]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/fec_mxc.c
FEC: Properly align address over the buffers for cache ops
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
0b23fb36
IY
1/*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <malloc.h>
26#include <net.h>
27#include <miiphy.h>
28#include "fec_mxc.h"
29
30#include <asm/arch/clock.h>
31#include <asm/arch/imx-regs.h>
32#include <asm/io.h>
33#include <asm/errno.h>
e2a66e60 34#include <linux/compiler.h>
0b23fb36
IY
35
36DECLARE_GLOBAL_DATA_PTR;
37
38#ifndef CONFIG_MII
39#error "CONFIG_MII has to be defined!"
40#endif
41
5c1ad3e6
EN
42#ifndef CONFIG_FEC_XCV_TYPE
43#define CONFIG_FEC_XCV_TYPE MII100
392b8502
MV
44#endif
45
be7e87e2
MV
46/*
47 * The i.MX28 operates with packets in big endian. We need to swap them before
48 * sending and after receiving.
49 */
5c1ad3e6
EN
50#ifdef CONFIG_MX28
51#define CONFIG_FEC_MXC_SWAP_PACKET
52#endif
53
54#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
55
56/* Check various alignment issues at compile time */
57#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
58#error "ARCH_DMA_MINALIGN must be multiple of 16!"
59#endif
60
61#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
62 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
63#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
be7e87e2
MV
64#endif
65
0b23fb36
IY
66#undef DEBUG
67
68struct nbuf {
69 uint8_t data[1500]; /**< actual data */
70 int length; /**< actual length */
71 int used; /**< buffer in use or not */
72 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
73};
74
5c1ad3e6 75#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
76static void swap_packet(uint32_t *packet, int length)
77{
78 int i;
79
80 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
81 packet[i] = __swab32(packet[i]);
82}
83#endif
84
0b23fb36
IY
85/*
86 * MII-interface related functions
87 */
13947f43
TK
88static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
89 uint8_t regAddr)
0b23fb36 90{
0b23fb36
IY
91 uint32_t reg; /* convenient holder for the PHY register */
92 uint32_t phy; /* convenient holder for the PHY */
93 uint32_t start;
13947f43 94 int val;
0b23fb36
IY
95
96 /*
97 * reading from any PHY's register is done by properly
98 * programming the FEC's MII data register.
99 */
d133b881 100 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
101 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
102 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
103
104 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 105 phy | reg, &eth->mii_data);
0b23fb36
IY
106
107 /*
108 * wait for the related interrupt
109 */
a60d1e5b 110 start = get_timer(0);
d133b881 111 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
112 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
113 printf("Read MDIO failed...\n");
114 return -1;
115 }
116 }
117
118 /*
119 * clear mii interrupt bit
120 */
d133b881 121 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
122
123 /*
124 * it's now safe to read the PHY's register
125 */
13947f43
TK
126 val = (unsigned short)readl(&eth->mii_data);
127 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
128 regAddr, val);
129 return val;
0b23fb36
IY
130}
131
4294b248
SB
132static void fec_mii_setspeed(struct fec_priv *fec)
133{
134 /*
135 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
136 * and do not drop the Preamble.
137 */
138 writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
139 &fec->eth->mii_speed);
13947f43 140 debug("%s: mii_speed %08x\n", __func__, readl(&fec->eth->mii_speed));
4294b248 141}
0b23fb36 142
13947f43
TK
143static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
144 uint8_t regAddr, uint16_t data)
145{
0b23fb36
IY
146 uint32_t reg; /* convenient holder for the PHY register */
147 uint32_t phy; /* convenient holder for the PHY */
148 uint32_t start;
149
150 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
151 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
152
153 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 154 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36
IY
155
156 /*
157 * wait for the MII interrupt
158 */
a60d1e5b 159 start = get_timer(0);
d133b881 160 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
161 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
162 printf("Write MDIO failed...\n");
163 return -1;
164 }
165 }
166
167 /*
168 * clear MII interrupt bit
169 */
d133b881 170 writel(FEC_IEVENT_MII, &eth->ievent);
13947f43 171 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
0b23fb36
IY
172 regAddr, data);
173
174 return 0;
175}
176
13947f43
TK
177int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
178{
179 return fec_mdio_read(bus->priv, phyAddr, regAddr);
180}
181
182int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
183 u16 data)
184{
185 return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
186}
187
188#ifndef CONFIG_PHYLIB
0b23fb36
IY
189static int miiphy_restart_aneg(struct eth_device *dev)
190{
b774fe9d
SB
191 int ret = 0;
192#if !defined(CONFIG_FEC_MXC_NO_ANEG)
9e27e9dc 193 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 194 struct ethernet_regs *eth = fec->bus->priv;
9e27e9dc 195
0b23fb36
IY
196 /*
197 * Wake up from sleep if necessary
198 * Reset PHY, then delay 300ns
199 */
cb17b92d 200#ifdef CONFIG_MX27
13947f43 201 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
cb17b92d 202#endif
13947f43 203 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
0b23fb36
IY
204 udelay(1000);
205
206 /*
207 * Set the auto-negotiation advertisement register bits
208 */
13947f43 209 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
8ef583a0
MF
210 LPA_100FULL | LPA_100HALF | LPA_10FULL |
211 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
13947f43 212 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
8ef583a0 213 BMCR_ANENABLE | BMCR_ANRESTART);
2e5f4421
MV
214
215 if (fec->mii_postcall)
216 ret = fec->mii_postcall(fec->phy_id);
217
b774fe9d 218#endif
2e5f4421 219 return ret;
0b23fb36
IY
220}
221
222static int miiphy_wait_aneg(struct eth_device *dev)
223{
224 uint32_t start;
13947f43 225 int status;
9e27e9dc 226 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 227 struct ethernet_regs *eth = fec->bus->priv;
0b23fb36
IY
228
229 /*
230 * Wait for AN completion
231 */
a60d1e5b 232 start = get_timer(0);
0b23fb36
IY
233 do {
234 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
235 printf("%s: Autonegotiation timeout\n", dev->name);
236 return -1;
237 }
238
13947f43
TK
239 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
240 if (status < 0) {
241 printf("%s: Autonegotiation failed. status: %d\n",
0b23fb36
IY
242 dev->name, status);
243 return -1;
244 }
8ef583a0 245 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
246
247 return 0;
248}
13947f43
TK
249#endif
250
0b23fb36
IY
251static int fec_rx_task_enable(struct fec_priv *fec)
252{
253 writel(1 << 24, &fec->eth->r_des_active);
254 return 0;
255}
256
257static int fec_rx_task_disable(struct fec_priv *fec)
258{
259 return 0;
260}
261
262static int fec_tx_task_enable(struct fec_priv *fec)
263{
264 writel(1 << 24, &fec->eth->x_des_active);
265 return 0;
266}
267
268static int fec_tx_task_disable(struct fec_priv *fec)
269{
270 return 0;
271}
272
273/**
274 * Initialize receive task's buffer descriptors
275 * @param[in] fec all we know about the device yet
276 * @param[in] count receive buffer count to be allocated
5c1ad3e6 277 * @param[in] dsize desired size of each receive buffer
0b23fb36
IY
278 * @return 0 on success
279 *
280 * For this task we need additional memory for the data buffers. And each
281 * data buffer requires some alignment. Thy must be aligned to a specific
5c1ad3e6 282 * boundary each.
0b23fb36 283 */
5c1ad3e6 284static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
0b23fb36 285{
5c1ad3e6
EN
286 uint32_t size;
287 int i;
288
0b23fb36 289 /*
5c1ad3e6
EN
290 * Allocate memory for the buffers. This allocation respects the
291 * alignment
0b23fb36 292 */
5c1ad3e6
EN
293 size = roundup(dsize, ARCH_DMA_MINALIGN);
294 for (i = 0; i < count; i++) {
295 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
296 if (data_ptr == 0) {
297 uint8_t *data = memalign(ARCH_DMA_MINALIGN,
298 size);
299 if (!data) {
300 printf("%s: error allocating rxbuf %d\n",
301 __func__, i);
302 goto err;
303 }
304 writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
305 } /* needs allocation */
306 writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
307 writew(0, &fec->rbd_base[i].data_length);
308 }
309
310 /* Mark the last RBD to close the ring. */
311 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
0b23fb36
IY
312 fec->rbd_index = 0;
313
314 return 0;
5c1ad3e6
EN
315
316err:
317 for (; i >= 0; i--) {
318 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
319 free((void *)data_ptr);
320 }
321
322 return -ENOMEM;
0b23fb36
IY
323}
324
325/**
326 * Initialize transmit task's buffer descriptors
327 * @param[in] fec all we know about the device yet
328 *
329 * Transmit buffers are created externally. We only have to init the BDs here.\n
330 * Note: There is a race condition in the hardware. When only one BD is in
331 * use it must be marked with the WRAP bit to use it for every transmitt.
332 * This bit in combination with the READY bit results into double transmit
333 * of each data buffer. It seems the state machine checks READY earlier then
334 * resetting it after the first transfer.
335 * Using two BDs solves this issue.
336 */
337static void fec_tbd_init(struct fec_priv *fec)
338{
5c1ad3e6
EN
339 unsigned addr = (unsigned)fec->tbd_base;
340 unsigned size = roundup(2 * sizeof(struct fec_bd),
341 ARCH_DMA_MINALIGN);
0b23fb36
IY
342 writew(0x0000, &fec->tbd_base[0].status);
343 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
344 fec->tbd_index = 0;
5c1ad3e6 345 flush_dcache_range(addr, addr+size);
0b23fb36
IY
346}
347
348/**
349 * Mark the given read buffer descriptor as free
350 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
351 * @param[in] pRbd buffer descriptor to mark free again
352 */
353static void fec_rbd_clean(int last, struct fec_bd *pRbd)
354{
5c1ad3e6 355 unsigned short flags = FEC_RBD_EMPTY;
0b23fb36 356 if (last)
5c1ad3e6
EN
357 flags |= FEC_RBD_WRAP;
358 writew(flags, &pRbd->status);
0b23fb36
IY
359 writew(0, &pRbd->data_length);
360}
361
be252b65
FE
362static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
363 unsigned char *mac)
0b23fb36 364{
be252b65 365 imx_get_mac_from_fuse(dev_id, mac);
2e236bf2 366 return !is_valid_ether_addr(mac);
0b23fb36
IY
367}
368
4294b248 369static int fec_set_hwaddr(struct eth_device *dev)
0b23fb36 370{
4294b248 371 uchar *mac = dev->enetaddr;
0b23fb36
IY
372 struct fec_priv *fec = (struct fec_priv *)dev->priv;
373
374 writel(0, &fec->eth->iaddr1);
375 writel(0, &fec->eth->iaddr2);
376 writel(0, &fec->eth->gaddr1);
377 writel(0, &fec->eth->gaddr2);
378
379 /*
380 * Set physical address
381 */
382 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
383 &fec->eth->paddr1);
384 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
385
386 return 0;
387}
388
13947f43
TK
389static void fec_eth_phy_config(struct eth_device *dev)
390{
391#ifdef CONFIG_PHYLIB
392 struct fec_priv *fec = (struct fec_priv *)dev->priv;
393 struct phy_device *phydev;
394
395 phydev = phy_connect(fec->bus, fec->phy_id, dev,
396 PHY_INTERFACE_MODE_RGMII);
397 if (phydev) {
398 fec->phydev = phydev;
399 phy_config(phydev);
400 }
401#endif
402}
403
a5990b26
MV
404/*
405 * Do initial configuration of the FEC registers
406 */
407static void fec_reg_setup(struct fec_priv *fec)
408{
409 uint32_t rcntrl;
410
411 /*
412 * Set interrupt mask register
413 */
414 writel(0x00000000, &fec->eth->imask);
415
416 /*
417 * Clear FEC-Lite interrupt event register(IEVENT)
418 */
419 writel(0xffffffff, &fec->eth->ievent);
420
421
422 /*
423 * Set FEC-Lite receive control register(R_CNTRL):
424 */
425
426 /* Start with frame length = 1518, common for all modes. */
427 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
9d2d924a 428 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
429 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
430 if (fec->xcv_type == RGMII)
a5990b26
MV
431 rcntrl |= FEC_RCNTRL_RGMII;
432 else if (fec->xcv_type == RMII)
433 rcntrl |= FEC_RCNTRL_RMII;
a5990b26
MV
434
435 writel(rcntrl, &fec->eth->r_cntrl);
436}
437
0b23fb36
IY
438/**
439 * Start the FEC engine
440 * @param[in] dev Our device to handle
441 */
442static int fec_open(struct eth_device *edev)
443{
444 struct fec_priv *fec = (struct fec_priv *)edev->priv;
28774cba 445 int speed;
5c1ad3e6
EN
446 uint32_t addr, size;
447 int i;
0b23fb36
IY
448
449 debug("fec_open: fec_open(dev)\n");
450 /* full-duplex, heartbeat disabled */
451 writel(1 << 2, &fec->eth->x_cntrl);
452 fec->rbd_index = 0;
453
5c1ad3e6
EN
454 /* Invalidate all descriptors */
455 for (i = 0; i < FEC_RBD_NUM - 1; i++)
456 fec_rbd_clean(0, &fec->rbd_base[i]);
457 fec_rbd_clean(1, &fec->rbd_base[i]);
458
459 /* Flush the descriptors into RAM */
460 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
461 ARCH_DMA_MINALIGN);
462 addr = (uint32_t)fec->rbd_base;
463 flush_dcache_range(addr, addr + size);
464
28774cba 465#ifdef FEC_QUIRK_ENET_MAC
2ef2b950
JL
466 /* Enable ENET HW endian SWAP */
467 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
468 &fec->eth->ecntrl);
469 /* Enable ENET store and forward mode */
470 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
471 &fec->eth->x_wmrk);
472#endif
0b23fb36
IY
473 /*
474 * Enable FEC-Lite controller
475 */
cb17b92d
JR
476 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
477 &fec->eth->ecntrl);
96912453 478#if defined(CONFIG_MX25) || defined(CONFIG_MX53)
740d6ae5
JR
479 udelay(100);
480 /*
481 * setup the MII gasket for RMII mode
482 */
483
484 /* disable the gasket */
485 writew(0, &fec->eth->miigsk_enr);
486
487 /* wait for the gasket to be disabled */
488 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
489 udelay(2);
490
491 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
492 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
493
494 /* re-enable the gasket */
495 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
496
497 /* wait until MII gasket is ready */
498 int max_loops = 10;
499 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
500 if (--max_loops <= 0) {
501 printf("WAIT for MII Gasket ready timed out\n");
502 break;
503 }
504 }
505#endif
0b23fb36 506
13947f43
TK
507#ifdef CONFIG_PHYLIB
508 if (!fec->phydev)
509 fec_eth_phy_config(edev);
510 if (fec->phydev) {
511 /* Start up the PHY */
11af8d65
TT
512 int ret = phy_startup(fec->phydev);
513
514 if (ret) {
515 printf("Could not initialize PHY %s\n",
516 fec->phydev->dev->name);
517 return ret;
518 }
13947f43
TK
519 speed = fec->phydev->speed;
520 } else {
521 speed = _100BASET;
522 }
523#else
0b23fb36 524 miiphy_wait_aneg(edev);
28774cba 525 speed = miiphy_speed(edev->name, fec->phy_id);
9e27e9dc 526 miiphy_duplex(edev->name, fec->phy_id);
13947f43 527#endif
0b23fb36 528
28774cba
TK
529#ifdef FEC_QUIRK_ENET_MAC
530 {
531 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
532 u32 rcr = (readl(&fec->eth->r_cntrl) &
533 ~(FEC_RCNTRL_RMII | FEC_RCNTRL_RMII_10T)) |
534 FEC_RCNTRL_RGMII | FEC_RCNTRL_MII_MODE;
535 if (speed == _1000BASET)
536 ecr |= FEC_ECNTRL_SPEED;
537 else if (speed != _100BASET)
538 rcr |= FEC_RCNTRL_RMII_10T;
539 writel(ecr, &fec->eth->ecntrl);
540 writel(rcr, &fec->eth->r_cntrl);
541 }
542#endif
543 debug("%s:Speed=%i\n", __func__, speed);
544
0b23fb36
IY
545 /*
546 * Enable SmartDMA receive task
547 */
548 fec_rx_task_enable(fec);
549
550 udelay(100000);
551 return 0;
552}
553
554static int fec_init(struct eth_device *dev, bd_t* bd)
555{
0b23fb36 556 struct fec_priv *fec = (struct fec_priv *)dev->priv;
9e27e9dc 557 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
5c1ad3e6
EN
558 uint32_t size;
559 int i, ret;
0b23fb36 560
e9319f11
JR
561 /* Initialize MAC address */
562 fec_set_hwaddr(dev);
563
0b23fb36 564 /*
5c1ad3e6
EN
565 * Allocate transmit descriptors, there are two in total. This
566 * allocation respects cache alignment.
0b23fb36 567 */
5c1ad3e6
EN
568 if (!fec->tbd_base) {
569 size = roundup(2 * sizeof(struct fec_bd),
570 ARCH_DMA_MINALIGN);
571 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
572 if (!fec->tbd_base) {
573 ret = -ENOMEM;
574 goto err1;
575 }
576 memset(fec->tbd_base, 0, size);
577 fec_tbd_init(fec);
578 flush_dcache_range((unsigned)fec->tbd_base, size);
0b23fb36 579 }
0b23fb36 580
5c1ad3e6
EN
581 /*
582 * Allocate receive descriptors. This allocation respects cache
583 * alignment.
584 */
585 if (!fec->rbd_base) {
586 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
587 ARCH_DMA_MINALIGN);
588 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
589 if (!fec->rbd_base) {
590 ret = -ENOMEM;
591 goto err2;
592 }
593 memset(fec->rbd_base, 0, size);
594 /*
595 * Initialize RxBD ring
596 */
597 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
598 ret = -ENOMEM;
599 goto err3;
600 }
601 flush_dcache_range((unsigned)fec->rbd_base,
602 (unsigned)fec->rbd_base + size);
603 }
0b23fb36 604
a5990b26 605 fec_reg_setup(fec);
9eb3770b 606
f41471e6 607 if (fec->xcv_type != SEVENWIRE)
4294b248 608 fec_mii_setspeed(fec);
9eb3770b 609
0b23fb36
IY
610 /*
611 * Set Opcode/Pause Duration Register
612 */
613 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
614 writel(0x2, &fec->eth->x_wmrk);
615 /*
616 * Set multicast address filter
617 */
618 writel(0x00000000, &fec->eth->gaddr1);
619 writel(0x00000000, &fec->eth->gaddr2);
620
621
622 /* clear MIB RAM */
9e27e9dc
MV
623 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
624 writel(0, i);
0b23fb36
IY
625
626 /* FIFO receive start register */
627 writel(0x520, &fec->eth->r_fstart);
628
629 /* size and address of each buffer */
630 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
631 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
632 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
633
13947f43 634#ifndef CONFIG_PHYLIB
0b23fb36
IY
635 if (fec->xcv_type != SEVENWIRE)
636 miiphy_restart_aneg(dev);
13947f43 637#endif
0b23fb36
IY
638 fec_open(dev);
639 return 0;
5c1ad3e6
EN
640
641err3:
642 free(fec->rbd_base);
643err2:
644 free(fec->tbd_base);
645err1:
646 return ret;
0b23fb36
IY
647}
648
649/**
650 * Halt the FEC engine
651 * @param[in] dev Our device to handle
652 */
653static void fec_halt(struct eth_device *dev)
654{
9e27e9dc 655 struct fec_priv *fec = (struct fec_priv *)dev->priv;
0b23fb36
IY
656 int counter = 0xffff;
657
658 /*
659 * issue graceful stop command to the FEC transmitter if necessary
660 */
cb17b92d 661 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
0b23fb36
IY
662 &fec->eth->x_cntrl);
663
664 debug("eth_halt: wait for stop regs\n");
665 /*
666 * wait for graceful stop to register
667 */
668 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 669 udelay(1);
0b23fb36
IY
670
671 /*
672 * Disable SmartDMA tasks
673 */
674 fec_tx_task_disable(fec);
675 fec_rx_task_disable(fec);
676
677 /*
678 * Disable the Ethernet Controller
679 * Note: this will also reset the BD index counter!
680 */
740d6ae5
JR
681 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
682 &fec->eth->ecntrl);
0b23fb36
IY
683 fec->rbd_index = 0;
684 fec->tbd_index = 0;
0b23fb36
IY
685 debug("eth_halt: done\n");
686}
687
688/**
689 * Transmit one frame
690 * @param[in] dev Our ethernet device to handle
691 * @param[in] packet Pointer to the data to be transmitted
692 * @param[in] length Data count in bytes
693 * @return 0 on success
694 */
442dac4c 695static int fec_send(struct eth_device *dev, void *packet, int length)
0b23fb36
IY
696{
697 unsigned int status;
efe24d2e 698 uint32_t size, end;
5c1ad3e6 699 uint32_t addr;
0b23fb36
IY
700
701 /*
702 * This routine transmits one frame. This routine only accepts
703 * 6-byte Ethernet addresses.
704 */
705 struct fec_priv *fec = (struct fec_priv *)dev->priv;
706
707 /*
708 * Check for valid length of data.
709 */
710 if ((length > 1500) || (length <= 0)) {
4294b248 711 printf("Payload (%d) too large\n", length);
0b23fb36
IY
712 return -1;
713 }
714
715 /*
5c1ad3e6
EN
716 * Setup the transmit buffer. We are always using the first buffer for
717 * transmission, the second will be empty and only used to stop the DMA
718 * engine. We also flush the packet to RAM here to avoid cache trouble.
0b23fb36 719 */
5c1ad3e6 720#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
721 swap_packet((uint32_t *)packet, length);
722#endif
5c1ad3e6
EN
723
724 addr = (uint32_t)packet;
efe24d2e
MV
725 end = roundup(addr + length, ARCH_DMA_MINALIGN);
726 addr &= ~(ARCH_DMA_MINALIGN - 1);
727 flush_dcache_range(addr, end);
5c1ad3e6 728
0b23fb36 729 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
5c1ad3e6
EN
730 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
731
0b23fb36
IY
732 /*
733 * update BD's status now
734 * This block:
735 * - is always the last in a chain (means no chain)
736 * - should transmitt the CRC
737 * - might be the last BD in the list, so the address counter should
738 * wrap (-> keep the WRAP flag)
739 */
740 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
741 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
742 writew(status, &fec->tbd_base[fec->tbd_index].status);
743
5c1ad3e6
EN
744 /*
745 * Flush data cache. This code flushes both TX descriptors to RAM.
746 * After this code, the descriptors will be safely in RAM and we
747 * can start DMA.
748 */
749 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
750 addr = (uint32_t)fec->tbd_base;
751 flush_dcache_range(addr, addr + size);
752
0b23fb36
IY
753 /*
754 * Enable SmartDMA transmit task
755 */
756 fec_tx_task_enable(fec);
757
758 /*
5c1ad3e6
EN
759 * Wait until frame is sent. On each turn of the wait cycle, we must
760 * invalidate data cache to see what's really in RAM. Also, we need
761 * barrier here.
0b23fb36 762 */
5c1ad3e6 763 invalidate_dcache_range(addr, addr + size);
0b23fb36 764 while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
cb17b92d 765 udelay(1);
5c1ad3e6 766 invalidate_dcache_range(addr, addr + size);
0b23fb36 767 }
5c1ad3e6 768
0b23fb36
IY
769 debug("fec_send: status 0x%x index %d\n",
770 readw(&fec->tbd_base[fec->tbd_index].status),
771 fec->tbd_index);
772 /* for next transmission use the other buffer */
773 if (fec->tbd_index)
774 fec->tbd_index = 0;
775 else
776 fec->tbd_index = 1;
777
778 return 0;
779}
780
781/**
782 * Pull one frame from the card
783 * @param[in] dev Our ethernet device to handle
784 * @return Length of packet read
785 */
786static int fec_recv(struct eth_device *dev)
787{
788 struct fec_priv *fec = (struct fec_priv *)dev->priv;
789 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
790 unsigned long ievent;
791 int frame_length, len = 0;
792 struct nbuf *frame;
793 uint16_t bd_status;
efe24d2e 794 uint32_t addr, size, end;
5c1ad3e6 795 int i;
e2a66e60 796 uchar buff[FEC_MAX_PKT_SIZE] __aligned(ARCH_DMA_MINALIGN);
0b23fb36
IY
797
798 /*
799 * Check if any critical events have happened
800 */
801 ievent = readl(&fec->eth->ievent);
802 writel(ievent, &fec->eth->ievent);
eda959f3 803 debug("fec_recv: ievent 0x%lx\n", ievent);
0b23fb36
IY
804 if (ievent & FEC_IEVENT_BABR) {
805 fec_halt(dev);
806 fec_init(dev, fec->bd);
807 printf("some error: 0x%08lx\n", ievent);
808 return 0;
809 }
810 if (ievent & FEC_IEVENT_HBERR) {
811 /* Heartbeat error */
812 writel(0x00000001 | readl(&fec->eth->x_cntrl),
813 &fec->eth->x_cntrl);
814 }
815 if (ievent & FEC_IEVENT_GRA) {
816 /* Graceful stop complete */
817 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
818 fec_halt(dev);
819 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
820 &fec->eth->x_cntrl);
821 fec_init(dev, fec->bd);
822 }
823 }
824
825 /*
5c1ad3e6
EN
826 * Read the buffer status. Before the status can be read, the data cache
827 * must be invalidated, because the data in RAM might have been changed
828 * by DMA. The descriptors are properly aligned to cachelines so there's
829 * no need to worry they'd overlap.
830 *
831 * WARNING: By invalidating the descriptor here, we also invalidate
832 * the descriptors surrounding this one. Therefore we can NOT change the
833 * contents of this descriptor nor the surrounding ones. The problem is
834 * that in order to mark the descriptor as processed, we need to change
835 * the descriptor. The solution is to mark the whole cache line when all
836 * descriptors in the cache line are processed.
0b23fb36 837 */
5c1ad3e6
EN
838 addr = (uint32_t)rbd;
839 addr &= ~(ARCH_DMA_MINALIGN - 1);
840 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
841 invalidate_dcache_range(addr, addr + size);
842
0b23fb36
IY
843 bd_status = readw(&rbd->status);
844 debug("fec_recv: status 0x%x\n", bd_status);
845
846 if (!(bd_status & FEC_RBD_EMPTY)) {
847 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
848 ((readw(&rbd->data_length) - 4) > 14)) {
849 /*
850 * Get buffer address and size
851 */
852 frame = (struct nbuf *)readl(&rbd->data_pointer);
853 frame_length = readw(&rbd->data_length) - 4;
5c1ad3e6
EN
854 /*
855 * Invalidate data cache over the buffer
856 */
857 addr = (uint32_t)frame;
efe24d2e
MV
858 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
859 addr &= ~(ARCH_DMA_MINALIGN - 1);
860 invalidate_dcache_range(addr, end);
5c1ad3e6 861
0b23fb36
IY
862 /*
863 * Fill the buffer and pass it to upper layers
864 */
5c1ad3e6 865#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
866 swap_packet((uint32_t *)frame->data, frame_length);
867#endif
0b23fb36
IY
868 memcpy(buff, frame->data, frame_length);
869 NetReceive(buff, frame_length);
870 len = frame_length;
871 } else {
872 if (bd_status & FEC_RBD_ERR)
873 printf("error frame: 0x%08lx 0x%08x\n",
874 (ulong)rbd->data_pointer,
875 bd_status);
876 }
5c1ad3e6 877
0b23fb36 878 /*
5c1ad3e6
EN
879 * Free the current buffer, restart the engine and move forward
880 * to the next buffer. Here we check if the whole cacheline of
881 * descriptors was already processed and if so, we mark it free
882 * as whole.
0b23fb36 883 */
5c1ad3e6
EN
884 size = RXDESC_PER_CACHELINE - 1;
885 if ((fec->rbd_index & size) == size) {
886 i = fec->rbd_index - size;
887 addr = (uint32_t)&fec->rbd_base[i];
888 for (; i <= fec->rbd_index ; i++) {
889 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
890 &fec->rbd_base[i]);
891 }
892 flush_dcache_range(addr,
893 addr + ARCH_DMA_MINALIGN);
894 }
895
0b23fb36
IY
896 fec_rx_task_enable(fec);
897 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
898 }
899 debug("fec_recv: stop\n");
900
901 return len;
902}
903
9e27e9dc 904static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
0b23fb36 905{
0b23fb36 906 struct eth_device *edev;
9e27e9dc 907 struct fec_priv *fec;
13947f43 908 struct mii_dev *bus;
0b23fb36 909 unsigned char ethaddr[6];
e382fb48
MV
910 uint32_t start;
911 int ret = 0;
0b23fb36
IY
912
913 /* create and fill edev struct */
914 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
915 if (!edev) {
9e27e9dc 916 puts("fec_mxc: not enough malloc memory for eth_device\n");
e382fb48
MV
917 ret = -ENOMEM;
918 goto err1;
9e27e9dc
MV
919 }
920
921 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
922 if (!fec) {
923 puts("fec_mxc: not enough malloc memory for fec_priv\n");
e382fb48
MV
924 ret = -ENOMEM;
925 goto err2;
0b23fb36 926 }
9e27e9dc 927
de0b9576 928 memset(edev, 0, sizeof(*edev));
9e27e9dc
MV
929 memset(fec, 0, sizeof(*fec));
930
0b23fb36
IY
931 edev->priv = fec;
932 edev->init = fec_init;
933 edev->send = fec_send;
934 edev->recv = fec_recv;
935 edev->halt = fec_halt;
fb57ec97 936 edev->write_hwaddr = fec_set_hwaddr;
0b23fb36 937
9e27e9dc 938 fec->eth = (struct ethernet_regs *)base_addr;
0b23fb36
IY
939 fec->bd = bd;
940
392b8502 941 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
0b23fb36
IY
942
943 /* Reset chip. */
cb17b92d 944 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
e382fb48
MV
945 start = get_timer(0);
946 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
947 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
948 printf("FEC MXC: Timeout reseting chip\n");
949 goto err3;
950 }
0b23fb36 951 udelay(10);
e382fb48 952 }
0b23fb36 953
a5990b26 954 fec_reg_setup(fec);
4294b248 955 fec_mii_setspeed(fec);
0b23fb36 956
9e27e9dc
MV
957 if (dev_id == -1) {
958 sprintf(edev->name, "FEC");
959 fec->dev_id = 0;
960 } else {
961 sprintf(edev->name, "FEC%i", dev_id);
962 fec->dev_id = dev_id;
963 }
964 fec->phy_id = phy_id;
0b23fb36 965
13947f43
TK
966 bus = mdio_alloc();
967 if (!bus) {
968 printf("mdio_alloc failed\n");
969 ret = -ENOMEM;
970 goto err3;
971 }
972 bus->read = fec_phy_read;
973 bus->write = fec_phy_write;
974 sprintf(bus->name, edev->name);
5c1ad3e6 975#ifdef CONFIG_MX28
13947f43
TK
976 /*
977 * The i.MX28 has two ethernet interfaces, but they are not equal.
978 * Only the first one can access the MDIO bus.
979 */
980 bus->priv = (struct ethernet_regs *)MXS_ENET0_BASE;
981#else
982 bus->priv = fec->eth;
983#endif
984 ret = mdio_register(bus);
985 if (ret) {
986 printf("mdio_register failed\n");
987 free(bus);
988 ret = -ENOMEM;
989 goto err3;
990 }
991 fec->bus = bus;
0b23fb36
IY
992 eth_register(edev);
993
be252b65
FE
994 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
995 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
4294b248 996 memcpy(edev->enetaddr, ethaddr, 6);
0b23fb36 997 }
13947f43
TK
998 /* Configure phy */
999 fec_eth_phy_config(edev);
e382fb48
MV
1000 return ret;
1001
1002err3:
1003 free(fec);
1004err2:
1005 free(edev);
1006err1:
1007 return ret;
0b23fb36
IY
1008}
1009
5c1ad3e6 1010#ifndef CONFIG_FEC_MXC_MULTI
0b23fb36
IY
1011int fecmxc_initialize(bd_t *bd)
1012{
1013 int lout = 1;
1014
1015 debug("eth_init: fec_probe(bd)\n");
9e27e9dc
MV
1016 lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
1017
1018 return lout;
1019}
1020#endif
1021
1022int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1023{
1024 int lout = 1;
1025
1026 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1027 lout = fec_probe(bd, dev_id, phy_id, addr);
0b23fb36
IY
1028
1029 return lout;
1030}
2e5f4421 1031
13947f43 1032#ifndef CONFIG_PHYLIB
2e5f4421
MV
1033int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1034{
1035 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1036 fec->mii_postcall = cb;
1037 return 0;
1038}
13947f43 1039#endif