]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
fs: Convert unnamed_dev_ida to new API
[people/ms/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
0818bf27 26#include <linux/bootmem.h>
9ea459e1 27#include <linux/task_work.h>
9164bb4a
IM
28#include <linux/sched/task.h>
29
07b20889 30#include "pnode.h"
948730b0 31#include "internal.h"
1da177e4 32
d2921684
EB
33/* Maximum number of mounts in a mount namespace */
34unsigned int sysctl_mount_max __read_mostly = 100000;
35
0818bf27
AV
36static unsigned int m_hash_mask __read_mostly;
37static unsigned int m_hash_shift __read_mostly;
38static unsigned int mp_hash_mask __read_mostly;
39static unsigned int mp_hash_shift __read_mostly;
40
41static __initdata unsigned long mhash_entries;
42static int __init set_mhash_entries(char *str)
43{
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48}
49__setup("mhash_entries=", set_mhash_entries);
50
51static __initdata unsigned long mphash_entries;
52static int __init set_mphash_entries(char *str)
53{
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58}
59__setup("mphash_entries=", set_mphash_entries);
13f14b4d 60
c7999c36 61static u64 event;
73cd49ec 62static DEFINE_IDA(mnt_id_ida);
719f5d7f 63static DEFINE_IDA(mnt_group_ida);
99b7db7b 64static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
65static int mnt_id_start = 0;
66static int mnt_group_start = 1;
1da177e4 67
38129a13 68static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 69static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 70static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 71static DECLARE_RWSEM(namespace_sem);
1da177e4 72
f87fd4c2 73/* /sys/fs */
00d26666
GKH
74struct kobject *fs_kobj;
75EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 76
99b7db7b
NP
77/*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
48a066e7 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 86
38129a13 87static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 88{
b58fed8b
RP
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93}
94
95static inline struct hlist_head *mp_hash(struct dentry *dentry)
96{
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
100}
101
b105e270 102static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
103{
104 int res;
105
106retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 108 spin_lock(&mnt_id_lock);
15169fe7 109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 112 spin_unlock(&mnt_id_lock);
73cd49ec
MS
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117}
118
b105e270 119static void mnt_free_id(struct mount *mnt)
73cd49ec 120{
15169fe7 121 int id = mnt->mnt_id;
99b7db7b 122 spin_lock(&mnt_id_lock);
f21f6220
AV
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
99b7db7b 126 spin_unlock(&mnt_id_lock);
73cd49ec
MS
127}
128
719f5d7f
MS
129/*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
4b8b21f4 134static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 135{
f21f6220
AV
136 int res;
137
719f5d7f
MS
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
f21f6220
AV
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
15169fe7 143 &mnt->mnt_group_id);
f21f6220 144 if (!res)
15169fe7 145 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
146
147 return res;
719f5d7f
MS
148}
149
150/*
151 * Release a peer group ID
152 */
4b8b21f4 153void mnt_release_group_id(struct mount *mnt)
719f5d7f 154{
15169fe7 155 int id = mnt->mnt_group_id;
f21f6220
AV
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
15169fe7 159 mnt->mnt_group_id = 0;
719f5d7f
MS
160}
161
b3e19d92
NP
162/*
163 * vfsmount lock must be held for read
164 */
83adc753 165static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
166{
167#ifdef CONFIG_SMP
68e8a9fe 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
169#else
170 preempt_disable();
68e8a9fe 171 mnt->mnt_count += n;
b3e19d92
NP
172 preempt_enable();
173#endif
174}
175
b3e19d92
NP
176/*
177 * vfsmount lock must be held for write
178 */
83adc753 179unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
180{
181#ifdef CONFIG_SMP
f03c6599 182 unsigned int count = 0;
b3e19d92
NP
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
68e8a9fe 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
187 }
188
189 return count;
190#else
68e8a9fe 191 return mnt->mnt_count;
b3e19d92
NP
192#endif
193}
194
87b95ce0
AV
195static void drop_mountpoint(struct fs_pin *p)
196{
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201}
202
b105e270 203static struct mount *alloc_vfsmnt(const char *name)
1da177e4 204{
c63181e6
AV
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
73cd49ec
MS
207 int err;
208
c63181e6 209 err = mnt_alloc_id(mnt);
88b38782
LZ
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
fcc139ae 214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 215 if (!mnt->mnt_devname)
88b38782 216 goto out_free_id;
73cd49ec
MS
217 }
218
b3e19d92 219#ifdef CONFIG_SMP
c63181e6
AV
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
b3e19d92
NP
222 goto out_free_devname;
223
c63181e6 224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 225#else
c63181e6
AV
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
b3e19d92
NP
228#endif
229
38129a13 230 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 239 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73
NP
244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
bc98a42c 278 if (sb_rdonly(mnt->mnt_sb))
2e4b7fcd
DH
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73
NP
290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73
NP
304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73
NP
312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
6aa7de05 356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e
NP
394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e
NP
423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e
NP
429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
7c6893e3 434 * mnt_want_write_file_path - get write access to a file's mount
eb04c282
JK
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
7c6893e3
MS
439 *
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
eb04c282 444 */
7c6893e3 445int mnt_want_write_file_path(struct file *file)
eb04c282
JK
446{
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454}
7c6893e3
MS
455
456static inline int may_write_real(struct file *file)
457{
458 struct dentry *dentry = file->f_path.dentry;
459 struct dentry *upperdentry;
460
461 /* Writable file? */
462 if (file->f_mode & FMODE_WRITER)
463 return 0;
464
465 /* Not overlayfs? */
466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 return 0;
468
469 /* File refers to upper, writable layer? */
470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
954c736f
AG
471 if (upperdentry &&
472 (file_inode(file) == d_inode(upperdentry) ||
473 file_inode(file) == d_inode(dentry)))
7c6893e3
MS
474 return 0;
475
476 /* Lower layer: can't write to real file, sorry... */
477 return -EPERM;
478}
479
480/**
481 * mnt_want_write_file - get write access to a file's mount
482 * @file: the file who's mount on which to take a write
483 *
484 * This is like mnt_want_write, but it takes a file and can
485 * do some optimisations if the file is open for write already
486 *
487 * Mostly called by filesystems from their ioctl operation before performing
488 * modification. On overlayfs this needs to check if the file is on a read-only
489 * lower layer and deny access in that case.
490 */
491int mnt_want_write_file(struct file *file)
492{
493 int ret;
494
495 ret = may_write_real(file);
496 if (!ret) {
497 sb_start_write(file_inode(file)->i_sb);
498 ret = __mnt_want_write_file(file);
499 if (ret)
500 sb_end_write(file_inode(file)->i_sb);
501 }
502 return ret;
503}
96029c4e
NP
504EXPORT_SYMBOL_GPL(mnt_want_write_file);
505
8366025e 506/**
eb04c282 507 * __mnt_drop_write - give up write access to a mount
8366025e
DH
508 * @mnt: the mount on which to give up write access
509 *
510 * Tells the low-level filesystem that we are done
511 * performing writes to it. Must be matched with
eb04c282 512 * __mnt_want_write() call above.
8366025e 513 */
eb04c282 514void __mnt_drop_write(struct vfsmount *mnt)
8366025e 515{
d3ef3d73 516 preempt_disable();
83adc753 517 mnt_dec_writers(real_mount(mnt));
d3ef3d73 518 preempt_enable();
8366025e 519}
eb04c282
JK
520
521/**
522 * mnt_drop_write - give up write access to a mount
523 * @mnt: the mount on which to give up write access
524 *
525 * Tells the low-level filesystem that we are done performing writes to it and
526 * also allows filesystem to be frozen again. Must be matched with
527 * mnt_want_write() call above.
528 */
529void mnt_drop_write(struct vfsmount *mnt)
530{
531 __mnt_drop_write(mnt);
532 sb_end_write(mnt->mnt_sb);
533}
8366025e
DH
534EXPORT_SYMBOL_GPL(mnt_drop_write);
535
eb04c282
JK
536void __mnt_drop_write_file(struct file *file)
537{
538 __mnt_drop_write(file->f_path.mnt);
539}
540
7c6893e3 541void mnt_drop_write_file_path(struct file *file)
2a79f17e
AV
542{
543 mnt_drop_write(file->f_path.mnt);
544}
7c6893e3
MS
545
546void mnt_drop_write_file(struct file *file)
547{
548 __mnt_drop_write(file->f_path.mnt);
549 sb_end_write(file_inode(file)->i_sb);
550}
2a79f17e
AV
551EXPORT_SYMBOL(mnt_drop_write_file);
552
83adc753 553static int mnt_make_readonly(struct mount *mnt)
8366025e 554{
3d733633
DH
555 int ret = 0;
556
719ea2fb 557 lock_mount_hash();
83adc753 558 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 559 /*
d3ef3d73
NP
560 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
561 * should be visible before we do.
3d733633 562 */
d3ef3d73
NP
563 smp_mb();
564
3d733633 565 /*
d3ef3d73
NP
566 * With writers on hold, if this value is zero, then there are
567 * definitely no active writers (although held writers may subsequently
568 * increment the count, they'll have to wait, and decrement it after
569 * seeing MNT_READONLY).
570 *
571 * It is OK to have counter incremented on one CPU and decremented on
572 * another: the sum will add up correctly. The danger would be when we
573 * sum up each counter, if we read a counter before it is incremented,
574 * but then read another CPU's count which it has been subsequently
575 * decremented from -- we would see more decrements than we should.
576 * MNT_WRITE_HOLD protects against this scenario, because
577 * mnt_want_write first increments count, then smp_mb, then spins on
578 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
579 * we're counting up here.
3d733633 580 */
c6653a83 581 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
582 ret = -EBUSY;
583 else
83adc753 584 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
585 /*
586 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
587 * that become unheld will see MNT_READONLY.
588 */
589 smp_wmb();
83adc753 590 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 591 unlock_mount_hash();
3d733633 592 return ret;
8366025e 593}
8366025e 594
83adc753 595static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 596{
719ea2fb 597 lock_mount_hash();
83adc753 598 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 599 unlock_mount_hash();
2e4b7fcd
DH
600}
601
4ed5e82f
MS
602int sb_prepare_remount_readonly(struct super_block *sb)
603{
604 struct mount *mnt;
605 int err = 0;
606
8e8b8796
MS
607 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
608 if (atomic_long_read(&sb->s_remove_count))
609 return -EBUSY;
610
719ea2fb 611 lock_mount_hash();
4ed5e82f
MS
612 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
613 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
614 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
615 smp_mb();
616 if (mnt_get_writers(mnt) > 0) {
617 err = -EBUSY;
618 break;
619 }
620 }
621 }
8e8b8796
MS
622 if (!err && atomic_long_read(&sb->s_remove_count))
623 err = -EBUSY;
624
4ed5e82f
MS
625 if (!err) {
626 sb->s_readonly_remount = 1;
627 smp_wmb();
628 }
629 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
630 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
631 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
632 }
719ea2fb 633 unlock_mount_hash();
4ed5e82f
MS
634
635 return err;
636}
637
b105e270 638static void free_vfsmnt(struct mount *mnt)
1da177e4 639{
fcc139ae 640 kfree_const(mnt->mnt_devname);
d3ef3d73 641#ifdef CONFIG_SMP
68e8a9fe 642 free_percpu(mnt->mnt_pcp);
d3ef3d73 643#endif
b105e270 644 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
645}
646
8ffcb32e
DH
647static void delayed_free_vfsmnt(struct rcu_head *head)
648{
649 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
650}
651
48a066e7 652/* call under rcu_read_lock */
294d71ff 653int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
654{
655 struct mount *mnt;
656 if (read_seqretry(&mount_lock, seq))
294d71ff 657 return 1;
48a066e7 658 if (bastard == NULL)
294d71ff 659 return 0;
48a066e7
AV
660 mnt = real_mount(bastard);
661 mnt_add_count(mnt, 1);
119e1ef8 662 smp_mb(); // see mntput_no_expire()
48a066e7 663 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 664 return 0;
48a066e7
AV
665 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
666 mnt_add_count(mnt, -1);
294d71ff
AV
667 return 1;
668 }
119e1ef8
AV
669 lock_mount_hash();
670 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
671 mnt_add_count(mnt, -1);
672 unlock_mount_hash();
673 return 1;
674 }
675 unlock_mount_hash();
676 /* caller will mntput() */
294d71ff
AV
677 return -1;
678}
679
680/* call under rcu_read_lock */
681bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
682{
683 int res = __legitimize_mnt(bastard, seq);
684 if (likely(!res))
685 return true;
686 if (unlikely(res < 0)) {
687 rcu_read_unlock();
688 mntput(bastard);
689 rcu_read_lock();
48a066e7 690 }
48a066e7
AV
691 return false;
692}
693
1da177e4 694/*
474279dc 695 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 696 * call under rcu_read_lock()
1da177e4 697 */
474279dc 698struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 699{
38129a13 700 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
701 struct mount *p;
702
38129a13 703 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
704 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
705 return p;
706 return NULL;
707}
708
a05964f3 709/*
f015f126
DH
710 * lookup_mnt - Return the first child mount mounted at path
711 *
712 * "First" means first mounted chronologically. If you create the
713 * following mounts:
714 *
715 * mount /dev/sda1 /mnt
716 * mount /dev/sda2 /mnt
717 * mount /dev/sda3 /mnt
718 *
719 * Then lookup_mnt() on the base /mnt dentry in the root mount will
720 * return successively the root dentry and vfsmount of /dev/sda1, then
721 * /dev/sda2, then /dev/sda3, then NULL.
722 *
723 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 724 */
ca71cf71 725struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 726{
c7105365 727 struct mount *child_mnt;
48a066e7
AV
728 struct vfsmount *m;
729 unsigned seq;
99b7db7b 730
48a066e7
AV
731 rcu_read_lock();
732 do {
733 seq = read_seqbegin(&mount_lock);
734 child_mnt = __lookup_mnt(path->mnt, path->dentry);
735 m = child_mnt ? &child_mnt->mnt : NULL;
736 } while (!legitimize_mnt(m, seq));
737 rcu_read_unlock();
738 return m;
a05964f3
RP
739}
740
7af1364f
EB
741/*
742 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
743 * current mount namespace.
744 *
745 * The common case is dentries are not mountpoints at all and that
746 * test is handled inline. For the slow case when we are actually
747 * dealing with a mountpoint of some kind, walk through all of the
748 * mounts in the current mount namespace and test to see if the dentry
749 * is a mountpoint.
750 *
751 * The mount_hashtable is not usable in the context because we
752 * need to identify all mounts that may be in the current mount
753 * namespace not just a mount that happens to have some specified
754 * parent mount.
755 */
756bool __is_local_mountpoint(struct dentry *dentry)
757{
758 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
759 struct mount *mnt;
760 bool is_covered = false;
761
762 if (!d_mountpoint(dentry))
763 goto out;
764
765 down_read(&namespace_sem);
766 list_for_each_entry(mnt, &ns->list, mnt_list) {
767 is_covered = (mnt->mnt_mountpoint == dentry);
768 if (is_covered)
769 break;
770 }
771 up_read(&namespace_sem);
772out:
773 return is_covered;
774}
775
e2dfa935 776static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 777{
0818bf27 778 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
779 struct mountpoint *mp;
780
0818bf27 781 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
782 if (mp->m_dentry == dentry) {
783 /* might be worth a WARN_ON() */
784 if (d_unlinked(dentry))
785 return ERR_PTR(-ENOENT);
786 mp->m_count++;
787 return mp;
788 }
789 }
e2dfa935
EB
790 return NULL;
791}
792
3895dbf8 793static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 794{
3895dbf8 795 struct mountpoint *mp, *new = NULL;
e2dfa935 796 int ret;
84d17192 797
3895dbf8
EB
798 if (d_mountpoint(dentry)) {
799mountpoint:
800 read_seqlock_excl(&mount_lock);
801 mp = lookup_mountpoint(dentry);
802 read_sequnlock_excl(&mount_lock);
803 if (mp)
804 goto done;
805 }
806
807 if (!new)
808 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
809 if (!new)
84d17192
AV
810 return ERR_PTR(-ENOMEM);
811
3895dbf8
EB
812
813 /* Exactly one processes may set d_mounted */
eed81007 814 ret = d_set_mounted(dentry);
eed81007 815
3895dbf8
EB
816 /* Someone else set d_mounted? */
817 if (ret == -EBUSY)
818 goto mountpoint;
819
820 /* The dentry is not available as a mountpoint? */
821 mp = ERR_PTR(ret);
822 if (ret)
823 goto done;
824
825 /* Add the new mountpoint to the hash table */
826 read_seqlock_excl(&mount_lock);
827 new->m_dentry = dentry;
828 new->m_count = 1;
829 hlist_add_head(&new->m_hash, mp_hash(dentry));
830 INIT_HLIST_HEAD(&new->m_list);
831 read_sequnlock_excl(&mount_lock);
832
833 mp = new;
834 new = NULL;
835done:
836 kfree(new);
84d17192
AV
837 return mp;
838}
839
840static void put_mountpoint(struct mountpoint *mp)
841{
842 if (!--mp->m_count) {
843 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 844 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
845 spin_lock(&dentry->d_lock);
846 dentry->d_flags &= ~DCACHE_MOUNTED;
847 spin_unlock(&dentry->d_lock);
0818bf27 848 hlist_del(&mp->m_hash);
84d17192
AV
849 kfree(mp);
850 }
851}
852
143c8c91 853static inline int check_mnt(struct mount *mnt)
1da177e4 854{
6b3286ed 855 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
856}
857
99b7db7b
NP
858/*
859 * vfsmount lock must be held for write
860 */
6b3286ed 861static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
862{
863 if (ns) {
864 ns->event = ++event;
865 wake_up_interruptible(&ns->poll);
866 }
867}
868
99b7db7b
NP
869/*
870 * vfsmount lock must be held for write
871 */
6b3286ed 872static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
873{
874 if (ns && ns->event != event) {
875 ns->event = event;
876 wake_up_interruptible(&ns->poll);
877 }
878}
879
99b7db7b
NP
880/*
881 * vfsmount lock must be held for write
882 */
7bdb11de 883static void unhash_mnt(struct mount *mnt)
419148da 884{
0714a533 885 mnt->mnt_parent = mnt;
a73324da 886 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 887 list_del_init(&mnt->mnt_child);
38129a13 888 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 889 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
890 put_mountpoint(mnt->mnt_mp);
891 mnt->mnt_mp = NULL;
1da177e4
LT
892}
893
7bdb11de
EB
894/*
895 * vfsmount lock must be held for write
896 */
897static void detach_mnt(struct mount *mnt, struct path *old_path)
898{
899 old_path->dentry = mnt->mnt_mountpoint;
900 old_path->mnt = &mnt->mnt_parent->mnt;
901 unhash_mnt(mnt);
902}
903
6a46c573
EB
904/*
905 * vfsmount lock must be held for write
906 */
907static void umount_mnt(struct mount *mnt)
908{
909 /* old mountpoint will be dropped when we can do that */
910 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
911 unhash_mnt(mnt);
912}
913
99b7db7b
NP
914/*
915 * vfsmount lock must be held for write
916 */
84d17192
AV
917void mnt_set_mountpoint(struct mount *mnt,
918 struct mountpoint *mp,
44d964d6 919 struct mount *child_mnt)
b90fa9ae 920{
84d17192 921 mp->m_count++;
3a2393d7 922 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 923 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 924 child_mnt->mnt_parent = mnt;
84d17192 925 child_mnt->mnt_mp = mp;
0a5eb7c8 926 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
927}
928
1064f874
EB
929static void __attach_mnt(struct mount *mnt, struct mount *parent)
930{
931 hlist_add_head_rcu(&mnt->mnt_hash,
932 m_hash(&parent->mnt, mnt->mnt_mountpoint));
933 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
934}
935
99b7db7b
NP
936/*
937 * vfsmount lock must be held for write
938 */
84d17192
AV
939static void attach_mnt(struct mount *mnt,
940 struct mount *parent,
941 struct mountpoint *mp)
1da177e4 942{
84d17192 943 mnt_set_mountpoint(parent, mp, mnt);
1064f874 944 __attach_mnt(mnt, parent);
b90fa9ae
RP
945}
946
1064f874 947void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 948{
1064f874
EB
949 struct mountpoint *old_mp = mnt->mnt_mp;
950 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
951 struct mount *old_parent = mnt->mnt_parent;
952
953 list_del_init(&mnt->mnt_child);
954 hlist_del_init(&mnt->mnt_mp_list);
955 hlist_del_init_rcu(&mnt->mnt_hash);
956
957 attach_mnt(mnt, parent, mp);
958
959 put_mountpoint(old_mp);
960
961 /*
962 * Safely avoid even the suggestion this code might sleep or
963 * lock the mount hash by taking advantage of the knowledge that
964 * mnt_change_mountpoint will not release the final reference
965 * to a mountpoint.
966 *
967 * During mounting, the mount passed in as the parent mount will
968 * continue to use the old mountpoint and during unmounting, the
969 * old mountpoint will continue to exist until namespace_unlock,
970 * which happens well after mnt_change_mountpoint.
971 */
972 spin_lock(&old_mountpoint->d_lock);
973 old_mountpoint->d_lockref.count--;
974 spin_unlock(&old_mountpoint->d_lock);
975
976 mnt_add_count(old_parent, -1);
12a5b529
AV
977}
978
b90fa9ae 979/*
99b7db7b 980 * vfsmount lock must be held for write
b90fa9ae 981 */
1064f874 982static void commit_tree(struct mount *mnt)
b90fa9ae 983{
0714a533 984 struct mount *parent = mnt->mnt_parent;
83adc753 985 struct mount *m;
b90fa9ae 986 LIST_HEAD(head);
143c8c91 987 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 988
0714a533 989 BUG_ON(parent == mnt);
b90fa9ae 990
1a4eeaf2 991 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 992 list_for_each_entry(m, &head, mnt_list)
143c8c91 993 m->mnt_ns = n;
f03c6599 994
b90fa9ae
RP
995 list_splice(&head, n->list.prev);
996
d2921684
EB
997 n->mounts += n->pending_mounts;
998 n->pending_mounts = 0;
999
1064f874 1000 __attach_mnt(mnt, parent);
6b3286ed 1001 touch_mnt_namespace(n);
1da177e4
LT
1002}
1003
909b0a88 1004static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 1005{
6b41d536
AV
1006 struct list_head *next = p->mnt_mounts.next;
1007 if (next == &p->mnt_mounts) {
1da177e4 1008 while (1) {
909b0a88 1009 if (p == root)
1da177e4 1010 return NULL;
6b41d536
AV
1011 next = p->mnt_child.next;
1012 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 1013 break;
0714a533 1014 p = p->mnt_parent;
1da177e4
LT
1015 }
1016 }
6b41d536 1017 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
1018}
1019
315fc83e 1020static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 1021{
6b41d536
AV
1022 struct list_head *prev = p->mnt_mounts.prev;
1023 while (prev != &p->mnt_mounts) {
1024 p = list_entry(prev, struct mount, mnt_child);
1025 prev = p->mnt_mounts.prev;
9676f0c6
RP
1026 }
1027 return p;
1028}
1029
9d412a43
AV
1030struct vfsmount *
1031vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1032{
b105e270 1033 struct mount *mnt;
9d412a43
AV
1034 struct dentry *root;
1035
1036 if (!type)
1037 return ERR_PTR(-ENODEV);
1038
1039 mnt = alloc_vfsmnt(name);
1040 if (!mnt)
1041 return ERR_PTR(-ENOMEM);
1042
e462ec50 1043 if (flags & SB_KERNMOUNT)
b105e270 1044 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
1045
1046 root = mount_fs(type, flags, name, data);
1047 if (IS_ERR(root)) {
8ffcb32e 1048 mnt_free_id(mnt);
9d412a43
AV
1049 free_vfsmnt(mnt);
1050 return ERR_CAST(root);
1051 }
1052
b105e270
AV
1053 mnt->mnt.mnt_root = root;
1054 mnt->mnt.mnt_sb = root->d_sb;
a73324da 1055 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1056 mnt->mnt_parent = mnt;
719ea2fb 1057 lock_mount_hash();
39f7c4db 1058 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 1059 unlock_mount_hash();
b105e270 1060 return &mnt->mnt;
9d412a43
AV
1061}
1062EXPORT_SYMBOL_GPL(vfs_kern_mount);
1063
93faccbb
EB
1064struct vfsmount *
1065vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1066 const char *name, void *data)
1067{
1068 /* Until it is worked out how to pass the user namespace
1069 * through from the parent mount to the submount don't support
1070 * unprivileged mounts with submounts.
1071 */
1072 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1073 return ERR_PTR(-EPERM);
1074
e462ec50 1075 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1076}
1077EXPORT_SYMBOL_GPL(vfs_submount);
1078
87129cc0 1079static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1080 int flag)
1da177e4 1081{
87129cc0 1082 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1083 struct mount *mnt;
1084 int err;
1da177e4 1085
be34d1a3
DH
1086 mnt = alloc_vfsmnt(old->mnt_devname);
1087 if (!mnt)
1088 return ERR_PTR(-ENOMEM);
719f5d7f 1089
7a472ef4 1090 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1091 mnt->mnt_group_id = 0; /* not a peer of original */
1092 else
1093 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1094
be34d1a3
DH
1095 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1096 err = mnt_alloc_group_id(mnt);
1097 if (err)
1098 goto out_free;
1da177e4 1099 }
be34d1a3 1100
16a34adb
AV
1101 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1102 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
132c94e3 1103 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1104 if (flag & CL_UNPRIVILEGED) {
1105 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1106
1107 if (mnt->mnt.mnt_flags & MNT_READONLY)
1108 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1109
1110 if (mnt->mnt.mnt_flags & MNT_NODEV)
1111 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1112
1113 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1114 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1115
1116 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1117 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1118 }
132c94e3 1119
5ff9d8a6 1120 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1121 if ((flag & CL_UNPRIVILEGED) &&
1122 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1123 mnt->mnt.mnt_flags |= MNT_LOCKED;
1124
be34d1a3
DH
1125 atomic_inc(&sb->s_active);
1126 mnt->mnt.mnt_sb = sb;
1127 mnt->mnt.mnt_root = dget(root);
1128 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1129 mnt->mnt_parent = mnt;
719ea2fb 1130 lock_mount_hash();
be34d1a3 1131 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1132 unlock_mount_hash();
be34d1a3 1133
7a472ef4
EB
1134 if ((flag & CL_SLAVE) ||
1135 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1136 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1137 mnt->mnt_master = old;
1138 CLEAR_MNT_SHARED(mnt);
1139 } else if (!(flag & CL_PRIVATE)) {
1140 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1141 list_add(&mnt->mnt_share, &old->mnt_share);
1142 if (IS_MNT_SLAVE(old))
1143 list_add(&mnt->mnt_slave, &old->mnt_slave);
1144 mnt->mnt_master = old->mnt_master;
5235d448
AV
1145 } else {
1146 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1147 }
1148 if (flag & CL_MAKE_SHARED)
1149 set_mnt_shared(mnt);
1150
1151 /* stick the duplicate mount on the same expiry list
1152 * as the original if that was on one */
1153 if (flag & CL_EXPIRE) {
1154 if (!list_empty(&old->mnt_expire))
1155 list_add(&mnt->mnt_expire, &old->mnt_expire);
1156 }
1157
cb338d06 1158 return mnt;
719f5d7f
MS
1159
1160 out_free:
8ffcb32e 1161 mnt_free_id(mnt);
719f5d7f 1162 free_vfsmnt(mnt);
be34d1a3 1163 return ERR_PTR(err);
1da177e4
LT
1164}
1165
9ea459e1
AV
1166static void cleanup_mnt(struct mount *mnt)
1167{
1168 /*
1169 * This probably indicates that somebody messed
1170 * up a mnt_want/drop_write() pair. If this
1171 * happens, the filesystem was probably unable
1172 * to make r/w->r/o transitions.
1173 */
1174 /*
1175 * The locking used to deal with mnt_count decrement provides barriers,
1176 * so mnt_get_writers() below is safe.
1177 */
1178 WARN_ON(mnt_get_writers(mnt));
1179 if (unlikely(mnt->mnt_pins.first))
1180 mnt_pin_kill(mnt);
1181 fsnotify_vfsmount_delete(&mnt->mnt);
1182 dput(mnt->mnt.mnt_root);
1183 deactivate_super(mnt->mnt.mnt_sb);
1184 mnt_free_id(mnt);
1185 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1186}
1187
1188static void __cleanup_mnt(struct rcu_head *head)
1189{
1190 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1191}
1192
1193static LLIST_HEAD(delayed_mntput_list);
1194static void delayed_mntput(struct work_struct *unused)
1195{
1196 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1197 struct mount *m, *t;
9ea459e1 1198
29785735
BP
1199 llist_for_each_entry_safe(m, t, node, mnt_llist)
1200 cleanup_mnt(m);
9ea459e1
AV
1201}
1202static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1203
900148dc 1204static void mntput_no_expire(struct mount *mnt)
b3e19d92 1205{
48a066e7 1206 rcu_read_lock();
9ea0a46c
AV
1207 if (likely(READ_ONCE(mnt->mnt_ns))) {
1208 /*
1209 * Since we don't do lock_mount_hash() here,
1210 * ->mnt_ns can change under us. However, if it's
1211 * non-NULL, then there's a reference that won't
1212 * be dropped until after an RCU delay done after
1213 * turning ->mnt_ns NULL. So if we observe it
1214 * non-NULL under rcu_read_lock(), the reference
1215 * we are dropping is not the final one.
1216 */
1217 mnt_add_count(mnt, -1);
48a066e7 1218 rcu_read_unlock();
f03c6599 1219 return;
b3e19d92 1220 }
719ea2fb 1221 lock_mount_hash();
119e1ef8
AV
1222 /*
1223 * make sure that if __legitimize_mnt() has not seen us grab
1224 * mount_lock, we'll see their refcount increment here.
1225 */
1226 smp_mb();
9ea0a46c 1227 mnt_add_count(mnt, -1);
b3e19d92 1228 if (mnt_get_count(mnt)) {
48a066e7 1229 rcu_read_unlock();
719ea2fb 1230 unlock_mount_hash();
99b7db7b
NP
1231 return;
1232 }
48a066e7
AV
1233 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1234 rcu_read_unlock();
1235 unlock_mount_hash();
1236 return;
1237 }
1238 mnt->mnt.mnt_flags |= MNT_DOOMED;
1239 rcu_read_unlock();
962830df 1240
39f7c4db 1241 list_del(&mnt->mnt_instance);
ce07d891
EB
1242
1243 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1244 struct mount *p, *tmp;
1245 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1246 umount_mnt(p);
1247 }
1248 }
719ea2fb 1249 unlock_mount_hash();
649a795a 1250
9ea459e1
AV
1251 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1252 struct task_struct *task = current;
1253 if (likely(!(task->flags & PF_KTHREAD))) {
1254 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1255 if (!task_work_add(task, &mnt->mnt_rcu, true))
1256 return;
1257 }
1258 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1259 schedule_delayed_work(&delayed_mntput_work, 1);
1260 return;
1261 }
1262 cleanup_mnt(mnt);
b3e19d92 1263}
b3e19d92
NP
1264
1265void mntput(struct vfsmount *mnt)
1266{
1267 if (mnt) {
863d684f 1268 struct mount *m = real_mount(mnt);
b3e19d92 1269 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1270 if (unlikely(m->mnt_expiry_mark))
1271 m->mnt_expiry_mark = 0;
1272 mntput_no_expire(m);
b3e19d92
NP
1273 }
1274}
1275EXPORT_SYMBOL(mntput);
1276
1277struct vfsmount *mntget(struct vfsmount *mnt)
1278{
1279 if (mnt)
83adc753 1280 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1281 return mnt;
1282}
1283EXPORT_SYMBOL(mntget);
1284
c6609c0a
IK
1285/* path_is_mountpoint() - Check if path is a mount in the current
1286 * namespace.
1287 *
1288 * d_mountpoint() can only be used reliably to establish if a dentry is
1289 * not mounted in any namespace and that common case is handled inline.
1290 * d_mountpoint() isn't aware of the possibility there may be multiple
1291 * mounts using a given dentry in a different namespace. This function
1292 * checks if the passed in path is a mountpoint rather than the dentry
1293 * alone.
1294 */
1295bool path_is_mountpoint(const struct path *path)
1296{
1297 unsigned seq;
1298 bool res;
1299
1300 if (!d_mountpoint(path->dentry))
1301 return false;
1302
1303 rcu_read_lock();
1304 do {
1305 seq = read_seqbegin(&mount_lock);
1306 res = __path_is_mountpoint(path);
1307 } while (read_seqretry(&mount_lock, seq));
1308 rcu_read_unlock();
1309
1310 return res;
1311}
1312EXPORT_SYMBOL(path_is_mountpoint);
1313
ca71cf71 1314struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1315{
3064c356
AV
1316 struct mount *p;
1317 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1318 if (IS_ERR(p))
1319 return ERR_CAST(p);
1320 p->mnt.mnt_flags |= MNT_INTERNAL;
1321 return &p->mnt;
7b7b1ace 1322}
1da177e4 1323
a1a2c409 1324#ifdef CONFIG_PROC_FS
0226f492 1325/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1326static void *m_start(struct seq_file *m, loff_t *pos)
1327{
ede1bf0d 1328 struct proc_mounts *p = m->private;
1da177e4 1329
390c6843 1330 down_read(&namespace_sem);
c7999c36
AV
1331 if (p->cached_event == p->ns->event) {
1332 void *v = p->cached_mount;
1333 if (*pos == p->cached_index)
1334 return v;
1335 if (*pos == p->cached_index + 1) {
1336 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1337 return p->cached_mount = v;
1338 }
1339 }
1340
1341 p->cached_event = p->ns->event;
1342 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1343 p->cached_index = *pos;
1344 return p->cached_mount;
1da177e4
LT
1345}
1346
1347static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1348{
ede1bf0d 1349 struct proc_mounts *p = m->private;
b0765fb8 1350
c7999c36
AV
1351 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1352 p->cached_index = *pos;
1353 return p->cached_mount;
1da177e4
LT
1354}
1355
1356static void m_stop(struct seq_file *m, void *v)
1357{
390c6843 1358 up_read(&namespace_sem);
1da177e4
LT
1359}
1360
0226f492 1361static int m_show(struct seq_file *m, void *v)
2d4d4864 1362{
ede1bf0d 1363 struct proc_mounts *p = m->private;
1a4eeaf2 1364 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1365 return p->show(m, &r->mnt);
1da177e4
LT
1366}
1367
a1a2c409 1368const struct seq_operations mounts_op = {
1da177e4
LT
1369 .start = m_start,
1370 .next = m_next,
1371 .stop = m_stop,
0226f492 1372 .show = m_show,
b4629fe2 1373};
a1a2c409 1374#endif /* CONFIG_PROC_FS */
b4629fe2 1375
1da177e4
LT
1376/**
1377 * may_umount_tree - check if a mount tree is busy
1378 * @mnt: root of mount tree
1379 *
1380 * This is called to check if a tree of mounts has any
1381 * open files, pwds, chroots or sub mounts that are
1382 * busy.
1383 */
909b0a88 1384int may_umount_tree(struct vfsmount *m)
1da177e4 1385{
909b0a88 1386 struct mount *mnt = real_mount(m);
36341f64
RP
1387 int actual_refs = 0;
1388 int minimum_refs = 0;
315fc83e 1389 struct mount *p;
909b0a88 1390 BUG_ON(!m);
1da177e4 1391
b3e19d92 1392 /* write lock needed for mnt_get_count */
719ea2fb 1393 lock_mount_hash();
909b0a88 1394 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1395 actual_refs += mnt_get_count(p);
1da177e4 1396 minimum_refs += 2;
1da177e4 1397 }
719ea2fb 1398 unlock_mount_hash();
1da177e4
LT
1399
1400 if (actual_refs > minimum_refs)
e3474a8e 1401 return 0;
1da177e4 1402
e3474a8e 1403 return 1;
1da177e4
LT
1404}
1405
1406EXPORT_SYMBOL(may_umount_tree);
1407
1408/**
1409 * may_umount - check if a mount point is busy
1410 * @mnt: root of mount
1411 *
1412 * This is called to check if a mount point has any
1413 * open files, pwds, chroots or sub mounts. If the
1414 * mount has sub mounts this will return busy
1415 * regardless of whether the sub mounts are busy.
1416 *
1417 * Doesn't take quota and stuff into account. IOW, in some cases it will
1418 * give false negatives. The main reason why it's here is that we need
1419 * a non-destructive way to look for easily umountable filesystems.
1420 */
1421int may_umount(struct vfsmount *mnt)
1422{
e3474a8e 1423 int ret = 1;
8ad08d8a 1424 down_read(&namespace_sem);
719ea2fb 1425 lock_mount_hash();
1ab59738 1426 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1427 ret = 0;
719ea2fb 1428 unlock_mount_hash();
8ad08d8a 1429 up_read(&namespace_sem);
a05964f3 1430 return ret;
1da177e4
LT
1431}
1432
1433EXPORT_SYMBOL(may_umount);
1434
38129a13 1435static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1436
97216be0 1437static void namespace_unlock(void)
70fbcdf4 1438{
a3b3c562 1439 struct hlist_head head;
97216be0 1440
a3b3c562 1441 hlist_move_list(&unmounted, &head);
97216be0 1442
97216be0
AV
1443 up_write(&namespace_sem);
1444
a3b3c562
EB
1445 if (likely(hlist_empty(&head)))
1446 return;
1447
48a066e7
AV
1448 synchronize_rcu();
1449
87b95ce0 1450 group_pin_kill(&head);
70fbcdf4
RP
1451}
1452
97216be0 1453static inline void namespace_lock(void)
e3197d83 1454{
97216be0 1455 down_write(&namespace_sem);
e3197d83
AV
1456}
1457
e819f152
EB
1458enum umount_tree_flags {
1459 UMOUNT_SYNC = 1,
1460 UMOUNT_PROPAGATE = 2,
e0c9c0af 1461 UMOUNT_CONNECTED = 4,
e819f152 1462};
f2d0a123
EB
1463
1464static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1465{
1466 /* Leaving mounts connected is only valid for lazy umounts */
1467 if (how & UMOUNT_SYNC)
1468 return true;
1469
1470 /* A mount without a parent has nothing to be connected to */
1471 if (!mnt_has_parent(mnt))
1472 return true;
1473
1474 /* Because the reference counting rules change when mounts are
1475 * unmounted and connected, umounted mounts may not be
1476 * connected to mounted mounts.
1477 */
1478 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1479 return true;
1480
1481 /* Has it been requested that the mount remain connected? */
1482 if (how & UMOUNT_CONNECTED)
1483 return false;
1484
1485 /* Is the mount locked such that it needs to remain connected? */
1486 if (IS_MNT_LOCKED(mnt))
1487 return false;
1488
1489 /* By default disconnect the mount */
1490 return true;
1491}
1492
99b7db7b 1493/*
48a066e7 1494 * mount_lock must be held
99b7db7b
NP
1495 * namespace_sem must be held for write
1496 */
e819f152 1497static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1498{
c003b26f 1499 LIST_HEAD(tmp_list);
315fc83e 1500 struct mount *p;
1da177e4 1501
5d88457e
EB
1502 if (how & UMOUNT_PROPAGATE)
1503 propagate_mount_unlock(mnt);
1504
c003b26f 1505 /* Gather the mounts to umount */
590ce4bc
EB
1506 for (p = mnt; p; p = next_mnt(p, mnt)) {
1507 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1508 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1509 }
1da177e4 1510
411a938b 1511 /* Hide the mounts from mnt_mounts */
c003b26f 1512 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1513 list_del_init(&p->mnt_child);
c003b26f 1514 }
88b368f2 1515
c003b26f 1516 /* Add propogated mounts to the tmp_list */
e819f152 1517 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1518 propagate_umount(&tmp_list);
a05964f3 1519
c003b26f 1520 while (!list_empty(&tmp_list)) {
d2921684 1521 struct mnt_namespace *ns;
ce07d891 1522 bool disconnect;
c003b26f 1523 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1524 list_del_init(&p->mnt_expire);
1a4eeaf2 1525 list_del_init(&p->mnt_list);
d2921684
EB
1526 ns = p->mnt_ns;
1527 if (ns) {
1528 ns->mounts--;
1529 __touch_mnt_namespace(ns);
1530 }
143c8c91 1531 p->mnt_ns = NULL;
e819f152 1532 if (how & UMOUNT_SYNC)
48a066e7 1533 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1534
f2d0a123 1535 disconnect = disconnect_mount(p, how);
ce07d891
EB
1536
1537 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1538 disconnect ? &unmounted : NULL);
676da58d 1539 if (mnt_has_parent(p)) {
81b6b061 1540 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1541 if (!disconnect) {
1542 /* Don't forget about p */
1543 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1544 } else {
1545 umount_mnt(p);
1546 }
7c4b93d8 1547 }
0f0afb1d 1548 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1549 }
1550}
1551
b54b9be7 1552static void shrink_submounts(struct mount *mnt);
c35038be 1553
1ab59738 1554static int do_umount(struct mount *mnt, int flags)
1da177e4 1555{
1ab59738 1556 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1557 int retval;
1558
1ab59738 1559 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1560 if (retval)
1561 return retval;
1562
1563 /*
1564 * Allow userspace to request a mountpoint be expired rather than
1565 * unmounting unconditionally. Unmount only happens if:
1566 * (1) the mark is already set (the mark is cleared by mntput())
1567 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1568 */
1569 if (flags & MNT_EXPIRE) {
1ab59738 1570 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1571 flags & (MNT_FORCE | MNT_DETACH))
1572 return -EINVAL;
1573
b3e19d92
NP
1574 /*
1575 * probably don't strictly need the lock here if we examined
1576 * all race cases, but it's a slowpath.
1577 */
719ea2fb 1578 lock_mount_hash();
83adc753 1579 if (mnt_get_count(mnt) != 2) {
719ea2fb 1580 unlock_mount_hash();
1da177e4 1581 return -EBUSY;
b3e19d92 1582 }
719ea2fb 1583 unlock_mount_hash();
1da177e4 1584
863d684f 1585 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1586 return -EAGAIN;
1587 }
1588
1589 /*
1590 * If we may have to abort operations to get out of this
1591 * mount, and they will themselves hold resources we must
1592 * allow the fs to do things. In the Unix tradition of
1593 * 'Gee thats tricky lets do it in userspace' the umount_begin
1594 * might fail to complete on the first run through as other tasks
1595 * must return, and the like. Thats for the mount program to worry
1596 * about for the moment.
1597 */
1598
42faad99 1599 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1600 sb->s_op->umount_begin(sb);
42faad99 1601 }
1da177e4
LT
1602
1603 /*
1604 * No sense to grab the lock for this test, but test itself looks
1605 * somewhat bogus. Suggestions for better replacement?
1606 * Ho-hum... In principle, we might treat that as umount + switch
1607 * to rootfs. GC would eventually take care of the old vfsmount.
1608 * Actually it makes sense, especially if rootfs would contain a
1609 * /reboot - static binary that would close all descriptors and
1610 * call reboot(9). Then init(8) could umount root and exec /reboot.
1611 */
1ab59738 1612 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1613 /*
1614 * Special case for "unmounting" root ...
1615 * we just try to remount it readonly.
1616 */
bc6155d1 1617 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1618 return -EPERM;
1da177e4 1619 down_write(&sb->s_umount);
bc98a42c 1620 if (!sb_rdonly(sb))
e462ec50 1621 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1da177e4
LT
1622 up_write(&sb->s_umount);
1623 return retval;
1624 }
1625
97216be0 1626 namespace_lock();
719ea2fb 1627 lock_mount_hash();
5addc5dd 1628 event++;
1da177e4 1629
48a066e7 1630 if (flags & MNT_DETACH) {
1a4eeaf2 1631 if (!list_empty(&mnt->mnt_list))
e819f152 1632 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1633 retval = 0;
48a066e7
AV
1634 } else {
1635 shrink_submounts(mnt);
1636 retval = -EBUSY;
1637 if (!propagate_mount_busy(mnt, 2)) {
1638 if (!list_empty(&mnt->mnt_list))
e819f152 1639 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1640 retval = 0;
1641 }
1da177e4 1642 }
719ea2fb 1643 unlock_mount_hash();
e3197d83 1644 namespace_unlock();
1da177e4
LT
1645 return retval;
1646}
1647
80b5dce8
EB
1648/*
1649 * __detach_mounts - lazily unmount all mounts on the specified dentry
1650 *
1651 * During unlink, rmdir, and d_drop it is possible to loose the path
1652 * to an existing mountpoint, and wind up leaking the mount.
1653 * detach_mounts allows lazily unmounting those mounts instead of
1654 * leaking them.
1655 *
1656 * The caller may hold dentry->d_inode->i_mutex.
1657 */
1658void __detach_mounts(struct dentry *dentry)
1659{
1660 struct mountpoint *mp;
1661 struct mount *mnt;
1662
1663 namespace_lock();
3895dbf8 1664 lock_mount_hash();
80b5dce8 1665 mp = lookup_mountpoint(dentry);
f53e5797 1666 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1667 goto out_unlock;
1668
e06b933e 1669 event++;
80b5dce8
EB
1670 while (!hlist_empty(&mp->m_list)) {
1671 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1672 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1673 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1674 umount_mnt(mnt);
ce07d891 1675 }
e0c9c0af 1676 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1677 }
80b5dce8
EB
1678 put_mountpoint(mp);
1679out_unlock:
3895dbf8 1680 unlock_mount_hash();
80b5dce8
EB
1681 namespace_unlock();
1682}
1683
dd111b31 1684/*
9b40bc90
AV
1685 * Is the caller allowed to modify his namespace?
1686 */
1687static inline bool may_mount(void)
1688{
1689 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1690}
1691
9e8925b6
JL
1692static inline bool may_mandlock(void)
1693{
1694#ifndef CONFIG_MANDATORY_FILE_LOCKING
1695 return false;
1696#endif
95ace754 1697 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1698}
1699
1da177e4
LT
1700/*
1701 * Now umount can handle mount points as well as block devices.
1702 * This is important for filesystems which use unnamed block devices.
1703 *
1704 * We now support a flag for forced unmount like the other 'big iron'
1705 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1706 */
1707
3a18ef5c 1708int ksys_umount(char __user *name, int flags)
1da177e4 1709{
2d8f3038 1710 struct path path;
900148dc 1711 struct mount *mnt;
1da177e4 1712 int retval;
db1f05bb 1713 int lookup_flags = 0;
1da177e4 1714
db1f05bb
MS
1715 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1716 return -EINVAL;
1717
9b40bc90
AV
1718 if (!may_mount())
1719 return -EPERM;
1720
db1f05bb
MS
1721 if (!(flags & UMOUNT_NOFOLLOW))
1722 lookup_flags |= LOOKUP_FOLLOW;
1723
197df04c 1724 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1725 if (retval)
1726 goto out;
900148dc 1727 mnt = real_mount(path.mnt);
1da177e4 1728 retval = -EINVAL;
2d8f3038 1729 if (path.dentry != path.mnt->mnt_root)
1da177e4 1730 goto dput_and_out;
143c8c91 1731 if (!check_mnt(mnt))
1da177e4 1732 goto dput_and_out;
5ff9d8a6
EB
1733 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1734 goto dput_and_out;
b2f5d4dc
EB
1735 retval = -EPERM;
1736 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1737 goto dput_and_out;
1da177e4 1738
900148dc 1739 retval = do_umount(mnt, flags);
1da177e4 1740dput_and_out:
429731b1 1741 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1742 dput(path.dentry);
900148dc 1743 mntput_no_expire(mnt);
1da177e4
LT
1744out:
1745 return retval;
1746}
1747
3a18ef5c
DB
1748SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1749{
1750 return ksys_umount(name, flags);
1751}
1752
1da177e4
LT
1753#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1754
1755/*
b58fed8b 1756 * The 2.0 compatible umount. No flags.
1da177e4 1757 */
bdc480e3 1758SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1759{
3a18ef5c 1760 return ksys_umount(name, 0);
1da177e4
LT
1761}
1762
1763#endif
1764
4ce5d2b1 1765static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1766{
4ce5d2b1 1767 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1768 return dentry->d_op == &ns_dentry_operations &&
1769 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1770}
1771
58be2825
AV
1772struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1773{
1774 return container_of(ns, struct mnt_namespace, ns);
1775}
1776
4ce5d2b1
EB
1777static bool mnt_ns_loop(struct dentry *dentry)
1778{
1779 /* Could bind mounting the mount namespace inode cause a
1780 * mount namespace loop?
1781 */
1782 struct mnt_namespace *mnt_ns;
1783 if (!is_mnt_ns_file(dentry))
1784 return false;
1785
f77c8014 1786 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1787 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1788}
1789
87129cc0 1790struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1791 int flag)
1da177e4 1792{
84d17192 1793 struct mount *res, *p, *q, *r, *parent;
1da177e4 1794
4ce5d2b1
EB
1795 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1796 return ERR_PTR(-EINVAL);
1797
1798 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1799 return ERR_PTR(-EINVAL);
9676f0c6 1800
36341f64 1801 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1802 if (IS_ERR(q))
1803 return q;
1804
a73324da 1805 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1806
1807 p = mnt;
6b41d536 1808 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1809 struct mount *s;
7ec02ef1 1810 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1811 continue;
1812
909b0a88 1813 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1814 if (!(flag & CL_COPY_UNBINDABLE) &&
1815 IS_MNT_UNBINDABLE(s)) {
1816 s = skip_mnt_tree(s);
1817 continue;
1818 }
1819 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1820 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1821 s = skip_mnt_tree(s);
1822 continue;
1823 }
0714a533
AV
1824 while (p != s->mnt_parent) {
1825 p = p->mnt_parent;
1826 q = q->mnt_parent;
1da177e4 1827 }
87129cc0 1828 p = s;
84d17192 1829 parent = q;
87129cc0 1830 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1831 if (IS_ERR(q))
1832 goto out;
719ea2fb 1833 lock_mount_hash();
1a4eeaf2 1834 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1835 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1836 unlock_mount_hash();
1da177e4
LT
1837 }
1838 }
1839 return res;
be34d1a3 1840out:
1da177e4 1841 if (res) {
719ea2fb 1842 lock_mount_hash();
e819f152 1843 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1844 unlock_mount_hash();
1da177e4 1845 }
be34d1a3 1846 return q;
1da177e4
LT
1847}
1848
be34d1a3
DH
1849/* Caller should check returned pointer for errors */
1850
ca71cf71 1851struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1852{
cb338d06 1853 struct mount *tree;
97216be0 1854 namespace_lock();
cd4a4017
EB
1855 if (!check_mnt(real_mount(path->mnt)))
1856 tree = ERR_PTR(-EINVAL);
1857 else
1858 tree = copy_tree(real_mount(path->mnt), path->dentry,
1859 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1860 namespace_unlock();
be34d1a3 1861 if (IS_ERR(tree))
52e220d3 1862 return ERR_CAST(tree);
be34d1a3 1863 return &tree->mnt;
8aec0809
AV
1864}
1865
1866void drop_collected_mounts(struct vfsmount *mnt)
1867{
97216be0 1868 namespace_lock();
719ea2fb 1869 lock_mount_hash();
e819f152 1870 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1871 unlock_mount_hash();
3ab6abee 1872 namespace_unlock();
8aec0809
AV
1873}
1874
c771d683
MS
1875/**
1876 * clone_private_mount - create a private clone of a path
1877 *
1878 * This creates a new vfsmount, which will be the clone of @path. The new will
1879 * not be attached anywhere in the namespace and will be private (i.e. changes
1880 * to the originating mount won't be propagated into this).
1881 *
1882 * Release with mntput().
1883 */
ca71cf71 1884struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1885{
1886 struct mount *old_mnt = real_mount(path->mnt);
1887 struct mount *new_mnt;
1888
1889 if (IS_MNT_UNBINDABLE(old_mnt))
1890 return ERR_PTR(-EINVAL);
1891
c771d683 1892 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1893 if (IS_ERR(new_mnt))
1894 return ERR_CAST(new_mnt);
1895
1896 return &new_mnt->mnt;
1897}
1898EXPORT_SYMBOL_GPL(clone_private_mount);
1899
1f707137
AV
1900int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1901 struct vfsmount *root)
1902{
1a4eeaf2 1903 struct mount *mnt;
1f707137
AV
1904 int res = f(root, arg);
1905 if (res)
1906 return res;
1a4eeaf2
AV
1907 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1908 res = f(&mnt->mnt, arg);
1f707137
AV
1909 if (res)
1910 return res;
1911 }
1912 return 0;
1913}
1914
4b8b21f4 1915static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1916{
315fc83e 1917 struct mount *p;
719f5d7f 1918
909b0a88 1919 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1920 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1921 mnt_release_group_id(p);
719f5d7f
MS
1922 }
1923}
1924
4b8b21f4 1925static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1926{
315fc83e 1927 struct mount *p;
719f5d7f 1928
909b0a88 1929 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1930 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1931 int err = mnt_alloc_group_id(p);
719f5d7f 1932 if (err) {
4b8b21f4 1933 cleanup_group_ids(mnt, p);
719f5d7f
MS
1934 return err;
1935 }
1936 }
1937 }
1938
1939 return 0;
1940}
1941
d2921684
EB
1942int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1943{
1944 unsigned int max = READ_ONCE(sysctl_mount_max);
1945 unsigned int mounts = 0, old, pending, sum;
1946 struct mount *p;
1947
1948 for (p = mnt; p; p = next_mnt(p, mnt))
1949 mounts++;
1950
1951 old = ns->mounts;
1952 pending = ns->pending_mounts;
1953 sum = old + pending;
1954 if ((old > sum) ||
1955 (pending > sum) ||
1956 (max < sum) ||
1957 (mounts > (max - sum)))
1958 return -ENOSPC;
1959
1960 ns->pending_mounts = pending + mounts;
1961 return 0;
1962}
1963
b90fa9ae
RP
1964/*
1965 * @source_mnt : mount tree to be attached
21444403
RP
1966 * @nd : place the mount tree @source_mnt is attached
1967 * @parent_nd : if non-null, detach the source_mnt from its parent and
1968 * store the parent mount and mountpoint dentry.
1969 * (done when source_mnt is moved)
b90fa9ae
RP
1970 *
1971 * NOTE: in the table below explains the semantics when a source mount
1972 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1973 * ---------------------------------------------------------------------------
1974 * | BIND MOUNT OPERATION |
1975 * |**************************************************************************
1976 * | source-->| shared | private | slave | unbindable |
1977 * | dest | | | | |
1978 * | | | | | | |
1979 * | v | | | | |
1980 * |**************************************************************************
1981 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1982 * | | | | | |
1983 * |non-shared| shared (+) | private | slave (*) | invalid |
1984 * ***************************************************************************
b90fa9ae
RP
1985 * A bind operation clones the source mount and mounts the clone on the
1986 * destination mount.
1987 *
1988 * (++) the cloned mount is propagated to all the mounts in the propagation
1989 * tree of the destination mount and the cloned mount is added to
1990 * the peer group of the source mount.
1991 * (+) the cloned mount is created under the destination mount and is marked
1992 * as shared. The cloned mount is added to the peer group of the source
1993 * mount.
5afe0022
RP
1994 * (+++) the mount is propagated to all the mounts in the propagation tree
1995 * of the destination mount and the cloned mount is made slave
1996 * of the same master as that of the source mount. The cloned mount
1997 * is marked as 'shared and slave'.
1998 * (*) the cloned mount is made a slave of the same master as that of the
1999 * source mount.
2000 *
9676f0c6
RP
2001 * ---------------------------------------------------------------------------
2002 * | MOVE MOUNT OPERATION |
2003 * |**************************************************************************
2004 * | source-->| shared | private | slave | unbindable |
2005 * | dest | | | | |
2006 * | | | | | | |
2007 * | v | | | | |
2008 * |**************************************************************************
2009 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2010 * | | | | | |
2011 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2012 * ***************************************************************************
5afe0022
RP
2013 *
2014 * (+) the mount is moved to the destination. And is then propagated to
2015 * all the mounts in the propagation tree of the destination mount.
21444403 2016 * (+*) the mount is moved to the destination.
5afe0022
RP
2017 * (+++) the mount is moved to the destination and is then propagated to
2018 * all the mounts belonging to the destination mount's propagation tree.
2019 * the mount is marked as 'shared and slave'.
2020 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2021 *
2022 * if the source mount is a tree, the operations explained above is
2023 * applied to each mount in the tree.
2024 * Must be called without spinlocks held, since this function can sleep
2025 * in allocations.
2026 */
0fb54e50 2027static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2028 struct mount *dest_mnt,
2029 struct mountpoint *dest_mp,
2030 struct path *parent_path)
b90fa9ae 2031{
38129a13 2032 HLIST_HEAD(tree_list);
d2921684 2033 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2034 struct mountpoint *smp;
315fc83e 2035 struct mount *child, *p;
38129a13 2036 struct hlist_node *n;
719f5d7f 2037 int err;
b90fa9ae 2038
1064f874
EB
2039 /* Preallocate a mountpoint in case the new mounts need
2040 * to be tucked under other mounts.
2041 */
2042 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2043 if (IS_ERR(smp))
2044 return PTR_ERR(smp);
2045
d2921684
EB
2046 /* Is there space to add these mounts to the mount namespace? */
2047 if (!parent_path) {
2048 err = count_mounts(ns, source_mnt);
2049 if (err)
2050 goto out;
2051 }
2052
fc7be130 2053 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2054 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2055 if (err)
2056 goto out;
0b1b901b 2057 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2058 lock_mount_hash();
0b1b901b
AV
2059 if (err)
2060 goto out_cleanup_ids;
909b0a88 2061 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2062 set_mnt_shared(p);
0b1b901b
AV
2063 } else {
2064 lock_mount_hash();
b90fa9ae 2065 }
1a390689 2066 if (parent_path) {
0fb54e50 2067 detach_mnt(source_mnt, parent_path);
84d17192 2068 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2069 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2070 } else {
84d17192 2071 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2072 commit_tree(source_mnt);
21444403 2073 }
b90fa9ae 2074
38129a13 2075 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2076 struct mount *q;
38129a13 2077 hlist_del_init(&child->mnt_hash);
1064f874
EB
2078 q = __lookup_mnt(&child->mnt_parent->mnt,
2079 child->mnt_mountpoint);
2080 if (q)
2081 mnt_change_mountpoint(child, smp, q);
2082 commit_tree(child);
b90fa9ae 2083 }
1064f874 2084 put_mountpoint(smp);
719ea2fb 2085 unlock_mount_hash();
99b7db7b 2086
b90fa9ae 2087 return 0;
719f5d7f
MS
2088
2089 out_cleanup_ids:
f2ebb3a9
AV
2090 while (!hlist_empty(&tree_list)) {
2091 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2092 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2093 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2094 }
2095 unlock_mount_hash();
0b1b901b 2096 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2097 out:
d2921684 2098 ns->pending_mounts = 0;
1064f874
EB
2099
2100 read_seqlock_excl(&mount_lock);
2101 put_mountpoint(smp);
2102 read_sequnlock_excl(&mount_lock);
2103
719f5d7f 2104 return err;
b90fa9ae
RP
2105}
2106
84d17192 2107static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2108{
2109 struct vfsmount *mnt;
84d17192 2110 struct dentry *dentry = path->dentry;
b12cea91 2111retry:
5955102c 2112 inode_lock(dentry->d_inode);
84d17192 2113 if (unlikely(cant_mount(dentry))) {
5955102c 2114 inode_unlock(dentry->d_inode);
84d17192 2115 return ERR_PTR(-ENOENT);
b12cea91 2116 }
97216be0 2117 namespace_lock();
b12cea91 2118 mnt = lookup_mnt(path);
84d17192 2119 if (likely(!mnt)) {
3895dbf8 2120 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2121 if (IS_ERR(mp)) {
97216be0 2122 namespace_unlock();
5955102c 2123 inode_unlock(dentry->d_inode);
84d17192
AV
2124 return mp;
2125 }
2126 return mp;
2127 }
97216be0 2128 namespace_unlock();
5955102c 2129 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2130 path_put(path);
2131 path->mnt = mnt;
84d17192 2132 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2133 goto retry;
2134}
2135
84d17192 2136static void unlock_mount(struct mountpoint *where)
b12cea91 2137{
84d17192 2138 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2139
2140 read_seqlock_excl(&mount_lock);
84d17192 2141 put_mountpoint(where);
3895dbf8
EB
2142 read_sequnlock_excl(&mount_lock);
2143
328e6d90 2144 namespace_unlock();
5955102c 2145 inode_unlock(dentry->d_inode);
b12cea91
AV
2146}
2147
84d17192 2148static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2149{
e462ec50 2150 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2151 return -EINVAL;
2152
e36cb0b8
DH
2153 if (d_is_dir(mp->m_dentry) !=
2154 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2155 return -ENOTDIR;
2156
84d17192 2157 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2158}
2159
7a2e8a8f
VA
2160/*
2161 * Sanity check the flags to change_mnt_propagation.
2162 */
2163
e462ec50 2164static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2165{
e462ec50 2166 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2167
2168 /* Fail if any non-propagation flags are set */
2169 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2170 return 0;
2171 /* Only one propagation flag should be set */
2172 if (!is_power_of_2(type))
2173 return 0;
2174 return type;
2175}
2176
07b20889
RP
2177/*
2178 * recursively change the type of the mountpoint.
2179 */
e462ec50 2180static int do_change_type(struct path *path, int ms_flags)
07b20889 2181{
315fc83e 2182 struct mount *m;
4b8b21f4 2183 struct mount *mnt = real_mount(path->mnt);
e462ec50 2184 int recurse = ms_flags & MS_REC;
7a2e8a8f 2185 int type;
719f5d7f 2186 int err = 0;
07b20889 2187
2d92ab3c 2188 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2189 return -EINVAL;
2190
e462ec50 2191 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2192 if (!type)
2193 return -EINVAL;
2194
97216be0 2195 namespace_lock();
719f5d7f
MS
2196 if (type == MS_SHARED) {
2197 err = invent_group_ids(mnt, recurse);
2198 if (err)
2199 goto out_unlock;
2200 }
2201
719ea2fb 2202 lock_mount_hash();
909b0a88 2203 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2204 change_mnt_propagation(m, type);
719ea2fb 2205 unlock_mount_hash();
719f5d7f
MS
2206
2207 out_unlock:
97216be0 2208 namespace_unlock();
719f5d7f 2209 return err;
07b20889
RP
2210}
2211
5ff9d8a6
EB
2212static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2213{
2214 struct mount *child;
2215 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2216 if (!is_subdir(child->mnt_mountpoint, dentry))
2217 continue;
2218
2219 if (child->mnt.mnt_flags & MNT_LOCKED)
2220 return true;
2221 }
2222 return false;
2223}
2224
1da177e4
LT
2225/*
2226 * do loopback mount.
2227 */
808d4e3c 2228static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2229 int recurse)
1da177e4 2230{
2d92ab3c 2231 struct path old_path;
84d17192
AV
2232 struct mount *mnt = NULL, *old, *parent;
2233 struct mountpoint *mp;
57eccb83 2234 int err;
1da177e4
LT
2235 if (!old_name || !*old_name)
2236 return -EINVAL;
815d405c 2237 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2238 if (err)
2239 return err;
2240
8823c079 2241 err = -EINVAL;
4ce5d2b1 2242 if (mnt_ns_loop(old_path.dentry))
dd111b31 2243 goto out;
8823c079 2244
84d17192
AV
2245 mp = lock_mount(path);
2246 err = PTR_ERR(mp);
2247 if (IS_ERR(mp))
b12cea91
AV
2248 goto out;
2249
87129cc0 2250 old = real_mount(old_path.mnt);
84d17192 2251 parent = real_mount(path->mnt);
87129cc0 2252
1da177e4 2253 err = -EINVAL;
fc7be130 2254 if (IS_MNT_UNBINDABLE(old))
b12cea91 2255 goto out2;
9676f0c6 2256
e149ed2b
AV
2257 if (!check_mnt(parent))
2258 goto out2;
2259
2260 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2261 goto out2;
1da177e4 2262
5ff9d8a6
EB
2263 if (!recurse && has_locked_children(old, old_path.dentry))
2264 goto out2;
2265
ccd48bc7 2266 if (recurse)
4ce5d2b1 2267 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2268 else
87129cc0 2269 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2270
be34d1a3
DH
2271 if (IS_ERR(mnt)) {
2272 err = PTR_ERR(mnt);
e9c5d8a5 2273 goto out2;
be34d1a3 2274 }
ccd48bc7 2275
5ff9d8a6
EB
2276 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2277
84d17192 2278 err = graft_tree(mnt, parent, mp);
ccd48bc7 2279 if (err) {
719ea2fb 2280 lock_mount_hash();
e819f152 2281 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2282 unlock_mount_hash();
5b83d2c5 2283 }
b12cea91 2284out2:
84d17192 2285 unlock_mount(mp);
ccd48bc7 2286out:
2d92ab3c 2287 path_put(&old_path);
1da177e4
LT
2288 return err;
2289}
2290
2e4b7fcd
DH
2291static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2292{
2293 int error = 0;
2294 int readonly_request = 0;
2295
2296 if (ms_flags & MS_RDONLY)
2297 readonly_request = 1;
2298 if (readonly_request == __mnt_is_readonly(mnt))
2299 return 0;
2300
2301 if (readonly_request)
83adc753 2302 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2303 else
83adc753 2304 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2305 return error;
2306}
2307
1da177e4
LT
2308/*
2309 * change filesystem flags. dir should be a physical root of filesystem.
2310 * If you've mounted a non-root directory somewhere and want to do remount
2311 * on it - tough luck.
2312 */
e462ec50
DH
2313static int do_remount(struct path *path, int ms_flags, int sb_flags,
2314 int mnt_flags, void *data)
1da177e4
LT
2315{
2316 int err;
2d92ab3c 2317 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2318 struct mount *mnt = real_mount(path->mnt);
1da177e4 2319
143c8c91 2320 if (!check_mnt(mnt))
1da177e4
LT
2321 return -EINVAL;
2322
2d92ab3c 2323 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2324 return -EINVAL;
2325
07b64558
EB
2326 /* Don't allow changing of locked mnt flags.
2327 *
2328 * No locks need to be held here while testing the various
2329 * MNT_LOCK flags because those flags can never be cleared
2330 * once they are set.
2331 */
2332 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2333 !(mnt_flags & MNT_READONLY)) {
2334 return -EPERM;
2335 }
9566d674
EB
2336 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2337 !(mnt_flags & MNT_NODEV)) {
67690f93 2338 return -EPERM;
9566d674
EB
2339 }
2340 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2341 !(mnt_flags & MNT_NOSUID)) {
2342 return -EPERM;
2343 }
2344 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2345 !(mnt_flags & MNT_NOEXEC)) {
2346 return -EPERM;
2347 }
2348 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2349 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2350 return -EPERM;
2351 }
2352
ff36fe2c
EP
2353 err = security_sb_remount(sb, data);
2354 if (err)
2355 return err;
2356
1da177e4 2357 down_write(&sb->s_umount);
e462ec50
DH
2358 if (ms_flags & MS_BIND)
2359 err = change_mount_flags(path->mnt, ms_flags);
bc6155d1 2360 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
57eccb83 2361 err = -EPERM;
4aa98cf7 2362 else
e462ec50 2363 err = do_remount_sb(sb, sb_flags, data, 0);
7b43a79f 2364 if (!err) {
719ea2fb 2365 lock_mount_hash();
a6138db8 2366 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2367 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2368 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2369 unlock_mount_hash();
0e55a7cc 2370 }
6339dab8 2371 up_write(&sb->s_umount);
1da177e4
LT
2372 return err;
2373}
2374
cbbe362c 2375static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2376{
315fc83e 2377 struct mount *p;
909b0a88 2378 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2379 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2380 return 1;
2381 }
2382 return 0;
2383}
2384
808d4e3c 2385static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2386{
2d92ab3c 2387 struct path old_path, parent_path;
676da58d 2388 struct mount *p;
0fb54e50 2389 struct mount *old;
84d17192 2390 struct mountpoint *mp;
57eccb83 2391 int err;
1da177e4
LT
2392 if (!old_name || !*old_name)
2393 return -EINVAL;
2d92ab3c 2394 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2395 if (err)
2396 return err;
2397
84d17192
AV
2398 mp = lock_mount(path);
2399 err = PTR_ERR(mp);
2400 if (IS_ERR(mp))
cc53ce53
DH
2401 goto out;
2402
143c8c91 2403 old = real_mount(old_path.mnt);
fc7be130 2404 p = real_mount(path->mnt);
143c8c91 2405
1da177e4 2406 err = -EINVAL;
fc7be130 2407 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2408 goto out1;
2409
5ff9d8a6
EB
2410 if (old->mnt.mnt_flags & MNT_LOCKED)
2411 goto out1;
2412
1da177e4 2413 err = -EINVAL;
2d92ab3c 2414 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2415 goto out1;
1da177e4 2416
676da58d 2417 if (!mnt_has_parent(old))
21444403 2418 goto out1;
1da177e4 2419
e36cb0b8
DH
2420 if (d_is_dir(path->dentry) !=
2421 d_is_dir(old_path.dentry))
21444403
RP
2422 goto out1;
2423 /*
2424 * Don't move a mount residing in a shared parent.
2425 */
fc7be130 2426 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2427 goto out1;
9676f0c6
RP
2428 /*
2429 * Don't move a mount tree containing unbindable mounts to a destination
2430 * mount which is shared.
2431 */
fc7be130 2432 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2433 goto out1;
1da177e4 2434 err = -ELOOP;
fc7be130 2435 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2436 if (p == old)
21444403 2437 goto out1;
1da177e4 2438
84d17192 2439 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2440 if (err)
21444403 2441 goto out1;
1da177e4
LT
2442
2443 /* if the mount is moved, it should no longer be expire
2444 * automatically */
6776db3d 2445 list_del_init(&old->mnt_expire);
1da177e4 2446out1:
84d17192 2447 unlock_mount(mp);
1da177e4 2448out:
1da177e4 2449 if (!err)
1a390689 2450 path_put(&parent_path);
2d92ab3c 2451 path_put(&old_path);
1da177e4
LT
2452 return err;
2453}
2454
9d412a43
AV
2455static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2456{
2457 int err;
2458 const char *subtype = strchr(fstype, '.');
2459 if (subtype) {
2460 subtype++;
2461 err = -EINVAL;
2462 if (!subtype[0])
2463 goto err;
2464 } else
2465 subtype = "";
2466
2467 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2468 err = -ENOMEM;
2469 if (!mnt->mnt_sb->s_subtype)
2470 goto err;
2471 return mnt;
2472
2473 err:
2474 mntput(mnt);
2475 return ERR_PTR(err);
2476}
2477
9d412a43
AV
2478/*
2479 * add a mount into a namespace's mount tree
2480 */
95bc5f25 2481static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2482{
84d17192
AV
2483 struct mountpoint *mp;
2484 struct mount *parent;
9d412a43
AV
2485 int err;
2486
f2ebb3a9 2487 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2488
84d17192
AV
2489 mp = lock_mount(path);
2490 if (IS_ERR(mp))
2491 return PTR_ERR(mp);
9d412a43 2492
84d17192 2493 parent = real_mount(path->mnt);
9d412a43 2494 err = -EINVAL;
84d17192 2495 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2496 /* that's acceptable only for automounts done in private ns */
2497 if (!(mnt_flags & MNT_SHRINKABLE))
2498 goto unlock;
2499 /* ... and for those we'd better have mountpoint still alive */
84d17192 2500 if (!parent->mnt_ns)
156cacb1
AV
2501 goto unlock;
2502 }
9d412a43
AV
2503
2504 /* Refuse the same filesystem on the same mount point */
2505 err = -EBUSY;
95bc5f25 2506 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2507 path->mnt->mnt_root == path->dentry)
2508 goto unlock;
2509
2510 err = -EINVAL;
e36cb0b8 2511 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2512 goto unlock;
2513
95bc5f25 2514 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2515 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2516
2517unlock:
84d17192 2518 unlock_mount(mp);
9d412a43
AV
2519 return err;
2520}
b1e75df4 2521
8654df4e 2522static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2523
1da177e4
LT
2524/*
2525 * create a new mount for userspace and request it to be added into the
2526 * namespace's tree
2527 */
e462ec50 2528static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2529 int mnt_flags, const char *name, void *data)
1da177e4 2530{
0c55cfc4 2531 struct file_system_type *type;
1da177e4 2532 struct vfsmount *mnt;
15f9a3f3 2533 int err;
1da177e4 2534
0c55cfc4 2535 if (!fstype)
1da177e4
LT
2536 return -EINVAL;
2537
0c55cfc4
EB
2538 type = get_fs_type(fstype);
2539 if (!type)
2540 return -ENODEV;
2541
e462ec50 2542 mnt = vfs_kern_mount(type, sb_flags, name, data);
0c55cfc4
EB
2543 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2544 !mnt->mnt_sb->s_subtype)
2545 mnt = fs_set_subtype(mnt, fstype);
2546
2547 put_filesystem(type);
1da177e4
LT
2548 if (IS_ERR(mnt))
2549 return PTR_ERR(mnt);
2550
8654df4e
EB
2551 if (mount_too_revealing(mnt, &mnt_flags)) {
2552 mntput(mnt);
2553 return -EPERM;
2554 }
2555
95bc5f25 2556 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2557 if (err)
2558 mntput(mnt);
2559 return err;
1da177e4
LT
2560}
2561
19a167af
AV
2562int finish_automount(struct vfsmount *m, struct path *path)
2563{
6776db3d 2564 struct mount *mnt = real_mount(m);
19a167af
AV
2565 int err;
2566 /* The new mount record should have at least 2 refs to prevent it being
2567 * expired before we get a chance to add it
2568 */
6776db3d 2569 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2570
2571 if (m->mnt_sb == path->mnt->mnt_sb &&
2572 m->mnt_root == path->dentry) {
b1e75df4
AV
2573 err = -ELOOP;
2574 goto fail;
19a167af
AV
2575 }
2576
95bc5f25 2577 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2578 if (!err)
2579 return 0;
2580fail:
2581 /* remove m from any expiration list it may be on */
6776db3d 2582 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2583 namespace_lock();
6776db3d 2584 list_del_init(&mnt->mnt_expire);
97216be0 2585 namespace_unlock();
19a167af 2586 }
b1e75df4
AV
2587 mntput(m);
2588 mntput(m);
19a167af
AV
2589 return err;
2590}
2591
ea5b778a
DH
2592/**
2593 * mnt_set_expiry - Put a mount on an expiration list
2594 * @mnt: The mount to list.
2595 * @expiry_list: The list to add the mount to.
2596 */
2597void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2598{
97216be0 2599 namespace_lock();
ea5b778a 2600
6776db3d 2601 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2602
97216be0 2603 namespace_unlock();
ea5b778a
DH
2604}
2605EXPORT_SYMBOL(mnt_set_expiry);
2606
1da177e4
LT
2607/*
2608 * process a list of expirable mountpoints with the intent of discarding any
2609 * mountpoints that aren't in use and haven't been touched since last we came
2610 * here
2611 */
2612void mark_mounts_for_expiry(struct list_head *mounts)
2613{
761d5c38 2614 struct mount *mnt, *next;
1da177e4
LT
2615 LIST_HEAD(graveyard);
2616
2617 if (list_empty(mounts))
2618 return;
2619
97216be0 2620 namespace_lock();
719ea2fb 2621 lock_mount_hash();
1da177e4
LT
2622
2623 /* extract from the expiration list every vfsmount that matches the
2624 * following criteria:
2625 * - only referenced by its parent vfsmount
2626 * - still marked for expiry (marked on the last call here; marks are
2627 * cleared by mntput())
2628 */
6776db3d 2629 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2630 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2631 propagate_mount_busy(mnt, 1))
1da177e4 2632 continue;
6776db3d 2633 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2634 }
bcc5c7d2 2635 while (!list_empty(&graveyard)) {
6776db3d 2636 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2637 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2638 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2639 }
719ea2fb 2640 unlock_mount_hash();
3ab6abee 2641 namespace_unlock();
5528f911
TM
2642}
2643
2644EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2645
2646/*
2647 * Ripoff of 'select_parent()'
2648 *
2649 * search the list of submounts for a given mountpoint, and move any
2650 * shrinkable submounts to the 'graveyard' list.
2651 */
692afc31 2652static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2653{
692afc31 2654 struct mount *this_parent = parent;
5528f911
TM
2655 struct list_head *next;
2656 int found = 0;
2657
2658repeat:
6b41d536 2659 next = this_parent->mnt_mounts.next;
5528f911 2660resume:
6b41d536 2661 while (next != &this_parent->mnt_mounts) {
5528f911 2662 struct list_head *tmp = next;
6b41d536 2663 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2664
2665 next = tmp->next;
692afc31 2666 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2667 continue;
5528f911
TM
2668 /*
2669 * Descend a level if the d_mounts list is non-empty.
2670 */
6b41d536 2671 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2672 this_parent = mnt;
2673 goto repeat;
2674 }
1da177e4 2675
1ab59738 2676 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2677 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2678 found++;
2679 }
1da177e4 2680 }
5528f911
TM
2681 /*
2682 * All done at this level ... ascend and resume the search
2683 */
2684 if (this_parent != parent) {
6b41d536 2685 next = this_parent->mnt_child.next;
0714a533 2686 this_parent = this_parent->mnt_parent;
5528f911
TM
2687 goto resume;
2688 }
2689 return found;
2690}
2691
2692/*
2693 * process a list of expirable mountpoints with the intent of discarding any
2694 * submounts of a specific parent mountpoint
99b7db7b 2695 *
48a066e7 2696 * mount_lock must be held for write
5528f911 2697 */
b54b9be7 2698static void shrink_submounts(struct mount *mnt)
5528f911
TM
2699{
2700 LIST_HEAD(graveyard);
761d5c38 2701 struct mount *m;
5528f911 2702
5528f911 2703 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2704 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2705 while (!list_empty(&graveyard)) {
761d5c38 2706 m = list_first_entry(&graveyard, struct mount,
6776db3d 2707 mnt_expire);
143c8c91 2708 touch_mnt_namespace(m->mnt_ns);
e819f152 2709 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2710 }
2711 }
1da177e4
LT
2712}
2713
1da177e4
LT
2714/*
2715 * Some copy_from_user() implementations do not return the exact number of
2716 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2717 * Note that this function differs from copy_from_user() in that it will oops
2718 * on bad values of `to', rather than returning a short copy.
2719 */
b58fed8b
RP
2720static long exact_copy_from_user(void *to, const void __user * from,
2721 unsigned long n)
1da177e4
LT
2722{
2723 char *t = to;
2724 const char __user *f = from;
2725 char c;
2726
2727 if (!access_ok(VERIFY_READ, from, n))
2728 return n;
2729
2730 while (n) {
2731 if (__get_user(c, f)) {
2732 memset(t, 0, n);
2733 break;
2734 }
2735 *t++ = c;
2736 f++;
2737 n--;
2738 }
2739 return n;
2740}
2741
b40ef869 2742void *copy_mount_options(const void __user * data)
1da177e4
LT
2743{
2744 int i;
1da177e4 2745 unsigned long size;
b40ef869 2746 char *copy;
b58fed8b 2747
1da177e4 2748 if (!data)
b40ef869 2749 return NULL;
1da177e4 2750
b40ef869
AV
2751 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2752 if (!copy)
2753 return ERR_PTR(-ENOMEM);
1da177e4
LT
2754
2755 /* We only care that *some* data at the address the user
2756 * gave us is valid. Just in case, we'll zero
2757 * the remainder of the page.
2758 */
2759 /* copy_from_user cannot cross TASK_SIZE ! */
2760 size = TASK_SIZE - (unsigned long)data;
2761 if (size > PAGE_SIZE)
2762 size = PAGE_SIZE;
2763
b40ef869 2764 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2765 if (!i) {
b40ef869
AV
2766 kfree(copy);
2767 return ERR_PTR(-EFAULT);
1da177e4
LT
2768 }
2769 if (i != PAGE_SIZE)
b40ef869
AV
2770 memset(copy + i, 0, PAGE_SIZE - i);
2771 return copy;
1da177e4
LT
2772}
2773
b8850d1f 2774char *copy_mount_string(const void __user *data)
eca6f534 2775{
b8850d1f 2776 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2777}
2778
1da177e4
LT
2779/*
2780 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2781 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2782 *
2783 * data is a (void *) that can point to any structure up to
2784 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2785 * information (or be NULL).
2786 *
2787 * Pre-0.97 versions of mount() didn't have a flags word.
2788 * When the flags word was introduced its top half was required
2789 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2790 * Therefore, if this magic number is present, it carries no information
2791 * and must be discarded.
2792 */
5e6123f3 2793long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2794 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2795{
2d92ab3c 2796 struct path path;
e462ec50 2797 unsigned int mnt_flags = 0, sb_flags;
1da177e4 2798 int retval = 0;
1da177e4
LT
2799
2800 /* Discard magic */
2801 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2802 flags &= ~MS_MGC_MSK;
2803
2804 /* Basic sanity checks */
1da177e4
LT
2805 if (data_page)
2806 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2807
e462ec50
DH
2808 if (flags & MS_NOUSER)
2809 return -EINVAL;
2810
a27ab9f2 2811 /* ... and get the mountpoint */
5e6123f3 2812 retval = user_path(dir_name, &path);
a27ab9f2
TH
2813 if (retval)
2814 return retval;
2815
2816 retval = security_sb_mount(dev_name, &path,
2817 type_page, flags, data_page);
0d5cadb8
AV
2818 if (!retval && !may_mount())
2819 retval = -EPERM;
e462ec50 2820 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 2821 retval = -EPERM;
a27ab9f2
TH
2822 if (retval)
2823 goto dput_out;
2824
613cbe3d
AK
2825 /* Default to relatime unless overriden */
2826 if (!(flags & MS_NOATIME))
2827 mnt_flags |= MNT_RELATIME;
0a1c01c9 2828
1da177e4
LT
2829 /* Separate the per-mountpoint flags */
2830 if (flags & MS_NOSUID)
2831 mnt_flags |= MNT_NOSUID;
2832 if (flags & MS_NODEV)
2833 mnt_flags |= MNT_NODEV;
2834 if (flags & MS_NOEXEC)
2835 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2836 if (flags & MS_NOATIME)
2837 mnt_flags |= MNT_NOATIME;
2838 if (flags & MS_NODIRATIME)
2839 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2840 if (flags & MS_STRICTATIME)
2841 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 2842 if (flags & MS_RDONLY)
2e4b7fcd 2843 mnt_flags |= MNT_READONLY;
fc33a7bb 2844
ffbc6f0e
EB
2845 /* The default atime for remount is preservation */
2846 if ((flags & MS_REMOUNT) &&
2847 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2848 MS_STRICTATIME)) == 0)) {
2849 mnt_flags &= ~MNT_ATIME_MASK;
2850 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2851 }
2852
e462ec50
DH
2853 sb_flags = flags & (SB_RDONLY |
2854 SB_SYNCHRONOUS |
2855 SB_MANDLOCK |
2856 SB_DIRSYNC |
2857 SB_SILENT |
917086ff 2858 SB_POSIXACL |
d7ee9469 2859 SB_LAZYTIME |
917086ff 2860 SB_I_VERSION);
1da177e4 2861
1da177e4 2862 if (flags & MS_REMOUNT)
e462ec50 2863 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
2864 data_page);
2865 else if (flags & MS_BIND)
2d92ab3c 2866 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2867 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2868 retval = do_change_type(&path, flags);
1da177e4 2869 else if (flags & MS_MOVE)
2d92ab3c 2870 retval = do_move_mount(&path, dev_name);
1da177e4 2871 else
e462ec50 2872 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
2873 dev_name, data_page);
2874dput_out:
2d92ab3c 2875 path_put(&path);
1da177e4
LT
2876 return retval;
2877}
2878
537f7ccb
EB
2879static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2880{
2881 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2882}
2883
2884static void dec_mnt_namespaces(struct ucounts *ucounts)
2885{
2886 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2887}
2888
771b1371
EB
2889static void free_mnt_ns(struct mnt_namespace *ns)
2890{
6344c433 2891 ns_free_inum(&ns->ns);
537f7ccb 2892 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2893 put_user_ns(ns->user_ns);
2894 kfree(ns);
2895}
2896
8823c079
EB
2897/*
2898 * Assign a sequence number so we can detect when we attempt to bind
2899 * mount a reference to an older mount namespace into the current
2900 * mount namespace, preventing reference counting loops. A 64bit
2901 * number incrementing at 10Ghz will take 12,427 years to wrap which
2902 * is effectively never, so we can ignore the possibility.
2903 */
2904static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2905
771b1371 2906static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2907{
2908 struct mnt_namespace *new_ns;
537f7ccb 2909 struct ucounts *ucounts;
98f842e6 2910 int ret;
cf8d2c11 2911
537f7ccb
EB
2912 ucounts = inc_mnt_namespaces(user_ns);
2913 if (!ucounts)
df75e774 2914 return ERR_PTR(-ENOSPC);
537f7ccb 2915
cf8d2c11 2916 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2917 if (!new_ns) {
2918 dec_mnt_namespaces(ucounts);
cf8d2c11 2919 return ERR_PTR(-ENOMEM);
537f7ccb 2920 }
6344c433 2921 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2922 if (ret) {
2923 kfree(new_ns);
537f7ccb 2924 dec_mnt_namespaces(ucounts);
98f842e6
EB
2925 return ERR_PTR(ret);
2926 }
33c42940 2927 new_ns->ns.ops = &mntns_operations;
8823c079 2928 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2929 atomic_set(&new_ns->count, 1);
2930 new_ns->root = NULL;
2931 INIT_LIST_HEAD(&new_ns->list);
2932 init_waitqueue_head(&new_ns->poll);
2933 new_ns->event = 0;
771b1371 2934 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2935 new_ns->ucounts = ucounts;
d2921684
EB
2936 new_ns->mounts = 0;
2937 new_ns->pending_mounts = 0;
cf8d2c11
TM
2938 return new_ns;
2939}
2940
0766f788 2941__latent_entropy
9559f689
AV
2942struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2943 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2944{
6b3286ed 2945 struct mnt_namespace *new_ns;
7f2da1e7 2946 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2947 struct mount *p, *q;
9559f689 2948 struct mount *old;
cb338d06 2949 struct mount *new;
7a472ef4 2950 int copy_flags;
1da177e4 2951
9559f689
AV
2952 BUG_ON(!ns);
2953
2954 if (likely(!(flags & CLONE_NEWNS))) {
2955 get_mnt_ns(ns);
2956 return ns;
2957 }
2958
2959 old = ns->root;
2960
771b1371 2961 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2962 if (IS_ERR(new_ns))
2963 return new_ns;
1da177e4 2964
97216be0 2965 namespace_lock();
1da177e4 2966 /* First pass: copy the tree topology */
4ce5d2b1 2967 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2968 if (user_ns != ns->user_ns)
132c94e3 2969 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2970 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2971 if (IS_ERR(new)) {
328e6d90 2972 namespace_unlock();
771b1371 2973 free_mnt_ns(new_ns);
be34d1a3 2974 return ERR_CAST(new);
1da177e4 2975 }
be08d6d2 2976 new_ns->root = new;
1a4eeaf2 2977 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2978
2979 /*
2980 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2981 * as belonging to new namespace. We have already acquired a private
2982 * fs_struct, so tsk->fs->lock is not needed.
2983 */
909b0a88 2984 p = old;
cb338d06 2985 q = new;
1da177e4 2986 while (p) {
143c8c91 2987 q->mnt_ns = new_ns;
d2921684 2988 new_ns->mounts++;
9559f689
AV
2989 if (new_fs) {
2990 if (&p->mnt == new_fs->root.mnt) {
2991 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2992 rootmnt = &p->mnt;
1da177e4 2993 }
9559f689
AV
2994 if (&p->mnt == new_fs->pwd.mnt) {
2995 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2996 pwdmnt = &p->mnt;
1da177e4 2997 }
1da177e4 2998 }
909b0a88
AV
2999 p = next_mnt(p, old);
3000 q = next_mnt(q, new);
4ce5d2b1
EB
3001 if (!q)
3002 break;
3003 while (p->mnt.mnt_root != q->mnt.mnt_root)
3004 p = next_mnt(p, old);
1da177e4 3005 }
328e6d90 3006 namespace_unlock();
1da177e4 3007
1da177e4 3008 if (rootmnt)
f03c6599 3009 mntput(rootmnt);
1da177e4 3010 if (pwdmnt)
f03c6599 3011 mntput(pwdmnt);
1da177e4 3012
741a2951 3013 return new_ns;
1da177e4
LT
3014}
3015
cf8d2c11
TM
3016/**
3017 * create_mnt_ns - creates a private namespace and adds a root filesystem
3018 * @mnt: pointer to the new root filesystem mountpoint
3019 */
1a4eeaf2 3020static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 3021{
771b1371 3022 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 3023 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
3024 struct mount *mnt = real_mount(m);
3025 mnt->mnt_ns = new_ns;
be08d6d2 3026 new_ns->root = mnt;
d2921684 3027 new_ns->mounts++;
b1983cd8 3028 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 3029 } else {
1a4eeaf2 3030 mntput(m);
cf8d2c11
TM
3031 }
3032 return new_ns;
3033}
cf8d2c11 3034
ea441d11
AV
3035struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3036{
3037 struct mnt_namespace *ns;
d31da0f0 3038 struct super_block *s;
ea441d11
AV
3039 struct path path;
3040 int err;
3041
3042 ns = create_mnt_ns(mnt);
3043 if (IS_ERR(ns))
3044 return ERR_CAST(ns);
3045
3046 err = vfs_path_lookup(mnt->mnt_root, mnt,
3047 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3048
3049 put_mnt_ns(ns);
3050
3051 if (err)
3052 return ERR_PTR(err);
3053
3054 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3055 s = path.mnt->mnt_sb;
3056 atomic_inc(&s->s_active);
ea441d11
AV
3057 mntput(path.mnt);
3058 /* lock the sucker */
d31da0f0 3059 down_write(&s->s_umount);
ea441d11
AV
3060 /* ... and return the root of (sub)tree on it */
3061 return path.dentry;
3062}
3063EXPORT_SYMBOL(mount_subtree);
3064
312db1aa
DB
3065int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3066 unsigned long flags, void __user *data)
1da177e4 3067{
eca6f534
VN
3068 int ret;
3069 char *kernel_type;
eca6f534 3070 char *kernel_dev;
b40ef869 3071 void *options;
1da177e4 3072
b8850d1f
TG
3073 kernel_type = copy_mount_string(type);
3074 ret = PTR_ERR(kernel_type);
3075 if (IS_ERR(kernel_type))
eca6f534 3076 goto out_type;
1da177e4 3077
b8850d1f
TG
3078 kernel_dev = copy_mount_string(dev_name);
3079 ret = PTR_ERR(kernel_dev);
3080 if (IS_ERR(kernel_dev))
eca6f534 3081 goto out_dev;
1da177e4 3082
b40ef869
AV
3083 options = copy_mount_options(data);
3084 ret = PTR_ERR(options);
3085 if (IS_ERR(options))
eca6f534 3086 goto out_data;
1da177e4 3087
b40ef869 3088 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3089
b40ef869 3090 kfree(options);
eca6f534
VN
3091out_data:
3092 kfree(kernel_dev);
3093out_dev:
eca6f534
VN
3094 kfree(kernel_type);
3095out_type:
3096 return ret;
1da177e4
LT
3097}
3098
312db1aa
DB
3099SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3100 char __user *, type, unsigned long, flags, void __user *, data)
3101{
3102 return ksys_mount(dev_name, dir_name, type, flags, data);
3103}
3104
afac7cba
AV
3105/*
3106 * Return true if path is reachable from root
3107 *
48a066e7 3108 * namespace_sem or mount_lock is held
afac7cba 3109 */
643822b4 3110bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3111 const struct path *root)
3112{
643822b4 3113 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3114 dentry = mnt->mnt_mountpoint;
0714a533 3115 mnt = mnt->mnt_parent;
afac7cba 3116 }
643822b4 3117 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3118}
3119
640eb7e7 3120bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3121{
25ab4c9b 3122 bool res;
48a066e7 3123 read_seqlock_excl(&mount_lock);
643822b4 3124 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3125 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3126 return res;
3127}
3128EXPORT_SYMBOL(path_is_under);
3129
1da177e4
LT
3130/*
3131 * pivot_root Semantics:
3132 * Moves the root file system of the current process to the directory put_old,
3133 * makes new_root as the new root file system of the current process, and sets
3134 * root/cwd of all processes which had them on the current root to new_root.
3135 *
3136 * Restrictions:
3137 * The new_root and put_old must be directories, and must not be on the
3138 * same file system as the current process root. The put_old must be
3139 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3140 * pointed to by put_old must yield the same directory as new_root. No other
3141 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3142 *
4a0d11fa
NB
3143 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3144 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3145 * in this situation.
3146 *
1da177e4
LT
3147 * Notes:
3148 * - we don't move root/cwd if they are not at the root (reason: if something
3149 * cared enough to change them, it's probably wrong to force them elsewhere)
3150 * - it's okay to pick a root that isn't the root of a file system, e.g.
3151 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3152 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3153 * first.
3154 */
3480b257
HC
3155SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3156 const char __user *, put_old)
1da177e4 3157{
2d8f3038 3158 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3159 struct mount *new_mnt, *root_mnt, *old_mnt;
3160 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3161 int error;
3162
9b40bc90 3163 if (!may_mount())
1da177e4
LT
3164 return -EPERM;
3165
2d8f3038 3166 error = user_path_dir(new_root, &new);
1da177e4
LT
3167 if (error)
3168 goto out0;
1da177e4 3169
2d8f3038 3170 error = user_path_dir(put_old, &old);
1da177e4
LT
3171 if (error)
3172 goto out1;
3173
2d8f3038 3174 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3175 if (error)
3176 goto out2;
1da177e4 3177
f7ad3c6b 3178 get_fs_root(current->fs, &root);
84d17192
AV
3179 old_mp = lock_mount(&old);
3180 error = PTR_ERR(old_mp);
3181 if (IS_ERR(old_mp))
b12cea91
AV
3182 goto out3;
3183
1da177e4 3184 error = -EINVAL;
419148da
AV
3185 new_mnt = real_mount(new.mnt);
3186 root_mnt = real_mount(root.mnt);
84d17192
AV
3187 old_mnt = real_mount(old.mnt);
3188 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3189 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3190 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3191 goto out4;
143c8c91 3192 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3193 goto out4;
5ff9d8a6
EB
3194 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3195 goto out4;
1da177e4 3196 error = -ENOENT;
f3da392e 3197 if (d_unlinked(new.dentry))
b12cea91 3198 goto out4;
1da177e4 3199 error = -EBUSY;
84d17192 3200 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3201 goto out4; /* loop, on the same file system */
1da177e4 3202 error = -EINVAL;
8c3ee42e 3203 if (root.mnt->mnt_root != root.dentry)
b12cea91 3204 goto out4; /* not a mountpoint */
676da58d 3205 if (!mnt_has_parent(root_mnt))
b12cea91 3206 goto out4; /* not attached */
84d17192 3207 root_mp = root_mnt->mnt_mp;
2d8f3038 3208 if (new.mnt->mnt_root != new.dentry)
b12cea91 3209 goto out4; /* not a mountpoint */
676da58d 3210 if (!mnt_has_parent(new_mnt))
b12cea91 3211 goto out4; /* not attached */
4ac91378 3212 /* make sure we can reach put_old from new_root */
84d17192 3213 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3214 goto out4;
0d082601
EB
3215 /* make certain new is below the root */
3216 if (!is_path_reachable(new_mnt, new.dentry, &root))
3217 goto out4;
84d17192 3218 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3219 lock_mount_hash();
419148da
AV
3220 detach_mnt(new_mnt, &parent_path);
3221 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3222 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3223 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3224 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3225 }
4ac91378 3226 /* mount old root on put_old */
84d17192 3227 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3228 /* mount new_root on / */
84d17192 3229 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3230 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3231 /* A moved mount should not expire automatically */
3232 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3233 put_mountpoint(root_mp);
719ea2fb 3234 unlock_mount_hash();
2d8f3038 3235 chroot_fs_refs(&root, &new);
1da177e4 3236 error = 0;
b12cea91 3237out4:
84d17192 3238 unlock_mount(old_mp);
b12cea91
AV
3239 if (!error) {
3240 path_put(&root_parent);
3241 path_put(&parent_path);
3242 }
3243out3:
8c3ee42e 3244 path_put(&root);
b12cea91 3245out2:
2d8f3038 3246 path_put(&old);
1da177e4 3247out1:
2d8f3038 3248 path_put(&new);
1da177e4 3249out0:
1da177e4 3250 return error;
1da177e4
LT
3251}
3252
3253static void __init init_mount_tree(void)
3254{
3255 struct vfsmount *mnt;
6b3286ed 3256 struct mnt_namespace *ns;
ac748a09 3257 struct path root;
0c55cfc4 3258 struct file_system_type *type;
1da177e4 3259
0c55cfc4
EB
3260 type = get_fs_type("rootfs");
3261 if (!type)
3262 panic("Can't find rootfs type");
3263 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3264 put_filesystem(type);
1da177e4
LT
3265 if (IS_ERR(mnt))
3266 panic("Can't create rootfs");
b3e19d92 3267
3b22edc5
TM
3268 ns = create_mnt_ns(mnt);
3269 if (IS_ERR(ns))
1da177e4 3270 panic("Can't allocate initial namespace");
6b3286ed
KK
3271
3272 init_task.nsproxy->mnt_ns = ns;
3273 get_mnt_ns(ns);
3274
be08d6d2
AV
3275 root.mnt = mnt;
3276 root.dentry = mnt->mnt_root;
da362b09 3277 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3278
3279 set_fs_pwd(current->fs, &root);
3280 set_fs_root(current->fs, &root);
1da177e4
LT
3281}
3282
74bf17cf 3283void __init mnt_init(void)
1da177e4 3284{
15a67dd8 3285 int err;
1da177e4 3286
7d6fec45 3287 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3288 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3289
0818bf27 3290 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3291 sizeof(struct hlist_head),
0818bf27 3292 mhash_entries, 19,
3d375d78 3293 HASH_ZERO,
0818bf27
AV
3294 &m_hash_shift, &m_hash_mask, 0, 0);
3295 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3296 sizeof(struct hlist_head),
3297 mphash_entries, 19,
3d375d78 3298 HASH_ZERO,
0818bf27 3299 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3300
84d17192 3301 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3302 panic("Failed to allocate mount hash table\n");
3303
4b93dc9b
TH
3304 kernfs_init();
3305
15a67dd8
RD
3306 err = sysfs_init();
3307 if (err)
3308 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3309 __func__, err);
00d26666
GKH
3310 fs_kobj = kobject_create_and_add("fs", NULL);
3311 if (!fs_kobj)
8e24eea7 3312 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3313 init_rootfs();
3314 init_mount_tree();
3315}
3316
616511d0 3317void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3318{
d498b25a 3319 if (!atomic_dec_and_test(&ns->count))
616511d0 3320 return;
7b00ed6f 3321 drop_collected_mounts(&ns->root->mnt);
771b1371 3322 free_mnt_ns(ns);
1da177e4 3323}
9d412a43
AV
3324
3325struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3326{
423e0ab0 3327 struct vfsmount *mnt;
e462ec50 3328 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
423e0ab0
TC
3329 if (!IS_ERR(mnt)) {
3330 /*
3331 * it is a longterm mount, don't release mnt until
3332 * we unmount before file sys is unregistered
3333 */
f7a99c5b 3334 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3335 }
3336 return mnt;
9d412a43
AV
3337}
3338EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3339
3340void kern_unmount(struct vfsmount *mnt)
3341{
3342 /* release long term mount so mount point can be released */
3343 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3344 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3345 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3346 mntput(mnt);
3347 }
3348}
3349EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3350
3351bool our_mnt(struct vfsmount *mnt)
3352{
143c8c91 3353 return check_mnt(real_mount(mnt));
02125a82 3354}
8823c079 3355
3151527e
EB
3356bool current_chrooted(void)
3357{
3358 /* Does the current process have a non-standard root */
3359 struct path ns_root;
3360 struct path fs_root;
3361 bool chrooted;
3362
3363 /* Find the namespace root */
3364 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3365 ns_root.dentry = ns_root.mnt->mnt_root;
3366 path_get(&ns_root);
3367 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3368 ;
3369
3370 get_fs_root(current->fs, &fs_root);
3371
3372 chrooted = !path_equal(&fs_root, &ns_root);
3373
3374 path_put(&fs_root);
3375 path_put(&ns_root);
3376
3377 return chrooted;
3378}
3379
8654df4e
EB
3380static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3381 int *new_mnt_flags)
87a8ebd6 3382{
8c6cf9cc 3383 int new_flags = *new_mnt_flags;
87a8ebd6 3384 struct mount *mnt;
e51db735 3385 bool visible = false;
87a8ebd6 3386
44bb4385 3387 down_read(&namespace_sem);
87a8ebd6 3388 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3389 struct mount *child;
77b1a97d
EB
3390 int mnt_flags;
3391
8654df4e 3392 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3393 continue;
3394
7e96c1b0
EB
3395 /* This mount is not fully visible if it's root directory
3396 * is not the root directory of the filesystem.
3397 */
3398 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3399 continue;
3400
a1935c17 3401 /* A local view of the mount flags */
77b1a97d 3402 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3403
695e9df0 3404 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3405 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3406 mnt_flags |= MNT_LOCK_READONLY;
3407
8c6cf9cc
EB
3408 /* Verify the mount flags are equal to or more permissive
3409 * than the proposed new mount.
3410 */
77b1a97d 3411 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3412 !(new_flags & MNT_READONLY))
3413 continue;
77b1a97d
EB
3414 if ((mnt_flags & MNT_LOCK_ATIME) &&
3415 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3416 continue;
3417
ceeb0e5d
EB
3418 /* This mount is not fully visible if there are any
3419 * locked child mounts that cover anything except for
3420 * empty directories.
e51db735
EB
3421 */
3422 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3423 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3424 /* Only worry about locked mounts */
d71ed6c9 3425 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3426 continue;
7236c85e
EB
3427 /* Is the directory permanetly empty? */
3428 if (!is_empty_dir_inode(inode))
e51db735 3429 goto next;
87a8ebd6 3430 }
8c6cf9cc 3431 /* Preserve the locked attributes */
77b1a97d 3432 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3433 MNT_LOCK_ATIME);
e51db735
EB
3434 visible = true;
3435 goto found;
3436 next: ;
87a8ebd6 3437 }
e51db735 3438found:
44bb4385 3439 up_read(&namespace_sem);
e51db735 3440 return visible;
87a8ebd6
EB
3441}
3442
8654df4e
EB
3443static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3444{
a1935c17 3445 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3446 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3447 unsigned long s_iflags;
3448
3449 if (ns->user_ns == &init_user_ns)
3450 return false;
3451
3452 /* Can this filesystem be too revealing? */
3453 s_iflags = mnt->mnt_sb->s_iflags;
3454 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3455 return false;
3456
a1935c17
EB
3457 if ((s_iflags & required_iflags) != required_iflags) {
3458 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3459 required_iflags);
3460 return true;
3461 }
3462
8654df4e
EB
3463 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3464}
3465
380cf5ba
AL
3466bool mnt_may_suid(struct vfsmount *mnt)
3467{
3468 /*
3469 * Foreign mounts (accessed via fchdir or through /proc
3470 * symlinks) are always treated as if they are nosuid. This
3471 * prevents namespaces from trusting potentially unsafe
3472 * suid/sgid bits, file caps, or security labels that originate
3473 * in other namespaces.
3474 */
3475 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3476 current_in_userns(mnt->mnt_sb->s_user_ns);
3477}
3478
64964528 3479static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3480{
58be2825 3481 struct ns_common *ns = NULL;
8823c079
EB
3482 struct nsproxy *nsproxy;
3483
728dba3a
EB
3484 task_lock(task);
3485 nsproxy = task->nsproxy;
8823c079 3486 if (nsproxy) {
58be2825
AV
3487 ns = &nsproxy->mnt_ns->ns;
3488 get_mnt_ns(to_mnt_ns(ns));
8823c079 3489 }
728dba3a 3490 task_unlock(task);
8823c079
EB
3491
3492 return ns;
3493}
3494
64964528 3495static void mntns_put(struct ns_common *ns)
8823c079 3496{
58be2825 3497 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3498}
3499
64964528 3500static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3501{
3502 struct fs_struct *fs = current->fs;
4f757f3c 3503 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3504 struct path root;
4f757f3c 3505 int err;
8823c079 3506
0c55cfc4 3507 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3508 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3509 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3510 return -EPERM;
8823c079
EB
3511
3512 if (fs->users != 1)
3513 return -EINVAL;
3514
3515 get_mnt_ns(mnt_ns);
4f757f3c 3516 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3517 nsproxy->mnt_ns = mnt_ns;
3518
3519 /* Find the root */
4f757f3c
AV
3520 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3521 "/", LOOKUP_DOWN, &root);
3522 if (err) {
3523 /* revert to old namespace */
3524 nsproxy->mnt_ns = old_mnt_ns;
3525 put_mnt_ns(mnt_ns);
3526 return err;
3527 }
8823c079 3528
4068367c
AV
3529 put_mnt_ns(old_mnt_ns);
3530
8823c079
EB
3531 /* Update the pwd and root */
3532 set_fs_pwd(fs, &root);
3533 set_fs_root(fs, &root);
3534
3535 path_put(&root);
3536 return 0;
3537}
3538
bcac25a5
AV
3539static struct user_namespace *mntns_owner(struct ns_common *ns)
3540{
3541 return to_mnt_ns(ns)->user_ns;
3542}
3543
8823c079
EB
3544const struct proc_ns_operations mntns_operations = {
3545 .name = "mnt",
3546 .type = CLONE_NEWNS,
3547 .get = mntns_get,
3548 .put = mntns_put,
3549 .install = mntns_install,
bcac25a5 3550 .owner = mntns_owner,
8823c079 3551};