)
7116 inst.operands[1].reg = REG_PC;
b99bd4ef 7117
c19d1205
ZW
7118 msb = inst.operands[2].imm + inst.operands[3].imm;
7119 constraint (msb > 32, _("bit-field extends past end of register"));
7120 /* The instruction encoding stores the LSB and MSB,
7121 not the LSB and width. */
7122 inst.instruction |= inst.operands[0].reg << 12;
7123 inst.instruction |= inst.operands[1].reg;
7124 inst.instruction |= inst.operands[2].imm << 7;
7125 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7126}
7127
b99bd4ef 7128static void
c19d1205 7129do_bfx (void)
b99bd4ef 7130{
c19d1205
ZW
7131 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7132 _("bit-field extends past end of register"));
7133 inst.instruction |= inst.operands[0].reg << 12;
7134 inst.instruction |= inst.operands[1].reg;
7135 inst.instruction |= inst.operands[2].imm << 7;
7136 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7137}
09d92015 7138
c19d1205
ZW
7139/* ARM V5 breakpoint instruction (argument parse)
7140 BKPT <16 bit unsigned immediate>
7141 Instruction is not conditional.
7142 The bit pattern given in insns[] has the COND_ALWAYS condition,
7143 and it is an error if the caller tried to override that. */
b99bd4ef 7144
c19d1205
ZW
7145static void
7146do_bkpt (void)
7147{
7148 /* Top 12 of 16 bits to bits 19:8. */
7149 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7150
c19d1205
ZW
7151 /* Bottom 4 of 16 bits to bits 3:0. */
7152 inst.instruction |= inst.operands[0].imm & 0xf;
7153}
09d92015 7154
c19d1205
ZW
7155static void
7156encode_branch (int default_reloc)
7157{
7158 if (inst.operands[0].hasreloc)
7159 {
7160 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7161 _("the only suffix valid here is '(plt)'"));
267bf995 7162 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 7163 }
b99bd4ef 7164 else
c19d1205 7165 {
21d799b5 7166 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
c19d1205 7167 }
2fc8bdac 7168 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7169}
7170
b99bd4ef 7171static void
c19d1205 7172do_branch (void)
b99bd4ef 7173{
39b41c9c
PB
7174#ifdef OBJ_ELF
7175 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7176 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7177 else
7178#endif
7179 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7180}
7181
7182static void
7183do_bl (void)
7184{
7185#ifdef OBJ_ELF
7186 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7187 {
7188 if (inst.cond == COND_ALWAYS)
7189 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7190 else
7191 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7192 }
7193 else
7194#endif
7195 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7196}
b99bd4ef 7197
c19d1205
ZW
7198/* ARM V5 branch-link-exchange instruction (argument parse)
7199 BLX <target_addr> ie BLX(1)
7200 BLX{<condition>} <Rm> ie BLX(2)
7201 Unfortunately, there are two different opcodes for this mnemonic.
7202 So, the insns[].value is not used, and the code here zaps values
7203 into inst.instruction.
7204 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7205
c19d1205
ZW
7206static void
7207do_blx (void)
7208{
7209 if (inst.operands[0].isreg)
b99bd4ef 7210 {
c19d1205
ZW
7211 /* Arg is a register; the opcode provided by insns[] is correct.
7212 It is not illegal to do "blx pc", just useless. */
7213 if (inst.operands[0].reg == REG_PC)
7214 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7215
c19d1205
ZW
7216 inst.instruction |= inst.operands[0].reg;
7217 }
7218 else
b99bd4ef 7219 {
c19d1205 7220 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7221 conditionally, and the opcode must be adjusted.
7222 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7223 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7224 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7225 inst.instruction = 0xfa000000;
267bf995 7226 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7227 }
c19d1205
ZW
7228}
7229
7230static void
7231do_bx (void)
7232{
845b51d6
PB
7233 bfd_boolean want_reloc;
7234
c19d1205
ZW
7235 if (inst.operands[0].reg == REG_PC)
7236 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7237
c19d1205 7238 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7239 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7240 it is for ARMv4t or earlier. */
7241 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7242 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7243 want_reloc = TRUE;
7244
5ad34203 7245#ifdef OBJ_ELF
845b51d6 7246 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7247#endif
584206db 7248 want_reloc = FALSE;
845b51d6
PB
7249
7250 if (want_reloc)
7251 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7252}
7253
c19d1205
ZW
7254
7255/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7256
7257static void
c19d1205 7258do_bxj (void)
a737bd4d 7259{
c19d1205
ZW
7260 if (inst.operands[0].reg == REG_PC)
7261 as_tsktsk (_("use of r15 in bxj is not really useful"));
7262
7263 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7264}
7265
c19d1205
ZW
7266/* Co-processor data operation:
7267 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7268 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7269static void
7270do_cdp (void)
7271{
7272 inst.instruction |= inst.operands[0].reg << 8;
7273 inst.instruction |= inst.operands[1].imm << 20;
7274 inst.instruction |= inst.operands[2].reg << 12;
7275 inst.instruction |= inst.operands[3].reg << 16;
7276 inst.instruction |= inst.operands[4].reg;
7277 inst.instruction |= inst.operands[5].imm << 5;
7278}
a737bd4d
NC
7279
7280static void
c19d1205 7281do_cmp (void)
a737bd4d 7282{
c19d1205
ZW
7283 inst.instruction |= inst.operands[0].reg << 16;
7284 encode_arm_shifter_operand (1);
a737bd4d
NC
7285}
7286
c19d1205
ZW
7287/* Transfer between coprocessor and ARM registers.
7288 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7289 MRC2
7290 MCR{cond}
7291 MCR2
7292
7293 No special properties. */
09d92015
MM
7294
7295static void
c19d1205 7296do_co_reg (void)
09d92015 7297{
fdfde340
JM
7298 unsigned Rd;
7299
7300 Rd = inst.operands[2].reg;
7301 if (thumb_mode)
7302 {
7303 if (inst.instruction == 0xee000010
7304 || inst.instruction == 0xfe000010)
7305 /* MCR, MCR2 */
7306 reject_bad_reg (Rd);
7307 else
7308 /* MRC, MRC2 */
7309 constraint (Rd == REG_SP, BAD_SP);
7310 }
7311 else
7312 {
7313 /* MCR */
7314 if (inst.instruction == 0xe000010)
7315 constraint (Rd == REG_PC, BAD_PC);
7316 }
7317
7318
c19d1205
ZW
7319 inst.instruction |= inst.operands[0].reg << 8;
7320 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7321 inst.instruction |= Rd << 12;
c19d1205
ZW
7322 inst.instruction |= inst.operands[3].reg << 16;
7323 inst.instruction |= inst.operands[4].reg;
7324 inst.instruction |= inst.operands[5].imm << 5;
7325}
09d92015 7326
c19d1205
ZW
7327/* Transfer between coprocessor register and pair of ARM registers.
7328 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7329 MCRR2
7330 MRRC{cond}
7331 MRRC2
b99bd4ef 7332
c19d1205 7333 Two XScale instructions are special cases of these:
09d92015 7334
c19d1205
ZW
7335 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7336 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7337
5f4273c7 7338 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7339
c19d1205
ZW
7340static void
7341do_co_reg2c (void)
7342{
fdfde340
JM
7343 unsigned Rd, Rn;
7344
7345 Rd = inst.operands[2].reg;
7346 Rn = inst.operands[3].reg;
7347
7348 if (thumb_mode)
7349 {
7350 reject_bad_reg (Rd);
7351 reject_bad_reg (Rn);
7352 }
7353 else
7354 {
7355 constraint (Rd == REG_PC, BAD_PC);
7356 constraint (Rn == REG_PC, BAD_PC);
7357 }
7358
c19d1205
ZW
7359 inst.instruction |= inst.operands[0].reg << 8;
7360 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7361 inst.instruction |= Rd << 12;
7362 inst.instruction |= Rn << 16;
c19d1205 7363 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7364}
7365
c19d1205
ZW
7366static void
7367do_cpsi (void)
7368{
7369 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7370 if (inst.operands[1].present)
7371 {
7372 inst.instruction |= CPSI_MMOD;
7373 inst.instruction |= inst.operands[1].imm;
7374 }
c19d1205 7375}
b99bd4ef 7376
62b3e311
PB
7377static void
7378do_dbg (void)
7379{
7380 inst.instruction |= inst.operands[0].imm;
7381}
7382
b99bd4ef 7383static void
c19d1205 7384do_it (void)
b99bd4ef 7385{
c19d1205 7386 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7387 process it to do the validation as if in
7388 thumb mode, just in case the code gets
7389 assembled for thumb using the unified syntax. */
7390
c19d1205 7391 inst.size = 0;
e07e6e58
NC
7392 if (unified_syntax)
7393 {
7394 set_it_insn_type (IT_INSN);
7395 now_it.mask = (inst.instruction & 0xf) | 0x10;
7396 now_it.cc = inst.operands[0].imm;
7397 }
09d92015 7398}
b99bd4ef 7399
09d92015 7400static void
c19d1205 7401do_ldmstm (void)
ea6ef066 7402{
c19d1205
ZW
7403 int base_reg = inst.operands[0].reg;
7404 int range = inst.operands[1].imm;
ea6ef066 7405
c19d1205
ZW
7406 inst.instruction |= base_reg << 16;
7407 inst.instruction |= range;
ea6ef066 7408
c19d1205
ZW
7409 if (inst.operands[1].writeback)
7410 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7411
c19d1205 7412 if (inst.operands[0].writeback)
ea6ef066 7413 {
c19d1205
ZW
7414 inst.instruction |= WRITE_BACK;
7415 /* Check for unpredictable uses of writeback. */
7416 if (inst.instruction & LOAD_BIT)
09d92015 7417 {
c19d1205
ZW
7418 /* Not allowed in LDM type 2. */
7419 if ((inst.instruction & LDM_TYPE_2_OR_3)
7420 && ((range & (1 << REG_PC)) == 0))
7421 as_warn (_("writeback of base register is UNPREDICTABLE"));
7422 /* Only allowed if base reg not in list for other types. */
7423 else if (range & (1 << base_reg))
7424 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7425 }
7426 else /* STM. */
7427 {
7428 /* Not allowed for type 2. */
7429 if (inst.instruction & LDM_TYPE_2_OR_3)
7430 as_warn (_("writeback of base register is UNPREDICTABLE"));
7431 /* Only allowed if base reg not in list, or first in list. */
7432 else if ((range & (1 << base_reg))
7433 && (range & ((1 << base_reg) - 1)))
7434 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7435 }
ea6ef066 7436 }
a737bd4d
NC
7437}
7438
c19d1205
ZW
7439/* ARMv5TE load-consecutive (argument parse)
7440 Mode is like LDRH.
7441
7442 LDRccD R, mode
7443 STRccD R, mode. */
7444
a737bd4d 7445static void
c19d1205 7446do_ldrd (void)
a737bd4d 7447{
c19d1205
ZW
7448 constraint (inst.operands[0].reg % 2 != 0,
7449 _("first destination register must be even"));
7450 constraint (inst.operands[1].present
7451 && inst.operands[1].reg != inst.operands[0].reg + 1,
7452 _("can only load two consecutive registers"));
7453 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7454 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7455
c19d1205
ZW
7456 if (!inst.operands[1].present)
7457 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7458
c19d1205 7459 if (inst.instruction & LOAD_BIT)
a737bd4d 7460 {
c19d1205
ZW
7461 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7462 register and the first register written; we have to diagnose
7463 overlap between the base and the second register written here. */
ea6ef066 7464
c19d1205
ZW
7465 if (inst.operands[2].reg == inst.operands[1].reg
7466 && (inst.operands[2].writeback || inst.operands[2].postind))
7467 as_warn (_("base register written back, and overlaps "
7468 "second destination register"));
b05fe5cf 7469
c19d1205
ZW
7470 /* For an index-register load, the index register must not overlap the
7471 destination (even if not write-back). */
7472 else if (inst.operands[2].immisreg
ca3f61f7
NC
7473 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7474 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 7475 as_warn (_("index register overlaps destination register"));
b05fe5cf 7476 }
c19d1205
ZW
7477
7478 inst.instruction |= inst.operands[0].reg << 12;
7479 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7480}
7481
7482static void
c19d1205 7483do_ldrex (void)
b05fe5cf 7484{
c19d1205
ZW
7485 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7486 || inst.operands[1].postind || inst.operands[1].writeback
7487 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7488 || inst.operands[1].negative
7489 /* This can arise if the programmer has written
7490 strex rN, rM, foo
7491 or if they have mistakenly used a register name as the last
7492 operand, eg:
7493 strex rN, rM, rX
7494 It is very difficult to distinguish between these two cases
7495 because "rX" might actually be a label. ie the register
7496 name has been occluded by a symbol of the same name. So we
7497 just generate a general 'bad addressing mode' type error
7498 message and leave it up to the programmer to discover the
7499 true cause and fix their mistake. */
7500 || (inst.operands[1].reg == REG_PC),
7501 BAD_ADDR_MODE);
b05fe5cf 7502
c19d1205
ZW
7503 constraint (inst.reloc.exp.X_op != O_constant
7504 || inst.reloc.exp.X_add_number != 0,
7505 _("offset must be zero in ARM encoding"));
b05fe5cf 7506
5be8be5d
DG
7507 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7508
c19d1205
ZW
7509 inst.instruction |= inst.operands[0].reg << 12;
7510 inst.instruction |= inst.operands[1].reg << 16;
7511 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7512}
7513
7514static void
c19d1205 7515do_ldrexd (void)
b05fe5cf 7516{
c19d1205
ZW
7517 constraint (inst.operands[0].reg % 2 != 0,
7518 _("even register required"));
7519 constraint (inst.operands[1].present
7520 && inst.operands[1].reg != inst.operands[0].reg + 1,
7521 _("can only load two consecutive registers"));
7522 /* If op 1 were present and equal to PC, this function wouldn't
7523 have been called in the first place. */
7524 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7525
c19d1205
ZW
7526 inst.instruction |= inst.operands[0].reg << 12;
7527 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7528}
7529
7530static void
c19d1205 7531do_ldst (void)
b05fe5cf 7532{
c19d1205
ZW
7533 inst.instruction |= inst.operands[0].reg << 12;
7534 if (!inst.operands[1].isreg)
7535 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7536 return;
c19d1205 7537 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7538}
7539
7540static void
c19d1205 7541do_ldstt (void)
b05fe5cf 7542{
c19d1205
ZW
7543 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7544 reject [Rn,...]. */
7545 if (inst.operands[1].preind)
b05fe5cf 7546 {
bd3ba5d1
NC
7547 constraint (inst.reloc.exp.X_op != O_constant
7548 || inst.reloc.exp.X_add_number != 0,
c19d1205 7549 _("this instruction requires a post-indexed address"));
b05fe5cf 7550
c19d1205
ZW
7551 inst.operands[1].preind = 0;
7552 inst.operands[1].postind = 1;
7553 inst.operands[1].writeback = 1;
b05fe5cf 7554 }
c19d1205
ZW
7555 inst.instruction |= inst.operands[0].reg << 12;
7556 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7557}
b05fe5cf 7558
c19d1205 7559/* Halfword and signed-byte load/store operations. */
b05fe5cf 7560
c19d1205
ZW
7561static void
7562do_ldstv4 (void)
7563{
ff4a8d2b 7564 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7565 inst.instruction |= inst.operands[0].reg << 12;
7566 if (!inst.operands[1].isreg)
7567 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7568 return;
c19d1205 7569 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7570}
7571
7572static void
c19d1205 7573do_ldsttv4 (void)
b05fe5cf 7574{
c19d1205
ZW
7575 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7576 reject [Rn,...]. */
7577 if (inst.operands[1].preind)
b05fe5cf 7578 {
bd3ba5d1
NC
7579 constraint (inst.reloc.exp.X_op != O_constant
7580 || inst.reloc.exp.X_add_number != 0,
c19d1205 7581 _("this instruction requires a post-indexed address"));
b05fe5cf 7582
c19d1205
ZW
7583 inst.operands[1].preind = 0;
7584 inst.operands[1].postind = 1;
7585 inst.operands[1].writeback = 1;
b05fe5cf 7586 }
c19d1205
ZW
7587 inst.instruction |= inst.operands[0].reg << 12;
7588 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7589}
b05fe5cf 7590
c19d1205
ZW
7591/* Co-processor register load/store.
7592 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7593static void
7594do_lstc (void)
7595{
7596 inst.instruction |= inst.operands[0].reg << 8;
7597 inst.instruction |= inst.operands[1].reg << 12;
7598 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7599}
7600
b05fe5cf 7601static void
c19d1205 7602do_mlas (void)
b05fe5cf 7603{
8fb9d7b9 7604 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7605 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7606 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7607 && !(inst.instruction & 0x00400000))
8fb9d7b9 7608 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7609
c19d1205
ZW
7610 inst.instruction |= inst.operands[0].reg << 16;
7611 inst.instruction |= inst.operands[1].reg;
7612 inst.instruction |= inst.operands[2].reg << 8;
7613 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7614}
b05fe5cf 7615
c19d1205
ZW
7616static void
7617do_mov (void)
7618{
7619 inst.instruction |= inst.operands[0].reg << 12;
7620 encode_arm_shifter_operand (1);
7621}
b05fe5cf 7622
c19d1205
ZW
7623/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7624static void
7625do_mov16 (void)
7626{
b6895b4f
PB
7627 bfd_vma imm;
7628 bfd_boolean top;
7629
7630 top = (inst.instruction & 0x00400000) != 0;
7631 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7632 _(":lower16: not allowed this instruction"));
7633 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7634 _(":upper16: not allowed instruction"));
c19d1205 7635 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7636 if (inst.reloc.type == BFD_RELOC_UNUSED)
7637 {
7638 imm = inst.reloc.exp.X_add_number;
7639 /* The value is in two pieces: 0:11, 16:19. */
7640 inst.instruction |= (imm & 0x00000fff);
7641 inst.instruction |= (imm & 0x0000f000) << 4;
7642 }
b05fe5cf 7643}
b99bd4ef 7644
037e8744
JB
7645static void do_vfp_nsyn_opcode (const char *);
7646
7647static int
7648do_vfp_nsyn_mrs (void)
7649{
7650 if (inst.operands[0].isvec)
7651 {
7652 if (inst.operands[1].reg != 1)
7653 first_error (_("operand 1 must be FPSCR"));
7654 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7655 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7656 do_vfp_nsyn_opcode ("fmstat");
7657 }
7658 else if (inst.operands[1].isvec)
7659 do_vfp_nsyn_opcode ("fmrx");
7660 else
7661 return FAIL;
5f4273c7 7662
037e8744
JB
7663 return SUCCESS;
7664}
7665
7666static int
7667do_vfp_nsyn_msr (void)
7668{
7669 if (inst.operands[0].isvec)
7670 do_vfp_nsyn_opcode ("fmxr");
7671 else
7672 return FAIL;
7673
7674 return SUCCESS;
7675}
7676
f7c21dc7
NC
7677static void
7678do_vmrs (void)
7679{
7680 unsigned Rt = inst.operands[0].reg;
7681
7682 if (thumb_mode && inst.operands[0].reg == REG_SP)
7683 {
7684 inst.error = BAD_SP;
7685 return;
7686 }
7687
7688 /* APSR_ sets isvec. All other refs to PC are illegal. */
7689 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7690 {
7691 inst.error = BAD_PC;
7692 return;
7693 }
7694
7695 if (inst.operands[1].reg != 1)
7696 first_error (_("operand 1 must be FPSCR"));
7697
7698 inst.instruction |= (Rt << 12);
7699}
7700
7701static void
7702do_vmsr (void)
7703{
7704 unsigned Rt = inst.operands[1].reg;
7705
7706 if (thumb_mode)
7707 reject_bad_reg (Rt);
7708 else if (Rt == REG_PC)
7709 {
7710 inst.error = BAD_PC;
7711 return;
7712 }
7713
7714 if (inst.operands[0].reg != 1)
7715 first_error (_("operand 0 must be FPSCR"));
7716
7717 inst.instruction |= (Rt << 12);
7718}
7719
b99bd4ef 7720static void
c19d1205 7721do_mrs (void)
b99bd4ef 7722{
037e8744
JB
7723 if (do_vfp_nsyn_mrs () == SUCCESS)
7724 return;
7725
c19d1205
ZW
7726 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7727 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7728 != (PSR_c|PSR_f),
7729 _("'CPSR' or 'SPSR' expected"));
ff4a8d2b 7730 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7731 inst.instruction |= inst.operands[0].reg << 12;
7732 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7733}
b99bd4ef 7734
c19d1205
ZW
7735/* Two possible forms:
7736 "{C|S}PSR_<field>, Rm",
7737 "{C|S}PSR_f, #expression". */
b99bd4ef 7738
c19d1205
ZW
7739static void
7740do_msr (void)
7741{
037e8744
JB
7742 if (do_vfp_nsyn_msr () == SUCCESS)
7743 return;
7744
c19d1205
ZW
7745 inst.instruction |= inst.operands[0].imm;
7746 if (inst.operands[1].isreg)
7747 inst.instruction |= inst.operands[1].reg;
7748 else
b99bd4ef 7749 {
c19d1205
ZW
7750 inst.instruction |= INST_IMMEDIATE;
7751 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7752 inst.reloc.pc_rel = 0;
b99bd4ef 7753 }
b99bd4ef
NC
7754}
7755
c19d1205
ZW
7756static void
7757do_mul (void)
a737bd4d 7758{
ff4a8d2b
NC
7759 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7760
c19d1205
ZW
7761 if (!inst.operands[2].present)
7762 inst.operands[2].reg = inst.operands[0].reg;
7763 inst.instruction |= inst.operands[0].reg << 16;
7764 inst.instruction |= inst.operands[1].reg;
7765 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7766
8fb9d7b9
MS
7767 if (inst.operands[0].reg == inst.operands[1].reg
7768 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7769 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7770}
7771
c19d1205
ZW
7772/* Long Multiply Parser
7773 UMULL RdLo, RdHi, Rm, Rs
7774 SMULL RdLo, RdHi, Rm, Rs
7775 UMLAL RdLo, RdHi, Rm, Rs
7776 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7777
7778static void
c19d1205 7779do_mull (void)
b99bd4ef 7780{
c19d1205
ZW
7781 inst.instruction |= inst.operands[0].reg << 12;
7782 inst.instruction |= inst.operands[1].reg << 16;
7783 inst.instruction |= inst.operands[2].reg;
7784 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7785
682b27ad
PB
7786 /* rdhi and rdlo must be different. */
7787 if (inst.operands[0].reg == inst.operands[1].reg)
7788 as_tsktsk (_("rdhi and rdlo must be different"));
7789
7790 /* rdhi, rdlo and rm must all be different before armv6. */
7791 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 7792 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 7793 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
7794 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7795}
b99bd4ef 7796
c19d1205
ZW
7797static void
7798do_nop (void)
7799{
e7495e45
NS
7800 if (inst.operands[0].present
7801 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
7802 {
7803 /* Architectural NOP hints are CPSR sets with no bits selected. */
7804 inst.instruction &= 0xf0000000;
e7495e45
NS
7805 inst.instruction |= 0x0320f000;
7806 if (inst.operands[0].present)
7807 inst.instruction |= inst.operands[0].imm;
c19d1205 7808 }
b99bd4ef
NC
7809}
7810
c19d1205
ZW
7811/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7812 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7813 Condition defaults to COND_ALWAYS.
7814 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7815
7816static void
c19d1205 7817do_pkhbt (void)
b99bd4ef 7818{
c19d1205
ZW
7819 inst.instruction |= inst.operands[0].reg << 12;
7820 inst.instruction |= inst.operands[1].reg << 16;
7821 inst.instruction |= inst.operands[2].reg;
7822 if (inst.operands[3].present)
7823 encode_arm_shift (3);
7824}
b99bd4ef 7825
c19d1205 7826/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7827
c19d1205
ZW
7828static void
7829do_pkhtb (void)
7830{
7831 if (!inst.operands[3].present)
b99bd4ef 7832 {
c19d1205
ZW
7833 /* If the shift specifier is omitted, turn the instruction
7834 into pkhbt rd, rm, rn. */
7835 inst.instruction &= 0xfff00010;
7836 inst.instruction |= inst.operands[0].reg << 12;
7837 inst.instruction |= inst.operands[1].reg;
7838 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7839 }
7840 else
7841 {
c19d1205
ZW
7842 inst.instruction |= inst.operands[0].reg << 12;
7843 inst.instruction |= inst.operands[1].reg << 16;
7844 inst.instruction |= inst.operands[2].reg;
7845 encode_arm_shift (3);
b99bd4ef
NC
7846 }
7847}
7848
c19d1205
ZW
7849/* ARMv5TE: Preload-Cache
7850
7851 PLD <addr_mode>
7852
7853 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7854
7855static void
c19d1205 7856do_pld (void)
b99bd4ef 7857{
c19d1205
ZW
7858 constraint (!inst.operands[0].isreg,
7859 _("'[' expected after PLD mnemonic"));
7860 constraint (inst.operands[0].postind,
7861 _("post-indexed expression used in preload instruction"));
7862 constraint (inst.operands[0].writeback,
7863 _("writeback used in preload instruction"));
7864 constraint (!inst.operands[0].preind,
7865 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7866 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7867}
b99bd4ef 7868
62b3e311
PB
7869/* ARMv7: PLI <addr_mode> */
7870static void
7871do_pli (void)
7872{
7873 constraint (!inst.operands[0].isreg,
7874 _("'[' expected after PLI mnemonic"));
7875 constraint (inst.operands[0].postind,
7876 _("post-indexed expression used in preload instruction"));
7877 constraint (inst.operands[0].writeback,
7878 _("writeback used in preload instruction"));
7879 constraint (!inst.operands[0].preind,
7880 _("unindexed addressing used in preload instruction"));
7881 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7882 inst.instruction &= ~PRE_INDEX;
7883}
7884
c19d1205
ZW
7885static void
7886do_push_pop (void)
7887{
7888 inst.operands[1] = inst.operands[0];
7889 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7890 inst.operands[0].isreg = 1;
7891 inst.operands[0].writeback = 1;
7892 inst.operands[0].reg = REG_SP;
7893 do_ldmstm ();
7894}
b99bd4ef 7895
c19d1205
ZW
7896/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7897 word at the specified address and the following word
7898 respectively.
7899 Unconditionally executed.
7900 Error if Rn is R15. */
b99bd4ef 7901
c19d1205
ZW
7902static void
7903do_rfe (void)
7904{
7905 inst.instruction |= inst.operands[0].reg << 16;
7906 if (inst.operands[0].writeback)
7907 inst.instruction |= WRITE_BACK;
7908}
b99bd4ef 7909
c19d1205 7910/* ARM V6 ssat (argument parse). */
b99bd4ef 7911
c19d1205
ZW
7912static void
7913do_ssat (void)
7914{
7915 inst.instruction |= inst.operands[0].reg << 12;
7916 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7917 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7918
c19d1205
ZW
7919 if (inst.operands[3].present)
7920 encode_arm_shift (3);
b99bd4ef
NC
7921}
7922
c19d1205 7923/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7924
7925static void
c19d1205 7926do_usat (void)
b99bd4ef 7927{
c19d1205
ZW
7928 inst.instruction |= inst.operands[0].reg << 12;
7929 inst.instruction |= inst.operands[1].imm << 16;
7930 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7931
c19d1205
ZW
7932 if (inst.operands[3].present)
7933 encode_arm_shift (3);
b99bd4ef
NC
7934}
7935
c19d1205 7936/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7937
7938static void
c19d1205 7939do_ssat16 (void)
09d92015 7940{
c19d1205
ZW
7941 inst.instruction |= inst.operands[0].reg << 12;
7942 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7943 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7944}
7945
c19d1205
ZW
7946static void
7947do_usat16 (void)
a737bd4d 7948{
c19d1205
ZW
7949 inst.instruction |= inst.operands[0].reg << 12;
7950 inst.instruction |= inst.operands[1].imm << 16;
7951 inst.instruction |= inst.operands[2].reg;
7952}
a737bd4d 7953
c19d1205
ZW
7954/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7955 preserving the other bits.
a737bd4d 7956
c19d1205
ZW
7957 setend <endian_specifier>, where <endian_specifier> is either
7958 BE or LE. */
a737bd4d 7959
c19d1205
ZW
7960static void
7961do_setend (void)
7962{
7963 if (inst.operands[0].imm)
7964 inst.instruction |= 0x200;
a737bd4d
NC
7965}
7966
7967static void
c19d1205 7968do_shift (void)
a737bd4d 7969{
c19d1205
ZW
7970 unsigned int Rm = (inst.operands[1].present
7971 ? inst.operands[1].reg
7972 : inst.operands[0].reg);
a737bd4d 7973
c19d1205
ZW
7974 inst.instruction |= inst.operands[0].reg << 12;
7975 inst.instruction |= Rm;
7976 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7977 {
c19d1205
ZW
7978 inst.instruction |= inst.operands[2].reg << 8;
7979 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7980 }
7981 else
c19d1205 7982 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7983}
7984
09d92015 7985static void
3eb17e6b 7986do_smc (void)
09d92015 7987{
3eb17e6b 7988 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7989 inst.reloc.pc_rel = 0;
09d92015
MM
7990}
7991
09d92015 7992static void
c19d1205 7993do_swi (void)
09d92015 7994{
c19d1205
ZW
7995 inst.reloc.type = BFD_RELOC_ARM_SWI;
7996 inst.reloc.pc_rel = 0;
09d92015
MM
7997}
7998
c19d1205
ZW
7999/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8000 SMLAxy{cond} Rd,Rm,Rs,Rn
8001 SMLAWy{cond} Rd,Rm,Rs,Rn
8002 Error if any register is R15. */
e16bb312 8003
c19d1205
ZW
8004static void
8005do_smla (void)
e16bb312 8006{
c19d1205
ZW
8007 inst.instruction |= inst.operands[0].reg << 16;
8008 inst.instruction |= inst.operands[1].reg;
8009 inst.instruction |= inst.operands[2].reg << 8;
8010 inst.instruction |= inst.operands[3].reg << 12;
8011}
a737bd4d 8012
c19d1205
ZW
8013/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8014 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8015 Error if any register is R15.
8016 Warning if Rdlo == Rdhi. */
a737bd4d 8017
c19d1205
ZW
8018static void
8019do_smlal (void)
8020{
8021 inst.instruction |= inst.operands[0].reg << 12;
8022 inst.instruction |= inst.operands[1].reg << 16;
8023 inst.instruction |= inst.operands[2].reg;
8024 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8025
c19d1205
ZW
8026 if (inst.operands[0].reg == inst.operands[1].reg)
8027 as_tsktsk (_("rdhi and rdlo must be different"));
8028}
a737bd4d 8029
c19d1205
ZW
8030/* ARM V5E (El Segundo) signed-multiply (argument parse)
8031 SMULxy{cond} Rd,Rm,Rs
8032 Error if any register is R15. */
a737bd4d 8033
c19d1205
ZW
8034static void
8035do_smul (void)
8036{
8037 inst.instruction |= inst.operands[0].reg << 16;
8038 inst.instruction |= inst.operands[1].reg;
8039 inst.instruction |= inst.operands[2].reg << 8;
8040}
a737bd4d 8041
b6702015
PB
8042/* ARM V6 srs (argument parse). The variable fields in the encoding are
8043 the same for both ARM and Thumb-2. */
a737bd4d 8044
c19d1205
ZW
8045static void
8046do_srs (void)
8047{
b6702015
PB
8048 int reg;
8049
8050 if (inst.operands[0].present)
8051 {
8052 reg = inst.operands[0].reg;
fdfde340 8053 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8054 }
8055 else
fdfde340 8056 reg = REG_SP;
b6702015
PB
8057
8058 inst.instruction |= reg << 16;
8059 inst.instruction |= inst.operands[1].imm;
8060 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8061 inst.instruction |= WRITE_BACK;
8062}
a737bd4d 8063
c19d1205 8064/* ARM V6 strex (argument parse). */
a737bd4d 8065
c19d1205
ZW
8066static void
8067do_strex (void)
8068{
8069 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8070 || inst.operands[2].postind || inst.operands[2].writeback
8071 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8072 || inst.operands[2].negative
8073 /* See comment in do_ldrex(). */
8074 || (inst.operands[2].reg == REG_PC),
8075 BAD_ADDR_MODE);
a737bd4d 8076
c19d1205
ZW
8077 constraint (inst.operands[0].reg == inst.operands[1].reg
8078 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8079
c19d1205
ZW
8080 constraint (inst.reloc.exp.X_op != O_constant
8081 || inst.reloc.exp.X_add_number != 0,
8082 _("offset must be zero in ARM encoding"));
a737bd4d 8083
c19d1205
ZW
8084 inst.instruction |= inst.operands[0].reg << 12;
8085 inst.instruction |= inst.operands[1].reg;
8086 inst.instruction |= inst.operands[2].reg << 16;
8087 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8088}
8089
8090static void
c19d1205 8091do_strexd (void)
e16bb312 8092{
c19d1205
ZW
8093 constraint (inst.operands[1].reg % 2 != 0,
8094 _("even register required"));
8095 constraint (inst.operands[2].present
8096 && inst.operands[2].reg != inst.operands[1].reg + 1,
8097 _("can only store two consecutive registers"));
8098 /* If op 2 were present and equal to PC, this function wouldn't
8099 have been called in the first place. */
8100 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8101
c19d1205
ZW
8102 constraint (inst.operands[0].reg == inst.operands[1].reg
8103 || inst.operands[0].reg == inst.operands[1].reg + 1
8104 || inst.operands[0].reg == inst.operands[3].reg,
8105 BAD_OVERLAP);
e16bb312 8106
c19d1205
ZW
8107 inst.instruction |= inst.operands[0].reg << 12;
8108 inst.instruction |= inst.operands[1].reg;
8109 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8110}
8111
c19d1205
ZW
8112/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8113 extends it to 32-bits, and adds the result to a value in another
8114 register. You can specify a rotation by 0, 8, 16, or 24 bits
8115 before extracting the 16-bit value.
8116 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8117 Condition defaults to COND_ALWAYS.
8118 Error if any register uses R15. */
8119
e16bb312 8120static void
c19d1205 8121do_sxtah (void)
e16bb312 8122{
c19d1205
ZW
8123 inst.instruction |= inst.operands[0].reg << 12;
8124 inst.instruction |= inst.operands[1].reg << 16;
8125 inst.instruction |= inst.operands[2].reg;
8126 inst.instruction |= inst.operands[3].imm << 10;
8127}
e16bb312 8128
c19d1205 8129/* ARM V6 SXTH.
e16bb312 8130
c19d1205
ZW
8131 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8132 Condition defaults to COND_ALWAYS.
8133 Error if any register uses R15. */
e16bb312
NC
8134
8135static void
c19d1205 8136do_sxth (void)
e16bb312 8137{
c19d1205
ZW
8138 inst.instruction |= inst.operands[0].reg << 12;
8139 inst.instruction |= inst.operands[1].reg;
8140 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8141}
c19d1205
ZW
8142\f
8143/* VFP instructions. In a logical order: SP variant first, monad
8144 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8145
8146static void
c19d1205 8147do_vfp_sp_monadic (void)
e16bb312 8148{
5287ad62
JB
8149 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8150 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8151}
8152
8153static void
c19d1205 8154do_vfp_sp_dyadic (void)
e16bb312 8155{
5287ad62
JB
8156 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8157 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8158 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8159}
8160
8161static void
c19d1205 8162do_vfp_sp_compare_z (void)
e16bb312 8163{
5287ad62 8164 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8165}
8166
8167static void
c19d1205 8168do_vfp_dp_sp_cvt (void)
e16bb312 8169{
5287ad62
JB
8170 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8171 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8172}
8173
8174static void
c19d1205 8175do_vfp_sp_dp_cvt (void)
e16bb312 8176{
5287ad62
JB
8177 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8178 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8179}
8180
8181static void
c19d1205 8182do_vfp_reg_from_sp (void)
e16bb312 8183{
c19d1205 8184 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8185 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8186}
8187
8188static void
c19d1205 8189do_vfp_reg2_from_sp2 (void)
e16bb312 8190{
c19d1205
ZW
8191 constraint (inst.operands[2].imm != 2,
8192 _("only two consecutive VFP SP registers allowed here"));
8193 inst.instruction |= inst.operands[0].reg << 12;
8194 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8195 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8196}
8197
8198static void
c19d1205 8199do_vfp_sp_from_reg (void)
e16bb312 8200{
5287ad62 8201 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8202 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8203}
8204
8205static void
c19d1205 8206do_vfp_sp2_from_reg2 (void)
e16bb312 8207{
c19d1205
ZW
8208 constraint (inst.operands[0].imm != 2,
8209 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8210 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8211 inst.instruction |= inst.operands[1].reg << 12;
8212 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8213}
8214
8215static void
c19d1205 8216do_vfp_sp_ldst (void)
e16bb312 8217{
5287ad62 8218 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8219 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8220}
8221
8222static void
c19d1205 8223do_vfp_dp_ldst (void)
e16bb312 8224{
5287ad62 8225 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8226 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8227}
8228
c19d1205 8229
e16bb312 8230static void
c19d1205 8231vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8232{
c19d1205
ZW
8233 if (inst.operands[0].writeback)
8234 inst.instruction |= WRITE_BACK;
8235 else
8236 constraint (ldstm_type != VFP_LDSTMIA,
8237 _("this addressing mode requires base-register writeback"));
8238 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8239 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8240 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8241}
8242
8243static void
c19d1205 8244vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8245{
c19d1205 8246 int count;
e16bb312 8247
c19d1205
ZW
8248 if (inst.operands[0].writeback)
8249 inst.instruction |= WRITE_BACK;
8250 else
8251 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8252 _("this addressing mode requires base-register writeback"));
e16bb312 8253
c19d1205 8254 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8255 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8256
c19d1205
ZW
8257 count = inst.operands[1].imm << 1;
8258 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8259 count += 1;
e16bb312 8260
c19d1205 8261 inst.instruction |= count;
e16bb312
NC
8262}
8263
8264static void
c19d1205 8265do_vfp_sp_ldstmia (void)
e16bb312 8266{
c19d1205 8267 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8268}
8269
8270static void
c19d1205 8271do_vfp_sp_ldstmdb (void)
e16bb312 8272{
c19d1205 8273 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8274}
8275
8276static void
c19d1205 8277do_vfp_dp_ldstmia (void)
e16bb312 8278{
c19d1205 8279 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8280}
8281
8282static void
c19d1205 8283do_vfp_dp_ldstmdb (void)
e16bb312 8284{
c19d1205 8285 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8286}
8287
8288static void
c19d1205 8289do_vfp_xp_ldstmia (void)
e16bb312 8290{
c19d1205
ZW
8291 vfp_dp_ldstm (VFP_LDSTMIAX);
8292}
e16bb312 8293
c19d1205
ZW
8294static void
8295do_vfp_xp_ldstmdb (void)
8296{
8297 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8298}
5287ad62
JB
8299
8300static void
8301do_vfp_dp_rd_rm (void)
8302{
8303 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8304 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8305}
8306
8307static void
8308do_vfp_dp_rn_rd (void)
8309{
8310 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8311 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8312}
8313
8314static void
8315do_vfp_dp_rd_rn (void)
8316{
8317 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8318 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8319}
8320
8321static void
8322do_vfp_dp_rd_rn_rm (void)
8323{
8324 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8325 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8326 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8327}
8328
8329static void
8330do_vfp_dp_rd (void)
8331{
8332 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8333}
8334
8335static void
8336do_vfp_dp_rm_rd_rn (void)
8337{
8338 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8339 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8340 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8341}
8342
8343/* VFPv3 instructions. */
8344static void
8345do_vfp_sp_const (void)
8346{
8347 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8348 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8349 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8350}
8351
8352static void
8353do_vfp_dp_const (void)
8354{
8355 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8356 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8357 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8358}
8359
8360static void
8361vfp_conv (int srcsize)
8362{
8363 unsigned immbits = srcsize - inst.operands[1].imm;
8364 inst.instruction |= (immbits & 1) << 5;
8365 inst.instruction |= (immbits >> 1);
8366}
8367
8368static void
8369do_vfp_sp_conv_16 (void)
8370{
8371 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8372 vfp_conv (16);
8373}
8374
8375static void
8376do_vfp_dp_conv_16 (void)
8377{
8378 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8379 vfp_conv (16);
8380}
8381
8382static void
8383do_vfp_sp_conv_32 (void)
8384{
8385 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8386 vfp_conv (32);
8387}
8388
8389static void
8390do_vfp_dp_conv_32 (void)
8391{
8392 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8393 vfp_conv (32);
8394}
c19d1205
ZW
8395\f
8396/* FPA instructions. Also in a logical order. */
e16bb312 8397
c19d1205
ZW
8398static void
8399do_fpa_cmp (void)
8400{
8401 inst.instruction |= inst.operands[0].reg << 16;
8402 inst.instruction |= inst.operands[1].reg;
8403}
b99bd4ef
NC
8404
8405static void
c19d1205 8406do_fpa_ldmstm (void)
b99bd4ef 8407{
c19d1205
ZW
8408 inst.instruction |= inst.operands[0].reg << 12;
8409 switch (inst.operands[1].imm)
8410 {
8411 case 1: inst.instruction |= CP_T_X; break;
8412 case 2: inst.instruction |= CP_T_Y; break;
8413 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8414 case 4: break;
8415 default: abort ();
8416 }
b99bd4ef 8417
c19d1205
ZW
8418 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8419 {
8420 /* The instruction specified "ea" or "fd", so we can only accept
8421 [Rn]{!}. The instruction does not really support stacking or
8422 unstacking, so we have to emulate these by setting appropriate
8423 bits and offsets. */
8424 constraint (inst.reloc.exp.X_op != O_constant
8425 || inst.reloc.exp.X_add_number != 0,
8426 _("this instruction does not support indexing"));
b99bd4ef 8427
c19d1205
ZW
8428 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8429 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8430
c19d1205
ZW
8431 if (!(inst.instruction & INDEX_UP))
8432 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8433
c19d1205
ZW
8434 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8435 {
8436 inst.operands[2].preind = 0;
8437 inst.operands[2].postind = 1;
8438 }
8439 }
b99bd4ef 8440
c19d1205 8441 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8442}
c19d1205
ZW
8443\f
8444/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8445
c19d1205
ZW
8446static void
8447do_iwmmxt_tandorc (void)
8448{
8449 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8450}
b99bd4ef 8451
c19d1205
ZW
8452static void
8453do_iwmmxt_textrc (void)
8454{
8455 inst.instruction |= inst.operands[0].reg << 12;
8456 inst.instruction |= inst.operands[1].imm;
8457}
b99bd4ef
NC
8458
8459static void
c19d1205 8460do_iwmmxt_textrm (void)
b99bd4ef 8461{
c19d1205
ZW
8462 inst.instruction |= inst.operands[0].reg << 12;
8463 inst.instruction |= inst.operands[1].reg << 16;
8464 inst.instruction |= inst.operands[2].imm;
8465}
b99bd4ef 8466
c19d1205
ZW
8467static void
8468do_iwmmxt_tinsr (void)
8469{
8470 inst.instruction |= inst.operands[0].reg << 16;
8471 inst.instruction |= inst.operands[1].reg << 12;
8472 inst.instruction |= inst.operands[2].imm;
8473}
b99bd4ef 8474
c19d1205
ZW
8475static void
8476do_iwmmxt_tmia (void)
8477{
8478 inst.instruction |= inst.operands[0].reg << 5;
8479 inst.instruction |= inst.operands[1].reg;
8480 inst.instruction |= inst.operands[2].reg << 12;
8481}
b99bd4ef 8482
c19d1205
ZW
8483static void
8484do_iwmmxt_waligni (void)
8485{
8486 inst.instruction |= inst.operands[0].reg << 12;
8487 inst.instruction |= inst.operands[1].reg << 16;
8488 inst.instruction |= inst.operands[2].reg;
8489 inst.instruction |= inst.operands[3].imm << 20;
8490}
b99bd4ef 8491
2d447fca
JM
8492static void
8493do_iwmmxt_wmerge (void)
8494{
8495 inst.instruction |= inst.operands[0].reg << 12;
8496 inst.instruction |= inst.operands[1].reg << 16;
8497 inst.instruction |= inst.operands[2].reg;
8498 inst.instruction |= inst.operands[3].imm << 21;
8499}
8500
c19d1205
ZW
8501static void
8502do_iwmmxt_wmov (void)
8503{
8504 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8505 inst.instruction |= inst.operands[0].reg << 12;
8506 inst.instruction |= inst.operands[1].reg << 16;
8507 inst.instruction |= inst.operands[1].reg;
8508}
b99bd4ef 8509
c19d1205
ZW
8510static void
8511do_iwmmxt_wldstbh (void)
8512{
8f06b2d8 8513 int reloc;
c19d1205 8514 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8515 if (thumb_mode)
8516 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8517 else
8518 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8519 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8520}
8521
c19d1205
ZW
8522static void
8523do_iwmmxt_wldstw (void)
8524{
8525 /* RIWR_RIWC clears .isreg for a control register. */
8526 if (!inst.operands[0].isreg)
8527 {
8528 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8529 inst.instruction |= 0xf0000000;
8530 }
b99bd4ef 8531
c19d1205
ZW
8532 inst.instruction |= inst.operands[0].reg << 12;
8533 encode_arm_cp_address (1, TRUE, TRUE, 0);
8534}
b99bd4ef
NC
8535
8536static void
c19d1205 8537do_iwmmxt_wldstd (void)
b99bd4ef 8538{
c19d1205 8539 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8540 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8541 && inst.operands[1].immisreg)
8542 {
8543 inst.instruction &= ~0x1a000ff;
8544 inst.instruction |= (0xf << 28);
8545 if (inst.operands[1].preind)
8546 inst.instruction |= PRE_INDEX;
8547 if (!inst.operands[1].negative)
8548 inst.instruction |= INDEX_UP;
8549 if (inst.operands[1].writeback)
8550 inst.instruction |= WRITE_BACK;
8551 inst.instruction |= inst.operands[1].reg << 16;
8552 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8553 inst.instruction |= inst.operands[1].imm;
8554 }
8555 else
8556 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8557}
b99bd4ef 8558
c19d1205
ZW
8559static void
8560do_iwmmxt_wshufh (void)
8561{
8562 inst.instruction |= inst.operands[0].reg << 12;
8563 inst.instruction |= inst.operands[1].reg << 16;
8564 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8565 inst.instruction |= (inst.operands[2].imm & 0x0f);
8566}
b99bd4ef 8567
c19d1205
ZW
8568static void
8569do_iwmmxt_wzero (void)
8570{
8571 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8572 inst.instruction |= inst.operands[0].reg;
8573 inst.instruction |= inst.operands[0].reg << 12;
8574 inst.instruction |= inst.operands[0].reg << 16;
8575}
2d447fca
JM
8576
8577static void
8578do_iwmmxt_wrwrwr_or_imm5 (void)
8579{
8580 if (inst.operands[2].isreg)
8581 do_rd_rn_rm ();
8582 else {
8583 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8584 _("immediate operand requires iWMMXt2"));
8585 do_rd_rn ();
8586 if (inst.operands[2].imm == 0)
8587 {
8588 switch ((inst.instruction >> 20) & 0xf)
8589 {
8590 case 4:
8591 case 5:
8592 case 6:
5f4273c7 8593 case 7:
2d447fca
JM
8594 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8595 inst.operands[2].imm = 16;
8596 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8597 break;
8598 case 8:
8599 case 9:
8600 case 10:
8601 case 11:
8602 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8603 inst.operands[2].imm = 32;
8604 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8605 break;
8606 case 12:
8607 case 13:
8608 case 14:
8609 case 15:
8610 {
8611 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8612 unsigned long wrn;
8613 wrn = (inst.instruction >> 16) & 0xf;
8614 inst.instruction &= 0xff0fff0f;
8615 inst.instruction |= wrn;
8616 /* Bail out here; the instruction is now assembled. */
8617 return;
8618 }
8619 }
8620 }
8621 /* Map 32 -> 0, etc. */
8622 inst.operands[2].imm &= 0x1f;
8623 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8624 }
8625}
c19d1205
ZW
8626\f
8627/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8628 operations first, then control, shift, and load/store. */
b99bd4ef 8629
c19d1205 8630/* Insns like "foo X,Y,Z". */
b99bd4ef 8631
c19d1205
ZW
8632static void
8633do_mav_triple (void)
8634{
8635 inst.instruction |= inst.operands[0].reg << 16;
8636 inst.instruction |= inst.operands[1].reg;
8637 inst.instruction |= inst.operands[2].reg << 12;
8638}
b99bd4ef 8639
c19d1205
ZW
8640/* Insns like "foo W,X,Y,Z".
8641 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8642
c19d1205
ZW
8643static void
8644do_mav_quad (void)
8645{
8646 inst.instruction |= inst.operands[0].reg << 5;
8647 inst.instruction |= inst.operands[1].reg << 12;
8648 inst.instruction |= inst.operands[2].reg << 16;
8649 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8650}
8651
c19d1205
ZW
8652/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8653static void
8654do_mav_dspsc (void)
a737bd4d 8655{
c19d1205
ZW
8656 inst.instruction |= inst.operands[1].reg << 12;
8657}
a737bd4d 8658
c19d1205
ZW
8659/* Maverick shift immediate instructions.
8660 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8661 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8662
c19d1205
ZW
8663static void
8664do_mav_shift (void)
8665{
8666 int imm = inst.operands[2].imm;
a737bd4d 8667
c19d1205
ZW
8668 inst.instruction |= inst.operands[0].reg << 12;
8669 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8670
c19d1205
ZW
8671 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8672 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8673 Bit 4 should be 0. */
8674 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8675
c19d1205
ZW
8676 inst.instruction |= imm;
8677}
8678\f
8679/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8680
c19d1205
ZW
8681/* Xscale multiply-accumulate (argument parse)
8682 MIAcc acc0,Rm,Rs
8683 MIAPHcc acc0,Rm,Rs
8684 MIAxycc acc0,Rm,Rs. */
a737bd4d 8685
c19d1205
ZW
8686static void
8687do_xsc_mia (void)
8688{
8689 inst.instruction |= inst.operands[1].reg;
8690 inst.instruction |= inst.operands[2].reg << 12;
8691}
a737bd4d 8692
c19d1205 8693/* Xscale move-accumulator-register (argument parse)
a737bd4d 8694
c19d1205 8695 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8696
c19d1205
ZW
8697static void
8698do_xsc_mar (void)
8699{
8700 inst.instruction |= inst.operands[1].reg << 12;
8701 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8702}
8703
c19d1205 8704/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8705
c19d1205 8706 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8707
8708static void
c19d1205 8709do_xsc_mra (void)
b99bd4ef 8710{
c19d1205
ZW
8711 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8712 inst.instruction |= inst.operands[0].reg << 12;
8713 inst.instruction |= inst.operands[1].reg << 16;
8714}
8715\f
8716/* Encoding functions relevant only to Thumb. */
b99bd4ef 8717
c19d1205
ZW
8718/* inst.operands[i] is a shifted-register operand; encode
8719 it into inst.instruction in the format used by Thumb32. */
8720
8721static void
8722encode_thumb32_shifted_operand (int i)
8723{
8724 unsigned int value = inst.reloc.exp.X_add_number;
8725 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8726
9c3c69f2
PB
8727 constraint (inst.operands[i].immisreg,
8728 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8729 inst.instruction |= inst.operands[i].reg;
8730 if (shift == SHIFT_RRX)
8731 inst.instruction |= SHIFT_ROR << 4;
8732 else
b99bd4ef 8733 {
c19d1205
ZW
8734 constraint (inst.reloc.exp.X_op != O_constant,
8735 _("expression too complex"));
8736
8737 constraint (value > 32
8738 || (value == 32 && (shift == SHIFT_LSL
8739 || shift == SHIFT_ROR)),
8740 _("shift expression is too large"));
8741
8742 if (value == 0)
8743 shift = SHIFT_LSL;
8744 else if (value == 32)
8745 value = 0;
8746
8747 inst.instruction |= shift << 4;
8748 inst.instruction |= (value & 0x1c) << 10;
8749 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8750 }
c19d1205 8751}
b99bd4ef 8752
b99bd4ef 8753
c19d1205
ZW
8754/* inst.operands[i] was set up by parse_address. Encode it into a
8755 Thumb32 format load or store instruction. Reject forms that cannot
8756 be used with such instructions. If is_t is true, reject forms that
8757 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
8758 that cannot be used with a D instruction. If it is a store insn,
8759 reject PC in Rn. */
b99bd4ef 8760
c19d1205
ZW
8761static void
8762encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8763{
5be8be5d 8764 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
8765
8766 constraint (!inst.operands[i].isreg,
53365c0d 8767 _("Instruction does not support =N addresses"));
b99bd4ef 8768
c19d1205
ZW
8769 inst.instruction |= inst.operands[i].reg << 16;
8770 if (inst.operands[i].immisreg)
b99bd4ef 8771 {
5be8be5d 8772 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
8773 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8774 constraint (inst.operands[i].negative,
8775 _("Thumb does not support negative register indexing"));
8776 constraint (inst.operands[i].postind,
8777 _("Thumb does not support register post-indexing"));
8778 constraint (inst.operands[i].writeback,
8779 _("Thumb does not support register indexing with writeback"));
8780 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8781 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8782
f40d1643 8783 inst.instruction |= inst.operands[i].imm;
c19d1205 8784 if (inst.operands[i].shifted)
b99bd4ef 8785 {
c19d1205
ZW
8786 constraint (inst.reloc.exp.X_op != O_constant,
8787 _("expression too complex"));
9c3c69f2
PB
8788 constraint (inst.reloc.exp.X_add_number < 0
8789 || inst.reloc.exp.X_add_number > 3,
c19d1205 8790 _("shift out of range"));
9c3c69f2 8791 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8792 }
8793 inst.reloc.type = BFD_RELOC_UNUSED;
8794 }
8795 else if (inst.operands[i].preind)
8796 {
5be8be5d 8797 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 8798 constraint (is_t && inst.operands[i].writeback,
c19d1205 8799 _("cannot use writeback with this instruction"));
5be8be5d
DG
8800 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
8801 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
8802
8803 if (is_d)
8804 {
8805 inst.instruction |= 0x01000000;
8806 if (inst.operands[i].writeback)
8807 inst.instruction |= 0x00200000;
b99bd4ef 8808 }
c19d1205 8809 else
b99bd4ef 8810 {
c19d1205
ZW
8811 inst.instruction |= 0x00000c00;
8812 if (inst.operands[i].writeback)
8813 inst.instruction |= 0x00000100;
b99bd4ef 8814 }
c19d1205 8815 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8816 }
c19d1205 8817 else if (inst.operands[i].postind)
b99bd4ef 8818 {
9c2799c2 8819 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8820 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8821 constraint (is_t, _("cannot use post-indexing with this instruction"));
8822
8823 if (is_d)
8824 inst.instruction |= 0x00200000;
8825 else
8826 inst.instruction |= 0x00000900;
8827 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8828 }
8829 else /* unindexed - only for coprocessor */
8830 inst.error = _("instruction does not accept unindexed addressing");
8831}
8832
8833/* Table of Thumb instructions which exist in both 16- and 32-bit
8834 encodings (the latter only in post-V6T2 cores). The index is the
8835 value used in the insns table below. When there is more than one
8836 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8837 holds variant (1).
8838 Also contains several pseudo-instructions used during relaxation. */
c19d1205 8839#define T16_32_TAB \
21d799b5
NC
8840 X(_adc, 4140, eb400000), \
8841 X(_adcs, 4140, eb500000), \
8842 X(_add, 1c00, eb000000), \
8843 X(_adds, 1c00, eb100000), \
8844 X(_addi, 0000, f1000000), \
8845 X(_addis, 0000, f1100000), \
8846 X(_add_pc,000f, f20f0000), \
8847 X(_add_sp,000d, f10d0000), \
8848 X(_adr, 000f, f20f0000), \
8849 X(_and, 4000, ea000000), \
8850 X(_ands, 4000, ea100000), \
8851 X(_asr, 1000, fa40f000), \
8852 X(_asrs, 1000, fa50f000), \
8853 X(_b, e000, f000b000), \
8854 X(_bcond, d000, f0008000), \
8855 X(_bic, 4380, ea200000), \
8856 X(_bics, 4380, ea300000), \
8857 X(_cmn, 42c0, eb100f00), \
8858 X(_cmp, 2800, ebb00f00), \
8859 X(_cpsie, b660, f3af8400), \
8860 X(_cpsid, b670, f3af8600), \
8861 X(_cpy, 4600, ea4f0000), \
8862 X(_dec_sp,80dd, f1ad0d00), \
8863 X(_eor, 4040, ea800000), \
8864 X(_eors, 4040, ea900000), \
8865 X(_inc_sp,00dd, f10d0d00), \
8866 X(_ldmia, c800, e8900000), \
8867 X(_ldr, 6800, f8500000), \
8868 X(_ldrb, 7800, f8100000), \
8869 X(_ldrh, 8800, f8300000), \
8870 X(_ldrsb, 5600, f9100000), \
8871 X(_ldrsh, 5e00, f9300000), \
8872 X(_ldr_pc,4800, f85f0000), \
8873 X(_ldr_pc2,4800, f85f0000), \
8874 X(_ldr_sp,9800, f85d0000), \
8875 X(_lsl, 0000, fa00f000), \
8876 X(_lsls, 0000, fa10f000), \
8877 X(_lsr, 0800, fa20f000), \
8878 X(_lsrs, 0800, fa30f000), \
8879 X(_mov, 2000, ea4f0000), \
8880 X(_movs, 2000, ea5f0000), \
8881 X(_mul, 4340, fb00f000), \
8882 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8883 X(_mvn, 43c0, ea6f0000), \
8884 X(_mvns, 43c0, ea7f0000), \
8885 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8886 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8887 X(_orr, 4300, ea400000), \
8888 X(_orrs, 4300, ea500000), \
8889 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8890 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8891 X(_rev, ba00, fa90f080), \
8892 X(_rev16, ba40, fa90f090), \
8893 X(_revsh, bac0, fa90f0b0), \
8894 X(_ror, 41c0, fa60f000), \
8895 X(_rors, 41c0, fa70f000), \
8896 X(_sbc, 4180, eb600000), \
8897 X(_sbcs, 4180, eb700000), \
8898 X(_stmia, c000, e8800000), \
8899 X(_str, 6000, f8400000), \
8900 X(_strb, 7000, f8000000), \
8901 X(_strh, 8000, f8200000), \
8902 X(_str_sp,9000, f84d0000), \
8903 X(_sub, 1e00, eba00000), \
8904 X(_subs, 1e00, ebb00000), \
8905 X(_subi, 8000, f1a00000), \
8906 X(_subis, 8000, f1b00000), \
8907 X(_sxtb, b240, fa4ff080), \
8908 X(_sxth, b200, fa0ff080), \
8909 X(_tst, 4200, ea100f00), \
8910 X(_uxtb, b2c0, fa5ff080), \
8911 X(_uxth, b280, fa1ff080), \
8912 X(_nop, bf00, f3af8000), \
8913 X(_yield, bf10, f3af8001), \
8914 X(_wfe, bf20, f3af8002), \
8915 X(_wfi, bf30, f3af8003), \
8916 X(_sev, bf40, f3af8004),
c19d1205
ZW
8917
8918/* To catch errors in encoding functions, the codes are all offset by
8919 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8920 as 16-bit instructions. */
21d799b5 8921#define X(a,b,c) T_MNEM##a
c19d1205
ZW
8922enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8923#undef X
8924
8925#define X(a,b,c) 0x##b
8926static const unsigned short thumb_op16[] = { T16_32_TAB };
8927#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8928#undef X
8929
8930#define X(a,b,c) 0x##c
8931static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
8932#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8933#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
8934#undef X
8935#undef T16_32_TAB
8936
8937/* Thumb instruction encoders, in alphabetical order. */
8938
92e90b6e 8939/* ADDW or SUBW. */
c921be7d 8940
92e90b6e
PB
8941static void
8942do_t_add_sub_w (void)
8943{
8944 int Rd, Rn;
8945
8946 Rd = inst.operands[0].reg;
8947 Rn = inst.operands[1].reg;
8948
539d4391
NC
8949 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
8950 is the SP-{plus,minus}-immediate form of the instruction. */
8951 if (Rn == REG_SP)
8952 constraint (Rd == REG_PC, BAD_PC);
8953 else
8954 reject_bad_reg (Rd);
fdfde340 8955
92e90b6e
PB
8956 inst.instruction |= (Rn << 16) | (Rd << 8);
8957 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8958}
8959
c19d1205
ZW
8960/* Parse an add or subtract instruction. We get here with inst.instruction
8961 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8962
8963static void
8964do_t_add_sub (void)
8965{
8966 int Rd, Rs, Rn;
8967
8968 Rd = inst.operands[0].reg;
8969 Rs = (inst.operands[1].present
8970 ? inst.operands[1].reg /* Rd, Rs, foo */
8971 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8972
e07e6e58
NC
8973 if (Rd == REG_PC)
8974 set_it_insn_type_last ();
8975
c19d1205
ZW
8976 if (unified_syntax)
8977 {
0110f2b8
PB
8978 bfd_boolean flags;
8979 bfd_boolean narrow;
8980 int opcode;
8981
8982 flags = (inst.instruction == T_MNEM_adds
8983 || inst.instruction == T_MNEM_subs);
8984 if (flags)
e07e6e58 8985 narrow = !in_it_block ();
0110f2b8 8986 else
e07e6e58 8987 narrow = in_it_block ();
c19d1205 8988 if (!inst.operands[2].isreg)
b99bd4ef 8989 {
16805f35
PB
8990 int add;
8991
fdfde340
JM
8992 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8993
16805f35
PB
8994 add = (inst.instruction == T_MNEM_add
8995 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8996 opcode = 0;
8997 if (inst.size_req != 4)
8998 {
0110f2b8
PB
8999 /* Attempt to use a narrow opcode, with relaxation if
9000 appropriate. */
9001 if (Rd == REG_SP && Rs == REG_SP && !flags)
9002 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9003 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9004 opcode = T_MNEM_add_sp;
9005 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9006 opcode = T_MNEM_add_pc;
9007 else if (Rd <= 7 && Rs <= 7 && narrow)
9008 {
9009 if (flags)
9010 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9011 else
9012 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9013 }
9014 if (opcode)
9015 {
9016 inst.instruction = THUMB_OP16(opcode);
9017 inst.instruction |= (Rd << 4) | Rs;
9018 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9019 if (inst.size_req != 2)
9020 inst.relax = opcode;
9021 }
9022 else
9023 constraint (inst.size_req == 2, BAD_HIREG);
9024 }
9025 if (inst.size_req == 4
9026 || (inst.size_req != 2 && !opcode))
9027 {
efd81785
PB
9028 if (Rd == REG_PC)
9029 {
fdfde340 9030 constraint (add, BAD_PC);
efd81785
PB
9031 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9032 _("only SUBS PC, LR, #const allowed"));
9033 constraint (inst.reloc.exp.X_op != O_constant,
9034 _("expression too complex"));
9035 constraint (inst.reloc.exp.X_add_number < 0
9036 || inst.reloc.exp.X_add_number > 0xff,
9037 _("immediate value out of range"));
9038 inst.instruction = T2_SUBS_PC_LR
9039 | inst.reloc.exp.X_add_number;
9040 inst.reloc.type = BFD_RELOC_UNUSED;
9041 return;
9042 }
9043 else if (Rs == REG_PC)
16805f35
PB
9044 {
9045 /* Always use addw/subw. */
9046 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9047 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9048 }
9049 else
9050 {
9051 inst.instruction = THUMB_OP32 (inst.instruction);
9052 inst.instruction = (inst.instruction & 0xe1ffffff)
9053 | 0x10000000;
9054 if (flags)
9055 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9056 else
9057 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9058 }
dc4503c6
PB
9059 inst.instruction |= Rd << 8;
9060 inst.instruction |= Rs << 16;
0110f2b8 9061 }
b99bd4ef 9062 }
c19d1205
ZW
9063 else
9064 {
9065 Rn = inst.operands[2].reg;
9066 /* See if we can do this with a 16-bit instruction. */
9067 if (!inst.operands[2].shifted && inst.size_req != 4)
9068 {
e27ec89e
PB
9069 if (Rd > 7 || Rs > 7 || Rn > 7)
9070 narrow = FALSE;
9071
9072 if (narrow)
c19d1205 9073 {
e27ec89e
PB
9074 inst.instruction = ((inst.instruction == T_MNEM_adds
9075 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9076 ? T_OPCODE_ADD_R3
9077 : T_OPCODE_SUB_R3);
9078 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9079 return;
9080 }
b99bd4ef 9081
7e806470 9082 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9083 {
7e806470
PB
9084 /* Thumb-1 cores (except v6-M) require at least one high
9085 register in a narrow non flag setting add. */
9086 if (Rd > 7 || Rn > 7
9087 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9088 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9089 {
7e806470
PB
9090 if (Rd == Rn)
9091 {
9092 Rn = Rs;
9093 Rs = Rd;
9094 }
c19d1205
ZW
9095 inst.instruction = T_OPCODE_ADD_HI;
9096 inst.instruction |= (Rd & 8) << 4;
9097 inst.instruction |= (Rd & 7);
9098 inst.instruction |= Rn << 3;
9099 return;
9100 }
c19d1205
ZW
9101 }
9102 }
c921be7d 9103
fdfde340
JM
9104 constraint (Rd == REG_PC, BAD_PC);
9105 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9106 constraint (Rs == REG_PC, BAD_PC);
9107 reject_bad_reg (Rn);
9108
c19d1205
ZW
9109 /* If we get here, it can't be done in 16 bits. */
9110 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9111 _("shift must be constant"));
9112 inst.instruction = THUMB_OP32 (inst.instruction);
9113 inst.instruction |= Rd << 8;
9114 inst.instruction |= Rs << 16;
9115 encode_thumb32_shifted_operand (2);
9116 }
9117 }
9118 else
9119 {
9120 constraint (inst.instruction == T_MNEM_adds
9121 || inst.instruction == T_MNEM_subs,
9122 BAD_THUMB32);
b99bd4ef 9123
c19d1205 9124 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9125 {
c19d1205
ZW
9126 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9127 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9128 BAD_HIREG);
9129
9130 inst.instruction = (inst.instruction == T_MNEM_add
9131 ? 0x0000 : 0x8000);
9132 inst.instruction |= (Rd << 4) | Rs;
9133 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9134 return;
9135 }
9136
c19d1205
ZW
9137 Rn = inst.operands[2].reg;
9138 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9139
c19d1205
ZW
9140 /* We now have Rd, Rs, and Rn set to registers. */
9141 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9142 {
c19d1205
ZW
9143 /* Can't do this for SUB. */
9144 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9145 inst.instruction = T_OPCODE_ADD_HI;
9146 inst.instruction |= (Rd & 8) << 4;
9147 inst.instruction |= (Rd & 7);
9148 if (Rs == Rd)
9149 inst.instruction |= Rn << 3;
9150 else if (Rn == Rd)
9151 inst.instruction |= Rs << 3;
9152 else
9153 constraint (1, _("dest must overlap one source register"));
9154 }
9155 else
9156 {
9157 inst.instruction = (inst.instruction == T_MNEM_add
9158 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9159 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9160 }
b99bd4ef 9161 }
b99bd4ef
NC
9162}
9163
c19d1205
ZW
9164static void
9165do_t_adr (void)
9166{
fdfde340
JM
9167 unsigned Rd;
9168
9169 Rd = inst.operands[0].reg;
9170 reject_bad_reg (Rd);
9171
9172 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9173 {
9174 /* Defer to section relaxation. */
9175 inst.relax = inst.instruction;
9176 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9177 inst.instruction |= Rd << 4;
0110f2b8
PB
9178 }
9179 else if (unified_syntax && inst.size_req != 2)
e9f89963 9180 {
0110f2b8 9181 /* Generate a 32-bit opcode. */
e9f89963 9182 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9183 inst.instruction |= Rd << 8;
e9f89963
PB
9184 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9185 inst.reloc.pc_rel = 1;
9186 }
9187 else
9188 {
0110f2b8 9189 /* Generate a 16-bit opcode. */
e9f89963
PB
9190 inst.instruction = THUMB_OP16 (inst.instruction);
9191 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9192 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9193 inst.reloc.pc_rel = 1;
b99bd4ef 9194
fdfde340 9195 inst.instruction |= Rd << 4;
e9f89963 9196 }
c19d1205 9197}
b99bd4ef 9198
c19d1205
ZW
9199/* Arithmetic instructions for which there is just one 16-bit
9200 instruction encoding, and it allows only two low registers.
9201 For maximal compatibility with ARM syntax, we allow three register
9202 operands even when Thumb-32 instructions are not available, as long
9203 as the first two are identical. For instance, both "sbc r0,r1" and
9204 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9205static void
c19d1205 9206do_t_arit3 (void)
b99bd4ef 9207{
c19d1205 9208 int Rd, Rs, Rn;
b99bd4ef 9209
c19d1205
ZW
9210 Rd = inst.operands[0].reg;
9211 Rs = (inst.operands[1].present
9212 ? inst.operands[1].reg /* Rd, Rs, foo */
9213 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9214 Rn = inst.operands[2].reg;
b99bd4ef 9215
fdfde340
JM
9216 reject_bad_reg (Rd);
9217 reject_bad_reg (Rs);
9218 if (inst.operands[2].isreg)
9219 reject_bad_reg (Rn);
9220
c19d1205 9221 if (unified_syntax)
b99bd4ef 9222 {
c19d1205
ZW
9223 if (!inst.operands[2].isreg)
9224 {
9225 /* For an immediate, we always generate a 32-bit opcode;
9226 section relaxation will shrink it later if possible. */
9227 inst.instruction = THUMB_OP32 (inst.instruction);
9228 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9229 inst.instruction |= Rd << 8;
9230 inst.instruction |= Rs << 16;
9231 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9232 }
9233 else
9234 {
e27ec89e
PB
9235 bfd_boolean narrow;
9236
c19d1205 9237 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9238 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9239 narrow = !in_it_block ();
e27ec89e 9240 else
e07e6e58 9241 narrow = in_it_block ();
e27ec89e
PB
9242
9243 if (Rd > 7 || Rn > 7 || Rs > 7)
9244 narrow = FALSE;
9245 if (inst.operands[2].shifted)
9246 narrow = FALSE;
9247 if (inst.size_req == 4)
9248 narrow = FALSE;
9249
9250 if (narrow
c19d1205
ZW
9251 && Rd == Rs)
9252 {
9253 inst.instruction = THUMB_OP16 (inst.instruction);
9254 inst.instruction |= Rd;
9255 inst.instruction |= Rn << 3;
9256 return;
9257 }
b99bd4ef 9258
c19d1205
ZW
9259 /* If we get here, it can't be done in 16 bits. */
9260 constraint (inst.operands[2].shifted
9261 && inst.operands[2].immisreg,
9262 _("shift must be constant"));
9263 inst.instruction = THUMB_OP32 (inst.instruction);
9264 inst.instruction |= Rd << 8;
9265 inst.instruction |= Rs << 16;
9266 encode_thumb32_shifted_operand (2);
9267 }
a737bd4d 9268 }
c19d1205 9269 else
b99bd4ef 9270 {
c19d1205
ZW
9271 /* On its face this is a lie - the instruction does set the
9272 flags. However, the only supported mnemonic in this mode
9273 says it doesn't. */
9274 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9275
c19d1205
ZW
9276 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9277 _("unshifted register required"));
9278 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9279 constraint (Rd != Rs,
9280 _("dest and source1 must be the same register"));
a737bd4d 9281
c19d1205
ZW
9282 inst.instruction = THUMB_OP16 (inst.instruction);
9283 inst.instruction |= Rd;
9284 inst.instruction |= Rn << 3;
b99bd4ef 9285 }
a737bd4d 9286}
b99bd4ef 9287
c19d1205
ZW
9288/* Similarly, but for instructions where the arithmetic operation is
9289 commutative, so we can allow either of them to be different from
9290 the destination operand in a 16-bit instruction. For instance, all
9291 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9292 accepted. */
9293static void
9294do_t_arit3c (void)
a737bd4d 9295{
c19d1205 9296 int Rd, Rs, Rn;
b99bd4ef 9297
c19d1205
ZW
9298 Rd = inst.operands[0].reg;
9299 Rs = (inst.operands[1].present
9300 ? inst.operands[1].reg /* Rd, Rs, foo */
9301 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9302 Rn = inst.operands[2].reg;
c921be7d 9303
fdfde340
JM
9304 reject_bad_reg (Rd);
9305 reject_bad_reg (Rs);
9306 if (inst.operands[2].isreg)
9307 reject_bad_reg (Rn);
a737bd4d 9308
c19d1205 9309 if (unified_syntax)
a737bd4d 9310 {
c19d1205 9311 if (!inst.operands[2].isreg)
b99bd4ef 9312 {
c19d1205
ZW
9313 /* For an immediate, we always generate a 32-bit opcode;
9314 section relaxation will shrink it later if possible. */
9315 inst.instruction = THUMB_OP32 (inst.instruction);
9316 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9317 inst.instruction |= Rd << 8;
9318 inst.instruction |= Rs << 16;
9319 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9320 }
c19d1205 9321 else
a737bd4d 9322 {
e27ec89e
PB
9323 bfd_boolean narrow;
9324
c19d1205 9325 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9326 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9327 narrow = !in_it_block ();
e27ec89e 9328 else
e07e6e58 9329 narrow = in_it_block ();
e27ec89e
PB
9330
9331 if (Rd > 7 || Rn > 7 || Rs > 7)
9332 narrow = FALSE;
9333 if (inst.operands[2].shifted)
9334 narrow = FALSE;
9335 if (inst.size_req == 4)
9336 narrow = FALSE;
9337
9338 if (narrow)
a737bd4d 9339 {
c19d1205 9340 if (Rd == Rs)
a737bd4d 9341 {
c19d1205
ZW
9342 inst.instruction = THUMB_OP16 (inst.instruction);
9343 inst.instruction |= Rd;
9344 inst.instruction |= Rn << 3;
9345 return;
a737bd4d 9346 }
c19d1205 9347 if (Rd == Rn)
a737bd4d 9348 {
c19d1205
ZW
9349 inst.instruction = THUMB_OP16 (inst.instruction);
9350 inst.instruction |= Rd;
9351 inst.instruction |= Rs << 3;
9352 return;
a737bd4d
NC
9353 }
9354 }
c19d1205
ZW
9355
9356 /* If we get here, it can't be done in 16 bits. */
9357 constraint (inst.operands[2].shifted
9358 && inst.operands[2].immisreg,
9359 _("shift must be constant"));
9360 inst.instruction = THUMB_OP32 (inst.instruction);
9361 inst.instruction |= Rd << 8;
9362 inst.instruction |= Rs << 16;
9363 encode_thumb32_shifted_operand (2);
a737bd4d 9364 }
b99bd4ef 9365 }
c19d1205
ZW
9366 else
9367 {
9368 /* On its face this is a lie - the instruction does set the
9369 flags. However, the only supported mnemonic in this mode
9370 says it doesn't. */
9371 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9372
c19d1205
ZW
9373 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9374 _("unshifted register required"));
9375 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9376
9377 inst.instruction = THUMB_OP16 (inst.instruction);
9378 inst.instruction |= Rd;
9379
9380 if (Rd == Rs)
9381 inst.instruction |= Rn << 3;
9382 else if (Rd == Rn)
9383 inst.instruction |= Rs << 3;
9384 else
9385 constraint (1, _("dest must overlap one source register"));
9386 }
a737bd4d
NC
9387}
9388
62b3e311
PB
9389static void
9390do_t_barrier (void)
9391{
9392 if (inst.operands[0].present)
9393 {
9394 constraint ((inst.instruction & 0xf0) != 0x40
9395 && inst.operands[0].imm != 0xf,
bd3ba5d1 9396 _("bad barrier type"));
62b3e311
PB
9397 inst.instruction |= inst.operands[0].imm;
9398 }
9399 else
9400 inst.instruction |= 0xf;
9401}
9402
c19d1205
ZW
9403static void
9404do_t_bfc (void)
a737bd4d 9405{
fdfde340 9406 unsigned Rd;
c19d1205
ZW
9407 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9408 constraint (msb > 32, _("bit-field extends past end of register"));
9409 /* The instruction encoding stores the LSB and MSB,
9410 not the LSB and width. */
fdfde340
JM
9411 Rd = inst.operands[0].reg;
9412 reject_bad_reg (Rd);
9413 inst.instruction |= Rd << 8;
c19d1205
ZW
9414 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9415 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9416 inst.instruction |= msb - 1;
b99bd4ef
NC
9417}
9418
c19d1205
ZW
9419static void
9420do_t_bfi (void)
b99bd4ef 9421{
fdfde340 9422 int Rd, Rn;
c19d1205 9423 unsigned int msb;
b99bd4ef 9424
fdfde340
JM
9425 Rd = inst.operands[0].reg;
9426 reject_bad_reg (Rd);
9427
c19d1205
ZW
9428 /* #0 in second position is alternative syntax for bfc, which is
9429 the same instruction but with REG_PC in the Rm field. */
9430 if (!inst.operands[1].isreg)
fdfde340
JM
9431 Rn = REG_PC;
9432 else
9433 {
9434 Rn = inst.operands[1].reg;
9435 reject_bad_reg (Rn);
9436 }
b99bd4ef 9437
c19d1205
ZW
9438 msb = inst.operands[2].imm + inst.operands[3].imm;
9439 constraint (msb > 32, _("bit-field extends past end of register"));
9440 /* The instruction encoding stores the LSB and MSB,
9441 not the LSB and width. */
fdfde340
JM
9442 inst.instruction |= Rd << 8;
9443 inst.instruction |= Rn << 16;
c19d1205
ZW
9444 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9445 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9446 inst.instruction |= msb - 1;
b99bd4ef
NC
9447}
9448
c19d1205
ZW
9449static void
9450do_t_bfx (void)
b99bd4ef 9451{
fdfde340
JM
9452 unsigned Rd, Rn;
9453
9454 Rd = inst.operands[0].reg;
9455 Rn = inst.operands[1].reg;
9456
9457 reject_bad_reg (Rd);
9458 reject_bad_reg (Rn);
9459
c19d1205
ZW
9460 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9461 _("bit-field extends past end of register"));
fdfde340
JM
9462 inst.instruction |= Rd << 8;
9463 inst.instruction |= Rn << 16;
c19d1205
ZW
9464 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9465 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9466 inst.instruction |= inst.operands[3].imm - 1;
9467}
b99bd4ef 9468
c19d1205
ZW
9469/* ARM V5 Thumb BLX (argument parse)
9470 BLX <target_addr> which is BLX(1)
9471 BLX <Rm> which is BLX(2)
9472 Unfortunately, there are two different opcodes for this mnemonic.
9473 So, the insns[].value is not used, and the code here zaps values
9474 into inst.instruction.
b99bd4ef 9475
c19d1205
ZW
9476 ??? How to take advantage of the additional two bits of displacement
9477 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9478
c19d1205
ZW
9479static void
9480do_t_blx (void)
9481{
e07e6e58
NC
9482 set_it_insn_type_last ();
9483
c19d1205 9484 if (inst.operands[0].isreg)
fdfde340
JM
9485 {
9486 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9487 /* We have a register, so this is BLX(2). */
9488 inst.instruction |= inst.operands[0].reg << 3;
9489 }
b99bd4ef
NC
9490 else
9491 {
c19d1205 9492 /* No register. This must be BLX(1). */
2fc8bdac 9493 inst.instruction = 0xf000e800;
00adf2d4 9494 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 9495 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9496 }
9497}
9498
c19d1205
ZW
9499static void
9500do_t_branch (void)
b99bd4ef 9501{
0110f2b8 9502 int opcode;
dfa9f0d5
PB
9503 int cond;
9504
e07e6e58
NC
9505 cond = inst.cond;
9506 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9507
9508 if (in_it_block ())
dfa9f0d5
PB
9509 {
9510 /* Conditional branches inside IT blocks are encoded as unconditional
9511 branches. */
9512 cond = COND_ALWAYS;
dfa9f0d5
PB
9513 }
9514 else
9515 cond = inst.cond;
9516
9517 if (cond != COND_ALWAYS)
0110f2b8
PB
9518 opcode = T_MNEM_bcond;
9519 else
9520 opcode = inst.instruction;
9521
9522 if (unified_syntax && inst.size_req == 4)
c19d1205 9523 {
0110f2b8 9524 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9525 if (cond == COND_ALWAYS)
0110f2b8 9526 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9527 else
9528 {
9c2799c2 9529 gas_assert (cond != 0xF);
dfa9f0d5 9530 inst.instruction |= cond << 22;
c19d1205
ZW
9531 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9532 }
9533 }
b99bd4ef
NC
9534 else
9535 {
0110f2b8 9536 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9537 if (cond == COND_ALWAYS)
c19d1205
ZW
9538 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9539 else
b99bd4ef 9540 {
dfa9f0d5 9541 inst.instruction |= cond << 8;
c19d1205 9542 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9543 }
0110f2b8
PB
9544 /* Allow section relaxation. */
9545 if (unified_syntax && inst.size_req != 2)
9546 inst.relax = opcode;
b99bd4ef 9547 }
c19d1205
ZW
9548
9549 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9550}
9551
9552static void
c19d1205 9553do_t_bkpt (void)
b99bd4ef 9554{
dfa9f0d5
PB
9555 constraint (inst.cond != COND_ALWAYS,
9556 _("instruction is always unconditional"));
c19d1205 9557 if (inst.operands[0].present)
b99bd4ef 9558 {
c19d1205
ZW
9559 constraint (inst.operands[0].imm > 255,
9560 _("immediate value out of range"));
9561 inst.instruction |= inst.operands[0].imm;
e07e6e58 9562 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 9563 }
b99bd4ef
NC
9564}
9565
9566static void
c19d1205 9567do_t_branch23 (void)
b99bd4ef 9568{
e07e6e58 9569 set_it_insn_type_last ();
c19d1205 9570 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
9571 inst.reloc.pc_rel = 1;
9572
4343666d 9573#if defined(OBJ_COFF)
c19d1205
ZW
9574 /* If the destination of the branch is a defined symbol which does not have
9575 the THUMB_FUNC attribute, then we must be calling a function which has
9576 the (interfacearm) attribute. We look for the Thumb entry point to that
9577 function and change the branch to refer to that function instead. */
9578 if ( inst.reloc.exp.X_op == O_symbol
9579 && inst.reloc.exp.X_add_symbol != NULL
9580 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9581 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9582 inst.reloc.exp.X_add_symbol =
9583 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9584#endif
90e4755a
RE
9585}
9586
9587static void
c19d1205 9588do_t_bx (void)
90e4755a 9589{
e07e6e58 9590 set_it_insn_type_last ();
c19d1205
ZW
9591 inst.instruction |= inst.operands[0].reg << 3;
9592 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9593 should cause the alignment to be checked once it is known. This is
9594 because BX PC only works if the instruction is word aligned. */
9595}
90e4755a 9596
c19d1205
ZW
9597static void
9598do_t_bxj (void)
9599{
fdfde340 9600 int Rm;
90e4755a 9601
e07e6e58 9602 set_it_insn_type_last ();
fdfde340
JM
9603 Rm = inst.operands[0].reg;
9604 reject_bad_reg (Rm);
9605 inst.instruction |= Rm << 16;
90e4755a
RE
9606}
9607
9608static void
c19d1205 9609do_t_clz (void)
90e4755a 9610{
fdfde340
JM
9611 unsigned Rd;
9612 unsigned Rm;
9613
9614 Rd = inst.operands[0].reg;
9615 Rm = inst.operands[1].reg;
9616
9617 reject_bad_reg (Rd);
9618 reject_bad_reg (Rm);
9619
9620 inst.instruction |= Rd << 8;
9621 inst.instruction |= Rm << 16;
9622 inst.instruction |= Rm;
c19d1205 9623}
90e4755a 9624
dfa9f0d5
PB
9625static void
9626do_t_cps (void)
9627{
e07e6e58 9628 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
9629 inst.instruction |= inst.operands[0].imm;
9630}
9631
c19d1205
ZW
9632static void
9633do_t_cpsi (void)
9634{
e07e6e58 9635 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 9636 if (unified_syntax
62b3e311
PB
9637 && (inst.operands[1].present || inst.size_req == 4)
9638 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9639 {
c19d1205
ZW
9640 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9641 inst.instruction = 0xf3af8000;
9642 inst.instruction |= imod << 9;
9643 inst.instruction |= inst.operands[0].imm << 5;
9644 if (inst.operands[1].present)
9645 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9646 }
c19d1205 9647 else
90e4755a 9648 {
62b3e311
PB
9649 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9650 && (inst.operands[0].imm & 4),
9651 _("selected processor does not support 'A' form "
9652 "of this instruction"));
9653 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9654 _("Thumb does not support the 2-argument "
9655 "form of this instruction"));
9656 inst.instruction |= inst.operands[0].imm;
90e4755a 9657 }
90e4755a
RE
9658}
9659
c19d1205
ZW
9660/* THUMB CPY instruction (argument parse). */
9661
90e4755a 9662static void
c19d1205 9663do_t_cpy (void)
90e4755a 9664{
c19d1205 9665 if (inst.size_req == 4)
90e4755a 9666 {
c19d1205
ZW
9667 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9668 inst.instruction |= inst.operands[0].reg << 8;
9669 inst.instruction |= inst.operands[1].reg;
90e4755a 9670 }
c19d1205 9671 else
90e4755a 9672 {
c19d1205
ZW
9673 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9674 inst.instruction |= (inst.operands[0].reg & 0x7);
9675 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9676 }
90e4755a
RE
9677}
9678
90e4755a 9679static void
25fe350b 9680do_t_cbz (void)
90e4755a 9681{
e07e6e58 9682 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
9683 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9684 inst.instruction |= inst.operands[0].reg;
9685 inst.reloc.pc_rel = 1;
9686 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9687}
90e4755a 9688
62b3e311
PB
9689static void
9690do_t_dbg (void)
9691{
9692 inst.instruction |= inst.operands[0].imm;
9693}
9694
9695static void
9696do_t_div (void)
9697{
fdfde340
JM
9698 unsigned Rd, Rn, Rm;
9699
9700 Rd = inst.operands[0].reg;
9701 Rn = (inst.operands[1].present
9702 ? inst.operands[1].reg : Rd);
9703 Rm = inst.operands[2].reg;
9704
9705 reject_bad_reg (Rd);
9706 reject_bad_reg (Rn);
9707 reject_bad_reg (Rm);
9708
9709 inst.instruction |= Rd << 8;
9710 inst.instruction |= Rn << 16;
9711 inst.instruction |= Rm;
62b3e311
PB
9712}
9713
c19d1205
ZW
9714static void
9715do_t_hint (void)
9716{
9717 if (unified_syntax && inst.size_req == 4)
9718 inst.instruction = THUMB_OP32 (inst.instruction);
9719 else
9720 inst.instruction = THUMB_OP16 (inst.instruction);
9721}
90e4755a 9722
c19d1205
ZW
9723static void
9724do_t_it (void)
9725{
9726 unsigned int cond = inst.operands[0].imm;
e27ec89e 9727
e07e6e58
NC
9728 set_it_insn_type (IT_INSN);
9729 now_it.mask = (inst.instruction & 0xf) | 0x10;
9730 now_it.cc = cond;
e27ec89e
PB
9731
9732 /* If the condition is a negative condition, invert the mask. */
c19d1205 9733 if ((cond & 0x1) == 0x0)
90e4755a 9734 {
c19d1205 9735 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9736
c19d1205
ZW
9737 if ((mask & 0x7) == 0)
9738 /* no conversion needed */;
9739 else if ((mask & 0x3) == 0)
e27ec89e
PB
9740 mask ^= 0x8;
9741 else if ((mask & 0x1) == 0)
9742 mask ^= 0xC;
c19d1205 9743 else
e27ec89e 9744 mask ^= 0xE;
90e4755a 9745
e27ec89e
PB
9746 inst.instruction &= 0xfff0;
9747 inst.instruction |= mask;
c19d1205 9748 }
90e4755a 9749
c19d1205
ZW
9750 inst.instruction |= cond << 4;
9751}
90e4755a 9752
3c707909
PB
9753/* Helper function used for both push/pop and ldm/stm. */
9754static void
9755encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9756{
9757 bfd_boolean load;
9758
9759 load = (inst.instruction & (1 << 20)) != 0;
9760
9761 if (mask & (1 << 13))
9762 inst.error = _("SP not allowed in register list");
9763 if (load)
9764 {
e07e6e58
NC
9765 if (mask & (1 << 15))
9766 {
9767 if (mask & (1 << 14))
9768 inst.error = _("LR and PC should not both be in register list");
9769 else
9770 set_it_insn_type_last ();
9771 }
3c707909
PB
9772
9773 if ((mask & (1 << base)) != 0
9774 && writeback)
9775 as_warn (_("base register should not be in register list "
9776 "when written back"));
9777 }
9778 else
9779 {
9780 if (mask & (1 << 15))
9781 inst.error = _("PC not allowed in register list");
9782
9783 if (mask & (1 << base))
9784 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9785 }
9786
9787 if ((mask & (mask - 1)) == 0)
9788 {
9789 /* Single register transfers implemented as str/ldr. */
9790 if (writeback)
9791 {
9792 if (inst.instruction & (1 << 23))
9793 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9794 else
9795 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9796 }
9797 else
9798 {
9799 if (inst.instruction & (1 << 23))
9800 inst.instruction = 0x00800000; /* ia -> [base] */
9801 else
9802 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9803 }
9804
9805 inst.instruction |= 0xf8400000;
9806 if (load)
9807 inst.instruction |= 0x00100000;
9808
5f4273c7 9809 mask = ffs (mask) - 1;
3c707909
PB
9810 mask <<= 12;
9811 }
9812 else if (writeback)
9813 inst.instruction |= WRITE_BACK;
9814
9815 inst.instruction |= mask;
9816 inst.instruction |= base << 16;
9817}
9818
c19d1205
ZW
9819static void
9820do_t_ldmstm (void)
9821{
9822 /* This really doesn't seem worth it. */
9823 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9824 _("expression too complex"));
9825 constraint (inst.operands[1].writeback,
9826 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9827
c19d1205
ZW
9828 if (unified_syntax)
9829 {
3c707909
PB
9830 bfd_boolean narrow;
9831 unsigned mask;
9832
9833 narrow = FALSE;
c19d1205
ZW
9834 /* See if we can use a 16-bit instruction. */
9835 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9836 && inst.size_req != 4
3c707909 9837 && !(inst.operands[1].imm & ~0xff))
90e4755a 9838 {
3c707909 9839 mask = 1 << inst.operands[0].reg;
90e4755a 9840
3c707909
PB
9841 if (inst.operands[0].reg <= 7
9842 && (inst.instruction == T_MNEM_stmia
9843 ? inst.operands[0].writeback
9844 : (inst.operands[0].writeback
9845 == !(inst.operands[1].imm & mask))))
90e4755a 9846 {
3c707909
PB
9847 if (inst.instruction == T_MNEM_stmia
9848 && (inst.operands[1].imm & mask)
9849 && (inst.operands[1].imm & (mask - 1)))
c19d1205
ZW
9850 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9851 inst.operands[0].reg);
3c707909
PB
9852
9853 inst.instruction = THUMB_OP16 (inst.instruction);
9854 inst.instruction |= inst.operands[0].reg << 8;
9855 inst.instruction |= inst.operands[1].imm;
9856 narrow = TRUE;
90e4755a 9857 }
3c707909
PB
9858 else if (inst.operands[0] .reg == REG_SP
9859 && inst.operands[0].writeback)
90e4755a 9860 {
3c707909
PB
9861 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9862 ? T_MNEM_push : T_MNEM_pop);
9863 inst.instruction |= inst.operands[1].imm;
9864 narrow = TRUE;
90e4755a 9865 }
3c707909
PB
9866 }
9867
9868 if (!narrow)
9869 {
c19d1205
ZW
9870 if (inst.instruction < 0xffff)
9871 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 9872
5f4273c7
NC
9873 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9874 inst.operands[0].writeback);
90e4755a
RE
9875 }
9876 }
c19d1205 9877 else
90e4755a 9878 {
c19d1205
ZW
9879 constraint (inst.operands[0].reg > 7
9880 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9881 constraint (inst.instruction != T_MNEM_ldmia
9882 && inst.instruction != T_MNEM_stmia,
9883 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9884 if (inst.instruction == T_MNEM_stmia)
f03698e6 9885 {
c19d1205
ZW
9886 if (!inst.operands[0].writeback)
9887 as_warn (_("this instruction will write back the base register"));
9888 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9889 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9890 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9891 inst.operands[0].reg);
f03698e6 9892 }
c19d1205 9893 else
90e4755a 9894 {
c19d1205
ZW
9895 if (!inst.operands[0].writeback
9896 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9897 as_warn (_("this instruction will write back the base register"));
9898 else if (inst.operands[0].writeback
9899 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9900 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9901 }
9902
c19d1205
ZW
9903 inst.instruction = THUMB_OP16 (inst.instruction);
9904 inst.instruction |= inst.operands[0].reg << 8;
9905 inst.instruction |= inst.operands[1].imm;
9906 }
9907}
e28cd48c 9908
c19d1205
ZW
9909static void
9910do_t_ldrex (void)
9911{
9912 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9913 || inst.operands[1].postind || inst.operands[1].writeback
9914 || inst.operands[1].immisreg || inst.operands[1].shifted
9915 || inst.operands[1].negative,
01cfc07f 9916 BAD_ADDR_MODE);
e28cd48c 9917
5be8be5d
DG
9918 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9919
c19d1205
ZW
9920 inst.instruction |= inst.operands[0].reg << 12;
9921 inst.instruction |= inst.operands[1].reg << 16;
9922 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9923}
e28cd48c 9924
c19d1205
ZW
9925static void
9926do_t_ldrexd (void)
9927{
9928 if (!inst.operands[1].present)
1cac9012 9929 {
c19d1205
ZW
9930 constraint (inst.operands[0].reg == REG_LR,
9931 _("r14 not allowed as first register "
9932 "when second register is omitted"));
9933 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9934 }
c19d1205
ZW
9935 constraint (inst.operands[0].reg == inst.operands[1].reg,
9936 BAD_OVERLAP);
b99bd4ef 9937
c19d1205
ZW
9938 inst.instruction |= inst.operands[0].reg << 12;
9939 inst.instruction |= inst.operands[1].reg << 8;
9940 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9941}
9942
9943static void
c19d1205 9944do_t_ldst (void)
b99bd4ef 9945{
0110f2b8
PB
9946 unsigned long opcode;
9947 int Rn;
9948
e07e6e58
NC
9949 if (inst.operands[0].isreg
9950 && !inst.operands[0].preind
9951 && inst.operands[0].reg == REG_PC)
9952 set_it_insn_type_last ();
9953
0110f2b8 9954 opcode = inst.instruction;
c19d1205 9955 if (unified_syntax)
b99bd4ef 9956 {
53365c0d
PB
9957 if (!inst.operands[1].isreg)
9958 {
9959 if (opcode <= 0xffff)
9960 inst.instruction = THUMB_OP32 (opcode);
9961 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9962 return;
9963 }
0110f2b8
PB
9964 if (inst.operands[1].isreg
9965 && !inst.operands[1].writeback
c19d1205
ZW
9966 && !inst.operands[1].shifted && !inst.operands[1].postind
9967 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9968 && opcode <= 0xffff
9969 && inst.size_req != 4)
c19d1205 9970 {
0110f2b8
PB
9971 /* Insn may have a 16-bit form. */
9972 Rn = inst.operands[1].reg;
9973 if (inst.operands[1].immisreg)
9974 {
9975 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 9976 /* [Rn, Rik] */
0110f2b8
PB
9977 if (Rn <= 7 && inst.operands[1].imm <= 7)
9978 goto op16;
5be8be5d
DG
9979 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
9980 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
9981 }
9982 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9983 && opcode != T_MNEM_ldrsb)
9984 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9985 || (Rn == REG_SP && opcode == T_MNEM_str))
9986 {
9987 /* [Rn, #const] */
9988 if (Rn > 7)
9989 {
9990 if (Rn == REG_PC)
9991 {
9992 if (inst.reloc.pc_rel)
9993 opcode = T_MNEM_ldr_pc2;
9994 else
9995 opcode = T_MNEM_ldr_pc;
9996 }
9997 else
9998 {
9999 if (opcode == T_MNEM_ldr)
10000 opcode = T_MNEM_ldr_sp;
10001 else
10002 opcode = T_MNEM_str_sp;
10003 }
10004 inst.instruction = inst.operands[0].reg << 8;
10005 }
10006 else
10007 {
10008 inst.instruction = inst.operands[0].reg;
10009 inst.instruction |= inst.operands[1].reg << 3;
10010 }
10011 inst.instruction |= THUMB_OP16 (opcode);
10012 if (inst.size_req == 2)
10013 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10014 else
10015 inst.relax = opcode;
10016 return;
10017 }
c19d1205 10018 }
0110f2b8 10019 /* Definitely a 32-bit variant. */
5be8be5d
DG
10020
10021 /* Do some validations regarding addressing modes. */
10022 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10023 && opcode != T_MNEM_str)
10024 reject_bad_reg (inst.operands[1].imm);
10025
0110f2b8 10026 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10027 inst.instruction |= inst.operands[0].reg << 12;
10028 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
10029 return;
10030 }
10031
c19d1205
ZW
10032 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10033
10034 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10035 {
c19d1205
ZW
10036 /* Only [Rn,Rm] is acceptable. */
10037 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10038 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10039 || inst.operands[1].postind || inst.operands[1].shifted
10040 || inst.operands[1].negative,
10041 _("Thumb does not support this addressing mode"));
10042 inst.instruction = THUMB_OP16 (inst.instruction);
10043 goto op16;
b99bd4ef 10044 }
5f4273c7 10045
c19d1205
ZW
10046 inst.instruction = THUMB_OP16 (inst.instruction);
10047 if (!inst.operands[1].isreg)
10048 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10049 return;
b99bd4ef 10050
c19d1205
ZW
10051 constraint (!inst.operands[1].preind
10052 || inst.operands[1].shifted
10053 || inst.operands[1].writeback,
10054 _("Thumb does not support this addressing mode"));
10055 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10056 {
c19d1205
ZW
10057 constraint (inst.instruction & 0x0600,
10058 _("byte or halfword not valid for base register"));
10059 constraint (inst.operands[1].reg == REG_PC
10060 && !(inst.instruction & THUMB_LOAD_BIT),
10061 _("r15 based store not allowed"));
10062 constraint (inst.operands[1].immisreg,
10063 _("invalid base register for register offset"));
b99bd4ef 10064
c19d1205
ZW
10065 if (inst.operands[1].reg == REG_PC)
10066 inst.instruction = T_OPCODE_LDR_PC;
10067 else if (inst.instruction & THUMB_LOAD_BIT)
10068 inst.instruction = T_OPCODE_LDR_SP;
10069 else
10070 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10071
c19d1205
ZW
10072 inst.instruction |= inst.operands[0].reg << 8;
10073 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10074 return;
10075 }
90e4755a 10076
c19d1205
ZW
10077 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10078 if (!inst.operands[1].immisreg)
10079 {
10080 /* Immediate offset. */
10081 inst.instruction |= inst.operands[0].reg;
10082 inst.instruction |= inst.operands[1].reg << 3;
10083 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10084 return;
10085 }
90e4755a 10086
c19d1205
ZW
10087 /* Register offset. */
10088 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10089 constraint (inst.operands[1].negative,
10090 _("Thumb does not support this addressing mode"));
90e4755a 10091
c19d1205
ZW
10092 op16:
10093 switch (inst.instruction)
10094 {
10095 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10096 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10097 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10098 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10099 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10100 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10101 case 0x5600 /* ldrsb */:
10102 case 0x5e00 /* ldrsh */: break;
10103 default: abort ();
10104 }
90e4755a 10105
c19d1205
ZW
10106 inst.instruction |= inst.operands[0].reg;
10107 inst.instruction |= inst.operands[1].reg << 3;
10108 inst.instruction |= inst.operands[1].imm << 6;
10109}
90e4755a 10110
c19d1205
ZW
10111static void
10112do_t_ldstd (void)
10113{
10114 if (!inst.operands[1].present)
b99bd4ef 10115 {
c19d1205
ZW
10116 inst.operands[1].reg = inst.operands[0].reg + 1;
10117 constraint (inst.operands[0].reg == REG_LR,
10118 _("r14 not allowed here"));
b99bd4ef 10119 }
c19d1205
ZW
10120 inst.instruction |= inst.operands[0].reg << 12;
10121 inst.instruction |= inst.operands[1].reg << 8;
10122 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10123}
10124
c19d1205
ZW
10125static void
10126do_t_ldstt (void)
10127{
10128 inst.instruction |= inst.operands[0].reg << 12;
10129 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10130}
a737bd4d 10131
b99bd4ef 10132static void
c19d1205 10133do_t_mla (void)
b99bd4ef 10134{
fdfde340 10135 unsigned Rd, Rn, Rm, Ra;
c921be7d 10136
fdfde340
JM
10137 Rd = inst.operands[0].reg;
10138 Rn = inst.operands[1].reg;
10139 Rm = inst.operands[2].reg;
10140 Ra = inst.operands[3].reg;
10141
10142 reject_bad_reg (Rd);
10143 reject_bad_reg (Rn);
10144 reject_bad_reg (Rm);
10145 reject_bad_reg (Ra);
10146
10147 inst.instruction |= Rd << 8;
10148 inst.instruction |= Rn << 16;
10149 inst.instruction |= Rm;
10150 inst.instruction |= Ra << 12;
c19d1205 10151}
b99bd4ef 10152
c19d1205
ZW
10153static void
10154do_t_mlal (void)
10155{
fdfde340
JM
10156 unsigned RdLo, RdHi, Rn, Rm;
10157
10158 RdLo = inst.operands[0].reg;
10159 RdHi = inst.operands[1].reg;
10160 Rn = inst.operands[2].reg;
10161 Rm = inst.operands[3].reg;
10162
10163 reject_bad_reg (RdLo);
10164 reject_bad_reg (RdHi);
10165 reject_bad_reg (Rn);
10166 reject_bad_reg (Rm);
10167
10168 inst.instruction |= RdLo << 12;
10169 inst.instruction |= RdHi << 8;
10170 inst.instruction |= Rn << 16;
10171 inst.instruction |= Rm;
c19d1205 10172}
b99bd4ef 10173
c19d1205
ZW
10174static void
10175do_t_mov_cmp (void)
10176{
fdfde340
JM
10177 unsigned Rn, Rm;
10178
10179 Rn = inst.operands[0].reg;
10180 Rm = inst.operands[1].reg;
10181
e07e6e58
NC
10182 if (Rn == REG_PC)
10183 set_it_insn_type_last ();
10184
c19d1205 10185 if (unified_syntax)
b99bd4ef 10186 {
c19d1205
ZW
10187 int r0off = (inst.instruction == T_MNEM_mov
10188 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10189 unsigned long opcode;
3d388997
PB
10190 bfd_boolean narrow;
10191 bfd_boolean low_regs;
10192
fdfde340 10193 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10194 opcode = inst.instruction;
e07e6e58 10195 if (in_it_block ())
0110f2b8 10196 narrow = opcode != T_MNEM_movs;
3d388997 10197 else
0110f2b8 10198 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10199 if (inst.size_req == 4
10200 || inst.operands[1].shifted)
10201 narrow = FALSE;
10202
efd81785
PB
10203 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10204 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10205 && !inst.operands[1].shifted
fdfde340
JM
10206 && Rn == REG_PC
10207 && Rm == REG_LR)
efd81785
PB
10208 {
10209 inst.instruction = T2_SUBS_PC_LR;
10210 return;
10211 }
10212
fdfde340
JM
10213 if (opcode == T_MNEM_cmp)
10214 {
10215 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10216 if (narrow)
10217 {
10218 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10219 but valid. */
10220 warn_deprecated_sp (Rm);
10221 /* R15 was documented as a valid choice for Rm in ARMv6,
10222 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10223 tools reject R15, so we do too. */
10224 constraint (Rm == REG_PC, BAD_PC);
10225 }
10226 else
10227 reject_bad_reg (Rm);
fdfde340
JM
10228 }
10229 else if (opcode == T_MNEM_mov
10230 || opcode == T_MNEM_movs)
10231 {
10232 if (inst.operands[1].isreg)
10233 {
10234 if (opcode == T_MNEM_movs)
10235 {
10236 reject_bad_reg (Rn);
10237 reject_bad_reg (Rm);
10238 }
10239 else if ((Rn == REG_SP || Rn == REG_PC)
10240 && (Rm == REG_SP || Rm == REG_PC))
10241 reject_bad_reg (Rm);
10242 }
10243 else
10244 reject_bad_reg (Rn);
10245 }
10246
c19d1205
ZW
10247 if (!inst.operands[1].isreg)
10248 {
0110f2b8 10249 /* Immediate operand. */
e07e6e58 10250 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10251 narrow = 0;
10252 if (low_regs && narrow)
10253 {
10254 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10255 inst.instruction |= Rn << 8;
0110f2b8
PB
10256 if (inst.size_req == 2)
10257 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10258 else
10259 inst.relax = opcode;
10260 }
10261 else
10262 {
10263 inst.instruction = THUMB_OP32 (inst.instruction);
10264 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10265 inst.instruction |= Rn << r0off;
0110f2b8
PB
10266 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10267 }
c19d1205 10268 }
728ca7c9
PB
10269 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10270 && (inst.instruction == T_MNEM_mov
10271 || inst.instruction == T_MNEM_movs))
10272 {
10273 /* Register shifts are encoded as separate shift instructions. */
10274 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10275
e07e6e58 10276 if (in_it_block ())
728ca7c9
PB
10277 narrow = !flags;
10278 else
10279 narrow = flags;
10280
10281 if (inst.size_req == 4)
10282 narrow = FALSE;
10283
10284 if (!low_regs || inst.operands[1].imm > 7)
10285 narrow = FALSE;
10286
fdfde340 10287 if (Rn != Rm)
728ca7c9
PB
10288 narrow = FALSE;
10289
10290 switch (inst.operands[1].shift_kind)
10291 {
10292 case SHIFT_LSL:
10293 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10294 break;
10295 case SHIFT_ASR:
10296 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10297 break;
10298 case SHIFT_LSR:
10299 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10300 break;
10301 case SHIFT_ROR:
10302 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10303 break;
10304 default:
5f4273c7 10305 abort ();
728ca7c9
PB
10306 }
10307
10308 inst.instruction = opcode;
10309 if (narrow)
10310 {
fdfde340 10311 inst.instruction |= Rn;
728ca7c9
PB
10312 inst.instruction |= inst.operands[1].imm << 3;
10313 }
10314 else
10315 {
10316 if (flags)
10317 inst.instruction |= CONDS_BIT;
10318
fdfde340
JM
10319 inst.instruction |= Rn << 8;
10320 inst.instruction |= Rm << 16;
728ca7c9
PB
10321 inst.instruction |= inst.operands[1].imm;
10322 }
10323 }
3d388997 10324 else if (!narrow)
c19d1205 10325 {
728ca7c9
PB
10326 /* Some mov with immediate shift have narrow variants.
10327 Register shifts are handled above. */
10328 if (low_regs && inst.operands[1].shifted
10329 && (inst.instruction == T_MNEM_mov
10330 || inst.instruction == T_MNEM_movs))
10331 {
e07e6e58 10332 if (in_it_block ())
728ca7c9
PB
10333 narrow = (inst.instruction == T_MNEM_mov);
10334 else
10335 narrow = (inst.instruction == T_MNEM_movs);
10336 }
10337
10338 if (narrow)
10339 {
10340 switch (inst.operands[1].shift_kind)
10341 {
10342 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10343 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10344 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10345 default: narrow = FALSE; break;
10346 }
10347 }
10348
10349 if (narrow)
10350 {
fdfde340
JM
10351 inst.instruction |= Rn;
10352 inst.instruction |= Rm << 3;
728ca7c9
PB
10353 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10354 }
10355 else
10356 {
10357 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10358 inst.instruction |= Rn << r0off;
728ca7c9
PB
10359 encode_thumb32_shifted_operand (1);
10360 }
c19d1205
ZW
10361 }
10362 else
10363 switch (inst.instruction)
10364 {
10365 case T_MNEM_mov:
10366 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10367 inst.instruction |= (Rn & 0x8) << 4;
10368 inst.instruction |= (Rn & 0x7);
10369 inst.instruction |= Rm << 3;
c19d1205 10370 break;
b99bd4ef 10371
c19d1205
ZW
10372 case T_MNEM_movs:
10373 /* We know we have low registers at this point.
10374 Generate ADD Rd, Rs, #0. */
10375 inst.instruction = T_OPCODE_ADD_I3;
fdfde340
JM
10376 inst.instruction |= Rn;
10377 inst.instruction |= Rm << 3;
c19d1205
ZW
10378 break;
10379
10380 case T_MNEM_cmp:
3d388997 10381 if (low_regs)
c19d1205
ZW
10382 {
10383 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10384 inst.instruction |= Rn;
10385 inst.instruction |= Rm << 3;
c19d1205
ZW
10386 }
10387 else
10388 {
10389 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10390 inst.instruction |= (Rn & 0x8) << 4;
10391 inst.instruction |= (Rn & 0x7);
10392 inst.instruction |= Rm << 3;
c19d1205
ZW
10393 }
10394 break;
10395 }
b99bd4ef
NC
10396 return;
10397 }
10398
c19d1205 10399 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10400
10401 /* PR 10443: Do not silently ignore shifted operands. */
10402 constraint (inst.operands[1].shifted,
10403 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10404
c19d1205 10405 if (inst.operands[1].isreg)
b99bd4ef 10406 {
fdfde340 10407 if (Rn < 8 && Rm < 8)
b99bd4ef 10408 {
c19d1205
ZW
10409 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10410 since a MOV instruction produces unpredictable results. */
10411 if (inst.instruction == T_OPCODE_MOV_I8)
10412 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10413 else
c19d1205 10414 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10415
fdfde340
JM
10416 inst.instruction |= Rn;
10417 inst.instruction |= Rm << 3;
b99bd4ef
NC
10418 }
10419 else
10420 {
c19d1205
ZW
10421 if (inst.instruction == T_OPCODE_MOV_I8)
10422 inst.instruction = T_OPCODE_MOV_HR;
10423 else
10424 inst.instruction = T_OPCODE_CMP_HR;
10425 do_t_cpy ();
b99bd4ef
NC
10426 }
10427 }
c19d1205 10428 else
b99bd4ef 10429 {
fdfde340 10430 constraint (Rn > 7,
c19d1205 10431 _("only lo regs allowed with immediate"));
fdfde340 10432 inst.instruction |= Rn << 8;
c19d1205
ZW
10433 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10434 }
10435}
b99bd4ef 10436
c19d1205
ZW
10437static void
10438do_t_mov16 (void)
10439{
fdfde340 10440 unsigned Rd;
b6895b4f
PB
10441 bfd_vma imm;
10442 bfd_boolean top;
10443
10444 top = (inst.instruction & 0x00800000) != 0;
10445 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10446 {
10447 constraint (top, _(":lower16: not allowed this instruction"));
10448 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10449 }
10450 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10451 {
10452 constraint (!top, _(":upper16: not allowed this instruction"));
10453 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10454 }
10455
fdfde340
JM
10456 Rd = inst.operands[0].reg;
10457 reject_bad_reg (Rd);
10458
10459 inst.instruction |= Rd << 8;
b6895b4f
PB
10460 if (inst.reloc.type == BFD_RELOC_UNUSED)
10461 {
10462 imm = inst.reloc.exp.X_add_number;
10463 inst.instruction |= (imm & 0xf000) << 4;
10464 inst.instruction |= (imm & 0x0800) << 15;
10465 inst.instruction |= (imm & 0x0700) << 4;
10466 inst.instruction |= (imm & 0x00ff);
10467 }
c19d1205 10468}
b99bd4ef 10469
c19d1205
ZW
10470static void
10471do_t_mvn_tst (void)
10472{
fdfde340 10473 unsigned Rn, Rm;
c921be7d 10474
fdfde340
JM
10475 Rn = inst.operands[0].reg;
10476 Rm = inst.operands[1].reg;
10477
10478 if (inst.instruction == T_MNEM_cmp
10479 || inst.instruction == T_MNEM_cmn)
10480 constraint (Rn == REG_PC, BAD_PC);
10481 else
10482 reject_bad_reg (Rn);
10483 reject_bad_reg (Rm);
10484
c19d1205
ZW
10485 if (unified_syntax)
10486 {
10487 int r0off = (inst.instruction == T_MNEM_mvn
10488 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
10489 bfd_boolean narrow;
10490
10491 if (inst.size_req == 4
10492 || inst.instruction > 0xffff
10493 || inst.operands[1].shifted
fdfde340 10494 || Rn > 7 || Rm > 7)
3d388997
PB
10495 narrow = FALSE;
10496 else if (inst.instruction == T_MNEM_cmn)
10497 narrow = TRUE;
10498 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10499 narrow = !in_it_block ();
3d388997 10500 else
e07e6e58 10501 narrow = in_it_block ();
3d388997 10502
c19d1205 10503 if (!inst.operands[1].isreg)
b99bd4ef 10504 {
c19d1205
ZW
10505 /* For an immediate, we always generate a 32-bit opcode;
10506 section relaxation will shrink it later if possible. */
10507 if (inst.instruction < 0xffff)
10508 inst.instruction = THUMB_OP32 (inst.instruction);
10509 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10510 inst.instruction |= Rn << r0off;
c19d1205 10511 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10512 }
c19d1205 10513 else
b99bd4ef 10514 {
c19d1205 10515 /* See if we can do this with a 16-bit instruction. */
3d388997 10516 if (narrow)
b99bd4ef 10517 {
c19d1205 10518 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10519 inst.instruction |= Rn;
10520 inst.instruction |= Rm << 3;
b99bd4ef 10521 }
c19d1205 10522 else
b99bd4ef 10523 {
c19d1205
ZW
10524 constraint (inst.operands[1].shifted
10525 && inst.operands[1].immisreg,
10526 _("shift must be constant"));
10527 if (inst.instruction < 0xffff)
10528 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10529 inst.instruction |= Rn << r0off;
c19d1205 10530 encode_thumb32_shifted_operand (1);
b99bd4ef 10531 }
b99bd4ef
NC
10532 }
10533 }
10534 else
10535 {
c19d1205
ZW
10536 constraint (inst.instruction > 0xffff
10537 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10538 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10539 _("unshifted register required"));
fdfde340 10540 constraint (Rn > 7 || Rm > 7,
c19d1205 10541 BAD_HIREG);
b99bd4ef 10542
c19d1205 10543 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10544 inst.instruction |= Rn;
10545 inst.instruction |= Rm << 3;
b99bd4ef 10546 }
b99bd4ef
NC
10547}
10548
b05fe5cf 10549static void
c19d1205 10550do_t_mrs (void)
b05fe5cf 10551{
fdfde340 10552 unsigned Rd;
62b3e311 10553 int flags;
037e8744
JB
10554
10555 if (do_vfp_nsyn_mrs () == SUCCESS)
10556 return;
10557
62b3e311
PB
10558 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10559 if (flags == 0)
10560 {
7e806470 10561 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10562 _("selected processor does not support "
10563 "requested special purpose register"));
10564 }
10565 else
10566 {
10567 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10568 _("selected processor does not support "
44bf2362 10569 "requested special purpose register"));
62b3e311
PB
10570 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10571 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10572 _("'CPSR' or 'SPSR' expected"));
10573 }
5f4273c7 10574
fdfde340
JM
10575 Rd = inst.operands[0].reg;
10576 reject_bad_reg (Rd);
10577
10578 inst.instruction |= Rd << 8;
62b3e311
PB
10579 inst.instruction |= (flags & SPSR_BIT) >> 2;
10580 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 10581}
b05fe5cf 10582
c19d1205
ZW
10583static void
10584do_t_msr (void)
10585{
62b3e311 10586 int flags;
fdfde340 10587 unsigned Rn;
62b3e311 10588
037e8744
JB
10589 if (do_vfp_nsyn_msr () == SUCCESS)
10590 return;
10591
c19d1205
ZW
10592 constraint (!inst.operands[1].isreg,
10593 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
10594 flags = inst.operands[0].imm;
10595 if (flags & ~0xff)
10596 {
10597 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10598 _("selected processor does not support "
10599 "requested special purpose register"));
10600 }
10601 else
10602 {
7e806470 10603 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10604 _("selected processor does not support "
10605 "requested special purpose register"));
10606 flags |= PSR_f;
10607 }
c921be7d 10608
fdfde340
JM
10609 Rn = inst.operands[1].reg;
10610 reject_bad_reg (Rn);
10611
62b3e311
PB
10612 inst.instruction |= (flags & SPSR_BIT) >> 2;
10613 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10614 inst.instruction |= (flags & 0xff);
fdfde340 10615 inst.instruction |= Rn << 16;
c19d1205 10616}
b05fe5cf 10617
c19d1205
ZW
10618static void
10619do_t_mul (void)
10620{
17828f45 10621 bfd_boolean narrow;
fdfde340 10622 unsigned Rd, Rn, Rm;
17828f45 10623
c19d1205
ZW
10624 if (!inst.operands[2].present)
10625 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 10626
fdfde340
JM
10627 Rd = inst.operands[0].reg;
10628 Rn = inst.operands[1].reg;
10629 Rm = inst.operands[2].reg;
10630
17828f45 10631 if (unified_syntax)
b05fe5cf 10632 {
17828f45 10633 if (inst.size_req == 4
fdfde340
JM
10634 || (Rd != Rn
10635 && Rd != Rm)
10636 || Rn > 7
10637 || Rm > 7)
17828f45
JM
10638 narrow = FALSE;
10639 else if (inst.instruction == T_MNEM_muls)
e07e6e58 10640 narrow = !in_it_block ();
17828f45 10641 else
e07e6e58 10642 narrow = in_it_block ();
b05fe5cf 10643 }
c19d1205 10644 else
b05fe5cf 10645 {
17828f45 10646 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 10647 constraint (Rn > 7 || Rm > 7,
c19d1205 10648 BAD_HIREG);
17828f45
JM
10649 narrow = TRUE;
10650 }
b05fe5cf 10651
17828f45
JM
10652 if (narrow)
10653 {
10654 /* 16-bit MULS/Conditional MUL. */
c19d1205 10655 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10656 inst.instruction |= Rd;
b05fe5cf 10657
fdfde340
JM
10658 if (Rd == Rn)
10659 inst.instruction |= Rm << 3;
10660 else if (Rd == Rm)
10661 inst.instruction |= Rn << 3;
c19d1205
ZW
10662 else
10663 constraint (1, _("dest must overlap one source register"));
10664 }
17828f45
JM
10665 else
10666 {
e07e6e58
NC
10667 constraint (inst.instruction != T_MNEM_mul,
10668 _("Thumb-2 MUL must not set flags"));
17828f45
JM
10669 /* 32-bit MUL. */
10670 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10671 inst.instruction |= Rd << 8;
10672 inst.instruction |= Rn << 16;
10673 inst.instruction |= Rm << 0;
10674
10675 reject_bad_reg (Rd);
10676 reject_bad_reg (Rn);
10677 reject_bad_reg (Rm);
17828f45 10678 }
c19d1205 10679}
b05fe5cf 10680
c19d1205
ZW
10681static void
10682do_t_mull (void)
10683{
fdfde340 10684 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 10685
fdfde340
JM
10686 RdLo = inst.operands[0].reg;
10687 RdHi = inst.operands[1].reg;
10688 Rn = inst.operands[2].reg;
10689 Rm = inst.operands[3].reg;
10690
10691 reject_bad_reg (RdLo);
10692 reject_bad_reg (RdHi);
10693 reject_bad_reg (Rn);
10694 reject_bad_reg (Rm);
10695
10696 inst.instruction |= RdLo << 12;
10697 inst.instruction |= RdHi << 8;
10698 inst.instruction |= Rn << 16;
10699 inst.instruction |= Rm;
10700
10701 if (RdLo == RdHi)
c19d1205
ZW
10702 as_tsktsk (_("rdhi and rdlo must be different"));
10703}
b05fe5cf 10704
c19d1205
ZW
10705static void
10706do_t_nop (void)
10707{
e07e6e58
NC
10708 set_it_insn_type (NEUTRAL_IT_INSN);
10709
c19d1205
ZW
10710 if (unified_syntax)
10711 {
10712 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 10713 {
c19d1205
ZW
10714 inst.instruction = THUMB_OP32 (inst.instruction);
10715 inst.instruction |= inst.operands[0].imm;
10716 }
10717 else
10718 {
bc2d1808
NC
10719 /* PR9722: Check for Thumb2 availability before
10720 generating a thumb2 nop instruction. */
afa62d5e 10721 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
10722 {
10723 inst.instruction = THUMB_OP16 (inst.instruction);
10724 inst.instruction |= inst.operands[0].imm << 4;
10725 }
10726 else
10727 inst.instruction = 0x46c0;
c19d1205
ZW
10728 }
10729 }
10730 else
10731 {
10732 constraint (inst.operands[0].present,
10733 _("Thumb does not support NOP with hints"));
10734 inst.instruction = 0x46c0;
10735 }
10736}
b05fe5cf 10737
c19d1205
ZW
10738static void
10739do_t_neg (void)
10740{
10741 if (unified_syntax)
10742 {
3d388997
PB
10743 bfd_boolean narrow;
10744
10745 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10746 narrow = !in_it_block ();
3d388997 10747 else
e07e6e58 10748 narrow = in_it_block ();
3d388997
PB
10749 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10750 narrow = FALSE;
10751 if (inst.size_req == 4)
10752 narrow = FALSE;
10753
10754 if (!narrow)
c19d1205
ZW
10755 {
10756 inst.instruction = THUMB_OP32 (inst.instruction);
10757 inst.instruction |= inst.operands[0].reg << 8;
10758 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
10759 }
10760 else
10761 {
c19d1205
ZW
10762 inst.instruction = THUMB_OP16 (inst.instruction);
10763 inst.instruction |= inst.operands[0].reg;
10764 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
10765 }
10766 }
10767 else
10768 {
c19d1205
ZW
10769 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10770 BAD_HIREG);
10771 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10772
10773 inst.instruction = THUMB_OP16 (inst.instruction);
10774 inst.instruction |= inst.operands[0].reg;
10775 inst.instruction |= inst.operands[1].reg << 3;
10776 }
10777}
10778
1c444d06
JM
10779static void
10780do_t_orn (void)
10781{
10782 unsigned Rd, Rn;
10783
10784 Rd = inst.operands[0].reg;
10785 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10786
fdfde340
JM
10787 reject_bad_reg (Rd);
10788 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10789 reject_bad_reg (Rn);
10790
1c444d06
JM
10791 inst.instruction |= Rd << 8;
10792 inst.instruction |= Rn << 16;
10793
10794 if (!inst.operands[2].isreg)
10795 {
10796 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10797 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10798 }
10799 else
10800 {
10801 unsigned Rm;
10802
10803 Rm = inst.operands[2].reg;
fdfde340 10804 reject_bad_reg (Rm);
1c444d06
JM
10805
10806 constraint (inst.operands[2].shifted
10807 && inst.operands[2].immisreg,
10808 _("shift must be constant"));
10809 encode_thumb32_shifted_operand (2);
10810 }
10811}
10812
c19d1205
ZW
10813static void
10814do_t_pkhbt (void)
10815{
fdfde340
JM
10816 unsigned Rd, Rn, Rm;
10817
10818 Rd = inst.operands[0].reg;
10819 Rn = inst.operands[1].reg;
10820 Rm = inst.operands[2].reg;
10821
10822 reject_bad_reg (Rd);
10823 reject_bad_reg (Rn);
10824 reject_bad_reg (Rm);
10825
10826 inst.instruction |= Rd << 8;
10827 inst.instruction |= Rn << 16;
10828 inst.instruction |= Rm;
c19d1205
ZW
10829 if (inst.operands[3].present)
10830 {
10831 unsigned int val = inst.reloc.exp.X_add_number;
10832 constraint (inst.reloc.exp.X_op != O_constant,
10833 _("expression too complex"));
10834 inst.instruction |= (val & 0x1c) << 10;
10835 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 10836 }
c19d1205 10837}
b05fe5cf 10838
c19d1205
ZW
10839static void
10840do_t_pkhtb (void)
10841{
10842 if (!inst.operands[3].present)
1ef52f49
NC
10843 {
10844 unsigned Rtmp;
10845
10846 inst.instruction &= ~0x00000020;
10847
10848 /* PR 10168. Swap the Rm and Rn registers. */
10849 Rtmp = inst.operands[1].reg;
10850 inst.operands[1].reg = inst.operands[2].reg;
10851 inst.operands[2].reg = Rtmp;
10852 }
c19d1205 10853 do_t_pkhbt ();
b05fe5cf
ZW
10854}
10855
c19d1205
ZW
10856static void
10857do_t_pld (void)
10858{
fdfde340
JM
10859 if (inst.operands[0].immisreg)
10860 reject_bad_reg (inst.operands[0].imm);
10861
c19d1205
ZW
10862 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10863}
b05fe5cf 10864
c19d1205
ZW
10865static void
10866do_t_push_pop (void)
b99bd4ef 10867{
e9f89963 10868 unsigned mask;
5f4273c7 10869
c19d1205
ZW
10870 constraint (inst.operands[0].writeback,
10871 _("push/pop do not support {reglist}^"));
10872 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10873 _("expression too complex"));
b99bd4ef 10874
e9f89963
PB
10875 mask = inst.operands[0].imm;
10876 if ((mask & ~0xff) == 0)
3c707909 10877 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 10878 else if ((inst.instruction == T_MNEM_push
e9f89963 10879 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 10880 || (inst.instruction == T_MNEM_pop
e9f89963 10881 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 10882 {
c19d1205
ZW
10883 inst.instruction = THUMB_OP16 (inst.instruction);
10884 inst.instruction |= THUMB_PP_PC_LR;
3c707909 10885 inst.instruction |= mask & 0xff;
c19d1205
ZW
10886 }
10887 else if (unified_syntax)
10888 {
3c707909 10889 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 10890 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
10891 }
10892 else
10893 {
10894 inst.error = _("invalid register list to push/pop instruction");
10895 return;
10896 }
c19d1205 10897}
b99bd4ef 10898
c19d1205
ZW
10899static void
10900do_t_rbit (void)
10901{
fdfde340
JM
10902 unsigned Rd, Rm;
10903
10904 Rd = inst.operands[0].reg;
10905 Rm = inst.operands[1].reg;
10906
10907 reject_bad_reg (Rd);
10908 reject_bad_reg (Rm);
10909
10910 inst.instruction |= Rd << 8;
10911 inst.instruction |= Rm << 16;
10912 inst.instruction |= Rm;
c19d1205 10913}
b99bd4ef 10914
c19d1205
ZW
10915static void
10916do_t_rev (void)
10917{
fdfde340
JM
10918 unsigned Rd, Rm;
10919
10920 Rd = inst.operands[0].reg;
10921 Rm = inst.operands[1].reg;
10922
10923 reject_bad_reg (Rd);
10924 reject_bad_reg (Rm);
10925
10926 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
10927 && inst.size_req != 4)
10928 {
10929 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10930 inst.instruction |= Rd;
10931 inst.instruction |= Rm << 3;
c19d1205
ZW
10932 }
10933 else if (unified_syntax)
10934 {
10935 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10936 inst.instruction |= Rd << 8;
10937 inst.instruction |= Rm << 16;
10938 inst.instruction |= Rm;
c19d1205
ZW
10939 }
10940 else
10941 inst.error = BAD_HIREG;
10942}
b99bd4ef 10943
1c444d06
JM
10944static void
10945do_t_rrx (void)
10946{
10947 unsigned Rd, Rm;
10948
10949 Rd = inst.operands[0].reg;
10950 Rm = inst.operands[1].reg;
10951
fdfde340
JM
10952 reject_bad_reg (Rd);
10953 reject_bad_reg (Rm);
c921be7d 10954
1c444d06
JM
10955 inst.instruction |= Rd << 8;
10956 inst.instruction |= Rm;
10957}
10958
c19d1205
ZW
10959static void
10960do_t_rsb (void)
10961{
fdfde340 10962 unsigned Rd, Rs;
b99bd4ef 10963
c19d1205
ZW
10964 Rd = inst.operands[0].reg;
10965 Rs = (inst.operands[1].present
10966 ? inst.operands[1].reg /* Rd, Rs, foo */
10967 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 10968
fdfde340
JM
10969 reject_bad_reg (Rd);
10970 reject_bad_reg (Rs);
10971 if (inst.operands[2].isreg)
10972 reject_bad_reg (inst.operands[2].reg);
10973
c19d1205
ZW
10974 inst.instruction |= Rd << 8;
10975 inst.instruction |= Rs << 16;
10976 if (!inst.operands[2].isreg)
10977 {
026d3abb
PB
10978 bfd_boolean narrow;
10979
10980 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 10981 narrow = !in_it_block ();
026d3abb 10982 else
e07e6e58 10983 narrow = in_it_block ();
026d3abb
PB
10984
10985 if (Rd > 7 || Rs > 7)
10986 narrow = FALSE;
10987
10988 if (inst.size_req == 4 || !unified_syntax)
10989 narrow = FALSE;
10990
10991 if (inst.reloc.exp.X_op != O_constant
10992 || inst.reloc.exp.X_add_number != 0)
10993 narrow = FALSE;
10994
10995 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10996 relaxation, but it doesn't seem worth the hassle. */
10997 if (narrow)
10998 {
10999 inst.reloc.type = BFD_RELOC_UNUSED;
11000 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11001 inst.instruction |= Rs << 3;
11002 inst.instruction |= Rd;
11003 }
11004 else
11005 {
11006 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11007 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11008 }
c19d1205
ZW
11009 }
11010 else
11011 encode_thumb32_shifted_operand (2);
11012}
b99bd4ef 11013
c19d1205
ZW
11014static void
11015do_t_setend (void)
11016{
e07e6e58 11017 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11018 if (inst.operands[0].imm)
11019 inst.instruction |= 0x8;
11020}
b99bd4ef 11021
c19d1205
ZW
11022static void
11023do_t_shift (void)
11024{
11025 if (!inst.operands[1].present)
11026 inst.operands[1].reg = inst.operands[0].reg;
11027
11028 if (unified_syntax)
11029 {
3d388997
PB
11030 bfd_boolean narrow;
11031 int shift_kind;
11032
11033 switch (inst.instruction)
11034 {
11035 case T_MNEM_asr:
11036 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11037 case T_MNEM_lsl:
11038 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11039 case T_MNEM_lsr:
11040 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11041 case T_MNEM_ror:
11042 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11043 default: abort ();
11044 }
11045
11046 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11047 narrow = !in_it_block ();
3d388997 11048 else
e07e6e58 11049 narrow = in_it_block ();
3d388997
PB
11050 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11051 narrow = FALSE;
11052 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11053 narrow = FALSE;
11054 if (inst.operands[2].isreg
11055 && (inst.operands[1].reg != inst.operands[0].reg
11056 || inst.operands[2].reg > 7))
11057 narrow = FALSE;
11058 if (inst.size_req == 4)
11059 narrow = FALSE;
11060
fdfde340
JM
11061 reject_bad_reg (inst.operands[0].reg);
11062 reject_bad_reg (inst.operands[1].reg);
c921be7d 11063
3d388997 11064 if (!narrow)
c19d1205
ZW
11065 {
11066 if (inst.operands[2].isreg)
b99bd4ef 11067 {
fdfde340 11068 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11069 inst.instruction = THUMB_OP32 (inst.instruction);
11070 inst.instruction |= inst.operands[0].reg << 8;
11071 inst.instruction |= inst.operands[1].reg << 16;
11072 inst.instruction |= inst.operands[2].reg;
11073 }
11074 else
11075 {
11076 inst.operands[1].shifted = 1;
3d388997 11077 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11078 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11079 ? T_MNEM_movs : T_MNEM_mov);
11080 inst.instruction |= inst.operands[0].reg << 8;
11081 encode_thumb32_shifted_operand (1);
11082 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11083 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11084 }
11085 }
11086 else
11087 {
c19d1205 11088 if (inst.operands[2].isreg)
b99bd4ef 11089 {
3d388997 11090 switch (shift_kind)
b99bd4ef 11091 {
3d388997
PB
11092 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11093 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11094 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11095 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11096 default: abort ();
b99bd4ef 11097 }
5f4273c7 11098
c19d1205
ZW
11099 inst.instruction |= inst.operands[0].reg;
11100 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
11101 }
11102 else
11103 {
3d388997 11104 switch (shift_kind)
b99bd4ef 11105 {
3d388997
PB
11106 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11107 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11108 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11109 default: abort ();
b99bd4ef 11110 }
c19d1205
ZW
11111 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11112 inst.instruction |= inst.operands[0].reg;
11113 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11114 }
11115 }
c19d1205
ZW
11116 }
11117 else
11118 {
11119 constraint (inst.operands[0].reg > 7
11120 || inst.operands[1].reg > 7, BAD_HIREG);
11121 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11122
c19d1205
ZW
11123 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11124 {
11125 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11126 constraint (inst.operands[0].reg != inst.operands[1].reg,
11127 _("source1 and dest must be same register"));
b99bd4ef 11128
c19d1205
ZW
11129 switch (inst.instruction)
11130 {
11131 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11132 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11133 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11134 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11135 default: abort ();
11136 }
5f4273c7 11137
c19d1205
ZW
11138 inst.instruction |= inst.operands[0].reg;
11139 inst.instruction |= inst.operands[2].reg << 3;
11140 }
11141 else
b99bd4ef 11142 {
c19d1205
ZW
11143 switch (inst.instruction)
11144 {
11145 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11146 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11147 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11148 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11149 default: abort ();
11150 }
11151 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11152 inst.instruction |= inst.operands[0].reg;
11153 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11154 }
11155 }
b99bd4ef
NC
11156}
11157
11158static void
c19d1205 11159do_t_simd (void)
b99bd4ef 11160{
fdfde340
JM
11161 unsigned Rd, Rn, Rm;
11162
11163 Rd = inst.operands[0].reg;
11164 Rn = inst.operands[1].reg;
11165 Rm = inst.operands[2].reg;
11166
11167 reject_bad_reg (Rd);
11168 reject_bad_reg (Rn);
11169 reject_bad_reg (Rm);
11170
11171 inst.instruction |= Rd << 8;
11172 inst.instruction |= Rn << 16;
11173 inst.instruction |= Rm;
c19d1205 11174}
b99bd4ef 11175
03ee1b7f
NC
11176static void
11177do_t_simd2 (void)
11178{
11179 unsigned Rd, Rn, Rm;
11180
11181 Rd = inst.operands[0].reg;
11182 Rm = inst.operands[1].reg;
11183 Rn = inst.operands[2].reg;
11184
11185 reject_bad_reg (Rd);
11186 reject_bad_reg (Rn);
11187 reject_bad_reg (Rm);
11188
11189 inst.instruction |= Rd << 8;
11190 inst.instruction |= Rn << 16;
11191 inst.instruction |= Rm;
11192}
11193
c19d1205 11194static void
3eb17e6b 11195do_t_smc (void)
c19d1205
ZW
11196{
11197 unsigned int value = inst.reloc.exp.X_add_number;
11198 constraint (inst.reloc.exp.X_op != O_constant,
11199 _("expression too complex"));
11200 inst.reloc.type = BFD_RELOC_UNUSED;
11201 inst.instruction |= (value & 0xf000) >> 12;
11202 inst.instruction |= (value & 0x0ff0);
11203 inst.instruction |= (value & 0x000f) << 16;
11204}
b99bd4ef 11205
c19d1205 11206static void
3a21c15a 11207do_t_ssat_usat (int bias)
c19d1205 11208{
fdfde340
JM
11209 unsigned Rd, Rn;
11210
11211 Rd = inst.operands[0].reg;
11212 Rn = inst.operands[2].reg;
11213
11214 reject_bad_reg (Rd);
11215 reject_bad_reg (Rn);
11216
11217 inst.instruction |= Rd << 8;
3a21c15a 11218 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11219 inst.instruction |= Rn << 16;
b99bd4ef 11220
c19d1205 11221 if (inst.operands[3].present)
b99bd4ef 11222 {
3a21c15a
NC
11223 offsetT shift_amount = inst.reloc.exp.X_add_number;
11224
11225 inst.reloc.type = BFD_RELOC_UNUSED;
11226
c19d1205
ZW
11227 constraint (inst.reloc.exp.X_op != O_constant,
11228 _("expression too complex"));
b99bd4ef 11229
3a21c15a 11230 if (shift_amount != 0)
6189168b 11231 {
3a21c15a
NC
11232 constraint (shift_amount > 31,
11233 _("shift expression is too large"));
11234
c19d1205 11235 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11236 inst.instruction |= 0x00200000; /* sh bit. */
11237
11238 inst.instruction |= (shift_amount & 0x1c) << 10;
11239 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11240 }
11241 }
b99bd4ef 11242}
c921be7d 11243
3a21c15a
NC
11244static void
11245do_t_ssat (void)
11246{
11247 do_t_ssat_usat (1);
11248}
b99bd4ef 11249
0dd132b6 11250static void
c19d1205 11251do_t_ssat16 (void)
0dd132b6 11252{
fdfde340
JM
11253 unsigned Rd, Rn;
11254
11255 Rd = inst.operands[0].reg;
11256 Rn = inst.operands[2].reg;
11257
11258 reject_bad_reg (Rd);
11259 reject_bad_reg (Rn);
11260
11261 inst.instruction |= Rd << 8;
c19d1205 11262 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11263 inst.instruction |= Rn << 16;
c19d1205 11264}
0dd132b6 11265
c19d1205
ZW
11266static void
11267do_t_strex (void)
11268{
11269 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11270 || inst.operands[2].postind || inst.operands[2].writeback
11271 || inst.operands[2].immisreg || inst.operands[2].shifted
11272 || inst.operands[2].negative,
01cfc07f 11273 BAD_ADDR_MODE);
0dd132b6 11274
5be8be5d
DG
11275 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11276
c19d1205
ZW
11277 inst.instruction |= inst.operands[0].reg << 8;
11278 inst.instruction |= inst.operands[1].reg << 12;
11279 inst.instruction |= inst.operands[2].reg << 16;
11280 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11281}
11282
b99bd4ef 11283static void
c19d1205 11284do_t_strexd (void)
b99bd4ef 11285{
c19d1205
ZW
11286 if (!inst.operands[2].present)
11287 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11288
c19d1205
ZW
11289 constraint (inst.operands[0].reg == inst.operands[1].reg
11290 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 11291 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 11292 BAD_OVERLAP);
b99bd4ef 11293
c19d1205
ZW
11294 inst.instruction |= inst.operands[0].reg;
11295 inst.instruction |= inst.operands[1].reg << 12;
11296 inst.instruction |= inst.operands[2].reg << 8;
11297 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11298}
11299
11300static void
c19d1205 11301do_t_sxtah (void)
b99bd4ef 11302{
fdfde340
JM
11303 unsigned Rd, Rn, Rm;
11304
11305 Rd = inst.operands[0].reg;
11306 Rn = inst.operands[1].reg;
11307 Rm = inst.operands[2].reg;
11308
11309 reject_bad_reg (Rd);
11310 reject_bad_reg (Rn);
11311 reject_bad_reg (Rm);
11312
11313 inst.instruction |= Rd << 8;
11314 inst.instruction |= Rn << 16;
11315 inst.instruction |= Rm;
c19d1205
ZW
11316 inst.instruction |= inst.operands[3].imm << 4;
11317}
b99bd4ef 11318
c19d1205
ZW
11319static void
11320do_t_sxth (void)
11321{
fdfde340
JM
11322 unsigned Rd, Rm;
11323
11324 Rd = inst.operands[0].reg;
11325 Rm = inst.operands[1].reg;
11326
11327 reject_bad_reg (Rd);
11328 reject_bad_reg (Rm);
c921be7d
NC
11329
11330 if (inst.instruction <= 0xffff
11331 && inst.size_req != 4
fdfde340 11332 && Rd <= 7 && Rm <= 7
c19d1205 11333 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11334 {
c19d1205 11335 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11336 inst.instruction |= Rd;
11337 inst.instruction |= Rm << 3;
b99bd4ef 11338 }
c19d1205 11339 else if (unified_syntax)
b99bd4ef 11340 {
c19d1205
ZW
11341 if (inst.instruction <= 0xffff)
11342 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11343 inst.instruction |= Rd << 8;
11344 inst.instruction |= Rm;
c19d1205 11345 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11346 }
c19d1205 11347 else
b99bd4ef 11348 {
c19d1205
ZW
11349 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11350 _("Thumb encoding does not support rotation"));
11351 constraint (1, BAD_HIREG);
b99bd4ef 11352 }
c19d1205 11353}
b99bd4ef 11354
c19d1205
ZW
11355static void
11356do_t_swi (void)
11357{
11358 inst.reloc.type = BFD_RELOC_ARM_SWI;
11359}
b99bd4ef 11360
92e90b6e
PB
11361static void
11362do_t_tb (void)
11363{
fdfde340 11364 unsigned Rn, Rm;
92e90b6e
PB
11365 int half;
11366
11367 half = (inst.instruction & 0x10) != 0;
e07e6e58 11368 set_it_insn_type_last ();
dfa9f0d5
PB
11369 constraint (inst.operands[0].immisreg,
11370 _("instruction requires register index"));
fdfde340
JM
11371
11372 Rn = inst.operands[0].reg;
11373 Rm = inst.operands[0].imm;
c921be7d 11374
fdfde340
JM
11375 constraint (Rn == REG_SP, BAD_SP);
11376 reject_bad_reg (Rm);
11377
92e90b6e
PB
11378 constraint (!half && inst.operands[0].shifted,
11379 _("instruction does not allow shifted index"));
fdfde340 11380 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11381}
11382
c19d1205
ZW
11383static void
11384do_t_usat (void)
11385{
3a21c15a 11386 do_t_ssat_usat (0);
b99bd4ef
NC
11387}
11388
11389static void
c19d1205 11390do_t_usat16 (void)
b99bd4ef 11391{
fdfde340
JM
11392 unsigned Rd, Rn;
11393
11394 Rd = inst.operands[0].reg;
11395 Rn = inst.operands[2].reg;
11396
11397 reject_bad_reg (Rd);
11398 reject_bad_reg (Rn);
11399
11400 inst.instruction |= Rd << 8;
c19d1205 11401 inst.instruction |= inst.operands[1].imm;
fdfde340 11402 inst.instruction |= Rn << 16;
b99bd4ef 11403}
c19d1205 11404
5287ad62 11405/* Neon instruction encoder helpers. */
5f4273c7 11406
5287ad62 11407/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 11408
5287ad62
JB
11409/* An "invalid" code for the following tables. */
11410#define N_INV -1u
11411
11412struct neon_tab_entry
b99bd4ef 11413{
5287ad62
JB
11414 unsigned integer;
11415 unsigned float_or_poly;
11416 unsigned scalar_or_imm;
11417};
5f4273c7 11418
5287ad62
JB
11419/* Map overloaded Neon opcodes to their respective encodings. */
11420#define NEON_ENC_TAB \
11421 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11422 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11423 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11424 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11425 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11426 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11427 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11428 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11429 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11430 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11431 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11432 /* Register variants of the following two instructions are encoded as
e07e6e58 11433 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
11434 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11435 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
11436 X(vfma, N_INV, 0x0000c10, N_INV), \
11437 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
11438 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11439 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11440 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11441 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11442 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11443 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11444 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11445 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11446 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11447 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11448 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11449 X(vshl, 0x0000400, N_INV, 0x0800510), \
11450 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11451 X(vand, 0x0000110, N_INV, 0x0800030), \
11452 X(vbic, 0x0100110, N_INV, 0x0800030), \
11453 X(veor, 0x1000110, N_INV, N_INV), \
11454 X(vorn, 0x0300110, N_INV, 0x0800010), \
11455 X(vorr, 0x0200110, N_INV, 0x0800010), \
11456 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11457 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11458 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11459 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11460 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11461 X(vst1, 0x0000000, 0x0800000, N_INV), \
11462 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11463 X(vst2, 0x0000100, 0x0800100, N_INV), \
11464 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11465 X(vst3, 0x0000200, 0x0800200, N_INV), \
11466 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11467 X(vst4, 0x0000300, 0x0800300, N_INV), \
11468 X(vmovn, 0x1b20200, N_INV, N_INV), \
11469 X(vtrn, 0x1b20080, N_INV, N_INV), \
11470 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
11471 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11472 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
11473 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11474 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
11475 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11476 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
11477 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11478 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11479 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11480 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
11481
11482enum neon_opc
11483{
11484#define X(OPC,I,F,S) N_MNEM_##OPC
11485NEON_ENC_TAB
11486#undef X
11487};
b99bd4ef 11488
5287ad62
JB
11489static const struct neon_tab_entry neon_enc_tab[] =
11490{
11491#define X(OPC,I,F,S) { (I), (F), (S) }
11492NEON_ENC_TAB
11493#undef X
11494};
b99bd4ef 11495
88714cb8
DG
11496/* Do not use these macros; instead, use NEON_ENCODE defined below. */
11497#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11498#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11499#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11500#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11501#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11502#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11503#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11504#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11505#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11506#define NEON_ENC_SINGLE_(X) \
037e8744 11507 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 11508#define NEON_ENC_DOUBLE_(X) \
037e8744 11509 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 11510
88714cb8
DG
11511#define NEON_ENCODE(type, inst) \
11512 do \
11513 { \
11514 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11515 inst.is_neon = 1; \
11516 } \
11517 while (0)
11518
11519#define check_neon_suffixes \
11520 do \
11521 { \
11522 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11523 { \
11524 as_bad (_("invalid neon suffix for non neon instruction")); \
11525 return; \
11526 } \
11527 } \
11528 while (0)
11529
037e8744
JB
11530/* Define shapes for instruction operands. The following mnemonic characters
11531 are used in this table:
5287ad62 11532
037e8744 11533 F - VFP S<n> register
5287ad62
JB
11534 D - Neon D<n> register
11535 Q - Neon Q<n> register
11536 I - Immediate
11537 S - Scalar
11538 R - ARM register
11539 L - D<n> register list
5f4273c7 11540
037e8744
JB
11541 This table is used to generate various data:
11542 - enumerations of the form NS_DDR to be used as arguments to
11543 neon_select_shape.
11544 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 11545 - a table used to drive neon_select_shape. */
b99bd4ef 11546
037e8744
JB
11547#define NEON_SHAPE_DEF \
11548 X(3, (D, D, D), DOUBLE), \
11549 X(3, (Q, Q, Q), QUAD), \
11550 X(3, (D, D, I), DOUBLE), \
11551 X(3, (Q, Q, I), QUAD), \
11552 X(3, (D, D, S), DOUBLE), \
11553 X(3, (Q, Q, S), QUAD), \
11554 X(2, (D, D), DOUBLE), \
11555 X(2, (Q, Q), QUAD), \
11556 X(2, (D, S), DOUBLE), \
11557 X(2, (Q, S), QUAD), \
11558 X(2, (D, R), DOUBLE), \
11559 X(2, (Q, R), QUAD), \
11560 X(2, (D, I), DOUBLE), \
11561 X(2, (Q, I), QUAD), \
11562 X(3, (D, L, D), DOUBLE), \
11563 X(2, (D, Q), MIXED), \
11564 X(2, (Q, D), MIXED), \
11565 X(3, (D, Q, I), MIXED), \
11566 X(3, (Q, D, I), MIXED), \
11567 X(3, (Q, D, D), MIXED), \
11568 X(3, (D, Q, Q), MIXED), \
11569 X(3, (Q, Q, D), MIXED), \
11570 X(3, (Q, D, S), MIXED), \
11571 X(3, (D, Q, S), MIXED), \
11572 X(4, (D, D, D, I), DOUBLE), \
11573 X(4, (Q, Q, Q, I), QUAD), \
11574 X(2, (F, F), SINGLE), \
11575 X(3, (F, F, F), SINGLE), \
11576 X(2, (F, I), SINGLE), \
11577 X(2, (F, D), MIXED), \
11578 X(2, (D, F), MIXED), \
11579 X(3, (F, F, I), MIXED), \
11580 X(4, (R, R, F, F), SINGLE), \
11581 X(4, (F, F, R, R), SINGLE), \
11582 X(3, (D, R, R), DOUBLE), \
11583 X(3, (R, R, D), DOUBLE), \
11584 X(2, (S, R), SINGLE), \
11585 X(2, (R, S), SINGLE), \
11586 X(2, (F, R), SINGLE), \
11587 X(2, (R, F), SINGLE)
11588
11589#define S2(A,B) NS_##A##B
11590#define S3(A,B,C) NS_##A##B##C
11591#define S4(A,B,C,D) NS_##A##B##C##D
11592
11593#define X(N, L, C) S##N L
11594
5287ad62
JB
11595enum neon_shape
11596{
037e8744
JB
11597 NEON_SHAPE_DEF,
11598 NS_NULL
5287ad62 11599};
b99bd4ef 11600
037e8744
JB
11601#undef X
11602#undef S2
11603#undef S3
11604#undef S4
11605
11606enum neon_shape_class
11607{
11608 SC_SINGLE,
11609 SC_DOUBLE,
11610 SC_QUAD,
11611 SC_MIXED
11612};
11613
11614#define X(N, L, C) SC_##C
11615
11616static enum neon_shape_class neon_shape_class[] =
11617{
11618 NEON_SHAPE_DEF
11619};
11620
11621#undef X
11622
11623enum neon_shape_el
11624{
11625 SE_F,
11626 SE_D,
11627 SE_Q,
11628 SE_I,
11629 SE_S,
11630 SE_R,
11631 SE_L
11632};
11633
11634/* Register widths of above. */
11635static unsigned neon_shape_el_size[] =
11636{
11637 32,
11638 64,
11639 128,
11640 0,
11641 32,
11642 32,
11643 0
11644};
11645
11646struct neon_shape_info
11647{
11648 unsigned els;
11649 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11650};
11651
11652#define S2(A,B) { SE_##A, SE_##B }
11653#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11654#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11655
11656#define X(N, L, C) { N, S##N L }
11657
11658static struct neon_shape_info neon_shape_tab[] =
11659{
11660 NEON_SHAPE_DEF
11661};
11662
11663#undef X
11664#undef S2
11665#undef S3
11666#undef S4
11667
5287ad62
JB
11668/* Bit masks used in type checking given instructions.
11669 'N_EQK' means the type must be the same as (or based on in some way) the key
11670 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11671 set, various other bits can be set as well in order to modify the meaning of
11672 the type constraint. */
11673
11674enum neon_type_mask
11675{
8e79c3df
CM
11676 N_S8 = 0x0000001,
11677 N_S16 = 0x0000002,
11678 N_S32 = 0x0000004,
11679 N_S64 = 0x0000008,
11680 N_U8 = 0x0000010,
11681 N_U16 = 0x0000020,
11682 N_U32 = 0x0000040,
11683 N_U64 = 0x0000080,
11684 N_I8 = 0x0000100,
11685 N_I16 = 0x0000200,
11686 N_I32 = 0x0000400,
11687 N_I64 = 0x0000800,
11688 N_8 = 0x0001000,
11689 N_16 = 0x0002000,
11690 N_32 = 0x0004000,
11691 N_64 = 0x0008000,
11692 N_P8 = 0x0010000,
11693 N_P16 = 0x0020000,
11694 N_F16 = 0x0040000,
11695 N_F32 = 0x0080000,
11696 N_F64 = 0x0100000,
c921be7d
NC
11697 N_KEY = 0x1000000, /* Key element (main type specifier). */
11698 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 11699 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
11700 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11701 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11702 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11703 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11704 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11705 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11706 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 11707 N_UTYP = 0,
037e8744 11708 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
11709};
11710
dcbf9037
JB
11711#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11712
5287ad62
JB
11713#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11714#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11715#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11716#define N_SUF_32 (N_SU_32 | N_F32)
11717#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11718#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11719
11720/* Pass this as the first type argument to neon_check_type to ignore types
11721 altogether. */
11722#define N_IGNORE_TYPE (N_KEY | N_EQK)
11723
037e8744
JB
11724/* Select a "shape" for the current instruction (describing register types or
11725 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11726 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11727 function of operand parsing, so this function doesn't need to be called.
11728 Shapes should be listed in order of decreasing length. */
5287ad62
JB
11729
11730static enum neon_shape
037e8744 11731neon_select_shape (enum neon_shape shape, ...)
5287ad62 11732{
037e8744
JB
11733 va_list ap;
11734 enum neon_shape first_shape = shape;
5287ad62
JB
11735
11736 /* Fix missing optional operands. FIXME: we don't know at this point how
11737 many arguments we should have, so this makes the assumption that we have
11738 > 1. This is true of all current Neon opcodes, I think, but may not be
11739 true in the future. */
11740 if (!inst.operands[1].present)
11741 inst.operands[1] = inst.operands[0];
11742
037e8744 11743 va_start (ap, shape);
5f4273c7 11744
21d799b5 11745 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
11746 {
11747 unsigned j;
11748 int matches = 1;
11749
11750 for (j = 0; j < neon_shape_tab[shape].els; j++)
11751 {
11752 if (!inst.operands[j].present)
11753 {
11754 matches = 0;
11755 break;
11756 }
11757
11758 switch (neon_shape_tab[shape].el[j])
11759 {
11760 case SE_F:
11761 if (!(inst.operands[j].isreg
11762 && inst.operands[j].isvec
11763 && inst.operands[j].issingle
11764 && !inst.operands[j].isquad))
11765 matches = 0;
11766 break;
11767
11768 case SE_D:
11769 if (!(inst.operands[j].isreg
11770 && inst.operands[j].isvec
11771 && !inst.operands[j].isquad
11772 && !inst.operands[j].issingle))
11773 matches = 0;
11774 break;
11775
11776 case SE_R:
11777 if (!(inst.operands[j].isreg
11778 && !inst.operands[j].isvec))
11779 matches = 0;
11780 break;
11781
11782 case SE_Q:
11783 if (!(inst.operands[j].isreg
11784 && inst.operands[j].isvec
11785 && inst.operands[j].isquad
11786 && !inst.operands[j].issingle))
11787 matches = 0;
11788 break;
11789
11790 case SE_I:
11791 if (!(!inst.operands[j].isreg
11792 && !inst.operands[j].isscalar))
11793 matches = 0;
11794 break;
11795
11796 case SE_S:
11797 if (!(!inst.operands[j].isreg
11798 && inst.operands[j].isscalar))
11799 matches = 0;
11800 break;
11801
11802 case SE_L:
11803 break;
11804 }
3fde54a2
JZ
11805 if (!matches)
11806 break;
037e8744
JB
11807 }
11808 if (matches)
5287ad62 11809 break;
037e8744 11810 }
5f4273c7 11811
037e8744 11812 va_end (ap);
5287ad62 11813
037e8744
JB
11814 if (shape == NS_NULL && first_shape != NS_NULL)
11815 first_error (_("invalid instruction shape"));
5287ad62 11816
037e8744
JB
11817 return shape;
11818}
5287ad62 11819
037e8744
JB
11820/* True if SHAPE is predominantly a quadword operation (most of the time, this
11821 means the Q bit should be set). */
11822
11823static int
11824neon_quad (enum neon_shape shape)
11825{
11826 return neon_shape_class[shape] == SC_QUAD;
5287ad62 11827}
037e8744 11828
5287ad62
JB
11829static void
11830neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11831 unsigned *g_size)
11832{
11833 /* Allow modification to be made to types which are constrained to be
11834 based on the key element, based on bits set alongside N_EQK. */
11835 if ((typebits & N_EQK) != 0)
11836 {
11837 if ((typebits & N_HLF) != 0)
11838 *g_size /= 2;
11839 else if ((typebits & N_DBL) != 0)
11840 *g_size *= 2;
11841 if ((typebits & N_SGN) != 0)
11842 *g_type = NT_signed;
11843 else if ((typebits & N_UNS) != 0)
11844 *g_type = NT_unsigned;
11845 else if ((typebits & N_INT) != 0)
11846 *g_type = NT_integer;
11847 else if ((typebits & N_FLT) != 0)
11848 *g_type = NT_float;
dcbf9037
JB
11849 else if ((typebits & N_SIZ) != 0)
11850 *g_type = NT_untyped;
5287ad62
JB
11851 }
11852}
5f4273c7 11853
5287ad62
JB
11854/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11855 operand type, i.e. the single type specified in a Neon instruction when it
11856 is the only one given. */
11857
11858static struct neon_type_el
11859neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11860{
11861 struct neon_type_el dest = *key;
5f4273c7 11862
9c2799c2 11863 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 11864
5287ad62
JB
11865 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11866
11867 return dest;
11868}
11869
11870/* Convert Neon type and size into compact bitmask representation. */
11871
11872static enum neon_type_mask
11873type_chk_of_el_type (enum neon_el_type type, unsigned size)
11874{
11875 switch (type)
11876 {
11877 case NT_untyped:
11878 switch (size)
11879 {
11880 case 8: return N_8;
11881 case 16: return N_16;
11882 case 32: return N_32;
11883 case 64: return N_64;
11884 default: ;
11885 }
11886 break;
11887
11888 case NT_integer:
11889 switch (size)
11890 {
11891 case 8: return N_I8;
11892 case 16: return N_I16;
11893 case 32: return N_I32;
11894 case 64: return N_I64;
11895 default: ;
11896 }
11897 break;
11898
11899 case NT_float:
037e8744
JB
11900 switch (size)
11901 {
8e79c3df 11902 case 16: return N_F16;
037e8744
JB
11903 case 32: return N_F32;
11904 case 64: return N_F64;
11905 default: ;
11906 }
5287ad62
JB
11907 break;
11908
11909 case NT_poly:
11910 switch (size)
11911 {
11912 case 8: return N_P8;
11913 case 16: return N_P16;
11914 default: ;
11915 }
11916 break;
11917
11918 case NT_signed:
11919 switch (size)
11920 {
11921 case 8: return N_S8;
11922 case 16: return N_S16;
11923 case 32: return N_S32;
11924 case 64: return N_S64;
11925 default: ;
11926 }
11927 break;
11928
11929 case NT_unsigned:
11930 switch (size)
11931 {
11932 case 8: return N_U8;
11933 case 16: return N_U16;
11934 case 32: return N_U32;
11935 case 64: return N_U64;
11936 default: ;
11937 }
11938 break;
11939
11940 default: ;
11941 }
5f4273c7 11942
5287ad62
JB
11943 return N_UTYP;
11944}
11945
11946/* Convert compact Neon bitmask type representation to a type and size. Only
11947 handles the case where a single bit is set in the mask. */
11948
dcbf9037 11949static int
5287ad62
JB
11950el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11951 enum neon_type_mask mask)
11952{
dcbf9037
JB
11953 if ((mask & N_EQK) != 0)
11954 return FAIL;
11955
5287ad62
JB
11956 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11957 *size = 8;
dcbf9037 11958 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 11959 *size = 16;
dcbf9037 11960 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 11961 *size = 32;
037e8744 11962 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 11963 *size = 64;
dcbf9037
JB
11964 else
11965 return FAIL;
11966
5287ad62
JB
11967 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11968 *type = NT_signed;
dcbf9037 11969 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 11970 *type = NT_unsigned;
dcbf9037 11971 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 11972 *type = NT_integer;
dcbf9037 11973 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 11974 *type = NT_untyped;
dcbf9037 11975 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 11976 *type = NT_poly;
037e8744 11977 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 11978 *type = NT_float;
dcbf9037
JB
11979 else
11980 return FAIL;
5f4273c7 11981
dcbf9037 11982 return SUCCESS;
5287ad62
JB
11983}
11984
11985/* Modify a bitmask of allowed types. This is only needed for type
11986 relaxation. */
11987
11988static unsigned
11989modify_types_allowed (unsigned allowed, unsigned mods)
11990{
11991 unsigned size;
11992 enum neon_el_type type;
11993 unsigned destmask;
11994 int i;
5f4273c7 11995
5287ad62 11996 destmask = 0;
5f4273c7 11997
5287ad62
JB
11998 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11999 {
21d799b5
NC
12000 if (el_type_of_type_chk (&type, &size,
12001 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12002 {
12003 neon_modify_type_size (mods, &type, &size);
12004 destmask |= type_chk_of_el_type (type, size);
12005 }
5287ad62 12006 }
5f4273c7 12007
5287ad62
JB
12008 return destmask;
12009}
12010
12011/* Check type and return type classification.
12012 The manual states (paraphrase): If one datatype is given, it indicates the
12013 type given in:
12014 - the second operand, if there is one
12015 - the operand, if there is no second operand
12016 - the result, if there are no operands.
12017 This isn't quite good enough though, so we use a concept of a "key" datatype
12018 which is set on a per-instruction basis, which is the one which matters when
12019 only one data type is written.
12020 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12021 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12022
12023static struct neon_type_el
12024neon_check_type (unsigned els, enum neon_shape ns, ...)
12025{
12026 va_list ap;
12027 unsigned i, pass, key_el = 0;
12028 unsigned types[NEON_MAX_TYPE_ELS];
12029 enum neon_el_type k_type = NT_invtype;
12030 unsigned k_size = -1u;
12031 struct neon_type_el badtype = {NT_invtype, -1};
12032 unsigned key_allowed = 0;
12033
12034 /* Optional registers in Neon instructions are always (not) in operand 1.
12035 Fill in the missing operand here, if it was omitted. */
12036 if (els > 1 && !inst.operands[1].present)
12037 inst.operands[1] = inst.operands[0];
12038
12039 /* Suck up all the varargs. */
12040 va_start (ap, ns);
12041 for (i = 0; i < els; i++)
12042 {
12043 unsigned thisarg = va_arg (ap, unsigned);
12044 if (thisarg == N_IGNORE_TYPE)
12045 {
12046 va_end (ap);
12047 return badtype;
12048 }
12049 types[i] = thisarg;
12050 if ((thisarg & N_KEY) != 0)
12051 key_el = i;
12052 }
12053 va_end (ap);
12054
dcbf9037
JB
12055 if (inst.vectype.elems > 0)
12056 for (i = 0; i < els; i++)
12057 if (inst.operands[i].vectype.type != NT_invtype)
12058 {
12059 first_error (_("types specified in both the mnemonic and operands"));
12060 return badtype;
12061 }
12062
5287ad62
JB
12063 /* Duplicate inst.vectype elements here as necessary.
12064 FIXME: No idea if this is exactly the same as the ARM assembler,
12065 particularly when an insn takes one register and one non-register
12066 operand. */
12067 if (inst.vectype.elems == 1 && els > 1)
12068 {
12069 unsigned j;
12070 inst.vectype.elems = els;
12071 inst.vectype.el[key_el] = inst.vectype.el[0];
12072 for (j = 0; j < els; j++)
dcbf9037
JB
12073 if (j != key_el)
12074 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12075 types[j]);
12076 }
12077 else if (inst.vectype.elems == 0 && els > 0)
12078 {
12079 unsigned j;
12080 /* No types were given after the mnemonic, so look for types specified
12081 after each operand. We allow some flexibility here; as long as the
12082 "key" operand has a type, we can infer the others. */
12083 for (j = 0; j < els; j++)
12084 if (inst.operands[j].vectype.type != NT_invtype)
12085 inst.vectype.el[j] = inst.operands[j].vectype;
12086
12087 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12088 {
dcbf9037
JB
12089 for (j = 0; j < els; j++)
12090 if (inst.operands[j].vectype.type == NT_invtype)
12091 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12092 types[j]);
12093 }
12094 else
12095 {
12096 first_error (_("operand types can't be inferred"));
12097 return badtype;
5287ad62
JB
12098 }
12099 }
12100 else if (inst.vectype.elems != els)
12101 {
dcbf9037 12102 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12103 return badtype;
12104 }
12105
12106 for (pass = 0; pass < 2; pass++)
12107 {
12108 for (i = 0; i < els; i++)
12109 {
12110 unsigned thisarg = types[i];
12111 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12112 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12113 enum neon_el_type g_type = inst.vectype.el[i].type;
12114 unsigned g_size = inst.vectype.el[i].size;
12115
12116 /* Decay more-specific signed & unsigned types to sign-insensitive
12117 integer types if sign-specific variants are unavailable. */
12118 if ((g_type == NT_signed || g_type == NT_unsigned)
12119 && (types_allowed & N_SU_ALL) == 0)
12120 g_type = NT_integer;
12121
12122 /* If only untyped args are allowed, decay any more specific types to
12123 them. Some instructions only care about signs for some element
12124 sizes, so handle that properly. */
12125 if ((g_size == 8 && (types_allowed & N_8) != 0)
12126 || (g_size == 16 && (types_allowed & N_16) != 0)
12127 || (g_size == 32 && (types_allowed & N_32) != 0)
12128 || (g_size == 64 && (types_allowed & N_64) != 0))
12129 g_type = NT_untyped;
12130
12131 if (pass == 0)
12132 {
12133 if ((thisarg & N_KEY) != 0)
12134 {
12135 k_type = g_type;
12136 k_size = g_size;
12137 key_allowed = thisarg & ~N_KEY;
12138 }
12139 }
12140 else
12141 {
037e8744
JB
12142 if ((thisarg & N_VFP) != 0)
12143 {
99b253c5
NC
12144 enum neon_shape_el regshape;
12145 unsigned regwidth, match;
12146
12147 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12148 if (ns == NS_NULL)
12149 {
12150 first_error (_("invalid instruction shape"));
12151 return badtype;
12152 }
12153 regshape = neon_shape_tab[ns].el[i];
12154 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12155
12156 /* In VFP mode, operands must match register widths. If we
12157 have a key operand, use its width, else use the width of
12158 the current operand. */
12159 if (k_size != -1u)
12160 match = k_size;
12161 else
12162 match = g_size;
12163
12164 if (regwidth != match)
12165 {
12166 first_error (_("operand size must match register width"));
12167 return badtype;
12168 }
12169 }
5f4273c7 12170
5287ad62
JB
12171 if ((thisarg & N_EQK) == 0)
12172 {
12173 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12174
12175 if ((given_type & types_allowed) == 0)
12176 {
dcbf9037 12177 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12178 return badtype;
12179 }
12180 }
12181 else
12182 {
12183 enum neon_el_type mod_k_type = k_type;
12184 unsigned mod_k_size = k_size;
12185 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12186 if (g_type != mod_k_type || g_size != mod_k_size)
12187 {
dcbf9037 12188 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12189 return badtype;
12190 }
12191 }
12192 }
12193 }
12194 }
12195
12196 return inst.vectype.el[key_el];
12197}
12198
037e8744 12199/* Neon-style VFP instruction forwarding. */
5287ad62 12200
037e8744
JB
12201/* Thumb VFP instructions have 0xE in the condition field. */
12202
12203static void
12204do_vfp_cond_or_thumb (void)
5287ad62 12205{
88714cb8
DG
12206 inst.is_neon = 1;
12207
5287ad62 12208 if (thumb_mode)
037e8744 12209 inst.instruction |= 0xe0000000;
5287ad62 12210 else
037e8744 12211 inst.instruction |= inst.cond << 28;
5287ad62
JB
12212}
12213
037e8744
JB
12214/* Look up and encode a simple mnemonic, for use as a helper function for the
12215 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12216 etc. It is assumed that operand parsing has already been done, and that the
12217 operands are in the form expected by the given opcode (this isn't necessarily
12218 the same as the form in which they were parsed, hence some massaging must
12219 take place before this function is called).
12220 Checks current arch version against that in the looked-up opcode. */
5287ad62 12221
037e8744
JB
12222static void
12223do_vfp_nsyn_opcode (const char *opname)
5287ad62 12224{
037e8744 12225 const struct asm_opcode *opcode;
5f4273c7 12226
21d799b5 12227 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12228
037e8744
JB
12229 if (!opcode)
12230 abort ();
5287ad62 12231
037e8744
JB
12232 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12233 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12234 _(BAD_FPU));
5287ad62 12235
88714cb8
DG
12236 inst.is_neon = 1;
12237
037e8744
JB
12238 if (thumb_mode)
12239 {
12240 inst.instruction = opcode->tvalue;
12241 opcode->tencode ();
12242 }
12243 else
12244 {
12245 inst.instruction = (inst.cond << 28) | opcode->avalue;
12246 opcode->aencode ();
12247 }
12248}
5287ad62
JB
12249
12250static void
037e8744 12251do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12252{
037e8744
JB
12253 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12254
12255 if (rs == NS_FFF)
12256 {
12257 if (is_add)
12258 do_vfp_nsyn_opcode ("fadds");
12259 else
12260 do_vfp_nsyn_opcode ("fsubs");
12261 }
12262 else
12263 {
12264 if (is_add)
12265 do_vfp_nsyn_opcode ("faddd");
12266 else
12267 do_vfp_nsyn_opcode ("fsubd");
12268 }
12269}
12270
12271/* Check operand types to see if this is a VFP instruction, and if so call
12272 PFN (). */
12273
12274static int
12275try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12276{
12277 enum neon_shape rs;
12278 struct neon_type_el et;
12279
12280 switch (args)
12281 {
12282 case 2:
12283 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12284 et = neon_check_type (2, rs,
12285 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12286 break;
5f4273c7 12287
037e8744
JB
12288 case 3:
12289 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12290 et = neon_check_type (3, rs,
12291 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12292 break;
12293
12294 default:
12295 abort ();
12296 }
12297
12298 if (et.type != NT_invtype)
12299 {
12300 pfn (rs);
12301 return SUCCESS;
12302 }
037e8744 12303
99b253c5 12304 inst.error = NULL;
037e8744
JB
12305 return FAIL;
12306}
12307
12308static void
12309do_vfp_nsyn_mla_mls (enum neon_shape rs)
12310{
12311 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12312
037e8744
JB
12313 if (rs == NS_FFF)
12314 {
12315 if (is_mla)
12316 do_vfp_nsyn_opcode ("fmacs");
12317 else
1ee69515 12318 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12319 }
12320 else
12321 {
12322 if (is_mla)
12323 do_vfp_nsyn_opcode ("fmacd");
12324 else
1ee69515 12325 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12326 }
12327}
12328
62f3b8c8
PB
12329static void
12330do_vfp_nsyn_fma_fms (enum neon_shape rs)
12331{
12332 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12333
12334 if (rs == NS_FFF)
12335 {
12336 if (is_fma)
12337 do_vfp_nsyn_opcode ("ffmas");
12338 else
12339 do_vfp_nsyn_opcode ("ffnmas");
12340 }
12341 else
12342 {
12343 if (is_fma)
12344 do_vfp_nsyn_opcode ("ffmad");
12345 else
12346 do_vfp_nsyn_opcode ("ffnmad");
12347 }
12348}
12349
037e8744
JB
12350static void
12351do_vfp_nsyn_mul (enum neon_shape rs)
12352{
12353 if (rs == NS_FFF)
12354 do_vfp_nsyn_opcode ("fmuls");
12355 else
12356 do_vfp_nsyn_opcode ("fmuld");
12357}
12358
12359static void
12360do_vfp_nsyn_abs_neg (enum neon_shape rs)
12361{
12362 int is_neg = (inst.instruction & 0x80) != 0;
12363 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12364
12365 if (rs == NS_FF)
12366 {
12367 if (is_neg)
12368 do_vfp_nsyn_opcode ("fnegs");
12369 else
12370 do_vfp_nsyn_opcode ("fabss");
12371 }
12372 else
12373 {
12374 if (is_neg)
12375 do_vfp_nsyn_opcode ("fnegd");
12376 else
12377 do_vfp_nsyn_opcode ("fabsd");
12378 }
12379}
12380
12381/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12382 insns belong to Neon, and are handled elsewhere. */
12383
12384static void
12385do_vfp_nsyn_ldm_stm (int is_dbmode)
12386{
12387 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12388 if (is_ldm)
12389 {
12390 if (is_dbmode)
12391 do_vfp_nsyn_opcode ("fldmdbs");
12392 else
12393 do_vfp_nsyn_opcode ("fldmias");
12394 }
12395 else
12396 {
12397 if (is_dbmode)
12398 do_vfp_nsyn_opcode ("fstmdbs");
12399 else
12400 do_vfp_nsyn_opcode ("fstmias");
12401 }
12402}
12403
037e8744
JB
12404static void
12405do_vfp_nsyn_sqrt (void)
12406{
12407 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12408 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12409
037e8744
JB
12410 if (rs == NS_FF)
12411 do_vfp_nsyn_opcode ("fsqrts");
12412 else
12413 do_vfp_nsyn_opcode ("fsqrtd");
12414}
12415
12416static void
12417do_vfp_nsyn_div (void)
12418{
12419 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12420 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12421 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12422
037e8744
JB
12423 if (rs == NS_FFF)
12424 do_vfp_nsyn_opcode ("fdivs");
12425 else
12426 do_vfp_nsyn_opcode ("fdivd");
12427}
12428
12429static void
12430do_vfp_nsyn_nmul (void)
12431{
12432 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12433 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12434 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12435
037e8744
JB
12436 if (rs == NS_FFF)
12437 {
88714cb8 12438 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12439 do_vfp_sp_dyadic ();
12440 }
12441 else
12442 {
88714cb8 12443 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12444 do_vfp_dp_rd_rn_rm ();
12445 }
12446 do_vfp_cond_or_thumb ();
12447}
12448
12449static void
12450do_vfp_nsyn_cmp (void)
12451{
12452 if (inst.operands[1].isreg)
12453 {
12454 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12455 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12456
037e8744
JB
12457 if (rs == NS_FF)
12458 {
88714cb8 12459 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12460 do_vfp_sp_monadic ();
12461 }
12462 else
12463 {
88714cb8 12464 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12465 do_vfp_dp_rd_rm ();
12466 }
12467 }
12468 else
12469 {
12470 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12471 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12472
12473 switch (inst.instruction & 0x0fffffff)
12474 {
12475 case N_MNEM_vcmp:
12476 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12477 break;
12478 case N_MNEM_vcmpe:
12479 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12480 break;
12481 default:
12482 abort ();
12483 }
5f4273c7 12484
037e8744
JB
12485 if (rs == NS_FI)
12486 {
88714cb8 12487 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12488 do_vfp_sp_compare_z ();
12489 }
12490 else
12491 {
88714cb8 12492 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12493 do_vfp_dp_rd ();
12494 }
12495 }
12496 do_vfp_cond_or_thumb ();
12497}
12498
12499static void
12500nsyn_insert_sp (void)
12501{
12502 inst.operands[1] = inst.operands[0];
12503 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 12504 inst.operands[0].reg = REG_SP;
037e8744
JB
12505 inst.operands[0].isreg = 1;
12506 inst.operands[0].writeback = 1;
12507 inst.operands[0].present = 1;
12508}
12509
12510static void
12511do_vfp_nsyn_push (void)
12512{
12513 nsyn_insert_sp ();
12514 if (inst.operands[1].issingle)
12515 do_vfp_nsyn_opcode ("fstmdbs");
12516 else
12517 do_vfp_nsyn_opcode ("fstmdbd");
12518}
12519
12520static void
12521do_vfp_nsyn_pop (void)
12522{
12523 nsyn_insert_sp ();
12524 if (inst.operands[1].issingle)
22b5b651 12525 do_vfp_nsyn_opcode ("fldmias");
037e8744 12526 else
22b5b651 12527 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
12528}
12529
12530/* Fix up Neon data-processing instructions, ORing in the correct bits for
12531 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12532
88714cb8
DG
12533static void
12534neon_dp_fixup (struct arm_it* insn)
037e8744 12535{
88714cb8
DG
12536 unsigned int i = insn->instruction;
12537 insn->is_neon = 1;
12538
037e8744
JB
12539 if (thumb_mode)
12540 {
12541 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12542 if (i & (1 << 24))
12543 i |= 1 << 28;
5f4273c7 12544
037e8744 12545 i &= ~(1 << 24);
5f4273c7 12546
037e8744
JB
12547 i |= 0xef000000;
12548 }
12549 else
12550 i |= 0xf2000000;
5f4273c7 12551
88714cb8 12552 insn->instruction = i;
037e8744
JB
12553}
12554
12555/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12556 (0, 1, 2, 3). */
12557
12558static unsigned
12559neon_logbits (unsigned x)
12560{
12561 return ffs (x) - 4;
12562}
12563
12564#define LOW4(R) ((R) & 0xf)
12565#define HI1(R) (((R) >> 4) & 1)
12566
12567/* Encode insns with bit pattern:
12568
12569 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12570 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 12571
037e8744
JB
12572 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12573 different meaning for some instruction. */
12574
12575static void
12576neon_three_same (int isquad, int ubit, int size)
12577{
12578 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12579 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12580 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12581 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12582 inst.instruction |= LOW4 (inst.operands[2].reg);
12583 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12584 inst.instruction |= (isquad != 0) << 6;
12585 inst.instruction |= (ubit != 0) << 24;
12586 if (size != -1)
12587 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 12588
88714cb8 12589 neon_dp_fixup (&inst);
037e8744
JB
12590}
12591
12592/* Encode instructions of the form:
12593
12594 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12595 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
12596
12597 Don't write size if SIZE == -1. */
12598
12599static void
12600neon_two_same (int qbit, int ubit, int size)
12601{
12602 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12603 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12604 inst.instruction |= LOW4 (inst.operands[1].reg);
12605 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12606 inst.instruction |= (qbit != 0) << 6;
12607 inst.instruction |= (ubit != 0) << 24;
12608
12609 if (size != -1)
12610 inst.instruction |= neon_logbits (size) << 18;
12611
88714cb8 12612 neon_dp_fixup (&inst);
5287ad62
JB
12613}
12614
12615/* Neon instruction encoders, in approximate order of appearance. */
12616
12617static void
12618do_neon_dyadic_i_su (void)
12619{
037e8744 12620 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12621 struct neon_type_el et = neon_check_type (3, rs,
12622 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 12623 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12624}
12625
12626static void
12627do_neon_dyadic_i64_su (void)
12628{
037e8744 12629 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12630 struct neon_type_el et = neon_check_type (3, rs,
12631 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 12632 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12633}
12634
12635static void
12636neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12637 unsigned immbits)
12638{
12639 unsigned size = et.size >> 3;
12640 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12641 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12642 inst.instruction |= LOW4 (inst.operands[1].reg);
12643 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12644 inst.instruction |= (isquad != 0) << 6;
12645 inst.instruction |= immbits << 16;
12646 inst.instruction |= (size >> 3) << 7;
12647 inst.instruction |= (size & 0x7) << 19;
12648 if (write_ubit)
12649 inst.instruction |= (uval != 0) << 24;
12650
88714cb8 12651 neon_dp_fixup (&inst);
5287ad62
JB
12652}
12653
12654static void
12655do_neon_shl_imm (void)
12656{
12657 if (!inst.operands[2].isreg)
12658 {
037e8744 12659 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12660 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 12661 NEON_ENCODE (IMMED, inst);
037e8744 12662 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
12663 }
12664 else
12665 {
037e8744 12666 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12667 struct neon_type_el et = neon_check_type (3, rs,
12668 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12669 unsigned int tmp;
12670
12671 /* VSHL/VQSHL 3-register variants have syntax such as:
12672 vshl.xx Dd, Dm, Dn
12673 whereas other 3-register operations encoded by neon_three_same have
12674 syntax like:
12675 vadd.xx Dd, Dn, Dm
12676 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12677 here. */
12678 tmp = inst.operands[2].reg;
12679 inst.operands[2].reg = inst.operands[1].reg;
12680 inst.operands[1].reg = tmp;
88714cb8 12681 NEON_ENCODE (INTEGER, inst);
037e8744 12682 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12683 }
12684}
12685
12686static void
12687do_neon_qshl_imm (void)
12688{
12689 if (!inst.operands[2].isreg)
12690 {
037e8744 12691 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12692 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 12693
88714cb8 12694 NEON_ENCODE (IMMED, inst);
037e8744 12695 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
12696 inst.operands[2].imm);
12697 }
12698 else
12699 {
037e8744 12700 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12701 struct neon_type_el et = neon_check_type (3, rs,
12702 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12703 unsigned int tmp;
12704
12705 /* See note in do_neon_shl_imm. */
12706 tmp = inst.operands[2].reg;
12707 inst.operands[2].reg = inst.operands[1].reg;
12708 inst.operands[1].reg = tmp;
88714cb8 12709 NEON_ENCODE (INTEGER, inst);
037e8744 12710 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12711 }
12712}
12713
627907b7
JB
12714static void
12715do_neon_rshl (void)
12716{
12717 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12718 struct neon_type_el et = neon_check_type (3, rs,
12719 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12720 unsigned int tmp;
12721
12722 tmp = inst.operands[2].reg;
12723 inst.operands[2].reg = inst.operands[1].reg;
12724 inst.operands[1].reg = tmp;
12725 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12726}
12727
5287ad62
JB
12728static int
12729neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12730{
036dc3f7
PB
12731 /* Handle .I8 pseudo-instructions. */
12732 if (size == 8)
5287ad62 12733 {
5287ad62
JB
12734 /* Unfortunately, this will make everything apart from zero out-of-range.
12735 FIXME is this the intended semantics? There doesn't seem much point in
12736 accepting .I8 if so. */
12737 immediate |= immediate << 8;
12738 size = 16;
036dc3f7
PB
12739 }
12740
12741 if (size >= 32)
12742 {
12743 if (immediate == (immediate & 0x000000ff))
12744 {
12745 *immbits = immediate;
12746 return 0x1;
12747 }
12748 else if (immediate == (immediate & 0x0000ff00))
12749 {
12750 *immbits = immediate >> 8;
12751 return 0x3;
12752 }
12753 else if (immediate == (immediate & 0x00ff0000))
12754 {
12755 *immbits = immediate >> 16;
12756 return 0x5;
12757 }
12758 else if (immediate == (immediate & 0xff000000))
12759 {
12760 *immbits = immediate >> 24;
12761 return 0x7;
12762 }
12763 if ((immediate & 0xffff) != (immediate >> 16))
12764 goto bad_immediate;
12765 immediate &= 0xffff;
5287ad62
JB
12766 }
12767
12768 if (immediate == (immediate & 0x000000ff))
12769 {
12770 *immbits = immediate;
036dc3f7 12771 return 0x9;
5287ad62
JB
12772 }
12773 else if (immediate == (immediate & 0x0000ff00))
12774 {
12775 *immbits = immediate >> 8;
036dc3f7 12776 return 0xb;
5287ad62
JB
12777 }
12778
12779 bad_immediate:
dcbf9037 12780 first_error (_("immediate value out of range"));
5287ad62
JB
12781 return FAIL;
12782}
12783
12784/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12785 A, B, C, D. */
12786
12787static int
12788neon_bits_same_in_bytes (unsigned imm)
12789{
12790 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12791 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12792 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12793 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12794}
12795
12796/* For immediate of above form, return 0bABCD. */
12797
12798static unsigned
12799neon_squash_bits (unsigned imm)
12800{
12801 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12802 | ((imm & 0x01000000) >> 21);
12803}
12804
136da414 12805/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
12806
12807static unsigned
12808neon_qfloat_bits (unsigned imm)
12809{
136da414 12810 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
12811}
12812
12813/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12814 the instruction. *OP is passed as the initial value of the op field, and
12815 may be set to a different value depending on the constant (i.e.
12816 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 12817 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 12818 try smaller element sizes. */
5287ad62
JB
12819
12820static int
c96612cc
JB
12821neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12822 unsigned *immbits, int *op, int size,
12823 enum neon_el_type type)
5287ad62 12824{
c96612cc
JB
12825 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12826 float. */
12827 if (type == NT_float && !float_p)
12828 return FAIL;
12829
136da414
JB
12830 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12831 {
12832 if (size != 32 || *op == 1)
12833 return FAIL;
12834 *immbits = neon_qfloat_bits (immlo);
12835 return 0xf;
12836 }
036dc3f7
PB
12837
12838 if (size == 64)
5287ad62 12839 {
036dc3f7
PB
12840 if (neon_bits_same_in_bytes (immhi)
12841 && neon_bits_same_in_bytes (immlo))
12842 {
12843 if (*op == 1)
12844 return FAIL;
12845 *immbits = (neon_squash_bits (immhi) << 4)
12846 | neon_squash_bits (immlo);
12847 *op = 1;
12848 return 0xe;
12849 }
12850
12851 if (immhi != immlo)
12852 return FAIL;
5287ad62 12853 }
036dc3f7
PB
12854
12855 if (size >= 32)
5287ad62 12856 {
036dc3f7
PB
12857 if (immlo == (immlo & 0x000000ff))
12858 {
12859 *immbits = immlo;
12860 return 0x0;
12861 }
12862 else if (immlo == (immlo & 0x0000ff00))
12863 {
12864 *immbits = immlo >> 8;
12865 return 0x2;
12866 }
12867 else if (immlo == (immlo & 0x00ff0000))
12868 {
12869 *immbits = immlo >> 16;
12870 return 0x4;
12871 }
12872 else if (immlo == (immlo & 0xff000000))
12873 {
12874 *immbits = immlo >> 24;
12875 return 0x6;
12876 }
12877 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12878 {
12879 *immbits = (immlo >> 8) & 0xff;
12880 return 0xc;
12881 }
12882 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12883 {
12884 *immbits = (immlo >> 16) & 0xff;
12885 return 0xd;
12886 }
12887
12888 if ((immlo & 0xffff) != (immlo >> 16))
12889 return FAIL;
12890 immlo &= 0xffff;
5287ad62 12891 }
036dc3f7
PB
12892
12893 if (size >= 16)
5287ad62 12894 {
036dc3f7
PB
12895 if (immlo == (immlo & 0x000000ff))
12896 {
12897 *immbits = immlo;
12898 return 0x8;
12899 }
12900 else if (immlo == (immlo & 0x0000ff00))
12901 {
12902 *immbits = immlo >> 8;
12903 return 0xa;
12904 }
12905
12906 if ((immlo & 0xff) != (immlo >> 8))
12907 return FAIL;
12908 immlo &= 0xff;
5287ad62 12909 }
036dc3f7
PB
12910
12911 if (immlo == (immlo & 0x000000ff))
5287ad62 12912 {
036dc3f7
PB
12913 /* Don't allow MVN with 8-bit immediate. */
12914 if (*op == 1)
12915 return FAIL;
12916 *immbits = immlo;
12917 return 0xe;
5287ad62 12918 }
5287ad62
JB
12919
12920 return FAIL;
12921}
12922
12923/* Write immediate bits [7:0] to the following locations:
12924
12925 |28/24|23 19|18 16|15 4|3 0|
12926 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12927
12928 This function is used by VMOV/VMVN/VORR/VBIC. */
12929
12930static void
12931neon_write_immbits (unsigned immbits)
12932{
12933 inst.instruction |= immbits & 0xf;
12934 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12935 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12936}
12937
12938/* Invert low-order SIZE bits of XHI:XLO. */
12939
12940static void
12941neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12942{
12943 unsigned immlo = xlo ? *xlo : 0;
12944 unsigned immhi = xhi ? *xhi : 0;
12945
12946 switch (size)
12947 {
12948 case 8:
12949 immlo = (~immlo) & 0xff;
12950 break;
12951
12952 case 16:
12953 immlo = (~immlo) & 0xffff;
12954 break;
12955
12956 case 64:
12957 immhi = (~immhi) & 0xffffffff;
12958 /* fall through. */
12959
12960 case 32:
12961 immlo = (~immlo) & 0xffffffff;
12962 break;
12963
12964 default:
12965 abort ();
12966 }
12967
12968 if (xlo)
12969 *xlo = immlo;
12970
12971 if (xhi)
12972 *xhi = immhi;
12973}
12974
12975static void
12976do_neon_logic (void)
12977{
12978 if (inst.operands[2].present && inst.operands[2].isreg)
12979 {
037e8744 12980 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12981 neon_check_type (3, rs, N_IGNORE_TYPE);
12982 /* U bit and size field were set as part of the bitmask. */
88714cb8 12983 NEON_ENCODE (INTEGER, inst);
037e8744 12984 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12985 }
12986 else
12987 {
4316f0d2
DG
12988 const int three_ops_form = (inst.operands[2].present
12989 && !inst.operands[2].isreg);
12990 const int immoperand = (three_ops_form ? 2 : 1);
12991 enum neon_shape rs = (three_ops_form
12992 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
12993 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
12994 struct neon_type_el et = neon_check_type (2, rs,
12995 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 12996 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
12997 unsigned immbits;
12998 int cmode;
5f4273c7 12999
5287ad62
JB
13000 if (et.type == NT_invtype)
13001 return;
5f4273c7 13002
4316f0d2
DG
13003 if (three_ops_form)
13004 constraint (inst.operands[0].reg != inst.operands[1].reg,
13005 _("first and second operands shall be the same register"));
13006
88714cb8 13007 NEON_ENCODE (IMMED, inst);
5287ad62 13008
4316f0d2 13009 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13010 if (et.size == 64)
13011 {
13012 /* .i64 is a pseudo-op, so the immediate must be a repeating
13013 pattern. */
4316f0d2
DG
13014 if (immbits != (inst.operands[immoperand].regisimm ?
13015 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13016 {
13017 /* Set immbits to an invalid constant. */
13018 immbits = 0xdeadbeef;
13019 }
13020 }
13021
5287ad62
JB
13022 switch (opcode)
13023 {
13024 case N_MNEM_vbic:
036dc3f7 13025 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13026 break;
5f4273c7 13027
5287ad62 13028 case N_MNEM_vorr:
036dc3f7 13029 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13030 break;
5f4273c7 13031
5287ad62
JB
13032 case N_MNEM_vand:
13033 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13034 neon_invert_size (&immbits, 0, et.size);
13035 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13036 break;
5f4273c7 13037
5287ad62
JB
13038 case N_MNEM_vorn:
13039 /* Pseudo-instruction for VORR. */
5287ad62
JB
13040 neon_invert_size (&immbits, 0, et.size);
13041 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13042 break;
5f4273c7 13043
5287ad62
JB
13044 default:
13045 abort ();
13046 }
13047
13048 if (cmode == FAIL)
13049 return;
13050
037e8744 13051 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13052 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13053 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13054 inst.instruction |= cmode << 8;
13055 neon_write_immbits (immbits);
5f4273c7 13056
88714cb8 13057 neon_dp_fixup (&inst);
5287ad62
JB
13058 }
13059}
13060
13061static void
13062do_neon_bitfield (void)
13063{
037e8744 13064 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13065 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13066 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13067}
13068
13069static void
dcbf9037
JB
13070neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13071 unsigned destbits)
5287ad62 13072{
037e8744 13073 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13074 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13075 types | N_KEY);
5287ad62
JB
13076 if (et.type == NT_float)
13077 {
88714cb8 13078 NEON_ENCODE (FLOAT, inst);
037e8744 13079 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13080 }
13081 else
13082 {
88714cb8 13083 NEON_ENCODE (INTEGER, inst);
037e8744 13084 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13085 }
13086}
13087
13088static void
13089do_neon_dyadic_if_su (void)
13090{
dcbf9037 13091 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13092}
13093
13094static void
13095do_neon_dyadic_if_su_d (void)
13096{
13097 /* This version only allow D registers, but that constraint is enforced during
13098 operand parsing so we don't need to do anything extra here. */
dcbf9037 13099 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13100}
13101
5287ad62
JB
13102static void
13103do_neon_dyadic_if_i_d (void)
13104{
428e3f1f
PB
13105 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13106 affected if we specify unsigned args. */
13107 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13108}
13109
037e8744
JB
13110enum vfp_or_neon_is_neon_bits
13111{
13112 NEON_CHECK_CC = 1,
13113 NEON_CHECK_ARCH = 2
13114};
13115
13116/* Call this function if an instruction which may have belonged to the VFP or
13117 Neon instruction sets, but turned out to be a Neon instruction (due to the
13118 operand types involved, etc.). We have to check and/or fix-up a couple of
13119 things:
13120
13121 - Make sure the user hasn't attempted to make a Neon instruction
13122 conditional.
13123 - Alter the value in the condition code field if necessary.
13124 - Make sure that the arch supports Neon instructions.
13125
13126 Which of these operations take place depends on bits from enum
13127 vfp_or_neon_is_neon_bits.
13128
13129 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13130 current instruction's condition is COND_ALWAYS, the condition field is
13131 changed to inst.uncond_value. This is necessary because instructions shared
13132 between VFP and Neon may be conditional for the VFP variants only, and the
13133 unconditional Neon version must have, e.g., 0xF in the condition field. */
13134
13135static int
13136vfp_or_neon_is_neon (unsigned check)
13137{
13138 /* Conditions are always legal in Thumb mode (IT blocks). */
13139 if (!thumb_mode && (check & NEON_CHECK_CC))
13140 {
13141 if (inst.cond != COND_ALWAYS)
13142 {
13143 first_error (_(BAD_COND));
13144 return FAIL;
13145 }
13146 if (inst.uncond_value != -1)
13147 inst.instruction |= inst.uncond_value << 28;
13148 }
5f4273c7 13149
037e8744
JB
13150 if ((check & NEON_CHECK_ARCH)
13151 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13152 {
13153 first_error (_(BAD_FPU));
13154 return FAIL;
13155 }
5f4273c7 13156
037e8744
JB
13157 return SUCCESS;
13158}
13159
5287ad62
JB
13160static void
13161do_neon_addsub_if_i (void)
13162{
037e8744
JB
13163 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13164 return;
13165
13166 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13167 return;
13168
5287ad62
JB
13169 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13170 affected if we specify unsigned args. */
dcbf9037 13171 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13172}
13173
13174/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13175 result to be:
13176 V<op> A,B (A is operand 0, B is operand 2)
13177 to mean:
13178 V<op> A,B,A
13179 not:
13180 V<op> A,B,B
13181 so handle that case specially. */
13182
13183static void
13184neon_exchange_operands (void)
13185{
13186 void *scratch = alloca (sizeof (inst.operands[0]));
13187 if (inst.operands[1].present)
13188 {
13189 /* Swap operands[1] and operands[2]. */
13190 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13191 inst.operands[1] = inst.operands[2];
13192 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13193 }
13194 else
13195 {
13196 inst.operands[1] = inst.operands[2];
13197 inst.operands[2] = inst.operands[0];
13198 }
13199}
13200
13201static void
13202neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13203{
13204 if (inst.operands[2].isreg)
13205 {
13206 if (invert)
13207 neon_exchange_operands ();
dcbf9037 13208 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13209 }
13210 else
13211 {
037e8744 13212 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13213 struct neon_type_el et = neon_check_type (2, rs,
13214 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 13215
88714cb8 13216 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13217 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13218 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13219 inst.instruction |= LOW4 (inst.operands[1].reg);
13220 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13221 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13222 inst.instruction |= (et.type == NT_float) << 10;
13223 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13224
88714cb8 13225 neon_dp_fixup (&inst);
5287ad62
JB
13226 }
13227}
13228
13229static void
13230do_neon_cmp (void)
13231{
13232 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13233}
13234
13235static void
13236do_neon_cmp_inv (void)
13237{
13238 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13239}
13240
13241static void
13242do_neon_ceq (void)
13243{
13244 neon_compare (N_IF_32, N_IF_32, FALSE);
13245}
13246
13247/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13248 scalars, which are encoded in 5 bits, M : Rm.
13249 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13250 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13251 index in M. */
13252
13253static unsigned
13254neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13255{
dcbf9037
JB
13256 unsigned regno = NEON_SCALAR_REG (scalar);
13257 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13258
13259 switch (elsize)
13260 {
13261 case 16:
13262 if (regno > 7 || elno > 3)
13263 goto bad_scalar;
13264 return regno | (elno << 3);
5f4273c7 13265
5287ad62
JB
13266 case 32:
13267 if (regno > 15 || elno > 1)
13268 goto bad_scalar;
13269 return regno | (elno << 4);
13270
13271 default:
13272 bad_scalar:
dcbf9037 13273 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13274 }
13275
13276 return 0;
13277}
13278
13279/* Encode multiply / multiply-accumulate scalar instructions. */
13280
13281static void
13282neon_mul_mac (struct neon_type_el et, int ubit)
13283{
dcbf9037
JB
13284 unsigned scalar;
13285
13286 /* Give a more helpful error message if we have an invalid type. */
13287 if (et.type == NT_invtype)
13288 return;
5f4273c7 13289
dcbf9037 13290 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13291 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13292 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13293 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13294 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13295 inst.instruction |= LOW4 (scalar);
13296 inst.instruction |= HI1 (scalar) << 5;
13297 inst.instruction |= (et.type == NT_float) << 8;
13298 inst.instruction |= neon_logbits (et.size) << 20;
13299 inst.instruction |= (ubit != 0) << 24;
13300
88714cb8 13301 neon_dp_fixup (&inst);
5287ad62
JB
13302}
13303
13304static void
13305do_neon_mac_maybe_scalar (void)
13306{
037e8744
JB
13307 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13308 return;
13309
13310 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13311 return;
13312
5287ad62
JB
13313 if (inst.operands[2].isscalar)
13314 {
037e8744 13315 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13316 struct neon_type_el et = neon_check_type (3, rs,
13317 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 13318 NEON_ENCODE (SCALAR, inst);
037e8744 13319 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13320 }
13321 else
428e3f1f
PB
13322 {
13323 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13324 affected if we specify unsigned args. */
13325 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13326 }
5287ad62
JB
13327}
13328
62f3b8c8
PB
13329static void
13330do_neon_fmac (void)
13331{
13332 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13333 return;
13334
13335 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13336 return;
13337
13338 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13339}
13340
5287ad62
JB
13341static void
13342do_neon_tst (void)
13343{
037e8744 13344 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13345 struct neon_type_el et = neon_check_type (3, rs,
13346 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13347 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13348}
13349
13350/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13351 same types as the MAC equivalents. The polynomial type for this instruction
13352 is encoded the same as the integer type. */
13353
13354static void
13355do_neon_mul (void)
13356{
037e8744
JB
13357 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13358 return;
13359
13360 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13361 return;
13362
5287ad62
JB
13363 if (inst.operands[2].isscalar)
13364 do_neon_mac_maybe_scalar ();
13365 else
dcbf9037 13366 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13367}
13368
13369static void
13370do_neon_qdmulh (void)
13371{
13372 if (inst.operands[2].isscalar)
13373 {
037e8744 13374 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13375 struct neon_type_el et = neon_check_type (3, rs,
13376 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13377 NEON_ENCODE (SCALAR, inst);
037e8744 13378 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13379 }
13380 else
13381 {
037e8744 13382 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13383 struct neon_type_el et = neon_check_type (3, rs,
13384 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13385 NEON_ENCODE (INTEGER, inst);
5287ad62 13386 /* The U bit (rounding) comes from bit mask. */
037e8744 13387 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13388 }
13389}
13390
13391static void
13392do_neon_fcmp_absolute (void)
13393{
037e8744 13394 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13395 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13396 /* Size field comes from bit mask. */
037e8744 13397 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
13398}
13399
13400static void
13401do_neon_fcmp_absolute_inv (void)
13402{
13403 neon_exchange_operands ();
13404 do_neon_fcmp_absolute ();
13405}
13406
13407static void
13408do_neon_step (void)
13409{
037e8744 13410 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 13411 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 13412 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13413}
13414
13415static void
13416do_neon_abs_neg (void)
13417{
037e8744
JB
13418 enum neon_shape rs;
13419 struct neon_type_el et;
5f4273c7 13420
037e8744
JB
13421 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13422 return;
13423
13424 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13425 return;
13426
13427 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13428 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 13429
5287ad62
JB
13430 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13431 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13432 inst.instruction |= LOW4 (inst.operands[1].reg);
13433 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13434 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13435 inst.instruction |= (et.type == NT_float) << 10;
13436 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13437
88714cb8 13438 neon_dp_fixup (&inst);
5287ad62
JB
13439}
13440
13441static void
13442do_neon_sli (void)
13443{
037e8744 13444 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13445 struct neon_type_el et = neon_check_type (2, rs,
13446 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13447 int imm = inst.operands[2].imm;
13448 constraint (imm < 0 || (unsigned)imm >= et.size,
13449 _("immediate out of range for insert"));
037e8744 13450 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13451}
13452
13453static void
13454do_neon_sri (void)
13455{
037e8744 13456 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13457 struct neon_type_el et = neon_check_type (2, rs,
13458 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13459 int imm = inst.operands[2].imm;
13460 constraint (imm < 1 || (unsigned)imm > et.size,
13461 _("immediate out of range for insert"));
037e8744 13462 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
13463}
13464
13465static void
13466do_neon_qshlu_imm (void)
13467{
037e8744 13468 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13469 struct neon_type_el et = neon_check_type (2, rs,
13470 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13471 int imm = inst.operands[2].imm;
13472 constraint (imm < 0 || (unsigned)imm >= et.size,
13473 _("immediate out of range for shift"));
13474 /* Only encodes the 'U present' variant of the instruction.
13475 In this case, signed types have OP (bit 8) set to 0.
13476 Unsigned types have OP set to 1. */
13477 inst.instruction |= (et.type == NT_unsigned) << 8;
13478 /* The rest of the bits are the same as other immediate shifts. */
037e8744 13479 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13480}
13481
13482static void
13483do_neon_qmovn (void)
13484{
13485 struct neon_type_el et = neon_check_type (2, NS_DQ,
13486 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13487 /* Saturating move where operands can be signed or unsigned, and the
13488 destination has the same signedness. */
88714cb8 13489 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13490 if (et.type == NT_unsigned)
13491 inst.instruction |= 0xc0;
13492 else
13493 inst.instruction |= 0x80;
13494 neon_two_same (0, 1, et.size / 2);
13495}
13496
13497static void
13498do_neon_qmovun (void)
13499{
13500 struct neon_type_el et = neon_check_type (2, NS_DQ,
13501 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13502 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 13503 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13504 neon_two_same (0, 1, et.size / 2);
13505}
13506
13507static void
13508do_neon_rshift_sat_narrow (void)
13509{
13510 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13511 or unsigned. If operands are unsigned, results must also be unsigned. */
13512 struct neon_type_el et = neon_check_type (2, NS_DQI,
13513 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13514 int imm = inst.operands[2].imm;
13515 /* This gets the bounds check, size encoding and immediate bits calculation
13516 right. */
13517 et.size /= 2;
5f4273c7 13518
5287ad62
JB
13519 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13520 VQMOVN.I<size> <Dd>, <Qm>. */
13521 if (imm == 0)
13522 {
13523 inst.operands[2].present = 0;
13524 inst.instruction = N_MNEM_vqmovn;
13525 do_neon_qmovn ();
13526 return;
13527 }
5f4273c7 13528
5287ad62
JB
13529 constraint (imm < 1 || (unsigned)imm > et.size,
13530 _("immediate out of range"));
13531 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13532}
13533
13534static void
13535do_neon_rshift_sat_narrow_u (void)
13536{
13537 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13538 or unsigned. If operands are unsigned, results must also be unsigned. */
13539 struct neon_type_el et = neon_check_type (2, NS_DQI,
13540 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13541 int imm = inst.operands[2].imm;
13542 /* This gets the bounds check, size encoding and immediate bits calculation
13543 right. */
13544 et.size /= 2;
13545
13546 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13547 VQMOVUN.I<size> <Dd>, <Qm>. */
13548 if (imm == 0)
13549 {
13550 inst.operands[2].present = 0;
13551 inst.instruction = N_MNEM_vqmovun;
13552 do_neon_qmovun ();
13553 return;
13554 }
13555
13556 constraint (imm < 1 || (unsigned)imm > et.size,
13557 _("immediate out of range"));
13558 /* FIXME: The manual is kind of unclear about what value U should have in
13559 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13560 must be 1. */
13561 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13562}
13563
13564static void
13565do_neon_movn (void)
13566{
13567 struct neon_type_el et = neon_check_type (2, NS_DQ,
13568 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 13569 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13570 neon_two_same (0, 1, et.size / 2);
13571}
13572
13573static void
13574do_neon_rshift_narrow (void)
13575{
13576 struct neon_type_el et = neon_check_type (2, NS_DQI,
13577 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13578 int imm = inst.operands[2].imm;
13579 /* This gets the bounds check, size encoding and immediate bits calculation
13580 right. */
13581 et.size /= 2;
5f4273c7 13582
5287ad62
JB
13583 /* If immediate is zero then we are a pseudo-instruction for
13584 VMOVN.I<size> <Dd>, <Qm> */
13585 if (imm == 0)
13586 {
13587 inst.operands[2].present = 0;
13588 inst.instruction = N_MNEM_vmovn;
13589 do_neon_movn ();
13590 return;
13591 }
5f4273c7 13592
5287ad62
JB
13593 constraint (imm < 1 || (unsigned)imm > et.size,
13594 _("immediate out of range for narrowing operation"));
13595 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13596}
13597
13598static void
13599do_neon_shll (void)
13600{
13601 /* FIXME: Type checking when lengthening. */
13602 struct neon_type_el et = neon_check_type (2, NS_QDI,
13603 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13604 unsigned imm = inst.operands[2].imm;
13605
13606 if (imm == et.size)
13607 {
13608 /* Maximum shift variant. */
88714cb8 13609 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13610 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13611 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13612 inst.instruction |= LOW4 (inst.operands[1].reg);
13613 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13614 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13615
88714cb8 13616 neon_dp_fixup (&inst);
5287ad62
JB
13617 }
13618 else
13619 {
13620 /* A more-specific type check for non-max versions. */
13621 et = neon_check_type (2, NS_QDI,
13622 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 13623 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13624 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13625 }
13626}
13627
037e8744 13628/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
13629 the current instruction is. */
13630
13631static int
13632neon_cvt_flavour (enum neon_shape rs)
13633{
037e8744
JB
13634#define CVT_VAR(C,X,Y) \
13635 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13636 if (et.type != NT_invtype) \
13637 { \
13638 inst.error = NULL; \
13639 return (C); \
5287ad62
JB
13640 }
13641 struct neon_type_el et;
037e8744
JB
13642 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13643 || rs == NS_FF) ? N_VFP : 0;
13644 /* The instruction versions which take an immediate take one register
13645 argument, which is extended to the width of the full register. Thus the
13646 "source" and "destination" registers must have the same width. Hack that
13647 here by making the size equal to the key (wider, in this case) operand. */
13648 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 13649
5287ad62
JB
13650 CVT_VAR (0, N_S32, N_F32);
13651 CVT_VAR (1, N_U32, N_F32);
13652 CVT_VAR (2, N_F32, N_S32);
13653 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
13654 /* Half-precision conversions. */
13655 CVT_VAR (4, N_F32, N_F16);
13656 CVT_VAR (5, N_F16, N_F32);
5f4273c7 13657
037e8744 13658 whole_reg = N_VFP;
5f4273c7 13659
037e8744 13660 /* VFP instructions. */
8e79c3df
CM
13661 CVT_VAR (6, N_F32, N_F64);
13662 CVT_VAR (7, N_F64, N_F32);
13663 CVT_VAR (8, N_S32, N_F64 | key);
13664 CVT_VAR (9, N_U32, N_F64 | key);
13665 CVT_VAR (10, N_F64 | key, N_S32);
13666 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 13667 /* VFP instructions with bitshift. */
8e79c3df
CM
13668 CVT_VAR (12, N_F32 | key, N_S16);
13669 CVT_VAR (13, N_F32 | key, N_U16);
13670 CVT_VAR (14, N_F64 | key, N_S16);
13671 CVT_VAR (15, N_F64 | key, N_U16);
13672 CVT_VAR (16, N_S16, N_F32 | key);
13673 CVT_VAR (17, N_U16, N_F32 | key);
13674 CVT_VAR (18, N_S16, N_F64 | key);
13675 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 13676
5287ad62
JB
13677 return -1;
13678#undef CVT_VAR
13679}
13680
037e8744
JB
13681/* Neon-syntax VFP conversions. */
13682
5287ad62 13683static void
037e8744 13684do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 13685{
037e8744 13686 const char *opname = 0;
5f4273c7 13687
037e8744 13688 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 13689 {
037e8744
JB
13690 /* Conversions with immediate bitshift. */
13691 const char *enc[] =
13692 {
13693 "ftosls",
13694 "ftouls",
13695 "fsltos",
13696 "fultos",
13697 NULL,
13698 NULL,
8e79c3df
CM
13699 NULL,
13700 NULL,
037e8744
JB
13701 "ftosld",
13702 "ftould",
13703 "fsltod",
13704 "fultod",
13705 "fshtos",
13706 "fuhtos",
13707 "fshtod",
13708 "fuhtod",
13709 "ftoshs",
13710 "ftouhs",
13711 "ftoshd",
13712 "ftouhd"
13713 };
13714
13715 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13716 {
13717 opname = enc[flavour];
13718 constraint (inst.operands[0].reg != inst.operands[1].reg,
13719 _("operands 0 and 1 must be the same register"));
13720 inst.operands[1] = inst.operands[2];
13721 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13722 }
5287ad62
JB
13723 }
13724 else
13725 {
037e8744
JB
13726 /* Conversions without bitshift. */
13727 const char *enc[] =
13728 {
13729 "ftosis",
13730 "ftouis",
13731 "fsitos",
13732 "fuitos",
8e79c3df
CM
13733 "NULL",
13734 "NULL",
037e8744
JB
13735 "fcvtsd",
13736 "fcvtds",
13737 "ftosid",
13738 "ftouid",
13739 "fsitod",
13740 "fuitod"
13741 };
13742
13743 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13744 opname = enc[flavour];
13745 }
13746
13747 if (opname)
13748 do_vfp_nsyn_opcode (opname);
13749}
13750
13751static void
13752do_vfp_nsyn_cvtz (void)
13753{
13754 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13755 int flavour = neon_cvt_flavour (rs);
13756 const char *enc[] =
13757 {
13758 "ftosizs",
13759 "ftouizs",
13760 NULL,
13761 NULL,
13762 NULL,
13763 NULL,
8e79c3df
CM
13764 NULL,
13765 NULL,
037e8744
JB
13766 "ftosizd",
13767 "ftouizd"
13768 };
13769
13770 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13771 do_vfp_nsyn_opcode (enc[flavour]);
13772}
f31fef98 13773
037e8744 13774static void
e3e535bc 13775do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
13776{
13777 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 13778 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
13779 int flavour = neon_cvt_flavour (rs);
13780
e3e535bc
NC
13781 /* PR11109: Handle round-to-zero for VCVT conversions. */
13782 if (round_to_zero
13783 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
13784 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
13785 && (rs == NS_FD || rs == NS_FF))
13786 {
13787 do_vfp_nsyn_cvtz ();
13788 return;
13789 }
13790
037e8744 13791 /* VFP rather than Neon conversions. */
8e79c3df 13792 if (flavour >= 6)
037e8744
JB
13793 {
13794 do_vfp_nsyn_cvt (rs, flavour);
13795 return;
13796 }
13797
13798 switch (rs)
13799 {
13800 case NS_DDI:
13801 case NS_QQI:
13802 {
35997600
NC
13803 unsigned immbits;
13804 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13805
037e8744
JB
13806 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13807 return;
13808
13809 /* Fixed-point conversion with #0 immediate is encoded as an
13810 integer conversion. */
13811 if (inst.operands[2].present && inst.operands[2].imm == 0)
13812 goto int_encode;
35997600 13813 immbits = 32 - inst.operands[2].imm;
88714cb8 13814 NEON_ENCODE (IMMED, inst);
037e8744
JB
13815 if (flavour != -1)
13816 inst.instruction |= enctab[flavour];
13817 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13818 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13819 inst.instruction |= LOW4 (inst.operands[1].reg);
13820 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13821 inst.instruction |= neon_quad (rs) << 6;
13822 inst.instruction |= 1 << 21;
13823 inst.instruction |= immbits << 16;
13824
88714cb8 13825 neon_dp_fixup (&inst);
037e8744
JB
13826 }
13827 break;
13828
13829 case NS_DD:
13830 case NS_QQ:
13831 int_encode:
13832 {
13833 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13834
88714cb8 13835 NEON_ENCODE (INTEGER, inst);
037e8744
JB
13836
13837 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13838 return;
13839
13840 if (flavour != -1)
13841 inst.instruction |= enctab[flavour];
13842
13843 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13844 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13845 inst.instruction |= LOW4 (inst.operands[1].reg);
13846 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13847 inst.instruction |= neon_quad (rs) << 6;
13848 inst.instruction |= 2 << 18;
13849
88714cb8 13850 neon_dp_fixup (&inst);
037e8744
JB
13851 }
13852 break;
13853
8e79c3df
CM
13854 /* Half-precision conversions for Advanced SIMD -- neon. */
13855 case NS_QD:
13856 case NS_DQ:
13857
13858 if ((rs == NS_DQ)
13859 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13860 {
13861 as_bad (_("operand size must match register width"));
13862 break;
13863 }
13864
13865 if ((rs == NS_QD)
13866 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13867 {
13868 as_bad (_("operand size must match register width"));
13869 break;
13870 }
13871
13872 if (rs == NS_DQ)
13873 inst.instruction = 0x3b60600;
13874 else
13875 inst.instruction = 0x3b60700;
13876
13877 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13878 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13879 inst.instruction |= LOW4 (inst.operands[1].reg);
13880 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 13881 neon_dp_fixup (&inst);
8e79c3df
CM
13882 break;
13883
037e8744
JB
13884 default:
13885 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13886 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 13887 }
5287ad62
JB
13888}
13889
e3e535bc
NC
13890static void
13891do_neon_cvtr (void)
13892{
13893 do_neon_cvt_1 (FALSE);
13894}
13895
13896static void
13897do_neon_cvt (void)
13898{
13899 do_neon_cvt_1 (TRUE);
13900}
13901
8e79c3df
CM
13902static void
13903do_neon_cvtb (void)
13904{
13905 inst.instruction = 0xeb20a40;
13906
13907 /* The sizes are attached to the mnemonic. */
13908 if (inst.vectype.el[0].type != NT_invtype
13909 && inst.vectype.el[0].size == 16)
13910 inst.instruction |= 0x00010000;
13911
13912 /* Programmer's syntax: the sizes are attached to the operands. */
13913 else if (inst.operands[0].vectype.type != NT_invtype
13914 && inst.operands[0].vectype.size == 16)
13915 inst.instruction |= 0x00010000;
13916
13917 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13918 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13919 do_vfp_cond_or_thumb ();
13920}
13921
13922
13923static void
13924do_neon_cvtt (void)
13925{
13926 do_neon_cvtb ();
13927 inst.instruction |= 0x80;
13928}
13929
5287ad62
JB
13930static void
13931neon_move_immediate (void)
13932{
037e8744
JB
13933 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13934 struct neon_type_el et = neon_check_type (2, rs,
13935 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 13936 unsigned immlo, immhi = 0, immbits;
c96612cc 13937 int op, cmode, float_p;
5287ad62 13938
037e8744
JB
13939 constraint (et.type == NT_invtype,
13940 _("operand size must be specified for immediate VMOV"));
13941
5287ad62
JB
13942 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13943 op = (inst.instruction & (1 << 5)) != 0;
13944
13945 immlo = inst.operands[1].imm;
13946 if (inst.operands[1].regisimm)
13947 immhi = inst.operands[1].reg;
13948
13949 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13950 _("immediate has bits set outside the operand size"));
13951
c96612cc
JB
13952 float_p = inst.operands[1].immisfloat;
13953
13954 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 13955 et.size, et.type)) == FAIL)
5287ad62
JB
13956 {
13957 /* Invert relevant bits only. */
13958 neon_invert_size (&immlo, &immhi, et.size);
13959 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13960 with one or the other; those cases are caught by
13961 neon_cmode_for_move_imm. */
13962 op = !op;
c96612cc
JB
13963 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13964 &op, et.size, et.type)) == FAIL)
5287ad62 13965 {
dcbf9037 13966 first_error (_("immediate out of range"));
5287ad62
JB
13967 return;
13968 }
13969 }
13970
13971 inst.instruction &= ~(1 << 5);
13972 inst.instruction |= op << 5;
13973
13974 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13975 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 13976 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13977 inst.instruction |= cmode << 8;
13978
13979 neon_write_immbits (immbits);
13980}
13981
13982static void
13983do_neon_mvn (void)
13984{
13985 if (inst.operands[1].isreg)
13986 {
037e8744 13987 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 13988
88714cb8 13989 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13990 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13991 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13992 inst.instruction |= LOW4 (inst.operands[1].reg);
13993 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13994 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13995 }
13996 else
13997 {
88714cb8 13998 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13999 neon_move_immediate ();
14000 }
14001
88714cb8 14002 neon_dp_fixup (&inst);
5287ad62
JB
14003}
14004
14005/* Encode instructions of form:
14006
14007 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14008 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14009
14010static void
14011neon_mixed_length (struct neon_type_el et, unsigned size)
14012{
14013 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14014 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14015 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14016 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14017 inst.instruction |= LOW4 (inst.operands[2].reg);
14018 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14019 inst.instruction |= (et.type == NT_unsigned) << 24;
14020 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14021
88714cb8 14022 neon_dp_fixup (&inst);
5287ad62
JB
14023}
14024
14025static void
14026do_neon_dyadic_long (void)
14027{
14028 /* FIXME: Type checking for lengthening op. */
14029 struct neon_type_el et = neon_check_type (3, NS_QDD,
14030 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14031 neon_mixed_length (et, et.size);
14032}
14033
14034static void
14035do_neon_abal (void)
14036{
14037 struct neon_type_el et = neon_check_type (3, NS_QDD,
14038 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14039 neon_mixed_length (et, et.size);
14040}
14041
14042static void
14043neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14044{
14045 if (inst.operands[2].isscalar)
14046 {
dcbf9037
JB
14047 struct neon_type_el et = neon_check_type (3, NS_QDS,
14048 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14049 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14050 neon_mul_mac (et, et.type == NT_unsigned);
14051 }
14052 else
14053 {
14054 struct neon_type_el et = neon_check_type (3, NS_QDD,
14055 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14056 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14057 neon_mixed_length (et, et.size);
14058 }
14059}
14060
14061static void
14062do_neon_mac_maybe_scalar_long (void)
14063{
14064 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14065}
14066
14067static void
14068do_neon_dyadic_wide (void)
14069{
14070 struct neon_type_el et = neon_check_type (3, NS_QQD,
14071 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14072 neon_mixed_length (et, et.size);
14073}
14074
14075static void
14076do_neon_dyadic_narrow (void)
14077{
14078 struct neon_type_el et = neon_check_type (3, NS_QDD,
14079 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14080 /* Operand sign is unimportant, and the U bit is part of the opcode,
14081 so force the operand type to integer. */
14082 et.type = NT_integer;
5287ad62
JB
14083 neon_mixed_length (et, et.size / 2);
14084}
14085
14086static void
14087do_neon_mul_sat_scalar_long (void)
14088{
14089 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14090}
14091
14092static void
14093do_neon_vmull (void)
14094{
14095 if (inst.operands[2].isscalar)
14096 do_neon_mac_maybe_scalar_long ();
14097 else
14098 {
14099 struct neon_type_el et = neon_check_type (3, NS_QDD,
14100 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14101 if (et.type == NT_poly)
88714cb8 14102 NEON_ENCODE (POLY, inst);
5287ad62 14103 else
88714cb8 14104 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14105 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14106 zero. Should be OK as-is. */
14107 neon_mixed_length (et, et.size);
14108 }
14109}
14110
14111static void
14112do_neon_ext (void)
14113{
037e8744 14114 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14115 struct neon_type_el et = neon_check_type (3, rs,
14116 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14117 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14118
14119 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14120 _("shift out of range"));
5287ad62
JB
14121 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14122 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14123 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14124 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14125 inst.instruction |= LOW4 (inst.operands[2].reg);
14126 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14127 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14128 inst.instruction |= imm << 8;
5f4273c7 14129
88714cb8 14130 neon_dp_fixup (&inst);
5287ad62
JB
14131}
14132
14133static void
14134do_neon_rev (void)
14135{
037e8744 14136 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14137 struct neon_type_el et = neon_check_type (2, rs,
14138 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14139 unsigned op = (inst.instruction >> 7) & 3;
14140 /* N (width of reversed regions) is encoded as part of the bitmask. We
14141 extract it here to check the elements to be reversed are smaller.
14142 Otherwise we'd get a reserved instruction. */
14143 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14144 gas_assert (elsize != 0);
5287ad62
JB
14145 constraint (et.size >= elsize,
14146 _("elements must be smaller than reversal region"));
037e8744 14147 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14148}
14149
14150static void
14151do_neon_dup (void)
14152{
14153 if (inst.operands[1].isscalar)
14154 {
037e8744 14155 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14156 struct neon_type_el et = neon_check_type (2, rs,
14157 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14158 unsigned sizebits = et.size >> 3;
dcbf9037 14159 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14160 int logsize = neon_logbits (et.size);
dcbf9037 14161 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14162
14163 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14164 return;
14165
88714cb8 14166 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14167 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14168 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14169 inst.instruction |= LOW4 (dm);
14170 inst.instruction |= HI1 (dm) << 5;
037e8744 14171 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14172 inst.instruction |= x << 17;
14173 inst.instruction |= sizebits << 16;
5f4273c7 14174
88714cb8 14175 neon_dp_fixup (&inst);
5287ad62
JB
14176 }
14177 else
14178 {
037e8744
JB
14179 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14180 struct neon_type_el et = neon_check_type (2, rs,
14181 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 14182 /* Duplicate ARM register to lanes of vector. */
88714cb8 14183 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
14184 switch (et.size)
14185 {
14186 case 8: inst.instruction |= 0x400000; break;
14187 case 16: inst.instruction |= 0x000020; break;
14188 case 32: inst.instruction |= 0x000000; break;
14189 default: break;
14190 }
14191 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14192 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14193 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14194 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14195 /* The encoding for this instruction is identical for the ARM and Thumb
14196 variants, except for the condition field. */
037e8744 14197 do_vfp_cond_or_thumb ();
5287ad62
JB
14198 }
14199}
14200
14201/* VMOV has particularly many variations. It can be one of:
14202 0. VMOV<c><q> <Qd>, <Qm>
14203 1. VMOV<c><q> <Dd>, <Dm>
14204 (Register operations, which are VORR with Rm = Rn.)
14205 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14206 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14207 (Immediate loads.)
14208 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14209 (ARM register to scalar.)
14210 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14211 (Two ARM registers to vector.)
14212 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14213 (Scalar to ARM register.)
14214 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14215 (Vector to two ARM registers.)
037e8744
JB
14216 8. VMOV.F32 <Sd>, <Sm>
14217 9. VMOV.F64 <Dd>, <Dm>
14218 (VFP register moves.)
14219 10. VMOV.F32 <Sd>, #imm
14220 11. VMOV.F64 <Dd>, #imm
14221 (VFP float immediate load.)
14222 12. VMOV <Rd>, <Sm>
14223 (VFP single to ARM reg.)
14224 13. VMOV <Sd>, <Rm>
14225 (ARM reg to VFP single.)
14226 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14227 (Two ARM regs to two VFP singles.)
14228 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14229 (Two VFP singles to two ARM regs.)
5f4273c7 14230
037e8744
JB
14231 These cases can be disambiguated using neon_select_shape, except cases 1/9
14232 and 3/11 which depend on the operand type too.
5f4273c7 14233
5287ad62 14234 All the encoded bits are hardcoded by this function.
5f4273c7 14235
b7fc2769
JB
14236 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14237 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14238
5287ad62 14239 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14240 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14241
14242static void
14243do_neon_mov (void)
14244{
037e8744
JB
14245 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14246 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14247 NS_NULL);
14248 struct neon_type_el et;
14249 const char *ldconst = 0;
5287ad62 14250
037e8744 14251 switch (rs)
5287ad62 14252 {
037e8744
JB
14253 case NS_DD: /* case 1/9. */
14254 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14255 /* It is not an error here if no type is given. */
14256 inst.error = NULL;
14257 if (et.type == NT_float && et.size == 64)
5287ad62 14258 {
037e8744
JB
14259 do_vfp_nsyn_opcode ("fcpyd");
14260 break;
5287ad62 14261 }
037e8744 14262 /* fall through. */
5287ad62 14263
037e8744
JB
14264 case NS_QQ: /* case 0/1. */
14265 {
14266 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14267 return;
14268 /* The architecture manual I have doesn't explicitly state which
14269 value the U bit should have for register->register moves, but
14270 the equivalent VORR instruction has U = 0, so do that. */
14271 inst.instruction = 0x0200110;
14272 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14273 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14274 inst.instruction |= LOW4 (inst.operands[1].reg);
14275 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14276 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14277 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14278 inst.instruction |= neon_quad (rs) << 6;
14279
88714cb8 14280 neon_dp_fixup (&inst);
037e8744
JB
14281 }
14282 break;
5f4273c7 14283
037e8744
JB
14284 case NS_DI: /* case 3/11. */
14285 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14286 inst.error = NULL;
14287 if (et.type == NT_float && et.size == 64)
5287ad62 14288 {
037e8744
JB
14289 /* case 11 (fconstd). */
14290 ldconst = "fconstd";
14291 goto encode_fconstd;
5287ad62 14292 }
037e8744
JB
14293 /* fall through. */
14294
14295 case NS_QI: /* case 2/3. */
14296 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14297 return;
14298 inst.instruction = 0x0800010;
14299 neon_move_immediate ();
88714cb8 14300 neon_dp_fixup (&inst);
5287ad62 14301 break;
5f4273c7 14302
037e8744
JB
14303 case NS_SR: /* case 4. */
14304 {
14305 unsigned bcdebits = 0;
91d6fa6a 14306 int logsize;
037e8744
JB
14307 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14308 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14309
91d6fa6a
NC
14310 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14311 logsize = neon_logbits (et.size);
14312
037e8744
JB
14313 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14314 _(BAD_FPU));
14315 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14316 && et.size != 32, _(BAD_FPU));
14317 constraint (et.type == NT_invtype, _("bad type for scalar"));
14318 constraint (x >= 64 / et.size, _("scalar index out of range"));
14319
14320 switch (et.size)
14321 {
14322 case 8: bcdebits = 0x8; break;
14323 case 16: bcdebits = 0x1; break;
14324 case 32: bcdebits = 0x0; break;
14325 default: ;
14326 }
14327
14328 bcdebits |= x << logsize;
14329
14330 inst.instruction = 0xe000b10;
14331 do_vfp_cond_or_thumb ();
14332 inst.instruction |= LOW4 (dn) << 16;
14333 inst.instruction |= HI1 (dn) << 7;
14334 inst.instruction |= inst.operands[1].reg << 12;
14335 inst.instruction |= (bcdebits & 3) << 5;
14336 inst.instruction |= (bcdebits >> 2) << 21;
14337 }
14338 break;
5f4273c7 14339
037e8744 14340 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14341 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14342 _(BAD_FPU));
b7fc2769 14343
037e8744
JB
14344 inst.instruction = 0xc400b10;
14345 do_vfp_cond_or_thumb ();
14346 inst.instruction |= LOW4 (inst.operands[0].reg);
14347 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14348 inst.instruction |= inst.operands[1].reg << 12;
14349 inst.instruction |= inst.operands[2].reg << 16;
14350 break;
5f4273c7 14351
037e8744
JB
14352 case NS_RS: /* case 6. */
14353 {
91d6fa6a 14354 unsigned logsize;
037e8744
JB
14355 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14356 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14357 unsigned abcdebits = 0;
14358
91d6fa6a
NC
14359 et = neon_check_type (2, NS_NULL,
14360 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14361 logsize = neon_logbits (et.size);
14362
037e8744
JB
14363 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14364 _(BAD_FPU));
14365 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14366 && et.size != 32, _(BAD_FPU));
14367 constraint (et.type == NT_invtype, _("bad type for scalar"));
14368 constraint (x >= 64 / et.size, _("scalar index out of range"));
14369
14370 switch (et.size)
14371 {
14372 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14373 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14374 case 32: abcdebits = 0x00; break;
14375 default: ;
14376 }
14377
14378 abcdebits |= x << logsize;
14379 inst.instruction = 0xe100b10;
14380 do_vfp_cond_or_thumb ();
14381 inst.instruction |= LOW4 (dn) << 16;
14382 inst.instruction |= HI1 (dn) << 7;
14383 inst.instruction |= inst.operands[0].reg << 12;
14384 inst.instruction |= (abcdebits & 3) << 5;
14385 inst.instruction |= (abcdebits >> 2) << 21;
14386 }
14387 break;
5f4273c7 14388
037e8744
JB
14389 case NS_RRD: /* case 7 (fmrrd). */
14390 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14391 _(BAD_FPU));
14392
14393 inst.instruction = 0xc500b10;
14394 do_vfp_cond_or_thumb ();
14395 inst.instruction |= inst.operands[0].reg << 12;
14396 inst.instruction |= inst.operands[1].reg << 16;
14397 inst.instruction |= LOW4 (inst.operands[2].reg);
14398 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14399 break;
5f4273c7 14400
037e8744
JB
14401 case NS_FF: /* case 8 (fcpys). */
14402 do_vfp_nsyn_opcode ("fcpys");
14403 break;
5f4273c7 14404
037e8744
JB
14405 case NS_FI: /* case 10 (fconsts). */
14406 ldconst = "fconsts";
14407 encode_fconstd:
14408 if (is_quarter_float (inst.operands[1].imm))
5287ad62 14409 {
037e8744
JB
14410 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14411 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
14412 }
14413 else
037e8744
JB
14414 first_error (_("immediate out of range"));
14415 break;
5f4273c7 14416
037e8744
JB
14417 case NS_RF: /* case 12 (fmrs). */
14418 do_vfp_nsyn_opcode ("fmrs");
14419 break;
5f4273c7 14420
037e8744
JB
14421 case NS_FR: /* case 13 (fmsr). */
14422 do_vfp_nsyn_opcode ("fmsr");
14423 break;
5f4273c7 14424
037e8744
JB
14425 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14426 (one of which is a list), but we have parsed four. Do some fiddling to
14427 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14428 expect. */
14429 case NS_RRFF: /* case 14 (fmrrs). */
14430 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14431 _("VFP registers must be adjacent"));
14432 inst.operands[2].imm = 2;
14433 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14434 do_vfp_nsyn_opcode ("fmrrs");
14435 break;
5f4273c7 14436
037e8744
JB
14437 case NS_FFRR: /* case 15 (fmsrr). */
14438 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14439 _("VFP registers must be adjacent"));
14440 inst.operands[1] = inst.operands[2];
14441 inst.operands[2] = inst.operands[3];
14442 inst.operands[0].imm = 2;
14443 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14444 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 14445 break;
5f4273c7 14446
5287ad62
JB
14447 default:
14448 abort ();
14449 }
14450}
14451
14452static void
14453do_neon_rshift_round_imm (void)
14454{
037e8744 14455 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14456 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14457 int imm = inst.operands[2].imm;
14458
14459 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14460 if (imm == 0)
14461 {
14462 inst.operands[2].present = 0;
14463 do_neon_mov ();
14464 return;
14465 }
14466
14467 constraint (imm < 1 || (unsigned)imm > et.size,
14468 _("immediate out of range for shift"));
037e8744 14469 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
14470 et.size - imm);
14471}
14472
14473static void
14474do_neon_movl (void)
14475{
14476 struct neon_type_el et = neon_check_type (2, NS_QD,
14477 N_EQK | N_DBL, N_SU_32 | N_KEY);
14478 unsigned sizebits = et.size >> 3;
14479 inst.instruction |= sizebits << 19;
14480 neon_two_same (0, et.type == NT_unsigned, -1);
14481}
14482
14483static void
14484do_neon_trn (void)
14485{
037e8744 14486 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14487 struct neon_type_el et = neon_check_type (2, rs,
14488 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 14489 NEON_ENCODE (INTEGER, inst);
037e8744 14490 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14491}
14492
14493static void
14494do_neon_zip_uzp (void)
14495{
037e8744 14496 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14497 struct neon_type_el et = neon_check_type (2, rs,
14498 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14499 if (rs == NS_DD && et.size == 32)
14500 {
14501 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14502 inst.instruction = N_MNEM_vtrn;
14503 do_neon_trn ();
14504 return;
14505 }
037e8744 14506 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14507}
14508
14509static void
14510do_neon_sat_abs_neg (void)
14511{
037e8744 14512 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14513 struct neon_type_el et = neon_check_type (2, rs,
14514 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14515 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14516}
14517
14518static void
14519do_neon_pair_long (void)
14520{
037e8744 14521 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14522 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14523 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14524 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 14525 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14526}
14527
14528static void
14529do_neon_recip_est (void)
14530{
037e8744 14531 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14532 struct neon_type_el et = neon_check_type (2, rs,
14533 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14534 inst.instruction |= (et.type == NT_float) << 8;
037e8744 14535 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14536}
14537
14538static void
14539do_neon_cls (void)
14540{
037e8744 14541 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14542 struct neon_type_el et = neon_check_type (2, rs,
14543 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14544 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14545}
14546
14547static void
14548do_neon_clz (void)
14549{
037e8744 14550 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14551 struct neon_type_el et = neon_check_type (2, rs,
14552 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 14553 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14554}
14555
14556static void
14557do_neon_cnt (void)
14558{
037e8744 14559 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14560 struct neon_type_el et = neon_check_type (2, rs,
14561 N_EQK | N_INT, N_8 | N_KEY);
037e8744 14562 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14563}
14564
14565static void
14566do_neon_swp (void)
14567{
037e8744
JB
14568 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14569 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
14570}
14571
14572static void
14573do_neon_tbl_tbx (void)
14574{
14575 unsigned listlenbits;
dcbf9037 14576 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 14577
5287ad62
JB
14578 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14579 {
dcbf9037 14580 first_error (_("bad list length for table lookup"));
5287ad62
JB
14581 return;
14582 }
5f4273c7 14583
5287ad62
JB
14584 listlenbits = inst.operands[1].imm - 1;
14585 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14586 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14587 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14588 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14589 inst.instruction |= LOW4 (inst.operands[2].reg);
14590 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14591 inst.instruction |= listlenbits << 8;
5f4273c7 14592
88714cb8 14593 neon_dp_fixup (&inst);
5287ad62
JB
14594}
14595
14596static void
14597do_neon_ldm_stm (void)
14598{
14599 /* P, U and L bits are part of bitmask. */
14600 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14601 unsigned offsetbits = inst.operands[1].imm * 2;
14602
037e8744
JB
14603 if (inst.operands[1].issingle)
14604 {
14605 do_vfp_nsyn_ldm_stm (is_dbmode);
14606 return;
14607 }
14608
5287ad62
JB
14609 constraint (is_dbmode && !inst.operands[0].writeback,
14610 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14611
14612 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14613 _("register list must contain at least 1 and at most 16 "
14614 "registers"));
14615
14616 inst.instruction |= inst.operands[0].reg << 16;
14617 inst.instruction |= inst.operands[0].writeback << 21;
14618 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14619 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14620
14621 inst.instruction |= offsetbits;
5f4273c7 14622
037e8744 14623 do_vfp_cond_or_thumb ();
5287ad62
JB
14624}
14625
14626static void
14627do_neon_ldr_str (void)
14628{
5287ad62 14629 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 14630
037e8744
JB
14631 if (inst.operands[0].issingle)
14632 {
cd2f129f
JB
14633 if (is_ldr)
14634 do_vfp_nsyn_opcode ("flds");
14635 else
14636 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
14637 }
14638 else
5287ad62 14639 {
cd2f129f
JB
14640 if (is_ldr)
14641 do_vfp_nsyn_opcode ("fldd");
5287ad62 14642 else
cd2f129f 14643 do_vfp_nsyn_opcode ("fstd");
5287ad62 14644 }
5287ad62
JB
14645}
14646
14647/* "interleave" version also handles non-interleaving register VLD1/VST1
14648 instructions. */
14649
14650static void
14651do_neon_ld_st_interleave (void)
14652{
037e8744 14653 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
14654 N_8 | N_16 | N_32 | N_64);
14655 unsigned alignbits = 0;
14656 unsigned idx;
14657 /* The bits in this table go:
14658 0: register stride of one (0) or two (1)
14659 1,2: register list length, minus one (1, 2, 3, 4).
14660 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14661 We use -1 for invalid entries. */
14662 const int typetable[] =
14663 {
14664 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14665 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14666 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14667 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14668 };
14669 int typebits;
14670
dcbf9037
JB
14671 if (et.type == NT_invtype)
14672 return;
14673
5287ad62
JB
14674 if (inst.operands[1].immisalign)
14675 switch (inst.operands[1].imm >> 8)
14676 {
14677 case 64: alignbits = 1; break;
14678 case 128:
e23c0ad8
JZ
14679 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
14680 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
14681 goto bad_alignment;
14682 alignbits = 2;
14683 break;
14684 case 256:
e23c0ad8 14685 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
14686 goto bad_alignment;
14687 alignbits = 3;
14688 break;
14689 default:
14690 bad_alignment:
dcbf9037 14691 first_error (_("bad alignment"));
5287ad62
JB
14692 return;
14693 }
14694
14695 inst.instruction |= alignbits << 4;
14696 inst.instruction |= neon_logbits (et.size) << 6;
14697
14698 /* Bits [4:6] of the immediate in a list specifier encode register stride
14699 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14700 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14701 up the right value for "type" in a table based on this value and the given
14702 list style, then stick it back. */
14703 idx = ((inst.operands[0].imm >> 4) & 7)
14704 | (((inst.instruction >> 8) & 3) << 3);
14705
14706 typebits = typetable[idx];
5f4273c7 14707
5287ad62
JB
14708 constraint (typebits == -1, _("bad list type for instruction"));
14709
14710 inst.instruction &= ~0xf00;
14711 inst.instruction |= typebits << 8;
14712}
14713
14714/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14715 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14716 otherwise. The variable arguments are a list of pairs of legal (size, align)
14717 values, terminated with -1. */
14718
14719static int
14720neon_alignment_bit (int size, int align, int *do_align, ...)
14721{
14722 va_list ap;
14723 int result = FAIL, thissize, thisalign;
5f4273c7 14724
5287ad62
JB
14725 if (!inst.operands[1].immisalign)
14726 {
14727 *do_align = 0;
14728 return SUCCESS;
14729 }
5f4273c7 14730
5287ad62
JB
14731 va_start (ap, do_align);
14732
14733 do
14734 {
14735 thissize = va_arg (ap, int);
14736 if (thissize == -1)
14737 break;
14738 thisalign = va_arg (ap, int);
14739
14740 if (size == thissize && align == thisalign)
14741 result = SUCCESS;
14742 }
14743 while (result != SUCCESS);
14744
14745 va_end (ap);
14746
14747 if (result == SUCCESS)
14748 *do_align = 1;
14749 else
dcbf9037 14750 first_error (_("unsupported alignment for instruction"));
5f4273c7 14751
5287ad62
JB
14752 return result;
14753}
14754
14755static void
14756do_neon_ld_st_lane (void)
14757{
037e8744 14758 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14759 int align_good, do_align = 0;
14760 int logsize = neon_logbits (et.size);
14761 int align = inst.operands[1].imm >> 8;
14762 int n = (inst.instruction >> 8) & 3;
14763 int max_el = 64 / et.size;
5f4273c7 14764
dcbf9037
JB
14765 if (et.type == NT_invtype)
14766 return;
5f4273c7 14767
5287ad62
JB
14768 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14769 _("bad list length"));
14770 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14771 _("scalar index out of range"));
14772 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14773 && et.size == 8,
14774 _("stride of 2 unavailable when element size is 8"));
5f4273c7 14775
5287ad62
JB
14776 switch (n)
14777 {
14778 case 0: /* VLD1 / VST1. */
14779 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14780 32, 32, -1);
14781 if (align_good == FAIL)
14782 return;
14783 if (do_align)
14784 {
14785 unsigned alignbits = 0;
14786 switch (et.size)
14787 {
14788 case 16: alignbits = 0x1; break;
14789 case 32: alignbits = 0x3; break;
14790 default: ;
14791 }
14792 inst.instruction |= alignbits << 4;
14793 }
14794 break;
14795
14796 case 1: /* VLD2 / VST2. */
14797 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14798 32, 64, -1);
14799 if (align_good == FAIL)
14800 return;
14801 if (do_align)
14802 inst.instruction |= 1 << 4;
14803 break;
14804
14805 case 2: /* VLD3 / VST3. */
14806 constraint (inst.operands[1].immisalign,
14807 _("can't use alignment with this instruction"));
14808 break;
14809
14810 case 3: /* VLD4 / VST4. */
14811 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14812 16, 64, 32, 64, 32, 128, -1);
14813 if (align_good == FAIL)
14814 return;
14815 if (do_align)
14816 {
14817 unsigned alignbits = 0;
14818 switch (et.size)
14819 {
14820 case 8: alignbits = 0x1; break;
14821 case 16: alignbits = 0x1; break;
14822 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14823 default: ;
14824 }
14825 inst.instruction |= alignbits << 4;
14826 }
14827 break;
14828
14829 default: ;
14830 }
14831
14832 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14833 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14834 inst.instruction |= 1 << (4 + logsize);
5f4273c7 14835
5287ad62
JB
14836 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14837 inst.instruction |= logsize << 10;
14838}
14839
14840/* Encode single n-element structure to all lanes VLD<n> instructions. */
14841
14842static void
14843do_neon_ld_dup (void)
14844{
037e8744 14845 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14846 int align_good, do_align = 0;
14847
dcbf9037
JB
14848 if (et.type == NT_invtype)
14849 return;
14850
5287ad62
JB
14851 switch ((inst.instruction >> 8) & 3)
14852 {
14853 case 0: /* VLD1. */
9c2799c2 14854 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
14855 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14856 &do_align, 16, 16, 32, 32, -1);
14857 if (align_good == FAIL)
14858 return;
14859 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14860 {
14861 case 1: break;
14862 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 14863 default: first_error (_("bad list length")); return;
5287ad62
JB
14864 }
14865 inst.instruction |= neon_logbits (et.size) << 6;
14866 break;
14867
14868 case 1: /* VLD2. */
14869 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14870 &do_align, 8, 16, 16, 32, 32, 64, -1);
14871 if (align_good == FAIL)
14872 return;
14873 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14874 _("bad list length"));
14875 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14876 inst.instruction |= 1 << 5;
14877 inst.instruction |= neon_logbits (et.size) << 6;
14878 break;
14879
14880 case 2: /* VLD3. */
14881 constraint (inst.operands[1].immisalign,
14882 _("can't use alignment with this instruction"));
14883 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14884 _("bad list length"));
14885 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14886 inst.instruction |= 1 << 5;
14887 inst.instruction |= neon_logbits (et.size) << 6;
14888 break;
14889
14890 case 3: /* VLD4. */
14891 {
14892 int align = inst.operands[1].imm >> 8;
14893 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14894 16, 64, 32, 64, 32, 128, -1);
14895 if (align_good == FAIL)
14896 return;
14897 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14898 _("bad list length"));
14899 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14900 inst.instruction |= 1 << 5;
14901 if (et.size == 32 && align == 128)
14902 inst.instruction |= 0x3 << 6;
14903 else
14904 inst.instruction |= neon_logbits (et.size) << 6;
14905 }
14906 break;
14907
14908 default: ;
14909 }
14910
14911 inst.instruction |= do_align << 4;
14912}
14913
14914/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14915 apart from bits [11:4]. */
14916
14917static void
14918do_neon_ldx_stx (void)
14919{
b1a769ed
DG
14920 if (inst.operands[1].isreg)
14921 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
14922
5287ad62
JB
14923 switch (NEON_LANE (inst.operands[0].imm))
14924 {
14925 case NEON_INTERLEAVE_LANES:
88714cb8 14926 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
14927 do_neon_ld_st_interleave ();
14928 break;
5f4273c7 14929
5287ad62 14930 case NEON_ALL_LANES:
88714cb8 14931 NEON_ENCODE (DUP, inst);
5287ad62
JB
14932 do_neon_ld_dup ();
14933 break;
5f4273c7 14934
5287ad62 14935 default:
88714cb8 14936 NEON_ENCODE (LANE, inst);
5287ad62
JB
14937 do_neon_ld_st_lane ();
14938 }
14939
14940 /* L bit comes from bit mask. */
14941 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14942 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14943 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 14944
5287ad62
JB
14945 if (inst.operands[1].postind)
14946 {
14947 int postreg = inst.operands[1].imm & 0xf;
14948 constraint (!inst.operands[1].immisreg,
14949 _("post-index must be a register"));
14950 constraint (postreg == 0xd || postreg == 0xf,
14951 _("bad register for post-index"));
14952 inst.instruction |= postreg;
14953 }
14954 else if (inst.operands[1].writeback)
14955 {
14956 inst.instruction |= 0xd;
14957 }
14958 else
5f4273c7
NC
14959 inst.instruction |= 0xf;
14960
5287ad62
JB
14961 if (thumb_mode)
14962 inst.instruction |= 0xf9000000;
14963 else
14964 inst.instruction |= 0xf4000000;
14965}
5287ad62
JB
14966\f
14967/* Overall per-instruction processing. */
14968
14969/* We need to be able to fix up arbitrary expressions in some statements.
14970 This is so that we can handle symbols that are an arbitrary distance from
14971 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14972 which returns part of an address in a form which will be valid for
14973 a data instruction. We do this by pushing the expression into a symbol
14974 in the expr_section, and creating a fix for that. */
14975
14976static void
14977fix_new_arm (fragS * frag,
14978 int where,
14979 short int size,
14980 expressionS * exp,
14981 int pc_rel,
14982 int reloc)
14983{
14984 fixS * new_fix;
14985
14986 switch (exp->X_op)
14987 {
14988 case O_constant:
14989 case O_symbol:
14990 case O_add:
14991 case O_subtract:
21d799b5
NC
14992 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
14993 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
14994 break;
14995
14996 default:
21d799b5
NC
14997 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
14998 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
14999 break;
15000 }
15001
15002 /* Mark whether the fix is to a THUMB instruction, or an ARM
15003 instruction. */
15004 new_fix->tc_fix_data = thumb_mode;
15005}
15006
15007/* Create a frg for an instruction requiring relaxation. */
15008static void
15009output_relax_insn (void)
15010{
15011 char * to;
15012 symbolS *sym;
0110f2b8
PB
15013 int offset;
15014
6e1cb1a6
PB
15015 /* The size of the instruction is unknown, so tie the debug info to the
15016 start of the instruction. */
15017 dwarf2_emit_insn (0);
6e1cb1a6 15018
0110f2b8
PB
15019 switch (inst.reloc.exp.X_op)
15020 {
15021 case O_symbol:
15022 sym = inst.reloc.exp.X_add_symbol;
15023 offset = inst.reloc.exp.X_add_number;
15024 break;
15025 case O_constant:
15026 sym = NULL;
15027 offset = inst.reloc.exp.X_add_number;
15028 break;
15029 default:
15030 sym = make_expr_symbol (&inst.reloc.exp);
15031 offset = 0;
15032 break;
15033 }
15034 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15035 inst.relax, sym, offset, NULL/*offset, opcode*/);
15036 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15037}
15038
15039/* Write a 32-bit thumb instruction to buf. */
15040static void
15041put_thumb32_insn (char * buf, unsigned long insn)
15042{
15043 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15044 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15045}
15046
b99bd4ef 15047static void
c19d1205 15048output_inst (const char * str)
b99bd4ef 15049{
c19d1205 15050 char * to = NULL;
b99bd4ef 15051
c19d1205 15052 if (inst.error)
b99bd4ef 15053 {
c19d1205 15054 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15055 return;
15056 }
5f4273c7
NC
15057 if (inst.relax)
15058 {
15059 output_relax_insn ();
0110f2b8 15060 return;
5f4273c7 15061 }
c19d1205
ZW
15062 if (inst.size == 0)
15063 return;
b99bd4ef 15064
c19d1205 15065 to = frag_more (inst.size);
8dc2430f
NC
15066 /* PR 9814: Record the thumb mode into the current frag so that we know
15067 what type of NOP padding to use, if necessary. We override any previous
15068 setting so that if the mode has changed then the NOPS that we use will
15069 match the encoding of the last instruction in the frag. */
cd000bff 15070 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15071
15072 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15073 {
9c2799c2 15074 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15075 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15076 }
c19d1205 15077 else if (inst.size > INSN_SIZE)
b99bd4ef 15078 {
9c2799c2 15079 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15080 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15081 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15082 }
c19d1205
ZW
15083 else
15084 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15085
c19d1205
ZW
15086 if (inst.reloc.type != BFD_RELOC_UNUSED)
15087 fix_new_arm (frag_now, to - frag_now->fr_literal,
15088 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15089 inst.reloc.type);
b99bd4ef 15090
c19d1205 15091 dwarf2_emit_insn (inst.size);
c19d1205 15092}
b99bd4ef 15093
e07e6e58
NC
15094static char *
15095output_it_inst (int cond, int mask, char * to)
15096{
15097 unsigned long instruction = 0xbf00;
15098
15099 mask &= 0xf;
15100 instruction |= mask;
15101 instruction |= cond << 4;
15102
15103 if (to == NULL)
15104 {
15105 to = frag_more (2);
15106#ifdef OBJ_ELF
15107 dwarf2_emit_insn (2);
15108#endif
15109 }
15110
15111 md_number_to_chars (to, instruction, 2);
15112
15113 return to;
15114}
15115
c19d1205
ZW
15116/* Tag values used in struct asm_opcode's tag field. */
15117enum opcode_tag
15118{
15119 OT_unconditional, /* Instruction cannot be conditionalized.
15120 The ARM condition field is still 0xE. */
15121 OT_unconditionalF, /* Instruction cannot be conditionalized
15122 and carries 0xF in its ARM condition field. */
15123 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15124 OT_csuffixF, /* Some forms of the instruction take a conditional
15125 suffix, others place 0xF where the condition field
15126 would be. */
c19d1205
ZW
15127 OT_cinfix3, /* Instruction takes a conditional infix,
15128 beginning at character index 3. (In
15129 unified mode, it becomes a suffix.) */
088fa78e
KH
15130 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15131 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
15132 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15133 character index 3, even in unified mode. Used for
15134 legacy instructions where suffix and infix forms
15135 may be ambiguous. */
c19d1205 15136 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 15137 suffix or an infix at character index 3. */
c19d1205
ZW
15138 OT_odd_infix_unc, /* This is the unconditional variant of an
15139 instruction that takes a conditional infix
15140 at an unusual position. In unified mode,
15141 this variant will accept a suffix. */
15142 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15143 are the conditional variants of instructions that
15144 take conditional infixes in unusual positions.
15145 The infix appears at character index
15146 (tag - OT_odd_infix_0). These are not accepted
15147 in unified mode. */
15148};
b99bd4ef 15149
c19d1205
ZW
15150/* Subroutine of md_assemble, responsible for looking up the primary
15151 opcode from the mnemonic the user wrote. STR points to the
15152 beginning of the mnemonic.
15153
15154 This is not simply a hash table lookup, because of conditional
15155 variants. Most instructions have conditional variants, which are
15156 expressed with a _conditional affix_ to the mnemonic. If we were
15157 to encode each conditional variant as a literal string in the opcode
15158 table, it would have approximately 20,000 entries.
15159
15160 Most mnemonics take this affix as a suffix, and in unified syntax,
15161 'most' is upgraded to 'all'. However, in the divided syntax, some
15162 instructions take the affix as an infix, notably the s-variants of
15163 the arithmetic instructions. Of those instructions, all but six
15164 have the infix appear after the third character of the mnemonic.
15165
15166 Accordingly, the algorithm for looking up primary opcodes given
15167 an identifier is:
15168
15169 1. Look up the identifier in the opcode table.
15170 If we find a match, go to step U.
15171
15172 2. Look up the last two characters of the identifier in the
15173 conditions table. If we find a match, look up the first N-2
15174 characters of the identifier in the opcode table. If we
15175 find a match, go to step CE.
15176
15177 3. Look up the fourth and fifth characters of the identifier in
15178 the conditions table. If we find a match, extract those
15179 characters from the identifier, and look up the remaining
15180 characters in the opcode table. If we find a match, go
15181 to step CM.
15182
15183 4. Fail.
15184
15185 U. Examine the tag field of the opcode structure, in case this is
15186 one of the six instructions with its conditional infix in an
15187 unusual place. If it is, the tag tells us where to find the
15188 infix; look it up in the conditions table and set inst.cond
15189 accordingly. Otherwise, this is an unconditional instruction.
15190 Again set inst.cond accordingly. Return the opcode structure.
15191
15192 CE. Examine the tag field to make sure this is an instruction that
15193 should receive a conditional suffix. If it is not, fail.
15194 Otherwise, set inst.cond from the suffix we already looked up,
15195 and return the opcode structure.
15196
15197 CM. Examine the tag field to make sure this is an instruction that
15198 should receive a conditional infix after the third character.
15199 If it is not, fail. Otherwise, undo the edits to the current
15200 line of input and proceed as for case CE. */
15201
15202static const struct asm_opcode *
15203opcode_lookup (char **str)
15204{
15205 char *end, *base;
15206 char *affix;
15207 const struct asm_opcode *opcode;
15208 const struct asm_cond *cond;
e3cb604e 15209 char save[2];
c19d1205
ZW
15210
15211 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15212 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15213 for (base = end = *str; *end != '\0'; end++)
721a8186 15214 if (*end == ' ' || *end == '.')
c19d1205 15215 break;
b99bd4ef 15216
c19d1205 15217 if (end == base)
c921be7d 15218 return NULL;
b99bd4ef 15219
5287ad62 15220 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15221 if (end[0] == '.')
b99bd4ef 15222 {
5287ad62 15223 int offset = 2;
5f4273c7 15224
267d2029
JB
15225 /* The .w and .n suffixes are only valid if the unified syntax is in
15226 use. */
15227 if (unified_syntax && end[1] == 'w')
c19d1205 15228 inst.size_req = 4;
267d2029 15229 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15230 inst.size_req = 2;
15231 else
5287ad62
JB
15232 offset = 0;
15233
15234 inst.vectype.elems = 0;
15235
15236 *str = end + offset;
b99bd4ef 15237
5f4273c7 15238 if (end[offset] == '.')
5287ad62 15239 {
267d2029
JB
15240 /* See if we have a Neon type suffix (possible in either unified or
15241 non-unified ARM syntax mode). */
dcbf9037 15242 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15243 return NULL;
5287ad62
JB
15244 }
15245 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15246 return NULL;
b99bd4ef 15247 }
c19d1205
ZW
15248 else
15249 *str = end;
b99bd4ef 15250
c19d1205 15251 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15252 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15253 end - base);
c19d1205 15254 if (opcode)
b99bd4ef 15255 {
c19d1205
ZW
15256 /* step U */
15257 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15258 {
c19d1205
ZW
15259 inst.cond = COND_ALWAYS;
15260 return opcode;
b99bd4ef 15261 }
b99bd4ef 15262
278df34e 15263 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15264 as_warn (_("conditional infixes are deprecated in unified syntax"));
15265 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15266 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15267 gas_assert (cond);
b99bd4ef 15268
c19d1205
ZW
15269 inst.cond = cond->value;
15270 return opcode;
15271 }
b99bd4ef 15272
c19d1205
ZW
15273 /* Cannot have a conditional suffix on a mnemonic of less than two
15274 characters. */
15275 if (end - base < 3)
c921be7d 15276 return NULL;
b99bd4ef 15277
c19d1205
ZW
15278 /* Look for suffixed mnemonic. */
15279 affix = end - 2;
21d799b5
NC
15280 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15281 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15282 affix - base);
c19d1205
ZW
15283 if (opcode && cond)
15284 {
15285 /* step CE */
15286 switch (opcode->tag)
15287 {
e3cb604e
PB
15288 case OT_cinfix3_legacy:
15289 /* Ignore conditional suffixes matched on infix only mnemonics. */
15290 break;
15291
c19d1205 15292 case OT_cinfix3:
088fa78e 15293 case OT_cinfix3_deprecated:
c19d1205
ZW
15294 case OT_odd_infix_unc:
15295 if (!unified_syntax)
e3cb604e 15296 return 0;
c19d1205
ZW
15297 /* else fall through */
15298
15299 case OT_csuffix:
037e8744 15300 case OT_csuffixF:
c19d1205
ZW
15301 case OT_csuf_or_in3:
15302 inst.cond = cond->value;
15303 return opcode;
15304
15305 case OT_unconditional:
15306 case OT_unconditionalF:
dfa9f0d5 15307 if (thumb_mode)
c921be7d 15308 inst.cond = cond->value;
dfa9f0d5
PB
15309 else
15310 {
c921be7d 15311 /* Delayed diagnostic. */
dfa9f0d5
PB
15312 inst.error = BAD_COND;
15313 inst.cond = COND_ALWAYS;
15314 }
c19d1205 15315 return opcode;
b99bd4ef 15316
c19d1205 15317 default:
c921be7d 15318 return NULL;
c19d1205
ZW
15319 }
15320 }
b99bd4ef 15321
c19d1205
ZW
15322 /* Cannot have a usual-position infix on a mnemonic of less than
15323 six characters (five would be a suffix). */
15324 if (end - base < 6)
c921be7d 15325 return NULL;
b99bd4ef 15326
c19d1205
ZW
15327 /* Look for infixed mnemonic in the usual position. */
15328 affix = base + 3;
21d799b5 15329 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15330 if (!cond)
c921be7d 15331 return NULL;
e3cb604e
PB
15332
15333 memcpy (save, affix, 2);
15334 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15335 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15336 (end - base) - 2);
e3cb604e
PB
15337 memmove (affix + 2, affix, (end - affix) - 2);
15338 memcpy (affix, save, 2);
15339
088fa78e
KH
15340 if (opcode
15341 && (opcode->tag == OT_cinfix3
15342 || opcode->tag == OT_cinfix3_deprecated
15343 || opcode->tag == OT_csuf_or_in3
15344 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15345 {
c921be7d 15346 /* Step CM. */
278df34e 15347 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15348 && (opcode->tag == OT_cinfix3
15349 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15350 as_warn (_("conditional infixes are deprecated in unified syntax"));
15351
15352 inst.cond = cond->value;
15353 return opcode;
b99bd4ef
NC
15354 }
15355
c921be7d 15356 return NULL;
b99bd4ef
NC
15357}
15358
e07e6e58
NC
15359/* This function generates an initial IT instruction, leaving its block
15360 virtually open for the new instructions. Eventually,
15361 the mask will be updated by now_it_add_mask () each time
15362 a new instruction needs to be included in the IT block.
15363 Finally, the block is closed with close_automatic_it_block ().
15364 The block closure can be requested either from md_assemble (),
15365 a tencode (), or due to a label hook. */
15366
15367static void
15368new_automatic_it_block (int cond)
15369{
15370 now_it.state = AUTOMATIC_IT_BLOCK;
15371 now_it.mask = 0x18;
15372 now_it.cc = cond;
15373 now_it.block_length = 1;
cd000bff 15374 mapping_state (MAP_THUMB);
e07e6e58
NC
15375 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15376}
15377
15378/* Close an automatic IT block.
15379 See comments in new_automatic_it_block (). */
15380
15381static void
15382close_automatic_it_block (void)
15383{
15384 now_it.mask = 0x10;
15385 now_it.block_length = 0;
15386}
15387
15388/* Update the mask of the current automatically-generated IT
15389 instruction. See comments in new_automatic_it_block (). */
15390
15391static void
15392now_it_add_mask (int cond)
15393{
15394#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15395#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15396 | ((bitvalue) << (nbit)))
e07e6e58 15397 const int resulting_bit = (cond & 1);
c921be7d 15398
e07e6e58
NC
15399 now_it.mask &= 0xf;
15400 now_it.mask = SET_BIT_VALUE (now_it.mask,
15401 resulting_bit,
15402 (5 - now_it.block_length));
15403 now_it.mask = SET_BIT_VALUE (now_it.mask,
15404 1,
15405 ((5 - now_it.block_length) - 1) );
15406 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15407
15408#undef CLEAR_BIT
15409#undef SET_BIT_VALUE
e07e6e58
NC
15410}
15411
15412/* The IT blocks handling machinery is accessed through the these functions:
15413 it_fsm_pre_encode () from md_assemble ()
15414 set_it_insn_type () optional, from the tencode functions
15415 set_it_insn_type_last () ditto
15416 in_it_block () ditto
15417 it_fsm_post_encode () from md_assemble ()
15418 force_automatic_it_block_close () from label habdling functions
15419
15420 Rationale:
15421 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15422 initializing the IT insn type with a generic initial value depending
15423 on the inst.condition.
15424 2) During the tencode function, two things may happen:
15425 a) The tencode function overrides the IT insn type by
15426 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15427 b) The tencode function queries the IT block state by
15428 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15429
15430 Both set_it_insn_type and in_it_block run the internal FSM state
15431 handling function (handle_it_state), because: a) setting the IT insn
15432 type may incur in an invalid state (exiting the function),
15433 and b) querying the state requires the FSM to be updated.
15434 Specifically we want to avoid creating an IT block for conditional
15435 branches, so it_fsm_pre_encode is actually a guess and we can't
15436 determine whether an IT block is required until the tencode () routine
15437 has decided what type of instruction this actually it.
15438 Because of this, if set_it_insn_type and in_it_block have to be used,
15439 set_it_insn_type has to be called first.
15440
15441 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15442 determines the insn IT type depending on the inst.cond code.
15443 When a tencode () routine encodes an instruction that can be
15444 either outside an IT block, or, in the case of being inside, has to be
15445 the last one, set_it_insn_type_last () will determine the proper
15446 IT instruction type based on the inst.cond code. Otherwise,
15447 set_it_insn_type can be called for overriding that logic or
15448 for covering other cases.
15449
15450 Calling handle_it_state () may not transition the IT block state to
15451 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15452 still queried. Instead, if the FSM determines that the state should
15453 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15454 after the tencode () function: that's what it_fsm_post_encode () does.
15455
15456 Since in_it_block () calls the state handling function to get an
15457 updated state, an error may occur (due to invalid insns combination).
15458 In that case, inst.error is set.
15459 Therefore, inst.error has to be checked after the execution of
15460 the tencode () routine.
15461
15462 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15463 any pending state change (if any) that didn't take place in
15464 handle_it_state () as explained above. */
15465
15466static void
15467it_fsm_pre_encode (void)
15468{
15469 if (inst.cond != COND_ALWAYS)
15470 inst.it_insn_type = INSIDE_IT_INSN;
15471 else
15472 inst.it_insn_type = OUTSIDE_IT_INSN;
15473
15474 now_it.state_handled = 0;
15475}
15476
15477/* IT state FSM handling function. */
15478
15479static int
15480handle_it_state (void)
15481{
15482 now_it.state_handled = 1;
15483
15484 switch (now_it.state)
15485 {
15486 case OUTSIDE_IT_BLOCK:
15487 switch (inst.it_insn_type)
15488 {
15489 case OUTSIDE_IT_INSN:
15490 break;
15491
15492 case INSIDE_IT_INSN:
15493 case INSIDE_IT_LAST_INSN:
15494 if (thumb_mode == 0)
15495 {
c921be7d 15496 if (unified_syntax
e07e6e58
NC
15497 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15498 as_tsktsk (_("Warning: conditional outside an IT block"\
15499 " for Thumb."));
15500 }
15501 else
15502 {
15503 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15504 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15505 {
15506 /* Automatically generate the IT instruction. */
15507 new_automatic_it_block (inst.cond);
15508 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15509 close_automatic_it_block ();
15510 }
15511 else
15512 {
15513 inst.error = BAD_OUT_IT;
15514 return FAIL;
15515 }
15516 }
15517 break;
15518
15519 case IF_INSIDE_IT_LAST_INSN:
15520 case NEUTRAL_IT_INSN:
15521 break;
15522
15523 case IT_INSN:
15524 now_it.state = MANUAL_IT_BLOCK;
15525 now_it.block_length = 0;
15526 break;
15527 }
15528 break;
15529
15530 case AUTOMATIC_IT_BLOCK:
15531 /* Three things may happen now:
15532 a) We should increment current it block size;
15533 b) We should close current it block (closing insn or 4 insns);
15534 c) We should close current it block and start a new one (due
15535 to incompatible conditions or
15536 4 insns-length block reached). */
15537
15538 switch (inst.it_insn_type)
15539 {
15540 case OUTSIDE_IT_INSN:
15541 /* The closure of the block shall happen immediatelly,
15542 so any in_it_block () call reports the block as closed. */
15543 force_automatic_it_block_close ();
15544 break;
15545
15546 case INSIDE_IT_INSN:
15547 case INSIDE_IT_LAST_INSN:
15548 case IF_INSIDE_IT_LAST_INSN:
15549 now_it.block_length++;
15550
15551 if (now_it.block_length > 4
15552 || !now_it_compatible (inst.cond))
15553 {
15554 force_automatic_it_block_close ();
15555 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15556 new_automatic_it_block (inst.cond);
15557 }
15558 else
15559 {
15560 now_it_add_mask (inst.cond);
15561 }
15562
15563 if (now_it.state == AUTOMATIC_IT_BLOCK
15564 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15565 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15566 close_automatic_it_block ();
15567 break;
15568
15569 case NEUTRAL_IT_INSN:
15570 now_it.block_length++;
15571
15572 if (now_it.block_length > 4)
15573 force_automatic_it_block_close ();
15574 else
15575 now_it_add_mask (now_it.cc & 1);
15576 break;
15577
15578 case IT_INSN:
15579 close_automatic_it_block ();
15580 now_it.state = MANUAL_IT_BLOCK;
15581 break;
15582 }
15583 break;
15584
15585 case MANUAL_IT_BLOCK:
15586 {
15587 /* Check conditional suffixes. */
15588 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15589 int is_last;
15590 now_it.mask <<= 1;
15591 now_it.mask &= 0x1f;
15592 is_last = (now_it.mask == 0x10);
15593
15594 switch (inst.it_insn_type)
15595 {
15596 case OUTSIDE_IT_INSN:
15597 inst.error = BAD_NOT_IT;
15598 return FAIL;
15599
15600 case INSIDE_IT_INSN:
15601 if (cond != inst.cond)
15602 {
15603 inst.error = BAD_IT_COND;
15604 return FAIL;
15605 }
15606 break;
15607
15608 case INSIDE_IT_LAST_INSN:
15609 case IF_INSIDE_IT_LAST_INSN:
15610 if (cond != inst.cond)
15611 {
15612 inst.error = BAD_IT_COND;
15613 return FAIL;
15614 }
15615 if (!is_last)
15616 {
15617 inst.error = BAD_BRANCH;
15618 return FAIL;
15619 }
15620 break;
15621
15622 case NEUTRAL_IT_INSN:
15623 /* The BKPT instruction is unconditional even in an IT block. */
15624 break;
15625
15626 case IT_INSN:
15627 inst.error = BAD_IT_IT;
15628 return FAIL;
15629 }
15630 }
15631 break;
15632 }
15633
15634 return SUCCESS;
15635}
15636
15637static void
15638it_fsm_post_encode (void)
15639{
15640 int is_last;
15641
15642 if (!now_it.state_handled)
15643 handle_it_state ();
15644
15645 is_last = (now_it.mask == 0x10);
15646 if (is_last)
15647 {
15648 now_it.state = OUTSIDE_IT_BLOCK;
15649 now_it.mask = 0;
15650 }
15651}
15652
15653static void
15654force_automatic_it_block_close (void)
15655{
15656 if (now_it.state == AUTOMATIC_IT_BLOCK)
15657 {
15658 close_automatic_it_block ();
15659 now_it.state = OUTSIDE_IT_BLOCK;
15660 now_it.mask = 0;
15661 }
15662}
15663
15664static int
15665in_it_block (void)
15666{
15667 if (!now_it.state_handled)
15668 handle_it_state ();
15669
15670 return now_it.state != OUTSIDE_IT_BLOCK;
15671}
15672
c19d1205
ZW
15673void
15674md_assemble (char *str)
b99bd4ef 15675{
c19d1205
ZW
15676 char *p = str;
15677 const struct asm_opcode * opcode;
b99bd4ef 15678
c19d1205
ZW
15679 /* Align the previous label if needed. */
15680 if (last_label_seen != NULL)
b99bd4ef 15681 {
c19d1205
ZW
15682 symbol_set_frag (last_label_seen, frag_now);
15683 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15684 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
15685 }
15686
c19d1205
ZW
15687 memset (&inst, '\0', sizeof (inst));
15688 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 15689
c19d1205
ZW
15690 opcode = opcode_lookup (&p);
15691 if (!opcode)
b99bd4ef 15692 {
c19d1205 15693 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 15694 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
15695 if (! create_register_alias (str, p)
15696 && ! create_neon_reg_alias (str, p))
c19d1205 15697 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 15698
b99bd4ef
NC
15699 return;
15700 }
15701
278df34e 15702 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
15703 as_warn (_("s suffix on comparison instruction is deprecated"));
15704
037e8744
JB
15705 /* The value which unconditional instructions should have in place of the
15706 condition field. */
15707 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15708
c19d1205 15709 if (thumb_mode)
b99bd4ef 15710 {
e74cfd16 15711 arm_feature_set variant;
8f06b2d8
PB
15712
15713 variant = cpu_variant;
15714 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
15715 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15716 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 15717 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
15718 if (!opcode->tvariant
15719 || (thumb_mode == 1
15720 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 15721 {
bf3eeda7 15722 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
15723 return;
15724 }
c19d1205
ZW
15725 if (inst.cond != COND_ALWAYS && !unified_syntax
15726 && opcode->tencode != do_t_branch)
b99bd4ef 15727 {
c19d1205 15728 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
15729 return;
15730 }
15731
752d5da4 15732 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 15733 {
7e806470 15734 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
15735 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15736 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15737 {
15738 /* Two things are addressed here.
15739 1) Implicit require narrow instructions on Thumb-1.
15740 This avoids relaxation accidentally introducing Thumb-2
15741 instructions.
15742 2) Reject wide instructions in non Thumb-2 cores. */
15743 if (inst.size_req == 0)
15744 inst.size_req = 2;
15745 else if (inst.size_req == 4)
15746 {
bf3eeda7 15747 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
15748 return;
15749 }
15750 }
076d447c
PB
15751 }
15752
c19d1205
ZW
15753 inst.instruction = opcode->tvalue;
15754
5be8be5d 15755 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
15756 {
15757 /* Prepare the it_insn_type for those encodings that don't set
15758 it. */
15759 it_fsm_pre_encode ();
c19d1205 15760
e07e6e58
NC
15761 opcode->tencode ();
15762
15763 it_fsm_post_encode ();
15764 }
e27ec89e 15765
0110f2b8 15766 if (!(inst.error || inst.relax))
b99bd4ef 15767 {
9c2799c2 15768 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
15769 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15770 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 15771 {
c19d1205 15772 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
15773 return;
15774 }
15775 }
076d447c
PB
15776
15777 /* Something has gone badly wrong if we try to relax a fixed size
15778 instruction. */
9c2799c2 15779 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 15780
e74cfd16
PB
15781 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15782 *opcode->tvariant);
ee065d83 15783 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 15784 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 15785 anything other than bl/blx and v6-M instructions.
ee065d83 15786 This is overly pessimistic for relaxable instructions. */
7e806470
PB
15787 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15788 || inst.relax)
e07e6e58
NC
15789 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15790 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
15791 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15792 arm_ext_v6t2);
cd000bff 15793
88714cb8
DG
15794 check_neon_suffixes;
15795
cd000bff 15796 if (!inst.error)
c877a2f2
NC
15797 {
15798 mapping_state (MAP_THUMB);
15799 }
c19d1205 15800 }
3e9e4fcf 15801 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 15802 {
845b51d6
PB
15803 bfd_boolean is_bx;
15804
15805 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15806 is_bx = (opcode->aencode == do_bx);
15807
c19d1205 15808 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
15809 if (!(is_bx && fix_v4bx)
15810 && !(opcode->avariant &&
15811 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 15812 {
bf3eeda7 15813 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 15814 return;
b99bd4ef 15815 }
c19d1205 15816 if (inst.size_req)
b99bd4ef 15817 {
c19d1205
ZW
15818 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15819 return;
b99bd4ef
NC
15820 }
15821
c19d1205
ZW
15822 inst.instruction = opcode->avalue;
15823 if (opcode->tag == OT_unconditionalF)
15824 inst.instruction |= 0xF << 28;
15825 else
15826 inst.instruction |= inst.cond << 28;
15827 inst.size = INSN_SIZE;
5be8be5d 15828 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
15829 {
15830 it_fsm_pre_encode ();
15831 opcode->aencode ();
15832 it_fsm_post_encode ();
15833 }
ee065d83
PB
15834 /* Arm mode bx is marked as both v4T and v5 because it's still required
15835 on a hypothetical non-thumb v5 core. */
845b51d6 15836 if (is_bx)
e74cfd16 15837 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 15838 else
e74cfd16
PB
15839 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15840 *opcode->avariant);
88714cb8
DG
15841
15842 check_neon_suffixes;
15843
cd000bff 15844 if (!inst.error)
c877a2f2
NC
15845 {
15846 mapping_state (MAP_ARM);
15847 }
b99bd4ef 15848 }
3e9e4fcf
JB
15849 else
15850 {
15851 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15852 "-- `%s'"), str);
15853 return;
15854 }
c19d1205
ZW
15855 output_inst (str);
15856}
b99bd4ef 15857
e07e6e58
NC
15858static void
15859check_it_blocks_finished (void)
15860{
15861#ifdef OBJ_ELF
15862 asection *sect;
15863
15864 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15865 if (seg_info (sect)->tc_segment_info_data.current_it.state
15866 == MANUAL_IT_BLOCK)
15867 {
15868 as_warn (_("section '%s' finished with an open IT block."),
15869 sect->name);
15870 }
15871#else
15872 if (now_it.state == MANUAL_IT_BLOCK)
15873 as_warn (_("file finished with an open IT block."));
15874#endif
15875}
15876
c19d1205
ZW
15877/* Various frobbings of labels and their addresses. */
15878
15879void
15880arm_start_line_hook (void)
15881{
15882 last_label_seen = NULL;
b99bd4ef
NC
15883}
15884
c19d1205
ZW
15885void
15886arm_frob_label (symbolS * sym)
b99bd4ef 15887{
c19d1205 15888 last_label_seen = sym;
b99bd4ef 15889
c19d1205 15890 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 15891
c19d1205
ZW
15892#if defined OBJ_COFF || defined OBJ_ELF
15893 ARM_SET_INTERWORK (sym, support_interwork);
15894#endif
b99bd4ef 15895
e07e6e58
NC
15896 force_automatic_it_block_close ();
15897
5f4273c7 15898 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
15899 as Thumb functions. This is because these labels, whilst
15900 they exist inside Thumb code, are not the entry points for
15901 possible ARM->Thumb calls. Also, these labels can be used
15902 as part of a computed goto or switch statement. eg gcc
15903 can generate code that looks like this:
b99bd4ef 15904
c19d1205
ZW
15905 ldr r2, [pc, .Laaa]
15906 lsl r3, r3, #2
15907 ldr r2, [r3, r2]
15908 mov pc, r2
b99bd4ef 15909
c19d1205
ZW
15910 .Lbbb: .word .Lxxx
15911 .Lccc: .word .Lyyy
15912 ..etc...
15913 .Laaa: .word Lbbb
b99bd4ef 15914
c19d1205
ZW
15915 The first instruction loads the address of the jump table.
15916 The second instruction converts a table index into a byte offset.
15917 The third instruction gets the jump address out of the table.
15918 The fourth instruction performs the jump.
b99bd4ef 15919
c19d1205
ZW
15920 If the address stored at .Laaa is that of a symbol which has the
15921 Thumb_Func bit set, then the linker will arrange for this address
15922 to have the bottom bit set, which in turn would mean that the
15923 address computation performed by the third instruction would end
15924 up with the bottom bit set. Since the ARM is capable of unaligned
15925 word loads, the instruction would then load the incorrect address
15926 out of the jump table, and chaos would ensue. */
15927 if (label_is_thumb_function_name
15928 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
15929 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 15930 {
c19d1205
ZW
15931 /* When the address of a Thumb function is taken the bottom
15932 bit of that address should be set. This will allow
15933 interworking between Arm and Thumb functions to work
15934 correctly. */
b99bd4ef 15935
c19d1205 15936 THUMB_SET_FUNC (sym, 1);
b99bd4ef 15937
c19d1205 15938 label_is_thumb_function_name = FALSE;
b99bd4ef 15939 }
07a53e5c 15940
07a53e5c 15941 dwarf2_emit_label (sym);
b99bd4ef
NC
15942}
15943
c921be7d 15944bfd_boolean
c19d1205 15945arm_data_in_code (void)
b99bd4ef 15946{
c19d1205 15947 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 15948 {
c19d1205
ZW
15949 *input_line_pointer = '/';
15950 input_line_pointer += 5;
15951 *input_line_pointer = 0;
c921be7d 15952 return TRUE;
b99bd4ef
NC
15953 }
15954
c921be7d 15955 return FALSE;
b99bd4ef
NC
15956}
15957
c19d1205
ZW
15958char *
15959arm_canonicalize_symbol_name (char * name)
b99bd4ef 15960{
c19d1205 15961 int len;
b99bd4ef 15962
c19d1205
ZW
15963 if (thumb_mode && (len = strlen (name)) > 5
15964 && streq (name + len - 5, "/data"))
15965 *(name + len - 5) = 0;
b99bd4ef 15966
c19d1205 15967 return name;
b99bd4ef 15968}
c19d1205
ZW
15969\f
15970/* Table of all register names defined by default. The user can
15971 define additional names with .req. Note that all register names
15972 should appear in both upper and lowercase variants. Some registers
15973 also have mixed-case names. */
b99bd4ef 15974
dcbf9037 15975#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 15976#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 15977#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
15978#define REGSET(p,t) \
15979 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
15980 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
15981 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
15982 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
15983#define REGSETH(p,t) \
15984 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
15985 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
15986 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
15987 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
15988#define REGSET2(p,t) \
15989 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
15990 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
15991 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
15992 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 15993
c19d1205 15994static const struct reg_entry reg_names[] =
7ed4c4c5 15995{
c19d1205
ZW
15996 /* ARM integer registers. */
15997 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 15998
c19d1205
ZW
15999 /* ATPCS synonyms. */
16000 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16001 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16002 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 16003
c19d1205
ZW
16004 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16005 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16006 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 16007
c19d1205
ZW
16008 /* Well-known aliases. */
16009 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16010 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16011
16012 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16013 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16014
16015 /* Coprocessor numbers. */
16016 REGSET(p, CP), REGSET(P, CP),
16017
16018 /* Coprocessor register numbers. The "cr" variants are for backward
16019 compatibility. */
16020 REGSET(c, CN), REGSET(C, CN),
16021 REGSET(cr, CN), REGSET(CR, CN),
16022
16023 /* FPA registers. */
16024 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16025 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16026
16027 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16028 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16029
16030 /* VFP SP registers. */
5287ad62
JB
16031 REGSET(s,VFS), REGSET(S,VFS),
16032 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
16033
16034 /* VFP DP Registers. */
5287ad62
JB
16035 REGSET(d,VFD), REGSET(D,VFD),
16036 /* Extra Neon DP registers. */
16037 REGSETH(d,VFD), REGSETH(D,VFD),
16038
16039 /* Neon QP registers. */
16040 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
16041
16042 /* VFP control registers. */
16043 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16044 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
16045 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16046 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16047 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16048 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
16049
16050 /* Maverick DSP coprocessor registers. */
16051 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16052 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16053
16054 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16055 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16056 REGDEF(dspsc,0,DSPSC),
16057
16058 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16059 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16060 REGDEF(DSPSC,0,DSPSC),
16061
16062 /* iWMMXt data registers - p0, c0-15. */
16063 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16064
16065 /* iWMMXt control registers - p1, c0-3. */
16066 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16067 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16068 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16069 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16070
16071 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16072 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16073 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16074 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16075 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16076
16077 /* XScale accumulator registers. */
16078 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16079};
16080#undef REGDEF
16081#undef REGNUM
16082#undef REGSET
7ed4c4c5 16083
c19d1205
ZW
16084/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16085 within psr_required_here. */
16086static const struct asm_psr psrs[] =
16087{
16088 /* Backward compatibility notation. Note that "all" is no longer
16089 truly all possible PSR bits. */
16090 {"all", PSR_c | PSR_f},
16091 {"flg", PSR_f},
16092 {"ctl", PSR_c},
16093
16094 /* Individual flags. */
16095 {"f", PSR_f},
16096 {"c", PSR_c},
16097 {"x", PSR_x},
16098 {"s", PSR_s},
16099 /* Combinations of flags. */
16100 {"fs", PSR_f | PSR_s},
16101 {"fx", PSR_f | PSR_x},
16102 {"fc", PSR_f | PSR_c},
16103 {"sf", PSR_s | PSR_f},
16104 {"sx", PSR_s | PSR_x},
16105 {"sc", PSR_s | PSR_c},
16106 {"xf", PSR_x | PSR_f},
16107 {"xs", PSR_x | PSR_s},
16108 {"xc", PSR_x | PSR_c},
16109 {"cf", PSR_c | PSR_f},
16110 {"cs", PSR_c | PSR_s},
16111 {"cx", PSR_c | PSR_x},
16112 {"fsx", PSR_f | PSR_s | PSR_x},
16113 {"fsc", PSR_f | PSR_s | PSR_c},
16114 {"fxs", PSR_f | PSR_x | PSR_s},
16115 {"fxc", PSR_f | PSR_x | PSR_c},
16116 {"fcs", PSR_f | PSR_c | PSR_s},
16117 {"fcx", PSR_f | PSR_c | PSR_x},
16118 {"sfx", PSR_s | PSR_f | PSR_x},
16119 {"sfc", PSR_s | PSR_f | PSR_c},
16120 {"sxf", PSR_s | PSR_x | PSR_f},
16121 {"sxc", PSR_s | PSR_x | PSR_c},
16122 {"scf", PSR_s | PSR_c | PSR_f},
16123 {"scx", PSR_s | PSR_c | PSR_x},
16124 {"xfs", PSR_x | PSR_f | PSR_s},
16125 {"xfc", PSR_x | PSR_f | PSR_c},
16126 {"xsf", PSR_x | PSR_s | PSR_f},
16127 {"xsc", PSR_x | PSR_s | PSR_c},
16128 {"xcf", PSR_x | PSR_c | PSR_f},
16129 {"xcs", PSR_x | PSR_c | PSR_s},
16130 {"cfs", PSR_c | PSR_f | PSR_s},
16131 {"cfx", PSR_c | PSR_f | PSR_x},
16132 {"csf", PSR_c | PSR_s | PSR_f},
16133 {"csx", PSR_c | PSR_s | PSR_x},
16134 {"cxf", PSR_c | PSR_x | PSR_f},
16135 {"cxs", PSR_c | PSR_x | PSR_s},
16136 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16137 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16138 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16139 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16140 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16141 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16142 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16143 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16144 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16145 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16146 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16147 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16148 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16149 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16150 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16151 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16152 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16153 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16154 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16155 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16156 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16157 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16158 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16159 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16160};
16161
62b3e311
PB
16162/* Table of V7M psr names. */
16163static const struct asm_psr v7m_psrs[] =
16164{
2b744c99
PB
16165 {"apsr", 0 }, {"APSR", 0 },
16166 {"iapsr", 1 }, {"IAPSR", 1 },
16167 {"eapsr", 2 }, {"EAPSR", 2 },
16168 {"psr", 3 }, {"PSR", 3 },
16169 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16170 {"ipsr", 5 }, {"IPSR", 5 },
16171 {"epsr", 6 }, {"EPSR", 6 },
16172 {"iepsr", 7 }, {"IEPSR", 7 },
16173 {"msp", 8 }, {"MSP", 8 },
16174 {"psp", 9 }, {"PSP", 9 },
16175 {"primask", 16}, {"PRIMASK", 16},
16176 {"basepri", 17}, {"BASEPRI", 17},
16177 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16178 {"faultmask", 19}, {"FAULTMASK", 19},
16179 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16180};
16181
c19d1205
ZW
16182/* Table of all shift-in-operand names. */
16183static const struct asm_shift_name shift_names [] =
b99bd4ef 16184{
c19d1205
ZW
16185 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16186 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16187 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16188 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16189 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16190 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16191};
b99bd4ef 16192
c19d1205
ZW
16193/* Table of all explicit relocation names. */
16194#ifdef OBJ_ELF
16195static struct reloc_entry reloc_names[] =
16196{
16197 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16198 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16199 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16200 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16201 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16202 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16203 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16204 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16205 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16206 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6
NC
16207 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16208 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL}
c19d1205
ZW
16209};
16210#endif
b99bd4ef 16211
c19d1205
ZW
16212/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16213static const struct asm_cond conds[] =
16214{
16215 {"eq", 0x0},
16216 {"ne", 0x1},
16217 {"cs", 0x2}, {"hs", 0x2},
16218 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16219 {"mi", 0x4},
16220 {"pl", 0x5},
16221 {"vs", 0x6},
16222 {"vc", 0x7},
16223 {"hi", 0x8},
16224 {"ls", 0x9},
16225 {"ge", 0xa},
16226 {"lt", 0xb},
16227 {"gt", 0xc},
16228 {"le", 0xd},
16229 {"al", 0xe}
16230};
bfae80f2 16231
62b3e311
PB
16232static struct asm_barrier_opt barrier_opt_names[] =
16233{
16234 { "sy", 0xf },
16235 { "un", 0x7 },
16236 { "st", 0xe },
16237 { "unst", 0x6 }
16238};
16239
c19d1205
ZW
16240/* Table of ARM-format instructions. */
16241
16242/* Macros for gluing together operand strings. N.B. In all cases
16243 other than OPS0, the trailing OP_stop comes from default
16244 zero-initialization of the unspecified elements of the array. */
16245#define OPS0() { OP_stop, }
16246#define OPS1(a) { OP_##a, }
16247#define OPS2(a,b) { OP_##a,OP_##b, }
16248#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16249#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16250#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16251#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16252
5be8be5d
DG
16253/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16254 This is useful when mixing operands for ARM and THUMB, i.e. using the
16255 MIX_ARM_THUMB_OPERANDS macro.
16256 In order to use these macros, prefix the number of operands with _
16257 e.g. _3. */
16258#define OPS_1(a) { a, }
16259#define OPS_2(a,b) { a,b, }
16260#define OPS_3(a,b,c) { a,b,c, }
16261#define OPS_4(a,b,c,d) { a,b,c,d, }
16262#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16263#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16264
c19d1205
ZW
16265/* These macros abstract out the exact format of the mnemonic table and
16266 save some repeated characters. */
16267
16268/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16269#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16270 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16271 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16272
16273/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16274 a T_MNEM_xyz enumerator. */
16275#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16276 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16277#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16278 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16279
16280/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16281 infix after the third character. */
16282#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16283 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16284 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16285#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16286 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16287 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16288#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16289 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16290#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16291 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16292#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16293 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16294#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16295 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16296
16297/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16298 appear in the condition table. */
16299#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16300 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16301 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16302
16303#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16304 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16305 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16306 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16307 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16308 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16309 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16310 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16311 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16312 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16313 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16314 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16315 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16316 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16317 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16318 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16319 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16320 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16321 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16322 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
16323
16324#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
16325 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16326#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 16327 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16328
16329/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
16330 field is still 0xE. Many of the Thumb variants can be executed
16331 conditionally, so this is checked separately. */
c19d1205 16332#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16333 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16334 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16335
16336/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16337 condition code field. */
16338#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 16339 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16340 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16341
16342/* ARM-only variants of all the above. */
6a86118a 16343#define CE(mnem, op, nops, ops, ae) \
21d799b5 16344 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
16345
16346#define C3(mnem, op, nops, ops, ae) \
16347 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16348
e3cb604e
PB
16349/* Legacy mnemonics that always have conditional infix after the third
16350 character. */
16351#define CL(mnem, op, nops, ops, ae) \
21d799b5 16352 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16353 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16354
8f06b2d8
PB
16355/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16356#define cCE(mnem, op, nops, ops, ae) \
21d799b5 16357 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16358
e3cb604e
PB
16359/* Legacy coprocessor instructions where conditional infix and conditional
16360 suffix are ambiguous. For consistency this includes all FPA instructions,
16361 not just the potentially ambiguous ones. */
16362#define cCL(mnem, op, nops, ops, ae) \
21d799b5 16363 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16364 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16365
16366/* Coprocessor, takes either a suffix or a position-3 infix
16367 (for an FPA corner case). */
16368#define C3E(mnem, op, nops, ops, ae) \
21d799b5 16369 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 16370 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16371
6a86118a 16372#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
16373 { m1 #m2 m3, OPS##nops ops, \
16374 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
16375 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16376
16377#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
16378 xCM_ (m1, , m2, op, nops, ops, ae), \
16379 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16380 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16381 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16382 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16383 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16384 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16385 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16386 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16387 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16388 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16389 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16390 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16391 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16392 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16393 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16394 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16395 xCM_ (m1, le, m2, op, nops, ops, ae), \
16396 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
16397
16398#define UE(mnem, op, nops, ops, ae) \
16399 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16400
16401#define UF(mnem, op, nops, ops, ae) \
16402 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16403
5287ad62
JB
16404/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16405 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16406 use the same encoding function for each. */
16407#define NUF(mnem, op, nops, ops, enc) \
16408 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16409 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16410
16411/* Neon data processing, version which indirects through neon_enc_tab for
16412 the various overloaded versions of opcodes. */
16413#define nUF(mnem, op, nops, ops, enc) \
21d799b5 16414 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16415 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16416
16417/* Neon insn with conditional suffix for the ARM version, non-overloaded
16418 version. */
037e8744
JB
16419#define NCE_tag(mnem, op, nops, ops, enc, tag) \
16420 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
16421 THUMB_VARIANT, do_##enc, do_##enc }
16422
037e8744 16423#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 16424 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16425
16426#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 16427 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16428
5287ad62 16429/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 16430#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 16431 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16432 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16433
037e8744 16434#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 16435 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16436
16437#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 16438 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16439
c19d1205
ZW
16440#define do_0 0
16441
c19d1205 16442static const struct asm_opcode insns[] =
bfae80f2 16443{
e74cfd16
PB
16444#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16445#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
16446 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16447 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16448 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16449 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16450 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16451 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16452 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16453 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16454 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16455 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16456 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16457 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16458 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16459 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16460 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16461 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
16462
16463 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16464 for setting PSR flag bits. They are obsolete in V6 and do not
16465 have Thumb equivalents. */
21d799b5
NC
16466 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16467 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16468 CL("tstp", 110f000, 2, (RR, SH), cmp),
16469 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16470 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16471 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16472 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16473 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16474 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16475
16476 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16477 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16478 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16479 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16480
16481 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
16482 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16483 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16484 OP_RRnpc),
16485 OP_ADDRGLDR),ldst, t_ldst),
16486 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
16487
16488 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16489 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16490 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16491 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16492 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16493 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16494
16495 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16496 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16497 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16498 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 16499
c19d1205 16500 /* Pseudo ops. */
21d799b5 16501 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 16502 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 16503 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
16504
16505 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
16506 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16507 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16508 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16509 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16510 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16511 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16512 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16513 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16514 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16515 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16516 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16517 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 16518
16a4cf17 16519 /* These may simplify to neg. */
21d799b5
NC
16520 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16521 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 16522
c921be7d
NC
16523#undef THUMB_VARIANT
16524#define THUMB_VARIANT & arm_ext_v6
16525
21d799b5 16526 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
16527
16528 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
16529#undef THUMB_VARIANT
16530#define THUMB_VARIANT & arm_ext_v6t2
16531
21d799b5
NC
16532 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16533 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16534 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 16535
5be8be5d
DG
16536 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16537 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16538 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
16539 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 16540
21d799b5
NC
16541 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16542 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 16543
21d799b5
NC
16544 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16545 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
16546
16547 /* V1 instructions with no Thumb analogue at all. */
21d799b5 16548 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
16549 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16550
16551 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16552 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16553 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16554 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16555 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16556 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16557 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16558 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16559
c921be7d
NC
16560#undef ARM_VARIANT
16561#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16562#undef THUMB_VARIANT
16563#define THUMB_VARIANT & arm_ext_v4t
16564
21d799b5
NC
16565 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16566 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 16567
c921be7d
NC
16568#undef THUMB_VARIANT
16569#define THUMB_VARIANT & arm_ext_v6t2
16570
21d799b5 16571 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
16572 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16573
16574 /* Generic coprocessor instructions. */
21d799b5
NC
16575 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16576 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16577 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16578 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16579 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16580 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16581 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16582
c921be7d
NC
16583#undef ARM_VARIANT
16584#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16585
21d799b5 16586 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
16587 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16588
c921be7d
NC
16589#undef ARM_VARIANT
16590#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16591#undef THUMB_VARIANT
16592#define THUMB_VARIANT & arm_ext_msr
16593
21d799b5
NC
16594 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16595 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205 16596
c921be7d
NC
16597#undef ARM_VARIANT
16598#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16599#undef THUMB_VARIANT
16600#define THUMB_VARIANT & arm_ext_v6t2
16601
21d799b5
NC
16602 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16603 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16604 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16605 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16606 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16607 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16608 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16609 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 16610
c921be7d
NC
16611#undef ARM_VARIANT
16612#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16613#undef THUMB_VARIANT
16614#define THUMB_VARIANT & arm_ext_v4t
16615
5be8be5d
DG
16616 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16617 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16618 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16619 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16620 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16621 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 16622
c921be7d
NC
16623#undef ARM_VARIANT
16624#define ARM_VARIANT & arm_ext_v4t_5
16625
c19d1205
ZW
16626 /* ARM Architecture 4T. */
16627 /* Note: bx (and blx) are required on V5, even if the processor does
16628 not support Thumb. */
21d799b5 16629 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 16630
c921be7d
NC
16631#undef ARM_VARIANT
16632#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16633#undef THUMB_VARIANT
16634#define THUMB_VARIANT & arm_ext_v5t
16635
c19d1205
ZW
16636 /* Note: blx has 2 variants; the .value coded here is for
16637 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
16638 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16639 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 16640
c921be7d
NC
16641#undef THUMB_VARIANT
16642#define THUMB_VARIANT & arm_ext_v6t2
16643
21d799b5
NC
16644 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16645 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16646 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16647 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16648 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16649 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16650 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16651 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16652
c921be7d
NC
16653#undef ARM_VARIANT
16654#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
16655#undef THUMB_VARIANT
16656#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 16657
21d799b5
NC
16658 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16659 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16660 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16661 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16662
21d799b5
NC
16663 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16664 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16665
21d799b5
NC
16666 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16667 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16668 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16669 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 16670
21d799b5
NC
16671 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16672 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16673 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16674 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16675
21d799b5
NC
16676 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16677 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16678
03ee1b7f
NC
16679 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16680 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16681 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16682 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 16683
c921be7d
NC
16684#undef ARM_VARIANT
16685#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
16686#undef THUMB_VARIANT
16687#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 16688
21d799b5 16689 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
16690 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
16691 ldrd, t_ldstd),
16692 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
16693 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 16694
21d799b5
NC
16695 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16696 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 16697
c921be7d
NC
16698#undef ARM_VARIANT
16699#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16700
21d799b5 16701 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 16702
c921be7d
NC
16703#undef ARM_VARIANT
16704#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16705#undef THUMB_VARIANT
16706#define THUMB_VARIANT & arm_ext_v6
16707
21d799b5
NC
16708 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16709 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16710 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16711 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16712 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16713 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16714 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16715 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16716 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16717 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 16718
c921be7d
NC
16719#undef THUMB_VARIANT
16720#define THUMB_VARIANT & arm_ext_v6t2
16721
5be8be5d
DG
16722 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
16723 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16724 strex, t_strex),
21d799b5
NC
16725 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16726 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 16727
21d799b5
NC
16728 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16729 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 16730
9e3c6df6 16731/* ARM V6 not included in V7M. */
c921be7d
NC
16732#undef THUMB_VARIANT
16733#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
16734 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16735 UF(rfeib, 9900a00, 1, (RRw), rfe),
16736 UF(rfeda, 8100a00, 1, (RRw), rfe),
16737 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16738 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16739 UF(rfefa, 9900a00, 1, (RRw), rfe),
16740 UF(rfeea, 8100a00, 1, (RRw), rfe),
16741 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16742 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16743 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16744 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16745 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 16746
9e3c6df6
PB
16747/* ARM V6 not included in V7M (eg. integer SIMD). */
16748#undef THUMB_VARIANT
16749#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
16750 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16751 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16752 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16753 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16754 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16755 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16756 /* Old name for QASX. */
21d799b5
NC
16757 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16758 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16759 /* Old name for QSAX. */
21d799b5
NC
16760 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16761 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16762 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16763 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16764 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16765 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16766 /* Old name for SASX. */
21d799b5
NC
16767 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16768 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16769 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16770 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16771 /* Old name for SHASX. */
21d799b5
NC
16772 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16773 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16774 /* Old name for SHSAX. */
21d799b5
NC
16775 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16776 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16777 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16778 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16779 /* Old name for SSAX. */
21d799b5
NC
16780 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16781 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16782 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16783 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16784 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16785 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16786 /* Old name for UASX. */
21d799b5
NC
16787 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16788 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16789 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16790 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16791 /* Old name for UHASX. */
21d799b5
NC
16792 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16793 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16794 /* Old name for UHSAX. */
21d799b5
NC
16795 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16796 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16797 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16798 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16799 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16800 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16801 /* Old name for UQASX. */
21d799b5
NC
16802 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16803 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16804 /* Old name for UQSAX. */
21d799b5
NC
16805 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16806 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16807 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16808 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16809 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16810 /* Old name for USAX. */
21d799b5
NC
16811 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16812 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
16813 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16814 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16815 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16816 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16817 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16818 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16819 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16820 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16821 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16822 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16823 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16824 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16825 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16826 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16827 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16828 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16829 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16830 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16831 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16832 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16833 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16834 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16835 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16836 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16837 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16838 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16839 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
16840 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16841 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16842 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16843 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16844 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 16845
c921be7d
NC
16846#undef ARM_VARIANT
16847#define ARM_VARIANT & arm_ext_v6k
16848#undef THUMB_VARIANT
16849#define THUMB_VARIANT & arm_ext_v6k
16850
21d799b5
NC
16851 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16852 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16853 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16854 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 16855
c921be7d
NC
16856#undef THUMB_VARIANT
16857#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
16858 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
16859 ldrexd, t_ldrexd),
16860 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
16861 RRnpcb), strexd, t_strexd),
ebdca51a 16862
c921be7d
NC
16863#undef THUMB_VARIANT
16864#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
16865 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
16866 rd_rn, rd_rn),
16867 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
16868 rd_rn, rd_rn),
16869 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16870 strex, rm_rd_rn),
16871 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16872 strex, rm_rd_rn),
21d799b5 16873 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 16874
c921be7d
NC
16875#undef ARM_VARIANT
16876#define ARM_VARIANT & arm_ext_v6z
16877
21d799b5 16878 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 16879
c921be7d
NC
16880#undef ARM_VARIANT
16881#define ARM_VARIANT & arm_ext_v6t2
16882
21d799b5
NC
16883 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16884 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16885 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16886 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 16887
21d799b5
NC
16888 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16889 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16890 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16891 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 16892
5be8be5d
DG
16893 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16894 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16895 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16896 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 16897
bf3eeda7
NS
16898 /* Thumb-only instructions. */
16899#undef ARM_VARIANT
16900#define ARM_VARIANT NULL
16901 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
16902 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
16903
16904 /* ARM does not really have an IT instruction, so always allow it.
16905 The opcode is copied from Thumb in order to allow warnings in
16906 -mimplicit-it=[never | arm] modes. */
16907#undef ARM_VARIANT
16908#define ARM_VARIANT & arm_ext_v1
16909
21d799b5
NC
16910 TUE("it", bf08, bf08, 1, (COND), it, t_it),
16911 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
16912 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
16913 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
16914 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
16915 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
16916 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
16917 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
16918 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
16919 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
16920 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
16921 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
16922 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
16923 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
16924 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 16925 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
16926 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
16927 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 16928
92e90b6e 16929 /* Thumb2 only instructions. */
c921be7d
NC
16930#undef ARM_VARIANT
16931#define ARM_VARIANT NULL
92e90b6e 16932
21d799b5
NC
16933 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16934 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16935 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
16936 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
16937 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
16938 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 16939
62b3e311 16940 /* Thumb-2 hardware division instructions (R and M profiles only). */
c921be7d
NC
16941#undef THUMB_VARIANT
16942#define THUMB_VARIANT & arm_ext_div
16943
21d799b5
NC
16944 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
16945 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
62b3e311 16946
7e806470 16947 /* ARM V6M/V7 instructions. */
c921be7d
NC
16948#undef ARM_VARIANT
16949#define ARM_VARIANT & arm_ext_barrier
16950#undef THUMB_VARIANT
16951#define THUMB_VARIANT & arm_ext_barrier
16952
21d799b5
NC
16953 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
16954 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
16955 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
7e806470 16956
62b3e311 16957 /* ARM V7 instructions. */
c921be7d
NC
16958#undef ARM_VARIANT
16959#define ARM_VARIANT & arm_ext_v7
16960#undef THUMB_VARIANT
16961#define THUMB_VARIANT & arm_ext_v7
16962
21d799b5
NC
16963 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
16964 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 16965
c921be7d
NC
16966#undef ARM_VARIANT
16967#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
16968
21d799b5
NC
16969 cCE("wfs", e200110, 1, (RR), rd),
16970 cCE("rfs", e300110, 1, (RR), rd),
16971 cCE("wfc", e400110, 1, (RR), rd),
16972 cCE("rfc", e500110, 1, (RR), rd),
16973
16974 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
16975 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
16976 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
16977 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
16978
16979 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
16980 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
16981 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
16982 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
16983
16984 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
16985 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
16986 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
16987 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
16988 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
16989 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
16990 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
16991 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
16992 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
16993 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
16994 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
16995 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
16996
16997 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
16998 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
16999 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17000 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17001 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17002 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17003 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17004 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17005 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17006 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17007 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17008 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17009
17010 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17011 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17012 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17013 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17014 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17015 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17016 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17017 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17018 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17019 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17020 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17021 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17022
17023 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17024 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17025 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17026 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17027 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17028 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17029 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17030 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17031 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17032 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17033 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17034 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17035
17036 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17037 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17038 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17039 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17040 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17041 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17042 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17043 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17044 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17045 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17046 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17047 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17048
17049 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17050 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17051 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17052 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17053 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17054 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17055 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17056 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17057 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17058 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17059 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17060 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17061
17062 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17063 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17064 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17065 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17066 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17067 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17068 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17069 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17070 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17071 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17072 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17073 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17074
17075 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17076 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17077 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17078 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17079 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17080 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17081 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17082 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17083 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17084 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17085 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17086 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17087
17088 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17089 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17090 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17091 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17092 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17093 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17094 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17095 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17096 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17097 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17098 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17099 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17100
17101 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17102 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17103 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17104 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17105 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17106 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17107 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17108 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17109 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17110 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17111 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17112 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17113
17114 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17115 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17116 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17117 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17118 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17119 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17120 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17121 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17122 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17123 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17124 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17125 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17126
17127 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17128 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17129 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17130 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17131 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17132 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17133 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17134 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17135 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17136 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17137 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17138 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17139
17140 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17141 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17142 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17143 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17144 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17145 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17146 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17147 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17148 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17149 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17150 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17151 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17152
17153 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17154 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17155 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17156 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17157 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17158 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17159 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17160 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17161 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17162 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17163 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17164 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17165
17166 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17167 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17168 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17169 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17170 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17171 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17172 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17173 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17174 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17175 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17176 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17177 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17178
17179 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17180 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17181 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17182 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17183 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17184 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17185 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17186 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17187 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17188 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17189 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17190 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17191
17192 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17193 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17194 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17195 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17196 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17197 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17198 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17199 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17200 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17201 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17202 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17203 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17204
17205 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17206 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17207 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17208 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17209 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17210 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17211 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17212 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17213 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17214 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17215 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17216 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17217
17218 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17219 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17220 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17221 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17222 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17223 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17224 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17225 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17226 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17227 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17228 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17229 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17230
17231 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17232 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17233 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17234 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17235 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17236 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17237 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17238 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17239 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17240 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17241 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17242 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17243
17244 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17245 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17246 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17247 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17248 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17249 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17250 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17251 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17252 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17253 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17254 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17255 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17256
17257 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17258 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17259 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17260 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17261 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17262 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17263 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17264 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17265 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17266 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17267 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17268 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17269
17270 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17271 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17272 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17273 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17274 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17275 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17276 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17277 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17278 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17279 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17280 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17281 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17282
17283 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17284 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17285 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17286 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17287 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17288 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17289 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17290 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17291 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17292 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17293 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17294 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17295
17296 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17297 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17298 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17299 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17300 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17301 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17302 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17303 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17304 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17305 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17306 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17307 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17308
17309 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17310 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17311 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17312 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17313 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17314 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17315 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17316 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17317 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17318 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17319 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17320 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17321
17322 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17323 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17324 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17325 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17326 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17327 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17328 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17329 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17330 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17331 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17332 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17333 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17334
17335 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17336 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17337 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17338 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17339 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17340 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17341 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17342 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17343 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17344 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17345 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17346 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17347
17348 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17349 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17350 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17351 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17352 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17353 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17354 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17355 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17356 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17357 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17358 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17359 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17360
17361 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17362 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17363 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17364 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17365
17366 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17367 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17368 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17369 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17370 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17371 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17372 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17373 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17374 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17375 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17376 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17377 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 17378
c19d1205
ZW
17379 /* The implementation of the FIX instruction is broken on some
17380 assemblers, in that it accepts a precision specifier as well as a
17381 rounding specifier, despite the fact that this is meaningless.
17382 To be more compatible, we accept it as well, though of course it
17383 does not set any bits. */
21d799b5
NC
17384 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17385 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17386 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17387 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17388 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17389 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17390 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17391 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17392 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17393 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17394 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17395 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17396 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 17397
c19d1205 17398 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
17399#undef ARM_VARIANT
17400#define ARM_VARIANT & fpu_fpa_ext_v2
17401
21d799b5
NC
17402 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17403 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17404 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17405 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17406 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17407 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 17408
c921be7d
NC
17409#undef ARM_VARIANT
17410#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17411
c19d1205 17412 /* Moves and type conversions. */
21d799b5
NC
17413 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17414 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17415 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17416 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
17417 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17418 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
17419 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17420 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17421 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17422 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17423 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17424 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17425 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17426 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
17427
17428 /* Memory operations. */
21d799b5
NC
17429 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17430 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17431 cCE("fldmias", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17432 cCE("fldmfds", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17433 cCE("fldmdbs", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17434 cCE("fldmeas", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17435 cCE("fldmiax", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17436 cCE("fldmfdx", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17437 cCE("fldmdbx", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17438 cCE("fldmeax", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17439 cCE("fstmias", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17440 cCE("fstmeas", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17441 cCE("fstmdbs", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17442 cCE("fstmfds", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17443 cCE("fstmiax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17444 cCE("fstmeax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17445 cCE("fstmdbx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17446 cCE("fstmfdx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 17447
c19d1205 17448 /* Monadic operations. */
21d799b5
NC
17449 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17450 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17451 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
17452
17453 /* Dyadic operations. */
21d799b5
NC
17454 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17455 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17456 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17457 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17458 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17459 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17460 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17461 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17462 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 17463
c19d1205 17464 /* Comparisons. */
21d799b5
NC
17465 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17466 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17467 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17468 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 17469
62f3b8c8
PB
17470 /* Double precision load/store are still present on single precision
17471 implementations. */
17472 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17473 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17474 cCE("fldmiad", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17475 cCE("fldmfdd", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17476 cCE("fldmdbd", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17477 cCE("fldmead", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17478 cCE("fstmiad", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17479 cCE("fstmead", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17480 cCE("fstmdbd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17481 cCE("fstmfdd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17482
c921be7d
NC
17483#undef ARM_VARIANT
17484#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17485
c19d1205 17486 /* Moves and type conversions. */
21d799b5
NC
17487 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17488 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17489 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17490 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17491 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17492 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17493 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17494 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17495 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17496 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17497 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17498 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17499 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 17500
c19d1205 17501 /* Monadic operations. */
21d799b5
NC
17502 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17503 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17504 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
17505
17506 /* Dyadic operations. */
21d799b5
NC
17507 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17508 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17509 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17510 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17511 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17512 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17513 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17514 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17515 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 17516
c19d1205 17517 /* Comparisons. */
21d799b5
NC
17518 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17519 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17520 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17521 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 17522
c921be7d
NC
17523#undef ARM_VARIANT
17524#define ARM_VARIANT & fpu_vfp_ext_v2
17525
21d799b5
NC
17526 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17527 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17528 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17529 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 17530
037e8744
JB
17531/* Instructions which may belong to either the Neon or VFP instruction sets.
17532 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
17533#undef ARM_VARIANT
17534#define ARM_VARIANT & fpu_vfp_ext_v1xd
17535#undef THUMB_VARIANT
17536#define THUMB_VARIANT & fpu_vfp_ext_v1xd
17537
037e8744
JB
17538 /* These mnemonics are unique to VFP. */
17539 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17540 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
17541 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17542 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17543 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17544 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17545 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
17546 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17547 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17548 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17549
17550 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
17551 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17552 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17553 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 17554
21d799b5
NC
17555 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17556 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
17557
17558 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17559 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17560
17561 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17562 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17563 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17564 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17565 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17566 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
17567 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17568 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 17569
e3e535bc
NC
17570 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17571 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
17572 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17573 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 17574
037e8744
JB
17575
17576 /* NOTE: All VMOV encoding is special-cased! */
17577 NCE(vmov, 0, 1, (VMOV), neon_mov),
17578 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17579
c921be7d
NC
17580#undef THUMB_VARIANT
17581#define THUMB_VARIANT & fpu_neon_ext_v1
17582#undef ARM_VARIANT
17583#define ARM_VARIANT & fpu_neon_ext_v1
17584
5287ad62
JB
17585 /* Data processing with three registers of the same length. */
17586 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17587 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17588 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17589 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17590 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17591 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17592 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17593 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17594 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17595 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17596 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17597 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17598 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17599 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
17600 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17601 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17602 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17603 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
17604 /* If not immediate, fall back to neon_dyadic_i64_su.
17605 shl_imm should accept I8 I16 I32 I64,
17606 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
17607 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17608 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17609 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17610 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 17611 /* Logic ops, types optional & ignored. */
4316f0d2
DG
17612 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17613 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17614 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17615 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17616 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17617 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17618 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17619 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17620 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17621 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
17622 /* Bitfield ops, untyped. */
17623 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17624 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17625 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17626 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17627 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17628 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17629 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
17630 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17631 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17632 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17633 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17634 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17635 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
17636 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17637 back to neon_dyadic_if_su. */
21d799b5
NC
17638 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17639 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17640 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17641 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17642 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17643 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17644 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17645 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 17646 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
17647 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17648 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 17649 /* As above, D registers only. */
21d799b5
NC
17650 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17651 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 17652 /* Int and float variants, signedness unimportant. */
21d799b5
NC
17653 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17654 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17655 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 17656 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
17657 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17658 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
17659 /* vtst takes sizes 8, 16, 32. */
17660 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17661 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17662 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 17663 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 17664 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
17665 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17666 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17667 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17668 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
17669 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17670 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17671 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17672 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
17673 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17674 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17675 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17676 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
17677 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17678 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17679 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17680 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17681
17682 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 17683 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
17684 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17685
17686 /* Data processing with two registers and a shift amount. */
17687 /* Right shifts, and variants with rounding.
17688 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17689 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17690 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17691 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17692 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17693 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17694 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17695 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17696 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17697 /* Shift and insert. Sizes accepted 8 16 32 64. */
17698 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17699 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17700 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17701 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17702 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17703 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17704 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17705 /* Right shift immediate, saturating & narrowing, with rounding variants.
17706 Types accepted S16 S32 S64 U16 U32 U64. */
17707 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17708 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17709 /* As above, unsigned. Types accepted S16 S32 S64. */
17710 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17711 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17712 /* Right shift narrowing. Types accepted I16 I32 I64. */
17713 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17714 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17715 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 17716 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 17717 /* CVT with optional immediate for fixed-point variant. */
21d799b5 17718 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 17719
4316f0d2
DG
17720 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
17721 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
17722
17723 /* Data processing, three registers of different lengths. */
17724 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17725 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17726 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17727 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17728 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17729 /* If not scalar, fall back to neon_dyadic_long.
17730 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
17731 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17732 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
17733 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17734 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17735 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17736 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17737 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17738 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17739 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17740 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17741 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
17742 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17743 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17744 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
17745 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17746 S16 S32 U16 U32. */
21d799b5 17747 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
17748
17749 /* Extract. Size 8. */
3b8d421e
PB
17750 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17751 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
17752
17753 /* Two registers, miscellaneous. */
17754 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17755 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17756 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17757 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17758 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17759 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17760 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17761 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
17762 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17763 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
17764 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17765 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17766 /* VMOVN. Types I16 I32 I64. */
21d799b5 17767 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 17768 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 17769 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 17770 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 17771 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
17772 /* VZIP / VUZP. Sizes 8 16 32. */
17773 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17774 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17775 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17776 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17777 /* VQABS / VQNEG. Types S8 S16 S32. */
17778 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17779 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17780 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17781 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17782 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17783 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17784 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17785 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17786 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17787 /* Reciprocal estimates. Types U32 F32. */
17788 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17789 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17790 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17791 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17792 /* VCLS. Types S8 S16 S32. */
17793 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17794 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17795 /* VCLZ. Types I8 I16 I32. */
17796 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17797 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17798 /* VCNT. Size 8. */
17799 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17800 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17801 /* Two address, untyped. */
17802 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17803 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17804 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
17805 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17806 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
17807
17808 /* Table lookup. Size 8. */
17809 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17810 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17811
c921be7d
NC
17812#undef THUMB_VARIANT
17813#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17814#undef ARM_VARIANT
17815#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17816
5287ad62 17817 /* Neon element/structure load/store. */
21d799b5
NC
17818 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17819 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17820 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17821 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17822 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17823 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17824 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17825 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 17826
c921be7d 17827#undef THUMB_VARIANT
62f3b8c8
PB
17828#define THUMB_VARIANT &fpu_vfp_ext_v3xd
17829#undef ARM_VARIANT
17830#define ARM_VARIANT &fpu_vfp_ext_v3xd
17831 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17832 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17833 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17834 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17835 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17836 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17837 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17838 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17839 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17840
17841#undef THUMB_VARIANT
c921be7d
NC
17842#define THUMB_VARIANT & fpu_vfp_ext_v3
17843#undef ARM_VARIANT
17844#define ARM_VARIANT & fpu_vfp_ext_v3
17845
21d799b5 17846 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 17847 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17848 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17849 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17850 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17851 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17852 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17853 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17854 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 17855
62f3b8c8
PB
17856#undef ARM_VARIANT
17857#define ARM_VARIANT &fpu_vfp_ext_fma
17858#undef THUMB_VARIANT
17859#define THUMB_VARIANT &fpu_vfp_ext_fma
17860 /* Mnemonics shared by Neon and VFP. These are included in the
17861 VFP FMA variant; NEON and VFP FMA always includes the NEON
17862 FMA instructions. */
17863 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17864 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17865 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17866 the v form should always be used. */
17867 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17868 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17869 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17870 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17871 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17872 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17873
5287ad62 17874#undef THUMB_VARIANT
c921be7d
NC
17875#undef ARM_VARIANT
17876#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17877
21d799b5
NC
17878 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17879 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17880 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17881 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17882 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17883 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17884 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17885 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 17886
c921be7d
NC
17887#undef ARM_VARIANT
17888#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17889
21d799b5
NC
17890 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
17891 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
17892 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
17893 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
17894 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
17895 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
17896 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
17897 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
17898 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
17899 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17900 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17901 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17902 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17903 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17904 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17905 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17906 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17907 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17908 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
17909 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
17910 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17911 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17912 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17913 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17914 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17915 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17916 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
17917 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
17918 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
17919 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
17920 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
17921 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
17922 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
17923 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
17924 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
17925 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
17926 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
17927 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17928 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17929 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17930 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17931 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17932 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17933 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17934 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17935 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17936 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
17937 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17938 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17939 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17940 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17941 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17942 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17943 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17944 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17945 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17946 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17947 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17948 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17949 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17950 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17951 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17952 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17953 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17954 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17955 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17956 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17957 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17958 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17959 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17960 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17961 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17962 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17963 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17964 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17965 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17966 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17967 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17968 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17969 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17970 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17971 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17972 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17973 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17974 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17975 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17976 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17977 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17978 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
17979 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17980 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17981 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17982 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17983 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17984 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17985 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17986 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17987 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17988 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17989 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17990 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17991 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17992 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17993 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17994 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17995 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17996 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17997 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17998 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17999 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18000 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18001 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18002 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18003 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18004 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18005 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18006 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18007 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18008 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18009 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18010 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18011 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18012 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18013 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18014 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18015 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18016 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18017 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18018 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18019 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18020 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18021 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18022 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18023 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18024 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18025 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18026 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18027 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18028 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18029 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18030 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18031 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18032 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18033 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18034 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18035 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18036 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18037 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18038 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18039 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18040 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18041 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18042 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18043 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18044 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18045 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18046 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18047 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18048 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18049 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18050 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18051 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 18052
c921be7d
NC
18053#undef ARM_VARIANT
18054#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18055
21d799b5
NC
18056 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18057 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18058 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18059 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18060 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18061 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18062 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18063 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18064 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18065 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18066 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18067 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18068 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18069 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18070 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18071 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18072 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18073 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18074 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18075 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18076 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18077 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18078 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18079 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18080 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18081 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18082 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18083 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18084 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18085 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18086 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18087 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18088 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18089 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18090 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18091 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18092 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18093 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18094 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18095 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18096 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18097 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18098 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18099 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18100 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18101 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18102 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18103 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18104 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18105 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18106 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18107 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18108 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18109 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18110 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18111 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18112 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 18113
c921be7d
NC
18114#undef ARM_VARIANT
18115#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18116
21d799b5
NC
18117 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18118 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18119 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18120 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18121 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18122 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18123 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18124 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18125 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18126 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18127 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18128 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18129 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18130 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18131 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18132 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18133 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18134 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18135 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18136 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18137 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18138 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18139 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18140 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18141 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18142 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18143 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18144 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18145 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18146 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18147 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18148 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18149 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18150 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18151 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18152 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18153 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18154 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18155 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18156 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18157 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18158 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18159 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18160 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18161 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18162 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18163 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18164 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18165 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18166 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18167 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18168 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18169 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18170 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18171 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18172 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18173 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18174 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18175 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18176 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18177 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18178 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18179 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18180 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18181 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18182 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18183 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18184 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18185 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18186 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18187 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18188 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18189 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18190 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18191 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18192 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18193};
18194#undef ARM_VARIANT
18195#undef THUMB_VARIANT
18196#undef TCE
18197#undef TCM
18198#undef TUE
18199#undef TUF
18200#undef TCC
8f06b2d8 18201#undef cCE
e3cb604e
PB
18202#undef cCL
18203#undef C3E
c19d1205
ZW
18204#undef CE
18205#undef CM
18206#undef UE
18207#undef UF
18208#undef UT
5287ad62
JB
18209#undef NUF
18210#undef nUF
18211#undef NCE
18212#undef nCE
c19d1205
ZW
18213#undef OPS0
18214#undef OPS1
18215#undef OPS2
18216#undef OPS3
18217#undef OPS4
18218#undef OPS5
18219#undef OPS6
18220#undef do_0
18221\f
18222/* MD interface: bits in the object file. */
bfae80f2 18223
c19d1205
ZW
18224/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18225 for use in the a.out file, and stores them in the array pointed to by buf.
18226 This knows about the endian-ness of the target machine and does
18227 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18228 2 (short) and 4 (long) Floating numbers are put out as a series of
18229 LITTLENUMS (shorts, here at least). */
b99bd4ef 18230
c19d1205
ZW
18231void
18232md_number_to_chars (char * buf, valueT val, int n)
18233{
18234 if (target_big_endian)
18235 number_to_chars_bigendian (buf, val, n);
18236 else
18237 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18238}
18239
c19d1205
ZW
18240static valueT
18241md_chars_to_number (char * buf, int n)
bfae80f2 18242{
c19d1205
ZW
18243 valueT result = 0;
18244 unsigned char * where = (unsigned char *) buf;
bfae80f2 18245
c19d1205 18246 if (target_big_endian)
b99bd4ef 18247 {
c19d1205
ZW
18248 while (n--)
18249 {
18250 result <<= 8;
18251 result |= (*where++ & 255);
18252 }
b99bd4ef 18253 }
c19d1205 18254 else
b99bd4ef 18255 {
c19d1205
ZW
18256 while (n--)
18257 {
18258 result <<= 8;
18259 result |= (where[n] & 255);
18260 }
bfae80f2 18261 }
b99bd4ef 18262
c19d1205 18263 return result;
bfae80f2 18264}
b99bd4ef 18265
c19d1205 18266/* MD interface: Sections. */
b99bd4ef 18267
0110f2b8
PB
18268/* Estimate the size of a frag before relaxing. Assume everything fits in
18269 2 bytes. */
18270
c19d1205 18271int
0110f2b8 18272md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18273 segT segtype ATTRIBUTE_UNUSED)
18274{
0110f2b8
PB
18275 fragp->fr_var = 2;
18276 return 2;
18277}
18278
18279/* Convert a machine dependent frag. */
18280
18281void
18282md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18283{
18284 unsigned long insn;
18285 unsigned long old_op;
18286 char *buf;
18287 expressionS exp;
18288 fixS *fixp;
18289 int reloc_type;
18290 int pc_rel;
18291 int opcode;
18292
18293 buf = fragp->fr_literal + fragp->fr_fix;
18294
18295 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
18296 if (fragp->fr_symbol)
18297 {
0110f2b8
PB
18298 exp.X_op = O_symbol;
18299 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
18300 }
18301 else
18302 {
0110f2b8 18303 exp.X_op = O_constant;
5f4273c7 18304 }
0110f2b8
PB
18305 exp.X_add_number = fragp->fr_offset;
18306 opcode = fragp->fr_subtype;
18307 switch (opcode)
18308 {
18309 case T_MNEM_ldr_pc:
18310 case T_MNEM_ldr_pc2:
18311 case T_MNEM_ldr_sp:
18312 case T_MNEM_str_sp:
18313 case T_MNEM_ldr:
18314 case T_MNEM_ldrb:
18315 case T_MNEM_ldrh:
18316 case T_MNEM_str:
18317 case T_MNEM_strb:
18318 case T_MNEM_strh:
18319 if (fragp->fr_var == 4)
18320 {
5f4273c7 18321 insn = THUMB_OP32 (opcode);
0110f2b8
PB
18322 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18323 {
18324 insn |= (old_op & 0x700) << 4;
18325 }
18326 else
18327 {
18328 insn |= (old_op & 7) << 12;
18329 insn |= (old_op & 0x38) << 13;
18330 }
18331 insn |= 0x00000c00;
18332 put_thumb32_insn (buf, insn);
18333 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18334 }
18335 else
18336 {
18337 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18338 }
18339 pc_rel = (opcode == T_MNEM_ldr_pc2);
18340 break;
18341 case T_MNEM_adr:
18342 if (fragp->fr_var == 4)
18343 {
18344 insn = THUMB_OP32 (opcode);
18345 insn |= (old_op & 0xf0) << 4;
18346 put_thumb32_insn (buf, insn);
18347 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18348 }
18349 else
18350 {
18351 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18352 exp.X_add_number -= 4;
18353 }
18354 pc_rel = 1;
18355 break;
18356 case T_MNEM_mov:
18357 case T_MNEM_movs:
18358 case T_MNEM_cmp:
18359 case T_MNEM_cmn:
18360 if (fragp->fr_var == 4)
18361 {
18362 int r0off = (opcode == T_MNEM_mov
18363 || opcode == T_MNEM_movs) ? 0 : 8;
18364 insn = THUMB_OP32 (opcode);
18365 insn = (insn & 0xe1ffffff) | 0x10000000;
18366 insn |= (old_op & 0x700) << r0off;
18367 put_thumb32_insn (buf, insn);
18368 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18369 }
18370 else
18371 {
18372 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18373 }
18374 pc_rel = 0;
18375 break;
18376 case T_MNEM_b:
18377 if (fragp->fr_var == 4)
18378 {
18379 insn = THUMB_OP32(opcode);
18380 put_thumb32_insn (buf, insn);
18381 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18382 }
18383 else
18384 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18385 pc_rel = 1;
18386 break;
18387 case T_MNEM_bcond:
18388 if (fragp->fr_var == 4)
18389 {
18390 insn = THUMB_OP32(opcode);
18391 insn |= (old_op & 0xf00) << 14;
18392 put_thumb32_insn (buf, insn);
18393 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18394 }
18395 else
18396 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18397 pc_rel = 1;
18398 break;
18399 case T_MNEM_add_sp:
18400 case T_MNEM_add_pc:
18401 case T_MNEM_inc_sp:
18402 case T_MNEM_dec_sp:
18403 if (fragp->fr_var == 4)
18404 {
18405 /* ??? Choose between add and addw. */
18406 insn = THUMB_OP32 (opcode);
18407 insn |= (old_op & 0xf0) << 4;
18408 put_thumb32_insn (buf, insn);
16805f35
PB
18409 if (opcode == T_MNEM_add_pc)
18410 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18411 else
18412 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
18413 }
18414 else
18415 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18416 pc_rel = 0;
18417 break;
18418
18419 case T_MNEM_addi:
18420 case T_MNEM_addis:
18421 case T_MNEM_subi:
18422 case T_MNEM_subis:
18423 if (fragp->fr_var == 4)
18424 {
18425 insn = THUMB_OP32 (opcode);
18426 insn |= (old_op & 0xf0) << 4;
18427 insn |= (old_op & 0xf) << 16;
18428 put_thumb32_insn (buf, insn);
16805f35
PB
18429 if (insn & (1 << 20))
18430 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18431 else
18432 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
18433 }
18434 else
18435 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18436 pc_rel = 0;
18437 break;
18438 default:
5f4273c7 18439 abort ();
0110f2b8
PB
18440 }
18441 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 18442 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
18443 fixp->fx_file = fragp->fr_file;
18444 fixp->fx_line = fragp->fr_line;
18445 fragp->fr_fix += fragp->fr_var;
18446}
18447
18448/* Return the size of a relaxable immediate operand instruction.
18449 SHIFT and SIZE specify the form of the allowable immediate. */
18450static int
18451relax_immediate (fragS *fragp, int size, int shift)
18452{
18453 offsetT offset;
18454 offsetT mask;
18455 offsetT low;
18456
18457 /* ??? Should be able to do better than this. */
18458 if (fragp->fr_symbol)
18459 return 4;
18460
18461 low = (1 << shift) - 1;
18462 mask = (1 << (shift + size)) - (1 << shift);
18463 offset = fragp->fr_offset;
18464 /* Force misaligned offsets to 32-bit variant. */
18465 if (offset & low)
5e77afaa 18466 return 4;
0110f2b8
PB
18467 if (offset & ~mask)
18468 return 4;
18469 return 2;
18470}
18471
5e77afaa
PB
18472/* Get the address of a symbol during relaxation. */
18473static addressT
5f4273c7 18474relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
18475{
18476 fragS *sym_frag;
18477 addressT addr;
18478 symbolS *sym;
18479
18480 sym = fragp->fr_symbol;
18481 sym_frag = symbol_get_frag (sym);
18482 know (S_GET_SEGMENT (sym) != absolute_section
18483 || sym_frag == &zero_address_frag);
18484 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18485
18486 /* If frag has yet to be reached on this pass, assume it will
18487 move by STRETCH just as we did. If this is not so, it will
18488 be because some frag between grows, and that will force
18489 another pass. */
18490
18491 if (stretch != 0
18492 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
18493 {
18494 fragS *f;
18495
18496 /* Adjust stretch for any alignment frag. Note that if have
18497 been expanding the earlier code, the symbol may be
18498 defined in what appears to be an earlier frag. FIXME:
18499 This doesn't handle the fr_subtype field, which specifies
18500 a maximum number of bytes to skip when doing an
18501 alignment. */
18502 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18503 {
18504 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18505 {
18506 if (stretch < 0)
18507 stretch = - ((- stretch)
18508 & ~ ((1 << (int) f->fr_offset) - 1));
18509 else
18510 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18511 if (stretch == 0)
18512 break;
18513 }
18514 }
18515 if (f != NULL)
18516 addr += stretch;
18517 }
5e77afaa
PB
18518
18519 return addr;
18520}
18521
0110f2b8
PB
18522/* Return the size of a relaxable adr pseudo-instruction or PC-relative
18523 load. */
18524static int
5e77afaa 18525relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
18526{
18527 addressT addr;
18528 offsetT val;
18529
18530 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
18531 if (fragp->fr_symbol == NULL
18532 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
18533 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18534 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
18535 return 4;
18536
5f4273c7 18537 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18538 addr = fragp->fr_address + fragp->fr_fix;
18539 addr = (addr + 4) & ~3;
5e77afaa 18540 /* Force misaligned targets to 32-bit variant. */
0110f2b8 18541 if (val & 3)
5e77afaa 18542 return 4;
0110f2b8
PB
18543 val -= addr;
18544 if (val < 0 || val > 1020)
18545 return 4;
18546 return 2;
18547}
18548
18549/* Return the size of a relaxable add/sub immediate instruction. */
18550static int
18551relax_addsub (fragS *fragp, asection *sec)
18552{
18553 char *buf;
18554 int op;
18555
18556 buf = fragp->fr_literal + fragp->fr_fix;
18557 op = bfd_get_16(sec->owner, buf);
18558 if ((op & 0xf) == ((op >> 4) & 0xf))
18559 return relax_immediate (fragp, 8, 0);
18560 else
18561 return relax_immediate (fragp, 3, 0);
18562}
18563
18564
18565/* Return the size of a relaxable branch instruction. BITS is the
18566 size of the offset field in the narrow instruction. */
18567
18568static int
5e77afaa 18569relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
18570{
18571 addressT addr;
18572 offsetT val;
18573 offsetT limit;
18574
18575 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 18576 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
18577 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18578 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
18579 return 4;
18580
267bf995
RR
18581#ifdef OBJ_ELF
18582 if (S_IS_DEFINED (fragp->fr_symbol)
18583 && ARM_IS_FUNC (fragp->fr_symbol))
18584 return 4;
18585#endif
18586
5f4273c7 18587 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18588 addr = fragp->fr_address + fragp->fr_fix + 4;
18589 val -= addr;
18590
18591 /* Offset is a signed value *2 */
18592 limit = 1 << bits;
18593 if (val >= limit || val < -limit)
18594 return 4;
18595 return 2;
18596}
18597
18598
18599/* Relax a machine dependent frag. This returns the amount by which
18600 the current size of the frag should change. */
18601
18602int
5e77afaa 18603arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
18604{
18605 int oldsize;
18606 int newsize;
18607
18608 oldsize = fragp->fr_var;
18609 switch (fragp->fr_subtype)
18610 {
18611 case T_MNEM_ldr_pc2:
5f4273c7 18612 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18613 break;
18614 case T_MNEM_ldr_pc:
18615 case T_MNEM_ldr_sp:
18616 case T_MNEM_str_sp:
5f4273c7 18617 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
18618 break;
18619 case T_MNEM_ldr:
18620 case T_MNEM_str:
5f4273c7 18621 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
18622 break;
18623 case T_MNEM_ldrh:
18624 case T_MNEM_strh:
5f4273c7 18625 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
18626 break;
18627 case T_MNEM_ldrb:
18628 case T_MNEM_strb:
5f4273c7 18629 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
18630 break;
18631 case T_MNEM_adr:
5f4273c7 18632 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18633 break;
18634 case T_MNEM_mov:
18635 case T_MNEM_movs:
18636 case T_MNEM_cmp:
18637 case T_MNEM_cmn:
5f4273c7 18638 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
18639 break;
18640 case T_MNEM_b:
5f4273c7 18641 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
18642 break;
18643 case T_MNEM_bcond:
5f4273c7 18644 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
18645 break;
18646 case T_MNEM_add_sp:
18647 case T_MNEM_add_pc:
18648 newsize = relax_immediate (fragp, 8, 2);
18649 break;
18650 case T_MNEM_inc_sp:
18651 case T_MNEM_dec_sp:
18652 newsize = relax_immediate (fragp, 7, 2);
18653 break;
18654 case T_MNEM_addi:
18655 case T_MNEM_addis:
18656 case T_MNEM_subi:
18657 case T_MNEM_subis:
18658 newsize = relax_addsub (fragp, sec);
18659 break;
18660 default:
5f4273c7 18661 abort ();
0110f2b8 18662 }
5e77afaa
PB
18663
18664 fragp->fr_var = newsize;
18665 /* Freeze wide instructions that are at or before the same location as
18666 in the previous pass. This avoids infinite loops.
5f4273c7
NC
18667 Don't freeze them unconditionally because targets may be artificially
18668 misaligned by the expansion of preceding frags. */
5e77afaa 18669 if (stretch <= 0 && newsize > 2)
0110f2b8 18670 {
0110f2b8 18671 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 18672 frag_wane (fragp);
0110f2b8 18673 }
5e77afaa 18674
0110f2b8 18675 return newsize - oldsize;
c19d1205 18676}
b99bd4ef 18677
c19d1205 18678/* Round up a section size to the appropriate boundary. */
b99bd4ef 18679
c19d1205
ZW
18680valueT
18681md_section_align (segT segment ATTRIBUTE_UNUSED,
18682 valueT size)
18683{
f0927246
NC
18684#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18685 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18686 {
18687 /* For a.out, force the section size to be aligned. If we don't do
18688 this, BFD will align it for us, but it will not write out the
18689 final bytes of the section. This may be a bug in BFD, but it is
18690 easier to fix it here since that is how the other a.out targets
18691 work. */
18692 int align;
18693
18694 align = bfd_get_section_alignment (stdoutput, segment);
18695 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18696 }
c19d1205 18697#endif
f0927246
NC
18698
18699 return size;
bfae80f2 18700}
b99bd4ef 18701
c19d1205
ZW
18702/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18703 of an rs_align_code fragment. */
18704
18705void
18706arm_handle_align (fragS * fragP)
bfae80f2 18707{
e7495e45
NS
18708 static char const arm_noop[2][2][4] =
18709 {
18710 { /* ARMv1 */
18711 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18712 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18713 },
18714 { /* ARMv6k */
18715 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18716 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18717 },
18718 };
18719 static char const thumb_noop[2][2][2] =
18720 {
18721 { /* Thumb-1 */
18722 {0xc0, 0x46}, /* LE */
18723 {0x46, 0xc0}, /* BE */
18724 },
18725 { /* Thumb-2 */
18726 {0x00, 0xbf}, /* LE */
18727 {0xbf, 0x00} /* BE */
18728 }
18729 };
18730 static char const wide_thumb_noop[2][4] =
18731 { /* Wide Thumb-2 */
18732 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18733 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18734 };
c921be7d 18735
e7495e45 18736 unsigned bytes, fix, noop_size;
c19d1205
ZW
18737 char * p;
18738 const char * noop;
e7495e45 18739 const char *narrow_noop = NULL;
cd000bff
DJ
18740#ifdef OBJ_ELF
18741 enum mstate state;
18742#endif
bfae80f2 18743
c19d1205 18744 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
18745 return;
18746
c19d1205
ZW
18747 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18748 p = fragP->fr_literal + fragP->fr_fix;
18749 fix = 0;
bfae80f2 18750
c19d1205
ZW
18751 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18752 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 18753
cd000bff 18754 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 18755
cd000bff 18756 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 18757 {
e7495e45
NS
18758 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18759 {
18760 narrow_noop = thumb_noop[1][target_big_endian];
18761 noop = wide_thumb_noop[target_big_endian];
18762 }
c19d1205 18763 else
e7495e45
NS
18764 noop = thumb_noop[0][target_big_endian];
18765 noop_size = 2;
cd000bff
DJ
18766#ifdef OBJ_ELF
18767 state = MAP_THUMB;
18768#endif
7ed4c4c5
NC
18769 }
18770 else
18771 {
e7495e45
NS
18772 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18773 [target_big_endian];
18774 noop_size = 4;
cd000bff
DJ
18775#ifdef OBJ_ELF
18776 state = MAP_ARM;
18777#endif
7ed4c4c5 18778 }
c921be7d 18779
e7495e45 18780 fragP->fr_var = noop_size;
c921be7d 18781
c19d1205 18782 if (bytes & (noop_size - 1))
7ed4c4c5 18783 {
c19d1205 18784 fix = bytes & (noop_size - 1);
cd000bff
DJ
18785#ifdef OBJ_ELF
18786 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18787#endif
c19d1205
ZW
18788 memset (p, 0, fix);
18789 p += fix;
18790 bytes -= fix;
a737bd4d 18791 }
a737bd4d 18792
e7495e45
NS
18793 if (narrow_noop)
18794 {
18795 if (bytes & noop_size)
18796 {
18797 /* Insert a narrow noop. */
18798 memcpy (p, narrow_noop, noop_size);
18799 p += noop_size;
18800 bytes -= noop_size;
18801 fix += noop_size;
18802 }
18803
18804 /* Use wide noops for the remainder */
18805 noop_size = 4;
18806 }
18807
c19d1205 18808 while (bytes >= noop_size)
a737bd4d 18809 {
c19d1205
ZW
18810 memcpy (p, noop, noop_size);
18811 p += noop_size;
18812 bytes -= noop_size;
18813 fix += noop_size;
a737bd4d
NC
18814 }
18815
c19d1205 18816 fragP->fr_fix += fix;
a737bd4d
NC
18817}
18818
c19d1205
ZW
18819/* Called from md_do_align. Used to create an alignment
18820 frag in a code section. */
18821
18822void
18823arm_frag_align_code (int n, int max)
bfae80f2 18824{
c19d1205 18825 char * p;
7ed4c4c5 18826
c19d1205 18827 /* We assume that there will never be a requirement
6ec8e702 18828 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 18829 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
18830 {
18831 char err_msg[128];
18832
18833 sprintf (err_msg,
18834 _("alignments greater than %d bytes not supported in .text sections."),
18835 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 18836 as_fatal ("%s", err_msg);
6ec8e702 18837 }
bfae80f2 18838
c19d1205
ZW
18839 p = frag_var (rs_align_code,
18840 MAX_MEM_FOR_RS_ALIGN_CODE,
18841 1,
18842 (relax_substateT) max,
18843 (symbolS *) NULL,
18844 (offsetT) n,
18845 (char *) NULL);
18846 *p = 0;
18847}
bfae80f2 18848
8dc2430f
NC
18849/* Perform target specific initialisation of a frag.
18850 Note - despite the name this initialisation is not done when the frag
18851 is created, but only when its type is assigned. A frag can be created
18852 and used a long time before its type is set, so beware of assuming that
18853 this initialisationis performed first. */
bfae80f2 18854
cd000bff
DJ
18855#ifndef OBJ_ELF
18856void
18857arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18858{
18859 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 18860 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
18861}
18862
18863#else /* OBJ_ELF is defined. */
c19d1205 18864void
cd000bff 18865arm_init_frag (fragS * fragP, int max_chars)
c19d1205 18866{
8dc2430f
NC
18867 /* If the current ARM vs THUMB mode has not already
18868 been recorded into this frag then do so now. */
cd000bff
DJ
18869 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18870 {
18871 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18872
18873 /* Record a mapping symbol for alignment frags. We will delete this
18874 later if the alignment ends up empty. */
18875 switch (fragP->fr_type)
18876 {
18877 case rs_align:
18878 case rs_align_test:
18879 case rs_fill:
18880 mapping_state_2 (MAP_DATA, max_chars);
18881 break;
18882 case rs_align_code:
18883 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
18884 break;
18885 default:
18886 break;
18887 }
18888 }
bfae80f2
RE
18889}
18890
c19d1205
ZW
18891/* When we change sections we need to issue a new mapping symbol. */
18892
18893void
18894arm_elf_change_section (void)
bfae80f2 18895{
c19d1205
ZW
18896 /* Link an unlinked unwind index table section to the .text section. */
18897 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18898 && elf_linked_to_section (now_seg) == NULL)
18899 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
18900}
18901
c19d1205
ZW
18902int
18903arm_elf_section_type (const char * str, size_t len)
e45d0630 18904{
c19d1205
ZW
18905 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18906 return SHT_ARM_EXIDX;
e45d0630 18907
c19d1205
ZW
18908 return -1;
18909}
18910\f
18911/* Code to deal with unwinding tables. */
e45d0630 18912
c19d1205 18913static void add_unwind_adjustsp (offsetT);
e45d0630 18914
5f4273c7 18915/* Generate any deferred unwind frame offset. */
e45d0630 18916
bfae80f2 18917static void
c19d1205 18918flush_pending_unwind (void)
bfae80f2 18919{
c19d1205 18920 offsetT offset;
bfae80f2 18921
c19d1205
ZW
18922 offset = unwind.pending_offset;
18923 unwind.pending_offset = 0;
18924 if (offset != 0)
18925 add_unwind_adjustsp (offset);
bfae80f2
RE
18926}
18927
c19d1205
ZW
18928/* Add an opcode to this list for this function. Two-byte opcodes should
18929 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18930 order. */
18931
bfae80f2 18932static void
c19d1205 18933add_unwind_opcode (valueT op, int length)
bfae80f2 18934{
c19d1205
ZW
18935 /* Add any deferred stack adjustment. */
18936 if (unwind.pending_offset)
18937 flush_pending_unwind ();
bfae80f2 18938
c19d1205 18939 unwind.sp_restored = 0;
bfae80f2 18940
c19d1205 18941 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 18942 {
c19d1205
ZW
18943 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
18944 if (unwind.opcodes)
21d799b5
NC
18945 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
18946 unwind.opcode_alloc);
c19d1205 18947 else
21d799b5 18948 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 18949 }
c19d1205 18950 while (length > 0)
bfae80f2 18951 {
c19d1205
ZW
18952 length--;
18953 unwind.opcodes[unwind.opcode_count] = op & 0xff;
18954 op >>= 8;
18955 unwind.opcode_count++;
bfae80f2 18956 }
bfae80f2
RE
18957}
18958
c19d1205
ZW
18959/* Add unwind opcodes to adjust the stack pointer. */
18960
bfae80f2 18961static void
c19d1205 18962add_unwind_adjustsp (offsetT offset)
bfae80f2 18963{
c19d1205 18964 valueT op;
bfae80f2 18965
c19d1205 18966 if (offset > 0x200)
bfae80f2 18967 {
c19d1205
ZW
18968 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
18969 char bytes[5];
18970 int n;
18971 valueT o;
bfae80f2 18972
c19d1205
ZW
18973 /* Long form: 0xb2, uleb128. */
18974 /* This might not fit in a word so add the individual bytes,
18975 remembering the list is built in reverse order. */
18976 o = (valueT) ((offset - 0x204) >> 2);
18977 if (o == 0)
18978 add_unwind_opcode (0, 1);
bfae80f2 18979
c19d1205
ZW
18980 /* Calculate the uleb128 encoding of the offset. */
18981 n = 0;
18982 while (o)
18983 {
18984 bytes[n] = o & 0x7f;
18985 o >>= 7;
18986 if (o)
18987 bytes[n] |= 0x80;
18988 n++;
18989 }
18990 /* Add the insn. */
18991 for (; n; n--)
18992 add_unwind_opcode (bytes[n - 1], 1);
18993 add_unwind_opcode (0xb2, 1);
18994 }
18995 else if (offset > 0x100)
bfae80f2 18996 {
c19d1205
ZW
18997 /* Two short opcodes. */
18998 add_unwind_opcode (0x3f, 1);
18999 op = (offset - 0x104) >> 2;
19000 add_unwind_opcode (op, 1);
bfae80f2 19001 }
c19d1205
ZW
19002 else if (offset > 0)
19003 {
19004 /* Short opcode. */
19005 op = (offset - 4) >> 2;
19006 add_unwind_opcode (op, 1);
19007 }
19008 else if (offset < 0)
bfae80f2 19009 {
c19d1205
ZW
19010 offset = -offset;
19011 while (offset > 0x100)
bfae80f2 19012 {
c19d1205
ZW
19013 add_unwind_opcode (0x7f, 1);
19014 offset -= 0x100;
bfae80f2 19015 }
c19d1205
ZW
19016 op = ((offset - 4) >> 2) | 0x40;
19017 add_unwind_opcode (op, 1);
bfae80f2 19018 }
bfae80f2
RE
19019}
19020
c19d1205
ZW
19021/* Finish the list of unwind opcodes for this function. */
19022static void
19023finish_unwind_opcodes (void)
bfae80f2 19024{
c19d1205 19025 valueT op;
bfae80f2 19026
c19d1205 19027 if (unwind.fp_used)
bfae80f2 19028 {
708587a4 19029 /* Adjust sp as necessary. */
c19d1205
ZW
19030 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19031 flush_pending_unwind ();
bfae80f2 19032
c19d1205
ZW
19033 /* After restoring sp from the frame pointer. */
19034 op = 0x90 | unwind.fp_reg;
19035 add_unwind_opcode (op, 1);
19036 }
19037 else
19038 flush_pending_unwind ();
bfae80f2
RE
19039}
19040
bfae80f2 19041
c19d1205
ZW
19042/* Start an exception table entry. If idx is nonzero this is an index table
19043 entry. */
bfae80f2
RE
19044
19045static void
c19d1205 19046start_unwind_section (const segT text_seg, int idx)
bfae80f2 19047{
c19d1205
ZW
19048 const char * text_name;
19049 const char * prefix;
19050 const char * prefix_once;
19051 const char * group_name;
19052 size_t prefix_len;
19053 size_t text_len;
19054 char * sec_name;
19055 size_t sec_name_len;
19056 int type;
19057 int flags;
19058 int linkonce;
bfae80f2 19059
c19d1205 19060 if (idx)
bfae80f2 19061 {
c19d1205
ZW
19062 prefix = ELF_STRING_ARM_unwind;
19063 prefix_once = ELF_STRING_ARM_unwind_once;
19064 type = SHT_ARM_EXIDX;
bfae80f2 19065 }
c19d1205 19066 else
bfae80f2 19067 {
c19d1205
ZW
19068 prefix = ELF_STRING_ARM_unwind_info;
19069 prefix_once = ELF_STRING_ARM_unwind_info_once;
19070 type = SHT_PROGBITS;
bfae80f2
RE
19071 }
19072
c19d1205
ZW
19073 text_name = segment_name (text_seg);
19074 if (streq (text_name, ".text"))
19075 text_name = "";
19076
19077 if (strncmp (text_name, ".gnu.linkonce.t.",
19078 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 19079 {
c19d1205
ZW
19080 prefix = prefix_once;
19081 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
19082 }
19083
c19d1205
ZW
19084 prefix_len = strlen (prefix);
19085 text_len = strlen (text_name);
19086 sec_name_len = prefix_len + text_len;
21d799b5 19087 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
19088 memcpy (sec_name, prefix, prefix_len);
19089 memcpy (sec_name + prefix_len, text_name, text_len);
19090 sec_name[prefix_len + text_len] = '\0';
bfae80f2 19091
c19d1205
ZW
19092 flags = SHF_ALLOC;
19093 linkonce = 0;
19094 group_name = 0;
bfae80f2 19095
c19d1205
ZW
19096 /* Handle COMDAT group. */
19097 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 19098 {
c19d1205
ZW
19099 group_name = elf_group_name (text_seg);
19100 if (group_name == NULL)
19101 {
bd3ba5d1 19102 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
19103 segment_name (text_seg));
19104 ignore_rest_of_line ();
19105 return;
19106 }
19107 flags |= SHF_GROUP;
19108 linkonce = 1;
bfae80f2
RE
19109 }
19110
c19d1205 19111 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 19112
5f4273c7 19113 /* Set the section link for index tables. */
c19d1205
ZW
19114 if (idx)
19115 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
19116}
19117
bfae80f2 19118
c19d1205
ZW
19119/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19120 personality routine data. Returns zero, or the index table value for
19121 and inline entry. */
19122
19123static valueT
19124create_unwind_entry (int have_data)
bfae80f2 19125{
c19d1205
ZW
19126 int size;
19127 addressT where;
19128 char *ptr;
19129 /* The current word of data. */
19130 valueT data;
19131 /* The number of bytes left in this word. */
19132 int n;
bfae80f2 19133
c19d1205 19134 finish_unwind_opcodes ();
bfae80f2 19135
c19d1205
ZW
19136 /* Remember the current text section. */
19137 unwind.saved_seg = now_seg;
19138 unwind.saved_subseg = now_subseg;
bfae80f2 19139
c19d1205 19140 start_unwind_section (now_seg, 0);
bfae80f2 19141
c19d1205 19142 if (unwind.personality_routine == NULL)
bfae80f2 19143 {
c19d1205
ZW
19144 if (unwind.personality_index == -2)
19145 {
19146 if (have_data)
5f4273c7 19147 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
19148 return 1; /* EXIDX_CANTUNWIND. */
19149 }
bfae80f2 19150
c19d1205
ZW
19151 /* Use a default personality routine if none is specified. */
19152 if (unwind.personality_index == -1)
19153 {
19154 if (unwind.opcode_count > 3)
19155 unwind.personality_index = 1;
19156 else
19157 unwind.personality_index = 0;
19158 }
bfae80f2 19159
c19d1205
ZW
19160 /* Space for the personality routine entry. */
19161 if (unwind.personality_index == 0)
19162 {
19163 if (unwind.opcode_count > 3)
19164 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 19165
c19d1205
ZW
19166 if (!have_data)
19167 {
19168 /* All the data is inline in the index table. */
19169 data = 0x80;
19170 n = 3;
19171 while (unwind.opcode_count > 0)
19172 {
19173 unwind.opcode_count--;
19174 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19175 n--;
19176 }
bfae80f2 19177
c19d1205
ZW
19178 /* Pad with "finish" opcodes. */
19179 while (n--)
19180 data = (data << 8) | 0xb0;
bfae80f2 19181
c19d1205
ZW
19182 return data;
19183 }
19184 size = 0;
19185 }
19186 else
19187 /* We get two opcodes "free" in the first word. */
19188 size = unwind.opcode_count - 2;
19189 }
19190 else
19191 /* An extra byte is required for the opcode count. */
19192 size = unwind.opcode_count + 1;
bfae80f2 19193
c19d1205
ZW
19194 size = (size + 3) >> 2;
19195 if (size > 0xff)
19196 as_bad (_("too many unwind opcodes"));
bfae80f2 19197
c19d1205
ZW
19198 frag_align (2, 0, 0);
19199 record_alignment (now_seg, 2);
19200 unwind.table_entry = expr_build_dot ();
19201
19202 /* Allocate the table entry. */
19203 ptr = frag_more ((size << 2) + 4);
19204 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19205
c19d1205 19206 switch (unwind.personality_index)
bfae80f2 19207 {
c19d1205
ZW
19208 case -1:
19209 /* ??? Should this be a PLT generating relocation? */
19210 /* Custom personality routine. */
19211 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19212 BFD_RELOC_ARM_PREL31);
bfae80f2 19213
c19d1205
ZW
19214 where += 4;
19215 ptr += 4;
bfae80f2 19216
c19d1205
ZW
19217 /* Set the first byte to the number of additional words. */
19218 data = size - 1;
19219 n = 3;
19220 break;
bfae80f2 19221
c19d1205
ZW
19222 /* ABI defined personality routines. */
19223 case 0:
19224 /* Three opcodes bytes are packed into the first word. */
19225 data = 0x80;
19226 n = 3;
19227 break;
bfae80f2 19228
c19d1205
ZW
19229 case 1:
19230 case 2:
19231 /* The size and first two opcode bytes go in the first word. */
19232 data = ((0x80 + unwind.personality_index) << 8) | size;
19233 n = 2;
19234 break;
bfae80f2 19235
c19d1205
ZW
19236 default:
19237 /* Should never happen. */
19238 abort ();
19239 }
bfae80f2 19240
c19d1205
ZW
19241 /* Pack the opcodes into words (MSB first), reversing the list at the same
19242 time. */
19243 while (unwind.opcode_count > 0)
19244 {
19245 if (n == 0)
19246 {
19247 md_number_to_chars (ptr, data, 4);
19248 ptr += 4;
19249 n = 4;
19250 data = 0;
19251 }
19252 unwind.opcode_count--;
19253 n--;
19254 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19255 }
19256
19257 /* Finish off the last word. */
19258 if (n < 4)
19259 {
19260 /* Pad with "finish" opcodes. */
19261 while (n--)
19262 data = (data << 8) | 0xb0;
19263
19264 md_number_to_chars (ptr, data, 4);
19265 }
19266
19267 if (!have_data)
19268 {
19269 /* Add an empty descriptor if there is no user-specified data. */
19270 ptr = frag_more (4);
19271 md_number_to_chars (ptr, 0, 4);
19272 }
19273
19274 return 0;
bfae80f2
RE
19275}
19276
f0927246
NC
19277
19278/* Initialize the DWARF-2 unwind information for this procedure. */
19279
19280void
19281tc_arm_frame_initial_instructions (void)
19282{
19283 cfi_add_CFA_def_cfa (REG_SP, 0);
19284}
19285#endif /* OBJ_ELF */
19286
c19d1205
ZW
19287/* Convert REGNAME to a DWARF-2 register number. */
19288
19289int
1df69f4f 19290tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 19291{
1df69f4f 19292 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
19293
19294 if (reg == FAIL)
19295 return -1;
19296
19297 return reg;
bfae80f2
RE
19298}
19299
f0927246 19300#ifdef TE_PE
c19d1205 19301void
f0927246 19302tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 19303{
91d6fa6a 19304 expressionS exp;
bfae80f2 19305
91d6fa6a
NC
19306 exp.X_op = O_secrel;
19307 exp.X_add_symbol = symbol;
19308 exp.X_add_number = 0;
19309 emit_expr (&exp, size);
f0927246
NC
19310}
19311#endif
bfae80f2 19312
c19d1205 19313/* MD interface: Symbol and relocation handling. */
bfae80f2 19314
2fc8bdac
ZW
19315/* Return the address within the segment that a PC-relative fixup is
19316 relative to. For ARM, PC-relative fixups applied to instructions
19317 are generally relative to the location of the fixup plus 8 bytes.
19318 Thumb branches are offset by 4, and Thumb loads relative to PC
19319 require special handling. */
bfae80f2 19320
c19d1205 19321long
2fc8bdac 19322md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 19323{
2fc8bdac
ZW
19324 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19325
19326 /* If this is pc-relative and we are going to emit a relocation
19327 then we just want to put out any pipeline compensation that the linker
53baae48
NC
19328 will need. Otherwise we want to use the calculated base.
19329 For WinCE we skip the bias for externals as well, since this
19330 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 19331 if (fixP->fx_pcrel
2fc8bdac 19332 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
19333 || (arm_force_relocation (fixP)
19334#ifdef TE_WINCE
19335 && !S_IS_EXTERNAL (fixP->fx_addsy)
19336#endif
19337 )))
2fc8bdac 19338 base = 0;
bfae80f2 19339
267bf995 19340
c19d1205 19341 switch (fixP->fx_r_type)
bfae80f2 19342 {
2fc8bdac
ZW
19343 /* PC relative addressing on the Thumb is slightly odd as the
19344 bottom two bits of the PC are forced to zero for the
19345 calculation. This happens *after* application of the
19346 pipeline offset. However, Thumb adrl already adjusts for
19347 this, so we need not do it again. */
c19d1205 19348 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 19349 return base & ~3;
c19d1205
ZW
19350
19351 case BFD_RELOC_ARM_THUMB_OFFSET:
19352 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 19353 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 19354 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 19355 return (base + 4) & ~3;
c19d1205 19356
2fc8bdac
ZW
19357 /* Thumb branches are simply offset by +4. */
19358 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19359 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19360 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19361 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 19362 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 19363 return base + 4;
bfae80f2 19364
267bf995 19365 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
19366 if (fixP->fx_addsy
19367 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19368 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19369 && ARM_IS_FUNC (fixP->fx_addsy)
19370 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19371 base = fixP->fx_where + fixP->fx_frag->fr_address;
19372 return base + 4;
19373
00adf2d4
JB
19374 /* BLX is like branches above, but forces the low two bits of PC to
19375 zero. */
486499d0
CL
19376 case BFD_RELOC_THUMB_PCREL_BLX:
19377 if (fixP->fx_addsy
19378 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19379 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19380 && THUMB_IS_FUNC (fixP->fx_addsy)
19381 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19382 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
19383 return (base + 4) & ~3;
19384
2fc8bdac
ZW
19385 /* ARM mode branches are offset by +8. However, the Windows CE
19386 loader expects the relocation not to take this into account. */
267bf995 19387 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
19388 if (fixP->fx_addsy
19389 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19390 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19391 && ARM_IS_FUNC (fixP->fx_addsy)
19392 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19393 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19394 return base + 8;
267bf995 19395
486499d0
CL
19396 case BFD_RELOC_ARM_PCREL_CALL:
19397 if (fixP->fx_addsy
19398 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19399 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19400 && THUMB_IS_FUNC (fixP->fx_addsy)
19401 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19402 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19403 return base + 8;
267bf995 19404
2fc8bdac 19405 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 19406 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 19407 case BFD_RELOC_ARM_PLT32:
c19d1205 19408#ifdef TE_WINCE
5f4273c7 19409 /* When handling fixups immediately, because we have already
53baae48
NC
19410 discovered the value of a symbol, or the address of the frag involved
19411 we must account for the offset by +8, as the OS loader will never see the reloc.
19412 see fixup_segment() in write.c
19413 The S_IS_EXTERNAL test handles the case of global symbols.
19414 Those need the calculated base, not just the pipe compensation the linker will need. */
19415 if (fixP->fx_pcrel
19416 && fixP->fx_addsy != NULL
19417 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19418 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19419 return base + 8;
2fc8bdac 19420 return base;
c19d1205 19421#else
2fc8bdac 19422 return base + 8;
c19d1205 19423#endif
2fc8bdac 19424
267bf995 19425
2fc8bdac
ZW
19426 /* ARM mode loads relative to PC are also offset by +8. Unlike
19427 branches, the Windows CE loader *does* expect the relocation
19428 to take this into account. */
19429 case BFD_RELOC_ARM_OFFSET_IMM:
19430 case BFD_RELOC_ARM_OFFSET_IMM8:
19431 case BFD_RELOC_ARM_HWLITERAL:
19432 case BFD_RELOC_ARM_LITERAL:
19433 case BFD_RELOC_ARM_CP_OFF_IMM:
19434 return base + 8;
19435
19436
19437 /* Other PC-relative relocations are un-offset. */
19438 default:
19439 return base;
19440 }
bfae80f2
RE
19441}
19442
c19d1205
ZW
19443/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19444 Otherwise we have no need to default values of symbols. */
19445
19446symbolS *
19447md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 19448{
c19d1205
ZW
19449#ifdef OBJ_ELF
19450 if (name[0] == '_' && name[1] == 'G'
19451 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19452 {
19453 if (!GOT_symbol)
19454 {
19455 if (symbol_find (name))
bd3ba5d1 19456 as_bad (_("GOT already in the symbol table"));
bfae80f2 19457
c19d1205
ZW
19458 GOT_symbol = symbol_new (name, undefined_section,
19459 (valueT) 0, & zero_address_frag);
19460 }
bfae80f2 19461
c19d1205 19462 return GOT_symbol;
bfae80f2 19463 }
c19d1205 19464#endif
bfae80f2 19465
c921be7d 19466 return NULL;
bfae80f2
RE
19467}
19468
55cf6793 19469/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
19470 computed as two separate immediate values, added together. We
19471 already know that this value cannot be computed by just one ARM
19472 instruction. */
19473
19474static unsigned int
19475validate_immediate_twopart (unsigned int val,
19476 unsigned int * highpart)
bfae80f2 19477{
c19d1205
ZW
19478 unsigned int a;
19479 unsigned int i;
bfae80f2 19480
c19d1205
ZW
19481 for (i = 0; i < 32; i += 2)
19482 if (((a = rotate_left (val, i)) & 0xff) != 0)
19483 {
19484 if (a & 0xff00)
19485 {
19486 if (a & ~ 0xffff)
19487 continue;
19488 * highpart = (a >> 8) | ((i + 24) << 7);
19489 }
19490 else if (a & 0xff0000)
19491 {
19492 if (a & 0xff000000)
19493 continue;
19494 * highpart = (a >> 16) | ((i + 16) << 7);
19495 }
19496 else
19497 {
9c2799c2 19498 gas_assert (a & 0xff000000);
c19d1205
ZW
19499 * highpart = (a >> 24) | ((i + 8) << 7);
19500 }
bfae80f2 19501
c19d1205
ZW
19502 return (a & 0xff) | (i << 7);
19503 }
bfae80f2 19504
c19d1205 19505 return FAIL;
bfae80f2
RE
19506}
19507
c19d1205
ZW
19508static int
19509validate_offset_imm (unsigned int val, int hwse)
19510{
19511 if ((hwse && val > 255) || val > 4095)
19512 return FAIL;
19513 return val;
19514}
bfae80f2 19515
55cf6793 19516/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
19517 negative immediate constant by altering the instruction. A bit of
19518 a hack really.
19519 MOV <-> MVN
19520 AND <-> BIC
19521 ADC <-> SBC
19522 by inverting the second operand, and
19523 ADD <-> SUB
19524 CMP <-> CMN
19525 by negating the second operand. */
bfae80f2 19526
c19d1205
ZW
19527static int
19528negate_data_op (unsigned long * instruction,
19529 unsigned long value)
bfae80f2 19530{
c19d1205
ZW
19531 int op, new_inst;
19532 unsigned long negated, inverted;
bfae80f2 19533
c19d1205
ZW
19534 negated = encode_arm_immediate (-value);
19535 inverted = encode_arm_immediate (~value);
bfae80f2 19536
c19d1205
ZW
19537 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19538 switch (op)
bfae80f2 19539 {
c19d1205
ZW
19540 /* First negates. */
19541 case OPCODE_SUB: /* ADD <-> SUB */
19542 new_inst = OPCODE_ADD;
19543 value = negated;
19544 break;
bfae80f2 19545
c19d1205
ZW
19546 case OPCODE_ADD:
19547 new_inst = OPCODE_SUB;
19548 value = negated;
19549 break;
bfae80f2 19550
c19d1205
ZW
19551 case OPCODE_CMP: /* CMP <-> CMN */
19552 new_inst = OPCODE_CMN;
19553 value = negated;
19554 break;
bfae80f2 19555
c19d1205
ZW
19556 case OPCODE_CMN:
19557 new_inst = OPCODE_CMP;
19558 value = negated;
19559 break;
bfae80f2 19560
c19d1205
ZW
19561 /* Now Inverted ops. */
19562 case OPCODE_MOV: /* MOV <-> MVN */
19563 new_inst = OPCODE_MVN;
19564 value = inverted;
19565 break;
bfae80f2 19566
c19d1205
ZW
19567 case OPCODE_MVN:
19568 new_inst = OPCODE_MOV;
19569 value = inverted;
19570 break;
bfae80f2 19571
c19d1205
ZW
19572 case OPCODE_AND: /* AND <-> BIC */
19573 new_inst = OPCODE_BIC;
19574 value = inverted;
19575 break;
bfae80f2 19576
c19d1205
ZW
19577 case OPCODE_BIC:
19578 new_inst = OPCODE_AND;
19579 value = inverted;
19580 break;
bfae80f2 19581
c19d1205
ZW
19582 case OPCODE_ADC: /* ADC <-> SBC */
19583 new_inst = OPCODE_SBC;
19584 value = inverted;
19585 break;
bfae80f2 19586
c19d1205
ZW
19587 case OPCODE_SBC:
19588 new_inst = OPCODE_ADC;
19589 value = inverted;
19590 break;
bfae80f2 19591
c19d1205
ZW
19592 /* We cannot do anything. */
19593 default:
19594 return FAIL;
b99bd4ef
NC
19595 }
19596
c19d1205
ZW
19597 if (value == (unsigned) FAIL)
19598 return FAIL;
19599
19600 *instruction &= OPCODE_MASK;
19601 *instruction |= new_inst << DATA_OP_SHIFT;
19602 return value;
b99bd4ef
NC
19603}
19604
ef8d22e6
PB
19605/* Like negate_data_op, but for Thumb-2. */
19606
19607static unsigned int
16dd5e42 19608thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
19609{
19610 int op, new_inst;
19611 int rd;
16dd5e42 19612 unsigned int negated, inverted;
ef8d22e6
PB
19613
19614 negated = encode_thumb32_immediate (-value);
19615 inverted = encode_thumb32_immediate (~value);
19616
19617 rd = (*instruction >> 8) & 0xf;
19618 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19619 switch (op)
19620 {
19621 /* ADD <-> SUB. Includes CMP <-> CMN. */
19622 case T2_OPCODE_SUB:
19623 new_inst = T2_OPCODE_ADD;
19624 value = negated;
19625 break;
19626
19627 case T2_OPCODE_ADD:
19628 new_inst = T2_OPCODE_SUB;
19629 value = negated;
19630 break;
19631
19632 /* ORR <-> ORN. Includes MOV <-> MVN. */
19633 case T2_OPCODE_ORR:
19634 new_inst = T2_OPCODE_ORN;
19635 value = inverted;
19636 break;
19637
19638 case T2_OPCODE_ORN:
19639 new_inst = T2_OPCODE_ORR;
19640 value = inverted;
19641 break;
19642
19643 /* AND <-> BIC. TST has no inverted equivalent. */
19644 case T2_OPCODE_AND:
19645 new_inst = T2_OPCODE_BIC;
19646 if (rd == 15)
19647 value = FAIL;
19648 else
19649 value = inverted;
19650 break;
19651
19652 case T2_OPCODE_BIC:
19653 new_inst = T2_OPCODE_AND;
19654 value = inverted;
19655 break;
19656
19657 /* ADC <-> SBC */
19658 case T2_OPCODE_ADC:
19659 new_inst = T2_OPCODE_SBC;
19660 value = inverted;
19661 break;
19662
19663 case T2_OPCODE_SBC:
19664 new_inst = T2_OPCODE_ADC;
19665 value = inverted;
19666 break;
19667
19668 /* We cannot do anything. */
19669 default:
19670 return FAIL;
19671 }
19672
16dd5e42 19673 if (value == (unsigned int)FAIL)
ef8d22e6
PB
19674 return FAIL;
19675
19676 *instruction &= T2_OPCODE_MASK;
19677 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19678 return value;
19679}
19680
8f06b2d8
PB
19681/* Read a 32-bit thumb instruction from buf. */
19682static unsigned long
19683get_thumb32_insn (char * buf)
19684{
19685 unsigned long insn;
19686 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19687 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19688
19689 return insn;
19690}
19691
a8bc6c78
PB
19692
19693/* We usually want to set the low bit on the address of thumb function
19694 symbols. In particular .word foo - . should have the low bit set.
19695 Generic code tries to fold the difference of two symbols to
19696 a constant. Prevent this and force a relocation when the first symbols
19697 is a thumb function. */
c921be7d
NC
19698
19699bfd_boolean
a8bc6c78
PB
19700arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19701{
19702 if (op == O_subtract
19703 && l->X_op == O_symbol
19704 && r->X_op == O_symbol
19705 && THUMB_IS_FUNC (l->X_add_symbol))
19706 {
19707 l->X_op = O_subtract;
19708 l->X_op_symbol = r->X_add_symbol;
19709 l->X_add_number -= r->X_add_number;
c921be7d 19710 return TRUE;
a8bc6c78 19711 }
c921be7d 19712
a8bc6c78 19713 /* Process as normal. */
c921be7d 19714 return FALSE;
a8bc6c78
PB
19715}
19716
4a42ebbc
RR
19717/* Encode Thumb2 unconditional branches and calls. The encoding
19718 for the 2 are identical for the immediate values. */
19719
19720static void
19721encode_thumb2_b_bl_offset (char * buf, offsetT value)
19722{
19723#define T2I1I2MASK ((1 << 13) | (1 << 11))
19724 offsetT newval;
19725 offsetT newval2;
19726 addressT S, I1, I2, lo, hi;
19727
19728 S = (value >> 24) & 0x01;
19729 I1 = (value >> 23) & 0x01;
19730 I2 = (value >> 22) & 0x01;
19731 hi = (value >> 12) & 0x3ff;
19732 lo = (value >> 1) & 0x7ff;
19733 newval = md_chars_to_number (buf, THUMB_SIZE);
19734 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19735 newval |= (S << 10) | hi;
19736 newval2 &= ~T2I1I2MASK;
19737 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
19738 md_number_to_chars (buf, newval, THUMB_SIZE);
19739 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19740}
19741
c19d1205 19742void
55cf6793 19743md_apply_fix (fixS * fixP,
c19d1205
ZW
19744 valueT * valP,
19745 segT seg)
19746{
19747 offsetT value = * valP;
19748 offsetT newval;
19749 unsigned int newimm;
19750 unsigned long temp;
19751 int sign;
19752 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 19753
9c2799c2 19754 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 19755
c19d1205 19756 /* Note whether this will delete the relocation. */
4962c51a 19757
c19d1205
ZW
19758 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19759 fixP->fx_done = 1;
b99bd4ef 19760
adbaf948 19761 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 19762 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
19763 for emit_reloc. */
19764 value &= 0xffffffff;
19765 value ^= 0x80000000;
5f4273c7 19766 value -= 0x80000000;
adbaf948
ZW
19767
19768 *valP = value;
c19d1205 19769 fixP->fx_addnumber = value;
b99bd4ef 19770
adbaf948
ZW
19771 /* Same treatment for fixP->fx_offset. */
19772 fixP->fx_offset &= 0xffffffff;
19773 fixP->fx_offset ^= 0x80000000;
19774 fixP->fx_offset -= 0x80000000;
19775
c19d1205 19776 switch (fixP->fx_r_type)
b99bd4ef 19777 {
c19d1205
ZW
19778 case BFD_RELOC_NONE:
19779 /* This will need to go in the object file. */
19780 fixP->fx_done = 0;
19781 break;
b99bd4ef 19782
c19d1205
ZW
19783 case BFD_RELOC_ARM_IMMEDIATE:
19784 /* We claim that this fixup has been processed here,
19785 even if in fact we generate an error because we do
19786 not have a reloc for it, so tc_gen_reloc will reject it. */
19787 fixP->fx_done = 1;
b99bd4ef 19788
77db8e2e 19789 if (fixP->fx_addsy)
b99bd4ef 19790 {
77db8e2e 19791 const char *msg = 0;
b99bd4ef 19792
77db8e2e
NC
19793 if (! S_IS_DEFINED (fixP->fx_addsy))
19794 msg = _("undefined symbol %s used as an immediate value");
19795 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
19796 msg = _("symbol %s is in a different section");
19797 else if (S_IS_WEAK (fixP->fx_addsy))
19798 msg = _("symbol %s is weak and may be overridden later");
19799
19800 if (msg)
19801 {
19802 as_bad_where (fixP->fx_file, fixP->fx_line,
19803 msg, S_GET_NAME (fixP->fx_addsy));
19804 break;
19805 }
42e5fcbf
AS
19806 }
19807
c19d1205
ZW
19808 newimm = encode_arm_immediate (value);
19809 temp = md_chars_to_number (buf, INSN_SIZE);
19810
19811 /* If the instruction will fail, see if we can fix things up by
19812 changing the opcode. */
19813 if (newimm == (unsigned int) FAIL
19814 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 19815 {
c19d1205
ZW
19816 as_bad_where (fixP->fx_file, fixP->fx_line,
19817 _("invalid constant (%lx) after fixup"),
19818 (unsigned long) value);
19819 break;
b99bd4ef 19820 }
b99bd4ef 19821
c19d1205
ZW
19822 newimm |= (temp & 0xfffff000);
19823 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19824 break;
b99bd4ef 19825
c19d1205
ZW
19826 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19827 {
19828 unsigned int highpart = 0;
19829 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 19830
77db8e2e 19831 if (fixP->fx_addsy)
42e5fcbf 19832 {
77db8e2e 19833 const char *msg = 0;
42e5fcbf 19834
77db8e2e
NC
19835 if (! S_IS_DEFINED (fixP->fx_addsy))
19836 msg = _("undefined symbol %s used as an immediate value");
19837 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
19838 msg = _("symbol %s is in a different section");
19839 else if (S_IS_WEAK (fixP->fx_addsy))
19840 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 19841
77db8e2e
NC
19842 if (msg)
19843 {
19844 as_bad_where (fixP->fx_file, fixP->fx_line,
19845 msg, S_GET_NAME (fixP->fx_addsy));
19846 break;
19847 }
19848 }
19849
c19d1205
ZW
19850 newimm = encode_arm_immediate (value);
19851 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 19852
c19d1205
ZW
19853 /* If the instruction will fail, see if we can fix things up by
19854 changing the opcode. */
19855 if (newimm == (unsigned int) FAIL
19856 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19857 {
19858 /* No ? OK - try using two ADD instructions to generate
19859 the value. */
19860 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 19861
c19d1205
ZW
19862 /* Yes - then make sure that the second instruction is
19863 also an add. */
19864 if (newimm != (unsigned int) FAIL)
19865 newinsn = temp;
19866 /* Still No ? Try using a negated value. */
19867 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19868 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19869 /* Otherwise - give up. */
19870 else
19871 {
19872 as_bad_where (fixP->fx_file, fixP->fx_line,
19873 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19874 (long) value);
19875 break;
19876 }
b99bd4ef 19877
c19d1205
ZW
19878 /* Replace the first operand in the 2nd instruction (which
19879 is the PC) with the destination register. We have
19880 already added in the PC in the first instruction and we
19881 do not want to do it again. */
19882 newinsn &= ~ 0xf0000;
19883 newinsn |= ((newinsn & 0x0f000) << 4);
19884 }
b99bd4ef 19885
c19d1205
ZW
19886 newimm |= (temp & 0xfffff000);
19887 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 19888
c19d1205
ZW
19889 highpart |= (newinsn & 0xfffff000);
19890 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19891 }
19892 break;
b99bd4ef 19893
c19d1205 19894 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
19895 if (!fixP->fx_done && seg->use_rela_p)
19896 value = 0;
19897
c19d1205
ZW
19898 case BFD_RELOC_ARM_LITERAL:
19899 sign = value >= 0;
b99bd4ef 19900
c19d1205
ZW
19901 if (value < 0)
19902 value = - value;
b99bd4ef 19903
c19d1205 19904 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 19905 {
c19d1205
ZW
19906 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19907 as_bad_where (fixP->fx_file, fixP->fx_line,
19908 _("invalid literal constant: pool needs to be closer"));
19909 else
19910 as_bad_where (fixP->fx_file, fixP->fx_line,
19911 _("bad immediate value for offset (%ld)"),
19912 (long) value);
19913 break;
f03698e6
RE
19914 }
19915
c19d1205
ZW
19916 newval = md_chars_to_number (buf, INSN_SIZE);
19917 newval &= 0xff7ff000;
19918 newval |= value | (sign ? INDEX_UP : 0);
19919 md_number_to_chars (buf, newval, INSN_SIZE);
19920 break;
b99bd4ef 19921
c19d1205
ZW
19922 case BFD_RELOC_ARM_OFFSET_IMM8:
19923 case BFD_RELOC_ARM_HWLITERAL:
19924 sign = value >= 0;
b99bd4ef 19925
c19d1205
ZW
19926 if (value < 0)
19927 value = - value;
b99bd4ef 19928
c19d1205 19929 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 19930 {
c19d1205
ZW
19931 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
19932 as_bad_where (fixP->fx_file, fixP->fx_line,
19933 _("invalid literal constant: pool needs to be closer"));
19934 else
f9d4405b 19935 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
19936 (long) value);
19937 break;
b99bd4ef
NC
19938 }
19939
c19d1205
ZW
19940 newval = md_chars_to_number (buf, INSN_SIZE);
19941 newval &= 0xff7ff0f0;
19942 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
19943 md_number_to_chars (buf, newval, INSN_SIZE);
19944 break;
b99bd4ef 19945
c19d1205
ZW
19946 case BFD_RELOC_ARM_T32_OFFSET_U8:
19947 if (value < 0 || value > 1020 || value % 4 != 0)
19948 as_bad_where (fixP->fx_file, fixP->fx_line,
19949 _("bad immediate value for offset (%ld)"), (long) value);
19950 value /= 4;
b99bd4ef 19951
c19d1205 19952 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
19953 newval |= value;
19954 md_number_to_chars (buf+2, newval, THUMB_SIZE);
19955 break;
b99bd4ef 19956
c19d1205
ZW
19957 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19958 /* This is a complicated relocation used for all varieties of Thumb32
19959 load/store instruction with immediate offset:
19960
19961 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
19962 *4, optional writeback(W)
19963 (doubleword load/store)
19964
19965 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
19966 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
19967 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
19968 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
19969 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
19970
19971 Uppercase letters indicate bits that are already encoded at
19972 this point. Lowercase letters are our problem. For the
19973 second block of instructions, the secondary opcode nybble
19974 (bits 8..11) is present, and bit 23 is zero, even if this is
19975 a PC-relative operation. */
19976 newval = md_chars_to_number (buf, THUMB_SIZE);
19977 newval <<= 16;
19978 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 19979
c19d1205 19980 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 19981 {
c19d1205
ZW
19982 /* Doubleword load/store: 8-bit offset, scaled by 4. */
19983 if (value >= 0)
19984 newval |= (1 << 23);
19985 else
19986 value = -value;
19987 if (value % 4 != 0)
19988 {
19989 as_bad_where (fixP->fx_file, fixP->fx_line,
19990 _("offset not a multiple of 4"));
19991 break;
19992 }
19993 value /= 4;
216d22bc 19994 if (value > 0xff)
c19d1205
ZW
19995 {
19996 as_bad_where (fixP->fx_file, fixP->fx_line,
19997 _("offset out of range"));
19998 break;
19999 }
20000 newval &= ~0xff;
b99bd4ef 20001 }
c19d1205 20002 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 20003 {
c19d1205
ZW
20004 /* PC-relative, 12-bit offset. */
20005 if (value >= 0)
20006 newval |= (1 << 23);
20007 else
20008 value = -value;
216d22bc 20009 if (value > 0xfff)
c19d1205
ZW
20010 {
20011 as_bad_where (fixP->fx_file, fixP->fx_line,
20012 _("offset out of range"));
20013 break;
20014 }
20015 newval &= ~0xfff;
b99bd4ef 20016 }
c19d1205 20017 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 20018 {
c19d1205
ZW
20019 /* Writeback: 8-bit, +/- offset. */
20020 if (value >= 0)
20021 newval |= (1 << 9);
20022 else
20023 value = -value;
216d22bc 20024 if (value > 0xff)
c19d1205
ZW
20025 {
20026 as_bad_where (fixP->fx_file, fixP->fx_line,
20027 _("offset out of range"));
20028 break;
20029 }
20030 newval &= ~0xff;
b99bd4ef 20031 }
c19d1205 20032 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 20033 {
c19d1205 20034 /* T-instruction: positive 8-bit offset. */
216d22bc 20035 if (value < 0 || value > 0xff)
b99bd4ef 20036 {
c19d1205
ZW
20037 as_bad_where (fixP->fx_file, fixP->fx_line,
20038 _("offset out of range"));
20039 break;
b99bd4ef 20040 }
c19d1205
ZW
20041 newval &= ~0xff;
20042 newval |= value;
b99bd4ef
NC
20043 }
20044 else
b99bd4ef 20045 {
c19d1205
ZW
20046 /* Positive 12-bit or negative 8-bit offset. */
20047 int limit;
20048 if (value >= 0)
b99bd4ef 20049 {
c19d1205
ZW
20050 newval |= (1 << 23);
20051 limit = 0xfff;
20052 }
20053 else
20054 {
20055 value = -value;
20056 limit = 0xff;
20057 }
20058 if (value > limit)
20059 {
20060 as_bad_where (fixP->fx_file, fixP->fx_line,
20061 _("offset out of range"));
20062 break;
b99bd4ef 20063 }
c19d1205 20064 newval &= ~limit;
b99bd4ef 20065 }
b99bd4ef 20066
c19d1205
ZW
20067 newval |= value;
20068 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20069 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20070 break;
404ff6b5 20071
c19d1205
ZW
20072 case BFD_RELOC_ARM_SHIFT_IMM:
20073 newval = md_chars_to_number (buf, INSN_SIZE);
20074 if (((unsigned long) value) > 32
20075 || (value == 32
20076 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20077 {
20078 as_bad_where (fixP->fx_file, fixP->fx_line,
20079 _("shift expression is too large"));
20080 break;
20081 }
404ff6b5 20082
c19d1205
ZW
20083 if (value == 0)
20084 /* Shifts of zero must be done as lsl. */
20085 newval &= ~0x60;
20086 else if (value == 32)
20087 value = 0;
20088 newval &= 0xfffff07f;
20089 newval |= (value & 0x1f) << 7;
20090 md_number_to_chars (buf, newval, INSN_SIZE);
20091 break;
404ff6b5 20092
c19d1205 20093 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 20094 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 20095 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 20096 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
20097 /* We claim that this fixup has been processed here,
20098 even if in fact we generate an error because we do
20099 not have a reloc for it, so tc_gen_reloc will reject it. */
20100 fixP->fx_done = 1;
404ff6b5 20101
c19d1205
ZW
20102 if (fixP->fx_addsy
20103 && ! S_IS_DEFINED (fixP->fx_addsy))
20104 {
20105 as_bad_where (fixP->fx_file, fixP->fx_line,
20106 _("undefined symbol %s used as an immediate value"),
20107 S_GET_NAME (fixP->fx_addsy));
20108 break;
20109 }
404ff6b5 20110
c19d1205
ZW
20111 newval = md_chars_to_number (buf, THUMB_SIZE);
20112 newval <<= 16;
20113 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 20114
16805f35
PB
20115 newimm = FAIL;
20116 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20117 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
20118 {
20119 newimm = encode_thumb32_immediate (value);
20120 if (newimm == (unsigned int) FAIL)
20121 newimm = thumb32_negate_data_op (&newval, value);
20122 }
16805f35
PB
20123 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20124 && newimm == (unsigned int) FAIL)
92e90b6e 20125 {
16805f35
PB
20126 /* Turn add/sum into addw/subw. */
20127 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20128 newval = (newval & 0xfeffffff) | 0x02000000;
20129
e9f89963
PB
20130 /* 12 bit immediate for addw/subw. */
20131 if (value < 0)
20132 {
20133 value = -value;
20134 newval ^= 0x00a00000;
20135 }
92e90b6e
PB
20136 if (value > 0xfff)
20137 newimm = (unsigned int) FAIL;
20138 else
20139 newimm = value;
20140 }
cc8a6dd0 20141
c19d1205 20142 if (newimm == (unsigned int)FAIL)
3631a3c8 20143 {
c19d1205
ZW
20144 as_bad_where (fixP->fx_file, fixP->fx_line,
20145 _("invalid constant (%lx) after fixup"),
20146 (unsigned long) value);
20147 break;
3631a3c8
NC
20148 }
20149
c19d1205
ZW
20150 newval |= (newimm & 0x800) << 15;
20151 newval |= (newimm & 0x700) << 4;
20152 newval |= (newimm & 0x0ff);
cc8a6dd0 20153
c19d1205
ZW
20154 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20155 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20156 break;
a737bd4d 20157
3eb17e6b 20158 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
20159 if (((unsigned long) value) > 0xffff)
20160 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 20161 _("invalid smc expression"));
2fc8bdac 20162 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20163 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20164 md_number_to_chars (buf, newval, INSN_SIZE);
20165 break;
a737bd4d 20166
c19d1205 20167 case BFD_RELOC_ARM_SWI:
adbaf948 20168 if (fixP->tc_fix_data != 0)
c19d1205
ZW
20169 {
20170 if (((unsigned long) value) > 0xff)
20171 as_bad_where (fixP->fx_file, fixP->fx_line,
20172 _("invalid swi expression"));
2fc8bdac 20173 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
20174 newval |= value;
20175 md_number_to_chars (buf, newval, THUMB_SIZE);
20176 }
20177 else
20178 {
20179 if (((unsigned long) value) > 0x00ffffff)
20180 as_bad_where (fixP->fx_file, fixP->fx_line,
20181 _("invalid swi expression"));
2fc8bdac 20182 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20183 newval |= value;
20184 md_number_to_chars (buf, newval, INSN_SIZE);
20185 }
20186 break;
a737bd4d 20187
c19d1205
ZW
20188 case BFD_RELOC_ARM_MULTI:
20189 if (((unsigned long) value) > 0xffff)
20190 as_bad_where (fixP->fx_file, fixP->fx_line,
20191 _("invalid expression in load/store multiple"));
20192 newval = value | md_chars_to_number (buf, INSN_SIZE);
20193 md_number_to_chars (buf, newval, INSN_SIZE);
20194 break;
a737bd4d 20195
c19d1205 20196#ifdef OBJ_ELF
39b41c9c 20197 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20198
20199 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20200 && fixP->fx_addsy
20201 && !S_IS_EXTERNAL (fixP->fx_addsy)
20202 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20203 && THUMB_IS_FUNC (fixP->fx_addsy))
20204 /* Flip the bl to blx. This is a simple flip
20205 bit here because we generate PCREL_CALL for
20206 unconditional bls. */
20207 {
20208 newval = md_chars_to_number (buf, INSN_SIZE);
20209 newval = newval | 0x10000000;
20210 md_number_to_chars (buf, newval, INSN_SIZE);
20211 temp = 1;
20212 fixP->fx_done = 1;
20213 }
39b41c9c
PB
20214 else
20215 temp = 3;
20216 goto arm_branch_common;
20217
20218 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20219 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20220 && fixP->fx_addsy
20221 && !S_IS_EXTERNAL (fixP->fx_addsy)
20222 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20223 && THUMB_IS_FUNC (fixP->fx_addsy))
20224 {
20225 /* This would map to a bl<cond>, b<cond>,
20226 b<always> to a Thumb function. We
20227 need to force a relocation for this particular
20228 case. */
20229 newval = md_chars_to_number (buf, INSN_SIZE);
20230 fixP->fx_done = 0;
20231 }
20232
2fc8bdac 20233 case BFD_RELOC_ARM_PLT32:
c19d1205 20234#endif
39b41c9c
PB
20235 case BFD_RELOC_ARM_PCREL_BRANCH:
20236 temp = 3;
20237 goto arm_branch_common;
a737bd4d 20238
39b41c9c 20239 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20240
39b41c9c 20241 temp = 1;
267bf995
RR
20242 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20243 && fixP->fx_addsy
20244 && !S_IS_EXTERNAL (fixP->fx_addsy)
20245 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20246 && ARM_IS_FUNC (fixP->fx_addsy))
20247 {
20248 /* Flip the blx to a bl and warn. */
20249 const char *name = S_GET_NAME (fixP->fx_addsy);
20250 newval = 0xeb000000;
20251 as_warn_where (fixP->fx_file, fixP->fx_line,
20252 _("blx to '%s' an ARM ISA state function changed to bl"),
20253 name);
20254 md_number_to_chars (buf, newval, INSN_SIZE);
20255 temp = 3;
20256 fixP->fx_done = 1;
20257 }
20258
20259#ifdef OBJ_ELF
20260 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20261 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20262#endif
20263
39b41c9c 20264 arm_branch_common:
c19d1205 20265 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
20266 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20267 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20268 also be be clear. */
20269 if (value & temp)
c19d1205 20270 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
20271 _("misaligned branch destination"));
20272 if ((value & (offsetT)0xfe000000) != (offsetT)0
20273 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20274 as_bad_where (fixP->fx_file, fixP->fx_line,
20275 _("branch out of range"));
a737bd4d 20276
2fc8bdac 20277 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20278 {
2fc8bdac
ZW
20279 newval = md_chars_to_number (buf, INSN_SIZE);
20280 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
20281 /* Set the H bit on BLX instructions. */
20282 if (temp == 1)
20283 {
20284 if (value & 2)
20285 newval |= 0x01000000;
20286 else
20287 newval &= ~0x01000000;
20288 }
2fc8bdac 20289 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 20290 }
c19d1205 20291 break;
a737bd4d 20292
25fe350b
MS
20293 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20294 /* CBZ can only branch forward. */
a737bd4d 20295
738755b0
MS
20296 /* Attempts to use CBZ to branch to the next instruction
20297 (which, strictly speaking, are prohibited) will be turned into
20298 no-ops.
20299
20300 FIXME: It may be better to remove the instruction completely and
20301 perform relaxation. */
20302 if (value == -2)
2fc8bdac
ZW
20303 {
20304 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 20305 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
20306 md_number_to_chars (buf, newval, THUMB_SIZE);
20307 }
738755b0
MS
20308 else
20309 {
20310 if (value & ~0x7e)
20311 as_bad_where (fixP->fx_file, fixP->fx_line,
20312 _("branch out of range"));
20313
20314 if (fixP->fx_done || !seg->use_rela_p)
20315 {
20316 newval = md_chars_to_number (buf, THUMB_SIZE);
20317 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20318 md_number_to_chars (buf, newval, THUMB_SIZE);
20319 }
20320 }
c19d1205 20321 break;
a737bd4d 20322
c19d1205 20323 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
20324 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20325 as_bad_where (fixP->fx_file, fixP->fx_line,
20326 _("branch out of range"));
a737bd4d 20327
2fc8bdac
ZW
20328 if (fixP->fx_done || !seg->use_rela_p)
20329 {
20330 newval = md_chars_to_number (buf, THUMB_SIZE);
20331 newval |= (value & 0x1ff) >> 1;
20332 md_number_to_chars (buf, newval, THUMB_SIZE);
20333 }
c19d1205 20334 break;
a737bd4d 20335
c19d1205 20336 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
20337 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20338 as_bad_where (fixP->fx_file, fixP->fx_line,
20339 _("branch out of range"));
a737bd4d 20340
2fc8bdac
ZW
20341 if (fixP->fx_done || !seg->use_rela_p)
20342 {
20343 newval = md_chars_to_number (buf, THUMB_SIZE);
20344 newval |= (value & 0xfff) >> 1;
20345 md_number_to_chars (buf, newval, THUMB_SIZE);
20346 }
c19d1205 20347 break;
a737bd4d 20348
c19d1205 20349 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
20350 if (fixP->fx_addsy
20351 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20352 && !S_IS_EXTERNAL (fixP->fx_addsy)
20353 && S_IS_DEFINED (fixP->fx_addsy)
20354 && ARM_IS_FUNC (fixP->fx_addsy)
20355 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20356 {
20357 /* Force a relocation for a branch 20 bits wide. */
20358 fixP->fx_done = 0;
20359 }
2fc8bdac
ZW
20360 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20361 as_bad_where (fixP->fx_file, fixP->fx_line,
20362 _("conditional branch out of range"));
404ff6b5 20363
2fc8bdac
ZW
20364 if (fixP->fx_done || !seg->use_rela_p)
20365 {
20366 offsetT newval2;
20367 addressT S, J1, J2, lo, hi;
404ff6b5 20368
2fc8bdac
ZW
20369 S = (value & 0x00100000) >> 20;
20370 J2 = (value & 0x00080000) >> 19;
20371 J1 = (value & 0x00040000) >> 18;
20372 hi = (value & 0x0003f000) >> 12;
20373 lo = (value & 0x00000ffe) >> 1;
6c43fab6 20374
2fc8bdac
ZW
20375 newval = md_chars_to_number (buf, THUMB_SIZE);
20376 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20377 newval |= (S << 10) | hi;
20378 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20379 md_number_to_chars (buf, newval, THUMB_SIZE);
20380 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20381 }
c19d1205 20382 break;
6c43fab6 20383
c19d1205 20384 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
20385
20386 /* If there is a blx from a thumb state function to
20387 another thumb function flip this to a bl and warn
20388 about it. */
20389
20390 if (fixP->fx_addsy
20391 && S_IS_DEFINED (fixP->fx_addsy)
20392 && !S_IS_EXTERNAL (fixP->fx_addsy)
20393 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20394 && THUMB_IS_FUNC (fixP->fx_addsy))
20395 {
20396 const char *name = S_GET_NAME (fixP->fx_addsy);
20397 as_warn_where (fixP->fx_file, fixP->fx_line,
20398 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20399 name);
20400 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20401 newval = newval | 0x1000;
20402 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20403 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20404 fixP->fx_done = 1;
20405 }
20406
20407
20408 goto thumb_bl_common;
20409
c19d1205 20410 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
20411
20412 /* A bl from Thumb state ISA to an internal ARM state function
20413 is converted to a blx. */
20414 if (fixP->fx_addsy
20415 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20416 && !S_IS_EXTERNAL (fixP->fx_addsy)
20417 && S_IS_DEFINED (fixP->fx_addsy)
20418 && ARM_IS_FUNC (fixP->fx_addsy)
20419 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20420 {
20421 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20422 newval = newval & ~0x1000;
20423 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20424 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20425 fixP->fx_done = 1;
20426 }
20427
20428 thumb_bl_common:
20429
20430#ifdef OBJ_ELF
20431 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20432 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20433 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20434#endif
20435
2fc8bdac
ZW
20436 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20437 /* For a BLX instruction, make sure that the relocation is rounded up
20438 to a word boundary. This follows the semantics of the instruction
20439 which specifies that bit 1 of the target address will come from bit
20440 1 of the base address. */
20441 value = (value + 1) & ~ 1;
404ff6b5 20442
2fc8bdac 20443
4a42ebbc
RR
20444 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20445 {
20446 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20447 {
20448 as_bad_where (fixP->fx_file, fixP->fx_line,
20449 _("branch out of range"));
20450 }
20451 else if ((value & ~0x1ffffff)
20452 && ((value & ~0x1ffffff) != ~0x1ffffff))
20453 {
20454 as_bad_where (fixP->fx_file, fixP->fx_line,
20455 _("Thumb2 branch out of range"));
20456 }
c19d1205 20457 }
4a42ebbc
RR
20458
20459 if (fixP->fx_done || !seg->use_rela_p)
20460 encode_thumb2_b_bl_offset (buf, value);
20461
c19d1205 20462 break;
404ff6b5 20463
c19d1205 20464 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
20465 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20466 as_bad_where (fixP->fx_file, fixP->fx_line,
20467 _("branch out of range"));
6c43fab6 20468
2fc8bdac 20469 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 20470 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 20471
2fc8bdac 20472 break;
a737bd4d 20473
2fc8bdac
ZW
20474 case BFD_RELOC_8:
20475 if (fixP->fx_done || !seg->use_rela_p)
20476 md_number_to_chars (buf, value, 1);
c19d1205 20477 break;
a737bd4d 20478
c19d1205 20479 case BFD_RELOC_16:
2fc8bdac 20480 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20481 md_number_to_chars (buf, value, 2);
c19d1205 20482 break;
a737bd4d 20483
c19d1205
ZW
20484#ifdef OBJ_ELF
20485 case BFD_RELOC_ARM_TLS_GD32:
20486 case BFD_RELOC_ARM_TLS_LE32:
20487 case BFD_RELOC_ARM_TLS_IE32:
20488 case BFD_RELOC_ARM_TLS_LDM32:
20489 case BFD_RELOC_ARM_TLS_LDO32:
20490 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20491 /* fall through */
6c43fab6 20492
c19d1205
ZW
20493 case BFD_RELOC_ARM_GOT32:
20494 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
20495 if (fixP->fx_done || !seg->use_rela_p)
20496 md_number_to_chars (buf, 0, 4);
c19d1205 20497 break;
b43420e6
NC
20498
20499 case BFD_RELOC_ARM_GOT_PREL:
20500 if (fixP->fx_done || !seg->use_rela_p)
20501 md_number_to_chars (buf, value, 4);
20502 break;
20503
9a6f4e97
NS
20504 case BFD_RELOC_ARM_TARGET2:
20505 /* TARGET2 is not partial-inplace, so we need to write the
20506 addend here for REL targets, because it won't be written out
20507 during reloc processing later. */
20508 if (fixP->fx_done || !seg->use_rela_p)
20509 md_number_to_chars (buf, fixP->fx_offset, 4);
20510 break;
c19d1205 20511#endif
6c43fab6 20512
c19d1205
ZW
20513 case BFD_RELOC_RVA:
20514 case BFD_RELOC_32:
20515 case BFD_RELOC_ARM_TARGET1:
20516 case BFD_RELOC_ARM_ROSEGREL32:
20517 case BFD_RELOC_ARM_SBREL32:
20518 case BFD_RELOC_32_PCREL:
f0927246
NC
20519#ifdef TE_PE
20520 case BFD_RELOC_32_SECREL:
20521#endif
2fc8bdac 20522 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
20523#ifdef TE_WINCE
20524 /* For WinCE we only do this for pcrel fixups. */
20525 if (fixP->fx_done || fixP->fx_pcrel)
20526#endif
20527 md_number_to_chars (buf, value, 4);
c19d1205 20528 break;
6c43fab6 20529
c19d1205
ZW
20530#ifdef OBJ_ELF
20531 case BFD_RELOC_ARM_PREL31:
2fc8bdac 20532 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
20533 {
20534 newval = md_chars_to_number (buf, 4) & 0x80000000;
20535 if ((value ^ (value >> 1)) & 0x40000000)
20536 {
20537 as_bad_where (fixP->fx_file, fixP->fx_line,
20538 _("rel31 relocation overflow"));
20539 }
20540 newval |= value & 0x7fffffff;
20541 md_number_to_chars (buf, newval, 4);
20542 }
20543 break;
c19d1205 20544#endif
a737bd4d 20545
c19d1205 20546 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 20547 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
20548 if (value < -1023 || value > 1023 || (value & 3))
20549 as_bad_where (fixP->fx_file, fixP->fx_line,
20550 _("co-processor offset out of range"));
20551 cp_off_common:
20552 sign = value >= 0;
20553 if (value < 0)
20554 value = -value;
8f06b2d8
PB
20555 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20556 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20557 newval = md_chars_to_number (buf, INSN_SIZE);
20558 else
20559 newval = get_thumb32_insn (buf);
20560 newval &= 0xff7fff00;
c19d1205 20561 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
20562 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20563 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20564 md_number_to_chars (buf, newval, INSN_SIZE);
20565 else
20566 put_thumb32_insn (buf, newval);
c19d1205 20567 break;
a737bd4d 20568
c19d1205 20569 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 20570 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
20571 if (value < -255 || value > 255)
20572 as_bad_where (fixP->fx_file, fixP->fx_line,
20573 _("co-processor offset out of range"));
df7849c5 20574 value *= 4;
c19d1205 20575 goto cp_off_common;
6c43fab6 20576
c19d1205
ZW
20577 case BFD_RELOC_ARM_THUMB_OFFSET:
20578 newval = md_chars_to_number (buf, THUMB_SIZE);
20579 /* Exactly what ranges, and where the offset is inserted depends
20580 on the type of instruction, we can establish this from the
20581 top 4 bits. */
20582 switch (newval >> 12)
20583 {
20584 case 4: /* PC load. */
20585 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20586 forced to zero for these loads; md_pcrel_from has already
20587 compensated for this. */
20588 if (value & 3)
20589 as_bad_where (fixP->fx_file, fixP->fx_line,
20590 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
20591 (((unsigned long) fixP->fx_frag->fr_address
20592 + (unsigned long) fixP->fx_where) & ~3)
20593 + (unsigned long) value);
a737bd4d 20594
c19d1205
ZW
20595 if (value & ~0x3fc)
20596 as_bad_where (fixP->fx_file, fixP->fx_line,
20597 _("invalid offset, value too big (0x%08lX)"),
20598 (long) value);
a737bd4d 20599
c19d1205
ZW
20600 newval |= value >> 2;
20601 break;
a737bd4d 20602
c19d1205
ZW
20603 case 9: /* SP load/store. */
20604 if (value & ~0x3fc)
20605 as_bad_where (fixP->fx_file, fixP->fx_line,
20606 _("invalid offset, value too big (0x%08lX)"),
20607 (long) value);
20608 newval |= value >> 2;
20609 break;
6c43fab6 20610
c19d1205
ZW
20611 case 6: /* Word load/store. */
20612 if (value & ~0x7c)
20613 as_bad_where (fixP->fx_file, fixP->fx_line,
20614 _("invalid offset, value too big (0x%08lX)"),
20615 (long) value);
20616 newval |= value << 4; /* 6 - 2. */
20617 break;
a737bd4d 20618
c19d1205
ZW
20619 case 7: /* Byte load/store. */
20620 if (value & ~0x1f)
20621 as_bad_where (fixP->fx_file, fixP->fx_line,
20622 _("invalid offset, value too big (0x%08lX)"),
20623 (long) value);
20624 newval |= value << 6;
20625 break;
a737bd4d 20626
c19d1205
ZW
20627 case 8: /* Halfword load/store. */
20628 if (value & ~0x3e)
20629 as_bad_where (fixP->fx_file, fixP->fx_line,
20630 _("invalid offset, value too big (0x%08lX)"),
20631 (long) value);
20632 newval |= value << 5; /* 6 - 1. */
20633 break;
a737bd4d 20634
c19d1205
ZW
20635 default:
20636 as_bad_where (fixP->fx_file, fixP->fx_line,
20637 "Unable to process relocation for thumb opcode: %lx",
20638 (unsigned long) newval);
20639 break;
20640 }
20641 md_number_to_chars (buf, newval, THUMB_SIZE);
20642 break;
a737bd4d 20643
c19d1205
ZW
20644 case BFD_RELOC_ARM_THUMB_ADD:
20645 /* This is a complicated relocation, since we use it for all of
20646 the following immediate relocations:
a737bd4d 20647
c19d1205
ZW
20648 3bit ADD/SUB
20649 8bit ADD/SUB
20650 9bit ADD/SUB SP word-aligned
20651 10bit ADD PC/SP word-aligned
a737bd4d 20652
c19d1205
ZW
20653 The type of instruction being processed is encoded in the
20654 instruction field:
a737bd4d 20655
c19d1205
ZW
20656 0x8000 SUB
20657 0x00F0 Rd
20658 0x000F Rs
20659 */
20660 newval = md_chars_to_number (buf, THUMB_SIZE);
20661 {
20662 int rd = (newval >> 4) & 0xf;
20663 int rs = newval & 0xf;
20664 int subtract = !!(newval & 0x8000);
a737bd4d 20665
c19d1205
ZW
20666 /* Check for HI regs, only very restricted cases allowed:
20667 Adjusting SP, and using PC or SP to get an address. */
20668 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20669 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20670 as_bad_where (fixP->fx_file, fixP->fx_line,
20671 _("invalid Hi register with immediate"));
a737bd4d 20672
c19d1205
ZW
20673 /* If value is negative, choose the opposite instruction. */
20674 if (value < 0)
20675 {
20676 value = -value;
20677 subtract = !subtract;
20678 if (value < 0)
20679 as_bad_where (fixP->fx_file, fixP->fx_line,
20680 _("immediate value out of range"));
20681 }
a737bd4d 20682
c19d1205
ZW
20683 if (rd == REG_SP)
20684 {
20685 if (value & ~0x1fc)
20686 as_bad_where (fixP->fx_file, fixP->fx_line,
20687 _("invalid immediate for stack address calculation"));
20688 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20689 newval |= value >> 2;
20690 }
20691 else if (rs == REG_PC || rs == REG_SP)
20692 {
20693 if (subtract || value & ~0x3fc)
20694 as_bad_where (fixP->fx_file, fixP->fx_line,
20695 _("invalid immediate for address calculation (value = 0x%08lX)"),
20696 (unsigned long) value);
20697 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20698 newval |= rd << 8;
20699 newval |= value >> 2;
20700 }
20701 else if (rs == rd)
20702 {
20703 if (value & ~0xff)
20704 as_bad_where (fixP->fx_file, fixP->fx_line,
20705 _("immediate value out of range"));
20706 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20707 newval |= (rd << 8) | value;
20708 }
20709 else
20710 {
20711 if (value & ~0x7)
20712 as_bad_where (fixP->fx_file, fixP->fx_line,
20713 _("immediate value out of range"));
20714 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20715 newval |= rd | (rs << 3) | (value << 6);
20716 }
20717 }
20718 md_number_to_chars (buf, newval, THUMB_SIZE);
20719 break;
a737bd4d 20720
c19d1205
ZW
20721 case BFD_RELOC_ARM_THUMB_IMM:
20722 newval = md_chars_to_number (buf, THUMB_SIZE);
20723 if (value < 0 || value > 255)
20724 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 20725 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
20726 (long) value);
20727 newval |= value;
20728 md_number_to_chars (buf, newval, THUMB_SIZE);
20729 break;
a737bd4d 20730
c19d1205
ZW
20731 case BFD_RELOC_ARM_THUMB_SHIFT:
20732 /* 5bit shift value (0..32). LSL cannot take 32. */
20733 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20734 temp = newval & 0xf800;
20735 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20736 as_bad_where (fixP->fx_file, fixP->fx_line,
20737 _("invalid shift value: %ld"), (long) value);
20738 /* Shifts of zero must be encoded as LSL. */
20739 if (value == 0)
20740 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20741 /* Shifts of 32 are encoded as zero. */
20742 else if (value == 32)
20743 value = 0;
20744 newval |= value << 6;
20745 md_number_to_chars (buf, newval, THUMB_SIZE);
20746 break;
a737bd4d 20747
c19d1205
ZW
20748 case BFD_RELOC_VTABLE_INHERIT:
20749 case BFD_RELOC_VTABLE_ENTRY:
20750 fixP->fx_done = 0;
20751 return;
6c43fab6 20752
b6895b4f
PB
20753 case BFD_RELOC_ARM_MOVW:
20754 case BFD_RELOC_ARM_MOVT:
20755 case BFD_RELOC_ARM_THUMB_MOVW:
20756 case BFD_RELOC_ARM_THUMB_MOVT:
20757 if (fixP->fx_done || !seg->use_rela_p)
20758 {
20759 /* REL format relocations are limited to a 16-bit addend. */
20760 if (!fixP->fx_done)
20761 {
39623e12 20762 if (value < -0x8000 || value > 0x7fff)
b6895b4f 20763 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 20764 _("offset out of range"));
b6895b4f
PB
20765 }
20766 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20767 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20768 {
20769 value >>= 16;
20770 }
20771
20772 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20773 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20774 {
20775 newval = get_thumb32_insn (buf);
20776 newval &= 0xfbf08f00;
20777 newval |= (value & 0xf000) << 4;
20778 newval |= (value & 0x0800) << 15;
20779 newval |= (value & 0x0700) << 4;
20780 newval |= (value & 0x00ff);
20781 put_thumb32_insn (buf, newval);
20782 }
20783 else
20784 {
20785 newval = md_chars_to_number (buf, 4);
20786 newval &= 0xfff0f000;
20787 newval |= value & 0x0fff;
20788 newval |= (value & 0xf000) << 4;
20789 md_number_to_chars (buf, newval, 4);
20790 }
20791 }
20792 return;
20793
4962c51a
MS
20794 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20795 case BFD_RELOC_ARM_ALU_PC_G0:
20796 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20797 case BFD_RELOC_ARM_ALU_PC_G1:
20798 case BFD_RELOC_ARM_ALU_PC_G2:
20799 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20800 case BFD_RELOC_ARM_ALU_SB_G0:
20801 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20802 case BFD_RELOC_ARM_ALU_SB_G1:
20803 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 20804 gas_assert (!fixP->fx_done);
4962c51a
MS
20805 if (!seg->use_rela_p)
20806 {
20807 bfd_vma insn;
20808 bfd_vma encoded_addend;
20809 bfd_vma addend_abs = abs (value);
20810
20811 /* Check that the absolute value of the addend can be
20812 expressed as an 8-bit constant plus a rotation. */
20813 encoded_addend = encode_arm_immediate (addend_abs);
20814 if (encoded_addend == (unsigned int) FAIL)
20815 as_bad_where (fixP->fx_file, fixP->fx_line,
20816 _("the offset 0x%08lX is not representable"),
495bde8e 20817 (unsigned long) addend_abs);
4962c51a
MS
20818
20819 /* Extract the instruction. */
20820 insn = md_chars_to_number (buf, INSN_SIZE);
20821
20822 /* If the addend is positive, use an ADD instruction.
20823 Otherwise use a SUB. Take care not to destroy the S bit. */
20824 insn &= 0xff1fffff;
20825 if (value < 0)
20826 insn |= 1 << 22;
20827 else
20828 insn |= 1 << 23;
20829
20830 /* Place the encoded addend into the first 12 bits of the
20831 instruction. */
20832 insn &= 0xfffff000;
20833 insn |= encoded_addend;
5f4273c7
NC
20834
20835 /* Update the instruction. */
4962c51a
MS
20836 md_number_to_chars (buf, insn, INSN_SIZE);
20837 }
20838 break;
20839
20840 case BFD_RELOC_ARM_LDR_PC_G0:
20841 case BFD_RELOC_ARM_LDR_PC_G1:
20842 case BFD_RELOC_ARM_LDR_PC_G2:
20843 case BFD_RELOC_ARM_LDR_SB_G0:
20844 case BFD_RELOC_ARM_LDR_SB_G1:
20845 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 20846 gas_assert (!fixP->fx_done);
4962c51a
MS
20847 if (!seg->use_rela_p)
20848 {
20849 bfd_vma insn;
20850 bfd_vma addend_abs = abs (value);
20851
20852 /* Check that the absolute value of the addend can be
20853 encoded in 12 bits. */
20854 if (addend_abs >= 0x1000)
20855 as_bad_where (fixP->fx_file, fixP->fx_line,
20856 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 20857 (unsigned long) addend_abs);
4962c51a
MS
20858
20859 /* Extract the instruction. */
20860 insn = md_chars_to_number (buf, INSN_SIZE);
20861
20862 /* If the addend is negative, clear bit 23 of the instruction.
20863 Otherwise set it. */
20864 if (value < 0)
20865 insn &= ~(1 << 23);
20866 else
20867 insn |= 1 << 23;
20868
20869 /* Place the absolute value of the addend into the first 12 bits
20870 of the instruction. */
20871 insn &= 0xfffff000;
20872 insn |= addend_abs;
5f4273c7
NC
20873
20874 /* Update the instruction. */
4962c51a
MS
20875 md_number_to_chars (buf, insn, INSN_SIZE);
20876 }
20877 break;
20878
20879 case BFD_RELOC_ARM_LDRS_PC_G0:
20880 case BFD_RELOC_ARM_LDRS_PC_G1:
20881 case BFD_RELOC_ARM_LDRS_PC_G2:
20882 case BFD_RELOC_ARM_LDRS_SB_G0:
20883 case BFD_RELOC_ARM_LDRS_SB_G1:
20884 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 20885 gas_assert (!fixP->fx_done);
4962c51a
MS
20886 if (!seg->use_rela_p)
20887 {
20888 bfd_vma insn;
20889 bfd_vma addend_abs = abs (value);
20890
20891 /* Check that the absolute value of the addend can be
20892 encoded in 8 bits. */
20893 if (addend_abs >= 0x100)
20894 as_bad_where (fixP->fx_file, fixP->fx_line,
20895 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 20896 (unsigned long) addend_abs);
4962c51a
MS
20897
20898 /* Extract the instruction. */
20899 insn = md_chars_to_number (buf, INSN_SIZE);
20900
20901 /* If the addend is negative, clear bit 23 of the instruction.
20902 Otherwise set it. */
20903 if (value < 0)
20904 insn &= ~(1 << 23);
20905 else
20906 insn |= 1 << 23;
20907
20908 /* Place the first four bits of the absolute value of the addend
20909 into the first 4 bits of the instruction, and the remaining
20910 four into bits 8 .. 11. */
20911 insn &= 0xfffff0f0;
20912 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
20913
20914 /* Update the instruction. */
4962c51a
MS
20915 md_number_to_chars (buf, insn, INSN_SIZE);
20916 }
20917 break;
20918
20919 case BFD_RELOC_ARM_LDC_PC_G0:
20920 case BFD_RELOC_ARM_LDC_PC_G1:
20921 case BFD_RELOC_ARM_LDC_PC_G2:
20922 case BFD_RELOC_ARM_LDC_SB_G0:
20923 case BFD_RELOC_ARM_LDC_SB_G1:
20924 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 20925 gas_assert (!fixP->fx_done);
4962c51a
MS
20926 if (!seg->use_rela_p)
20927 {
20928 bfd_vma insn;
20929 bfd_vma addend_abs = abs (value);
20930
20931 /* Check that the absolute value of the addend is a multiple of
20932 four and, when divided by four, fits in 8 bits. */
20933 if (addend_abs & 0x3)
20934 as_bad_where (fixP->fx_file, fixP->fx_line,
20935 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 20936 (unsigned long) addend_abs);
4962c51a
MS
20937
20938 if ((addend_abs >> 2) > 0xff)
20939 as_bad_where (fixP->fx_file, fixP->fx_line,
20940 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 20941 (unsigned long) addend_abs);
4962c51a
MS
20942
20943 /* Extract the instruction. */
20944 insn = md_chars_to_number (buf, INSN_SIZE);
20945
20946 /* If the addend is negative, clear bit 23 of the instruction.
20947 Otherwise set it. */
20948 if (value < 0)
20949 insn &= ~(1 << 23);
20950 else
20951 insn |= 1 << 23;
20952
20953 /* Place the addend (divided by four) into the first eight
20954 bits of the instruction. */
20955 insn &= 0xfffffff0;
20956 insn |= addend_abs >> 2;
5f4273c7
NC
20957
20958 /* Update the instruction. */
4962c51a
MS
20959 md_number_to_chars (buf, insn, INSN_SIZE);
20960 }
20961 break;
20962
845b51d6
PB
20963 case BFD_RELOC_ARM_V4BX:
20964 /* This will need to go in the object file. */
20965 fixP->fx_done = 0;
20966 break;
20967
c19d1205
ZW
20968 case BFD_RELOC_UNUSED:
20969 default:
20970 as_bad_where (fixP->fx_file, fixP->fx_line,
20971 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
20972 }
6c43fab6
RE
20973}
20974
c19d1205
ZW
20975/* Translate internal representation of relocation info to BFD target
20976 format. */
a737bd4d 20977
c19d1205 20978arelent *
00a97672 20979tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 20980{
c19d1205
ZW
20981 arelent * reloc;
20982 bfd_reloc_code_real_type code;
a737bd4d 20983
21d799b5 20984 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 20985
21d799b5 20986 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
20987 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
20988 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 20989
2fc8bdac 20990 if (fixp->fx_pcrel)
00a97672
RS
20991 {
20992 if (section->use_rela_p)
20993 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
20994 else
20995 fixp->fx_offset = reloc->address;
20996 }
c19d1205 20997 reloc->addend = fixp->fx_offset;
a737bd4d 20998
c19d1205 20999 switch (fixp->fx_r_type)
a737bd4d 21000 {
c19d1205
ZW
21001 case BFD_RELOC_8:
21002 if (fixp->fx_pcrel)
21003 {
21004 code = BFD_RELOC_8_PCREL;
21005 break;
21006 }
a737bd4d 21007
c19d1205
ZW
21008 case BFD_RELOC_16:
21009 if (fixp->fx_pcrel)
21010 {
21011 code = BFD_RELOC_16_PCREL;
21012 break;
21013 }
6c43fab6 21014
c19d1205
ZW
21015 case BFD_RELOC_32:
21016 if (fixp->fx_pcrel)
21017 {
21018 code = BFD_RELOC_32_PCREL;
21019 break;
21020 }
a737bd4d 21021
b6895b4f
PB
21022 case BFD_RELOC_ARM_MOVW:
21023 if (fixp->fx_pcrel)
21024 {
21025 code = BFD_RELOC_ARM_MOVW_PCREL;
21026 break;
21027 }
21028
21029 case BFD_RELOC_ARM_MOVT:
21030 if (fixp->fx_pcrel)
21031 {
21032 code = BFD_RELOC_ARM_MOVT_PCREL;
21033 break;
21034 }
21035
21036 case BFD_RELOC_ARM_THUMB_MOVW:
21037 if (fixp->fx_pcrel)
21038 {
21039 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21040 break;
21041 }
21042
21043 case BFD_RELOC_ARM_THUMB_MOVT:
21044 if (fixp->fx_pcrel)
21045 {
21046 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21047 break;
21048 }
21049
c19d1205
ZW
21050 case BFD_RELOC_NONE:
21051 case BFD_RELOC_ARM_PCREL_BRANCH:
21052 case BFD_RELOC_ARM_PCREL_BLX:
21053 case BFD_RELOC_RVA:
21054 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21055 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21056 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21057 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21058 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21059 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
21060 case BFD_RELOC_VTABLE_ENTRY:
21061 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
21062#ifdef TE_PE
21063 case BFD_RELOC_32_SECREL:
21064#endif
c19d1205
ZW
21065 code = fixp->fx_r_type;
21066 break;
a737bd4d 21067
00adf2d4
JB
21068 case BFD_RELOC_THUMB_PCREL_BLX:
21069#ifdef OBJ_ELF
21070 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21071 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21072 else
21073#endif
21074 code = BFD_RELOC_THUMB_PCREL_BLX;
21075 break;
21076
c19d1205
ZW
21077 case BFD_RELOC_ARM_LITERAL:
21078 case BFD_RELOC_ARM_HWLITERAL:
21079 /* If this is called then the a literal has
21080 been referenced across a section boundary. */
21081 as_bad_where (fixp->fx_file, fixp->fx_line,
21082 _("literal referenced across section boundary"));
21083 return NULL;
a737bd4d 21084
c19d1205
ZW
21085#ifdef OBJ_ELF
21086 case BFD_RELOC_ARM_GOT32:
21087 case BFD_RELOC_ARM_GOTOFF:
b43420e6 21088 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
21089 case BFD_RELOC_ARM_PLT32:
21090 case BFD_RELOC_ARM_TARGET1:
21091 case BFD_RELOC_ARM_ROSEGREL32:
21092 case BFD_RELOC_ARM_SBREL32:
21093 case BFD_RELOC_ARM_PREL31:
21094 case BFD_RELOC_ARM_TARGET2:
21095 case BFD_RELOC_ARM_TLS_LE32:
21096 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
21097 case BFD_RELOC_ARM_PCREL_CALL:
21098 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
21099 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21100 case BFD_RELOC_ARM_ALU_PC_G0:
21101 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21102 case BFD_RELOC_ARM_ALU_PC_G1:
21103 case BFD_RELOC_ARM_ALU_PC_G2:
21104 case BFD_RELOC_ARM_LDR_PC_G0:
21105 case BFD_RELOC_ARM_LDR_PC_G1:
21106 case BFD_RELOC_ARM_LDR_PC_G2:
21107 case BFD_RELOC_ARM_LDRS_PC_G0:
21108 case BFD_RELOC_ARM_LDRS_PC_G1:
21109 case BFD_RELOC_ARM_LDRS_PC_G2:
21110 case BFD_RELOC_ARM_LDC_PC_G0:
21111 case BFD_RELOC_ARM_LDC_PC_G1:
21112 case BFD_RELOC_ARM_LDC_PC_G2:
21113 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21114 case BFD_RELOC_ARM_ALU_SB_G0:
21115 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21116 case BFD_RELOC_ARM_ALU_SB_G1:
21117 case BFD_RELOC_ARM_ALU_SB_G2:
21118 case BFD_RELOC_ARM_LDR_SB_G0:
21119 case BFD_RELOC_ARM_LDR_SB_G1:
21120 case BFD_RELOC_ARM_LDR_SB_G2:
21121 case BFD_RELOC_ARM_LDRS_SB_G0:
21122 case BFD_RELOC_ARM_LDRS_SB_G1:
21123 case BFD_RELOC_ARM_LDRS_SB_G2:
21124 case BFD_RELOC_ARM_LDC_SB_G0:
21125 case BFD_RELOC_ARM_LDC_SB_G1:
21126 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 21127 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
21128 code = fixp->fx_r_type;
21129 break;
a737bd4d 21130
c19d1205
ZW
21131 case BFD_RELOC_ARM_TLS_GD32:
21132 case BFD_RELOC_ARM_TLS_IE32:
21133 case BFD_RELOC_ARM_TLS_LDM32:
21134 /* BFD will include the symbol's address in the addend.
21135 But we don't want that, so subtract it out again here. */
21136 if (!S_IS_COMMON (fixp->fx_addsy))
21137 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21138 code = fixp->fx_r_type;
21139 break;
21140#endif
a737bd4d 21141
c19d1205
ZW
21142 case BFD_RELOC_ARM_IMMEDIATE:
21143 as_bad_where (fixp->fx_file, fixp->fx_line,
21144 _("internal relocation (type: IMMEDIATE) not fixed up"));
21145 return NULL;
a737bd4d 21146
c19d1205
ZW
21147 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21148 as_bad_where (fixp->fx_file, fixp->fx_line,
21149 _("ADRL used for a symbol not defined in the same file"));
21150 return NULL;
a737bd4d 21151
c19d1205 21152 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21153 if (section->use_rela_p)
21154 {
21155 code = fixp->fx_r_type;
21156 break;
21157 }
21158
c19d1205
ZW
21159 if (fixp->fx_addsy != NULL
21160 && !S_IS_DEFINED (fixp->fx_addsy)
21161 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 21162 {
c19d1205
ZW
21163 as_bad_where (fixp->fx_file, fixp->fx_line,
21164 _("undefined local label `%s'"),
21165 S_GET_NAME (fixp->fx_addsy));
21166 return NULL;
a737bd4d
NC
21167 }
21168
c19d1205
ZW
21169 as_bad_where (fixp->fx_file, fixp->fx_line,
21170 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21171 return NULL;
a737bd4d 21172
c19d1205
ZW
21173 default:
21174 {
21175 char * type;
6c43fab6 21176
c19d1205
ZW
21177 switch (fixp->fx_r_type)
21178 {
21179 case BFD_RELOC_NONE: type = "NONE"; break;
21180 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21181 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 21182 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
21183 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21184 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21185 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 21186 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21187 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21188 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21189 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21190 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21191 default: type = _("<unknown>"); break;
21192 }
21193 as_bad_where (fixp->fx_file, fixp->fx_line,
21194 _("cannot represent %s relocation in this object file format"),
21195 type);
21196 return NULL;
21197 }
a737bd4d 21198 }
6c43fab6 21199
c19d1205
ZW
21200#ifdef OBJ_ELF
21201 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21202 && GOT_symbol
21203 && fixp->fx_addsy == GOT_symbol)
21204 {
21205 code = BFD_RELOC_ARM_GOTPC;
21206 reloc->addend = fixp->fx_offset = reloc->address;
21207 }
21208#endif
6c43fab6 21209
c19d1205 21210 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21211
c19d1205
ZW
21212 if (reloc->howto == NULL)
21213 {
21214 as_bad_where (fixp->fx_file, fixp->fx_line,
21215 _("cannot represent %s relocation in this object file format"),
21216 bfd_get_reloc_code_name (code));
21217 return NULL;
21218 }
6c43fab6 21219
c19d1205
ZW
21220 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21221 vtable entry to be used in the relocation's section offset. */
21222 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21223 reloc->address = fixp->fx_offset;
6c43fab6 21224
c19d1205 21225 return reloc;
6c43fab6
RE
21226}
21227
c19d1205 21228/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21229
c19d1205
ZW
21230void
21231cons_fix_new_arm (fragS * frag,
21232 int where,
21233 int size,
21234 expressionS * exp)
6c43fab6 21235{
c19d1205
ZW
21236 bfd_reloc_code_real_type type;
21237 int pcrel = 0;
6c43fab6 21238
c19d1205
ZW
21239 /* Pick a reloc.
21240 FIXME: @@ Should look at CPU word size. */
21241 switch (size)
21242 {
21243 case 1:
21244 type = BFD_RELOC_8;
21245 break;
21246 case 2:
21247 type = BFD_RELOC_16;
21248 break;
21249 case 4:
21250 default:
21251 type = BFD_RELOC_32;
21252 break;
21253 case 8:
21254 type = BFD_RELOC_64;
21255 break;
21256 }
6c43fab6 21257
f0927246
NC
21258#ifdef TE_PE
21259 if (exp->X_op == O_secrel)
21260 {
21261 exp->X_op = O_symbol;
21262 type = BFD_RELOC_32_SECREL;
21263 }
21264#endif
21265
c19d1205
ZW
21266 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21267}
6c43fab6 21268
4343666d 21269#if defined (OBJ_COFF)
c19d1205
ZW
21270void
21271arm_validate_fix (fixS * fixP)
6c43fab6 21272{
c19d1205
ZW
21273 /* If the destination of the branch is a defined symbol which does not have
21274 the THUMB_FUNC attribute, then we must be calling a function which has
21275 the (interfacearm) attribute. We look for the Thumb entry point to that
21276 function and change the branch to refer to that function instead. */
21277 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21278 && fixP->fx_addsy != NULL
21279 && S_IS_DEFINED (fixP->fx_addsy)
21280 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 21281 {
c19d1205 21282 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 21283 }
c19d1205
ZW
21284}
21285#endif
6c43fab6 21286
267bf995 21287
c19d1205
ZW
21288int
21289arm_force_relocation (struct fix * fixp)
21290{
21291#if defined (OBJ_COFF) && defined (TE_PE)
21292 if (fixp->fx_r_type == BFD_RELOC_RVA)
21293 return 1;
21294#endif
6c43fab6 21295
267bf995
RR
21296 /* In case we have a call or a branch to a function in ARM ISA mode from
21297 a thumb function or vice-versa force the relocation. These relocations
21298 are cleared off for some cores that might have blx and simple transformations
21299 are possible. */
21300
21301#ifdef OBJ_ELF
21302 switch (fixp->fx_r_type)
21303 {
21304 case BFD_RELOC_ARM_PCREL_JUMP:
21305 case BFD_RELOC_ARM_PCREL_CALL:
21306 case BFD_RELOC_THUMB_PCREL_BLX:
21307 if (THUMB_IS_FUNC (fixp->fx_addsy))
21308 return 1;
21309 break;
21310
21311 case BFD_RELOC_ARM_PCREL_BLX:
21312 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21313 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21314 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21315 if (ARM_IS_FUNC (fixp->fx_addsy))
21316 return 1;
21317 break;
21318
21319 default:
21320 break;
21321 }
21322#endif
21323
c19d1205
ZW
21324 /* Resolve these relocations even if the symbol is extern or weak. */
21325 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21326 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 21327 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 21328 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
21329 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21330 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21331 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 21332 return 0;
a737bd4d 21333
4962c51a
MS
21334 /* Always leave these relocations for the linker. */
21335 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21336 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21337 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21338 return 1;
21339
f0291e4c
PB
21340 /* Always generate relocations against function symbols. */
21341 if (fixp->fx_r_type == BFD_RELOC_32
21342 && fixp->fx_addsy
21343 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21344 return 1;
21345
c19d1205 21346 return generic_force_reloc (fixp);
404ff6b5
AH
21347}
21348
0ffdc86c 21349#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
21350/* Relocations against function names must be left unadjusted,
21351 so that the linker can use this information to generate interworking
21352 stubs. The MIPS version of this function
c19d1205
ZW
21353 also prevents relocations that are mips-16 specific, but I do not
21354 know why it does this.
404ff6b5 21355
c19d1205
ZW
21356 FIXME:
21357 There is one other problem that ought to be addressed here, but
21358 which currently is not: Taking the address of a label (rather
21359 than a function) and then later jumping to that address. Such
21360 addresses also ought to have their bottom bit set (assuming that
21361 they reside in Thumb code), but at the moment they will not. */
404ff6b5 21362
c19d1205
ZW
21363bfd_boolean
21364arm_fix_adjustable (fixS * fixP)
404ff6b5 21365{
c19d1205
ZW
21366 if (fixP->fx_addsy == NULL)
21367 return 1;
404ff6b5 21368
e28387c3
PB
21369 /* Preserve relocations against symbols with function type. */
21370 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 21371 return FALSE;
e28387c3 21372
c19d1205
ZW
21373 if (THUMB_IS_FUNC (fixP->fx_addsy)
21374 && fixP->fx_subsy == NULL)
c921be7d 21375 return FALSE;
a737bd4d 21376
c19d1205
ZW
21377 /* We need the symbol name for the VTABLE entries. */
21378 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21379 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 21380 return FALSE;
404ff6b5 21381
c19d1205
ZW
21382 /* Don't allow symbols to be discarded on GOT related relocs. */
21383 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21384 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21385 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21386 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21387 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21388 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21389 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21390 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21391 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 21392 return FALSE;
a737bd4d 21393
4962c51a
MS
21394 /* Similarly for group relocations. */
21395 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21396 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21397 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 21398 return FALSE;
4962c51a 21399
79947c54
CD
21400 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21401 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21402 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21403 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21404 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21405 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21406 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21407 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21408 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 21409 return FALSE;
79947c54 21410
c921be7d 21411 return TRUE;
a737bd4d 21412}
0ffdc86c
NC
21413#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21414
21415#ifdef OBJ_ELF
404ff6b5 21416
c19d1205
ZW
21417const char *
21418elf32_arm_target_format (void)
404ff6b5 21419{
c19d1205
ZW
21420#ifdef TE_SYMBIAN
21421 return (target_big_endian
21422 ? "elf32-bigarm-symbian"
21423 : "elf32-littlearm-symbian");
21424#elif defined (TE_VXWORKS)
21425 return (target_big_endian
21426 ? "elf32-bigarm-vxworks"
21427 : "elf32-littlearm-vxworks");
21428#else
21429 if (target_big_endian)
21430 return "elf32-bigarm";
21431 else
21432 return "elf32-littlearm";
21433#endif
404ff6b5
AH
21434}
21435
c19d1205
ZW
21436void
21437armelf_frob_symbol (symbolS * symp,
21438 int * puntp)
404ff6b5 21439{
c19d1205
ZW
21440 elf_frob_symbol (symp, puntp);
21441}
21442#endif
404ff6b5 21443
c19d1205 21444/* MD interface: Finalization. */
a737bd4d 21445
c19d1205
ZW
21446void
21447arm_cleanup (void)
21448{
21449 literal_pool * pool;
a737bd4d 21450
e07e6e58
NC
21451 /* Ensure that all the IT blocks are properly closed. */
21452 check_it_blocks_finished ();
21453
c19d1205
ZW
21454 for (pool = list_of_pools; pool; pool = pool->next)
21455 {
5f4273c7 21456 /* Put it at the end of the relevant section. */
c19d1205
ZW
21457 subseg_set (pool->section, pool->sub_section);
21458#ifdef OBJ_ELF
21459 arm_elf_change_section ();
21460#endif
21461 s_ltorg (0);
21462 }
404ff6b5
AH
21463}
21464
cd000bff
DJ
21465#ifdef OBJ_ELF
21466/* Remove any excess mapping symbols generated for alignment frags in
21467 SEC. We may have created a mapping symbol before a zero byte
21468 alignment; remove it if there's a mapping symbol after the
21469 alignment. */
21470static void
21471check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21472 void *dummy ATTRIBUTE_UNUSED)
21473{
21474 segment_info_type *seginfo = seg_info (sec);
21475 fragS *fragp;
21476
21477 if (seginfo == NULL || seginfo->frchainP == NULL)
21478 return;
21479
21480 for (fragp = seginfo->frchainP->frch_root;
21481 fragp != NULL;
21482 fragp = fragp->fr_next)
21483 {
21484 symbolS *sym = fragp->tc_frag_data.last_map;
21485 fragS *next = fragp->fr_next;
21486
21487 /* Variable-sized frags have been converted to fixed size by
21488 this point. But if this was variable-sized to start with,
21489 there will be a fixed-size frag after it. So don't handle
21490 next == NULL. */
21491 if (sym == NULL || next == NULL)
21492 continue;
21493
21494 if (S_GET_VALUE (sym) < next->fr_address)
21495 /* Not at the end of this frag. */
21496 continue;
21497 know (S_GET_VALUE (sym) == next->fr_address);
21498
21499 do
21500 {
21501 if (next->tc_frag_data.first_map != NULL)
21502 {
21503 /* Next frag starts with a mapping symbol. Discard this
21504 one. */
21505 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21506 break;
21507 }
21508
21509 if (next->fr_next == NULL)
21510 {
21511 /* This mapping symbol is at the end of the section. Discard
21512 it. */
21513 know (next->fr_fix == 0 && next->fr_var == 0);
21514 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21515 break;
21516 }
21517
21518 /* As long as we have empty frags without any mapping symbols,
21519 keep looking. */
21520 /* If the next frag is non-empty and does not start with a
21521 mapping symbol, then this mapping symbol is required. */
21522 if (next->fr_address != next->fr_next->fr_address)
21523 break;
21524
21525 next = next->fr_next;
21526 }
21527 while (next != NULL);
21528 }
21529}
21530#endif
21531
c19d1205
ZW
21532/* Adjust the symbol table. This marks Thumb symbols as distinct from
21533 ARM ones. */
404ff6b5 21534
c19d1205
ZW
21535void
21536arm_adjust_symtab (void)
404ff6b5 21537{
c19d1205
ZW
21538#ifdef OBJ_COFF
21539 symbolS * sym;
404ff6b5 21540
c19d1205
ZW
21541 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21542 {
21543 if (ARM_IS_THUMB (sym))
21544 {
21545 if (THUMB_IS_FUNC (sym))
21546 {
21547 /* Mark the symbol as a Thumb function. */
21548 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21549 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21550 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 21551
c19d1205
ZW
21552 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21553 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21554 else
21555 as_bad (_("%s: unexpected function type: %d"),
21556 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21557 }
21558 else switch (S_GET_STORAGE_CLASS (sym))
21559 {
21560 case C_EXT:
21561 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21562 break;
21563 case C_STAT:
21564 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21565 break;
21566 case C_LABEL:
21567 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21568 break;
21569 default:
21570 /* Do nothing. */
21571 break;
21572 }
21573 }
a737bd4d 21574
c19d1205
ZW
21575 if (ARM_IS_INTERWORK (sym))
21576 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 21577 }
c19d1205
ZW
21578#endif
21579#ifdef OBJ_ELF
21580 symbolS * sym;
21581 char bind;
404ff6b5 21582
c19d1205 21583 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 21584 {
c19d1205
ZW
21585 if (ARM_IS_THUMB (sym))
21586 {
21587 elf_symbol_type * elf_sym;
404ff6b5 21588
c19d1205
ZW
21589 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21590 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 21591
b0796911
PB
21592 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21593 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
21594 {
21595 /* If it's a .thumb_func, declare it as so,
21596 otherwise tag label as .code 16. */
21597 if (THUMB_IS_FUNC (sym))
21598 elf_sym->internal_elf_sym.st_info =
21599 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 21600 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
21601 elf_sym->internal_elf_sym.st_info =
21602 ELF_ST_INFO (bind, STT_ARM_16BIT);
21603 }
21604 }
21605 }
cd000bff
DJ
21606
21607 /* Remove any overlapping mapping symbols generated by alignment frags. */
21608 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
c19d1205 21609#endif
404ff6b5
AH
21610}
21611
c19d1205 21612/* MD interface: Initialization. */
404ff6b5 21613
a737bd4d 21614static void
c19d1205 21615set_constant_flonums (void)
a737bd4d 21616{
c19d1205 21617 int i;
404ff6b5 21618
c19d1205
ZW
21619 for (i = 0; i < NUM_FLOAT_VALS; i++)
21620 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21621 abort ();
a737bd4d 21622}
404ff6b5 21623
3e9e4fcf
JB
21624/* Auto-select Thumb mode if it's the only available instruction set for the
21625 given architecture. */
21626
21627static void
21628autoselect_thumb_from_cpu_variant (void)
21629{
21630 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21631 opcode_select (16);
21632}
21633
c19d1205
ZW
21634void
21635md_begin (void)
a737bd4d 21636{
c19d1205
ZW
21637 unsigned mach;
21638 unsigned int i;
404ff6b5 21639
c19d1205
ZW
21640 if ( (arm_ops_hsh = hash_new ()) == NULL
21641 || (arm_cond_hsh = hash_new ()) == NULL
21642 || (arm_shift_hsh = hash_new ()) == NULL
21643 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 21644 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 21645 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
21646 || (arm_reloc_hsh = hash_new ()) == NULL
21647 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
21648 as_fatal (_("virtual memory exhausted"));
21649
21650 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 21651 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 21652 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 21653 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 21654 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 21655 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 21656 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 21657 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 21658 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
21659 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21660 (void *) (v7m_psrs + i));
c19d1205 21661 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 21662 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
21663 for (i = 0;
21664 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21665 i++)
d3ce72d0 21666 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 21667 (void *) (barrier_opt_names + i));
c19d1205
ZW
21668#ifdef OBJ_ELF
21669 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 21670 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
21671#endif
21672
21673 set_constant_flonums ();
404ff6b5 21674
c19d1205
ZW
21675 /* Set the cpu variant based on the command-line options. We prefer
21676 -mcpu= over -march= if both are set (as for GCC); and we prefer
21677 -mfpu= over any other way of setting the floating point unit.
21678 Use of legacy options with new options are faulted. */
e74cfd16 21679 if (legacy_cpu)
404ff6b5 21680 {
e74cfd16 21681 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
21682 as_bad (_("use of old and new-style options to set CPU type"));
21683
21684 mcpu_cpu_opt = legacy_cpu;
404ff6b5 21685 }
e74cfd16 21686 else if (!mcpu_cpu_opt)
c19d1205 21687 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 21688
e74cfd16 21689 if (legacy_fpu)
c19d1205 21690 {
e74cfd16 21691 if (mfpu_opt)
c19d1205 21692 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
21693
21694 mfpu_opt = legacy_fpu;
21695 }
e74cfd16 21696 else if (!mfpu_opt)
03b1477f 21697 {
45eb4c1b
NS
21698#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21699 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
21700 /* Some environments specify a default FPU. If they don't, infer it
21701 from the processor. */
e74cfd16 21702 if (mcpu_fpu_opt)
03b1477f
RE
21703 mfpu_opt = mcpu_fpu_opt;
21704 else
21705 mfpu_opt = march_fpu_opt;
39c2da32 21706#else
e74cfd16 21707 mfpu_opt = &fpu_default;
39c2da32 21708#endif
03b1477f
RE
21709 }
21710
e74cfd16 21711 if (!mfpu_opt)
03b1477f 21712 {
493cb6ef 21713 if (mcpu_cpu_opt != NULL)
e74cfd16 21714 mfpu_opt = &fpu_default;
493cb6ef 21715 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 21716 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 21717 else
e74cfd16 21718 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
21719 }
21720
ee065d83 21721#ifdef CPU_DEFAULT
e74cfd16 21722 if (!mcpu_cpu_opt)
ee065d83 21723 {
e74cfd16
PB
21724 mcpu_cpu_opt = &cpu_default;
21725 selected_cpu = cpu_default;
ee065d83 21726 }
e74cfd16
PB
21727#else
21728 if (mcpu_cpu_opt)
21729 selected_cpu = *mcpu_cpu_opt;
ee065d83 21730 else
e74cfd16 21731 mcpu_cpu_opt = &arm_arch_any;
ee065d83 21732#endif
03b1477f 21733
e74cfd16 21734 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 21735
3e9e4fcf
JB
21736 autoselect_thumb_from_cpu_variant ();
21737
e74cfd16 21738 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 21739
f17c130b 21740#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 21741 {
7cc69913
NC
21742 unsigned int flags = 0;
21743
21744#if defined OBJ_ELF
21745 flags = meabi_flags;
d507cf36
PB
21746
21747 switch (meabi_flags)
33a392fb 21748 {
d507cf36 21749 case EF_ARM_EABI_UNKNOWN:
7cc69913 21750#endif
d507cf36
PB
21751 /* Set the flags in the private structure. */
21752 if (uses_apcs_26) flags |= F_APCS26;
21753 if (support_interwork) flags |= F_INTERWORK;
21754 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 21755 if (pic_code) flags |= F_PIC;
e74cfd16 21756 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
21757 flags |= F_SOFT_FLOAT;
21758
d507cf36
PB
21759 switch (mfloat_abi_opt)
21760 {
21761 case ARM_FLOAT_ABI_SOFT:
21762 case ARM_FLOAT_ABI_SOFTFP:
21763 flags |= F_SOFT_FLOAT;
21764 break;
33a392fb 21765
d507cf36
PB
21766 case ARM_FLOAT_ABI_HARD:
21767 if (flags & F_SOFT_FLOAT)
21768 as_bad (_("hard-float conflicts with specified fpu"));
21769 break;
21770 }
03b1477f 21771
e74cfd16
PB
21772 /* Using pure-endian doubles (even if soft-float). */
21773 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 21774 flags |= F_VFP_FLOAT;
f17c130b 21775
fde78edd 21776#if defined OBJ_ELF
e74cfd16 21777 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 21778 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
21779 break;
21780
8cb51566 21781 case EF_ARM_EABI_VER4:
3a4a14e9 21782 case EF_ARM_EABI_VER5:
c19d1205 21783 /* No additional flags to set. */
d507cf36
PB
21784 break;
21785
21786 default:
21787 abort ();
21788 }
7cc69913 21789#endif
b99bd4ef
NC
21790 bfd_set_private_flags (stdoutput, flags);
21791
21792 /* We have run out flags in the COFF header to encode the
21793 status of ATPCS support, so instead we create a dummy,
c19d1205 21794 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
21795 if (atpcs)
21796 {
21797 asection * sec;
21798
21799 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21800
21801 if (sec != NULL)
21802 {
21803 bfd_set_section_flags
21804 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21805 bfd_set_section_size (stdoutput, sec, 0);
21806 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21807 }
21808 }
7cc69913 21809 }
f17c130b 21810#endif
b99bd4ef
NC
21811
21812 /* Record the CPU type as well. */
2d447fca
JM
21813 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21814 mach = bfd_mach_arm_iWMMXt2;
21815 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 21816 mach = bfd_mach_arm_iWMMXt;
e74cfd16 21817 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 21818 mach = bfd_mach_arm_XScale;
e74cfd16 21819 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 21820 mach = bfd_mach_arm_ep9312;
e74cfd16 21821 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 21822 mach = bfd_mach_arm_5TE;
e74cfd16 21823 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 21824 {
e74cfd16 21825 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
21826 mach = bfd_mach_arm_5T;
21827 else
21828 mach = bfd_mach_arm_5;
21829 }
e74cfd16 21830 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 21831 {
e74cfd16 21832 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
21833 mach = bfd_mach_arm_4T;
21834 else
21835 mach = bfd_mach_arm_4;
21836 }
e74cfd16 21837 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 21838 mach = bfd_mach_arm_3M;
e74cfd16
PB
21839 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21840 mach = bfd_mach_arm_3;
21841 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21842 mach = bfd_mach_arm_2a;
21843 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21844 mach = bfd_mach_arm_2;
21845 else
21846 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
21847
21848 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21849}
21850
c19d1205 21851/* Command line processing. */
b99bd4ef 21852
c19d1205
ZW
21853/* md_parse_option
21854 Invocation line includes a switch not recognized by the base assembler.
21855 See if it's a processor-specific option.
b99bd4ef 21856
c19d1205
ZW
21857 This routine is somewhat complicated by the need for backwards
21858 compatibility (since older releases of gcc can't be changed).
21859 The new options try to make the interface as compatible as
21860 possible with GCC.
b99bd4ef 21861
c19d1205 21862 New options (supported) are:
b99bd4ef 21863
c19d1205
ZW
21864 -mcpu=<cpu name> Assemble for selected processor
21865 -march=<architecture name> Assemble for selected architecture
21866 -mfpu=<fpu architecture> Assemble for selected FPU.
21867 -EB/-mbig-endian Big-endian
21868 -EL/-mlittle-endian Little-endian
21869 -k Generate PIC code
21870 -mthumb Start in Thumb mode
21871 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 21872
278df34e 21873 -m[no-]warn-deprecated Warn about deprecated features
267bf995 21874
c19d1205 21875 For now we will also provide support for:
b99bd4ef 21876
c19d1205
ZW
21877 -mapcs-32 32-bit Program counter
21878 -mapcs-26 26-bit Program counter
21879 -macps-float Floats passed in FP registers
21880 -mapcs-reentrant Reentrant code
21881 -matpcs
21882 (sometime these will probably be replaced with -mapcs=<list of options>
21883 and -matpcs=<list of options>)
b99bd4ef 21884
c19d1205
ZW
21885 The remaining options are only supported for back-wards compatibility.
21886 Cpu variants, the arm part is optional:
21887 -m[arm]1 Currently not supported.
21888 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21889 -m[arm]3 Arm 3 processor
21890 -m[arm]6[xx], Arm 6 processors
21891 -m[arm]7[xx][t][[d]m] Arm 7 processors
21892 -m[arm]8[10] Arm 8 processors
21893 -m[arm]9[20][tdmi] Arm 9 processors
21894 -mstrongarm[110[0]] StrongARM processors
21895 -mxscale XScale processors
21896 -m[arm]v[2345[t[e]]] Arm architectures
21897 -mall All (except the ARM1)
21898 FP variants:
21899 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21900 -mfpe-old (No float load/store multiples)
21901 -mvfpxd VFP Single precision
21902 -mvfp All VFP
21903 -mno-fpu Disable all floating point instructions
b99bd4ef 21904
c19d1205
ZW
21905 The following CPU names are recognized:
21906 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21907 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21908 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21909 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21910 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21911 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21912 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 21913
c19d1205 21914 */
b99bd4ef 21915
c19d1205 21916const char * md_shortopts = "m:k";
b99bd4ef 21917
c19d1205
ZW
21918#ifdef ARM_BI_ENDIAN
21919#define OPTION_EB (OPTION_MD_BASE + 0)
21920#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 21921#else
c19d1205
ZW
21922#if TARGET_BYTES_BIG_ENDIAN
21923#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 21924#else
c19d1205
ZW
21925#define OPTION_EL (OPTION_MD_BASE + 1)
21926#endif
b99bd4ef 21927#endif
845b51d6 21928#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 21929
c19d1205 21930struct option md_longopts[] =
b99bd4ef 21931{
c19d1205
ZW
21932#ifdef OPTION_EB
21933 {"EB", no_argument, NULL, OPTION_EB},
21934#endif
21935#ifdef OPTION_EL
21936 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 21937#endif
845b51d6 21938 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
21939 {NULL, no_argument, NULL, 0}
21940};
b99bd4ef 21941
c19d1205 21942size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 21943
c19d1205 21944struct arm_option_table
b99bd4ef 21945{
c19d1205
ZW
21946 char *option; /* Option name to match. */
21947 char *help; /* Help information. */
21948 int *var; /* Variable to change. */
21949 int value; /* What to change it to. */
21950 char *deprecated; /* If non-null, print this message. */
21951};
b99bd4ef 21952
c19d1205
ZW
21953struct arm_option_table arm_opts[] =
21954{
21955 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
21956 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
21957 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
21958 &support_interwork, 1, NULL},
21959 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
21960 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
21961 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
21962 1, NULL},
21963 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
21964 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
21965 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
21966 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
21967 NULL},
b99bd4ef 21968
c19d1205
ZW
21969 /* These are recognized by the assembler, but have no affect on code. */
21970 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
21971 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
21972
21973 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
21974 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
21975 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
21976 {NULL, NULL, NULL, 0, NULL}
21977};
21978
21979struct arm_legacy_option_table
21980{
21981 char *option; /* Option name to match. */
21982 const arm_feature_set **var; /* Variable to change. */
21983 const arm_feature_set value; /* What to change it to. */
21984 char *deprecated; /* If non-null, print this message. */
21985};
b99bd4ef 21986
e74cfd16
PB
21987const struct arm_legacy_option_table arm_legacy_opts[] =
21988{
c19d1205
ZW
21989 /* DON'T add any new processors to this list -- we want the whole list
21990 to go away... Add them to the processors table instead. */
e74cfd16
PB
21991 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21992 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21993 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21994 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21995 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21996 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21997 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21998 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21999 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22000 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22001 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22002 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22003 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22004 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22005 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22006 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22007 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22008 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22009 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22010 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22011 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22012 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22013 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22014 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22015 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22016 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22017 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22018 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22019 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22020 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22021 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22022 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22023 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22024 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22025 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22026 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22027 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22028 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22029 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22030 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22031 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22032 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22033 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22034 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22035 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22036 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22037 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22038 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22039 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22040 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22041 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22042 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22043 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22044 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22045 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22046 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22047 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22048 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22049 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22050 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22051 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22052 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22053 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22054 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22055 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22056 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22057 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22058 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22059 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22060 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22061 N_("use -mcpu=strongarm110")},
e74cfd16 22062 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22063 N_("use -mcpu=strongarm1100")},
e74cfd16 22064 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22065 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
22066 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22067 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22068 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 22069
c19d1205 22070 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
22071 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22072 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22073 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22074 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22075 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22076 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22077 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22078 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22079 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22080 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22081 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22082 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22083 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22084 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22085 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22086 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22087 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22088 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 22089
c19d1205 22090 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
22091 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22092 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22093 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22094 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 22095 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 22096
e74cfd16 22097 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 22098};
7ed4c4c5 22099
c19d1205 22100struct arm_cpu_option_table
7ed4c4c5 22101{
c19d1205 22102 char *name;
e74cfd16 22103 const arm_feature_set value;
c19d1205
ZW
22104 /* For some CPUs we assume an FPU unless the user explicitly sets
22105 -mfpu=... */
e74cfd16 22106 const arm_feature_set default_fpu;
ee065d83
PB
22107 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22108 case. */
22109 const char *canonical_name;
c19d1205 22110};
7ed4c4c5 22111
c19d1205
ZW
22112/* This list should, at a minimum, contain all the cpu names
22113 recognized by GCC. */
e74cfd16 22114static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 22115{
ee065d83
PB
22116 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22117 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22118 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22119 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22120 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22121 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22122 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22123 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22124 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22125 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22126 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22127 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22128 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22129 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22130 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22131 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22132 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22133 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22134 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22135 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22136 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22137 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22138 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22139 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22140 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22141 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22142 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22143 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22144 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22145 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22146 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22147 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22148 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22149 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22150 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22151 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22152 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22153 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22154 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22155 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22156 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22157 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22158 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22159 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
22160 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22161 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
22162 /* For V5 or later processors we default to using VFP; but the user
22163 should really set the FPU type explicitly. */
ee065d83
PB
22164 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22165 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22166 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22167 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22168 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22169 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22170 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22171 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22172 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22173 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22174 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22175 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22176 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22177 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22178 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22179 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22180 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22181 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22182 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22183 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22184 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
7fac0536
NC
22185 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22186 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
22187 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22188 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22189 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22190 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22191 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
22192 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
22193 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22194 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22195 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22196 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
b38f9f31 22197 {"cortex-a5", ARM_ARCH_V7A, FPU_NONE, NULL},
e07e6e58 22198 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22199 | FPU_NEON_EXT_V1),
15290f0a 22200 NULL},
e07e6e58 22201 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22202 | FPU_NEON_EXT_V1),
5287ad62 22203 NULL},
62b3e311 22204 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
307c948d 22205 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
26b6f191 22206 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, NULL},
62b3e311 22207 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
7e806470 22208 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
5b19eaba 22209 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
c19d1205 22210 /* ??? XSCALE is really an architecture. */
ee065d83 22211 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22212 /* ??? iwmmxt is not a processor. */
ee065d83 22213 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 22214 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 22215 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22216 /* Maverick */
e07e6e58 22217 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 22218 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 22219};
7ed4c4c5 22220
c19d1205 22221struct arm_arch_option_table
7ed4c4c5 22222{
c19d1205 22223 char *name;
e74cfd16
PB
22224 const arm_feature_set value;
22225 const arm_feature_set default_fpu;
c19d1205 22226};
7ed4c4c5 22227
c19d1205
ZW
22228/* This list should, at a minimum, contain all the architecture names
22229 recognized by GCC. */
e74cfd16 22230static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
22231{
22232 {"all", ARM_ANY, FPU_ARCH_FPA},
22233 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22234 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22235 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22236 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22237 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22238 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22239 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22240 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22241 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22242 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22243 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22244 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22245 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22246 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22247 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22248 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22249 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22250 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22251 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22252 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22253 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22254 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22255 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22256 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22257 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 22258 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
62b3e311 22259 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
22260 /* The official spelling of the ARMv7 profile variants is the dashed form.
22261 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
22262 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22263 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22264 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
22265 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22266 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22267 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
9e3c6df6 22268 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
c19d1205
ZW
22269 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22270 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 22271 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 22272 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 22273};
7ed4c4c5 22274
c19d1205 22275/* ISA extensions in the co-processor space. */
e74cfd16 22276struct arm_option_cpu_value_table
c19d1205
ZW
22277{
22278 char *name;
e74cfd16 22279 const arm_feature_set value;
c19d1205 22280};
7ed4c4c5 22281
e74cfd16 22282static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 22283{
e74cfd16
PB
22284 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
22285 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
22286 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 22287 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 22288 {NULL, ARM_ARCH_NONE}
c19d1205 22289};
7ed4c4c5 22290
c19d1205
ZW
22291/* This list should, at a minimum, contain all the fpu names
22292 recognized by GCC. */
e74cfd16 22293static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
22294{
22295 {"softfpa", FPU_NONE},
22296 {"fpe", FPU_ARCH_FPE},
22297 {"fpe2", FPU_ARCH_FPE},
22298 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22299 {"fpa", FPU_ARCH_FPA},
22300 {"fpa10", FPU_ARCH_FPA},
22301 {"fpa11", FPU_ARCH_FPA},
22302 {"arm7500fe", FPU_ARCH_FPA},
22303 {"softvfp", FPU_ARCH_VFP},
22304 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22305 {"vfp", FPU_ARCH_VFP_V2},
22306 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 22307 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
22308 {"vfp10", FPU_ARCH_VFP_V2},
22309 {"vfp10-r0", FPU_ARCH_VFP_V1},
22310 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
22311 {"vfpv2", FPU_ARCH_VFP_V2},
22312 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 22313 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 22314 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
22315 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22316 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22317 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
22318 {"arm1020t", FPU_ARCH_VFP_V1},
22319 {"arm1020e", FPU_ARCH_VFP_V2},
22320 {"arm1136jfs", FPU_ARCH_VFP_V2},
22321 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22322 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 22323 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 22324 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
22325 {"vfpv4", FPU_ARCH_VFP_V4},
22326 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 22327 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 22328 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
22329 {NULL, ARM_ARCH_NONE}
22330};
22331
22332struct arm_option_value_table
22333{
22334 char *name;
22335 long value;
c19d1205 22336};
7ed4c4c5 22337
e74cfd16 22338static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
22339{
22340 {"hard", ARM_FLOAT_ABI_HARD},
22341 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22342 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 22343 {NULL, 0}
c19d1205 22344};
7ed4c4c5 22345
c19d1205 22346#ifdef OBJ_ELF
3a4a14e9 22347/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 22348static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
22349{
22350 {"gnu", EF_ARM_EABI_UNKNOWN},
22351 {"4", EF_ARM_EABI_VER4},
3a4a14e9 22352 {"5", EF_ARM_EABI_VER5},
e74cfd16 22353 {NULL, 0}
c19d1205
ZW
22354};
22355#endif
7ed4c4c5 22356
c19d1205
ZW
22357struct arm_long_option_table
22358{
22359 char * option; /* Substring to match. */
22360 char * help; /* Help information. */
22361 int (* func) (char * subopt); /* Function to decode sub-option. */
22362 char * deprecated; /* If non-null, print this message. */
22363};
7ed4c4c5 22364
c921be7d 22365static bfd_boolean
e74cfd16 22366arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 22367{
21d799b5
NC
22368 arm_feature_set *ext_set = (arm_feature_set *)
22369 xmalloc (sizeof (arm_feature_set));
e74cfd16
PB
22370
22371 /* Copy the feature set, so that we can modify it. */
22372 *ext_set = **opt_p;
22373 *opt_p = ext_set;
22374
c19d1205 22375 while (str != NULL && *str != 0)
7ed4c4c5 22376 {
e74cfd16 22377 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
22378 char * ext;
22379 int optlen;
7ed4c4c5 22380
c19d1205
ZW
22381 if (*str != '+')
22382 {
22383 as_bad (_("invalid architectural extension"));
c921be7d 22384 return FALSE;
c19d1205 22385 }
7ed4c4c5 22386
c19d1205
ZW
22387 str++;
22388 ext = strchr (str, '+');
7ed4c4c5 22389
c19d1205
ZW
22390 if (ext != NULL)
22391 optlen = ext - str;
22392 else
22393 optlen = strlen (str);
7ed4c4c5 22394
c19d1205
ZW
22395 if (optlen == 0)
22396 {
22397 as_bad (_("missing architectural extension"));
c921be7d 22398 return FALSE;
c19d1205 22399 }
7ed4c4c5 22400
c19d1205
ZW
22401 for (opt = arm_extensions; opt->name != NULL; opt++)
22402 if (strncmp (opt->name, str, optlen) == 0)
22403 {
e74cfd16 22404 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
22405 break;
22406 }
7ed4c4c5 22407
c19d1205
ZW
22408 if (opt->name == NULL)
22409 {
5f4273c7 22410 as_bad (_("unknown architectural extension `%s'"), str);
c921be7d 22411 return FALSE;
c19d1205 22412 }
7ed4c4c5 22413
c19d1205
ZW
22414 str = ext;
22415 };
7ed4c4c5 22416
c921be7d 22417 return TRUE;
c19d1205 22418}
7ed4c4c5 22419
c921be7d 22420static bfd_boolean
c19d1205 22421arm_parse_cpu (char * str)
7ed4c4c5 22422{
e74cfd16 22423 const struct arm_cpu_option_table * opt;
c19d1205
ZW
22424 char * ext = strchr (str, '+');
22425 int optlen;
7ed4c4c5 22426
c19d1205
ZW
22427 if (ext != NULL)
22428 optlen = ext - str;
7ed4c4c5 22429 else
c19d1205 22430 optlen = strlen (str);
7ed4c4c5 22431
c19d1205 22432 if (optlen == 0)
7ed4c4c5 22433 {
c19d1205 22434 as_bad (_("missing cpu name `%s'"), str);
c921be7d 22435 return FALSE;
7ed4c4c5
NC
22436 }
22437
c19d1205
ZW
22438 for (opt = arm_cpus; opt->name != NULL; opt++)
22439 if (strncmp (opt->name, str, optlen) == 0)
22440 {
e74cfd16
PB
22441 mcpu_cpu_opt = &opt->value;
22442 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 22443 if (opt->canonical_name)
5f4273c7 22444 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
22445 else
22446 {
22447 int i;
c921be7d 22448
ee065d83
PB
22449 for (i = 0; i < optlen; i++)
22450 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22451 selected_cpu_name[i] = 0;
22452 }
7ed4c4c5 22453
c19d1205
ZW
22454 if (ext != NULL)
22455 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 22456
c921be7d 22457 return TRUE;
c19d1205 22458 }
7ed4c4c5 22459
c19d1205 22460 as_bad (_("unknown cpu `%s'"), str);
c921be7d 22461 return FALSE;
7ed4c4c5
NC
22462}
22463
c921be7d 22464static bfd_boolean
c19d1205 22465arm_parse_arch (char * str)
7ed4c4c5 22466{
e74cfd16 22467 const struct arm_arch_option_table *opt;
c19d1205
ZW
22468 char *ext = strchr (str, '+');
22469 int optlen;
7ed4c4c5 22470
c19d1205
ZW
22471 if (ext != NULL)
22472 optlen = ext - str;
7ed4c4c5 22473 else
c19d1205 22474 optlen = strlen (str);
7ed4c4c5 22475
c19d1205 22476 if (optlen == 0)
7ed4c4c5 22477 {
c19d1205 22478 as_bad (_("missing architecture name `%s'"), str);
c921be7d 22479 return FALSE;
7ed4c4c5
NC
22480 }
22481
c19d1205
ZW
22482 for (opt = arm_archs; opt->name != NULL; opt++)
22483 if (streq (opt->name, str))
22484 {
e74cfd16
PB
22485 march_cpu_opt = &opt->value;
22486 march_fpu_opt = &opt->default_fpu;
5f4273c7 22487 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 22488
c19d1205
ZW
22489 if (ext != NULL)
22490 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 22491
c921be7d 22492 return TRUE;
c19d1205
ZW
22493 }
22494
22495 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 22496 return FALSE;
7ed4c4c5 22497}
eb043451 22498
c921be7d 22499static bfd_boolean
c19d1205
ZW
22500arm_parse_fpu (char * str)
22501{
e74cfd16 22502 const struct arm_option_cpu_value_table * opt;
b99bd4ef 22503
c19d1205
ZW
22504 for (opt = arm_fpus; opt->name != NULL; opt++)
22505 if (streq (opt->name, str))
22506 {
e74cfd16 22507 mfpu_opt = &opt->value;
c921be7d 22508 return TRUE;
c19d1205 22509 }
b99bd4ef 22510
c19d1205 22511 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 22512 return FALSE;
c19d1205
ZW
22513}
22514
c921be7d 22515static bfd_boolean
c19d1205 22516arm_parse_float_abi (char * str)
b99bd4ef 22517{
e74cfd16 22518 const struct arm_option_value_table * opt;
b99bd4ef 22519
c19d1205
ZW
22520 for (opt = arm_float_abis; opt->name != NULL; opt++)
22521 if (streq (opt->name, str))
22522 {
22523 mfloat_abi_opt = opt->value;
c921be7d 22524 return TRUE;
c19d1205 22525 }
cc8a6dd0 22526
c19d1205 22527 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 22528 return FALSE;
c19d1205 22529}
b99bd4ef 22530
c19d1205 22531#ifdef OBJ_ELF
c921be7d 22532static bfd_boolean
c19d1205
ZW
22533arm_parse_eabi (char * str)
22534{
e74cfd16 22535 const struct arm_option_value_table *opt;
cc8a6dd0 22536
c19d1205
ZW
22537 for (opt = arm_eabis; opt->name != NULL; opt++)
22538 if (streq (opt->name, str))
22539 {
22540 meabi_flags = opt->value;
c921be7d 22541 return TRUE;
c19d1205
ZW
22542 }
22543 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 22544 return FALSE;
c19d1205
ZW
22545}
22546#endif
cc8a6dd0 22547
c921be7d 22548static bfd_boolean
e07e6e58
NC
22549arm_parse_it_mode (char * str)
22550{
c921be7d 22551 bfd_boolean ret = TRUE;
e07e6e58
NC
22552
22553 if (streq ("arm", str))
22554 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22555 else if (streq ("thumb", str))
22556 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22557 else if (streq ("always", str))
22558 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22559 else if (streq ("never", str))
22560 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22561 else
22562 {
22563 as_bad (_("unknown implicit IT mode `%s', should be "\
22564 "arm, thumb, always, or never."), str);
c921be7d 22565 ret = FALSE;
e07e6e58
NC
22566 }
22567
22568 return ret;
22569}
22570
c19d1205
ZW
22571struct arm_long_option_table arm_long_opts[] =
22572{
22573 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22574 arm_parse_cpu, NULL},
22575 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22576 arm_parse_arch, NULL},
22577 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22578 arm_parse_fpu, NULL},
22579 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22580 arm_parse_float_abi, NULL},
22581#ifdef OBJ_ELF
7fac0536 22582 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
22583 arm_parse_eabi, NULL},
22584#endif
e07e6e58
NC
22585 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22586 arm_parse_it_mode, NULL},
c19d1205
ZW
22587 {NULL, NULL, 0, NULL}
22588};
cc8a6dd0 22589
c19d1205
ZW
22590int
22591md_parse_option (int c, char * arg)
22592{
22593 struct arm_option_table *opt;
e74cfd16 22594 const struct arm_legacy_option_table *fopt;
c19d1205 22595 struct arm_long_option_table *lopt;
b99bd4ef 22596
c19d1205 22597 switch (c)
b99bd4ef 22598 {
c19d1205
ZW
22599#ifdef OPTION_EB
22600 case OPTION_EB:
22601 target_big_endian = 1;
22602 break;
22603#endif
cc8a6dd0 22604
c19d1205
ZW
22605#ifdef OPTION_EL
22606 case OPTION_EL:
22607 target_big_endian = 0;
22608 break;
22609#endif
b99bd4ef 22610
845b51d6
PB
22611 case OPTION_FIX_V4BX:
22612 fix_v4bx = TRUE;
22613 break;
22614
c19d1205
ZW
22615 case 'a':
22616 /* Listing option. Just ignore these, we don't support additional
22617 ones. */
22618 return 0;
b99bd4ef 22619
c19d1205
ZW
22620 default:
22621 for (opt = arm_opts; opt->option != NULL; opt++)
22622 {
22623 if (c == opt->option[0]
22624 && ((arg == NULL && opt->option[1] == 0)
22625 || streq (arg, opt->option + 1)))
22626 {
c19d1205 22627 /* If the option is deprecated, tell the user. */
278df34e 22628 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
22629 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22630 arg ? arg : "", _(opt->deprecated));
b99bd4ef 22631
c19d1205
ZW
22632 if (opt->var != NULL)
22633 *opt->var = opt->value;
cc8a6dd0 22634
c19d1205
ZW
22635 return 1;
22636 }
22637 }
b99bd4ef 22638
e74cfd16
PB
22639 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22640 {
22641 if (c == fopt->option[0]
22642 && ((arg == NULL && fopt->option[1] == 0)
22643 || streq (arg, fopt->option + 1)))
22644 {
e74cfd16 22645 /* If the option is deprecated, tell the user. */
278df34e 22646 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
22647 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22648 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
22649
22650 if (fopt->var != NULL)
22651 *fopt->var = &fopt->value;
22652
22653 return 1;
22654 }
22655 }
22656
c19d1205
ZW
22657 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22658 {
22659 /* These options are expected to have an argument. */
22660 if (c == lopt->option[0]
22661 && arg != NULL
22662 && strncmp (arg, lopt->option + 1,
22663 strlen (lopt->option + 1)) == 0)
22664 {
c19d1205 22665 /* If the option is deprecated, tell the user. */
278df34e 22666 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
22667 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22668 _(lopt->deprecated));
b99bd4ef 22669
c19d1205
ZW
22670 /* Call the sup-option parser. */
22671 return lopt->func (arg + strlen (lopt->option) - 1);
22672 }
22673 }
a737bd4d 22674
c19d1205
ZW
22675 return 0;
22676 }
a394c00f 22677
c19d1205
ZW
22678 return 1;
22679}
a394c00f 22680
c19d1205
ZW
22681void
22682md_show_usage (FILE * fp)
a394c00f 22683{
c19d1205
ZW
22684 struct arm_option_table *opt;
22685 struct arm_long_option_table *lopt;
a394c00f 22686
c19d1205 22687 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 22688
c19d1205
ZW
22689 for (opt = arm_opts; opt->option != NULL; opt++)
22690 if (opt->help != NULL)
22691 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 22692
c19d1205
ZW
22693 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22694 if (lopt->help != NULL)
22695 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 22696
c19d1205
ZW
22697#ifdef OPTION_EB
22698 fprintf (fp, _("\
22699 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
22700#endif
22701
c19d1205
ZW
22702#ifdef OPTION_EL
22703 fprintf (fp, _("\
22704 -EL assemble code for a little-endian cpu\n"));
a737bd4d 22705#endif
845b51d6
PB
22706
22707 fprintf (fp, _("\
22708 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 22709}
ee065d83
PB
22710
22711
22712#ifdef OBJ_ELF
62b3e311
PB
22713typedef struct
22714{
22715 int val;
22716 arm_feature_set flags;
22717} cpu_arch_ver_table;
22718
22719/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22720 least features first. */
22721static const cpu_arch_ver_table cpu_arch_ver[] =
22722{
22723 {1, ARM_ARCH_V4},
22724 {2, ARM_ARCH_V4T},
22725 {3, ARM_ARCH_V5},
ee3c0378 22726 {3, ARM_ARCH_V5T},
62b3e311
PB
22727 {4, ARM_ARCH_V5TE},
22728 {5, ARM_ARCH_V5TEJ},
22729 {6, ARM_ARCH_V6},
22730 {7, ARM_ARCH_V6Z},
7e806470 22731 {9, ARM_ARCH_V6K},
91e22acd 22732 {11, ARM_ARCH_V6M},
7e806470 22733 {8, ARM_ARCH_V6T2},
62b3e311
PB
22734 {10, ARM_ARCH_V7A},
22735 {10, ARM_ARCH_V7R},
22736 {10, ARM_ARCH_V7M},
22737 {0, ARM_ARCH_NONE}
22738};
22739
ee3c0378
AS
22740/* Set an attribute if it has not already been set by the user. */
22741static void
22742aeabi_set_attribute_int (int tag, int value)
22743{
22744 if (tag < 1
22745 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22746 || !attributes_set_explicitly[tag])
22747 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22748}
22749
22750static void
22751aeabi_set_attribute_string (int tag, const char *value)
22752{
22753 if (tag < 1
22754 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22755 || !attributes_set_explicitly[tag])
22756 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22757}
22758
ee065d83
PB
22759/* Set the public EABI object attributes. */
22760static void
22761aeabi_set_public_attributes (void)
22762{
22763 int arch;
e74cfd16 22764 arm_feature_set flags;
62b3e311
PB
22765 arm_feature_set tmp;
22766 const cpu_arch_ver_table *p;
ee065d83
PB
22767
22768 /* Choose the architecture based on the capabilities of the requested cpu
22769 (if any) and/or the instructions actually used. */
e74cfd16
PB
22770 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22771 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22772 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
22773 /*Allow the user to override the reported architecture. */
22774 if (object_arch)
22775 {
22776 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22777 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22778 }
22779
62b3e311
PB
22780 tmp = flags;
22781 arch = 0;
22782 for (p = cpu_arch_ver; p->val; p++)
22783 {
22784 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22785 {
22786 arch = p->val;
22787 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22788 }
22789 }
ee065d83 22790
9e3c6df6
PB
22791 /* The table lookup above finds the last architecture to contribute
22792 a new feature. Unfortunately, Tag13 is a subset of the union of
22793 v6T2 and v7-M, so it is never seen as contributing a new feature.
22794 We can not search for the last entry which is entirely used,
22795 because if no CPU is specified we build up only those flags
22796 actually used. Perhaps we should separate out the specified
22797 and implicit cases. Avoid taking this path for -march=all by
22798 checking for contradictory v7-A / v7-M features. */
22799 if (arch == 10
22800 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
22801 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
22802 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
22803 arch = 13;
22804
ee065d83
PB
22805 /* Tag_CPU_name. */
22806 if (selected_cpu_name[0])
22807 {
91d6fa6a 22808 char *q;
ee065d83 22809
91d6fa6a
NC
22810 q = selected_cpu_name;
22811 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
22812 {
22813 int i;
5f4273c7 22814
91d6fa6a
NC
22815 q += 4;
22816 for (i = 0; q[i]; i++)
22817 q[i] = TOUPPER (q[i]);
ee065d83 22818 }
91d6fa6a 22819 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 22820 }
62f3b8c8 22821
ee065d83 22822 /* Tag_CPU_arch. */
ee3c0378 22823 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 22824
62b3e311
PB
22825 /* Tag_CPU_arch_profile. */
22826 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 22827 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 22828 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 22829 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 22830 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 22831 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 22832
ee065d83 22833 /* Tag_ARM_ISA_use. */
ee3c0378
AS
22834 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22835 || arch == 0)
22836 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 22837
ee065d83 22838 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
22839 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22840 || arch == 0)
22841 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22842 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 22843
ee065d83 22844 /* Tag_VFP_arch. */
62f3b8c8
PB
22845 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
22846 aeabi_set_attribute_int (Tag_VFP_arch,
22847 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
22848 ? 5 : 6);
22849 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 22850 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 22851 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
22852 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22853 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22854 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22855 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22856 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22857 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 22858
4547cb56
NC
22859 /* Tag_ABI_HardFP_use. */
22860 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
22861 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
22862 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
22863
ee065d83 22864 /* Tag_WMMX_arch. */
ee3c0378
AS
22865 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22866 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22867 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22868 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 22869
ee3c0378 22870 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 22871 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
22872 aeabi_set_attribute_int
22873 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
22874 ? 2 : 1));
22875
ee3c0378 22876 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 22877 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 22878 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56
NC
22879
22880 /* Tag_DIV_use. */
22881 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
22882 aeabi_set_attribute_int (Tag_DIV_use, 0);
22883 /* Fill this in when gas supports v7a sdiv/udiv.
22884 else if (... v7a with div extension used ...)
22885 aeabi_set_attribute_int (Tag_DIV_use, 2); */
22886 else
22887 aeabi_set_attribute_int (Tag_DIV_use, 1);
ee065d83
PB
22888}
22889
104d59d1 22890/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
22891void
22892arm_md_end (void)
22893{
ee065d83
PB
22894 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22895 return;
22896
22897 aeabi_set_public_attributes ();
ee065d83 22898}
8463be01 22899#endif /* OBJ_ELF */
ee065d83
PB
22900
22901
22902/* Parse a .cpu directive. */
22903
22904static void
22905s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22906{
e74cfd16 22907 const struct arm_cpu_option_table *opt;
ee065d83
PB
22908 char *name;
22909 char saved_char;
22910
22911 name = input_line_pointer;
5f4273c7 22912 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
22913 input_line_pointer++;
22914 saved_char = *input_line_pointer;
22915 *input_line_pointer = 0;
22916
22917 /* Skip the first "all" entry. */
22918 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
22919 if (streq (opt->name, name))
22920 {
e74cfd16
PB
22921 mcpu_cpu_opt = &opt->value;
22922 selected_cpu = opt->value;
ee065d83 22923 if (opt->canonical_name)
5f4273c7 22924 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
22925 else
22926 {
22927 int i;
22928 for (i = 0; opt->name[i]; i++)
22929 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22930 selected_cpu_name[i] = 0;
22931 }
e74cfd16 22932 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
22933 *input_line_pointer = saved_char;
22934 demand_empty_rest_of_line ();
22935 return;
22936 }
22937 as_bad (_("unknown cpu `%s'"), name);
22938 *input_line_pointer = saved_char;
22939 ignore_rest_of_line ();
22940}
22941
22942
22943/* Parse a .arch directive. */
22944
22945static void
22946s_arm_arch (int ignored ATTRIBUTE_UNUSED)
22947{
e74cfd16 22948 const struct arm_arch_option_table *opt;
ee065d83
PB
22949 char saved_char;
22950 char *name;
22951
22952 name = input_line_pointer;
5f4273c7 22953 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
22954 input_line_pointer++;
22955 saved_char = *input_line_pointer;
22956 *input_line_pointer = 0;
22957
22958 /* Skip the first "all" entry. */
22959 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22960 if (streq (opt->name, name))
22961 {
e74cfd16
PB
22962 mcpu_cpu_opt = &opt->value;
22963 selected_cpu = opt->value;
5f4273c7 22964 strcpy (selected_cpu_name, opt->name);
e74cfd16 22965 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
22966 *input_line_pointer = saved_char;
22967 demand_empty_rest_of_line ();
22968 return;
22969 }
22970
22971 as_bad (_("unknown architecture `%s'\n"), name);
22972 *input_line_pointer = saved_char;
22973 ignore_rest_of_line ();
22974}
22975
22976
7a1d4c38
PB
22977/* Parse a .object_arch directive. */
22978
22979static void
22980s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
22981{
22982 const struct arm_arch_option_table *opt;
22983 char saved_char;
22984 char *name;
22985
22986 name = input_line_pointer;
5f4273c7 22987 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
22988 input_line_pointer++;
22989 saved_char = *input_line_pointer;
22990 *input_line_pointer = 0;
22991
22992 /* Skip the first "all" entry. */
22993 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22994 if (streq (opt->name, name))
22995 {
22996 object_arch = &opt->value;
22997 *input_line_pointer = saved_char;
22998 demand_empty_rest_of_line ();
22999 return;
23000 }
23001
23002 as_bad (_("unknown architecture `%s'\n"), name);
23003 *input_line_pointer = saved_char;
23004 ignore_rest_of_line ();
23005}
23006
ee065d83
PB
23007/* Parse a .fpu directive. */
23008
23009static void
23010s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23011{
e74cfd16 23012 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
23013 char saved_char;
23014 char *name;
23015
23016 name = input_line_pointer;
5f4273c7 23017 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23018 input_line_pointer++;
23019 saved_char = *input_line_pointer;
23020 *input_line_pointer = 0;
5f4273c7 23021
ee065d83
PB
23022 for (opt = arm_fpus; opt->name != NULL; opt++)
23023 if (streq (opt->name, name))
23024 {
e74cfd16
PB
23025 mfpu_opt = &opt->value;
23026 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23027 *input_line_pointer = saved_char;
23028 demand_empty_rest_of_line ();
23029 return;
23030 }
23031
23032 as_bad (_("unknown floating point format `%s'\n"), name);
23033 *input_line_pointer = saved_char;
23034 ignore_rest_of_line ();
23035}
ee065d83 23036
794ba86a 23037/* Copy symbol information. */
f31fef98 23038
794ba86a
DJ
23039void
23040arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23041{
23042 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23043}
e04befd0 23044
f31fef98 23045#ifdef OBJ_ELF
e04befd0
AS
23046/* Given a symbolic attribute NAME, return the proper integer value.
23047 Returns -1 if the attribute is not known. */
f31fef98 23048
e04befd0
AS
23049int
23050arm_convert_symbolic_attribute (const char *name)
23051{
f31fef98
NC
23052 static const struct
23053 {
23054 const char * name;
23055 const int tag;
23056 }
23057 attribute_table[] =
23058 {
23059 /* When you modify this table you should
23060 also modify the list in doc/c-arm.texi. */
e04befd0 23061#define T(tag) {#tag, tag}
f31fef98
NC
23062 T (Tag_CPU_raw_name),
23063 T (Tag_CPU_name),
23064 T (Tag_CPU_arch),
23065 T (Tag_CPU_arch_profile),
23066 T (Tag_ARM_ISA_use),
23067 T (Tag_THUMB_ISA_use),
75375b3e 23068 T (Tag_FP_arch),
f31fef98
NC
23069 T (Tag_VFP_arch),
23070 T (Tag_WMMX_arch),
23071 T (Tag_Advanced_SIMD_arch),
23072 T (Tag_PCS_config),
23073 T (Tag_ABI_PCS_R9_use),
23074 T (Tag_ABI_PCS_RW_data),
23075 T (Tag_ABI_PCS_RO_data),
23076 T (Tag_ABI_PCS_GOT_use),
23077 T (Tag_ABI_PCS_wchar_t),
23078 T (Tag_ABI_FP_rounding),
23079 T (Tag_ABI_FP_denormal),
23080 T (Tag_ABI_FP_exceptions),
23081 T (Tag_ABI_FP_user_exceptions),
23082 T (Tag_ABI_FP_number_model),
75375b3e 23083 T (Tag_ABI_align_needed),
f31fef98 23084 T (Tag_ABI_align8_needed),
75375b3e 23085 T (Tag_ABI_align_preserved),
f31fef98
NC
23086 T (Tag_ABI_align8_preserved),
23087 T (Tag_ABI_enum_size),
23088 T (Tag_ABI_HardFP_use),
23089 T (Tag_ABI_VFP_args),
23090 T (Tag_ABI_WMMX_args),
23091 T (Tag_ABI_optimization_goals),
23092 T (Tag_ABI_FP_optimization_goals),
23093 T (Tag_compatibility),
23094 T (Tag_CPU_unaligned_access),
75375b3e 23095 T (Tag_FP_HP_extension),
f31fef98
NC
23096 T (Tag_VFP_HP_extension),
23097 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
23098 T (Tag_MPextension_use),
23099 T (Tag_DIV_use),
f31fef98
NC
23100 T (Tag_nodefaults),
23101 T (Tag_also_compatible_with),
23102 T (Tag_conformance),
23103 T (Tag_T2EE_use),
23104 T (Tag_Virtualization_use),
cd21e546 23105 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 23106#undef T
f31fef98 23107 };
e04befd0
AS
23108 unsigned int i;
23109
23110 if (name == NULL)
23111 return -1;
23112
f31fef98 23113 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 23114 if (streq (name, attribute_table[i].name))
e04befd0
AS
23115 return attribute_table[i].tag;
23116
23117 return -1;
23118}
267bf995
RR
23119
23120
23121/* Apply sym value for relocations only in the case that
23122 they are for local symbols and you have the respective
23123 architectural feature for blx and simple switches. */
23124int
23125arm_apply_sym_value (struct fix * fixP)
23126{
23127 if (fixP->fx_addsy
23128 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23129 && !S_IS_EXTERNAL (fixP->fx_addsy))
23130 {
23131 switch (fixP->fx_r_type)
23132 {
23133 case BFD_RELOC_ARM_PCREL_BLX:
23134 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23135 if (ARM_IS_FUNC (fixP->fx_addsy))
23136 return 1;
23137 break;
23138
23139 case BFD_RELOC_ARM_PCREL_CALL:
23140 case BFD_RELOC_THUMB_PCREL_BLX:
23141 if (THUMB_IS_FUNC (fixP->fx_addsy))
23142 return 1;
23143 break;
23144
23145 default:
23146 break;
23147 }
23148
23149 }
23150 return 0;
23151}
f31fef98 23152#endif /* OBJ_ELF */