]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: FIX: Return longer map for failure setting
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107};
108
109/* RAID map configuration infos. */
110struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116#define IMSM_T_STATE_NORMAL 0
117#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
118#define IMSM_T_STATE_DEGRADED 2
119#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
120 __u8 raid_level;
121#define IMSM_T_RAID0 0
122#define IMSM_T_RAID1 1
123#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 127 __u8 ddf;
cdddbdbc 128 __u32 filler[7]; /* expansion area */
7eef0453 129#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
131 * top byte contains some flags
132 */
cdddbdbc
DW
133} __attribute__ ((packed));
134
135struct imsm_vol {
f8f603f1 136 __u32 curr_migr_unit;
fe7ed8cb 137 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 138 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
139#define MIGR_INIT 0
140#define MIGR_REBUILD 1
141#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142#define MIGR_GEN_MIGR 3
143#define MIGR_STATE_CHANGE 4
1484e727 144#define MIGR_REPAIR 5
cdddbdbc
DW
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
fe7ed8cb
DW
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
cdddbdbc
DW
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153} __attribute__ ((packed));
154
155struct imsm_dev {
fe7ed8cb 156 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
157 __u32 size_low;
158 __u32 size_high;
fe7ed8cb
DW
159#define DEV_BOOTABLE __cpu_to_le32(0x01)
160#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161#define DEV_READ_COALESCING __cpu_to_le32(0x04)
162#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184} __attribute__ ((packed));
185
186struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202#define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
604b746f 206 /* here comes BBM logs */
cdddbdbc
DW
207} __attribute__ ((packed));
208
604b746f
JD
209#define BBM_LOG_MAX_ENTRIES 254
210
211struct bbm_log_entry {
212 __u64 defective_block_start;
213#define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217} __attribute__ ((__packed__));
218
219struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226} __attribute__ ((__packed__));
227
228
cdddbdbc
DW
229#ifndef MDASSEMBLE
230static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231#endif
232
8e59f3d8
AK
233#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266} __attribute__ ((__packed__));
267
1484e727
DW
268static __u8 migr_type(struct imsm_dev *dev)
269{
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275}
276
277static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278{
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289}
290
87eb16df 291static unsigned int sector_count(__u32 bytes)
cdddbdbc 292{
87eb16df
DW
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294}
cdddbdbc 295
87eb16df
DW
296static unsigned int mpb_sectors(struct imsm_super *mpb)
297{
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
299}
300
ba2de7ba
DW
301struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
f21e18ca 304 unsigned index;
ba2de7ba
DW
305};
306
88654014
LM
307struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312};
313
1a64be56
LM
314enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317};
cdddbdbc
DW
318/* internal representation of IMSM metadata */
319struct intel_super {
320 union {
949c47a0
DW
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 323 };
8e59f3d8
AK
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
949c47a0 328 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
c2c087e6 331 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 332 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 333 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 334 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 335 struct intel_dev *devlist;
cdddbdbc
DW
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
b9f594fe 342 struct imsm_disk disk;
cdddbdbc 343 int fd;
0dcecb2e
DW
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
efb30e7f 346 int raiddisk; /* slot to fill in autolayout */
1a64be56 347 enum action action;
ca0748fa 348 } *disks, *current_disk;
1a64be56
LM
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
47ee5a45 351 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 352 struct bbm_log *bbm_log;
88654014 353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 354 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356};
357
358struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
cdddbdbc
DW
363};
364
c2c087e6
DW
365struct extent {
366 unsigned long long start, size;
367};
368
694575e7
KW
369/* definitions of reshape process types */
370enum imsm_reshape_type {
371 CH_TAKEOVER,
b5347799 372 CH_MIGRATION,
694575e7
KW
373};
374
88758e9d
DW
375/* definition of messages passed to imsm_process_update */
376enum imsm_update_type {
377 update_activate_spare,
8273f55e 378 update_create_array,
33414a01 379 update_kill_array,
aa534678 380 update_rename_array,
1a64be56 381 update_add_remove_disk,
78b10e66 382 update_reshape_container_disks,
48c5303a 383 update_reshape_migration,
2d40f3a1
AK
384 update_takeover,
385 update_general_migration_checkpoint,
88758e9d
DW
386};
387
388struct imsm_update_activate_spare {
389 enum imsm_update_type type;
d23fe947 390 struct dl *dl;
88758e9d
DW
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394};
395
78b10e66
N
396struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404};
405
bb025c2f
KW
406enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409};
410struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414};
78b10e66
N
415
416struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
48c5303a
PC
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422};
423
424struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
4bba0439 433 int new_chunksize;
48c5303a 434
d195167d 435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
436};
437
2d40f3a1
AK
438struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441};
442
54c2c1ea
DW
443struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445};
446
8273f55e
DW
447struct imsm_update_create_array {
448 enum imsm_update_type type;
8273f55e 449 int dev_idx;
6a3e913e 450 struct imsm_dev dev;
8273f55e
DW
451};
452
33414a01
DW
453struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456};
457
aa534678
DW
458struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462};
463
1a64be56 464struct imsm_update_add_remove_disk {
43dad3d6
DW
465 enum imsm_update_type type;
466};
467
88654014
LM
468
469static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473};
474
475const char *get_sys_dev_type(enum sys_dev_type type)
476{
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481}
482
483static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484{
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494}
495
496static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497{
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504}
505
b4cf4cba 506static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
507{
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532}
533
534static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535{
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570}
571
572
d424212e
N
573static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
f2f5c343 575
cdddbdbc
DW
576static struct supertype *match_metadata_desc_imsm(char *arg)
577{
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
4e9d2186
AW
586 if (!st)
587 return NULL;
ef609477 588 memset(st, 0, sizeof(*st));
d1d599ea 589 st->container_dev = NoMdDev;
cdddbdbc
DW
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595}
596
0e600426 597#ifndef MDASSEMBLE
cdddbdbc
DW
598static __u8 *get_imsm_version(struct imsm_super *mpb)
599{
600 return &mpb->sig[MPB_SIG_LEN];
601}
9e2d750d 602#endif
cdddbdbc 603
949c47a0
DW
604/* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 608{
949c47a0 609 if (index >= mpb->num_disks)
cdddbdbc
DW
610 return NULL;
611 return &mpb->disk[index];
612}
613
95d07a2c
LM
614/* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 618{
b9f594fe
DW
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
95d07a2c
LM
623 return d;
624
625 return NULL;
626}
627/* retrieve a disk from the parsed metadata */
628static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629{
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
b9f594fe 636 return NULL;
949c47a0
DW
637}
638
639/* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
643{
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
97f734fd
N
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
cdddbdbc
DW
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654}
655
a965f303
DW
656static size_t sizeof_imsm_map(struct imsm_map *map)
657{
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659}
660
661struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 662{
5e7b0330
AK
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
9535fc47 668 * -2 - we return longer map /excluding uninitialized state/
5e7b0330 669 */
a965f303 670 struct imsm_map *map = &dev->vol.map[0];
9535fc47 671 struct imsm_map *map2 = NULL;
a965f303 672
9535fc47
AK
673 if (dev->vol.migr_state)
674 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 675
9535fc47
AK
676 switch (second_map) {
677 case 0:
678 break;
679 case 1:
680 map = map2;
681 break;
682 case -1:
683 if (map2)
684 map = map2;
685 break;
686 case -2:
687 if (map2
688 && map2->map_state != IMSM_T_STATE_UNINITIALIZED
689 && map2->num_members > map->num_members)
690 map = map2;
691 break;
692 default:
693 map = NULL;
694 }
695 return map;
5e7b0330 696
a965f303 697}
cdddbdbc 698
3393c6af
DW
699/* return the size of the device.
700 * migr_state increases the returned size if map[0] were to be duplicated
701 */
702static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
703{
704 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
705 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
706
707 /* migrating means an additional map */
a965f303
DW
708 if (dev->vol.migr_state)
709 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
710 else if (migr_state)
711 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
712
713 return size;
714}
715
54c2c1ea
DW
716#ifndef MDASSEMBLE
717/* retrieve disk serial number list from a metadata update */
718static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
719{
720 void *u = update;
721 struct disk_info *inf;
722
723 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
724 sizeof_imsm_dev(&update->dev, 0);
725
726 return inf;
727}
728#endif
729
949c47a0 730static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
731{
732 int offset;
733 int i;
734 void *_mpb = mpb;
735
949c47a0 736 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
737 return NULL;
738
739 /* devices start after all disks */
740 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
741
742 for (i = 0; i <= index; i++)
743 if (i == index)
744 return _mpb + offset;
745 else
3393c6af 746 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
747
748 return NULL;
749}
750
949c47a0
DW
751static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
752{
ba2de7ba
DW
753 struct intel_dev *dv;
754
949c47a0
DW
755 if (index >= super->anchor->num_raid_devs)
756 return NULL;
ba2de7ba
DW
757 for (dv = super->devlist; dv; dv = dv->next)
758 if (dv->index == index)
759 return dv->dev;
760 return NULL;
949c47a0
DW
761}
762
98130f40
AK
763/*
764 * for second_map:
765 * == 0 get first map
766 * == 1 get second map
767 * == -1 than get map according to the current migr_state
768 */
769static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
770 int slot,
771 int second_map)
7eef0453
DW
772{
773 struct imsm_map *map;
774
5e7b0330 775 map = get_imsm_map(dev, second_map);
7eef0453 776
ff077194
DW
777 /* top byte identifies disk under rebuild */
778 return __le32_to_cpu(map->disk_ord_tbl[slot]);
779}
780
781#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 782static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 783{
98130f40 784 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
785
786 return ord_to_idx(ord);
7eef0453
DW
787}
788
be73972f
DW
789static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
790{
791 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
792}
793
f21e18ca 794static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
795{
796 int slot;
797 __u32 ord;
798
799 for (slot = 0; slot < map->num_members; slot++) {
800 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
801 if (ord_to_idx(ord) == idx)
802 return slot;
803 }
804
805 return -1;
806}
807
cdddbdbc
DW
808static int get_imsm_raid_level(struct imsm_map *map)
809{
810 if (map->raid_level == 1) {
811 if (map->num_members == 2)
812 return 1;
813 else
814 return 10;
815 }
816
817 return map->raid_level;
818}
819
c2c087e6
DW
820static int cmp_extent(const void *av, const void *bv)
821{
822 const struct extent *a = av;
823 const struct extent *b = bv;
824 if (a->start < b->start)
825 return -1;
826 if (a->start > b->start)
827 return 1;
828 return 0;
829}
830
0dcecb2e 831static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 832{
c2c087e6 833 int memberships = 0;
620b1713 834 int i;
c2c087e6 835
949c47a0
DW
836 for (i = 0; i < super->anchor->num_raid_devs; i++) {
837 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 838 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 839
620b1713
DW
840 if (get_imsm_disk_slot(map, dl->index) >= 0)
841 memberships++;
c2c087e6 842 }
0dcecb2e
DW
843
844 return memberships;
845}
846
b81221b7
CA
847static __u32 imsm_min_reserved_sectors(struct intel_super *super);
848
0dcecb2e
DW
849static struct extent *get_extents(struct intel_super *super, struct dl *dl)
850{
851 /* find a list of used extents on the given physical device */
852 struct extent *rv, *e;
620b1713 853 int i;
0dcecb2e 854 int memberships = count_memberships(dl, super);
b276dd33
DW
855 __u32 reservation;
856
857 /* trim the reserved area for spares, so they can join any array
858 * regardless of whether the OROM has assigned sectors from the
859 * IMSM_RESERVED_SECTORS region
860 */
861 if (dl->index == -1)
b81221b7 862 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
863 else
864 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 865
c2c087e6
DW
866 rv = malloc(sizeof(struct extent) * (memberships + 1));
867 if (!rv)
868 return NULL;
869 e = rv;
870
949c47a0
DW
871 for (i = 0; i < super->anchor->num_raid_devs; i++) {
872 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 873 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 874
620b1713
DW
875 if (get_imsm_disk_slot(map, dl->index) >= 0) {
876 e->start = __le32_to_cpu(map->pba_of_lba0);
877 e->size = __le32_to_cpu(map->blocks_per_member);
878 e++;
c2c087e6
DW
879 }
880 }
881 qsort(rv, memberships, sizeof(*rv), cmp_extent);
882
14e8215b
DW
883 /* determine the start of the metadata
884 * when no raid devices are defined use the default
885 * ...otherwise allow the metadata to truncate the value
886 * as is the case with older versions of imsm
887 */
888 if (memberships) {
889 struct extent *last = &rv[memberships - 1];
890 __u32 remainder;
891
892 remainder = __le32_to_cpu(dl->disk.total_blocks) -
893 (last->start + last->size);
dda5855f
DW
894 /* round down to 1k block to satisfy precision of the kernel
895 * 'size' interface
896 */
897 remainder &= ~1UL;
898 /* make sure remainder is still sane */
f21e18ca 899 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 900 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
901 if (reservation > remainder)
902 reservation = remainder;
903 }
904 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
905 e->size = 0;
906 return rv;
907}
908
14e8215b
DW
909/* try to determine how much space is reserved for metadata from
910 * the last get_extents() entry, otherwise fallback to the
911 * default
912 */
913static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
914{
915 struct extent *e;
916 int i;
917 __u32 rv;
918
919 /* for spares just return a minimal reservation which will grow
920 * once the spare is picked up by an array
921 */
922 if (dl->index == -1)
923 return MPB_SECTOR_CNT;
924
925 e = get_extents(super, dl);
926 if (!e)
927 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
928
929 /* scroll to last entry */
930 for (i = 0; e[i].size; i++)
931 continue;
932
933 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
934
935 free(e);
936
937 return rv;
938}
939
25ed7e59
DW
940static int is_spare(struct imsm_disk *disk)
941{
942 return (disk->status & SPARE_DISK) == SPARE_DISK;
943}
944
945static int is_configured(struct imsm_disk *disk)
946{
947 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
948}
949
950static int is_failed(struct imsm_disk *disk)
951{
952 return (disk->status & FAILED_DISK) == FAILED_DISK;
953}
954
b81221b7
CA
955/* try to determine how much space is reserved for metadata from
956 * the last get_extents() entry on the smallest active disk,
957 * otherwise fallback to the default
958 */
959static __u32 imsm_min_reserved_sectors(struct intel_super *super)
960{
961 struct extent *e;
962 int i;
963 __u32 min_active, remainder;
964 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
965 struct dl *dl, *dl_min = NULL;
966
967 if (!super)
968 return rv;
969
970 min_active = 0;
971 for (dl = super->disks; dl; dl = dl->next) {
972 if (dl->index < 0)
973 continue;
974 if (dl->disk.total_blocks < min_active || min_active == 0) {
975 dl_min = dl;
976 min_active = dl->disk.total_blocks;
977 }
978 }
979 if (!dl_min)
980 return rv;
981
982 /* find last lba used by subarrays on the smallest active disk */
983 e = get_extents(super, dl_min);
984 if (!e)
985 return rv;
986 for (i = 0; e[i].size; i++)
987 continue;
988
989 remainder = min_active - e[i].start;
990 free(e);
991
992 /* to give priority to recovery we should not require full
993 IMSM_RESERVED_SECTORS from the spare */
994 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
995
996 /* if real reservation is smaller use that value */
997 return (remainder < rv) ? remainder : rv;
998}
999
80e7f8c3
AC
1000/* Return minimum size of a spare that can be used in this array*/
1001static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1002{
1003 struct intel_super *super = st->sb;
1004 struct dl *dl;
1005 struct extent *e;
1006 int i;
1007 unsigned long long rv = 0;
1008
1009 if (!super)
1010 return rv;
1011 /* find first active disk in array */
1012 dl = super->disks;
1013 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1014 dl = dl->next;
1015 if (!dl)
1016 return rv;
1017 /* find last lba used by subarrays */
1018 e = get_extents(super, dl);
1019 if (!e)
1020 return rv;
1021 for (i = 0; e[i].size; i++)
1022 continue;
1023 if (i > 0)
1024 rv = e[i-1].start + e[i-1].size;
1025 free(e);
b81221b7 1026
80e7f8c3 1027 /* add the amount of space needed for metadata */
b81221b7
CA
1028 rv = rv + imsm_min_reserved_sectors(super);
1029
80e7f8c3
AC
1030 return rv * 512;
1031}
1032
1799c9e8 1033#ifndef MDASSEMBLE
c47b0ff6
AK
1034static __u64 blocks_per_migr_unit(struct intel_super *super,
1035 struct imsm_dev *dev);
1e5c6983 1036
464d40e8
LD
1037static int is_gen_migration(struct imsm_dev *dev);
1038
c47b0ff6
AK
1039static void print_imsm_dev(struct intel_super *super,
1040 struct imsm_dev *dev,
1041 char *uuid,
1042 int disk_idx)
cdddbdbc
DW
1043{
1044 __u64 sz;
0d80bb2f 1045 int slot, i;
a965f303 1046 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 1047 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 1048 __u32 ord;
cdddbdbc
DW
1049
1050 printf("\n");
1e7bc0ed 1051 printf("[%.16s]:\n", dev->volume);
44470971 1052 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1053 printf(" RAID Level : %d", get_imsm_raid_level(map));
1054 if (map2)
1055 printf(" <-- %d", get_imsm_raid_level(map2));
1056 printf("\n");
1057 printf(" Members : %d", map->num_members);
1058 if (map2)
1059 printf(" <-- %d", map2->num_members);
1060 printf("\n");
0d80bb2f
DW
1061 printf(" Slots : [");
1062 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 1063 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
1064 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1065 }
dd8bcb3b
AK
1066 printf("]");
1067 if (map2) {
1068 printf(" <-- [");
1069 for (i = 0; i < map2->num_members; i++) {
1070 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1071 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1072 }
1073 printf("]");
1074 }
1075 printf("\n");
7095bccb
AK
1076 printf(" Failed disk : ");
1077 if (map->failed_disk_num == 0xff)
1078 printf("none");
1079 else
1080 printf("%i", map->failed_disk_num);
1081 printf("\n");
620b1713
DW
1082 slot = get_imsm_disk_slot(map, disk_idx);
1083 if (slot >= 0) {
98130f40 1084 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
1085 printf(" This Slot : %d%s\n", slot,
1086 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1087 } else
cdddbdbc
DW
1088 printf(" This Slot : ?\n");
1089 sz = __le32_to_cpu(dev->size_high);
1090 sz <<= 32;
1091 sz += __le32_to_cpu(dev->size_low);
1092 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1093 human_size(sz * 512));
1094 sz = __le32_to_cpu(map->blocks_per_member);
1095 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1096 human_size(sz * 512));
1097 printf(" Sector Offset : %u\n",
1098 __le32_to_cpu(map->pba_of_lba0));
1099 printf(" Num Stripes : %u\n",
1100 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 1101 printf(" Chunk Size : %u KiB",
cdddbdbc 1102 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1103 if (map2)
1104 printf(" <-- %u KiB",
1105 __le16_to_cpu(map2->blocks_per_strip) / 2);
1106 printf("\n");
cdddbdbc 1107 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1108 printf(" Migrate State : ");
1484e727
DW
1109 if (dev->vol.migr_state) {
1110 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1111 printf("initialize\n");
1484e727 1112 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1113 printf("rebuild\n");
1484e727 1114 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1115 printf("check\n");
1484e727 1116 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1117 printf("general migration\n");
1484e727 1118 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1119 printf("state change\n");
1484e727 1120 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1121 printf("repair\n");
1484e727 1122 else
8655a7b1
DW
1123 printf("<unknown:%d>\n", migr_type(dev));
1124 } else
1125 printf("idle\n");
3393c6af
DW
1126 printf(" Map State : %s", map_state_str[map->map_state]);
1127 if (dev->vol.migr_state) {
1128 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1129
b10b37b8 1130 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1131 printf("\n Checkpoint : %u ",
1132 __le32_to_cpu(dev->vol.curr_migr_unit));
1133 if ((is_gen_migration(dev)) && (super->disks->index > 1))
1134 printf("(N/A)");
1135 else
1136 printf("(%llu)", (unsigned long long)
1137 blocks_per_migr_unit(super, dev));
3393c6af
DW
1138 }
1139 printf("\n");
cdddbdbc 1140 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1141}
1142
0ec1f4e8 1143static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1144{
1f24f035 1145 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1146 __u64 sz;
1147
0ec1f4e8 1148 if (index < -1 || !disk)
e9d82038
DW
1149 return;
1150
cdddbdbc 1151 printf("\n");
1f24f035 1152 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1153 if (index >= 0)
1154 printf(" Disk%02d Serial : %s\n", index, str);
1155 else
1156 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1157 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1158 is_configured(disk) ? " active" : "",
1159 is_failed(disk) ? " failed" : "");
cdddbdbc 1160 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1161 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1162 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1163 human_size(sz * 512));
1164}
1165
520e69e2
AK
1166void examine_migr_rec_imsm(struct intel_super *super)
1167{
1168 struct migr_record *migr_rec = super->migr_rec;
1169 struct imsm_super *mpb = super->anchor;
1170 int i;
1171
1172 for (i = 0; i < mpb->num_raid_devs; i++) {
1173 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1174 if (is_gen_migration(dev) == 0)
1175 continue;
1176
1177 printf("\nMigration Record Information:");
1178 if (super->disks->index > 1) {
1179 printf(" Empty\n ");
1180 printf("Examine one of first two disks in array\n");
1181 break;
1182 }
1183 printf("\n Status : ");
1184 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1185 printf("Normal\n");
1186 else
1187 printf("Contains Data\n");
1188 printf(" Current Unit : %u\n",
1189 __le32_to_cpu(migr_rec->curr_migr_unit));
1190 printf(" Family : %u\n",
1191 __le32_to_cpu(migr_rec->family_num));
1192 printf(" Ascending : %u\n",
1193 __le32_to_cpu(migr_rec->ascending_migr));
1194 printf(" Blocks Per Unit : %u\n",
1195 __le32_to_cpu(migr_rec->blocks_per_unit));
1196 printf(" Dest. Depth Per Unit : %u\n",
1197 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1198 printf(" Checkpoint Area pba : %u\n",
1199 __le32_to_cpu(migr_rec->ckpt_area_pba));
1200 printf(" First member lba : %u\n",
1201 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1202 printf(" Total Number of Units : %u\n",
1203 __le32_to_cpu(migr_rec->num_migr_units));
1204 printf(" Size of volume : %u\n",
1205 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1206 printf(" Expansion space for LBA64 : %u\n",
1207 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1208 printf(" Record was read from : %u\n",
1209 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1210
1211 break;
1212 }
1213}
9e2d750d 1214#endif /* MDASSEMBLE */
19482bcc
AK
1215/*******************************************************************************
1216 * function: imsm_check_attributes
1217 * Description: Function checks if features represented by attributes flags
1218 * are supported by mdadm.
1219 * Parameters:
1220 * attributes - Attributes read from metadata
1221 * Returns:
1222 * 0 - passed attributes contains unsupported features flags
1223 * 1 - all features are supported
1224 ******************************************************************************/
1225static int imsm_check_attributes(__u32 attributes)
1226{
1227 int ret_val = 1;
418f9b36
N
1228 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1229
1230 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1231
1232 not_supported &= attributes;
1233 if (not_supported) {
418f9b36
N
1234 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1235 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1236 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1237 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1238 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1239 }
1240 if (not_supported & MPB_ATTRIB_2TB) {
1241 dprintf("\t\tMPB_ATTRIB_2TB\n");
1242 not_supported ^= MPB_ATTRIB_2TB;
1243 }
1244 if (not_supported & MPB_ATTRIB_RAID0) {
1245 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1246 not_supported ^= MPB_ATTRIB_RAID0;
1247 }
1248 if (not_supported & MPB_ATTRIB_RAID1) {
1249 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1250 not_supported ^= MPB_ATTRIB_RAID1;
1251 }
1252 if (not_supported & MPB_ATTRIB_RAID10) {
1253 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1254 not_supported ^= MPB_ATTRIB_RAID10;
1255 }
1256 if (not_supported & MPB_ATTRIB_RAID1E) {
1257 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1258 not_supported ^= MPB_ATTRIB_RAID1E;
1259 }
1260 if (not_supported & MPB_ATTRIB_RAID5) {
1261 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1262 not_supported ^= MPB_ATTRIB_RAID5;
1263 }
1264 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1265 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1266 not_supported ^= MPB_ATTRIB_RAIDCNG;
1267 }
1268 if (not_supported & MPB_ATTRIB_BBM) {
1269 dprintf("\t\tMPB_ATTRIB_BBM\n");
1270 not_supported ^= MPB_ATTRIB_BBM;
1271 }
1272 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1273 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1274 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1275 }
1276 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1277 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1278 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1279 }
1280 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1281 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1282 not_supported ^= MPB_ATTRIB_2TB_DISK;
1283 }
1284 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1285 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1286 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1287 }
1288 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1289 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1290 not_supported ^= MPB_ATTRIB_NEVER_USE;
1291 }
1292
1293 if (not_supported)
1294 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1295
1296 ret_val = 0;
1297 }
1298
1299 return ret_val;
1300}
1301
9e2d750d 1302#ifndef MDASSEMBLE
a5d85af7 1303static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1304
cdddbdbc
DW
1305static void examine_super_imsm(struct supertype *st, char *homehost)
1306{
1307 struct intel_super *super = st->sb;
949c47a0 1308 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1309 char str[MAX_SIGNATURE_LENGTH];
1310 int i;
27fd6274
DW
1311 struct mdinfo info;
1312 char nbuf[64];
cdddbdbc 1313 __u32 sum;
14e8215b 1314 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1315 struct dl *dl;
27fd6274 1316
cdddbdbc
DW
1317 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1318 printf(" Magic : %s\n", str);
1319 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1320 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1321 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1322 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1323 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1324 printf(" Attributes : ");
1325 if (imsm_check_attributes(mpb->attributes))
1326 printf("All supported\n");
1327 else
1328 printf("not supported\n");
a5d85af7 1329 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1330 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1331 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1332 sum = __le32_to_cpu(mpb->check_sum);
1333 printf(" Checksum : %08x %s\n", sum,
949c47a0 1334 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1335 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1336 printf(" Disks : %d\n", mpb->num_disks);
1337 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1338 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1339 if (super->bbm_log) {
1340 struct bbm_log *log = super->bbm_log;
1341
1342 printf("\n");
1343 printf("Bad Block Management Log:\n");
1344 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1345 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1346 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1347 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1348 printf(" First Spare : %llx\n",
1349 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1350 }
44470971
DW
1351 for (i = 0; i < mpb->num_raid_devs; i++) {
1352 struct mdinfo info;
1353 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1354
1355 super->current_vol = i;
a5d85af7 1356 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1357 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1358 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1359 }
cdddbdbc
DW
1360 for (i = 0; i < mpb->num_disks; i++) {
1361 if (i == super->disks->index)
1362 continue;
0ec1f4e8 1363 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1364 }
94827db3 1365
0ec1f4e8
DW
1366 for (dl = super->disks; dl; dl = dl->next)
1367 if (dl->index == -1)
1368 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1369
1370 examine_migr_rec_imsm(super);
cdddbdbc
DW
1371}
1372
061f2c6a 1373static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1374{
27fd6274 1375 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1376 struct mdinfo info;
1377 char nbuf[64];
1e7bc0ed 1378 struct intel_super *super = st->sb;
1e7bc0ed 1379
0d5a423f
DW
1380 if (!super->anchor->num_raid_devs) {
1381 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1382 return;
0d5a423f 1383 }
ff54de6e 1384
a5d85af7 1385 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1386 fname_from_uuid(st, &info, nbuf, ':');
1387 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1388}
1389
1390static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1391{
1392 /* We just write a generic IMSM ARRAY entry */
1393 struct mdinfo info;
1394 char nbuf[64];
1395 char nbuf1[64];
1396 struct intel_super *super = st->sb;
1397 int i;
1398
1399 if (!super->anchor->num_raid_devs)
1400 return;
1401
a5d85af7 1402 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1403 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1404 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1405 struct imsm_dev *dev = get_imsm_dev(super, i);
1406
1407 super->current_vol = i;
a5d85af7 1408 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1409 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1410 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1411 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1412 }
cdddbdbc
DW
1413}
1414
9d84c8ea
DW
1415static void export_examine_super_imsm(struct supertype *st)
1416{
1417 struct intel_super *super = st->sb;
1418 struct imsm_super *mpb = super->anchor;
1419 struct mdinfo info;
1420 char nbuf[64];
1421
a5d85af7 1422 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1423 fname_from_uuid(st, &info, nbuf, ':');
1424 printf("MD_METADATA=imsm\n");
1425 printf("MD_LEVEL=container\n");
1426 printf("MD_UUID=%s\n", nbuf+5);
1427 printf("MD_DEVICES=%u\n", mpb->num_disks);
1428}
1429
cdddbdbc
DW
1430static void detail_super_imsm(struct supertype *st, char *homehost)
1431{
3ebe00a1
DW
1432 struct mdinfo info;
1433 char nbuf[64];
1434
a5d85af7 1435 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1436 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1437 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1438}
1439
1440static void brief_detail_super_imsm(struct supertype *st)
1441{
ff54de6e
N
1442 struct mdinfo info;
1443 char nbuf[64];
a5d85af7 1444 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1445 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1446 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1447}
d665cc31
DW
1448
1449static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1450static void fd2devname(int fd, char *name);
1451
120dc887 1452static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1453{
120dc887
LM
1454 /* dump an unsorted list of devices attached to AHCI Intel storage
1455 * controller, as well as non-connected ports
d665cc31
DW
1456 */
1457 int hba_len = strlen(hba_path) + 1;
1458 struct dirent *ent;
1459 DIR *dir;
1460 char *path = NULL;
1461 int err = 0;
1462 unsigned long port_mask = (1 << port_count) - 1;
1463
f21e18ca 1464 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1465 if (verbose)
1466 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1467 return 2;
1468 }
1469
1470 /* scroll through /sys/dev/block looking for devices attached to
1471 * this hba
1472 */
1473 dir = opendir("/sys/dev/block");
1474 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1475 int fd;
1476 char model[64];
1477 char vendor[64];
1478 char buf[1024];
1479 int major, minor;
1480 char *device;
1481 char *c;
1482 int port;
1483 int type;
1484
1485 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1486 continue;
1487 path = devt_to_devpath(makedev(major, minor));
1488 if (!path)
1489 continue;
1490 if (!path_attached_to_hba(path, hba_path)) {
1491 free(path);
1492 path = NULL;
1493 continue;
1494 }
1495
1496 /* retrieve the scsi device type */
1497 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1498 if (verbose)
1499 fprintf(stderr, Name ": failed to allocate 'device'\n");
1500 err = 2;
1501 break;
1502 }
1503 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1504 if (load_sys(device, buf) != 0) {
1505 if (verbose)
1506 fprintf(stderr, Name ": failed to read device type for %s\n",
1507 path);
1508 err = 2;
1509 free(device);
1510 break;
1511 }
1512 type = strtoul(buf, NULL, 10);
1513
1514 /* if it's not a disk print the vendor and model */
1515 if (!(type == 0 || type == 7 || type == 14)) {
1516 vendor[0] = '\0';
1517 model[0] = '\0';
1518 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1519 if (load_sys(device, buf) == 0) {
1520 strncpy(vendor, buf, sizeof(vendor));
1521 vendor[sizeof(vendor) - 1] = '\0';
1522 c = (char *) &vendor[sizeof(vendor) - 1];
1523 while (isspace(*c) || *c == '\0')
1524 *c-- = '\0';
1525
1526 }
1527 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1528 if (load_sys(device, buf) == 0) {
1529 strncpy(model, buf, sizeof(model));
1530 model[sizeof(model) - 1] = '\0';
1531 c = (char *) &model[sizeof(model) - 1];
1532 while (isspace(*c) || *c == '\0')
1533 *c-- = '\0';
1534 }
1535
1536 if (vendor[0] && model[0])
1537 sprintf(buf, "%.64s %.64s", vendor, model);
1538 else
1539 switch (type) { /* numbers from hald/linux/device.c */
1540 case 1: sprintf(buf, "tape"); break;
1541 case 2: sprintf(buf, "printer"); break;
1542 case 3: sprintf(buf, "processor"); break;
1543 case 4:
1544 case 5: sprintf(buf, "cdrom"); break;
1545 case 6: sprintf(buf, "scanner"); break;
1546 case 8: sprintf(buf, "media_changer"); break;
1547 case 9: sprintf(buf, "comm"); break;
1548 case 12: sprintf(buf, "raid"); break;
1549 default: sprintf(buf, "unknown");
1550 }
1551 } else
1552 buf[0] = '\0';
1553 free(device);
1554
1555 /* chop device path to 'host%d' and calculate the port number */
1556 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1557 if (!c) {
1558 if (verbose)
1559 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1560 err = 2;
1561 break;
1562 }
d665cc31
DW
1563 *c = '\0';
1564 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1565 port -= host_base;
1566 else {
1567 if (verbose) {
1568 *c = '/'; /* repair the full string */
1569 fprintf(stderr, Name ": failed to determine port number for %s\n",
1570 path);
1571 }
1572 err = 2;
1573 break;
1574 }
1575
1576 /* mark this port as used */
1577 port_mask &= ~(1 << port);
1578
1579 /* print out the device information */
1580 if (buf[0]) {
1581 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1582 continue;
1583 }
1584
1585 fd = dev_open(ent->d_name, O_RDONLY);
1586 if (fd < 0)
1587 printf(" Port%d : - disk info unavailable -\n", port);
1588 else {
1589 fd2devname(fd, buf);
1590 printf(" Port%d : %s", port, buf);
1591 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1592 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1593 else
664d5325 1594 printf(" ()\n");
4dab422a 1595 close(fd);
d665cc31 1596 }
d665cc31
DW
1597 free(path);
1598 path = NULL;
1599 }
1600 if (path)
1601 free(path);
1602 if (dir)
1603 closedir(dir);
1604 if (err == 0) {
1605 int i;
1606
1607 for (i = 0; i < port_count; i++)
1608 if (port_mask & (1 << i))
1609 printf(" Port%d : - no device attached -\n", i);
1610 }
1611
1612 return err;
1613}
1614
120dc887
LM
1615static void print_found_intel_controllers(struct sys_dev *elem)
1616{
1617 for (; elem; elem = elem->next) {
1618 fprintf(stderr, Name ": found Intel(R) ");
1619 if (elem->type == SYS_DEV_SATA)
1620 fprintf(stderr, "SATA ");
155cbb4c
LM
1621 else if (elem->type == SYS_DEV_SAS)
1622 fprintf(stderr, "SAS ");
120dc887
LM
1623 fprintf(stderr, "RAID controller");
1624 if (elem->pci_id)
1625 fprintf(stderr, " at %s", elem->pci_id);
1626 fprintf(stderr, ".\n");
1627 }
1628 fflush(stderr);
1629}
1630
120dc887
LM
1631static int ahci_get_port_count(const char *hba_path, int *port_count)
1632{
1633 struct dirent *ent;
1634 DIR *dir;
1635 int host_base = -1;
1636
1637 *port_count = 0;
1638 if ((dir = opendir(hba_path)) == NULL)
1639 return -1;
1640
1641 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1642 int host;
1643
1644 if (sscanf(ent->d_name, "host%d", &host) != 1)
1645 continue;
1646 if (*port_count == 0)
1647 host_base = host;
1648 else if (host < host_base)
1649 host_base = host;
1650
1651 if (host + 1 > *port_count + host_base)
1652 *port_count = host + 1 - host_base;
1653 }
1654 closedir(dir);
1655 return host_base;
1656}
1657
a891a3c2
LM
1658static void print_imsm_capability(const struct imsm_orom *orom)
1659{
1660 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1661 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1662 orom->hotfix_ver, orom->build);
1663 printf(" RAID Levels :%s%s%s%s%s\n",
1664 imsm_orom_has_raid0(orom) ? " raid0" : "",
1665 imsm_orom_has_raid1(orom) ? " raid1" : "",
1666 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1667 imsm_orom_has_raid10(orom) ? " raid10" : "",
1668 imsm_orom_has_raid5(orom) ? " raid5" : "");
1669 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1670 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1671 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1672 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1673 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1674 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1675 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1676 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1677 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1678 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1679 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1680 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1681 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1682 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1683 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1684 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1685 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1686 printf(" Max Disks : %d\n", orom->tds);
1687 printf(" Max Volumes : %d\n", orom->vpa);
1688 return;
1689}
1690
5615172f 1691static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1692{
1693 /* There are two components to imsm platform support, the ahci SATA
1694 * controller and the option-rom. To find the SATA controller we
1695 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1696 * controller with the Intel vendor id is present. This approach
1697 * allows mdadm to leverage the kernel's ahci detection logic, with the
1698 * caveat that if ahci.ko is not loaded mdadm will not be able to
1699 * detect platform raid capabilities. The option-rom resides in a
1700 * platform "Adapter ROM". We scan for its signature to retrieve the
1701 * platform capabilities. If raid support is disabled in the BIOS the
1702 * option-rom capability structure will not be available.
1703 */
1704 const struct imsm_orom *orom;
1705 struct sys_dev *list, *hba;
d665cc31
DW
1706 int host_base = 0;
1707 int port_count = 0;
120dc887 1708 int result=0;
d665cc31 1709
5615172f 1710 if (enumerate_only) {
a891a3c2 1711 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1712 return 0;
a891a3c2
LM
1713 list = find_intel_devices();
1714 if (!list)
1715 return 2;
1716 for (hba = list; hba; hba = hba->next) {
1717 orom = find_imsm_capability(hba->type);
1718 if (!orom) {
1719 result = 2;
1720 break;
1721 }
1722 }
1723 free_sys_dev(&list);
1724 return result;
5615172f
DW
1725 }
1726
155cbb4c
LM
1727 list = find_intel_devices();
1728 if (!list) {
d665cc31 1729 if (verbose)
155cbb4c
LM
1730 fprintf(stderr, Name ": no active Intel(R) RAID "
1731 "controller found.\n");
d665cc31
DW
1732 free_sys_dev(&list);
1733 return 2;
1734 } else if (verbose)
155cbb4c 1735 print_found_intel_controllers(list);
d665cc31 1736
a891a3c2
LM
1737 for (hba = list; hba; hba = hba->next) {
1738 orom = find_imsm_capability(hba->type);
1739 if (!orom)
1740 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1741 hba->path, get_sys_dev_type(hba->type));
1742 else
1743 print_imsm_capability(orom);
d665cc31
DW
1744 }
1745
120dc887
LM
1746 for (hba = list; hba; hba = hba->next) {
1747 printf(" I/O Controller : %s (%s)\n",
1748 hba->path, get_sys_dev_type(hba->type));
d665cc31 1749
120dc887
LM
1750 if (hba->type == SYS_DEV_SATA) {
1751 host_base = ahci_get_port_count(hba->path, &port_count);
1752 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1753 if (verbose)
1754 fprintf(stderr, Name ": failed to enumerate "
1755 "ports on SATA controller at %s.", hba->pci_id);
1756 result |= 2;
1757 }
1758 }
d665cc31 1759 }
155cbb4c 1760
120dc887
LM
1761 free_sys_dev(&list);
1762 return result;
d665cc31 1763}
cdddbdbc
DW
1764#endif
1765
1766static int match_home_imsm(struct supertype *st, char *homehost)
1767{
5115ca67
DW
1768 /* the imsm metadata format does not specify any host
1769 * identification information. We return -1 since we can never
1770 * confirm nor deny whether a given array is "meant" for this
148acb7b 1771 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1772 * exclude member disks that do not belong, and we rely on
1773 * mdadm.conf to specify the arrays that should be assembled.
1774 * Auto-assembly may still pick up "foreign" arrays.
1775 */
cdddbdbc 1776
9362c1c8 1777 return -1;
cdddbdbc
DW
1778}
1779
1780static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1781{
51006d85
N
1782 /* The uuid returned here is used for:
1783 * uuid to put into bitmap file (Create, Grow)
1784 * uuid for backup header when saving critical section (Grow)
1785 * comparing uuids when re-adding a device into an array
1786 * In these cases the uuid required is that of the data-array,
1787 * not the device-set.
1788 * uuid to recognise same set when adding a missing device back
1789 * to an array. This is a uuid for the device-set.
1790 *
1791 * For each of these we can make do with a truncated
1792 * or hashed uuid rather than the original, as long as
1793 * everyone agrees.
1794 * In each case the uuid required is that of the data-array,
1795 * not the device-set.
43dad3d6 1796 */
51006d85
N
1797 /* imsm does not track uuid's so we synthesis one using sha1 on
1798 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1799 * - the orig_family_num of the container
51006d85
N
1800 * - the index number of the volume
1801 * - the 'serial' number of the volume.
1802 * Hopefully these are all constant.
1803 */
1804 struct intel_super *super = st->sb;
43dad3d6 1805
51006d85
N
1806 char buf[20];
1807 struct sha1_ctx ctx;
1808 struct imsm_dev *dev = NULL;
148acb7b 1809 __u32 family_num;
51006d85 1810
148acb7b
DW
1811 /* some mdadm versions failed to set ->orig_family_num, in which
1812 * case fall back to ->family_num. orig_family_num will be
1813 * fixed up with the first metadata update.
1814 */
1815 family_num = super->anchor->orig_family_num;
1816 if (family_num == 0)
1817 family_num = super->anchor->family_num;
51006d85 1818 sha1_init_ctx(&ctx);
92bd8f8d 1819 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1820 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1821 if (super->current_vol >= 0)
1822 dev = get_imsm_dev(super, super->current_vol);
1823 if (dev) {
1824 __u32 vol = super->current_vol;
1825 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1826 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1827 }
1828 sha1_finish_ctx(&ctx, buf);
1829 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1830}
1831
0d481d37 1832#if 0
4f5bc454
DW
1833static void
1834get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1835{
cdddbdbc
DW
1836 __u8 *v = get_imsm_version(mpb);
1837 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1838 char major[] = { 0, 0, 0 };
1839 char minor[] = { 0 ,0, 0 };
1840 char patch[] = { 0, 0, 0 };
1841 char *ver_parse[] = { major, minor, patch };
1842 int i, j;
1843
1844 i = j = 0;
1845 while (*v != '\0' && v < end) {
1846 if (*v != '.' && j < 2)
1847 ver_parse[i][j++] = *v;
1848 else {
1849 i++;
1850 j = 0;
1851 }
1852 v++;
1853 }
1854
4f5bc454
DW
1855 *m = strtol(minor, NULL, 0);
1856 *p = strtol(patch, NULL, 0);
1857}
0d481d37 1858#endif
4f5bc454 1859
1e5c6983
DW
1860static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1861{
1862 /* migr_strip_size when repairing or initializing parity */
1863 struct imsm_map *map = get_imsm_map(dev, 0);
1864 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1865
1866 switch (get_imsm_raid_level(map)) {
1867 case 5:
1868 case 10:
1869 return chunk;
1870 default:
1871 return 128*1024 >> 9;
1872 }
1873}
1874
1875static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1876{
1877 /* migr_strip_size when rebuilding a degraded disk, no idea why
1878 * this is different than migr_strip_size_resync(), but it's good
1879 * to be compatible
1880 */
1881 struct imsm_map *map = get_imsm_map(dev, 1);
1882 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1883
1884 switch (get_imsm_raid_level(map)) {
1885 case 1:
1886 case 10:
1887 if (map->num_members % map->num_domains == 0)
1888 return 128*1024 >> 9;
1889 else
1890 return chunk;
1891 case 5:
1892 return max((__u32) 64*1024 >> 9, chunk);
1893 default:
1894 return 128*1024 >> 9;
1895 }
1896}
1897
1898static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1899{
1900 struct imsm_map *lo = get_imsm_map(dev, 0);
1901 struct imsm_map *hi = get_imsm_map(dev, 1);
1902 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1903 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1904
1905 return max((__u32) 1, hi_chunk / lo_chunk);
1906}
1907
1908static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1909{
1910 struct imsm_map *lo = get_imsm_map(dev, 0);
1911 int level = get_imsm_raid_level(lo);
1912
1913 if (level == 1 || level == 10) {
1914 struct imsm_map *hi = get_imsm_map(dev, 1);
1915
1916 return hi->num_domains;
1917 } else
1918 return num_stripes_per_unit_resync(dev);
1919}
1920
98130f40 1921static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1922{
1923 /* named 'imsm_' because raid0, raid1 and raid10
1924 * counter-intuitively have the same number of data disks
1925 */
98130f40 1926 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1927
1928 switch (get_imsm_raid_level(map)) {
1929 case 0:
1930 case 1:
1931 case 10:
1932 return map->num_members;
1933 case 5:
1934 return map->num_members - 1;
1935 default:
1936 dprintf("%s: unsupported raid level\n", __func__);
1937 return 0;
1938 }
1939}
1940
1941static __u32 parity_segment_depth(struct imsm_dev *dev)
1942{
1943 struct imsm_map *map = get_imsm_map(dev, 0);
1944 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1945
1946 switch(get_imsm_raid_level(map)) {
1947 case 1:
1948 case 10:
1949 return chunk * map->num_domains;
1950 case 5:
1951 return chunk * map->num_members;
1952 default:
1953 return chunk;
1954 }
1955}
1956
1957static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1958{
1959 struct imsm_map *map = get_imsm_map(dev, 1);
1960 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1961 __u32 strip = block / chunk;
1962
1963 switch (get_imsm_raid_level(map)) {
1964 case 1:
1965 case 10: {
1966 __u32 vol_strip = (strip * map->num_domains) + 1;
1967 __u32 vol_stripe = vol_strip / map->num_members;
1968
1969 return vol_stripe * chunk + block % chunk;
1970 } case 5: {
1971 __u32 stripe = strip / (map->num_members - 1);
1972
1973 return stripe * chunk + block % chunk;
1974 }
1975 default:
1976 return 0;
1977 }
1978}
1979
c47b0ff6
AK
1980static __u64 blocks_per_migr_unit(struct intel_super *super,
1981 struct imsm_dev *dev)
1e5c6983
DW
1982{
1983 /* calculate the conversion factor between per member 'blocks'
1984 * (md/{resync,rebuild}_start) and imsm migration units, return
1985 * 0 for the 'not migrating' and 'unsupported migration' cases
1986 */
1987 if (!dev->vol.migr_state)
1988 return 0;
1989
1990 switch (migr_type(dev)) {
c47b0ff6
AK
1991 case MIGR_GEN_MIGR: {
1992 struct migr_record *migr_rec = super->migr_rec;
1993 return __le32_to_cpu(migr_rec->blocks_per_unit);
1994 }
1e5c6983
DW
1995 case MIGR_VERIFY:
1996 case MIGR_REPAIR:
1997 case MIGR_INIT: {
1998 struct imsm_map *map = get_imsm_map(dev, 0);
1999 __u32 stripes_per_unit;
2000 __u32 blocks_per_unit;
2001 __u32 parity_depth;
2002 __u32 migr_chunk;
2003 __u32 block_map;
2004 __u32 block_rel;
2005 __u32 segment;
2006 __u32 stripe;
2007 __u8 disks;
2008
2009 /* yes, this is really the translation of migr_units to
2010 * per-member blocks in the 'resync' case
2011 */
2012 stripes_per_unit = num_stripes_per_unit_resync(dev);
2013 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 2014 disks = imsm_num_data_members(dev, 0);
1e5c6983 2015 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2016 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2017 segment = blocks_per_unit / stripe;
2018 block_rel = blocks_per_unit - segment * stripe;
2019 parity_depth = parity_segment_depth(dev);
2020 block_map = map_migr_block(dev, block_rel);
2021 return block_map + parity_depth * segment;
2022 }
2023 case MIGR_REBUILD: {
2024 __u32 stripes_per_unit;
2025 __u32 migr_chunk;
2026
2027 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2028 migr_chunk = migr_strip_blocks_rebuild(dev);
2029 return migr_chunk * stripes_per_unit;
2030 }
1e5c6983
DW
2031 case MIGR_STATE_CHANGE:
2032 default:
2033 return 0;
2034 }
2035}
2036
c2c087e6
DW
2037static int imsm_level_to_layout(int level)
2038{
2039 switch (level) {
2040 case 0:
2041 case 1:
2042 return 0;
2043 case 5:
2044 case 6:
a380c027 2045 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2046 case 10:
c92a2527 2047 return 0x102;
c2c087e6 2048 }
a18a888e 2049 return UnSet;
c2c087e6
DW
2050}
2051
8e59f3d8
AK
2052/*******************************************************************************
2053 * Function: read_imsm_migr_rec
2054 * Description: Function reads imsm migration record from last sector of disk
2055 * Parameters:
2056 * fd : disk descriptor
2057 * super : metadata info
2058 * Returns:
2059 * 0 : success,
2060 * -1 : fail
2061 ******************************************************************************/
2062static int read_imsm_migr_rec(int fd, struct intel_super *super)
2063{
2064 int ret_val = -1;
2065 unsigned long long dsize;
2066
2067 get_dev_size(fd, NULL, &dsize);
2068 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2069 fprintf(stderr,
2070 Name ": Cannot seek to anchor block: %s\n",
2071 strerror(errno));
2072 goto out;
2073 }
2074 if (read(fd, super->migr_rec_buf, 512) != 512) {
2075 fprintf(stderr,
2076 Name ": Cannot read migr record block: %s\n",
2077 strerror(errno));
2078 goto out;
2079 }
2080 ret_val = 0;
2081
2082out:
2083 return ret_val;
2084}
2085
2086/*******************************************************************************
2087 * Function: load_imsm_migr_rec
2088 * Description: Function reads imsm migration record (it is stored at the last
2089 * sector of disk)
2090 * Parameters:
2091 * super : imsm internal array info
2092 * info : general array info
2093 * Returns:
2094 * 0 : success
2095 * -1 : fail
2096 ******************************************************************************/
2097static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2098{
2099 struct mdinfo *sd;
2100 struct dl *dl = NULL;
2101 char nm[30];
2102 int retval = -1;
2103 int fd = -1;
2104
2105 if (info) {
2106 for (sd = info->devs ; sd ; sd = sd->next) {
2107 /* read only from one of the first two slots */
2108 if ((sd->disk.raid_disk > 1) ||
2109 (sd->disk.raid_disk < 0))
2110 continue;
2111 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2112 fd = dev_open(nm, O_RDONLY);
2113 if (fd >= 0)
2114 break;
2115 }
2116 }
2117 if (fd < 0) {
2118 for (dl = super->disks; dl; dl = dl->next) {
2119 /* read only from one of the first two slots */
2120 if (dl->index > 1)
2121 continue;
2122 sprintf(nm, "%d:%d", dl->major, dl->minor);
2123 fd = dev_open(nm, O_RDONLY);
2124 if (fd >= 0)
2125 break;
2126 }
2127 }
2128 if (fd < 0)
2129 goto out;
2130 retval = read_imsm_migr_rec(fd, super);
2131
2132out:
2133 if (fd >= 0)
2134 close(fd);
2135 return retval;
2136}
2137
9e2d750d 2138#ifndef MDASSEMBLE
c17608ea
AK
2139/*******************************************************************************
2140 * function: imsm_create_metadata_checkpoint_update
2141 * Description: It creates update for checkpoint change.
2142 * Parameters:
2143 * super : imsm internal array info
2144 * u : pointer to prepared update
2145 * Returns:
2146 * Uptate length.
2147 * If length is equal to 0, input pointer u contains no update
2148 ******************************************************************************/
2149static int imsm_create_metadata_checkpoint_update(
2150 struct intel_super *super,
2151 struct imsm_update_general_migration_checkpoint **u)
2152{
2153
2154 int update_memory_size = 0;
2155
2156 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2157
2158 if (u == NULL)
2159 return 0;
2160 *u = NULL;
2161
2162 /* size of all update data without anchor */
2163 update_memory_size =
2164 sizeof(struct imsm_update_general_migration_checkpoint);
2165
2166 *u = calloc(1, update_memory_size);
2167 if (*u == NULL) {
2168 dprintf("error: cannot get memory for "
2169 "imsm_create_metadata_checkpoint_update update\n");
2170 return 0;
2171 }
2172 (*u)->type = update_general_migration_checkpoint;
2173 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2174 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2175 (*u)->curr_migr_unit);
2176
2177 return update_memory_size;
2178}
2179
2180
2181static void imsm_update_metadata_locally(struct supertype *st,
2182 void *buf, int len);
2183
687629c2
AK
2184/*******************************************************************************
2185 * Function: write_imsm_migr_rec
2186 * Description: Function writes imsm migration record
2187 * (at the last sector of disk)
2188 * Parameters:
2189 * super : imsm internal array info
2190 * Returns:
2191 * 0 : success
2192 * -1 : if fail
2193 ******************************************************************************/
2194static int write_imsm_migr_rec(struct supertype *st)
2195{
2196 struct intel_super *super = st->sb;
2197 unsigned long long dsize;
2198 char nm[30];
2199 int fd = -1;
2200 int retval = -1;
2201 struct dl *sd;
c17608ea
AK
2202 int len;
2203 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2204
2205 for (sd = super->disks ; sd ; sd = sd->next) {
2206 /* write to 2 first slots only */
2207 if ((sd->index < 0) || (sd->index > 1))
2208 continue;
2209 sprintf(nm, "%d:%d", sd->major, sd->minor);
2210 fd = dev_open(nm, O_RDWR);
2211 if (fd < 0)
2212 continue;
2213 get_dev_size(fd, NULL, &dsize);
2214 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2215 fprintf(stderr,
2216 Name ": Cannot seek to anchor block: %s\n",
2217 strerror(errno));
2218 goto out;
2219 }
2220 if (write(fd, super->migr_rec_buf, 512) != 512) {
2221 fprintf(stderr,
2222 Name ": Cannot write migr record block: %s\n",
2223 strerror(errno));
2224 goto out;
2225 }
2226 close(fd);
2227 fd = -1;
2228 }
c17608ea
AK
2229 /* update checkpoint information in metadata */
2230 len = imsm_create_metadata_checkpoint_update(super, &u);
2231
2232 if (len <= 0) {
2233 dprintf("imsm: Cannot prepare update\n");
2234 goto out;
2235 }
2236 /* update metadata locally */
2237 imsm_update_metadata_locally(st, u, len);
2238 /* and possibly remotely */
2239 if (st->update_tail) {
2240 append_metadata_update(st, u, len);
2241 /* during reshape we do all work inside metadata handler
2242 * manage_reshape(), so metadata update has to be triggered
2243 * insida it
2244 */
2245 flush_metadata_updates(st);
2246 st->update_tail = &st->updates;
2247 } else
2248 free(u);
687629c2
AK
2249
2250 retval = 0;
2251 out:
2252 if (fd >= 0)
2253 close(fd);
2254 return retval;
2255}
9e2d750d 2256#endif /* MDASSEMBLE */
687629c2 2257
e2962bfc
AK
2258/* spare/missing disks activations are not allowe when
2259 * array/container performs reshape operation, because
2260 * all arrays in container works on the same disks set
2261 */
2262int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2263{
2264 int rv = 0;
2265 struct intel_dev *i_dev;
2266 struct imsm_dev *dev;
2267
2268 /* check whole container
2269 */
2270 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2271 dev = i_dev->dev;
3ad25638 2272 if (is_gen_migration(dev)) {
e2962bfc
AK
2273 /* No repair during any migration in container
2274 */
2275 rv = 1;
2276 break;
2277 }
2278 }
2279 return rv;
2280}
2281
a5d85af7 2282static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2283{
2284 struct intel_super *super = st->sb;
c47b0ff6 2285 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2286 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 2287 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 2288 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 2289 struct imsm_map *map_to_analyse = map;
efb30e7f 2290 struct dl *dl;
e207da2f 2291 char *devname;
139dae11 2292 unsigned int component_size_alligment;
a5d85af7 2293 int map_disks = info->array.raid_disks;
bf5a934a 2294
95eeceeb 2295 memset(info, 0, sizeof(*info));
b335e593
AK
2296 if (prev_map)
2297 map_to_analyse = prev_map;
2298
ca0748fa 2299 dl = super->current_disk;
9894ec0d 2300
bf5a934a 2301 info->container_member = super->current_vol;
cd0430a1 2302 info->array.raid_disks = map->num_members;
b335e593 2303 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2304 info->array.layout = imsm_level_to_layout(info->array.level);
2305 info->array.md_minor = -1;
2306 info->array.ctime = 0;
2307 info->array.utime = 0;
b335e593
AK
2308 info->array.chunk_size =
2309 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2310 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2311 info->custom_array_size = __le32_to_cpu(dev->size_high);
2312 info->custom_array_size <<= 32;
2313 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
2314 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2315
b601104e
LD
2316 if (prev_map && map->map_state == prev_map->map_state &&
2317 (migr_type(dev) == MIGR_GEN_MIGR)) {
3f83228a 2318 info->reshape_active = 1;
b335e593
AK
2319 info->new_level = get_imsm_raid_level(map);
2320 info->new_layout = imsm_level_to_layout(info->new_level);
2321 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2322 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2323 if (info->delta_disks) {
2324 /* this needs to be applied to every array
2325 * in the container.
2326 */
81219e70 2327 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 2328 }
3f83228a
N
2329 /* We shape information that we give to md might have to be
2330 * modify to cope with md's requirement for reshaping arrays.
2331 * For example, when reshaping a RAID0, md requires it to be
2332 * presented as a degraded RAID4.
2333 * Also if a RAID0 is migrating to a RAID5 we need to specify
2334 * the array as already being RAID5, but the 'before' layout
2335 * is a RAID4-like layout.
2336 */
2337 switch (info->array.level) {
2338 case 0:
2339 switch(info->new_level) {
2340 case 0:
2341 /* conversion is happening as RAID4 */
2342 info->array.level = 4;
2343 info->array.raid_disks += 1;
2344 break;
2345 case 5:
2346 /* conversion is happening as RAID5 */
2347 info->array.level = 5;
2348 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2349 info->delta_disks -= 1;
2350 break;
2351 default:
2352 /* FIXME error message */
2353 info->array.level = UnSet;
2354 break;
2355 }
2356 break;
2357 }
b335e593
AK
2358 } else {
2359 info->new_level = UnSet;
2360 info->new_layout = UnSet;
2361 info->new_chunk = info->array.chunk_size;
3f83228a 2362 info->delta_disks = 0;
b335e593 2363 }
ca0748fa 2364
efb30e7f
DW
2365 if (dl) {
2366 info->disk.major = dl->major;
2367 info->disk.minor = dl->minor;
ca0748fa 2368 info->disk.number = dl->index;
656b6b5a
N
2369 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2370 dl->index);
efb30e7f 2371 }
bf5a934a 2372
b335e593
AK
2373 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2374 info->component_size =
2375 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2376
2377 /* check component size aligment
2378 */
2379 component_size_alligment =
2380 info->component_size % (info->array.chunk_size/512);
2381
2382 if (component_size_alligment &&
2383 (info->array.level != 1) && (info->array.level != UnSet)) {
2384 dprintf("imsm: reported component size alligned from %llu ",
2385 info->component_size);
2386 info->component_size -= component_size_alligment;
2387 dprintf("to %llu (%i).\n",
2388 info->component_size, component_size_alligment);
2389 }
2390
301406c9 2391 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2392 info->recovery_start = MaxSector;
bf5a934a 2393
d2e6d5d6 2394 info->reshape_progress = 0;
b6796ce1 2395 info->resync_start = MaxSector;
b9172665
AK
2396 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2397 dev->vol.dirty) &&
2398 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 2399 info->resync_start = 0;
b6796ce1
AK
2400 }
2401 if (dev->vol.migr_state) {
1e5c6983
DW
2402 switch (migr_type(dev)) {
2403 case MIGR_REPAIR:
2404 case MIGR_INIT: {
c47b0ff6
AK
2405 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2406 dev);
1e5c6983
DW
2407 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2408
2409 info->resync_start = blocks_per_unit * units;
2410 break;
2411 }
d2e6d5d6 2412 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2413 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2414 dev);
2415 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2416 unsigned long long array_blocks;
2417 int used_disks;
d2e6d5d6 2418
befb629b
AK
2419 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2420 (units <
2421 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2422 (super->migr_rec->rec_status ==
2423 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2424 units++;
2425
d2e6d5d6 2426 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2427
d2e6d5d6
AK
2428 dprintf("IMSM: General Migration checkpoint : %llu "
2429 "(%llu) -> read reshape progress : %llu\n",
19986c72
MB
2430 (unsigned long long)units,
2431 (unsigned long long)blocks_per_unit,
2432 info->reshape_progress);
75156c46
AK
2433
2434 used_disks = imsm_num_data_members(dev, 1);
2435 if (used_disks > 0) {
2436 array_blocks = map->blocks_per_member *
2437 used_disks;
2438 /* round array size down to closest MB
2439 */
2440 info->custom_array_size = (array_blocks
2441 >> SECT_PER_MB_SHIFT)
2442 << SECT_PER_MB_SHIFT;
2443 }
d2e6d5d6 2444 }
1e5c6983
DW
2445 case MIGR_VERIFY:
2446 /* we could emulate the checkpointing of
2447 * 'sync_action=check' migrations, but for now
2448 * we just immediately complete them
2449 */
2450 case MIGR_REBUILD:
2451 /* this is handled by container_content_imsm() */
1e5c6983
DW
2452 case MIGR_STATE_CHANGE:
2453 /* FIXME handle other migrations */
2454 default:
2455 /* we are not dirty, so... */
2456 info->resync_start = MaxSector;
2457 }
b6796ce1 2458 }
301406c9
DW
2459
2460 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2461 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2462
f35f2525
N
2463 info->array.major_version = -1;
2464 info->array.minor_version = -2;
e207da2f
AW
2465 devname = devnum2devname(st->container_dev);
2466 *info->text_version = '\0';
2467 if (devname)
2468 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2469 free(devname);
a67dd8cc 2470 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2471 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2472
2473 if (dmap) {
2474 int i, j;
2475 for (i=0; i<map_disks; i++) {
2476 dmap[i] = 0;
2477 if (i < info->array.raid_disks) {
2478 struct imsm_disk *dsk;
98130f40 2479 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2480 dsk = get_imsm_disk(super, j);
2481 if (dsk && (dsk->status & CONFIGURED_DISK))
2482 dmap[i] = 1;
2483 }
2484 }
2485 }
81ac8b4d 2486}
bf5a934a 2487
97b4d0e9
DW
2488static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2489static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2490
2491static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2492{
2493 struct dl *d;
2494
2495 for (d = super->missing; d; d = d->next)
2496 if (d->index == index)
2497 return &d->disk;
2498 return NULL;
2499}
2500
a5d85af7 2501static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2502{
2503 struct intel_super *super = st->sb;
4f5bc454 2504 struct imsm_disk *disk;
a5d85af7 2505 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2506 int max_enough = -1;
2507 int i;
2508 struct imsm_super *mpb;
4f5bc454 2509
bf5a934a 2510 if (super->current_vol >= 0) {
a5d85af7 2511 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2512 return;
2513 }
95eeceeb 2514 memset(info, 0, sizeof(*info));
d23fe947
DW
2515
2516 /* Set raid_disks to zero so that Assemble will always pull in valid
2517 * spares
2518 */
2519 info->array.raid_disks = 0;
cdddbdbc
DW
2520 info->array.level = LEVEL_CONTAINER;
2521 info->array.layout = 0;
2522 info->array.md_minor = -1;
c2c087e6 2523 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2524 info->array.utime = 0;
2525 info->array.chunk_size = 0;
2526
2527 info->disk.major = 0;
2528 info->disk.minor = 0;
cdddbdbc 2529 info->disk.raid_disk = -1;
c2c087e6 2530 info->reshape_active = 0;
f35f2525
N
2531 info->array.major_version = -1;
2532 info->array.minor_version = -2;
c2c087e6 2533 strcpy(info->text_version, "imsm");
a67dd8cc 2534 info->safe_mode_delay = 0;
c2c087e6
DW
2535 info->disk.number = -1;
2536 info->disk.state = 0;
c5afc314 2537 info->name[0] = 0;
921d9e16 2538 info->recovery_start = MaxSector;
3ad25638 2539 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
c2c087e6 2540
97b4d0e9 2541 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2542 mpb = super->anchor;
97b4d0e9 2543
ab3cb6b3
N
2544 for (i = 0; i < mpb->num_raid_devs; i++) {
2545 struct imsm_dev *dev = get_imsm_dev(super, i);
2546 int failed, enough, j, missing = 0;
2547 struct imsm_map *map;
2548 __u8 state;
97b4d0e9 2549
ab3cb6b3
N
2550 failed = imsm_count_failed(super, dev);
2551 state = imsm_check_degraded(super, dev, failed);
a510b1c7 2552 map = get_imsm_map(dev, 0);
ab3cb6b3
N
2553
2554 /* any newly missing disks?
2555 * (catches single-degraded vs double-degraded)
2556 */
2557 for (j = 0; j < map->num_members; j++) {
9645010f 2558 __u32 ord = get_imsm_ord_tbl_ent(dev, j, 0);
ab3cb6b3
N
2559 __u32 idx = ord_to_idx(ord);
2560
2561 if (!(ord & IMSM_ORD_REBUILD) &&
2562 get_imsm_missing(super, idx)) {
2563 missing = 1;
2564 break;
2565 }
97b4d0e9 2566 }
ab3cb6b3
N
2567
2568 if (state == IMSM_T_STATE_FAILED)
2569 enough = -1;
2570 else if (state == IMSM_T_STATE_DEGRADED &&
2571 (state != map->map_state || missing))
2572 enough = 0;
2573 else /* we're normal, or already degraded */
2574 enough = 1;
2575
2576 /* in the missing/failed disk case check to see
2577 * if at least one array is runnable
2578 */
2579 max_enough = max(max_enough, enough);
2580 }
2581 dprintf("%s: enough: %d\n", __func__, max_enough);
2582 info->container_enough = max_enough;
97b4d0e9 2583
4a04ec6c 2584 if (super->disks) {
14e8215b
DW
2585 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2586
b9f594fe 2587 disk = &super->disks->disk;
14e8215b
DW
2588 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2589 info->component_size = reserved;
25ed7e59 2590 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2591 /* we don't change info->disk.raid_disk here because
2592 * this state will be finalized in mdmon after we have
2593 * found the 'most fresh' version of the metadata
2594 */
25ed7e59
DW
2595 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2596 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2597 }
a575e2a7
DW
2598
2599 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2600 * ->compare_super may have updated the 'num_raid_devs' field for spares
2601 */
2602 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2603 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2604 else
2605 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2606
2607 /* I don't know how to compute 'map' on imsm, so use safe default */
2608 if (map) {
2609 int i;
2610 for (i = 0; i < map_disks; i++)
2611 map[i] = 1;
2612 }
2613
cdddbdbc
DW
2614}
2615
5c4cd5da
AC
2616/* allocates memory and fills disk in mdinfo structure
2617 * for each disk in array */
2618struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2619{
2620 struct mdinfo *mddev = NULL;
2621 struct intel_super *super = st->sb;
2622 struct imsm_disk *disk;
2623 int count = 0;
2624 struct dl *dl;
2625 if (!super || !super->disks)
2626 return NULL;
2627 dl = super->disks;
2628 mddev = malloc(sizeof(*mddev));
2629 if (!mddev) {
2630 fprintf(stderr, Name ": Failed to allocate memory.\n");
2631 return NULL;
2632 }
2633 memset(mddev, 0, sizeof(*mddev));
2634 while (dl) {
2635 struct mdinfo *tmp;
2636 disk = &dl->disk;
2637 tmp = malloc(sizeof(*tmp));
2638 if (!tmp) {
2639 fprintf(stderr, Name ": Failed to allocate memory.\n");
2640 if (mddev)
2641 sysfs_free(mddev);
2642 return NULL;
2643 }
2644 memset(tmp, 0, sizeof(*tmp));
2645 if (mddev->devs)
2646 tmp->next = mddev->devs;
2647 mddev->devs = tmp;
2648 tmp->disk.number = count++;
2649 tmp->disk.major = dl->major;
2650 tmp->disk.minor = dl->minor;
2651 tmp->disk.state = is_configured(disk) ?
2652 (1 << MD_DISK_ACTIVE) : 0;
2653 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2654 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2655 tmp->disk.raid_disk = -1;
2656 dl = dl->next;
2657 }
2658 return mddev;
2659}
2660
cdddbdbc
DW
2661static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2662 char *update, char *devname, int verbose,
2663 int uuid_set, char *homehost)
2664{
f352c545
DW
2665 /* For 'assemble' and 'force' we need to return non-zero if any
2666 * change was made. For others, the return value is ignored.
2667 * Update options are:
2668 * force-one : This device looks a bit old but needs to be included,
2669 * update age info appropriately.
2670 * assemble: clear any 'faulty' flag to allow this device to
2671 * be assembled.
2672 * force-array: Array is degraded but being forced, mark it clean
2673 * if that will be needed to assemble it.
2674 *
2675 * newdev: not used ????
2676 * grow: Array has gained a new device - this is currently for
2677 * linear only
2678 * resync: mark as dirty so a resync will happen.
2679 * name: update the name - preserving the homehost
6e46bf34 2680 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2681 *
2682 * Following are not relevant for this imsm:
2683 * sparc2.2 : update from old dodgey metadata
2684 * super-minor: change the preferred_minor number
2685 * summaries: update redundant counters.
f352c545
DW
2686 * homehost: update the recorded homehost
2687 * _reshape_progress: record new reshape_progress position.
2688 */
6e46bf34
DW
2689 int rv = 1;
2690 struct intel_super *super = st->sb;
2691 struct imsm_super *mpb;
f352c545 2692
6e46bf34
DW
2693 /* we can only update container info */
2694 if (!super || super->current_vol >= 0 || !super->anchor)
2695 return 1;
2696
2697 mpb = super->anchor;
2698
2699 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2700 rv = -1;
6e46bf34
DW
2701 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2702 mpb->orig_family_num = *((__u32 *) info->update_private);
2703 rv = 0;
2704 } else if (strcmp(update, "uuid") == 0) {
2705 __u32 *new_family = malloc(sizeof(*new_family));
2706
2707 /* update orig_family_number with the incoming random
2708 * data, report the new effective uuid, and store the
2709 * new orig_family_num for future updates.
2710 */
2711 if (new_family) {
2712 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2713 uuid_from_super_imsm(st, info->uuid);
2714 *new_family = mpb->orig_family_num;
2715 info->update_private = new_family;
2716 rv = 0;
2717 }
2718 } else if (strcmp(update, "assemble") == 0)
2719 rv = 0;
2720 else
1e2b2765 2721 rv = -1;
f352c545 2722
6e46bf34
DW
2723 /* successful update? recompute checksum */
2724 if (rv == 0)
2725 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2726
2727 return rv;
cdddbdbc
DW
2728}
2729
c2c087e6 2730static size_t disks_to_mpb_size(int disks)
cdddbdbc 2731{
c2c087e6 2732 size_t size;
cdddbdbc 2733
c2c087e6
DW
2734 size = sizeof(struct imsm_super);
2735 size += (disks - 1) * sizeof(struct imsm_disk);
2736 size += 2 * sizeof(struct imsm_dev);
2737 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2738 size += (4 - 2) * sizeof(struct imsm_map);
2739 /* 4 possible disk_ord_tbl's */
2740 size += 4 * (disks - 1) * sizeof(__u32);
2741
2742 return size;
2743}
2744
2745static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2746{
2747 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2748 return 0;
2749
2750 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2751}
2752
ba2de7ba
DW
2753static void free_devlist(struct intel_super *super)
2754{
2755 struct intel_dev *dv;
2756
2757 while (super->devlist) {
2758 dv = super->devlist->next;
2759 free(super->devlist->dev);
2760 free(super->devlist);
2761 super->devlist = dv;
2762 }
2763}
2764
2765static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2766{
2767 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2768}
2769
cdddbdbc
DW
2770static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2771{
2772 /*
2773 * return:
2774 * 0 same, or first was empty, and second was copied
2775 * 1 second had wrong number
2776 * 2 wrong uuid
2777 * 3 wrong other info
2778 */
2779 struct intel_super *first = st->sb;
2780 struct intel_super *sec = tst->sb;
2781
2782 if (!first) {
2783 st->sb = tst->sb;
2784 tst->sb = NULL;
2785 return 0;
2786 }
8603ea6f
LM
2787 /* in platform dependent environment test if the disks
2788 * use the same Intel hba
2789 */
2790 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2791 if (!first->hba || !sec->hba ||
2792 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2793 fprintf(stderr,
2794 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2795 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2796 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2797 return 3;
2798 }
2799 }
cdddbdbc 2800
d23fe947
DW
2801 /* if an anchor does not have num_raid_devs set then it is a free
2802 * floating spare
2803 */
2804 if (first->anchor->num_raid_devs > 0 &&
2805 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2806 /* Determine if these disks might ever have been
2807 * related. Further disambiguation can only take place
2808 * in load_super_imsm_all
2809 */
2810 __u32 first_family = first->anchor->orig_family_num;
2811 __u32 sec_family = sec->anchor->orig_family_num;
2812
f796af5d
DW
2813 if (memcmp(first->anchor->sig, sec->anchor->sig,
2814 MAX_SIGNATURE_LENGTH) != 0)
2815 return 3;
2816
a2b97981
DW
2817 if (first_family == 0)
2818 first_family = first->anchor->family_num;
2819 if (sec_family == 0)
2820 sec_family = sec->anchor->family_num;
2821
2822 if (first_family != sec_family)
d23fe947 2823 return 3;
f796af5d 2824
d23fe947 2825 }
cdddbdbc 2826
f796af5d 2827
3e372e5a
DW
2828 /* if 'first' is a spare promote it to a populated mpb with sec's
2829 * family number
2830 */
2831 if (first->anchor->num_raid_devs == 0 &&
2832 sec->anchor->num_raid_devs > 0) {
78d30f94 2833 int i;
ba2de7ba
DW
2834 struct intel_dev *dv;
2835 struct imsm_dev *dev;
78d30f94
DW
2836
2837 /* we need to copy raid device info from sec if an allocation
2838 * fails here we don't associate the spare
2839 */
2840 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2841 dv = malloc(sizeof(*dv));
2842 if (!dv)
2843 break;
2844 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2845 if (!dev) {
2846 free(dv);
2847 break;
78d30f94 2848 }
ba2de7ba
DW
2849 dv->dev = dev;
2850 dv->index = i;
2851 dv->next = first->devlist;
2852 first->devlist = dv;
78d30f94 2853 }
709743c5 2854 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2855 /* allocation failure */
2856 free_devlist(first);
2857 fprintf(stderr, "imsm: failed to associate spare\n");
2858 return 3;
78d30f94 2859 }
3e372e5a 2860 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2861 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2862 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2863 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2864 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2865 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2866 }
2867
cdddbdbc
DW
2868 return 0;
2869}
2870
0030e8d6
DW
2871static void fd2devname(int fd, char *name)
2872{
2873 struct stat st;
2874 char path[256];
33a6535d 2875 char dname[PATH_MAX];
0030e8d6
DW
2876 char *nm;
2877 int rv;
2878
2879 name[0] = '\0';
2880 if (fstat(fd, &st) != 0)
2881 return;
2882 sprintf(path, "/sys/dev/block/%d:%d",
2883 major(st.st_rdev), minor(st.st_rdev));
2884
9cf014ec 2885 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
2886 if (rv <= 0)
2887 return;
2888
2889 dname[rv] = '\0';
2890 nm = strrchr(dname, '/');
7897de29
JS
2891 if (nm) {
2892 nm++;
2893 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2894 }
0030e8d6
DW
2895}
2896
cdddbdbc
DW
2897extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2898
2899static int imsm_read_serial(int fd, char *devname,
2900 __u8 serial[MAX_RAID_SERIAL_LEN])
2901{
2902 unsigned char scsi_serial[255];
cdddbdbc
DW
2903 int rv;
2904 int rsp_len;
1f24f035 2905 int len;
316e2bf4
DW
2906 char *dest;
2907 char *src;
2908 char *rsp_buf;
2909 int i;
cdddbdbc
DW
2910
2911 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2912
f9ba0ff1
DW
2913 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2914
40ebbb9c 2915 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2916 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2917 fd2devname(fd, (char *) serial);
0030e8d6
DW
2918 return 0;
2919 }
2920
cdddbdbc
DW
2921 if (rv != 0) {
2922 if (devname)
2923 fprintf(stderr,
2924 Name ": Failed to retrieve serial for %s\n",
2925 devname);
2926 return rv;
2927 }
2928
2929 rsp_len = scsi_serial[3];
03cd4cc8
DW
2930 if (!rsp_len) {
2931 if (devname)
2932 fprintf(stderr,
2933 Name ": Failed to retrieve serial for %s\n",
2934 devname);
2935 return 2;
2936 }
1f24f035 2937 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2938
316e2bf4
DW
2939 /* trim all whitespace and non-printable characters and convert
2940 * ':' to ';'
2941 */
2942 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2943 src = &rsp_buf[i];
2944 if (*src > 0x20) {
2945 /* ':' is reserved for use in placeholder serial
2946 * numbers for missing disks
2947 */
2948 if (*src == ':')
2949 *dest++ = ';';
2950 else
2951 *dest++ = *src;
2952 }
2953 }
2954 len = dest - rsp_buf;
2955 dest = rsp_buf;
2956
2957 /* truncate leading characters */
2958 if (len > MAX_RAID_SERIAL_LEN) {
2959 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2960 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2961 }
5c3db629 2962
5c3db629 2963 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2964 memcpy(serial, dest, len);
cdddbdbc
DW
2965
2966 return 0;
2967}
2968
1f24f035
DW
2969static int serialcmp(__u8 *s1, __u8 *s2)
2970{
2971 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2972}
2973
2974static void serialcpy(__u8 *dest, __u8 *src)
2975{
2976 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2977}
2978
54c2c1ea
DW
2979static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2980{
2981 struct dl *dl;
2982
2983 for (dl = super->disks; dl; dl = dl->next)
2984 if (serialcmp(dl->serial, serial) == 0)
2985 break;
2986
2987 return dl;
2988}
2989
a2b97981
DW
2990static struct imsm_disk *
2991__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2992{
2993 int i;
2994
2995 for (i = 0; i < mpb->num_disks; i++) {
2996 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2997
2998 if (serialcmp(disk->serial, serial) == 0) {
2999 if (idx)
3000 *idx = i;
3001 return disk;
3002 }
3003 }
3004
3005 return NULL;
3006}
3007
cdddbdbc
DW
3008static int
3009load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3010{
a2b97981 3011 struct imsm_disk *disk;
cdddbdbc
DW
3012 struct dl *dl;
3013 struct stat stb;
cdddbdbc 3014 int rv;
a2b97981 3015 char name[40];
d23fe947
DW
3016 __u8 serial[MAX_RAID_SERIAL_LEN];
3017
3018 rv = imsm_read_serial(fd, devname, serial);
3019
3020 if (rv != 0)
3021 return 2;
3022
a2b97981 3023 dl = calloc(1, sizeof(*dl));
b9f594fe 3024 if (!dl) {
cdddbdbc
DW
3025 if (devname)
3026 fprintf(stderr,
3027 Name ": failed to allocate disk buffer for %s\n",
3028 devname);
3029 return 2;
3030 }
cdddbdbc 3031
a2b97981
DW
3032 fstat(fd, &stb);
3033 dl->major = major(stb.st_rdev);
3034 dl->minor = minor(stb.st_rdev);
3035 dl->next = super->disks;
3036 dl->fd = keep_fd ? fd : -1;
3037 assert(super->disks == NULL);
3038 super->disks = dl;
3039 serialcpy(dl->serial, serial);
3040 dl->index = -2;
3041 dl->e = NULL;
3042 fd2devname(fd, name);
3043 if (devname)
3044 dl->devname = strdup(devname);
3045 else
3046 dl->devname = strdup(name);
cdddbdbc 3047
d23fe947 3048 /* look up this disk's index in the current anchor */
a2b97981
DW
3049 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3050 if (disk) {
3051 dl->disk = *disk;
3052 /* only set index on disks that are a member of a
3053 * populated contianer, i.e. one with raid_devs
3054 */
3055 if (is_failed(&dl->disk))
3f6efecc 3056 dl->index = -2;
a2b97981
DW
3057 else if (is_spare(&dl->disk))
3058 dl->index = -1;
3f6efecc
DW
3059 }
3060
949c47a0
DW
3061 return 0;
3062}
3063
0e600426 3064#ifndef MDASSEMBLE
0c046afd
DW
3065/* When migrating map0 contains the 'destination' state while map1
3066 * contains the current state. When not migrating map0 contains the
3067 * current state. This routine assumes that map[0].map_state is set to
3068 * the current array state before being called.
3069 *
3070 * Migration is indicated by one of the following states
3071 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3072 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3073 * map1state=unitialized)
1484e727 3074 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3075 * map1state=normal)
e3bba0e0 3076 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3077 * map1state=degraded)
8e59f3d8
AK
3078 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3079 * map1state=normal)
0c046afd 3080 */
8e59f3d8
AK
3081static void migrate(struct imsm_dev *dev, struct intel_super *super,
3082 __u8 to_state, int migr_type)
3393c6af 3083{
0c046afd 3084 struct imsm_map *dest;
3393c6af
DW
3085 struct imsm_map *src = get_imsm_map(dev, 0);
3086
0c046afd 3087 dev->vol.migr_state = 1;
1484e727 3088 set_migr_type(dev, migr_type);
f8f603f1 3089 dev->vol.curr_migr_unit = 0;
0c046afd
DW
3090 dest = get_imsm_map(dev, 1);
3091
0556e1a2 3092 /* duplicate and then set the target end state in map[0] */
3393c6af 3093 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3094 if ((migr_type == MIGR_REBUILD) ||
3095 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3096 __u32 ord;
3097 int i;
3098
3099 for (i = 0; i < src->num_members; i++) {
3100 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3101 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3102 }
3103 }
3104
8e59f3d8
AK
3105 if (migr_type == MIGR_GEN_MIGR)
3106 /* Clear migration record */
3107 memset(super->migr_rec, 0, sizeof(struct migr_record));
3108
0c046afd 3109 src->map_state = to_state;
949c47a0 3110}
f8f603f1
DW
3111
3112static void end_migration(struct imsm_dev *dev, __u8 map_state)
3113{
3114 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 3115 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 3116 int i, j;
0556e1a2
DW
3117
3118 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3119 * completed in the last migration.
3120 *
28bce06f 3121 * FIXME add support for raid-level-migration
0556e1a2
DW
3122 */
3123 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
3124 for (j = 0; j < map->num_members; j++)
3125 /* during online capacity expansion
3126 * disks position can be changed if takeover is used
3127 */
3128 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3129 ord_to_idx(prev->disk_ord_tbl[i])) {
3130 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3131 break;
3132 }
f8f603f1
DW
3133
3134 dev->vol.migr_state = 0;
ea672ee1 3135 set_migr_type(dev, 0);
f8f603f1
DW
3136 dev->vol.curr_migr_unit = 0;
3137 map->map_state = map_state;
3138}
0e600426 3139#endif
949c47a0
DW
3140
3141static int parse_raid_devices(struct intel_super *super)
3142{
3143 int i;
3144 struct imsm_dev *dev_new;
4d7b1503 3145 size_t len, len_migr;
401d313b 3146 size_t max_len = 0;
4d7b1503
DW
3147 size_t space_needed = 0;
3148 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3149
3150 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3151 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3152 struct intel_dev *dv;
949c47a0 3153
4d7b1503
DW
3154 len = sizeof_imsm_dev(dev_iter, 0);
3155 len_migr = sizeof_imsm_dev(dev_iter, 1);
3156 if (len_migr > len)
3157 space_needed += len_migr - len;
3158
ba2de7ba
DW
3159 dv = malloc(sizeof(*dv));
3160 if (!dv)
3161 return 1;
401d313b
AK
3162 if (max_len < len_migr)
3163 max_len = len_migr;
3164 if (max_len > len_migr)
3165 space_needed += max_len - len_migr;
3166 dev_new = malloc(max_len);
ba2de7ba
DW
3167 if (!dev_new) {
3168 free(dv);
949c47a0 3169 return 1;
ba2de7ba 3170 }
949c47a0 3171 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3172 dv->dev = dev_new;
3173 dv->index = i;
3174 dv->next = super->devlist;
3175 super->devlist = dv;
949c47a0 3176 }
cdddbdbc 3177
4d7b1503
DW
3178 /* ensure that super->buf is large enough when all raid devices
3179 * are migrating
3180 */
3181 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3182 void *buf;
3183
3184 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3185 if (posix_memalign(&buf, 512, len) != 0)
3186 return 1;
3187
1f45a8ad
DW
3188 memcpy(buf, super->buf, super->len);
3189 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3190 free(super->buf);
3191 super->buf = buf;
3192 super->len = len;
3193 }
3194
cdddbdbc
DW
3195 return 0;
3196}
3197
604b746f
JD
3198/* retrieve a pointer to the bbm log which starts after all raid devices */
3199struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3200{
3201 void *ptr = NULL;
3202
3203 if (__le32_to_cpu(mpb->bbm_log_size)) {
3204 ptr = mpb;
3205 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3206 }
3207
3208 return ptr;
3209}
3210
e2f41b2c
AK
3211/*******************************************************************************
3212 * Function: check_mpb_migr_compatibility
3213 * Description: Function checks for unsupported migration features:
3214 * - migration optimization area (pba_of_lba0)
3215 * - descending reshape (ascending_migr)
3216 * Parameters:
3217 * super : imsm metadata information
3218 * Returns:
3219 * 0 : migration is compatible
3220 * -1 : migration is not compatible
3221 ******************************************************************************/
3222int check_mpb_migr_compatibility(struct intel_super *super)
3223{
3224 struct imsm_map *map0, *map1;
3225 struct migr_record *migr_rec = super->migr_rec;
3226 int i;
3227
3228 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3229 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3230
3231 if (dev_iter &&
3232 dev_iter->vol.migr_state == 1 &&
3233 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3234 /* This device is migrating */
3235 map0 = get_imsm_map(dev_iter, 0);
3236 map1 = get_imsm_map(dev_iter, 1);
3237 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3238 /* migration optimization area was used */
3239 return -1;
3240 if (migr_rec->ascending_migr == 0
3241 && migr_rec->dest_depth_per_unit > 0)
3242 /* descending reshape not supported yet */
3243 return -1;
3244 }
3245 }
3246 return 0;
3247}
3248
d23fe947 3249static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3250
cdddbdbc 3251/* load_imsm_mpb - read matrix metadata
f2f5c343 3252 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3253 */
3254static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3255{
3256 unsigned long long dsize;
cdddbdbc
DW
3257 unsigned long long sectors;
3258 struct stat;
6416d527 3259 struct imsm_super *anchor;
cdddbdbc
DW
3260 __u32 check_sum;
3261
cdddbdbc 3262 get_dev_size(fd, NULL, &dsize);
64436f06
N
3263 if (dsize < 1024) {
3264 if (devname)
3265 fprintf(stderr,
3266 Name ": %s: device to small for imsm\n",
3267 devname);
3268 return 1;
3269 }
cdddbdbc
DW
3270
3271 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3272 if (devname)
2e062e82
AK
3273 fprintf(stderr, Name
3274 ": Cannot seek to anchor block on %s: %s\n",
cdddbdbc
DW
3275 devname, strerror(errno));
3276 return 1;
3277 }
3278
949c47a0 3279 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3280 if (devname)
3281 fprintf(stderr,
3282 Name ": Failed to allocate imsm anchor buffer"
3283 " on %s\n", devname);
3284 return 1;
3285 }
949c47a0 3286 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3287 if (devname)
3288 fprintf(stderr,
3289 Name ": Cannot read anchor block on %s: %s\n",
3290 devname, strerror(errno));
6416d527 3291 free(anchor);
cdddbdbc
DW
3292 return 1;
3293 }
3294
6416d527 3295 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3296 if (devname)
3297 fprintf(stderr,
3298 Name ": no IMSM anchor on %s\n", devname);
6416d527 3299 free(anchor);
cdddbdbc
DW
3300 return 2;
3301 }
3302
d23fe947 3303 __free_imsm(super, 0);
f2f5c343
LM
3304 /* reload capability and hba */
3305
3306 /* capability and hba must be updated with new super allocation */
d424212e 3307 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3308 super->len = ROUND_UP(anchor->mpb_size, 512);
3309 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3310 if (devname)
3311 fprintf(stderr,
3312 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3313 super->len);
6416d527 3314 free(anchor);
cdddbdbc
DW
3315 return 2;
3316 }
949c47a0 3317 memcpy(super->buf, anchor, 512);
cdddbdbc 3318
6416d527
NB
3319 sectors = mpb_sectors(anchor) - 1;
3320 free(anchor);
8e59f3d8
AK
3321
3322 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3323 fprintf(stderr, Name
3324 ": %s could not allocate migr_rec buffer\n", __func__);
3325 free(super->buf);
3326 return 2;
3327 }
3328
949c47a0 3329 if (!sectors) {
ecf45690
DW
3330 check_sum = __gen_imsm_checksum(super->anchor);
3331 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3332 if (devname)
3333 fprintf(stderr,
3334 Name ": IMSM checksum %x != %x on %s\n",
3335 check_sum,
3336 __le32_to_cpu(super->anchor->check_sum),
3337 devname);
3338 return 2;
3339 }
3340
a2b97981 3341 return 0;
949c47a0 3342 }
cdddbdbc
DW
3343
3344 /* read the extended mpb */
3345 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3346 if (devname)
3347 fprintf(stderr,
3348 Name ": Cannot seek to extended mpb on %s: %s\n",
3349 devname, strerror(errno));
3350 return 1;
3351 }
3352
f21e18ca 3353 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3354 if (devname)
3355 fprintf(stderr,
3356 Name ": Cannot read extended mpb on %s: %s\n",
3357 devname, strerror(errno));
3358 return 2;
3359 }
3360
949c47a0
DW
3361 check_sum = __gen_imsm_checksum(super->anchor);
3362 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3363 if (devname)
3364 fprintf(stderr,
3365 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3366 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3367 devname);
db575f3b 3368 return 3;
cdddbdbc
DW
3369 }
3370
604b746f
JD
3371 /* FIXME the BBM log is disk specific so we cannot use this global
3372 * buffer for all disks. Ok for now since we only look at the global
3373 * bbm_log_size parameter to gate assembly
3374 */
3375 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3376
a2b97981
DW
3377 return 0;
3378}
3379
8e59f3d8
AK
3380static int read_imsm_migr_rec(int fd, struct intel_super *super);
3381
a2b97981
DW
3382static int
3383load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3384{
3385 int err;
3386
3387 err = load_imsm_mpb(fd, super, devname);
3388 if (err)
3389 return err;
3390 err = load_imsm_disk(fd, super, devname, keep_fd);
3391 if (err)
3392 return err;
3393 err = parse_raid_devices(super);
4d7b1503 3394
a2b97981 3395 return err;
cdddbdbc
DW
3396}
3397
ae6aad82
DW
3398static void __free_imsm_disk(struct dl *d)
3399{
3400 if (d->fd >= 0)
3401 close(d->fd);
3402 if (d->devname)
3403 free(d->devname);
0dcecb2e
DW
3404 if (d->e)
3405 free(d->e);
ae6aad82
DW
3406 free(d);
3407
3408}
1a64be56 3409
cdddbdbc
DW
3410static void free_imsm_disks(struct intel_super *super)
3411{
47ee5a45 3412 struct dl *d;
cdddbdbc 3413
47ee5a45
DW
3414 while (super->disks) {
3415 d = super->disks;
cdddbdbc 3416 super->disks = d->next;
ae6aad82 3417 __free_imsm_disk(d);
cdddbdbc 3418 }
cb82edca
AK
3419 while (super->disk_mgmt_list) {
3420 d = super->disk_mgmt_list;
3421 super->disk_mgmt_list = d->next;
3422 __free_imsm_disk(d);
3423 }
47ee5a45
DW
3424 while (super->missing) {
3425 d = super->missing;
3426 super->missing = d->next;
3427 __free_imsm_disk(d);
3428 }
3429
cdddbdbc
DW
3430}
3431
9ca2c81c 3432/* free all the pieces hanging off of a super pointer */
d23fe947 3433static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3434{
88654014
LM
3435 struct intel_hba *elem, *next;
3436
9ca2c81c 3437 if (super->buf) {
949c47a0 3438 free(super->buf);
9ca2c81c
DW
3439 super->buf = NULL;
3440 }
f2f5c343
LM
3441 /* unlink capability description */
3442 super->orom = NULL;
8e59f3d8
AK
3443 if (super->migr_rec_buf) {
3444 free(super->migr_rec_buf);
3445 super->migr_rec_buf = NULL;
3446 }
d23fe947
DW
3447 if (free_disks)
3448 free_imsm_disks(super);
ba2de7ba 3449 free_devlist(super);
88654014
LM
3450 elem = super->hba;
3451 while (elem) {
3452 if (elem->path)
3453 free((void *)elem->path);
3454 next = elem->next;
3455 free(elem);
3456 elem = next;
88c32bb1 3457 }
88654014 3458 super->hba = NULL;
cdddbdbc
DW
3459}
3460
9ca2c81c
DW
3461static void free_imsm(struct intel_super *super)
3462{
d23fe947 3463 __free_imsm(super, 1);
9ca2c81c
DW
3464 free(super);
3465}
cdddbdbc
DW
3466
3467static void free_super_imsm(struct supertype *st)
3468{
3469 struct intel_super *super = st->sb;
3470
3471 if (!super)
3472 return;
3473
3474 free_imsm(super);
3475 st->sb = NULL;
3476}
3477
49133e57 3478static struct intel_super *alloc_super(void)
c2c087e6
DW
3479{
3480 struct intel_super *super = malloc(sizeof(*super));
3481
3482 if (super) {
3483 memset(super, 0, sizeof(*super));
bf5a934a 3484 super->current_vol = -1;
0dcecb2e 3485 super->create_offset = ~((__u32 ) 0);
c2c087e6 3486 }
c2c087e6
DW
3487 return super;
3488}
3489
f0f5a016
LM
3490/*
3491 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3492 */
d424212e 3493static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3494{
3495 struct sys_dev *hba_name;
3496 int rv = 0;
3497
3498 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3499 super->orom = NULL;
f0f5a016
LM
3500 super->hba = NULL;
3501 return 0;
3502 }
3503 hba_name = find_disk_attached_hba(fd, NULL);
3504 if (!hba_name) {
d424212e 3505 if (devname)
f0f5a016
LM
3506 fprintf(stderr,
3507 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3508 devname);
f0f5a016
LM
3509 return 1;
3510 }
3511 rv = attach_hba_to_super(super, hba_name);
3512 if (rv == 2) {
d424212e
N
3513 if (devname) {
3514 struct intel_hba *hba = super->hba;
f0f5a016 3515
f0f5a016
LM
3516 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3517 "controller (%s),\n"
3518 " but the container is assigned to Intel(R) "
3519 "%s RAID controller (",
d424212e 3520 devname,
f0f5a016
LM
3521 hba_name->path,
3522 hba_name->pci_id ? : "Err!",
3523 get_sys_dev_type(hba_name->type));
3524
f0f5a016
LM
3525 while (hba) {
3526 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3527 if (hba->next)
3528 fprintf(stderr, ", ");
3529 hba = hba->next;
3530 }
3531
3532 fprintf(stderr, ").\n"
3533 " Mixing devices attached to different controllers "
3534 "is not allowed.\n");
3535 }
3536 free_sys_dev(&hba_name);
3537 return 2;
3538 }
f2f5c343 3539 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3540 free_sys_dev(&hba_name);
f2f5c343
LM
3541 if (!super->orom)
3542 return 3;
f0f5a016
LM
3543 return 0;
3544}
3545
47ee5a45
DW
3546/* find_missing - helper routine for load_super_imsm_all that identifies
3547 * disks that have disappeared from the system. This routine relies on
3548 * the mpb being uptodate, which it is at load time.
3549 */
3550static int find_missing(struct intel_super *super)
3551{
3552 int i;
3553 struct imsm_super *mpb = super->anchor;
3554 struct dl *dl;
3555 struct imsm_disk *disk;
47ee5a45
DW
3556
3557 for (i = 0; i < mpb->num_disks; i++) {
3558 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3559 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3560 if (dl)
3561 continue;
47ee5a45
DW
3562
3563 dl = malloc(sizeof(*dl));
3564 if (!dl)
3565 return 1;
3566 dl->major = 0;
3567 dl->minor = 0;
3568 dl->fd = -1;
3569 dl->devname = strdup("missing");
3570 dl->index = i;
3571 serialcpy(dl->serial, disk->serial);
3572 dl->disk = *disk;
689c9bf3 3573 dl->e = NULL;
47ee5a45
DW
3574 dl->next = super->missing;
3575 super->missing = dl;
3576 }
3577
3578 return 0;
3579}
3580
3960e579 3581#ifndef MDASSEMBLE
a2b97981
DW
3582static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3583{
3584 struct intel_disk *idisk = disk_list;
3585
3586 while (idisk) {
3587 if (serialcmp(idisk->disk.serial, serial) == 0)
3588 break;
3589 idisk = idisk->next;
3590 }
3591
3592 return idisk;
3593}
3594
3595static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3596 struct intel_super *super,
3597 struct intel_disk **disk_list)
3598{
3599 struct imsm_disk *d = &super->disks->disk;
3600 struct imsm_super *mpb = super->anchor;
3601 int i, j;
3602
3603 for (i = 0; i < tbl_size; i++) {
3604 struct imsm_super *tbl_mpb = table[i]->anchor;
3605 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3606
3607 if (tbl_mpb->family_num == mpb->family_num) {
3608 if (tbl_mpb->check_sum == mpb->check_sum) {
3609 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3610 __func__, super->disks->major,
3611 super->disks->minor,
3612 table[i]->disks->major,
3613 table[i]->disks->minor);
3614 break;
3615 }
3616
3617 if (((is_configured(d) && !is_configured(tbl_d)) ||
3618 is_configured(d) == is_configured(tbl_d)) &&
3619 tbl_mpb->generation_num < mpb->generation_num) {
3620 /* current version of the mpb is a
3621 * better candidate than the one in
3622 * super_table, but copy over "cross
3623 * generational" status
3624 */
3625 struct intel_disk *idisk;
3626
3627 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3628 __func__, super->disks->major,
3629 super->disks->minor,
3630 table[i]->disks->major,
3631 table[i]->disks->minor);
3632
3633 idisk = disk_list_get(tbl_d->serial, *disk_list);
3634 if (idisk && is_failed(&idisk->disk))
3635 tbl_d->status |= FAILED_DISK;
3636 break;
3637 } else {
3638 struct intel_disk *idisk;
3639 struct imsm_disk *disk;
3640
3641 /* tbl_mpb is more up to date, but copy
3642 * over cross generational status before
3643 * returning
3644 */
3645 disk = __serial_to_disk(d->serial, mpb, NULL);
3646 if (disk && is_failed(disk))
3647 d->status |= FAILED_DISK;
3648
3649 idisk = disk_list_get(d->serial, *disk_list);
3650 if (idisk) {
3651 idisk->owner = i;
3652 if (disk && is_configured(disk))
3653 idisk->disk.status |= CONFIGURED_DISK;
3654 }
3655
3656 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3657 __func__, super->disks->major,
3658 super->disks->minor,
3659 table[i]->disks->major,
3660 table[i]->disks->minor);
3661
3662 return tbl_size;
3663 }
3664 }
3665 }
3666
3667 if (i >= tbl_size)
3668 table[tbl_size++] = super;
3669 else
3670 table[i] = super;
3671
3672 /* update/extend the merged list of imsm_disk records */
3673 for (j = 0; j < mpb->num_disks; j++) {
3674 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3675 struct intel_disk *idisk;
3676
3677 idisk = disk_list_get(disk->serial, *disk_list);
3678 if (idisk) {
3679 idisk->disk.status |= disk->status;
3680 if (is_configured(&idisk->disk) ||
3681 is_failed(&idisk->disk))
3682 idisk->disk.status &= ~(SPARE_DISK);
3683 } else {
3684 idisk = calloc(1, sizeof(*idisk));
3685 if (!idisk)
3686 return -1;
3687 idisk->owner = IMSM_UNKNOWN_OWNER;
3688 idisk->disk = *disk;
3689 idisk->next = *disk_list;
3690 *disk_list = idisk;
3691 }
3692
3693 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3694 idisk->owner = i;
3695 }
3696
3697 return tbl_size;
3698}
3699
3700static struct intel_super *
3701validate_members(struct intel_super *super, struct intel_disk *disk_list,
3702 const int owner)
3703{
3704 struct imsm_super *mpb = super->anchor;
3705 int ok_count = 0;
3706 int i;
3707
3708 for (i = 0; i < mpb->num_disks; i++) {
3709 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3710 struct intel_disk *idisk;
3711
3712 idisk = disk_list_get(disk->serial, disk_list);
3713 if (idisk) {
3714 if (idisk->owner == owner ||
3715 idisk->owner == IMSM_UNKNOWN_OWNER)
3716 ok_count++;
3717 else
3718 dprintf("%s: '%.16s' owner %d != %d\n",
3719 __func__, disk->serial, idisk->owner,
3720 owner);
3721 } else {
3722 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3723 __func__, __le32_to_cpu(mpb->family_num), i,
3724 disk->serial);
3725 break;
3726 }
3727 }
3728
3729 if (ok_count == mpb->num_disks)
3730 return super;
3731 return NULL;
3732}
3733
3734static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3735{
3736 struct intel_super *s;
3737
3738 for (s = super_list; s; s = s->next) {
3739 if (family_num != s->anchor->family_num)
3740 continue;
3741 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3742 __le32_to_cpu(family_num), s->disks->devname);
3743 }
3744}
3745
3746static struct intel_super *
3747imsm_thunderdome(struct intel_super **super_list, int len)
3748{
3749 struct intel_super *super_table[len];
3750 struct intel_disk *disk_list = NULL;
3751 struct intel_super *champion, *spare;
3752 struct intel_super *s, **del;
3753 int tbl_size = 0;
3754 int conflict;
3755 int i;
3756
3757 memset(super_table, 0, sizeof(super_table));
3758 for (s = *super_list; s; s = s->next)
3759 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3760
3761 for (i = 0; i < tbl_size; i++) {
3762 struct imsm_disk *d;
3763 struct intel_disk *idisk;
3764 struct imsm_super *mpb = super_table[i]->anchor;
3765
3766 s = super_table[i];
3767 d = &s->disks->disk;
3768
3769 /* 'd' must appear in merged disk list for its
3770 * configuration to be valid
3771 */
3772 idisk = disk_list_get(d->serial, disk_list);
3773 if (idisk && idisk->owner == i)
3774 s = validate_members(s, disk_list, i);
3775 else
3776 s = NULL;
3777
3778 if (!s)
3779 dprintf("%s: marking family: %#x from %d:%d offline\n",
3780 __func__, mpb->family_num,
3781 super_table[i]->disks->major,
3782 super_table[i]->disks->minor);
3783 super_table[i] = s;
3784 }
3785
3786 /* This is where the mdadm implementation differs from the Windows
3787 * driver which has no strict concept of a container. We can only
3788 * assemble one family from a container, so when returning a prodigal
3789 * array member to this system the code will not be able to disambiguate
3790 * the container contents that should be assembled ("foreign" versus
3791 * "local"). It requires user intervention to set the orig_family_num
3792 * to a new value to establish a new container. The Windows driver in
3793 * this situation fixes up the volume name in place and manages the
3794 * foreign array as an independent entity.
3795 */
3796 s = NULL;
3797 spare = NULL;
3798 conflict = 0;
3799 for (i = 0; i < tbl_size; i++) {
3800 struct intel_super *tbl_ent = super_table[i];
3801 int is_spare = 0;
3802
3803 if (!tbl_ent)
3804 continue;
3805
3806 if (tbl_ent->anchor->num_raid_devs == 0) {
3807 spare = tbl_ent;
3808 is_spare = 1;
3809 }
3810
3811 if (s && !is_spare) {
3812 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3813 conflict++;
3814 } else if (!s && !is_spare)
3815 s = tbl_ent;
3816 }
3817
3818 if (!s)
3819 s = spare;
3820 if (!s) {
3821 champion = NULL;
3822 goto out;
3823 }
3824 champion = s;
3825
3826 if (conflict)
3827 fprintf(stderr, "Chose family %#x on '%s', "
3828 "assemble conflicts to new container with '--update=uuid'\n",
3829 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3830
3831 /* collect all dl's onto 'champion', and update them to
3832 * champion's version of the status
3833 */
3834 for (s = *super_list; s; s = s->next) {
3835 struct imsm_super *mpb = champion->anchor;
3836 struct dl *dl = s->disks;
3837
3838 if (s == champion)
3839 continue;
3840
3841 for (i = 0; i < mpb->num_disks; i++) {
3842 struct imsm_disk *disk;
3843
3844 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3845 if (disk) {
3846 dl->disk = *disk;
3847 /* only set index on disks that are a member of
3848 * a populated contianer, i.e. one with
3849 * raid_devs
3850 */
3851 if (is_failed(&dl->disk))
3852 dl->index = -2;
3853 else if (is_spare(&dl->disk))
3854 dl->index = -1;
3855 break;
3856 }
3857 }
3858
3859 if (i >= mpb->num_disks) {
3860 struct intel_disk *idisk;
3861
3862 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3863 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3864 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3865 dl->index = -1;
3866 else {
3867 dl->index = -2;
3868 continue;
3869 }
3870 }
3871
3872 dl->next = champion->disks;
3873 champion->disks = dl;
3874 s->disks = NULL;
3875 }
3876
3877 /* delete 'champion' from super_list */
3878 for (del = super_list; *del; ) {
3879 if (*del == champion) {
3880 *del = (*del)->next;
3881 break;
3882 } else
3883 del = &(*del)->next;
3884 }
3885 champion->next = NULL;
3886
3887 out:
3888 while (disk_list) {
3889 struct intel_disk *idisk = disk_list;
3890
3891 disk_list = disk_list->next;
3892 free(idisk);
3893 }
3894
3895 return champion;
3896}
3897
cdddbdbc 3898static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3899 char *devname)
cdddbdbc
DW
3900{
3901 struct mdinfo *sra;
a2b97981
DW
3902 struct intel_super *super_list = NULL;
3903 struct intel_super *super = NULL;
db575f3b 3904 int devnum = fd2devnum(fd);
a2b97981 3905 struct mdinfo *sd;
db575f3b 3906 int retry;
a2b97981
DW
3907 int err = 0;
3908 int i;
dab4a513
DW
3909
3910 /* check if 'fd' an opened container */
b526e52d 3911 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3912 if (!sra)
3913 return 1;
3914
3915 if (sra->array.major_version != -1 ||
3916 sra->array.minor_version != -2 ||
1602d52c
AW
3917 strcmp(sra->text_version, "imsm") != 0) {
3918 err = 1;
3919 goto error;
3920 }
a2b97981
DW
3921 /* load all mpbs */
3922 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3923 struct intel_super *s = alloc_super();
7a6ecd55 3924 char nm[32];
a2b97981 3925 int dfd;
f2f5c343 3926 int rv;
a2b97981
DW
3927
3928 err = 1;
3929 if (!s)
3930 goto error;
3931 s->next = super_list;
3932 super_list = s;
cdddbdbc 3933
a2b97981 3934 err = 2;
cdddbdbc 3935 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3936 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3937 if (dfd < 0)
3938 goto error;
3939
d424212e 3940 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3941 /* no orom/efi or non-intel hba of the disk */
3942 if (rv != 0)
3943 goto error;
3944
e1902a7b 3945 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3946
3947 /* retry the load if we might have raced against mdmon */
a2b97981 3948 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3949 for (retry = 0; retry < 3; retry++) {
3950 usleep(3000);
e1902a7b 3951 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3952 if (err != 3)
db575f3b
DW
3953 break;
3954 }
a2b97981
DW
3955 if (err)
3956 goto error;
cdddbdbc
DW
3957 }
3958
a2b97981
DW
3959 /* all mpbs enter, maybe one leaves */
3960 super = imsm_thunderdome(&super_list, i);
3961 if (!super) {
3962 err = 1;
3963 goto error;
cdddbdbc
DW
3964 }
3965
47ee5a45
DW
3966 if (find_missing(super) != 0) {
3967 free_imsm(super);
a2b97981
DW
3968 err = 2;
3969 goto error;
47ee5a45 3970 }
8e59f3d8
AK
3971
3972 /* load migration record */
3973 err = load_imsm_migr_rec(super, NULL);
3974 if (err) {
3975 err = 4;
3976 goto error;
3977 }
e2f41b2c
AK
3978
3979 /* Check migration compatibility */
3980 if (check_mpb_migr_compatibility(super) != 0) {
3981 fprintf(stderr, Name ": Unsupported migration detected");
3982 if (devname)
3983 fprintf(stderr, " on %s\n", devname);
3984 else
3985 fprintf(stderr, " (IMSM).\n");
3986
3987 err = 5;
3988 goto error;
3989 }
3990
a2b97981
DW
3991 err = 0;
3992
3993 error:
3994 while (super_list) {
3995 struct intel_super *s = super_list;
3996
3997 super_list = super_list->next;
3998 free_imsm(s);
3999 }
1602d52c 4000 sysfs_free(sra);
a2b97981
DW
4001
4002 if (err)
4003 return err;
f7e7067b 4004
cdddbdbc 4005 *sbp = super;
db575f3b 4006 st->container_dev = devnum;
a2b97981 4007 if (err == 0 && st->ss == NULL) {
bf5a934a 4008 st->ss = &super_imsm;
cdddbdbc
DW
4009 st->minor_version = 0;
4010 st->max_devs = IMSM_MAX_DEVICES;
4011 }
cdddbdbc
DW
4012 return 0;
4013}
2b959fbf
N
4014
4015static int load_container_imsm(struct supertype *st, int fd, char *devname)
4016{
4017 return load_super_imsm_all(st, fd, &st->sb, devname);
4018}
cdddbdbc
DW
4019#endif
4020
4021static int load_super_imsm(struct supertype *st, int fd, char *devname)
4022{
4023 struct intel_super *super;
4024 int rv;
4025
691c6ee1
N
4026 if (test_partition(fd))
4027 /* IMSM not allowed on partitions */
4028 return 1;
4029
37424f13
DW
4030 free_super_imsm(st);
4031
49133e57 4032 super = alloc_super();
cdddbdbc
DW
4033 if (!super) {
4034 fprintf(stderr,
4035 Name ": malloc of %zu failed.\n",
4036 sizeof(*super));
4037 return 1;
4038 }
ea2bc72b
LM
4039 /* Load hba and capabilities if they exist.
4040 * But do not preclude loading metadata in case capabilities or hba are
4041 * non-compliant and ignore_hw_compat is set.
4042 */
d424212e 4043 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4044 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4045 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
4046 if (devname)
4047 fprintf(stderr,
4048 Name ": No OROM/EFI properties for %s\n", devname);
4049 free_imsm(super);
4050 return 2;
4051 }
a2b97981 4052 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
4053
4054 if (rv) {
4055 if (devname)
4056 fprintf(stderr,
4057 Name ": Failed to load all information "
4058 "sections on %s\n", devname);
4059 free_imsm(super);
4060 return rv;
4061 }
4062
4063 st->sb = super;
4064 if (st->ss == NULL) {
4065 st->ss = &super_imsm;
4066 st->minor_version = 0;
4067 st->max_devs = IMSM_MAX_DEVICES;
4068 }
8e59f3d8
AK
4069
4070 /* load migration record */
2e062e82
AK
4071 if (load_imsm_migr_rec(super, NULL) == 0) {
4072 /* Check for unsupported migration features */
4073 if (check_mpb_migr_compatibility(super) != 0) {
4074 fprintf(stderr,
4075 Name ": Unsupported migration detected");
4076 if (devname)
4077 fprintf(stderr, " on %s\n", devname);
4078 else
4079 fprintf(stderr, " (IMSM).\n");
4080 return 3;
4081 }
e2f41b2c
AK
4082 }
4083
cdddbdbc
DW
4084 return 0;
4085}
4086
ef6ffade
DW
4087static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4088{
4089 if (info->level == 1)
4090 return 128;
4091 return info->chunk_size >> 9;
4092}
4093
ff596308 4094static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
4095{
4096 __u32 num_stripes;
4097
4098 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 4099 num_stripes /= num_domains;
ef6ffade
DW
4100
4101 return num_stripes;
4102}
4103
fcfd9599
DW
4104static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4105{
4025c288
DW
4106 if (info->level == 1)
4107 return info->size * 2;
4108 else
4109 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4110}
4111
4d1313e9
DW
4112static void imsm_update_version_info(struct intel_super *super)
4113{
4114 /* update the version and attributes */
4115 struct imsm_super *mpb = super->anchor;
4116 char *version;
4117 struct imsm_dev *dev;
4118 struct imsm_map *map;
4119 int i;
4120
4121 for (i = 0; i < mpb->num_raid_devs; i++) {
4122 dev = get_imsm_dev(super, i);
4123 map = get_imsm_map(dev, 0);
4124 if (__le32_to_cpu(dev->size_high) > 0)
4125 mpb->attributes |= MPB_ATTRIB_2TB;
4126
4127 /* FIXME detect when an array spans a port multiplier */
4128 #if 0
4129 mpb->attributes |= MPB_ATTRIB_PM;
4130 #endif
4131
4132 if (mpb->num_raid_devs > 1 ||
4133 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4134 version = MPB_VERSION_ATTRIBS;
4135 switch (get_imsm_raid_level(map)) {
4136 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4137 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4138 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4139 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4140 }
4141 } else {
4142 if (map->num_members >= 5)
4143 version = MPB_VERSION_5OR6_DISK_ARRAY;
4144 else if (dev->status == DEV_CLONE_N_GO)
4145 version = MPB_VERSION_CNG;
4146 else if (get_imsm_raid_level(map) == 5)
4147 version = MPB_VERSION_RAID5;
4148 else if (map->num_members >= 3)
4149 version = MPB_VERSION_3OR4_DISK_ARRAY;
4150 else if (get_imsm_raid_level(map) == 1)
4151 version = MPB_VERSION_RAID1;
4152 else
4153 version = MPB_VERSION_RAID0;
4154 }
4155 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4156 }
4157}
4158
aa534678
DW
4159static int check_name(struct intel_super *super, char *name, int quiet)
4160{
4161 struct imsm_super *mpb = super->anchor;
4162 char *reason = NULL;
4163 int i;
4164
4165 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4166 reason = "must be 16 characters or less";
4167
4168 for (i = 0; i < mpb->num_raid_devs; i++) {
4169 struct imsm_dev *dev = get_imsm_dev(super, i);
4170
4171 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4172 reason = "already exists";
4173 break;
4174 }
4175 }
4176
4177 if (reason && !quiet)
4178 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4179
4180 return !reason;
4181}
4182
8b353278
DW
4183static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4184 unsigned long long size, char *name,
4185 char *homehost, int *uuid)
cdddbdbc 4186{
c2c087e6
DW
4187 /* We are creating a volume inside a pre-existing container.
4188 * so st->sb is already set.
4189 */
4190 struct intel_super *super = st->sb;
949c47a0 4191 struct imsm_super *mpb = super->anchor;
ba2de7ba 4192 struct intel_dev *dv;
c2c087e6
DW
4193 struct imsm_dev *dev;
4194 struct imsm_vol *vol;
4195 struct imsm_map *map;
4196 int idx = mpb->num_raid_devs;
4197 int i;
4198 unsigned long long array_blocks;
2c092cad 4199 size_t size_old, size_new;
ff596308 4200 __u32 num_data_stripes;
cdddbdbc 4201
88c32bb1 4202 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 4203 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 4204 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4205 return 0;
4206 }
4207
2c092cad
DW
4208 /* ensure the mpb is large enough for the new data */
4209 size_old = __le32_to_cpu(mpb->mpb_size);
4210 size_new = disks_to_mpb_size(info->nr_disks);
4211 if (size_new > size_old) {
4212 void *mpb_new;
4213 size_t size_round = ROUND_UP(size_new, 512);
4214
4215 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4216 fprintf(stderr, Name": could not allocate new mpb\n");
4217 return 0;
4218 }
8e59f3d8
AK
4219 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4220 fprintf(stderr, Name
4221 ": %s could not allocate migr_rec buffer\n",
4222 __func__);
4223 free(super->buf);
4224 free(super);
ea944c8f 4225 free(mpb_new);
8e59f3d8
AK
4226 return 0;
4227 }
2c092cad
DW
4228 memcpy(mpb_new, mpb, size_old);
4229 free(mpb);
4230 mpb = mpb_new;
949c47a0 4231 super->anchor = mpb_new;
2c092cad
DW
4232 mpb->mpb_size = __cpu_to_le32(size_new);
4233 memset(mpb_new + size_old, 0, size_round - size_old);
4234 }
bf5a934a 4235 super->current_vol = idx;
3960e579
DW
4236
4237 /* handle 'failed_disks' by either:
4238 * a) create dummy disk entries in the table if this the first
4239 * volume in the array. We add them here as this is the only
4240 * opportunity to add them. add_to_super_imsm_volume()
4241 * handles the non-failed disks and continues incrementing
4242 * mpb->num_disks.
4243 * b) validate that 'failed_disks' matches the current number
4244 * of missing disks if the container is populated
d23fe947 4245 */
3960e579 4246 if (super->current_vol == 0) {
d23fe947 4247 mpb->num_disks = 0;
3960e579
DW
4248 for (i = 0; i < info->failed_disks; i++) {
4249 struct imsm_disk *disk;
4250
4251 mpb->num_disks++;
4252 disk = __get_imsm_disk(mpb, i);
4253 disk->status = CONFIGURED_DISK | FAILED_DISK;
4254 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4255 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4256 "missing:%d", i);
4257 }
4258 find_missing(super);
4259 } else {
4260 int missing = 0;
4261 struct dl *d;
4262
4263 for (d = super->missing; d; d = d->next)
4264 missing++;
4265 if (info->failed_disks > missing) {
4266 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4267 return 0;
4268 }
4269 }
5a038140 4270
aa534678
DW
4271 if (!check_name(super, name, 0))
4272 return 0;
ba2de7ba
DW
4273 dv = malloc(sizeof(*dv));
4274 if (!dv) {
4275 fprintf(stderr, Name ": failed to allocate device list entry\n");
4276 return 0;
4277 }
1a2487c2 4278 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4279 if (!dev) {
ba2de7ba 4280 free(dv);
949c47a0
DW
4281 fprintf(stderr, Name": could not allocate raid device\n");
4282 return 0;
4283 }
1a2487c2 4284
c2c087e6 4285 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4286 if (info->level == 1)
4287 array_blocks = info_to_blocks_per_member(info);
4288 else
4289 array_blocks = calc_array_size(info->level, info->raid_disks,
4290 info->layout, info->chunk_size,
4291 info->size*2);
979d38be
DW
4292 /* round array size down to closest MB */
4293 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4294
c2c087e6
DW
4295 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4296 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4297 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4298 vol = &dev->vol;
4299 vol->migr_state = 0;
1484e727 4300 set_migr_type(dev, MIGR_INIT);
3960e579 4301 vol->dirty = !info->state;
f8f603f1 4302 vol->curr_migr_unit = 0;
a965f303 4303 map = get_imsm_map(dev, 0);
0dcecb2e 4304 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4305 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4306 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4307 map->failed_disk_num = ~0;
3960e579 4308 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
252d23c0 4309 map->ddf = 1;
ef6ffade
DW
4310
4311 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4312 free(dev);
4313 free(dv);
ef6ffade
DW
4314 fprintf(stderr, Name": imsm does not support more than 2 disks"
4315 "in a raid1 volume\n");
4316 return 0;
4317 }
81062a36
DW
4318
4319 map->raid_level = info->level;
4d1313e9 4320 if (info->level == 10) {
c2c087e6 4321 map->raid_level = 1;
4d1313e9 4322 map->num_domains = info->raid_disks / 2;
81062a36
DW
4323 } else if (info->level == 1)
4324 map->num_domains = info->raid_disks;
4325 else
ff596308 4326 map->num_domains = 1;
81062a36 4327
ff596308
DW
4328 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4329 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4330
c2c087e6
DW
4331 map->num_members = info->raid_disks;
4332 for (i = 0; i < map->num_members; i++) {
4333 /* initialized in add_to_super */
4eb26970 4334 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4335 }
949c47a0 4336 mpb->num_raid_devs++;
ba2de7ba
DW
4337
4338 dv->dev = dev;
4339 dv->index = super->current_vol;
4340 dv->next = super->devlist;
4341 super->devlist = dv;
c2c087e6 4342
4d1313e9
DW
4343 imsm_update_version_info(super);
4344
c2c087e6 4345 return 1;
cdddbdbc
DW
4346}
4347
bf5a934a
DW
4348static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4349 unsigned long long size, char *name,
4350 char *homehost, int *uuid)
4351{
4352 /* This is primarily called by Create when creating a new array.
4353 * We will then get add_to_super called for each component, and then
4354 * write_init_super called to write it out to each device.
4355 * For IMSM, Create can create on fresh devices or on a pre-existing
4356 * array.
4357 * To create on a pre-existing array a different method will be called.
4358 * This one is just for fresh drives.
4359 */
4360 struct intel_super *super;
4361 struct imsm_super *mpb;
4362 size_t mpb_size;
4d1313e9 4363 char *version;
bf5a934a 4364
bf5a934a 4365 if (st->sb)
e683ca88
DW
4366 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4367
4368 if (info)
4369 mpb_size = disks_to_mpb_size(info->nr_disks);
4370 else
4371 mpb_size = 512;
bf5a934a 4372
49133e57 4373 super = alloc_super();
e683ca88 4374 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4375 free(super);
e683ca88
DW
4376 super = NULL;
4377 }
4378 if (!super) {
4379 fprintf(stderr, Name
4380 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4381 return 0;
4382 }
8e59f3d8
AK
4383 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4384 fprintf(stderr, Name
4385 ": %s could not allocate migr_rec buffer\n", __func__);
4386 free(super->buf);
4387 free(super);
4388 return 0;
4389 }
e683ca88 4390 memset(super->buf, 0, mpb_size);
ef649044 4391 mpb = super->buf;
e683ca88
DW
4392 mpb->mpb_size = __cpu_to_le32(mpb_size);
4393 st->sb = super;
4394
4395 if (info == NULL) {
4396 /* zeroing superblock */
4397 return 0;
4398 }
bf5a934a 4399
4d1313e9
DW
4400 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4401
4402 version = (char *) mpb->sig;
4403 strcpy(version, MPB_SIGNATURE);
4404 version += strlen(MPB_SIGNATURE);
4405 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4406
bf5a934a
DW
4407 return 1;
4408}
4409
0e600426 4410#ifndef MDASSEMBLE
f20c3968 4411static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4412 int fd, char *devname)
4413{
4414 struct intel_super *super = st->sb;
d23fe947 4415 struct imsm_super *mpb = super->anchor;
3960e579 4416 struct imsm_disk *_disk;
bf5a934a
DW
4417 struct imsm_dev *dev;
4418 struct imsm_map *map;
3960e579 4419 struct dl *dl, *df;
4eb26970 4420 int slot;
bf5a934a 4421
949c47a0 4422 dev = get_imsm_dev(super, super->current_vol);
a965f303 4423 map = get_imsm_map(dev, 0);
bf5a934a 4424
208933a7
N
4425 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4426 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4427 devname);
4428 return 1;
4429 }
4430
efb30e7f
DW
4431 if (fd == -1) {
4432 /* we're doing autolayout so grab the pre-marked (in
4433 * validate_geometry) raid_disk
4434 */
4435 for (dl = super->disks; dl; dl = dl->next)
4436 if (dl->raiddisk == dk->raid_disk)
4437 break;
4438 } else {
4439 for (dl = super->disks; dl ; dl = dl->next)
4440 if (dl->major == dk->major &&
4441 dl->minor == dk->minor)
4442 break;
4443 }
d23fe947 4444
208933a7
N
4445 if (!dl) {
4446 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4447 return 1;
208933a7 4448 }
bf5a934a 4449
d23fe947
DW
4450 /* add a pristine spare to the metadata */
4451 if (dl->index < 0) {
4452 dl->index = super->anchor->num_disks;
4453 super->anchor->num_disks++;
4454 }
4eb26970
DW
4455 /* Check the device has not already been added */
4456 slot = get_imsm_disk_slot(map, dl->index);
4457 if (slot >= 0 &&
98130f40 4458 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4459 fprintf(stderr, Name ": %s has been included in this array twice\n",
4460 devname);
4461 return 1;
4462 }
656b6b5a 4463 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 4464 dl->disk.status = CONFIGURED_DISK;
d23fe947 4465
3960e579
DW
4466 /* update size of 'missing' disks to be at least as large as the
4467 * largest acitve member (we only have dummy missing disks when
4468 * creating the first volume)
4469 */
4470 if (super->current_vol == 0) {
4471 for (df = super->missing; df; df = df->next) {
4472 if (dl->disk.total_blocks > df->disk.total_blocks)
4473 df->disk.total_blocks = dl->disk.total_blocks;
4474 _disk = __get_imsm_disk(mpb, df->index);
4475 *_disk = df->disk;
4476 }
4477 }
4478
4479 /* refresh unset/failed slots to point to valid 'missing' entries */
4480 for (df = super->missing; df; df = df->next)
4481 for (slot = 0; slot < mpb->num_disks; slot++) {
4482 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4483
4484 if ((ord & IMSM_ORD_REBUILD) == 0)
4485 continue;
4486 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4487 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4488 break;
4489 }
4490
d23fe947
DW
4491 /* if we are creating the first raid device update the family number */
4492 if (super->current_vol == 0) {
4493 __u32 sum;
4494 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 4495
3960e579 4496 _disk = __get_imsm_disk(mpb, dl->index);
791b666a
AW
4497 if (!_dev || !_disk) {
4498 fprintf(stderr, Name ": BUG mpb setup error\n");
4499 return 1;
4500 }
d23fe947
DW
4501 *_dev = *dev;
4502 *_disk = dl->disk;
148acb7b
DW
4503 sum = random32();
4504 sum += __gen_imsm_checksum(mpb);
d23fe947 4505 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4506 mpb->orig_family_num = mpb->family_num;
d23fe947 4507 }
ca0748fa 4508 super->current_disk = dl;
f20c3968 4509 return 0;
bf5a934a
DW
4510}
4511
a8619d23
AK
4512/* mark_spare()
4513 * Function marks disk as spare and restores disk serial
4514 * in case it was previously marked as failed by takeover operation
4515 * reruns:
4516 * -1 : critical error
4517 * 0 : disk is marked as spare but serial is not set
4518 * 1 : success
4519 */
4520int mark_spare(struct dl *disk)
4521{
4522 __u8 serial[MAX_RAID_SERIAL_LEN];
4523 int ret_val = -1;
4524
4525 if (!disk)
4526 return ret_val;
4527
4528 ret_val = 0;
4529 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4530 /* Restore disk serial number, because takeover marks disk
4531 * as failed and adds to serial ':0' before it becomes
4532 * a spare disk.
4533 */
4534 serialcpy(disk->serial, serial);
4535 serialcpy(disk->disk.serial, serial);
4536 ret_val = 1;
4537 }
4538 disk->disk.status = SPARE_DISK;
4539 disk->index = -1;
4540
4541 return ret_val;
4542}
88654014 4543
f20c3968 4544static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4545 int fd, char *devname)
cdddbdbc 4546{
c2c087e6 4547 struct intel_super *super = st->sb;
c2c087e6
DW
4548 struct dl *dd;
4549 unsigned long long size;
f2f27e63 4550 __u32 id;
c2c087e6
DW
4551 int rv;
4552 struct stat stb;
4553
88654014
LM
4554 /* If we are on an RAID enabled platform check that the disk is
4555 * attached to the raid controller.
4556 * We do not need to test disks attachment for container based additions,
4557 * they shall be already tested when container was created/assembled.
88c32bb1 4558 */
d424212e 4559 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4560 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4561 if (rv != 0) {
4562 dprintf("capability: %p fd: %d ret: %d\n",
4563 super->orom, fd, rv);
4564 return 1;
88c32bb1
DW
4565 }
4566
f20c3968
DW
4567 if (super->current_vol >= 0)
4568 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4569
c2c087e6
DW
4570 fstat(fd, &stb);
4571 dd = malloc(sizeof(*dd));
b9f594fe 4572 if (!dd) {
c2c087e6
DW
4573 fprintf(stderr,
4574 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4575 return 1;
c2c087e6
DW
4576 }
4577 memset(dd, 0, sizeof(*dd));
4578 dd->major = major(stb.st_rdev);
4579 dd->minor = minor(stb.st_rdev);
c2c087e6 4580 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4581 dd->fd = fd;
689c9bf3 4582 dd->e = NULL;
1a64be56 4583 dd->action = DISK_ADD;
c2c087e6 4584 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4585 if (rv) {
c2c087e6 4586 fprintf(stderr,
0030e8d6 4587 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4588 free(dd);
0030e8d6 4589 abort();
c2c087e6
DW
4590 }
4591
c2c087e6
DW
4592 get_dev_size(fd, NULL, &size);
4593 size /= 512;
1f24f035 4594 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4595 dd->disk.total_blocks = __cpu_to_le32(size);
a8619d23 4596 mark_spare(dd);
c2c087e6 4597 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4598 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4599 else
b9f594fe 4600 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4601
4602 if (st->update_tail) {
1a64be56
LM
4603 dd->next = super->disk_mgmt_list;
4604 super->disk_mgmt_list = dd;
43dad3d6
DW
4605 } else {
4606 dd->next = super->disks;
4607 super->disks = dd;
ceaf0ee1 4608 super->updates_pending++;
43dad3d6 4609 }
f20c3968
DW
4610
4611 return 0;
cdddbdbc
DW
4612}
4613
1a64be56
LM
4614
4615static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4616{
4617 struct intel_super *super = st->sb;
4618 struct dl *dd;
4619
4620 /* remove from super works only in mdmon - for communication
4621 * manager - monitor. Check if communication memory buffer
4622 * is prepared.
4623 */
4624 if (!st->update_tail) {
4625 fprintf(stderr,
4626 Name ": %s shall be used in mdmon context only"
4627 "(line %d).\n", __func__, __LINE__);
4628 return 1;
4629 }
4630 dd = malloc(sizeof(*dd));
4631 if (!dd) {
4632 fprintf(stderr,
4633 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4634 return 1;
4635 }
4636 memset(dd, 0, sizeof(*dd));
4637 dd->major = dk->major;
4638 dd->minor = dk->minor;
1a64be56 4639 dd->fd = -1;
a8619d23 4640 mark_spare(dd);
1a64be56
LM
4641 dd->action = DISK_REMOVE;
4642
4643 dd->next = super->disk_mgmt_list;
4644 super->disk_mgmt_list = dd;
4645
4646
4647 return 0;
4648}
4649
f796af5d
DW
4650static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4651
4652static union {
4653 char buf[512];
4654 struct imsm_super anchor;
4655} spare_record __attribute__ ((aligned(512)));
c2c087e6 4656
d23fe947
DW
4657/* spare records have their own family number and do not have any defined raid
4658 * devices
4659 */
4660static int write_super_imsm_spares(struct intel_super *super, int doclose)
4661{
d23fe947 4662 struct imsm_super *mpb = super->anchor;
f796af5d 4663 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4664 __u32 sum;
4665 struct dl *d;
4666
f796af5d
DW
4667 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4668 spare->generation_num = __cpu_to_le32(1UL),
4669 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4670 spare->num_disks = 1,
4671 spare->num_raid_devs = 0,
4672 spare->cache_size = mpb->cache_size,
4673 spare->pwr_cycle_count = __cpu_to_le32(1),
4674
4675 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4676 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4677
4678 for (d = super->disks; d; d = d->next) {
8796fdc4 4679 if (d->index != -1)
d23fe947
DW
4680 continue;
4681
f796af5d
DW
4682 spare->disk[0] = d->disk;
4683 sum = __gen_imsm_checksum(spare);
4684 spare->family_num = __cpu_to_le32(sum);
4685 spare->orig_family_num = 0;
4686 sum = __gen_imsm_checksum(spare);
4687 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4688
f796af5d 4689 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4690 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4691 __func__, d->major, d->minor, strerror(errno));
e74255d9 4692 return 1;
d23fe947
DW
4693 }
4694 if (doclose) {
4695 close(d->fd);
4696 d->fd = -1;
4697 }
4698 }
4699
e74255d9 4700 return 0;
d23fe947
DW
4701}
4702
36988a3d 4703static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4704{
36988a3d 4705 struct intel_super *super = st->sb;
949c47a0 4706 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4707 struct dl *d;
4708 __u32 generation;
4709 __u32 sum;
d23fe947 4710 int spares = 0;
949c47a0 4711 int i;
a48ac0a8 4712 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4713 int num_disks = 0;
146c6260 4714 int clear_migration_record = 1;
cdddbdbc 4715
c2c087e6
DW
4716 /* 'generation' is incremented everytime the metadata is written */
4717 generation = __le32_to_cpu(mpb->generation_num);
4718 generation++;
4719 mpb->generation_num = __cpu_to_le32(generation);
4720
148acb7b
DW
4721 /* fix up cases where previous mdadm releases failed to set
4722 * orig_family_num
4723 */
4724 if (mpb->orig_family_num == 0)
4725 mpb->orig_family_num = mpb->family_num;
4726
d23fe947 4727 for (d = super->disks; d; d = d->next) {
8796fdc4 4728 if (d->index == -1)
d23fe947 4729 spares++;
36988a3d 4730 else {
d23fe947 4731 mpb->disk[d->index] = d->disk;
36988a3d
AK
4732 num_disks++;
4733 }
d23fe947 4734 }
36988a3d 4735 for (d = super->missing; d; d = d->next) {
47ee5a45 4736 mpb->disk[d->index] = d->disk;
36988a3d
AK
4737 num_disks++;
4738 }
4739 mpb->num_disks = num_disks;
4740 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4741
949c47a0
DW
4742 for (i = 0; i < mpb->num_raid_devs; i++) {
4743 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4744 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4745 if (dev && dev2) {
4746 imsm_copy_dev(dev, dev2);
4747 mpb_size += sizeof_imsm_dev(dev, 0);
4748 }
146c6260
AK
4749 if (is_gen_migration(dev2))
4750 clear_migration_record = 0;
949c47a0 4751 }
a48ac0a8
DW
4752 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4753 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4754
c2c087e6 4755 /* recalculate checksum */
949c47a0 4756 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4757 mpb->check_sum = __cpu_to_le32(sum);
4758
146c6260
AK
4759 if (clear_migration_record)
4760 memset(super->migr_rec_buf, 0, 512);
4761
d23fe947 4762 /* write the mpb for disks that compose raid devices */
c2c087e6 4763 for (d = super->disks; d ; d = d->next) {
86c54047 4764 if (d->index < 0 || is_failed(&d->disk))
d23fe947 4765 continue;
f796af5d 4766 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4767 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4768 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4769 if (clear_migration_record) {
4770 unsigned long long dsize;
4771
4772 get_dev_size(d->fd, NULL, &dsize);
4773 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
9e2d750d
N
4774 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4775 perror("Write migr_rec failed");
146c6260
AK
4776 }
4777 }
c2c087e6
DW
4778 if (doclose) {
4779 close(d->fd);
4780 d->fd = -1;
4781 }
4782 }
4783
d23fe947
DW
4784 if (spares)
4785 return write_super_imsm_spares(super, doclose);
4786
e74255d9 4787 return 0;
c2c087e6
DW
4788}
4789
0e600426 4790
9b1fb677 4791static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4792{
4793 size_t len;
4794 struct imsm_update_create_array *u;
4795 struct intel_super *super = st->sb;
9b1fb677 4796 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4797 struct imsm_map *map = get_imsm_map(dev, 0);
4798 struct disk_info *inf;
4799 struct imsm_disk *disk;
4800 int i;
43dad3d6 4801
54c2c1ea
DW
4802 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4803 sizeof(*inf) * map->num_members;
43dad3d6
DW
4804 u = malloc(len);
4805 if (!u) {
4806 fprintf(stderr, "%s: failed to allocate update buffer\n",
4807 __func__);
4808 return 1;
4809 }
4810
4811 u->type = update_create_array;
9b1fb677 4812 u->dev_idx = dev_idx;
43dad3d6 4813 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4814 inf = get_disk_info(u);
4815 for (i = 0; i < map->num_members; i++) {
98130f40 4816 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4817
54c2c1ea
DW
4818 disk = get_imsm_disk(super, idx);
4819 serialcpy(inf[i].serial, disk->serial);
4820 }
43dad3d6
DW
4821 append_metadata_update(st, u, len);
4822
4823 return 0;
4824}
4825
1a64be56 4826static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4827{
4828 struct intel_super *super = st->sb;
4829 size_t len;
1a64be56 4830 struct imsm_update_add_remove_disk *u;
43dad3d6 4831
1a64be56 4832 if (!super->disk_mgmt_list)
43dad3d6
DW
4833 return 0;
4834
4835 len = sizeof(*u);
4836 u = malloc(len);
4837 if (!u) {
4838 fprintf(stderr, "%s: failed to allocate update buffer\n",
4839 __func__);
4840 return 1;
4841 }
4842
1a64be56 4843 u->type = update_add_remove_disk;
43dad3d6
DW
4844 append_metadata_update(st, u, len);
4845
4846 return 0;
4847}
4848
c2c087e6
DW
4849static int write_init_super_imsm(struct supertype *st)
4850{
9b1fb677
DW
4851 struct intel_super *super = st->sb;
4852 int current_vol = super->current_vol;
4853
4854 /* we are done with current_vol reset it to point st at the container */
4855 super->current_vol = -1;
4856
8273f55e 4857 if (st->update_tail) {
43dad3d6
DW
4858 /* queue the recently created array / added disk
4859 * as a metadata update */
43dad3d6 4860 int rv;
8273f55e 4861
43dad3d6 4862 /* determine if we are creating a volume or adding a disk */
9b1fb677 4863 if (current_vol < 0) {
1a64be56
LM
4864 /* in the mgmt (add/remove) disk case we are running
4865 * in mdmon context, so don't close fd's
43dad3d6 4866 */
1a64be56 4867 return mgmt_disk(st);
43dad3d6 4868 } else
9b1fb677 4869 rv = create_array(st, current_vol);
8273f55e 4870
43dad3d6 4871 return rv;
d682f344
N
4872 } else {
4873 struct dl *d;
4874 for (d = super->disks; d; d = d->next)
4875 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4876 return write_super_imsm(st, 1);
d682f344 4877 }
cdddbdbc 4878}
0e600426 4879#endif
cdddbdbc 4880
e683ca88 4881static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4882{
e683ca88
DW
4883 struct intel_super *super = st->sb;
4884 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4885
e683ca88 4886 if (!mpb)
ad97895e
DW
4887 return 1;
4888
1799c9e8 4889#ifndef MDASSEMBLE
e683ca88 4890 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4891#else
4892 return 1;
4893#endif
cdddbdbc
DW
4894}
4895
0e600426
N
4896static int imsm_bbm_log_size(struct imsm_super *mpb)
4897{
4898 return __le32_to_cpu(mpb->bbm_log_size);
4899}
4900
4901#ifndef MDASSEMBLE
cdddbdbc
DW
4902static int validate_geometry_imsm_container(struct supertype *st, int level,
4903 int layout, int raiddisks, int chunk,
c2c087e6 4904 unsigned long long size, char *dev,
2c514b71
NB
4905 unsigned long long *freesize,
4906 int verbose)
cdddbdbc 4907{
c2c087e6
DW
4908 int fd;
4909 unsigned long long ldsize;
f2f5c343
LM
4910 struct intel_super *super=NULL;
4911 int rv = 0;
cdddbdbc 4912
c2c087e6
DW
4913 if (level != LEVEL_CONTAINER)
4914 return 0;
4915 if (!dev)
4916 return 1;
4917
4918 fd = open(dev, O_RDONLY|O_EXCL, 0);
4919 if (fd < 0) {
2c514b71
NB
4920 if (verbose)
4921 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4922 dev, strerror(errno));
c2c087e6
DW
4923 return 0;
4924 }
4925 if (!get_dev_size(fd, dev, &ldsize)) {
4926 close(fd);
4927 return 0;
4928 }
f2f5c343
LM
4929
4930 /* capabilities retrieve could be possible
4931 * note that there is no fd for the disks in array.
4932 */
4933 super = alloc_super();
4934 if (!super) {
4935 fprintf(stderr,
4936 Name ": malloc of %zu failed.\n",
4937 sizeof(*super));
4938 close(fd);
4939 return 0;
4940 }
4941
d424212e 4942 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4943 if (rv != 0) {
4944#if DEBUG
4945 char str[256];
4946 fd2devname(fd, str);
4947 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4948 fd, str, super->orom, rv, raiddisks);
4949#endif
4950 /* no orom/efi or non-intel hba of the disk */
4951 close(fd);
4952 free_imsm(super);
4953 return 0;
4954 }
c2c087e6 4955 close(fd);
f2f5c343
LM
4956 if (super->orom && raiddisks > super->orom->tds) {
4957 if (verbose)
4958 fprintf(stderr, Name ": %d exceeds maximum number of"
4959 " platform supported disks: %d\n",
4960 raiddisks, super->orom->tds);
4961
4962 free_imsm(super);
4963 return 0;
4964 }
c2c087e6
DW
4965
4966 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 4967 free_imsm(super);
c2c087e6
DW
4968
4969 return 1;
cdddbdbc
DW
4970}
4971
0dcecb2e
DW
4972static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4973{
4974 const unsigned long long base_start = e[*idx].start;
4975 unsigned long long end = base_start + e[*idx].size;
4976 int i;
4977
4978 if (base_start == end)
4979 return 0;
4980
4981 *idx = *idx + 1;
4982 for (i = *idx; i < num_extents; i++) {
4983 /* extend overlapping extents */
4984 if (e[i].start >= base_start &&
4985 e[i].start <= end) {
4986 if (e[i].size == 0)
4987 return 0;
4988 if (e[i].start + e[i].size > end)
4989 end = e[i].start + e[i].size;
4990 } else if (e[i].start > end) {
4991 *idx = i;
4992 break;
4993 }
4994 }
4995
4996 return end - base_start;
4997}
4998
4999static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5000{
5001 /* build a composite disk with all known extents and generate a new
5002 * 'maxsize' given the "all disks in an array must share a common start
5003 * offset" constraint
5004 */
5005 struct extent *e = calloc(sum_extents, sizeof(*e));
5006 struct dl *dl;
5007 int i, j;
5008 int start_extent;
5009 unsigned long long pos;
b9d77223 5010 unsigned long long start = 0;
0dcecb2e
DW
5011 unsigned long long maxsize;
5012 unsigned long reserve;
5013
5014 if (!e)
a7dd165b 5015 return 0;
0dcecb2e
DW
5016
5017 /* coalesce and sort all extents. also, check to see if we need to
5018 * reserve space between member arrays
5019 */
5020 j = 0;
5021 for (dl = super->disks; dl; dl = dl->next) {
5022 if (!dl->e)
5023 continue;
5024 for (i = 0; i < dl->extent_cnt; i++)
5025 e[j++] = dl->e[i];
5026 }
5027 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5028
5029 /* merge extents */
5030 i = 0;
5031 j = 0;
5032 while (i < sum_extents) {
5033 e[j].start = e[i].start;
5034 e[j].size = find_size(e, &i, sum_extents);
5035 j++;
5036 if (e[j-1].size == 0)
5037 break;
5038 }
5039
5040 pos = 0;
5041 maxsize = 0;
5042 start_extent = 0;
5043 i = 0;
5044 do {
5045 unsigned long long esize;
5046
5047 esize = e[i].start - pos;
5048 if (esize >= maxsize) {
5049 maxsize = esize;
5050 start = pos;
5051 start_extent = i;
5052 }
5053 pos = e[i].start + e[i].size;
5054 i++;
5055 } while (e[i-1].size);
5056 free(e);
5057
a7dd165b
DW
5058 if (maxsize == 0)
5059 return 0;
5060
5061 /* FIXME assumes volume at offset 0 is the first volume in a
5062 * container
5063 */
0dcecb2e
DW
5064 if (start_extent > 0)
5065 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5066 else
5067 reserve = 0;
5068
5069 if (maxsize < reserve)
a7dd165b 5070 return 0;
0dcecb2e
DW
5071
5072 super->create_offset = ~((__u32) 0);
5073 if (start + reserve > super->create_offset)
a7dd165b 5074 return 0; /* start overflows create_offset */
0dcecb2e
DW
5075 super->create_offset = start + reserve;
5076
5077 return maxsize - reserve;
5078}
5079
88c32bb1
DW
5080static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5081{
5082 if (level < 0 || level == 6 || level == 4)
5083 return 0;
5084
5085 /* if we have an orom prevent invalid raid levels */
5086 if (orom)
5087 switch (level) {
5088 case 0: return imsm_orom_has_raid0(orom);
5089 case 1:
5090 if (raiddisks > 2)
5091 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5092 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5093 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5094 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5095 }
5096 else
5097 return 1; /* not on an Intel RAID platform so anything goes */
5098
5099 return 0;
5100}
5101
cd9d1ac7
DW
5102static int imsm_default_chunk(const struct imsm_orom *orom)
5103{
5104 /* up to 512 if the plaform supports it, otherwise the platform max.
5105 * 128 if no platform detected
5106 */
5107 int fs = max(7, orom ? fls(orom->sss) : 0);
5108
5109 return min(512, (1 << fs));
5110}
73408129 5111
35f81cbb 5112#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
5113static int
5114validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 5115 int raiddisks, int *chunk, int verbose)
6592ce37 5116{
660260d0
DW
5117 /* check/set platform and metadata limits/defaults */
5118 if (super->orom && raiddisks > super->orom->dpa) {
5119 pr_vrb(": platform supports a maximum of %d disks per array\n",
5120 super->orom->dpa);
73408129
LM
5121 return 0;
5122 }
5123
5124 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 5125 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
5126 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5127 level, raiddisks, raiddisks > 1 ? "s" : "");
5128 return 0;
5129 }
cd9d1ac7
DW
5130
5131 if (chunk && (*chunk == 0 || *chunk == UnSet))
5132 *chunk = imsm_default_chunk(super->orom);
5133
5134 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5135 pr_vrb(": platform does not support a chunk size of: "
5136 "%d\n", *chunk);
5137 return 0;
6592ce37 5138 }
cd9d1ac7 5139
6592ce37
DW
5140 if (layout != imsm_level_to_layout(level)) {
5141 if (level == 5)
5142 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5143 else if (level == 10)
5144 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5145 else
5146 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5147 layout, level);
5148 return 0;
5149 }
6592ce37
DW
5150 return 1;
5151}
5152
c2c087e6
DW
5153/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5154 * FIX ME add ahci details
5155 */
8b353278 5156static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 5157 int layout, int raiddisks, int *chunk,
c2c087e6 5158 unsigned long long size, char *dev,
2c514b71
NB
5159 unsigned long long *freesize,
5160 int verbose)
cdddbdbc 5161{
c2c087e6
DW
5162 struct stat stb;
5163 struct intel_super *super = st->sb;
b2916f25 5164 struct imsm_super *mpb;
c2c087e6
DW
5165 struct dl *dl;
5166 unsigned long long pos = 0;
5167 unsigned long long maxsize;
5168 struct extent *e;
5169 int i;
cdddbdbc 5170
88c32bb1
DW
5171 /* We must have the container info already read in. */
5172 if (!super)
c2c087e6
DW
5173 return 0;
5174
b2916f25
JS
5175 mpb = super->anchor;
5176
e7cb06c8
LO
5177 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5178 fprintf(stderr, Name ": the option-rom requires all "
5179 "member disks to be a member of all volumes.\n");
5180 return 0;
5181 }
5182
d54559f0
LM
5183 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5184 fprintf(stderr, Name ": RAID gemetry validation failed. "
5185 "Cannot proceed with the action(s).\n");
c2c087e6 5186 return 0;
d54559f0 5187 }
c2c087e6
DW
5188 if (!dev) {
5189 /* General test: make sure there is space for
2da8544a
DW
5190 * 'raiddisks' device extents of size 'size' at a given
5191 * offset
c2c087e6 5192 */
e46273eb 5193 unsigned long long minsize = size;
b7528a20 5194 unsigned long long start_offset = MaxSector;
c2c087e6
DW
5195 int dcnt = 0;
5196 if (minsize == 0)
5197 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5198 for (dl = super->disks; dl ; dl = dl->next) {
5199 int found = 0;
5200
bf5a934a 5201 pos = 0;
c2c087e6
DW
5202 i = 0;
5203 e = get_extents(super, dl);
5204 if (!e) continue;
5205 do {
5206 unsigned long long esize;
5207 esize = e[i].start - pos;
5208 if (esize >= minsize)
5209 found = 1;
b7528a20 5210 if (found && start_offset == MaxSector) {
2da8544a
DW
5211 start_offset = pos;
5212 break;
5213 } else if (found && pos != start_offset) {
5214 found = 0;
5215 break;
5216 }
c2c087e6
DW
5217 pos = e[i].start + e[i].size;
5218 i++;
5219 } while (e[i-1].size);
5220 if (found)
5221 dcnt++;
5222 free(e);
5223 }
5224 if (dcnt < raiddisks) {
2c514b71
NB
5225 if (verbose)
5226 fprintf(stderr, Name ": imsm: Not enough "
5227 "devices with space for this array "
5228 "(%d < %d)\n",
5229 dcnt, raiddisks);
c2c087e6
DW
5230 return 0;
5231 }
5232 return 1;
5233 }
0dcecb2e 5234
c2c087e6
DW
5235 /* This device must be a member of the set */
5236 if (stat(dev, &stb) < 0)
5237 return 0;
5238 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5239 return 0;
5240 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5241 if (dl->major == (int)major(stb.st_rdev) &&
5242 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5243 break;
5244 }
5245 if (!dl) {
2c514b71
NB
5246 if (verbose)
5247 fprintf(stderr, Name ": %s is not in the "
5248 "same imsm set\n", dev);
c2c087e6 5249 return 0;
a20d2ba5
DW
5250 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5251 /* If a volume is present then the current creation attempt
5252 * cannot incorporate new spares because the orom may not
5253 * understand this configuration (all member disks must be
5254 * members of each array in the container).
5255 */
5256 fprintf(stderr, Name ": %s is a spare and a volume"
5257 " is already defined for this container\n", dev);
5258 fprintf(stderr, Name ": The option-rom requires all member"
5259 " disks to be a member of all volumes\n");
5260 return 0;
c2c087e6 5261 }
0dcecb2e
DW
5262
5263 /* retrieve the largest free space block */
c2c087e6
DW
5264 e = get_extents(super, dl);
5265 maxsize = 0;
5266 i = 0;
0dcecb2e
DW
5267 if (e) {
5268 do {
5269 unsigned long long esize;
5270
5271 esize = e[i].start - pos;
5272 if (esize >= maxsize)
5273 maxsize = esize;
5274 pos = e[i].start + e[i].size;
5275 i++;
5276 } while (e[i-1].size);
5277 dl->e = e;
5278 dl->extent_cnt = i;
5279 } else {
5280 if (verbose)
5281 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5282 dev);
5283 return 0;
5284 }
5285 if (maxsize < size) {
5286 if (verbose)
5287 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5288 dev, maxsize, size);
5289 return 0;
5290 }
5291
5292 /* count total number of extents for merge */
5293 i = 0;
5294 for (dl = super->disks; dl; dl = dl->next)
5295 if (dl->e)
5296 i += dl->extent_cnt;
5297
5298 maxsize = merge_extents(super, i);
3baa56ab
LO
5299
5300 if (!check_env("IMSM_NO_PLATFORM") &&
5301 mpb->num_raid_devs > 0 && size && size != maxsize) {
5302 fprintf(stderr, Name ": attempting to create a second "
5303 "volume with size less then remaining space. "
5304 "Aborting...\n");
5305 return 0;
5306 }
5307
a7dd165b 5308 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
5309 if (verbose)
5310 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5311 maxsize, size);
5312 return 0;
0dcecb2e
DW
5313 }
5314
c2c087e6
DW
5315 *freesize = maxsize;
5316
5317 return 1;
cdddbdbc
DW
5318}
5319
efb30e7f
DW
5320static int reserve_space(struct supertype *st, int raiddisks,
5321 unsigned long long size, int chunk,
5322 unsigned long long *freesize)
5323{
5324 struct intel_super *super = st->sb;
5325 struct imsm_super *mpb = super->anchor;
5326 struct dl *dl;
5327 int i;
5328 int extent_cnt;
5329 struct extent *e;
5330 unsigned long long maxsize;
5331 unsigned long long minsize;
5332 int cnt;
5333 int used;
5334
5335 /* find the largest common start free region of the possible disks */
5336 used = 0;
5337 extent_cnt = 0;
5338 cnt = 0;
5339 for (dl = super->disks; dl; dl = dl->next) {
5340 dl->raiddisk = -1;
5341
5342 if (dl->index >= 0)
5343 used++;
5344
5345 /* don't activate new spares if we are orom constrained
5346 * and there is already a volume active in the container
5347 */
5348 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5349 continue;
5350
5351 e = get_extents(super, dl);
5352 if (!e)
5353 continue;
5354 for (i = 1; e[i-1].size; i++)
5355 ;
5356 dl->e = e;
5357 dl->extent_cnt = i;
5358 extent_cnt += i;
5359 cnt++;
5360 }
5361
5362 maxsize = merge_extents(super, extent_cnt);
5363 minsize = size;
5364 if (size == 0)
612e59d8
CA
5365 /* chunk is in K */
5366 minsize = chunk * 2;
efb30e7f
DW
5367
5368 if (cnt < raiddisks ||
5369 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5370 maxsize < minsize ||
5371 maxsize == 0) {
efb30e7f
DW
5372 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5373 return 0; /* No enough free spaces large enough */
5374 }
5375
5376 if (size == 0) {
5377 size = maxsize;
5378 if (chunk) {
612e59d8
CA
5379 size /= 2 * chunk;
5380 size *= 2 * chunk;
efb30e7f
DW
5381 }
5382 }
5383
5384 cnt = 0;
5385 for (dl = super->disks; dl; dl = dl->next)
5386 if (dl->e)
5387 dl->raiddisk = cnt++;
5388
5389 *freesize = size;
5390
5391 return 1;
5392}
5393
bf5a934a 5394static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5395 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5396 char *dev, unsigned long long *freesize,
5397 int verbose)
5398{
5399 int fd, cfd;
5400 struct mdinfo *sra;
20cbe8d2 5401 int is_member = 0;
bf5a934a 5402
d54559f0
LM
5403 /* load capability
5404 * if given unused devices create a container
bf5a934a
DW
5405 * if given given devices in a container create a member volume
5406 */
5407 if (level == LEVEL_CONTAINER) {
5408 /* Must be a fresh device to add to a container */
5409 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5410 raiddisks,
5411 chunk?*chunk:0, size,
bf5a934a
DW
5412 dev, freesize,
5413 verbose);
5414 }
5415
8592f29d 5416 if (!dev) {
e91a3bad
LM
5417 if (st->sb) {
5418 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5419 raiddisks, chunk,
5420 verbose))
5421 return 0;
efb30e7f
DW
5422 /* we are being asked to automatically layout a
5423 * new volume based on the current contents of
5424 * the container. If the the parameters can be
5425 * satisfied reserve_space will record the disks,
5426 * start offset, and size of the volume to be
5427 * created. add_to_super and getinfo_super
5428 * detect when autolayout is in progress.
5429 */
e91a3bad
LM
5430 if (freesize)
5431 return reserve_space(st, raiddisks, size,
5432 chunk?*chunk:0, freesize);
8592f29d
N
5433 }
5434 return 1;
5435 }
bf5a934a
DW
5436 if (st->sb) {
5437 /* creating in a given container */
5438 return validate_geometry_imsm_volume(st, level, layout,
5439 raiddisks, chunk, size,
5440 dev, freesize, verbose);
5441 }
5442
bf5a934a
DW
5443 /* This device needs to be a device in an 'imsm' container */
5444 fd = open(dev, O_RDONLY|O_EXCL, 0);
5445 if (fd >= 0) {
5446 if (verbose)
5447 fprintf(stderr,
5448 Name ": Cannot create this array on device %s\n",
5449 dev);
5450 close(fd);
5451 return 0;
5452 }
5453 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5454 if (verbose)
5455 fprintf(stderr, Name ": Cannot open %s: %s\n",
5456 dev, strerror(errno));
5457 return 0;
5458 }
5459 /* Well, it is in use by someone, maybe an 'imsm' container. */
5460 cfd = open_container(fd);
20cbe8d2 5461 close(fd);
bf5a934a 5462 if (cfd < 0) {
bf5a934a
DW
5463 if (verbose)
5464 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5465 dev);
5466 return 0;
5467 }
5468 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5469 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5470 strcmp(sra->text_version, "imsm") == 0)
5471 is_member = 1;
5472 sysfs_free(sra);
5473 if (is_member) {
bf5a934a
DW
5474 /* This is a member of a imsm container. Load the container
5475 * and try to create a volume
5476 */
5477 struct intel_super *super;
5478
e1902a7b 5479 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5480 st->sb = super;
5481 st->container_dev = fd2devnum(cfd);
5482 close(cfd);
5483 return validate_geometry_imsm_volume(st, level, layout,
5484 raiddisks, chunk,
5485 size, dev,
ecbd9e81
N
5486 freesize, 1)
5487 ? 1 : -1;
bf5a934a 5488 }
20cbe8d2 5489 }
bf5a934a 5490
20cbe8d2
AW
5491 if (verbose)
5492 fprintf(stderr, Name ": failed container membership check\n");
5493
5494 close(cfd);
5495 return 0;
bf5a934a 5496}
0bd16cf2 5497
30f58b22 5498static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5499{
5500 struct intel_super *super = st->sb;
5501
30f58b22
DW
5502 if (level && *level == UnSet)
5503 *level = LEVEL_CONTAINER;
5504
5505 if (level && layout && *layout == UnSet)
5506 *layout = imsm_level_to_layout(*level);
0bd16cf2 5507
cd9d1ac7
DW
5508 if (chunk && (*chunk == UnSet || *chunk == 0))
5509 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
5510}
5511
33414a01
DW
5512static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5513
5514static int kill_subarray_imsm(struct supertype *st)
5515{
5516 /* remove the subarray currently referenced by ->current_vol */
5517 __u8 i;
5518 struct intel_dev **dp;
5519 struct intel_super *super = st->sb;
5520 __u8 current_vol = super->current_vol;
5521 struct imsm_super *mpb = super->anchor;
5522
5523 if (super->current_vol < 0)
5524 return 2;
5525 super->current_vol = -1; /* invalidate subarray cursor */
5526
5527 /* block deletions that would change the uuid of active subarrays
5528 *
5529 * FIXME when immutable ids are available, but note that we'll
5530 * also need to fixup the invalidated/active subarray indexes in
5531 * mdstat
5532 */
5533 for (i = 0; i < mpb->num_raid_devs; i++) {
5534 char subarray[4];
5535
5536 if (i < current_vol)
5537 continue;
5538 sprintf(subarray, "%u", i);
5539 if (is_subarray_active(subarray, st->devname)) {
5540 fprintf(stderr,
5541 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5542 current_vol, i);
5543
5544 return 2;
5545 }
5546 }
5547
5548 if (st->update_tail) {
5549 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5550
5551 if (!u)
5552 return 2;
5553 u->type = update_kill_array;
5554 u->dev_idx = current_vol;
5555 append_metadata_update(st, u, sizeof(*u));
5556
5557 return 0;
5558 }
5559
5560 for (dp = &super->devlist; *dp;)
5561 if ((*dp)->index == current_vol) {
5562 *dp = (*dp)->next;
5563 } else {
5564 handle_missing(super, (*dp)->dev);
5565 if ((*dp)->index > current_vol)
5566 (*dp)->index--;
5567 dp = &(*dp)->next;
5568 }
5569
5570 /* no more raid devices, all active components are now spares,
5571 * but of course failed are still failed
5572 */
5573 if (--mpb->num_raid_devs == 0) {
5574 struct dl *d;
5575
5576 for (d = super->disks; d; d = d->next)
a8619d23
AK
5577 if (d->index > -2)
5578 mark_spare(d);
33414a01
DW
5579 }
5580
5581 super->updates_pending++;
5582
5583 return 0;
5584}
aa534678 5585
a951a4f7 5586static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5587 char *update, struct mddev_ident *ident)
aa534678
DW
5588{
5589 /* update the subarray currently referenced by ->current_vol */
5590 struct intel_super *super = st->sb;
5591 struct imsm_super *mpb = super->anchor;
5592
aa534678
DW
5593 if (strcmp(update, "name") == 0) {
5594 char *name = ident->name;
a951a4f7
N
5595 char *ep;
5596 int vol;
aa534678 5597
a951a4f7 5598 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5599 fprintf(stderr,
5600 Name ": Unable to update name of active subarray\n");
5601 return 2;
5602 }
5603
5604 if (!check_name(super, name, 0))
5605 return 2;
5606
a951a4f7
N
5607 vol = strtoul(subarray, &ep, 10);
5608 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5609 return 2;
5610
aa534678
DW
5611 if (st->update_tail) {
5612 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5613
5614 if (!u)
5615 return 2;
5616 u->type = update_rename_array;
a951a4f7 5617 u->dev_idx = vol;
aa534678
DW
5618 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5619 append_metadata_update(st, u, sizeof(*u));
5620 } else {
5621 struct imsm_dev *dev;
5622 int i;
5623
a951a4f7 5624 dev = get_imsm_dev(super, vol);
aa534678
DW
5625 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5626 for (i = 0; i < mpb->num_raid_devs; i++) {
5627 dev = get_imsm_dev(super, i);
5628 handle_missing(super, dev);
5629 }
5630 super->updates_pending++;
5631 }
5632 } else
5633 return 2;
5634
5635 return 0;
5636}
bf5a934a 5637
28bce06f
AK
5638static int is_gen_migration(struct imsm_dev *dev)
5639{
7534230b
AK
5640 if (dev == NULL)
5641 return 0;
5642
28bce06f
AK
5643 if (!dev->vol.migr_state)
5644 return 0;
5645
5646 if (migr_type(dev) == MIGR_GEN_MIGR)
5647 return 1;
5648
5649 return 0;
5650}
71204a50 5651#endif /* MDASSEMBLE */
28bce06f 5652
1e5c6983
DW
5653static int is_rebuilding(struct imsm_dev *dev)
5654{
5655 struct imsm_map *migr_map;
5656
5657 if (!dev->vol.migr_state)
5658 return 0;
5659
5660 if (migr_type(dev) != MIGR_REBUILD)
5661 return 0;
5662
5663 migr_map = get_imsm_map(dev, 1);
5664
5665 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5666 return 1;
5667 else
5668 return 0;
5669}
5670
c47b0ff6
AK
5671static void update_recovery_start(struct intel_super *super,
5672 struct imsm_dev *dev,
5673 struct mdinfo *array)
1e5c6983
DW
5674{
5675 struct mdinfo *rebuild = NULL;
5676 struct mdinfo *d;
5677 __u32 units;
5678
5679 if (!is_rebuilding(dev))
5680 return;
5681
5682 /* Find the rebuild target, but punt on the dual rebuild case */
5683 for (d = array->devs; d; d = d->next)
5684 if (d->recovery_start == 0) {
5685 if (rebuild)
5686 return;
5687 rebuild = d;
5688 }
5689
4363fd80
DW
5690 if (!rebuild) {
5691 /* (?) none of the disks are marked with
5692 * IMSM_ORD_REBUILD, so assume they are missing and the
5693 * disk_ord_tbl was not correctly updated
5694 */
5695 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5696 return;
5697 }
5698
1e5c6983 5699 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5700 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5701}
5702
9e2d750d 5703#ifndef MDASSEMBLE
276d77db 5704static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 5705#endif
1e5c6983 5706
00bbdbda 5707static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5708{
4f5bc454
DW
5709 /* Given a container loaded by load_super_imsm_all,
5710 * extract information about all the arrays into
5711 * an mdinfo tree.
00bbdbda 5712 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5713 *
5714 * For each imsm_dev create an mdinfo, fill it in,
5715 * then look for matching devices in super->disks
5716 * and create appropriate device mdinfo.
5717 */
5718 struct intel_super *super = st->sb;
949c47a0 5719 struct imsm_super *mpb = super->anchor;
4f5bc454 5720 struct mdinfo *rest = NULL;
00bbdbda 5721 unsigned int i;
81219e70 5722 int sb_errors = 0;
abef11a3
AK
5723 struct dl *d;
5724 int spare_disks = 0;
cdddbdbc 5725
19482bcc
AK
5726 /* do not assemble arrays when not all attributes are supported */
5727 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70
LM
5728 sb_errors = 1;
5729 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5730 "Arrays activation is blocked.\n");
19482bcc
AK
5731 }
5732
a06d022d 5733 /* check for bad blocks */
81219e70
LM
5734 if (imsm_bbm_log_size(super->anchor)) {
5735 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5736 "Arrays activation is blocked.\n");
5737 sb_errors = 1;
5738 }
5739
604b746f 5740
abef11a3
AK
5741 /* count spare devices, not used in maps
5742 */
5743 for (d = super->disks; d; d = d->next)
5744 if (d->index == -1)
5745 spare_disks++;
5746
4f5bc454 5747 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5748 struct imsm_dev *dev;
5749 struct imsm_map *map;
86e3692b 5750 struct imsm_map *map2;
4f5bc454 5751 struct mdinfo *this;
2db86302 5752 int slot, chunk;
00bbdbda
N
5753 char *ep;
5754
5755 if (subarray &&
5756 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5757 continue;
5758
5759 dev = get_imsm_dev(super, i);
5760 map = get_imsm_map(dev, 0);
86e3692b 5761 map2 = get_imsm_map(dev, 1);
4f5bc454 5762
1ce0101c
DW
5763 /* do not publish arrays that are in the middle of an
5764 * unsupported migration
5765 */
5766 if (dev->vol.migr_state &&
28bce06f 5767 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5768 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5769 " unsupported migration in progress\n",
5770 dev->volume);
5771 continue;
5772 }
2db86302
LM
5773 /* do not publish arrays that are not support by controller's
5774 * OROM/EFI
5775 */
1ce0101c 5776
2db86302 5777 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
4f5bc454 5778 this = malloc(sizeof(*this));
0fbd635c 5779 if (!this) {
cf1be220 5780 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5781 sizeof(*this));
5782 break;
5783 }
4f5bc454 5784
301406c9 5785 super->current_vol = i;
a5d85af7 5786 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5787 this->next = rest;
81219e70
LM
5788#ifndef MDASSEMBLE
5789 /* mdadm does not support all metadata features- set the bit in all arrays state */
5790 if (!validate_geometry_imsm_orom(super,
5791 get_imsm_raid_level(map), /* RAID level */
5792 imsm_level_to_layout(get_imsm_raid_level(map)),
5793 map->num_members, /* raid disks */
5794 &chunk,
5795 1 /* verbose */)) {
446894ea
N
5796 fprintf(stderr, Name ": IMSM RAID geometry validation"
5797 " failed. Array %s activation is blocked.\n",
81219e70
LM
5798 dev->volume);
5799 this->array.state |=
5800 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5801 (1<<MD_SB_BLOCK_VOLUME);
5802 }
5803#endif
5804
5805 /* if array has bad blocks, set suitable bit in all arrays state */
5806 if (sb_errors)
5807 this->array.state |=
5808 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5809 (1<<MD_SB_BLOCK_VOLUME);
5810
4f5bc454 5811 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5812 unsigned long long recovery_start;
4f5bc454
DW
5813 struct mdinfo *info_d;
5814 struct dl *d;
5815 int idx;
9a1608e5 5816 int skip;
7eef0453 5817 __u32 ord;
4f5bc454 5818
9a1608e5 5819 skip = 0;
98130f40 5820 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5821 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5822 for (d = super->disks; d ; d = d->next)
5823 if (d->index == idx)
0fbd635c 5824 break;
4f5bc454 5825
1e5c6983 5826 recovery_start = MaxSector;
4f5bc454 5827 if (d == NULL)
9a1608e5 5828 skip = 1;
25ed7e59 5829 if (d && is_failed(&d->disk))
9a1608e5 5830 skip = 1;
7eef0453 5831 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5832 recovery_start = 0;
9a1608e5
DW
5833
5834 /*
5835 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5836 * reset resync start to avoid a dirty-degraded
5837 * situation when performing the intial sync
9a1608e5
DW
5838 *
5839 * FIXME handle dirty degraded
5840 */
1e5c6983 5841 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5842 this->resync_start = MaxSector;
9a1608e5
DW
5843 if (skip)
5844 continue;
4f5bc454 5845
1e5c6983 5846 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5847 if (!info_d) {
5848 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5849 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5850 info_d = this->devs;
5851 while (info_d) {
5852 struct mdinfo *d = info_d->next;
5853
5854 free(info_d);
5855 info_d = d;
5856 }
9a1608e5
DW
5857 free(this);
5858 this = rest;
5859 break;
5860 }
4f5bc454
DW
5861 info_d->next = this->devs;
5862 this->devs = info_d;
5863
4f5bc454
DW
5864 info_d->disk.number = d->index;
5865 info_d->disk.major = d->major;
5866 info_d->disk.minor = d->minor;
5867 info_d->disk.raid_disk = slot;
1e5c6983 5868 info_d->recovery_start = recovery_start;
86e3692b
AK
5869 if (map2) {
5870 if (slot < map2->num_members)
5871 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5872 else
5873 this->array.spare_disks++;
86e3692b
AK
5874 } else {
5875 if (slot < map->num_members)
5876 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5877 else
5878 this->array.spare_disks++;
86e3692b 5879 }
1e5c6983
DW
5880 if (info_d->recovery_start == MaxSector)
5881 this->array.working_disks++;
4f5bc454
DW
5882
5883 info_d->events = __le32_to_cpu(mpb->generation_num);
5884 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5885 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5886 }
1e5c6983 5887 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5888 update_recovery_start(super, dev, this);
abef11a3 5889 this->array.spare_disks += spare_disks;
276d77db 5890
9e2d750d 5891#ifndef MDASSEMBLE
276d77db
AK
5892 /* check for reshape */
5893 if (this->reshape_active == 1)
5894 recover_backup_imsm(st, this);
9e2d750d 5895#endif
9a1608e5 5896 rest = this;
4f5bc454
DW
5897 }
5898
5899 return rest;
cdddbdbc
DW
5900}
5901
845dea95 5902
fb49eef2 5903static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 5904{
a965f303 5905 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
5906
5907 if (!failed)
3393c6af
DW
5908 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5909 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5910
5911 switch (get_imsm_raid_level(map)) {
5912 case 0:
5913 return IMSM_T_STATE_FAILED;
5914 break;
5915 case 1:
5916 if (failed < map->num_members)
5917 return IMSM_T_STATE_DEGRADED;
5918 else
5919 return IMSM_T_STATE_FAILED;
5920 break;
5921 case 10:
5922 {
5923 /**
c92a2527
DW
5924 * check to see if any mirrors have failed, otherwise we
5925 * are degraded. Even numbered slots are mirrored on
5926 * slot+1
c2a1e7da 5927 */
c2a1e7da 5928 int i;
d9b420a5
N
5929 /* gcc -Os complains that this is unused */
5930 int insync = insync;
c2a1e7da
DW
5931
5932 for (i = 0; i < map->num_members; i++) {
98130f40 5933 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5934 int idx = ord_to_idx(ord);
5935 struct imsm_disk *disk;
c2a1e7da 5936
c92a2527
DW
5937 /* reset the potential in-sync count on even-numbered
5938 * slots. num_copies is always 2 for imsm raid10
5939 */
5940 if ((i & 1) == 0)
5941 insync = 2;
c2a1e7da 5942
c92a2527 5943 disk = get_imsm_disk(super, idx);
25ed7e59 5944 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5945 insync--;
c2a1e7da 5946
c92a2527
DW
5947 /* no in-sync disks left in this mirror the
5948 * array has failed
5949 */
5950 if (insync == 0)
5951 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5952 }
5953
5954 return IMSM_T_STATE_DEGRADED;
5955 }
5956 case 5:
5957 if (failed < 2)
5958 return IMSM_T_STATE_DEGRADED;
5959 else
5960 return IMSM_T_STATE_FAILED;
5961 break;
5962 default:
5963 break;
5964 }
5965
5966 return map->map_state;
5967}
5968
ff077194 5969static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
5970{
5971 int i;
5972 int failed = 0;
5973 struct imsm_disk *disk;
ff077194 5974 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 5975 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
68fe4598 5976 struct imsm_map *map_for_loop;
0556e1a2
DW
5977 __u32 ord;
5978 int idx;
c2a1e7da 5979
0556e1a2
DW
5980 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5981 * disks that are being rebuilt. New failures are recorded to
5982 * map[0]. So we look through all the disks we started with and
5983 * see if any failures are still present, or if any new ones
5984 * have arrived
0556e1a2 5985 */
68fe4598
LD
5986 map_for_loop = prev;
5987 if (is_gen_migration(dev))
5988 if (prev && (map->num_members > prev->num_members))
5989 map_for_loop = map;
5990
5991 for (i = 0; i < map_for_loop->num_members; i++) {
5992 ord = 0;
5993 if (i < prev->num_members)
5994 ord |= __le32_to_cpu(prev->disk_ord_tbl[i]);
5995 if (i < map->num_members)
5996 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
0556e1a2 5997 idx = ord_to_idx(ord);
c2a1e7da 5998
949c47a0 5999 disk = get_imsm_disk(super, idx);
25ed7e59 6000 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 6001 failed++;
c2a1e7da
DW
6002 }
6003
6004 return failed;
845dea95
NB
6005}
6006
97b4d0e9
DW
6007#ifndef MDASSEMBLE
6008static int imsm_open_new(struct supertype *c, struct active_array *a,
6009 char *inst)
6010{
6011 struct intel_super *super = c->sb;
6012 struct imsm_super *mpb = super->anchor;
6013
6014 if (atoi(inst) >= mpb->num_raid_devs) {
6015 fprintf(stderr, "%s: subarry index %d, out of range\n",
6016 __func__, atoi(inst));
6017 return -ENODEV;
6018 }
6019
6020 dprintf("imsm: open_new %s\n", inst);
6021 a->info.container_member = atoi(inst);
6022 return 0;
6023}
6024
0c046afd
DW
6025static int is_resyncing(struct imsm_dev *dev)
6026{
6027 struct imsm_map *migr_map;
6028
6029 if (!dev->vol.migr_state)
6030 return 0;
6031
1484e727
DW
6032 if (migr_type(dev) == MIGR_INIT ||
6033 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
6034 return 1;
6035
4c9bc37b
AK
6036 if (migr_type(dev) == MIGR_GEN_MIGR)
6037 return 0;
6038
0c046afd
DW
6039 migr_map = get_imsm_map(dev, 1);
6040
4c9bc37b
AK
6041 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6042 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
6043 return 1;
6044 else
6045 return 0;
6046}
6047
0556e1a2
DW
6048/* return true if we recorded new information */
6049static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 6050{
0556e1a2
DW
6051 __u32 ord;
6052 int slot;
6053 struct imsm_map *map;
86c54047
DW
6054 char buf[MAX_RAID_SERIAL_LEN+3];
6055 unsigned int len, shift = 0;
0556e1a2
DW
6056
6057 /* new failures are always set in map[0] */
6058 map = get_imsm_map(dev, 0);
6059
6060 slot = get_imsm_disk_slot(map, idx);
6061 if (slot < 0)
6062 return 0;
6063
6064 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 6065 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
6066 return 0;
6067
7d0c5e24
LD
6068 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6069 buf[MAX_RAID_SERIAL_LEN] = '\000';
6070 strcat(buf, ":0");
86c54047
DW
6071 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6072 shift = len - MAX_RAID_SERIAL_LEN + 1;
6073 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6074
f2f27e63 6075 disk->status |= FAILED_DISK;
0556e1a2 6076 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
f21e18ca 6077 if (map->failed_disk_num == 0xff)
0556e1a2
DW
6078 map->failed_disk_num = slot;
6079 return 1;
6080}
6081
6082static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6083{
6084 mark_failure(dev, disk, idx);
6085
6086 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6087 return;
6088
47ee5a45
DW
6089 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6090 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6091}
6092
33414a01
DW
6093static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6094{
6095 __u8 map_state;
6096 struct dl *dl;
6097 int failed;
6098
6099 if (!super->missing)
6100 return;
6101 failed = imsm_count_failed(super, dev);
6102 map_state = imsm_check_degraded(super, dev, failed);
6103
6104 dprintf("imsm: mark missing\n");
6105 end_migration(dev, map_state);
6106 for (dl = super->missing; dl; dl = dl->next)
6107 mark_missing(dev, &dl->disk, dl->index);
6108 super->updates_pending++;
6109}
6110
70bdf0dc
AK
6111static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6112{
6113 int used_disks = imsm_num_data_members(dev, 0);
6114 unsigned long long array_blocks;
6115 struct imsm_map *map;
6116
6117 if (used_disks == 0) {
6118 /* when problems occures
6119 * return current array_blocks value
6120 */
6121 array_blocks = __le32_to_cpu(dev->size_high);
6122 array_blocks = array_blocks << 32;
6123 array_blocks += __le32_to_cpu(dev->size_low);
6124
6125 return array_blocks;
6126 }
6127
6128 /* set array size in metadata
6129 */
6130 map = get_imsm_map(dev, 0);
6131 array_blocks = map->blocks_per_member * used_disks;
6132
6133 /* round array size down to closest MB
6134 */
6135 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6136 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6137 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6138
6139 return array_blocks;
6140}
6141
28bce06f
AK
6142static void imsm_set_disk(struct active_array *a, int n, int state);
6143
0e2d1a4e
AK
6144static void imsm_progress_container_reshape(struct intel_super *super)
6145{
6146 /* if no device has a migr_state, but some device has a
6147 * different number of members than the previous device, start
6148 * changing the number of devices in this device to match
6149 * previous.
6150 */
6151 struct imsm_super *mpb = super->anchor;
6152 int prev_disks = -1;
6153 int i;
1dfaa380 6154 int copy_map_size;
0e2d1a4e
AK
6155
6156 for (i = 0; i < mpb->num_raid_devs; i++) {
6157 struct imsm_dev *dev = get_imsm_dev(super, i);
6158 struct imsm_map *map = get_imsm_map(dev, 0);
6159 struct imsm_map *map2;
6160 int prev_num_members;
0e2d1a4e
AK
6161
6162 if (dev->vol.migr_state)
6163 return;
6164
6165 if (prev_disks == -1)
6166 prev_disks = map->num_members;
6167 if (prev_disks == map->num_members)
6168 continue;
6169
6170 /* OK, this array needs to enter reshape mode.
6171 * i.e it needs a migr_state
6172 */
6173
1dfaa380 6174 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
6175 prev_num_members = map->num_members;
6176 map->num_members = prev_disks;
6177 dev->vol.migr_state = 1;
6178 dev->vol.curr_migr_unit = 0;
ea672ee1 6179 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
6180 for (i = prev_num_members;
6181 i < map->num_members; i++)
6182 set_imsm_ord_tbl_ent(map, i, i);
6183 map2 = get_imsm_map(dev, 1);
6184 /* Copy the current map */
1dfaa380 6185 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
6186 map2->num_members = prev_num_members;
6187
70bdf0dc 6188 imsm_set_array_size(dev);
0e2d1a4e
AK
6189 super->updates_pending++;
6190 }
6191}
6192
aad6f216 6193/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
6194 * states are handled in imsm_set_disk() with one exception, when a
6195 * resync is stopped due to a new failure this routine will set the
6196 * 'degraded' state for the array.
6197 */
01f157d7 6198static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
6199{
6200 int inst = a->info.container_member;
6201 struct intel_super *super = a->container->sb;
949c47a0 6202 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6203 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
6204 int failed = imsm_count_failed(super, dev);
6205 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 6206 __u32 blocks_per_unit;
a862209d 6207
1af97990
AK
6208 if (dev->vol.migr_state &&
6209 dev->vol.migr_type == MIGR_GEN_MIGR) {
6210 /* array state change is blocked due to reshape action
aad6f216
N
6211 * We might need to
6212 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6213 * - finish the reshape (if last_checkpoint is big and action != reshape)
6214 * - update curr_migr_unit
1af97990 6215 */
aad6f216
N
6216 if (a->curr_action == reshape) {
6217 /* still reshaping, maybe update curr_migr_unit */
633b5610 6218 goto mark_checkpoint;
aad6f216
N
6219 } else {
6220 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6221 /* for some reason we aborted the reshape.
b66e591b
AK
6222 *
6223 * disable automatic metadata rollback
6224 * user action is required to recover process
aad6f216 6225 */
b66e591b 6226 if (0) {
aad6f216
N
6227 struct imsm_map *map2 = get_imsm_map(dev, 1);
6228 dev->vol.migr_state = 0;
ea672ee1 6229 set_migr_type(dev, 0);
aad6f216
N
6230 dev->vol.curr_migr_unit = 0;
6231 memcpy(map, map2, sizeof_imsm_map(map2));
6232 super->updates_pending++;
b66e591b 6233 }
aad6f216
N
6234 }
6235 if (a->last_checkpoint >= a->info.component_size) {
6236 unsigned long long array_blocks;
6237 int used_disks;
e154ced3 6238 struct mdinfo *mdi;
aad6f216 6239
9653001d 6240 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
6241 if (used_disks > 0) {
6242 array_blocks =
6243 map->blocks_per_member *
6244 used_disks;
6245 /* round array size down to closest MB
6246 */
6247 array_blocks = (array_blocks
6248 >> SECT_PER_MB_SHIFT)
6249 << SECT_PER_MB_SHIFT;
d55adef9
AK
6250 a->info.custom_array_size = array_blocks;
6251 /* encourage manager to update array
6252 * size
6253 */
e154ced3 6254
d55adef9 6255 a->check_reshape = 1;
633b5610 6256 }
e154ced3
AK
6257 /* finalize online capacity expansion/reshape */
6258 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6259 imsm_set_disk(a,
6260 mdi->disk.raid_disk,
6261 mdi->curr_state);
6262
0e2d1a4e 6263 imsm_progress_container_reshape(super);
e154ced3 6264 }
aad6f216 6265 }
1af97990
AK
6266 }
6267
47ee5a45 6268 /* before we activate this array handle any missing disks */
33414a01
DW
6269 if (consistent == 2)
6270 handle_missing(super, dev);
1e5c6983 6271
0c046afd 6272 if (consistent == 2 &&
b7941fd6 6273 (!is_resync_complete(&a->info) ||
0c046afd
DW
6274 map_state != IMSM_T_STATE_NORMAL ||
6275 dev->vol.migr_state))
01f157d7 6276 consistent = 0;
272906ef 6277
b7941fd6 6278 if (is_resync_complete(&a->info)) {
0c046afd 6279 /* complete intialization / resync,
0556e1a2
DW
6280 * recovery and interrupted recovery is completed in
6281 * ->set_disk
0c046afd
DW
6282 */
6283 if (is_resyncing(dev)) {
6284 dprintf("imsm: mark resync done\n");
f8f603f1 6285 end_migration(dev, map_state);
115c3803 6286 super->updates_pending++;
484240d8 6287 a->last_checkpoint = 0;
115c3803 6288 }
b9172665
AK
6289 } else if ((!is_resyncing(dev) && !failed) &&
6290 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 6291 /* mark the start of the init process if nothing is failed */
b7941fd6 6292 dprintf("imsm: mark resync start\n");
1484e727 6293 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 6294 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 6295 else
8e59f3d8 6296 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 6297 super->updates_pending++;
115c3803 6298 }
a862209d 6299
633b5610 6300mark_checkpoint:
5b83bacf
AK
6301 /* skip checkpointing for general migration,
6302 * it is controlled in mdadm
6303 */
6304 if (is_gen_migration(dev))
6305 goto skip_mark_checkpoint;
6306
1e5c6983 6307 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 6308 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 6309 if (blocks_per_unit) {
1e5c6983
DW
6310 __u32 units32;
6311 __u64 units;
6312
4f0a7acc 6313 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
6314 units32 = units;
6315
6316 /* check that we did not overflow 32-bits, and that
6317 * curr_migr_unit needs updating
6318 */
6319 if (units32 == units &&
bfd80a56 6320 units32 != 0 &&
1e5c6983
DW
6321 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6322 dprintf("imsm: mark checkpoint (%u)\n", units32);
6323 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6324 super->updates_pending++;
6325 }
6326 }
f8f603f1 6327
5b83bacf 6328skip_mark_checkpoint:
3393c6af 6329 /* mark dirty / clean */
0c046afd 6330 if (dev->vol.dirty != !consistent) {
b7941fd6 6331 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
6332 if (consistent)
6333 dev->vol.dirty = 0;
6334 else
6335 dev->vol.dirty = 1;
a862209d
DW
6336 super->updates_pending++;
6337 }
28bce06f 6338
01f157d7 6339 return consistent;
a862209d
DW
6340}
6341
8d45d196 6342static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 6343{
8d45d196
DW
6344 int inst = a->info.container_member;
6345 struct intel_super *super = a->container->sb;
949c47a0 6346 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6347 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 6348 struct imsm_disk *disk;
0c046afd 6349 int failed;
b10b37b8 6350 __u32 ord;
0c046afd 6351 __u8 map_state;
8d45d196
DW
6352
6353 if (n > map->num_members)
6354 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6355 n, map->num_members - 1);
6356
6357 if (n < 0)
6358 return;
6359
4e6e574a 6360 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 6361
9535fc47 6362 ord = get_imsm_ord_tbl_ent(dev, n, -2);
b10b37b8 6363 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 6364
5802a811 6365 /* check for new failures */
0556e1a2
DW
6366 if (state & DS_FAULTY) {
6367 if (mark_failure(dev, disk, ord_to_idx(ord)))
6368 super->updates_pending++;
8d45d196 6369 }
47ee5a45 6370
19859edc 6371 /* check if in_sync */
0556e1a2 6372 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
6373 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6374
6375 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6376 super->updates_pending++;
6377 }
8d45d196 6378
0c046afd
DW
6379 failed = imsm_count_failed(super, dev);
6380 map_state = imsm_check_degraded(super, dev, failed);
5802a811 6381
0c046afd
DW
6382 /* check if recovery complete, newly degraded, or failed */
6383 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 6384 end_migration(dev, map_state);
0556e1a2
DW
6385 map = get_imsm_map(dev, 0);
6386 map->failed_disk_num = ~0;
0c046afd 6387 super->updates_pending++;
484240d8 6388 a->last_checkpoint = 0;
0c046afd
DW
6389 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6390 map->map_state != map_state &&
6391 !dev->vol.migr_state) {
6392 dprintf("imsm: mark degraded\n");
6393 map->map_state = map_state;
6394 super->updates_pending++;
484240d8 6395 a->last_checkpoint = 0;
0c046afd
DW
6396 } else if (map_state == IMSM_T_STATE_FAILED &&
6397 map->map_state != map_state) {
6398 dprintf("imsm: mark failed\n");
f8f603f1 6399 end_migration(dev, map_state);
0c046afd 6400 super->updates_pending++;
484240d8 6401 a->last_checkpoint = 0;
28bce06f
AK
6402 } else if (is_gen_migration(dev)) {
6403 dprintf("imsm: Detected General Migration in state: ");
6404 if (map_state == IMSM_T_STATE_NORMAL) {
6405 end_migration(dev, map_state);
6406 map = get_imsm_map(dev, 0);
6407 map->failed_disk_num = ~0;
6408 dprintf("normal\n");
6409 } else {
6410 if (map_state == IMSM_T_STATE_DEGRADED) {
6411 printf("degraded\n");
6412 end_migration(dev, map_state);
6413 } else {
6414 dprintf("failed\n");
6415 }
6416 map->map_state = map_state;
6417 }
6418 super->updates_pending++;
5802a811 6419 }
845dea95
NB
6420}
6421
f796af5d 6422static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6423{
f796af5d 6424 void *buf = mpb;
c2a1e7da
DW
6425 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6426 unsigned long long dsize;
6427 unsigned long long sectors;
6428
6429 get_dev_size(fd, NULL, &dsize);
6430
272f648f
DW
6431 if (mpb_size > 512) {
6432 /* -1 to account for anchor */
6433 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6434
272f648f
DW
6435 /* write the extended mpb to the sectors preceeding the anchor */
6436 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6437 return 1;
c2a1e7da 6438
f21e18ca
N
6439 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6440 != 512 * sectors)
272f648f
DW
6441 return 1;
6442 }
c2a1e7da 6443
272f648f
DW
6444 /* first block is stored on second to last sector of the disk */
6445 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6446 return 1;
6447
f796af5d 6448 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6449 return 1;
6450
c2a1e7da
DW
6451 return 0;
6452}
6453
2e735d19 6454static void imsm_sync_metadata(struct supertype *container)
845dea95 6455{
2e735d19 6456 struct intel_super *super = container->sb;
c2a1e7da 6457
1a64be56 6458 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6459 if (!super->updates_pending)
6460 return;
6461
36988a3d 6462 write_super_imsm(container, 0);
c2a1e7da
DW
6463
6464 super->updates_pending = 0;
845dea95
NB
6465}
6466
272906ef
DW
6467static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6468{
6469 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6470 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6471 struct dl *dl;
6472
6473 for (dl = super->disks; dl; dl = dl->next)
6474 if (dl->index == i)
6475 break;
6476
25ed7e59 6477 if (dl && is_failed(&dl->disk))
272906ef
DW
6478 dl = NULL;
6479
6480 if (dl)
6481 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6482
6483 return dl;
6484}
6485
a20d2ba5 6486static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6487 struct active_array *a, int activate_new,
6488 struct mdinfo *additional_test_list)
272906ef
DW
6489{
6490 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6491 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6492 struct imsm_super *mpb = super->anchor;
6493 struct imsm_map *map;
272906ef
DW
6494 unsigned long long pos;
6495 struct mdinfo *d;
6496 struct extent *ex;
a20d2ba5 6497 int i, j;
272906ef 6498 int found;
569cc43f
DW
6499 __u32 array_start = 0;
6500 __u32 array_end = 0;
272906ef 6501 struct dl *dl;
6c932028 6502 struct mdinfo *test_list;
272906ef
DW
6503
6504 for (dl = super->disks; dl; dl = dl->next) {
6505 /* If in this array, skip */
6506 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6507 if (d->state_fd >= 0 &&
6508 d->disk.major == dl->major &&
272906ef 6509 d->disk.minor == dl->minor) {
8ba77d32
AK
6510 dprintf("%x:%x already in array\n",
6511 dl->major, dl->minor);
272906ef
DW
6512 break;
6513 }
6514 if (d)
6515 continue;
6c932028
AK
6516 test_list = additional_test_list;
6517 while (test_list) {
6518 if (test_list->disk.major == dl->major &&
6519 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6520 dprintf("%x:%x already in additional test list\n",
6521 dl->major, dl->minor);
6522 break;
6523 }
6c932028 6524 test_list = test_list->next;
8ba77d32 6525 }
6c932028 6526 if (test_list)
8ba77d32 6527 continue;
272906ef 6528
e553d2a4 6529 /* skip in use or failed drives */
25ed7e59 6530 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6531 dl->index == -2) {
6532 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6533 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6534 continue;
6535 }
6536
a20d2ba5
DW
6537 /* skip pure spares when we are looking for partially
6538 * assimilated drives
6539 */
6540 if (dl->index == -1 && !activate_new)
6541 continue;
6542
272906ef 6543 /* Does this unused device have the requisite free space?
a20d2ba5 6544 * It needs to be able to cover all member volumes
272906ef
DW
6545 */
6546 ex = get_extents(super, dl);
6547 if (!ex) {
6548 dprintf("cannot get extents\n");
6549 continue;
6550 }
a20d2ba5
DW
6551 for (i = 0; i < mpb->num_raid_devs; i++) {
6552 dev = get_imsm_dev(super, i);
6553 map = get_imsm_map(dev, 0);
272906ef 6554
a20d2ba5
DW
6555 /* check if this disk is already a member of
6556 * this array
272906ef 6557 */
620b1713 6558 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6559 continue;
6560
6561 found = 0;
6562 j = 0;
6563 pos = 0;
6564 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6565 array_end = array_start +
6566 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6567
6568 do {
6569 /* check that we can start at pba_of_lba0 with
6570 * blocks_per_member of space
6571 */
329c8278 6572 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6573 found = 1;
6574 break;
6575 }
6576 pos = ex[j].start + ex[j].size;
6577 j++;
6578 } while (ex[j-1].size);
6579
6580 if (!found)
272906ef 6581 break;
a20d2ba5 6582 }
272906ef
DW
6583
6584 free(ex);
a20d2ba5 6585 if (i < mpb->num_raid_devs) {
329c8278
DW
6586 dprintf("%x:%x does not have %u to %u available\n",
6587 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6588 /* No room */
6589 continue;
a20d2ba5
DW
6590 }
6591 return dl;
272906ef
DW
6592 }
6593
6594 return dl;
6595}
6596
95d07a2c
LM
6597
6598static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6599{
6600 struct imsm_dev *dev2;
6601 struct imsm_map *map;
6602 struct dl *idisk;
6603 int slot;
6604 int idx;
6605 __u8 state;
6606
6607 dev2 = get_imsm_dev(cont->sb, dev_idx);
6608 if (dev2) {
6609 state = imsm_check_degraded(cont->sb, dev2, failed);
6610 if (state == IMSM_T_STATE_FAILED) {
6611 map = get_imsm_map(dev2, 0);
6612 if (!map)
6613 return 1;
6614 for (slot = 0; slot < map->num_members; slot++) {
6615 /*
6616 * Check if failed disks are deleted from intel
6617 * disk list or are marked to be deleted
6618 */
98130f40 6619 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6620 idisk = get_imsm_dl_disk(cont->sb, idx);
6621 /*
6622 * Do not rebuild the array if failed disks
6623 * from failed sub-array are not removed from
6624 * container.
6625 */
6626 if (idisk &&
6627 is_failed(&idisk->disk) &&
6628 (idisk->action != DISK_REMOVE))
6629 return 0;
6630 }
6631 }
6632 }
6633 return 1;
6634}
6635
88758e9d
DW
6636static struct mdinfo *imsm_activate_spare(struct active_array *a,
6637 struct metadata_update **updates)
6638{
6639 /**
d23fe947
DW
6640 * Find a device with unused free space and use it to replace a
6641 * failed/vacant region in an array. We replace failed regions one a
6642 * array at a time. The result is that a new spare disk will be added
6643 * to the first failed array and after the monitor has finished
6644 * propagating failures the remainder will be consumed.
88758e9d 6645 *
d23fe947
DW
6646 * FIXME add a capability for mdmon to request spares from another
6647 * container.
88758e9d
DW
6648 */
6649
6650 struct intel_super *super = a->container->sb;
88758e9d 6651 int inst = a->info.container_member;
949c47a0 6652 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6653 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6654 int failed = a->info.array.raid_disks;
6655 struct mdinfo *rv = NULL;
6656 struct mdinfo *d;
6657 struct mdinfo *di;
6658 struct metadata_update *mu;
6659 struct dl *dl;
6660 struct imsm_update_activate_spare *u;
6661 int num_spares = 0;
6662 int i;
95d07a2c 6663 int allowed;
88758e9d
DW
6664
6665 for (d = a->info.devs ; d ; d = d->next) {
6666 if ((d->curr_state & DS_FAULTY) &&
6667 d->state_fd >= 0)
6668 /* wait for Removal to happen */
6669 return NULL;
6670 if (d->state_fd >= 0)
6671 failed--;
6672 }
6673
6674 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6675 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 6676
e2962bfc
AK
6677 if (imsm_reshape_blocks_arrays_changes(super))
6678 return NULL;
1af97990 6679
89c67882
AK
6680 if (a->info.array.level == 4)
6681 /* No repair for takeovered array
6682 * imsm doesn't support raid4
6683 */
6684 return NULL;
6685
fb49eef2 6686 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
6687 return NULL;
6688
95d07a2c
LM
6689 /*
6690 * If there are any failed disks check state of the other volume.
6691 * Block rebuild if the another one is failed until failed disks
6692 * are removed from container.
6693 */
6694 if (failed) {
c4acd1e5 6695 dprintf("found failed disks in %.*s, check if there another"
95d07a2c 6696 "failed sub-array.\n",
c4acd1e5 6697 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
6698 /* check if states of the other volumes allow for rebuild */
6699 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6700 if (i != inst) {
6701 allowed = imsm_rebuild_allowed(a->container,
6702 i, failed);
6703 if (!allowed)
6704 return NULL;
6705 }
6706 }
6707 }
6708
88758e9d 6709 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6710 for (i = 0; i < a->info.array.raid_disks; i++) {
6711 for (d = a->info.devs ; d ; d = d->next)
6712 if (d->disk.raid_disk == i)
6713 break;
6714 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6715 if (d && (d->state_fd >= 0))
6716 continue;
6717
272906ef 6718 /*
a20d2ba5
DW
6719 * OK, this device needs recovery. Try to re-add the
6720 * previous occupant of this slot, if this fails see if
6721 * we can continue the assimilation of a spare that was
6722 * partially assimilated, finally try to activate a new
6723 * spare.
272906ef
DW
6724 */
6725 dl = imsm_readd(super, i, a);
6726 if (!dl)
b303fe21 6727 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 6728 if (!dl)
b303fe21 6729 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
6730 if (!dl)
6731 continue;
6732
6733 /* found a usable disk with enough space */
6734 di = malloc(sizeof(*di));
79244939
DW
6735 if (!di)
6736 continue;
272906ef
DW
6737 memset(di, 0, sizeof(*di));
6738
6739 /* dl->index will be -1 in the case we are activating a
6740 * pristine spare. imsm_process_update() will create a
6741 * new index in this case. Once a disk is found to be
6742 * failed in all member arrays it is kicked from the
6743 * metadata
6744 */
6745 di->disk.number = dl->index;
d23fe947 6746
272906ef
DW
6747 /* (ab)use di->devs to store a pointer to the device
6748 * we chose
6749 */
6750 di->devs = (struct mdinfo *) dl;
6751
6752 di->disk.raid_disk = i;
6753 di->disk.major = dl->major;
6754 di->disk.minor = dl->minor;
6755 di->disk.state = 0;
d23534e4 6756 di->recovery_start = 0;
272906ef
DW
6757 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6758 di->component_size = a->info.component_size;
6759 di->container_member = inst;
148acb7b 6760 super->random = random32();
272906ef
DW
6761 di->next = rv;
6762 rv = di;
6763 num_spares++;
6764 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6765 i, di->data_offset);
88758e9d
DW
6766 }
6767
6768 if (!rv)
6769 /* No spares found */
6770 return rv;
6771 /* Now 'rv' has a list of devices to return.
6772 * Create a metadata_update record to update the
6773 * disk_ord_tbl for the array
6774 */
6775 mu = malloc(sizeof(*mu));
79244939
DW
6776 if (mu) {
6777 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6778 if (mu->buf == NULL) {
6779 free(mu);
6780 mu = NULL;
6781 }
6782 }
6783 if (!mu) {
6784 while (rv) {
6785 struct mdinfo *n = rv->next;
6786
6787 free(rv);
6788 rv = n;
6789 }
6790 return NULL;
6791 }
6792
88758e9d 6793 mu->space = NULL;
cb23f1f4 6794 mu->space_list = NULL;
88758e9d
DW
6795 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6796 mu->next = *updates;
6797 u = (struct imsm_update_activate_spare *) mu->buf;
6798
6799 for (di = rv ; di ; di = di->next) {
6800 u->type = update_activate_spare;
d23fe947
DW
6801 u->dl = (struct dl *) di->devs;
6802 di->devs = NULL;
88758e9d
DW
6803 u->slot = di->disk.raid_disk;
6804 u->array = inst;
6805 u->next = u + 1;
6806 u++;
6807 }
6808 (u-1)->next = NULL;
6809 *updates = mu;
6810
6811 return rv;
6812}
6813
54c2c1ea 6814static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6815{
54c2c1ea
DW
6816 struct imsm_dev *dev = get_imsm_dev(super, idx);
6817 struct imsm_map *map = get_imsm_map(dev, 0);
6818 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6819 struct disk_info *inf = get_disk_info(u);
6820 struct imsm_disk *disk;
8273f55e
DW
6821 int i;
6822 int j;
8273f55e 6823
54c2c1ea 6824 for (i = 0; i < map->num_members; i++) {
98130f40 6825 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6826 for (j = 0; j < new_map->num_members; j++)
6827 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6828 return 1;
6829 }
6830
6831 return 0;
6832}
6833
1a64be56
LM
6834
6835static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6836{
6837 struct dl *dl = NULL;
6838 for (dl = super->disks; dl; dl = dl->next)
6839 if ((dl->major == major) && (dl->minor == minor))
6840 return dl;
6841 return NULL;
6842}
6843
6844static int remove_disk_super(struct intel_super *super, int major, int minor)
6845{
6846 struct dl *prev = NULL;
6847 struct dl *dl;
6848
6849 prev = NULL;
6850 for (dl = super->disks; dl; dl = dl->next) {
6851 if ((dl->major == major) && (dl->minor == minor)) {
6852 /* remove */
6853 if (prev)
6854 prev->next = dl->next;
6855 else
6856 super->disks = dl->next;
6857 dl->next = NULL;
6858 __free_imsm_disk(dl);
6859 dprintf("%s: removed %x:%x\n",
6860 __func__, major, minor);
6861 break;
6862 }
6863 prev = dl;
6864 }
6865 return 0;
6866}
6867
f21e18ca 6868static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6869
1a64be56
LM
6870static int add_remove_disk_update(struct intel_super *super)
6871{
6872 int check_degraded = 0;
6873 struct dl *disk = NULL;
6874 /* add/remove some spares to/from the metadata/contrainer */
6875 while (super->disk_mgmt_list) {
6876 struct dl *disk_cfg;
6877
6878 disk_cfg = super->disk_mgmt_list;
6879 super->disk_mgmt_list = disk_cfg->next;
6880 disk_cfg->next = NULL;
6881
6882 if (disk_cfg->action == DISK_ADD) {
6883 disk_cfg->next = super->disks;
6884 super->disks = disk_cfg;
6885 check_degraded = 1;
6886 dprintf("%s: added %x:%x\n",
6887 __func__, disk_cfg->major,
6888 disk_cfg->minor);
6889 } else if (disk_cfg->action == DISK_REMOVE) {
6890 dprintf("Disk remove action processed: %x.%x\n",
6891 disk_cfg->major, disk_cfg->minor);
6892 disk = get_disk_super(super,
6893 disk_cfg->major,
6894 disk_cfg->minor);
6895 if (disk) {
6896 /* store action status */
6897 disk->action = DISK_REMOVE;
6898 /* remove spare disks only */
6899 if (disk->index == -1) {
6900 remove_disk_super(super,
6901 disk_cfg->major,
6902 disk_cfg->minor);
6903 }
6904 }
6905 /* release allocate disk structure */
6906 __free_imsm_disk(disk_cfg);
6907 }
6908 }
6909 return check_degraded;
6910}
6911
a29911da
PC
6912
6913static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6914 struct intel_super *super,
6915 void ***space_list)
6916{
6917 struct intel_dev *id;
6918 void **tofree = NULL;
6919 int ret_val = 0;
6920
6921 dprintf("apply_reshape_migration_update()\n");
6922 if ((u->subdev < 0) ||
6923 (u->subdev > 1)) {
6924 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6925 return ret_val;
6926 }
6927 if ((space_list == NULL) || (*space_list == NULL)) {
6928 dprintf("imsm: Error: Memory is not allocated\n");
6929 return ret_val;
6930 }
6931
6932 for (id = super->devlist ; id; id = id->next) {
6933 if (id->index == (unsigned)u->subdev) {
6934 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6935 struct imsm_map *map;
6936 struct imsm_dev *new_dev =
6937 (struct imsm_dev *)*space_list;
6938 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6939 int to_state;
6940 struct dl *new_disk;
6941
6942 if (new_dev == NULL)
6943 return ret_val;
6944 *space_list = **space_list;
6945 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6946 map = get_imsm_map(new_dev, 0);
6947 if (migr_map) {
6948 dprintf("imsm: Error: migration in progress");
6949 return ret_val;
6950 }
6951
6952 to_state = map->map_state;
6953 if ((u->new_level == 5) && (map->raid_level == 0)) {
6954 map->num_members++;
6955 /* this should not happen */
6956 if (u->new_disks[0] < 0) {
6957 map->failed_disk_num =
6958 map->num_members - 1;
6959 to_state = IMSM_T_STATE_DEGRADED;
6960 } else
6961 to_state = IMSM_T_STATE_NORMAL;
6962 }
8e59f3d8 6963 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
6964 if (u->new_level > -1)
6965 map->raid_level = u->new_level;
6966 migr_map = get_imsm_map(new_dev, 1);
6967 if ((u->new_level == 5) &&
6968 (migr_map->raid_level == 0)) {
6969 int ord = map->num_members - 1;
6970 migr_map->num_members--;
6971 if (u->new_disks[0] < 0)
6972 ord |= IMSM_ORD_REBUILD;
6973 set_imsm_ord_tbl_ent(map,
6974 map->num_members - 1,
6975 ord);
6976 }
6977 id->dev = new_dev;
6978 tofree = (void **)dev;
6979
4bba0439
PC
6980 /* update chunk size
6981 */
6982 if (u->new_chunksize > 0)
6983 map->blocks_per_strip =
6984 __cpu_to_le16(u->new_chunksize * 2);
6985
a29911da
PC
6986 /* add disk
6987 */
6988 if ((u->new_level != 5) ||
6989 (migr_map->raid_level != 0) ||
6990 (migr_map->raid_level == map->raid_level))
6991 goto skip_disk_add;
6992
6993 if (u->new_disks[0] >= 0) {
6994 /* use passes spare
6995 */
6996 new_disk = get_disk_super(super,
6997 major(u->new_disks[0]),
6998 minor(u->new_disks[0]));
6999 dprintf("imsm: new disk for reshape is: %i:%i "
7000 "(%p, index = %i)\n",
7001 major(u->new_disks[0]),
7002 minor(u->new_disks[0]),
7003 new_disk, new_disk->index);
7004 if (new_disk == NULL)
7005 goto error_disk_add;
7006
7007 new_disk->index = map->num_members - 1;
7008 /* slot to fill in autolayout
7009 */
7010 new_disk->raiddisk = new_disk->index;
7011 new_disk->disk.status |= CONFIGURED_DISK;
7012 new_disk->disk.status &= ~SPARE_DISK;
7013 } else
7014 goto error_disk_add;
7015
7016skip_disk_add:
7017 *tofree = *space_list;
7018 /* calculate new size
7019 */
7020 imsm_set_array_size(new_dev);
7021
7022 ret_val = 1;
7023 }
7024 }
7025
7026 if (tofree)
7027 *space_list = tofree;
7028 return ret_val;
7029
7030error_disk_add:
7031 dprintf("Error: imsm: Cannot find disk.\n");
7032 return ret_val;
7033}
7034
061d7da3
LO
7035static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7036 struct intel_super *super,
7037 struct active_array *active_array)
7038{
7039 struct imsm_super *mpb = super->anchor;
7040 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7041 struct imsm_map *map = get_imsm_map(dev, 0);
7042 struct imsm_map *migr_map;
7043 struct active_array *a;
7044 struct imsm_disk *disk;
7045 __u8 to_state;
7046 struct dl *dl;
7047 unsigned int found;
7048 int failed;
5961eeec 7049 int victim;
061d7da3 7050 int i;
5961eeec 7051 int second_map_created = 0;
061d7da3 7052
5961eeec 7053 for (; u; u = u->next) {
7054 victim = get_imsm_disk_idx(dev, u->slot, -1);
061d7da3 7055
5961eeec 7056 if (victim < 0)
7057 return 0;
061d7da3 7058
5961eeec 7059 for (dl = super->disks; dl; dl = dl->next)
7060 if (dl == u->dl)
7061 break;
061d7da3 7062
5961eeec 7063 if (!dl) {
7064 fprintf(stderr, "error: imsm_activate_spare passed "
7065 "an unknown disk (index: %d)\n",
7066 u->dl->index);
7067 return 0;
7068 }
061d7da3 7069
5961eeec 7070 /* count failures (excluding rebuilds and the victim)
7071 * to determine map[0] state
7072 */
7073 failed = 0;
7074 for (i = 0; i < map->num_members; i++) {
7075 if (i == u->slot)
7076 continue;
7077 disk = get_imsm_disk(super,
7078 get_imsm_disk_idx(dev, i, -1));
7079 if (!disk || is_failed(disk))
7080 failed++;
7081 }
061d7da3 7082
5961eeec 7083 /* adding a pristine spare, assign a new index */
7084 if (dl->index < 0) {
7085 dl->index = super->anchor->num_disks;
7086 super->anchor->num_disks++;
7087 }
7088 disk = &dl->disk;
7089 disk->status |= CONFIGURED_DISK;
7090 disk->status &= ~SPARE_DISK;
7091
7092 /* mark rebuild */
7093 to_state = imsm_check_degraded(super, dev, failed);
7094 if (!second_map_created) {
7095 second_map_created = 1;
7096 map->map_state = IMSM_T_STATE_DEGRADED;
7097 migrate(dev, super, to_state, MIGR_REBUILD);
7098 } else
7099 map->map_state = to_state;
7100 migr_map = get_imsm_map(dev, 1);
7101 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7102 set_imsm_ord_tbl_ent(migr_map, u->slot,
7103 dl->index | IMSM_ORD_REBUILD);
7104
7105 /* update the family_num to mark a new container
7106 * generation, being careful to record the existing
7107 * family_num in orig_family_num to clean up after
7108 * earlier mdadm versions that neglected to set it.
7109 */
7110 if (mpb->orig_family_num == 0)
7111 mpb->orig_family_num = mpb->family_num;
7112 mpb->family_num += super->random;
7113
7114 /* count arrays using the victim in the metadata */
7115 found = 0;
7116 for (a = active_array; a ; a = a->next) {
7117 dev = get_imsm_dev(super, a->info.container_member);
7118 map = get_imsm_map(dev, 0);
061d7da3 7119
5961eeec 7120 if (get_imsm_disk_slot(map, victim) >= 0)
7121 found++;
7122 }
061d7da3 7123
5961eeec 7124 /* delete the victim if it is no longer being
7125 * utilized anywhere
061d7da3 7126 */
5961eeec 7127 if (!found) {
7128 struct dl **dlp;
061d7da3 7129
5961eeec 7130 /* We know that 'manager' isn't touching anything,
7131 * so it is safe to delete
7132 */
7133 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
7134 if ((*dlp)->index == victim)
7135 break;
5961eeec 7136
7137 /* victim may be on the missing list */
7138 if (!*dlp)
7139 for (dlp = &super->missing; *dlp;
7140 dlp = &(*dlp)->next)
7141 if ((*dlp)->index == victim)
7142 break;
7143 imsm_delete(super, dlp, victim);
7144 }
061d7da3
LO
7145 }
7146
7147 return 1;
7148}
a29911da 7149
2e5dc010
N
7150static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7151 struct intel_super *super,
7152 void ***space_list)
7153{
7154 struct dl *new_disk;
7155 struct intel_dev *id;
7156 int i;
7157 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 7158 int disk_count = u->old_raid_disks;
2e5dc010
N
7159 void **tofree = NULL;
7160 int devices_to_reshape = 1;
7161 struct imsm_super *mpb = super->anchor;
7162 int ret_val = 0;
d098291a 7163 unsigned int dev_id;
2e5dc010 7164
ed7333bd 7165 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
7166
7167 /* enable spares to use in array */
7168 for (i = 0; i < delta_disks; i++) {
7169 new_disk = get_disk_super(super,
7170 major(u->new_disks[i]),
7171 minor(u->new_disks[i]));
ed7333bd
AK
7172 dprintf("imsm: new disk for reshape is: %i:%i "
7173 "(%p, index = %i)\n",
2e5dc010
N
7174 major(u->new_disks[i]), minor(u->new_disks[i]),
7175 new_disk, new_disk->index);
7176 if ((new_disk == NULL) ||
7177 ((new_disk->index >= 0) &&
7178 (new_disk->index < u->old_raid_disks)))
7179 goto update_reshape_exit;
ee4beede 7180 new_disk->index = disk_count++;
2e5dc010
N
7181 /* slot to fill in autolayout
7182 */
7183 new_disk->raiddisk = new_disk->index;
7184 new_disk->disk.status |=
7185 CONFIGURED_DISK;
7186 new_disk->disk.status &= ~SPARE_DISK;
7187 }
7188
ed7333bd
AK
7189 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7190 mpb->num_raid_devs);
2e5dc010
N
7191 /* manage changes in volume
7192 */
d098291a 7193 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
7194 void **sp = *space_list;
7195 struct imsm_dev *newdev;
7196 struct imsm_map *newmap, *oldmap;
7197
d098291a
AK
7198 for (id = super->devlist ; id; id = id->next) {
7199 if (id->index == dev_id)
7200 break;
7201 }
7202 if (id == NULL)
7203 break;
2e5dc010
N
7204 if (!sp)
7205 continue;
7206 *space_list = *sp;
7207 newdev = (void*)sp;
7208 /* Copy the dev, but not (all of) the map */
7209 memcpy(newdev, id->dev, sizeof(*newdev));
7210 oldmap = get_imsm_map(id->dev, 0);
7211 newmap = get_imsm_map(newdev, 0);
7212 /* Copy the current map */
7213 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7214 /* update one device only
7215 */
7216 if (devices_to_reshape) {
ed7333bd
AK
7217 dprintf("imsm: modifying subdev: %i\n",
7218 id->index);
2e5dc010
N
7219 devices_to_reshape--;
7220 newdev->vol.migr_state = 1;
7221 newdev->vol.curr_migr_unit = 0;
ea672ee1 7222 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
7223 newmap->num_members = u->new_raid_disks;
7224 for (i = 0; i < delta_disks; i++) {
7225 set_imsm_ord_tbl_ent(newmap,
7226 u->old_raid_disks + i,
7227 u->old_raid_disks + i);
7228 }
7229 /* New map is correct, now need to save old map
7230 */
7231 newmap = get_imsm_map(newdev, 1);
7232 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7233
70bdf0dc 7234 imsm_set_array_size(newdev);
2e5dc010
N
7235 }
7236
7237 sp = (void **)id->dev;
7238 id->dev = newdev;
7239 *sp = tofree;
7240 tofree = sp;
8e59f3d8
AK
7241
7242 /* Clear migration record */
7243 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 7244 }
819bc634
AK
7245 if (tofree)
7246 *space_list = tofree;
2e5dc010
N
7247 ret_val = 1;
7248
7249update_reshape_exit:
7250
7251 return ret_val;
7252}
7253
bb025c2f 7254static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
7255 struct intel_super *super,
7256 void ***space_list)
bb025c2f
KW
7257{
7258 struct imsm_dev *dev = NULL;
8ca6df95
KW
7259 struct intel_dev *dv;
7260 struct imsm_dev *dev_new;
bb025c2f
KW
7261 struct imsm_map *map;
7262 struct dl *dm, *du;
8ca6df95 7263 int i;
bb025c2f
KW
7264
7265 for (dv = super->devlist; dv; dv = dv->next)
7266 if (dv->index == (unsigned int)u->subarray) {
7267 dev = dv->dev;
7268 break;
7269 }
7270
7271 if (dev == NULL)
7272 return 0;
7273
7274 map = get_imsm_map(dev, 0);
7275
7276 if (u->direction == R10_TO_R0) {
43d5ec18
KW
7277 /* Number of failed disks must be half of initial disk number */
7278 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7279 return 0;
7280
bb025c2f
KW
7281 /* iterate through devices to mark removed disks as spare */
7282 for (dm = super->disks; dm; dm = dm->next) {
7283 if (dm->disk.status & FAILED_DISK) {
7284 int idx = dm->index;
7285 /* update indexes on the disk list */
7286/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7287 the index values will end up being correct.... NB */
7288 for (du = super->disks; du; du = du->next)
7289 if (du->index > idx)
7290 du->index--;
7291 /* mark as spare disk */
a8619d23 7292 mark_spare(dm);
bb025c2f
KW
7293 }
7294 }
bb025c2f
KW
7295 /* update map */
7296 map->num_members = map->num_members / 2;
7297 map->map_state = IMSM_T_STATE_NORMAL;
7298 map->num_domains = 1;
7299 map->raid_level = 0;
7300 map->failed_disk_num = -1;
7301 }
7302
8ca6df95
KW
7303 if (u->direction == R0_TO_R10) {
7304 void **space;
7305 /* update slots in current disk list */
7306 for (dm = super->disks; dm; dm = dm->next) {
7307 if (dm->index >= 0)
7308 dm->index *= 2;
7309 }
7310 /* create new *missing* disks */
7311 for (i = 0; i < map->num_members; i++) {
7312 space = *space_list;
7313 if (!space)
7314 continue;
7315 *space_list = *space;
7316 du = (void *)space;
7317 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
7318 du->fd = -1;
7319 du->minor = 0;
7320 du->major = 0;
7321 du->index = (i * 2) + 1;
7322 sprintf((char *)du->disk.serial,
7323 " MISSING_%d", du->index);
7324 sprintf((char *)du->serial,
7325 "MISSING_%d", du->index);
7326 du->next = super->missing;
7327 super->missing = du;
7328 }
7329 /* create new dev and map */
7330 space = *space_list;
7331 if (!space)
7332 return 0;
7333 *space_list = *space;
7334 dev_new = (void *)space;
7335 memcpy(dev_new, dev, sizeof(*dev));
7336 /* update new map */
7337 map = get_imsm_map(dev_new, 0);
8ca6df95 7338 map->num_members = map->num_members * 2;
1a2487c2 7339 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
7340 map->num_domains = 2;
7341 map->raid_level = 1;
7342 /* replace dev<->dev_new */
7343 dv->dev = dev_new;
7344 }
bb025c2f
KW
7345 /* update disk order table */
7346 for (du = super->disks; du; du = du->next)
7347 if (du->index >= 0)
7348 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 7349 for (du = super->missing; du; du = du->next)
1a2487c2
KW
7350 if (du->index >= 0) {
7351 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 7352 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 7353 }
bb025c2f
KW
7354
7355 return 1;
7356}
7357
e8319a19
DW
7358static void imsm_process_update(struct supertype *st,
7359 struct metadata_update *update)
7360{
7361 /**
7362 * crack open the metadata_update envelope to find the update record
7363 * update can be one of:
d195167d
AK
7364 * update_reshape_container_disks - all the arrays in the container
7365 * are being reshaped to have more devices. We need to mark
7366 * the arrays for general migration and convert selected spares
7367 * into active devices.
7368 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
7369 * device in an array, update the disk_ord_tbl. If this disk is
7370 * present in all member arrays then also clear the SPARE_DISK
7371 * flag
d195167d
AK
7372 * update_create_array
7373 * update_kill_array
7374 * update_rename_array
7375 * update_add_remove_disk
e8319a19
DW
7376 */
7377 struct intel_super *super = st->sb;
4d7b1503 7378 struct imsm_super *mpb;
e8319a19
DW
7379 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7380
4d7b1503
DW
7381 /* update requires a larger buf but the allocation failed */
7382 if (super->next_len && !super->next_buf) {
7383 super->next_len = 0;
7384 return;
7385 }
7386
7387 if (super->next_buf) {
7388 memcpy(super->next_buf, super->buf, super->len);
7389 free(super->buf);
7390 super->len = super->next_len;
7391 super->buf = super->next_buf;
7392
7393 super->next_len = 0;
7394 super->next_buf = NULL;
7395 }
7396
7397 mpb = super->anchor;
7398
e8319a19 7399 switch (type) {
0ec5d470
AK
7400 case update_general_migration_checkpoint: {
7401 struct intel_dev *id;
7402 struct imsm_update_general_migration_checkpoint *u =
7403 (void *)update->buf;
7404
7405 dprintf("imsm: process_update() "
7406 "for update_general_migration_checkpoint called\n");
7407
7408 /* find device under general migration */
7409 for (id = super->devlist ; id; id = id->next) {
7410 if (is_gen_migration(id->dev)) {
7411 id->dev->vol.curr_migr_unit =
7412 __cpu_to_le32(u->curr_migr_unit);
7413 super->updates_pending++;
7414 }
7415 }
7416 break;
7417 }
bb025c2f
KW
7418 case update_takeover: {
7419 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
7420 if (apply_takeover_update(u, super, &update->space_list)) {
7421 imsm_update_version_info(super);
bb025c2f 7422 super->updates_pending++;
1a2487c2 7423 }
bb025c2f
KW
7424 break;
7425 }
7426
78b10e66 7427 case update_reshape_container_disks: {
d195167d 7428 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
7429 if (apply_reshape_container_disks_update(
7430 u, super, &update->space_list))
7431 super->updates_pending++;
78b10e66
N
7432 break;
7433 }
48c5303a 7434 case update_reshape_migration: {
a29911da
PC
7435 struct imsm_update_reshape_migration *u = (void *)update->buf;
7436 if (apply_reshape_migration_update(
7437 u, super, &update->space_list))
7438 super->updates_pending++;
48c5303a
PC
7439 break;
7440 }
e8319a19
DW
7441 case update_activate_spare: {
7442 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
7443 if (apply_update_activate_spare(u, super, st->arrays))
7444 super->updates_pending++;
8273f55e
DW
7445 break;
7446 }
7447 case update_create_array: {
7448 /* someone wants to create a new array, we need to be aware of
7449 * a few races/collisions:
7450 * 1/ 'Create' called by two separate instances of mdadm
7451 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7452 * devices that have since been assimilated via
7453 * activate_spare.
7454 * In the event this update can not be carried out mdadm will
7455 * (FIX ME) notice that its update did not take hold.
7456 */
7457 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7458 struct intel_dev *dv;
8273f55e
DW
7459 struct imsm_dev *dev;
7460 struct imsm_map *map, *new_map;
7461 unsigned long long start, end;
7462 unsigned long long new_start, new_end;
7463 int i;
54c2c1ea
DW
7464 struct disk_info *inf;
7465 struct dl *dl;
8273f55e
DW
7466
7467 /* handle racing creates: first come first serve */
7468 if (u->dev_idx < mpb->num_raid_devs) {
7469 dprintf("%s: subarray %d already defined\n",
7470 __func__, u->dev_idx);
ba2de7ba 7471 goto create_error;
8273f55e
DW
7472 }
7473
7474 /* check update is next in sequence */
7475 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7476 dprintf("%s: can not create array %d expected index %d\n",
7477 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7478 goto create_error;
8273f55e
DW
7479 }
7480
a965f303 7481 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
7482 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7483 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7484 inf = get_disk_info(u);
8273f55e
DW
7485
7486 /* handle activate_spare versus create race:
7487 * check to make sure that overlapping arrays do not include
7488 * overalpping disks
7489 */
7490 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7491 dev = get_imsm_dev(super, i);
a965f303 7492 map = get_imsm_map(dev, 0);
8273f55e
DW
7493 start = __le32_to_cpu(map->pba_of_lba0);
7494 end = start + __le32_to_cpu(map->blocks_per_member);
7495 if ((new_start >= start && new_start <= end) ||
7496 (start >= new_start && start <= new_end))
54c2c1ea
DW
7497 /* overlap */;
7498 else
7499 continue;
7500
7501 if (disks_overlap(super, i, u)) {
8273f55e 7502 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7503 goto create_error;
8273f55e
DW
7504 }
7505 }
8273f55e 7506
949c47a0
DW
7507 /* check that prepare update was successful */
7508 if (!update->space) {
7509 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7510 goto create_error;
949c47a0
DW
7511 }
7512
54c2c1ea
DW
7513 /* check that all disks are still active before committing
7514 * changes. FIXME: could we instead handle this by creating a
7515 * degraded array? That's probably not what the user expects,
7516 * so better to drop this update on the floor.
7517 */
7518 for (i = 0; i < new_map->num_members; i++) {
7519 dl = serial_to_dl(inf[i].serial, super);
7520 if (!dl) {
7521 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7522 goto create_error;
54c2c1ea 7523 }
949c47a0
DW
7524 }
7525
8273f55e 7526 super->updates_pending++;
54c2c1ea
DW
7527
7528 /* convert spares to members and fixup ord_tbl */
7529 for (i = 0; i < new_map->num_members; i++) {
7530 dl = serial_to_dl(inf[i].serial, super);
7531 if (dl->index == -1) {
7532 dl->index = mpb->num_disks;
7533 mpb->num_disks++;
7534 dl->disk.status |= CONFIGURED_DISK;
7535 dl->disk.status &= ~SPARE_DISK;
7536 }
7537 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7538 }
7539
ba2de7ba
DW
7540 dv = update->space;
7541 dev = dv->dev;
949c47a0
DW
7542 update->space = NULL;
7543 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7544 dv->index = u->dev_idx;
7545 dv->next = super->devlist;
7546 super->devlist = dv;
8273f55e 7547 mpb->num_raid_devs++;
8273f55e 7548
4d1313e9 7549 imsm_update_version_info(super);
8273f55e 7550 break;
ba2de7ba
DW
7551 create_error:
7552 /* mdmon knows how to release update->space, but not
7553 * ((struct intel_dev *) update->space)->dev
7554 */
7555 if (update->space) {
7556 dv = update->space;
7557 free(dv->dev);
7558 }
8273f55e 7559 break;
e8319a19 7560 }
33414a01
DW
7561 case update_kill_array: {
7562 struct imsm_update_kill_array *u = (void *) update->buf;
7563 int victim = u->dev_idx;
7564 struct active_array *a;
7565 struct intel_dev **dp;
7566 struct imsm_dev *dev;
7567
7568 /* sanity check that we are not affecting the uuid of
7569 * active arrays, or deleting an active array
7570 *
7571 * FIXME when immutable ids are available, but note that
7572 * we'll also need to fixup the invalidated/active
7573 * subarray indexes in mdstat
7574 */
7575 for (a = st->arrays; a; a = a->next)
7576 if (a->info.container_member >= victim)
7577 break;
7578 /* by definition if mdmon is running at least one array
7579 * is active in the container, so checking
7580 * mpb->num_raid_devs is just extra paranoia
7581 */
7582 dev = get_imsm_dev(super, victim);
7583 if (a || !dev || mpb->num_raid_devs == 1) {
7584 dprintf("failed to delete subarray-%d\n", victim);
7585 break;
7586 }
7587
7588 for (dp = &super->devlist; *dp;)
f21e18ca 7589 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7590 *dp = (*dp)->next;
7591 } else {
f21e18ca 7592 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7593 (*dp)->index--;
7594 dp = &(*dp)->next;
7595 }
7596 mpb->num_raid_devs--;
7597 super->updates_pending++;
7598 break;
7599 }
aa534678
DW
7600 case update_rename_array: {
7601 struct imsm_update_rename_array *u = (void *) update->buf;
7602 char name[MAX_RAID_SERIAL_LEN+1];
7603 int target = u->dev_idx;
7604 struct active_array *a;
7605 struct imsm_dev *dev;
7606
7607 /* sanity check that we are not affecting the uuid of
7608 * an active array
7609 */
7610 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7611 name[MAX_RAID_SERIAL_LEN] = '\0';
7612 for (a = st->arrays; a; a = a->next)
7613 if (a->info.container_member == target)
7614 break;
7615 dev = get_imsm_dev(super, u->dev_idx);
7616 if (a || !dev || !check_name(super, name, 1)) {
7617 dprintf("failed to rename subarray-%d\n", target);
7618 break;
7619 }
7620
cdbe98cd 7621 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7622 super->updates_pending++;
7623 break;
7624 }
1a64be56 7625 case update_add_remove_disk: {
43dad3d6 7626 /* we may be able to repair some arrays if disks are
1a64be56
LM
7627 * being added, check teh status of add_remove_disk
7628 * if discs has been added.
7629 */
7630 if (add_remove_disk_update(super)) {
43dad3d6 7631 struct active_array *a;
072b727f
DW
7632
7633 super->updates_pending++;
1a64be56 7634 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7635 a->check_degraded = 1;
7636 }
43dad3d6 7637 break;
e8319a19 7638 }
1a64be56
LM
7639 default:
7640 fprintf(stderr, "error: unsuported process update type:"
7641 "(type: %d)\n", type);
7642 }
e8319a19 7643}
88758e9d 7644
bc0b9d34
PC
7645static struct mdinfo *get_spares_for_grow(struct supertype *st);
7646
8273f55e
DW
7647static void imsm_prepare_update(struct supertype *st,
7648 struct metadata_update *update)
7649{
949c47a0 7650 /**
4d7b1503
DW
7651 * Allocate space to hold new disk entries, raid-device entries or a new
7652 * mpb if necessary. The manager synchronously waits for updates to
7653 * complete in the monitor, so new mpb buffers allocated here can be
7654 * integrated by the monitor thread without worrying about live pointers
7655 * in the manager thread.
8273f55e 7656 */
949c47a0 7657 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7658 struct intel_super *super = st->sb;
7659 struct imsm_super *mpb = super->anchor;
7660 size_t buf_len;
7661 size_t len = 0;
949c47a0
DW
7662
7663 switch (type) {
0ec5d470
AK
7664 case update_general_migration_checkpoint:
7665 dprintf("imsm: prepare_update() "
7666 "for update_general_migration_checkpoint called\n");
7667 break;
abedf5fc
KW
7668 case update_takeover: {
7669 struct imsm_update_takeover *u = (void *)update->buf;
7670 if (u->direction == R0_TO_R10) {
7671 void **tail = (void **)&update->space_list;
7672 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7673 struct imsm_map *map = get_imsm_map(dev, 0);
7674 int num_members = map->num_members;
7675 void *space;
7676 int size, i;
7677 int err = 0;
7678 /* allocate memory for added disks */
7679 for (i = 0; i < num_members; i++) {
7680 size = sizeof(struct dl);
7681 space = malloc(size);
7682 if (!space) {
7683 err++;
7684 break;
7685 }
7686 *tail = space;
7687 tail = space;
7688 *tail = NULL;
7689 }
7690 /* allocate memory for new device */
7691 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7692 (num_members * sizeof(__u32));
7693 space = malloc(size);
7694 if (!space)
7695 err++;
7696 else {
7697 *tail = space;
7698 tail = space;
7699 *tail = NULL;
7700 }
7701 if (!err) {
7702 len = disks_to_mpb_size(num_members * 2);
7703 } else {
7704 /* if allocation didn't success, free buffer */
7705 while (update->space_list) {
7706 void **sp = update->space_list;
7707 update->space_list = *sp;
7708 free(sp);
7709 }
7710 }
7711 }
7712
7713 break;
7714 }
78b10e66 7715 case update_reshape_container_disks: {
d195167d
AK
7716 /* Every raid device in the container is about to
7717 * gain some more devices, and we will enter a
7718 * reconfiguration.
7719 * So each 'imsm_map' will be bigger, and the imsm_vol
7720 * will now hold 2 of them.
7721 * Thus we need new 'struct imsm_dev' allocations sized
7722 * as sizeof_imsm_dev but with more devices in both maps.
7723 */
7724 struct imsm_update_reshape *u = (void *)update->buf;
7725 struct intel_dev *dl;
7726 void **space_tail = (void**)&update->space_list;
7727
7728 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7729
7730 for (dl = super->devlist; dl; dl = dl->next) {
7731 int size = sizeof_imsm_dev(dl->dev, 1);
7732 void *s;
d677e0b8
AK
7733 if (u->new_raid_disks > u->old_raid_disks)
7734 size += sizeof(__u32)*2*
7735 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7736 s = malloc(size);
7737 if (!s)
7738 break;
7739 *space_tail = s;
7740 space_tail = s;
7741 *space_tail = NULL;
7742 }
7743
7744 len = disks_to_mpb_size(u->new_raid_disks);
7745 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7746 break;
7747 }
48c5303a 7748 case update_reshape_migration: {
bc0b9d34
PC
7749 /* for migration level 0->5 we need to add disks
7750 * so the same as for container operation we will copy
7751 * device to the bigger location.
7752 * in memory prepared device and new disk area are prepared
7753 * for usage in process update
7754 */
7755 struct imsm_update_reshape_migration *u = (void *)update->buf;
7756 struct intel_dev *id;
7757 void **space_tail = (void **)&update->space_list;
7758 int size;
7759 void *s;
7760 int current_level = -1;
7761
7762 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7763
7764 /* add space for bigger array in update
7765 */
7766 for (id = super->devlist; id; id = id->next) {
7767 if (id->index == (unsigned)u->subdev) {
7768 size = sizeof_imsm_dev(id->dev, 1);
7769 if (u->new_raid_disks > u->old_raid_disks)
7770 size += sizeof(__u32)*2*
7771 (u->new_raid_disks - u->old_raid_disks);
7772 s = malloc(size);
7773 if (!s)
7774 break;
7775 *space_tail = s;
7776 space_tail = s;
7777 *space_tail = NULL;
7778 break;
7779 }
7780 }
7781 if (update->space_list == NULL)
7782 break;
7783
7784 /* add space for disk in update
7785 */
7786 size = sizeof(struct dl);
7787 s = malloc(size);
7788 if (!s) {
7789 free(update->space_list);
7790 update->space_list = NULL;
7791 break;
7792 }
7793 *space_tail = s;
7794 space_tail = s;
7795 *space_tail = NULL;
7796
7797 /* add spare device to update
7798 */
7799 for (id = super->devlist ; id; id = id->next)
7800 if (id->index == (unsigned)u->subdev) {
7801 struct imsm_dev *dev;
7802 struct imsm_map *map;
7803
7804 dev = get_imsm_dev(super, u->subdev);
7805 map = get_imsm_map(dev, 0);
7806 current_level = map->raid_level;
7807 break;
7808 }
7809 if ((u->new_level == 5) && (u->new_level != current_level)) {
7810 struct mdinfo *spares;
7811
7812 spares = get_spares_for_grow(st);
7813 if (spares) {
7814 struct dl *dl;
7815 struct mdinfo *dev;
7816
7817 dev = spares->devs;
7818 if (dev) {
7819 u->new_disks[0] =
7820 makedev(dev->disk.major,
7821 dev->disk.minor);
7822 dl = get_disk_super(super,
7823 dev->disk.major,
7824 dev->disk.minor);
7825 dl->index = u->old_raid_disks;
7826 dev = dev->next;
7827 }
7828 sysfs_free(spares);
7829 }
7830 }
7831 len = disks_to_mpb_size(u->new_raid_disks);
7832 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7833 break;
7834 }
949c47a0
DW
7835 case update_create_array: {
7836 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7837 struct intel_dev *dv;
54c2c1ea
DW
7838 struct imsm_dev *dev = &u->dev;
7839 struct imsm_map *map = get_imsm_map(dev, 0);
7840 struct dl *dl;
7841 struct disk_info *inf;
7842 int i;
7843 int activate = 0;
949c47a0 7844
54c2c1ea
DW
7845 inf = get_disk_info(u);
7846 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7847 /* allocate a new super->devlist entry */
7848 dv = malloc(sizeof(*dv));
7849 if (dv) {
7850 dv->dev = malloc(len);
7851 if (dv->dev)
7852 update->space = dv;
7853 else {
7854 free(dv);
7855 update->space = NULL;
7856 }
7857 }
949c47a0 7858
54c2c1ea
DW
7859 /* count how many spares will be converted to members */
7860 for (i = 0; i < map->num_members; i++) {
7861 dl = serial_to_dl(inf[i].serial, super);
7862 if (!dl) {
7863 /* hmm maybe it failed?, nothing we can do about
7864 * it here
7865 */
7866 continue;
7867 }
7868 if (count_memberships(dl, super) == 0)
7869 activate++;
7870 }
7871 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7872 break;
7873 default:
7874 break;
7875 }
7876 }
8273f55e 7877
4d7b1503
DW
7878 /* check if we need a larger metadata buffer */
7879 if (super->next_buf)
7880 buf_len = super->next_len;
7881 else
7882 buf_len = super->len;
7883
7884 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7885 /* ok we need a larger buf than what is currently allocated
7886 * if this allocation fails process_update will notice that
7887 * ->next_len is set and ->next_buf is NULL
7888 */
7889 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7890 if (super->next_buf)
7891 free(super->next_buf);
7892
7893 super->next_len = buf_len;
1f45a8ad
DW
7894 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7895 memset(super->next_buf, 0, buf_len);
7896 else
4d7b1503
DW
7897 super->next_buf = NULL;
7898 }
8273f55e
DW
7899}
7900
ae6aad82 7901/* must be called while manager is quiesced */
f21e18ca 7902static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7903{
7904 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7905 struct dl *iter;
7906 struct imsm_dev *dev;
7907 struct imsm_map *map;
24565c9a
DW
7908 int i, j, num_members;
7909 __u32 ord;
ae6aad82 7910
24565c9a
DW
7911 dprintf("%s: deleting device[%d] from imsm_super\n",
7912 __func__, index);
ae6aad82
DW
7913
7914 /* shift all indexes down one */
7915 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7916 if (iter->index > (int)index)
ae6aad82 7917 iter->index--;
47ee5a45 7918 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7919 if (iter->index > (int)index)
47ee5a45 7920 iter->index--;
ae6aad82
DW
7921
7922 for (i = 0; i < mpb->num_raid_devs; i++) {
7923 dev = get_imsm_dev(super, i);
7924 map = get_imsm_map(dev, 0);
24565c9a
DW
7925 num_members = map->num_members;
7926 for (j = 0; j < num_members; j++) {
7927 /* update ord entries being careful not to propagate
7928 * ord-flags to the first map
7929 */
98130f40 7930 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7931
24565c9a
DW
7932 if (ord_to_idx(ord) <= index)
7933 continue;
ae6aad82 7934
24565c9a
DW
7935 map = get_imsm_map(dev, 0);
7936 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7937 map = get_imsm_map(dev, 1);
7938 if (map)
7939 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
7940 }
7941 }
7942
7943 mpb->num_disks--;
7944 super->updates_pending++;
24565c9a
DW
7945 if (*dlp) {
7946 struct dl *dl = *dlp;
7947
7948 *dlp = (*dlp)->next;
7949 __free_imsm_disk(dl);
7950 }
ae6aad82 7951}
9e2d750d 7952#endif /* MDASSEMBLE */
687629c2
AK
7953/*******************************************************************************
7954 * Function: open_backup_targets
7955 * Description: Function opens file descriptors for all devices given in
7956 * info->devs
7957 * Parameters:
7958 * info : general array info
7959 * raid_disks : number of disks
7960 * raid_fds : table of device's file descriptors
7961 * Returns:
7962 * 0 : success
7963 * -1 : fail
7964 ******************************************************************************/
7965int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7966{
7967 struct mdinfo *sd;
7968
7969 for (sd = info->devs ; sd ; sd = sd->next) {
7970 char *dn;
7971
7972 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7973 dprintf("disk is faulty!!\n");
7974 continue;
7975 }
7976
7977 if ((sd->disk.raid_disk >= raid_disks) ||
7978 (sd->disk.raid_disk < 0))
7979 continue;
7980
7981 dn = map_dev(sd->disk.major,
7982 sd->disk.minor, 1);
7983 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7984 if (raid_fds[sd->disk.raid_disk] < 0) {
7985 fprintf(stderr, "cannot open component\n");
7986 return -1;
7987 }
7988 }
7989 return 0;
7990}
7991
9e2d750d 7992#ifndef MDASSEMBLE
687629c2
AK
7993/*******************************************************************************
7994 * Function: init_migr_record_imsm
7995 * Description: Function inits imsm migration record
7996 * Parameters:
7997 * super : imsm internal array info
7998 * dev : device under migration
7999 * info : general array info to find the smallest device
8000 * Returns:
8001 * none
8002 ******************************************************************************/
8003void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8004 struct mdinfo *info)
8005{
8006 struct intel_super *super = st->sb;
8007 struct migr_record *migr_rec = super->migr_rec;
8008 int new_data_disks;
8009 unsigned long long dsize, dev_sectors;
8010 long long unsigned min_dev_sectors = -1LLU;
8011 struct mdinfo *sd;
8012 char nm[30];
8013 int fd;
8014 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8015 struct imsm_map *map_src = get_imsm_map(dev, 1);
8016 unsigned long long num_migr_units;
3ef4403c 8017 unsigned long long array_blocks;
687629c2
AK
8018
8019 memset(migr_rec, 0, sizeof(struct migr_record));
8020 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8021
8022 /* only ascending reshape supported now */
8023 migr_rec->ascending_migr = __cpu_to_le32(1);
8024
8025 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8026 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8027 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
8028 new_data_disks = imsm_num_data_members(dev, 0);
8029 migr_rec->blocks_per_unit =
8030 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8031 migr_rec->dest_depth_per_unit =
8032 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 8033 array_blocks = info->component_size * new_data_disks;
687629c2
AK
8034 num_migr_units =
8035 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8036
8037 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8038 num_migr_units++;
8039 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8040
8041 migr_rec->post_migr_vol_cap = dev->size_low;
8042 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8043
8044
8045 /* Find the smallest dev */
8046 for (sd = info->devs ; sd ; sd = sd->next) {
8047 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8048 fd = dev_open(nm, O_RDONLY);
8049 if (fd < 0)
8050 continue;
8051 get_dev_size(fd, NULL, &dsize);
8052 dev_sectors = dsize / 512;
8053 if (dev_sectors < min_dev_sectors)
8054 min_dev_sectors = dev_sectors;
8055 close(fd);
8056 }
8057 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8058 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8059
8060 write_imsm_migr_rec(st);
8061
8062 return;
8063}
8064
8065/*******************************************************************************
8066 * Function: save_backup_imsm
8067 * Description: Function saves critical data stripes to Migration Copy Area
8068 * and updates the current migration unit status.
8069 * Use restore_stripes() to form a destination stripe,
8070 * and to write it to the Copy Area.
8071 * Parameters:
8072 * st : supertype information
aea93171 8073 * dev : imsm device that backup is saved for
687629c2
AK
8074 * info : general array info
8075 * buf : input buffer
687629c2
AK
8076 * length : length of data to backup (blocks_per_unit)
8077 * Returns:
8078 * 0 : success
8079 *, -1 : fail
8080 ******************************************************************************/
8081int save_backup_imsm(struct supertype *st,
8082 struct imsm_dev *dev,
8083 struct mdinfo *info,
8084 void *buf,
687629c2
AK
8085 int length)
8086{
8087 int rv = -1;
8088 struct intel_super *super = st->sb;
8089 unsigned long long *target_offsets = NULL;
8090 int *targets = NULL;
8091 int i;
8092 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8093 int new_disks = map_dest->num_members;
ab724b98
AK
8094 int dest_layout = 0;
8095 int dest_chunk;
d1877f69
AK
8096 unsigned long long start;
8097 int data_disks = imsm_num_data_members(dev, 0);
687629c2
AK
8098
8099 targets = malloc(new_disks * sizeof(int));
8100 if (!targets)
8101 goto abort;
8102
7e45b550
AK
8103 for (i = 0; i < new_disks; i++)
8104 targets[i] = -1;
8105
687629c2
AK
8106 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8107 if (!target_offsets)
8108 goto abort;
8109
d1877f69 8110 start = info->reshape_progress * 512;
687629c2 8111 for (i = 0; i < new_disks; i++) {
687629c2
AK
8112 target_offsets[i] = (unsigned long long)
8113 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
8114 /* move back copy area adderss, it will be moved forward
8115 * in restore_stripes() using start input variable
8116 */
8117 target_offsets[i] -= start/data_disks;
687629c2
AK
8118 }
8119
8120 if (open_backup_targets(info, new_disks, targets))
8121 goto abort;
8122
68eb8bc6 8123 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
8124 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8125
687629c2
AK
8126 if (restore_stripes(targets, /* list of dest devices */
8127 target_offsets, /* migration record offsets */
8128 new_disks,
ab724b98
AK
8129 dest_chunk,
8130 map_dest->raid_level,
8131 dest_layout,
8132 -1, /* source backup file descriptor */
8133 0, /* input buf offset
8134 * always 0 buf is already offseted */
d1877f69 8135 start,
687629c2
AK
8136 length,
8137 buf) != 0) {
8138 fprintf(stderr, Name ": Error restoring stripes\n");
8139 goto abort;
8140 }
8141
8142 rv = 0;
8143
8144abort:
8145 if (targets) {
8146 for (i = 0; i < new_disks; i++)
8147 if (targets[i] >= 0)
8148 close(targets[i]);
8149 free(targets);
8150 }
8151 free(target_offsets);
8152
8153 return rv;
8154}
8155
8156/*******************************************************************************
8157 * Function: save_checkpoint_imsm
8158 * Description: Function called for current unit status update
8159 * in the migration record. It writes it to disk.
8160 * Parameters:
8161 * super : imsm internal array info
8162 * info : general array info
8163 * Returns:
8164 * 0: success
8165 * 1: failure
0228d92c
AK
8166 * 2: failure, means no valid migration record
8167 * / no general migration in progress /
687629c2
AK
8168 ******************************************************************************/
8169int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8170{
8171 struct intel_super *super = st->sb;
f8b72ef5
AK
8172 unsigned long long blocks_per_unit;
8173 unsigned long long curr_migr_unit;
8174
2e062e82
AK
8175 if (load_imsm_migr_rec(super, info) != 0) {
8176 dprintf("imsm: ERROR: Cannot read migration record "
8177 "for checkpoint save.\n");
8178 return 1;
8179 }
8180
f8b72ef5
AK
8181 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8182 if (blocks_per_unit == 0) {
0228d92c
AK
8183 dprintf("imsm: no migration in progress.\n");
8184 return 2;
687629c2 8185 }
f8b72ef5
AK
8186 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8187 /* check if array is alligned to copy area
8188 * if it is not alligned, add one to current migration unit value
8189 * this can happend on array reshape finish only
8190 */
8191 if (info->reshape_progress % blocks_per_unit)
8192 curr_migr_unit++;
687629c2
AK
8193
8194 super->migr_rec->curr_migr_unit =
f8b72ef5 8195 __cpu_to_le32(curr_migr_unit);
687629c2
AK
8196 super->migr_rec->rec_status = __cpu_to_le32(state);
8197 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
8198 __cpu_to_le32(curr_migr_unit *
8199 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
8200 if (write_imsm_migr_rec(st) < 0) {
8201 dprintf("imsm: Cannot write migration record "
8202 "outside backup area\n");
8203 return 1;
8204 }
8205
8206 return 0;
8207}
8208
276d77db
AK
8209/*******************************************************************************
8210 * Function: recover_backup_imsm
8211 * Description: Function recovers critical data from the Migration Copy Area
8212 * while assembling an array.
8213 * Parameters:
8214 * super : imsm internal array info
8215 * info : general array info
8216 * Returns:
8217 * 0 : success (or there is no data to recover)
8218 * 1 : fail
8219 ******************************************************************************/
8220int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8221{
8222 struct intel_super *super = st->sb;
8223 struct migr_record *migr_rec = super->migr_rec;
8224 struct imsm_map *map_dest = NULL;
8225 struct intel_dev *id = NULL;
8226 unsigned long long read_offset;
8227 unsigned long long write_offset;
8228 unsigned unit_len;
8229 int *targets = NULL;
8230 int new_disks, i, err;
8231 char *buf = NULL;
8232 int retval = 1;
8233 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8234 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 8235 char buffer[20];
6c3560c0
AK
8236 int skipped_disks = 0;
8237 int max_degradation;
276d77db
AK
8238
8239 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8240 if (err < 1)
8241 return 1;
8242
8243 /* recover data only during assemblation */
8244 if (strncmp(buffer, "inactive", 8) != 0)
8245 return 0;
8246 /* no data to recover */
8247 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8248 return 0;
8249 if (curr_migr_unit >= num_migr_units)
8250 return 1;
8251
8252 /* find device during reshape */
8253 for (id = super->devlist; id; id = id->next)
8254 if (is_gen_migration(id->dev))
8255 break;
8256 if (id == NULL)
8257 return 1;
8258
8259 map_dest = get_imsm_map(id->dev, 0);
8260 new_disks = map_dest->num_members;
6c3560c0 8261 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
276d77db
AK
8262
8263 read_offset = (unsigned long long)
8264 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8265
8266 write_offset = ((unsigned long long)
8267 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
75b69ea4 8268 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
276d77db
AK
8269
8270 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8271 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8272 goto abort;
8273 targets = malloc(new_disks * sizeof(int));
8274 if (!targets)
8275 goto abort;
8276
8277 open_backup_targets(info, new_disks, targets);
8278
8279 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
8280 if (targets[i] < 0) {
8281 skipped_disks++;
8282 continue;
8283 }
276d77db
AK
8284 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8285 fprintf(stderr,
8286 Name ": Cannot seek to block: %s\n",
8287 strerror(errno));
8288 goto abort;
8289 }
9ec11d1a 8290 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8291 fprintf(stderr,
8292 Name ": Cannot read copy area block: %s\n",
8293 strerror(errno));
8294 goto abort;
8295 }
8296 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8297 fprintf(stderr,
8298 Name ": Cannot seek to block: %s\n",
8299 strerror(errno));
8300 goto abort;
8301 }
9ec11d1a 8302 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8303 fprintf(stderr,
8304 Name ": Cannot restore block: %s\n",
8305 strerror(errno));
8306 goto abort;
8307 }
8308 }
8309
6c3560c0
AK
8310 if (skipped_disks > max_degradation) {
8311 fprintf(stderr,
8312 Name ": Cannot restore data from backup."
8313 " Too many failed disks\n");
8314 goto abort;
8315 }
8316
befb629b
AK
8317 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8318 /* ignore error == 2, this can mean end of reshape here
8319 */
8320 dprintf("imsm: Cannot write checkpoint to "
8321 "migration record (UNIT_SRC_NORMAL) during restart\n");
8322 } else
276d77db 8323 retval = 0;
276d77db
AK
8324
8325abort:
8326 if (targets) {
8327 for (i = 0; i < new_disks; i++)
8328 if (targets[i])
8329 close(targets[i]);
8330 free(targets);
8331 }
8332 free(buf);
8333 return retval;
8334}
8335
2cda7640
ML
8336static char disk_by_path[] = "/dev/disk/by-path/";
8337
8338static const char *imsm_get_disk_controller_domain(const char *path)
8339{
2cda7640 8340 char disk_path[PATH_MAX];
96234762
LM
8341 char *drv=NULL;
8342 struct stat st;
2cda7640 8343
96234762
LM
8344 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8345 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8346 if (stat(disk_path, &st) == 0) {
8347 struct sys_dev* hba;
8348 char *path=NULL;
8349
8350 path = devt_to_devpath(st.st_rdev);
8351 if (path == NULL)
8352 return "unknown";
8353 hba = find_disk_attached_hba(-1, path);
8354 if (hba && hba->type == SYS_DEV_SAS)
8355 drv = "isci";
8356 else if (hba && hba->type == SYS_DEV_SATA)
8357 drv = "ahci";
8358 else
8359 drv = "unknown";
8360 dprintf("path: %s hba: %s attached: %s\n",
8361 path, (hba) ? hba->path : "NULL", drv);
8362 free(path);
8363 if (hba)
8364 free_sys_dev(&hba);
2cda7640 8365 }
96234762 8366 return drv;
2cda7640
ML
8367}
8368
78b10e66
N
8369static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8370{
8371 char subdev_name[20];
8372 struct mdstat_ent *mdstat;
8373
8374 sprintf(subdev_name, "%d", subdev);
8375 mdstat = mdstat_by_subdev(subdev_name, container);
8376 if (!mdstat)
8377 return -1;
8378
8379 *minor = mdstat->devnum;
8380 free_mdstat(mdstat);
8381 return 0;
8382}
8383
8384static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8385 struct geo_params *geo,
8386 int *old_raid_disks)
8387{
694575e7
KW
8388 /* currently we only support increasing the number of devices
8389 * for a container. This increases the number of device for each
8390 * member array. They must all be RAID0 or RAID5.
8391 */
78b10e66
N
8392 int ret_val = 0;
8393 struct mdinfo *info, *member;
8394 int devices_that_can_grow = 0;
8395
8396 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8397 "st->devnum = (%i)\n",
8398 st->devnum);
8399
8400 if (geo->size != -1 ||
8401 geo->level != UnSet ||
8402 geo->layout != UnSet ||
8403 geo->chunksize != 0 ||
8404 geo->raid_disks == UnSet) {
8405 dprintf("imsm: Container operation is allowed for "
8406 "raid disks number change only.\n");
8407 return ret_val;
8408 }
8409
8410 info = container_content_imsm(st, NULL);
8411 for (member = info; member; member = member->next) {
8412 int result;
8413 int minor;
8414
8415 dprintf("imsm: checking device_num: %i\n",
8416 member->container_member);
8417
d7d205bd 8418 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
8419 /* we work on container for Online Capacity Expansion
8420 * only so raid_disks has to grow
8421 */
8422 dprintf("imsm: for container operation raid disks "
8423 "increase is required\n");
8424 break;
8425 }
8426
8427 if ((info->array.level != 0) &&
8428 (info->array.level != 5)) {
8429 /* we cannot use this container with other raid level
8430 */
690aae1a 8431 dprintf("imsm: for container operation wrong"
78b10e66
N
8432 " raid level (%i) detected\n",
8433 info->array.level);
8434 break;
8435 } else {
8436 /* check for platform support
8437 * for this raid level configuration
8438 */
8439 struct intel_super *super = st->sb;
8440 if (!is_raid_level_supported(super->orom,
8441 member->array.level,
8442 geo->raid_disks)) {
690aae1a 8443 dprintf("platform does not support raid%d with"
78b10e66
N
8444 " %d disk%s\n",
8445 info->array.level,
8446 geo->raid_disks,
8447 geo->raid_disks > 1 ? "s" : "");
8448 break;
8449 }
2a4a08e7
AK
8450 /* check if component size is aligned to chunk size
8451 */
8452 if (info->component_size %
8453 (info->array.chunk_size/512)) {
8454 dprintf("Component size is not aligned to "
8455 "chunk size\n");
8456 break;
8457 }
78b10e66
N
8458 }
8459
8460 if (*old_raid_disks &&
8461 info->array.raid_disks != *old_raid_disks)
8462 break;
8463 *old_raid_disks = info->array.raid_disks;
8464
8465 /* All raid5 and raid0 volumes in container
8466 * have to be ready for Online Capacity Expansion
8467 * so they need to be assembled. We have already
8468 * checked that no recovery etc is happening.
8469 */
8470 result = imsm_find_array_minor_by_subdev(member->container_member,
8471 st->container_dev,
8472 &minor);
8473 if (result < 0) {
8474 dprintf("imsm: cannot find array\n");
8475 break;
8476 }
8477 devices_that_can_grow++;
8478 }
8479 sysfs_free(info);
8480 if (!member && devices_that_can_grow)
8481 ret_val = 1;
8482
8483 if (ret_val)
8484 dprintf("\tContainer operation allowed\n");
8485 else
8486 dprintf("\tError: %i\n", ret_val);
8487
8488 return ret_val;
8489}
8490
8491/* Function: get_spares_for_grow
8492 * Description: Allocates memory and creates list of spare devices
8493 * avaliable in container. Checks if spare drive size is acceptable.
8494 * Parameters: Pointer to the supertype structure
8495 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8496 * NULL if fail
8497 */
8498static struct mdinfo *get_spares_for_grow(struct supertype *st)
8499{
78b10e66 8500 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8501 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8502}
8503
8504/******************************************************************************
8505 * function: imsm_create_metadata_update_for_reshape
8506 * Function creates update for whole IMSM container.
8507 *
8508 ******************************************************************************/
8509static int imsm_create_metadata_update_for_reshape(
8510 struct supertype *st,
8511 struct geo_params *geo,
8512 int old_raid_disks,
8513 struct imsm_update_reshape **updatep)
8514{
8515 struct intel_super *super = st->sb;
8516 struct imsm_super *mpb = super->anchor;
8517 int update_memory_size = 0;
8518 struct imsm_update_reshape *u = NULL;
8519 struct mdinfo *spares = NULL;
8520 int i;
8521 int delta_disks = 0;
bbd24d86 8522 struct mdinfo *dev;
78b10e66
N
8523
8524 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8525 geo->raid_disks);
8526
8527 delta_disks = geo->raid_disks - old_raid_disks;
8528
8529 /* size of all update data without anchor */
8530 update_memory_size = sizeof(struct imsm_update_reshape);
8531
8532 /* now add space for spare disks that we need to add. */
8533 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8534
8535 u = calloc(1, update_memory_size);
8536 if (u == NULL) {
8537 dprintf("error: "
8538 "cannot get memory for imsm_update_reshape update\n");
8539 return 0;
8540 }
8541 u->type = update_reshape_container_disks;
8542 u->old_raid_disks = old_raid_disks;
8543 u->new_raid_disks = geo->raid_disks;
8544
8545 /* now get spare disks list
8546 */
8547 spares = get_spares_for_grow(st);
8548
8549 if (spares == NULL
8550 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8551 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8552 "for %s.\n", geo->dev_name);
e4c72d1d 8553 i = -1;
78b10e66
N
8554 goto abort;
8555 }
8556
8557 /* we have got spares
8558 * update disk list in imsm_disk list table in anchor
8559 */
8560 dprintf("imsm: %i spares are available.\n\n",
8561 spares->array.spare_disks);
8562
bbd24d86 8563 dev = spares->devs;
78b10e66 8564 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8565 struct dl *dl;
8566
bbd24d86
AK
8567 if (dev == NULL)
8568 break;
78b10e66
N
8569 u->new_disks[i] = makedev(dev->disk.major,
8570 dev->disk.minor);
8571 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8572 dl->index = mpb->num_disks;
8573 mpb->num_disks++;
bbd24d86 8574 dev = dev->next;
78b10e66 8575 }
78b10e66
N
8576
8577abort:
8578 /* free spares
8579 */
8580 sysfs_free(spares);
8581
d677e0b8 8582 dprintf("imsm: reshape update preparation :");
78b10e66 8583 if (i == delta_disks) {
d677e0b8 8584 dprintf(" OK\n");
78b10e66
N
8585 *updatep = u;
8586 return update_memory_size;
8587 }
8588 free(u);
d677e0b8 8589 dprintf(" Error\n");
78b10e66
N
8590
8591 return 0;
8592}
8593
48c5303a
PC
8594/******************************************************************************
8595 * function: imsm_create_metadata_update_for_migration()
8596 * Creates update for IMSM array.
8597 *
8598 ******************************************************************************/
8599static int imsm_create_metadata_update_for_migration(
8600 struct supertype *st,
8601 struct geo_params *geo,
8602 struct imsm_update_reshape_migration **updatep)
8603{
8604 struct intel_super *super = st->sb;
8605 int update_memory_size = 0;
8606 struct imsm_update_reshape_migration *u = NULL;
8607 struct imsm_dev *dev;
8608 int previous_level = -1;
8609
8610 dprintf("imsm_create_metadata_update_for_migration(enter)"
8611 " New Level = %i\n", geo->level);
8612
8613 /* size of all update data without anchor */
8614 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8615
8616 u = calloc(1, update_memory_size);
8617 if (u == NULL) {
8618 dprintf("error: cannot get memory for "
8619 "imsm_create_metadata_update_for_migration\n");
8620 return 0;
8621 }
8622 u->type = update_reshape_migration;
8623 u->subdev = super->current_vol;
8624 u->new_level = geo->level;
8625 u->new_layout = geo->layout;
8626 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8627 u->new_disks[0] = -1;
4bba0439 8628 u->new_chunksize = -1;
48c5303a
PC
8629
8630 dev = get_imsm_dev(super, u->subdev);
8631 if (dev) {
8632 struct imsm_map *map;
8633
8634 map = get_imsm_map(dev, 0);
4bba0439
PC
8635 if (map) {
8636 int current_chunk_size =
8637 __le16_to_cpu(map->blocks_per_strip) / 2;
8638
8639 if (geo->chunksize != current_chunk_size) {
8640 u->new_chunksize = geo->chunksize / 1024;
8641 dprintf("imsm: "
8642 "chunk size change from %i to %i\n",
8643 current_chunk_size, u->new_chunksize);
8644 }
48c5303a 8645 previous_level = map->raid_level;
4bba0439 8646 }
48c5303a
PC
8647 }
8648 if ((geo->level == 5) && (previous_level == 0)) {
8649 struct mdinfo *spares = NULL;
8650
8651 u->new_raid_disks++;
8652 spares = get_spares_for_grow(st);
8653 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8654 free(u);
8655 sysfs_free(spares);
8656 update_memory_size = 0;
8657 dprintf("error: cannot get spare device "
8658 "for requested migration");
8659 return 0;
8660 }
8661 sysfs_free(spares);
8662 }
8663 dprintf("imsm: reshape update preparation : OK\n");
8664 *updatep = u;
8665
8666 return update_memory_size;
8667}
8668
8dd70bce
AK
8669static void imsm_update_metadata_locally(struct supertype *st,
8670 void *buf, int len)
8671{
8672 struct metadata_update mu;
8673
8674 mu.buf = buf;
8675 mu.len = len;
8676 mu.space = NULL;
8677 mu.space_list = NULL;
8678 mu.next = NULL;
8679 imsm_prepare_update(st, &mu);
8680 imsm_process_update(st, &mu);
8681
8682 while (mu.space_list) {
8683 void **space = mu.space_list;
8684 mu.space_list = *space;
8685 free(space);
8686 }
8687}
78b10e66 8688
471bceb6 8689/***************************************************************************
694575e7 8690* Function: imsm_analyze_change
471bceb6
KW
8691* Description: Function analyze change for single volume
8692* and validate if transition is supported
694575e7
KW
8693* Parameters: Geometry parameters, supertype structure
8694* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8695****************************************************************************/
8696enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8697 struct geo_params *geo)
694575e7 8698{
471bceb6
KW
8699 struct mdinfo info;
8700 int change = -1;
8701 int check_devs = 0;
c21e737b 8702 int chunk;
e91a3bad
LM
8703 int devNumChange=0;
8704 int layout = -1;
471bceb6
KW
8705
8706 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
8707 if ((geo->level != info.array.level) &&
8708 (geo->level >= 0) &&
8709 (geo->level != UnSet)) {
8710 switch (info.array.level) {
8711 case 0:
8712 if (geo->level == 5) {
b5347799 8713 change = CH_MIGRATION;
e13ce846
AK
8714 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8715 fprintf(stderr,
8716 Name " Error. Requested Layout "
8717 "not supported (left-asymmetric layout "
8718 "is supported only)!\n");
8719 change = -1;
8720 goto analyse_change_exit;
8721 }
e91a3bad 8722 layout = geo->layout;
471bceb6 8723 check_devs = 1;
e91a3bad
LM
8724 devNumChange = 1; /* parity disk added */
8725 } else if (geo->level == 10) {
471bceb6
KW
8726 change = CH_TAKEOVER;
8727 check_devs = 1;
e91a3bad
LM
8728 devNumChange = 2; /* two mirrors added */
8729 layout = 0x102; /* imsm supported layout */
471bceb6 8730 }
dfe77a9e
KW
8731 break;
8732 case 1:
471bceb6
KW
8733 case 10:
8734 if (geo->level == 0) {
8735 change = CH_TAKEOVER;
8736 check_devs = 1;
e91a3bad
LM
8737 devNumChange = -(geo->raid_disks/2);
8738 layout = 0; /* imsm raid0 layout */
471bceb6
KW
8739 }
8740 break;
8741 }
8742 if (change == -1) {
8743 fprintf(stderr,
8744 Name " Error. Level Migration from %d to %d "
8745 "not supported!\n",
8746 info.array.level, geo->level);
8747 goto analyse_change_exit;
8748 }
8749 } else
8750 geo->level = info.array.level;
8751
8752 if ((geo->layout != info.array.layout)
8753 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8754 change = CH_MIGRATION;
471bceb6
KW
8755 if ((info.array.layout == 0)
8756 && (info.array.level == 5)
8757 && (geo->layout == 5)) {
8758 /* reshape 5 -> 4 */
8759 } else if ((info.array.layout == 5)
8760 && (info.array.level == 5)
8761 && (geo->layout == 0)) {
8762 /* reshape 4 -> 5 */
8763 geo->layout = 0;
8764 geo->level = 5;
8765 } else {
8766 fprintf(stderr,
8767 Name " Error. Layout Migration from %d to %d "
8768 "not supported!\n",
8769 info.array.layout, geo->layout);
8770 change = -1;
8771 goto analyse_change_exit;
8772 }
8773 } else
8774 geo->layout = info.array.layout;
8775
8776 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8777 && (geo->chunksize != info.array.chunk_size))
b5347799 8778 change = CH_MIGRATION;
471bceb6
KW
8779 else
8780 geo->chunksize = info.array.chunk_size;
8781
c21e737b 8782 chunk = geo->chunksize / 1024;
471bceb6
KW
8783 if (!validate_geometry_imsm(st,
8784 geo->level,
e91a3bad
LM
8785 layout,
8786 geo->raid_disks + devNumChange,
c21e737b 8787 &chunk,
471bceb6
KW
8788 geo->size,
8789 0, 0, 1))
8790 change = -1;
8791
8792 if (check_devs) {
8793 struct intel_super *super = st->sb;
8794 struct imsm_super *mpb = super->anchor;
8795
8796 if (mpb->num_raid_devs > 1) {
8797 fprintf(stderr,
8798 Name " Error. Cannot perform operation on %s"
8799 "- for this operation it MUST be single "
8800 "array in container\n",
8801 geo->dev_name);
8802 change = -1;
8803 }
8804 }
8805
8806analyse_change_exit:
8807
8808 return change;
694575e7
KW
8809}
8810
bb025c2f
KW
8811int imsm_takeover(struct supertype *st, struct geo_params *geo)
8812{
8813 struct intel_super *super = st->sb;
8814 struct imsm_update_takeover *u;
8815
8816 u = malloc(sizeof(struct imsm_update_takeover));
8817 if (u == NULL)
8818 return 1;
8819
8820 u->type = update_takeover;
8821 u->subarray = super->current_vol;
8822
8823 /* 10->0 transition */
8824 if (geo->level == 0)
8825 u->direction = R10_TO_R0;
8826
0529c688
KW
8827 /* 0->10 transition */
8828 if (geo->level == 10)
8829 u->direction = R0_TO_R10;
8830
bb025c2f
KW
8831 /* update metadata locally */
8832 imsm_update_metadata_locally(st, u,
8833 sizeof(struct imsm_update_takeover));
8834 /* and possibly remotely */
8835 if (st->update_tail)
8836 append_metadata_update(st, u,
8837 sizeof(struct imsm_update_takeover));
8838 else
8839 free(u);
8840
8841 return 0;
8842}
8843
78b10e66
N
8844static int imsm_reshape_super(struct supertype *st, long long size, int level,
8845 int layout, int chunksize, int raid_disks,
41784c88
AK
8846 int delta_disks, char *backup, char *dev,
8847 int verbose)
78b10e66 8848{
78b10e66
N
8849 int ret_val = 1;
8850 struct geo_params geo;
8851
8852 dprintf("imsm: reshape_super called.\n");
8853
71204a50 8854 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
8855
8856 geo.dev_name = dev;
694575e7 8857 geo.dev_id = st->devnum;
78b10e66
N
8858 geo.size = size;
8859 geo.level = level;
8860 geo.layout = layout;
8861 geo.chunksize = chunksize;
8862 geo.raid_disks = raid_disks;
41784c88
AK
8863 if (delta_disks != UnSet)
8864 geo.raid_disks += delta_disks;
78b10e66
N
8865
8866 dprintf("\tfor level : %i\n", geo.level);
8867 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8868
8869 if (experimental() == 0)
8870 return ret_val;
8871
78b10e66 8872 if (st->container_dev == st->devnum) {
694575e7
KW
8873 /* On container level we can only increase number of devices. */
8874 dprintf("imsm: info: Container operation\n");
78b10e66 8875 int old_raid_disks = 0;
6dc0be30 8876
78b10e66
N
8877 if (imsm_reshape_is_allowed_on_container(
8878 st, &geo, &old_raid_disks)) {
8879 struct imsm_update_reshape *u = NULL;
8880 int len;
8881
8882 len = imsm_create_metadata_update_for_reshape(
8883 st, &geo, old_raid_disks, &u);
8884
ed08d51c
AK
8885 if (len <= 0) {
8886 dprintf("imsm: Cannot prepare update\n");
8887 goto exit_imsm_reshape_super;
8888 }
8889
8dd70bce
AK
8890 ret_val = 0;
8891 /* update metadata locally */
8892 imsm_update_metadata_locally(st, u, len);
8893 /* and possibly remotely */
8894 if (st->update_tail)
8895 append_metadata_update(st, u, len);
8896 else
ed08d51c 8897 free(u);
8dd70bce 8898
694575e7 8899 } else {
e7ff7e40
AK
8900 fprintf(stderr, Name ": (imsm) Operation "
8901 "is not allowed on this container\n");
694575e7
KW
8902 }
8903 } else {
8904 /* On volume level we support following operations
471bceb6
KW
8905 * - takeover: raid10 -> raid0; raid0 -> raid10
8906 * - chunk size migration
8907 * - migration: raid5 -> raid0; raid0 -> raid5
8908 */
8909 struct intel_super *super = st->sb;
8910 struct intel_dev *dev = super->devlist;
8911 int change, devnum;
694575e7 8912 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
8913 /* find requested device */
8914 while (dev) {
19986c72
MB
8915 if (imsm_find_array_minor_by_subdev(
8916 dev->index, st->container_dev, &devnum) == 0
8917 && devnum == geo.dev_id)
471bceb6
KW
8918 break;
8919 dev = dev->next;
8920 }
8921 if (dev == NULL) {
8922 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8923 geo.dev_name, geo.dev_id);
8924 goto exit_imsm_reshape_super;
8925 }
8926 super->current_vol = dev->index;
694575e7
KW
8927 change = imsm_analyze_change(st, &geo);
8928 switch (change) {
471bceb6 8929 case CH_TAKEOVER:
bb025c2f 8930 ret_val = imsm_takeover(st, &geo);
694575e7 8931 break;
48c5303a
PC
8932 case CH_MIGRATION: {
8933 struct imsm_update_reshape_migration *u = NULL;
8934 int len =
8935 imsm_create_metadata_update_for_migration(
8936 st, &geo, &u);
8937 if (len < 1) {
8938 dprintf("imsm: "
8939 "Cannot prepare update\n");
8940 break;
8941 }
471bceb6 8942 ret_val = 0;
48c5303a
PC
8943 /* update metadata locally */
8944 imsm_update_metadata_locally(st, u, len);
8945 /* and possibly remotely */
8946 if (st->update_tail)
8947 append_metadata_update(st, u, len);
8948 else
8949 free(u);
8950 }
8951 break;
471bceb6
KW
8952 default:
8953 ret_val = 1;
694575e7 8954 }
694575e7 8955 }
78b10e66 8956
ed08d51c 8957exit_imsm_reshape_super:
78b10e66
N
8958 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8959 return ret_val;
8960}
2cda7640 8961
eee67a47
AK
8962/*******************************************************************************
8963 * Function: wait_for_reshape_imsm
8964 * Description: Function writes new sync_max value and waits until
8965 * reshape process reach new position
8966 * Parameters:
8967 * sra : general array info
eee67a47
AK
8968 * ndata : number of disks in new array's layout
8969 * Returns:
8970 * 0 : success,
8971 * 1 : there is no reshape in progress,
8972 * -1 : fail
8973 ******************************************************************************/
ae9f01f8 8974int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
8975{
8976 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8977 unsigned long long completed;
ae9f01f8
AK
8978 /* to_complete : new sync_max position */
8979 unsigned long long to_complete = sra->reshape_progress;
8980 unsigned long long position_to_set = to_complete / ndata;
eee67a47 8981
ae9f01f8
AK
8982 if (fd < 0) {
8983 dprintf("imsm: wait_for_reshape_imsm() "
8984 "cannot open reshape_position\n");
eee67a47 8985 return 1;
ae9f01f8 8986 }
eee67a47 8987
ae9f01f8
AK
8988 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8989 dprintf("imsm: wait_for_reshape_imsm() "
8990 "cannot read reshape_position (no reshape in progres)\n");
8991 close(fd);
8992 return 0;
8993 }
eee67a47 8994
ae9f01f8
AK
8995 if (completed > to_complete) {
8996 dprintf("imsm: wait_for_reshape_imsm() "
8997 "wrong next position to set %llu (%llu)\n",
8998 to_complete, completed);
8999 close(fd);
9000 return -1;
9001 }
9002 dprintf("Position set: %llu\n", position_to_set);
9003 if (sysfs_set_num(sra, NULL, "sync_max",
9004 position_to_set) != 0) {
9005 dprintf("imsm: wait_for_reshape_imsm() "
9006 "cannot set reshape position to %llu\n",
9007 position_to_set);
9008 close(fd);
9009 return -1;
eee67a47
AK
9010 }
9011
eee67a47
AK
9012 do {
9013 char action[20];
9014 fd_set rfds;
9015 FD_ZERO(&rfds);
9016 FD_SET(fd, &rfds);
a47e44fb
AK
9017 select(fd+1, &rfds, NULL, NULL, NULL);
9018 if (sysfs_get_str(sra, NULL, "sync_action",
9019 action, 20) > 0 &&
9020 strncmp(action, "reshape", 7) != 0)
9021 break;
eee67a47 9022 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
9023 dprintf("imsm: wait_for_reshape_imsm() "
9024 "cannot read reshape_position (in loop)\n");
eee67a47
AK
9025 close(fd);
9026 return 1;
9027 }
eee67a47
AK
9028 } while (completed < to_complete);
9029 close(fd);
9030 return 0;
9031
9032}
9033
b915c95f
AK
9034/*******************************************************************************
9035 * Function: check_degradation_change
9036 * Description: Check that array hasn't become failed.
9037 * Parameters:
9038 * info : for sysfs access
9039 * sources : source disks descriptors
9040 * degraded: previous degradation level
9041 * Returns:
9042 * degradation level
9043 ******************************************************************************/
9044int check_degradation_change(struct mdinfo *info,
9045 int *sources,
9046 int degraded)
9047{
9048 unsigned long long new_degraded;
9049 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9050 if (new_degraded != (unsigned long long)degraded) {
9051 /* check each device to ensure it is still working */
9052 struct mdinfo *sd;
9053 new_degraded = 0;
9054 for (sd = info->devs ; sd ; sd = sd->next) {
9055 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9056 continue;
9057 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9058 char sbuf[20];
9059 if (sysfs_get_str(info,
9060 sd, "state", sbuf, 20) < 0 ||
9061 strstr(sbuf, "faulty") ||
9062 strstr(sbuf, "in_sync") == NULL) {
9063 /* this device is dead */
9064 sd->disk.state = (1<<MD_DISK_FAULTY);
9065 if (sd->disk.raid_disk >= 0 &&
9066 sources[sd->disk.raid_disk] >= 0) {
9067 close(sources[
9068 sd->disk.raid_disk]);
9069 sources[sd->disk.raid_disk] =
9070 -1;
9071 }
9072 new_degraded++;
9073 }
9074 }
9075 }
9076 }
9077
9078 return new_degraded;
9079}
9080
10f22854
AK
9081/*******************************************************************************
9082 * Function: imsm_manage_reshape
9083 * Description: Function finds array under reshape and it manages reshape
9084 * process. It creates stripes backups (if required) and sets
9085 * checheckpoits.
9086 * Parameters:
9087 * afd : Backup handle (nattive) - not used
9088 * sra : general array info
9089 * reshape : reshape parameters - not used
9090 * st : supertype structure
9091 * blocks : size of critical section [blocks]
9092 * fds : table of source device descriptor
9093 * offsets : start of array (offest per devices)
9094 * dests : not used
9095 * destfd : table of destination device descriptor
9096 * destoffsets : table of destination offsets (per device)
9097 * Returns:
9098 * 1 : success, reshape is done
9099 * 0 : fail
9100 ******************************************************************************/
999b4972
N
9101static int imsm_manage_reshape(
9102 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 9103 struct supertype *st, unsigned long backup_blocks,
999b4972
N
9104 int *fds, unsigned long long *offsets,
9105 int dests, int *destfd, unsigned long long *destoffsets)
9106{
10f22854
AK
9107 int ret_val = 0;
9108 struct intel_super *super = st->sb;
9109 struct intel_dev *dv = NULL;
9110 struct imsm_dev *dev = NULL;
a6b6d984 9111 struct imsm_map *map_src;
10f22854
AK
9112 int migr_vol_qan = 0;
9113 int ndata, odata; /* [bytes] */
9114 int chunk; /* [bytes] */
9115 struct migr_record *migr_rec;
9116 char *buf = NULL;
9117 unsigned int buf_size; /* [bytes] */
9118 unsigned long long max_position; /* array size [bytes] */
9119 unsigned long long next_step; /* [blocks]/[bytes] */
9120 unsigned long long old_data_stripe_length;
10f22854
AK
9121 unsigned long long start_src; /* [bytes] */
9122 unsigned long long start; /* [bytes] */
9123 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 9124 int degraded = 0;
ab724b98 9125 int source_layout = 0;
10f22854 9126
1ab242d8 9127 if (!fds || !offsets || !sra)
10f22854
AK
9128 goto abort;
9129
9130 /* Find volume during the reshape */
9131 for (dv = super->devlist; dv; dv = dv->next) {
9132 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9133 && dv->dev->vol.migr_state == 1) {
9134 dev = dv->dev;
9135 migr_vol_qan++;
9136 }
9137 }
9138 /* Only one volume can migrate at the same time */
9139 if (migr_vol_qan != 1) {
9140 fprintf(stderr, Name " : %s", migr_vol_qan ?
9141 "Number of migrating volumes greater than 1\n" :
9142 "There is no volume during migrationg\n");
9143 goto abort;
9144 }
9145
9146 map_src = get_imsm_map(dev, 1);
9147 if (map_src == NULL)
9148 goto abort;
10f22854
AK
9149
9150 ndata = imsm_num_data_members(dev, 0);
9151 odata = imsm_num_data_members(dev, 1);
9152
7b1ab482 9153 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
9154 old_data_stripe_length = odata * chunk;
9155
9156 migr_rec = super->migr_rec;
9157
10f22854
AK
9158 /* initialize migration record for start condition */
9159 if (sra->reshape_progress == 0)
9160 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
9161 else {
9162 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9163 dprintf("imsm: cannot restart migration when data "
9164 "are present in copy area.\n");
9165 goto abort;
9166 }
9167 }
10f22854
AK
9168
9169 /* size for data */
9170 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9171 /* extend buffer size for parity disk */
9172 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9173 /* add space for stripe aligment */
9174 buf_size += old_data_stripe_length;
9175 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9176 dprintf("imsm: Cannot allocate checpoint buffer\n");
9177 goto abort;
9178 }
9179
3ef4403c 9180 max_position = sra->component_size * ndata;
68eb8bc6 9181 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
9182
9183 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9184 __le32_to_cpu(migr_rec->num_migr_units)) {
9185 /* current reshape position [blocks] */
9186 unsigned long long current_position =
9187 __le32_to_cpu(migr_rec->blocks_per_unit)
9188 * __le32_to_cpu(migr_rec->curr_migr_unit);
9189 unsigned long long border;
9190
b915c95f
AK
9191 /* Check that array hasn't become failed.
9192 */
9193 degraded = check_degradation_change(sra, fds, degraded);
9194 if (degraded > 1) {
9195 dprintf("imsm: Abort reshape due to degradation"
9196 " level (%i)\n", degraded);
9197 goto abort;
9198 }
9199
10f22854
AK
9200 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9201
9202 if ((current_position + next_step) > max_position)
9203 next_step = max_position - current_position;
9204
92144abf 9205 start = current_position * 512;
10f22854
AK
9206
9207 /* allign reading start to old geometry */
9208 start_buf_shift = start % old_data_stripe_length;
9209 start_src = start - start_buf_shift;
9210
9211 border = (start_src / odata) - (start / ndata);
9212 border /= 512;
9213 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9214 /* save critical stripes to buf
9215 * start - start address of current unit
9216 * to backup [bytes]
9217 * start_src - start address of current unit
9218 * to backup alligned to source array
9219 * [bytes]
9220 */
9221 unsigned long long next_step_filler = 0;
9222 unsigned long long copy_length = next_step * 512;
9223
9224 /* allign copy area length to stripe in old geometry */
9225 next_step_filler = ((copy_length + start_buf_shift)
9226 % old_data_stripe_length);
9227 if (next_step_filler)
9228 next_step_filler = (old_data_stripe_length
9229 - next_step_filler);
9230 dprintf("save_stripes() parameters: start = %llu,"
9231 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9232 "\tstart_in_buf_shift = %llu,"
9233 "\tnext_step_filler = %llu\n",
9234 start, start_src, copy_length,
9235 start_buf_shift, next_step_filler);
9236
9237 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
9238 chunk, map_src->raid_level,
9239 source_layout, 0, NULL, start_src,
10f22854
AK
9240 copy_length +
9241 next_step_filler + start_buf_shift,
9242 buf)) {
9243 dprintf("imsm: Cannot save stripes"
9244 " to buffer\n");
9245 goto abort;
9246 }
9247 /* Convert data to destination format and store it
9248 * in backup general migration area
9249 */
9250 if (save_backup_imsm(st, dev, sra,
aea93171 9251 buf + start_buf_shift, copy_length)) {
10f22854
AK
9252 dprintf("imsm: Cannot save stripes to "
9253 "target devices\n");
9254 goto abort;
9255 }
9256 if (save_checkpoint_imsm(st, sra,
9257 UNIT_SRC_IN_CP_AREA)) {
9258 dprintf("imsm: Cannot write checkpoint to "
9259 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9260 goto abort;
9261 }
8016a6d4
AK
9262 } else {
9263 /* set next step to use whole border area */
9264 border /= next_step;
9265 if (border > 1)
9266 next_step *= border;
10f22854
AK
9267 }
9268 /* When data backed up, checkpoint stored,
9269 * kick the kernel to reshape unit of data
9270 */
9271 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
9272 /* limit next step to array max position */
9273 if (next_step > max_position)
9274 next_step = max_position;
10f22854
AK
9275 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9276 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 9277 sra->reshape_progress = next_step;
10f22854
AK
9278
9279 /* wait until reshape finish */
ae9f01f8 9280 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
9281 dprintf("wait_for_reshape_imsm returned error!\n");
9282 goto abort;
9283 }
10f22854 9284
0228d92c
AK
9285 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9286 /* ignore error == 2, this can mean end of reshape here
9287 */
10f22854
AK
9288 dprintf("imsm: Cannot write checkpoint to "
9289 "migration record (UNIT_SRC_NORMAL)\n");
9290 goto abort;
9291 }
9292
9293 }
9294
9295 /* return '1' if done */
9296 ret_val = 1;
9297abort:
9298 free(buf);
9299 abort_reshape(sra);
9300
9301 return ret_val;
999b4972 9302}
71204a50 9303#endif /* MDASSEMBLE */
999b4972 9304
cdddbdbc
DW
9305struct superswitch super_imsm = {
9306#ifndef MDASSEMBLE
9307 .examine_super = examine_super_imsm,
9308 .brief_examine_super = brief_examine_super_imsm,
4737ae25 9309 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 9310 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
9311 .detail_super = detail_super_imsm,
9312 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 9313 .write_init_super = write_init_super_imsm,
0e600426
N
9314 .validate_geometry = validate_geometry_imsm,
9315 .add_to_super = add_to_super_imsm,
1a64be56 9316 .remove_from_super = remove_from_super_imsm,
d665cc31 9317 .detail_platform = detail_platform_imsm,
33414a01 9318 .kill_subarray = kill_subarray_imsm,
aa534678 9319 .update_subarray = update_subarray_imsm,
2b959fbf 9320 .load_container = load_container_imsm,
71204a50
N
9321 .default_geometry = default_geometry_imsm,
9322 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9323 .reshape_super = imsm_reshape_super,
9324 .manage_reshape = imsm_manage_reshape,
9e2d750d 9325 .recover_backup = recover_backup_imsm,
cdddbdbc
DW
9326#endif
9327 .match_home = match_home_imsm,
9328 .uuid_from_super= uuid_from_super_imsm,
9329 .getinfo_super = getinfo_super_imsm,
5c4cd5da 9330 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
9331 .update_super = update_super_imsm,
9332
9333 .avail_size = avail_size_imsm,
80e7f8c3 9334 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
9335
9336 .compare_super = compare_super_imsm,
9337
9338 .load_super = load_super_imsm,
bf5a934a 9339 .init_super = init_super_imsm,
e683ca88 9340 .store_super = store_super_imsm,
cdddbdbc
DW
9341 .free_super = free_super_imsm,
9342 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 9343 .container_content = container_content_imsm,
cdddbdbc 9344
276d77db 9345
cdddbdbc 9346 .external = 1,
4cce4069 9347 .name = "imsm",
845dea95 9348
0e600426 9349#ifndef MDASSEMBLE
845dea95
NB
9350/* for mdmon */
9351 .open_new = imsm_open_new,
ed9d66aa 9352 .set_array_state= imsm_set_array_state,
845dea95
NB
9353 .set_disk = imsm_set_disk,
9354 .sync_metadata = imsm_sync_metadata,
88758e9d 9355 .activate_spare = imsm_activate_spare,
e8319a19 9356 .process_update = imsm_process_update,
8273f55e 9357 .prepare_update = imsm_prepare_update,
0e600426 9358#endif /* MDASSEMBLE */
cdddbdbc 9359};