]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: FIX: Do not allow for spare disk activation during reshape
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107};
108
109/* RAID map configuration infos. */
110struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116#define IMSM_T_STATE_NORMAL 0
117#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
118#define IMSM_T_STATE_DEGRADED 2
119#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
120 __u8 raid_level;
121#define IMSM_T_RAID0 0
122#define IMSM_T_RAID1 1
123#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 127 __u8 ddf;
cdddbdbc 128 __u32 filler[7]; /* expansion area */
7eef0453 129#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
131 * top byte contains some flags
132 */
cdddbdbc
DW
133} __attribute__ ((packed));
134
135struct imsm_vol {
f8f603f1 136 __u32 curr_migr_unit;
fe7ed8cb 137 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 138 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
139#define MIGR_INIT 0
140#define MIGR_REBUILD 1
141#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142#define MIGR_GEN_MIGR 3
143#define MIGR_STATE_CHANGE 4
1484e727 144#define MIGR_REPAIR 5
cdddbdbc
DW
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
fe7ed8cb
DW
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
cdddbdbc
DW
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153} __attribute__ ((packed));
154
155struct imsm_dev {
fe7ed8cb 156 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
157 __u32 size_low;
158 __u32 size_high;
fe7ed8cb
DW
159#define DEV_BOOTABLE __cpu_to_le32(0x01)
160#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161#define DEV_READ_COALESCING __cpu_to_le32(0x04)
162#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184} __attribute__ ((packed));
185
186struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202#define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
604b746f 206 /* here comes BBM logs */
cdddbdbc
DW
207} __attribute__ ((packed));
208
604b746f
JD
209#define BBM_LOG_MAX_ENTRIES 254
210
211struct bbm_log_entry {
212 __u64 defective_block_start;
213#define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217} __attribute__ ((__packed__));
218
219struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226} __attribute__ ((__packed__));
227
228
cdddbdbc
DW
229#ifndef MDASSEMBLE
230static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231#endif
232
8e59f3d8
AK
233#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266} __attribute__ ((__packed__));
267
1484e727
DW
268static __u8 migr_type(struct imsm_dev *dev)
269{
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275}
276
277static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278{
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289}
290
87eb16df 291static unsigned int sector_count(__u32 bytes)
cdddbdbc 292{
87eb16df
DW
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294}
cdddbdbc 295
87eb16df
DW
296static unsigned int mpb_sectors(struct imsm_super *mpb)
297{
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
299}
300
ba2de7ba
DW
301struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
f21e18ca 304 unsigned index;
ba2de7ba
DW
305};
306
88654014
LM
307struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312};
313
1a64be56
LM
314enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317};
cdddbdbc
DW
318/* internal representation of IMSM metadata */
319struct intel_super {
320 union {
949c47a0
DW
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 323 };
8e59f3d8
AK
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
949c47a0 328 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
c2c087e6 331 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 332 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 333 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 334 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 335 struct intel_dev *devlist;
cdddbdbc
DW
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
b9f594fe 342 struct imsm_disk disk;
cdddbdbc 343 int fd;
0dcecb2e
DW
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
efb30e7f 346 int raiddisk; /* slot to fill in autolayout */
1a64be56 347 enum action action;
ca0748fa 348 } *disks, *current_disk;
1a64be56
LM
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
47ee5a45 351 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 352 struct bbm_log *bbm_log;
88654014 353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 354 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356};
357
358struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
cdddbdbc
DW
363};
364
c2c087e6
DW
365struct extent {
366 unsigned long long start, size;
367};
368
694575e7
KW
369/* definitions of reshape process types */
370enum imsm_reshape_type {
371 CH_TAKEOVER,
b5347799 372 CH_MIGRATION,
694575e7
KW
373};
374
88758e9d
DW
375/* definition of messages passed to imsm_process_update */
376enum imsm_update_type {
377 update_activate_spare,
8273f55e 378 update_create_array,
33414a01 379 update_kill_array,
aa534678 380 update_rename_array,
1a64be56 381 update_add_remove_disk,
78b10e66 382 update_reshape_container_disks,
48c5303a 383 update_reshape_migration,
2d40f3a1
AK
384 update_takeover,
385 update_general_migration_checkpoint,
88758e9d
DW
386};
387
388struct imsm_update_activate_spare {
389 enum imsm_update_type type;
d23fe947 390 struct dl *dl;
88758e9d
DW
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394};
395
78b10e66
N
396struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404};
405
bb025c2f
KW
406enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409};
410struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414};
78b10e66
N
415
416struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
48c5303a
PC
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422};
423
424struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
4bba0439 433 int new_chunksize;
48c5303a 434
d195167d 435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
436};
437
2d40f3a1
AK
438struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441};
442
54c2c1ea
DW
443struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445};
446
8273f55e
DW
447struct imsm_update_create_array {
448 enum imsm_update_type type;
8273f55e 449 int dev_idx;
6a3e913e 450 struct imsm_dev dev;
8273f55e
DW
451};
452
33414a01
DW
453struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456};
457
aa534678
DW
458struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462};
463
1a64be56 464struct imsm_update_add_remove_disk {
43dad3d6
DW
465 enum imsm_update_type type;
466};
467
88654014
LM
468
469static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473};
474
475const char *get_sys_dev_type(enum sys_dev_type type)
476{
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481}
482
483static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484{
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494}
495
496static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497{
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504}
505
b4cf4cba 506static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
507{
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532}
533
534static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535{
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570}
571
572
d424212e
N
573static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
f2f5c343 575
cdddbdbc
DW
576static struct supertype *match_metadata_desc_imsm(char *arg)
577{
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
4e9d2186
AW
586 if (!st)
587 return NULL;
ef609477 588 memset(st, 0, sizeof(*st));
d1d599ea 589 st->container_dev = NoMdDev;
cdddbdbc
DW
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595}
596
0e600426 597#ifndef MDASSEMBLE
cdddbdbc
DW
598static __u8 *get_imsm_version(struct imsm_super *mpb)
599{
600 return &mpb->sig[MPB_SIG_LEN];
601}
9e2d750d 602#endif
cdddbdbc 603
949c47a0
DW
604/* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 608{
949c47a0 609 if (index >= mpb->num_disks)
cdddbdbc
DW
610 return NULL;
611 return &mpb->disk[index];
612}
613
95d07a2c
LM
614/* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 618{
b9f594fe
DW
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
95d07a2c
LM
623 return d;
624
625 return NULL;
626}
627/* retrieve a disk from the parsed metadata */
628static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629{
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
b9f594fe 636 return NULL;
949c47a0
DW
637}
638
639/* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
643{
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
97f734fd
N
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
cdddbdbc
DW
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654}
655
a965f303
DW
656static size_t sizeof_imsm_map(struct imsm_map *map)
657{
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659}
660
661struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 662{
5e7b0330
AK
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
668 */
a965f303
DW
669 struct imsm_map *map = &dev->vol.map[0];
670
5e7b0330 671 if (second_map == 1 && !dev->vol.migr_state)
a965f303 672 return NULL;
5e7b0330
AK
673 else if (second_map == 1 ||
674 (second_map < 0 && dev->vol.migr_state)) {
a965f303
DW
675 void *ptr = map;
676
677 return ptr + sizeof_imsm_map(map);
678 } else
679 return map;
5e7b0330 680
a965f303 681}
cdddbdbc 682
3393c6af
DW
683/* return the size of the device.
684 * migr_state increases the returned size if map[0] were to be duplicated
685 */
686static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
687{
688 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
689 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
690
691 /* migrating means an additional map */
a965f303
DW
692 if (dev->vol.migr_state)
693 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
694 else if (migr_state)
695 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
696
697 return size;
698}
699
54c2c1ea
DW
700#ifndef MDASSEMBLE
701/* retrieve disk serial number list from a metadata update */
702static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
703{
704 void *u = update;
705 struct disk_info *inf;
706
707 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
708 sizeof_imsm_dev(&update->dev, 0);
709
710 return inf;
711}
712#endif
713
949c47a0 714static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
715{
716 int offset;
717 int i;
718 void *_mpb = mpb;
719
949c47a0 720 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
721 return NULL;
722
723 /* devices start after all disks */
724 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
725
726 for (i = 0; i <= index; i++)
727 if (i == index)
728 return _mpb + offset;
729 else
3393c6af 730 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
731
732 return NULL;
733}
734
949c47a0
DW
735static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
736{
ba2de7ba
DW
737 struct intel_dev *dv;
738
949c47a0
DW
739 if (index >= super->anchor->num_raid_devs)
740 return NULL;
ba2de7ba
DW
741 for (dv = super->devlist; dv; dv = dv->next)
742 if (dv->index == index)
743 return dv->dev;
744 return NULL;
949c47a0
DW
745}
746
98130f40
AK
747/*
748 * for second_map:
749 * == 0 get first map
750 * == 1 get second map
751 * == -1 than get map according to the current migr_state
752 */
753static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
754 int slot,
755 int second_map)
7eef0453
DW
756{
757 struct imsm_map *map;
758
5e7b0330 759 map = get_imsm_map(dev, second_map);
7eef0453 760
ff077194
DW
761 /* top byte identifies disk under rebuild */
762 return __le32_to_cpu(map->disk_ord_tbl[slot]);
763}
764
765#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 766static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 767{
98130f40 768 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
769
770 return ord_to_idx(ord);
7eef0453
DW
771}
772
be73972f
DW
773static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
774{
775 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
776}
777
f21e18ca 778static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
779{
780 int slot;
781 __u32 ord;
782
783 for (slot = 0; slot < map->num_members; slot++) {
784 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
785 if (ord_to_idx(ord) == idx)
786 return slot;
787 }
788
789 return -1;
790}
791
cdddbdbc
DW
792static int get_imsm_raid_level(struct imsm_map *map)
793{
794 if (map->raid_level == 1) {
795 if (map->num_members == 2)
796 return 1;
797 else
798 return 10;
799 }
800
801 return map->raid_level;
802}
803
c2c087e6
DW
804static int cmp_extent(const void *av, const void *bv)
805{
806 const struct extent *a = av;
807 const struct extent *b = bv;
808 if (a->start < b->start)
809 return -1;
810 if (a->start > b->start)
811 return 1;
812 return 0;
813}
814
0dcecb2e 815static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 816{
c2c087e6 817 int memberships = 0;
620b1713 818 int i;
c2c087e6 819
949c47a0
DW
820 for (i = 0; i < super->anchor->num_raid_devs; i++) {
821 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 822 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 823
620b1713
DW
824 if (get_imsm_disk_slot(map, dl->index) >= 0)
825 memberships++;
c2c087e6 826 }
0dcecb2e
DW
827
828 return memberships;
829}
830
b81221b7
CA
831static __u32 imsm_min_reserved_sectors(struct intel_super *super);
832
0dcecb2e
DW
833static struct extent *get_extents(struct intel_super *super, struct dl *dl)
834{
835 /* find a list of used extents on the given physical device */
836 struct extent *rv, *e;
620b1713 837 int i;
0dcecb2e 838 int memberships = count_memberships(dl, super);
b276dd33
DW
839 __u32 reservation;
840
841 /* trim the reserved area for spares, so they can join any array
842 * regardless of whether the OROM has assigned sectors from the
843 * IMSM_RESERVED_SECTORS region
844 */
845 if (dl->index == -1)
b81221b7 846 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
847 else
848 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 849
c2c087e6
DW
850 rv = malloc(sizeof(struct extent) * (memberships + 1));
851 if (!rv)
852 return NULL;
853 e = rv;
854
949c47a0
DW
855 for (i = 0; i < super->anchor->num_raid_devs; i++) {
856 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 857 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 858
620b1713
DW
859 if (get_imsm_disk_slot(map, dl->index) >= 0) {
860 e->start = __le32_to_cpu(map->pba_of_lba0);
861 e->size = __le32_to_cpu(map->blocks_per_member);
862 e++;
c2c087e6
DW
863 }
864 }
865 qsort(rv, memberships, sizeof(*rv), cmp_extent);
866
14e8215b
DW
867 /* determine the start of the metadata
868 * when no raid devices are defined use the default
869 * ...otherwise allow the metadata to truncate the value
870 * as is the case with older versions of imsm
871 */
872 if (memberships) {
873 struct extent *last = &rv[memberships - 1];
874 __u32 remainder;
875
876 remainder = __le32_to_cpu(dl->disk.total_blocks) -
877 (last->start + last->size);
dda5855f
DW
878 /* round down to 1k block to satisfy precision of the kernel
879 * 'size' interface
880 */
881 remainder &= ~1UL;
882 /* make sure remainder is still sane */
f21e18ca 883 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 884 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
885 if (reservation > remainder)
886 reservation = remainder;
887 }
888 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
889 e->size = 0;
890 return rv;
891}
892
14e8215b
DW
893/* try to determine how much space is reserved for metadata from
894 * the last get_extents() entry, otherwise fallback to the
895 * default
896 */
897static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
898{
899 struct extent *e;
900 int i;
901 __u32 rv;
902
903 /* for spares just return a minimal reservation which will grow
904 * once the spare is picked up by an array
905 */
906 if (dl->index == -1)
907 return MPB_SECTOR_CNT;
908
909 e = get_extents(super, dl);
910 if (!e)
911 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
912
913 /* scroll to last entry */
914 for (i = 0; e[i].size; i++)
915 continue;
916
917 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
918
919 free(e);
920
921 return rv;
922}
923
25ed7e59
DW
924static int is_spare(struct imsm_disk *disk)
925{
926 return (disk->status & SPARE_DISK) == SPARE_DISK;
927}
928
929static int is_configured(struct imsm_disk *disk)
930{
931 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
932}
933
934static int is_failed(struct imsm_disk *disk)
935{
936 return (disk->status & FAILED_DISK) == FAILED_DISK;
937}
938
b81221b7
CA
939/* try to determine how much space is reserved for metadata from
940 * the last get_extents() entry on the smallest active disk,
941 * otherwise fallback to the default
942 */
943static __u32 imsm_min_reserved_sectors(struct intel_super *super)
944{
945 struct extent *e;
946 int i;
947 __u32 min_active, remainder;
948 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
949 struct dl *dl, *dl_min = NULL;
950
951 if (!super)
952 return rv;
953
954 min_active = 0;
955 for (dl = super->disks; dl; dl = dl->next) {
956 if (dl->index < 0)
957 continue;
958 if (dl->disk.total_blocks < min_active || min_active == 0) {
959 dl_min = dl;
960 min_active = dl->disk.total_blocks;
961 }
962 }
963 if (!dl_min)
964 return rv;
965
966 /* find last lba used by subarrays on the smallest active disk */
967 e = get_extents(super, dl_min);
968 if (!e)
969 return rv;
970 for (i = 0; e[i].size; i++)
971 continue;
972
973 remainder = min_active - e[i].start;
974 free(e);
975
976 /* to give priority to recovery we should not require full
977 IMSM_RESERVED_SECTORS from the spare */
978 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
979
980 /* if real reservation is smaller use that value */
981 return (remainder < rv) ? remainder : rv;
982}
983
80e7f8c3
AC
984/* Return minimum size of a spare that can be used in this array*/
985static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
986{
987 struct intel_super *super = st->sb;
988 struct dl *dl;
989 struct extent *e;
990 int i;
991 unsigned long long rv = 0;
b81221b7 992 __u32 reservation;
80e7f8c3
AC
993
994 if (!super)
995 return rv;
996 /* find first active disk in array */
997 dl = super->disks;
998 while (dl && (is_failed(&dl->disk) || dl->index == -1))
999 dl = dl->next;
1000 if (!dl)
1001 return rv;
1002 /* find last lba used by subarrays */
1003 e = get_extents(super, dl);
1004 if (!e)
1005 return rv;
1006 for (i = 0; e[i].size; i++)
1007 continue;
1008 if (i > 0)
1009 rv = e[i-1].start + e[i-1].size;
b81221b7 1010 reservation = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
80e7f8c3 1011 free(e);
b81221b7 1012
80e7f8c3 1013 /* add the amount of space needed for metadata */
b81221b7
CA
1014 rv = rv + imsm_min_reserved_sectors(super);
1015
80e7f8c3
AC
1016 return rv * 512;
1017}
1018
1799c9e8 1019#ifndef MDASSEMBLE
c47b0ff6
AK
1020static __u64 blocks_per_migr_unit(struct intel_super *super,
1021 struct imsm_dev *dev);
1e5c6983 1022
c47b0ff6
AK
1023static void print_imsm_dev(struct intel_super *super,
1024 struct imsm_dev *dev,
1025 char *uuid,
1026 int disk_idx)
cdddbdbc
DW
1027{
1028 __u64 sz;
0d80bb2f 1029 int slot, i;
a965f303 1030 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 1031 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 1032 __u32 ord;
cdddbdbc
DW
1033
1034 printf("\n");
1e7bc0ed 1035 printf("[%.16s]:\n", dev->volume);
44470971 1036 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1037 printf(" RAID Level : %d", get_imsm_raid_level(map));
1038 if (map2)
1039 printf(" <-- %d", get_imsm_raid_level(map2));
1040 printf("\n");
1041 printf(" Members : %d", map->num_members);
1042 if (map2)
1043 printf(" <-- %d", map2->num_members);
1044 printf("\n");
0d80bb2f
DW
1045 printf(" Slots : [");
1046 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 1047 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
1048 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1049 }
dd8bcb3b
AK
1050 printf("]");
1051 if (map2) {
1052 printf(" <-- [");
1053 for (i = 0; i < map2->num_members; i++) {
1054 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1055 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1056 }
1057 printf("]");
1058 }
1059 printf("\n");
7095bccb
AK
1060 printf(" Failed disk : ");
1061 if (map->failed_disk_num == 0xff)
1062 printf("none");
1063 else
1064 printf("%i", map->failed_disk_num);
1065 printf("\n");
620b1713
DW
1066 slot = get_imsm_disk_slot(map, disk_idx);
1067 if (slot >= 0) {
98130f40 1068 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
1069 printf(" This Slot : %d%s\n", slot,
1070 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1071 } else
cdddbdbc
DW
1072 printf(" This Slot : ?\n");
1073 sz = __le32_to_cpu(dev->size_high);
1074 sz <<= 32;
1075 sz += __le32_to_cpu(dev->size_low);
1076 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1077 human_size(sz * 512));
1078 sz = __le32_to_cpu(map->blocks_per_member);
1079 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1080 human_size(sz * 512));
1081 printf(" Sector Offset : %u\n",
1082 __le32_to_cpu(map->pba_of_lba0));
1083 printf(" Num Stripes : %u\n",
1084 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 1085 printf(" Chunk Size : %u KiB",
cdddbdbc 1086 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1087 if (map2)
1088 printf(" <-- %u KiB",
1089 __le16_to_cpu(map2->blocks_per_strip) / 2);
1090 printf("\n");
cdddbdbc 1091 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1092 printf(" Migrate State : ");
1484e727
DW
1093 if (dev->vol.migr_state) {
1094 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1095 printf("initialize\n");
1484e727 1096 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1097 printf("rebuild\n");
1484e727 1098 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1099 printf("check\n");
1484e727 1100 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1101 printf("general migration\n");
1484e727 1102 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1103 printf("state change\n");
1484e727 1104 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1105 printf("repair\n");
1484e727 1106 else
8655a7b1
DW
1107 printf("<unknown:%d>\n", migr_type(dev));
1108 } else
1109 printf("idle\n");
3393c6af
DW
1110 printf(" Map State : %s", map_state_str[map->map_state]);
1111 if (dev->vol.migr_state) {
1112 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1113
b10b37b8 1114 printf(" <-- %s", map_state_str[map->map_state]);
1e5c6983
DW
1115 printf("\n Checkpoint : %u (%llu)",
1116 __le32_to_cpu(dev->vol.curr_migr_unit),
c47b0ff6 1117 (unsigned long long)blocks_per_migr_unit(super, dev));
3393c6af
DW
1118 }
1119 printf("\n");
cdddbdbc 1120 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1121}
1122
0ec1f4e8 1123static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1124{
1f24f035 1125 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1126 __u64 sz;
1127
0ec1f4e8 1128 if (index < -1 || !disk)
e9d82038
DW
1129 return;
1130
cdddbdbc 1131 printf("\n");
1f24f035 1132 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1133 if (index >= 0)
1134 printf(" Disk%02d Serial : %s\n", index, str);
1135 else
1136 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1137 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1138 is_configured(disk) ? " active" : "",
1139 is_failed(disk) ? " failed" : "");
cdddbdbc 1140 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1141 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1142 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1143 human_size(sz * 512));
1144}
1145
520e69e2
AK
1146static int is_gen_migration(struct imsm_dev *dev);
1147
1148void examine_migr_rec_imsm(struct intel_super *super)
1149{
1150 struct migr_record *migr_rec = super->migr_rec;
1151 struct imsm_super *mpb = super->anchor;
1152 int i;
1153
1154 for (i = 0; i < mpb->num_raid_devs; i++) {
1155 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1156 if (is_gen_migration(dev) == 0)
1157 continue;
1158
1159 printf("\nMigration Record Information:");
1160 if (super->disks->index > 1) {
1161 printf(" Empty\n ");
1162 printf("Examine one of first two disks in array\n");
1163 break;
1164 }
1165 printf("\n Status : ");
1166 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1167 printf("Normal\n");
1168 else
1169 printf("Contains Data\n");
1170 printf(" Current Unit : %u\n",
1171 __le32_to_cpu(migr_rec->curr_migr_unit));
1172 printf(" Family : %u\n",
1173 __le32_to_cpu(migr_rec->family_num));
1174 printf(" Ascending : %u\n",
1175 __le32_to_cpu(migr_rec->ascending_migr));
1176 printf(" Blocks Per Unit : %u\n",
1177 __le32_to_cpu(migr_rec->blocks_per_unit));
1178 printf(" Dest. Depth Per Unit : %u\n",
1179 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1180 printf(" Checkpoint Area pba : %u\n",
1181 __le32_to_cpu(migr_rec->ckpt_area_pba));
1182 printf(" First member lba : %u\n",
1183 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1184 printf(" Total Number of Units : %u\n",
1185 __le32_to_cpu(migr_rec->num_migr_units));
1186 printf(" Size of volume : %u\n",
1187 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1188 printf(" Expansion space for LBA64 : %u\n",
1189 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1190 printf(" Record was read from : %u\n",
1191 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1192
1193 break;
1194 }
1195}
9e2d750d 1196#endif /* MDASSEMBLE */
19482bcc
AK
1197/*******************************************************************************
1198 * function: imsm_check_attributes
1199 * Description: Function checks if features represented by attributes flags
1200 * are supported by mdadm.
1201 * Parameters:
1202 * attributes - Attributes read from metadata
1203 * Returns:
1204 * 0 - passed attributes contains unsupported features flags
1205 * 1 - all features are supported
1206 ******************************************************************************/
1207static int imsm_check_attributes(__u32 attributes)
1208{
1209 int ret_val = 1;
418f9b36
N
1210 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1211
1212 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1213
1214 not_supported &= attributes;
1215 if (not_supported) {
418f9b36
N
1216 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1217 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1218 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1219 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1220 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1221 }
1222 if (not_supported & MPB_ATTRIB_2TB) {
1223 dprintf("\t\tMPB_ATTRIB_2TB\n");
1224 not_supported ^= MPB_ATTRIB_2TB;
1225 }
1226 if (not_supported & MPB_ATTRIB_RAID0) {
1227 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1228 not_supported ^= MPB_ATTRIB_RAID0;
1229 }
1230 if (not_supported & MPB_ATTRIB_RAID1) {
1231 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1232 not_supported ^= MPB_ATTRIB_RAID1;
1233 }
1234 if (not_supported & MPB_ATTRIB_RAID10) {
1235 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1236 not_supported ^= MPB_ATTRIB_RAID10;
1237 }
1238 if (not_supported & MPB_ATTRIB_RAID1E) {
1239 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1240 not_supported ^= MPB_ATTRIB_RAID1E;
1241 }
1242 if (not_supported & MPB_ATTRIB_RAID5) {
1243 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1244 not_supported ^= MPB_ATTRIB_RAID5;
1245 }
1246 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1247 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1248 not_supported ^= MPB_ATTRIB_RAIDCNG;
1249 }
1250 if (not_supported & MPB_ATTRIB_BBM) {
1251 dprintf("\t\tMPB_ATTRIB_BBM\n");
1252 not_supported ^= MPB_ATTRIB_BBM;
1253 }
1254 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1255 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1256 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1257 }
1258 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1259 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1260 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1261 }
1262 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1263 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1264 not_supported ^= MPB_ATTRIB_2TB_DISK;
1265 }
1266 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1267 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1268 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1269 }
1270 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1271 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1272 not_supported ^= MPB_ATTRIB_NEVER_USE;
1273 }
1274
1275 if (not_supported)
1276 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1277
1278 ret_val = 0;
1279 }
1280
1281 return ret_val;
1282}
1283
9e2d750d 1284#ifndef MDASSEMBLE
a5d85af7 1285static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1286
cdddbdbc
DW
1287static void examine_super_imsm(struct supertype *st, char *homehost)
1288{
1289 struct intel_super *super = st->sb;
949c47a0 1290 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1291 char str[MAX_SIGNATURE_LENGTH];
1292 int i;
27fd6274
DW
1293 struct mdinfo info;
1294 char nbuf[64];
cdddbdbc 1295 __u32 sum;
14e8215b 1296 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1297 struct dl *dl;
27fd6274 1298
cdddbdbc
DW
1299 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1300 printf(" Magic : %s\n", str);
1301 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1302 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1303 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1304 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1305 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1306 printf(" Attributes : ");
1307 if (imsm_check_attributes(mpb->attributes))
1308 printf("All supported\n");
1309 else
1310 printf("not supported\n");
a5d85af7 1311 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1312 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1313 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1314 sum = __le32_to_cpu(mpb->check_sum);
1315 printf(" Checksum : %08x %s\n", sum,
949c47a0 1316 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1317 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1318 printf(" Disks : %d\n", mpb->num_disks);
1319 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1320 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1321 if (super->bbm_log) {
1322 struct bbm_log *log = super->bbm_log;
1323
1324 printf("\n");
1325 printf("Bad Block Management Log:\n");
1326 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1327 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1328 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1329 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1330 printf(" First Spare : %llx\n",
1331 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1332 }
44470971
DW
1333 for (i = 0; i < mpb->num_raid_devs; i++) {
1334 struct mdinfo info;
1335 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1336
1337 super->current_vol = i;
a5d85af7 1338 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1339 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1340 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1341 }
cdddbdbc
DW
1342 for (i = 0; i < mpb->num_disks; i++) {
1343 if (i == super->disks->index)
1344 continue;
0ec1f4e8 1345 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1346 }
94827db3 1347
0ec1f4e8
DW
1348 for (dl = super->disks; dl; dl = dl->next)
1349 if (dl->index == -1)
1350 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1351
1352 examine_migr_rec_imsm(super);
cdddbdbc
DW
1353}
1354
061f2c6a 1355static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1356{
27fd6274 1357 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1358 struct mdinfo info;
1359 char nbuf[64];
1e7bc0ed 1360 struct intel_super *super = st->sb;
1e7bc0ed 1361
0d5a423f
DW
1362 if (!super->anchor->num_raid_devs) {
1363 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1364 return;
0d5a423f 1365 }
ff54de6e 1366
a5d85af7 1367 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1368 fname_from_uuid(st, &info, nbuf, ':');
1369 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1370}
1371
1372static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1373{
1374 /* We just write a generic IMSM ARRAY entry */
1375 struct mdinfo info;
1376 char nbuf[64];
1377 char nbuf1[64];
1378 struct intel_super *super = st->sb;
1379 int i;
1380
1381 if (!super->anchor->num_raid_devs)
1382 return;
1383
a5d85af7 1384 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1385 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1386 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1387 struct imsm_dev *dev = get_imsm_dev(super, i);
1388
1389 super->current_vol = i;
a5d85af7 1390 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1391 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1392 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1393 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1394 }
cdddbdbc
DW
1395}
1396
9d84c8ea
DW
1397static void export_examine_super_imsm(struct supertype *st)
1398{
1399 struct intel_super *super = st->sb;
1400 struct imsm_super *mpb = super->anchor;
1401 struct mdinfo info;
1402 char nbuf[64];
1403
a5d85af7 1404 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1405 fname_from_uuid(st, &info, nbuf, ':');
1406 printf("MD_METADATA=imsm\n");
1407 printf("MD_LEVEL=container\n");
1408 printf("MD_UUID=%s\n", nbuf+5);
1409 printf("MD_DEVICES=%u\n", mpb->num_disks);
1410}
1411
cdddbdbc
DW
1412static void detail_super_imsm(struct supertype *st, char *homehost)
1413{
3ebe00a1
DW
1414 struct mdinfo info;
1415 char nbuf[64];
1416
a5d85af7 1417 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1418 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1419 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1420}
1421
1422static void brief_detail_super_imsm(struct supertype *st)
1423{
ff54de6e
N
1424 struct mdinfo info;
1425 char nbuf[64];
a5d85af7 1426 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1427 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1428 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1429}
d665cc31
DW
1430
1431static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1432static void fd2devname(int fd, char *name);
1433
120dc887 1434static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1435{
120dc887
LM
1436 /* dump an unsorted list of devices attached to AHCI Intel storage
1437 * controller, as well as non-connected ports
d665cc31
DW
1438 */
1439 int hba_len = strlen(hba_path) + 1;
1440 struct dirent *ent;
1441 DIR *dir;
1442 char *path = NULL;
1443 int err = 0;
1444 unsigned long port_mask = (1 << port_count) - 1;
1445
f21e18ca 1446 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1447 if (verbose)
1448 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1449 return 2;
1450 }
1451
1452 /* scroll through /sys/dev/block looking for devices attached to
1453 * this hba
1454 */
1455 dir = opendir("/sys/dev/block");
1456 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1457 int fd;
1458 char model[64];
1459 char vendor[64];
1460 char buf[1024];
1461 int major, minor;
1462 char *device;
1463 char *c;
1464 int port;
1465 int type;
1466
1467 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1468 continue;
1469 path = devt_to_devpath(makedev(major, minor));
1470 if (!path)
1471 continue;
1472 if (!path_attached_to_hba(path, hba_path)) {
1473 free(path);
1474 path = NULL;
1475 continue;
1476 }
1477
1478 /* retrieve the scsi device type */
1479 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1480 if (verbose)
1481 fprintf(stderr, Name ": failed to allocate 'device'\n");
1482 err = 2;
1483 break;
1484 }
1485 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1486 if (load_sys(device, buf) != 0) {
1487 if (verbose)
1488 fprintf(stderr, Name ": failed to read device type for %s\n",
1489 path);
1490 err = 2;
1491 free(device);
1492 break;
1493 }
1494 type = strtoul(buf, NULL, 10);
1495
1496 /* if it's not a disk print the vendor and model */
1497 if (!(type == 0 || type == 7 || type == 14)) {
1498 vendor[0] = '\0';
1499 model[0] = '\0';
1500 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1501 if (load_sys(device, buf) == 0) {
1502 strncpy(vendor, buf, sizeof(vendor));
1503 vendor[sizeof(vendor) - 1] = '\0';
1504 c = (char *) &vendor[sizeof(vendor) - 1];
1505 while (isspace(*c) || *c == '\0')
1506 *c-- = '\0';
1507
1508 }
1509 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1510 if (load_sys(device, buf) == 0) {
1511 strncpy(model, buf, sizeof(model));
1512 model[sizeof(model) - 1] = '\0';
1513 c = (char *) &model[sizeof(model) - 1];
1514 while (isspace(*c) || *c == '\0')
1515 *c-- = '\0';
1516 }
1517
1518 if (vendor[0] && model[0])
1519 sprintf(buf, "%.64s %.64s", vendor, model);
1520 else
1521 switch (type) { /* numbers from hald/linux/device.c */
1522 case 1: sprintf(buf, "tape"); break;
1523 case 2: sprintf(buf, "printer"); break;
1524 case 3: sprintf(buf, "processor"); break;
1525 case 4:
1526 case 5: sprintf(buf, "cdrom"); break;
1527 case 6: sprintf(buf, "scanner"); break;
1528 case 8: sprintf(buf, "media_changer"); break;
1529 case 9: sprintf(buf, "comm"); break;
1530 case 12: sprintf(buf, "raid"); break;
1531 default: sprintf(buf, "unknown");
1532 }
1533 } else
1534 buf[0] = '\0';
1535 free(device);
1536
1537 /* chop device path to 'host%d' and calculate the port number */
1538 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1539 if (!c) {
1540 if (verbose)
1541 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1542 err = 2;
1543 break;
1544 }
d665cc31
DW
1545 *c = '\0';
1546 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1547 port -= host_base;
1548 else {
1549 if (verbose) {
1550 *c = '/'; /* repair the full string */
1551 fprintf(stderr, Name ": failed to determine port number for %s\n",
1552 path);
1553 }
1554 err = 2;
1555 break;
1556 }
1557
1558 /* mark this port as used */
1559 port_mask &= ~(1 << port);
1560
1561 /* print out the device information */
1562 if (buf[0]) {
1563 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1564 continue;
1565 }
1566
1567 fd = dev_open(ent->d_name, O_RDONLY);
1568 if (fd < 0)
1569 printf(" Port%d : - disk info unavailable -\n", port);
1570 else {
1571 fd2devname(fd, buf);
1572 printf(" Port%d : %s", port, buf);
1573 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1574 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1575 else
664d5325 1576 printf(" ()\n");
d665cc31
DW
1577 }
1578 close(fd);
1579 free(path);
1580 path = NULL;
1581 }
1582 if (path)
1583 free(path);
1584 if (dir)
1585 closedir(dir);
1586 if (err == 0) {
1587 int i;
1588
1589 for (i = 0; i < port_count; i++)
1590 if (port_mask & (1 << i))
1591 printf(" Port%d : - no device attached -\n", i);
1592 }
1593
1594 return err;
1595}
1596
120dc887
LM
1597static void print_found_intel_controllers(struct sys_dev *elem)
1598{
1599 for (; elem; elem = elem->next) {
1600 fprintf(stderr, Name ": found Intel(R) ");
1601 if (elem->type == SYS_DEV_SATA)
1602 fprintf(stderr, "SATA ");
155cbb4c
LM
1603 else if (elem->type == SYS_DEV_SAS)
1604 fprintf(stderr, "SAS ");
120dc887
LM
1605 fprintf(stderr, "RAID controller");
1606 if (elem->pci_id)
1607 fprintf(stderr, " at %s", elem->pci_id);
1608 fprintf(stderr, ".\n");
1609 }
1610 fflush(stderr);
1611}
1612
120dc887
LM
1613static int ahci_get_port_count(const char *hba_path, int *port_count)
1614{
1615 struct dirent *ent;
1616 DIR *dir;
1617 int host_base = -1;
1618
1619 *port_count = 0;
1620 if ((dir = opendir(hba_path)) == NULL)
1621 return -1;
1622
1623 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1624 int host;
1625
1626 if (sscanf(ent->d_name, "host%d", &host) != 1)
1627 continue;
1628 if (*port_count == 0)
1629 host_base = host;
1630 else if (host < host_base)
1631 host_base = host;
1632
1633 if (host + 1 > *port_count + host_base)
1634 *port_count = host + 1 - host_base;
1635 }
1636 closedir(dir);
1637 return host_base;
1638}
1639
a891a3c2
LM
1640static void print_imsm_capability(const struct imsm_orom *orom)
1641{
1642 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1643 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1644 orom->hotfix_ver, orom->build);
1645 printf(" RAID Levels :%s%s%s%s%s\n",
1646 imsm_orom_has_raid0(orom) ? " raid0" : "",
1647 imsm_orom_has_raid1(orom) ? " raid1" : "",
1648 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1649 imsm_orom_has_raid10(orom) ? " raid10" : "",
1650 imsm_orom_has_raid5(orom) ? " raid5" : "");
1651 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1652 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1653 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1654 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1655 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1656 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1657 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1658 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1659 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1660 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1661 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1662 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1663 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1664 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1665 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1666 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1667 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1668 printf(" Max Disks : %d\n", orom->tds);
1669 printf(" Max Volumes : %d\n", orom->vpa);
1670 return;
1671}
1672
5615172f 1673static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1674{
1675 /* There are two components to imsm platform support, the ahci SATA
1676 * controller and the option-rom. To find the SATA controller we
1677 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1678 * controller with the Intel vendor id is present. This approach
1679 * allows mdadm to leverage the kernel's ahci detection logic, with the
1680 * caveat that if ahci.ko is not loaded mdadm will not be able to
1681 * detect platform raid capabilities. The option-rom resides in a
1682 * platform "Adapter ROM". We scan for its signature to retrieve the
1683 * platform capabilities. If raid support is disabled in the BIOS the
1684 * option-rom capability structure will not be available.
1685 */
1686 const struct imsm_orom *orom;
1687 struct sys_dev *list, *hba;
d665cc31
DW
1688 int host_base = 0;
1689 int port_count = 0;
120dc887 1690 int result=0;
d665cc31 1691
5615172f 1692 if (enumerate_only) {
a891a3c2 1693 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1694 return 0;
a891a3c2
LM
1695 list = find_intel_devices();
1696 if (!list)
1697 return 2;
1698 for (hba = list; hba; hba = hba->next) {
1699 orom = find_imsm_capability(hba->type);
1700 if (!orom) {
1701 result = 2;
1702 break;
1703 }
1704 }
1705 free_sys_dev(&list);
1706 return result;
5615172f
DW
1707 }
1708
155cbb4c
LM
1709 list = find_intel_devices();
1710 if (!list) {
d665cc31 1711 if (verbose)
155cbb4c
LM
1712 fprintf(stderr, Name ": no active Intel(R) RAID "
1713 "controller found.\n");
d665cc31
DW
1714 free_sys_dev(&list);
1715 return 2;
1716 } else if (verbose)
155cbb4c 1717 print_found_intel_controllers(list);
d665cc31 1718
a891a3c2
LM
1719 for (hba = list; hba; hba = hba->next) {
1720 orom = find_imsm_capability(hba->type);
1721 if (!orom)
1722 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1723 hba->path, get_sys_dev_type(hba->type));
1724 else
1725 print_imsm_capability(orom);
d665cc31
DW
1726 }
1727
120dc887
LM
1728 for (hba = list; hba; hba = hba->next) {
1729 printf(" I/O Controller : %s (%s)\n",
1730 hba->path, get_sys_dev_type(hba->type));
d665cc31 1731
120dc887
LM
1732 if (hba->type == SYS_DEV_SATA) {
1733 host_base = ahci_get_port_count(hba->path, &port_count);
1734 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1735 if (verbose)
1736 fprintf(stderr, Name ": failed to enumerate "
1737 "ports on SATA controller at %s.", hba->pci_id);
1738 result |= 2;
1739 }
1740 }
d665cc31 1741 }
155cbb4c 1742
120dc887
LM
1743 free_sys_dev(&list);
1744 return result;
d665cc31 1745}
cdddbdbc
DW
1746#endif
1747
1748static int match_home_imsm(struct supertype *st, char *homehost)
1749{
5115ca67
DW
1750 /* the imsm metadata format does not specify any host
1751 * identification information. We return -1 since we can never
1752 * confirm nor deny whether a given array is "meant" for this
148acb7b 1753 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1754 * exclude member disks that do not belong, and we rely on
1755 * mdadm.conf to specify the arrays that should be assembled.
1756 * Auto-assembly may still pick up "foreign" arrays.
1757 */
cdddbdbc 1758
9362c1c8 1759 return -1;
cdddbdbc
DW
1760}
1761
1762static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1763{
51006d85
N
1764 /* The uuid returned here is used for:
1765 * uuid to put into bitmap file (Create, Grow)
1766 * uuid for backup header when saving critical section (Grow)
1767 * comparing uuids when re-adding a device into an array
1768 * In these cases the uuid required is that of the data-array,
1769 * not the device-set.
1770 * uuid to recognise same set when adding a missing device back
1771 * to an array. This is a uuid for the device-set.
1772 *
1773 * For each of these we can make do with a truncated
1774 * or hashed uuid rather than the original, as long as
1775 * everyone agrees.
1776 * In each case the uuid required is that of the data-array,
1777 * not the device-set.
43dad3d6 1778 */
51006d85
N
1779 /* imsm does not track uuid's so we synthesis one using sha1 on
1780 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1781 * - the orig_family_num of the container
51006d85
N
1782 * - the index number of the volume
1783 * - the 'serial' number of the volume.
1784 * Hopefully these are all constant.
1785 */
1786 struct intel_super *super = st->sb;
43dad3d6 1787
51006d85
N
1788 char buf[20];
1789 struct sha1_ctx ctx;
1790 struct imsm_dev *dev = NULL;
148acb7b 1791 __u32 family_num;
51006d85 1792
148acb7b
DW
1793 /* some mdadm versions failed to set ->orig_family_num, in which
1794 * case fall back to ->family_num. orig_family_num will be
1795 * fixed up with the first metadata update.
1796 */
1797 family_num = super->anchor->orig_family_num;
1798 if (family_num == 0)
1799 family_num = super->anchor->family_num;
51006d85 1800 sha1_init_ctx(&ctx);
92bd8f8d 1801 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1802 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1803 if (super->current_vol >= 0)
1804 dev = get_imsm_dev(super, super->current_vol);
1805 if (dev) {
1806 __u32 vol = super->current_vol;
1807 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1808 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1809 }
1810 sha1_finish_ctx(&ctx, buf);
1811 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1812}
1813
0d481d37 1814#if 0
4f5bc454
DW
1815static void
1816get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1817{
cdddbdbc
DW
1818 __u8 *v = get_imsm_version(mpb);
1819 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1820 char major[] = { 0, 0, 0 };
1821 char minor[] = { 0 ,0, 0 };
1822 char patch[] = { 0, 0, 0 };
1823 char *ver_parse[] = { major, minor, patch };
1824 int i, j;
1825
1826 i = j = 0;
1827 while (*v != '\0' && v < end) {
1828 if (*v != '.' && j < 2)
1829 ver_parse[i][j++] = *v;
1830 else {
1831 i++;
1832 j = 0;
1833 }
1834 v++;
1835 }
1836
4f5bc454
DW
1837 *m = strtol(minor, NULL, 0);
1838 *p = strtol(patch, NULL, 0);
1839}
0d481d37 1840#endif
4f5bc454 1841
1e5c6983
DW
1842static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1843{
1844 /* migr_strip_size when repairing or initializing parity */
1845 struct imsm_map *map = get_imsm_map(dev, 0);
1846 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1847
1848 switch (get_imsm_raid_level(map)) {
1849 case 5:
1850 case 10:
1851 return chunk;
1852 default:
1853 return 128*1024 >> 9;
1854 }
1855}
1856
1857static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1858{
1859 /* migr_strip_size when rebuilding a degraded disk, no idea why
1860 * this is different than migr_strip_size_resync(), but it's good
1861 * to be compatible
1862 */
1863 struct imsm_map *map = get_imsm_map(dev, 1);
1864 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1865
1866 switch (get_imsm_raid_level(map)) {
1867 case 1:
1868 case 10:
1869 if (map->num_members % map->num_domains == 0)
1870 return 128*1024 >> 9;
1871 else
1872 return chunk;
1873 case 5:
1874 return max((__u32) 64*1024 >> 9, chunk);
1875 default:
1876 return 128*1024 >> 9;
1877 }
1878}
1879
1880static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1881{
1882 struct imsm_map *lo = get_imsm_map(dev, 0);
1883 struct imsm_map *hi = get_imsm_map(dev, 1);
1884 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1885 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1886
1887 return max((__u32) 1, hi_chunk / lo_chunk);
1888}
1889
1890static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1891{
1892 struct imsm_map *lo = get_imsm_map(dev, 0);
1893 int level = get_imsm_raid_level(lo);
1894
1895 if (level == 1 || level == 10) {
1896 struct imsm_map *hi = get_imsm_map(dev, 1);
1897
1898 return hi->num_domains;
1899 } else
1900 return num_stripes_per_unit_resync(dev);
1901}
1902
98130f40 1903static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1904{
1905 /* named 'imsm_' because raid0, raid1 and raid10
1906 * counter-intuitively have the same number of data disks
1907 */
98130f40 1908 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1909
1910 switch (get_imsm_raid_level(map)) {
1911 case 0:
1912 case 1:
1913 case 10:
1914 return map->num_members;
1915 case 5:
1916 return map->num_members - 1;
1917 default:
1918 dprintf("%s: unsupported raid level\n", __func__);
1919 return 0;
1920 }
1921}
1922
1923static __u32 parity_segment_depth(struct imsm_dev *dev)
1924{
1925 struct imsm_map *map = get_imsm_map(dev, 0);
1926 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1927
1928 switch(get_imsm_raid_level(map)) {
1929 case 1:
1930 case 10:
1931 return chunk * map->num_domains;
1932 case 5:
1933 return chunk * map->num_members;
1934 default:
1935 return chunk;
1936 }
1937}
1938
1939static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1940{
1941 struct imsm_map *map = get_imsm_map(dev, 1);
1942 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1943 __u32 strip = block / chunk;
1944
1945 switch (get_imsm_raid_level(map)) {
1946 case 1:
1947 case 10: {
1948 __u32 vol_strip = (strip * map->num_domains) + 1;
1949 __u32 vol_stripe = vol_strip / map->num_members;
1950
1951 return vol_stripe * chunk + block % chunk;
1952 } case 5: {
1953 __u32 stripe = strip / (map->num_members - 1);
1954
1955 return stripe * chunk + block % chunk;
1956 }
1957 default:
1958 return 0;
1959 }
1960}
1961
c47b0ff6
AK
1962static __u64 blocks_per_migr_unit(struct intel_super *super,
1963 struct imsm_dev *dev)
1e5c6983
DW
1964{
1965 /* calculate the conversion factor between per member 'blocks'
1966 * (md/{resync,rebuild}_start) and imsm migration units, return
1967 * 0 for the 'not migrating' and 'unsupported migration' cases
1968 */
1969 if (!dev->vol.migr_state)
1970 return 0;
1971
1972 switch (migr_type(dev)) {
c47b0ff6
AK
1973 case MIGR_GEN_MIGR: {
1974 struct migr_record *migr_rec = super->migr_rec;
1975 return __le32_to_cpu(migr_rec->blocks_per_unit);
1976 }
1e5c6983
DW
1977 case MIGR_VERIFY:
1978 case MIGR_REPAIR:
1979 case MIGR_INIT: {
1980 struct imsm_map *map = get_imsm_map(dev, 0);
1981 __u32 stripes_per_unit;
1982 __u32 blocks_per_unit;
1983 __u32 parity_depth;
1984 __u32 migr_chunk;
1985 __u32 block_map;
1986 __u32 block_rel;
1987 __u32 segment;
1988 __u32 stripe;
1989 __u8 disks;
1990
1991 /* yes, this is really the translation of migr_units to
1992 * per-member blocks in the 'resync' case
1993 */
1994 stripes_per_unit = num_stripes_per_unit_resync(dev);
1995 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 1996 disks = imsm_num_data_members(dev, 0);
1e5c6983 1997 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 1998 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
1999 segment = blocks_per_unit / stripe;
2000 block_rel = blocks_per_unit - segment * stripe;
2001 parity_depth = parity_segment_depth(dev);
2002 block_map = map_migr_block(dev, block_rel);
2003 return block_map + parity_depth * segment;
2004 }
2005 case MIGR_REBUILD: {
2006 __u32 stripes_per_unit;
2007 __u32 migr_chunk;
2008
2009 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2010 migr_chunk = migr_strip_blocks_rebuild(dev);
2011 return migr_chunk * stripes_per_unit;
2012 }
1e5c6983
DW
2013 case MIGR_STATE_CHANGE:
2014 default:
2015 return 0;
2016 }
2017}
2018
c2c087e6
DW
2019static int imsm_level_to_layout(int level)
2020{
2021 switch (level) {
2022 case 0:
2023 case 1:
2024 return 0;
2025 case 5:
2026 case 6:
a380c027 2027 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2028 case 10:
c92a2527 2029 return 0x102;
c2c087e6 2030 }
a18a888e 2031 return UnSet;
c2c087e6
DW
2032}
2033
8e59f3d8
AK
2034/*******************************************************************************
2035 * Function: read_imsm_migr_rec
2036 * Description: Function reads imsm migration record from last sector of disk
2037 * Parameters:
2038 * fd : disk descriptor
2039 * super : metadata info
2040 * Returns:
2041 * 0 : success,
2042 * -1 : fail
2043 ******************************************************************************/
2044static int read_imsm_migr_rec(int fd, struct intel_super *super)
2045{
2046 int ret_val = -1;
2047 unsigned long long dsize;
2048
2049 get_dev_size(fd, NULL, &dsize);
2050 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2051 fprintf(stderr,
2052 Name ": Cannot seek to anchor block: %s\n",
2053 strerror(errno));
2054 goto out;
2055 }
2056 if (read(fd, super->migr_rec_buf, 512) != 512) {
2057 fprintf(stderr,
2058 Name ": Cannot read migr record block: %s\n",
2059 strerror(errno));
2060 goto out;
2061 }
2062 ret_val = 0;
2063
2064out:
2065 return ret_val;
2066}
2067
2068/*******************************************************************************
2069 * Function: load_imsm_migr_rec
2070 * Description: Function reads imsm migration record (it is stored at the last
2071 * sector of disk)
2072 * Parameters:
2073 * super : imsm internal array info
2074 * info : general array info
2075 * Returns:
2076 * 0 : success
2077 * -1 : fail
2078 ******************************************************************************/
2079static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2080{
2081 struct mdinfo *sd;
2082 struct dl *dl = NULL;
2083 char nm[30];
2084 int retval = -1;
2085 int fd = -1;
2086
2087 if (info) {
2088 for (sd = info->devs ; sd ; sd = sd->next) {
2089 /* read only from one of the first two slots */
2090 if ((sd->disk.raid_disk > 1) ||
2091 (sd->disk.raid_disk < 0))
2092 continue;
2093 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2094 fd = dev_open(nm, O_RDONLY);
2095 if (fd >= 0)
2096 break;
2097 }
2098 }
2099 if (fd < 0) {
2100 for (dl = super->disks; dl; dl = dl->next) {
2101 /* read only from one of the first two slots */
2102 if (dl->index > 1)
2103 continue;
2104 sprintf(nm, "%d:%d", dl->major, dl->minor);
2105 fd = dev_open(nm, O_RDONLY);
2106 if (fd >= 0)
2107 break;
2108 }
2109 }
2110 if (fd < 0)
2111 goto out;
2112 retval = read_imsm_migr_rec(fd, super);
2113
2114out:
2115 if (fd >= 0)
2116 close(fd);
2117 return retval;
2118}
2119
9e2d750d 2120#ifndef MDASSEMBLE
c17608ea
AK
2121/*******************************************************************************
2122 * function: imsm_create_metadata_checkpoint_update
2123 * Description: It creates update for checkpoint change.
2124 * Parameters:
2125 * super : imsm internal array info
2126 * u : pointer to prepared update
2127 * Returns:
2128 * Uptate length.
2129 * If length is equal to 0, input pointer u contains no update
2130 ******************************************************************************/
2131static int imsm_create_metadata_checkpoint_update(
2132 struct intel_super *super,
2133 struct imsm_update_general_migration_checkpoint **u)
2134{
2135
2136 int update_memory_size = 0;
2137
2138 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2139
2140 if (u == NULL)
2141 return 0;
2142 *u = NULL;
2143
2144 /* size of all update data without anchor */
2145 update_memory_size =
2146 sizeof(struct imsm_update_general_migration_checkpoint);
2147
2148 *u = calloc(1, update_memory_size);
2149 if (*u == NULL) {
2150 dprintf("error: cannot get memory for "
2151 "imsm_create_metadata_checkpoint_update update\n");
2152 return 0;
2153 }
2154 (*u)->type = update_general_migration_checkpoint;
2155 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2156 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2157 (*u)->curr_migr_unit);
2158
2159 return update_memory_size;
2160}
2161
2162
2163static void imsm_update_metadata_locally(struct supertype *st,
2164 void *buf, int len);
2165
687629c2
AK
2166/*******************************************************************************
2167 * Function: write_imsm_migr_rec
2168 * Description: Function writes imsm migration record
2169 * (at the last sector of disk)
2170 * Parameters:
2171 * super : imsm internal array info
2172 * Returns:
2173 * 0 : success
2174 * -1 : if fail
2175 ******************************************************************************/
2176static int write_imsm_migr_rec(struct supertype *st)
2177{
2178 struct intel_super *super = st->sb;
2179 unsigned long long dsize;
2180 char nm[30];
2181 int fd = -1;
2182 int retval = -1;
2183 struct dl *sd;
c17608ea
AK
2184 int len;
2185 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2186
2187 for (sd = super->disks ; sd ; sd = sd->next) {
2188 /* write to 2 first slots only */
2189 if ((sd->index < 0) || (sd->index > 1))
2190 continue;
2191 sprintf(nm, "%d:%d", sd->major, sd->minor);
2192 fd = dev_open(nm, O_RDWR);
2193 if (fd < 0)
2194 continue;
2195 get_dev_size(fd, NULL, &dsize);
2196 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2197 fprintf(stderr,
2198 Name ": Cannot seek to anchor block: %s\n",
2199 strerror(errno));
2200 goto out;
2201 }
2202 if (write(fd, super->migr_rec_buf, 512) != 512) {
2203 fprintf(stderr,
2204 Name ": Cannot write migr record block: %s\n",
2205 strerror(errno));
2206 goto out;
2207 }
2208 close(fd);
2209 fd = -1;
2210 }
c17608ea
AK
2211 /* update checkpoint information in metadata */
2212 len = imsm_create_metadata_checkpoint_update(super, &u);
2213
2214 if (len <= 0) {
2215 dprintf("imsm: Cannot prepare update\n");
2216 goto out;
2217 }
2218 /* update metadata locally */
2219 imsm_update_metadata_locally(st, u, len);
2220 /* and possibly remotely */
2221 if (st->update_tail) {
2222 append_metadata_update(st, u, len);
2223 /* during reshape we do all work inside metadata handler
2224 * manage_reshape(), so metadata update has to be triggered
2225 * insida it
2226 */
2227 flush_metadata_updates(st);
2228 st->update_tail = &st->updates;
2229 } else
2230 free(u);
687629c2
AK
2231
2232 retval = 0;
2233 out:
2234 if (fd >= 0)
2235 close(fd);
2236 return retval;
2237}
9e2d750d 2238#endif /* MDASSEMBLE */
687629c2 2239
e2962bfc
AK
2240/* spare/missing disks activations are not allowe when
2241 * array/container performs reshape operation, because
2242 * all arrays in container works on the same disks set
2243 */
2244int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2245{
2246 int rv = 0;
2247 struct intel_dev *i_dev;
2248 struct imsm_dev *dev;
2249
2250 /* check whole container
2251 */
2252 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2253 dev = i_dev->dev;
2254 if (dev->vol.migr_state &&
2255 dev->vol.migr_type == MIGR_GEN_MIGR) {
2256 /* No repair during any migration in container
2257 */
2258 rv = 1;
2259 break;
2260 }
2261 }
2262 return rv;
2263}
2264
a5d85af7 2265static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2266{
2267 struct intel_super *super = st->sb;
c47b0ff6 2268 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2269 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 2270 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 2271 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 2272 struct imsm_map *map_to_analyse = map;
efb30e7f 2273 struct dl *dl;
e207da2f 2274 char *devname;
139dae11 2275 unsigned int component_size_alligment;
a5d85af7 2276 int map_disks = info->array.raid_disks;
bf5a934a 2277
95eeceeb 2278 memset(info, 0, sizeof(*info));
b335e593
AK
2279 if (prev_map)
2280 map_to_analyse = prev_map;
2281
ca0748fa 2282 dl = super->current_disk;
9894ec0d 2283
bf5a934a 2284 info->container_member = super->current_vol;
cd0430a1 2285 info->array.raid_disks = map->num_members;
b335e593 2286 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2287 info->array.layout = imsm_level_to_layout(info->array.level);
2288 info->array.md_minor = -1;
2289 info->array.ctime = 0;
2290 info->array.utime = 0;
b335e593
AK
2291 info->array.chunk_size =
2292 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2293 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2294 info->custom_array_size = __le32_to_cpu(dev->size_high);
2295 info->custom_array_size <<= 32;
2296 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3f83228a
N
2297 if (prev_map && map->map_state == prev_map->map_state) {
2298 info->reshape_active = 1;
b335e593
AK
2299 info->new_level = get_imsm_raid_level(map);
2300 info->new_layout = imsm_level_to_layout(info->new_level);
2301 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2302 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2303 if (info->delta_disks) {
2304 /* this needs to be applied to every array
2305 * in the container.
2306 */
2307 info->reshape_active = 2;
2308 }
3f83228a
N
2309 /* We shape information that we give to md might have to be
2310 * modify to cope with md's requirement for reshaping arrays.
2311 * For example, when reshaping a RAID0, md requires it to be
2312 * presented as a degraded RAID4.
2313 * Also if a RAID0 is migrating to a RAID5 we need to specify
2314 * the array as already being RAID5, but the 'before' layout
2315 * is a RAID4-like layout.
2316 */
2317 switch (info->array.level) {
2318 case 0:
2319 switch(info->new_level) {
2320 case 0:
2321 /* conversion is happening as RAID4 */
2322 info->array.level = 4;
2323 info->array.raid_disks += 1;
2324 break;
2325 case 5:
2326 /* conversion is happening as RAID5 */
2327 info->array.level = 5;
2328 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2329 info->delta_disks -= 1;
2330 break;
2331 default:
2332 /* FIXME error message */
2333 info->array.level = UnSet;
2334 break;
2335 }
2336 break;
2337 }
b335e593
AK
2338 } else {
2339 info->new_level = UnSet;
2340 info->new_layout = UnSet;
2341 info->new_chunk = info->array.chunk_size;
3f83228a 2342 info->delta_disks = 0;
b335e593 2343 }
ca0748fa 2344
efb30e7f
DW
2345 if (dl) {
2346 info->disk.major = dl->major;
2347 info->disk.minor = dl->minor;
ca0748fa 2348 info->disk.number = dl->index;
656b6b5a
N
2349 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2350 dl->index);
efb30e7f 2351 }
bf5a934a 2352
b335e593
AK
2353 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2354 info->component_size =
2355 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2356
2357 /* check component size aligment
2358 */
2359 component_size_alligment =
2360 info->component_size % (info->array.chunk_size/512);
2361
2362 if (component_size_alligment &&
2363 (info->array.level != 1) && (info->array.level != UnSet)) {
2364 dprintf("imsm: reported component size alligned from %llu ",
2365 info->component_size);
2366 info->component_size -= component_size_alligment;
2367 dprintf("to %llu (%i).\n",
2368 info->component_size, component_size_alligment);
2369 }
2370
301406c9 2371 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2372 info->recovery_start = MaxSector;
bf5a934a 2373
d2e6d5d6 2374 info->reshape_progress = 0;
b6796ce1 2375 info->resync_start = MaxSector;
b335e593
AK
2376 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2377 dev->vol.dirty) {
301406c9 2378 info->resync_start = 0;
b6796ce1
AK
2379 }
2380 if (dev->vol.migr_state) {
1e5c6983
DW
2381 switch (migr_type(dev)) {
2382 case MIGR_REPAIR:
2383 case MIGR_INIT: {
c47b0ff6
AK
2384 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2385 dev);
1e5c6983
DW
2386 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2387
2388 info->resync_start = blocks_per_unit * units;
2389 break;
2390 }
d2e6d5d6 2391 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2392 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2393 dev);
2394 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2395 unsigned long long array_blocks;
2396 int used_disks;
d2e6d5d6 2397
befb629b
AK
2398 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2399 (units <
2400 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2401 (super->migr_rec->rec_status ==
2402 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2403 units++;
2404
d2e6d5d6 2405 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2406
d2e6d5d6
AK
2407 dprintf("IMSM: General Migration checkpoint : %llu "
2408 "(%llu) -> read reshape progress : %llu\n",
19986c72
MB
2409 (unsigned long long)units,
2410 (unsigned long long)blocks_per_unit,
2411 info->reshape_progress);
75156c46
AK
2412
2413 used_disks = imsm_num_data_members(dev, 1);
2414 if (used_disks > 0) {
2415 array_blocks = map->blocks_per_member *
2416 used_disks;
2417 /* round array size down to closest MB
2418 */
2419 info->custom_array_size = (array_blocks
2420 >> SECT_PER_MB_SHIFT)
2421 << SECT_PER_MB_SHIFT;
2422 }
d2e6d5d6 2423 }
1e5c6983
DW
2424 case MIGR_VERIFY:
2425 /* we could emulate the checkpointing of
2426 * 'sync_action=check' migrations, but for now
2427 * we just immediately complete them
2428 */
2429 case MIGR_REBUILD:
2430 /* this is handled by container_content_imsm() */
1e5c6983
DW
2431 case MIGR_STATE_CHANGE:
2432 /* FIXME handle other migrations */
2433 default:
2434 /* we are not dirty, so... */
2435 info->resync_start = MaxSector;
2436 }
b6796ce1 2437 }
301406c9
DW
2438
2439 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2440 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2441
f35f2525
N
2442 info->array.major_version = -1;
2443 info->array.minor_version = -2;
e207da2f
AW
2444 devname = devnum2devname(st->container_dev);
2445 *info->text_version = '\0';
2446 if (devname)
2447 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2448 free(devname);
a67dd8cc 2449 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2450 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2451
2452 if (dmap) {
2453 int i, j;
2454 for (i=0; i<map_disks; i++) {
2455 dmap[i] = 0;
2456 if (i < info->array.raid_disks) {
2457 struct imsm_disk *dsk;
98130f40 2458 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2459 dsk = get_imsm_disk(super, j);
2460 if (dsk && (dsk->status & CONFIGURED_DISK))
2461 dmap[i] = 1;
2462 }
2463 }
2464 }
81ac8b4d 2465}
bf5a934a 2466
97b4d0e9
DW
2467static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2468static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2469
2470static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2471{
2472 struct dl *d;
2473
2474 for (d = super->missing; d; d = d->next)
2475 if (d->index == index)
2476 return &d->disk;
2477 return NULL;
2478}
2479
a5d85af7 2480static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2481{
2482 struct intel_super *super = st->sb;
4f5bc454 2483 struct imsm_disk *disk;
a5d85af7 2484 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2485 int max_enough = -1;
2486 int i;
2487 struct imsm_super *mpb;
4f5bc454 2488
bf5a934a 2489 if (super->current_vol >= 0) {
a5d85af7 2490 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2491 return;
2492 }
95eeceeb 2493 memset(info, 0, sizeof(*info));
d23fe947
DW
2494
2495 /* Set raid_disks to zero so that Assemble will always pull in valid
2496 * spares
2497 */
2498 info->array.raid_disks = 0;
cdddbdbc
DW
2499 info->array.level = LEVEL_CONTAINER;
2500 info->array.layout = 0;
2501 info->array.md_minor = -1;
c2c087e6 2502 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2503 info->array.utime = 0;
2504 info->array.chunk_size = 0;
2505
2506 info->disk.major = 0;
2507 info->disk.minor = 0;
cdddbdbc 2508 info->disk.raid_disk = -1;
c2c087e6 2509 info->reshape_active = 0;
f35f2525
N
2510 info->array.major_version = -1;
2511 info->array.minor_version = -2;
c2c087e6 2512 strcpy(info->text_version, "imsm");
a67dd8cc 2513 info->safe_mode_delay = 0;
c2c087e6
DW
2514 info->disk.number = -1;
2515 info->disk.state = 0;
c5afc314 2516 info->name[0] = 0;
921d9e16 2517 info->recovery_start = MaxSector;
c2c087e6 2518
97b4d0e9 2519 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2520 mpb = super->anchor;
97b4d0e9 2521
ab3cb6b3
N
2522 for (i = 0; i < mpb->num_raid_devs; i++) {
2523 struct imsm_dev *dev = get_imsm_dev(super, i);
2524 int failed, enough, j, missing = 0;
2525 struct imsm_map *map;
2526 __u8 state;
97b4d0e9 2527
ab3cb6b3
N
2528 failed = imsm_count_failed(super, dev);
2529 state = imsm_check_degraded(super, dev, failed);
2530 map = get_imsm_map(dev, dev->vol.migr_state);
2531
2532 /* any newly missing disks?
2533 * (catches single-degraded vs double-degraded)
2534 */
2535 for (j = 0; j < map->num_members; j++) {
98130f40 2536 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
ab3cb6b3
N
2537 __u32 idx = ord_to_idx(ord);
2538
2539 if (!(ord & IMSM_ORD_REBUILD) &&
2540 get_imsm_missing(super, idx)) {
2541 missing = 1;
2542 break;
2543 }
97b4d0e9 2544 }
ab3cb6b3
N
2545
2546 if (state == IMSM_T_STATE_FAILED)
2547 enough = -1;
2548 else if (state == IMSM_T_STATE_DEGRADED &&
2549 (state != map->map_state || missing))
2550 enough = 0;
2551 else /* we're normal, or already degraded */
2552 enough = 1;
2553
2554 /* in the missing/failed disk case check to see
2555 * if at least one array is runnable
2556 */
2557 max_enough = max(max_enough, enough);
2558 }
2559 dprintf("%s: enough: %d\n", __func__, max_enough);
2560 info->container_enough = max_enough;
97b4d0e9 2561
4a04ec6c 2562 if (super->disks) {
14e8215b
DW
2563 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2564
b9f594fe 2565 disk = &super->disks->disk;
14e8215b
DW
2566 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2567 info->component_size = reserved;
25ed7e59 2568 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2569 /* we don't change info->disk.raid_disk here because
2570 * this state will be finalized in mdmon after we have
2571 * found the 'most fresh' version of the metadata
2572 */
25ed7e59
DW
2573 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2574 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2575 }
a575e2a7
DW
2576
2577 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2578 * ->compare_super may have updated the 'num_raid_devs' field for spares
2579 */
2580 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2581 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2582 else
2583 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2584
2585 /* I don't know how to compute 'map' on imsm, so use safe default */
2586 if (map) {
2587 int i;
2588 for (i = 0; i < map_disks; i++)
2589 map[i] = 1;
2590 }
2591
cdddbdbc
DW
2592}
2593
5c4cd5da
AC
2594/* allocates memory and fills disk in mdinfo structure
2595 * for each disk in array */
2596struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2597{
2598 struct mdinfo *mddev = NULL;
2599 struct intel_super *super = st->sb;
2600 struct imsm_disk *disk;
2601 int count = 0;
2602 struct dl *dl;
2603 if (!super || !super->disks)
2604 return NULL;
2605 dl = super->disks;
2606 mddev = malloc(sizeof(*mddev));
2607 if (!mddev) {
2608 fprintf(stderr, Name ": Failed to allocate memory.\n");
2609 return NULL;
2610 }
2611 memset(mddev, 0, sizeof(*mddev));
2612 while (dl) {
2613 struct mdinfo *tmp;
2614 disk = &dl->disk;
2615 tmp = malloc(sizeof(*tmp));
2616 if (!tmp) {
2617 fprintf(stderr, Name ": Failed to allocate memory.\n");
2618 if (mddev)
2619 sysfs_free(mddev);
2620 return NULL;
2621 }
2622 memset(tmp, 0, sizeof(*tmp));
2623 if (mddev->devs)
2624 tmp->next = mddev->devs;
2625 mddev->devs = tmp;
2626 tmp->disk.number = count++;
2627 tmp->disk.major = dl->major;
2628 tmp->disk.minor = dl->minor;
2629 tmp->disk.state = is_configured(disk) ?
2630 (1 << MD_DISK_ACTIVE) : 0;
2631 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2632 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2633 tmp->disk.raid_disk = -1;
2634 dl = dl->next;
2635 }
2636 return mddev;
2637}
2638
cdddbdbc
DW
2639static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2640 char *update, char *devname, int verbose,
2641 int uuid_set, char *homehost)
2642{
f352c545
DW
2643 /* For 'assemble' and 'force' we need to return non-zero if any
2644 * change was made. For others, the return value is ignored.
2645 * Update options are:
2646 * force-one : This device looks a bit old but needs to be included,
2647 * update age info appropriately.
2648 * assemble: clear any 'faulty' flag to allow this device to
2649 * be assembled.
2650 * force-array: Array is degraded but being forced, mark it clean
2651 * if that will be needed to assemble it.
2652 *
2653 * newdev: not used ????
2654 * grow: Array has gained a new device - this is currently for
2655 * linear only
2656 * resync: mark as dirty so a resync will happen.
2657 * name: update the name - preserving the homehost
6e46bf34 2658 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2659 *
2660 * Following are not relevant for this imsm:
2661 * sparc2.2 : update from old dodgey metadata
2662 * super-minor: change the preferred_minor number
2663 * summaries: update redundant counters.
f352c545
DW
2664 * homehost: update the recorded homehost
2665 * _reshape_progress: record new reshape_progress position.
2666 */
6e46bf34
DW
2667 int rv = 1;
2668 struct intel_super *super = st->sb;
2669 struct imsm_super *mpb;
f352c545 2670
6e46bf34
DW
2671 /* we can only update container info */
2672 if (!super || super->current_vol >= 0 || !super->anchor)
2673 return 1;
2674
2675 mpb = super->anchor;
2676
2677 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2678 rv = -1;
6e46bf34
DW
2679 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2680 mpb->orig_family_num = *((__u32 *) info->update_private);
2681 rv = 0;
2682 } else if (strcmp(update, "uuid") == 0) {
2683 __u32 *new_family = malloc(sizeof(*new_family));
2684
2685 /* update orig_family_number with the incoming random
2686 * data, report the new effective uuid, and store the
2687 * new orig_family_num for future updates.
2688 */
2689 if (new_family) {
2690 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2691 uuid_from_super_imsm(st, info->uuid);
2692 *new_family = mpb->orig_family_num;
2693 info->update_private = new_family;
2694 rv = 0;
2695 }
2696 } else if (strcmp(update, "assemble") == 0)
2697 rv = 0;
2698 else
1e2b2765 2699 rv = -1;
f352c545 2700
6e46bf34
DW
2701 /* successful update? recompute checksum */
2702 if (rv == 0)
2703 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2704
2705 return rv;
cdddbdbc
DW
2706}
2707
c2c087e6 2708static size_t disks_to_mpb_size(int disks)
cdddbdbc 2709{
c2c087e6 2710 size_t size;
cdddbdbc 2711
c2c087e6
DW
2712 size = sizeof(struct imsm_super);
2713 size += (disks - 1) * sizeof(struct imsm_disk);
2714 size += 2 * sizeof(struct imsm_dev);
2715 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2716 size += (4 - 2) * sizeof(struct imsm_map);
2717 /* 4 possible disk_ord_tbl's */
2718 size += 4 * (disks - 1) * sizeof(__u32);
2719
2720 return size;
2721}
2722
2723static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2724{
2725 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2726 return 0;
2727
2728 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2729}
2730
ba2de7ba
DW
2731static void free_devlist(struct intel_super *super)
2732{
2733 struct intel_dev *dv;
2734
2735 while (super->devlist) {
2736 dv = super->devlist->next;
2737 free(super->devlist->dev);
2738 free(super->devlist);
2739 super->devlist = dv;
2740 }
2741}
2742
2743static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2744{
2745 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2746}
2747
cdddbdbc
DW
2748static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2749{
2750 /*
2751 * return:
2752 * 0 same, or first was empty, and second was copied
2753 * 1 second had wrong number
2754 * 2 wrong uuid
2755 * 3 wrong other info
2756 */
2757 struct intel_super *first = st->sb;
2758 struct intel_super *sec = tst->sb;
2759
2760 if (!first) {
2761 st->sb = tst->sb;
2762 tst->sb = NULL;
2763 return 0;
2764 }
8603ea6f
LM
2765 /* in platform dependent environment test if the disks
2766 * use the same Intel hba
2767 */
2768 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2769 if (!first->hba || !sec->hba ||
2770 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2771 fprintf(stderr,
2772 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2773 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2774 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2775 return 3;
2776 }
2777 }
cdddbdbc 2778
d23fe947
DW
2779 /* if an anchor does not have num_raid_devs set then it is a free
2780 * floating spare
2781 */
2782 if (first->anchor->num_raid_devs > 0 &&
2783 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2784 /* Determine if these disks might ever have been
2785 * related. Further disambiguation can only take place
2786 * in load_super_imsm_all
2787 */
2788 __u32 first_family = first->anchor->orig_family_num;
2789 __u32 sec_family = sec->anchor->orig_family_num;
2790
f796af5d
DW
2791 if (memcmp(first->anchor->sig, sec->anchor->sig,
2792 MAX_SIGNATURE_LENGTH) != 0)
2793 return 3;
2794
a2b97981
DW
2795 if (first_family == 0)
2796 first_family = first->anchor->family_num;
2797 if (sec_family == 0)
2798 sec_family = sec->anchor->family_num;
2799
2800 if (first_family != sec_family)
d23fe947 2801 return 3;
f796af5d 2802
d23fe947 2803 }
cdddbdbc 2804
f796af5d 2805
3e372e5a
DW
2806 /* if 'first' is a spare promote it to a populated mpb with sec's
2807 * family number
2808 */
2809 if (first->anchor->num_raid_devs == 0 &&
2810 sec->anchor->num_raid_devs > 0) {
78d30f94 2811 int i;
ba2de7ba
DW
2812 struct intel_dev *dv;
2813 struct imsm_dev *dev;
78d30f94
DW
2814
2815 /* we need to copy raid device info from sec if an allocation
2816 * fails here we don't associate the spare
2817 */
2818 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2819 dv = malloc(sizeof(*dv));
2820 if (!dv)
2821 break;
2822 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2823 if (!dev) {
2824 free(dv);
2825 break;
78d30f94 2826 }
ba2de7ba
DW
2827 dv->dev = dev;
2828 dv->index = i;
2829 dv->next = first->devlist;
2830 first->devlist = dv;
78d30f94 2831 }
709743c5 2832 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2833 /* allocation failure */
2834 free_devlist(first);
2835 fprintf(stderr, "imsm: failed to associate spare\n");
2836 return 3;
78d30f94 2837 }
3e372e5a 2838 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2839 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2840 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2841 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2842 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2843 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2844 }
2845
cdddbdbc
DW
2846 return 0;
2847}
2848
0030e8d6
DW
2849static void fd2devname(int fd, char *name)
2850{
2851 struct stat st;
2852 char path[256];
33a6535d 2853 char dname[PATH_MAX];
0030e8d6
DW
2854 char *nm;
2855 int rv;
2856
2857 name[0] = '\0';
2858 if (fstat(fd, &st) != 0)
2859 return;
2860 sprintf(path, "/sys/dev/block/%d:%d",
2861 major(st.st_rdev), minor(st.st_rdev));
2862
2863 rv = readlink(path, dname, sizeof(dname));
2864 if (rv <= 0)
2865 return;
2866
2867 dname[rv] = '\0';
2868 nm = strrchr(dname, '/');
2869 nm++;
2870 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2871}
2872
cdddbdbc
DW
2873extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2874
2875static int imsm_read_serial(int fd, char *devname,
2876 __u8 serial[MAX_RAID_SERIAL_LEN])
2877{
2878 unsigned char scsi_serial[255];
cdddbdbc
DW
2879 int rv;
2880 int rsp_len;
1f24f035 2881 int len;
316e2bf4
DW
2882 char *dest;
2883 char *src;
2884 char *rsp_buf;
2885 int i;
cdddbdbc
DW
2886
2887 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2888
f9ba0ff1
DW
2889 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2890
40ebbb9c 2891 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2892 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2893 fd2devname(fd, (char *) serial);
0030e8d6
DW
2894 return 0;
2895 }
2896
cdddbdbc
DW
2897 if (rv != 0) {
2898 if (devname)
2899 fprintf(stderr,
2900 Name ": Failed to retrieve serial for %s\n",
2901 devname);
2902 return rv;
2903 }
2904
2905 rsp_len = scsi_serial[3];
03cd4cc8
DW
2906 if (!rsp_len) {
2907 if (devname)
2908 fprintf(stderr,
2909 Name ": Failed to retrieve serial for %s\n",
2910 devname);
2911 return 2;
2912 }
1f24f035 2913 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2914
316e2bf4
DW
2915 /* trim all whitespace and non-printable characters and convert
2916 * ':' to ';'
2917 */
2918 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2919 src = &rsp_buf[i];
2920 if (*src > 0x20) {
2921 /* ':' is reserved for use in placeholder serial
2922 * numbers for missing disks
2923 */
2924 if (*src == ':')
2925 *dest++ = ';';
2926 else
2927 *dest++ = *src;
2928 }
2929 }
2930 len = dest - rsp_buf;
2931 dest = rsp_buf;
2932
2933 /* truncate leading characters */
2934 if (len > MAX_RAID_SERIAL_LEN) {
2935 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2936 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2937 }
5c3db629 2938
5c3db629 2939 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2940 memcpy(serial, dest, len);
cdddbdbc
DW
2941
2942 return 0;
2943}
2944
1f24f035
DW
2945static int serialcmp(__u8 *s1, __u8 *s2)
2946{
2947 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2948}
2949
2950static void serialcpy(__u8 *dest, __u8 *src)
2951{
2952 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2953}
2954
54c2c1ea
DW
2955static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2956{
2957 struct dl *dl;
2958
2959 for (dl = super->disks; dl; dl = dl->next)
2960 if (serialcmp(dl->serial, serial) == 0)
2961 break;
2962
2963 return dl;
2964}
2965
a2b97981
DW
2966static struct imsm_disk *
2967__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2968{
2969 int i;
2970
2971 for (i = 0; i < mpb->num_disks; i++) {
2972 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2973
2974 if (serialcmp(disk->serial, serial) == 0) {
2975 if (idx)
2976 *idx = i;
2977 return disk;
2978 }
2979 }
2980
2981 return NULL;
2982}
2983
cdddbdbc
DW
2984static int
2985load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2986{
a2b97981 2987 struct imsm_disk *disk;
cdddbdbc
DW
2988 struct dl *dl;
2989 struct stat stb;
cdddbdbc 2990 int rv;
a2b97981 2991 char name[40];
d23fe947
DW
2992 __u8 serial[MAX_RAID_SERIAL_LEN];
2993
2994 rv = imsm_read_serial(fd, devname, serial);
2995
2996 if (rv != 0)
2997 return 2;
2998
a2b97981 2999 dl = calloc(1, sizeof(*dl));
b9f594fe 3000 if (!dl) {
cdddbdbc
DW
3001 if (devname)
3002 fprintf(stderr,
3003 Name ": failed to allocate disk buffer for %s\n",
3004 devname);
3005 return 2;
3006 }
cdddbdbc 3007
a2b97981
DW
3008 fstat(fd, &stb);
3009 dl->major = major(stb.st_rdev);
3010 dl->minor = minor(stb.st_rdev);
3011 dl->next = super->disks;
3012 dl->fd = keep_fd ? fd : -1;
3013 assert(super->disks == NULL);
3014 super->disks = dl;
3015 serialcpy(dl->serial, serial);
3016 dl->index = -2;
3017 dl->e = NULL;
3018 fd2devname(fd, name);
3019 if (devname)
3020 dl->devname = strdup(devname);
3021 else
3022 dl->devname = strdup(name);
cdddbdbc 3023
d23fe947 3024 /* look up this disk's index in the current anchor */
a2b97981
DW
3025 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3026 if (disk) {
3027 dl->disk = *disk;
3028 /* only set index on disks that are a member of a
3029 * populated contianer, i.e. one with raid_devs
3030 */
3031 if (is_failed(&dl->disk))
3f6efecc 3032 dl->index = -2;
a2b97981
DW
3033 else if (is_spare(&dl->disk))
3034 dl->index = -1;
3f6efecc
DW
3035 }
3036
949c47a0
DW
3037 return 0;
3038}
3039
0e600426 3040#ifndef MDASSEMBLE
0c046afd
DW
3041/* When migrating map0 contains the 'destination' state while map1
3042 * contains the current state. When not migrating map0 contains the
3043 * current state. This routine assumes that map[0].map_state is set to
3044 * the current array state before being called.
3045 *
3046 * Migration is indicated by one of the following states
3047 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3048 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3049 * map1state=unitialized)
1484e727 3050 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3051 * map1state=normal)
e3bba0e0 3052 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3053 * map1state=degraded)
8e59f3d8
AK
3054 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3055 * map1state=normal)
0c046afd 3056 */
8e59f3d8
AK
3057static void migrate(struct imsm_dev *dev, struct intel_super *super,
3058 __u8 to_state, int migr_type)
3393c6af 3059{
0c046afd 3060 struct imsm_map *dest;
3393c6af
DW
3061 struct imsm_map *src = get_imsm_map(dev, 0);
3062
0c046afd 3063 dev->vol.migr_state = 1;
1484e727 3064 set_migr_type(dev, migr_type);
f8f603f1 3065 dev->vol.curr_migr_unit = 0;
0c046afd
DW
3066 dest = get_imsm_map(dev, 1);
3067
0556e1a2 3068 /* duplicate and then set the target end state in map[0] */
3393c6af 3069 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3070 if ((migr_type == MIGR_REBUILD) ||
3071 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3072 __u32 ord;
3073 int i;
3074
3075 for (i = 0; i < src->num_members; i++) {
3076 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3077 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3078 }
3079 }
3080
8e59f3d8
AK
3081 if (migr_type == MIGR_GEN_MIGR)
3082 /* Clear migration record */
3083 memset(super->migr_rec, 0, sizeof(struct migr_record));
3084
0c046afd 3085 src->map_state = to_state;
949c47a0 3086}
f8f603f1
DW
3087
3088static void end_migration(struct imsm_dev *dev, __u8 map_state)
3089{
3090 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 3091 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 3092 int i, j;
0556e1a2
DW
3093
3094 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3095 * completed in the last migration.
3096 *
28bce06f 3097 * FIXME add support for raid-level-migration
0556e1a2
DW
3098 */
3099 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
3100 for (j = 0; j < map->num_members; j++)
3101 /* during online capacity expansion
3102 * disks position can be changed if takeover is used
3103 */
3104 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3105 ord_to_idx(prev->disk_ord_tbl[i])) {
3106 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3107 break;
3108 }
f8f603f1
DW
3109
3110 dev->vol.migr_state = 0;
28bce06f 3111 dev->vol.migr_type = 0;
f8f603f1
DW
3112 dev->vol.curr_migr_unit = 0;
3113 map->map_state = map_state;
3114}
0e600426 3115#endif
949c47a0
DW
3116
3117static int parse_raid_devices(struct intel_super *super)
3118{
3119 int i;
3120 struct imsm_dev *dev_new;
4d7b1503 3121 size_t len, len_migr;
401d313b 3122 size_t max_len = 0;
4d7b1503
DW
3123 size_t space_needed = 0;
3124 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3125
3126 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3127 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3128 struct intel_dev *dv;
949c47a0 3129
4d7b1503
DW
3130 len = sizeof_imsm_dev(dev_iter, 0);
3131 len_migr = sizeof_imsm_dev(dev_iter, 1);
3132 if (len_migr > len)
3133 space_needed += len_migr - len;
3134
ba2de7ba
DW
3135 dv = malloc(sizeof(*dv));
3136 if (!dv)
3137 return 1;
401d313b
AK
3138 if (max_len < len_migr)
3139 max_len = len_migr;
3140 if (max_len > len_migr)
3141 space_needed += max_len - len_migr;
3142 dev_new = malloc(max_len);
ba2de7ba
DW
3143 if (!dev_new) {
3144 free(dv);
949c47a0 3145 return 1;
ba2de7ba 3146 }
949c47a0 3147 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3148 dv->dev = dev_new;
3149 dv->index = i;
3150 dv->next = super->devlist;
3151 super->devlist = dv;
949c47a0 3152 }
cdddbdbc 3153
4d7b1503
DW
3154 /* ensure that super->buf is large enough when all raid devices
3155 * are migrating
3156 */
3157 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3158 void *buf;
3159
3160 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3161 if (posix_memalign(&buf, 512, len) != 0)
3162 return 1;
3163
1f45a8ad
DW
3164 memcpy(buf, super->buf, super->len);
3165 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3166 free(super->buf);
3167 super->buf = buf;
3168 super->len = len;
3169 }
3170
cdddbdbc
DW
3171 return 0;
3172}
3173
604b746f
JD
3174/* retrieve a pointer to the bbm log which starts after all raid devices */
3175struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3176{
3177 void *ptr = NULL;
3178
3179 if (__le32_to_cpu(mpb->bbm_log_size)) {
3180 ptr = mpb;
3181 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3182 }
3183
3184 return ptr;
3185}
3186
e2f41b2c
AK
3187/*******************************************************************************
3188 * Function: check_mpb_migr_compatibility
3189 * Description: Function checks for unsupported migration features:
3190 * - migration optimization area (pba_of_lba0)
3191 * - descending reshape (ascending_migr)
3192 * Parameters:
3193 * super : imsm metadata information
3194 * Returns:
3195 * 0 : migration is compatible
3196 * -1 : migration is not compatible
3197 ******************************************************************************/
3198int check_mpb_migr_compatibility(struct intel_super *super)
3199{
3200 struct imsm_map *map0, *map1;
3201 struct migr_record *migr_rec = super->migr_rec;
3202 int i;
3203
3204 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3205 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3206
3207 if (dev_iter &&
3208 dev_iter->vol.migr_state == 1 &&
3209 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3210 /* This device is migrating */
3211 map0 = get_imsm_map(dev_iter, 0);
3212 map1 = get_imsm_map(dev_iter, 1);
3213 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3214 /* migration optimization area was used */
3215 return -1;
3216 if (migr_rec->ascending_migr == 0
3217 && migr_rec->dest_depth_per_unit > 0)
3218 /* descending reshape not supported yet */
3219 return -1;
3220 }
3221 }
3222 return 0;
3223}
3224
d23fe947 3225static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3226
cdddbdbc 3227/* load_imsm_mpb - read matrix metadata
f2f5c343 3228 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3229 */
3230static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3231{
3232 unsigned long long dsize;
cdddbdbc
DW
3233 unsigned long long sectors;
3234 struct stat;
6416d527 3235 struct imsm_super *anchor;
cdddbdbc
DW
3236 __u32 check_sum;
3237
cdddbdbc 3238 get_dev_size(fd, NULL, &dsize);
64436f06
N
3239 if (dsize < 1024) {
3240 if (devname)
3241 fprintf(stderr,
3242 Name ": %s: device to small for imsm\n",
3243 devname);
3244 return 1;
3245 }
cdddbdbc
DW
3246
3247 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3248 if (devname)
2e062e82
AK
3249 fprintf(stderr, Name
3250 ": Cannot seek to anchor block on %s: %s\n",
cdddbdbc
DW
3251 devname, strerror(errno));
3252 return 1;
3253 }
3254
949c47a0 3255 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3256 if (devname)
3257 fprintf(stderr,
3258 Name ": Failed to allocate imsm anchor buffer"
3259 " on %s\n", devname);
3260 return 1;
3261 }
949c47a0 3262 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3263 if (devname)
3264 fprintf(stderr,
3265 Name ": Cannot read anchor block on %s: %s\n",
3266 devname, strerror(errno));
6416d527 3267 free(anchor);
cdddbdbc
DW
3268 return 1;
3269 }
3270
6416d527 3271 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3272 if (devname)
3273 fprintf(stderr,
3274 Name ": no IMSM anchor on %s\n", devname);
6416d527 3275 free(anchor);
cdddbdbc
DW
3276 return 2;
3277 }
3278
d23fe947 3279 __free_imsm(super, 0);
f2f5c343
LM
3280 /* reload capability and hba */
3281
3282 /* capability and hba must be updated with new super allocation */
d424212e 3283 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3284 super->len = ROUND_UP(anchor->mpb_size, 512);
3285 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3286 if (devname)
3287 fprintf(stderr,
3288 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3289 super->len);
6416d527 3290 free(anchor);
cdddbdbc
DW
3291 return 2;
3292 }
949c47a0 3293 memcpy(super->buf, anchor, 512);
cdddbdbc 3294
6416d527
NB
3295 sectors = mpb_sectors(anchor) - 1;
3296 free(anchor);
8e59f3d8
AK
3297
3298 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3299 fprintf(stderr, Name
3300 ": %s could not allocate migr_rec buffer\n", __func__);
3301 free(super->buf);
3302 return 2;
3303 }
3304
949c47a0 3305 if (!sectors) {
ecf45690
DW
3306 check_sum = __gen_imsm_checksum(super->anchor);
3307 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3308 if (devname)
3309 fprintf(stderr,
3310 Name ": IMSM checksum %x != %x on %s\n",
3311 check_sum,
3312 __le32_to_cpu(super->anchor->check_sum),
3313 devname);
3314 return 2;
3315 }
3316
a2b97981 3317 return 0;
949c47a0 3318 }
cdddbdbc
DW
3319
3320 /* read the extended mpb */
3321 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3322 if (devname)
3323 fprintf(stderr,
3324 Name ": Cannot seek to extended mpb on %s: %s\n",
3325 devname, strerror(errno));
3326 return 1;
3327 }
3328
f21e18ca 3329 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3330 if (devname)
3331 fprintf(stderr,
3332 Name ": Cannot read extended mpb on %s: %s\n",
3333 devname, strerror(errno));
3334 return 2;
3335 }
3336
949c47a0
DW
3337 check_sum = __gen_imsm_checksum(super->anchor);
3338 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3339 if (devname)
3340 fprintf(stderr,
3341 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3342 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3343 devname);
db575f3b 3344 return 3;
cdddbdbc
DW
3345 }
3346
604b746f
JD
3347 /* FIXME the BBM log is disk specific so we cannot use this global
3348 * buffer for all disks. Ok for now since we only look at the global
3349 * bbm_log_size parameter to gate assembly
3350 */
3351 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3352
a2b97981
DW
3353 return 0;
3354}
3355
8e59f3d8
AK
3356static int read_imsm_migr_rec(int fd, struct intel_super *super);
3357
a2b97981
DW
3358static int
3359load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3360{
3361 int err;
3362
3363 err = load_imsm_mpb(fd, super, devname);
3364 if (err)
3365 return err;
3366 err = load_imsm_disk(fd, super, devname, keep_fd);
3367 if (err)
3368 return err;
3369 err = parse_raid_devices(super);
4d7b1503 3370
a2b97981 3371 return err;
cdddbdbc
DW
3372}
3373
ae6aad82
DW
3374static void __free_imsm_disk(struct dl *d)
3375{
3376 if (d->fd >= 0)
3377 close(d->fd);
3378 if (d->devname)
3379 free(d->devname);
0dcecb2e
DW
3380 if (d->e)
3381 free(d->e);
ae6aad82
DW
3382 free(d);
3383
3384}
1a64be56 3385
cdddbdbc
DW
3386static void free_imsm_disks(struct intel_super *super)
3387{
47ee5a45 3388 struct dl *d;
cdddbdbc 3389
47ee5a45
DW
3390 while (super->disks) {
3391 d = super->disks;
cdddbdbc 3392 super->disks = d->next;
ae6aad82 3393 __free_imsm_disk(d);
cdddbdbc 3394 }
cb82edca
AK
3395 while (super->disk_mgmt_list) {
3396 d = super->disk_mgmt_list;
3397 super->disk_mgmt_list = d->next;
3398 __free_imsm_disk(d);
3399 }
47ee5a45
DW
3400 while (super->missing) {
3401 d = super->missing;
3402 super->missing = d->next;
3403 __free_imsm_disk(d);
3404 }
3405
cdddbdbc
DW
3406}
3407
9ca2c81c 3408/* free all the pieces hanging off of a super pointer */
d23fe947 3409static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3410{
88654014
LM
3411 struct intel_hba *elem, *next;
3412
9ca2c81c 3413 if (super->buf) {
949c47a0 3414 free(super->buf);
9ca2c81c
DW
3415 super->buf = NULL;
3416 }
f2f5c343
LM
3417 /* unlink capability description */
3418 super->orom = NULL;
8e59f3d8
AK
3419 if (super->migr_rec_buf) {
3420 free(super->migr_rec_buf);
3421 super->migr_rec_buf = NULL;
3422 }
d23fe947
DW
3423 if (free_disks)
3424 free_imsm_disks(super);
ba2de7ba 3425 free_devlist(super);
88654014
LM
3426 elem = super->hba;
3427 while (elem) {
3428 if (elem->path)
3429 free((void *)elem->path);
3430 next = elem->next;
3431 free(elem);
3432 elem = next;
88c32bb1 3433 }
88654014 3434 super->hba = NULL;
cdddbdbc
DW
3435}
3436
9ca2c81c
DW
3437static void free_imsm(struct intel_super *super)
3438{
d23fe947 3439 __free_imsm(super, 1);
9ca2c81c
DW
3440 free(super);
3441}
cdddbdbc
DW
3442
3443static void free_super_imsm(struct supertype *st)
3444{
3445 struct intel_super *super = st->sb;
3446
3447 if (!super)
3448 return;
3449
3450 free_imsm(super);
3451 st->sb = NULL;
3452}
3453
49133e57 3454static struct intel_super *alloc_super(void)
c2c087e6
DW
3455{
3456 struct intel_super *super = malloc(sizeof(*super));
3457
3458 if (super) {
3459 memset(super, 0, sizeof(*super));
bf5a934a 3460 super->current_vol = -1;
0dcecb2e 3461 super->create_offset = ~((__u32 ) 0);
c2c087e6 3462 }
c2c087e6
DW
3463 return super;
3464}
3465
f0f5a016
LM
3466/*
3467 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3468 */
d424212e 3469static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3470{
3471 struct sys_dev *hba_name;
3472 int rv = 0;
3473
3474 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3475 super->orom = NULL;
f0f5a016
LM
3476 super->hba = NULL;
3477 return 0;
3478 }
3479 hba_name = find_disk_attached_hba(fd, NULL);
3480 if (!hba_name) {
d424212e 3481 if (devname)
f0f5a016
LM
3482 fprintf(stderr,
3483 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3484 devname);
f0f5a016
LM
3485 return 1;
3486 }
3487 rv = attach_hba_to_super(super, hba_name);
3488 if (rv == 2) {
d424212e
N
3489 if (devname) {
3490 struct intel_hba *hba = super->hba;
f0f5a016 3491
f0f5a016
LM
3492 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3493 "controller (%s),\n"
3494 " but the container is assigned to Intel(R) "
3495 "%s RAID controller (",
d424212e 3496 devname,
f0f5a016
LM
3497 hba_name->path,
3498 hba_name->pci_id ? : "Err!",
3499 get_sys_dev_type(hba_name->type));
3500
f0f5a016
LM
3501 while (hba) {
3502 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3503 if (hba->next)
3504 fprintf(stderr, ", ");
3505 hba = hba->next;
3506 }
3507
3508 fprintf(stderr, ").\n"
3509 " Mixing devices attached to different controllers "
3510 "is not allowed.\n");
3511 }
3512 free_sys_dev(&hba_name);
3513 return 2;
3514 }
f2f5c343 3515 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3516 free_sys_dev(&hba_name);
f2f5c343
LM
3517 if (!super->orom)
3518 return 3;
f0f5a016
LM
3519 return 0;
3520}
3521
47ee5a45
DW
3522/* find_missing - helper routine for load_super_imsm_all that identifies
3523 * disks that have disappeared from the system. This routine relies on
3524 * the mpb being uptodate, which it is at load time.
3525 */
3526static int find_missing(struct intel_super *super)
3527{
3528 int i;
3529 struct imsm_super *mpb = super->anchor;
3530 struct dl *dl;
3531 struct imsm_disk *disk;
47ee5a45
DW
3532
3533 for (i = 0; i < mpb->num_disks; i++) {
3534 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3535 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3536 if (dl)
3537 continue;
47ee5a45
DW
3538
3539 dl = malloc(sizeof(*dl));
3540 if (!dl)
3541 return 1;
3542 dl->major = 0;
3543 dl->minor = 0;
3544 dl->fd = -1;
3545 dl->devname = strdup("missing");
3546 dl->index = i;
3547 serialcpy(dl->serial, disk->serial);
3548 dl->disk = *disk;
689c9bf3 3549 dl->e = NULL;
47ee5a45
DW
3550 dl->next = super->missing;
3551 super->missing = dl;
3552 }
3553
3554 return 0;
3555}
3556
3960e579 3557#ifndef MDASSEMBLE
a2b97981
DW
3558static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3559{
3560 struct intel_disk *idisk = disk_list;
3561
3562 while (idisk) {
3563 if (serialcmp(idisk->disk.serial, serial) == 0)
3564 break;
3565 idisk = idisk->next;
3566 }
3567
3568 return idisk;
3569}
3570
3571static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3572 struct intel_super *super,
3573 struct intel_disk **disk_list)
3574{
3575 struct imsm_disk *d = &super->disks->disk;
3576 struct imsm_super *mpb = super->anchor;
3577 int i, j;
3578
3579 for (i = 0; i < tbl_size; i++) {
3580 struct imsm_super *tbl_mpb = table[i]->anchor;
3581 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3582
3583 if (tbl_mpb->family_num == mpb->family_num) {
3584 if (tbl_mpb->check_sum == mpb->check_sum) {
3585 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3586 __func__, super->disks->major,
3587 super->disks->minor,
3588 table[i]->disks->major,
3589 table[i]->disks->minor);
3590 break;
3591 }
3592
3593 if (((is_configured(d) && !is_configured(tbl_d)) ||
3594 is_configured(d) == is_configured(tbl_d)) &&
3595 tbl_mpb->generation_num < mpb->generation_num) {
3596 /* current version of the mpb is a
3597 * better candidate than the one in
3598 * super_table, but copy over "cross
3599 * generational" status
3600 */
3601 struct intel_disk *idisk;
3602
3603 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3604 __func__, super->disks->major,
3605 super->disks->minor,
3606 table[i]->disks->major,
3607 table[i]->disks->minor);
3608
3609 idisk = disk_list_get(tbl_d->serial, *disk_list);
3610 if (idisk && is_failed(&idisk->disk))
3611 tbl_d->status |= FAILED_DISK;
3612 break;
3613 } else {
3614 struct intel_disk *idisk;
3615 struct imsm_disk *disk;
3616
3617 /* tbl_mpb is more up to date, but copy
3618 * over cross generational status before
3619 * returning
3620 */
3621 disk = __serial_to_disk(d->serial, mpb, NULL);
3622 if (disk && is_failed(disk))
3623 d->status |= FAILED_DISK;
3624
3625 idisk = disk_list_get(d->serial, *disk_list);
3626 if (idisk) {
3627 idisk->owner = i;
3628 if (disk && is_configured(disk))
3629 idisk->disk.status |= CONFIGURED_DISK;
3630 }
3631
3632 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3633 __func__, super->disks->major,
3634 super->disks->minor,
3635 table[i]->disks->major,
3636 table[i]->disks->minor);
3637
3638 return tbl_size;
3639 }
3640 }
3641 }
3642
3643 if (i >= tbl_size)
3644 table[tbl_size++] = super;
3645 else
3646 table[i] = super;
3647
3648 /* update/extend the merged list of imsm_disk records */
3649 for (j = 0; j < mpb->num_disks; j++) {
3650 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3651 struct intel_disk *idisk;
3652
3653 idisk = disk_list_get(disk->serial, *disk_list);
3654 if (idisk) {
3655 idisk->disk.status |= disk->status;
3656 if (is_configured(&idisk->disk) ||
3657 is_failed(&idisk->disk))
3658 idisk->disk.status &= ~(SPARE_DISK);
3659 } else {
3660 idisk = calloc(1, sizeof(*idisk));
3661 if (!idisk)
3662 return -1;
3663 idisk->owner = IMSM_UNKNOWN_OWNER;
3664 idisk->disk = *disk;
3665 idisk->next = *disk_list;
3666 *disk_list = idisk;
3667 }
3668
3669 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3670 idisk->owner = i;
3671 }
3672
3673 return tbl_size;
3674}
3675
3676static struct intel_super *
3677validate_members(struct intel_super *super, struct intel_disk *disk_list,
3678 const int owner)
3679{
3680 struct imsm_super *mpb = super->anchor;
3681 int ok_count = 0;
3682 int i;
3683
3684 for (i = 0; i < mpb->num_disks; i++) {
3685 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3686 struct intel_disk *idisk;
3687
3688 idisk = disk_list_get(disk->serial, disk_list);
3689 if (idisk) {
3690 if (idisk->owner == owner ||
3691 idisk->owner == IMSM_UNKNOWN_OWNER)
3692 ok_count++;
3693 else
3694 dprintf("%s: '%.16s' owner %d != %d\n",
3695 __func__, disk->serial, idisk->owner,
3696 owner);
3697 } else {
3698 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3699 __func__, __le32_to_cpu(mpb->family_num), i,
3700 disk->serial);
3701 break;
3702 }
3703 }
3704
3705 if (ok_count == mpb->num_disks)
3706 return super;
3707 return NULL;
3708}
3709
3710static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3711{
3712 struct intel_super *s;
3713
3714 for (s = super_list; s; s = s->next) {
3715 if (family_num != s->anchor->family_num)
3716 continue;
3717 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3718 __le32_to_cpu(family_num), s->disks->devname);
3719 }
3720}
3721
3722static struct intel_super *
3723imsm_thunderdome(struct intel_super **super_list, int len)
3724{
3725 struct intel_super *super_table[len];
3726 struct intel_disk *disk_list = NULL;
3727 struct intel_super *champion, *spare;
3728 struct intel_super *s, **del;
3729 int tbl_size = 0;
3730 int conflict;
3731 int i;
3732
3733 memset(super_table, 0, sizeof(super_table));
3734 for (s = *super_list; s; s = s->next)
3735 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3736
3737 for (i = 0; i < tbl_size; i++) {
3738 struct imsm_disk *d;
3739 struct intel_disk *idisk;
3740 struct imsm_super *mpb = super_table[i]->anchor;
3741
3742 s = super_table[i];
3743 d = &s->disks->disk;
3744
3745 /* 'd' must appear in merged disk list for its
3746 * configuration to be valid
3747 */
3748 idisk = disk_list_get(d->serial, disk_list);
3749 if (idisk && idisk->owner == i)
3750 s = validate_members(s, disk_list, i);
3751 else
3752 s = NULL;
3753
3754 if (!s)
3755 dprintf("%s: marking family: %#x from %d:%d offline\n",
3756 __func__, mpb->family_num,
3757 super_table[i]->disks->major,
3758 super_table[i]->disks->minor);
3759 super_table[i] = s;
3760 }
3761
3762 /* This is where the mdadm implementation differs from the Windows
3763 * driver which has no strict concept of a container. We can only
3764 * assemble one family from a container, so when returning a prodigal
3765 * array member to this system the code will not be able to disambiguate
3766 * the container contents that should be assembled ("foreign" versus
3767 * "local"). It requires user intervention to set the orig_family_num
3768 * to a new value to establish a new container. The Windows driver in
3769 * this situation fixes up the volume name in place and manages the
3770 * foreign array as an independent entity.
3771 */
3772 s = NULL;
3773 spare = NULL;
3774 conflict = 0;
3775 for (i = 0; i < tbl_size; i++) {
3776 struct intel_super *tbl_ent = super_table[i];
3777 int is_spare = 0;
3778
3779 if (!tbl_ent)
3780 continue;
3781
3782 if (tbl_ent->anchor->num_raid_devs == 0) {
3783 spare = tbl_ent;
3784 is_spare = 1;
3785 }
3786
3787 if (s && !is_spare) {
3788 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3789 conflict++;
3790 } else if (!s && !is_spare)
3791 s = tbl_ent;
3792 }
3793
3794 if (!s)
3795 s = spare;
3796 if (!s) {
3797 champion = NULL;
3798 goto out;
3799 }
3800 champion = s;
3801
3802 if (conflict)
3803 fprintf(stderr, "Chose family %#x on '%s', "
3804 "assemble conflicts to new container with '--update=uuid'\n",
3805 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3806
3807 /* collect all dl's onto 'champion', and update them to
3808 * champion's version of the status
3809 */
3810 for (s = *super_list; s; s = s->next) {
3811 struct imsm_super *mpb = champion->anchor;
3812 struct dl *dl = s->disks;
3813
3814 if (s == champion)
3815 continue;
3816
3817 for (i = 0; i < mpb->num_disks; i++) {
3818 struct imsm_disk *disk;
3819
3820 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3821 if (disk) {
3822 dl->disk = *disk;
3823 /* only set index on disks that are a member of
3824 * a populated contianer, i.e. one with
3825 * raid_devs
3826 */
3827 if (is_failed(&dl->disk))
3828 dl->index = -2;
3829 else if (is_spare(&dl->disk))
3830 dl->index = -1;
3831 break;
3832 }
3833 }
3834
3835 if (i >= mpb->num_disks) {
3836 struct intel_disk *idisk;
3837
3838 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3839 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3840 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3841 dl->index = -1;
3842 else {
3843 dl->index = -2;
3844 continue;
3845 }
3846 }
3847
3848 dl->next = champion->disks;
3849 champion->disks = dl;
3850 s->disks = NULL;
3851 }
3852
3853 /* delete 'champion' from super_list */
3854 for (del = super_list; *del; ) {
3855 if (*del == champion) {
3856 *del = (*del)->next;
3857 break;
3858 } else
3859 del = &(*del)->next;
3860 }
3861 champion->next = NULL;
3862
3863 out:
3864 while (disk_list) {
3865 struct intel_disk *idisk = disk_list;
3866
3867 disk_list = disk_list->next;
3868 free(idisk);
3869 }
3870
3871 return champion;
3872}
3873
cdddbdbc 3874static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3875 char *devname)
cdddbdbc
DW
3876{
3877 struct mdinfo *sra;
a2b97981
DW
3878 struct intel_super *super_list = NULL;
3879 struct intel_super *super = NULL;
db575f3b 3880 int devnum = fd2devnum(fd);
a2b97981 3881 struct mdinfo *sd;
db575f3b 3882 int retry;
a2b97981
DW
3883 int err = 0;
3884 int i;
dab4a513
DW
3885
3886 /* check if 'fd' an opened container */
b526e52d 3887 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3888 if (!sra)
3889 return 1;
3890
3891 if (sra->array.major_version != -1 ||
3892 sra->array.minor_version != -2 ||
1602d52c
AW
3893 strcmp(sra->text_version, "imsm") != 0) {
3894 err = 1;
3895 goto error;
3896 }
a2b97981
DW
3897 /* load all mpbs */
3898 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3899 struct intel_super *s = alloc_super();
7a6ecd55 3900 char nm[32];
a2b97981 3901 int dfd;
f2f5c343 3902 int rv;
a2b97981
DW
3903
3904 err = 1;
3905 if (!s)
3906 goto error;
3907 s->next = super_list;
3908 super_list = s;
cdddbdbc 3909
a2b97981 3910 err = 2;
cdddbdbc 3911 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3912 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3913 if (dfd < 0)
3914 goto error;
3915
d424212e 3916 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3917 /* no orom/efi or non-intel hba of the disk */
3918 if (rv != 0)
3919 goto error;
3920
e1902a7b 3921 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3922
3923 /* retry the load if we might have raced against mdmon */
a2b97981 3924 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3925 for (retry = 0; retry < 3; retry++) {
3926 usleep(3000);
e1902a7b 3927 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3928 if (err != 3)
db575f3b
DW
3929 break;
3930 }
a2b97981
DW
3931 if (err)
3932 goto error;
cdddbdbc
DW
3933 }
3934
a2b97981
DW
3935 /* all mpbs enter, maybe one leaves */
3936 super = imsm_thunderdome(&super_list, i);
3937 if (!super) {
3938 err = 1;
3939 goto error;
cdddbdbc
DW
3940 }
3941
47ee5a45
DW
3942 if (find_missing(super) != 0) {
3943 free_imsm(super);
a2b97981
DW
3944 err = 2;
3945 goto error;
47ee5a45 3946 }
8e59f3d8
AK
3947
3948 /* load migration record */
3949 err = load_imsm_migr_rec(super, NULL);
3950 if (err) {
3951 err = 4;
3952 goto error;
3953 }
e2f41b2c
AK
3954
3955 /* Check migration compatibility */
3956 if (check_mpb_migr_compatibility(super) != 0) {
3957 fprintf(stderr, Name ": Unsupported migration detected");
3958 if (devname)
3959 fprintf(stderr, " on %s\n", devname);
3960 else
3961 fprintf(stderr, " (IMSM).\n");
3962
3963 err = 5;
3964 goto error;
3965 }
3966
a2b97981
DW
3967 err = 0;
3968
3969 error:
3970 while (super_list) {
3971 struct intel_super *s = super_list;
3972
3973 super_list = super_list->next;
3974 free_imsm(s);
3975 }
1602d52c 3976 sysfs_free(sra);
a2b97981
DW
3977
3978 if (err)
3979 return err;
f7e7067b 3980
cdddbdbc 3981 *sbp = super;
db575f3b 3982 st->container_dev = devnum;
a2b97981 3983 if (err == 0 && st->ss == NULL) {
bf5a934a 3984 st->ss = &super_imsm;
cdddbdbc
DW
3985 st->minor_version = 0;
3986 st->max_devs = IMSM_MAX_DEVICES;
3987 }
cdddbdbc
DW
3988 return 0;
3989}
2b959fbf
N
3990
3991static int load_container_imsm(struct supertype *st, int fd, char *devname)
3992{
3993 return load_super_imsm_all(st, fd, &st->sb, devname);
3994}
cdddbdbc
DW
3995#endif
3996
3997static int load_super_imsm(struct supertype *st, int fd, char *devname)
3998{
3999 struct intel_super *super;
4000 int rv;
4001
691c6ee1
N
4002 if (test_partition(fd))
4003 /* IMSM not allowed on partitions */
4004 return 1;
4005
37424f13
DW
4006 free_super_imsm(st);
4007
49133e57 4008 super = alloc_super();
cdddbdbc
DW
4009 if (!super) {
4010 fprintf(stderr,
4011 Name ": malloc of %zu failed.\n",
4012 sizeof(*super));
4013 return 1;
4014 }
ea2bc72b
LM
4015 /* Load hba and capabilities if they exist.
4016 * But do not preclude loading metadata in case capabilities or hba are
4017 * non-compliant and ignore_hw_compat is set.
4018 */
d424212e 4019 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4020 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4021 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
4022 if (devname)
4023 fprintf(stderr,
4024 Name ": No OROM/EFI properties for %s\n", devname);
4025 free_imsm(super);
4026 return 2;
4027 }
a2b97981 4028 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
4029
4030 if (rv) {
4031 if (devname)
4032 fprintf(stderr,
4033 Name ": Failed to load all information "
4034 "sections on %s\n", devname);
4035 free_imsm(super);
4036 return rv;
4037 }
4038
4039 st->sb = super;
4040 if (st->ss == NULL) {
4041 st->ss = &super_imsm;
4042 st->minor_version = 0;
4043 st->max_devs = IMSM_MAX_DEVICES;
4044 }
8e59f3d8
AK
4045
4046 /* load migration record */
2e062e82
AK
4047 if (load_imsm_migr_rec(super, NULL) == 0) {
4048 /* Check for unsupported migration features */
4049 if (check_mpb_migr_compatibility(super) != 0) {
4050 fprintf(stderr,
4051 Name ": Unsupported migration detected");
4052 if (devname)
4053 fprintf(stderr, " on %s\n", devname);
4054 else
4055 fprintf(stderr, " (IMSM).\n");
4056 return 3;
4057 }
e2f41b2c
AK
4058 }
4059
cdddbdbc
DW
4060 return 0;
4061}
4062
ef6ffade
DW
4063static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4064{
4065 if (info->level == 1)
4066 return 128;
4067 return info->chunk_size >> 9;
4068}
4069
ff596308 4070static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
4071{
4072 __u32 num_stripes;
4073
4074 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 4075 num_stripes /= num_domains;
ef6ffade
DW
4076
4077 return num_stripes;
4078}
4079
fcfd9599
DW
4080static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4081{
4025c288
DW
4082 if (info->level == 1)
4083 return info->size * 2;
4084 else
4085 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4086}
4087
4d1313e9
DW
4088static void imsm_update_version_info(struct intel_super *super)
4089{
4090 /* update the version and attributes */
4091 struct imsm_super *mpb = super->anchor;
4092 char *version;
4093 struct imsm_dev *dev;
4094 struct imsm_map *map;
4095 int i;
4096
4097 for (i = 0; i < mpb->num_raid_devs; i++) {
4098 dev = get_imsm_dev(super, i);
4099 map = get_imsm_map(dev, 0);
4100 if (__le32_to_cpu(dev->size_high) > 0)
4101 mpb->attributes |= MPB_ATTRIB_2TB;
4102
4103 /* FIXME detect when an array spans a port multiplier */
4104 #if 0
4105 mpb->attributes |= MPB_ATTRIB_PM;
4106 #endif
4107
4108 if (mpb->num_raid_devs > 1 ||
4109 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4110 version = MPB_VERSION_ATTRIBS;
4111 switch (get_imsm_raid_level(map)) {
4112 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4113 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4114 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4115 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4116 }
4117 } else {
4118 if (map->num_members >= 5)
4119 version = MPB_VERSION_5OR6_DISK_ARRAY;
4120 else if (dev->status == DEV_CLONE_N_GO)
4121 version = MPB_VERSION_CNG;
4122 else if (get_imsm_raid_level(map) == 5)
4123 version = MPB_VERSION_RAID5;
4124 else if (map->num_members >= 3)
4125 version = MPB_VERSION_3OR4_DISK_ARRAY;
4126 else if (get_imsm_raid_level(map) == 1)
4127 version = MPB_VERSION_RAID1;
4128 else
4129 version = MPB_VERSION_RAID0;
4130 }
4131 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4132 }
4133}
4134
aa534678
DW
4135static int check_name(struct intel_super *super, char *name, int quiet)
4136{
4137 struct imsm_super *mpb = super->anchor;
4138 char *reason = NULL;
4139 int i;
4140
4141 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4142 reason = "must be 16 characters or less";
4143
4144 for (i = 0; i < mpb->num_raid_devs; i++) {
4145 struct imsm_dev *dev = get_imsm_dev(super, i);
4146
4147 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4148 reason = "already exists";
4149 break;
4150 }
4151 }
4152
4153 if (reason && !quiet)
4154 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4155
4156 return !reason;
4157}
4158
8b353278
DW
4159static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4160 unsigned long long size, char *name,
4161 char *homehost, int *uuid)
cdddbdbc 4162{
c2c087e6
DW
4163 /* We are creating a volume inside a pre-existing container.
4164 * so st->sb is already set.
4165 */
4166 struct intel_super *super = st->sb;
949c47a0 4167 struct imsm_super *mpb = super->anchor;
ba2de7ba 4168 struct intel_dev *dv;
c2c087e6
DW
4169 struct imsm_dev *dev;
4170 struct imsm_vol *vol;
4171 struct imsm_map *map;
4172 int idx = mpb->num_raid_devs;
4173 int i;
4174 unsigned long long array_blocks;
2c092cad 4175 size_t size_old, size_new;
ff596308 4176 __u32 num_data_stripes;
cdddbdbc 4177
88c32bb1 4178 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 4179 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 4180 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4181 return 0;
4182 }
4183
2c092cad
DW
4184 /* ensure the mpb is large enough for the new data */
4185 size_old = __le32_to_cpu(mpb->mpb_size);
4186 size_new = disks_to_mpb_size(info->nr_disks);
4187 if (size_new > size_old) {
4188 void *mpb_new;
4189 size_t size_round = ROUND_UP(size_new, 512);
4190
4191 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4192 fprintf(stderr, Name": could not allocate new mpb\n");
4193 return 0;
4194 }
8e59f3d8
AK
4195 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4196 fprintf(stderr, Name
4197 ": %s could not allocate migr_rec buffer\n",
4198 __func__);
4199 free(super->buf);
4200 free(super);
4201 return 0;
4202 }
2c092cad
DW
4203 memcpy(mpb_new, mpb, size_old);
4204 free(mpb);
4205 mpb = mpb_new;
949c47a0 4206 super->anchor = mpb_new;
2c092cad
DW
4207 mpb->mpb_size = __cpu_to_le32(size_new);
4208 memset(mpb_new + size_old, 0, size_round - size_old);
4209 }
bf5a934a 4210 super->current_vol = idx;
3960e579
DW
4211
4212 /* handle 'failed_disks' by either:
4213 * a) create dummy disk entries in the table if this the first
4214 * volume in the array. We add them here as this is the only
4215 * opportunity to add them. add_to_super_imsm_volume()
4216 * handles the non-failed disks and continues incrementing
4217 * mpb->num_disks.
4218 * b) validate that 'failed_disks' matches the current number
4219 * of missing disks if the container is populated
d23fe947 4220 */
3960e579 4221 if (super->current_vol == 0) {
d23fe947 4222 mpb->num_disks = 0;
3960e579
DW
4223 for (i = 0; i < info->failed_disks; i++) {
4224 struct imsm_disk *disk;
4225
4226 mpb->num_disks++;
4227 disk = __get_imsm_disk(mpb, i);
4228 disk->status = CONFIGURED_DISK | FAILED_DISK;
4229 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4230 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4231 "missing:%d", i);
4232 }
4233 find_missing(super);
4234 } else {
4235 int missing = 0;
4236 struct dl *d;
4237
4238 for (d = super->missing; d; d = d->next)
4239 missing++;
4240 if (info->failed_disks > missing) {
4241 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4242 return 0;
4243 }
4244 }
5a038140 4245
aa534678
DW
4246 if (!check_name(super, name, 0))
4247 return 0;
ba2de7ba
DW
4248 dv = malloc(sizeof(*dv));
4249 if (!dv) {
4250 fprintf(stderr, Name ": failed to allocate device list entry\n");
4251 return 0;
4252 }
1a2487c2 4253 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4254 if (!dev) {
ba2de7ba 4255 free(dv);
949c47a0
DW
4256 fprintf(stderr, Name": could not allocate raid device\n");
4257 return 0;
4258 }
1a2487c2 4259
c2c087e6 4260 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4261 if (info->level == 1)
4262 array_blocks = info_to_blocks_per_member(info);
4263 else
4264 array_blocks = calc_array_size(info->level, info->raid_disks,
4265 info->layout, info->chunk_size,
4266 info->size*2);
979d38be
DW
4267 /* round array size down to closest MB */
4268 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4269
c2c087e6
DW
4270 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4271 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4272 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4273 vol = &dev->vol;
4274 vol->migr_state = 0;
1484e727 4275 set_migr_type(dev, MIGR_INIT);
3960e579 4276 vol->dirty = !info->state;
f8f603f1 4277 vol->curr_migr_unit = 0;
a965f303 4278 map = get_imsm_map(dev, 0);
0dcecb2e 4279 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4280 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4281 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4282 map->failed_disk_num = ~0;
3960e579 4283 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
252d23c0 4284 map->ddf = 1;
ef6ffade
DW
4285
4286 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4287 free(dev);
4288 free(dv);
ef6ffade
DW
4289 fprintf(stderr, Name": imsm does not support more than 2 disks"
4290 "in a raid1 volume\n");
4291 return 0;
4292 }
81062a36
DW
4293
4294 map->raid_level = info->level;
4d1313e9 4295 if (info->level == 10) {
c2c087e6 4296 map->raid_level = 1;
4d1313e9 4297 map->num_domains = info->raid_disks / 2;
81062a36
DW
4298 } else if (info->level == 1)
4299 map->num_domains = info->raid_disks;
4300 else
ff596308 4301 map->num_domains = 1;
81062a36 4302
ff596308
DW
4303 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4304 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4305
c2c087e6
DW
4306 map->num_members = info->raid_disks;
4307 for (i = 0; i < map->num_members; i++) {
4308 /* initialized in add_to_super */
4eb26970 4309 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4310 }
949c47a0 4311 mpb->num_raid_devs++;
ba2de7ba
DW
4312
4313 dv->dev = dev;
4314 dv->index = super->current_vol;
4315 dv->next = super->devlist;
4316 super->devlist = dv;
c2c087e6 4317
4d1313e9
DW
4318 imsm_update_version_info(super);
4319
c2c087e6 4320 return 1;
cdddbdbc
DW
4321}
4322
bf5a934a
DW
4323static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4324 unsigned long long size, char *name,
4325 char *homehost, int *uuid)
4326{
4327 /* This is primarily called by Create when creating a new array.
4328 * We will then get add_to_super called for each component, and then
4329 * write_init_super called to write it out to each device.
4330 * For IMSM, Create can create on fresh devices or on a pre-existing
4331 * array.
4332 * To create on a pre-existing array a different method will be called.
4333 * This one is just for fresh drives.
4334 */
4335 struct intel_super *super;
4336 struct imsm_super *mpb;
4337 size_t mpb_size;
4d1313e9 4338 char *version;
bf5a934a 4339
bf5a934a 4340 if (st->sb)
e683ca88
DW
4341 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4342
4343 if (info)
4344 mpb_size = disks_to_mpb_size(info->nr_disks);
4345 else
4346 mpb_size = 512;
bf5a934a 4347
49133e57 4348 super = alloc_super();
e683ca88 4349 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4350 free(super);
e683ca88
DW
4351 super = NULL;
4352 }
4353 if (!super) {
4354 fprintf(stderr, Name
4355 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4356 return 0;
4357 }
8e59f3d8
AK
4358 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4359 fprintf(stderr, Name
4360 ": %s could not allocate migr_rec buffer\n", __func__);
4361 free(super->buf);
4362 free(super);
4363 return 0;
4364 }
e683ca88 4365 memset(super->buf, 0, mpb_size);
ef649044 4366 mpb = super->buf;
e683ca88
DW
4367 mpb->mpb_size = __cpu_to_le32(mpb_size);
4368 st->sb = super;
4369
4370 if (info == NULL) {
4371 /* zeroing superblock */
4372 return 0;
4373 }
bf5a934a 4374
4d1313e9
DW
4375 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4376
4377 version = (char *) mpb->sig;
4378 strcpy(version, MPB_SIGNATURE);
4379 version += strlen(MPB_SIGNATURE);
4380 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4381
bf5a934a
DW
4382 return 1;
4383}
4384
0e600426 4385#ifndef MDASSEMBLE
f20c3968 4386static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4387 int fd, char *devname)
4388{
4389 struct intel_super *super = st->sb;
d23fe947 4390 struct imsm_super *mpb = super->anchor;
3960e579 4391 struct imsm_disk *_disk;
bf5a934a
DW
4392 struct imsm_dev *dev;
4393 struct imsm_map *map;
3960e579 4394 struct dl *dl, *df;
4eb26970 4395 int slot;
bf5a934a 4396
949c47a0 4397 dev = get_imsm_dev(super, super->current_vol);
a965f303 4398 map = get_imsm_map(dev, 0);
bf5a934a 4399
208933a7
N
4400 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4401 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4402 devname);
4403 return 1;
4404 }
4405
efb30e7f
DW
4406 if (fd == -1) {
4407 /* we're doing autolayout so grab the pre-marked (in
4408 * validate_geometry) raid_disk
4409 */
4410 for (dl = super->disks; dl; dl = dl->next)
4411 if (dl->raiddisk == dk->raid_disk)
4412 break;
4413 } else {
4414 for (dl = super->disks; dl ; dl = dl->next)
4415 if (dl->major == dk->major &&
4416 dl->minor == dk->minor)
4417 break;
4418 }
d23fe947 4419
208933a7
N
4420 if (!dl) {
4421 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4422 return 1;
208933a7 4423 }
bf5a934a 4424
d23fe947
DW
4425 /* add a pristine spare to the metadata */
4426 if (dl->index < 0) {
4427 dl->index = super->anchor->num_disks;
4428 super->anchor->num_disks++;
4429 }
4eb26970
DW
4430 /* Check the device has not already been added */
4431 slot = get_imsm_disk_slot(map, dl->index);
4432 if (slot >= 0 &&
98130f40 4433 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4434 fprintf(stderr, Name ": %s has been included in this array twice\n",
4435 devname);
4436 return 1;
4437 }
656b6b5a 4438 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 4439 dl->disk.status = CONFIGURED_DISK;
d23fe947 4440
3960e579
DW
4441 /* update size of 'missing' disks to be at least as large as the
4442 * largest acitve member (we only have dummy missing disks when
4443 * creating the first volume)
4444 */
4445 if (super->current_vol == 0) {
4446 for (df = super->missing; df; df = df->next) {
4447 if (dl->disk.total_blocks > df->disk.total_blocks)
4448 df->disk.total_blocks = dl->disk.total_blocks;
4449 _disk = __get_imsm_disk(mpb, df->index);
4450 *_disk = df->disk;
4451 }
4452 }
4453
4454 /* refresh unset/failed slots to point to valid 'missing' entries */
4455 for (df = super->missing; df; df = df->next)
4456 for (slot = 0; slot < mpb->num_disks; slot++) {
4457 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4458
4459 if ((ord & IMSM_ORD_REBUILD) == 0)
4460 continue;
4461 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4462 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4463 break;
4464 }
4465
d23fe947
DW
4466 /* if we are creating the first raid device update the family number */
4467 if (super->current_vol == 0) {
4468 __u32 sum;
4469 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 4470
3960e579 4471 _disk = __get_imsm_disk(mpb, dl->index);
791b666a
AW
4472 if (!_dev || !_disk) {
4473 fprintf(stderr, Name ": BUG mpb setup error\n");
4474 return 1;
4475 }
d23fe947
DW
4476 *_dev = *dev;
4477 *_disk = dl->disk;
148acb7b
DW
4478 sum = random32();
4479 sum += __gen_imsm_checksum(mpb);
d23fe947 4480 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4481 mpb->orig_family_num = mpb->family_num;
d23fe947 4482 }
ca0748fa 4483 super->current_disk = dl;
f20c3968 4484 return 0;
bf5a934a
DW
4485}
4486
a8619d23
AK
4487/* mark_spare()
4488 * Function marks disk as spare and restores disk serial
4489 * in case it was previously marked as failed by takeover operation
4490 * reruns:
4491 * -1 : critical error
4492 * 0 : disk is marked as spare but serial is not set
4493 * 1 : success
4494 */
4495int mark_spare(struct dl *disk)
4496{
4497 __u8 serial[MAX_RAID_SERIAL_LEN];
4498 int ret_val = -1;
4499
4500 if (!disk)
4501 return ret_val;
4502
4503 ret_val = 0;
4504 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4505 /* Restore disk serial number, because takeover marks disk
4506 * as failed and adds to serial ':0' before it becomes
4507 * a spare disk.
4508 */
4509 serialcpy(disk->serial, serial);
4510 serialcpy(disk->disk.serial, serial);
4511 ret_val = 1;
4512 }
4513 disk->disk.status = SPARE_DISK;
4514 disk->index = -1;
4515
4516 return ret_val;
4517}
88654014 4518
f20c3968 4519static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4520 int fd, char *devname)
cdddbdbc 4521{
c2c087e6 4522 struct intel_super *super = st->sb;
c2c087e6
DW
4523 struct dl *dd;
4524 unsigned long long size;
f2f27e63 4525 __u32 id;
c2c087e6
DW
4526 int rv;
4527 struct stat stb;
4528
88654014
LM
4529 /* If we are on an RAID enabled platform check that the disk is
4530 * attached to the raid controller.
4531 * We do not need to test disks attachment for container based additions,
4532 * they shall be already tested when container was created/assembled.
88c32bb1 4533 */
d424212e 4534 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4535 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4536 if (rv != 0) {
4537 dprintf("capability: %p fd: %d ret: %d\n",
4538 super->orom, fd, rv);
4539 return 1;
88c32bb1
DW
4540 }
4541
f20c3968
DW
4542 if (super->current_vol >= 0)
4543 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4544
c2c087e6
DW
4545 fstat(fd, &stb);
4546 dd = malloc(sizeof(*dd));
b9f594fe 4547 if (!dd) {
c2c087e6
DW
4548 fprintf(stderr,
4549 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4550 return 1;
c2c087e6
DW
4551 }
4552 memset(dd, 0, sizeof(*dd));
4553 dd->major = major(stb.st_rdev);
4554 dd->minor = minor(stb.st_rdev);
c2c087e6 4555 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4556 dd->fd = fd;
689c9bf3 4557 dd->e = NULL;
1a64be56 4558 dd->action = DISK_ADD;
c2c087e6 4559 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4560 if (rv) {
c2c087e6 4561 fprintf(stderr,
0030e8d6 4562 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4563 free(dd);
0030e8d6 4564 abort();
c2c087e6
DW
4565 }
4566
c2c087e6
DW
4567 get_dev_size(fd, NULL, &size);
4568 size /= 512;
1f24f035 4569 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4570 dd->disk.total_blocks = __cpu_to_le32(size);
a8619d23 4571 mark_spare(dd);
c2c087e6 4572 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4573 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4574 else
b9f594fe 4575 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4576
4577 if (st->update_tail) {
1a64be56
LM
4578 dd->next = super->disk_mgmt_list;
4579 super->disk_mgmt_list = dd;
43dad3d6
DW
4580 } else {
4581 dd->next = super->disks;
4582 super->disks = dd;
ceaf0ee1 4583 super->updates_pending++;
43dad3d6 4584 }
f20c3968
DW
4585
4586 return 0;
cdddbdbc
DW
4587}
4588
1a64be56
LM
4589
4590static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4591{
4592 struct intel_super *super = st->sb;
4593 struct dl *dd;
4594
4595 /* remove from super works only in mdmon - for communication
4596 * manager - monitor. Check if communication memory buffer
4597 * is prepared.
4598 */
4599 if (!st->update_tail) {
4600 fprintf(stderr,
4601 Name ": %s shall be used in mdmon context only"
4602 "(line %d).\n", __func__, __LINE__);
4603 return 1;
4604 }
4605 dd = malloc(sizeof(*dd));
4606 if (!dd) {
4607 fprintf(stderr,
4608 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4609 return 1;
4610 }
4611 memset(dd, 0, sizeof(*dd));
4612 dd->major = dk->major;
4613 dd->minor = dk->minor;
1a64be56 4614 dd->fd = -1;
a8619d23 4615 mark_spare(dd);
1a64be56
LM
4616 dd->action = DISK_REMOVE;
4617
4618 dd->next = super->disk_mgmt_list;
4619 super->disk_mgmt_list = dd;
4620
4621
4622 return 0;
4623}
4624
f796af5d
DW
4625static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4626
4627static union {
4628 char buf[512];
4629 struct imsm_super anchor;
4630} spare_record __attribute__ ((aligned(512)));
c2c087e6 4631
d23fe947
DW
4632/* spare records have their own family number and do not have any defined raid
4633 * devices
4634 */
4635static int write_super_imsm_spares(struct intel_super *super, int doclose)
4636{
d23fe947 4637 struct imsm_super *mpb = super->anchor;
f796af5d 4638 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4639 __u32 sum;
4640 struct dl *d;
4641
f796af5d
DW
4642 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4643 spare->generation_num = __cpu_to_le32(1UL),
4644 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4645 spare->num_disks = 1,
4646 spare->num_raid_devs = 0,
4647 spare->cache_size = mpb->cache_size,
4648 spare->pwr_cycle_count = __cpu_to_le32(1),
4649
4650 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4651 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4652
4653 for (d = super->disks; d; d = d->next) {
8796fdc4 4654 if (d->index != -1)
d23fe947
DW
4655 continue;
4656
f796af5d
DW
4657 spare->disk[0] = d->disk;
4658 sum = __gen_imsm_checksum(spare);
4659 spare->family_num = __cpu_to_le32(sum);
4660 spare->orig_family_num = 0;
4661 sum = __gen_imsm_checksum(spare);
4662 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4663
f796af5d 4664 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4665 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4666 __func__, d->major, d->minor, strerror(errno));
e74255d9 4667 return 1;
d23fe947
DW
4668 }
4669 if (doclose) {
4670 close(d->fd);
4671 d->fd = -1;
4672 }
4673 }
4674
e74255d9 4675 return 0;
d23fe947
DW
4676}
4677
36988a3d 4678static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4679{
36988a3d 4680 struct intel_super *super = st->sb;
949c47a0 4681 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4682 struct dl *d;
4683 __u32 generation;
4684 __u32 sum;
d23fe947 4685 int spares = 0;
949c47a0 4686 int i;
a48ac0a8 4687 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4688 int num_disks = 0;
146c6260 4689 int clear_migration_record = 1;
cdddbdbc 4690
c2c087e6
DW
4691 /* 'generation' is incremented everytime the metadata is written */
4692 generation = __le32_to_cpu(mpb->generation_num);
4693 generation++;
4694 mpb->generation_num = __cpu_to_le32(generation);
4695
148acb7b
DW
4696 /* fix up cases where previous mdadm releases failed to set
4697 * orig_family_num
4698 */
4699 if (mpb->orig_family_num == 0)
4700 mpb->orig_family_num = mpb->family_num;
4701
d23fe947 4702 for (d = super->disks; d; d = d->next) {
8796fdc4 4703 if (d->index == -1)
d23fe947 4704 spares++;
36988a3d 4705 else {
d23fe947 4706 mpb->disk[d->index] = d->disk;
36988a3d
AK
4707 num_disks++;
4708 }
d23fe947 4709 }
36988a3d 4710 for (d = super->missing; d; d = d->next) {
47ee5a45 4711 mpb->disk[d->index] = d->disk;
36988a3d
AK
4712 num_disks++;
4713 }
4714 mpb->num_disks = num_disks;
4715 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4716
949c47a0
DW
4717 for (i = 0; i < mpb->num_raid_devs; i++) {
4718 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4719 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4720 if (dev && dev2) {
4721 imsm_copy_dev(dev, dev2);
4722 mpb_size += sizeof_imsm_dev(dev, 0);
4723 }
146c6260
AK
4724 if (is_gen_migration(dev2))
4725 clear_migration_record = 0;
949c47a0 4726 }
a48ac0a8
DW
4727 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4728 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4729
c2c087e6 4730 /* recalculate checksum */
949c47a0 4731 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4732 mpb->check_sum = __cpu_to_le32(sum);
4733
146c6260
AK
4734 if (clear_migration_record)
4735 memset(super->migr_rec_buf, 0, 512);
4736
d23fe947 4737 /* write the mpb for disks that compose raid devices */
c2c087e6 4738 for (d = super->disks; d ; d = d->next) {
86c54047 4739 if (d->index < 0 || is_failed(&d->disk))
d23fe947 4740 continue;
f796af5d 4741 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4742 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4743 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4744 if (clear_migration_record) {
4745 unsigned long long dsize;
4746
4747 get_dev_size(d->fd, NULL, &dsize);
4748 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
9e2d750d
N
4749 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4750 perror("Write migr_rec failed");
146c6260
AK
4751 }
4752 }
c2c087e6
DW
4753 if (doclose) {
4754 close(d->fd);
4755 d->fd = -1;
4756 }
4757 }
4758
d23fe947
DW
4759 if (spares)
4760 return write_super_imsm_spares(super, doclose);
4761
e74255d9 4762 return 0;
c2c087e6
DW
4763}
4764
0e600426 4765
9b1fb677 4766static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4767{
4768 size_t len;
4769 struct imsm_update_create_array *u;
4770 struct intel_super *super = st->sb;
9b1fb677 4771 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4772 struct imsm_map *map = get_imsm_map(dev, 0);
4773 struct disk_info *inf;
4774 struct imsm_disk *disk;
4775 int i;
43dad3d6 4776
54c2c1ea
DW
4777 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4778 sizeof(*inf) * map->num_members;
43dad3d6
DW
4779 u = malloc(len);
4780 if (!u) {
4781 fprintf(stderr, "%s: failed to allocate update buffer\n",
4782 __func__);
4783 return 1;
4784 }
4785
4786 u->type = update_create_array;
9b1fb677 4787 u->dev_idx = dev_idx;
43dad3d6 4788 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4789 inf = get_disk_info(u);
4790 for (i = 0; i < map->num_members; i++) {
98130f40 4791 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4792
54c2c1ea
DW
4793 disk = get_imsm_disk(super, idx);
4794 serialcpy(inf[i].serial, disk->serial);
4795 }
43dad3d6
DW
4796 append_metadata_update(st, u, len);
4797
4798 return 0;
4799}
4800
1a64be56 4801static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4802{
4803 struct intel_super *super = st->sb;
4804 size_t len;
1a64be56 4805 struct imsm_update_add_remove_disk *u;
43dad3d6 4806
1a64be56 4807 if (!super->disk_mgmt_list)
43dad3d6
DW
4808 return 0;
4809
4810 len = sizeof(*u);
4811 u = malloc(len);
4812 if (!u) {
4813 fprintf(stderr, "%s: failed to allocate update buffer\n",
4814 __func__);
4815 return 1;
4816 }
4817
1a64be56 4818 u->type = update_add_remove_disk;
43dad3d6
DW
4819 append_metadata_update(st, u, len);
4820
4821 return 0;
4822}
4823
c2c087e6
DW
4824static int write_init_super_imsm(struct supertype *st)
4825{
9b1fb677
DW
4826 struct intel_super *super = st->sb;
4827 int current_vol = super->current_vol;
4828
4829 /* we are done with current_vol reset it to point st at the container */
4830 super->current_vol = -1;
4831
8273f55e 4832 if (st->update_tail) {
43dad3d6
DW
4833 /* queue the recently created array / added disk
4834 * as a metadata update */
43dad3d6 4835 int rv;
8273f55e 4836
43dad3d6 4837 /* determine if we are creating a volume or adding a disk */
9b1fb677 4838 if (current_vol < 0) {
1a64be56
LM
4839 /* in the mgmt (add/remove) disk case we are running
4840 * in mdmon context, so don't close fd's
43dad3d6 4841 */
1a64be56 4842 return mgmt_disk(st);
43dad3d6 4843 } else
9b1fb677 4844 rv = create_array(st, current_vol);
8273f55e 4845
43dad3d6 4846 return rv;
d682f344
N
4847 } else {
4848 struct dl *d;
4849 for (d = super->disks; d; d = d->next)
4850 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4851 return write_super_imsm(st, 1);
d682f344 4852 }
cdddbdbc 4853}
0e600426 4854#endif
cdddbdbc 4855
e683ca88 4856static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4857{
e683ca88
DW
4858 struct intel_super *super = st->sb;
4859 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4860
e683ca88 4861 if (!mpb)
ad97895e
DW
4862 return 1;
4863
1799c9e8 4864#ifndef MDASSEMBLE
e683ca88 4865 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4866#else
4867 return 1;
4868#endif
cdddbdbc
DW
4869}
4870
0e600426
N
4871static int imsm_bbm_log_size(struct imsm_super *mpb)
4872{
4873 return __le32_to_cpu(mpb->bbm_log_size);
4874}
4875
4876#ifndef MDASSEMBLE
cdddbdbc
DW
4877static int validate_geometry_imsm_container(struct supertype *st, int level,
4878 int layout, int raiddisks, int chunk,
c2c087e6 4879 unsigned long long size, char *dev,
2c514b71
NB
4880 unsigned long long *freesize,
4881 int verbose)
cdddbdbc 4882{
c2c087e6
DW
4883 int fd;
4884 unsigned long long ldsize;
f2f5c343
LM
4885 struct intel_super *super=NULL;
4886 int rv = 0;
cdddbdbc 4887
c2c087e6
DW
4888 if (level != LEVEL_CONTAINER)
4889 return 0;
4890 if (!dev)
4891 return 1;
4892
4893 fd = open(dev, O_RDONLY|O_EXCL, 0);
4894 if (fd < 0) {
2c514b71
NB
4895 if (verbose)
4896 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4897 dev, strerror(errno));
c2c087e6
DW
4898 return 0;
4899 }
4900 if (!get_dev_size(fd, dev, &ldsize)) {
4901 close(fd);
4902 return 0;
4903 }
f2f5c343
LM
4904
4905 /* capabilities retrieve could be possible
4906 * note that there is no fd for the disks in array.
4907 */
4908 super = alloc_super();
4909 if (!super) {
4910 fprintf(stderr,
4911 Name ": malloc of %zu failed.\n",
4912 sizeof(*super));
4913 close(fd);
4914 return 0;
4915 }
4916
d424212e 4917 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4918 if (rv != 0) {
4919#if DEBUG
4920 char str[256];
4921 fd2devname(fd, str);
4922 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4923 fd, str, super->orom, rv, raiddisks);
4924#endif
4925 /* no orom/efi or non-intel hba of the disk */
4926 close(fd);
4927 free_imsm(super);
4928 return 0;
4929 }
c2c087e6 4930 close(fd);
f2f5c343
LM
4931 if (super->orom && raiddisks > super->orom->tds) {
4932 if (verbose)
4933 fprintf(stderr, Name ": %d exceeds maximum number of"
4934 " platform supported disks: %d\n",
4935 raiddisks, super->orom->tds);
4936
4937 free_imsm(super);
4938 return 0;
4939 }
c2c087e6
DW
4940
4941 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 4942 free_imsm(super);
c2c087e6
DW
4943
4944 return 1;
cdddbdbc
DW
4945}
4946
0dcecb2e
DW
4947static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4948{
4949 const unsigned long long base_start = e[*idx].start;
4950 unsigned long long end = base_start + e[*idx].size;
4951 int i;
4952
4953 if (base_start == end)
4954 return 0;
4955
4956 *idx = *idx + 1;
4957 for (i = *idx; i < num_extents; i++) {
4958 /* extend overlapping extents */
4959 if (e[i].start >= base_start &&
4960 e[i].start <= end) {
4961 if (e[i].size == 0)
4962 return 0;
4963 if (e[i].start + e[i].size > end)
4964 end = e[i].start + e[i].size;
4965 } else if (e[i].start > end) {
4966 *idx = i;
4967 break;
4968 }
4969 }
4970
4971 return end - base_start;
4972}
4973
4974static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4975{
4976 /* build a composite disk with all known extents and generate a new
4977 * 'maxsize' given the "all disks in an array must share a common start
4978 * offset" constraint
4979 */
4980 struct extent *e = calloc(sum_extents, sizeof(*e));
4981 struct dl *dl;
4982 int i, j;
4983 int start_extent;
4984 unsigned long long pos;
b9d77223 4985 unsigned long long start = 0;
0dcecb2e
DW
4986 unsigned long long maxsize;
4987 unsigned long reserve;
4988
4989 if (!e)
a7dd165b 4990 return 0;
0dcecb2e
DW
4991
4992 /* coalesce and sort all extents. also, check to see if we need to
4993 * reserve space between member arrays
4994 */
4995 j = 0;
4996 for (dl = super->disks; dl; dl = dl->next) {
4997 if (!dl->e)
4998 continue;
4999 for (i = 0; i < dl->extent_cnt; i++)
5000 e[j++] = dl->e[i];
5001 }
5002 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5003
5004 /* merge extents */
5005 i = 0;
5006 j = 0;
5007 while (i < sum_extents) {
5008 e[j].start = e[i].start;
5009 e[j].size = find_size(e, &i, sum_extents);
5010 j++;
5011 if (e[j-1].size == 0)
5012 break;
5013 }
5014
5015 pos = 0;
5016 maxsize = 0;
5017 start_extent = 0;
5018 i = 0;
5019 do {
5020 unsigned long long esize;
5021
5022 esize = e[i].start - pos;
5023 if (esize >= maxsize) {
5024 maxsize = esize;
5025 start = pos;
5026 start_extent = i;
5027 }
5028 pos = e[i].start + e[i].size;
5029 i++;
5030 } while (e[i-1].size);
5031 free(e);
5032
a7dd165b
DW
5033 if (maxsize == 0)
5034 return 0;
5035
5036 /* FIXME assumes volume at offset 0 is the first volume in a
5037 * container
5038 */
0dcecb2e
DW
5039 if (start_extent > 0)
5040 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5041 else
5042 reserve = 0;
5043
5044 if (maxsize < reserve)
a7dd165b 5045 return 0;
0dcecb2e
DW
5046
5047 super->create_offset = ~((__u32) 0);
5048 if (start + reserve > super->create_offset)
a7dd165b 5049 return 0; /* start overflows create_offset */
0dcecb2e
DW
5050 super->create_offset = start + reserve;
5051
5052 return maxsize - reserve;
5053}
5054
88c32bb1
DW
5055static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5056{
5057 if (level < 0 || level == 6 || level == 4)
5058 return 0;
5059
5060 /* if we have an orom prevent invalid raid levels */
5061 if (orom)
5062 switch (level) {
5063 case 0: return imsm_orom_has_raid0(orom);
5064 case 1:
5065 if (raiddisks > 2)
5066 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5067 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5068 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5069 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5070 }
5071 else
5072 return 1; /* not on an Intel RAID platform so anything goes */
5073
5074 return 0;
5075}
5076
cd9d1ac7
DW
5077static int imsm_default_chunk(const struct imsm_orom *orom)
5078{
5079 /* up to 512 if the plaform supports it, otherwise the platform max.
5080 * 128 if no platform detected
5081 */
5082 int fs = max(7, orom ? fls(orom->sss) : 0);
5083
5084 return min(512, (1 << fs));
5085}
73408129 5086
35f81cbb 5087#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
5088static int
5089validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 5090 int raiddisks, int *chunk, int verbose)
6592ce37 5091{
660260d0
DW
5092 /* check/set platform and metadata limits/defaults */
5093 if (super->orom && raiddisks > super->orom->dpa) {
5094 pr_vrb(": platform supports a maximum of %d disks per array\n",
5095 super->orom->dpa);
73408129
LM
5096 return 0;
5097 }
5098
5099 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 5100 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
5101 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5102 level, raiddisks, raiddisks > 1 ? "s" : "");
5103 return 0;
5104 }
cd9d1ac7
DW
5105
5106 if (chunk && (*chunk == 0 || *chunk == UnSet))
5107 *chunk = imsm_default_chunk(super->orom);
5108
5109 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5110 pr_vrb(": platform does not support a chunk size of: "
5111 "%d\n", *chunk);
5112 return 0;
6592ce37 5113 }
cd9d1ac7 5114
6592ce37
DW
5115 if (layout != imsm_level_to_layout(level)) {
5116 if (level == 5)
5117 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5118 else if (level == 10)
5119 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5120 else
5121 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5122 layout, level);
5123 return 0;
5124 }
6592ce37
DW
5125 return 1;
5126}
5127
c2c087e6
DW
5128/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5129 * FIX ME add ahci details
5130 */
8b353278 5131static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 5132 int layout, int raiddisks, int *chunk,
c2c087e6 5133 unsigned long long size, char *dev,
2c514b71
NB
5134 unsigned long long *freesize,
5135 int verbose)
cdddbdbc 5136{
c2c087e6
DW
5137 struct stat stb;
5138 struct intel_super *super = st->sb;
a20d2ba5 5139 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
5140 struct dl *dl;
5141 unsigned long long pos = 0;
5142 unsigned long long maxsize;
5143 struct extent *e;
5144 int i;
cdddbdbc 5145
88c32bb1
DW
5146 /* We must have the container info already read in. */
5147 if (!super)
c2c087e6
DW
5148 return 0;
5149
e7cb06c8
LO
5150 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5151 fprintf(stderr, Name ": the option-rom requires all "
5152 "member disks to be a member of all volumes.\n");
5153 return 0;
5154 }
5155
d54559f0
LM
5156 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5157 fprintf(stderr, Name ": RAID gemetry validation failed. "
5158 "Cannot proceed with the action(s).\n");
c2c087e6 5159 return 0;
d54559f0 5160 }
c2c087e6
DW
5161 if (!dev) {
5162 /* General test: make sure there is space for
2da8544a
DW
5163 * 'raiddisks' device extents of size 'size' at a given
5164 * offset
c2c087e6 5165 */
e46273eb 5166 unsigned long long minsize = size;
b7528a20 5167 unsigned long long start_offset = MaxSector;
c2c087e6
DW
5168 int dcnt = 0;
5169 if (minsize == 0)
5170 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5171 for (dl = super->disks; dl ; dl = dl->next) {
5172 int found = 0;
5173
bf5a934a 5174 pos = 0;
c2c087e6
DW
5175 i = 0;
5176 e = get_extents(super, dl);
5177 if (!e) continue;
5178 do {
5179 unsigned long long esize;
5180 esize = e[i].start - pos;
5181 if (esize >= minsize)
5182 found = 1;
b7528a20 5183 if (found && start_offset == MaxSector) {
2da8544a
DW
5184 start_offset = pos;
5185 break;
5186 } else if (found && pos != start_offset) {
5187 found = 0;
5188 break;
5189 }
c2c087e6
DW
5190 pos = e[i].start + e[i].size;
5191 i++;
5192 } while (e[i-1].size);
5193 if (found)
5194 dcnt++;
5195 free(e);
5196 }
5197 if (dcnt < raiddisks) {
2c514b71
NB
5198 if (verbose)
5199 fprintf(stderr, Name ": imsm: Not enough "
5200 "devices with space for this array "
5201 "(%d < %d)\n",
5202 dcnt, raiddisks);
c2c087e6
DW
5203 return 0;
5204 }
5205 return 1;
5206 }
0dcecb2e 5207
c2c087e6
DW
5208 /* This device must be a member of the set */
5209 if (stat(dev, &stb) < 0)
5210 return 0;
5211 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5212 return 0;
5213 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5214 if (dl->major == (int)major(stb.st_rdev) &&
5215 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5216 break;
5217 }
5218 if (!dl) {
2c514b71
NB
5219 if (verbose)
5220 fprintf(stderr, Name ": %s is not in the "
5221 "same imsm set\n", dev);
c2c087e6 5222 return 0;
a20d2ba5
DW
5223 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5224 /* If a volume is present then the current creation attempt
5225 * cannot incorporate new spares because the orom may not
5226 * understand this configuration (all member disks must be
5227 * members of each array in the container).
5228 */
5229 fprintf(stderr, Name ": %s is a spare and a volume"
5230 " is already defined for this container\n", dev);
5231 fprintf(stderr, Name ": The option-rom requires all member"
5232 " disks to be a member of all volumes\n");
5233 return 0;
c2c087e6 5234 }
0dcecb2e
DW
5235
5236 /* retrieve the largest free space block */
c2c087e6
DW
5237 e = get_extents(super, dl);
5238 maxsize = 0;
5239 i = 0;
0dcecb2e
DW
5240 if (e) {
5241 do {
5242 unsigned long long esize;
5243
5244 esize = e[i].start - pos;
5245 if (esize >= maxsize)
5246 maxsize = esize;
5247 pos = e[i].start + e[i].size;
5248 i++;
5249 } while (e[i-1].size);
5250 dl->e = e;
5251 dl->extent_cnt = i;
5252 } else {
5253 if (verbose)
5254 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5255 dev);
5256 return 0;
5257 }
5258 if (maxsize < size) {
5259 if (verbose)
5260 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5261 dev, maxsize, size);
5262 return 0;
5263 }
5264
5265 /* count total number of extents for merge */
5266 i = 0;
5267 for (dl = super->disks; dl; dl = dl->next)
5268 if (dl->e)
5269 i += dl->extent_cnt;
5270
5271 maxsize = merge_extents(super, i);
a7dd165b 5272 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
5273 if (verbose)
5274 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5275 maxsize, size);
5276 return 0;
0dcecb2e
DW
5277 }
5278
c2c087e6
DW
5279 *freesize = maxsize;
5280
5281 return 1;
cdddbdbc
DW
5282}
5283
efb30e7f
DW
5284static int reserve_space(struct supertype *st, int raiddisks,
5285 unsigned long long size, int chunk,
5286 unsigned long long *freesize)
5287{
5288 struct intel_super *super = st->sb;
5289 struct imsm_super *mpb = super->anchor;
5290 struct dl *dl;
5291 int i;
5292 int extent_cnt;
5293 struct extent *e;
5294 unsigned long long maxsize;
5295 unsigned long long minsize;
5296 int cnt;
5297 int used;
5298
5299 /* find the largest common start free region of the possible disks */
5300 used = 0;
5301 extent_cnt = 0;
5302 cnt = 0;
5303 for (dl = super->disks; dl; dl = dl->next) {
5304 dl->raiddisk = -1;
5305
5306 if (dl->index >= 0)
5307 used++;
5308
5309 /* don't activate new spares if we are orom constrained
5310 * and there is already a volume active in the container
5311 */
5312 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5313 continue;
5314
5315 e = get_extents(super, dl);
5316 if (!e)
5317 continue;
5318 for (i = 1; e[i-1].size; i++)
5319 ;
5320 dl->e = e;
5321 dl->extent_cnt = i;
5322 extent_cnt += i;
5323 cnt++;
5324 }
5325
5326 maxsize = merge_extents(super, extent_cnt);
5327 minsize = size;
5328 if (size == 0)
612e59d8
CA
5329 /* chunk is in K */
5330 minsize = chunk * 2;
efb30e7f
DW
5331
5332 if (cnt < raiddisks ||
5333 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5334 maxsize < minsize ||
5335 maxsize == 0) {
efb30e7f
DW
5336 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5337 return 0; /* No enough free spaces large enough */
5338 }
5339
5340 if (size == 0) {
5341 size = maxsize;
5342 if (chunk) {
612e59d8
CA
5343 size /= 2 * chunk;
5344 size *= 2 * chunk;
efb30e7f
DW
5345 }
5346 }
5347
5348 cnt = 0;
5349 for (dl = super->disks; dl; dl = dl->next)
5350 if (dl->e)
5351 dl->raiddisk = cnt++;
5352
5353 *freesize = size;
5354
5355 return 1;
5356}
5357
bf5a934a 5358static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5359 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5360 char *dev, unsigned long long *freesize,
5361 int verbose)
5362{
5363 int fd, cfd;
5364 struct mdinfo *sra;
20cbe8d2 5365 int is_member = 0;
bf5a934a 5366
d54559f0
LM
5367 /* load capability
5368 * if given unused devices create a container
bf5a934a
DW
5369 * if given given devices in a container create a member volume
5370 */
5371 if (level == LEVEL_CONTAINER) {
5372 /* Must be a fresh device to add to a container */
5373 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5374 raiddisks,
5375 chunk?*chunk:0, size,
bf5a934a
DW
5376 dev, freesize,
5377 verbose);
5378 }
5379
8592f29d
N
5380 if (!dev) {
5381 if (st->sb && freesize) {
efb30e7f
DW
5382 /* we are being asked to automatically layout a
5383 * new volume based on the current contents of
5384 * the container. If the the parameters can be
5385 * satisfied reserve_space will record the disks,
5386 * start offset, and size of the volume to be
5387 * created. add_to_super and getinfo_super
5388 * detect when autolayout is in progress.
5389 */
6592ce37
DW
5390 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5391 raiddisks, chunk,
5392 verbose))
5393 return 0;
c21e737b
CA
5394 return reserve_space(st, raiddisks, size,
5395 chunk?*chunk:0, freesize);
8592f29d
N
5396 }
5397 return 1;
5398 }
bf5a934a
DW
5399 if (st->sb) {
5400 /* creating in a given container */
5401 return validate_geometry_imsm_volume(st, level, layout,
5402 raiddisks, chunk, size,
5403 dev, freesize, verbose);
5404 }
5405
bf5a934a
DW
5406 /* This device needs to be a device in an 'imsm' container */
5407 fd = open(dev, O_RDONLY|O_EXCL, 0);
5408 if (fd >= 0) {
5409 if (verbose)
5410 fprintf(stderr,
5411 Name ": Cannot create this array on device %s\n",
5412 dev);
5413 close(fd);
5414 return 0;
5415 }
5416 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5417 if (verbose)
5418 fprintf(stderr, Name ": Cannot open %s: %s\n",
5419 dev, strerror(errno));
5420 return 0;
5421 }
5422 /* Well, it is in use by someone, maybe an 'imsm' container. */
5423 cfd = open_container(fd);
20cbe8d2 5424 close(fd);
bf5a934a 5425 if (cfd < 0) {
bf5a934a
DW
5426 if (verbose)
5427 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5428 dev);
5429 return 0;
5430 }
5431 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5432 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5433 strcmp(sra->text_version, "imsm") == 0)
5434 is_member = 1;
5435 sysfs_free(sra);
5436 if (is_member) {
bf5a934a
DW
5437 /* This is a member of a imsm container. Load the container
5438 * and try to create a volume
5439 */
5440 struct intel_super *super;
5441
e1902a7b 5442 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5443 st->sb = super;
5444 st->container_dev = fd2devnum(cfd);
5445 close(cfd);
5446 return validate_geometry_imsm_volume(st, level, layout,
5447 raiddisks, chunk,
5448 size, dev,
ecbd9e81
N
5449 freesize, 1)
5450 ? 1 : -1;
bf5a934a 5451 }
20cbe8d2 5452 }
bf5a934a 5453
20cbe8d2
AW
5454 if (verbose)
5455 fprintf(stderr, Name ": failed container membership check\n");
5456
5457 close(cfd);
5458 return 0;
bf5a934a 5459}
0bd16cf2 5460
30f58b22 5461static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5462{
5463 struct intel_super *super = st->sb;
5464
30f58b22
DW
5465 if (level && *level == UnSet)
5466 *level = LEVEL_CONTAINER;
5467
5468 if (level && layout && *layout == UnSet)
5469 *layout = imsm_level_to_layout(*level);
0bd16cf2 5470
cd9d1ac7
DW
5471 if (chunk && (*chunk == UnSet || *chunk == 0))
5472 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
5473}
5474
33414a01
DW
5475static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5476
5477static int kill_subarray_imsm(struct supertype *st)
5478{
5479 /* remove the subarray currently referenced by ->current_vol */
5480 __u8 i;
5481 struct intel_dev **dp;
5482 struct intel_super *super = st->sb;
5483 __u8 current_vol = super->current_vol;
5484 struct imsm_super *mpb = super->anchor;
5485
5486 if (super->current_vol < 0)
5487 return 2;
5488 super->current_vol = -1; /* invalidate subarray cursor */
5489
5490 /* block deletions that would change the uuid of active subarrays
5491 *
5492 * FIXME when immutable ids are available, but note that we'll
5493 * also need to fixup the invalidated/active subarray indexes in
5494 * mdstat
5495 */
5496 for (i = 0; i < mpb->num_raid_devs; i++) {
5497 char subarray[4];
5498
5499 if (i < current_vol)
5500 continue;
5501 sprintf(subarray, "%u", i);
5502 if (is_subarray_active(subarray, st->devname)) {
5503 fprintf(stderr,
5504 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5505 current_vol, i);
5506
5507 return 2;
5508 }
5509 }
5510
5511 if (st->update_tail) {
5512 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5513
5514 if (!u)
5515 return 2;
5516 u->type = update_kill_array;
5517 u->dev_idx = current_vol;
5518 append_metadata_update(st, u, sizeof(*u));
5519
5520 return 0;
5521 }
5522
5523 for (dp = &super->devlist; *dp;)
5524 if ((*dp)->index == current_vol) {
5525 *dp = (*dp)->next;
5526 } else {
5527 handle_missing(super, (*dp)->dev);
5528 if ((*dp)->index > current_vol)
5529 (*dp)->index--;
5530 dp = &(*dp)->next;
5531 }
5532
5533 /* no more raid devices, all active components are now spares,
5534 * but of course failed are still failed
5535 */
5536 if (--mpb->num_raid_devs == 0) {
5537 struct dl *d;
5538
5539 for (d = super->disks; d; d = d->next)
a8619d23
AK
5540 if (d->index > -2)
5541 mark_spare(d);
33414a01
DW
5542 }
5543
5544 super->updates_pending++;
5545
5546 return 0;
5547}
aa534678 5548
a951a4f7 5549static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5550 char *update, struct mddev_ident *ident)
aa534678
DW
5551{
5552 /* update the subarray currently referenced by ->current_vol */
5553 struct intel_super *super = st->sb;
5554 struct imsm_super *mpb = super->anchor;
5555
aa534678
DW
5556 if (strcmp(update, "name") == 0) {
5557 char *name = ident->name;
a951a4f7
N
5558 char *ep;
5559 int vol;
aa534678 5560
a951a4f7 5561 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5562 fprintf(stderr,
5563 Name ": Unable to update name of active subarray\n");
5564 return 2;
5565 }
5566
5567 if (!check_name(super, name, 0))
5568 return 2;
5569
a951a4f7
N
5570 vol = strtoul(subarray, &ep, 10);
5571 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5572 return 2;
5573
aa534678
DW
5574 if (st->update_tail) {
5575 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5576
5577 if (!u)
5578 return 2;
5579 u->type = update_rename_array;
a951a4f7 5580 u->dev_idx = vol;
aa534678
DW
5581 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5582 append_metadata_update(st, u, sizeof(*u));
5583 } else {
5584 struct imsm_dev *dev;
5585 int i;
5586
a951a4f7 5587 dev = get_imsm_dev(super, vol);
aa534678
DW
5588 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5589 for (i = 0; i < mpb->num_raid_devs; i++) {
5590 dev = get_imsm_dev(super, i);
5591 handle_missing(super, dev);
5592 }
5593 super->updates_pending++;
5594 }
5595 } else
5596 return 2;
5597
5598 return 0;
5599}
bf5a934a 5600
28bce06f
AK
5601static int is_gen_migration(struct imsm_dev *dev)
5602{
7534230b
AK
5603 if (dev == NULL)
5604 return 0;
5605
28bce06f
AK
5606 if (!dev->vol.migr_state)
5607 return 0;
5608
5609 if (migr_type(dev) == MIGR_GEN_MIGR)
5610 return 1;
5611
5612 return 0;
5613}
71204a50 5614#endif /* MDASSEMBLE */
28bce06f 5615
1e5c6983
DW
5616static int is_rebuilding(struct imsm_dev *dev)
5617{
5618 struct imsm_map *migr_map;
5619
5620 if (!dev->vol.migr_state)
5621 return 0;
5622
5623 if (migr_type(dev) != MIGR_REBUILD)
5624 return 0;
5625
5626 migr_map = get_imsm_map(dev, 1);
5627
5628 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5629 return 1;
5630 else
5631 return 0;
5632}
5633
c47b0ff6
AK
5634static void update_recovery_start(struct intel_super *super,
5635 struct imsm_dev *dev,
5636 struct mdinfo *array)
1e5c6983
DW
5637{
5638 struct mdinfo *rebuild = NULL;
5639 struct mdinfo *d;
5640 __u32 units;
5641
5642 if (!is_rebuilding(dev))
5643 return;
5644
5645 /* Find the rebuild target, but punt on the dual rebuild case */
5646 for (d = array->devs; d; d = d->next)
5647 if (d->recovery_start == 0) {
5648 if (rebuild)
5649 return;
5650 rebuild = d;
5651 }
5652
4363fd80
DW
5653 if (!rebuild) {
5654 /* (?) none of the disks are marked with
5655 * IMSM_ORD_REBUILD, so assume they are missing and the
5656 * disk_ord_tbl was not correctly updated
5657 */
5658 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5659 return;
5660 }
5661
1e5c6983 5662 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5663 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5664}
5665
9e2d750d 5666#ifndef MDASSEMBLE
276d77db 5667static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 5668#endif
1e5c6983 5669
00bbdbda 5670static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5671{
4f5bc454
DW
5672 /* Given a container loaded by load_super_imsm_all,
5673 * extract information about all the arrays into
5674 * an mdinfo tree.
00bbdbda 5675 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5676 *
5677 * For each imsm_dev create an mdinfo, fill it in,
5678 * then look for matching devices in super->disks
5679 * and create appropriate device mdinfo.
5680 */
5681 struct intel_super *super = st->sb;
949c47a0 5682 struct imsm_super *mpb = super->anchor;
4f5bc454 5683 struct mdinfo *rest = NULL;
00bbdbda 5684 unsigned int i;
a06d022d 5685 int bbm_errors = 0;
abef11a3
AK
5686 struct dl *d;
5687 int spare_disks = 0;
cdddbdbc 5688
19482bcc
AK
5689 /* do not assemble arrays when not all attributes are supported */
5690 if (imsm_check_attributes(mpb->attributes) == 0) {
5691 fprintf(stderr, Name ": IMSM metadata loading not allowed "
5692 "due to attributes incompatibility.\n");
5693 return NULL;
5694 }
5695
a06d022d
KW
5696 /* check for bad blocks */
5697 if (imsm_bbm_log_size(super->anchor))
5698 bbm_errors = 1;
604b746f 5699
abef11a3
AK
5700 /* count spare devices, not used in maps
5701 */
5702 for (d = super->disks; d; d = d->next)
5703 if (d->index == -1)
5704 spare_disks++;
5705
4f5bc454 5706 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5707 struct imsm_dev *dev;
5708 struct imsm_map *map;
86e3692b 5709 struct imsm_map *map2;
4f5bc454 5710 struct mdinfo *this;
2db86302 5711 int slot, chunk;
00bbdbda
N
5712 char *ep;
5713
5714 if (subarray &&
5715 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5716 continue;
5717
5718 dev = get_imsm_dev(super, i);
5719 map = get_imsm_map(dev, 0);
86e3692b 5720 map2 = get_imsm_map(dev, 1);
4f5bc454 5721
1ce0101c
DW
5722 /* do not publish arrays that are in the middle of an
5723 * unsupported migration
5724 */
5725 if (dev->vol.migr_state &&
28bce06f 5726 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5727 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5728 " unsupported migration in progress\n",
5729 dev->volume);
5730 continue;
5731 }
2db86302
LM
5732 /* do not publish arrays that are not support by controller's
5733 * OROM/EFI
5734 */
1ce0101c 5735
2db86302 5736 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
7b0bbd0f 5737#ifndef MDASSEMBLE
2db86302
LM
5738 if (!validate_geometry_imsm_orom(super,
5739 get_imsm_raid_level(map), /* RAID level */
5740 imsm_level_to_layout(get_imsm_raid_level(map)),
5741 map->num_members, /* raid disks */
5742 &chunk,
5743 1 /* verbose */)) {
5744 fprintf(stderr, Name ": RAID gemetry validation failed. "
5745 "Cannot proceed with the action(s).\n");
5746 continue;
5747 }
7b0bbd0f 5748#endif /* MDASSEMBLE */
4f5bc454 5749 this = malloc(sizeof(*this));
0fbd635c 5750 if (!this) {
cf1be220 5751 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5752 sizeof(*this));
5753 break;
5754 }
4f5bc454 5755
301406c9 5756 super->current_vol = i;
a5d85af7 5757 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5758 this->next = rest;
4f5bc454 5759 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5760 unsigned long long recovery_start;
4f5bc454
DW
5761 struct mdinfo *info_d;
5762 struct dl *d;
5763 int idx;
9a1608e5 5764 int skip;
7eef0453 5765 __u32 ord;
4f5bc454 5766
9a1608e5 5767 skip = 0;
98130f40 5768 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5769 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5770 for (d = super->disks; d ; d = d->next)
5771 if (d->index == idx)
0fbd635c 5772 break;
4f5bc454 5773
1e5c6983 5774 recovery_start = MaxSector;
4f5bc454 5775 if (d == NULL)
9a1608e5 5776 skip = 1;
25ed7e59 5777 if (d && is_failed(&d->disk))
9a1608e5 5778 skip = 1;
7eef0453 5779 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5780 recovery_start = 0;
9a1608e5
DW
5781
5782 /*
5783 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5784 * reset resync start to avoid a dirty-degraded
5785 * situation when performing the intial sync
9a1608e5
DW
5786 *
5787 * FIXME handle dirty degraded
5788 */
1e5c6983 5789 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5790 this->resync_start = MaxSector;
9a1608e5
DW
5791 if (skip)
5792 continue;
4f5bc454 5793
1e5c6983 5794 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5795 if (!info_d) {
5796 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5797 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5798 info_d = this->devs;
5799 while (info_d) {
5800 struct mdinfo *d = info_d->next;
5801
5802 free(info_d);
5803 info_d = d;
5804 }
9a1608e5
DW
5805 free(this);
5806 this = rest;
5807 break;
5808 }
4f5bc454
DW
5809 info_d->next = this->devs;
5810 this->devs = info_d;
5811
4f5bc454
DW
5812 info_d->disk.number = d->index;
5813 info_d->disk.major = d->major;
5814 info_d->disk.minor = d->minor;
5815 info_d->disk.raid_disk = slot;
1e5c6983 5816 info_d->recovery_start = recovery_start;
86e3692b
AK
5817 if (map2) {
5818 if (slot < map2->num_members)
5819 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5820 else
5821 this->array.spare_disks++;
86e3692b
AK
5822 } else {
5823 if (slot < map->num_members)
5824 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5825 else
5826 this->array.spare_disks++;
86e3692b 5827 }
1e5c6983
DW
5828 if (info_d->recovery_start == MaxSector)
5829 this->array.working_disks++;
4f5bc454
DW
5830
5831 info_d->events = __le32_to_cpu(mpb->generation_num);
5832 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5833 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5834 }
1e5c6983 5835 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5836 update_recovery_start(super, dev, this);
abef11a3 5837 this->array.spare_disks += spare_disks;
276d77db 5838
9e2d750d 5839#ifndef MDASSEMBLE
276d77db
AK
5840 /* check for reshape */
5841 if (this->reshape_active == 1)
5842 recover_backup_imsm(st, this);
9e2d750d 5843#endif
9a1608e5 5844 rest = this;
4f5bc454
DW
5845 }
5846
a06d022d
KW
5847 /* if array has bad blocks, set suitable bit in array status */
5848 if (bbm_errors)
5849 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5850
4f5bc454 5851 return rest;
cdddbdbc
DW
5852}
5853
845dea95 5854
fb49eef2 5855static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 5856{
a965f303 5857 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
5858
5859 if (!failed)
3393c6af
DW
5860 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5861 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5862
5863 switch (get_imsm_raid_level(map)) {
5864 case 0:
5865 return IMSM_T_STATE_FAILED;
5866 break;
5867 case 1:
5868 if (failed < map->num_members)
5869 return IMSM_T_STATE_DEGRADED;
5870 else
5871 return IMSM_T_STATE_FAILED;
5872 break;
5873 case 10:
5874 {
5875 /**
c92a2527
DW
5876 * check to see if any mirrors have failed, otherwise we
5877 * are degraded. Even numbered slots are mirrored on
5878 * slot+1
c2a1e7da 5879 */
c2a1e7da 5880 int i;
d9b420a5
N
5881 /* gcc -Os complains that this is unused */
5882 int insync = insync;
c2a1e7da
DW
5883
5884 for (i = 0; i < map->num_members; i++) {
98130f40 5885 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5886 int idx = ord_to_idx(ord);
5887 struct imsm_disk *disk;
c2a1e7da 5888
c92a2527
DW
5889 /* reset the potential in-sync count on even-numbered
5890 * slots. num_copies is always 2 for imsm raid10
5891 */
5892 if ((i & 1) == 0)
5893 insync = 2;
c2a1e7da 5894
c92a2527 5895 disk = get_imsm_disk(super, idx);
25ed7e59 5896 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5897 insync--;
c2a1e7da 5898
c92a2527
DW
5899 /* no in-sync disks left in this mirror the
5900 * array has failed
5901 */
5902 if (insync == 0)
5903 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5904 }
5905
5906 return IMSM_T_STATE_DEGRADED;
5907 }
5908 case 5:
5909 if (failed < 2)
5910 return IMSM_T_STATE_DEGRADED;
5911 else
5912 return IMSM_T_STATE_FAILED;
5913 break;
5914 default:
5915 break;
5916 }
5917
5918 return map->map_state;
5919}
5920
ff077194 5921static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
5922{
5923 int i;
5924 int failed = 0;
5925 struct imsm_disk *disk;
ff077194 5926 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
5927 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5928 __u32 ord;
5929 int idx;
c2a1e7da 5930
0556e1a2
DW
5931 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5932 * disks that are being rebuilt. New failures are recorded to
5933 * map[0]. So we look through all the disks we started with and
5934 * see if any failures are still present, or if any new ones
5935 * have arrived
5936 *
5937 * FIXME add support for online capacity expansion and
5938 * raid-level-migration
5939 */
5940 for (i = 0; i < prev->num_members; i++) {
5941 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5942 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5943 idx = ord_to_idx(ord);
c2a1e7da 5944
949c47a0 5945 disk = get_imsm_disk(super, idx);
25ed7e59 5946 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 5947 failed++;
c2a1e7da
DW
5948 }
5949
5950 return failed;
845dea95
NB
5951}
5952
97b4d0e9
DW
5953#ifndef MDASSEMBLE
5954static int imsm_open_new(struct supertype *c, struct active_array *a,
5955 char *inst)
5956{
5957 struct intel_super *super = c->sb;
5958 struct imsm_super *mpb = super->anchor;
5959
5960 if (atoi(inst) >= mpb->num_raid_devs) {
5961 fprintf(stderr, "%s: subarry index %d, out of range\n",
5962 __func__, atoi(inst));
5963 return -ENODEV;
5964 }
5965
5966 dprintf("imsm: open_new %s\n", inst);
5967 a->info.container_member = atoi(inst);
5968 return 0;
5969}
5970
0c046afd
DW
5971static int is_resyncing(struct imsm_dev *dev)
5972{
5973 struct imsm_map *migr_map;
5974
5975 if (!dev->vol.migr_state)
5976 return 0;
5977
1484e727
DW
5978 if (migr_type(dev) == MIGR_INIT ||
5979 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
5980 return 1;
5981
4c9bc37b
AK
5982 if (migr_type(dev) == MIGR_GEN_MIGR)
5983 return 0;
5984
0c046afd
DW
5985 migr_map = get_imsm_map(dev, 1);
5986
4c9bc37b
AK
5987 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5988 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
5989 return 1;
5990 else
5991 return 0;
5992}
5993
0556e1a2
DW
5994/* return true if we recorded new information */
5995static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 5996{
0556e1a2
DW
5997 __u32 ord;
5998 int slot;
5999 struct imsm_map *map;
86c54047
DW
6000 char buf[MAX_RAID_SERIAL_LEN+3];
6001 unsigned int len, shift = 0;
0556e1a2
DW
6002
6003 /* new failures are always set in map[0] */
6004 map = get_imsm_map(dev, 0);
6005
6006 slot = get_imsm_disk_slot(map, idx);
6007 if (slot < 0)
6008 return 0;
6009
6010 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 6011 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
6012 return 0;
6013
86c54047
DW
6014 sprintf(buf, "%s:0", disk->serial);
6015 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6016 shift = len - MAX_RAID_SERIAL_LEN + 1;
6017 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6018
f2f27e63 6019 disk->status |= FAILED_DISK;
0556e1a2 6020 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
f21e18ca 6021 if (map->failed_disk_num == 0xff)
0556e1a2
DW
6022 map->failed_disk_num = slot;
6023 return 1;
6024}
6025
6026static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6027{
6028 mark_failure(dev, disk, idx);
6029
6030 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6031 return;
6032
47ee5a45
DW
6033 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6034 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6035}
6036
33414a01
DW
6037static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6038{
6039 __u8 map_state;
6040 struct dl *dl;
6041 int failed;
6042
6043 if (!super->missing)
6044 return;
6045 failed = imsm_count_failed(super, dev);
6046 map_state = imsm_check_degraded(super, dev, failed);
6047
6048 dprintf("imsm: mark missing\n");
6049 end_migration(dev, map_state);
6050 for (dl = super->missing; dl; dl = dl->next)
6051 mark_missing(dev, &dl->disk, dl->index);
6052 super->updates_pending++;
6053}
6054
70bdf0dc
AK
6055static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6056{
6057 int used_disks = imsm_num_data_members(dev, 0);
6058 unsigned long long array_blocks;
6059 struct imsm_map *map;
6060
6061 if (used_disks == 0) {
6062 /* when problems occures
6063 * return current array_blocks value
6064 */
6065 array_blocks = __le32_to_cpu(dev->size_high);
6066 array_blocks = array_blocks << 32;
6067 array_blocks += __le32_to_cpu(dev->size_low);
6068
6069 return array_blocks;
6070 }
6071
6072 /* set array size in metadata
6073 */
6074 map = get_imsm_map(dev, 0);
6075 array_blocks = map->blocks_per_member * used_disks;
6076
6077 /* round array size down to closest MB
6078 */
6079 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6080 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6081 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6082
6083 return array_blocks;
6084}
6085
28bce06f
AK
6086static void imsm_set_disk(struct active_array *a, int n, int state);
6087
0e2d1a4e
AK
6088static void imsm_progress_container_reshape(struct intel_super *super)
6089{
6090 /* if no device has a migr_state, but some device has a
6091 * different number of members than the previous device, start
6092 * changing the number of devices in this device to match
6093 * previous.
6094 */
6095 struct imsm_super *mpb = super->anchor;
6096 int prev_disks = -1;
6097 int i;
1dfaa380 6098 int copy_map_size;
0e2d1a4e
AK
6099
6100 for (i = 0; i < mpb->num_raid_devs; i++) {
6101 struct imsm_dev *dev = get_imsm_dev(super, i);
6102 struct imsm_map *map = get_imsm_map(dev, 0);
6103 struct imsm_map *map2;
6104 int prev_num_members;
0e2d1a4e
AK
6105
6106 if (dev->vol.migr_state)
6107 return;
6108
6109 if (prev_disks == -1)
6110 prev_disks = map->num_members;
6111 if (prev_disks == map->num_members)
6112 continue;
6113
6114 /* OK, this array needs to enter reshape mode.
6115 * i.e it needs a migr_state
6116 */
6117
1dfaa380 6118 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
6119 prev_num_members = map->num_members;
6120 map->num_members = prev_disks;
6121 dev->vol.migr_state = 1;
6122 dev->vol.curr_migr_unit = 0;
6123 dev->vol.migr_type = MIGR_GEN_MIGR;
6124 for (i = prev_num_members;
6125 i < map->num_members; i++)
6126 set_imsm_ord_tbl_ent(map, i, i);
6127 map2 = get_imsm_map(dev, 1);
6128 /* Copy the current map */
1dfaa380 6129 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
6130 map2->num_members = prev_num_members;
6131
70bdf0dc 6132 imsm_set_array_size(dev);
0e2d1a4e
AK
6133 super->updates_pending++;
6134 }
6135}
6136
aad6f216 6137/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
6138 * states are handled in imsm_set_disk() with one exception, when a
6139 * resync is stopped due to a new failure this routine will set the
6140 * 'degraded' state for the array.
6141 */
01f157d7 6142static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
6143{
6144 int inst = a->info.container_member;
6145 struct intel_super *super = a->container->sb;
949c47a0 6146 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6147 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
6148 int failed = imsm_count_failed(super, dev);
6149 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 6150 __u32 blocks_per_unit;
a862209d 6151
1af97990
AK
6152 if (dev->vol.migr_state &&
6153 dev->vol.migr_type == MIGR_GEN_MIGR) {
6154 /* array state change is blocked due to reshape action
aad6f216
N
6155 * We might need to
6156 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6157 * - finish the reshape (if last_checkpoint is big and action != reshape)
6158 * - update curr_migr_unit
1af97990 6159 */
aad6f216
N
6160 if (a->curr_action == reshape) {
6161 /* still reshaping, maybe update curr_migr_unit */
633b5610 6162 goto mark_checkpoint;
aad6f216
N
6163 } else {
6164 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6165 /* for some reason we aborted the reshape.
b66e591b
AK
6166 *
6167 * disable automatic metadata rollback
6168 * user action is required to recover process
aad6f216 6169 */
b66e591b 6170 if (0) {
aad6f216
N
6171 struct imsm_map *map2 = get_imsm_map(dev, 1);
6172 dev->vol.migr_state = 0;
6173 dev->vol.migr_type = 0;
6174 dev->vol.curr_migr_unit = 0;
6175 memcpy(map, map2, sizeof_imsm_map(map2));
6176 super->updates_pending++;
b66e591b 6177 }
aad6f216
N
6178 }
6179 if (a->last_checkpoint >= a->info.component_size) {
6180 unsigned long long array_blocks;
6181 int used_disks;
e154ced3 6182 struct mdinfo *mdi;
aad6f216 6183
9653001d 6184 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
6185 if (used_disks > 0) {
6186 array_blocks =
6187 map->blocks_per_member *
6188 used_disks;
6189 /* round array size down to closest MB
6190 */
6191 array_blocks = (array_blocks
6192 >> SECT_PER_MB_SHIFT)
6193 << SECT_PER_MB_SHIFT;
d55adef9
AK
6194 a->info.custom_array_size = array_blocks;
6195 /* encourage manager to update array
6196 * size
6197 */
e154ced3 6198
d55adef9 6199 a->check_reshape = 1;
633b5610 6200 }
e154ced3
AK
6201 /* finalize online capacity expansion/reshape */
6202 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6203 imsm_set_disk(a,
6204 mdi->disk.raid_disk,
6205 mdi->curr_state);
6206
0e2d1a4e 6207 imsm_progress_container_reshape(super);
e154ced3 6208 }
aad6f216 6209 }
1af97990
AK
6210 }
6211
47ee5a45 6212 /* before we activate this array handle any missing disks */
33414a01
DW
6213 if (consistent == 2)
6214 handle_missing(super, dev);
1e5c6983 6215
0c046afd 6216 if (consistent == 2 &&
b7941fd6 6217 (!is_resync_complete(&a->info) ||
0c046afd
DW
6218 map_state != IMSM_T_STATE_NORMAL ||
6219 dev->vol.migr_state))
01f157d7 6220 consistent = 0;
272906ef 6221
b7941fd6 6222 if (is_resync_complete(&a->info)) {
0c046afd 6223 /* complete intialization / resync,
0556e1a2
DW
6224 * recovery and interrupted recovery is completed in
6225 * ->set_disk
0c046afd
DW
6226 */
6227 if (is_resyncing(dev)) {
6228 dprintf("imsm: mark resync done\n");
f8f603f1 6229 end_migration(dev, map_state);
115c3803 6230 super->updates_pending++;
484240d8 6231 a->last_checkpoint = 0;
115c3803 6232 }
0c046afd
DW
6233 } else if (!is_resyncing(dev) && !failed) {
6234 /* mark the start of the init process if nothing is failed */
b7941fd6 6235 dprintf("imsm: mark resync start\n");
1484e727 6236 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 6237 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 6238 else
8e59f3d8 6239 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 6240 super->updates_pending++;
115c3803 6241 }
a862209d 6242
633b5610 6243mark_checkpoint:
5b83bacf
AK
6244 /* skip checkpointing for general migration,
6245 * it is controlled in mdadm
6246 */
6247 if (is_gen_migration(dev))
6248 goto skip_mark_checkpoint;
6249
1e5c6983 6250 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 6251 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 6252 if (blocks_per_unit) {
1e5c6983
DW
6253 __u32 units32;
6254 __u64 units;
6255
4f0a7acc 6256 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
6257 units32 = units;
6258
6259 /* check that we did not overflow 32-bits, and that
6260 * curr_migr_unit needs updating
6261 */
6262 if (units32 == units &&
bfd80a56 6263 units32 != 0 &&
1e5c6983
DW
6264 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6265 dprintf("imsm: mark checkpoint (%u)\n", units32);
6266 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6267 super->updates_pending++;
6268 }
6269 }
f8f603f1 6270
5b83bacf 6271skip_mark_checkpoint:
3393c6af 6272 /* mark dirty / clean */
0c046afd 6273 if (dev->vol.dirty != !consistent) {
b7941fd6 6274 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
6275 if (consistent)
6276 dev->vol.dirty = 0;
6277 else
6278 dev->vol.dirty = 1;
a862209d
DW
6279 super->updates_pending++;
6280 }
28bce06f 6281
01f157d7 6282 return consistent;
a862209d
DW
6283}
6284
8d45d196 6285static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 6286{
8d45d196
DW
6287 int inst = a->info.container_member;
6288 struct intel_super *super = a->container->sb;
949c47a0 6289 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6290 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 6291 struct imsm_disk *disk;
0c046afd 6292 int failed;
b10b37b8 6293 __u32 ord;
0c046afd 6294 __u8 map_state;
8d45d196
DW
6295
6296 if (n > map->num_members)
6297 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6298 n, map->num_members - 1);
6299
6300 if (n < 0)
6301 return;
6302
4e6e574a 6303 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 6304
98130f40 6305 ord = get_imsm_ord_tbl_ent(dev, n, -1);
b10b37b8 6306 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 6307
5802a811 6308 /* check for new failures */
0556e1a2
DW
6309 if (state & DS_FAULTY) {
6310 if (mark_failure(dev, disk, ord_to_idx(ord)))
6311 super->updates_pending++;
8d45d196 6312 }
47ee5a45 6313
19859edc 6314 /* check if in_sync */
0556e1a2 6315 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
6316 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6317
6318 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6319 super->updates_pending++;
6320 }
8d45d196 6321
0c046afd
DW
6322 failed = imsm_count_failed(super, dev);
6323 map_state = imsm_check_degraded(super, dev, failed);
5802a811 6324
0c046afd
DW
6325 /* check if recovery complete, newly degraded, or failed */
6326 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 6327 end_migration(dev, map_state);
0556e1a2
DW
6328 map = get_imsm_map(dev, 0);
6329 map->failed_disk_num = ~0;
0c046afd 6330 super->updates_pending++;
484240d8 6331 a->last_checkpoint = 0;
0c046afd
DW
6332 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6333 map->map_state != map_state &&
6334 !dev->vol.migr_state) {
6335 dprintf("imsm: mark degraded\n");
6336 map->map_state = map_state;
6337 super->updates_pending++;
484240d8 6338 a->last_checkpoint = 0;
0c046afd
DW
6339 } else if (map_state == IMSM_T_STATE_FAILED &&
6340 map->map_state != map_state) {
6341 dprintf("imsm: mark failed\n");
f8f603f1 6342 end_migration(dev, map_state);
0c046afd 6343 super->updates_pending++;
484240d8 6344 a->last_checkpoint = 0;
28bce06f
AK
6345 } else if (is_gen_migration(dev)) {
6346 dprintf("imsm: Detected General Migration in state: ");
6347 if (map_state == IMSM_T_STATE_NORMAL) {
6348 end_migration(dev, map_state);
6349 map = get_imsm_map(dev, 0);
6350 map->failed_disk_num = ~0;
6351 dprintf("normal\n");
6352 } else {
6353 if (map_state == IMSM_T_STATE_DEGRADED) {
6354 printf("degraded\n");
6355 end_migration(dev, map_state);
6356 } else {
6357 dprintf("failed\n");
6358 }
6359 map->map_state = map_state;
6360 }
6361 super->updates_pending++;
5802a811 6362 }
845dea95
NB
6363}
6364
f796af5d 6365static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6366{
f796af5d 6367 void *buf = mpb;
c2a1e7da
DW
6368 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6369 unsigned long long dsize;
6370 unsigned long long sectors;
6371
6372 get_dev_size(fd, NULL, &dsize);
6373
272f648f
DW
6374 if (mpb_size > 512) {
6375 /* -1 to account for anchor */
6376 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6377
272f648f
DW
6378 /* write the extended mpb to the sectors preceeding the anchor */
6379 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6380 return 1;
c2a1e7da 6381
f21e18ca
N
6382 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6383 != 512 * sectors)
272f648f
DW
6384 return 1;
6385 }
c2a1e7da 6386
272f648f
DW
6387 /* first block is stored on second to last sector of the disk */
6388 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6389 return 1;
6390
f796af5d 6391 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6392 return 1;
6393
c2a1e7da
DW
6394 return 0;
6395}
6396
2e735d19 6397static void imsm_sync_metadata(struct supertype *container)
845dea95 6398{
2e735d19 6399 struct intel_super *super = container->sb;
c2a1e7da 6400
1a64be56 6401 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6402 if (!super->updates_pending)
6403 return;
6404
36988a3d 6405 write_super_imsm(container, 0);
c2a1e7da
DW
6406
6407 super->updates_pending = 0;
845dea95
NB
6408}
6409
272906ef
DW
6410static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6411{
6412 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6413 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6414 struct dl *dl;
6415
6416 for (dl = super->disks; dl; dl = dl->next)
6417 if (dl->index == i)
6418 break;
6419
25ed7e59 6420 if (dl && is_failed(&dl->disk))
272906ef
DW
6421 dl = NULL;
6422
6423 if (dl)
6424 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6425
6426 return dl;
6427}
6428
a20d2ba5 6429static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6430 struct active_array *a, int activate_new,
6431 struct mdinfo *additional_test_list)
272906ef
DW
6432{
6433 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6434 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6435 struct imsm_super *mpb = super->anchor;
6436 struct imsm_map *map;
272906ef
DW
6437 unsigned long long pos;
6438 struct mdinfo *d;
6439 struct extent *ex;
a20d2ba5 6440 int i, j;
272906ef 6441 int found;
569cc43f
DW
6442 __u32 array_start = 0;
6443 __u32 array_end = 0;
272906ef 6444 struct dl *dl;
6c932028 6445 struct mdinfo *test_list;
272906ef
DW
6446
6447 for (dl = super->disks; dl; dl = dl->next) {
6448 /* If in this array, skip */
6449 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6450 if (d->state_fd >= 0 &&
6451 d->disk.major == dl->major &&
272906ef 6452 d->disk.minor == dl->minor) {
8ba77d32
AK
6453 dprintf("%x:%x already in array\n",
6454 dl->major, dl->minor);
272906ef
DW
6455 break;
6456 }
6457 if (d)
6458 continue;
6c932028
AK
6459 test_list = additional_test_list;
6460 while (test_list) {
6461 if (test_list->disk.major == dl->major &&
6462 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6463 dprintf("%x:%x already in additional test list\n",
6464 dl->major, dl->minor);
6465 break;
6466 }
6c932028 6467 test_list = test_list->next;
8ba77d32 6468 }
6c932028 6469 if (test_list)
8ba77d32 6470 continue;
272906ef 6471
e553d2a4 6472 /* skip in use or failed drives */
25ed7e59 6473 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6474 dl->index == -2) {
6475 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6476 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6477 continue;
6478 }
6479
a20d2ba5
DW
6480 /* skip pure spares when we are looking for partially
6481 * assimilated drives
6482 */
6483 if (dl->index == -1 && !activate_new)
6484 continue;
6485
272906ef 6486 /* Does this unused device have the requisite free space?
a20d2ba5 6487 * It needs to be able to cover all member volumes
272906ef
DW
6488 */
6489 ex = get_extents(super, dl);
6490 if (!ex) {
6491 dprintf("cannot get extents\n");
6492 continue;
6493 }
a20d2ba5
DW
6494 for (i = 0; i < mpb->num_raid_devs; i++) {
6495 dev = get_imsm_dev(super, i);
6496 map = get_imsm_map(dev, 0);
272906ef 6497
a20d2ba5
DW
6498 /* check if this disk is already a member of
6499 * this array
272906ef 6500 */
620b1713 6501 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6502 continue;
6503
6504 found = 0;
6505 j = 0;
6506 pos = 0;
6507 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6508 array_end = array_start +
6509 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6510
6511 do {
6512 /* check that we can start at pba_of_lba0 with
6513 * blocks_per_member of space
6514 */
329c8278 6515 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6516 found = 1;
6517 break;
6518 }
6519 pos = ex[j].start + ex[j].size;
6520 j++;
6521 } while (ex[j-1].size);
6522
6523 if (!found)
272906ef 6524 break;
a20d2ba5 6525 }
272906ef
DW
6526
6527 free(ex);
a20d2ba5 6528 if (i < mpb->num_raid_devs) {
329c8278
DW
6529 dprintf("%x:%x does not have %u to %u available\n",
6530 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6531 /* No room */
6532 continue;
a20d2ba5
DW
6533 }
6534 return dl;
272906ef
DW
6535 }
6536
6537 return dl;
6538}
6539
95d07a2c
LM
6540
6541static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6542{
6543 struct imsm_dev *dev2;
6544 struct imsm_map *map;
6545 struct dl *idisk;
6546 int slot;
6547 int idx;
6548 __u8 state;
6549
6550 dev2 = get_imsm_dev(cont->sb, dev_idx);
6551 if (dev2) {
6552 state = imsm_check_degraded(cont->sb, dev2, failed);
6553 if (state == IMSM_T_STATE_FAILED) {
6554 map = get_imsm_map(dev2, 0);
6555 if (!map)
6556 return 1;
6557 for (slot = 0; slot < map->num_members; slot++) {
6558 /*
6559 * Check if failed disks are deleted from intel
6560 * disk list or are marked to be deleted
6561 */
98130f40 6562 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6563 idisk = get_imsm_dl_disk(cont->sb, idx);
6564 /*
6565 * Do not rebuild the array if failed disks
6566 * from failed sub-array are not removed from
6567 * container.
6568 */
6569 if (idisk &&
6570 is_failed(&idisk->disk) &&
6571 (idisk->action != DISK_REMOVE))
6572 return 0;
6573 }
6574 }
6575 }
6576 return 1;
6577}
6578
88758e9d
DW
6579static struct mdinfo *imsm_activate_spare(struct active_array *a,
6580 struct metadata_update **updates)
6581{
6582 /**
d23fe947
DW
6583 * Find a device with unused free space and use it to replace a
6584 * failed/vacant region in an array. We replace failed regions one a
6585 * array at a time. The result is that a new spare disk will be added
6586 * to the first failed array and after the monitor has finished
6587 * propagating failures the remainder will be consumed.
88758e9d 6588 *
d23fe947
DW
6589 * FIXME add a capability for mdmon to request spares from another
6590 * container.
88758e9d
DW
6591 */
6592
6593 struct intel_super *super = a->container->sb;
88758e9d 6594 int inst = a->info.container_member;
949c47a0 6595 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6596 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6597 int failed = a->info.array.raid_disks;
6598 struct mdinfo *rv = NULL;
6599 struct mdinfo *d;
6600 struct mdinfo *di;
6601 struct metadata_update *mu;
6602 struct dl *dl;
6603 struct imsm_update_activate_spare *u;
6604 int num_spares = 0;
6605 int i;
95d07a2c 6606 int allowed;
88758e9d
DW
6607
6608 for (d = a->info.devs ; d ; d = d->next) {
6609 if ((d->curr_state & DS_FAULTY) &&
6610 d->state_fd >= 0)
6611 /* wait for Removal to happen */
6612 return NULL;
6613 if (d->state_fd >= 0)
6614 failed--;
6615 }
6616
6617 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6618 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 6619
e2962bfc
AK
6620 if (imsm_reshape_blocks_arrays_changes(super))
6621 return NULL;
1af97990 6622
89c67882
AK
6623 if (a->info.array.level == 4)
6624 /* No repair for takeovered array
6625 * imsm doesn't support raid4
6626 */
6627 return NULL;
6628
fb49eef2 6629 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
6630 return NULL;
6631
95d07a2c
LM
6632 /*
6633 * If there are any failed disks check state of the other volume.
6634 * Block rebuild if the another one is failed until failed disks
6635 * are removed from container.
6636 */
6637 if (failed) {
6638 dprintf("found failed disks in %s, check if there another"
6639 "failed sub-array.\n",
6640 dev->volume);
6641 /* check if states of the other volumes allow for rebuild */
6642 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6643 if (i != inst) {
6644 allowed = imsm_rebuild_allowed(a->container,
6645 i, failed);
6646 if (!allowed)
6647 return NULL;
6648 }
6649 }
6650 }
6651
88758e9d 6652 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6653 for (i = 0; i < a->info.array.raid_disks; i++) {
6654 for (d = a->info.devs ; d ; d = d->next)
6655 if (d->disk.raid_disk == i)
6656 break;
6657 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6658 if (d && (d->state_fd >= 0))
6659 continue;
6660
272906ef 6661 /*
a20d2ba5
DW
6662 * OK, this device needs recovery. Try to re-add the
6663 * previous occupant of this slot, if this fails see if
6664 * we can continue the assimilation of a spare that was
6665 * partially assimilated, finally try to activate a new
6666 * spare.
272906ef
DW
6667 */
6668 dl = imsm_readd(super, i, a);
6669 if (!dl)
8ba77d32 6670 dl = imsm_add_spare(super, i, a, 0, NULL);
a20d2ba5 6671 if (!dl)
8ba77d32 6672 dl = imsm_add_spare(super, i, a, 1, NULL);
272906ef
DW
6673 if (!dl)
6674 continue;
6675
6676 /* found a usable disk with enough space */
6677 di = malloc(sizeof(*di));
79244939
DW
6678 if (!di)
6679 continue;
272906ef
DW
6680 memset(di, 0, sizeof(*di));
6681
6682 /* dl->index will be -1 in the case we are activating a
6683 * pristine spare. imsm_process_update() will create a
6684 * new index in this case. Once a disk is found to be
6685 * failed in all member arrays it is kicked from the
6686 * metadata
6687 */
6688 di->disk.number = dl->index;
d23fe947 6689
272906ef
DW
6690 /* (ab)use di->devs to store a pointer to the device
6691 * we chose
6692 */
6693 di->devs = (struct mdinfo *) dl;
6694
6695 di->disk.raid_disk = i;
6696 di->disk.major = dl->major;
6697 di->disk.minor = dl->minor;
6698 di->disk.state = 0;
d23534e4 6699 di->recovery_start = 0;
272906ef
DW
6700 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6701 di->component_size = a->info.component_size;
6702 di->container_member = inst;
148acb7b 6703 super->random = random32();
272906ef
DW
6704 di->next = rv;
6705 rv = di;
6706 num_spares++;
6707 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6708 i, di->data_offset);
88758e9d 6709
272906ef 6710 break;
88758e9d
DW
6711 }
6712
6713 if (!rv)
6714 /* No spares found */
6715 return rv;
6716 /* Now 'rv' has a list of devices to return.
6717 * Create a metadata_update record to update the
6718 * disk_ord_tbl for the array
6719 */
6720 mu = malloc(sizeof(*mu));
79244939
DW
6721 if (mu) {
6722 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6723 if (mu->buf == NULL) {
6724 free(mu);
6725 mu = NULL;
6726 }
6727 }
6728 if (!mu) {
6729 while (rv) {
6730 struct mdinfo *n = rv->next;
6731
6732 free(rv);
6733 rv = n;
6734 }
6735 return NULL;
6736 }
6737
88758e9d 6738 mu->space = NULL;
cb23f1f4 6739 mu->space_list = NULL;
88758e9d
DW
6740 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6741 mu->next = *updates;
6742 u = (struct imsm_update_activate_spare *) mu->buf;
6743
6744 for (di = rv ; di ; di = di->next) {
6745 u->type = update_activate_spare;
d23fe947
DW
6746 u->dl = (struct dl *) di->devs;
6747 di->devs = NULL;
88758e9d
DW
6748 u->slot = di->disk.raid_disk;
6749 u->array = inst;
6750 u->next = u + 1;
6751 u++;
6752 }
6753 (u-1)->next = NULL;
6754 *updates = mu;
6755
6756 return rv;
6757}
6758
54c2c1ea 6759static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6760{
54c2c1ea
DW
6761 struct imsm_dev *dev = get_imsm_dev(super, idx);
6762 struct imsm_map *map = get_imsm_map(dev, 0);
6763 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6764 struct disk_info *inf = get_disk_info(u);
6765 struct imsm_disk *disk;
8273f55e
DW
6766 int i;
6767 int j;
8273f55e 6768
54c2c1ea 6769 for (i = 0; i < map->num_members; i++) {
98130f40 6770 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6771 for (j = 0; j < new_map->num_members; j++)
6772 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6773 return 1;
6774 }
6775
6776 return 0;
6777}
6778
1a64be56
LM
6779
6780static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6781{
6782 struct dl *dl = NULL;
6783 for (dl = super->disks; dl; dl = dl->next)
6784 if ((dl->major == major) && (dl->minor == minor))
6785 return dl;
6786 return NULL;
6787}
6788
6789static int remove_disk_super(struct intel_super *super, int major, int minor)
6790{
6791 struct dl *prev = NULL;
6792 struct dl *dl;
6793
6794 prev = NULL;
6795 for (dl = super->disks; dl; dl = dl->next) {
6796 if ((dl->major == major) && (dl->minor == minor)) {
6797 /* remove */
6798 if (prev)
6799 prev->next = dl->next;
6800 else
6801 super->disks = dl->next;
6802 dl->next = NULL;
6803 __free_imsm_disk(dl);
6804 dprintf("%s: removed %x:%x\n",
6805 __func__, major, minor);
6806 break;
6807 }
6808 prev = dl;
6809 }
6810 return 0;
6811}
6812
f21e18ca 6813static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6814
1a64be56
LM
6815static int add_remove_disk_update(struct intel_super *super)
6816{
6817 int check_degraded = 0;
6818 struct dl *disk = NULL;
6819 /* add/remove some spares to/from the metadata/contrainer */
6820 while (super->disk_mgmt_list) {
6821 struct dl *disk_cfg;
6822
6823 disk_cfg = super->disk_mgmt_list;
6824 super->disk_mgmt_list = disk_cfg->next;
6825 disk_cfg->next = NULL;
6826
6827 if (disk_cfg->action == DISK_ADD) {
6828 disk_cfg->next = super->disks;
6829 super->disks = disk_cfg;
6830 check_degraded = 1;
6831 dprintf("%s: added %x:%x\n",
6832 __func__, disk_cfg->major,
6833 disk_cfg->minor);
6834 } else if (disk_cfg->action == DISK_REMOVE) {
6835 dprintf("Disk remove action processed: %x.%x\n",
6836 disk_cfg->major, disk_cfg->minor);
6837 disk = get_disk_super(super,
6838 disk_cfg->major,
6839 disk_cfg->minor);
6840 if (disk) {
6841 /* store action status */
6842 disk->action = DISK_REMOVE;
6843 /* remove spare disks only */
6844 if (disk->index == -1) {
6845 remove_disk_super(super,
6846 disk_cfg->major,
6847 disk_cfg->minor);
6848 }
6849 }
6850 /* release allocate disk structure */
6851 __free_imsm_disk(disk_cfg);
6852 }
6853 }
6854 return check_degraded;
6855}
6856
a29911da
PC
6857
6858static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6859 struct intel_super *super,
6860 void ***space_list)
6861{
6862 struct intel_dev *id;
6863 void **tofree = NULL;
6864 int ret_val = 0;
6865
6866 dprintf("apply_reshape_migration_update()\n");
6867 if ((u->subdev < 0) ||
6868 (u->subdev > 1)) {
6869 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6870 return ret_val;
6871 }
6872 if ((space_list == NULL) || (*space_list == NULL)) {
6873 dprintf("imsm: Error: Memory is not allocated\n");
6874 return ret_val;
6875 }
6876
6877 for (id = super->devlist ; id; id = id->next) {
6878 if (id->index == (unsigned)u->subdev) {
6879 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6880 struct imsm_map *map;
6881 struct imsm_dev *new_dev =
6882 (struct imsm_dev *)*space_list;
6883 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6884 int to_state;
6885 struct dl *new_disk;
6886
6887 if (new_dev == NULL)
6888 return ret_val;
6889 *space_list = **space_list;
6890 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6891 map = get_imsm_map(new_dev, 0);
6892 if (migr_map) {
6893 dprintf("imsm: Error: migration in progress");
6894 return ret_val;
6895 }
6896
6897 to_state = map->map_state;
6898 if ((u->new_level == 5) && (map->raid_level == 0)) {
6899 map->num_members++;
6900 /* this should not happen */
6901 if (u->new_disks[0] < 0) {
6902 map->failed_disk_num =
6903 map->num_members - 1;
6904 to_state = IMSM_T_STATE_DEGRADED;
6905 } else
6906 to_state = IMSM_T_STATE_NORMAL;
6907 }
8e59f3d8 6908 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
6909 if (u->new_level > -1)
6910 map->raid_level = u->new_level;
6911 migr_map = get_imsm_map(new_dev, 1);
6912 if ((u->new_level == 5) &&
6913 (migr_map->raid_level == 0)) {
6914 int ord = map->num_members - 1;
6915 migr_map->num_members--;
6916 if (u->new_disks[0] < 0)
6917 ord |= IMSM_ORD_REBUILD;
6918 set_imsm_ord_tbl_ent(map,
6919 map->num_members - 1,
6920 ord);
6921 }
6922 id->dev = new_dev;
6923 tofree = (void **)dev;
6924
4bba0439
PC
6925 /* update chunk size
6926 */
6927 if (u->new_chunksize > 0)
6928 map->blocks_per_strip =
6929 __cpu_to_le16(u->new_chunksize * 2);
6930
a29911da
PC
6931 /* add disk
6932 */
6933 if ((u->new_level != 5) ||
6934 (migr_map->raid_level != 0) ||
6935 (migr_map->raid_level == map->raid_level))
6936 goto skip_disk_add;
6937
6938 if (u->new_disks[0] >= 0) {
6939 /* use passes spare
6940 */
6941 new_disk = get_disk_super(super,
6942 major(u->new_disks[0]),
6943 minor(u->new_disks[0]));
6944 dprintf("imsm: new disk for reshape is: %i:%i "
6945 "(%p, index = %i)\n",
6946 major(u->new_disks[0]),
6947 minor(u->new_disks[0]),
6948 new_disk, new_disk->index);
6949 if (new_disk == NULL)
6950 goto error_disk_add;
6951
6952 new_disk->index = map->num_members - 1;
6953 /* slot to fill in autolayout
6954 */
6955 new_disk->raiddisk = new_disk->index;
6956 new_disk->disk.status |= CONFIGURED_DISK;
6957 new_disk->disk.status &= ~SPARE_DISK;
6958 } else
6959 goto error_disk_add;
6960
6961skip_disk_add:
6962 *tofree = *space_list;
6963 /* calculate new size
6964 */
6965 imsm_set_array_size(new_dev);
6966
6967 ret_val = 1;
6968 }
6969 }
6970
6971 if (tofree)
6972 *space_list = tofree;
6973 return ret_val;
6974
6975error_disk_add:
6976 dprintf("Error: imsm: Cannot find disk.\n");
6977 return ret_val;
6978}
6979
6980
2e5dc010
N
6981static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6982 struct intel_super *super,
6983 void ***space_list)
6984{
6985 struct dl *new_disk;
6986 struct intel_dev *id;
6987 int i;
6988 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 6989 int disk_count = u->old_raid_disks;
2e5dc010
N
6990 void **tofree = NULL;
6991 int devices_to_reshape = 1;
6992 struct imsm_super *mpb = super->anchor;
6993 int ret_val = 0;
d098291a 6994 unsigned int dev_id;
2e5dc010 6995
ed7333bd 6996 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
6997
6998 /* enable spares to use in array */
6999 for (i = 0; i < delta_disks; i++) {
7000 new_disk = get_disk_super(super,
7001 major(u->new_disks[i]),
7002 minor(u->new_disks[i]));
ed7333bd
AK
7003 dprintf("imsm: new disk for reshape is: %i:%i "
7004 "(%p, index = %i)\n",
2e5dc010
N
7005 major(u->new_disks[i]), minor(u->new_disks[i]),
7006 new_disk, new_disk->index);
7007 if ((new_disk == NULL) ||
7008 ((new_disk->index >= 0) &&
7009 (new_disk->index < u->old_raid_disks)))
7010 goto update_reshape_exit;
ee4beede 7011 new_disk->index = disk_count++;
2e5dc010
N
7012 /* slot to fill in autolayout
7013 */
7014 new_disk->raiddisk = new_disk->index;
7015 new_disk->disk.status |=
7016 CONFIGURED_DISK;
7017 new_disk->disk.status &= ~SPARE_DISK;
7018 }
7019
ed7333bd
AK
7020 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7021 mpb->num_raid_devs);
2e5dc010
N
7022 /* manage changes in volume
7023 */
d098291a 7024 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
7025 void **sp = *space_list;
7026 struct imsm_dev *newdev;
7027 struct imsm_map *newmap, *oldmap;
7028
d098291a
AK
7029 for (id = super->devlist ; id; id = id->next) {
7030 if (id->index == dev_id)
7031 break;
7032 }
7033 if (id == NULL)
7034 break;
2e5dc010
N
7035 if (!sp)
7036 continue;
7037 *space_list = *sp;
7038 newdev = (void*)sp;
7039 /* Copy the dev, but not (all of) the map */
7040 memcpy(newdev, id->dev, sizeof(*newdev));
7041 oldmap = get_imsm_map(id->dev, 0);
7042 newmap = get_imsm_map(newdev, 0);
7043 /* Copy the current map */
7044 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7045 /* update one device only
7046 */
7047 if (devices_to_reshape) {
ed7333bd
AK
7048 dprintf("imsm: modifying subdev: %i\n",
7049 id->index);
2e5dc010
N
7050 devices_to_reshape--;
7051 newdev->vol.migr_state = 1;
7052 newdev->vol.curr_migr_unit = 0;
7053 newdev->vol.migr_type = MIGR_GEN_MIGR;
7054 newmap->num_members = u->new_raid_disks;
7055 for (i = 0; i < delta_disks; i++) {
7056 set_imsm_ord_tbl_ent(newmap,
7057 u->old_raid_disks + i,
7058 u->old_raid_disks + i);
7059 }
7060 /* New map is correct, now need to save old map
7061 */
7062 newmap = get_imsm_map(newdev, 1);
7063 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7064
70bdf0dc 7065 imsm_set_array_size(newdev);
2e5dc010
N
7066 }
7067
7068 sp = (void **)id->dev;
7069 id->dev = newdev;
7070 *sp = tofree;
7071 tofree = sp;
8e59f3d8
AK
7072
7073 /* Clear migration record */
7074 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 7075 }
819bc634
AK
7076 if (tofree)
7077 *space_list = tofree;
2e5dc010
N
7078 ret_val = 1;
7079
7080update_reshape_exit:
7081
7082 return ret_val;
7083}
7084
bb025c2f 7085static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
7086 struct intel_super *super,
7087 void ***space_list)
bb025c2f
KW
7088{
7089 struct imsm_dev *dev = NULL;
8ca6df95
KW
7090 struct intel_dev *dv;
7091 struct imsm_dev *dev_new;
bb025c2f
KW
7092 struct imsm_map *map;
7093 struct dl *dm, *du;
8ca6df95 7094 int i;
bb025c2f
KW
7095
7096 for (dv = super->devlist; dv; dv = dv->next)
7097 if (dv->index == (unsigned int)u->subarray) {
7098 dev = dv->dev;
7099 break;
7100 }
7101
7102 if (dev == NULL)
7103 return 0;
7104
7105 map = get_imsm_map(dev, 0);
7106
7107 if (u->direction == R10_TO_R0) {
43d5ec18
KW
7108 /* Number of failed disks must be half of initial disk number */
7109 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7110 return 0;
7111
bb025c2f
KW
7112 /* iterate through devices to mark removed disks as spare */
7113 for (dm = super->disks; dm; dm = dm->next) {
7114 if (dm->disk.status & FAILED_DISK) {
7115 int idx = dm->index;
7116 /* update indexes on the disk list */
7117/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7118 the index values will end up being correct.... NB */
7119 for (du = super->disks; du; du = du->next)
7120 if (du->index > idx)
7121 du->index--;
7122 /* mark as spare disk */
a8619d23 7123 mark_spare(dm);
bb025c2f
KW
7124 }
7125 }
bb025c2f
KW
7126 /* update map */
7127 map->num_members = map->num_members / 2;
7128 map->map_state = IMSM_T_STATE_NORMAL;
7129 map->num_domains = 1;
7130 map->raid_level = 0;
7131 map->failed_disk_num = -1;
7132 }
7133
8ca6df95
KW
7134 if (u->direction == R0_TO_R10) {
7135 void **space;
7136 /* update slots in current disk list */
7137 for (dm = super->disks; dm; dm = dm->next) {
7138 if (dm->index >= 0)
7139 dm->index *= 2;
7140 }
7141 /* create new *missing* disks */
7142 for (i = 0; i < map->num_members; i++) {
7143 space = *space_list;
7144 if (!space)
7145 continue;
7146 *space_list = *space;
7147 du = (void *)space;
7148 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
7149 du->fd = -1;
7150 du->minor = 0;
7151 du->major = 0;
7152 du->index = (i * 2) + 1;
7153 sprintf((char *)du->disk.serial,
7154 " MISSING_%d", du->index);
7155 sprintf((char *)du->serial,
7156 "MISSING_%d", du->index);
7157 du->next = super->missing;
7158 super->missing = du;
7159 }
7160 /* create new dev and map */
7161 space = *space_list;
7162 if (!space)
7163 return 0;
7164 *space_list = *space;
7165 dev_new = (void *)space;
7166 memcpy(dev_new, dev, sizeof(*dev));
7167 /* update new map */
7168 map = get_imsm_map(dev_new, 0);
8ca6df95 7169 map->num_members = map->num_members * 2;
1a2487c2 7170 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
7171 map->num_domains = 2;
7172 map->raid_level = 1;
7173 /* replace dev<->dev_new */
7174 dv->dev = dev_new;
7175 }
bb025c2f
KW
7176 /* update disk order table */
7177 for (du = super->disks; du; du = du->next)
7178 if (du->index >= 0)
7179 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 7180 for (du = super->missing; du; du = du->next)
1a2487c2
KW
7181 if (du->index >= 0) {
7182 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 7183 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 7184 }
bb025c2f
KW
7185
7186 return 1;
7187}
7188
e8319a19
DW
7189static void imsm_process_update(struct supertype *st,
7190 struct metadata_update *update)
7191{
7192 /**
7193 * crack open the metadata_update envelope to find the update record
7194 * update can be one of:
d195167d
AK
7195 * update_reshape_container_disks - all the arrays in the container
7196 * are being reshaped to have more devices. We need to mark
7197 * the arrays for general migration and convert selected spares
7198 * into active devices.
7199 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
7200 * device in an array, update the disk_ord_tbl. If this disk is
7201 * present in all member arrays then also clear the SPARE_DISK
7202 * flag
d195167d
AK
7203 * update_create_array
7204 * update_kill_array
7205 * update_rename_array
7206 * update_add_remove_disk
e8319a19
DW
7207 */
7208 struct intel_super *super = st->sb;
4d7b1503 7209 struct imsm_super *mpb;
e8319a19
DW
7210 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7211
4d7b1503
DW
7212 /* update requires a larger buf but the allocation failed */
7213 if (super->next_len && !super->next_buf) {
7214 super->next_len = 0;
7215 return;
7216 }
7217
7218 if (super->next_buf) {
7219 memcpy(super->next_buf, super->buf, super->len);
7220 free(super->buf);
7221 super->len = super->next_len;
7222 super->buf = super->next_buf;
7223
7224 super->next_len = 0;
7225 super->next_buf = NULL;
7226 }
7227
7228 mpb = super->anchor;
7229
e8319a19 7230 switch (type) {
0ec5d470
AK
7231 case update_general_migration_checkpoint: {
7232 struct intel_dev *id;
7233 struct imsm_update_general_migration_checkpoint *u =
7234 (void *)update->buf;
7235
7236 dprintf("imsm: process_update() "
7237 "for update_general_migration_checkpoint called\n");
7238
7239 /* find device under general migration */
7240 for (id = super->devlist ; id; id = id->next) {
7241 if (is_gen_migration(id->dev)) {
7242 id->dev->vol.curr_migr_unit =
7243 __cpu_to_le32(u->curr_migr_unit);
7244 super->updates_pending++;
7245 }
7246 }
7247 break;
7248 }
bb025c2f
KW
7249 case update_takeover: {
7250 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
7251 if (apply_takeover_update(u, super, &update->space_list)) {
7252 imsm_update_version_info(super);
bb025c2f 7253 super->updates_pending++;
1a2487c2 7254 }
bb025c2f
KW
7255 break;
7256 }
7257
78b10e66 7258 case update_reshape_container_disks: {
d195167d 7259 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
7260 if (apply_reshape_container_disks_update(
7261 u, super, &update->space_list))
7262 super->updates_pending++;
78b10e66
N
7263 break;
7264 }
48c5303a 7265 case update_reshape_migration: {
a29911da
PC
7266 struct imsm_update_reshape_migration *u = (void *)update->buf;
7267 if (apply_reshape_migration_update(
7268 u, super, &update->space_list))
7269 super->updates_pending++;
48c5303a
PC
7270 break;
7271 }
e8319a19
DW
7272 case update_activate_spare: {
7273 struct imsm_update_activate_spare *u = (void *) update->buf;
949c47a0 7274 struct imsm_dev *dev = get_imsm_dev(super, u->array);
a965f303 7275 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd 7276 struct imsm_map *migr_map;
e8319a19
DW
7277 struct active_array *a;
7278 struct imsm_disk *disk;
0c046afd 7279 __u8 to_state;
e8319a19 7280 struct dl *dl;
e8319a19 7281 unsigned int found;
0c046afd 7282 int failed;
98130f40 7283 int victim = get_imsm_disk_idx(dev, u->slot, -1);
e8319a19
DW
7284 int i;
7285
7286 for (dl = super->disks; dl; dl = dl->next)
d23fe947 7287 if (dl == u->dl)
e8319a19
DW
7288 break;
7289
7290 if (!dl) {
7291 fprintf(stderr, "error: imsm_activate_spare passed "
1f24f035
DW
7292 "an unknown disk (index: %d)\n",
7293 u->dl->index);
e8319a19
DW
7294 return;
7295 }
7296
7297 super->updates_pending++;
0c046afd
DW
7298 /* count failures (excluding rebuilds and the victim)
7299 * to determine map[0] state
7300 */
7301 failed = 0;
7302 for (i = 0; i < map->num_members; i++) {
7303 if (i == u->slot)
7304 continue;
98130f40
AK
7305 disk = get_imsm_disk(super,
7306 get_imsm_disk_idx(dev, i, -1));
25ed7e59 7307 if (!disk || is_failed(disk))
0c046afd
DW
7308 failed++;
7309 }
7310
d23fe947
DW
7311 /* adding a pristine spare, assign a new index */
7312 if (dl->index < 0) {
7313 dl->index = super->anchor->num_disks;
7314 super->anchor->num_disks++;
7315 }
d23fe947 7316 disk = &dl->disk;
f2f27e63
DW
7317 disk->status |= CONFIGURED_DISK;
7318 disk->status &= ~SPARE_DISK;
e8319a19 7319
0c046afd
DW
7320 /* mark rebuild */
7321 to_state = imsm_check_degraded(super, dev, failed);
7322 map->map_state = IMSM_T_STATE_DEGRADED;
8e59f3d8 7323 migrate(dev, super, to_state, MIGR_REBUILD);
0c046afd
DW
7324 migr_map = get_imsm_map(dev, 1);
7325 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7326 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
7327
148acb7b
DW
7328 /* update the family_num to mark a new container
7329 * generation, being careful to record the existing
7330 * family_num in orig_family_num to clean up after
7331 * earlier mdadm versions that neglected to set it.
7332 */
7333 if (mpb->orig_family_num == 0)
7334 mpb->orig_family_num = mpb->family_num;
7335 mpb->family_num += super->random;
7336
e8319a19
DW
7337 /* count arrays using the victim in the metadata */
7338 found = 0;
7339 for (a = st->arrays; a ; a = a->next) {
949c47a0 7340 dev = get_imsm_dev(super, a->info.container_member);
620b1713
DW
7341 map = get_imsm_map(dev, 0);
7342
7343 if (get_imsm_disk_slot(map, victim) >= 0)
7344 found++;
e8319a19
DW
7345 }
7346
24565c9a 7347 /* delete the victim if it is no longer being
e8319a19
DW
7348 * utilized anywhere
7349 */
e8319a19 7350 if (!found) {
ae6aad82 7351 struct dl **dlp;
24565c9a 7352
47ee5a45
DW
7353 /* We know that 'manager' isn't touching anything,
7354 * so it is safe to delete
7355 */
24565c9a 7356 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
ae6aad82
DW
7357 if ((*dlp)->index == victim)
7358 break;
47ee5a45
DW
7359
7360 /* victim may be on the missing list */
7361 if (!*dlp)
7362 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
7363 if ((*dlp)->index == victim)
7364 break;
24565c9a 7365 imsm_delete(super, dlp, victim);
e8319a19 7366 }
8273f55e
DW
7367 break;
7368 }
7369 case update_create_array: {
7370 /* someone wants to create a new array, we need to be aware of
7371 * a few races/collisions:
7372 * 1/ 'Create' called by two separate instances of mdadm
7373 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7374 * devices that have since been assimilated via
7375 * activate_spare.
7376 * In the event this update can not be carried out mdadm will
7377 * (FIX ME) notice that its update did not take hold.
7378 */
7379 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7380 struct intel_dev *dv;
8273f55e
DW
7381 struct imsm_dev *dev;
7382 struct imsm_map *map, *new_map;
7383 unsigned long long start, end;
7384 unsigned long long new_start, new_end;
7385 int i;
54c2c1ea
DW
7386 struct disk_info *inf;
7387 struct dl *dl;
8273f55e
DW
7388
7389 /* handle racing creates: first come first serve */
7390 if (u->dev_idx < mpb->num_raid_devs) {
7391 dprintf("%s: subarray %d already defined\n",
7392 __func__, u->dev_idx);
ba2de7ba 7393 goto create_error;
8273f55e
DW
7394 }
7395
7396 /* check update is next in sequence */
7397 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7398 dprintf("%s: can not create array %d expected index %d\n",
7399 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7400 goto create_error;
8273f55e
DW
7401 }
7402
a965f303 7403 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
7404 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7405 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7406 inf = get_disk_info(u);
8273f55e
DW
7407
7408 /* handle activate_spare versus create race:
7409 * check to make sure that overlapping arrays do not include
7410 * overalpping disks
7411 */
7412 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7413 dev = get_imsm_dev(super, i);
a965f303 7414 map = get_imsm_map(dev, 0);
8273f55e
DW
7415 start = __le32_to_cpu(map->pba_of_lba0);
7416 end = start + __le32_to_cpu(map->blocks_per_member);
7417 if ((new_start >= start && new_start <= end) ||
7418 (start >= new_start && start <= new_end))
54c2c1ea
DW
7419 /* overlap */;
7420 else
7421 continue;
7422
7423 if (disks_overlap(super, i, u)) {
8273f55e 7424 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7425 goto create_error;
8273f55e
DW
7426 }
7427 }
8273f55e 7428
949c47a0
DW
7429 /* check that prepare update was successful */
7430 if (!update->space) {
7431 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7432 goto create_error;
949c47a0
DW
7433 }
7434
54c2c1ea
DW
7435 /* check that all disks are still active before committing
7436 * changes. FIXME: could we instead handle this by creating a
7437 * degraded array? That's probably not what the user expects,
7438 * so better to drop this update on the floor.
7439 */
7440 for (i = 0; i < new_map->num_members; i++) {
7441 dl = serial_to_dl(inf[i].serial, super);
7442 if (!dl) {
7443 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7444 goto create_error;
54c2c1ea 7445 }
949c47a0
DW
7446 }
7447
8273f55e 7448 super->updates_pending++;
54c2c1ea
DW
7449
7450 /* convert spares to members and fixup ord_tbl */
7451 for (i = 0; i < new_map->num_members; i++) {
7452 dl = serial_to_dl(inf[i].serial, super);
7453 if (dl->index == -1) {
7454 dl->index = mpb->num_disks;
7455 mpb->num_disks++;
7456 dl->disk.status |= CONFIGURED_DISK;
7457 dl->disk.status &= ~SPARE_DISK;
7458 }
7459 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7460 }
7461
ba2de7ba
DW
7462 dv = update->space;
7463 dev = dv->dev;
949c47a0
DW
7464 update->space = NULL;
7465 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7466 dv->index = u->dev_idx;
7467 dv->next = super->devlist;
7468 super->devlist = dv;
8273f55e 7469 mpb->num_raid_devs++;
8273f55e 7470
4d1313e9 7471 imsm_update_version_info(super);
8273f55e 7472 break;
ba2de7ba
DW
7473 create_error:
7474 /* mdmon knows how to release update->space, but not
7475 * ((struct intel_dev *) update->space)->dev
7476 */
7477 if (update->space) {
7478 dv = update->space;
7479 free(dv->dev);
7480 }
8273f55e 7481 break;
e8319a19 7482 }
33414a01
DW
7483 case update_kill_array: {
7484 struct imsm_update_kill_array *u = (void *) update->buf;
7485 int victim = u->dev_idx;
7486 struct active_array *a;
7487 struct intel_dev **dp;
7488 struct imsm_dev *dev;
7489
7490 /* sanity check that we are not affecting the uuid of
7491 * active arrays, or deleting an active array
7492 *
7493 * FIXME when immutable ids are available, but note that
7494 * we'll also need to fixup the invalidated/active
7495 * subarray indexes in mdstat
7496 */
7497 for (a = st->arrays; a; a = a->next)
7498 if (a->info.container_member >= victim)
7499 break;
7500 /* by definition if mdmon is running at least one array
7501 * is active in the container, so checking
7502 * mpb->num_raid_devs is just extra paranoia
7503 */
7504 dev = get_imsm_dev(super, victim);
7505 if (a || !dev || mpb->num_raid_devs == 1) {
7506 dprintf("failed to delete subarray-%d\n", victim);
7507 break;
7508 }
7509
7510 for (dp = &super->devlist; *dp;)
f21e18ca 7511 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7512 *dp = (*dp)->next;
7513 } else {
f21e18ca 7514 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7515 (*dp)->index--;
7516 dp = &(*dp)->next;
7517 }
7518 mpb->num_raid_devs--;
7519 super->updates_pending++;
7520 break;
7521 }
aa534678
DW
7522 case update_rename_array: {
7523 struct imsm_update_rename_array *u = (void *) update->buf;
7524 char name[MAX_RAID_SERIAL_LEN+1];
7525 int target = u->dev_idx;
7526 struct active_array *a;
7527 struct imsm_dev *dev;
7528
7529 /* sanity check that we are not affecting the uuid of
7530 * an active array
7531 */
7532 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7533 name[MAX_RAID_SERIAL_LEN] = '\0';
7534 for (a = st->arrays; a; a = a->next)
7535 if (a->info.container_member == target)
7536 break;
7537 dev = get_imsm_dev(super, u->dev_idx);
7538 if (a || !dev || !check_name(super, name, 1)) {
7539 dprintf("failed to rename subarray-%d\n", target);
7540 break;
7541 }
7542
cdbe98cd 7543 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7544 super->updates_pending++;
7545 break;
7546 }
1a64be56 7547 case update_add_remove_disk: {
43dad3d6 7548 /* we may be able to repair some arrays if disks are
1a64be56
LM
7549 * being added, check teh status of add_remove_disk
7550 * if discs has been added.
7551 */
7552 if (add_remove_disk_update(super)) {
43dad3d6 7553 struct active_array *a;
072b727f
DW
7554
7555 super->updates_pending++;
1a64be56 7556 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7557 a->check_degraded = 1;
7558 }
43dad3d6 7559 break;
e8319a19 7560 }
1a64be56
LM
7561 default:
7562 fprintf(stderr, "error: unsuported process update type:"
7563 "(type: %d)\n", type);
7564 }
e8319a19 7565}
88758e9d 7566
bc0b9d34
PC
7567static struct mdinfo *get_spares_for_grow(struct supertype *st);
7568
8273f55e
DW
7569static void imsm_prepare_update(struct supertype *st,
7570 struct metadata_update *update)
7571{
949c47a0 7572 /**
4d7b1503
DW
7573 * Allocate space to hold new disk entries, raid-device entries or a new
7574 * mpb if necessary. The manager synchronously waits for updates to
7575 * complete in the monitor, so new mpb buffers allocated here can be
7576 * integrated by the monitor thread without worrying about live pointers
7577 * in the manager thread.
8273f55e 7578 */
949c47a0 7579 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7580 struct intel_super *super = st->sb;
7581 struct imsm_super *mpb = super->anchor;
7582 size_t buf_len;
7583 size_t len = 0;
949c47a0
DW
7584
7585 switch (type) {
0ec5d470
AK
7586 case update_general_migration_checkpoint:
7587 dprintf("imsm: prepare_update() "
7588 "for update_general_migration_checkpoint called\n");
7589 break;
abedf5fc
KW
7590 case update_takeover: {
7591 struct imsm_update_takeover *u = (void *)update->buf;
7592 if (u->direction == R0_TO_R10) {
7593 void **tail = (void **)&update->space_list;
7594 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7595 struct imsm_map *map = get_imsm_map(dev, 0);
7596 int num_members = map->num_members;
7597 void *space;
7598 int size, i;
7599 int err = 0;
7600 /* allocate memory for added disks */
7601 for (i = 0; i < num_members; i++) {
7602 size = sizeof(struct dl);
7603 space = malloc(size);
7604 if (!space) {
7605 err++;
7606 break;
7607 }
7608 *tail = space;
7609 tail = space;
7610 *tail = NULL;
7611 }
7612 /* allocate memory for new device */
7613 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7614 (num_members * sizeof(__u32));
7615 space = malloc(size);
7616 if (!space)
7617 err++;
7618 else {
7619 *tail = space;
7620 tail = space;
7621 *tail = NULL;
7622 }
7623 if (!err) {
7624 len = disks_to_mpb_size(num_members * 2);
7625 } else {
7626 /* if allocation didn't success, free buffer */
7627 while (update->space_list) {
7628 void **sp = update->space_list;
7629 update->space_list = *sp;
7630 free(sp);
7631 }
7632 }
7633 }
7634
7635 break;
7636 }
78b10e66 7637 case update_reshape_container_disks: {
d195167d
AK
7638 /* Every raid device in the container is about to
7639 * gain some more devices, and we will enter a
7640 * reconfiguration.
7641 * So each 'imsm_map' will be bigger, and the imsm_vol
7642 * will now hold 2 of them.
7643 * Thus we need new 'struct imsm_dev' allocations sized
7644 * as sizeof_imsm_dev but with more devices in both maps.
7645 */
7646 struct imsm_update_reshape *u = (void *)update->buf;
7647 struct intel_dev *dl;
7648 void **space_tail = (void**)&update->space_list;
7649
7650 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7651
7652 for (dl = super->devlist; dl; dl = dl->next) {
7653 int size = sizeof_imsm_dev(dl->dev, 1);
7654 void *s;
d677e0b8
AK
7655 if (u->new_raid_disks > u->old_raid_disks)
7656 size += sizeof(__u32)*2*
7657 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7658 s = malloc(size);
7659 if (!s)
7660 break;
7661 *space_tail = s;
7662 space_tail = s;
7663 *space_tail = NULL;
7664 }
7665
7666 len = disks_to_mpb_size(u->new_raid_disks);
7667 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7668 break;
7669 }
48c5303a 7670 case update_reshape_migration: {
bc0b9d34
PC
7671 /* for migration level 0->5 we need to add disks
7672 * so the same as for container operation we will copy
7673 * device to the bigger location.
7674 * in memory prepared device and new disk area are prepared
7675 * for usage in process update
7676 */
7677 struct imsm_update_reshape_migration *u = (void *)update->buf;
7678 struct intel_dev *id;
7679 void **space_tail = (void **)&update->space_list;
7680 int size;
7681 void *s;
7682 int current_level = -1;
7683
7684 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7685
7686 /* add space for bigger array in update
7687 */
7688 for (id = super->devlist; id; id = id->next) {
7689 if (id->index == (unsigned)u->subdev) {
7690 size = sizeof_imsm_dev(id->dev, 1);
7691 if (u->new_raid_disks > u->old_raid_disks)
7692 size += sizeof(__u32)*2*
7693 (u->new_raid_disks - u->old_raid_disks);
7694 s = malloc(size);
7695 if (!s)
7696 break;
7697 *space_tail = s;
7698 space_tail = s;
7699 *space_tail = NULL;
7700 break;
7701 }
7702 }
7703 if (update->space_list == NULL)
7704 break;
7705
7706 /* add space for disk in update
7707 */
7708 size = sizeof(struct dl);
7709 s = malloc(size);
7710 if (!s) {
7711 free(update->space_list);
7712 update->space_list = NULL;
7713 break;
7714 }
7715 *space_tail = s;
7716 space_tail = s;
7717 *space_tail = NULL;
7718
7719 /* add spare device to update
7720 */
7721 for (id = super->devlist ; id; id = id->next)
7722 if (id->index == (unsigned)u->subdev) {
7723 struct imsm_dev *dev;
7724 struct imsm_map *map;
7725
7726 dev = get_imsm_dev(super, u->subdev);
7727 map = get_imsm_map(dev, 0);
7728 current_level = map->raid_level;
7729 break;
7730 }
7731 if ((u->new_level == 5) && (u->new_level != current_level)) {
7732 struct mdinfo *spares;
7733
7734 spares = get_spares_for_grow(st);
7735 if (spares) {
7736 struct dl *dl;
7737 struct mdinfo *dev;
7738
7739 dev = spares->devs;
7740 if (dev) {
7741 u->new_disks[0] =
7742 makedev(dev->disk.major,
7743 dev->disk.minor);
7744 dl = get_disk_super(super,
7745 dev->disk.major,
7746 dev->disk.minor);
7747 dl->index = u->old_raid_disks;
7748 dev = dev->next;
7749 }
7750 sysfs_free(spares);
7751 }
7752 }
7753 len = disks_to_mpb_size(u->new_raid_disks);
7754 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7755 break;
7756 }
949c47a0
DW
7757 case update_create_array: {
7758 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7759 struct intel_dev *dv;
54c2c1ea
DW
7760 struct imsm_dev *dev = &u->dev;
7761 struct imsm_map *map = get_imsm_map(dev, 0);
7762 struct dl *dl;
7763 struct disk_info *inf;
7764 int i;
7765 int activate = 0;
949c47a0 7766
54c2c1ea
DW
7767 inf = get_disk_info(u);
7768 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7769 /* allocate a new super->devlist entry */
7770 dv = malloc(sizeof(*dv));
7771 if (dv) {
7772 dv->dev = malloc(len);
7773 if (dv->dev)
7774 update->space = dv;
7775 else {
7776 free(dv);
7777 update->space = NULL;
7778 }
7779 }
949c47a0 7780
54c2c1ea
DW
7781 /* count how many spares will be converted to members */
7782 for (i = 0; i < map->num_members; i++) {
7783 dl = serial_to_dl(inf[i].serial, super);
7784 if (!dl) {
7785 /* hmm maybe it failed?, nothing we can do about
7786 * it here
7787 */
7788 continue;
7789 }
7790 if (count_memberships(dl, super) == 0)
7791 activate++;
7792 }
7793 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7794 break;
7795 default:
7796 break;
7797 }
7798 }
8273f55e 7799
4d7b1503
DW
7800 /* check if we need a larger metadata buffer */
7801 if (super->next_buf)
7802 buf_len = super->next_len;
7803 else
7804 buf_len = super->len;
7805
7806 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7807 /* ok we need a larger buf than what is currently allocated
7808 * if this allocation fails process_update will notice that
7809 * ->next_len is set and ->next_buf is NULL
7810 */
7811 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7812 if (super->next_buf)
7813 free(super->next_buf);
7814
7815 super->next_len = buf_len;
1f45a8ad
DW
7816 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7817 memset(super->next_buf, 0, buf_len);
7818 else
4d7b1503
DW
7819 super->next_buf = NULL;
7820 }
8273f55e
DW
7821}
7822
ae6aad82 7823/* must be called while manager is quiesced */
f21e18ca 7824static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7825{
7826 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7827 struct dl *iter;
7828 struct imsm_dev *dev;
7829 struct imsm_map *map;
24565c9a
DW
7830 int i, j, num_members;
7831 __u32 ord;
ae6aad82 7832
24565c9a
DW
7833 dprintf("%s: deleting device[%d] from imsm_super\n",
7834 __func__, index);
ae6aad82
DW
7835
7836 /* shift all indexes down one */
7837 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7838 if (iter->index > (int)index)
ae6aad82 7839 iter->index--;
47ee5a45 7840 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7841 if (iter->index > (int)index)
47ee5a45 7842 iter->index--;
ae6aad82
DW
7843
7844 for (i = 0; i < mpb->num_raid_devs; i++) {
7845 dev = get_imsm_dev(super, i);
7846 map = get_imsm_map(dev, 0);
24565c9a
DW
7847 num_members = map->num_members;
7848 for (j = 0; j < num_members; j++) {
7849 /* update ord entries being careful not to propagate
7850 * ord-flags to the first map
7851 */
98130f40 7852 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7853
24565c9a
DW
7854 if (ord_to_idx(ord) <= index)
7855 continue;
ae6aad82 7856
24565c9a
DW
7857 map = get_imsm_map(dev, 0);
7858 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7859 map = get_imsm_map(dev, 1);
7860 if (map)
7861 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
7862 }
7863 }
7864
7865 mpb->num_disks--;
7866 super->updates_pending++;
24565c9a
DW
7867 if (*dlp) {
7868 struct dl *dl = *dlp;
7869
7870 *dlp = (*dlp)->next;
7871 __free_imsm_disk(dl);
7872 }
ae6aad82 7873}
9e2d750d 7874#endif /* MDASSEMBLE */
687629c2
AK
7875/*******************************************************************************
7876 * Function: open_backup_targets
7877 * Description: Function opens file descriptors for all devices given in
7878 * info->devs
7879 * Parameters:
7880 * info : general array info
7881 * raid_disks : number of disks
7882 * raid_fds : table of device's file descriptors
7883 * Returns:
7884 * 0 : success
7885 * -1 : fail
7886 ******************************************************************************/
7887int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7888{
7889 struct mdinfo *sd;
7890
7891 for (sd = info->devs ; sd ; sd = sd->next) {
7892 char *dn;
7893
7894 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7895 dprintf("disk is faulty!!\n");
7896 continue;
7897 }
7898
7899 if ((sd->disk.raid_disk >= raid_disks) ||
7900 (sd->disk.raid_disk < 0))
7901 continue;
7902
7903 dn = map_dev(sd->disk.major,
7904 sd->disk.minor, 1);
7905 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7906 if (raid_fds[sd->disk.raid_disk] < 0) {
7907 fprintf(stderr, "cannot open component\n");
7908 return -1;
7909 }
7910 }
7911 return 0;
7912}
7913
9e2d750d 7914#ifndef MDASSEMBLE
687629c2
AK
7915/*******************************************************************************
7916 * Function: init_migr_record_imsm
7917 * Description: Function inits imsm migration record
7918 * Parameters:
7919 * super : imsm internal array info
7920 * dev : device under migration
7921 * info : general array info to find the smallest device
7922 * Returns:
7923 * none
7924 ******************************************************************************/
7925void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7926 struct mdinfo *info)
7927{
7928 struct intel_super *super = st->sb;
7929 struct migr_record *migr_rec = super->migr_rec;
7930 int new_data_disks;
7931 unsigned long long dsize, dev_sectors;
7932 long long unsigned min_dev_sectors = -1LLU;
7933 struct mdinfo *sd;
7934 char nm[30];
7935 int fd;
7936 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7937 struct imsm_map *map_src = get_imsm_map(dev, 1);
7938 unsigned long long num_migr_units;
3ef4403c 7939 unsigned long long array_blocks;
687629c2
AK
7940
7941 memset(migr_rec, 0, sizeof(struct migr_record));
7942 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7943
7944 /* only ascending reshape supported now */
7945 migr_rec->ascending_migr = __cpu_to_le32(1);
7946
7947 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7948 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7949 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7950 new_data_disks = imsm_num_data_members(dev, 0);
7951 migr_rec->blocks_per_unit =
7952 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7953 migr_rec->dest_depth_per_unit =
7954 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 7955 array_blocks = info->component_size * new_data_disks;
687629c2
AK
7956 num_migr_units =
7957 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7958
7959 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7960 num_migr_units++;
7961 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7962
7963 migr_rec->post_migr_vol_cap = dev->size_low;
7964 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7965
7966
7967 /* Find the smallest dev */
7968 for (sd = info->devs ; sd ; sd = sd->next) {
7969 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7970 fd = dev_open(nm, O_RDONLY);
7971 if (fd < 0)
7972 continue;
7973 get_dev_size(fd, NULL, &dsize);
7974 dev_sectors = dsize / 512;
7975 if (dev_sectors < min_dev_sectors)
7976 min_dev_sectors = dev_sectors;
7977 close(fd);
7978 }
7979 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7980 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7981
7982 write_imsm_migr_rec(st);
7983
7984 return;
7985}
7986
7987/*******************************************************************************
7988 * Function: save_backup_imsm
7989 * Description: Function saves critical data stripes to Migration Copy Area
7990 * and updates the current migration unit status.
7991 * Use restore_stripes() to form a destination stripe,
7992 * and to write it to the Copy Area.
7993 * Parameters:
7994 * st : supertype information
aea93171 7995 * dev : imsm device that backup is saved for
687629c2
AK
7996 * info : general array info
7997 * buf : input buffer
687629c2
AK
7998 * length : length of data to backup (blocks_per_unit)
7999 * Returns:
8000 * 0 : success
8001 *, -1 : fail
8002 ******************************************************************************/
8003int save_backup_imsm(struct supertype *st,
8004 struct imsm_dev *dev,
8005 struct mdinfo *info,
8006 void *buf,
687629c2
AK
8007 int length)
8008{
8009 int rv = -1;
8010 struct intel_super *super = st->sb;
8011 unsigned long long *target_offsets = NULL;
8012 int *targets = NULL;
8013 int i;
8014 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8015 int new_disks = map_dest->num_members;
ab724b98
AK
8016 int dest_layout = 0;
8017 int dest_chunk;
d1877f69
AK
8018 unsigned long long start;
8019 int data_disks = imsm_num_data_members(dev, 0);
687629c2
AK
8020
8021 targets = malloc(new_disks * sizeof(int));
8022 if (!targets)
8023 goto abort;
8024
7e45b550
AK
8025 for (i = 0; i < new_disks; i++)
8026 targets[i] = -1;
8027
687629c2
AK
8028 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8029 if (!target_offsets)
8030 goto abort;
8031
d1877f69 8032 start = info->reshape_progress * 512;
687629c2 8033 for (i = 0; i < new_disks; i++) {
687629c2
AK
8034 target_offsets[i] = (unsigned long long)
8035 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
8036 /* move back copy area adderss, it will be moved forward
8037 * in restore_stripes() using start input variable
8038 */
8039 target_offsets[i] -= start/data_disks;
687629c2
AK
8040 }
8041
8042 if (open_backup_targets(info, new_disks, targets))
8043 goto abort;
8044
68eb8bc6 8045 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
8046 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8047
687629c2
AK
8048 if (restore_stripes(targets, /* list of dest devices */
8049 target_offsets, /* migration record offsets */
8050 new_disks,
ab724b98
AK
8051 dest_chunk,
8052 map_dest->raid_level,
8053 dest_layout,
8054 -1, /* source backup file descriptor */
8055 0, /* input buf offset
8056 * always 0 buf is already offseted */
d1877f69 8057 start,
687629c2
AK
8058 length,
8059 buf) != 0) {
8060 fprintf(stderr, Name ": Error restoring stripes\n");
8061 goto abort;
8062 }
8063
8064 rv = 0;
8065
8066abort:
8067 if (targets) {
8068 for (i = 0; i < new_disks; i++)
8069 if (targets[i] >= 0)
8070 close(targets[i]);
8071 free(targets);
8072 }
8073 free(target_offsets);
8074
8075 return rv;
8076}
8077
8078/*******************************************************************************
8079 * Function: save_checkpoint_imsm
8080 * Description: Function called for current unit status update
8081 * in the migration record. It writes it to disk.
8082 * Parameters:
8083 * super : imsm internal array info
8084 * info : general array info
8085 * Returns:
8086 * 0: success
8087 * 1: failure
0228d92c
AK
8088 * 2: failure, means no valid migration record
8089 * / no general migration in progress /
687629c2
AK
8090 ******************************************************************************/
8091int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8092{
8093 struct intel_super *super = st->sb;
f8b72ef5
AK
8094 unsigned long long blocks_per_unit;
8095 unsigned long long curr_migr_unit;
8096
2e062e82
AK
8097 if (load_imsm_migr_rec(super, info) != 0) {
8098 dprintf("imsm: ERROR: Cannot read migration record "
8099 "for checkpoint save.\n");
8100 return 1;
8101 }
8102
f8b72ef5
AK
8103 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8104 if (blocks_per_unit == 0) {
0228d92c
AK
8105 dprintf("imsm: no migration in progress.\n");
8106 return 2;
687629c2 8107 }
f8b72ef5
AK
8108 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8109 /* check if array is alligned to copy area
8110 * if it is not alligned, add one to current migration unit value
8111 * this can happend on array reshape finish only
8112 */
8113 if (info->reshape_progress % blocks_per_unit)
8114 curr_migr_unit++;
687629c2
AK
8115
8116 super->migr_rec->curr_migr_unit =
f8b72ef5 8117 __cpu_to_le32(curr_migr_unit);
687629c2
AK
8118 super->migr_rec->rec_status = __cpu_to_le32(state);
8119 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
8120 __cpu_to_le32(curr_migr_unit *
8121 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
8122 if (write_imsm_migr_rec(st) < 0) {
8123 dprintf("imsm: Cannot write migration record "
8124 "outside backup area\n");
8125 return 1;
8126 }
8127
8128 return 0;
8129}
8130
276d77db
AK
8131/*******************************************************************************
8132 * Function: recover_backup_imsm
8133 * Description: Function recovers critical data from the Migration Copy Area
8134 * while assembling an array.
8135 * Parameters:
8136 * super : imsm internal array info
8137 * info : general array info
8138 * Returns:
8139 * 0 : success (or there is no data to recover)
8140 * 1 : fail
8141 ******************************************************************************/
8142int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8143{
8144 struct intel_super *super = st->sb;
8145 struct migr_record *migr_rec = super->migr_rec;
8146 struct imsm_map *map_dest = NULL;
8147 struct intel_dev *id = NULL;
8148 unsigned long long read_offset;
8149 unsigned long long write_offset;
8150 unsigned unit_len;
8151 int *targets = NULL;
8152 int new_disks, i, err;
8153 char *buf = NULL;
8154 int retval = 1;
8155 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8156 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 8157 char buffer[20];
6c3560c0
AK
8158 int skipped_disks = 0;
8159 int max_degradation;
276d77db
AK
8160
8161 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8162 if (err < 1)
8163 return 1;
8164
8165 /* recover data only during assemblation */
8166 if (strncmp(buffer, "inactive", 8) != 0)
8167 return 0;
8168 /* no data to recover */
8169 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8170 return 0;
8171 if (curr_migr_unit >= num_migr_units)
8172 return 1;
8173
8174 /* find device during reshape */
8175 for (id = super->devlist; id; id = id->next)
8176 if (is_gen_migration(id->dev))
8177 break;
8178 if (id == NULL)
8179 return 1;
8180
8181 map_dest = get_imsm_map(id->dev, 0);
8182 new_disks = map_dest->num_members;
6c3560c0 8183 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
276d77db
AK
8184
8185 read_offset = (unsigned long long)
8186 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8187
8188 write_offset = ((unsigned long long)
8189 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
75b69ea4 8190 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
276d77db
AK
8191
8192 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8193 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8194 goto abort;
8195 targets = malloc(new_disks * sizeof(int));
8196 if (!targets)
8197 goto abort;
8198
8199 open_backup_targets(info, new_disks, targets);
8200
8201 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
8202 if (targets[i] < 0) {
8203 skipped_disks++;
8204 continue;
8205 }
276d77db
AK
8206 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8207 fprintf(stderr,
8208 Name ": Cannot seek to block: %s\n",
8209 strerror(errno));
8210 goto abort;
8211 }
9ec11d1a 8212 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8213 fprintf(stderr,
8214 Name ": Cannot read copy area block: %s\n",
8215 strerror(errno));
8216 goto abort;
8217 }
8218 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8219 fprintf(stderr,
8220 Name ": Cannot seek to block: %s\n",
8221 strerror(errno));
8222 goto abort;
8223 }
9ec11d1a 8224 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8225 fprintf(stderr,
8226 Name ": Cannot restore block: %s\n",
8227 strerror(errno));
8228 goto abort;
8229 }
8230 }
8231
6c3560c0
AK
8232 if (skipped_disks > max_degradation) {
8233 fprintf(stderr,
8234 Name ": Cannot restore data from backup."
8235 " Too many failed disks\n");
8236 goto abort;
8237 }
8238
befb629b
AK
8239 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8240 /* ignore error == 2, this can mean end of reshape here
8241 */
8242 dprintf("imsm: Cannot write checkpoint to "
8243 "migration record (UNIT_SRC_NORMAL) during restart\n");
8244 } else
276d77db 8245 retval = 0;
276d77db
AK
8246
8247abort:
8248 if (targets) {
8249 for (i = 0; i < new_disks; i++)
8250 if (targets[i])
8251 close(targets[i]);
8252 free(targets);
8253 }
8254 free(buf);
8255 return retval;
8256}
8257
2cda7640
ML
8258static char disk_by_path[] = "/dev/disk/by-path/";
8259
8260static const char *imsm_get_disk_controller_domain(const char *path)
8261{
2cda7640 8262 char disk_path[PATH_MAX];
96234762
LM
8263 char *drv=NULL;
8264 struct stat st;
2cda7640 8265
96234762
LM
8266 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8267 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8268 if (stat(disk_path, &st) == 0) {
8269 struct sys_dev* hba;
8270 char *path=NULL;
8271
8272 path = devt_to_devpath(st.st_rdev);
8273 if (path == NULL)
8274 return "unknown";
8275 hba = find_disk_attached_hba(-1, path);
8276 if (hba && hba->type == SYS_DEV_SAS)
8277 drv = "isci";
8278 else if (hba && hba->type == SYS_DEV_SATA)
8279 drv = "ahci";
8280 else
8281 drv = "unknown";
8282 dprintf("path: %s hba: %s attached: %s\n",
8283 path, (hba) ? hba->path : "NULL", drv);
8284 free(path);
8285 if (hba)
8286 free_sys_dev(&hba);
2cda7640 8287 }
96234762 8288 return drv;
2cda7640
ML
8289}
8290
78b10e66
N
8291static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8292{
8293 char subdev_name[20];
8294 struct mdstat_ent *mdstat;
8295
8296 sprintf(subdev_name, "%d", subdev);
8297 mdstat = mdstat_by_subdev(subdev_name, container);
8298 if (!mdstat)
8299 return -1;
8300
8301 *minor = mdstat->devnum;
8302 free_mdstat(mdstat);
8303 return 0;
8304}
8305
8306static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8307 struct geo_params *geo,
8308 int *old_raid_disks)
8309{
694575e7
KW
8310 /* currently we only support increasing the number of devices
8311 * for a container. This increases the number of device for each
8312 * member array. They must all be RAID0 or RAID5.
8313 */
78b10e66
N
8314 int ret_val = 0;
8315 struct mdinfo *info, *member;
8316 int devices_that_can_grow = 0;
8317
8318 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8319 "st->devnum = (%i)\n",
8320 st->devnum);
8321
8322 if (geo->size != -1 ||
8323 geo->level != UnSet ||
8324 geo->layout != UnSet ||
8325 geo->chunksize != 0 ||
8326 geo->raid_disks == UnSet) {
8327 dprintf("imsm: Container operation is allowed for "
8328 "raid disks number change only.\n");
8329 return ret_val;
8330 }
8331
8332 info = container_content_imsm(st, NULL);
8333 for (member = info; member; member = member->next) {
8334 int result;
8335 int minor;
8336
8337 dprintf("imsm: checking device_num: %i\n",
8338 member->container_member);
8339
d7d205bd 8340 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
8341 /* we work on container for Online Capacity Expansion
8342 * only so raid_disks has to grow
8343 */
8344 dprintf("imsm: for container operation raid disks "
8345 "increase is required\n");
8346 break;
8347 }
8348
8349 if ((info->array.level != 0) &&
8350 (info->array.level != 5)) {
8351 /* we cannot use this container with other raid level
8352 */
690aae1a 8353 dprintf("imsm: for container operation wrong"
78b10e66
N
8354 " raid level (%i) detected\n",
8355 info->array.level);
8356 break;
8357 } else {
8358 /* check for platform support
8359 * for this raid level configuration
8360 */
8361 struct intel_super *super = st->sb;
8362 if (!is_raid_level_supported(super->orom,
8363 member->array.level,
8364 geo->raid_disks)) {
690aae1a 8365 dprintf("platform does not support raid%d with"
78b10e66
N
8366 " %d disk%s\n",
8367 info->array.level,
8368 geo->raid_disks,
8369 geo->raid_disks > 1 ? "s" : "");
8370 break;
8371 }
2a4a08e7
AK
8372 /* check if component size is aligned to chunk size
8373 */
8374 if (info->component_size %
8375 (info->array.chunk_size/512)) {
8376 dprintf("Component size is not aligned to "
8377 "chunk size\n");
8378 break;
8379 }
78b10e66
N
8380 }
8381
8382 if (*old_raid_disks &&
8383 info->array.raid_disks != *old_raid_disks)
8384 break;
8385 *old_raid_disks = info->array.raid_disks;
8386
8387 /* All raid5 and raid0 volumes in container
8388 * have to be ready for Online Capacity Expansion
8389 * so they need to be assembled. We have already
8390 * checked that no recovery etc is happening.
8391 */
8392 result = imsm_find_array_minor_by_subdev(member->container_member,
8393 st->container_dev,
8394 &minor);
8395 if (result < 0) {
8396 dprintf("imsm: cannot find array\n");
8397 break;
8398 }
8399 devices_that_can_grow++;
8400 }
8401 sysfs_free(info);
8402 if (!member && devices_that_can_grow)
8403 ret_val = 1;
8404
8405 if (ret_val)
8406 dprintf("\tContainer operation allowed\n");
8407 else
8408 dprintf("\tError: %i\n", ret_val);
8409
8410 return ret_val;
8411}
8412
8413/* Function: get_spares_for_grow
8414 * Description: Allocates memory and creates list of spare devices
8415 * avaliable in container. Checks if spare drive size is acceptable.
8416 * Parameters: Pointer to the supertype structure
8417 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8418 * NULL if fail
8419 */
8420static struct mdinfo *get_spares_for_grow(struct supertype *st)
8421{
78b10e66 8422 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8423 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8424}
8425
8426/******************************************************************************
8427 * function: imsm_create_metadata_update_for_reshape
8428 * Function creates update for whole IMSM container.
8429 *
8430 ******************************************************************************/
8431static int imsm_create_metadata_update_for_reshape(
8432 struct supertype *st,
8433 struct geo_params *geo,
8434 int old_raid_disks,
8435 struct imsm_update_reshape **updatep)
8436{
8437 struct intel_super *super = st->sb;
8438 struct imsm_super *mpb = super->anchor;
8439 int update_memory_size = 0;
8440 struct imsm_update_reshape *u = NULL;
8441 struct mdinfo *spares = NULL;
8442 int i;
8443 int delta_disks = 0;
bbd24d86 8444 struct mdinfo *dev;
78b10e66
N
8445
8446 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8447 geo->raid_disks);
8448
8449 delta_disks = geo->raid_disks - old_raid_disks;
8450
8451 /* size of all update data without anchor */
8452 update_memory_size = sizeof(struct imsm_update_reshape);
8453
8454 /* now add space for spare disks that we need to add. */
8455 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8456
8457 u = calloc(1, update_memory_size);
8458 if (u == NULL) {
8459 dprintf("error: "
8460 "cannot get memory for imsm_update_reshape update\n");
8461 return 0;
8462 }
8463 u->type = update_reshape_container_disks;
8464 u->old_raid_disks = old_raid_disks;
8465 u->new_raid_disks = geo->raid_disks;
8466
8467 /* now get spare disks list
8468 */
8469 spares = get_spares_for_grow(st);
8470
8471 if (spares == NULL
8472 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8473 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8474 "for %s.\n", geo->dev_name);
e4c72d1d 8475 i = -1;
78b10e66
N
8476 goto abort;
8477 }
8478
8479 /* we have got spares
8480 * update disk list in imsm_disk list table in anchor
8481 */
8482 dprintf("imsm: %i spares are available.\n\n",
8483 spares->array.spare_disks);
8484
bbd24d86 8485 dev = spares->devs;
78b10e66 8486 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8487 struct dl *dl;
8488
bbd24d86
AK
8489 if (dev == NULL)
8490 break;
78b10e66
N
8491 u->new_disks[i] = makedev(dev->disk.major,
8492 dev->disk.minor);
8493 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8494 dl->index = mpb->num_disks;
8495 mpb->num_disks++;
bbd24d86 8496 dev = dev->next;
78b10e66 8497 }
78b10e66
N
8498
8499abort:
8500 /* free spares
8501 */
8502 sysfs_free(spares);
8503
d677e0b8 8504 dprintf("imsm: reshape update preparation :");
78b10e66 8505 if (i == delta_disks) {
d677e0b8 8506 dprintf(" OK\n");
78b10e66
N
8507 *updatep = u;
8508 return update_memory_size;
8509 }
8510 free(u);
d677e0b8 8511 dprintf(" Error\n");
78b10e66
N
8512
8513 return 0;
8514}
8515
48c5303a
PC
8516/******************************************************************************
8517 * function: imsm_create_metadata_update_for_migration()
8518 * Creates update for IMSM array.
8519 *
8520 ******************************************************************************/
8521static int imsm_create_metadata_update_for_migration(
8522 struct supertype *st,
8523 struct geo_params *geo,
8524 struct imsm_update_reshape_migration **updatep)
8525{
8526 struct intel_super *super = st->sb;
8527 int update_memory_size = 0;
8528 struct imsm_update_reshape_migration *u = NULL;
8529 struct imsm_dev *dev;
8530 int previous_level = -1;
8531
8532 dprintf("imsm_create_metadata_update_for_migration(enter)"
8533 " New Level = %i\n", geo->level);
8534
8535 /* size of all update data without anchor */
8536 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8537
8538 u = calloc(1, update_memory_size);
8539 if (u == NULL) {
8540 dprintf("error: cannot get memory for "
8541 "imsm_create_metadata_update_for_migration\n");
8542 return 0;
8543 }
8544 u->type = update_reshape_migration;
8545 u->subdev = super->current_vol;
8546 u->new_level = geo->level;
8547 u->new_layout = geo->layout;
8548 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8549 u->new_disks[0] = -1;
4bba0439 8550 u->new_chunksize = -1;
48c5303a
PC
8551
8552 dev = get_imsm_dev(super, u->subdev);
8553 if (dev) {
8554 struct imsm_map *map;
8555
8556 map = get_imsm_map(dev, 0);
4bba0439
PC
8557 if (map) {
8558 int current_chunk_size =
8559 __le16_to_cpu(map->blocks_per_strip) / 2;
8560
8561 if (geo->chunksize != current_chunk_size) {
8562 u->new_chunksize = geo->chunksize / 1024;
8563 dprintf("imsm: "
8564 "chunk size change from %i to %i\n",
8565 current_chunk_size, u->new_chunksize);
8566 }
48c5303a 8567 previous_level = map->raid_level;
4bba0439 8568 }
48c5303a
PC
8569 }
8570 if ((geo->level == 5) && (previous_level == 0)) {
8571 struct mdinfo *spares = NULL;
8572
8573 u->new_raid_disks++;
8574 spares = get_spares_for_grow(st);
8575 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8576 free(u);
8577 sysfs_free(spares);
8578 update_memory_size = 0;
8579 dprintf("error: cannot get spare device "
8580 "for requested migration");
8581 return 0;
8582 }
8583 sysfs_free(spares);
8584 }
8585 dprintf("imsm: reshape update preparation : OK\n");
8586 *updatep = u;
8587
8588 return update_memory_size;
8589}
8590
8dd70bce
AK
8591static void imsm_update_metadata_locally(struct supertype *st,
8592 void *buf, int len)
8593{
8594 struct metadata_update mu;
8595
8596 mu.buf = buf;
8597 mu.len = len;
8598 mu.space = NULL;
8599 mu.space_list = NULL;
8600 mu.next = NULL;
8601 imsm_prepare_update(st, &mu);
8602 imsm_process_update(st, &mu);
8603
8604 while (mu.space_list) {
8605 void **space = mu.space_list;
8606 mu.space_list = *space;
8607 free(space);
8608 }
8609}
78b10e66 8610
471bceb6 8611/***************************************************************************
694575e7 8612* Function: imsm_analyze_change
471bceb6
KW
8613* Description: Function analyze change for single volume
8614* and validate if transition is supported
694575e7
KW
8615* Parameters: Geometry parameters, supertype structure
8616* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8617****************************************************************************/
8618enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8619 struct geo_params *geo)
694575e7 8620{
471bceb6
KW
8621 struct mdinfo info;
8622 int change = -1;
8623 int check_devs = 0;
c21e737b 8624 int chunk;
471bceb6
KW
8625
8626 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
8627 if ((geo->level != info.array.level) &&
8628 (geo->level >= 0) &&
8629 (geo->level != UnSet)) {
8630 switch (info.array.level) {
8631 case 0:
8632 if (geo->level == 5) {
b5347799 8633 change = CH_MIGRATION;
e13ce846
AK
8634 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8635 fprintf(stderr,
8636 Name " Error. Requested Layout "
8637 "not supported (left-asymmetric layout "
8638 "is supported only)!\n");
8639 change = -1;
8640 goto analyse_change_exit;
8641 }
471bceb6
KW
8642 check_devs = 1;
8643 }
8644 if (geo->level == 10) {
8645 change = CH_TAKEOVER;
8646 check_devs = 1;
8647 }
dfe77a9e
KW
8648 break;
8649 case 1:
8650 if (geo->level == 0) {
8651 change = CH_TAKEOVER;
8652 check_devs = 1;
8653 }
471bceb6 8654 break;
471bceb6
KW
8655 case 10:
8656 if (geo->level == 0) {
8657 change = CH_TAKEOVER;
8658 check_devs = 1;
8659 }
8660 break;
8661 }
8662 if (change == -1) {
8663 fprintf(stderr,
8664 Name " Error. Level Migration from %d to %d "
8665 "not supported!\n",
8666 info.array.level, geo->level);
8667 goto analyse_change_exit;
8668 }
8669 } else
8670 geo->level = info.array.level;
8671
8672 if ((geo->layout != info.array.layout)
8673 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8674 change = CH_MIGRATION;
471bceb6
KW
8675 if ((info.array.layout == 0)
8676 && (info.array.level == 5)
8677 && (geo->layout == 5)) {
8678 /* reshape 5 -> 4 */
8679 } else if ((info.array.layout == 5)
8680 && (info.array.level == 5)
8681 && (geo->layout == 0)) {
8682 /* reshape 4 -> 5 */
8683 geo->layout = 0;
8684 geo->level = 5;
8685 } else {
8686 fprintf(stderr,
8687 Name " Error. Layout Migration from %d to %d "
8688 "not supported!\n",
8689 info.array.layout, geo->layout);
8690 change = -1;
8691 goto analyse_change_exit;
8692 }
8693 } else
8694 geo->layout = info.array.layout;
8695
8696 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8697 && (geo->chunksize != info.array.chunk_size))
b5347799 8698 change = CH_MIGRATION;
471bceb6
KW
8699 else
8700 geo->chunksize = info.array.chunk_size;
8701
c21e737b 8702 chunk = geo->chunksize / 1024;
471bceb6
KW
8703 if (!validate_geometry_imsm(st,
8704 geo->level,
8705 geo->layout,
8706 geo->raid_disks,
c21e737b 8707 &chunk,
471bceb6
KW
8708 geo->size,
8709 0, 0, 1))
8710 change = -1;
8711
8712 if (check_devs) {
8713 struct intel_super *super = st->sb;
8714 struct imsm_super *mpb = super->anchor;
8715
8716 if (mpb->num_raid_devs > 1) {
8717 fprintf(stderr,
8718 Name " Error. Cannot perform operation on %s"
8719 "- for this operation it MUST be single "
8720 "array in container\n",
8721 geo->dev_name);
8722 change = -1;
8723 }
8724 }
8725
8726analyse_change_exit:
8727
8728 return change;
694575e7
KW
8729}
8730
bb025c2f
KW
8731int imsm_takeover(struct supertype *st, struct geo_params *geo)
8732{
8733 struct intel_super *super = st->sb;
8734 struct imsm_update_takeover *u;
8735
8736 u = malloc(sizeof(struct imsm_update_takeover));
8737 if (u == NULL)
8738 return 1;
8739
8740 u->type = update_takeover;
8741 u->subarray = super->current_vol;
8742
8743 /* 10->0 transition */
8744 if (geo->level == 0)
8745 u->direction = R10_TO_R0;
8746
0529c688
KW
8747 /* 0->10 transition */
8748 if (geo->level == 10)
8749 u->direction = R0_TO_R10;
8750
bb025c2f
KW
8751 /* update metadata locally */
8752 imsm_update_metadata_locally(st, u,
8753 sizeof(struct imsm_update_takeover));
8754 /* and possibly remotely */
8755 if (st->update_tail)
8756 append_metadata_update(st, u,
8757 sizeof(struct imsm_update_takeover));
8758 else
8759 free(u);
8760
8761 return 0;
8762}
8763
78b10e66
N
8764static int imsm_reshape_super(struct supertype *st, long long size, int level,
8765 int layout, int chunksize, int raid_disks,
41784c88
AK
8766 int delta_disks, char *backup, char *dev,
8767 int verbose)
78b10e66 8768{
78b10e66
N
8769 int ret_val = 1;
8770 struct geo_params geo;
8771
8772 dprintf("imsm: reshape_super called.\n");
8773
71204a50 8774 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
8775
8776 geo.dev_name = dev;
694575e7 8777 geo.dev_id = st->devnum;
78b10e66
N
8778 geo.size = size;
8779 geo.level = level;
8780 geo.layout = layout;
8781 geo.chunksize = chunksize;
8782 geo.raid_disks = raid_disks;
41784c88
AK
8783 if (delta_disks != UnSet)
8784 geo.raid_disks += delta_disks;
78b10e66
N
8785
8786 dprintf("\tfor level : %i\n", geo.level);
8787 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8788
8789 if (experimental() == 0)
8790 return ret_val;
8791
78b10e66 8792 if (st->container_dev == st->devnum) {
694575e7
KW
8793 /* On container level we can only increase number of devices. */
8794 dprintf("imsm: info: Container operation\n");
78b10e66 8795 int old_raid_disks = 0;
6dc0be30 8796
78b10e66
N
8797 if (imsm_reshape_is_allowed_on_container(
8798 st, &geo, &old_raid_disks)) {
8799 struct imsm_update_reshape *u = NULL;
8800 int len;
8801
8802 len = imsm_create_metadata_update_for_reshape(
8803 st, &geo, old_raid_disks, &u);
8804
ed08d51c
AK
8805 if (len <= 0) {
8806 dprintf("imsm: Cannot prepare update\n");
8807 goto exit_imsm_reshape_super;
8808 }
8809
8dd70bce
AK
8810 ret_val = 0;
8811 /* update metadata locally */
8812 imsm_update_metadata_locally(st, u, len);
8813 /* and possibly remotely */
8814 if (st->update_tail)
8815 append_metadata_update(st, u, len);
8816 else
ed08d51c 8817 free(u);
8dd70bce 8818
694575e7 8819 } else {
e7ff7e40
AK
8820 fprintf(stderr, Name ": (imsm) Operation "
8821 "is not allowed on this container\n");
694575e7
KW
8822 }
8823 } else {
8824 /* On volume level we support following operations
471bceb6
KW
8825 * - takeover: raid10 -> raid0; raid0 -> raid10
8826 * - chunk size migration
8827 * - migration: raid5 -> raid0; raid0 -> raid5
8828 */
8829 struct intel_super *super = st->sb;
8830 struct intel_dev *dev = super->devlist;
8831 int change, devnum;
694575e7 8832 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
8833 /* find requested device */
8834 while (dev) {
19986c72
MB
8835 if (imsm_find_array_minor_by_subdev(
8836 dev->index, st->container_dev, &devnum) == 0
8837 && devnum == geo.dev_id)
471bceb6
KW
8838 break;
8839 dev = dev->next;
8840 }
8841 if (dev == NULL) {
8842 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8843 geo.dev_name, geo.dev_id);
8844 goto exit_imsm_reshape_super;
8845 }
8846 super->current_vol = dev->index;
694575e7
KW
8847 change = imsm_analyze_change(st, &geo);
8848 switch (change) {
471bceb6 8849 case CH_TAKEOVER:
bb025c2f 8850 ret_val = imsm_takeover(st, &geo);
694575e7 8851 break;
48c5303a
PC
8852 case CH_MIGRATION: {
8853 struct imsm_update_reshape_migration *u = NULL;
8854 int len =
8855 imsm_create_metadata_update_for_migration(
8856 st, &geo, &u);
8857 if (len < 1) {
8858 dprintf("imsm: "
8859 "Cannot prepare update\n");
8860 break;
8861 }
471bceb6 8862 ret_val = 0;
48c5303a
PC
8863 /* update metadata locally */
8864 imsm_update_metadata_locally(st, u, len);
8865 /* and possibly remotely */
8866 if (st->update_tail)
8867 append_metadata_update(st, u, len);
8868 else
8869 free(u);
8870 }
8871 break;
471bceb6
KW
8872 default:
8873 ret_val = 1;
694575e7 8874 }
694575e7 8875 }
78b10e66 8876
ed08d51c 8877exit_imsm_reshape_super:
78b10e66
N
8878 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8879 return ret_val;
8880}
2cda7640 8881
eee67a47
AK
8882/*******************************************************************************
8883 * Function: wait_for_reshape_imsm
8884 * Description: Function writes new sync_max value and waits until
8885 * reshape process reach new position
8886 * Parameters:
8887 * sra : general array info
eee67a47
AK
8888 * ndata : number of disks in new array's layout
8889 * Returns:
8890 * 0 : success,
8891 * 1 : there is no reshape in progress,
8892 * -1 : fail
8893 ******************************************************************************/
ae9f01f8 8894int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
8895{
8896 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8897 unsigned long long completed;
ae9f01f8
AK
8898 /* to_complete : new sync_max position */
8899 unsigned long long to_complete = sra->reshape_progress;
8900 unsigned long long position_to_set = to_complete / ndata;
eee67a47 8901
ae9f01f8
AK
8902 if (fd < 0) {
8903 dprintf("imsm: wait_for_reshape_imsm() "
8904 "cannot open reshape_position\n");
eee67a47 8905 return 1;
ae9f01f8 8906 }
eee67a47 8907
ae9f01f8
AK
8908 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8909 dprintf("imsm: wait_for_reshape_imsm() "
8910 "cannot read reshape_position (no reshape in progres)\n");
8911 close(fd);
8912 return 0;
8913 }
eee67a47 8914
ae9f01f8
AK
8915 if (completed > to_complete) {
8916 dprintf("imsm: wait_for_reshape_imsm() "
8917 "wrong next position to set %llu (%llu)\n",
8918 to_complete, completed);
8919 close(fd);
8920 return -1;
8921 }
8922 dprintf("Position set: %llu\n", position_to_set);
8923 if (sysfs_set_num(sra, NULL, "sync_max",
8924 position_to_set) != 0) {
8925 dprintf("imsm: wait_for_reshape_imsm() "
8926 "cannot set reshape position to %llu\n",
8927 position_to_set);
8928 close(fd);
8929 return -1;
eee67a47
AK
8930 }
8931
eee67a47
AK
8932 do {
8933 char action[20];
8934 fd_set rfds;
8935 FD_ZERO(&rfds);
8936 FD_SET(fd, &rfds);
a47e44fb
AK
8937 select(fd+1, &rfds, NULL, NULL, NULL);
8938 if (sysfs_get_str(sra, NULL, "sync_action",
8939 action, 20) > 0 &&
8940 strncmp(action, "reshape", 7) != 0)
8941 break;
eee67a47 8942 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
8943 dprintf("imsm: wait_for_reshape_imsm() "
8944 "cannot read reshape_position (in loop)\n");
eee67a47
AK
8945 close(fd);
8946 return 1;
8947 }
eee67a47
AK
8948 } while (completed < to_complete);
8949 close(fd);
8950 return 0;
8951
8952}
8953
b915c95f
AK
8954/*******************************************************************************
8955 * Function: check_degradation_change
8956 * Description: Check that array hasn't become failed.
8957 * Parameters:
8958 * info : for sysfs access
8959 * sources : source disks descriptors
8960 * degraded: previous degradation level
8961 * Returns:
8962 * degradation level
8963 ******************************************************************************/
8964int check_degradation_change(struct mdinfo *info,
8965 int *sources,
8966 int degraded)
8967{
8968 unsigned long long new_degraded;
8969 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8970 if (new_degraded != (unsigned long long)degraded) {
8971 /* check each device to ensure it is still working */
8972 struct mdinfo *sd;
8973 new_degraded = 0;
8974 for (sd = info->devs ; sd ; sd = sd->next) {
8975 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8976 continue;
8977 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8978 char sbuf[20];
8979 if (sysfs_get_str(info,
8980 sd, "state", sbuf, 20) < 0 ||
8981 strstr(sbuf, "faulty") ||
8982 strstr(sbuf, "in_sync") == NULL) {
8983 /* this device is dead */
8984 sd->disk.state = (1<<MD_DISK_FAULTY);
8985 if (sd->disk.raid_disk >= 0 &&
8986 sources[sd->disk.raid_disk] >= 0) {
8987 close(sources[
8988 sd->disk.raid_disk]);
8989 sources[sd->disk.raid_disk] =
8990 -1;
8991 }
8992 new_degraded++;
8993 }
8994 }
8995 }
8996 }
8997
8998 return new_degraded;
8999}
9000
10f22854
AK
9001/*******************************************************************************
9002 * Function: imsm_manage_reshape
9003 * Description: Function finds array under reshape and it manages reshape
9004 * process. It creates stripes backups (if required) and sets
9005 * checheckpoits.
9006 * Parameters:
9007 * afd : Backup handle (nattive) - not used
9008 * sra : general array info
9009 * reshape : reshape parameters - not used
9010 * st : supertype structure
9011 * blocks : size of critical section [blocks]
9012 * fds : table of source device descriptor
9013 * offsets : start of array (offest per devices)
9014 * dests : not used
9015 * destfd : table of destination device descriptor
9016 * destoffsets : table of destination offsets (per device)
9017 * Returns:
9018 * 1 : success, reshape is done
9019 * 0 : fail
9020 ******************************************************************************/
999b4972
N
9021static int imsm_manage_reshape(
9022 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 9023 struct supertype *st, unsigned long backup_blocks,
999b4972
N
9024 int *fds, unsigned long long *offsets,
9025 int dests, int *destfd, unsigned long long *destoffsets)
9026{
10f22854
AK
9027 int ret_val = 0;
9028 struct intel_super *super = st->sb;
9029 struct intel_dev *dv = NULL;
9030 struct imsm_dev *dev = NULL;
a6b6d984 9031 struct imsm_map *map_src;
10f22854
AK
9032 int migr_vol_qan = 0;
9033 int ndata, odata; /* [bytes] */
9034 int chunk; /* [bytes] */
9035 struct migr_record *migr_rec;
9036 char *buf = NULL;
9037 unsigned int buf_size; /* [bytes] */
9038 unsigned long long max_position; /* array size [bytes] */
9039 unsigned long long next_step; /* [blocks]/[bytes] */
9040 unsigned long long old_data_stripe_length;
10f22854
AK
9041 unsigned long long start_src; /* [bytes] */
9042 unsigned long long start; /* [bytes] */
9043 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 9044 int degraded = 0;
ab724b98 9045 int source_layout = 0;
10f22854 9046
1ab242d8 9047 if (!fds || !offsets || !sra)
10f22854
AK
9048 goto abort;
9049
9050 /* Find volume during the reshape */
9051 for (dv = super->devlist; dv; dv = dv->next) {
9052 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9053 && dv->dev->vol.migr_state == 1) {
9054 dev = dv->dev;
9055 migr_vol_qan++;
9056 }
9057 }
9058 /* Only one volume can migrate at the same time */
9059 if (migr_vol_qan != 1) {
9060 fprintf(stderr, Name " : %s", migr_vol_qan ?
9061 "Number of migrating volumes greater than 1\n" :
9062 "There is no volume during migrationg\n");
9063 goto abort;
9064 }
9065
9066 map_src = get_imsm_map(dev, 1);
9067 if (map_src == NULL)
9068 goto abort;
10f22854
AK
9069
9070 ndata = imsm_num_data_members(dev, 0);
9071 odata = imsm_num_data_members(dev, 1);
9072
7b1ab482 9073 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
9074 old_data_stripe_length = odata * chunk;
9075
9076 migr_rec = super->migr_rec;
9077
10f22854
AK
9078 /* initialize migration record for start condition */
9079 if (sra->reshape_progress == 0)
9080 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
9081 else {
9082 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9083 dprintf("imsm: cannot restart migration when data "
9084 "are present in copy area.\n");
9085 goto abort;
9086 }
9087 }
10f22854
AK
9088
9089 /* size for data */
9090 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9091 /* extend buffer size for parity disk */
9092 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9093 /* add space for stripe aligment */
9094 buf_size += old_data_stripe_length;
9095 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9096 dprintf("imsm: Cannot allocate checpoint buffer\n");
9097 goto abort;
9098 }
9099
3ef4403c 9100 max_position = sra->component_size * ndata;
68eb8bc6 9101 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
9102
9103 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9104 __le32_to_cpu(migr_rec->num_migr_units)) {
9105 /* current reshape position [blocks] */
9106 unsigned long long current_position =
9107 __le32_to_cpu(migr_rec->blocks_per_unit)
9108 * __le32_to_cpu(migr_rec->curr_migr_unit);
9109 unsigned long long border;
9110
b915c95f
AK
9111 /* Check that array hasn't become failed.
9112 */
9113 degraded = check_degradation_change(sra, fds, degraded);
9114 if (degraded > 1) {
9115 dprintf("imsm: Abort reshape due to degradation"
9116 " level (%i)\n", degraded);
9117 goto abort;
9118 }
9119
10f22854
AK
9120 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9121
9122 if ((current_position + next_step) > max_position)
9123 next_step = max_position - current_position;
9124
92144abf 9125 start = current_position * 512;
10f22854
AK
9126
9127 /* allign reading start to old geometry */
9128 start_buf_shift = start % old_data_stripe_length;
9129 start_src = start - start_buf_shift;
9130
9131 border = (start_src / odata) - (start / ndata);
9132 border /= 512;
9133 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9134 /* save critical stripes to buf
9135 * start - start address of current unit
9136 * to backup [bytes]
9137 * start_src - start address of current unit
9138 * to backup alligned to source array
9139 * [bytes]
9140 */
9141 unsigned long long next_step_filler = 0;
9142 unsigned long long copy_length = next_step * 512;
9143
9144 /* allign copy area length to stripe in old geometry */
9145 next_step_filler = ((copy_length + start_buf_shift)
9146 % old_data_stripe_length);
9147 if (next_step_filler)
9148 next_step_filler = (old_data_stripe_length
9149 - next_step_filler);
9150 dprintf("save_stripes() parameters: start = %llu,"
9151 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9152 "\tstart_in_buf_shift = %llu,"
9153 "\tnext_step_filler = %llu\n",
9154 start, start_src, copy_length,
9155 start_buf_shift, next_step_filler);
9156
9157 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
9158 chunk, map_src->raid_level,
9159 source_layout, 0, NULL, start_src,
10f22854
AK
9160 copy_length +
9161 next_step_filler + start_buf_shift,
9162 buf)) {
9163 dprintf("imsm: Cannot save stripes"
9164 " to buffer\n");
9165 goto abort;
9166 }
9167 /* Convert data to destination format and store it
9168 * in backup general migration area
9169 */
9170 if (save_backup_imsm(st, dev, sra,
aea93171 9171 buf + start_buf_shift, copy_length)) {
10f22854
AK
9172 dprintf("imsm: Cannot save stripes to "
9173 "target devices\n");
9174 goto abort;
9175 }
9176 if (save_checkpoint_imsm(st, sra,
9177 UNIT_SRC_IN_CP_AREA)) {
9178 dprintf("imsm: Cannot write checkpoint to "
9179 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9180 goto abort;
9181 }
8016a6d4
AK
9182 } else {
9183 /* set next step to use whole border area */
9184 border /= next_step;
9185 if (border > 1)
9186 next_step *= border;
10f22854
AK
9187 }
9188 /* When data backed up, checkpoint stored,
9189 * kick the kernel to reshape unit of data
9190 */
9191 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
9192 /* limit next step to array max position */
9193 if (next_step > max_position)
9194 next_step = max_position;
10f22854
AK
9195 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9196 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 9197 sra->reshape_progress = next_step;
10f22854
AK
9198
9199 /* wait until reshape finish */
ae9f01f8 9200 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
9201 dprintf("wait_for_reshape_imsm returned error!\n");
9202 goto abort;
9203 }
10f22854 9204
0228d92c
AK
9205 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9206 /* ignore error == 2, this can mean end of reshape here
9207 */
10f22854
AK
9208 dprintf("imsm: Cannot write checkpoint to "
9209 "migration record (UNIT_SRC_NORMAL)\n");
9210 goto abort;
9211 }
9212
9213 }
9214
9215 /* return '1' if done */
9216 ret_val = 1;
9217abort:
9218 free(buf);
9219 abort_reshape(sra);
9220
9221 return ret_val;
999b4972 9222}
71204a50 9223#endif /* MDASSEMBLE */
999b4972 9224
cdddbdbc
DW
9225struct superswitch super_imsm = {
9226#ifndef MDASSEMBLE
9227 .examine_super = examine_super_imsm,
9228 .brief_examine_super = brief_examine_super_imsm,
4737ae25 9229 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 9230 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
9231 .detail_super = detail_super_imsm,
9232 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 9233 .write_init_super = write_init_super_imsm,
0e600426
N
9234 .validate_geometry = validate_geometry_imsm,
9235 .add_to_super = add_to_super_imsm,
1a64be56 9236 .remove_from_super = remove_from_super_imsm,
d665cc31 9237 .detail_platform = detail_platform_imsm,
33414a01 9238 .kill_subarray = kill_subarray_imsm,
aa534678 9239 .update_subarray = update_subarray_imsm,
2b959fbf 9240 .load_container = load_container_imsm,
71204a50
N
9241 .default_geometry = default_geometry_imsm,
9242 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9243 .reshape_super = imsm_reshape_super,
9244 .manage_reshape = imsm_manage_reshape,
9e2d750d 9245 .recover_backup = recover_backup_imsm,
cdddbdbc
DW
9246#endif
9247 .match_home = match_home_imsm,
9248 .uuid_from_super= uuid_from_super_imsm,
9249 .getinfo_super = getinfo_super_imsm,
5c4cd5da 9250 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
9251 .update_super = update_super_imsm,
9252
9253 .avail_size = avail_size_imsm,
80e7f8c3 9254 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
9255
9256 .compare_super = compare_super_imsm,
9257
9258 .load_super = load_super_imsm,
bf5a934a 9259 .init_super = init_super_imsm,
e683ca88 9260 .store_super = store_super_imsm,
cdddbdbc
DW
9261 .free_super = free_super_imsm,
9262 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 9263 .container_content = container_content_imsm,
cdddbdbc 9264
276d77db 9265
cdddbdbc 9266 .external = 1,
4cce4069 9267 .name = "imsm",
845dea95 9268
0e600426 9269#ifndef MDASSEMBLE
845dea95
NB
9270/* for mdmon */
9271 .open_new = imsm_open_new,
ed9d66aa 9272 .set_array_state= imsm_set_array_state,
845dea95
NB
9273 .set_disk = imsm_set_disk,
9274 .sync_metadata = imsm_sync_metadata,
88758e9d 9275 .activate_spare = imsm_activate_spare,
e8319a19 9276 .process_update = imsm_process_update,
8273f55e 9277 .prepare_update = imsm_prepare_update,
0e600426 9278#endif /* MDASSEMBLE */
cdddbdbc 9279};