]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
bfd: bfin: drop needless symbol flag handling imported from FRV
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
b43420e6 3 2004, 2005, 2006, 2007, 2008, 2009, 2010
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3
MGD
100/* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470 198static const arm_feature_set arm_ext_m =
b2a5fbdc 199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 200static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 201static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 202static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 203static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 204static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
205
206static const arm_feature_set arm_arch_any = ARM_ANY;
207static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
210
2d447fca
JM
211static const arm_feature_set arm_cext_iwmmxt2 =
212 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
213static const arm_feature_set arm_cext_iwmmxt =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
215static const arm_feature_set arm_cext_xscale =
216 ARM_FEATURE (0, ARM_CEXT_XSCALE);
217static const arm_feature_set arm_cext_maverick =
218 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
219static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
220static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
221static const arm_feature_set fpu_vfp_ext_v1xd =
222 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
223static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
224static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 225static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 226static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
227static const arm_feature_set fpu_vfp_ext_d32 =
228 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
229static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
230static const arm_feature_set fpu_vfp_v3_or_neon_ext =
231 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
232static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
233static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
234static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 235
33a392fb 236static int mfloat_abi_opt = -1;
e74cfd16
PB
237/* Record user cpu selection for object attributes. */
238static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
239/* Must be long enough to hold any of the names in arm_cpus. */
240static char selected_cpu_name[16];
7cc69913 241#ifdef OBJ_ELF
deeaaff8
DJ
242# ifdef EABI_DEFAULT
243static int meabi_flags = EABI_DEFAULT;
244# else
d507cf36 245static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 246# endif
e1da3f5b 247
ee3c0378
AS
248static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
249
e1da3f5b 250bfd_boolean
5f4273c7 251arm_is_eabi (void)
e1da3f5b
PB
252{
253 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
254}
7cc69913 255#endif
b99bd4ef 256
b99bd4ef 257#ifdef OBJ_ELF
c19d1205 258/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
259symbolS * GOT_symbol;
260#endif
261
b99bd4ef
NC
262/* 0: assemble for ARM,
263 1: assemble for Thumb,
264 2: assemble for Thumb even though target CPU does not support thumb
265 instructions. */
266static int thumb_mode = 0;
8dc2430f
NC
267/* A value distinct from the possible values for thumb_mode that we
268 can use to record whether thumb_mode has been copied into the
269 tc_frag_data field of a frag. */
270#define MODE_RECORDED (1 << 4)
b99bd4ef 271
e07e6e58
NC
272/* Specifies the intrinsic IT insn behavior mode. */
273enum implicit_it_mode
274{
275 IMPLICIT_IT_MODE_NEVER = 0x00,
276 IMPLICIT_IT_MODE_ARM = 0x01,
277 IMPLICIT_IT_MODE_THUMB = 0x02,
278 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
279};
280static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
281
c19d1205
ZW
282/* If unified_syntax is true, we are processing the new unified
283 ARM/Thumb syntax. Important differences from the old ARM mode:
284
285 - Immediate operands do not require a # prefix.
286 - Conditional affixes always appear at the end of the
287 instruction. (For backward compatibility, those instructions
288 that formerly had them in the middle, continue to accept them
289 there.)
290 - The IT instruction may appear, and if it does is validated
291 against subsequent conditional affixes. It does not generate
292 machine code.
293
294 Important differences from the old Thumb mode:
295
296 - Immediate operands do not require a # prefix.
297 - Most of the V6T2 instructions are only available in unified mode.
298 - The .N and .W suffixes are recognized and honored (it is an error
299 if they cannot be honored).
300 - All instructions set the flags if and only if they have an 's' affix.
301 - Conditional affixes may be used. They are validated against
302 preceding IT instructions. Unlike ARM mode, you cannot use a
303 conditional affix except in the scope of an IT instruction. */
304
305static bfd_boolean unified_syntax = FALSE;
b99bd4ef 306
5287ad62
JB
307enum neon_el_type
308{
dcbf9037 309 NT_invtype,
5287ad62
JB
310 NT_untyped,
311 NT_integer,
312 NT_float,
313 NT_poly,
314 NT_signed,
dcbf9037 315 NT_unsigned
5287ad62
JB
316};
317
318struct neon_type_el
319{
320 enum neon_el_type type;
321 unsigned size;
322};
323
324#define NEON_MAX_TYPE_ELS 4
325
326struct neon_type
327{
328 struct neon_type_el el[NEON_MAX_TYPE_ELS];
329 unsigned elems;
330};
331
e07e6e58
NC
332enum it_instruction_type
333{
334 OUTSIDE_IT_INSN,
335 INSIDE_IT_INSN,
336 INSIDE_IT_LAST_INSN,
337 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
338 if inside, should be the last one. */
339 NEUTRAL_IT_INSN, /* This could be either inside or outside,
340 i.e. BKPT and NOP. */
341 IT_INSN /* The IT insn has been parsed. */
342};
343
b99bd4ef
NC
344struct arm_it
345{
c19d1205 346 const char * error;
b99bd4ef 347 unsigned long instruction;
c19d1205
ZW
348 int size;
349 int size_req;
350 int cond;
037e8744
JB
351 /* "uncond_value" is set to the value in place of the conditional field in
352 unconditional versions of the instruction, or -1 if nothing is
353 appropriate. */
354 int uncond_value;
5287ad62 355 struct neon_type vectype;
88714cb8
DG
356 /* This does not indicate an actual NEON instruction, only that
357 the mnemonic accepts neon-style type suffixes. */
358 int is_neon;
0110f2b8
PB
359 /* Set to the opcode if the instruction needs relaxation.
360 Zero if the instruction is not relaxed. */
361 unsigned long relax;
b99bd4ef
NC
362 struct
363 {
364 bfd_reloc_code_real_type type;
c19d1205
ZW
365 expressionS exp;
366 int pc_rel;
b99bd4ef 367 } reloc;
b99bd4ef 368
e07e6e58
NC
369 enum it_instruction_type it_insn_type;
370
c19d1205
ZW
371 struct
372 {
373 unsigned reg;
ca3f61f7 374 signed int imm;
dcbf9037 375 struct neon_type_el vectype;
ca3f61f7
NC
376 unsigned present : 1; /* Operand present. */
377 unsigned isreg : 1; /* Operand was a register. */
378 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
379 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
380 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 381 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
382 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
383 instructions. This allows us to disambiguate ARM <-> vector insns. */
384 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 385 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 386 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 387 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
388 unsigned hasreloc : 1; /* Operand has relocation suffix. */
389 unsigned writeback : 1; /* Operand has trailing ! */
390 unsigned preind : 1; /* Preindexed address. */
391 unsigned postind : 1; /* Postindexed address. */
392 unsigned negative : 1; /* Index register was negated. */
393 unsigned shifted : 1; /* Shift applied to operation. */
394 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 395 } operands[6];
b99bd4ef
NC
396};
397
c19d1205 398static struct arm_it inst;
b99bd4ef
NC
399
400#define NUM_FLOAT_VALS 8
401
05d2d07e 402const char * fp_const[] =
b99bd4ef
NC
403{
404 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
405};
406
c19d1205 407/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
408#define MAX_LITTLENUMS 6
409
410LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
411
412#define FAIL (-1)
413#define SUCCESS (0)
414
415#define SUFF_S 1
416#define SUFF_D 2
417#define SUFF_E 3
418#define SUFF_P 4
419
c19d1205
ZW
420#define CP_T_X 0x00008000
421#define CP_T_Y 0x00400000
b99bd4ef 422
c19d1205
ZW
423#define CONDS_BIT 0x00100000
424#define LOAD_BIT 0x00100000
b99bd4ef
NC
425
426#define DOUBLE_LOAD_FLAG 0x00000001
427
428struct asm_cond
429{
d3ce72d0 430 const char * template_name;
c921be7d 431 unsigned long value;
b99bd4ef
NC
432};
433
c19d1205 434#define COND_ALWAYS 0xE
b99bd4ef 435
b99bd4ef
NC
436struct asm_psr
437{
d3ce72d0 438 const char * template_name;
c921be7d 439 unsigned long field;
b99bd4ef
NC
440};
441
62b3e311
PB
442struct asm_barrier_opt
443{
d3ce72d0 444 const char * template_name;
c921be7d 445 unsigned long value;
62b3e311
PB
446};
447
2d2255b5 448/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
449#define SPSR_BIT (1 << 22)
450
c19d1205
ZW
451/* The individual PSR flag bits. */
452#define PSR_c (1 << 16)
453#define PSR_x (1 << 17)
454#define PSR_s (1 << 18)
455#define PSR_f (1 << 19)
b99bd4ef 456
c19d1205 457struct reloc_entry
bfae80f2 458{
c921be7d
NC
459 char * name;
460 bfd_reloc_code_real_type reloc;
bfae80f2
RE
461};
462
5287ad62 463enum vfp_reg_pos
bfae80f2 464{
5287ad62
JB
465 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
466 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
467};
468
469enum vfp_ldstm_type
470{
471 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
472};
473
dcbf9037
JB
474/* Bits for DEFINED field in neon_typed_alias. */
475#define NTA_HASTYPE 1
476#define NTA_HASINDEX 2
477
478struct neon_typed_alias
479{
c921be7d
NC
480 unsigned char defined;
481 unsigned char index;
482 struct neon_type_el eltype;
dcbf9037
JB
483};
484
c19d1205
ZW
485/* ARM register categories. This includes coprocessor numbers and various
486 architecture extensions' registers. */
487enum arm_reg_type
bfae80f2 488{
c19d1205
ZW
489 REG_TYPE_RN,
490 REG_TYPE_CP,
491 REG_TYPE_CN,
492 REG_TYPE_FN,
493 REG_TYPE_VFS,
494 REG_TYPE_VFD,
5287ad62 495 REG_TYPE_NQ,
037e8744 496 REG_TYPE_VFSD,
5287ad62 497 REG_TYPE_NDQ,
037e8744 498 REG_TYPE_NSDQ,
c19d1205
ZW
499 REG_TYPE_VFC,
500 REG_TYPE_MVF,
501 REG_TYPE_MVD,
502 REG_TYPE_MVFX,
503 REG_TYPE_MVDX,
504 REG_TYPE_MVAX,
505 REG_TYPE_DSPSC,
506 REG_TYPE_MMXWR,
507 REG_TYPE_MMXWC,
508 REG_TYPE_MMXWCG,
509 REG_TYPE_XSCALE,
90ec0d68 510 REG_TYPE_RNB
bfae80f2
RE
511};
512
dcbf9037
JB
513/* Structure for a hash table entry for a register.
514 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
515 information which states whether a vector type or index is specified (for a
516 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
517struct reg_entry
518{
c921be7d 519 const char * name;
90ec0d68 520 unsigned int number;
c921be7d
NC
521 unsigned char type;
522 unsigned char builtin;
523 struct neon_typed_alias * neon;
6c43fab6
RE
524};
525
c19d1205 526/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 527const char * const reg_expected_msgs[] =
c19d1205
ZW
528{
529 N_("ARM register expected"),
530 N_("bad or missing co-processor number"),
531 N_("co-processor register expected"),
532 N_("FPA register expected"),
533 N_("VFP single precision register expected"),
5287ad62
JB
534 N_("VFP/Neon double precision register expected"),
535 N_("Neon quad precision register expected"),
037e8744 536 N_("VFP single or double precision register expected"),
5287ad62 537 N_("Neon double or quad precision register expected"),
037e8744 538 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
539 N_("VFP system register expected"),
540 N_("Maverick MVF register expected"),
541 N_("Maverick MVD register expected"),
542 N_("Maverick MVFX register expected"),
543 N_("Maverick MVDX register expected"),
544 N_("Maverick MVAX register expected"),
545 N_("Maverick DSPSC register expected"),
546 N_("iWMMXt data register expected"),
547 N_("iWMMXt control register expected"),
548 N_("iWMMXt scalar register expected"),
549 N_("XScale accumulator register expected"),
6c43fab6
RE
550};
551
c19d1205
ZW
552/* Some well known registers that we refer to directly elsewhere. */
553#define REG_SP 13
554#define REG_LR 14
555#define REG_PC 15
404ff6b5 556
b99bd4ef
NC
557/* ARM instructions take 4bytes in the object file, Thumb instructions
558 take 2: */
c19d1205 559#define INSN_SIZE 4
b99bd4ef
NC
560
561struct asm_opcode
562{
563 /* Basic string to match. */
d3ce72d0 564 const char * template_name;
c19d1205
ZW
565
566 /* Parameters to instruction. */
5be8be5d 567 unsigned int operands[8];
c19d1205
ZW
568
569 /* Conditional tag - see opcode_lookup. */
570 unsigned int tag : 4;
b99bd4ef
NC
571
572 /* Basic instruction code. */
c19d1205 573 unsigned int avalue : 28;
b99bd4ef 574
c19d1205
ZW
575 /* Thumb-format instruction code. */
576 unsigned int tvalue;
b99bd4ef 577
90e4755a 578 /* Which architecture variant provides this instruction. */
c921be7d
NC
579 const arm_feature_set * avariant;
580 const arm_feature_set * tvariant;
c19d1205
ZW
581
582 /* Function to call to encode instruction in ARM format. */
583 void (* aencode) (void);
b99bd4ef 584
c19d1205
ZW
585 /* Function to call to encode instruction in Thumb format. */
586 void (* tencode) (void);
b99bd4ef
NC
587};
588
a737bd4d
NC
589/* Defines for various bits that we will want to toggle. */
590#define INST_IMMEDIATE 0x02000000
591#define OFFSET_REG 0x02000000
c19d1205 592#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
593#define SHIFT_BY_REG 0x00000010
594#define PRE_INDEX 0x01000000
595#define INDEX_UP 0x00800000
596#define WRITE_BACK 0x00200000
597#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 598#define CPSI_MMOD 0x00020000
90e4755a 599
a737bd4d
NC
600#define LITERAL_MASK 0xf000f000
601#define OPCODE_MASK 0xfe1fffff
602#define V4_STR_BIT 0x00000020
90e4755a 603
efd81785
PB
604#define T2_SUBS_PC_LR 0xf3de8f00
605
a737bd4d 606#define DATA_OP_SHIFT 21
90e4755a 607
ef8d22e6
PB
608#define T2_OPCODE_MASK 0xfe1fffff
609#define T2_DATA_OP_SHIFT 21
610
a737bd4d
NC
611/* Codes to distinguish the arithmetic instructions. */
612#define OPCODE_AND 0
613#define OPCODE_EOR 1
614#define OPCODE_SUB 2
615#define OPCODE_RSB 3
616#define OPCODE_ADD 4
617#define OPCODE_ADC 5
618#define OPCODE_SBC 6
619#define OPCODE_RSC 7
620#define OPCODE_TST 8
621#define OPCODE_TEQ 9
622#define OPCODE_CMP 10
623#define OPCODE_CMN 11
624#define OPCODE_ORR 12
625#define OPCODE_MOV 13
626#define OPCODE_BIC 14
627#define OPCODE_MVN 15
90e4755a 628
ef8d22e6
PB
629#define T2_OPCODE_AND 0
630#define T2_OPCODE_BIC 1
631#define T2_OPCODE_ORR 2
632#define T2_OPCODE_ORN 3
633#define T2_OPCODE_EOR 4
634#define T2_OPCODE_ADD 8
635#define T2_OPCODE_ADC 10
636#define T2_OPCODE_SBC 11
637#define T2_OPCODE_SUB 13
638#define T2_OPCODE_RSB 14
639
a737bd4d
NC
640#define T_OPCODE_MUL 0x4340
641#define T_OPCODE_TST 0x4200
642#define T_OPCODE_CMN 0x42c0
643#define T_OPCODE_NEG 0x4240
644#define T_OPCODE_MVN 0x43c0
90e4755a 645
a737bd4d
NC
646#define T_OPCODE_ADD_R3 0x1800
647#define T_OPCODE_SUB_R3 0x1a00
648#define T_OPCODE_ADD_HI 0x4400
649#define T_OPCODE_ADD_ST 0xb000
650#define T_OPCODE_SUB_ST 0xb080
651#define T_OPCODE_ADD_SP 0xa800
652#define T_OPCODE_ADD_PC 0xa000
653#define T_OPCODE_ADD_I8 0x3000
654#define T_OPCODE_SUB_I8 0x3800
655#define T_OPCODE_ADD_I3 0x1c00
656#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 657
a737bd4d
NC
658#define T_OPCODE_ASR_R 0x4100
659#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
660#define T_OPCODE_LSR_R 0x40c0
661#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
662#define T_OPCODE_ASR_I 0x1000
663#define T_OPCODE_LSL_I 0x0000
664#define T_OPCODE_LSR_I 0x0800
b99bd4ef 665
a737bd4d
NC
666#define T_OPCODE_MOV_I8 0x2000
667#define T_OPCODE_CMP_I8 0x2800
668#define T_OPCODE_CMP_LR 0x4280
669#define T_OPCODE_MOV_HR 0x4600
670#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 671
a737bd4d
NC
672#define T_OPCODE_LDR_PC 0x4800
673#define T_OPCODE_LDR_SP 0x9800
674#define T_OPCODE_STR_SP 0x9000
675#define T_OPCODE_LDR_IW 0x6800
676#define T_OPCODE_STR_IW 0x6000
677#define T_OPCODE_LDR_IH 0x8800
678#define T_OPCODE_STR_IH 0x8000
679#define T_OPCODE_LDR_IB 0x7800
680#define T_OPCODE_STR_IB 0x7000
681#define T_OPCODE_LDR_RW 0x5800
682#define T_OPCODE_STR_RW 0x5000
683#define T_OPCODE_LDR_RH 0x5a00
684#define T_OPCODE_STR_RH 0x5200
685#define T_OPCODE_LDR_RB 0x5c00
686#define T_OPCODE_STR_RB 0x5400
c9b604bd 687
a737bd4d
NC
688#define T_OPCODE_PUSH 0xb400
689#define T_OPCODE_POP 0xbc00
b99bd4ef 690
2fc8bdac 691#define T_OPCODE_BRANCH 0xe000
b99bd4ef 692
a737bd4d 693#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 694#define THUMB_PP_PC_LR 0x0100
c19d1205 695#define THUMB_LOAD_BIT 0x0800
53365c0d 696#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
697
698#define BAD_ARGS _("bad arguments to instruction")
fdfde340 699#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
700#define BAD_PC _("r15 not allowed here")
701#define BAD_COND _("instruction cannot be conditional")
702#define BAD_OVERLAP _("registers may not be the same")
703#define BAD_HIREG _("lo register required")
704#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 705#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
706#define BAD_BRANCH _("branch must be last instruction in IT block")
707#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 708#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
709#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
710#define BAD_IT_COND _("incorrect condition in IT block")
711#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 712#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
713#define BAD_PC_ADDRESSING \
714 _("cannot use register index with PC-relative addressing")
715#define BAD_PC_WRITEBACK \
716 _("cannot use writeback with PC-relative addressing")
c19d1205 717
c921be7d
NC
718static struct hash_control * arm_ops_hsh;
719static struct hash_control * arm_cond_hsh;
720static struct hash_control * arm_shift_hsh;
721static struct hash_control * arm_psr_hsh;
722static struct hash_control * arm_v7m_psr_hsh;
723static struct hash_control * arm_reg_hsh;
724static struct hash_control * arm_reloc_hsh;
725static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 726
b99bd4ef
NC
727/* Stuff needed to resolve the label ambiguity
728 As:
729 ...
730 label: <insn>
731 may differ from:
732 ...
733 label:
5f4273c7 734 <insn> */
b99bd4ef
NC
735
736symbolS * last_label_seen;
b34976b6 737static int label_is_thumb_function_name = FALSE;
e07e6e58 738
3d0c9500
NC
739/* Literal pool structure. Held on a per-section
740 and per-sub-section basis. */
a737bd4d 741
c19d1205 742#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 743typedef struct literal_pool
b99bd4ef 744{
c921be7d
NC
745 expressionS literals [MAX_LITERAL_POOL_SIZE];
746 unsigned int next_free_entry;
747 unsigned int id;
748 symbolS * symbol;
749 segT section;
750 subsegT sub_section;
751 struct literal_pool * next;
3d0c9500 752} literal_pool;
b99bd4ef 753
3d0c9500
NC
754/* Pointer to a linked list of literal pools. */
755literal_pool * list_of_pools = NULL;
e27ec89e 756
e07e6e58
NC
757#ifdef OBJ_ELF
758# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
759#else
760static struct current_it now_it;
761#endif
762
763static inline int
764now_it_compatible (int cond)
765{
766 return (cond & ~1) == (now_it.cc & ~1);
767}
768
769static inline int
770conditional_insn (void)
771{
772 return inst.cond != COND_ALWAYS;
773}
774
775static int in_it_block (void);
776
777static int handle_it_state (void);
778
779static void force_automatic_it_block_close (void);
780
c921be7d
NC
781static void it_fsm_post_encode (void);
782
e07e6e58
NC
783#define set_it_insn_type(type) \
784 do \
785 { \
786 inst.it_insn_type = type; \
787 if (handle_it_state () == FAIL) \
788 return; \
789 } \
790 while (0)
791
c921be7d
NC
792#define set_it_insn_type_nonvoid(type, failret) \
793 do \
794 { \
795 inst.it_insn_type = type; \
796 if (handle_it_state () == FAIL) \
797 return failret; \
798 } \
799 while(0)
800
e07e6e58
NC
801#define set_it_insn_type_last() \
802 do \
803 { \
804 if (inst.cond == COND_ALWAYS) \
805 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
806 else \
807 set_it_insn_type (INSIDE_IT_LAST_INSN); \
808 } \
809 while (0)
810
c19d1205 811/* Pure syntax. */
b99bd4ef 812
c19d1205
ZW
813/* This array holds the chars that always start a comment. If the
814 pre-processor is disabled, these aren't very useful. */
815const char comment_chars[] = "@";
3d0c9500 816
c19d1205
ZW
817/* This array holds the chars that only start a comment at the beginning of
818 a line. If the line seems to have the form '# 123 filename'
819 .line and .file directives will appear in the pre-processed output. */
820/* Note that input_file.c hand checks for '#' at the beginning of the
821 first line of the input file. This is because the compiler outputs
822 #NO_APP at the beginning of its output. */
823/* Also note that comments like this one will always work. */
824const char line_comment_chars[] = "#";
3d0c9500 825
c19d1205 826const char line_separator_chars[] = ";";
b99bd4ef 827
c19d1205
ZW
828/* Chars that can be used to separate mant
829 from exp in floating point numbers. */
830const char EXP_CHARS[] = "eE";
3d0c9500 831
c19d1205
ZW
832/* Chars that mean this number is a floating point constant. */
833/* As in 0f12.456 */
834/* or 0d1.2345e12 */
b99bd4ef 835
c19d1205 836const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 837
c19d1205
ZW
838/* Prefix characters that indicate the start of an immediate
839 value. */
840#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 841
c19d1205
ZW
842/* Separator character handling. */
843
844#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
845
846static inline int
847skip_past_char (char ** str, char c)
848{
849 if (**str == c)
850 {
851 (*str)++;
852 return SUCCESS;
3d0c9500 853 }
c19d1205
ZW
854 else
855 return FAIL;
856}
c921be7d 857
c19d1205 858#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 859
c19d1205
ZW
860/* Arithmetic expressions (possibly involving symbols). */
861
862/* Return TRUE if anything in the expression is a bignum. */
863
864static int
865walk_no_bignums (symbolS * sp)
866{
867 if (symbol_get_value_expression (sp)->X_op == O_big)
868 return 1;
869
870 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 871 {
c19d1205
ZW
872 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
873 || (symbol_get_value_expression (sp)->X_op_symbol
874 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
875 }
876
c19d1205 877 return 0;
3d0c9500
NC
878}
879
c19d1205
ZW
880static int in_my_get_expression = 0;
881
882/* Third argument to my_get_expression. */
883#define GE_NO_PREFIX 0
884#define GE_IMM_PREFIX 1
885#define GE_OPT_PREFIX 2
5287ad62
JB
886/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
887 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
888#define GE_OPT_PREFIX_BIG 3
a737bd4d 889
b99bd4ef 890static int
c19d1205 891my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 892{
c19d1205
ZW
893 char * save_in;
894 segT seg;
b99bd4ef 895
c19d1205
ZW
896 /* In unified syntax, all prefixes are optional. */
897 if (unified_syntax)
5287ad62
JB
898 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
899 : GE_OPT_PREFIX;
b99bd4ef 900
c19d1205 901 switch (prefix_mode)
b99bd4ef 902 {
c19d1205
ZW
903 case GE_NO_PREFIX: break;
904 case GE_IMM_PREFIX:
905 if (!is_immediate_prefix (**str))
906 {
907 inst.error = _("immediate expression requires a # prefix");
908 return FAIL;
909 }
910 (*str)++;
911 break;
912 case GE_OPT_PREFIX:
5287ad62 913 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
914 if (is_immediate_prefix (**str))
915 (*str)++;
916 break;
917 default: abort ();
918 }
b99bd4ef 919
c19d1205 920 memset (ep, 0, sizeof (expressionS));
b99bd4ef 921
c19d1205
ZW
922 save_in = input_line_pointer;
923 input_line_pointer = *str;
924 in_my_get_expression = 1;
925 seg = expression (ep);
926 in_my_get_expression = 0;
927
f86adc07 928 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 929 {
f86adc07 930 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
931 *str = input_line_pointer;
932 input_line_pointer = save_in;
933 if (inst.error == NULL)
f86adc07
NS
934 inst.error = (ep->X_op == O_absent
935 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
936 return 1;
937 }
b99bd4ef 938
c19d1205
ZW
939#ifdef OBJ_AOUT
940 if (seg != absolute_section
941 && seg != text_section
942 && seg != data_section
943 && seg != bss_section
944 && seg != undefined_section)
945 {
946 inst.error = _("bad segment");
947 *str = input_line_pointer;
948 input_line_pointer = save_in;
949 return 1;
b99bd4ef 950 }
87975d2a
AM
951#else
952 (void) seg;
c19d1205 953#endif
b99bd4ef 954
c19d1205
ZW
955 /* Get rid of any bignums now, so that we don't generate an error for which
956 we can't establish a line number later on. Big numbers are never valid
957 in instructions, which is where this routine is always called. */
5287ad62
JB
958 if (prefix_mode != GE_OPT_PREFIX_BIG
959 && (ep->X_op == O_big
960 || (ep->X_add_symbol
961 && (walk_no_bignums (ep->X_add_symbol)
962 || (ep->X_op_symbol
963 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
964 {
965 inst.error = _("invalid constant");
966 *str = input_line_pointer;
967 input_line_pointer = save_in;
968 return 1;
969 }
b99bd4ef 970
c19d1205
ZW
971 *str = input_line_pointer;
972 input_line_pointer = save_in;
973 return 0;
b99bd4ef
NC
974}
975
c19d1205
ZW
976/* Turn a string in input_line_pointer into a floating point constant
977 of type TYPE, and store the appropriate bytes in *LITP. The number
978 of LITTLENUMS emitted is stored in *SIZEP. An error message is
979 returned, or NULL on OK.
b99bd4ef 980
c19d1205
ZW
981 Note that fp constants aren't represent in the normal way on the ARM.
982 In big endian mode, things are as expected. However, in little endian
983 mode fp constants are big-endian word-wise, and little-endian byte-wise
984 within the words. For example, (double) 1.1 in big endian mode is
985 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
986 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 987
c19d1205 988 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 989
c19d1205
ZW
990char *
991md_atof (int type, char * litP, int * sizeP)
992{
993 int prec;
994 LITTLENUM_TYPE words[MAX_LITTLENUMS];
995 char *t;
996 int i;
b99bd4ef 997
c19d1205
ZW
998 switch (type)
999 {
1000 case 'f':
1001 case 'F':
1002 case 's':
1003 case 'S':
1004 prec = 2;
1005 break;
b99bd4ef 1006
c19d1205
ZW
1007 case 'd':
1008 case 'D':
1009 case 'r':
1010 case 'R':
1011 prec = 4;
1012 break;
b99bd4ef 1013
c19d1205
ZW
1014 case 'x':
1015 case 'X':
499ac353 1016 prec = 5;
c19d1205 1017 break;
b99bd4ef 1018
c19d1205
ZW
1019 case 'p':
1020 case 'P':
499ac353 1021 prec = 5;
c19d1205 1022 break;
a737bd4d 1023
c19d1205
ZW
1024 default:
1025 *sizeP = 0;
499ac353 1026 return _("Unrecognized or unsupported floating point constant");
c19d1205 1027 }
b99bd4ef 1028
c19d1205
ZW
1029 t = atof_ieee (input_line_pointer, type, words);
1030 if (t)
1031 input_line_pointer = t;
499ac353 1032 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1033
c19d1205
ZW
1034 if (target_big_endian)
1035 {
1036 for (i = 0; i < prec; i++)
1037 {
499ac353
NC
1038 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1039 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1040 }
1041 }
1042 else
1043 {
e74cfd16 1044 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1045 for (i = prec - 1; i >= 0; i--)
1046 {
499ac353
NC
1047 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1048 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1049 }
1050 else
1051 /* For a 4 byte float the order of elements in `words' is 1 0.
1052 For an 8 byte float the order is 1 0 3 2. */
1053 for (i = 0; i < prec; i += 2)
1054 {
499ac353
NC
1055 md_number_to_chars (litP, (valueT) words[i + 1],
1056 sizeof (LITTLENUM_TYPE));
1057 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1058 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1059 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1060 }
1061 }
b99bd4ef 1062
499ac353 1063 return NULL;
c19d1205 1064}
b99bd4ef 1065
c19d1205
ZW
1066/* We handle all bad expressions here, so that we can report the faulty
1067 instruction in the error message. */
1068void
91d6fa6a 1069md_operand (expressionS * exp)
c19d1205
ZW
1070{
1071 if (in_my_get_expression)
91d6fa6a 1072 exp->X_op = O_illegal;
b99bd4ef
NC
1073}
1074
c19d1205 1075/* Immediate values. */
b99bd4ef 1076
c19d1205
ZW
1077/* Generic immediate-value read function for use in directives.
1078 Accepts anything that 'expression' can fold to a constant.
1079 *val receives the number. */
1080#ifdef OBJ_ELF
1081static int
1082immediate_for_directive (int *val)
b99bd4ef 1083{
c19d1205
ZW
1084 expressionS exp;
1085 exp.X_op = O_illegal;
b99bd4ef 1086
c19d1205
ZW
1087 if (is_immediate_prefix (*input_line_pointer))
1088 {
1089 input_line_pointer++;
1090 expression (&exp);
1091 }
b99bd4ef 1092
c19d1205
ZW
1093 if (exp.X_op != O_constant)
1094 {
1095 as_bad (_("expected #constant"));
1096 ignore_rest_of_line ();
1097 return FAIL;
1098 }
1099 *val = exp.X_add_number;
1100 return SUCCESS;
b99bd4ef 1101}
c19d1205 1102#endif
b99bd4ef 1103
c19d1205 1104/* Register parsing. */
b99bd4ef 1105
c19d1205
ZW
1106/* Generic register parser. CCP points to what should be the
1107 beginning of a register name. If it is indeed a valid register
1108 name, advance CCP over it and return the reg_entry structure;
1109 otherwise return NULL. Does not issue diagnostics. */
1110
1111static struct reg_entry *
1112arm_reg_parse_multi (char **ccp)
b99bd4ef 1113{
c19d1205
ZW
1114 char *start = *ccp;
1115 char *p;
1116 struct reg_entry *reg;
b99bd4ef 1117
c19d1205
ZW
1118#ifdef REGISTER_PREFIX
1119 if (*start != REGISTER_PREFIX)
01cfc07f 1120 return NULL;
c19d1205
ZW
1121 start++;
1122#endif
1123#ifdef OPTIONAL_REGISTER_PREFIX
1124 if (*start == OPTIONAL_REGISTER_PREFIX)
1125 start++;
1126#endif
b99bd4ef 1127
c19d1205
ZW
1128 p = start;
1129 if (!ISALPHA (*p) || !is_name_beginner (*p))
1130 return NULL;
b99bd4ef 1131
c19d1205
ZW
1132 do
1133 p++;
1134 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1135
1136 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1137
1138 if (!reg)
1139 return NULL;
1140
1141 *ccp = p;
1142 return reg;
b99bd4ef
NC
1143}
1144
1145static int
dcbf9037
JB
1146arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1147 enum arm_reg_type type)
b99bd4ef 1148{
c19d1205
ZW
1149 /* Alternative syntaxes are accepted for a few register classes. */
1150 switch (type)
1151 {
1152 case REG_TYPE_MVF:
1153 case REG_TYPE_MVD:
1154 case REG_TYPE_MVFX:
1155 case REG_TYPE_MVDX:
1156 /* Generic coprocessor register names are allowed for these. */
79134647 1157 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1158 return reg->number;
1159 break;
69b97547 1160
c19d1205
ZW
1161 case REG_TYPE_CP:
1162 /* For backward compatibility, a bare number is valid here. */
1163 {
1164 unsigned long processor = strtoul (start, ccp, 10);
1165 if (*ccp != start && processor <= 15)
1166 return processor;
1167 }
6057a28f 1168
c19d1205
ZW
1169 case REG_TYPE_MMXWC:
1170 /* WC includes WCG. ??? I'm not sure this is true for all
1171 instructions that take WC registers. */
79134647 1172 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1173 return reg->number;
6057a28f 1174 break;
c19d1205 1175
6057a28f 1176 default:
c19d1205 1177 break;
6057a28f
NC
1178 }
1179
dcbf9037
JB
1180 return FAIL;
1181}
1182
1183/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1184 return value is the register number or FAIL. */
1185
1186static int
1187arm_reg_parse (char **ccp, enum arm_reg_type type)
1188{
1189 char *start = *ccp;
1190 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1191 int ret;
1192
1193 /* Do not allow a scalar (reg+index) to parse as a register. */
1194 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1195 return FAIL;
1196
1197 if (reg && reg->type == type)
1198 return reg->number;
1199
1200 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1201 return ret;
1202
c19d1205
ZW
1203 *ccp = start;
1204 return FAIL;
1205}
69b97547 1206
dcbf9037
JB
1207/* Parse a Neon type specifier. *STR should point at the leading '.'
1208 character. Does no verification at this stage that the type fits the opcode
1209 properly. E.g.,
1210
1211 .i32.i32.s16
1212 .s32.f32
1213 .u16
1214
1215 Can all be legally parsed by this function.
1216
1217 Fills in neon_type struct pointer with parsed information, and updates STR
1218 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1219 type, FAIL if not. */
1220
1221static int
1222parse_neon_type (struct neon_type *type, char **str)
1223{
1224 char *ptr = *str;
1225
1226 if (type)
1227 type->elems = 0;
1228
1229 while (type->elems < NEON_MAX_TYPE_ELS)
1230 {
1231 enum neon_el_type thistype = NT_untyped;
1232 unsigned thissize = -1u;
1233
1234 if (*ptr != '.')
1235 break;
1236
1237 ptr++;
1238
1239 /* Just a size without an explicit type. */
1240 if (ISDIGIT (*ptr))
1241 goto parsesize;
1242
1243 switch (TOLOWER (*ptr))
1244 {
1245 case 'i': thistype = NT_integer; break;
1246 case 'f': thistype = NT_float; break;
1247 case 'p': thistype = NT_poly; break;
1248 case 's': thistype = NT_signed; break;
1249 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1250 case 'd':
1251 thistype = NT_float;
1252 thissize = 64;
1253 ptr++;
1254 goto done;
dcbf9037
JB
1255 default:
1256 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1257 return FAIL;
1258 }
1259
1260 ptr++;
1261
1262 /* .f is an abbreviation for .f32. */
1263 if (thistype == NT_float && !ISDIGIT (*ptr))
1264 thissize = 32;
1265 else
1266 {
1267 parsesize:
1268 thissize = strtoul (ptr, &ptr, 10);
1269
1270 if (thissize != 8 && thissize != 16 && thissize != 32
1271 && thissize != 64)
1272 {
1273 as_bad (_("bad size %d in type specifier"), thissize);
1274 return FAIL;
1275 }
1276 }
1277
037e8744 1278 done:
dcbf9037
JB
1279 if (type)
1280 {
1281 type->el[type->elems].type = thistype;
1282 type->el[type->elems].size = thissize;
1283 type->elems++;
1284 }
1285 }
1286
1287 /* Empty/missing type is not a successful parse. */
1288 if (type->elems == 0)
1289 return FAIL;
1290
1291 *str = ptr;
1292
1293 return SUCCESS;
1294}
1295
1296/* Errors may be set multiple times during parsing or bit encoding
1297 (particularly in the Neon bits), but usually the earliest error which is set
1298 will be the most meaningful. Avoid overwriting it with later (cascading)
1299 errors by calling this function. */
1300
1301static void
1302first_error (const char *err)
1303{
1304 if (!inst.error)
1305 inst.error = err;
1306}
1307
1308/* Parse a single type, e.g. ".s32", leading period included. */
1309static int
1310parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1311{
1312 char *str = *ccp;
1313 struct neon_type optype;
1314
1315 if (*str == '.')
1316 {
1317 if (parse_neon_type (&optype, &str) == SUCCESS)
1318 {
1319 if (optype.elems == 1)
1320 *vectype = optype.el[0];
1321 else
1322 {
1323 first_error (_("only one type should be specified for operand"));
1324 return FAIL;
1325 }
1326 }
1327 else
1328 {
1329 first_error (_("vector type expected"));
1330 return FAIL;
1331 }
1332 }
1333 else
1334 return FAIL;
5f4273c7 1335
dcbf9037 1336 *ccp = str;
5f4273c7 1337
dcbf9037
JB
1338 return SUCCESS;
1339}
1340
1341/* Special meanings for indices (which have a range of 0-7), which will fit into
1342 a 4-bit integer. */
1343
1344#define NEON_ALL_LANES 15
1345#define NEON_INTERLEAVE_LANES 14
1346
1347/* Parse either a register or a scalar, with an optional type. Return the
1348 register number, and optionally fill in the actual type of the register
1349 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1350 type/index information in *TYPEINFO. */
1351
1352static int
1353parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1354 enum arm_reg_type *rtype,
1355 struct neon_typed_alias *typeinfo)
1356{
1357 char *str = *ccp;
1358 struct reg_entry *reg = arm_reg_parse_multi (&str);
1359 struct neon_typed_alias atype;
1360 struct neon_type_el parsetype;
1361
1362 atype.defined = 0;
1363 atype.index = -1;
1364 atype.eltype.type = NT_invtype;
1365 atype.eltype.size = -1;
1366
1367 /* Try alternate syntax for some types of register. Note these are mutually
1368 exclusive with the Neon syntax extensions. */
1369 if (reg == NULL)
1370 {
1371 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1372 if (altreg != FAIL)
1373 *ccp = str;
1374 if (typeinfo)
1375 *typeinfo = atype;
1376 return altreg;
1377 }
1378
037e8744
JB
1379 /* Undo polymorphism when a set of register types may be accepted. */
1380 if ((type == REG_TYPE_NDQ
1381 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1382 || (type == REG_TYPE_VFSD
1383 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1384 || (type == REG_TYPE_NSDQ
1385 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1386 || reg->type == REG_TYPE_NQ))
1387 || (type == REG_TYPE_MMXWC
1388 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1389 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1390
1391 if (type != reg->type)
1392 return FAIL;
1393
1394 if (reg->neon)
1395 atype = *reg->neon;
5f4273c7 1396
dcbf9037
JB
1397 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1398 {
1399 if ((atype.defined & NTA_HASTYPE) != 0)
1400 {
1401 first_error (_("can't redefine type for operand"));
1402 return FAIL;
1403 }
1404 atype.defined |= NTA_HASTYPE;
1405 atype.eltype = parsetype;
1406 }
5f4273c7 1407
dcbf9037
JB
1408 if (skip_past_char (&str, '[') == SUCCESS)
1409 {
1410 if (type != REG_TYPE_VFD)
1411 {
1412 first_error (_("only D registers may be indexed"));
1413 return FAIL;
1414 }
5f4273c7 1415
dcbf9037
JB
1416 if ((atype.defined & NTA_HASINDEX) != 0)
1417 {
1418 first_error (_("can't change index for operand"));
1419 return FAIL;
1420 }
1421
1422 atype.defined |= NTA_HASINDEX;
1423
1424 if (skip_past_char (&str, ']') == SUCCESS)
1425 atype.index = NEON_ALL_LANES;
1426 else
1427 {
1428 expressionS exp;
1429
1430 my_get_expression (&exp, &str, GE_NO_PREFIX);
1431
1432 if (exp.X_op != O_constant)
1433 {
1434 first_error (_("constant expression required"));
1435 return FAIL;
1436 }
1437
1438 if (skip_past_char (&str, ']') == FAIL)
1439 return FAIL;
1440
1441 atype.index = exp.X_add_number;
1442 }
1443 }
5f4273c7 1444
dcbf9037
JB
1445 if (typeinfo)
1446 *typeinfo = atype;
5f4273c7 1447
dcbf9037
JB
1448 if (rtype)
1449 *rtype = type;
5f4273c7 1450
dcbf9037 1451 *ccp = str;
5f4273c7 1452
dcbf9037
JB
1453 return reg->number;
1454}
1455
1456/* Like arm_reg_parse, but allow allow the following extra features:
1457 - If RTYPE is non-zero, return the (possibly restricted) type of the
1458 register (e.g. Neon double or quad reg when either has been requested).
1459 - If this is a Neon vector type with additional type information, fill
1460 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1461 This function will fault on encountering a scalar. */
dcbf9037
JB
1462
1463static int
1464arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1465 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1466{
1467 struct neon_typed_alias atype;
1468 char *str = *ccp;
1469 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1470
1471 if (reg == FAIL)
1472 return FAIL;
1473
1474 /* Do not allow a scalar (reg+index) to parse as a register. */
1475 if ((atype.defined & NTA_HASINDEX) != 0)
1476 {
1477 first_error (_("register operand expected, but got scalar"));
1478 return FAIL;
1479 }
1480
1481 if (vectype)
1482 *vectype = atype.eltype;
1483
1484 *ccp = str;
1485
1486 return reg;
1487}
1488
1489#define NEON_SCALAR_REG(X) ((X) >> 4)
1490#define NEON_SCALAR_INDEX(X) ((X) & 15)
1491
5287ad62
JB
1492/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1493 have enough information to be able to do a good job bounds-checking. So, we
1494 just do easy checks here, and do further checks later. */
1495
1496static int
dcbf9037 1497parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1498{
dcbf9037 1499 int reg;
5287ad62 1500 char *str = *ccp;
dcbf9037 1501 struct neon_typed_alias atype;
5f4273c7 1502
dcbf9037 1503 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1504
dcbf9037 1505 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1506 return FAIL;
5f4273c7 1507
dcbf9037 1508 if (atype.index == NEON_ALL_LANES)
5287ad62 1509 {
dcbf9037 1510 first_error (_("scalar must have an index"));
5287ad62
JB
1511 return FAIL;
1512 }
dcbf9037 1513 else if (atype.index >= 64 / elsize)
5287ad62 1514 {
dcbf9037 1515 first_error (_("scalar index out of range"));
5287ad62
JB
1516 return FAIL;
1517 }
5f4273c7 1518
dcbf9037
JB
1519 if (type)
1520 *type = atype.eltype;
5f4273c7 1521
5287ad62 1522 *ccp = str;
5f4273c7 1523
dcbf9037 1524 return reg * 16 + atype.index;
5287ad62
JB
1525}
1526
c19d1205 1527/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1528
c19d1205
ZW
1529static long
1530parse_reg_list (char ** strp)
1531{
1532 char * str = * strp;
1533 long range = 0;
1534 int another_range;
a737bd4d 1535
c19d1205
ZW
1536 /* We come back here if we get ranges concatenated by '+' or '|'. */
1537 do
6057a28f 1538 {
c19d1205 1539 another_range = 0;
a737bd4d 1540
c19d1205
ZW
1541 if (*str == '{')
1542 {
1543 int in_range = 0;
1544 int cur_reg = -1;
a737bd4d 1545
c19d1205
ZW
1546 str++;
1547 do
1548 {
1549 int reg;
6057a28f 1550
dcbf9037 1551 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1552 {
dcbf9037 1553 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1554 return FAIL;
1555 }
a737bd4d 1556
c19d1205
ZW
1557 if (in_range)
1558 {
1559 int i;
a737bd4d 1560
c19d1205
ZW
1561 if (reg <= cur_reg)
1562 {
dcbf9037 1563 first_error (_("bad range in register list"));
c19d1205
ZW
1564 return FAIL;
1565 }
40a18ebd 1566
c19d1205
ZW
1567 for (i = cur_reg + 1; i < reg; i++)
1568 {
1569 if (range & (1 << i))
1570 as_tsktsk
1571 (_("Warning: duplicated register (r%d) in register list"),
1572 i);
1573 else
1574 range |= 1 << i;
1575 }
1576 in_range = 0;
1577 }
a737bd4d 1578
c19d1205
ZW
1579 if (range & (1 << reg))
1580 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1581 reg);
1582 else if (reg <= cur_reg)
1583 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1584
c19d1205
ZW
1585 range |= 1 << reg;
1586 cur_reg = reg;
1587 }
1588 while (skip_past_comma (&str) != FAIL
1589 || (in_range = 1, *str++ == '-'));
1590 str--;
a737bd4d 1591
c19d1205
ZW
1592 if (*str++ != '}')
1593 {
dcbf9037 1594 first_error (_("missing `}'"));
c19d1205
ZW
1595 return FAIL;
1596 }
1597 }
1598 else
1599 {
91d6fa6a 1600 expressionS exp;
40a18ebd 1601
91d6fa6a 1602 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1603 return FAIL;
40a18ebd 1604
91d6fa6a 1605 if (exp.X_op == O_constant)
c19d1205 1606 {
91d6fa6a
NC
1607 if (exp.X_add_number
1608 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1609 {
1610 inst.error = _("invalid register mask");
1611 return FAIL;
1612 }
a737bd4d 1613
91d6fa6a 1614 if ((range & exp.X_add_number) != 0)
c19d1205 1615 {
91d6fa6a 1616 int regno = range & exp.X_add_number;
a737bd4d 1617
c19d1205
ZW
1618 regno &= -regno;
1619 regno = (1 << regno) - 1;
1620 as_tsktsk
1621 (_("Warning: duplicated register (r%d) in register list"),
1622 regno);
1623 }
a737bd4d 1624
91d6fa6a 1625 range |= exp.X_add_number;
c19d1205
ZW
1626 }
1627 else
1628 {
1629 if (inst.reloc.type != 0)
1630 {
1631 inst.error = _("expression too complex");
1632 return FAIL;
1633 }
a737bd4d 1634
91d6fa6a 1635 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1636 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1637 inst.reloc.pc_rel = 0;
1638 }
1639 }
a737bd4d 1640
c19d1205
ZW
1641 if (*str == '|' || *str == '+')
1642 {
1643 str++;
1644 another_range = 1;
1645 }
a737bd4d 1646 }
c19d1205 1647 while (another_range);
a737bd4d 1648
c19d1205
ZW
1649 *strp = str;
1650 return range;
a737bd4d
NC
1651}
1652
5287ad62
JB
1653/* Types of registers in a list. */
1654
1655enum reg_list_els
1656{
1657 REGLIST_VFP_S,
1658 REGLIST_VFP_D,
1659 REGLIST_NEON_D
1660};
1661
c19d1205
ZW
1662/* Parse a VFP register list. If the string is invalid return FAIL.
1663 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1664 register. Parses registers of type ETYPE.
1665 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1666 - Q registers can be used to specify pairs of D registers
1667 - { } can be omitted from around a singleton register list
1668 FIXME: This is not implemented, as it would require backtracking in
1669 some cases, e.g.:
1670 vtbl.8 d3,d4,d5
1671 This could be done (the meaning isn't really ambiguous), but doesn't
1672 fit in well with the current parsing framework.
dcbf9037
JB
1673 - 32 D registers may be used (also true for VFPv3).
1674 FIXME: Types are ignored in these register lists, which is probably a
1675 bug. */
6057a28f 1676
c19d1205 1677static int
037e8744 1678parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1679{
037e8744 1680 char *str = *ccp;
c19d1205
ZW
1681 int base_reg;
1682 int new_base;
21d799b5 1683 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1684 int max_regs = 0;
c19d1205
ZW
1685 int count = 0;
1686 int warned = 0;
1687 unsigned long mask = 0;
a737bd4d 1688 int i;
6057a28f 1689
037e8744 1690 if (*str != '{')
5287ad62
JB
1691 {
1692 inst.error = _("expecting {");
1693 return FAIL;
1694 }
6057a28f 1695
037e8744 1696 str++;
6057a28f 1697
5287ad62 1698 switch (etype)
c19d1205 1699 {
5287ad62 1700 case REGLIST_VFP_S:
c19d1205
ZW
1701 regtype = REG_TYPE_VFS;
1702 max_regs = 32;
5287ad62 1703 break;
5f4273c7 1704
5287ad62
JB
1705 case REGLIST_VFP_D:
1706 regtype = REG_TYPE_VFD;
b7fc2769 1707 break;
5f4273c7 1708
b7fc2769
JB
1709 case REGLIST_NEON_D:
1710 regtype = REG_TYPE_NDQ;
1711 break;
1712 }
1713
1714 if (etype != REGLIST_VFP_S)
1715 {
b1cc4aeb
PB
1716 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1717 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1718 {
1719 max_regs = 32;
1720 if (thumb_mode)
1721 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1722 fpu_vfp_ext_d32);
5287ad62
JB
1723 else
1724 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1725 fpu_vfp_ext_d32);
5287ad62
JB
1726 }
1727 else
1728 max_regs = 16;
c19d1205 1729 }
6057a28f 1730
c19d1205 1731 base_reg = max_regs;
a737bd4d 1732
c19d1205
ZW
1733 do
1734 {
5287ad62 1735 int setmask = 1, addregs = 1;
dcbf9037 1736
037e8744 1737 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1738
c19d1205 1739 if (new_base == FAIL)
a737bd4d 1740 {
dcbf9037 1741 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1742 return FAIL;
1743 }
5f4273c7 1744
b7fc2769
JB
1745 if (new_base >= max_regs)
1746 {
1747 first_error (_("register out of range in list"));
1748 return FAIL;
1749 }
5f4273c7 1750
5287ad62
JB
1751 /* Note: a value of 2 * n is returned for the register Q<n>. */
1752 if (regtype == REG_TYPE_NQ)
1753 {
1754 setmask = 3;
1755 addregs = 2;
1756 }
1757
c19d1205
ZW
1758 if (new_base < base_reg)
1759 base_reg = new_base;
a737bd4d 1760
5287ad62 1761 if (mask & (setmask << new_base))
c19d1205 1762 {
dcbf9037 1763 first_error (_("invalid register list"));
c19d1205 1764 return FAIL;
a737bd4d 1765 }
a737bd4d 1766
c19d1205
ZW
1767 if ((mask >> new_base) != 0 && ! warned)
1768 {
1769 as_tsktsk (_("register list not in ascending order"));
1770 warned = 1;
1771 }
0bbf2aa4 1772
5287ad62
JB
1773 mask |= setmask << new_base;
1774 count += addregs;
0bbf2aa4 1775
037e8744 1776 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1777 {
1778 int high_range;
0bbf2aa4 1779
037e8744 1780 str++;
0bbf2aa4 1781
037e8744 1782 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1783 == FAIL)
c19d1205
ZW
1784 {
1785 inst.error = gettext (reg_expected_msgs[regtype]);
1786 return FAIL;
1787 }
0bbf2aa4 1788
b7fc2769
JB
1789 if (high_range >= max_regs)
1790 {
1791 first_error (_("register out of range in list"));
1792 return FAIL;
1793 }
1794
5287ad62
JB
1795 if (regtype == REG_TYPE_NQ)
1796 high_range = high_range + 1;
1797
c19d1205
ZW
1798 if (high_range <= new_base)
1799 {
1800 inst.error = _("register range not in ascending order");
1801 return FAIL;
1802 }
0bbf2aa4 1803
5287ad62 1804 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1805 {
5287ad62 1806 if (mask & (setmask << new_base))
0bbf2aa4 1807 {
c19d1205
ZW
1808 inst.error = _("invalid register list");
1809 return FAIL;
0bbf2aa4 1810 }
c19d1205 1811
5287ad62
JB
1812 mask |= setmask << new_base;
1813 count += addregs;
0bbf2aa4 1814 }
0bbf2aa4 1815 }
0bbf2aa4 1816 }
037e8744 1817 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1818
037e8744 1819 str++;
0bbf2aa4 1820
c19d1205
ZW
1821 /* Sanity check -- should have raised a parse error above. */
1822 if (count == 0 || count > max_regs)
1823 abort ();
1824
1825 *pbase = base_reg;
1826
1827 /* Final test -- the registers must be consecutive. */
1828 mask >>= base_reg;
1829 for (i = 0; i < count; i++)
1830 {
1831 if ((mask & (1u << i)) == 0)
1832 {
1833 inst.error = _("non-contiguous register range");
1834 return FAIL;
1835 }
1836 }
1837
037e8744
JB
1838 *ccp = str;
1839
c19d1205 1840 return count;
b99bd4ef
NC
1841}
1842
dcbf9037
JB
1843/* True if two alias types are the same. */
1844
c921be7d 1845static bfd_boolean
dcbf9037
JB
1846neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1847{
1848 if (!a && !b)
c921be7d 1849 return TRUE;
5f4273c7 1850
dcbf9037 1851 if (!a || !b)
c921be7d 1852 return FALSE;
dcbf9037
JB
1853
1854 if (a->defined != b->defined)
c921be7d 1855 return FALSE;
5f4273c7 1856
dcbf9037
JB
1857 if ((a->defined & NTA_HASTYPE) != 0
1858 && (a->eltype.type != b->eltype.type
1859 || a->eltype.size != b->eltype.size))
c921be7d 1860 return FALSE;
dcbf9037
JB
1861
1862 if ((a->defined & NTA_HASINDEX) != 0
1863 && (a->index != b->index))
c921be7d 1864 return FALSE;
5f4273c7 1865
c921be7d 1866 return TRUE;
dcbf9037
JB
1867}
1868
5287ad62
JB
1869/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1870 The base register is put in *PBASE.
dcbf9037 1871 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1872 the return value.
1873 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1874 Bits [6:5] encode the list length (minus one).
1875 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1876
5287ad62 1877#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1878#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1879#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1880
1881static int
dcbf9037
JB
1882parse_neon_el_struct_list (char **str, unsigned *pbase,
1883 struct neon_type_el *eltype)
5287ad62
JB
1884{
1885 char *ptr = *str;
1886 int base_reg = -1;
1887 int reg_incr = -1;
1888 int count = 0;
1889 int lane = -1;
1890 int leading_brace = 0;
1891 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1892 const char *const incr_error = _("register stride must be 1 or 2");
1893 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1894 struct neon_typed_alias firsttype;
5f4273c7 1895
5287ad62
JB
1896 if (skip_past_char (&ptr, '{') == SUCCESS)
1897 leading_brace = 1;
5f4273c7 1898
5287ad62
JB
1899 do
1900 {
dcbf9037
JB
1901 struct neon_typed_alias atype;
1902 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1903
5287ad62
JB
1904 if (getreg == FAIL)
1905 {
dcbf9037 1906 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1907 return FAIL;
1908 }
5f4273c7 1909
5287ad62
JB
1910 if (base_reg == -1)
1911 {
1912 base_reg = getreg;
1913 if (rtype == REG_TYPE_NQ)
1914 {
1915 reg_incr = 1;
5287ad62 1916 }
dcbf9037 1917 firsttype = atype;
5287ad62
JB
1918 }
1919 else if (reg_incr == -1)
1920 {
1921 reg_incr = getreg - base_reg;
1922 if (reg_incr < 1 || reg_incr > 2)
1923 {
dcbf9037 1924 first_error (_(incr_error));
5287ad62
JB
1925 return FAIL;
1926 }
1927 }
1928 else if (getreg != base_reg + reg_incr * count)
1929 {
dcbf9037
JB
1930 first_error (_(incr_error));
1931 return FAIL;
1932 }
1933
c921be7d 1934 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1935 {
1936 first_error (_(type_error));
5287ad62
JB
1937 return FAIL;
1938 }
5f4273c7 1939
5287ad62
JB
1940 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1941 modes. */
1942 if (ptr[0] == '-')
1943 {
dcbf9037 1944 struct neon_typed_alias htype;
5287ad62
JB
1945 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1946 if (lane == -1)
1947 lane = NEON_INTERLEAVE_LANES;
1948 else if (lane != NEON_INTERLEAVE_LANES)
1949 {
dcbf9037 1950 first_error (_(type_error));
5287ad62
JB
1951 return FAIL;
1952 }
1953 if (reg_incr == -1)
1954 reg_incr = 1;
1955 else if (reg_incr != 1)
1956 {
dcbf9037 1957 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1958 return FAIL;
1959 }
1960 ptr++;
dcbf9037 1961 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1962 if (hireg == FAIL)
1963 {
dcbf9037
JB
1964 first_error (_(reg_expected_msgs[rtype]));
1965 return FAIL;
1966 }
c921be7d 1967 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1968 {
1969 first_error (_(type_error));
5287ad62
JB
1970 return FAIL;
1971 }
1972 count += hireg + dregs - getreg;
1973 continue;
1974 }
5f4273c7 1975
5287ad62
JB
1976 /* If we're using Q registers, we can't use [] or [n] syntax. */
1977 if (rtype == REG_TYPE_NQ)
1978 {
1979 count += 2;
1980 continue;
1981 }
5f4273c7 1982
dcbf9037 1983 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1984 {
dcbf9037
JB
1985 if (lane == -1)
1986 lane = atype.index;
1987 else if (lane != atype.index)
5287ad62 1988 {
dcbf9037
JB
1989 first_error (_(type_error));
1990 return FAIL;
5287ad62
JB
1991 }
1992 }
1993 else if (lane == -1)
1994 lane = NEON_INTERLEAVE_LANES;
1995 else if (lane != NEON_INTERLEAVE_LANES)
1996 {
dcbf9037 1997 first_error (_(type_error));
5287ad62
JB
1998 return FAIL;
1999 }
2000 count++;
2001 }
2002 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2003
5287ad62
JB
2004 /* No lane set by [x]. We must be interleaving structures. */
2005 if (lane == -1)
2006 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2007
5287ad62
JB
2008 /* Sanity check. */
2009 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2010 || (count > 1 && reg_incr == -1))
2011 {
dcbf9037 2012 first_error (_("error parsing element/structure list"));
5287ad62
JB
2013 return FAIL;
2014 }
2015
2016 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2017 {
dcbf9037 2018 first_error (_("expected }"));
5287ad62
JB
2019 return FAIL;
2020 }
5f4273c7 2021
5287ad62
JB
2022 if (reg_incr == -1)
2023 reg_incr = 1;
2024
dcbf9037
JB
2025 if (eltype)
2026 *eltype = firsttype.eltype;
2027
5287ad62
JB
2028 *pbase = base_reg;
2029 *str = ptr;
5f4273c7 2030
5287ad62
JB
2031 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2032}
2033
c19d1205
ZW
2034/* Parse an explicit relocation suffix on an expression. This is
2035 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2036 arm_reloc_hsh contains no entries, so this function can only
2037 succeed if there is no () after the word. Returns -1 on error,
2038 BFD_RELOC_UNUSED if there wasn't any suffix. */
2039static int
2040parse_reloc (char **str)
b99bd4ef 2041{
c19d1205
ZW
2042 struct reloc_entry *r;
2043 char *p, *q;
b99bd4ef 2044
c19d1205
ZW
2045 if (**str != '(')
2046 return BFD_RELOC_UNUSED;
b99bd4ef 2047
c19d1205
ZW
2048 p = *str + 1;
2049 q = p;
2050
2051 while (*q && *q != ')' && *q != ',')
2052 q++;
2053 if (*q != ')')
2054 return -1;
2055
21d799b5
NC
2056 if ((r = (struct reloc_entry *)
2057 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2058 return -1;
2059
2060 *str = q + 1;
2061 return r->reloc;
b99bd4ef
NC
2062}
2063
c19d1205
ZW
2064/* Directives: register aliases. */
2065
dcbf9037 2066static struct reg_entry *
90ec0d68 2067insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2068{
d3ce72d0 2069 struct reg_entry *new_reg;
c19d1205 2070 const char *name;
b99bd4ef 2071
d3ce72d0 2072 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2073 {
d3ce72d0 2074 if (new_reg->builtin)
c19d1205 2075 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2076
c19d1205
ZW
2077 /* Only warn about a redefinition if it's not defined as the
2078 same register. */
d3ce72d0 2079 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2080 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2081
d929913e 2082 return NULL;
c19d1205 2083 }
b99bd4ef 2084
c19d1205 2085 name = xstrdup (str);
d3ce72d0 2086 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2087
d3ce72d0
NC
2088 new_reg->name = name;
2089 new_reg->number = number;
2090 new_reg->type = type;
2091 new_reg->builtin = FALSE;
2092 new_reg->neon = NULL;
b99bd4ef 2093
d3ce72d0 2094 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2095 abort ();
5f4273c7 2096
d3ce72d0 2097 return new_reg;
dcbf9037
JB
2098}
2099
2100static void
2101insert_neon_reg_alias (char *str, int number, int type,
2102 struct neon_typed_alias *atype)
2103{
2104 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2105
dcbf9037
JB
2106 if (!reg)
2107 {
2108 first_error (_("attempt to redefine typed alias"));
2109 return;
2110 }
5f4273c7 2111
dcbf9037
JB
2112 if (atype)
2113 {
21d799b5
NC
2114 reg->neon = (struct neon_typed_alias *)
2115 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2116 *reg->neon = *atype;
2117 }
c19d1205 2118}
b99bd4ef 2119
c19d1205 2120/* Look for the .req directive. This is of the form:
b99bd4ef 2121
c19d1205 2122 new_register_name .req existing_register_name
b99bd4ef 2123
c19d1205 2124 If we find one, or if it looks sufficiently like one that we want to
d929913e 2125 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2126
d929913e 2127static bfd_boolean
c19d1205
ZW
2128create_register_alias (char * newname, char *p)
2129{
2130 struct reg_entry *old;
2131 char *oldname, *nbuf;
2132 size_t nlen;
b99bd4ef 2133
c19d1205
ZW
2134 /* The input scrubber ensures that whitespace after the mnemonic is
2135 collapsed to single spaces. */
2136 oldname = p;
2137 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2138 return FALSE;
b99bd4ef 2139
c19d1205
ZW
2140 oldname += 6;
2141 if (*oldname == '\0')
d929913e 2142 return FALSE;
b99bd4ef 2143
21d799b5 2144 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2145 if (!old)
b99bd4ef 2146 {
c19d1205 2147 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2148 return TRUE;
b99bd4ef
NC
2149 }
2150
c19d1205
ZW
2151 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2152 the desired alias name, and p points to its end. If not, then
2153 the desired alias name is in the global original_case_string. */
2154#ifdef TC_CASE_SENSITIVE
2155 nlen = p - newname;
2156#else
2157 newname = original_case_string;
2158 nlen = strlen (newname);
2159#endif
b99bd4ef 2160
21d799b5 2161 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2162 memcpy (nbuf, newname, nlen);
2163 nbuf[nlen] = '\0';
b99bd4ef 2164
c19d1205
ZW
2165 /* Create aliases under the new name as stated; an all-lowercase
2166 version of the new name; and an all-uppercase version of the new
2167 name. */
d929913e
NC
2168 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2169 {
2170 for (p = nbuf; *p; p++)
2171 *p = TOUPPER (*p);
c19d1205 2172
d929913e
NC
2173 if (strncmp (nbuf, newname, nlen))
2174 {
2175 /* If this attempt to create an additional alias fails, do not bother
2176 trying to create the all-lower case alias. We will fail and issue
2177 a second, duplicate error message. This situation arises when the
2178 programmer does something like:
2179 foo .req r0
2180 Foo .req r1
2181 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2182 the artificial FOO alias because it has already been created by the
d929913e
NC
2183 first .req. */
2184 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2185 return TRUE;
2186 }
c19d1205 2187
d929913e
NC
2188 for (p = nbuf; *p; p++)
2189 *p = TOLOWER (*p);
c19d1205 2190
d929913e
NC
2191 if (strncmp (nbuf, newname, nlen))
2192 insert_reg_alias (nbuf, old->number, old->type);
2193 }
c19d1205 2194
d929913e 2195 return TRUE;
b99bd4ef
NC
2196}
2197
dcbf9037
JB
2198/* Create a Neon typed/indexed register alias using directives, e.g.:
2199 X .dn d5.s32[1]
2200 Y .qn 6.s16
2201 Z .dn d7
2202 T .dn Z[0]
2203 These typed registers can be used instead of the types specified after the
2204 Neon mnemonic, so long as all operands given have types. Types can also be
2205 specified directly, e.g.:
5f4273c7 2206 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2207
c921be7d 2208static bfd_boolean
dcbf9037
JB
2209create_neon_reg_alias (char *newname, char *p)
2210{
2211 enum arm_reg_type basetype;
2212 struct reg_entry *basereg;
2213 struct reg_entry mybasereg;
2214 struct neon_type ntype;
2215 struct neon_typed_alias typeinfo;
12d6b0b7 2216 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2217 int namelen;
5f4273c7 2218
dcbf9037
JB
2219 typeinfo.defined = 0;
2220 typeinfo.eltype.type = NT_invtype;
2221 typeinfo.eltype.size = -1;
2222 typeinfo.index = -1;
5f4273c7 2223
dcbf9037 2224 nameend = p;
5f4273c7 2225
dcbf9037
JB
2226 if (strncmp (p, " .dn ", 5) == 0)
2227 basetype = REG_TYPE_VFD;
2228 else if (strncmp (p, " .qn ", 5) == 0)
2229 basetype = REG_TYPE_NQ;
2230 else
c921be7d 2231 return FALSE;
5f4273c7 2232
dcbf9037 2233 p += 5;
5f4273c7 2234
dcbf9037 2235 if (*p == '\0')
c921be7d 2236 return FALSE;
5f4273c7 2237
dcbf9037
JB
2238 basereg = arm_reg_parse_multi (&p);
2239
2240 if (basereg && basereg->type != basetype)
2241 {
2242 as_bad (_("bad type for register"));
c921be7d 2243 return FALSE;
dcbf9037
JB
2244 }
2245
2246 if (basereg == NULL)
2247 {
2248 expressionS exp;
2249 /* Try parsing as an integer. */
2250 my_get_expression (&exp, &p, GE_NO_PREFIX);
2251 if (exp.X_op != O_constant)
2252 {
2253 as_bad (_("expression must be constant"));
c921be7d 2254 return FALSE;
dcbf9037
JB
2255 }
2256 basereg = &mybasereg;
2257 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2258 : exp.X_add_number;
2259 basereg->neon = 0;
2260 }
2261
2262 if (basereg->neon)
2263 typeinfo = *basereg->neon;
2264
2265 if (parse_neon_type (&ntype, &p) == SUCCESS)
2266 {
2267 /* We got a type. */
2268 if (typeinfo.defined & NTA_HASTYPE)
2269 {
2270 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2271 return FALSE;
dcbf9037 2272 }
5f4273c7 2273
dcbf9037
JB
2274 typeinfo.defined |= NTA_HASTYPE;
2275 if (ntype.elems != 1)
2276 {
2277 as_bad (_("you must specify a single type only"));
c921be7d 2278 return FALSE;
dcbf9037
JB
2279 }
2280 typeinfo.eltype = ntype.el[0];
2281 }
5f4273c7 2282
dcbf9037
JB
2283 if (skip_past_char (&p, '[') == SUCCESS)
2284 {
2285 expressionS exp;
2286 /* We got a scalar index. */
5f4273c7 2287
dcbf9037
JB
2288 if (typeinfo.defined & NTA_HASINDEX)
2289 {
2290 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2291 return FALSE;
dcbf9037 2292 }
5f4273c7 2293
dcbf9037 2294 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2295
dcbf9037
JB
2296 if (exp.X_op != O_constant)
2297 {
2298 as_bad (_("scalar index must be constant"));
c921be7d 2299 return FALSE;
dcbf9037 2300 }
5f4273c7 2301
dcbf9037
JB
2302 typeinfo.defined |= NTA_HASINDEX;
2303 typeinfo.index = exp.X_add_number;
5f4273c7 2304
dcbf9037
JB
2305 if (skip_past_char (&p, ']') == FAIL)
2306 {
2307 as_bad (_("expecting ]"));
c921be7d 2308 return FALSE;
dcbf9037
JB
2309 }
2310 }
2311
15735687
NS
2312 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2313 the desired alias name, and p points to its end. If not, then
2314 the desired alias name is in the global original_case_string. */
2315#ifdef TC_CASE_SENSITIVE
dcbf9037 2316 namelen = nameend - newname;
15735687
NS
2317#else
2318 newname = original_case_string;
2319 namelen = strlen (newname);
2320#endif
2321
21d799b5 2322 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2323 strncpy (namebuf, newname, namelen);
2324 namebuf[namelen] = '\0';
5f4273c7 2325
dcbf9037
JB
2326 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2327 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2328
dcbf9037
JB
2329 /* Insert name in all uppercase. */
2330 for (p = namebuf; *p; p++)
2331 *p = TOUPPER (*p);
5f4273c7 2332
dcbf9037
JB
2333 if (strncmp (namebuf, newname, namelen))
2334 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2335 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2336
dcbf9037
JB
2337 /* Insert name in all lowercase. */
2338 for (p = namebuf; *p; p++)
2339 *p = TOLOWER (*p);
5f4273c7 2340
dcbf9037
JB
2341 if (strncmp (namebuf, newname, namelen))
2342 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2343 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2344
c921be7d 2345 return TRUE;
dcbf9037
JB
2346}
2347
c19d1205
ZW
2348/* Should never be called, as .req goes between the alias and the
2349 register name, not at the beginning of the line. */
c921be7d 2350
b99bd4ef 2351static void
c19d1205 2352s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2353{
c19d1205
ZW
2354 as_bad (_("invalid syntax for .req directive"));
2355}
b99bd4ef 2356
dcbf9037
JB
2357static void
2358s_dn (int a ATTRIBUTE_UNUSED)
2359{
2360 as_bad (_("invalid syntax for .dn directive"));
2361}
2362
2363static void
2364s_qn (int a ATTRIBUTE_UNUSED)
2365{
2366 as_bad (_("invalid syntax for .qn directive"));
2367}
2368
c19d1205
ZW
2369/* The .unreq directive deletes an alias which was previously defined
2370 by .req. For example:
b99bd4ef 2371
c19d1205
ZW
2372 my_alias .req r11
2373 .unreq my_alias */
b99bd4ef
NC
2374
2375static void
c19d1205 2376s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2377{
c19d1205
ZW
2378 char * name;
2379 char saved_char;
b99bd4ef 2380
c19d1205
ZW
2381 name = input_line_pointer;
2382
2383 while (*input_line_pointer != 0
2384 && *input_line_pointer != ' '
2385 && *input_line_pointer != '\n')
2386 ++input_line_pointer;
2387
2388 saved_char = *input_line_pointer;
2389 *input_line_pointer = 0;
2390
2391 if (!*name)
2392 as_bad (_("invalid syntax for .unreq directive"));
2393 else
2394 {
21d799b5
NC
2395 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2396 name);
c19d1205
ZW
2397
2398 if (!reg)
2399 as_bad (_("unknown register alias '%s'"), name);
2400 else if (reg->builtin)
2401 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2402 name);
2403 else
2404 {
d929913e
NC
2405 char * p;
2406 char * nbuf;
2407
db0bc284 2408 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2409 free ((char *) reg->name);
dcbf9037
JB
2410 if (reg->neon)
2411 free (reg->neon);
c19d1205 2412 free (reg);
d929913e
NC
2413
2414 /* Also locate the all upper case and all lower case versions.
2415 Do not complain if we cannot find one or the other as it
2416 was probably deleted above. */
5f4273c7 2417
d929913e
NC
2418 nbuf = strdup (name);
2419 for (p = nbuf; *p; p++)
2420 *p = TOUPPER (*p);
21d799b5 2421 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2422 if (reg)
2423 {
db0bc284 2424 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2425 free ((char *) reg->name);
2426 if (reg->neon)
2427 free (reg->neon);
2428 free (reg);
2429 }
2430
2431 for (p = nbuf; *p; p++)
2432 *p = TOLOWER (*p);
21d799b5 2433 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2434 if (reg)
2435 {
db0bc284 2436 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2437 free ((char *) reg->name);
2438 if (reg->neon)
2439 free (reg->neon);
2440 free (reg);
2441 }
2442
2443 free (nbuf);
c19d1205
ZW
2444 }
2445 }
b99bd4ef 2446
c19d1205 2447 *input_line_pointer = saved_char;
b99bd4ef
NC
2448 demand_empty_rest_of_line ();
2449}
2450
c19d1205
ZW
2451/* Directives: Instruction set selection. */
2452
2453#ifdef OBJ_ELF
2454/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2455 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2456 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2457 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2458
cd000bff
DJ
2459/* Create a new mapping symbol for the transition to STATE. */
2460
2461static void
2462make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2463{
a737bd4d 2464 symbolS * symbolP;
c19d1205
ZW
2465 const char * symname;
2466 int type;
b99bd4ef 2467
c19d1205 2468 switch (state)
b99bd4ef 2469 {
c19d1205
ZW
2470 case MAP_DATA:
2471 symname = "$d";
2472 type = BSF_NO_FLAGS;
2473 break;
2474 case MAP_ARM:
2475 symname = "$a";
2476 type = BSF_NO_FLAGS;
2477 break;
2478 case MAP_THUMB:
2479 symname = "$t";
2480 type = BSF_NO_FLAGS;
2481 break;
c19d1205
ZW
2482 default:
2483 abort ();
2484 }
2485
cd000bff 2486 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2487 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2488
2489 switch (state)
2490 {
2491 case MAP_ARM:
2492 THUMB_SET_FUNC (symbolP, 0);
2493 ARM_SET_THUMB (symbolP, 0);
2494 ARM_SET_INTERWORK (symbolP, support_interwork);
2495 break;
2496
2497 case MAP_THUMB:
2498 THUMB_SET_FUNC (symbolP, 1);
2499 ARM_SET_THUMB (symbolP, 1);
2500 ARM_SET_INTERWORK (symbolP, support_interwork);
2501 break;
2502
2503 case MAP_DATA:
2504 default:
cd000bff
DJ
2505 break;
2506 }
2507
2508 /* Save the mapping symbols for future reference. Also check that
2509 we do not place two mapping symbols at the same offset within a
2510 frag. We'll handle overlap between frags in
2de7820f
JZ
2511 check_mapping_symbols.
2512
2513 If .fill or other data filling directive generates zero sized data,
2514 the mapping symbol for the following code will have the same value
2515 as the one generated for the data filling directive. In this case,
2516 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2517 if (value == 0)
2518 {
2de7820f
JZ
2519 if (frag->tc_frag_data.first_map != NULL)
2520 {
2521 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2522 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2523 }
cd000bff
DJ
2524 frag->tc_frag_data.first_map = symbolP;
2525 }
2526 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2527 {
2528 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2529 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2530 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2531 }
cd000bff
DJ
2532 frag->tc_frag_data.last_map = symbolP;
2533}
2534
2535/* We must sometimes convert a region marked as code to data during
2536 code alignment, if an odd number of bytes have to be padded. The
2537 code mapping symbol is pushed to an aligned address. */
2538
2539static void
2540insert_data_mapping_symbol (enum mstate state,
2541 valueT value, fragS *frag, offsetT bytes)
2542{
2543 /* If there was already a mapping symbol, remove it. */
2544 if (frag->tc_frag_data.last_map != NULL
2545 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2546 {
2547 symbolS *symp = frag->tc_frag_data.last_map;
2548
2549 if (value == 0)
2550 {
2551 know (frag->tc_frag_data.first_map == symp);
2552 frag->tc_frag_data.first_map = NULL;
2553 }
2554 frag->tc_frag_data.last_map = NULL;
2555 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2556 }
cd000bff
DJ
2557
2558 make_mapping_symbol (MAP_DATA, value, frag);
2559 make_mapping_symbol (state, value + bytes, frag);
2560}
2561
2562static void mapping_state_2 (enum mstate state, int max_chars);
2563
2564/* Set the mapping state to STATE. Only call this when about to
2565 emit some STATE bytes to the file. */
2566
2567void
2568mapping_state (enum mstate state)
2569{
940b5ce0
DJ
2570 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2571
cd000bff
DJ
2572#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2573
2574 if (mapstate == state)
2575 /* The mapping symbol has already been emitted.
2576 There is nothing else to do. */
2577 return;
2578 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2579 /* This case will be evaluated later in the next else. */
2580 return;
2581 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2582 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2583 {
2584 /* Only add the symbol if the offset is > 0:
2585 if we're at the first frag, check it's size > 0;
2586 if we're not at the first frag, then for sure
2587 the offset is > 0. */
2588 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2589 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2590
2591 if (add_symbol)
2592 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2593 }
2594
2595 mapping_state_2 (state, 0);
2596#undef TRANSITION
2597}
2598
2599/* Same as mapping_state, but MAX_CHARS bytes have already been
2600 allocated. Put the mapping symbol that far back. */
2601
2602static void
2603mapping_state_2 (enum mstate state, int max_chars)
2604{
940b5ce0
DJ
2605 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2606
2607 if (!SEG_NORMAL (now_seg))
2608 return;
2609
cd000bff
DJ
2610 if (mapstate == state)
2611 /* The mapping symbol has already been emitted.
2612 There is nothing else to do. */
2613 return;
2614
cd000bff
DJ
2615 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2616 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2617}
2618#else
d3106081
NS
2619#define mapping_state(x) ((void)0)
2620#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2621#endif
2622
2623/* Find the real, Thumb encoded start of a Thumb function. */
2624
4343666d 2625#ifdef OBJ_COFF
c19d1205
ZW
2626static symbolS *
2627find_real_start (symbolS * symbolP)
2628{
2629 char * real_start;
2630 const char * name = S_GET_NAME (symbolP);
2631 symbolS * new_target;
2632
2633 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2634#define STUB_NAME ".real_start_of"
2635
2636 if (name == NULL)
2637 abort ();
2638
37f6032b
ZW
2639 /* The compiler may generate BL instructions to local labels because
2640 it needs to perform a branch to a far away location. These labels
2641 do not have a corresponding ".real_start_of" label. We check
2642 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2643 the ".real_start_of" convention for nonlocal branches. */
2644 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2645 return symbolP;
2646
37f6032b 2647 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2648 new_target = symbol_find (real_start);
2649
2650 if (new_target == NULL)
2651 {
bd3ba5d1 2652 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2653 new_target = symbolP;
2654 }
2655
c19d1205
ZW
2656 return new_target;
2657}
4343666d 2658#endif
c19d1205
ZW
2659
2660static void
2661opcode_select (int width)
2662{
2663 switch (width)
2664 {
2665 case 16:
2666 if (! thumb_mode)
2667 {
e74cfd16 2668 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2669 as_bad (_("selected processor does not support THUMB opcodes"));
2670
2671 thumb_mode = 1;
2672 /* No need to force the alignment, since we will have been
2673 coming from ARM mode, which is word-aligned. */
2674 record_alignment (now_seg, 1);
2675 }
c19d1205
ZW
2676 break;
2677
2678 case 32:
2679 if (thumb_mode)
2680 {
e74cfd16 2681 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2682 as_bad (_("selected processor does not support ARM opcodes"));
2683
2684 thumb_mode = 0;
2685
2686 if (!need_pass_2)
2687 frag_align (2, 0, 0);
2688
2689 record_alignment (now_seg, 1);
2690 }
c19d1205
ZW
2691 break;
2692
2693 default:
2694 as_bad (_("invalid instruction size selected (%d)"), width);
2695 }
2696}
2697
2698static void
2699s_arm (int ignore ATTRIBUTE_UNUSED)
2700{
2701 opcode_select (32);
2702 demand_empty_rest_of_line ();
2703}
2704
2705static void
2706s_thumb (int ignore ATTRIBUTE_UNUSED)
2707{
2708 opcode_select (16);
2709 demand_empty_rest_of_line ();
2710}
2711
2712static void
2713s_code (int unused ATTRIBUTE_UNUSED)
2714{
2715 int temp;
2716
2717 temp = get_absolute_expression ();
2718 switch (temp)
2719 {
2720 case 16:
2721 case 32:
2722 opcode_select (temp);
2723 break;
2724
2725 default:
2726 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2727 }
2728}
2729
2730static void
2731s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2732{
2733 /* If we are not already in thumb mode go into it, EVEN if
2734 the target processor does not support thumb instructions.
2735 This is used by gcc/config/arm/lib1funcs.asm for example
2736 to compile interworking support functions even if the
2737 target processor should not support interworking. */
2738 if (! thumb_mode)
2739 {
2740 thumb_mode = 2;
2741 record_alignment (now_seg, 1);
2742 }
2743
2744 demand_empty_rest_of_line ();
2745}
2746
2747static void
2748s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2749{
2750 s_thumb (0);
2751
2752 /* The following label is the name/address of the start of a Thumb function.
2753 We need to know this for the interworking support. */
2754 label_is_thumb_function_name = TRUE;
2755}
2756
2757/* Perform a .set directive, but also mark the alias as
2758 being a thumb function. */
2759
2760static void
2761s_thumb_set (int equiv)
2762{
2763 /* XXX the following is a duplicate of the code for s_set() in read.c
2764 We cannot just call that code as we need to get at the symbol that
2765 is created. */
2766 char * name;
2767 char delim;
2768 char * end_name;
2769 symbolS * symbolP;
2770
2771 /* Especial apologies for the random logic:
2772 This just grew, and could be parsed much more simply!
2773 Dean - in haste. */
2774 name = input_line_pointer;
2775 delim = get_symbol_end ();
2776 end_name = input_line_pointer;
2777 *end_name = delim;
2778
2779 if (*input_line_pointer != ',')
2780 {
2781 *end_name = 0;
2782 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2783 *end_name = delim;
2784 ignore_rest_of_line ();
2785 return;
2786 }
2787
2788 input_line_pointer++;
2789 *end_name = 0;
2790
2791 if (name[0] == '.' && name[1] == '\0')
2792 {
2793 /* XXX - this should not happen to .thumb_set. */
2794 abort ();
2795 }
2796
2797 if ((symbolP = symbol_find (name)) == NULL
2798 && (symbolP = md_undefined_symbol (name)) == NULL)
2799 {
2800#ifndef NO_LISTING
2801 /* When doing symbol listings, play games with dummy fragments living
2802 outside the normal fragment chain to record the file and line info
c19d1205 2803 for this symbol. */
b99bd4ef
NC
2804 if (listing & LISTING_SYMBOLS)
2805 {
2806 extern struct list_info_struct * listing_tail;
21d799b5 2807 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2808
2809 memset (dummy_frag, 0, sizeof (fragS));
2810 dummy_frag->fr_type = rs_fill;
2811 dummy_frag->line = listing_tail;
2812 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2813 dummy_frag->fr_symbol = symbolP;
2814 }
2815 else
2816#endif
2817 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2818
2819#ifdef OBJ_COFF
2820 /* "set" symbols are local unless otherwise specified. */
2821 SF_SET_LOCAL (symbolP);
2822#endif /* OBJ_COFF */
2823 } /* Make a new symbol. */
2824
2825 symbol_table_insert (symbolP);
2826
2827 * end_name = delim;
2828
2829 if (equiv
2830 && S_IS_DEFINED (symbolP)
2831 && S_GET_SEGMENT (symbolP) != reg_section)
2832 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2833
2834 pseudo_set (symbolP);
2835
2836 demand_empty_rest_of_line ();
2837
c19d1205 2838 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2839
2840 THUMB_SET_FUNC (symbolP, 1);
2841 ARM_SET_THUMB (symbolP, 1);
2842#if defined OBJ_ELF || defined OBJ_COFF
2843 ARM_SET_INTERWORK (symbolP, support_interwork);
2844#endif
2845}
2846
c19d1205 2847/* Directives: Mode selection. */
b99bd4ef 2848
c19d1205
ZW
2849/* .syntax [unified|divided] - choose the new unified syntax
2850 (same for Arm and Thumb encoding, modulo slight differences in what
2851 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2852static void
c19d1205 2853s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2854{
c19d1205
ZW
2855 char *name, delim;
2856
2857 name = input_line_pointer;
2858 delim = get_symbol_end ();
2859
2860 if (!strcasecmp (name, "unified"))
2861 unified_syntax = TRUE;
2862 else if (!strcasecmp (name, "divided"))
2863 unified_syntax = FALSE;
2864 else
2865 {
2866 as_bad (_("unrecognized syntax mode \"%s\""), name);
2867 return;
2868 }
2869 *input_line_pointer = delim;
b99bd4ef
NC
2870 demand_empty_rest_of_line ();
2871}
2872
c19d1205
ZW
2873/* Directives: sectioning and alignment. */
2874
2875/* Same as s_align_ptwo but align 0 => align 2. */
2876
b99bd4ef 2877static void
c19d1205 2878s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2879{
a737bd4d 2880 int temp;
dce323d1 2881 bfd_boolean fill_p;
c19d1205
ZW
2882 long temp_fill;
2883 long max_alignment = 15;
b99bd4ef
NC
2884
2885 temp = get_absolute_expression ();
c19d1205
ZW
2886 if (temp > max_alignment)
2887 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2888 else if (temp < 0)
b99bd4ef 2889 {
c19d1205
ZW
2890 as_bad (_("alignment negative. 0 assumed."));
2891 temp = 0;
2892 }
b99bd4ef 2893
c19d1205
ZW
2894 if (*input_line_pointer == ',')
2895 {
2896 input_line_pointer++;
2897 temp_fill = get_absolute_expression ();
dce323d1 2898 fill_p = TRUE;
b99bd4ef 2899 }
c19d1205 2900 else
dce323d1
PB
2901 {
2902 fill_p = FALSE;
2903 temp_fill = 0;
2904 }
b99bd4ef 2905
c19d1205
ZW
2906 if (!temp)
2907 temp = 2;
b99bd4ef 2908
c19d1205
ZW
2909 /* Only make a frag if we HAVE to. */
2910 if (temp && !need_pass_2)
dce323d1
PB
2911 {
2912 if (!fill_p && subseg_text_p (now_seg))
2913 frag_align_code (temp, 0);
2914 else
2915 frag_align (temp, (int) temp_fill, 0);
2916 }
c19d1205
ZW
2917 demand_empty_rest_of_line ();
2918
2919 record_alignment (now_seg, temp);
b99bd4ef
NC
2920}
2921
c19d1205
ZW
2922static void
2923s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2924{
c19d1205
ZW
2925 /* We don't support putting frags in the BSS segment, we fake it by
2926 marking in_bss, then looking at s_skip for clues. */
2927 subseg_set (bss_section, 0);
2928 demand_empty_rest_of_line ();
cd000bff
DJ
2929
2930#ifdef md_elf_section_change_hook
2931 md_elf_section_change_hook ();
2932#endif
c19d1205 2933}
b99bd4ef 2934
c19d1205
ZW
2935static void
2936s_even (int ignore ATTRIBUTE_UNUSED)
2937{
2938 /* Never make frag if expect extra pass. */
2939 if (!need_pass_2)
2940 frag_align (1, 0, 0);
b99bd4ef 2941
c19d1205 2942 record_alignment (now_seg, 1);
b99bd4ef 2943
c19d1205 2944 demand_empty_rest_of_line ();
b99bd4ef
NC
2945}
2946
c19d1205 2947/* Directives: Literal pools. */
a737bd4d 2948
c19d1205
ZW
2949static literal_pool *
2950find_literal_pool (void)
a737bd4d 2951{
c19d1205 2952 literal_pool * pool;
a737bd4d 2953
c19d1205 2954 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2955 {
c19d1205
ZW
2956 if (pool->section == now_seg
2957 && pool->sub_section == now_subseg)
2958 break;
a737bd4d
NC
2959 }
2960
c19d1205 2961 return pool;
a737bd4d
NC
2962}
2963
c19d1205
ZW
2964static literal_pool *
2965find_or_make_literal_pool (void)
a737bd4d 2966{
c19d1205
ZW
2967 /* Next literal pool ID number. */
2968 static unsigned int latest_pool_num = 1;
2969 literal_pool * pool;
a737bd4d 2970
c19d1205 2971 pool = find_literal_pool ();
a737bd4d 2972
c19d1205 2973 if (pool == NULL)
a737bd4d 2974 {
c19d1205 2975 /* Create a new pool. */
21d799b5 2976 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
2977 if (! pool)
2978 return NULL;
a737bd4d 2979
c19d1205
ZW
2980 pool->next_free_entry = 0;
2981 pool->section = now_seg;
2982 pool->sub_section = now_subseg;
2983 pool->next = list_of_pools;
2984 pool->symbol = NULL;
2985
2986 /* Add it to the list. */
2987 list_of_pools = pool;
a737bd4d 2988 }
a737bd4d 2989
c19d1205
ZW
2990 /* New pools, and emptied pools, will have a NULL symbol. */
2991 if (pool->symbol == NULL)
a737bd4d 2992 {
c19d1205
ZW
2993 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2994 (valueT) 0, &zero_address_frag);
2995 pool->id = latest_pool_num ++;
a737bd4d
NC
2996 }
2997
c19d1205
ZW
2998 /* Done. */
2999 return pool;
a737bd4d
NC
3000}
3001
c19d1205 3002/* Add the literal in the global 'inst'
5f4273c7 3003 structure to the relevant literal pool. */
b99bd4ef
NC
3004
3005static int
c19d1205 3006add_to_lit_pool (void)
b99bd4ef 3007{
c19d1205
ZW
3008 literal_pool * pool;
3009 unsigned int entry;
b99bd4ef 3010
c19d1205
ZW
3011 pool = find_or_make_literal_pool ();
3012
3013 /* Check if this literal value is already in the pool. */
3014 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3015 {
c19d1205
ZW
3016 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3017 && (inst.reloc.exp.X_op == O_constant)
3018 && (pool->literals[entry].X_add_number
3019 == inst.reloc.exp.X_add_number)
3020 && (pool->literals[entry].X_unsigned
3021 == inst.reloc.exp.X_unsigned))
3022 break;
3023
3024 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3025 && (inst.reloc.exp.X_op == O_symbol)
3026 && (pool->literals[entry].X_add_number
3027 == inst.reloc.exp.X_add_number)
3028 && (pool->literals[entry].X_add_symbol
3029 == inst.reloc.exp.X_add_symbol)
3030 && (pool->literals[entry].X_op_symbol
3031 == inst.reloc.exp.X_op_symbol))
3032 break;
b99bd4ef
NC
3033 }
3034
c19d1205
ZW
3035 /* Do we need to create a new entry? */
3036 if (entry == pool->next_free_entry)
3037 {
3038 if (entry >= MAX_LITERAL_POOL_SIZE)
3039 {
3040 inst.error = _("literal pool overflow");
3041 return FAIL;
3042 }
3043
3044 pool->literals[entry] = inst.reloc.exp;
3045 pool->next_free_entry += 1;
3046 }
b99bd4ef 3047
c19d1205
ZW
3048 inst.reloc.exp.X_op = O_symbol;
3049 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3050 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3051
c19d1205 3052 return SUCCESS;
b99bd4ef
NC
3053}
3054
c19d1205
ZW
3055/* Can't use symbol_new here, so have to create a symbol and then at
3056 a later date assign it a value. Thats what these functions do. */
e16bb312 3057
c19d1205
ZW
3058static void
3059symbol_locate (symbolS * symbolP,
3060 const char * name, /* It is copied, the caller can modify. */
3061 segT segment, /* Segment identifier (SEG_<something>). */
3062 valueT valu, /* Symbol value. */
3063 fragS * frag) /* Associated fragment. */
3064{
3065 unsigned int name_length;
3066 char * preserved_copy_of_name;
e16bb312 3067
c19d1205
ZW
3068 name_length = strlen (name) + 1; /* +1 for \0. */
3069 obstack_grow (&notes, name, name_length);
21d799b5 3070 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3071
c19d1205
ZW
3072#ifdef tc_canonicalize_symbol_name
3073 preserved_copy_of_name =
3074 tc_canonicalize_symbol_name (preserved_copy_of_name);
3075#endif
b99bd4ef 3076
c19d1205 3077 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3078
c19d1205
ZW
3079 S_SET_SEGMENT (symbolP, segment);
3080 S_SET_VALUE (symbolP, valu);
3081 symbol_clear_list_pointers (symbolP);
b99bd4ef 3082
c19d1205 3083 symbol_set_frag (symbolP, frag);
b99bd4ef 3084
c19d1205
ZW
3085 /* Link to end of symbol chain. */
3086 {
3087 extern int symbol_table_frozen;
b99bd4ef 3088
c19d1205
ZW
3089 if (symbol_table_frozen)
3090 abort ();
3091 }
b99bd4ef 3092
c19d1205 3093 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3094
c19d1205 3095 obj_symbol_new_hook (symbolP);
b99bd4ef 3096
c19d1205
ZW
3097#ifdef tc_symbol_new_hook
3098 tc_symbol_new_hook (symbolP);
3099#endif
3100
3101#ifdef DEBUG_SYMS
3102 verify_symbol_chain (symbol_rootP, symbol_lastP);
3103#endif /* DEBUG_SYMS */
b99bd4ef
NC
3104}
3105
b99bd4ef 3106
c19d1205
ZW
3107static void
3108s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3109{
c19d1205
ZW
3110 unsigned int entry;
3111 literal_pool * pool;
3112 char sym_name[20];
b99bd4ef 3113
c19d1205
ZW
3114 pool = find_literal_pool ();
3115 if (pool == NULL
3116 || pool->symbol == NULL
3117 || pool->next_free_entry == 0)
3118 return;
b99bd4ef 3119
c19d1205 3120 mapping_state (MAP_DATA);
b99bd4ef 3121
c19d1205
ZW
3122 /* Align pool as you have word accesses.
3123 Only make a frag if we have to. */
3124 if (!need_pass_2)
3125 frag_align (2, 0, 0);
b99bd4ef 3126
c19d1205 3127 record_alignment (now_seg, 2);
b99bd4ef 3128
c19d1205 3129 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3130
c19d1205
ZW
3131 symbol_locate (pool->symbol, sym_name, now_seg,
3132 (valueT) frag_now_fix (), frag_now);
3133 symbol_table_insert (pool->symbol);
b99bd4ef 3134
c19d1205 3135 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3136
c19d1205
ZW
3137#if defined OBJ_COFF || defined OBJ_ELF
3138 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3139#endif
6c43fab6 3140
c19d1205
ZW
3141 for (entry = 0; entry < pool->next_free_entry; entry ++)
3142 /* First output the expression in the instruction to the pool. */
3143 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 3144
c19d1205
ZW
3145 /* Mark the pool as empty. */
3146 pool->next_free_entry = 0;
3147 pool->symbol = NULL;
b99bd4ef
NC
3148}
3149
c19d1205
ZW
3150#ifdef OBJ_ELF
3151/* Forward declarations for functions below, in the MD interface
3152 section. */
3153static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3154static valueT create_unwind_entry (int);
3155static void start_unwind_section (const segT, int);
3156static void add_unwind_opcode (valueT, int);
3157static void flush_pending_unwind (void);
b99bd4ef 3158
c19d1205 3159/* Directives: Data. */
b99bd4ef 3160
c19d1205
ZW
3161static void
3162s_arm_elf_cons (int nbytes)
3163{
3164 expressionS exp;
b99bd4ef 3165
c19d1205
ZW
3166#ifdef md_flush_pending_output
3167 md_flush_pending_output ();
3168#endif
b99bd4ef 3169
c19d1205 3170 if (is_it_end_of_statement ())
b99bd4ef 3171 {
c19d1205
ZW
3172 demand_empty_rest_of_line ();
3173 return;
b99bd4ef
NC
3174 }
3175
c19d1205
ZW
3176#ifdef md_cons_align
3177 md_cons_align (nbytes);
3178#endif
b99bd4ef 3179
c19d1205
ZW
3180 mapping_state (MAP_DATA);
3181 do
b99bd4ef 3182 {
c19d1205
ZW
3183 int reloc;
3184 char *base = input_line_pointer;
b99bd4ef 3185
c19d1205 3186 expression (& exp);
b99bd4ef 3187
c19d1205
ZW
3188 if (exp.X_op != O_symbol)
3189 emit_expr (&exp, (unsigned int) nbytes);
3190 else
3191 {
3192 char *before_reloc = input_line_pointer;
3193 reloc = parse_reloc (&input_line_pointer);
3194 if (reloc == -1)
3195 {
3196 as_bad (_("unrecognized relocation suffix"));
3197 ignore_rest_of_line ();
3198 return;
3199 }
3200 else if (reloc == BFD_RELOC_UNUSED)
3201 emit_expr (&exp, (unsigned int) nbytes);
3202 else
3203 {
21d799b5
NC
3204 reloc_howto_type *howto = (reloc_howto_type *)
3205 bfd_reloc_type_lookup (stdoutput,
3206 (bfd_reloc_code_real_type) reloc);
c19d1205 3207 int size = bfd_get_reloc_size (howto);
b99bd4ef 3208
2fc8bdac
ZW
3209 if (reloc == BFD_RELOC_ARM_PLT32)
3210 {
3211 as_bad (_("(plt) is only valid on branch targets"));
3212 reloc = BFD_RELOC_UNUSED;
3213 size = 0;
3214 }
3215
c19d1205 3216 if (size > nbytes)
2fc8bdac 3217 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3218 howto->name, nbytes);
3219 else
3220 {
3221 /* We've parsed an expression stopping at O_symbol.
3222 But there may be more expression left now that we
3223 have parsed the relocation marker. Parse it again.
3224 XXX Surely there is a cleaner way to do this. */
3225 char *p = input_line_pointer;
3226 int offset;
21d799b5 3227 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3228 memcpy (save_buf, base, input_line_pointer - base);
3229 memmove (base + (input_line_pointer - before_reloc),
3230 base, before_reloc - base);
3231
3232 input_line_pointer = base + (input_line_pointer-before_reloc);
3233 expression (&exp);
3234 memcpy (base, save_buf, p - base);
3235
3236 offset = nbytes - size;
3237 p = frag_more ((int) nbytes);
3238 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3239 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3240 }
3241 }
3242 }
b99bd4ef 3243 }
c19d1205 3244 while (*input_line_pointer++ == ',');
b99bd4ef 3245
c19d1205
ZW
3246 /* Put terminator back into stream. */
3247 input_line_pointer --;
3248 demand_empty_rest_of_line ();
b99bd4ef
NC
3249}
3250
c921be7d
NC
3251/* Emit an expression containing a 32-bit thumb instruction.
3252 Implementation based on put_thumb32_insn. */
3253
3254static void
3255emit_thumb32_expr (expressionS * exp)
3256{
3257 expressionS exp_high = *exp;
3258
3259 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3260 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3261 exp->X_add_number &= 0xffff;
3262 emit_expr (exp, (unsigned int) THUMB_SIZE);
3263}
3264
3265/* Guess the instruction size based on the opcode. */
3266
3267static int
3268thumb_insn_size (int opcode)
3269{
3270 if ((unsigned int) opcode < 0xe800u)
3271 return 2;
3272 else if ((unsigned int) opcode >= 0xe8000000u)
3273 return 4;
3274 else
3275 return 0;
3276}
3277
3278static bfd_boolean
3279emit_insn (expressionS *exp, int nbytes)
3280{
3281 int size = 0;
3282
3283 if (exp->X_op == O_constant)
3284 {
3285 size = nbytes;
3286
3287 if (size == 0)
3288 size = thumb_insn_size (exp->X_add_number);
3289
3290 if (size != 0)
3291 {
3292 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3293 {
3294 as_bad (_(".inst.n operand too big. "\
3295 "Use .inst.w instead"));
3296 size = 0;
3297 }
3298 else
3299 {
3300 if (now_it.state == AUTOMATIC_IT_BLOCK)
3301 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3302 else
3303 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3304
3305 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3306 emit_thumb32_expr (exp);
3307 else
3308 emit_expr (exp, (unsigned int) size);
3309
3310 it_fsm_post_encode ();
3311 }
3312 }
3313 else
3314 as_bad (_("cannot determine Thumb instruction size. " \
3315 "Use .inst.n/.inst.w instead"));
3316 }
3317 else
3318 as_bad (_("constant expression required"));
3319
3320 return (size != 0);
3321}
3322
3323/* Like s_arm_elf_cons but do not use md_cons_align and
3324 set the mapping state to MAP_ARM/MAP_THUMB. */
3325
3326static void
3327s_arm_elf_inst (int nbytes)
3328{
3329 if (is_it_end_of_statement ())
3330 {
3331 demand_empty_rest_of_line ();
3332 return;
3333 }
3334
3335 /* Calling mapping_state () here will not change ARM/THUMB,
3336 but will ensure not to be in DATA state. */
3337
3338 if (thumb_mode)
3339 mapping_state (MAP_THUMB);
3340 else
3341 {
3342 if (nbytes != 0)
3343 {
3344 as_bad (_("width suffixes are invalid in ARM mode"));
3345 ignore_rest_of_line ();
3346 return;
3347 }
3348
3349 nbytes = 4;
3350
3351 mapping_state (MAP_ARM);
3352 }
3353
3354 do
3355 {
3356 expressionS exp;
3357
3358 expression (& exp);
3359
3360 if (! emit_insn (& exp, nbytes))
3361 {
3362 ignore_rest_of_line ();
3363 return;
3364 }
3365 }
3366 while (*input_line_pointer++ == ',');
3367
3368 /* Put terminator back into stream. */
3369 input_line_pointer --;
3370 demand_empty_rest_of_line ();
3371}
b99bd4ef 3372
c19d1205 3373/* Parse a .rel31 directive. */
b99bd4ef 3374
c19d1205
ZW
3375static void
3376s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3377{
3378 expressionS exp;
3379 char *p;
3380 valueT highbit;
b99bd4ef 3381
c19d1205
ZW
3382 highbit = 0;
3383 if (*input_line_pointer == '1')
3384 highbit = 0x80000000;
3385 else if (*input_line_pointer != '0')
3386 as_bad (_("expected 0 or 1"));
b99bd4ef 3387
c19d1205
ZW
3388 input_line_pointer++;
3389 if (*input_line_pointer != ',')
3390 as_bad (_("missing comma"));
3391 input_line_pointer++;
b99bd4ef 3392
c19d1205
ZW
3393#ifdef md_flush_pending_output
3394 md_flush_pending_output ();
3395#endif
b99bd4ef 3396
c19d1205
ZW
3397#ifdef md_cons_align
3398 md_cons_align (4);
3399#endif
b99bd4ef 3400
c19d1205 3401 mapping_state (MAP_DATA);
b99bd4ef 3402
c19d1205 3403 expression (&exp);
b99bd4ef 3404
c19d1205
ZW
3405 p = frag_more (4);
3406 md_number_to_chars (p, highbit, 4);
3407 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3408 BFD_RELOC_ARM_PREL31);
b99bd4ef 3409
c19d1205 3410 demand_empty_rest_of_line ();
b99bd4ef
NC
3411}
3412
c19d1205 3413/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3414
c19d1205 3415/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3416
c19d1205
ZW
3417static void
3418s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3419{
3420 demand_empty_rest_of_line ();
921e5f0a
PB
3421 if (unwind.proc_start)
3422 {
c921be7d 3423 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3424 return;
3425 }
3426
c19d1205
ZW
3427 /* Mark the start of the function. */
3428 unwind.proc_start = expr_build_dot ();
b99bd4ef 3429
c19d1205
ZW
3430 /* Reset the rest of the unwind info. */
3431 unwind.opcode_count = 0;
3432 unwind.table_entry = NULL;
3433 unwind.personality_routine = NULL;
3434 unwind.personality_index = -1;
3435 unwind.frame_size = 0;
3436 unwind.fp_offset = 0;
fdfde340 3437 unwind.fp_reg = REG_SP;
c19d1205
ZW
3438 unwind.fp_used = 0;
3439 unwind.sp_restored = 0;
3440}
b99bd4ef 3441
b99bd4ef 3442
c19d1205
ZW
3443/* Parse a handlerdata directive. Creates the exception handling table entry
3444 for the function. */
b99bd4ef 3445
c19d1205
ZW
3446static void
3447s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3448{
3449 demand_empty_rest_of_line ();
921e5f0a 3450 if (!unwind.proc_start)
c921be7d 3451 as_bad (MISSING_FNSTART);
921e5f0a 3452
c19d1205 3453 if (unwind.table_entry)
6decc662 3454 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3455
c19d1205
ZW
3456 create_unwind_entry (1);
3457}
a737bd4d 3458
c19d1205 3459/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3460
c19d1205
ZW
3461static void
3462s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3463{
3464 long where;
3465 char *ptr;
3466 valueT val;
940b5ce0 3467 unsigned int marked_pr_dependency;
f02232aa 3468
c19d1205 3469 demand_empty_rest_of_line ();
f02232aa 3470
921e5f0a
PB
3471 if (!unwind.proc_start)
3472 {
c921be7d 3473 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3474 return;
3475 }
3476
c19d1205
ZW
3477 /* Add eh table entry. */
3478 if (unwind.table_entry == NULL)
3479 val = create_unwind_entry (0);
3480 else
3481 val = 0;
f02232aa 3482
c19d1205
ZW
3483 /* Add index table entry. This is two words. */
3484 start_unwind_section (unwind.saved_seg, 1);
3485 frag_align (2, 0, 0);
3486 record_alignment (now_seg, 2);
b99bd4ef 3487
c19d1205
ZW
3488 ptr = frag_more (8);
3489 where = frag_now_fix () - 8;
f02232aa 3490
c19d1205
ZW
3491 /* Self relative offset of the function start. */
3492 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3493 BFD_RELOC_ARM_PREL31);
f02232aa 3494
c19d1205
ZW
3495 /* Indicate dependency on EHABI-defined personality routines to the
3496 linker, if it hasn't been done already. */
940b5ce0
DJ
3497 marked_pr_dependency
3498 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3499 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3500 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3501 {
5f4273c7
NC
3502 static const char *const name[] =
3503 {
3504 "__aeabi_unwind_cpp_pr0",
3505 "__aeabi_unwind_cpp_pr1",
3506 "__aeabi_unwind_cpp_pr2"
3507 };
c19d1205
ZW
3508 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3509 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3510 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3511 |= 1 << unwind.personality_index;
c19d1205 3512 }
f02232aa 3513
c19d1205
ZW
3514 if (val)
3515 /* Inline exception table entry. */
3516 md_number_to_chars (ptr + 4, val, 4);
3517 else
3518 /* Self relative offset of the table entry. */
3519 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3520 BFD_RELOC_ARM_PREL31);
f02232aa 3521
c19d1205
ZW
3522 /* Restore the original section. */
3523 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3524
3525 unwind.proc_start = NULL;
c19d1205 3526}
f02232aa 3527
f02232aa 3528
c19d1205 3529/* Parse an unwind_cantunwind directive. */
b99bd4ef 3530
c19d1205
ZW
3531static void
3532s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3533{
3534 demand_empty_rest_of_line ();
921e5f0a 3535 if (!unwind.proc_start)
c921be7d 3536 as_bad (MISSING_FNSTART);
921e5f0a 3537
c19d1205
ZW
3538 if (unwind.personality_routine || unwind.personality_index != -1)
3539 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3540
c19d1205
ZW
3541 unwind.personality_index = -2;
3542}
b99bd4ef 3543
b99bd4ef 3544
c19d1205 3545/* Parse a personalityindex directive. */
b99bd4ef 3546
c19d1205
ZW
3547static void
3548s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3549{
3550 expressionS exp;
b99bd4ef 3551
921e5f0a 3552 if (!unwind.proc_start)
c921be7d 3553 as_bad (MISSING_FNSTART);
921e5f0a 3554
c19d1205
ZW
3555 if (unwind.personality_routine || unwind.personality_index != -1)
3556 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3557
c19d1205 3558 expression (&exp);
b99bd4ef 3559
c19d1205
ZW
3560 if (exp.X_op != O_constant
3561 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3562 {
c19d1205
ZW
3563 as_bad (_("bad personality routine number"));
3564 ignore_rest_of_line ();
3565 return;
b99bd4ef
NC
3566 }
3567
c19d1205 3568 unwind.personality_index = exp.X_add_number;
b99bd4ef 3569
c19d1205
ZW
3570 demand_empty_rest_of_line ();
3571}
e16bb312 3572
e16bb312 3573
c19d1205 3574/* Parse a personality directive. */
e16bb312 3575
c19d1205
ZW
3576static void
3577s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3578{
3579 char *name, *p, c;
a737bd4d 3580
921e5f0a 3581 if (!unwind.proc_start)
c921be7d 3582 as_bad (MISSING_FNSTART);
921e5f0a 3583
c19d1205
ZW
3584 if (unwind.personality_routine || unwind.personality_index != -1)
3585 as_bad (_("duplicate .personality directive"));
a737bd4d 3586
c19d1205
ZW
3587 name = input_line_pointer;
3588 c = get_symbol_end ();
3589 p = input_line_pointer;
3590 unwind.personality_routine = symbol_find_or_make (name);
3591 *p = c;
3592 demand_empty_rest_of_line ();
3593}
e16bb312 3594
e16bb312 3595
c19d1205 3596/* Parse a directive saving core registers. */
e16bb312 3597
c19d1205
ZW
3598static void
3599s_arm_unwind_save_core (void)
e16bb312 3600{
c19d1205
ZW
3601 valueT op;
3602 long range;
3603 int n;
e16bb312 3604
c19d1205
ZW
3605 range = parse_reg_list (&input_line_pointer);
3606 if (range == FAIL)
e16bb312 3607 {
c19d1205
ZW
3608 as_bad (_("expected register list"));
3609 ignore_rest_of_line ();
3610 return;
3611 }
e16bb312 3612
c19d1205 3613 demand_empty_rest_of_line ();
e16bb312 3614
c19d1205
ZW
3615 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3616 into .unwind_save {..., sp...}. We aren't bothered about the value of
3617 ip because it is clobbered by calls. */
3618 if (unwind.sp_restored && unwind.fp_reg == 12
3619 && (range & 0x3000) == 0x1000)
3620 {
3621 unwind.opcode_count--;
3622 unwind.sp_restored = 0;
3623 range = (range | 0x2000) & ~0x1000;
3624 unwind.pending_offset = 0;
3625 }
e16bb312 3626
01ae4198
DJ
3627 /* Pop r4-r15. */
3628 if (range & 0xfff0)
c19d1205 3629 {
01ae4198
DJ
3630 /* See if we can use the short opcodes. These pop a block of up to 8
3631 registers starting with r4, plus maybe r14. */
3632 for (n = 0; n < 8; n++)
3633 {
3634 /* Break at the first non-saved register. */
3635 if ((range & (1 << (n + 4))) == 0)
3636 break;
3637 }
3638 /* See if there are any other bits set. */
3639 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3640 {
3641 /* Use the long form. */
3642 op = 0x8000 | ((range >> 4) & 0xfff);
3643 add_unwind_opcode (op, 2);
3644 }
0dd132b6 3645 else
01ae4198
DJ
3646 {
3647 /* Use the short form. */
3648 if (range & 0x4000)
3649 op = 0xa8; /* Pop r14. */
3650 else
3651 op = 0xa0; /* Do not pop r14. */
3652 op |= (n - 1);
3653 add_unwind_opcode (op, 1);
3654 }
c19d1205 3655 }
0dd132b6 3656
c19d1205
ZW
3657 /* Pop r0-r3. */
3658 if (range & 0xf)
3659 {
3660 op = 0xb100 | (range & 0xf);
3661 add_unwind_opcode (op, 2);
0dd132b6
NC
3662 }
3663
c19d1205
ZW
3664 /* Record the number of bytes pushed. */
3665 for (n = 0; n < 16; n++)
3666 {
3667 if (range & (1 << n))
3668 unwind.frame_size += 4;
3669 }
0dd132b6
NC
3670}
3671
c19d1205
ZW
3672
3673/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3674
3675static void
c19d1205 3676s_arm_unwind_save_fpa (int reg)
b99bd4ef 3677{
c19d1205
ZW
3678 expressionS exp;
3679 int num_regs;
3680 valueT op;
b99bd4ef 3681
c19d1205
ZW
3682 /* Get Number of registers to transfer. */
3683 if (skip_past_comma (&input_line_pointer) != FAIL)
3684 expression (&exp);
3685 else
3686 exp.X_op = O_illegal;
b99bd4ef 3687
c19d1205 3688 if (exp.X_op != O_constant)
b99bd4ef 3689 {
c19d1205
ZW
3690 as_bad (_("expected , <constant>"));
3691 ignore_rest_of_line ();
b99bd4ef
NC
3692 return;
3693 }
3694
c19d1205
ZW
3695 num_regs = exp.X_add_number;
3696
3697 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3698 {
c19d1205
ZW
3699 as_bad (_("number of registers must be in the range [1:4]"));
3700 ignore_rest_of_line ();
b99bd4ef
NC
3701 return;
3702 }
3703
c19d1205 3704 demand_empty_rest_of_line ();
b99bd4ef 3705
c19d1205
ZW
3706 if (reg == 4)
3707 {
3708 /* Short form. */
3709 op = 0xb4 | (num_regs - 1);
3710 add_unwind_opcode (op, 1);
3711 }
b99bd4ef
NC
3712 else
3713 {
c19d1205
ZW
3714 /* Long form. */
3715 op = 0xc800 | (reg << 4) | (num_regs - 1);
3716 add_unwind_opcode (op, 2);
b99bd4ef 3717 }
c19d1205 3718 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3719}
3720
c19d1205 3721
fa073d69
MS
3722/* Parse a directive saving VFP registers for ARMv6 and above. */
3723
3724static void
3725s_arm_unwind_save_vfp_armv6 (void)
3726{
3727 int count;
3728 unsigned int start;
3729 valueT op;
3730 int num_vfpv3_regs = 0;
3731 int num_regs_below_16;
3732
3733 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3734 if (count == FAIL)
3735 {
3736 as_bad (_("expected register list"));
3737 ignore_rest_of_line ();
3738 return;
3739 }
3740
3741 demand_empty_rest_of_line ();
3742
3743 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3744 than FSTMX/FLDMX-style ones). */
3745
3746 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3747 if (start >= 16)
3748 num_vfpv3_regs = count;
3749 else if (start + count > 16)
3750 num_vfpv3_regs = start + count - 16;
3751
3752 if (num_vfpv3_regs > 0)
3753 {
3754 int start_offset = start > 16 ? start - 16 : 0;
3755 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3756 add_unwind_opcode (op, 2);
3757 }
3758
3759 /* Generate opcode for registers numbered in the range 0 .. 15. */
3760 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3761 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3762 if (num_regs_below_16 > 0)
3763 {
3764 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3765 add_unwind_opcode (op, 2);
3766 }
3767
3768 unwind.frame_size += count * 8;
3769}
3770
3771
3772/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3773
3774static void
c19d1205 3775s_arm_unwind_save_vfp (void)
b99bd4ef 3776{
c19d1205 3777 int count;
ca3f61f7 3778 unsigned int reg;
c19d1205 3779 valueT op;
b99bd4ef 3780
5287ad62 3781 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3782 if (count == FAIL)
b99bd4ef 3783 {
c19d1205
ZW
3784 as_bad (_("expected register list"));
3785 ignore_rest_of_line ();
b99bd4ef
NC
3786 return;
3787 }
3788
c19d1205 3789 demand_empty_rest_of_line ();
b99bd4ef 3790
c19d1205 3791 if (reg == 8)
b99bd4ef 3792 {
c19d1205
ZW
3793 /* Short form. */
3794 op = 0xb8 | (count - 1);
3795 add_unwind_opcode (op, 1);
b99bd4ef 3796 }
c19d1205 3797 else
b99bd4ef 3798 {
c19d1205
ZW
3799 /* Long form. */
3800 op = 0xb300 | (reg << 4) | (count - 1);
3801 add_unwind_opcode (op, 2);
b99bd4ef 3802 }
c19d1205
ZW
3803 unwind.frame_size += count * 8 + 4;
3804}
b99bd4ef 3805
b99bd4ef 3806
c19d1205
ZW
3807/* Parse a directive saving iWMMXt data registers. */
3808
3809static void
3810s_arm_unwind_save_mmxwr (void)
3811{
3812 int reg;
3813 int hi_reg;
3814 int i;
3815 unsigned mask = 0;
3816 valueT op;
b99bd4ef 3817
c19d1205
ZW
3818 if (*input_line_pointer == '{')
3819 input_line_pointer++;
b99bd4ef 3820
c19d1205 3821 do
b99bd4ef 3822 {
dcbf9037 3823 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3824
c19d1205 3825 if (reg == FAIL)
b99bd4ef 3826 {
9b7132d3 3827 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3828 goto error;
b99bd4ef
NC
3829 }
3830
c19d1205
ZW
3831 if (mask >> reg)
3832 as_tsktsk (_("register list not in ascending order"));
3833 mask |= 1 << reg;
b99bd4ef 3834
c19d1205
ZW
3835 if (*input_line_pointer == '-')
3836 {
3837 input_line_pointer++;
dcbf9037 3838 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3839 if (hi_reg == FAIL)
3840 {
9b7132d3 3841 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3842 goto error;
3843 }
3844 else if (reg >= hi_reg)
3845 {
3846 as_bad (_("bad register range"));
3847 goto error;
3848 }
3849 for (; reg < hi_reg; reg++)
3850 mask |= 1 << reg;
3851 }
3852 }
3853 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3854
c19d1205
ZW
3855 if (*input_line_pointer == '}')
3856 input_line_pointer++;
b99bd4ef 3857
c19d1205 3858 demand_empty_rest_of_line ();
b99bd4ef 3859
708587a4 3860 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3861 the list. */
3862 flush_pending_unwind ();
b99bd4ef 3863
c19d1205 3864 for (i = 0; i < 16; i++)
b99bd4ef 3865 {
c19d1205
ZW
3866 if (mask & (1 << i))
3867 unwind.frame_size += 8;
b99bd4ef
NC
3868 }
3869
c19d1205
ZW
3870 /* Attempt to combine with a previous opcode. We do this because gcc
3871 likes to output separate unwind directives for a single block of
3872 registers. */
3873 if (unwind.opcode_count > 0)
b99bd4ef 3874 {
c19d1205
ZW
3875 i = unwind.opcodes[unwind.opcode_count - 1];
3876 if ((i & 0xf8) == 0xc0)
3877 {
3878 i &= 7;
3879 /* Only merge if the blocks are contiguous. */
3880 if (i < 6)
3881 {
3882 if ((mask & 0xfe00) == (1 << 9))
3883 {
3884 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3885 unwind.opcode_count--;
3886 }
3887 }
3888 else if (i == 6 && unwind.opcode_count >= 2)
3889 {
3890 i = unwind.opcodes[unwind.opcode_count - 2];
3891 reg = i >> 4;
3892 i &= 0xf;
b99bd4ef 3893
c19d1205
ZW
3894 op = 0xffff << (reg - 1);
3895 if (reg > 0
87a1fd79 3896 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3897 {
3898 op = (1 << (reg + i + 1)) - 1;
3899 op &= ~((1 << reg) - 1);
3900 mask |= op;
3901 unwind.opcode_count -= 2;
3902 }
3903 }
3904 }
b99bd4ef
NC
3905 }
3906
c19d1205
ZW
3907 hi_reg = 15;
3908 /* We want to generate opcodes in the order the registers have been
3909 saved, ie. descending order. */
3910 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3911 {
c19d1205
ZW
3912 /* Save registers in blocks. */
3913 if (reg < 0
3914 || !(mask & (1 << reg)))
3915 {
3916 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3917 preceding block. */
c19d1205
ZW
3918 if (reg != hi_reg)
3919 {
3920 if (reg == 9)
3921 {
3922 /* Short form. */
3923 op = 0xc0 | (hi_reg - 10);
3924 add_unwind_opcode (op, 1);
3925 }
3926 else
3927 {
3928 /* Long form. */
3929 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3930 add_unwind_opcode (op, 2);
3931 }
3932 }
3933 hi_reg = reg - 1;
3934 }
b99bd4ef
NC
3935 }
3936
c19d1205
ZW
3937 return;
3938error:
3939 ignore_rest_of_line ();
b99bd4ef
NC
3940}
3941
3942static void
c19d1205 3943s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3944{
c19d1205
ZW
3945 int reg;
3946 int hi_reg;
3947 unsigned mask = 0;
3948 valueT op;
b99bd4ef 3949
c19d1205
ZW
3950 if (*input_line_pointer == '{')
3951 input_line_pointer++;
b99bd4ef 3952
c19d1205 3953 do
b99bd4ef 3954 {
dcbf9037 3955 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3956
c19d1205
ZW
3957 if (reg == FAIL)
3958 {
9b7132d3 3959 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3960 goto error;
3961 }
b99bd4ef 3962
c19d1205
ZW
3963 reg -= 8;
3964 if (mask >> reg)
3965 as_tsktsk (_("register list not in ascending order"));
3966 mask |= 1 << reg;
b99bd4ef 3967
c19d1205
ZW
3968 if (*input_line_pointer == '-')
3969 {
3970 input_line_pointer++;
dcbf9037 3971 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3972 if (hi_reg == FAIL)
3973 {
9b7132d3 3974 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3975 goto error;
3976 }
3977 else if (reg >= hi_reg)
3978 {
3979 as_bad (_("bad register range"));
3980 goto error;
3981 }
3982 for (; reg < hi_reg; reg++)
3983 mask |= 1 << reg;
3984 }
b99bd4ef 3985 }
c19d1205 3986 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3987
c19d1205
ZW
3988 if (*input_line_pointer == '}')
3989 input_line_pointer++;
b99bd4ef 3990
c19d1205
ZW
3991 demand_empty_rest_of_line ();
3992
708587a4 3993 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3994 the list. */
3995 flush_pending_unwind ();
b99bd4ef 3996
c19d1205 3997 for (reg = 0; reg < 16; reg++)
b99bd4ef 3998 {
c19d1205
ZW
3999 if (mask & (1 << reg))
4000 unwind.frame_size += 4;
b99bd4ef 4001 }
c19d1205
ZW
4002 op = 0xc700 | mask;
4003 add_unwind_opcode (op, 2);
4004 return;
4005error:
4006 ignore_rest_of_line ();
b99bd4ef
NC
4007}
4008
c19d1205 4009
fa073d69
MS
4010/* Parse an unwind_save directive.
4011 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4012
b99bd4ef 4013static void
fa073d69 4014s_arm_unwind_save (int arch_v6)
b99bd4ef 4015{
c19d1205
ZW
4016 char *peek;
4017 struct reg_entry *reg;
4018 bfd_boolean had_brace = FALSE;
b99bd4ef 4019
921e5f0a 4020 if (!unwind.proc_start)
c921be7d 4021 as_bad (MISSING_FNSTART);
921e5f0a 4022
c19d1205
ZW
4023 /* Figure out what sort of save we have. */
4024 peek = input_line_pointer;
b99bd4ef 4025
c19d1205 4026 if (*peek == '{')
b99bd4ef 4027 {
c19d1205
ZW
4028 had_brace = TRUE;
4029 peek++;
b99bd4ef
NC
4030 }
4031
c19d1205 4032 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4033
c19d1205 4034 if (!reg)
b99bd4ef 4035 {
c19d1205
ZW
4036 as_bad (_("register expected"));
4037 ignore_rest_of_line ();
b99bd4ef
NC
4038 return;
4039 }
4040
c19d1205 4041 switch (reg->type)
b99bd4ef 4042 {
c19d1205
ZW
4043 case REG_TYPE_FN:
4044 if (had_brace)
4045 {
4046 as_bad (_("FPA .unwind_save does not take a register list"));
4047 ignore_rest_of_line ();
4048 return;
4049 }
93ac2687 4050 input_line_pointer = peek;
c19d1205 4051 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4052 return;
c19d1205
ZW
4053
4054 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4055 case REG_TYPE_VFD:
4056 if (arch_v6)
4057 s_arm_unwind_save_vfp_armv6 ();
4058 else
4059 s_arm_unwind_save_vfp ();
4060 return;
c19d1205
ZW
4061 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4062 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4063
4064 default:
4065 as_bad (_(".unwind_save does not support this kind of register"));
4066 ignore_rest_of_line ();
b99bd4ef 4067 }
c19d1205 4068}
b99bd4ef 4069
b99bd4ef 4070
c19d1205
ZW
4071/* Parse an unwind_movsp directive. */
4072
4073static void
4074s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4075{
4076 int reg;
4077 valueT op;
4fa3602b 4078 int offset;
c19d1205 4079
921e5f0a 4080 if (!unwind.proc_start)
c921be7d 4081 as_bad (MISSING_FNSTART);
921e5f0a 4082
dcbf9037 4083 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4084 if (reg == FAIL)
b99bd4ef 4085 {
9b7132d3 4086 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4087 ignore_rest_of_line ();
b99bd4ef
NC
4088 return;
4089 }
4fa3602b
PB
4090
4091 /* Optional constant. */
4092 if (skip_past_comma (&input_line_pointer) != FAIL)
4093 {
4094 if (immediate_for_directive (&offset) == FAIL)
4095 return;
4096 }
4097 else
4098 offset = 0;
4099
c19d1205 4100 demand_empty_rest_of_line ();
b99bd4ef 4101
c19d1205 4102 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4103 {
c19d1205 4104 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4105 return;
4106 }
4107
c19d1205
ZW
4108 if (unwind.fp_reg != REG_SP)
4109 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4110
c19d1205
ZW
4111 /* Generate opcode to restore the value. */
4112 op = 0x90 | reg;
4113 add_unwind_opcode (op, 1);
4114
4115 /* Record the information for later. */
4116 unwind.fp_reg = reg;
4fa3602b 4117 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4118 unwind.sp_restored = 1;
b05fe5cf
ZW
4119}
4120
c19d1205
ZW
4121/* Parse an unwind_pad directive. */
4122
b05fe5cf 4123static void
c19d1205 4124s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4125{
c19d1205 4126 int offset;
b05fe5cf 4127
921e5f0a 4128 if (!unwind.proc_start)
c921be7d 4129 as_bad (MISSING_FNSTART);
921e5f0a 4130
c19d1205
ZW
4131 if (immediate_for_directive (&offset) == FAIL)
4132 return;
b99bd4ef 4133
c19d1205
ZW
4134 if (offset & 3)
4135 {
4136 as_bad (_("stack increment must be multiple of 4"));
4137 ignore_rest_of_line ();
4138 return;
4139 }
b99bd4ef 4140
c19d1205
ZW
4141 /* Don't generate any opcodes, just record the details for later. */
4142 unwind.frame_size += offset;
4143 unwind.pending_offset += offset;
4144
4145 demand_empty_rest_of_line ();
4146}
4147
4148/* Parse an unwind_setfp directive. */
4149
4150static void
4151s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4152{
c19d1205
ZW
4153 int sp_reg;
4154 int fp_reg;
4155 int offset;
4156
921e5f0a 4157 if (!unwind.proc_start)
c921be7d 4158 as_bad (MISSING_FNSTART);
921e5f0a 4159
dcbf9037 4160 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4161 if (skip_past_comma (&input_line_pointer) == FAIL)
4162 sp_reg = FAIL;
4163 else
dcbf9037 4164 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4165
c19d1205
ZW
4166 if (fp_reg == FAIL || sp_reg == FAIL)
4167 {
4168 as_bad (_("expected <reg>, <reg>"));
4169 ignore_rest_of_line ();
4170 return;
4171 }
b99bd4ef 4172
c19d1205
ZW
4173 /* Optional constant. */
4174 if (skip_past_comma (&input_line_pointer) != FAIL)
4175 {
4176 if (immediate_for_directive (&offset) == FAIL)
4177 return;
4178 }
4179 else
4180 offset = 0;
a737bd4d 4181
c19d1205 4182 demand_empty_rest_of_line ();
a737bd4d 4183
fdfde340 4184 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4185 {
c19d1205
ZW
4186 as_bad (_("register must be either sp or set by a previous"
4187 "unwind_movsp directive"));
4188 return;
a737bd4d
NC
4189 }
4190
c19d1205
ZW
4191 /* Don't generate any opcodes, just record the information for later. */
4192 unwind.fp_reg = fp_reg;
4193 unwind.fp_used = 1;
fdfde340 4194 if (sp_reg == REG_SP)
c19d1205
ZW
4195 unwind.fp_offset = unwind.frame_size - offset;
4196 else
4197 unwind.fp_offset -= offset;
a737bd4d
NC
4198}
4199
c19d1205
ZW
4200/* Parse an unwind_raw directive. */
4201
4202static void
4203s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4204{
c19d1205 4205 expressionS exp;
708587a4 4206 /* This is an arbitrary limit. */
c19d1205
ZW
4207 unsigned char op[16];
4208 int count;
a737bd4d 4209
921e5f0a 4210 if (!unwind.proc_start)
c921be7d 4211 as_bad (MISSING_FNSTART);
921e5f0a 4212
c19d1205
ZW
4213 expression (&exp);
4214 if (exp.X_op == O_constant
4215 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4216 {
c19d1205
ZW
4217 unwind.frame_size += exp.X_add_number;
4218 expression (&exp);
4219 }
4220 else
4221 exp.X_op = O_illegal;
a737bd4d 4222
c19d1205
ZW
4223 if (exp.X_op != O_constant)
4224 {
4225 as_bad (_("expected <offset>, <opcode>"));
4226 ignore_rest_of_line ();
4227 return;
4228 }
a737bd4d 4229
c19d1205 4230 count = 0;
a737bd4d 4231
c19d1205
ZW
4232 /* Parse the opcode. */
4233 for (;;)
4234 {
4235 if (count >= 16)
4236 {
4237 as_bad (_("unwind opcode too long"));
4238 ignore_rest_of_line ();
a737bd4d 4239 }
c19d1205 4240 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4241 {
c19d1205
ZW
4242 as_bad (_("invalid unwind opcode"));
4243 ignore_rest_of_line ();
4244 return;
a737bd4d 4245 }
c19d1205 4246 op[count++] = exp.X_add_number;
a737bd4d 4247
c19d1205
ZW
4248 /* Parse the next byte. */
4249 if (skip_past_comma (&input_line_pointer) == FAIL)
4250 break;
a737bd4d 4251
c19d1205
ZW
4252 expression (&exp);
4253 }
b99bd4ef 4254
c19d1205
ZW
4255 /* Add the opcode bytes in reverse order. */
4256 while (count--)
4257 add_unwind_opcode (op[count], 1);
b99bd4ef 4258
c19d1205 4259 demand_empty_rest_of_line ();
b99bd4ef 4260}
ee065d83
PB
4261
4262
4263/* Parse a .eabi_attribute directive. */
4264
4265static void
4266s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4267{
ee3c0378
AS
4268 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4269
4270 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4271 attributes_set_explicitly[tag] = 1;
ee065d83 4272}
8463be01 4273#endif /* OBJ_ELF */
ee065d83
PB
4274
4275static void s_arm_arch (int);
7a1d4c38 4276static void s_arm_object_arch (int);
ee065d83
PB
4277static void s_arm_cpu (int);
4278static void s_arm_fpu (int);
69133863 4279static void s_arm_arch_extension (int);
b99bd4ef 4280
f0927246
NC
4281#ifdef TE_PE
4282
4283static void
5f4273c7 4284pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4285{
4286 expressionS exp;
4287
4288 do
4289 {
4290 expression (&exp);
4291 if (exp.X_op == O_symbol)
4292 exp.X_op = O_secrel;
4293
4294 emit_expr (&exp, 4);
4295 }
4296 while (*input_line_pointer++ == ',');
4297
4298 input_line_pointer--;
4299 demand_empty_rest_of_line ();
4300}
4301#endif /* TE_PE */
4302
c19d1205
ZW
4303/* This table describes all the machine specific pseudo-ops the assembler
4304 has to support. The fields are:
4305 pseudo-op name without dot
4306 function to call to execute this pseudo-op
4307 Integer arg to pass to the function. */
b99bd4ef 4308
c19d1205 4309const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4310{
c19d1205
ZW
4311 /* Never called because '.req' does not start a line. */
4312 { "req", s_req, 0 },
dcbf9037
JB
4313 /* Following two are likewise never called. */
4314 { "dn", s_dn, 0 },
4315 { "qn", s_qn, 0 },
c19d1205
ZW
4316 { "unreq", s_unreq, 0 },
4317 { "bss", s_bss, 0 },
4318 { "align", s_align, 0 },
4319 { "arm", s_arm, 0 },
4320 { "thumb", s_thumb, 0 },
4321 { "code", s_code, 0 },
4322 { "force_thumb", s_force_thumb, 0 },
4323 { "thumb_func", s_thumb_func, 0 },
4324 { "thumb_set", s_thumb_set, 0 },
4325 { "even", s_even, 0 },
4326 { "ltorg", s_ltorg, 0 },
4327 { "pool", s_ltorg, 0 },
4328 { "syntax", s_syntax, 0 },
8463be01
PB
4329 { "cpu", s_arm_cpu, 0 },
4330 { "arch", s_arm_arch, 0 },
7a1d4c38 4331 { "object_arch", s_arm_object_arch, 0 },
8463be01 4332 { "fpu", s_arm_fpu, 0 },
69133863 4333 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4334#ifdef OBJ_ELF
c921be7d
NC
4335 { "word", s_arm_elf_cons, 4 },
4336 { "long", s_arm_elf_cons, 4 },
4337 { "inst.n", s_arm_elf_inst, 2 },
4338 { "inst.w", s_arm_elf_inst, 4 },
4339 { "inst", s_arm_elf_inst, 0 },
4340 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4341 { "fnstart", s_arm_unwind_fnstart, 0 },
4342 { "fnend", s_arm_unwind_fnend, 0 },
4343 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4344 { "personality", s_arm_unwind_personality, 0 },
4345 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4346 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4347 { "save", s_arm_unwind_save, 0 },
fa073d69 4348 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4349 { "movsp", s_arm_unwind_movsp, 0 },
4350 { "pad", s_arm_unwind_pad, 0 },
4351 { "setfp", s_arm_unwind_setfp, 0 },
4352 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4353 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
4354#else
4355 { "word", cons, 4},
f0927246
NC
4356
4357 /* These are used for dwarf. */
4358 {"2byte", cons, 2},
4359 {"4byte", cons, 4},
4360 {"8byte", cons, 8},
4361 /* These are used for dwarf2. */
4362 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4363 { "loc", dwarf2_directive_loc, 0 },
4364 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4365#endif
4366 { "extend", float_cons, 'x' },
4367 { "ldouble", float_cons, 'x' },
4368 { "packed", float_cons, 'p' },
f0927246
NC
4369#ifdef TE_PE
4370 {"secrel32", pe_directive_secrel, 0},
4371#endif
c19d1205
ZW
4372 { 0, 0, 0 }
4373};
4374\f
4375/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4376
c19d1205
ZW
4377/* Generic immediate-value read function for use in insn parsing.
4378 STR points to the beginning of the immediate (the leading #);
4379 VAL receives the value; if the value is outside [MIN, MAX]
4380 issue an error. PREFIX_OPT is true if the immediate prefix is
4381 optional. */
b99bd4ef 4382
c19d1205
ZW
4383static int
4384parse_immediate (char **str, int *val, int min, int max,
4385 bfd_boolean prefix_opt)
4386{
4387 expressionS exp;
4388 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4389 if (exp.X_op != O_constant)
b99bd4ef 4390 {
c19d1205
ZW
4391 inst.error = _("constant expression required");
4392 return FAIL;
4393 }
b99bd4ef 4394
c19d1205
ZW
4395 if (exp.X_add_number < min || exp.X_add_number > max)
4396 {
4397 inst.error = _("immediate value out of range");
4398 return FAIL;
4399 }
b99bd4ef 4400
c19d1205
ZW
4401 *val = exp.X_add_number;
4402 return SUCCESS;
4403}
b99bd4ef 4404
5287ad62 4405/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4406 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4407 instructions. Puts the result directly in inst.operands[i]. */
4408
4409static int
4410parse_big_immediate (char **str, int i)
4411{
4412 expressionS exp;
4413 char *ptr = *str;
4414
4415 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4416
4417 if (exp.X_op == O_constant)
036dc3f7
PB
4418 {
4419 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4420 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4421 O_constant. We have to be careful not to break compilation for
4422 32-bit X_add_number, though. */
4423 if ((exp.X_add_number & ~0xffffffffl) != 0)
4424 {
4425 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4426 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4427 inst.operands[i].regisimm = 1;
4428 }
4429 }
5287ad62 4430 else if (exp.X_op == O_big
95b75c01 4431 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4432 {
4433 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4434
5287ad62
JB
4435 /* Bignums have their least significant bits in
4436 generic_bignum[0]. Make sure we put 32 bits in imm and
4437 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4438 gas_assert (parts != 0);
95b75c01
NC
4439
4440 /* Make sure that the number is not too big.
4441 PR 11972: Bignums can now be sign-extended to the
4442 size of a .octa so check that the out of range bits
4443 are all zero or all one. */
4444 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4445 {
4446 LITTLENUM_TYPE m = -1;
4447
4448 if (generic_bignum[parts * 2] != 0
4449 && generic_bignum[parts * 2] != m)
4450 return FAIL;
4451
4452 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4453 if (generic_bignum[j] != generic_bignum[j-1])
4454 return FAIL;
4455 }
4456
5287ad62
JB
4457 inst.operands[i].imm = 0;
4458 for (j = 0; j < parts; j++, idx++)
4459 inst.operands[i].imm |= generic_bignum[idx]
4460 << (LITTLENUM_NUMBER_OF_BITS * j);
4461 inst.operands[i].reg = 0;
4462 for (j = 0; j < parts; j++, idx++)
4463 inst.operands[i].reg |= generic_bignum[idx]
4464 << (LITTLENUM_NUMBER_OF_BITS * j);
4465 inst.operands[i].regisimm = 1;
4466 }
4467 else
4468 return FAIL;
5f4273c7 4469
5287ad62
JB
4470 *str = ptr;
4471
4472 return SUCCESS;
4473}
4474
c19d1205
ZW
4475/* Returns the pseudo-register number of an FPA immediate constant,
4476 or FAIL if there isn't a valid constant here. */
b99bd4ef 4477
c19d1205
ZW
4478static int
4479parse_fpa_immediate (char ** str)
4480{
4481 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4482 char * save_in;
4483 expressionS exp;
4484 int i;
4485 int j;
b99bd4ef 4486
c19d1205
ZW
4487 /* First try and match exact strings, this is to guarantee
4488 that some formats will work even for cross assembly. */
b99bd4ef 4489
c19d1205
ZW
4490 for (i = 0; fp_const[i]; i++)
4491 {
4492 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4493 {
c19d1205 4494 char *start = *str;
b99bd4ef 4495
c19d1205
ZW
4496 *str += strlen (fp_const[i]);
4497 if (is_end_of_line[(unsigned char) **str])
4498 return i + 8;
4499 *str = start;
4500 }
4501 }
b99bd4ef 4502
c19d1205
ZW
4503 /* Just because we didn't get a match doesn't mean that the constant
4504 isn't valid, just that it is in a format that we don't
4505 automatically recognize. Try parsing it with the standard
4506 expression routines. */
b99bd4ef 4507
c19d1205 4508 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4509
c19d1205
ZW
4510 /* Look for a raw floating point number. */
4511 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4512 && is_end_of_line[(unsigned char) *save_in])
4513 {
4514 for (i = 0; i < NUM_FLOAT_VALS; i++)
4515 {
4516 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4517 {
c19d1205
ZW
4518 if (words[j] != fp_values[i][j])
4519 break;
b99bd4ef
NC
4520 }
4521
c19d1205 4522 if (j == MAX_LITTLENUMS)
b99bd4ef 4523 {
c19d1205
ZW
4524 *str = save_in;
4525 return i + 8;
b99bd4ef
NC
4526 }
4527 }
4528 }
b99bd4ef 4529
c19d1205
ZW
4530 /* Try and parse a more complex expression, this will probably fail
4531 unless the code uses a floating point prefix (eg "0f"). */
4532 save_in = input_line_pointer;
4533 input_line_pointer = *str;
4534 if (expression (&exp) == absolute_section
4535 && exp.X_op == O_big
4536 && exp.X_add_number < 0)
4537 {
4538 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4539 Ditto for 15. */
4540 if (gen_to_words (words, 5, (long) 15) == 0)
4541 {
4542 for (i = 0; i < NUM_FLOAT_VALS; i++)
4543 {
4544 for (j = 0; j < MAX_LITTLENUMS; j++)
4545 {
4546 if (words[j] != fp_values[i][j])
4547 break;
4548 }
b99bd4ef 4549
c19d1205
ZW
4550 if (j == MAX_LITTLENUMS)
4551 {
4552 *str = input_line_pointer;
4553 input_line_pointer = save_in;
4554 return i + 8;
4555 }
4556 }
4557 }
b99bd4ef
NC
4558 }
4559
c19d1205
ZW
4560 *str = input_line_pointer;
4561 input_line_pointer = save_in;
4562 inst.error = _("invalid FPA immediate expression");
4563 return FAIL;
b99bd4ef
NC
4564}
4565
136da414
JB
4566/* Returns 1 if a number has "quarter-precision" float format
4567 0baBbbbbbc defgh000 00000000 00000000. */
4568
4569static int
4570is_quarter_float (unsigned imm)
4571{
4572 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4573 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4574}
4575
4576/* Parse an 8-bit "quarter-precision" floating point number of the form:
4577 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4578 The zero and minus-zero cases need special handling, since they can't be
4579 encoded in the "quarter-precision" float format, but can nonetheless be
4580 loaded as integer constants. */
136da414
JB
4581
4582static unsigned
4583parse_qfloat_immediate (char **ccp, int *immed)
4584{
4585 char *str = *ccp;
c96612cc 4586 char *fpnum;
136da414 4587 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4588 int found_fpchar = 0;
5f4273c7 4589
136da414 4590 skip_past_char (&str, '#');
5f4273c7 4591
c96612cc
JB
4592 /* We must not accidentally parse an integer as a floating-point number. Make
4593 sure that the value we parse is not an integer by checking for special
4594 characters '.' or 'e'.
4595 FIXME: This is a horrible hack, but doing better is tricky because type
4596 information isn't in a very usable state at parse time. */
4597 fpnum = str;
4598 skip_whitespace (fpnum);
4599
4600 if (strncmp (fpnum, "0x", 2) == 0)
4601 return FAIL;
4602 else
4603 {
4604 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4605 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4606 {
4607 found_fpchar = 1;
4608 break;
4609 }
4610
4611 if (!found_fpchar)
4612 return FAIL;
4613 }
5f4273c7 4614
136da414
JB
4615 if ((str = atof_ieee (str, 's', words)) != NULL)
4616 {
4617 unsigned fpword = 0;
4618 int i;
5f4273c7 4619
136da414
JB
4620 /* Our FP word must be 32 bits (single-precision FP). */
4621 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4622 {
4623 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4624 fpword |= words[i];
4625 }
5f4273c7 4626
c96612cc 4627 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4628 *immed = fpword;
4629 else
4630 return FAIL;
4631
4632 *ccp = str;
5f4273c7 4633
136da414
JB
4634 return SUCCESS;
4635 }
5f4273c7 4636
136da414
JB
4637 return FAIL;
4638}
4639
c19d1205
ZW
4640/* Shift operands. */
4641enum shift_kind
b99bd4ef 4642{
c19d1205
ZW
4643 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4644};
b99bd4ef 4645
c19d1205
ZW
4646struct asm_shift_name
4647{
4648 const char *name;
4649 enum shift_kind kind;
4650};
b99bd4ef 4651
c19d1205
ZW
4652/* Third argument to parse_shift. */
4653enum parse_shift_mode
4654{
4655 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4656 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4657 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4658 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4659 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4660};
b99bd4ef 4661
c19d1205
ZW
4662/* Parse a <shift> specifier on an ARM data processing instruction.
4663 This has three forms:
b99bd4ef 4664
c19d1205
ZW
4665 (LSL|LSR|ASL|ASR|ROR) Rs
4666 (LSL|LSR|ASL|ASR|ROR) #imm
4667 RRX
b99bd4ef 4668
c19d1205
ZW
4669 Note that ASL is assimilated to LSL in the instruction encoding, and
4670 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4671
c19d1205
ZW
4672static int
4673parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4674{
c19d1205
ZW
4675 const struct asm_shift_name *shift_name;
4676 enum shift_kind shift;
4677 char *s = *str;
4678 char *p = s;
4679 int reg;
b99bd4ef 4680
c19d1205
ZW
4681 for (p = *str; ISALPHA (*p); p++)
4682 ;
b99bd4ef 4683
c19d1205 4684 if (p == *str)
b99bd4ef 4685 {
c19d1205
ZW
4686 inst.error = _("shift expression expected");
4687 return FAIL;
b99bd4ef
NC
4688 }
4689
21d799b5
NC
4690 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4691 p - *str);
c19d1205
ZW
4692
4693 if (shift_name == NULL)
b99bd4ef 4694 {
c19d1205
ZW
4695 inst.error = _("shift expression expected");
4696 return FAIL;
b99bd4ef
NC
4697 }
4698
c19d1205 4699 shift = shift_name->kind;
b99bd4ef 4700
c19d1205
ZW
4701 switch (mode)
4702 {
4703 case NO_SHIFT_RESTRICT:
4704 case SHIFT_IMMEDIATE: break;
b99bd4ef 4705
c19d1205
ZW
4706 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4707 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4708 {
4709 inst.error = _("'LSL' or 'ASR' required");
4710 return FAIL;
4711 }
4712 break;
b99bd4ef 4713
c19d1205
ZW
4714 case SHIFT_LSL_IMMEDIATE:
4715 if (shift != SHIFT_LSL)
4716 {
4717 inst.error = _("'LSL' required");
4718 return FAIL;
4719 }
4720 break;
b99bd4ef 4721
c19d1205
ZW
4722 case SHIFT_ASR_IMMEDIATE:
4723 if (shift != SHIFT_ASR)
4724 {
4725 inst.error = _("'ASR' required");
4726 return FAIL;
4727 }
4728 break;
b99bd4ef 4729
c19d1205
ZW
4730 default: abort ();
4731 }
b99bd4ef 4732
c19d1205
ZW
4733 if (shift != SHIFT_RRX)
4734 {
4735 /* Whitespace can appear here if the next thing is a bare digit. */
4736 skip_whitespace (p);
b99bd4ef 4737
c19d1205 4738 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4739 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4740 {
4741 inst.operands[i].imm = reg;
4742 inst.operands[i].immisreg = 1;
4743 }
4744 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4745 return FAIL;
4746 }
4747 inst.operands[i].shift_kind = shift;
4748 inst.operands[i].shifted = 1;
4749 *str = p;
4750 return SUCCESS;
b99bd4ef
NC
4751}
4752
c19d1205 4753/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4754
c19d1205
ZW
4755 #<immediate>
4756 #<immediate>, <rotate>
4757 <Rm>
4758 <Rm>, <shift>
b99bd4ef 4759
c19d1205
ZW
4760 where <shift> is defined by parse_shift above, and <rotate> is a
4761 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4762 is deferred to md_apply_fix. */
b99bd4ef 4763
c19d1205
ZW
4764static int
4765parse_shifter_operand (char **str, int i)
4766{
4767 int value;
91d6fa6a 4768 expressionS exp;
b99bd4ef 4769
dcbf9037 4770 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4771 {
4772 inst.operands[i].reg = value;
4773 inst.operands[i].isreg = 1;
b99bd4ef 4774
c19d1205
ZW
4775 /* parse_shift will override this if appropriate */
4776 inst.reloc.exp.X_op = O_constant;
4777 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4778
c19d1205
ZW
4779 if (skip_past_comma (str) == FAIL)
4780 return SUCCESS;
b99bd4ef 4781
c19d1205
ZW
4782 /* Shift operation on register. */
4783 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4784 }
4785
c19d1205
ZW
4786 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4787 return FAIL;
b99bd4ef 4788
c19d1205 4789 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4790 {
c19d1205 4791 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4792 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4793 return FAIL;
b99bd4ef 4794
91d6fa6a 4795 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4796 {
4797 inst.error = _("constant expression expected");
4798 return FAIL;
4799 }
b99bd4ef 4800
91d6fa6a 4801 value = exp.X_add_number;
c19d1205
ZW
4802 if (value < 0 || value > 30 || value % 2 != 0)
4803 {
4804 inst.error = _("invalid rotation");
4805 return FAIL;
4806 }
4807 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4808 {
4809 inst.error = _("invalid constant");
4810 return FAIL;
4811 }
09d92015 4812
55cf6793 4813 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4814 inst.reloc.exp.X_add_number
4815 = (((inst.reloc.exp.X_add_number << (32 - value))
4816 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4817 }
4818
c19d1205
ZW
4819 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4820 inst.reloc.pc_rel = 0;
4821 return SUCCESS;
09d92015
MM
4822}
4823
4962c51a
MS
4824/* Group relocation information. Each entry in the table contains the
4825 textual name of the relocation as may appear in assembler source
4826 and must end with a colon.
4827 Along with this textual name are the relocation codes to be used if
4828 the corresponding instruction is an ALU instruction (ADD or SUB only),
4829 an LDR, an LDRS, or an LDC. */
4830
4831struct group_reloc_table_entry
4832{
4833 const char *name;
4834 int alu_code;
4835 int ldr_code;
4836 int ldrs_code;
4837 int ldc_code;
4838};
4839
4840typedef enum
4841{
4842 /* Varieties of non-ALU group relocation. */
4843
4844 GROUP_LDR,
4845 GROUP_LDRS,
4846 GROUP_LDC
4847} group_reloc_type;
4848
4849static struct group_reloc_table_entry group_reloc_table[] =
4850 { /* Program counter relative: */
4851 { "pc_g0_nc",
4852 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4853 0, /* LDR */
4854 0, /* LDRS */
4855 0 }, /* LDC */
4856 { "pc_g0",
4857 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4858 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4859 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4860 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4861 { "pc_g1_nc",
4862 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4863 0, /* LDR */
4864 0, /* LDRS */
4865 0 }, /* LDC */
4866 { "pc_g1",
4867 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4868 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4869 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4870 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4871 { "pc_g2",
4872 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4873 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4874 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4875 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4876 /* Section base relative */
4877 { "sb_g0_nc",
4878 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4879 0, /* LDR */
4880 0, /* LDRS */
4881 0 }, /* LDC */
4882 { "sb_g0",
4883 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4884 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4885 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4886 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4887 { "sb_g1_nc",
4888 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4889 0, /* LDR */
4890 0, /* LDRS */
4891 0 }, /* LDC */
4892 { "sb_g1",
4893 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4894 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4895 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4896 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4897 { "sb_g2",
4898 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4899 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4900 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4901 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4902
4903/* Given the address of a pointer pointing to the textual name of a group
4904 relocation as may appear in assembler source, attempt to find its details
4905 in group_reloc_table. The pointer will be updated to the character after
4906 the trailing colon. On failure, FAIL will be returned; SUCCESS
4907 otherwise. On success, *entry will be updated to point at the relevant
4908 group_reloc_table entry. */
4909
4910static int
4911find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4912{
4913 unsigned int i;
4914 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4915 {
4916 int length = strlen (group_reloc_table[i].name);
4917
5f4273c7
NC
4918 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4919 && (*str)[length] == ':')
4962c51a
MS
4920 {
4921 *out = &group_reloc_table[i];
4922 *str += (length + 1);
4923 return SUCCESS;
4924 }
4925 }
4926
4927 return FAIL;
4928}
4929
4930/* Parse a <shifter_operand> for an ARM data processing instruction
4931 (as for parse_shifter_operand) where group relocations are allowed:
4932
4933 #<immediate>
4934 #<immediate>, <rotate>
4935 #:<group_reloc>:<expression>
4936 <Rm>
4937 <Rm>, <shift>
4938
4939 where <group_reloc> is one of the strings defined in group_reloc_table.
4940 The hashes are optional.
4941
4942 Everything else is as for parse_shifter_operand. */
4943
4944static parse_operand_result
4945parse_shifter_operand_group_reloc (char **str, int i)
4946{
4947 /* Determine if we have the sequence of characters #: or just :
4948 coming next. If we do, then we check for a group relocation.
4949 If we don't, punt the whole lot to parse_shifter_operand. */
4950
4951 if (((*str)[0] == '#' && (*str)[1] == ':')
4952 || (*str)[0] == ':')
4953 {
4954 struct group_reloc_table_entry *entry;
4955
4956 if ((*str)[0] == '#')
4957 (*str) += 2;
4958 else
4959 (*str)++;
4960
4961 /* Try to parse a group relocation. Anything else is an error. */
4962 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4963 {
4964 inst.error = _("unknown group relocation");
4965 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4966 }
4967
4968 /* We now have the group relocation table entry corresponding to
4969 the name in the assembler source. Next, we parse the expression. */
4970 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4971 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4972
4973 /* Record the relocation type (always the ALU variant here). */
21d799b5 4974 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 4975 gas_assert (inst.reloc.type != 0);
4962c51a
MS
4976
4977 return PARSE_OPERAND_SUCCESS;
4978 }
4979 else
4980 return parse_shifter_operand (str, i) == SUCCESS
4981 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4982
4983 /* Never reached. */
4984}
4985
8e560766
MGD
4986/* Parse a Neon alignment expression. Information is written to
4987 inst.operands[i]. We assume the initial ':' has been skipped.
4988
4989 align .imm = align << 8, .immisalign=1, .preind=0 */
4990static parse_operand_result
4991parse_neon_alignment (char **str, int i)
4992{
4993 char *p = *str;
4994 expressionS exp;
4995
4996 my_get_expression (&exp, &p, GE_NO_PREFIX);
4997
4998 if (exp.X_op != O_constant)
4999 {
5000 inst.error = _("alignment must be constant");
5001 return PARSE_OPERAND_FAIL;
5002 }
5003
5004 inst.operands[i].imm = exp.X_add_number << 8;
5005 inst.operands[i].immisalign = 1;
5006 /* Alignments are not pre-indexes. */
5007 inst.operands[i].preind = 0;
5008
5009 *str = p;
5010 return PARSE_OPERAND_SUCCESS;
5011}
5012
c19d1205
ZW
5013/* Parse all forms of an ARM address expression. Information is written
5014 to inst.operands[i] and/or inst.reloc.
09d92015 5015
c19d1205 5016 Preindexed addressing (.preind=1):
09d92015 5017
c19d1205
ZW
5018 [Rn, #offset] .reg=Rn .reloc.exp=offset
5019 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5020 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5021 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5022
c19d1205 5023 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5024
c19d1205 5025 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5026
c19d1205
ZW
5027 [Rn], #offset .reg=Rn .reloc.exp=offset
5028 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5029 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5030 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5031
c19d1205 5032 Unindexed addressing (.preind=0, .postind=0):
09d92015 5033
c19d1205 5034 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5035
c19d1205 5036 Other:
09d92015 5037
c19d1205
ZW
5038 [Rn]{!} shorthand for [Rn,#0]{!}
5039 =immediate .isreg=0 .reloc.exp=immediate
5040 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5041
c19d1205
ZW
5042 It is the caller's responsibility to check for addressing modes not
5043 supported by the instruction, and to set inst.reloc.type. */
5044
4962c51a
MS
5045static parse_operand_result
5046parse_address_main (char **str, int i, int group_relocations,
5047 group_reloc_type group_type)
09d92015 5048{
c19d1205
ZW
5049 char *p = *str;
5050 int reg;
09d92015 5051
c19d1205 5052 if (skip_past_char (&p, '[') == FAIL)
09d92015 5053 {
c19d1205
ZW
5054 if (skip_past_char (&p, '=') == FAIL)
5055 {
974da60d 5056 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5057 inst.reloc.pc_rel = 1;
5058 inst.operands[i].reg = REG_PC;
5059 inst.operands[i].isreg = 1;
5060 inst.operands[i].preind = 1;
5061 }
974da60d 5062 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5063
c19d1205 5064 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5065 return PARSE_OPERAND_FAIL;
09d92015 5066
c19d1205 5067 *str = p;
4962c51a 5068 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5069 }
5070
dcbf9037 5071 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5072 {
c19d1205 5073 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5074 return PARSE_OPERAND_FAIL;
09d92015 5075 }
c19d1205
ZW
5076 inst.operands[i].reg = reg;
5077 inst.operands[i].isreg = 1;
09d92015 5078
c19d1205 5079 if (skip_past_comma (&p) == SUCCESS)
09d92015 5080 {
c19d1205 5081 inst.operands[i].preind = 1;
09d92015 5082
c19d1205
ZW
5083 if (*p == '+') p++;
5084 else if (*p == '-') p++, inst.operands[i].negative = 1;
5085
dcbf9037 5086 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5087 {
c19d1205
ZW
5088 inst.operands[i].imm = reg;
5089 inst.operands[i].immisreg = 1;
5090
5091 if (skip_past_comma (&p) == SUCCESS)
5092 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5093 return PARSE_OPERAND_FAIL;
c19d1205 5094 }
5287ad62 5095 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5096 {
5097 /* FIXME: '@' should be used here, but it's filtered out by generic
5098 code before we get to see it here. This may be subject to
5099 change. */
5100 parse_operand_result result = parse_neon_alignment (&p, i);
5101
5102 if (result != PARSE_OPERAND_SUCCESS)
5103 return result;
5104 }
c19d1205
ZW
5105 else
5106 {
5107 if (inst.operands[i].negative)
5108 {
5109 inst.operands[i].negative = 0;
5110 p--;
5111 }
4962c51a 5112
5f4273c7
NC
5113 if (group_relocations
5114 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5115 {
5116 struct group_reloc_table_entry *entry;
5117
5118 /* Skip over the #: or : sequence. */
5119 if (*p == '#')
5120 p += 2;
5121 else
5122 p++;
5123
5124 /* Try to parse a group relocation. Anything else is an
5125 error. */
5126 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5127 {
5128 inst.error = _("unknown group relocation");
5129 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5130 }
5131
5132 /* We now have the group relocation table entry corresponding to
5133 the name in the assembler source. Next, we parse the
5134 expression. */
5135 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5136 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5137
5138 /* Record the relocation type. */
5139 switch (group_type)
5140 {
5141 case GROUP_LDR:
21d799b5 5142 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5143 break;
5144
5145 case GROUP_LDRS:
21d799b5 5146 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5147 break;
5148
5149 case GROUP_LDC:
21d799b5 5150 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5151 break;
5152
5153 default:
9c2799c2 5154 gas_assert (0);
4962c51a
MS
5155 }
5156
5157 if (inst.reloc.type == 0)
5158 {
5159 inst.error = _("this group relocation is not allowed on this instruction");
5160 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5161 }
5162 }
5163 else
5164 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5165 return PARSE_OPERAND_FAIL;
09d92015
MM
5166 }
5167 }
8e560766
MGD
5168 else if (skip_past_char (&p, ':') == SUCCESS)
5169 {
5170 /* FIXME: '@' should be used here, but it's filtered out by generic code
5171 before we get to see it here. This may be subject to change. */
5172 parse_operand_result result = parse_neon_alignment (&p, i);
5173
5174 if (result != PARSE_OPERAND_SUCCESS)
5175 return result;
5176 }
09d92015 5177
c19d1205 5178 if (skip_past_char (&p, ']') == FAIL)
09d92015 5179 {
c19d1205 5180 inst.error = _("']' expected");
4962c51a 5181 return PARSE_OPERAND_FAIL;
09d92015
MM
5182 }
5183
c19d1205
ZW
5184 if (skip_past_char (&p, '!') == SUCCESS)
5185 inst.operands[i].writeback = 1;
09d92015 5186
c19d1205 5187 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5188 {
c19d1205
ZW
5189 if (skip_past_char (&p, '{') == SUCCESS)
5190 {
5191 /* [Rn], {expr} - unindexed, with option */
5192 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5193 0, 255, TRUE) == FAIL)
4962c51a 5194 return PARSE_OPERAND_FAIL;
09d92015 5195
c19d1205
ZW
5196 if (skip_past_char (&p, '}') == FAIL)
5197 {
5198 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5199 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5200 }
5201 if (inst.operands[i].preind)
5202 {
5203 inst.error = _("cannot combine index with option");
4962c51a 5204 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5205 }
5206 *str = p;
4962c51a 5207 return PARSE_OPERAND_SUCCESS;
09d92015 5208 }
c19d1205
ZW
5209 else
5210 {
5211 inst.operands[i].postind = 1;
5212 inst.operands[i].writeback = 1;
09d92015 5213
c19d1205
ZW
5214 if (inst.operands[i].preind)
5215 {
5216 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5217 return PARSE_OPERAND_FAIL;
c19d1205 5218 }
09d92015 5219
c19d1205
ZW
5220 if (*p == '+') p++;
5221 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5222
dcbf9037 5223 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5224 {
5287ad62
JB
5225 /* We might be using the immediate for alignment already. If we
5226 are, OR the register number into the low-order bits. */
5227 if (inst.operands[i].immisalign)
5228 inst.operands[i].imm |= reg;
5229 else
5230 inst.operands[i].imm = reg;
c19d1205 5231 inst.operands[i].immisreg = 1;
a737bd4d 5232
c19d1205
ZW
5233 if (skip_past_comma (&p) == SUCCESS)
5234 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5235 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5236 }
5237 else
5238 {
5239 if (inst.operands[i].negative)
5240 {
5241 inst.operands[i].negative = 0;
5242 p--;
5243 }
5244 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5245 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5246 }
5247 }
a737bd4d
NC
5248 }
5249
c19d1205
ZW
5250 /* If at this point neither .preind nor .postind is set, we have a
5251 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5252 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5253 {
5254 inst.operands[i].preind = 1;
5255 inst.reloc.exp.X_op = O_constant;
5256 inst.reloc.exp.X_add_number = 0;
5257 }
5258 *str = p;
4962c51a
MS
5259 return PARSE_OPERAND_SUCCESS;
5260}
5261
5262static int
5263parse_address (char **str, int i)
5264{
21d799b5 5265 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5266 ? SUCCESS : FAIL;
5267}
5268
5269static parse_operand_result
5270parse_address_group_reloc (char **str, int i, group_reloc_type type)
5271{
5272 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5273}
5274
b6895b4f
PB
5275/* Parse an operand for a MOVW or MOVT instruction. */
5276static int
5277parse_half (char **str)
5278{
5279 char * p;
5f4273c7 5280
b6895b4f
PB
5281 p = *str;
5282 skip_past_char (&p, '#');
5f4273c7 5283 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5284 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5285 else if (strncasecmp (p, ":upper16:", 9) == 0)
5286 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5287
5288 if (inst.reloc.type != BFD_RELOC_UNUSED)
5289 {
5290 p += 9;
5f4273c7 5291 skip_whitespace (p);
b6895b4f
PB
5292 }
5293
5294 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5295 return FAIL;
5296
5297 if (inst.reloc.type == BFD_RELOC_UNUSED)
5298 {
5299 if (inst.reloc.exp.X_op != O_constant)
5300 {
5301 inst.error = _("constant expression expected");
5302 return FAIL;
5303 }
5304 if (inst.reloc.exp.X_add_number < 0
5305 || inst.reloc.exp.X_add_number > 0xffff)
5306 {
5307 inst.error = _("immediate value out of range");
5308 return FAIL;
5309 }
5310 }
5311 *str = p;
5312 return SUCCESS;
5313}
5314
c19d1205 5315/* Miscellaneous. */
a737bd4d 5316
c19d1205
ZW
5317/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5318 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5319static int
5320parse_psr (char **str)
09d92015 5321{
c19d1205
ZW
5322 char *p;
5323 unsigned long psr_field;
62b3e311
PB
5324 const struct asm_psr *psr;
5325 char *start;
09d92015 5326
c19d1205
ZW
5327 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5328 feature for ease of use and backwards compatibility. */
5329 p = *str;
62b3e311 5330 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 5331 psr_field = SPSR_BIT;
59b42a0d
MGD
5332 else if (strncasecmp (p, "CPSR", 4) == 0
5333 || (strncasecmp (p, "APSR", 4) == 0
5334 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m)))
c19d1205
ZW
5335 psr_field = 0;
5336 else
62b3e311
PB
5337 {
5338 start = p;
5339 do
5340 p++;
5341 while (ISALNUM (*p) || *p == '_');
5342
21d799b5
NC
5343 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5344 p - start);
62b3e311
PB
5345 if (!psr)
5346 return FAIL;
09d92015 5347
62b3e311
PB
5348 *str = p;
5349 return psr->field;
5350 }
09d92015 5351
62b3e311 5352 p += 4;
c19d1205
ZW
5353 if (*p == '_')
5354 {
5355 /* A suffix follows. */
c19d1205
ZW
5356 p++;
5357 start = p;
a737bd4d 5358
c19d1205
ZW
5359 do
5360 p++;
5361 while (ISALNUM (*p) || *p == '_');
a737bd4d 5362
21d799b5
NC
5363 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5364 p - start);
c19d1205
ZW
5365 if (!psr)
5366 goto error;
a737bd4d 5367
c19d1205 5368 psr_field |= psr->field;
a737bd4d 5369 }
c19d1205 5370 else
a737bd4d 5371 {
c19d1205
ZW
5372 if (ISALNUM (*p))
5373 goto error; /* Garbage after "[CS]PSR". */
5374
5375 psr_field |= (PSR_c | PSR_f);
a737bd4d 5376 }
c19d1205
ZW
5377 *str = p;
5378 return psr_field;
a737bd4d 5379
c19d1205
ZW
5380 error:
5381 inst.error = _("flag for {c}psr instruction expected");
5382 return FAIL;
a737bd4d
NC
5383}
5384
c19d1205
ZW
5385/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5386 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5387
c19d1205
ZW
5388static int
5389parse_cps_flags (char **str)
a737bd4d 5390{
c19d1205
ZW
5391 int val = 0;
5392 int saw_a_flag = 0;
5393 char *s = *str;
a737bd4d 5394
c19d1205
ZW
5395 for (;;)
5396 switch (*s++)
5397 {
5398 case '\0': case ',':
5399 goto done;
a737bd4d 5400
c19d1205
ZW
5401 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5402 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5403 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5404
c19d1205
ZW
5405 default:
5406 inst.error = _("unrecognized CPS flag");
5407 return FAIL;
5408 }
a737bd4d 5409
c19d1205
ZW
5410 done:
5411 if (saw_a_flag == 0)
a737bd4d 5412 {
c19d1205
ZW
5413 inst.error = _("missing CPS flags");
5414 return FAIL;
a737bd4d 5415 }
a737bd4d 5416
c19d1205
ZW
5417 *str = s - 1;
5418 return val;
a737bd4d
NC
5419}
5420
c19d1205
ZW
5421/* Parse an endian specifier ("BE" or "LE", case insensitive);
5422 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5423
5424static int
c19d1205 5425parse_endian_specifier (char **str)
a737bd4d 5426{
c19d1205
ZW
5427 int little_endian;
5428 char *s = *str;
a737bd4d 5429
c19d1205
ZW
5430 if (strncasecmp (s, "BE", 2))
5431 little_endian = 0;
5432 else if (strncasecmp (s, "LE", 2))
5433 little_endian = 1;
5434 else
a737bd4d 5435 {
c19d1205 5436 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5437 return FAIL;
5438 }
5439
c19d1205 5440 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5441 {
c19d1205 5442 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5443 return FAIL;
5444 }
5445
c19d1205
ZW
5446 *str = s + 2;
5447 return little_endian;
5448}
a737bd4d 5449
c19d1205
ZW
5450/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5451 value suitable for poking into the rotate field of an sxt or sxta
5452 instruction, or FAIL on error. */
5453
5454static int
5455parse_ror (char **str)
5456{
5457 int rot;
5458 char *s = *str;
5459
5460 if (strncasecmp (s, "ROR", 3) == 0)
5461 s += 3;
5462 else
a737bd4d 5463 {
c19d1205 5464 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5465 return FAIL;
5466 }
c19d1205
ZW
5467
5468 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5469 return FAIL;
5470
5471 switch (rot)
a737bd4d 5472 {
c19d1205
ZW
5473 case 0: *str = s; return 0x0;
5474 case 8: *str = s; return 0x1;
5475 case 16: *str = s; return 0x2;
5476 case 24: *str = s; return 0x3;
5477
5478 default:
5479 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5480 return FAIL;
5481 }
c19d1205 5482}
a737bd4d 5483
c19d1205
ZW
5484/* Parse a conditional code (from conds[] below). The value returned is in the
5485 range 0 .. 14, or FAIL. */
5486static int
5487parse_cond (char **str)
5488{
c462b453 5489 char *q;
c19d1205 5490 const struct asm_cond *c;
c462b453
PB
5491 int n;
5492 /* Condition codes are always 2 characters, so matching up to
5493 3 characters is sufficient. */
5494 char cond[3];
a737bd4d 5495
c462b453
PB
5496 q = *str;
5497 n = 0;
5498 while (ISALPHA (*q) && n < 3)
5499 {
e07e6e58 5500 cond[n] = TOLOWER (*q);
c462b453
PB
5501 q++;
5502 n++;
5503 }
a737bd4d 5504
21d799b5 5505 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5506 if (!c)
a737bd4d 5507 {
c19d1205 5508 inst.error = _("condition required");
a737bd4d
NC
5509 return FAIL;
5510 }
5511
c19d1205
ZW
5512 *str = q;
5513 return c->value;
5514}
5515
62b3e311
PB
5516/* Parse an option for a barrier instruction. Returns the encoding for the
5517 option, or FAIL. */
5518static int
5519parse_barrier (char **str)
5520{
5521 char *p, *q;
5522 const struct asm_barrier_opt *o;
5523
5524 p = q = *str;
5525 while (ISALPHA (*q))
5526 q++;
5527
21d799b5
NC
5528 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5529 q - p);
62b3e311
PB
5530 if (!o)
5531 return FAIL;
5532
5533 *str = q;
5534 return o->value;
5535}
5536
92e90b6e
PB
5537/* Parse the operands of a table branch instruction. Similar to a memory
5538 operand. */
5539static int
5540parse_tb (char **str)
5541{
5542 char * p = *str;
5543 int reg;
5544
5545 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5546 {
5547 inst.error = _("'[' expected");
5548 return FAIL;
5549 }
92e90b6e 5550
dcbf9037 5551 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5552 {
5553 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5554 return FAIL;
5555 }
5556 inst.operands[0].reg = reg;
5557
5558 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5559 {
5560 inst.error = _("',' expected");
5561 return FAIL;
5562 }
5f4273c7 5563
dcbf9037 5564 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5565 {
5566 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5567 return FAIL;
5568 }
5569 inst.operands[0].imm = reg;
5570
5571 if (skip_past_comma (&p) == SUCCESS)
5572 {
5573 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5574 return FAIL;
5575 if (inst.reloc.exp.X_add_number != 1)
5576 {
5577 inst.error = _("invalid shift");
5578 return FAIL;
5579 }
5580 inst.operands[0].shifted = 1;
5581 }
5582
5583 if (skip_past_char (&p, ']') == FAIL)
5584 {
5585 inst.error = _("']' expected");
5586 return FAIL;
5587 }
5588 *str = p;
5589 return SUCCESS;
5590}
5591
5287ad62
JB
5592/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5593 information on the types the operands can take and how they are encoded.
037e8744
JB
5594 Up to four operands may be read; this function handles setting the
5595 ".present" field for each read operand itself.
5287ad62
JB
5596 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5597 else returns FAIL. */
5598
5599static int
5600parse_neon_mov (char **str, int *which_operand)
5601{
5602 int i = *which_operand, val;
5603 enum arm_reg_type rtype;
5604 char *ptr = *str;
dcbf9037 5605 struct neon_type_el optype;
5f4273c7 5606
dcbf9037 5607 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5608 {
5609 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5610 inst.operands[i].reg = val;
5611 inst.operands[i].isscalar = 1;
dcbf9037 5612 inst.operands[i].vectype = optype;
5287ad62
JB
5613 inst.operands[i++].present = 1;
5614
5615 if (skip_past_comma (&ptr) == FAIL)
5616 goto wanted_comma;
5f4273c7 5617
dcbf9037 5618 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5619 goto wanted_arm;
5f4273c7 5620
5287ad62
JB
5621 inst.operands[i].reg = val;
5622 inst.operands[i].isreg = 1;
5623 inst.operands[i].present = 1;
5624 }
037e8744 5625 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5626 != FAIL)
5287ad62
JB
5627 {
5628 /* Cases 0, 1, 2, 3, 5 (D only). */
5629 if (skip_past_comma (&ptr) == FAIL)
5630 goto wanted_comma;
5f4273c7 5631
5287ad62
JB
5632 inst.operands[i].reg = val;
5633 inst.operands[i].isreg = 1;
5634 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5635 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5636 inst.operands[i].isvec = 1;
dcbf9037 5637 inst.operands[i].vectype = optype;
5287ad62
JB
5638 inst.operands[i++].present = 1;
5639
dcbf9037 5640 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5641 {
037e8744
JB
5642 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5643 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5644 inst.operands[i].reg = val;
5645 inst.operands[i].isreg = 1;
037e8744 5646 inst.operands[i].present = 1;
5287ad62
JB
5647
5648 if (rtype == REG_TYPE_NQ)
5649 {
dcbf9037 5650 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5651 return FAIL;
5652 }
037e8744
JB
5653 else if (rtype != REG_TYPE_VFS)
5654 {
5655 i++;
5656 if (skip_past_comma (&ptr) == FAIL)
5657 goto wanted_comma;
5658 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5659 goto wanted_arm;
5660 inst.operands[i].reg = val;
5661 inst.operands[i].isreg = 1;
5662 inst.operands[i].present = 1;
5663 }
5287ad62 5664 }
037e8744
JB
5665 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5666 &optype)) != FAIL)
5287ad62
JB
5667 {
5668 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5669 Case 1: VMOV<c><q> <Dd>, <Dm>
5670 Case 8: VMOV.F32 <Sd>, <Sm>
5671 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5672
5673 inst.operands[i].reg = val;
5674 inst.operands[i].isreg = 1;
5675 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5676 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5677 inst.operands[i].isvec = 1;
dcbf9037 5678 inst.operands[i].vectype = optype;
5287ad62 5679 inst.operands[i].present = 1;
5f4273c7 5680
037e8744
JB
5681 if (skip_past_comma (&ptr) == SUCCESS)
5682 {
5683 /* Case 15. */
5684 i++;
5685
5686 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5687 goto wanted_arm;
5688
5689 inst.operands[i].reg = val;
5690 inst.operands[i].isreg = 1;
5691 inst.operands[i++].present = 1;
5f4273c7 5692
037e8744
JB
5693 if (skip_past_comma (&ptr) == FAIL)
5694 goto wanted_comma;
5f4273c7 5695
037e8744
JB
5696 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5697 goto wanted_arm;
5f4273c7 5698
037e8744
JB
5699 inst.operands[i].reg = val;
5700 inst.operands[i].isreg = 1;
5701 inst.operands[i++].present = 1;
5702 }
5287ad62 5703 }
4641781c
PB
5704 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5705 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5706 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5707 Case 10: VMOV.F32 <Sd>, #<imm>
5708 Case 11: VMOV.F64 <Dd>, #<imm> */
5709 inst.operands[i].immisfloat = 1;
5710 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5711 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5712 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5713 ;
5287ad62
JB
5714 else
5715 {
dcbf9037 5716 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5717 return FAIL;
5718 }
5719 }
dcbf9037 5720 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5721 {
5722 /* Cases 6, 7. */
5723 inst.operands[i].reg = val;
5724 inst.operands[i].isreg = 1;
5725 inst.operands[i++].present = 1;
5f4273c7 5726
5287ad62
JB
5727 if (skip_past_comma (&ptr) == FAIL)
5728 goto wanted_comma;
5f4273c7 5729
dcbf9037 5730 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5731 {
5732 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5733 inst.operands[i].reg = val;
5734 inst.operands[i].isscalar = 1;
5735 inst.operands[i].present = 1;
dcbf9037 5736 inst.operands[i].vectype = optype;
5287ad62 5737 }
dcbf9037 5738 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5739 {
5740 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5741 inst.operands[i].reg = val;
5742 inst.operands[i].isreg = 1;
5743 inst.operands[i++].present = 1;
5f4273c7 5744
5287ad62
JB
5745 if (skip_past_comma (&ptr) == FAIL)
5746 goto wanted_comma;
5f4273c7 5747
037e8744 5748 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5749 == FAIL)
5287ad62 5750 {
037e8744 5751 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5752 return FAIL;
5753 }
5754
5755 inst.operands[i].reg = val;
5756 inst.operands[i].isreg = 1;
037e8744
JB
5757 inst.operands[i].isvec = 1;
5758 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5759 inst.operands[i].vectype = optype;
5287ad62 5760 inst.operands[i].present = 1;
5f4273c7 5761
037e8744
JB
5762 if (rtype == REG_TYPE_VFS)
5763 {
5764 /* Case 14. */
5765 i++;
5766 if (skip_past_comma (&ptr) == FAIL)
5767 goto wanted_comma;
5768 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5769 &optype)) == FAIL)
5770 {
5771 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5772 return FAIL;
5773 }
5774 inst.operands[i].reg = val;
5775 inst.operands[i].isreg = 1;
5776 inst.operands[i].isvec = 1;
5777 inst.operands[i].issingle = 1;
5778 inst.operands[i].vectype = optype;
5779 inst.operands[i].present = 1;
5780 }
5781 }
5782 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5783 != FAIL)
5784 {
5785 /* Case 13. */
5786 inst.operands[i].reg = val;
5787 inst.operands[i].isreg = 1;
5788 inst.operands[i].isvec = 1;
5789 inst.operands[i].issingle = 1;
5790 inst.operands[i].vectype = optype;
5791 inst.operands[i++].present = 1;
5287ad62
JB
5792 }
5793 }
5794 else
5795 {
dcbf9037 5796 first_error (_("parse error"));
5287ad62
JB
5797 return FAIL;
5798 }
5799
5800 /* Successfully parsed the operands. Update args. */
5801 *which_operand = i;
5802 *str = ptr;
5803 return SUCCESS;
5804
5f4273c7 5805 wanted_comma:
dcbf9037 5806 first_error (_("expected comma"));
5287ad62 5807 return FAIL;
5f4273c7
NC
5808
5809 wanted_arm:
dcbf9037 5810 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5811 return FAIL;
5287ad62
JB
5812}
5813
5be8be5d
DG
5814/* Use this macro when the operand constraints are different
5815 for ARM and THUMB (e.g. ldrd). */
5816#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5817 ((arm_operand) | ((thumb_operand) << 16))
5818
c19d1205
ZW
5819/* Matcher codes for parse_operands. */
5820enum operand_parse_code
5821{
5822 OP_stop, /* end of line */
5823
5824 OP_RR, /* ARM register */
5825 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 5826 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 5827 OP_RRnpcb, /* ARM register, not r15, in square brackets */
55881a11
MGD
5828 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
5829 optional trailing ! */
c19d1205
ZW
5830 OP_RRw, /* ARM register, not r15, optional trailing ! */
5831 OP_RCP, /* Coprocessor number */
5832 OP_RCN, /* Coprocessor register */
5833 OP_RF, /* FPA register */
5834 OP_RVS, /* VFP single precision register */
5287ad62
JB
5835 OP_RVD, /* VFP double precision register (0..15) */
5836 OP_RND, /* Neon double precision register (0..31) */
5837 OP_RNQ, /* Neon quad precision register */
037e8744 5838 OP_RVSD, /* VFP single or double precision register */
5287ad62 5839 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5840 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5841 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5842 OP_RVC, /* VFP control register */
5843 OP_RMF, /* Maverick F register */
5844 OP_RMD, /* Maverick D register */
5845 OP_RMFX, /* Maverick FX register */
5846 OP_RMDX, /* Maverick DX register */
5847 OP_RMAX, /* Maverick AX register */
5848 OP_RMDS, /* Maverick DSPSC register */
5849 OP_RIWR, /* iWMMXt wR register */
5850 OP_RIWC, /* iWMMXt wC register */
5851 OP_RIWG, /* iWMMXt wCG register */
5852 OP_RXA, /* XScale accumulator register */
5853
5854 OP_REGLST, /* ARM register list */
5855 OP_VRSLST, /* VFP single-precision register list */
5856 OP_VRDLST, /* VFP double-precision register list */
037e8744 5857 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5858 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5859 OP_NSTRLST, /* Neon element/structure list */
5860
5287ad62 5861 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5862 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5863 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5864 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5865 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5866 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5867 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 5868 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 5869 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5870 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5871
5872 OP_I0, /* immediate zero */
c19d1205
ZW
5873 OP_I7, /* immediate value 0 .. 7 */
5874 OP_I15, /* 0 .. 15 */
5875 OP_I16, /* 1 .. 16 */
5287ad62 5876 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5877 OP_I31, /* 0 .. 31 */
5878 OP_I31w, /* 0 .. 31, optional trailing ! */
5879 OP_I32, /* 1 .. 32 */
5287ad62
JB
5880 OP_I32z, /* 0 .. 32 */
5881 OP_I63, /* 0 .. 63 */
c19d1205 5882 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5883 OP_I64, /* 1 .. 64 */
5884 OP_I64z, /* 0 .. 64 */
c19d1205 5885 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5886
5887 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5888 OP_I7b, /* 0 .. 7 */
5889 OP_I15b, /* 0 .. 15 */
5890 OP_I31b, /* 0 .. 31 */
5891
5892 OP_SH, /* shifter operand */
4962c51a 5893 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5894 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5895 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5896 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5897 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5898 OP_EXP, /* arbitrary expression */
5899 OP_EXPi, /* same, with optional immediate prefix */
5900 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5901 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5902
5903 OP_CPSF, /* CPS flags */
5904 OP_ENDI, /* Endianness specifier */
5905 OP_PSR, /* CPSR/SPSR mask for msr */
5906 OP_COND, /* conditional code */
92e90b6e 5907 OP_TB, /* Table branch. */
c19d1205 5908
037e8744
JB
5909 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5910 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5911
c19d1205
ZW
5912 OP_RRnpc_I0, /* ARM register or literal 0 */
5913 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5914 OP_RR_EXi, /* ARM register or expression with imm prefix */
5915 OP_RF_IF, /* FPA register or immediate */
5916 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5917 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5918
5919 /* Optional operands. */
5920 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5921 OP_oI31b, /* 0 .. 31 */
5287ad62 5922 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5923 OP_oIffffb, /* 0 .. 65535 */
5924 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5925
5926 OP_oRR, /* ARM register */
5927 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 5928 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 5929 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5930 OP_oRND, /* Optional Neon double precision register */
5931 OP_oRNQ, /* Optional Neon quad precision register */
5932 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5933 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5934 OP_oSHll, /* LSL immediate */
5935 OP_oSHar, /* ASR immediate */
5936 OP_oSHllar, /* LSL or ASR immediate */
5937 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 5938 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 5939
5be8be5d
DG
5940 /* Some pre-defined mixed (ARM/THUMB) operands. */
5941 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
5942 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
5943 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
5944
c19d1205
ZW
5945 OP_FIRST_OPTIONAL = OP_oI7b
5946};
a737bd4d 5947
c19d1205
ZW
5948/* Generic instruction operand parser. This does no encoding and no
5949 semantic validation; it merely squirrels values away in the inst
5950 structure. Returns SUCCESS or FAIL depending on whether the
5951 specified grammar matched. */
5952static int
5be8be5d 5953parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 5954{
5be8be5d 5955 unsigned const int *upat = pattern;
c19d1205
ZW
5956 char *backtrack_pos = 0;
5957 const char *backtrack_error = 0;
5958 int i, val, backtrack_index = 0;
5287ad62 5959 enum arm_reg_type rtype;
4962c51a 5960 parse_operand_result result;
5be8be5d 5961 unsigned int op_parse_code;
c19d1205 5962
e07e6e58
NC
5963#define po_char_or_fail(chr) \
5964 do \
5965 { \
5966 if (skip_past_char (&str, chr) == FAIL) \
5967 goto bad_args; \
5968 } \
5969 while (0)
c19d1205 5970
e07e6e58
NC
5971#define po_reg_or_fail(regtype) \
5972 do \
dcbf9037 5973 { \
e07e6e58
NC
5974 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5975 & inst.operands[i].vectype); \
5976 if (val == FAIL) \
5977 { \
5978 first_error (_(reg_expected_msgs[regtype])); \
5979 goto failure; \
5980 } \
5981 inst.operands[i].reg = val; \
5982 inst.operands[i].isreg = 1; \
5983 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5984 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5985 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5986 || rtype == REG_TYPE_VFD \
5987 || rtype == REG_TYPE_NQ); \
dcbf9037 5988 } \
e07e6e58
NC
5989 while (0)
5990
5991#define po_reg_or_goto(regtype, label) \
5992 do \
5993 { \
5994 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5995 & inst.operands[i].vectype); \
5996 if (val == FAIL) \
5997 goto label; \
dcbf9037 5998 \
e07e6e58
NC
5999 inst.operands[i].reg = val; \
6000 inst.operands[i].isreg = 1; \
6001 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6002 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6003 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6004 || rtype == REG_TYPE_VFD \
6005 || rtype == REG_TYPE_NQ); \
6006 } \
6007 while (0)
6008
6009#define po_imm_or_fail(min, max, popt) \
6010 do \
6011 { \
6012 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6013 goto failure; \
6014 inst.operands[i].imm = val; \
6015 } \
6016 while (0)
6017
6018#define po_scalar_or_goto(elsz, label) \
6019 do \
6020 { \
6021 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6022 if (val == FAIL) \
6023 goto label; \
6024 inst.operands[i].reg = val; \
6025 inst.operands[i].isscalar = 1; \
6026 } \
6027 while (0)
6028
6029#define po_misc_or_fail(expr) \
6030 do \
6031 { \
6032 if (expr) \
6033 goto failure; \
6034 } \
6035 while (0)
6036
6037#define po_misc_or_fail_no_backtrack(expr) \
6038 do \
6039 { \
6040 result = expr; \
6041 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6042 backtrack_pos = 0; \
6043 if (result != PARSE_OPERAND_SUCCESS) \
6044 goto failure; \
6045 } \
6046 while (0)
4962c51a 6047
52e7f43d
RE
6048#define po_barrier_or_imm(str) \
6049 do \
6050 { \
6051 val = parse_barrier (&str); \
6052 if (val == FAIL) \
6053 { \
6054 if (ISALPHA (*str)) \
6055 goto failure; \
6056 else \
6057 goto immediate; \
6058 } \
6059 else \
6060 { \
6061 if ((inst.instruction & 0xf0) == 0x60 \
6062 && val != 0xf) \
6063 { \
6064 /* ISB can only take SY as an option. */ \
6065 inst.error = _("invalid barrier type"); \
6066 goto failure; \
6067 } \
6068 } \
6069 } \
6070 while (0)
6071
c19d1205
ZW
6072 skip_whitespace (str);
6073
6074 for (i = 0; upat[i] != OP_stop; i++)
6075 {
5be8be5d
DG
6076 op_parse_code = upat[i];
6077 if (op_parse_code >= 1<<16)
6078 op_parse_code = thumb ? (op_parse_code >> 16)
6079 : (op_parse_code & ((1<<16)-1));
6080
6081 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6082 {
6083 /* Remember where we are in case we need to backtrack. */
9c2799c2 6084 gas_assert (!backtrack_pos);
c19d1205
ZW
6085 backtrack_pos = str;
6086 backtrack_error = inst.error;
6087 backtrack_index = i;
6088 }
6089
b6702015 6090 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6091 po_char_or_fail (',');
6092
5be8be5d 6093 switch (op_parse_code)
c19d1205
ZW
6094 {
6095 /* Registers */
6096 case OP_oRRnpc:
5be8be5d 6097 case OP_oRRnpcsp:
c19d1205 6098 case OP_RRnpc:
5be8be5d 6099 case OP_RRnpcsp:
c19d1205
ZW
6100 case OP_oRR:
6101 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6102 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6103 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6104 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6105 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6106 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6107 case OP_oRND:
6108 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6109 case OP_RVC:
6110 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6111 break;
6112 /* Also accept generic coprocessor regs for unknown registers. */
6113 coproc_reg:
6114 po_reg_or_fail (REG_TYPE_CN);
6115 break;
c19d1205
ZW
6116 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6117 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6118 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6119 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6120 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6121 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6122 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6123 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6124 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6125 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6126 case OP_oRNQ:
6127 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6128 case OP_oRNDQ:
6129 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6130 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6131 case OP_oRNSDQ:
6132 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6133
6134 /* Neon scalar. Using an element size of 8 means that some invalid
6135 scalars are accepted here, so deal with those in later code. */
6136 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6137
5287ad62
JB
6138 case OP_RNDQ_I0:
6139 {
6140 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6141 break;
6142 try_imm0:
6143 po_imm_or_fail (0, 0, TRUE);
6144 }
6145 break;
6146
037e8744
JB
6147 case OP_RVSD_I0:
6148 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6149 break;
6150
5287ad62
JB
6151 case OP_RR_RNSC:
6152 {
6153 po_scalar_or_goto (8, try_rr);
6154 break;
6155 try_rr:
6156 po_reg_or_fail (REG_TYPE_RN);
6157 }
6158 break;
6159
037e8744
JB
6160 case OP_RNSDQ_RNSC:
6161 {
6162 po_scalar_or_goto (8, try_nsdq);
6163 break;
6164 try_nsdq:
6165 po_reg_or_fail (REG_TYPE_NSDQ);
6166 }
6167 break;
6168
5287ad62
JB
6169 case OP_RNDQ_RNSC:
6170 {
6171 po_scalar_or_goto (8, try_ndq);
6172 break;
6173 try_ndq:
6174 po_reg_or_fail (REG_TYPE_NDQ);
6175 }
6176 break;
6177
6178 case OP_RND_RNSC:
6179 {
6180 po_scalar_or_goto (8, try_vfd);
6181 break;
6182 try_vfd:
6183 po_reg_or_fail (REG_TYPE_VFD);
6184 }
6185 break;
6186
6187 case OP_VMOV:
6188 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6189 not careful then bad things might happen. */
6190 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6191 break;
6192
4316f0d2 6193 case OP_RNDQ_Ibig:
5287ad62 6194 {
4316f0d2 6195 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6196 break;
4316f0d2 6197 try_immbig:
5287ad62
JB
6198 /* There's a possibility of getting a 64-bit immediate here, so
6199 we need special handling. */
6200 if (parse_big_immediate (&str, i) == FAIL)
6201 {
6202 inst.error = _("immediate value is out of range");
6203 goto failure;
6204 }
6205 }
6206 break;
6207
6208 case OP_RNDQ_I63b:
6209 {
6210 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6211 break;
6212 try_shimm:
6213 po_imm_or_fail (0, 63, TRUE);
6214 }
6215 break;
c19d1205
ZW
6216
6217 case OP_RRnpcb:
6218 po_char_or_fail ('[');
6219 po_reg_or_fail (REG_TYPE_RN);
6220 po_char_or_fail (']');
6221 break;
a737bd4d 6222
55881a11 6223 case OP_RRnpctw:
c19d1205 6224 case OP_RRw:
b6702015 6225 case OP_oRRw:
c19d1205
ZW
6226 po_reg_or_fail (REG_TYPE_RN);
6227 if (skip_past_char (&str, '!') == SUCCESS)
6228 inst.operands[i].writeback = 1;
6229 break;
6230
6231 /* Immediates */
6232 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6233 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6234 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6235 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6236 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6237 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6238 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6239 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6240 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6241 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6242 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6243 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6244
6245 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6246 case OP_oI7b:
6247 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6248 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6249 case OP_oI31b:
6250 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6251 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
6252 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6253
6254 /* Immediate variants */
6255 case OP_oI255c:
6256 po_char_or_fail ('{');
6257 po_imm_or_fail (0, 255, TRUE);
6258 po_char_or_fail ('}');
6259 break;
6260
6261 case OP_I31w:
6262 /* The expression parser chokes on a trailing !, so we have
6263 to find it first and zap it. */
6264 {
6265 char *s = str;
6266 while (*s && *s != ',')
6267 s++;
6268 if (s[-1] == '!')
6269 {
6270 s[-1] = '\0';
6271 inst.operands[i].writeback = 1;
6272 }
6273 po_imm_or_fail (0, 31, TRUE);
6274 if (str == s - 1)
6275 str = s;
6276 }
6277 break;
6278
6279 /* Expressions */
6280 case OP_EXPi: EXPi:
6281 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6282 GE_OPT_PREFIX));
6283 break;
6284
6285 case OP_EXP:
6286 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6287 GE_NO_PREFIX));
6288 break;
6289
6290 case OP_EXPr: EXPr:
6291 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6292 GE_NO_PREFIX));
6293 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6294 {
c19d1205
ZW
6295 val = parse_reloc (&str);
6296 if (val == -1)
6297 {
6298 inst.error = _("unrecognized relocation suffix");
6299 goto failure;
6300 }
6301 else if (val != BFD_RELOC_UNUSED)
6302 {
6303 inst.operands[i].imm = val;
6304 inst.operands[i].hasreloc = 1;
6305 }
a737bd4d 6306 }
c19d1205 6307 break;
a737bd4d 6308
b6895b4f
PB
6309 /* Operand for MOVW or MOVT. */
6310 case OP_HALF:
6311 po_misc_or_fail (parse_half (&str));
6312 break;
6313
e07e6e58 6314 /* Register or expression. */
c19d1205
ZW
6315 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6316 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6317
e07e6e58 6318 /* Register or immediate. */
c19d1205
ZW
6319 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6320 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6321
c19d1205
ZW
6322 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6323 IF:
6324 if (!is_immediate_prefix (*str))
6325 goto bad_args;
6326 str++;
6327 val = parse_fpa_immediate (&str);
6328 if (val == FAIL)
6329 goto failure;
6330 /* FPA immediates are encoded as registers 8-15.
6331 parse_fpa_immediate has already applied the offset. */
6332 inst.operands[i].reg = val;
6333 inst.operands[i].isreg = 1;
6334 break;
09d92015 6335
2d447fca
JM
6336 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6337 I32z: po_imm_or_fail (0, 32, FALSE); break;
6338
e07e6e58 6339 /* Two kinds of register. */
c19d1205
ZW
6340 case OP_RIWR_RIWC:
6341 {
6342 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6343 if (!rege
6344 || (rege->type != REG_TYPE_MMXWR
6345 && rege->type != REG_TYPE_MMXWC
6346 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6347 {
6348 inst.error = _("iWMMXt data or control register expected");
6349 goto failure;
6350 }
6351 inst.operands[i].reg = rege->number;
6352 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6353 }
6354 break;
09d92015 6355
41adaa5c
JM
6356 case OP_RIWC_RIWG:
6357 {
6358 struct reg_entry *rege = arm_reg_parse_multi (&str);
6359 if (!rege
6360 || (rege->type != REG_TYPE_MMXWC
6361 && rege->type != REG_TYPE_MMXWCG))
6362 {
6363 inst.error = _("iWMMXt control register expected");
6364 goto failure;
6365 }
6366 inst.operands[i].reg = rege->number;
6367 inst.operands[i].isreg = 1;
6368 }
6369 break;
6370
c19d1205
ZW
6371 /* Misc */
6372 case OP_CPSF: val = parse_cps_flags (&str); break;
6373 case OP_ENDI: val = parse_endian_specifier (&str); break;
6374 case OP_oROR: val = parse_ror (&str); break;
6375 case OP_PSR: val = parse_psr (&str); break;
6376 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6377 case OP_oBARRIER_I15:
6378 po_barrier_or_imm (str); break;
6379 immediate:
6380 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6381 goto failure;
6382 break;
c19d1205 6383
037e8744 6384 case OP_RVC_PSR:
90ec0d68 6385 po_reg_or_goto (REG_TYPE_VFC, try_banked_reg);
037e8744
JB
6386 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6387 break;
90ec0d68
MGD
6388 try_banked_reg:
6389 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6390 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6391 {
6392 inst.error = _("Banked registers are not available with this "
6393 "architecture.");
6394 goto failure;
6395 }
6396 break;
037e8744
JB
6397 try_psr:
6398 val = parse_psr (&str);
6399 break;
6400
6401 case OP_APSR_RR:
6402 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6403 break;
6404 try_apsr:
6405 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6406 instruction). */
6407 if (strncasecmp (str, "APSR_", 5) == 0)
6408 {
6409 unsigned found = 0;
6410 str += 5;
6411 while (found < 15)
6412 switch (*str++)
6413 {
6414 case 'c': found = (found & 1) ? 16 : found | 1; break;
6415 case 'n': found = (found & 2) ? 16 : found | 2; break;
6416 case 'z': found = (found & 4) ? 16 : found | 4; break;
6417 case 'v': found = (found & 8) ? 16 : found | 8; break;
6418 default: found = 16;
6419 }
6420 if (found != 15)
6421 goto failure;
6422 inst.operands[i].isvec = 1;
f7c21dc7
NC
6423 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6424 inst.operands[i].reg = REG_PC;
037e8744
JB
6425 }
6426 else
6427 goto failure;
6428 break;
6429
92e90b6e
PB
6430 case OP_TB:
6431 po_misc_or_fail (parse_tb (&str));
6432 break;
6433
e07e6e58 6434 /* Register lists. */
c19d1205
ZW
6435 case OP_REGLST:
6436 val = parse_reg_list (&str);
6437 if (*str == '^')
6438 {
6439 inst.operands[1].writeback = 1;
6440 str++;
6441 }
6442 break;
09d92015 6443
c19d1205 6444 case OP_VRSLST:
5287ad62 6445 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6446 break;
09d92015 6447
c19d1205 6448 case OP_VRDLST:
5287ad62 6449 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6450 break;
a737bd4d 6451
037e8744
JB
6452 case OP_VRSDLST:
6453 /* Allow Q registers too. */
6454 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6455 REGLIST_NEON_D);
6456 if (val == FAIL)
6457 {
6458 inst.error = NULL;
6459 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6460 REGLIST_VFP_S);
6461 inst.operands[i].issingle = 1;
6462 }
6463 break;
6464
5287ad62
JB
6465 case OP_NRDLST:
6466 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6467 REGLIST_NEON_D);
6468 break;
6469
6470 case OP_NSTRLST:
dcbf9037
JB
6471 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6472 &inst.operands[i].vectype);
5287ad62
JB
6473 break;
6474
c19d1205
ZW
6475 /* Addressing modes */
6476 case OP_ADDR:
6477 po_misc_or_fail (parse_address (&str, i));
6478 break;
09d92015 6479
4962c51a
MS
6480 case OP_ADDRGLDR:
6481 po_misc_or_fail_no_backtrack (
6482 parse_address_group_reloc (&str, i, GROUP_LDR));
6483 break;
6484
6485 case OP_ADDRGLDRS:
6486 po_misc_or_fail_no_backtrack (
6487 parse_address_group_reloc (&str, i, GROUP_LDRS));
6488 break;
6489
6490 case OP_ADDRGLDC:
6491 po_misc_or_fail_no_backtrack (
6492 parse_address_group_reloc (&str, i, GROUP_LDC));
6493 break;
6494
c19d1205
ZW
6495 case OP_SH:
6496 po_misc_or_fail (parse_shifter_operand (&str, i));
6497 break;
09d92015 6498
4962c51a
MS
6499 case OP_SHG:
6500 po_misc_or_fail_no_backtrack (
6501 parse_shifter_operand_group_reloc (&str, i));
6502 break;
6503
c19d1205
ZW
6504 case OP_oSHll:
6505 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6506 break;
09d92015 6507
c19d1205
ZW
6508 case OP_oSHar:
6509 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6510 break;
09d92015 6511
c19d1205
ZW
6512 case OP_oSHllar:
6513 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6514 break;
09d92015 6515
c19d1205 6516 default:
5be8be5d 6517 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6518 }
09d92015 6519
c19d1205
ZW
6520 /* Various value-based sanity checks and shared operations. We
6521 do not signal immediate failures for the register constraints;
6522 this allows a syntax error to take precedence. */
5be8be5d 6523 switch (op_parse_code)
c19d1205
ZW
6524 {
6525 case OP_oRRnpc:
6526 case OP_RRnpc:
6527 case OP_RRnpcb:
6528 case OP_RRw:
b6702015 6529 case OP_oRRw:
c19d1205
ZW
6530 case OP_RRnpc_I0:
6531 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6532 inst.error = BAD_PC;
6533 break;
09d92015 6534
5be8be5d
DG
6535 case OP_oRRnpcsp:
6536 case OP_RRnpcsp:
6537 if (inst.operands[i].isreg)
6538 {
6539 if (inst.operands[i].reg == REG_PC)
6540 inst.error = BAD_PC;
6541 else if (inst.operands[i].reg == REG_SP)
6542 inst.error = BAD_SP;
6543 }
6544 break;
6545
55881a11
MGD
6546 case OP_RRnpctw:
6547 if (inst.operands[i].isreg
6548 && inst.operands[i].reg == REG_PC
6549 && (inst.operands[i].writeback || thumb))
6550 inst.error = BAD_PC;
6551 break;
6552
c19d1205
ZW
6553 case OP_CPSF:
6554 case OP_ENDI:
6555 case OP_oROR:
6556 case OP_PSR:
037e8744 6557 case OP_RVC_PSR:
c19d1205 6558 case OP_COND:
52e7f43d 6559 case OP_oBARRIER_I15:
c19d1205
ZW
6560 case OP_REGLST:
6561 case OP_VRSLST:
6562 case OP_VRDLST:
037e8744 6563 case OP_VRSDLST:
5287ad62
JB
6564 case OP_NRDLST:
6565 case OP_NSTRLST:
c19d1205
ZW
6566 if (val == FAIL)
6567 goto failure;
6568 inst.operands[i].imm = val;
6569 break;
a737bd4d 6570
c19d1205
ZW
6571 default:
6572 break;
6573 }
09d92015 6574
c19d1205
ZW
6575 /* If we get here, this operand was successfully parsed. */
6576 inst.operands[i].present = 1;
6577 continue;
09d92015 6578
c19d1205 6579 bad_args:
09d92015 6580 inst.error = BAD_ARGS;
c19d1205
ZW
6581
6582 failure:
6583 if (!backtrack_pos)
d252fdde
PB
6584 {
6585 /* The parse routine should already have set inst.error, but set a
5f4273c7 6586 default here just in case. */
d252fdde
PB
6587 if (!inst.error)
6588 inst.error = _("syntax error");
6589 return FAIL;
6590 }
c19d1205
ZW
6591
6592 /* Do not backtrack over a trailing optional argument that
6593 absorbed some text. We will only fail again, with the
6594 'garbage following instruction' error message, which is
6595 probably less helpful than the current one. */
6596 if (backtrack_index == i && backtrack_pos != str
6597 && upat[i+1] == OP_stop)
d252fdde
PB
6598 {
6599 if (!inst.error)
6600 inst.error = _("syntax error");
6601 return FAIL;
6602 }
c19d1205
ZW
6603
6604 /* Try again, skipping the optional argument at backtrack_pos. */
6605 str = backtrack_pos;
6606 inst.error = backtrack_error;
6607 inst.operands[backtrack_index].present = 0;
6608 i = backtrack_index;
6609 backtrack_pos = 0;
09d92015 6610 }
09d92015 6611
c19d1205
ZW
6612 /* Check that we have parsed all the arguments. */
6613 if (*str != '\0' && !inst.error)
6614 inst.error = _("garbage following instruction");
09d92015 6615
c19d1205 6616 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6617}
6618
c19d1205
ZW
6619#undef po_char_or_fail
6620#undef po_reg_or_fail
6621#undef po_reg_or_goto
6622#undef po_imm_or_fail
5287ad62 6623#undef po_scalar_or_fail
52e7f43d 6624#undef po_barrier_or_imm
e07e6e58 6625
c19d1205 6626/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6627#define constraint(expr, err) \
6628 do \
c19d1205 6629 { \
e07e6e58
NC
6630 if (expr) \
6631 { \
6632 inst.error = err; \
6633 return; \
6634 } \
c19d1205 6635 } \
e07e6e58 6636 while (0)
c19d1205 6637
fdfde340
JM
6638/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6639 instructions are unpredictable if these registers are used. This
6640 is the BadReg predicate in ARM's Thumb-2 documentation. */
6641#define reject_bad_reg(reg) \
6642 do \
6643 if (reg == REG_SP || reg == REG_PC) \
6644 { \
6645 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6646 return; \
6647 } \
6648 while (0)
6649
94206790
MM
6650/* If REG is R13 (the stack pointer), warn that its use is
6651 deprecated. */
6652#define warn_deprecated_sp(reg) \
6653 do \
6654 if (warn_on_deprecated && reg == REG_SP) \
6655 as_warn (_("use of r13 is deprecated")); \
6656 while (0)
6657
c19d1205
ZW
6658/* Functions for operand encoding. ARM, then Thumb. */
6659
6660#define rotate_left(v, n) (v << n | v >> (32 - n))
6661
6662/* If VAL can be encoded in the immediate field of an ARM instruction,
6663 return the encoded form. Otherwise, return FAIL. */
6664
6665static unsigned int
6666encode_arm_immediate (unsigned int val)
09d92015 6667{
c19d1205
ZW
6668 unsigned int a, i;
6669
6670 for (i = 0; i < 32; i += 2)
6671 if ((a = rotate_left (val, i)) <= 0xff)
6672 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6673
6674 return FAIL;
09d92015
MM
6675}
6676
c19d1205
ZW
6677/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6678 return the encoded form. Otherwise, return FAIL. */
6679static unsigned int
6680encode_thumb32_immediate (unsigned int val)
09d92015 6681{
c19d1205 6682 unsigned int a, i;
09d92015 6683
9c3c69f2 6684 if (val <= 0xff)
c19d1205 6685 return val;
a737bd4d 6686
9c3c69f2 6687 for (i = 1; i <= 24; i++)
09d92015 6688 {
9c3c69f2
PB
6689 a = val >> i;
6690 if ((val & ~(0xff << i)) == 0)
6691 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6692 }
a737bd4d 6693
c19d1205
ZW
6694 a = val & 0xff;
6695 if (val == ((a << 16) | a))
6696 return 0x100 | a;
6697 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6698 return 0x300 | a;
09d92015 6699
c19d1205
ZW
6700 a = val & 0xff00;
6701 if (val == ((a << 16) | a))
6702 return 0x200 | (a >> 8);
a737bd4d 6703
c19d1205 6704 return FAIL;
09d92015 6705}
5287ad62 6706/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6707
6708static void
5287ad62
JB
6709encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6710{
6711 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6712 && reg > 15)
6713 {
b1cc4aeb 6714 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6715 {
6716 if (thumb_mode)
6717 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6718 fpu_vfp_ext_d32);
5287ad62
JB
6719 else
6720 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6721 fpu_vfp_ext_d32);
5287ad62
JB
6722 }
6723 else
6724 {
dcbf9037 6725 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6726 return;
6727 }
6728 }
6729
c19d1205 6730 switch (pos)
09d92015 6731 {
c19d1205
ZW
6732 case VFP_REG_Sd:
6733 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6734 break;
6735
6736 case VFP_REG_Sn:
6737 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6738 break;
6739
6740 case VFP_REG_Sm:
6741 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6742 break;
6743
5287ad62
JB
6744 case VFP_REG_Dd:
6745 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6746 break;
5f4273c7 6747
5287ad62
JB
6748 case VFP_REG_Dn:
6749 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6750 break;
5f4273c7 6751
5287ad62
JB
6752 case VFP_REG_Dm:
6753 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6754 break;
6755
c19d1205
ZW
6756 default:
6757 abort ();
09d92015 6758 }
09d92015
MM
6759}
6760
c19d1205 6761/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6762 if any, is handled by md_apply_fix. */
09d92015 6763static void
c19d1205 6764encode_arm_shift (int i)
09d92015 6765{
c19d1205
ZW
6766 if (inst.operands[i].shift_kind == SHIFT_RRX)
6767 inst.instruction |= SHIFT_ROR << 5;
6768 else
09d92015 6769 {
c19d1205
ZW
6770 inst.instruction |= inst.operands[i].shift_kind << 5;
6771 if (inst.operands[i].immisreg)
6772 {
6773 inst.instruction |= SHIFT_BY_REG;
6774 inst.instruction |= inst.operands[i].imm << 8;
6775 }
6776 else
6777 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6778 }
c19d1205 6779}
09d92015 6780
c19d1205
ZW
6781static void
6782encode_arm_shifter_operand (int i)
6783{
6784 if (inst.operands[i].isreg)
09d92015 6785 {
c19d1205
ZW
6786 inst.instruction |= inst.operands[i].reg;
6787 encode_arm_shift (i);
09d92015 6788 }
c19d1205
ZW
6789 else
6790 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6791}
6792
c19d1205 6793/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6794static void
c19d1205 6795encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6796{
9c2799c2 6797 gas_assert (inst.operands[i].isreg);
c19d1205 6798 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6799
c19d1205 6800 if (inst.operands[i].preind)
09d92015 6801 {
c19d1205
ZW
6802 if (is_t)
6803 {
6804 inst.error = _("instruction does not accept preindexed addressing");
6805 return;
6806 }
6807 inst.instruction |= PRE_INDEX;
6808 if (inst.operands[i].writeback)
6809 inst.instruction |= WRITE_BACK;
09d92015 6810
c19d1205
ZW
6811 }
6812 else if (inst.operands[i].postind)
6813 {
9c2799c2 6814 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
6815 if (is_t)
6816 inst.instruction |= WRITE_BACK;
6817 }
6818 else /* unindexed - only for coprocessor */
09d92015 6819 {
c19d1205 6820 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6821 return;
6822 }
6823
c19d1205
ZW
6824 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6825 && (((inst.instruction & 0x000f0000) >> 16)
6826 == ((inst.instruction & 0x0000f000) >> 12)))
6827 as_warn ((inst.instruction & LOAD_BIT)
6828 ? _("destination register same as write-back base")
6829 : _("source register same as write-back base"));
09d92015
MM
6830}
6831
c19d1205
ZW
6832/* inst.operands[i] was set up by parse_address. Encode it into an
6833 ARM-format mode 2 load or store instruction. If is_t is true,
6834 reject forms that cannot be used with a T instruction (i.e. not
6835 post-indexed). */
a737bd4d 6836static void
c19d1205 6837encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6838{
5be8be5d
DG
6839 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6840
c19d1205 6841 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6842
c19d1205 6843 if (inst.operands[i].immisreg)
09d92015 6844 {
5be8be5d
DG
6845 constraint ((inst.operands[i].imm == REG_PC
6846 || (is_pc && inst.operands[i].writeback)),
6847 BAD_PC_ADDRESSING);
c19d1205
ZW
6848 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6849 inst.instruction |= inst.operands[i].imm;
6850 if (!inst.operands[i].negative)
6851 inst.instruction |= INDEX_UP;
6852 if (inst.operands[i].shifted)
6853 {
6854 if (inst.operands[i].shift_kind == SHIFT_RRX)
6855 inst.instruction |= SHIFT_ROR << 5;
6856 else
6857 {
6858 inst.instruction |= inst.operands[i].shift_kind << 5;
6859 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6860 }
6861 }
09d92015 6862 }
c19d1205 6863 else /* immediate offset in inst.reloc */
09d92015 6864 {
5be8be5d
DG
6865 if (is_pc && !inst.reloc.pc_rel)
6866 {
6867 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
6868
6869 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
6870 cannot use PC in addressing.
6871 PC cannot be used in writeback addressing, either. */
6872 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 6873 BAD_PC_ADDRESSING);
23a10334 6874
dc5ec521 6875 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
6876 if (warn_on_deprecated
6877 && !is_load
6878 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
6879 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
6880 }
6881
c19d1205
ZW
6882 if (inst.reloc.type == BFD_RELOC_UNUSED)
6883 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6884 }
09d92015
MM
6885}
6886
c19d1205
ZW
6887/* inst.operands[i] was set up by parse_address. Encode it into an
6888 ARM-format mode 3 load or store instruction. Reject forms that
6889 cannot be used with such instructions. If is_t is true, reject
6890 forms that cannot be used with a T instruction (i.e. not
6891 post-indexed). */
6892static void
6893encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6894{
c19d1205 6895 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6896 {
c19d1205
ZW
6897 inst.error = _("instruction does not accept scaled register index");
6898 return;
09d92015 6899 }
a737bd4d 6900
c19d1205 6901 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6902
c19d1205
ZW
6903 if (inst.operands[i].immisreg)
6904 {
5be8be5d
DG
6905 constraint ((inst.operands[i].imm == REG_PC
6906 || inst.operands[i].reg == REG_PC),
6907 BAD_PC_ADDRESSING);
c19d1205
ZW
6908 inst.instruction |= inst.operands[i].imm;
6909 if (!inst.operands[i].negative)
6910 inst.instruction |= INDEX_UP;
6911 }
6912 else /* immediate offset in inst.reloc */
6913 {
5be8be5d
DG
6914 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
6915 && inst.operands[i].writeback),
6916 BAD_PC_WRITEBACK);
c19d1205
ZW
6917 inst.instruction |= HWOFFSET_IMM;
6918 if (inst.reloc.type == BFD_RELOC_UNUSED)
6919 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6920 }
a737bd4d
NC
6921}
6922
c19d1205
ZW
6923/* inst.operands[i] was set up by parse_address. Encode it into an
6924 ARM-format instruction. Reject all forms which cannot be encoded
6925 into a coprocessor load/store instruction. If wb_ok is false,
6926 reject use of writeback; if unind_ok is false, reject use of
6927 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6928 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6929 (in which case it is preserved). */
09d92015 6930
c19d1205
ZW
6931static int
6932encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6933{
c19d1205 6934 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6935
9c2799c2 6936 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6937
c19d1205 6938 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6939 {
9c2799c2 6940 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
6941 if (!unind_ok)
6942 {
6943 inst.error = _("instruction does not support unindexed addressing");
6944 return FAIL;
6945 }
6946 inst.instruction |= inst.operands[i].imm;
6947 inst.instruction |= INDEX_UP;
6948 return SUCCESS;
09d92015 6949 }
a737bd4d 6950
c19d1205
ZW
6951 if (inst.operands[i].preind)
6952 inst.instruction |= PRE_INDEX;
a737bd4d 6953
c19d1205 6954 if (inst.operands[i].writeback)
09d92015 6955 {
c19d1205
ZW
6956 if (inst.operands[i].reg == REG_PC)
6957 {
6958 inst.error = _("pc may not be used with write-back");
6959 return FAIL;
6960 }
6961 if (!wb_ok)
6962 {
6963 inst.error = _("instruction does not support writeback");
6964 return FAIL;
6965 }
6966 inst.instruction |= WRITE_BACK;
09d92015 6967 }
a737bd4d 6968
c19d1205 6969 if (reloc_override)
21d799b5 6970 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
6971 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6972 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6973 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6974 {
6975 if (thumb_mode)
6976 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6977 else
6978 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6979 }
6980
c19d1205
ZW
6981 return SUCCESS;
6982}
a737bd4d 6983
c19d1205
ZW
6984/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6985 Determine whether it can be performed with a move instruction; if
6986 it can, convert inst.instruction to that move instruction and
c921be7d
NC
6987 return TRUE; if it can't, convert inst.instruction to a literal-pool
6988 load and return FALSE. If this is not a valid thing to do in the
6989 current context, set inst.error and return TRUE.
a737bd4d 6990
c19d1205
ZW
6991 inst.operands[i] describes the destination register. */
6992
c921be7d 6993static bfd_boolean
c19d1205
ZW
6994move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6995{
53365c0d
PB
6996 unsigned long tbit;
6997
6998 if (thumb_p)
6999 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7000 else
7001 tbit = LOAD_BIT;
7002
7003 if ((inst.instruction & tbit) == 0)
09d92015 7004 {
c19d1205 7005 inst.error = _("invalid pseudo operation");
c921be7d 7006 return TRUE;
09d92015 7007 }
c19d1205 7008 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7009 {
7010 inst.error = _("constant expression expected");
c921be7d 7011 return TRUE;
09d92015 7012 }
c19d1205 7013 if (inst.reloc.exp.X_op == O_constant)
09d92015 7014 {
c19d1205
ZW
7015 if (thumb_p)
7016 {
53365c0d 7017 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7018 {
7019 /* This can be done with a mov(1) instruction. */
7020 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7021 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7022 return TRUE;
c19d1205
ZW
7023 }
7024 }
7025 else
7026 {
7027 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7028 if (value != FAIL)
7029 {
7030 /* This can be done with a mov instruction. */
7031 inst.instruction &= LITERAL_MASK;
7032 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7033 inst.instruction |= value & 0xfff;
c921be7d 7034 return TRUE;
c19d1205 7035 }
09d92015 7036
c19d1205
ZW
7037 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7038 if (value != FAIL)
7039 {
7040 /* This can be done with a mvn instruction. */
7041 inst.instruction &= LITERAL_MASK;
7042 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7043 inst.instruction |= value & 0xfff;
c921be7d 7044 return TRUE;
c19d1205
ZW
7045 }
7046 }
09d92015
MM
7047 }
7048
c19d1205
ZW
7049 if (add_to_lit_pool () == FAIL)
7050 {
7051 inst.error = _("literal pool insertion failed");
c921be7d 7052 return TRUE;
c19d1205
ZW
7053 }
7054 inst.operands[1].reg = REG_PC;
7055 inst.operands[1].isreg = 1;
7056 inst.operands[1].preind = 1;
7057 inst.reloc.pc_rel = 1;
7058 inst.reloc.type = (thumb_p
7059 ? BFD_RELOC_ARM_THUMB_OFFSET
7060 : (mode_3
7061 ? BFD_RELOC_ARM_HWLITERAL
7062 : BFD_RELOC_ARM_LITERAL));
c921be7d 7063 return FALSE;
09d92015
MM
7064}
7065
5f4273c7 7066/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7067 First some generics; their names are taken from the conventional
7068 bit positions for register arguments in ARM format instructions. */
09d92015 7069
a737bd4d 7070static void
c19d1205 7071do_noargs (void)
09d92015 7072{
c19d1205 7073}
a737bd4d 7074
c19d1205
ZW
7075static void
7076do_rd (void)
7077{
7078 inst.instruction |= inst.operands[0].reg << 12;
7079}
a737bd4d 7080
c19d1205
ZW
7081static void
7082do_rd_rm (void)
7083{
7084 inst.instruction |= inst.operands[0].reg << 12;
7085 inst.instruction |= inst.operands[1].reg;
7086}
09d92015 7087
c19d1205
ZW
7088static void
7089do_rd_rn (void)
7090{
7091 inst.instruction |= inst.operands[0].reg << 12;
7092 inst.instruction |= inst.operands[1].reg << 16;
7093}
a737bd4d 7094
c19d1205
ZW
7095static void
7096do_rn_rd (void)
7097{
7098 inst.instruction |= inst.operands[0].reg << 16;
7099 inst.instruction |= inst.operands[1].reg << 12;
7100}
09d92015 7101
c19d1205
ZW
7102static void
7103do_rd_rm_rn (void)
7104{
9a64e435 7105 unsigned Rn = inst.operands[2].reg;
708587a4 7106 /* Enforce restrictions on SWP instruction. */
9a64e435 7107 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7108 {
7109 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7110 _("Rn must not overlap other operands"));
7111
7112 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7113 if (warn_on_deprecated
7114 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7115 as_warn (_("swp{b} use is deprecated for this architecture"));
7116
7117 }
c19d1205
ZW
7118 inst.instruction |= inst.operands[0].reg << 12;
7119 inst.instruction |= inst.operands[1].reg;
9a64e435 7120 inst.instruction |= Rn << 16;
c19d1205 7121}
09d92015 7122
c19d1205
ZW
7123static void
7124do_rd_rn_rm (void)
7125{
7126 inst.instruction |= inst.operands[0].reg << 12;
7127 inst.instruction |= inst.operands[1].reg << 16;
7128 inst.instruction |= inst.operands[2].reg;
7129}
a737bd4d 7130
c19d1205
ZW
7131static void
7132do_rm_rd_rn (void)
7133{
5be8be5d
DG
7134 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7135 constraint (((inst.reloc.exp.X_op != O_constant
7136 && inst.reloc.exp.X_op != O_illegal)
7137 || inst.reloc.exp.X_add_number != 0),
7138 BAD_ADDR_MODE);
c19d1205
ZW
7139 inst.instruction |= inst.operands[0].reg;
7140 inst.instruction |= inst.operands[1].reg << 12;
7141 inst.instruction |= inst.operands[2].reg << 16;
7142}
09d92015 7143
c19d1205
ZW
7144static void
7145do_imm0 (void)
7146{
7147 inst.instruction |= inst.operands[0].imm;
7148}
09d92015 7149
c19d1205
ZW
7150static void
7151do_rd_cpaddr (void)
7152{
7153 inst.instruction |= inst.operands[0].reg << 12;
7154 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7155}
a737bd4d 7156
c19d1205
ZW
7157/* ARM instructions, in alphabetical order by function name (except
7158 that wrapper functions appear immediately after the function they
7159 wrap). */
09d92015 7160
c19d1205
ZW
7161/* This is a pseudo-op of the form "adr rd, label" to be converted
7162 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7163
7164static void
c19d1205 7165do_adr (void)
09d92015 7166{
c19d1205 7167 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7168
c19d1205
ZW
7169 /* Frag hacking will turn this into a sub instruction if the offset turns
7170 out to be negative. */
7171 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7172 inst.reloc.pc_rel = 1;
2fc8bdac 7173 inst.reloc.exp.X_add_number -= 8;
c19d1205 7174}
b99bd4ef 7175
c19d1205
ZW
7176/* This is a pseudo-op of the form "adrl rd, label" to be converted
7177 into a relative address of the form:
7178 add rd, pc, #low(label-.-8)"
7179 add rd, rd, #high(label-.-8)" */
b99bd4ef 7180
c19d1205
ZW
7181static void
7182do_adrl (void)
7183{
7184 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7185
c19d1205
ZW
7186 /* Frag hacking will turn this into a sub instruction if the offset turns
7187 out to be negative. */
7188 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7189 inst.reloc.pc_rel = 1;
7190 inst.size = INSN_SIZE * 2;
2fc8bdac 7191 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7192}
7193
b99bd4ef 7194static void
c19d1205 7195do_arit (void)
b99bd4ef 7196{
c19d1205
ZW
7197 if (!inst.operands[1].present)
7198 inst.operands[1].reg = inst.operands[0].reg;
7199 inst.instruction |= inst.operands[0].reg << 12;
7200 inst.instruction |= inst.operands[1].reg << 16;
7201 encode_arm_shifter_operand (2);
7202}
b99bd4ef 7203
62b3e311
PB
7204static void
7205do_barrier (void)
7206{
7207 if (inst.operands[0].present)
7208 {
7209 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7210 && inst.operands[0].imm > 0xf
7211 && inst.operands[0].imm < 0x0,
bd3ba5d1 7212 _("bad barrier type"));
62b3e311
PB
7213 inst.instruction |= inst.operands[0].imm;
7214 }
7215 else
7216 inst.instruction |= 0xf;
7217}
7218
c19d1205
ZW
7219static void
7220do_bfc (void)
7221{
7222 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7223 constraint (msb > 32, _("bit-field extends past end of register"));
7224 /* The instruction encoding stores the LSB and MSB,
7225 not the LSB and width. */
7226 inst.instruction |= inst.operands[0].reg << 12;
7227 inst.instruction |= inst.operands[1].imm << 7;
7228 inst.instruction |= (msb - 1) << 16;
7229}
b99bd4ef 7230
c19d1205
ZW
7231static void
7232do_bfi (void)
7233{
7234 unsigned int msb;
b99bd4ef 7235
c19d1205
ZW
7236 /* #0 in second position is alternative syntax for bfc, which is
7237 the same instruction but with REG_PC in the Rm field. */
7238 if (!inst.operands[1].isreg)
7239 inst.operands[1].reg = REG_PC;
b99bd4ef 7240
c19d1205
ZW
7241 msb = inst.operands[2].imm + inst.operands[3].imm;
7242 constraint (msb > 32, _("bit-field extends past end of register"));
7243 /* The instruction encoding stores the LSB and MSB,
7244 not the LSB and width. */
7245 inst.instruction |= inst.operands[0].reg << 12;
7246 inst.instruction |= inst.operands[1].reg;
7247 inst.instruction |= inst.operands[2].imm << 7;
7248 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7249}
7250
b99bd4ef 7251static void
c19d1205 7252do_bfx (void)
b99bd4ef 7253{
c19d1205
ZW
7254 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7255 _("bit-field extends past end of register"));
7256 inst.instruction |= inst.operands[0].reg << 12;
7257 inst.instruction |= inst.operands[1].reg;
7258 inst.instruction |= inst.operands[2].imm << 7;
7259 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7260}
09d92015 7261
c19d1205
ZW
7262/* ARM V5 breakpoint instruction (argument parse)
7263 BKPT <16 bit unsigned immediate>
7264 Instruction is not conditional.
7265 The bit pattern given in insns[] has the COND_ALWAYS condition,
7266 and it is an error if the caller tried to override that. */
b99bd4ef 7267
c19d1205
ZW
7268static void
7269do_bkpt (void)
7270{
7271 /* Top 12 of 16 bits to bits 19:8. */
7272 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7273
c19d1205
ZW
7274 /* Bottom 4 of 16 bits to bits 3:0. */
7275 inst.instruction |= inst.operands[0].imm & 0xf;
7276}
09d92015 7277
c19d1205
ZW
7278static void
7279encode_branch (int default_reloc)
7280{
7281 if (inst.operands[0].hasreloc)
7282 {
7283 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7284 _("the only suffix valid here is '(plt)'"));
267bf995 7285 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 7286 }
b99bd4ef 7287 else
9ae92b05 7288 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7289 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7290}
7291
b99bd4ef 7292static void
c19d1205 7293do_branch (void)
b99bd4ef 7294{
39b41c9c
PB
7295#ifdef OBJ_ELF
7296 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7297 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7298 else
7299#endif
7300 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7301}
7302
7303static void
7304do_bl (void)
7305{
7306#ifdef OBJ_ELF
7307 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7308 {
7309 if (inst.cond == COND_ALWAYS)
7310 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7311 else
7312 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7313 }
7314 else
7315#endif
7316 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7317}
b99bd4ef 7318
c19d1205
ZW
7319/* ARM V5 branch-link-exchange instruction (argument parse)
7320 BLX <target_addr> ie BLX(1)
7321 BLX{<condition>} <Rm> ie BLX(2)
7322 Unfortunately, there are two different opcodes for this mnemonic.
7323 So, the insns[].value is not used, and the code here zaps values
7324 into inst.instruction.
7325 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7326
c19d1205
ZW
7327static void
7328do_blx (void)
7329{
7330 if (inst.operands[0].isreg)
b99bd4ef 7331 {
c19d1205
ZW
7332 /* Arg is a register; the opcode provided by insns[] is correct.
7333 It is not illegal to do "blx pc", just useless. */
7334 if (inst.operands[0].reg == REG_PC)
7335 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7336
c19d1205
ZW
7337 inst.instruction |= inst.operands[0].reg;
7338 }
7339 else
b99bd4ef 7340 {
c19d1205 7341 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7342 conditionally, and the opcode must be adjusted.
7343 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7344 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7345 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7346 inst.instruction = 0xfa000000;
267bf995 7347 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7348 }
c19d1205
ZW
7349}
7350
7351static void
7352do_bx (void)
7353{
845b51d6
PB
7354 bfd_boolean want_reloc;
7355
c19d1205
ZW
7356 if (inst.operands[0].reg == REG_PC)
7357 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7358
c19d1205 7359 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7360 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7361 it is for ARMv4t or earlier. */
7362 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7363 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7364 want_reloc = TRUE;
7365
5ad34203 7366#ifdef OBJ_ELF
845b51d6 7367 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7368#endif
584206db 7369 want_reloc = FALSE;
845b51d6
PB
7370
7371 if (want_reloc)
7372 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7373}
7374
c19d1205
ZW
7375
7376/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7377
7378static void
c19d1205 7379do_bxj (void)
a737bd4d 7380{
c19d1205
ZW
7381 if (inst.operands[0].reg == REG_PC)
7382 as_tsktsk (_("use of r15 in bxj is not really useful"));
7383
7384 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7385}
7386
c19d1205
ZW
7387/* Co-processor data operation:
7388 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7389 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7390static void
7391do_cdp (void)
7392{
7393 inst.instruction |= inst.operands[0].reg << 8;
7394 inst.instruction |= inst.operands[1].imm << 20;
7395 inst.instruction |= inst.operands[2].reg << 12;
7396 inst.instruction |= inst.operands[3].reg << 16;
7397 inst.instruction |= inst.operands[4].reg;
7398 inst.instruction |= inst.operands[5].imm << 5;
7399}
a737bd4d
NC
7400
7401static void
c19d1205 7402do_cmp (void)
a737bd4d 7403{
c19d1205
ZW
7404 inst.instruction |= inst.operands[0].reg << 16;
7405 encode_arm_shifter_operand (1);
a737bd4d
NC
7406}
7407
c19d1205
ZW
7408/* Transfer between coprocessor and ARM registers.
7409 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7410 MRC2
7411 MCR{cond}
7412 MCR2
7413
7414 No special properties. */
09d92015
MM
7415
7416static void
c19d1205 7417do_co_reg (void)
09d92015 7418{
fdfde340
JM
7419 unsigned Rd;
7420
7421 Rd = inst.operands[2].reg;
7422 if (thumb_mode)
7423 {
7424 if (inst.instruction == 0xee000010
7425 || inst.instruction == 0xfe000010)
7426 /* MCR, MCR2 */
7427 reject_bad_reg (Rd);
7428 else
7429 /* MRC, MRC2 */
7430 constraint (Rd == REG_SP, BAD_SP);
7431 }
7432 else
7433 {
7434 /* MCR */
7435 if (inst.instruction == 0xe000010)
7436 constraint (Rd == REG_PC, BAD_PC);
7437 }
7438
7439
c19d1205
ZW
7440 inst.instruction |= inst.operands[0].reg << 8;
7441 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7442 inst.instruction |= Rd << 12;
c19d1205
ZW
7443 inst.instruction |= inst.operands[3].reg << 16;
7444 inst.instruction |= inst.operands[4].reg;
7445 inst.instruction |= inst.operands[5].imm << 5;
7446}
09d92015 7447
c19d1205
ZW
7448/* Transfer between coprocessor register and pair of ARM registers.
7449 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7450 MCRR2
7451 MRRC{cond}
7452 MRRC2
b99bd4ef 7453
c19d1205 7454 Two XScale instructions are special cases of these:
09d92015 7455
c19d1205
ZW
7456 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7457 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7458
5f4273c7 7459 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7460
c19d1205
ZW
7461static void
7462do_co_reg2c (void)
7463{
fdfde340
JM
7464 unsigned Rd, Rn;
7465
7466 Rd = inst.operands[2].reg;
7467 Rn = inst.operands[3].reg;
7468
7469 if (thumb_mode)
7470 {
7471 reject_bad_reg (Rd);
7472 reject_bad_reg (Rn);
7473 }
7474 else
7475 {
7476 constraint (Rd == REG_PC, BAD_PC);
7477 constraint (Rn == REG_PC, BAD_PC);
7478 }
7479
c19d1205
ZW
7480 inst.instruction |= inst.operands[0].reg << 8;
7481 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7482 inst.instruction |= Rd << 12;
7483 inst.instruction |= Rn << 16;
c19d1205 7484 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7485}
7486
c19d1205
ZW
7487static void
7488do_cpsi (void)
7489{
7490 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7491 if (inst.operands[1].present)
7492 {
7493 inst.instruction |= CPSI_MMOD;
7494 inst.instruction |= inst.operands[1].imm;
7495 }
c19d1205 7496}
b99bd4ef 7497
62b3e311
PB
7498static void
7499do_dbg (void)
7500{
7501 inst.instruction |= inst.operands[0].imm;
7502}
7503
eea54501
MGD
7504static void
7505do_div (void)
7506{
7507 unsigned Rd, Rn, Rm;
7508
7509 Rd = inst.operands[0].reg;
7510 Rn = (inst.operands[1].present
7511 ? inst.operands[1].reg : Rd);
7512 Rm = inst.operands[2].reg;
7513
7514 constraint ((Rd == REG_PC), BAD_PC);
7515 constraint ((Rn == REG_PC), BAD_PC);
7516 constraint ((Rm == REG_PC), BAD_PC);
7517
7518 inst.instruction |= Rd << 16;
7519 inst.instruction |= Rn << 0;
7520 inst.instruction |= Rm << 8;
7521}
7522
b99bd4ef 7523static void
c19d1205 7524do_it (void)
b99bd4ef 7525{
c19d1205 7526 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7527 process it to do the validation as if in
7528 thumb mode, just in case the code gets
7529 assembled for thumb using the unified syntax. */
7530
c19d1205 7531 inst.size = 0;
e07e6e58
NC
7532 if (unified_syntax)
7533 {
7534 set_it_insn_type (IT_INSN);
7535 now_it.mask = (inst.instruction & 0xf) | 0x10;
7536 now_it.cc = inst.operands[0].imm;
7537 }
09d92015 7538}
b99bd4ef 7539
09d92015 7540static void
c19d1205 7541do_ldmstm (void)
ea6ef066 7542{
c19d1205
ZW
7543 int base_reg = inst.operands[0].reg;
7544 int range = inst.operands[1].imm;
ea6ef066 7545
c19d1205
ZW
7546 inst.instruction |= base_reg << 16;
7547 inst.instruction |= range;
ea6ef066 7548
c19d1205
ZW
7549 if (inst.operands[1].writeback)
7550 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7551
c19d1205 7552 if (inst.operands[0].writeback)
ea6ef066 7553 {
c19d1205
ZW
7554 inst.instruction |= WRITE_BACK;
7555 /* Check for unpredictable uses of writeback. */
7556 if (inst.instruction & LOAD_BIT)
09d92015 7557 {
c19d1205
ZW
7558 /* Not allowed in LDM type 2. */
7559 if ((inst.instruction & LDM_TYPE_2_OR_3)
7560 && ((range & (1 << REG_PC)) == 0))
7561 as_warn (_("writeback of base register is UNPREDICTABLE"));
7562 /* Only allowed if base reg not in list for other types. */
7563 else if (range & (1 << base_reg))
7564 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7565 }
7566 else /* STM. */
7567 {
7568 /* Not allowed for type 2. */
7569 if (inst.instruction & LDM_TYPE_2_OR_3)
7570 as_warn (_("writeback of base register is UNPREDICTABLE"));
7571 /* Only allowed if base reg not in list, or first in list. */
7572 else if ((range & (1 << base_reg))
7573 && (range & ((1 << base_reg) - 1)))
7574 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7575 }
ea6ef066 7576 }
a737bd4d
NC
7577}
7578
c19d1205
ZW
7579/* ARMv5TE load-consecutive (argument parse)
7580 Mode is like LDRH.
7581
7582 LDRccD R, mode
7583 STRccD R, mode. */
7584
a737bd4d 7585static void
c19d1205 7586do_ldrd (void)
a737bd4d 7587{
c19d1205
ZW
7588 constraint (inst.operands[0].reg % 2 != 0,
7589 _("first destination register must be even"));
7590 constraint (inst.operands[1].present
7591 && inst.operands[1].reg != inst.operands[0].reg + 1,
7592 _("can only load two consecutive registers"));
7593 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7594 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7595
c19d1205
ZW
7596 if (!inst.operands[1].present)
7597 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7598
c19d1205 7599 if (inst.instruction & LOAD_BIT)
a737bd4d 7600 {
c19d1205
ZW
7601 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7602 register and the first register written; we have to diagnose
7603 overlap between the base and the second register written here. */
ea6ef066 7604
c19d1205
ZW
7605 if (inst.operands[2].reg == inst.operands[1].reg
7606 && (inst.operands[2].writeback || inst.operands[2].postind))
7607 as_warn (_("base register written back, and overlaps "
7608 "second destination register"));
b05fe5cf 7609
c19d1205
ZW
7610 /* For an index-register load, the index register must not overlap the
7611 destination (even if not write-back). */
7612 else if (inst.operands[2].immisreg
ca3f61f7
NC
7613 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7614 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 7615 as_warn (_("index register overlaps destination register"));
b05fe5cf 7616 }
c19d1205
ZW
7617
7618 inst.instruction |= inst.operands[0].reg << 12;
7619 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7620}
7621
7622static void
c19d1205 7623do_ldrex (void)
b05fe5cf 7624{
c19d1205
ZW
7625 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7626 || inst.operands[1].postind || inst.operands[1].writeback
7627 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7628 || inst.operands[1].negative
7629 /* This can arise if the programmer has written
7630 strex rN, rM, foo
7631 or if they have mistakenly used a register name as the last
7632 operand, eg:
7633 strex rN, rM, rX
7634 It is very difficult to distinguish between these two cases
7635 because "rX" might actually be a label. ie the register
7636 name has been occluded by a symbol of the same name. So we
7637 just generate a general 'bad addressing mode' type error
7638 message and leave it up to the programmer to discover the
7639 true cause and fix their mistake. */
7640 || (inst.operands[1].reg == REG_PC),
7641 BAD_ADDR_MODE);
b05fe5cf 7642
c19d1205
ZW
7643 constraint (inst.reloc.exp.X_op != O_constant
7644 || inst.reloc.exp.X_add_number != 0,
7645 _("offset must be zero in ARM encoding"));
b05fe5cf 7646
5be8be5d
DG
7647 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7648
c19d1205
ZW
7649 inst.instruction |= inst.operands[0].reg << 12;
7650 inst.instruction |= inst.operands[1].reg << 16;
7651 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7652}
7653
7654static void
c19d1205 7655do_ldrexd (void)
b05fe5cf 7656{
c19d1205
ZW
7657 constraint (inst.operands[0].reg % 2 != 0,
7658 _("even register required"));
7659 constraint (inst.operands[1].present
7660 && inst.operands[1].reg != inst.operands[0].reg + 1,
7661 _("can only load two consecutive registers"));
7662 /* If op 1 were present and equal to PC, this function wouldn't
7663 have been called in the first place. */
7664 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7665
c19d1205
ZW
7666 inst.instruction |= inst.operands[0].reg << 12;
7667 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7668}
7669
7670static void
c19d1205 7671do_ldst (void)
b05fe5cf 7672{
c19d1205
ZW
7673 inst.instruction |= inst.operands[0].reg << 12;
7674 if (!inst.operands[1].isreg)
7675 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7676 return;
c19d1205 7677 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7678}
7679
7680static void
c19d1205 7681do_ldstt (void)
b05fe5cf 7682{
c19d1205
ZW
7683 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7684 reject [Rn,...]. */
7685 if (inst.operands[1].preind)
b05fe5cf 7686 {
bd3ba5d1
NC
7687 constraint (inst.reloc.exp.X_op != O_constant
7688 || inst.reloc.exp.X_add_number != 0,
c19d1205 7689 _("this instruction requires a post-indexed address"));
b05fe5cf 7690
c19d1205
ZW
7691 inst.operands[1].preind = 0;
7692 inst.operands[1].postind = 1;
7693 inst.operands[1].writeback = 1;
b05fe5cf 7694 }
c19d1205
ZW
7695 inst.instruction |= inst.operands[0].reg << 12;
7696 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7697}
b05fe5cf 7698
c19d1205 7699/* Halfword and signed-byte load/store operations. */
b05fe5cf 7700
c19d1205
ZW
7701static void
7702do_ldstv4 (void)
7703{
ff4a8d2b 7704 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7705 inst.instruction |= inst.operands[0].reg << 12;
7706 if (!inst.operands[1].isreg)
7707 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7708 return;
c19d1205 7709 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7710}
7711
7712static void
c19d1205 7713do_ldsttv4 (void)
b05fe5cf 7714{
c19d1205
ZW
7715 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7716 reject [Rn,...]. */
7717 if (inst.operands[1].preind)
b05fe5cf 7718 {
bd3ba5d1
NC
7719 constraint (inst.reloc.exp.X_op != O_constant
7720 || inst.reloc.exp.X_add_number != 0,
c19d1205 7721 _("this instruction requires a post-indexed address"));
b05fe5cf 7722
c19d1205
ZW
7723 inst.operands[1].preind = 0;
7724 inst.operands[1].postind = 1;
7725 inst.operands[1].writeback = 1;
b05fe5cf 7726 }
c19d1205
ZW
7727 inst.instruction |= inst.operands[0].reg << 12;
7728 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7729}
b05fe5cf 7730
c19d1205
ZW
7731/* Co-processor register load/store.
7732 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7733static void
7734do_lstc (void)
7735{
7736 inst.instruction |= inst.operands[0].reg << 8;
7737 inst.instruction |= inst.operands[1].reg << 12;
7738 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7739}
7740
b05fe5cf 7741static void
c19d1205 7742do_mlas (void)
b05fe5cf 7743{
8fb9d7b9 7744 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7745 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7746 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7747 && !(inst.instruction & 0x00400000))
8fb9d7b9 7748 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7749
c19d1205
ZW
7750 inst.instruction |= inst.operands[0].reg << 16;
7751 inst.instruction |= inst.operands[1].reg;
7752 inst.instruction |= inst.operands[2].reg << 8;
7753 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7754}
b05fe5cf 7755
c19d1205
ZW
7756static void
7757do_mov (void)
7758{
7759 inst.instruction |= inst.operands[0].reg << 12;
7760 encode_arm_shifter_operand (1);
7761}
b05fe5cf 7762
c19d1205
ZW
7763/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7764static void
7765do_mov16 (void)
7766{
b6895b4f
PB
7767 bfd_vma imm;
7768 bfd_boolean top;
7769
7770 top = (inst.instruction & 0x00400000) != 0;
7771 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7772 _(":lower16: not allowed this instruction"));
7773 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7774 _(":upper16: not allowed instruction"));
c19d1205 7775 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7776 if (inst.reloc.type == BFD_RELOC_UNUSED)
7777 {
7778 imm = inst.reloc.exp.X_add_number;
7779 /* The value is in two pieces: 0:11, 16:19. */
7780 inst.instruction |= (imm & 0x00000fff);
7781 inst.instruction |= (imm & 0x0000f000) << 4;
7782 }
b05fe5cf 7783}
b99bd4ef 7784
037e8744
JB
7785static void do_vfp_nsyn_opcode (const char *);
7786
7787static int
7788do_vfp_nsyn_mrs (void)
7789{
7790 if (inst.operands[0].isvec)
7791 {
7792 if (inst.operands[1].reg != 1)
7793 first_error (_("operand 1 must be FPSCR"));
7794 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7795 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7796 do_vfp_nsyn_opcode ("fmstat");
7797 }
7798 else if (inst.operands[1].isvec)
7799 do_vfp_nsyn_opcode ("fmrx");
7800 else
7801 return FAIL;
5f4273c7 7802
037e8744
JB
7803 return SUCCESS;
7804}
7805
7806static int
7807do_vfp_nsyn_msr (void)
7808{
7809 if (inst.operands[0].isvec)
7810 do_vfp_nsyn_opcode ("fmxr");
7811 else
7812 return FAIL;
7813
7814 return SUCCESS;
7815}
7816
f7c21dc7
NC
7817static void
7818do_vmrs (void)
7819{
7820 unsigned Rt = inst.operands[0].reg;
7821
7822 if (thumb_mode && inst.operands[0].reg == REG_SP)
7823 {
7824 inst.error = BAD_SP;
7825 return;
7826 }
7827
7828 /* APSR_ sets isvec. All other refs to PC are illegal. */
7829 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7830 {
7831 inst.error = BAD_PC;
7832 return;
7833 }
7834
7835 if (inst.operands[1].reg != 1)
7836 first_error (_("operand 1 must be FPSCR"));
7837
7838 inst.instruction |= (Rt << 12);
7839}
7840
7841static void
7842do_vmsr (void)
7843{
7844 unsigned Rt = inst.operands[1].reg;
7845
7846 if (thumb_mode)
7847 reject_bad_reg (Rt);
7848 else if (Rt == REG_PC)
7849 {
7850 inst.error = BAD_PC;
7851 return;
7852 }
7853
7854 if (inst.operands[0].reg != 1)
7855 first_error (_("operand 0 must be FPSCR"));
7856
7857 inst.instruction |= (Rt << 12);
7858}
7859
b99bd4ef 7860static void
c19d1205 7861do_mrs (void)
b99bd4ef 7862{
90ec0d68
MGD
7863 unsigned br;
7864
037e8744
JB
7865 if (do_vfp_nsyn_mrs () == SUCCESS)
7866 return;
7867
ff4a8d2b 7868 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 7869 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
7870
7871 if (inst.operands[1].isreg)
7872 {
7873 br = inst.operands[1].reg;
7874 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
7875 as_bad (_("bad register for mrs"));
7876 }
7877 else
7878 {
7879 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7880 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7881 != (PSR_c|PSR_f),
7882 _("'CPSR' or 'SPSR' expected"));
7883 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
7884 }
7885
7886 inst.instruction |= br;
c19d1205 7887}
b99bd4ef 7888
c19d1205
ZW
7889/* Two possible forms:
7890 "{C|S}PSR_<field>, Rm",
7891 "{C|S}PSR_f, #expression". */
b99bd4ef 7892
c19d1205
ZW
7893static void
7894do_msr (void)
7895{
037e8744
JB
7896 if (do_vfp_nsyn_msr () == SUCCESS)
7897 return;
7898
c19d1205
ZW
7899 inst.instruction |= inst.operands[0].imm;
7900 if (inst.operands[1].isreg)
7901 inst.instruction |= inst.operands[1].reg;
7902 else
b99bd4ef 7903 {
c19d1205
ZW
7904 inst.instruction |= INST_IMMEDIATE;
7905 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7906 inst.reloc.pc_rel = 0;
b99bd4ef 7907 }
b99bd4ef
NC
7908}
7909
c19d1205
ZW
7910static void
7911do_mul (void)
a737bd4d 7912{
ff4a8d2b
NC
7913 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7914
c19d1205
ZW
7915 if (!inst.operands[2].present)
7916 inst.operands[2].reg = inst.operands[0].reg;
7917 inst.instruction |= inst.operands[0].reg << 16;
7918 inst.instruction |= inst.operands[1].reg;
7919 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7920
8fb9d7b9
MS
7921 if (inst.operands[0].reg == inst.operands[1].reg
7922 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7923 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7924}
7925
c19d1205
ZW
7926/* Long Multiply Parser
7927 UMULL RdLo, RdHi, Rm, Rs
7928 SMULL RdLo, RdHi, Rm, Rs
7929 UMLAL RdLo, RdHi, Rm, Rs
7930 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7931
7932static void
c19d1205 7933do_mull (void)
b99bd4ef 7934{
c19d1205
ZW
7935 inst.instruction |= inst.operands[0].reg << 12;
7936 inst.instruction |= inst.operands[1].reg << 16;
7937 inst.instruction |= inst.operands[2].reg;
7938 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7939
682b27ad
PB
7940 /* rdhi and rdlo must be different. */
7941 if (inst.operands[0].reg == inst.operands[1].reg)
7942 as_tsktsk (_("rdhi and rdlo must be different"));
7943
7944 /* rdhi, rdlo and rm must all be different before armv6. */
7945 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 7946 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 7947 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
7948 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7949}
b99bd4ef 7950
c19d1205
ZW
7951static void
7952do_nop (void)
7953{
e7495e45
NS
7954 if (inst.operands[0].present
7955 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
7956 {
7957 /* Architectural NOP hints are CPSR sets with no bits selected. */
7958 inst.instruction &= 0xf0000000;
e7495e45
NS
7959 inst.instruction |= 0x0320f000;
7960 if (inst.operands[0].present)
7961 inst.instruction |= inst.operands[0].imm;
c19d1205 7962 }
b99bd4ef
NC
7963}
7964
c19d1205
ZW
7965/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7966 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7967 Condition defaults to COND_ALWAYS.
7968 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7969
7970static void
c19d1205 7971do_pkhbt (void)
b99bd4ef 7972{
c19d1205
ZW
7973 inst.instruction |= inst.operands[0].reg << 12;
7974 inst.instruction |= inst.operands[1].reg << 16;
7975 inst.instruction |= inst.operands[2].reg;
7976 if (inst.operands[3].present)
7977 encode_arm_shift (3);
7978}
b99bd4ef 7979
c19d1205 7980/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7981
c19d1205
ZW
7982static void
7983do_pkhtb (void)
7984{
7985 if (!inst.operands[3].present)
b99bd4ef 7986 {
c19d1205
ZW
7987 /* If the shift specifier is omitted, turn the instruction
7988 into pkhbt rd, rm, rn. */
7989 inst.instruction &= 0xfff00010;
7990 inst.instruction |= inst.operands[0].reg << 12;
7991 inst.instruction |= inst.operands[1].reg;
7992 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7993 }
7994 else
7995 {
c19d1205
ZW
7996 inst.instruction |= inst.operands[0].reg << 12;
7997 inst.instruction |= inst.operands[1].reg << 16;
7998 inst.instruction |= inst.operands[2].reg;
7999 encode_arm_shift (3);
b99bd4ef
NC
8000 }
8001}
8002
c19d1205 8003/* ARMv5TE: Preload-Cache
60e5ef9f 8004 MP Extensions: Preload for write
c19d1205 8005
60e5ef9f 8006 PLD(W) <addr_mode>
c19d1205
ZW
8007
8008 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8009
8010static void
c19d1205 8011do_pld (void)
b99bd4ef 8012{
c19d1205
ZW
8013 constraint (!inst.operands[0].isreg,
8014 _("'[' expected after PLD mnemonic"));
8015 constraint (inst.operands[0].postind,
8016 _("post-indexed expression used in preload instruction"));
8017 constraint (inst.operands[0].writeback,
8018 _("writeback used in preload instruction"));
8019 constraint (!inst.operands[0].preind,
8020 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8021 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8022}
b99bd4ef 8023
62b3e311
PB
8024/* ARMv7: PLI <addr_mode> */
8025static void
8026do_pli (void)
8027{
8028 constraint (!inst.operands[0].isreg,
8029 _("'[' expected after PLI mnemonic"));
8030 constraint (inst.operands[0].postind,
8031 _("post-indexed expression used in preload instruction"));
8032 constraint (inst.operands[0].writeback,
8033 _("writeback used in preload instruction"));
8034 constraint (!inst.operands[0].preind,
8035 _("unindexed addressing used in preload instruction"));
8036 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8037 inst.instruction &= ~PRE_INDEX;
8038}
8039
c19d1205
ZW
8040static void
8041do_push_pop (void)
8042{
8043 inst.operands[1] = inst.operands[0];
8044 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8045 inst.operands[0].isreg = 1;
8046 inst.operands[0].writeback = 1;
8047 inst.operands[0].reg = REG_SP;
8048 do_ldmstm ();
8049}
b99bd4ef 8050
c19d1205
ZW
8051/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8052 word at the specified address and the following word
8053 respectively.
8054 Unconditionally executed.
8055 Error if Rn is R15. */
b99bd4ef 8056
c19d1205
ZW
8057static void
8058do_rfe (void)
8059{
8060 inst.instruction |= inst.operands[0].reg << 16;
8061 if (inst.operands[0].writeback)
8062 inst.instruction |= WRITE_BACK;
8063}
b99bd4ef 8064
c19d1205 8065/* ARM V6 ssat (argument parse). */
b99bd4ef 8066
c19d1205
ZW
8067static void
8068do_ssat (void)
8069{
8070 inst.instruction |= inst.operands[0].reg << 12;
8071 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8072 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8073
c19d1205
ZW
8074 if (inst.operands[3].present)
8075 encode_arm_shift (3);
b99bd4ef
NC
8076}
8077
c19d1205 8078/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8079
8080static void
c19d1205 8081do_usat (void)
b99bd4ef 8082{
c19d1205
ZW
8083 inst.instruction |= inst.operands[0].reg << 12;
8084 inst.instruction |= inst.operands[1].imm << 16;
8085 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8086
c19d1205
ZW
8087 if (inst.operands[3].present)
8088 encode_arm_shift (3);
b99bd4ef
NC
8089}
8090
c19d1205 8091/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8092
8093static void
c19d1205 8094do_ssat16 (void)
09d92015 8095{
c19d1205
ZW
8096 inst.instruction |= inst.operands[0].reg << 12;
8097 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8098 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8099}
8100
c19d1205
ZW
8101static void
8102do_usat16 (void)
a737bd4d 8103{
c19d1205
ZW
8104 inst.instruction |= inst.operands[0].reg << 12;
8105 inst.instruction |= inst.operands[1].imm << 16;
8106 inst.instruction |= inst.operands[2].reg;
8107}
a737bd4d 8108
c19d1205
ZW
8109/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8110 preserving the other bits.
a737bd4d 8111
c19d1205
ZW
8112 setend <endian_specifier>, where <endian_specifier> is either
8113 BE or LE. */
a737bd4d 8114
c19d1205
ZW
8115static void
8116do_setend (void)
8117{
8118 if (inst.operands[0].imm)
8119 inst.instruction |= 0x200;
a737bd4d
NC
8120}
8121
8122static void
c19d1205 8123do_shift (void)
a737bd4d 8124{
c19d1205
ZW
8125 unsigned int Rm = (inst.operands[1].present
8126 ? inst.operands[1].reg
8127 : inst.operands[0].reg);
a737bd4d 8128
c19d1205
ZW
8129 inst.instruction |= inst.operands[0].reg << 12;
8130 inst.instruction |= Rm;
8131 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8132 {
c19d1205
ZW
8133 inst.instruction |= inst.operands[2].reg << 8;
8134 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
8135 }
8136 else
c19d1205 8137 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8138}
8139
09d92015 8140static void
3eb17e6b 8141do_smc (void)
09d92015 8142{
3eb17e6b 8143 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8144 inst.reloc.pc_rel = 0;
09d92015
MM
8145}
8146
90ec0d68
MGD
8147static void
8148do_hvc (void)
8149{
8150 inst.reloc.type = BFD_RELOC_ARM_HVC;
8151 inst.reloc.pc_rel = 0;
8152}
8153
09d92015 8154static void
c19d1205 8155do_swi (void)
09d92015 8156{
c19d1205
ZW
8157 inst.reloc.type = BFD_RELOC_ARM_SWI;
8158 inst.reloc.pc_rel = 0;
09d92015
MM
8159}
8160
c19d1205
ZW
8161/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8162 SMLAxy{cond} Rd,Rm,Rs,Rn
8163 SMLAWy{cond} Rd,Rm,Rs,Rn
8164 Error if any register is R15. */
e16bb312 8165
c19d1205
ZW
8166static void
8167do_smla (void)
e16bb312 8168{
c19d1205
ZW
8169 inst.instruction |= inst.operands[0].reg << 16;
8170 inst.instruction |= inst.operands[1].reg;
8171 inst.instruction |= inst.operands[2].reg << 8;
8172 inst.instruction |= inst.operands[3].reg << 12;
8173}
a737bd4d 8174
c19d1205
ZW
8175/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8176 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8177 Error if any register is R15.
8178 Warning if Rdlo == Rdhi. */
a737bd4d 8179
c19d1205
ZW
8180static void
8181do_smlal (void)
8182{
8183 inst.instruction |= inst.operands[0].reg << 12;
8184 inst.instruction |= inst.operands[1].reg << 16;
8185 inst.instruction |= inst.operands[2].reg;
8186 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8187
c19d1205
ZW
8188 if (inst.operands[0].reg == inst.operands[1].reg)
8189 as_tsktsk (_("rdhi and rdlo must be different"));
8190}
a737bd4d 8191
c19d1205
ZW
8192/* ARM V5E (El Segundo) signed-multiply (argument parse)
8193 SMULxy{cond} Rd,Rm,Rs
8194 Error if any register is R15. */
a737bd4d 8195
c19d1205
ZW
8196static void
8197do_smul (void)
8198{
8199 inst.instruction |= inst.operands[0].reg << 16;
8200 inst.instruction |= inst.operands[1].reg;
8201 inst.instruction |= inst.operands[2].reg << 8;
8202}
a737bd4d 8203
b6702015
PB
8204/* ARM V6 srs (argument parse). The variable fields in the encoding are
8205 the same for both ARM and Thumb-2. */
a737bd4d 8206
c19d1205
ZW
8207static void
8208do_srs (void)
8209{
b6702015
PB
8210 int reg;
8211
8212 if (inst.operands[0].present)
8213 {
8214 reg = inst.operands[0].reg;
fdfde340 8215 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8216 }
8217 else
fdfde340 8218 reg = REG_SP;
b6702015
PB
8219
8220 inst.instruction |= reg << 16;
8221 inst.instruction |= inst.operands[1].imm;
8222 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8223 inst.instruction |= WRITE_BACK;
8224}
a737bd4d 8225
c19d1205 8226/* ARM V6 strex (argument parse). */
a737bd4d 8227
c19d1205
ZW
8228static void
8229do_strex (void)
8230{
8231 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8232 || inst.operands[2].postind || inst.operands[2].writeback
8233 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8234 || inst.operands[2].negative
8235 /* See comment in do_ldrex(). */
8236 || (inst.operands[2].reg == REG_PC),
8237 BAD_ADDR_MODE);
a737bd4d 8238
c19d1205
ZW
8239 constraint (inst.operands[0].reg == inst.operands[1].reg
8240 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8241
c19d1205
ZW
8242 constraint (inst.reloc.exp.X_op != O_constant
8243 || inst.reloc.exp.X_add_number != 0,
8244 _("offset must be zero in ARM encoding"));
a737bd4d 8245
c19d1205
ZW
8246 inst.instruction |= inst.operands[0].reg << 12;
8247 inst.instruction |= inst.operands[1].reg;
8248 inst.instruction |= inst.operands[2].reg << 16;
8249 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8250}
8251
8252static void
c19d1205 8253do_strexd (void)
e16bb312 8254{
c19d1205
ZW
8255 constraint (inst.operands[1].reg % 2 != 0,
8256 _("even register required"));
8257 constraint (inst.operands[2].present
8258 && inst.operands[2].reg != inst.operands[1].reg + 1,
8259 _("can only store two consecutive registers"));
8260 /* If op 2 were present and equal to PC, this function wouldn't
8261 have been called in the first place. */
8262 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8263
c19d1205
ZW
8264 constraint (inst.operands[0].reg == inst.operands[1].reg
8265 || inst.operands[0].reg == inst.operands[1].reg + 1
8266 || inst.operands[0].reg == inst.operands[3].reg,
8267 BAD_OVERLAP);
e16bb312 8268
c19d1205
ZW
8269 inst.instruction |= inst.operands[0].reg << 12;
8270 inst.instruction |= inst.operands[1].reg;
8271 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8272}
8273
c19d1205
ZW
8274/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8275 extends it to 32-bits, and adds the result to a value in another
8276 register. You can specify a rotation by 0, 8, 16, or 24 bits
8277 before extracting the 16-bit value.
8278 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8279 Condition defaults to COND_ALWAYS.
8280 Error if any register uses R15. */
8281
e16bb312 8282static void
c19d1205 8283do_sxtah (void)
e16bb312 8284{
c19d1205
ZW
8285 inst.instruction |= inst.operands[0].reg << 12;
8286 inst.instruction |= inst.operands[1].reg << 16;
8287 inst.instruction |= inst.operands[2].reg;
8288 inst.instruction |= inst.operands[3].imm << 10;
8289}
e16bb312 8290
c19d1205 8291/* ARM V6 SXTH.
e16bb312 8292
c19d1205
ZW
8293 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8294 Condition defaults to COND_ALWAYS.
8295 Error if any register uses R15. */
e16bb312
NC
8296
8297static void
c19d1205 8298do_sxth (void)
e16bb312 8299{
c19d1205
ZW
8300 inst.instruction |= inst.operands[0].reg << 12;
8301 inst.instruction |= inst.operands[1].reg;
8302 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8303}
c19d1205
ZW
8304\f
8305/* VFP instructions. In a logical order: SP variant first, monad
8306 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8307
8308static void
c19d1205 8309do_vfp_sp_monadic (void)
e16bb312 8310{
5287ad62
JB
8311 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8312 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8313}
8314
8315static void
c19d1205 8316do_vfp_sp_dyadic (void)
e16bb312 8317{
5287ad62
JB
8318 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8319 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8320 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8321}
8322
8323static void
c19d1205 8324do_vfp_sp_compare_z (void)
e16bb312 8325{
5287ad62 8326 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8327}
8328
8329static void
c19d1205 8330do_vfp_dp_sp_cvt (void)
e16bb312 8331{
5287ad62
JB
8332 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8333 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8334}
8335
8336static void
c19d1205 8337do_vfp_sp_dp_cvt (void)
e16bb312 8338{
5287ad62
JB
8339 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8340 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8341}
8342
8343static void
c19d1205 8344do_vfp_reg_from_sp (void)
e16bb312 8345{
c19d1205 8346 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8347 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8348}
8349
8350static void
c19d1205 8351do_vfp_reg2_from_sp2 (void)
e16bb312 8352{
c19d1205
ZW
8353 constraint (inst.operands[2].imm != 2,
8354 _("only two consecutive VFP SP registers allowed here"));
8355 inst.instruction |= inst.operands[0].reg << 12;
8356 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8357 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8358}
8359
8360static void
c19d1205 8361do_vfp_sp_from_reg (void)
e16bb312 8362{
5287ad62 8363 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8364 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8365}
8366
8367static void
c19d1205 8368do_vfp_sp2_from_reg2 (void)
e16bb312 8369{
c19d1205
ZW
8370 constraint (inst.operands[0].imm != 2,
8371 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8373 inst.instruction |= inst.operands[1].reg << 12;
8374 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8375}
8376
8377static void
c19d1205 8378do_vfp_sp_ldst (void)
e16bb312 8379{
5287ad62 8380 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8381 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8382}
8383
8384static void
c19d1205 8385do_vfp_dp_ldst (void)
e16bb312 8386{
5287ad62 8387 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8388 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8389}
8390
c19d1205 8391
e16bb312 8392static void
c19d1205 8393vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8394{
c19d1205
ZW
8395 if (inst.operands[0].writeback)
8396 inst.instruction |= WRITE_BACK;
8397 else
8398 constraint (ldstm_type != VFP_LDSTMIA,
8399 _("this addressing mode requires base-register writeback"));
8400 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8401 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8402 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8403}
8404
8405static void
c19d1205 8406vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8407{
c19d1205 8408 int count;
e16bb312 8409
c19d1205
ZW
8410 if (inst.operands[0].writeback)
8411 inst.instruction |= WRITE_BACK;
8412 else
8413 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8414 _("this addressing mode requires base-register writeback"));
e16bb312 8415
c19d1205 8416 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8417 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8418
c19d1205
ZW
8419 count = inst.operands[1].imm << 1;
8420 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8421 count += 1;
e16bb312 8422
c19d1205 8423 inst.instruction |= count;
e16bb312
NC
8424}
8425
8426static void
c19d1205 8427do_vfp_sp_ldstmia (void)
e16bb312 8428{
c19d1205 8429 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8430}
8431
8432static void
c19d1205 8433do_vfp_sp_ldstmdb (void)
e16bb312 8434{
c19d1205 8435 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8436}
8437
8438static void
c19d1205 8439do_vfp_dp_ldstmia (void)
e16bb312 8440{
c19d1205 8441 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8442}
8443
8444static void
c19d1205 8445do_vfp_dp_ldstmdb (void)
e16bb312 8446{
c19d1205 8447 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8448}
8449
8450static void
c19d1205 8451do_vfp_xp_ldstmia (void)
e16bb312 8452{
c19d1205
ZW
8453 vfp_dp_ldstm (VFP_LDSTMIAX);
8454}
e16bb312 8455
c19d1205
ZW
8456static void
8457do_vfp_xp_ldstmdb (void)
8458{
8459 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8460}
5287ad62
JB
8461
8462static void
8463do_vfp_dp_rd_rm (void)
8464{
8465 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8466 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8467}
8468
8469static void
8470do_vfp_dp_rn_rd (void)
8471{
8472 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8473 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8474}
8475
8476static void
8477do_vfp_dp_rd_rn (void)
8478{
8479 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8480 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8481}
8482
8483static void
8484do_vfp_dp_rd_rn_rm (void)
8485{
8486 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8487 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8488 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8489}
8490
8491static void
8492do_vfp_dp_rd (void)
8493{
8494 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8495}
8496
8497static void
8498do_vfp_dp_rm_rd_rn (void)
8499{
8500 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8501 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8502 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8503}
8504
8505/* VFPv3 instructions. */
8506static void
8507do_vfp_sp_const (void)
8508{
8509 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8510 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8511 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8512}
8513
8514static void
8515do_vfp_dp_const (void)
8516{
8517 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8518 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8519 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8520}
8521
8522static void
8523vfp_conv (int srcsize)
8524{
8525 unsigned immbits = srcsize - inst.operands[1].imm;
8526 inst.instruction |= (immbits & 1) << 5;
8527 inst.instruction |= (immbits >> 1);
8528}
8529
8530static void
8531do_vfp_sp_conv_16 (void)
8532{
8533 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8534 vfp_conv (16);
8535}
8536
8537static void
8538do_vfp_dp_conv_16 (void)
8539{
8540 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8541 vfp_conv (16);
8542}
8543
8544static void
8545do_vfp_sp_conv_32 (void)
8546{
8547 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8548 vfp_conv (32);
8549}
8550
8551static void
8552do_vfp_dp_conv_32 (void)
8553{
8554 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8555 vfp_conv (32);
8556}
c19d1205
ZW
8557\f
8558/* FPA instructions. Also in a logical order. */
e16bb312 8559
c19d1205
ZW
8560static void
8561do_fpa_cmp (void)
8562{
8563 inst.instruction |= inst.operands[0].reg << 16;
8564 inst.instruction |= inst.operands[1].reg;
8565}
b99bd4ef
NC
8566
8567static void
c19d1205 8568do_fpa_ldmstm (void)
b99bd4ef 8569{
c19d1205
ZW
8570 inst.instruction |= inst.operands[0].reg << 12;
8571 switch (inst.operands[1].imm)
8572 {
8573 case 1: inst.instruction |= CP_T_X; break;
8574 case 2: inst.instruction |= CP_T_Y; break;
8575 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8576 case 4: break;
8577 default: abort ();
8578 }
b99bd4ef 8579
c19d1205
ZW
8580 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8581 {
8582 /* The instruction specified "ea" or "fd", so we can only accept
8583 [Rn]{!}. The instruction does not really support stacking or
8584 unstacking, so we have to emulate these by setting appropriate
8585 bits and offsets. */
8586 constraint (inst.reloc.exp.X_op != O_constant
8587 || inst.reloc.exp.X_add_number != 0,
8588 _("this instruction does not support indexing"));
b99bd4ef 8589
c19d1205
ZW
8590 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8591 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8592
c19d1205
ZW
8593 if (!(inst.instruction & INDEX_UP))
8594 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8595
c19d1205
ZW
8596 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8597 {
8598 inst.operands[2].preind = 0;
8599 inst.operands[2].postind = 1;
8600 }
8601 }
b99bd4ef 8602
c19d1205 8603 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8604}
c19d1205
ZW
8605\f
8606/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8607
c19d1205
ZW
8608static void
8609do_iwmmxt_tandorc (void)
8610{
8611 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8612}
b99bd4ef 8613
c19d1205
ZW
8614static void
8615do_iwmmxt_textrc (void)
8616{
8617 inst.instruction |= inst.operands[0].reg << 12;
8618 inst.instruction |= inst.operands[1].imm;
8619}
b99bd4ef
NC
8620
8621static void
c19d1205 8622do_iwmmxt_textrm (void)
b99bd4ef 8623{
c19d1205
ZW
8624 inst.instruction |= inst.operands[0].reg << 12;
8625 inst.instruction |= inst.operands[1].reg << 16;
8626 inst.instruction |= inst.operands[2].imm;
8627}
b99bd4ef 8628
c19d1205
ZW
8629static void
8630do_iwmmxt_tinsr (void)
8631{
8632 inst.instruction |= inst.operands[0].reg << 16;
8633 inst.instruction |= inst.operands[1].reg << 12;
8634 inst.instruction |= inst.operands[2].imm;
8635}
b99bd4ef 8636
c19d1205
ZW
8637static void
8638do_iwmmxt_tmia (void)
8639{
8640 inst.instruction |= inst.operands[0].reg << 5;
8641 inst.instruction |= inst.operands[1].reg;
8642 inst.instruction |= inst.operands[2].reg << 12;
8643}
b99bd4ef 8644
c19d1205
ZW
8645static void
8646do_iwmmxt_waligni (void)
8647{
8648 inst.instruction |= inst.operands[0].reg << 12;
8649 inst.instruction |= inst.operands[1].reg << 16;
8650 inst.instruction |= inst.operands[2].reg;
8651 inst.instruction |= inst.operands[3].imm << 20;
8652}
b99bd4ef 8653
2d447fca
JM
8654static void
8655do_iwmmxt_wmerge (void)
8656{
8657 inst.instruction |= inst.operands[0].reg << 12;
8658 inst.instruction |= inst.operands[1].reg << 16;
8659 inst.instruction |= inst.operands[2].reg;
8660 inst.instruction |= inst.operands[3].imm << 21;
8661}
8662
c19d1205
ZW
8663static void
8664do_iwmmxt_wmov (void)
8665{
8666 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8667 inst.instruction |= inst.operands[0].reg << 12;
8668 inst.instruction |= inst.operands[1].reg << 16;
8669 inst.instruction |= inst.operands[1].reg;
8670}
b99bd4ef 8671
c19d1205
ZW
8672static void
8673do_iwmmxt_wldstbh (void)
8674{
8f06b2d8 8675 int reloc;
c19d1205 8676 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8677 if (thumb_mode)
8678 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8679 else
8680 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8681 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8682}
8683
c19d1205
ZW
8684static void
8685do_iwmmxt_wldstw (void)
8686{
8687 /* RIWR_RIWC clears .isreg for a control register. */
8688 if (!inst.operands[0].isreg)
8689 {
8690 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8691 inst.instruction |= 0xf0000000;
8692 }
b99bd4ef 8693
c19d1205
ZW
8694 inst.instruction |= inst.operands[0].reg << 12;
8695 encode_arm_cp_address (1, TRUE, TRUE, 0);
8696}
b99bd4ef
NC
8697
8698static void
c19d1205 8699do_iwmmxt_wldstd (void)
b99bd4ef 8700{
c19d1205 8701 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8702 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8703 && inst.operands[1].immisreg)
8704 {
8705 inst.instruction &= ~0x1a000ff;
8706 inst.instruction |= (0xf << 28);
8707 if (inst.operands[1].preind)
8708 inst.instruction |= PRE_INDEX;
8709 if (!inst.operands[1].negative)
8710 inst.instruction |= INDEX_UP;
8711 if (inst.operands[1].writeback)
8712 inst.instruction |= WRITE_BACK;
8713 inst.instruction |= inst.operands[1].reg << 16;
8714 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8715 inst.instruction |= inst.operands[1].imm;
8716 }
8717 else
8718 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8719}
b99bd4ef 8720
c19d1205
ZW
8721static void
8722do_iwmmxt_wshufh (void)
8723{
8724 inst.instruction |= inst.operands[0].reg << 12;
8725 inst.instruction |= inst.operands[1].reg << 16;
8726 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8727 inst.instruction |= (inst.operands[2].imm & 0x0f);
8728}
b99bd4ef 8729
c19d1205
ZW
8730static void
8731do_iwmmxt_wzero (void)
8732{
8733 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8734 inst.instruction |= inst.operands[0].reg;
8735 inst.instruction |= inst.operands[0].reg << 12;
8736 inst.instruction |= inst.operands[0].reg << 16;
8737}
2d447fca
JM
8738
8739static void
8740do_iwmmxt_wrwrwr_or_imm5 (void)
8741{
8742 if (inst.operands[2].isreg)
8743 do_rd_rn_rm ();
8744 else {
8745 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8746 _("immediate operand requires iWMMXt2"));
8747 do_rd_rn ();
8748 if (inst.operands[2].imm == 0)
8749 {
8750 switch ((inst.instruction >> 20) & 0xf)
8751 {
8752 case 4:
8753 case 5:
8754 case 6:
5f4273c7 8755 case 7:
2d447fca
JM
8756 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8757 inst.operands[2].imm = 16;
8758 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8759 break;
8760 case 8:
8761 case 9:
8762 case 10:
8763 case 11:
8764 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8765 inst.operands[2].imm = 32;
8766 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8767 break;
8768 case 12:
8769 case 13:
8770 case 14:
8771 case 15:
8772 {
8773 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8774 unsigned long wrn;
8775 wrn = (inst.instruction >> 16) & 0xf;
8776 inst.instruction &= 0xff0fff0f;
8777 inst.instruction |= wrn;
8778 /* Bail out here; the instruction is now assembled. */
8779 return;
8780 }
8781 }
8782 }
8783 /* Map 32 -> 0, etc. */
8784 inst.operands[2].imm &= 0x1f;
8785 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8786 }
8787}
c19d1205
ZW
8788\f
8789/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8790 operations first, then control, shift, and load/store. */
b99bd4ef 8791
c19d1205 8792/* Insns like "foo X,Y,Z". */
b99bd4ef 8793
c19d1205
ZW
8794static void
8795do_mav_triple (void)
8796{
8797 inst.instruction |= inst.operands[0].reg << 16;
8798 inst.instruction |= inst.operands[1].reg;
8799 inst.instruction |= inst.operands[2].reg << 12;
8800}
b99bd4ef 8801
c19d1205
ZW
8802/* Insns like "foo W,X,Y,Z".
8803 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8804
c19d1205
ZW
8805static void
8806do_mav_quad (void)
8807{
8808 inst.instruction |= inst.operands[0].reg << 5;
8809 inst.instruction |= inst.operands[1].reg << 12;
8810 inst.instruction |= inst.operands[2].reg << 16;
8811 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8812}
8813
c19d1205
ZW
8814/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8815static void
8816do_mav_dspsc (void)
a737bd4d 8817{
c19d1205
ZW
8818 inst.instruction |= inst.operands[1].reg << 12;
8819}
a737bd4d 8820
c19d1205
ZW
8821/* Maverick shift immediate instructions.
8822 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8823 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8824
c19d1205
ZW
8825static void
8826do_mav_shift (void)
8827{
8828 int imm = inst.operands[2].imm;
a737bd4d 8829
c19d1205
ZW
8830 inst.instruction |= inst.operands[0].reg << 12;
8831 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8832
c19d1205
ZW
8833 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8834 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8835 Bit 4 should be 0. */
8836 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8837
c19d1205
ZW
8838 inst.instruction |= imm;
8839}
8840\f
8841/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8842
c19d1205
ZW
8843/* Xscale multiply-accumulate (argument parse)
8844 MIAcc acc0,Rm,Rs
8845 MIAPHcc acc0,Rm,Rs
8846 MIAxycc acc0,Rm,Rs. */
a737bd4d 8847
c19d1205
ZW
8848static void
8849do_xsc_mia (void)
8850{
8851 inst.instruction |= inst.operands[1].reg;
8852 inst.instruction |= inst.operands[2].reg << 12;
8853}
a737bd4d 8854
c19d1205 8855/* Xscale move-accumulator-register (argument parse)
a737bd4d 8856
c19d1205 8857 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8858
c19d1205
ZW
8859static void
8860do_xsc_mar (void)
8861{
8862 inst.instruction |= inst.operands[1].reg << 12;
8863 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8864}
8865
c19d1205 8866/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8867
c19d1205 8868 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8869
8870static void
c19d1205 8871do_xsc_mra (void)
b99bd4ef 8872{
c19d1205
ZW
8873 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8874 inst.instruction |= inst.operands[0].reg << 12;
8875 inst.instruction |= inst.operands[1].reg << 16;
8876}
8877\f
8878/* Encoding functions relevant only to Thumb. */
b99bd4ef 8879
c19d1205
ZW
8880/* inst.operands[i] is a shifted-register operand; encode
8881 it into inst.instruction in the format used by Thumb32. */
8882
8883static void
8884encode_thumb32_shifted_operand (int i)
8885{
8886 unsigned int value = inst.reloc.exp.X_add_number;
8887 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8888
9c3c69f2
PB
8889 constraint (inst.operands[i].immisreg,
8890 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8891 inst.instruction |= inst.operands[i].reg;
8892 if (shift == SHIFT_RRX)
8893 inst.instruction |= SHIFT_ROR << 4;
8894 else
b99bd4ef 8895 {
c19d1205
ZW
8896 constraint (inst.reloc.exp.X_op != O_constant,
8897 _("expression too complex"));
8898
8899 constraint (value > 32
8900 || (value == 32 && (shift == SHIFT_LSL
8901 || shift == SHIFT_ROR)),
8902 _("shift expression is too large"));
8903
8904 if (value == 0)
8905 shift = SHIFT_LSL;
8906 else if (value == 32)
8907 value = 0;
8908
8909 inst.instruction |= shift << 4;
8910 inst.instruction |= (value & 0x1c) << 10;
8911 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8912 }
c19d1205 8913}
b99bd4ef 8914
b99bd4ef 8915
c19d1205
ZW
8916/* inst.operands[i] was set up by parse_address. Encode it into a
8917 Thumb32 format load or store instruction. Reject forms that cannot
8918 be used with such instructions. If is_t is true, reject forms that
8919 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
8920 that cannot be used with a D instruction. If it is a store insn,
8921 reject PC in Rn. */
b99bd4ef 8922
c19d1205
ZW
8923static void
8924encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8925{
5be8be5d 8926 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
8927
8928 constraint (!inst.operands[i].isreg,
53365c0d 8929 _("Instruction does not support =N addresses"));
b99bd4ef 8930
c19d1205
ZW
8931 inst.instruction |= inst.operands[i].reg << 16;
8932 if (inst.operands[i].immisreg)
b99bd4ef 8933 {
5be8be5d 8934 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
8935 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8936 constraint (inst.operands[i].negative,
8937 _("Thumb does not support negative register indexing"));
8938 constraint (inst.operands[i].postind,
8939 _("Thumb does not support register post-indexing"));
8940 constraint (inst.operands[i].writeback,
8941 _("Thumb does not support register indexing with writeback"));
8942 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8943 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8944
f40d1643 8945 inst.instruction |= inst.operands[i].imm;
c19d1205 8946 if (inst.operands[i].shifted)
b99bd4ef 8947 {
c19d1205
ZW
8948 constraint (inst.reloc.exp.X_op != O_constant,
8949 _("expression too complex"));
9c3c69f2
PB
8950 constraint (inst.reloc.exp.X_add_number < 0
8951 || inst.reloc.exp.X_add_number > 3,
c19d1205 8952 _("shift out of range"));
9c3c69f2 8953 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8954 }
8955 inst.reloc.type = BFD_RELOC_UNUSED;
8956 }
8957 else if (inst.operands[i].preind)
8958 {
5be8be5d 8959 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 8960 constraint (is_t && inst.operands[i].writeback,
c19d1205 8961 _("cannot use writeback with this instruction"));
5be8be5d
DG
8962 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
8963 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
8964
8965 if (is_d)
8966 {
8967 inst.instruction |= 0x01000000;
8968 if (inst.operands[i].writeback)
8969 inst.instruction |= 0x00200000;
b99bd4ef 8970 }
c19d1205 8971 else
b99bd4ef 8972 {
c19d1205
ZW
8973 inst.instruction |= 0x00000c00;
8974 if (inst.operands[i].writeback)
8975 inst.instruction |= 0x00000100;
b99bd4ef 8976 }
c19d1205 8977 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8978 }
c19d1205 8979 else if (inst.operands[i].postind)
b99bd4ef 8980 {
9c2799c2 8981 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8982 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8983 constraint (is_t, _("cannot use post-indexing with this instruction"));
8984
8985 if (is_d)
8986 inst.instruction |= 0x00200000;
8987 else
8988 inst.instruction |= 0x00000900;
8989 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8990 }
8991 else /* unindexed - only for coprocessor */
8992 inst.error = _("instruction does not accept unindexed addressing");
8993}
8994
8995/* Table of Thumb instructions which exist in both 16- and 32-bit
8996 encodings (the latter only in post-V6T2 cores). The index is the
8997 value used in the insns table below. When there is more than one
8998 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8999 holds variant (1).
9000 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9001#define T16_32_TAB \
21d799b5
NC
9002 X(_adc, 4140, eb400000), \
9003 X(_adcs, 4140, eb500000), \
9004 X(_add, 1c00, eb000000), \
9005 X(_adds, 1c00, eb100000), \
9006 X(_addi, 0000, f1000000), \
9007 X(_addis, 0000, f1100000), \
9008 X(_add_pc,000f, f20f0000), \
9009 X(_add_sp,000d, f10d0000), \
9010 X(_adr, 000f, f20f0000), \
9011 X(_and, 4000, ea000000), \
9012 X(_ands, 4000, ea100000), \
9013 X(_asr, 1000, fa40f000), \
9014 X(_asrs, 1000, fa50f000), \
9015 X(_b, e000, f000b000), \
9016 X(_bcond, d000, f0008000), \
9017 X(_bic, 4380, ea200000), \
9018 X(_bics, 4380, ea300000), \
9019 X(_cmn, 42c0, eb100f00), \
9020 X(_cmp, 2800, ebb00f00), \
9021 X(_cpsie, b660, f3af8400), \
9022 X(_cpsid, b670, f3af8600), \
9023 X(_cpy, 4600, ea4f0000), \
9024 X(_dec_sp,80dd, f1ad0d00), \
9025 X(_eor, 4040, ea800000), \
9026 X(_eors, 4040, ea900000), \
9027 X(_inc_sp,00dd, f10d0d00), \
9028 X(_ldmia, c800, e8900000), \
9029 X(_ldr, 6800, f8500000), \
9030 X(_ldrb, 7800, f8100000), \
9031 X(_ldrh, 8800, f8300000), \
9032 X(_ldrsb, 5600, f9100000), \
9033 X(_ldrsh, 5e00, f9300000), \
9034 X(_ldr_pc,4800, f85f0000), \
9035 X(_ldr_pc2,4800, f85f0000), \
9036 X(_ldr_sp,9800, f85d0000), \
9037 X(_lsl, 0000, fa00f000), \
9038 X(_lsls, 0000, fa10f000), \
9039 X(_lsr, 0800, fa20f000), \
9040 X(_lsrs, 0800, fa30f000), \
9041 X(_mov, 2000, ea4f0000), \
9042 X(_movs, 2000, ea5f0000), \
9043 X(_mul, 4340, fb00f000), \
9044 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9045 X(_mvn, 43c0, ea6f0000), \
9046 X(_mvns, 43c0, ea7f0000), \
9047 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9048 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9049 X(_orr, 4300, ea400000), \
9050 X(_orrs, 4300, ea500000), \
9051 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9052 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9053 X(_rev, ba00, fa90f080), \
9054 X(_rev16, ba40, fa90f090), \
9055 X(_revsh, bac0, fa90f0b0), \
9056 X(_ror, 41c0, fa60f000), \
9057 X(_rors, 41c0, fa70f000), \
9058 X(_sbc, 4180, eb600000), \
9059 X(_sbcs, 4180, eb700000), \
9060 X(_stmia, c000, e8800000), \
9061 X(_str, 6000, f8400000), \
9062 X(_strb, 7000, f8000000), \
9063 X(_strh, 8000, f8200000), \
9064 X(_str_sp,9000, f84d0000), \
9065 X(_sub, 1e00, eba00000), \
9066 X(_subs, 1e00, ebb00000), \
9067 X(_subi, 8000, f1a00000), \
9068 X(_subis, 8000, f1b00000), \
9069 X(_sxtb, b240, fa4ff080), \
9070 X(_sxth, b200, fa0ff080), \
9071 X(_tst, 4200, ea100f00), \
9072 X(_uxtb, b2c0, fa5ff080), \
9073 X(_uxth, b280, fa1ff080), \
9074 X(_nop, bf00, f3af8000), \
9075 X(_yield, bf10, f3af8001), \
9076 X(_wfe, bf20, f3af8002), \
9077 X(_wfi, bf30, f3af8003), \
9078 X(_sev, bf40, f3af8004),
c19d1205
ZW
9079
9080/* To catch errors in encoding functions, the codes are all offset by
9081 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9082 as 16-bit instructions. */
21d799b5 9083#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9084enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9085#undef X
9086
9087#define X(a,b,c) 0x##b
9088static const unsigned short thumb_op16[] = { T16_32_TAB };
9089#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9090#undef X
9091
9092#define X(a,b,c) 0x##c
9093static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9094#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9095#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9096#undef X
9097#undef T16_32_TAB
9098
9099/* Thumb instruction encoders, in alphabetical order. */
9100
92e90b6e 9101/* ADDW or SUBW. */
c921be7d 9102
92e90b6e
PB
9103static void
9104do_t_add_sub_w (void)
9105{
9106 int Rd, Rn;
9107
9108 Rd = inst.operands[0].reg;
9109 Rn = inst.operands[1].reg;
9110
539d4391
NC
9111 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9112 is the SP-{plus,minus}-immediate form of the instruction. */
9113 if (Rn == REG_SP)
9114 constraint (Rd == REG_PC, BAD_PC);
9115 else
9116 reject_bad_reg (Rd);
fdfde340 9117
92e90b6e
PB
9118 inst.instruction |= (Rn << 16) | (Rd << 8);
9119 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9120}
9121
c19d1205
ZW
9122/* Parse an add or subtract instruction. We get here with inst.instruction
9123 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9124
9125static void
9126do_t_add_sub (void)
9127{
9128 int Rd, Rs, Rn;
9129
9130 Rd = inst.operands[0].reg;
9131 Rs = (inst.operands[1].present
9132 ? inst.operands[1].reg /* Rd, Rs, foo */
9133 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9134
e07e6e58
NC
9135 if (Rd == REG_PC)
9136 set_it_insn_type_last ();
9137
c19d1205
ZW
9138 if (unified_syntax)
9139 {
0110f2b8
PB
9140 bfd_boolean flags;
9141 bfd_boolean narrow;
9142 int opcode;
9143
9144 flags = (inst.instruction == T_MNEM_adds
9145 || inst.instruction == T_MNEM_subs);
9146 if (flags)
e07e6e58 9147 narrow = !in_it_block ();
0110f2b8 9148 else
e07e6e58 9149 narrow = in_it_block ();
c19d1205 9150 if (!inst.operands[2].isreg)
b99bd4ef 9151 {
16805f35
PB
9152 int add;
9153
fdfde340
JM
9154 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9155
16805f35
PB
9156 add = (inst.instruction == T_MNEM_add
9157 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9158 opcode = 0;
9159 if (inst.size_req != 4)
9160 {
0110f2b8
PB
9161 /* Attempt to use a narrow opcode, with relaxation if
9162 appropriate. */
9163 if (Rd == REG_SP && Rs == REG_SP && !flags)
9164 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9165 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9166 opcode = T_MNEM_add_sp;
9167 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9168 opcode = T_MNEM_add_pc;
9169 else if (Rd <= 7 && Rs <= 7 && narrow)
9170 {
9171 if (flags)
9172 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9173 else
9174 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9175 }
9176 if (opcode)
9177 {
9178 inst.instruction = THUMB_OP16(opcode);
9179 inst.instruction |= (Rd << 4) | Rs;
9180 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9181 if (inst.size_req != 2)
9182 inst.relax = opcode;
9183 }
9184 else
9185 constraint (inst.size_req == 2, BAD_HIREG);
9186 }
9187 if (inst.size_req == 4
9188 || (inst.size_req != 2 && !opcode))
9189 {
efd81785
PB
9190 if (Rd == REG_PC)
9191 {
fdfde340 9192 constraint (add, BAD_PC);
efd81785
PB
9193 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9194 _("only SUBS PC, LR, #const allowed"));
9195 constraint (inst.reloc.exp.X_op != O_constant,
9196 _("expression too complex"));
9197 constraint (inst.reloc.exp.X_add_number < 0
9198 || inst.reloc.exp.X_add_number > 0xff,
9199 _("immediate value out of range"));
9200 inst.instruction = T2_SUBS_PC_LR
9201 | inst.reloc.exp.X_add_number;
9202 inst.reloc.type = BFD_RELOC_UNUSED;
9203 return;
9204 }
9205 else if (Rs == REG_PC)
16805f35
PB
9206 {
9207 /* Always use addw/subw. */
9208 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9209 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9210 }
9211 else
9212 {
9213 inst.instruction = THUMB_OP32 (inst.instruction);
9214 inst.instruction = (inst.instruction & 0xe1ffffff)
9215 | 0x10000000;
9216 if (flags)
9217 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9218 else
9219 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9220 }
dc4503c6
PB
9221 inst.instruction |= Rd << 8;
9222 inst.instruction |= Rs << 16;
0110f2b8 9223 }
b99bd4ef 9224 }
c19d1205
ZW
9225 else
9226 {
9227 Rn = inst.operands[2].reg;
9228 /* See if we can do this with a 16-bit instruction. */
9229 if (!inst.operands[2].shifted && inst.size_req != 4)
9230 {
e27ec89e
PB
9231 if (Rd > 7 || Rs > 7 || Rn > 7)
9232 narrow = FALSE;
9233
9234 if (narrow)
c19d1205 9235 {
e27ec89e
PB
9236 inst.instruction = ((inst.instruction == T_MNEM_adds
9237 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9238 ? T_OPCODE_ADD_R3
9239 : T_OPCODE_SUB_R3);
9240 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9241 return;
9242 }
b99bd4ef 9243
7e806470 9244 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9245 {
7e806470
PB
9246 /* Thumb-1 cores (except v6-M) require at least one high
9247 register in a narrow non flag setting add. */
9248 if (Rd > 7 || Rn > 7
9249 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9250 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9251 {
7e806470
PB
9252 if (Rd == Rn)
9253 {
9254 Rn = Rs;
9255 Rs = Rd;
9256 }
c19d1205
ZW
9257 inst.instruction = T_OPCODE_ADD_HI;
9258 inst.instruction |= (Rd & 8) << 4;
9259 inst.instruction |= (Rd & 7);
9260 inst.instruction |= Rn << 3;
9261 return;
9262 }
c19d1205
ZW
9263 }
9264 }
c921be7d 9265
fdfde340
JM
9266 constraint (Rd == REG_PC, BAD_PC);
9267 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9268 constraint (Rs == REG_PC, BAD_PC);
9269 reject_bad_reg (Rn);
9270
c19d1205
ZW
9271 /* If we get here, it can't be done in 16 bits. */
9272 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9273 _("shift must be constant"));
9274 inst.instruction = THUMB_OP32 (inst.instruction);
9275 inst.instruction |= Rd << 8;
9276 inst.instruction |= Rs << 16;
9277 encode_thumb32_shifted_operand (2);
9278 }
9279 }
9280 else
9281 {
9282 constraint (inst.instruction == T_MNEM_adds
9283 || inst.instruction == T_MNEM_subs,
9284 BAD_THUMB32);
b99bd4ef 9285
c19d1205 9286 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9287 {
c19d1205
ZW
9288 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9289 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9290 BAD_HIREG);
9291
9292 inst.instruction = (inst.instruction == T_MNEM_add
9293 ? 0x0000 : 0x8000);
9294 inst.instruction |= (Rd << 4) | Rs;
9295 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9296 return;
9297 }
9298
c19d1205
ZW
9299 Rn = inst.operands[2].reg;
9300 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9301
c19d1205
ZW
9302 /* We now have Rd, Rs, and Rn set to registers. */
9303 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9304 {
c19d1205
ZW
9305 /* Can't do this for SUB. */
9306 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9307 inst.instruction = T_OPCODE_ADD_HI;
9308 inst.instruction |= (Rd & 8) << 4;
9309 inst.instruction |= (Rd & 7);
9310 if (Rs == Rd)
9311 inst.instruction |= Rn << 3;
9312 else if (Rn == Rd)
9313 inst.instruction |= Rs << 3;
9314 else
9315 constraint (1, _("dest must overlap one source register"));
9316 }
9317 else
9318 {
9319 inst.instruction = (inst.instruction == T_MNEM_add
9320 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9321 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9322 }
b99bd4ef 9323 }
b99bd4ef
NC
9324}
9325
c19d1205
ZW
9326static void
9327do_t_adr (void)
9328{
fdfde340
JM
9329 unsigned Rd;
9330
9331 Rd = inst.operands[0].reg;
9332 reject_bad_reg (Rd);
9333
9334 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9335 {
9336 /* Defer to section relaxation. */
9337 inst.relax = inst.instruction;
9338 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9339 inst.instruction |= Rd << 4;
0110f2b8
PB
9340 }
9341 else if (unified_syntax && inst.size_req != 2)
e9f89963 9342 {
0110f2b8 9343 /* Generate a 32-bit opcode. */
e9f89963 9344 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9345 inst.instruction |= Rd << 8;
e9f89963
PB
9346 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9347 inst.reloc.pc_rel = 1;
9348 }
9349 else
9350 {
0110f2b8 9351 /* Generate a 16-bit opcode. */
e9f89963
PB
9352 inst.instruction = THUMB_OP16 (inst.instruction);
9353 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9354 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9355 inst.reloc.pc_rel = 1;
b99bd4ef 9356
fdfde340 9357 inst.instruction |= Rd << 4;
e9f89963 9358 }
c19d1205 9359}
b99bd4ef 9360
c19d1205
ZW
9361/* Arithmetic instructions for which there is just one 16-bit
9362 instruction encoding, and it allows only two low registers.
9363 For maximal compatibility with ARM syntax, we allow three register
9364 operands even when Thumb-32 instructions are not available, as long
9365 as the first two are identical. For instance, both "sbc r0,r1" and
9366 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9367static void
c19d1205 9368do_t_arit3 (void)
b99bd4ef 9369{
c19d1205 9370 int Rd, Rs, Rn;
b99bd4ef 9371
c19d1205
ZW
9372 Rd = inst.operands[0].reg;
9373 Rs = (inst.operands[1].present
9374 ? inst.operands[1].reg /* Rd, Rs, foo */
9375 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9376 Rn = inst.operands[2].reg;
b99bd4ef 9377
fdfde340
JM
9378 reject_bad_reg (Rd);
9379 reject_bad_reg (Rs);
9380 if (inst.operands[2].isreg)
9381 reject_bad_reg (Rn);
9382
c19d1205 9383 if (unified_syntax)
b99bd4ef 9384 {
c19d1205
ZW
9385 if (!inst.operands[2].isreg)
9386 {
9387 /* For an immediate, we always generate a 32-bit opcode;
9388 section relaxation will shrink it later if possible. */
9389 inst.instruction = THUMB_OP32 (inst.instruction);
9390 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9391 inst.instruction |= Rd << 8;
9392 inst.instruction |= Rs << 16;
9393 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9394 }
9395 else
9396 {
e27ec89e
PB
9397 bfd_boolean narrow;
9398
c19d1205 9399 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9400 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9401 narrow = !in_it_block ();
e27ec89e 9402 else
e07e6e58 9403 narrow = in_it_block ();
e27ec89e
PB
9404
9405 if (Rd > 7 || Rn > 7 || Rs > 7)
9406 narrow = FALSE;
9407 if (inst.operands[2].shifted)
9408 narrow = FALSE;
9409 if (inst.size_req == 4)
9410 narrow = FALSE;
9411
9412 if (narrow
c19d1205
ZW
9413 && Rd == Rs)
9414 {
9415 inst.instruction = THUMB_OP16 (inst.instruction);
9416 inst.instruction |= Rd;
9417 inst.instruction |= Rn << 3;
9418 return;
9419 }
b99bd4ef 9420
c19d1205
ZW
9421 /* If we get here, it can't be done in 16 bits. */
9422 constraint (inst.operands[2].shifted
9423 && inst.operands[2].immisreg,
9424 _("shift must be constant"));
9425 inst.instruction = THUMB_OP32 (inst.instruction);
9426 inst.instruction |= Rd << 8;
9427 inst.instruction |= Rs << 16;
9428 encode_thumb32_shifted_operand (2);
9429 }
a737bd4d 9430 }
c19d1205 9431 else
b99bd4ef 9432 {
c19d1205
ZW
9433 /* On its face this is a lie - the instruction does set the
9434 flags. However, the only supported mnemonic in this mode
9435 says it doesn't. */
9436 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9437
c19d1205
ZW
9438 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9439 _("unshifted register required"));
9440 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9441 constraint (Rd != Rs,
9442 _("dest and source1 must be the same register"));
a737bd4d 9443
c19d1205
ZW
9444 inst.instruction = THUMB_OP16 (inst.instruction);
9445 inst.instruction |= Rd;
9446 inst.instruction |= Rn << 3;
b99bd4ef 9447 }
a737bd4d 9448}
b99bd4ef 9449
c19d1205
ZW
9450/* Similarly, but for instructions where the arithmetic operation is
9451 commutative, so we can allow either of them to be different from
9452 the destination operand in a 16-bit instruction. For instance, all
9453 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9454 accepted. */
9455static void
9456do_t_arit3c (void)
a737bd4d 9457{
c19d1205 9458 int Rd, Rs, Rn;
b99bd4ef 9459
c19d1205
ZW
9460 Rd = inst.operands[0].reg;
9461 Rs = (inst.operands[1].present
9462 ? inst.operands[1].reg /* Rd, Rs, foo */
9463 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9464 Rn = inst.operands[2].reg;
c921be7d 9465
fdfde340
JM
9466 reject_bad_reg (Rd);
9467 reject_bad_reg (Rs);
9468 if (inst.operands[2].isreg)
9469 reject_bad_reg (Rn);
a737bd4d 9470
c19d1205 9471 if (unified_syntax)
a737bd4d 9472 {
c19d1205 9473 if (!inst.operands[2].isreg)
b99bd4ef 9474 {
c19d1205
ZW
9475 /* For an immediate, we always generate a 32-bit opcode;
9476 section relaxation will shrink it later if possible. */
9477 inst.instruction = THUMB_OP32 (inst.instruction);
9478 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9479 inst.instruction |= Rd << 8;
9480 inst.instruction |= Rs << 16;
9481 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9482 }
c19d1205 9483 else
a737bd4d 9484 {
e27ec89e
PB
9485 bfd_boolean narrow;
9486
c19d1205 9487 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9488 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9489 narrow = !in_it_block ();
e27ec89e 9490 else
e07e6e58 9491 narrow = in_it_block ();
e27ec89e
PB
9492
9493 if (Rd > 7 || Rn > 7 || Rs > 7)
9494 narrow = FALSE;
9495 if (inst.operands[2].shifted)
9496 narrow = FALSE;
9497 if (inst.size_req == 4)
9498 narrow = FALSE;
9499
9500 if (narrow)
a737bd4d 9501 {
c19d1205 9502 if (Rd == Rs)
a737bd4d 9503 {
c19d1205
ZW
9504 inst.instruction = THUMB_OP16 (inst.instruction);
9505 inst.instruction |= Rd;
9506 inst.instruction |= Rn << 3;
9507 return;
a737bd4d 9508 }
c19d1205 9509 if (Rd == Rn)
a737bd4d 9510 {
c19d1205
ZW
9511 inst.instruction = THUMB_OP16 (inst.instruction);
9512 inst.instruction |= Rd;
9513 inst.instruction |= Rs << 3;
9514 return;
a737bd4d
NC
9515 }
9516 }
c19d1205
ZW
9517
9518 /* If we get here, it can't be done in 16 bits. */
9519 constraint (inst.operands[2].shifted
9520 && inst.operands[2].immisreg,
9521 _("shift must be constant"));
9522 inst.instruction = THUMB_OP32 (inst.instruction);
9523 inst.instruction |= Rd << 8;
9524 inst.instruction |= Rs << 16;
9525 encode_thumb32_shifted_operand (2);
a737bd4d 9526 }
b99bd4ef 9527 }
c19d1205
ZW
9528 else
9529 {
9530 /* On its face this is a lie - the instruction does set the
9531 flags. However, the only supported mnemonic in this mode
9532 says it doesn't. */
9533 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9534
c19d1205
ZW
9535 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9536 _("unshifted register required"));
9537 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9538
9539 inst.instruction = THUMB_OP16 (inst.instruction);
9540 inst.instruction |= Rd;
9541
9542 if (Rd == Rs)
9543 inst.instruction |= Rn << 3;
9544 else if (Rd == Rn)
9545 inst.instruction |= Rs << 3;
9546 else
9547 constraint (1, _("dest must overlap one source register"));
9548 }
a737bd4d
NC
9549}
9550
62b3e311
PB
9551static void
9552do_t_barrier (void)
9553{
9554 if (inst.operands[0].present)
9555 {
9556 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
9557 && inst.operands[0].imm > 0xf
9558 && inst.operands[0].imm < 0x0,
bd3ba5d1 9559 _("bad barrier type"));
62b3e311
PB
9560 inst.instruction |= inst.operands[0].imm;
9561 }
9562 else
9563 inst.instruction |= 0xf;
9564}
9565
c19d1205
ZW
9566static void
9567do_t_bfc (void)
a737bd4d 9568{
fdfde340 9569 unsigned Rd;
c19d1205
ZW
9570 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9571 constraint (msb > 32, _("bit-field extends past end of register"));
9572 /* The instruction encoding stores the LSB and MSB,
9573 not the LSB and width. */
fdfde340
JM
9574 Rd = inst.operands[0].reg;
9575 reject_bad_reg (Rd);
9576 inst.instruction |= Rd << 8;
c19d1205
ZW
9577 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9578 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9579 inst.instruction |= msb - 1;
b99bd4ef
NC
9580}
9581
c19d1205
ZW
9582static void
9583do_t_bfi (void)
b99bd4ef 9584{
fdfde340 9585 int Rd, Rn;
c19d1205 9586 unsigned int msb;
b99bd4ef 9587
fdfde340
JM
9588 Rd = inst.operands[0].reg;
9589 reject_bad_reg (Rd);
9590
c19d1205
ZW
9591 /* #0 in second position is alternative syntax for bfc, which is
9592 the same instruction but with REG_PC in the Rm field. */
9593 if (!inst.operands[1].isreg)
fdfde340
JM
9594 Rn = REG_PC;
9595 else
9596 {
9597 Rn = inst.operands[1].reg;
9598 reject_bad_reg (Rn);
9599 }
b99bd4ef 9600
c19d1205
ZW
9601 msb = inst.operands[2].imm + inst.operands[3].imm;
9602 constraint (msb > 32, _("bit-field extends past end of register"));
9603 /* The instruction encoding stores the LSB and MSB,
9604 not the LSB and width. */
fdfde340
JM
9605 inst.instruction |= Rd << 8;
9606 inst.instruction |= Rn << 16;
c19d1205
ZW
9607 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9608 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9609 inst.instruction |= msb - 1;
b99bd4ef
NC
9610}
9611
c19d1205
ZW
9612static void
9613do_t_bfx (void)
b99bd4ef 9614{
fdfde340
JM
9615 unsigned Rd, Rn;
9616
9617 Rd = inst.operands[0].reg;
9618 Rn = inst.operands[1].reg;
9619
9620 reject_bad_reg (Rd);
9621 reject_bad_reg (Rn);
9622
c19d1205
ZW
9623 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9624 _("bit-field extends past end of register"));
fdfde340
JM
9625 inst.instruction |= Rd << 8;
9626 inst.instruction |= Rn << 16;
c19d1205
ZW
9627 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9628 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9629 inst.instruction |= inst.operands[3].imm - 1;
9630}
b99bd4ef 9631
c19d1205
ZW
9632/* ARM V5 Thumb BLX (argument parse)
9633 BLX <target_addr> which is BLX(1)
9634 BLX <Rm> which is BLX(2)
9635 Unfortunately, there are two different opcodes for this mnemonic.
9636 So, the insns[].value is not used, and the code here zaps values
9637 into inst.instruction.
b99bd4ef 9638
c19d1205
ZW
9639 ??? How to take advantage of the additional two bits of displacement
9640 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9641
c19d1205
ZW
9642static void
9643do_t_blx (void)
9644{
e07e6e58
NC
9645 set_it_insn_type_last ();
9646
c19d1205 9647 if (inst.operands[0].isreg)
fdfde340
JM
9648 {
9649 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9650 /* We have a register, so this is BLX(2). */
9651 inst.instruction |= inst.operands[0].reg << 3;
9652 }
b99bd4ef
NC
9653 else
9654 {
c19d1205 9655 /* No register. This must be BLX(1). */
2fc8bdac 9656 inst.instruction = 0xf000e800;
00adf2d4 9657 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 9658 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9659 }
9660}
9661
c19d1205
ZW
9662static void
9663do_t_branch (void)
b99bd4ef 9664{
0110f2b8 9665 int opcode;
dfa9f0d5 9666 int cond;
9ae92b05 9667 int reloc;
dfa9f0d5 9668
e07e6e58
NC
9669 cond = inst.cond;
9670 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9671
9672 if (in_it_block ())
dfa9f0d5
PB
9673 {
9674 /* Conditional branches inside IT blocks are encoded as unconditional
9675 branches. */
9676 cond = COND_ALWAYS;
dfa9f0d5
PB
9677 }
9678 else
9679 cond = inst.cond;
9680
9681 if (cond != COND_ALWAYS)
0110f2b8
PB
9682 opcode = T_MNEM_bcond;
9683 else
9684 opcode = inst.instruction;
9685
12d6b0b7
RS
9686 if (unified_syntax
9687 && (inst.size_req == 4
9688 || (inst.size_req != 2 && inst.operands[0].hasreloc)))
c19d1205 9689 {
0110f2b8 9690 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9691 if (cond == COND_ALWAYS)
9ae92b05 9692 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9693 else
9694 {
9c2799c2 9695 gas_assert (cond != 0xF);
dfa9f0d5 9696 inst.instruction |= cond << 22;
9ae92b05 9697 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
9698 }
9699 }
b99bd4ef
NC
9700 else
9701 {
0110f2b8 9702 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9703 if (cond == COND_ALWAYS)
9ae92b05 9704 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 9705 else
b99bd4ef 9706 {
dfa9f0d5 9707 inst.instruction |= cond << 8;
9ae92b05 9708 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9709 }
0110f2b8
PB
9710 /* Allow section relaxation. */
9711 if (unified_syntax && inst.size_req != 2)
9712 inst.relax = opcode;
b99bd4ef 9713 }
9ae92b05 9714 inst.reloc.type = reloc;
c19d1205 9715 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9716}
9717
9718static void
c19d1205 9719do_t_bkpt (void)
b99bd4ef 9720{
dfa9f0d5
PB
9721 constraint (inst.cond != COND_ALWAYS,
9722 _("instruction is always unconditional"));
c19d1205 9723 if (inst.operands[0].present)
b99bd4ef 9724 {
c19d1205
ZW
9725 constraint (inst.operands[0].imm > 255,
9726 _("immediate value out of range"));
9727 inst.instruction |= inst.operands[0].imm;
e07e6e58 9728 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 9729 }
b99bd4ef
NC
9730}
9731
9732static void
c19d1205 9733do_t_branch23 (void)
b99bd4ef 9734{
e07e6e58 9735 set_it_insn_type_last ();
c19d1205 9736 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
9737 inst.reloc.pc_rel = 1;
9738
4343666d 9739#if defined(OBJ_COFF)
c19d1205
ZW
9740 /* If the destination of the branch is a defined symbol which does not have
9741 the THUMB_FUNC attribute, then we must be calling a function which has
9742 the (interfacearm) attribute. We look for the Thumb entry point to that
9743 function and change the branch to refer to that function instead. */
9744 if ( inst.reloc.exp.X_op == O_symbol
9745 && inst.reloc.exp.X_add_symbol != NULL
9746 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9747 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9748 inst.reloc.exp.X_add_symbol =
9749 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9750#endif
90e4755a
RE
9751}
9752
9753static void
c19d1205 9754do_t_bx (void)
90e4755a 9755{
e07e6e58 9756 set_it_insn_type_last ();
c19d1205
ZW
9757 inst.instruction |= inst.operands[0].reg << 3;
9758 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9759 should cause the alignment to be checked once it is known. This is
9760 because BX PC only works if the instruction is word aligned. */
9761}
90e4755a 9762
c19d1205
ZW
9763static void
9764do_t_bxj (void)
9765{
fdfde340 9766 int Rm;
90e4755a 9767
e07e6e58 9768 set_it_insn_type_last ();
fdfde340
JM
9769 Rm = inst.operands[0].reg;
9770 reject_bad_reg (Rm);
9771 inst.instruction |= Rm << 16;
90e4755a
RE
9772}
9773
9774static void
c19d1205 9775do_t_clz (void)
90e4755a 9776{
fdfde340
JM
9777 unsigned Rd;
9778 unsigned Rm;
9779
9780 Rd = inst.operands[0].reg;
9781 Rm = inst.operands[1].reg;
9782
9783 reject_bad_reg (Rd);
9784 reject_bad_reg (Rm);
9785
9786 inst.instruction |= Rd << 8;
9787 inst.instruction |= Rm << 16;
9788 inst.instruction |= Rm;
c19d1205 9789}
90e4755a 9790
dfa9f0d5
PB
9791static void
9792do_t_cps (void)
9793{
e07e6e58 9794 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
9795 inst.instruction |= inst.operands[0].imm;
9796}
9797
c19d1205
ZW
9798static void
9799do_t_cpsi (void)
9800{
e07e6e58 9801 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 9802 if (unified_syntax
62b3e311
PB
9803 && (inst.operands[1].present || inst.size_req == 4)
9804 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9805 {
c19d1205
ZW
9806 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9807 inst.instruction = 0xf3af8000;
9808 inst.instruction |= imod << 9;
9809 inst.instruction |= inst.operands[0].imm << 5;
9810 if (inst.operands[1].present)
9811 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9812 }
c19d1205 9813 else
90e4755a 9814 {
62b3e311
PB
9815 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9816 && (inst.operands[0].imm & 4),
9817 _("selected processor does not support 'A' form "
9818 "of this instruction"));
9819 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9820 _("Thumb does not support the 2-argument "
9821 "form of this instruction"));
9822 inst.instruction |= inst.operands[0].imm;
90e4755a 9823 }
90e4755a
RE
9824}
9825
c19d1205
ZW
9826/* THUMB CPY instruction (argument parse). */
9827
90e4755a 9828static void
c19d1205 9829do_t_cpy (void)
90e4755a 9830{
c19d1205 9831 if (inst.size_req == 4)
90e4755a 9832 {
c19d1205
ZW
9833 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9834 inst.instruction |= inst.operands[0].reg << 8;
9835 inst.instruction |= inst.operands[1].reg;
90e4755a 9836 }
c19d1205 9837 else
90e4755a 9838 {
c19d1205
ZW
9839 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9840 inst.instruction |= (inst.operands[0].reg & 0x7);
9841 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9842 }
90e4755a
RE
9843}
9844
90e4755a 9845static void
25fe350b 9846do_t_cbz (void)
90e4755a 9847{
e07e6e58 9848 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
9849 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9850 inst.instruction |= inst.operands[0].reg;
9851 inst.reloc.pc_rel = 1;
9852 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9853}
90e4755a 9854
62b3e311
PB
9855static void
9856do_t_dbg (void)
9857{
9858 inst.instruction |= inst.operands[0].imm;
9859}
9860
9861static void
9862do_t_div (void)
9863{
fdfde340
JM
9864 unsigned Rd, Rn, Rm;
9865
9866 Rd = inst.operands[0].reg;
9867 Rn = (inst.operands[1].present
9868 ? inst.operands[1].reg : Rd);
9869 Rm = inst.operands[2].reg;
9870
9871 reject_bad_reg (Rd);
9872 reject_bad_reg (Rn);
9873 reject_bad_reg (Rm);
9874
9875 inst.instruction |= Rd << 8;
9876 inst.instruction |= Rn << 16;
9877 inst.instruction |= Rm;
62b3e311
PB
9878}
9879
c19d1205
ZW
9880static void
9881do_t_hint (void)
9882{
9883 if (unified_syntax && inst.size_req == 4)
9884 inst.instruction = THUMB_OP32 (inst.instruction);
9885 else
9886 inst.instruction = THUMB_OP16 (inst.instruction);
9887}
90e4755a 9888
c19d1205
ZW
9889static void
9890do_t_it (void)
9891{
9892 unsigned int cond = inst.operands[0].imm;
e27ec89e 9893
e07e6e58
NC
9894 set_it_insn_type (IT_INSN);
9895 now_it.mask = (inst.instruction & 0xf) | 0x10;
9896 now_it.cc = cond;
e27ec89e
PB
9897
9898 /* If the condition is a negative condition, invert the mask. */
c19d1205 9899 if ((cond & 0x1) == 0x0)
90e4755a 9900 {
c19d1205 9901 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9902
c19d1205
ZW
9903 if ((mask & 0x7) == 0)
9904 /* no conversion needed */;
9905 else if ((mask & 0x3) == 0)
e27ec89e
PB
9906 mask ^= 0x8;
9907 else if ((mask & 0x1) == 0)
9908 mask ^= 0xC;
c19d1205 9909 else
e27ec89e 9910 mask ^= 0xE;
90e4755a 9911
e27ec89e
PB
9912 inst.instruction &= 0xfff0;
9913 inst.instruction |= mask;
c19d1205 9914 }
90e4755a 9915
c19d1205
ZW
9916 inst.instruction |= cond << 4;
9917}
90e4755a 9918
3c707909
PB
9919/* Helper function used for both push/pop and ldm/stm. */
9920static void
9921encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9922{
9923 bfd_boolean load;
9924
9925 load = (inst.instruction & (1 << 20)) != 0;
9926
9927 if (mask & (1 << 13))
9928 inst.error = _("SP not allowed in register list");
1e5b0379
NC
9929
9930 if ((mask & (1 << base)) != 0
9931 && writeback)
9932 inst.error = _("having the base register in the register list when "
9933 "using write back is UNPREDICTABLE");
9934
3c707909
PB
9935 if (load)
9936 {
e07e6e58
NC
9937 if (mask & (1 << 15))
9938 {
9939 if (mask & (1 << 14))
9940 inst.error = _("LR and PC should not both be in register list");
9941 else
9942 set_it_insn_type_last ();
9943 }
3c707909
PB
9944 }
9945 else
9946 {
9947 if (mask & (1 << 15))
9948 inst.error = _("PC not allowed in register list");
3c707909
PB
9949 }
9950
9951 if ((mask & (mask - 1)) == 0)
9952 {
9953 /* Single register transfers implemented as str/ldr. */
9954 if (writeback)
9955 {
9956 if (inst.instruction & (1 << 23))
9957 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9958 else
9959 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9960 }
9961 else
9962 {
9963 if (inst.instruction & (1 << 23))
9964 inst.instruction = 0x00800000; /* ia -> [base] */
9965 else
9966 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9967 }
9968
9969 inst.instruction |= 0xf8400000;
9970 if (load)
9971 inst.instruction |= 0x00100000;
9972
5f4273c7 9973 mask = ffs (mask) - 1;
3c707909
PB
9974 mask <<= 12;
9975 }
9976 else if (writeback)
9977 inst.instruction |= WRITE_BACK;
9978
9979 inst.instruction |= mask;
9980 inst.instruction |= base << 16;
9981}
9982
c19d1205
ZW
9983static void
9984do_t_ldmstm (void)
9985{
9986 /* This really doesn't seem worth it. */
9987 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9988 _("expression too complex"));
9989 constraint (inst.operands[1].writeback,
9990 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9991
c19d1205
ZW
9992 if (unified_syntax)
9993 {
3c707909
PB
9994 bfd_boolean narrow;
9995 unsigned mask;
9996
9997 narrow = FALSE;
c19d1205
ZW
9998 /* See if we can use a 16-bit instruction. */
9999 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10000 && inst.size_req != 4
3c707909 10001 && !(inst.operands[1].imm & ~0xff))
90e4755a 10002 {
3c707909 10003 mask = 1 << inst.operands[0].reg;
90e4755a 10004
eab4f823 10005 if (inst.operands[0].reg <= 7)
90e4755a 10006 {
3c707909 10007 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10008 ? inst.operands[0].writeback
10009 : (inst.operands[0].writeback
10010 == !(inst.operands[1].imm & mask)))
10011 {
10012 if (inst.instruction == T_MNEM_stmia
10013 && (inst.operands[1].imm & mask)
10014 && (inst.operands[1].imm & (mask - 1)))
10015 as_warn (_("value stored for r%d is UNKNOWN"),
10016 inst.operands[0].reg);
3c707909 10017
eab4f823
MGD
10018 inst.instruction = THUMB_OP16 (inst.instruction);
10019 inst.instruction |= inst.operands[0].reg << 8;
10020 inst.instruction |= inst.operands[1].imm;
10021 narrow = TRUE;
10022 }
10023 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10024 {
10025 /* This means 1 register in reg list one of 3 situations:
10026 1. Instruction is stmia, but without writeback.
10027 2. lmdia without writeback, but with Rn not in
10028 reglist.
10029 3. ldmia with writeback, but with Rn in reglist.
10030 Case 3 is UNPREDICTABLE behaviour, so we handle
10031 case 1 and 2 which can be converted into a 16-bit
10032 str or ldr. The SP cases are handled below. */
10033 unsigned long opcode;
10034 /* First, record an error for Case 3. */
10035 if (inst.operands[1].imm & mask
10036 && inst.operands[0].writeback)
10037 inst.error =
10038 _("having the base register in the register list when "
10039 "using write back is UNPREDICTABLE");
10040
10041 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10042 : T_MNEM_ldr);
10043 inst.instruction = THUMB_OP16 (opcode);
10044 inst.instruction |= inst.operands[0].reg << 3;
10045 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10046 narrow = TRUE;
10047 }
90e4755a 10048 }
eab4f823 10049 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10050 {
eab4f823
MGD
10051 if (inst.operands[0].writeback)
10052 {
10053 inst.instruction =
10054 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10055 ? T_MNEM_push : T_MNEM_pop);
10056 inst.instruction |= inst.operands[1].imm;
10057 narrow = TRUE;
10058 }
10059 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10060 {
10061 inst.instruction =
10062 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10063 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10064 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10065 narrow = TRUE;
10066 }
90e4755a 10067 }
3c707909
PB
10068 }
10069
10070 if (!narrow)
10071 {
c19d1205
ZW
10072 if (inst.instruction < 0xffff)
10073 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10074
5f4273c7
NC
10075 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10076 inst.operands[0].writeback);
90e4755a
RE
10077 }
10078 }
c19d1205 10079 else
90e4755a 10080 {
c19d1205
ZW
10081 constraint (inst.operands[0].reg > 7
10082 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10083 constraint (inst.instruction != T_MNEM_ldmia
10084 && inst.instruction != T_MNEM_stmia,
10085 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10086 if (inst.instruction == T_MNEM_stmia)
f03698e6 10087 {
c19d1205
ZW
10088 if (!inst.operands[0].writeback)
10089 as_warn (_("this instruction will write back the base register"));
10090 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10091 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10092 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10093 inst.operands[0].reg);
f03698e6 10094 }
c19d1205 10095 else
90e4755a 10096 {
c19d1205
ZW
10097 if (!inst.operands[0].writeback
10098 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10099 as_warn (_("this instruction will write back the base register"));
10100 else if (inst.operands[0].writeback
10101 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10102 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10103 }
10104
c19d1205
ZW
10105 inst.instruction = THUMB_OP16 (inst.instruction);
10106 inst.instruction |= inst.operands[0].reg << 8;
10107 inst.instruction |= inst.operands[1].imm;
10108 }
10109}
e28cd48c 10110
c19d1205
ZW
10111static void
10112do_t_ldrex (void)
10113{
10114 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10115 || inst.operands[1].postind || inst.operands[1].writeback
10116 || inst.operands[1].immisreg || inst.operands[1].shifted
10117 || inst.operands[1].negative,
01cfc07f 10118 BAD_ADDR_MODE);
e28cd48c 10119
5be8be5d
DG
10120 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10121
c19d1205
ZW
10122 inst.instruction |= inst.operands[0].reg << 12;
10123 inst.instruction |= inst.operands[1].reg << 16;
10124 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10125}
e28cd48c 10126
c19d1205
ZW
10127static void
10128do_t_ldrexd (void)
10129{
10130 if (!inst.operands[1].present)
1cac9012 10131 {
c19d1205
ZW
10132 constraint (inst.operands[0].reg == REG_LR,
10133 _("r14 not allowed as first register "
10134 "when second register is omitted"));
10135 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10136 }
c19d1205
ZW
10137 constraint (inst.operands[0].reg == inst.operands[1].reg,
10138 BAD_OVERLAP);
b99bd4ef 10139
c19d1205
ZW
10140 inst.instruction |= inst.operands[0].reg << 12;
10141 inst.instruction |= inst.operands[1].reg << 8;
10142 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10143}
10144
10145static void
c19d1205 10146do_t_ldst (void)
b99bd4ef 10147{
0110f2b8
PB
10148 unsigned long opcode;
10149 int Rn;
10150
e07e6e58
NC
10151 if (inst.operands[0].isreg
10152 && !inst.operands[0].preind
10153 && inst.operands[0].reg == REG_PC)
10154 set_it_insn_type_last ();
10155
0110f2b8 10156 opcode = inst.instruction;
c19d1205 10157 if (unified_syntax)
b99bd4ef 10158 {
53365c0d
PB
10159 if (!inst.operands[1].isreg)
10160 {
10161 if (opcode <= 0xffff)
10162 inst.instruction = THUMB_OP32 (opcode);
10163 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10164 return;
10165 }
0110f2b8
PB
10166 if (inst.operands[1].isreg
10167 && !inst.operands[1].writeback
c19d1205
ZW
10168 && !inst.operands[1].shifted && !inst.operands[1].postind
10169 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10170 && opcode <= 0xffff
10171 && inst.size_req != 4)
c19d1205 10172 {
0110f2b8
PB
10173 /* Insn may have a 16-bit form. */
10174 Rn = inst.operands[1].reg;
10175 if (inst.operands[1].immisreg)
10176 {
10177 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10178 /* [Rn, Rik] */
0110f2b8
PB
10179 if (Rn <= 7 && inst.operands[1].imm <= 7)
10180 goto op16;
5be8be5d
DG
10181 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10182 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10183 }
10184 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10185 && opcode != T_MNEM_ldrsb)
10186 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10187 || (Rn == REG_SP && opcode == T_MNEM_str))
10188 {
10189 /* [Rn, #const] */
10190 if (Rn > 7)
10191 {
10192 if (Rn == REG_PC)
10193 {
10194 if (inst.reloc.pc_rel)
10195 opcode = T_MNEM_ldr_pc2;
10196 else
10197 opcode = T_MNEM_ldr_pc;
10198 }
10199 else
10200 {
10201 if (opcode == T_MNEM_ldr)
10202 opcode = T_MNEM_ldr_sp;
10203 else
10204 opcode = T_MNEM_str_sp;
10205 }
10206 inst.instruction = inst.operands[0].reg << 8;
10207 }
10208 else
10209 {
10210 inst.instruction = inst.operands[0].reg;
10211 inst.instruction |= inst.operands[1].reg << 3;
10212 }
10213 inst.instruction |= THUMB_OP16 (opcode);
10214 if (inst.size_req == 2)
10215 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10216 else
10217 inst.relax = opcode;
10218 return;
10219 }
c19d1205 10220 }
0110f2b8 10221 /* Definitely a 32-bit variant. */
5be8be5d
DG
10222
10223 /* Do some validations regarding addressing modes. */
10224 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10225 && opcode != T_MNEM_str)
10226 reject_bad_reg (inst.operands[1].imm);
10227
0110f2b8 10228 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10229 inst.instruction |= inst.operands[0].reg << 12;
10230 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
10231 return;
10232 }
10233
c19d1205
ZW
10234 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10235
10236 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10237 {
c19d1205
ZW
10238 /* Only [Rn,Rm] is acceptable. */
10239 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10240 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10241 || inst.operands[1].postind || inst.operands[1].shifted
10242 || inst.operands[1].negative,
10243 _("Thumb does not support this addressing mode"));
10244 inst.instruction = THUMB_OP16 (inst.instruction);
10245 goto op16;
b99bd4ef 10246 }
5f4273c7 10247
c19d1205
ZW
10248 inst.instruction = THUMB_OP16 (inst.instruction);
10249 if (!inst.operands[1].isreg)
10250 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10251 return;
b99bd4ef 10252
c19d1205
ZW
10253 constraint (!inst.operands[1].preind
10254 || inst.operands[1].shifted
10255 || inst.operands[1].writeback,
10256 _("Thumb does not support this addressing mode"));
10257 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10258 {
c19d1205
ZW
10259 constraint (inst.instruction & 0x0600,
10260 _("byte or halfword not valid for base register"));
10261 constraint (inst.operands[1].reg == REG_PC
10262 && !(inst.instruction & THUMB_LOAD_BIT),
10263 _("r15 based store not allowed"));
10264 constraint (inst.operands[1].immisreg,
10265 _("invalid base register for register offset"));
b99bd4ef 10266
c19d1205
ZW
10267 if (inst.operands[1].reg == REG_PC)
10268 inst.instruction = T_OPCODE_LDR_PC;
10269 else if (inst.instruction & THUMB_LOAD_BIT)
10270 inst.instruction = T_OPCODE_LDR_SP;
10271 else
10272 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10273
c19d1205
ZW
10274 inst.instruction |= inst.operands[0].reg << 8;
10275 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10276 return;
10277 }
90e4755a 10278
c19d1205
ZW
10279 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10280 if (!inst.operands[1].immisreg)
10281 {
10282 /* Immediate offset. */
10283 inst.instruction |= inst.operands[0].reg;
10284 inst.instruction |= inst.operands[1].reg << 3;
10285 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10286 return;
10287 }
90e4755a 10288
c19d1205
ZW
10289 /* Register offset. */
10290 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10291 constraint (inst.operands[1].negative,
10292 _("Thumb does not support this addressing mode"));
90e4755a 10293
c19d1205
ZW
10294 op16:
10295 switch (inst.instruction)
10296 {
10297 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10298 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10299 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10300 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10301 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10302 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10303 case 0x5600 /* ldrsb */:
10304 case 0x5e00 /* ldrsh */: break;
10305 default: abort ();
10306 }
90e4755a 10307
c19d1205
ZW
10308 inst.instruction |= inst.operands[0].reg;
10309 inst.instruction |= inst.operands[1].reg << 3;
10310 inst.instruction |= inst.operands[1].imm << 6;
10311}
90e4755a 10312
c19d1205
ZW
10313static void
10314do_t_ldstd (void)
10315{
10316 if (!inst.operands[1].present)
b99bd4ef 10317 {
c19d1205
ZW
10318 inst.operands[1].reg = inst.operands[0].reg + 1;
10319 constraint (inst.operands[0].reg == REG_LR,
10320 _("r14 not allowed here"));
b99bd4ef 10321 }
c19d1205
ZW
10322 inst.instruction |= inst.operands[0].reg << 12;
10323 inst.instruction |= inst.operands[1].reg << 8;
10324 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10325}
10326
c19d1205
ZW
10327static void
10328do_t_ldstt (void)
10329{
10330 inst.instruction |= inst.operands[0].reg << 12;
10331 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10332}
a737bd4d 10333
b99bd4ef 10334static void
c19d1205 10335do_t_mla (void)
b99bd4ef 10336{
fdfde340 10337 unsigned Rd, Rn, Rm, Ra;
c921be7d 10338
fdfde340
JM
10339 Rd = inst.operands[0].reg;
10340 Rn = inst.operands[1].reg;
10341 Rm = inst.operands[2].reg;
10342 Ra = inst.operands[3].reg;
10343
10344 reject_bad_reg (Rd);
10345 reject_bad_reg (Rn);
10346 reject_bad_reg (Rm);
10347 reject_bad_reg (Ra);
10348
10349 inst.instruction |= Rd << 8;
10350 inst.instruction |= Rn << 16;
10351 inst.instruction |= Rm;
10352 inst.instruction |= Ra << 12;
c19d1205 10353}
b99bd4ef 10354
c19d1205
ZW
10355static void
10356do_t_mlal (void)
10357{
fdfde340
JM
10358 unsigned RdLo, RdHi, Rn, Rm;
10359
10360 RdLo = inst.operands[0].reg;
10361 RdHi = inst.operands[1].reg;
10362 Rn = inst.operands[2].reg;
10363 Rm = inst.operands[3].reg;
10364
10365 reject_bad_reg (RdLo);
10366 reject_bad_reg (RdHi);
10367 reject_bad_reg (Rn);
10368 reject_bad_reg (Rm);
10369
10370 inst.instruction |= RdLo << 12;
10371 inst.instruction |= RdHi << 8;
10372 inst.instruction |= Rn << 16;
10373 inst.instruction |= Rm;
c19d1205 10374}
b99bd4ef 10375
c19d1205
ZW
10376static void
10377do_t_mov_cmp (void)
10378{
fdfde340
JM
10379 unsigned Rn, Rm;
10380
10381 Rn = inst.operands[0].reg;
10382 Rm = inst.operands[1].reg;
10383
e07e6e58
NC
10384 if (Rn == REG_PC)
10385 set_it_insn_type_last ();
10386
c19d1205 10387 if (unified_syntax)
b99bd4ef 10388 {
c19d1205
ZW
10389 int r0off = (inst.instruction == T_MNEM_mov
10390 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10391 unsigned long opcode;
3d388997
PB
10392 bfd_boolean narrow;
10393 bfd_boolean low_regs;
10394
fdfde340 10395 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10396 opcode = inst.instruction;
e07e6e58 10397 if (in_it_block ())
0110f2b8 10398 narrow = opcode != T_MNEM_movs;
3d388997 10399 else
0110f2b8 10400 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10401 if (inst.size_req == 4
10402 || inst.operands[1].shifted)
10403 narrow = FALSE;
10404
efd81785
PB
10405 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10406 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10407 && !inst.operands[1].shifted
fdfde340
JM
10408 && Rn == REG_PC
10409 && Rm == REG_LR)
efd81785
PB
10410 {
10411 inst.instruction = T2_SUBS_PC_LR;
10412 return;
10413 }
10414
fdfde340
JM
10415 if (opcode == T_MNEM_cmp)
10416 {
10417 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10418 if (narrow)
10419 {
10420 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10421 but valid. */
10422 warn_deprecated_sp (Rm);
10423 /* R15 was documented as a valid choice for Rm in ARMv6,
10424 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10425 tools reject R15, so we do too. */
10426 constraint (Rm == REG_PC, BAD_PC);
10427 }
10428 else
10429 reject_bad_reg (Rm);
fdfde340
JM
10430 }
10431 else if (opcode == T_MNEM_mov
10432 || opcode == T_MNEM_movs)
10433 {
10434 if (inst.operands[1].isreg)
10435 {
10436 if (opcode == T_MNEM_movs)
10437 {
10438 reject_bad_reg (Rn);
10439 reject_bad_reg (Rm);
10440 }
76fa04a4
MGD
10441 else if (narrow)
10442 {
10443 /* This is mov.n. */
10444 if ((Rn == REG_SP || Rn == REG_PC)
10445 && (Rm == REG_SP || Rm == REG_PC))
10446 {
10447 as_warn (_("Use of r%u as a source register is "
10448 "deprecated when r%u is the destination "
10449 "register."), Rm, Rn);
10450 }
10451 }
10452 else
10453 {
10454 /* This is mov.w. */
10455 constraint (Rn == REG_PC, BAD_PC);
10456 constraint (Rm == REG_PC, BAD_PC);
10457 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10458 }
fdfde340
JM
10459 }
10460 else
10461 reject_bad_reg (Rn);
10462 }
10463
c19d1205
ZW
10464 if (!inst.operands[1].isreg)
10465 {
0110f2b8 10466 /* Immediate operand. */
e07e6e58 10467 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10468 narrow = 0;
10469 if (low_regs && narrow)
10470 {
10471 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10472 inst.instruction |= Rn << 8;
0110f2b8
PB
10473 if (inst.size_req == 2)
10474 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10475 else
10476 inst.relax = opcode;
10477 }
10478 else
10479 {
10480 inst.instruction = THUMB_OP32 (inst.instruction);
10481 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10482 inst.instruction |= Rn << r0off;
0110f2b8
PB
10483 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10484 }
c19d1205 10485 }
728ca7c9
PB
10486 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10487 && (inst.instruction == T_MNEM_mov
10488 || inst.instruction == T_MNEM_movs))
10489 {
10490 /* Register shifts are encoded as separate shift instructions. */
10491 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10492
e07e6e58 10493 if (in_it_block ())
728ca7c9
PB
10494 narrow = !flags;
10495 else
10496 narrow = flags;
10497
10498 if (inst.size_req == 4)
10499 narrow = FALSE;
10500
10501 if (!low_regs || inst.operands[1].imm > 7)
10502 narrow = FALSE;
10503
fdfde340 10504 if (Rn != Rm)
728ca7c9
PB
10505 narrow = FALSE;
10506
10507 switch (inst.operands[1].shift_kind)
10508 {
10509 case SHIFT_LSL:
10510 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10511 break;
10512 case SHIFT_ASR:
10513 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10514 break;
10515 case SHIFT_LSR:
10516 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10517 break;
10518 case SHIFT_ROR:
10519 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10520 break;
10521 default:
5f4273c7 10522 abort ();
728ca7c9
PB
10523 }
10524
10525 inst.instruction = opcode;
10526 if (narrow)
10527 {
fdfde340 10528 inst.instruction |= Rn;
728ca7c9
PB
10529 inst.instruction |= inst.operands[1].imm << 3;
10530 }
10531 else
10532 {
10533 if (flags)
10534 inst.instruction |= CONDS_BIT;
10535
fdfde340
JM
10536 inst.instruction |= Rn << 8;
10537 inst.instruction |= Rm << 16;
728ca7c9
PB
10538 inst.instruction |= inst.operands[1].imm;
10539 }
10540 }
3d388997 10541 else if (!narrow)
c19d1205 10542 {
728ca7c9
PB
10543 /* Some mov with immediate shift have narrow variants.
10544 Register shifts are handled above. */
10545 if (low_regs && inst.operands[1].shifted
10546 && (inst.instruction == T_MNEM_mov
10547 || inst.instruction == T_MNEM_movs))
10548 {
e07e6e58 10549 if (in_it_block ())
728ca7c9
PB
10550 narrow = (inst.instruction == T_MNEM_mov);
10551 else
10552 narrow = (inst.instruction == T_MNEM_movs);
10553 }
10554
10555 if (narrow)
10556 {
10557 switch (inst.operands[1].shift_kind)
10558 {
10559 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10560 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10561 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10562 default: narrow = FALSE; break;
10563 }
10564 }
10565
10566 if (narrow)
10567 {
fdfde340
JM
10568 inst.instruction |= Rn;
10569 inst.instruction |= Rm << 3;
728ca7c9
PB
10570 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10571 }
10572 else
10573 {
10574 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10575 inst.instruction |= Rn << r0off;
728ca7c9
PB
10576 encode_thumb32_shifted_operand (1);
10577 }
c19d1205
ZW
10578 }
10579 else
10580 switch (inst.instruction)
10581 {
10582 case T_MNEM_mov:
10583 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10584 inst.instruction |= (Rn & 0x8) << 4;
10585 inst.instruction |= (Rn & 0x7);
10586 inst.instruction |= Rm << 3;
c19d1205 10587 break;
b99bd4ef 10588
c19d1205
ZW
10589 case T_MNEM_movs:
10590 /* We know we have low registers at this point.
941a8a52
MGD
10591 Generate LSLS Rd, Rs, #0. */
10592 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
10593 inst.instruction |= Rn;
10594 inst.instruction |= Rm << 3;
c19d1205
ZW
10595 break;
10596
10597 case T_MNEM_cmp:
3d388997 10598 if (low_regs)
c19d1205
ZW
10599 {
10600 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10601 inst.instruction |= Rn;
10602 inst.instruction |= Rm << 3;
c19d1205
ZW
10603 }
10604 else
10605 {
10606 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10607 inst.instruction |= (Rn & 0x8) << 4;
10608 inst.instruction |= (Rn & 0x7);
10609 inst.instruction |= Rm << 3;
c19d1205
ZW
10610 }
10611 break;
10612 }
b99bd4ef
NC
10613 return;
10614 }
10615
c19d1205 10616 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10617
10618 /* PR 10443: Do not silently ignore shifted operands. */
10619 constraint (inst.operands[1].shifted,
10620 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10621
c19d1205 10622 if (inst.operands[1].isreg)
b99bd4ef 10623 {
fdfde340 10624 if (Rn < 8 && Rm < 8)
b99bd4ef 10625 {
c19d1205
ZW
10626 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10627 since a MOV instruction produces unpredictable results. */
10628 if (inst.instruction == T_OPCODE_MOV_I8)
10629 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10630 else
c19d1205 10631 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10632
fdfde340
JM
10633 inst.instruction |= Rn;
10634 inst.instruction |= Rm << 3;
b99bd4ef
NC
10635 }
10636 else
10637 {
c19d1205
ZW
10638 if (inst.instruction == T_OPCODE_MOV_I8)
10639 inst.instruction = T_OPCODE_MOV_HR;
10640 else
10641 inst.instruction = T_OPCODE_CMP_HR;
10642 do_t_cpy ();
b99bd4ef
NC
10643 }
10644 }
c19d1205 10645 else
b99bd4ef 10646 {
fdfde340 10647 constraint (Rn > 7,
c19d1205 10648 _("only lo regs allowed with immediate"));
fdfde340 10649 inst.instruction |= Rn << 8;
c19d1205
ZW
10650 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10651 }
10652}
b99bd4ef 10653
c19d1205
ZW
10654static void
10655do_t_mov16 (void)
10656{
fdfde340 10657 unsigned Rd;
b6895b4f
PB
10658 bfd_vma imm;
10659 bfd_boolean top;
10660
10661 top = (inst.instruction & 0x00800000) != 0;
10662 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10663 {
10664 constraint (top, _(":lower16: not allowed this instruction"));
10665 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10666 }
10667 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10668 {
10669 constraint (!top, _(":upper16: not allowed this instruction"));
10670 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10671 }
10672
fdfde340
JM
10673 Rd = inst.operands[0].reg;
10674 reject_bad_reg (Rd);
10675
10676 inst.instruction |= Rd << 8;
b6895b4f
PB
10677 if (inst.reloc.type == BFD_RELOC_UNUSED)
10678 {
10679 imm = inst.reloc.exp.X_add_number;
10680 inst.instruction |= (imm & 0xf000) << 4;
10681 inst.instruction |= (imm & 0x0800) << 15;
10682 inst.instruction |= (imm & 0x0700) << 4;
10683 inst.instruction |= (imm & 0x00ff);
10684 }
c19d1205 10685}
b99bd4ef 10686
c19d1205
ZW
10687static void
10688do_t_mvn_tst (void)
10689{
fdfde340 10690 unsigned Rn, Rm;
c921be7d 10691
fdfde340
JM
10692 Rn = inst.operands[0].reg;
10693 Rm = inst.operands[1].reg;
10694
10695 if (inst.instruction == T_MNEM_cmp
10696 || inst.instruction == T_MNEM_cmn)
10697 constraint (Rn == REG_PC, BAD_PC);
10698 else
10699 reject_bad_reg (Rn);
10700 reject_bad_reg (Rm);
10701
c19d1205
ZW
10702 if (unified_syntax)
10703 {
10704 int r0off = (inst.instruction == T_MNEM_mvn
10705 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
10706 bfd_boolean narrow;
10707
10708 if (inst.size_req == 4
10709 || inst.instruction > 0xffff
10710 || inst.operands[1].shifted
fdfde340 10711 || Rn > 7 || Rm > 7)
3d388997
PB
10712 narrow = FALSE;
10713 else if (inst.instruction == T_MNEM_cmn)
10714 narrow = TRUE;
10715 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10716 narrow = !in_it_block ();
3d388997 10717 else
e07e6e58 10718 narrow = in_it_block ();
3d388997 10719
c19d1205 10720 if (!inst.operands[1].isreg)
b99bd4ef 10721 {
c19d1205
ZW
10722 /* For an immediate, we always generate a 32-bit opcode;
10723 section relaxation will shrink it later if possible. */
10724 if (inst.instruction < 0xffff)
10725 inst.instruction = THUMB_OP32 (inst.instruction);
10726 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10727 inst.instruction |= Rn << r0off;
c19d1205 10728 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10729 }
c19d1205 10730 else
b99bd4ef 10731 {
c19d1205 10732 /* See if we can do this with a 16-bit instruction. */
3d388997 10733 if (narrow)
b99bd4ef 10734 {
c19d1205 10735 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10736 inst.instruction |= Rn;
10737 inst.instruction |= Rm << 3;
b99bd4ef 10738 }
c19d1205 10739 else
b99bd4ef 10740 {
c19d1205
ZW
10741 constraint (inst.operands[1].shifted
10742 && inst.operands[1].immisreg,
10743 _("shift must be constant"));
10744 if (inst.instruction < 0xffff)
10745 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10746 inst.instruction |= Rn << r0off;
c19d1205 10747 encode_thumb32_shifted_operand (1);
b99bd4ef 10748 }
b99bd4ef
NC
10749 }
10750 }
10751 else
10752 {
c19d1205
ZW
10753 constraint (inst.instruction > 0xffff
10754 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10755 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10756 _("unshifted register required"));
fdfde340 10757 constraint (Rn > 7 || Rm > 7,
c19d1205 10758 BAD_HIREG);
b99bd4ef 10759
c19d1205 10760 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10761 inst.instruction |= Rn;
10762 inst.instruction |= Rm << 3;
b99bd4ef 10763 }
b99bd4ef
NC
10764}
10765
b05fe5cf 10766static void
c19d1205 10767do_t_mrs (void)
b05fe5cf 10768{
fdfde340 10769 unsigned Rd;
037e8744
JB
10770
10771 if (do_vfp_nsyn_mrs () == SUCCESS)
10772 return;
10773
90ec0d68
MGD
10774 Rd = inst.operands[0].reg;
10775 reject_bad_reg (Rd);
10776 inst.instruction |= Rd << 8;
10777
10778 if (inst.operands[1].isreg)
62b3e311 10779 {
90ec0d68
MGD
10780 unsigned br = inst.operands[1].reg;
10781 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
10782 as_bad (_("bad register for mrs"));
10783
10784 inst.instruction |= br & (0xf << 16);
10785 inst.instruction |= (br & 0x300) >> 4;
10786 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
10787 }
10788 else
10789 {
90ec0d68 10790 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 10791
90ec0d68
MGD
10792 if (flags == 0)
10793 {
10794 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10795 _("selected processor does not support "
10796 "requested special purpose register"));
10797 }
10798 else
10799 {
10800 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10801 _("selected processor does not support "
10802 "requested special purpose register"));
10803 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10804 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10805 _("'CPSR' or 'SPSR' expected"));
10806 }
fdfde340 10807
90ec0d68
MGD
10808 inst.instruction |= (flags & SPSR_BIT) >> 2;
10809 inst.instruction |= inst.operands[1].imm & 0xff;
10810 inst.instruction |= 0xf0000;
10811 }
c19d1205 10812}
b05fe5cf 10813
c19d1205
ZW
10814static void
10815do_t_msr (void)
10816{
62b3e311 10817 int flags;
fdfde340 10818 unsigned Rn;
62b3e311 10819
037e8744
JB
10820 if (do_vfp_nsyn_msr () == SUCCESS)
10821 return;
10822
c19d1205
ZW
10823 constraint (!inst.operands[1].isreg,
10824 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
10825
10826 if (inst.operands[0].isreg)
10827 flags = (int)(inst.operands[0].reg);
10828 else
10829 flags = inst.operands[0].imm;
10830
62b3e311
PB
10831 if (flags & ~0xff)
10832 {
10833 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10834 _("selected processor does not support "
10835 "requested special purpose register"));
10836 }
10837 else
10838 {
7e806470 10839 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10840 _("selected processor does not support "
10841 "requested special purpose register"));
10842 flags |= PSR_f;
10843 }
c921be7d 10844
fdfde340
JM
10845 Rn = inst.operands[1].reg;
10846 reject_bad_reg (Rn);
10847
62b3e311 10848 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
10849 inst.instruction |= (flags & 0xf0000) >> 8;
10850 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 10851 inst.instruction |= (flags & 0xff);
fdfde340 10852 inst.instruction |= Rn << 16;
c19d1205 10853}
b05fe5cf 10854
c19d1205
ZW
10855static void
10856do_t_mul (void)
10857{
17828f45 10858 bfd_boolean narrow;
fdfde340 10859 unsigned Rd, Rn, Rm;
17828f45 10860
c19d1205
ZW
10861 if (!inst.operands[2].present)
10862 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 10863
fdfde340
JM
10864 Rd = inst.operands[0].reg;
10865 Rn = inst.operands[1].reg;
10866 Rm = inst.operands[2].reg;
10867
17828f45 10868 if (unified_syntax)
b05fe5cf 10869 {
17828f45 10870 if (inst.size_req == 4
fdfde340
JM
10871 || (Rd != Rn
10872 && Rd != Rm)
10873 || Rn > 7
10874 || Rm > 7)
17828f45
JM
10875 narrow = FALSE;
10876 else if (inst.instruction == T_MNEM_muls)
e07e6e58 10877 narrow = !in_it_block ();
17828f45 10878 else
e07e6e58 10879 narrow = in_it_block ();
b05fe5cf 10880 }
c19d1205 10881 else
b05fe5cf 10882 {
17828f45 10883 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 10884 constraint (Rn > 7 || Rm > 7,
c19d1205 10885 BAD_HIREG);
17828f45
JM
10886 narrow = TRUE;
10887 }
b05fe5cf 10888
17828f45
JM
10889 if (narrow)
10890 {
10891 /* 16-bit MULS/Conditional MUL. */
c19d1205 10892 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10893 inst.instruction |= Rd;
b05fe5cf 10894
fdfde340
JM
10895 if (Rd == Rn)
10896 inst.instruction |= Rm << 3;
10897 else if (Rd == Rm)
10898 inst.instruction |= Rn << 3;
c19d1205
ZW
10899 else
10900 constraint (1, _("dest must overlap one source register"));
10901 }
17828f45
JM
10902 else
10903 {
e07e6e58
NC
10904 constraint (inst.instruction != T_MNEM_mul,
10905 _("Thumb-2 MUL must not set flags"));
17828f45
JM
10906 /* 32-bit MUL. */
10907 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10908 inst.instruction |= Rd << 8;
10909 inst.instruction |= Rn << 16;
10910 inst.instruction |= Rm << 0;
10911
10912 reject_bad_reg (Rd);
10913 reject_bad_reg (Rn);
10914 reject_bad_reg (Rm);
17828f45 10915 }
c19d1205 10916}
b05fe5cf 10917
c19d1205
ZW
10918static void
10919do_t_mull (void)
10920{
fdfde340 10921 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 10922
fdfde340
JM
10923 RdLo = inst.operands[0].reg;
10924 RdHi = inst.operands[1].reg;
10925 Rn = inst.operands[2].reg;
10926 Rm = inst.operands[3].reg;
10927
10928 reject_bad_reg (RdLo);
10929 reject_bad_reg (RdHi);
10930 reject_bad_reg (Rn);
10931 reject_bad_reg (Rm);
10932
10933 inst.instruction |= RdLo << 12;
10934 inst.instruction |= RdHi << 8;
10935 inst.instruction |= Rn << 16;
10936 inst.instruction |= Rm;
10937
10938 if (RdLo == RdHi)
c19d1205
ZW
10939 as_tsktsk (_("rdhi and rdlo must be different"));
10940}
b05fe5cf 10941
c19d1205
ZW
10942static void
10943do_t_nop (void)
10944{
e07e6e58
NC
10945 set_it_insn_type (NEUTRAL_IT_INSN);
10946
c19d1205
ZW
10947 if (unified_syntax)
10948 {
10949 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 10950 {
c19d1205
ZW
10951 inst.instruction = THUMB_OP32 (inst.instruction);
10952 inst.instruction |= inst.operands[0].imm;
10953 }
10954 else
10955 {
bc2d1808
NC
10956 /* PR9722: Check for Thumb2 availability before
10957 generating a thumb2 nop instruction. */
afa62d5e 10958 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
10959 {
10960 inst.instruction = THUMB_OP16 (inst.instruction);
10961 inst.instruction |= inst.operands[0].imm << 4;
10962 }
10963 else
10964 inst.instruction = 0x46c0;
c19d1205
ZW
10965 }
10966 }
10967 else
10968 {
10969 constraint (inst.operands[0].present,
10970 _("Thumb does not support NOP with hints"));
10971 inst.instruction = 0x46c0;
10972 }
10973}
b05fe5cf 10974
c19d1205
ZW
10975static void
10976do_t_neg (void)
10977{
10978 if (unified_syntax)
10979 {
3d388997
PB
10980 bfd_boolean narrow;
10981
10982 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10983 narrow = !in_it_block ();
3d388997 10984 else
e07e6e58 10985 narrow = in_it_block ();
3d388997
PB
10986 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10987 narrow = FALSE;
10988 if (inst.size_req == 4)
10989 narrow = FALSE;
10990
10991 if (!narrow)
c19d1205
ZW
10992 {
10993 inst.instruction = THUMB_OP32 (inst.instruction);
10994 inst.instruction |= inst.operands[0].reg << 8;
10995 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
10996 }
10997 else
10998 {
c19d1205
ZW
10999 inst.instruction = THUMB_OP16 (inst.instruction);
11000 inst.instruction |= inst.operands[0].reg;
11001 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11002 }
11003 }
11004 else
11005 {
c19d1205
ZW
11006 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11007 BAD_HIREG);
11008 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11009
11010 inst.instruction = THUMB_OP16 (inst.instruction);
11011 inst.instruction |= inst.operands[0].reg;
11012 inst.instruction |= inst.operands[1].reg << 3;
11013 }
11014}
11015
1c444d06
JM
11016static void
11017do_t_orn (void)
11018{
11019 unsigned Rd, Rn;
11020
11021 Rd = inst.operands[0].reg;
11022 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11023
fdfde340
JM
11024 reject_bad_reg (Rd);
11025 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11026 reject_bad_reg (Rn);
11027
1c444d06
JM
11028 inst.instruction |= Rd << 8;
11029 inst.instruction |= Rn << 16;
11030
11031 if (!inst.operands[2].isreg)
11032 {
11033 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11034 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11035 }
11036 else
11037 {
11038 unsigned Rm;
11039
11040 Rm = inst.operands[2].reg;
fdfde340 11041 reject_bad_reg (Rm);
1c444d06
JM
11042
11043 constraint (inst.operands[2].shifted
11044 && inst.operands[2].immisreg,
11045 _("shift must be constant"));
11046 encode_thumb32_shifted_operand (2);
11047 }
11048}
11049
c19d1205
ZW
11050static void
11051do_t_pkhbt (void)
11052{
fdfde340
JM
11053 unsigned Rd, Rn, Rm;
11054
11055 Rd = inst.operands[0].reg;
11056 Rn = inst.operands[1].reg;
11057 Rm = inst.operands[2].reg;
11058
11059 reject_bad_reg (Rd);
11060 reject_bad_reg (Rn);
11061 reject_bad_reg (Rm);
11062
11063 inst.instruction |= Rd << 8;
11064 inst.instruction |= Rn << 16;
11065 inst.instruction |= Rm;
c19d1205
ZW
11066 if (inst.operands[3].present)
11067 {
11068 unsigned int val = inst.reloc.exp.X_add_number;
11069 constraint (inst.reloc.exp.X_op != O_constant,
11070 _("expression too complex"));
11071 inst.instruction |= (val & 0x1c) << 10;
11072 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11073 }
c19d1205 11074}
b05fe5cf 11075
c19d1205
ZW
11076static void
11077do_t_pkhtb (void)
11078{
11079 if (!inst.operands[3].present)
1ef52f49
NC
11080 {
11081 unsigned Rtmp;
11082
11083 inst.instruction &= ~0x00000020;
11084
11085 /* PR 10168. Swap the Rm and Rn registers. */
11086 Rtmp = inst.operands[1].reg;
11087 inst.operands[1].reg = inst.operands[2].reg;
11088 inst.operands[2].reg = Rtmp;
11089 }
c19d1205 11090 do_t_pkhbt ();
b05fe5cf
ZW
11091}
11092
c19d1205
ZW
11093static void
11094do_t_pld (void)
11095{
fdfde340
JM
11096 if (inst.operands[0].immisreg)
11097 reject_bad_reg (inst.operands[0].imm);
11098
c19d1205
ZW
11099 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11100}
b05fe5cf 11101
c19d1205
ZW
11102static void
11103do_t_push_pop (void)
b99bd4ef 11104{
e9f89963 11105 unsigned mask;
5f4273c7 11106
c19d1205
ZW
11107 constraint (inst.operands[0].writeback,
11108 _("push/pop do not support {reglist}^"));
11109 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11110 _("expression too complex"));
b99bd4ef 11111
e9f89963
PB
11112 mask = inst.operands[0].imm;
11113 if ((mask & ~0xff) == 0)
3c707909 11114 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11115 else if ((inst.instruction == T_MNEM_push
e9f89963 11116 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11117 || (inst.instruction == T_MNEM_pop
e9f89963 11118 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11119 {
c19d1205
ZW
11120 inst.instruction = THUMB_OP16 (inst.instruction);
11121 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11122 inst.instruction |= mask & 0xff;
c19d1205
ZW
11123 }
11124 else if (unified_syntax)
11125 {
3c707909 11126 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11127 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11128 }
11129 else
11130 {
11131 inst.error = _("invalid register list to push/pop instruction");
11132 return;
11133 }
c19d1205 11134}
b99bd4ef 11135
c19d1205
ZW
11136static void
11137do_t_rbit (void)
11138{
fdfde340
JM
11139 unsigned Rd, Rm;
11140
11141 Rd = inst.operands[0].reg;
11142 Rm = inst.operands[1].reg;
11143
11144 reject_bad_reg (Rd);
11145 reject_bad_reg (Rm);
11146
11147 inst.instruction |= Rd << 8;
11148 inst.instruction |= Rm << 16;
11149 inst.instruction |= Rm;
c19d1205 11150}
b99bd4ef 11151
c19d1205
ZW
11152static void
11153do_t_rev (void)
11154{
fdfde340
JM
11155 unsigned Rd, Rm;
11156
11157 Rd = inst.operands[0].reg;
11158 Rm = inst.operands[1].reg;
11159
11160 reject_bad_reg (Rd);
11161 reject_bad_reg (Rm);
11162
11163 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11164 && inst.size_req != 4)
11165 {
11166 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11167 inst.instruction |= Rd;
11168 inst.instruction |= Rm << 3;
c19d1205
ZW
11169 }
11170 else if (unified_syntax)
11171 {
11172 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11173 inst.instruction |= Rd << 8;
11174 inst.instruction |= Rm << 16;
11175 inst.instruction |= Rm;
c19d1205
ZW
11176 }
11177 else
11178 inst.error = BAD_HIREG;
11179}
b99bd4ef 11180
1c444d06
JM
11181static void
11182do_t_rrx (void)
11183{
11184 unsigned Rd, Rm;
11185
11186 Rd = inst.operands[0].reg;
11187 Rm = inst.operands[1].reg;
11188
fdfde340
JM
11189 reject_bad_reg (Rd);
11190 reject_bad_reg (Rm);
c921be7d 11191
1c444d06
JM
11192 inst.instruction |= Rd << 8;
11193 inst.instruction |= Rm;
11194}
11195
c19d1205
ZW
11196static void
11197do_t_rsb (void)
11198{
fdfde340 11199 unsigned Rd, Rs;
b99bd4ef 11200
c19d1205
ZW
11201 Rd = inst.operands[0].reg;
11202 Rs = (inst.operands[1].present
11203 ? inst.operands[1].reg /* Rd, Rs, foo */
11204 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11205
fdfde340
JM
11206 reject_bad_reg (Rd);
11207 reject_bad_reg (Rs);
11208 if (inst.operands[2].isreg)
11209 reject_bad_reg (inst.operands[2].reg);
11210
c19d1205
ZW
11211 inst.instruction |= Rd << 8;
11212 inst.instruction |= Rs << 16;
11213 if (!inst.operands[2].isreg)
11214 {
026d3abb
PB
11215 bfd_boolean narrow;
11216
11217 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11218 narrow = !in_it_block ();
026d3abb 11219 else
e07e6e58 11220 narrow = in_it_block ();
026d3abb
PB
11221
11222 if (Rd > 7 || Rs > 7)
11223 narrow = FALSE;
11224
11225 if (inst.size_req == 4 || !unified_syntax)
11226 narrow = FALSE;
11227
11228 if (inst.reloc.exp.X_op != O_constant
11229 || inst.reloc.exp.X_add_number != 0)
11230 narrow = FALSE;
11231
11232 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11233 relaxation, but it doesn't seem worth the hassle. */
11234 if (narrow)
11235 {
11236 inst.reloc.type = BFD_RELOC_UNUSED;
11237 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11238 inst.instruction |= Rs << 3;
11239 inst.instruction |= Rd;
11240 }
11241 else
11242 {
11243 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11244 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11245 }
c19d1205
ZW
11246 }
11247 else
11248 encode_thumb32_shifted_operand (2);
11249}
b99bd4ef 11250
c19d1205
ZW
11251static void
11252do_t_setend (void)
11253{
e07e6e58 11254 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11255 if (inst.operands[0].imm)
11256 inst.instruction |= 0x8;
11257}
b99bd4ef 11258
c19d1205
ZW
11259static void
11260do_t_shift (void)
11261{
11262 if (!inst.operands[1].present)
11263 inst.operands[1].reg = inst.operands[0].reg;
11264
11265 if (unified_syntax)
11266 {
3d388997
PB
11267 bfd_boolean narrow;
11268 int shift_kind;
11269
11270 switch (inst.instruction)
11271 {
11272 case T_MNEM_asr:
11273 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11274 case T_MNEM_lsl:
11275 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11276 case T_MNEM_lsr:
11277 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11278 case T_MNEM_ror:
11279 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11280 default: abort ();
11281 }
11282
11283 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11284 narrow = !in_it_block ();
3d388997 11285 else
e07e6e58 11286 narrow = in_it_block ();
3d388997
PB
11287 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11288 narrow = FALSE;
11289 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11290 narrow = FALSE;
11291 if (inst.operands[2].isreg
11292 && (inst.operands[1].reg != inst.operands[0].reg
11293 || inst.operands[2].reg > 7))
11294 narrow = FALSE;
11295 if (inst.size_req == 4)
11296 narrow = FALSE;
11297
fdfde340
JM
11298 reject_bad_reg (inst.operands[0].reg);
11299 reject_bad_reg (inst.operands[1].reg);
c921be7d 11300
3d388997 11301 if (!narrow)
c19d1205
ZW
11302 {
11303 if (inst.operands[2].isreg)
b99bd4ef 11304 {
fdfde340 11305 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11306 inst.instruction = THUMB_OP32 (inst.instruction);
11307 inst.instruction |= inst.operands[0].reg << 8;
11308 inst.instruction |= inst.operands[1].reg << 16;
11309 inst.instruction |= inst.operands[2].reg;
11310 }
11311 else
11312 {
11313 inst.operands[1].shifted = 1;
3d388997 11314 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11315 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11316 ? T_MNEM_movs : T_MNEM_mov);
11317 inst.instruction |= inst.operands[0].reg << 8;
11318 encode_thumb32_shifted_operand (1);
11319 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11320 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11321 }
11322 }
11323 else
11324 {
c19d1205 11325 if (inst.operands[2].isreg)
b99bd4ef 11326 {
3d388997 11327 switch (shift_kind)
b99bd4ef 11328 {
3d388997
PB
11329 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11330 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11331 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11332 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11333 default: abort ();
b99bd4ef 11334 }
5f4273c7 11335
c19d1205
ZW
11336 inst.instruction |= inst.operands[0].reg;
11337 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
11338 }
11339 else
11340 {
3d388997 11341 switch (shift_kind)
b99bd4ef 11342 {
3d388997
PB
11343 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11344 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11345 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11346 default: abort ();
b99bd4ef 11347 }
c19d1205
ZW
11348 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11349 inst.instruction |= inst.operands[0].reg;
11350 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11351 }
11352 }
c19d1205
ZW
11353 }
11354 else
11355 {
11356 constraint (inst.operands[0].reg > 7
11357 || inst.operands[1].reg > 7, BAD_HIREG);
11358 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11359
c19d1205
ZW
11360 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11361 {
11362 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11363 constraint (inst.operands[0].reg != inst.operands[1].reg,
11364 _("source1 and dest must be same register"));
b99bd4ef 11365
c19d1205
ZW
11366 switch (inst.instruction)
11367 {
11368 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11369 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11370 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11371 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11372 default: abort ();
11373 }
5f4273c7 11374
c19d1205
ZW
11375 inst.instruction |= inst.operands[0].reg;
11376 inst.instruction |= inst.operands[2].reg << 3;
11377 }
11378 else
b99bd4ef 11379 {
c19d1205
ZW
11380 switch (inst.instruction)
11381 {
11382 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11383 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11384 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11385 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11386 default: abort ();
11387 }
11388 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11389 inst.instruction |= inst.operands[0].reg;
11390 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11391 }
11392 }
b99bd4ef
NC
11393}
11394
11395static void
c19d1205 11396do_t_simd (void)
b99bd4ef 11397{
fdfde340
JM
11398 unsigned Rd, Rn, Rm;
11399
11400 Rd = inst.operands[0].reg;
11401 Rn = inst.operands[1].reg;
11402 Rm = inst.operands[2].reg;
11403
11404 reject_bad_reg (Rd);
11405 reject_bad_reg (Rn);
11406 reject_bad_reg (Rm);
11407
11408 inst.instruction |= Rd << 8;
11409 inst.instruction |= Rn << 16;
11410 inst.instruction |= Rm;
c19d1205 11411}
b99bd4ef 11412
03ee1b7f
NC
11413static void
11414do_t_simd2 (void)
11415{
11416 unsigned Rd, Rn, Rm;
11417
11418 Rd = inst.operands[0].reg;
11419 Rm = inst.operands[1].reg;
11420 Rn = inst.operands[2].reg;
11421
11422 reject_bad_reg (Rd);
11423 reject_bad_reg (Rn);
11424 reject_bad_reg (Rm);
11425
11426 inst.instruction |= Rd << 8;
11427 inst.instruction |= Rn << 16;
11428 inst.instruction |= Rm;
11429}
11430
c19d1205 11431static void
3eb17e6b 11432do_t_smc (void)
c19d1205
ZW
11433{
11434 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
11435 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11436 _("SMC is not permitted on this architecture"));
c19d1205
ZW
11437 constraint (inst.reloc.exp.X_op != O_constant,
11438 _("expression too complex"));
11439 inst.reloc.type = BFD_RELOC_UNUSED;
11440 inst.instruction |= (value & 0xf000) >> 12;
11441 inst.instruction |= (value & 0x0ff0);
11442 inst.instruction |= (value & 0x000f) << 16;
11443}
b99bd4ef 11444
90ec0d68
MGD
11445static void
11446do_t_hvc (void)
11447{
11448 unsigned int value = inst.reloc.exp.X_add_number;
11449
11450 inst.reloc.type = BFD_RELOC_UNUSED;
11451 inst.instruction |= (value & 0x0fff);
11452 inst.instruction |= (value & 0xf000) << 4;
11453}
11454
c19d1205 11455static void
3a21c15a 11456do_t_ssat_usat (int bias)
c19d1205 11457{
fdfde340
JM
11458 unsigned Rd, Rn;
11459
11460 Rd = inst.operands[0].reg;
11461 Rn = inst.operands[2].reg;
11462
11463 reject_bad_reg (Rd);
11464 reject_bad_reg (Rn);
11465
11466 inst.instruction |= Rd << 8;
3a21c15a 11467 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11468 inst.instruction |= Rn << 16;
b99bd4ef 11469
c19d1205 11470 if (inst.operands[3].present)
b99bd4ef 11471 {
3a21c15a
NC
11472 offsetT shift_amount = inst.reloc.exp.X_add_number;
11473
11474 inst.reloc.type = BFD_RELOC_UNUSED;
11475
c19d1205
ZW
11476 constraint (inst.reloc.exp.X_op != O_constant,
11477 _("expression too complex"));
b99bd4ef 11478
3a21c15a 11479 if (shift_amount != 0)
6189168b 11480 {
3a21c15a
NC
11481 constraint (shift_amount > 31,
11482 _("shift expression is too large"));
11483
c19d1205 11484 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11485 inst.instruction |= 0x00200000; /* sh bit. */
11486
11487 inst.instruction |= (shift_amount & 0x1c) << 10;
11488 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11489 }
11490 }
b99bd4ef 11491}
c921be7d 11492
3a21c15a
NC
11493static void
11494do_t_ssat (void)
11495{
11496 do_t_ssat_usat (1);
11497}
b99bd4ef 11498
0dd132b6 11499static void
c19d1205 11500do_t_ssat16 (void)
0dd132b6 11501{
fdfde340
JM
11502 unsigned Rd, Rn;
11503
11504 Rd = inst.operands[0].reg;
11505 Rn = inst.operands[2].reg;
11506
11507 reject_bad_reg (Rd);
11508 reject_bad_reg (Rn);
11509
11510 inst.instruction |= Rd << 8;
c19d1205 11511 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11512 inst.instruction |= Rn << 16;
c19d1205 11513}
0dd132b6 11514
c19d1205
ZW
11515static void
11516do_t_strex (void)
11517{
11518 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11519 || inst.operands[2].postind || inst.operands[2].writeback
11520 || inst.operands[2].immisreg || inst.operands[2].shifted
11521 || inst.operands[2].negative,
01cfc07f 11522 BAD_ADDR_MODE);
0dd132b6 11523
5be8be5d
DG
11524 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11525
c19d1205
ZW
11526 inst.instruction |= inst.operands[0].reg << 8;
11527 inst.instruction |= inst.operands[1].reg << 12;
11528 inst.instruction |= inst.operands[2].reg << 16;
11529 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11530}
11531
b99bd4ef 11532static void
c19d1205 11533do_t_strexd (void)
b99bd4ef 11534{
c19d1205
ZW
11535 if (!inst.operands[2].present)
11536 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11537
c19d1205
ZW
11538 constraint (inst.operands[0].reg == inst.operands[1].reg
11539 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 11540 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 11541 BAD_OVERLAP);
b99bd4ef 11542
c19d1205
ZW
11543 inst.instruction |= inst.operands[0].reg;
11544 inst.instruction |= inst.operands[1].reg << 12;
11545 inst.instruction |= inst.operands[2].reg << 8;
11546 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11547}
11548
11549static void
c19d1205 11550do_t_sxtah (void)
b99bd4ef 11551{
fdfde340
JM
11552 unsigned Rd, Rn, Rm;
11553
11554 Rd = inst.operands[0].reg;
11555 Rn = inst.operands[1].reg;
11556 Rm = inst.operands[2].reg;
11557
11558 reject_bad_reg (Rd);
11559 reject_bad_reg (Rn);
11560 reject_bad_reg (Rm);
11561
11562 inst.instruction |= Rd << 8;
11563 inst.instruction |= Rn << 16;
11564 inst.instruction |= Rm;
c19d1205
ZW
11565 inst.instruction |= inst.operands[3].imm << 4;
11566}
b99bd4ef 11567
c19d1205
ZW
11568static void
11569do_t_sxth (void)
11570{
fdfde340
JM
11571 unsigned Rd, Rm;
11572
11573 Rd = inst.operands[0].reg;
11574 Rm = inst.operands[1].reg;
11575
11576 reject_bad_reg (Rd);
11577 reject_bad_reg (Rm);
c921be7d
NC
11578
11579 if (inst.instruction <= 0xffff
11580 && inst.size_req != 4
fdfde340 11581 && Rd <= 7 && Rm <= 7
c19d1205 11582 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11583 {
c19d1205 11584 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11585 inst.instruction |= Rd;
11586 inst.instruction |= Rm << 3;
b99bd4ef 11587 }
c19d1205 11588 else if (unified_syntax)
b99bd4ef 11589 {
c19d1205
ZW
11590 if (inst.instruction <= 0xffff)
11591 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11592 inst.instruction |= Rd << 8;
11593 inst.instruction |= Rm;
c19d1205 11594 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11595 }
c19d1205 11596 else
b99bd4ef 11597 {
c19d1205
ZW
11598 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11599 _("Thumb encoding does not support rotation"));
11600 constraint (1, BAD_HIREG);
b99bd4ef 11601 }
c19d1205 11602}
b99bd4ef 11603
c19d1205
ZW
11604static void
11605do_t_swi (void)
11606{
b2a5fbdc
MGD
11607 /* We have to do the following check manually as ARM_EXT_OS only applies
11608 to ARM_EXT_V6M. */
11609 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11610 {
11611 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os))
11612 as_bad (_("SVC is not permitted on this architecture"));
11613 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11614 }
11615
c19d1205
ZW
11616 inst.reloc.type = BFD_RELOC_ARM_SWI;
11617}
b99bd4ef 11618
92e90b6e
PB
11619static void
11620do_t_tb (void)
11621{
fdfde340 11622 unsigned Rn, Rm;
92e90b6e
PB
11623 int half;
11624
11625 half = (inst.instruction & 0x10) != 0;
e07e6e58 11626 set_it_insn_type_last ();
dfa9f0d5
PB
11627 constraint (inst.operands[0].immisreg,
11628 _("instruction requires register index"));
fdfde340
JM
11629
11630 Rn = inst.operands[0].reg;
11631 Rm = inst.operands[0].imm;
c921be7d 11632
fdfde340
JM
11633 constraint (Rn == REG_SP, BAD_SP);
11634 reject_bad_reg (Rm);
11635
92e90b6e
PB
11636 constraint (!half && inst.operands[0].shifted,
11637 _("instruction does not allow shifted index"));
fdfde340 11638 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11639}
11640
c19d1205
ZW
11641static void
11642do_t_usat (void)
11643{
3a21c15a 11644 do_t_ssat_usat (0);
b99bd4ef
NC
11645}
11646
11647static void
c19d1205 11648do_t_usat16 (void)
b99bd4ef 11649{
fdfde340
JM
11650 unsigned Rd, Rn;
11651
11652 Rd = inst.operands[0].reg;
11653 Rn = inst.operands[2].reg;
11654
11655 reject_bad_reg (Rd);
11656 reject_bad_reg (Rn);
11657
11658 inst.instruction |= Rd << 8;
c19d1205 11659 inst.instruction |= inst.operands[1].imm;
fdfde340 11660 inst.instruction |= Rn << 16;
b99bd4ef 11661}
c19d1205 11662
5287ad62 11663/* Neon instruction encoder helpers. */
5f4273c7 11664
5287ad62 11665/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 11666
5287ad62
JB
11667/* An "invalid" code for the following tables. */
11668#define N_INV -1u
11669
11670struct neon_tab_entry
b99bd4ef 11671{
5287ad62
JB
11672 unsigned integer;
11673 unsigned float_or_poly;
11674 unsigned scalar_or_imm;
11675};
5f4273c7 11676
5287ad62
JB
11677/* Map overloaded Neon opcodes to their respective encodings. */
11678#define NEON_ENC_TAB \
11679 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11680 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11681 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11682 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11683 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11684 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11685 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11686 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11687 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11688 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11689 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11690 /* Register variants of the following two instructions are encoded as
e07e6e58 11691 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
11692 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11693 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
11694 X(vfma, N_INV, 0x0000c10, N_INV), \
11695 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
11696 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11697 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11698 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11699 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11700 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11701 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11702 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11703 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11704 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11705 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11706 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11707 X(vshl, 0x0000400, N_INV, 0x0800510), \
11708 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11709 X(vand, 0x0000110, N_INV, 0x0800030), \
11710 X(vbic, 0x0100110, N_INV, 0x0800030), \
11711 X(veor, 0x1000110, N_INV, N_INV), \
11712 X(vorn, 0x0300110, N_INV, 0x0800010), \
11713 X(vorr, 0x0200110, N_INV, 0x0800010), \
11714 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11715 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11716 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11717 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11718 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11719 X(vst1, 0x0000000, 0x0800000, N_INV), \
11720 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11721 X(vst2, 0x0000100, 0x0800100, N_INV), \
11722 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11723 X(vst3, 0x0000200, 0x0800200, N_INV), \
11724 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11725 X(vst4, 0x0000300, 0x0800300, N_INV), \
11726 X(vmovn, 0x1b20200, N_INV, N_INV), \
11727 X(vtrn, 0x1b20080, N_INV, N_INV), \
11728 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
11729 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11730 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
11731 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11732 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
11733 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11734 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
11735 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11736 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11737 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11738 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
11739
11740enum neon_opc
11741{
11742#define X(OPC,I,F,S) N_MNEM_##OPC
11743NEON_ENC_TAB
11744#undef X
11745};
b99bd4ef 11746
5287ad62
JB
11747static const struct neon_tab_entry neon_enc_tab[] =
11748{
11749#define X(OPC,I,F,S) { (I), (F), (S) }
11750NEON_ENC_TAB
11751#undef X
11752};
b99bd4ef 11753
88714cb8
DG
11754/* Do not use these macros; instead, use NEON_ENCODE defined below. */
11755#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11756#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11757#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11758#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11759#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11760#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11761#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11762#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11763#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11764#define NEON_ENC_SINGLE_(X) \
037e8744 11765 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 11766#define NEON_ENC_DOUBLE_(X) \
037e8744 11767 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 11768
88714cb8
DG
11769#define NEON_ENCODE(type, inst) \
11770 do \
11771 { \
11772 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11773 inst.is_neon = 1; \
11774 } \
11775 while (0)
11776
11777#define check_neon_suffixes \
11778 do \
11779 { \
11780 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11781 { \
11782 as_bad (_("invalid neon suffix for non neon instruction")); \
11783 return; \
11784 } \
11785 } \
11786 while (0)
11787
037e8744
JB
11788/* Define shapes for instruction operands. The following mnemonic characters
11789 are used in this table:
5287ad62 11790
037e8744 11791 F - VFP S<n> register
5287ad62
JB
11792 D - Neon D<n> register
11793 Q - Neon Q<n> register
11794 I - Immediate
11795 S - Scalar
11796 R - ARM register
11797 L - D<n> register list
5f4273c7 11798
037e8744
JB
11799 This table is used to generate various data:
11800 - enumerations of the form NS_DDR to be used as arguments to
11801 neon_select_shape.
11802 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 11803 - a table used to drive neon_select_shape. */
b99bd4ef 11804
037e8744
JB
11805#define NEON_SHAPE_DEF \
11806 X(3, (D, D, D), DOUBLE), \
11807 X(3, (Q, Q, Q), QUAD), \
11808 X(3, (D, D, I), DOUBLE), \
11809 X(3, (Q, Q, I), QUAD), \
11810 X(3, (D, D, S), DOUBLE), \
11811 X(3, (Q, Q, S), QUAD), \
11812 X(2, (D, D), DOUBLE), \
11813 X(2, (Q, Q), QUAD), \
11814 X(2, (D, S), DOUBLE), \
11815 X(2, (Q, S), QUAD), \
11816 X(2, (D, R), DOUBLE), \
11817 X(2, (Q, R), QUAD), \
11818 X(2, (D, I), DOUBLE), \
11819 X(2, (Q, I), QUAD), \
11820 X(3, (D, L, D), DOUBLE), \
11821 X(2, (D, Q), MIXED), \
11822 X(2, (Q, D), MIXED), \
11823 X(3, (D, Q, I), MIXED), \
11824 X(3, (Q, D, I), MIXED), \
11825 X(3, (Q, D, D), MIXED), \
11826 X(3, (D, Q, Q), MIXED), \
11827 X(3, (Q, Q, D), MIXED), \
11828 X(3, (Q, D, S), MIXED), \
11829 X(3, (D, Q, S), MIXED), \
11830 X(4, (D, D, D, I), DOUBLE), \
11831 X(4, (Q, Q, Q, I), QUAD), \
11832 X(2, (F, F), SINGLE), \
11833 X(3, (F, F, F), SINGLE), \
11834 X(2, (F, I), SINGLE), \
11835 X(2, (F, D), MIXED), \
11836 X(2, (D, F), MIXED), \
11837 X(3, (F, F, I), MIXED), \
11838 X(4, (R, R, F, F), SINGLE), \
11839 X(4, (F, F, R, R), SINGLE), \
11840 X(3, (D, R, R), DOUBLE), \
11841 X(3, (R, R, D), DOUBLE), \
11842 X(2, (S, R), SINGLE), \
11843 X(2, (R, S), SINGLE), \
11844 X(2, (F, R), SINGLE), \
11845 X(2, (R, F), SINGLE)
11846
11847#define S2(A,B) NS_##A##B
11848#define S3(A,B,C) NS_##A##B##C
11849#define S4(A,B,C,D) NS_##A##B##C##D
11850
11851#define X(N, L, C) S##N L
11852
5287ad62
JB
11853enum neon_shape
11854{
037e8744
JB
11855 NEON_SHAPE_DEF,
11856 NS_NULL
5287ad62 11857};
b99bd4ef 11858
037e8744
JB
11859#undef X
11860#undef S2
11861#undef S3
11862#undef S4
11863
11864enum neon_shape_class
11865{
11866 SC_SINGLE,
11867 SC_DOUBLE,
11868 SC_QUAD,
11869 SC_MIXED
11870};
11871
11872#define X(N, L, C) SC_##C
11873
11874static enum neon_shape_class neon_shape_class[] =
11875{
11876 NEON_SHAPE_DEF
11877};
11878
11879#undef X
11880
11881enum neon_shape_el
11882{
11883 SE_F,
11884 SE_D,
11885 SE_Q,
11886 SE_I,
11887 SE_S,
11888 SE_R,
11889 SE_L
11890};
11891
11892/* Register widths of above. */
11893static unsigned neon_shape_el_size[] =
11894{
11895 32,
11896 64,
11897 128,
11898 0,
11899 32,
11900 32,
11901 0
11902};
11903
11904struct neon_shape_info
11905{
11906 unsigned els;
11907 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11908};
11909
11910#define S2(A,B) { SE_##A, SE_##B }
11911#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11912#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11913
11914#define X(N, L, C) { N, S##N L }
11915
11916static struct neon_shape_info neon_shape_tab[] =
11917{
11918 NEON_SHAPE_DEF
11919};
11920
11921#undef X
11922#undef S2
11923#undef S3
11924#undef S4
11925
5287ad62
JB
11926/* Bit masks used in type checking given instructions.
11927 'N_EQK' means the type must be the same as (or based on in some way) the key
11928 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11929 set, various other bits can be set as well in order to modify the meaning of
11930 the type constraint. */
11931
11932enum neon_type_mask
11933{
8e79c3df
CM
11934 N_S8 = 0x0000001,
11935 N_S16 = 0x0000002,
11936 N_S32 = 0x0000004,
11937 N_S64 = 0x0000008,
11938 N_U8 = 0x0000010,
11939 N_U16 = 0x0000020,
11940 N_U32 = 0x0000040,
11941 N_U64 = 0x0000080,
11942 N_I8 = 0x0000100,
11943 N_I16 = 0x0000200,
11944 N_I32 = 0x0000400,
11945 N_I64 = 0x0000800,
11946 N_8 = 0x0001000,
11947 N_16 = 0x0002000,
11948 N_32 = 0x0004000,
11949 N_64 = 0x0008000,
11950 N_P8 = 0x0010000,
11951 N_P16 = 0x0020000,
11952 N_F16 = 0x0040000,
11953 N_F32 = 0x0080000,
11954 N_F64 = 0x0100000,
c921be7d
NC
11955 N_KEY = 0x1000000, /* Key element (main type specifier). */
11956 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 11957 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
11958 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11959 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11960 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11961 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11962 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11963 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11964 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 11965 N_UTYP = 0,
037e8744 11966 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
11967};
11968
dcbf9037
JB
11969#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11970
5287ad62
JB
11971#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11972#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11973#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11974#define N_SUF_32 (N_SU_32 | N_F32)
11975#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11976#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11977
11978/* Pass this as the first type argument to neon_check_type to ignore types
11979 altogether. */
11980#define N_IGNORE_TYPE (N_KEY | N_EQK)
11981
037e8744
JB
11982/* Select a "shape" for the current instruction (describing register types or
11983 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11984 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11985 function of operand parsing, so this function doesn't need to be called.
11986 Shapes should be listed in order of decreasing length. */
5287ad62
JB
11987
11988static enum neon_shape
037e8744 11989neon_select_shape (enum neon_shape shape, ...)
5287ad62 11990{
037e8744
JB
11991 va_list ap;
11992 enum neon_shape first_shape = shape;
5287ad62
JB
11993
11994 /* Fix missing optional operands. FIXME: we don't know at this point how
11995 many arguments we should have, so this makes the assumption that we have
11996 > 1. This is true of all current Neon opcodes, I think, but may not be
11997 true in the future. */
11998 if (!inst.operands[1].present)
11999 inst.operands[1] = inst.operands[0];
12000
037e8744 12001 va_start (ap, shape);
5f4273c7 12002
21d799b5 12003 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12004 {
12005 unsigned j;
12006 int matches = 1;
12007
12008 for (j = 0; j < neon_shape_tab[shape].els; j++)
12009 {
12010 if (!inst.operands[j].present)
12011 {
12012 matches = 0;
12013 break;
12014 }
12015
12016 switch (neon_shape_tab[shape].el[j])
12017 {
12018 case SE_F:
12019 if (!(inst.operands[j].isreg
12020 && inst.operands[j].isvec
12021 && inst.operands[j].issingle
12022 && !inst.operands[j].isquad))
12023 matches = 0;
12024 break;
12025
12026 case SE_D:
12027 if (!(inst.operands[j].isreg
12028 && inst.operands[j].isvec
12029 && !inst.operands[j].isquad
12030 && !inst.operands[j].issingle))
12031 matches = 0;
12032 break;
12033
12034 case SE_R:
12035 if (!(inst.operands[j].isreg
12036 && !inst.operands[j].isvec))
12037 matches = 0;
12038 break;
12039
12040 case SE_Q:
12041 if (!(inst.operands[j].isreg
12042 && inst.operands[j].isvec
12043 && inst.operands[j].isquad
12044 && !inst.operands[j].issingle))
12045 matches = 0;
12046 break;
12047
12048 case SE_I:
12049 if (!(!inst.operands[j].isreg
12050 && !inst.operands[j].isscalar))
12051 matches = 0;
12052 break;
12053
12054 case SE_S:
12055 if (!(!inst.operands[j].isreg
12056 && inst.operands[j].isscalar))
12057 matches = 0;
12058 break;
12059
12060 case SE_L:
12061 break;
12062 }
3fde54a2
JZ
12063 if (!matches)
12064 break;
037e8744
JB
12065 }
12066 if (matches)
5287ad62 12067 break;
037e8744 12068 }
5f4273c7 12069
037e8744 12070 va_end (ap);
5287ad62 12071
037e8744
JB
12072 if (shape == NS_NULL && first_shape != NS_NULL)
12073 first_error (_("invalid instruction shape"));
5287ad62 12074
037e8744
JB
12075 return shape;
12076}
5287ad62 12077
037e8744
JB
12078/* True if SHAPE is predominantly a quadword operation (most of the time, this
12079 means the Q bit should be set). */
12080
12081static int
12082neon_quad (enum neon_shape shape)
12083{
12084 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12085}
037e8744 12086
5287ad62
JB
12087static void
12088neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12089 unsigned *g_size)
12090{
12091 /* Allow modification to be made to types which are constrained to be
12092 based on the key element, based on bits set alongside N_EQK. */
12093 if ((typebits & N_EQK) != 0)
12094 {
12095 if ((typebits & N_HLF) != 0)
12096 *g_size /= 2;
12097 else if ((typebits & N_DBL) != 0)
12098 *g_size *= 2;
12099 if ((typebits & N_SGN) != 0)
12100 *g_type = NT_signed;
12101 else if ((typebits & N_UNS) != 0)
12102 *g_type = NT_unsigned;
12103 else if ((typebits & N_INT) != 0)
12104 *g_type = NT_integer;
12105 else if ((typebits & N_FLT) != 0)
12106 *g_type = NT_float;
dcbf9037
JB
12107 else if ((typebits & N_SIZ) != 0)
12108 *g_type = NT_untyped;
5287ad62
JB
12109 }
12110}
5f4273c7 12111
5287ad62
JB
12112/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12113 operand type, i.e. the single type specified in a Neon instruction when it
12114 is the only one given. */
12115
12116static struct neon_type_el
12117neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12118{
12119 struct neon_type_el dest = *key;
5f4273c7 12120
9c2799c2 12121 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12122
5287ad62
JB
12123 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12124
12125 return dest;
12126}
12127
12128/* Convert Neon type and size into compact bitmask representation. */
12129
12130static enum neon_type_mask
12131type_chk_of_el_type (enum neon_el_type type, unsigned size)
12132{
12133 switch (type)
12134 {
12135 case NT_untyped:
12136 switch (size)
12137 {
12138 case 8: return N_8;
12139 case 16: return N_16;
12140 case 32: return N_32;
12141 case 64: return N_64;
12142 default: ;
12143 }
12144 break;
12145
12146 case NT_integer:
12147 switch (size)
12148 {
12149 case 8: return N_I8;
12150 case 16: return N_I16;
12151 case 32: return N_I32;
12152 case 64: return N_I64;
12153 default: ;
12154 }
12155 break;
12156
12157 case NT_float:
037e8744
JB
12158 switch (size)
12159 {
8e79c3df 12160 case 16: return N_F16;
037e8744
JB
12161 case 32: return N_F32;
12162 case 64: return N_F64;
12163 default: ;
12164 }
5287ad62
JB
12165 break;
12166
12167 case NT_poly:
12168 switch (size)
12169 {
12170 case 8: return N_P8;
12171 case 16: return N_P16;
12172 default: ;
12173 }
12174 break;
12175
12176 case NT_signed:
12177 switch (size)
12178 {
12179 case 8: return N_S8;
12180 case 16: return N_S16;
12181 case 32: return N_S32;
12182 case 64: return N_S64;
12183 default: ;
12184 }
12185 break;
12186
12187 case NT_unsigned:
12188 switch (size)
12189 {
12190 case 8: return N_U8;
12191 case 16: return N_U16;
12192 case 32: return N_U32;
12193 case 64: return N_U64;
12194 default: ;
12195 }
12196 break;
12197
12198 default: ;
12199 }
5f4273c7 12200
5287ad62
JB
12201 return N_UTYP;
12202}
12203
12204/* Convert compact Neon bitmask type representation to a type and size. Only
12205 handles the case where a single bit is set in the mask. */
12206
dcbf9037 12207static int
5287ad62
JB
12208el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12209 enum neon_type_mask mask)
12210{
dcbf9037
JB
12211 if ((mask & N_EQK) != 0)
12212 return FAIL;
12213
5287ad62
JB
12214 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12215 *size = 8;
dcbf9037 12216 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12217 *size = 16;
dcbf9037 12218 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12219 *size = 32;
037e8744 12220 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12221 *size = 64;
dcbf9037
JB
12222 else
12223 return FAIL;
12224
5287ad62
JB
12225 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12226 *type = NT_signed;
dcbf9037 12227 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12228 *type = NT_unsigned;
dcbf9037 12229 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12230 *type = NT_integer;
dcbf9037 12231 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12232 *type = NT_untyped;
dcbf9037 12233 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12234 *type = NT_poly;
037e8744 12235 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12236 *type = NT_float;
dcbf9037
JB
12237 else
12238 return FAIL;
5f4273c7 12239
dcbf9037 12240 return SUCCESS;
5287ad62
JB
12241}
12242
12243/* Modify a bitmask of allowed types. This is only needed for type
12244 relaxation. */
12245
12246static unsigned
12247modify_types_allowed (unsigned allowed, unsigned mods)
12248{
12249 unsigned size;
12250 enum neon_el_type type;
12251 unsigned destmask;
12252 int i;
5f4273c7 12253
5287ad62 12254 destmask = 0;
5f4273c7 12255
5287ad62
JB
12256 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12257 {
21d799b5
NC
12258 if (el_type_of_type_chk (&type, &size,
12259 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12260 {
12261 neon_modify_type_size (mods, &type, &size);
12262 destmask |= type_chk_of_el_type (type, size);
12263 }
5287ad62 12264 }
5f4273c7 12265
5287ad62
JB
12266 return destmask;
12267}
12268
12269/* Check type and return type classification.
12270 The manual states (paraphrase): If one datatype is given, it indicates the
12271 type given in:
12272 - the second operand, if there is one
12273 - the operand, if there is no second operand
12274 - the result, if there are no operands.
12275 This isn't quite good enough though, so we use a concept of a "key" datatype
12276 which is set on a per-instruction basis, which is the one which matters when
12277 only one data type is written.
12278 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12279 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12280
12281static struct neon_type_el
12282neon_check_type (unsigned els, enum neon_shape ns, ...)
12283{
12284 va_list ap;
12285 unsigned i, pass, key_el = 0;
12286 unsigned types[NEON_MAX_TYPE_ELS];
12287 enum neon_el_type k_type = NT_invtype;
12288 unsigned k_size = -1u;
12289 struct neon_type_el badtype = {NT_invtype, -1};
12290 unsigned key_allowed = 0;
12291
12292 /* Optional registers in Neon instructions are always (not) in operand 1.
12293 Fill in the missing operand here, if it was omitted. */
12294 if (els > 1 && !inst.operands[1].present)
12295 inst.operands[1] = inst.operands[0];
12296
12297 /* Suck up all the varargs. */
12298 va_start (ap, ns);
12299 for (i = 0; i < els; i++)
12300 {
12301 unsigned thisarg = va_arg (ap, unsigned);
12302 if (thisarg == N_IGNORE_TYPE)
12303 {
12304 va_end (ap);
12305 return badtype;
12306 }
12307 types[i] = thisarg;
12308 if ((thisarg & N_KEY) != 0)
12309 key_el = i;
12310 }
12311 va_end (ap);
12312
dcbf9037
JB
12313 if (inst.vectype.elems > 0)
12314 for (i = 0; i < els; i++)
12315 if (inst.operands[i].vectype.type != NT_invtype)
12316 {
12317 first_error (_("types specified in both the mnemonic and operands"));
12318 return badtype;
12319 }
12320
5287ad62
JB
12321 /* Duplicate inst.vectype elements here as necessary.
12322 FIXME: No idea if this is exactly the same as the ARM assembler,
12323 particularly when an insn takes one register and one non-register
12324 operand. */
12325 if (inst.vectype.elems == 1 && els > 1)
12326 {
12327 unsigned j;
12328 inst.vectype.elems = els;
12329 inst.vectype.el[key_el] = inst.vectype.el[0];
12330 for (j = 0; j < els; j++)
dcbf9037
JB
12331 if (j != key_el)
12332 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12333 types[j]);
12334 }
12335 else if (inst.vectype.elems == 0 && els > 0)
12336 {
12337 unsigned j;
12338 /* No types were given after the mnemonic, so look for types specified
12339 after each operand. We allow some flexibility here; as long as the
12340 "key" operand has a type, we can infer the others. */
12341 for (j = 0; j < els; j++)
12342 if (inst.operands[j].vectype.type != NT_invtype)
12343 inst.vectype.el[j] = inst.operands[j].vectype;
12344
12345 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12346 {
dcbf9037
JB
12347 for (j = 0; j < els; j++)
12348 if (inst.operands[j].vectype.type == NT_invtype)
12349 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12350 types[j]);
12351 }
12352 else
12353 {
12354 first_error (_("operand types can't be inferred"));
12355 return badtype;
5287ad62
JB
12356 }
12357 }
12358 else if (inst.vectype.elems != els)
12359 {
dcbf9037 12360 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12361 return badtype;
12362 }
12363
12364 for (pass = 0; pass < 2; pass++)
12365 {
12366 for (i = 0; i < els; i++)
12367 {
12368 unsigned thisarg = types[i];
12369 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12370 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12371 enum neon_el_type g_type = inst.vectype.el[i].type;
12372 unsigned g_size = inst.vectype.el[i].size;
12373
12374 /* Decay more-specific signed & unsigned types to sign-insensitive
12375 integer types if sign-specific variants are unavailable. */
12376 if ((g_type == NT_signed || g_type == NT_unsigned)
12377 && (types_allowed & N_SU_ALL) == 0)
12378 g_type = NT_integer;
12379
12380 /* If only untyped args are allowed, decay any more specific types to
12381 them. Some instructions only care about signs for some element
12382 sizes, so handle that properly. */
12383 if ((g_size == 8 && (types_allowed & N_8) != 0)
12384 || (g_size == 16 && (types_allowed & N_16) != 0)
12385 || (g_size == 32 && (types_allowed & N_32) != 0)
12386 || (g_size == 64 && (types_allowed & N_64) != 0))
12387 g_type = NT_untyped;
12388
12389 if (pass == 0)
12390 {
12391 if ((thisarg & N_KEY) != 0)
12392 {
12393 k_type = g_type;
12394 k_size = g_size;
12395 key_allowed = thisarg & ~N_KEY;
12396 }
12397 }
12398 else
12399 {
037e8744
JB
12400 if ((thisarg & N_VFP) != 0)
12401 {
99b253c5
NC
12402 enum neon_shape_el regshape;
12403 unsigned regwidth, match;
12404
12405 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12406 if (ns == NS_NULL)
12407 {
12408 first_error (_("invalid instruction shape"));
12409 return badtype;
12410 }
12411 regshape = neon_shape_tab[ns].el[i];
12412 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12413
12414 /* In VFP mode, operands must match register widths. If we
12415 have a key operand, use its width, else use the width of
12416 the current operand. */
12417 if (k_size != -1u)
12418 match = k_size;
12419 else
12420 match = g_size;
12421
12422 if (regwidth != match)
12423 {
12424 first_error (_("operand size must match register width"));
12425 return badtype;
12426 }
12427 }
5f4273c7 12428
5287ad62
JB
12429 if ((thisarg & N_EQK) == 0)
12430 {
12431 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12432
12433 if ((given_type & types_allowed) == 0)
12434 {
dcbf9037 12435 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12436 return badtype;
12437 }
12438 }
12439 else
12440 {
12441 enum neon_el_type mod_k_type = k_type;
12442 unsigned mod_k_size = k_size;
12443 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12444 if (g_type != mod_k_type || g_size != mod_k_size)
12445 {
dcbf9037 12446 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12447 return badtype;
12448 }
12449 }
12450 }
12451 }
12452 }
12453
12454 return inst.vectype.el[key_el];
12455}
12456
037e8744 12457/* Neon-style VFP instruction forwarding. */
5287ad62 12458
037e8744
JB
12459/* Thumb VFP instructions have 0xE in the condition field. */
12460
12461static void
12462do_vfp_cond_or_thumb (void)
5287ad62 12463{
88714cb8
DG
12464 inst.is_neon = 1;
12465
5287ad62 12466 if (thumb_mode)
037e8744 12467 inst.instruction |= 0xe0000000;
5287ad62 12468 else
037e8744 12469 inst.instruction |= inst.cond << 28;
5287ad62
JB
12470}
12471
037e8744
JB
12472/* Look up and encode a simple mnemonic, for use as a helper function for the
12473 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12474 etc. It is assumed that operand parsing has already been done, and that the
12475 operands are in the form expected by the given opcode (this isn't necessarily
12476 the same as the form in which they were parsed, hence some massaging must
12477 take place before this function is called).
12478 Checks current arch version against that in the looked-up opcode. */
5287ad62 12479
037e8744
JB
12480static void
12481do_vfp_nsyn_opcode (const char *opname)
5287ad62 12482{
037e8744 12483 const struct asm_opcode *opcode;
5f4273c7 12484
21d799b5 12485 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12486
037e8744
JB
12487 if (!opcode)
12488 abort ();
5287ad62 12489
037e8744
JB
12490 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12491 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12492 _(BAD_FPU));
5287ad62 12493
88714cb8
DG
12494 inst.is_neon = 1;
12495
037e8744
JB
12496 if (thumb_mode)
12497 {
12498 inst.instruction = opcode->tvalue;
12499 opcode->tencode ();
12500 }
12501 else
12502 {
12503 inst.instruction = (inst.cond << 28) | opcode->avalue;
12504 opcode->aencode ();
12505 }
12506}
5287ad62
JB
12507
12508static void
037e8744 12509do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12510{
037e8744
JB
12511 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12512
12513 if (rs == NS_FFF)
12514 {
12515 if (is_add)
12516 do_vfp_nsyn_opcode ("fadds");
12517 else
12518 do_vfp_nsyn_opcode ("fsubs");
12519 }
12520 else
12521 {
12522 if (is_add)
12523 do_vfp_nsyn_opcode ("faddd");
12524 else
12525 do_vfp_nsyn_opcode ("fsubd");
12526 }
12527}
12528
12529/* Check operand types to see if this is a VFP instruction, and if so call
12530 PFN (). */
12531
12532static int
12533try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12534{
12535 enum neon_shape rs;
12536 struct neon_type_el et;
12537
12538 switch (args)
12539 {
12540 case 2:
12541 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12542 et = neon_check_type (2, rs,
12543 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12544 break;
5f4273c7 12545
037e8744
JB
12546 case 3:
12547 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12548 et = neon_check_type (3, rs,
12549 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12550 break;
12551
12552 default:
12553 abort ();
12554 }
12555
12556 if (et.type != NT_invtype)
12557 {
12558 pfn (rs);
12559 return SUCCESS;
12560 }
037e8744 12561
99b253c5 12562 inst.error = NULL;
037e8744
JB
12563 return FAIL;
12564}
12565
12566static void
12567do_vfp_nsyn_mla_mls (enum neon_shape rs)
12568{
12569 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12570
037e8744
JB
12571 if (rs == NS_FFF)
12572 {
12573 if (is_mla)
12574 do_vfp_nsyn_opcode ("fmacs");
12575 else
1ee69515 12576 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12577 }
12578 else
12579 {
12580 if (is_mla)
12581 do_vfp_nsyn_opcode ("fmacd");
12582 else
1ee69515 12583 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12584 }
12585}
12586
62f3b8c8
PB
12587static void
12588do_vfp_nsyn_fma_fms (enum neon_shape rs)
12589{
12590 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12591
12592 if (rs == NS_FFF)
12593 {
12594 if (is_fma)
12595 do_vfp_nsyn_opcode ("ffmas");
12596 else
12597 do_vfp_nsyn_opcode ("ffnmas");
12598 }
12599 else
12600 {
12601 if (is_fma)
12602 do_vfp_nsyn_opcode ("ffmad");
12603 else
12604 do_vfp_nsyn_opcode ("ffnmad");
12605 }
12606}
12607
037e8744
JB
12608static void
12609do_vfp_nsyn_mul (enum neon_shape rs)
12610{
12611 if (rs == NS_FFF)
12612 do_vfp_nsyn_opcode ("fmuls");
12613 else
12614 do_vfp_nsyn_opcode ("fmuld");
12615}
12616
12617static void
12618do_vfp_nsyn_abs_neg (enum neon_shape rs)
12619{
12620 int is_neg = (inst.instruction & 0x80) != 0;
12621 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12622
12623 if (rs == NS_FF)
12624 {
12625 if (is_neg)
12626 do_vfp_nsyn_opcode ("fnegs");
12627 else
12628 do_vfp_nsyn_opcode ("fabss");
12629 }
12630 else
12631 {
12632 if (is_neg)
12633 do_vfp_nsyn_opcode ("fnegd");
12634 else
12635 do_vfp_nsyn_opcode ("fabsd");
12636 }
12637}
12638
12639/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12640 insns belong to Neon, and are handled elsewhere. */
12641
12642static void
12643do_vfp_nsyn_ldm_stm (int is_dbmode)
12644{
12645 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12646 if (is_ldm)
12647 {
12648 if (is_dbmode)
12649 do_vfp_nsyn_opcode ("fldmdbs");
12650 else
12651 do_vfp_nsyn_opcode ("fldmias");
12652 }
12653 else
12654 {
12655 if (is_dbmode)
12656 do_vfp_nsyn_opcode ("fstmdbs");
12657 else
12658 do_vfp_nsyn_opcode ("fstmias");
12659 }
12660}
12661
037e8744
JB
12662static void
12663do_vfp_nsyn_sqrt (void)
12664{
12665 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12666 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12667
037e8744
JB
12668 if (rs == NS_FF)
12669 do_vfp_nsyn_opcode ("fsqrts");
12670 else
12671 do_vfp_nsyn_opcode ("fsqrtd");
12672}
12673
12674static void
12675do_vfp_nsyn_div (void)
12676{
12677 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12678 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12679 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12680
037e8744
JB
12681 if (rs == NS_FFF)
12682 do_vfp_nsyn_opcode ("fdivs");
12683 else
12684 do_vfp_nsyn_opcode ("fdivd");
12685}
12686
12687static void
12688do_vfp_nsyn_nmul (void)
12689{
12690 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12691 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12692 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12693
037e8744
JB
12694 if (rs == NS_FFF)
12695 {
88714cb8 12696 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12697 do_vfp_sp_dyadic ();
12698 }
12699 else
12700 {
88714cb8 12701 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12702 do_vfp_dp_rd_rn_rm ();
12703 }
12704 do_vfp_cond_or_thumb ();
12705}
12706
12707static void
12708do_vfp_nsyn_cmp (void)
12709{
12710 if (inst.operands[1].isreg)
12711 {
12712 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12713 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12714
037e8744
JB
12715 if (rs == NS_FF)
12716 {
88714cb8 12717 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12718 do_vfp_sp_monadic ();
12719 }
12720 else
12721 {
88714cb8 12722 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12723 do_vfp_dp_rd_rm ();
12724 }
12725 }
12726 else
12727 {
12728 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12729 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12730
12731 switch (inst.instruction & 0x0fffffff)
12732 {
12733 case N_MNEM_vcmp:
12734 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12735 break;
12736 case N_MNEM_vcmpe:
12737 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12738 break;
12739 default:
12740 abort ();
12741 }
5f4273c7 12742
037e8744
JB
12743 if (rs == NS_FI)
12744 {
88714cb8 12745 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12746 do_vfp_sp_compare_z ();
12747 }
12748 else
12749 {
88714cb8 12750 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12751 do_vfp_dp_rd ();
12752 }
12753 }
12754 do_vfp_cond_or_thumb ();
12755}
12756
12757static void
12758nsyn_insert_sp (void)
12759{
12760 inst.operands[1] = inst.operands[0];
12761 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 12762 inst.operands[0].reg = REG_SP;
037e8744
JB
12763 inst.operands[0].isreg = 1;
12764 inst.operands[0].writeback = 1;
12765 inst.operands[0].present = 1;
12766}
12767
12768static void
12769do_vfp_nsyn_push (void)
12770{
12771 nsyn_insert_sp ();
12772 if (inst.operands[1].issingle)
12773 do_vfp_nsyn_opcode ("fstmdbs");
12774 else
12775 do_vfp_nsyn_opcode ("fstmdbd");
12776}
12777
12778static void
12779do_vfp_nsyn_pop (void)
12780{
12781 nsyn_insert_sp ();
12782 if (inst.operands[1].issingle)
22b5b651 12783 do_vfp_nsyn_opcode ("fldmias");
037e8744 12784 else
22b5b651 12785 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
12786}
12787
12788/* Fix up Neon data-processing instructions, ORing in the correct bits for
12789 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12790
88714cb8
DG
12791static void
12792neon_dp_fixup (struct arm_it* insn)
037e8744 12793{
88714cb8
DG
12794 unsigned int i = insn->instruction;
12795 insn->is_neon = 1;
12796
037e8744
JB
12797 if (thumb_mode)
12798 {
12799 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12800 if (i & (1 << 24))
12801 i |= 1 << 28;
5f4273c7 12802
037e8744 12803 i &= ~(1 << 24);
5f4273c7 12804
037e8744
JB
12805 i |= 0xef000000;
12806 }
12807 else
12808 i |= 0xf2000000;
5f4273c7 12809
88714cb8 12810 insn->instruction = i;
037e8744
JB
12811}
12812
12813/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12814 (0, 1, 2, 3). */
12815
12816static unsigned
12817neon_logbits (unsigned x)
12818{
12819 return ffs (x) - 4;
12820}
12821
12822#define LOW4(R) ((R) & 0xf)
12823#define HI1(R) (((R) >> 4) & 1)
12824
12825/* Encode insns with bit pattern:
12826
12827 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12828 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 12829
037e8744
JB
12830 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12831 different meaning for some instruction. */
12832
12833static void
12834neon_three_same (int isquad, int ubit, int size)
12835{
12836 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12837 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12838 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12839 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12840 inst.instruction |= LOW4 (inst.operands[2].reg);
12841 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12842 inst.instruction |= (isquad != 0) << 6;
12843 inst.instruction |= (ubit != 0) << 24;
12844 if (size != -1)
12845 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 12846
88714cb8 12847 neon_dp_fixup (&inst);
037e8744
JB
12848}
12849
12850/* Encode instructions of the form:
12851
12852 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12853 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
12854
12855 Don't write size if SIZE == -1. */
12856
12857static void
12858neon_two_same (int qbit, int ubit, int size)
12859{
12860 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12861 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12862 inst.instruction |= LOW4 (inst.operands[1].reg);
12863 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12864 inst.instruction |= (qbit != 0) << 6;
12865 inst.instruction |= (ubit != 0) << 24;
12866
12867 if (size != -1)
12868 inst.instruction |= neon_logbits (size) << 18;
12869
88714cb8 12870 neon_dp_fixup (&inst);
5287ad62
JB
12871}
12872
12873/* Neon instruction encoders, in approximate order of appearance. */
12874
12875static void
12876do_neon_dyadic_i_su (void)
12877{
037e8744 12878 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12879 struct neon_type_el et = neon_check_type (3, rs,
12880 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 12881 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12882}
12883
12884static void
12885do_neon_dyadic_i64_su (void)
12886{
037e8744 12887 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12888 struct neon_type_el et = neon_check_type (3, rs,
12889 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 12890 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12891}
12892
12893static void
12894neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12895 unsigned immbits)
12896{
12897 unsigned size = et.size >> 3;
12898 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12899 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12900 inst.instruction |= LOW4 (inst.operands[1].reg);
12901 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12902 inst.instruction |= (isquad != 0) << 6;
12903 inst.instruction |= immbits << 16;
12904 inst.instruction |= (size >> 3) << 7;
12905 inst.instruction |= (size & 0x7) << 19;
12906 if (write_ubit)
12907 inst.instruction |= (uval != 0) << 24;
12908
88714cb8 12909 neon_dp_fixup (&inst);
5287ad62
JB
12910}
12911
12912static void
12913do_neon_shl_imm (void)
12914{
12915 if (!inst.operands[2].isreg)
12916 {
037e8744 12917 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12918 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 12919 NEON_ENCODE (IMMED, inst);
037e8744 12920 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
12921 }
12922 else
12923 {
037e8744 12924 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12925 struct neon_type_el et = neon_check_type (3, rs,
12926 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12927 unsigned int tmp;
12928
12929 /* VSHL/VQSHL 3-register variants have syntax such as:
12930 vshl.xx Dd, Dm, Dn
12931 whereas other 3-register operations encoded by neon_three_same have
12932 syntax like:
12933 vadd.xx Dd, Dn, Dm
12934 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12935 here. */
12936 tmp = inst.operands[2].reg;
12937 inst.operands[2].reg = inst.operands[1].reg;
12938 inst.operands[1].reg = tmp;
88714cb8 12939 NEON_ENCODE (INTEGER, inst);
037e8744 12940 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12941 }
12942}
12943
12944static void
12945do_neon_qshl_imm (void)
12946{
12947 if (!inst.operands[2].isreg)
12948 {
037e8744 12949 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12950 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 12951
88714cb8 12952 NEON_ENCODE (IMMED, inst);
037e8744 12953 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
12954 inst.operands[2].imm);
12955 }
12956 else
12957 {
037e8744 12958 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12959 struct neon_type_el et = neon_check_type (3, rs,
12960 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12961 unsigned int tmp;
12962
12963 /* See note in do_neon_shl_imm. */
12964 tmp = inst.operands[2].reg;
12965 inst.operands[2].reg = inst.operands[1].reg;
12966 inst.operands[1].reg = tmp;
88714cb8 12967 NEON_ENCODE (INTEGER, inst);
037e8744 12968 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12969 }
12970}
12971
627907b7
JB
12972static void
12973do_neon_rshl (void)
12974{
12975 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12976 struct neon_type_el et = neon_check_type (3, rs,
12977 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12978 unsigned int tmp;
12979
12980 tmp = inst.operands[2].reg;
12981 inst.operands[2].reg = inst.operands[1].reg;
12982 inst.operands[1].reg = tmp;
12983 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12984}
12985
5287ad62
JB
12986static int
12987neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12988{
036dc3f7
PB
12989 /* Handle .I8 pseudo-instructions. */
12990 if (size == 8)
5287ad62 12991 {
5287ad62
JB
12992 /* Unfortunately, this will make everything apart from zero out-of-range.
12993 FIXME is this the intended semantics? There doesn't seem much point in
12994 accepting .I8 if so. */
12995 immediate |= immediate << 8;
12996 size = 16;
036dc3f7
PB
12997 }
12998
12999 if (size >= 32)
13000 {
13001 if (immediate == (immediate & 0x000000ff))
13002 {
13003 *immbits = immediate;
13004 return 0x1;
13005 }
13006 else if (immediate == (immediate & 0x0000ff00))
13007 {
13008 *immbits = immediate >> 8;
13009 return 0x3;
13010 }
13011 else if (immediate == (immediate & 0x00ff0000))
13012 {
13013 *immbits = immediate >> 16;
13014 return 0x5;
13015 }
13016 else if (immediate == (immediate & 0xff000000))
13017 {
13018 *immbits = immediate >> 24;
13019 return 0x7;
13020 }
13021 if ((immediate & 0xffff) != (immediate >> 16))
13022 goto bad_immediate;
13023 immediate &= 0xffff;
5287ad62
JB
13024 }
13025
13026 if (immediate == (immediate & 0x000000ff))
13027 {
13028 *immbits = immediate;
036dc3f7 13029 return 0x9;
5287ad62
JB
13030 }
13031 else if (immediate == (immediate & 0x0000ff00))
13032 {
13033 *immbits = immediate >> 8;
036dc3f7 13034 return 0xb;
5287ad62
JB
13035 }
13036
13037 bad_immediate:
dcbf9037 13038 first_error (_("immediate value out of range"));
5287ad62
JB
13039 return FAIL;
13040}
13041
13042/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13043 A, B, C, D. */
13044
13045static int
13046neon_bits_same_in_bytes (unsigned imm)
13047{
13048 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13049 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13050 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13051 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13052}
13053
13054/* For immediate of above form, return 0bABCD. */
13055
13056static unsigned
13057neon_squash_bits (unsigned imm)
13058{
13059 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13060 | ((imm & 0x01000000) >> 21);
13061}
13062
136da414 13063/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13064
13065static unsigned
13066neon_qfloat_bits (unsigned imm)
13067{
136da414 13068 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13069}
13070
13071/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13072 the instruction. *OP is passed as the initial value of the op field, and
13073 may be set to a different value depending on the constant (i.e.
13074 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13075 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13076 try smaller element sizes. */
5287ad62
JB
13077
13078static int
c96612cc
JB
13079neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13080 unsigned *immbits, int *op, int size,
13081 enum neon_el_type type)
5287ad62 13082{
c96612cc
JB
13083 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13084 float. */
13085 if (type == NT_float && !float_p)
13086 return FAIL;
13087
136da414
JB
13088 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13089 {
13090 if (size != 32 || *op == 1)
13091 return FAIL;
13092 *immbits = neon_qfloat_bits (immlo);
13093 return 0xf;
13094 }
036dc3f7
PB
13095
13096 if (size == 64)
5287ad62 13097 {
036dc3f7
PB
13098 if (neon_bits_same_in_bytes (immhi)
13099 && neon_bits_same_in_bytes (immlo))
13100 {
13101 if (*op == 1)
13102 return FAIL;
13103 *immbits = (neon_squash_bits (immhi) << 4)
13104 | neon_squash_bits (immlo);
13105 *op = 1;
13106 return 0xe;
13107 }
13108
13109 if (immhi != immlo)
13110 return FAIL;
5287ad62 13111 }
036dc3f7
PB
13112
13113 if (size >= 32)
5287ad62 13114 {
036dc3f7
PB
13115 if (immlo == (immlo & 0x000000ff))
13116 {
13117 *immbits = immlo;
13118 return 0x0;
13119 }
13120 else if (immlo == (immlo & 0x0000ff00))
13121 {
13122 *immbits = immlo >> 8;
13123 return 0x2;
13124 }
13125 else if (immlo == (immlo & 0x00ff0000))
13126 {
13127 *immbits = immlo >> 16;
13128 return 0x4;
13129 }
13130 else if (immlo == (immlo & 0xff000000))
13131 {
13132 *immbits = immlo >> 24;
13133 return 0x6;
13134 }
13135 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13136 {
13137 *immbits = (immlo >> 8) & 0xff;
13138 return 0xc;
13139 }
13140 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13141 {
13142 *immbits = (immlo >> 16) & 0xff;
13143 return 0xd;
13144 }
13145
13146 if ((immlo & 0xffff) != (immlo >> 16))
13147 return FAIL;
13148 immlo &= 0xffff;
5287ad62 13149 }
036dc3f7
PB
13150
13151 if (size >= 16)
5287ad62 13152 {
036dc3f7
PB
13153 if (immlo == (immlo & 0x000000ff))
13154 {
13155 *immbits = immlo;
13156 return 0x8;
13157 }
13158 else if (immlo == (immlo & 0x0000ff00))
13159 {
13160 *immbits = immlo >> 8;
13161 return 0xa;
13162 }
13163
13164 if ((immlo & 0xff) != (immlo >> 8))
13165 return FAIL;
13166 immlo &= 0xff;
5287ad62 13167 }
036dc3f7
PB
13168
13169 if (immlo == (immlo & 0x000000ff))
5287ad62 13170 {
036dc3f7
PB
13171 /* Don't allow MVN with 8-bit immediate. */
13172 if (*op == 1)
13173 return FAIL;
13174 *immbits = immlo;
13175 return 0xe;
5287ad62 13176 }
5287ad62
JB
13177
13178 return FAIL;
13179}
13180
13181/* Write immediate bits [7:0] to the following locations:
13182
13183 |28/24|23 19|18 16|15 4|3 0|
13184 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13185
13186 This function is used by VMOV/VMVN/VORR/VBIC. */
13187
13188static void
13189neon_write_immbits (unsigned immbits)
13190{
13191 inst.instruction |= immbits & 0xf;
13192 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13193 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13194}
13195
13196/* Invert low-order SIZE bits of XHI:XLO. */
13197
13198static void
13199neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13200{
13201 unsigned immlo = xlo ? *xlo : 0;
13202 unsigned immhi = xhi ? *xhi : 0;
13203
13204 switch (size)
13205 {
13206 case 8:
13207 immlo = (~immlo) & 0xff;
13208 break;
13209
13210 case 16:
13211 immlo = (~immlo) & 0xffff;
13212 break;
13213
13214 case 64:
13215 immhi = (~immhi) & 0xffffffff;
13216 /* fall through. */
13217
13218 case 32:
13219 immlo = (~immlo) & 0xffffffff;
13220 break;
13221
13222 default:
13223 abort ();
13224 }
13225
13226 if (xlo)
13227 *xlo = immlo;
13228
13229 if (xhi)
13230 *xhi = immhi;
13231}
13232
13233static void
13234do_neon_logic (void)
13235{
13236 if (inst.operands[2].present && inst.operands[2].isreg)
13237 {
037e8744 13238 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13239 neon_check_type (3, rs, N_IGNORE_TYPE);
13240 /* U bit and size field were set as part of the bitmask. */
88714cb8 13241 NEON_ENCODE (INTEGER, inst);
037e8744 13242 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13243 }
13244 else
13245 {
4316f0d2
DG
13246 const int three_ops_form = (inst.operands[2].present
13247 && !inst.operands[2].isreg);
13248 const int immoperand = (three_ops_form ? 2 : 1);
13249 enum neon_shape rs = (three_ops_form
13250 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13251 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13252 struct neon_type_el et = neon_check_type (2, rs,
13253 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13254 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13255 unsigned immbits;
13256 int cmode;
5f4273c7 13257
5287ad62
JB
13258 if (et.type == NT_invtype)
13259 return;
5f4273c7 13260
4316f0d2
DG
13261 if (three_ops_form)
13262 constraint (inst.operands[0].reg != inst.operands[1].reg,
13263 _("first and second operands shall be the same register"));
13264
88714cb8 13265 NEON_ENCODE (IMMED, inst);
5287ad62 13266
4316f0d2 13267 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13268 if (et.size == 64)
13269 {
13270 /* .i64 is a pseudo-op, so the immediate must be a repeating
13271 pattern. */
4316f0d2
DG
13272 if (immbits != (inst.operands[immoperand].regisimm ?
13273 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13274 {
13275 /* Set immbits to an invalid constant. */
13276 immbits = 0xdeadbeef;
13277 }
13278 }
13279
5287ad62
JB
13280 switch (opcode)
13281 {
13282 case N_MNEM_vbic:
036dc3f7 13283 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13284 break;
5f4273c7 13285
5287ad62 13286 case N_MNEM_vorr:
036dc3f7 13287 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13288 break;
5f4273c7 13289
5287ad62
JB
13290 case N_MNEM_vand:
13291 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13292 neon_invert_size (&immbits, 0, et.size);
13293 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13294 break;
5f4273c7 13295
5287ad62
JB
13296 case N_MNEM_vorn:
13297 /* Pseudo-instruction for VORR. */
5287ad62
JB
13298 neon_invert_size (&immbits, 0, et.size);
13299 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13300 break;
5f4273c7 13301
5287ad62
JB
13302 default:
13303 abort ();
13304 }
13305
13306 if (cmode == FAIL)
13307 return;
13308
037e8744 13309 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13310 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13311 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13312 inst.instruction |= cmode << 8;
13313 neon_write_immbits (immbits);
5f4273c7 13314
88714cb8 13315 neon_dp_fixup (&inst);
5287ad62
JB
13316 }
13317}
13318
13319static void
13320do_neon_bitfield (void)
13321{
037e8744 13322 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13323 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13324 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13325}
13326
13327static void
dcbf9037
JB
13328neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13329 unsigned destbits)
5287ad62 13330{
037e8744 13331 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13332 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13333 types | N_KEY);
5287ad62
JB
13334 if (et.type == NT_float)
13335 {
88714cb8 13336 NEON_ENCODE (FLOAT, inst);
037e8744 13337 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13338 }
13339 else
13340 {
88714cb8 13341 NEON_ENCODE (INTEGER, inst);
037e8744 13342 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13343 }
13344}
13345
13346static void
13347do_neon_dyadic_if_su (void)
13348{
dcbf9037 13349 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13350}
13351
13352static void
13353do_neon_dyadic_if_su_d (void)
13354{
13355 /* This version only allow D registers, but that constraint is enforced during
13356 operand parsing so we don't need to do anything extra here. */
dcbf9037 13357 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13358}
13359
5287ad62
JB
13360static void
13361do_neon_dyadic_if_i_d (void)
13362{
428e3f1f
PB
13363 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13364 affected if we specify unsigned args. */
13365 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13366}
13367
037e8744
JB
13368enum vfp_or_neon_is_neon_bits
13369{
13370 NEON_CHECK_CC = 1,
13371 NEON_CHECK_ARCH = 2
13372};
13373
13374/* Call this function if an instruction which may have belonged to the VFP or
13375 Neon instruction sets, but turned out to be a Neon instruction (due to the
13376 operand types involved, etc.). We have to check and/or fix-up a couple of
13377 things:
13378
13379 - Make sure the user hasn't attempted to make a Neon instruction
13380 conditional.
13381 - Alter the value in the condition code field if necessary.
13382 - Make sure that the arch supports Neon instructions.
13383
13384 Which of these operations take place depends on bits from enum
13385 vfp_or_neon_is_neon_bits.
13386
13387 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13388 current instruction's condition is COND_ALWAYS, the condition field is
13389 changed to inst.uncond_value. This is necessary because instructions shared
13390 between VFP and Neon may be conditional for the VFP variants only, and the
13391 unconditional Neon version must have, e.g., 0xF in the condition field. */
13392
13393static int
13394vfp_or_neon_is_neon (unsigned check)
13395{
13396 /* Conditions are always legal in Thumb mode (IT blocks). */
13397 if (!thumb_mode && (check & NEON_CHECK_CC))
13398 {
13399 if (inst.cond != COND_ALWAYS)
13400 {
13401 first_error (_(BAD_COND));
13402 return FAIL;
13403 }
13404 if (inst.uncond_value != -1)
13405 inst.instruction |= inst.uncond_value << 28;
13406 }
5f4273c7 13407
037e8744
JB
13408 if ((check & NEON_CHECK_ARCH)
13409 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13410 {
13411 first_error (_(BAD_FPU));
13412 return FAIL;
13413 }
5f4273c7 13414
037e8744
JB
13415 return SUCCESS;
13416}
13417
5287ad62
JB
13418static void
13419do_neon_addsub_if_i (void)
13420{
037e8744
JB
13421 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13422 return;
13423
13424 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13425 return;
13426
5287ad62
JB
13427 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13428 affected if we specify unsigned args. */
dcbf9037 13429 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13430}
13431
13432/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13433 result to be:
13434 V<op> A,B (A is operand 0, B is operand 2)
13435 to mean:
13436 V<op> A,B,A
13437 not:
13438 V<op> A,B,B
13439 so handle that case specially. */
13440
13441static void
13442neon_exchange_operands (void)
13443{
13444 void *scratch = alloca (sizeof (inst.operands[0]));
13445 if (inst.operands[1].present)
13446 {
13447 /* Swap operands[1] and operands[2]. */
13448 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13449 inst.operands[1] = inst.operands[2];
13450 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13451 }
13452 else
13453 {
13454 inst.operands[1] = inst.operands[2];
13455 inst.operands[2] = inst.operands[0];
13456 }
13457}
13458
13459static void
13460neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13461{
13462 if (inst.operands[2].isreg)
13463 {
13464 if (invert)
13465 neon_exchange_operands ();
dcbf9037 13466 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13467 }
13468 else
13469 {
037e8744 13470 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13471 struct neon_type_el et = neon_check_type (2, rs,
13472 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 13473
88714cb8 13474 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13475 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13476 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13477 inst.instruction |= LOW4 (inst.operands[1].reg);
13478 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13479 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13480 inst.instruction |= (et.type == NT_float) << 10;
13481 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13482
88714cb8 13483 neon_dp_fixup (&inst);
5287ad62
JB
13484 }
13485}
13486
13487static void
13488do_neon_cmp (void)
13489{
13490 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13491}
13492
13493static void
13494do_neon_cmp_inv (void)
13495{
13496 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13497}
13498
13499static void
13500do_neon_ceq (void)
13501{
13502 neon_compare (N_IF_32, N_IF_32, FALSE);
13503}
13504
13505/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13506 scalars, which are encoded in 5 bits, M : Rm.
13507 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13508 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13509 index in M. */
13510
13511static unsigned
13512neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13513{
dcbf9037
JB
13514 unsigned regno = NEON_SCALAR_REG (scalar);
13515 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13516
13517 switch (elsize)
13518 {
13519 case 16:
13520 if (regno > 7 || elno > 3)
13521 goto bad_scalar;
13522 return regno | (elno << 3);
5f4273c7 13523
5287ad62
JB
13524 case 32:
13525 if (regno > 15 || elno > 1)
13526 goto bad_scalar;
13527 return regno | (elno << 4);
13528
13529 default:
13530 bad_scalar:
dcbf9037 13531 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13532 }
13533
13534 return 0;
13535}
13536
13537/* Encode multiply / multiply-accumulate scalar instructions. */
13538
13539static void
13540neon_mul_mac (struct neon_type_el et, int ubit)
13541{
dcbf9037
JB
13542 unsigned scalar;
13543
13544 /* Give a more helpful error message if we have an invalid type. */
13545 if (et.type == NT_invtype)
13546 return;
5f4273c7 13547
dcbf9037 13548 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13549 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13550 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13551 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13552 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13553 inst.instruction |= LOW4 (scalar);
13554 inst.instruction |= HI1 (scalar) << 5;
13555 inst.instruction |= (et.type == NT_float) << 8;
13556 inst.instruction |= neon_logbits (et.size) << 20;
13557 inst.instruction |= (ubit != 0) << 24;
13558
88714cb8 13559 neon_dp_fixup (&inst);
5287ad62
JB
13560}
13561
13562static void
13563do_neon_mac_maybe_scalar (void)
13564{
037e8744
JB
13565 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13566 return;
13567
13568 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13569 return;
13570
5287ad62
JB
13571 if (inst.operands[2].isscalar)
13572 {
037e8744 13573 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13574 struct neon_type_el et = neon_check_type (3, rs,
13575 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 13576 NEON_ENCODE (SCALAR, inst);
037e8744 13577 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13578 }
13579 else
428e3f1f
PB
13580 {
13581 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13582 affected if we specify unsigned args. */
13583 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13584 }
5287ad62
JB
13585}
13586
62f3b8c8
PB
13587static void
13588do_neon_fmac (void)
13589{
13590 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13591 return;
13592
13593 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13594 return;
13595
13596 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13597}
13598
5287ad62
JB
13599static void
13600do_neon_tst (void)
13601{
037e8744 13602 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13603 struct neon_type_el et = neon_check_type (3, rs,
13604 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13605 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13606}
13607
13608/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13609 same types as the MAC equivalents. The polynomial type for this instruction
13610 is encoded the same as the integer type. */
13611
13612static void
13613do_neon_mul (void)
13614{
037e8744
JB
13615 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13616 return;
13617
13618 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13619 return;
13620
5287ad62
JB
13621 if (inst.operands[2].isscalar)
13622 do_neon_mac_maybe_scalar ();
13623 else
dcbf9037 13624 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13625}
13626
13627static void
13628do_neon_qdmulh (void)
13629{
13630 if (inst.operands[2].isscalar)
13631 {
037e8744 13632 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13633 struct neon_type_el et = neon_check_type (3, rs,
13634 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13635 NEON_ENCODE (SCALAR, inst);
037e8744 13636 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13637 }
13638 else
13639 {
037e8744 13640 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13641 struct neon_type_el et = neon_check_type (3, rs,
13642 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13643 NEON_ENCODE (INTEGER, inst);
5287ad62 13644 /* The U bit (rounding) comes from bit mask. */
037e8744 13645 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13646 }
13647}
13648
13649static void
13650do_neon_fcmp_absolute (void)
13651{
037e8744 13652 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13653 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13654 /* Size field comes from bit mask. */
037e8744 13655 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
13656}
13657
13658static void
13659do_neon_fcmp_absolute_inv (void)
13660{
13661 neon_exchange_operands ();
13662 do_neon_fcmp_absolute ();
13663}
13664
13665static void
13666do_neon_step (void)
13667{
037e8744 13668 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 13669 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 13670 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13671}
13672
13673static void
13674do_neon_abs_neg (void)
13675{
037e8744
JB
13676 enum neon_shape rs;
13677 struct neon_type_el et;
5f4273c7 13678
037e8744
JB
13679 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13680 return;
13681
13682 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13683 return;
13684
13685 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13686 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 13687
5287ad62
JB
13688 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13689 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13690 inst.instruction |= LOW4 (inst.operands[1].reg);
13691 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13692 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13693 inst.instruction |= (et.type == NT_float) << 10;
13694 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13695
88714cb8 13696 neon_dp_fixup (&inst);
5287ad62
JB
13697}
13698
13699static void
13700do_neon_sli (void)
13701{
037e8744 13702 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13703 struct neon_type_el et = neon_check_type (2, rs,
13704 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13705 int imm = inst.operands[2].imm;
13706 constraint (imm < 0 || (unsigned)imm >= et.size,
13707 _("immediate out of range for insert"));
037e8744 13708 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13709}
13710
13711static void
13712do_neon_sri (void)
13713{
037e8744 13714 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13715 struct neon_type_el et = neon_check_type (2, rs,
13716 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13717 int imm = inst.operands[2].imm;
13718 constraint (imm < 1 || (unsigned)imm > et.size,
13719 _("immediate out of range for insert"));
037e8744 13720 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
13721}
13722
13723static void
13724do_neon_qshlu_imm (void)
13725{
037e8744 13726 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13727 struct neon_type_el et = neon_check_type (2, rs,
13728 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13729 int imm = inst.operands[2].imm;
13730 constraint (imm < 0 || (unsigned)imm >= et.size,
13731 _("immediate out of range for shift"));
13732 /* Only encodes the 'U present' variant of the instruction.
13733 In this case, signed types have OP (bit 8) set to 0.
13734 Unsigned types have OP set to 1. */
13735 inst.instruction |= (et.type == NT_unsigned) << 8;
13736 /* The rest of the bits are the same as other immediate shifts. */
037e8744 13737 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13738}
13739
13740static void
13741do_neon_qmovn (void)
13742{
13743 struct neon_type_el et = neon_check_type (2, NS_DQ,
13744 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13745 /* Saturating move where operands can be signed or unsigned, and the
13746 destination has the same signedness. */
88714cb8 13747 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13748 if (et.type == NT_unsigned)
13749 inst.instruction |= 0xc0;
13750 else
13751 inst.instruction |= 0x80;
13752 neon_two_same (0, 1, et.size / 2);
13753}
13754
13755static void
13756do_neon_qmovun (void)
13757{
13758 struct neon_type_el et = neon_check_type (2, NS_DQ,
13759 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13760 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 13761 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13762 neon_two_same (0, 1, et.size / 2);
13763}
13764
13765static void
13766do_neon_rshift_sat_narrow (void)
13767{
13768 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13769 or unsigned. If operands are unsigned, results must also be unsigned. */
13770 struct neon_type_el et = neon_check_type (2, NS_DQI,
13771 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13772 int imm = inst.operands[2].imm;
13773 /* This gets the bounds check, size encoding and immediate bits calculation
13774 right. */
13775 et.size /= 2;
5f4273c7 13776
5287ad62
JB
13777 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13778 VQMOVN.I<size> <Dd>, <Qm>. */
13779 if (imm == 0)
13780 {
13781 inst.operands[2].present = 0;
13782 inst.instruction = N_MNEM_vqmovn;
13783 do_neon_qmovn ();
13784 return;
13785 }
5f4273c7 13786
5287ad62
JB
13787 constraint (imm < 1 || (unsigned)imm > et.size,
13788 _("immediate out of range"));
13789 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13790}
13791
13792static void
13793do_neon_rshift_sat_narrow_u (void)
13794{
13795 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13796 or unsigned. If operands are unsigned, results must also be unsigned. */
13797 struct neon_type_el et = neon_check_type (2, NS_DQI,
13798 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13799 int imm = inst.operands[2].imm;
13800 /* This gets the bounds check, size encoding and immediate bits calculation
13801 right. */
13802 et.size /= 2;
13803
13804 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13805 VQMOVUN.I<size> <Dd>, <Qm>. */
13806 if (imm == 0)
13807 {
13808 inst.operands[2].present = 0;
13809 inst.instruction = N_MNEM_vqmovun;
13810 do_neon_qmovun ();
13811 return;
13812 }
13813
13814 constraint (imm < 1 || (unsigned)imm > et.size,
13815 _("immediate out of range"));
13816 /* FIXME: The manual is kind of unclear about what value U should have in
13817 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13818 must be 1. */
13819 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13820}
13821
13822static void
13823do_neon_movn (void)
13824{
13825 struct neon_type_el et = neon_check_type (2, NS_DQ,
13826 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 13827 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13828 neon_two_same (0, 1, et.size / 2);
13829}
13830
13831static void
13832do_neon_rshift_narrow (void)
13833{
13834 struct neon_type_el et = neon_check_type (2, NS_DQI,
13835 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13836 int imm = inst.operands[2].imm;
13837 /* This gets the bounds check, size encoding and immediate bits calculation
13838 right. */
13839 et.size /= 2;
5f4273c7 13840
5287ad62
JB
13841 /* If immediate is zero then we are a pseudo-instruction for
13842 VMOVN.I<size> <Dd>, <Qm> */
13843 if (imm == 0)
13844 {
13845 inst.operands[2].present = 0;
13846 inst.instruction = N_MNEM_vmovn;
13847 do_neon_movn ();
13848 return;
13849 }
5f4273c7 13850
5287ad62
JB
13851 constraint (imm < 1 || (unsigned)imm > et.size,
13852 _("immediate out of range for narrowing operation"));
13853 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13854}
13855
13856static void
13857do_neon_shll (void)
13858{
13859 /* FIXME: Type checking when lengthening. */
13860 struct neon_type_el et = neon_check_type (2, NS_QDI,
13861 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13862 unsigned imm = inst.operands[2].imm;
13863
13864 if (imm == et.size)
13865 {
13866 /* Maximum shift variant. */
88714cb8 13867 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13868 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13869 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13870 inst.instruction |= LOW4 (inst.operands[1].reg);
13871 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13872 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13873
88714cb8 13874 neon_dp_fixup (&inst);
5287ad62
JB
13875 }
13876 else
13877 {
13878 /* A more-specific type check for non-max versions. */
13879 et = neon_check_type (2, NS_QDI,
13880 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 13881 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13882 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13883 }
13884}
13885
037e8744 13886/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
13887 the current instruction is. */
13888
13889static int
13890neon_cvt_flavour (enum neon_shape rs)
13891{
037e8744
JB
13892#define CVT_VAR(C,X,Y) \
13893 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13894 if (et.type != NT_invtype) \
13895 { \
13896 inst.error = NULL; \
13897 return (C); \
5287ad62
JB
13898 }
13899 struct neon_type_el et;
037e8744
JB
13900 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13901 || rs == NS_FF) ? N_VFP : 0;
13902 /* The instruction versions which take an immediate take one register
13903 argument, which is extended to the width of the full register. Thus the
13904 "source" and "destination" registers must have the same width. Hack that
13905 here by making the size equal to the key (wider, in this case) operand. */
13906 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 13907
5287ad62
JB
13908 CVT_VAR (0, N_S32, N_F32);
13909 CVT_VAR (1, N_U32, N_F32);
13910 CVT_VAR (2, N_F32, N_S32);
13911 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
13912 /* Half-precision conversions. */
13913 CVT_VAR (4, N_F32, N_F16);
13914 CVT_VAR (5, N_F16, N_F32);
5f4273c7 13915
037e8744 13916 whole_reg = N_VFP;
5f4273c7 13917
037e8744 13918 /* VFP instructions. */
8e79c3df
CM
13919 CVT_VAR (6, N_F32, N_F64);
13920 CVT_VAR (7, N_F64, N_F32);
13921 CVT_VAR (8, N_S32, N_F64 | key);
13922 CVT_VAR (9, N_U32, N_F64 | key);
13923 CVT_VAR (10, N_F64 | key, N_S32);
13924 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 13925 /* VFP instructions with bitshift. */
8e79c3df
CM
13926 CVT_VAR (12, N_F32 | key, N_S16);
13927 CVT_VAR (13, N_F32 | key, N_U16);
13928 CVT_VAR (14, N_F64 | key, N_S16);
13929 CVT_VAR (15, N_F64 | key, N_U16);
13930 CVT_VAR (16, N_S16, N_F32 | key);
13931 CVT_VAR (17, N_U16, N_F32 | key);
13932 CVT_VAR (18, N_S16, N_F64 | key);
13933 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 13934
5287ad62
JB
13935 return -1;
13936#undef CVT_VAR
13937}
13938
037e8744
JB
13939/* Neon-syntax VFP conversions. */
13940
5287ad62 13941static void
037e8744 13942do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 13943{
037e8744 13944 const char *opname = 0;
5f4273c7 13945
037e8744 13946 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 13947 {
037e8744
JB
13948 /* Conversions with immediate bitshift. */
13949 const char *enc[] =
13950 {
13951 "ftosls",
13952 "ftouls",
13953 "fsltos",
13954 "fultos",
13955 NULL,
13956 NULL,
8e79c3df
CM
13957 NULL,
13958 NULL,
037e8744
JB
13959 "ftosld",
13960 "ftould",
13961 "fsltod",
13962 "fultod",
13963 "fshtos",
13964 "fuhtos",
13965 "fshtod",
13966 "fuhtod",
13967 "ftoshs",
13968 "ftouhs",
13969 "ftoshd",
13970 "ftouhd"
13971 };
13972
13973 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13974 {
13975 opname = enc[flavour];
13976 constraint (inst.operands[0].reg != inst.operands[1].reg,
13977 _("operands 0 and 1 must be the same register"));
13978 inst.operands[1] = inst.operands[2];
13979 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13980 }
5287ad62
JB
13981 }
13982 else
13983 {
037e8744
JB
13984 /* Conversions without bitshift. */
13985 const char *enc[] =
13986 {
13987 "ftosis",
13988 "ftouis",
13989 "fsitos",
13990 "fuitos",
8e79c3df
CM
13991 "NULL",
13992 "NULL",
037e8744
JB
13993 "fcvtsd",
13994 "fcvtds",
13995 "ftosid",
13996 "ftouid",
13997 "fsitod",
13998 "fuitod"
13999 };
14000
14001 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14002 opname = enc[flavour];
14003 }
14004
14005 if (opname)
14006 do_vfp_nsyn_opcode (opname);
14007}
14008
14009static void
14010do_vfp_nsyn_cvtz (void)
14011{
14012 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14013 int flavour = neon_cvt_flavour (rs);
14014 const char *enc[] =
14015 {
14016 "ftosizs",
14017 "ftouizs",
14018 NULL,
14019 NULL,
14020 NULL,
14021 NULL,
8e79c3df
CM
14022 NULL,
14023 NULL,
037e8744
JB
14024 "ftosizd",
14025 "ftouizd"
14026 };
14027
14028 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14029 do_vfp_nsyn_opcode (enc[flavour]);
14030}
f31fef98 14031
037e8744 14032static void
e3e535bc 14033do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
14034{
14035 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14036 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
14037 int flavour = neon_cvt_flavour (rs);
14038
e3e535bc
NC
14039 /* PR11109: Handle round-to-zero for VCVT conversions. */
14040 if (round_to_zero
14041 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14042 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14043 && (rs == NS_FD || rs == NS_FF))
14044 {
14045 do_vfp_nsyn_cvtz ();
14046 return;
14047 }
14048
037e8744 14049 /* VFP rather than Neon conversions. */
8e79c3df 14050 if (flavour >= 6)
037e8744
JB
14051 {
14052 do_vfp_nsyn_cvt (rs, flavour);
14053 return;
14054 }
14055
14056 switch (rs)
14057 {
14058 case NS_DDI:
14059 case NS_QQI:
14060 {
35997600
NC
14061 unsigned immbits;
14062 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14063
037e8744
JB
14064 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14065 return;
14066
14067 /* Fixed-point conversion with #0 immediate is encoded as an
14068 integer conversion. */
14069 if (inst.operands[2].present && inst.operands[2].imm == 0)
14070 goto int_encode;
35997600 14071 immbits = 32 - inst.operands[2].imm;
88714cb8 14072 NEON_ENCODE (IMMED, inst);
037e8744
JB
14073 if (flavour != -1)
14074 inst.instruction |= enctab[flavour];
14075 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14076 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14077 inst.instruction |= LOW4 (inst.operands[1].reg);
14078 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14079 inst.instruction |= neon_quad (rs) << 6;
14080 inst.instruction |= 1 << 21;
14081 inst.instruction |= immbits << 16;
14082
88714cb8 14083 neon_dp_fixup (&inst);
037e8744
JB
14084 }
14085 break;
14086
14087 case NS_DD:
14088 case NS_QQ:
14089 int_encode:
14090 {
14091 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14092
88714cb8 14093 NEON_ENCODE (INTEGER, inst);
037e8744
JB
14094
14095 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14096 return;
14097
14098 if (flavour != -1)
14099 inst.instruction |= enctab[flavour];
14100
14101 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14102 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14103 inst.instruction |= LOW4 (inst.operands[1].reg);
14104 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14105 inst.instruction |= neon_quad (rs) << 6;
14106 inst.instruction |= 2 << 18;
14107
88714cb8 14108 neon_dp_fixup (&inst);
037e8744
JB
14109 }
14110 break;
14111
8e79c3df
CM
14112 /* Half-precision conversions for Advanced SIMD -- neon. */
14113 case NS_QD:
14114 case NS_DQ:
14115
14116 if ((rs == NS_DQ)
14117 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14118 {
14119 as_bad (_("operand size must match register width"));
14120 break;
14121 }
14122
14123 if ((rs == NS_QD)
14124 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14125 {
14126 as_bad (_("operand size must match register width"));
14127 break;
14128 }
14129
14130 if (rs == NS_DQ)
14131 inst.instruction = 0x3b60600;
14132 else
14133 inst.instruction = 0x3b60700;
14134
14135 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14136 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14137 inst.instruction |= LOW4 (inst.operands[1].reg);
14138 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14139 neon_dp_fixup (&inst);
8e79c3df
CM
14140 break;
14141
037e8744
JB
14142 default:
14143 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14144 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 14145 }
5287ad62
JB
14146}
14147
e3e535bc
NC
14148static void
14149do_neon_cvtr (void)
14150{
14151 do_neon_cvt_1 (FALSE);
14152}
14153
14154static void
14155do_neon_cvt (void)
14156{
14157 do_neon_cvt_1 (TRUE);
14158}
14159
8e79c3df
CM
14160static void
14161do_neon_cvtb (void)
14162{
14163 inst.instruction = 0xeb20a40;
14164
14165 /* The sizes are attached to the mnemonic. */
14166 if (inst.vectype.el[0].type != NT_invtype
14167 && inst.vectype.el[0].size == 16)
14168 inst.instruction |= 0x00010000;
14169
14170 /* Programmer's syntax: the sizes are attached to the operands. */
14171 else if (inst.operands[0].vectype.type != NT_invtype
14172 && inst.operands[0].vectype.size == 16)
14173 inst.instruction |= 0x00010000;
14174
14175 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14176 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14177 do_vfp_cond_or_thumb ();
14178}
14179
14180
14181static void
14182do_neon_cvtt (void)
14183{
14184 do_neon_cvtb ();
14185 inst.instruction |= 0x80;
14186}
14187
5287ad62
JB
14188static void
14189neon_move_immediate (void)
14190{
037e8744
JB
14191 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14192 struct neon_type_el et = neon_check_type (2, rs,
14193 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14194 unsigned immlo, immhi = 0, immbits;
c96612cc 14195 int op, cmode, float_p;
5287ad62 14196
037e8744
JB
14197 constraint (et.type == NT_invtype,
14198 _("operand size must be specified for immediate VMOV"));
14199
5287ad62
JB
14200 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14201 op = (inst.instruction & (1 << 5)) != 0;
14202
14203 immlo = inst.operands[1].imm;
14204 if (inst.operands[1].regisimm)
14205 immhi = inst.operands[1].reg;
14206
14207 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14208 _("immediate has bits set outside the operand size"));
14209
c96612cc
JB
14210 float_p = inst.operands[1].immisfloat;
14211
14212 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14213 et.size, et.type)) == FAIL)
5287ad62
JB
14214 {
14215 /* Invert relevant bits only. */
14216 neon_invert_size (&immlo, &immhi, et.size);
14217 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14218 with one or the other; those cases are caught by
14219 neon_cmode_for_move_imm. */
14220 op = !op;
c96612cc
JB
14221 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14222 &op, et.size, et.type)) == FAIL)
5287ad62 14223 {
dcbf9037 14224 first_error (_("immediate out of range"));
5287ad62
JB
14225 return;
14226 }
14227 }
14228
14229 inst.instruction &= ~(1 << 5);
14230 inst.instruction |= op << 5;
14231
14232 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14233 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14234 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14235 inst.instruction |= cmode << 8;
14236
14237 neon_write_immbits (immbits);
14238}
14239
14240static void
14241do_neon_mvn (void)
14242{
14243 if (inst.operands[1].isreg)
14244 {
037e8744 14245 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14246
88714cb8 14247 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14248 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14249 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14250 inst.instruction |= LOW4 (inst.operands[1].reg);
14251 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14252 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14253 }
14254 else
14255 {
88714cb8 14256 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14257 neon_move_immediate ();
14258 }
14259
88714cb8 14260 neon_dp_fixup (&inst);
5287ad62
JB
14261}
14262
14263/* Encode instructions of form:
14264
14265 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14266 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14267
14268static void
14269neon_mixed_length (struct neon_type_el et, unsigned size)
14270{
14271 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14272 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14273 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14274 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14275 inst.instruction |= LOW4 (inst.operands[2].reg);
14276 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14277 inst.instruction |= (et.type == NT_unsigned) << 24;
14278 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14279
88714cb8 14280 neon_dp_fixup (&inst);
5287ad62
JB
14281}
14282
14283static void
14284do_neon_dyadic_long (void)
14285{
14286 /* FIXME: Type checking for lengthening op. */
14287 struct neon_type_el et = neon_check_type (3, NS_QDD,
14288 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14289 neon_mixed_length (et, et.size);
14290}
14291
14292static void
14293do_neon_abal (void)
14294{
14295 struct neon_type_el et = neon_check_type (3, NS_QDD,
14296 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14297 neon_mixed_length (et, et.size);
14298}
14299
14300static void
14301neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14302{
14303 if (inst.operands[2].isscalar)
14304 {
dcbf9037
JB
14305 struct neon_type_el et = neon_check_type (3, NS_QDS,
14306 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14307 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14308 neon_mul_mac (et, et.type == NT_unsigned);
14309 }
14310 else
14311 {
14312 struct neon_type_el et = neon_check_type (3, NS_QDD,
14313 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14314 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14315 neon_mixed_length (et, et.size);
14316 }
14317}
14318
14319static void
14320do_neon_mac_maybe_scalar_long (void)
14321{
14322 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14323}
14324
14325static void
14326do_neon_dyadic_wide (void)
14327{
14328 struct neon_type_el et = neon_check_type (3, NS_QQD,
14329 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14330 neon_mixed_length (et, et.size);
14331}
14332
14333static void
14334do_neon_dyadic_narrow (void)
14335{
14336 struct neon_type_el et = neon_check_type (3, NS_QDD,
14337 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14338 /* Operand sign is unimportant, and the U bit is part of the opcode,
14339 so force the operand type to integer. */
14340 et.type = NT_integer;
5287ad62
JB
14341 neon_mixed_length (et, et.size / 2);
14342}
14343
14344static void
14345do_neon_mul_sat_scalar_long (void)
14346{
14347 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14348}
14349
14350static void
14351do_neon_vmull (void)
14352{
14353 if (inst.operands[2].isscalar)
14354 do_neon_mac_maybe_scalar_long ();
14355 else
14356 {
14357 struct neon_type_el et = neon_check_type (3, NS_QDD,
14358 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14359 if (et.type == NT_poly)
88714cb8 14360 NEON_ENCODE (POLY, inst);
5287ad62 14361 else
88714cb8 14362 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14363 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14364 zero. Should be OK as-is. */
14365 neon_mixed_length (et, et.size);
14366 }
14367}
14368
14369static void
14370do_neon_ext (void)
14371{
037e8744 14372 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14373 struct neon_type_el et = neon_check_type (3, rs,
14374 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14375 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14376
14377 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14378 _("shift out of range"));
5287ad62
JB
14379 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14380 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14381 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14382 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14383 inst.instruction |= LOW4 (inst.operands[2].reg);
14384 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14385 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14386 inst.instruction |= imm << 8;
5f4273c7 14387
88714cb8 14388 neon_dp_fixup (&inst);
5287ad62
JB
14389}
14390
14391static void
14392do_neon_rev (void)
14393{
037e8744 14394 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14395 struct neon_type_el et = neon_check_type (2, rs,
14396 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14397 unsigned op = (inst.instruction >> 7) & 3;
14398 /* N (width of reversed regions) is encoded as part of the bitmask. We
14399 extract it here to check the elements to be reversed are smaller.
14400 Otherwise we'd get a reserved instruction. */
14401 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14402 gas_assert (elsize != 0);
5287ad62
JB
14403 constraint (et.size >= elsize,
14404 _("elements must be smaller than reversal region"));
037e8744 14405 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14406}
14407
14408static void
14409do_neon_dup (void)
14410{
14411 if (inst.operands[1].isscalar)
14412 {
037e8744 14413 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14414 struct neon_type_el et = neon_check_type (2, rs,
14415 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14416 unsigned sizebits = et.size >> 3;
dcbf9037 14417 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14418 int logsize = neon_logbits (et.size);
dcbf9037 14419 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14420
14421 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14422 return;
14423
88714cb8 14424 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14425 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14426 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14427 inst.instruction |= LOW4 (dm);
14428 inst.instruction |= HI1 (dm) << 5;
037e8744 14429 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14430 inst.instruction |= x << 17;
14431 inst.instruction |= sizebits << 16;
5f4273c7 14432
88714cb8 14433 neon_dp_fixup (&inst);
5287ad62
JB
14434 }
14435 else
14436 {
037e8744
JB
14437 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14438 struct neon_type_el et = neon_check_type (2, rs,
14439 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 14440 /* Duplicate ARM register to lanes of vector. */
88714cb8 14441 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
14442 switch (et.size)
14443 {
14444 case 8: inst.instruction |= 0x400000; break;
14445 case 16: inst.instruction |= 0x000020; break;
14446 case 32: inst.instruction |= 0x000000; break;
14447 default: break;
14448 }
14449 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14450 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14451 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14452 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14453 /* The encoding for this instruction is identical for the ARM and Thumb
14454 variants, except for the condition field. */
037e8744 14455 do_vfp_cond_or_thumb ();
5287ad62
JB
14456 }
14457}
14458
14459/* VMOV has particularly many variations. It can be one of:
14460 0. VMOV<c><q> <Qd>, <Qm>
14461 1. VMOV<c><q> <Dd>, <Dm>
14462 (Register operations, which are VORR with Rm = Rn.)
14463 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14464 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14465 (Immediate loads.)
14466 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14467 (ARM register to scalar.)
14468 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14469 (Two ARM registers to vector.)
14470 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14471 (Scalar to ARM register.)
14472 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14473 (Vector to two ARM registers.)
037e8744
JB
14474 8. VMOV.F32 <Sd>, <Sm>
14475 9. VMOV.F64 <Dd>, <Dm>
14476 (VFP register moves.)
14477 10. VMOV.F32 <Sd>, #imm
14478 11. VMOV.F64 <Dd>, #imm
14479 (VFP float immediate load.)
14480 12. VMOV <Rd>, <Sm>
14481 (VFP single to ARM reg.)
14482 13. VMOV <Sd>, <Rm>
14483 (ARM reg to VFP single.)
14484 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14485 (Two ARM regs to two VFP singles.)
14486 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14487 (Two VFP singles to two ARM regs.)
5f4273c7 14488
037e8744
JB
14489 These cases can be disambiguated using neon_select_shape, except cases 1/9
14490 and 3/11 which depend on the operand type too.
5f4273c7 14491
5287ad62 14492 All the encoded bits are hardcoded by this function.
5f4273c7 14493
b7fc2769
JB
14494 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14495 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14496
5287ad62 14497 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14498 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14499
14500static void
14501do_neon_mov (void)
14502{
037e8744
JB
14503 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14504 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14505 NS_NULL);
14506 struct neon_type_el et;
14507 const char *ldconst = 0;
5287ad62 14508
037e8744 14509 switch (rs)
5287ad62 14510 {
037e8744
JB
14511 case NS_DD: /* case 1/9. */
14512 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14513 /* It is not an error here if no type is given. */
14514 inst.error = NULL;
14515 if (et.type == NT_float && et.size == 64)
5287ad62 14516 {
037e8744
JB
14517 do_vfp_nsyn_opcode ("fcpyd");
14518 break;
5287ad62 14519 }
037e8744 14520 /* fall through. */
5287ad62 14521
037e8744
JB
14522 case NS_QQ: /* case 0/1. */
14523 {
14524 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14525 return;
14526 /* The architecture manual I have doesn't explicitly state which
14527 value the U bit should have for register->register moves, but
14528 the equivalent VORR instruction has U = 0, so do that. */
14529 inst.instruction = 0x0200110;
14530 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14531 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14532 inst.instruction |= LOW4 (inst.operands[1].reg);
14533 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14534 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14535 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14536 inst.instruction |= neon_quad (rs) << 6;
14537
88714cb8 14538 neon_dp_fixup (&inst);
037e8744
JB
14539 }
14540 break;
5f4273c7 14541
037e8744
JB
14542 case NS_DI: /* case 3/11. */
14543 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14544 inst.error = NULL;
14545 if (et.type == NT_float && et.size == 64)
5287ad62 14546 {
037e8744
JB
14547 /* case 11 (fconstd). */
14548 ldconst = "fconstd";
14549 goto encode_fconstd;
5287ad62 14550 }
037e8744
JB
14551 /* fall through. */
14552
14553 case NS_QI: /* case 2/3. */
14554 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14555 return;
14556 inst.instruction = 0x0800010;
14557 neon_move_immediate ();
88714cb8 14558 neon_dp_fixup (&inst);
5287ad62 14559 break;
5f4273c7 14560
037e8744
JB
14561 case NS_SR: /* case 4. */
14562 {
14563 unsigned bcdebits = 0;
91d6fa6a 14564 int logsize;
037e8744
JB
14565 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14566 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14567
91d6fa6a
NC
14568 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14569 logsize = neon_logbits (et.size);
14570
037e8744
JB
14571 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14572 _(BAD_FPU));
14573 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14574 && et.size != 32, _(BAD_FPU));
14575 constraint (et.type == NT_invtype, _("bad type for scalar"));
14576 constraint (x >= 64 / et.size, _("scalar index out of range"));
14577
14578 switch (et.size)
14579 {
14580 case 8: bcdebits = 0x8; break;
14581 case 16: bcdebits = 0x1; break;
14582 case 32: bcdebits = 0x0; break;
14583 default: ;
14584 }
14585
14586 bcdebits |= x << logsize;
14587
14588 inst.instruction = 0xe000b10;
14589 do_vfp_cond_or_thumb ();
14590 inst.instruction |= LOW4 (dn) << 16;
14591 inst.instruction |= HI1 (dn) << 7;
14592 inst.instruction |= inst.operands[1].reg << 12;
14593 inst.instruction |= (bcdebits & 3) << 5;
14594 inst.instruction |= (bcdebits >> 2) << 21;
14595 }
14596 break;
5f4273c7 14597
037e8744 14598 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14599 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14600 _(BAD_FPU));
b7fc2769 14601
037e8744
JB
14602 inst.instruction = 0xc400b10;
14603 do_vfp_cond_or_thumb ();
14604 inst.instruction |= LOW4 (inst.operands[0].reg);
14605 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14606 inst.instruction |= inst.operands[1].reg << 12;
14607 inst.instruction |= inst.operands[2].reg << 16;
14608 break;
5f4273c7 14609
037e8744
JB
14610 case NS_RS: /* case 6. */
14611 {
91d6fa6a 14612 unsigned logsize;
037e8744
JB
14613 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14614 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14615 unsigned abcdebits = 0;
14616
91d6fa6a
NC
14617 et = neon_check_type (2, NS_NULL,
14618 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14619 logsize = neon_logbits (et.size);
14620
037e8744
JB
14621 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14622 _(BAD_FPU));
14623 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14624 && et.size != 32, _(BAD_FPU));
14625 constraint (et.type == NT_invtype, _("bad type for scalar"));
14626 constraint (x >= 64 / et.size, _("scalar index out of range"));
14627
14628 switch (et.size)
14629 {
14630 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14631 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14632 case 32: abcdebits = 0x00; break;
14633 default: ;
14634 }
14635
14636 abcdebits |= x << logsize;
14637 inst.instruction = 0xe100b10;
14638 do_vfp_cond_or_thumb ();
14639 inst.instruction |= LOW4 (dn) << 16;
14640 inst.instruction |= HI1 (dn) << 7;
14641 inst.instruction |= inst.operands[0].reg << 12;
14642 inst.instruction |= (abcdebits & 3) << 5;
14643 inst.instruction |= (abcdebits >> 2) << 21;
14644 }
14645 break;
5f4273c7 14646
037e8744
JB
14647 case NS_RRD: /* case 7 (fmrrd). */
14648 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14649 _(BAD_FPU));
14650
14651 inst.instruction = 0xc500b10;
14652 do_vfp_cond_or_thumb ();
14653 inst.instruction |= inst.operands[0].reg << 12;
14654 inst.instruction |= inst.operands[1].reg << 16;
14655 inst.instruction |= LOW4 (inst.operands[2].reg);
14656 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14657 break;
5f4273c7 14658
037e8744
JB
14659 case NS_FF: /* case 8 (fcpys). */
14660 do_vfp_nsyn_opcode ("fcpys");
14661 break;
5f4273c7 14662
037e8744
JB
14663 case NS_FI: /* case 10 (fconsts). */
14664 ldconst = "fconsts";
14665 encode_fconstd:
14666 if (is_quarter_float (inst.operands[1].imm))
5287ad62 14667 {
037e8744
JB
14668 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14669 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
14670 }
14671 else
037e8744
JB
14672 first_error (_("immediate out of range"));
14673 break;
5f4273c7 14674
037e8744
JB
14675 case NS_RF: /* case 12 (fmrs). */
14676 do_vfp_nsyn_opcode ("fmrs");
14677 break;
5f4273c7 14678
037e8744
JB
14679 case NS_FR: /* case 13 (fmsr). */
14680 do_vfp_nsyn_opcode ("fmsr");
14681 break;
5f4273c7 14682
037e8744
JB
14683 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14684 (one of which is a list), but we have parsed four. Do some fiddling to
14685 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14686 expect. */
14687 case NS_RRFF: /* case 14 (fmrrs). */
14688 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14689 _("VFP registers must be adjacent"));
14690 inst.operands[2].imm = 2;
14691 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14692 do_vfp_nsyn_opcode ("fmrrs");
14693 break;
5f4273c7 14694
037e8744
JB
14695 case NS_FFRR: /* case 15 (fmsrr). */
14696 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14697 _("VFP registers must be adjacent"));
14698 inst.operands[1] = inst.operands[2];
14699 inst.operands[2] = inst.operands[3];
14700 inst.operands[0].imm = 2;
14701 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14702 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 14703 break;
5f4273c7 14704
5287ad62
JB
14705 default:
14706 abort ();
14707 }
14708}
14709
14710static void
14711do_neon_rshift_round_imm (void)
14712{
037e8744 14713 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14714 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14715 int imm = inst.operands[2].imm;
14716
14717 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14718 if (imm == 0)
14719 {
14720 inst.operands[2].present = 0;
14721 do_neon_mov ();
14722 return;
14723 }
14724
14725 constraint (imm < 1 || (unsigned)imm > et.size,
14726 _("immediate out of range for shift"));
037e8744 14727 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
14728 et.size - imm);
14729}
14730
14731static void
14732do_neon_movl (void)
14733{
14734 struct neon_type_el et = neon_check_type (2, NS_QD,
14735 N_EQK | N_DBL, N_SU_32 | N_KEY);
14736 unsigned sizebits = et.size >> 3;
14737 inst.instruction |= sizebits << 19;
14738 neon_two_same (0, et.type == NT_unsigned, -1);
14739}
14740
14741static void
14742do_neon_trn (void)
14743{
037e8744 14744 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14745 struct neon_type_el et = neon_check_type (2, rs,
14746 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 14747 NEON_ENCODE (INTEGER, inst);
037e8744 14748 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14749}
14750
14751static void
14752do_neon_zip_uzp (void)
14753{
037e8744 14754 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14755 struct neon_type_el et = neon_check_type (2, rs,
14756 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14757 if (rs == NS_DD && et.size == 32)
14758 {
14759 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14760 inst.instruction = N_MNEM_vtrn;
14761 do_neon_trn ();
14762 return;
14763 }
037e8744 14764 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14765}
14766
14767static void
14768do_neon_sat_abs_neg (void)
14769{
037e8744 14770 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14771 struct neon_type_el et = neon_check_type (2, rs,
14772 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14773 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14774}
14775
14776static void
14777do_neon_pair_long (void)
14778{
037e8744 14779 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14780 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14781 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14782 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 14783 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14784}
14785
14786static void
14787do_neon_recip_est (void)
14788{
037e8744 14789 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14790 struct neon_type_el et = neon_check_type (2, rs,
14791 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14792 inst.instruction |= (et.type == NT_float) << 8;
037e8744 14793 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14794}
14795
14796static void
14797do_neon_cls (void)
14798{
037e8744 14799 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14800 struct neon_type_el et = neon_check_type (2, rs,
14801 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14802 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14803}
14804
14805static void
14806do_neon_clz (void)
14807{
037e8744 14808 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14809 struct neon_type_el et = neon_check_type (2, rs,
14810 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 14811 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14812}
14813
14814static void
14815do_neon_cnt (void)
14816{
037e8744 14817 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14818 struct neon_type_el et = neon_check_type (2, rs,
14819 N_EQK | N_INT, N_8 | N_KEY);
037e8744 14820 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14821}
14822
14823static void
14824do_neon_swp (void)
14825{
037e8744
JB
14826 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14827 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
14828}
14829
14830static void
14831do_neon_tbl_tbx (void)
14832{
14833 unsigned listlenbits;
dcbf9037 14834 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 14835
5287ad62
JB
14836 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14837 {
dcbf9037 14838 first_error (_("bad list length for table lookup"));
5287ad62
JB
14839 return;
14840 }
5f4273c7 14841
5287ad62
JB
14842 listlenbits = inst.operands[1].imm - 1;
14843 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14844 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14845 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14846 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14847 inst.instruction |= LOW4 (inst.operands[2].reg);
14848 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14849 inst.instruction |= listlenbits << 8;
5f4273c7 14850
88714cb8 14851 neon_dp_fixup (&inst);
5287ad62
JB
14852}
14853
14854static void
14855do_neon_ldm_stm (void)
14856{
14857 /* P, U and L bits are part of bitmask. */
14858 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14859 unsigned offsetbits = inst.operands[1].imm * 2;
14860
037e8744
JB
14861 if (inst.operands[1].issingle)
14862 {
14863 do_vfp_nsyn_ldm_stm (is_dbmode);
14864 return;
14865 }
14866
5287ad62
JB
14867 constraint (is_dbmode && !inst.operands[0].writeback,
14868 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14869
14870 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14871 _("register list must contain at least 1 and at most 16 "
14872 "registers"));
14873
14874 inst.instruction |= inst.operands[0].reg << 16;
14875 inst.instruction |= inst.operands[0].writeback << 21;
14876 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14877 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14878
14879 inst.instruction |= offsetbits;
5f4273c7 14880
037e8744 14881 do_vfp_cond_or_thumb ();
5287ad62
JB
14882}
14883
14884static void
14885do_neon_ldr_str (void)
14886{
5287ad62 14887 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 14888
6844b2c2
MGD
14889 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
14890 And is UNPREDICTABLE in thumb mode. */
14891 if (!is_ldr
14892 && inst.operands[1].reg == REG_PC
14893 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
14894 {
14895 if (!thumb_mode && warn_on_deprecated)
14896 as_warn (_("Use of PC here is deprecated"));
14897 else
14898 inst.error = _("Use of PC here is UNPREDICTABLE");
14899 }
14900
037e8744
JB
14901 if (inst.operands[0].issingle)
14902 {
cd2f129f
JB
14903 if (is_ldr)
14904 do_vfp_nsyn_opcode ("flds");
14905 else
14906 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
14907 }
14908 else
5287ad62 14909 {
cd2f129f
JB
14910 if (is_ldr)
14911 do_vfp_nsyn_opcode ("fldd");
5287ad62 14912 else
cd2f129f 14913 do_vfp_nsyn_opcode ("fstd");
5287ad62 14914 }
5287ad62
JB
14915}
14916
14917/* "interleave" version also handles non-interleaving register VLD1/VST1
14918 instructions. */
14919
14920static void
14921do_neon_ld_st_interleave (void)
14922{
037e8744 14923 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
14924 N_8 | N_16 | N_32 | N_64);
14925 unsigned alignbits = 0;
14926 unsigned idx;
14927 /* The bits in this table go:
14928 0: register stride of one (0) or two (1)
14929 1,2: register list length, minus one (1, 2, 3, 4).
14930 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14931 We use -1 for invalid entries. */
14932 const int typetable[] =
14933 {
14934 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14935 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14936 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14937 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14938 };
14939 int typebits;
14940
dcbf9037
JB
14941 if (et.type == NT_invtype)
14942 return;
14943
5287ad62
JB
14944 if (inst.operands[1].immisalign)
14945 switch (inst.operands[1].imm >> 8)
14946 {
14947 case 64: alignbits = 1; break;
14948 case 128:
e23c0ad8
JZ
14949 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
14950 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
14951 goto bad_alignment;
14952 alignbits = 2;
14953 break;
14954 case 256:
e23c0ad8 14955 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
14956 goto bad_alignment;
14957 alignbits = 3;
14958 break;
14959 default:
14960 bad_alignment:
dcbf9037 14961 first_error (_("bad alignment"));
5287ad62
JB
14962 return;
14963 }
14964
14965 inst.instruction |= alignbits << 4;
14966 inst.instruction |= neon_logbits (et.size) << 6;
14967
14968 /* Bits [4:6] of the immediate in a list specifier encode register stride
14969 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14970 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14971 up the right value for "type" in a table based on this value and the given
14972 list style, then stick it back. */
14973 idx = ((inst.operands[0].imm >> 4) & 7)
14974 | (((inst.instruction >> 8) & 3) << 3);
14975
14976 typebits = typetable[idx];
5f4273c7 14977
5287ad62
JB
14978 constraint (typebits == -1, _("bad list type for instruction"));
14979
14980 inst.instruction &= ~0xf00;
14981 inst.instruction |= typebits << 8;
14982}
14983
14984/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14985 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14986 otherwise. The variable arguments are a list of pairs of legal (size, align)
14987 values, terminated with -1. */
14988
14989static int
14990neon_alignment_bit (int size, int align, int *do_align, ...)
14991{
14992 va_list ap;
14993 int result = FAIL, thissize, thisalign;
5f4273c7 14994
5287ad62
JB
14995 if (!inst.operands[1].immisalign)
14996 {
14997 *do_align = 0;
14998 return SUCCESS;
14999 }
5f4273c7 15000
5287ad62
JB
15001 va_start (ap, do_align);
15002
15003 do
15004 {
15005 thissize = va_arg (ap, int);
15006 if (thissize == -1)
15007 break;
15008 thisalign = va_arg (ap, int);
15009
15010 if (size == thissize && align == thisalign)
15011 result = SUCCESS;
15012 }
15013 while (result != SUCCESS);
15014
15015 va_end (ap);
15016
15017 if (result == SUCCESS)
15018 *do_align = 1;
15019 else
dcbf9037 15020 first_error (_("unsupported alignment for instruction"));
5f4273c7 15021
5287ad62
JB
15022 return result;
15023}
15024
15025static void
15026do_neon_ld_st_lane (void)
15027{
037e8744 15028 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15029 int align_good, do_align = 0;
15030 int logsize = neon_logbits (et.size);
15031 int align = inst.operands[1].imm >> 8;
15032 int n = (inst.instruction >> 8) & 3;
15033 int max_el = 64 / et.size;
5f4273c7 15034
dcbf9037
JB
15035 if (et.type == NT_invtype)
15036 return;
5f4273c7 15037
5287ad62
JB
15038 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15039 _("bad list length"));
15040 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15041 _("scalar index out of range"));
15042 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15043 && et.size == 8,
15044 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15045
5287ad62
JB
15046 switch (n)
15047 {
15048 case 0: /* VLD1 / VST1. */
15049 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15050 32, 32, -1);
15051 if (align_good == FAIL)
15052 return;
15053 if (do_align)
15054 {
15055 unsigned alignbits = 0;
15056 switch (et.size)
15057 {
15058 case 16: alignbits = 0x1; break;
15059 case 32: alignbits = 0x3; break;
15060 default: ;
15061 }
15062 inst.instruction |= alignbits << 4;
15063 }
15064 break;
15065
15066 case 1: /* VLD2 / VST2. */
15067 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15068 32, 64, -1);
15069 if (align_good == FAIL)
15070 return;
15071 if (do_align)
15072 inst.instruction |= 1 << 4;
15073 break;
15074
15075 case 2: /* VLD3 / VST3. */
15076 constraint (inst.operands[1].immisalign,
15077 _("can't use alignment with this instruction"));
15078 break;
15079
15080 case 3: /* VLD4 / VST4. */
15081 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15082 16, 64, 32, 64, 32, 128, -1);
15083 if (align_good == FAIL)
15084 return;
15085 if (do_align)
15086 {
15087 unsigned alignbits = 0;
15088 switch (et.size)
15089 {
15090 case 8: alignbits = 0x1; break;
15091 case 16: alignbits = 0x1; break;
15092 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15093 default: ;
15094 }
15095 inst.instruction |= alignbits << 4;
15096 }
15097 break;
15098
15099 default: ;
15100 }
15101
15102 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15103 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15104 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15105
5287ad62
JB
15106 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15107 inst.instruction |= logsize << 10;
15108}
15109
15110/* Encode single n-element structure to all lanes VLD<n> instructions. */
15111
15112static void
15113do_neon_ld_dup (void)
15114{
037e8744 15115 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15116 int align_good, do_align = 0;
15117
dcbf9037
JB
15118 if (et.type == NT_invtype)
15119 return;
15120
5287ad62
JB
15121 switch ((inst.instruction >> 8) & 3)
15122 {
15123 case 0: /* VLD1. */
9c2799c2 15124 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15125 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15126 &do_align, 16, 16, 32, 32, -1);
15127 if (align_good == FAIL)
15128 return;
15129 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15130 {
15131 case 1: break;
15132 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15133 default: first_error (_("bad list length")); return;
5287ad62
JB
15134 }
15135 inst.instruction |= neon_logbits (et.size) << 6;
15136 break;
15137
15138 case 1: /* VLD2. */
15139 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15140 &do_align, 8, 16, 16, 32, 32, 64, -1);
15141 if (align_good == FAIL)
15142 return;
15143 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15144 _("bad list length"));
15145 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15146 inst.instruction |= 1 << 5;
15147 inst.instruction |= neon_logbits (et.size) << 6;
15148 break;
15149
15150 case 2: /* VLD3. */
15151 constraint (inst.operands[1].immisalign,
15152 _("can't use alignment with this instruction"));
15153 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15154 _("bad list length"));
15155 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15156 inst.instruction |= 1 << 5;
15157 inst.instruction |= neon_logbits (et.size) << 6;
15158 break;
15159
15160 case 3: /* VLD4. */
15161 {
15162 int align = inst.operands[1].imm >> 8;
15163 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15164 16, 64, 32, 64, 32, 128, -1);
15165 if (align_good == FAIL)
15166 return;
15167 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15168 _("bad list length"));
15169 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15170 inst.instruction |= 1 << 5;
15171 if (et.size == 32 && align == 128)
15172 inst.instruction |= 0x3 << 6;
15173 else
15174 inst.instruction |= neon_logbits (et.size) << 6;
15175 }
15176 break;
15177
15178 default: ;
15179 }
15180
15181 inst.instruction |= do_align << 4;
15182}
15183
15184/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15185 apart from bits [11:4]. */
15186
15187static void
15188do_neon_ldx_stx (void)
15189{
b1a769ed
DG
15190 if (inst.operands[1].isreg)
15191 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15192
5287ad62
JB
15193 switch (NEON_LANE (inst.operands[0].imm))
15194 {
15195 case NEON_INTERLEAVE_LANES:
88714cb8 15196 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15197 do_neon_ld_st_interleave ();
15198 break;
5f4273c7 15199
5287ad62 15200 case NEON_ALL_LANES:
88714cb8 15201 NEON_ENCODE (DUP, inst);
5287ad62
JB
15202 do_neon_ld_dup ();
15203 break;
5f4273c7 15204
5287ad62 15205 default:
88714cb8 15206 NEON_ENCODE (LANE, inst);
5287ad62
JB
15207 do_neon_ld_st_lane ();
15208 }
15209
15210 /* L bit comes from bit mask. */
15211 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15212 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15213 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15214
5287ad62
JB
15215 if (inst.operands[1].postind)
15216 {
15217 int postreg = inst.operands[1].imm & 0xf;
15218 constraint (!inst.operands[1].immisreg,
15219 _("post-index must be a register"));
15220 constraint (postreg == 0xd || postreg == 0xf,
15221 _("bad register for post-index"));
15222 inst.instruction |= postreg;
15223 }
15224 else if (inst.operands[1].writeback)
15225 {
15226 inst.instruction |= 0xd;
15227 }
15228 else
5f4273c7
NC
15229 inst.instruction |= 0xf;
15230
5287ad62
JB
15231 if (thumb_mode)
15232 inst.instruction |= 0xf9000000;
15233 else
15234 inst.instruction |= 0xf4000000;
15235}
5287ad62
JB
15236\f
15237/* Overall per-instruction processing. */
15238
15239/* We need to be able to fix up arbitrary expressions in some statements.
15240 This is so that we can handle symbols that are an arbitrary distance from
15241 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15242 which returns part of an address in a form which will be valid for
15243 a data instruction. We do this by pushing the expression into a symbol
15244 in the expr_section, and creating a fix for that. */
15245
15246static void
15247fix_new_arm (fragS * frag,
15248 int where,
15249 short int size,
15250 expressionS * exp,
15251 int pc_rel,
15252 int reloc)
15253{
15254 fixS * new_fix;
15255
15256 switch (exp->X_op)
15257 {
15258 case O_constant:
15259 case O_symbol:
15260 case O_add:
15261 case O_subtract:
21d799b5
NC
15262 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15263 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15264 break;
15265
15266 default:
21d799b5
NC
15267 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15268 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15269 break;
15270 }
15271
15272 /* Mark whether the fix is to a THUMB instruction, or an ARM
15273 instruction. */
15274 new_fix->tc_fix_data = thumb_mode;
15275}
15276
15277/* Create a frg for an instruction requiring relaxation. */
15278static void
15279output_relax_insn (void)
15280{
15281 char * to;
15282 symbolS *sym;
0110f2b8
PB
15283 int offset;
15284
6e1cb1a6
PB
15285 /* The size of the instruction is unknown, so tie the debug info to the
15286 start of the instruction. */
15287 dwarf2_emit_insn (0);
6e1cb1a6 15288
0110f2b8
PB
15289 switch (inst.reloc.exp.X_op)
15290 {
15291 case O_symbol:
15292 sym = inst.reloc.exp.X_add_symbol;
15293 offset = inst.reloc.exp.X_add_number;
15294 break;
15295 case O_constant:
15296 sym = NULL;
15297 offset = inst.reloc.exp.X_add_number;
15298 break;
15299 default:
15300 sym = make_expr_symbol (&inst.reloc.exp);
15301 offset = 0;
15302 break;
15303 }
15304 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15305 inst.relax, sym, offset, NULL/*offset, opcode*/);
15306 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15307}
15308
15309/* Write a 32-bit thumb instruction to buf. */
15310static void
15311put_thumb32_insn (char * buf, unsigned long insn)
15312{
15313 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15314 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15315}
15316
b99bd4ef 15317static void
c19d1205 15318output_inst (const char * str)
b99bd4ef 15319{
c19d1205 15320 char * to = NULL;
b99bd4ef 15321
c19d1205 15322 if (inst.error)
b99bd4ef 15323 {
c19d1205 15324 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15325 return;
15326 }
5f4273c7
NC
15327 if (inst.relax)
15328 {
15329 output_relax_insn ();
0110f2b8 15330 return;
5f4273c7 15331 }
c19d1205
ZW
15332 if (inst.size == 0)
15333 return;
b99bd4ef 15334
c19d1205 15335 to = frag_more (inst.size);
8dc2430f
NC
15336 /* PR 9814: Record the thumb mode into the current frag so that we know
15337 what type of NOP padding to use, if necessary. We override any previous
15338 setting so that if the mode has changed then the NOPS that we use will
15339 match the encoding of the last instruction in the frag. */
cd000bff 15340 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15341
15342 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15343 {
9c2799c2 15344 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15345 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15346 }
c19d1205 15347 else if (inst.size > INSN_SIZE)
b99bd4ef 15348 {
9c2799c2 15349 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15350 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15351 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15352 }
c19d1205
ZW
15353 else
15354 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15355
c19d1205
ZW
15356 if (inst.reloc.type != BFD_RELOC_UNUSED)
15357 fix_new_arm (frag_now, to - frag_now->fr_literal,
15358 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15359 inst.reloc.type);
b99bd4ef 15360
c19d1205 15361 dwarf2_emit_insn (inst.size);
c19d1205 15362}
b99bd4ef 15363
e07e6e58
NC
15364static char *
15365output_it_inst (int cond, int mask, char * to)
15366{
15367 unsigned long instruction = 0xbf00;
15368
15369 mask &= 0xf;
15370 instruction |= mask;
15371 instruction |= cond << 4;
15372
15373 if (to == NULL)
15374 {
15375 to = frag_more (2);
15376#ifdef OBJ_ELF
15377 dwarf2_emit_insn (2);
15378#endif
15379 }
15380
15381 md_number_to_chars (to, instruction, 2);
15382
15383 return to;
15384}
15385
c19d1205
ZW
15386/* Tag values used in struct asm_opcode's tag field. */
15387enum opcode_tag
15388{
15389 OT_unconditional, /* Instruction cannot be conditionalized.
15390 The ARM condition field is still 0xE. */
15391 OT_unconditionalF, /* Instruction cannot be conditionalized
15392 and carries 0xF in its ARM condition field. */
15393 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15394 OT_csuffixF, /* Some forms of the instruction take a conditional
15395 suffix, others place 0xF where the condition field
15396 would be. */
c19d1205
ZW
15397 OT_cinfix3, /* Instruction takes a conditional infix,
15398 beginning at character index 3. (In
15399 unified mode, it becomes a suffix.) */
088fa78e
KH
15400 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15401 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
15402 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15403 character index 3, even in unified mode. Used for
15404 legacy instructions where suffix and infix forms
15405 may be ambiguous. */
c19d1205 15406 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 15407 suffix or an infix at character index 3. */
c19d1205
ZW
15408 OT_odd_infix_unc, /* This is the unconditional variant of an
15409 instruction that takes a conditional infix
15410 at an unusual position. In unified mode,
15411 this variant will accept a suffix. */
15412 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15413 are the conditional variants of instructions that
15414 take conditional infixes in unusual positions.
15415 The infix appears at character index
15416 (tag - OT_odd_infix_0). These are not accepted
15417 in unified mode. */
15418};
b99bd4ef 15419
c19d1205
ZW
15420/* Subroutine of md_assemble, responsible for looking up the primary
15421 opcode from the mnemonic the user wrote. STR points to the
15422 beginning of the mnemonic.
15423
15424 This is not simply a hash table lookup, because of conditional
15425 variants. Most instructions have conditional variants, which are
15426 expressed with a _conditional affix_ to the mnemonic. If we were
15427 to encode each conditional variant as a literal string in the opcode
15428 table, it would have approximately 20,000 entries.
15429
15430 Most mnemonics take this affix as a suffix, and in unified syntax,
15431 'most' is upgraded to 'all'. However, in the divided syntax, some
15432 instructions take the affix as an infix, notably the s-variants of
15433 the arithmetic instructions. Of those instructions, all but six
15434 have the infix appear after the third character of the mnemonic.
15435
15436 Accordingly, the algorithm for looking up primary opcodes given
15437 an identifier is:
15438
15439 1. Look up the identifier in the opcode table.
15440 If we find a match, go to step U.
15441
15442 2. Look up the last two characters of the identifier in the
15443 conditions table. If we find a match, look up the first N-2
15444 characters of the identifier in the opcode table. If we
15445 find a match, go to step CE.
15446
15447 3. Look up the fourth and fifth characters of the identifier in
15448 the conditions table. If we find a match, extract those
15449 characters from the identifier, and look up the remaining
15450 characters in the opcode table. If we find a match, go
15451 to step CM.
15452
15453 4. Fail.
15454
15455 U. Examine the tag field of the opcode structure, in case this is
15456 one of the six instructions with its conditional infix in an
15457 unusual place. If it is, the tag tells us where to find the
15458 infix; look it up in the conditions table and set inst.cond
15459 accordingly. Otherwise, this is an unconditional instruction.
15460 Again set inst.cond accordingly. Return the opcode structure.
15461
15462 CE. Examine the tag field to make sure this is an instruction that
15463 should receive a conditional suffix. If it is not, fail.
15464 Otherwise, set inst.cond from the suffix we already looked up,
15465 and return the opcode structure.
15466
15467 CM. Examine the tag field to make sure this is an instruction that
15468 should receive a conditional infix after the third character.
15469 If it is not, fail. Otherwise, undo the edits to the current
15470 line of input and proceed as for case CE. */
15471
15472static const struct asm_opcode *
15473opcode_lookup (char **str)
15474{
15475 char *end, *base;
15476 char *affix;
15477 const struct asm_opcode *opcode;
15478 const struct asm_cond *cond;
e3cb604e 15479 char save[2];
c19d1205
ZW
15480
15481 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15482 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15483 for (base = end = *str; *end != '\0'; end++)
721a8186 15484 if (*end == ' ' || *end == '.')
c19d1205 15485 break;
b99bd4ef 15486
c19d1205 15487 if (end == base)
c921be7d 15488 return NULL;
b99bd4ef 15489
5287ad62 15490 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15491 if (end[0] == '.')
b99bd4ef 15492 {
5287ad62 15493 int offset = 2;
5f4273c7 15494
267d2029
JB
15495 /* The .w and .n suffixes are only valid if the unified syntax is in
15496 use. */
15497 if (unified_syntax && end[1] == 'w')
c19d1205 15498 inst.size_req = 4;
267d2029 15499 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15500 inst.size_req = 2;
15501 else
5287ad62
JB
15502 offset = 0;
15503
15504 inst.vectype.elems = 0;
15505
15506 *str = end + offset;
b99bd4ef 15507
5f4273c7 15508 if (end[offset] == '.')
5287ad62 15509 {
267d2029
JB
15510 /* See if we have a Neon type suffix (possible in either unified or
15511 non-unified ARM syntax mode). */
dcbf9037 15512 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15513 return NULL;
5287ad62
JB
15514 }
15515 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15516 return NULL;
b99bd4ef 15517 }
c19d1205
ZW
15518 else
15519 *str = end;
b99bd4ef 15520
c19d1205 15521 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15522 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15523 end - base);
c19d1205 15524 if (opcode)
b99bd4ef 15525 {
c19d1205
ZW
15526 /* step U */
15527 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15528 {
c19d1205
ZW
15529 inst.cond = COND_ALWAYS;
15530 return opcode;
b99bd4ef 15531 }
b99bd4ef 15532
278df34e 15533 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15534 as_warn (_("conditional infixes are deprecated in unified syntax"));
15535 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15536 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15537 gas_assert (cond);
b99bd4ef 15538
c19d1205
ZW
15539 inst.cond = cond->value;
15540 return opcode;
15541 }
b99bd4ef 15542
c19d1205
ZW
15543 /* Cannot have a conditional suffix on a mnemonic of less than two
15544 characters. */
15545 if (end - base < 3)
c921be7d 15546 return NULL;
b99bd4ef 15547
c19d1205
ZW
15548 /* Look for suffixed mnemonic. */
15549 affix = end - 2;
21d799b5
NC
15550 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15551 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15552 affix - base);
c19d1205
ZW
15553 if (opcode && cond)
15554 {
15555 /* step CE */
15556 switch (opcode->tag)
15557 {
e3cb604e
PB
15558 case OT_cinfix3_legacy:
15559 /* Ignore conditional suffixes matched on infix only mnemonics. */
15560 break;
15561
c19d1205 15562 case OT_cinfix3:
088fa78e 15563 case OT_cinfix3_deprecated:
c19d1205
ZW
15564 case OT_odd_infix_unc:
15565 if (!unified_syntax)
e3cb604e 15566 return 0;
c19d1205
ZW
15567 /* else fall through */
15568
15569 case OT_csuffix:
037e8744 15570 case OT_csuffixF:
c19d1205
ZW
15571 case OT_csuf_or_in3:
15572 inst.cond = cond->value;
15573 return opcode;
15574
15575 case OT_unconditional:
15576 case OT_unconditionalF:
dfa9f0d5 15577 if (thumb_mode)
c921be7d 15578 inst.cond = cond->value;
dfa9f0d5
PB
15579 else
15580 {
c921be7d 15581 /* Delayed diagnostic. */
dfa9f0d5
PB
15582 inst.error = BAD_COND;
15583 inst.cond = COND_ALWAYS;
15584 }
c19d1205 15585 return opcode;
b99bd4ef 15586
c19d1205 15587 default:
c921be7d 15588 return NULL;
c19d1205
ZW
15589 }
15590 }
b99bd4ef 15591
c19d1205
ZW
15592 /* Cannot have a usual-position infix on a mnemonic of less than
15593 six characters (five would be a suffix). */
15594 if (end - base < 6)
c921be7d 15595 return NULL;
b99bd4ef 15596
c19d1205
ZW
15597 /* Look for infixed mnemonic in the usual position. */
15598 affix = base + 3;
21d799b5 15599 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15600 if (!cond)
c921be7d 15601 return NULL;
e3cb604e
PB
15602
15603 memcpy (save, affix, 2);
15604 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15605 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15606 (end - base) - 2);
e3cb604e
PB
15607 memmove (affix + 2, affix, (end - affix) - 2);
15608 memcpy (affix, save, 2);
15609
088fa78e
KH
15610 if (opcode
15611 && (opcode->tag == OT_cinfix3
15612 || opcode->tag == OT_cinfix3_deprecated
15613 || opcode->tag == OT_csuf_or_in3
15614 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15615 {
c921be7d 15616 /* Step CM. */
278df34e 15617 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15618 && (opcode->tag == OT_cinfix3
15619 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15620 as_warn (_("conditional infixes are deprecated in unified syntax"));
15621
15622 inst.cond = cond->value;
15623 return opcode;
b99bd4ef
NC
15624 }
15625
c921be7d 15626 return NULL;
b99bd4ef
NC
15627}
15628
e07e6e58
NC
15629/* This function generates an initial IT instruction, leaving its block
15630 virtually open for the new instructions. Eventually,
15631 the mask will be updated by now_it_add_mask () each time
15632 a new instruction needs to be included in the IT block.
15633 Finally, the block is closed with close_automatic_it_block ().
15634 The block closure can be requested either from md_assemble (),
15635 a tencode (), or due to a label hook. */
15636
15637static void
15638new_automatic_it_block (int cond)
15639{
15640 now_it.state = AUTOMATIC_IT_BLOCK;
15641 now_it.mask = 0x18;
15642 now_it.cc = cond;
15643 now_it.block_length = 1;
cd000bff 15644 mapping_state (MAP_THUMB);
e07e6e58
NC
15645 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15646}
15647
15648/* Close an automatic IT block.
15649 See comments in new_automatic_it_block (). */
15650
15651static void
15652close_automatic_it_block (void)
15653{
15654 now_it.mask = 0x10;
15655 now_it.block_length = 0;
15656}
15657
15658/* Update the mask of the current automatically-generated IT
15659 instruction. See comments in new_automatic_it_block (). */
15660
15661static void
15662now_it_add_mask (int cond)
15663{
15664#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15665#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15666 | ((bitvalue) << (nbit)))
e07e6e58 15667 const int resulting_bit = (cond & 1);
c921be7d 15668
e07e6e58
NC
15669 now_it.mask &= 0xf;
15670 now_it.mask = SET_BIT_VALUE (now_it.mask,
15671 resulting_bit,
15672 (5 - now_it.block_length));
15673 now_it.mask = SET_BIT_VALUE (now_it.mask,
15674 1,
15675 ((5 - now_it.block_length) - 1) );
15676 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15677
15678#undef CLEAR_BIT
15679#undef SET_BIT_VALUE
e07e6e58
NC
15680}
15681
15682/* The IT blocks handling machinery is accessed through the these functions:
15683 it_fsm_pre_encode () from md_assemble ()
15684 set_it_insn_type () optional, from the tencode functions
15685 set_it_insn_type_last () ditto
15686 in_it_block () ditto
15687 it_fsm_post_encode () from md_assemble ()
15688 force_automatic_it_block_close () from label habdling functions
15689
15690 Rationale:
15691 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15692 initializing the IT insn type with a generic initial value depending
15693 on the inst.condition.
15694 2) During the tencode function, two things may happen:
15695 a) The tencode function overrides the IT insn type by
15696 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15697 b) The tencode function queries the IT block state by
15698 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15699
15700 Both set_it_insn_type and in_it_block run the internal FSM state
15701 handling function (handle_it_state), because: a) setting the IT insn
15702 type may incur in an invalid state (exiting the function),
15703 and b) querying the state requires the FSM to be updated.
15704 Specifically we want to avoid creating an IT block for conditional
15705 branches, so it_fsm_pre_encode is actually a guess and we can't
15706 determine whether an IT block is required until the tencode () routine
15707 has decided what type of instruction this actually it.
15708 Because of this, if set_it_insn_type and in_it_block have to be used,
15709 set_it_insn_type has to be called first.
15710
15711 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15712 determines the insn IT type depending on the inst.cond code.
15713 When a tencode () routine encodes an instruction that can be
15714 either outside an IT block, or, in the case of being inside, has to be
15715 the last one, set_it_insn_type_last () will determine the proper
15716 IT instruction type based on the inst.cond code. Otherwise,
15717 set_it_insn_type can be called for overriding that logic or
15718 for covering other cases.
15719
15720 Calling handle_it_state () may not transition the IT block state to
15721 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15722 still queried. Instead, if the FSM determines that the state should
15723 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15724 after the tencode () function: that's what it_fsm_post_encode () does.
15725
15726 Since in_it_block () calls the state handling function to get an
15727 updated state, an error may occur (due to invalid insns combination).
15728 In that case, inst.error is set.
15729 Therefore, inst.error has to be checked after the execution of
15730 the tencode () routine.
15731
15732 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15733 any pending state change (if any) that didn't take place in
15734 handle_it_state () as explained above. */
15735
15736static void
15737it_fsm_pre_encode (void)
15738{
15739 if (inst.cond != COND_ALWAYS)
15740 inst.it_insn_type = INSIDE_IT_INSN;
15741 else
15742 inst.it_insn_type = OUTSIDE_IT_INSN;
15743
15744 now_it.state_handled = 0;
15745}
15746
15747/* IT state FSM handling function. */
15748
15749static int
15750handle_it_state (void)
15751{
15752 now_it.state_handled = 1;
15753
15754 switch (now_it.state)
15755 {
15756 case OUTSIDE_IT_BLOCK:
15757 switch (inst.it_insn_type)
15758 {
15759 case OUTSIDE_IT_INSN:
15760 break;
15761
15762 case INSIDE_IT_INSN:
15763 case INSIDE_IT_LAST_INSN:
15764 if (thumb_mode == 0)
15765 {
c921be7d 15766 if (unified_syntax
e07e6e58
NC
15767 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15768 as_tsktsk (_("Warning: conditional outside an IT block"\
15769 " for Thumb."));
15770 }
15771 else
15772 {
15773 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15774 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15775 {
15776 /* Automatically generate the IT instruction. */
15777 new_automatic_it_block (inst.cond);
15778 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15779 close_automatic_it_block ();
15780 }
15781 else
15782 {
15783 inst.error = BAD_OUT_IT;
15784 return FAIL;
15785 }
15786 }
15787 break;
15788
15789 case IF_INSIDE_IT_LAST_INSN:
15790 case NEUTRAL_IT_INSN:
15791 break;
15792
15793 case IT_INSN:
15794 now_it.state = MANUAL_IT_BLOCK;
15795 now_it.block_length = 0;
15796 break;
15797 }
15798 break;
15799
15800 case AUTOMATIC_IT_BLOCK:
15801 /* Three things may happen now:
15802 a) We should increment current it block size;
15803 b) We should close current it block (closing insn or 4 insns);
15804 c) We should close current it block and start a new one (due
15805 to incompatible conditions or
15806 4 insns-length block reached). */
15807
15808 switch (inst.it_insn_type)
15809 {
15810 case OUTSIDE_IT_INSN:
15811 /* The closure of the block shall happen immediatelly,
15812 so any in_it_block () call reports the block as closed. */
15813 force_automatic_it_block_close ();
15814 break;
15815
15816 case INSIDE_IT_INSN:
15817 case INSIDE_IT_LAST_INSN:
15818 case IF_INSIDE_IT_LAST_INSN:
15819 now_it.block_length++;
15820
15821 if (now_it.block_length > 4
15822 || !now_it_compatible (inst.cond))
15823 {
15824 force_automatic_it_block_close ();
15825 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15826 new_automatic_it_block (inst.cond);
15827 }
15828 else
15829 {
15830 now_it_add_mask (inst.cond);
15831 }
15832
15833 if (now_it.state == AUTOMATIC_IT_BLOCK
15834 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15835 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15836 close_automatic_it_block ();
15837 break;
15838
15839 case NEUTRAL_IT_INSN:
15840 now_it.block_length++;
15841
15842 if (now_it.block_length > 4)
15843 force_automatic_it_block_close ();
15844 else
15845 now_it_add_mask (now_it.cc & 1);
15846 break;
15847
15848 case IT_INSN:
15849 close_automatic_it_block ();
15850 now_it.state = MANUAL_IT_BLOCK;
15851 break;
15852 }
15853 break;
15854
15855 case MANUAL_IT_BLOCK:
15856 {
15857 /* Check conditional suffixes. */
15858 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15859 int is_last;
15860 now_it.mask <<= 1;
15861 now_it.mask &= 0x1f;
15862 is_last = (now_it.mask == 0x10);
15863
15864 switch (inst.it_insn_type)
15865 {
15866 case OUTSIDE_IT_INSN:
15867 inst.error = BAD_NOT_IT;
15868 return FAIL;
15869
15870 case INSIDE_IT_INSN:
15871 if (cond != inst.cond)
15872 {
15873 inst.error = BAD_IT_COND;
15874 return FAIL;
15875 }
15876 break;
15877
15878 case INSIDE_IT_LAST_INSN:
15879 case IF_INSIDE_IT_LAST_INSN:
15880 if (cond != inst.cond)
15881 {
15882 inst.error = BAD_IT_COND;
15883 return FAIL;
15884 }
15885 if (!is_last)
15886 {
15887 inst.error = BAD_BRANCH;
15888 return FAIL;
15889 }
15890 break;
15891
15892 case NEUTRAL_IT_INSN:
15893 /* The BKPT instruction is unconditional even in an IT block. */
15894 break;
15895
15896 case IT_INSN:
15897 inst.error = BAD_IT_IT;
15898 return FAIL;
15899 }
15900 }
15901 break;
15902 }
15903
15904 return SUCCESS;
15905}
15906
15907static void
15908it_fsm_post_encode (void)
15909{
15910 int is_last;
15911
15912 if (!now_it.state_handled)
15913 handle_it_state ();
15914
15915 is_last = (now_it.mask == 0x10);
15916 if (is_last)
15917 {
15918 now_it.state = OUTSIDE_IT_BLOCK;
15919 now_it.mask = 0;
15920 }
15921}
15922
15923static void
15924force_automatic_it_block_close (void)
15925{
15926 if (now_it.state == AUTOMATIC_IT_BLOCK)
15927 {
15928 close_automatic_it_block ();
15929 now_it.state = OUTSIDE_IT_BLOCK;
15930 now_it.mask = 0;
15931 }
15932}
15933
15934static int
15935in_it_block (void)
15936{
15937 if (!now_it.state_handled)
15938 handle_it_state ();
15939
15940 return now_it.state != OUTSIDE_IT_BLOCK;
15941}
15942
c19d1205
ZW
15943void
15944md_assemble (char *str)
b99bd4ef 15945{
c19d1205
ZW
15946 char *p = str;
15947 const struct asm_opcode * opcode;
b99bd4ef 15948
c19d1205
ZW
15949 /* Align the previous label if needed. */
15950 if (last_label_seen != NULL)
b99bd4ef 15951 {
c19d1205
ZW
15952 symbol_set_frag (last_label_seen, frag_now);
15953 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15954 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
15955 }
15956
c19d1205
ZW
15957 memset (&inst, '\0', sizeof (inst));
15958 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 15959
c19d1205
ZW
15960 opcode = opcode_lookup (&p);
15961 if (!opcode)
b99bd4ef 15962 {
c19d1205 15963 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 15964 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
15965 if (! create_register_alias (str, p)
15966 && ! create_neon_reg_alias (str, p))
c19d1205 15967 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 15968
b99bd4ef
NC
15969 return;
15970 }
15971
278df34e 15972 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
15973 as_warn (_("s suffix on comparison instruction is deprecated"));
15974
037e8744
JB
15975 /* The value which unconditional instructions should have in place of the
15976 condition field. */
15977 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15978
c19d1205 15979 if (thumb_mode)
b99bd4ef 15980 {
e74cfd16 15981 arm_feature_set variant;
8f06b2d8
PB
15982
15983 variant = cpu_variant;
15984 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
15985 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15986 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 15987 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
15988 if (!opcode->tvariant
15989 || (thumb_mode == 1
15990 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 15991 {
bf3eeda7 15992 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
15993 return;
15994 }
c19d1205
ZW
15995 if (inst.cond != COND_ALWAYS && !unified_syntax
15996 && opcode->tencode != do_t_branch)
b99bd4ef 15997 {
c19d1205 15998 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
15999 return;
16000 }
16001
752d5da4 16002 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 16003 {
7e806470 16004 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
16005 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16006 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16007 {
16008 /* Two things are addressed here.
16009 1) Implicit require narrow instructions on Thumb-1.
16010 This avoids relaxation accidentally introducing Thumb-2
16011 instructions.
16012 2) Reject wide instructions in non Thumb-2 cores. */
16013 if (inst.size_req == 0)
16014 inst.size_req = 2;
16015 else if (inst.size_req == 4)
16016 {
bf3eeda7 16017 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
16018 return;
16019 }
16020 }
076d447c
PB
16021 }
16022
c19d1205
ZW
16023 inst.instruction = opcode->tvalue;
16024
5be8be5d 16025 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
16026 {
16027 /* Prepare the it_insn_type for those encodings that don't set
16028 it. */
16029 it_fsm_pre_encode ();
c19d1205 16030
e07e6e58
NC
16031 opcode->tencode ();
16032
16033 it_fsm_post_encode ();
16034 }
e27ec89e 16035
0110f2b8 16036 if (!(inst.error || inst.relax))
b99bd4ef 16037 {
9c2799c2 16038 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
16039 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16040 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 16041 {
c19d1205 16042 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
16043 return;
16044 }
16045 }
076d447c
PB
16046
16047 /* Something has gone badly wrong if we try to relax a fixed size
16048 instruction. */
9c2799c2 16049 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 16050
e74cfd16
PB
16051 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16052 *opcode->tvariant);
ee065d83 16053 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 16054 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 16055 anything other than bl/blx and v6-M instructions.
ee065d83 16056 This is overly pessimistic for relaxable instructions. */
7e806470
PB
16057 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16058 || inst.relax)
e07e6e58
NC
16059 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16060 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
16061 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16062 arm_ext_v6t2);
cd000bff 16063
88714cb8
DG
16064 check_neon_suffixes;
16065
cd000bff 16066 if (!inst.error)
c877a2f2
NC
16067 {
16068 mapping_state (MAP_THUMB);
16069 }
c19d1205 16070 }
3e9e4fcf 16071 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 16072 {
845b51d6
PB
16073 bfd_boolean is_bx;
16074
16075 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16076 is_bx = (opcode->aencode == do_bx);
16077
c19d1205 16078 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
16079 if (!(is_bx && fix_v4bx)
16080 && !(opcode->avariant &&
16081 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 16082 {
bf3eeda7 16083 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 16084 return;
b99bd4ef 16085 }
c19d1205 16086 if (inst.size_req)
b99bd4ef 16087 {
c19d1205
ZW
16088 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16089 return;
b99bd4ef
NC
16090 }
16091
c19d1205
ZW
16092 inst.instruction = opcode->avalue;
16093 if (opcode->tag == OT_unconditionalF)
16094 inst.instruction |= 0xF << 28;
16095 else
16096 inst.instruction |= inst.cond << 28;
16097 inst.size = INSN_SIZE;
5be8be5d 16098 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
16099 {
16100 it_fsm_pre_encode ();
16101 opcode->aencode ();
16102 it_fsm_post_encode ();
16103 }
ee065d83
PB
16104 /* Arm mode bx is marked as both v4T and v5 because it's still required
16105 on a hypothetical non-thumb v5 core. */
845b51d6 16106 if (is_bx)
e74cfd16 16107 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 16108 else
e74cfd16
PB
16109 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16110 *opcode->avariant);
88714cb8
DG
16111
16112 check_neon_suffixes;
16113
cd000bff 16114 if (!inst.error)
c877a2f2
NC
16115 {
16116 mapping_state (MAP_ARM);
16117 }
b99bd4ef 16118 }
3e9e4fcf
JB
16119 else
16120 {
16121 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16122 "-- `%s'"), str);
16123 return;
16124 }
c19d1205
ZW
16125 output_inst (str);
16126}
b99bd4ef 16127
e07e6e58
NC
16128static void
16129check_it_blocks_finished (void)
16130{
16131#ifdef OBJ_ELF
16132 asection *sect;
16133
16134 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16135 if (seg_info (sect)->tc_segment_info_data.current_it.state
16136 == MANUAL_IT_BLOCK)
16137 {
16138 as_warn (_("section '%s' finished with an open IT block."),
16139 sect->name);
16140 }
16141#else
16142 if (now_it.state == MANUAL_IT_BLOCK)
16143 as_warn (_("file finished with an open IT block."));
16144#endif
16145}
16146
c19d1205
ZW
16147/* Various frobbings of labels and their addresses. */
16148
16149void
16150arm_start_line_hook (void)
16151{
16152 last_label_seen = NULL;
b99bd4ef
NC
16153}
16154
c19d1205
ZW
16155void
16156arm_frob_label (symbolS * sym)
b99bd4ef 16157{
c19d1205 16158 last_label_seen = sym;
b99bd4ef 16159
c19d1205 16160 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 16161
c19d1205
ZW
16162#if defined OBJ_COFF || defined OBJ_ELF
16163 ARM_SET_INTERWORK (sym, support_interwork);
16164#endif
b99bd4ef 16165
e07e6e58
NC
16166 force_automatic_it_block_close ();
16167
5f4273c7 16168 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
16169 as Thumb functions. This is because these labels, whilst
16170 they exist inside Thumb code, are not the entry points for
16171 possible ARM->Thumb calls. Also, these labels can be used
16172 as part of a computed goto or switch statement. eg gcc
16173 can generate code that looks like this:
b99bd4ef 16174
c19d1205
ZW
16175 ldr r2, [pc, .Laaa]
16176 lsl r3, r3, #2
16177 ldr r2, [r3, r2]
16178 mov pc, r2
b99bd4ef 16179
c19d1205
ZW
16180 .Lbbb: .word .Lxxx
16181 .Lccc: .word .Lyyy
16182 ..etc...
16183 .Laaa: .word Lbbb
b99bd4ef 16184
c19d1205
ZW
16185 The first instruction loads the address of the jump table.
16186 The second instruction converts a table index into a byte offset.
16187 The third instruction gets the jump address out of the table.
16188 The fourth instruction performs the jump.
b99bd4ef 16189
c19d1205
ZW
16190 If the address stored at .Laaa is that of a symbol which has the
16191 Thumb_Func bit set, then the linker will arrange for this address
16192 to have the bottom bit set, which in turn would mean that the
16193 address computation performed by the third instruction would end
16194 up with the bottom bit set. Since the ARM is capable of unaligned
16195 word loads, the instruction would then load the incorrect address
16196 out of the jump table, and chaos would ensue. */
16197 if (label_is_thumb_function_name
16198 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16199 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16200 {
c19d1205
ZW
16201 /* When the address of a Thumb function is taken the bottom
16202 bit of that address should be set. This will allow
16203 interworking between Arm and Thumb functions to work
16204 correctly. */
b99bd4ef 16205
c19d1205 16206 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16207
c19d1205 16208 label_is_thumb_function_name = FALSE;
b99bd4ef 16209 }
07a53e5c 16210
07a53e5c 16211 dwarf2_emit_label (sym);
b99bd4ef
NC
16212}
16213
c921be7d 16214bfd_boolean
c19d1205 16215arm_data_in_code (void)
b99bd4ef 16216{
c19d1205 16217 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16218 {
c19d1205
ZW
16219 *input_line_pointer = '/';
16220 input_line_pointer += 5;
16221 *input_line_pointer = 0;
c921be7d 16222 return TRUE;
b99bd4ef
NC
16223 }
16224
c921be7d 16225 return FALSE;
b99bd4ef
NC
16226}
16227
c19d1205
ZW
16228char *
16229arm_canonicalize_symbol_name (char * name)
b99bd4ef 16230{
c19d1205 16231 int len;
b99bd4ef 16232
c19d1205
ZW
16233 if (thumb_mode && (len = strlen (name)) > 5
16234 && streq (name + len - 5, "/data"))
16235 *(name + len - 5) = 0;
b99bd4ef 16236
c19d1205 16237 return name;
b99bd4ef 16238}
c19d1205
ZW
16239\f
16240/* Table of all register names defined by default. The user can
16241 define additional names with .req. Note that all register names
16242 should appear in both upper and lowercase variants. Some registers
16243 also have mixed-case names. */
b99bd4ef 16244
dcbf9037 16245#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16246#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16247#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16248#define REGSET(p,t) \
16249 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16250 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16251 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16252 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16253#define REGSETH(p,t) \
16254 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16255 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16256 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16257 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16258#define REGSET2(p,t) \
16259 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16260 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16261 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16262 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
16263#define SPLRBANK(base,bank,t) \
16264 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16265 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16266 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16267 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16268 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16269 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 16270
c19d1205 16271static const struct reg_entry reg_names[] =
7ed4c4c5 16272{
c19d1205
ZW
16273 /* ARM integer registers. */
16274 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 16275
c19d1205
ZW
16276 /* ATPCS synonyms. */
16277 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16278 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16279 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 16280
c19d1205
ZW
16281 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16282 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16283 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 16284
c19d1205
ZW
16285 /* Well-known aliases. */
16286 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16287 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16288
16289 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16290 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16291
16292 /* Coprocessor numbers. */
16293 REGSET(p, CP), REGSET(P, CP),
16294
16295 /* Coprocessor register numbers. The "cr" variants are for backward
16296 compatibility. */
16297 REGSET(c, CN), REGSET(C, CN),
16298 REGSET(cr, CN), REGSET(CR, CN),
16299
90ec0d68
MGD
16300 /* ARM banked registers. */
16301 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16302 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16303 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16304 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16305 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16306 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16307 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16308
16309 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16310 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16311 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16312 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16313 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16314 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16315 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16316 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16317
16318 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16319 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16320 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16321 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16322 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16323 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16324 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16325 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16326 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16327
c19d1205
ZW
16328 /* FPA registers. */
16329 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16330 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16331
16332 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16333 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16334
16335 /* VFP SP registers. */
5287ad62
JB
16336 REGSET(s,VFS), REGSET(S,VFS),
16337 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
16338
16339 /* VFP DP Registers. */
5287ad62
JB
16340 REGSET(d,VFD), REGSET(D,VFD),
16341 /* Extra Neon DP registers. */
16342 REGSETH(d,VFD), REGSETH(D,VFD),
16343
16344 /* Neon QP registers. */
16345 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
16346
16347 /* VFP control registers. */
16348 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16349 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
16350 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16351 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16352 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16353 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
16354
16355 /* Maverick DSP coprocessor registers. */
16356 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16357 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16358
16359 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16360 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16361 REGDEF(dspsc,0,DSPSC),
16362
16363 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16364 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16365 REGDEF(DSPSC,0,DSPSC),
16366
16367 /* iWMMXt data registers - p0, c0-15. */
16368 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16369
16370 /* iWMMXt control registers - p1, c0-3. */
16371 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16372 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16373 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16374 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16375
16376 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16377 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16378 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16379 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16380 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16381
16382 /* XScale accumulator registers. */
16383 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16384};
16385#undef REGDEF
16386#undef REGNUM
16387#undef REGSET
7ed4c4c5 16388
c19d1205
ZW
16389/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16390 within psr_required_here. */
16391static const struct asm_psr psrs[] =
16392{
16393 /* Backward compatibility notation. Note that "all" is no longer
16394 truly all possible PSR bits. */
16395 {"all", PSR_c | PSR_f},
16396 {"flg", PSR_f},
16397 {"ctl", PSR_c},
16398
16399 /* Individual flags. */
16400 {"f", PSR_f},
16401 {"c", PSR_c},
16402 {"x", PSR_x},
16403 {"s", PSR_s},
59b42a0d
MGD
16404 {"g", PSR_s},
16405
c19d1205
ZW
16406 /* Combinations of flags. */
16407 {"fs", PSR_f | PSR_s},
16408 {"fx", PSR_f | PSR_x},
16409 {"fc", PSR_f | PSR_c},
16410 {"sf", PSR_s | PSR_f},
16411 {"sx", PSR_s | PSR_x},
16412 {"sc", PSR_s | PSR_c},
16413 {"xf", PSR_x | PSR_f},
16414 {"xs", PSR_x | PSR_s},
16415 {"xc", PSR_x | PSR_c},
16416 {"cf", PSR_c | PSR_f},
16417 {"cs", PSR_c | PSR_s},
16418 {"cx", PSR_c | PSR_x},
16419 {"fsx", PSR_f | PSR_s | PSR_x},
16420 {"fsc", PSR_f | PSR_s | PSR_c},
16421 {"fxs", PSR_f | PSR_x | PSR_s},
16422 {"fxc", PSR_f | PSR_x | PSR_c},
16423 {"fcs", PSR_f | PSR_c | PSR_s},
16424 {"fcx", PSR_f | PSR_c | PSR_x},
16425 {"sfx", PSR_s | PSR_f | PSR_x},
16426 {"sfc", PSR_s | PSR_f | PSR_c},
16427 {"sxf", PSR_s | PSR_x | PSR_f},
16428 {"sxc", PSR_s | PSR_x | PSR_c},
16429 {"scf", PSR_s | PSR_c | PSR_f},
16430 {"scx", PSR_s | PSR_c | PSR_x},
16431 {"xfs", PSR_x | PSR_f | PSR_s},
16432 {"xfc", PSR_x | PSR_f | PSR_c},
16433 {"xsf", PSR_x | PSR_s | PSR_f},
16434 {"xsc", PSR_x | PSR_s | PSR_c},
16435 {"xcf", PSR_x | PSR_c | PSR_f},
16436 {"xcs", PSR_x | PSR_c | PSR_s},
16437 {"cfs", PSR_c | PSR_f | PSR_s},
16438 {"cfx", PSR_c | PSR_f | PSR_x},
16439 {"csf", PSR_c | PSR_s | PSR_f},
16440 {"csx", PSR_c | PSR_s | PSR_x},
16441 {"cxf", PSR_c | PSR_x | PSR_f},
16442 {"cxs", PSR_c | PSR_x | PSR_s},
16443 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16444 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16445 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16446 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16447 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16448 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16449 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16450 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16451 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16452 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16453 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16454 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16455 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16456 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16457 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16458 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16459 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16460 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16461 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16462 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16463 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16464 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16465 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16466 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
59b42a0d
MGD
16467
16468 /* APSR flags */
16469 {"nzcvq", PSR_f},
16470 {"nzcvqg", PSR_s | PSR_f}
c19d1205
ZW
16471};
16472
62b3e311
PB
16473/* Table of V7M psr names. */
16474static const struct asm_psr v7m_psrs[] =
16475{
2b744c99
PB
16476 {"apsr", 0 }, {"APSR", 0 },
16477 {"iapsr", 1 }, {"IAPSR", 1 },
16478 {"eapsr", 2 }, {"EAPSR", 2 },
16479 {"psr", 3 }, {"PSR", 3 },
16480 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16481 {"ipsr", 5 }, {"IPSR", 5 },
16482 {"epsr", 6 }, {"EPSR", 6 },
16483 {"iepsr", 7 }, {"IEPSR", 7 },
16484 {"msp", 8 }, {"MSP", 8 },
16485 {"psp", 9 }, {"PSP", 9 },
16486 {"primask", 16}, {"PRIMASK", 16},
16487 {"basepri", 17}, {"BASEPRI", 17},
16488 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16489 {"faultmask", 19}, {"FAULTMASK", 19},
16490 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16491};
16492
c19d1205
ZW
16493/* Table of all shift-in-operand names. */
16494static const struct asm_shift_name shift_names [] =
b99bd4ef 16495{
c19d1205
ZW
16496 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16497 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16498 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16499 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16500 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16501 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16502};
b99bd4ef 16503
c19d1205
ZW
16504/* Table of all explicit relocation names. */
16505#ifdef OBJ_ELF
16506static struct reloc_entry reloc_names[] =
16507{
16508 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16509 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16510 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16511 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16512 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16513 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16514 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16515 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16516 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16517 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6
NC
16518 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16519 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL}
c19d1205
ZW
16520};
16521#endif
b99bd4ef 16522
c19d1205
ZW
16523/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16524static const struct asm_cond conds[] =
16525{
16526 {"eq", 0x0},
16527 {"ne", 0x1},
16528 {"cs", 0x2}, {"hs", 0x2},
16529 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16530 {"mi", 0x4},
16531 {"pl", 0x5},
16532 {"vs", 0x6},
16533 {"vc", 0x7},
16534 {"hi", 0x8},
16535 {"ls", 0x9},
16536 {"ge", 0xa},
16537 {"lt", 0xb},
16538 {"gt", 0xc},
16539 {"le", 0xd},
16540 {"al", 0xe}
16541};
bfae80f2 16542
62b3e311
PB
16543static struct asm_barrier_opt barrier_opt_names[] =
16544{
52e7f43d
RE
16545 { "sy", 0xf }, { "SY", 0xf },
16546 { "un", 0x7 }, { "UN", 0x7 },
16547 { "st", 0xe }, { "ST", 0xe },
16548 { "unst", 0x6 }, { "UNST", 0x6 },
16549 { "ish", 0xb }, { "ISH", 0xb },
16550 { "sh", 0xb }, { "SH", 0xb },
16551 { "ishst", 0xa }, { "ISHST", 0xa },
16552 { "shst", 0xa }, { "SHST", 0xa },
16553 { "nsh", 0x7 }, { "NSH", 0x7 },
16554 { "nshst", 0x6 }, { "NSHST", 0x6 },
16555 { "osh", 0x3 }, { "OSH", 0x3 },
16556 { "oshst", 0x2 }, { "OSHST", 0x2 }
62b3e311
PB
16557};
16558
c19d1205
ZW
16559/* Table of ARM-format instructions. */
16560
16561/* Macros for gluing together operand strings. N.B. In all cases
16562 other than OPS0, the trailing OP_stop comes from default
16563 zero-initialization of the unspecified elements of the array. */
16564#define OPS0() { OP_stop, }
16565#define OPS1(a) { OP_##a, }
16566#define OPS2(a,b) { OP_##a,OP_##b, }
16567#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16568#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16569#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16570#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16571
5be8be5d
DG
16572/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16573 This is useful when mixing operands for ARM and THUMB, i.e. using the
16574 MIX_ARM_THUMB_OPERANDS macro.
16575 In order to use these macros, prefix the number of operands with _
16576 e.g. _3. */
16577#define OPS_1(a) { a, }
16578#define OPS_2(a,b) { a,b, }
16579#define OPS_3(a,b,c) { a,b,c, }
16580#define OPS_4(a,b,c,d) { a,b,c,d, }
16581#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16582#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16583
c19d1205
ZW
16584/* These macros abstract out the exact format of the mnemonic table and
16585 save some repeated characters. */
16586
16587/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16588#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16589 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16590 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16591
16592/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16593 a T_MNEM_xyz enumerator. */
16594#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16595 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16596#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16597 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16598
16599/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16600 infix after the third character. */
16601#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16602 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16603 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16604#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16605 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16606 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16607#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16608 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16609#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16610 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16611#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16612 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16613#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16614 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16615
16616/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16617 appear in the condition table. */
16618#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16619 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16620 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16621
16622#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16623 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16624 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16625 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16626 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16627 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16628 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16629 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16630 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16631 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16632 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16633 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16634 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16635 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16636 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16637 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16638 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16639 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16640 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16641 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
16642
16643#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
16644 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16645#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 16646 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16647
16648/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
16649 field is still 0xE. Many of the Thumb variants can be executed
16650 conditionally, so this is checked separately. */
c19d1205 16651#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16652 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16653 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16654
16655/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16656 condition code field. */
16657#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 16658 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16659 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16660
16661/* ARM-only variants of all the above. */
6a86118a 16662#define CE(mnem, op, nops, ops, ae) \
21d799b5 16663 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
16664
16665#define C3(mnem, op, nops, ops, ae) \
16666 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16667
e3cb604e
PB
16668/* Legacy mnemonics that always have conditional infix after the third
16669 character. */
16670#define CL(mnem, op, nops, ops, ae) \
21d799b5 16671 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16672 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16673
8f06b2d8
PB
16674/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16675#define cCE(mnem, op, nops, ops, ae) \
21d799b5 16676 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16677
e3cb604e
PB
16678/* Legacy coprocessor instructions where conditional infix and conditional
16679 suffix are ambiguous. For consistency this includes all FPA instructions,
16680 not just the potentially ambiguous ones. */
16681#define cCL(mnem, op, nops, ops, ae) \
21d799b5 16682 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16683 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16684
16685/* Coprocessor, takes either a suffix or a position-3 infix
16686 (for an FPA corner case). */
16687#define C3E(mnem, op, nops, ops, ae) \
21d799b5 16688 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 16689 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16690
6a86118a 16691#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
16692 { m1 #m2 m3, OPS##nops ops, \
16693 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
16694 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16695
16696#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
16697 xCM_ (m1, , m2, op, nops, ops, ae), \
16698 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16699 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16700 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16701 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16702 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16703 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16704 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16705 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16706 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16707 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16708 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16709 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16710 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16711 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16712 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16713 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16714 xCM_ (m1, le, m2, op, nops, ops, ae), \
16715 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
16716
16717#define UE(mnem, op, nops, ops, ae) \
16718 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16719
16720#define UF(mnem, op, nops, ops, ae) \
16721 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16722
5287ad62
JB
16723/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16724 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16725 use the same encoding function for each. */
16726#define NUF(mnem, op, nops, ops, enc) \
16727 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16728 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16729
16730/* Neon data processing, version which indirects through neon_enc_tab for
16731 the various overloaded versions of opcodes. */
16732#define nUF(mnem, op, nops, ops, enc) \
21d799b5 16733 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16734 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16735
16736/* Neon insn with conditional suffix for the ARM version, non-overloaded
16737 version. */
037e8744
JB
16738#define NCE_tag(mnem, op, nops, ops, enc, tag) \
16739 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
16740 THUMB_VARIANT, do_##enc, do_##enc }
16741
037e8744 16742#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 16743 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16744
16745#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 16746 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16747
5287ad62 16748/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 16749#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 16750 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16751 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16752
037e8744 16753#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 16754 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16755
16756#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 16757 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16758
c19d1205
ZW
16759#define do_0 0
16760
c19d1205 16761static const struct asm_opcode insns[] =
bfae80f2 16762{
e74cfd16
PB
16763#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16764#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
16765 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16766 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16767 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16768 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16769 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16770 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16771 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16772 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16773 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16774 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16775 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16776 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16777 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16778 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16779 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16780 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
16781
16782 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16783 for setting PSR flag bits. They are obsolete in V6 and do not
16784 have Thumb equivalents. */
21d799b5
NC
16785 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16786 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16787 CL("tstp", 110f000, 2, (RR, SH), cmp),
16788 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16789 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16790 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16791 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16792 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16793 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16794
16795 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16796 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16797 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16798 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16799
16800 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
16801 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16802 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16803 OP_RRnpc),
16804 OP_ADDRGLDR),ldst, t_ldst),
16805 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
16806
16807 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16808 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16809 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16810 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16811 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16812 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16813
16814 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16815 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16816 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16817 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 16818
c19d1205 16819 /* Pseudo ops. */
21d799b5 16820 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 16821 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 16822 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
16823
16824 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
16825 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16826 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16827 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16828 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16829 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16830 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16831 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16832 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16833 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16834 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16835 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16836 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 16837
16a4cf17 16838 /* These may simplify to neg. */
21d799b5
NC
16839 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16840 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 16841
c921be7d
NC
16842#undef THUMB_VARIANT
16843#define THUMB_VARIANT & arm_ext_v6
16844
21d799b5 16845 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
16846
16847 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
16848#undef THUMB_VARIANT
16849#define THUMB_VARIANT & arm_ext_v6t2
16850
21d799b5
NC
16851 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16852 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16853 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 16854
5be8be5d
DG
16855 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16856 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16857 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
16858 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 16859
21d799b5
NC
16860 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16861 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 16862
21d799b5
NC
16863 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16864 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
16865
16866 /* V1 instructions with no Thumb analogue at all. */
21d799b5 16867 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
16868 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16869
16870 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16871 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16872 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16873 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16874 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16875 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16876 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16877 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16878
c921be7d
NC
16879#undef ARM_VARIANT
16880#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16881#undef THUMB_VARIANT
16882#define THUMB_VARIANT & arm_ext_v4t
16883
21d799b5
NC
16884 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16885 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 16886
c921be7d
NC
16887#undef THUMB_VARIANT
16888#define THUMB_VARIANT & arm_ext_v6t2
16889
21d799b5 16890 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
16891 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16892
16893 /* Generic coprocessor instructions. */
21d799b5
NC
16894 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16895 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16896 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16897 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16898 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16899 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 16900 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16901
c921be7d
NC
16902#undef ARM_VARIANT
16903#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16904
21d799b5 16905 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
16906 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16907
c921be7d
NC
16908#undef ARM_VARIANT
16909#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16910#undef THUMB_VARIANT
16911#define THUMB_VARIANT & arm_ext_msr
16912
90ec0d68 16913 TCE("mrs", 1000000, f3e08000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
21d799b5 16914 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205 16915
c921be7d
NC
16916#undef ARM_VARIANT
16917#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16918#undef THUMB_VARIANT
16919#define THUMB_VARIANT & arm_ext_v6t2
16920
21d799b5
NC
16921 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16922 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16923 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16924 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16925 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16926 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16927 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16928 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 16929
c921be7d
NC
16930#undef ARM_VARIANT
16931#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16932#undef THUMB_VARIANT
16933#define THUMB_VARIANT & arm_ext_v4t
16934
5be8be5d
DG
16935 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16936 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16937 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16938 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16939 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16940 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 16941
c921be7d
NC
16942#undef ARM_VARIANT
16943#define ARM_VARIANT & arm_ext_v4t_5
16944
c19d1205
ZW
16945 /* ARM Architecture 4T. */
16946 /* Note: bx (and blx) are required on V5, even if the processor does
16947 not support Thumb. */
21d799b5 16948 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 16949
c921be7d
NC
16950#undef ARM_VARIANT
16951#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16952#undef THUMB_VARIANT
16953#define THUMB_VARIANT & arm_ext_v5t
16954
c19d1205
ZW
16955 /* Note: blx has 2 variants; the .value coded here is for
16956 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
16957 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16958 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 16959
c921be7d
NC
16960#undef THUMB_VARIANT
16961#define THUMB_VARIANT & arm_ext_v6t2
16962
21d799b5
NC
16963 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16964 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16965 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16966 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16967 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16968 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16969 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16970 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16971
c921be7d
NC
16972#undef ARM_VARIANT
16973#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
16974#undef THUMB_VARIANT
16975#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 16976
21d799b5
NC
16977 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16978 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16979 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16980 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16981
21d799b5
NC
16982 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16983 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16984
21d799b5
NC
16985 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16986 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16987 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16988 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 16989
21d799b5
NC
16990 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16991 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16992 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16993 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16994
21d799b5
NC
16995 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16996 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16997
03ee1b7f
NC
16998 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16999 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17000 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17001 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 17002
c921be7d
NC
17003#undef ARM_VARIANT
17004#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
17005#undef THUMB_VARIANT
17006#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 17007
21d799b5 17008 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
17009 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17010 ldrd, t_ldstd),
17011 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17012 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 17013
21d799b5
NC
17014 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17015 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 17016
c921be7d
NC
17017#undef ARM_VARIANT
17018#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17019
21d799b5 17020 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 17021
c921be7d
NC
17022#undef ARM_VARIANT
17023#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17024#undef THUMB_VARIANT
17025#define THUMB_VARIANT & arm_ext_v6
17026
21d799b5
NC
17027 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17028 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17029 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17030 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17031 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17032 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17033 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17034 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17035 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17036 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 17037
c921be7d
NC
17038#undef THUMB_VARIANT
17039#define THUMB_VARIANT & arm_ext_v6t2
17040
5be8be5d
DG
17041 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17042 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17043 strex, t_strex),
21d799b5
NC
17044 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17045 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 17046
21d799b5
NC
17047 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17048 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 17049
9e3c6df6 17050/* ARM V6 not included in V7M. */
c921be7d
NC
17051#undef THUMB_VARIANT
17052#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
17053 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17054 UF(rfeib, 9900a00, 1, (RRw), rfe),
17055 UF(rfeda, 8100a00, 1, (RRw), rfe),
17056 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17057 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17058 UF(rfefa, 9900a00, 1, (RRw), rfe),
17059 UF(rfeea, 8100a00, 1, (RRw), rfe),
17060 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17061 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17062 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17063 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17064 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 17065
9e3c6df6
PB
17066/* ARM V6 not included in V7M (eg. integer SIMD). */
17067#undef THUMB_VARIANT
17068#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
17069 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17070 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17071 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17072 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17073 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17074 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17075 /* Old name for QASX. */
21d799b5
NC
17076 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17077 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17078 /* Old name for QSAX. */
21d799b5
NC
17079 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17080 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17081 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17082 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17083 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17084 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17085 /* Old name for SASX. */
21d799b5
NC
17086 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17087 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17088 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17089 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17090 /* Old name for SHASX. */
21d799b5
NC
17091 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17092 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17093 /* Old name for SHSAX. */
21d799b5
NC
17094 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17095 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17096 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17097 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17098 /* Old name for SSAX. */
21d799b5
NC
17099 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17100 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17101 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17102 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17103 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17104 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17105 /* Old name for UASX. */
21d799b5
NC
17106 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17107 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17108 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17109 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17110 /* Old name for UHASX. */
21d799b5
NC
17111 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17112 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17113 /* Old name for UHSAX. */
21d799b5
NC
17114 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17115 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17116 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17117 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17118 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17119 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17120 /* Old name for UQASX. */
21d799b5
NC
17121 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17122 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17123 /* Old name for UQSAX. */
21d799b5
NC
17124 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17125 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17126 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17127 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17128 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17129 /* Old name for USAX. */
21d799b5
NC
17130 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17131 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
17132 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17133 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17134 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17135 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17136 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17137 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17138 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17139 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17140 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17141 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17142 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17143 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17144 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17145 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17146 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17147 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17148 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17149 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17150 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17151 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17152 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17153 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17154 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17155 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17156 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17157 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17158 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
17159 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17160 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17161 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17162 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17163 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 17164
c921be7d
NC
17165#undef ARM_VARIANT
17166#define ARM_VARIANT & arm_ext_v6k
17167#undef THUMB_VARIANT
17168#define THUMB_VARIANT & arm_ext_v6k
17169
21d799b5
NC
17170 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17171 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17172 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17173 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 17174
c921be7d
NC
17175#undef THUMB_VARIANT
17176#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
17177 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17178 ldrexd, t_ldrexd),
17179 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17180 RRnpcb), strexd, t_strexd),
ebdca51a 17181
c921be7d
NC
17182#undef THUMB_VARIANT
17183#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
17184 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17185 rd_rn, rd_rn),
17186 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17187 rd_rn, rd_rn),
17188 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17189 strex, rm_rd_rn),
17190 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17191 strex, rm_rd_rn),
21d799b5 17192 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 17193
c921be7d 17194#undef ARM_VARIANT
f4c65163
MGD
17195#define ARM_VARIANT & arm_ext_sec
17196#undef THUMB_VARIANT
17197#define THUMB_VARIANT & arm_ext_sec
c921be7d 17198
21d799b5 17199 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 17200
90ec0d68
MGD
17201#undef ARM_VARIANT
17202#define ARM_VARIANT & arm_ext_virt
17203#undef THUMB_VARIANT
17204#define THUMB_VARIANT & arm_ext_virt
17205
17206 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17207 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17208
c921be7d
NC
17209#undef ARM_VARIANT
17210#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
17211#undef THUMB_VARIANT
17212#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 17213
21d799b5
NC
17214 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17215 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17216 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17217 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 17218
21d799b5
NC
17219 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17220 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17221 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17222 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 17223
5be8be5d
DG
17224 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17225 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17226 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17227 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 17228
bf3eeda7
NS
17229 /* Thumb-only instructions. */
17230#undef ARM_VARIANT
17231#define ARM_VARIANT NULL
17232 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17233 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
17234
17235 /* ARM does not really have an IT instruction, so always allow it.
17236 The opcode is copied from Thumb in order to allow warnings in
17237 -mimplicit-it=[never | arm] modes. */
17238#undef ARM_VARIANT
17239#define ARM_VARIANT & arm_ext_v1
17240
21d799b5
NC
17241 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17242 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17243 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17244 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17245 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17246 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17247 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17248 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17249 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17250 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17251 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17252 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17253 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17254 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17255 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 17256 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
17257 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17258 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 17259
92e90b6e 17260 /* Thumb2 only instructions. */
c921be7d
NC
17261#undef ARM_VARIANT
17262#define ARM_VARIANT NULL
92e90b6e 17263
21d799b5
NC
17264 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17265 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17266 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17267 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17268 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17269 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 17270
eea54501
MGD
17271 /* Hardware division instructions. */
17272#undef ARM_VARIANT
17273#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
17274#undef THUMB_VARIANT
17275#define THUMB_VARIANT & arm_ext_div
17276
eea54501
MGD
17277 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17278 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 17279
7e806470 17280 /* ARM V6M/V7 instructions. */
c921be7d
NC
17281#undef ARM_VARIANT
17282#define ARM_VARIANT & arm_ext_barrier
17283#undef THUMB_VARIANT
17284#define THUMB_VARIANT & arm_ext_barrier
17285
52e7f43d
RE
17286 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17287 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17288 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 17289
62b3e311 17290 /* ARM V7 instructions. */
c921be7d
NC
17291#undef ARM_VARIANT
17292#define ARM_VARIANT & arm_ext_v7
17293#undef THUMB_VARIANT
17294#define THUMB_VARIANT & arm_ext_v7
17295
21d799b5
NC
17296 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17297 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 17298
60e5ef9f
MGD
17299#undef ARM_VARIANT
17300#define ARM_VARIANT & arm_ext_mp
17301#undef THUMB_VARIANT
17302#define THUMB_VARIANT & arm_ext_mp
17303
17304 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17305
c921be7d
NC
17306#undef ARM_VARIANT
17307#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17308
21d799b5
NC
17309 cCE("wfs", e200110, 1, (RR), rd),
17310 cCE("rfs", e300110, 1, (RR), rd),
17311 cCE("wfc", e400110, 1, (RR), rd),
17312 cCE("rfc", e500110, 1, (RR), rd),
17313
17314 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17315 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17316 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17317 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17318
17319 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17320 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17321 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17322 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17323
17324 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17325 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17326 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17327 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17328 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17329 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17330 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17331 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17332 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17333 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17334 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17335 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17336
17337 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17338 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17339 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17340 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17341 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17342 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17343 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17344 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17345 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17346 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17347 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17348 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17349
17350 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17351 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17352 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17353 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17354 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17355 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17356 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17357 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17358 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17359 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17360 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17361 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17362
17363 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17364 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17365 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17366 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17367 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17368 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17369 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17370 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17371 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17372 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17373 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17374 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17375
17376 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17377 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17378 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17379 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17380 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17381 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17382 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17383 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17384 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17385 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17386 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17387 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17388
17389 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17390 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17391 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17392 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17393 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17394 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17395 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17396 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17397 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17398 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17399 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17400 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17401
17402 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17403 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17404 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17405 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17406 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17407 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17408 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17409 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17410 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17411 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17412 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17413 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17414
17415 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17416 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17417 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17418 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17419 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17420 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17421 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17422 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17423 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17424 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17425 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17426 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17427
17428 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17429 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17430 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17431 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17432 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17433 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17434 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17435 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17436 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17437 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17438 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17439 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17440
17441 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17442 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17443 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17444 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17445 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17446 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17447 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17448 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17449 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17450 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17451 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17452 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17453
17454 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17455 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17456 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17457 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17458 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17459 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17460 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17461 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17462 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17463 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17464 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17465 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17466
17467 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17468 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17469 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17470 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17471 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17472 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17473 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17474 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17475 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17476 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17477 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17478 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17479
17480 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17481 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17482 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17483 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17484 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17485 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17486 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17487 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17488 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17489 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17490 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17491 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17492
17493 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17494 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17495 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17496 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17497 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17498 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17499 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17500 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17501 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17502 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17503 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17504 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17505
17506 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17507 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17508 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17509 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17510 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17511 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17512 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17513 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17514 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17515 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17516 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17517 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17518
17519 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17520 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17521 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17522 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17523 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17524 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17525 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17526 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17527 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17528 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17529 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17530 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17531
17532 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17533 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17534 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17535 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17536 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17537 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17538 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17539 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17540 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17541 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17542 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17543 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17544
17545 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17546 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17547 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17548 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17549 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17550 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17551 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17552 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17553 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17554 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17555 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17556 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17557
17558 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17559 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17560 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17561 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17562 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17563 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17564 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17565 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17566 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17567 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17568 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17569 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17570
17571 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17572 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17573 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17574 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17575 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17576 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17577 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17578 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17579 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17580 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17581 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17582 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17583
17584 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17585 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17586 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17587 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17588 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17589 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17590 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17591 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17592 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17593 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17594 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17595 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17596
17597 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17598 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17599 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17600 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17601 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17602 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17603 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17604 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17605 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17606 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17607 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17608 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17609
17610 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17611 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17612 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17613 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17614 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17615 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17616 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17617 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17618 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17619 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17620 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17621 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17622
17623 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17624 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17625 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17626 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17627 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17628 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17629 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17630 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17631 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17632 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17633 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17634 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17635
17636 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17637 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17638 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17639 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17640 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17641 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17642 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17643 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17644 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17645 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17646 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17647 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17648
17649 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17650 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17651 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17652 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17653 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17654 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17655 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17656 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17657 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17658 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17659 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17660 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17661
17662 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17663 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17664 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17665 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17666 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17667 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17668 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17669 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17670 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17671 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17672 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17673 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17674
17675 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17676 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17677 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17678 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17679 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17680 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17681 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17682 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17683 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17684 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17685 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17686 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17687
17688 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17689 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17690 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17691 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17692 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17693 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17694 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17695 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17696 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17697 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17698 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17699 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17700
17701 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17702 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17703 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17704 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17705
17706 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17707 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17708 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17709 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17710 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17711 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17712 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17713 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17714 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17715 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17716 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17717 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 17718
c19d1205
ZW
17719 /* The implementation of the FIX instruction is broken on some
17720 assemblers, in that it accepts a precision specifier as well as a
17721 rounding specifier, despite the fact that this is meaningless.
17722 To be more compatible, we accept it as well, though of course it
17723 does not set any bits. */
21d799b5
NC
17724 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17725 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17726 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17727 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17728 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17729 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17730 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17731 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17732 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17733 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17734 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17735 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17736 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 17737
c19d1205 17738 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
17739#undef ARM_VARIANT
17740#define ARM_VARIANT & fpu_fpa_ext_v2
17741
21d799b5
NC
17742 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17743 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17744 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17745 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17746 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17747 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 17748
c921be7d
NC
17749#undef ARM_VARIANT
17750#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17751
c19d1205 17752 /* Moves and type conversions. */
21d799b5
NC
17753 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17754 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17755 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17756 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
17757 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17758 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
17759 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17760 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17761 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17762 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17763 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17764 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17765 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17766 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
17767
17768 /* Memory operations. */
21d799b5
NC
17769 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17770 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
17771 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17772 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17773 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17774 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17775 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17776 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17777 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17778 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17779 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17780 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17781 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17782 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17783 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17784 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17785 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17786 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 17787
c19d1205 17788 /* Monadic operations. */
21d799b5
NC
17789 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17790 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17791 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
17792
17793 /* Dyadic operations. */
21d799b5
NC
17794 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17795 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17796 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17797 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17798 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17799 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17800 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17801 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17802 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 17803
c19d1205 17804 /* Comparisons. */
21d799b5
NC
17805 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17806 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17807 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17808 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 17809
62f3b8c8
PB
17810 /* Double precision load/store are still present on single precision
17811 implementations. */
17812 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17813 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
17814 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17815 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17816 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17817 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17818 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17819 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17820 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17821 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 17822
c921be7d
NC
17823#undef ARM_VARIANT
17824#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17825
c19d1205 17826 /* Moves and type conversions. */
21d799b5
NC
17827 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17828 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17829 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17830 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17831 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17832 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17833 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17834 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17835 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17836 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17837 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17838 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17839 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 17840
c19d1205 17841 /* Monadic operations. */
21d799b5
NC
17842 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17843 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17844 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
17845
17846 /* Dyadic operations. */
21d799b5
NC
17847 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17848 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17849 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17850 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17851 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17852 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17853 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17854 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17855 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 17856
c19d1205 17857 /* Comparisons. */
21d799b5
NC
17858 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17859 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17860 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17861 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 17862
c921be7d
NC
17863#undef ARM_VARIANT
17864#define ARM_VARIANT & fpu_vfp_ext_v2
17865
21d799b5
NC
17866 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17867 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17868 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17869 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 17870
037e8744
JB
17871/* Instructions which may belong to either the Neon or VFP instruction sets.
17872 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
17873#undef ARM_VARIANT
17874#define ARM_VARIANT & fpu_vfp_ext_v1xd
17875#undef THUMB_VARIANT
17876#define THUMB_VARIANT & fpu_vfp_ext_v1xd
17877
037e8744
JB
17878 /* These mnemonics are unique to VFP. */
17879 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17880 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
17881 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17882 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17883 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17884 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17885 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
17886 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17887 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17888 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17889
17890 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
17891 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17892 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17893 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 17894
21d799b5
NC
17895 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17896 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
17897
17898 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17899 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17900
55881a11
MGD
17901 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17902 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17903 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17904 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17905 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17906 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
17907 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17908 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 17909
e3e535bc
NC
17910 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17911 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
17912 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17913 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 17914
037e8744
JB
17915
17916 /* NOTE: All VMOV encoding is special-cased! */
17917 NCE(vmov, 0, 1, (VMOV), neon_mov),
17918 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17919
c921be7d
NC
17920#undef THUMB_VARIANT
17921#define THUMB_VARIANT & fpu_neon_ext_v1
17922#undef ARM_VARIANT
17923#define ARM_VARIANT & fpu_neon_ext_v1
17924
5287ad62
JB
17925 /* Data processing with three registers of the same length. */
17926 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17927 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17928 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17929 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17930 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17931 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17932 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17933 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17934 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17935 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17936 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17937 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17938 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17939 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
17940 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17941 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17942 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17943 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
17944 /* If not immediate, fall back to neon_dyadic_i64_su.
17945 shl_imm should accept I8 I16 I32 I64,
17946 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
17947 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17948 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17949 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17950 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 17951 /* Logic ops, types optional & ignored. */
4316f0d2
DG
17952 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17953 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17954 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17955 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17956 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17957 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17958 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17959 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17960 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17961 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
17962 /* Bitfield ops, untyped. */
17963 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17964 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17965 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17966 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17967 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17968 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17969 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
17970 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17971 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17972 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17973 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17974 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17975 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
17976 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17977 back to neon_dyadic_if_su. */
21d799b5
NC
17978 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17979 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17980 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17981 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17982 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17983 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17984 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17985 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 17986 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
17987 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17988 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 17989 /* As above, D registers only. */
21d799b5
NC
17990 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17991 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 17992 /* Int and float variants, signedness unimportant. */
21d799b5
NC
17993 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17994 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17995 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 17996 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
17997 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17998 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
17999 /* vtst takes sizes 8, 16, 32. */
18000 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18001 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18002 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 18003 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 18004 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
18005 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18006 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18007 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18008 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
18009 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18010 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18011 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18012 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
18013 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18014 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18015 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18016 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
18017 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18018 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18019 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18020 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18021
18022 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 18023 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
18024 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18025
18026 /* Data processing with two registers and a shift amount. */
18027 /* Right shifts, and variants with rounding.
18028 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18029 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18030 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18031 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18032 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18033 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18034 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18035 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18036 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18037 /* Shift and insert. Sizes accepted 8 16 32 64. */
18038 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18039 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18040 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18041 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18042 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18043 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18044 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18045 /* Right shift immediate, saturating & narrowing, with rounding variants.
18046 Types accepted S16 S32 S64 U16 U32 U64. */
18047 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18048 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18049 /* As above, unsigned. Types accepted S16 S32 S64. */
18050 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18051 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18052 /* Right shift narrowing. Types accepted I16 I32 I64. */
18053 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18054 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18055 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 18056 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 18057 /* CVT with optional immediate for fixed-point variant. */
21d799b5 18058 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 18059
4316f0d2
DG
18060 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18061 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
18062
18063 /* Data processing, three registers of different lengths. */
18064 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18065 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18066 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18067 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18068 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18069 /* If not scalar, fall back to neon_dyadic_long.
18070 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
18071 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18072 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
18073 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18074 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18075 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18076 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18077 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18078 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18079 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18080 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18081 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
18082 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18083 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18084 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
18085 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18086 S16 S32 U16 U32. */
21d799b5 18087 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
18088
18089 /* Extract. Size 8. */
3b8d421e
PB
18090 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18091 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
18092
18093 /* Two registers, miscellaneous. */
18094 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18095 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18096 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18097 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18098 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18099 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18100 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18101 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
18102 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18103 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
18104 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18105 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18106 /* VMOVN. Types I16 I32 I64. */
21d799b5 18107 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 18108 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 18109 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 18110 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 18111 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
18112 /* VZIP / VUZP. Sizes 8 16 32. */
18113 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18114 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18115 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18116 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18117 /* VQABS / VQNEG. Types S8 S16 S32. */
18118 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18119 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18120 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18121 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18122 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18123 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18124 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18125 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18126 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18127 /* Reciprocal estimates. Types U32 F32. */
18128 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18129 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18130 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18131 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18132 /* VCLS. Types S8 S16 S32. */
18133 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18134 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18135 /* VCLZ. Types I8 I16 I32. */
18136 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18137 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18138 /* VCNT. Size 8. */
18139 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18140 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18141 /* Two address, untyped. */
18142 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18143 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18144 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
18145 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18146 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
18147
18148 /* Table lookup. Size 8. */
18149 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18150 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18151
c921be7d
NC
18152#undef THUMB_VARIANT
18153#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18154#undef ARM_VARIANT
18155#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18156
5287ad62 18157 /* Neon element/structure load/store. */
21d799b5
NC
18158 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18159 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18160 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18161 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18162 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18163 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18164 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18165 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 18166
c921be7d 18167#undef THUMB_VARIANT
62f3b8c8
PB
18168#define THUMB_VARIANT &fpu_vfp_ext_v3xd
18169#undef ARM_VARIANT
18170#define ARM_VARIANT &fpu_vfp_ext_v3xd
18171 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18172 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18173 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18174 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18175 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18176 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18177 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18178 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18179 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18180
18181#undef THUMB_VARIANT
c921be7d
NC
18182#define THUMB_VARIANT & fpu_vfp_ext_v3
18183#undef ARM_VARIANT
18184#define ARM_VARIANT & fpu_vfp_ext_v3
18185
21d799b5 18186 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 18187 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18188 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18189 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18190 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18191 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18192 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18193 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18194 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 18195
62f3b8c8
PB
18196#undef ARM_VARIANT
18197#define ARM_VARIANT &fpu_vfp_ext_fma
18198#undef THUMB_VARIANT
18199#define THUMB_VARIANT &fpu_vfp_ext_fma
18200 /* Mnemonics shared by Neon and VFP. These are included in the
18201 VFP FMA variant; NEON and VFP FMA always includes the NEON
18202 FMA instructions. */
18203 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18204 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18205 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18206 the v form should always be used. */
18207 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18208 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18209 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18210 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18211 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18212 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18213
5287ad62 18214#undef THUMB_VARIANT
c921be7d
NC
18215#undef ARM_VARIANT
18216#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18217
21d799b5
NC
18218 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18219 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18220 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18221 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18222 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18223 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18224 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18225 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 18226
c921be7d
NC
18227#undef ARM_VARIANT
18228#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18229
21d799b5
NC
18230 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18231 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18232 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18233 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18234 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18235 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18236 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18237 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18238 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18239 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18240 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18241 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18242 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18243 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18244 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18245 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18246 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18247 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18248 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18249 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18250 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18251 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18252 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18253 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18254 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18255 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18256 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18257 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18258 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18259 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18260 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18261 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18262 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18263 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18264 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18265 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18266 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18267 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18268 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18269 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18270 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18271 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18272 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18273 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18274 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18275 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18276 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18277 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18278 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18279 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18280 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18281 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18282 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18283 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18284 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18285 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18286 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18287 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18288 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18289 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18290 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18291 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18292 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18293 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18294 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18295 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18296 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18297 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18298 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18299 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18300 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18301 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18302 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18303 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18304 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18305 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18306 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18307 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18308 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18309 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18310 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18311 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18312 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18313 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18314 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18315 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18316 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18317 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18318 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18319 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18320 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18321 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18322 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18323 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18324 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18325 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18326 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18327 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18328 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18329 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18330 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18331 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18332 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18333 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18334 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18335 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18336 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18337 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18338 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18339 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18340 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18341 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18342 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18343 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18344 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18345 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18346 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18347 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18348 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18349 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18350 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18351 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18352 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18353 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18354 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18355 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18356 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18357 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18358 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18359 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18360 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18361 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18362 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18363 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18364 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18365 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18366 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18367 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18368 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18369 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18370 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18371 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18372 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18373 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18374 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18375 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18376 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18377 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18378 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18379 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18380 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18381 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18382 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18383 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18384 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18385 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18386 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18387 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18388 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18389 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18390 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18391 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 18392
c921be7d
NC
18393#undef ARM_VARIANT
18394#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18395
21d799b5
NC
18396 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18397 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18398 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18399 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18400 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18401 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18402 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18403 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18404 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18405 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18406 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18407 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18408 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18409 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18410 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18411 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18412 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18413 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18414 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18415 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18416 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18417 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18418 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18419 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18420 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18421 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18422 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18423 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18424 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18425 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18426 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18427 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18428 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18429 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18430 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18431 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18432 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18433 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18434 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18435 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18436 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18437 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18438 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18439 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18440 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18441 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18442 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18443 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18444 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18445 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18446 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18447 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18448 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18449 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18450 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18451 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18452 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 18453
c921be7d
NC
18454#undef ARM_VARIANT
18455#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18456
21d799b5
NC
18457 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18458 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18459 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18460 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18461 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18462 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18463 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18464 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18465 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18466 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18467 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18468 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18469 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18470 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18471 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18472 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18473 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18474 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18475 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18476 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18477 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18478 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18479 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18480 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18481 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18482 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18483 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18484 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18485 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18486 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18487 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18488 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18489 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18490 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18491 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18492 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18493 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18494 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18495 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18496 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18497 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18498 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18499 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18500 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18501 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18502 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18503 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18504 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18505 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18506 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18507 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18508 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18509 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18510 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18511 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18512 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18513 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18514 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18515 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18516 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18517 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18518 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18519 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18520 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18521 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18522 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18523 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18524 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18525 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18526 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18527 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18528 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18529 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18530 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18531 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18532 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18533};
18534#undef ARM_VARIANT
18535#undef THUMB_VARIANT
18536#undef TCE
18537#undef TCM
18538#undef TUE
18539#undef TUF
18540#undef TCC
8f06b2d8 18541#undef cCE
e3cb604e
PB
18542#undef cCL
18543#undef C3E
c19d1205
ZW
18544#undef CE
18545#undef CM
18546#undef UE
18547#undef UF
18548#undef UT
5287ad62
JB
18549#undef NUF
18550#undef nUF
18551#undef NCE
18552#undef nCE
c19d1205
ZW
18553#undef OPS0
18554#undef OPS1
18555#undef OPS2
18556#undef OPS3
18557#undef OPS4
18558#undef OPS5
18559#undef OPS6
18560#undef do_0
18561\f
18562/* MD interface: bits in the object file. */
bfae80f2 18563
c19d1205
ZW
18564/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18565 for use in the a.out file, and stores them in the array pointed to by buf.
18566 This knows about the endian-ness of the target machine and does
18567 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18568 2 (short) and 4 (long) Floating numbers are put out as a series of
18569 LITTLENUMS (shorts, here at least). */
b99bd4ef 18570
c19d1205
ZW
18571void
18572md_number_to_chars (char * buf, valueT val, int n)
18573{
18574 if (target_big_endian)
18575 number_to_chars_bigendian (buf, val, n);
18576 else
18577 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18578}
18579
c19d1205
ZW
18580static valueT
18581md_chars_to_number (char * buf, int n)
bfae80f2 18582{
c19d1205
ZW
18583 valueT result = 0;
18584 unsigned char * where = (unsigned char *) buf;
bfae80f2 18585
c19d1205 18586 if (target_big_endian)
b99bd4ef 18587 {
c19d1205
ZW
18588 while (n--)
18589 {
18590 result <<= 8;
18591 result |= (*where++ & 255);
18592 }
b99bd4ef 18593 }
c19d1205 18594 else
b99bd4ef 18595 {
c19d1205
ZW
18596 while (n--)
18597 {
18598 result <<= 8;
18599 result |= (where[n] & 255);
18600 }
bfae80f2 18601 }
b99bd4ef 18602
c19d1205 18603 return result;
bfae80f2 18604}
b99bd4ef 18605
c19d1205 18606/* MD interface: Sections. */
b99bd4ef 18607
0110f2b8
PB
18608/* Estimate the size of a frag before relaxing. Assume everything fits in
18609 2 bytes. */
18610
c19d1205 18611int
0110f2b8 18612md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18613 segT segtype ATTRIBUTE_UNUSED)
18614{
0110f2b8
PB
18615 fragp->fr_var = 2;
18616 return 2;
18617}
18618
18619/* Convert a machine dependent frag. */
18620
18621void
18622md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18623{
18624 unsigned long insn;
18625 unsigned long old_op;
18626 char *buf;
18627 expressionS exp;
18628 fixS *fixp;
18629 int reloc_type;
18630 int pc_rel;
18631 int opcode;
18632
18633 buf = fragp->fr_literal + fragp->fr_fix;
18634
18635 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
18636 if (fragp->fr_symbol)
18637 {
0110f2b8
PB
18638 exp.X_op = O_symbol;
18639 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
18640 }
18641 else
18642 {
0110f2b8 18643 exp.X_op = O_constant;
5f4273c7 18644 }
0110f2b8
PB
18645 exp.X_add_number = fragp->fr_offset;
18646 opcode = fragp->fr_subtype;
18647 switch (opcode)
18648 {
18649 case T_MNEM_ldr_pc:
18650 case T_MNEM_ldr_pc2:
18651 case T_MNEM_ldr_sp:
18652 case T_MNEM_str_sp:
18653 case T_MNEM_ldr:
18654 case T_MNEM_ldrb:
18655 case T_MNEM_ldrh:
18656 case T_MNEM_str:
18657 case T_MNEM_strb:
18658 case T_MNEM_strh:
18659 if (fragp->fr_var == 4)
18660 {
5f4273c7 18661 insn = THUMB_OP32 (opcode);
0110f2b8
PB
18662 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18663 {
18664 insn |= (old_op & 0x700) << 4;
18665 }
18666 else
18667 {
18668 insn |= (old_op & 7) << 12;
18669 insn |= (old_op & 0x38) << 13;
18670 }
18671 insn |= 0x00000c00;
18672 put_thumb32_insn (buf, insn);
18673 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18674 }
18675 else
18676 {
18677 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18678 }
18679 pc_rel = (opcode == T_MNEM_ldr_pc2);
18680 break;
18681 case T_MNEM_adr:
18682 if (fragp->fr_var == 4)
18683 {
18684 insn = THUMB_OP32 (opcode);
18685 insn |= (old_op & 0xf0) << 4;
18686 put_thumb32_insn (buf, insn);
18687 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18688 }
18689 else
18690 {
18691 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18692 exp.X_add_number -= 4;
18693 }
18694 pc_rel = 1;
18695 break;
18696 case T_MNEM_mov:
18697 case T_MNEM_movs:
18698 case T_MNEM_cmp:
18699 case T_MNEM_cmn:
18700 if (fragp->fr_var == 4)
18701 {
18702 int r0off = (opcode == T_MNEM_mov
18703 || opcode == T_MNEM_movs) ? 0 : 8;
18704 insn = THUMB_OP32 (opcode);
18705 insn = (insn & 0xe1ffffff) | 0x10000000;
18706 insn |= (old_op & 0x700) << r0off;
18707 put_thumb32_insn (buf, insn);
18708 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18709 }
18710 else
18711 {
18712 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18713 }
18714 pc_rel = 0;
18715 break;
18716 case T_MNEM_b:
18717 if (fragp->fr_var == 4)
18718 {
18719 insn = THUMB_OP32(opcode);
18720 put_thumb32_insn (buf, insn);
18721 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18722 }
18723 else
18724 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18725 pc_rel = 1;
18726 break;
18727 case T_MNEM_bcond:
18728 if (fragp->fr_var == 4)
18729 {
18730 insn = THUMB_OP32(opcode);
18731 insn |= (old_op & 0xf00) << 14;
18732 put_thumb32_insn (buf, insn);
18733 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18734 }
18735 else
18736 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18737 pc_rel = 1;
18738 break;
18739 case T_MNEM_add_sp:
18740 case T_MNEM_add_pc:
18741 case T_MNEM_inc_sp:
18742 case T_MNEM_dec_sp:
18743 if (fragp->fr_var == 4)
18744 {
18745 /* ??? Choose between add and addw. */
18746 insn = THUMB_OP32 (opcode);
18747 insn |= (old_op & 0xf0) << 4;
18748 put_thumb32_insn (buf, insn);
16805f35
PB
18749 if (opcode == T_MNEM_add_pc)
18750 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18751 else
18752 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
18753 }
18754 else
18755 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18756 pc_rel = 0;
18757 break;
18758
18759 case T_MNEM_addi:
18760 case T_MNEM_addis:
18761 case T_MNEM_subi:
18762 case T_MNEM_subis:
18763 if (fragp->fr_var == 4)
18764 {
18765 insn = THUMB_OP32 (opcode);
18766 insn |= (old_op & 0xf0) << 4;
18767 insn |= (old_op & 0xf) << 16;
18768 put_thumb32_insn (buf, insn);
16805f35
PB
18769 if (insn & (1 << 20))
18770 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18771 else
18772 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
18773 }
18774 else
18775 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18776 pc_rel = 0;
18777 break;
18778 default:
5f4273c7 18779 abort ();
0110f2b8
PB
18780 }
18781 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 18782 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
18783 fixp->fx_file = fragp->fr_file;
18784 fixp->fx_line = fragp->fr_line;
18785 fragp->fr_fix += fragp->fr_var;
18786}
18787
18788/* Return the size of a relaxable immediate operand instruction.
18789 SHIFT and SIZE specify the form of the allowable immediate. */
18790static int
18791relax_immediate (fragS *fragp, int size, int shift)
18792{
18793 offsetT offset;
18794 offsetT mask;
18795 offsetT low;
18796
18797 /* ??? Should be able to do better than this. */
18798 if (fragp->fr_symbol)
18799 return 4;
18800
18801 low = (1 << shift) - 1;
18802 mask = (1 << (shift + size)) - (1 << shift);
18803 offset = fragp->fr_offset;
18804 /* Force misaligned offsets to 32-bit variant. */
18805 if (offset & low)
5e77afaa 18806 return 4;
0110f2b8
PB
18807 if (offset & ~mask)
18808 return 4;
18809 return 2;
18810}
18811
5e77afaa
PB
18812/* Get the address of a symbol during relaxation. */
18813static addressT
5f4273c7 18814relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
18815{
18816 fragS *sym_frag;
18817 addressT addr;
18818 symbolS *sym;
18819
18820 sym = fragp->fr_symbol;
18821 sym_frag = symbol_get_frag (sym);
18822 know (S_GET_SEGMENT (sym) != absolute_section
18823 || sym_frag == &zero_address_frag);
18824 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18825
18826 /* If frag has yet to be reached on this pass, assume it will
18827 move by STRETCH just as we did. If this is not so, it will
18828 be because some frag between grows, and that will force
18829 another pass. */
18830
18831 if (stretch != 0
18832 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
18833 {
18834 fragS *f;
18835
18836 /* Adjust stretch for any alignment frag. Note that if have
18837 been expanding the earlier code, the symbol may be
18838 defined in what appears to be an earlier frag. FIXME:
18839 This doesn't handle the fr_subtype field, which specifies
18840 a maximum number of bytes to skip when doing an
18841 alignment. */
18842 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18843 {
18844 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18845 {
18846 if (stretch < 0)
18847 stretch = - ((- stretch)
18848 & ~ ((1 << (int) f->fr_offset) - 1));
18849 else
18850 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18851 if (stretch == 0)
18852 break;
18853 }
18854 }
18855 if (f != NULL)
18856 addr += stretch;
18857 }
5e77afaa
PB
18858
18859 return addr;
18860}
18861
0110f2b8
PB
18862/* Return the size of a relaxable adr pseudo-instruction or PC-relative
18863 load. */
18864static int
5e77afaa 18865relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
18866{
18867 addressT addr;
18868 offsetT val;
18869
18870 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
18871 if (fragp->fr_symbol == NULL
18872 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
18873 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18874 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
18875 return 4;
18876
5f4273c7 18877 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18878 addr = fragp->fr_address + fragp->fr_fix;
18879 addr = (addr + 4) & ~3;
5e77afaa 18880 /* Force misaligned targets to 32-bit variant. */
0110f2b8 18881 if (val & 3)
5e77afaa 18882 return 4;
0110f2b8
PB
18883 val -= addr;
18884 if (val < 0 || val > 1020)
18885 return 4;
18886 return 2;
18887}
18888
18889/* Return the size of a relaxable add/sub immediate instruction. */
18890static int
18891relax_addsub (fragS *fragp, asection *sec)
18892{
18893 char *buf;
18894 int op;
18895
18896 buf = fragp->fr_literal + fragp->fr_fix;
18897 op = bfd_get_16(sec->owner, buf);
18898 if ((op & 0xf) == ((op >> 4) & 0xf))
18899 return relax_immediate (fragp, 8, 0);
18900 else
18901 return relax_immediate (fragp, 3, 0);
18902}
18903
18904
18905/* Return the size of a relaxable branch instruction. BITS is the
18906 size of the offset field in the narrow instruction. */
18907
18908static int
5e77afaa 18909relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
18910{
18911 addressT addr;
18912 offsetT val;
18913 offsetT limit;
18914
18915 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 18916 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
18917 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18918 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
18919 return 4;
18920
267bf995
RR
18921#ifdef OBJ_ELF
18922 if (S_IS_DEFINED (fragp->fr_symbol)
18923 && ARM_IS_FUNC (fragp->fr_symbol))
18924 return 4;
18925#endif
18926
5f4273c7 18927 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18928 addr = fragp->fr_address + fragp->fr_fix + 4;
18929 val -= addr;
18930
18931 /* Offset is a signed value *2 */
18932 limit = 1 << bits;
18933 if (val >= limit || val < -limit)
18934 return 4;
18935 return 2;
18936}
18937
18938
18939/* Relax a machine dependent frag. This returns the amount by which
18940 the current size of the frag should change. */
18941
18942int
5e77afaa 18943arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
18944{
18945 int oldsize;
18946 int newsize;
18947
18948 oldsize = fragp->fr_var;
18949 switch (fragp->fr_subtype)
18950 {
18951 case T_MNEM_ldr_pc2:
5f4273c7 18952 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18953 break;
18954 case T_MNEM_ldr_pc:
18955 case T_MNEM_ldr_sp:
18956 case T_MNEM_str_sp:
5f4273c7 18957 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
18958 break;
18959 case T_MNEM_ldr:
18960 case T_MNEM_str:
5f4273c7 18961 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
18962 break;
18963 case T_MNEM_ldrh:
18964 case T_MNEM_strh:
5f4273c7 18965 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
18966 break;
18967 case T_MNEM_ldrb:
18968 case T_MNEM_strb:
5f4273c7 18969 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
18970 break;
18971 case T_MNEM_adr:
5f4273c7 18972 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18973 break;
18974 case T_MNEM_mov:
18975 case T_MNEM_movs:
18976 case T_MNEM_cmp:
18977 case T_MNEM_cmn:
5f4273c7 18978 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
18979 break;
18980 case T_MNEM_b:
5f4273c7 18981 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
18982 break;
18983 case T_MNEM_bcond:
5f4273c7 18984 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
18985 break;
18986 case T_MNEM_add_sp:
18987 case T_MNEM_add_pc:
18988 newsize = relax_immediate (fragp, 8, 2);
18989 break;
18990 case T_MNEM_inc_sp:
18991 case T_MNEM_dec_sp:
18992 newsize = relax_immediate (fragp, 7, 2);
18993 break;
18994 case T_MNEM_addi:
18995 case T_MNEM_addis:
18996 case T_MNEM_subi:
18997 case T_MNEM_subis:
18998 newsize = relax_addsub (fragp, sec);
18999 break;
19000 default:
5f4273c7 19001 abort ();
0110f2b8 19002 }
5e77afaa
PB
19003
19004 fragp->fr_var = newsize;
19005 /* Freeze wide instructions that are at or before the same location as
19006 in the previous pass. This avoids infinite loops.
5f4273c7
NC
19007 Don't freeze them unconditionally because targets may be artificially
19008 misaligned by the expansion of preceding frags. */
5e77afaa 19009 if (stretch <= 0 && newsize > 2)
0110f2b8 19010 {
0110f2b8 19011 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 19012 frag_wane (fragp);
0110f2b8 19013 }
5e77afaa 19014
0110f2b8 19015 return newsize - oldsize;
c19d1205 19016}
b99bd4ef 19017
c19d1205 19018/* Round up a section size to the appropriate boundary. */
b99bd4ef 19019
c19d1205
ZW
19020valueT
19021md_section_align (segT segment ATTRIBUTE_UNUSED,
19022 valueT size)
19023{
f0927246
NC
19024#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19025 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19026 {
19027 /* For a.out, force the section size to be aligned. If we don't do
19028 this, BFD will align it for us, but it will not write out the
19029 final bytes of the section. This may be a bug in BFD, but it is
19030 easier to fix it here since that is how the other a.out targets
19031 work. */
19032 int align;
19033
19034 align = bfd_get_section_alignment (stdoutput, segment);
19035 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19036 }
c19d1205 19037#endif
f0927246
NC
19038
19039 return size;
bfae80f2 19040}
b99bd4ef 19041
c19d1205
ZW
19042/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19043 of an rs_align_code fragment. */
19044
19045void
19046arm_handle_align (fragS * fragP)
bfae80f2 19047{
e7495e45
NS
19048 static char const arm_noop[2][2][4] =
19049 {
19050 { /* ARMv1 */
19051 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19052 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19053 },
19054 { /* ARMv6k */
19055 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19056 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19057 },
19058 };
19059 static char const thumb_noop[2][2][2] =
19060 {
19061 { /* Thumb-1 */
19062 {0xc0, 0x46}, /* LE */
19063 {0x46, 0xc0}, /* BE */
19064 },
19065 { /* Thumb-2 */
19066 {0x00, 0xbf}, /* LE */
19067 {0xbf, 0x00} /* BE */
19068 }
19069 };
19070 static char const wide_thumb_noop[2][4] =
19071 { /* Wide Thumb-2 */
19072 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19073 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19074 };
c921be7d 19075
e7495e45 19076 unsigned bytes, fix, noop_size;
c19d1205
ZW
19077 char * p;
19078 const char * noop;
e7495e45 19079 const char *narrow_noop = NULL;
cd000bff
DJ
19080#ifdef OBJ_ELF
19081 enum mstate state;
19082#endif
bfae80f2 19083
c19d1205 19084 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
19085 return;
19086
c19d1205
ZW
19087 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19088 p = fragP->fr_literal + fragP->fr_fix;
19089 fix = 0;
bfae80f2 19090
c19d1205
ZW
19091 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19092 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 19093
cd000bff 19094 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 19095
cd000bff 19096 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 19097 {
e7495e45
NS
19098 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19099 {
19100 narrow_noop = thumb_noop[1][target_big_endian];
19101 noop = wide_thumb_noop[target_big_endian];
19102 }
c19d1205 19103 else
e7495e45
NS
19104 noop = thumb_noop[0][target_big_endian];
19105 noop_size = 2;
cd000bff
DJ
19106#ifdef OBJ_ELF
19107 state = MAP_THUMB;
19108#endif
7ed4c4c5
NC
19109 }
19110 else
19111 {
e7495e45
NS
19112 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19113 [target_big_endian];
19114 noop_size = 4;
cd000bff
DJ
19115#ifdef OBJ_ELF
19116 state = MAP_ARM;
19117#endif
7ed4c4c5 19118 }
c921be7d 19119
e7495e45 19120 fragP->fr_var = noop_size;
c921be7d 19121
c19d1205 19122 if (bytes & (noop_size - 1))
7ed4c4c5 19123 {
c19d1205 19124 fix = bytes & (noop_size - 1);
cd000bff
DJ
19125#ifdef OBJ_ELF
19126 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19127#endif
c19d1205
ZW
19128 memset (p, 0, fix);
19129 p += fix;
19130 bytes -= fix;
a737bd4d 19131 }
a737bd4d 19132
e7495e45
NS
19133 if (narrow_noop)
19134 {
19135 if (bytes & noop_size)
19136 {
19137 /* Insert a narrow noop. */
19138 memcpy (p, narrow_noop, noop_size);
19139 p += noop_size;
19140 bytes -= noop_size;
19141 fix += noop_size;
19142 }
19143
19144 /* Use wide noops for the remainder */
19145 noop_size = 4;
19146 }
19147
c19d1205 19148 while (bytes >= noop_size)
a737bd4d 19149 {
c19d1205
ZW
19150 memcpy (p, noop, noop_size);
19151 p += noop_size;
19152 bytes -= noop_size;
19153 fix += noop_size;
a737bd4d
NC
19154 }
19155
c19d1205 19156 fragP->fr_fix += fix;
a737bd4d
NC
19157}
19158
c19d1205
ZW
19159/* Called from md_do_align. Used to create an alignment
19160 frag in a code section. */
19161
19162void
19163arm_frag_align_code (int n, int max)
bfae80f2 19164{
c19d1205 19165 char * p;
7ed4c4c5 19166
c19d1205 19167 /* We assume that there will never be a requirement
6ec8e702 19168 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 19169 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
19170 {
19171 char err_msg[128];
19172
19173 sprintf (err_msg,
19174 _("alignments greater than %d bytes not supported in .text sections."),
19175 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 19176 as_fatal ("%s", err_msg);
6ec8e702 19177 }
bfae80f2 19178
c19d1205
ZW
19179 p = frag_var (rs_align_code,
19180 MAX_MEM_FOR_RS_ALIGN_CODE,
19181 1,
19182 (relax_substateT) max,
19183 (symbolS *) NULL,
19184 (offsetT) n,
19185 (char *) NULL);
19186 *p = 0;
19187}
bfae80f2 19188
8dc2430f
NC
19189/* Perform target specific initialisation of a frag.
19190 Note - despite the name this initialisation is not done when the frag
19191 is created, but only when its type is assigned. A frag can be created
19192 and used a long time before its type is set, so beware of assuming that
19193 this initialisationis performed first. */
bfae80f2 19194
cd000bff
DJ
19195#ifndef OBJ_ELF
19196void
19197arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19198{
19199 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 19200 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
19201}
19202
19203#else /* OBJ_ELF is defined. */
c19d1205 19204void
cd000bff 19205arm_init_frag (fragS * fragP, int max_chars)
c19d1205 19206{
8dc2430f
NC
19207 /* If the current ARM vs THUMB mode has not already
19208 been recorded into this frag then do so now. */
cd000bff
DJ
19209 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19210 {
19211 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19212
19213 /* Record a mapping symbol for alignment frags. We will delete this
19214 later if the alignment ends up empty. */
19215 switch (fragP->fr_type)
19216 {
19217 case rs_align:
19218 case rs_align_test:
19219 case rs_fill:
19220 mapping_state_2 (MAP_DATA, max_chars);
19221 break;
19222 case rs_align_code:
19223 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19224 break;
19225 default:
19226 break;
19227 }
19228 }
bfae80f2
RE
19229}
19230
c19d1205
ZW
19231/* When we change sections we need to issue a new mapping symbol. */
19232
19233void
19234arm_elf_change_section (void)
bfae80f2 19235{
c19d1205
ZW
19236 /* Link an unlinked unwind index table section to the .text section. */
19237 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19238 && elf_linked_to_section (now_seg) == NULL)
19239 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
19240}
19241
c19d1205
ZW
19242int
19243arm_elf_section_type (const char * str, size_t len)
e45d0630 19244{
c19d1205
ZW
19245 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19246 return SHT_ARM_EXIDX;
e45d0630 19247
c19d1205
ZW
19248 return -1;
19249}
19250\f
19251/* Code to deal with unwinding tables. */
e45d0630 19252
c19d1205 19253static void add_unwind_adjustsp (offsetT);
e45d0630 19254
5f4273c7 19255/* Generate any deferred unwind frame offset. */
e45d0630 19256
bfae80f2 19257static void
c19d1205 19258flush_pending_unwind (void)
bfae80f2 19259{
c19d1205 19260 offsetT offset;
bfae80f2 19261
c19d1205
ZW
19262 offset = unwind.pending_offset;
19263 unwind.pending_offset = 0;
19264 if (offset != 0)
19265 add_unwind_adjustsp (offset);
bfae80f2
RE
19266}
19267
c19d1205
ZW
19268/* Add an opcode to this list for this function. Two-byte opcodes should
19269 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19270 order. */
19271
bfae80f2 19272static void
c19d1205 19273add_unwind_opcode (valueT op, int length)
bfae80f2 19274{
c19d1205
ZW
19275 /* Add any deferred stack adjustment. */
19276 if (unwind.pending_offset)
19277 flush_pending_unwind ();
bfae80f2 19278
c19d1205 19279 unwind.sp_restored = 0;
bfae80f2 19280
c19d1205 19281 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 19282 {
c19d1205
ZW
19283 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19284 if (unwind.opcodes)
21d799b5
NC
19285 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19286 unwind.opcode_alloc);
c19d1205 19287 else
21d799b5 19288 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 19289 }
c19d1205 19290 while (length > 0)
bfae80f2 19291 {
c19d1205
ZW
19292 length--;
19293 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19294 op >>= 8;
19295 unwind.opcode_count++;
bfae80f2 19296 }
bfae80f2
RE
19297}
19298
c19d1205
ZW
19299/* Add unwind opcodes to adjust the stack pointer. */
19300
bfae80f2 19301static void
c19d1205 19302add_unwind_adjustsp (offsetT offset)
bfae80f2 19303{
c19d1205 19304 valueT op;
bfae80f2 19305
c19d1205 19306 if (offset > 0x200)
bfae80f2 19307 {
c19d1205
ZW
19308 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19309 char bytes[5];
19310 int n;
19311 valueT o;
bfae80f2 19312
c19d1205
ZW
19313 /* Long form: 0xb2, uleb128. */
19314 /* This might not fit in a word so add the individual bytes,
19315 remembering the list is built in reverse order. */
19316 o = (valueT) ((offset - 0x204) >> 2);
19317 if (o == 0)
19318 add_unwind_opcode (0, 1);
bfae80f2 19319
c19d1205
ZW
19320 /* Calculate the uleb128 encoding of the offset. */
19321 n = 0;
19322 while (o)
19323 {
19324 bytes[n] = o & 0x7f;
19325 o >>= 7;
19326 if (o)
19327 bytes[n] |= 0x80;
19328 n++;
19329 }
19330 /* Add the insn. */
19331 for (; n; n--)
19332 add_unwind_opcode (bytes[n - 1], 1);
19333 add_unwind_opcode (0xb2, 1);
19334 }
19335 else if (offset > 0x100)
bfae80f2 19336 {
c19d1205
ZW
19337 /* Two short opcodes. */
19338 add_unwind_opcode (0x3f, 1);
19339 op = (offset - 0x104) >> 2;
19340 add_unwind_opcode (op, 1);
bfae80f2 19341 }
c19d1205
ZW
19342 else if (offset > 0)
19343 {
19344 /* Short opcode. */
19345 op = (offset - 4) >> 2;
19346 add_unwind_opcode (op, 1);
19347 }
19348 else if (offset < 0)
bfae80f2 19349 {
c19d1205
ZW
19350 offset = -offset;
19351 while (offset > 0x100)
bfae80f2 19352 {
c19d1205
ZW
19353 add_unwind_opcode (0x7f, 1);
19354 offset -= 0x100;
bfae80f2 19355 }
c19d1205
ZW
19356 op = ((offset - 4) >> 2) | 0x40;
19357 add_unwind_opcode (op, 1);
bfae80f2 19358 }
bfae80f2
RE
19359}
19360
c19d1205
ZW
19361/* Finish the list of unwind opcodes for this function. */
19362static void
19363finish_unwind_opcodes (void)
bfae80f2 19364{
c19d1205 19365 valueT op;
bfae80f2 19366
c19d1205 19367 if (unwind.fp_used)
bfae80f2 19368 {
708587a4 19369 /* Adjust sp as necessary. */
c19d1205
ZW
19370 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19371 flush_pending_unwind ();
bfae80f2 19372
c19d1205
ZW
19373 /* After restoring sp from the frame pointer. */
19374 op = 0x90 | unwind.fp_reg;
19375 add_unwind_opcode (op, 1);
19376 }
19377 else
19378 flush_pending_unwind ();
bfae80f2
RE
19379}
19380
bfae80f2 19381
c19d1205
ZW
19382/* Start an exception table entry. If idx is nonzero this is an index table
19383 entry. */
bfae80f2
RE
19384
19385static void
c19d1205 19386start_unwind_section (const segT text_seg, int idx)
bfae80f2 19387{
c19d1205
ZW
19388 const char * text_name;
19389 const char * prefix;
19390 const char * prefix_once;
19391 const char * group_name;
19392 size_t prefix_len;
19393 size_t text_len;
19394 char * sec_name;
19395 size_t sec_name_len;
19396 int type;
19397 int flags;
19398 int linkonce;
bfae80f2 19399
c19d1205 19400 if (idx)
bfae80f2 19401 {
c19d1205
ZW
19402 prefix = ELF_STRING_ARM_unwind;
19403 prefix_once = ELF_STRING_ARM_unwind_once;
19404 type = SHT_ARM_EXIDX;
bfae80f2 19405 }
c19d1205 19406 else
bfae80f2 19407 {
c19d1205
ZW
19408 prefix = ELF_STRING_ARM_unwind_info;
19409 prefix_once = ELF_STRING_ARM_unwind_info_once;
19410 type = SHT_PROGBITS;
bfae80f2
RE
19411 }
19412
c19d1205
ZW
19413 text_name = segment_name (text_seg);
19414 if (streq (text_name, ".text"))
19415 text_name = "";
19416
19417 if (strncmp (text_name, ".gnu.linkonce.t.",
19418 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 19419 {
c19d1205
ZW
19420 prefix = prefix_once;
19421 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
19422 }
19423
c19d1205
ZW
19424 prefix_len = strlen (prefix);
19425 text_len = strlen (text_name);
19426 sec_name_len = prefix_len + text_len;
21d799b5 19427 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
19428 memcpy (sec_name, prefix, prefix_len);
19429 memcpy (sec_name + prefix_len, text_name, text_len);
19430 sec_name[prefix_len + text_len] = '\0';
bfae80f2 19431
c19d1205
ZW
19432 flags = SHF_ALLOC;
19433 linkonce = 0;
19434 group_name = 0;
bfae80f2 19435
c19d1205
ZW
19436 /* Handle COMDAT group. */
19437 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 19438 {
c19d1205
ZW
19439 group_name = elf_group_name (text_seg);
19440 if (group_name == NULL)
19441 {
bd3ba5d1 19442 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
19443 segment_name (text_seg));
19444 ignore_rest_of_line ();
19445 return;
19446 }
19447 flags |= SHF_GROUP;
19448 linkonce = 1;
bfae80f2
RE
19449 }
19450
c19d1205 19451 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 19452
5f4273c7 19453 /* Set the section link for index tables. */
c19d1205
ZW
19454 if (idx)
19455 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
19456}
19457
bfae80f2 19458
c19d1205
ZW
19459/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19460 personality routine data. Returns zero, or the index table value for
19461 and inline entry. */
19462
19463static valueT
19464create_unwind_entry (int have_data)
bfae80f2 19465{
c19d1205
ZW
19466 int size;
19467 addressT where;
19468 char *ptr;
19469 /* The current word of data. */
19470 valueT data;
19471 /* The number of bytes left in this word. */
19472 int n;
bfae80f2 19473
c19d1205 19474 finish_unwind_opcodes ();
bfae80f2 19475
c19d1205
ZW
19476 /* Remember the current text section. */
19477 unwind.saved_seg = now_seg;
19478 unwind.saved_subseg = now_subseg;
bfae80f2 19479
c19d1205 19480 start_unwind_section (now_seg, 0);
bfae80f2 19481
c19d1205 19482 if (unwind.personality_routine == NULL)
bfae80f2 19483 {
c19d1205
ZW
19484 if (unwind.personality_index == -2)
19485 {
19486 if (have_data)
5f4273c7 19487 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
19488 return 1; /* EXIDX_CANTUNWIND. */
19489 }
bfae80f2 19490
c19d1205
ZW
19491 /* Use a default personality routine if none is specified. */
19492 if (unwind.personality_index == -1)
19493 {
19494 if (unwind.opcode_count > 3)
19495 unwind.personality_index = 1;
19496 else
19497 unwind.personality_index = 0;
19498 }
bfae80f2 19499
c19d1205
ZW
19500 /* Space for the personality routine entry. */
19501 if (unwind.personality_index == 0)
19502 {
19503 if (unwind.opcode_count > 3)
19504 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 19505
c19d1205
ZW
19506 if (!have_data)
19507 {
19508 /* All the data is inline in the index table. */
19509 data = 0x80;
19510 n = 3;
19511 while (unwind.opcode_count > 0)
19512 {
19513 unwind.opcode_count--;
19514 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19515 n--;
19516 }
bfae80f2 19517
c19d1205
ZW
19518 /* Pad with "finish" opcodes. */
19519 while (n--)
19520 data = (data << 8) | 0xb0;
bfae80f2 19521
c19d1205
ZW
19522 return data;
19523 }
19524 size = 0;
19525 }
19526 else
19527 /* We get two opcodes "free" in the first word. */
19528 size = unwind.opcode_count - 2;
19529 }
19530 else
19531 /* An extra byte is required for the opcode count. */
19532 size = unwind.opcode_count + 1;
bfae80f2 19533
c19d1205
ZW
19534 size = (size + 3) >> 2;
19535 if (size > 0xff)
19536 as_bad (_("too many unwind opcodes"));
bfae80f2 19537
c19d1205
ZW
19538 frag_align (2, 0, 0);
19539 record_alignment (now_seg, 2);
19540 unwind.table_entry = expr_build_dot ();
19541
19542 /* Allocate the table entry. */
19543 ptr = frag_more ((size << 2) + 4);
19544 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19545
c19d1205 19546 switch (unwind.personality_index)
bfae80f2 19547 {
c19d1205
ZW
19548 case -1:
19549 /* ??? Should this be a PLT generating relocation? */
19550 /* Custom personality routine. */
19551 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19552 BFD_RELOC_ARM_PREL31);
bfae80f2 19553
c19d1205
ZW
19554 where += 4;
19555 ptr += 4;
bfae80f2 19556
c19d1205
ZW
19557 /* Set the first byte to the number of additional words. */
19558 data = size - 1;
19559 n = 3;
19560 break;
bfae80f2 19561
c19d1205
ZW
19562 /* ABI defined personality routines. */
19563 case 0:
19564 /* Three opcodes bytes are packed into the first word. */
19565 data = 0x80;
19566 n = 3;
19567 break;
bfae80f2 19568
c19d1205
ZW
19569 case 1:
19570 case 2:
19571 /* The size and first two opcode bytes go in the first word. */
19572 data = ((0x80 + unwind.personality_index) << 8) | size;
19573 n = 2;
19574 break;
bfae80f2 19575
c19d1205
ZW
19576 default:
19577 /* Should never happen. */
19578 abort ();
19579 }
bfae80f2 19580
c19d1205
ZW
19581 /* Pack the opcodes into words (MSB first), reversing the list at the same
19582 time. */
19583 while (unwind.opcode_count > 0)
19584 {
19585 if (n == 0)
19586 {
19587 md_number_to_chars (ptr, data, 4);
19588 ptr += 4;
19589 n = 4;
19590 data = 0;
19591 }
19592 unwind.opcode_count--;
19593 n--;
19594 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19595 }
19596
19597 /* Finish off the last word. */
19598 if (n < 4)
19599 {
19600 /* Pad with "finish" opcodes. */
19601 while (n--)
19602 data = (data << 8) | 0xb0;
19603
19604 md_number_to_chars (ptr, data, 4);
19605 }
19606
19607 if (!have_data)
19608 {
19609 /* Add an empty descriptor if there is no user-specified data. */
19610 ptr = frag_more (4);
19611 md_number_to_chars (ptr, 0, 4);
19612 }
19613
19614 return 0;
bfae80f2
RE
19615}
19616
f0927246
NC
19617
19618/* Initialize the DWARF-2 unwind information for this procedure. */
19619
19620void
19621tc_arm_frame_initial_instructions (void)
19622{
19623 cfi_add_CFA_def_cfa (REG_SP, 0);
19624}
19625#endif /* OBJ_ELF */
19626
c19d1205
ZW
19627/* Convert REGNAME to a DWARF-2 register number. */
19628
19629int
1df69f4f 19630tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 19631{
1df69f4f 19632 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
19633
19634 if (reg == FAIL)
19635 return -1;
19636
19637 return reg;
bfae80f2
RE
19638}
19639
f0927246 19640#ifdef TE_PE
c19d1205 19641void
f0927246 19642tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 19643{
91d6fa6a 19644 expressionS exp;
bfae80f2 19645
91d6fa6a
NC
19646 exp.X_op = O_secrel;
19647 exp.X_add_symbol = symbol;
19648 exp.X_add_number = 0;
19649 emit_expr (&exp, size);
f0927246
NC
19650}
19651#endif
bfae80f2 19652
c19d1205 19653/* MD interface: Symbol and relocation handling. */
bfae80f2 19654
2fc8bdac
ZW
19655/* Return the address within the segment that a PC-relative fixup is
19656 relative to. For ARM, PC-relative fixups applied to instructions
19657 are generally relative to the location of the fixup plus 8 bytes.
19658 Thumb branches are offset by 4, and Thumb loads relative to PC
19659 require special handling. */
bfae80f2 19660
c19d1205 19661long
2fc8bdac 19662md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 19663{
2fc8bdac
ZW
19664 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19665
19666 /* If this is pc-relative and we are going to emit a relocation
19667 then we just want to put out any pipeline compensation that the linker
53baae48
NC
19668 will need. Otherwise we want to use the calculated base.
19669 For WinCE we skip the bias for externals as well, since this
19670 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 19671 if (fixP->fx_pcrel
2fc8bdac 19672 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
19673 || (arm_force_relocation (fixP)
19674#ifdef TE_WINCE
19675 && !S_IS_EXTERNAL (fixP->fx_addsy)
19676#endif
19677 )))
2fc8bdac 19678 base = 0;
bfae80f2 19679
267bf995 19680
c19d1205 19681 switch (fixP->fx_r_type)
bfae80f2 19682 {
2fc8bdac
ZW
19683 /* PC relative addressing on the Thumb is slightly odd as the
19684 bottom two bits of the PC are forced to zero for the
19685 calculation. This happens *after* application of the
19686 pipeline offset. However, Thumb adrl already adjusts for
19687 this, so we need not do it again. */
c19d1205 19688 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 19689 return base & ~3;
c19d1205
ZW
19690
19691 case BFD_RELOC_ARM_THUMB_OFFSET:
19692 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 19693 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 19694 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 19695 return (base + 4) & ~3;
c19d1205 19696
2fc8bdac
ZW
19697 /* Thumb branches are simply offset by +4. */
19698 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19699 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19700 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19701 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 19702 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 19703 return base + 4;
bfae80f2 19704
267bf995 19705 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
19706 if (fixP->fx_addsy
19707 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19708 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19709 && ARM_IS_FUNC (fixP->fx_addsy)
19710 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19711 base = fixP->fx_where + fixP->fx_frag->fr_address;
19712 return base + 4;
19713
00adf2d4
JB
19714 /* BLX is like branches above, but forces the low two bits of PC to
19715 zero. */
486499d0
CL
19716 case BFD_RELOC_THUMB_PCREL_BLX:
19717 if (fixP->fx_addsy
19718 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19719 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19720 && THUMB_IS_FUNC (fixP->fx_addsy)
19721 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19722 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
19723 return (base + 4) & ~3;
19724
2fc8bdac
ZW
19725 /* ARM mode branches are offset by +8. However, the Windows CE
19726 loader expects the relocation not to take this into account. */
267bf995 19727 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
19728 if (fixP->fx_addsy
19729 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19730 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19731 && ARM_IS_FUNC (fixP->fx_addsy)
19732 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19733 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19734 return base + 8;
267bf995 19735
486499d0
CL
19736 case BFD_RELOC_ARM_PCREL_CALL:
19737 if (fixP->fx_addsy
19738 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19739 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19740 && THUMB_IS_FUNC (fixP->fx_addsy)
19741 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19742 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19743 return base + 8;
267bf995 19744
2fc8bdac 19745 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 19746 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 19747 case BFD_RELOC_ARM_PLT32:
c19d1205 19748#ifdef TE_WINCE
5f4273c7 19749 /* When handling fixups immediately, because we have already
53baae48
NC
19750 discovered the value of a symbol, or the address of the frag involved
19751 we must account for the offset by +8, as the OS loader will never see the reloc.
19752 see fixup_segment() in write.c
19753 The S_IS_EXTERNAL test handles the case of global symbols.
19754 Those need the calculated base, not just the pipe compensation the linker will need. */
19755 if (fixP->fx_pcrel
19756 && fixP->fx_addsy != NULL
19757 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19758 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19759 return base + 8;
2fc8bdac 19760 return base;
c19d1205 19761#else
2fc8bdac 19762 return base + 8;
c19d1205 19763#endif
2fc8bdac 19764
267bf995 19765
2fc8bdac
ZW
19766 /* ARM mode loads relative to PC are also offset by +8. Unlike
19767 branches, the Windows CE loader *does* expect the relocation
19768 to take this into account. */
19769 case BFD_RELOC_ARM_OFFSET_IMM:
19770 case BFD_RELOC_ARM_OFFSET_IMM8:
19771 case BFD_RELOC_ARM_HWLITERAL:
19772 case BFD_RELOC_ARM_LITERAL:
19773 case BFD_RELOC_ARM_CP_OFF_IMM:
19774 return base + 8;
19775
19776
19777 /* Other PC-relative relocations are un-offset. */
19778 default:
19779 return base;
19780 }
bfae80f2
RE
19781}
19782
c19d1205
ZW
19783/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19784 Otherwise we have no need to default values of symbols. */
19785
19786symbolS *
19787md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 19788{
c19d1205
ZW
19789#ifdef OBJ_ELF
19790 if (name[0] == '_' && name[1] == 'G'
19791 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19792 {
19793 if (!GOT_symbol)
19794 {
19795 if (symbol_find (name))
bd3ba5d1 19796 as_bad (_("GOT already in the symbol table"));
bfae80f2 19797
c19d1205
ZW
19798 GOT_symbol = symbol_new (name, undefined_section,
19799 (valueT) 0, & zero_address_frag);
19800 }
bfae80f2 19801
c19d1205 19802 return GOT_symbol;
bfae80f2 19803 }
c19d1205 19804#endif
bfae80f2 19805
c921be7d 19806 return NULL;
bfae80f2
RE
19807}
19808
55cf6793 19809/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
19810 computed as two separate immediate values, added together. We
19811 already know that this value cannot be computed by just one ARM
19812 instruction. */
19813
19814static unsigned int
19815validate_immediate_twopart (unsigned int val,
19816 unsigned int * highpart)
bfae80f2 19817{
c19d1205
ZW
19818 unsigned int a;
19819 unsigned int i;
bfae80f2 19820
c19d1205
ZW
19821 for (i = 0; i < 32; i += 2)
19822 if (((a = rotate_left (val, i)) & 0xff) != 0)
19823 {
19824 if (a & 0xff00)
19825 {
19826 if (a & ~ 0xffff)
19827 continue;
19828 * highpart = (a >> 8) | ((i + 24) << 7);
19829 }
19830 else if (a & 0xff0000)
19831 {
19832 if (a & 0xff000000)
19833 continue;
19834 * highpart = (a >> 16) | ((i + 16) << 7);
19835 }
19836 else
19837 {
9c2799c2 19838 gas_assert (a & 0xff000000);
c19d1205
ZW
19839 * highpart = (a >> 24) | ((i + 8) << 7);
19840 }
bfae80f2 19841
c19d1205
ZW
19842 return (a & 0xff) | (i << 7);
19843 }
bfae80f2 19844
c19d1205 19845 return FAIL;
bfae80f2
RE
19846}
19847
c19d1205
ZW
19848static int
19849validate_offset_imm (unsigned int val, int hwse)
19850{
19851 if ((hwse && val > 255) || val > 4095)
19852 return FAIL;
19853 return val;
19854}
bfae80f2 19855
55cf6793 19856/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
19857 negative immediate constant by altering the instruction. A bit of
19858 a hack really.
19859 MOV <-> MVN
19860 AND <-> BIC
19861 ADC <-> SBC
19862 by inverting the second operand, and
19863 ADD <-> SUB
19864 CMP <-> CMN
19865 by negating the second operand. */
bfae80f2 19866
c19d1205
ZW
19867static int
19868negate_data_op (unsigned long * instruction,
19869 unsigned long value)
bfae80f2 19870{
c19d1205
ZW
19871 int op, new_inst;
19872 unsigned long negated, inverted;
bfae80f2 19873
c19d1205
ZW
19874 negated = encode_arm_immediate (-value);
19875 inverted = encode_arm_immediate (~value);
bfae80f2 19876
c19d1205
ZW
19877 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19878 switch (op)
bfae80f2 19879 {
c19d1205
ZW
19880 /* First negates. */
19881 case OPCODE_SUB: /* ADD <-> SUB */
19882 new_inst = OPCODE_ADD;
19883 value = negated;
19884 break;
bfae80f2 19885
c19d1205
ZW
19886 case OPCODE_ADD:
19887 new_inst = OPCODE_SUB;
19888 value = negated;
19889 break;
bfae80f2 19890
c19d1205
ZW
19891 case OPCODE_CMP: /* CMP <-> CMN */
19892 new_inst = OPCODE_CMN;
19893 value = negated;
19894 break;
bfae80f2 19895
c19d1205
ZW
19896 case OPCODE_CMN:
19897 new_inst = OPCODE_CMP;
19898 value = negated;
19899 break;
bfae80f2 19900
c19d1205
ZW
19901 /* Now Inverted ops. */
19902 case OPCODE_MOV: /* MOV <-> MVN */
19903 new_inst = OPCODE_MVN;
19904 value = inverted;
19905 break;
bfae80f2 19906
c19d1205
ZW
19907 case OPCODE_MVN:
19908 new_inst = OPCODE_MOV;
19909 value = inverted;
19910 break;
bfae80f2 19911
c19d1205
ZW
19912 case OPCODE_AND: /* AND <-> BIC */
19913 new_inst = OPCODE_BIC;
19914 value = inverted;
19915 break;
bfae80f2 19916
c19d1205
ZW
19917 case OPCODE_BIC:
19918 new_inst = OPCODE_AND;
19919 value = inverted;
19920 break;
bfae80f2 19921
c19d1205
ZW
19922 case OPCODE_ADC: /* ADC <-> SBC */
19923 new_inst = OPCODE_SBC;
19924 value = inverted;
19925 break;
bfae80f2 19926
c19d1205
ZW
19927 case OPCODE_SBC:
19928 new_inst = OPCODE_ADC;
19929 value = inverted;
19930 break;
bfae80f2 19931
c19d1205
ZW
19932 /* We cannot do anything. */
19933 default:
19934 return FAIL;
b99bd4ef
NC
19935 }
19936
c19d1205
ZW
19937 if (value == (unsigned) FAIL)
19938 return FAIL;
19939
19940 *instruction &= OPCODE_MASK;
19941 *instruction |= new_inst << DATA_OP_SHIFT;
19942 return value;
b99bd4ef
NC
19943}
19944
ef8d22e6
PB
19945/* Like negate_data_op, but for Thumb-2. */
19946
19947static unsigned int
16dd5e42 19948thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
19949{
19950 int op, new_inst;
19951 int rd;
16dd5e42 19952 unsigned int negated, inverted;
ef8d22e6
PB
19953
19954 negated = encode_thumb32_immediate (-value);
19955 inverted = encode_thumb32_immediate (~value);
19956
19957 rd = (*instruction >> 8) & 0xf;
19958 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19959 switch (op)
19960 {
19961 /* ADD <-> SUB. Includes CMP <-> CMN. */
19962 case T2_OPCODE_SUB:
19963 new_inst = T2_OPCODE_ADD;
19964 value = negated;
19965 break;
19966
19967 case T2_OPCODE_ADD:
19968 new_inst = T2_OPCODE_SUB;
19969 value = negated;
19970 break;
19971
19972 /* ORR <-> ORN. Includes MOV <-> MVN. */
19973 case T2_OPCODE_ORR:
19974 new_inst = T2_OPCODE_ORN;
19975 value = inverted;
19976 break;
19977
19978 case T2_OPCODE_ORN:
19979 new_inst = T2_OPCODE_ORR;
19980 value = inverted;
19981 break;
19982
19983 /* AND <-> BIC. TST has no inverted equivalent. */
19984 case T2_OPCODE_AND:
19985 new_inst = T2_OPCODE_BIC;
19986 if (rd == 15)
19987 value = FAIL;
19988 else
19989 value = inverted;
19990 break;
19991
19992 case T2_OPCODE_BIC:
19993 new_inst = T2_OPCODE_AND;
19994 value = inverted;
19995 break;
19996
19997 /* ADC <-> SBC */
19998 case T2_OPCODE_ADC:
19999 new_inst = T2_OPCODE_SBC;
20000 value = inverted;
20001 break;
20002
20003 case T2_OPCODE_SBC:
20004 new_inst = T2_OPCODE_ADC;
20005 value = inverted;
20006 break;
20007
20008 /* We cannot do anything. */
20009 default:
20010 return FAIL;
20011 }
20012
16dd5e42 20013 if (value == (unsigned int)FAIL)
ef8d22e6
PB
20014 return FAIL;
20015
20016 *instruction &= T2_OPCODE_MASK;
20017 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20018 return value;
20019}
20020
8f06b2d8
PB
20021/* Read a 32-bit thumb instruction from buf. */
20022static unsigned long
20023get_thumb32_insn (char * buf)
20024{
20025 unsigned long insn;
20026 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20027 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20028
20029 return insn;
20030}
20031
a8bc6c78
PB
20032
20033/* We usually want to set the low bit on the address of thumb function
20034 symbols. In particular .word foo - . should have the low bit set.
20035 Generic code tries to fold the difference of two symbols to
20036 a constant. Prevent this and force a relocation when the first symbols
20037 is a thumb function. */
c921be7d
NC
20038
20039bfd_boolean
a8bc6c78
PB
20040arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20041{
20042 if (op == O_subtract
20043 && l->X_op == O_symbol
20044 && r->X_op == O_symbol
20045 && THUMB_IS_FUNC (l->X_add_symbol))
20046 {
20047 l->X_op = O_subtract;
20048 l->X_op_symbol = r->X_add_symbol;
20049 l->X_add_number -= r->X_add_number;
c921be7d 20050 return TRUE;
a8bc6c78 20051 }
c921be7d 20052
a8bc6c78 20053 /* Process as normal. */
c921be7d 20054 return FALSE;
a8bc6c78
PB
20055}
20056
4a42ebbc
RR
20057/* Encode Thumb2 unconditional branches and calls. The encoding
20058 for the 2 are identical for the immediate values. */
20059
20060static void
20061encode_thumb2_b_bl_offset (char * buf, offsetT value)
20062{
20063#define T2I1I2MASK ((1 << 13) | (1 << 11))
20064 offsetT newval;
20065 offsetT newval2;
20066 addressT S, I1, I2, lo, hi;
20067
20068 S = (value >> 24) & 0x01;
20069 I1 = (value >> 23) & 0x01;
20070 I2 = (value >> 22) & 0x01;
20071 hi = (value >> 12) & 0x3ff;
20072 lo = (value >> 1) & 0x7ff;
20073 newval = md_chars_to_number (buf, THUMB_SIZE);
20074 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20075 newval |= (S << 10) | hi;
20076 newval2 &= ~T2I1I2MASK;
20077 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20078 md_number_to_chars (buf, newval, THUMB_SIZE);
20079 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20080}
20081
c19d1205 20082void
55cf6793 20083md_apply_fix (fixS * fixP,
c19d1205
ZW
20084 valueT * valP,
20085 segT seg)
20086{
20087 offsetT value = * valP;
20088 offsetT newval;
20089 unsigned int newimm;
20090 unsigned long temp;
20091 int sign;
20092 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 20093
9c2799c2 20094 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 20095
c19d1205 20096 /* Note whether this will delete the relocation. */
4962c51a 20097
c19d1205
ZW
20098 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20099 fixP->fx_done = 1;
b99bd4ef 20100
adbaf948 20101 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 20102 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
20103 for emit_reloc. */
20104 value &= 0xffffffff;
20105 value ^= 0x80000000;
5f4273c7 20106 value -= 0x80000000;
adbaf948
ZW
20107
20108 *valP = value;
c19d1205 20109 fixP->fx_addnumber = value;
b99bd4ef 20110
adbaf948
ZW
20111 /* Same treatment for fixP->fx_offset. */
20112 fixP->fx_offset &= 0xffffffff;
20113 fixP->fx_offset ^= 0x80000000;
20114 fixP->fx_offset -= 0x80000000;
20115
c19d1205 20116 switch (fixP->fx_r_type)
b99bd4ef 20117 {
c19d1205
ZW
20118 case BFD_RELOC_NONE:
20119 /* This will need to go in the object file. */
20120 fixP->fx_done = 0;
20121 break;
b99bd4ef 20122
c19d1205
ZW
20123 case BFD_RELOC_ARM_IMMEDIATE:
20124 /* We claim that this fixup has been processed here,
20125 even if in fact we generate an error because we do
20126 not have a reloc for it, so tc_gen_reloc will reject it. */
20127 fixP->fx_done = 1;
b99bd4ef 20128
77db8e2e 20129 if (fixP->fx_addsy)
b99bd4ef 20130 {
77db8e2e 20131 const char *msg = 0;
b99bd4ef 20132
77db8e2e
NC
20133 if (! S_IS_DEFINED (fixP->fx_addsy))
20134 msg = _("undefined symbol %s used as an immediate value");
20135 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20136 msg = _("symbol %s is in a different section");
20137 else if (S_IS_WEAK (fixP->fx_addsy))
20138 msg = _("symbol %s is weak and may be overridden later");
20139
20140 if (msg)
20141 {
20142 as_bad_where (fixP->fx_file, fixP->fx_line,
20143 msg, S_GET_NAME (fixP->fx_addsy));
20144 break;
20145 }
42e5fcbf
AS
20146 }
20147
c19d1205
ZW
20148 newimm = encode_arm_immediate (value);
20149 temp = md_chars_to_number (buf, INSN_SIZE);
20150
20151 /* If the instruction will fail, see if we can fix things up by
20152 changing the opcode. */
20153 if (newimm == (unsigned int) FAIL
20154 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 20155 {
c19d1205
ZW
20156 as_bad_where (fixP->fx_file, fixP->fx_line,
20157 _("invalid constant (%lx) after fixup"),
20158 (unsigned long) value);
20159 break;
b99bd4ef 20160 }
b99bd4ef 20161
c19d1205
ZW
20162 newimm |= (temp & 0xfffff000);
20163 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20164 break;
b99bd4ef 20165
c19d1205
ZW
20166 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20167 {
20168 unsigned int highpart = 0;
20169 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 20170
77db8e2e 20171 if (fixP->fx_addsy)
42e5fcbf 20172 {
77db8e2e 20173 const char *msg = 0;
42e5fcbf 20174
77db8e2e
NC
20175 if (! S_IS_DEFINED (fixP->fx_addsy))
20176 msg = _("undefined symbol %s used as an immediate value");
20177 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20178 msg = _("symbol %s is in a different section");
20179 else if (S_IS_WEAK (fixP->fx_addsy))
20180 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 20181
77db8e2e
NC
20182 if (msg)
20183 {
20184 as_bad_where (fixP->fx_file, fixP->fx_line,
20185 msg, S_GET_NAME (fixP->fx_addsy));
20186 break;
20187 }
20188 }
20189
c19d1205
ZW
20190 newimm = encode_arm_immediate (value);
20191 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 20192
c19d1205
ZW
20193 /* If the instruction will fail, see if we can fix things up by
20194 changing the opcode. */
20195 if (newimm == (unsigned int) FAIL
20196 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20197 {
20198 /* No ? OK - try using two ADD instructions to generate
20199 the value. */
20200 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 20201
c19d1205
ZW
20202 /* Yes - then make sure that the second instruction is
20203 also an add. */
20204 if (newimm != (unsigned int) FAIL)
20205 newinsn = temp;
20206 /* Still No ? Try using a negated value. */
20207 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20208 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20209 /* Otherwise - give up. */
20210 else
20211 {
20212 as_bad_where (fixP->fx_file, fixP->fx_line,
20213 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20214 (long) value);
20215 break;
20216 }
b99bd4ef 20217
c19d1205
ZW
20218 /* Replace the first operand in the 2nd instruction (which
20219 is the PC) with the destination register. We have
20220 already added in the PC in the first instruction and we
20221 do not want to do it again. */
20222 newinsn &= ~ 0xf0000;
20223 newinsn |= ((newinsn & 0x0f000) << 4);
20224 }
b99bd4ef 20225
c19d1205
ZW
20226 newimm |= (temp & 0xfffff000);
20227 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 20228
c19d1205
ZW
20229 highpart |= (newinsn & 0xfffff000);
20230 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20231 }
20232 break;
b99bd4ef 20233
c19d1205 20234 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
20235 if (!fixP->fx_done && seg->use_rela_p)
20236 value = 0;
20237
c19d1205
ZW
20238 case BFD_RELOC_ARM_LITERAL:
20239 sign = value >= 0;
b99bd4ef 20240
c19d1205
ZW
20241 if (value < 0)
20242 value = - value;
b99bd4ef 20243
c19d1205 20244 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 20245 {
c19d1205
ZW
20246 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20247 as_bad_where (fixP->fx_file, fixP->fx_line,
20248 _("invalid literal constant: pool needs to be closer"));
20249 else
20250 as_bad_where (fixP->fx_file, fixP->fx_line,
20251 _("bad immediate value for offset (%ld)"),
20252 (long) value);
20253 break;
f03698e6
RE
20254 }
20255
c19d1205
ZW
20256 newval = md_chars_to_number (buf, INSN_SIZE);
20257 newval &= 0xff7ff000;
20258 newval |= value | (sign ? INDEX_UP : 0);
20259 md_number_to_chars (buf, newval, INSN_SIZE);
20260 break;
b99bd4ef 20261
c19d1205
ZW
20262 case BFD_RELOC_ARM_OFFSET_IMM8:
20263 case BFD_RELOC_ARM_HWLITERAL:
20264 sign = value >= 0;
b99bd4ef 20265
c19d1205
ZW
20266 if (value < 0)
20267 value = - value;
b99bd4ef 20268
c19d1205 20269 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 20270 {
c19d1205
ZW
20271 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20272 as_bad_where (fixP->fx_file, fixP->fx_line,
20273 _("invalid literal constant: pool needs to be closer"));
20274 else
f9d4405b 20275 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
20276 (long) value);
20277 break;
b99bd4ef
NC
20278 }
20279
c19d1205
ZW
20280 newval = md_chars_to_number (buf, INSN_SIZE);
20281 newval &= 0xff7ff0f0;
20282 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20283 md_number_to_chars (buf, newval, INSN_SIZE);
20284 break;
b99bd4ef 20285
c19d1205
ZW
20286 case BFD_RELOC_ARM_T32_OFFSET_U8:
20287 if (value < 0 || value > 1020 || value % 4 != 0)
20288 as_bad_where (fixP->fx_file, fixP->fx_line,
20289 _("bad immediate value for offset (%ld)"), (long) value);
20290 value /= 4;
b99bd4ef 20291
c19d1205 20292 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
20293 newval |= value;
20294 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20295 break;
b99bd4ef 20296
c19d1205
ZW
20297 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20298 /* This is a complicated relocation used for all varieties of Thumb32
20299 load/store instruction with immediate offset:
20300
20301 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20302 *4, optional writeback(W)
20303 (doubleword load/store)
20304
20305 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20306 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20307 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20308 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20309 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20310
20311 Uppercase letters indicate bits that are already encoded at
20312 this point. Lowercase letters are our problem. For the
20313 second block of instructions, the secondary opcode nybble
20314 (bits 8..11) is present, and bit 23 is zero, even if this is
20315 a PC-relative operation. */
20316 newval = md_chars_to_number (buf, THUMB_SIZE);
20317 newval <<= 16;
20318 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 20319
c19d1205 20320 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 20321 {
c19d1205
ZW
20322 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20323 if (value >= 0)
20324 newval |= (1 << 23);
20325 else
20326 value = -value;
20327 if (value % 4 != 0)
20328 {
20329 as_bad_where (fixP->fx_file, fixP->fx_line,
20330 _("offset not a multiple of 4"));
20331 break;
20332 }
20333 value /= 4;
216d22bc 20334 if (value > 0xff)
c19d1205
ZW
20335 {
20336 as_bad_where (fixP->fx_file, fixP->fx_line,
20337 _("offset out of range"));
20338 break;
20339 }
20340 newval &= ~0xff;
b99bd4ef 20341 }
c19d1205 20342 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 20343 {
c19d1205
ZW
20344 /* PC-relative, 12-bit offset. */
20345 if (value >= 0)
20346 newval |= (1 << 23);
20347 else
20348 value = -value;
216d22bc 20349 if (value > 0xfff)
c19d1205
ZW
20350 {
20351 as_bad_where (fixP->fx_file, fixP->fx_line,
20352 _("offset out of range"));
20353 break;
20354 }
20355 newval &= ~0xfff;
b99bd4ef 20356 }
c19d1205 20357 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 20358 {
c19d1205
ZW
20359 /* Writeback: 8-bit, +/- offset. */
20360 if (value >= 0)
20361 newval |= (1 << 9);
20362 else
20363 value = -value;
216d22bc 20364 if (value > 0xff)
c19d1205
ZW
20365 {
20366 as_bad_where (fixP->fx_file, fixP->fx_line,
20367 _("offset out of range"));
20368 break;
20369 }
20370 newval &= ~0xff;
b99bd4ef 20371 }
c19d1205 20372 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 20373 {
c19d1205 20374 /* T-instruction: positive 8-bit offset. */
216d22bc 20375 if (value < 0 || value > 0xff)
b99bd4ef 20376 {
c19d1205
ZW
20377 as_bad_where (fixP->fx_file, fixP->fx_line,
20378 _("offset out of range"));
20379 break;
b99bd4ef 20380 }
c19d1205
ZW
20381 newval &= ~0xff;
20382 newval |= value;
b99bd4ef
NC
20383 }
20384 else
b99bd4ef 20385 {
c19d1205
ZW
20386 /* Positive 12-bit or negative 8-bit offset. */
20387 int limit;
20388 if (value >= 0)
b99bd4ef 20389 {
c19d1205
ZW
20390 newval |= (1 << 23);
20391 limit = 0xfff;
20392 }
20393 else
20394 {
20395 value = -value;
20396 limit = 0xff;
20397 }
20398 if (value > limit)
20399 {
20400 as_bad_where (fixP->fx_file, fixP->fx_line,
20401 _("offset out of range"));
20402 break;
b99bd4ef 20403 }
c19d1205 20404 newval &= ~limit;
b99bd4ef 20405 }
b99bd4ef 20406
c19d1205
ZW
20407 newval |= value;
20408 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20409 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20410 break;
404ff6b5 20411
c19d1205
ZW
20412 case BFD_RELOC_ARM_SHIFT_IMM:
20413 newval = md_chars_to_number (buf, INSN_SIZE);
20414 if (((unsigned long) value) > 32
20415 || (value == 32
20416 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20417 {
20418 as_bad_where (fixP->fx_file, fixP->fx_line,
20419 _("shift expression is too large"));
20420 break;
20421 }
404ff6b5 20422
c19d1205
ZW
20423 if (value == 0)
20424 /* Shifts of zero must be done as lsl. */
20425 newval &= ~0x60;
20426 else if (value == 32)
20427 value = 0;
20428 newval &= 0xfffff07f;
20429 newval |= (value & 0x1f) << 7;
20430 md_number_to_chars (buf, newval, INSN_SIZE);
20431 break;
404ff6b5 20432
c19d1205 20433 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 20434 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 20435 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 20436 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
20437 /* We claim that this fixup has been processed here,
20438 even if in fact we generate an error because we do
20439 not have a reloc for it, so tc_gen_reloc will reject it. */
20440 fixP->fx_done = 1;
404ff6b5 20441
c19d1205
ZW
20442 if (fixP->fx_addsy
20443 && ! S_IS_DEFINED (fixP->fx_addsy))
20444 {
20445 as_bad_where (fixP->fx_file, fixP->fx_line,
20446 _("undefined symbol %s used as an immediate value"),
20447 S_GET_NAME (fixP->fx_addsy));
20448 break;
20449 }
404ff6b5 20450
c19d1205
ZW
20451 newval = md_chars_to_number (buf, THUMB_SIZE);
20452 newval <<= 16;
20453 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 20454
16805f35
PB
20455 newimm = FAIL;
20456 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20457 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
20458 {
20459 newimm = encode_thumb32_immediate (value);
20460 if (newimm == (unsigned int) FAIL)
20461 newimm = thumb32_negate_data_op (&newval, value);
20462 }
16805f35
PB
20463 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20464 && newimm == (unsigned int) FAIL)
92e90b6e 20465 {
16805f35
PB
20466 /* Turn add/sum into addw/subw. */
20467 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20468 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
20469 /* No flat 12-bit imm encoding for addsw/subsw. */
20470 if ((newval & 0x00100000) == 0)
e9f89963 20471 {
40f246e3
NC
20472 /* 12 bit immediate for addw/subw. */
20473 if (value < 0)
20474 {
20475 value = -value;
20476 newval ^= 0x00a00000;
20477 }
20478 if (value > 0xfff)
20479 newimm = (unsigned int) FAIL;
20480 else
20481 newimm = value;
e9f89963 20482 }
92e90b6e 20483 }
cc8a6dd0 20484
c19d1205 20485 if (newimm == (unsigned int)FAIL)
3631a3c8 20486 {
c19d1205
ZW
20487 as_bad_where (fixP->fx_file, fixP->fx_line,
20488 _("invalid constant (%lx) after fixup"),
20489 (unsigned long) value);
20490 break;
3631a3c8
NC
20491 }
20492
c19d1205
ZW
20493 newval |= (newimm & 0x800) << 15;
20494 newval |= (newimm & 0x700) << 4;
20495 newval |= (newimm & 0x0ff);
cc8a6dd0 20496
c19d1205
ZW
20497 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20498 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20499 break;
a737bd4d 20500
3eb17e6b 20501 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
20502 if (((unsigned long) value) > 0xffff)
20503 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 20504 _("invalid smc expression"));
2fc8bdac 20505 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20506 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20507 md_number_to_chars (buf, newval, INSN_SIZE);
20508 break;
a737bd4d 20509
90ec0d68
MGD
20510 case BFD_RELOC_ARM_HVC:
20511 if (((unsigned long) value) > 0xffff)
20512 as_bad_where (fixP->fx_file, fixP->fx_line,
20513 _("invalid hvc expression"));
20514 newval = md_chars_to_number (buf, INSN_SIZE);
20515 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20516 md_number_to_chars (buf, newval, INSN_SIZE);
20517 break;
20518
c19d1205 20519 case BFD_RELOC_ARM_SWI:
adbaf948 20520 if (fixP->tc_fix_data != 0)
c19d1205
ZW
20521 {
20522 if (((unsigned long) value) > 0xff)
20523 as_bad_where (fixP->fx_file, fixP->fx_line,
20524 _("invalid swi expression"));
2fc8bdac 20525 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
20526 newval |= value;
20527 md_number_to_chars (buf, newval, THUMB_SIZE);
20528 }
20529 else
20530 {
20531 if (((unsigned long) value) > 0x00ffffff)
20532 as_bad_where (fixP->fx_file, fixP->fx_line,
20533 _("invalid swi expression"));
2fc8bdac 20534 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20535 newval |= value;
20536 md_number_to_chars (buf, newval, INSN_SIZE);
20537 }
20538 break;
a737bd4d 20539
c19d1205
ZW
20540 case BFD_RELOC_ARM_MULTI:
20541 if (((unsigned long) value) > 0xffff)
20542 as_bad_where (fixP->fx_file, fixP->fx_line,
20543 _("invalid expression in load/store multiple"));
20544 newval = value | md_chars_to_number (buf, INSN_SIZE);
20545 md_number_to_chars (buf, newval, INSN_SIZE);
20546 break;
a737bd4d 20547
c19d1205 20548#ifdef OBJ_ELF
39b41c9c 20549 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20550
20551 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20552 && fixP->fx_addsy
20553 && !S_IS_EXTERNAL (fixP->fx_addsy)
20554 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20555 && THUMB_IS_FUNC (fixP->fx_addsy))
20556 /* Flip the bl to blx. This is a simple flip
20557 bit here because we generate PCREL_CALL for
20558 unconditional bls. */
20559 {
20560 newval = md_chars_to_number (buf, INSN_SIZE);
20561 newval = newval | 0x10000000;
20562 md_number_to_chars (buf, newval, INSN_SIZE);
20563 temp = 1;
20564 fixP->fx_done = 1;
20565 }
39b41c9c
PB
20566 else
20567 temp = 3;
20568 goto arm_branch_common;
20569
20570 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20571 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20572 && fixP->fx_addsy
20573 && !S_IS_EXTERNAL (fixP->fx_addsy)
20574 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20575 && THUMB_IS_FUNC (fixP->fx_addsy))
20576 {
20577 /* This would map to a bl<cond>, b<cond>,
20578 b<always> to a Thumb function. We
20579 need to force a relocation for this particular
20580 case. */
20581 newval = md_chars_to_number (buf, INSN_SIZE);
20582 fixP->fx_done = 0;
20583 }
20584
2fc8bdac 20585 case BFD_RELOC_ARM_PLT32:
c19d1205 20586#endif
39b41c9c
PB
20587 case BFD_RELOC_ARM_PCREL_BRANCH:
20588 temp = 3;
20589 goto arm_branch_common;
a737bd4d 20590
39b41c9c 20591 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20592
39b41c9c 20593 temp = 1;
267bf995
RR
20594 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20595 && fixP->fx_addsy
20596 && !S_IS_EXTERNAL (fixP->fx_addsy)
20597 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20598 && ARM_IS_FUNC (fixP->fx_addsy))
20599 {
20600 /* Flip the blx to a bl and warn. */
20601 const char *name = S_GET_NAME (fixP->fx_addsy);
20602 newval = 0xeb000000;
20603 as_warn_where (fixP->fx_file, fixP->fx_line,
20604 _("blx to '%s' an ARM ISA state function changed to bl"),
20605 name);
20606 md_number_to_chars (buf, newval, INSN_SIZE);
20607 temp = 3;
20608 fixP->fx_done = 1;
20609 }
20610
20611#ifdef OBJ_ELF
20612 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20613 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20614#endif
20615
39b41c9c 20616 arm_branch_common:
c19d1205 20617 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
20618 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20619 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20620 also be be clear. */
20621 if (value & temp)
c19d1205 20622 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
20623 _("misaligned branch destination"));
20624 if ((value & (offsetT)0xfe000000) != (offsetT)0
20625 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20626 as_bad_where (fixP->fx_file, fixP->fx_line,
20627 _("branch out of range"));
a737bd4d 20628
2fc8bdac 20629 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20630 {
2fc8bdac
ZW
20631 newval = md_chars_to_number (buf, INSN_SIZE);
20632 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
20633 /* Set the H bit on BLX instructions. */
20634 if (temp == 1)
20635 {
20636 if (value & 2)
20637 newval |= 0x01000000;
20638 else
20639 newval &= ~0x01000000;
20640 }
2fc8bdac 20641 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 20642 }
c19d1205 20643 break;
a737bd4d 20644
25fe350b
MS
20645 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20646 /* CBZ can only branch forward. */
a737bd4d 20647
738755b0
MS
20648 /* Attempts to use CBZ to branch to the next instruction
20649 (which, strictly speaking, are prohibited) will be turned into
20650 no-ops.
20651
20652 FIXME: It may be better to remove the instruction completely and
20653 perform relaxation. */
20654 if (value == -2)
2fc8bdac
ZW
20655 {
20656 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 20657 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
20658 md_number_to_chars (buf, newval, THUMB_SIZE);
20659 }
738755b0
MS
20660 else
20661 {
20662 if (value & ~0x7e)
20663 as_bad_where (fixP->fx_file, fixP->fx_line,
20664 _("branch out of range"));
20665
20666 if (fixP->fx_done || !seg->use_rela_p)
20667 {
20668 newval = md_chars_to_number (buf, THUMB_SIZE);
20669 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20670 md_number_to_chars (buf, newval, THUMB_SIZE);
20671 }
20672 }
c19d1205 20673 break;
a737bd4d 20674
c19d1205 20675 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
20676 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20677 as_bad_where (fixP->fx_file, fixP->fx_line,
20678 _("branch out of range"));
a737bd4d 20679
2fc8bdac
ZW
20680 if (fixP->fx_done || !seg->use_rela_p)
20681 {
20682 newval = md_chars_to_number (buf, THUMB_SIZE);
20683 newval |= (value & 0x1ff) >> 1;
20684 md_number_to_chars (buf, newval, THUMB_SIZE);
20685 }
c19d1205 20686 break;
a737bd4d 20687
c19d1205 20688 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
20689 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20690 as_bad_where (fixP->fx_file, fixP->fx_line,
20691 _("branch out of range"));
a737bd4d 20692
2fc8bdac
ZW
20693 if (fixP->fx_done || !seg->use_rela_p)
20694 {
20695 newval = md_chars_to_number (buf, THUMB_SIZE);
20696 newval |= (value & 0xfff) >> 1;
20697 md_number_to_chars (buf, newval, THUMB_SIZE);
20698 }
c19d1205 20699 break;
a737bd4d 20700
c19d1205 20701 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
20702 if (fixP->fx_addsy
20703 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20704 && !S_IS_EXTERNAL (fixP->fx_addsy)
20705 && S_IS_DEFINED (fixP->fx_addsy)
20706 && ARM_IS_FUNC (fixP->fx_addsy)
20707 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20708 {
20709 /* Force a relocation for a branch 20 bits wide. */
20710 fixP->fx_done = 0;
20711 }
2fc8bdac
ZW
20712 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20713 as_bad_where (fixP->fx_file, fixP->fx_line,
20714 _("conditional branch out of range"));
404ff6b5 20715
2fc8bdac
ZW
20716 if (fixP->fx_done || !seg->use_rela_p)
20717 {
20718 offsetT newval2;
20719 addressT S, J1, J2, lo, hi;
404ff6b5 20720
2fc8bdac
ZW
20721 S = (value & 0x00100000) >> 20;
20722 J2 = (value & 0x00080000) >> 19;
20723 J1 = (value & 0x00040000) >> 18;
20724 hi = (value & 0x0003f000) >> 12;
20725 lo = (value & 0x00000ffe) >> 1;
6c43fab6 20726
2fc8bdac
ZW
20727 newval = md_chars_to_number (buf, THUMB_SIZE);
20728 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20729 newval |= (S << 10) | hi;
20730 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20731 md_number_to_chars (buf, newval, THUMB_SIZE);
20732 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20733 }
c19d1205 20734 break;
6c43fab6 20735
c19d1205 20736 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
20737
20738 /* If there is a blx from a thumb state function to
20739 another thumb function flip this to a bl and warn
20740 about it. */
20741
20742 if (fixP->fx_addsy
20743 && S_IS_DEFINED (fixP->fx_addsy)
20744 && !S_IS_EXTERNAL (fixP->fx_addsy)
20745 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20746 && THUMB_IS_FUNC (fixP->fx_addsy))
20747 {
20748 const char *name = S_GET_NAME (fixP->fx_addsy);
20749 as_warn_where (fixP->fx_file, fixP->fx_line,
20750 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20751 name);
20752 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20753 newval = newval | 0x1000;
20754 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20755 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20756 fixP->fx_done = 1;
20757 }
20758
20759
20760 goto thumb_bl_common;
20761
c19d1205 20762 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
20763
20764 /* A bl from Thumb state ISA to an internal ARM state function
20765 is converted to a blx. */
20766 if (fixP->fx_addsy
20767 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20768 && !S_IS_EXTERNAL (fixP->fx_addsy)
20769 && S_IS_DEFINED (fixP->fx_addsy)
20770 && ARM_IS_FUNC (fixP->fx_addsy)
20771 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20772 {
20773 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20774 newval = newval & ~0x1000;
20775 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20776 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20777 fixP->fx_done = 1;
20778 }
20779
20780 thumb_bl_common:
20781
20782#ifdef OBJ_ELF
20783 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20784 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20785 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20786#endif
20787
2fc8bdac
ZW
20788 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20789 /* For a BLX instruction, make sure that the relocation is rounded up
20790 to a word boundary. This follows the semantics of the instruction
20791 which specifies that bit 1 of the target address will come from bit
20792 1 of the base address. */
20793 value = (value + 1) & ~ 1;
404ff6b5 20794
2fc8bdac 20795
4a42ebbc
RR
20796 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20797 {
20798 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20799 {
20800 as_bad_where (fixP->fx_file, fixP->fx_line,
20801 _("branch out of range"));
20802 }
20803 else if ((value & ~0x1ffffff)
20804 && ((value & ~0x1ffffff) != ~0x1ffffff))
20805 {
20806 as_bad_where (fixP->fx_file, fixP->fx_line,
20807 _("Thumb2 branch out of range"));
20808 }
c19d1205 20809 }
4a42ebbc
RR
20810
20811 if (fixP->fx_done || !seg->use_rela_p)
20812 encode_thumb2_b_bl_offset (buf, value);
20813
c19d1205 20814 break;
404ff6b5 20815
c19d1205 20816 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
20817 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20818 as_bad_where (fixP->fx_file, fixP->fx_line,
20819 _("branch out of range"));
6c43fab6 20820
2fc8bdac 20821 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 20822 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 20823
2fc8bdac 20824 break;
a737bd4d 20825
2fc8bdac
ZW
20826 case BFD_RELOC_8:
20827 if (fixP->fx_done || !seg->use_rela_p)
20828 md_number_to_chars (buf, value, 1);
c19d1205 20829 break;
a737bd4d 20830
c19d1205 20831 case BFD_RELOC_16:
2fc8bdac 20832 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20833 md_number_to_chars (buf, value, 2);
c19d1205 20834 break;
a737bd4d 20835
c19d1205
ZW
20836#ifdef OBJ_ELF
20837 case BFD_RELOC_ARM_TLS_GD32:
20838 case BFD_RELOC_ARM_TLS_LE32:
20839 case BFD_RELOC_ARM_TLS_IE32:
20840 case BFD_RELOC_ARM_TLS_LDM32:
20841 case BFD_RELOC_ARM_TLS_LDO32:
20842 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20843 /* fall through */
6c43fab6 20844
c19d1205
ZW
20845 case BFD_RELOC_ARM_GOT32:
20846 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
20847 if (fixP->fx_done || !seg->use_rela_p)
20848 md_number_to_chars (buf, 0, 4);
c19d1205 20849 break;
b43420e6
NC
20850
20851 case BFD_RELOC_ARM_GOT_PREL:
20852 if (fixP->fx_done || !seg->use_rela_p)
20853 md_number_to_chars (buf, value, 4);
20854 break;
20855
9a6f4e97
NS
20856 case BFD_RELOC_ARM_TARGET2:
20857 /* TARGET2 is not partial-inplace, so we need to write the
20858 addend here for REL targets, because it won't be written out
20859 during reloc processing later. */
20860 if (fixP->fx_done || !seg->use_rela_p)
20861 md_number_to_chars (buf, fixP->fx_offset, 4);
20862 break;
c19d1205 20863#endif
6c43fab6 20864
c19d1205
ZW
20865 case BFD_RELOC_RVA:
20866 case BFD_RELOC_32:
20867 case BFD_RELOC_ARM_TARGET1:
20868 case BFD_RELOC_ARM_ROSEGREL32:
20869 case BFD_RELOC_ARM_SBREL32:
20870 case BFD_RELOC_32_PCREL:
f0927246
NC
20871#ifdef TE_PE
20872 case BFD_RELOC_32_SECREL:
20873#endif
2fc8bdac 20874 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
20875#ifdef TE_WINCE
20876 /* For WinCE we only do this for pcrel fixups. */
20877 if (fixP->fx_done || fixP->fx_pcrel)
20878#endif
20879 md_number_to_chars (buf, value, 4);
c19d1205 20880 break;
6c43fab6 20881
c19d1205
ZW
20882#ifdef OBJ_ELF
20883 case BFD_RELOC_ARM_PREL31:
2fc8bdac 20884 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
20885 {
20886 newval = md_chars_to_number (buf, 4) & 0x80000000;
20887 if ((value ^ (value >> 1)) & 0x40000000)
20888 {
20889 as_bad_where (fixP->fx_file, fixP->fx_line,
20890 _("rel31 relocation overflow"));
20891 }
20892 newval |= value & 0x7fffffff;
20893 md_number_to_chars (buf, newval, 4);
20894 }
20895 break;
c19d1205 20896#endif
a737bd4d 20897
c19d1205 20898 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 20899 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
20900 if (value < -1023 || value > 1023 || (value & 3))
20901 as_bad_where (fixP->fx_file, fixP->fx_line,
20902 _("co-processor offset out of range"));
20903 cp_off_common:
20904 sign = value >= 0;
20905 if (value < 0)
20906 value = -value;
8f06b2d8
PB
20907 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20908 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20909 newval = md_chars_to_number (buf, INSN_SIZE);
20910 else
20911 newval = get_thumb32_insn (buf);
20912 newval &= 0xff7fff00;
c19d1205 20913 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
20914 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20915 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20916 md_number_to_chars (buf, newval, INSN_SIZE);
20917 else
20918 put_thumb32_insn (buf, newval);
c19d1205 20919 break;
a737bd4d 20920
c19d1205 20921 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 20922 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
20923 if (value < -255 || value > 255)
20924 as_bad_where (fixP->fx_file, fixP->fx_line,
20925 _("co-processor offset out of range"));
df7849c5 20926 value *= 4;
c19d1205 20927 goto cp_off_common;
6c43fab6 20928
c19d1205
ZW
20929 case BFD_RELOC_ARM_THUMB_OFFSET:
20930 newval = md_chars_to_number (buf, THUMB_SIZE);
20931 /* Exactly what ranges, and where the offset is inserted depends
20932 on the type of instruction, we can establish this from the
20933 top 4 bits. */
20934 switch (newval >> 12)
20935 {
20936 case 4: /* PC load. */
20937 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20938 forced to zero for these loads; md_pcrel_from has already
20939 compensated for this. */
20940 if (value & 3)
20941 as_bad_where (fixP->fx_file, fixP->fx_line,
20942 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
20943 (((unsigned long) fixP->fx_frag->fr_address
20944 + (unsigned long) fixP->fx_where) & ~3)
20945 + (unsigned long) value);
a737bd4d 20946
c19d1205
ZW
20947 if (value & ~0x3fc)
20948 as_bad_where (fixP->fx_file, fixP->fx_line,
20949 _("invalid offset, value too big (0x%08lX)"),
20950 (long) value);
a737bd4d 20951
c19d1205
ZW
20952 newval |= value >> 2;
20953 break;
a737bd4d 20954
c19d1205
ZW
20955 case 9: /* SP load/store. */
20956 if (value & ~0x3fc)
20957 as_bad_where (fixP->fx_file, fixP->fx_line,
20958 _("invalid offset, value too big (0x%08lX)"),
20959 (long) value);
20960 newval |= value >> 2;
20961 break;
6c43fab6 20962
c19d1205
ZW
20963 case 6: /* Word load/store. */
20964 if (value & ~0x7c)
20965 as_bad_where (fixP->fx_file, fixP->fx_line,
20966 _("invalid offset, value too big (0x%08lX)"),
20967 (long) value);
20968 newval |= value << 4; /* 6 - 2. */
20969 break;
a737bd4d 20970
c19d1205
ZW
20971 case 7: /* Byte load/store. */
20972 if (value & ~0x1f)
20973 as_bad_where (fixP->fx_file, fixP->fx_line,
20974 _("invalid offset, value too big (0x%08lX)"),
20975 (long) value);
20976 newval |= value << 6;
20977 break;
a737bd4d 20978
c19d1205
ZW
20979 case 8: /* Halfword load/store. */
20980 if (value & ~0x3e)
20981 as_bad_where (fixP->fx_file, fixP->fx_line,
20982 _("invalid offset, value too big (0x%08lX)"),
20983 (long) value);
20984 newval |= value << 5; /* 6 - 1. */
20985 break;
a737bd4d 20986
c19d1205
ZW
20987 default:
20988 as_bad_where (fixP->fx_file, fixP->fx_line,
20989 "Unable to process relocation for thumb opcode: %lx",
20990 (unsigned long) newval);
20991 break;
20992 }
20993 md_number_to_chars (buf, newval, THUMB_SIZE);
20994 break;
a737bd4d 20995
c19d1205
ZW
20996 case BFD_RELOC_ARM_THUMB_ADD:
20997 /* This is a complicated relocation, since we use it for all of
20998 the following immediate relocations:
a737bd4d 20999
c19d1205
ZW
21000 3bit ADD/SUB
21001 8bit ADD/SUB
21002 9bit ADD/SUB SP word-aligned
21003 10bit ADD PC/SP word-aligned
a737bd4d 21004
c19d1205
ZW
21005 The type of instruction being processed is encoded in the
21006 instruction field:
a737bd4d 21007
c19d1205
ZW
21008 0x8000 SUB
21009 0x00F0 Rd
21010 0x000F Rs
21011 */
21012 newval = md_chars_to_number (buf, THUMB_SIZE);
21013 {
21014 int rd = (newval >> 4) & 0xf;
21015 int rs = newval & 0xf;
21016 int subtract = !!(newval & 0x8000);
a737bd4d 21017
c19d1205
ZW
21018 /* Check for HI regs, only very restricted cases allowed:
21019 Adjusting SP, and using PC or SP to get an address. */
21020 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21021 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21022 as_bad_where (fixP->fx_file, fixP->fx_line,
21023 _("invalid Hi register with immediate"));
a737bd4d 21024
c19d1205
ZW
21025 /* If value is negative, choose the opposite instruction. */
21026 if (value < 0)
21027 {
21028 value = -value;
21029 subtract = !subtract;
21030 if (value < 0)
21031 as_bad_where (fixP->fx_file, fixP->fx_line,
21032 _("immediate value out of range"));
21033 }
a737bd4d 21034
c19d1205
ZW
21035 if (rd == REG_SP)
21036 {
21037 if (value & ~0x1fc)
21038 as_bad_where (fixP->fx_file, fixP->fx_line,
21039 _("invalid immediate for stack address calculation"));
21040 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21041 newval |= value >> 2;
21042 }
21043 else if (rs == REG_PC || rs == REG_SP)
21044 {
21045 if (subtract || value & ~0x3fc)
21046 as_bad_where (fixP->fx_file, fixP->fx_line,
21047 _("invalid immediate for address calculation (value = 0x%08lX)"),
21048 (unsigned long) value);
21049 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21050 newval |= rd << 8;
21051 newval |= value >> 2;
21052 }
21053 else if (rs == rd)
21054 {
21055 if (value & ~0xff)
21056 as_bad_where (fixP->fx_file, fixP->fx_line,
21057 _("immediate value out of range"));
21058 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21059 newval |= (rd << 8) | value;
21060 }
21061 else
21062 {
21063 if (value & ~0x7)
21064 as_bad_where (fixP->fx_file, fixP->fx_line,
21065 _("immediate value out of range"));
21066 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21067 newval |= rd | (rs << 3) | (value << 6);
21068 }
21069 }
21070 md_number_to_chars (buf, newval, THUMB_SIZE);
21071 break;
a737bd4d 21072
c19d1205
ZW
21073 case BFD_RELOC_ARM_THUMB_IMM:
21074 newval = md_chars_to_number (buf, THUMB_SIZE);
21075 if (value < 0 || value > 255)
21076 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 21077 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
21078 (long) value);
21079 newval |= value;
21080 md_number_to_chars (buf, newval, THUMB_SIZE);
21081 break;
a737bd4d 21082
c19d1205
ZW
21083 case BFD_RELOC_ARM_THUMB_SHIFT:
21084 /* 5bit shift value (0..32). LSL cannot take 32. */
21085 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21086 temp = newval & 0xf800;
21087 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21088 as_bad_where (fixP->fx_file, fixP->fx_line,
21089 _("invalid shift value: %ld"), (long) value);
21090 /* Shifts of zero must be encoded as LSL. */
21091 if (value == 0)
21092 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21093 /* Shifts of 32 are encoded as zero. */
21094 else if (value == 32)
21095 value = 0;
21096 newval |= value << 6;
21097 md_number_to_chars (buf, newval, THUMB_SIZE);
21098 break;
a737bd4d 21099
c19d1205
ZW
21100 case BFD_RELOC_VTABLE_INHERIT:
21101 case BFD_RELOC_VTABLE_ENTRY:
21102 fixP->fx_done = 0;
21103 return;
6c43fab6 21104
b6895b4f
PB
21105 case BFD_RELOC_ARM_MOVW:
21106 case BFD_RELOC_ARM_MOVT:
21107 case BFD_RELOC_ARM_THUMB_MOVW:
21108 case BFD_RELOC_ARM_THUMB_MOVT:
21109 if (fixP->fx_done || !seg->use_rela_p)
21110 {
21111 /* REL format relocations are limited to a 16-bit addend. */
21112 if (!fixP->fx_done)
21113 {
39623e12 21114 if (value < -0x8000 || value > 0x7fff)
b6895b4f 21115 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 21116 _("offset out of range"));
b6895b4f
PB
21117 }
21118 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21119 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21120 {
21121 value >>= 16;
21122 }
21123
21124 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21125 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21126 {
21127 newval = get_thumb32_insn (buf);
21128 newval &= 0xfbf08f00;
21129 newval |= (value & 0xf000) << 4;
21130 newval |= (value & 0x0800) << 15;
21131 newval |= (value & 0x0700) << 4;
21132 newval |= (value & 0x00ff);
21133 put_thumb32_insn (buf, newval);
21134 }
21135 else
21136 {
21137 newval = md_chars_to_number (buf, 4);
21138 newval &= 0xfff0f000;
21139 newval |= value & 0x0fff;
21140 newval |= (value & 0xf000) << 4;
21141 md_number_to_chars (buf, newval, 4);
21142 }
21143 }
21144 return;
21145
4962c51a
MS
21146 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21147 case BFD_RELOC_ARM_ALU_PC_G0:
21148 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21149 case BFD_RELOC_ARM_ALU_PC_G1:
21150 case BFD_RELOC_ARM_ALU_PC_G2:
21151 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21152 case BFD_RELOC_ARM_ALU_SB_G0:
21153 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21154 case BFD_RELOC_ARM_ALU_SB_G1:
21155 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 21156 gas_assert (!fixP->fx_done);
4962c51a
MS
21157 if (!seg->use_rela_p)
21158 {
21159 bfd_vma insn;
21160 bfd_vma encoded_addend;
21161 bfd_vma addend_abs = abs (value);
21162
21163 /* Check that the absolute value of the addend can be
21164 expressed as an 8-bit constant plus a rotation. */
21165 encoded_addend = encode_arm_immediate (addend_abs);
21166 if (encoded_addend == (unsigned int) FAIL)
21167 as_bad_where (fixP->fx_file, fixP->fx_line,
21168 _("the offset 0x%08lX is not representable"),
495bde8e 21169 (unsigned long) addend_abs);
4962c51a
MS
21170
21171 /* Extract the instruction. */
21172 insn = md_chars_to_number (buf, INSN_SIZE);
21173
21174 /* If the addend is positive, use an ADD instruction.
21175 Otherwise use a SUB. Take care not to destroy the S bit. */
21176 insn &= 0xff1fffff;
21177 if (value < 0)
21178 insn |= 1 << 22;
21179 else
21180 insn |= 1 << 23;
21181
21182 /* Place the encoded addend into the first 12 bits of the
21183 instruction. */
21184 insn &= 0xfffff000;
21185 insn |= encoded_addend;
5f4273c7
NC
21186
21187 /* Update the instruction. */
4962c51a
MS
21188 md_number_to_chars (buf, insn, INSN_SIZE);
21189 }
21190 break;
21191
21192 case BFD_RELOC_ARM_LDR_PC_G0:
21193 case BFD_RELOC_ARM_LDR_PC_G1:
21194 case BFD_RELOC_ARM_LDR_PC_G2:
21195 case BFD_RELOC_ARM_LDR_SB_G0:
21196 case BFD_RELOC_ARM_LDR_SB_G1:
21197 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 21198 gas_assert (!fixP->fx_done);
4962c51a
MS
21199 if (!seg->use_rela_p)
21200 {
21201 bfd_vma insn;
21202 bfd_vma addend_abs = abs (value);
21203
21204 /* Check that the absolute value of the addend can be
21205 encoded in 12 bits. */
21206 if (addend_abs >= 0x1000)
21207 as_bad_where (fixP->fx_file, fixP->fx_line,
21208 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 21209 (unsigned long) addend_abs);
4962c51a
MS
21210
21211 /* Extract the instruction. */
21212 insn = md_chars_to_number (buf, INSN_SIZE);
21213
21214 /* If the addend is negative, clear bit 23 of the instruction.
21215 Otherwise set it. */
21216 if (value < 0)
21217 insn &= ~(1 << 23);
21218 else
21219 insn |= 1 << 23;
21220
21221 /* Place the absolute value of the addend into the first 12 bits
21222 of the instruction. */
21223 insn &= 0xfffff000;
21224 insn |= addend_abs;
5f4273c7
NC
21225
21226 /* Update the instruction. */
4962c51a
MS
21227 md_number_to_chars (buf, insn, INSN_SIZE);
21228 }
21229 break;
21230
21231 case BFD_RELOC_ARM_LDRS_PC_G0:
21232 case BFD_RELOC_ARM_LDRS_PC_G1:
21233 case BFD_RELOC_ARM_LDRS_PC_G2:
21234 case BFD_RELOC_ARM_LDRS_SB_G0:
21235 case BFD_RELOC_ARM_LDRS_SB_G1:
21236 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 21237 gas_assert (!fixP->fx_done);
4962c51a
MS
21238 if (!seg->use_rela_p)
21239 {
21240 bfd_vma insn;
21241 bfd_vma addend_abs = abs (value);
21242
21243 /* Check that the absolute value of the addend can be
21244 encoded in 8 bits. */
21245 if (addend_abs >= 0x100)
21246 as_bad_where (fixP->fx_file, fixP->fx_line,
21247 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 21248 (unsigned long) addend_abs);
4962c51a
MS
21249
21250 /* Extract the instruction. */
21251 insn = md_chars_to_number (buf, INSN_SIZE);
21252
21253 /* If the addend is negative, clear bit 23 of the instruction.
21254 Otherwise set it. */
21255 if (value < 0)
21256 insn &= ~(1 << 23);
21257 else
21258 insn |= 1 << 23;
21259
21260 /* Place the first four bits of the absolute value of the addend
21261 into the first 4 bits of the instruction, and the remaining
21262 four into bits 8 .. 11. */
21263 insn &= 0xfffff0f0;
21264 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
21265
21266 /* Update the instruction. */
4962c51a
MS
21267 md_number_to_chars (buf, insn, INSN_SIZE);
21268 }
21269 break;
21270
21271 case BFD_RELOC_ARM_LDC_PC_G0:
21272 case BFD_RELOC_ARM_LDC_PC_G1:
21273 case BFD_RELOC_ARM_LDC_PC_G2:
21274 case BFD_RELOC_ARM_LDC_SB_G0:
21275 case BFD_RELOC_ARM_LDC_SB_G1:
21276 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 21277 gas_assert (!fixP->fx_done);
4962c51a
MS
21278 if (!seg->use_rela_p)
21279 {
21280 bfd_vma insn;
21281 bfd_vma addend_abs = abs (value);
21282
21283 /* Check that the absolute value of the addend is a multiple of
21284 four and, when divided by four, fits in 8 bits. */
21285 if (addend_abs & 0x3)
21286 as_bad_where (fixP->fx_file, fixP->fx_line,
21287 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 21288 (unsigned long) addend_abs);
4962c51a
MS
21289
21290 if ((addend_abs >> 2) > 0xff)
21291 as_bad_where (fixP->fx_file, fixP->fx_line,
21292 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 21293 (unsigned long) addend_abs);
4962c51a
MS
21294
21295 /* Extract the instruction. */
21296 insn = md_chars_to_number (buf, INSN_SIZE);
21297
21298 /* If the addend is negative, clear bit 23 of the instruction.
21299 Otherwise set it. */
21300 if (value < 0)
21301 insn &= ~(1 << 23);
21302 else
21303 insn |= 1 << 23;
21304
21305 /* Place the addend (divided by four) into the first eight
21306 bits of the instruction. */
21307 insn &= 0xfffffff0;
21308 insn |= addend_abs >> 2;
5f4273c7
NC
21309
21310 /* Update the instruction. */
4962c51a
MS
21311 md_number_to_chars (buf, insn, INSN_SIZE);
21312 }
21313 break;
21314
845b51d6
PB
21315 case BFD_RELOC_ARM_V4BX:
21316 /* This will need to go in the object file. */
21317 fixP->fx_done = 0;
21318 break;
21319
c19d1205
ZW
21320 case BFD_RELOC_UNUSED:
21321 default:
21322 as_bad_where (fixP->fx_file, fixP->fx_line,
21323 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21324 }
6c43fab6
RE
21325}
21326
c19d1205
ZW
21327/* Translate internal representation of relocation info to BFD target
21328 format. */
a737bd4d 21329
c19d1205 21330arelent *
00a97672 21331tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 21332{
c19d1205
ZW
21333 arelent * reloc;
21334 bfd_reloc_code_real_type code;
a737bd4d 21335
21d799b5 21336 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 21337
21d799b5 21338 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
21339 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21340 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 21341
2fc8bdac 21342 if (fixp->fx_pcrel)
00a97672
RS
21343 {
21344 if (section->use_rela_p)
21345 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21346 else
21347 fixp->fx_offset = reloc->address;
21348 }
c19d1205 21349 reloc->addend = fixp->fx_offset;
a737bd4d 21350
c19d1205 21351 switch (fixp->fx_r_type)
a737bd4d 21352 {
c19d1205
ZW
21353 case BFD_RELOC_8:
21354 if (fixp->fx_pcrel)
21355 {
21356 code = BFD_RELOC_8_PCREL;
21357 break;
21358 }
a737bd4d 21359
c19d1205
ZW
21360 case BFD_RELOC_16:
21361 if (fixp->fx_pcrel)
21362 {
21363 code = BFD_RELOC_16_PCREL;
21364 break;
21365 }
6c43fab6 21366
c19d1205
ZW
21367 case BFD_RELOC_32:
21368 if (fixp->fx_pcrel)
21369 {
21370 code = BFD_RELOC_32_PCREL;
21371 break;
21372 }
a737bd4d 21373
b6895b4f
PB
21374 case BFD_RELOC_ARM_MOVW:
21375 if (fixp->fx_pcrel)
21376 {
21377 code = BFD_RELOC_ARM_MOVW_PCREL;
21378 break;
21379 }
21380
21381 case BFD_RELOC_ARM_MOVT:
21382 if (fixp->fx_pcrel)
21383 {
21384 code = BFD_RELOC_ARM_MOVT_PCREL;
21385 break;
21386 }
21387
21388 case BFD_RELOC_ARM_THUMB_MOVW:
21389 if (fixp->fx_pcrel)
21390 {
21391 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21392 break;
21393 }
21394
21395 case BFD_RELOC_ARM_THUMB_MOVT:
21396 if (fixp->fx_pcrel)
21397 {
21398 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21399 break;
21400 }
21401
c19d1205
ZW
21402 case BFD_RELOC_NONE:
21403 case BFD_RELOC_ARM_PCREL_BRANCH:
21404 case BFD_RELOC_ARM_PCREL_BLX:
21405 case BFD_RELOC_RVA:
21406 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21407 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21408 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21409 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21410 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21411 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
21412 case BFD_RELOC_VTABLE_ENTRY:
21413 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
21414#ifdef TE_PE
21415 case BFD_RELOC_32_SECREL:
21416#endif
c19d1205
ZW
21417 code = fixp->fx_r_type;
21418 break;
a737bd4d 21419
00adf2d4
JB
21420 case BFD_RELOC_THUMB_PCREL_BLX:
21421#ifdef OBJ_ELF
21422 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21423 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21424 else
21425#endif
21426 code = BFD_RELOC_THUMB_PCREL_BLX;
21427 break;
21428
c19d1205
ZW
21429 case BFD_RELOC_ARM_LITERAL:
21430 case BFD_RELOC_ARM_HWLITERAL:
21431 /* If this is called then the a literal has
21432 been referenced across a section boundary. */
21433 as_bad_where (fixp->fx_file, fixp->fx_line,
21434 _("literal referenced across section boundary"));
21435 return NULL;
a737bd4d 21436
c19d1205
ZW
21437#ifdef OBJ_ELF
21438 case BFD_RELOC_ARM_GOT32:
21439 case BFD_RELOC_ARM_GOTOFF:
b43420e6 21440 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
21441 case BFD_RELOC_ARM_PLT32:
21442 case BFD_RELOC_ARM_TARGET1:
21443 case BFD_RELOC_ARM_ROSEGREL32:
21444 case BFD_RELOC_ARM_SBREL32:
21445 case BFD_RELOC_ARM_PREL31:
21446 case BFD_RELOC_ARM_TARGET2:
21447 case BFD_RELOC_ARM_TLS_LE32:
21448 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
21449 case BFD_RELOC_ARM_PCREL_CALL:
21450 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
21451 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21452 case BFD_RELOC_ARM_ALU_PC_G0:
21453 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21454 case BFD_RELOC_ARM_ALU_PC_G1:
21455 case BFD_RELOC_ARM_ALU_PC_G2:
21456 case BFD_RELOC_ARM_LDR_PC_G0:
21457 case BFD_RELOC_ARM_LDR_PC_G1:
21458 case BFD_RELOC_ARM_LDR_PC_G2:
21459 case BFD_RELOC_ARM_LDRS_PC_G0:
21460 case BFD_RELOC_ARM_LDRS_PC_G1:
21461 case BFD_RELOC_ARM_LDRS_PC_G2:
21462 case BFD_RELOC_ARM_LDC_PC_G0:
21463 case BFD_RELOC_ARM_LDC_PC_G1:
21464 case BFD_RELOC_ARM_LDC_PC_G2:
21465 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21466 case BFD_RELOC_ARM_ALU_SB_G0:
21467 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21468 case BFD_RELOC_ARM_ALU_SB_G1:
21469 case BFD_RELOC_ARM_ALU_SB_G2:
21470 case BFD_RELOC_ARM_LDR_SB_G0:
21471 case BFD_RELOC_ARM_LDR_SB_G1:
21472 case BFD_RELOC_ARM_LDR_SB_G2:
21473 case BFD_RELOC_ARM_LDRS_SB_G0:
21474 case BFD_RELOC_ARM_LDRS_SB_G1:
21475 case BFD_RELOC_ARM_LDRS_SB_G2:
21476 case BFD_RELOC_ARM_LDC_SB_G0:
21477 case BFD_RELOC_ARM_LDC_SB_G1:
21478 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 21479 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
21480 code = fixp->fx_r_type;
21481 break;
a737bd4d 21482
c19d1205
ZW
21483 case BFD_RELOC_ARM_TLS_GD32:
21484 case BFD_RELOC_ARM_TLS_IE32:
21485 case BFD_RELOC_ARM_TLS_LDM32:
21486 /* BFD will include the symbol's address in the addend.
21487 But we don't want that, so subtract it out again here. */
21488 if (!S_IS_COMMON (fixp->fx_addsy))
21489 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21490 code = fixp->fx_r_type;
21491 break;
21492#endif
a737bd4d 21493
c19d1205
ZW
21494 case BFD_RELOC_ARM_IMMEDIATE:
21495 as_bad_where (fixp->fx_file, fixp->fx_line,
21496 _("internal relocation (type: IMMEDIATE) not fixed up"));
21497 return NULL;
a737bd4d 21498
c19d1205
ZW
21499 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21500 as_bad_where (fixp->fx_file, fixp->fx_line,
21501 _("ADRL used for a symbol not defined in the same file"));
21502 return NULL;
a737bd4d 21503
c19d1205 21504 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21505 if (section->use_rela_p)
21506 {
21507 code = fixp->fx_r_type;
21508 break;
21509 }
21510
c19d1205
ZW
21511 if (fixp->fx_addsy != NULL
21512 && !S_IS_DEFINED (fixp->fx_addsy)
21513 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 21514 {
c19d1205
ZW
21515 as_bad_where (fixp->fx_file, fixp->fx_line,
21516 _("undefined local label `%s'"),
21517 S_GET_NAME (fixp->fx_addsy));
21518 return NULL;
a737bd4d
NC
21519 }
21520
c19d1205
ZW
21521 as_bad_where (fixp->fx_file, fixp->fx_line,
21522 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21523 return NULL;
a737bd4d 21524
c19d1205
ZW
21525 default:
21526 {
21527 char * type;
6c43fab6 21528
c19d1205
ZW
21529 switch (fixp->fx_r_type)
21530 {
21531 case BFD_RELOC_NONE: type = "NONE"; break;
21532 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21533 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 21534 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
21535 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21536 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21537 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 21538 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 21539 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21540 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21541 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21542 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21543 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21544 default: type = _("<unknown>"); break;
21545 }
21546 as_bad_where (fixp->fx_file, fixp->fx_line,
21547 _("cannot represent %s relocation in this object file format"),
21548 type);
21549 return NULL;
21550 }
a737bd4d 21551 }
6c43fab6 21552
c19d1205
ZW
21553#ifdef OBJ_ELF
21554 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21555 && GOT_symbol
21556 && fixp->fx_addsy == GOT_symbol)
21557 {
21558 code = BFD_RELOC_ARM_GOTPC;
21559 reloc->addend = fixp->fx_offset = reloc->address;
21560 }
21561#endif
6c43fab6 21562
c19d1205 21563 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21564
c19d1205
ZW
21565 if (reloc->howto == NULL)
21566 {
21567 as_bad_where (fixp->fx_file, fixp->fx_line,
21568 _("cannot represent %s relocation in this object file format"),
21569 bfd_get_reloc_code_name (code));
21570 return NULL;
21571 }
6c43fab6 21572
c19d1205
ZW
21573 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21574 vtable entry to be used in the relocation's section offset. */
21575 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21576 reloc->address = fixp->fx_offset;
6c43fab6 21577
c19d1205 21578 return reloc;
6c43fab6
RE
21579}
21580
c19d1205 21581/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21582
c19d1205
ZW
21583void
21584cons_fix_new_arm (fragS * frag,
21585 int where,
21586 int size,
21587 expressionS * exp)
6c43fab6 21588{
c19d1205
ZW
21589 bfd_reloc_code_real_type type;
21590 int pcrel = 0;
6c43fab6 21591
c19d1205
ZW
21592 /* Pick a reloc.
21593 FIXME: @@ Should look at CPU word size. */
21594 switch (size)
21595 {
21596 case 1:
21597 type = BFD_RELOC_8;
21598 break;
21599 case 2:
21600 type = BFD_RELOC_16;
21601 break;
21602 case 4:
21603 default:
21604 type = BFD_RELOC_32;
21605 break;
21606 case 8:
21607 type = BFD_RELOC_64;
21608 break;
21609 }
6c43fab6 21610
f0927246
NC
21611#ifdef TE_PE
21612 if (exp->X_op == O_secrel)
21613 {
21614 exp->X_op = O_symbol;
21615 type = BFD_RELOC_32_SECREL;
21616 }
21617#endif
21618
c19d1205
ZW
21619 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21620}
6c43fab6 21621
4343666d 21622#if defined (OBJ_COFF)
c19d1205
ZW
21623void
21624arm_validate_fix (fixS * fixP)
6c43fab6 21625{
c19d1205
ZW
21626 /* If the destination of the branch is a defined symbol which does not have
21627 the THUMB_FUNC attribute, then we must be calling a function which has
21628 the (interfacearm) attribute. We look for the Thumb entry point to that
21629 function and change the branch to refer to that function instead. */
21630 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21631 && fixP->fx_addsy != NULL
21632 && S_IS_DEFINED (fixP->fx_addsy)
21633 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 21634 {
c19d1205 21635 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 21636 }
c19d1205
ZW
21637}
21638#endif
6c43fab6 21639
267bf995 21640
c19d1205
ZW
21641int
21642arm_force_relocation (struct fix * fixp)
21643{
21644#if defined (OBJ_COFF) && defined (TE_PE)
21645 if (fixp->fx_r_type == BFD_RELOC_RVA)
21646 return 1;
21647#endif
6c43fab6 21648
267bf995
RR
21649 /* In case we have a call or a branch to a function in ARM ISA mode from
21650 a thumb function or vice-versa force the relocation. These relocations
21651 are cleared off for some cores that might have blx and simple transformations
21652 are possible. */
21653
21654#ifdef OBJ_ELF
21655 switch (fixp->fx_r_type)
21656 {
21657 case BFD_RELOC_ARM_PCREL_JUMP:
21658 case BFD_RELOC_ARM_PCREL_CALL:
21659 case BFD_RELOC_THUMB_PCREL_BLX:
21660 if (THUMB_IS_FUNC (fixp->fx_addsy))
21661 return 1;
21662 break;
21663
21664 case BFD_RELOC_ARM_PCREL_BLX:
21665 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21666 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21667 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21668 if (ARM_IS_FUNC (fixp->fx_addsy))
21669 return 1;
21670 break;
21671
21672 default:
21673 break;
21674 }
21675#endif
21676
c19d1205
ZW
21677 /* Resolve these relocations even if the symbol is extern or weak. */
21678 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21679 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 21680 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 21681 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
21682 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21683 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21684 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 21685 return 0;
a737bd4d 21686
4962c51a
MS
21687 /* Always leave these relocations for the linker. */
21688 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21689 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21690 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21691 return 1;
21692
f0291e4c
PB
21693 /* Always generate relocations against function symbols. */
21694 if (fixp->fx_r_type == BFD_RELOC_32
21695 && fixp->fx_addsy
21696 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21697 return 1;
21698
c19d1205 21699 return generic_force_reloc (fixp);
404ff6b5
AH
21700}
21701
0ffdc86c 21702#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
21703/* Relocations against function names must be left unadjusted,
21704 so that the linker can use this information to generate interworking
21705 stubs. The MIPS version of this function
c19d1205
ZW
21706 also prevents relocations that are mips-16 specific, but I do not
21707 know why it does this.
404ff6b5 21708
c19d1205
ZW
21709 FIXME:
21710 There is one other problem that ought to be addressed here, but
21711 which currently is not: Taking the address of a label (rather
21712 than a function) and then later jumping to that address. Such
21713 addresses also ought to have their bottom bit set (assuming that
21714 they reside in Thumb code), but at the moment they will not. */
404ff6b5 21715
c19d1205
ZW
21716bfd_boolean
21717arm_fix_adjustable (fixS * fixP)
404ff6b5 21718{
c19d1205
ZW
21719 if (fixP->fx_addsy == NULL)
21720 return 1;
404ff6b5 21721
e28387c3
PB
21722 /* Preserve relocations against symbols with function type. */
21723 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 21724 return FALSE;
e28387c3 21725
c19d1205
ZW
21726 if (THUMB_IS_FUNC (fixP->fx_addsy)
21727 && fixP->fx_subsy == NULL)
c921be7d 21728 return FALSE;
a737bd4d 21729
c19d1205
ZW
21730 /* We need the symbol name for the VTABLE entries. */
21731 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21732 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 21733 return FALSE;
404ff6b5 21734
c19d1205
ZW
21735 /* Don't allow symbols to be discarded on GOT related relocs. */
21736 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21737 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21738 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21739 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21740 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21741 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21742 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21743 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21744 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 21745 return FALSE;
a737bd4d 21746
4962c51a
MS
21747 /* Similarly for group relocations. */
21748 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21749 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21750 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 21751 return FALSE;
4962c51a 21752
79947c54
CD
21753 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21754 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21755 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21756 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21757 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21758 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21759 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21760 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21761 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 21762 return FALSE;
79947c54 21763
c921be7d 21764 return TRUE;
a737bd4d 21765}
0ffdc86c
NC
21766#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21767
21768#ifdef OBJ_ELF
404ff6b5 21769
c19d1205
ZW
21770const char *
21771elf32_arm_target_format (void)
404ff6b5 21772{
c19d1205
ZW
21773#ifdef TE_SYMBIAN
21774 return (target_big_endian
21775 ? "elf32-bigarm-symbian"
21776 : "elf32-littlearm-symbian");
21777#elif defined (TE_VXWORKS)
21778 return (target_big_endian
21779 ? "elf32-bigarm-vxworks"
21780 : "elf32-littlearm-vxworks");
21781#else
21782 if (target_big_endian)
21783 return "elf32-bigarm";
21784 else
21785 return "elf32-littlearm";
21786#endif
404ff6b5
AH
21787}
21788
c19d1205
ZW
21789void
21790armelf_frob_symbol (symbolS * symp,
21791 int * puntp)
404ff6b5 21792{
c19d1205
ZW
21793 elf_frob_symbol (symp, puntp);
21794}
21795#endif
404ff6b5 21796
c19d1205 21797/* MD interface: Finalization. */
a737bd4d 21798
c19d1205
ZW
21799void
21800arm_cleanup (void)
21801{
21802 literal_pool * pool;
a737bd4d 21803
e07e6e58
NC
21804 /* Ensure that all the IT blocks are properly closed. */
21805 check_it_blocks_finished ();
21806
c19d1205
ZW
21807 for (pool = list_of_pools; pool; pool = pool->next)
21808 {
5f4273c7 21809 /* Put it at the end of the relevant section. */
c19d1205
ZW
21810 subseg_set (pool->section, pool->sub_section);
21811#ifdef OBJ_ELF
21812 arm_elf_change_section ();
21813#endif
21814 s_ltorg (0);
21815 }
404ff6b5
AH
21816}
21817
cd000bff
DJ
21818#ifdef OBJ_ELF
21819/* Remove any excess mapping symbols generated for alignment frags in
21820 SEC. We may have created a mapping symbol before a zero byte
21821 alignment; remove it if there's a mapping symbol after the
21822 alignment. */
21823static void
21824check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21825 void *dummy ATTRIBUTE_UNUSED)
21826{
21827 segment_info_type *seginfo = seg_info (sec);
21828 fragS *fragp;
21829
21830 if (seginfo == NULL || seginfo->frchainP == NULL)
21831 return;
21832
21833 for (fragp = seginfo->frchainP->frch_root;
21834 fragp != NULL;
21835 fragp = fragp->fr_next)
21836 {
21837 symbolS *sym = fragp->tc_frag_data.last_map;
21838 fragS *next = fragp->fr_next;
21839
21840 /* Variable-sized frags have been converted to fixed size by
21841 this point. But if this was variable-sized to start with,
21842 there will be a fixed-size frag after it. So don't handle
21843 next == NULL. */
21844 if (sym == NULL || next == NULL)
21845 continue;
21846
21847 if (S_GET_VALUE (sym) < next->fr_address)
21848 /* Not at the end of this frag. */
21849 continue;
21850 know (S_GET_VALUE (sym) == next->fr_address);
21851
21852 do
21853 {
21854 if (next->tc_frag_data.first_map != NULL)
21855 {
21856 /* Next frag starts with a mapping symbol. Discard this
21857 one. */
21858 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21859 break;
21860 }
21861
21862 if (next->fr_next == NULL)
21863 {
21864 /* This mapping symbol is at the end of the section. Discard
21865 it. */
21866 know (next->fr_fix == 0 && next->fr_var == 0);
21867 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21868 break;
21869 }
21870
21871 /* As long as we have empty frags without any mapping symbols,
21872 keep looking. */
21873 /* If the next frag is non-empty and does not start with a
21874 mapping symbol, then this mapping symbol is required. */
21875 if (next->fr_address != next->fr_next->fr_address)
21876 break;
21877
21878 next = next->fr_next;
21879 }
21880 while (next != NULL);
21881 }
21882}
21883#endif
21884
c19d1205
ZW
21885/* Adjust the symbol table. This marks Thumb symbols as distinct from
21886 ARM ones. */
404ff6b5 21887
c19d1205
ZW
21888void
21889arm_adjust_symtab (void)
404ff6b5 21890{
c19d1205
ZW
21891#ifdef OBJ_COFF
21892 symbolS * sym;
404ff6b5 21893
c19d1205
ZW
21894 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21895 {
21896 if (ARM_IS_THUMB (sym))
21897 {
21898 if (THUMB_IS_FUNC (sym))
21899 {
21900 /* Mark the symbol as a Thumb function. */
21901 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21902 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21903 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 21904
c19d1205
ZW
21905 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21906 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21907 else
21908 as_bad (_("%s: unexpected function type: %d"),
21909 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21910 }
21911 else switch (S_GET_STORAGE_CLASS (sym))
21912 {
21913 case C_EXT:
21914 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21915 break;
21916 case C_STAT:
21917 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21918 break;
21919 case C_LABEL:
21920 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21921 break;
21922 default:
21923 /* Do nothing. */
21924 break;
21925 }
21926 }
a737bd4d 21927
c19d1205
ZW
21928 if (ARM_IS_INTERWORK (sym))
21929 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 21930 }
c19d1205
ZW
21931#endif
21932#ifdef OBJ_ELF
21933 symbolS * sym;
21934 char bind;
404ff6b5 21935
c19d1205 21936 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 21937 {
c19d1205
ZW
21938 if (ARM_IS_THUMB (sym))
21939 {
21940 elf_symbol_type * elf_sym;
404ff6b5 21941
c19d1205
ZW
21942 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21943 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 21944
b0796911
PB
21945 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21946 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
21947 {
21948 /* If it's a .thumb_func, declare it as so,
21949 otherwise tag label as .code 16. */
21950 if (THUMB_IS_FUNC (sym))
21951 elf_sym->internal_elf_sym.st_info =
21952 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 21953 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
21954 elf_sym->internal_elf_sym.st_info =
21955 ELF_ST_INFO (bind, STT_ARM_16BIT);
21956 }
21957 }
21958 }
cd000bff
DJ
21959
21960 /* Remove any overlapping mapping symbols generated by alignment frags. */
21961 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
21962 /* Now do generic ELF adjustments. */
21963 elf_adjust_symtab ();
c19d1205 21964#endif
404ff6b5
AH
21965}
21966
c19d1205 21967/* MD interface: Initialization. */
404ff6b5 21968
a737bd4d 21969static void
c19d1205 21970set_constant_flonums (void)
a737bd4d 21971{
c19d1205 21972 int i;
404ff6b5 21973
c19d1205
ZW
21974 for (i = 0; i < NUM_FLOAT_VALS; i++)
21975 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21976 abort ();
a737bd4d 21977}
404ff6b5 21978
3e9e4fcf
JB
21979/* Auto-select Thumb mode if it's the only available instruction set for the
21980 given architecture. */
21981
21982static void
21983autoselect_thumb_from_cpu_variant (void)
21984{
21985 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21986 opcode_select (16);
21987}
21988
c19d1205
ZW
21989void
21990md_begin (void)
a737bd4d 21991{
c19d1205
ZW
21992 unsigned mach;
21993 unsigned int i;
404ff6b5 21994
c19d1205
ZW
21995 if ( (arm_ops_hsh = hash_new ()) == NULL
21996 || (arm_cond_hsh = hash_new ()) == NULL
21997 || (arm_shift_hsh = hash_new ()) == NULL
21998 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 21999 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 22000 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
22001 || (arm_reloc_hsh = hash_new ()) == NULL
22002 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
22003 as_fatal (_("virtual memory exhausted"));
22004
22005 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 22006 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 22007 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 22008 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 22009 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 22010 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 22011 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 22012 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 22013 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
22014 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22015 (void *) (v7m_psrs + i));
c19d1205 22016 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 22017 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
22018 for (i = 0;
22019 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22020 i++)
d3ce72d0 22021 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 22022 (void *) (barrier_opt_names + i));
c19d1205
ZW
22023#ifdef OBJ_ELF
22024 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 22025 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
22026#endif
22027
22028 set_constant_flonums ();
404ff6b5 22029
c19d1205
ZW
22030 /* Set the cpu variant based on the command-line options. We prefer
22031 -mcpu= over -march= if both are set (as for GCC); and we prefer
22032 -mfpu= over any other way of setting the floating point unit.
22033 Use of legacy options with new options are faulted. */
e74cfd16 22034 if (legacy_cpu)
404ff6b5 22035 {
e74cfd16 22036 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
22037 as_bad (_("use of old and new-style options to set CPU type"));
22038
22039 mcpu_cpu_opt = legacy_cpu;
404ff6b5 22040 }
e74cfd16 22041 else if (!mcpu_cpu_opt)
c19d1205 22042 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 22043
e74cfd16 22044 if (legacy_fpu)
c19d1205 22045 {
e74cfd16 22046 if (mfpu_opt)
c19d1205 22047 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
22048
22049 mfpu_opt = legacy_fpu;
22050 }
e74cfd16 22051 else if (!mfpu_opt)
03b1477f 22052 {
45eb4c1b
NS
22053#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22054 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
22055 /* Some environments specify a default FPU. If they don't, infer it
22056 from the processor. */
e74cfd16 22057 if (mcpu_fpu_opt)
03b1477f
RE
22058 mfpu_opt = mcpu_fpu_opt;
22059 else
22060 mfpu_opt = march_fpu_opt;
39c2da32 22061#else
e74cfd16 22062 mfpu_opt = &fpu_default;
39c2da32 22063#endif
03b1477f
RE
22064 }
22065
e74cfd16 22066 if (!mfpu_opt)
03b1477f 22067 {
493cb6ef 22068 if (mcpu_cpu_opt != NULL)
e74cfd16 22069 mfpu_opt = &fpu_default;
493cb6ef 22070 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 22071 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 22072 else
e74cfd16 22073 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
22074 }
22075
ee065d83 22076#ifdef CPU_DEFAULT
e74cfd16 22077 if (!mcpu_cpu_opt)
ee065d83 22078 {
e74cfd16
PB
22079 mcpu_cpu_opt = &cpu_default;
22080 selected_cpu = cpu_default;
ee065d83 22081 }
e74cfd16
PB
22082#else
22083 if (mcpu_cpu_opt)
22084 selected_cpu = *mcpu_cpu_opt;
ee065d83 22085 else
e74cfd16 22086 mcpu_cpu_opt = &arm_arch_any;
ee065d83 22087#endif
03b1477f 22088
e74cfd16 22089 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 22090
3e9e4fcf
JB
22091 autoselect_thumb_from_cpu_variant ();
22092
e74cfd16 22093 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 22094
f17c130b 22095#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 22096 {
7cc69913
NC
22097 unsigned int flags = 0;
22098
22099#if defined OBJ_ELF
22100 flags = meabi_flags;
d507cf36
PB
22101
22102 switch (meabi_flags)
33a392fb 22103 {
d507cf36 22104 case EF_ARM_EABI_UNKNOWN:
7cc69913 22105#endif
d507cf36
PB
22106 /* Set the flags in the private structure. */
22107 if (uses_apcs_26) flags |= F_APCS26;
22108 if (support_interwork) flags |= F_INTERWORK;
22109 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 22110 if (pic_code) flags |= F_PIC;
e74cfd16 22111 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
22112 flags |= F_SOFT_FLOAT;
22113
d507cf36
PB
22114 switch (mfloat_abi_opt)
22115 {
22116 case ARM_FLOAT_ABI_SOFT:
22117 case ARM_FLOAT_ABI_SOFTFP:
22118 flags |= F_SOFT_FLOAT;
22119 break;
33a392fb 22120
d507cf36
PB
22121 case ARM_FLOAT_ABI_HARD:
22122 if (flags & F_SOFT_FLOAT)
22123 as_bad (_("hard-float conflicts with specified fpu"));
22124 break;
22125 }
03b1477f 22126
e74cfd16
PB
22127 /* Using pure-endian doubles (even if soft-float). */
22128 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 22129 flags |= F_VFP_FLOAT;
f17c130b 22130
fde78edd 22131#if defined OBJ_ELF
e74cfd16 22132 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 22133 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
22134 break;
22135
8cb51566 22136 case EF_ARM_EABI_VER4:
3a4a14e9 22137 case EF_ARM_EABI_VER5:
c19d1205 22138 /* No additional flags to set. */
d507cf36
PB
22139 break;
22140
22141 default:
22142 abort ();
22143 }
7cc69913 22144#endif
b99bd4ef
NC
22145 bfd_set_private_flags (stdoutput, flags);
22146
22147 /* We have run out flags in the COFF header to encode the
22148 status of ATPCS support, so instead we create a dummy,
c19d1205 22149 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
22150 if (atpcs)
22151 {
22152 asection * sec;
22153
22154 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22155
22156 if (sec != NULL)
22157 {
22158 bfd_set_section_flags
22159 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22160 bfd_set_section_size (stdoutput, sec, 0);
22161 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22162 }
22163 }
7cc69913 22164 }
f17c130b 22165#endif
b99bd4ef
NC
22166
22167 /* Record the CPU type as well. */
2d447fca
JM
22168 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22169 mach = bfd_mach_arm_iWMMXt2;
22170 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 22171 mach = bfd_mach_arm_iWMMXt;
e74cfd16 22172 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 22173 mach = bfd_mach_arm_XScale;
e74cfd16 22174 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 22175 mach = bfd_mach_arm_ep9312;
e74cfd16 22176 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 22177 mach = bfd_mach_arm_5TE;
e74cfd16 22178 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 22179 {
e74cfd16 22180 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22181 mach = bfd_mach_arm_5T;
22182 else
22183 mach = bfd_mach_arm_5;
22184 }
e74cfd16 22185 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 22186 {
e74cfd16 22187 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22188 mach = bfd_mach_arm_4T;
22189 else
22190 mach = bfd_mach_arm_4;
22191 }
e74cfd16 22192 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 22193 mach = bfd_mach_arm_3M;
e74cfd16
PB
22194 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22195 mach = bfd_mach_arm_3;
22196 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22197 mach = bfd_mach_arm_2a;
22198 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22199 mach = bfd_mach_arm_2;
22200 else
22201 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
22202
22203 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22204}
22205
c19d1205 22206/* Command line processing. */
b99bd4ef 22207
c19d1205
ZW
22208/* md_parse_option
22209 Invocation line includes a switch not recognized by the base assembler.
22210 See if it's a processor-specific option.
b99bd4ef 22211
c19d1205
ZW
22212 This routine is somewhat complicated by the need for backwards
22213 compatibility (since older releases of gcc can't be changed).
22214 The new options try to make the interface as compatible as
22215 possible with GCC.
b99bd4ef 22216
c19d1205 22217 New options (supported) are:
b99bd4ef 22218
c19d1205
ZW
22219 -mcpu=<cpu name> Assemble for selected processor
22220 -march=<architecture name> Assemble for selected architecture
22221 -mfpu=<fpu architecture> Assemble for selected FPU.
22222 -EB/-mbig-endian Big-endian
22223 -EL/-mlittle-endian Little-endian
22224 -k Generate PIC code
22225 -mthumb Start in Thumb mode
22226 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 22227
278df34e 22228 -m[no-]warn-deprecated Warn about deprecated features
267bf995 22229
c19d1205 22230 For now we will also provide support for:
b99bd4ef 22231
c19d1205
ZW
22232 -mapcs-32 32-bit Program counter
22233 -mapcs-26 26-bit Program counter
22234 -macps-float Floats passed in FP registers
22235 -mapcs-reentrant Reentrant code
22236 -matpcs
22237 (sometime these will probably be replaced with -mapcs=<list of options>
22238 and -matpcs=<list of options>)
b99bd4ef 22239
c19d1205
ZW
22240 The remaining options are only supported for back-wards compatibility.
22241 Cpu variants, the arm part is optional:
22242 -m[arm]1 Currently not supported.
22243 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22244 -m[arm]3 Arm 3 processor
22245 -m[arm]6[xx], Arm 6 processors
22246 -m[arm]7[xx][t][[d]m] Arm 7 processors
22247 -m[arm]8[10] Arm 8 processors
22248 -m[arm]9[20][tdmi] Arm 9 processors
22249 -mstrongarm[110[0]] StrongARM processors
22250 -mxscale XScale processors
22251 -m[arm]v[2345[t[e]]] Arm architectures
22252 -mall All (except the ARM1)
22253 FP variants:
22254 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22255 -mfpe-old (No float load/store multiples)
22256 -mvfpxd VFP Single precision
22257 -mvfp All VFP
22258 -mno-fpu Disable all floating point instructions
b99bd4ef 22259
c19d1205
ZW
22260 The following CPU names are recognized:
22261 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22262 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22263 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22264 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22265 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22266 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22267 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 22268
c19d1205 22269 */
b99bd4ef 22270
c19d1205 22271const char * md_shortopts = "m:k";
b99bd4ef 22272
c19d1205
ZW
22273#ifdef ARM_BI_ENDIAN
22274#define OPTION_EB (OPTION_MD_BASE + 0)
22275#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 22276#else
c19d1205
ZW
22277#if TARGET_BYTES_BIG_ENDIAN
22278#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 22279#else
c19d1205
ZW
22280#define OPTION_EL (OPTION_MD_BASE + 1)
22281#endif
b99bd4ef 22282#endif
845b51d6 22283#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 22284
c19d1205 22285struct option md_longopts[] =
b99bd4ef 22286{
c19d1205
ZW
22287#ifdef OPTION_EB
22288 {"EB", no_argument, NULL, OPTION_EB},
22289#endif
22290#ifdef OPTION_EL
22291 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 22292#endif
845b51d6 22293 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
22294 {NULL, no_argument, NULL, 0}
22295};
b99bd4ef 22296
c19d1205 22297size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 22298
c19d1205 22299struct arm_option_table
b99bd4ef 22300{
c19d1205
ZW
22301 char *option; /* Option name to match. */
22302 char *help; /* Help information. */
22303 int *var; /* Variable to change. */
22304 int value; /* What to change it to. */
22305 char *deprecated; /* If non-null, print this message. */
22306};
b99bd4ef 22307
c19d1205
ZW
22308struct arm_option_table arm_opts[] =
22309{
22310 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22311 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22312 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22313 &support_interwork, 1, NULL},
22314 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22315 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22316 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22317 1, NULL},
22318 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22319 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22320 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22321 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22322 NULL},
b99bd4ef 22323
c19d1205
ZW
22324 /* These are recognized by the assembler, but have no affect on code. */
22325 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22326 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
22327
22328 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22329 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22330 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
22331 {NULL, NULL, NULL, 0, NULL}
22332};
22333
22334struct arm_legacy_option_table
22335{
22336 char *option; /* Option name to match. */
22337 const arm_feature_set **var; /* Variable to change. */
22338 const arm_feature_set value; /* What to change it to. */
22339 char *deprecated; /* If non-null, print this message. */
22340};
b99bd4ef 22341
e74cfd16
PB
22342const struct arm_legacy_option_table arm_legacy_opts[] =
22343{
c19d1205
ZW
22344 /* DON'T add any new processors to this list -- we want the whole list
22345 to go away... Add them to the processors table instead. */
e74cfd16
PB
22346 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22347 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22348 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22349 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22350 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22351 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22352 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22353 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22354 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22355 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22356 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22357 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22358 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22359 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22360 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22361 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22362 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22363 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22364 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22365 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22366 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22367 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22368 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22369 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22370 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22371 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22372 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22373 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22374 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22375 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22376 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22377 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22378 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22379 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22380 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22381 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22382 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22383 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22384 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22385 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22386 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22387 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22388 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22389 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22390 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22391 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22392 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22393 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22394 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22395 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22396 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22397 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22398 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22399 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22400 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22401 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22402 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22403 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22404 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22405 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22406 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22407 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22408 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22409 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22410 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22411 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22412 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22413 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22414 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22415 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22416 N_("use -mcpu=strongarm110")},
e74cfd16 22417 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22418 N_("use -mcpu=strongarm1100")},
e74cfd16 22419 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22420 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
22421 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22422 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22423 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 22424
c19d1205 22425 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
22426 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22427 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22428 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22429 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22430 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22431 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22432 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22433 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22434 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22435 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22436 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22437 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22438 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22439 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22440 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22441 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22442 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22443 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 22444
c19d1205 22445 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
22446 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22447 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22448 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22449 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 22450 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 22451
e74cfd16 22452 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 22453};
7ed4c4c5 22454
c19d1205 22455struct arm_cpu_option_table
7ed4c4c5 22456{
c19d1205 22457 char *name;
e74cfd16 22458 const arm_feature_set value;
c19d1205
ZW
22459 /* For some CPUs we assume an FPU unless the user explicitly sets
22460 -mfpu=... */
e74cfd16 22461 const arm_feature_set default_fpu;
ee065d83
PB
22462 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22463 case. */
22464 const char *canonical_name;
c19d1205 22465};
7ed4c4c5 22466
c19d1205
ZW
22467/* This list should, at a minimum, contain all the cpu names
22468 recognized by GCC. */
e74cfd16 22469static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 22470{
ee065d83
PB
22471 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22472 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22473 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22474 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22475 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22476 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22477 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22478 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22479 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22480 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22481 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22482 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22483 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22484 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22485 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22486 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22487 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22488 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22489 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22490 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22491 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22492 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22493 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22494 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22495 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22496 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22497 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22498 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22499 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22500 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22501 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22502 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22503 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22504 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22505 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22506 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22507 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22508 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22509 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22510 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22511 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22512 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22513 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22514 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
22515 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22516 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
22517 /* For V5 or later processors we default to using VFP; but the user
22518 should really set the FPU type explicitly. */
ee065d83
PB
22519 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22520 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22521 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22522 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22523 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22524 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22525 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22526 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22527 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22528 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22529 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22530 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22531 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22532 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22533 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22534 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22535 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22536 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22537 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22538 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22539 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
7fac0536
NC
22540 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22541 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
22542 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22543 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22544 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22545 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
4ff9b924
MGD
22546 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22547 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
ee065d83
PB
22548 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22549 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22550 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22551 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
f4c65163
MGD
22552 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22553 FPU_NONE, "Cortex-A5"},
22554 {"cortex-a8", ARM_ARCH_V7A_SEC,
22555 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22556 | FPU_NEON_EXT_V1),
4ff9b924 22557 "Cortex-A8"},
f4c65163
MGD
22558 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22559 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22560 | FPU_NEON_EXT_V1),
4ff9b924 22561 "Cortex-A9"},
90ec0d68 22562 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
eea54501 22563 FPU_ARCH_NEON_VFP_V4,
dbb1f804 22564 "Cortex-A15"},
4ff9b924
MGD
22565 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22566 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22567 "Cortex-R4F"},
22568 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22569 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
b2a5fbdc
MGD
22570 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22571 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
c19d1205 22572 /* ??? XSCALE is really an architecture. */
ee065d83 22573 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22574 /* ??? iwmmxt is not a processor. */
ee065d83 22575 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 22576 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 22577 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22578 /* Maverick */
e07e6e58 22579 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 22580 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 22581};
7ed4c4c5 22582
c19d1205 22583struct arm_arch_option_table
7ed4c4c5 22584{
c19d1205 22585 char *name;
e74cfd16
PB
22586 const arm_feature_set value;
22587 const arm_feature_set default_fpu;
c19d1205 22588};
7ed4c4c5 22589
c19d1205
ZW
22590/* This list should, at a minimum, contain all the architecture names
22591 recognized by GCC. */
e74cfd16 22592static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
22593{
22594 {"all", ARM_ANY, FPU_ARCH_FPA},
22595 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22596 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22597 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22598 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22599 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22600 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22601 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22602 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22603 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22604 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22605 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22606 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22607 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22608 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22609 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22610 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22611 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22612 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22613 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22614 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22615 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22616 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22617 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22618 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22619 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 22620 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
b2a5fbdc 22621 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
62b3e311 22622 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
22623 /* The official spelling of the ARMv7 profile variants is the dashed form.
22624 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
22625 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22626 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22627 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
22628 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22629 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22630 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
9e3c6df6 22631 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
c19d1205
ZW
22632 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22633 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 22634 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 22635 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 22636};
7ed4c4c5 22637
69133863
MGD
22638/* ISA extensions in the co-processor and main instruction set space. */
22639struct arm_option_extension_value_table
c19d1205
ZW
22640{
22641 char *name;
e74cfd16 22642 const arm_feature_set value;
69133863 22643 const arm_feature_set allowed_archs;
c19d1205 22644};
7ed4c4c5 22645
69133863
MGD
22646/* The following table must be in alphabetical order with a NULL last entry.
22647 */
22648static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 22649{
eea54501
MGD
22650 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22651 ARM_FEATURE (ARM_EXT_V7A, 0)},
69133863
MGD
22652 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22653 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22654 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
60e5ef9f
MGD
22655 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22656 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
b2a5fbdc
MGD
22657 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22658 ARM_FEATURE (ARM_EXT_V6M, 0)},
f4c65163
MGD
22659 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22660 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
90ec0d68
MGD
22661 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22662 ARM_FEATURE (ARM_EXT_V7A, 0)},
69133863 22663 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
60e5ef9f 22664 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
69133863
MGD
22665};
22666
22667/* ISA floating-point and Advanced SIMD extensions. */
22668struct arm_option_fpu_value_table
22669{
22670 char *name;
22671 const arm_feature_set value;
c19d1205 22672};
7ed4c4c5 22673
c19d1205
ZW
22674/* This list should, at a minimum, contain all the fpu names
22675 recognized by GCC. */
69133863 22676static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
22677{
22678 {"softfpa", FPU_NONE},
22679 {"fpe", FPU_ARCH_FPE},
22680 {"fpe2", FPU_ARCH_FPE},
22681 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22682 {"fpa", FPU_ARCH_FPA},
22683 {"fpa10", FPU_ARCH_FPA},
22684 {"fpa11", FPU_ARCH_FPA},
22685 {"arm7500fe", FPU_ARCH_FPA},
22686 {"softvfp", FPU_ARCH_VFP},
22687 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22688 {"vfp", FPU_ARCH_VFP_V2},
22689 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 22690 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
22691 {"vfp10", FPU_ARCH_VFP_V2},
22692 {"vfp10-r0", FPU_ARCH_VFP_V1},
22693 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
22694 {"vfpv2", FPU_ARCH_VFP_V2},
22695 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 22696 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 22697 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
22698 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22699 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22700 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
22701 {"arm1020t", FPU_ARCH_VFP_V1},
22702 {"arm1020e", FPU_ARCH_VFP_V2},
22703 {"arm1136jfs", FPU_ARCH_VFP_V2},
22704 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22705 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 22706 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 22707 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
22708 {"vfpv4", FPU_ARCH_VFP_V4},
22709 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 22710 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 22711 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
22712 {NULL, ARM_ARCH_NONE}
22713};
22714
22715struct arm_option_value_table
22716{
22717 char *name;
22718 long value;
c19d1205 22719};
7ed4c4c5 22720
e74cfd16 22721static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
22722{
22723 {"hard", ARM_FLOAT_ABI_HARD},
22724 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22725 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 22726 {NULL, 0}
c19d1205 22727};
7ed4c4c5 22728
c19d1205 22729#ifdef OBJ_ELF
3a4a14e9 22730/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 22731static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
22732{
22733 {"gnu", EF_ARM_EABI_UNKNOWN},
22734 {"4", EF_ARM_EABI_VER4},
3a4a14e9 22735 {"5", EF_ARM_EABI_VER5},
e74cfd16 22736 {NULL, 0}
c19d1205
ZW
22737};
22738#endif
7ed4c4c5 22739
c19d1205
ZW
22740struct arm_long_option_table
22741{
22742 char * option; /* Substring to match. */
22743 char * help; /* Help information. */
22744 int (* func) (char * subopt); /* Function to decode sub-option. */
22745 char * deprecated; /* If non-null, print this message. */
22746};
7ed4c4c5 22747
c921be7d 22748static bfd_boolean
e74cfd16 22749arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 22750{
21d799b5
NC
22751 arm_feature_set *ext_set = (arm_feature_set *)
22752 xmalloc (sizeof (arm_feature_set));
e74cfd16 22753
69133863
MGD
22754 /* We insist on extensions being specified in alphabetical order, and with
22755 extensions being added before being removed. We achieve this by having
22756 the global ARM_EXTENSIONS table in alphabetical order, and using the
22757 ADDING_VALUE variable to indicate whether we are adding an extension (1)
22758 or removing it (0) and only allowing it to change in the order
22759 -1 -> 1 -> 0. */
22760 const struct arm_option_extension_value_table * opt = NULL;
22761 int adding_value = -1;
22762
e74cfd16
PB
22763 /* Copy the feature set, so that we can modify it. */
22764 *ext_set = **opt_p;
22765 *opt_p = ext_set;
22766
c19d1205 22767 while (str != NULL && *str != 0)
7ed4c4c5 22768 {
c19d1205 22769 char * ext;
69133863 22770 size_t optlen;
7ed4c4c5 22771
c19d1205
ZW
22772 if (*str != '+')
22773 {
22774 as_bad (_("invalid architectural extension"));
c921be7d 22775 return FALSE;
c19d1205 22776 }
7ed4c4c5 22777
c19d1205
ZW
22778 str++;
22779 ext = strchr (str, '+');
7ed4c4c5 22780
c19d1205
ZW
22781 if (ext != NULL)
22782 optlen = ext - str;
22783 else
22784 optlen = strlen (str);
7ed4c4c5 22785
69133863
MGD
22786 if (optlen >= 2
22787 && strncmp (str, "no", 2) == 0)
22788 {
22789 if (adding_value != 0)
22790 {
22791 adding_value = 0;
22792 opt = arm_extensions;
22793 }
22794
22795 optlen -= 2;
22796 str += 2;
22797 }
22798 else if (optlen > 0)
22799 {
22800 if (adding_value == -1)
22801 {
22802 adding_value = 1;
22803 opt = arm_extensions;
22804 }
22805 else if (adding_value != 1)
22806 {
22807 as_bad (_("must specify extensions to add before specifying "
22808 "those to remove"));
22809 return FALSE;
22810 }
22811 }
22812
c19d1205
ZW
22813 if (optlen == 0)
22814 {
22815 as_bad (_("missing architectural extension"));
c921be7d 22816 return FALSE;
c19d1205 22817 }
7ed4c4c5 22818
69133863
MGD
22819 gas_assert (adding_value != -1);
22820 gas_assert (opt != NULL);
22821
22822 /* Scan over the options table trying to find an exact match. */
22823 for (; opt->name != NULL; opt++)
22824 if (strncmp (opt->name, str, optlen) == 0
22825 && strlen (opt->name) == optlen)
c19d1205 22826 {
69133863
MGD
22827 /* Check we can apply the extension to this architecture. */
22828 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
22829 {
22830 as_bad (_("extension does not apply to the base architecture"));
22831 return FALSE;
22832 }
22833
22834 /* Add or remove the extension. */
22835 if (adding_value)
22836 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22837 else
22838 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
22839
c19d1205
ZW
22840 break;
22841 }
7ed4c4c5 22842
c19d1205
ZW
22843 if (opt->name == NULL)
22844 {
69133863
MGD
22845 /* Did we fail to find an extension because it wasn't specified in
22846 alphabetical order, or because it does not exist? */
22847
22848 for (opt = arm_extensions; opt->name != NULL; opt++)
22849 if (strncmp (opt->name, str, optlen) == 0)
22850 break;
22851
22852 if (opt->name == NULL)
22853 as_bad (_("unknown architectural extension `%s'"), str);
22854 else
22855 as_bad (_("architectural extensions must be specified in "
22856 "alphabetical order"));
22857
c921be7d 22858 return FALSE;
c19d1205 22859 }
69133863
MGD
22860 else
22861 {
22862 /* We should skip the extension we've just matched the next time
22863 round. */
22864 opt++;
22865 }
7ed4c4c5 22866
c19d1205
ZW
22867 str = ext;
22868 };
7ed4c4c5 22869
c921be7d 22870 return TRUE;
c19d1205 22871}
7ed4c4c5 22872
c921be7d 22873static bfd_boolean
c19d1205 22874arm_parse_cpu (char * str)
7ed4c4c5 22875{
e74cfd16 22876 const struct arm_cpu_option_table * opt;
c19d1205
ZW
22877 char * ext = strchr (str, '+');
22878 int optlen;
7ed4c4c5 22879
c19d1205
ZW
22880 if (ext != NULL)
22881 optlen = ext - str;
7ed4c4c5 22882 else
c19d1205 22883 optlen = strlen (str);
7ed4c4c5 22884
c19d1205 22885 if (optlen == 0)
7ed4c4c5 22886 {
c19d1205 22887 as_bad (_("missing cpu name `%s'"), str);
c921be7d 22888 return FALSE;
7ed4c4c5
NC
22889 }
22890
c19d1205
ZW
22891 for (opt = arm_cpus; opt->name != NULL; opt++)
22892 if (strncmp (opt->name, str, optlen) == 0)
22893 {
e74cfd16
PB
22894 mcpu_cpu_opt = &opt->value;
22895 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 22896 if (opt->canonical_name)
5f4273c7 22897 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
22898 else
22899 {
22900 int i;
c921be7d 22901
ee065d83
PB
22902 for (i = 0; i < optlen; i++)
22903 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22904 selected_cpu_name[i] = 0;
22905 }
7ed4c4c5 22906
c19d1205
ZW
22907 if (ext != NULL)
22908 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 22909
c921be7d 22910 return TRUE;
c19d1205 22911 }
7ed4c4c5 22912
c19d1205 22913 as_bad (_("unknown cpu `%s'"), str);
c921be7d 22914 return FALSE;
7ed4c4c5
NC
22915}
22916
c921be7d 22917static bfd_boolean
c19d1205 22918arm_parse_arch (char * str)
7ed4c4c5 22919{
e74cfd16 22920 const struct arm_arch_option_table *opt;
c19d1205
ZW
22921 char *ext = strchr (str, '+');
22922 int optlen;
7ed4c4c5 22923
c19d1205
ZW
22924 if (ext != NULL)
22925 optlen = ext - str;
7ed4c4c5 22926 else
c19d1205 22927 optlen = strlen (str);
7ed4c4c5 22928
c19d1205 22929 if (optlen == 0)
7ed4c4c5 22930 {
c19d1205 22931 as_bad (_("missing architecture name `%s'"), str);
c921be7d 22932 return FALSE;
7ed4c4c5
NC
22933 }
22934
c19d1205 22935 for (opt = arm_archs; opt->name != NULL; opt++)
69133863 22936 if (strncmp (opt->name, str, optlen) == 0)
c19d1205 22937 {
e74cfd16
PB
22938 march_cpu_opt = &opt->value;
22939 march_fpu_opt = &opt->default_fpu;
5f4273c7 22940 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 22941
c19d1205
ZW
22942 if (ext != NULL)
22943 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 22944
c921be7d 22945 return TRUE;
c19d1205
ZW
22946 }
22947
22948 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 22949 return FALSE;
7ed4c4c5 22950}
eb043451 22951
c921be7d 22952static bfd_boolean
c19d1205
ZW
22953arm_parse_fpu (char * str)
22954{
69133863 22955 const struct arm_option_fpu_value_table * opt;
b99bd4ef 22956
c19d1205
ZW
22957 for (opt = arm_fpus; opt->name != NULL; opt++)
22958 if (streq (opt->name, str))
22959 {
e74cfd16 22960 mfpu_opt = &opt->value;
c921be7d 22961 return TRUE;
c19d1205 22962 }
b99bd4ef 22963
c19d1205 22964 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 22965 return FALSE;
c19d1205
ZW
22966}
22967
c921be7d 22968static bfd_boolean
c19d1205 22969arm_parse_float_abi (char * str)
b99bd4ef 22970{
e74cfd16 22971 const struct arm_option_value_table * opt;
b99bd4ef 22972
c19d1205
ZW
22973 for (opt = arm_float_abis; opt->name != NULL; opt++)
22974 if (streq (opt->name, str))
22975 {
22976 mfloat_abi_opt = opt->value;
c921be7d 22977 return TRUE;
c19d1205 22978 }
cc8a6dd0 22979
c19d1205 22980 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 22981 return FALSE;
c19d1205 22982}
b99bd4ef 22983
c19d1205 22984#ifdef OBJ_ELF
c921be7d 22985static bfd_boolean
c19d1205
ZW
22986arm_parse_eabi (char * str)
22987{
e74cfd16 22988 const struct arm_option_value_table *opt;
cc8a6dd0 22989
c19d1205
ZW
22990 for (opt = arm_eabis; opt->name != NULL; opt++)
22991 if (streq (opt->name, str))
22992 {
22993 meabi_flags = opt->value;
c921be7d 22994 return TRUE;
c19d1205
ZW
22995 }
22996 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 22997 return FALSE;
c19d1205
ZW
22998}
22999#endif
cc8a6dd0 23000
c921be7d 23001static bfd_boolean
e07e6e58
NC
23002arm_parse_it_mode (char * str)
23003{
c921be7d 23004 bfd_boolean ret = TRUE;
e07e6e58
NC
23005
23006 if (streq ("arm", str))
23007 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23008 else if (streq ("thumb", str))
23009 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23010 else if (streq ("always", str))
23011 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23012 else if (streq ("never", str))
23013 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23014 else
23015 {
23016 as_bad (_("unknown implicit IT mode `%s', should be "\
23017 "arm, thumb, always, or never."), str);
c921be7d 23018 ret = FALSE;
e07e6e58
NC
23019 }
23020
23021 return ret;
23022}
23023
c19d1205
ZW
23024struct arm_long_option_table arm_long_opts[] =
23025{
23026 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23027 arm_parse_cpu, NULL},
23028 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23029 arm_parse_arch, NULL},
23030 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23031 arm_parse_fpu, NULL},
23032 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23033 arm_parse_float_abi, NULL},
23034#ifdef OBJ_ELF
7fac0536 23035 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
23036 arm_parse_eabi, NULL},
23037#endif
e07e6e58
NC
23038 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23039 arm_parse_it_mode, NULL},
c19d1205
ZW
23040 {NULL, NULL, 0, NULL}
23041};
cc8a6dd0 23042
c19d1205
ZW
23043int
23044md_parse_option (int c, char * arg)
23045{
23046 struct arm_option_table *opt;
e74cfd16 23047 const struct arm_legacy_option_table *fopt;
c19d1205 23048 struct arm_long_option_table *lopt;
b99bd4ef 23049
c19d1205 23050 switch (c)
b99bd4ef 23051 {
c19d1205
ZW
23052#ifdef OPTION_EB
23053 case OPTION_EB:
23054 target_big_endian = 1;
23055 break;
23056#endif
cc8a6dd0 23057
c19d1205
ZW
23058#ifdef OPTION_EL
23059 case OPTION_EL:
23060 target_big_endian = 0;
23061 break;
23062#endif
b99bd4ef 23063
845b51d6
PB
23064 case OPTION_FIX_V4BX:
23065 fix_v4bx = TRUE;
23066 break;
23067
c19d1205
ZW
23068 case 'a':
23069 /* Listing option. Just ignore these, we don't support additional
23070 ones. */
23071 return 0;
b99bd4ef 23072
c19d1205
ZW
23073 default:
23074 for (opt = arm_opts; opt->option != NULL; opt++)
23075 {
23076 if (c == opt->option[0]
23077 && ((arg == NULL && opt->option[1] == 0)
23078 || streq (arg, opt->option + 1)))
23079 {
c19d1205 23080 /* If the option is deprecated, tell the user. */
278df34e 23081 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
23082 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23083 arg ? arg : "", _(opt->deprecated));
b99bd4ef 23084
c19d1205
ZW
23085 if (opt->var != NULL)
23086 *opt->var = opt->value;
cc8a6dd0 23087
c19d1205
ZW
23088 return 1;
23089 }
23090 }
b99bd4ef 23091
e74cfd16
PB
23092 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23093 {
23094 if (c == fopt->option[0]
23095 && ((arg == NULL && fopt->option[1] == 0)
23096 || streq (arg, fopt->option + 1)))
23097 {
e74cfd16 23098 /* If the option is deprecated, tell the user. */
278df34e 23099 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
23100 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23101 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
23102
23103 if (fopt->var != NULL)
23104 *fopt->var = &fopt->value;
23105
23106 return 1;
23107 }
23108 }
23109
c19d1205
ZW
23110 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23111 {
23112 /* These options are expected to have an argument. */
23113 if (c == lopt->option[0]
23114 && arg != NULL
23115 && strncmp (arg, lopt->option + 1,
23116 strlen (lopt->option + 1)) == 0)
23117 {
c19d1205 23118 /* If the option is deprecated, tell the user. */
278df34e 23119 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
23120 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23121 _(lopt->deprecated));
b99bd4ef 23122
c19d1205
ZW
23123 /* Call the sup-option parser. */
23124 return lopt->func (arg + strlen (lopt->option) - 1);
23125 }
23126 }
a737bd4d 23127
c19d1205
ZW
23128 return 0;
23129 }
a394c00f 23130
c19d1205
ZW
23131 return 1;
23132}
a394c00f 23133
c19d1205
ZW
23134void
23135md_show_usage (FILE * fp)
a394c00f 23136{
c19d1205
ZW
23137 struct arm_option_table *opt;
23138 struct arm_long_option_table *lopt;
a394c00f 23139
c19d1205 23140 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 23141
c19d1205
ZW
23142 for (opt = arm_opts; opt->option != NULL; opt++)
23143 if (opt->help != NULL)
23144 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 23145
c19d1205
ZW
23146 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23147 if (lopt->help != NULL)
23148 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 23149
c19d1205
ZW
23150#ifdef OPTION_EB
23151 fprintf (fp, _("\
23152 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
23153#endif
23154
c19d1205
ZW
23155#ifdef OPTION_EL
23156 fprintf (fp, _("\
23157 -EL assemble code for a little-endian cpu\n"));
a737bd4d 23158#endif
845b51d6
PB
23159
23160 fprintf (fp, _("\
23161 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 23162}
ee065d83
PB
23163
23164
23165#ifdef OBJ_ELF
62b3e311
PB
23166typedef struct
23167{
23168 int val;
23169 arm_feature_set flags;
23170} cpu_arch_ver_table;
23171
23172/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23173 least features first. */
23174static const cpu_arch_ver_table cpu_arch_ver[] =
23175{
23176 {1, ARM_ARCH_V4},
23177 {2, ARM_ARCH_V4T},
23178 {3, ARM_ARCH_V5},
ee3c0378 23179 {3, ARM_ARCH_V5T},
62b3e311
PB
23180 {4, ARM_ARCH_V5TE},
23181 {5, ARM_ARCH_V5TEJ},
23182 {6, ARM_ARCH_V6},
7e806470 23183 {9, ARM_ARCH_V6K},
f4c65163 23184 {7, ARM_ARCH_V6Z},
91e22acd 23185 {11, ARM_ARCH_V6M},
b2a5fbdc 23186 {12, ARM_ARCH_V6SM},
7e806470 23187 {8, ARM_ARCH_V6T2},
62b3e311
PB
23188 {10, ARM_ARCH_V7A},
23189 {10, ARM_ARCH_V7R},
23190 {10, ARM_ARCH_V7M},
23191 {0, ARM_ARCH_NONE}
23192};
23193
ee3c0378
AS
23194/* Set an attribute if it has not already been set by the user. */
23195static void
23196aeabi_set_attribute_int (int tag, int value)
23197{
23198 if (tag < 1
23199 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23200 || !attributes_set_explicitly[tag])
23201 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23202}
23203
23204static void
23205aeabi_set_attribute_string (int tag, const char *value)
23206{
23207 if (tag < 1
23208 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23209 || !attributes_set_explicitly[tag])
23210 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23211}
23212
ee065d83
PB
23213/* Set the public EABI object attributes. */
23214static void
23215aeabi_set_public_attributes (void)
23216{
23217 int arch;
90ec0d68 23218 int virt_sec = 0;
e74cfd16 23219 arm_feature_set flags;
62b3e311
PB
23220 arm_feature_set tmp;
23221 const cpu_arch_ver_table *p;
ee065d83
PB
23222
23223 /* Choose the architecture based on the capabilities of the requested cpu
23224 (if any) and/or the instructions actually used. */
e74cfd16
PB
23225 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23226 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23227 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
23228 /*Allow the user to override the reported architecture. */
23229 if (object_arch)
23230 {
23231 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23232 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23233 }
23234
62b3e311
PB
23235 tmp = flags;
23236 arch = 0;
23237 for (p = cpu_arch_ver; p->val; p++)
23238 {
23239 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23240 {
23241 arch = p->val;
23242 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23243 }
23244 }
ee065d83 23245
9e3c6df6
PB
23246 /* The table lookup above finds the last architecture to contribute
23247 a new feature. Unfortunately, Tag13 is a subset of the union of
23248 v6T2 and v7-M, so it is never seen as contributing a new feature.
23249 We can not search for the last entry which is entirely used,
23250 because if no CPU is specified we build up only those flags
23251 actually used. Perhaps we should separate out the specified
23252 and implicit cases. Avoid taking this path for -march=all by
23253 checking for contradictory v7-A / v7-M features. */
23254 if (arch == 10
23255 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23256 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23257 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23258 arch = 13;
23259
ee065d83
PB
23260 /* Tag_CPU_name. */
23261 if (selected_cpu_name[0])
23262 {
91d6fa6a 23263 char *q;
ee065d83 23264
91d6fa6a
NC
23265 q = selected_cpu_name;
23266 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
23267 {
23268 int i;
5f4273c7 23269
91d6fa6a
NC
23270 q += 4;
23271 for (i = 0; q[i]; i++)
23272 q[i] = TOUPPER (q[i]);
ee065d83 23273 }
91d6fa6a 23274 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 23275 }
62f3b8c8 23276
ee065d83 23277 /* Tag_CPU_arch. */
ee3c0378 23278 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 23279
62b3e311
PB
23280 /* Tag_CPU_arch_profile. */
23281 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 23282 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 23283 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 23284 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 23285 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 23286 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 23287
ee065d83 23288 /* Tag_ARM_ISA_use. */
ee3c0378
AS
23289 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23290 || arch == 0)
23291 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 23292
ee065d83 23293 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
23294 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23295 || arch == 0)
23296 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23297 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 23298
ee065d83 23299 /* Tag_VFP_arch. */
62f3b8c8
PB
23300 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23301 aeabi_set_attribute_int (Tag_VFP_arch,
23302 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23303 ? 5 : 6);
23304 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 23305 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 23306 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
23307 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23308 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23309 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23310 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23311 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23312 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 23313
4547cb56
NC
23314 /* Tag_ABI_HardFP_use. */
23315 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23316 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23317 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23318
ee065d83 23319 /* Tag_WMMX_arch. */
ee3c0378
AS
23320 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23321 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23322 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23323 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 23324
ee3c0378 23325 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 23326 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
23327 aeabi_set_attribute_int
23328 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23329 ? 2 : 1));
23330
ee3c0378 23331 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 23332 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 23333 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56
NC
23334
23335 /* Tag_DIV_use. */
eea54501
MGD
23336 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23337 aeabi_set_attribute_int (Tag_DIV_use, 2);
23338 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
4547cb56 23339 aeabi_set_attribute_int (Tag_DIV_use, 0);
4547cb56
NC
23340 else
23341 aeabi_set_attribute_int (Tag_DIV_use, 1);
60e5ef9f
MGD
23342
23343 /* Tag_MP_extension_use. */
23344 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23345 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
23346
23347 /* Tag Virtualization_use. */
23348 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
23349 virt_sec |= 1;
23350 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23351 virt_sec |= 2;
23352 if (virt_sec != 0)
23353 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
23354}
23355
104d59d1 23356/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
23357void
23358arm_md_end (void)
23359{
ee065d83
PB
23360 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23361 return;
23362
23363 aeabi_set_public_attributes ();
ee065d83 23364}
8463be01 23365#endif /* OBJ_ELF */
ee065d83
PB
23366
23367
23368/* Parse a .cpu directive. */
23369
23370static void
23371s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23372{
e74cfd16 23373 const struct arm_cpu_option_table *opt;
ee065d83
PB
23374 char *name;
23375 char saved_char;
23376
23377 name = input_line_pointer;
5f4273c7 23378 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23379 input_line_pointer++;
23380 saved_char = *input_line_pointer;
23381 *input_line_pointer = 0;
23382
23383 /* Skip the first "all" entry. */
23384 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23385 if (streq (opt->name, name))
23386 {
e74cfd16
PB
23387 mcpu_cpu_opt = &opt->value;
23388 selected_cpu = opt->value;
ee065d83 23389 if (opt->canonical_name)
5f4273c7 23390 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23391 else
23392 {
23393 int i;
23394 for (i = 0; opt->name[i]; i++)
23395 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23396 selected_cpu_name[i] = 0;
23397 }
e74cfd16 23398 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23399 *input_line_pointer = saved_char;
23400 demand_empty_rest_of_line ();
23401 return;
23402 }
23403 as_bad (_("unknown cpu `%s'"), name);
23404 *input_line_pointer = saved_char;
23405 ignore_rest_of_line ();
23406}
23407
23408
23409/* Parse a .arch directive. */
23410
23411static void
23412s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23413{
e74cfd16 23414 const struct arm_arch_option_table *opt;
ee065d83
PB
23415 char saved_char;
23416 char *name;
23417
23418 name = input_line_pointer;
5f4273c7 23419 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23420 input_line_pointer++;
23421 saved_char = *input_line_pointer;
23422 *input_line_pointer = 0;
23423
23424 /* Skip the first "all" entry. */
23425 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23426 if (streq (opt->name, name))
23427 {
e74cfd16
PB
23428 mcpu_cpu_opt = &opt->value;
23429 selected_cpu = opt->value;
5f4273c7 23430 strcpy (selected_cpu_name, opt->name);
e74cfd16 23431 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23432 *input_line_pointer = saved_char;
23433 demand_empty_rest_of_line ();
23434 return;
23435 }
23436
23437 as_bad (_("unknown architecture `%s'\n"), name);
23438 *input_line_pointer = saved_char;
23439 ignore_rest_of_line ();
23440}
23441
23442
7a1d4c38
PB
23443/* Parse a .object_arch directive. */
23444
23445static void
23446s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23447{
23448 const struct arm_arch_option_table *opt;
23449 char saved_char;
23450 char *name;
23451
23452 name = input_line_pointer;
5f4273c7 23453 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
23454 input_line_pointer++;
23455 saved_char = *input_line_pointer;
23456 *input_line_pointer = 0;
23457
23458 /* Skip the first "all" entry. */
23459 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23460 if (streq (opt->name, name))
23461 {
23462 object_arch = &opt->value;
23463 *input_line_pointer = saved_char;
23464 demand_empty_rest_of_line ();
23465 return;
23466 }
23467
23468 as_bad (_("unknown architecture `%s'\n"), name);
23469 *input_line_pointer = saved_char;
23470 ignore_rest_of_line ();
23471}
23472
69133863
MGD
23473/* Parse a .arch_extension directive. */
23474
23475static void
23476s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23477{
23478 const struct arm_option_extension_value_table *opt;
23479 char saved_char;
23480 char *name;
23481 int adding_value = 1;
23482
23483 name = input_line_pointer;
23484 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23485 input_line_pointer++;
23486 saved_char = *input_line_pointer;
23487 *input_line_pointer = 0;
23488
23489 if (strlen (name) >= 2
23490 && strncmp (name, "no", 2) == 0)
23491 {
23492 adding_value = 0;
23493 name += 2;
23494 }
23495
23496 for (opt = arm_extensions; opt->name != NULL; opt++)
23497 if (streq (opt->name, name))
23498 {
23499 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23500 {
23501 as_bad (_("architectural extension `%s' is not allowed for the "
23502 "current base architecture"), name);
23503 break;
23504 }
23505
23506 if (adding_value)
23507 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23508 else
23509 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23510
23511 mcpu_cpu_opt = &selected_cpu;
23512 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23513 *input_line_pointer = saved_char;
23514 demand_empty_rest_of_line ();
23515 return;
23516 }
23517
23518 if (opt->name == NULL)
23519 as_bad (_("unknown architecture `%s'\n"), name);
23520
23521 *input_line_pointer = saved_char;
23522 ignore_rest_of_line ();
23523}
23524
ee065d83
PB
23525/* Parse a .fpu directive. */
23526
23527static void
23528s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23529{
69133863 23530 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
23531 char saved_char;
23532 char *name;
23533
23534 name = input_line_pointer;
5f4273c7 23535 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23536 input_line_pointer++;
23537 saved_char = *input_line_pointer;
23538 *input_line_pointer = 0;
5f4273c7 23539
ee065d83
PB
23540 for (opt = arm_fpus; opt->name != NULL; opt++)
23541 if (streq (opt->name, name))
23542 {
e74cfd16
PB
23543 mfpu_opt = &opt->value;
23544 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23545 *input_line_pointer = saved_char;
23546 demand_empty_rest_of_line ();
23547 return;
23548 }
23549
23550 as_bad (_("unknown floating point format `%s'\n"), name);
23551 *input_line_pointer = saved_char;
23552 ignore_rest_of_line ();
23553}
ee065d83 23554
794ba86a 23555/* Copy symbol information. */
f31fef98 23556
794ba86a
DJ
23557void
23558arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23559{
23560 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23561}
e04befd0 23562
f31fef98 23563#ifdef OBJ_ELF
e04befd0
AS
23564/* Given a symbolic attribute NAME, return the proper integer value.
23565 Returns -1 if the attribute is not known. */
f31fef98 23566
e04befd0
AS
23567int
23568arm_convert_symbolic_attribute (const char *name)
23569{
f31fef98
NC
23570 static const struct
23571 {
23572 const char * name;
23573 const int tag;
23574 }
23575 attribute_table[] =
23576 {
23577 /* When you modify this table you should
23578 also modify the list in doc/c-arm.texi. */
e04befd0 23579#define T(tag) {#tag, tag}
f31fef98
NC
23580 T (Tag_CPU_raw_name),
23581 T (Tag_CPU_name),
23582 T (Tag_CPU_arch),
23583 T (Tag_CPU_arch_profile),
23584 T (Tag_ARM_ISA_use),
23585 T (Tag_THUMB_ISA_use),
75375b3e 23586 T (Tag_FP_arch),
f31fef98
NC
23587 T (Tag_VFP_arch),
23588 T (Tag_WMMX_arch),
23589 T (Tag_Advanced_SIMD_arch),
23590 T (Tag_PCS_config),
23591 T (Tag_ABI_PCS_R9_use),
23592 T (Tag_ABI_PCS_RW_data),
23593 T (Tag_ABI_PCS_RO_data),
23594 T (Tag_ABI_PCS_GOT_use),
23595 T (Tag_ABI_PCS_wchar_t),
23596 T (Tag_ABI_FP_rounding),
23597 T (Tag_ABI_FP_denormal),
23598 T (Tag_ABI_FP_exceptions),
23599 T (Tag_ABI_FP_user_exceptions),
23600 T (Tag_ABI_FP_number_model),
75375b3e 23601 T (Tag_ABI_align_needed),
f31fef98 23602 T (Tag_ABI_align8_needed),
75375b3e 23603 T (Tag_ABI_align_preserved),
f31fef98
NC
23604 T (Tag_ABI_align8_preserved),
23605 T (Tag_ABI_enum_size),
23606 T (Tag_ABI_HardFP_use),
23607 T (Tag_ABI_VFP_args),
23608 T (Tag_ABI_WMMX_args),
23609 T (Tag_ABI_optimization_goals),
23610 T (Tag_ABI_FP_optimization_goals),
23611 T (Tag_compatibility),
23612 T (Tag_CPU_unaligned_access),
75375b3e 23613 T (Tag_FP_HP_extension),
f31fef98
NC
23614 T (Tag_VFP_HP_extension),
23615 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
23616 T (Tag_MPextension_use),
23617 T (Tag_DIV_use),
f31fef98
NC
23618 T (Tag_nodefaults),
23619 T (Tag_also_compatible_with),
23620 T (Tag_conformance),
23621 T (Tag_T2EE_use),
23622 T (Tag_Virtualization_use),
cd21e546 23623 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 23624#undef T
f31fef98 23625 };
e04befd0
AS
23626 unsigned int i;
23627
23628 if (name == NULL)
23629 return -1;
23630
f31fef98 23631 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 23632 if (streq (name, attribute_table[i].name))
e04befd0
AS
23633 return attribute_table[i].tag;
23634
23635 return -1;
23636}
267bf995
RR
23637
23638
23639/* Apply sym value for relocations only in the case that
23640 they are for local symbols and you have the respective
23641 architectural feature for blx and simple switches. */
23642int
23643arm_apply_sym_value (struct fix * fixP)
23644{
23645 if (fixP->fx_addsy
23646 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23647 && !S_IS_EXTERNAL (fixP->fx_addsy))
23648 {
23649 switch (fixP->fx_r_type)
23650 {
23651 case BFD_RELOC_ARM_PCREL_BLX:
23652 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23653 if (ARM_IS_FUNC (fixP->fx_addsy))
23654 return 1;
23655 break;
23656
23657 case BFD_RELOC_ARM_PCREL_CALL:
23658 case BFD_RELOC_THUMB_PCREL_BLX:
23659 if (THUMB_IS_FUNC (fixP->fx_addsy))
23660 return 1;
23661 break;
23662
23663 default:
23664 break;
23665 }
23666
23667 }
23668 return 0;
23669}
f31fef98 23670#endif /* OBJ_ELF */