]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
minor comment reformatting (ada-valprint.c:printstr)
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
b43420e6 3 2004, 2005, 2006, 2007, 2008, 2009, 2010
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3
MGD
100/* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470 198static const arm_feature_set arm_ext_m =
b2a5fbdc 199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 200static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 201static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 202static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 203static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 204static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
205
206static const arm_feature_set arm_arch_any = ARM_ANY;
207static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 210static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 211
2d447fca
JM
212static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
214static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 226static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 227static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
228static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
230static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
233static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 236
33a392fb 237static int mfloat_abi_opt = -1;
e74cfd16
PB
238/* Record user cpu selection for object attributes. */
239static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
240/* Must be long enough to hold any of the names in arm_cpus. */
241static char selected_cpu_name[16];
7cc69913 242#ifdef OBJ_ELF
deeaaff8
DJ
243# ifdef EABI_DEFAULT
244static int meabi_flags = EABI_DEFAULT;
245# else
d507cf36 246static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 247# endif
e1da3f5b 248
ee3c0378
AS
249static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
250
e1da3f5b 251bfd_boolean
5f4273c7 252arm_is_eabi (void)
e1da3f5b
PB
253{
254 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
255}
7cc69913 256#endif
b99bd4ef 257
b99bd4ef 258#ifdef OBJ_ELF
c19d1205 259/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
260symbolS * GOT_symbol;
261#endif
262
b99bd4ef
NC
263/* 0: assemble for ARM,
264 1: assemble for Thumb,
265 2: assemble for Thumb even though target CPU does not support thumb
266 instructions. */
267static int thumb_mode = 0;
8dc2430f
NC
268/* A value distinct from the possible values for thumb_mode that we
269 can use to record whether thumb_mode has been copied into the
270 tc_frag_data field of a frag. */
271#define MODE_RECORDED (1 << 4)
b99bd4ef 272
e07e6e58
NC
273/* Specifies the intrinsic IT insn behavior mode. */
274enum implicit_it_mode
275{
276 IMPLICIT_IT_MODE_NEVER = 0x00,
277 IMPLICIT_IT_MODE_ARM = 0x01,
278 IMPLICIT_IT_MODE_THUMB = 0x02,
279 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
280};
281static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
282
c19d1205
ZW
283/* If unified_syntax is true, we are processing the new unified
284 ARM/Thumb syntax. Important differences from the old ARM mode:
285
286 - Immediate operands do not require a # prefix.
287 - Conditional affixes always appear at the end of the
288 instruction. (For backward compatibility, those instructions
289 that formerly had them in the middle, continue to accept them
290 there.)
291 - The IT instruction may appear, and if it does is validated
292 against subsequent conditional affixes. It does not generate
293 machine code.
294
295 Important differences from the old Thumb mode:
296
297 - Immediate operands do not require a # prefix.
298 - Most of the V6T2 instructions are only available in unified mode.
299 - The .N and .W suffixes are recognized and honored (it is an error
300 if they cannot be honored).
301 - All instructions set the flags if and only if they have an 's' affix.
302 - Conditional affixes may be used. They are validated against
303 preceding IT instructions. Unlike ARM mode, you cannot use a
304 conditional affix except in the scope of an IT instruction. */
305
306static bfd_boolean unified_syntax = FALSE;
b99bd4ef 307
5287ad62
JB
308enum neon_el_type
309{
dcbf9037 310 NT_invtype,
5287ad62
JB
311 NT_untyped,
312 NT_integer,
313 NT_float,
314 NT_poly,
315 NT_signed,
dcbf9037 316 NT_unsigned
5287ad62
JB
317};
318
319struct neon_type_el
320{
321 enum neon_el_type type;
322 unsigned size;
323};
324
325#define NEON_MAX_TYPE_ELS 4
326
327struct neon_type
328{
329 struct neon_type_el el[NEON_MAX_TYPE_ELS];
330 unsigned elems;
331};
332
e07e6e58
NC
333enum it_instruction_type
334{
335 OUTSIDE_IT_INSN,
336 INSIDE_IT_INSN,
337 INSIDE_IT_LAST_INSN,
338 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
339 if inside, should be the last one. */
340 NEUTRAL_IT_INSN, /* This could be either inside or outside,
341 i.e. BKPT and NOP. */
342 IT_INSN /* The IT insn has been parsed. */
343};
344
b99bd4ef
NC
345struct arm_it
346{
c19d1205 347 const char * error;
b99bd4ef 348 unsigned long instruction;
c19d1205
ZW
349 int size;
350 int size_req;
351 int cond;
037e8744
JB
352 /* "uncond_value" is set to the value in place of the conditional field in
353 unconditional versions of the instruction, or -1 if nothing is
354 appropriate. */
355 int uncond_value;
5287ad62 356 struct neon_type vectype;
88714cb8
DG
357 /* This does not indicate an actual NEON instruction, only that
358 the mnemonic accepts neon-style type suffixes. */
359 int is_neon;
0110f2b8
PB
360 /* Set to the opcode if the instruction needs relaxation.
361 Zero if the instruction is not relaxed. */
362 unsigned long relax;
b99bd4ef
NC
363 struct
364 {
365 bfd_reloc_code_real_type type;
c19d1205
ZW
366 expressionS exp;
367 int pc_rel;
b99bd4ef 368 } reloc;
b99bd4ef 369
e07e6e58
NC
370 enum it_instruction_type it_insn_type;
371
c19d1205
ZW
372 struct
373 {
374 unsigned reg;
ca3f61f7 375 signed int imm;
dcbf9037 376 struct neon_type_el vectype;
ca3f61f7
NC
377 unsigned present : 1; /* Operand present. */
378 unsigned isreg : 1; /* Operand was a register. */
379 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
380 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
381 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 382 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
383 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
384 instructions. This allows us to disambiguate ARM <-> vector insns. */
385 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 386 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 387 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 388 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
389 unsigned hasreloc : 1; /* Operand has relocation suffix. */
390 unsigned writeback : 1; /* Operand has trailing ! */
391 unsigned preind : 1; /* Preindexed address. */
392 unsigned postind : 1; /* Postindexed address. */
393 unsigned negative : 1; /* Index register was negated. */
394 unsigned shifted : 1; /* Shift applied to operation. */
395 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 396 } operands[6];
b99bd4ef
NC
397};
398
c19d1205 399static struct arm_it inst;
b99bd4ef
NC
400
401#define NUM_FLOAT_VALS 8
402
05d2d07e 403const char * fp_const[] =
b99bd4ef
NC
404{
405 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
406};
407
c19d1205 408/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
409#define MAX_LITTLENUMS 6
410
411LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
412
413#define FAIL (-1)
414#define SUCCESS (0)
415
416#define SUFF_S 1
417#define SUFF_D 2
418#define SUFF_E 3
419#define SUFF_P 4
420
c19d1205
ZW
421#define CP_T_X 0x00008000
422#define CP_T_Y 0x00400000
b99bd4ef 423
c19d1205
ZW
424#define CONDS_BIT 0x00100000
425#define LOAD_BIT 0x00100000
b99bd4ef
NC
426
427#define DOUBLE_LOAD_FLAG 0x00000001
428
429struct asm_cond
430{
d3ce72d0 431 const char * template_name;
c921be7d 432 unsigned long value;
b99bd4ef
NC
433};
434
c19d1205 435#define COND_ALWAYS 0xE
b99bd4ef 436
b99bd4ef
NC
437struct asm_psr
438{
d3ce72d0 439 const char * template_name;
c921be7d 440 unsigned long field;
b99bd4ef
NC
441};
442
62b3e311
PB
443struct asm_barrier_opt
444{
d3ce72d0 445 const char * template_name;
c921be7d 446 unsigned long value;
62b3e311
PB
447};
448
2d2255b5 449/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
450#define SPSR_BIT (1 << 22)
451
c19d1205
ZW
452/* The individual PSR flag bits. */
453#define PSR_c (1 << 16)
454#define PSR_x (1 << 17)
455#define PSR_s (1 << 18)
456#define PSR_f (1 << 19)
b99bd4ef 457
c19d1205 458struct reloc_entry
bfae80f2 459{
c921be7d
NC
460 char * name;
461 bfd_reloc_code_real_type reloc;
bfae80f2
RE
462};
463
5287ad62 464enum vfp_reg_pos
bfae80f2 465{
5287ad62
JB
466 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
467 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
468};
469
470enum vfp_ldstm_type
471{
472 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
473};
474
dcbf9037
JB
475/* Bits for DEFINED field in neon_typed_alias. */
476#define NTA_HASTYPE 1
477#define NTA_HASINDEX 2
478
479struct neon_typed_alias
480{
c921be7d
NC
481 unsigned char defined;
482 unsigned char index;
483 struct neon_type_el eltype;
dcbf9037
JB
484};
485
c19d1205
ZW
486/* ARM register categories. This includes coprocessor numbers and various
487 architecture extensions' registers. */
488enum arm_reg_type
bfae80f2 489{
c19d1205
ZW
490 REG_TYPE_RN,
491 REG_TYPE_CP,
492 REG_TYPE_CN,
493 REG_TYPE_FN,
494 REG_TYPE_VFS,
495 REG_TYPE_VFD,
5287ad62 496 REG_TYPE_NQ,
037e8744 497 REG_TYPE_VFSD,
5287ad62 498 REG_TYPE_NDQ,
037e8744 499 REG_TYPE_NSDQ,
c19d1205
ZW
500 REG_TYPE_VFC,
501 REG_TYPE_MVF,
502 REG_TYPE_MVD,
503 REG_TYPE_MVFX,
504 REG_TYPE_MVDX,
505 REG_TYPE_MVAX,
506 REG_TYPE_DSPSC,
507 REG_TYPE_MMXWR,
508 REG_TYPE_MMXWC,
509 REG_TYPE_MMXWCG,
510 REG_TYPE_XSCALE,
90ec0d68 511 REG_TYPE_RNB
bfae80f2
RE
512};
513
dcbf9037
JB
514/* Structure for a hash table entry for a register.
515 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
516 information which states whether a vector type or index is specified (for a
517 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
518struct reg_entry
519{
c921be7d 520 const char * name;
90ec0d68 521 unsigned int number;
c921be7d
NC
522 unsigned char type;
523 unsigned char builtin;
524 struct neon_typed_alias * neon;
6c43fab6
RE
525};
526
c19d1205 527/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 528const char * const reg_expected_msgs[] =
c19d1205
ZW
529{
530 N_("ARM register expected"),
531 N_("bad or missing co-processor number"),
532 N_("co-processor register expected"),
533 N_("FPA register expected"),
534 N_("VFP single precision register expected"),
5287ad62
JB
535 N_("VFP/Neon double precision register expected"),
536 N_("Neon quad precision register expected"),
037e8744 537 N_("VFP single or double precision register expected"),
5287ad62 538 N_("Neon double or quad precision register expected"),
037e8744 539 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
540 N_("VFP system register expected"),
541 N_("Maverick MVF register expected"),
542 N_("Maverick MVD register expected"),
543 N_("Maverick MVFX register expected"),
544 N_("Maverick MVDX register expected"),
545 N_("Maverick MVAX register expected"),
546 N_("Maverick DSPSC register expected"),
547 N_("iWMMXt data register expected"),
548 N_("iWMMXt control register expected"),
549 N_("iWMMXt scalar register expected"),
550 N_("XScale accumulator register expected"),
6c43fab6
RE
551};
552
c19d1205
ZW
553/* Some well known registers that we refer to directly elsewhere. */
554#define REG_SP 13
555#define REG_LR 14
556#define REG_PC 15
404ff6b5 557
b99bd4ef
NC
558/* ARM instructions take 4bytes in the object file, Thumb instructions
559 take 2: */
c19d1205 560#define INSN_SIZE 4
b99bd4ef
NC
561
562struct asm_opcode
563{
564 /* Basic string to match. */
d3ce72d0 565 const char * template_name;
c19d1205
ZW
566
567 /* Parameters to instruction. */
5be8be5d 568 unsigned int operands[8];
c19d1205
ZW
569
570 /* Conditional tag - see opcode_lookup. */
571 unsigned int tag : 4;
b99bd4ef
NC
572
573 /* Basic instruction code. */
c19d1205 574 unsigned int avalue : 28;
b99bd4ef 575
c19d1205
ZW
576 /* Thumb-format instruction code. */
577 unsigned int tvalue;
b99bd4ef 578
90e4755a 579 /* Which architecture variant provides this instruction. */
c921be7d
NC
580 const arm_feature_set * avariant;
581 const arm_feature_set * tvariant;
c19d1205
ZW
582
583 /* Function to call to encode instruction in ARM format. */
584 void (* aencode) (void);
b99bd4ef 585
c19d1205
ZW
586 /* Function to call to encode instruction in Thumb format. */
587 void (* tencode) (void);
b99bd4ef
NC
588};
589
a737bd4d
NC
590/* Defines for various bits that we will want to toggle. */
591#define INST_IMMEDIATE 0x02000000
592#define OFFSET_REG 0x02000000
c19d1205 593#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
594#define SHIFT_BY_REG 0x00000010
595#define PRE_INDEX 0x01000000
596#define INDEX_UP 0x00800000
597#define WRITE_BACK 0x00200000
598#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 599#define CPSI_MMOD 0x00020000
90e4755a 600
a737bd4d
NC
601#define LITERAL_MASK 0xf000f000
602#define OPCODE_MASK 0xfe1fffff
603#define V4_STR_BIT 0x00000020
90e4755a 604
efd81785
PB
605#define T2_SUBS_PC_LR 0xf3de8f00
606
a737bd4d 607#define DATA_OP_SHIFT 21
90e4755a 608
ef8d22e6
PB
609#define T2_OPCODE_MASK 0xfe1fffff
610#define T2_DATA_OP_SHIFT 21
611
a737bd4d
NC
612/* Codes to distinguish the arithmetic instructions. */
613#define OPCODE_AND 0
614#define OPCODE_EOR 1
615#define OPCODE_SUB 2
616#define OPCODE_RSB 3
617#define OPCODE_ADD 4
618#define OPCODE_ADC 5
619#define OPCODE_SBC 6
620#define OPCODE_RSC 7
621#define OPCODE_TST 8
622#define OPCODE_TEQ 9
623#define OPCODE_CMP 10
624#define OPCODE_CMN 11
625#define OPCODE_ORR 12
626#define OPCODE_MOV 13
627#define OPCODE_BIC 14
628#define OPCODE_MVN 15
90e4755a 629
ef8d22e6
PB
630#define T2_OPCODE_AND 0
631#define T2_OPCODE_BIC 1
632#define T2_OPCODE_ORR 2
633#define T2_OPCODE_ORN 3
634#define T2_OPCODE_EOR 4
635#define T2_OPCODE_ADD 8
636#define T2_OPCODE_ADC 10
637#define T2_OPCODE_SBC 11
638#define T2_OPCODE_SUB 13
639#define T2_OPCODE_RSB 14
640
a737bd4d
NC
641#define T_OPCODE_MUL 0x4340
642#define T_OPCODE_TST 0x4200
643#define T_OPCODE_CMN 0x42c0
644#define T_OPCODE_NEG 0x4240
645#define T_OPCODE_MVN 0x43c0
90e4755a 646
a737bd4d
NC
647#define T_OPCODE_ADD_R3 0x1800
648#define T_OPCODE_SUB_R3 0x1a00
649#define T_OPCODE_ADD_HI 0x4400
650#define T_OPCODE_ADD_ST 0xb000
651#define T_OPCODE_SUB_ST 0xb080
652#define T_OPCODE_ADD_SP 0xa800
653#define T_OPCODE_ADD_PC 0xa000
654#define T_OPCODE_ADD_I8 0x3000
655#define T_OPCODE_SUB_I8 0x3800
656#define T_OPCODE_ADD_I3 0x1c00
657#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 658
a737bd4d
NC
659#define T_OPCODE_ASR_R 0x4100
660#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
661#define T_OPCODE_LSR_R 0x40c0
662#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
663#define T_OPCODE_ASR_I 0x1000
664#define T_OPCODE_LSL_I 0x0000
665#define T_OPCODE_LSR_I 0x0800
b99bd4ef 666
a737bd4d
NC
667#define T_OPCODE_MOV_I8 0x2000
668#define T_OPCODE_CMP_I8 0x2800
669#define T_OPCODE_CMP_LR 0x4280
670#define T_OPCODE_MOV_HR 0x4600
671#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 672
a737bd4d
NC
673#define T_OPCODE_LDR_PC 0x4800
674#define T_OPCODE_LDR_SP 0x9800
675#define T_OPCODE_STR_SP 0x9000
676#define T_OPCODE_LDR_IW 0x6800
677#define T_OPCODE_STR_IW 0x6000
678#define T_OPCODE_LDR_IH 0x8800
679#define T_OPCODE_STR_IH 0x8000
680#define T_OPCODE_LDR_IB 0x7800
681#define T_OPCODE_STR_IB 0x7000
682#define T_OPCODE_LDR_RW 0x5800
683#define T_OPCODE_STR_RW 0x5000
684#define T_OPCODE_LDR_RH 0x5a00
685#define T_OPCODE_STR_RH 0x5200
686#define T_OPCODE_LDR_RB 0x5c00
687#define T_OPCODE_STR_RB 0x5400
c9b604bd 688
a737bd4d
NC
689#define T_OPCODE_PUSH 0xb400
690#define T_OPCODE_POP 0xbc00
b99bd4ef 691
2fc8bdac 692#define T_OPCODE_BRANCH 0xe000
b99bd4ef 693
a737bd4d 694#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 695#define THUMB_PP_PC_LR 0x0100
c19d1205 696#define THUMB_LOAD_BIT 0x0800
53365c0d 697#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
698
699#define BAD_ARGS _("bad arguments to instruction")
fdfde340 700#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
701#define BAD_PC _("r15 not allowed here")
702#define BAD_COND _("instruction cannot be conditional")
703#define BAD_OVERLAP _("registers may not be the same")
704#define BAD_HIREG _("lo register required")
705#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 706#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
707#define BAD_BRANCH _("branch must be last instruction in IT block")
708#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 709#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
710#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
711#define BAD_IT_COND _("incorrect condition in IT block")
712#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 713#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
714#define BAD_PC_ADDRESSING \
715 _("cannot use register index with PC-relative addressing")
716#define BAD_PC_WRITEBACK \
717 _("cannot use writeback with PC-relative addressing")
c19d1205 718
c921be7d
NC
719static struct hash_control * arm_ops_hsh;
720static struct hash_control * arm_cond_hsh;
721static struct hash_control * arm_shift_hsh;
722static struct hash_control * arm_psr_hsh;
723static struct hash_control * arm_v7m_psr_hsh;
724static struct hash_control * arm_reg_hsh;
725static struct hash_control * arm_reloc_hsh;
726static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 727
b99bd4ef
NC
728/* Stuff needed to resolve the label ambiguity
729 As:
730 ...
731 label: <insn>
732 may differ from:
733 ...
734 label:
5f4273c7 735 <insn> */
b99bd4ef
NC
736
737symbolS * last_label_seen;
b34976b6 738static int label_is_thumb_function_name = FALSE;
e07e6e58 739
3d0c9500
NC
740/* Literal pool structure. Held on a per-section
741 and per-sub-section basis. */
a737bd4d 742
c19d1205 743#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 744typedef struct literal_pool
b99bd4ef 745{
c921be7d
NC
746 expressionS literals [MAX_LITERAL_POOL_SIZE];
747 unsigned int next_free_entry;
748 unsigned int id;
749 symbolS * symbol;
750 segT section;
751 subsegT sub_section;
752 struct literal_pool * next;
3d0c9500 753} literal_pool;
b99bd4ef 754
3d0c9500
NC
755/* Pointer to a linked list of literal pools. */
756literal_pool * list_of_pools = NULL;
e27ec89e 757
e07e6e58
NC
758#ifdef OBJ_ELF
759# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
760#else
761static struct current_it now_it;
762#endif
763
764static inline int
765now_it_compatible (int cond)
766{
767 return (cond & ~1) == (now_it.cc & ~1);
768}
769
770static inline int
771conditional_insn (void)
772{
773 return inst.cond != COND_ALWAYS;
774}
775
776static int in_it_block (void);
777
778static int handle_it_state (void);
779
780static void force_automatic_it_block_close (void);
781
c921be7d
NC
782static void it_fsm_post_encode (void);
783
e07e6e58
NC
784#define set_it_insn_type(type) \
785 do \
786 { \
787 inst.it_insn_type = type; \
788 if (handle_it_state () == FAIL) \
789 return; \
790 } \
791 while (0)
792
c921be7d
NC
793#define set_it_insn_type_nonvoid(type, failret) \
794 do \
795 { \
796 inst.it_insn_type = type; \
797 if (handle_it_state () == FAIL) \
798 return failret; \
799 } \
800 while(0)
801
e07e6e58
NC
802#define set_it_insn_type_last() \
803 do \
804 { \
805 if (inst.cond == COND_ALWAYS) \
806 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
807 else \
808 set_it_insn_type (INSIDE_IT_LAST_INSN); \
809 } \
810 while (0)
811
c19d1205 812/* Pure syntax. */
b99bd4ef 813
c19d1205
ZW
814/* This array holds the chars that always start a comment. If the
815 pre-processor is disabled, these aren't very useful. */
816const char comment_chars[] = "@";
3d0c9500 817
c19d1205
ZW
818/* This array holds the chars that only start a comment at the beginning of
819 a line. If the line seems to have the form '# 123 filename'
820 .line and .file directives will appear in the pre-processed output. */
821/* Note that input_file.c hand checks for '#' at the beginning of the
822 first line of the input file. This is because the compiler outputs
823 #NO_APP at the beginning of its output. */
824/* Also note that comments like this one will always work. */
825const char line_comment_chars[] = "#";
3d0c9500 826
c19d1205 827const char line_separator_chars[] = ";";
b99bd4ef 828
c19d1205
ZW
829/* Chars that can be used to separate mant
830 from exp in floating point numbers. */
831const char EXP_CHARS[] = "eE";
3d0c9500 832
c19d1205
ZW
833/* Chars that mean this number is a floating point constant. */
834/* As in 0f12.456 */
835/* or 0d1.2345e12 */
b99bd4ef 836
c19d1205 837const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 838
c19d1205
ZW
839/* Prefix characters that indicate the start of an immediate
840 value. */
841#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 842
c19d1205
ZW
843/* Separator character handling. */
844
845#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
846
847static inline int
848skip_past_char (char ** str, char c)
849{
850 if (**str == c)
851 {
852 (*str)++;
853 return SUCCESS;
3d0c9500 854 }
c19d1205
ZW
855 else
856 return FAIL;
857}
c921be7d 858
c19d1205 859#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 860
c19d1205
ZW
861/* Arithmetic expressions (possibly involving symbols). */
862
863/* Return TRUE if anything in the expression is a bignum. */
864
865static int
866walk_no_bignums (symbolS * sp)
867{
868 if (symbol_get_value_expression (sp)->X_op == O_big)
869 return 1;
870
871 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 872 {
c19d1205
ZW
873 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
874 || (symbol_get_value_expression (sp)->X_op_symbol
875 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
876 }
877
c19d1205 878 return 0;
3d0c9500
NC
879}
880
c19d1205
ZW
881static int in_my_get_expression = 0;
882
883/* Third argument to my_get_expression. */
884#define GE_NO_PREFIX 0
885#define GE_IMM_PREFIX 1
886#define GE_OPT_PREFIX 2
5287ad62
JB
887/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
888 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
889#define GE_OPT_PREFIX_BIG 3
a737bd4d 890
b99bd4ef 891static int
c19d1205 892my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 893{
c19d1205
ZW
894 char * save_in;
895 segT seg;
b99bd4ef 896
c19d1205
ZW
897 /* In unified syntax, all prefixes are optional. */
898 if (unified_syntax)
5287ad62
JB
899 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
900 : GE_OPT_PREFIX;
b99bd4ef 901
c19d1205 902 switch (prefix_mode)
b99bd4ef 903 {
c19d1205
ZW
904 case GE_NO_PREFIX: break;
905 case GE_IMM_PREFIX:
906 if (!is_immediate_prefix (**str))
907 {
908 inst.error = _("immediate expression requires a # prefix");
909 return FAIL;
910 }
911 (*str)++;
912 break;
913 case GE_OPT_PREFIX:
5287ad62 914 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
915 if (is_immediate_prefix (**str))
916 (*str)++;
917 break;
918 default: abort ();
919 }
b99bd4ef 920
c19d1205 921 memset (ep, 0, sizeof (expressionS));
b99bd4ef 922
c19d1205
ZW
923 save_in = input_line_pointer;
924 input_line_pointer = *str;
925 in_my_get_expression = 1;
926 seg = expression (ep);
927 in_my_get_expression = 0;
928
f86adc07 929 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 930 {
f86adc07 931 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
932 *str = input_line_pointer;
933 input_line_pointer = save_in;
934 if (inst.error == NULL)
f86adc07
NS
935 inst.error = (ep->X_op == O_absent
936 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
937 return 1;
938 }
b99bd4ef 939
c19d1205
ZW
940#ifdef OBJ_AOUT
941 if (seg != absolute_section
942 && seg != text_section
943 && seg != data_section
944 && seg != bss_section
945 && seg != undefined_section)
946 {
947 inst.error = _("bad segment");
948 *str = input_line_pointer;
949 input_line_pointer = save_in;
950 return 1;
b99bd4ef 951 }
87975d2a
AM
952#else
953 (void) seg;
c19d1205 954#endif
b99bd4ef 955
c19d1205
ZW
956 /* Get rid of any bignums now, so that we don't generate an error for which
957 we can't establish a line number later on. Big numbers are never valid
958 in instructions, which is where this routine is always called. */
5287ad62
JB
959 if (prefix_mode != GE_OPT_PREFIX_BIG
960 && (ep->X_op == O_big
961 || (ep->X_add_symbol
962 && (walk_no_bignums (ep->X_add_symbol)
963 || (ep->X_op_symbol
964 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
965 {
966 inst.error = _("invalid constant");
967 *str = input_line_pointer;
968 input_line_pointer = save_in;
969 return 1;
970 }
b99bd4ef 971
c19d1205
ZW
972 *str = input_line_pointer;
973 input_line_pointer = save_in;
974 return 0;
b99bd4ef
NC
975}
976
c19d1205
ZW
977/* Turn a string in input_line_pointer into a floating point constant
978 of type TYPE, and store the appropriate bytes in *LITP. The number
979 of LITTLENUMS emitted is stored in *SIZEP. An error message is
980 returned, or NULL on OK.
b99bd4ef 981
c19d1205
ZW
982 Note that fp constants aren't represent in the normal way on the ARM.
983 In big endian mode, things are as expected. However, in little endian
984 mode fp constants are big-endian word-wise, and little-endian byte-wise
985 within the words. For example, (double) 1.1 in big endian mode is
986 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
987 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 988
c19d1205 989 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 990
c19d1205
ZW
991char *
992md_atof (int type, char * litP, int * sizeP)
993{
994 int prec;
995 LITTLENUM_TYPE words[MAX_LITTLENUMS];
996 char *t;
997 int i;
b99bd4ef 998
c19d1205
ZW
999 switch (type)
1000 {
1001 case 'f':
1002 case 'F':
1003 case 's':
1004 case 'S':
1005 prec = 2;
1006 break;
b99bd4ef 1007
c19d1205
ZW
1008 case 'd':
1009 case 'D':
1010 case 'r':
1011 case 'R':
1012 prec = 4;
1013 break;
b99bd4ef 1014
c19d1205
ZW
1015 case 'x':
1016 case 'X':
499ac353 1017 prec = 5;
c19d1205 1018 break;
b99bd4ef 1019
c19d1205
ZW
1020 case 'p':
1021 case 'P':
499ac353 1022 prec = 5;
c19d1205 1023 break;
a737bd4d 1024
c19d1205
ZW
1025 default:
1026 *sizeP = 0;
499ac353 1027 return _("Unrecognized or unsupported floating point constant");
c19d1205 1028 }
b99bd4ef 1029
c19d1205
ZW
1030 t = atof_ieee (input_line_pointer, type, words);
1031 if (t)
1032 input_line_pointer = t;
499ac353 1033 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1034
c19d1205
ZW
1035 if (target_big_endian)
1036 {
1037 for (i = 0; i < prec; i++)
1038 {
499ac353
NC
1039 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1040 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1041 }
1042 }
1043 else
1044 {
e74cfd16 1045 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1046 for (i = prec - 1; i >= 0; i--)
1047 {
499ac353
NC
1048 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1049 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1050 }
1051 else
1052 /* For a 4 byte float the order of elements in `words' is 1 0.
1053 For an 8 byte float the order is 1 0 3 2. */
1054 for (i = 0; i < prec; i += 2)
1055 {
499ac353
NC
1056 md_number_to_chars (litP, (valueT) words[i + 1],
1057 sizeof (LITTLENUM_TYPE));
1058 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1059 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1060 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1061 }
1062 }
b99bd4ef 1063
499ac353 1064 return NULL;
c19d1205 1065}
b99bd4ef 1066
c19d1205
ZW
1067/* We handle all bad expressions here, so that we can report the faulty
1068 instruction in the error message. */
1069void
91d6fa6a 1070md_operand (expressionS * exp)
c19d1205
ZW
1071{
1072 if (in_my_get_expression)
91d6fa6a 1073 exp->X_op = O_illegal;
b99bd4ef
NC
1074}
1075
c19d1205 1076/* Immediate values. */
b99bd4ef 1077
c19d1205
ZW
1078/* Generic immediate-value read function for use in directives.
1079 Accepts anything that 'expression' can fold to a constant.
1080 *val receives the number. */
1081#ifdef OBJ_ELF
1082static int
1083immediate_for_directive (int *val)
b99bd4ef 1084{
c19d1205
ZW
1085 expressionS exp;
1086 exp.X_op = O_illegal;
b99bd4ef 1087
c19d1205
ZW
1088 if (is_immediate_prefix (*input_line_pointer))
1089 {
1090 input_line_pointer++;
1091 expression (&exp);
1092 }
b99bd4ef 1093
c19d1205
ZW
1094 if (exp.X_op != O_constant)
1095 {
1096 as_bad (_("expected #constant"));
1097 ignore_rest_of_line ();
1098 return FAIL;
1099 }
1100 *val = exp.X_add_number;
1101 return SUCCESS;
b99bd4ef 1102}
c19d1205 1103#endif
b99bd4ef 1104
c19d1205 1105/* Register parsing. */
b99bd4ef 1106
c19d1205
ZW
1107/* Generic register parser. CCP points to what should be the
1108 beginning of a register name. If it is indeed a valid register
1109 name, advance CCP over it and return the reg_entry structure;
1110 otherwise return NULL. Does not issue diagnostics. */
1111
1112static struct reg_entry *
1113arm_reg_parse_multi (char **ccp)
b99bd4ef 1114{
c19d1205
ZW
1115 char *start = *ccp;
1116 char *p;
1117 struct reg_entry *reg;
b99bd4ef 1118
c19d1205
ZW
1119#ifdef REGISTER_PREFIX
1120 if (*start != REGISTER_PREFIX)
01cfc07f 1121 return NULL;
c19d1205
ZW
1122 start++;
1123#endif
1124#ifdef OPTIONAL_REGISTER_PREFIX
1125 if (*start == OPTIONAL_REGISTER_PREFIX)
1126 start++;
1127#endif
b99bd4ef 1128
c19d1205
ZW
1129 p = start;
1130 if (!ISALPHA (*p) || !is_name_beginner (*p))
1131 return NULL;
b99bd4ef 1132
c19d1205
ZW
1133 do
1134 p++;
1135 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1136
1137 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1138
1139 if (!reg)
1140 return NULL;
1141
1142 *ccp = p;
1143 return reg;
b99bd4ef
NC
1144}
1145
1146static int
dcbf9037
JB
1147arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1148 enum arm_reg_type type)
b99bd4ef 1149{
c19d1205
ZW
1150 /* Alternative syntaxes are accepted for a few register classes. */
1151 switch (type)
1152 {
1153 case REG_TYPE_MVF:
1154 case REG_TYPE_MVD:
1155 case REG_TYPE_MVFX:
1156 case REG_TYPE_MVDX:
1157 /* Generic coprocessor register names are allowed for these. */
79134647 1158 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1159 return reg->number;
1160 break;
69b97547 1161
c19d1205
ZW
1162 case REG_TYPE_CP:
1163 /* For backward compatibility, a bare number is valid here. */
1164 {
1165 unsigned long processor = strtoul (start, ccp, 10);
1166 if (*ccp != start && processor <= 15)
1167 return processor;
1168 }
6057a28f 1169
c19d1205
ZW
1170 case REG_TYPE_MMXWC:
1171 /* WC includes WCG. ??? I'm not sure this is true for all
1172 instructions that take WC registers. */
79134647 1173 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1174 return reg->number;
6057a28f 1175 break;
c19d1205 1176
6057a28f 1177 default:
c19d1205 1178 break;
6057a28f
NC
1179 }
1180
dcbf9037
JB
1181 return FAIL;
1182}
1183
1184/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1185 return value is the register number or FAIL. */
1186
1187static int
1188arm_reg_parse (char **ccp, enum arm_reg_type type)
1189{
1190 char *start = *ccp;
1191 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1192 int ret;
1193
1194 /* Do not allow a scalar (reg+index) to parse as a register. */
1195 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1196 return FAIL;
1197
1198 if (reg && reg->type == type)
1199 return reg->number;
1200
1201 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1202 return ret;
1203
c19d1205
ZW
1204 *ccp = start;
1205 return FAIL;
1206}
69b97547 1207
dcbf9037
JB
1208/* Parse a Neon type specifier. *STR should point at the leading '.'
1209 character. Does no verification at this stage that the type fits the opcode
1210 properly. E.g.,
1211
1212 .i32.i32.s16
1213 .s32.f32
1214 .u16
1215
1216 Can all be legally parsed by this function.
1217
1218 Fills in neon_type struct pointer with parsed information, and updates STR
1219 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1220 type, FAIL if not. */
1221
1222static int
1223parse_neon_type (struct neon_type *type, char **str)
1224{
1225 char *ptr = *str;
1226
1227 if (type)
1228 type->elems = 0;
1229
1230 while (type->elems < NEON_MAX_TYPE_ELS)
1231 {
1232 enum neon_el_type thistype = NT_untyped;
1233 unsigned thissize = -1u;
1234
1235 if (*ptr != '.')
1236 break;
1237
1238 ptr++;
1239
1240 /* Just a size without an explicit type. */
1241 if (ISDIGIT (*ptr))
1242 goto parsesize;
1243
1244 switch (TOLOWER (*ptr))
1245 {
1246 case 'i': thistype = NT_integer; break;
1247 case 'f': thistype = NT_float; break;
1248 case 'p': thistype = NT_poly; break;
1249 case 's': thistype = NT_signed; break;
1250 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1251 case 'd':
1252 thistype = NT_float;
1253 thissize = 64;
1254 ptr++;
1255 goto done;
dcbf9037
JB
1256 default:
1257 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1258 return FAIL;
1259 }
1260
1261 ptr++;
1262
1263 /* .f is an abbreviation for .f32. */
1264 if (thistype == NT_float && !ISDIGIT (*ptr))
1265 thissize = 32;
1266 else
1267 {
1268 parsesize:
1269 thissize = strtoul (ptr, &ptr, 10);
1270
1271 if (thissize != 8 && thissize != 16 && thissize != 32
1272 && thissize != 64)
1273 {
1274 as_bad (_("bad size %d in type specifier"), thissize);
1275 return FAIL;
1276 }
1277 }
1278
037e8744 1279 done:
dcbf9037
JB
1280 if (type)
1281 {
1282 type->el[type->elems].type = thistype;
1283 type->el[type->elems].size = thissize;
1284 type->elems++;
1285 }
1286 }
1287
1288 /* Empty/missing type is not a successful parse. */
1289 if (type->elems == 0)
1290 return FAIL;
1291
1292 *str = ptr;
1293
1294 return SUCCESS;
1295}
1296
1297/* Errors may be set multiple times during parsing or bit encoding
1298 (particularly in the Neon bits), but usually the earliest error which is set
1299 will be the most meaningful. Avoid overwriting it with later (cascading)
1300 errors by calling this function. */
1301
1302static void
1303first_error (const char *err)
1304{
1305 if (!inst.error)
1306 inst.error = err;
1307}
1308
1309/* Parse a single type, e.g. ".s32", leading period included. */
1310static int
1311parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1312{
1313 char *str = *ccp;
1314 struct neon_type optype;
1315
1316 if (*str == '.')
1317 {
1318 if (parse_neon_type (&optype, &str) == SUCCESS)
1319 {
1320 if (optype.elems == 1)
1321 *vectype = optype.el[0];
1322 else
1323 {
1324 first_error (_("only one type should be specified for operand"));
1325 return FAIL;
1326 }
1327 }
1328 else
1329 {
1330 first_error (_("vector type expected"));
1331 return FAIL;
1332 }
1333 }
1334 else
1335 return FAIL;
5f4273c7 1336
dcbf9037 1337 *ccp = str;
5f4273c7 1338
dcbf9037
JB
1339 return SUCCESS;
1340}
1341
1342/* Special meanings for indices (which have a range of 0-7), which will fit into
1343 a 4-bit integer. */
1344
1345#define NEON_ALL_LANES 15
1346#define NEON_INTERLEAVE_LANES 14
1347
1348/* Parse either a register or a scalar, with an optional type. Return the
1349 register number, and optionally fill in the actual type of the register
1350 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1351 type/index information in *TYPEINFO. */
1352
1353static int
1354parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1355 enum arm_reg_type *rtype,
1356 struct neon_typed_alias *typeinfo)
1357{
1358 char *str = *ccp;
1359 struct reg_entry *reg = arm_reg_parse_multi (&str);
1360 struct neon_typed_alias atype;
1361 struct neon_type_el parsetype;
1362
1363 atype.defined = 0;
1364 atype.index = -1;
1365 atype.eltype.type = NT_invtype;
1366 atype.eltype.size = -1;
1367
1368 /* Try alternate syntax for some types of register. Note these are mutually
1369 exclusive with the Neon syntax extensions. */
1370 if (reg == NULL)
1371 {
1372 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1373 if (altreg != FAIL)
1374 *ccp = str;
1375 if (typeinfo)
1376 *typeinfo = atype;
1377 return altreg;
1378 }
1379
037e8744
JB
1380 /* Undo polymorphism when a set of register types may be accepted. */
1381 if ((type == REG_TYPE_NDQ
1382 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1383 || (type == REG_TYPE_VFSD
1384 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1385 || (type == REG_TYPE_NSDQ
1386 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1387 || reg->type == REG_TYPE_NQ))
1388 || (type == REG_TYPE_MMXWC
1389 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1390 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1391
1392 if (type != reg->type)
1393 return FAIL;
1394
1395 if (reg->neon)
1396 atype = *reg->neon;
5f4273c7 1397
dcbf9037
JB
1398 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1399 {
1400 if ((atype.defined & NTA_HASTYPE) != 0)
1401 {
1402 first_error (_("can't redefine type for operand"));
1403 return FAIL;
1404 }
1405 atype.defined |= NTA_HASTYPE;
1406 atype.eltype = parsetype;
1407 }
5f4273c7 1408
dcbf9037
JB
1409 if (skip_past_char (&str, '[') == SUCCESS)
1410 {
1411 if (type != REG_TYPE_VFD)
1412 {
1413 first_error (_("only D registers may be indexed"));
1414 return FAIL;
1415 }
5f4273c7 1416
dcbf9037
JB
1417 if ((atype.defined & NTA_HASINDEX) != 0)
1418 {
1419 first_error (_("can't change index for operand"));
1420 return FAIL;
1421 }
1422
1423 atype.defined |= NTA_HASINDEX;
1424
1425 if (skip_past_char (&str, ']') == SUCCESS)
1426 atype.index = NEON_ALL_LANES;
1427 else
1428 {
1429 expressionS exp;
1430
1431 my_get_expression (&exp, &str, GE_NO_PREFIX);
1432
1433 if (exp.X_op != O_constant)
1434 {
1435 first_error (_("constant expression required"));
1436 return FAIL;
1437 }
1438
1439 if (skip_past_char (&str, ']') == FAIL)
1440 return FAIL;
1441
1442 atype.index = exp.X_add_number;
1443 }
1444 }
5f4273c7 1445
dcbf9037
JB
1446 if (typeinfo)
1447 *typeinfo = atype;
5f4273c7 1448
dcbf9037
JB
1449 if (rtype)
1450 *rtype = type;
5f4273c7 1451
dcbf9037 1452 *ccp = str;
5f4273c7 1453
dcbf9037
JB
1454 return reg->number;
1455}
1456
1457/* Like arm_reg_parse, but allow allow the following extra features:
1458 - If RTYPE is non-zero, return the (possibly restricted) type of the
1459 register (e.g. Neon double or quad reg when either has been requested).
1460 - If this is a Neon vector type with additional type information, fill
1461 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1462 This function will fault on encountering a scalar. */
dcbf9037
JB
1463
1464static int
1465arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1466 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1467{
1468 struct neon_typed_alias atype;
1469 char *str = *ccp;
1470 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1471
1472 if (reg == FAIL)
1473 return FAIL;
1474
1475 /* Do not allow a scalar (reg+index) to parse as a register. */
1476 if ((atype.defined & NTA_HASINDEX) != 0)
1477 {
1478 first_error (_("register operand expected, but got scalar"));
1479 return FAIL;
1480 }
1481
1482 if (vectype)
1483 *vectype = atype.eltype;
1484
1485 *ccp = str;
1486
1487 return reg;
1488}
1489
1490#define NEON_SCALAR_REG(X) ((X) >> 4)
1491#define NEON_SCALAR_INDEX(X) ((X) & 15)
1492
5287ad62
JB
1493/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1494 have enough information to be able to do a good job bounds-checking. So, we
1495 just do easy checks here, and do further checks later. */
1496
1497static int
dcbf9037 1498parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1499{
dcbf9037 1500 int reg;
5287ad62 1501 char *str = *ccp;
dcbf9037 1502 struct neon_typed_alias atype;
5f4273c7 1503
dcbf9037 1504 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1505
dcbf9037 1506 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1507 return FAIL;
5f4273c7 1508
dcbf9037 1509 if (atype.index == NEON_ALL_LANES)
5287ad62 1510 {
dcbf9037 1511 first_error (_("scalar must have an index"));
5287ad62
JB
1512 return FAIL;
1513 }
dcbf9037 1514 else if (atype.index >= 64 / elsize)
5287ad62 1515 {
dcbf9037 1516 first_error (_("scalar index out of range"));
5287ad62
JB
1517 return FAIL;
1518 }
5f4273c7 1519
dcbf9037
JB
1520 if (type)
1521 *type = atype.eltype;
5f4273c7 1522
5287ad62 1523 *ccp = str;
5f4273c7 1524
dcbf9037 1525 return reg * 16 + atype.index;
5287ad62
JB
1526}
1527
c19d1205 1528/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1529
c19d1205
ZW
1530static long
1531parse_reg_list (char ** strp)
1532{
1533 char * str = * strp;
1534 long range = 0;
1535 int another_range;
a737bd4d 1536
c19d1205
ZW
1537 /* We come back here if we get ranges concatenated by '+' or '|'. */
1538 do
6057a28f 1539 {
c19d1205 1540 another_range = 0;
a737bd4d 1541
c19d1205
ZW
1542 if (*str == '{')
1543 {
1544 int in_range = 0;
1545 int cur_reg = -1;
a737bd4d 1546
c19d1205
ZW
1547 str++;
1548 do
1549 {
1550 int reg;
6057a28f 1551
dcbf9037 1552 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1553 {
dcbf9037 1554 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1555 return FAIL;
1556 }
a737bd4d 1557
c19d1205
ZW
1558 if (in_range)
1559 {
1560 int i;
a737bd4d 1561
c19d1205
ZW
1562 if (reg <= cur_reg)
1563 {
dcbf9037 1564 first_error (_("bad range in register list"));
c19d1205
ZW
1565 return FAIL;
1566 }
40a18ebd 1567
c19d1205
ZW
1568 for (i = cur_reg + 1; i < reg; i++)
1569 {
1570 if (range & (1 << i))
1571 as_tsktsk
1572 (_("Warning: duplicated register (r%d) in register list"),
1573 i);
1574 else
1575 range |= 1 << i;
1576 }
1577 in_range = 0;
1578 }
a737bd4d 1579
c19d1205
ZW
1580 if (range & (1 << reg))
1581 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1582 reg);
1583 else if (reg <= cur_reg)
1584 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1585
c19d1205
ZW
1586 range |= 1 << reg;
1587 cur_reg = reg;
1588 }
1589 while (skip_past_comma (&str) != FAIL
1590 || (in_range = 1, *str++ == '-'));
1591 str--;
a737bd4d 1592
c19d1205
ZW
1593 if (*str++ != '}')
1594 {
dcbf9037 1595 first_error (_("missing `}'"));
c19d1205
ZW
1596 return FAIL;
1597 }
1598 }
1599 else
1600 {
91d6fa6a 1601 expressionS exp;
40a18ebd 1602
91d6fa6a 1603 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1604 return FAIL;
40a18ebd 1605
91d6fa6a 1606 if (exp.X_op == O_constant)
c19d1205 1607 {
91d6fa6a
NC
1608 if (exp.X_add_number
1609 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1610 {
1611 inst.error = _("invalid register mask");
1612 return FAIL;
1613 }
a737bd4d 1614
91d6fa6a 1615 if ((range & exp.X_add_number) != 0)
c19d1205 1616 {
91d6fa6a 1617 int regno = range & exp.X_add_number;
a737bd4d 1618
c19d1205
ZW
1619 regno &= -regno;
1620 regno = (1 << regno) - 1;
1621 as_tsktsk
1622 (_("Warning: duplicated register (r%d) in register list"),
1623 regno);
1624 }
a737bd4d 1625
91d6fa6a 1626 range |= exp.X_add_number;
c19d1205
ZW
1627 }
1628 else
1629 {
1630 if (inst.reloc.type != 0)
1631 {
1632 inst.error = _("expression too complex");
1633 return FAIL;
1634 }
a737bd4d 1635
91d6fa6a 1636 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1637 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1638 inst.reloc.pc_rel = 0;
1639 }
1640 }
a737bd4d 1641
c19d1205
ZW
1642 if (*str == '|' || *str == '+')
1643 {
1644 str++;
1645 another_range = 1;
1646 }
a737bd4d 1647 }
c19d1205 1648 while (another_range);
a737bd4d 1649
c19d1205
ZW
1650 *strp = str;
1651 return range;
a737bd4d
NC
1652}
1653
5287ad62
JB
1654/* Types of registers in a list. */
1655
1656enum reg_list_els
1657{
1658 REGLIST_VFP_S,
1659 REGLIST_VFP_D,
1660 REGLIST_NEON_D
1661};
1662
c19d1205
ZW
1663/* Parse a VFP register list. If the string is invalid return FAIL.
1664 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1665 register. Parses registers of type ETYPE.
1666 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1667 - Q registers can be used to specify pairs of D registers
1668 - { } can be omitted from around a singleton register list
1669 FIXME: This is not implemented, as it would require backtracking in
1670 some cases, e.g.:
1671 vtbl.8 d3,d4,d5
1672 This could be done (the meaning isn't really ambiguous), but doesn't
1673 fit in well with the current parsing framework.
dcbf9037
JB
1674 - 32 D registers may be used (also true for VFPv3).
1675 FIXME: Types are ignored in these register lists, which is probably a
1676 bug. */
6057a28f 1677
c19d1205 1678static int
037e8744 1679parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1680{
037e8744 1681 char *str = *ccp;
c19d1205
ZW
1682 int base_reg;
1683 int new_base;
21d799b5 1684 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1685 int max_regs = 0;
c19d1205
ZW
1686 int count = 0;
1687 int warned = 0;
1688 unsigned long mask = 0;
a737bd4d 1689 int i;
6057a28f 1690
037e8744 1691 if (*str != '{')
5287ad62
JB
1692 {
1693 inst.error = _("expecting {");
1694 return FAIL;
1695 }
6057a28f 1696
037e8744 1697 str++;
6057a28f 1698
5287ad62 1699 switch (etype)
c19d1205 1700 {
5287ad62 1701 case REGLIST_VFP_S:
c19d1205
ZW
1702 regtype = REG_TYPE_VFS;
1703 max_regs = 32;
5287ad62 1704 break;
5f4273c7 1705
5287ad62
JB
1706 case REGLIST_VFP_D:
1707 regtype = REG_TYPE_VFD;
b7fc2769 1708 break;
5f4273c7 1709
b7fc2769
JB
1710 case REGLIST_NEON_D:
1711 regtype = REG_TYPE_NDQ;
1712 break;
1713 }
1714
1715 if (etype != REGLIST_VFP_S)
1716 {
b1cc4aeb
PB
1717 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1718 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1719 {
1720 max_regs = 32;
1721 if (thumb_mode)
1722 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1723 fpu_vfp_ext_d32);
5287ad62
JB
1724 else
1725 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1726 fpu_vfp_ext_d32);
5287ad62
JB
1727 }
1728 else
1729 max_regs = 16;
c19d1205 1730 }
6057a28f 1731
c19d1205 1732 base_reg = max_regs;
a737bd4d 1733
c19d1205
ZW
1734 do
1735 {
5287ad62 1736 int setmask = 1, addregs = 1;
dcbf9037 1737
037e8744 1738 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1739
c19d1205 1740 if (new_base == FAIL)
a737bd4d 1741 {
dcbf9037 1742 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1743 return FAIL;
1744 }
5f4273c7 1745
b7fc2769
JB
1746 if (new_base >= max_regs)
1747 {
1748 first_error (_("register out of range in list"));
1749 return FAIL;
1750 }
5f4273c7 1751
5287ad62
JB
1752 /* Note: a value of 2 * n is returned for the register Q<n>. */
1753 if (regtype == REG_TYPE_NQ)
1754 {
1755 setmask = 3;
1756 addregs = 2;
1757 }
1758
c19d1205
ZW
1759 if (new_base < base_reg)
1760 base_reg = new_base;
a737bd4d 1761
5287ad62 1762 if (mask & (setmask << new_base))
c19d1205 1763 {
dcbf9037 1764 first_error (_("invalid register list"));
c19d1205 1765 return FAIL;
a737bd4d 1766 }
a737bd4d 1767
c19d1205
ZW
1768 if ((mask >> new_base) != 0 && ! warned)
1769 {
1770 as_tsktsk (_("register list not in ascending order"));
1771 warned = 1;
1772 }
0bbf2aa4 1773
5287ad62
JB
1774 mask |= setmask << new_base;
1775 count += addregs;
0bbf2aa4 1776
037e8744 1777 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1778 {
1779 int high_range;
0bbf2aa4 1780
037e8744 1781 str++;
0bbf2aa4 1782
037e8744 1783 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1784 == FAIL)
c19d1205
ZW
1785 {
1786 inst.error = gettext (reg_expected_msgs[regtype]);
1787 return FAIL;
1788 }
0bbf2aa4 1789
b7fc2769
JB
1790 if (high_range >= max_regs)
1791 {
1792 first_error (_("register out of range in list"));
1793 return FAIL;
1794 }
1795
5287ad62
JB
1796 if (regtype == REG_TYPE_NQ)
1797 high_range = high_range + 1;
1798
c19d1205
ZW
1799 if (high_range <= new_base)
1800 {
1801 inst.error = _("register range not in ascending order");
1802 return FAIL;
1803 }
0bbf2aa4 1804
5287ad62 1805 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1806 {
5287ad62 1807 if (mask & (setmask << new_base))
0bbf2aa4 1808 {
c19d1205
ZW
1809 inst.error = _("invalid register list");
1810 return FAIL;
0bbf2aa4 1811 }
c19d1205 1812
5287ad62
JB
1813 mask |= setmask << new_base;
1814 count += addregs;
0bbf2aa4 1815 }
0bbf2aa4 1816 }
0bbf2aa4 1817 }
037e8744 1818 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1819
037e8744 1820 str++;
0bbf2aa4 1821
c19d1205
ZW
1822 /* Sanity check -- should have raised a parse error above. */
1823 if (count == 0 || count > max_regs)
1824 abort ();
1825
1826 *pbase = base_reg;
1827
1828 /* Final test -- the registers must be consecutive. */
1829 mask >>= base_reg;
1830 for (i = 0; i < count; i++)
1831 {
1832 if ((mask & (1u << i)) == 0)
1833 {
1834 inst.error = _("non-contiguous register range");
1835 return FAIL;
1836 }
1837 }
1838
037e8744
JB
1839 *ccp = str;
1840
c19d1205 1841 return count;
b99bd4ef
NC
1842}
1843
dcbf9037
JB
1844/* True if two alias types are the same. */
1845
c921be7d 1846static bfd_boolean
dcbf9037
JB
1847neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1848{
1849 if (!a && !b)
c921be7d 1850 return TRUE;
5f4273c7 1851
dcbf9037 1852 if (!a || !b)
c921be7d 1853 return FALSE;
dcbf9037
JB
1854
1855 if (a->defined != b->defined)
c921be7d 1856 return FALSE;
5f4273c7 1857
dcbf9037
JB
1858 if ((a->defined & NTA_HASTYPE) != 0
1859 && (a->eltype.type != b->eltype.type
1860 || a->eltype.size != b->eltype.size))
c921be7d 1861 return FALSE;
dcbf9037
JB
1862
1863 if ((a->defined & NTA_HASINDEX) != 0
1864 && (a->index != b->index))
c921be7d 1865 return FALSE;
5f4273c7 1866
c921be7d 1867 return TRUE;
dcbf9037
JB
1868}
1869
5287ad62
JB
1870/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1871 The base register is put in *PBASE.
dcbf9037 1872 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1873 the return value.
1874 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1875 Bits [6:5] encode the list length (minus one).
1876 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1877
5287ad62 1878#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1879#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1880#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1881
1882static int
dcbf9037
JB
1883parse_neon_el_struct_list (char **str, unsigned *pbase,
1884 struct neon_type_el *eltype)
5287ad62
JB
1885{
1886 char *ptr = *str;
1887 int base_reg = -1;
1888 int reg_incr = -1;
1889 int count = 0;
1890 int lane = -1;
1891 int leading_brace = 0;
1892 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1893 const char *const incr_error = _("register stride must be 1 or 2");
1894 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1895 struct neon_typed_alias firsttype;
5f4273c7 1896
5287ad62
JB
1897 if (skip_past_char (&ptr, '{') == SUCCESS)
1898 leading_brace = 1;
5f4273c7 1899
5287ad62
JB
1900 do
1901 {
dcbf9037
JB
1902 struct neon_typed_alias atype;
1903 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1904
5287ad62
JB
1905 if (getreg == FAIL)
1906 {
dcbf9037 1907 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1908 return FAIL;
1909 }
5f4273c7 1910
5287ad62
JB
1911 if (base_reg == -1)
1912 {
1913 base_reg = getreg;
1914 if (rtype == REG_TYPE_NQ)
1915 {
1916 reg_incr = 1;
5287ad62 1917 }
dcbf9037 1918 firsttype = atype;
5287ad62
JB
1919 }
1920 else if (reg_incr == -1)
1921 {
1922 reg_incr = getreg - base_reg;
1923 if (reg_incr < 1 || reg_incr > 2)
1924 {
dcbf9037 1925 first_error (_(incr_error));
5287ad62
JB
1926 return FAIL;
1927 }
1928 }
1929 else if (getreg != base_reg + reg_incr * count)
1930 {
dcbf9037
JB
1931 first_error (_(incr_error));
1932 return FAIL;
1933 }
1934
c921be7d 1935 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1936 {
1937 first_error (_(type_error));
5287ad62
JB
1938 return FAIL;
1939 }
5f4273c7 1940
5287ad62
JB
1941 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1942 modes. */
1943 if (ptr[0] == '-')
1944 {
dcbf9037 1945 struct neon_typed_alias htype;
5287ad62
JB
1946 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1947 if (lane == -1)
1948 lane = NEON_INTERLEAVE_LANES;
1949 else if (lane != NEON_INTERLEAVE_LANES)
1950 {
dcbf9037 1951 first_error (_(type_error));
5287ad62
JB
1952 return FAIL;
1953 }
1954 if (reg_incr == -1)
1955 reg_incr = 1;
1956 else if (reg_incr != 1)
1957 {
dcbf9037 1958 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1959 return FAIL;
1960 }
1961 ptr++;
dcbf9037 1962 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1963 if (hireg == FAIL)
1964 {
dcbf9037
JB
1965 first_error (_(reg_expected_msgs[rtype]));
1966 return FAIL;
1967 }
c921be7d 1968 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1969 {
1970 first_error (_(type_error));
5287ad62
JB
1971 return FAIL;
1972 }
1973 count += hireg + dregs - getreg;
1974 continue;
1975 }
5f4273c7 1976
5287ad62
JB
1977 /* If we're using Q registers, we can't use [] or [n] syntax. */
1978 if (rtype == REG_TYPE_NQ)
1979 {
1980 count += 2;
1981 continue;
1982 }
5f4273c7 1983
dcbf9037 1984 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1985 {
dcbf9037
JB
1986 if (lane == -1)
1987 lane = atype.index;
1988 else if (lane != atype.index)
5287ad62 1989 {
dcbf9037
JB
1990 first_error (_(type_error));
1991 return FAIL;
5287ad62
JB
1992 }
1993 }
1994 else if (lane == -1)
1995 lane = NEON_INTERLEAVE_LANES;
1996 else if (lane != NEON_INTERLEAVE_LANES)
1997 {
dcbf9037 1998 first_error (_(type_error));
5287ad62
JB
1999 return FAIL;
2000 }
2001 count++;
2002 }
2003 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2004
5287ad62
JB
2005 /* No lane set by [x]. We must be interleaving structures. */
2006 if (lane == -1)
2007 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2008
5287ad62
JB
2009 /* Sanity check. */
2010 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2011 || (count > 1 && reg_incr == -1))
2012 {
dcbf9037 2013 first_error (_("error parsing element/structure list"));
5287ad62
JB
2014 return FAIL;
2015 }
2016
2017 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2018 {
dcbf9037 2019 first_error (_("expected }"));
5287ad62
JB
2020 return FAIL;
2021 }
5f4273c7 2022
5287ad62
JB
2023 if (reg_incr == -1)
2024 reg_incr = 1;
2025
dcbf9037
JB
2026 if (eltype)
2027 *eltype = firsttype.eltype;
2028
5287ad62
JB
2029 *pbase = base_reg;
2030 *str = ptr;
5f4273c7 2031
5287ad62
JB
2032 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2033}
2034
c19d1205
ZW
2035/* Parse an explicit relocation suffix on an expression. This is
2036 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2037 arm_reloc_hsh contains no entries, so this function can only
2038 succeed if there is no () after the word. Returns -1 on error,
2039 BFD_RELOC_UNUSED if there wasn't any suffix. */
2040static int
2041parse_reloc (char **str)
b99bd4ef 2042{
c19d1205
ZW
2043 struct reloc_entry *r;
2044 char *p, *q;
b99bd4ef 2045
c19d1205
ZW
2046 if (**str != '(')
2047 return BFD_RELOC_UNUSED;
b99bd4ef 2048
c19d1205
ZW
2049 p = *str + 1;
2050 q = p;
2051
2052 while (*q && *q != ')' && *q != ',')
2053 q++;
2054 if (*q != ')')
2055 return -1;
2056
21d799b5
NC
2057 if ((r = (struct reloc_entry *)
2058 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2059 return -1;
2060
2061 *str = q + 1;
2062 return r->reloc;
b99bd4ef
NC
2063}
2064
c19d1205
ZW
2065/* Directives: register aliases. */
2066
dcbf9037 2067static struct reg_entry *
90ec0d68 2068insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2069{
d3ce72d0 2070 struct reg_entry *new_reg;
c19d1205 2071 const char *name;
b99bd4ef 2072
d3ce72d0 2073 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2074 {
d3ce72d0 2075 if (new_reg->builtin)
c19d1205 2076 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2077
c19d1205
ZW
2078 /* Only warn about a redefinition if it's not defined as the
2079 same register. */
d3ce72d0 2080 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2081 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2082
d929913e 2083 return NULL;
c19d1205 2084 }
b99bd4ef 2085
c19d1205 2086 name = xstrdup (str);
d3ce72d0 2087 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2088
d3ce72d0
NC
2089 new_reg->name = name;
2090 new_reg->number = number;
2091 new_reg->type = type;
2092 new_reg->builtin = FALSE;
2093 new_reg->neon = NULL;
b99bd4ef 2094
d3ce72d0 2095 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2096 abort ();
5f4273c7 2097
d3ce72d0 2098 return new_reg;
dcbf9037
JB
2099}
2100
2101static void
2102insert_neon_reg_alias (char *str, int number, int type,
2103 struct neon_typed_alias *atype)
2104{
2105 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2106
dcbf9037
JB
2107 if (!reg)
2108 {
2109 first_error (_("attempt to redefine typed alias"));
2110 return;
2111 }
5f4273c7 2112
dcbf9037
JB
2113 if (atype)
2114 {
21d799b5
NC
2115 reg->neon = (struct neon_typed_alias *)
2116 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2117 *reg->neon = *atype;
2118 }
c19d1205 2119}
b99bd4ef 2120
c19d1205 2121/* Look for the .req directive. This is of the form:
b99bd4ef 2122
c19d1205 2123 new_register_name .req existing_register_name
b99bd4ef 2124
c19d1205 2125 If we find one, or if it looks sufficiently like one that we want to
d929913e 2126 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2127
d929913e 2128static bfd_boolean
c19d1205
ZW
2129create_register_alias (char * newname, char *p)
2130{
2131 struct reg_entry *old;
2132 char *oldname, *nbuf;
2133 size_t nlen;
b99bd4ef 2134
c19d1205
ZW
2135 /* The input scrubber ensures that whitespace after the mnemonic is
2136 collapsed to single spaces. */
2137 oldname = p;
2138 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2139 return FALSE;
b99bd4ef 2140
c19d1205
ZW
2141 oldname += 6;
2142 if (*oldname == '\0')
d929913e 2143 return FALSE;
b99bd4ef 2144
21d799b5 2145 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2146 if (!old)
b99bd4ef 2147 {
c19d1205 2148 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2149 return TRUE;
b99bd4ef
NC
2150 }
2151
c19d1205
ZW
2152 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2153 the desired alias name, and p points to its end. If not, then
2154 the desired alias name is in the global original_case_string. */
2155#ifdef TC_CASE_SENSITIVE
2156 nlen = p - newname;
2157#else
2158 newname = original_case_string;
2159 nlen = strlen (newname);
2160#endif
b99bd4ef 2161
21d799b5 2162 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2163 memcpy (nbuf, newname, nlen);
2164 nbuf[nlen] = '\0';
b99bd4ef 2165
c19d1205
ZW
2166 /* Create aliases under the new name as stated; an all-lowercase
2167 version of the new name; and an all-uppercase version of the new
2168 name. */
d929913e
NC
2169 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2170 {
2171 for (p = nbuf; *p; p++)
2172 *p = TOUPPER (*p);
c19d1205 2173
d929913e
NC
2174 if (strncmp (nbuf, newname, nlen))
2175 {
2176 /* If this attempt to create an additional alias fails, do not bother
2177 trying to create the all-lower case alias. We will fail and issue
2178 a second, duplicate error message. This situation arises when the
2179 programmer does something like:
2180 foo .req r0
2181 Foo .req r1
2182 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2183 the artificial FOO alias because it has already been created by the
d929913e
NC
2184 first .req. */
2185 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2186 return TRUE;
2187 }
c19d1205 2188
d929913e
NC
2189 for (p = nbuf; *p; p++)
2190 *p = TOLOWER (*p);
c19d1205 2191
d929913e
NC
2192 if (strncmp (nbuf, newname, nlen))
2193 insert_reg_alias (nbuf, old->number, old->type);
2194 }
c19d1205 2195
d929913e 2196 return TRUE;
b99bd4ef
NC
2197}
2198
dcbf9037
JB
2199/* Create a Neon typed/indexed register alias using directives, e.g.:
2200 X .dn d5.s32[1]
2201 Y .qn 6.s16
2202 Z .dn d7
2203 T .dn Z[0]
2204 These typed registers can be used instead of the types specified after the
2205 Neon mnemonic, so long as all operands given have types. Types can also be
2206 specified directly, e.g.:
5f4273c7 2207 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2208
c921be7d 2209static bfd_boolean
dcbf9037
JB
2210create_neon_reg_alias (char *newname, char *p)
2211{
2212 enum arm_reg_type basetype;
2213 struct reg_entry *basereg;
2214 struct reg_entry mybasereg;
2215 struct neon_type ntype;
2216 struct neon_typed_alias typeinfo;
12d6b0b7 2217 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2218 int namelen;
5f4273c7 2219
dcbf9037
JB
2220 typeinfo.defined = 0;
2221 typeinfo.eltype.type = NT_invtype;
2222 typeinfo.eltype.size = -1;
2223 typeinfo.index = -1;
5f4273c7 2224
dcbf9037 2225 nameend = p;
5f4273c7 2226
dcbf9037
JB
2227 if (strncmp (p, " .dn ", 5) == 0)
2228 basetype = REG_TYPE_VFD;
2229 else if (strncmp (p, " .qn ", 5) == 0)
2230 basetype = REG_TYPE_NQ;
2231 else
c921be7d 2232 return FALSE;
5f4273c7 2233
dcbf9037 2234 p += 5;
5f4273c7 2235
dcbf9037 2236 if (*p == '\0')
c921be7d 2237 return FALSE;
5f4273c7 2238
dcbf9037
JB
2239 basereg = arm_reg_parse_multi (&p);
2240
2241 if (basereg && basereg->type != basetype)
2242 {
2243 as_bad (_("bad type for register"));
c921be7d 2244 return FALSE;
dcbf9037
JB
2245 }
2246
2247 if (basereg == NULL)
2248 {
2249 expressionS exp;
2250 /* Try parsing as an integer. */
2251 my_get_expression (&exp, &p, GE_NO_PREFIX);
2252 if (exp.X_op != O_constant)
2253 {
2254 as_bad (_("expression must be constant"));
c921be7d 2255 return FALSE;
dcbf9037
JB
2256 }
2257 basereg = &mybasereg;
2258 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2259 : exp.X_add_number;
2260 basereg->neon = 0;
2261 }
2262
2263 if (basereg->neon)
2264 typeinfo = *basereg->neon;
2265
2266 if (parse_neon_type (&ntype, &p) == SUCCESS)
2267 {
2268 /* We got a type. */
2269 if (typeinfo.defined & NTA_HASTYPE)
2270 {
2271 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2272 return FALSE;
dcbf9037 2273 }
5f4273c7 2274
dcbf9037
JB
2275 typeinfo.defined |= NTA_HASTYPE;
2276 if (ntype.elems != 1)
2277 {
2278 as_bad (_("you must specify a single type only"));
c921be7d 2279 return FALSE;
dcbf9037
JB
2280 }
2281 typeinfo.eltype = ntype.el[0];
2282 }
5f4273c7 2283
dcbf9037
JB
2284 if (skip_past_char (&p, '[') == SUCCESS)
2285 {
2286 expressionS exp;
2287 /* We got a scalar index. */
5f4273c7 2288
dcbf9037
JB
2289 if (typeinfo.defined & NTA_HASINDEX)
2290 {
2291 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2292 return FALSE;
dcbf9037 2293 }
5f4273c7 2294
dcbf9037 2295 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2296
dcbf9037
JB
2297 if (exp.X_op != O_constant)
2298 {
2299 as_bad (_("scalar index must be constant"));
c921be7d 2300 return FALSE;
dcbf9037 2301 }
5f4273c7 2302
dcbf9037
JB
2303 typeinfo.defined |= NTA_HASINDEX;
2304 typeinfo.index = exp.X_add_number;
5f4273c7 2305
dcbf9037
JB
2306 if (skip_past_char (&p, ']') == FAIL)
2307 {
2308 as_bad (_("expecting ]"));
c921be7d 2309 return FALSE;
dcbf9037
JB
2310 }
2311 }
2312
15735687
NS
2313 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2314 the desired alias name, and p points to its end. If not, then
2315 the desired alias name is in the global original_case_string. */
2316#ifdef TC_CASE_SENSITIVE
dcbf9037 2317 namelen = nameend - newname;
15735687
NS
2318#else
2319 newname = original_case_string;
2320 namelen = strlen (newname);
2321#endif
2322
21d799b5 2323 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2324 strncpy (namebuf, newname, namelen);
2325 namebuf[namelen] = '\0';
5f4273c7 2326
dcbf9037
JB
2327 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2328 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2329
dcbf9037
JB
2330 /* Insert name in all uppercase. */
2331 for (p = namebuf; *p; p++)
2332 *p = TOUPPER (*p);
5f4273c7 2333
dcbf9037
JB
2334 if (strncmp (namebuf, newname, namelen))
2335 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2336 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2337
dcbf9037
JB
2338 /* Insert name in all lowercase. */
2339 for (p = namebuf; *p; p++)
2340 *p = TOLOWER (*p);
5f4273c7 2341
dcbf9037
JB
2342 if (strncmp (namebuf, newname, namelen))
2343 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2344 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2345
c921be7d 2346 return TRUE;
dcbf9037
JB
2347}
2348
c19d1205
ZW
2349/* Should never be called, as .req goes between the alias and the
2350 register name, not at the beginning of the line. */
c921be7d 2351
b99bd4ef 2352static void
c19d1205 2353s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2354{
c19d1205
ZW
2355 as_bad (_("invalid syntax for .req directive"));
2356}
b99bd4ef 2357
dcbf9037
JB
2358static void
2359s_dn (int a ATTRIBUTE_UNUSED)
2360{
2361 as_bad (_("invalid syntax for .dn directive"));
2362}
2363
2364static void
2365s_qn (int a ATTRIBUTE_UNUSED)
2366{
2367 as_bad (_("invalid syntax for .qn directive"));
2368}
2369
c19d1205
ZW
2370/* The .unreq directive deletes an alias which was previously defined
2371 by .req. For example:
b99bd4ef 2372
c19d1205
ZW
2373 my_alias .req r11
2374 .unreq my_alias */
b99bd4ef
NC
2375
2376static void
c19d1205 2377s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2378{
c19d1205
ZW
2379 char * name;
2380 char saved_char;
b99bd4ef 2381
c19d1205
ZW
2382 name = input_line_pointer;
2383
2384 while (*input_line_pointer != 0
2385 && *input_line_pointer != ' '
2386 && *input_line_pointer != '\n')
2387 ++input_line_pointer;
2388
2389 saved_char = *input_line_pointer;
2390 *input_line_pointer = 0;
2391
2392 if (!*name)
2393 as_bad (_("invalid syntax for .unreq directive"));
2394 else
2395 {
21d799b5
NC
2396 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2397 name);
c19d1205
ZW
2398
2399 if (!reg)
2400 as_bad (_("unknown register alias '%s'"), name);
2401 else if (reg->builtin)
2402 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2403 name);
2404 else
2405 {
d929913e
NC
2406 char * p;
2407 char * nbuf;
2408
db0bc284 2409 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2410 free ((char *) reg->name);
dcbf9037
JB
2411 if (reg->neon)
2412 free (reg->neon);
c19d1205 2413 free (reg);
d929913e
NC
2414
2415 /* Also locate the all upper case and all lower case versions.
2416 Do not complain if we cannot find one or the other as it
2417 was probably deleted above. */
5f4273c7 2418
d929913e
NC
2419 nbuf = strdup (name);
2420 for (p = nbuf; *p; p++)
2421 *p = TOUPPER (*p);
21d799b5 2422 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2423 if (reg)
2424 {
db0bc284 2425 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2426 free ((char *) reg->name);
2427 if (reg->neon)
2428 free (reg->neon);
2429 free (reg);
2430 }
2431
2432 for (p = nbuf; *p; p++)
2433 *p = TOLOWER (*p);
21d799b5 2434 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2435 if (reg)
2436 {
db0bc284 2437 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2438 free ((char *) reg->name);
2439 if (reg->neon)
2440 free (reg->neon);
2441 free (reg);
2442 }
2443
2444 free (nbuf);
c19d1205
ZW
2445 }
2446 }
b99bd4ef 2447
c19d1205 2448 *input_line_pointer = saved_char;
b99bd4ef
NC
2449 demand_empty_rest_of_line ();
2450}
2451
c19d1205
ZW
2452/* Directives: Instruction set selection. */
2453
2454#ifdef OBJ_ELF
2455/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2456 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2457 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2458 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2459
cd000bff
DJ
2460/* Create a new mapping symbol for the transition to STATE. */
2461
2462static void
2463make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2464{
a737bd4d 2465 symbolS * symbolP;
c19d1205
ZW
2466 const char * symname;
2467 int type;
b99bd4ef 2468
c19d1205 2469 switch (state)
b99bd4ef 2470 {
c19d1205
ZW
2471 case MAP_DATA:
2472 symname = "$d";
2473 type = BSF_NO_FLAGS;
2474 break;
2475 case MAP_ARM:
2476 symname = "$a";
2477 type = BSF_NO_FLAGS;
2478 break;
2479 case MAP_THUMB:
2480 symname = "$t";
2481 type = BSF_NO_FLAGS;
2482 break;
c19d1205
ZW
2483 default:
2484 abort ();
2485 }
2486
cd000bff 2487 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2488 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2489
2490 switch (state)
2491 {
2492 case MAP_ARM:
2493 THUMB_SET_FUNC (symbolP, 0);
2494 ARM_SET_THUMB (symbolP, 0);
2495 ARM_SET_INTERWORK (symbolP, support_interwork);
2496 break;
2497
2498 case MAP_THUMB:
2499 THUMB_SET_FUNC (symbolP, 1);
2500 ARM_SET_THUMB (symbolP, 1);
2501 ARM_SET_INTERWORK (symbolP, support_interwork);
2502 break;
2503
2504 case MAP_DATA:
2505 default:
cd000bff
DJ
2506 break;
2507 }
2508
2509 /* Save the mapping symbols for future reference. Also check that
2510 we do not place two mapping symbols at the same offset within a
2511 frag. We'll handle overlap between frags in
2de7820f
JZ
2512 check_mapping_symbols.
2513
2514 If .fill or other data filling directive generates zero sized data,
2515 the mapping symbol for the following code will have the same value
2516 as the one generated for the data filling directive. In this case,
2517 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2518 if (value == 0)
2519 {
2de7820f
JZ
2520 if (frag->tc_frag_data.first_map != NULL)
2521 {
2522 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2523 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2524 }
cd000bff
DJ
2525 frag->tc_frag_data.first_map = symbolP;
2526 }
2527 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2528 {
2529 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2530 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2531 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2532 }
cd000bff
DJ
2533 frag->tc_frag_data.last_map = symbolP;
2534}
2535
2536/* We must sometimes convert a region marked as code to data during
2537 code alignment, if an odd number of bytes have to be padded. The
2538 code mapping symbol is pushed to an aligned address. */
2539
2540static void
2541insert_data_mapping_symbol (enum mstate state,
2542 valueT value, fragS *frag, offsetT bytes)
2543{
2544 /* If there was already a mapping symbol, remove it. */
2545 if (frag->tc_frag_data.last_map != NULL
2546 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2547 {
2548 symbolS *symp = frag->tc_frag_data.last_map;
2549
2550 if (value == 0)
2551 {
2552 know (frag->tc_frag_data.first_map == symp);
2553 frag->tc_frag_data.first_map = NULL;
2554 }
2555 frag->tc_frag_data.last_map = NULL;
2556 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2557 }
cd000bff
DJ
2558
2559 make_mapping_symbol (MAP_DATA, value, frag);
2560 make_mapping_symbol (state, value + bytes, frag);
2561}
2562
2563static void mapping_state_2 (enum mstate state, int max_chars);
2564
2565/* Set the mapping state to STATE. Only call this when about to
2566 emit some STATE bytes to the file. */
2567
2568void
2569mapping_state (enum mstate state)
2570{
940b5ce0
DJ
2571 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2572
cd000bff
DJ
2573#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2574
2575 if (mapstate == state)
2576 /* The mapping symbol has already been emitted.
2577 There is nothing else to do. */
2578 return;
2579 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2580 /* This case will be evaluated later in the next else. */
2581 return;
2582 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2583 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2584 {
2585 /* Only add the symbol if the offset is > 0:
2586 if we're at the first frag, check it's size > 0;
2587 if we're not at the first frag, then for sure
2588 the offset is > 0. */
2589 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2590 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2591
2592 if (add_symbol)
2593 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2594 }
2595
2596 mapping_state_2 (state, 0);
2597#undef TRANSITION
2598}
2599
2600/* Same as mapping_state, but MAX_CHARS bytes have already been
2601 allocated. Put the mapping symbol that far back. */
2602
2603static void
2604mapping_state_2 (enum mstate state, int max_chars)
2605{
940b5ce0
DJ
2606 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2607
2608 if (!SEG_NORMAL (now_seg))
2609 return;
2610
cd000bff
DJ
2611 if (mapstate == state)
2612 /* The mapping symbol has already been emitted.
2613 There is nothing else to do. */
2614 return;
2615
cd000bff
DJ
2616 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2617 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2618}
2619#else
d3106081
NS
2620#define mapping_state(x) ((void)0)
2621#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2622#endif
2623
2624/* Find the real, Thumb encoded start of a Thumb function. */
2625
4343666d 2626#ifdef OBJ_COFF
c19d1205
ZW
2627static symbolS *
2628find_real_start (symbolS * symbolP)
2629{
2630 char * real_start;
2631 const char * name = S_GET_NAME (symbolP);
2632 symbolS * new_target;
2633
2634 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2635#define STUB_NAME ".real_start_of"
2636
2637 if (name == NULL)
2638 abort ();
2639
37f6032b
ZW
2640 /* The compiler may generate BL instructions to local labels because
2641 it needs to perform a branch to a far away location. These labels
2642 do not have a corresponding ".real_start_of" label. We check
2643 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2644 the ".real_start_of" convention for nonlocal branches. */
2645 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2646 return symbolP;
2647
37f6032b 2648 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2649 new_target = symbol_find (real_start);
2650
2651 if (new_target == NULL)
2652 {
bd3ba5d1 2653 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2654 new_target = symbolP;
2655 }
2656
c19d1205
ZW
2657 return new_target;
2658}
4343666d 2659#endif
c19d1205
ZW
2660
2661static void
2662opcode_select (int width)
2663{
2664 switch (width)
2665 {
2666 case 16:
2667 if (! thumb_mode)
2668 {
e74cfd16 2669 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2670 as_bad (_("selected processor does not support THUMB opcodes"));
2671
2672 thumb_mode = 1;
2673 /* No need to force the alignment, since we will have been
2674 coming from ARM mode, which is word-aligned. */
2675 record_alignment (now_seg, 1);
2676 }
c19d1205
ZW
2677 break;
2678
2679 case 32:
2680 if (thumb_mode)
2681 {
e74cfd16 2682 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2683 as_bad (_("selected processor does not support ARM opcodes"));
2684
2685 thumb_mode = 0;
2686
2687 if (!need_pass_2)
2688 frag_align (2, 0, 0);
2689
2690 record_alignment (now_seg, 1);
2691 }
c19d1205
ZW
2692 break;
2693
2694 default:
2695 as_bad (_("invalid instruction size selected (%d)"), width);
2696 }
2697}
2698
2699static void
2700s_arm (int ignore ATTRIBUTE_UNUSED)
2701{
2702 opcode_select (32);
2703 demand_empty_rest_of_line ();
2704}
2705
2706static void
2707s_thumb (int ignore ATTRIBUTE_UNUSED)
2708{
2709 opcode_select (16);
2710 demand_empty_rest_of_line ();
2711}
2712
2713static void
2714s_code (int unused ATTRIBUTE_UNUSED)
2715{
2716 int temp;
2717
2718 temp = get_absolute_expression ();
2719 switch (temp)
2720 {
2721 case 16:
2722 case 32:
2723 opcode_select (temp);
2724 break;
2725
2726 default:
2727 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2728 }
2729}
2730
2731static void
2732s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2733{
2734 /* If we are not already in thumb mode go into it, EVEN if
2735 the target processor does not support thumb instructions.
2736 This is used by gcc/config/arm/lib1funcs.asm for example
2737 to compile interworking support functions even if the
2738 target processor should not support interworking. */
2739 if (! thumb_mode)
2740 {
2741 thumb_mode = 2;
2742 record_alignment (now_seg, 1);
2743 }
2744
2745 demand_empty_rest_of_line ();
2746}
2747
2748static void
2749s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2750{
2751 s_thumb (0);
2752
2753 /* The following label is the name/address of the start of a Thumb function.
2754 We need to know this for the interworking support. */
2755 label_is_thumb_function_name = TRUE;
2756}
2757
2758/* Perform a .set directive, but also mark the alias as
2759 being a thumb function. */
2760
2761static void
2762s_thumb_set (int equiv)
2763{
2764 /* XXX the following is a duplicate of the code for s_set() in read.c
2765 We cannot just call that code as we need to get at the symbol that
2766 is created. */
2767 char * name;
2768 char delim;
2769 char * end_name;
2770 symbolS * symbolP;
2771
2772 /* Especial apologies for the random logic:
2773 This just grew, and could be parsed much more simply!
2774 Dean - in haste. */
2775 name = input_line_pointer;
2776 delim = get_symbol_end ();
2777 end_name = input_line_pointer;
2778 *end_name = delim;
2779
2780 if (*input_line_pointer != ',')
2781 {
2782 *end_name = 0;
2783 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2784 *end_name = delim;
2785 ignore_rest_of_line ();
2786 return;
2787 }
2788
2789 input_line_pointer++;
2790 *end_name = 0;
2791
2792 if (name[0] == '.' && name[1] == '\0')
2793 {
2794 /* XXX - this should not happen to .thumb_set. */
2795 abort ();
2796 }
2797
2798 if ((symbolP = symbol_find (name)) == NULL
2799 && (symbolP = md_undefined_symbol (name)) == NULL)
2800 {
2801#ifndef NO_LISTING
2802 /* When doing symbol listings, play games with dummy fragments living
2803 outside the normal fragment chain to record the file and line info
c19d1205 2804 for this symbol. */
b99bd4ef
NC
2805 if (listing & LISTING_SYMBOLS)
2806 {
2807 extern struct list_info_struct * listing_tail;
21d799b5 2808 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2809
2810 memset (dummy_frag, 0, sizeof (fragS));
2811 dummy_frag->fr_type = rs_fill;
2812 dummy_frag->line = listing_tail;
2813 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2814 dummy_frag->fr_symbol = symbolP;
2815 }
2816 else
2817#endif
2818 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2819
2820#ifdef OBJ_COFF
2821 /* "set" symbols are local unless otherwise specified. */
2822 SF_SET_LOCAL (symbolP);
2823#endif /* OBJ_COFF */
2824 } /* Make a new symbol. */
2825
2826 symbol_table_insert (symbolP);
2827
2828 * end_name = delim;
2829
2830 if (equiv
2831 && S_IS_DEFINED (symbolP)
2832 && S_GET_SEGMENT (symbolP) != reg_section)
2833 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2834
2835 pseudo_set (symbolP);
2836
2837 demand_empty_rest_of_line ();
2838
c19d1205 2839 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2840
2841 THUMB_SET_FUNC (symbolP, 1);
2842 ARM_SET_THUMB (symbolP, 1);
2843#if defined OBJ_ELF || defined OBJ_COFF
2844 ARM_SET_INTERWORK (symbolP, support_interwork);
2845#endif
2846}
2847
c19d1205 2848/* Directives: Mode selection. */
b99bd4ef 2849
c19d1205
ZW
2850/* .syntax [unified|divided] - choose the new unified syntax
2851 (same for Arm and Thumb encoding, modulo slight differences in what
2852 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2853static void
c19d1205 2854s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2855{
c19d1205
ZW
2856 char *name, delim;
2857
2858 name = input_line_pointer;
2859 delim = get_symbol_end ();
2860
2861 if (!strcasecmp (name, "unified"))
2862 unified_syntax = TRUE;
2863 else if (!strcasecmp (name, "divided"))
2864 unified_syntax = FALSE;
2865 else
2866 {
2867 as_bad (_("unrecognized syntax mode \"%s\""), name);
2868 return;
2869 }
2870 *input_line_pointer = delim;
b99bd4ef
NC
2871 demand_empty_rest_of_line ();
2872}
2873
c19d1205
ZW
2874/* Directives: sectioning and alignment. */
2875
2876/* Same as s_align_ptwo but align 0 => align 2. */
2877
b99bd4ef 2878static void
c19d1205 2879s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2880{
a737bd4d 2881 int temp;
dce323d1 2882 bfd_boolean fill_p;
c19d1205
ZW
2883 long temp_fill;
2884 long max_alignment = 15;
b99bd4ef
NC
2885
2886 temp = get_absolute_expression ();
c19d1205
ZW
2887 if (temp > max_alignment)
2888 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2889 else if (temp < 0)
b99bd4ef 2890 {
c19d1205
ZW
2891 as_bad (_("alignment negative. 0 assumed."));
2892 temp = 0;
2893 }
b99bd4ef 2894
c19d1205
ZW
2895 if (*input_line_pointer == ',')
2896 {
2897 input_line_pointer++;
2898 temp_fill = get_absolute_expression ();
dce323d1 2899 fill_p = TRUE;
b99bd4ef 2900 }
c19d1205 2901 else
dce323d1
PB
2902 {
2903 fill_p = FALSE;
2904 temp_fill = 0;
2905 }
b99bd4ef 2906
c19d1205
ZW
2907 if (!temp)
2908 temp = 2;
b99bd4ef 2909
c19d1205
ZW
2910 /* Only make a frag if we HAVE to. */
2911 if (temp && !need_pass_2)
dce323d1
PB
2912 {
2913 if (!fill_p && subseg_text_p (now_seg))
2914 frag_align_code (temp, 0);
2915 else
2916 frag_align (temp, (int) temp_fill, 0);
2917 }
c19d1205
ZW
2918 demand_empty_rest_of_line ();
2919
2920 record_alignment (now_seg, temp);
b99bd4ef
NC
2921}
2922
c19d1205
ZW
2923static void
2924s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2925{
c19d1205
ZW
2926 /* We don't support putting frags in the BSS segment, we fake it by
2927 marking in_bss, then looking at s_skip for clues. */
2928 subseg_set (bss_section, 0);
2929 demand_empty_rest_of_line ();
cd000bff
DJ
2930
2931#ifdef md_elf_section_change_hook
2932 md_elf_section_change_hook ();
2933#endif
c19d1205 2934}
b99bd4ef 2935
c19d1205
ZW
2936static void
2937s_even (int ignore ATTRIBUTE_UNUSED)
2938{
2939 /* Never make frag if expect extra pass. */
2940 if (!need_pass_2)
2941 frag_align (1, 0, 0);
b99bd4ef 2942
c19d1205 2943 record_alignment (now_seg, 1);
b99bd4ef 2944
c19d1205 2945 demand_empty_rest_of_line ();
b99bd4ef
NC
2946}
2947
c19d1205 2948/* Directives: Literal pools. */
a737bd4d 2949
c19d1205
ZW
2950static literal_pool *
2951find_literal_pool (void)
a737bd4d 2952{
c19d1205 2953 literal_pool * pool;
a737bd4d 2954
c19d1205 2955 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2956 {
c19d1205
ZW
2957 if (pool->section == now_seg
2958 && pool->sub_section == now_subseg)
2959 break;
a737bd4d
NC
2960 }
2961
c19d1205 2962 return pool;
a737bd4d
NC
2963}
2964
c19d1205
ZW
2965static literal_pool *
2966find_or_make_literal_pool (void)
a737bd4d 2967{
c19d1205
ZW
2968 /* Next literal pool ID number. */
2969 static unsigned int latest_pool_num = 1;
2970 literal_pool * pool;
a737bd4d 2971
c19d1205 2972 pool = find_literal_pool ();
a737bd4d 2973
c19d1205 2974 if (pool == NULL)
a737bd4d 2975 {
c19d1205 2976 /* Create a new pool. */
21d799b5 2977 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
2978 if (! pool)
2979 return NULL;
a737bd4d 2980
c19d1205
ZW
2981 pool->next_free_entry = 0;
2982 pool->section = now_seg;
2983 pool->sub_section = now_subseg;
2984 pool->next = list_of_pools;
2985 pool->symbol = NULL;
2986
2987 /* Add it to the list. */
2988 list_of_pools = pool;
a737bd4d 2989 }
a737bd4d 2990
c19d1205
ZW
2991 /* New pools, and emptied pools, will have a NULL symbol. */
2992 if (pool->symbol == NULL)
a737bd4d 2993 {
c19d1205
ZW
2994 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2995 (valueT) 0, &zero_address_frag);
2996 pool->id = latest_pool_num ++;
a737bd4d
NC
2997 }
2998
c19d1205
ZW
2999 /* Done. */
3000 return pool;
a737bd4d
NC
3001}
3002
c19d1205 3003/* Add the literal in the global 'inst'
5f4273c7 3004 structure to the relevant literal pool. */
b99bd4ef
NC
3005
3006static int
c19d1205 3007add_to_lit_pool (void)
b99bd4ef 3008{
c19d1205
ZW
3009 literal_pool * pool;
3010 unsigned int entry;
b99bd4ef 3011
c19d1205
ZW
3012 pool = find_or_make_literal_pool ();
3013
3014 /* Check if this literal value is already in the pool. */
3015 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3016 {
c19d1205
ZW
3017 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3018 && (inst.reloc.exp.X_op == O_constant)
3019 && (pool->literals[entry].X_add_number
3020 == inst.reloc.exp.X_add_number)
3021 && (pool->literals[entry].X_unsigned
3022 == inst.reloc.exp.X_unsigned))
3023 break;
3024
3025 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3026 && (inst.reloc.exp.X_op == O_symbol)
3027 && (pool->literals[entry].X_add_number
3028 == inst.reloc.exp.X_add_number)
3029 && (pool->literals[entry].X_add_symbol
3030 == inst.reloc.exp.X_add_symbol)
3031 && (pool->literals[entry].X_op_symbol
3032 == inst.reloc.exp.X_op_symbol))
3033 break;
b99bd4ef
NC
3034 }
3035
c19d1205
ZW
3036 /* Do we need to create a new entry? */
3037 if (entry == pool->next_free_entry)
3038 {
3039 if (entry >= MAX_LITERAL_POOL_SIZE)
3040 {
3041 inst.error = _("literal pool overflow");
3042 return FAIL;
3043 }
3044
3045 pool->literals[entry] = inst.reloc.exp;
3046 pool->next_free_entry += 1;
3047 }
b99bd4ef 3048
c19d1205
ZW
3049 inst.reloc.exp.X_op = O_symbol;
3050 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3051 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3052
c19d1205 3053 return SUCCESS;
b99bd4ef
NC
3054}
3055
c19d1205
ZW
3056/* Can't use symbol_new here, so have to create a symbol and then at
3057 a later date assign it a value. Thats what these functions do. */
e16bb312 3058
c19d1205
ZW
3059static void
3060symbol_locate (symbolS * symbolP,
3061 const char * name, /* It is copied, the caller can modify. */
3062 segT segment, /* Segment identifier (SEG_<something>). */
3063 valueT valu, /* Symbol value. */
3064 fragS * frag) /* Associated fragment. */
3065{
3066 unsigned int name_length;
3067 char * preserved_copy_of_name;
e16bb312 3068
c19d1205
ZW
3069 name_length = strlen (name) + 1; /* +1 for \0. */
3070 obstack_grow (&notes, name, name_length);
21d799b5 3071 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3072
c19d1205
ZW
3073#ifdef tc_canonicalize_symbol_name
3074 preserved_copy_of_name =
3075 tc_canonicalize_symbol_name (preserved_copy_of_name);
3076#endif
b99bd4ef 3077
c19d1205 3078 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3079
c19d1205
ZW
3080 S_SET_SEGMENT (symbolP, segment);
3081 S_SET_VALUE (symbolP, valu);
3082 symbol_clear_list_pointers (symbolP);
b99bd4ef 3083
c19d1205 3084 symbol_set_frag (symbolP, frag);
b99bd4ef 3085
c19d1205
ZW
3086 /* Link to end of symbol chain. */
3087 {
3088 extern int symbol_table_frozen;
b99bd4ef 3089
c19d1205
ZW
3090 if (symbol_table_frozen)
3091 abort ();
3092 }
b99bd4ef 3093
c19d1205 3094 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3095
c19d1205 3096 obj_symbol_new_hook (symbolP);
b99bd4ef 3097
c19d1205
ZW
3098#ifdef tc_symbol_new_hook
3099 tc_symbol_new_hook (symbolP);
3100#endif
3101
3102#ifdef DEBUG_SYMS
3103 verify_symbol_chain (symbol_rootP, symbol_lastP);
3104#endif /* DEBUG_SYMS */
b99bd4ef
NC
3105}
3106
b99bd4ef 3107
c19d1205
ZW
3108static void
3109s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3110{
c19d1205
ZW
3111 unsigned int entry;
3112 literal_pool * pool;
3113 char sym_name[20];
b99bd4ef 3114
c19d1205
ZW
3115 pool = find_literal_pool ();
3116 if (pool == NULL
3117 || pool->symbol == NULL
3118 || pool->next_free_entry == 0)
3119 return;
b99bd4ef 3120
c19d1205 3121 mapping_state (MAP_DATA);
b99bd4ef 3122
c19d1205
ZW
3123 /* Align pool as you have word accesses.
3124 Only make a frag if we have to. */
3125 if (!need_pass_2)
3126 frag_align (2, 0, 0);
b99bd4ef 3127
c19d1205 3128 record_alignment (now_seg, 2);
b99bd4ef 3129
c19d1205 3130 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3131
c19d1205
ZW
3132 symbol_locate (pool->symbol, sym_name, now_seg,
3133 (valueT) frag_now_fix (), frag_now);
3134 symbol_table_insert (pool->symbol);
b99bd4ef 3135
c19d1205 3136 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3137
c19d1205
ZW
3138#if defined OBJ_COFF || defined OBJ_ELF
3139 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3140#endif
6c43fab6 3141
c19d1205
ZW
3142 for (entry = 0; entry < pool->next_free_entry; entry ++)
3143 /* First output the expression in the instruction to the pool. */
3144 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 3145
c19d1205
ZW
3146 /* Mark the pool as empty. */
3147 pool->next_free_entry = 0;
3148 pool->symbol = NULL;
b99bd4ef
NC
3149}
3150
c19d1205
ZW
3151#ifdef OBJ_ELF
3152/* Forward declarations for functions below, in the MD interface
3153 section. */
3154static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3155static valueT create_unwind_entry (int);
3156static void start_unwind_section (const segT, int);
3157static void add_unwind_opcode (valueT, int);
3158static void flush_pending_unwind (void);
b99bd4ef 3159
c19d1205 3160/* Directives: Data. */
b99bd4ef 3161
c19d1205
ZW
3162static void
3163s_arm_elf_cons (int nbytes)
3164{
3165 expressionS exp;
b99bd4ef 3166
c19d1205
ZW
3167#ifdef md_flush_pending_output
3168 md_flush_pending_output ();
3169#endif
b99bd4ef 3170
c19d1205 3171 if (is_it_end_of_statement ())
b99bd4ef 3172 {
c19d1205
ZW
3173 demand_empty_rest_of_line ();
3174 return;
b99bd4ef
NC
3175 }
3176
c19d1205
ZW
3177#ifdef md_cons_align
3178 md_cons_align (nbytes);
3179#endif
b99bd4ef 3180
c19d1205
ZW
3181 mapping_state (MAP_DATA);
3182 do
b99bd4ef 3183 {
c19d1205
ZW
3184 int reloc;
3185 char *base = input_line_pointer;
b99bd4ef 3186
c19d1205 3187 expression (& exp);
b99bd4ef 3188
c19d1205
ZW
3189 if (exp.X_op != O_symbol)
3190 emit_expr (&exp, (unsigned int) nbytes);
3191 else
3192 {
3193 char *before_reloc = input_line_pointer;
3194 reloc = parse_reloc (&input_line_pointer);
3195 if (reloc == -1)
3196 {
3197 as_bad (_("unrecognized relocation suffix"));
3198 ignore_rest_of_line ();
3199 return;
3200 }
3201 else if (reloc == BFD_RELOC_UNUSED)
3202 emit_expr (&exp, (unsigned int) nbytes);
3203 else
3204 {
21d799b5
NC
3205 reloc_howto_type *howto = (reloc_howto_type *)
3206 bfd_reloc_type_lookup (stdoutput,
3207 (bfd_reloc_code_real_type) reloc);
c19d1205 3208 int size = bfd_get_reloc_size (howto);
b99bd4ef 3209
2fc8bdac
ZW
3210 if (reloc == BFD_RELOC_ARM_PLT32)
3211 {
3212 as_bad (_("(plt) is only valid on branch targets"));
3213 reloc = BFD_RELOC_UNUSED;
3214 size = 0;
3215 }
3216
c19d1205 3217 if (size > nbytes)
2fc8bdac 3218 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3219 howto->name, nbytes);
3220 else
3221 {
3222 /* We've parsed an expression stopping at O_symbol.
3223 But there may be more expression left now that we
3224 have parsed the relocation marker. Parse it again.
3225 XXX Surely there is a cleaner way to do this. */
3226 char *p = input_line_pointer;
3227 int offset;
21d799b5 3228 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3229 memcpy (save_buf, base, input_line_pointer - base);
3230 memmove (base + (input_line_pointer - before_reloc),
3231 base, before_reloc - base);
3232
3233 input_line_pointer = base + (input_line_pointer-before_reloc);
3234 expression (&exp);
3235 memcpy (base, save_buf, p - base);
3236
3237 offset = nbytes - size;
3238 p = frag_more ((int) nbytes);
3239 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3240 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3241 }
3242 }
3243 }
b99bd4ef 3244 }
c19d1205 3245 while (*input_line_pointer++ == ',');
b99bd4ef 3246
c19d1205
ZW
3247 /* Put terminator back into stream. */
3248 input_line_pointer --;
3249 demand_empty_rest_of_line ();
b99bd4ef
NC
3250}
3251
c921be7d
NC
3252/* Emit an expression containing a 32-bit thumb instruction.
3253 Implementation based on put_thumb32_insn. */
3254
3255static void
3256emit_thumb32_expr (expressionS * exp)
3257{
3258 expressionS exp_high = *exp;
3259
3260 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3261 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3262 exp->X_add_number &= 0xffff;
3263 emit_expr (exp, (unsigned int) THUMB_SIZE);
3264}
3265
3266/* Guess the instruction size based on the opcode. */
3267
3268static int
3269thumb_insn_size (int opcode)
3270{
3271 if ((unsigned int) opcode < 0xe800u)
3272 return 2;
3273 else if ((unsigned int) opcode >= 0xe8000000u)
3274 return 4;
3275 else
3276 return 0;
3277}
3278
3279static bfd_boolean
3280emit_insn (expressionS *exp, int nbytes)
3281{
3282 int size = 0;
3283
3284 if (exp->X_op == O_constant)
3285 {
3286 size = nbytes;
3287
3288 if (size == 0)
3289 size = thumb_insn_size (exp->X_add_number);
3290
3291 if (size != 0)
3292 {
3293 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3294 {
3295 as_bad (_(".inst.n operand too big. "\
3296 "Use .inst.w instead"));
3297 size = 0;
3298 }
3299 else
3300 {
3301 if (now_it.state == AUTOMATIC_IT_BLOCK)
3302 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3303 else
3304 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3305
3306 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3307 emit_thumb32_expr (exp);
3308 else
3309 emit_expr (exp, (unsigned int) size);
3310
3311 it_fsm_post_encode ();
3312 }
3313 }
3314 else
3315 as_bad (_("cannot determine Thumb instruction size. " \
3316 "Use .inst.n/.inst.w instead"));
3317 }
3318 else
3319 as_bad (_("constant expression required"));
3320
3321 return (size != 0);
3322}
3323
3324/* Like s_arm_elf_cons but do not use md_cons_align and
3325 set the mapping state to MAP_ARM/MAP_THUMB. */
3326
3327static void
3328s_arm_elf_inst (int nbytes)
3329{
3330 if (is_it_end_of_statement ())
3331 {
3332 demand_empty_rest_of_line ();
3333 return;
3334 }
3335
3336 /* Calling mapping_state () here will not change ARM/THUMB,
3337 but will ensure not to be in DATA state. */
3338
3339 if (thumb_mode)
3340 mapping_state (MAP_THUMB);
3341 else
3342 {
3343 if (nbytes != 0)
3344 {
3345 as_bad (_("width suffixes are invalid in ARM mode"));
3346 ignore_rest_of_line ();
3347 return;
3348 }
3349
3350 nbytes = 4;
3351
3352 mapping_state (MAP_ARM);
3353 }
3354
3355 do
3356 {
3357 expressionS exp;
3358
3359 expression (& exp);
3360
3361 if (! emit_insn (& exp, nbytes))
3362 {
3363 ignore_rest_of_line ();
3364 return;
3365 }
3366 }
3367 while (*input_line_pointer++ == ',');
3368
3369 /* Put terminator back into stream. */
3370 input_line_pointer --;
3371 demand_empty_rest_of_line ();
3372}
b99bd4ef 3373
c19d1205 3374/* Parse a .rel31 directive. */
b99bd4ef 3375
c19d1205
ZW
3376static void
3377s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3378{
3379 expressionS exp;
3380 char *p;
3381 valueT highbit;
b99bd4ef 3382
c19d1205
ZW
3383 highbit = 0;
3384 if (*input_line_pointer == '1')
3385 highbit = 0x80000000;
3386 else if (*input_line_pointer != '0')
3387 as_bad (_("expected 0 or 1"));
b99bd4ef 3388
c19d1205
ZW
3389 input_line_pointer++;
3390 if (*input_line_pointer != ',')
3391 as_bad (_("missing comma"));
3392 input_line_pointer++;
b99bd4ef 3393
c19d1205
ZW
3394#ifdef md_flush_pending_output
3395 md_flush_pending_output ();
3396#endif
b99bd4ef 3397
c19d1205
ZW
3398#ifdef md_cons_align
3399 md_cons_align (4);
3400#endif
b99bd4ef 3401
c19d1205 3402 mapping_state (MAP_DATA);
b99bd4ef 3403
c19d1205 3404 expression (&exp);
b99bd4ef 3405
c19d1205
ZW
3406 p = frag_more (4);
3407 md_number_to_chars (p, highbit, 4);
3408 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3409 BFD_RELOC_ARM_PREL31);
b99bd4ef 3410
c19d1205 3411 demand_empty_rest_of_line ();
b99bd4ef
NC
3412}
3413
c19d1205 3414/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3415
c19d1205 3416/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3417
c19d1205
ZW
3418static void
3419s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3420{
3421 demand_empty_rest_of_line ();
921e5f0a
PB
3422 if (unwind.proc_start)
3423 {
c921be7d 3424 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3425 return;
3426 }
3427
c19d1205
ZW
3428 /* Mark the start of the function. */
3429 unwind.proc_start = expr_build_dot ();
b99bd4ef 3430
c19d1205
ZW
3431 /* Reset the rest of the unwind info. */
3432 unwind.opcode_count = 0;
3433 unwind.table_entry = NULL;
3434 unwind.personality_routine = NULL;
3435 unwind.personality_index = -1;
3436 unwind.frame_size = 0;
3437 unwind.fp_offset = 0;
fdfde340 3438 unwind.fp_reg = REG_SP;
c19d1205
ZW
3439 unwind.fp_used = 0;
3440 unwind.sp_restored = 0;
3441}
b99bd4ef 3442
b99bd4ef 3443
c19d1205
ZW
3444/* Parse a handlerdata directive. Creates the exception handling table entry
3445 for the function. */
b99bd4ef 3446
c19d1205
ZW
3447static void
3448s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3449{
3450 demand_empty_rest_of_line ();
921e5f0a 3451 if (!unwind.proc_start)
c921be7d 3452 as_bad (MISSING_FNSTART);
921e5f0a 3453
c19d1205 3454 if (unwind.table_entry)
6decc662 3455 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3456
c19d1205
ZW
3457 create_unwind_entry (1);
3458}
a737bd4d 3459
c19d1205 3460/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3461
c19d1205
ZW
3462static void
3463s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3464{
3465 long where;
3466 char *ptr;
3467 valueT val;
940b5ce0 3468 unsigned int marked_pr_dependency;
f02232aa 3469
c19d1205 3470 demand_empty_rest_of_line ();
f02232aa 3471
921e5f0a
PB
3472 if (!unwind.proc_start)
3473 {
c921be7d 3474 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3475 return;
3476 }
3477
c19d1205
ZW
3478 /* Add eh table entry. */
3479 if (unwind.table_entry == NULL)
3480 val = create_unwind_entry (0);
3481 else
3482 val = 0;
f02232aa 3483
c19d1205
ZW
3484 /* Add index table entry. This is two words. */
3485 start_unwind_section (unwind.saved_seg, 1);
3486 frag_align (2, 0, 0);
3487 record_alignment (now_seg, 2);
b99bd4ef 3488
c19d1205
ZW
3489 ptr = frag_more (8);
3490 where = frag_now_fix () - 8;
f02232aa 3491
c19d1205
ZW
3492 /* Self relative offset of the function start. */
3493 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3494 BFD_RELOC_ARM_PREL31);
f02232aa 3495
c19d1205
ZW
3496 /* Indicate dependency on EHABI-defined personality routines to the
3497 linker, if it hasn't been done already. */
940b5ce0
DJ
3498 marked_pr_dependency
3499 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3500 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3501 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3502 {
5f4273c7
NC
3503 static const char *const name[] =
3504 {
3505 "__aeabi_unwind_cpp_pr0",
3506 "__aeabi_unwind_cpp_pr1",
3507 "__aeabi_unwind_cpp_pr2"
3508 };
c19d1205
ZW
3509 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3510 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3511 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3512 |= 1 << unwind.personality_index;
c19d1205 3513 }
f02232aa 3514
c19d1205
ZW
3515 if (val)
3516 /* Inline exception table entry. */
3517 md_number_to_chars (ptr + 4, val, 4);
3518 else
3519 /* Self relative offset of the table entry. */
3520 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3521 BFD_RELOC_ARM_PREL31);
f02232aa 3522
c19d1205
ZW
3523 /* Restore the original section. */
3524 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3525
3526 unwind.proc_start = NULL;
c19d1205 3527}
f02232aa 3528
f02232aa 3529
c19d1205 3530/* Parse an unwind_cantunwind directive. */
b99bd4ef 3531
c19d1205
ZW
3532static void
3533s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3534{
3535 demand_empty_rest_of_line ();
921e5f0a 3536 if (!unwind.proc_start)
c921be7d 3537 as_bad (MISSING_FNSTART);
921e5f0a 3538
c19d1205
ZW
3539 if (unwind.personality_routine || unwind.personality_index != -1)
3540 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3541
c19d1205
ZW
3542 unwind.personality_index = -2;
3543}
b99bd4ef 3544
b99bd4ef 3545
c19d1205 3546/* Parse a personalityindex directive. */
b99bd4ef 3547
c19d1205
ZW
3548static void
3549s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3550{
3551 expressionS exp;
b99bd4ef 3552
921e5f0a 3553 if (!unwind.proc_start)
c921be7d 3554 as_bad (MISSING_FNSTART);
921e5f0a 3555
c19d1205
ZW
3556 if (unwind.personality_routine || unwind.personality_index != -1)
3557 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3558
c19d1205 3559 expression (&exp);
b99bd4ef 3560
c19d1205
ZW
3561 if (exp.X_op != O_constant
3562 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3563 {
c19d1205
ZW
3564 as_bad (_("bad personality routine number"));
3565 ignore_rest_of_line ();
3566 return;
b99bd4ef
NC
3567 }
3568
c19d1205 3569 unwind.personality_index = exp.X_add_number;
b99bd4ef 3570
c19d1205
ZW
3571 demand_empty_rest_of_line ();
3572}
e16bb312 3573
e16bb312 3574
c19d1205 3575/* Parse a personality directive. */
e16bb312 3576
c19d1205
ZW
3577static void
3578s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3579{
3580 char *name, *p, c;
a737bd4d 3581
921e5f0a 3582 if (!unwind.proc_start)
c921be7d 3583 as_bad (MISSING_FNSTART);
921e5f0a 3584
c19d1205
ZW
3585 if (unwind.personality_routine || unwind.personality_index != -1)
3586 as_bad (_("duplicate .personality directive"));
a737bd4d 3587
c19d1205
ZW
3588 name = input_line_pointer;
3589 c = get_symbol_end ();
3590 p = input_line_pointer;
3591 unwind.personality_routine = symbol_find_or_make (name);
3592 *p = c;
3593 demand_empty_rest_of_line ();
3594}
e16bb312 3595
e16bb312 3596
c19d1205 3597/* Parse a directive saving core registers. */
e16bb312 3598
c19d1205
ZW
3599static void
3600s_arm_unwind_save_core (void)
e16bb312 3601{
c19d1205
ZW
3602 valueT op;
3603 long range;
3604 int n;
e16bb312 3605
c19d1205
ZW
3606 range = parse_reg_list (&input_line_pointer);
3607 if (range == FAIL)
e16bb312 3608 {
c19d1205
ZW
3609 as_bad (_("expected register list"));
3610 ignore_rest_of_line ();
3611 return;
3612 }
e16bb312 3613
c19d1205 3614 demand_empty_rest_of_line ();
e16bb312 3615
c19d1205
ZW
3616 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3617 into .unwind_save {..., sp...}. We aren't bothered about the value of
3618 ip because it is clobbered by calls. */
3619 if (unwind.sp_restored && unwind.fp_reg == 12
3620 && (range & 0x3000) == 0x1000)
3621 {
3622 unwind.opcode_count--;
3623 unwind.sp_restored = 0;
3624 range = (range | 0x2000) & ~0x1000;
3625 unwind.pending_offset = 0;
3626 }
e16bb312 3627
01ae4198
DJ
3628 /* Pop r4-r15. */
3629 if (range & 0xfff0)
c19d1205 3630 {
01ae4198
DJ
3631 /* See if we can use the short opcodes. These pop a block of up to 8
3632 registers starting with r4, plus maybe r14. */
3633 for (n = 0; n < 8; n++)
3634 {
3635 /* Break at the first non-saved register. */
3636 if ((range & (1 << (n + 4))) == 0)
3637 break;
3638 }
3639 /* See if there are any other bits set. */
3640 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3641 {
3642 /* Use the long form. */
3643 op = 0x8000 | ((range >> 4) & 0xfff);
3644 add_unwind_opcode (op, 2);
3645 }
0dd132b6 3646 else
01ae4198
DJ
3647 {
3648 /* Use the short form. */
3649 if (range & 0x4000)
3650 op = 0xa8; /* Pop r14. */
3651 else
3652 op = 0xa0; /* Do not pop r14. */
3653 op |= (n - 1);
3654 add_unwind_opcode (op, 1);
3655 }
c19d1205 3656 }
0dd132b6 3657
c19d1205
ZW
3658 /* Pop r0-r3. */
3659 if (range & 0xf)
3660 {
3661 op = 0xb100 | (range & 0xf);
3662 add_unwind_opcode (op, 2);
0dd132b6
NC
3663 }
3664
c19d1205
ZW
3665 /* Record the number of bytes pushed. */
3666 for (n = 0; n < 16; n++)
3667 {
3668 if (range & (1 << n))
3669 unwind.frame_size += 4;
3670 }
0dd132b6
NC
3671}
3672
c19d1205
ZW
3673
3674/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3675
3676static void
c19d1205 3677s_arm_unwind_save_fpa (int reg)
b99bd4ef 3678{
c19d1205
ZW
3679 expressionS exp;
3680 int num_regs;
3681 valueT op;
b99bd4ef 3682
c19d1205
ZW
3683 /* Get Number of registers to transfer. */
3684 if (skip_past_comma (&input_line_pointer) != FAIL)
3685 expression (&exp);
3686 else
3687 exp.X_op = O_illegal;
b99bd4ef 3688
c19d1205 3689 if (exp.X_op != O_constant)
b99bd4ef 3690 {
c19d1205
ZW
3691 as_bad (_("expected , <constant>"));
3692 ignore_rest_of_line ();
b99bd4ef
NC
3693 return;
3694 }
3695
c19d1205
ZW
3696 num_regs = exp.X_add_number;
3697
3698 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3699 {
c19d1205
ZW
3700 as_bad (_("number of registers must be in the range [1:4]"));
3701 ignore_rest_of_line ();
b99bd4ef
NC
3702 return;
3703 }
3704
c19d1205 3705 demand_empty_rest_of_line ();
b99bd4ef 3706
c19d1205
ZW
3707 if (reg == 4)
3708 {
3709 /* Short form. */
3710 op = 0xb4 | (num_regs - 1);
3711 add_unwind_opcode (op, 1);
3712 }
b99bd4ef
NC
3713 else
3714 {
c19d1205
ZW
3715 /* Long form. */
3716 op = 0xc800 | (reg << 4) | (num_regs - 1);
3717 add_unwind_opcode (op, 2);
b99bd4ef 3718 }
c19d1205 3719 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3720}
3721
c19d1205 3722
fa073d69
MS
3723/* Parse a directive saving VFP registers for ARMv6 and above. */
3724
3725static void
3726s_arm_unwind_save_vfp_armv6 (void)
3727{
3728 int count;
3729 unsigned int start;
3730 valueT op;
3731 int num_vfpv3_regs = 0;
3732 int num_regs_below_16;
3733
3734 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3735 if (count == FAIL)
3736 {
3737 as_bad (_("expected register list"));
3738 ignore_rest_of_line ();
3739 return;
3740 }
3741
3742 demand_empty_rest_of_line ();
3743
3744 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3745 than FSTMX/FLDMX-style ones). */
3746
3747 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3748 if (start >= 16)
3749 num_vfpv3_regs = count;
3750 else if (start + count > 16)
3751 num_vfpv3_regs = start + count - 16;
3752
3753 if (num_vfpv3_regs > 0)
3754 {
3755 int start_offset = start > 16 ? start - 16 : 0;
3756 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3757 add_unwind_opcode (op, 2);
3758 }
3759
3760 /* Generate opcode for registers numbered in the range 0 .. 15. */
3761 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3762 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3763 if (num_regs_below_16 > 0)
3764 {
3765 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3766 add_unwind_opcode (op, 2);
3767 }
3768
3769 unwind.frame_size += count * 8;
3770}
3771
3772
3773/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3774
3775static void
c19d1205 3776s_arm_unwind_save_vfp (void)
b99bd4ef 3777{
c19d1205 3778 int count;
ca3f61f7 3779 unsigned int reg;
c19d1205 3780 valueT op;
b99bd4ef 3781
5287ad62 3782 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3783 if (count == FAIL)
b99bd4ef 3784 {
c19d1205
ZW
3785 as_bad (_("expected register list"));
3786 ignore_rest_of_line ();
b99bd4ef
NC
3787 return;
3788 }
3789
c19d1205 3790 demand_empty_rest_of_line ();
b99bd4ef 3791
c19d1205 3792 if (reg == 8)
b99bd4ef 3793 {
c19d1205
ZW
3794 /* Short form. */
3795 op = 0xb8 | (count - 1);
3796 add_unwind_opcode (op, 1);
b99bd4ef 3797 }
c19d1205 3798 else
b99bd4ef 3799 {
c19d1205
ZW
3800 /* Long form. */
3801 op = 0xb300 | (reg << 4) | (count - 1);
3802 add_unwind_opcode (op, 2);
b99bd4ef 3803 }
c19d1205
ZW
3804 unwind.frame_size += count * 8 + 4;
3805}
b99bd4ef 3806
b99bd4ef 3807
c19d1205
ZW
3808/* Parse a directive saving iWMMXt data registers. */
3809
3810static void
3811s_arm_unwind_save_mmxwr (void)
3812{
3813 int reg;
3814 int hi_reg;
3815 int i;
3816 unsigned mask = 0;
3817 valueT op;
b99bd4ef 3818
c19d1205
ZW
3819 if (*input_line_pointer == '{')
3820 input_line_pointer++;
b99bd4ef 3821
c19d1205 3822 do
b99bd4ef 3823 {
dcbf9037 3824 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3825
c19d1205 3826 if (reg == FAIL)
b99bd4ef 3827 {
9b7132d3 3828 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3829 goto error;
b99bd4ef
NC
3830 }
3831
c19d1205
ZW
3832 if (mask >> reg)
3833 as_tsktsk (_("register list not in ascending order"));
3834 mask |= 1 << reg;
b99bd4ef 3835
c19d1205
ZW
3836 if (*input_line_pointer == '-')
3837 {
3838 input_line_pointer++;
dcbf9037 3839 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3840 if (hi_reg == FAIL)
3841 {
9b7132d3 3842 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3843 goto error;
3844 }
3845 else if (reg >= hi_reg)
3846 {
3847 as_bad (_("bad register range"));
3848 goto error;
3849 }
3850 for (; reg < hi_reg; reg++)
3851 mask |= 1 << reg;
3852 }
3853 }
3854 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3855
c19d1205
ZW
3856 if (*input_line_pointer == '}')
3857 input_line_pointer++;
b99bd4ef 3858
c19d1205 3859 demand_empty_rest_of_line ();
b99bd4ef 3860
708587a4 3861 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3862 the list. */
3863 flush_pending_unwind ();
b99bd4ef 3864
c19d1205 3865 for (i = 0; i < 16; i++)
b99bd4ef 3866 {
c19d1205
ZW
3867 if (mask & (1 << i))
3868 unwind.frame_size += 8;
b99bd4ef
NC
3869 }
3870
c19d1205
ZW
3871 /* Attempt to combine with a previous opcode. We do this because gcc
3872 likes to output separate unwind directives for a single block of
3873 registers. */
3874 if (unwind.opcode_count > 0)
b99bd4ef 3875 {
c19d1205
ZW
3876 i = unwind.opcodes[unwind.opcode_count - 1];
3877 if ((i & 0xf8) == 0xc0)
3878 {
3879 i &= 7;
3880 /* Only merge if the blocks are contiguous. */
3881 if (i < 6)
3882 {
3883 if ((mask & 0xfe00) == (1 << 9))
3884 {
3885 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3886 unwind.opcode_count--;
3887 }
3888 }
3889 else if (i == 6 && unwind.opcode_count >= 2)
3890 {
3891 i = unwind.opcodes[unwind.opcode_count - 2];
3892 reg = i >> 4;
3893 i &= 0xf;
b99bd4ef 3894
c19d1205
ZW
3895 op = 0xffff << (reg - 1);
3896 if (reg > 0
87a1fd79 3897 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3898 {
3899 op = (1 << (reg + i + 1)) - 1;
3900 op &= ~((1 << reg) - 1);
3901 mask |= op;
3902 unwind.opcode_count -= 2;
3903 }
3904 }
3905 }
b99bd4ef
NC
3906 }
3907
c19d1205
ZW
3908 hi_reg = 15;
3909 /* We want to generate opcodes in the order the registers have been
3910 saved, ie. descending order. */
3911 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3912 {
c19d1205
ZW
3913 /* Save registers in blocks. */
3914 if (reg < 0
3915 || !(mask & (1 << reg)))
3916 {
3917 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3918 preceding block. */
c19d1205
ZW
3919 if (reg != hi_reg)
3920 {
3921 if (reg == 9)
3922 {
3923 /* Short form. */
3924 op = 0xc0 | (hi_reg - 10);
3925 add_unwind_opcode (op, 1);
3926 }
3927 else
3928 {
3929 /* Long form. */
3930 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3931 add_unwind_opcode (op, 2);
3932 }
3933 }
3934 hi_reg = reg - 1;
3935 }
b99bd4ef
NC
3936 }
3937
c19d1205
ZW
3938 return;
3939error:
3940 ignore_rest_of_line ();
b99bd4ef
NC
3941}
3942
3943static void
c19d1205 3944s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3945{
c19d1205
ZW
3946 int reg;
3947 int hi_reg;
3948 unsigned mask = 0;
3949 valueT op;
b99bd4ef 3950
c19d1205
ZW
3951 if (*input_line_pointer == '{')
3952 input_line_pointer++;
b99bd4ef 3953
c19d1205 3954 do
b99bd4ef 3955 {
dcbf9037 3956 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3957
c19d1205
ZW
3958 if (reg == FAIL)
3959 {
9b7132d3 3960 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3961 goto error;
3962 }
b99bd4ef 3963
c19d1205
ZW
3964 reg -= 8;
3965 if (mask >> reg)
3966 as_tsktsk (_("register list not in ascending order"));
3967 mask |= 1 << reg;
b99bd4ef 3968
c19d1205
ZW
3969 if (*input_line_pointer == '-')
3970 {
3971 input_line_pointer++;
dcbf9037 3972 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3973 if (hi_reg == FAIL)
3974 {
9b7132d3 3975 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3976 goto error;
3977 }
3978 else if (reg >= hi_reg)
3979 {
3980 as_bad (_("bad register range"));
3981 goto error;
3982 }
3983 for (; reg < hi_reg; reg++)
3984 mask |= 1 << reg;
3985 }
b99bd4ef 3986 }
c19d1205 3987 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3988
c19d1205
ZW
3989 if (*input_line_pointer == '}')
3990 input_line_pointer++;
b99bd4ef 3991
c19d1205
ZW
3992 demand_empty_rest_of_line ();
3993
708587a4 3994 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3995 the list. */
3996 flush_pending_unwind ();
b99bd4ef 3997
c19d1205 3998 for (reg = 0; reg < 16; reg++)
b99bd4ef 3999 {
c19d1205
ZW
4000 if (mask & (1 << reg))
4001 unwind.frame_size += 4;
b99bd4ef 4002 }
c19d1205
ZW
4003 op = 0xc700 | mask;
4004 add_unwind_opcode (op, 2);
4005 return;
4006error:
4007 ignore_rest_of_line ();
b99bd4ef
NC
4008}
4009
c19d1205 4010
fa073d69
MS
4011/* Parse an unwind_save directive.
4012 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4013
b99bd4ef 4014static void
fa073d69 4015s_arm_unwind_save (int arch_v6)
b99bd4ef 4016{
c19d1205
ZW
4017 char *peek;
4018 struct reg_entry *reg;
4019 bfd_boolean had_brace = FALSE;
b99bd4ef 4020
921e5f0a 4021 if (!unwind.proc_start)
c921be7d 4022 as_bad (MISSING_FNSTART);
921e5f0a 4023
c19d1205
ZW
4024 /* Figure out what sort of save we have. */
4025 peek = input_line_pointer;
b99bd4ef 4026
c19d1205 4027 if (*peek == '{')
b99bd4ef 4028 {
c19d1205
ZW
4029 had_brace = TRUE;
4030 peek++;
b99bd4ef
NC
4031 }
4032
c19d1205 4033 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4034
c19d1205 4035 if (!reg)
b99bd4ef 4036 {
c19d1205
ZW
4037 as_bad (_("register expected"));
4038 ignore_rest_of_line ();
b99bd4ef
NC
4039 return;
4040 }
4041
c19d1205 4042 switch (reg->type)
b99bd4ef 4043 {
c19d1205
ZW
4044 case REG_TYPE_FN:
4045 if (had_brace)
4046 {
4047 as_bad (_("FPA .unwind_save does not take a register list"));
4048 ignore_rest_of_line ();
4049 return;
4050 }
93ac2687 4051 input_line_pointer = peek;
c19d1205 4052 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4053 return;
c19d1205
ZW
4054
4055 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4056 case REG_TYPE_VFD:
4057 if (arch_v6)
4058 s_arm_unwind_save_vfp_armv6 ();
4059 else
4060 s_arm_unwind_save_vfp ();
4061 return;
c19d1205
ZW
4062 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4063 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4064
4065 default:
4066 as_bad (_(".unwind_save does not support this kind of register"));
4067 ignore_rest_of_line ();
b99bd4ef 4068 }
c19d1205 4069}
b99bd4ef 4070
b99bd4ef 4071
c19d1205
ZW
4072/* Parse an unwind_movsp directive. */
4073
4074static void
4075s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4076{
4077 int reg;
4078 valueT op;
4fa3602b 4079 int offset;
c19d1205 4080
921e5f0a 4081 if (!unwind.proc_start)
c921be7d 4082 as_bad (MISSING_FNSTART);
921e5f0a 4083
dcbf9037 4084 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4085 if (reg == FAIL)
b99bd4ef 4086 {
9b7132d3 4087 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4088 ignore_rest_of_line ();
b99bd4ef
NC
4089 return;
4090 }
4fa3602b
PB
4091
4092 /* Optional constant. */
4093 if (skip_past_comma (&input_line_pointer) != FAIL)
4094 {
4095 if (immediate_for_directive (&offset) == FAIL)
4096 return;
4097 }
4098 else
4099 offset = 0;
4100
c19d1205 4101 demand_empty_rest_of_line ();
b99bd4ef 4102
c19d1205 4103 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4104 {
c19d1205 4105 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4106 return;
4107 }
4108
c19d1205
ZW
4109 if (unwind.fp_reg != REG_SP)
4110 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4111
c19d1205
ZW
4112 /* Generate opcode to restore the value. */
4113 op = 0x90 | reg;
4114 add_unwind_opcode (op, 1);
4115
4116 /* Record the information for later. */
4117 unwind.fp_reg = reg;
4fa3602b 4118 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4119 unwind.sp_restored = 1;
b05fe5cf
ZW
4120}
4121
c19d1205
ZW
4122/* Parse an unwind_pad directive. */
4123
b05fe5cf 4124static void
c19d1205 4125s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4126{
c19d1205 4127 int offset;
b05fe5cf 4128
921e5f0a 4129 if (!unwind.proc_start)
c921be7d 4130 as_bad (MISSING_FNSTART);
921e5f0a 4131
c19d1205
ZW
4132 if (immediate_for_directive (&offset) == FAIL)
4133 return;
b99bd4ef 4134
c19d1205
ZW
4135 if (offset & 3)
4136 {
4137 as_bad (_("stack increment must be multiple of 4"));
4138 ignore_rest_of_line ();
4139 return;
4140 }
b99bd4ef 4141
c19d1205
ZW
4142 /* Don't generate any opcodes, just record the details for later. */
4143 unwind.frame_size += offset;
4144 unwind.pending_offset += offset;
4145
4146 demand_empty_rest_of_line ();
4147}
4148
4149/* Parse an unwind_setfp directive. */
4150
4151static void
4152s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4153{
c19d1205
ZW
4154 int sp_reg;
4155 int fp_reg;
4156 int offset;
4157
921e5f0a 4158 if (!unwind.proc_start)
c921be7d 4159 as_bad (MISSING_FNSTART);
921e5f0a 4160
dcbf9037 4161 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4162 if (skip_past_comma (&input_line_pointer) == FAIL)
4163 sp_reg = FAIL;
4164 else
dcbf9037 4165 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4166
c19d1205
ZW
4167 if (fp_reg == FAIL || sp_reg == FAIL)
4168 {
4169 as_bad (_("expected <reg>, <reg>"));
4170 ignore_rest_of_line ();
4171 return;
4172 }
b99bd4ef 4173
c19d1205
ZW
4174 /* Optional constant. */
4175 if (skip_past_comma (&input_line_pointer) != FAIL)
4176 {
4177 if (immediate_for_directive (&offset) == FAIL)
4178 return;
4179 }
4180 else
4181 offset = 0;
a737bd4d 4182
c19d1205 4183 demand_empty_rest_of_line ();
a737bd4d 4184
fdfde340 4185 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4186 {
c19d1205
ZW
4187 as_bad (_("register must be either sp or set by a previous"
4188 "unwind_movsp directive"));
4189 return;
a737bd4d
NC
4190 }
4191
c19d1205
ZW
4192 /* Don't generate any opcodes, just record the information for later. */
4193 unwind.fp_reg = fp_reg;
4194 unwind.fp_used = 1;
fdfde340 4195 if (sp_reg == REG_SP)
c19d1205
ZW
4196 unwind.fp_offset = unwind.frame_size - offset;
4197 else
4198 unwind.fp_offset -= offset;
a737bd4d
NC
4199}
4200
c19d1205
ZW
4201/* Parse an unwind_raw directive. */
4202
4203static void
4204s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4205{
c19d1205 4206 expressionS exp;
708587a4 4207 /* This is an arbitrary limit. */
c19d1205
ZW
4208 unsigned char op[16];
4209 int count;
a737bd4d 4210
921e5f0a 4211 if (!unwind.proc_start)
c921be7d 4212 as_bad (MISSING_FNSTART);
921e5f0a 4213
c19d1205
ZW
4214 expression (&exp);
4215 if (exp.X_op == O_constant
4216 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4217 {
c19d1205
ZW
4218 unwind.frame_size += exp.X_add_number;
4219 expression (&exp);
4220 }
4221 else
4222 exp.X_op = O_illegal;
a737bd4d 4223
c19d1205
ZW
4224 if (exp.X_op != O_constant)
4225 {
4226 as_bad (_("expected <offset>, <opcode>"));
4227 ignore_rest_of_line ();
4228 return;
4229 }
a737bd4d 4230
c19d1205 4231 count = 0;
a737bd4d 4232
c19d1205
ZW
4233 /* Parse the opcode. */
4234 for (;;)
4235 {
4236 if (count >= 16)
4237 {
4238 as_bad (_("unwind opcode too long"));
4239 ignore_rest_of_line ();
a737bd4d 4240 }
c19d1205 4241 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4242 {
c19d1205
ZW
4243 as_bad (_("invalid unwind opcode"));
4244 ignore_rest_of_line ();
4245 return;
a737bd4d 4246 }
c19d1205 4247 op[count++] = exp.X_add_number;
a737bd4d 4248
c19d1205
ZW
4249 /* Parse the next byte. */
4250 if (skip_past_comma (&input_line_pointer) == FAIL)
4251 break;
a737bd4d 4252
c19d1205
ZW
4253 expression (&exp);
4254 }
b99bd4ef 4255
c19d1205
ZW
4256 /* Add the opcode bytes in reverse order. */
4257 while (count--)
4258 add_unwind_opcode (op[count], 1);
b99bd4ef 4259
c19d1205 4260 demand_empty_rest_of_line ();
b99bd4ef 4261}
ee065d83
PB
4262
4263
4264/* Parse a .eabi_attribute directive. */
4265
4266static void
4267s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4268{
ee3c0378
AS
4269 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4270
4271 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4272 attributes_set_explicitly[tag] = 1;
ee065d83 4273}
8463be01 4274#endif /* OBJ_ELF */
ee065d83
PB
4275
4276static void s_arm_arch (int);
7a1d4c38 4277static void s_arm_object_arch (int);
ee065d83
PB
4278static void s_arm_cpu (int);
4279static void s_arm_fpu (int);
69133863 4280static void s_arm_arch_extension (int);
b99bd4ef 4281
f0927246
NC
4282#ifdef TE_PE
4283
4284static void
5f4273c7 4285pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4286{
4287 expressionS exp;
4288
4289 do
4290 {
4291 expression (&exp);
4292 if (exp.X_op == O_symbol)
4293 exp.X_op = O_secrel;
4294
4295 emit_expr (&exp, 4);
4296 }
4297 while (*input_line_pointer++ == ',');
4298
4299 input_line_pointer--;
4300 demand_empty_rest_of_line ();
4301}
4302#endif /* TE_PE */
4303
c19d1205
ZW
4304/* This table describes all the machine specific pseudo-ops the assembler
4305 has to support. The fields are:
4306 pseudo-op name without dot
4307 function to call to execute this pseudo-op
4308 Integer arg to pass to the function. */
b99bd4ef 4309
c19d1205 4310const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4311{
c19d1205
ZW
4312 /* Never called because '.req' does not start a line. */
4313 { "req", s_req, 0 },
dcbf9037
JB
4314 /* Following two are likewise never called. */
4315 { "dn", s_dn, 0 },
4316 { "qn", s_qn, 0 },
c19d1205
ZW
4317 { "unreq", s_unreq, 0 },
4318 { "bss", s_bss, 0 },
4319 { "align", s_align, 0 },
4320 { "arm", s_arm, 0 },
4321 { "thumb", s_thumb, 0 },
4322 { "code", s_code, 0 },
4323 { "force_thumb", s_force_thumb, 0 },
4324 { "thumb_func", s_thumb_func, 0 },
4325 { "thumb_set", s_thumb_set, 0 },
4326 { "even", s_even, 0 },
4327 { "ltorg", s_ltorg, 0 },
4328 { "pool", s_ltorg, 0 },
4329 { "syntax", s_syntax, 0 },
8463be01
PB
4330 { "cpu", s_arm_cpu, 0 },
4331 { "arch", s_arm_arch, 0 },
7a1d4c38 4332 { "object_arch", s_arm_object_arch, 0 },
8463be01 4333 { "fpu", s_arm_fpu, 0 },
69133863 4334 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4335#ifdef OBJ_ELF
c921be7d
NC
4336 { "word", s_arm_elf_cons, 4 },
4337 { "long", s_arm_elf_cons, 4 },
4338 { "inst.n", s_arm_elf_inst, 2 },
4339 { "inst.w", s_arm_elf_inst, 4 },
4340 { "inst", s_arm_elf_inst, 0 },
4341 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4342 { "fnstart", s_arm_unwind_fnstart, 0 },
4343 { "fnend", s_arm_unwind_fnend, 0 },
4344 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4345 { "personality", s_arm_unwind_personality, 0 },
4346 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4347 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4348 { "save", s_arm_unwind_save, 0 },
fa073d69 4349 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4350 { "movsp", s_arm_unwind_movsp, 0 },
4351 { "pad", s_arm_unwind_pad, 0 },
4352 { "setfp", s_arm_unwind_setfp, 0 },
4353 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4354 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
4355#else
4356 { "word", cons, 4},
f0927246
NC
4357
4358 /* These are used for dwarf. */
4359 {"2byte", cons, 2},
4360 {"4byte", cons, 4},
4361 {"8byte", cons, 8},
4362 /* These are used for dwarf2. */
4363 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4364 { "loc", dwarf2_directive_loc, 0 },
4365 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4366#endif
4367 { "extend", float_cons, 'x' },
4368 { "ldouble", float_cons, 'x' },
4369 { "packed", float_cons, 'p' },
f0927246
NC
4370#ifdef TE_PE
4371 {"secrel32", pe_directive_secrel, 0},
4372#endif
c19d1205
ZW
4373 { 0, 0, 0 }
4374};
4375\f
4376/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4377
c19d1205
ZW
4378/* Generic immediate-value read function for use in insn parsing.
4379 STR points to the beginning of the immediate (the leading #);
4380 VAL receives the value; if the value is outside [MIN, MAX]
4381 issue an error. PREFIX_OPT is true if the immediate prefix is
4382 optional. */
b99bd4ef 4383
c19d1205
ZW
4384static int
4385parse_immediate (char **str, int *val, int min, int max,
4386 bfd_boolean prefix_opt)
4387{
4388 expressionS exp;
4389 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4390 if (exp.X_op != O_constant)
b99bd4ef 4391 {
c19d1205
ZW
4392 inst.error = _("constant expression required");
4393 return FAIL;
4394 }
b99bd4ef 4395
c19d1205
ZW
4396 if (exp.X_add_number < min || exp.X_add_number > max)
4397 {
4398 inst.error = _("immediate value out of range");
4399 return FAIL;
4400 }
b99bd4ef 4401
c19d1205
ZW
4402 *val = exp.X_add_number;
4403 return SUCCESS;
4404}
b99bd4ef 4405
5287ad62 4406/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4407 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4408 instructions. Puts the result directly in inst.operands[i]. */
4409
4410static int
4411parse_big_immediate (char **str, int i)
4412{
4413 expressionS exp;
4414 char *ptr = *str;
4415
4416 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4417
4418 if (exp.X_op == O_constant)
036dc3f7
PB
4419 {
4420 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4421 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4422 O_constant. We have to be careful not to break compilation for
4423 32-bit X_add_number, though. */
4424 if ((exp.X_add_number & ~0xffffffffl) != 0)
4425 {
4426 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4427 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4428 inst.operands[i].regisimm = 1;
4429 }
4430 }
5287ad62 4431 else if (exp.X_op == O_big
95b75c01 4432 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4433 {
4434 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4435
5287ad62
JB
4436 /* Bignums have their least significant bits in
4437 generic_bignum[0]. Make sure we put 32 bits in imm and
4438 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4439 gas_assert (parts != 0);
95b75c01
NC
4440
4441 /* Make sure that the number is not too big.
4442 PR 11972: Bignums can now be sign-extended to the
4443 size of a .octa so check that the out of range bits
4444 are all zero or all one. */
4445 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4446 {
4447 LITTLENUM_TYPE m = -1;
4448
4449 if (generic_bignum[parts * 2] != 0
4450 && generic_bignum[parts * 2] != m)
4451 return FAIL;
4452
4453 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4454 if (generic_bignum[j] != generic_bignum[j-1])
4455 return FAIL;
4456 }
4457
5287ad62
JB
4458 inst.operands[i].imm = 0;
4459 for (j = 0; j < parts; j++, idx++)
4460 inst.operands[i].imm |= generic_bignum[idx]
4461 << (LITTLENUM_NUMBER_OF_BITS * j);
4462 inst.operands[i].reg = 0;
4463 for (j = 0; j < parts; j++, idx++)
4464 inst.operands[i].reg |= generic_bignum[idx]
4465 << (LITTLENUM_NUMBER_OF_BITS * j);
4466 inst.operands[i].regisimm = 1;
4467 }
4468 else
4469 return FAIL;
5f4273c7 4470
5287ad62
JB
4471 *str = ptr;
4472
4473 return SUCCESS;
4474}
4475
c19d1205
ZW
4476/* Returns the pseudo-register number of an FPA immediate constant,
4477 or FAIL if there isn't a valid constant here. */
b99bd4ef 4478
c19d1205
ZW
4479static int
4480parse_fpa_immediate (char ** str)
4481{
4482 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4483 char * save_in;
4484 expressionS exp;
4485 int i;
4486 int j;
b99bd4ef 4487
c19d1205
ZW
4488 /* First try and match exact strings, this is to guarantee
4489 that some formats will work even for cross assembly. */
b99bd4ef 4490
c19d1205
ZW
4491 for (i = 0; fp_const[i]; i++)
4492 {
4493 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4494 {
c19d1205 4495 char *start = *str;
b99bd4ef 4496
c19d1205
ZW
4497 *str += strlen (fp_const[i]);
4498 if (is_end_of_line[(unsigned char) **str])
4499 return i + 8;
4500 *str = start;
4501 }
4502 }
b99bd4ef 4503
c19d1205
ZW
4504 /* Just because we didn't get a match doesn't mean that the constant
4505 isn't valid, just that it is in a format that we don't
4506 automatically recognize. Try parsing it with the standard
4507 expression routines. */
b99bd4ef 4508
c19d1205 4509 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4510
c19d1205
ZW
4511 /* Look for a raw floating point number. */
4512 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4513 && is_end_of_line[(unsigned char) *save_in])
4514 {
4515 for (i = 0; i < NUM_FLOAT_VALS; i++)
4516 {
4517 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4518 {
c19d1205
ZW
4519 if (words[j] != fp_values[i][j])
4520 break;
b99bd4ef
NC
4521 }
4522
c19d1205 4523 if (j == MAX_LITTLENUMS)
b99bd4ef 4524 {
c19d1205
ZW
4525 *str = save_in;
4526 return i + 8;
b99bd4ef
NC
4527 }
4528 }
4529 }
b99bd4ef 4530
c19d1205
ZW
4531 /* Try and parse a more complex expression, this will probably fail
4532 unless the code uses a floating point prefix (eg "0f"). */
4533 save_in = input_line_pointer;
4534 input_line_pointer = *str;
4535 if (expression (&exp) == absolute_section
4536 && exp.X_op == O_big
4537 && exp.X_add_number < 0)
4538 {
4539 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4540 Ditto for 15. */
4541 if (gen_to_words (words, 5, (long) 15) == 0)
4542 {
4543 for (i = 0; i < NUM_FLOAT_VALS; i++)
4544 {
4545 for (j = 0; j < MAX_LITTLENUMS; j++)
4546 {
4547 if (words[j] != fp_values[i][j])
4548 break;
4549 }
b99bd4ef 4550
c19d1205
ZW
4551 if (j == MAX_LITTLENUMS)
4552 {
4553 *str = input_line_pointer;
4554 input_line_pointer = save_in;
4555 return i + 8;
4556 }
4557 }
4558 }
b99bd4ef
NC
4559 }
4560
c19d1205
ZW
4561 *str = input_line_pointer;
4562 input_line_pointer = save_in;
4563 inst.error = _("invalid FPA immediate expression");
4564 return FAIL;
b99bd4ef
NC
4565}
4566
136da414
JB
4567/* Returns 1 if a number has "quarter-precision" float format
4568 0baBbbbbbc defgh000 00000000 00000000. */
4569
4570static int
4571is_quarter_float (unsigned imm)
4572{
4573 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4574 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4575}
4576
4577/* Parse an 8-bit "quarter-precision" floating point number of the form:
4578 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4579 The zero and minus-zero cases need special handling, since they can't be
4580 encoded in the "quarter-precision" float format, but can nonetheless be
4581 loaded as integer constants. */
136da414
JB
4582
4583static unsigned
4584parse_qfloat_immediate (char **ccp, int *immed)
4585{
4586 char *str = *ccp;
c96612cc 4587 char *fpnum;
136da414 4588 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4589 int found_fpchar = 0;
5f4273c7 4590
136da414 4591 skip_past_char (&str, '#');
5f4273c7 4592
c96612cc
JB
4593 /* We must not accidentally parse an integer as a floating-point number. Make
4594 sure that the value we parse is not an integer by checking for special
4595 characters '.' or 'e'.
4596 FIXME: This is a horrible hack, but doing better is tricky because type
4597 information isn't in a very usable state at parse time. */
4598 fpnum = str;
4599 skip_whitespace (fpnum);
4600
4601 if (strncmp (fpnum, "0x", 2) == 0)
4602 return FAIL;
4603 else
4604 {
4605 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4606 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4607 {
4608 found_fpchar = 1;
4609 break;
4610 }
4611
4612 if (!found_fpchar)
4613 return FAIL;
4614 }
5f4273c7 4615
136da414
JB
4616 if ((str = atof_ieee (str, 's', words)) != NULL)
4617 {
4618 unsigned fpword = 0;
4619 int i;
5f4273c7 4620
136da414
JB
4621 /* Our FP word must be 32 bits (single-precision FP). */
4622 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4623 {
4624 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4625 fpword |= words[i];
4626 }
5f4273c7 4627
c96612cc 4628 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4629 *immed = fpword;
4630 else
4631 return FAIL;
4632
4633 *ccp = str;
5f4273c7 4634
136da414
JB
4635 return SUCCESS;
4636 }
5f4273c7 4637
136da414
JB
4638 return FAIL;
4639}
4640
c19d1205
ZW
4641/* Shift operands. */
4642enum shift_kind
b99bd4ef 4643{
c19d1205
ZW
4644 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4645};
b99bd4ef 4646
c19d1205
ZW
4647struct asm_shift_name
4648{
4649 const char *name;
4650 enum shift_kind kind;
4651};
b99bd4ef 4652
c19d1205
ZW
4653/* Third argument to parse_shift. */
4654enum parse_shift_mode
4655{
4656 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4657 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4658 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4659 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4660 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4661};
b99bd4ef 4662
c19d1205
ZW
4663/* Parse a <shift> specifier on an ARM data processing instruction.
4664 This has three forms:
b99bd4ef 4665
c19d1205
ZW
4666 (LSL|LSR|ASL|ASR|ROR) Rs
4667 (LSL|LSR|ASL|ASR|ROR) #imm
4668 RRX
b99bd4ef 4669
c19d1205
ZW
4670 Note that ASL is assimilated to LSL in the instruction encoding, and
4671 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4672
c19d1205
ZW
4673static int
4674parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4675{
c19d1205
ZW
4676 const struct asm_shift_name *shift_name;
4677 enum shift_kind shift;
4678 char *s = *str;
4679 char *p = s;
4680 int reg;
b99bd4ef 4681
c19d1205
ZW
4682 for (p = *str; ISALPHA (*p); p++)
4683 ;
b99bd4ef 4684
c19d1205 4685 if (p == *str)
b99bd4ef 4686 {
c19d1205
ZW
4687 inst.error = _("shift expression expected");
4688 return FAIL;
b99bd4ef
NC
4689 }
4690
21d799b5
NC
4691 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4692 p - *str);
c19d1205
ZW
4693
4694 if (shift_name == NULL)
b99bd4ef 4695 {
c19d1205
ZW
4696 inst.error = _("shift expression expected");
4697 return FAIL;
b99bd4ef
NC
4698 }
4699
c19d1205 4700 shift = shift_name->kind;
b99bd4ef 4701
c19d1205
ZW
4702 switch (mode)
4703 {
4704 case NO_SHIFT_RESTRICT:
4705 case SHIFT_IMMEDIATE: break;
b99bd4ef 4706
c19d1205
ZW
4707 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4708 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4709 {
4710 inst.error = _("'LSL' or 'ASR' required");
4711 return FAIL;
4712 }
4713 break;
b99bd4ef 4714
c19d1205
ZW
4715 case SHIFT_LSL_IMMEDIATE:
4716 if (shift != SHIFT_LSL)
4717 {
4718 inst.error = _("'LSL' required");
4719 return FAIL;
4720 }
4721 break;
b99bd4ef 4722
c19d1205
ZW
4723 case SHIFT_ASR_IMMEDIATE:
4724 if (shift != SHIFT_ASR)
4725 {
4726 inst.error = _("'ASR' required");
4727 return FAIL;
4728 }
4729 break;
b99bd4ef 4730
c19d1205
ZW
4731 default: abort ();
4732 }
b99bd4ef 4733
c19d1205
ZW
4734 if (shift != SHIFT_RRX)
4735 {
4736 /* Whitespace can appear here if the next thing is a bare digit. */
4737 skip_whitespace (p);
b99bd4ef 4738
c19d1205 4739 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4740 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4741 {
4742 inst.operands[i].imm = reg;
4743 inst.operands[i].immisreg = 1;
4744 }
4745 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4746 return FAIL;
4747 }
4748 inst.operands[i].shift_kind = shift;
4749 inst.operands[i].shifted = 1;
4750 *str = p;
4751 return SUCCESS;
b99bd4ef
NC
4752}
4753
c19d1205 4754/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4755
c19d1205
ZW
4756 #<immediate>
4757 #<immediate>, <rotate>
4758 <Rm>
4759 <Rm>, <shift>
b99bd4ef 4760
c19d1205
ZW
4761 where <shift> is defined by parse_shift above, and <rotate> is a
4762 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4763 is deferred to md_apply_fix. */
b99bd4ef 4764
c19d1205
ZW
4765static int
4766parse_shifter_operand (char **str, int i)
4767{
4768 int value;
91d6fa6a 4769 expressionS exp;
b99bd4ef 4770
dcbf9037 4771 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4772 {
4773 inst.operands[i].reg = value;
4774 inst.operands[i].isreg = 1;
b99bd4ef 4775
c19d1205
ZW
4776 /* parse_shift will override this if appropriate */
4777 inst.reloc.exp.X_op = O_constant;
4778 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4779
c19d1205
ZW
4780 if (skip_past_comma (str) == FAIL)
4781 return SUCCESS;
b99bd4ef 4782
c19d1205
ZW
4783 /* Shift operation on register. */
4784 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4785 }
4786
c19d1205
ZW
4787 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4788 return FAIL;
b99bd4ef 4789
c19d1205 4790 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4791 {
c19d1205 4792 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4793 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4794 return FAIL;
b99bd4ef 4795
91d6fa6a 4796 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4797 {
4798 inst.error = _("constant expression expected");
4799 return FAIL;
4800 }
b99bd4ef 4801
91d6fa6a 4802 value = exp.X_add_number;
c19d1205
ZW
4803 if (value < 0 || value > 30 || value % 2 != 0)
4804 {
4805 inst.error = _("invalid rotation");
4806 return FAIL;
4807 }
4808 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4809 {
4810 inst.error = _("invalid constant");
4811 return FAIL;
4812 }
09d92015 4813
55cf6793 4814 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4815 inst.reloc.exp.X_add_number
4816 = (((inst.reloc.exp.X_add_number << (32 - value))
4817 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4818 }
4819
c19d1205
ZW
4820 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4821 inst.reloc.pc_rel = 0;
4822 return SUCCESS;
09d92015
MM
4823}
4824
4962c51a
MS
4825/* Group relocation information. Each entry in the table contains the
4826 textual name of the relocation as may appear in assembler source
4827 and must end with a colon.
4828 Along with this textual name are the relocation codes to be used if
4829 the corresponding instruction is an ALU instruction (ADD or SUB only),
4830 an LDR, an LDRS, or an LDC. */
4831
4832struct group_reloc_table_entry
4833{
4834 const char *name;
4835 int alu_code;
4836 int ldr_code;
4837 int ldrs_code;
4838 int ldc_code;
4839};
4840
4841typedef enum
4842{
4843 /* Varieties of non-ALU group relocation. */
4844
4845 GROUP_LDR,
4846 GROUP_LDRS,
4847 GROUP_LDC
4848} group_reloc_type;
4849
4850static struct group_reloc_table_entry group_reloc_table[] =
4851 { /* Program counter relative: */
4852 { "pc_g0_nc",
4853 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4854 0, /* LDR */
4855 0, /* LDRS */
4856 0 }, /* LDC */
4857 { "pc_g0",
4858 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4859 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4860 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4861 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4862 { "pc_g1_nc",
4863 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4864 0, /* LDR */
4865 0, /* LDRS */
4866 0 }, /* LDC */
4867 { "pc_g1",
4868 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4869 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4870 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4871 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4872 { "pc_g2",
4873 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4874 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4875 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4876 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4877 /* Section base relative */
4878 { "sb_g0_nc",
4879 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4880 0, /* LDR */
4881 0, /* LDRS */
4882 0 }, /* LDC */
4883 { "sb_g0",
4884 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4885 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4886 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4887 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4888 { "sb_g1_nc",
4889 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4890 0, /* LDR */
4891 0, /* LDRS */
4892 0 }, /* LDC */
4893 { "sb_g1",
4894 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4895 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4896 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4897 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4898 { "sb_g2",
4899 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4900 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4901 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4902 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4903
4904/* Given the address of a pointer pointing to the textual name of a group
4905 relocation as may appear in assembler source, attempt to find its details
4906 in group_reloc_table. The pointer will be updated to the character after
4907 the trailing colon. On failure, FAIL will be returned; SUCCESS
4908 otherwise. On success, *entry will be updated to point at the relevant
4909 group_reloc_table entry. */
4910
4911static int
4912find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4913{
4914 unsigned int i;
4915 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4916 {
4917 int length = strlen (group_reloc_table[i].name);
4918
5f4273c7
NC
4919 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4920 && (*str)[length] == ':')
4962c51a
MS
4921 {
4922 *out = &group_reloc_table[i];
4923 *str += (length + 1);
4924 return SUCCESS;
4925 }
4926 }
4927
4928 return FAIL;
4929}
4930
4931/* Parse a <shifter_operand> for an ARM data processing instruction
4932 (as for parse_shifter_operand) where group relocations are allowed:
4933
4934 #<immediate>
4935 #<immediate>, <rotate>
4936 #:<group_reloc>:<expression>
4937 <Rm>
4938 <Rm>, <shift>
4939
4940 where <group_reloc> is one of the strings defined in group_reloc_table.
4941 The hashes are optional.
4942
4943 Everything else is as for parse_shifter_operand. */
4944
4945static parse_operand_result
4946parse_shifter_operand_group_reloc (char **str, int i)
4947{
4948 /* Determine if we have the sequence of characters #: or just :
4949 coming next. If we do, then we check for a group relocation.
4950 If we don't, punt the whole lot to parse_shifter_operand. */
4951
4952 if (((*str)[0] == '#' && (*str)[1] == ':')
4953 || (*str)[0] == ':')
4954 {
4955 struct group_reloc_table_entry *entry;
4956
4957 if ((*str)[0] == '#')
4958 (*str) += 2;
4959 else
4960 (*str)++;
4961
4962 /* Try to parse a group relocation. Anything else is an error. */
4963 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4964 {
4965 inst.error = _("unknown group relocation");
4966 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4967 }
4968
4969 /* We now have the group relocation table entry corresponding to
4970 the name in the assembler source. Next, we parse the expression. */
4971 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4972 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4973
4974 /* Record the relocation type (always the ALU variant here). */
21d799b5 4975 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 4976 gas_assert (inst.reloc.type != 0);
4962c51a
MS
4977
4978 return PARSE_OPERAND_SUCCESS;
4979 }
4980 else
4981 return parse_shifter_operand (str, i) == SUCCESS
4982 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4983
4984 /* Never reached. */
4985}
4986
8e560766
MGD
4987/* Parse a Neon alignment expression. Information is written to
4988 inst.operands[i]. We assume the initial ':' has been skipped.
4989
4990 align .imm = align << 8, .immisalign=1, .preind=0 */
4991static parse_operand_result
4992parse_neon_alignment (char **str, int i)
4993{
4994 char *p = *str;
4995 expressionS exp;
4996
4997 my_get_expression (&exp, &p, GE_NO_PREFIX);
4998
4999 if (exp.X_op != O_constant)
5000 {
5001 inst.error = _("alignment must be constant");
5002 return PARSE_OPERAND_FAIL;
5003 }
5004
5005 inst.operands[i].imm = exp.X_add_number << 8;
5006 inst.operands[i].immisalign = 1;
5007 /* Alignments are not pre-indexes. */
5008 inst.operands[i].preind = 0;
5009
5010 *str = p;
5011 return PARSE_OPERAND_SUCCESS;
5012}
5013
c19d1205
ZW
5014/* Parse all forms of an ARM address expression. Information is written
5015 to inst.operands[i] and/or inst.reloc.
09d92015 5016
c19d1205 5017 Preindexed addressing (.preind=1):
09d92015 5018
c19d1205
ZW
5019 [Rn, #offset] .reg=Rn .reloc.exp=offset
5020 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5021 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5022 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5023
c19d1205 5024 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5025
c19d1205 5026 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5027
c19d1205
ZW
5028 [Rn], #offset .reg=Rn .reloc.exp=offset
5029 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5030 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5031 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5032
c19d1205 5033 Unindexed addressing (.preind=0, .postind=0):
09d92015 5034
c19d1205 5035 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5036
c19d1205 5037 Other:
09d92015 5038
c19d1205
ZW
5039 [Rn]{!} shorthand for [Rn,#0]{!}
5040 =immediate .isreg=0 .reloc.exp=immediate
5041 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5042
c19d1205
ZW
5043 It is the caller's responsibility to check for addressing modes not
5044 supported by the instruction, and to set inst.reloc.type. */
5045
4962c51a
MS
5046static parse_operand_result
5047parse_address_main (char **str, int i, int group_relocations,
5048 group_reloc_type group_type)
09d92015 5049{
c19d1205
ZW
5050 char *p = *str;
5051 int reg;
09d92015 5052
c19d1205 5053 if (skip_past_char (&p, '[') == FAIL)
09d92015 5054 {
c19d1205
ZW
5055 if (skip_past_char (&p, '=') == FAIL)
5056 {
974da60d 5057 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5058 inst.reloc.pc_rel = 1;
5059 inst.operands[i].reg = REG_PC;
5060 inst.operands[i].isreg = 1;
5061 inst.operands[i].preind = 1;
5062 }
974da60d 5063 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5064
c19d1205 5065 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5066 return PARSE_OPERAND_FAIL;
09d92015 5067
c19d1205 5068 *str = p;
4962c51a 5069 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5070 }
5071
dcbf9037 5072 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5073 {
c19d1205 5074 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5075 return PARSE_OPERAND_FAIL;
09d92015 5076 }
c19d1205
ZW
5077 inst.operands[i].reg = reg;
5078 inst.operands[i].isreg = 1;
09d92015 5079
c19d1205 5080 if (skip_past_comma (&p) == SUCCESS)
09d92015 5081 {
c19d1205 5082 inst.operands[i].preind = 1;
09d92015 5083
c19d1205
ZW
5084 if (*p == '+') p++;
5085 else if (*p == '-') p++, inst.operands[i].negative = 1;
5086
dcbf9037 5087 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5088 {
c19d1205
ZW
5089 inst.operands[i].imm = reg;
5090 inst.operands[i].immisreg = 1;
5091
5092 if (skip_past_comma (&p) == SUCCESS)
5093 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5094 return PARSE_OPERAND_FAIL;
c19d1205 5095 }
5287ad62 5096 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5097 {
5098 /* FIXME: '@' should be used here, but it's filtered out by generic
5099 code before we get to see it here. This may be subject to
5100 change. */
5101 parse_operand_result result = parse_neon_alignment (&p, i);
5102
5103 if (result != PARSE_OPERAND_SUCCESS)
5104 return result;
5105 }
c19d1205
ZW
5106 else
5107 {
5108 if (inst.operands[i].negative)
5109 {
5110 inst.operands[i].negative = 0;
5111 p--;
5112 }
4962c51a 5113
5f4273c7
NC
5114 if (group_relocations
5115 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5116 {
5117 struct group_reloc_table_entry *entry;
5118
5119 /* Skip over the #: or : sequence. */
5120 if (*p == '#')
5121 p += 2;
5122 else
5123 p++;
5124
5125 /* Try to parse a group relocation. Anything else is an
5126 error. */
5127 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5128 {
5129 inst.error = _("unknown group relocation");
5130 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5131 }
5132
5133 /* We now have the group relocation table entry corresponding to
5134 the name in the assembler source. Next, we parse the
5135 expression. */
5136 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5137 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5138
5139 /* Record the relocation type. */
5140 switch (group_type)
5141 {
5142 case GROUP_LDR:
21d799b5 5143 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5144 break;
5145
5146 case GROUP_LDRS:
21d799b5 5147 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5148 break;
5149
5150 case GROUP_LDC:
21d799b5 5151 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5152 break;
5153
5154 default:
9c2799c2 5155 gas_assert (0);
4962c51a
MS
5156 }
5157
5158 if (inst.reloc.type == 0)
5159 {
5160 inst.error = _("this group relocation is not allowed on this instruction");
5161 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5162 }
5163 }
5164 else
5165 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5166 return PARSE_OPERAND_FAIL;
09d92015
MM
5167 }
5168 }
8e560766
MGD
5169 else if (skip_past_char (&p, ':') == SUCCESS)
5170 {
5171 /* FIXME: '@' should be used here, but it's filtered out by generic code
5172 before we get to see it here. This may be subject to change. */
5173 parse_operand_result result = parse_neon_alignment (&p, i);
5174
5175 if (result != PARSE_OPERAND_SUCCESS)
5176 return result;
5177 }
09d92015 5178
c19d1205 5179 if (skip_past_char (&p, ']') == FAIL)
09d92015 5180 {
c19d1205 5181 inst.error = _("']' expected");
4962c51a 5182 return PARSE_OPERAND_FAIL;
09d92015
MM
5183 }
5184
c19d1205
ZW
5185 if (skip_past_char (&p, '!') == SUCCESS)
5186 inst.operands[i].writeback = 1;
09d92015 5187
c19d1205 5188 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5189 {
c19d1205
ZW
5190 if (skip_past_char (&p, '{') == SUCCESS)
5191 {
5192 /* [Rn], {expr} - unindexed, with option */
5193 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5194 0, 255, TRUE) == FAIL)
4962c51a 5195 return PARSE_OPERAND_FAIL;
09d92015 5196
c19d1205
ZW
5197 if (skip_past_char (&p, '}') == FAIL)
5198 {
5199 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5200 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5201 }
5202 if (inst.operands[i].preind)
5203 {
5204 inst.error = _("cannot combine index with option");
4962c51a 5205 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5206 }
5207 *str = p;
4962c51a 5208 return PARSE_OPERAND_SUCCESS;
09d92015 5209 }
c19d1205
ZW
5210 else
5211 {
5212 inst.operands[i].postind = 1;
5213 inst.operands[i].writeback = 1;
09d92015 5214
c19d1205
ZW
5215 if (inst.operands[i].preind)
5216 {
5217 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5218 return PARSE_OPERAND_FAIL;
c19d1205 5219 }
09d92015 5220
c19d1205
ZW
5221 if (*p == '+') p++;
5222 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5223
dcbf9037 5224 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5225 {
5287ad62
JB
5226 /* We might be using the immediate for alignment already. If we
5227 are, OR the register number into the low-order bits. */
5228 if (inst.operands[i].immisalign)
5229 inst.operands[i].imm |= reg;
5230 else
5231 inst.operands[i].imm = reg;
c19d1205 5232 inst.operands[i].immisreg = 1;
a737bd4d 5233
c19d1205
ZW
5234 if (skip_past_comma (&p) == SUCCESS)
5235 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5236 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5237 }
5238 else
5239 {
5240 if (inst.operands[i].negative)
5241 {
5242 inst.operands[i].negative = 0;
5243 p--;
5244 }
5245 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5246 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5247 }
5248 }
a737bd4d
NC
5249 }
5250
c19d1205
ZW
5251 /* If at this point neither .preind nor .postind is set, we have a
5252 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5253 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5254 {
5255 inst.operands[i].preind = 1;
5256 inst.reloc.exp.X_op = O_constant;
5257 inst.reloc.exp.X_add_number = 0;
5258 }
5259 *str = p;
4962c51a
MS
5260 return PARSE_OPERAND_SUCCESS;
5261}
5262
5263static int
5264parse_address (char **str, int i)
5265{
21d799b5 5266 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5267 ? SUCCESS : FAIL;
5268}
5269
5270static parse_operand_result
5271parse_address_group_reloc (char **str, int i, group_reloc_type type)
5272{
5273 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5274}
5275
b6895b4f
PB
5276/* Parse an operand for a MOVW or MOVT instruction. */
5277static int
5278parse_half (char **str)
5279{
5280 char * p;
5f4273c7 5281
b6895b4f
PB
5282 p = *str;
5283 skip_past_char (&p, '#');
5f4273c7 5284 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5285 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5286 else if (strncasecmp (p, ":upper16:", 9) == 0)
5287 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5288
5289 if (inst.reloc.type != BFD_RELOC_UNUSED)
5290 {
5291 p += 9;
5f4273c7 5292 skip_whitespace (p);
b6895b4f
PB
5293 }
5294
5295 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5296 return FAIL;
5297
5298 if (inst.reloc.type == BFD_RELOC_UNUSED)
5299 {
5300 if (inst.reloc.exp.X_op != O_constant)
5301 {
5302 inst.error = _("constant expression expected");
5303 return FAIL;
5304 }
5305 if (inst.reloc.exp.X_add_number < 0
5306 || inst.reloc.exp.X_add_number > 0xffff)
5307 {
5308 inst.error = _("immediate value out of range");
5309 return FAIL;
5310 }
5311 }
5312 *str = p;
5313 return SUCCESS;
5314}
5315
c19d1205 5316/* Miscellaneous. */
a737bd4d 5317
c19d1205
ZW
5318/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5319 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5320static int
5321parse_psr (char **str)
09d92015 5322{
c19d1205
ZW
5323 char *p;
5324 unsigned long psr_field;
62b3e311
PB
5325 const struct asm_psr *psr;
5326 char *start;
09d92015 5327
c19d1205
ZW
5328 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5329 feature for ease of use and backwards compatibility. */
5330 p = *str;
62b3e311 5331 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 5332 psr_field = SPSR_BIT;
59b42a0d
MGD
5333 else if (strncasecmp (p, "CPSR", 4) == 0
5334 || (strncasecmp (p, "APSR", 4) == 0
5335 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m)))
c19d1205
ZW
5336 psr_field = 0;
5337 else
62b3e311
PB
5338 {
5339 start = p;
5340 do
5341 p++;
5342 while (ISALNUM (*p) || *p == '_');
5343
21d799b5
NC
5344 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5345 p - start);
62b3e311
PB
5346 if (!psr)
5347 return FAIL;
09d92015 5348
62b3e311
PB
5349 *str = p;
5350 return psr->field;
5351 }
09d92015 5352
62b3e311 5353 p += 4;
c19d1205
ZW
5354 if (*p == '_')
5355 {
5356 /* A suffix follows. */
c19d1205
ZW
5357 p++;
5358 start = p;
a737bd4d 5359
c19d1205
ZW
5360 do
5361 p++;
5362 while (ISALNUM (*p) || *p == '_');
a737bd4d 5363
21d799b5
NC
5364 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5365 p - start);
c19d1205
ZW
5366 if (!psr)
5367 goto error;
a737bd4d 5368
c19d1205 5369 psr_field |= psr->field;
a737bd4d 5370 }
c19d1205 5371 else
a737bd4d 5372 {
c19d1205
ZW
5373 if (ISALNUM (*p))
5374 goto error; /* Garbage after "[CS]PSR". */
5375
5376 psr_field |= (PSR_c | PSR_f);
a737bd4d 5377 }
c19d1205
ZW
5378 *str = p;
5379 return psr_field;
a737bd4d 5380
c19d1205
ZW
5381 error:
5382 inst.error = _("flag for {c}psr instruction expected");
5383 return FAIL;
a737bd4d
NC
5384}
5385
c19d1205
ZW
5386/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5387 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5388
c19d1205
ZW
5389static int
5390parse_cps_flags (char **str)
a737bd4d 5391{
c19d1205
ZW
5392 int val = 0;
5393 int saw_a_flag = 0;
5394 char *s = *str;
a737bd4d 5395
c19d1205
ZW
5396 for (;;)
5397 switch (*s++)
5398 {
5399 case '\0': case ',':
5400 goto done;
a737bd4d 5401
c19d1205
ZW
5402 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5403 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5404 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5405
c19d1205
ZW
5406 default:
5407 inst.error = _("unrecognized CPS flag");
5408 return FAIL;
5409 }
a737bd4d 5410
c19d1205
ZW
5411 done:
5412 if (saw_a_flag == 0)
a737bd4d 5413 {
c19d1205
ZW
5414 inst.error = _("missing CPS flags");
5415 return FAIL;
a737bd4d 5416 }
a737bd4d 5417
c19d1205
ZW
5418 *str = s - 1;
5419 return val;
a737bd4d
NC
5420}
5421
c19d1205
ZW
5422/* Parse an endian specifier ("BE" or "LE", case insensitive);
5423 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5424
5425static int
c19d1205 5426parse_endian_specifier (char **str)
a737bd4d 5427{
c19d1205
ZW
5428 int little_endian;
5429 char *s = *str;
a737bd4d 5430
c19d1205
ZW
5431 if (strncasecmp (s, "BE", 2))
5432 little_endian = 0;
5433 else if (strncasecmp (s, "LE", 2))
5434 little_endian = 1;
5435 else
a737bd4d 5436 {
c19d1205 5437 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5438 return FAIL;
5439 }
5440
c19d1205 5441 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5442 {
c19d1205 5443 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5444 return FAIL;
5445 }
5446
c19d1205
ZW
5447 *str = s + 2;
5448 return little_endian;
5449}
a737bd4d 5450
c19d1205
ZW
5451/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5452 value suitable for poking into the rotate field of an sxt or sxta
5453 instruction, or FAIL on error. */
5454
5455static int
5456parse_ror (char **str)
5457{
5458 int rot;
5459 char *s = *str;
5460
5461 if (strncasecmp (s, "ROR", 3) == 0)
5462 s += 3;
5463 else
a737bd4d 5464 {
c19d1205 5465 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5466 return FAIL;
5467 }
c19d1205
ZW
5468
5469 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5470 return FAIL;
5471
5472 switch (rot)
a737bd4d 5473 {
c19d1205
ZW
5474 case 0: *str = s; return 0x0;
5475 case 8: *str = s; return 0x1;
5476 case 16: *str = s; return 0x2;
5477 case 24: *str = s; return 0x3;
5478
5479 default:
5480 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5481 return FAIL;
5482 }
c19d1205 5483}
a737bd4d 5484
c19d1205
ZW
5485/* Parse a conditional code (from conds[] below). The value returned is in the
5486 range 0 .. 14, or FAIL. */
5487static int
5488parse_cond (char **str)
5489{
c462b453 5490 char *q;
c19d1205 5491 const struct asm_cond *c;
c462b453
PB
5492 int n;
5493 /* Condition codes are always 2 characters, so matching up to
5494 3 characters is sufficient. */
5495 char cond[3];
a737bd4d 5496
c462b453
PB
5497 q = *str;
5498 n = 0;
5499 while (ISALPHA (*q) && n < 3)
5500 {
e07e6e58 5501 cond[n] = TOLOWER (*q);
c462b453
PB
5502 q++;
5503 n++;
5504 }
a737bd4d 5505
21d799b5 5506 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5507 if (!c)
a737bd4d 5508 {
c19d1205 5509 inst.error = _("condition required");
a737bd4d
NC
5510 return FAIL;
5511 }
5512
c19d1205
ZW
5513 *str = q;
5514 return c->value;
5515}
5516
62b3e311
PB
5517/* Parse an option for a barrier instruction. Returns the encoding for the
5518 option, or FAIL. */
5519static int
5520parse_barrier (char **str)
5521{
5522 char *p, *q;
5523 const struct asm_barrier_opt *o;
5524
5525 p = q = *str;
5526 while (ISALPHA (*q))
5527 q++;
5528
21d799b5
NC
5529 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5530 q - p);
62b3e311
PB
5531 if (!o)
5532 return FAIL;
5533
5534 *str = q;
5535 return o->value;
5536}
5537
92e90b6e
PB
5538/* Parse the operands of a table branch instruction. Similar to a memory
5539 operand. */
5540static int
5541parse_tb (char **str)
5542{
5543 char * p = *str;
5544 int reg;
5545
5546 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5547 {
5548 inst.error = _("'[' expected");
5549 return FAIL;
5550 }
92e90b6e 5551
dcbf9037 5552 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5553 {
5554 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5555 return FAIL;
5556 }
5557 inst.operands[0].reg = reg;
5558
5559 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5560 {
5561 inst.error = _("',' expected");
5562 return FAIL;
5563 }
5f4273c7 5564
dcbf9037 5565 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5566 {
5567 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5568 return FAIL;
5569 }
5570 inst.operands[0].imm = reg;
5571
5572 if (skip_past_comma (&p) == SUCCESS)
5573 {
5574 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5575 return FAIL;
5576 if (inst.reloc.exp.X_add_number != 1)
5577 {
5578 inst.error = _("invalid shift");
5579 return FAIL;
5580 }
5581 inst.operands[0].shifted = 1;
5582 }
5583
5584 if (skip_past_char (&p, ']') == FAIL)
5585 {
5586 inst.error = _("']' expected");
5587 return FAIL;
5588 }
5589 *str = p;
5590 return SUCCESS;
5591}
5592
5287ad62
JB
5593/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5594 information on the types the operands can take and how they are encoded.
037e8744
JB
5595 Up to four operands may be read; this function handles setting the
5596 ".present" field for each read operand itself.
5287ad62
JB
5597 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5598 else returns FAIL. */
5599
5600static int
5601parse_neon_mov (char **str, int *which_operand)
5602{
5603 int i = *which_operand, val;
5604 enum arm_reg_type rtype;
5605 char *ptr = *str;
dcbf9037 5606 struct neon_type_el optype;
5f4273c7 5607
dcbf9037 5608 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5609 {
5610 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5611 inst.operands[i].reg = val;
5612 inst.operands[i].isscalar = 1;
dcbf9037 5613 inst.operands[i].vectype = optype;
5287ad62
JB
5614 inst.operands[i++].present = 1;
5615
5616 if (skip_past_comma (&ptr) == FAIL)
5617 goto wanted_comma;
5f4273c7 5618
dcbf9037 5619 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5620 goto wanted_arm;
5f4273c7 5621
5287ad62
JB
5622 inst.operands[i].reg = val;
5623 inst.operands[i].isreg = 1;
5624 inst.operands[i].present = 1;
5625 }
037e8744 5626 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5627 != FAIL)
5287ad62
JB
5628 {
5629 /* Cases 0, 1, 2, 3, 5 (D only). */
5630 if (skip_past_comma (&ptr) == FAIL)
5631 goto wanted_comma;
5f4273c7 5632
5287ad62
JB
5633 inst.operands[i].reg = val;
5634 inst.operands[i].isreg = 1;
5635 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5636 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5637 inst.operands[i].isvec = 1;
dcbf9037 5638 inst.operands[i].vectype = optype;
5287ad62
JB
5639 inst.operands[i++].present = 1;
5640
dcbf9037 5641 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5642 {
037e8744
JB
5643 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5644 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5645 inst.operands[i].reg = val;
5646 inst.operands[i].isreg = 1;
037e8744 5647 inst.operands[i].present = 1;
5287ad62
JB
5648
5649 if (rtype == REG_TYPE_NQ)
5650 {
dcbf9037 5651 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5652 return FAIL;
5653 }
037e8744
JB
5654 else if (rtype != REG_TYPE_VFS)
5655 {
5656 i++;
5657 if (skip_past_comma (&ptr) == FAIL)
5658 goto wanted_comma;
5659 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5660 goto wanted_arm;
5661 inst.operands[i].reg = val;
5662 inst.operands[i].isreg = 1;
5663 inst.operands[i].present = 1;
5664 }
5287ad62 5665 }
037e8744
JB
5666 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5667 &optype)) != FAIL)
5287ad62
JB
5668 {
5669 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5670 Case 1: VMOV<c><q> <Dd>, <Dm>
5671 Case 8: VMOV.F32 <Sd>, <Sm>
5672 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5673
5674 inst.operands[i].reg = val;
5675 inst.operands[i].isreg = 1;
5676 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5677 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5678 inst.operands[i].isvec = 1;
dcbf9037 5679 inst.operands[i].vectype = optype;
5287ad62 5680 inst.operands[i].present = 1;
5f4273c7 5681
037e8744
JB
5682 if (skip_past_comma (&ptr) == SUCCESS)
5683 {
5684 /* Case 15. */
5685 i++;
5686
5687 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5688 goto wanted_arm;
5689
5690 inst.operands[i].reg = val;
5691 inst.operands[i].isreg = 1;
5692 inst.operands[i++].present = 1;
5f4273c7 5693
037e8744
JB
5694 if (skip_past_comma (&ptr) == FAIL)
5695 goto wanted_comma;
5f4273c7 5696
037e8744
JB
5697 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5698 goto wanted_arm;
5f4273c7 5699
037e8744
JB
5700 inst.operands[i].reg = val;
5701 inst.operands[i].isreg = 1;
5702 inst.operands[i++].present = 1;
5703 }
5287ad62 5704 }
4641781c
PB
5705 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5706 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5707 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5708 Case 10: VMOV.F32 <Sd>, #<imm>
5709 Case 11: VMOV.F64 <Dd>, #<imm> */
5710 inst.operands[i].immisfloat = 1;
5711 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5712 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5713 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5714 ;
5287ad62
JB
5715 else
5716 {
dcbf9037 5717 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5718 return FAIL;
5719 }
5720 }
dcbf9037 5721 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5722 {
5723 /* Cases 6, 7. */
5724 inst.operands[i].reg = val;
5725 inst.operands[i].isreg = 1;
5726 inst.operands[i++].present = 1;
5f4273c7 5727
5287ad62
JB
5728 if (skip_past_comma (&ptr) == FAIL)
5729 goto wanted_comma;
5f4273c7 5730
dcbf9037 5731 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5732 {
5733 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5734 inst.operands[i].reg = val;
5735 inst.operands[i].isscalar = 1;
5736 inst.operands[i].present = 1;
dcbf9037 5737 inst.operands[i].vectype = optype;
5287ad62 5738 }
dcbf9037 5739 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5740 {
5741 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5742 inst.operands[i].reg = val;
5743 inst.operands[i].isreg = 1;
5744 inst.operands[i++].present = 1;
5f4273c7 5745
5287ad62
JB
5746 if (skip_past_comma (&ptr) == FAIL)
5747 goto wanted_comma;
5f4273c7 5748
037e8744 5749 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5750 == FAIL)
5287ad62 5751 {
037e8744 5752 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5753 return FAIL;
5754 }
5755
5756 inst.operands[i].reg = val;
5757 inst.operands[i].isreg = 1;
037e8744
JB
5758 inst.operands[i].isvec = 1;
5759 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5760 inst.operands[i].vectype = optype;
5287ad62 5761 inst.operands[i].present = 1;
5f4273c7 5762
037e8744
JB
5763 if (rtype == REG_TYPE_VFS)
5764 {
5765 /* Case 14. */
5766 i++;
5767 if (skip_past_comma (&ptr) == FAIL)
5768 goto wanted_comma;
5769 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5770 &optype)) == FAIL)
5771 {
5772 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5773 return FAIL;
5774 }
5775 inst.operands[i].reg = val;
5776 inst.operands[i].isreg = 1;
5777 inst.operands[i].isvec = 1;
5778 inst.operands[i].issingle = 1;
5779 inst.operands[i].vectype = optype;
5780 inst.operands[i].present = 1;
5781 }
5782 }
5783 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5784 != FAIL)
5785 {
5786 /* Case 13. */
5787 inst.operands[i].reg = val;
5788 inst.operands[i].isreg = 1;
5789 inst.operands[i].isvec = 1;
5790 inst.operands[i].issingle = 1;
5791 inst.operands[i].vectype = optype;
5792 inst.operands[i++].present = 1;
5287ad62
JB
5793 }
5794 }
5795 else
5796 {
dcbf9037 5797 first_error (_("parse error"));
5287ad62
JB
5798 return FAIL;
5799 }
5800
5801 /* Successfully parsed the operands. Update args. */
5802 *which_operand = i;
5803 *str = ptr;
5804 return SUCCESS;
5805
5f4273c7 5806 wanted_comma:
dcbf9037 5807 first_error (_("expected comma"));
5287ad62 5808 return FAIL;
5f4273c7
NC
5809
5810 wanted_arm:
dcbf9037 5811 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5812 return FAIL;
5287ad62
JB
5813}
5814
5be8be5d
DG
5815/* Use this macro when the operand constraints are different
5816 for ARM and THUMB (e.g. ldrd). */
5817#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5818 ((arm_operand) | ((thumb_operand) << 16))
5819
c19d1205
ZW
5820/* Matcher codes for parse_operands. */
5821enum operand_parse_code
5822{
5823 OP_stop, /* end of line */
5824
5825 OP_RR, /* ARM register */
5826 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 5827 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 5828 OP_RRnpcb, /* ARM register, not r15, in square brackets */
55881a11
MGD
5829 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
5830 optional trailing ! */
c19d1205
ZW
5831 OP_RRw, /* ARM register, not r15, optional trailing ! */
5832 OP_RCP, /* Coprocessor number */
5833 OP_RCN, /* Coprocessor register */
5834 OP_RF, /* FPA register */
5835 OP_RVS, /* VFP single precision register */
5287ad62
JB
5836 OP_RVD, /* VFP double precision register (0..15) */
5837 OP_RND, /* Neon double precision register (0..31) */
5838 OP_RNQ, /* Neon quad precision register */
037e8744 5839 OP_RVSD, /* VFP single or double precision register */
5287ad62 5840 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5841 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5842 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5843 OP_RVC, /* VFP control register */
5844 OP_RMF, /* Maverick F register */
5845 OP_RMD, /* Maverick D register */
5846 OP_RMFX, /* Maverick FX register */
5847 OP_RMDX, /* Maverick DX register */
5848 OP_RMAX, /* Maverick AX register */
5849 OP_RMDS, /* Maverick DSPSC register */
5850 OP_RIWR, /* iWMMXt wR register */
5851 OP_RIWC, /* iWMMXt wC register */
5852 OP_RIWG, /* iWMMXt wCG register */
5853 OP_RXA, /* XScale accumulator register */
5854
5855 OP_REGLST, /* ARM register list */
5856 OP_VRSLST, /* VFP single-precision register list */
5857 OP_VRDLST, /* VFP double-precision register list */
037e8744 5858 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5859 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5860 OP_NSTRLST, /* Neon element/structure list */
5861
5287ad62 5862 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5863 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5864 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5865 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5866 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5867 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5868 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 5869 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 5870 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5871 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5872
5873 OP_I0, /* immediate zero */
c19d1205
ZW
5874 OP_I7, /* immediate value 0 .. 7 */
5875 OP_I15, /* 0 .. 15 */
5876 OP_I16, /* 1 .. 16 */
5287ad62 5877 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5878 OP_I31, /* 0 .. 31 */
5879 OP_I31w, /* 0 .. 31, optional trailing ! */
5880 OP_I32, /* 1 .. 32 */
5287ad62
JB
5881 OP_I32z, /* 0 .. 32 */
5882 OP_I63, /* 0 .. 63 */
c19d1205 5883 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5884 OP_I64, /* 1 .. 64 */
5885 OP_I64z, /* 0 .. 64 */
c19d1205 5886 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5887
5888 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5889 OP_I7b, /* 0 .. 7 */
5890 OP_I15b, /* 0 .. 15 */
5891 OP_I31b, /* 0 .. 31 */
5892
5893 OP_SH, /* shifter operand */
4962c51a 5894 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5895 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5896 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5897 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5898 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5899 OP_EXP, /* arbitrary expression */
5900 OP_EXPi, /* same, with optional immediate prefix */
5901 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5902 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5903
5904 OP_CPSF, /* CPS flags */
5905 OP_ENDI, /* Endianness specifier */
5906 OP_PSR, /* CPSR/SPSR mask for msr */
5907 OP_COND, /* conditional code */
92e90b6e 5908 OP_TB, /* Table branch. */
c19d1205 5909
037e8744
JB
5910 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5911 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5912
c19d1205
ZW
5913 OP_RRnpc_I0, /* ARM register or literal 0 */
5914 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5915 OP_RR_EXi, /* ARM register or expression with imm prefix */
5916 OP_RF_IF, /* FPA register or immediate */
5917 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5918 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5919
5920 /* Optional operands. */
5921 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5922 OP_oI31b, /* 0 .. 31 */
5287ad62 5923 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5924 OP_oIffffb, /* 0 .. 65535 */
5925 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5926
5927 OP_oRR, /* ARM register */
5928 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 5929 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 5930 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5931 OP_oRND, /* Optional Neon double precision register */
5932 OP_oRNQ, /* Optional Neon quad precision register */
5933 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5934 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5935 OP_oSHll, /* LSL immediate */
5936 OP_oSHar, /* ASR immediate */
5937 OP_oSHllar, /* LSL or ASR immediate */
5938 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 5939 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 5940
5be8be5d
DG
5941 /* Some pre-defined mixed (ARM/THUMB) operands. */
5942 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
5943 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
5944 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
5945
c19d1205
ZW
5946 OP_FIRST_OPTIONAL = OP_oI7b
5947};
a737bd4d 5948
c19d1205
ZW
5949/* Generic instruction operand parser. This does no encoding and no
5950 semantic validation; it merely squirrels values away in the inst
5951 structure. Returns SUCCESS or FAIL depending on whether the
5952 specified grammar matched. */
5953static int
5be8be5d 5954parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 5955{
5be8be5d 5956 unsigned const int *upat = pattern;
c19d1205
ZW
5957 char *backtrack_pos = 0;
5958 const char *backtrack_error = 0;
5959 int i, val, backtrack_index = 0;
5287ad62 5960 enum arm_reg_type rtype;
4962c51a 5961 parse_operand_result result;
5be8be5d 5962 unsigned int op_parse_code;
c19d1205 5963
e07e6e58
NC
5964#define po_char_or_fail(chr) \
5965 do \
5966 { \
5967 if (skip_past_char (&str, chr) == FAIL) \
5968 goto bad_args; \
5969 } \
5970 while (0)
c19d1205 5971
e07e6e58
NC
5972#define po_reg_or_fail(regtype) \
5973 do \
dcbf9037 5974 { \
e07e6e58
NC
5975 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5976 & inst.operands[i].vectype); \
5977 if (val == FAIL) \
5978 { \
5979 first_error (_(reg_expected_msgs[regtype])); \
5980 goto failure; \
5981 } \
5982 inst.operands[i].reg = val; \
5983 inst.operands[i].isreg = 1; \
5984 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5985 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5986 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5987 || rtype == REG_TYPE_VFD \
5988 || rtype == REG_TYPE_NQ); \
dcbf9037 5989 } \
e07e6e58
NC
5990 while (0)
5991
5992#define po_reg_or_goto(regtype, label) \
5993 do \
5994 { \
5995 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5996 & inst.operands[i].vectype); \
5997 if (val == FAIL) \
5998 goto label; \
dcbf9037 5999 \
e07e6e58
NC
6000 inst.operands[i].reg = val; \
6001 inst.operands[i].isreg = 1; \
6002 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6003 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6004 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6005 || rtype == REG_TYPE_VFD \
6006 || rtype == REG_TYPE_NQ); \
6007 } \
6008 while (0)
6009
6010#define po_imm_or_fail(min, max, popt) \
6011 do \
6012 { \
6013 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6014 goto failure; \
6015 inst.operands[i].imm = val; \
6016 } \
6017 while (0)
6018
6019#define po_scalar_or_goto(elsz, label) \
6020 do \
6021 { \
6022 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6023 if (val == FAIL) \
6024 goto label; \
6025 inst.operands[i].reg = val; \
6026 inst.operands[i].isscalar = 1; \
6027 } \
6028 while (0)
6029
6030#define po_misc_or_fail(expr) \
6031 do \
6032 { \
6033 if (expr) \
6034 goto failure; \
6035 } \
6036 while (0)
6037
6038#define po_misc_or_fail_no_backtrack(expr) \
6039 do \
6040 { \
6041 result = expr; \
6042 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6043 backtrack_pos = 0; \
6044 if (result != PARSE_OPERAND_SUCCESS) \
6045 goto failure; \
6046 } \
6047 while (0)
4962c51a 6048
52e7f43d
RE
6049#define po_barrier_or_imm(str) \
6050 do \
6051 { \
6052 val = parse_barrier (&str); \
6053 if (val == FAIL) \
6054 { \
6055 if (ISALPHA (*str)) \
6056 goto failure; \
6057 else \
6058 goto immediate; \
6059 } \
6060 else \
6061 { \
6062 if ((inst.instruction & 0xf0) == 0x60 \
6063 && val != 0xf) \
6064 { \
6065 /* ISB can only take SY as an option. */ \
6066 inst.error = _("invalid barrier type"); \
6067 goto failure; \
6068 } \
6069 } \
6070 } \
6071 while (0)
6072
c19d1205
ZW
6073 skip_whitespace (str);
6074
6075 for (i = 0; upat[i] != OP_stop; i++)
6076 {
5be8be5d
DG
6077 op_parse_code = upat[i];
6078 if (op_parse_code >= 1<<16)
6079 op_parse_code = thumb ? (op_parse_code >> 16)
6080 : (op_parse_code & ((1<<16)-1));
6081
6082 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6083 {
6084 /* Remember where we are in case we need to backtrack. */
9c2799c2 6085 gas_assert (!backtrack_pos);
c19d1205
ZW
6086 backtrack_pos = str;
6087 backtrack_error = inst.error;
6088 backtrack_index = i;
6089 }
6090
b6702015 6091 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6092 po_char_or_fail (',');
6093
5be8be5d 6094 switch (op_parse_code)
c19d1205
ZW
6095 {
6096 /* Registers */
6097 case OP_oRRnpc:
5be8be5d 6098 case OP_oRRnpcsp:
c19d1205 6099 case OP_RRnpc:
5be8be5d 6100 case OP_RRnpcsp:
c19d1205
ZW
6101 case OP_oRR:
6102 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6103 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6104 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6105 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6106 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6107 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6108 case OP_oRND:
6109 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6110 case OP_RVC:
6111 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6112 break;
6113 /* Also accept generic coprocessor regs for unknown registers. */
6114 coproc_reg:
6115 po_reg_or_fail (REG_TYPE_CN);
6116 break;
c19d1205
ZW
6117 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6118 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6119 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6120 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6121 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6122 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6123 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6124 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6125 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6126 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6127 case OP_oRNQ:
6128 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6129 case OP_oRNDQ:
6130 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6131 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6132 case OP_oRNSDQ:
6133 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6134
6135 /* Neon scalar. Using an element size of 8 means that some invalid
6136 scalars are accepted here, so deal with those in later code. */
6137 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6138
5287ad62
JB
6139 case OP_RNDQ_I0:
6140 {
6141 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6142 break;
6143 try_imm0:
6144 po_imm_or_fail (0, 0, TRUE);
6145 }
6146 break;
6147
037e8744
JB
6148 case OP_RVSD_I0:
6149 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6150 break;
6151
5287ad62
JB
6152 case OP_RR_RNSC:
6153 {
6154 po_scalar_or_goto (8, try_rr);
6155 break;
6156 try_rr:
6157 po_reg_or_fail (REG_TYPE_RN);
6158 }
6159 break;
6160
037e8744
JB
6161 case OP_RNSDQ_RNSC:
6162 {
6163 po_scalar_or_goto (8, try_nsdq);
6164 break;
6165 try_nsdq:
6166 po_reg_or_fail (REG_TYPE_NSDQ);
6167 }
6168 break;
6169
5287ad62
JB
6170 case OP_RNDQ_RNSC:
6171 {
6172 po_scalar_or_goto (8, try_ndq);
6173 break;
6174 try_ndq:
6175 po_reg_or_fail (REG_TYPE_NDQ);
6176 }
6177 break;
6178
6179 case OP_RND_RNSC:
6180 {
6181 po_scalar_or_goto (8, try_vfd);
6182 break;
6183 try_vfd:
6184 po_reg_or_fail (REG_TYPE_VFD);
6185 }
6186 break;
6187
6188 case OP_VMOV:
6189 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6190 not careful then bad things might happen. */
6191 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6192 break;
6193
4316f0d2 6194 case OP_RNDQ_Ibig:
5287ad62 6195 {
4316f0d2 6196 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6197 break;
4316f0d2 6198 try_immbig:
5287ad62
JB
6199 /* There's a possibility of getting a 64-bit immediate here, so
6200 we need special handling. */
6201 if (parse_big_immediate (&str, i) == FAIL)
6202 {
6203 inst.error = _("immediate value is out of range");
6204 goto failure;
6205 }
6206 }
6207 break;
6208
6209 case OP_RNDQ_I63b:
6210 {
6211 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6212 break;
6213 try_shimm:
6214 po_imm_or_fail (0, 63, TRUE);
6215 }
6216 break;
c19d1205
ZW
6217
6218 case OP_RRnpcb:
6219 po_char_or_fail ('[');
6220 po_reg_or_fail (REG_TYPE_RN);
6221 po_char_or_fail (']');
6222 break;
a737bd4d 6223
55881a11 6224 case OP_RRnpctw:
c19d1205 6225 case OP_RRw:
b6702015 6226 case OP_oRRw:
c19d1205
ZW
6227 po_reg_or_fail (REG_TYPE_RN);
6228 if (skip_past_char (&str, '!') == SUCCESS)
6229 inst.operands[i].writeback = 1;
6230 break;
6231
6232 /* Immediates */
6233 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6234 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6235 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6236 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6237 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6238 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6239 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6240 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6241 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6242 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6243 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6244 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6245
6246 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6247 case OP_oI7b:
6248 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6249 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6250 case OP_oI31b:
6251 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6252 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
6253 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6254
6255 /* Immediate variants */
6256 case OP_oI255c:
6257 po_char_or_fail ('{');
6258 po_imm_or_fail (0, 255, TRUE);
6259 po_char_or_fail ('}');
6260 break;
6261
6262 case OP_I31w:
6263 /* The expression parser chokes on a trailing !, so we have
6264 to find it first and zap it. */
6265 {
6266 char *s = str;
6267 while (*s && *s != ',')
6268 s++;
6269 if (s[-1] == '!')
6270 {
6271 s[-1] = '\0';
6272 inst.operands[i].writeback = 1;
6273 }
6274 po_imm_or_fail (0, 31, TRUE);
6275 if (str == s - 1)
6276 str = s;
6277 }
6278 break;
6279
6280 /* Expressions */
6281 case OP_EXPi: EXPi:
6282 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6283 GE_OPT_PREFIX));
6284 break;
6285
6286 case OP_EXP:
6287 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6288 GE_NO_PREFIX));
6289 break;
6290
6291 case OP_EXPr: EXPr:
6292 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6293 GE_NO_PREFIX));
6294 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6295 {
c19d1205
ZW
6296 val = parse_reloc (&str);
6297 if (val == -1)
6298 {
6299 inst.error = _("unrecognized relocation suffix");
6300 goto failure;
6301 }
6302 else if (val != BFD_RELOC_UNUSED)
6303 {
6304 inst.operands[i].imm = val;
6305 inst.operands[i].hasreloc = 1;
6306 }
a737bd4d 6307 }
c19d1205 6308 break;
a737bd4d 6309
b6895b4f
PB
6310 /* Operand for MOVW or MOVT. */
6311 case OP_HALF:
6312 po_misc_or_fail (parse_half (&str));
6313 break;
6314
e07e6e58 6315 /* Register or expression. */
c19d1205
ZW
6316 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6317 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6318
e07e6e58 6319 /* Register or immediate. */
c19d1205
ZW
6320 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6321 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6322
c19d1205
ZW
6323 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6324 IF:
6325 if (!is_immediate_prefix (*str))
6326 goto bad_args;
6327 str++;
6328 val = parse_fpa_immediate (&str);
6329 if (val == FAIL)
6330 goto failure;
6331 /* FPA immediates are encoded as registers 8-15.
6332 parse_fpa_immediate has already applied the offset. */
6333 inst.operands[i].reg = val;
6334 inst.operands[i].isreg = 1;
6335 break;
09d92015 6336
2d447fca
JM
6337 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6338 I32z: po_imm_or_fail (0, 32, FALSE); break;
6339
e07e6e58 6340 /* Two kinds of register. */
c19d1205
ZW
6341 case OP_RIWR_RIWC:
6342 {
6343 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6344 if (!rege
6345 || (rege->type != REG_TYPE_MMXWR
6346 && rege->type != REG_TYPE_MMXWC
6347 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6348 {
6349 inst.error = _("iWMMXt data or control register expected");
6350 goto failure;
6351 }
6352 inst.operands[i].reg = rege->number;
6353 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6354 }
6355 break;
09d92015 6356
41adaa5c
JM
6357 case OP_RIWC_RIWG:
6358 {
6359 struct reg_entry *rege = arm_reg_parse_multi (&str);
6360 if (!rege
6361 || (rege->type != REG_TYPE_MMXWC
6362 && rege->type != REG_TYPE_MMXWCG))
6363 {
6364 inst.error = _("iWMMXt control register expected");
6365 goto failure;
6366 }
6367 inst.operands[i].reg = rege->number;
6368 inst.operands[i].isreg = 1;
6369 }
6370 break;
6371
c19d1205
ZW
6372 /* Misc */
6373 case OP_CPSF: val = parse_cps_flags (&str); break;
6374 case OP_ENDI: val = parse_endian_specifier (&str); break;
6375 case OP_oROR: val = parse_ror (&str); break;
6376 case OP_PSR: val = parse_psr (&str); break;
6377 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6378 case OP_oBARRIER_I15:
6379 po_barrier_or_imm (str); break;
6380 immediate:
6381 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6382 goto failure;
6383 break;
c19d1205 6384
037e8744 6385 case OP_RVC_PSR:
90ec0d68 6386 po_reg_or_goto (REG_TYPE_VFC, try_banked_reg);
037e8744
JB
6387 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6388 break;
90ec0d68
MGD
6389 try_banked_reg:
6390 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6391 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6392 {
6393 inst.error = _("Banked registers are not available with this "
6394 "architecture.");
6395 goto failure;
6396 }
6397 break;
037e8744
JB
6398 try_psr:
6399 val = parse_psr (&str);
6400 break;
6401
6402 case OP_APSR_RR:
6403 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6404 break;
6405 try_apsr:
6406 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6407 instruction). */
6408 if (strncasecmp (str, "APSR_", 5) == 0)
6409 {
6410 unsigned found = 0;
6411 str += 5;
6412 while (found < 15)
6413 switch (*str++)
6414 {
6415 case 'c': found = (found & 1) ? 16 : found | 1; break;
6416 case 'n': found = (found & 2) ? 16 : found | 2; break;
6417 case 'z': found = (found & 4) ? 16 : found | 4; break;
6418 case 'v': found = (found & 8) ? 16 : found | 8; break;
6419 default: found = 16;
6420 }
6421 if (found != 15)
6422 goto failure;
6423 inst.operands[i].isvec = 1;
f7c21dc7
NC
6424 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6425 inst.operands[i].reg = REG_PC;
037e8744
JB
6426 }
6427 else
6428 goto failure;
6429 break;
6430
92e90b6e
PB
6431 case OP_TB:
6432 po_misc_or_fail (parse_tb (&str));
6433 break;
6434
e07e6e58 6435 /* Register lists. */
c19d1205
ZW
6436 case OP_REGLST:
6437 val = parse_reg_list (&str);
6438 if (*str == '^')
6439 {
6440 inst.operands[1].writeback = 1;
6441 str++;
6442 }
6443 break;
09d92015 6444
c19d1205 6445 case OP_VRSLST:
5287ad62 6446 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6447 break;
09d92015 6448
c19d1205 6449 case OP_VRDLST:
5287ad62 6450 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6451 break;
a737bd4d 6452
037e8744
JB
6453 case OP_VRSDLST:
6454 /* Allow Q registers too. */
6455 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6456 REGLIST_NEON_D);
6457 if (val == FAIL)
6458 {
6459 inst.error = NULL;
6460 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6461 REGLIST_VFP_S);
6462 inst.operands[i].issingle = 1;
6463 }
6464 break;
6465
5287ad62
JB
6466 case OP_NRDLST:
6467 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6468 REGLIST_NEON_D);
6469 break;
6470
6471 case OP_NSTRLST:
dcbf9037
JB
6472 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6473 &inst.operands[i].vectype);
5287ad62
JB
6474 break;
6475
c19d1205
ZW
6476 /* Addressing modes */
6477 case OP_ADDR:
6478 po_misc_or_fail (parse_address (&str, i));
6479 break;
09d92015 6480
4962c51a
MS
6481 case OP_ADDRGLDR:
6482 po_misc_or_fail_no_backtrack (
6483 parse_address_group_reloc (&str, i, GROUP_LDR));
6484 break;
6485
6486 case OP_ADDRGLDRS:
6487 po_misc_or_fail_no_backtrack (
6488 parse_address_group_reloc (&str, i, GROUP_LDRS));
6489 break;
6490
6491 case OP_ADDRGLDC:
6492 po_misc_or_fail_no_backtrack (
6493 parse_address_group_reloc (&str, i, GROUP_LDC));
6494 break;
6495
c19d1205
ZW
6496 case OP_SH:
6497 po_misc_or_fail (parse_shifter_operand (&str, i));
6498 break;
09d92015 6499
4962c51a
MS
6500 case OP_SHG:
6501 po_misc_or_fail_no_backtrack (
6502 parse_shifter_operand_group_reloc (&str, i));
6503 break;
6504
c19d1205
ZW
6505 case OP_oSHll:
6506 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6507 break;
09d92015 6508
c19d1205
ZW
6509 case OP_oSHar:
6510 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6511 break;
09d92015 6512
c19d1205
ZW
6513 case OP_oSHllar:
6514 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6515 break;
09d92015 6516
c19d1205 6517 default:
5be8be5d 6518 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6519 }
09d92015 6520
c19d1205
ZW
6521 /* Various value-based sanity checks and shared operations. We
6522 do not signal immediate failures for the register constraints;
6523 this allows a syntax error to take precedence. */
5be8be5d 6524 switch (op_parse_code)
c19d1205
ZW
6525 {
6526 case OP_oRRnpc:
6527 case OP_RRnpc:
6528 case OP_RRnpcb:
6529 case OP_RRw:
b6702015 6530 case OP_oRRw:
c19d1205
ZW
6531 case OP_RRnpc_I0:
6532 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6533 inst.error = BAD_PC;
6534 break;
09d92015 6535
5be8be5d
DG
6536 case OP_oRRnpcsp:
6537 case OP_RRnpcsp:
6538 if (inst.operands[i].isreg)
6539 {
6540 if (inst.operands[i].reg == REG_PC)
6541 inst.error = BAD_PC;
6542 else if (inst.operands[i].reg == REG_SP)
6543 inst.error = BAD_SP;
6544 }
6545 break;
6546
55881a11
MGD
6547 case OP_RRnpctw:
6548 if (inst.operands[i].isreg
6549 && inst.operands[i].reg == REG_PC
6550 && (inst.operands[i].writeback || thumb))
6551 inst.error = BAD_PC;
6552 break;
6553
c19d1205
ZW
6554 case OP_CPSF:
6555 case OP_ENDI:
6556 case OP_oROR:
6557 case OP_PSR:
037e8744 6558 case OP_RVC_PSR:
c19d1205 6559 case OP_COND:
52e7f43d 6560 case OP_oBARRIER_I15:
c19d1205
ZW
6561 case OP_REGLST:
6562 case OP_VRSLST:
6563 case OP_VRDLST:
037e8744 6564 case OP_VRSDLST:
5287ad62
JB
6565 case OP_NRDLST:
6566 case OP_NSTRLST:
c19d1205
ZW
6567 if (val == FAIL)
6568 goto failure;
6569 inst.operands[i].imm = val;
6570 break;
a737bd4d 6571
c19d1205
ZW
6572 default:
6573 break;
6574 }
09d92015 6575
c19d1205
ZW
6576 /* If we get here, this operand was successfully parsed. */
6577 inst.operands[i].present = 1;
6578 continue;
09d92015 6579
c19d1205 6580 bad_args:
09d92015 6581 inst.error = BAD_ARGS;
c19d1205
ZW
6582
6583 failure:
6584 if (!backtrack_pos)
d252fdde
PB
6585 {
6586 /* The parse routine should already have set inst.error, but set a
5f4273c7 6587 default here just in case. */
d252fdde
PB
6588 if (!inst.error)
6589 inst.error = _("syntax error");
6590 return FAIL;
6591 }
c19d1205
ZW
6592
6593 /* Do not backtrack over a trailing optional argument that
6594 absorbed some text. We will only fail again, with the
6595 'garbage following instruction' error message, which is
6596 probably less helpful than the current one. */
6597 if (backtrack_index == i && backtrack_pos != str
6598 && upat[i+1] == OP_stop)
d252fdde
PB
6599 {
6600 if (!inst.error)
6601 inst.error = _("syntax error");
6602 return FAIL;
6603 }
c19d1205
ZW
6604
6605 /* Try again, skipping the optional argument at backtrack_pos. */
6606 str = backtrack_pos;
6607 inst.error = backtrack_error;
6608 inst.operands[backtrack_index].present = 0;
6609 i = backtrack_index;
6610 backtrack_pos = 0;
09d92015 6611 }
09d92015 6612
c19d1205
ZW
6613 /* Check that we have parsed all the arguments. */
6614 if (*str != '\0' && !inst.error)
6615 inst.error = _("garbage following instruction");
09d92015 6616
c19d1205 6617 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6618}
6619
c19d1205
ZW
6620#undef po_char_or_fail
6621#undef po_reg_or_fail
6622#undef po_reg_or_goto
6623#undef po_imm_or_fail
5287ad62 6624#undef po_scalar_or_fail
52e7f43d 6625#undef po_barrier_or_imm
e07e6e58 6626
c19d1205 6627/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6628#define constraint(expr, err) \
6629 do \
c19d1205 6630 { \
e07e6e58
NC
6631 if (expr) \
6632 { \
6633 inst.error = err; \
6634 return; \
6635 } \
c19d1205 6636 } \
e07e6e58 6637 while (0)
c19d1205 6638
fdfde340
JM
6639/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6640 instructions are unpredictable if these registers are used. This
6641 is the BadReg predicate in ARM's Thumb-2 documentation. */
6642#define reject_bad_reg(reg) \
6643 do \
6644 if (reg == REG_SP || reg == REG_PC) \
6645 { \
6646 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6647 return; \
6648 } \
6649 while (0)
6650
94206790
MM
6651/* If REG is R13 (the stack pointer), warn that its use is
6652 deprecated. */
6653#define warn_deprecated_sp(reg) \
6654 do \
6655 if (warn_on_deprecated && reg == REG_SP) \
6656 as_warn (_("use of r13 is deprecated")); \
6657 while (0)
6658
c19d1205
ZW
6659/* Functions for operand encoding. ARM, then Thumb. */
6660
6661#define rotate_left(v, n) (v << n | v >> (32 - n))
6662
6663/* If VAL can be encoded in the immediate field of an ARM instruction,
6664 return the encoded form. Otherwise, return FAIL. */
6665
6666static unsigned int
6667encode_arm_immediate (unsigned int val)
09d92015 6668{
c19d1205
ZW
6669 unsigned int a, i;
6670
6671 for (i = 0; i < 32; i += 2)
6672 if ((a = rotate_left (val, i)) <= 0xff)
6673 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6674
6675 return FAIL;
09d92015
MM
6676}
6677
c19d1205
ZW
6678/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6679 return the encoded form. Otherwise, return FAIL. */
6680static unsigned int
6681encode_thumb32_immediate (unsigned int val)
09d92015 6682{
c19d1205 6683 unsigned int a, i;
09d92015 6684
9c3c69f2 6685 if (val <= 0xff)
c19d1205 6686 return val;
a737bd4d 6687
9c3c69f2 6688 for (i = 1; i <= 24; i++)
09d92015 6689 {
9c3c69f2
PB
6690 a = val >> i;
6691 if ((val & ~(0xff << i)) == 0)
6692 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6693 }
a737bd4d 6694
c19d1205
ZW
6695 a = val & 0xff;
6696 if (val == ((a << 16) | a))
6697 return 0x100 | a;
6698 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6699 return 0x300 | a;
09d92015 6700
c19d1205
ZW
6701 a = val & 0xff00;
6702 if (val == ((a << 16) | a))
6703 return 0x200 | (a >> 8);
a737bd4d 6704
c19d1205 6705 return FAIL;
09d92015 6706}
5287ad62 6707/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6708
6709static void
5287ad62
JB
6710encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6711{
6712 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6713 && reg > 15)
6714 {
b1cc4aeb 6715 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6716 {
6717 if (thumb_mode)
6718 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6719 fpu_vfp_ext_d32);
5287ad62
JB
6720 else
6721 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6722 fpu_vfp_ext_d32);
5287ad62
JB
6723 }
6724 else
6725 {
dcbf9037 6726 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6727 return;
6728 }
6729 }
6730
c19d1205 6731 switch (pos)
09d92015 6732 {
c19d1205
ZW
6733 case VFP_REG_Sd:
6734 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6735 break;
6736
6737 case VFP_REG_Sn:
6738 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6739 break;
6740
6741 case VFP_REG_Sm:
6742 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6743 break;
6744
5287ad62
JB
6745 case VFP_REG_Dd:
6746 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6747 break;
5f4273c7 6748
5287ad62
JB
6749 case VFP_REG_Dn:
6750 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6751 break;
5f4273c7 6752
5287ad62
JB
6753 case VFP_REG_Dm:
6754 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6755 break;
6756
c19d1205
ZW
6757 default:
6758 abort ();
09d92015 6759 }
09d92015
MM
6760}
6761
c19d1205 6762/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6763 if any, is handled by md_apply_fix. */
09d92015 6764static void
c19d1205 6765encode_arm_shift (int i)
09d92015 6766{
c19d1205
ZW
6767 if (inst.operands[i].shift_kind == SHIFT_RRX)
6768 inst.instruction |= SHIFT_ROR << 5;
6769 else
09d92015 6770 {
c19d1205
ZW
6771 inst.instruction |= inst.operands[i].shift_kind << 5;
6772 if (inst.operands[i].immisreg)
6773 {
6774 inst.instruction |= SHIFT_BY_REG;
6775 inst.instruction |= inst.operands[i].imm << 8;
6776 }
6777 else
6778 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6779 }
c19d1205 6780}
09d92015 6781
c19d1205
ZW
6782static void
6783encode_arm_shifter_operand (int i)
6784{
6785 if (inst.operands[i].isreg)
09d92015 6786 {
c19d1205
ZW
6787 inst.instruction |= inst.operands[i].reg;
6788 encode_arm_shift (i);
09d92015 6789 }
c19d1205
ZW
6790 else
6791 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6792}
6793
c19d1205 6794/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6795static void
c19d1205 6796encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6797{
9c2799c2 6798 gas_assert (inst.operands[i].isreg);
c19d1205 6799 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6800
c19d1205 6801 if (inst.operands[i].preind)
09d92015 6802 {
c19d1205
ZW
6803 if (is_t)
6804 {
6805 inst.error = _("instruction does not accept preindexed addressing");
6806 return;
6807 }
6808 inst.instruction |= PRE_INDEX;
6809 if (inst.operands[i].writeback)
6810 inst.instruction |= WRITE_BACK;
09d92015 6811
c19d1205
ZW
6812 }
6813 else if (inst.operands[i].postind)
6814 {
9c2799c2 6815 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
6816 if (is_t)
6817 inst.instruction |= WRITE_BACK;
6818 }
6819 else /* unindexed - only for coprocessor */
09d92015 6820 {
c19d1205 6821 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6822 return;
6823 }
6824
c19d1205
ZW
6825 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6826 && (((inst.instruction & 0x000f0000) >> 16)
6827 == ((inst.instruction & 0x0000f000) >> 12)))
6828 as_warn ((inst.instruction & LOAD_BIT)
6829 ? _("destination register same as write-back base")
6830 : _("source register same as write-back base"));
09d92015
MM
6831}
6832
c19d1205
ZW
6833/* inst.operands[i] was set up by parse_address. Encode it into an
6834 ARM-format mode 2 load or store instruction. If is_t is true,
6835 reject forms that cannot be used with a T instruction (i.e. not
6836 post-indexed). */
a737bd4d 6837static void
c19d1205 6838encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6839{
5be8be5d
DG
6840 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6841
c19d1205 6842 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6843
c19d1205 6844 if (inst.operands[i].immisreg)
09d92015 6845 {
5be8be5d
DG
6846 constraint ((inst.operands[i].imm == REG_PC
6847 || (is_pc && inst.operands[i].writeback)),
6848 BAD_PC_ADDRESSING);
c19d1205
ZW
6849 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6850 inst.instruction |= inst.operands[i].imm;
6851 if (!inst.operands[i].negative)
6852 inst.instruction |= INDEX_UP;
6853 if (inst.operands[i].shifted)
6854 {
6855 if (inst.operands[i].shift_kind == SHIFT_RRX)
6856 inst.instruction |= SHIFT_ROR << 5;
6857 else
6858 {
6859 inst.instruction |= inst.operands[i].shift_kind << 5;
6860 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6861 }
6862 }
09d92015 6863 }
c19d1205 6864 else /* immediate offset in inst.reloc */
09d92015 6865 {
5be8be5d
DG
6866 if (is_pc && !inst.reloc.pc_rel)
6867 {
6868 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
6869
6870 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
6871 cannot use PC in addressing.
6872 PC cannot be used in writeback addressing, either. */
6873 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 6874 BAD_PC_ADDRESSING);
23a10334 6875
dc5ec521 6876 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
6877 if (warn_on_deprecated
6878 && !is_load
6879 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
6880 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
6881 }
6882
c19d1205
ZW
6883 if (inst.reloc.type == BFD_RELOC_UNUSED)
6884 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6885 }
09d92015
MM
6886}
6887
c19d1205
ZW
6888/* inst.operands[i] was set up by parse_address. Encode it into an
6889 ARM-format mode 3 load or store instruction. Reject forms that
6890 cannot be used with such instructions. If is_t is true, reject
6891 forms that cannot be used with a T instruction (i.e. not
6892 post-indexed). */
6893static void
6894encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6895{
c19d1205 6896 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6897 {
c19d1205
ZW
6898 inst.error = _("instruction does not accept scaled register index");
6899 return;
09d92015 6900 }
a737bd4d 6901
c19d1205 6902 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6903
c19d1205
ZW
6904 if (inst.operands[i].immisreg)
6905 {
5be8be5d
DG
6906 constraint ((inst.operands[i].imm == REG_PC
6907 || inst.operands[i].reg == REG_PC),
6908 BAD_PC_ADDRESSING);
c19d1205
ZW
6909 inst.instruction |= inst.operands[i].imm;
6910 if (!inst.operands[i].negative)
6911 inst.instruction |= INDEX_UP;
6912 }
6913 else /* immediate offset in inst.reloc */
6914 {
5be8be5d
DG
6915 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
6916 && inst.operands[i].writeback),
6917 BAD_PC_WRITEBACK);
c19d1205
ZW
6918 inst.instruction |= HWOFFSET_IMM;
6919 if (inst.reloc.type == BFD_RELOC_UNUSED)
6920 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6921 }
a737bd4d
NC
6922}
6923
c19d1205
ZW
6924/* inst.operands[i] was set up by parse_address. Encode it into an
6925 ARM-format instruction. Reject all forms which cannot be encoded
6926 into a coprocessor load/store instruction. If wb_ok is false,
6927 reject use of writeback; if unind_ok is false, reject use of
6928 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6929 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6930 (in which case it is preserved). */
09d92015 6931
c19d1205
ZW
6932static int
6933encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6934{
c19d1205 6935 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6936
9c2799c2 6937 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6938
c19d1205 6939 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6940 {
9c2799c2 6941 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
6942 if (!unind_ok)
6943 {
6944 inst.error = _("instruction does not support unindexed addressing");
6945 return FAIL;
6946 }
6947 inst.instruction |= inst.operands[i].imm;
6948 inst.instruction |= INDEX_UP;
6949 return SUCCESS;
09d92015 6950 }
a737bd4d 6951
c19d1205
ZW
6952 if (inst.operands[i].preind)
6953 inst.instruction |= PRE_INDEX;
a737bd4d 6954
c19d1205 6955 if (inst.operands[i].writeback)
09d92015 6956 {
c19d1205
ZW
6957 if (inst.operands[i].reg == REG_PC)
6958 {
6959 inst.error = _("pc may not be used with write-back");
6960 return FAIL;
6961 }
6962 if (!wb_ok)
6963 {
6964 inst.error = _("instruction does not support writeback");
6965 return FAIL;
6966 }
6967 inst.instruction |= WRITE_BACK;
09d92015 6968 }
a737bd4d 6969
c19d1205 6970 if (reloc_override)
21d799b5 6971 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
6972 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6973 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6974 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6975 {
6976 if (thumb_mode)
6977 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6978 else
6979 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6980 }
6981
c19d1205
ZW
6982 return SUCCESS;
6983}
a737bd4d 6984
c19d1205
ZW
6985/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6986 Determine whether it can be performed with a move instruction; if
6987 it can, convert inst.instruction to that move instruction and
c921be7d
NC
6988 return TRUE; if it can't, convert inst.instruction to a literal-pool
6989 load and return FALSE. If this is not a valid thing to do in the
6990 current context, set inst.error and return TRUE.
a737bd4d 6991
c19d1205
ZW
6992 inst.operands[i] describes the destination register. */
6993
c921be7d 6994static bfd_boolean
c19d1205
ZW
6995move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6996{
53365c0d
PB
6997 unsigned long tbit;
6998
6999 if (thumb_p)
7000 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7001 else
7002 tbit = LOAD_BIT;
7003
7004 if ((inst.instruction & tbit) == 0)
09d92015 7005 {
c19d1205 7006 inst.error = _("invalid pseudo operation");
c921be7d 7007 return TRUE;
09d92015 7008 }
c19d1205 7009 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7010 {
7011 inst.error = _("constant expression expected");
c921be7d 7012 return TRUE;
09d92015 7013 }
c19d1205 7014 if (inst.reloc.exp.X_op == O_constant)
09d92015 7015 {
c19d1205
ZW
7016 if (thumb_p)
7017 {
53365c0d 7018 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7019 {
7020 /* This can be done with a mov(1) instruction. */
7021 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7022 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7023 return TRUE;
c19d1205
ZW
7024 }
7025 }
7026 else
7027 {
7028 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7029 if (value != FAIL)
7030 {
7031 /* This can be done with a mov instruction. */
7032 inst.instruction &= LITERAL_MASK;
7033 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7034 inst.instruction |= value & 0xfff;
c921be7d 7035 return TRUE;
c19d1205 7036 }
09d92015 7037
c19d1205
ZW
7038 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7039 if (value != FAIL)
7040 {
7041 /* This can be done with a mvn instruction. */
7042 inst.instruction &= LITERAL_MASK;
7043 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7044 inst.instruction |= value & 0xfff;
c921be7d 7045 return TRUE;
c19d1205
ZW
7046 }
7047 }
09d92015
MM
7048 }
7049
c19d1205
ZW
7050 if (add_to_lit_pool () == FAIL)
7051 {
7052 inst.error = _("literal pool insertion failed");
c921be7d 7053 return TRUE;
c19d1205
ZW
7054 }
7055 inst.operands[1].reg = REG_PC;
7056 inst.operands[1].isreg = 1;
7057 inst.operands[1].preind = 1;
7058 inst.reloc.pc_rel = 1;
7059 inst.reloc.type = (thumb_p
7060 ? BFD_RELOC_ARM_THUMB_OFFSET
7061 : (mode_3
7062 ? BFD_RELOC_ARM_HWLITERAL
7063 : BFD_RELOC_ARM_LITERAL));
c921be7d 7064 return FALSE;
09d92015
MM
7065}
7066
5f4273c7 7067/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7068 First some generics; their names are taken from the conventional
7069 bit positions for register arguments in ARM format instructions. */
09d92015 7070
a737bd4d 7071static void
c19d1205 7072do_noargs (void)
09d92015 7073{
c19d1205 7074}
a737bd4d 7075
c19d1205
ZW
7076static void
7077do_rd (void)
7078{
7079 inst.instruction |= inst.operands[0].reg << 12;
7080}
a737bd4d 7081
c19d1205
ZW
7082static void
7083do_rd_rm (void)
7084{
7085 inst.instruction |= inst.operands[0].reg << 12;
7086 inst.instruction |= inst.operands[1].reg;
7087}
09d92015 7088
c19d1205
ZW
7089static void
7090do_rd_rn (void)
7091{
7092 inst.instruction |= inst.operands[0].reg << 12;
7093 inst.instruction |= inst.operands[1].reg << 16;
7094}
a737bd4d 7095
c19d1205
ZW
7096static void
7097do_rn_rd (void)
7098{
7099 inst.instruction |= inst.operands[0].reg << 16;
7100 inst.instruction |= inst.operands[1].reg << 12;
7101}
09d92015 7102
c19d1205
ZW
7103static void
7104do_rd_rm_rn (void)
7105{
9a64e435 7106 unsigned Rn = inst.operands[2].reg;
708587a4 7107 /* Enforce restrictions on SWP instruction. */
9a64e435 7108 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7109 {
7110 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7111 _("Rn must not overlap other operands"));
7112
7113 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7114 if (warn_on_deprecated
7115 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7116 as_warn (_("swp{b} use is deprecated for this architecture"));
7117
7118 }
c19d1205
ZW
7119 inst.instruction |= inst.operands[0].reg << 12;
7120 inst.instruction |= inst.operands[1].reg;
9a64e435 7121 inst.instruction |= Rn << 16;
c19d1205 7122}
09d92015 7123
c19d1205
ZW
7124static void
7125do_rd_rn_rm (void)
7126{
7127 inst.instruction |= inst.operands[0].reg << 12;
7128 inst.instruction |= inst.operands[1].reg << 16;
7129 inst.instruction |= inst.operands[2].reg;
7130}
a737bd4d 7131
c19d1205
ZW
7132static void
7133do_rm_rd_rn (void)
7134{
5be8be5d
DG
7135 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7136 constraint (((inst.reloc.exp.X_op != O_constant
7137 && inst.reloc.exp.X_op != O_illegal)
7138 || inst.reloc.exp.X_add_number != 0),
7139 BAD_ADDR_MODE);
c19d1205
ZW
7140 inst.instruction |= inst.operands[0].reg;
7141 inst.instruction |= inst.operands[1].reg << 12;
7142 inst.instruction |= inst.operands[2].reg << 16;
7143}
09d92015 7144
c19d1205
ZW
7145static void
7146do_imm0 (void)
7147{
7148 inst.instruction |= inst.operands[0].imm;
7149}
09d92015 7150
c19d1205
ZW
7151static void
7152do_rd_cpaddr (void)
7153{
7154 inst.instruction |= inst.operands[0].reg << 12;
7155 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7156}
a737bd4d 7157
c19d1205
ZW
7158/* ARM instructions, in alphabetical order by function name (except
7159 that wrapper functions appear immediately after the function they
7160 wrap). */
09d92015 7161
c19d1205
ZW
7162/* This is a pseudo-op of the form "adr rd, label" to be converted
7163 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7164
7165static void
c19d1205 7166do_adr (void)
09d92015 7167{
c19d1205 7168 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7169
c19d1205
ZW
7170 /* Frag hacking will turn this into a sub instruction if the offset turns
7171 out to be negative. */
7172 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7173 inst.reloc.pc_rel = 1;
2fc8bdac 7174 inst.reloc.exp.X_add_number -= 8;
c19d1205 7175}
b99bd4ef 7176
c19d1205
ZW
7177/* This is a pseudo-op of the form "adrl rd, label" to be converted
7178 into a relative address of the form:
7179 add rd, pc, #low(label-.-8)"
7180 add rd, rd, #high(label-.-8)" */
b99bd4ef 7181
c19d1205
ZW
7182static void
7183do_adrl (void)
7184{
7185 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7186
c19d1205
ZW
7187 /* Frag hacking will turn this into a sub instruction if the offset turns
7188 out to be negative. */
7189 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7190 inst.reloc.pc_rel = 1;
7191 inst.size = INSN_SIZE * 2;
2fc8bdac 7192 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7193}
7194
b99bd4ef 7195static void
c19d1205 7196do_arit (void)
b99bd4ef 7197{
c19d1205
ZW
7198 if (!inst.operands[1].present)
7199 inst.operands[1].reg = inst.operands[0].reg;
7200 inst.instruction |= inst.operands[0].reg << 12;
7201 inst.instruction |= inst.operands[1].reg << 16;
7202 encode_arm_shifter_operand (2);
7203}
b99bd4ef 7204
62b3e311
PB
7205static void
7206do_barrier (void)
7207{
7208 if (inst.operands[0].present)
7209 {
7210 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7211 && inst.operands[0].imm > 0xf
7212 && inst.operands[0].imm < 0x0,
bd3ba5d1 7213 _("bad barrier type"));
62b3e311
PB
7214 inst.instruction |= inst.operands[0].imm;
7215 }
7216 else
7217 inst.instruction |= 0xf;
7218}
7219
c19d1205
ZW
7220static void
7221do_bfc (void)
7222{
7223 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7224 constraint (msb > 32, _("bit-field extends past end of register"));
7225 /* The instruction encoding stores the LSB and MSB,
7226 not the LSB and width. */
7227 inst.instruction |= inst.operands[0].reg << 12;
7228 inst.instruction |= inst.operands[1].imm << 7;
7229 inst.instruction |= (msb - 1) << 16;
7230}
b99bd4ef 7231
c19d1205
ZW
7232static void
7233do_bfi (void)
7234{
7235 unsigned int msb;
b99bd4ef 7236
c19d1205
ZW
7237 /* #0 in second position is alternative syntax for bfc, which is
7238 the same instruction but with REG_PC in the Rm field. */
7239 if (!inst.operands[1].isreg)
7240 inst.operands[1].reg = REG_PC;
b99bd4ef 7241
c19d1205
ZW
7242 msb = inst.operands[2].imm + inst.operands[3].imm;
7243 constraint (msb > 32, _("bit-field extends past end of register"));
7244 /* The instruction encoding stores the LSB and MSB,
7245 not the LSB and width. */
7246 inst.instruction |= inst.operands[0].reg << 12;
7247 inst.instruction |= inst.operands[1].reg;
7248 inst.instruction |= inst.operands[2].imm << 7;
7249 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7250}
7251
b99bd4ef 7252static void
c19d1205 7253do_bfx (void)
b99bd4ef 7254{
c19d1205
ZW
7255 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7256 _("bit-field extends past end of register"));
7257 inst.instruction |= inst.operands[0].reg << 12;
7258 inst.instruction |= inst.operands[1].reg;
7259 inst.instruction |= inst.operands[2].imm << 7;
7260 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7261}
09d92015 7262
c19d1205
ZW
7263/* ARM V5 breakpoint instruction (argument parse)
7264 BKPT <16 bit unsigned immediate>
7265 Instruction is not conditional.
7266 The bit pattern given in insns[] has the COND_ALWAYS condition,
7267 and it is an error if the caller tried to override that. */
b99bd4ef 7268
c19d1205
ZW
7269static void
7270do_bkpt (void)
7271{
7272 /* Top 12 of 16 bits to bits 19:8. */
7273 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7274
c19d1205
ZW
7275 /* Bottom 4 of 16 bits to bits 3:0. */
7276 inst.instruction |= inst.operands[0].imm & 0xf;
7277}
09d92015 7278
c19d1205
ZW
7279static void
7280encode_branch (int default_reloc)
7281{
7282 if (inst.operands[0].hasreloc)
7283 {
7284 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7285 _("the only suffix valid here is '(plt)'"));
267bf995 7286 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 7287 }
b99bd4ef 7288 else
9ae92b05 7289 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7290 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7291}
7292
b99bd4ef 7293static void
c19d1205 7294do_branch (void)
b99bd4ef 7295{
39b41c9c
PB
7296#ifdef OBJ_ELF
7297 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7298 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7299 else
7300#endif
7301 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7302}
7303
7304static void
7305do_bl (void)
7306{
7307#ifdef OBJ_ELF
7308 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7309 {
7310 if (inst.cond == COND_ALWAYS)
7311 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7312 else
7313 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7314 }
7315 else
7316#endif
7317 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7318}
b99bd4ef 7319
c19d1205
ZW
7320/* ARM V5 branch-link-exchange instruction (argument parse)
7321 BLX <target_addr> ie BLX(1)
7322 BLX{<condition>} <Rm> ie BLX(2)
7323 Unfortunately, there are two different opcodes for this mnemonic.
7324 So, the insns[].value is not used, and the code here zaps values
7325 into inst.instruction.
7326 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7327
c19d1205
ZW
7328static void
7329do_blx (void)
7330{
7331 if (inst.operands[0].isreg)
b99bd4ef 7332 {
c19d1205
ZW
7333 /* Arg is a register; the opcode provided by insns[] is correct.
7334 It is not illegal to do "blx pc", just useless. */
7335 if (inst.operands[0].reg == REG_PC)
7336 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7337
c19d1205
ZW
7338 inst.instruction |= inst.operands[0].reg;
7339 }
7340 else
b99bd4ef 7341 {
c19d1205 7342 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7343 conditionally, and the opcode must be adjusted.
7344 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7345 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7346 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7347 inst.instruction = 0xfa000000;
267bf995 7348 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7349 }
c19d1205
ZW
7350}
7351
7352static void
7353do_bx (void)
7354{
845b51d6
PB
7355 bfd_boolean want_reloc;
7356
c19d1205
ZW
7357 if (inst.operands[0].reg == REG_PC)
7358 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7359
c19d1205 7360 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7361 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7362 it is for ARMv4t or earlier. */
7363 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7364 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7365 want_reloc = TRUE;
7366
5ad34203 7367#ifdef OBJ_ELF
845b51d6 7368 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7369#endif
584206db 7370 want_reloc = FALSE;
845b51d6
PB
7371
7372 if (want_reloc)
7373 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7374}
7375
c19d1205
ZW
7376
7377/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7378
7379static void
c19d1205 7380do_bxj (void)
a737bd4d 7381{
c19d1205
ZW
7382 if (inst.operands[0].reg == REG_PC)
7383 as_tsktsk (_("use of r15 in bxj is not really useful"));
7384
7385 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7386}
7387
c19d1205
ZW
7388/* Co-processor data operation:
7389 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7390 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7391static void
7392do_cdp (void)
7393{
7394 inst.instruction |= inst.operands[0].reg << 8;
7395 inst.instruction |= inst.operands[1].imm << 20;
7396 inst.instruction |= inst.operands[2].reg << 12;
7397 inst.instruction |= inst.operands[3].reg << 16;
7398 inst.instruction |= inst.operands[4].reg;
7399 inst.instruction |= inst.operands[5].imm << 5;
7400}
a737bd4d
NC
7401
7402static void
c19d1205 7403do_cmp (void)
a737bd4d 7404{
c19d1205
ZW
7405 inst.instruction |= inst.operands[0].reg << 16;
7406 encode_arm_shifter_operand (1);
a737bd4d
NC
7407}
7408
c19d1205
ZW
7409/* Transfer between coprocessor and ARM registers.
7410 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7411 MRC2
7412 MCR{cond}
7413 MCR2
7414
7415 No special properties. */
09d92015
MM
7416
7417static void
c19d1205 7418do_co_reg (void)
09d92015 7419{
fdfde340
JM
7420 unsigned Rd;
7421
7422 Rd = inst.operands[2].reg;
7423 if (thumb_mode)
7424 {
7425 if (inst.instruction == 0xee000010
7426 || inst.instruction == 0xfe000010)
7427 /* MCR, MCR2 */
7428 reject_bad_reg (Rd);
7429 else
7430 /* MRC, MRC2 */
7431 constraint (Rd == REG_SP, BAD_SP);
7432 }
7433 else
7434 {
7435 /* MCR */
7436 if (inst.instruction == 0xe000010)
7437 constraint (Rd == REG_PC, BAD_PC);
7438 }
7439
7440
c19d1205
ZW
7441 inst.instruction |= inst.operands[0].reg << 8;
7442 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7443 inst.instruction |= Rd << 12;
c19d1205
ZW
7444 inst.instruction |= inst.operands[3].reg << 16;
7445 inst.instruction |= inst.operands[4].reg;
7446 inst.instruction |= inst.operands[5].imm << 5;
7447}
09d92015 7448
c19d1205
ZW
7449/* Transfer between coprocessor register and pair of ARM registers.
7450 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7451 MCRR2
7452 MRRC{cond}
7453 MRRC2
b99bd4ef 7454
c19d1205 7455 Two XScale instructions are special cases of these:
09d92015 7456
c19d1205
ZW
7457 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7458 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7459
5f4273c7 7460 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7461
c19d1205
ZW
7462static void
7463do_co_reg2c (void)
7464{
fdfde340
JM
7465 unsigned Rd, Rn;
7466
7467 Rd = inst.operands[2].reg;
7468 Rn = inst.operands[3].reg;
7469
7470 if (thumb_mode)
7471 {
7472 reject_bad_reg (Rd);
7473 reject_bad_reg (Rn);
7474 }
7475 else
7476 {
7477 constraint (Rd == REG_PC, BAD_PC);
7478 constraint (Rn == REG_PC, BAD_PC);
7479 }
7480
c19d1205
ZW
7481 inst.instruction |= inst.operands[0].reg << 8;
7482 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7483 inst.instruction |= Rd << 12;
7484 inst.instruction |= Rn << 16;
c19d1205 7485 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7486}
7487
c19d1205
ZW
7488static void
7489do_cpsi (void)
7490{
7491 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7492 if (inst.operands[1].present)
7493 {
7494 inst.instruction |= CPSI_MMOD;
7495 inst.instruction |= inst.operands[1].imm;
7496 }
c19d1205 7497}
b99bd4ef 7498
62b3e311
PB
7499static void
7500do_dbg (void)
7501{
7502 inst.instruction |= inst.operands[0].imm;
7503}
7504
eea54501
MGD
7505static void
7506do_div (void)
7507{
7508 unsigned Rd, Rn, Rm;
7509
7510 Rd = inst.operands[0].reg;
7511 Rn = (inst.operands[1].present
7512 ? inst.operands[1].reg : Rd);
7513 Rm = inst.operands[2].reg;
7514
7515 constraint ((Rd == REG_PC), BAD_PC);
7516 constraint ((Rn == REG_PC), BAD_PC);
7517 constraint ((Rm == REG_PC), BAD_PC);
7518
7519 inst.instruction |= Rd << 16;
7520 inst.instruction |= Rn << 0;
7521 inst.instruction |= Rm << 8;
7522}
7523
b99bd4ef 7524static void
c19d1205 7525do_it (void)
b99bd4ef 7526{
c19d1205 7527 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7528 process it to do the validation as if in
7529 thumb mode, just in case the code gets
7530 assembled for thumb using the unified syntax. */
7531
c19d1205 7532 inst.size = 0;
e07e6e58
NC
7533 if (unified_syntax)
7534 {
7535 set_it_insn_type (IT_INSN);
7536 now_it.mask = (inst.instruction & 0xf) | 0x10;
7537 now_it.cc = inst.operands[0].imm;
7538 }
09d92015 7539}
b99bd4ef 7540
09d92015 7541static void
c19d1205 7542do_ldmstm (void)
ea6ef066 7543{
c19d1205
ZW
7544 int base_reg = inst.operands[0].reg;
7545 int range = inst.operands[1].imm;
ea6ef066 7546
c19d1205
ZW
7547 inst.instruction |= base_reg << 16;
7548 inst.instruction |= range;
ea6ef066 7549
c19d1205
ZW
7550 if (inst.operands[1].writeback)
7551 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7552
c19d1205 7553 if (inst.operands[0].writeback)
ea6ef066 7554 {
c19d1205
ZW
7555 inst.instruction |= WRITE_BACK;
7556 /* Check for unpredictable uses of writeback. */
7557 if (inst.instruction & LOAD_BIT)
09d92015 7558 {
c19d1205
ZW
7559 /* Not allowed in LDM type 2. */
7560 if ((inst.instruction & LDM_TYPE_2_OR_3)
7561 && ((range & (1 << REG_PC)) == 0))
7562 as_warn (_("writeback of base register is UNPREDICTABLE"));
7563 /* Only allowed if base reg not in list for other types. */
7564 else if (range & (1 << base_reg))
7565 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7566 }
7567 else /* STM. */
7568 {
7569 /* Not allowed for type 2. */
7570 if (inst.instruction & LDM_TYPE_2_OR_3)
7571 as_warn (_("writeback of base register is UNPREDICTABLE"));
7572 /* Only allowed if base reg not in list, or first in list. */
7573 else if ((range & (1 << base_reg))
7574 && (range & ((1 << base_reg) - 1)))
7575 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7576 }
ea6ef066 7577 }
a737bd4d
NC
7578}
7579
c19d1205
ZW
7580/* ARMv5TE load-consecutive (argument parse)
7581 Mode is like LDRH.
7582
7583 LDRccD R, mode
7584 STRccD R, mode. */
7585
a737bd4d 7586static void
c19d1205 7587do_ldrd (void)
a737bd4d 7588{
c19d1205
ZW
7589 constraint (inst.operands[0].reg % 2 != 0,
7590 _("first destination register must be even"));
7591 constraint (inst.operands[1].present
7592 && inst.operands[1].reg != inst.operands[0].reg + 1,
7593 _("can only load two consecutive registers"));
7594 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7595 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7596
c19d1205
ZW
7597 if (!inst.operands[1].present)
7598 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7599
c19d1205 7600 if (inst.instruction & LOAD_BIT)
a737bd4d 7601 {
c19d1205
ZW
7602 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7603 register and the first register written; we have to diagnose
7604 overlap between the base and the second register written here. */
ea6ef066 7605
c19d1205
ZW
7606 if (inst.operands[2].reg == inst.operands[1].reg
7607 && (inst.operands[2].writeback || inst.operands[2].postind))
7608 as_warn (_("base register written back, and overlaps "
7609 "second destination register"));
b05fe5cf 7610
c19d1205
ZW
7611 /* For an index-register load, the index register must not overlap the
7612 destination (even if not write-back). */
7613 else if (inst.operands[2].immisreg
ca3f61f7
NC
7614 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7615 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 7616 as_warn (_("index register overlaps destination register"));
b05fe5cf 7617 }
c19d1205
ZW
7618
7619 inst.instruction |= inst.operands[0].reg << 12;
7620 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7621}
7622
7623static void
c19d1205 7624do_ldrex (void)
b05fe5cf 7625{
c19d1205
ZW
7626 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7627 || inst.operands[1].postind || inst.operands[1].writeback
7628 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7629 || inst.operands[1].negative
7630 /* This can arise if the programmer has written
7631 strex rN, rM, foo
7632 or if they have mistakenly used a register name as the last
7633 operand, eg:
7634 strex rN, rM, rX
7635 It is very difficult to distinguish between these two cases
7636 because "rX" might actually be a label. ie the register
7637 name has been occluded by a symbol of the same name. So we
7638 just generate a general 'bad addressing mode' type error
7639 message and leave it up to the programmer to discover the
7640 true cause and fix their mistake. */
7641 || (inst.operands[1].reg == REG_PC),
7642 BAD_ADDR_MODE);
b05fe5cf 7643
c19d1205
ZW
7644 constraint (inst.reloc.exp.X_op != O_constant
7645 || inst.reloc.exp.X_add_number != 0,
7646 _("offset must be zero in ARM encoding"));
b05fe5cf 7647
5be8be5d
DG
7648 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7649
c19d1205
ZW
7650 inst.instruction |= inst.operands[0].reg << 12;
7651 inst.instruction |= inst.operands[1].reg << 16;
7652 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7653}
7654
7655static void
c19d1205 7656do_ldrexd (void)
b05fe5cf 7657{
c19d1205
ZW
7658 constraint (inst.operands[0].reg % 2 != 0,
7659 _("even register required"));
7660 constraint (inst.operands[1].present
7661 && inst.operands[1].reg != inst.operands[0].reg + 1,
7662 _("can only load two consecutive registers"));
7663 /* If op 1 were present and equal to PC, this function wouldn't
7664 have been called in the first place. */
7665 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7666
c19d1205
ZW
7667 inst.instruction |= inst.operands[0].reg << 12;
7668 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7669}
7670
7671static void
c19d1205 7672do_ldst (void)
b05fe5cf 7673{
c19d1205
ZW
7674 inst.instruction |= inst.operands[0].reg << 12;
7675 if (!inst.operands[1].isreg)
7676 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7677 return;
c19d1205 7678 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7679}
7680
7681static void
c19d1205 7682do_ldstt (void)
b05fe5cf 7683{
c19d1205
ZW
7684 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7685 reject [Rn,...]. */
7686 if (inst.operands[1].preind)
b05fe5cf 7687 {
bd3ba5d1
NC
7688 constraint (inst.reloc.exp.X_op != O_constant
7689 || inst.reloc.exp.X_add_number != 0,
c19d1205 7690 _("this instruction requires a post-indexed address"));
b05fe5cf 7691
c19d1205
ZW
7692 inst.operands[1].preind = 0;
7693 inst.operands[1].postind = 1;
7694 inst.operands[1].writeback = 1;
b05fe5cf 7695 }
c19d1205
ZW
7696 inst.instruction |= inst.operands[0].reg << 12;
7697 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7698}
b05fe5cf 7699
c19d1205 7700/* Halfword and signed-byte load/store operations. */
b05fe5cf 7701
c19d1205
ZW
7702static void
7703do_ldstv4 (void)
7704{
ff4a8d2b 7705 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7706 inst.instruction |= inst.operands[0].reg << 12;
7707 if (!inst.operands[1].isreg)
7708 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7709 return;
c19d1205 7710 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7711}
7712
7713static void
c19d1205 7714do_ldsttv4 (void)
b05fe5cf 7715{
c19d1205
ZW
7716 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7717 reject [Rn,...]. */
7718 if (inst.operands[1].preind)
b05fe5cf 7719 {
bd3ba5d1
NC
7720 constraint (inst.reloc.exp.X_op != O_constant
7721 || inst.reloc.exp.X_add_number != 0,
c19d1205 7722 _("this instruction requires a post-indexed address"));
b05fe5cf 7723
c19d1205
ZW
7724 inst.operands[1].preind = 0;
7725 inst.operands[1].postind = 1;
7726 inst.operands[1].writeback = 1;
b05fe5cf 7727 }
c19d1205
ZW
7728 inst.instruction |= inst.operands[0].reg << 12;
7729 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7730}
b05fe5cf 7731
c19d1205
ZW
7732/* Co-processor register load/store.
7733 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7734static void
7735do_lstc (void)
7736{
7737 inst.instruction |= inst.operands[0].reg << 8;
7738 inst.instruction |= inst.operands[1].reg << 12;
7739 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7740}
7741
b05fe5cf 7742static void
c19d1205 7743do_mlas (void)
b05fe5cf 7744{
8fb9d7b9 7745 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7746 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7747 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7748 && !(inst.instruction & 0x00400000))
8fb9d7b9 7749 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7750
c19d1205
ZW
7751 inst.instruction |= inst.operands[0].reg << 16;
7752 inst.instruction |= inst.operands[1].reg;
7753 inst.instruction |= inst.operands[2].reg << 8;
7754 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7755}
b05fe5cf 7756
c19d1205
ZW
7757static void
7758do_mov (void)
7759{
7760 inst.instruction |= inst.operands[0].reg << 12;
7761 encode_arm_shifter_operand (1);
7762}
b05fe5cf 7763
c19d1205
ZW
7764/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7765static void
7766do_mov16 (void)
7767{
b6895b4f
PB
7768 bfd_vma imm;
7769 bfd_boolean top;
7770
7771 top = (inst.instruction & 0x00400000) != 0;
7772 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7773 _(":lower16: not allowed this instruction"));
7774 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7775 _(":upper16: not allowed instruction"));
c19d1205 7776 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7777 if (inst.reloc.type == BFD_RELOC_UNUSED)
7778 {
7779 imm = inst.reloc.exp.X_add_number;
7780 /* The value is in two pieces: 0:11, 16:19. */
7781 inst.instruction |= (imm & 0x00000fff);
7782 inst.instruction |= (imm & 0x0000f000) << 4;
7783 }
b05fe5cf 7784}
b99bd4ef 7785
037e8744
JB
7786static void do_vfp_nsyn_opcode (const char *);
7787
7788static int
7789do_vfp_nsyn_mrs (void)
7790{
7791 if (inst.operands[0].isvec)
7792 {
7793 if (inst.operands[1].reg != 1)
7794 first_error (_("operand 1 must be FPSCR"));
7795 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7796 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7797 do_vfp_nsyn_opcode ("fmstat");
7798 }
7799 else if (inst.operands[1].isvec)
7800 do_vfp_nsyn_opcode ("fmrx");
7801 else
7802 return FAIL;
5f4273c7 7803
037e8744
JB
7804 return SUCCESS;
7805}
7806
7807static int
7808do_vfp_nsyn_msr (void)
7809{
7810 if (inst.operands[0].isvec)
7811 do_vfp_nsyn_opcode ("fmxr");
7812 else
7813 return FAIL;
7814
7815 return SUCCESS;
7816}
7817
f7c21dc7
NC
7818static void
7819do_vmrs (void)
7820{
7821 unsigned Rt = inst.operands[0].reg;
7822
7823 if (thumb_mode && inst.operands[0].reg == REG_SP)
7824 {
7825 inst.error = BAD_SP;
7826 return;
7827 }
7828
7829 /* APSR_ sets isvec. All other refs to PC are illegal. */
7830 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7831 {
7832 inst.error = BAD_PC;
7833 return;
7834 }
7835
7836 if (inst.operands[1].reg != 1)
7837 first_error (_("operand 1 must be FPSCR"));
7838
7839 inst.instruction |= (Rt << 12);
7840}
7841
7842static void
7843do_vmsr (void)
7844{
7845 unsigned Rt = inst.operands[1].reg;
7846
7847 if (thumb_mode)
7848 reject_bad_reg (Rt);
7849 else if (Rt == REG_PC)
7850 {
7851 inst.error = BAD_PC;
7852 return;
7853 }
7854
7855 if (inst.operands[0].reg != 1)
7856 first_error (_("operand 0 must be FPSCR"));
7857
7858 inst.instruction |= (Rt << 12);
7859}
7860
b99bd4ef 7861static void
c19d1205 7862do_mrs (void)
b99bd4ef 7863{
90ec0d68
MGD
7864 unsigned br;
7865
037e8744
JB
7866 if (do_vfp_nsyn_mrs () == SUCCESS)
7867 return;
7868
ff4a8d2b 7869 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 7870 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
7871
7872 if (inst.operands[1].isreg)
7873 {
7874 br = inst.operands[1].reg;
7875 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
7876 as_bad (_("bad register for mrs"));
7877 }
7878 else
7879 {
7880 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7881 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7882 != (PSR_c|PSR_f),
7883 _("'CPSR' or 'SPSR' expected"));
7884 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
7885 }
7886
7887 inst.instruction |= br;
c19d1205 7888}
b99bd4ef 7889
c19d1205
ZW
7890/* Two possible forms:
7891 "{C|S}PSR_<field>, Rm",
7892 "{C|S}PSR_f, #expression". */
b99bd4ef 7893
c19d1205
ZW
7894static void
7895do_msr (void)
7896{
037e8744
JB
7897 if (do_vfp_nsyn_msr () == SUCCESS)
7898 return;
7899
c19d1205
ZW
7900 inst.instruction |= inst.operands[0].imm;
7901 if (inst.operands[1].isreg)
7902 inst.instruction |= inst.operands[1].reg;
7903 else
b99bd4ef 7904 {
c19d1205
ZW
7905 inst.instruction |= INST_IMMEDIATE;
7906 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7907 inst.reloc.pc_rel = 0;
b99bd4ef 7908 }
b99bd4ef
NC
7909}
7910
c19d1205
ZW
7911static void
7912do_mul (void)
a737bd4d 7913{
ff4a8d2b
NC
7914 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7915
c19d1205
ZW
7916 if (!inst.operands[2].present)
7917 inst.operands[2].reg = inst.operands[0].reg;
7918 inst.instruction |= inst.operands[0].reg << 16;
7919 inst.instruction |= inst.operands[1].reg;
7920 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7921
8fb9d7b9
MS
7922 if (inst.operands[0].reg == inst.operands[1].reg
7923 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7924 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7925}
7926
c19d1205
ZW
7927/* Long Multiply Parser
7928 UMULL RdLo, RdHi, Rm, Rs
7929 SMULL RdLo, RdHi, Rm, Rs
7930 UMLAL RdLo, RdHi, Rm, Rs
7931 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7932
7933static void
c19d1205 7934do_mull (void)
b99bd4ef 7935{
c19d1205
ZW
7936 inst.instruction |= inst.operands[0].reg << 12;
7937 inst.instruction |= inst.operands[1].reg << 16;
7938 inst.instruction |= inst.operands[2].reg;
7939 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7940
682b27ad
PB
7941 /* rdhi and rdlo must be different. */
7942 if (inst.operands[0].reg == inst.operands[1].reg)
7943 as_tsktsk (_("rdhi and rdlo must be different"));
7944
7945 /* rdhi, rdlo and rm must all be different before armv6. */
7946 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 7947 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 7948 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
7949 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7950}
b99bd4ef 7951
c19d1205
ZW
7952static void
7953do_nop (void)
7954{
e7495e45
NS
7955 if (inst.operands[0].present
7956 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
7957 {
7958 /* Architectural NOP hints are CPSR sets with no bits selected. */
7959 inst.instruction &= 0xf0000000;
e7495e45
NS
7960 inst.instruction |= 0x0320f000;
7961 if (inst.operands[0].present)
7962 inst.instruction |= inst.operands[0].imm;
c19d1205 7963 }
b99bd4ef
NC
7964}
7965
c19d1205
ZW
7966/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7967 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7968 Condition defaults to COND_ALWAYS.
7969 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7970
7971static void
c19d1205 7972do_pkhbt (void)
b99bd4ef 7973{
c19d1205
ZW
7974 inst.instruction |= inst.operands[0].reg << 12;
7975 inst.instruction |= inst.operands[1].reg << 16;
7976 inst.instruction |= inst.operands[2].reg;
7977 if (inst.operands[3].present)
7978 encode_arm_shift (3);
7979}
b99bd4ef 7980
c19d1205 7981/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7982
c19d1205
ZW
7983static void
7984do_pkhtb (void)
7985{
7986 if (!inst.operands[3].present)
b99bd4ef 7987 {
c19d1205
ZW
7988 /* If the shift specifier is omitted, turn the instruction
7989 into pkhbt rd, rm, rn. */
7990 inst.instruction &= 0xfff00010;
7991 inst.instruction |= inst.operands[0].reg << 12;
7992 inst.instruction |= inst.operands[1].reg;
7993 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7994 }
7995 else
7996 {
c19d1205
ZW
7997 inst.instruction |= inst.operands[0].reg << 12;
7998 inst.instruction |= inst.operands[1].reg << 16;
7999 inst.instruction |= inst.operands[2].reg;
8000 encode_arm_shift (3);
b99bd4ef
NC
8001 }
8002}
8003
c19d1205 8004/* ARMv5TE: Preload-Cache
60e5ef9f 8005 MP Extensions: Preload for write
c19d1205 8006
60e5ef9f 8007 PLD(W) <addr_mode>
c19d1205
ZW
8008
8009 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8010
8011static void
c19d1205 8012do_pld (void)
b99bd4ef 8013{
c19d1205
ZW
8014 constraint (!inst.operands[0].isreg,
8015 _("'[' expected after PLD mnemonic"));
8016 constraint (inst.operands[0].postind,
8017 _("post-indexed expression used in preload instruction"));
8018 constraint (inst.operands[0].writeback,
8019 _("writeback used in preload instruction"));
8020 constraint (!inst.operands[0].preind,
8021 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8022 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8023}
b99bd4ef 8024
62b3e311
PB
8025/* ARMv7: PLI <addr_mode> */
8026static void
8027do_pli (void)
8028{
8029 constraint (!inst.operands[0].isreg,
8030 _("'[' expected after PLI mnemonic"));
8031 constraint (inst.operands[0].postind,
8032 _("post-indexed expression used in preload instruction"));
8033 constraint (inst.operands[0].writeback,
8034 _("writeback used in preload instruction"));
8035 constraint (!inst.operands[0].preind,
8036 _("unindexed addressing used in preload instruction"));
8037 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8038 inst.instruction &= ~PRE_INDEX;
8039}
8040
c19d1205
ZW
8041static void
8042do_push_pop (void)
8043{
8044 inst.operands[1] = inst.operands[0];
8045 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8046 inst.operands[0].isreg = 1;
8047 inst.operands[0].writeback = 1;
8048 inst.operands[0].reg = REG_SP;
8049 do_ldmstm ();
8050}
b99bd4ef 8051
c19d1205
ZW
8052/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8053 word at the specified address and the following word
8054 respectively.
8055 Unconditionally executed.
8056 Error if Rn is R15. */
b99bd4ef 8057
c19d1205
ZW
8058static void
8059do_rfe (void)
8060{
8061 inst.instruction |= inst.operands[0].reg << 16;
8062 if (inst.operands[0].writeback)
8063 inst.instruction |= WRITE_BACK;
8064}
b99bd4ef 8065
c19d1205 8066/* ARM V6 ssat (argument parse). */
b99bd4ef 8067
c19d1205
ZW
8068static void
8069do_ssat (void)
8070{
8071 inst.instruction |= inst.operands[0].reg << 12;
8072 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8073 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8074
c19d1205
ZW
8075 if (inst.operands[3].present)
8076 encode_arm_shift (3);
b99bd4ef
NC
8077}
8078
c19d1205 8079/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8080
8081static void
c19d1205 8082do_usat (void)
b99bd4ef 8083{
c19d1205
ZW
8084 inst.instruction |= inst.operands[0].reg << 12;
8085 inst.instruction |= inst.operands[1].imm << 16;
8086 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8087
c19d1205
ZW
8088 if (inst.operands[3].present)
8089 encode_arm_shift (3);
b99bd4ef
NC
8090}
8091
c19d1205 8092/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8093
8094static void
c19d1205 8095do_ssat16 (void)
09d92015 8096{
c19d1205
ZW
8097 inst.instruction |= inst.operands[0].reg << 12;
8098 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8099 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8100}
8101
c19d1205
ZW
8102static void
8103do_usat16 (void)
a737bd4d 8104{
c19d1205
ZW
8105 inst.instruction |= inst.operands[0].reg << 12;
8106 inst.instruction |= inst.operands[1].imm << 16;
8107 inst.instruction |= inst.operands[2].reg;
8108}
a737bd4d 8109
c19d1205
ZW
8110/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8111 preserving the other bits.
a737bd4d 8112
c19d1205
ZW
8113 setend <endian_specifier>, where <endian_specifier> is either
8114 BE or LE. */
a737bd4d 8115
c19d1205
ZW
8116static void
8117do_setend (void)
8118{
8119 if (inst.operands[0].imm)
8120 inst.instruction |= 0x200;
a737bd4d
NC
8121}
8122
8123static void
c19d1205 8124do_shift (void)
a737bd4d 8125{
c19d1205
ZW
8126 unsigned int Rm = (inst.operands[1].present
8127 ? inst.operands[1].reg
8128 : inst.operands[0].reg);
a737bd4d 8129
c19d1205
ZW
8130 inst.instruction |= inst.operands[0].reg << 12;
8131 inst.instruction |= Rm;
8132 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8133 {
c19d1205
ZW
8134 inst.instruction |= inst.operands[2].reg << 8;
8135 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
8136 }
8137 else
c19d1205 8138 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8139}
8140
09d92015 8141static void
3eb17e6b 8142do_smc (void)
09d92015 8143{
3eb17e6b 8144 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8145 inst.reloc.pc_rel = 0;
09d92015
MM
8146}
8147
90ec0d68
MGD
8148static void
8149do_hvc (void)
8150{
8151 inst.reloc.type = BFD_RELOC_ARM_HVC;
8152 inst.reloc.pc_rel = 0;
8153}
8154
09d92015 8155static void
c19d1205 8156do_swi (void)
09d92015 8157{
c19d1205
ZW
8158 inst.reloc.type = BFD_RELOC_ARM_SWI;
8159 inst.reloc.pc_rel = 0;
09d92015
MM
8160}
8161
c19d1205
ZW
8162/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8163 SMLAxy{cond} Rd,Rm,Rs,Rn
8164 SMLAWy{cond} Rd,Rm,Rs,Rn
8165 Error if any register is R15. */
e16bb312 8166
c19d1205
ZW
8167static void
8168do_smla (void)
e16bb312 8169{
c19d1205
ZW
8170 inst.instruction |= inst.operands[0].reg << 16;
8171 inst.instruction |= inst.operands[1].reg;
8172 inst.instruction |= inst.operands[2].reg << 8;
8173 inst.instruction |= inst.operands[3].reg << 12;
8174}
a737bd4d 8175
c19d1205
ZW
8176/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8177 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8178 Error if any register is R15.
8179 Warning if Rdlo == Rdhi. */
a737bd4d 8180
c19d1205
ZW
8181static void
8182do_smlal (void)
8183{
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 inst.instruction |= inst.operands[1].reg << 16;
8186 inst.instruction |= inst.operands[2].reg;
8187 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8188
c19d1205
ZW
8189 if (inst.operands[0].reg == inst.operands[1].reg)
8190 as_tsktsk (_("rdhi and rdlo must be different"));
8191}
a737bd4d 8192
c19d1205
ZW
8193/* ARM V5E (El Segundo) signed-multiply (argument parse)
8194 SMULxy{cond} Rd,Rm,Rs
8195 Error if any register is R15. */
a737bd4d 8196
c19d1205
ZW
8197static void
8198do_smul (void)
8199{
8200 inst.instruction |= inst.operands[0].reg << 16;
8201 inst.instruction |= inst.operands[1].reg;
8202 inst.instruction |= inst.operands[2].reg << 8;
8203}
a737bd4d 8204
b6702015
PB
8205/* ARM V6 srs (argument parse). The variable fields in the encoding are
8206 the same for both ARM and Thumb-2. */
a737bd4d 8207
c19d1205
ZW
8208static void
8209do_srs (void)
8210{
b6702015
PB
8211 int reg;
8212
8213 if (inst.operands[0].present)
8214 {
8215 reg = inst.operands[0].reg;
fdfde340 8216 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8217 }
8218 else
fdfde340 8219 reg = REG_SP;
b6702015
PB
8220
8221 inst.instruction |= reg << 16;
8222 inst.instruction |= inst.operands[1].imm;
8223 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8224 inst.instruction |= WRITE_BACK;
8225}
a737bd4d 8226
c19d1205 8227/* ARM V6 strex (argument parse). */
a737bd4d 8228
c19d1205
ZW
8229static void
8230do_strex (void)
8231{
8232 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8233 || inst.operands[2].postind || inst.operands[2].writeback
8234 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8235 || inst.operands[2].negative
8236 /* See comment in do_ldrex(). */
8237 || (inst.operands[2].reg == REG_PC),
8238 BAD_ADDR_MODE);
a737bd4d 8239
c19d1205
ZW
8240 constraint (inst.operands[0].reg == inst.operands[1].reg
8241 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8242
c19d1205
ZW
8243 constraint (inst.reloc.exp.X_op != O_constant
8244 || inst.reloc.exp.X_add_number != 0,
8245 _("offset must be zero in ARM encoding"));
a737bd4d 8246
c19d1205
ZW
8247 inst.instruction |= inst.operands[0].reg << 12;
8248 inst.instruction |= inst.operands[1].reg;
8249 inst.instruction |= inst.operands[2].reg << 16;
8250 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8251}
8252
8253static void
c19d1205 8254do_strexd (void)
e16bb312 8255{
c19d1205
ZW
8256 constraint (inst.operands[1].reg % 2 != 0,
8257 _("even register required"));
8258 constraint (inst.operands[2].present
8259 && inst.operands[2].reg != inst.operands[1].reg + 1,
8260 _("can only store two consecutive registers"));
8261 /* If op 2 were present and equal to PC, this function wouldn't
8262 have been called in the first place. */
8263 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8264
c19d1205
ZW
8265 constraint (inst.operands[0].reg == inst.operands[1].reg
8266 || inst.operands[0].reg == inst.operands[1].reg + 1
8267 || inst.operands[0].reg == inst.operands[3].reg,
8268 BAD_OVERLAP);
e16bb312 8269
c19d1205
ZW
8270 inst.instruction |= inst.operands[0].reg << 12;
8271 inst.instruction |= inst.operands[1].reg;
8272 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8273}
8274
c19d1205
ZW
8275/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8276 extends it to 32-bits, and adds the result to a value in another
8277 register. You can specify a rotation by 0, 8, 16, or 24 bits
8278 before extracting the 16-bit value.
8279 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8280 Condition defaults to COND_ALWAYS.
8281 Error if any register uses R15. */
8282
e16bb312 8283static void
c19d1205 8284do_sxtah (void)
e16bb312 8285{
c19d1205
ZW
8286 inst.instruction |= inst.operands[0].reg << 12;
8287 inst.instruction |= inst.operands[1].reg << 16;
8288 inst.instruction |= inst.operands[2].reg;
8289 inst.instruction |= inst.operands[3].imm << 10;
8290}
e16bb312 8291
c19d1205 8292/* ARM V6 SXTH.
e16bb312 8293
c19d1205
ZW
8294 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8295 Condition defaults to COND_ALWAYS.
8296 Error if any register uses R15. */
e16bb312
NC
8297
8298static void
c19d1205 8299do_sxth (void)
e16bb312 8300{
c19d1205
ZW
8301 inst.instruction |= inst.operands[0].reg << 12;
8302 inst.instruction |= inst.operands[1].reg;
8303 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8304}
c19d1205
ZW
8305\f
8306/* VFP instructions. In a logical order: SP variant first, monad
8307 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8308
8309static void
c19d1205 8310do_vfp_sp_monadic (void)
e16bb312 8311{
5287ad62
JB
8312 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8313 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8314}
8315
8316static void
c19d1205 8317do_vfp_sp_dyadic (void)
e16bb312 8318{
5287ad62
JB
8319 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8320 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8321 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8322}
8323
8324static void
c19d1205 8325do_vfp_sp_compare_z (void)
e16bb312 8326{
5287ad62 8327 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8328}
8329
8330static void
c19d1205 8331do_vfp_dp_sp_cvt (void)
e16bb312 8332{
5287ad62
JB
8333 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8334 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8335}
8336
8337static void
c19d1205 8338do_vfp_sp_dp_cvt (void)
e16bb312 8339{
5287ad62
JB
8340 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8341 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8342}
8343
8344static void
c19d1205 8345do_vfp_reg_from_sp (void)
e16bb312 8346{
c19d1205 8347 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8348 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8349}
8350
8351static void
c19d1205 8352do_vfp_reg2_from_sp2 (void)
e16bb312 8353{
c19d1205
ZW
8354 constraint (inst.operands[2].imm != 2,
8355 _("only two consecutive VFP SP registers allowed here"));
8356 inst.instruction |= inst.operands[0].reg << 12;
8357 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8358 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8359}
8360
8361static void
c19d1205 8362do_vfp_sp_from_reg (void)
e16bb312 8363{
5287ad62 8364 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8365 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8366}
8367
8368static void
c19d1205 8369do_vfp_sp2_from_reg2 (void)
e16bb312 8370{
c19d1205
ZW
8371 constraint (inst.operands[0].imm != 2,
8372 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8373 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8374 inst.instruction |= inst.operands[1].reg << 12;
8375 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8376}
8377
8378static void
c19d1205 8379do_vfp_sp_ldst (void)
e16bb312 8380{
5287ad62 8381 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8382 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8383}
8384
8385static void
c19d1205 8386do_vfp_dp_ldst (void)
e16bb312 8387{
5287ad62 8388 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8389 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8390}
8391
c19d1205 8392
e16bb312 8393static void
c19d1205 8394vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8395{
c19d1205
ZW
8396 if (inst.operands[0].writeback)
8397 inst.instruction |= WRITE_BACK;
8398 else
8399 constraint (ldstm_type != VFP_LDSTMIA,
8400 _("this addressing mode requires base-register writeback"));
8401 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8402 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8403 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8404}
8405
8406static void
c19d1205 8407vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8408{
c19d1205 8409 int count;
e16bb312 8410
c19d1205
ZW
8411 if (inst.operands[0].writeback)
8412 inst.instruction |= WRITE_BACK;
8413 else
8414 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8415 _("this addressing mode requires base-register writeback"));
e16bb312 8416
c19d1205 8417 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8418 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8419
c19d1205
ZW
8420 count = inst.operands[1].imm << 1;
8421 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8422 count += 1;
e16bb312 8423
c19d1205 8424 inst.instruction |= count;
e16bb312
NC
8425}
8426
8427static void
c19d1205 8428do_vfp_sp_ldstmia (void)
e16bb312 8429{
c19d1205 8430 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8431}
8432
8433static void
c19d1205 8434do_vfp_sp_ldstmdb (void)
e16bb312 8435{
c19d1205 8436 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8437}
8438
8439static void
c19d1205 8440do_vfp_dp_ldstmia (void)
e16bb312 8441{
c19d1205 8442 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8443}
8444
8445static void
c19d1205 8446do_vfp_dp_ldstmdb (void)
e16bb312 8447{
c19d1205 8448 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8449}
8450
8451static void
c19d1205 8452do_vfp_xp_ldstmia (void)
e16bb312 8453{
c19d1205
ZW
8454 vfp_dp_ldstm (VFP_LDSTMIAX);
8455}
e16bb312 8456
c19d1205
ZW
8457static void
8458do_vfp_xp_ldstmdb (void)
8459{
8460 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8461}
5287ad62
JB
8462
8463static void
8464do_vfp_dp_rd_rm (void)
8465{
8466 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8467 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8468}
8469
8470static void
8471do_vfp_dp_rn_rd (void)
8472{
8473 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8474 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8475}
8476
8477static void
8478do_vfp_dp_rd_rn (void)
8479{
8480 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8481 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8482}
8483
8484static void
8485do_vfp_dp_rd_rn_rm (void)
8486{
8487 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8488 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8489 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8490}
8491
8492static void
8493do_vfp_dp_rd (void)
8494{
8495 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8496}
8497
8498static void
8499do_vfp_dp_rm_rd_rn (void)
8500{
8501 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8502 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8503 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8504}
8505
8506/* VFPv3 instructions. */
8507static void
8508do_vfp_sp_const (void)
8509{
8510 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8511 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8512 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8513}
8514
8515static void
8516do_vfp_dp_const (void)
8517{
8518 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8519 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8520 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8521}
8522
8523static void
8524vfp_conv (int srcsize)
8525{
8526 unsigned immbits = srcsize - inst.operands[1].imm;
8527 inst.instruction |= (immbits & 1) << 5;
8528 inst.instruction |= (immbits >> 1);
8529}
8530
8531static void
8532do_vfp_sp_conv_16 (void)
8533{
8534 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8535 vfp_conv (16);
8536}
8537
8538static void
8539do_vfp_dp_conv_16 (void)
8540{
8541 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8542 vfp_conv (16);
8543}
8544
8545static void
8546do_vfp_sp_conv_32 (void)
8547{
8548 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8549 vfp_conv (32);
8550}
8551
8552static void
8553do_vfp_dp_conv_32 (void)
8554{
8555 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8556 vfp_conv (32);
8557}
c19d1205
ZW
8558\f
8559/* FPA instructions. Also in a logical order. */
e16bb312 8560
c19d1205
ZW
8561static void
8562do_fpa_cmp (void)
8563{
8564 inst.instruction |= inst.operands[0].reg << 16;
8565 inst.instruction |= inst.operands[1].reg;
8566}
b99bd4ef
NC
8567
8568static void
c19d1205 8569do_fpa_ldmstm (void)
b99bd4ef 8570{
c19d1205
ZW
8571 inst.instruction |= inst.operands[0].reg << 12;
8572 switch (inst.operands[1].imm)
8573 {
8574 case 1: inst.instruction |= CP_T_X; break;
8575 case 2: inst.instruction |= CP_T_Y; break;
8576 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8577 case 4: break;
8578 default: abort ();
8579 }
b99bd4ef 8580
c19d1205
ZW
8581 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8582 {
8583 /* The instruction specified "ea" or "fd", so we can only accept
8584 [Rn]{!}. The instruction does not really support stacking or
8585 unstacking, so we have to emulate these by setting appropriate
8586 bits and offsets. */
8587 constraint (inst.reloc.exp.X_op != O_constant
8588 || inst.reloc.exp.X_add_number != 0,
8589 _("this instruction does not support indexing"));
b99bd4ef 8590
c19d1205
ZW
8591 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8592 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8593
c19d1205
ZW
8594 if (!(inst.instruction & INDEX_UP))
8595 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8596
c19d1205
ZW
8597 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8598 {
8599 inst.operands[2].preind = 0;
8600 inst.operands[2].postind = 1;
8601 }
8602 }
b99bd4ef 8603
c19d1205 8604 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8605}
c19d1205
ZW
8606\f
8607/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8608
c19d1205
ZW
8609static void
8610do_iwmmxt_tandorc (void)
8611{
8612 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8613}
b99bd4ef 8614
c19d1205
ZW
8615static void
8616do_iwmmxt_textrc (void)
8617{
8618 inst.instruction |= inst.operands[0].reg << 12;
8619 inst.instruction |= inst.operands[1].imm;
8620}
b99bd4ef
NC
8621
8622static void
c19d1205 8623do_iwmmxt_textrm (void)
b99bd4ef 8624{
c19d1205
ZW
8625 inst.instruction |= inst.operands[0].reg << 12;
8626 inst.instruction |= inst.operands[1].reg << 16;
8627 inst.instruction |= inst.operands[2].imm;
8628}
b99bd4ef 8629
c19d1205
ZW
8630static void
8631do_iwmmxt_tinsr (void)
8632{
8633 inst.instruction |= inst.operands[0].reg << 16;
8634 inst.instruction |= inst.operands[1].reg << 12;
8635 inst.instruction |= inst.operands[2].imm;
8636}
b99bd4ef 8637
c19d1205
ZW
8638static void
8639do_iwmmxt_tmia (void)
8640{
8641 inst.instruction |= inst.operands[0].reg << 5;
8642 inst.instruction |= inst.operands[1].reg;
8643 inst.instruction |= inst.operands[2].reg << 12;
8644}
b99bd4ef 8645
c19d1205
ZW
8646static void
8647do_iwmmxt_waligni (void)
8648{
8649 inst.instruction |= inst.operands[0].reg << 12;
8650 inst.instruction |= inst.operands[1].reg << 16;
8651 inst.instruction |= inst.operands[2].reg;
8652 inst.instruction |= inst.operands[3].imm << 20;
8653}
b99bd4ef 8654
2d447fca
JM
8655static void
8656do_iwmmxt_wmerge (void)
8657{
8658 inst.instruction |= inst.operands[0].reg << 12;
8659 inst.instruction |= inst.operands[1].reg << 16;
8660 inst.instruction |= inst.operands[2].reg;
8661 inst.instruction |= inst.operands[3].imm << 21;
8662}
8663
c19d1205
ZW
8664static void
8665do_iwmmxt_wmov (void)
8666{
8667 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8668 inst.instruction |= inst.operands[0].reg << 12;
8669 inst.instruction |= inst.operands[1].reg << 16;
8670 inst.instruction |= inst.operands[1].reg;
8671}
b99bd4ef 8672
c19d1205
ZW
8673static void
8674do_iwmmxt_wldstbh (void)
8675{
8f06b2d8 8676 int reloc;
c19d1205 8677 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8678 if (thumb_mode)
8679 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8680 else
8681 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8682 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8683}
8684
c19d1205
ZW
8685static void
8686do_iwmmxt_wldstw (void)
8687{
8688 /* RIWR_RIWC clears .isreg for a control register. */
8689 if (!inst.operands[0].isreg)
8690 {
8691 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8692 inst.instruction |= 0xf0000000;
8693 }
b99bd4ef 8694
c19d1205
ZW
8695 inst.instruction |= inst.operands[0].reg << 12;
8696 encode_arm_cp_address (1, TRUE, TRUE, 0);
8697}
b99bd4ef
NC
8698
8699static void
c19d1205 8700do_iwmmxt_wldstd (void)
b99bd4ef 8701{
c19d1205 8702 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8703 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8704 && inst.operands[1].immisreg)
8705 {
8706 inst.instruction &= ~0x1a000ff;
8707 inst.instruction |= (0xf << 28);
8708 if (inst.operands[1].preind)
8709 inst.instruction |= PRE_INDEX;
8710 if (!inst.operands[1].negative)
8711 inst.instruction |= INDEX_UP;
8712 if (inst.operands[1].writeback)
8713 inst.instruction |= WRITE_BACK;
8714 inst.instruction |= inst.operands[1].reg << 16;
8715 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8716 inst.instruction |= inst.operands[1].imm;
8717 }
8718 else
8719 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8720}
b99bd4ef 8721
c19d1205
ZW
8722static void
8723do_iwmmxt_wshufh (void)
8724{
8725 inst.instruction |= inst.operands[0].reg << 12;
8726 inst.instruction |= inst.operands[1].reg << 16;
8727 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8728 inst.instruction |= (inst.operands[2].imm & 0x0f);
8729}
b99bd4ef 8730
c19d1205
ZW
8731static void
8732do_iwmmxt_wzero (void)
8733{
8734 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8735 inst.instruction |= inst.operands[0].reg;
8736 inst.instruction |= inst.operands[0].reg << 12;
8737 inst.instruction |= inst.operands[0].reg << 16;
8738}
2d447fca
JM
8739
8740static void
8741do_iwmmxt_wrwrwr_or_imm5 (void)
8742{
8743 if (inst.operands[2].isreg)
8744 do_rd_rn_rm ();
8745 else {
8746 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8747 _("immediate operand requires iWMMXt2"));
8748 do_rd_rn ();
8749 if (inst.operands[2].imm == 0)
8750 {
8751 switch ((inst.instruction >> 20) & 0xf)
8752 {
8753 case 4:
8754 case 5:
8755 case 6:
5f4273c7 8756 case 7:
2d447fca
JM
8757 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8758 inst.operands[2].imm = 16;
8759 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8760 break;
8761 case 8:
8762 case 9:
8763 case 10:
8764 case 11:
8765 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8766 inst.operands[2].imm = 32;
8767 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8768 break;
8769 case 12:
8770 case 13:
8771 case 14:
8772 case 15:
8773 {
8774 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8775 unsigned long wrn;
8776 wrn = (inst.instruction >> 16) & 0xf;
8777 inst.instruction &= 0xff0fff0f;
8778 inst.instruction |= wrn;
8779 /* Bail out here; the instruction is now assembled. */
8780 return;
8781 }
8782 }
8783 }
8784 /* Map 32 -> 0, etc. */
8785 inst.operands[2].imm &= 0x1f;
8786 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8787 }
8788}
c19d1205
ZW
8789\f
8790/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8791 operations first, then control, shift, and load/store. */
b99bd4ef 8792
c19d1205 8793/* Insns like "foo X,Y,Z". */
b99bd4ef 8794
c19d1205
ZW
8795static void
8796do_mav_triple (void)
8797{
8798 inst.instruction |= inst.operands[0].reg << 16;
8799 inst.instruction |= inst.operands[1].reg;
8800 inst.instruction |= inst.operands[2].reg << 12;
8801}
b99bd4ef 8802
c19d1205
ZW
8803/* Insns like "foo W,X,Y,Z".
8804 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8805
c19d1205
ZW
8806static void
8807do_mav_quad (void)
8808{
8809 inst.instruction |= inst.operands[0].reg << 5;
8810 inst.instruction |= inst.operands[1].reg << 12;
8811 inst.instruction |= inst.operands[2].reg << 16;
8812 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8813}
8814
c19d1205
ZW
8815/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8816static void
8817do_mav_dspsc (void)
a737bd4d 8818{
c19d1205
ZW
8819 inst.instruction |= inst.operands[1].reg << 12;
8820}
a737bd4d 8821
c19d1205
ZW
8822/* Maverick shift immediate instructions.
8823 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8824 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8825
c19d1205
ZW
8826static void
8827do_mav_shift (void)
8828{
8829 int imm = inst.operands[2].imm;
a737bd4d 8830
c19d1205
ZW
8831 inst.instruction |= inst.operands[0].reg << 12;
8832 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8833
c19d1205
ZW
8834 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8835 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8836 Bit 4 should be 0. */
8837 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8838
c19d1205
ZW
8839 inst.instruction |= imm;
8840}
8841\f
8842/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8843
c19d1205
ZW
8844/* Xscale multiply-accumulate (argument parse)
8845 MIAcc acc0,Rm,Rs
8846 MIAPHcc acc0,Rm,Rs
8847 MIAxycc acc0,Rm,Rs. */
a737bd4d 8848
c19d1205
ZW
8849static void
8850do_xsc_mia (void)
8851{
8852 inst.instruction |= inst.operands[1].reg;
8853 inst.instruction |= inst.operands[2].reg << 12;
8854}
a737bd4d 8855
c19d1205 8856/* Xscale move-accumulator-register (argument parse)
a737bd4d 8857
c19d1205 8858 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8859
c19d1205
ZW
8860static void
8861do_xsc_mar (void)
8862{
8863 inst.instruction |= inst.operands[1].reg << 12;
8864 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8865}
8866
c19d1205 8867/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8868
c19d1205 8869 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8870
8871static void
c19d1205 8872do_xsc_mra (void)
b99bd4ef 8873{
c19d1205
ZW
8874 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8875 inst.instruction |= inst.operands[0].reg << 12;
8876 inst.instruction |= inst.operands[1].reg << 16;
8877}
8878\f
8879/* Encoding functions relevant only to Thumb. */
b99bd4ef 8880
c19d1205
ZW
8881/* inst.operands[i] is a shifted-register operand; encode
8882 it into inst.instruction in the format used by Thumb32. */
8883
8884static void
8885encode_thumb32_shifted_operand (int i)
8886{
8887 unsigned int value = inst.reloc.exp.X_add_number;
8888 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8889
9c3c69f2
PB
8890 constraint (inst.operands[i].immisreg,
8891 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8892 inst.instruction |= inst.operands[i].reg;
8893 if (shift == SHIFT_RRX)
8894 inst.instruction |= SHIFT_ROR << 4;
8895 else
b99bd4ef 8896 {
c19d1205
ZW
8897 constraint (inst.reloc.exp.X_op != O_constant,
8898 _("expression too complex"));
8899
8900 constraint (value > 32
8901 || (value == 32 && (shift == SHIFT_LSL
8902 || shift == SHIFT_ROR)),
8903 _("shift expression is too large"));
8904
8905 if (value == 0)
8906 shift = SHIFT_LSL;
8907 else if (value == 32)
8908 value = 0;
8909
8910 inst.instruction |= shift << 4;
8911 inst.instruction |= (value & 0x1c) << 10;
8912 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8913 }
c19d1205 8914}
b99bd4ef 8915
b99bd4ef 8916
c19d1205
ZW
8917/* inst.operands[i] was set up by parse_address. Encode it into a
8918 Thumb32 format load or store instruction. Reject forms that cannot
8919 be used with such instructions. If is_t is true, reject forms that
8920 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
8921 that cannot be used with a D instruction. If it is a store insn,
8922 reject PC in Rn. */
b99bd4ef 8923
c19d1205
ZW
8924static void
8925encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8926{
5be8be5d 8927 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
8928
8929 constraint (!inst.operands[i].isreg,
53365c0d 8930 _("Instruction does not support =N addresses"));
b99bd4ef 8931
c19d1205
ZW
8932 inst.instruction |= inst.operands[i].reg << 16;
8933 if (inst.operands[i].immisreg)
b99bd4ef 8934 {
5be8be5d 8935 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
8936 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8937 constraint (inst.operands[i].negative,
8938 _("Thumb does not support negative register indexing"));
8939 constraint (inst.operands[i].postind,
8940 _("Thumb does not support register post-indexing"));
8941 constraint (inst.operands[i].writeback,
8942 _("Thumb does not support register indexing with writeback"));
8943 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8944 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8945
f40d1643 8946 inst.instruction |= inst.operands[i].imm;
c19d1205 8947 if (inst.operands[i].shifted)
b99bd4ef 8948 {
c19d1205
ZW
8949 constraint (inst.reloc.exp.X_op != O_constant,
8950 _("expression too complex"));
9c3c69f2
PB
8951 constraint (inst.reloc.exp.X_add_number < 0
8952 || inst.reloc.exp.X_add_number > 3,
c19d1205 8953 _("shift out of range"));
9c3c69f2 8954 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8955 }
8956 inst.reloc.type = BFD_RELOC_UNUSED;
8957 }
8958 else if (inst.operands[i].preind)
8959 {
5be8be5d 8960 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 8961 constraint (is_t && inst.operands[i].writeback,
c19d1205 8962 _("cannot use writeback with this instruction"));
5be8be5d
DG
8963 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
8964 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
8965
8966 if (is_d)
8967 {
8968 inst.instruction |= 0x01000000;
8969 if (inst.operands[i].writeback)
8970 inst.instruction |= 0x00200000;
b99bd4ef 8971 }
c19d1205 8972 else
b99bd4ef 8973 {
c19d1205
ZW
8974 inst.instruction |= 0x00000c00;
8975 if (inst.operands[i].writeback)
8976 inst.instruction |= 0x00000100;
b99bd4ef 8977 }
c19d1205 8978 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8979 }
c19d1205 8980 else if (inst.operands[i].postind)
b99bd4ef 8981 {
9c2799c2 8982 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8983 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8984 constraint (is_t, _("cannot use post-indexing with this instruction"));
8985
8986 if (is_d)
8987 inst.instruction |= 0x00200000;
8988 else
8989 inst.instruction |= 0x00000900;
8990 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8991 }
8992 else /* unindexed - only for coprocessor */
8993 inst.error = _("instruction does not accept unindexed addressing");
8994}
8995
8996/* Table of Thumb instructions which exist in both 16- and 32-bit
8997 encodings (the latter only in post-V6T2 cores). The index is the
8998 value used in the insns table below. When there is more than one
8999 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9000 holds variant (1).
9001 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9002#define T16_32_TAB \
21d799b5
NC
9003 X(_adc, 4140, eb400000), \
9004 X(_adcs, 4140, eb500000), \
9005 X(_add, 1c00, eb000000), \
9006 X(_adds, 1c00, eb100000), \
9007 X(_addi, 0000, f1000000), \
9008 X(_addis, 0000, f1100000), \
9009 X(_add_pc,000f, f20f0000), \
9010 X(_add_sp,000d, f10d0000), \
9011 X(_adr, 000f, f20f0000), \
9012 X(_and, 4000, ea000000), \
9013 X(_ands, 4000, ea100000), \
9014 X(_asr, 1000, fa40f000), \
9015 X(_asrs, 1000, fa50f000), \
9016 X(_b, e000, f000b000), \
9017 X(_bcond, d000, f0008000), \
9018 X(_bic, 4380, ea200000), \
9019 X(_bics, 4380, ea300000), \
9020 X(_cmn, 42c0, eb100f00), \
9021 X(_cmp, 2800, ebb00f00), \
9022 X(_cpsie, b660, f3af8400), \
9023 X(_cpsid, b670, f3af8600), \
9024 X(_cpy, 4600, ea4f0000), \
9025 X(_dec_sp,80dd, f1ad0d00), \
9026 X(_eor, 4040, ea800000), \
9027 X(_eors, 4040, ea900000), \
9028 X(_inc_sp,00dd, f10d0d00), \
9029 X(_ldmia, c800, e8900000), \
9030 X(_ldr, 6800, f8500000), \
9031 X(_ldrb, 7800, f8100000), \
9032 X(_ldrh, 8800, f8300000), \
9033 X(_ldrsb, 5600, f9100000), \
9034 X(_ldrsh, 5e00, f9300000), \
9035 X(_ldr_pc,4800, f85f0000), \
9036 X(_ldr_pc2,4800, f85f0000), \
9037 X(_ldr_sp,9800, f85d0000), \
9038 X(_lsl, 0000, fa00f000), \
9039 X(_lsls, 0000, fa10f000), \
9040 X(_lsr, 0800, fa20f000), \
9041 X(_lsrs, 0800, fa30f000), \
9042 X(_mov, 2000, ea4f0000), \
9043 X(_movs, 2000, ea5f0000), \
9044 X(_mul, 4340, fb00f000), \
9045 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9046 X(_mvn, 43c0, ea6f0000), \
9047 X(_mvns, 43c0, ea7f0000), \
9048 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9049 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9050 X(_orr, 4300, ea400000), \
9051 X(_orrs, 4300, ea500000), \
9052 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9053 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9054 X(_rev, ba00, fa90f080), \
9055 X(_rev16, ba40, fa90f090), \
9056 X(_revsh, bac0, fa90f0b0), \
9057 X(_ror, 41c0, fa60f000), \
9058 X(_rors, 41c0, fa70f000), \
9059 X(_sbc, 4180, eb600000), \
9060 X(_sbcs, 4180, eb700000), \
9061 X(_stmia, c000, e8800000), \
9062 X(_str, 6000, f8400000), \
9063 X(_strb, 7000, f8000000), \
9064 X(_strh, 8000, f8200000), \
9065 X(_str_sp,9000, f84d0000), \
9066 X(_sub, 1e00, eba00000), \
9067 X(_subs, 1e00, ebb00000), \
9068 X(_subi, 8000, f1a00000), \
9069 X(_subis, 8000, f1b00000), \
9070 X(_sxtb, b240, fa4ff080), \
9071 X(_sxth, b200, fa0ff080), \
9072 X(_tst, 4200, ea100f00), \
9073 X(_uxtb, b2c0, fa5ff080), \
9074 X(_uxth, b280, fa1ff080), \
9075 X(_nop, bf00, f3af8000), \
9076 X(_yield, bf10, f3af8001), \
9077 X(_wfe, bf20, f3af8002), \
9078 X(_wfi, bf30, f3af8003), \
9079 X(_sev, bf40, f3af8004),
c19d1205
ZW
9080
9081/* To catch errors in encoding functions, the codes are all offset by
9082 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9083 as 16-bit instructions. */
21d799b5 9084#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9085enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9086#undef X
9087
9088#define X(a,b,c) 0x##b
9089static const unsigned short thumb_op16[] = { T16_32_TAB };
9090#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9091#undef X
9092
9093#define X(a,b,c) 0x##c
9094static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9095#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9096#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9097#undef X
9098#undef T16_32_TAB
9099
9100/* Thumb instruction encoders, in alphabetical order. */
9101
92e90b6e 9102/* ADDW or SUBW. */
c921be7d 9103
92e90b6e
PB
9104static void
9105do_t_add_sub_w (void)
9106{
9107 int Rd, Rn;
9108
9109 Rd = inst.operands[0].reg;
9110 Rn = inst.operands[1].reg;
9111
539d4391
NC
9112 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9113 is the SP-{plus,minus}-immediate form of the instruction. */
9114 if (Rn == REG_SP)
9115 constraint (Rd == REG_PC, BAD_PC);
9116 else
9117 reject_bad_reg (Rd);
fdfde340 9118
92e90b6e
PB
9119 inst.instruction |= (Rn << 16) | (Rd << 8);
9120 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9121}
9122
c19d1205
ZW
9123/* Parse an add or subtract instruction. We get here with inst.instruction
9124 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9125
9126static void
9127do_t_add_sub (void)
9128{
9129 int Rd, Rs, Rn;
9130
9131 Rd = inst.operands[0].reg;
9132 Rs = (inst.operands[1].present
9133 ? inst.operands[1].reg /* Rd, Rs, foo */
9134 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9135
e07e6e58
NC
9136 if (Rd == REG_PC)
9137 set_it_insn_type_last ();
9138
c19d1205
ZW
9139 if (unified_syntax)
9140 {
0110f2b8
PB
9141 bfd_boolean flags;
9142 bfd_boolean narrow;
9143 int opcode;
9144
9145 flags = (inst.instruction == T_MNEM_adds
9146 || inst.instruction == T_MNEM_subs);
9147 if (flags)
e07e6e58 9148 narrow = !in_it_block ();
0110f2b8 9149 else
e07e6e58 9150 narrow = in_it_block ();
c19d1205 9151 if (!inst.operands[2].isreg)
b99bd4ef 9152 {
16805f35
PB
9153 int add;
9154
fdfde340
JM
9155 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9156
16805f35
PB
9157 add = (inst.instruction == T_MNEM_add
9158 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9159 opcode = 0;
9160 if (inst.size_req != 4)
9161 {
0110f2b8
PB
9162 /* Attempt to use a narrow opcode, with relaxation if
9163 appropriate. */
9164 if (Rd == REG_SP && Rs == REG_SP && !flags)
9165 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9166 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9167 opcode = T_MNEM_add_sp;
9168 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9169 opcode = T_MNEM_add_pc;
9170 else if (Rd <= 7 && Rs <= 7 && narrow)
9171 {
9172 if (flags)
9173 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9174 else
9175 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9176 }
9177 if (opcode)
9178 {
9179 inst.instruction = THUMB_OP16(opcode);
9180 inst.instruction |= (Rd << 4) | Rs;
9181 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9182 if (inst.size_req != 2)
9183 inst.relax = opcode;
9184 }
9185 else
9186 constraint (inst.size_req == 2, BAD_HIREG);
9187 }
9188 if (inst.size_req == 4
9189 || (inst.size_req != 2 && !opcode))
9190 {
efd81785
PB
9191 if (Rd == REG_PC)
9192 {
fdfde340 9193 constraint (add, BAD_PC);
efd81785
PB
9194 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9195 _("only SUBS PC, LR, #const allowed"));
9196 constraint (inst.reloc.exp.X_op != O_constant,
9197 _("expression too complex"));
9198 constraint (inst.reloc.exp.X_add_number < 0
9199 || inst.reloc.exp.X_add_number > 0xff,
9200 _("immediate value out of range"));
9201 inst.instruction = T2_SUBS_PC_LR
9202 | inst.reloc.exp.X_add_number;
9203 inst.reloc.type = BFD_RELOC_UNUSED;
9204 return;
9205 }
9206 else if (Rs == REG_PC)
16805f35
PB
9207 {
9208 /* Always use addw/subw. */
9209 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9210 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9211 }
9212 else
9213 {
9214 inst.instruction = THUMB_OP32 (inst.instruction);
9215 inst.instruction = (inst.instruction & 0xe1ffffff)
9216 | 0x10000000;
9217 if (flags)
9218 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9219 else
9220 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9221 }
dc4503c6
PB
9222 inst.instruction |= Rd << 8;
9223 inst.instruction |= Rs << 16;
0110f2b8 9224 }
b99bd4ef 9225 }
c19d1205
ZW
9226 else
9227 {
9228 Rn = inst.operands[2].reg;
9229 /* See if we can do this with a 16-bit instruction. */
9230 if (!inst.operands[2].shifted && inst.size_req != 4)
9231 {
e27ec89e
PB
9232 if (Rd > 7 || Rs > 7 || Rn > 7)
9233 narrow = FALSE;
9234
9235 if (narrow)
c19d1205 9236 {
e27ec89e
PB
9237 inst.instruction = ((inst.instruction == T_MNEM_adds
9238 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9239 ? T_OPCODE_ADD_R3
9240 : T_OPCODE_SUB_R3);
9241 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9242 return;
9243 }
b99bd4ef 9244
7e806470 9245 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9246 {
7e806470
PB
9247 /* Thumb-1 cores (except v6-M) require at least one high
9248 register in a narrow non flag setting add. */
9249 if (Rd > 7 || Rn > 7
9250 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9251 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9252 {
7e806470
PB
9253 if (Rd == Rn)
9254 {
9255 Rn = Rs;
9256 Rs = Rd;
9257 }
c19d1205
ZW
9258 inst.instruction = T_OPCODE_ADD_HI;
9259 inst.instruction |= (Rd & 8) << 4;
9260 inst.instruction |= (Rd & 7);
9261 inst.instruction |= Rn << 3;
9262 return;
9263 }
c19d1205
ZW
9264 }
9265 }
c921be7d 9266
fdfde340
JM
9267 constraint (Rd == REG_PC, BAD_PC);
9268 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9269 constraint (Rs == REG_PC, BAD_PC);
9270 reject_bad_reg (Rn);
9271
c19d1205
ZW
9272 /* If we get here, it can't be done in 16 bits. */
9273 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9274 _("shift must be constant"));
9275 inst.instruction = THUMB_OP32 (inst.instruction);
9276 inst.instruction |= Rd << 8;
9277 inst.instruction |= Rs << 16;
9278 encode_thumb32_shifted_operand (2);
9279 }
9280 }
9281 else
9282 {
9283 constraint (inst.instruction == T_MNEM_adds
9284 || inst.instruction == T_MNEM_subs,
9285 BAD_THUMB32);
b99bd4ef 9286
c19d1205 9287 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9288 {
c19d1205
ZW
9289 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9290 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9291 BAD_HIREG);
9292
9293 inst.instruction = (inst.instruction == T_MNEM_add
9294 ? 0x0000 : 0x8000);
9295 inst.instruction |= (Rd << 4) | Rs;
9296 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9297 return;
9298 }
9299
c19d1205
ZW
9300 Rn = inst.operands[2].reg;
9301 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9302
c19d1205
ZW
9303 /* We now have Rd, Rs, and Rn set to registers. */
9304 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9305 {
c19d1205
ZW
9306 /* Can't do this for SUB. */
9307 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9308 inst.instruction = T_OPCODE_ADD_HI;
9309 inst.instruction |= (Rd & 8) << 4;
9310 inst.instruction |= (Rd & 7);
9311 if (Rs == Rd)
9312 inst.instruction |= Rn << 3;
9313 else if (Rn == Rd)
9314 inst.instruction |= Rs << 3;
9315 else
9316 constraint (1, _("dest must overlap one source register"));
9317 }
9318 else
9319 {
9320 inst.instruction = (inst.instruction == T_MNEM_add
9321 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9322 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9323 }
b99bd4ef 9324 }
b99bd4ef
NC
9325}
9326
c19d1205
ZW
9327static void
9328do_t_adr (void)
9329{
fdfde340
JM
9330 unsigned Rd;
9331
9332 Rd = inst.operands[0].reg;
9333 reject_bad_reg (Rd);
9334
9335 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9336 {
9337 /* Defer to section relaxation. */
9338 inst.relax = inst.instruction;
9339 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9340 inst.instruction |= Rd << 4;
0110f2b8
PB
9341 }
9342 else if (unified_syntax && inst.size_req != 2)
e9f89963 9343 {
0110f2b8 9344 /* Generate a 32-bit opcode. */
e9f89963 9345 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9346 inst.instruction |= Rd << 8;
e9f89963
PB
9347 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9348 inst.reloc.pc_rel = 1;
9349 }
9350 else
9351 {
0110f2b8 9352 /* Generate a 16-bit opcode. */
e9f89963
PB
9353 inst.instruction = THUMB_OP16 (inst.instruction);
9354 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9355 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9356 inst.reloc.pc_rel = 1;
b99bd4ef 9357
fdfde340 9358 inst.instruction |= Rd << 4;
e9f89963 9359 }
c19d1205 9360}
b99bd4ef 9361
c19d1205
ZW
9362/* Arithmetic instructions for which there is just one 16-bit
9363 instruction encoding, and it allows only two low registers.
9364 For maximal compatibility with ARM syntax, we allow three register
9365 operands even when Thumb-32 instructions are not available, as long
9366 as the first two are identical. For instance, both "sbc r0,r1" and
9367 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9368static void
c19d1205 9369do_t_arit3 (void)
b99bd4ef 9370{
c19d1205 9371 int Rd, Rs, Rn;
b99bd4ef 9372
c19d1205
ZW
9373 Rd = inst.operands[0].reg;
9374 Rs = (inst.operands[1].present
9375 ? inst.operands[1].reg /* Rd, Rs, foo */
9376 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9377 Rn = inst.operands[2].reg;
b99bd4ef 9378
fdfde340
JM
9379 reject_bad_reg (Rd);
9380 reject_bad_reg (Rs);
9381 if (inst.operands[2].isreg)
9382 reject_bad_reg (Rn);
9383
c19d1205 9384 if (unified_syntax)
b99bd4ef 9385 {
c19d1205
ZW
9386 if (!inst.operands[2].isreg)
9387 {
9388 /* For an immediate, we always generate a 32-bit opcode;
9389 section relaxation will shrink it later if possible. */
9390 inst.instruction = THUMB_OP32 (inst.instruction);
9391 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9392 inst.instruction |= Rd << 8;
9393 inst.instruction |= Rs << 16;
9394 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9395 }
9396 else
9397 {
e27ec89e
PB
9398 bfd_boolean narrow;
9399
c19d1205 9400 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9401 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9402 narrow = !in_it_block ();
e27ec89e 9403 else
e07e6e58 9404 narrow = in_it_block ();
e27ec89e
PB
9405
9406 if (Rd > 7 || Rn > 7 || Rs > 7)
9407 narrow = FALSE;
9408 if (inst.operands[2].shifted)
9409 narrow = FALSE;
9410 if (inst.size_req == 4)
9411 narrow = FALSE;
9412
9413 if (narrow
c19d1205
ZW
9414 && Rd == Rs)
9415 {
9416 inst.instruction = THUMB_OP16 (inst.instruction);
9417 inst.instruction |= Rd;
9418 inst.instruction |= Rn << 3;
9419 return;
9420 }
b99bd4ef 9421
c19d1205
ZW
9422 /* If we get here, it can't be done in 16 bits. */
9423 constraint (inst.operands[2].shifted
9424 && inst.operands[2].immisreg,
9425 _("shift must be constant"));
9426 inst.instruction = THUMB_OP32 (inst.instruction);
9427 inst.instruction |= Rd << 8;
9428 inst.instruction |= Rs << 16;
9429 encode_thumb32_shifted_operand (2);
9430 }
a737bd4d 9431 }
c19d1205 9432 else
b99bd4ef 9433 {
c19d1205
ZW
9434 /* On its face this is a lie - the instruction does set the
9435 flags. However, the only supported mnemonic in this mode
9436 says it doesn't. */
9437 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9438
c19d1205
ZW
9439 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9440 _("unshifted register required"));
9441 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9442 constraint (Rd != Rs,
9443 _("dest and source1 must be the same register"));
a737bd4d 9444
c19d1205
ZW
9445 inst.instruction = THUMB_OP16 (inst.instruction);
9446 inst.instruction |= Rd;
9447 inst.instruction |= Rn << 3;
b99bd4ef 9448 }
a737bd4d 9449}
b99bd4ef 9450
c19d1205
ZW
9451/* Similarly, but for instructions where the arithmetic operation is
9452 commutative, so we can allow either of them to be different from
9453 the destination operand in a 16-bit instruction. For instance, all
9454 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9455 accepted. */
9456static void
9457do_t_arit3c (void)
a737bd4d 9458{
c19d1205 9459 int Rd, Rs, Rn;
b99bd4ef 9460
c19d1205
ZW
9461 Rd = inst.operands[0].reg;
9462 Rs = (inst.operands[1].present
9463 ? inst.operands[1].reg /* Rd, Rs, foo */
9464 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9465 Rn = inst.operands[2].reg;
c921be7d 9466
fdfde340
JM
9467 reject_bad_reg (Rd);
9468 reject_bad_reg (Rs);
9469 if (inst.operands[2].isreg)
9470 reject_bad_reg (Rn);
a737bd4d 9471
c19d1205 9472 if (unified_syntax)
a737bd4d 9473 {
c19d1205 9474 if (!inst.operands[2].isreg)
b99bd4ef 9475 {
c19d1205
ZW
9476 /* For an immediate, we always generate a 32-bit opcode;
9477 section relaxation will shrink it later if possible. */
9478 inst.instruction = THUMB_OP32 (inst.instruction);
9479 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9480 inst.instruction |= Rd << 8;
9481 inst.instruction |= Rs << 16;
9482 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9483 }
c19d1205 9484 else
a737bd4d 9485 {
e27ec89e
PB
9486 bfd_boolean narrow;
9487
c19d1205 9488 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9489 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9490 narrow = !in_it_block ();
e27ec89e 9491 else
e07e6e58 9492 narrow = in_it_block ();
e27ec89e
PB
9493
9494 if (Rd > 7 || Rn > 7 || Rs > 7)
9495 narrow = FALSE;
9496 if (inst.operands[2].shifted)
9497 narrow = FALSE;
9498 if (inst.size_req == 4)
9499 narrow = FALSE;
9500
9501 if (narrow)
a737bd4d 9502 {
c19d1205 9503 if (Rd == Rs)
a737bd4d 9504 {
c19d1205
ZW
9505 inst.instruction = THUMB_OP16 (inst.instruction);
9506 inst.instruction |= Rd;
9507 inst.instruction |= Rn << 3;
9508 return;
a737bd4d 9509 }
c19d1205 9510 if (Rd == Rn)
a737bd4d 9511 {
c19d1205
ZW
9512 inst.instruction = THUMB_OP16 (inst.instruction);
9513 inst.instruction |= Rd;
9514 inst.instruction |= Rs << 3;
9515 return;
a737bd4d
NC
9516 }
9517 }
c19d1205
ZW
9518
9519 /* If we get here, it can't be done in 16 bits. */
9520 constraint (inst.operands[2].shifted
9521 && inst.operands[2].immisreg,
9522 _("shift must be constant"));
9523 inst.instruction = THUMB_OP32 (inst.instruction);
9524 inst.instruction |= Rd << 8;
9525 inst.instruction |= Rs << 16;
9526 encode_thumb32_shifted_operand (2);
a737bd4d 9527 }
b99bd4ef 9528 }
c19d1205
ZW
9529 else
9530 {
9531 /* On its face this is a lie - the instruction does set the
9532 flags. However, the only supported mnemonic in this mode
9533 says it doesn't. */
9534 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9535
c19d1205
ZW
9536 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9537 _("unshifted register required"));
9538 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9539
9540 inst.instruction = THUMB_OP16 (inst.instruction);
9541 inst.instruction |= Rd;
9542
9543 if (Rd == Rs)
9544 inst.instruction |= Rn << 3;
9545 else if (Rd == Rn)
9546 inst.instruction |= Rs << 3;
9547 else
9548 constraint (1, _("dest must overlap one source register"));
9549 }
a737bd4d
NC
9550}
9551
62b3e311
PB
9552static void
9553do_t_barrier (void)
9554{
9555 if (inst.operands[0].present)
9556 {
9557 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
9558 && inst.operands[0].imm > 0xf
9559 && inst.operands[0].imm < 0x0,
bd3ba5d1 9560 _("bad barrier type"));
62b3e311
PB
9561 inst.instruction |= inst.operands[0].imm;
9562 }
9563 else
9564 inst.instruction |= 0xf;
9565}
9566
c19d1205
ZW
9567static void
9568do_t_bfc (void)
a737bd4d 9569{
fdfde340 9570 unsigned Rd;
c19d1205
ZW
9571 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9572 constraint (msb > 32, _("bit-field extends past end of register"));
9573 /* The instruction encoding stores the LSB and MSB,
9574 not the LSB and width. */
fdfde340
JM
9575 Rd = inst.operands[0].reg;
9576 reject_bad_reg (Rd);
9577 inst.instruction |= Rd << 8;
c19d1205
ZW
9578 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9579 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9580 inst.instruction |= msb - 1;
b99bd4ef
NC
9581}
9582
c19d1205
ZW
9583static void
9584do_t_bfi (void)
b99bd4ef 9585{
fdfde340 9586 int Rd, Rn;
c19d1205 9587 unsigned int msb;
b99bd4ef 9588
fdfde340
JM
9589 Rd = inst.operands[0].reg;
9590 reject_bad_reg (Rd);
9591
c19d1205
ZW
9592 /* #0 in second position is alternative syntax for bfc, which is
9593 the same instruction but with REG_PC in the Rm field. */
9594 if (!inst.operands[1].isreg)
fdfde340
JM
9595 Rn = REG_PC;
9596 else
9597 {
9598 Rn = inst.operands[1].reg;
9599 reject_bad_reg (Rn);
9600 }
b99bd4ef 9601
c19d1205
ZW
9602 msb = inst.operands[2].imm + inst.operands[3].imm;
9603 constraint (msb > 32, _("bit-field extends past end of register"));
9604 /* The instruction encoding stores the LSB and MSB,
9605 not the LSB and width. */
fdfde340
JM
9606 inst.instruction |= Rd << 8;
9607 inst.instruction |= Rn << 16;
c19d1205
ZW
9608 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9609 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9610 inst.instruction |= msb - 1;
b99bd4ef
NC
9611}
9612
c19d1205
ZW
9613static void
9614do_t_bfx (void)
b99bd4ef 9615{
fdfde340
JM
9616 unsigned Rd, Rn;
9617
9618 Rd = inst.operands[0].reg;
9619 Rn = inst.operands[1].reg;
9620
9621 reject_bad_reg (Rd);
9622 reject_bad_reg (Rn);
9623
c19d1205
ZW
9624 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9625 _("bit-field extends past end of register"));
fdfde340
JM
9626 inst.instruction |= Rd << 8;
9627 inst.instruction |= Rn << 16;
c19d1205
ZW
9628 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9629 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9630 inst.instruction |= inst.operands[3].imm - 1;
9631}
b99bd4ef 9632
c19d1205
ZW
9633/* ARM V5 Thumb BLX (argument parse)
9634 BLX <target_addr> which is BLX(1)
9635 BLX <Rm> which is BLX(2)
9636 Unfortunately, there are two different opcodes for this mnemonic.
9637 So, the insns[].value is not used, and the code here zaps values
9638 into inst.instruction.
b99bd4ef 9639
c19d1205
ZW
9640 ??? How to take advantage of the additional two bits of displacement
9641 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9642
c19d1205
ZW
9643static void
9644do_t_blx (void)
9645{
e07e6e58
NC
9646 set_it_insn_type_last ();
9647
c19d1205 9648 if (inst.operands[0].isreg)
fdfde340
JM
9649 {
9650 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9651 /* We have a register, so this is BLX(2). */
9652 inst.instruction |= inst.operands[0].reg << 3;
9653 }
b99bd4ef
NC
9654 else
9655 {
c19d1205 9656 /* No register. This must be BLX(1). */
2fc8bdac 9657 inst.instruction = 0xf000e800;
00adf2d4 9658 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 9659 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9660 }
9661}
9662
c19d1205
ZW
9663static void
9664do_t_branch (void)
b99bd4ef 9665{
0110f2b8 9666 int opcode;
dfa9f0d5 9667 int cond;
9ae92b05 9668 int reloc;
dfa9f0d5 9669
e07e6e58
NC
9670 cond = inst.cond;
9671 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9672
9673 if (in_it_block ())
dfa9f0d5
PB
9674 {
9675 /* Conditional branches inside IT blocks are encoded as unconditional
9676 branches. */
9677 cond = COND_ALWAYS;
dfa9f0d5
PB
9678 }
9679 else
9680 cond = inst.cond;
9681
9682 if (cond != COND_ALWAYS)
0110f2b8
PB
9683 opcode = T_MNEM_bcond;
9684 else
9685 opcode = inst.instruction;
9686
12d6b0b7
RS
9687 if (unified_syntax
9688 && (inst.size_req == 4
9689 || (inst.size_req != 2 && inst.operands[0].hasreloc)))
c19d1205 9690 {
0110f2b8 9691 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9692 if (cond == COND_ALWAYS)
9ae92b05 9693 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9694 else
9695 {
9c2799c2 9696 gas_assert (cond != 0xF);
dfa9f0d5 9697 inst.instruction |= cond << 22;
9ae92b05 9698 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
9699 }
9700 }
b99bd4ef
NC
9701 else
9702 {
0110f2b8 9703 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9704 if (cond == COND_ALWAYS)
9ae92b05 9705 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 9706 else
b99bd4ef 9707 {
dfa9f0d5 9708 inst.instruction |= cond << 8;
9ae92b05 9709 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9710 }
0110f2b8
PB
9711 /* Allow section relaxation. */
9712 if (unified_syntax && inst.size_req != 2)
9713 inst.relax = opcode;
b99bd4ef 9714 }
9ae92b05 9715 inst.reloc.type = reloc;
c19d1205 9716 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9717}
9718
9719static void
c19d1205 9720do_t_bkpt (void)
b99bd4ef 9721{
dfa9f0d5
PB
9722 constraint (inst.cond != COND_ALWAYS,
9723 _("instruction is always unconditional"));
c19d1205 9724 if (inst.operands[0].present)
b99bd4ef 9725 {
c19d1205
ZW
9726 constraint (inst.operands[0].imm > 255,
9727 _("immediate value out of range"));
9728 inst.instruction |= inst.operands[0].imm;
e07e6e58 9729 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 9730 }
b99bd4ef
NC
9731}
9732
9733static void
c19d1205 9734do_t_branch23 (void)
b99bd4ef 9735{
e07e6e58 9736 set_it_insn_type_last ();
c19d1205 9737 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
9738 inst.reloc.pc_rel = 1;
9739
4343666d 9740#if defined(OBJ_COFF)
c19d1205
ZW
9741 /* If the destination of the branch is a defined symbol which does not have
9742 the THUMB_FUNC attribute, then we must be calling a function which has
9743 the (interfacearm) attribute. We look for the Thumb entry point to that
9744 function and change the branch to refer to that function instead. */
9745 if ( inst.reloc.exp.X_op == O_symbol
9746 && inst.reloc.exp.X_add_symbol != NULL
9747 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9748 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9749 inst.reloc.exp.X_add_symbol =
9750 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9751#endif
90e4755a
RE
9752}
9753
9754static void
c19d1205 9755do_t_bx (void)
90e4755a 9756{
e07e6e58 9757 set_it_insn_type_last ();
c19d1205
ZW
9758 inst.instruction |= inst.operands[0].reg << 3;
9759 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9760 should cause the alignment to be checked once it is known. This is
9761 because BX PC only works if the instruction is word aligned. */
9762}
90e4755a 9763
c19d1205
ZW
9764static void
9765do_t_bxj (void)
9766{
fdfde340 9767 int Rm;
90e4755a 9768
e07e6e58 9769 set_it_insn_type_last ();
fdfde340
JM
9770 Rm = inst.operands[0].reg;
9771 reject_bad_reg (Rm);
9772 inst.instruction |= Rm << 16;
90e4755a
RE
9773}
9774
9775static void
c19d1205 9776do_t_clz (void)
90e4755a 9777{
fdfde340
JM
9778 unsigned Rd;
9779 unsigned Rm;
9780
9781 Rd = inst.operands[0].reg;
9782 Rm = inst.operands[1].reg;
9783
9784 reject_bad_reg (Rd);
9785 reject_bad_reg (Rm);
9786
9787 inst.instruction |= Rd << 8;
9788 inst.instruction |= Rm << 16;
9789 inst.instruction |= Rm;
c19d1205 9790}
90e4755a 9791
dfa9f0d5
PB
9792static void
9793do_t_cps (void)
9794{
e07e6e58 9795 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
9796 inst.instruction |= inst.operands[0].imm;
9797}
9798
c19d1205
ZW
9799static void
9800do_t_cpsi (void)
9801{
e07e6e58 9802 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 9803 if (unified_syntax
62b3e311
PB
9804 && (inst.operands[1].present || inst.size_req == 4)
9805 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9806 {
c19d1205
ZW
9807 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9808 inst.instruction = 0xf3af8000;
9809 inst.instruction |= imod << 9;
9810 inst.instruction |= inst.operands[0].imm << 5;
9811 if (inst.operands[1].present)
9812 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9813 }
c19d1205 9814 else
90e4755a 9815 {
62b3e311
PB
9816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9817 && (inst.operands[0].imm & 4),
9818 _("selected processor does not support 'A' form "
9819 "of this instruction"));
9820 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9821 _("Thumb does not support the 2-argument "
9822 "form of this instruction"));
9823 inst.instruction |= inst.operands[0].imm;
90e4755a 9824 }
90e4755a
RE
9825}
9826
c19d1205
ZW
9827/* THUMB CPY instruction (argument parse). */
9828
90e4755a 9829static void
c19d1205 9830do_t_cpy (void)
90e4755a 9831{
c19d1205 9832 if (inst.size_req == 4)
90e4755a 9833 {
c19d1205
ZW
9834 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9835 inst.instruction |= inst.operands[0].reg << 8;
9836 inst.instruction |= inst.operands[1].reg;
90e4755a 9837 }
c19d1205 9838 else
90e4755a 9839 {
c19d1205
ZW
9840 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9841 inst.instruction |= (inst.operands[0].reg & 0x7);
9842 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9843 }
90e4755a
RE
9844}
9845
90e4755a 9846static void
25fe350b 9847do_t_cbz (void)
90e4755a 9848{
e07e6e58 9849 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
9850 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9851 inst.instruction |= inst.operands[0].reg;
9852 inst.reloc.pc_rel = 1;
9853 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9854}
90e4755a 9855
62b3e311
PB
9856static void
9857do_t_dbg (void)
9858{
9859 inst.instruction |= inst.operands[0].imm;
9860}
9861
9862static void
9863do_t_div (void)
9864{
fdfde340
JM
9865 unsigned Rd, Rn, Rm;
9866
9867 Rd = inst.operands[0].reg;
9868 Rn = (inst.operands[1].present
9869 ? inst.operands[1].reg : Rd);
9870 Rm = inst.operands[2].reg;
9871
9872 reject_bad_reg (Rd);
9873 reject_bad_reg (Rn);
9874 reject_bad_reg (Rm);
9875
9876 inst.instruction |= Rd << 8;
9877 inst.instruction |= Rn << 16;
9878 inst.instruction |= Rm;
62b3e311
PB
9879}
9880
c19d1205
ZW
9881static void
9882do_t_hint (void)
9883{
9884 if (unified_syntax && inst.size_req == 4)
9885 inst.instruction = THUMB_OP32 (inst.instruction);
9886 else
9887 inst.instruction = THUMB_OP16 (inst.instruction);
9888}
90e4755a 9889
c19d1205
ZW
9890static void
9891do_t_it (void)
9892{
9893 unsigned int cond = inst.operands[0].imm;
e27ec89e 9894
e07e6e58
NC
9895 set_it_insn_type (IT_INSN);
9896 now_it.mask = (inst.instruction & 0xf) | 0x10;
9897 now_it.cc = cond;
e27ec89e
PB
9898
9899 /* If the condition is a negative condition, invert the mask. */
c19d1205 9900 if ((cond & 0x1) == 0x0)
90e4755a 9901 {
c19d1205 9902 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9903
c19d1205
ZW
9904 if ((mask & 0x7) == 0)
9905 /* no conversion needed */;
9906 else if ((mask & 0x3) == 0)
e27ec89e
PB
9907 mask ^= 0x8;
9908 else if ((mask & 0x1) == 0)
9909 mask ^= 0xC;
c19d1205 9910 else
e27ec89e 9911 mask ^= 0xE;
90e4755a 9912
e27ec89e
PB
9913 inst.instruction &= 0xfff0;
9914 inst.instruction |= mask;
c19d1205 9915 }
90e4755a 9916
c19d1205
ZW
9917 inst.instruction |= cond << 4;
9918}
90e4755a 9919
3c707909
PB
9920/* Helper function used for both push/pop and ldm/stm. */
9921static void
9922encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9923{
9924 bfd_boolean load;
9925
9926 load = (inst.instruction & (1 << 20)) != 0;
9927
9928 if (mask & (1 << 13))
9929 inst.error = _("SP not allowed in register list");
1e5b0379
NC
9930
9931 if ((mask & (1 << base)) != 0
9932 && writeback)
9933 inst.error = _("having the base register in the register list when "
9934 "using write back is UNPREDICTABLE");
9935
3c707909
PB
9936 if (load)
9937 {
e07e6e58
NC
9938 if (mask & (1 << 15))
9939 {
9940 if (mask & (1 << 14))
9941 inst.error = _("LR and PC should not both be in register list");
9942 else
9943 set_it_insn_type_last ();
9944 }
3c707909
PB
9945 }
9946 else
9947 {
9948 if (mask & (1 << 15))
9949 inst.error = _("PC not allowed in register list");
3c707909
PB
9950 }
9951
9952 if ((mask & (mask - 1)) == 0)
9953 {
9954 /* Single register transfers implemented as str/ldr. */
9955 if (writeback)
9956 {
9957 if (inst.instruction & (1 << 23))
9958 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9959 else
9960 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9961 }
9962 else
9963 {
9964 if (inst.instruction & (1 << 23))
9965 inst.instruction = 0x00800000; /* ia -> [base] */
9966 else
9967 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9968 }
9969
9970 inst.instruction |= 0xf8400000;
9971 if (load)
9972 inst.instruction |= 0x00100000;
9973
5f4273c7 9974 mask = ffs (mask) - 1;
3c707909
PB
9975 mask <<= 12;
9976 }
9977 else if (writeback)
9978 inst.instruction |= WRITE_BACK;
9979
9980 inst.instruction |= mask;
9981 inst.instruction |= base << 16;
9982}
9983
c19d1205
ZW
9984static void
9985do_t_ldmstm (void)
9986{
9987 /* This really doesn't seem worth it. */
9988 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9989 _("expression too complex"));
9990 constraint (inst.operands[1].writeback,
9991 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9992
c19d1205
ZW
9993 if (unified_syntax)
9994 {
3c707909
PB
9995 bfd_boolean narrow;
9996 unsigned mask;
9997
9998 narrow = FALSE;
c19d1205
ZW
9999 /* See if we can use a 16-bit instruction. */
10000 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10001 && inst.size_req != 4
3c707909 10002 && !(inst.operands[1].imm & ~0xff))
90e4755a 10003 {
3c707909 10004 mask = 1 << inst.operands[0].reg;
90e4755a 10005
eab4f823 10006 if (inst.operands[0].reg <= 7)
90e4755a 10007 {
3c707909 10008 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10009 ? inst.operands[0].writeback
10010 : (inst.operands[0].writeback
10011 == !(inst.operands[1].imm & mask)))
10012 {
10013 if (inst.instruction == T_MNEM_stmia
10014 && (inst.operands[1].imm & mask)
10015 && (inst.operands[1].imm & (mask - 1)))
10016 as_warn (_("value stored for r%d is UNKNOWN"),
10017 inst.operands[0].reg);
3c707909 10018
eab4f823
MGD
10019 inst.instruction = THUMB_OP16 (inst.instruction);
10020 inst.instruction |= inst.operands[0].reg << 8;
10021 inst.instruction |= inst.operands[1].imm;
10022 narrow = TRUE;
10023 }
10024 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10025 {
10026 /* This means 1 register in reg list one of 3 situations:
10027 1. Instruction is stmia, but without writeback.
10028 2. lmdia without writeback, but with Rn not in
10029 reglist.
10030 3. ldmia with writeback, but with Rn in reglist.
10031 Case 3 is UNPREDICTABLE behaviour, so we handle
10032 case 1 and 2 which can be converted into a 16-bit
10033 str or ldr. The SP cases are handled below. */
10034 unsigned long opcode;
10035 /* First, record an error for Case 3. */
10036 if (inst.operands[1].imm & mask
10037 && inst.operands[0].writeback)
10038 inst.error =
10039 _("having the base register in the register list when "
10040 "using write back is UNPREDICTABLE");
10041
10042 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10043 : T_MNEM_ldr);
10044 inst.instruction = THUMB_OP16 (opcode);
10045 inst.instruction |= inst.operands[0].reg << 3;
10046 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10047 narrow = TRUE;
10048 }
90e4755a 10049 }
eab4f823 10050 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10051 {
eab4f823
MGD
10052 if (inst.operands[0].writeback)
10053 {
10054 inst.instruction =
10055 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10056 ? T_MNEM_push : T_MNEM_pop);
10057 inst.instruction |= inst.operands[1].imm;
10058 narrow = TRUE;
10059 }
10060 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10061 {
10062 inst.instruction =
10063 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10064 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10065 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10066 narrow = TRUE;
10067 }
90e4755a 10068 }
3c707909
PB
10069 }
10070
10071 if (!narrow)
10072 {
c19d1205
ZW
10073 if (inst.instruction < 0xffff)
10074 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10075
5f4273c7
NC
10076 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10077 inst.operands[0].writeback);
90e4755a
RE
10078 }
10079 }
c19d1205 10080 else
90e4755a 10081 {
c19d1205
ZW
10082 constraint (inst.operands[0].reg > 7
10083 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10084 constraint (inst.instruction != T_MNEM_ldmia
10085 && inst.instruction != T_MNEM_stmia,
10086 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10087 if (inst.instruction == T_MNEM_stmia)
f03698e6 10088 {
c19d1205
ZW
10089 if (!inst.operands[0].writeback)
10090 as_warn (_("this instruction will write back the base register"));
10091 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10092 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10093 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10094 inst.operands[0].reg);
f03698e6 10095 }
c19d1205 10096 else
90e4755a 10097 {
c19d1205
ZW
10098 if (!inst.operands[0].writeback
10099 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10100 as_warn (_("this instruction will write back the base register"));
10101 else if (inst.operands[0].writeback
10102 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10103 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10104 }
10105
c19d1205
ZW
10106 inst.instruction = THUMB_OP16 (inst.instruction);
10107 inst.instruction |= inst.operands[0].reg << 8;
10108 inst.instruction |= inst.operands[1].imm;
10109 }
10110}
e28cd48c 10111
c19d1205
ZW
10112static void
10113do_t_ldrex (void)
10114{
10115 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10116 || inst.operands[1].postind || inst.operands[1].writeback
10117 || inst.operands[1].immisreg || inst.operands[1].shifted
10118 || inst.operands[1].negative,
01cfc07f 10119 BAD_ADDR_MODE);
e28cd48c 10120
5be8be5d
DG
10121 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10122
c19d1205
ZW
10123 inst.instruction |= inst.operands[0].reg << 12;
10124 inst.instruction |= inst.operands[1].reg << 16;
10125 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10126}
e28cd48c 10127
c19d1205
ZW
10128static void
10129do_t_ldrexd (void)
10130{
10131 if (!inst.operands[1].present)
1cac9012 10132 {
c19d1205
ZW
10133 constraint (inst.operands[0].reg == REG_LR,
10134 _("r14 not allowed as first register "
10135 "when second register is omitted"));
10136 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10137 }
c19d1205
ZW
10138 constraint (inst.operands[0].reg == inst.operands[1].reg,
10139 BAD_OVERLAP);
b99bd4ef 10140
c19d1205
ZW
10141 inst.instruction |= inst.operands[0].reg << 12;
10142 inst.instruction |= inst.operands[1].reg << 8;
10143 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10144}
10145
10146static void
c19d1205 10147do_t_ldst (void)
b99bd4ef 10148{
0110f2b8
PB
10149 unsigned long opcode;
10150 int Rn;
10151
e07e6e58
NC
10152 if (inst.operands[0].isreg
10153 && !inst.operands[0].preind
10154 && inst.operands[0].reg == REG_PC)
10155 set_it_insn_type_last ();
10156
0110f2b8 10157 opcode = inst.instruction;
c19d1205 10158 if (unified_syntax)
b99bd4ef 10159 {
53365c0d
PB
10160 if (!inst.operands[1].isreg)
10161 {
10162 if (opcode <= 0xffff)
10163 inst.instruction = THUMB_OP32 (opcode);
10164 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10165 return;
10166 }
0110f2b8
PB
10167 if (inst.operands[1].isreg
10168 && !inst.operands[1].writeback
c19d1205
ZW
10169 && !inst.operands[1].shifted && !inst.operands[1].postind
10170 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10171 && opcode <= 0xffff
10172 && inst.size_req != 4)
c19d1205 10173 {
0110f2b8
PB
10174 /* Insn may have a 16-bit form. */
10175 Rn = inst.operands[1].reg;
10176 if (inst.operands[1].immisreg)
10177 {
10178 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10179 /* [Rn, Rik] */
0110f2b8
PB
10180 if (Rn <= 7 && inst.operands[1].imm <= 7)
10181 goto op16;
5be8be5d
DG
10182 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10183 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10184 }
10185 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10186 && opcode != T_MNEM_ldrsb)
10187 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10188 || (Rn == REG_SP && opcode == T_MNEM_str))
10189 {
10190 /* [Rn, #const] */
10191 if (Rn > 7)
10192 {
10193 if (Rn == REG_PC)
10194 {
10195 if (inst.reloc.pc_rel)
10196 opcode = T_MNEM_ldr_pc2;
10197 else
10198 opcode = T_MNEM_ldr_pc;
10199 }
10200 else
10201 {
10202 if (opcode == T_MNEM_ldr)
10203 opcode = T_MNEM_ldr_sp;
10204 else
10205 opcode = T_MNEM_str_sp;
10206 }
10207 inst.instruction = inst.operands[0].reg << 8;
10208 }
10209 else
10210 {
10211 inst.instruction = inst.operands[0].reg;
10212 inst.instruction |= inst.operands[1].reg << 3;
10213 }
10214 inst.instruction |= THUMB_OP16 (opcode);
10215 if (inst.size_req == 2)
10216 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10217 else
10218 inst.relax = opcode;
10219 return;
10220 }
c19d1205 10221 }
0110f2b8 10222 /* Definitely a 32-bit variant. */
5be8be5d
DG
10223
10224 /* Do some validations regarding addressing modes. */
10225 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10226 && opcode != T_MNEM_str)
10227 reject_bad_reg (inst.operands[1].imm);
10228
0110f2b8 10229 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10230 inst.instruction |= inst.operands[0].reg << 12;
10231 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
10232 return;
10233 }
10234
c19d1205
ZW
10235 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10236
10237 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10238 {
c19d1205
ZW
10239 /* Only [Rn,Rm] is acceptable. */
10240 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10241 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10242 || inst.operands[1].postind || inst.operands[1].shifted
10243 || inst.operands[1].negative,
10244 _("Thumb does not support this addressing mode"));
10245 inst.instruction = THUMB_OP16 (inst.instruction);
10246 goto op16;
b99bd4ef 10247 }
5f4273c7 10248
c19d1205
ZW
10249 inst.instruction = THUMB_OP16 (inst.instruction);
10250 if (!inst.operands[1].isreg)
10251 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10252 return;
b99bd4ef 10253
c19d1205
ZW
10254 constraint (!inst.operands[1].preind
10255 || inst.operands[1].shifted
10256 || inst.operands[1].writeback,
10257 _("Thumb does not support this addressing mode"));
10258 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10259 {
c19d1205
ZW
10260 constraint (inst.instruction & 0x0600,
10261 _("byte or halfword not valid for base register"));
10262 constraint (inst.operands[1].reg == REG_PC
10263 && !(inst.instruction & THUMB_LOAD_BIT),
10264 _("r15 based store not allowed"));
10265 constraint (inst.operands[1].immisreg,
10266 _("invalid base register for register offset"));
b99bd4ef 10267
c19d1205
ZW
10268 if (inst.operands[1].reg == REG_PC)
10269 inst.instruction = T_OPCODE_LDR_PC;
10270 else if (inst.instruction & THUMB_LOAD_BIT)
10271 inst.instruction = T_OPCODE_LDR_SP;
10272 else
10273 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10274
c19d1205
ZW
10275 inst.instruction |= inst.operands[0].reg << 8;
10276 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10277 return;
10278 }
90e4755a 10279
c19d1205
ZW
10280 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10281 if (!inst.operands[1].immisreg)
10282 {
10283 /* Immediate offset. */
10284 inst.instruction |= inst.operands[0].reg;
10285 inst.instruction |= inst.operands[1].reg << 3;
10286 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10287 return;
10288 }
90e4755a 10289
c19d1205
ZW
10290 /* Register offset. */
10291 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10292 constraint (inst.operands[1].negative,
10293 _("Thumb does not support this addressing mode"));
90e4755a 10294
c19d1205
ZW
10295 op16:
10296 switch (inst.instruction)
10297 {
10298 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10299 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10300 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10301 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10302 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10303 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10304 case 0x5600 /* ldrsb */:
10305 case 0x5e00 /* ldrsh */: break;
10306 default: abort ();
10307 }
90e4755a 10308
c19d1205
ZW
10309 inst.instruction |= inst.operands[0].reg;
10310 inst.instruction |= inst.operands[1].reg << 3;
10311 inst.instruction |= inst.operands[1].imm << 6;
10312}
90e4755a 10313
c19d1205
ZW
10314static void
10315do_t_ldstd (void)
10316{
10317 if (!inst.operands[1].present)
b99bd4ef 10318 {
c19d1205
ZW
10319 inst.operands[1].reg = inst.operands[0].reg + 1;
10320 constraint (inst.operands[0].reg == REG_LR,
10321 _("r14 not allowed here"));
b99bd4ef 10322 }
c19d1205
ZW
10323 inst.instruction |= inst.operands[0].reg << 12;
10324 inst.instruction |= inst.operands[1].reg << 8;
10325 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10326}
10327
c19d1205
ZW
10328static void
10329do_t_ldstt (void)
10330{
10331 inst.instruction |= inst.operands[0].reg << 12;
10332 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10333}
a737bd4d 10334
b99bd4ef 10335static void
c19d1205 10336do_t_mla (void)
b99bd4ef 10337{
fdfde340 10338 unsigned Rd, Rn, Rm, Ra;
c921be7d 10339
fdfde340
JM
10340 Rd = inst.operands[0].reg;
10341 Rn = inst.operands[1].reg;
10342 Rm = inst.operands[2].reg;
10343 Ra = inst.operands[3].reg;
10344
10345 reject_bad_reg (Rd);
10346 reject_bad_reg (Rn);
10347 reject_bad_reg (Rm);
10348 reject_bad_reg (Ra);
10349
10350 inst.instruction |= Rd << 8;
10351 inst.instruction |= Rn << 16;
10352 inst.instruction |= Rm;
10353 inst.instruction |= Ra << 12;
c19d1205 10354}
b99bd4ef 10355
c19d1205
ZW
10356static void
10357do_t_mlal (void)
10358{
fdfde340
JM
10359 unsigned RdLo, RdHi, Rn, Rm;
10360
10361 RdLo = inst.operands[0].reg;
10362 RdHi = inst.operands[1].reg;
10363 Rn = inst.operands[2].reg;
10364 Rm = inst.operands[3].reg;
10365
10366 reject_bad_reg (RdLo);
10367 reject_bad_reg (RdHi);
10368 reject_bad_reg (Rn);
10369 reject_bad_reg (Rm);
10370
10371 inst.instruction |= RdLo << 12;
10372 inst.instruction |= RdHi << 8;
10373 inst.instruction |= Rn << 16;
10374 inst.instruction |= Rm;
c19d1205 10375}
b99bd4ef 10376
c19d1205
ZW
10377static void
10378do_t_mov_cmp (void)
10379{
fdfde340
JM
10380 unsigned Rn, Rm;
10381
10382 Rn = inst.operands[0].reg;
10383 Rm = inst.operands[1].reg;
10384
e07e6e58
NC
10385 if (Rn == REG_PC)
10386 set_it_insn_type_last ();
10387
c19d1205 10388 if (unified_syntax)
b99bd4ef 10389 {
c19d1205
ZW
10390 int r0off = (inst.instruction == T_MNEM_mov
10391 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10392 unsigned long opcode;
3d388997
PB
10393 bfd_boolean narrow;
10394 bfd_boolean low_regs;
10395
fdfde340 10396 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10397 opcode = inst.instruction;
e07e6e58 10398 if (in_it_block ())
0110f2b8 10399 narrow = opcode != T_MNEM_movs;
3d388997 10400 else
0110f2b8 10401 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10402 if (inst.size_req == 4
10403 || inst.operands[1].shifted)
10404 narrow = FALSE;
10405
efd81785
PB
10406 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10407 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10408 && !inst.operands[1].shifted
fdfde340
JM
10409 && Rn == REG_PC
10410 && Rm == REG_LR)
efd81785
PB
10411 {
10412 inst.instruction = T2_SUBS_PC_LR;
10413 return;
10414 }
10415
fdfde340
JM
10416 if (opcode == T_MNEM_cmp)
10417 {
10418 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10419 if (narrow)
10420 {
10421 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10422 but valid. */
10423 warn_deprecated_sp (Rm);
10424 /* R15 was documented as a valid choice for Rm in ARMv6,
10425 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10426 tools reject R15, so we do too. */
10427 constraint (Rm == REG_PC, BAD_PC);
10428 }
10429 else
10430 reject_bad_reg (Rm);
fdfde340
JM
10431 }
10432 else if (opcode == T_MNEM_mov
10433 || opcode == T_MNEM_movs)
10434 {
10435 if (inst.operands[1].isreg)
10436 {
10437 if (opcode == T_MNEM_movs)
10438 {
10439 reject_bad_reg (Rn);
10440 reject_bad_reg (Rm);
10441 }
76fa04a4
MGD
10442 else if (narrow)
10443 {
10444 /* This is mov.n. */
10445 if ((Rn == REG_SP || Rn == REG_PC)
10446 && (Rm == REG_SP || Rm == REG_PC))
10447 {
10448 as_warn (_("Use of r%u as a source register is "
10449 "deprecated when r%u is the destination "
10450 "register."), Rm, Rn);
10451 }
10452 }
10453 else
10454 {
10455 /* This is mov.w. */
10456 constraint (Rn == REG_PC, BAD_PC);
10457 constraint (Rm == REG_PC, BAD_PC);
10458 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10459 }
fdfde340
JM
10460 }
10461 else
10462 reject_bad_reg (Rn);
10463 }
10464
c19d1205
ZW
10465 if (!inst.operands[1].isreg)
10466 {
0110f2b8 10467 /* Immediate operand. */
e07e6e58 10468 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10469 narrow = 0;
10470 if (low_regs && narrow)
10471 {
10472 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10473 inst.instruction |= Rn << 8;
0110f2b8
PB
10474 if (inst.size_req == 2)
10475 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10476 else
10477 inst.relax = opcode;
10478 }
10479 else
10480 {
10481 inst.instruction = THUMB_OP32 (inst.instruction);
10482 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10483 inst.instruction |= Rn << r0off;
0110f2b8
PB
10484 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10485 }
c19d1205 10486 }
728ca7c9
PB
10487 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10488 && (inst.instruction == T_MNEM_mov
10489 || inst.instruction == T_MNEM_movs))
10490 {
10491 /* Register shifts are encoded as separate shift instructions. */
10492 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10493
e07e6e58 10494 if (in_it_block ())
728ca7c9
PB
10495 narrow = !flags;
10496 else
10497 narrow = flags;
10498
10499 if (inst.size_req == 4)
10500 narrow = FALSE;
10501
10502 if (!low_regs || inst.operands[1].imm > 7)
10503 narrow = FALSE;
10504
fdfde340 10505 if (Rn != Rm)
728ca7c9
PB
10506 narrow = FALSE;
10507
10508 switch (inst.operands[1].shift_kind)
10509 {
10510 case SHIFT_LSL:
10511 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10512 break;
10513 case SHIFT_ASR:
10514 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10515 break;
10516 case SHIFT_LSR:
10517 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10518 break;
10519 case SHIFT_ROR:
10520 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10521 break;
10522 default:
5f4273c7 10523 abort ();
728ca7c9
PB
10524 }
10525
10526 inst.instruction = opcode;
10527 if (narrow)
10528 {
fdfde340 10529 inst.instruction |= Rn;
728ca7c9
PB
10530 inst.instruction |= inst.operands[1].imm << 3;
10531 }
10532 else
10533 {
10534 if (flags)
10535 inst.instruction |= CONDS_BIT;
10536
fdfde340
JM
10537 inst.instruction |= Rn << 8;
10538 inst.instruction |= Rm << 16;
728ca7c9
PB
10539 inst.instruction |= inst.operands[1].imm;
10540 }
10541 }
3d388997 10542 else if (!narrow)
c19d1205 10543 {
728ca7c9
PB
10544 /* Some mov with immediate shift have narrow variants.
10545 Register shifts are handled above. */
10546 if (low_regs && inst.operands[1].shifted
10547 && (inst.instruction == T_MNEM_mov
10548 || inst.instruction == T_MNEM_movs))
10549 {
e07e6e58 10550 if (in_it_block ())
728ca7c9
PB
10551 narrow = (inst.instruction == T_MNEM_mov);
10552 else
10553 narrow = (inst.instruction == T_MNEM_movs);
10554 }
10555
10556 if (narrow)
10557 {
10558 switch (inst.operands[1].shift_kind)
10559 {
10560 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10561 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10562 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10563 default: narrow = FALSE; break;
10564 }
10565 }
10566
10567 if (narrow)
10568 {
fdfde340
JM
10569 inst.instruction |= Rn;
10570 inst.instruction |= Rm << 3;
728ca7c9
PB
10571 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10572 }
10573 else
10574 {
10575 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10576 inst.instruction |= Rn << r0off;
728ca7c9
PB
10577 encode_thumb32_shifted_operand (1);
10578 }
c19d1205
ZW
10579 }
10580 else
10581 switch (inst.instruction)
10582 {
10583 case T_MNEM_mov:
10584 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10585 inst.instruction |= (Rn & 0x8) << 4;
10586 inst.instruction |= (Rn & 0x7);
10587 inst.instruction |= Rm << 3;
c19d1205 10588 break;
b99bd4ef 10589
c19d1205
ZW
10590 case T_MNEM_movs:
10591 /* We know we have low registers at this point.
941a8a52
MGD
10592 Generate LSLS Rd, Rs, #0. */
10593 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
10594 inst.instruction |= Rn;
10595 inst.instruction |= Rm << 3;
c19d1205
ZW
10596 break;
10597
10598 case T_MNEM_cmp:
3d388997 10599 if (low_regs)
c19d1205
ZW
10600 {
10601 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10602 inst.instruction |= Rn;
10603 inst.instruction |= Rm << 3;
c19d1205
ZW
10604 }
10605 else
10606 {
10607 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10608 inst.instruction |= (Rn & 0x8) << 4;
10609 inst.instruction |= (Rn & 0x7);
10610 inst.instruction |= Rm << 3;
c19d1205
ZW
10611 }
10612 break;
10613 }
b99bd4ef
NC
10614 return;
10615 }
10616
c19d1205 10617 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10618
10619 /* PR 10443: Do not silently ignore shifted operands. */
10620 constraint (inst.operands[1].shifted,
10621 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10622
c19d1205 10623 if (inst.operands[1].isreg)
b99bd4ef 10624 {
fdfde340 10625 if (Rn < 8 && Rm < 8)
b99bd4ef 10626 {
c19d1205
ZW
10627 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10628 since a MOV instruction produces unpredictable results. */
10629 if (inst.instruction == T_OPCODE_MOV_I8)
10630 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10631 else
c19d1205 10632 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10633
fdfde340
JM
10634 inst.instruction |= Rn;
10635 inst.instruction |= Rm << 3;
b99bd4ef
NC
10636 }
10637 else
10638 {
c19d1205
ZW
10639 if (inst.instruction == T_OPCODE_MOV_I8)
10640 inst.instruction = T_OPCODE_MOV_HR;
10641 else
10642 inst.instruction = T_OPCODE_CMP_HR;
10643 do_t_cpy ();
b99bd4ef
NC
10644 }
10645 }
c19d1205 10646 else
b99bd4ef 10647 {
fdfde340 10648 constraint (Rn > 7,
c19d1205 10649 _("only lo regs allowed with immediate"));
fdfde340 10650 inst.instruction |= Rn << 8;
c19d1205
ZW
10651 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10652 }
10653}
b99bd4ef 10654
c19d1205
ZW
10655static void
10656do_t_mov16 (void)
10657{
fdfde340 10658 unsigned Rd;
b6895b4f
PB
10659 bfd_vma imm;
10660 bfd_boolean top;
10661
10662 top = (inst.instruction & 0x00800000) != 0;
10663 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10664 {
10665 constraint (top, _(":lower16: not allowed this instruction"));
10666 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10667 }
10668 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10669 {
10670 constraint (!top, _(":upper16: not allowed this instruction"));
10671 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10672 }
10673
fdfde340
JM
10674 Rd = inst.operands[0].reg;
10675 reject_bad_reg (Rd);
10676
10677 inst.instruction |= Rd << 8;
b6895b4f
PB
10678 if (inst.reloc.type == BFD_RELOC_UNUSED)
10679 {
10680 imm = inst.reloc.exp.X_add_number;
10681 inst.instruction |= (imm & 0xf000) << 4;
10682 inst.instruction |= (imm & 0x0800) << 15;
10683 inst.instruction |= (imm & 0x0700) << 4;
10684 inst.instruction |= (imm & 0x00ff);
10685 }
c19d1205 10686}
b99bd4ef 10687
c19d1205
ZW
10688static void
10689do_t_mvn_tst (void)
10690{
fdfde340 10691 unsigned Rn, Rm;
c921be7d 10692
fdfde340
JM
10693 Rn = inst.operands[0].reg;
10694 Rm = inst.operands[1].reg;
10695
10696 if (inst.instruction == T_MNEM_cmp
10697 || inst.instruction == T_MNEM_cmn)
10698 constraint (Rn == REG_PC, BAD_PC);
10699 else
10700 reject_bad_reg (Rn);
10701 reject_bad_reg (Rm);
10702
c19d1205
ZW
10703 if (unified_syntax)
10704 {
10705 int r0off = (inst.instruction == T_MNEM_mvn
10706 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
10707 bfd_boolean narrow;
10708
10709 if (inst.size_req == 4
10710 || inst.instruction > 0xffff
10711 || inst.operands[1].shifted
fdfde340 10712 || Rn > 7 || Rm > 7)
3d388997
PB
10713 narrow = FALSE;
10714 else if (inst.instruction == T_MNEM_cmn)
10715 narrow = TRUE;
10716 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10717 narrow = !in_it_block ();
3d388997 10718 else
e07e6e58 10719 narrow = in_it_block ();
3d388997 10720
c19d1205 10721 if (!inst.operands[1].isreg)
b99bd4ef 10722 {
c19d1205
ZW
10723 /* For an immediate, we always generate a 32-bit opcode;
10724 section relaxation will shrink it later if possible. */
10725 if (inst.instruction < 0xffff)
10726 inst.instruction = THUMB_OP32 (inst.instruction);
10727 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10728 inst.instruction |= Rn << r0off;
c19d1205 10729 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10730 }
c19d1205 10731 else
b99bd4ef 10732 {
c19d1205 10733 /* See if we can do this with a 16-bit instruction. */
3d388997 10734 if (narrow)
b99bd4ef 10735 {
c19d1205 10736 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10737 inst.instruction |= Rn;
10738 inst.instruction |= Rm << 3;
b99bd4ef 10739 }
c19d1205 10740 else
b99bd4ef 10741 {
c19d1205
ZW
10742 constraint (inst.operands[1].shifted
10743 && inst.operands[1].immisreg,
10744 _("shift must be constant"));
10745 if (inst.instruction < 0xffff)
10746 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10747 inst.instruction |= Rn << r0off;
c19d1205 10748 encode_thumb32_shifted_operand (1);
b99bd4ef 10749 }
b99bd4ef
NC
10750 }
10751 }
10752 else
10753 {
c19d1205
ZW
10754 constraint (inst.instruction > 0xffff
10755 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10756 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10757 _("unshifted register required"));
fdfde340 10758 constraint (Rn > 7 || Rm > 7,
c19d1205 10759 BAD_HIREG);
b99bd4ef 10760
c19d1205 10761 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10762 inst.instruction |= Rn;
10763 inst.instruction |= Rm << 3;
b99bd4ef 10764 }
b99bd4ef
NC
10765}
10766
b05fe5cf 10767static void
c19d1205 10768do_t_mrs (void)
b05fe5cf 10769{
fdfde340 10770 unsigned Rd;
037e8744
JB
10771
10772 if (do_vfp_nsyn_mrs () == SUCCESS)
10773 return;
10774
90ec0d68
MGD
10775 Rd = inst.operands[0].reg;
10776 reject_bad_reg (Rd);
10777 inst.instruction |= Rd << 8;
10778
10779 if (inst.operands[1].isreg)
62b3e311 10780 {
90ec0d68
MGD
10781 unsigned br = inst.operands[1].reg;
10782 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
10783 as_bad (_("bad register for mrs"));
10784
10785 inst.instruction |= br & (0xf << 16);
10786 inst.instruction |= (br & 0x300) >> 4;
10787 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
10788 }
10789 else
10790 {
90ec0d68 10791 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 10792
90ec0d68
MGD
10793 if (flags == 0)
10794 {
10795 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10796 _("selected processor does not support "
10797 "requested special purpose register"));
10798 }
10799 else
10800 {
10801 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10802 _("selected processor does not support "
10803 "requested special purpose register"));
10804 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10805 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10806 _("'CPSR' or 'SPSR' expected"));
10807 }
fdfde340 10808
90ec0d68
MGD
10809 inst.instruction |= (flags & SPSR_BIT) >> 2;
10810 inst.instruction |= inst.operands[1].imm & 0xff;
10811 inst.instruction |= 0xf0000;
10812 }
c19d1205 10813}
b05fe5cf 10814
c19d1205
ZW
10815static void
10816do_t_msr (void)
10817{
62b3e311 10818 int flags;
fdfde340 10819 unsigned Rn;
62b3e311 10820
037e8744
JB
10821 if (do_vfp_nsyn_msr () == SUCCESS)
10822 return;
10823
c19d1205
ZW
10824 constraint (!inst.operands[1].isreg,
10825 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
10826
10827 if (inst.operands[0].isreg)
10828 flags = (int)(inst.operands[0].reg);
10829 else
10830 flags = inst.operands[0].imm;
10831
62b3e311
PB
10832 if (flags & ~0xff)
10833 {
10834 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10835 _("selected processor does not support "
10836 "requested special purpose register"));
10837 }
10838 else
10839 {
7e806470 10840 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10841 _("selected processor does not support "
10842 "requested special purpose register"));
10843 flags |= PSR_f;
10844 }
c921be7d 10845
fdfde340
JM
10846 Rn = inst.operands[1].reg;
10847 reject_bad_reg (Rn);
10848
62b3e311 10849 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
10850 inst.instruction |= (flags & 0xf0000) >> 8;
10851 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 10852 inst.instruction |= (flags & 0xff);
fdfde340 10853 inst.instruction |= Rn << 16;
c19d1205 10854}
b05fe5cf 10855
c19d1205
ZW
10856static void
10857do_t_mul (void)
10858{
17828f45 10859 bfd_boolean narrow;
fdfde340 10860 unsigned Rd, Rn, Rm;
17828f45 10861
c19d1205
ZW
10862 if (!inst.operands[2].present)
10863 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 10864
fdfde340
JM
10865 Rd = inst.operands[0].reg;
10866 Rn = inst.operands[1].reg;
10867 Rm = inst.operands[2].reg;
10868
17828f45 10869 if (unified_syntax)
b05fe5cf 10870 {
17828f45 10871 if (inst.size_req == 4
fdfde340
JM
10872 || (Rd != Rn
10873 && Rd != Rm)
10874 || Rn > 7
10875 || Rm > 7)
17828f45
JM
10876 narrow = FALSE;
10877 else if (inst.instruction == T_MNEM_muls)
e07e6e58 10878 narrow = !in_it_block ();
17828f45 10879 else
e07e6e58 10880 narrow = in_it_block ();
b05fe5cf 10881 }
c19d1205 10882 else
b05fe5cf 10883 {
17828f45 10884 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 10885 constraint (Rn > 7 || Rm > 7,
c19d1205 10886 BAD_HIREG);
17828f45
JM
10887 narrow = TRUE;
10888 }
b05fe5cf 10889
17828f45
JM
10890 if (narrow)
10891 {
10892 /* 16-bit MULS/Conditional MUL. */
c19d1205 10893 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10894 inst.instruction |= Rd;
b05fe5cf 10895
fdfde340
JM
10896 if (Rd == Rn)
10897 inst.instruction |= Rm << 3;
10898 else if (Rd == Rm)
10899 inst.instruction |= Rn << 3;
c19d1205
ZW
10900 else
10901 constraint (1, _("dest must overlap one source register"));
10902 }
17828f45
JM
10903 else
10904 {
e07e6e58
NC
10905 constraint (inst.instruction != T_MNEM_mul,
10906 _("Thumb-2 MUL must not set flags"));
17828f45
JM
10907 /* 32-bit MUL. */
10908 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10909 inst.instruction |= Rd << 8;
10910 inst.instruction |= Rn << 16;
10911 inst.instruction |= Rm << 0;
10912
10913 reject_bad_reg (Rd);
10914 reject_bad_reg (Rn);
10915 reject_bad_reg (Rm);
17828f45 10916 }
c19d1205 10917}
b05fe5cf 10918
c19d1205
ZW
10919static void
10920do_t_mull (void)
10921{
fdfde340 10922 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 10923
fdfde340
JM
10924 RdLo = inst.operands[0].reg;
10925 RdHi = inst.operands[1].reg;
10926 Rn = inst.operands[2].reg;
10927 Rm = inst.operands[3].reg;
10928
10929 reject_bad_reg (RdLo);
10930 reject_bad_reg (RdHi);
10931 reject_bad_reg (Rn);
10932 reject_bad_reg (Rm);
10933
10934 inst.instruction |= RdLo << 12;
10935 inst.instruction |= RdHi << 8;
10936 inst.instruction |= Rn << 16;
10937 inst.instruction |= Rm;
10938
10939 if (RdLo == RdHi)
c19d1205
ZW
10940 as_tsktsk (_("rdhi and rdlo must be different"));
10941}
b05fe5cf 10942
c19d1205
ZW
10943static void
10944do_t_nop (void)
10945{
e07e6e58
NC
10946 set_it_insn_type (NEUTRAL_IT_INSN);
10947
c19d1205
ZW
10948 if (unified_syntax)
10949 {
10950 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 10951 {
c19d1205
ZW
10952 inst.instruction = THUMB_OP32 (inst.instruction);
10953 inst.instruction |= inst.operands[0].imm;
10954 }
10955 else
10956 {
bc2d1808
NC
10957 /* PR9722: Check for Thumb2 availability before
10958 generating a thumb2 nop instruction. */
afa62d5e 10959 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
10960 {
10961 inst.instruction = THUMB_OP16 (inst.instruction);
10962 inst.instruction |= inst.operands[0].imm << 4;
10963 }
10964 else
10965 inst.instruction = 0x46c0;
c19d1205
ZW
10966 }
10967 }
10968 else
10969 {
10970 constraint (inst.operands[0].present,
10971 _("Thumb does not support NOP with hints"));
10972 inst.instruction = 0x46c0;
10973 }
10974}
b05fe5cf 10975
c19d1205
ZW
10976static void
10977do_t_neg (void)
10978{
10979 if (unified_syntax)
10980 {
3d388997
PB
10981 bfd_boolean narrow;
10982
10983 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10984 narrow = !in_it_block ();
3d388997 10985 else
e07e6e58 10986 narrow = in_it_block ();
3d388997
PB
10987 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10988 narrow = FALSE;
10989 if (inst.size_req == 4)
10990 narrow = FALSE;
10991
10992 if (!narrow)
c19d1205
ZW
10993 {
10994 inst.instruction = THUMB_OP32 (inst.instruction);
10995 inst.instruction |= inst.operands[0].reg << 8;
10996 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
10997 }
10998 else
10999 {
c19d1205
ZW
11000 inst.instruction = THUMB_OP16 (inst.instruction);
11001 inst.instruction |= inst.operands[0].reg;
11002 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11003 }
11004 }
11005 else
11006 {
c19d1205
ZW
11007 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11008 BAD_HIREG);
11009 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11010
11011 inst.instruction = THUMB_OP16 (inst.instruction);
11012 inst.instruction |= inst.operands[0].reg;
11013 inst.instruction |= inst.operands[1].reg << 3;
11014 }
11015}
11016
1c444d06
JM
11017static void
11018do_t_orn (void)
11019{
11020 unsigned Rd, Rn;
11021
11022 Rd = inst.operands[0].reg;
11023 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11024
fdfde340
JM
11025 reject_bad_reg (Rd);
11026 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11027 reject_bad_reg (Rn);
11028
1c444d06
JM
11029 inst.instruction |= Rd << 8;
11030 inst.instruction |= Rn << 16;
11031
11032 if (!inst.operands[2].isreg)
11033 {
11034 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11035 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11036 }
11037 else
11038 {
11039 unsigned Rm;
11040
11041 Rm = inst.operands[2].reg;
fdfde340 11042 reject_bad_reg (Rm);
1c444d06
JM
11043
11044 constraint (inst.operands[2].shifted
11045 && inst.operands[2].immisreg,
11046 _("shift must be constant"));
11047 encode_thumb32_shifted_operand (2);
11048 }
11049}
11050
c19d1205
ZW
11051static void
11052do_t_pkhbt (void)
11053{
fdfde340
JM
11054 unsigned Rd, Rn, Rm;
11055
11056 Rd = inst.operands[0].reg;
11057 Rn = inst.operands[1].reg;
11058 Rm = inst.operands[2].reg;
11059
11060 reject_bad_reg (Rd);
11061 reject_bad_reg (Rn);
11062 reject_bad_reg (Rm);
11063
11064 inst.instruction |= Rd << 8;
11065 inst.instruction |= Rn << 16;
11066 inst.instruction |= Rm;
c19d1205
ZW
11067 if (inst.operands[3].present)
11068 {
11069 unsigned int val = inst.reloc.exp.X_add_number;
11070 constraint (inst.reloc.exp.X_op != O_constant,
11071 _("expression too complex"));
11072 inst.instruction |= (val & 0x1c) << 10;
11073 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11074 }
c19d1205 11075}
b05fe5cf 11076
c19d1205
ZW
11077static void
11078do_t_pkhtb (void)
11079{
11080 if (!inst.operands[3].present)
1ef52f49
NC
11081 {
11082 unsigned Rtmp;
11083
11084 inst.instruction &= ~0x00000020;
11085
11086 /* PR 10168. Swap the Rm and Rn registers. */
11087 Rtmp = inst.operands[1].reg;
11088 inst.operands[1].reg = inst.operands[2].reg;
11089 inst.operands[2].reg = Rtmp;
11090 }
c19d1205 11091 do_t_pkhbt ();
b05fe5cf
ZW
11092}
11093
c19d1205
ZW
11094static void
11095do_t_pld (void)
11096{
fdfde340
JM
11097 if (inst.operands[0].immisreg)
11098 reject_bad_reg (inst.operands[0].imm);
11099
c19d1205
ZW
11100 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11101}
b05fe5cf 11102
c19d1205
ZW
11103static void
11104do_t_push_pop (void)
b99bd4ef 11105{
e9f89963 11106 unsigned mask;
5f4273c7 11107
c19d1205
ZW
11108 constraint (inst.operands[0].writeback,
11109 _("push/pop do not support {reglist}^"));
11110 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11111 _("expression too complex"));
b99bd4ef 11112
e9f89963
PB
11113 mask = inst.operands[0].imm;
11114 if ((mask & ~0xff) == 0)
3c707909 11115 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11116 else if ((inst.instruction == T_MNEM_push
e9f89963 11117 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11118 || (inst.instruction == T_MNEM_pop
e9f89963 11119 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11120 {
c19d1205
ZW
11121 inst.instruction = THUMB_OP16 (inst.instruction);
11122 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11123 inst.instruction |= mask & 0xff;
c19d1205
ZW
11124 }
11125 else if (unified_syntax)
11126 {
3c707909 11127 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11128 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11129 }
11130 else
11131 {
11132 inst.error = _("invalid register list to push/pop instruction");
11133 return;
11134 }
c19d1205 11135}
b99bd4ef 11136
c19d1205
ZW
11137static void
11138do_t_rbit (void)
11139{
fdfde340
JM
11140 unsigned Rd, Rm;
11141
11142 Rd = inst.operands[0].reg;
11143 Rm = inst.operands[1].reg;
11144
11145 reject_bad_reg (Rd);
11146 reject_bad_reg (Rm);
11147
11148 inst.instruction |= Rd << 8;
11149 inst.instruction |= Rm << 16;
11150 inst.instruction |= Rm;
c19d1205 11151}
b99bd4ef 11152
c19d1205
ZW
11153static void
11154do_t_rev (void)
11155{
fdfde340
JM
11156 unsigned Rd, Rm;
11157
11158 Rd = inst.operands[0].reg;
11159 Rm = inst.operands[1].reg;
11160
11161 reject_bad_reg (Rd);
11162 reject_bad_reg (Rm);
11163
11164 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11165 && inst.size_req != 4)
11166 {
11167 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11168 inst.instruction |= Rd;
11169 inst.instruction |= Rm << 3;
c19d1205
ZW
11170 }
11171 else if (unified_syntax)
11172 {
11173 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11174 inst.instruction |= Rd << 8;
11175 inst.instruction |= Rm << 16;
11176 inst.instruction |= Rm;
c19d1205
ZW
11177 }
11178 else
11179 inst.error = BAD_HIREG;
11180}
b99bd4ef 11181
1c444d06
JM
11182static void
11183do_t_rrx (void)
11184{
11185 unsigned Rd, Rm;
11186
11187 Rd = inst.operands[0].reg;
11188 Rm = inst.operands[1].reg;
11189
fdfde340
JM
11190 reject_bad_reg (Rd);
11191 reject_bad_reg (Rm);
c921be7d 11192
1c444d06
JM
11193 inst.instruction |= Rd << 8;
11194 inst.instruction |= Rm;
11195}
11196
c19d1205
ZW
11197static void
11198do_t_rsb (void)
11199{
fdfde340 11200 unsigned Rd, Rs;
b99bd4ef 11201
c19d1205
ZW
11202 Rd = inst.operands[0].reg;
11203 Rs = (inst.operands[1].present
11204 ? inst.operands[1].reg /* Rd, Rs, foo */
11205 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11206
fdfde340
JM
11207 reject_bad_reg (Rd);
11208 reject_bad_reg (Rs);
11209 if (inst.operands[2].isreg)
11210 reject_bad_reg (inst.operands[2].reg);
11211
c19d1205
ZW
11212 inst.instruction |= Rd << 8;
11213 inst.instruction |= Rs << 16;
11214 if (!inst.operands[2].isreg)
11215 {
026d3abb
PB
11216 bfd_boolean narrow;
11217
11218 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11219 narrow = !in_it_block ();
026d3abb 11220 else
e07e6e58 11221 narrow = in_it_block ();
026d3abb
PB
11222
11223 if (Rd > 7 || Rs > 7)
11224 narrow = FALSE;
11225
11226 if (inst.size_req == 4 || !unified_syntax)
11227 narrow = FALSE;
11228
11229 if (inst.reloc.exp.X_op != O_constant
11230 || inst.reloc.exp.X_add_number != 0)
11231 narrow = FALSE;
11232
11233 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11234 relaxation, but it doesn't seem worth the hassle. */
11235 if (narrow)
11236 {
11237 inst.reloc.type = BFD_RELOC_UNUSED;
11238 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11239 inst.instruction |= Rs << 3;
11240 inst.instruction |= Rd;
11241 }
11242 else
11243 {
11244 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11245 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11246 }
c19d1205
ZW
11247 }
11248 else
11249 encode_thumb32_shifted_operand (2);
11250}
b99bd4ef 11251
c19d1205
ZW
11252static void
11253do_t_setend (void)
11254{
e07e6e58 11255 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11256 if (inst.operands[0].imm)
11257 inst.instruction |= 0x8;
11258}
b99bd4ef 11259
c19d1205
ZW
11260static void
11261do_t_shift (void)
11262{
11263 if (!inst.operands[1].present)
11264 inst.operands[1].reg = inst.operands[0].reg;
11265
11266 if (unified_syntax)
11267 {
3d388997
PB
11268 bfd_boolean narrow;
11269 int shift_kind;
11270
11271 switch (inst.instruction)
11272 {
11273 case T_MNEM_asr:
11274 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11275 case T_MNEM_lsl:
11276 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11277 case T_MNEM_lsr:
11278 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11279 case T_MNEM_ror:
11280 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11281 default: abort ();
11282 }
11283
11284 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11285 narrow = !in_it_block ();
3d388997 11286 else
e07e6e58 11287 narrow = in_it_block ();
3d388997
PB
11288 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11289 narrow = FALSE;
11290 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11291 narrow = FALSE;
11292 if (inst.operands[2].isreg
11293 && (inst.operands[1].reg != inst.operands[0].reg
11294 || inst.operands[2].reg > 7))
11295 narrow = FALSE;
11296 if (inst.size_req == 4)
11297 narrow = FALSE;
11298
fdfde340
JM
11299 reject_bad_reg (inst.operands[0].reg);
11300 reject_bad_reg (inst.operands[1].reg);
c921be7d 11301
3d388997 11302 if (!narrow)
c19d1205
ZW
11303 {
11304 if (inst.operands[2].isreg)
b99bd4ef 11305 {
fdfde340 11306 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11307 inst.instruction = THUMB_OP32 (inst.instruction);
11308 inst.instruction |= inst.operands[0].reg << 8;
11309 inst.instruction |= inst.operands[1].reg << 16;
11310 inst.instruction |= inst.operands[2].reg;
11311 }
11312 else
11313 {
11314 inst.operands[1].shifted = 1;
3d388997 11315 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11316 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11317 ? T_MNEM_movs : T_MNEM_mov);
11318 inst.instruction |= inst.operands[0].reg << 8;
11319 encode_thumb32_shifted_operand (1);
11320 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11321 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11322 }
11323 }
11324 else
11325 {
c19d1205 11326 if (inst.operands[2].isreg)
b99bd4ef 11327 {
3d388997 11328 switch (shift_kind)
b99bd4ef 11329 {
3d388997
PB
11330 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11331 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11332 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11333 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11334 default: abort ();
b99bd4ef 11335 }
5f4273c7 11336
c19d1205
ZW
11337 inst.instruction |= inst.operands[0].reg;
11338 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
11339 }
11340 else
11341 {
3d388997 11342 switch (shift_kind)
b99bd4ef 11343 {
3d388997
PB
11344 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11345 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11346 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11347 default: abort ();
b99bd4ef 11348 }
c19d1205
ZW
11349 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11350 inst.instruction |= inst.operands[0].reg;
11351 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11352 }
11353 }
c19d1205
ZW
11354 }
11355 else
11356 {
11357 constraint (inst.operands[0].reg > 7
11358 || inst.operands[1].reg > 7, BAD_HIREG);
11359 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11360
c19d1205
ZW
11361 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11362 {
11363 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11364 constraint (inst.operands[0].reg != inst.operands[1].reg,
11365 _("source1 and dest must be same register"));
b99bd4ef 11366
c19d1205
ZW
11367 switch (inst.instruction)
11368 {
11369 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11370 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11371 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11372 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11373 default: abort ();
11374 }
5f4273c7 11375
c19d1205
ZW
11376 inst.instruction |= inst.operands[0].reg;
11377 inst.instruction |= inst.operands[2].reg << 3;
11378 }
11379 else
b99bd4ef 11380 {
c19d1205
ZW
11381 switch (inst.instruction)
11382 {
11383 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11384 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11385 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11386 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11387 default: abort ();
11388 }
11389 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11390 inst.instruction |= inst.operands[0].reg;
11391 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11392 }
11393 }
b99bd4ef
NC
11394}
11395
11396static void
c19d1205 11397do_t_simd (void)
b99bd4ef 11398{
fdfde340
JM
11399 unsigned Rd, Rn, Rm;
11400
11401 Rd = inst.operands[0].reg;
11402 Rn = inst.operands[1].reg;
11403 Rm = inst.operands[2].reg;
11404
11405 reject_bad_reg (Rd);
11406 reject_bad_reg (Rn);
11407 reject_bad_reg (Rm);
11408
11409 inst.instruction |= Rd << 8;
11410 inst.instruction |= Rn << 16;
11411 inst.instruction |= Rm;
c19d1205 11412}
b99bd4ef 11413
03ee1b7f
NC
11414static void
11415do_t_simd2 (void)
11416{
11417 unsigned Rd, Rn, Rm;
11418
11419 Rd = inst.operands[0].reg;
11420 Rm = inst.operands[1].reg;
11421 Rn = inst.operands[2].reg;
11422
11423 reject_bad_reg (Rd);
11424 reject_bad_reg (Rn);
11425 reject_bad_reg (Rm);
11426
11427 inst.instruction |= Rd << 8;
11428 inst.instruction |= Rn << 16;
11429 inst.instruction |= Rm;
11430}
11431
c19d1205 11432static void
3eb17e6b 11433do_t_smc (void)
c19d1205
ZW
11434{
11435 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
11436 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11437 _("SMC is not permitted on this architecture"));
c19d1205
ZW
11438 constraint (inst.reloc.exp.X_op != O_constant,
11439 _("expression too complex"));
11440 inst.reloc.type = BFD_RELOC_UNUSED;
11441 inst.instruction |= (value & 0xf000) >> 12;
11442 inst.instruction |= (value & 0x0ff0);
11443 inst.instruction |= (value & 0x000f) << 16;
11444}
b99bd4ef 11445
90ec0d68
MGD
11446static void
11447do_t_hvc (void)
11448{
11449 unsigned int value = inst.reloc.exp.X_add_number;
11450
11451 inst.reloc.type = BFD_RELOC_UNUSED;
11452 inst.instruction |= (value & 0x0fff);
11453 inst.instruction |= (value & 0xf000) << 4;
11454}
11455
c19d1205 11456static void
3a21c15a 11457do_t_ssat_usat (int bias)
c19d1205 11458{
fdfde340
JM
11459 unsigned Rd, Rn;
11460
11461 Rd = inst.operands[0].reg;
11462 Rn = inst.operands[2].reg;
11463
11464 reject_bad_reg (Rd);
11465 reject_bad_reg (Rn);
11466
11467 inst.instruction |= Rd << 8;
3a21c15a 11468 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11469 inst.instruction |= Rn << 16;
b99bd4ef 11470
c19d1205 11471 if (inst.operands[3].present)
b99bd4ef 11472 {
3a21c15a
NC
11473 offsetT shift_amount = inst.reloc.exp.X_add_number;
11474
11475 inst.reloc.type = BFD_RELOC_UNUSED;
11476
c19d1205
ZW
11477 constraint (inst.reloc.exp.X_op != O_constant,
11478 _("expression too complex"));
b99bd4ef 11479
3a21c15a 11480 if (shift_amount != 0)
6189168b 11481 {
3a21c15a
NC
11482 constraint (shift_amount > 31,
11483 _("shift expression is too large"));
11484
c19d1205 11485 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11486 inst.instruction |= 0x00200000; /* sh bit. */
11487
11488 inst.instruction |= (shift_amount & 0x1c) << 10;
11489 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11490 }
11491 }
b99bd4ef 11492}
c921be7d 11493
3a21c15a
NC
11494static void
11495do_t_ssat (void)
11496{
11497 do_t_ssat_usat (1);
11498}
b99bd4ef 11499
0dd132b6 11500static void
c19d1205 11501do_t_ssat16 (void)
0dd132b6 11502{
fdfde340
JM
11503 unsigned Rd, Rn;
11504
11505 Rd = inst.operands[0].reg;
11506 Rn = inst.operands[2].reg;
11507
11508 reject_bad_reg (Rd);
11509 reject_bad_reg (Rn);
11510
11511 inst.instruction |= Rd << 8;
c19d1205 11512 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11513 inst.instruction |= Rn << 16;
c19d1205 11514}
0dd132b6 11515
c19d1205
ZW
11516static void
11517do_t_strex (void)
11518{
11519 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11520 || inst.operands[2].postind || inst.operands[2].writeback
11521 || inst.operands[2].immisreg || inst.operands[2].shifted
11522 || inst.operands[2].negative,
01cfc07f 11523 BAD_ADDR_MODE);
0dd132b6 11524
5be8be5d
DG
11525 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11526
c19d1205
ZW
11527 inst.instruction |= inst.operands[0].reg << 8;
11528 inst.instruction |= inst.operands[1].reg << 12;
11529 inst.instruction |= inst.operands[2].reg << 16;
11530 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11531}
11532
b99bd4ef 11533static void
c19d1205 11534do_t_strexd (void)
b99bd4ef 11535{
c19d1205
ZW
11536 if (!inst.operands[2].present)
11537 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11538
c19d1205
ZW
11539 constraint (inst.operands[0].reg == inst.operands[1].reg
11540 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 11541 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 11542 BAD_OVERLAP);
b99bd4ef 11543
c19d1205
ZW
11544 inst.instruction |= inst.operands[0].reg;
11545 inst.instruction |= inst.operands[1].reg << 12;
11546 inst.instruction |= inst.operands[2].reg << 8;
11547 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11548}
11549
11550static void
c19d1205 11551do_t_sxtah (void)
b99bd4ef 11552{
fdfde340
JM
11553 unsigned Rd, Rn, Rm;
11554
11555 Rd = inst.operands[0].reg;
11556 Rn = inst.operands[1].reg;
11557 Rm = inst.operands[2].reg;
11558
11559 reject_bad_reg (Rd);
11560 reject_bad_reg (Rn);
11561 reject_bad_reg (Rm);
11562
11563 inst.instruction |= Rd << 8;
11564 inst.instruction |= Rn << 16;
11565 inst.instruction |= Rm;
c19d1205
ZW
11566 inst.instruction |= inst.operands[3].imm << 4;
11567}
b99bd4ef 11568
c19d1205
ZW
11569static void
11570do_t_sxth (void)
11571{
fdfde340
JM
11572 unsigned Rd, Rm;
11573
11574 Rd = inst.operands[0].reg;
11575 Rm = inst.operands[1].reg;
11576
11577 reject_bad_reg (Rd);
11578 reject_bad_reg (Rm);
c921be7d
NC
11579
11580 if (inst.instruction <= 0xffff
11581 && inst.size_req != 4
fdfde340 11582 && Rd <= 7 && Rm <= 7
c19d1205 11583 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11584 {
c19d1205 11585 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11586 inst.instruction |= Rd;
11587 inst.instruction |= Rm << 3;
b99bd4ef 11588 }
c19d1205 11589 else if (unified_syntax)
b99bd4ef 11590 {
c19d1205
ZW
11591 if (inst.instruction <= 0xffff)
11592 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11593 inst.instruction |= Rd << 8;
11594 inst.instruction |= Rm;
c19d1205 11595 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11596 }
c19d1205 11597 else
b99bd4ef 11598 {
c19d1205
ZW
11599 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11600 _("Thumb encoding does not support rotation"));
11601 constraint (1, BAD_HIREG);
b99bd4ef 11602 }
c19d1205 11603}
b99bd4ef 11604
c19d1205
ZW
11605static void
11606do_t_swi (void)
11607{
b2a5fbdc
MGD
11608 /* We have to do the following check manually as ARM_EXT_OS only applies
11609 to ARM_EXT_V6M. */
11610 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11611 {
11612 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os))
11613 as_bad (_("SVC is not permitted on this architecture"));
11614 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11615 }
11616
c19d1205
ZW
11617 inst.reloc.type = BFD_RELOC_ARM_SWI;
11618}
b99bd4ef 11619
92e90b6e
PB
11620static void
11621do_t_tb (void)
11622{
fdfde340 11623 unsigned Rn, Rm;
92e90b6e
PB
11624 int half;
11625
11626 half = (inst.instruction & 0x10) != 0;
e07e6e58 11627 set_it_insn_type_last ();
dfa9f0d5
PB
11628 constraint (inst.operands[0].immisreg,
11629 _("instruction requires register index"));
fdfde340
JM
11630
11631 Rn = inst.operands[0].reg;
11632 Rm = inst.operands[0].imm;
c921be7d 11633
fdfde340
JM
11634 constraint (Rn == REG_SP, BAD_SP);
11635 reject_bad_reg (Rm);
11636
92e90b6e
PB
11637 constraint (!half && inst.operands[0].shifted,
11638 _("instruction does not allow shifted index"));
fdfde340 11639 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11640}
11641
c19d1205
ZW
11642static void
11643do_t_usat (void)
11644{
3a21c15a 11645 do_t_ssat_usat (0);
b99bd4ef
NC
11646}
11647
11648static void
c19d1205 11649do_t_usat16 (void)
b99bd4ef 11650{
fdfde340
JM
11651 unsigned Rd, Rn;
11652
11653 Rd = inst.operands[0].reg;
11654 Rn = inst.operands[2].reg;
11655
11656 reject_bad_reg (Rd);
11657 reject_bad_reg (Rn);
11658
11659 inst.instruction |= Rd << 8;
c19d1205 11660 inst.instruction |= inst.operands[1].imm;
fdfde340 11661 inst.instruction |= Rn << 16;
b99bd4ef 11662}
c19d1205 11663
5287ad62 11664/* Neon instruction encoder helpers. */
5f4273c7 11665
5287ad62 11666/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 11667
5287ad62
JB
11668/* An "invalid" code for the following tables. */
11669#define N_INV -1u
11670
11671struct neon_tab_entry
b99bd4ef 11672{
5287ad62
JB
11673 unsigned integer;
11674 unsigned float_or_poly;
11675 unsigned scalar_or_imm;
11676};
5f4273c7 11677
5287ad62
JB
11678/* Map overloaded Neon opcodes to their respective encodings. */
11679#define NEON_ENC_TAB \
11680 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11681 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11682 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11683 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11684 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11685 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11686 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11687 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11688 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11689 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11690 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11691 /* Register variants of the following two instructions are encoded as
e07e6e58 11692 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
11693 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11694 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
11695 X(vfma, N_INV, 0x0000c10, N_INV), \
11696 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
11697 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11698 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11699 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11700 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11701 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11702 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11703 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11704 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11705 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11706 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11707 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11708 X(vshl, 0x0000400, N_INV, 0x0800510), \
11709 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11710 X(vand, 0x0000110, N_INV, 0x0800030), \
11711 X(vbic, 0x0100110, N_INV, 0x0800030), \
11712 X(veor, 0x1000110, N_INV, N_INV), \
11713 X(vorn, 0x0300110, N_INV, 0x0800010), \
11714 X(vorr, 0x0200110, N_INV, 0x0800010), \
11715 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11716 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11717 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11718 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11719 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11720 X(vst1, 0x0000000, 0x0800000, N_INV), \
11721 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11722 X(vst2, 0x0000100, 0x0800100, N_INV), \
11723 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11724 X(vst3, 0x0000200, 0x0800200, N_INV), \
11725 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11726 X(vst4, 0x0000300, 0x0800300, N_INV), \
11727 X(vmovn, 0x1b20200, N_INV, N_INV), \
11728 X(vtrn, 0x1b20080, N_INV, N_INV), \
11729 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
11730 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11731 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
11732 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11733 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
11734 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11735 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
11736 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11737 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11738 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11739 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
11740
11741enum neon_opc
11742{
11743#define X(OPC,I,F,S) N_MNEM_##OPC
11744NEON_ENC_TAB
11745#undef X
11746};
b99bd4ef 11747
5287ad62
JB
11748static const struct neon_tab_entry neon_enc_tab[] =
11749{
11750#define X(OPC,I,F,S) { (I), (F), (S) }
11751NEON_ENC_TAB
11752#undef X
11753};
b99bd4ef 11754
88714cb8
DG
11755/* Do not use these macros; instead, use NEON_ENCODE defined below. */
11756#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11757#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11758#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11759#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11760#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11761#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11762#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11763#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11764#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11765#define NEON_ENC_SINGLE_(X) \
037e8744 11766 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 11767#define NEON_ENC_DOUBLE_(X) \
037e8744 11768 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 11769
88714cb8
DG
11770#define NEON_ENCODE(type, inst) \
11771 do \
11772 { \
11773 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11774 inst.is_neon = 1; \
11775 } \
11776 while (0)
11777
11778#define check_neon_suffixes \
11779 do \
11780 { \
11781 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11782 { \
11783 as_bad (_("invalid neon suffix for non neon instruction")); \
11784 return; \
11785 } \
11786 } \
11787 while (0)
11788
037e8744
JB
11789/* Define shapes for instruction operands. The following mnemonic characters
11790 are used in this table:
5287ad62 11791
037e8744 11792 F - VFP S<n> register
5287ad62
JB
11793 D - Neon D<n> register
11794 Q - Neon Q<n> register
11795 I - Immediate
11796 S - Scalar
11797 R - ARM register
11798 L - D<n> register list
5f4273c7 11799
037e8744
JB
11800 This table is used to generate various data:
11801 - enumerations of the form NS_DDR to be used as arguments to
11802 neon_select_shape.
11803 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 11804 - a table used to drive neon_select_shape. */
b99bd4ef 11805
037e8744
JB
11806#define NEON_SHAPE_DEF \
11807 X(3, (D, D, D), DOUBLE), \
11808 X(3, (Q, Q, Q), QUAD), \
11809 X(3, (D, D, I), DOUBLE), \
11810 X(3, (Q, Q, I), QUAD), \
11811 X(3, (D, D, S), DOUBLE), \
11812 X(3, (Q, Q, S), QUAD), \
11813 X(2, (D, D), DOUBLE), \
11814 X(2, (Q, Q), QUAD), \
11815 X(2, (D, S), DOUBLE), \
11816 X(2, (Q, S), QUAD), \
11817 X(2, (D, R), DOUBLE), \
11818 X(2, (Q, R), QUAD), \
11819 X(2, (D, I), DOUBLE), \
11820 X(2, (Q, I), QUAD), \
11821 X(3, (D, L, D), DOUBLE), \
11822 X(2, (D, Q), MIXED), \
11823 X(2, (Q, D), MIXED), \
11824 X(3, (D, Q, I), MIXED), \
11825 X(3, (Q, D, I), MIXED), \
11826 X(3, (Q, D, D), MIXED), \
11827 X(3, (D, Q, Q), MIXED), \
11828 X(3, (Q, Q, D), MIXED), \
11829 X(3, (Q, D, S), MIXED), \
11830 X(3, (D, Q, S), MIXED), \
11831 X(4, (D, D, D, I), DOUBLE), \
11832 X(4, (Q, Q, Q, I), QUAD), \
11833 X(2, (F, F), SINGLE), \
11834 X(3, (F, F, F), SINGLE), \
11835 X(2, (F, I), SINGLE), \
11836 X(2, (F, D), MIXED), \
11837 X(2, (D, F), MIXED), \
11838 X(3, (F, F, I), MIXED), \
11839 X(4, (R, R, F, F), SINGLE), \
11840 X(4, (F, F, R, R), SINGLE), \
11841 X(3, (D, R, R), DOUBLE), \
11842 X(3, (R, R, D), DOUBLE), \
11843 X(2, (S, R), SINGLE), \
11844 X(2, (R, S), SINGLE), \
11845 X(2, (F, R), SINGLE), \
11846 X(2, (R, F), SINGLE)
11847
11848#define S2(A,B) NS_##A##B
11849#define S3(A,B,C) NS_##A##B##C
11850#define S4(A,B,C,D) NS_##A##B##C##D
11851
11852#define X(N, L, C) S##N L
11853
5287ad62
JB
11854enum neon_shape
11855{
037e8744
JB
11856 NEON_SHAPE_DEF,
11857 NS_NULL
5287ad62 11858};
b99bd4ef 11859
037e8744
JB
11860#undef X
11861#undef S2
11862#undef S3
11863#undef S4
11864
11865enum neon_shape_class
11866{
11867 SC_SINGLE,
11868 SC_DOUBLE,
11869 SC_QUAD,
11870 SC_MIXED
11871};
11872
11873#define X(N, L, C) SC_##C
11874
11875static enum neon_shape_class neon_shape_class[] =
11876{
11877 NEON_SHAPE_DEF
11878};
11879
11880#undef X
11881
11882enum neon_shape_el
11883{
11884 SE_F,
11885 SE_D,
11886 SE_Q,
11887 SE_I,
11888 SE_S,
11889 SE_R,
11890 SE_L
11891};
11892
11893/* Register widths of above. */
11894static unsigned neon_shape_el_size[] =
11895{
11896 32,
11897 64,
11898 128,
11899 0,
11900 32,
11901 32,
11902 0
11903};
11904
11905struct neon_shape_info
11906{
11907 unsigned els;
11908 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11909};
11910
11911#define S2(A,B) { SE_##A, SE_##B }
11912#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11913#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11914
11915#define X(N, L, C) { N, S##N L }
11916
11917static struct neon_shape_info neon_shape_tab[] =
11918{
11919 NEON_SHAPE_DEF
11920};
11921
11922#undef X
11923#undef S2
11924#undef S3
11925#undef S4
11926
5287ad62
JB
11927/* Bit masks used in type checking given instructions.
11928 'N_EQK' means the type must be the same as (or based on in some way) the key
11929 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11930 set, various other bits can be set as well in order to modify the meaning of
11931 the type constraint. */
11932
11933enum neon_type_mask
11934{
8e79c3df
CM
11935 N_S8 = 0x0000001,
11936 N_S16 = 0x0000002,
11937 N_S32 = 0x0000004,
11938 N_S64 = 0x0000008,
11939 N_U8 = 0x0000010,
11940 N_U16 = 0x0000020,
11941 N_U32 = 0x0000040,
11942 N_U64 = 0x0000080,
11943 N_I8 = 0x0000100,
11944 N_I16 = 0x0000200,
11945 N_I32 = 0x0000400,
11946 N_I64 = 0x0000800,
11947 N_8 = 0x0001000,
11948 N_16 = 0x0002000,
11949 N_32 = 0x0004000,
11950 N_64 = 0x0008000,
11951 N_P8 = 0x0010000,
11952 N_P16 = 0x0020000,
11953 N_F16 = 0x0040000,
11954 N_F32 = 0x0080000,
11955 N_F64 = 0x0100000,
c921be7d
NC
11956 N_KEY = 0x1000000, /* Key element (main type specifier). */
11957 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 11958 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
11959 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11960 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11961 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11962 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11963 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11964 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11965 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 11966 N_UTYP = 0,
037e8744 11967 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
11968};
11969
dcbf9037
JB
11970#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11971
5287ad62
JB
11972#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11973#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11974#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11975#define N_SUF_32 (N_SU_32 | N_F32)
11976#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11977#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11978
11979/* Pass this as the first type argument to neon_check_type to ignore types
11980 altogether. */
11981#define N_IGNORE_TYPE (N_KEY | N_EQK)
11982
037e8744
JB
11983/* Select a "shape" for the current instruction (describing register types or
11984 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11985 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11986 function of operand parsing, so this function doesn't need to be called.
11987 Shapes should be listed in order of decreasing length. */
5287ad62
JB
11988
11989static enum neon_shape
037e8744 11990neon_select_shape (enum neon_shape shape, ...)
5287ad62 11991{
037e8744
JB
11992 va_list ap;
11993 enum neon_shape first_shape = shape;
5287ad62
JB
11994
11995 /* Fix missing optional operands. FIXME: we don't know at this point how
11996 many arguments we should have, so this makes the assumption that we have
11997 > 1. This is true of all current Neon opcodes, I think, but may not be
11998 true in the future. */
11999 if (!inst.operands[1].present)
12000 inst.operands[1] = inst.operands[0];
12001
037e8744 12002 va_start (ap, shape);
5f4273c7 12003
21d799b5 12004 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12005 {
12006 unsigned j;
12007 int matches = 1;
12008
12009 for (j = 0; j < neon_shape_tab[shape].els; j++)
12010 {
12011 if (!inst.operands[j].present)
12012 {
12013 matches = 0;
12014 break;
12015 }
12016
12017 switch (neon_shape_tab[shape].el[j])
12018 {
12019 case SE_F:
12020 if (!(inst.operands[j].isreg
12021 && inst.operands[j].isvec
12022 && inst.operands[j].issingle
12023 && !inst.operands[j].isquad))
12024 matches = 0;
12025 break;
12026
12027 case SE_D:
12028 if (!(inst.operands[j].isreg
12029 && inst.operands[j].isvec
12030 && !inst.operands[j].isquad
12031 && !inst.operands[j].issingle))
12032 matches = 0;
12033 break;
12034
12035 case SE_R:
12036 if (!(inst.operands[j].isreg
12037 && !inst.operands[j].isvec))
12038 matches = 0;
12039 break;
12040
12041 case SE_Q:
12042 if (!(inst.operands[j].isreg
12043 && inst.operands[j].isvec
12044 && inst.operands[j].isquad
12045 && !inst.operands[j].issingle))
12046 matches = 0;
12047 break;
12048
12049 case SE_I:
12050 if (!(!inst.operands[j].isreg
12051 && !inst.operands[j].isscalar))
12052 matches = 0;
12053 break;
12054
12055 case SE_S:
12056 if (!(!inst.operands[j].isreg
12057 && inst.operands[j].isscalar))
12058 matches = 0;
12059 break;
12060
12061 case SE_L:
12062 break;
12063 }
3fde54a2
JZ
12064 if (!matches)
12065 break;
037e8744
JB
12066 }
12067 if (matches)
5287ad62 12068 break;
037e8744 12069 }
5f4273c7 12070
037e8744 12071 va_end (ap);
5287ad62 12072
037e8744
JB
12073 if (shape == NS_NULL && first_shape != NS_NULL)
12074 first_error (_("invalid instruction shape"));
5287ad62 12075
037e8744
JB
12076 return shape;
12077}
5287ad62 12078
037e8744
JB
12079/* True if SHAPE is predominantly a quadword operation (most of the time, this
12080 means the Q bit should be set). */
12081
12082static int
12083neon_quad (enum neon_shape shape)
12084{
12085 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12086}
037e8744 12087
5287ad62
JB
12088static void
12089neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12090 unsigned *g_size)
12091{
12092 /* Allow modification to be made to types which are constrained to be
12093 based on the key element, based on bits set alongside N_EQK. */
12094 if ((typebits & N_EQK) != 0)
12095 {
12096 if ((typebits & N_HLF) != 0)
12097 *g_size /= 2;
12098 else if ((typebits & N_DBL) != 0)
12099 *g_size *= 2;
12100 if ((typebits & N_SGN) != 0)
12101 *g_type = NT_signed;
12102 else if ((typebits & N_UNS) != 0)
12103 *g_type = NT_unsigned;
12104 else if ((typebits & N_INT) != 0)
12105 *g_type = NT_integer;
12106 else if ((typebits & N_FLT) != 0)
12107 *g_type = NT_float;
dcbf9037
JB
12108 else if ((typebits & N_SIZ) != 0)
12109 *g_type = NT_untyped;
5287ad62
JB
12110 }
12111}
5f4273c7 12112
5287ad62
JB
12113/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12114 operand type, i.e. the single type specified in a Neon instruction when it
12115 is the only one given. */
12116
12117static struct neon_type_el
12118neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12119{
12120 struct neon_type_el dest = *key;
5f4273c7 12121
9c2799c2 12122 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12123
5287ad62
JB
12124 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12125
12126 return dest;
12127}
12128
12129/* Convert Neon type and size into compact bitmask representation. */
12130
12131static enum neon_type_mask
12132type_chk_of_el_type (enum neon_el_type type, unsigned size)
12133{
12134 switch (type)
12135 {
12136 case NT_untyped:
12137 switch (size)
12138 {
12139 case 8: return N_8;
12140 case 16: return N_16;
12141 case 32: return N_32;
12142 case 64: return N_64;
12143 default: ;
12144 }
12145 break;
12146
12147 case NT_integer:
12148 switch (size)
12149 {
12150 case 8: return N_I8;
12151 case 16: return N_I16;
12152 case 32: return N_I32;
12153 case 64: return N_I64;
12154 default: ;
12155 }
12156 break;
12157
12158 case NT_float:
037e8744
JB
12159 switch (size)
12160 {
8e79c3df 12161 case 16: return N_F16;
037e8744
JB
12162 case 32: return N_F32;
12163 case 64: return N_F64;
12164 default: ;
12165 }
5287ad62
JB
12166 break;
12167
12168 case NT_poly:
12169 switch (size)
12170 {
12171 case 8: return N_P8;
12172 case 16: return N_P16;
12173 default: ;
12174 }
12175 break;
12176
12177 case NT_signed:
12178 switch (size)
12179 {
12180 case 8: return N_S8;
12181 case 16: return N_S16;
12182 case 32: return N_S32;
12183 case 64: return N_S64;
12184 default: ;
12185 }
12186 break;
12187
12188 case NT_unsigned:
12189 switch (size)
12190 {
12191 case 8: return N_U8;
12192 case 16: return N_U16;
12193 case 32: return N_U32;
12194 case 64: return N_U64;
12195 default: ;
12196 }
12197 break;
12198
12199 default: ;
12200 }
5f4273c7 12201
5287ad62
JB
12202 return N_UTYP;
12203}
12204
12205/* Convert compact Neon bitmask type representation to a type and size. Only
12206 handles the case where a single bit is set in the mask. */
12207
dcbf9037 12208static int
5287ad62
JB
12209el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12210 enum neon_type_mask mask)
12211{
dcbf9037
JB
12212 if ((mask & N_EQK) != 0)
12213 return FAIL;
12214
5287ad62
JB
12215 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12216 *size = 8;
dcbf9037 12217 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12218 *size = 16;
dcbf9037 12219 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12220 *size = 32;
037e8744 12221 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12222 *size = 64;
dcbf9037
JB
12223 else
12224 return FAIL;
12225
5287ad62
JB
12226 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12227 *type = NT_signed;
dcbf9037 12228 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12229 *type = NT_unsigned;
dcbf9037 12230 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12231 *type = NT_integer;
dcbf9037 12232 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12233 *type = NT_untyped;
dcbf9037 12234 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12235 *type = NT_poly;
037e8744 12236 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12237 *type = NT_float;
dcbf9037
JB
12238 else
12239 return FAIL;
5f4273c7 12240
dcbf9037 12241 return SUCCESS;
5287ad62
JB
12242}
12243
12244/* Modify a bitmask of allowed types. This is only needed for type
12245 relaxation. */
12246
12247static unsigned
12248modify_types_allowed (unsigned allowed, unsigned mods)
12249{
12250 unsigned size;
12251 enum neon_el_type type;
12252 unsigned destmask;
12253 int i;
5f4273c7 12254
5287ad62 12255 destmask = 0;
5f4273c7 12256
5287ad62
JB
12257 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12258 {
21d799b5
NC
12259 if (el_type_of_type_chk (&type, &size,
12260 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12261 {
12262 neon_modify_type_size (mods, &type, &size);
12263 destmask |= type_chk_of_el_type (type, size);
12264 }
5287ad62 12265 }
5f4273c7 12266
5287ad62
JB
12267 return destmask;
12268}
12269
12270/* Check type and return type classification.
12271 The manual states (paraphrase): If one datatype is given, it indicates the
12272 type given in:
12273 - the second operand, if there is one
12274 - the operand, if there is no second operand
12275 - the result, if there are no operands.
12276 This isn't quite good enough though, so we use a concept of a "key" datatype
12277 which is set on a per-instruction basis, which is the one which matters when
12278 only one data type is written.
12279 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12280 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12281
12282static struct neon_type_el
12283neon_check_type (unsigned els, enum neon_shape ns, ...)
12284{
12285 va_list ap;
12286 unsigned i, pass, key_el = 0;
12287 unsigned types[NEON_MAX_TYPE_ELS];
12288 enum neon_el_type k_type = NT_invtype;
12289 unsigned k_size = -1u;
12290 struct neon_type_el badtype = {NT_invtype, -1};
12291 unsigned key_allowed = 0;
12292
12293 /* Optional registers in Neon instructions are always (not) in operand 1.
12294 Fill in the missing operand here, if it was omitted. */
12295 if (els > 1 && !inst.operands[1].present)
12296 inst.operands[1] = inst.operands[0];
12297
12298 /* Suck up all the varargs. */
12299 va_start (ap, ns);
12300 for (i = 0; i < els; i++)
12301 {
12302 unsigned thisarg = va_arg (ap, unsigned);
12303 if (thisarg == N_IGNORE_TYPE)
12304 {
12305 va_end (ap);
12306 return badtype;
12307 }
12308 types[i] = thisarg;
12309 if ((thisarg & N_KEY) != 0)
12310 key_el = i;
12311 }
12312 va_end (ap);
12313
dcbf9037
JB
12314 if (inst.vectype.elems > 0)
12315 for (i = 0; i < els; i++)
12316 if (inst.operands[i].vectype.type != NT_invtype)
12317 {
12318 first_error (_("types specified in both the mnemonic and operands"));
12319 return badtype;
12320 }
12321
5287ad62
JB
12322 /* Duplicate inst.vectype elements here as necessary.
12323 FIXME: No idea if this is exactly the same as the ARM assembler,
12324 particularly when an insn takes one register and one non-register
12325 operand. */
12326 if (inst.vectype.elems == 1 && els > 1)
12327 {
12328 unsigned j;
12329 inst.vectype.elems = els;
12330 inst.vectype.el[key_el] = inst.vectype.el[0];
12331 for (j = 0; j < els; j++)
dcbf9037
JB
12332 if (j != key_el)
12333 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12334 types[j]);
12335 }
12336 else if (inst.vectype.elems == 0 && els > 0)
12337 {
12338 unsigned j;
12339 /* No types were given after the mnemonic, so look for types specified
12340 after each operand. We allow some flexibility here; as long as the
12341 "key" operand has a type, we can infer the others. */
12342 for (j = 0; j < els; j++)
12343 if (inst.operands[j].vectype.type != NT_invtype)
12344 inst.vectype.el[j] = inst.operands[j].vectype;
12345
12346 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12347 {
dcbf9037
JB
12348 for (j = 0; j < els; j++)
12349 if (inst.operands[j].vectype.type == NT_invtype)
12350 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12351 types[j]);
12352 }
12353 else
12354 {
12355 first_error (_("operand types can't be inferred"));
12356 return badtype;
5287ad62
JB
12357 }
12358 }
12359 else if (inst.vectype.elems != els)
12360 {
dcbf9037 12361 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12362 return badtype;
12363 }
12364
12365 for (pass = 0; pass < 2; pass++)
12366 {
12367 for (i = 0; i < els; i++)
12368 {
12369 unsigned thisarg = types[i];
12370 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12371 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12372 enum neon_el_type g_type = inst.vectype.el[i].type;
12373 unsigned g_size = inst.vectype.el[i].size;
12374
12375 /* Decay more-specific signed & unsigned types to sign-insensitive
12376 integer types if sign-specific variants are unavailable. */
12377 if ((g_type == NT_signed || g_type == NT_unsigned)
12378 && (types_allowed & N_SU_ALL) == 0)
12379 g_type = NT_integer;
12380
12381 /* If only untyped args are allowed, decay any more specific types to
12382 them. Some instructions only care about signs for some element
12383 sizes, so handle that properly. */
12384 if ((g_size == 8 && (types_allowed & N_8) != 0)
12385 || (g_size == 16 && (types_allowed & N_16) != 0)
12386 || (g_size == 32 && (types_allowed & N_32) != 0)
12387 || (g_size == 64 && (types_allowed & N_64) != 0))
12388 g_type = NT_untyped;
12389
12390 if (pass == 0)
12391 {
12392 if ((thisarg & N_KEY) != 0)
12393 {
12394 k_type = g_type;
12395 k_size = g_size;
12396 key_allowed = thisarg & ~N_KEY;
12397 }
12398 }
12399 else
12400 {
037e8744
JB
12401 if ((thisarg & N_VFP) != 0)
12402 {
99b253c5
NC
12403 enum neon_shape_el regshape;
12404 unsigned regwidth, match;
12405
12406 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12407 if (ns == NS_NULL)
12408 {
12409 first_error (_("invalid instruction shape"));
12410 return badtype;
12411 }
12412 regshape = neon_shape_tab[ns].el[i];
12413 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12414
12415 /* In VFP mode, operands must match register widths. If we
12416 have a key operand, use its width, else use the width of
12417 the current operand. */
12418 if (k_size != -1u)
12419 match = k_size;
12420 else
12421 match = g_size;
12422
12423 if (regwidth != match)
12424 {
12425 first_error (_("operand size must match register width"));
12426 return badtype;
12427 }
12428 }
5f4273c7 12429
5287ad62
JB
12430 if ((thisarg & N_EQK) == 0)
12431 {
12432 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12433
12434 if ((given_type & types_allowed) == 0)
12435 {
dcbf9037 12436 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12437 return badtype;
12438 }
12439 }
12440 else
12441 {
12442 enum neon_el_type mod_k_type = k_type;
12443 unsigned mod_k_size = k_size;
12444 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12445 if (g_type != mod_k_type || g_size != mod_k_size)
12446 {
dcbf9037 12447 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12448 return badtype;
12449 }
12450 }
12451 }
12452 }
12453 }
12454
12455 return inst.vectype.el[key_el];
12456}
12457
037e8744 12458/* Neon-style VFP instruction forwarding. */
5287ad62 12459
037e8744
JB
12460/* Thumb VFP instructions have 0xE in the condition field. */
12461
12462static void
12463do_vfp_cond_or_thumb (void)
5287ad62 12464{
88714cb8
DG
12465 inst.is_neon = 1;
12466
5287ad62 12467 if (thumb_mode)
037e8744 12468 inst.instruction |= 0xe0000000;
5287ad62 12469 else
037e8744 12470 inst.instruction |= inst.cond << 28;
5287ad62
JB
12471}
12472
037e8744
JB
12473/* Look up and encode a simple mnemonic, for use as a helper function for the
12474 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12475 etc. It is assumed that operand parsing has already been done, and that the
12476 operands are in the form expected by the given opcode (this isn't necessarily
12477 the same as the form in which they were parsed, hence some massaging must
12478 take place before this function is called).
12479 Checks current arch version against that in the looked-up opcode. */
5287ad62 12480
037e8744
JB
12481static void
12482do_vfp_nsyn_opcode (const char *opname)
5287ad62 12483{
037e8744 12484 const struct asm_opcode *opcode;
5f4273c7 12485
21d799b5 12486 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12487
037e8744
JB
12488 if (!opcode)
12489 abort ();
5287ad62 12490
037e8744
JB
12491 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12492 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12493 _(BAD_FPU));
5287ad62 12494
88714cb8
DG
12495 inst.is_neon = 1;
12496
037e8744
JB
12497 if (thumb_mode)
12498 {
12499 inst.instruction = opcode->tvalue;
12500 opcode->tencode ();
12501 }
12502 else
12503 {
12504 inst.instruction = (inst.cond << 28) | opcode->avalue;
12505 opcode->aencode ();
12506 }
12507}
5287ad62
JB
12508
12509static void
037e8744 12510do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12511{
037e8744
JB
12512 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12513
12514 if (rs == NS_FFF)
12515 {
12516 if (is_add)
12517 do_vfp_nsyn_opcode ("fadds");
12518 else
12519 do_vfp_nsyn_opcode ("fsubs");
12520 }
12521 else
12522 {
12523 if (is_add)
12524 do_vfp_nsyn_opcode ("faddd");
12525 else
12526 do_vfp_nsyn_opcode ("fsubd");
12527 }
12528}
12529
12530/* Check operand types to see if this is a VFP instruction, and if so call
12531 PFN (). */
12532
12533static int
12534try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12535{
12536 enum neon_shape rs;
12537 struct neon_type_el et;
12538
12539 switch (args)
12540 {
12541 case 2:
12542 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12543 et = neon_check_type (2, rs,
12544 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12545 break;
5f4273c7 12546
037e8744
JB
12547 case 3:
12548 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12549 et = neon_check_type (3, rs,
12550 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12551 break;
12552
12553 default:
12554 abort ();
12555 }
12556
12557 if (et.type != NT_invtype)
12558 {
12559 pfn (rs);
12560 return SUCCESS;
12561 }
037e8744 12562
99b253c5 12563 inst.error = NULL;
037e8744
JB
12564 return FAIL;
12565}
12566
12567static void
12568do_vfp_nsyn_mla_mls (enum neon_shape rs)
12569{
12570 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12571
037e8744
JB
12572 if (rs == NS_FFF)
12573 {
12574 if (is_mla)
12575 do_vfp_nsyn_opcode ("fmacs");
12576 else
1ee69515 12577 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12578 }
12579 else
12580 {
12581 if (is_mla)
12582 do_vfp_nsyn_opcode ("fmacd");
12583 else
1ee69515 12584 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12585 }
12586}
12587
62f3b8c8
PB
12588static void
12589do_vfp_nsyn_fma_fms (enum neon_shape rs)
12590{
12591 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12592
12593 if (rs == NS_FFF)
12594 {
12595 if (is_fma)
12596 do_vfp_nsyn_opcode ("ffmas");
12597 else
12598 do_vfp_nsyn_opcode ("ffnmas");
12599 }
12600 else
12601 {
12602 if (is_fma)
12603 do_vfp_nsyn_opcode ("ffmad");
12604 else
12605 do_vfp_nsyn_opcode ("ffnmad");
12606 }
12607}
12608
037e8744
JB
12609static void
12610do_vfp_nsyn_mul (enum neon_shape rs)
12611{
12612 if (rs == NS_FFF)
12613 do_vfp_nsyn_opcode ("fmuls");
12614 else
12615 do_vfp_nsyn_opcode ("fmuld");
12616}
12617
12618static void
12619do_vfp_nsyn_abs_neg (enum neon_shape rs)
12620{
12621 int is_neg = (inst.instruction & 0x80) != 0;
12622 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12623
12624 if (rs == NS_FF)
12625 {
12626 if (is_neg)
12627 do_vfp_nsyn_opcode ("fnegs");
12628 else
12629 do_vfp_nsyn_opcode ("fabss");
12630 }
12631 else
12632 {
12633 if (is_neg)
12634 do_vfp_nsyn_opcode ("fnegd");
12635 else
12636 do_vfp_nsyn_opcode ("fabsd");
12637 }
12638}
12639
12640/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12641 insns belong to Neon, and are handled elsewhere. */
12642
12643static void
12644do_vfp_nsyn_ldm_stm (int is_dbmode)
12645{
12646 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12647 if (is_ldm)
12648 {
12649 if (is_dbmode)
12650 do_vfp_nsyn_opcode ("fldmdbs");
12651 else
12652 do_vfp_nsyn_opcode ("fldmias");
12653 }
12654 else
12655 {
12656 if (is_dbmode)
12657 do_vfp_nsyn_opcode ("fstmdbs");
12658 else
12659 do_vfp_nsyn_opcode ("fstmias");
12660 }
12661}
12662
037e8744
JB
12663static void
12664do_vfp_nsyn_sqrt (void)
12665{
12666 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12667 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12668
037e8744
JB
12669 if (rs == NS_FF)
12670 do_vfp_nsyn_opcode ("fsqrts");
12671 else
12672 do_vfp_nsyn_opcode ("fsqrtd");
12673}
12674
12675static void
12676do_vfp_nsyn_div (void)
12677{
12678 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12679 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12680 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12681
037e8744
JB
12682 if (rs == NS_FFF)
12683 do_vfp_nsyn_opcode ("fdivs");
12684 else
12685 do_vfp_nsyn_opcode ("fdivd");
12686}
12687
12688static void
12689do_vfp_nsyn_nmul (void)
12690{
12691 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12692 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12693 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12694
037e8744
JB
12695 if (rs == NS_FFF)
12696 {
88714cb8 12697 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12698 do_vfp_sp_dyadic ();
12699 }
12700 else
12701 {
88714cb8 12702 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12703 do_vfp_dp_rd_rn_rm ();
12704 }
12705 do_vfp_cond_or_thumb ();
12706}
12707
12708static void
12709do_vfp_nsyn_cmp (void)
12710{
12711 if (inst.operands[1].isreg)
12712 {
12713 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12714 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12715
037e8744
JB
12716 if (rs == NS_FF)
12717 {
88714cb8 12718 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12719 do_vfp_sp_monadic ();
12720 }
12721 else
12722 {
88714cb8 12723 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12724 do_vfp_dp_rd_rm ();
12725 }
12726 }
12727 else
12728 {
12729 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12730 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12731
12732 switch (inst.instruction & 0x0fffffff)
12733 {
12734 case N_MNEM_vcmp:
12735 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12736 break;
12737 case N_MNEM_vcmpe:
12738 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12739 break;
12740 default:
12741 abort ();
12742 }
5f4273c7 12743
037e8744
JB
12744 if (rs == NS_FI)
12745 {
88714cb8 12746 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12747 do_vfp_sp_compare_z ();
12748 }
12749 else
12750 {
88714cb8 12751 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12752 do_vfp_dp_rd ();
12753 }
12754 }
12755 do_vfp_cond_or_thumb ();
12756}
12757
12758static void
12759nsyn_insert_sp (void)
12760{
12761 inst.operands[1] = inst.operands[0];
12762 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 12763 inst.operands[0].reg = REG_SP;
037e8744
JB
12764 inst.operands[0].isreg = 1;
12765 inst.operands[0].writeback = 1;
12766 inst.operands[0].present = 1;
12767}
12768
12769static void
12770do_vfp_nsyn_push (void)
12771{
12772 nsyn_insert_sp ();
12773 if (inst.operands[1].issingle)
12774 do_vfp_nsyn_opcode ("fstmdbs");
12775 else
12776 do_vfp_nsyn_opcode ("fstmdbd");
12777}
12778
12779static void
12780do_vfp_nsyn_pop (void)
12781{
12782 nsyn_insert_sp ();
12783 if (inst.operands[1].issingle)
22b5b651 12784 do_vfp_nsyn_opcode ("fldmias");
037e8744 12785 else
22b5b651 12786 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
12787}
12788
12789/* Fix up Neon data-processing instructions, ORing in the correct bits for
12790 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12791
88714cb8
DG
12792static void
12793neon_dp_fixup (struct arm_it* insn)
037e8744 12794{
88714cb8
DG
12795 unsigned int i = insn->instruction;
12796 insn->is_neon = 1;
12797
037e8744
JB
12798 if (thumb_mode)
12799 {
12800 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12801 if (i & (1 << 24))
12802 i |= 1 << 28;
5f4273c7 12803
037e8744 12804 i &= ~(1 << 24);
5f4273c7 12805
037e8744
JB
12806 i |= 0xef000000;
12807 }
12808 else
12809 i |= 0xf2000000;
5f4273c7 12810
88714cb8 12811 insn->instruction = i;
037e8744
JB
12812}
12813
12814/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12815 (0, 1, 2, 3). */
12816
12817static unsigned
12818neon_logbits (unsigned x)
12819{
12820 return ffs (x) - 4;
12821}
12822
12823#define LOW4(R) ((R) & 0xf)
12824#define HI1(R) (((R) >> 4) & 1)
12825
12826/* Encode insns with bit pattern:
12827
12828 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12829 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 12830
037e8744
JB
12831 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12832 different meaning for some instruction. */
12833
12834static void
12835neon_three_same (int isquad, int ubit, int size)
12836{
12837 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12838 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12839 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12840 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12841 inst.instruction |= LOW4 (inst.operands[2].reg);
12842 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12843 inst.instruction |= (isquad != 0) << 6;
12844 inst.instruction |= (ubit != 0) << 24;
12845 if (size != -1)
12846 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 12847
88714cb8 12848 neon_dp_fixup (&inst);
037e8744
JB
12849}
12850
12851/* Encode instructions of the form:
12852
12853 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12854 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
12855
12856 Don't write size if SIZE == -1. */
12857
12858static void
12859neon_two_same (int qbit, int ubit, int size)
12860{
12861 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12862 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12863 inst.instruction |= LOW4 (inst.operands[1].reg);
12864 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12865 inst.instruction |= (qbit != 0) << 6;
12866 inst.instruction |= (ubit != 0) << 24;
12867
12868 if (size != -1)
12869 inst.instruction |= neon_logbits (size) << 18;
12870
88714cb8 12871 neon_dp_fixup (&inst);
5287ad62
JB
12872}
12873
12874/* Neon instruction encoders, in approximate order of appearance. */
12875
12876static void
12877do_neon_dyadic_i_su (void)
12878{
037e8744 12879 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12880 struct neon_type_el et = neon_check_type (3, rs,
12881 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 12882 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12883}
12884
12885static void
12886do_neon_dyadic_i64_su (void)
12887{
037e8744 12888 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12889 struct neon_type_el et = neon_check_type (3, rs,
12890 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 12891 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12892}
12893
12894static void
12895neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12896 unsigned immbits)
12897{
12898 unsigned size = et.size >> 3;
12899 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12900 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12901 inst.instruction |= LOW4 (inst.operands[1].reg);
12902 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12903 inst.instruction |= (isquad != 0) << 6;
12904 inst.instruction |= immbits << 16;
12905 inst.instruction |= (size >> 3) << 7;
12906 inst.instruction |= (size & 0x7) << 19;
12907 if (write_ubit)
12908 inst.instruction |= (uval != 0) << 24;
12909
88714cb8 12910 neon_dp_fixup (&inst);
5287ad62
JB
12911}
12912
12913static void
12914do_neon_shl_imm (void)
12915{
12916 if (!inst.operands[2].isreg)
12917 {
037e8744 12918 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12919 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 12920 NEON_ENCODE (IMMED, inst);
037e8744 12921 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
12922 }
12923 else
12924 {
037e8744 12925 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12926 struct neon_type_el et = neon_check_type (3, rs,
12927 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12928 unsigned int tmp;
12929
12930 /* VSHL/VQSHL 3-register variants have syntax such as:
12931 vshl.xx Dd, Dm, Dn
12932 whereas other 3-register operations encoded by neon_three_same have
12933 syntax like:
12934 vadd.xx Dd, Dn, Dm
12935 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12936 here. */
12937 tmp = inst.operands[2].reg;
12938 inst.operands[2].reg = inst.operands[1].reg;
12939 inst.operands[1].reg = tmp;
88714cb8 12940 NEON_ENCODE (INTEGER, inst);
037e8744 12941 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12942 }
12943}
12944
12945static void
12946do_neon_qshl_imm (void)
12947{
12948 if (!inst.operands[2].isreg)
12949 {
037e8744 12950 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12951 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 12952
88714cb8 12953 NEON_ENCODE (IMMED, inst);
037e8744 12954 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
12955 inst.operands[2].imm);
12956 }
12957 else
12958 {
037e8744 12959 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12960 struct neon_type_el et = neon_check_type (3, rs,
12961 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12962 unsigned int tmp;
12963
12964 /* See note in do_neon_shl_imm. */
12965 tmp = inst.operands[2].reg;
12966 inst.operands[2].reg = inst.operands[1].reg;
12967 inst.operands[1].reg = tmp;
88714cb8 12968 NEON_ENCODE (INTEGER, inst);
037e8744 12969 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12970 }
12971}
12972
627907b7
JB
12973static void
12974do_neon_rshl (void)
12975{
12976 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12977 struct neon_type_el et = neon_check_type (3, rs,
12978 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12979 unsigned int tmp;
12980
12981 tmp = inst.operands[2].reg;
12982 inst.operands[2].reg = inst.operands[1].reg;
12983 inst.operands[1].reg = tmp;
12984 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12985}
12986
5287ad62
JB
12987static int
12988neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12989{
036dc3f7
PB
12990 /* Handle .I8 pseudo-instructions. */
12991 if (size == 8)
5287ad62 12992 {
5287ad62
JB
12993 /* Unfortunately, this will make everything apart from zero out-of-range.
12994 FIXME is this the intended semantics? There doesn't seem much point in
12995 accepting .I8 if so. */
12996 immediate |= immediate << 8;
12997 size = 16;
036dc3f7
PB
12998 }
12999
13000 if (size >= 32)
13001 {
13002 if (immediate == (immediate & 0x000000ff))
13003 {
13004 *immbits = immediate;
13005 return 0x1;
13006 }
13007 else if (immediate == (immediate & 0x0000ff00))
13008 {
13009 *immbits = immediate >> 8;
13010 return 0x3;
13011 }
13012 else if (immediate == (immediate & 0x00ff0000))
13013 {
13014 *immbits = immediate >> 16;
13015 return 0x5;
13016 }
13017 else if (immediate == (immediate & 0xff000000))
13018 {
13019 *immbits = immediate >> 24;
13020 return 0x7;
13021 }
13022 if ((immediate & 0xffff) != (immediate >> 16))
13023 goto bad_immediate;
13024 immediate &= 0xffff;
5287ad62
JB
13025 }
13026
13027 if (immediate == (immediate & 0x000000ff))
13028 {
13029 *immbits = immediate;
036dc3f7 13030 return 0x9;
5287ad62
JB
13031 }
13032 else if (immediate == (immediate & 0x0000ff00))
13033 {
13034 *immbits = immediate >> 8;
036dc3f7 13035 return 0xb;
5287ad62
JB
13036 }
13037
13038 bad_immediate:
dcbf9037 13039 first_error (_("immediate value out of range"));
5287ad62
JB
13040 return FAIL;
13041}
13042
13043/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13044 A, B, C, D. */
13045
13046static int
13047neon_bits_same_in_bytes (unsigned imm)
13048{
13049 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13050 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13051 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13052 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13053}
13054
13055/* For immediate of above form, return 0bABCD. */
13056
13057static unsigned
13058neon_squash_bits (unsigned imm)
13059{
13060 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13061 | ((imm & 0x01000000) >> 21);
13062}
13063
136da414 13064/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13065
13066static unsigned
13067neon_qfloat_bits (unsigned imm)
13068{
136da414 13069 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13070}
13071
13072/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13073 the instruction. *OP is passed as the initial value of the op field, and
13074 may be set to a different value depending on the constant (i.e.
13075 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13076 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13077 try smaller element sizes. */
5287ad62
JB
13078
13079static int
c96612cc
JB
13080neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13081 unsigned *immbits, int *op, int size,
13082 enum neon_el_type type)
5287ad62 13083{
c96612cc
JB
13084 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13085 float. */
13086 if (type == NT_float && !float_p)
13087 return FAIL;
13088
136da414
JB
13089 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13090 {
13091 if (size != 32 || *op == 1)
13092 return FAIL;
13093 *immbits = neon_qfloat_bits (immlo);
13094 return 0xf;
13095 }
036dc3f7
PB
13096
13097 if (size == 64)
5287ad62 13098 {
036dc3f7
PB
13099 if (neon_bits_same_in_bytes (immhi)
13100 && neon_bits_same_in_bytes (immlo))
13101 {
13102 if (*op == 1)
13103 return FAIL;
13104 *immbits = (neon_squash_bits (immhi) << 4)
13105 | neon_squash_bits (immlo);
13106 *op = 1;
13107 return 0xe;
13108 }
13109
13110 if (immhi != immlo)
13111 return FAIL;
5287ad62 13112 }
036dc3f7
PB
13113
13114 if (size >= 32)
5287ad62 13115 {
036dc3f7
PB
13116 if (immlo == (immlo & 0x000000ff))
13117 {
13118 *immbits = immlo;
13119 return 0x0;
13120 }
13121 else if (immlo == (immlo & 0x0000ff00))
13122 {
13123 *immbits = immlo >> 8;
13124 return 0x2;
13125 }
13126 else if (immlo == (immlo & 0x00ff0000))
13127 {
13128 *immbits = immlo >> 16;
13129 return 0x4;
13130 }
13131 else if (immlo == (immlo & 0xff000000))
13132 {
13133 *immbits = immlo >> 24;
13134 return 0x6;
13135 }
13136 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13137 {
13138 *immbits = (immlo >> 8) & 0xff;
13139 return 0xc;
13140 }
13141 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13142 {
13143 *immbits = (immlo >> 16) & 0xff;
13144 return 0xd;
13145 }
13146
13147 if ((immlo & 0xffff) != (immlo >> 16))
13148 return FAIL;
13149 immlo &= 0xffff;
5287ad62 13150 }
036dc3f7
PB
13151
13152 if (size >= 16)
5287ad62 13153 {
036dc3f7
PB
13154 if (immlo == (immlo & 0x000000ff))
13155 {
13156 *immbits = immlo;
13157 return 0x8;
13158 }
13159 else if (immlo == (immlo & 0x0000ff00))
13160 {
13161 *immbits = immlo >> 8;
13162 return 0xa;
13163 }
13164
13165 if ((immlo & 0xff) != (immlo >> 8))
13166 return FAIL;
13167 immlo &= 0xff;
5287ad62 13168 }
036dc3f7
PB
13169
13170 if (immlo == (immlo & 0x000000ff))
5287ad62 13171 {
036dc3f7
PB
13172 /* Don't allow MVN with 8-bit immediate. */
13173 if (*op == 1)
13174 return FAIL;
13175 *immbits = immlo;
13176 return 0xe;
5287ad62 13177 }
5287ad62
JB
13178
13179 return FAIL;
13180}
13181
13182/* Write immediate bits [7:0] to the following locations:
13183
13184 |28/24|23 19|18 16|15 4|3 0|
13185 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13186
13187 This function is used by VMOV/VMVN/VORR/VBIC. */
13188
13189static void
13190neon_write_immbits (unsigned immbits)
13191{
13192 inst.instruction |= immbits & 0xf;
13193 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13194 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13195}
13196
13197/* Invert low-order SIZE bits of XHI:XLO. */
13198
13199static void
13200neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13201{
13202 unsigned immlo = xlo ? *xlo : 0;
13203 unsigned immhi = xhi ? *xhi : 0;
13204
13205 switch (size)
13206 {
13207 case 8:
13208 immlo = (~immlo) & 0xff;
13209 break;
13210
13211 case 16:
13212 immlo = (~immlo) & 0xffff;
13213 break;
13214
13215 case 64:
13216 immhi = (~immhi) & 0xffffffff;
13217 /* fall through. */
13218
13219 case 32:
13220 immlo = (~immlo) & 0xffffffff;
13221 break;
13222
13223 default:
13224 abort ();
13225 }
13226
13227 if (xlo)
13228 *xlo = immlo;
13229
13230 if (xhi)
13231 *xhi = immhi;
13232}
13233
13234static void
13235do_neon_logic (void)
13236{
13237 if (inst.operands[2].present && inst.operands[2].isreg)
13238 {
037e8744 13239 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13240 neon_check_type (3, rs, N_IGNORE_TYPE);
13241 /* U bit and size field were set as part of the bitmask. */
88714cb8 13242 NEON_ENCODE (INTEGER, inst);
037e8744 13243 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13244 }
13245 else
13246 {
4316f0d2
DG
13247 const int three_ops_form = (inst.operands[2].present
13248 && !inst.operands[2].isreg);
13249 const int immoperand = (three_ops_form ? 2 : 1);
13250 enum neon_shape rs = (three_ops_form
13251 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13252 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13253 struct neon_type_el et = neon_check_type (2, rs,
13254 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13255 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13256 unsigned immbits;
13257 int cmode;
5f4273c7 13258
5287ad62
JB
13259 if (et.type == NT_invtype)
13260 return;
5f4273c7 13261
4316f0d2
DG
13262 if (three_ops_form)
13263 constraint (inst.operands[0].reg != inst.operands[1].reg,
13264 _("first and second operands shall be the same register"));
13265
88714cb8 13266 NEON_ENCODE (IMMED, inst);
5287ad62 13267
4316f0d2 13268 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13269 if (et.size == 64)
13270 {
13271 /* .i64 is a pseudo-op, so the immediate must be a repeating
13272 pattern. */
4316f0d2
DG
13273 if (immbits != (inst.operands[immoperand].regisimm ?
13274 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13275 {
13276 /* Set immbits to an invalid constant. */
13277 immbits = 0xdeadbeef;
13278 }
13279 }
13280
5287ad62
JB
13281 switch (opcode)
13282 {
13283 case N_MNEM_vbic:
036dc3f7 13284 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13285 break;
5f4273c7 13286
5287ad62 13287 case N_MNEM_vorr:
036dc3f7 13288 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13289 break;
5f4273c7 13290
5287ad62
JB
13291 case N_MNEM_vand:
13292 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13293 neon_invert_size (&immbits, 0, et.size);
13294 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13295 break;
5f4273c7 13296
5287ad62
JB
13297 case N_MNEM_vorn:
13298 /* Pseudo-instruction for VORR. */
5287ad62
JB
13299 neon_invert_size (&immbits, 0, et.size);
13300 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13301 break;
5f4273c7 13302
5287ad62
JB
13303 default:
13304 abort ();
13305 }
13306
13307 if (cmode == FAIL)
13308 return;
13309
037e8744 13310 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13311 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13312 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13313 inst.instruction |= cmode << 8;
13314 neon_write_immbits (immbits);
5f4273c7 13315
88714cb8 13316 neon_dp_fixup (&inst);
5287ad62
JB
13317 }
13318}
13319
13320static void
13321do_neon_bitfield (void)
13322{
037e8744 13323 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13324 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13325 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13326}
13327
13328static void
dcbf9037
JB
13329neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13330 unsigned destbits)
5287ad62 13331{
037e8744 13332 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13333 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13334 types | N_KEY);
5287ad62
JB
13335 if (et.type == NT_float)
13336 {
88714cb8 13337 NEON_ENCODE (FLOAT, inst);
037e8744 13338 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13339 }
13340 else
13341 {
88714cb8 13342 NEON_ENCODE (INTEGER, inst);
037e8744 13343 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13344 }
13345}
13346
13347static void
13348do_neon_dyadic_if_su (void)
13349{
dcbf9037 13350 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13351}
13352
13353static void
13354do_neon_dyadic_if_su_d (void)
13355{
13356 /* This version only allow D registers, but that constraint is enforced during
13357 operand parsing so we don't need to do anything extra here. */
dcbf9037 13358 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13359}
13360
5287ad62
JB
13361static void
13362do_neon_dyadic_if_i_d (void)
13363{
428e3f1f
PB
13364 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13365 affected if we specify unsigned args. */
13366 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13367}
13368
037e8744
JB
13369enum vfp_or_neon_is_neon_bits
13370{
13371 NEON_CHECK_CC = 1,
13372 NEON_CHECK_ARCH = 2
13373};
13374
13375/* Call this function if an instruction which may have belonged to the VFP or
13376 Neon instruction sets, but turned out to be a Neon instruction (due to the
13377 operand types involved, etc.). We have to check and/or fix-up a couple of
13378 things:
13379
13380 - Make sure the user hasn't attempted to make a Neon instruction
13381 conditional.
13382 - Alter the value in the condition code field if necessary.
13383 - Make sure that the arch supports Neon instructions.
13384
13385 Which of these operations take place depends on bits from enum
13386 vfp_or_neon_is_neon_bits.
13387
13388 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13389 current instruction's condition is COND_ALWAYS, the condition field is
13390 changed to inst.uncond_value. This is necessary because instructions shared
13391 between VFP and Neon may be conditional for the VFP variants only, and the
13392 unconditional Neon version must have, e.g., 0xF in the condition field. */
13393
13394static int
13395vfp_or_neon_is_neon (unsigned check)
13396{
13397 /* Conditions are always legal in Thumb mode (IT blocks). */
13398 if (!thumb_mode && (check & NEON_CHECK_CC))
13399 {
13400 if (inst.cond != COND_ALWAYS)
13401 {
13402 first_error (_(BAD_COND));
13403 return FAIL;
13404 }
13405 if (inst.uncond_value != -1)
13406 inst.instruction |= inst.uncond_value << 28;
13407 }
5f4273c7 13408
037e8744
JB
13409 if ((check & NEON_CHECK_ARCH)
13410 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13411 {
13412 first_error (_(BAD_FPU));
13413 return FAIL;
13414 }
5f4273c7 13415
037e8744
JB
13416 return SUCCESS;
13417}
13418
5287ad62
JB
13419static void
13420do_neon_addsub_if_i (void)
13421{
037e8744
JB
13422 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13423 return;
13424
13425 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13426 return;
13427
5287ad62
JB
13428 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13429 affected if we specify unsigned args. */
dcbf9037 13430 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13431}
13432
13433/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13434 result to be:
13435 V<op> A,B (A is operand 0, B is operand 2)
13436 to mean:
13437 V<op> A,B,A
13438 not:
13439 V<op> A,B,B
13440 so handle that case specially. */
13441
13442static void
13443neon_exchange_operands (void)
13444{
13445 void *scratch = alloca (sizeof (inst.operands[0]));
13446 if (inst.operands[1].present)
13447 {
13448 /* Swap operands[1] and operands[2]. */
13449 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13450 inst.operands[1] = inst.operands[2];
13451 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13452 }
13453 else
13454 {
13455 inst.operands[1] = inst.operands[2];
13456 inst.operands[2] = inst.operands[0];
13457 }
13458}
13459
13460static void
13461neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13462{
13463 if (inst.operands[2].isreg)
13464 {
13465 if (invert)
13466 neon_exchange_operands ();
dcbf9037 13467 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13468 }
13469 else
13470 {
037e8744 13471 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13472 struct neon_type_el et = neon_check_type (2, rs,
13473 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 13474
88714cb8 13475 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13476 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13477 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13478 inst.instruction |= LOW4 (inst.operands[1].reg);
13479 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13480 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13481 inst.instruction |= (et.type == NT_float) << 10;
13482 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13483
88714cb8 13484 neon_dp_fixup (&inst);
5287ad62
JB
13485 }
13486}
13487
13488static void
13489do_neon_cmp (void)
13490{
13491 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13492}
13493
13494static void
13495do_neon_cmp_inv (void)
13496{
13497 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13498}
13499
13500static void
13501do_neon_ceq (void)
13502{
13503 neon_compare (N_IF_32, N_IF_32, FALSE);
13504}
13505
13506/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13507 scalars, which are encoded in 5 bits, M : Rm.
13508 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13509 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13510 index in M. */
13511
13512static unsigned
13513neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13514{
dcbf9037
JB
13515 unsigned regno = NEON_SCALAR_REG (scalar);
13516 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13517
13518 switch (elsize)
13519 {
13520 case 16:
13521 if (regno > 7 || elno > 3)
13522 goto bad_scalar;
13523 return regno | (elno << 3);
5f4273c7 13524
5287ad62
JB
13525 case 32:
13526 if (regno > 15 || elno > 1)
13527 goto bad_scalar;
13528 return regno | (elno << 4);
13529
13530 default:
13531 bad_scalar:
dcbf9037 13532 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13533 }
13534
13535 return 0;
13536}
13537
13538/* Encode multiply / multiply-accumulate scalar instructions. */
13539
13540static void
13541neon_mul_mac (struct neon_type_el et, int ubit)
13542{
dcbf9037
JB
13543 unsigned scalar;
13544
13545 /* Give a more helpful error message if we have an invalid type. */
13546 if (et.type == NT_invtype)
13547 return;
5f4273c7 13548
dcbf9037 13549 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13550 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13551 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13552 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13553 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13554 inst.instruction |= LOW4 (scalar);
13555 inst.instruction |= HI1 (scalar) << 5;
13556 inst.instruction |= (et.type == NT_float) << 8;
13557 inst.instruction |= neon_logbits (et.size) << 20;
13558 inst.instruction |= (ubit != 0) << 24;
13559
88714cb8 13560 neon_dp_fixup (&inst);
5287ad62
JB
13561}
13562
13563static void
13564do_neon_mac_maybe_scalar (void)
13565{
037e8744
JB
13566 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13567 return;
13568
13569 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13570 return;
13571
5287ad62
JB
13572 if (inst.operands[2].isscalar)
13573 {
037e8744 13574 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13575 struct neon_type_el et = neon_check_type (3, rs,
13576 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 13577 NEON_ENCODE (SCALAR, inst);
037e8744 13578 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13579 }
13580 else
428e3f1f
PB
13581 {
13582 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13583 affected if we specify unsigned args. */
13584 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13585 }
5287ad62
JB
13586}
13587
62f3b8c8
PB
13588static void
13589do_neon_fmac (void)
13590{
13591 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13592 return;
13593
13594 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13595 return;
13596
13597 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13598}
13599
5287ad62
JB
13600static void
13601do_neon_tst (void)
13602{
037e8744 13603 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13604 struct neon_type_el et = neon_check_type (3, rs,
13605 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13606 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13607}
13608
13609/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13610 same types as the MAC equivalents. The polynomial type for this instruction
13611 is encoded the same as the integer type. */
13612
13613static void
13614do_neon_mul (void)
13615{
037e8744
JB
13616 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13617 return;
13618
13619 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13620 return;
13621
5287ad62
JB
13622 if (inst.operands[2].isscalar)
13623 do_neon_mac_maybe_scalar ();
13624 else
dcbf9037 13625 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13626}
13627
13628static void
13629do_neon_qdmulh (void)
13630{
13631 if (inst.operands[2].isscalar)
13632 {
037e8744 13633 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13634 struct neon_type_el et = neon_check_type (3, rs,
13635 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13636 NEON_ENCODE (SCALAR, inst);
037e8744 13637 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13638 }
13639 else
13640 {
037e8744 13641 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13642 struct neon_type_el et = neon_check_type (3, rs,
13643 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13644 NEON_ENCODE (INTEGER, inst);
5287ad62 13645 /* The U bit (rounding) comes from bit mask. */
037e8744 13646 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13647 }
13648}
13649
13650static void
13651do_neon_fcmp_absolute (void)
13652{
037e8744 13653 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13654 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13655 /* Size field comes from bit mask. */
037e8744 13656 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
13657}
13658
13659static void
13660do_neon_fcmp_absolute_inv (void)
13661{
13662 neon_exchange_operands ();
13663 do_neon_fcmp_absolute ();
13664}
13665
13666static void
13667do_neon_step (void)
13668{
037e8744 13669 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 13670 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 13671 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13672}
13673
13674static void
13675do_neon_abs_neg (void)
13676{
037e8744
JB
13677 enum neon_shape rs;
13678 struct neon_type_el et;
5f4273c7 13679
037e8744
JB
13680 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13681 return;
13682
13683 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13684 return;
13685
13686 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13687 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 13688
5287ad62
JB
13689 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13690 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13691 inst.instruction |= LOW4 (inst.operands[1].reg);
13692 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13693 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13694 inst.instruction |= (et.type == NT_float) << 10;
13695 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13696
88714cb8 13697 neon_dp_fixup (&inst);
5287ad62
JB
13698}
13699
13700static void
13701do_neon_sli (void)
13702{
037e8744 13703 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13704 struct neon_type_el et = neon_check_type (2, rs,
13705 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13706 int imm = inst.operands[2].imm;
13707 constraint (imm < 0 || (unsigned)imm >= et.size,
13708 _("immediate out of range for insert"));
037e8744 13709 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13710}
13711
13712static void
13713do_neon_sri (void)
13714{
037e8744 13715 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13716 struct neon_type_el et = neon_check_type (2, rs,
13717 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13718 int imm = inst.operands[2].imm;
13719 constraint (imm < 1 || (unsigned)imm > et.size,
13720 _("immediate out of range for insert"));
037e8744 13721 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
13722}
13723
13724static void
13725do_neon_qshlu_imm (void)
13726{
037e8744 13727 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13728 struct neon_type_el et = neon_check_type (2, rs,
13729 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13730 int imm = inst.operands[2].imm;
13731 constraint (imm < 0 || (unsigned)imm >= et.size,
13732 _("immediate out of range for shift"));
13733 /* Only encodes the 'U present' variant of the instruction.
13734 In this case, signed types have OP (bit 8) set to 0.
13735 Unsigned types have OP set to 1. */
13736 inst.instruction |= (et.type == NT_unsigned) << 8;
13737 /* The rest of the bits are the same as other immediate shifts. */
037e8744 13738 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13739}
13740
13741static void
13742do_neon_qmovn (void)
13743{
13744 struct neon_type_el et = neon_check_type (2, NS_DQ,
13745 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13746 /* Saturating move where operands can be signed or unsigned, and the
13747 destination has the same signedness. */
88714cb8 13748 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13749 if (et.type == NT_unsigned)
13750 inst.instruction |= 0xc0;
13751 else
13752 inst.instruction |= 0x80;
13753 neon_two_same (0, 1, et.size / 2);
13754}
13755
13756static void
13757do_neon_qmovun (void)
13758{
13759 struct neon_type_el et = neon_check_type (2, NS_DQ,
13760 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13761 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 13762 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13763 neon_two_same (0, 1, et.size / 2);
13764}
13765
13766static void
13767do_neon_rshift_sat_narrow (void)
13768{
13769 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13770 or unsigned. If operands are unsigned, results must also be unsigned. */
13771 struct neon_type_el et = neon_check_type (2, NS_DQI,
13772 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13773 int imm = inst.operands[2].imm;
13774 /* This gets the bounds check, size encoding and immediate bits calculation
13775 right. */
13776 et.size /= 2;
5f4273c7 13777
5287ad62
JB
13778 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13779 VQMOVN.I<size> <Dd>, <Qm>. */
13780 if (imm == 0)
13781 {
13782 inst.operands[2].present = 0;
13783 inst.instruction = N_MNEM_vqmovn;
13784 do_neon_qmovn ();
13785 return;
13786 }
5f4273c7 13787
5287ad62
JB
13788 constraint (imm < 1 || (unsigned)imm > et.size,
13789 _("immediate out of range"));
13790 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13791}
13792
13793static void
13794do_neon_rshift_sat_narrow_u (void)
13795{
13796 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13797 or unsigned. If operands are unsigned, results must also be unsigned. */
13798 struct neon_type_el et = neon_check_type (2, NS_DQI,
13799 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13800 int imm = inst.operands[2].imm;
13801 /* This gets the bounds check, size encoding and immediate bits calculation
13802 right. */
13803 et.size /= 2;
13804
13805 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13806 VQMOVUN.I<size> <Dd>, <Qm>. */
13807 if (imm == 0)
13808 {
13809 inst.operands[2].present = 0;
13810 inst.instruction = N_MNEM_vqmovun;
13811 do_neon_qmovun ();
13812 return;
13813 }
13814
13815 constraint (imm < 1 || (unsigned)imm > et.size,
13816 _("immediate out of range"));
13817 /* FIXME: The manual is kind of unclear about what value U should have in
13818 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13819 must be 1. */
13820 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13821}
13822
13823static void
13824do_neon_movn (void)
13825{
13826 struct neon_type_el et = neon_check_type (2, NS_DQ,
13827 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 13828 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13829 neon_two_same (0, 1, et.size / 2);
13830}
13831
13832static void
13833do_neon_rshift_narrow (void)
13834{
13835 struct neon_type_el et = neon_check_type (2, NS_DQI,
13836 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13837 int imm = inst.operands[2].imm;
13838 /* This gets the bounds check, size encoding and immediate bits calculation
13839 right. */
13840 et.size /= 2;
5f4273c7 13841
5287ad62
JB
13842 /* If immediate is zero then we are a pseudo-instruction for
13843 VMOVN.I<size> <Dd>, <Qm> */
13844 if (imm == 0)
13845 {
13846 inst.operands[2].present = 0;
13847 inst.instruction = N_MNEM_vmovn;
13848 do_neon_movn ();
13849 return;
13850 }
5f4273c7 13851
5287ad62
JB
13852 constraint (imm < 1 || (unsigned)imm > et.size,
13853 _("immediate out of range for narrowing operation"));
13854 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13855}
13856
13857static void
13858do_neon_shll (void)
13859{
13860 /* FIXME: Type checking when lengthening. */
13861 struct neon_type_el et = neon_check_type (2, NS_QDI,
13862 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13863 unsigned imm = inst.operands[2].imm;
13864
13865 if (imm == et.size)
13866 {
13867 /* Maximum shift variant. */
88714cb8 13868 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13869 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13870 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13871 inst.instruction |= LOW4 (inst.operands[1].reg);
13872 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13873 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13874
88714cb8 13875 neon_dp_fixup (&inst);
5287ad62
JB
13876 }
13877 else
13878 {
13879 /* A more-specific type check for non-max versions. */
13880 et = neon_check_type (2, NS_QDI,
13881 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 13882 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13883 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13884 }
13885}
13886
037e8744 13887/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
13888 the current instruction is. */
13889
13890static int
13891neon_cvt_flavour (enum neon_shape rs)
13892{
037e8744
JB
13893#define CVT_VAR(C,X,Y) \
13894 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13895 if (et.type != NT_invtype) \
13896 { \
13897 inst.error = NULL; \
13898 return (C); \
5287ad62
JB
13899 }
13900 struct neon_type_el et;
037e8744
JB
13901 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13902 || rs == NS_FF) ? N_VFP : 0;
13903 /* The instruction versions which take an immediate take one register
13904 argument, which is extended to the width of the full register. Thus the
13905 "source" and "destination" registers must have the same width. Hack that
13906 here by making the size equal to the key (wider, in this case) operand. */
13907 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 13908
5287ad62
JB
13909 CVT_VAR (0, N_S32, N_F32);
13910 CVT_VAR (1, N_U32, N_F32);
13911 CVT_VAR (2, N_F32, N_S32);
13912 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
13913 /* Half-precision conversions. */
13914 CVT_VAR (4, N_F32, N_F16);
13915 CVT_VAR (5, N_F16, N_F32);
5f4273c7 13916
037e8744 13917 whole_reg = N_VFP;
5f4273c7 13918
037e8744 13919 /* VFP instructions. */
8e79c3df
CM
13920 CVT_VAR (6, N_F32, N_F64);
13921 CVT_VAR (7, N_F64, N_F32);
13922 CVT_VAR (8, N_S32, N_F64 | key);
13923 CVT_VAR (9, N_U32, N_F64 | key);
13924 CVT_VAR (10, N_F64 | key, N_S32);
13925 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 13926 /* VFP instructions with bitshift. */
8e79c3df
CM
13927 CVT_VAR (12, N_F32 | key, N_S16);
13928 CVT_VAR (13, N_F32 | key, N_U16);
13929 CVT_VAR (14, N_F64 | key, N_S16);
13930 CVT_VAR (15, N_F64 | key, N_U16);
13931 CVT_VAR (16, N_S16, N_F32 | key);
13932 CVT_VAR (17, N_U16, N_F32 | key);
13933 CVT_VAR (18, N_S16, N_F64 | key);
13934 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 13935
5287ad62
JB
13936 return -1;
13937#undef CVT_VAR
13938}
13939
037e8744
JB
13940/* Neon-syntax VFP conversions. */
13941
5287ad62 13942static void
037e8744 13943do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 13944{
037e8744 13945 const char *opname = 0;
5f4273c7 13946
037e8744 13947 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 13948 {
037e8744
JB
13949 /* Conversions with immediate bitshift. */
13950 const char *enc[] =
13951 {
13952 "ftosls",
13953 "ftouls",
13954 "fsltos",
13955 "fultos",
13956 NULL,
13957 NULL,
8e79c3df
CM
13958 NULL,
13959 NULL,
037e8744
JB
13960 "ftosld",
13961 "ftould",
13962 "fsltod",
13963 "fultod",
13964 "fshtos",
13965 "fuhtos",
13966 "fshtod",
13967 "fuhtod",
13968 "ftoshs",
13969 "ftouhs",
13970 "ftoshd",
13971 "ftouhd"
13972 };
13973
13974 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13975 {
13976 opname = enc[flavour];
13977 constraint (inst.operands[0].reg != inst.operands[1].reg,
13978 _("operands 0 and 1 must be the same register"));
13979 inst.operands[1] = inst.operands[2];
13980 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13981 }
5287ad62
JB
13982 }
13983 else
13984 {
037e8744
JB
13985 /* Conversions without bitshift. */
13986 const char *enc[] =
13987 {
13988 "ftosis",
13989 "ftouis",
13990 "fsitos",
13991 "fuitos",
8e79c3df
CM
13992 "NULL",
13993 "NULL",
037e8744
JB
13994 "fcvtsd",
13995 "fcvtds",
13996 "ftosid",
13997 "ftouid",
13998 "fsitod",
13999 "fuitod"
14000 };
14001
14002 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14003 opname = enc[flavour];
14004 }
14005
14006 if (opname)
14007 do_vfp_nsyn_opcode (opname);
14008}
14009
14010static void
14011do_vfp_nsyn_cvtz (void)
14012{
14013 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14014 int flavour = neon_cvt_flavour (rs);
14015 const char *enc[] =
14016 {
14017 "ftosizs",
14018 "ftouizs",
14019 NULL,
14020 NULL,
14021 NULL,
14022 NULL,
8e79c3df
CM
14023 NULL,
14024 NULL,
037e8744
JB
14025 "ftosizd",
14026 "ftouizd"
14027 };
14028
14029 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14030 do_vfp_nsyn_opcode (enc[flavour]);
14031}
f31fef98 14032
037e8744 14033static void
e3e535bc 14034do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
14035{
14036 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14037 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
14038 int flavour = neon_cvt_flavour (rs);
14039
e3e535bc
NC
14040 /* PR11109: Handle round-to-zero for VCVT conversions. */
14041 if (round_to_zero
14042 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14043 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14044 && (rs == NS_FD || rs == NS_FF))
14045 {
14046 do_vfp_nsyn_cvtz ();
14047 return;
14048 }
14049
037e8744 14050 /* VFP rather than Neon conversions. */
8e79c3df 14051 if (flavour >= 6)
037e8744
JB
14052 {
14053 do_vfp_nsyn_cvt (rs, flavour);
14054 return;
14055 }
14056
14057 switch (rs)
14058 {
14059 case NS_DDI:
14060 case NS_QQI:
14061 {
35997600
NC
14062 unsigned immbits;
14063 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14064
037e8744
JB
14065 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14066 return;
14067
14068 /* Fixed-point conversion with #0 immediate is encoded as an
14069 integer conversion. */
14070 if (inst.operands[2].present && inst.operands[2].imm == 0)
14071 goto int_encode;
35997600 14072 immbits = 32 - inst.operands[2].imm;
88714cb8 14073 NEON_ENCODE (IMMED, inst);
037e8744
JB
14074 if (flavour != -1)
14075 inst.instruction |= enctab[flavour];
14076 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14077 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14078 inst.instruction |= LOW4 (inst.operands[1].reg);
14079 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14080 inst.instruction |= neon_quad (rs) << 6;
14081 inst.instruction |= 1 << 21;
14082 inst.instruction |= immbits << 16;
14083
88714cb8 14084 neon_dp_fixup (&inst);
037e8744
JB
14085 }
14086 break;
14087
14088 case NS_DD:
14089 case NS_QQ:
14090 int_encode:
14091 {
14092 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14093
88714cb8 14094 NEON_ENCODE (INTEGER, inst);
037e8744
JB
14095
14096 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14097 return;
14098
14099 if (flavour != -1)
14100 inst.instruction |= enctab[flavour];
14101
14102 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14103 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14104 inst.instruction |= LOW4 (inst.operands[1].reg);
14105 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14106 inst.instruction |= neon_quad (rs) << 6;
14107 inst.instruction |= 2 << 18;
14108
88714cb8 14109 neon_dp_fixup (&inst);
037e8744
JB
14110 }
14111 break;
14112
8e79c3df
CM
14113 /* Half-precision conversions for Advanced SIMD -- neon. */
14114 case NS_QD:
14115 case NS_DQ:
14116
14117 if ((rs == NS_DQ)
14118 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14119 {
14120 as_bad (_("operand size must match register width"));
14121 break;
14122 }
14123
14124 if ((rs == NS_QD)
14125 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14126 {
14127 as_bad (_("operand size must match register width"));
14128 break;
14129 }
14130
14131 if (rs == NS_DQ)
14132 inst.instruction = 0x3b60600;
14133 else
14134 inst.instruction = 0x3b60700;
14135
14136 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14137 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14138 inst.instruction |= LOW4 (inst.operands[1].reg);
14139 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14140 neon_dp_fixup (&inst);
8e79c3df
CM
14141 break;
14142
037e8744
JB
14143 default:
14144 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14145 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 14146 }
5287ad62
JB
14147}
14148
e3e535bc
NC
14149static void
14150do_neon_cvtr (void)
14151{
14152 do_neon_cvt_1 (FALSE);
14153}
14154
14155static void
14156do_neon_cvt (void)
14157{
14158 do_neon_cvt_1 (TRUE);
14159}
14160
8e79c3df
CM
14161static void
14162do_neon_cvtb (void)
14163{
14164 inst.instruction = 0xeb20a40;
14165
14166 /* The sizes are attached to the mnemonic. */
14167 if (inst.vectype.el[0].type != NT_invtype
14168 && inst.vectype.el[0].size == 16)
14169 inst.instruction |= 0x00010000;
14170
14171 /* Programmer's syntax: the sizes are attached to the operands. */
14172 else if (inst.operands[0].vectype.type != NT_invtype
14173 && inst.operands[0].vectype.size == 16)
14174 inst.instruction |= 0x00010000;
14175
14176 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14177 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14178 do_vfp_cond_or_thumb ();
14179}
14180
14181
14182static void
14183do_neon_cvtt (void)
14184{
14185 do_neon_cvtb ();
14186 inst.instruction |= 0x80;
14187}
14188
5287ad62
JB
14189static void
14190neon_move_immediate (void)
14191{
037e8744
JB
14192 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14193 struct neon_type_el et = neon_check_type (2, rs,
14194 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14195 unsigned immlo, immhi = 0, immbits;
c96612cc 14196 int op, cmode, float_p;
5287ad62 14197
037e8744
JB
14198 constraint (et.type == NT_invtype,
14199 _("operand size must be specified for immediate VMOV"));
14200
5287ad62
JB
14201 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14202 op = (inst.instruction & (1 << 5)) != 0;
14203
14204 immlo = inst.operands[1].imm;
14205 if (inst.operands[1].regisimm)
14206 immhi = inst.operands[1].reg;
14207
14208 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14209 _("immediate has bits set outside the operand size"));
14210
c96612cc
JB
14211 float_p = inst.operands[1].immisfloat;
14212
14213 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14214 et.size, et.type)) == FAIL)
5287ad62
JB
14215 {
14216 /* Invert relevant bits only. */
14217 neon_invert_size (&immlo, &immhi, et.size);
14218 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14219 with one or the other; those cases are caught by
14220 neon_cmode_for_move_imm. */
14221 op = !op;
c96612cc
JB
14222 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14223 &op, et.size, et.type)) == FAIL)
5287ad62 14224 {
dcbf9037 14225 first_error (_("immediate out of range"));
5287ad62
JB
14226 return;
14227 }
14228 }
14229
14230 inst.instruction &= ~(1 << 5);
14231 inst.instruction |= op << 5;
14232
14233 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14234 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14235 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14236 inst.instruction |= cmode << 8;
14237
14238 neon_write_immbits (immbits);
14239}
14240
14241static void
14242do_neon_mvn (void)
14243{
14244 if (inst.operands[1].isreg)
14245 {
037e8744 14246 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14247
88714cb8 14248 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14249 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14250 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14251 inst.instruction |= LOW4 (inst.operands[1].reg);
14252 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14253 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14254 }
14255 else
14256 {
88714cb8 14257 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14258 neon_move_immediate ();
14259 }
14260
88714cb8 14261 neon_dp_fixup (&inst);
5287ad62
JB
14262}
14263
14264/* Encode instructions of form:
14265
14266 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14267 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14268
14269static void
14270neon_mixed_length (struct neon_type_el et, unsigned size)
14271{
14272 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14273 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14274 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14275 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14276 inst.instruction |= LOW4 (inst.operands[2].reg);
14277 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14278 inst.instruction |= (et.type == NT_unsigned) << 24;
14279 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14280
88714cb8 14281 neon_dp_fixup (&inst);
5287ad62
JB
14282}
14283
14284static void
14285do_neon_dyadic_long (void)
14286{
14287 /* FIXME: Type checking for lengthening op. */
14288 struct neon_type_el et = neon_check_type (3, NS_QDD,
14289 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14290 neon_mixed_length (et, et.size);
14291}
14292
14293static void
14294do_neon_abal (void)
14295{
14296 struct neon_type_el et = neon_check_type (3, NS_QDD,
14297 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14298 neon_mixed_length (et, et.size);
14299}
14300
14301static void
14302neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14303{
14304 if (inst.operands[2].isscalar)
14305 {
dcbf9037
JB
14306 struct neon_type_el et = neon_check_type (3, NS_QDS,
14307 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14308 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14309 neon_mul_mac (et, et.type == NT_unsigned);
14310 }
14311 else
14312 {
14313 struct neon_type_el et = neon_check_type (3, NS_QDD,
14314 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14315 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14316 neon_mixed_length (et, et.size);
14317 }
14318}
14319
14320static void
14321do_neon_mac_maybe_scalar_long (void)
14322{
14323 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14324}
14325
14326static void
14327do_neon_dyadic_wide (void)
14328{
14329 struct neon_type_el et = neon_check_type (3, NS_QQD,
14330 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14331 neon_mixed_length (et, et.size);
14332}
14333
14334static void
14335do_neon_dyadic_narrow (void)
14336{
14337 struct neon_type_el et = neon_check_type (3, NS_QDD,
14338 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14339 /* Operand sign is unimportant, and the U bit is part of the opcode,
14340 so force the operand type to integer. */
14341 et.type = NT_integer;
5287ad62
JB
14342 neon_mixed_length (et, et.size / 2);
14343}
14344
14345static void
14346do_neon_mul_sat_scalar_long (void)
14347{
14348 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14349}
14350
14351static void
14352do_neon_vmull (void)
14353{
14354 if (inst.operands[2].isscalar)
14355 do_neon_mac_maybe_scalar_long ();
14356 else
14357 {
14358 struct neon_type_el et = neon_check_type (3, NS_QDD,
14359 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14360 if (et.type == NT_poly)
88714cb8 14361 NEON_ENCODE (POLY, inst);
5287ad62 14362 else
88714cb8 14363 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14364 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14365 zero. Should be OK as-is. */
14366 neon_mixed_length (et, et.size);
14367 }
14368}
14369
14370static void
14371do_neon_ext (void)
14372{
037e8744 14373 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14374 struct neon_type_el et = neon_check_type (3, rs,
14375 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14376 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14377
14378 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14379 _("shift out of range"));
5287ad62
JB
14380 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14381 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14382 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14383 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14384 inst.instruction |= LOW4 (inst.operands[2].reg);
14385 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14386 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14387 inst.instruction |= imm << 8;
5f4273c7 14388
88714cb8 14389 neon_dp_fixup (&inst);
5287ad62
JB
14390}
14391
14392static void
14393do_neon_rev (void)
14394{
037e8744 14395 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14396 struct neon_type_el et = neon_check_type (2, rs,
14397 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14398 unsigned op = (inst.instruction >> 7) & 3;
14399 /* N (width of reversed regions) is encoded as part of the bitmask. We
14400 extract it here to check the elements to be reversed are smaller.
14401 Otherwise we'd get a reserved instruction. */
14402 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14403 gas_assert (elsize != 0);
5287ad62
JB
14404 constraint (et.size >= elsize,
14405 _("elements must be smaller than reversal region"));
037e8744 14406 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14407}
14408
14409static void
14410do_neon_dup (void)
14411{
14412 if (inst.operands[1].isscalar)
14413 {
037e8744 14414 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14415 struct neon_type_el et = neon_check_type (2, rs,
14416 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14417 unsigned sizebits = et.size >> 3;
dcbf9037 14418 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14419 int logsize = neon_logbits (et.size);
dcbf9037 14420 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14421
14422 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14423 return;
14424
88714cb8 14425 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14426 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14427 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14428 inst.instruction |= LOW4 (dm);
14429 inst.instruction |= HI1 (dm) << 5;
037e8744 14430 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14431 inst.instruction |= x << 17;
14432 inst.instruction |= sizebits << 16;
5f4273c7 14433
88714cb8 14434 neon_dp_fixup (&inst);
5287ad62
JB
14435 }
14436 else
14437 {
037e8744
JB
14438 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14439 struct neon_type_el et = neon_check_type (2, rs,
14440 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 14441 /* Duplicate ARM register to lanes of vector. */
88714cb8 14442 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
14443 switch (et.size)
14444 {
14445 case 8: inst.instruction |= 0x400000; break;
14446 case 16: inst.instruction |= 0x000020; break;
14447 case 32: inst.instruction |= 0x000000; break;
14448 default: break;
14449 }
14450 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14451 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14452 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14453 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14454 /* The encoding for this instruction is identical for the ARM and Thumb
14455 variants, except for the condition field. */
037e8744 14456 do_vfp_cond_or_thumb ();
5287ad62
JB
14457 }
14458}
14459
14460/* VMOV has particularly many variations. It can be one of:
14461 0. VMOV<c><q> <Qd>, <Qm>
14462 1. VMOV<c><q> <Dd>, <Dm>
14463 (Register operations, which are VORR with Rm = Rn.)
14464 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14465 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14466 (Immediate loads.)
14467 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14468 (ARM register to scalar.)
14469 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14470 (Two ARM registers to vector.)
14471 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14472 (Scalar to ARM register.)
14473 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14474 (Vector to two ARM registers.)
037e8744
JB
14475 8. VMOV.F32 <Sd>, <Sm>
14476 9. VMOV.F64 <Dd>, <Dm>
14477 (VFP register moves.)
14478 10. VMOV.F32 <Sd>, #imm
14479 11. VMOV.F64 <Dd>, #imm
14480 (VFP float immediate load.)
14481 12. VMOV <Rd>, <Sm>
14482 (VFP single to ARM reg.)
14483 13. VMOV <Sd>, <Rm>
14484 (ARM reg to VFP single.)
14485 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14486 (Two ARM regs to two VFP singles.)
14487 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14488 (Two VFP singles to two ARM regs.)
5f4273c7 14489
037e8744
JB
14490 These cases can be disambiguated using neon_select_shape, except cases 1/9
14491 and 3/11 which depend on the operand type too.
5f4273c7 14492
5287ad62 14493 All the encoded bits are hardcoded by this function.
5f4273c7 14494
b7fc2769
JB
14495 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14496 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14497
5287ad62 14498 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14499 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14500
14501static void
14502do_neon_mov (void)
14503{
037e8744
JB
14504 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14505 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14506 NS_NULL);
14507 struct neon_type_el et;
14508 const char *ldconst = 0;
5287ad62 14509
037e8744 14510 switch (rs)
5287ad62 14511 {
037e8744
JB
14512 case NS_DD: /* case 1/9. */
14513 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14514 /* It is not an error here if no type is given. */
14515 inst.error = NULL;
14516 if (et.type == NT_float && et.size == 64)
5287ad62 14517 {
037e8744
JB
14518 do_vfp_nsyn_opcode ("fcpyd");
14519 break;
5287ad62 14520 }
037e8744 14521 /* fall through. */
5287ad62 14522
037e8744
JB
14523 case NS_QQ: /* case 0/1. */
14524 {
14525 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14526 return;
14527 /* The architecture manual I have doesn't explicitly state which
14528 value the U bit should have for register->register moves, but
14529 the equivalent VORR instruction has U = 0, so do that. */
14530 inst.instruction = 0x0200110;
14531 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14532 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14533 inst.instruction |= LOW4 (inst.operands[1].reg);
14534 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14535 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14536 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14537 inst.instruction |= neon_quad (rs) << 6;
14538
88714cb8 14539 neon_dp_fixup (&inst);
037e8744
JB
14540 }
14541 break;
5f4273c7 14542
037e8744
JB
14543 case NS_DI: /* case 3/11. */
14544 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14545 inst.error = NULL;
14546 if (et.type == NT_float && et.size == 64)
5287ad62 14547 {
037e8744
JB
14548 /* case 11 (fconstd). */
14549 ldconst = "fconstd";
14550 goto encode_fconstd;
5287ad62 14551 }
037e8744
JB
14552 /* fall through. */
14553
14554 case NS_QI: /* case 2/3. */
14555 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14556 return;
14557 inst.instruction = 0x0800010;
14558 neon_move_immediate ();
88714cb8 14559 neon_dp_fixup (&inst);
5287ad62 14560 break;
5f4273c7 14561
037e8744
JB
14562 case NS_SR: /* case 4. */
14563 {
14564 unsigned bcdebits = 0;
91d6fa6a 14565 int logsize;
037e8744
JB
14566 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14567 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14568
91d6fa6a
NC
14569 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14570 logsize = neon_logbits (et.size);
14571
037e8744
JB
14572 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14573 _(BAD_FPU));
14574 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14575 && et.size != 32, _(BAD_FPU));
14576 constraint (et.type == NT_invtype, _("bad type for scalar"));
14577 constraint (x >= 64 / et.size, _("scalar index out of range"));
14578
14579 switch (et.size)
14580 {
14581 case 8: bcdebits = 0x8; break;
14582 case 16: bcdebits = 0x1; break;
14583 case 32: bcdebits = 0x0; break;
14584 default: ;
14585 }
14586
14587 bcdebits |= x << logsize;
14588
14589 inst.instruction = 0xe000b10;
14590 do_vfp_cond_or_thumb ();
14591 inst.instruction |= LOW4 (dn) << 16;
14592 inst.instruction |= HI1 (dn) << 7;
14593 inst.instruction |= inst.operands[1].reg << 12;
14594 inst.instruction |= (bcdebits & 3) << 5;
14595 inst.instruction |= (bcdebits >> 2) << 21;
14596 }
14597 break;
5f4273c7 14598
037e8744 14599 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14600 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14601 _(BAD_FPU));
b7fc2769 14602
037e8744
JB
14603 inst.instruction = 0xc400b10;
14604 do_vfp_cond_or_thumb ();
14605 inst.instruction |= LOW4 (inst.operands[0].reg);
14606 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14607 inst.instruction |= inst.operands[1].reg << 12;
14608 inst.instruction |= inst.operands[2].reg << 16;
14609 break;
5f4273c7 14610
037e8744
JB
14611 case NS_RS: /* case 6. */
14612 {
91d6fa6a 14613 unsigned logsize;
037e8744
JB
14614 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14615 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14616 unsigned abcdebits = 0;
14617
91d6fa6a
NC
14618 et = neon_check_type (2, NS_NULL,
14619 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14620 logsize = neon_logbits (et.size);
14621
037e8744
JB
14622 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14623 _(BAD_FPU));
14624 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14625 && et.size != 32, _(BAD_FPU));
14626 constraint (et.type == NT_invtype, _("bad type for scalar"));
14627 constraint (x >= 64 / et.size, _("scalar index out of range"));
14628
14629 switch (et.size)
14630 {
14631 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14632 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14633 case 32: abcdebits = 0x00; break;
14634 default: ;
14635 }
14636
14637 abcdebits |= x << logsize;
14638 inst.instruction = 0xe100b10;
14639 do_vfp_cond_or_thumb ();
14640 inst.instruction |= LOW4 (dn) << 16;
14641 inst.instruction |= HI1 (dn) << 7;
14642 inst.instruction |= inst.operands[0].reg << 12;
14643 inst.instruction |= (abcdebits & 3) << 5;
14644 inst.instruction |= (abcdebits >> 2) << 21;
14645 }
14646 break;
5f4273c7 14647
037e8744
JB
14648 case NS_RRD: /* case 7 (fmrrd). */
14649 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14650 _(BAD_FPU));
14651
14652 inst.instruction = 0xc500b10;
14653 do_vfp_cond_or_thumb ();
14654 inst.instruction |= inst.operands[0].reg << 12;
14655 inst.instruction |= inst.operands[1].reg << 16;
14656 inst.instruction |= LOW4 (inst.operands[2].reg);
14657 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14658 break;
5f4273c7 14659
037e8744
JB
14660 case NS_FF: /* case 8 (fcpys). */
14661 do_vfp_nsyn_opcode ("fcpys");
14662 break;
5f4273c7 14663
037e8744
JB
14664 case NS_FI: /* case 10 (fconsts). */
14665 ldconst = "fconsts";
14666 encode_fconstd:
14667 if (is_quarter_float (inst.operands[1].imm))
5287ad62 14668 {
037e8744
JB
14669 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14670 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
14671 }
14672 else
037e8744
JB
14673 first_error (_("immediate out of range"));
14674 break;
5f4273c7 14675
037e8744
JB
14676 case NS_RF: /* case 12 (fmrs). */
14677 do_vfp_nsyn_opcode ("fmrs");
14678 break;
5f4273c7 14679
037e8744
JB
14680 case NS_FR: /* case 13 (fmsr). */
14681 do_vfp_nsyn_opcode ("fmsr");
14682 break;
5f4273c7 14683
037e8744
JB
14684 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14685 (one of which is a list), but we have parsed four. Do some fiddling to
14686 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14687 expect. */
14688 case NS_RRFF: /* case 14 (fmrrs). */
14689 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14690 _("VFP registers must be adjacent"));
14691 inst.operands[2].imm = 2;
14692 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14693 do_vfp_nsyn_opcode ("fmrrs");
14694 break;
5f4273c7 14695
037e8744
JB
14696 case NS_FFRR: /* case 15 (fmsrr). */
14697 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14698 _("VFP registers must be adjacent"));
14699 inst.operands[1] = inst.operands[2];
14700 inst.operands[2] = inst.operands[3];
14701 inst.operands[0].imm = 2;
14702 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14703 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 14704 break;
5f4273c7 14705
5287ad62
JB
14706 default:
14707 abort ();
14708 }
14709}
14710
14711static void
14712do_neon_rshift_round_imm (void)
14713{
037e8744 14714 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14715 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14716 int imm = inst.operands[2].imm;
14717
14718 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14719 if (imm == 0)
14720 {
14721 inst.operands[2].present = 0;
14722 do_neon_mov ();
14723 return;
14724 }
14725
14726 constraint (imm < 1 || (unsigned)imm > et.size,
14727 _("immediate out of range for shift"));
037e8744 14728 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
14729 et.size - imm);
14730}
14731
14732static void
14733do_neon_movl (void)
14734{
14735 struct neon_type_el et = neon_check_type (2, NS_QD,
14736 N_EQK | N_DBL, N_SU_32 | N_KEY);
14737 unsigned sizebits = et.size >> 3;
14738 inst.instruction |= sizebits << 19;
14739 neon_two_same (0, et.type == NT_unsigned, -1);
14740}
14741
14742static void
14743do_neon_trn (void)
14744{
037e8744 14745 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14746 struct neon_type_el et = neon_check_type (2, rs,
14747 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 14748 NEON_ENCODE (INTEGER, inst);
037e8744 14749 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14750}
14751
14752static void
14753do_neon_zip_uzp (void)
14754{
037e8744 14755 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14756 struct neon_type_el et = neon_check_type (2, rs,
14757 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14758 if (rs == NS_DD && et.size == 32)
14759 {
14760 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14761 inst.instruction = N_MNEM_vtrn;
14762 do_neon_trn ();
14763 return;
14764 }
037e8744 14765 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14766}
14767
14768static void
14769do_neon_sat_abs_neg (void)
14770{
037e8744 14771 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14772 struct neon_type_el et = neon_check_type (2, rs,
14773 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14774 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14775}
14776
14777static void
14778do_neon_pair_long (void)
14779{
037e8744 14780 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14781 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14782 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14783 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 14784 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14785}
14786
14787static void
14788do_neon_recip_est (void)
14789{
037e8744 14790 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14791 struct neon_type_el et = neon_check_type (2, rs,
14792 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14793 inst.instruction |= (et.type == NT_float) << 8;
037e8744 14794 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14795}
14796
14797static void
14798do_neon_cls (void)
14799{
037e8744 14800 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14801 struct neon_type_el et = neon_check_type (2, rs,
14802 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14803 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14804}
14805
14806static void
14807do_neon_clz (void)
14808{
037e8744 14809 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14810 struct neon_type_el et = neon_check_type (2, rs,
14811 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 14812 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14813}
14814
14815static void
14816do_neon_cnt (void)
14817{
037e8744 14818 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14819 struct neon_type_el et = neon_check_type (2, rs,
14820 N_EQK | N_INT, N_8 | N_KEY);
037e8744 14821 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14822}
14823
14824static void
14825do_neon_swp (void)
14826{
037e8744
JB
14827 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14828 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
14829}
14830
14831static void
14832do_neon_tbl_tbx (void)
14833{
14834 unsigned listlenbits;
dcbf9037 14835 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 14836
5287ad62
JB
14837 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14838 {
dcbf9037 14839 first_error (_("bad list length for table lookup"));
5287ad62
JB
14840 return;
14841 }
5f4273c7 14842
5287ad62
JB
14843 listlenbits = inst.operands[1].imm - 1;
14844 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14845 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14846 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14847 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14848 inst.instruction |= LOW4 (inst.operands[2].reg);
14849 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14850 inst.instruction |= listlenbits << 8;
5f4273c7 14851
88714cb8 14852 neon_dp_fixup (&inst);
5287ad62
JB
14853}
14854
14855static void
14856do_neon_ldm_stm (void)
14857{
14858 /* P, U and L bits are part of bitmask. */
14859 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14860 unsigned offsetbits = inst.operands[1].imm * 2;
14861
037e8744
JB
14862 if (inst.operands[1].issingle)
14863 {
14864 do_vfp_nsyn_ldm_stm (is_dbmode);
14865 return;
14866 }
14867
5287ad62
JB
14868 constraint (is_dbmode && !inst.operands[0].writeback,
14869 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14870
14871 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14872 _("register list must contain at least 1 and at most 16 "
14873 "registers"));
14874
14875 inst.instruction |= inst.operands[0].reg << 16;
14876 inst.instruction |= inst.operands[0].writeback << 21;
14877 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14878 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14879
14880 inst.instruction |= offsetbits;
5f4273c7 14881
037e8744 14882 do_vfp_cond_or_thumb ();
5287ad62
JB
14883}
14884
14885static void
14886do_neon_ldr_str (void)
14887{
5287ad62 14888 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 14889
6844b2c2
MGD
14890 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
14891 And is UNPREDICTABLE in thumb mode. */
14892 if (!is_ldr
14893 && inst.operands[1].reg == REG_PC
14894 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
14895 {
14896 if (!thumb_mode && warn_on_deprecated)
14897 as_warn (_("Use of PC here is deprecated"));
14898 else
14899 inst.error = _("Use of PC here is UNPREDICTABLE");
14900 }
14901
037e8744
JB
14902 if (inst.operands[0].issingle)
14903 {
cd2f129f
JB
14904 if (is_ldr)
14905 do_vfp_nsyn_opcode ("flds");
14906 else
14907 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
14908 }
14909 else
5287ad62 14910 {
cd2f129f
JB
14911 if (is_ldr)
14912 do_vfp_nsyn_opcode ("fldd");
5287ad62 14913 else
cd2f129f 14914 do_vfp_nsyn_opcode ("fstd");
5287ad62 14915 }
5287ad62
JB
14916}
14917
14918/* "interleave" version also handles non-interleaving register VLD1/VST1
14919 instructions. */
14920
14921static void
14922do_neon_ld_st_interleave (void)
14923{
037e8744 14924 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
14925 N_8 | N_16 | N_32 | N_64);
14926 unsigned alignbits = 0;
14927 unsigned idx;
14928 /* The bits in this table go:
14929 0: register stride of one (0) or two (1)
14930 1,2: register list length, minus one (1, 2, 3, 4).
14931 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14932 We use -1 for invalid entries. */
14933 const int typetable[] =
14934 {
14935 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14936 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14937 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14938 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14939 };
14940 int typebits;
14941
dcbf9037
JB
14942 if (et.type == NT_invtype)
14943 return;
14944
5287ad62
JB
14945 if (inst.operands[1].immisalign)
14946 switch (inst.operands[1].imm >> 8)
14947 {
14948 case 64: alignbits = 1; break;
14949 case 128:
e23c0ad8
JZ
14950 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
14951 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
14952 goto bad_alignment;
14953 alignbits = 2;
14954 break;
14955 case 256:
e23c0ad8 14956 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
14957 goto bad_alignment;
14958 alignbits = 3;
14959 break;
14960 default:
14961 bad_alignment:
dcbf9037 14962 first_error (_("bad alignment"));
5287ad62
JB
14963 return;
14964 }
14965
14966 inst.instruction |= alignbits << 4;
14967 inst.instruction |= neon_logbits (et.size) << 6;
14968
14969 /* Bits [4:6] of the immediate in a list specifier encode register stride
14970 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14971 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14972 up the right value for "type" in a table based on this value and the given
14973 list style, then stick it back. */
14974 idx = ((inst.operands[0].imm >> 4) & 7)
14975 | (((inst.instruction >> 8) & 3) << 3);
14976
14977 typebits = typetable[idx];
5f4273c7 14978
5287ad62
JB
14979 constraint (typebits == -1, _("bad list type for instruction"));
14980
14981 inst.instruction &= ~0xf00;
14982 inst.instruction |= typebits << 8;
14983}
14984
14985/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14986 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14987 otherwise. The variable arguments are a list of pairs of legal (size, align)
14988 values, terminated with -1. */
14989
14990static int
14991neon_alignment_bit (int size, int align, int *do_align, ...)
14992{
14993 va_list ap;
14994 int result = FAIL, thissize, thisalign;
5f4273c7 14995
5287ad62
JB
14996 if (!inst.operands[1].immisalign)
14997 {
14998 *do_align = 0;
14999 return SUCCESS;
15000 }
5f4273c7 15001
5287ad62
JB
15002 va_start (ap, do_align);
15003
15004 do
15005 {
15006 thissize = va_arg (ap, int);
15007 if (thissize == -1)
15008 break;
15009 thisalign = va_arg (ap, int);
15010
15011 if (size == thissize && align == thisalign)
15012 result = SUCCESS;
15013 }
15014 while (result != SUCCESS);
15015
15016 va_end (ap);
15017
15018 if (result == SUCCESS)
15019 *do_align = 1;
15020 else
dcbf9037 15021 first_error (_("unsupported alignment for instruction"));
5f4273c7 15022
5287ad62
JB
15023 return result;
15024}
15025
15026static void
15027do_neon_ld_st_lane (void)
15028{
037e8744 15029 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15030 int align_good, do_align = 0;
15031 int logsize = neon_logbits (et.size);
15032 int align = inst.operands[1].imm >> 8;
15033 int n = (inst.instruction >> 8) & 3;
15034 int max_el = 64 / et.size;
5f4273c7 15035
dcbf9037
JB
15036 if (et.type == NT_invtype)
15037 return;
5f4273c7 15038
5287ad62
JB
15039 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15040 _("bad list length"));
15041 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15042 _("scalar index out of range"));
15043 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15044 && et.size == 8,
15045 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15046
5287ad62
JB
15047 switch (n)
15048 {
15049 case 0: /* VLD1 / VST1. */
15050 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15051 32, 32, -1);
15052 if (align_good == FAIL)
15053 return;
15054 if (do_align)
15055 {
15056 unsigned alignbits = 0;
15057 switch (et.size)
15058 {
15059 case 16: alignbits = 0x1; break;
15060 case 32: alignbits = 0x3; break;
15061 default: ;
15062 }
15063 inst.instruction |= alignbits << 4;
15064 }
15065 break;
15066
15067 case 1: /* VLD2 / VST2. */
15068 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15069 32, 64, -1);
15070 if (align_good == FAIL)
15071 return;
15072 if (do_align)
15073 inst.instruction |= 1 << 4;
15074 break;
15075
15076 case 2: /* VLD3 / VST3. */
15077 constraint (inst.operands[1].immisalign,
15078 _("can't use alignment with this instruction"));
15079 break;
15080
15081 case 3: /* VLD4 / VST4. */
15082 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15083 16, 64, 32, 64, 32, 128, -1);
15084 if (align_good == FAIL)
15085 return;
15086 if (do_align)
15087 {
15088 unsigned alignbits = 0;
15089 switch (et.size)
15090 {
15091 case 8: alignbits = 0x1; break;
15092 case 16: alignbits = 0x1; break;
15093 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15094 default: ;
15095 }
15096 inst.instruction |= alignbits << 4;
15097 }
15098 break;
15099
15100 default: ;
15101 }
15102
15103 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15104 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15105 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15106
5287ad62
JB
15107 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15108 inst.instruction |= logsize << 10;
15109}
15110
15111/* Encode single n-element structure to all lanes VLD<n> instructions. */
15112
15113static void
15114do_neon_ld_dup (void)
15115{
037e8744 15116 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15117 int align_good, do_align = 0;
15118
dcbf9037
JB
15119 if (et.type == NT_invtype)
15120 return;
15121
5287ad62
JB
15122 switch ((inst.instruction >> 8) & 3)
15123 {
15124 case 0: /* VLD1. */
9c2799c2 15125 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15126 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15127 &do_align, 16, 16, 32, 32, -1);
15128 if (align_good == FAIL)
15129 return;
15130 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15131 {
15132 case 1: break;
15133 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15134 default: first_error (_("bad list length")); return;
5287ad62
JB
15135 }
15136 inst.instruction |= neon_logbits (et.size) << 6;
15137 break;
15138
15139 case 1: /* VLD2. */
15140 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15141 &do_align, 8, 16, 16, 32, 32, 64, -1);
15142 if (align_good == FAIL)
15143 return;
15144 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15145 _("bad list length"));
15146 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15147 inst.instruction |= 1 << 5;
15148 inst.instruction |= neon_logbits (et.size) << 6;
15149 break;
15150
15151 case 2: /* VLD3. */
15152 constraint (inst.operands[1].immisalign,
15153 _("can't use alignment with this instruction"));
15154 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15155 _("bad list length"));
15156 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15157 inst.instruction |= 1 << 5;
15158 inst.instruction |= neon_logbits (et.size) << 6;
15159 break;
15160
15161 case 3: /* VLD4. */
15162 {
15163 int align = inst.operands[1].imm >> 8;
15164 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15165 16, 64, 32, 64, 32, 128, -1);
15166 if (align_good == FAIL)
15167 return;
15168 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15169 _("bad list length"));
15170 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15171 inst.instruction |= 1 << 5;
15172 if (et.size == 32 && align == 128)
15173 inst.instruction |= 0x3 << 6;
15174 else
15175 inst.instruction |= neon_logbits (et.size) << 6;
15176 }
15177 break;
15178
15179 default: ;
15180 }
15181
15182 inst.instruction |= do_align << 4;
15183}
15184
15185/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15186 apart from bits [11:4]. */
15187
15188static void
15189do_neon_ldx_stx (void)
15190{
b1a769ed
DG
15191 if (inst.operands[1].isreg)
15192 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15193
5287ad62
JB
15194 switch (NEON_LANE (inst.operands[0].imm))
15195 {
15196 case NEON_INTERLEAVE_LANES:
88714cb8 15197 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15198 do_neon_ld_st_interleave ();
15199 break;
5f4273c7 15200
5287ad62 15201 case NEON_ALL_LANES:
88714cb8 15202 NEON_ENCODE (DUP, inst);
5287ad62
JB
15203 do_neon_ld_dup ();
15204 break;
5f4273c7 15205
5287ad62 15206 default:
88714cb8 15207 NEON_ENCODE (LANE, inst);
5287ad62
JB
15208 do_neon_ld_st_lane ();
15209 }
15210
15211 /* L bit comes from bit mask. */
15212 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15213 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15214 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15215
5287ad62
JB
15216 if (inst.operands[1].postind)
15217 {
15218 int postreg = inst.operands[1].imm & 0xf;
15219 constraint (!inst.operands[1].immisreg,
15220 _("post-index must be a register"));
15221 constraint (postreg == 0xd || postreg == 0xf,
15222 _("bad register for post-index"));
15223 inst.instruction |= postreg;
15224 }
15225 else if (inst.operands[1].writeback)
15226 {
15227 inst.instruction |= 0xd;
15228 }
15229 else
5f4273c7
NC
15230 inst.instruction |= 0xf;
15231
5287ad62
JB
15232 if (thumb_mode)
15233 inst.instruction |= 0xf9000000;
15234 else
15235 inst.instruction |= 0xf4000000;
15236}
5287ad62
JB
15237\f
15238/* Overall per-instruction processing. */
15239
15240/* We need to be able to fix up arbitrary expressions in some statements.
15241 This is so that we can handle symbols that are an arbitrary distance from
15242 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15243 which returns part of an address in a form which will be valid for
15244 a data instruction. We do this by pushing the expression into a symbol
15245 in the expr_section, and creating a fix for that. */
15246
15247static void
15248fix_new_arm (fragS * frag,
15249 int where,
15250 short int size,
15251 expressionS * exp,
15252 int pc_rel,
15253 int reloc)
15254{
15255 fixS * new_fix;
15256
15257 switch (exp->X_op)
15258 {
15259 case O_constant:
15260 case O_symbol:
15261 case O_add:
15262 case O_subtract:
21d799b5
NC
15263 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15264 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15265 break;
15266
15267 default:
21d799b5
NC
15268 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15269 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15270 break;
15271 }
15272
15273 /* Mark whether the fix is to a THUMB instruction, or an ARM
15274 instruction. */
15275 new_fix->tc_fix_data = thumb_mode;
15276}
15277
15278/* Create a frg for an instruction requiring relaxation. */
15279static void
15280output_relax_insn (void)
15281{
15282 char * to;
15283 symbolS *sym;
0110f2b8
PB
15284 int offset;
15285
6e1cb1a6
PB
15286 /* The size of the instruction is unknown, so tie the debug info to the
15287 start of the instruction. */
15288 dwarf2_emit_insn (0);
6e1cb1a6 15289
0110f2b8
PB
15290 switch (inst.reloc.exp.X_op)
15291 {
15292 case O_symbol:
15293 sym = inst.reloc.exp.X_add_symbol;
15294 offset = inst.reloc.exp.X_add_number;
15295 break;
15296 case O_constant:
15297 sym = NULL;
15298 offset = inst.reloc.exp.X_add_number;
15299 break;
15300 default:
15301 sym = make_expr_symbol (&inst.reloc.exp);
15302 offset = 0;
15303 break;
15304 }
15305 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15306 inst.relax, sym, offset, NULL/*offset, opcode*/);
15307 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15308}
15309
15310/* Write a 32-bit thumb instruction to buf. */
15311static void
15312put_thumb32_insn (char * buf, unsigned long insn)
15313{
15314 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15315 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15316}
15317
b99bd4ef 15318static void
c19d1205 15319output_inst (const char * str)
b99bd4ef 15320{
c19d1205 15321 char * to = NULL;
b99bd4ef 15322
c19d1205 15323 if (inst.error)
b99bd4ef 15324 {
c19d1205 15325 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15326 return;
15327 }
5f4273c7
NC
15328 if (inst.relax)
15329 {
15330 output_relax_insn ();
0110f2b8 15331 return;
5f4273c7 15332 }
c19d1205
ZW
15333 if (inst.size == 0)
15334 return;
b99bd4ef 15335
c19d1205 15336 to = frag_more (inst.size);
8dc2430f
NC
15337 /* PR 9814: Record the thumb mode into the current frag so that we know
15338 what type of NOP padding to use, if necessary. We override any previous
15339 setting so that if the mode has changed then the NOPS that we use will
15340 match the encoding of the last instruction in the frag. */
cd000bff 15341 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15342
15343 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15344 {
9c2799c2 15345 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15346 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15347 }
c19d1205 15348 else if (inst.size > INSN_SIZE)
b99bd4ef 15349 {
9c2799c2 15350 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15351 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15352 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15353 }
c19d1205
ZW
15354 else
15355 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15356
c19d1205
ZW
15357 if (inst.reloc.type != BFD_RELOC_UNUSED)
15358 fix_new_arm (frag_now, to - frag_now->fr_literal,
15359 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15360 inst.reloc.type);
b99bd4ef 15361
c19d1205 15362 dwarf2_emit_insn (inst.size);
c19d1205 15363}
b99bd4ef 15364
e07e6e58
NC
15365static char *
15366output_it_inst (int cond, int mask, char * to)
15367{
15368 unsigned long instruction = 0xbf00;
15369
15370 mask &= 0xf;
15371 instruction |= mask;
15372 instruction |= cond << 4;
15373
15374 if (to == NULL)
15375 {
15376 to = frag_more (2);
15377#ifdef OBJ_ELF
15378 dwarf2_emit_insn (2);
15379#endif
15380 }
15381
15382 md_number_to_chars (to, instruction, 2);
15383
15384 return to;
15385}
15386
c19d1205
ZW
15387/* Tag values used in struct asm_opcode's tag field. */
15388enum opcode_tag
15389{
15390 OT_unconditional, /* Instruction cannot be conditionalized.
15391 The ARM condition field is still 0xE. */
15392 OT_unconditionalF, /* Instruction cannot be conditionalized
15393 and carries 0xF in its ARM condition field. */
15394 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15395 OT_csuffixF, /* Some forms of the instruction take a conditional
15396 suffix, others place 0xF where the condition field
15397 would be. */
c19d1205
ZW
15398 OT_cinfix3, /* Instruction takes a conditional infix,
15399 beginning at character index 3. (In
15400 unified mode, it becomes a suffix.) */
088fa78e
KH
15401 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15402 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
15403 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15404 character index 3, even in unified mode. Used for
15405 legacy instructions where suffix and infix forms
15406 may be ambiguous. */
c19d1205 15407 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 15408 suffix or an infix at character index 3. */
c19d1205
ZW
15409 OT_odd_infix_unc, /* This is the unconditional variant of an
15410 instruction that takes a conditional infix
15411 at an unusual position. In unified mode,
15412 this variant will accept a suffix. */
15413 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15414 are the conditional variants of instructions that
15415 take conditional infixes in unusual positions.
15416 The infix appears at character index
15417 (tag - OT_odd_infix_0). These are not accepted
15418 in unified mode. */
15419};
b99bd4ef 15420
c19d1205
ZW
15421/* Subroutine of md_assemble, responsible for looking up the primary
15422 opcode from the mnemonic the user wrote. STR points to the
15423 beginning of the mnemonic.
15424
15425 This is not simply a hash table lookup, because of conditional
15426 variants. Most instructions have conditional variants, which are
15427 expressed with a _conditional affix_ to the mnemonic. If we were
15428 to encode each conditional variant as a literal string in the opcode
15429 table, it would have approximately 20,000 entries.
15430
15431 Most mnemonics take this affix as a suffix, and in unified syntax,
15432 'most' is upgraded to 'all'. However, in the divided syntax, some
15433 instructions take the affix as an infix, notably the s-variants of
15434 the arithmetic instructions. Of those instructions, all but six
15435 have the infix appear after the third character of the mnemonic.
15436
15437 Accordingly, the algorithm for looking up primary opcodes given
15438 an identifier is:
15439
15440 1. Look up the identifier in the opcode table.
15441 If we find a match, go to step U.
15442
15443 2. Look up the last two characters of the identifier in the
15444 conditions table. If we find a match, look up the first N-2
15445 characters of the identifier in the opcode table. If we
15446 find a match, go to step CE.
15447
15448 3. Look up the fourth and fifth characters of the identifier in
15449 the conditions table. If we find a match, extract those
15450 characters from the identifier, and look up the remaining
15451 characters in the opcode table. If we find a match, go
15452 to step CM.
15453
15454 4. Fail.
15455
15456 U. Examine the tag field of the opcode structure, in case this is
15457 one of the six instructions with its conditional infix in an
15458 unusual place. If it is, the tag tells us where to find the
15459 infix; look it up in the conditions table and set inst.cond
15460 accordingly. Otherwise, this is an unconditional instruction.
15461 Again set inst.cond accordingly. Return the opcode structure.
15462
15463 CE. Examine the tag field to make sure this is an instruction that
15464 should receive a conditional suffix. If it is not, fail.
15465 Otherwise, set inst.cond from the suffix we already looked up,
15466 and return the opcode structure.
15467
15468 CM. Examine the tag field to make sure this is an instruction that
15469 should receive a conditional infix after the third character.
15470 If it is not, fail. Otherwise, undo the edits to the current
15471 line of input and proceed as for case CE. */
15472
15473static const struct asm_opcode *
15474opcode_lookup (char **str)
15475{
15476 char *end, *base;
15477 char *affix;
15478 const struct asm_opcode *opcode;
15479 const struct asm_cond *cond;
e3cb604e 15480 char save[2];
c19d1205
ZW
15481
15482 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15483 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15484 for (base = end = *str; *end != '\0'; end++)
721a8186 15485 if (*end == ' ' || *end == '.')
c19d1205 15486 break;
b99bd4ef 15487
c19d1205 15488 if (end == base)
c921be7d 15489 return NULL;
b99bd4ef 15490
5287ad62 15491 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15492 if (end[0] == '.')
b99bd4ef 15493 {
5287ad62 15494 int offset = 2;
5f4273c7 15495
267d2029
JB
15496 /* The .w and .n suffixes are only valid if the unified syntax is in
15497 use. */
15498 if (unified_syntax && end[1] == 'w')
c19d1205 15499 inst.size_req = 4;
267d2029 15500 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15501 inst.size_req = 2;
15502 else
5287ad62
JB
15503 offset = 0;
15504
15505 inst.vectype.elems = 0;
15506
15507 *str = end + offset;
b99bd4ef 15508
5f4273c7 15509 if (end[offset] == '.')
5287ad62 15510 {
267d2029
JB
15511 /* See if we have a Neon type suffix (possible in either unified or
15512 non-unified ARM syntax mode). */
dcbf9037 15513 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15514 return NULL;
5287ad62
JB
15515 }
15516 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15517 return NULL;
b99bd4ef 15518 }
c19d1205
ZW
15519 else
15520 *str = end;
b99bd4ef 15521
c19d1205 15522 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15523 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15524 end - base);
c19d1205 15525 if (opcode)
b99bd4ef 15526 {
c19d1205
ZW
15527 /* step U */
15528 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15529 {
c19d1205
ZW
15530 inst.cond = COND_ALWAYS;
15531 return opcode;
b99bd4ef 15532 }
b99bd4ef 15533
278df34e 15534 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15535 as_warn (_("conditional infixes are deprecated in unified syntax"));
15536 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15537 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15538 gas_assert (cond);
b99bd4ef 15539
c19d1205
ZW
15540 inst.cond = cond->value;
15541 return opcode;
15542 }
b99bd4ef 15543
c19d1205
ZW
15544 /* Cannot have a conditional suffix on a mnemonic of less than two
15545 characters. */
15546 if (end - base < 3)
c921be7d 15547 return NULL;
b99bd4ef 15548
c19d1205
ZW
15549 /* Look for suffixed mnemonic. */
15550 affix = end - 2;
21d799b5
NC
15551 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15552 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15553 affix - base);
c19d1205
ZW
15554 if (opcode && cond)
15555 {
15556 /* step CE */
15557 switch (opcode->tag)
15558 {
e3cb604e
PB
15559 case OT_cinfix3_legacy:
15560 /* Ignore conditional suffixes matched on infix only mnemonics. */
15561 break;
15562
c19d1205 15563 case OT_cinfix3:
088fa78e 15564 case OT_cinfix3_deprecated:
c19d1205
ZW
15565 case OT_odd_infix_unc:
15566 if (!unified_syntax)
e3cb604e 15567 return 0;
c19d1205
ZW
15568 /* else fall through */
15569
15570 case OT_csuffix:
037e8744 15571 case OT_csuffixF:
c19d1205
ZW
15572 case OT_csuf_or_in3:
15573 inst.cond = cond->value;
15574 return opcode;
15575
15576 case OT_unconditional:
15577 case OT_unconditionalF:
dfa9f0d5 15578 if (thumb_mode)
c921be7d 15579 inst.cond = cond->value;
dfa9f0d5
PB
15580 else
15581 {
c921be7d 15582 /* Delayed diagnostic. */
dfa9f0d5
PB
15583 inst.error = BAD_COND;
15584 inst.cond = COND_ALWAYS;
15585 }
c19d1205 15586 return opcode;
b99bd4ef 15587
c19d1205 15588 default:
c921be7d 15589 return NULL;
c19d1205
ZW
15590 }
15591 }
b99bd4ef 15592
c19d1205
ZW
15593 /* Cannot have a usual-position infix on a mnemonic of less than
15594 six characters (five would be a suffix). */
15595 if (end - base < 6)
c921be7d 15596 return NULL;
b99bd4ef 15597
c19d1205
ZW
15598 /* Look for infixed mnemonic in the usual position. */
15599 affix = base + 3;
21d799b5 15600 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15601 if (!cond)
c921be7d 15602 return NULL;
e3cb604e
PB
15603
15604 memcpy (save, affix, 2);
15605 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15606 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15607 (end - base) - 2);
e3cb604e
PB
15608 memmove (affix + 2, affix, (end - affix) - 2);
15609 memcpy (affix, save, 2);
15610
088fa78e
KH
15611 if (opcode
15612 && (opcode->tag == OT_cinfix3
15613 || opcode->tag == OT_cinfix3_deprecated
15614 || opcode->tag == OT_csuf_or_in3
15615 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15616 {
c921be7d 15617 /* Step CM. */
278df34e 15618 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15619 && (opcode->tag == OT_cinfix3
15620 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15621 as_warn (_("conditional infixes are deprecated in unified syntax"));
15622
15623 inst.cond = cond->value;
15624 return opcode;
b99bd4ef
NC
15625 }
15626
c921be7d 15627 return NULL;
b99bd4ef
NC
15628}
15629
e07e6e58
NC
15630/* This function generates an initial IT instruction, leaving its block
15631 virtually open for the new instructions. Eventually,
15632 the mask will be updated by now_it_add_mask () each time
15633 a new instruction needs to be included in the IT block.
15634 Finally, the block is closed with close_automatic_it_block ().
15635 The block closure can be requested either from md_assemble (),
15636 a tencode (), or due to a label hook. */
15637
15638static void
15639new_automatic_it_block (int cond)
15640{
15641 now_it.state = AUTOMATIC_IT_BLOCK;
15642 now_it.mask = 0x18;
15643 now_it.cc = cond;
15644 now_it.block_length = 1;
cd000bff 15645 mapping_state (MAP_THUMB);
e07e6e58
NC
15646 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15647}
15648
15649/* Close an automatic IT block.
15650 See comments in new_automatic_it_block (). */
15651
15652static void
15653close_automatic_it_block (void)
15654{
15655 now_it.mask = 0x10;
15656 now_it.block_length = 0;
15657}
15658
15659/* Update the mask of the current automatically-generated IT
15660 instruction. See comments in new_automatic_it_block (). */
15661
15662static void
15663now_it_add_mask (int cond)
15664{
15665#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15666#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15667 | ((bitvalue) << (nbit)))
e07e6e58 15668 const int resulting_bit = (cond & 1);
c921be7d 15669
e07e6e58
NC
15670 now_it.mask &= 0xf;
15671 now_it.mask = SET_BIT_VALUE (now_it.mask,
15672 resulting_bit,
15673 (5 - now_it.block_length));
15674 now_it.mask = SET_BIT_VALUE (now_it.mask,
15675 1,
15676 ((5 - now_it.block_length) - 1) );
15677 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15678
15679#undef CLEAR_BIT
15680#undef SET_BIT_VALUE
e07e6e58
NC
15681}
15682
15683/* The IT blocks handling machinery is accessed through the these functions:
15684 it_fsm_pre_encode () from md_assemble ()
15685 set_it_insn_type () optional, from the tencode functions
15686 set_it_insn_type_last () ditto
15687 in_it_block () ditto
15688 it_fsm_post_encode () from md_assemble ()
15689 force_automatic_it_block_close () from label habdling functions
15690
15691 Rationale:
15692 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15693 initializing the IT insn type with a generic initial value depending
15694 on the inst.condition.
15695 2) During the tencode function, two things may happen:
15696 a) The tencode function overrides the IT insn type by
15697 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15698 b) The tencode function queries the IT block state by
15699 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15700
15701 Both set_it_insn_type and in_it_block run the internal FSM state
15702 handling function (handle_it_state), because: a) setting the IT insn
15703 type may incur in an invalid state (exiting the function),
15704 and b) querying the state requires the FSM to be updated.
15705 Specifically we want to avoid creating an IT block for conditional
15706 branches, so it_fsm_pre_encode is actually a guess and we can't
15707 determine whether an IT block is required until the tencode () routine
15708 has decided what type of instruction this actually it.
15709 Because of this, if set_it_insn_type and in_it_block have to be used,
15710 set_it_insn_type has to be called first.
15711
15712 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15713 determines the insn IT type depending on the inst.cond code.
15714 When a tencode () routine encodes an instruction that can be
15715 either outside an IT block, or, in the case of being inside, has to be
15716 the last one, set_it_insn_type_last () will determine the proper
15717 IT instruction type based on the inst.cond code. Otherwise,
15718 set_it_insn_type can be called for overriding that logic or
15719 for covering other cases.
15720
15721 Calling handle_it_state () may not transition the IT block state to
15722 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15723 still queried. Instead, if the FSM determines that the state should
15724 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15725 after the tencode () function: that's what it_fsm_post_encode () does.
15726
15727 Since in_it_block () calls the state handling function to get an
15728 updated state, an error may occur (due to invalid insns combination).
15729 In that case, inst.error is set.
15730 Therefore, inst.error has to be checked after the execution of
15731 the tencode () routine.
15732
15733 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15734 any pending state change (if any) that didn't take place in
15735 handle_it_state () as explained above. */
15736
15737static void
15738it_fsm_pre_encode (void)
15739{
15740 if (inst.cond != COND_ALWAYS)
15741 inst.it_insn_type = INSIDE_IT_INSN;
15742 else
15743 inst.it_insn_type = OUTSIDE_IT_INSN;
15744
15745 now_it.state_handled = 0;
15746}
15747
15748/* IT state FSM handling function. */
15749
15750static int
15751handle_it_state (void)
15752{
15753 now_it.state_handled = 1;
15754
15755 switch (now_it.state)
15756 {
15757 case OUTSIDE_IT_BLOCK:
15758 switch (inst.it_insn_type)
15759 {
15760 case OUTSIDE_IT_INSN:
15761 break;
15762
15763 case INSIDE_IT_INSN:
15764 case INSIDE_IT_LAST_INSN:
15765 if (thumb_mode == 0)
15766 {
c921be7d 15767 if (unified_syntax
e07e6e58
NC
15768 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15769 as_tsktsk (_("Warning: conditional outside an IT block"\
15770 " for Thumb."));
15771 }
15772 else
15773 {
15774 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15775 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15776 {
15777 /* Automatically generate the IT instruction. */
15778 new_automatic_it_block (inst.cond);
15779 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15780 close_automatic_it_block ();
15781 }
15782 else
15783 {
15784 inst.error = BAD_OUT_IT;
15785 return FAIL;
15786 }
15787 }
15788 break;
15789
15790 case IF_INSIDE_IT_LAST_INSN:
15791 case NEUTRAL_IT_INSN:
15792 break;
15793
15794 case IT_INSN:
15795 now_it.state = MANUAL_IT_BLOCK;
15796 now_it.block_length = 0;
15797 break;
15798 }
15799 break;
15800
15801 case AUTOMATIC_IT_BLOCK:
15802 /* Three things may happen now:
15803 a) We should increment current it block size;
15804 b) We should close current it block (closing insn or 4 insns);
15805 c) We should close current it block and start a new one (due
15806 to incompatible conditions or
15807 4 insns-length block reached). */
15808
15809 switch (inst.it_insn_type)
15810 {
15811 case OUTSIDE_IT_INSN:
15812 /* The closure of the block shall happen immediatelly,
15813 so any in_it_block () call reports the block as closed. */
15814 force_automatic_it_block_close ();
15815 break;
15816
15817 case INSIDE_IT_INSN:
15818 case INSIDE_IT_LAST_INSN:
15819 case IF_INSIDE_IT_LAST_INSN:
15820 now_it.block_length++;
15821
15822 if (now_it.block_length > 4
15823 || !now_it_compatible (inst.cond))
15824 {
15825 force_automatic_it_block_close ();
15826 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15827 new_automatic_it_block (inst.cond);
15828 }
15829 else
15830 {
15831 now_it_add_mask (inst.cond);
15832 }
15833
15834 if (now_it.state == AUTOMATIC_IT_BLOCK
15835 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15836 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15837 close_automatic_it_block ();
15838 break;
15839
15840 case NEUTRAL_IT_INSN:
15841 now_it.block_length++;
15842
15843 if (now_it.block_length > 4)
15844 force_automatic_it_block_close ();
15845 else
15846 now_it_add_mask (now_it.cc & 1);
15847 break;
15848
15849 case IT_INSN:
15850 close_automatic_it_block ();
15851 now_it.state = MANUAL_IT_BLOCK;
15852 break;
15853 }
15854 break;
15855
15856 case MANUAL_IT_BLOCK:
15857 {
15858 /* Check conditional suffixes. */
15859 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15860 int is_last;
15861 now_it.mask <<= 1;
15862 now_it.mask &= 0x1f;
15863 is_last = (now_it.mask == 0x10);
15864
15865 switch (inst.it_insn_type)
15866 {
15867 case OUTSIDE_IT_INSN:
15868 inst.error = BAD_NOT_IT;
15869 return FAIL;
15870
15871 case INSIDE_IT_INSN:
15872 if (cond != inst.cond)
15873 {
15874 inst.error = BAD_IT_COND;
15875 return FAIL;
15876 }
15877 break;
15878
15879 case INSIDE_IT_LAST_INSN:
15880 case IF_INSIDE_IT_LAST_INSN:
15881 if (cond != inst.cond)
15882 {
15883 inst.error = BAD_IT_COND;
15884 return FAIL;
15885 }
15886 if (!is_last)
15887 {
15888 inst.error = BAD_BRANCH;
15889 return FAIL;
15890 }
15891 break;
15892
15893 case NEUTRAL_IT_INSN:
15894 /* The BKPT instruction is unconditional even in an IT block. */
15895 break;
15896
15897 case IT_INSN:
15898 inst.error = BAD_IT_IT;
15899 return FAIL;
15900 }
15901 }
15902 break;
15903 }
15904
15905 return SUCCESS;
15906}
15907
15908static void
15909it_fsm_post_encode (void)
15910{
15911 int is_last;
15912
15913 if (!now_it.state_handled)
15914 handle_it_state ();
15915
15916 is_last = (now_it.mask == 0x10);
15917 if (is_last)
15918 {
15919 now_it.state = OUTSIDE_IT_BLOCK;
15920 now_it.mask = 0;
15921 }
15922}
15923
15924static void
15925force_automatic_it_block_close (void)
15926{
15927 if (now_it.state == AUTOMATIC_IT_BLOCK)
15928 {
15929 close_automatic_it_block ();
15930 now_it.state = OUTSIDE_IT_BLOCK;
15931 now_it.mask = 0;
15932 }
15933}
15934
15935static int
15936in_it_block (void)
15937{
15938 if (!now_it.state_handled)
15939 handle_it_state ();
15940
15941 return now_it.state != OUTSIDE_IT_BLOCK;
15942}
15943
c19d1205
ZW
15944void
15945md_assemble (char *str)
b99bd4ef 15946{
c19d1205
ZW
15947 char *p = str;
15948 const struct asm_opcode * opcode;
b99bd4ef 15949
c19d1205
ZW
15950 /* Align the previous label if needed. */
15951 if (last_label_seen != NULL)
b99bd4ef 15952 {
c19d1205
ZW
15953 symbol_set_frag (last_label_seen, frag_now);
15954 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15955 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
15956 }
15957
c19d1205
ZW
15958 memset (&inst, '\0', sizeof (inst));
15959 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 15960
c19d1205
ZW
15961 opcode = opcode_lookup (&p);
15962 if (!opcode)
b99bd4ef 15963 {
c19d1205 15964 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 15965 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
15966 if (! create_register_alias (str, p)
15967 && ! create_neon_reg_alias (str, p))
c19d1205 15968 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 15969
b99bd4ef
NC
15970 return;
15971 }
15972
278df34e 15973 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
15974 as_warn (_("s suffix on comparison instruction is deprecated"));
15975
037e8744
JB
15976 /* The value which unconditional instructions should have in place of the
15977 condition field. */
15978 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15979
c19d1205 15980 if (thumb_mode)
b99bd4ef 15981 {
e74cfd16 15982 arm_feature_set variant;
8f06b2d8
PB
15983
15984 variant = cpu_variant;
15985 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
15986 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15987 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 15988 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
15989 if (!opcode->tvariant
15990 || (thumb_mode == 1
15991 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 15992 {
bf3eeda7 15993 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
15994 return;
15995 }
c19d1205
ZW
15996 if (inst.cond != COND_ALWAYS && !unified_syntax
15997 && opcode->tencode != do_t_branch)
b99bd4ef 15998 {
c19d1205 15999 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
16000 return;
16001 }
16002
752d5da4 16003 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 16004 {
7e806470 16005 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
16006 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16007 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16008 {
16009 /* Two things are addressed here.
16010 1) Implicit require narrow instructions on Thumb-1.
16011 This avoids relaxation accidentally introducing Thumb-2
16012 instructions.
16013 2) Reject wide instructions in non Thumb-2 cores. */
16014 if (inst.size_req == 0)
16015 inst.size_req = 2;
16016 else if (inst.size_req == 4)
16017 {
bf3eeda7 16018 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
16019 return;
16020 }
16021 }
076d447c
PB
16022 }
16023
c19d1205
ZW
16024 inst.instruction = opcode->tvalue;
16025
5be8be5d 16026 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
16027 {
16028 /* Prepare the it_insn_type for those encodings that don't set
16029 it. */
16030 it_fsm_pre_encode ();
c19d1205 16031
e07e6e58
NC
16032 opcode->tencode ();
16033
16034 it_fsm_post_encode ();
16035 }
e27ec89e 16036
0110f2b8 16037 if (!(inst.error || inst.relax))
b99bd4ef 16038 {
9c2799c2 16039 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
16040 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16041 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 16042 {
c19d1205 16043 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
16044 return;
16045 }
16046 }
076d447c
PB
16047
16048 /* Something has gone badly wrong if we try to relax a fixed size
16049 instruction. */
9c2799c2 16050 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 16051
e74cfd16
PB
16052 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16053 *opcode->tvariant);
ee065d83 16054 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 16055 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 16056 anything other than bl/blx and v6-M instructions.
ee065d83 16057 This is overly pessimistic for relaxable instructions. */
7e806470
PB
16058 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16059 || inst.relax)
e07e6e58
NC
16060 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16061 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
16062 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16063 arm_ext_v6t2);
cd000bff 16064
88714cb8
DG
16065 check_neon_suffixes;
16066
cd000bff 16067 if (!inst.error)
c877a2f2
NC
16068 {
16069 mapping_state (MAP_THUMB);
16070 }
c19d1205 16071 }
3e9e4fcf 16072 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 16073 {
845b51d6
PB
16074 bfd_boolean is_bx;
16075
16076 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16077 is_bx = (opcode->aencode == do_bx);
16078
c19d1205 16079 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
16080 if (!(is_bx && fix_v4bx)
16081 && !(opcode->avariant &&
16082 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 16083 {
bf3eeda7 16084 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 16085 return;
b99bd4ef 16086 }
c19d1205 16087 if (inst.size_req)
b99bd4ef 16088 {
c19d1205
ZW
16089 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16090 return;
b99bd4ef
NC
16091 }
16092
c19d1205
ZW
16093 inst.instruction = opcode->avalue;
16094 if (opcode->tag == OT_unconditionalF)
16095 inst.instruction |= 0xF << 28;
16096 else
16097 inst.instruction |= inst.cond << 28;
16098 inst.size = INSN_SIZE;
5be8be5d 16099 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
16100 {
16101 it_fsm_pre_encode ();
16102 opcode->aencode ();
16103 it_fsm_post_encode ();
16104 }
ee065d83
PB
16105 /* Arm mode bx is marked as both v4T and v5 because it's still required
16106 on a hypothetical non-thumb v5 core. */
845b51d6 16107 if (is_bx)
e74cfd16 16108 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 16109 else
e74cfd16
PB
16110 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16111 *opcode->avariant);
88714cb8
DG
16112
16113 check_neon_suffixes;
16114
cd000bff 16115 if (!inst.error)
c877a2f2
NC
16116 {
16117 mapping_state (MAP_ARM);
16118 }
b99bd4ef 16119 }
3e9e4fcf
JB
16120 else
16121 {
16122 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16123 "-- `%s'"), str);
16124 return;
16125 }
c19d1205
ZW
16126 output_inst (str);
16127}
b99bd4ef 16128
e07e6e58
NC
16129static void
16130check_it_blocks_finished (void)
16131{
16132#ifdef OBJ_ELF
16133 asection *sect;
16134
16135 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16136 if (seg_info (sect)->tc_segment_info_data.current_it.state
16137 == MANUAL_IT_BLOCK)
16138 {
16139 as_warn (_("section '%s' finished with an open IT block."),
16140 sect->name);
16141 }
16142#else
16143 if (now_it.state == MANUAL_IT_BLOCK)
16144 as_warn (_("file finished with an open IT block."));
16145#endif
16146}
16147
c19d1205
ZW
16148/* Various frobbings of labels and their addresses. */
16149
16150void
16151arm_start_line_hook (void)
16152{
16153 last_label_seen = NULL;
b99bd4ef
NC
16154}
16155
c19d1205
ZW
16156void
16157arm_frob_label (symbolS * sym)
b99bd4ef 16158{
c19d1205 16159 last_label_seen = sym;
b99bd4ef 16160
c19d1205 16161 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 16162
c19d1205
ZW
16163#if defined OBJ_COFF || defined OBJ_ELF
16164 ARM_SET_INTERWORK (sym, support_interwork);
16165#endif
b99bd4ef 16166
e07e6e58
NC
16167 force_automatic_it_block_close ();
16168
5f4273c7 16169 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
16170 as Thumb functions. This is because these labels, whilst
16171 they exist inside Thumb code, are not the entry points for
16172 possible ARM->Thumb calls. Also, these labels can be used
16173 as part of a computed goto or switch statement. eg gcc
16174 can generate code that looks like this:
b99bd4ef 16175
c19d1205
ZW
16176 ldr r2, [pc, .Laaa]
16177 lsl r3, r3, #2
16178 ldr r2, [r3, r2]
16179 mov pc, r2
b99bd4ef 16180
c19d1205
ZW
16181 .Lbbb: .word .Lxxx
16182 .Lccc: .word .Lyyy
16183 ..etc...
16184 .Laaa: .word Lbbb
b99bd4ef 16185
c19d1205
ZW
16186 The first instruction loads the address of the jump table.
16187 The second instruction converts a table index into a byte offset.
16188 The third instruction gets the jump address out of the table.
16189 The fourth instruction performs the jump.
b99bd4ef 16190
c19d1205
ZW
16191 If the address stored at .Laaa is that of a symbol which has the
16192 Thumb_Func bit set, then the linker will arrange for this address
16193 to have the bottom bit set, which in turn would mean that the
16194 address computation performed by the third instruction would end
16195 up with the bottom bit set. Since the ARM is capable of unaligned
16196 word loads, the instruction would then load the incorrect address
16197 out of the jump table, and chaos would ensue. */
16198 if (label_is_thumb_function_name
16199 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16200 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16201 {
c19d1205
ZW
16202 /* When the address of a Thumb function is taken the bottom
16203 bit of that address should be set. This will allow
16204 interworking between Arm and Thumb functions to work
16205 correctly. */
b99bd4ef 16206
c19d1205 16207 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16208
c19d1205 16209 label_is_thumb_function_name = FALSE;
b99bd4ef 16210 }
07a53e5c 16211
07a53e5c 16212 dwarf2_emit_label (sym);
b99bd4ef
NC
16213}
16214
c921be7d 16215bfd_boolean
c19d1205 16216arm_data_in_code (void)
b99bd4ef 16217{
c19d1205 16218 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16219 {
c19d1205
ZW
16220 *input_line_pointer = '/';
16221 input_line_pointer += 5;
16222 *input_line_pointer = 0;
c921be7d 16223 return TRUE;
b99bd4ef
NC
16224 }
16225
c921be7d 16226 return FALSE;
b99bd4ef
NC
16227}
16228
c19d1205
ZW
16229char *
16230arm_canonicalize_symbol_name (char * name)
b99bd4ef 16231{
c19d1205 16232 int len;
b99bd4ef 16233
c19d1205
ZW
16234 if (thumb_mode && (len = strlen (name)) > 5
16235 && streq (name + len - 5, "/data"))
16236 *(name + len - 5) = 0;
b99bd4ef 16237
c19d1205 16238 return name;
b99bd4ef 16239}
c19d1205
ZW
16240\f
16241/* Table of all register names defined by default. The user can
16242 define additional names with .req. Note that all register names
16243 should appear in both upper and lowercase variants. Some registers
16244 also have mixed-case names. */
b99bd4ef 16245
dcbf9037 16246#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16247#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16248#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16249#define REGSET(p,t) \
16250 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16251 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16252 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16253 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16254#define REGSETH(p,t) \
16255 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16256 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16257 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16258 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16259#define REGSET2(p,t) \
16260 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16261 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16262 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16263 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
16264#define SPLRBANK(base,bank,t) \
16265 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16266 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16267 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16268 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16269 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16270 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 16271
c19d1205 16272static const struct reg_entry reg_names[] =
7ed4c4c5 16273{
c19d1205
ZW
16274 /* ARM integer registers. */
16275 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 16276
c19d1205
ZW
16277 /* ATPCS synonyms. */
16278 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16279 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16280 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 16281
c19d1205
ZW
16282 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16283 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16284 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 16285
c19d1205
ZW
16286 /* Well-known aliases. */
16287 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16288 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16289
16290 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16291 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16292
16293 /* Coprocessor numbers. */
16294 REGSET(p, CP), REGSET(P, CP),
16295
16296 /* Coprocessor register numbers. The "cr" variants are for backward
16297 compatibility. */
16298 REGSET(c, CN), REGSET(C, CN),
16299 REGSET(cr, CN), REGSET(CR, CN),
16300
90ec0d68
MGD
16301 /* ARM banked registers. */
16302 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16303 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16304 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16305 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16306 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16307 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16308 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16309
16310 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16311 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16312 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16313 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16314 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16315 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16316 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16317 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16318
16319 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16320 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16321 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16322 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16323 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16324 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16325 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16326 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16327 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16328
c19d1205
ZW
16329 /* FPA registers. */
16330 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16331 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16332
16333 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16334 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16335
16336 /* VFP SP registers. */
5287ad62
JB
16337 REGSET(s,VFS), REGSET(S,VFS),
16338 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
16339
16340 /* VFP DP Registers. */
5287ad62
JB
16341 REGSET(d,VFD), REGSET(D,VFD),
16342 /* Extra Neon DP registers. */
16343 REGSETH(d,VFD), REGSETH(D,VFD),
16344
16345 /* Neon QP registers. */
16346 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
16347
16348 /* VFP control registers. */
16349 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16350 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
16351 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16352 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16353 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16354 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
16355
16356 /* Maverick DSP coprocessor registers. */
16357 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16358 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16359
16360 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16361 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16362 REGDEF(dspsc,0,DSPSC),
16363
16364 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16365 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16366 REGDEF(DSPSC,0,DSPSC),
16367
16368 /* iWMMXt data registers - p0, c0-15. */
16369 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16370
16371 /* iWMMXt control registers - p1, c0-3. */
16372 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16373 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16374 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16375 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16376
16377 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16378 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16379 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16380 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16381 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16382
16383 /* XScale accumulator registers. */
16384 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16385};
16386#undef REGDEF
16387#undef REGNUM
16388#undef REGSET
7ed4c4c5 16389
c19d1205
ZW
16390/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16391 within psr_required_here. */
16392static const struct asm_psr psrs[] =
16393{
16394 /* Backward compatibility notation. Note that "all" is no longer
16395 truly all possible PSR bits. */
16396 {"all", PSR_c | PSR_f},
16397 {"flg", PSR_f},
16398 {"ctl", PSR_c},
16399
16400 /* Individual flags. */
16401 {"f", PSR_f},
16402 {"c", PSR_c},
16403 {"x", PSR_x},
16404 {"s", PSR_s},
59b42a0d
MGD
16405 {"g", PSR_s},
16406
c19d1205
ZW
16407 /* Combinations of flags. */
16408 {"fs", PSR_f | PSR_s},
16409 {"fx", PSR_f | PSR_x},
16410 {"fc", PSR_f | PSR_c},
16411 {"sf", PSR_s | PSR_f},
16412 {"sx", PSR_s | PSR_x},
16413 {"sc", PSR_s | PSR_c},
16414 {"xf", PSR_x | PSR_f},
16415 {"xs", PSR_x | PSR_s},
16416 {"xc", PSR_x | PSR_c},
16417 {"cf", PSR_c | PSR_f},
16418 {"cs", PSR_c | PSR_s},
16419 {"cx", PSR_c | PSR_x},
16420 {"fsx", PSR_f | PSR_s | PSR_x},
16421 {"fsc", PSR_f | PSR_s | PSR_c},
16422 {"fxs", PSR_f | PSR_x | PSR_s},
16423 {"fxc", PSR_f | PSR_x | PSR_c},
16424 {"fcs", PSR_f | PSR_c | PSR_s},
16425 {"fcx", PSR_f | PSR_c | PSR_x},
16426 {"sfx", PSR_s | PSR_f | PSR_x},
16427 {"sfc", PSR_s | PSR_f | PSR_c},
16428 {"sxf", PSR_s | PSR_x | PSR_f},
16429 {"sxc", PSR_s | PSR_x | PSR_c},
16430 {"scf", PSR_s | PSR_c | PSR_f},
16431 {"scx", PSR_s | PSR_c | PSR_x},
16432 {"xfs", PSR_x | PSR_f | PSR_s},
16433 {"xfc", PSR_x | PSR_f | PSR_c},
16434 {"xsf", PSR_x | PSR_s | PSR_f},
16435 {"xsc", PSR_x | PSR_s | PSR_c},
16436 {"xcf", PSR_x | PSR_c | PSR_f},
16437 {"xcs", PSR_x | PSR_c | PSR_s},
16438 {"cfs", PSR_c | PSR_f | PSR_s},
16439 {"cfx", PSR_c | PSR_f | PSR_x},
16440 {"csf", PSR_c | PSR_s | PSR_f},
16441 {"csx", PSR_c | PSR_s | PSR_x},
16442 {"cxf", PSR_c | PSR_x | PSR_f},
16443 {"cxs", PSR_c | PSR_x | PSR_s},
16444 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16445 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16446 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16447 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16448 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16449 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16450 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16451 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16452 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16453 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16454 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16455 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16456 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16457 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16458 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16459 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16460 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16461 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16462 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16463 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16464 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16465 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16466 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16467 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
59b42a0d
MGD
16468
16469 /* APSR flags */
16470 {"nzcvq", PSR_f},
16471 {"nzcvqg", PSR_s | PSR_f}
c19d1205
ZW
16472};
16473
62b3e311
PB
16474/* Table of V7M psr names. */
16475static const struct asm_psr v7m_psrs[] =
16476{
2b744c99
PB
16477 {"apsr", 0 }, {"APSR", 0 },
16478 {"iapsr", 1 }, {"IAPSR", 1 },
16479 {"eapsr", 2 }, {"EAPSR", 2 },
16480 {"psr", 3 }, {"PSR", 3 },
16481 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16482 {"ipsr", 5 }, {"IPSR", 5 },
16483 {"epsr", 6 }, {"EPSR", 6 },
16484 {"iepsr", 7 }, {"IEPSR", 7 },
16485 {"msp", 8 }, {"MSP", 8 },
16486 {"psp", 9 }, {"PSP", 9 },
16487 {"primask", 16}, {"PRIMASK", 16},
16488 {"basepri", 17}, {"BASEPRI", 17},
16489 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16490 {"faultmask", 19}, {"FAULTMASK", 19},
16491 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16492};
16493
c19d1205
ZW
16494/* Table of all shift-in-operand names. */
16495static const struct asm_shift_name shift_names [] =
b99bd4ef 16496{
c19d1205
ZW
16497 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16498 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16499 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16500 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16501 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16502 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16503};
b99bd4ef 16504
c19d1205
ZW
16505/* Table of all explicit relocation names. */
16506#ifdef OBJ_ELF
16507static struct reloc_entry reloc_names[] =
16508{
16509 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16510 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16511 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16512 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16513 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16514 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16515 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16516 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16517 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16518 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6
NC
16519 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16520 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL}
c19d1205
ZW
16521};
16522#endif
b99bd4ef 16523
c19d1205
ZW
16524/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16525static const struct asm_cond conds[] =
16526{
16527 {"eq", 0x0},
16528 {"ne", 0x1},
16529 {"cs", 0x2}, {"hs", 0x2},
16530 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16531 {"mi", 0x4},
16532 {"pl", 0x5},
16533 {"vs", 0x6},
16534 {"vc", 0x7},
16535 {"hi", 0x8},
16536 {"ls", 0x9},
16537 {"ge", 0xa},
16538 {"lt", 0xb},
16539 {"gt", 0xc},
16540 {"le", 0xd},
16541 {"al", 0xe}
16542};
bfae80f2 16543
62b3e311
PB
16544static struct asm_barrier_opt barrier_opt_names[] =
16545{
52e7f43d
RE
16546 { "sy", 0xf }, { "SY", 0xf },
16547 { "un", 0x7 }, { "UN", 0x7 },
16548 { "st", 0xe }, { "ST", 0xe },
16549 { "unst", 0x6 }, { "UNST", 0x6 },
16550 { "ish", 0xb }, { "ISH", 0xb },
16551 { "sh", 0xb }, { "SH", 0xb },
16552 { "ishst", 0xa }, { "ISHST", 0xa },
16553 { "shst", 0xa }, { "SHST", 0xa },
16554 { "nsh", 0x7 }, { "NSH", 0x7 },
16555 { "nshst", 0x6 }, { "NSHST", 0x6 },
16556 { "osh", 0x3 }, { "OSH", 0x3 },
16557 { "oshst", 0x2 }, { "OSHST", 0x2 }
62b3e311
PB
16558};
16559
c19d1205
ZW
16560/* Table of ARM-format instructions. */
16561
16562/* Macros for gluing together operand strings. N.B. In all cases
16563 other than OPS0, the trailing OP_stop comes from default
16564 zero-initialization of the unspecified elements of the array. */
16565#define OPS0() { OP_stop, }
16566#define OPS1(a) { OP_##a, }
16567#define OPS2(a,b) { OP_##a,OP_##b, }
16568#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16569#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16570#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16571#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16572
5be8be5d
DG
16573/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16574 This is useful when mixing operands for ARM and THUMB, i.e. using the
16575 MIX_ARM_THUMB_OPERANDS macro.
16576 In order to use these macros, prefix the number of operands with _
16577 e.g. _3. */
16578#define OPS_1(a) { a, }
16579#define OPS_2(a,b) { a,b, }
16580#define OPS_3(a,b,c) { a,b,c, }
16581#define OPS_4(a,b,c,d) { a,b,c,d, }
16582#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16583#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16584
c19d1205
ZW
16585/* These macros abstract out the exact format of the mnemonic table and
16586 save some repeated characters. */
16587
16588/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16589#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16590 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16591 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16592
16593/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16594 a T_MNEM_xyz enumerator. */
16595#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16596 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16597#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16598 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16599
16600/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16601 infix after the third character. */
16602#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16603 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16604 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16605#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16606 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16607 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16608#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16609 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16610#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16611 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16612#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16613 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16614#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16615 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16616
16617/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16618 appear in the condition table. */
16619#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16620 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16621 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16622
16623#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16624 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16625 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16626 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16627 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16628 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16629 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16630 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16631 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16632 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16633 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16634 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16635 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16636 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16637 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16638 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16639 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16640 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16641 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16642 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
16643
16644#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
16645 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16646#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 16647 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16648
16649/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
16650 field is still 0xE. Many of the Thumb variants can be executed
16651 conditionally, so this is checked separately. */
c19d1205 16652#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16653 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16654 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16655
16656/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16657 condition code field. */
16658#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 16659 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16660 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16661
16662/* ARM-only variants of all the above. */
6a86118a 16663#define CE(mnem, op, nops, ops, ae) \
21d799b5 16664 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
16665
16666#define C3(mnem, op, nops, ops, ae) \
16667 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16668
e3cb604e
PB
16669/* Legacy mnemonics that always have conditional infix after the third
16670 character. */
16671#define CL(mnem, op, nops, ops, ae) \
21d799b5 16672 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16673 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16674
8f06b2d8
PB
16675/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16676#define cCE(mnem, op, nops, ops, ae) \
21d799b5 16677 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16678
e3cb604e
PB
16679/* Legacy coprocessor instructions where conditional infix and conditional
16680 suffix are ambiguous. For consistency this includes all FPA instructions,
16681 not just the potentially ambiguous ones. */
16682#define cCL(mnem, op, nops, ops, ae) \
21d799b5 16683 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16684 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16685
16686/* Coprocessor, takes either a suffix or a position-3 infix
16687 (for an FPA corner case). */
16688#define C3E(mnem, op, nops, ops, ae) \
21d799b5 16689 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 16690 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16691
6a86118a 16692#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
16693 { m1 #m2 m3, OPS##nops ops, \
16694 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
16695 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16696
16697#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
16698 xCM_ (m1, , m2, op, nops, ops, ae), \
16699 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16700 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16701 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16702 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16703 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16704 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16705 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16706 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16707 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16708 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16709 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16710 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16711 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16712 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16713 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16714 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16715 xCM_ (m1, le, m2, op, nops, ops, ae), \
16716 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
16717
16718#define UE(mnem, op, nops, ops, ae) \
16719 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16720
16721#define UF(mnem, op, nops, ops, ae) \
16722 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16723
5287ad62
JB
16724/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16725 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16726 use the same encoding function for each. */
16727#define NUF(mnem, op, nops, ops, enc) \
16728 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16729 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16730
16731/* Neon data processing, version which indirects through neon_enc_tab for
16732 the various overloaded versions of opcodes. */
16733#define nUF(mnem, op, nops, ops, enc) \
21d799b5 16734 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16735 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16736
16737/* Neon insn with conditional suffix for the ARM version, non-overloaded
16738 version. */
037e8744
JB
16739#define NCE_tag(mnem, op, nops, ops, enc, tag) \
16740 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
16741 THUMB_VARIANT, do_##enc, do_##enc }
16742
037e8744 16743#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 16744 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16745
16746#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 16747 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16748
5287ad62 16749/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 16750#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 16751 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16752 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16753
037e8744 16754#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 16755 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16756
16757#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 16758 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16759
c19d1205
ZW
16760#define do_0 0
16761
c19d1205 16762static const struct asm_opcode insns[] =
bfae80f2 16763{
e74cfd16
PB
16764#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16765#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
16766 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16767 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16768 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16769 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16770 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16771 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16772 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16773 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16774 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16775 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16776 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16777 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16778 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16779 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16780 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16781 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
16782
16783 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16784 for setting PSR flag bits. They are obsolete in V6 and do not
16785 have Thumb equivalents. */
21d799b5
NC
16786 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16787 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16788 CL("tstp", 110f000, 2, (RR, SH), cmp),
16789 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16790 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16791 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16792 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16793 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16794 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16795
16796 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16797 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16798 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16799 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16800
16801 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
16802 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16803 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16804 OP_RRnpc),
16805 OP_ADDRGLDR),ldst, t_ldst),
16806 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
16807
16808 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16809 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16810 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16811 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16812 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16813 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16814
16815 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16816 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16817 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16818 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 16819
c19d1205 16820 /* Pseudo ops. */
21d799b5 16821 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 16822 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 16823 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
16824
16825 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
16826 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16827 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16828 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16829 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16830 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16831 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16832 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16833 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16834 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16835 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16836 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16837 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 16838
16a4cf17 16839 /* These may simplify to neg. */
21d799b5
NC
16840 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16841 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 16842
c921be7d
NC
16843#undef THUMB_VARIANT
16844#define THUMB_VARIANT & arm_ext_v6
16845
21d799b5 16846 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
16847
16848 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
16849#undef THUMB_VARIANT
16850#define THUMB_VARIANT & arm_ext_v6t2
16851
21d799b5
NC
16852 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16853 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16854 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 16855
5be8be5d
DG
16856 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16857 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16858 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
16859 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 16860
21d799b5
NC
16861 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16862 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 16863
21d799b5
NC
16864 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16865 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
16866
16867 /* V1 instructions with no Thumb analogue at all. */
21d799b5 16868 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
16869 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16870
16871 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16872 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16873 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16874 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16875 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16876 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16877 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16878 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16879
c921be7d
NC
16880#undef ARM_VARIANT
16881#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16882#undef THUMB_VARIANT
16883#define THUMB_VARIANT & arm_ext_v4t
16884
21d799b5
NC
16885 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16886 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 16887
c921be7d
NC
16888#undef THUMB_VARIANT
16889#define THUMB_VARIANT & arm_ext_v6t2
16890
21d799b5 16891 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
16892 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16893
16894 /* Generic coprocessor instructions. */
21d799b5
NC
16895 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16896 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16897 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16898 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16899 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16900 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 16901 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16902
c921be7d
NC
16903#undef ARM_VARIANT
16904#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16905
21d799b5 16906 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
16907 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16908
c921be7d
NC
16909#undef ARM_VARIANT
16910#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16911#undef THUMB_VARIANT
16912#define THUMB_VARIANT & arm_ext_msr
16913
90ec0d68 16914 TCE("mrs", 1000000, f3e08000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
21d799b5 16915 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205 16916
c921be7d
NC
16917#undef ARM_VARIANT
16918#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16919#undef THUMB_VARIANT
16920#define THUMB_VARIANT & arm_ext_v6t2
16921
21d799b5
NC
16922 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16923 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16924 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16925 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16926 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16927 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16928 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16929 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 16930
c921be7d
NC
16931#undef ARM_VARIANT
16932#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16933#undef THUMB_VARIANT
16934#define THUMB_VARIANT & arm_ext_v4t
16935
5be8be5d
DG
16936 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16937 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16938 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16939 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16940 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16941 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 16942
c921be7d
NC
16943#undef ARM_VARIANT
16944#define ARM_VARIANT & arm_ext_v4t_5
16945
c19d1205
ZW
16946 /* ARM Architecture 4T. */
16947 /* Note: bx (and blx) are required on V5, even if the processor does
16948 not support Thumb. */
21d799b5 16949 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 16950
c921be7d
NC
16951#undef ARM_VARIANT
16952#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16953#undef THUMB_VARIANT
16954#define THUMB_VARIANT & arm_ext_v5t
16955
c19d1205
ZW
16956 /* Note: blx has 2 variants; the .value coded here is for
16957 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
16958 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16959 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 16960
c921be7d
NC
16961#undef THUMB_VARIANT
16962#define THUMB_VARIANT & arm_ext_v6t2
16963
21d799b5
NC
16964 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16965 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16966 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16967 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16968 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16969 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16970 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16971 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16972
c921be7d
NC
16973#undef ARM_VARIANT
16974#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
16975#undef THUMB_VARIANT
16976#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 16977
21d799b5
NC
16978 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16979 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16980 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16981 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16982
21d799b5
NC
16983 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16984 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16985
21d799b5
NC
16986 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16987 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16988 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16989 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 16990
21d799b5
NC
16991 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16992 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16993 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16994 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16995
21d799b5
NC
16996 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16997 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16998
03ee1b7f
NC
16999 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17000 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17001 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17002 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 17003
c921be7d
NC
17004#undef ARM_VARIANT
17005#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
17006#undef THUMB_VARIANT
17007#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 17008
21d799b5 17009 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
17010 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17011 ldrd, t_ldstd),
17012 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17013 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 17014
21d799b5
NC
17015 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17016 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 17017
c921be7d
NC
17018#undef ARM_VARIANT
17019#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17020
21d799b5 17021 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 17022
c921be7d
NC
17023#undef ARM_VARIANT
17024#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17025#undef THUMB_VARIANT
17026#define THUMB_VARIANT & arm_ext_v6
17027
21d799b5
NC
17028 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17029 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17030 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17031 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17032 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17033 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17034 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17035 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17036 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17037 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 17038
c921be7d
NC
17039#undef THUMB_VARIANT
17040#define THUMB_VARIANT & arm_ext_v6t2
17041
5be8be5d
DG
17042 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17043 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17044 strex, t_strex),
21d799b5
NC
17045 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17046 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 17047
21d799b5
NC
17048 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17049 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 17050
9e3c6df6 17051/* ARM V6 not included in V7M. */
c921be7d
NC
17052#undef THUMB_VARIANT
17053#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
17054 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17055 UF(rfeib, 9900a00, 1, (RRw), rfe),
17056 UF(rfeda, 8100a00, 1, (RRw), rfe),
17057 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17058 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17059 UF(rfefa, 9900a00, 1, (RRw), rfe),
17060 UF(rfeea, 8100a00, 1, (RRw), rfe),
17061 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17062 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17063 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17064 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17065 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 17066
9e3c6df6
PB
17067/* ARM V6 not included in V7M (eg. integer SIMD). */
17068#undef THUMB_VARIANT
17069#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
17070 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17071 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17072 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17073 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17074 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17075 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17076 /* Old name for QASX. */
21d799b5
NC
17077 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17078 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17079 /* Old name for QSAX. */
21d799b5
NC
17080 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17081 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17082 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17083 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17084 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17085 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17086 /* Old name for SASX. */
21d799b5
NC
17087 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17088 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17089 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17090 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17091 /* Old name for SHASX. */
21d799b5
NC
17092 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17093 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17094 /* Old name for SHSAX. */
21d799b5
NC
17095 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17096 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17097 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17098 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17099 /* Old name for SSAX. */
21d799b5
NC
17100 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17101 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17102 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17103 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17104 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17105 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17106 /* Old name for UASX. */
21d799b5
NC
17107 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17108 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17109 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17110 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17111 /* Old name for UHASX. */
21d799b5
NC
17112 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17113 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17114 /* Old name for UHSAX. */
21d799b5
NC
17115 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17116 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17117 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17118 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17119 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17120 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17121 /* Old name for UQASX. */
21d799b5
NC
17122 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17123 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17124 /* Old name for UQSAX. */
21d799b5
NC
17125 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17126 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17127 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17128 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17129 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17130 /* Old name for USAX. */
21d799b5
NC
17131 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17132 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
17133 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17134 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17135 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17136 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17137 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17138 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17139 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17140 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17141 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17142 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17143 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17144 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17145 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17146 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17147 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17148 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17149 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17150 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17151 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17152 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17153 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17154 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17155 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17156 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17157 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17158 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17159 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
17160 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17161 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17162 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17163 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17164 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 17165
c921be7d
NC
17166#undef ARM_VARIANT
17167#define ARM_VARIANT & arm_ext_v6k
17168#undef THUMB_VARIANT
17169#define THUMB_VARIANT & arm_ext_v6k
17170
21d799b5
NC
17171 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17172 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17173 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17174 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 17175
c921be7d
NC
17176#undef THUMB_VARIANT
17177#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
17178 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17179 ldrexd, t_ldrexd),
17180 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17181 RRnpcb), strexd, t_strexd),
ebdca51a 17182
c921be7d
NC
17183#undef THUMB_VARIANT
17184#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
17185 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17186 rd_rn, rd_rn),
17187 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17188 rd_rn, rd_rn),
17189 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17190 strex, rm_rd_rn),
17191 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17192 strex, rm_rd_rn),
21d799b5 17193 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 17194
c921be7d 17195#undef ARM_VARIANT
f4c65163
MGD
17196#define ARM_VARIANT & arm_ext_sec
17197#undef THUMB_VARIANT
17198#define THUMB_VARIANT & arm_ext_sec
c921be7d 17199
21d799b5 17200 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 17201
90ec0d68
MGD
17202#undef ARM_VARIANT
17203#define ARM_VARIANT & arm_ext_virt
17204#undef THUMB_VARIANT
17205#define THUMB_VARIANT & arm_ext_virt
17206
17207 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17208 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17209
c921be7d
NC
17210#undef ARM_VARIANT
17211#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
17212#undef THUMB_VARIANT
17213#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 17214
21d799b5
NC
17215 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17216 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17217 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17218 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 17219
21d799b5
NC
17220 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17221 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17222 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17223 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 17224
5be8be5d
DG
17225 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17226 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17227 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17228 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 17229
bf3eeda7
NS
17230 /* Thumb-only instructions. */
17231#undef ARM_VARIANT
17232#define ARM_VARIANT NULL
17233 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17234 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
17235
17236 /* ARM does not really have an IT instruction, so always allow it.
17237 The opcode is copied from Thumb in order to allow warnings in
17238 -mimplicit-it=[never | arm] modes. */
17239#undef ARM_VARIANT
17240#define ARM_VARIANT & arm_ext_v1
17241
21d799b5
NC
17242 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17243 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17244 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17245 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17246 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17247 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17248 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17249 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17250 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17251 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17252 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17253 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17254 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17255 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17256 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 17257 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
17258 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17259 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 17260
92e90b6e 17261 /* Thumb2 only instructions. */
c921be7d
NC
17262#undef ARM_VARIANT
17263#define ARM_VARIANT NULL
92e90b6e 17264
21d799b5
NC
17265 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17266 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17267 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17268 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17269 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17270 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 17271
eea54501
MGD
17272 /* Hardware division instructions. */
17273#undef ARM_VARIANT
17274#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
17275#undef THUMB_VARIANT
17276#define THUMB_VARIANT & arm_ext_div
17277
eea54501
MGD
17278 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17279 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 17280
7e806470 17281 /* ARM V6M/V7 instructions. */
c921be7d
NC
17282#undef ARM_VARIANT
17283#define ARM_VARIANT & arm_ext_barrier
17284#undef THUMB_VARIANT
17285#define THUMB_VARIANT & arm_ext_barrier
17286
52e7f43d
RE
17287 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17288 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17289 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 17290
62b3e311 17291 /* ARM V7 instructions. */
c921be7d
NC
17292#undef ARM_VARIANT
17293#define ARM_VARIANT & arm_ext_v7
17294#undef THUMB_VARIANT
17295#define THUMB_VARIANT & arm_ext_v7
17296
21d799b5
NC
17297 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17298 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 17299
60e5ef9f
MGD
17300#undef ARM_VARIANT
17301#define ARM_VARIANT & arm_ext_mp
17302#undef THUMB_VARIANT
17303#define THUMB_VARIANT & arm_ext_mp
17304
17305 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17306
c921be7d
NC
17307#undef ARM_VARIANT
17308#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17309
21d799b5
NC
17310 cCE("wfs", e200110, 1, (RR), rd),
17311 cCE("rfs", e300110, 1, (RR), rd),
17312 cCE("wfc", e400110, 1, (RR), rd),
17313 cCE("rfc", e500110, 1, (RR), rd),
17314
17315 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17316 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17317 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17318 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17319
17320 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17321 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17322 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17323 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17324
17325 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17326 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17327 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17328 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17329 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17330 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17331 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17332 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17333 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17334 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17335 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17336 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17337
17338 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17339 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17340 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17341 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17342 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17343 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17344 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17345 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17346 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17347 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17348 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17349 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17350
17351 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17352 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17353 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17354 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17355 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17356 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17357 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17358 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17359 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17360 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17361 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17362 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17363
17364 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17365 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17366 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17367 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17368 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17369 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17370 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17371 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17372 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17373 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17374 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17375 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17376
17377 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17378 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17379 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17380 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17381 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17382 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17383 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17384 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17385 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17386 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17387 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17388 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17389
17390 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17391 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17392 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17393 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17394 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17395 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17396 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17397 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17398 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17399 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17400 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17401 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17402
17403 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17404 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17405 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17406 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17407 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17408 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17409 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17410 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17411 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17412 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17413 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17414 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17415
17416 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17417 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17418 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17419 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17420 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17421 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17422 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17423 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17424 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17425 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17426 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17427 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17428
17429 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17430 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17431 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17432 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17433 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17434 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17435 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17436 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17437 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17438 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17439 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17440 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17441
17442 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17443 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17444 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17445 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17446 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17447 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17448 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17449 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17450 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17451 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17452 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17453 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17454
17455 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17456 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17457 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17458 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17459 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17460 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17461 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17462 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17463 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17464 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17465 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17466 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17467
17468 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17469 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17470 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17471 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17472 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17473 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17474 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17475 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17476 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17477 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17478 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17479 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17480
17481 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17482 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17483 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17484 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17485 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17486 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17487 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17488 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17489 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17490 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17491 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17492 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17493
17494 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17495 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17496 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17497 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17498 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17499 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17500 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17501 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17502 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17503 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17504 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17505 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17506
17507 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17508 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17509 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17510 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17511 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17512 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17513 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17514 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17515 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17516 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17517 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17518 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17519
17520 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17521 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17522 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17523 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17524 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17525 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17526 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17527 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17528 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17529 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17530 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17531 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17532
17533 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17534 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17535 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17536 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17537 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17538 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17539 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17540 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17541 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17542 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17543 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17544 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17545
17546 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17547 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17548 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17549 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17550 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17551 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17552 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17553 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17554 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17555 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17556 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17557 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17558
17559 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17560 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17561 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17562 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17563 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17564 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17565 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17566 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17567 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17568 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17569 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17570 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17571
17572 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17573 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17574 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17575 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17576 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17577 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17578 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17579 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17580 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17581 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17582 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17583 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17584
17585 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17586 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17587 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17588 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17589 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17590 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17591 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17592 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17593 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17594 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17595 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17596 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17597
17598 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17599 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17600 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17601 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17602 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17603 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17604 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17605 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17606 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17607 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17608 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17609 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17610
17611 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17612 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17613 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17614 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17615 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17616 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17617 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17618 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17619 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17620 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17621 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17622 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17623
17624 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17625 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17626 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17627 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17628 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17629 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17630 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17631 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17632 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17633 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17634 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17635 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17636
17637 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17638 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17639 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17640 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17641 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17642 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17643 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17644 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17645 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17646 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17647 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17648 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17649
17650 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17651 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17652 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17653 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17654 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17655 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17656 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17657 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17658 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17659 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17660 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17661 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17662
17663 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17664 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17665 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17666 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17667 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17668 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17669 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17670 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17671 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17672 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17673 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17674 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17675
17676 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17677 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17678 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17679 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17680 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17681 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17682 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17683 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17684 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17685 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17686 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17687 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17688
17689 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17690 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17691 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17692 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17693 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17694 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17695 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17696 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17697 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17698 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17699 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17700 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17701
17702 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17703 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17704 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17705 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17706
17707 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17708 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17709 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17710 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17711 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17712 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17713 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17714 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17715 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17716 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17717 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17718 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 17719
c19d1205
ZW
17720 /* The implementation of the FIX instruction is broken on some
17721 assemblers, in that it accepts a precision specifier as well as a
17722 rounding specifier, despite the fact that this is meaningless.
17723 To be more compatible, we accept it as well, though of course it
17724 does not set any bits. */
21d799b5
NC
17725 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17726 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17727 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17728 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17729 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17730 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17731 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17732 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17733 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17734 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17735 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17736 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17737 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 17738
c19d1205 17739 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
17740#undef ARM_VARIANT
17741#define ARM_VARIANT & fpu_fpa_ext_v2
17742
21d799b5
NC
17743 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17744 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17745 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17746 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17747 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17748 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 17749
c921be7d
NC
17750#undef ARM_VARIANT
17751#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17752
c19d1205 17753 /* Moves and type conversions. */
21d799b5
NC
17754 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17755 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17756 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17757 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
17758 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17759 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
17760 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17761 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17762 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17763 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17764 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17765 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17766 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17767 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
17768
17769 /* Memory operations. */
21d799b5
NC
17770 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17771 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
17772 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17773 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17774 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17775 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17776 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17777 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17778 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17779 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17780 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17781 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17782 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17783 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17784 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17785 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17786 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17787 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 17788
c19d1205 17789 /* Monadic operations. */
21d799b5
NC
17790 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17791 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17792 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
17793
17794 /* Dyadic operations. */
21d799b5
NC
17795 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17796 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17797 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17798 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17799 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17800 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17801 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17802 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17803 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 17804
c19d1205 17805 /* Comparisons. */
21d799b5
NC
17806 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17807 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17808 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17809 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 17810
62f3b8c8
PB
17811 /* Double precision load/store are still present on single precision
17812 implementations. */
17813 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17814 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
17815 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17816 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17817 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17818 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17819 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17820 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17821 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17822 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 17823
c921be7d
NC
17824#undef ARM_VARIANT
17825#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17826
c19d1205 17827 /* Moves and type conversions. */
21d799b5
NC
17828 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17829 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17830 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17831 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17832 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17833 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17834 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17835 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17836 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17837 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17838 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17839 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17840 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 17841
c19d1205 17842 /* Monadic operations. */
21d799b5
NC
17843 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17844 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17845 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
17846
17847 /* Dyadic operations. */
21d799b5
NC
17848 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17849 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17850 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17851 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17852 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17853 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17854 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17855 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17856 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 17857
c19d1205 17858 /* Comparisons. */
21d799b5
NC
17859 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17860 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17861 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17862 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 17863
c921be7d
NC
17864#undef ARM_VARIANT
17865#define ARM_VARIANT & fpu_vfp_ext_v2
17866
21d799b5
NC
17867 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17868 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17869 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17870 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 17871
037e8744
JB
17872/* Instructions which may belong to either the Neon or VFP instruction sets.
17873 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
17874#undef ARM_VARIANT
17875#define ARM_VARIANT & fpu_vfp_ext_v1xd
17876#undef THUMB_VARIANT
17877#define THUMB_VARIANT & fpu_vfp_ext_v1xd
17878
037e8744
JB
17879 /* These mnemonics are unique to VFP. */
17880 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17881 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
17882 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17883 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17884 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17885 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17886 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
17887 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17888 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17889 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17890
17891 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
17892 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17893 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17894 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 17895
21d799b5
NC
17896 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17897 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
17898
17899 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17900 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17901
55881a11
MGD
17902 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17903 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17904 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17905 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17906 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17907 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
17908 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17909 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 17910
e3e535bc
NC
17911 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17912 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
17913 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17914 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 17915
037e8744
JB
17916
17917 /* NOTE: All VMOV encoding is special-cased! */
17918 NCE(vmov, 0, 1, (VMOV), neon_mov),
17919 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17920
c921be7d
NC
17921#undef THUMB_VARIANT
17922#define THUMB_VARIANT & fpu_neon_ext_v1
17923#undef ARM_VARIANT
17924#define ARM_VARIANT & fpu_neon_ext_v1
17925
5287ad62
JB
17926 /* Data processing with three registers of the same length. */
17927 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17928 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17929 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17930 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17931 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17932 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17933 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17934 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17935 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17936 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17937 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17938 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17939 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17940 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
17941 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17942 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17943 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17944 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
17945 /* If not immediate, fall back to neon_dyadic_i64_su.
17946 shl_imm should accept I8 I16 I32 I64,
17947 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
17948 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17949 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17950 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17951 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 17952 /* Logic ops, types optional & ignored. */
4316f0d2
DG
17953 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17954 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17955 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17956 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17957 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17958 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17959 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17960 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17961 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17962 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
17963 /* Bitfield ops, untyped. */
17964 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17965 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17966 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17967 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17968 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17969 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17970 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
17971 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17972 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17973 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17974 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17975 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17976 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
17977 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17978 back to neon_dyadic_if_su. */
21d799b5
NC
17979 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17980 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17981 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17982 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17983 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17984 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17985 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17986 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 17987 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
17988 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17989 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 17990 /* As above, D registers only. */
21d799b5
NC
17991 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17992 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 17993 /* Int and float variants, signedness unimportant. */
21d799b5
NC
17994 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17995 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17996 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 17997 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
17998 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17999 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
18000 /* vtst takes sizes 8, 16, 32. */
18001 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18002 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18003 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 18004 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 18005 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
18006 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18007 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18008 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18009 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
18010 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18011 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18012 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18013 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
18014 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18015 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18016 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18017 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
18018 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18019 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18020 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18021 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18022
18023 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 18024 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
18025 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18026
18027 /* Data processing with two registers and a shift amount. */
18028 /* Right shifts, and variants with rounding.
18029 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18030 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18031 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18032 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18033 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18034 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18035 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18036 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18037 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18038 /* Shift and insert. Sizes accepted 8 16 32 64. */
18039 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18040 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18041 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18042 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18043 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18044 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18045 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18046 /* Right shift immediate, saturating & narrowing, with rounding variants.
18047 Types accepted S16 S32 S64 U16 U32 U64. */
18048 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18049 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18050 /* As above, unsigned. Types accepted S16 S32 S64. */
18051 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18052 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18053 /* Right shift narrowing. Types accepted I16 I32 I64. */
18054 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18055 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18056 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 18057 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 18058 /* CVT with optional immediate for fixed-point variant. */
21d799b5 18059 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 18060
4316f0d2
DG
18061 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18062 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
18063
18064 /* Data processing, three registers of different lengths. */
18065 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18066 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18067 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18068 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18069 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18070 /* If not scalar, fall back to neon_dyadic_long.
18071 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
18072 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18073 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
18074 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18075 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18076 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18077 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18078 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18079 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18080 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18081 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18082 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
18083 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18084 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18085 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
18086 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18087 S16 S32 U16 U32. */
21d799b5 18088 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
18089
18090 /* Extract. Size 8. */
3b8d421e
PB
18091 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18092 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
18093
18094 /* Two registers, miscellaneous. */
18095 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18096 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18097 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18098 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18099 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18100 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18101 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18102 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
18103 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18104 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
18105 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18106 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18107 /* VMOVN. Types I16 I32 I64. */
21d799b5 18108 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 18109 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 18110 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 18111 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 18112 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
18113 /* VZIP / VUZP. Sizes 8 16 32. */
18114 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18115 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18116 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18117 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18118 /* VQABS / VQNEG. Types S8 S16 S32. */
18119 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18120 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18121 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18122 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18123 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18124 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18125 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18126 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18127 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18128 /* Reciprocal estimates. Types U32 F32. */
18129 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18130 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18131 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18132 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18133 /* VCLS. Types S8 S16 S32. */
18134 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18135 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18136 /* VCLZ. Types I8 I16 I32. */
18137 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18138 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18139 /* VCNT. Size 8. */
18140 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18141 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18142 /* Two address, untyped. */
18143 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18144 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18145 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
18146 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18147 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
18148
18149 /* Table lookup. Size 8. */
18150 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18151 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18152
c921be7d
NC
18153#undef THUMB_VARIANT
18154#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18155#undef ARM_VARIANT
18156#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18157
5287ad62 18158 /* Neon element/structure load/store. */
21d799b5
NC
18159 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18160 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18161 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18162 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18163 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18164 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18165 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18166 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 18167
c921be7d 18168#undef THUMB_VARIANT
62f3b8c8
PB
18169#define THUMB_VARIANT &fpu_vfp_ext_v3xd
18170#undef ARM_VARIANT
18171#define ARM_VARIANT &fpu_vfp_ext_v3xd
18172 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18173 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18174 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18175 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18176 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18177 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18178 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18179 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18180 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18181
18182#undef THUMB_VARIANT
c921be7d
NC
18183#define THUMB_VARIANT & fpu_vfp_ext_v3
18184#undef ARM_VARIANT
18185#define ARM_VARIANT & fpu_vfp_ext_v3
18186
21d799b5 18187 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 18188 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18189 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18190 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18191 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18192 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18193 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18194 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18195 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 18196
62f3b8c8
PB
18197#undef ARM_VARIANT
18198#define ARM_VARIANT &fpu_vfp_ext_fma
18199#undef THUMB_VARIANT
18200#define THUMB_VARIANT &fpu_vfp_ext_fma
18201 /* Mnemonics shared by Neon and VFP. These are included in the
18202 VFP FMA variant; NEON and VFP FMA always includes the NEON
18203 FMA instructions. */
18204 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18205 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18206 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18207 the v form should always be used. */
18208 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18209 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18210 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18211 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18212 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18213 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18214
5287ad62 18215#undef THUMB_VARIANT
c921be7d
NC
18216#undef ARM_VARIANT
18217#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18218
21d799b5
NC
18219 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18220 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18221 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18222 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18223 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18224 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18225 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18226 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 18227
c921be7d
NC
18228#undef ARM_VARIANT
18229#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18230
21d799b5
NC
18231 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18232 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18233 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18234 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18235 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18236 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18237 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18238 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18239 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18240 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18241 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18242 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18243 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18244 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18245 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18246 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18247 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18248 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18249 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18250 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18251 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18252 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18253 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18254 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18255 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18256 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18257 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18258 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18259 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18260 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18261 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18262 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18263 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18264 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18265 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18266 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18267 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18268 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18269 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18270 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18271 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18272 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18273 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18274 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18275 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18276 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18277 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18278 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18279 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18280 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18281 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18282 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18283 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18284 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18285 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18286 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18287 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18288 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18289 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18290 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18291 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18292 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18293 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18294 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18295 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18296 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18297 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18298 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18299 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18300 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18301 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18302 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18303 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18304 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18305 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18306 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18307 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18308 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18309 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18310 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18311 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18312 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18313 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18314 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18315 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18316 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18317 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18318 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18319 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18320 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18321 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18322 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18323 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18324 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18325 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18326 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18327 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18328 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18329 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18330 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18331 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18332 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18333 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18334 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18335 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18336 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18337 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18338 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18339 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18340 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18341 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18342 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18343 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18344 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18345 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18346 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18347 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18348 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18349 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18350 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18351 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18352 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18353 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18354 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18355 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18356 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18357 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18358 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18359 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18360 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18361 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18362 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18363 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18364 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18365 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18366 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18367 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18368 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18369 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18370 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18371 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18372 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18373 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18374 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18375 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18376 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18377 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18378 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18379 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18380 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18381 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18382 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18383 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18384 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18385 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18386 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18387 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18388 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18389 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18390 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18391 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18392 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 18393
c921be7d
NC
18394#undef ARM_VARIANT
18395#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18396
21d799b5
NC
18397 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18398 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18399 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18400 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18401 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18402 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18403 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18404 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18405 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18406 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18407 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18408 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18409 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18410 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18411 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18412 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18413 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18414 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18415 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18416 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18417 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18418 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18419 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18420 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18421 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18422 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18423 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18424 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18425 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18426 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18427 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18428 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18429 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18430 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18431 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18432 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18433 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18434 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18435 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18436 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18437 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18438 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18439 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18440 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18441 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18442 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18443 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18444 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18445 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18446 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18447 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18448 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18449 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18450 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18451 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18452 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18453 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 18454
c921be7d
NC
18455#undef ARM_VARIANT
18456#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18457
21d799b5
NC
18458 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18459 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18460 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18461 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18462 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18463 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18464 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18465 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18466 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18467 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18468 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18469 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18470 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18471 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18472 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18473 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18474 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18475 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18476 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18477 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18478 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18479 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18480 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18481 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18482 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18483 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18484 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18485 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18486 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18487 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18488 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18489 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18490 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18491 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18492 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18493 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18494 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18495 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18496 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18497 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18498 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18499 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18500 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18501 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18502 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18503 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18504 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18505 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18506 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18507 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18508 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18509 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18510 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18511 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18512 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18513 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18514 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18515 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18516 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18517 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18518 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18519 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18520 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18521 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18522 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18523 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18524 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18525 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18526 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18527 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18528 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18529 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18530 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18531 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18532 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18533 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18534};
18535#undef ARM_VARIANT
18536#undef THUMB_VARIANT
18537#undef TCE
18538#undef TCM
18539#undef TUE
18540#undef TUF
18541#undef TCC
8f06b2d8 18542#undef cCE
e3cb604e
PB
18543#undef cCL
18544#undef C3E
c19d1205
ZW
18545#undef CE
18546#undef CM
18547#undef UE
18548#undef UF
18549#undef UT
5287ad62
JB
18550#undef NUF
18551#undef nUF
18552#undef NCE
18553#undef nCE
c19d1205
ZW
18554#undef OPS0
18555#undef OPS1
18556#undef OPS2
18557#undef OPS3
18558#undef OPS4
18559#undef OPS5
18560#undef OPS6
18561#undef do_0
18562\f
18563/* MD interface: bits in the object file. */
bfae80f2 18564
c19d1205
ZW
18565/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18566 for use in the a.out file, and stores them in the array pointed to by buf.
18567 This knows about the endian-ness of the target machine and does
18568 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18569 2 (short) and 4 (long) Floating numbers are put out as a series of
18570 LITTLENUMS (shorts, here at least). */
b99bd4ef 18571
c19d1205
ZW
18572void
18573md_number_to_chars (char * buf, valueT val, int n)
18574{
18575 if (target_big_endian)
18576 number_to_chars_bigendian (buf, val, n);
18577 else
18578 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18579}
18580
c19d1205
ZW
18581static valueT
18582md_chars_to_number (char * buf, int n)
bfae80f2 18583{
c19d1205
ZW
18584 valueT result = 0;
18585 unsigned char * where = (unsigned char *) buf;
bfae80f2 18586
c19d1205 18587 if (target_big_endian)
b99bd4ef 18588 {
c19d1205
ZW
18589 while (n--)
18590 {
18591 result <<= 8;
18592 result |= (*where++ & 255);
18593 }
b99bd4ef 18594 }
c19d1205 18595 else
b99bd4ef 18596 {
c19d1205
ZW
18597 while (n--)
18598 {
18599 result <<= 8;
18600 result |= (where[n] & 255);
18601 }
bfae80f2 18602 }
b99bd4ef 18603
c19d1205 18604 return result;
bfae80f2 18605}
b99bd4ef 18606
c19d1205 18607/* MD interface: Sections. */
b99bd4ef 18608
0110f2b8
PB
18609/* Estimate the size of a frag before relaxing. Assume everything fits in
18610 2 bytes. */
18611
c19d1205 18612int
0110f2b8 18613md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18614 segT segtype ATTRIBUTE_UNUSED)
18615{
0110f2b8
PB
18616 fragp->fr_var = 2;
18617 return 2;
18618}
18619
18620/* Convert a machine dependent frag. */
18621
18622void
18623md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18624{
18625 unsigned long insn;
18626 unsigned long old_op;
18627 char *buf;
18628 expressionS exp;
18629 fixS *fixp;
18630 int reloc_type;
18631 int pc_rel;
18632 int opcode;
18633
18634 buf = fragp->fr_literal + fragp->fr_fix;
18635
18636 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
18637 if (fragp->fr_symbol)
18638 {
0110f2b8
PB
18639 exp.X_op = O_symbol;
18640 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
18641 }
18642 else
18643 {
0110f2b8 18644 exp.X_op = O_constant;
5f4273c7 18645 }
0110f2b8
PB
18646 exp.X_add_number = fragp->fr_offset;
18647 opcode = fragp->fr_subtype;
18648 switch (opcode)
18649 {
18650 case T_MNEM_ldr_pc:
18651 case T_MNEM_ldr_pc2:
18652 case T_MNEM_ldr_sp:
18653 case T_MNEM_str_sp:
18654 case T_MNEM_ldr:
18655 case T_MNEM_ldrb:
18656 case T_MNEM_ldrh:
18657 case T_MNEM_str:
18658 case T_MNEM_strb:
18659 case T_MNEM_strh:
18660 if (fragp->fr_var == 4)
18661 {
5f4273c7 18662 insn = THUMB_OP32 (opcode);
0110f2b8
PB
18663 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18664 {
18665 insn |= (old_op & 0x700) << 4;
18666 }
18667 else
18668 {
18669 insn |= (old_op & 7) << 12;
18670 insn |= (old_op & 0x38) << 13;
18671 }
18672 insn |= 0x00000c00;
18673 put_thumb32_insn (buf, insn);
18674 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18675 }
18676 else
18677 {
18678 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18679 }
18680 pc_rel = (opcode == T_MNEM_ldr_pc2);
18681 break;
18682 case T_MNEM_adr:
18683 if (fragp->fr_var == 4)
18684 {
18685 insn = THUMB_OP32 (opcode);
18686 insn |= (old_op & 0xf0) << 4;
18687 put_thumb32_insn (buf, insn);
18688 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18689 }
18690 else
18691 {
18692 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18693 exp.X_add_number -= 4;
18694 }
18695 pc_rel = 1;
18696 break;
18697 case T_MNEM_mov:
18698 case T_MNEM_movs:
18699 case T_MNEM_cmp:
18700 case T_MNEM_cmn:
18701 if (fragp->fr_var == 4)
18702 {
18703 int r0off = (opcode == T_MNEM_mov
18704 || opcode == T_MNEM_movs) ? 0 : 8;
18705 insn = THUMB_OP32 (opcode);
18706 insn = (insn & 0xe1ffffff) | 0x10000000;
18707 insn |= (old_op & 0x700) << r0off;
18708 put_thumb32_insn (buf, insn);
18709 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18710 }
18711 else
18712 {
18713 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18714 }
18715 pc_rel = 0;
18716 break;
18717 case T_MNEM_b:
18718 if (fragp->fr_var == 4)
18719 {
18720 insn = THUMB_OP32(opcode);
18721 put_thumb32_insn (buf, insn);
18722 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18723 }
18724 else
18725 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18726 pc_rel = 1;
18727 break;
18728 case T_MNEM_bcond:
18729 if (fragp->fr_var == 4)
18730 {
18731 insn = THUMB_OP32(opcode);
18732 insn |= (old_op & 0xf00) << 14;
18733 put_thumb32_insn (buf, insn);
18734 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18735 }
18736 else
18737 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18738 pc_rel = 1;
18739 break;
18740 case T_MNEM_add_sp:
18741 case T_MNEM_add_pc:
18742 case T_MNEM_inc_sp:
18743 case T_MNEM_dec_sp:
18744 if (fragp->fr_var == 4)
18745 {
18746 /* ??? Choose between add and addw. */
18747 insn = THUMB_OP32 (opcode);
18748 insn |= (old_op & 0xf0) << 4;
18749 put_thumb32_insn (buf, insn);
16805f35
PB
18750 if (opcode == T_MNEM_add_pc)
18751 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18752 else
18753 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
18754 }
18755 else
18756 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18757 pc_rel = 0;
18758 break;
18759
18760 case T_MNEM_addi:
18761 case T_MNEM_addis:
18762 case T_MNEM_subi:
18763 case T_MNEM_subis:
18764 if (fragp->fr_var == 4)
18765 {
18766 insn = THUMB_OP32 (opcode);
18767 insn |= (old_op & 0xf0) << 4;
18768 insn |= (old_op & 0xf) << 16;
18769 put_thumb32_insn (buf, insn);
16805f35
PB
18770 if (insn & (1 << 20))
18771 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18772 else
18773 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
18774 }
18775 else
18776 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18777 pc_rel = 0;
18778 break;
18779 default:
5f4273c7 18780 abort ();
0110f2b8
PB
18781 }
18782 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 18783 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
18784 fixp->fx_file = fragp->fr_file;
18785 fixp->fx_line = fragp->fr_line;
18786 fragp->fr_fix += fragp->fr_var;
18787}
18788
18789/* Return the size of a relaxable immediate operand instruction.
18790 SHIFT and SIZE specify the form of the allowable immediate. */
18791static int
18792relax_immediate (fragS *fragp, int size, int shift)
18793{
18794 offsetT offset;
18795 offsetT mask;
18796 offsetT low;
18797
18798 /* ??? Should be able to do better than this. */
18799 if (fragp->fr_symbol)
18800 return 4;
18801
18802 low = (1 << shift) - 1;
18803 mask = (1 << (shift + size)) - (1 << shift);
18804 offset = fragp->fr_offset;
18805 /* Force misaligned offsets to 32-bit variant. */
18806 if (offset & low)
5e77afaa 18807 return 4;
0110f2b8
PB
18808 if (offset & ~mask)
18809 return 4;
18810 return 2;
18811}
18812
5e77afaa
PB
18813/* Get the address of a symbol during relaxation. */
18814static addressT
5f4273c7 18815relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
18816{
18817 fragS *sym_frag;
18818 addressT addr;
18819 symbolS *sym;
18820
18821 sym = fragp->fr_symbol;
18822 sym_frag = symbol_get_frag (sym);
18823 know (S_GET_SEGMENT (sym) != absolute_section
18824 || sym_frag == &zero_address_frag);
18825 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18826
18827 /* If frag has yet to be reached on this pass, assume it will
18828 move by STRETCH just as we did. If this is not so, it will
18829 be because some frag between grows, and that will force
18830 another pass. */
18831
18832 if (stretch != 0
18833 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
18834 {
18835 fragS *f;
18836
18837 /* Adjust stretch for any alignment frag. Note that if have
18838 been expanding the earlier code, the symbol may be
18839 defined in what appears to be an earlier frag. FIXME:
18840 This doesn't handle the fr_subtype field, which specifies
18841 a maximum number of bytes to skip when doing an
18842 alignment. */
18843 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18844 {
18845 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18846 {
18847 if (stretch < 0)
18848 stretch = - ((- stretch)
18849 & ~ ((1 << (int) f->fr_offset) - 1));
18850 else
18851 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18852 if (stretch == 0)
18853 break;
18854 }
18855 }
18856 if (f != NULL)
18857 addr += stretch;
18858 }
5e77afaa
PB
18859
18860 return addr;
18861}
18862
0110f2b8
PB
18863/* Return the size of a relaxable adr pseudo-instruction or PC-relative
18864 load. */
18865static int
5e77afaa 18866relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
18867{
18868 addressT addr;
18869 offsetT val;
18870
18871 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
18872 if (fragp->fr_symbol == NULL
18873 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
18874 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18875 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
18876 return 4;
18877
5f4273c7 18878 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18879 addr = fragp->fr_address + fragp->fr_fix;
18880 addr = (addr + 4) & ~3;
5e77afaa 18881 /* Force misaligned targets to 32-bit variant. */
0110f2b8 18882 if (val & 3)
5e77afaa 18883 return 4;
0110f2b8
PB
18884 val -= addr;
18885 if (val < 0 || val > 1020)
18886 return 4;
18887 return 2;
18888}
18889
18890/* Return the size of a relaxable add/sub immediate instruction. */
18891static int
18892relax_addsub (fragS *fragp, asection *sec)
18893{
18894 char *buf;
18895 int op;
18896
18897 buf = fragp->fr_literal + fragp->fr_fix;
18898 op = bfd_get_16(sec->owner, buf);
18899 if ((op & 0xf) == ((op >> 4) & 0xf))
18900 return relax_immediate (fragp, 8, 0);
18901 else
18902 return relax_immediate (fragp, 3, 0);
18903}
18904
18905
18906/* Return the size of a relaxable branch instruction. BITS is the
18907 size of the offset field in the narrow instruction. */
18908
18909static int
5e77afaa 18910relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
18911{
18912 addressT addr;
18913 offsetT val;
18914 offsetT limit;
18915
18916 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 18917 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
18918 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18919 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
18920 return 4;
18921
267bf995
RR
18922#ifdef OBJ_ELF
18923 if (S_IS_DEFINED (fragp->fr_symbol)
18924 && ARM_IS_FUNC (fragp->fr_symbol))
18925 return 4;
18926#endif
18927
5f4273c7 18928 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18929 addr = fragp->fr_address + fragp->fr_fix + 4;
18930 val -= addr;
18931
18932 /* Offset is a signed value *2 */
18933 limit = 1 << bits;
18934 if (val >= limit || val < -limit)
18935 return 4;
18936 return 2;
18937}
18938
18939
18940/* Relax a machine dependent frag. This returns the amount by which
18941 the current size of the frag should change. */
18942
18943int
5e77afaa 18944arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
18945{
18946 int oldsize;
18947 int newsize;
18948
18949 oldsize = fragp->fr_var;
18950 switch (fragp->fr_subtype)
18951 {
18952 case T_MNEM_ldr_pc2:
5f4273c7 18953 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18954 break;
18955 case T_MNEM_ldr_pc:
18956 case T_MNEM_ldr_sp:
18957 case T_MNEM_str_sp:
5f4273c7 18958 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
18959 break;
18960 case T_MNEM_ldr:
18961 case T_MNEM_str:
5f4273c7 18962 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
18963 break;
18964 case T_MNEM_ldrh:
18965 case T_MNEM_strh:
5f4273c7 18966 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
18967 break;
18968 case T_MNEM_ldrb:
18969 case T_MNEM_strb:
5f4273c7 18970 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
18971 break;
18972 case T_MNEM_adr:
5f4273c7 18973 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18974 break;
18975 case T_MNEM_mov:
18976 case T_MNEM_movs:
18977 case T_MNEM_cmp:
18978 case T_MNEM_cmn:
5f4273c7 18979 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
18980 break;
18981 case T_MNEM_b:
5f4273c7 18982 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
18983 break;
18984 case T_MNEM_bcond:
5f4273c7 18985 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
18986 break;
18987 case T_MNEM_add_sp:
18988 case T_MNEM_add_pc:
18989 newsize = relax_immediate (fragp, 8, 2);
18990 break;
18991 case T_MNEM_inc_sp:
18992 case T_MNEM_dec_sp:
18993 newsize = relax_immediate (fragp, 7, 2);
18994 break;
18995 case T_MNEM_addi:
18996 case T_MNEM_addis:
18997 case T_MNEM_subi:
18998 case T_MNEM_subis:
18999 newsize = relax_addsub (fragp, sec);
19000 break;
19001 default:
5f4273c7 19002 abort ();
0110f2b8 19003 }
5e77afaa
PB
19004
19005 fragp->fr_var = newsize;
19006 /* Freeze wide instructions that are at or before the same location as
19007 in the previous pass. This avoids infinite loops.
5f4273c7
NC
19008 Don't freeze them unconditionally because targets may be artificially
19009 misaligned by the expansion of preceding frags. */
5e77afaa 19010 if (stretch <= 0 && newsize > 2)
0110f2b8 19011 {
0110f2b8 19012 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 19013 frag_wane (fragp);
0110f2b8 19014 }
5e77afaa 19015
0110f2b8 19016 return newsize - oldsize;
c19d1205 19017}
b99bd4ef 19018
c19d1205 19019/* Round up a section size to the appropriate boundary. */
b99bd4ef 19020
c19d1205
ZW
19021valueT
19022md_section_align (segT segment ATTRIBUTE_UNUSED,
19023 valueT size)
19024{
f0927246
NC
19025#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19026 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19027 {
19028 /* For a.out, force the section size to be aligned. If we don't do
19029 this, BFD will align it for us, but it will not write out the
19030 final bytes of the section. This may be a bug in BFD, but it is
19031 easier to fix it here since that is how the other a.out targets
19032 work. */
19033 int align;
19034
19035 align = bfd_get_section_alignment (stdoutput, segment);
19036 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19037 }
c19d1205 19038#endif
f0927246
NC
19039
19040 return size;
bfae80f2 19041}
b99bd4ef 19042
c19d1205
ZW
19043/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19044 of an rs_align_code fragment. */
19045
19046void
19047arm_handle_align (fragS * fragP)
bfae80f2 19048{
e7495e45
NS
19049 static char const arm_noop[2][2][4] =
19050 {
19051 { /* ARMv1 */
19052 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19053 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19054 },
19055 { /* ARMv6k */
19056 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19057 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19058 },
19059 };
19060 static char const thumb_noop[2][2][2] =
19061 {
19062 { /* Thumb-1 */
19063 {0xc0, 0x46}, /* LE */
19064 {0x46, 0xc0}, /* BE */
19065 },
19066 { /* Thumb-2 */
19067 {0x00, 0xbf}, /* LE */
19068 {0xbf, 0x00} /* BE */
19069 }
19070 };
19071 static char const wide_thumb_noop[2][4] =
19072 { /* Wide Thumb-2 */
19073 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19074 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19075 };
c921be7d 19076
e7495e45 19077 unsigned bytes, fix, noop_size;
c19d1205
ZW
19078 char * p;
19079 const char * noop;
e7495e45 19080 const char *narrow_noop = NULL;
cd000bff
DJ
19081#ifdef OBJ_ELF
19082 enum mstate state;
19083#endif
bfae80f2 19084
c19d1205 19085 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
19086 return;
19087
c19d1205
ZW
19088 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19089 p = fragP->fr_literal + fragP->fr_fix;
19090 fix = 0;
bfae80f2 19091
c19d1205
ZW
19092 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19093 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 19094
cd000bff 19095 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 19096
cd000bff 19097 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 19098 {
e7495e45
NS
19099 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19100 {
19101 narrow_noop = thumb_noop[1][target_big_endian];
19102 noop = wide_thumb_noop[target_big_endian];
19103 }
c19d1205 19104 else
e7495e45
NS
19105 noop = thumb_noop[0][target_big_endian];
19106 noop_size = 2;
cd000bff
DJ
19107#ifdef OBJ_ELF
19108 state = MAP_THUMB;
19109#endif
7ed4c4c5
NC
19110 }
19111 else
19112 {
e7495e45
NS
19113 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19114 [target_big_endian];
19115 noop_size = 4;
cd000bff
DJ
19116#ifdef OBJ_ELF
19117 state = MAP_ARM;
19118#endif
7ed4c4c5 19119 }
c921be7d 19120
e7495e45 19121 fragP->fr_var = noop_size;
c921be7d 19122
c19d1205 19123 if (bytes & (noop_size - 1))
7ed4c4c5 19124 {
c19d1205 19125 fix = bytes & (noop_size - 1);
cd000bff
DJ
19126#ifdef OBJ_ELF
19127 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19128#endif
c19d1205
ZW
19129 memset (p, 0, fix);
19130 p += fix;
19131 bytes -= fix;
a737bd4d 19132 }
a737bd4d 19133
e7495e45
NS
19134 if (narrow_noop)
19135 {
19136 if (bytes & noop_size)
19137 {
19138 /* Insert a narrow noop. */
19139 memcpy (p, narrow_noop, noop_size);
19140 p += noop_size;
19141 bytes -= noop_size;
19142 fix += noop_size;
19143 }
19144
19145 /* Use wide noops for the remainder */
19146 noop_size = 4;
19147 }
19148
c19d1205 19149 while (bytes >= noop_size)
a737bd4d 19150 {
c19d1205
ZW
19151 memcpy (p, noop, noop_size);
19152 p += noop_size;
19153 bytes -= noop_size;
19154 fix += noop_size;
a737bd4d
NC
19155 }
19156
c19d1205 19157 fragP->fr_fix += fix;
a737bd4d
NC
19158}
19159
c19d1205
ZW
19160/* Called from md_do_align. Used to create an alignment
19161 frag in a code section. */
19162
19163void
19164arm_frag_align_code (int n, int max)
bfae80f2 19165{
c19d1205 19166 char * p;
7ed4c4c5 19167
c19d1205 19168 /* We assume that there will never be a requirement
6ec8e702 19169 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 19170 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
19171 {
19172 char err_msg[128];
19173
19174 sprintf (err_msg,
19175 _("alignments greater than %d bytes not supported in .text sections."),
19176 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 19177 as_fatal ("%s", err_msg);
6ec8e702 19178 }
bfae80f2 19179
c19d1205
ZW
19180 p = frag_var (rs_align_code,
19181 MAX_MEM_FOR_RS_ALIGN_CODE,
19182 1,
19183 (relax_substateT) max,
19184 (symbolS *) NULL,
19185 (offsetT) n,
19186 (char *) NULL);
19187 *p = 0;
19188}
bfae80f2 19189
8dc2430f
NC
19190/* Perform target specific initialisation of a frag.
19191 Note - despite the name this initialisation is not done when the frag
19192 is created, but only when its type is assigned. A frag can be created
19193 and used a long time before its type is set, so beware of assuming that
19194 this initialisationis performed first. */
bfae80f2 19195
cd000bff
DJ
19196#ifndef OBJ_ELF
19197void
19198arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19199{
19200 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 19201 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
19202}
19203
19204#else /* OBJ_ELF is defined. */
c19d1205 19205void
cd000bff 19206arm_init_frag (fragS * fragP, int max_chars)
c19d1205 19207{
8dc2430f
NC
19208 /* If the current ARM vs THUMB mode has not already
19209 been recorded into this frag then do so now. */
cd000bff
DJ
19210 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19211 {
19212 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19213
19214 /* Record a mapping symbol for alignment frags. We will delete this
19215 later if the alignment ends up empty. */
19216 switch (fragP->fr_type)
19217 {
19218 case rs_align:
19219 case rs_align_test:
19220 case rs_fill:
19221 mapping_state_2 (MAP_DATA, max_chars);
19222 break;
19223 case rs_align_code:
19224 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19225 break;
19226 default:
19227 break;
19228 }
19229 }
bfae80f2
RE
19230}
19231
c19d1205
ZW
19232/* When we change sections we need to issue a new mapping symbol. */
19233
19234void
19235arm_elf_change_section (void)
bfae80f2 19236{
c19d1205
ZW
19237 /* Link an unlinked unwind index table section to the .text section. */
19238 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19239 && elf_linked_to_section (now_seg) == NULL)
19240 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
19241}
19242
c19d1205
ZW
19243int
19244arm_elf_section_type (const char * str, size_t len)
e45d0630 19245{
c19d1205
ZW
19246 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19247 return SHT_ARM_EXIDX;
e45d0630 19248
c19d1205
ZW
19249 return -1;
19250}
19251\f
19252/* Code to deal with unwinding tables. */
e45d0630 19253
c19d1205 19254static void add_unwind_adjustsp (offsetT);
e45d0630 19255
5f4273c7 19256/* Generate any deferred unwind frame offset. */
e45d0630 19257
bfae80f2 19258static void
c19d1205 19259flush_pending_unwind (void)
bfae80f2 19260{
c19d1205 19261 offsetT offset;
bfae80f2 19262
c19d1205
ZW
19263 offset = unwind.pending_offset;
19264 unwind.pending_offset = 0;
19265 if (offset != 0)
19266 add_unwind_adjustsp (offset);
bfae80f2
RE
19267}
19268
c19d1205
ZW
19269/* Add an opcode to this list for this function. Two-byte opcodes should
19270 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19271 order. */
19272
bfae80f2 19273static void
c19d1205 19274add_unwind_opcode (valueT op, int length)
bfae80f2 19275{
c19d1205
ZW
19276 /* Add any deferred stack adjustment. */
19277 if (unwind.pending_offset)
19278 flush_pending_unwind ();
bfae80f2 19279
c19d1205 19280 unwind.sp_restored = 0;
bfae80f2 19281
c19d1205 19282 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 19283 {
c19d1205
ZW
19284 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19285 if (unwind.opcodes)
21d799b5
NC
19286 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19287 unwind.opcode_alloc);
c19d1205 19288 else
21d799b5 19289 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 19290 }
c19d1205 19291 while (length > 0)
bfae80f2 19292 {
c19d1205
ZW
19293 length--;
19294 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19295 op >>= 8;
19296 unwind.opcode_count++;
bfae80f2 19297 }
bfae80f2
RE
19298}
19299
c19d1205
ZW
19300/* Add unwind opcodes to adjust the stack pointer. */
19301
bfae80f2 19302static void
c19d1205 19303add_unwind_adjustsp (offsetT offset)
bfae80f2 19304{
c19d1205 19305 valueT op;
bfae80f2 19306
c19d1205 19307 if (offset > 0x200)
bfae80f2 19308 {
c19d1205
ZW
19309 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19310 char bytes[5];
19311 int n;
19312 valueT o;
bfae80f2 19313
c19d1205
ZW
19314 /* Long form: 0xb2, uleb128. */
19315 /* This might not fit in a word so add the individual bytes,
19316 remembering the list is built in reverse order. */
19317 o = (valueT) ((offset - 0x204) >> 2);
19318 if (o == 0)
19319 add_unwind_opcode (0, 1);
bfae80f2 19320
c19d1205
ZW
19321 /* Calculate the uleb128 encoding of the offset. */
19322 n = 0;
19323 while (o)
19324 {
19325 bytes[n] = o & 0x7f;
19326 o >>= 7;
19327 if (o)
19328 bytes[n] |= 0x80;
19329 n++;
19330 }
19331 /* Add the insn. */
19332 for (; n; n--)
19333 add_unwind_opcode (bytes[n - 1], 1);
19334 add_unwind_opcode (0xb2, 1);
19335 }
19336 else if (offset > 0x100)
bfae80f2 19337 {
c19d1205
ZW
19338 /* Two short opcodes. */
19339 add_unwind_opcode (0x3f, 1);
19340 op = (offset - 0x104) >> 2;
19341 add_unwind_opcode (op, 1);
bfae80f2 19342 }
c19d1205
ZW
19343 else if (offset > 0)
19344 {
19345 /* Short opcode. */
19346 op = (offset - 4) >> 2;
19347 add_unwind_opcode (op, 1);
19348 }
19349 else if (offset < 0)
bfae80f2 19350 {
c19d1205
ZW
19351 offset = -offset;
19352 while (offset > 0x100)
bfae80f2 19353 {
c19d1205
ZW
19354 add_unwind_opcode (0x7f, 1);
19355 offset -= 0x100;
bfae80f2 19356 }
c19d1205
ZW
19357 op = ((offset - 4) >> 2) | 0x40;
19358 add_unwind_opcode (op, 1);
bfae80f2 19359 }
bfae80f2
RE
19360}
19361
c19d1205
ZW
19362/* Finish the list of unwind opcodes for this function. */
19363static void
19364finish_unwind_opcodes (void)
bfae80f2 19365{
c19d1205 19366 valueT op;
bfae80f2 19367
c19d1205 19368 if (unwind.fp_used)
bfae80f2 19369 {
708587a4 19370 /* Adjust sp as necessary. */
c19d1205
ZW
19371 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19372 flush_pending_unwind ();
bfae80f2 19373
c19d1205
ZW
19374 /* After restoring sp from the frame pointer. */
19375 op = 0x90 | unwind.fp_reg;
19376 add_unwind_opcode (op, 1);
19377 }
19378 else
19379 flush_pending_unwind ();
bfae80f2
RE
19380}
19381
bfae80f2 19382
c19d1205
ZW
19383/* Start an exception table entry. If idx is nonzero this is an index table
19384 entry. */
bfae80f2
RE
19385
19386static void
c19d1205 19387start_unwind_section (const segT text_seg, int idx)
bfae80f2 19388{
c19d1205
ZW
19389 const char * text_name;
19390 const char * prefix;
19391 const char * prefix_once;
19392 const char * group_name;
19393 size_t prefix_len;
19394 size_t text_len;
19395 char * sec_name;
19396 size_t sec_name_len;
19397 int type;
19398 int flags;
19399 int linkonce;
bfae80f2 19400
c19d1205 19401 if (idx)
bfae80f2 19402 {
c19d1205
ZW
19403 prefix = ELF_STRING_ARM_unwind;
19404 prefix_once = ELF_STRING_ARM_unwind_once;
19405 type = SHT_ARM_EXIDX;
bfae80f2 19406 }
c19d1205 19407 else
bfae80f2 19408 {
c19d1205
ZW
19409 prefix = ELF_STRING_ARM_unwind_info;
19410 prefix_once = ELF_STRING_ARM_unwind_info_once;
19411 type = SHT_PROGBITS;
bfae80f2
RE
19412 }
19413
c19d1205
ZW
19414 text_name = segment_name (text_seg);
19415 if (streq (text_name, ".text"))
19416 text_name = "";
19417
19418 if (strncmp (text_name, ".gnu.linkonce.t.",
19419 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 19420 {
c19d1205
ZW
19421 prefix = prefix_once;
19422 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
19423 }
19424
c19d1205
ZW
19425 prefix_len = strlen (prefix);
19426 text_len = strlen (text_name);
19427 sec_name_len = prefix_len + text_len;
21d799b5 19428 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
19429 memcpy (sec_name, prefix, prefix_len);
19430 memcpy (sec_name + prefix_len, text_name, text_len);
19431 sec_name[prefix_len + text_len] = '\0';
bfae80f2 19432
c19d1205
ZW
19433 flags = SHF_ALLOC;
19434 linkonce = 0;
19435 group_name = 0;
bfae80f2 19436
c19d1205
ZW
19437 /* Handle COMDAT group. */
19438 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 19439 {
c19d1205
ZW
19440 group_name = elf_group_name (text_seg);
19441 if (group_name == NULL)
19442 {
bd3ba5d1 19443 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
19444 segment_name (text_seg));
19445 ignore_rest_of_line ();
19446 return;
19447 }
19448 flags |= SHF_GROUP;
19449 linkonce = 1;
bfae80f2
RE
19450 }
19451
c19d1205 19452 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 19453
5f4273c7 19454 /* Set the section link for index tables. */
c19d1205
ZW
19455 if (idx)
19456 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
19457}
19458
bfae80f2 19459
c19d1205
ZW
19460/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19461 personality routine data. Returns zero, or the index table value for
19462 and inline entry. */
19463
19464static valueT
19465create_unwind_entry (int have_data)
bfae80f2 19466{
c19d1205
ZW
19467 int size;
19468 addressT where;
19469 char *ptr;
19470 /* The current word of data. */
19471 valueT data;
19472 /* The number of bytes left in this word. */
19473 int n;
bfae80f2 19474
c19d1205 19475 finish_unwind_opcodes ();
bfae80f2 19476
c19d1205
ZW
19477 /* Remember the current text section. */
19478 unwind.saved_seg = now_seg;
19479 unwind.saved_subseg = now_subseg;
bfae80f2 19480
c19d1205 19481 start_unwind_section (now_seg, 0);
bfae80f2 19482
c19d1205 19483 if (unwind.personality_routine == NULL)
bfae80f2 19484 {
c19d1205
ZW
19485 if (unwind.personality_index == -2)
19486 {
19487 if (have_data)
5f4273c7 19488 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
19489 return 1; /* EXIDX_CANTUNWIND. */
19490 }
bfae80f2 19491
c19d1205
ZW
19492 /* Use a default personality routine if none is specified. */
19493 if (unwind.personality_index == -1)
19494 {
19495 if (unwind.opcode_count > 3)
19496 unwind.personality_index = 1;
19497 else
19498 unwind.personality_index = 0;
19499 }
bfae80f2 19500
c19d1205
ZW
19501 /* Space for the personality routine entry. */
19502 if (unwind.personality_index == 0)
19503 {
19504 if (unwind.opcode_count > 3)
19505 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 19506
c19d1205
ZW
19507 if (!have_data)
19508 {
19509 /* All the data is inline in the index table. */
19510 data = 0x80;
19511 n = 3;
19512 while (unwind.opcode_count > 0)
19513 {
19514 unwind.opcode_count--;
19515 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19516 n--;
19517 }
bfae80f2 19518
c19d1205
ZW
19519 /* Pad with "finish" opcodes. */
19520 while (n--)
19521 data = (data << 8) | 0xb0;
bfae80f2 19522
c19d1205
ZW
19523 return data;
19524 }
19525 size = 0;
19526 }
19527 else
19528 /* We get two opcodes "free" in the first word. */
19529 size = unwind.opcode_count - 2;
19530 }
19531 else
19532 /* An extra byte is required for the opcode count. */
19533 size = unwind.opcode_count + 1;
bfae80f2 19534
c19d1205
ZW
19535 size = (size + 3) >> 2;
19536 if (size > 0xff)
19537 as_bad (_("too many unwind opcodes"));
bfae80f2 19538
c19d1205
ZW
19539 frag_align (2, 0, 0);
19540 record_alignment (now_seg, 2);
19541 unwind.table_entry = expr_build_dot ();
19542
19543 /* Allocate the table entry. */
19544 ptr = frag_more ((size << 2) + 4);
19545 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19546
c19d1205 19547 switch (unwind.personality_index)
bfae80f2 19548 {
c19d1205
ZW
19549 case -1:
19550 /* ??? Should this be a PLT generating relocation? */
19551 /* Custom personality routine. */
19552 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19553 BFD_RELOC_ARM_PREL31);
bfae80f2 19554
c19d1205
ZW
19555 where += 4;
19556 ptr += 4;
bfae80f2 19557
c19d1205
ZW
19558 /* Set the first byte to the number of additional words. */
19559 data = size - 1;
19560 n = 3;
19561 break;
bfae80f2 19562
c19d1205
ZW
19563 /* ABI defined personality routines. */
19564 case 0:
19565 /* Three opcodes bytes are packed into the first word. */
19566 data = 0x80;
19567 n = 3;
19568 break;
bfae80f2 19569
c19d1205
ZW
19570 case 1:
19571 case 2:
19572 /* The size and first two opcode bytes go in the first word. */
19573 data = ((0x80 + unwind.personality_index) << 8) | size;
19574 n = 2;
19575 break;
bfae80f2 19576
c19d1205
ZW
19577 default:
19578 /* Should never happen. */
19579 abort ();
19580 }
bfae80f2 19581
c19d1205
ZW
19582 /* Pack the opcodes into words (MSB first), reversing the list at the same
19583 time. */
19584 while (unwind.opcode_count > 0)
19585 {
19586 if (n == 0)
19587 {
19588 md_number_to_chars (ptr, data, 4);
19589 ptr += 4;
19590 n = 4;
19591 data = 0;
19592 }
19593 unwind.opcode_count--;
19594 n--;
19595 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19596 }
19597
19598 /* Finish off the last word. */
19599 if (n < 4)
19600 {
19601 /* Pad with "finish" opcodes. */
19602 while (n--)
19603 data = (data << 8) | 0xb0;
19604
19605 md_number_to_chars (ptr, data, 4);
19606 }
19607
19608 if (!have_data)
19609 {
19610 /* Add an empty descriptor if there is no user-specified data. */
19611 ptr = frag_more (4);
19612 md_number_to_chars (ptr, 0, 4);
19613 }
19614
19615 return 0;
bfae80f2
RE
19616}
19617
f0927246
NC
19618
19619/* Initialize the DWARF-2 unwind information for this procedure. */
19620
19621void
19622tc_arm_frame_initial_instructions (void)
19623{
19624 cfi_add_CFA_def_cfa (REG_SP, 0);
19625}
19626#endif /* OBJ_ELF */
19627
c19d1205
ZW
19628/* Convert REGNAME to a DWARF-2 register number. */
19629
19630int
1df69f4f 19631tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 19632{
1df69f4f 19633 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
19634
19635 if (reg == FAIL)
19636 return -1;
19637
19638 return reg;
bfae80f2
RE
19639}
19640
f0927246 19641#ifdef TE_PE
c19d1205 19642void
f0927246 19643tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 19644{
91d6fa6a 19645 expressionS exp;
bfae80f2 19646
91d6fa6a
NC
19647 exp.X_op = O_secrel;
19648 exp.X_add_symbol = symbol;
19649 exp.X_add_number = 0;
19650 emit_expr (&exp, size);
f0927246
NC
19651}
19652#endif
bfae80f2 19653
c19d1205 19654/* MD interface: Symbol and relocation handling. */
bfae80f2 19655
2fc8bdac
ZW
19656/* Return the address within the segment that a PC-relative fixup is
19657 relative to. For ARM, PC-relative fixups applied to instructions
19658 are generally relative to the location of the fixup plus 8 bytes.
19659 Thumb branches are offset by 4, and Thumb loads relative to PC
19660 require special handling. */
bfae80f2 19661
c19d1205 19662long
2fc8bdac 19663md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 19664{
2fc8bdac
ZW
19665 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19666
19667 /* If this is pc-relative and we are going to emit a relocation
19668 then we just want to put out any pipeline compensation that the linker
53baae48
NC
19669 will need. Otherwise we want to use the calculated base.
19670 For WinCE we skip the bias for externals as well, since this
19671 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 19672 if (fixP->fx_pcrel
2fc8bdac 19673 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
19674 || (arm_force_relocation (fixP)
19675#ifdef TE_WINCE
19676 && !S_IS_EXTERNAL (fixP->fx_addsy)
19677#endif
19678 )))
2fc8bdac 19679 base = 0;
bfae80f2 19680
267bf995 19681
c19d1205 19682 switch (fixP->fx_r_type)
bfae80f2 19683 {
2fc8bdac
ZW
19684 /* PC relative addressing on the Thumb is slightly odd as the
19685 bottom two bits of the PC are forced to zero for the
19686 calculation. This happens *after* application of the
19687 pipeline offset. However, Thumb adrl already adjusts for
19688 this, so we need not do it again. */
c19d1205 19689 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 19690 return base & ~3;
c19d1205
ZW
19691
19692 case BFD_RELOC_ARM_THUMB_OFFSET:
19693 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 19694 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 19695 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 19696 return (base + 4) & ~3;
c19d1205 19697
2fc8bdac
ZW
19698 /* Thumb branches are simply offset by +4. */
19699 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19700 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19701 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19702 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 19703 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 19704 return base + 4;
bfae80f2 19705
267bf995 19706 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
19707 if (fixP->fx_addsy
19708 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19709 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19710 && ARM_IS_FUNC (fixP->fx_addsy)
19711 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19712 base = fixP->fx_where + fixP->fx_frag->fr_address;
19713 return base + 4;
19714
00adf2d4
JB
19715 /* BLX is like branches above, but forces the low two bits of PC to
19716 zero. */
486499d0
CL
19717 case BFD_RELOC_THUMB_PCREL_BLX:
19718 if (fixP->fx_addsy
19719 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19720 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19721 && THUMB_IS_FUNC (fixP->fx_addsy)
19722 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19723 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
19724 return (base + 4) & ~3;
19725
2fc8bdac
ZW
19726 /* ARM mode branches are offset by +8. However, the Windows CE
19727 loader expects the relocation not to take this into account. */
267bf995 19728 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
19729 if (fixP->fx_addsy
19730 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19731 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19732 && ARM_IS_FUNC (fixP->fx_addsy)
19733 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19734 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19735 return base + 8;
267bf995 19736
486499d0
CL
19737 case BFD_RELOC_ARM_PCREL_CALL:
19738 if (fixP->fx_addsy
19739 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19740 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19741 && THUMB_IS_FUNC (fixP->fx_addsy)
19742 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19743 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19744 return base + 8;
267bf995 19745
2fc8bdac 19746 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 19747 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 19748 case BFD_RELOC_ARM_PLT32:
c19d1205 19749#ifdef TE_WINCE
5f4273c7 19750 /* When handling fixups immediately, because we have already
53baae48
NC
19751 discovered the value of a symbol, or the address of the frag involved
19752 we must account for the offset by +8, as the OS loader will never see the reloc.
19753 see fixup_segment() in write.c
19754 The S_IS_EXTERNAL test handles the case of global symbols.
19755 Those need the calculated base, not just the pipe compensation the linker will need. */
19756 if (fixP->fx_pcrel
19757 && fixP->fx_addsy != NULL
19758 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19759 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19760 return base + 8;
2fc8bdac 19761 return base;
c19d1205 19762#else
2fc8bdac 19763 return base + 8;
c19d1205 19764#endif
2fc8bdac 19765
267bf995 19766
2fc8bdac
ZW
19767 /* ARM mode loads relative to PC are also offset by +8. Unlike
19768 branches, the Windows CE loader *does* expect the relocation
19769 to take this into account. */
19770 case BFD_RELOC_ARM_OFFSET_IMM:
19771 case BFD_RELOC_ARM_OFFSET_IMM8:
19772 case BFD_RELOC_ARM_HWLITERAL:
19773 case BFD_RELOC_ARM_LITERAL:
19774 case BFD_RELOC_ARM_CP_OFF_IMM:
19775 return base + 8;
19776
19777
19778 /* Other PC-relative relocations are un-offset. */
19779 default:
19780 return base;
19781 }
bfae80f2
RE
19782}
19783
c19d1205
ZW
19784/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19785 Otherwise we have no need to default values of symbols. */
19786
19787symbolS *
19788md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 19789{
c19d1205
ZW
19790#ifdef OBJ_ELF
19791 if (name[0] == '_' && name[1] == 'G'
19792 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19793 {
19794 if (!GOT_symbol)
19795 {
19796 if (symbol_find (name))
bd3ba5d1 19797 as_bad (_("GOT already in the symbol table"));
bfae80f2 19798
c19d1205
ZW
19799 GOT_symbol = symbol_new (name, undefined_section,
19800 (valueT) 0, & zero_address_frag);
19801 }
bfae80f2 19802
c19d1205 19803 return GOT_symbol;
bfae80f2 19804 }
c19d1205 19805#endif
bfae80f2 19806
c921be7d 19807 return NULL;
bfae80f2
RE
19808}
19809
55cf6793 19810/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
19811 computed as two separate immediate values, added together. We
19812 already know that this value cannot be computed by just one ARM
19813 instruction. */
19814
19815static unsigned int
19816validate_immediate_twopart (unsigned int val,
19817 unsigned int * highpart)
bfae80f2 19818{
c19d1205
ZW
19819 unsigned int a;
19820 unsigned int i;
bfae80f2 19821
c19d1205
ZW
19822 for (i = 0; i < 32; i += 2)
19823 if (((a = rotate_left (val, i)) & 0xff) != 0)
19824 {
19825 if (a & 0xff00)
19826 {
19827 if (a & ~ 0xffff)
19828 continue;
19829 * highpart = (a >> 8) | ((i + 24) << 7);
19830 }
19831 else if (a & 0xff0000)
19832 {
19833 if (a & 0xff000000)
19834 continue;
19835 * highpart = (a >> 16) | ((i + 16) << 7);
19836 }
19837 else
19838 {
9c2799c2 19839 gas_assert (a & 0xff000000);
c19d1205
ZW
19840 * highpart = (a >> 24) | ((i + 8) << 7);
19841 }
bfae80f2 19842
c19d1205
ZW
19843 return (a & 0xff) | (i << 7);
19844 }
bfae80f2 19845
c19d1205 19846 return FAIL;
bfae80f2
RE
19847}
19848
c19d1205
ZW
19849static int
19850validate_offset_imm (unsigned int val, int hwse)
19851{
19852 if ((hwse && val > 255) || val > 4095)
19853 return FAIL;
19854 return val;
19855}
bfae80f2 19856
55cf6793 19857/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
19858 negative immediate constant by altering the instruction. A bit of
19859 a hack really.
19860 MOV <-> MVN
19861 AND <-> BIC
19862 ADC <-> SBC
19863 by inverting the second operand, and
19864 ADD <-> SUB
19865 CMP <-> CMN
19866 by negating the second operand. */
bfae80f2 19867
c19d1205
ZW
19868static int
19869negate_data_op (unsigned long * instruction,
19870 unsigned long value)
bfae80f2 19871{
c19d1205
ZW
19872 int op, new_inst;
19873 unsigned long negated, inverted;
bfae80f2 19874
c19d1205
ZW
19875 negated = encode_arm_immediate (-value);
19876 inverted = encode_arm_immediate (~value);
bfae80f2 19877
c19d1205
ZW
19878 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19879 switch (op)
bfae80f2 19880 {
c19d1205
ZW
19881 /* First negates. */
19882 case OPCODE_SUB: /* ADD <-> SUB */
19883 new_inst = OPCODE_ADD;
19884 value = negated;
19885 break;
bfae80f2 19886
c19d1205
ZW
19887 case OPCODE_ADD:
19888 new_inst = OPCODE_SUB;
19889 value = negated;
19890 break;
bfae80f2 19891
c19d1205
ZW
19892 case OPCODE_CMP: /* CMP <-> CMN */
19893 new_inst = OPCODE_CMN;
19894 value = negated;
19895 break;
bfae80f2 19896
c19d1205
ZW
19897 case OPCODE_CMN:
19898 new_inst = OPCODE_CMP;
19899 value = negated;
19900 break;
bfae80f2 19901
c19d1205
ZW
19902 /* Now Inverted ops. */
19903 case OPCODE_MOV: /* MOV <-> MVN */
19904 new_inst = OPCODE_MVN;
19905 value = inverted;
19906 break;
bfae80f2 19907
c19d1205
ZW
19908 case OPCODE_MVN:
19909 new_inst = OPCODE_MOV;
19910 value = inverted;
19911 break;
bfae80f2 19912
c19d1205
ZW
19913 case OPCODE_AND: /* AND <-> BIC */
19914 new_inst = OPCODE_BIC;
19915 value = inverted;
19916 break;
bfae80f2 19917
c19d1205
ZW
19918 case OPCODE_BIC:
19919 new_inst = OPCODE_AND;
19920 value = inverted;
19921 break;
bfae80f2 19922
c19d1205
ZW
19923 case OPCODE_ADC: /* ADC <-> SBC */
19924 new_inst = OPCODE_SBC;
19925 value = inverted;
19926 break;
bfae80f2 19927
c19d1205
ZW
19928 case OPCODE_SBC:
19929 new_inst = OPCODE_ADC;
19930 value = inverted;
19931 break;
bfae80f2 19932
c19d1205
ZW
19933 /* We cannot do anything. */
19934 default:
19935 return FAIL;
b99bd4ef
NC
19936 }
19937
c19d1205
ZW
19938 if (value == (unsigned) FAIL)
19939 return FAIL;
19940
19941 *instruction &= OPCODE_MASK;
19942 *instruction |= new_inst << DATA_OP_SHIFT;
19943 return value;
b99bd4ef
NC
19944}
19945
ef8d22e6
PB
19946/* Like negate_data_op, but for Thumb-2. */
19947
19948static unsigned int
16dd5e42 19949thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
19950{
19951 int op, new_inst;
19952 int rd;
16dd5e42 19953 unsigned int negated, inverted;
ef8d22e6
PB
19954
19955 negated = encode_thumb32_immediate (-value);
19956 inverted = encode_thumb32_immediate (~value);
19957
19958 rd = (*instruction >> 8) & 0xf;
19959 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19960 switch (op)
19961 {
19962 /* ADD <-> SUB. Includes CMP <-> CMN. */
19963 case T2_OPCODE_SUB:
19964 new_inst = T2_OPCODE_ADD;
19965 value = negated;
19966 break;
19967
19968 case T2_OPCODE_ADD:
19969 new_inst = T2_OPCODE_SUB;
19970 value = negated;
19971 break;
19972
19973 /* ORR <-> ORN. Includes MOV <-> MVN. */
19974 case T2_OPCODE_ORR:
19975 new_inst = T2_OPCODE_ORN;
19976 value = inverted;
19977 break;
19978
19979 case T2_OPCODE_ORN:
19980 new_inst = T2_OPCODE_ORR;
19981 value = inverted;
19982 break;
19983
19984 /* AND <-> BIC. TST has no inverted equivalent. */
19985 case T2_OPCODE_AND:
19986 new_inst = T2_OPCODE_BIC;
19987 if (rd == 15)
19988 value = FAIL;
19989 else
19990 value = inverted;
19991 break;
19992
19993 case T2_OPCODE_BIC:
19994 new_inst = T2_OPCODE_AND;
19995 value = inverted;
19996 break;
19997
19998 /* ADC <-> SBC */
19999 case T2_OPCODE_ADC:
20000 new_inst = T2_OPCODE_SBC;
20001 value = inverted;
20002 break;
20003
20004 case T2_OPCODE_SBC:
20005 new_inst = T2_OPCODE_ADC;
20006 value = inverted;
20007 break;
20008
20009 /* We cannot do anything. */
20010 default:
20011 return FAIL;
20012 }
20013
16dd5e42 20014 if (value == (unsigned int)FAIL)
ef8d22e6
PB
20015 return FAIL;
20016
20017 *instruction &= T2_OPCODE_MASK;
20018 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20019 return value;
20020}
20021
8f06b2d8
PB
20022/* Read a 32-bit thumb instruction from buf. */
20023static unsigned long
20024get_thumb32_insn (char * buf)
20025{
20026 unsigned long insn;
20027 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20028 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20029
20030 return insn;
20031}
20032
a8bc6c78
PB
20033
20034/* We usually want to set the low bit on the address of thumb function
20035 symbols. In particular .word foo - . should have the low bit set.
20036 Generic code tries to fold the difference of two symbols to
20037 a constant. Prevent this and force a relocation when the first symbols
20038 is a thumb function. */
c921be7d
NC
20039
20040bfd_boolean
a8bc6c78
PB
20041arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20042{
20043 if (op == O_subtract
20044 && l->X_op == O_symbol
20045 && r->X_op == O_symbol
20046 && THUMB_IS_FUNC (l->X_add_symbol))
20047 {
20048 l->X_op = O_subtract;
20049 l->X_op_symbol = r->X_add_symbol;
20050 l->X_add_number -= r->X_add_number;
c921be7d 20051 return TRUE;
a8bc6c78 20052 }
c921be7d 20053
a8bc6c78 20054 /* Process as normal. */
c921be7d 20055 return FALSE;
a8bc6c78
PB
20056}
20057
4a42ebbc
RR
20058/* Encode Thumb2 unconditional branches and calls. The encoding
20059 for the 2 are identical for the immediate values. */
20060
20061static void
20062encode_thumb2_b_bl_offset (char * buf, offsetT value)
20063{
20064#define T2I1I2MASK ((1 << 13) | (1 << 11))
20065 offsetT newval;
20066 offsetT newval2;
20067 addressT S, I1, I2, lo, hi;
20068
20069 S = (value >> 24) & 0x01;
20070 I1 = (value >> 23) & 0x01;
20071 I2 = (value >> 22) & 0x01;
20072 hi = (value >> 12) & 0x3ff;
20073 lo = (value >> 1) & 0x7ff;
20074 newval = md_chars_to_number (buf, THUMB_SIZE);
20075 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20076 newval |= (S << 10) | hi;
20077 newval2 &= ~T2I1I2MASK;
20078 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20079 md_number_to_chars (buf, newval, THUMB_SIZE);
20080 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20081}
20082
c19d1205 20083void
55cf6793 20084md_apply_fix (fixS * fixP,
c19d1205
ZW
20085 valueT * valP,
20086 segT seg)
20087{
20088 offsetT value = * valP;
20089 offsetT newval;
20090 unsigned int newimm;
20091 unsigned long temp;
20092 int sign;
20093 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 20094
9c2799c2 20095 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 20096
c19d1205 20097 /* Note whether this will delete the relocation. */
4962c51a 20098
c19d1205
ZW
20099 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20100 fixP->fx_done = 1;
b99bd4ef 20101
adbaf948 20102 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 20103 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
20104 for emit_reloc. */
20105 value &= 0xffffffff;
20106 value ^= 0x80000000;
5f4273c7 20107 value -= 0x80000000;
adbaf948
ZW
20108
20109 *valP = value;
c19d1205 20110 fixP->fx_addnumber = value;
b99bd4ef 20111
adbaf948
ZW
20112 /* Same treatment for fixP->fx_offset. */
20113 fixP->fx_offset &= 0xffffffff;
20114 fixP->fx_offset ^= 0x80000000;
20115 fixP->fx_offset -= 0x80000000;
20116
c19d1205 20117 switch (fixP->fx_r_type)
b99bd4ef 20118 {
c19d1205
ZW
20119 case BFD_RELOC_NONE:
20120 /* This will need to go in the object file. */
20121 fixP->fx_done = 0;
20122 break;
b99bd4ef 20123
c19d1205
ZW
20124 case BFD_RELOC_ARM_IMMEDIATE:
20125 /* We claim that this fixup has been processed here,
20126 even if in fact we generate an error because we do
20127 not have a reloc for it, so tc_gen_reloc will reject it. */
20128 fixP->fx_done = 1;
b99bd4ef 20129
77db8e2e 20130 if (fixP->fx_addsy)
b99bd4ef 20131 {
77db8e2e 20132 const char *msg = 0;
b99bd4ef 20133
77db8e2e
NC
20134 if (! S_IS_DEFINED (fixP->fx_addsy))
20135 msg = _("undefined symbol %s used as an immediate value");
20136 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20137 msg = _("symbol %s is in a different section");
20138 else if (S_IS_WEAK (fixP->fx_addsy))
20139 msg = _("symbol %s is weak and may be overridden later");
20140
20141 if (msg)
20142 {
20143 as_bad_where (fixP->fx_file, fixP->fx_line,
20144 msg, S_GET_NAME (fixP->fx_addsy));
20145 break;
20146 }
42e5fcbf
AS
20147 }
20148
c19d1205
ZW
20149 newimm = encode_arm_immediate (value);
20150 temp = md_chars_to_number (buf, INSN_SIZE);
20151
20152 /* If the instruction will fail, see if we can fix things up by
20153 changing the opcode. */
20154 if (newimm == (unsigned int) FAIL
20155 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 20156 {
c19d1205
ZW
20157 as_bad_where (fixP->fx_file, fixP->fx_line,
20158 _("invalid constant (%lx) after fixup"),
20159 (unsigned long) value);
20160 break;
b99bd4ef 20161 }
b99bd4ef 20162
c19d1205
ZW
20163 newimm |= (temp & 0xfffff000);
20164 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20165 break;
b99bd4ef 20166
c19d1205
ZW
20167 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20168 {
20169 unsigned int highpart = 0;
20170 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 20171
77db8e2e 20172 if (fixP->fx_addsy)
42e5fcbf 20173 {
77db8e2e 20174 const char *msg = 0;
42e5fcbf 20175
77db8e2e
NC
20176 if (! S_IS_DEFINED (fixP->fx_addsy))
20177 msg = _("undefined symbol %s used as an immediate value");
20178 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20179 msg = _("symbol %s is in a different section");
20180 else if (S_IS_WEAK (fixP->fx_addsy))
20181 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 20182
77db8e2e
NC
20183 if (msg)
20184 {
20185 as_bad_where (fixP->fx_file, fixP->fx_line,
20186 msg, S_GET_NAME (fixP->fx_addsy));
20187 break;
20188 }
20189 }
20190
c19d1205
ZW
20191 newimm = encode_arm_immediate (value);
20192 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 20193
c19d1205
ZW
20194 /* If the instruction will fail, see if we can fix things up by
20195 changing the opcode. */
20196 if (newimm == (unsigned int) FAIL
20197 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20198 {
20199 /* No ? OK - try using two ADD instructions to generate
20200 the value. */
20201 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 20202
c19d1205
ZW
20203 /* Yes - then make sure that the second instruction is
20204 also an add. */
20205 if (newimm != (unsigned int) FAIL)
20206 newinsn = temp;
20207 /* Still No ? Try using a negated value. */
20208 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20209 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20210 /* Otherwise - give up. */
20211 else
20212 {
20213 as_bad_where (fixP->fx_file, fixP->fx_line,
20214 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20215 (long) value);
20216 break;
20217 }
b99bd4ef 20218
c19d1205
ZW
20219 /* Replace the first operand in the 2nd instruction (which
20220 is the PC) with the destination register. We have
20221 already added in the PC in the first instruction and we
20222 do not want to do it again. */
20223 newinsn &= ~ 0xf0000;
20224 newinsn |= ((newinsn & 0x0f000) << 4);
20225 }
b99bd4ef 20226
c19d1205
ZW
20227 newimm |= (temp & 0xfffff000);
20228 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 20229
c19d1205
ZW
20230 highpart |= (newinsn & 0xfffff000);
20231 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20232 }
20233 break;
b99bd4ef 20234
c19d1205 20235 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
20236 if (!fixP->fx_done && seg->use_rela_p)
20237 value = 0;
20238
c19d1205
ZW
20239 case BFD_RELOC_ARM_LITERAL:
20240 sign = value >= 0;
b99bd4ef 20241
c19d1205
ZW
20242 if (value < 0)
20243 value = - value;
b99bd4ef 20244
c19d1205 20245 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 20246 {
c19d1205
ZW
20247 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20248 as_bad_where (fixP->fx_file, fixP->fx_line,
20249 _("invalid literal constant: pool needs to be closer"));
20250 else
20251 as_bad_where (fixP->fx_file, fixP->fx_line,
20252 _("bad immediate value for offset (%ld)"),
20253 (long) value);
20254 break;
f03698e6
RE
20255 }
20256
c19d1205
ZW
20257 newval = md_chars_to_number (buf, INSN_SIZE);
20258 newval &= 0xff7ff000;
20259 newval |= value | (sign ? INDEX_UP : 0);
20260 md_number_to_chars (buf, newval, INSN_SIZE);
20261 break;
b99bd4ef 20262
c19d1205
ZW
20263 case BFD_RELOC_ARM_OFFSET_IMM8:
20264 case BFD_RELOC_ARM_HWLITERAL:
20265 sign = value >= 0;
b99bd4ef 20266
c19d1205
ZW
20267 if (value < 0)
20268 value = - value;
b99bd4ef 20269
c19d1205 20270 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 20271 {
c19d1205
ZW
20272 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20273 as_bad_where (fixP->fx_file, fixP->fx_line,
20274 _("invalid literal constant: pool needs to be closer"));
20275 else
f9d4405b 20276 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
20277 (long) value);
20278 break;
b99bd4ef
NC
20279 }
20280
c19d1205
ZW
20281 newval = md_chars_to_number (buf, INSN_SIZE);
20282 newval &= 0xff7ff0f0;
20283 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20284 md_number_to_chars (buf, newval, INSN_SIZE);
20285 break;
b99bd4ef 20286
c19d1205
ZW
20287 case BFD_RELOC_ARM_T32_OFFSET_U8:
20288 if (value < 0 || value > 1020 || value % 4 != 0)
20289 as_bad_where (fixP->fx_file, fixP->fx_line,
20290 _("bad immediate value for offset (%ld)"), (long) value);
20291 value /= 4;
b99bd4ef 20292
c19d1205 20293 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
20294 newval |= value;
20295 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20296 break;
b99bd4ef 20297
c19d1205
ZW
20298 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20299 /* This is a complicated relocation used for all varieties of Thumb32
20300 load/store instruction with immediate offset:
20301
20302 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20303 *4, optional writeback(W)
20304 (doubleword load/store)
20305
20306 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20307 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20308 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20309 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20310 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20311
20312 Uppercase letters indicate bits that are already encoded at
20313 this point. Lowercase letters are our problem. For the
20314 second block of instructions, the secondary opcode nybble
20315 (bits 8..11) is present, and bit 23 is zero, even if this is
20316 a PC-relative operation. */
20317 newval = md_chars_to_number (buf, THUMB_SIZE);
20318 newval <<= 16;
20319 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 20320
c19d1205 20321 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 20322 {
c19d1205
ZW
20323 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20324 if (value >= 0)
20325 newval |= (1 << 23);
20326 else
20327 value = -value;
20328 if (value % 4 != 0)
20329 {
20330 as_bad_where (fixP->fx_file, fixP->fx_line,
20331 _("offset not a multiple of 4"));
20332 break;
20333 }
20334 value /= 4;
216d22bc 20335 if (value > 0xff)
c19d1205
ZW
20336 {
20337 as_bad_where (fixP->fx_file, fixP->fx_line,
20338 _("offset out of range"));
20339 break;
20340 }
20341 newval &= ~0xff;
b99bd4ef 20342 }
c19d1205 20343 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 20344 {
c19d1205
ZW
20345 /* PC-relative, 12-bit offset. */
20346 if (value >= 0)
20347 newval |= (1 << 23);
20348 else
20349 value = -value;
216d22bc 20350 if (value > 0xfff)
c19d1205
ZW
20351 {
20352 as_bad_where (fixP->fx_file, fixP->fx_line,
20353 _("offset out of range"));
20354 break;
20355 }
20356 newval &= ~0xfff;
b99bd4ef 20357 }
c19d1205 20358 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 20359 {
c19d1205
ZW
20360 /* Writeback: 8-bit, +/- offset. */
20361 if (value >= 0)
20362 newval |= (1 << 9);
20363 else
20364 value = -value;
216d22bc 20365 if (value > 0xff)
c19d1205
ZW
20366 {
20367 as_bad_where (fixP->fx_file, fixP->fx_line,
20368 _("offset out of range"));
20369 break;
20370 }
20371 newval &= ~0xff;
b99bd4ef 20372 }
c19d1205 20373 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 20374 {
c19d1205 20375 /* T-instruction: positive 8-bit offset. */
216d22bc 20376 if (value < 0 || value > 0xff)
b99bd4ef 20377 {
c19d1205
ZW
20378 as_bad_where (fixP->fx_file, fixP->fx_line,
20379 _("offset out of range"));
20380 break;
b99bd4ef 20381 }
c19d1205
ZW
20382 newval &= ~0xff;
20383 newval |= value;
b99bd4ef
NC
20384 }
20385 else
b99bd4ef 20386 {
c19d1205
ZW
20387 /* Positive 12-bit or negative 8-bit offset. */
20388 int limit;
20389 if (value >= 0)
b99bd4ef 20390 {
c19d1205
ZW
20391 newval |= (1 << 23);
20392 limit = 0xfff;
20393 }
20394 else
20395 {
20396 value = -value;
20397 limit = 0xff;
20398 }
20399 if (value > limit)
20400 {
20401 as_bad_where (fixP->fx_file, fixP->fx_line,
20402 _("offset out of range"));
20403 break;
b99bd4ef 20404 }
c19d1205 20405 newval &= ~limit;
b99bd4ef 20406 }
b99bd4ef 20407
c19d1205
ZW
20408 newval |= value;
20409 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20410 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20411 break;
404ff6b5 20412
c19d1205
ZW
20413 case BFD_RELOC_ARM_SHIFT_IMM:
20414 newval = md_chars_to_number (buf, INSN_SIZE);
20415 if (((unsigned long) value) > 32
20416 || (value == 32
20417 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20418 {
20419 as_bad_where (fixP->fx_file, fixP->fx_line,
20420 _("shift expression is too large"));
20421 break;
20422 }
404ff6b5 20423
c19d1205
ZW
20424 if (value == 0)
20425 /* Shifts of zero must be done as lsl. */
20426 newval &= ~0x60;
20427 else if (value == 32)
20428 value = 0;
20429 newval &= 0xfffff07f;
20430 newval |= (value & 0x1f) << 7;
20431 md_number_to_chars (buf, newval, INSN_SIZE);
20432 break;
404ff6b5 20433
c19d1205 20434 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 20435 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 20436 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 20437 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
20438 /* We claim that this fixup has been processed here,
20439 even if in fact we generate an error because we do
20440 not have a reloc for it, so tc_gen_reloc will reject it. */
20441 fixP->fx_done = 1;
404ff6b5 20442
c19d1205
ZW
20443 if (fixP->fx_addsy
20444 && ! S_IS_DEFINED (fixP->fx_addsy))
20445 {
20446 as_bad_where (fixP->fx_file, fixP->fx_line,
20447 _("undefined symbol %s used as an immediate value"),
20448 S_GET_NAME (fixP->fx_addsy));
20449 break;
20450 }
404ff6b5 20451
c19d1205
ZW
20452 newval = md_chars_to_number (buf, THUMB_SIZE);
20453 newval <<= 16;
20454 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 20455
16805f35
PB
20456 newimm = FAIL;
20457 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20458 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
20459 {
20460 newimm = encode_thumb32_immediate (value);
20461 if (newimm == (unsigned int) FAIL)
20462 newimm = thumb32_negate_data_op (&newval, value);
20463 }
16805f35
PB
20464 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20465 && newimm == (unsigned int) FAIL)
92e90b6e 20466 {
16805f35
PB
20467 /* Turn add/sum into addw/subw. */
20468 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20469 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
20470 /* No flat 12-bit imm encoding for addsw/subsw. */
20471 if ((newval & 0x00100000) == 0)
e9f89963 20472 {
40f246e3
NC
20473 /* 12 bit immediate for addw/subw. */
20474 if (value < 0)
20475 {
20476 value = -value;
20477 newval ^= 0x00a00000;
20478 }
20479 if (value > 0xfff)
20480 newimm = (unsigned int) FAIL;
20481 else
20482 newimm = value;
e9f89963 20483 }
92e90b6e 20484 }
cc8a6dd0 20485
c19d1205 20486 if (newimm == (unsigned int)FAIL)
3631a3c8 20487 {
c19d1205
ZW
20488 as_bad_where (fixP->fx_file, fixP->fx_line,
20489 _("invalid constant (%lx) after fixup"),
20490 (unsigned long) value);
20491 break;
3631a3c8
NC
20492 }
20493
c19d1205
ZW
20494 newval |= (newimm & 0x800) << 15;
20495 newval |= (newimm & 0x700) << 4;
20496 newval |= (newimm & 0x0ff);
cc8a6dd0 20497
c19d1205
ZW
20498 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20499 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20500 break;
a737bd4d 20501
3eb17e6b 20502 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
20503 if (((unsigned long) value) > 0xffff)
20504 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 20505 _("invalid smc expression"));
2fc8bdac 20506 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20507 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20508 md_number_to_chars (buf, newval, INSN_SIZE);
20509 break;
a737bd4d 20510
90ec0d68
MGD
20511 case BFD_RELOC_ARM_HVC:
20512 if (((unsigned long) value) > 0xffff)
20513 as_bad_where (fixP->fx_file, fixP->fx_line,
20514 _("invalid hvc expression"));
20515 newval = md_chars_to_number (buf, INSN_SIZE);
20516 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20517 md_number_to_chars (buf, newval, INSN_SIZE);
20518 break;
20519
c19d1205 20520 case BFD_RELOC_ARM_SWI:
adbaf948 20521 if (fixP->tc_fix_data != 0)
c19d1205
ZW
20522 {
20523 if (((unsigned long) value) > 0xff)
20524 as_bad_where (fixP->fx_file, fixP->fx_line,
20525 _("invalid swi expression"));
2fc8bdac 20526 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
20527 newval |= value;
20528 md_number_to_chars (buf, newval, THUMB_SIZE);
20529 }
20530 else
20531 {
20532 if (((unsigned long) value) > 0x00ffffff)
20533 as_bad_where (fixP->fx_file, fixP->fx_line,
20534 _("invalid swi expression"));
2fc8bdac 20535 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20536 newval |= value;
20537 md_number_to_chars (buf, newval, INSN_SIZE);
20538 }
20539 break;
a737bd4d 20540
c19d1205
ZW
20541 case BFD_RELOC_ARM_MULTI:
20542 if (((unsigned long) value) > 0xffff)
20543 as_bad_where (fixP->fx_file, fixP->fx_line,
20544 _("invalid expression in load/store multiple"));
20545 newval = value | md_chars_to_number (buf, INSN_SIZE);
20546 md_number_to_chars (buf, newval, INSN_SIZE);
20547 break;
a737bd4d 20548
c19d1205 20549#ifdef OBJ_ELF
39b41c9c 20550 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20551
20552 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20553 && fixP->fx_addsy
20554 && !S_IS_EXTERNAL (fixP->fx_addsy)
20555 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20556 && THUMB_IS_FUNC (fixP->fx_addsy))
20557 /* Flip the bl to blx. This is a simple flip
20558 bit here because we generate PCREL_CALL for
20559 unconditional bls. */
20560 {
20561 newval = md_chars_to_number (buf, INSN_SIZE);
20562 newval = newval | 0x10000000;
20563 md_number_to_chars (buf, newval, INSN_SIZE);
20564 temp = 1;
20565 fixP->fx_done = 1;
20566 }
39b41c9c
PB
20567 else
20568 temp = 3;
20569 goto arm_branch_common;
20570
20571 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20572 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20573 && fixP->fx_addsy
20574 && !S_IS_EXTERNAL (fixP->fx_addsy)
20575 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20576 && THUMB_IS_FUNC (fixP->fx_addsy))
20577 {
20578 /* This would map to a bl<cond>, b<cond>,
20579 b<always> to a Thumb function. We
20580 need to force a relocation for this particular
20581 case. */
20582 newval = md_chars_to_number (buf, INSN_SIZE);
20583 fixP->fx_done = 0;
20584 }
20585
2fc8bdac 20586 case BFD_RELOC_ARM_PLT32:
c19d1205 20587#endif
39b41c9c
PB
20588 case BFD_RELOC_ARM_PCREL_BRANCH:
20589 temp = 3;
20590 goto arm_branch_common;
a737bd4d 20591
39b41c9c 20592 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20593
39b41c9c 20594 temp = 1;
267bf995
RR
20595 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20596 && fixP->fx_addsy
20597 && !S_IS_EXTERNAL (fixP->fx_addsy)
20598 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20599 && ARM_IS_FUNC (fixP->fx_addsy))
20600 {
20601 /* Flip the blx to a bl and warn. */
20602 const char *name = S_GET_NAME (fixP->fx_addsy);
20603 newval = 0xeb000000;
20604 as_warn_where (fixP->fx_file, fixP->fx_line,
20605 _("blx to '%s' an ARM ISA state function changed to bl"),
20606 name);
20607 md_number_to_chars (buf, newval, INSN_SIZE);
20608 temp = 3;
20609 fixP->fx_done = 1;
20610 }
20611
20612#ifdef OBJ_ELF
20613 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20614 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20615#endif
20616
39b41c9c 20617 arm_branch_common:
c19d1205 20618 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
20619 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20620 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20621 also be be clear. */
20622 if (value & temp)
c19d1205 20623 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
20624 _("misaligned branch destination"));
20625 if ((value & (offsetT)0xfe000000) != (offsetT)0
20626 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20627 as_bad_where (fixP->fx_file, fixP->fx_line,
20628 _("branch out of range"));
a737bd4d 20629
2fc8bdac 20630 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20631 {
2fc8bdac
ZW
20632 newval = md_chars_to_number (buf, INSN_SIZE);
20633 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
20634 /* Set the H bit on BLX instructions. */
20635 if (temp == 1)
20636 {
20637 if (value & 2)
20638 newval |= 0x01000000;
20639 else
20640 newval &= ~0x01000000;
20641 }
2fc8bdac 20642 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 20643 }
c19d1205 20644 break;
a737bd4d 20645
25fe350b
MS
20646 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20647 /* CBZ can only branch forward. */
a737bd4d 20648
738755b0
MS
20649 /* Attempts to use CBZ to branch to the next instruction
20650 (which, strictly speaking, are prohibited) will be turned into
20651 no-ops.
20652
20653 FIXME: It may be better to remove the instruction completely and
20654 perform relaxation. */
20655 if (value == -2)
2fc8bdac
ZW
20656 {
20657 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 20658 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
20659 md_number_to_chars (buf, newval, THUMB_SIZE);
20660 }
738755b0
MS
20661 else
20662 {
20663 if (value & ~0x7e)
20664 as_bad_where (fixP->fx_file, fixP->fx_line,
20665 _("branch out of range"));
20666
20667 if (fixP->fx_done || !seg->use_rela_p)
20668 {
20669 newval = md_chars_to_number (buf, THUMB_SIZE);
20670 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20671 md_number_to_chars (buf, newval, THUMB_SIZE);
20672 }
20673 }
c19d1205 20674 break;
a737bd4d 20675
c19d1205 20676 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
20677 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20678 as_bad_where (fixP->fx_file, fixP->fx_line,
20679 _("branch out of range"));
a737bd4d 20680
2fc8bdac
ZW
20681 if (fixP->fx_done || !seg->use_rela_p)
20682 {
20683 newval = md_chars_to_number (buf, THUMB_SIZE);
20684 newval |= (value & 0x1ff) >> 1;
20685 md_number_to_chars (buf, newval, THUMB_SIZE);
20686 }
c19d1205 20687 break;
a737bd4d 20688
c19d1205 20689 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
20690 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20691 as_bad_where (fixP->fx_file, fixP->fx_line,
20692 _("branch out of range"));
a737bd4d 20693
2fc8bdac
ZW
20694 if (fixP->fx_done || !seg->use_rela_p)
20695 {
20696 newval = md_chars_to_number (buf, THUMB_SIZE);
20697 newval |= (value & 0xfff) >> 1;
20698 md_number_to_chars (buf, newval, THUMB_SIZE);
20699 }
c19d1205 20700 break;
a737bd4d 20701
c19d1205 20702 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
20703 if (fixP->fx_addsy
20704 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20705 && !S_IS_EXTERNAL (fixP->fx_addsy)
20706 && S_IS_DEFINED (fixP->fx_addsy)
20707 && ARM_IS_FUNC (fixP->fx_addsy)
20708 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20709 {
20710 /* Force a relocation for a branch 20 bits wide. */
20711 fixP->fx_done = 0;
20712 }
2fc8bdac
ZW
20713 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20714 as_bad_where (fixP->fx_file, fixP->fx_line,
20715 _("conditional branch out of range"));
404ff6b5 20716
2fc8bdac
ZW
20717 if (fixP->fx_done || !seg->use_rela_p)
20718 {
20719 offsetT newval2;
20720 addressT S, J1, J2, lo, hi;
404ff6b5 20721
2fc8bdac
ZW
20722 S = (value & 0x00100000) >> 20;
20723 J2 = (value & 0x00080000) >> 19;
20724 J1 = (value & 0x00040000) >> 18;
20725 hi = (value & 0x0003f000) >> 12;
20726 lo = (value & 0x00000ffe) >> 1;
6c43fab6 20727
2fc8bdac
ZW
20728 newval = md_chars_to_number (buf, THUMB_SIZE);
20729 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20730 newval |= (S << 10) | hi;
20731 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20732 md_number_to_chars (buf, newval, THUMB_SIZE);
20733 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20734 }
c19d1205 20735 break;
6c43fab6 20736
c19d1205 20737 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
20738
20739 /* If there is a blx from a thumb state function to
20740 another thumb function flip this to a bl and warn
20741 about it. */
20742
20743 if (fixP->fx_addsy
20744 && S_IS_DEFINED (fixP->fx_addsy)
20745 && !S_IS_EXTERNAL (fixP->fx_addsy)
20746 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20747 && THUMB_IS_FUNC (fixP->fx_addsy))
20748 {
20749 const char *name = S_GET_NAME (fixP->fx_addsy);
20750 as_warn_where (fixP->fx_file, fixP->fx_line,
20751 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20752 name);
20753 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20754 newval = newval | 0x1000;
20755 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20756 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20757 fixP->fx_done = 1;
20758 }
20759
20760
20761 goto thumb_bl_common;
20762
c19d1205 20763 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
20764
20765 /* A bl from Thumb state ISA to an internal ARM state function
20766 is converted to a blx. */
20767 if (fixP->fx_addsy
20768 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20769 && !S_IS_EXTERNAL (fixP->fx_addsy)
20770 && S_IS_DEFINED (fixP->fx_addsy)
20771 && ARM_IS_FUNC (fixP->fx_addsy)
20772 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20773 {
20774 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20775 newval = newval & ~0x1000;
20776 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20777 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20778 fixP->fx_done = 1;
20779 }
20780
20781 thumb_bl_common:
20782
20783#ifdef OBJ_ELF
20784 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20785 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20786 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20787#endif
20788
2fc8bdac
ZW
20789 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20790 /* For a BLX instruction, make sure that the relocation is rounded up
20791 to a word boundary. This follows the semantics of the instruction
20792 which specifies that bit 1 of the target address will come from bit
20793 1 of the base address. */
20794 value = (value + 1) & ~ 1;
404ff6b5 20795
2fc8bdac 20796
4a42ebbc
RR
20797 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20798 {
20799 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20800 {
20801 as_bad_where (fixP->fx_file, fixP->fx_line,
20802 _("branch out of range"));
20803 }
20804 else if ((value & ~0x1ffffff)
20805 && ((value & ~0x1ffffff) != ~0x1ffffff))
20806 {
20807 as_bad_where (fixP->fx_file, fixP->fx_line,
20808 _("Thumb2 branch out of range"));
20809 }
c19d1205 20810 }
4a42ebbc
RR
20811
20812 if (fixP->fx_done || !seg->use_rela_p)
20813 encode_thumb2_b_bl_offset (buf, value);
20814
c19d1205 20815 break;
404ff6b5 20816
c19d1205 20817 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
20818 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20819 as_bad_where (fixP->fx_file, fixP->fx_line,
20820 _("branch out of range"));
6c43fab6 20821
2fc8bdac 20822 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 20823 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 20824
2fc8bdac 20825 break;
a737bd4d 20826
2fc8bdac
ZW
20827 case BFD_RELOC_8:
20828 if (fixP->fx_done || !seg->use_rela_p)
20829 md_number_to_chars (buf, value, 1);
c19d1205 20830 break;
a737bd4d 20831
c19d1205 20832 case BFD_RELOC_16:
2fc8bdac 20833 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20834 md_number_to_chars (buf, value, 2);
c19d1205 20835 break;
a737bd4d 20836
c19d1205
ZW
20837#ifdef OBJ_ELF
20838 case BFD_RELOC_ARM_TLS_GD32:
20839 case BFD_RELOC_ARM_TLS_LE32:
20840 case BFD_RELOC_ARM_TLS_IE32:
20841 case BFD_RELOC_ARM_TLS_LDM32:
20842 case BFD_RELOC_ARM_TLS_LDO32:
20843 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20844 /* fall through */
6c43fab6 20845
c19d1205
ZW
20846 case BFD_RELOC_ARM_GOT32:
20847 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
20848 if (fixP->fx_done || !seg->use_rela_p)
20849 md_number_to_chars (buf, 0, 4);
c19d1205 20850 break;
b43420e6
NC
20851
20852 case BFD_RELOC_ARM_GOT_PREL:
20853 if (fixP->fx_done || !seg->use_rela_p)
20854 md_number_to_chars (buf, value, 4);
20855 break;
20856
9a6f4e97
NS
20857 case BFD_RELOC_ARM_TARGET2:
20858 /* TARGET2 is not partial-inplace, so we need to write the
20859 addend here for REL targets, because it won't be written out
20860 during reloc processing later. */
20861 if (fixP->fx_done || !seg->use_rela_p)
20862 md_number_to_chars (buf, fixP->fx_offset, 4);
20863 break;
c19d1205 20864#endif
6c43fab6 20865
c19d1205
ZW
20866 case BFD_RELOC_RVA:
20867 case BFD_RELOC_32:
20868 case BFD_RELOC_ARM_TARGET1:
20869 case BFD_RELOC_ARM_ROSEGREL32:
20870 case BFD_RELOC_ARM_SBREL32:
20871 case BFD_RELOC_32_PCREL:
f0927246
NC
20872#ifdef TE_PE
20873 case BFD_RELOC_32_SECREL:
20874#endif
2fc8bdac 20875 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
20876#ifdef TE_WINCE
20877 /* For WinCE we only do this for pcrel fixups. */
20878 if (fixP->fx_done || fixP->fx_pcrel)
20879#endif
20880 md_number_to_chars (buf, value, 4);
c19d1205 20881 break;
6c43fab6 20882
c19d1205
ZW
20883#ifdef OBJ_ELF
20884 case BFD_RELOC_ARM_PREL31:
2fc8bdac 20885 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
20886 {
20887 newval = md_chars_to_number (buf, 4) & 0x80000000;
20888 if ((value ^ (value >> 1)) & 0x40000000)
20889 {
20890 as_bad_where (fixP->fx_file, fixP->fx_line,
20891 _("rel31 relocation overflow"));
20892 }
20893 newval |= value & 0x7fffffff;
20894 md_number_to_chars (buf, newval, 4);
20895 }
20896 break;
c19d1205 20897#endif
a737bd4d 20898
c19d1205 20899 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 20900 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
20901 if (value < -1023 || value > 1023 || (value & 3))
20902 as_bad_where (fixP->fx_file, fixP->fx_line,
20903 _("co-processor offset out of range"));
20904 cp_off_common:
20905 sign = value >= 0;
20906 if (value < 0)
20907 value = -value;
8f06b2d8
PB
20908 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20909 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20910 newval = md_chars_to_number (buf, INSN_SIZE);
20911 else
20912 newval = get_thumb32_insn (buf);
20913 newval &= 0xff7fff00;
c19d1205 20914 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
20915 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20916 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20917 md_number_to_chars (buf, newval, INSN_SIZE);
20918 else
20919 put_thumb32_insn (buf, newval);
c19d1205 20920 break;
a737bd4d 20921
c19d1205 20922 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 20923 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
20924 if (value < -255 || value > 255)
20925 as_bad_where (fixP->fx_file, fixP->fx_line,
20926 _("co-processor offset out of range"));
df7849c5 20927 value *= 4;
c19d1205 20928 goto cp_off_common;
6c43fab6 20929
c19d1205
ZW
20930 case BFD_RELOC_ARM_THUMB_OFFSET:
20931 newval = md_chars_to_number (buf, THUMB_SIZE);
20932 /* Exactly what ranges, and where the offset is inserted depends
20933 on the type of instruction, we can establish this from the
20934 top 4 bits. */
20935 switch (newval >> 12)
20936 {
20937 case 4: /* PC load. */
20938 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20939 forced to zero for these loads; md_pcrel_from has already
20940 compensated for this. */
20941 if (value & 3)
20942 as_bad_where (fixP->fx_file, fixP->fx_line,
20943 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
20944 (((unsigned long) fixP->fx_frag->fr_address
20945 + (unsigned long) fixP->fx_where) & ~3)
20946 + (unsigned long) value);
a737bd4d 20947
c19d1205
ZW
20948 if (value & ~0x3fc)
20949 as_bad_where (fixP->fx_file, fixP->fx_line,
20950 _("invalid offset, value too big (0x%08lX)"),
20951 (long) value);
a737bd4d 20952
c19d1205
ZW
20953 newval |= value >> 2;
20954 break;
a737bd4d 20955
c19d1205
ZW
20956 case 9: /* SP load/store. */
20957 if (value & ~0x3fc)
20958 as_bad_where (fixP->fx_file, fixP->fx_line,
20959 _("invalid offset, value too big (0x%08lX)"),
20960 (long) value);
20961 newval |= value >> 2;
20962 break;
6c43fab6 20963
c19d1205
ZW
20964 case 6: /* Word load/store. */
20965 if (value & ~0x7c)
20966 as_bad_where (fixP->fx_file, fixP->fx_line,
20967 _("invalid offset, value too big (0x%08lX)"),
20968 (long) value);
20969 newval |= value << 4; /* 6 - 2. */
20970 break;
a737bd4d 20971
c19d1205
ZW
20972 case 7: /* Byte load/store. */
20973 if (value & ~0x1f)
20974 as_bad_where (fixP->fx_file, fixP->fx_line,
20975 _("invalid offset, value too big (0x%08lX)"),
20976 (long) value);
20977 newval |= value << 6;
20978 break;
a737bd4d 20979
c19d1205
ZW
20980 case 8: /* Halfword load/store. */
20981 if (value & ~0x3e)
20982 as_bad_where (fixP->fx_file, fixP->fx_line,
20983 _("invalid offset, value too big (0x%08lX)"),
20984 (long) value);
20985 newval |= value << 5; /* 6 - 1. */
20986 break;
a737bd4d 20987
c19d1205
ZW
20988 default:
20989 as_bad_where (fixP->fx_file, fixP->fx_line,
20990 "Unable to process relocation for thumb opcode: %lx",
20991 (unsigned long) newval);
20992 break;
20993 }
20994 md_number_to_chars (buf, newval, THUMB_SIZE);
20995 break;
a737bd4d 20996
c19d1205
ZW
20997 case BFD_RELOC_ARM_THUMB_ADD:
20998 /* This is a complicated relocation, since we use it for all of
20999 the following immediate relocations:
a737bd4d 21000
c19d1205
ZW
21001 3bit ADD/SUB
21002 8bit ADD/SUB
21003 9bit ADD/SUB SP word-aligned
21004 10bit ADD PC/SP word-aligned
a737bd4d 21005
c19d1205
ZW
21006 The type of instruction being processed is encoded in the
21007 instruction field:
a737bd4d 21008
c19d1205
ZW
21009 0x8000 SUB
21010 0x00F0 Rd
21011 0x000F Rs
21012 */
21013 newval = md_chars_to_number (buf, THUMB_SIZE);
21014 {
21015 int rd = (newval >> 4) & 0xf;
21016 int rs = newval & 0xf;
21017 int subtract = !!(newval & 0x8000);
a737bd4d 21018
c19d1205
ZW
21019 /* Check for HI regs, only very restricted cases allowed:
21020 Adjusting SP, and using PC or SP to get an address. */
21021 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21022 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21023 as_bad_where (fixP->fx_file, fixP->fx_line,
21024 _("invalid Hi register with immediate"));
a737bd4d 21025
c19d1205
ZW
21026 /* If value is negative, choose the opposite instruction. */
21027 if (value < 0)
21028 {
21029 value = -value;
21030 subtract = !subtract;
21031 if (value < 0)
21032 as_bad_where (fixP->fx_file, fixP->fx_line,
21033 _("immediate value out of range"));
21034 }
a737bd4d 21035
c19d1205
ZW
21036 if (rd == REG_SP)
21037 {
21038 if (value & ~0x1fc)
21039 as_bad_where (fixP->fx_file, fixP->fx_line,
21040 _("invalid immediate for stack address calculation"));
21041 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21042 newval |= value >> 2;
21043 }
21044 else if (rs == REG_PC || rs == REG_SP)
21045 {
21046 if (subtract || value & ~0x3fc)
21047 as_bad_where (fixP->fx_file, fixP->fx_line,
21048 _("invalid immediate for address calculation (value = 0x%08lX)"),
21049 (unsigned long) value);
21050 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21051 newval |= rd << 8;
21052 newval |= value >> 2;
21053 }
21054 else if (rs == rd)
21055 {
21056 if (value & ~0xff)
21057 as_bad_where (fixP->fx_file, fixP->fx_line,
21058 _("immediate value out of range"));
21059 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21060 newval |= (rd << 8) | value;
21061 }
21062 else
21063 {
21064 if (value & ~0x7)
21065 as_bad_where (fixP->fx_file, fixP->fx_line,
21066 _("immediate value out of range"));
21067 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21068 newval |= rd | (rs << 3) | (value << 6);
21069 }
21070 }
21071 md_number_to_chars (buf, newval, THUMB_SIZE);
21072 break;
a737bd4d 21073
c19d1205
ZW
21074 case BFD_RELOC_ARM_THUMB_IMM:
21075 newval = md_chars_to_number (buf, THUMB_SIZE);
21076 if (value < 0 || value > 255)
21077 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 21078 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
21079 (long) value);
21080 newval |= value;
21081 md_number_to_chars (buf, newval, THUMB_SIZE);
21082 break;
a737bd4d 21083
c19d1205
ZW
21084 case BFD_RELOC_ARM_THUMB_SHIFT:
21085 /* 5bit shift value (0..32). LSL cannot take 32. */
21086 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21087 temp = newval & 0xf800;
21088 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21089 as_bad_where (fixP->fx_file, fixP->fx_line,
21090 _("invalid shift value: %ld"), (long) value);
21091 /* Shifts of zero must be encoded as LSL. */
21092 if (value == 0)
21093 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21094 /* Shifts of 32 are encoded as zero. */
21095 else if (value == 32)
21096 value = 0;
21097 newval |= value << 6;
21098 md_number_to_chars (buf, newval, THUMB_SIZE);
21099 break;
a737bd4d 21100
c19d1205
ZW
21101 case BFD_RELOC_VTABLE_INHERIT:
21102 case BFD_RELOC_VTABLE_ENTRY:
21103 fixP->fx_done = 0;
21104 return;
6c43fab6 21105
b6895b4f
PB
21106 case BFD_RELOC_ARM_MOVW:
21107 case BFD_RELOC_ARM_MOVT:
21108 case BFD_RELOC_ARM_THUMB_MOVW:
21109 case BFD_RELOC_ARM_THUMB_MOVT:
21110 if (fixP->fx_done || !seg->use_rela_p)
21111 {
21112 /* REL format relocations are limited to a 16-bit addend. */
21113 if (!fixP->fx_done)
21114 {
39623e12 21115 if (value < -0x8000 || value > 0x7fff)
b6895b4f 21116 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 21117 _("offset out of range"));
b6895b4f
PB
21118 }
21119 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21120 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21121 {
21122 value >>= 16;
21123 }
21124
21125 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21126 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21127 {
21128 newval = get_thumb32_insn (buf);
21129 newval &= 0xfbf08f00;
21130 newval |= (value & 0xf000) << 4;
21131 newval |= (value & 0x0800) << 15;
21132 newval |= (value & 0x0700) << 4;
21133 newval |= (value & 0x00ff);
21134 put_thumb32_insn (buf, newval);
21135 }
21136 else
21137 {
21138 newval = md_chars_to_number (buf, 4);
21139 newval &= 0xfff0f000;
21140 newval |= value & 0x0fff;
21141 newval |= (value & 0xf000) << 4;
21142 md_number_to_chars (buf, newval, 4);
21143 }
21144 }
21145 return;
21146
4962c51a
MS
21147 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21148 case BFD_RELOC_ARM_ALU_PC_G0:
21149 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21150 case BFD_RELOC_ARM_ALU_PC_G1:
21151 case BFD_RELOC_ARM_ALU_PC_G2:
21152 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21153 case BFD_RELOC_ARM_ALU_SB_G0:
21154 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21155 case BFD_RELOC_ARM_ALU_SB_G1:
21156 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 21157 gas_assert (!fixP->fx_done);
4962c51a
MS
21158 if (!seg->use_rela_p)
21159 {
21160 bfd_vma insn;
21161 bfd_vma encoded_addend;
21162 bfd_vma addend_abs = abs (value);
21163
21164 /* Check that the absolute value of the addend can be
21165 expressed as an 8-bit constant plus a rotation. */
21166 encoded_addend = encode_arm_immediate (addend_abs);
21167 if (encoded_addend == (unsigned int) FAIL)
21168 as_bad_where (fixP->fx_file, fixP->fx_line,
21169 _("the offset 0x%08lX is not representable"),
495bde8e 21170 (unsigned long) addend_abs);
4962c51a
MS
21171
21172 /* Extract the instruction. */
21173 insn = md_chars_to_number (buf, INSN_SIZE);
21174
21175 /* If the addend is positive, use an ADD instruction.
21176 Otherwise use a SUB. Take care not to destroy the S bit. */
21177 insn &= 0xff1fffff;
21178 if (value < 0)
21179 insn |= 1 << 22;
21180 else
21181 insn |= 1 << 23;
21182
21183 /* Place the encoded addend into the first 12 bits of the
21184 instruction. */
21185 insn &= 0xfffff000;
21186 insn |= encoded_addend;
5f4273c7
NC
21187
21188 /* Update the instruction. */
4962c51a
MS
21189 md_number_to_chars (buf, insn, INSN_SIZE);
21190 }
21191 break;
21192
21193 case BFD_RELOC_ARM_LDR_PC_G0:
21194 case BFD_RELOC_ARM_LDR_PC_G1:
21195 case BFD_RELOC_ARM_LDR_PC_G2:
21196 case BFD_RELOC_ARM_LDR_SB_G0:
21197 case BFD_RELOC_ARM_LDR_SB_G1:
21198 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 21199 gas_assert (!fixP->fx_done);
4962c51a
MS
21200 if (!seg->use_rela_p)
21201 {
21202 bfd_vma insn;
21203 bfd_vma addend_abs = abs (value);
21204
21205 /* Check that the absolute value of the addend can be
21206 encoded in 12 bits. */
21207 if (addend_abs >= 0x1000)
21208 as_bad_where (fixP->fx_file, fixP->fx_line,
21209 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 21210 (unsigned long) addend_abs);
4962c51a
MS
21211
21212 /* Extract the instruction. */
21213 insn = md_chars_to_number (buf, INSN_SIZE);
21214
21215 /* If the addend is negative, clear bit 23 of the instruction.
21216 Otherwise set it. */
21217 if (value < 0)
21218 insn &= ~(1 << 23);
21219 else
21220 insn |= 1 << 23;
21221
21222 /* Place the absolute value of the addend into the first 12 bits
21223 of the instruction. */
21224 insn &= 0xfffff000;
21225 insn |= addend_abs;
5f4273c7
NC
21226
21227 /* Update the instruction. */
4962c51a
MS
21228 md_number_to_chars (buf, insn, INSN_SIZE);
21229 }
21230 break;
21231
21232 case BFD_RELOC_ARM_LDRS_PC_G0:
21233 case BFD_RELOC_ARM_LDRS_PC_G1:
21234 case BFD_RELOC_ARM_LDRS_PC_G2:
21235 case BFD_RELOC_ARM_LDRS_SB_G0:
21236 case BFD_RELOC_ARM_LDRS_SB_G1:
21237 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 21238 gas_assert (!fixP->fx_done);
4962c51a
MS
21239 if (!seg->use_rela_p)
21240 {
21241 bfd_vma insn;
21242 bfd_vma addend_abs = abs (value);
21243
21244 /* Check that the absolute value of the addend can be
21245 encoded in 8 bits. */
21246 if (addend_abs >= 0x100)
21247 as_bad_where (fixP->fx_file, fixP->fx_line,
21248 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 21249 (unsigned long) addend_abs);
4962c51a
MS
21250
21251 /* Extract the instruction. */
21252 insn = md_chars_to_number (buf, INSN_SIZE);
21253
21254 /* If the addend is negative, clear bit 23 of the instruction.
21255 Otherwise set it. */
21256 if (value < 0)
21257 insn &= ~(1 << 23);
21258 else
21259 insn |= 1 << 23;
21260
21261 /* Place the first four bits of the absolute value of the addend
21262 into the first 4 bits of the instruction, and the remaining
21263 four into bits 8 .. 11. */
21264 insn &= 0xfffff0f0;
21265 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
21266
21267 /* Update the instruction. */
4962c51a
MS
21268 md_number_to_chars (buf, insn, INSN_SIZE);
21269 }
21270 break;
21271
21272 case BFD_RELOC_ARM_LDC_PC_G0:
21273 case BFD_RELOC_ARM_LDC_PC_G1:
21274 case BFD_RELOC_ARM_LDC_PC_G2:
21275 case BFD_RELOC_ARM_LDC_SB_G0:
21276 case BFD_RELOC_ARM_LDC_SB_G1:
21277 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 21278 gas_assert (!fixP->fx_done);
4962c51a
MS
21279 if (!seg->use_rela_p)
21280 {
21281 bfd_vma insn;
21282 bfd_vma addend_abs = abs (value);
21283
21284 /* Check that the absolute value of the addend is a multiple of
21285 four and, when divided by four, fits in 8 bits. */
21286 if (addend_abs & 0x3)
21287 as_bad_where (fixP->fx_file, fixP->fx_line,
21288 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 21289 (unsigned long) addend_abs);
4962c51a
MS
21290
21291 if ((addend_abs >> 2) > 0xff)
21292 as_bad_where (fixP->fx_file, fixP->fx_line,
21293 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 21294 (unsigned long) addend_abs);
4962c51a
MS
21295
21296 /* Extract the instruction. */
21297 insn = md_chars_to_number (buf, INSN_SIZE);
21298
21299 /* If the addend is negative, clear bit 23 of the instruction.
21300 Otherwise set it. */
21301 if (value < 0)
21302 insn &= ~(1 << 23);
21303 else
21304 insn |= 1 << 23;
21305
21306 /* Place the addend (divided by four) into the first eight
21307 bits of the instruction. */
21308 insn &= 0xfffffff0;
21309 insn |= addend_abs >> 2;
5f4273c7
NC
21310
21311 /* Update the instruction. */
4962c51a
MS
21312 md_number_to_chars (buf, insn, INSN_SIZE);
21313 }
21314 break;
21315
845b51d6
PB
21316 case BFD_RELOC_ARM_V4BX:
21317 /* This will need to go in the object file. */
21318 fixP->fx_done = 0;
21319 break;
21320
c19d1205
ZW
21321 case BFD_RELOC_UNUSED:
21322 default:
21323 as_bad_where (fixP->fx_file, fixP->fx_line,
21324 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21325 }
6c43fab6
RE
21326}
21327
c19d1205
ZW
21328/* Translate internal representation of relocation info to BFD target
21329 format. */
a737bd4d 21330
c19d1205 21331arelent *
00a97672 21332tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 21333{
c19d1205
ZW
21334 arelent * reloc;
21335 bfd_reloc_code_real_type code;
a737bd4d 21336
21d799b5 21337 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 21338
21d799b5 21339 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
21340 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21341 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 21342
2fc8bdac 21343 if (fixp->fx_pcrel)
00a97672
RS
21344 {
21345 if (section->use_rela_p)
21346 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21347 else
21348 fixp->fx_offset = reloc->address;
21349 }
c19d1205 21350 reloc->addend = fixp->fx_offset;
a737bd4d 21351
c19d1205 21352 switch (fixp->fx_r_type)
a737bd4d 21353 {
c19d1205
ZW
21354 case BFD_RELOC_8:
21355 if (fixp->fx_pcrel)
21356 {
21357 code = BFD_RELOC_8_PCREL;
21358 break;
21359 }
a737bd4d 21360
c19d1205
ZW
21361 case BFD_RELOC_16:
21362 if (fixp->fx_pcrel)
21363 {
21364 code = BFD_RELOC_16_PCREL;
21365 break;
21366 }
6c43fab6 21367
c19d1205
ZW
21368 case BFD_RELOC_32:
21369 if (fixp->fx_pcrel)
21370 {
21371 code = BFD_RELOC_32_PCREL;
21372 break;
21373 }
a737bd4d 21374
b6895b4f
PB
21375 case BFD_RELOC_ARM_MOVW:
21376 if (fixp->fx_pcrel)
21377 {
21378 code = BFD_RELOC_ARM_MOVW_PCREL;
21379 break;
21380 }
21381
21382 case BFD_RELOC_ARM_MOVT:
21383 if (fixp->fx_pcrel)
21384 {
21385 code = BFD_RELOC_ARM_MOVT_PCREL;
21386 break;
21387 }
21388
21389 case BFD_RELOC_ARM_THUMB_MOVW:
21390 if (fixp->fx_pcrel)
21391 {
21392 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21393 break;
21394 }
21395
21396 case BFD_RELOC_ARM_THUMB_MOVT:
21397 if (fixp->fx_pcrel)
21398 {
21399 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21400 break;
21401 }
21402
c19d1205
ZW
21403 case BFD_RELOC_NONE:
21404 case BFD_RELOC_ARM_PCREL_BRANCH:
21405 case BFD_RELOC_ARM_PCREL_BLX:
21406 case BFD_RELOC_RVA:
21407 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21408 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21409 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21410 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21411 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21412 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
21413 case BFD_RELOC_VTABLE_ENTRY:
21414 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
21415#ifdef TE_PE
21416 case BFD_RELOC_32_SECREL:
21417#endif
c19d1205
ZW
21418 code = fixp->fx_r_type;
21419 break;
a737bd4d 21420
00adf2d4
JB
21421 case BFD_RELOC_THUMB_PCREL_BLX:
21422#ifdef OBJ_ELF
21423 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21424 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21425 else
21426#endif
21427 code = BFD_RELOC_THUMB_PCREL_BLX;
21428 break;
21429
c19d1205
ZW
21430 case BFD_RELOC_ARM_LITERAL:
21431 case BFD_RELOC_ARM_HWLITERAL:
21432 /* If this is called then the a literal has
21433 been referenced across a section boundary. */
21434 as_bad_where (fixp->fx_file, fixp->fx_line,
21435 _("literal referenced across section boundary"));
21436 return NULL;
a737bd4d 21437
c19d1205
ZW
21438#ifdef OBJ_ELF
21439 case BFD_RELOC_ARM_GOT32:
21440 case BFD_RELOC_ARM_GOTOFF:
b43420e6 21441 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
21442 case BFD_RELOC_ARM_PLT32:
21443 case BFD_RELOC_ARM_TARGET1:
21444 case BFD_RELOC_ARM_ROSEGREL32:
21445 case BFD_RELOC_ARM_SBREL32:
21446 case BFD_RELOC_ARM_PREL31:
21447 case BFD_RELOC_ARM_TARGET2:
21448 case BFD_RELOC_ARM_TLS_LE32:
21449 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
21450 case BFD_RELOC_ARM_PCREL_CALL:
21451 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
21452 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21453 case BFD_RELOC_ARM_ALU_PC_G0:
21454 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21455 case BFD_RELOC_ARM_ALU_PC_G1:
21456 case BFD_RELOC_ARM_ALU_PC_G2:
21457 case BFD_RELOC_ARM_LDR_PC_G0:
21458 case BFD_RELOC_ARM_LDR_PC_G1:
21459 case BFD_RELOC_ARM_LDR_PC_G2:
21460 case BFD_RELOC_ARM_LDRS_PC_G0:
21461 case BFD_RELOC_ARM_LDRS_PC_G1:
21462 case BFD_RELOC_ARM_LDRS_PC_G2:
21463 case BFD_RELOC_ARM_LDC_PC_G0:
21464 case BFD_RELOC_ARM_LDC_PC_G1:
21465 case BFD_RELOC_ARM_LDC_PC_G2:
21466 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21467 case BFD_RELOC_ARM_ALU_SB_G0:
21468 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21469 case BFD_RELOC_ARM_ALU_SB_G1:
21470 case BFD_RELOC_ARM_ALU_SB_G2:
21471 case BFD_RELOC_ARM_LDR_SB_G0:
21472 case BFD_RELOC_ARM_LDR_SB_G1:
21473 case BFD_RELOC_ARM_LDR_SB_G2:
21474 case BFD_RELOC_ARM_LDRS_SB_G0:
21475 case BFD_RELOC_ARM_LDRS_SB_G1:
21476 case BFD_RELOC_ARM_LDRS_SB_G2:
21477 case BFD_RELOC_ARM_LDC_SB_G0:
21478 case BFD_RELOC_ARM_LDC_SB_G1:
21479 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 21480 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
21481 code = fixp->fx_r_type;
21482 break;
a737bd4d 21483
c19d1205
ZW
21484 case BFD_RELOC_ARM_TLS_GD32:
21485 case BFD_RELOC_ARM_TLS_IE32:
21486 case BFD_RELOC_ARM_TLS_LDM32:
21487 /* BFD will include the symbol's address in the addend.
21488 But we don't want that, so subtract it out again here. */
21489 if (!S_IS_COMMON (fixp->fx_addsy))
21490 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21491 code = fixp->fx_r_type;
21492 break;
21493#endif
a737bd4d 21494
c19d1205
ZW
21495 case BFD_RELOC_ARM_IMMEDIATE:
21496 as_bad_where (fixp->fx_file, fixp->fx_line,
21497 _("internal relocation (type: IMMEDIATE) not fixed up"));
21498 return NULL;
a737bd4d 21499
c19d1205
ZW
21500 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21501 as_bad_where (fixp->fx_file, fixp->fx_line,
21502 _("ADRL used for a symbol not defined in the same file"));
21503 return NULL;
a737bd4d 21504
c19d1205 21505 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21506 if (section->use_rela_p)
21507 {
21508 code = fixp->fx_r_type;
21509 break;
21510 }
21511
c19d1205
ZW
21512 if (fixp->fx_addsy != NULL
21513 && !S_IS_DEFINED (fixp->fx_addsy)
21514 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 21515 {
c19d1205
ZW
21516 as_bad_where (fixp->fx_file, fixp->fx_line,
21517 _("undefined local label `%s'"),
21518 S_GET_NAME (fixp->fx_addsy));
21519 return NULL;
a737bd4d
NC
21520 }
21521
c19d1205
ZW
21522 as_bad_where (fixp->fx_file, fixp->fx_line,
21523 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21524 return NULL;
a737bd4d 21525
c19d1205
ZW
21526 default:
21527 {
21528 char * type;
6c43fab6 21529
c19d1205
ZW
21530 switch (fixp->fx_r_type)
21531 {
21532 case BFD_RELOC_NONE: type = "NONE"; break;
21533 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21534 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 21535 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
21536 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21537 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21538 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 21539 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 21540 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21541 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21542 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21543 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21544 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21545 default: type = _("<unknown>"); break;
21546 }
21547 as_bad_where (fixp->fx_file, fixp->fx_line,
21548 _("cannot represent %s relocation in this object file format"),
21549 type);
21550 return NULL;
21551 }
a737bd4d 21552 }
6c43fab6 21553
c19d1205
ZW
21554#ifdef OBJ_ELF
21555 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21556 && GOT_symbol
21557 && fixp->fx_addsy == GOT_symbol)
21558 {
21559 code = BFD_RELOC_ARM_GOTPC;
21560 reloc->addend = fixp->fx_offset = reloc->address;
21561 }
21562#endif
6c43fab6 21563
c19d1205 21564 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21565
c19d1205
ZW
21566 if (reloc->howto == NULL)
21567 {
21568 as_bad_where (fixp->fx_file, fixp->fx_line,
21569 _("cannot represent %s relocation in this object file format"),
21570 bfd_get_reloc_code_name (code));
21571 return NULL;
21572 }
6c43fab6 21573
c19d1205
ZW
21574 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21575 vtable entry to be used in the relocation's section offset. */
21576 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21577 reloc->address = fixp->fx_offset;
6c43fab6 21578
c19d1205 21579 return reloc;
6c43fab6
RE
21580}
21581
c19d1205 21582/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21583
c19d1205
ZW
21584void
21585cons_fix_new_arm (fragS * frag,
21586 int where,
21587 int size,
21588 expressionS * exp)
6c43fab6 21589{
c19d1205
ZW
21590 bfd_reloc_code_real_type type;
21591 int pcrel = 0;
6c43fab6 21592
c19d1205
ZW
21593 /* Pick a reloc.
21594 FIXME: @@ Should look at CPU word size. */
21595 switch (size)
21596 {
21597 case 1:
21598 type = BFD_RELOC_8;
21599 break;
21600 case 2:
21601 type = BFD_RELOC_16;
21602 break;
21603 case 4:
21604 default:
21605 type = BFD_RELOC_32;
21606 break;
21607 case 8:
21608 type = BFD_RELOC_64;
21609 break;
21610 }
6c43fab6 21611
f0927246
NC
21612#ifdef TE_PE
21613 if (exp->X_op == O_secrel)
21614 {
21615 exp->X_op = O_symbol;
21616 type = BFD_RELOC_32_SECREL;
21617 }
21618#endif
21619
c19d1205
ZW
21620 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21621}
6c43fab6 21622
4343666d 21623#if defined (OBJ_COFF)
c19d1205
ZW
21624void
21625arm_validate_fix (fixS * fixP)
6c43fab6 21626{
c19d1205
ZW
21627 /* If the destination of the branch is a defined symbol which does not have
21628 the THUMB_FUNC attribute, then we must be calling a function which has
21629 the (interfacearm) attribute. We look for the Thumb entry point to that
21630 function and change the branch to refer to that function instead. */
21631 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21632 && fixP->fx_addsy != NULL
21633 && S_IS_DEFINED (fixP->fx_addsy)
21634 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 21635 {
c19d1205 21636 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 21637 }
c19d1205
ZW
21638}
21639#endif
6c43fab6 21640
267bf995 21641
c19d1205
ZW
21642int
21643arm_force_relocation (struct fix * fixp)
21644{
21645#if defined (OBJ_COFF) && defined (TE_PE)
21646 if (fixp->fx_r_type == BFD_RELOC_RVA)
21647 return 1;
21648#endif
6c43fab6 21649
267bf995
RR
21650 /* In case we have a call or a branch to a function in ARM ISA mode from
21651 a thumb function or vice-versa force the relocation. These relocations
21652 are cleared off for some cores that might have blx and simple transformations
21653 are possible. */
21654
21655#ifdef OBJ_ELF
21656 switch (fixp->fx_r_type)
21657 {
21658 case BFD_RELOC_ARM_PCREL_JUMP:
21659 case BFD_RELOC_ARM_PCREL_CALL:
21660 case BFD_RELOC_THUMB_PCREL_BLX:
21661 if (THUMB_IS_FUNC (fixp->fx_addsy))
21662 return 1;
21663 break;
21664
21665 case BFD_RELOC_ARM_PCREL_BLX:
21666 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21667 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21668 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21669 if (ARM_IS_FUNC (fixp->fx_addsy))
21670 return 1;
21671 break;
21672
21673 default:
21674 break;
21675 }
21676#endif
21677
c19d1205
ZW
21678 /* Resolve these relocations even if the symbol is extern or weak. */
21679 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21680 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 21681 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 21682 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
21683 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21684 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21685 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 21686 return 0;
a737bd4d 21687
4962c51a
MS
21688 /* Always leave these relocations for the linker. */
21689 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21690 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21691 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21692 return 1;
21693
f0291e4c
PB
21694 /* Always generate relocations against function symbols. */
21695 if (fixp->fx_r_type == BFD_RELOC_32
21696 && fixp->fx_addsy
21697 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21698 return 1;
21699
c19d1205 21700 return generic_force_reloc (fixp);
404ff6b5
AH
21701}
21702
0ffdc86c 21703#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
21704/* Relocations against function names must be left unadjusted,
21705 so that the linker can use this information to generate interworking
21706 stubs. The MIPS version of this function
c19d1205
ZW
21707 also prevents relocations that are mips-16 specific, but I do not
21708 know why it does this.
404ff6b5 21709
c19d1205
ZW
21710 FIXME:
21711 There is one other problem that ought to be addressed here, but
21712 which currently is not: Taking the address of a label (rather
21713 than a function) and then later jumping to that address. Such
21714 addresses also ought to have their bottom bit set (assuming that
21715 they reside in Thumb code), but at the moment they will not. */
404ff6b5 21716
c19d1205
ZW
21717bfd_boolean
21718arm_fix_adjustable (fixS * fixP)
404ff6b5 21719{
c19d1205
ZW
21720 if (fixP->fx_addsy == NULL)
21721 return 1;
404ff6b5 21722
e28387c3
PB
21723 /* Preserve relocations against symbols with function type. */
21724 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 21725 return FALSE;
e28387c3 21726
c19d1205
ZW
21727 if (THUMB_IS_FUNC (fixP->fx_addsy)
21728 && fixP->fx_subsy == NULL)
c921be7d 21729 return FALSE;
a737bd4d 21730
c19d1205
ZW
21731 /* We need the symbol name for the VTABLE entries. */
21732 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21733 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 21734 return FALSE;
404ff6b5 21735
c19d1205
ZW
21736 /* Don't allow symbols to be discarded on GOT related relocs. */
21737 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21738 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21739 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21740 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21741 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21742 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21743 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21744 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21745 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 21746 return FALSE;
a737bd4d 21747
4962c51a
MS
21748 /* Similarly for group relocations. */
21749 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21750 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21751 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 21752 return FALSE;
4962c51a 21753
79947c54
CD
21754 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21755 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21756 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21757 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21758 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21759 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21760 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21761 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21762 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 21763 return FALSE;
79947c54 21764
c921be7d 21765 return TRUE;
a737bd4d 21766}
0ffdc86c
NC
21767#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21768
21769#ifdef OBJ_ELF
404ff6b5 21770
c19d1205
ZW
21771const char *
21772elf32_arm_target_format (void)
404ff6b5 21773{
c19d1205
ZW
21774#ifdef TE_SYMBIAN
21775 return (target_big_endian
21776 ? "elf32-bigarm-symbian"
21777 : "elf32-littlearm-symbian");
21778#elif defined (TE_VXWORKS)
21779 return (target_big_endian
21780 ? "elf32-bigarm-vxworks"
21781 : "elf32-littlearm-vxworks");
21782#else
21783 if (target_big_endian)
21784 return "elf32-bigarm";
21785 else
21786 return "elf32-littlearm";
21787#endif
404ff6b5
AH
21788}
21789
c19d1205
ZW
21790void
21791armelf_frob_symbol (symbolS * symp,
21792 int * puntp)
404ff6b5 21793{
c19d1205
ZW
21794 elf_frob_symbol (symp, puntp);
21795}
21796#endif
404ff6b5 21797
c19d1205 21798/* MD interface: Finalization. */
a737bd4d 21799
c19d1205
ZW
21800void
21801arm_cleanup (void)
21802{
21803 literal_pool * pool;
a737bd4d 21804
e07e6e58
NC
21805 /* Ensure that all the IT blocks are properly closed. */
21806 check_it_blocks_finished ();
21807
c19d1205
ZW
21808 for (pool = list_of_pools; pool; pool = pool->next)
21809 {
5f4273c7 21810 /* Put it at the end of the relevant section. */
c19d1205
ZW
21811 subseg_set (pool->section, pool->sub_section);
21812#ifdef OBJ_ELF
21813 arm_elf_change_section ();
21814#endif
21815 s_ltorg (0);
21816 }
404ff6b5
AH
21817}
21818
cd000bff
DJ
21819#ifdef OBJ_ELF
21820/* Remove any excess mapping symbols generated for alignment frags in
21821 SEC. We may have created a mapping symbol before a zero byte
21822 alignment; remove it if there's a mapping symbol after the
21823 alignment. */
21824static void
21825check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21826 void *dummy ATTRIBUTE_UNUSED)
21827{
21828 segment_info_type *seginfo = seg_info (sec);
21829 fragS *fragp;
21830
21831 if (seginfo == NULL || seginfo->frchainP == NULL)
21832 return;
21833
21834 for (fragp = seginfo->frchainP->frch_root;
21835 fragp != NULL;
21836 fragp = fragp->fr_next)
21837 {
21838 symbolS *sym = fragp->tc_frag_data.last_map;
21839 fragS *next = fragp->fr_next;
21840
21841 /* Variable-sized frags have been converted to fixed size by
21842 this point. But if this was variable-sized to start with,
21843 there will be a fixed-size frag after it. So don't handle
21844 next == NULL. */
21845 if (sym == NULL || next == NULL)
21846 continue;
21847
21848 if (S_GET_VALUE (sym) < next->fr_address)
21849 /* Not at the end of this frag. */
21850 continue;
21851 know (S_GET_VALUE (sym) == next->fr_address);
21852
21853 do
21854 {
21855 if (next->tc_frag_data.first_map != NULL)
21856 {
21857 /* Next frag starts with a mapping symbol. Discard this
21858 one. */
21859 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21860 break;
21861 }
21862
21863 if (next->fr_next == NULL)
21864 {
21865 /* This mapping symbol is at the end of the section. Discard
21866 it. */
21867 know (next->fr_fix == 0 && next->fr_var == 0);
21868 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21869 break;
21870 }
21871
21872 /* As long as we have empty frags without any mapping symbols,
21873 keep looking. */
21874 /* If the next frag is non-empty and does not start with a
21875 mapping symbol, then this mapping symbol is required. */
21876 if (next->fr_address != next->fr_next->fr_address)
21877 break;
21878
21879 next = next->fr_next;
21880 }
21881 while (next != NULL);
21882 }
21883}
21884#endif
21885
c19d1205
ZW
21886/* Adjust the symbol table. This marks Thumb symbols as distinct from
21887 ARM ones. */
404ff6b5 21888
c19d1205
ZW
21889void
21890arm_adjust_symtab (void)
404ff6b5 21891{
c19d1205
ZW
21892#ifdef OBJ_COFF
21893 symbolS * sym;
404ff6b5 21894
c19d1205
ZW
21895 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21896 {
21897 if (ARM_IS_THUMB (sym))
21898 {
21899 if (THUMB_IS_FUNC (sym))
21900 {
21901 /* Mark the symbol as a Thumb function. */
21902 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21903 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21904 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 21905
c19d1205
ZW
21906 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21907 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21908 else
21909 as_bad (_("%s: unexpected function type: %d"),
21910 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21911 }
21912 else switch (S_GET_STORAGE_CLASS (sym))
21913 {
21914 case C_EXT:
21915 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21916 break;
21917 case C_STAT:
21918 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21919 break;
21920 case C_LABEL:
21921 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21922 break;
21923 default:
21924 /* Do nothing. */
21925 break;
21926 }
21927 }
a737bd4d 21928
c19d1205
ZW
21929 if (ARM_IS_INTERWORK (sym))
21930 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 21931 }
c19d1205
ZW
21932#endif
21933#ifdef OBJ_ELF
21934 symbolS * sym;
21935 char bind;
404ff6b5 21936
c19d1205 21937 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 21938 {
c19d1205
ZW
21939 if (ARM_IS_THUMB (sym))
21940 {
21941 elf_symbol_type * elf_sym;
404ff6b5 21942
c19d1205
ZW
21943 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21944 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 21945
b0796911
PB
21946 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21947 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
21948 {
21949 /* If it's a .thumb_func, declare it as so,
21950 otherwise tag label as .code 16. */
21951 if (THUMB_IS_FUNC (sym))
21952 elf_sym->internal_elf_sym.st_info =
21953 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 21954 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
21955 elf_sym->internal_elf_sym.st_info =
21956 ELF_ST_INFO (bind, STT_ARM_16BIT);
21957 }
21958 }
21959 }
cd000bff
DJ
21960
21961 /* Remove any overlapping mapping symbols generated by alignment frags. */
21962 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
21963 /* Now do generic ELF adjustments. */
21964 elf_adjust_symtab ();
c19d1205 21965#endif
404ff6b5
AH
21966}
21967
c19d1205 21968/* MD interface: Initialization. */
404ff6b5 21969
a737bd4d 21970static void
c19d1205 21971set_constant_flonums (void)
a737bd4d 21972{
c19d1205 21973 int i;
404ff6b5 21974
c19d1205
ZW
21975 for (i = 0; i < NUM_FLOAT_VALS; i++)
21976 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21977 abort ();
a737bd4d 21978}
404ff6b5 21979
3e9e4fcf
JB
21980/* Auto-select Thumb mode if it's the only available instruction set for the
21981 given architecture. */
21982
21983static void
21984autoselect_thumb_from_cpu_variant (void)
21985{
21986 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21987 opcode_select (16);
21988}
21989
c19d1205
ZW
21990void
21991md_begin (void)
a737bd4d 21992{
c19d1205
ZW
21993 unsigned mach;
21994 unsigned int i;
404ff6b5 21995
c19d1205
ZW
21996 if ( (arm_ops_hsh = hash_new ()) == NULL
21997 || (arm_cond_hsh = hash_new ()) == NULL
21998 || (arm_shift_hsh = hash_new ()) == NULL
21999 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 22000 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 22001 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
22002 || (arm_reloc_hsh = hash_new ()) == NULL
22003 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
22004 as_fatal (_("virtual memory exhausted"));
22005
22006 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 22007 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 22008 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 22009 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 22010 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 22011 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 22012 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 22013 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 22014 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
22015 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22016 (void *) (v7m_psrs + i));
c19d1205 22017 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 22018 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
22019 for (i = 0;
22020 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22021 i++)
d3ce72d0 22022 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 22023 (void *) (barrier_opt_names + i));
c19d1205
ZW
22024#ifdef OBJ_ELF
22025 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 22026 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
22027#endif
22028
22029 set_constant_flonums ();
404ff6b5 22030
c19d1205
ZW
22031 /* Set the cpu variant based on the command-line options. We prefer
22032 -mcpu= over -march= if both are set (as for GCC); and we prefer
22033 -mfpu= over any other way of setting the floating point unit.
22034 Use of legacy options with new options are faulted. */
e74cfd16 22035 if (legacy_cpu)
404ff6b5 22036 {
e74cfd16 22037 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
22038 as_bad (_("use of old and new-style options to set CPU type"));
22039
22040 mcpu_cpu_opt = legacy_cpu;
404ff6b5 22041 }
e74cfd16 22042 else if (!mcpu_cpu_opt)
c19d1205 22043 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 22044
e74cfd16 22045 if (legacy_fpu)
c19d1205 22046 {
e74cfd16 22047 if (mfpu_opt)
c19d1205 22048 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
22049
22050 mfpu_opt = legacy_fpu;
22051 }
e74cfd16 22052 else if (!mfpu_opt)
03b1477f 22053 {
45eb4c1b
NS
22054#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22055 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
22056 /* Some environments specify a default FPU. If they don't, infer it
22057 from the processor. */
e74cfd16 22058 if (mcpu_fpu_opt)
03b1477f
RE
22059 mfpu_opt = mcpu_fpu_opt;
22060 else
22061 mfpu_opt = march_fpu_opt;
39c2da32 22062#else
e74cfd16 22063 mfpu_opt = &fpu_default;
39c2da32 22064#endif
03b1477f
RE
22065 }
22066
e74cfd16 22067 if (!mfpu_opt)
03b1477f 22068 {
493cb6ef 22069 if (mcpu_cpu_opt != NULL)
e74cfd16 22070 mfpu_opt = &fpu_default;
493cb6ef 22071 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 22072 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 22073 else
e74cfd16 22074 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
22075 }
22076
ee065d83 22077#ifdef CPU_DEFAULT
e74cfd16 22078 if (!mcpu_cpu_opt)
ee065d83 22079 {
e74cfd16
PB
22080 mcpu_cpu_opt = &cpu_default;
22081 selected_cpu = cpu_default;
ee065d83 22082 }
e74cfd16
PB
22083#else
22084 if (mcpu_cpu_opt)
22085 selected_cpu = *mcpu_cpu_opt;
ee065d83 22086 else
e74cfd16 22087 mcpu_cpu_opt = &arm_arch_any;
ee065d83 22088#endif
03b1477f 22089
e74cfd16 22090 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 22091
3e9e4fcf
JB
22092 autoselect_thumb_from_cpu_variant ();
22093
e74cfd16 22094 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 22095
f17c130b 22096#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 22097 {
7cc69913
NC
22098 unsigned int flags = 0;
22099
22100#if defined OBJ_ELF
22101 flags = meabi_flags;
d507cf36
PB
22102
22103 switch (meabi_flags)
33a392fb 22104 {
d507cf36 22105 case EF_ARM_EABI_UNKNOWN:
7cc69913 22106#endif
d507cf36
PB
22107 /* Set the flags in the private structure. */
22108 if (uses_apcs_26) flags |= F_APCS26;
22109 if (support_interwork) flags |= F_INTERWORK;
22110 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 22111 if (pic_code) flags |= F_PIC;
e74cfd16 22112 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
22113 flags |= F_SOFT_FLOAT;
22114
d507cf36
PB
22115 switch (mfloat_abi_opt)
22116 {
22117 case ARM_FLOAT_ABI_SOFT:
22118 case ARM_FLOAT_ABI_SOFTFP:
22119 flags |= F_SOFT_FLOAT;
22120 break;
33a392fb 22121
d507cf36
PB
22122 case ARM_FLOAT_ABI_HARD:
22123 if (flags & F_SOFT_FLOAT)
22124 as_bad (_("hard-float conflicts with specified fpu"));
22125 break;
22126 }
03b1477f 22127
e74cfd16
PB
22128 /* Using pure-endian doubles (even if soft-float). */
22129 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 22130 flags |= F_VFP_FLOAT;
f17c130b 22131
fde78edd 22132#if defined OBJ_ELF
e74cfd16 22133 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 22134 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
22135 break;
22136
8cb51566 22137 case EF_ARM_EABI_VER4:
3a4a14e9 22138 case EF_ARM_EABI_VER5:
c19d1205 22139 /* No additional flags to set. */
d507cf36
PB
22140 break;
22141
22142 default:
22143 abort ();
22144 }
7cc69913 22145#endif
b99bd4ef
NC
22146 bfd_set_private_flags (stdoutput, flags);
22147
22148 /* We have run out flags in the COFF header to encode the
22149 status of ATPCS support, so instead we create a dummy,
c19d1205 22150 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
22151 if (atpcs)
22152 {
22153 asection * sec;
22154
22155 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22156
22157 if (sec != NULL)
22158 {
22159 bfd_set_section_flags
22160 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22161 bfd_set_section_size (stdoutput, sec, 0);
22162 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22163 }
22164 }
7cc69913 22165 }
f17c130b 22166#endif
b99bd4ef
NC
22167
22168 /* Record the CPU type as well. */
2d447fca
JM
22169 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22170 mach = bfd_mach_arm_iWMMXt2;
22171 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 22172 mach = bfd_mach_arm_iWMMXt;
e74cfd16 22173 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 22174 mach = bfd_mach_arm_XScale;
e74cfd16 22175 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 22176 mach = bfd_mach_arm_ep9312;
e74cfd16 22177 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 22178 mach = bfd_mach_arm_5TE;
e74cfd16 22179 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 22180 {
e74cfd16 22181 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22182 mach = bfd_mach_arm_5T;
22183 else
22184 mach = bfd_mach_arm_5;
22185 }
e74cfd16 22186 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 22187 {
e74cfd16 22188 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22189 mach = bfd_mach_arm_4T;
22190 else
22191 mach = bfd_mach_arm_4;
22192 }
e74cfd16 22193 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 22194 mach = bfd_mach_arm_3M;
e74cfd16
PB
22195 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22196 mach = bfd_mach_arm_3;
22197 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22198 mach = bfd_mach_arm_2a;
22199 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22200 mach = bfd_mach_arm_2;
22201 else
22202 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
22203
22204 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22205}
22206
c19d1205 22207/* Command line processing. */
b99bd4ef 22208
c19d1205
ZW
22209/* md_parse_option
22210 Invocation line includes a switch not recognized by the base assembler.
22211 See if it's a processor-specific option.
b99bd4ef 22212
c19d1205
ZW
22213 This routine is somewhat complicated by the need for backwards
22214 compatibility (since older releases of gcc can't be changed).
22215 The new options try to make the interface as compatible as
22216 possible with GCC.
b99bd4ef 22217
c19d1205 22218 New options (supported) are:
b99bd4ef 22219
c19d1205
ZW
22220 -mcpu=<cpu name> Assemble for selected processor
22221 -march=<architecture name> Assemble for selected architecture
22222 -mfpu=<fpu architecture> Assemble for selected FPU.
22223 -EB/-mbig-endian Big-endian
22224 -EL/-mlittle-endian Little-endian
22225 -k Generate PIC code
22226 -mthumb Start in Thumb mode
22227 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 22228
278df34e 22229 -m[no-]warn-deprecated Warn about deprecated features
267bf995 22230
c19d1205 22231 For now we will also provide support for:
b99bd4ef 22232
c19d1205
ZW
22233 -mapcs-32 32-bit Program counter
22234 -mapcs-26 26-bit Program counter
22235 -macps-float Floats passed in FP registers
22236 -mapcs-reentrant Reentrant code
22237 -matpcs
22238 (sometime these will probably be replaced with -mapcs=<list of options>
22239 and -matpcs=<list of options>)
b99bd4ef 22240
c19d1205
ZW
22241 The remaining options are only supported for back-wards compatibility.
22242 Cpu variants, the arm part is optional:
22243 -m[arm]1 Currently not supported.
22244 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22245 -m[arm]3 Arm 3 processor
22246 -m[arm]6[xx], Arm 6 processors
22247 -m[arm]7[xx][t][[d]m] Arm 7 processors
22248 -m[arm]8[10] Arm 8 processors
22249 -m[arm]9[20][tdmi] Arm 9 processors
22250 -mstrongarm[110[0]] StrongARM processors
22251 -mxscale XScale processors
22252 -m[arm]v[2345[t[e]]] Arm architectures
22253 -mall All (except the ARM1)
22254 FP variants:
22255 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22256 -mfpe-old (No float load/store multiples)
22257 -mvfpxd VFP Single precision
22258 -mvfp All VFP
22259 -mno-fpu Disable all floating point instructions
b99bd4ef 22260
c19d1205
ZW
22261 The following CPU names are recognized:
22262 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22263 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22264 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22265 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22266 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22267 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22268 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 22269
c19d1205 22270 */
b99bd4ef 22271
c19d1205 22272const char * md_shortopts = "m:k";
b99bd4ef 22273
c19d1205
ZW
22274#ifdef ARM_BI_ENDIAN
22275#define OPTION_EB (OPTION_MD_BASE + 0)
22276#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 22277#else
c19d1205
ZW
22278#if TARGET_BYTES_BIG_ENDIAN
22279#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 22280#else
c19d1205
ZW
22281#define OPTION_EL (OPTION_MD_BASE + 1)
22282#endif
b99bd4ef 22283#endif
845b51d6 22284#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 22285
c19d1205 22286struct option md_longopts[] =
b99bd4ef 22287{
c19d1205
ZW
22288#ifdef OPTION_EB
22289 {"EB", no_argument, NULL, OPTION_EB},
22290#endif
22291#ifdef OPTION_EL
22292 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 22293#endif
845b51d6 22294 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
22295 {NULL, no_argument, NULL, 0}
22296};
b99bd4ef 22297
c19d1205 22298size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 22299
c19d1205 22300struct arm_option_table
b99bd4ef 22301{
c19d1205
ZW
22302 char *option; /* Option name to match. */
22303 char *help; /* Help information. */
22304 int *var; /* Variable to change. */
22305 int value; /* What to change it to. */
22306 char *deprecated; /* If non-null, print this message. */
22307};
b99bd4ef 22308
c19d1205
ZW
22309struct arm_option_table arm_opts[] =
22310{
22311 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22312 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22313 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22314 &support_interwork, 1, NULL},
22315 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22316 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22317 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22318 1, NULL},
22319 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22320 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22321 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22322 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22323 NULL},
b99bd4ef 22324
c19d1205
ZW
22325 /* These are recognized by the assembler, but have no affect on code. */
22326 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22327 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
22328
22329 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22330 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22331 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
22332 {NULL, NULL, NULL, 0, NULL}
22333};
22334
22335struct arm_legacy_option_table
22336{
22337 char *option; /* Option name to match. */
22338 const arm_feature_set **var; /* Variable to change. */
22339 const arm_feature_set value; /* What to change it to. */
22340 char *deprecated; /* If non-null, print this message. */
22341};
b99bd4ef 22342
e74cfd16
PB
22343const struct arm_legacy_option_table arm_legacy_opts[] =
22344{
c19d1205
ZW
22345 /* DON'T add any new processors to this list -- we want the whole list
22346 to go away... Add them to the processors table instead. */
e74cfd16
PB
22347 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22348 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22349 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22350 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22351 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22352 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22353 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22354 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22355 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22356 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22357 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22358 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22359 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22360 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22361 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22362 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22363 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22364 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22365 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22366 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22367 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22368 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22369 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22370 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22371 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22372 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22373 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22374 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22375 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22376 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22377 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22378 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22379 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22380 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22381 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22382 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22383 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22384 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22385 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22386 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22387 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22388 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22389 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22390 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22391 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22392 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22393 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22394 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22395 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22396 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22397 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22398 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22399 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22400 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22401 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22402 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22403 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22404 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22405 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22406 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22407 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22408 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22409 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22410 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22411 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22412 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22413 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22414 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22415 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22416 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22417 N_("use -mcpu=strongarm110")},
e74cfd16 22418 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22419 N_("use -mcpu=strongarm1100")},
e74cfd16 22420 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22421 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
22422 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22423 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22424 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 22425
c19d1205 22426 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
22427 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22428 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22429 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22430 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22431 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22432 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22433 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22434 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22435 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22436 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22437 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22438 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22439 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22440 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22441 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22442 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22443 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22444 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 22445
c19d1205 22446 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
22447 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22448 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22449 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22450 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 22451 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 22452
e74cfd16 22453 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 22454};
7ed4c4c5 22455
c19d1205 22456struct arm_cpu_option_table
7ed4c4c5 22457{
c19d1205 22458 char *name;
e74cfd16 22459 const arm_feature_set value;
c19d1205
ZW
22460 /* For some CPUs we assume an FPU unless the user explicitly sets
22461 -mfpu=... */
e74cfd16 22462 const arm_feature_set default_fpu;
ee065d83
PB
22463 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22464 case. */
22465 const char *canonical_name;
c19d1205 22466};
7ed4c4c5 22467
c19d1205
ZW
22468/* This list should, at a minimum, contain all the cpu names
22469 recognized by GCC. */
e74cfd16 22470static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 22471{
ee065d83
PB
22472 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22473 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22474 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22475 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22476 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22477 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22478 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22479 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22480 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22481 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22482 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22483 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22484 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22485 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22486 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22487 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22488 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22489 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22490 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22491 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22492 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22493 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22494 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22495 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22496 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22497 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22498 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22499 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22500 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22501 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22502 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22503 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22504 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22505 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22506 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22507 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22508 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22509 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22510 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22511 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22512 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22513 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22514 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22515 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
22516 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22517 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
22518 /* For V5 or later processors we default to using VFP; but the user
22519 should really set the FPU type explicitly. */
ee065d83
PB
22520 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22521 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22522 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22523 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22524 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22525 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22526 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22527 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22528 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22529 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22530 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22531 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22532 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22533 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22534 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22535 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22536 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22537 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22538 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22539 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22540 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
7fac0536
NC
22541 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22542 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
22543 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22544 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22545 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22546 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
4ff9b924
MGD
22547 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22548 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
ee065d83
PB
22549 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22550 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22551 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22552 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
f4c65163
MGD
22553 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22554 FPU_NONE, "Cortex-A5"},
22555 {"cortex-a8", ARM_ARCH_V7A_SEC,
22556 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22557 | FPU_NEON_EXT_V1),
4ff9b924 22558 "Cortex-A8"},
f4c65163
MGD
22559 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22560 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22561 | FPU_NEON_EXT_V1),
4ff9b924 22562 "Cortex-A9"},
90ec0d68 22563 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
eea54501 22564 FPU_ARCH_NEON_VFP_V4,
dbb1f804 22565 "Cortex-A15"},
4ff9b924
MGD
22566 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22567 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22568 "Cortex-R4F"},
22569 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22570 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
b2a5fbdc
MGD
22571 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22572 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
c19d1205 22573 /* ??? XSCALE is really an architecture. */
ee065d83 22574 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22575 /* ??? iwmmxt is not a processor. */
ee065d83 22576 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 22577 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 22578 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22579 /* Maverick */
e07e6e58 22580 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 22581 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 22582};
7ed4c4c5 22583
c19d1205 22584struct arm_arch_option_table
7ed4c4c5 22585{
c19d1205 22586 char *name;
e74cfd16
PB
22587 const arm_feature_set value;
22588 const arm_feature_set default_fpu;
c19d1205 22589};
7ed4c4c5 22590
c19d1205
ZW
22591/* This list should, at a minimum, contain all the architecture names
22592 recognized by GCC. */
e74cfd16 22593static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
22594{
22595 {"all", ARM_ANY, FPU_ARCH_FPA},
22596 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22597 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22598 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22599 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22600 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22601 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22602 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22603 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22604 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22605 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22606 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22607 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22608 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22609 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22610 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22611 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22612 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22613 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22614 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22615 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22616 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22617 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22618 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22619 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22620 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 22621 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
b2a5fbdc 22622 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
62b3e311 22623 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
22624 /* The official spelling of the ARMv7 profile variants is the dashed form.
22625 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
22626 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22627 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22628 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
22629 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22630 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22631 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
9e3c6df6 22632 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
c19d1205
ZW
22633 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22634 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 22635 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 22636 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 22637};
7ed4c4c5 22638
69133863
MGD
22639/* ISA extensions in the co-processor and main instruction set space. */
22640struct arm_option_extension_value_table
c19d1205
ZW
22641{
22642 char *name;
e74cfd16 22643 const arm_feature_set value;
69133863 22644 const arm_feature_set allowed_archs;
c19d1205 22645};
7ed4c4c5 22646
69133863
MGD
22647/* The following table must be in alphabetical order with a NULL last entry.
22648 */
22649static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 22650{
eea54501
MGD
22651 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22652 ARM_FEATURE (ARM_EXT_V7A, 0)},
69133863
MGD
22653 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22654 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22655 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
60e5ef9f
MGD
22656 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22657 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
b2a5fbdc
MGD
22658 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22659 ARM_FEATURE (ARM_EXT_V6M, 0)},
f4c65163
MGD
22660 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22661 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
90ec0d68
MGD
22662 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22663 ARM_FEATURE (ARM_EXT_V7A, 0)},
69133863 22664 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
60e5ef9f 22665 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
69133863
MGD
22666};
22667
22668/* ISA floating-point and Advanced SIMD extensions. */
22669struct arm_option_fpu_value_table
22670{
22671 char *name;
22672 const arm_feature_set value;
c19d1205 22673};
7ed4c4c5 22674
c19d1205
ZW
22675/* This list should, at a minimum, contain all the fpu names
22676 recognized by GCC. */
69133863 22677static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
22678{
22679 {"softfpa", FPU_NONE},
22680 {"fpe", FPU_ARCH_FPE},
22681 {"fpe2", FPU_ARCH_FPE},
22682 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22683 {"fpa", FPU_ARCH_FPA},
22684 {"fpa10", FPU_ARCH_FPA},
22685 {"fpa11", FPU_ARCH_FPA},
22686 {"arm7500fe", FPU_ARCH_FPA},
22687 {"softvfp", FPU_ARCH_VFP},
22688 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22689 {"vfp", FPU_ARCH_VFP_V2},
22690 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 22691 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
22692 {"vfp10", FPU_ARCH_VFP_V2},
22693 {"vfp10-r0", FPU_ARCH_VFP_V1},
22694 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
22695 {"vfpv2", FPU_ARCH_VFP_V2},
22696 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 22697 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 22698 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
22699 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22700 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22701 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
22702 {"arm1020t", FPU_ARCH_VFP_V1},
22703 {"arm1020e", FPU_ARCH_VFP_V2},
22704 {"arm1136jfs", FPU_ARCH_VFP_V2},
22705 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22706 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 22707 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 22708 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
22709 {"vfpv4", FPU_ARCH_VFP_V4},
22710 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 22711 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 22712 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
22713 {NULL, ARM_ARCH_NONE}
22714};
22715
22716struct arm_option_value_table
22717{
22718 char *name;
22719 long value;
c19d1205 22720};
7ed4c4c5 22721
e74cfd16 22722static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
22723{
22724 {"hard", ARM_FLOAT_ABI_HARD},
22725 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22726 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 22727 {NULL, 0}
c19d1205 22728};
7ed4c4c5 22729
c19d1205 22730#ifdef OBJ_ELF
3a4a14e9 22731/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 22732static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
22733{
22734 {"gnu", EF_ARM_EABI_UNKNOWN},
22735 {"4", EF_ARM_EABI_VER4},
3a4a14e9 22736 {"5", EF_ARM_EABI_VER5},
e74cfd16 22737 {NULL, 0}
c19d1205
ZW
22738};
22739#endif
7ed4c4c5 22740
c19d1205
ZW
22741struct arm_long_option_table
22742{
22743 char * option; /* Substring to match. */
22744 char * help; /* Help information. */
22745 int (* func) (char * subopt); /* Function to decode sub-option. */
22746 char * deprecated; /* If non-null, print this message. */
22747};
7ed4c4c5 22748
c921be7d 22749static bfd_boolean
e74cfd16 22750arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 22751{
21d799b5
NC
22752 arm_feature_set *ext_set = (arm_feature_set *)
22753 xmalloc (sizeof (arm_feature_set));
e74cfd16 22754
69133863
MGD
22755 /* We insist on extensions being specified in alphabetical order, and with
22756 extensions being added before being removed. We achieve this by having
22757 the global ARM_EXTENSIONS table in alphabetical order, and using the
22758 ADDING_VALUE variable to indicate whether we are adding an extension (1)
22759 or removing it (0) and only allowing it to change in the order
22760 -1 -> 1 -> 0. */
22761 const struct arm_option_extension_value_table * opt = NULL;
22762 int adding_value = -1;
22763
e74cfd16
PB
22764 /* Copy the feature set, so that we can modify it. */
22765 *ext_set = **opt_p;
22766 *opt_p = ext_set;
22767
c19d1205 22768 while (str != NULL && *str != 0)
7ed4c4c5 22769 {
c19d1205 22770 char * ext;
69133863 22771 size_t optlen;
7ed4c4c5 22772
c19d1205
ZW
22773 if (*str != '+')
22774 {
22775 as_bad (_("invalid architectural extension"));
c921be7d 22776 return FALSE;
c19d1205 22777 }
7ed4c4c5 22778
c19d1205
ZW
22779 str++;
22780 ext = strchr (str, '+');
7ed4c4c5 22781
c19d1205
ZW
22782 if (ext != NULL)
22783 optlen = ext - str;
22784 else
22785 optlen = strlen (str);
7ed4c4c5 22786
69133863
MGD
22787 if (optlen >= 2
22788 && strncmp (str, "no", 2) == 0)
22789 {
22790 if (adding_value != 0)
22791 {
22792 adding_value = 0;
22793 opt = arm_extensions;
22794 }
22795
22796 optlen -= 2;
22797 str += 2;
22798 }
22799 else if (optlen > 0)
22800 {
22801 if (adding_value == -1)
22802 {
22803 adding_value = 1;
22804 opt = arm_extensions;
22805 }
22806 else if (adding_value != 1)
22807 {
22808 as_bad (_("must specify extensions to add before specifying "
22809 "those to remove"));
22810 return FALSE;
22811 }
22812 }
22813
c19d1205
ZW
22814 if (optlen == 0)
22815 {
22816 as_bad (_("missing architectural extension"));
c921be7d 22817 return FALSE;
c19d1205 22818 }
7ed4c4c5 22819
69133863
MGD
22820 gas_assert (adding_value != -1);
22821 gas_assert (opt != NULL);
22822
22823 /* Scan over the options table trying to find an exact match. */
22824 for (; opt->name != NULL; opt++)
22825 if (strncmp (opt->name, str, optlen) == 0
22826 && strlen (opt->name) == optlen)
c19d1205 22827 {
69133863
MGD
22828 /* Check we can apply the extension to this architecture. */
22829 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
22830 {
22831 as_bad (_("extension does not apply to the base architecture"));
22832 return FALSE;
22833 }
22834
22835 /* Add or remove the extension. */
22836 if (adding_value)
22837 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22838 else
22839 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
22840
c19d1205
ZW
22841 break;
22842 }
7ed4c4c5 22843
c19d1205
ZW
22844 if (opt->name == NULL)
22845 {
69133863
MGD
22846 /* Did we fail to find an extension because it wasn't specified in
22847 alphabetical order, or because it does not exist? */
22848
22849 for (opt = arm_extensions; opt->name != NULL; opt++)
22850 if (strncmp (opt->name, str, optlen) == 0)
22851 break;
22852
22853 if (opt->name == NULL)
22854 as_bad (_("unknown architectural extension `%s'"), str);
22855 else
22856 as_bad (_("architectural extensions must be specified in "
22857 "alphabetical order"));
22858
c921be7d 22859 return FALSE;
c19d1205 22860 }
69133863
MGD
22861 else
22862 {
22863 /* We should skip the extension we've just matched the next time
22864 round. */
22865 opt++;
22866 }
7ed4c4c5 22867
c19d1205
ZW
22868 str = ext;
22869 };
7ed4c4c5 22870
c921be7d 22871 return TRUE;
c19d1205 22872}
7ed4c4c5 22873
c921be7d 22874static bfd_boolean
c19d1205 22875arm_parse_cpu (char * str)
7ed4c4c5 22876{
e74cfd16 22877 const struct arm_cpu_option_table * opt;
c19d1205
ZW
22878 char * ext = strchr (str, '+');
22879 int optlen;
7ed4c4c5 22880
c19d1205
ZW
22881 if (ext != NULL)
22882 optlen = ext - str;
7ed4c4c5 22883 else
c19d1205 22884 optlen = strlen (str);
7ed4c4c5 22885
c19d1205 22886 if (optlen == 0)
7ed4c4c5 22887 {
c19d1205 22888 as_bad (_("missing cpu name `%s'"), str);
c921be7d 22889 return FALSE;
7ed4c4c5
NC
22890 }
22891
c19d1205
ZW
22892 for (opt = arm_cpus; opt->name != NULL; opt++)
22893 if (strncmp (opt->name, str, optlen) == 0)
22894 {
e74cfd16
PB
22895 mcpu_cpu_opt = &opt->value;
22896 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 22897 if (opt->canonical_name)
5f4273c7 22898 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
22899 else
22900 {
22901 int i;
c921be7d 22902
ee065d83
PB
22903 for (i = 0; i < optlen; i++)
22904 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22905 selected_cpu_name[i] = 0;
22906 }
7ed4c4c5 22907
c19d1205
ZW
22908 if (ext != NULL)
22909 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 22910
c921be7d 22911 return TRUE;
c19d1205 22912 }
7ed4c4c5 22913
c19d1205 22914 as_bad (_("unknown cpu `%s'"), str);
c921be7d 22915 return FALSE;
7ed4c4c5
NC
22916}
22917
c921be7d 22918static bfd_boolean
c19d1205 22919arm_parse_arch (char * str)
7ed4c4c5 22920{
e74cfd16 22921 const struct arm_arch_option_table *opt;
c19d1205
ZW
22922 char *ext = strchr (str, '+');
22923 int optlen;
7ed4c4c5 22924
c19d1205
ZW
22925 if (ext != NULL)
22926 optlen = ext - str;
7ed4c4c5 22927 else
c19d1205 22928 optlen = strlen (str);
7ed4c4c5 22929
c19d1205 22930 if (optlen == 0)
7ed4c4c5 22931 {
c19d1205 22932 as_bad (_("missing architecture name `%s'"), str);
c921be7d 22933 return FALSE;
7ed4c4c5
NC
22934 }
22935
c19d1205 22936 for (opt = arm_archs; opt->name != NULL; opt++)
69133863 22937 if (strncmp (opt->name, str, optlen) == 0)
c19d1205 22938 {
e74cfd16
PB
22939 march_cpu_opt = &opt->value;
22940 march_fpu_opt = &opt->default_fpu;
5f4273c7 22941 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 22942
c19d1205
ZW
22943 if (ext != NULL)
22944 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 22945
c921be7d 22946 return TRUE;
c19d1205
ZW
22947 }
22948
22949 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 22950 return FALSE;
7ed4c4c5 22951}
eb043451 22952
c921be7d 22953static bfd_boolean
c19d1205
ZW
22954arm_parse_fpu (char * str)
22955{
69133863 22956 const struct arm_option_fpu_value_table * opt;
b99bd4ef 22957
c19d1205
ZW
22958 for (opt = arm_fpus; opt->name != NULL; opt++)
22959 if (streq (opt->name, str))
22960 {
e74cfd16 22961 mfpu_opt = &opt->value;
c921be7d 22962 return TRUE;
c19d1205 22963 }
b99bd4ef 22964
c19d1205 22965 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 22966 return FALSE;
c19d1205
ZW
22967}
22968
c921be7d 22969static bfd_boolean
c19d1205 22970arm_parse_float_abi (char * str)
b99bd4ef 22971{
e74cfd16 22972 const struct arm_option_value_table * opt;
b99bd4ef 22973
c19d1205
ZW
22974 for (opt = arm_float_abis; opt->name != NULL; opt++)
22975 if (streq (opt->name, str))
22976 {
22977 mfloat_abi_opt = opt->value;
c921be7d 22978 return TRUE;
c19d1205 22979 }
cc8a6dd0 22980
c19d1205 22981 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 22982 return FALSE;
c19d1205 22983}
b99bd4ef 22984
c19d1205 22985#ifdef OBJ_ELF
c921be7d 22986static bfd_boolean
c19d1205
ZW
22987arm_parse_eabi (char * str)
22988{
e74cfd16 22989 const struct arm_option_value_table *opt;
cc8a6dd0 22990
c19d1205
ZW
22991 for (opt = arm_eabis; opt->name != NULL; opt++)
22992 if (streq (opt->name, str))
22993 {
22994 meabi_flags = opt->value;
c921be7d 22995 return TRUE;
c19d1205
ZW
22996 }
22997 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 22998 return FALSE;
c19d1205
ZW
22999}
23000#endif
cc8a6dd0 23001
c921be7d 23002static bfd_boolean
e07e6e58
NC
23003arm_parse_it_mode (char * str)
23004{
c921be7d 23005 bfd_boolean ret = TRUE;
e07e6e58
NC
23006
23007 if (streq ("arm", str))
23008 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23009 else if (streq ("thumb", str))
23010 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23011 else if (streq ("always", str))
23012 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23013 else if (streq ("never", str))
23014 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23015 else
23016 {
23017 as_bad (_("unknown implicit IT mode `%s', should be "\
23018 "arm, thumb, always, or never."), str);
c921be7d 23019 ret = FALSE;
e07e6e58
NC
23020 }
23021
23022 return ret;
23023}
23024
c19d1205
ZW
23025struct arm_long_option_table arm_long_opts[] =
23026{
23027 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23028 arm_parse_cpu, NULL},
23029 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23030 arm_parse_arch, NULL},
23031 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23032 arm_parse_fpu, NULL},
23033 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23034 arm_parse_float_abi, NULL},
23035#ifdef OBJ_ELF
7fac0536 23036 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
23037 arm_parse_eabi, NULL},
23038#endif
e07e6e58
NC
23039 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23040 arm_parse_it_mode, NULL},
c19d1205
ZW
23041 {NULL, NULL, 0, NULL}
23042};
cc8a6dd0 23043
c19d1205
ZW
23044int
23045md_parse_option (int c, char * arg)
23046{
23047 struct arm_option_table *opt;
e74cfd16 23048 const struct arm_legacy_option_table *fopt;
c19d1205 23049 struct arm_long_option_table *lopt;
b99bd4ef 23050
c19d1205 23051 switch (c)
b99bd4ef 23052 {
c19d1205
ZW
23053#ifdef OPTION_EB
23054 case OPTION_EB:
23055 target_big_endian = 1;
23056 break;
23057#endif
cc8a6dd0 23058
c19d1205
ZW
23059#ifdef OPTION_EL
23060 case OPTION_EL:
23061 target_big_endian = 0;
23062 break;
23063#endif
b99bd4ef 23064
845b51d6
PB
23065 case OPTION_FIX_V4BX:
23066 fix_v4bx = TRUE;
23067 break;
23068
c19d1205
ZW
23069 case 'a':
23070 /* Listing option. Just ignore these, we don't support additional
23071 ones. */
23072 return 0;
b99bd4ef 23073
c19d1205
ZW
23074 default:
23075 for (opt = arm_opts; opt->option != NULL; opt++)
23076 {
23077 if (c == opt->option[0]
23078 && ((arg == NULL && opt->option[1] == 0)
23079 || streq (arg, opt->option + 1)))
23080 {
c19d1205 23081 /* If the option is deprecated, tell the user. */
278df34e 23082 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
23083 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23084 arg ? arg : "", _(opt->deprecated));
b99bd4ef 23085
c19d1205
ZW
23086 if (opt->var != NULL)
23087 *opt->var = opt->value;
cc8a6dd0 23088
c19d1205
ZW
23089 return 1;
23090 }
23091 }
b99bd4ef 23092
e74cfd16
PB
23093 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23094 {
23095 if (c == fopt->option[0]
23096 && ((arg == NULL && fopt->option[1] == 0)
23097 || streq (arg, fopt->option + 1)))
23098 {
e74cfd16 23099 /* If the option is deprecated, tell the user. */
278df34e 23100 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
23101 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23102 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
23103
23104 if (fopt->var != NULL)
23105 *fopt->var = &fopt->value;
23106
23107 return 1;
23108 }
23109 }
23110
c19d1205
ZW
23111 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23112 {
23113 /* These options are expected to have an argument. */
23114 if (c == lopt->option[0]
23115 && arg != NULL
23116 && strncmp (arg, lopt->option + 1,
23117 strlen (lopt->option + 1)) == 0)
23118 {
c19d1205 23119 /* If the option is deprecated, tell the user. */
278df34e 23120 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
23121 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23122 _(lopt->deprecated));
b99bd4ef 23123
c19d1205
ZW
23124 /* Call the sup-option parser. */
23125 return lopt->func (arg + strlen (lopt->option) - 1);
23126 }
23127 }
a737bd4d 23128
c19d1205
ZW
23129 return 0;
23130 }
a394c00f 23131
c19d1205
ZW
23132 return 1;
23133}
a394c00f 23134
c19d1205
ZW
23135void
23136md_show_usage (FILE * fp)
a394c00f 23137{
c19d1205
ZW
23138 struct arm_option_table *opt;
23139 struct arm_long_option_table *lopt;
a394c00f 23140
c19d1205 23141 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 23142
c19d1205
ZW
23143 for (opt = arm_opts; opt->option != NULL; opt++)
23144 if (opt->help != NULL)
23145 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 23146
c19d1205
ZW
23147 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23148 if (lopt->help != NULL)
23149 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 23150
c19d1205
ZW
23151#ifdef OPTION_EB
23152 fprintf (fp, _("\
23153 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
23154#endif
23155
c19d1205
ZW
23156#ifdef OPTION_EL
23157 fprintf (fp, _("\
23158 -EL assemble code for a little-endian cpu\n"));
a737bd4d 23159#endif
845b51d6
PB
23160
23161 fprintf (fp, _("\
23162 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 23163}
ee065d83
PB
23164
23165
23166#ifdef OBJ_ELF
62b3e311
PB
23167typedef struct
23168{
23169 int val;
23170 arm_feature_set flags;
23171} cpu_arch_ver_table;
23172
23173/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23174 least features first. */
23175static const cpu_arch_ver_table cpu_arch_ver[] =
23176{
23177 {1, ARM_ARCH_V4},
23178 {2, ARM_ARCH_V4T},
23179 {3, ARM_ARCH_V5},
ee3c0378 23180 {3, ARM_ARCH_V5T},
62b3e311
PB
23181 {4, ARM_ARCH_V5TE},
23182 {5, ARM_ARCH_V5TEJ},
23183 {6, ARM_ARCH_V6},
7e806470 23184 {9, ARM_ARCH_V6K},
f4c65163 23185 {7, ARM_ARCH_V6Z},
91e22acd 23186 {11, ARM_ARCH_V6M},
b2a5fbdc 23187 {12, ARM_ARCH_V6SM},
7e806470 23188 {8, ARM_ARCH_V6T2},
62b3e311
PB
23189 {10, ARM_ARCH_V7A},
23190 {10, ARM_ARCH_V7R},
23191 {10, ARM_ARCH_V7M},
23192 {0, ARM_ARCH_NONE}
23193};
23194
ee3c0378
AS
23195/* Set an attribute if it has not already been set by the user. */
23196static void
23197aeabi_set_attribute_int (int tag, int value)
23198{
23199 if (tag < 1
23200 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23201 || !attributes_set_explicitly[tag])
23202 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23203}
23204
23205static void
23206aeabi_set_attribute_string (int tag, const char *value)
23207{
23208 if (tag < 1
23209 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23210 || !attributes_set_explicitly[tag])
23211 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23212}
23213
ee065d83
PB
23214/* Set the public EABI object attributes. */
23215static void
23216aeabi_set_public_attributes (void)
23217{
23218 int arch;
90ec0d68 23219 int virt_sec = 0;
e74cfd16 23220 arm_feature_set flags;
62b3e311
PB
23221 arm_feature_set tmp;
23222 const cpu_arch_ver_table *p;
ee065d83
PB
23223
23224 /* Choose the architecture based on the capabilities of the requested cpu
23225 (if any) and/or the instructions actually used. */
e74cfd16
PB
23226 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23227 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23228 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
23229 /*Allow the user to override the reported architecture. */
23230 if (object_arch)
23231 {
23232 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23233 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23234 }
23235
251665fc
MGD
23236 /* We need to make sure that the attributes do not identify us as v6S-M
23237 when the only v6S-M feature in use is the Operating System Extensions. */
23238 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23239 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23240 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23241
62b3e311
PB
23242 tmp = flags;
23243 arch = 0;
23244 for (p = cpu_arch_ver; p->val; p++)
23245 {
23246 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23247 {
23248 arch = p->val;
23249 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23250 }
23251 }
ee065d83 23252
9e3c6df6
PB
23253 /* The table lookup above finds the last architecture to contribute
23254 a new feature. Unfortunately, Tag13 is a subset of the union of
23255 v6T2 and v7-M, so it is never seen as contributing a new feature.
23256 We can not search for the last entry which is entirely used,
23257 because if no CPU is specified we build up only those flags
23258 actually used. Perhaps we should separate out the specified
23259 and implicit cases. Avoid taking this path for -march=all by
23260 checking for contradictory v7-A / v7-M features. */
23261 if (arch == 10
23262 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23263 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23264 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23265 arch = 13;
23266
ee065d83
PB
23267 /* Tag_CPU_name. */
23268 if (selected_cpu_name[0])
23269 {
91d6fa6a 23270 char *q;
ee065d83 23271
91d6fa6a
NC
23272 q = selected_cpu_name;
23273 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
23274 {
23275 int i;
5f4273c7 23276
91d6fa6a
NC
23277 q += 4;
23278 for (i = 0; q[i]; i++)
23279 q[i] = TOUPPER (q[i]);
ee065d83 23280 }
91d6fa6a 23281 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 23282 }
62f3b8c8 23283
ee065d83 23284 /* Tag_CPU_arch. */
ee3c0378 23285 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 23286
62b3e311
PB
23287 /* Tag_CPU_arch_profile. */
23288 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 23289 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 23290 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 23291 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 23292 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 23293 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 23294
ee065d83 23295 /* Tag_ARM_ISA_use. */
ee3c0378
AS
23296 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23297 || arch == 0)
23298 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 23299
ee065d83 23300 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
23301 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23302 || arch == 0)
23303 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23304 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 23305
ee065d83 23306 /* Tag_VFP_arch. */
62f3b8c8
PB
23307 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23308 aeabi_set_attribute_int (Tag_VFP_arch,
23309 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23310 ? 5 : 6);
23311 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 23312 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 23313 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
23314 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23315 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23316 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23317 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23318 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23319 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 23320
4547cb56
NC
23321 /* Tag_ABI_HardFP_use. */
23322 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23323 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23324 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23325
ee065d83 23326 /* Tag_WMMX_arch. */
ee3c0378
AS
23327 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23328 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23329 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23330 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 23331
ee3c0378 23332 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 23333 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
23334 aeabi_set_attribute_int
23335 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23336 ? 2 : 1));
23337
ee3c0378 23338 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 23339 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 23340 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56
NC
23341
23342 /* Tag_DIV_use. */
eea54501
MGD
23343 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23344 aeabi_set_attribute_int (Tag_DIV_use, 2);
23345 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
4547cb56 23346 aeabi_set_attribute_int (Tag_DIV_use, 0);
4547cb56
NC
23347 else
23348 aeabi_set_attribute_int (Tag_DIV_use, 1);
60e5ef9f
MGD
23349
23350 /* Tag_MP_extension_use. */
23351 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23352 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
23353
23354 /* Tag Virtualization_use. */
23355 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
23356 virt_sec |= 1;
23357 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23358 virt_sec |= 2;
23359 if (virt_sec != 0)
23360 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
23361}
23362
104d59d1 23363/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
23364void
23365arm_md_end (void)
23366{
ee065d83
PB
23367 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23368 return;
23369
23370 aeabi_set_public_attributes ();
ee065d83 23371}
8463be01 23372#endif /* OBJ_ELF */
ee065d83
PB
23373
23374
23375/* Parse a .cpu directive. */
23376
23377static void
23378s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23379{
e74cfd16 23380 const struct arm_cpu_option_table *opt;
ee065d83
PB
23381 char *name;
23382 char saved_char;
23383
23384 name = input_line_pointer;
5f4273c7 23385 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23386 input_line_pointer++;
23387 saved_char = *input_line_pointer;
23388 *input_line_pointer = 0;
23389
23390 /* Skip the first "all" entry. */
23391 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23392 if (streq (opt->name, name))
23393 {
e74cfd16
PB
23394 mcpu_cpu_opt = &opt->value;
23395 selected_cpu = opt->value;
ee065d83 23396 if (opt->canonical_name)
5f4273c7 23397 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23398 else
23399 {
23400 int i;
23401 for (i = 0; opt->name[i]; i++)
23402 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23403 selected_cpu_name[i] = 0;
23404 }
e74cfd16 23405 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23406 *input_line_pointer = saved_char;
23407 demand_empty_rest_of_line ();
23408 return;
23409 }
23410 as_bad (_("unknown cpu `%s'"), name);
23411 *input_line_pointer = saved_char;
23412 ignore_rest_of_line ();
23413}
23414
23415
23416/* Parse a .arch directive. */
23417
23418static void
23419s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23420{
e74cfd16 23421 const struct arm_arch_option_table *opt;
ee065d83
PB
23422 char saved_char;
23423 char *name;
23424
23425 name = input_line_pointer;
5f4273c7 23426 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23427 input_line_pointer++;
23428 saved_char = *input_line_pointer;
23429 *input_line_pointer = 0;
23430
23431 /* Skip the first "all" entry. */
23432 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23433 if (streq (opt->name, name))
23434 {
e74cfd16
PB
23435 mcpu_cpu_opt = &opt->value;
23436 selected_cpu = opt->value;
5f4273c7 23437 strcpy (selected_cpu_name, opt->name);
e74cfd16 23438 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23439 *input_line_pointer = saved_char;
23440 demand_empty_rest_of_line ();
23441 return;
23442 }
23443
23444 as_bad (_("unknown architecture `%s'\n"), name);
23445 *input_line_pointer = saved_char;
23446 ignore_rest_of_line ();
23447}
23448
23449
7a1d4c38
PB
23450/* Parse a .object_arch directive. */
23451
23452static void
23453s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23454{
23455 const struct arm_arch_option_table *opt;
23456 char saved_char;
23457 char *name;
23458
23459 name = input_line_pointer;
5f4273c7 23460 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
23461 input_line_pointer++;
23462 saved_char = *input_line_pointer;
23463 *input_line_pointer = 0;
23464
23465 /* Skip the first "all" entry. */
23466 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23467 if (streq (opt->name, name))
23468 {
23469 object_arch = &opt->value;
23470 *input_line_pointer = saved_char;
23471 demand_empty_rest_of_line ();
23472 return;
23473 }
23474
23475 as_bad (_("unknown architecture `%s'\n"), name);
23476 *input_line_pointer = saved_char;
23477 ignore_rest_of_line ();
23478}
23479
69133863
MGD
23480/* Parse a .arch_extension directive. */
23481
23482static void
23483s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23484{
23485 const struct arm_option_extension_value_table *opt;
23486 char saved_char;
23487 char *name;
23488 int adding_value = 1;
23489
23490 name = input_line_pointer;
23491 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23492 input_line_pointer++;
23493 saved_char = *input_line_pointer;
23494 *input_line_pointer = 0;
23495
23496 if (strlen (name) >= 2
23497 && strncmp (name, "no", 2) == 0)
23498 {
23499 adding_value = 0;
23500 name += 2;
23501 }
23502
23503 for (opt = arm_extensions; opt->name != NULL; opt++)
23504 if (streq (opt->name, name))
23505 {
23506 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23507 {
23508 as_bad (_("architectural extension `%s' is not allowed for the "
23509 "current base architecture"), name);
23510 break;
23511 }
23512
23513 if (adding_value)
23514 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23515 else
23516 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23517
23518 mcpu_cpu_opt = &selected_cpu;
23519 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23520 *input_line_pointer = saved_char;
23521 demand_empty_rest_of_line ();
23522 return;
23523 }
23524
23525 if (opt->name == NULL)
23526 as_bad (_("unknown architecture `%s'\n"), name);
23527
23528 *input_line_pointer = saved_char;
23529 ignore_rest_of_line ();
23530}
23531
ee065d83
PB
23532/* Parse a .fpu directive. */
23533
23534static void
23535s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23536{
69133863 23537 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
23538 char saved_char;
23539 char *name;
23540
23541 name = input_line_pointer;
5f4273c7 23542 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23543 input_line_pointer++;
23544 saved_char = *input_line_pointer;
23545 *input_line_pointer = 0;
5f4273c7 23546
ee065d83
PB
23547 for (opt = arm_fpus; opt->name != NULL; opt++)
23548 if (streq (opt->name, name))
23549 {
e74cfd16
PB
23550 mfpu_opt = &opt->value;
23551 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23552 *input_line_pointer = saved_char;
23553 demand_empty_rest_of_line ();
23554 return;
23555 }
23556
23557 as_bad (_("unknown floating point format `%s'\n"), name);
23558 *input_line_pointer = saved_char;
23559 ignore_rest_of_line ();
23560}
ee065d83 23561
794ba86a 23562/* Copy symbol information. */
f31fef98 23563
794ba86a
DJ
23564void
23565arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23566{
23567 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23568}
e04befd0 23569
f31fef98 23570#ifdef OBJ_ELF
e04befd0
AS
23571/* Given a symbolic attribute NAME, return the proper integer value.
23572 Returns -1 if the attribute is not known. */
f31fef98 23573
e04befd0
AS
23574int
23575arm_convert_symbolic_attribute (const char *name)
23576{
f31fef98
NC
23577 static const struct
23578 {
23579 const char * name;
23580 const int tag;
23581 }
23582 attribute_table[] =
23583 {
23584 /* When you modify this table you should
23585 also modify the list in doc/c-arm.texi. */
e04befd0 23586#define T(tag) {#tag, tag}
f31fef98
NC
23587 T (Tag_CPU_raw_name),
23588 T (Tag_CPU_name),
23589 T (Tag_CPU_arch),
23590 T (Tag_CPU_arch_profile),
23591 T (Tag_ARM_ISA_use),
23592 T (Tag_THUMB_ISA_use),
75375b3e 23593 T (Tag_FP_arch),
f31fef98
NC
23594 T (Tag_VFP_arch),
23595 T (Tag_WMMX_arch),
23596 T (Tag_Advanced_SIMD_arch),
23597 T (Tag_PCS_config),
23598 T (Tag_ABI_PCS_R9_use),
23599 T (Tag_ABI_PCS_RW_data),
23600 T (Tag_ABI_PCS_RO_data),
23601 T (Tag_ABI_PCS_GOT_use),
23602 T (Tag_ABI_PCS_wchar_t),
23603 T (Tag_ABI_FP_rounding),
23604 T (Tag_ABI_FP_denormal),
23605 T (Tag_ABI_FP_exceptions),
23606 T (Tag_ABI_FP_user_exceptions),
23607 T (Tag_ABI_FP_number_model),
75375b3e 23608 T (Tag_ABI_align_needed),
f31fef98 23609 T (Tag_ABI_align8_needed),
75375b3e 23610 T (Tag_ABI_align_preserved),
f31fef98
NC
23611 T (Tag_ABI_align8_preserved),
23612 T (Tag_ABI_enum_size),
23613 T (Tag_ABI_HardFP_use),
23614 T (Tag_ABI_VFP_args),
23615 T (Tag_ABI_WMMX_args),
23616 T (Tag_ABI_optimization_goals),
23617 T (Tag_ABI_FP_optimization_goals),
23618 T (Tag_compatibility),
23619 T (Tag_CPU_unaligned_access),
75375b3e 23620 T (Tag_FP_HP_extension),
f31fef98
NC
23621 T (Tag_VFP_HP_extension),
23622 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
23623 T (Tag_MPextension_use),
23624 T (Tag_DIV_use),
f31fef98
NC
23625 T (Tag_nodefaults),
23626 T (Tag_also_compatible_with),
23627 T (Tag_conformance),
23628 T (Tag_T2EE_use),
23629 T (Tag_Virtualization_use),
cd21e546 23630 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 23631#undef T
f31fef98 23632 };
e04befd0
AS
23633 unsigned int i;
23634
23635 if (name == NULL)
23636 return -1;
23637
f31fef98 23638 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 23639 if (streq (name, attribute_table[i].name))
e04befd0
AS
23640 return attribute_table[i].tag;
23641
23642 return -1;
23643}
267bf995
RR
23644
23645
23646/* Apply sym value for relocations only in the case that
23647 they are for local symbols and you have the respective
23648 architectural feature for blx and simple switches. */
23649int
23650arm_apply_sym_value (struct fix * fixP)
23651{
23652 if (fixP->fx_addsy
23653 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23654 && !S_IS_EXTERNAL (fixP->fx_addsy))
23655 {
23656 switch (fixP->fx_r_type)
23657 {
23658 case BFD_RELOC_ARM_PCREL_BLX:
23659 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23660 if (ARM_IS_FUNC (fixP->fx_addsy))
23661 return 1;
23662 break;
23663
23664 case BFD_RELOC_ARM_PCREL_CALL:
23665 case BFD_RELOC_THUMB_PCREL_BLX:
23666 if (THUMB_IS_FUNC (fixP->fx_addsy))
23667 return 1;
23668 break;
23669
23670 default:
23671 break;
23672 }
23673
23674 }
23675 return 0;
23676}
f31fef98 23677#endif /* OBJ_ELF */