]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: FIX: Use defines for device map access
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107};
108
3b451610
AK
109/* map selector for map managment
110 */
238c0a71
AK
111#define MAP_0 0
112#define MAP_1 1
113#define MAP_X -1
3b451610 114
cdddbdbc
DW
115/* RAID map configuration infos. */
116struct imsm_map {
117 __u32 pba_of_lba0; /* start address of partition */
118 __u32 blocks_per_member;/* blocks per member */
119 __u32 num_data_stripes; /* number of data stripes */
120 __u16 blocks_per_strip;
121 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
122#define IMSM_T_STATE_NORMAL 0
123#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
124#define IMSM_T_STATE_DEGRADED 2
125#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
126 __u8 raid_level;
127#define IMSM_T_RAID0 0
128#define IMSM_T_RAID1 1
129#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
130 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
131 __u8 num_domains; /* number of parity domains */
132 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 133 __u8 ddf;
cdddbdbc 134 __u32 filler[7]; /* expansion area */
7eef0453 135#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 136 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
137 * top byte contains some flags
138 */
cdddbdbc
DW
139} __attribute__ ((packed));
140
141struct imsm_vol {
f8f603f1 142 __u32 curr_migr_unit;
fe7ed8cb 143 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 144 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
145#define MIGR_INIT 0
146#define MIGR_REBUILD 1
147#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
148#define MIGR_GEN_MIGR 3
149#define MIGR_STATE_CHANGE 4
1484e727 150#define MIGR_REPAIR 5
cdddbdbc
DW
151 __u8 migr_type; /* Initializing, Rebuilding, ... */
152 __u8 dirty;
fe7ed8cb
DW
153 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
154 __u16 verify_errors; /* number of mismatches */
155 __u16 bad_blocks; /* number of bad blocks during verify */
156 __u32 filler[4];
cdddbdbc
DW
157 struct imsm_map map[1];
158 /* here comes another one if migr_state */
159} __attribute__ ((packed));
160
161struct imsm_dev {
fe7ed8cb 162 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
163 __u32 size_low;
164 __u32 size_high;
fe7ed8cb
DW
165#define DEV_BOOTABLE __cpu_to_le32(0x01)
166#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
167#define DEV_READ_COALESCING __cpu_to_le32(0x04)
168#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
169#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
170#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
171#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
172#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
173#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
174#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
175#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
176#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
177#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
178 __u32 status; /* Persistent RaidDev status */
179 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
180 __u8 migr_priority;
181 __u8 num_sub_vols;
182 __u8 tid;
183 __u8 cng_master_disk;
184 __u16 cache_policy;
185 __u8 cng_state;
186 __u8 cng_sub_state;
187#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
188 __u32 filler[IMSM_DEV_FILLERS];
189 struct imsm_vol vol;
190} __attribute__ ((packed));
191
192struct imsm_super {
193 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
194 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
195 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
196 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
197 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
198 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
199 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
200 __u8 num_disks; /* 0x38 Number of configured disks */
201 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
202 __u8 error_log_pos; /* 0x3A */
203 __u8 fill[1]; /* 0x3B */
204 __u32 cache_size; /* 0x3c - 0x40 in mb */
205 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
206 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
207 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
208#define IMSM_FILLERS 35
209 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
210 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
211 /* here comes imsm_dev[num_raid_devs] */
604b746f 212 /* here comes BBM logs */
cdddbdbc
DW
213} __attribute__ ((packed));
214
604b746f
JD
215#define BBM_LOG_MAX_ENTRIES 254
216
217struct bbm_log_entry {
218 __u64 defective_block_start;
219#define UNREADABLE 0xFFFFFFFF
220 __u32 spare_block_offset;
221 __u16 remapped_marked_count;
222 __u16 disk_ordinal;
223} __attribute__ ((__packed__));
224
225struct bbm_log {
226 __u32 signature; /* 0xABADB10C */
227 __u32 entry_count;
228 __u32 reserved_spare_block_count; /* 0 */
229 __u32 reserved; /* 0xFFFF */
230 __u64 first_spare_lba;
231 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
232} __attribute__ ((__packed__));
233
234
cdddbdbc
DW
235#ifndef MDASSEMBLE
236static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
237#endif
238
8e59f3d8
AK
239#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
240
241#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
242
243#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
244 * be recovered using srcMap */
245#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
246 * already been migrated and must
247 * be recovered from checkpoint area */
248struct migr_record {
249 __u32 rec_status; /* Status used to determine how to restart
250 * migration in case it aborts
251 * in some fashion */
252 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
253 __u32 family_num; /* Family number of MPB
254 * containing the RaidDev
255 * that is migrating */
256 __u32 ascending_migr; /* True if migrating in increasing
257 * order of lbas */
258 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
259 __u32 dest_depth_per_unit; /* Num member blocks each destMap
260 * member disk
261 * advances per unit-of-operation */
262 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
263 __u32 dest_1st_member_lba; /* First member lba on first
264 * stripe of destination */
265 __u32 num_migr_units; /* Total num migration units-of-op */
266 __u32 post_migr_vol_cap; /* Size of volume after
267 * migration completes */
268 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
269 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
270 * migration ckpt record was read from
271 * (for recovered migrations) */
272} __attribute__ ((__packed__));
273
1484e727
DW
274static __u8 migr_type(struct imsm_dev *dev)
275{
276 if (dev->vol.migr_type == MIGR_VERIFY &&
277 dev->status & DEV_VERIFY_AND_FIX)
278 return MIGR_REPAIR;
279 else
280 return dev->vol.migr_type;
281}
282
283static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
284{
285 /* for compatibility with older oroms convert MIGR_REPAIR, into
286 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
287 */
288 if (migr_type == MIGR_REPAIR) {
289 dev->vol.migr_type = MIGR_VERIFY;
290 dev->status |= DEV_VERIFY_AND_FIX;
291 } else {
292 dev->vol.migr_type = migr_type;
293 dev->status &= ~DEV_VERIFY_AND_FIX;
294 }
295}
296
87eb16df 297static unsigned int sector_count(__u32 bytes)
cdddbdbc 298{
87eb16df
DW
299 return ((bytes + (512-1)) & (~(512-1))) / 512;
300}
cdddbdbc 301
87eb16df
DW
302static unsigned int mpb_sectors(struct imsm_super *mpb)
303{
304 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
305}
306
ba2de7ba
DW
307struct intel_dev {
308 struct imsm_dev *dev;
309 struct intel_dev *next;
f21e18ca 310 unsigned index;
ba2de7ba
DW
311};
312
88654014
LM
313struct intel_hba {
314 enum sys_dev_type type;
315 char *path;
316 char *pci_id;
317 struct intel_hba *next;
318};
319
1a64be56
LM
320enum action {
321 DISK_REMOVE = 1,
322 DISK_ADD
323};
cdddbdbc
DW
324/* internal representation of IMSM metadata */
325struct intel_super {
326 union {
949c47a0
DW
327 void *buf; /* O_DIRECT buffer for reading/writing metadata */
328 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 329 };
8e59f3d8
AK
330 union {
331 void *migr_rec_buf; /* buffer for I/O operations */
332 struct migr_record *migr_rec; /* migration record */
333 };
949c47a0 334 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
335 void *next_buf; /* for realloc'ing buf from the manager */
336 size_t next_len;
c2c087e6 337 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 338 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 339 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 340 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 341 struct intel_dev *devlist;
cdddbdbc
DW
342 struct dl {
343 struct dl *next;
344 int index;
345 __u8 serial[MAX_RAID_SERIAL_LEN];
346 int major, minor;
347 char *devname;
b9f594fe 348 struct imsm_disk disk;
cdddbdbc 349 int fd;
0dcecb2e
DW
350 int extent_cnt;
351 struct extent *e; /* for determining freespace @ create */
efb30e7f 352 int raiddisk; /* slot to fill in autolayout */
1a64be56 353 enum action action;
ca0748fa 354 } *disks, *current_disk;
1a64be56
LM
355 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
356 active */
47ee5a45 357 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 358 struct bbm_log *bbm_log;
88654014 359 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 360 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
361 struct intel_super *next; /* (temp) list for disambiguating family_num */
362};
363
364struct intel_disk {
365 struct imsm_disk disk;
366 #define IMSM_UNKNOWN_OWNER (-1)
367 int owner;
368 struct intel_disk *next;
cdddbdbc
DW
369};
370
c2c087e6
DW
371struct extent {
372 unsigned long long start, size;
373};
374
694575e7
KW
375/* definitions of reshape process types */
376enum imsm_reshape_type {
377 CH_TAKEOVER,
b5347799 378 CH_MIGRATION,
694575e7
KW
379};
380
88758e9d
DW
381/* definition of messages passed to imsm_process_update */
382enum imsm_update_type {
383 update_activate_spare,
8273f55e 384 update_create_array,
33414a01 385 update_kill_array,
aa534678 386 update_rename_array,
1a64be56 387 update_add_remove_disk,
78b10e66 388 update_reshape_container_disks,
48c5303a 389 update_reshape_migration,
2d40f3a1
AK
390 update_takeover,
391 update_general_migration_checkpoint,
88758e9d
DW
392};
393
394struct imsm_update_activate_spare {
395 enum imsm_update_type type;
d23fe947 396 struct dl *dl;
88758e9d
DW
397 int slot;
398 int array;
399 struct imsm_update_activate_spare *next;
400};
401
78b10e66
N
402struct geo_params {
403 int dev_id;
404 char *dev_name;
405 long long size;
406 int level;
407 int layout;
408 int chunksize;
409 int raid_disks;
410};
411
bb025c2f
KW
412enum takeover_direction {
413 R10_TO_R0,
414 R0_TO_R10
415};
416struct imsm_update_takeover {
417 enum imsm_update_type type;
418 int subarray;
419 enum takeover_direction direction;
420};
78b10e66
N
421
422struct imsm_update_reshape {
423 enum imsm_update_type type;
424 int old_raid_disks;
425 int new_raid_disks;
48c5303a
PC
426
427 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
428};
429
430struct imsm_update_reshape_migration {
431 enum imsm_update_type type;
432 int old_raid_disks;
433 int new_raid_disks;
434 /* fields for array migration changes
435 */
436 int subdev;
437 int new_level;
438 int new_layout;
4bba0439 439 int new_chunksize;
48c5303a 440
d195167d 441 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
442};
443
2d40f3a1
AK
444struct imsm_update_general_migration_checkpoint {
445 enum imsm_update_type type;
446 __u32 curr_migr_unit;
447};
448
54c2c1ea
DW
449struct disk_info {
450 __u8 serial[MAX_RAID_SERIAL_LEN];
451};
452
8273f55e
DW
453struct imsm_update_create_array {
454 enum imsm_update_type type;
8273f55e 455 int dev_idx;
6a3e913e 456 struct imsm_dev dev;
8273f55e
DW
457};
458
33414a01
DW
459struct imsm_update_kill_array {
460 enum imsm_update_type type;
461 int dev_idx;
462};
463
aa534678
DW
464struct imsm_update_rename_array {
465 enum imsm_update_type type;
466 __u8 name[MAX_RAID_SERIAL_LEN];
467 int dev_idx;
468};
469
1a64be56 470struct imsm_update_add_remove_disk {
43dad3d6
DW
471 enum imsm_update_type type;
472};
473
88654014
LM
474
475static const char *_sys_dev_type[] = {
476 [SYS_DEV_UNKNOWN] = "Unknown",
477 [SYS_DEV_SAS] = "SAS",
478 [SYS_DEV_SATA] = "SATA"
479};
480
481const char *get_sys_dev_type(enum sys_dev_type type)
482{
483 if (type >= SYS_DEV_MAX)
484 type = SYS_DEV_UNKNOWN;
485
486 return _sys_dev_type[type];
487}
488
489static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
490{
491 struct intel_hba *result = malloc(sizeof(*result));
492 if (result) {
493 result->type = device->type;
494 result->path = strdup(device->path);
495 result->next = NULL;
496 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
497 result->pci_id++;
498 }
499 return result;
500}
501
502static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
503{
504 struct intel_hba *result=NULL;
505 for (result = hba; result; result = result->next) {
506 if (result->type == device->type && strcmp(result->path, device->path) == 0)
507 break;
508 }
509 return result;
510}
511
b4cf4cba 512static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
513{
514 struct intel_hba *hba;
515
516 /* check if disk attached to Intel HBA */
517 hba = find_intel_hba(super->hba, device);
518 if (hba != NULL)
519 return 1;
520 /* Check if HBA is already attached to super */
521 if (super->hba == NULL) {
522 super->hba = alloc_intel_hba(device);
523 return 1;
524 }
525
526 hba = super->hba;
527 /* Intel metadata allows for all disks attached to the same type HBA.
528 * Do not sypport odf HBA types mixing
529 */
530 if (device->type != hba->type)
531 return 2;
532
533 while (hba->next)
534 hba = hba->next;
535
536 hba->next = alloc_intel_hba(device);
537 return 1;
538}
539
540static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
541{
542 struct sys_dev *list, *elem, *prev;
543 char *disk_path;
544
545 if ((list = find_intel_devices()) == NULL)
546 return 0;
547
548 if (fd < 0)
549 disk_path = (char *) devname;
550 else
551 disk_path = diskfd_to_devpath(fd);
552
553 if (!disk_path) {
554 free_sys_dev(&list);
555 return 0;
556 }
557
558 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
559 if (path_attached_to_hba(disk_path, elem->path)) {
560 if (prev == NULL)
561 list = list->next;
562 else
563 prev->next = elem->next;
564 elem->next = NULL;
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568 return elem;
569 }
570 }
571 if (disk_path != devname)
572 free(disk_path);
573 free_sys_dev(&list);
574
575 return NULL;
576}
577
578
d424212e
N
579static int find_intel_hba_capability(int fd, struct intel_super *super,
580 char *devname);
f2f5c343 581
cdddbdbc
DW
582static struct supertype *match_metadata_desc_imsm(char *arg)
583{
584 struct supertype *st;
585
586 if (strcmp(arg, "imsm") != 0 &&
587 strcmp(arg, "default") != 0
588 )
589 return NULL;
590
591 st = malloc(sizeof(*st));
4e9d2186
AW
592 if (!st)
593 return NULL;
ef609477 594 memset(st, 0, sizeof(*st));
d1d599ea 595 st->container_dev = NoMdDev;
cdddbdbc
DW
596 st->ss = &super_imsm;
597 st->max_devs = IMSM_MAX_DEVICES;
598 st->minor_version = 0;
599 st->sb = NULL;
600 return st;
601}
602
0e600426 603#ifndef MDASSEMBLE
cdddbdbc
DW
604static __u8 *get_imsm_version(struct imsm_super *mpb)
605{
606 return &mpb->sig[MPB_SIG_LEN];
607}
9e2d750d 608#endif
cdddbdbc 609
949c47a0
DW
610/* retrieve a disk directly from the anchor when the anchor is known to be
611 * up-to-date, currently only at load time
612 */
613static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 614{
949c47a0 615 if (index >= mpb->num_disks)
cdddbdbc
DW
616 return NULL;
617 return &mpb->disk[index];
618}
619
95d07a2c
LM
620/* retrieve the disk description based on a index of the disk
621 * in the sub-array
622 */
623static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 624{
b9f594fe
DW
625 struct dl *d;
626
627 for (d = super->disks; d; d = d->next)
628 if (d->index == index)
95d07a2c
LM
629 return d;
630
631 return NULL;
632}
633/* retrieve a disk from the parsed metadata */
634static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
635{
636 struct dl *dl;
637
638 dl = get_imsm_dl_disk(super, index);
639 if (dl)
640 return &dl->disk;
641
b9f594fe 642 return NULL;
949c47a0
DW
643}
644
645/* generate a checksum directly from the anchor when the anchor is known to be
646 * up-to-date, currently only at load or write_super after coalescing
647 */
648static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
649{
650 __u32 end = mpb->mpb_size / sizeof(end);
651 __u32 *p = (__u32 *) mpb;
652 __u32 sum = 0;
653
97f734fd
N
654 while (end--) {
655 sum += __le32_to_cpu(*p);
656 p++;
657 }
cdddbdbc
DW
658
659 return sum - __le32_to_cpu(mpb->check_sum);
660}
661
a965f303
DW
662static size_t sizeof_imsm_map(struct imsm_map *map)
663{
664 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
665}
666
667struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 668{
5e7b0330
AK
669 /* A device can have 2 maps if it is in the middle of a migration.
670 * If second_map is:
238c0a71
AK
671 * MAP_0 - we return the first map
672 * MAP_1 - we return the second map if it exists, else NULL
673 * MAP_X - we return the second map if it exists, else the first
5e7b0330 674 */
a965f303 675 struct imsm_map *map = &dev->vol.map[0];
9535fc47 676 struct imsm_map *map2 = NULL;
a965f303 677
9535fc47
AK
678 if (dev->vol.migr_state)
679 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 680
9535fc47 681 switch (second_map) {
3b451610 682 case MAP_0:
9535fc47 683 break;
3b451610 684 case MAP_1:
9535fc47
AK
685 map = map2;
686 break;
238c0a71 687 case MAP_X:
9535fc47
AK
688 if (map2)
689 map = map2;
690 break;
9535fc47
AK
691 default:
692 map = NULL;
693 }
694 return map;
5e7b0330 695
a965f303 696}
cdddbdbc 697
3393c6af
DW
698/* return the size of the device.
699 * migr_state increases the returned size if map[0] were to be duplicated
700 */
701static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
702{
703 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 704 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
705
706 /* migrating means an additional map */
a965f303 707 if (dev->vol.migr_state)
238c0a71 708 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 709 else if (migr_state)
238c0a71 710 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
711
712 return size;
713}
714
54c2c1ea
DW
715#ifndef MDASSEMBLE
716/* retrieve disk serial number list from a metadata update */
717static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
718{
719 void *u = update;
720 struct disk_info *inf;
721
722 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
723 sizeof_imsm_dev(&update->dev, 0);
724
725 return inf;
726}
727#endif
728
949c47a0 729static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
730{
731 int offset;
732 int i;
733 void *_mpb = mpb;
734
949c47a0 735 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
736 return NULL;
737
738 /* devices start after all disks */
739 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
740
741 for (i = 0; i <= index; i++)
742 if (i == index)
743 return _mpb + offset;
744 else
3393c6af 745 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
746
747 return NULL;
748}
749
949c47a0
DW
750static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
751{
ba2de7ba
DW
752 struct intel_dev *dv;
753
949c47a0
DW
754 if (index >= super->anchor->num_raid_devs)
755 return NULL;
ba2de7ba
DW
756 for (dv = super->devlist; dv; dv = dv->next)
757 if (dv->index == index)
758 return dv->dev;
759 return NULL;
949c47a0
DW
760}
761
98130f40
AK
762/*
763 * for second_map:
238c0a71
AK
764 * == MAP_0 get first map
765 * == MAP_1 get second map
766 * == MAP_X than get map according to the current migr_state
98130f40
AK
767 */
768static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
769 int slot,
770 int second_map)
7eef0453
DW
771{
772 struct imsm_map *map;
773
5e7b0330 774 map = get_imsm_map(dev, second_map);
7eef0453 775
ff077194
DW
776 /* top byte identifies disk under rebuild */
777 return __le32_to_cpu(map->disk_ord_tbl[slot]);
778}
779
780#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 781static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 782{
98130f40 783 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
784
785 return ord_to_idx(ord);
7eef0453
DW
786}
787
be73972f
DW
788static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
789{
790 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
791}
792
f21e18ca 793static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
794{
795 int slot;
796 __u32 ord;
797
798 for (slot = 0; slot < map->num_members; slot++) {
799 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
800 if (ord_to_idx(ord) == idx)
801 return slot;
802 }
803
804 return -1;
805}
806
cdddbdbc
DW
807static int get_imsm_raid_level(struct imsm_map *map)
808{
809 if (map->raid_level == 1) {
810 if (map->num_members == 2)
811 return 1;
812 else
813 return 10;
814 }
815
816 return map->raid_level;
817}
818
c2c087e6
DW
819static int cmp_extent(const void *av, const void *bv)
820{
821 const struct extent *a = av;
822 const struct extent *b = bv;
823 if (a->start < b->start)
824 return -1;
825 if (a->start > b->start)
826 return 1;
827 return 0;
828}
829
0dcecb2e 830static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 831{
c2c087e6 832 int memberships = 0;
620b1713 833 int i;
c2c087e6 834
949c47a0
DW
835 for (i = 0; i < super->anchor->num_raid_devs; i++) {
836 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 837 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 838
620b1713
DW
839 if (get_imsm_disk_slot(map, dl->index) >= 0)
840 memberships++;
c2c087e6 841 }
0dcecb2e
DW
842
843 return memberships;
844}
845
b81221b7
CA
846static __u32 imsm_min_reserved_sectors(struct intel_super *super);
847
0dcecb2e
DW
848static struct extent *get_extents(struct intel_super *super, struct dl *dl)
849{
850 /* find a list of used extents on the given physical device */
851 struct extent *rv, *e;
620b1713 852 int i;
0dcecb2e 853 int memberships = count_memberships(dl, super);
b276dd33
DW
854 __u32 reservation;
855
856 /* trim the reserved area for spares, so they can join any array
857 * regardless of whether the OROM has assigned sectors from the
858 * IMSM_RESERVED_SECTORS region
859 */
860 if (dl->index == -1)
b81221b7 861 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
862 else
863 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 864
c2c087e6
DW
865 rv = malloc(sizeof(struct extent) * (memberships + 1));
866 if (!rv)
867 return NULL;
868 e = rv;
869
949c47a0
DW
870 for (i = 0; i < super->anchor->num_raid_devs; i++) {
871 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 872 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 873
620b1713
DW
874 if (get_imsm_disk_slot(map, dl->index) >= 0) {
875 e->start = __le32_to_cpu(map->pba_of_lba0);
876 e->size = __le32_to_cpu(map->blocks_per_member);
877 e++;
c2c087e6
DW
878 }
879 }
880 qsort(rv, memberships, sizeof(*rv), cmp_extent);
881
14e8215b
DW
882 /* determine the start of the metadata
883 * when no raid devices are defined use the default
884 * ...otherwise allow the metadata to truncate the value
885 * as is the case with older versions of imsm
886 */
887 if (memberships) {
888 struct extent *last = &rv[memberships - 1];
889 __u32 remainder;
890
891 remainder = __le32_to_cpu(dl->disk.total_blocks) -
892 (last->start + last->size);
dda5855f
DW
893 /* round down to 1k block to satisfy precision of the kernel
894 * 'size' interface
895 */
896 remainder &= ~1UL;
897 /* make sure remainder is still sane */
f21e18ca 898 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 899 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
900 if (reservation > remainder)
901 reservation = remainder;
902 }
903 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
904 e->size = 0;
905 return rv;
906}
907
14e8215b
DW
908/* try to determine how much space is reserved for metadata from
909 * the last get_extents() entry, otherwise fallback to the
910 * default
911 */
912static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
913{
914 struct extent *e;
915 int i;
916 __u32 rv;
917
918 /* for spares just return a minimal reservation which will grow
919 * once the spare is picked up by an array
920 */
921 if (dl->index == -1)
922 return MPB_SECTOR_CNT;
923
924 e = get_extents(super, dl);
925 if (!e)
926 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
927
928 /* scroll to last entry */
929 for (i = 0; e[i].size; i++)
930 continue;
931
932 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
933
934 free(e);
935
936 return rv;
937}
938
25ed7e59
DW
939static int is_spare(struct imsm_disk *disk)
940{
941 return (disk->status & SPARE_DISK) == SPARE_DISK;
942}
943
944static int is_configured(struct imsm_disk *disk)
945{
946 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
947}
948
949static int is_failed(struct imsm_disk *disk)
950{
951 return (disk->status & FAILED_DISK) == FAILED_DISK;
952}
953
b81221b7
CA
954/* try to determine how much space is reserved for metadata from
955 * the last get_extents() entry on the smallest active disk,
956 * otherwise fallback to the default
957 */
958static __u32 imsm_min_reserved_sectors(struct intel_super *super)
959{
960 struct extent *e;
961 int i;
962 __u32 min_active, remainder;
963 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
964 struct dl *dl, *dl_min = NULL;
965
966 if (!super)
967 return rv;
968
969 min_active = 0;
970 for (dl = super->disks; dl; dl = dl->next) {
971 if (dl->index < 0)
972 continue;
973 if (dl->disk.total_blocks < min_active || min_active == 0) {
974 dl_min = dl;
975 min_active = dl->disk.total_blocks;
976 }
977 }
978 if (!dl_min)
979 return rv;
980
981 /* find last lba used by subarrays on the smallest active disk */
982 e = get_extents(super, dl_min);
983 if (!e)
984 return rv;
985 for (i = 0; e[i].size; i++)
986 continue;
987
988 remainder = min_active - e[i].start;
989 free(e);
990
991 /* to give priority to recovery we should not require full
992 IMSM_RESERVED_SECTORS from the spare */
993 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
994
995 /* if real reservation is smaller use that value */
996 return (remainder < rv) ? remainder : rv;
997}
998
80e7f8c3
AC
999/* Return minimum size of a spare that can be used in this array*/
1000static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1001{
1002 struct intel_super *super = st->sb;
1003 struct dl *dl;
1004 struct extent *e;
1005 int i;
1006 unsigned long long rv = 0;
1007
1008 if (!super)
1009 return rv;
1010 /* find first active disk in array */
1011 dl = super->disks;
1012 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1013 dl = dl->next;
1014 if (!dl)
1015 return rv;
1016 /* find last lba used by subarrays */
1017 e = get_extents(super, dl);
1018 if (!e)
1019 return rv;
1020 for (i = 0; e[i].size; i++)
1021 continue;
1022 if (i > 0)
1023 rv = e[i-1].start + e[i-1].size;
1024 free(e);
b81221b7 1025
80e7f8c3 1026 /* add the amount of space needed for metadata */
b81221b7
CA
1027 rv = rv + imsm_min_reserved_sectors(super);
1028
80e7f8c3
AC
1029 return rv * 512;
1030}
1031
d1e02575
AK
1032static int is_gen_migration(struct imsm_dev *dev);
1033
1799c9e8 1034#ifndef MDASSEMBLE
c47b0ff6
AK
1035static __u64 blocks_per_migr_unit(struct intel_super *super,
1036 struct imsm_dev *dev);
1e5c6983 1037
c47b0ff6
AK
1038static void print_imsm_dev(struct intel_super *super,
1039 struct imsm_dev *dev,
1040 char *uuid,
1041 int disk_idx)
cdddbdbc
DW
1042{
1043 __u64 sz;
0d80bb2f 1044 int slot, i;
238c0a71
AK
1045 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1046 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1047 __u32 ord;
cdddbdbc
DW
1048
1049 printf("\n");
1e7bc0ed 1050 printf("[%.16s]:\n", dev->volume);
44470971 1051 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1052 printf(" RAID Level : %d", get_imsm_raid_level(map));
1053 if (map2)
1054 printf(" <-- %d", get_imsm_raid_level(map2));
1055 printf("\n");
1056 printf(" Members : %d", map->num_members);
1057 if (map2)
1058 printf(" <-- %d", map2->num_members);
1059 printf("\n");
0d80bb2f
DW
1060 printf(" Slots : [");
1061 for (i = 0; i < map->num_members; i++) {
238c0a71 1062 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1063 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1064 }
dd8bcb3b
AK
1065 printf("]");
1066 if (map2) {
1067 printf(" <-- [");
1068 for (i = 0; i < map2->num_members; i++) {
238c0a71 1069 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1070 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1071 }
1072 printf("]");
1073 }
1074 printf("\n");
7095bccb
AK
1075 printf(" Failed disk : ");
1076 if (map->failed_disk_num == 0xff)
1077 printf("none");
1078 else
1079 printf("%i", map->failed_disk_num);
1080 printf("\n");
620b1713
DW
1081 slot = get_imsm_disk_slot(map, disk_idx);
1082 if (slot >= 0) {
238c0a71 1083 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1084 printf(" This Slot : %d%s\n", slot,
1085 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1086 } else
cdddbdbc
DW
1087 printf(" This Slot : ?\n");
1088 sz = __le32_to_cpu(dev->size_high);
1089 sz <<= 32;
1090 sz += __le32_to_cpu(dev->size_low);
1091 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1092 human_size(sz * 512));
1093 sz = __le32_to_cpu(map->blocks_per_member);
1094 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1095 human_size(sz * 512));
1096 printf(" Sector Offset : %u\n",
1097 __le32_to_cpu(map->pba_of_lba0));
1098 printf(" Num Stripes : %u\n",
1099 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 1100 printf(" Chunk Size : %u KiB",
cdddbdbc 1101 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1102 if (map2)
1103 printf(" <-- %u KiB",
1104 __le16_to_cpu(map2->blocks_per_strip) / 2);
1105 printf("\n");
cdddbdbc 1106 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1107 printf(" Migrate State : ");
1484e727
DW
1108 if (dev->vol.migr_state) {
1109 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1110 printf("initialize\n");
1484e727 1111 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1112 printf("rebuild\n");
1484e727 1113 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1114 printf("check\n");
1484e727 1115 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1116 printf("general migration\n");
1484e727 1117 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1118 printf("state change\n");
1484e727 1119 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1120 printf("repair\n");
1484e727 1121 else
8655a7b1
DW
1122 printf("<unknown:%d>\n", migr_type(dev));
1123 } else
1124 printf("idle\n");
3393c6af
DW
1125 printf(" Map State : %s", map_state_str[map->map_state]);
1126 if (dev->vol.migr_state) {
238c0a71 1127 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1128
b10b37b8 1129 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1130 printf("\n Checkpoint : %u ",
1131 __le32_to_cpu(dev->vol.curr_migr_unit));
1132 if ((is_gen_migration(dev)) && (super->disks->index > 1))
1133 printf("(N/A)");
1134 else
1135 printf("(%llu)", (unsigned long long)
1136 blocks_per_migr_unit(super, dev));
3393c6af
DW
1137 }
1138 printf("\n");
cdddbdbc 1139 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1140}
1141
0ec1f4e8 1142static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1143{
1f24f035 1144 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1145 __u64 sz;
1146
0ec1f4e8 1147 if (index < -1 || !disk)
e9d82038
DW
1148 return;
1149
cdddbdbc 1150 printf("\n");
1f24f035 1151 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1152 if (index >= 0)
1153 printf(" Disk%02d Serial : %s\n", index, str);
1154 else
1155 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1156 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1157 is_configured(disk) ? " active" : "",
1158 is_failed(disk) ? " failed" : "");
cdddbdbc 1159 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1160 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1161 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1162 human_size(sz * 512));
1163}
1164
520e69e2
AK
1165void examine_migr_rec_imsm(struct intel_super *super)
1166{
1167 struct migr_record *migr_rec = super->migr_rec;
1168 struct imsm_super *mpb = super->anchor;
1169 int i;
1170
1171 for (i = 0; i < mpb->num_raid_devs; i++) {
1172 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1173 if (is_gen_migration(dev) == 0)
1174 continue;
1175
1176 printf("\nMigration Record Information:");
1177 if (super->disks->index > 1) {
1178 printf(" Empty\n ");
1179 printf("Examine one of first two disks in array\n");
1180 break;
1181 }
1182 printf("\n Status : ");
1183 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1184 printf("Normal\n");
1185 else
1186 printf("Contains Data\n");
1187 printf(" Current Unit : %u\n",
1188 __le32_to_cpu(migr_rec->curr_migr_unit));
1189 printf(" Family : %u\n",
1190 __le32_to_cpu(migr_rec->family_num));
1191 printf(" Ascending : %u\n",
1192 __le32_to_cpu(migr_rec->ascending_migr));
1193 printf(" Blocks Per Unit : %u\n",
1194 __le32_to_cpu(migr_rec->blocks_per_unit));
1195 printf(" Dest. Depth Per Unit : %u\n",
1196 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1197 printf(" Checkpoint Area pba : %u\n",
1198 __le32_to_cpu(migr_rec->ckpt_area_pba));
1199 printf(" First member lba : %u\n",
1200 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1201 printf(" Total Number of Units : %u\n",
1202 __le32_to_cpu(migr_rec->num_migr_units));
1203 printf(" Size of volume : %u\n",
1204 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1205 printf(" Expansion space for LBA64 : %u\n",
1206 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1207 printf(" Record was read from : %u\n",
1208 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1209
1210 break;
1211 }
1212}
9e2d750d 1213#endif /* MDASSEMBLE */
19482bcc
AK
1214/*******************************************************************************
1215 * function: imsm_check_attributes
1216 * Description: Function checks if features represented by attributes flags
1217 * are supported by mdadm.
1218 * Parameters:
1219 * attributes - Attributes read from metadata
1220 * Returns:
1221 * 0 - passed attributes contains unsupported features flags
1222 * 1 - all features are supported
1223 ******************************************************************************/
1224static int imsm_check_attributes(__u32 attributes)
1225{
1226 int ret_val = 1;
418f9b36
N
1227 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1228
1229 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1230
1231 not_supported &= attributes;
1232 if (not_supported) {
418f9b36
N
1233 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1234 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1235 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1236 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1237 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1238 }
1239 if (not_supported & MPB_ATTRIB_2TB) {
1240 dprintf("\t\tMPB_ATTRIB_2TB\n");
1241 not_supported ^= MPB_ATTRIB_2TB;
1242 }
1243 if (not_supported & MPB_ATTRIB_RAID0) {
1244 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1245 not_supported ^= MPB_ATTRIB_RAID0;
1246 }
1247 if (not_supported & MPB_ATTRIB_RAID1) {
1248 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1249 not_supported ^= MPB_ATTRIB_RAID1;
1250 }
1251 if (not_supported & MPB_ATTRIB_RAID10) {
1252 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1253 not_supported ^= MPB_ATTRIB_RAID10;
1254 }
1255 if (not_supported & MPB_ATTRIB_RAID1E) {
1256 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1257 not_supported ^= MPB_ATTRIB_RAID1E;
1258 }
1259 if (not_supported & MPB_ATTRIB_RAID5) {
1260 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1261 not_supported ^= MPB_ATTRIB_RAID5;
1262 }
1263 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1264 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1265 not_supported ^= MPB_ATTRIB_RAIDCNG;
1266 }
1267 if (not_supported & MPB_ATTRIB_BBM) {
1268 dprintf("\t\tMPB_ATTRIB_BBM\n");
1269 not_supported ^= MPB_ATTRIB_BBM;
1270 }
1271 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1272 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1273 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1274 }
1275 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1276 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1277 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1278 }
1279 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1280 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1281 not_supported ^= MPB_ATTRIB_2TB_DISK;
1282 }
1283 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1284 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1285 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1286 }
1287 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1288 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1289 not_supported ^= MPB_ATTRIB_NEVER_USE;
1290 }
1291
1292 if (not_supported)
1293 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1294
1295 ret_val = 0;
1296 }
1297
1298 return ret_val;
1299}
1300
9e2d750d 1301#ifndef MDASSEMBLE
a5d85af7 1302static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1303
cdddbdbc
DW
1304static void examine_super_imsm(struct supertype *st, char *homehost)
1305{
1306 struct intel_super *super = st->sb;
949c47a0 1307 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1308 char str[MAX_SIGNATURE_LENGTH];
1309 int i;
27fd6274
DW
1310 struct mdinfo info;
1311 char nbuf[64];
cdddbdbc 1312 __u32 sum;
14e8215b 1313 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1314 struct dl *dl;
27fd6274 1315
cdddbdbc
DW
1316 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1317 printf(" Magic : %s\n", str);
1318 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1319 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1320 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1321 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1322 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1323 printf(" Attributes : ");
1324 if (imsm_check_attributes(mpb->attributes))
1325 printf("All supported\n");
1326 else
1327 printf("not supported\n");
a5d85af7 1328 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1329 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1330 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1331 sum = __le32_to_cpu(mpb->check_sum);
1332 printf(" Checksum : %08x %s\n", sum,
949c47a0 1333 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1334 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1335 printf(" Disks : %d\n", mpb->num_disks);
1336 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1337 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1338 if (super->bbm_log) {
1339 struct bbm_log *log = super->bbm_log;
1340
1341 printf("\n");
1342 printf("Bad Block Management Log:\n");
1343 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1344 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1345 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1346 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1347 printf(" First Spare : %llx\n",
1348 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1349 }
44470971
DW
1350 for (i = 0; i < mpb->num_raid_devs; i++) {
1351 struct mdinfo info;
1352 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1353
1354 super->current_vol = i;
a5d85af7 1355 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1356 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1357 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1358 }
cdddbdbc
DW
1359 for (i = 0; i < mpb->num_disks; i++) {
1360 if (i == super->disks->index)
1361 continue;
0ec1f4e8 1362 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1363 }
94827db3 1364
0ec1f4e8
DW
1365 for (dl = super->disks; dl; dl = dl->next)
1366 if (dl->index == -1)
1367 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1368
1369 examine_migr_rec_imsm(super);
cdddbdbc
DW
1370}
1371
061f2c6a 1372static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1373{
27fd6274 1374 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1375 struct mdinfo info;
1376 char nbuf[64];
1e7bc0ed 1377 struct intel_super *super = st->sb;
1e7bc0ed 1378
0d5a423f
DW
1379 if (!super->anchor->num_raid_devs) {
1380 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1381 return;
0d5a423f 1382 }
ff54de6e 1383
a5d85af7 1384 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1385 fname_from_uuid(st, &info, nbuf, ':');
1386 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1387}
1388
1389static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1390{
1391 /* We just write a generic IMSM ARRAY entry */
1392 struct mdinfo info;
1393 char nbuf[64];
1394 char nbuf1[64];
1395 struct intel_super *super = st->sb;
1396 int i;
1397
1398 if (!super->anchor->num_raid_devs)
1399 return;
1400
a5d85af7 1401 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1402 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1403 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1404 struct imsm_dev *dev = get_imsm_dev(super, i);
1405
1406 super->current_vol = i;
a5d85af7 1407 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1408 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1409 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1410 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1411 }
cdddbdbc
DW
1412}
1413
9d84c8ea
DW
1414static void export_examine_super_imsm(struct supertype *st)
1415{
1416 struct intel_super *super = st->sb;
1417 struct imsm_super *mpb = super->anchor;
1418 struct mdinfo info;
1419 char nbuf[64];
1420
a5d85af7 1421 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1422 fname_from_uuid(st, &info, nbuf, ':');
1423 printf("MD_METADATA=imsm\n");
1424 printf("MD_LEVEL=container\n");
1425 printf("MD_UUID=%s\n", nbuf+5);
1426 printf("MD_DEVICES=%u\n", mpb->num_disks);
1427}
1428
cdddbdbc
DW
1429static void detail_super_imsm(struct supertype *st, char *homehost)
1430{
3ebe00a1
DW
1431 struct mdinfo info;
1432 char nbuf[64];
1433
a5d85af7 1434 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1435 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1436 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1437}
1438
1439static void brief_detail_super_imsm(struct supertype *st)
1440{
ff54de6e
N
1441 struct mdinfo info;
1442 char nbuf[64];
a5d85af7 1443 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1444 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1445 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1446}
d665cc31
DW
1447
1448static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1449static void fd2devname(int fd, char *name);
1450
120dc887 1451static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1452{
120dc887
LM
1453 /* dump an unsorted list of devices attached to AHCI Intel storage
1454 * controller, as well as non-connected ports
d665cc31
DW
1455 */
1456 int hba_len = strlen(hba_path) + 1;
1457 struct dirent *ent;
1458 DIR *dir;
1459 char *path = NULL;
1460 int err = 0;
1461 unsigned long port_mask = (1 << port_count) - 1;
1462
f21e18ca 1463 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1464 if (verbose)
1465 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1466 return 2;
1467 }
1468
1469 /* scroll through /sys/dev/block looking for devices attached to
1470 * this hba
1471 */
1472 dir = opendir("/sys/dev/block");
1473 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1474 int fd;
1475 char model[64];
1476 char vendor[64];
1477 char buf[1024];
1478 int major, minor;
1479 char *device;
1480 char *c;
1481 int port;
1482 int type;
1483
1484 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1485 continue;
1486 path = devt_to_devpath(makedev(major, minor));
1487 if (!path)
1488 continue;
1489 if (!path_attached_to_hba(path, hba_path)) {
1490 free(path);
1491 path = NULL;
1492 continue;
1493 }
1494
1495 /* retrieve the scsi device type */
1496 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1497 if (verbose)
1498 fprintf(stderr, Name ": failed to allocate 'device'\n");
1499 err = 2;
1500 break;
1501 }
1502 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1503 if (load_sys(device, buf) != 0) {
1504 if (verbose)
1505 fprintf(stderr, Name ": failed to read device type for %s\n",
1506 path);
1507 err = 2;
1508 free(device);
1509 break;
1510 }
1511 type = strtoul(buf, NULL, 10);
1512
1513 /* if it's not a disk print the vendor and model */
1514 if (!(type == 0 || type == 7 || type == 14)) {
1515 vendor[0] = '\0';
1516 model[0] = '\0';
1517 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1518 if (load_sys(device, buf) == 0) {
1519 strncpy(vendor, buf, sizeof(vendor));
1520 vendor[sizeof(vendor) - 1] = '\0';
1521 c = (char *) &vendor[sizeof(vendor) - 1];
1522 while (isspace(*c) || *c == '\0')
1523 *c-- = '\0';
1524
1525 }
1526 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1527 if (load_sys(device, buf) == 0) {
1528 strncpy(model, buf, sizeof(model));
1529 model[sizeof(model) - 1] = '\0';
1530 c = (char *) &model[sizeof(model) - 1];
1531 while (isspace(*c) || *c == '\0')
1532 *c-- = '\0';
1533 }
1534
1535 if (vendor[0] && model[0])
1536 sprintf(buf, "%.64s %.64s", vendor, model);
1537 else
1538 switch (type) { /* numbers from hald/linux/device.c */
1539 case 1: sprintf(buf, "tape"); break;
1540 case 2: sprintf(buf, "printer"); break;
1541 case 3: sprintf(buf, "processor"); break;
1542 case 4:
1543 case 5: sprintf(buf, "cdrom"); break;
1544 case 6: sprintf(buf, "scanner"); break;
1545 case 8: sprintf(buf, "media_changer"); break;
1546 case 9: sprintf(buf, "comm"); break;
1547 case 12: sprintf(buf, "raid"); break;
1548 default: sprintf(buf, "unknown");
1549 }
1550 } else
1551 buf[0] = '\0';
1552 free(device);
1553
1554 /* chop device path to 'host%d' and calculate the port number */
1555 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1556 if (!c) {
1557 if (verbose)
1558 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1559 err = 2;
1560 break;
1561 }
d665cc31
DW
1562 *c = '\0';
1563 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1564 port -= host_base;
1565 else {
1566 if (verbose) {
1567 *c = '/'; /* repair the full string */
1568 fprintf(stderr, Name ": failed to determine port number for %s\n",
1569 path);
1570 }
1571 err = 2;
1572 break;
1573 }
1574
1575 /* mark this port as used */
1576 port_mask &= ~(1 << port);
1577
1578 /* print out the device information */
1579 if (buf[0]) {
1580 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1581 continue;
1582 }
1583
1584 fd = dev_open(ent->d_name, O_RDONLY);
1585 if (fd < 0)
1586 printf(" Port%d : - disk info unavailable -\n", port);
1587 else {
1588 fd2devname(fd, buf);
1589 printf(" Port%d : %s", port, buf);
1590 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1591 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1592 else
664d5325 1593 printf(" ()\n");
4dab422a 1594 close(fd);
d665cc31 1595 }
d665cc31
DW
1596 free(path);
1597 path = NULL;
1598 }
1599 if (path)
1600 free(path);
1601 if (dir)
1602 closedir(dir);
1603 if (err == 0) {
1604 int i;
1605
1606 for (i = 0; i < port_count; i++)
1607 if (port_mask & (1 << i))
1608 printf(" Port%d : - no device attached -\n", i);
1609 }
1610
1611 return err;
1612}
1613
120dc887
LM
1614static void print_found_intel_controllers(struct sys_dev *elem)
1615{
1616 for (; elem; elem = elem->next) {
1617 fprintf(stderr, Name ": found Intel(R) ");
1618 if (elem->type == SYS_DEV_SATA)
1619 fprintf(stderr, "SATA ");
155cbb4c
LM
1620 else if (elem->type == SYS_DEV_SAS)
1621 fprintf(stderr, "SAS ");
120dc887
LM
1622 fprintf(stderr, "RAID controller");
1623 if (elem->pci_id)
1624 fprintf(stderr, " at %s", elem->pci_id);
1625 fprintf(stderr, ".\n");
1626 }
1627 fflush(stderr);
1628}
1629
120dc887
LM
1630static int ahci_get_port_count(const char *hba_path, int *port_count)
1631{
1632 struct dirent *ent;
1633 DIR *dir;
1634 int host_base = -1;
1635
1636 *port_count = 0;
1637 if ((dir = opendir(hba_path)) == NULL)
1638 return -1;
1639
1640 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1641 int host;
1642
1643 if (sscanf(ent->d_name, "host%d", &host) != 1)
1644 continue;
1645 if (*port_count == 0)
1646 host_base = host;
1647 else if (host < host_base)
1648 host_base = host;
1649
1650 if (host + 1 > *port_count + host_base)
1651 *port_count = host + 1 - host_base;
1652 }
1653 closedir(dir);
1654 return host_base;
1655}
1656
a891a3c2
LM
1657static void print_imsm_capability(const struct imsm_orom *orom)
1658{
1659 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1660 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1661 orom->hotfix_ver, orom->build);
1662 printf(" RAID Levels :%s%s%s%s%s\n",
1663 imsm_orom_has_raid0(orom) ? " raid0" : "",
1664 imsm_orom_has_raid1(orom) ? " raid1" : "",
1665 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1666 imsm_orom_has_raid10(orom) ? " raid10" : "",
1667 imsm_orom_has_raid5(orom) ? " raid5" : "");
1668 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1669 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1670 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1671 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1672 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1673 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1674 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1675 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1676 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1677 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1678 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1679 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1680 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1681 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1682 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1683 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1684 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1685 printf(" Max Disks : %d\n", orom->tds);
1686 printf(" Max Volumes : %d\n", orom->vpa);
1687 return;
1688}
1689
5615172f 1690static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1691{
1692 /* There are two components to imsm platform support, the ahci SATA
1693 * controller and the option-rom. To find the SATA controller we
1694 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1695 * controller with the Intel vendor id is present. This approach
1696 * allows mdadm to leverage the kernel's ahci detection logic, with the
1697 * caveat that if ahci.ko is not loaded mdadm will not be able to
1698 * detect platform raid capabilities. The option-rom resides in a
1699 * platform "Adapter ROM". We scan for its signature to retrieve the
1700 * platform capabilities. If raid support is disabled in the BIOS the
1701 * option-rom capability structure will not be available.
1702 */
1703 const struct imsm_orom *orom;
1704 struct sys_dev *list, *hba;
d665cc31
DW
1705 int host_base = 0;
1706 int port_count = 0;
120dc887 1707 int result=0;
d665cc31 1708
5615172f 1709 if (enumerate_only) {
a891a3c2 1710 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1711 return 0;
a891a3c2
LM
1712 list = find_intel_devices();
1713 if (!list)
1714 return 2;
1715 for (hba = list; hba; hba = hba->next) {
1716 orom = find_imsm_capability(hba->type);
1717 if (!orom) {
1718 result = 2;
1719 break;
1720 }
1721 }
1722 free_sys_dev(&list);
1723 return result;
5615172f
DW
1724 }
1725
155cbb4c
LM
1726 list = find_intel_devices();
1727 if (!list) {
d665cc31 1728 if (verbose)
155cbb4c
LM
1729 fprintf(stderr, Name ": no active Intel(R) RAID "
1730 "controller found.\n");
d665cc31
DW
1731 free_sys_dev(&list);
1732 return 2;
1733 } else if (verbose)
155cbb4c 1734 print_found_intel_controllers(list);
d665cc31 1735
a891a3c2
LM
1736 for (hba = list; hba; hba = hba->next) {
1737 orom = find_imsm_capability(hba->type);
1738 if (!orom)
1739 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1740 hba->path, get_sys_dev_type(hba->type));
1741 else
1742 print_imsm_capability(orom);
d665cc31
DW
1743 }
1744
120dc887
LM
1745 for (hba = list; hba; hba = hba->next) {
1746 printf(" I/O Controller : %s (%s)\n",
1747 hba->path, get_sys_dev_type(hba->type));
d665cc31 1748
120dc887
LM
1749 if (hba->type == SYS_DEV_SATA) {
1750 host_base = ahci_get_port_count(hba->path, &port_count);
1751 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1752 if (verbose)
1753 fprintf(stderr, Name ": failed to enumerate "
1754 "ports on SATA controller at %s.", hba->pci_id);
1755 result |= 2;
1756 }
1757 }
d665cc31 1758 }
155cbb4c 1759
120dc887
LM
1760 free_sys_dev(&list);
1761 return result;
d665cc31 1762}
cdddbdbc
DW
1763#endif
1764
1765static int match_home_imsm(struct supertype *st, char *homehost)
1766{
5115ca67
DW
1767 /* the imsm metadata format does not specify any host
1768 * identification information. We return -1 since we can never
1769 * confirm nor deny whether a given array is "meant" for this
148acb7b 1770 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1771 * exclude member disks that do not belong, and we rely on
1772 * mdadm.conf to specify the arrays that should be assembled.
1773 * Auto-assembly may still pick up "foreign" arrays.
1774 */
cdddbdbc 1775
9362c1c8 1776 return -1;
cdddbdbc
DW
1777}
1778
1779static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1780{
51006d85
N
1781 /* The uuid returned here is used for:
1782 * uuid to put into bitmap file (Create, Grow)
1783 * uuid for backup header when saving critical section (Grow)
1784 * comparing uuids when re-adding a device into an array
1785 * In these cases the uuid required is that of the data-array,
1786 * not the device-set.
1787 * uuid to recognise same set when adding a missing device back
1788 * to an array. This is a uuid for the device-set.
1789 *
1790 * For each of these we can make do with a truncated
1791 * or hashed uuid rather than the original, as long as
1792 * everyone agrees.
1793 * In each case the uuid required is that of the data-array,
1794 * not the device-set.
43dad3d6 1795 */
51006d85
N
1796 /* imsm does not track uuid's so we synthesis one using sha1 on
1797 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1798 * - the orig_family_num of the container
51006d85
N
1799 * - the index number of the volume
1800 * - the 'serial' number of the volume.
1801 * Hopefully these are all constant.
1802 */
1803 struct intel_super *super = st->sb;
43dad3d6 1804
51006d85
N
1805 char buf[20];
1806 struct sha1_ctx ctx;
1807 struct imsm_dev *dev = NULL;
148acb7b 1808 __u32 family_num;
51006d85 1809
148acb7b
DW
1810 /* some mdadm versions failed to set ->orig_family_num, in which
1811 * case fall back to ->family_num. orig_family_num will be
1812 * fixed up with the first metadata update.
1813 */
1814 family_num = super->anchor->orig_family_num;
1815 if (family_num == 0)
1816 family_num = super->anchor->family_num;
51006d85 1817 sha1_init_ctx(&ctx);
92bd8f8d 1818 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1819 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1820 if (super->current_vol >= 0)
1821 dev = get_imsm_dev(super, super->current_vol);
1822 if (dev) {
1823 __u32 vol = super->current_vol;
1824 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1825 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1826 }
1827 sha1_finish_ctx(&ctx, buf);
1828 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1829}
1830
0d481d37 1831#if 0
4f5bc454
DW
1832static void
1833get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1834{
cdddbdbc
DW
1835 __u8 *v = get_imsm_version(mpb);
1836 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1837 char major[] = { 0, 0, 0 };
1838 char minor[] = { 0 ,0, 0 };
1839 char patch[] = { 0, 0, 0 };
1840 char *ver_parse[] = { major, minor, patch };
1841 int i, j;
1842
1843 i = j = 0;
1844 while (*v != '\0' && v < end) {
1845 if (*v != '.' && j < 2)
1846 ver_parse[i][j++] = *v;
1847 else {
1848 i++;
1849 j = 0;
1850 }
1851 v++;
1852 }
1853
4f5bc454
DW
1854 *m = strtol(minor, NULL, 0);
1855 *p = strtol(patch, NULL, 0);
1856}
0d481d37 1857#endif
4f5bc454 1858
1e5c6983
DW
1859static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1860{
1861 /* migr_strip_size when repairing or initializing parity */
238c0a71 1862 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
1863 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1864
1865 switch (get_imsm_raid_level(map)) {
1866 case 5:
1867 case 10:
1868 return chunk;
1869 default:
1870 return 128*1024 >> 9;
1871 }
1872}
1873
1874static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1875{
1876 /* migr_strip_size when rebuilding a degraded disk, no idea why
1877 * this is different than migr_strip_size_resync(), but it's good
1878 * to be compatible
1879 */
238c0a71 1880 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
1881 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1882
1883 switch (get_imsm_raid_level(map)) {
1884 case 1:
1885 case 10:
1886 if (map->num_members % map->num_domains == 0)
1887 return 128*1024 >> 9;
1888 else
1889 return chunk;
1890 case 5:
1891 return max((__u32) 64*1024 >> 9, chunk);
1892 default:
1893 return 128*1024 >> 9;
1894 }
1895}
1896
1897static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1898{
238c0a71
AK
1899 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1900 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
1901 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1902 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1903
1904 return max((__u32) 1, hi_chunk / lo_chunk);
1905}
1906
1907static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1908{
238c0a71 1909 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
1910 int level = get_imsm_raid_level(lo);
1911
1912 if (level == 1 || level == 10) {
238c0a71 1913 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
1914
1915 return hi->num_domains;
1916 } else
1917 return num_stripes_per_unit_resync(dev);
1918}
1919
98130f40 1920static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1921{
1922 /* named 'imsm_' because raid0, raid1 and raid10
1923 * counter-intuitively have the same number of data disks
1924 */
98130f40 1925 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1926
1927 switch (get_imsm_raid_level(map)) {
1928 case 0:
1929 case 1:
1930 case 10:
1931 return map->num_members;
1932 case 5:
1933 return map->num_members - 1;
1934 default:
1935 dprintf("%s: unsupported raid level\n", __func__);
1936 return 0;
1937 }
1938}
1939
1940static __u32 parity_segment_depth(struct imsm_dev *dev)
1941{
238c0a71 1942 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
1943 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1944
1945 switch(get_imsm_raid_level(map)) {
1946 case 1:
1947 case 10:
1948 return chunk * map->num_domains;
1949 case 5:
1950 return chunk * map->num_members;
1951 default:
1952 return chunk;
1953 }
1954}
1955
1956static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1957{
238c0a71 1958 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
1959 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1960 __u32 strip = block / chunk;
1961
1962 switch (get_imsm_raid_level(map)) {
1963 case 1:
1964 case 10: {
1965 __u32 vol_strip = (strip * map->num_domains) + 1;
1966 __u32 vol_stripe = vol_strip / map->num_members;
1967
1968 return vol_stripe * chunk + block % chunk;
1969 } case 5: {
1970 __u32 stripe = strip / (map->num_members - 1);
1971
1972 return stripe * chunk + block % chunk;
1973 }
1974 default:
1975 return 0;
1976 }
1977}
1978
c47b0ff6
AK
1979static __u64 blocks_per_migr_unit(struct intel_super *super,
1980 struct imsm_dev *dev)
1e5c6983
DW
1981{
1982 /* calculate the conversion factor between per member 'blocks'
1983 * (md/{resync,rebuild}_start) and imsm migration units, return
1984 * 0 for the 'not migrating' and 'unsupported migration' cases
1985 */
1986 if (!dev->vol.migr_state)
1987 return 0;
1988
1989 switch (migr_type(dev)) {
c47b0ff6
AK
1990 case MIGR_GEN_MIGR: {
1991 struct migr_record *migr_rec = super->migr_rec;
1992 return __le32_to_cpu(migr_rec->blocks_per_unit);
1993 }
1e5c6983
DW
1994 case MIGR_VERIFY:
1995 case MIGR_REPAIR:
1996 case MIGR_INIT: {
238c0a71 1997 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
1998 __u32 stripes_per_unit;
1999 __u32 blocks_per_unit;
2000 __u32 parity_depth;
2001 __u32 migr_chunk;
2002 __u32 block_map;
2003 __u32 block_rel;
2004 __u32 segment;
2005 __u32 stripe;
2006 __u8 disks;
2007
2008 /* yes, this is really the translation of migr_units to
2009 * per-member blocks in the 'resync' case
2010 */
2011 stripes_per_unit = num_stripes_per_unit_resync(dev);
2012 migr_chunk = migr_strip_blocks_resync(dev);
238c0a71 2013 disks = imsm_num_data_members(dev, MAP_0);
1e5c6983 2014 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2015 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2016 segment = blocks_per_unit / stripe;
2017 block_rel = blocks_per_unit - segment * stripe;
2018 parity_depth = parity_segment_depth(dev);
2019 block_map = map_migr_block(dev, block_rel);
2020 return block_map + parity_depth * segment;
2021 }
2022 case MIGR_REBUILD: {
2023 __u32 stripes_per_unit;
2024 __u32 migr_chunk;
2025
2026 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2027 migr_chunk = migr_strip_blocks_rebuild(dev);
2028 return migr_chunk * stripes_per_unit;
2029 }
1e5c6983
DW
2030 case MIGR_STATE_CHANGE:
2031 default:
2032 return 0;
2033 }
2034}
2035
c2c087e6
DW
2036static int imsm_level_to_layout(int level)
2037{
2038 switch (level) {
2039 case 0:
2040 case 1:
2041 return 0;
2042 case 5:
2043 case 6:
a380c027 2044 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2045 case 10:
c92a2527 2046 return 0x102;
c2c087e6 2047 }
a18a888e 2048 return UnSet;
c2c087e6
DW
2049}
2050
8e59f3d8
AK
2051/*******************************************************************************
2052 * Function: read_imsm_migr_rec
2053 * Description: Function reads imsm migration record from last sector of disk
2054 * Parameters:
2055 * fd : disk descriptor
2056 * super : metadata info
2057 * Returns:
2058 * 0 : success,
2059 * -1 : fail
2060 ******************************************************************************/
2061static int read_imsm_migr_rec(int fd, struct intel_super *super)
2062{
2063 int ret_val = -1;
2064 unsigned long long dsize;
2065
2066 get_dev_size(fd, NULL, &dsize);
2067 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2068 fprintf(stderr,
2069 Name ": Cannot seek to anchor block: %s\n",
2070 strerror(errno));
2071 goto out;
2072 }
2073 if (read(fd, super->migr_rec_buf, 512) != 512) {
2074 fprintf(stderr,
2075 Name ": Cannot read migr record block: %s\n",
2076 strerror(errno));
2077 goto out;
2078 }
2079 ret_val = 0;
2080
2081out:
2082 return ret_val;
2083}
2084
2085/*******************************************************************************
2086 * Function: load_imsm_migr_rec
2087 * Description: Function reads imsm migration record (it is stored at the last
2088 * sector of disk)
2089 * Parameters:
2090 * super : imsm internal array info
2091 * info : general array info
2092 * Returns:
2093 * 0 : success
2094 * -1 : fail
2095 ******************************************************************************/
2096static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2097{
2098 struct mdinfo *sd;
2099 struct dl *dl = NULL;
2100 char nm[30];
2101 int retval = -1;
2102 int fd = -1;
2103
2104 if (info) {
2105 for (sd = info->devs ; sd ; sd = sd->next) {
2106 /* read only from one of the first two slots */
2107 if ((sd->disk.raid_disk > 1) ||
2108 (sd->disk.raid_disk < 0))
2109 continue;
2110 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2111 fd = dev_open(nm, O_RDONLY);
2112 if (fd >= 0)
2113 break;
2114 }
2115 }
2116 if (fd < 0) {
2117 for (dl = super->disks; dl; dl = dl->next) {
2118 /* read only from one of the first two slots */
2119 if (dl->index > 1)
2120 continue;
2121 sprintf(nm, "%d:%d", dl->major, dl->minor);
2122 fd = dev_open(nm, O_RDONLY);
2123 if (fd >= 0)
2124 break;
2125 }
2126 }
2127 if (fd < 0)
2128 goto out;
2129 retval = read_imsm_migr_rec(fd, super);
2130
2131out:
2132 if (fd >= 0)
2133 close(fd);
2134 return retval;
2135}
2136
9e2d750d 2137#ifndef MDASSEMBLE
c17608ea
AK
2138/*******************************************************************************
2139 * function: imsm_create_metadata_checkpoint_update
2140 * Description: It creates update for checkpoint change.
2141 * Parameters:
2142 * super : imsm internal array info
2143 * u : pointer to prepared update
2144 * Returns:
2145 * Uptate length.
2146 * If length is equal to 0, input pointer u contains no update
2147 ******************************************************************************/
2148static int imsm_create_metadata_checkpoint_update(
2149 struct intel_super *super,
2150 struct imsm_update_general_migration_checkpoint **u)
2151{
2152
2153 int update_memory_size = 0;
2154
2155 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2156
2157 if (u == NULL)
2158 return 0;
2159 *u = NULL;
2160
2161 /* size of all update data without anchor */
2162 update_memory_size =
2163 sizeof(struct imsm_update_general_migration_checkpoint);
2164
2165 *u = calloc(1, update_memory_size);
2166 if (*u == NULL) {
2167 dprintf("error: cannot get memory for "
2168 "imsm_create_metadata_checkpoint_update update\n");
2169 return 0;
2170 }
2171 (*u)->type = update_general_migration_checkpoint;
2172 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2173 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2174 (*u)->curr_migr_unit);
2175
2176 return update_memory_size;
2177}
2178
2179
2180static void imsm_update_metadata_locally(struct supertype *st,
2181 void *buf, int len);
2182
687629c2
AK
2183/*******************************************************************************
2184 * Function: write_imsm_migr_rec
2185 * Description: Function writes imsm migration record
2186 * (at the last sector of disk)
2187 * Parameters:
2188 * super : imsm internal array info
2189 * Returns:
2190 * 0 : success
2191 * -1 : if fail
2192 ******************************************************************************/
2193static int write_imsm_migr_rec(struct supertype *st)
2194{
2195 struct intel_super *super = st->sb;
2196 unsigned long long dsize;
2197 char nm[30];
2198 int fd = -1;
2199 int retval = -1;
2200 struct dl *sd;
c17608ea
AK
2201 int len;
2202 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2203
2204 for (sd = super->disks ; sd ; sd = sd->next) {
2205 /* write to 2 first slots only */
2206 if ((sd->index < 0) || (sd->index > 1))
2207 continue;
2208 sprintf(nm, "%d:%d", sd->major, sd->minor);
2209 fd = dev_open(nm, O_RDWR);
2210 if (fd < 0)
2211 continue;
2212 get_dev_size(fd, NULL, &dsize);
2213 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2214 fprintf(stderr,
2215 Name ": Cannot seek to anchor block: %s\n",
2216 strerror(errno));
2217 goto out;
2218 }
2219 if (write(fd, super->migr_rec_buf, 512) != 512) {
2220 fprintf(stderr,
2221 Name ": Cannot write migr record block: %s\n",
2222 strerror(errno));
2223 goto out;
2224 }
2225 close(fd);
2226 fd = -1;
2227 }
c17608ea
AK
2228 /* update checkpoint information in metadata */
2229 len = imsm_create_metadata_checkpoint_update(super, &u);
2230
2231 if (len <= 0) {
2232 dprintf("imsm: Cannot prepare update\n");
2233 goto out;
2234 }
2235 /* update metadata locally */
2236 imsm_update_metadata_locally(st, u, len);
2237 /* and possibly remotely */
2238 if (st->update_tail) {
2239 append_metadata_update(st, u, len);
2240 /* during reshape we do all work inside metadata handler
2241 * manage_reshape(), so metadata update has to be triggered
2242 * insida it
2243 */
2244 flush_metadata_updates(st);
2245 st->update_tail = &st->updates;
2246 } else
2247 free(u);
687629c2
AK
2248
2249 retval = 0;
2250 out:
2251 if (fd >= 0)
2252 close(fd);
2253 return retval;
2254}
9e2d750d 2255#endif /* MDASSEMBLE */
687629c2 2256
e2962bfc
AK
2257/* spare/missing disks activations are not allowe when
2258 * array/container performs reshape operation, because
2259 * all arrays in container works on the same disks set
2260 */
2261int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2262{
2263 int rv = 0;
2264 struct intel_dev *i_dev;
2265 struct imsm_dev *dev;
2266
2267 /* check whole container
2268 */
2269 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2270 dev = i_dev->dev;
3ad25638 2271 if (is_gen_migration(dev)) {
e2962bfc
AK
2272 /* No repair during any migration in container
2273 */
2274 rv = 1;
2275 break;
2276 }
2277 }
2278 return rv;
2279}
2280
a5d85af7 2281static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2282{
2283 struct intel_super *super = st->sb;
c47b0ff6 2284 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2285 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
2286 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2287 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 2288 struct imsm_map *map_to_analyse = map;
efb30e7f 2289 struct dl *dl;
e207da2f 2290 char *devname;
139dae11 2291 unsigned int component_size_alligment;
a5d85af7 2292 int map_disks = info->array.raid_disks;
bf5a934a 2293
95eeceeb 2294 memset(info, 0, sizeof(*info));
b335e593
AK
2295 if (prev_map)
2296 map_to_analyse = prev_map;
2297
ca0748fa 2298 dl = super->current_disk;
9894ec0d 2299
bf5a934a 2300 info->container_member = super->current_vol;
cd0430a1 2301 info->array.raid_disks = map->num_members;
b335e593 2302 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2303 info->array.layout = imsm_level_to_layout(info->array.level);
2304 info->array.md_minor = -1;
2305 info->array.ctime = 0;
2306 info->array.utime = 0;
b335e593
AK
2307 info->array.chunk_size =
2308 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2309 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2310 info->custom_array_size = __le32_to_cpu(dev->size_high);
2311 info->custom_array_size <<= 32;
2312 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
2313 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2314
3f510843 2315 if (is_gen_migration(dev)) {
3f83228a 2316 info->reshape_active = 1;
b335e593
AK
2317 info->new_level = get_imsm_raid_level(map);
2318 info->new_layout = imsm_level_to_layout(info->new_level);
2319 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2320 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2321 if (info->delta_disks) {
2322 /* this needs to be applied to every array
2323 * in the container.
2324 */
81219e70 2325 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 2326 }
3f83228a
N
2327 /* We shape information that we give to md might have to be
2328 * modify to cope with md's requirement for reshaping arrays.
2329 * For example, when reshaping a RAID0, md requires it to be
2330 * presented as a degraded RAID4.
2331 * Also if a RAID0 is migrating to a RAID5 we need to specify
2332 * the array as already being RAID5, but the 'before' layout
2333 * is a RAID4-like layout.
2334 */
2335 switch (info->array.level) {
2336 case 0:
2337 switch(info->new_level) {
2338 case 0:
2339 /* conversion is happening as RAID4 */
2340 info->array.level = 4;
2341 info->array.raid_disks += 1;
2342 break;
2343 case 5:
2344 /* conversion is happening as RAID5 */
2345 info->array.level = 5;
2346 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2347 info->delta_disks -= 1;
2348 break;
2349 default:
2350 /* FIXME error message */
2351 info->array.level = UnSet;
2352 break;
2353 }
2354 break;
2355 }
b335e593
AK
2356 } else {
2357 info->new_level = UnSet;
2358 info->new_layout = UnSet;
2359 info->new_chunk = info->array.chunk_size;
3f83228a 2360 info->delta_disks = 0;
b335e593 2361 }
ca0748fa 2362
efb30e7f
DW
2363 if (dl) {
2364 info->disk.major = dl->major;
2365 info->disk.minor = dl->minor;
ca0748fa 2366 info->disk.number = dl->index;
656b6b5a
N
2367 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2368 dl->index);
efb30e7f 2369 }
bf5a934a 2370
b335e593
AK
2371 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2372 info->component_size =
2373 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2374
2375 /* check component size aligment
2376 */
2377 component_size_alligment =
2378 info->component_size % (info->array.chunk_size/512);
2379
2380 if (component_size_alligment &&
2381 (info->array.level != 1) && (info->array.level != UnSet)) {
2382 dprintf("imsm: reported component size alligned from %llu ",
2383 info->component_size);
2384 info->component_size -= component_size_alligment;
2385 dprintf("to %llu (%i).\n",
2386 info->component_size, component_size_alligment);
2387 }
2388
301406c9 2389 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2390 info->recovery_start = MaxSector;
bf5a934a 2391
d2e6d5d6 2392 info->reshape_progress = 0;
b6796ce1 2393 info->resync_start = MaxSector;
b9172665
AK
2394 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2395 dev->vol.dirty) &&
2396 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 2397 info->resync_start = 0;
b6796ce1
AK
2398 }
2399 if (dev->vol.migr_state) {
1e5c6983
DW
2400 switch (migr_type(dev)) {
2401 case MIGR_REPAIR:
2402 case MIGR_INIT: {
c47b0ff6
AK
2403 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2404 dev);
1e5c6983
DW
2405 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2406
2407 info->resync_start = blocks_per_unit * units;
2408 break;
2409 }
d2e6d5d6 2410 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2411 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2412 dev);
2413 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2414 unsigned long long array_blocks;
2415 int used_disks;
d2e6d5d6 2416
befb629b
AK
2417 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2418 (units <
2419 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2420 (super->migr_rec->rec_status ==
2421 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2422 units++;
2423
d2e6d5d6 2424 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2425
d2e6d5d6
AK
2426 dprintf("IMSM: General Migration checkpoint : %llu "
2427 "(%llu) -> read reshape progress : %llu\n",
19986c72
MB
2428 (unsigned long long)units,
2429 (unsigned long long)blocks_per_unit,
2430 info->reshape_progress);
75156c46 2431
238c0a71 2432 used_disks = imsm_num_data_members(dev, MAP_1);
75156c46
AK
2433 if (used_disks > 0) {
2434 array_blocks = map->blocks_per_member *
2435 used_disks;
2436 /* round array size down to closest MB
2437 */
2438 info->custom_array_size = (array_blocks
2439 >> SECT_PER_MB_SHIFT)
2440 << SECT_PER_MB_SHIFT;
2441 }
d2e6d5d6 2442 }
1e5c6983
DW
2443 case MIGR_VERIFY:
2444 /* we could emulate the checkpointing of
2445 * 'sync_action=check' migrations, but for now
2446 * we just immediately complete them
2447 */
2448 case MIGR_REBUILD:
2449 /* this is handled by container_content_imsm() */
1e5c6983
DW
2450 case MIGR_STATE_CHANGE:
2451 /* FIXME handle other migrations */
2452 default:
2453 /* we are not dirty, so... */
2454 info->resync_start = MaxSector;
2455 }
b6796ce1 2456 }
301406c9
DW
2457
2458 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2459 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2460
f35f2525
N
2461 info->array.major_version = -1;
2462 info->array.minor_version = -2;
e207da2f
AW
2463 devname = devnum2devname(st->container_dev);
2464 *info->text_version = '\0';
2465 if (devname)
2466 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2467 free(devname);
a67dd8cc 2468 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2469 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2470
2471 if (dmap) {
2472 int i, j;
2473 for (i=0; i<map_disks; i++) {
2474 dmap[i] = 0;
2475 if (i < info->array.raid_disks) {
2476 struct imsm_disk *dsk;
238c0a71 2477 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
2478 dsk = get_imsm_disk(super, j);
2479 if (dsk && (dsk->status & CONFIGURED_DISK))
2480 dmap[i] = 1;
2481 }
2482 }
2483 }
81ac8b4d 2484}
bf5a934a 2485
3b451610
AK
2486static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2487 int failed, int look_in_map);
2488
2489static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2490 int look_in_map);
2491
2492static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2493{
2494 if (is_gen_migration(dev)) {
2495 int failed;
2496 __u8 map_state;
2497 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2498
2499 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 2500 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
2501 if (map2->map_state != map_state) {
2502 map2->map_state = map_state;
2503 super->updates_pending++;
2504 }
2505 }
2506}
97b4d0e9
DW
2507
2508static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2509{
2510 struct dl *d;
2511
2512 for (d = super->missing; d; d = d->next)
2513 if (d->index == index)
2514 return &d->disk;
2515 return NULL;
2516}
2517
a5d85af7 2518static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2519{
2520 struct intel_super *super = st->sb;
4f5bc454 2521 struct imsm_disk *disk;
a5d85af7 2522 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2523 int max_enough = -1;
2524 int i;
2525 struct imsm_super *mpb;
4f5bc454 2526
bf5a934a 2527 if (super->current_vol >= 0) {
a5d85af7 2528 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2529 return;
2530 }
95eeceeb 2531 memset(info, 0, sizeof(*info));
d23fe947
DW
2532
2533 /* Set raid_disks to zero so that Assemble will always pull in valid
2534 * spares
2535 */
2536 info->array.raid_disks = 0;
cdddbdbc
DW
2537 info->array.level = LEVEL_CONTAINER;
2538 info->array.layout = 0;
2539 info->array.md_minor = -1;
c2c087e6 2540 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2541 info->array.utime = 0;
2542 info->array.chunk_size = 0;
2543
2544 info->disk.major = 0;
2545 info->disk.minor = 0;
cdddbdbc 2546 info->disk.raid_disk = -1;
c2c087e6 2547 info->reshape_active = 0;
f35f2525
N
2548 info->array.major_version = -1;
2549 info->array.minor_version = -2;
c2c087e6 2550 strcpy(info->text_version, "imsm");
a67dd8cc 2551 info->safe_mode_delay = 0;
c2c087e6
DW
2552 info->disk.number = -1;
2553 info->disk.state = 0;
c5afc314 2554 info->name[0] = 0;
921d9e16 2555 info->recovery_start = MaxSector;
3ad25638 2556 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
c2c087e6 2557
97b4d0e9 2558 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2559 mpb = super->anchor;
97b4d0e9 2560
ab3cb6b3
N
2561 for (i = 0; i < mpb->num_raid_devs; i++) {
2562 struct imsm_dev *dev = get_imsm_dev(super, i);
2563 int failed, enough, j, missing = 0;
2564 struct imsm_map *map;
2565 __u8 state;
97b4d0e9 2566
3b451610
AK
2567 failed = imsm_count_failed(super, dev, MAP_0);
2568 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 2569 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
2570
2571 /* any newly missing disks?
2572 * (catches single-degraded vs double-degraded)
2573 */
2574 for (j = 0; j < map->num_members; j++) {
238c0a71 2575 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
2576 __u32 idx = ord_to_idx(ord);
2577
2578 if (!(ord & IMSM_ORD_REBUILD) &&
2579 get_imsm_missing(super, idx)) {
2580 missing = 1;
2581 break;
2582 }
97b4d0e9 2583 }
ab3cb6b3
N
2584
2585 if (state == IMSM_T_STATE_FAILED)
2586 enough = -1;
2587 else if (state == IMSM_T_STATE_DEGRADED &&
2588 (state != map->map_state || missing))
2589 enough = 0;
2590 else /* we're normal, or already degraded */
2591 enough = 1;
2592
2593 /* in the missing/failed disk case check to see
2594 * if at least one array is runnable
2595 */
2596 max_enough = max(max_enough, enough);
2597 }
2598 dprintf("%s: enough: %d\n", __func__, max_enough);
2599 info->container_enough = max_enough;
97b4d0e9 2600
4a04ec6c 2601 if (super->disks) {
14e8215b
DW
2602 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2603
b9f594fe 2604 disk = &super->disks->disk;
14e8215b
DW
2605 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2606 info->component_size = reserved;
25ed7e59 2607 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2608 /* we don't change info->disk.raid_disk here because
2609 * this state will be finalized in mdmon after we have
2610 * found the 'most fresh' version of the metadata
2611 */
25ed7e59
DW
2612 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2613 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2614 }
a575e2a7
DW
2615
2616 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2617 * ->compare_super may have updated the 'num_raid_devs' field for spares
2618 */
2619 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2620 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2621 else
2622 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2623
2624 /* I don't know how to compute 'map' on imsm, so use safe default */
2625 if (map) {
2626 int i;
2627 for (i = 0; i < map_disks; i++)
2628 map[i] = 1;
2629 }
2630
cdddbdbc
DW
2631}
2632
5c4cd5da
AC
2633/* allocates memory and fills disk in mdinfo structure
2634 * for each disk in array */
2635struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2636{
2637 struct mdinfo *mddev = NULL;
2638 struct intel_super *super = st->sb;
2639 struct imsm_disk *disk;
2640 int count = 0;
2641 struct dl *dl;
2642 if (!super || !super->disks)
2643 return NULL;
2644 dl = super->disks;
2645 mddev = malloc(sizeof(*mddev));
2646 if (!mddev) {
2647 fprintf(stderr, Name ": Failed to allocate memory.\n");
2648 return NULL;
2649 }
2650 memset(mddev, 0, sizeof(*mddev));
2651 while (dl) {
2652 struct mdinfo *tmp;
2653 disk = &dl->disk;
2654 tmp = malloc(sizeof(*tmp));
2655 if (!tmp) {
2656 fprintf(stderr, Name ": Failed to allocate memory.\n");
2657 if (mddev)
2658 sysfs_free(mddev);
2659 return NULL;
2660 }
2661 memset(tmp, 0, sizeof(*tmp));
2662 if (mddev->devs)
2663 tmp->next = mddev->devs;
2664 mddev->devs = tmp;
2665 tmp->disk.number = count++;
2666 tmp->disk.major = dl->major;
2667 tmp->disk.minor = dl->minor;
2668 tmp->disk.state = is_configured(disk) ?
2669 (1 << MD_DISK_ACTIVE) : 0;
2670 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2671 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2672 tmp->disk.raid_disk = -1;
2673 dl = dl->next;
2674 }
2675 return mddev;
2676}
2677
cdddbdbc
DW
2678static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2679 char *update, char *devname, int verbose,
2680 int uuid_set, char *homehost)
2681{
f352c545
DW
2682 /* For 'assemble' and 'force' we need to return non-zero if any
2683 * change was made. For others, the return value is ignored.
2684 * Update options are:
2685 * force-one : This device looks a bit old but needs to be included,
2686 * update age info appropriately.
2687 * assemble: clear any 'faulty' flag to allow this device to
2688 * be assembled.
2689 * force-array: Array is degraded but being forced, mark it clean
2690 * if that will be needed to assemble it.
2691 *
2692 * newdev: not used ????
2693 * grow: Array has gained a new device - this is currently for
2694 * linear only
2695 * resync: mark as dirty so a resync will happen.
2696 * name: update the name - preserving the homehost
6e46bf34 2697 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2698 *
2699 * Following are not relevant for this imsm:
2700 * sparc2.2 : update from old dodgey metadata
2701 * super-minor: change the preferred_minor number
2702 * summaries: update redundant counters.
f352c545
DW
2703 * homehost: update the recorded homehost
2704 * _reshape_progress: record new reshape_progress position.
2705 */
6e46bf34
DW
2706 int rv = 1;
2707 struct intel_super *super = st->sb;
2708 struct imsm_super *mpb;
f352c545 2709
6e46bf34
DW
2710 /* we can only update container info */
2711 if (!super || super->current_vol >= 0 || !super->anchor)
2712 return 1;
2713
2714 mpb = super->anchor;
2715
2716 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2717 rv = -1;
6e46bf34
DW
2718 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2719 mpb->orig_family_num = *((__u32 *) info->update_private);
2720 rv = 0;
2721 } else if (strcmp(update, "uuid") == 0) {
2722 __u32 *new_family = malloc(sizeof(*new_family));
2723
2724 /* update orig_family_number with the incoming random
2725 * data, report the new effective uuid, and store the
2726 * new orig_family_num for future updates.
2727 */
2728 if (new_family) {
2729 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2730 uuid_from_super_imsm(st, info->uuid);
2731 *new_family = mpb->orig_family_num;
2732 info->update_private = new_family;
2733 rv = 0;
2734 }
2735 } else if (strcmp(update, "assemble") == 0)
2736 rv = 0;
2737 else
1e2b2765 2738 rv = -1;
f352c545 2739
6e46bf34
DW
2740 /* successful update? recompute checksum */
2741 if (rv == 0)
2742 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2743
2744 return rv;
cdddbdbc
DW
2745}
2746
c2c087e6 2747static size_t disks_to_mpb_size(int disks)
cdddbdbc 2748{
c2c087e6 2749 size_t size;
cdddbdbc 2750
c2c087e6
DW
2751 size = sizeof(struct imsm_super);
2752 size += (disks - 1) * sizeof(struct imsm_disk);
2753 size += 2 * sizeof(struct imsm_dev);
2754 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2755 size += (4 - 2) * sizeof(struct imsm_map);
2756 /* 4 possible disk_ord_tbl's */
2757 size += 4 * (disks - 1) * sizeof(__u32);
2758
2759 return size;
2760}
2761
2762static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2763{
2764 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2765 return 0;
2766
2767 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2768}
2769
ba2de7ba
DW
2770static void free_devlist(struct intel_super *super)
2771{
2772 struct intel_dev *dv;
2773
2774 while (super->devlist) {
2775 dv = super->devlist->next;
2776 free(super->devlist->dev);
2777 free(super->devlist);
2778 super->devlist = dv;
2779 }
2780}
2781
2782static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2783{
2784 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2785}
2786
cdddbdbc
DW
2787static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2788{
2789 /*
2790 * return:
2791 * 0 same, or first was empty, and second was copied
2792 * 1 second had wrong number
2793 * 2 wrong uuid
2794 * 3 wrong other info
2795 */
2796 struct intel_super *first = st->sb;
2797 struct intel_super *sec = tst->sb;
2798
2799 if (!first) {
2800 st->sb = tst->sb;
2801 tst->sb = NULL;
2802 return 0;
2803 }
8603ea6f
LM
2804 /* in platform dependent environment test if the disks
2805 * use the same Intel hba
2806 */
2807 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2808 if (!first->hba || !sec->hba ||
2809 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2810 fprintf(stderr,
2811 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2812 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2813 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2814 return 3;
2815 }
2816 }
cdddbdbc 2817
d23fe947
DW
2818 /* if an anchor does not have num_raid_devs set then it is a free
2819 * floating spare
2820 */
2821 if (first->anchor->num_raid_devs > 0 &&
2822 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2823 /* Determine if these disks might ever have been
2824 * related. Further disambiguation can only take place
2825 * in load_super_imsm_all
2826 */
2827 __u32 first_family = first->anchor->orig_family_num;
2828 __u32 sec_family = sec->anchor->orig_family_num;
2829
f796af5d
DW
2830 if (memcmp(first->anchor->sig, sec->anchor->sig,
2831 MAX_SIGNATURE_LENGTH) != 0)
2832 return 3;
2833
a2b97981
DW
2834 if (first_family == 0)
2835 first_family = first->anchor->family_num;
2836 if (sec_family == 0)
2837 sec_family = sec->anchor->family_num;
2838
2839 if (first_family != sec_family)
d23fe947 2840 return 3;
f796af5d 2841
d23fe947 2842 }
cdddbdbc 2843
f796af5d 2844
3e372e5a
DW
2845 /* if 'first' is a spare promote it to a populated mpb with sec's
2846 * family number
2847 */
2848 if (first->anchor->num_raid_devs == 0 &&
2849 sec->anchor->num_raid_devs > 0) {
78d30f94 2850 int i;
ba2de7ba
DW
2851 struct intel_dev *dv;
2852 struct imsm_dev *dev;
78d30f94
DW
2853
2854 /* we need to copy raid device info from sec if an allocation
2855 * fails here we don't associate the spare
2856 */
2857 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2858 dv = malloc(sizeof(*dv));
2859 if (!dv)
2860 break;
2861 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2862 if (!dev) {
2863 free(dv);
2864 break;
78d30f94 2865 }
ba2de7ba
DW
2866 dv->dev = dev;
2867 dv->index = i;
2868 dv->next = first->devlist;
2869 first->devlist = dv;
78d30f94 2870 }
709743c5 2871 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2872 /* allocation failure */
2873 free_devlist(first);
2874 fprintf(stderr, "imsm: failed to associate spare\n");
2875 return 3;
78d30f94 2876 }
3e372e5a 2877 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2878 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2879 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2880 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2881 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2882 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2883 }
2884
cdddbdbc
DW
2885 return 0;
2886}
2887
0030e8d6
DW
2888static void fd2devname(int fd, char *name)
2889{
2890 struct stat st;
2891 char path[256];
33a6535d 2892 char dname[PATH_MAX];
0030e8d6
DW
2893 char *nm;
2894 int rv;
2895
2896 name[0] = '\0';
2897 if (fstat(fd, &st) != 0)
2898 return;
2899 sprintf(path, "/sys/dev/block/%d:%d",
2900 major(st.st_rdev), minor(st.st_rdev));
2901
9cf014ec 2902 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
2903 if (rv <= 0)
2904 return;
2905
2906 dname[rv] = '\0';
2907 nm = strrchr(dname, '/');
7897de29
JS
2908 if (nm) {
2909 nm++;
2910 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2911 }
0030e8d6
DW
2912}
2913
cdddbdbc
DW
2914extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2915
2916static int imsm_read_serial(int fd, char *devname,
2917 __u8 serial[MAX_RAID_SERIAL_LEN])
2918{
2919 unsigned char scsi_serial[255];
cdddbdbc
DW
2920 int rv;
2921 int rsp_len;
1f24f035 2922 int len;
316e2bf4
DW
2923 char *dest;
2924 char *src;
2925 char *rsp_buf;
2926 int i;
cdddbdbc
DW
2927
2928 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2929
f9ba0ff1
DW
2930 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2931
40ebbb9c 2932 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2933 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2934 fd2devname(fd, (char *) serial);
0030e8d6
DW
2935 return 0;
2936 }
2937
cdddbdbc
DW
2938 if (rv != 0) {
2939 if (devname)
2940 fprintf(stderr,
2941 Name ": Failed to retrieve serial for %s\n",
2942 devname);
2943 return rv;
2944 }
2945
2946 rsp_len = scsi_serial[3];
03cd4cc8
DW
2947 if (!rsp_len) {
2948 if (devname)
2949 fprintf(stderr,
2950 Name ": Failed to retrieve serial for %s\n",
2951 devname);
2952 return 2;
2953 }
1f24f035 2954 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2955
316e2bf4
DW
2956 /* trim all whitespace and non-printable characters and convert
2957 * ':' to ';'
2958 */
2959 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2960 src = &rsp_buf[i];
2961 if (*src > 0x20) {
2962 /* ':' is reserved for use in placeholder serial
2963 * numbers for missing disks
2964 */
2965 if (*src == ':')
2966 *dest++ = ';';
2967 else
2968 *dest++ = *src;
2969 }
2970 }
2971 len = dest - rsp_buf;
2972 dest = rsp_buf;
2973
2974 /* truncate leading characters */
2975 if (len > MAX_RAID_SERIAL_LEN) {
2976 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2977 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2978 }
5c3db629 2979
5c3db629 2980 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2981 memcpy(serial, dest, len);
cdddbdbc
DW
2982
2983 return 0;
2984}
2985
1f24f035
DW
2986static int serialcmp(__u8 *s1, __u8 *s2)
2987{
2988 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2989}
2990
2991static void serialcpy(__u8 *dest, __u8 *src)
2992{
2993 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2994}
2995
54c2c1ea
DW
2996static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2997{
2998 struct dl *dl;
2999
3000 for (dl = super->disks; dl; dl = dl->next)
3001 if (serialcmp(dl->serial, serial) == 0)
3002 break;
3003
3004 return dl;
3005}
3006
a2b97981
DW
3007static struct imsm_disk *
3008__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3009{
3010 int i;
3011
3012 for (i = 0; i < mpb->num_disks; i++) {
3013 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3014
3015 if (serialcmp(disk->serial, serial) == 0) {
3016 if (idx)
3017 *idx = i;
3018 return disk;
3019 }
3020 }
3021
3022 return NULL;
3023}
3024
cdddbdbc
DW
3025static int
3026load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3027{
a2b97981 3028 struct imsm_disk *disk;
cdddbdbc
DW
3029 struct dl *dl;
3030 struct stat stb;
cdddbdbc 3031 int rv;
a2b97981 3032 char name[40];
d23fe947
DW
3033 __u8 serial[MAX_RAID_SERIAL_LEN];
3034
3035 rv = imsm_read_serial(fd, devname, serial);
3036
3037 if (rv != 0)
3038 return 2;
3039
a2b97981 3040 dl = calloc(1, sizeof(*dl));
b9f594fe 3041 if (!dl) {
cdddbdbc
DW
3042 if (devname)
3043 fprintf(stderr,
3044 Name ": failed to allocate disk buffer for %s\n",
3045 devname);
3046 return 2;
3047 }
cdddbdbc 3048
a2b97981
DW
3049 fstat(fd, &stb);
3050 dl->major = major(stb.st_rdev);
3051 dl->minor = minor(stb.st_rdev);
3052 dl->next = super->disks;
3053 dl->fd = keep_fd ? fd : -1;
3054 assert(super->disks == NULL);
3055 super->disks = dl;
3056 serialcpy(dl->serial, serial);
3057 dl->index = -2;
3058 dl->e = NULL;
3059 fd2devname(fd, name);
3060 if (devname)
3061 dl->devname = strdup(devname);
3062 else
3063 dl->devname = strdup(name);
cdddbdbc 3064
d23fe947 3065 /* look up this disk's index in the current anchor */
a2b97981
DW
3066 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3067 if (disk) {
3068 dl->disk = *disk;
3069 /* only set index on disks that are a member of a
3070 * populated contianer, i.e. one with raid_devs
3071 */
3072 if (is_failed(&dl->disk))
3f6efecc 3073 dl->index = -2;
a2b97981
DW
3074 else if (is_spare(&dl->disk))
3075 dl->index = -1;
3f6efecc
DW
3076 }
3077
949c47a0
DW
3078 return 0;
3079}
3080
0e600426 3081#ifndef MDASSEMBLE
0c046afd
DW
3082/* When migrating map0 contains the 'destination' state while map1
3083 * contains the current state. When not migrating map0 contains the
3084 * current state. This routine assumes that map[0].map_state is set to
3085 * the current array state before being called.
3086 *
3087 * Migration is indicated by one of the following states
3088 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3089 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3090 * map1state=unitialized)
1484e727 3091 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3092 * map1state=normal)
e3bba0e0 3093 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3094 * map1state=degraded)
8e59f3d8
AK
3095 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3096 * map1state=normal)
0c046afd 3097 */
8e59f3d8
AK
3098static void migrate(struct imsm_dev *dev, struct intel_super *super,
3099 __u8 to_state, int migr_type)
3393c6af 3100{
0c046afd 3101 struct imsm_map *dest;
238c0a71 3102 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 3103
0c046afd 3104 dev->vol.migr_state = 1;
1484e727 3105 set_migr_type(dev, migr_type);
f8f603f1 3106 dev->vol.curr_migr_unit = 0;
238c0a71 3107 dest = get_imsm_map(dev, MAP_1);
0c046afd 3108
0556e1a2 3109 /* duplicate and then set the target end state in map[0] */
3393c6af 3110 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3111 if ((migr_type == MIGR_REBUILD) ||
3112 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3113 __u32 ord;
3114 int i;
3115
3116 for (i = 0; i < src->num_members; i++) {
3117 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3118 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3119 }
3120 }
3121
8e59f3d8
AK
3122 if (migr_type == MIGR_GEN_MIGR)
3123 /* Clear migration record */
3124 memset(super->migr_rec, 0, sizeof(struct migr_record));
3125
0c046afd 3126 src->map_state = to_state;
949c47a0 3127}
f8f603f1 3128
809da78e
AK
3129static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3130 __u8 map_state)
f8f603f1 3131{
238c0a71
AK
3132 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3133 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3134 MAP_0 : MAP_1);
28bce06f 3135 int i, j;
0556e1a2
DW
3136
3137 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3138 * completed in the last migration.
3139 *
28bce06f 3140 * FIXME add support for raid-level-migration
0556e1a2 3141 */
809da78e
AK
3142 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3143 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3144 /* when final map state is other than expected
3145 * merge maps (not for migration)
3146 */
3147 int failed;
3148
3149 for (i = 0; i < prev->num_members; i++)
3150 for (j = 0; j < map->num_members; j++)
3151 /* during online capacity expansion
3152 * disks position can be changed
3153 * if takeover is used
3154 */
3155 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3156 ord_to_idx(prev->disk_ord_tbl[i])) {
3157 map->disk_ord_tbl[j] |=
3158 prev->disk_ord_tbl[i];
3159 break;
3160 }
3161 failed = imsm_count_failed(super, dev, MAP_0);
3162 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3163 }
f8f603f1
DW
3164
3165 dev->vol.migr_state = 0;
ea672ee1 3166 set_migr_type(dev, 0);
f8f603f1
DW
3167 dev->vol.curr_migr_unit = 0;
3168 map->map_state = map_state;
3169}
0e600426 3170#endif
949c47a0
DW
3171
3172static int parse_raid_devices(struct intel_super *super)
3173{
3174 int i;
3175 struct imsm_dev *dev_new;
4d7b1503 3176 size_t len, len_migr;
401d313b 3177 size_t max_len = 0;
4d7b1503
DW
3178 size_t space_needed = 0;
3179 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3180
3181 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3182 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3183 struct intel_dev *dv;
949c47a0 3184
4d7b1503
DW
3185 len = sizeof_imsm_dev(dev_iter, 0);
3186 len_migr = sizeof_imsm_dev(dev_iter, 1);
3187 if (len_migr > len)
3188 space_needed += len_migr - len;
3189
ba2de7ba
DW
3190 dv = malloc(sizeof(*dv));
3191 if (!dv)
3192 return 1;
401d313b
AK
3193 if (max_len < len_migr)
3194 max_len = len_migr;
3195 if (max_len > len_migr)
3196 space_needed += max_len - len_migr;
3197 dev_new = malloc(max_len);
ba2de7ba
DW
3198 if (!dev_new) {
3199 free(dv);
949c47a0 3200 return 1;
ba2de7ba 3201 }
949c47a0 3202 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3203 dv->dev = dev_new;
3204 dv->index = i;
3205 dv->next = super->devlist;
3206 super->devlist = dv;
949c47a0 3207 }
cdddbdbc 3208
4d7b1503
DW
3209 /* ensure that super->buf is large enough when all raid devices
3210 * are migrating
3211 */
3212 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3213 void *buf;
3214
3215 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3216 if (posix_memalign(&buf, 512, len) != 0)
3217 return 1;
3218
1f45a8ad
DW
3219 memcpy(buf, super->buf, super->len);
3220 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3221 free(super->buf);
3222 super->buf = buf;
3223 super->len = len;
3224 }
3225
cdddbdbc
DW
3226 return 0;
3227}
3228
604b746f
JD
3229/* retrieve a pointer to the bbm log which starts after all raid devices */
3230struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3231{
3232 void *ptr = NULL;
3233
3234 if (__le32_to_cpu(mpb->bbm_log_size)) {
3235 ptr = mpb;
3236 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3237 }
3238
3239 return ptr;
3240}
3241
e2f41b2c
AK
3242/*******************************************************************************
3243 * Function: check_mpb_migr_compatibility
3244 * Description: Function checks for unsupported migration features:
3245 * - migration optimization area (pba_of_lba0)
3246 * - descending reshape (ascending_migr)
3247 * Parameters:
3248 * super : imsm metadata information
3249 * Returns:
3250 * 0 : migration is compatible
3251 * -1 : migration is not compatible
3252 ******************************************************************************/
3253int check_mpb_migr_compatibility(struct intel_super *super)
3254{
3255 struct imsm_map *map0, *map1;
3256 struct migr_record *migr_rec = super->migr_rec;
3257 int i;
3258
3259 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3260 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3261
3262 if (dev_iter &&
3263 dev_iter->vol.migr_state == 1 &&
3264 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3265 /* This device is migrating */
238c0a71
AK
3266 map0 = get_imsm_map(dev_iter, MAP_0);
3267 map1 = get_imsm_map(dev_iter, MAP_1);
e2f41b2c
AK
3268 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3269 /* migration optimization area was used */
3270 return -1;
3271 if (migr_rec->ascending_migr == 0
3272 && migr_rec->dest_depth_per_unit > 0)
3273 /* descending reshape not supported yet */
3274 return -1;
3275 }
3276 }
3277 return 0;
3278}
3279
d23fe947 3280static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3281
cdddbdbc 3282/* load_imsm_mpb - read matrix metadata
f2f5c343 3283 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3284 */
3285static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3286{
3287 unsigned long long dsize;
cdddbdbc
DW
3288 unsigned long long sectors;
3289 struct stat;
6416d527 3290 struct imsm_super *anchor;
cdddbdbc
DW
3291 __u32 check_sum;
3292
cdddbdbc 3293 get_dev_size(fd, NULL, &dsize);
64436f06
N
3294 if (dsize < 1024) {
3295 if (devname)
3296 fprintf(stderr,
3297 Name ": %s: device to small for imsm\n",
3298 devname);
3299 return 1;
3300 }
cdddbdbc
DW
3301
3302 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3303 if (devname)
2e062e82
AK
3304 fprintf(stderr, Name
3305 ": Cannot seek to anchor block on %s: %s\n",
cdddbdbc
DW
3306 devname, strerror(errno));
3307 return 1;
3308 }
3309
949c47a0 3310 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3311 if (devname)
3312 fprintf(stderr,
3313 Name ": Failed to allocate imsm anchor buffer"
3314 " on %s\n", devname);
3315 return 1;
3316 }
949c47a0 3317 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3318 if (devname)
3319 fprintf(stderr,
3320 Name ": Cannot read anchor block on %s: %s\n",
3321 devname, strerror(errno));
6416d527 3322 free(anchor);
cdddbdbc
DW
3323 return 1;
3324 }
3325
6416d527 3326 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3327 if (devname)
3328 fprintf(stderr,
3329 Name ": no IMSM anchor on %s\n", devname);
6416d527 3330 free(anchor);
cdddbdbc
DW
3331 return 2;
3332 }
3333
d23fe947 3334 __free_imsm(super, 0);
f2f5c343
LM
3335 /* reload capability and hba */
3336
3337 /* capability and hba must be updated with new super allocation */
d424212e 3338 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3339 super->len = ROUND_UP(anchor->mpb_size, 512);
3340 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3341 if (devname)
3342 fprintf(stderr,
3343 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3344 super->len);
6416d527 3345 free(anchor);
cdddbdbc
DW
3346 return 2;
3347 }
949c47a0 3348 memcpy(super->buf, anchor, 512);
cdddbdbc 3349
6416d527
NB
3350 sectors = mpb_sectors(anchor) - 1;
3351 free(anchor);
8e59f3d8
AK
3352
3353 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3354 fprintf(stderr, Name
3355 ": %s could not allocate migr_rec buffer\n", __func__);
3356 free(super->buf);
3357 return 2;
3358 }
3359
949c47a0 3360 if (!sectors) {
ecf45690
DW
3361 check_sum = __gen_imsm_checksum(super->anchor);
3362 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3363 if (devname)
3364 fprintf(stderr,
3365 Name ": IMSM checksum %x != %x on %s\n",
3366 check_sum,
3367 __le32_to_cpu(super->anchor->check_sum),
3368 devname);
3369 return 2;
3370 }
3371
a2b97981 3372 return 0;
949c47a0 3373 }
cdddbdbc
DW
3374
3375 /* read the extended mpb */
3376 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3377 if (devname)
3378 fprintf(stderr,
3379 Name ": Cannot seek to extended mpb on %s: %s\n",
3380 devname, strerror(errno));
3381 return 1;
3382 }
3383
f21e18ca 3384 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3385 if (devname)
3386 fprintf(stderr,
3387 Name ": Cannot read extended mpb on %s: %s\n",
3388 devname, strerror(errno));
3389 return 2;
3390 }
3391
949c47a0
DW
3392 check_sum = __gen_imsm_checksum(super->anchor);
3393 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3394 if (devname)
3395 fprintf(stderr,
3396 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3397 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3398 devname);
db575f3b 3399 return 3;
cdddbdbc
DW
3400 }
3401
604b746f
JD
3402 /* FIXME the BBM log is disk specific so we cannot use this global
3403 * buffer for all disks. Ok for now since we only look at the global
3404 * bbm_log_size parameter to gate assembly
3405 */
3406 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3407
a2b97981
DW
3408 return 0;
3409}
3410
8e59f3d8
AK
3411static int read_imsm_migr_rec(int fd, struct intel_super *super);
3412
a2b97981
DW
3413static int
3414load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3415{
3416 int err;
3417
3418 err = load_imsm_mpb(fd, super, devname);
3419 if (err)
3420 return err;
3421 err = load_imsm_disk(fd, super, devname, keep_fd);
3422 if (err)
3423 return err;
3424 err = parse_raid_devices(super);
4d7b1503 3425
a2b97981 3426 return err;
cdddbdbc
DW
3427}
3428
ae6aad82
DW
3429static void __free_imsm_disk(struct dl *d)
3430{
3431 if (d->fd >= 0)
3432 close(d->fd);
3433 if (d->devname)
3434 free(d->devname);
0dcecb2e
DW
3435 if (d->e)
3436 free(d->e);
ae6aad82
DW
3437 free(d);
3438
3439}
1a64be56 3440
cdddbdbc
DW
3441static void free_imsm_disks(struct intel_super *super)
3442{
47ee5a45 3443 struct dl *d;
cdddbdbc 3444
47ee5a45
DW
3445 while (super->disks) {
3446 d = super->disks;
cdddbdbc 3447 super->disks = d->next;
ae6aad82 3448 __free_imsm_disk(d);
cdddbdbc 3449 }
cb82edca
AK
3450 while (super->disk_mgmt_list) {
3451 d = super->disk_mgmt_list;
3452 super->disk_mgmt_list = d->next;
3453 __free_imsm_disk(d);
3454 }
47ee5a45
DW
3455 while (super->missing) {
3456 d = super->missing;
3457 super->missing = d->next;
3458 __free_imsm_disk(d);
3459 }
3460
cdddbdbc
DW
3461}
3462
9ca2c81c 3463/* free all the pieces hanging off of a super pointer */
d23fe947 3464static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3465{
88654014
LM
3466 struct intel_hba *elem, *next;
3467
9ca2c81c 3468 if (super->buf) {
949c47a0 3469 free(super->buf);
9ca2c81c
DW
3470 super->buf = NULL;
3471 }
f2f5c343
LM
3472 /* unlink capability description */
3473 super->orom = NULL;
8e59f3d8
AK
3474 if (super->migr_rec_buf) {
3475 free(super->migr_rec_buf);
3476 super->migr_rec_buf = NULL;
3477 }
d23fe947
DW
3478 if (free_disks)
3479 free_imsm_disks(super);
ba2de7ba 3480 free_devlist(super);
88654014
LM
3481 elem = super->hba;
3482 while (elem) {
3483 if (elem->path)
3484 free((void *)elem->path);
3485 next = elem->next;
3486 free(elem);
3487 elem = next;
88c32bb1 3488 }
88654014 3489 super->hba = NULL;
cdddbdbc
DW
3490}
3491
9ca2c81c
DW
3492static void free_imsm(struct intel_super *super)
3493{
d23fe947 3494 __free_imsm(super, 1);
9ca2c81c
DW
3495 free(super);
3496}
cdddbdbc
DW
3497
3498static void free_super_imsm(struct supertype *st)
3499{
3500 struct intel_super *super = st->sb;
3501
3502 if (!super)
3503 return;
3504
3505 free_imsm(super);
3506 st->sb = NULL;
3507}
3508
49133e57 3509static struct intel_super *alloc_super(void)
c2c087e6
DW
3510{
3511 struct intel_super *super = malloc(sizeof(*super));
3512
3513 if (super) {
3514 memset(super, 0, sizeof(*super));
bf5a934a 3515 super->current_vol = -1;
0dcecb2e 3516 super->create_offset = ~((__u32 ) 0);
c2c087e6 3517 }
c2c087e6
DW
3518 return super;
3519}
3520
f0f5a016
LM
3521/*
3522 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3523 */
d424212e 3524static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3525{
3526 struct sys_dev *hba_name;
3527 int rv = 0;
3528
3529 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3530 super->orom = NULL;
f0f5a016
LM
3531 super->hba = NULL;
3532 return 0;
3533 }
3534 hba_name = find_disk_attached_hba(fd, NULL);
3535 if (!hba_name) {
d424212e 3536 if (devname)
f0f5a016
LM
3537 fprintf(stderr,
3538 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3539 devname);
f0f5a016
LM
3540 return 1;
3541 }
3542 rv = attach_hba_to_super(super, hba_name);
3543 if (rv == 2) {
d424212e
N
3544 if (devname) {
3545 struct intel_hba *hba = super->hba;
f0f5a016 3546
f0f5a016
LM
3547 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3548 "controller (%s),\n"
3549 " but the container is assigned to Intel(R) "
3550 "%s RAID controller (",
d424212e 3551 devname,
f0f5a016
LM
3552 hba_name->path,
3553 hba_name->pci_id ? : "Err!",
3554 get_sys_dev_type(hba_name->type));
3555
f0f5a016
LM
3556 while (hba) {
3557 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3558 if (hba->next)
3559 fprintf(stderr, ", ");
3560 hba = hba->next;
3561 }
3562
3563 fprintf(stderr, ").\n"
3564 " Mixing devices attached to different controllers "
3565 "is not allowed.\n");
3566 }
3567 free_sys_dev(&hba_name);
3568 return 2;
3569 }
f2f5c343 3570 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3571 free_sys_dev(&hba_name);
f2f5c343
LM
3572 if (!super->orom)
3573 return 3;
f0f5a016
LM
3574 return 0;
3575}
3576
47ee5a45
DW
3577/* find_missing - helper routine for load_super_imsm_all that identifies
3578 * disks that have disappeared from the system. This routine relies on
3579 * the mpb being uptodate, which it is at load time.
3580 */
3581static int find_missing(struct intel_super *super)
3582{
3583 int i;
3584 struct imsm_super *mpb = super->anchor;
3585 struct dl *dl;
3586 struct imsm_disk *disk;
47ee5a45
DW
3587
3588 for (i = 0; i < mpb->num_disks; i++) {
3589 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3590 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3591 if (dl)
3592 continue;
47ee5a45
DW
3593
3594 dl = malloc(sizeof(*dl));
3595 if (!dl)
3596 return 1;
3597 dl->major = 0;
3598 dl->minor = 0;
3599 dl->fd = -1;
3600 dl->devname = strdup("missing");
3601 dl->index = i;
3602 serialcpy(dl->serial, disk->serial);
3603 dl->disk = *disk;
689c9bf3 3604 dl->e = NULL;
47ee5a45
DW
3605 dl->next = super->missing;
3606 super->missing = dl;
3607 }
3608
3609 return 0;
3610}
3611
3960e579 3612#ifndef MDASSEMBLE
a2b97981
DW
3613static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3614{
3615 struct intel_disk *idisk = disk_list;
3616
3617 while (idisk) {
3618 if (serialcmp(idisk->disk.serial, serial) == 0)
3619 break;
3620 idisk = idisk->next;
3621 }
3622
3623 return idisk;
3624}
3625
3626static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3627 struct intel_super *super,
3628 struct intel_disk **disk_list)
3629{
3630 struct imsm_disk *d = &super->disks->disk;
3631 struct imsm_super *mpb = super->anchor;
3632 int i, j;
3633
3634 for (i = 0; i < tbl_size; i++) {
3635 struct imsm_super *tbl_mpb = table[i]->anchor;
3636 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3637
3638 if (tbl_mpb->family_num == mpb->family_num) {
3639 if (tbl_mpb->check_sum == mpb->check_sum) {
3640 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3641 __func__, super->disks->major,
3642 super->disks->minor,
3643 table[i]->disks->major,
3644 table[i]->disks->minor);
3645 break;
3646 }
3647
3648 if (((is_configured(d) && !is_configured(tbl_d)) ||
3649 is_configured(d) == is_configured(tbl_d)) &&
3650 tbl_mpb->generation_num < mpb->generation_num) {
3651 /* current version of the mpb is a
3652 * better candidate than the one in
3653 * super_table, but copy over "cross
3654 * generational" status
3655 */
3656 struct intel_disk *idisk;
3657
3658 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3659 __func__, super->disks->major,
3660 super->disks->minor,
3661 table[i]->disks->major,
3662 table[i]->disks->minor);
3663
3664 idisk = disk_list_get(tbl_d->serial, *disk_list);
3665 if (idisk && is_failed(&idisk->disk))
3666 tbl_d->status |= FAILED_DISK;
3667 break;
3668 } else {
3669 struct intel_disk *idisk;
3670 struct imsm_disk *disk;
3671
3672 /* tbl_mpb is more up to date, but copy
3673 * over cross generational status before
3674 * returning
3675 */
3676 disk = __serial_to_disk(d->serial, mpb, NULL);
3677 if (disk && is_failed(disk))
3678 d->status |= FAILED_DISK;
3679
3680 idisk = disk_list_get(d->serial, *disk_list);
3681 if (idisk) {
3682 idisk->owner = i;
3683 if (disk && is_configured(disk))
3684 idisk->disk.status |= CONFIGURED_DISK;
3685 }
3686
3687 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3688 __func__, super->disks->major,
3689 super->disks->minor,
3690 table[i]->disks->major,
3691 table[i]->disks->minor);
3692
3693 return tbl_size;
3694 }
3695 }
3696 }
3697
3698 if (i >= tbl_size)
3699 table[tbl_size++] = super;
3700 else
3701 table[i] = super;
3702
3703 /* update/extend the merged list of imsm_disk records */
3704 for (j = 0; j < mpb->num_disks; j++) {
3705 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3706 struct intel_disk *idisk;
3707
3708 idisk = disk_list_get(disk->serial, *disk_list);
3709 if (idisk) {
3710 idisk->disk.status |= disk->status;
3711 if (is_configured(&idisk->disk) ||
3712 is_failed(&idisk->disk))
3713 idisk->disk.status &= ~(SPARE_DISK);
3714 } else {
3715 idisk = calloc(1, sizeof(*idisk));
3716 if (!idisk)
3717 return -1;
3718 idisk->owner = IMSM_UNKNOWN_OWNER;
3719 idisk->disk = *disk;
3720 idisk->next = *disk_list;
3721 *disk_list = idisk;
3722 }
3723
3724 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3725 idisk->owner = i;
3726 }
3727
3728 return tbl_size;
3729}
3730
3731static struct intel_super *
3732validate_members(struct intel_super *super, struct intel_disk *disk_list,
3733 const int owner)
3734{
3735 struct imsm_super *mpb = super->anchor;
3736 int ok_count = 0;
3737 int i;
3738
3739 for (i = 0; i < mpb->num_disks; i++) {
3740 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3741 struct intel_disk *idisk;
3742
3743 idisk = disk_list_get(disk->serial, disk_list);
3744 if (idisk) {
3745 if (idisk->owner == owner ||
3746 idisk->owner == IMSM_UNKNOWN_OWNER)
3747 ok_count++;
3748 else
3749 dprintf("%s: '%.16s' owner %d != %d\n",
3750 __func__, disk->serial, idisk->owner,
3751 owner);
3752 } else {
3753 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3754 __func__, __le32_to_cpu(mpb->family_num), i,
3755 disk->serial);
3756 break;
3757 }
3758 }
3759
3760 if (ok_count == mpb->num_disks)
3761 return super;
3762 return NULL;
3763}
3764
3765static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3766{
3767 struct intel_super *s;
3768
3769 for (s = super_list; s; s = s->next) {
3770 if (family_num != s->anchor->family_num)
3771 continue;
3772 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3773 __le32_to_cpu(family_num), s->disks->devname);
3774 }
3775}
3776
3777static struct intel_super *
3778imsm_thunderdome(struct intel_super **super_list, int len)
3779{
3780 struct intel_super *super_table[len];
3781 struct intel_disk *disk_list = NULL;
3782 struct intel_super *champion, *spare;
3783 struct intel_super *s, **del;
3784 int tbl_size = 0;
3785 int conflict;
3786 int i;
3787
3788 memset(super_table, 0, sizeof(super_table));
3789 for (s = *super_list; s; s = s->next)
3790 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3791
3792 for (i = 0; i < tbl_size; i++) {
3793 struct imsm_disk *d;
3794 struct intel_disk *idisk;
3795 struct imsm_super *mpb = super_table[i]->anchor;
3796
3797 s = super_table[i];
3798 d = &s->disks->disk;
3799
3800 /* 'd' must appear in merged disk list for its
3801 * configuration to be valid
3802 */
3803 idisk = disk_list_get(d->serial, disk_list);
3804 if (idisk && idisk->owner == i)
3805 s = validate_members(s, disk_list, i);
3806 else
3807 s = NULL;
3808
3809 if (!s)
3810 dprintf("%s: marking family: %#x from %d:%d offline\n",
3811 __func__, mpb->family_num,
3812 super_table[i]->disks->major,
3813 super_table[i]->disks->minor);
3814 super_table[i] = s;
3815 }
3816
3817 /* This is where the mdadm implementation differs from the Windows
3818 * driver which has no strict concept of a container. We can only
3819 * assemble one family from a container, so when returning a prodigal
3820 * array member to this system the code will not be able to disambiguate
3821 * the container contents that should be assembled ("foreign" versus
3822 * "local"). It requires user intervention to set the orig_family_num
3823 * to a new value to establish a new container. The Windows driver in
3824 * this situation fixes up the volume name in place and manages the
3825 * foreign array as an independent entity.
3826 */
3827 s = NULL;
3828 spare = NULL;
3829 conflict = 0;
3830 for (i = 0; i < tbl_size; i++) {
3831 struct intel_super *tbl_ent = super_table[i];
3832 int is_spare = 0;
3833
3834 if (!tbl_ent)
3835 continue;
3836
3837 if (tbl_ent->anchor->num_raid_devs == 0) {
3838 spare = tbl_ent;
3839 is_spare = 1;
3840 }
3841
3842 if (s && !is_spare) {
3843 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3844 conflict++;
3845 } else if (!s && !is_spare)
3846 s = tbl_ent;
3847 }
3848
3849 if (!s)
3850 s = spare;
3851 if (!s) {
3852 champion = NULL;
3853 goto out;
3854 }
3855 champion = s;
3856
3857 if (conflict)
3858 fprintf(stderr, "Chose family %#x on '%s', "
3859 "assemble conflicts to new container with '--update=uuid'\n",
3860 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3861
3862 /* collect all dl's onto 'champion', and update them to
3863 * champion's version of the status
3864 */
3865 for (s = *super_list; s; s = s->next) {
3866 struct imsm_super *mpb = champion->anchor;
3867 struct dl *dl = s->disks;
3868
3869 if (s == champion)
3870 continue;
3871
3872 for (i = 0; i < mpb->num_disks; i++) {
3873 struct imsm_disk *disk;
3874
3875 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3876 if (disk) {
3877 dl->disk = *disk;
3878 /* only set index on disks that are a member of
3879 * a populated contianer, i.e. one with
3880 * raid_devs
3881 */
3882 if (is_failed(&dl->disk))
3883 dl->index = -2;
3884 else if (is_spare(&dl->disk))
3885 dl->index = -1;
3886 break;
3887 }
3888 }
3889
3890 if (i >= mpb->num_disks) {
3891 struct intel_disk *idisk;
3892
3893 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3894 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3895 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3896 dl->index = -1;
3897 else {
3898 dl->index = -2;
3899 continue;
3900 }
3901 }
3902
3903 dl->next = champion->disks;
3904 champion->disks = dl;
3905 s->disks = NULL;
3906 }
3907
3908 /* delete 'champion' from super_list */
3909 for (del = super_list; *del; ) {
3910 if (*del == champion) {
3911 *del = (*del)->next;
3912 break;
3913 } else
3914 del = &(*del)->next;
3915 }
3916 champion->next = NULL;
3917
3918 out:
3919 while (disk_list) {
3920 struct intel_disk *idisk = disk_list;
3921
3922 disk_list = disk_list->next;
3923 free(idisk);
3924 }
3925
3926 return champion;
3927}
3928
cdddbdbc 3929static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3930 char *devname)
cdddbdbc
DW
3931{
3932 struct mdinfo *sra;
a2b97981
DW
3933 struct intel_super *super_list = NULL;
3934 struct intel_super *super = NULL;
db575f3b 3935 int devnum = fd2devnum(fd);
a2b97981 3936 struct mdinfo *sd;
db575f3b 3937 int retry;
a2b97981
DW
3938 int err = 0;
3939 int i;
dab4a513
DW
3940
3941 /* check if 'fd' an opened container */
b526e52d 3942 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3943 if (!sra)
3944 return 1;
3945
3946 if (sra->array.major_version != -1 ||
3947 sra->array.minor_version != -2 ||
1602d52c
AW
3948 strcmp(sra->text_version, "imsm") != 0) {
3949 err = 1;
3950 goto error;
3951 }
a2b97981
DW
3952 /* load all mpbs */
3953 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3954 struct intel_super *s = alloc_super();
7a6ecd55 3955 char nm[32];
a2b97981 3956 int dfd;
f2f5c343 3957 int rv;
a2b97981
DW
3958
3959 err = 1;
3960 if (!s)
3961 goto error;
3962 s->next = super_list;
3963 super_list = s;
cdddbdbc 3964
a2b97981 3965 err = 2;
cdddbdbc 3966 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3967 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3968 if (dfd < 0)
3969 goto error;
3970
d424212e 3971 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3972 /* no orom/efi or non-intel hba of the disk */
3973 if (rv != 0)
3974 goto error;
3975
e1902a7b 3976 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3977
3978 /* retry the load if we might have raced against mdmon */
a2b97981 3979 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3980 for (retry = 0; retry < 3; retry++) {
3981 usleep(3000);
e1902a7b 3982 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3983 if (err != 3)
db575f3b
DW
3984 break;
3985 }
a2b97981
DW
3986 if (err)
3987 goto error;
cdddbdbc
DW
3988 }
3989
a2b97981
DW
3990 /* all mpbs enter, maybe one leaves */
3991 super = imsm_thunderdome(&super_list, i);
3992 if (!super) {
3993 err = 1;
3994 goto error;
cdddbdbc
DW
3995 }
3996
47ee5a45
DW
3997 if (find_missing(super) != 0) {
3998 free_imsm(super);
a2b97981
DW
3999 err = 2;
4000 goto error;
47ee5a45 4001 }
8e59f3d8
AK
4002
4003 /* load migration record */
4004 err = load_imsm_migr_rec(super, NULL);
4005 if (err) {
4006 err = 4;
4007 goto error;
4008 }
e2f41b2c
AK
4009
4010 /* Check migration compatibility */
4011 if (check_mpb_migr_compatibility(super) != 0) {
4012 fprintf(stderr, Name ": Unsupported migration detected");
4013 if (devname)
4014 fprintf(stderr, " on %s\n", devname);
4015 else
4016 fprintf(stderr, " (IMSM).\n");
4017
4018 err = 5;
4019 goto error;
4020 }
4021
a2b97981
DW
4022 err = 0;
4023
4024 error:
4025 while (super_list) {
4026 struct intel_super *s = super_list;
4027
4028 super_list = super_list->next;
4029 free_imsm(s);
4030 }
1602d52c 4031 sysfs_free(sra);
a2b97981
DW
4032
4033 if (err)
4034 return err;
f7e7067b 4035
cdddbdbc 4036 *sbp = super;
db575f3b 4037 st->container_dev = devnum;
a2b97981 4038 if (err == 0 && st->ss == NULL) {
bf5a934a 4039 st->ss = &super_imsm;
cdddbdbc
DW
4040 st->minor_version = 0;
4041 st->max_devs = IMSM_MAX_DEVICES;
4042 }
cdddbdbc
DW
4043 return 0;
4044}
2b959fbf
N
4045
4046static int load_container_imsm(struct supertype *st, int fd, char *devname)
4047{
4048 return load_super_imsm_all(st, fd, &st->sb, devname);
4049}
cdddbdbc
DW
4050#endif
4051
4052static int load_super_imsm(struct supertype *st, int fd, char *devname)
4053{
4054 struct intel_super *super;
4055 int rv;
4056
691c6ee1
N
4057 if (test_partition(fd))
4058 /* IMSM not allowed on partitions */
4059 return 1;
4060
37424f13
DW
4061 free_super_imsm(st);
4062
49133e57 4063 super = alloc_super();
cdddbdbc
DW
4064 if (!super) {
4065 fprintf(stderr,
4066 Name ": malloc of %zu failed.\n",
4067 sizeof(*super));
4068 return 1;
4069 }
ea2bc72b
LM
4070 /* Load hba and capabilities if they exist.
4071 * But do not preclude loading metadata in case capabilities or hba are
4072 * non-compliant and ignore_hw_compat is set.
4073 */
d424212e 4074 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4075 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4076 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
4077 if (devname)
4078 fprintf(stderr,
4079 Name ": No OROM/EFI properties for %s\n", devname);
4080 free_imsm(super);
4081 return 2;
4082 }
a2b97981 4083 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
4084
4085 if (rv) {
4086 if (devname)
4087 fprintf(stderr,
4088 Name ": Failed to load all information "
4089 "sections on %s\n", devname);
4090 free_imsm(super);
4091 return rv;
4092 }
4093
4094 st->sb = super;
4095 if (st->ss == NULL) {
4096 st->ss = &super_imsm;
4097 st->minor_version = 0;
4098 st->max_devs = IMSM_MAX_DEVICES;
4099 }
8e59f3d8
AK
4100
4101 /* load migration record */
2e062e82
AK
4102 if (load_imsm_migr_rec(super, NULL) == 0) {
4103 /* Check for unsupported migration features */
4104 if (check_mpb_migr_compatibility(super) != 0) {
4105 fprintf(stderr,
4106 Name ": Unsupported migration detected");
4107 if (devname)
4108 fprintf(stderr, " on %s\n", devname);
4109 else
4110 fprintf(stderr, " (IMSM).\n");
4111 return 3;
4112 }
e2f41b2c
AK
4113 }
4114
cdddbdbc
DW
4115 return 0;
4116}
4117
ef6ffade
DW
4118static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4119{
4120 if (info->level == 1)
4121 return 128;
4122 return info->chunk_size >> 9;
4123}
4124
ff596308 4125static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
4126{
4127 __u32 num_stripes;
4128
4129 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 4130 num_stripes /= num_domains;
ef6ffade
DW
4131
4132 return num_stripes;
4133}
4134
fcfd9599
DW
4135static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4136{
4025c288
DW
4137 if (info->level == 1)
4138 return info->size * 2;
4139 else
4140 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4141}
4142
4d1313e9
DW
4143static void imsm_update_version_info(struct intel_super *super)
4144{
4145 /* update the version and attributes */
4146 struct imsm_super *mpb = super->anchor;
4147 char *version;
4148 struct imsm_dev *dev;
4149 struct imsm_map *map;
4150 int i;
4151
4152 for (i = 0; i < mpb->num_raid_devs; i++) {
4153 dev = get_imsm_dev(super, i);
238c0a71 4154 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
4155 if (__le32_to_cpu(dev->size_high) > 0)
4156 mpb->attributes |= MPB_ATTRIB_2TB;
4157
4158 /* FIXME detect when an array spans a port multiplier */
4159 #if 0
4160 mpb->attributes |= MPB_ATTRIB_PM;
4161 #endif
4162
4163 if (mpb->num_raid_devs > 1 ||
4164 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4165 version = MPB_VERSION_ATTRIBS;
4166 switch (get_imsm_raid_level(map)) {
4167 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4168 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4169 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4170 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4171 }
4172 } else {
4173 if (map->num_members >= 5)
4174 version = MPB_VERSION_5OR6_DISK_ARRAY;
4175 else if (dev->status == DEV_CLONE_N_GO)
4176 version = MPB_VERSION_CNG;
4177 else if (get_imsm_raid_level(map) == 5)
4178 version = MPB_VERSION_RAID5;
4179 else if (map->num_members >= 3)
4180 version = MPB_VERSION_3OR4_DISK_ARRAY;
4181 else if (get_imsm_raid_level(map) == 1)
4182 version = MPB_VERSION_RAID1;
4183 else
4184 version = MPB_VERSION_RAID0;
4185 }
4186 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4187 }
4188}
4189
aa534678
DW
4190static int check_name(struct intel_super *super, char *name, int quiet)
4191{
4192 struct imsm_super *mpb = super->anchor;
4193 char *reason = NULL;
4194 int i;
4195
4196 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4197 reason = "must be 16 characters or less";
4198
4199 for (i = 0; i < mpb->num_raid_devs; i++) {
4200 struct imsm_dev *dev = get_imsm_dev(super, i);
4201
4202 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4203 reason = "already exists";
4204 break;
4205 }
4206 }
4207
4208 if (reason && !quiet)
4209 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4210
4211 return !reason;
4212}
4213
8b353278
DW
4214static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4215 unsigned long long size, char *name,
4216 char *homehost, int *uuid)
cdddbdbc 4217{
c2c087e6
DW
4218 /* We are creating a volume inside a pre-existing container.
4219 * so st->sb is already set.
4220 */
4221 struct intel_super *super = st->sb;
949c47a0 4222 struct imsm_super *mpb = super->anchor;
ba2de7ba 4223 struct intel_dev *dv;
c2c087e6
DW
4224 struct imsm_dev *dev;
4225 struct imsm_vol *vol;
4226 struct imsm_map *map;
4227 int idx = mpb->num_raid_devs;
4228 int i;
4229 unsigned long long array_blocks;
2c092cad 4230 size_t size_old, size_new;
ff596308 4231 __u32 num_data_stripes;
cdddbdbc 4232
88c32bb1 4233 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 4234 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 4235 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4236 return 0;
4237 }
4238
2c092cad
DW
4239 /* ensure the mpb is large enough for the new data */
4240 size_old = __le32_to_cpu(mpb->mpb_size);
4241 size_new = disks_to_mpb_size(info->nr_disks);
4242 if (size_new > size_old) {
4243 void *mpb_new;
4244 size_t size_round = ROUND_UP(size_new, 512);
4245
4246 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4247 fprintf(stderr, Name": could not allocate new mpb\n");
4248 return 0;
4249 }
8e59f3d8
AK
4250 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4251 fprintf(stderr, Name
4252 ": %s could not allocate migr_rec buffer\n",
4253 __func__);
4254 free(super->buf);
4255 free(super);
ea944c8f 4256 free(mpb_new);
8e59f3d8
AK
4257 return 0;
4258 }
2c092cad
DW
4259 memcpy(mpb_new, mpb, size_old);
4260 free(mpb);
4261 mpb = mpb_new;
949c47a0 4262 super->anchor = mpb_new;
2c092cad
DW
4263 mpb->mpb_size = __cpu_to_le32(size_new);
4264 memset(mpb_new + size_old, 0, size_round - size_old);
4265 }
bf5a934a 4266 super->current_vol = idx;
3960e579
DW
4267
4268 /* handle 'failed_disks' by either:
4269 * a) create dummy disk entries in the table if this the first
4270 * volume in the array. We add them here as this is the only
4271 * opportunity to add them. add_to_super_imsm_volume()
4272 * handles the non-failed disks and continues incrementing
4273 * mpb->num_disks.
4274 * b) validate that 'failed_disks' matches the current number
4275 * of missing disks if the container is populated
d23fe947 4276 */
3960e579 4277 if (super->current_vol == 0) {
d23fe947 4278 mpb->num_disks = 0;
3960e579
DW
4279 for (i = 0; i < info->failed_disks; i++) {
4280 struct imsm_disk *disk;
4281
4282 mpb->num_disks++;
4283 disk = __get_imsm_disk(mpb, i);
4284 disk->status = CONFIGURED_DISK | FAILED_DISK;
4285 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4286 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4287 "missing:%d", i);
4288 }
4289 find_missing(super);
4290 } else {
4291 int missing = 0;
4292 struct dl *d;
4293
4294 for (d = super->missing; d; d = d->next)
4295 missing++;
4296 if (info->failed_disks > missing) {
4297 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4298 return 0;
4299 }
4300 }
5a038140 4301
aa534678
DW
4302 if (!check_name(super, name, 0))
4303 return 0;
ba2de7ba
DW
4304 dv = malloc(sizeof(*dv));
4305 if (!dv) {
4306 fprintf(stderr, Name ": failed to allocate device list entry\n");
4307 return 0;
4308 }
1a2487c2 4309 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4310 if (!dev) {
ba2de7ba 4311 free(dv);
949c47a0
DW
4312 fprintf(stderr, Name": could not allocate raid device\n");
4313 return 0;
4314 }
1a2487c2 4315
c2c087e6 4316 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4317 if (info->level == 1)
4318 array_blocks = info_to_blocks_per_member(info);
4319 else
4320 array_blocks = calc_array_size(info->level, info->raid_disks,
4321 info->layout, info->chunk_size,
4322 info->size*2);
979d38be
DW
4323 /* round array size down to closest MB */
4324 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4325
c2c087e6
DW
4326 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4327 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4328 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4329 vol = &dev->vol;
4330 vol->migr_state = 0;
1484e727 4331 set_migr_type(dev, MIGR_INIT);
3960e579 4332 vol->dirty = !info->state;
f8f603f1 4333 vol->curr_migr_unit = 0;
238c0a71 4334 map = get_imsm_map(dev, MAP_0);
0dcecb2e 4335 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4336 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4337 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4338 map->failed_disk_num = ~0;
bf4442ab
AK
4339 if (info->level > 0)
4340 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4341 else
4342 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4343 IMSM_T_STATE_NORMAL;
252d23c0 4344 map->ddf = 1;
ef6ffade
DW
4345
4346 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4347 free(dev);
4348 free(dv);
ef6ffade
DW
4349 fprintf(stderr, Name": imsm does not support more than 2 disks"
4350 "in a raid1 volume\n");
4351 return 0;
4352 }
81062a36
DW
4353
4354 map->raid_level = info->level;
4d1313e9 4355 if (info->level == 10) {
c2c087e6 4356 map->raid_level = 1;
4d1313e9 4357 map->num_domains = info->raid_disks / 2;
81062a36
DW
4358 } else if (info->level == 1)
4359 map->num_domains = info->raid_disks;
4360 else
ff596308 4361 map->num_domains = 1;
81062a36 4362
ff596308
DW
4363 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4364 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4365
c2c087e6
DW
4366 map->num_members = info->raid_disks;
4367 for (i = 0; i < map->num_members; i++) {
4368 /* initialized in add_to_super */
4eb26970 4369 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4370 }
949c47a0 4371 mpb->num_raid_devs++;
ba2de7ba
DW
4372
4373 dv->dev = dev;
4374 dv->index = super->current_vol;
4375 dv->next = super->devlist;
4376 super->devlist = dv;
c2c087e6 4377
4d1313e9
DW
4378 imsm_update_version_info(super);
4379
c2c087e6 4380 return 1;
cdddbdbc
DW
4381}
4382
bf5a934a
DW
4383static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4384 unsigned long long size, char *name,
4385 char *homehost, int *uuid)
4386{
4387 /* This is primarily called by Create when creating a new array.
4388 * We will then get add_to_super called for each component, and then
4389 * write_init_super called to write it out to each device.
4390 * For IMSM, Create can create on fresh devices or on a pre-existing
4391 * array.
4392 * To create on a pre-existing array a different method will be called.
4393 * This one is just for fresh drives.
4394 */
4395 struct intel_super *super;
4396 struct imsm_super *mpb;
4397 size_t mpb_size;
4d1313e9 4398 char *version;
bf5a934a 4399
bf5a934a 4400 if (st->sb)
e683ca88
DW
4401 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4402
4403 if (info)
4404 mpb_size = disks_to_mpb_size(info->nr_disks);
4405 else
4406 mpb_size = 512;
bf5a934a 4407
49133e57 4408 super = alloc_super();
e683ca88 4409 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4410 free(super);
e683ca88
DW
4411 super = NULL;
4412 }
4413 if (!super) {
4414 fprintf(stderr, Name
4415 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4416 return 0;
4417 }
8e59f3d8
AK
4418 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4419 fprintf(stderr, Name
4420 ": %s could not allocate migr_rec buffer\n", __func__);
4421 free(super->buf);
4422 free(super);
4423 return 0;
4424 }
e683ca88 4425 memset(super->buf, 0, mpb_size);
ef649044 4426 mpb = super->buf;
e683ca88
DW
4427 mpb->mpb_size = __cpu_to_le32(mpb_size);
4428 st->sb = super;
4429
4430 if (info == NULL) {
4431 /* zeroing superblock */
4432 return 0;
4433 }
bf5a934a 4434
4d1313e9
DW
4435 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4436
4437 version = (char *) mpb->sig;
4438 strcpy(version, MPB_SIGNATURE);
4439 version += strlen(MPB_SIGNATURE);
4440 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4441
bf5a934a
DW
4442 return 1;
4443}
4444
0e600426 4445#ifndef MDASSEMBLE
f20c3968 4446static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4447 int fd, char *devname)
4448{
4449 struct intel_super *super = st->sb;
d23fe947 4450 struct imsm_super *mpb = super->anchor;
3960e579 4451 struct imsm_disk *_disk;
bf5a934a
DW
4452 struct imsm_dev *dev;
4453 struct imsm_map *map;
3960e579 4454 struct dl *dl, *df;
4eb26970 4455 int slot;
bf5a934a 4456
949c47a0 4457 dev = get_imsm_dev(super, super->current_vol);
238c0a71 4458 map = get_imsm_map(dev, MAP_0);
bf5a934a 4459
208933a7
N
4460 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4461 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4462 devname);
4463 return 1;
4464 }
4465
efb30e7f
DW
4466 if (fd == -1) {
4467 /* we're doing autolayout so grab the pre-marked (in
4468 * validate_geometry) raid_disk
4469 */
4470 for (dl = super->disks; dl; dl = dl->next)
4471 if (dl->raiddisk == dk->raid_disk)
4472 break;
4473 } else {
4474 for (dl = super->disks; dl ; dl = dl->next)
4475 if (dl->major == dk->major &&
4476 dl->minor == dk->minor)
4477 break;
4478 }
d23fe947 4479
208933a7
N
4480 if (!dl) {
4481 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4482 return 1;
208933a7 4483 }
bf5a934a 4484
d23fe947
DW
4485 /* add a pristine spare to the metadata */
4486 if (dl->index < 0) {
4487 dl->index = super->anchor->num_disks;
4488 super->anchor->num_disks++;
4489 }
4eb26970
DW
4490 /* Check the device has not already been added */
4491 slot = get_imsm_disk_slot(map, dl->index);
4492 if (slot >= 0 &&
238c0a71 4493 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4494 fprintf(stderr, Name ": %s has been included in this array twice\n",
4495 devname);
4496 return 1;
4497 }
656b6b5a 4498 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 4499 dl->disk.status = CONFIGURED_DISK;
d23fe947 4500
3960e579
DW
4501 /* update size of 'missing' disks to be at least as large as the
4502 * largest acitve member (we only have dummy missing disks when
4503 * creating the first volume)
4504 */
4505 if (super->current_vol == 0) {
4506 for (df = super->missing; df; df = df->next) {
4507 if (dl->disk.total_blocks > df->disk.total_blocks)
4508 df->disk.total_blocks = dl->disk.total_blocks;
4509 _disk = __get_imsm_disk(mpb, df->index);
4510 *_disk = df->disk;
4511 }
4512 }
4513
4514 /* refresh unset/failed slots to point to valid 'missing' entries */
4515 for (df = super->missing; df; df = df->next)
4516 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 4517 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
4518
4519 if ((ord & IMSM_ORD_REBUILD) == 0)
4520 continue;
4521 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 4522 if (is_gen_migration(dev)) {
238c0a71
AK
4523 struct imsm_map *map2 = get_imsm_map(dev,
4524 MAP_1);
0a108d63
AK
4525 int slot2 = get_imsm_disk_slot(map2, df->index);
4526 if ((slot2 < map2->num_members) &&
4527 (slot2 >= 0)) {
1ace8403 4528 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
4529 slot2,
4530 MAP_1);
1ace8403
AK
4531 if ((unsigned)df->index ==
4532 ord_to_idx(ord2))
4533 set_imsm_ord_tbl_ent(map2,
0a108d63 4534 slot2,
1ace8403
AK
4535 df->index |
4536 IMSM_ORD_REBUILD);
4537 }
4538 }
3960e579
DW
4539 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4540 break;
4541 }
4542
d23fe947
DW
4543 /* if we are creating the first raid device update the family number */
4544 if (super->current_vol == 0) {
4545 __u32 sum;
4546 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 4547
3960e579 4548 _disk = __get_imsm_disk(mpb, dl->index);
791b666a
AW
4549 if (!_dev || !_disk) {
4550 fprintf(stderr, Name ": BUG mpb setup error\n");
4551 return 1;
4552 }
d23fe947
DW
4553 *_dev = *dev;
4554 *_disk = dl->disk;
148acb7b
DW
4555 sum = random32();
4556 sum += __gen_imsm_checksum(mpb);
d23fe947 4557 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4558 mpb->orig_family_num = mpb->family_num;
d23fe947 4559 }
ca0748fa 4560 super->current_disk = dl;
f20c3968 4561 return 0;
bf5a934a
DW
4562}
4563
a8619d23
AK
4564/* mark_spare()
4565 * Function marks disk as spare and restores disk serial
4566 * in case it was previously marked as failed by takeover operation
4567 * reruns:
4568 * -1 : critical error
4569 * 0 : disk is marked as spare but serial is not set
4570 * 1 : success
4571 */
4572int mark_spare(struct dl *disk)
4573{
4574 __u8 serial[MAX_RAID_SERIAL_LEN];
4575 int ret_val = -1;
4576
4577 if (!disk)
4578 return ret_val;
4579
4580 ret_val = 0;
4581 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4582 /* Restore disk serial number, because takeover marks disk
4583 * as failed and adds to serial ':0' before it becomes
4584 * a spare disk.
4585 */
4586 serialcpy(disk->serial, serial);
4587 serialcpy(disk->disk.serial, serial);
4588 ret_val = 1;
4589 }
4590 disk->disk.status = SPARE_DISK;
4591 disk->index = -1;
4592
4593 return ret_val;
4594}
88654014 4595
f20c3968 4596static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4597 int fd, char *devname)
cdddbdbc 4598{
c2c087e6 4599 struct intel_super *super = st->sb;
c2c087e6
DW
4600 struct dl *dd;
4601 unsigned long long size;
f2f27e63 4602 __u32 id;
c2c087e6
DW
4603 int rv;
4604 struct stat stb;
4605
88654014
LM
4606 /* If we are on an RAID enabled platform check that the disk is
4607 * attached to the raid controller.
4608 * We do not need to test disks attachment for container based additions,
4609 * they shall be already tested when container was created/assembled.
88c32bb1 4610 */
d424212e 4611 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4612 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4613 if (rv != 0) {
4614 dprintf("capability: %p fd: %d ret: %d\n",
4615 super->orom, fd, rv);
4616 return 1;
88c32bb1
DW
4617 }
4618
f20c3968
DW
4619 if (super->current_vol >= 0)
4620 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4621
c2c087e6
DW
4622 fstat(fd, &stb);
4623 dd = malloc(sizeof(*dd));
b9f594fe 4624 if (!dd) {
c2c087e6
DW
4625 fprintf(stderr,
4626 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4627 return 1;
c2c087e6
DW
4628 }
4629 memset(dd, 0, sizeof(*dd));
4630 dd->major = major(stb.st_rdev);
4631 dd->minor = minor(stb.st_rdev);
c2c087e6 4632 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4633 dd->fd = fd;
689c9bf3 4634 dd->e = NULL;
1a64be56 4635 dd->action = DISK_ADD;
c2c087e6 4636 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4637 if (rv) {
c2c087e6 4638 fprintf(stderr,
0030e8d6 4639 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4640 free(dd);
0030e8d6 4641 abort();
c2c087e6
DW
4642 }
4643
c2c087e6
DW
4644 get_dev_size(fd, NULL, &size);
4645 size /= 512;
1f24f035 4646 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4647 dd->disk.total_blocks = __cpu_to_le32(size);
a8619d23 4648 mark_spare(dd);
c2c087e6 4649 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4650 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4651 else
b9f594fe 4652 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4653
4654 if (st->update_tail) {
1a64be56
LM
4655 dd->next = super->disk_mgmt_list;
4656 super->disk_mgmt_list = dd;
43dad3d6
DW
4657 } else {
4658 dd->next = super->disks;
4659 super->disks = dd;
ceaf0ee1 4660 super->updates_pending++;
43dad3d6 4661 }
f20c3968
DW
4662
4663 return 0;
cdddbdbc
DW
4664}
4665
1a64be56
LM
4666
4667static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4668{
4669 struct intel_super *super = st->sb;
4670 struct dl *dd;
4671
4672 /* remove from super works only in mdmon - for communication
4673 * manager - monitor. Check if communication memory buffer
4674 * is prepared.
4675 */
4676 if (!st->update_tail) {
4677 fprintf(stderr,
4678 Name ": %s shall be used in mdmon context only"
4679 "(line %d).\n", __func__, __LINE__);
4680 return 1;
4681 }
4682 dd = malloc(sizeof(*dd));
4683 if (!dd) {
4684 fprintf(stderr,
4685 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4686 return 1;
4687 }
4688 memset(dd, 0, sizeof(*dd));
4689 dd->major = dk->major;
4690 dd->minor = dk->minor;
1a64be56 4691 dd->fd = -1;
a8619d23 4692 mark_spare(dd);
1a64be56
LM
4693 dd->action = DISK_REMOVE;
4694
4695 dd->next = super->disk_mgmt_list;
4696 super->disk_mgmt_list = dd;
4697
4698
4699 return 0;
4700}
4701
f796af5d
DW
4702static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4703
4704static union {
4705 char buf[512];
4706 struct imsm_super anchor;
4707} spare_record __attribute__ ((aligned(512)));
c2c087e6 4708
d23fe947
DW
4709/* spare records have their own family number and do not have any defined raid
4710 * devices
4711 */
4712static int write_super_imsm_spares(struct intel_super *super, int doclose)
4713{
d23fe947 4714 struct imsm_super *mpb = super->anchor;
f796af5d 4715 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4716 __u32 sum;
4717 struct dl *d;
4718
f796af5d
DW
4719 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4720 spare->generation_num = __cpu_to_le32(1UL),
4721 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4722 spare->num_disks = 1,
4723 spare->num_raid_devs = 0,
4724 spare->cache_size = mpb->cache_size,
4725 spare->pwr_cycle_count = __cpu_to_le32(1),
4726
4727 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4728 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4729
4730 for (d = super->disks; d; d = d->next) {
8796fdc4 4731 if (d->index != -1)
d23fe947
DW
4732 continue;
4733
f796af5d
DW
4734 spare->disk[0] = d->disk;
4735 sum = __gen_imsm_checksum(spare);
4736 spare->family_num = __cpu_to_le32(sum);
4737 spare->orig_family_num = 0;
4738 sum = __gen_imsm_checksum(spare);
4739 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4740
f796af5d 4741 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4742 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4743 __func__, d->major, d->minor, strerror(errno));
e74255d9 4744 return 1;
d23fe947
DW
4745 }
4746 if (doclose) {
4747 close(d->fd);
4748 d->fd = -1;
4749 }
4750 }
4751
e74255d9 4752 return 0;
d23fe947
DW
4753}
4754
36988a3d 4755static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4756{
36988a3d 4757 struct intel_super *super = st->sb;
949c47a0 4758 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4759 struct dl *d;
4760 __u32 generation;
4761 __u32 sum;
d23fe947 4762 int spares = 0;
949c47a0 4763 int i;
a48ac0a8 4764 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4765 int num_disks = 0;
146c6260 4766 int clear_migration_record = 1;
cdddbdbc 4767
c2c087e6
DW
4768 /* 'generation' is incremented everytime the metadata is written */
4769 generation = __le32_to_cpu(mpb->generation_num);
4770 generation++;
4771 mpb->generation_num = __cpu_to_le32(generation);
4772
148acb7b
DW
4773 /* fix up cases where previous mdadm releases failed to set
4774 * orig_family_num
4775 */
4776 if (mpb->orig_family_num == 0)
4777 mpb->orig_family_num = mpb->family_num;
4778
d23fe947 4779 for (d = super->disks; d; d = d->next) {
8796fdc4 4780 if (d->index == -1)
d23fe947 4781 spares++;
36988a3d 4782 else {
d23fe947 4783 mpb->disk[d->index] = d->disk;
36988a3d
AK
4784 num_disks++;
4785 }
d23fe947 4786 }
36988a3d 4787 for (d = super->missing; d; d = d->next) {
47ee5a45 4788 mpb->disk[d->index] = d->disk;
36988a3d
AK
4789 num_disks++;
4790 }
4791 mpb->num_disks = num_disks;
4792 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4793
949c47a0
DW
4794 for (i = 0; i < mpb->num_raid_devs; i++) {
4795 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4796 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4797 if (dev && dev2) {
4798 imsm_copy_dev(dev, dev2);
4799 mpb_size += sizeof_imsm_dev(dev, 0);
4800 }
146c6260
AK
4801 if (is_gen_migration(dev2))
4802 clear_migration_record = 0;
949c47a0 4803 }
a48ac0a8
DW
4804 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4805 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4806
c2c087e6 4807 /* recalculate checksum */
949c47a0 4808 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4809 mpb->check_sum = __cpu_to_le32(sum);
4810
146c6260
AK
4811 if (clear_migration_record)
4812 memset(super->migr_rec_buf, 0, 512);
4813
d23fe947 4814 /* write the mpb for disks that compose raid devices */
c2c087e6 4815 for (d = super->disks; d ; d = d->next) {
86c54047 4816 if (d->index < 0 || is_failed(&d->disk))
d23fe947 4817 continue;
f796af5d 4818 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4819 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4820 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4821 if (clear_migration_record) {
4822 unsigned long long dsize;
4823
4824 get_dev_size(d->fd, NULL, &dsize);
4825 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
9e2d750d
N
4826 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4827 perror("Write migr_rec failed");
146c6260
AK
4828 }
4829 }
c2c087e6
DW
4830 if (doclose) {
4831 close(d->fd);
4832 d->fd = -1;
4833 }
4834 }
4835
d23fe947
DW
4836 if (spares)
4837 return write_super_imsm_spares(super, doclose);
4838
e74255d9 4839 return 0;
c2c087e6
DW
4840}
4841
0e600426 4842
9b1fb677 4843static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4844{
4845 size_t len;
4846 struct imsm_update_create_array *u;
4847 struct intel_super *super = st->sb;
9b1fb677 4848 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 4849 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
4850 struct disk_info *inf;
4851 struct imsm_disk *disk;
4852 int i;
43dad3d6 4853
54c2c1ea
DW
4854 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4855 sizeof(*inf) * map->num_members;
43dad3d6
DW
4856 u = malloc(len);
4857 if (!u) {
4858 fprintf(stderr, "%s: failed to allocate update buffer\n",
4859 __func__);
4860 return 1;
4861 }
4862
4863 u->type = update_create_array;
9b1fb677 4864 u->dev_idx = dev_idx;
43dad3d6 4865 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4866 inf = get_disk_info(u);
4867 for (i = 0; i < map->num_members; i++) {
238c0a71 4868 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 4869
54c2c1ea
DW
4870 disk = get_imsm_disk(super, idx);
4871 serialcpy(inf[i].serial, disk->serial);
4872 }
43dad3d6
DW
4873 append_metadata_update(st, u, len);
4874
4875 return 0;
4876}
4877
1a64be56 4878static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4879{
4880 struct intel_super *super = st->sb;
4881 size_t len;
1a64be56 4882 struct imsm_update_add_remove_disk *u;
43dad3d6 4883
1a64be56 4884 if (!super->disk_mgmt_list)
43dad3d6
DW
4885 return 0;
4886
4887 len = sizeof(*u);
4888 u = malloc(len);
4889 if (!u) {
4890 fprintf(stderr, "%s: failed to allocate update buffer\n",
4891 __func__);
4892 return 1;
4893 }
4894
1a64be56 4895 u->type = update_add_remove_disk;
43dad3d6
DW
4896 append_metadata_update(st, u, len);
4897
4898 return 0;
4899}
4900
c2c087e6
DW
4901static int write_init_super_imsm(struct supertype *st)
4902{
9b1fb677
DW
4903 struct intel_super *super = st->sb;
4904 int current_vol = super->current_vol;
4905
4906 /* we are done with current_vol reset it to point st at the container */
4907 super->current_vol = -1;
4908
8273f55e 4909 if (st->update_tail) {
43dad3d6
DW
4910 /* queue the recently created array / added disk
4911 * as a metadata update */
43dad3d6 4912 int rv;
8273f55e 4913
43dad3d6 4914 /* determine if we are creating a volume or adding a disk */
9b1fb677 4915 if (current_vol < 0) {
1a64be56
LM
4916 /* in the mgmt (add/remove) disk case we are running
4917 * in mdmon context, so don't close fd's
43dad3d6 4918 */
1a64be56 4919 return mgmt_disk(st);
43dad3d6 4920 } else
9b1fb677 4921 rv = create_array(st, current_vol);
8273f55e 4922
43dad3d6 4923 return rv;
d682f344
N
4924 } else {
4925 struct dl *d;
4926 for (d = super->disks; d; d = d->next)
4927 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4928 return write_super_imsm(st, 1);
d682f344 4929 }
cdddbdbc 4930}
0e600426 4931#endif
cdddbdbc 4932
e683ca88 4933static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4934{
e683ca88
DW
4935 struct intel_super *super = st->sb;
4936 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4937
e683ca88 4938 if (!mpb)
ad97895e
DW
4939 return 1;
4940
1799c9e8 4941#ifndef MDASSEMBLE
e683ca88 4942 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4943#else
4944 return 1;
4945#endif
cdddbdbc
DW
4946}
4947
0e600426
N
4948static int imsm_bbm_log_size(struct imsm_super *mpb)
4949{
4950 return __le32_to_cpu(mpb->bbm_log_size);
4951}
4952
4953#ifndef MDASSEMBLE
cdddbdbc
DW
4954static int validate_geometry_imsm_container(struct supertype *st, int level,
4955 int layout, int raiddisks, int chunk,
c2c087e6 4956 unsigned long long size, char *dev,
2c514b71
NB
4957 unsigned long long *freesize,
4958 int verbose)
cdddbdbc 4959{
c2c087e6
DW
4960 int fd;
4961 unsigned long long ldsize;
f2f5c343
LM
4962 struct intel_super *super=NULL;
4963 int rv = 0;
cdddbdbc 4964
c2c087e6
DW
4965 if (level != LEVEL_CONTAINER)
4966 return 0;
4967 if (!dev)
4968 return 1;
4969
4970 fd = open(dev, O_RDONLY|O_EXCL, 0);
4971 if (fd < 0) {
2c514b71
NB
4972 if (verbose)
4973 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4974 dev, strerror(errno));
c2c087e6
DW
4975 return 0;
4976 }
4977 if (!get_dev_size(fd, dev, &ldsize)) {
4978 close(fd);
4979 return 0;
4980 }
f2f5c343
LM
4981
4982 /* capabilities retrieve could be possible
4983 * note that there is no fd for the disks in array.
4984 */
4985 super = alloc_super();
4986 if (!super) {
4987 fprintf(stderr,
4988 Name ": malloc of %zu failed.\n",
4989 sizeof(*super));
4990 close(fd);
4991 return 0;
4992 }
4993
d424212e 4994 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4995 if (rv != 0) {
4996#if DEBUG
4997 char str[256];
4998 fd2devname(fd, str);
4999 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5000 fd, str, super->orom, rv, raiddisks);
5001#endif
5002 /* no orom/efi or non-intel hba of the disk */
5003 close(fd);
5004 free_imsm(super);
5005 return 0;
5006 }
c2c087e6 5007 close(fd);
f2f5c343
LM
5008 if (super->orom && raiddisks > super->orom->tds) {
5009 if (verbose)
5010 fprintf(stderr, Name ": %d exceeds maximum number of"
5011 " platform supported disks: %d\n",
5012 raiddisks, super->orom->tds);
5013
5014 free_imsm(super);
5015 return 0;
5016 }
c2c087e6
DW
5017
5018 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 5019 free_imsm(super);
c2c087e6
DW
5020
5021 return 1;
cdddbdbc
DW
5022}
5023
0dcecb2e
DW
5024static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5025{
5026 const unsigned long long base_start = e[*idx].start;
5027 unsigned long long end = base_start + e[*idx].size;
5028 int i;
5029
5030 if (base_start == end)
5031 return 0;
5032
5033 *idx = *idx + 1;
5034 for (i = *idx; i < num_extents; i++) {
5035 /* extend overlapping extents */
5036 if (e[i].start >= base_start &&
5037 e[i].start <= end) {
5038 if (e[i].size == 0)
5039 return 0;
5040 if (e[i].start + e[i].size > end)
5041 end = e[i].start + e[i].size;
5042 } else if (e[i].start > end) {
5043 *idx = i;
5044 break;
5045 }
5046 }
5047
5048 return end - base_start;
5049}
5050
5051static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5052{
5053 /* build a composite disk with all known extents and generate a new
5054 * 'maxsize' given the "all disks in an array must share a common start
5055 * offset" constraint
5056 */
5057 struct extent *e = calloc(sum_extents, sizeof(*e));
5058 struct dl *dl;
5059 int i, j;
5060 int start_extent;
5061 unsigned long long pos;
b9d77223 5062 unsigned long long start = 0;
0dcecb2e
DW
5063 unsigned long long maxsize;
5064 unsigned long reserve;
5065
5066 if (!e)
a7dd165b 5067 return 0;
0dcecb2e
DW
5068
5069 /* coalesce and sort all extents. also, check to see if we need to
5070 * reserve space between member arrays
5071 */
5072 j = 0;
5073 for (dl = super->disks; dl; dl = dl->next) {
5074 if (!dl->e)
5075 continue;
5076 for (i = 0; i < dl->extent_cnt; i++)
5077 e[j++] = dl->e[i];
5078 }
5079 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5080
5081 /* merge extents */
5082 i = 0;
5083 j = 0;
5084 while (i < sum_extents) {
5085 e[j].start = e[i].start;
5086 e[j].size = find_size(e, &i, sum_extents);
5087 j++;
5088 if (e[j-1].size == 0)
5089 break;
5090 }
5091
5092 pos = 0;
5093 maxsize = 0;
5094 start_extent = 0;
5095 i = 0;
5096 do {
5097 unsigned long long esize;
5098
5099 esize = e[i].start - pos;
5100 if (esize >= maxsize) {
5101 maxsize = esize;
5102 start = pos;
5103 start_extent = i;
5104 }
5105 pos = e[i].start + e[i].size;
5106 i++;
5107 } while (e[i-1].size);
5108 free(e);
5109
a7dd165b
DW
5110 if (maxsize == 0)
5111 return 0;
5112
5113 /* FIXME assumes volume at offset 0 is the first volume in a
5114 * container
5115 */
0dcecb2e
DW
5116 if (start_extent > 0)
5117 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5118 else
5119 reserve = 0;
5120
5121 if (maxsize < reserve)
a7dd165b 5122 return 0;
0dcecb2e
DW
5123
5124 super->create_offset = ~((__u32) 0);
5125 if (start + reserve > super->create_offset)
a7dd165b 5126 return 0; /* start overflows create_offset */
0dcecb2e
DW
5127 super->create_offset = start + reserve;
5128
5129 return maxsize - reserve;
5130}
5131
88c32bb1
DW
5132static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5133{
5134 if (level < 0 || level == 6 || level == 4)
5135 return 0;
5136
5137 /* if we have an orom prevent invalid raid levels */
5138 if (orom)
5139 switch (level) {
5140 case 0: return imsm_orom_has_raid0(orom);
5141 case 1:
5142 if (raiddisks > 2)
5143 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5144 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5145 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5146 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5147 }
5148 else
5149 return 1; /* not on an Intel RAID platform so anything goes */
5150
5151 return 0;
5152}
5153
cd9d1ac7
DW
5154static int imsm_default_chunk(const struct imsm_orom *orom)
5155{
5156 /* up to 512 if the plaform supports it, otherwise the platform max.
5157 * 128 if no platform detected
5158 */
5159 int fs = max(7, orom ? fls(orom->sss) : 0);
5160
5161 return min(512, (1 << fs));
5162}
73408129 5163
35f81cbb 5164#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
5165static int
5166validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 5167 int raiddisks, int *chunk, int verbose)
6592ce37 5168{
660260d0
DW
5169 /* check/set platform and metadata limits/defaults */
5170 if (super->orom && raiddisks > super->orom->dpa) {
5171 pr_vrb(": platform supports a maximum of %d disks per array\n",
5172 super->orom->dpa);
73408129
LM
5173 return 0;
5174 }
5175
5176 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 5177 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
5178 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5179 level, raiddisks, raiddisks > 1 ? "s" : "");
5180 return 0;
5181 }
cd9d1ac7
DW
5182
5183 if (chunk && (*chunk == 0 || *chunk == UnSet))
5184 *chunk = imsm_default_chunk(super->orom);
5185
5186 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5187 pr_vrb(": platform does not support a chunk size of: "
5188 "%d\n", *chunk);
5189 return 0;
6592ce37 5190 }
cd9d1ac7 5191
6592ce37
DW
5192 if (layout != imsm_level_to_layout(level)) {
5193 if (level == 5)
5194 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5195 else if (level == 10)
5196 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5197 else
5198 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5199 layout, level);
5200 return 0;
5201 }
6592ce37
DW
5202 return 1;
5203}
5204
c2c087e6
DW
5205/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5206 * FIX ME add ahci details
5207 */
8b353278 5208static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 5209 int layout, int raiddisks, int *chunk,
c2c087e6 5210 unsigned long long size, char *dev,
2c514b71
NB
5211 unsigned long long *freesize,
5212 int verbose)
cdddbdbc 5213{
c2c087e6
DW
5214 struct stat stb;
5215 struct intel_super *super = st->sb;
b2916f25 5216 struct imsm_super *mpb;
c2c087e6
DW
5217 struct dl *dl;
5218 unsigned long long pos = 0;
5219 unsigned long long maxsize;
5220 struct extent *e;
5221 int i;
cdddbdbc 5222
88c32bb1
DW
5223 /* We must have the container info already read in. */
5224 if (!super)
c2c087e6
DW
5225 return 0;
5226
b2916f25
JS
5227 mpb = super->anchor;
5228
e7cb06c8
LO
5229 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5230 fprintf(stderr, Name ": the option-rom requires all "
5231 "member disks to be a member of all volumes.\n");
5232 return 0;
5233 }
5234
d54559f0
LM
5235 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5236 fprintf(stderr, Name ": RAID gemetry validation failed. "
5237 "Cannot proceed with the action(s).\n");
c2c087e6 5238 return 0;
d54559f0 5239 }
c2c087e6
DW
5240 if (!dev) {
5241 /* General test: make sure there is space for
2da8544a
DW
5242 * 'raiddisks' device extents of size 'size' at a given
5243 * offset
c2c087e6 5244 */
e46273eb 5245 unsigned long long minsize = size;
b7528a20 5246 unsigned long long start_offset = MaxSector;
c2c087e6
DW
5247 int dcnt = 0;
5248 if (minsize == 0)
5249 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5250 for (dl = super->disks; dl ; dl = dl->next) {
5251 int found = 0;
5252
bf5a934a 5253 pos = 0;
c2c087e6
DW
5254 i = 0;
5255 e = get_extents(super, dl);
5256 if (!e) continue;
5257 do {
5258 unsigned long long esize;
5259 esize = e[i].start - pos;
5260 if (esize >= minsize)
5261 found = 1;
b7528a20 5262 if (found && start_offset == MaxSector) {
2da8544a
DW
5263 start_offset = pos;
5264 break;
5265 } else if (found && pos != start_offset) {
5266 found = 0;
5267 break;
5268 }
c2c087e6
DW
5269 pos = e[i].start + e[i].size;
5270 i++;
5271 } while (e[i-1].size);
5272 if (found)
5273 dcnt++;
5274 free(e);
5275 }
5276 if (dcnt < raiddisks) {
2c514b71
NB
5277 if (verbose)
5278 fprintf(stderr, Name ": imsm: Not enough "
5279 "devices with space for this array "
5280 "(%d < %d)\n",
5281 dcnt, raiddisks);
c2c087e6
DW
5282 return 0;
5283 }
5284 return 1;
5285 }
0dcecb2e 5286
c2c087e6
DW
5287 /* This device must be a member of the set */
5288 if (stat(dev, &stb) < 0)
5289 return 0;
5290 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5291 return 0;
5292 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5293 if (dl->major == (int)major(stb.st_rdev) &&
5294 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5295 break;
5296 }
5297 if (!dl) {
2c514b71
NB
5298 if (verbose)
5299 fprintf(stderr, Name ": %s is not in the "
5300 "same imsm set\n", dev);
c2c087e6 5301 return 0;
a20d2ba5
DW
5302 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5303 /* If a volume is present then the current creation attempt
5304 * cannot incorporate new spares because the orom may not
5305 * understand this configuration (all member disks must be
5306 * members of each array in the container).
5307 */
5308 fprintf(stderr, Name ": %s is a spare and a volume"
5309 " is already defined for this container\n", dev);
5310 fprintf(stderr, Name ": The option-rom requires all member"
5311 " disks to be a member of all volumes\n");
5312 return 0;
c2c087e6 5313 }
0dcecb2e
DW
5314
5315 /* retrieve the largest free space block */
c2c087e6
DW
5316 e = get_extents(super, dl);
5317 maxsize = 0;
5318 i = 0;
0dcecb2e
DW
5319 if (e) {
5320 do {
5321 unsigned long long esize;
5322
5323 esize = e[i].start - pos;
5324 if (esize >= maxsize)
5325 maxsize = esize;
5326 pos = e[i].start + e[i].size;
5327 i++;
5328 } while (e[i-1].size);
5329 dl->e = e;
5330 dl->extent_cnt = i;
5331 } else {
5332 if (verbose)
5333 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5334 dev);
5335 return 0;
5336 }
5337 if (maxsize < size) {
5338 if (verbose)
5339 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5340 dev, maxsize, size);
5341 return 0;
5342 }
5343
5344 /* count total number of extents for merge */
5345 i = 0;
5346 for (dl = super->disks; dl; dl = dl->next)
5347 if (dl->e)
5348 i += dl->extent_cnt;
5349
5350 maxsize = merge_extents(super, i);
3baa56ab
LO
5351
5352 if (!check_env("IMSM_NO_PLATFORM") &&
5353 mpb->num_raid_devs > 0 && size && size != maxsize) {
5354 fprintf(stderr, Name ": attempting to create a second "
5355 "volume with size less then remaining space. "
5356 "Aborting...\n");
5357 return 0;
5358 }
5359
a7dd165b 5360 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
5361 if (verbose)
5362 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5363 maxsize, size);
5364 return 0;
0dcecb2e
DW
5365 }
5366
c2c087e6
DW
5367 *freesize = maxsize;
5368
5369 return 1;
cdddbdbc
DW
5370}
5371
efb30e7f
DW
5372static int reserve_space(struct supertype *st, int raiddisks,
5373 unsigned long long size, int chunk,
5374 unsigned long long *freesize)
5375{
5376 struct intel_super *super = st->sb;
5377 struct imsm_super *mpb = super->anchor;
5378 struct dl *dl;
5379 int i;
5380 int extent_cnt;
5381 struct extent *e;
5382 unsigned long long maxsize;
5383 unsigned long long minsize;
5384 int cnt;
5385 int used;
5386
5387 /* find the largest common start free region of the possible disks */
5388 used = 0;
5389 extent_cnt = 0;
5390 cnt = 0;
5391 for (dl = super->disks; dl; dl = dl->next) {
5392 dl->raiddisk = -1;
5393
5394 if (dl->index >= 0)
5395 used++;
5396
5397 /* don't activate new spares if we are orom constrained
5398 * and there is already a volume active in the container
5399 */
5400 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5401 continue;
5402
5403 e = get_extents(super, dl);
5404 if (!e)
5405 continue;
5406 for (i = 1; e[i-1].size; i++)
5407 ;
5408 dl->e = e;
5409 dl->extent_cnt = i;
5410 extent_cnt += i;
5411 cnt++;
5412 }
5413
5414 maxsize = merge_extents(super, extent_cnt);
5415 minsize = size;
5416 if (size == 0)
612e59d8
CA
5417 /* chunk is in K */
5418 minsize = chunk * 2;
efb30e7f
DW
5419
5420 if (cnt < raiddisks ||
5421 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5422 maxsize < minsize ||
5423 maxsize == 0) {
efb30e7f
DW
5424 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5425 return 0; /* No enough free spaces large enough */
5426 }
5427
5428 if (size == 0) {
5429 size = maxsize;
5430 if (chunk) {
612e59d8
CA
5431 size /= 2 * chunk;
5432 size *= 2 * chunk;
efb30e7f
DW
5433 }
5434 }
5435
5436 cnt = 0;
5437 for (dl = super->disks; dl; dl = dl->next)
5438 if (dl->e)
5439 dl->raiddisk = cnt++;
5440
5441 *freesize = size;
5442
5443 return 1;
5444}
5445
bf5a934a 5446static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5447 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5448 char *dev, unsigned long long *freesize,
5449 int verbose)
5450{
5451 int fd, cfd;
5452 struct mdinfo *sra;
20cbe8d2 5453 int is_member = 0;
bf5a934a 5454
d54559f0
LM
5455 /* load capability
5456 * if given unused devices create a container
bf5a934a
DW
5457 * if given given devices in a container create a member volume
5458 */
5459 if (level == LEVEL_CONTAINER) {
5460 /* Must be a fresh device to add to a container */
5461 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5462 raiddisks,
5463 chunk?*chunk:0, size,
bf5a934a
DW
5464 dev, freesize,
5465 verbose);
5466 }
5467
8592f29d 5468 if (!dev) {
e91a3bad
LM
5469 if (st->sb) {
5470 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5471 raiddisks, chunk,
5472 verbose))
5473 return 0;
efb30e7f
DW
5474 /* we are being asked to automatically layout a
5475 * new volume based on the current contents of
5476 * the container. If the the parameters can be
5477 * satisfied reserve_space will record the disks,
5478 * start offset, and size of the volume to be
5479 * created. add_to_super and getinfo_super
5480 * detect when autolayout is in progress.
5481 */
e91a3bad
LM
5482 if (freesize)
5483 return reserve_space(st, raiddisks, size,
5484 chunk?*chunk:0, freesize);
8592f29d
N
5485 }
5486 return 1;
5487 }
bf5a934a
DW
5488 if (st->sb) {
5489 /* creating in a given container */
5490 return validate_geometry_imsm_volume(st, level, layout,
5491 raiddisks, chunk, size,
5492 dev, freesize, verbose);
5493 }
5494
bf5a934a
DW
5495 /* This device needs to be a device in an 'imsm' container */
5496 fd = open(dev, O_RDONLY|O_EXCL, 0);
5497 if (fd >= 0) {
5498 if (verbose)
5499 fprintf(stderr,
5500 Name ": Cannot create this array on device %s\n",
5501 dev);
5502 close(fd);
5503 return 0;
5504 }
5505 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5506 if (verbose)
5507 fprintf(stderr, Name ": Cannot open %s: %s\n",
5508 dev, strerror(errno));
5509 return 0;
5510 }
5511 /* Well, it is in use by someone, maybe an 'imsm' container. */
5512 cfd = open_container(fd);
20cbe8d2 5513 close(fd);
bf5a934a 5514 if (cfd < 0) {
bf5a934a
DW
5515 if (verbose)
5516 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5517 dev);
5518 return 0;
5519 }
5520 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5521 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5522 strcmp(sra->text_version, "imsm") == 0)
5523 is_member = 1;
5524 sysfs_free(sra);
5525 if (is_member) {
bf5a934a
DW
5526 /* This is a member of a imsm container. Load the container
5527 * and try to create a volume
5528 */
5529 struct intel_super *super;
5530
e1902a7b 5531 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5532 st->sb = super;
5533 st->container_dev = fd2devnum(cfd);
5534 close(cfd);
5535 return validate_geometry_imsm_volume(st, level, layout,
5536 raiddisks, chunk,
5537 size, dev,
ecbd9e81
N
5538 freesize, 1)
5539 ? 1 : -1;
bf5a934a 5540 }
20cbe8d2 5541 }
bf5a934a 5542
20cbe8d2
AW
5543 if (verbose)
5544 fprintf(stderr, Name ": failed container membership check\n");
5545
5546 close(cfd);
5547 return 0;
bf5a934a 5548}
0bd16cf2 5549
30f58b22 5550static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5551{
5552 struct intel_super *super = st->sb;
5553
30f58b22
DW
5554 if (level && *level == UnSet)
5555 *level = LEVEL_CONTAINER;
5556
5557 if (level && layout && *layout == UnSet)
5558 *layout = imsm_level_to_layout(*level);
0bd16cf2 5559
cd9d1ac7
DW
5560 if (chunk && (*chunk == UnSet || *chunk == 0))
5561 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
5562}
5563
33414a01
DW
5564static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5565
5566static int kill_subarray_imsm(struct supertype *st)
5567{
5568 /* remove the subarray currently referenced by ->current_vol */
5569 __u8 i;
5570 struct intel_dev **dp;
5571 struct intel_super *super = st->sb;
5572 __u8 current_vol = super->current_vol;
5573 struct imsm_super *mpb = super->anchor;
5574
5575 if (super->current_vol < 0)
5576 return 2;
5577 super->current_vol = -1; /* invalidate subarray cursor */
5578
5579 /* block deletions that would change the uuid of active subarrays
5580 *
5581 * FIXME when immutable ids are available, but note that we'll
5582 * also need to fixup the invalidated/active subarray indexes in
5583 * mdstat
5584 */
5585 for (i = 0; i < mpb->num_raid_devs; i++) {
5586 char subarray[4];
5587
5588 if (i < current_vol)
5589 continue;
5590 sprintf(subarray, "%u", i);
5591 if (is_subarray_active(subarray, st->devname)) {
5592 fprintf(stderr,
5593 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5594 current_vol, i);
5595
5596 return 2;
5597 }
5598 }
5599
5600 if (st->update_tail) {
5601 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5602
5603 if (!u)
5604 return 2;
5605 u->type = update_kill_array;
5606 u->dev_idx = current_vol;
5607 append_metadata_update(st, u, sizeof(*u));
5608
5609 return 0;
5610 }
5611
5612 for (dp = &super->devlist; *dp;)
5613 if ((*dp)->index == current_vol) {
5614 *dp = (*dp)->next;
5615 } else {
5616 handle_missing(super, (*dp)->dev);
5617 if ((*dp)->index > current_vol)
5618 (*dp)->index--;
5619 dp = &(*dp)->next;
5620 }
5621
5622 /* no more raid devices, all active components are now spares,
5623 * but of course failed are still failed
5624 */
5625 if (--mpb->num_raid_devs == 0) {
5626 struct dl *d;
5627
5628 for (d = super->disks; d; d = d->next)
a8619d23
AK
5629 if (d->index > -2)
5630 mark_spare(d);
33414a01
DW
5631 }
5632
5633 super->updates_pending++;
5634
5635 return 0;
5636}
aa534678 5637
a951a4f7 5638static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5639 char *update, struct mddev_ident *ident)
aa534678
DW
5640{
5641 /* update the subarray currently referenced by ->current_vol */
5642 struct intel_super *super = st->sb;
5643 struct imsm_super *mpb = super->anchor;
5644
aa534678
DW
5645 if (strcmp(update, "name") == 0) {
5646 char *name = ident->name;
a951a4f7
N
5647 char *ep;
5648 int vol;
aa534678 5649
a951a4f7 5650 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5651 fprintf(stderr,
5652 Name ": Unable to update name of active subarray\n");
5653 return 2;
5654 }
5655
5656 if (!check_name(super, name, 0))
5657 return 2;
5658
a951a4f7
N
5659 vol = strtoul(subarray, &ep, 10);
5660 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5661 return 2;
5662
aa534678
DW
5663 if (st->update_tail) {
5664 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5665
5666 if (!u)
5667 return 2;
5668 u->type = update_rename_array;
a951a4f7 5669 u->dev_idx = vol;
aa534678
DW
5670 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5671 append_metadata_update(st, u, sizeof(*u));
5672 } else {
5673 struct imsm_dev *dev;
5674 int i;
5675
a951a4f7 5676 dev = get_imsm_dev(super, vol);
aa534678
DW
5677 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5678 for (i = 0; i < mpb->num_raid_devs; i++) {
5679 dev = get_imsm_dev(super, i);
5680 handle_missing(super, dev);
5681 }
5682 super->updates_pending++;
5683 }
5684 } else
5685 return 2;
5686
5687 return 0;
5688}
d1e02575 5689#endif /* MDASSEMBLE */
bf5a934a 5690
28bce06f
AK
5691static int is_gen_migration(struct imsm_dev *dev)
5692{
7534230b
AK
5693 if (dev == NULL)
5694 return 0;
5695
28bce06f
AK
5696 if (!dev->vol.migr_state)
5697 return 0;
5698
5699 if (migr_type(dev) == MIGR_GEN_MIGR)
5700 return 1;
5701
5702 return 0;
5703}
5704
1e5c6983
DW
5705static int is_rebuilding(struct imsm_dev *dev)
5706{
5707 struct imsm_map *migr_map;
5708
5709 if (!dev->vol.migr_state)
5710 return 0;
5711
5712 if (migr_type(dev) != MIGR_REBUILD)
5713 return 0;
5714
238c0a71 5715 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
5716
5717 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5718 return 1;
5719 else
5720 return 0;
5721}
5722
6ce1fbf1
AK
5723static int is_initializing(struct imsm_dev *dev)
5724{
5725 struct imsm_map *migr_map;
5726
5727 if (!dev->vol.migr_state)
5728 return 0;
5729
5730 if (migr_type(dev) != MIGR_INIT)
5731 return 0;
5732
238c0a71 5733 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
5734
5735 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
5736 return 1;
5737
5738 return 0;
5739
5740}
5741
c47b0ff6
AK
5742static void update_recovery_start(struct intel_super *super,
5743 struct imsm_dev *dev,
5744 struct mdinfo *array)
1e5c6983
DW
5745{
5746 struct mdinfo *rebuild = NULL;
5747 struct mdinfo *d;
5748 __u32 units;
5749
5750 if (!is_rebuilding(dev))
5751 return;
5752
5753 /* Find the rebuild target, but punt on the dual rebuild case */
5754 for (d = array->devs; d; d = d->next)
5755 if (d->recovery_start == 0) {
5756 if (rebuild)
5757 return;
5758 rebuild = d;
5759 }
5760
4363fd80
DW
5761 if (!rebuild) {
5762 /* (?) none of the disks are marked with
5763 * IMSM_ORD_REBUILD, so assume they are missing and the
5764 * disk_ord_tbl was not correctly updated
5765 */
5766 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5767 return;
5768 }
5769
1e5c6983 5770 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5771 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5772}
5773
9e2d750d 5774#ifndef MDASSEMBLE
276d77db 5775static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 5776#endif
1e5c6983 5777
00bbdbda 5778static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5779{
4f5bc454
DW
5780 /* Given a container loaded by load_super_imsm_all,
5781 * extract information about all the arrays into
5782 * an mdinfo tree.
00bbdbda 5783 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5784 *
5785 * For each imsm_dev create an mdinfo, fill it in,
5786 * then look for matching devices in super->disks
5787 * and create appropriate device mdinfo.
5788 */
5789 struct intel_super *super = st->sb;
949c47a0 5790 struct imsm_super *mpb = super->anchor;
4f5bc454 5791 struct mdinfo *rest = NULL;
00bbdbda 5792 unsigned int i;
81219e70 5793 int sb_errors = 0;
abef11a3
AK
5794 struct dl *d;
5795 int spare_disks = 0;
cdddbdbc 5796
19482bcc
AK
5797 /* do not assemble arrays when not all attributes are supported */
5798 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70
LM
5799 sb_errors = 1;
5800 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5801 "Arrays activation is blocked.\n");
19482bcc
AK
5802 }
5803
a06d022d 5804 /* check for bad blocks */
81219e70
LM
5805 if (imsm_bbm_log_size(super->anchor)) {
5806 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5807 "Arrays activation is blocked.\n");
5808 sb_errors = 1;
5809 }
5810
604b746f 5811
abef11a3
AK
5812 /* count spare devices, not used in maps
5813 */
5814 for (d = super->disks; d; d = d->next)
5815 if (d->index == -1)
5816 spare_disks++;
5817
4f5bc454 5818 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5819 struct imsm_dev *dev;
5820 struct imsm_map *map;
86e3692b 5821 struct imsm_map *map2;
4f5bc454 5822 struct mdinfo *this;
2db86302 5823 int slot, chunk;
00bbdbda
N
5824 char *ep;
5825
5826 if (subarray &&
5827 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5828 continue;
5829
5830 dev = get_imsm_dev(super, i);
238c0a71
AK
5831 map = get_imsm_map(dev, MAP_0);
5832 map2 = get_imsm_map(dev, MAP_1);
4f5bc454 5833
1ce0101c
DW
5834 /* do not publish arrays that are in the middle of an
5835 * unsupported migration
5836 */
5837 if (dev->vol.migr_state &&
28bce06f 5838 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5839 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5840 " unsupported migration in progress\n",
5841 dev->volume);
5842 continue;
5843 }
2db86302
LM
5844 /* do not publish arrays that are not support by controller's
5845 * OROM/EFI
5846 */
1ce0101c 5847
2db86302 5848 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
4f5bc454 5849 this = malloc(sizeof(*this));
0fbd635c 5850 if (!this) {
cf1be220 5851 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5852 sizeof(*this));
5853 break;
5854 }
4f5bc454 5855
301406c9 5856 super->current_vol = i;
a5d85af7 5857 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5858 this->next = rest;
81219e70
LM
5859#ifndef MDASSEMBLE
5860 /* mdadm does not support all metadata features- set the bit in all arrays state */
5861 if (!validate_geometry_imsm_orom(super,
5862 get_imsm_raid_level(map), /* RAID level */
5863 imsm_level_to_layout(get_imsm_raid_level(map)),
5864 map->num_members, /* raid disks */
5865 &chunk,
5866 1 /* verbose */)) {
446894ea
N
5867 fprintf(stderr, Name ": IMSM RAID geometry validation"
5868 " failed. Array %s activation is blocked.\n",
81219e70
LM
5869 dev->volume);
5870 this->array.state |=
5871 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5872 (1<<MD_SB_BLOCK_VOLUME);
5873 }
5874#endif
5875
5876 /* if array has bad blocks, set suitable bit in all arrays state */
5877 if (sb_errors)
5878 this->array.state |=
5879 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5880 (1<<MD_SB_BLOCK_VOLUME);
5881
4f5bc454 5882 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5883 unsigned long long recovery_start;
4f5bc454
DW
5884 struct mdinfo *info_d;
5885 struct dl *d;
5886 int idx;
9a1608e5 5887 int skip;
7eef0453 5888 __u32 ord;
4f5bc454 5889
9a1608e5 5890 skip = 0;
238c0a71
AK
5891 idx = get_imsm_disk_idx(dev, slot, MAP_0);
5892 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
5893 for (d = super->disks; d ; d = d->next)
5894 if (d->index == idx)
0fbd635c 5895 break;
4f5bc454 5896
1e5c6983 5897 recovery_start = MaxSector;
4f5bc454 5898 if (d == NULL)
9a1608e5 5899 skip = 1;
25ed7e59 5900 if (d && is_failed(&d->disk))
9a1608e5 5901 skip = 1;
7eef0453 5902 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5903 recovery_start = 0;
9a1608e5
DW
5904
5905 /*
5906 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5907 * reset resync start to avoid a dirty-degraded
5908 * situation when performing the intial sync
9a1608e5
DW
5909 *
5910 * FIXME handle dirty degraded
5911 */
1e5c6983 5912 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5913 this->resync_start = MaxSector;
9a1608e5
DW
5914 if (skip)
5915 continue;
4f5bc454 5916
1e5c6983 5917 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5918 if (!info_d) {
5919 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5920 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5921 info_d = this->devs;
5922 while (info_d) {
5923 struct mdinfo *d = info_d->next;
5924
5925 free(info_d);
5926 info_d = d;
5927 }
9a1608e5
DW
5928 free(this);
5929 this = rest;
5930 break;
5931 }
4f5bc454
DW
5932 info_d->next = this->devs;
5933 this->devs = info_d;
5934
4f5bc454
DW
5935 info_d->disk.number = d->index;
5936 info_d->disk.major = d->major;
5937 info_d->disk.minor = d->minor;
5938 info_d->disk.raid_disk = slot;
1e5c6983 5939 info_d->recovery_start = recovery_start;
86e3692b
AK
5940 if (map2) {
5941 if (slot < map2->num_members)
5942 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5943 else
5944 this->array.spare_disks++;
86e3692b
AK
5945 } else {
5946 if (slot < map->num_members)
5947 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5948 else
5949 this->array.spare_disks++;
86e3692b 5950 }
1e5c6983
DW
5951 if (info_d->recovery_start == MaxSector)
5952 this->array.working_disks++;
4f5bc454
DW
5953
5954 info_d->events = __le32_to_cpu(mpb->generation_num);
5955 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5956 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5957 }
1e5c6983 5958 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5959 update_recovery_start(super, dev, this);
abef11a3 5960 this->array.spare_disks += spare_disks;
276d77db 5961
9e2d750d 5962#ifndef MDASSEMBLE
276d77db
AK
5963 /* check for reshape */
5964 if (this->reshape_active == 1)
5965 recover_backup_imsm(st, this);
9e2d750d 5966#endif
9a1608e5 5967 rest = this;
4f5bc454
DW
5968 }
5969
5970 return rest;
cdddbdbc
DW
5971}
5972
845dea95 5973
3b451610
AK
5974static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
5975 int failed, int look_in_map)
c2a1e7da 5976{
3b451610
AK
5977 struct imsm_map *map;
5978
5979 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
5980
5981 if (!failed)
3393c6af
DW
5982 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5983 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5984
5985 switch (get_imsm_raid_level(map)) {
5986 case 0:
5987 return IMSM_T_STATE_FAILED;
5988 break;
5989 case 1:
5990 if (failed < map->num_members)
5991 return IMSM_T_STATE_DEGRADED;
5992 else
5993 return IMSM_T_STATE_FAILED;
5994 break;
5995 case 10:
5996 {
5997 /**
c92a2527
DW
5998 * check to see if any mirrors have failed, otherwise we
5999 * are degraded. Even numbered slots are mirrored on
6000 * slot+1
c2a1e7da 6001 */
c2a1e7da 6002 int i;
d9b420a5
N
6003 /* gcc -Os complains that this is unused */
6004 int insync = insync;
c2a1e7da
DW
6005
6006 for (i = 0; i < map->num_members; i++) {
238c0a71 6007 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
6008 int idx = ord_to_idx(ord);
6009 struct imsm_disk *disk;
c2a1e7da 6010
c92a2527
DW
6011 /* reset the potential in-sync count on even-numbered
6012 * slots. num_copies is always 2 for imsm raid10
6013 */
6014 if ((i & 1) == 0)
6015 insync = 2;
c2a1e7da 6016
c92a2527 6017 disk = get_imsm_disk(super, idx);
25ed7e59 6018 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 6019 insync--;
c2a1e7da 6020
c92a2527
DW
6021 /* no in-sync disks left in this mirror the
6022 * array has failed
6023 */
6024 if (insync == 0)
6025 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
6026 }
6027
6028 return IMSM_T_STATE_DEGRADED;
6029 }
6030 case 5:
6031 if (failed < 2)
6032 return IMSM_T_STATE_DEGRADED;
6033 else
6034 return IMSM_T_STATE_FAILED;
6035 break;
6036 default:
6037 break;
6038 }
6039
6040 return map->map_state;
6041}
6042
3b451610
AK
6043static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6044 int look_in_map)
c2a1e7da
DW
6045{
6046 int i;
6047 int failed = 0;
6048 struct imsm_disk *disk;
d5985138
AK
6049 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6050 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 6051 struct imsm_map *map_for_loop;
0556e1a2
DW
6052 __u32 ord;
6053 int idx;
d5985138 6054 int idx_1;
c2a1e7da 6055
0556e1a2
DW
6056 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6057 * disks that are being rebuilt. New failures are recorded to
6058 * map[0]. So we look through all the disks we started with and
6059 * see if any failures are still present, or if any new ones
6060 * have arrived
0556e1a2 6061 */
d5985138
AK
6062 map_for_loop = map;
6063 if (prev && (map->num_members < prev->num_members))
6064 map_for_loop = prev;
68fe4598
LD
6065
6066 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 6067 idx_1 = -255;
238c0a71
AK
6068 /* when MAP_X is passed both maps failures are counted
6069 */
d5985138 6070 if (prev &&
238c0a71
AK
6071 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6072 (i < prev->num_members)) {
d5985138
AK
6073 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6074 idx_1 = ord_to_idx(ord);
c2a1e7da 6075
d5985138
AK
6076 disk = get_imsm_disk(super, idx_1);
6077 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6078 failed++;
6079 }
238c0a71
AK
6080 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6081 (i < map->num_members)) {
d5985138
AK
6082 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6083 idx = ord_to_idx(ord);
6084
6085 if (idx != idx_1) {
6086 disk = get_imsm_disk(super, idx);
6087 if (!disk || is_failed(disk) ||
6088 ord & IMSM_ORD_REBUILD)
6089 failed++;
6090 }
6091 }
c2a1e7da
DW
6092 }
6093
6094 return failed;
845dea95
NB
6095}
6096
97b4d0e9
DW
6097#ifndef MDASSEMBLE
6098static int imsm_open_new(struct supertype *c, struct active_array *a,
6099 char *inst)
6100{
6101 struct intel_super *super = c->sb;
6102 struct imsm_super *mpb = super->anchor;
6103
6104 if (atoi(inst) >= mpb->num_raid_devs) {
6105 fprintf(stderr, "%s: subarry index %d, out of range\n",
6106 __func__, atoi(inst));
6107 return -ENODEV;
6108 }
6109
6110 dprintf("imsm: open_new %s\n", inst);
6111 a->info.container_member = atoi(inst);
6112 return 0;
6113}
6114
0c046afd
DW
6115static int is_resyncing(struct imsm_dev *dev)
6116{
6117 struct imsm_map *migr_map;
6118
6119 if (!dev->vol.migr_state)
6120 return 0;
6121
1484e727
DW
6122 if (migr_type(dev) == MIGR_INIT ||
6123 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
6124 return 1;
6125
4c9bc37b
AK
6126 if (migr_type(dev) == MIGR_GEN_MIGR)
6127 return 0;
6128
238c0a71 6129 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 6130
4c9bc37b
AK
6131 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6132 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
6133 return 1;
6134 else
6135 return 0;
6136}
6137
0556e1a2
DW
6138/* return true if we recorded new information */
6139static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 6140{
0556e1a2
DW
6141 __u32 ord;
6142 int slot;
6143 struct imsm_map *map;
86c54047
DW
6144 char buf[MAX_RAID_SERIAL_LEN+3];
6145 unsigned int len, shift = 0;
0556e1a2
DW
6146
6147 /* new failures are always set in map[0] */
238c0a71 6148 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
6149
6150 slot = get_imsm_disk_slot(map, idx);
6151 if (slot < 0)
6152 return 0;
6153
6154 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 6155 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
6156 return 0;
6157
7d0c5e24
LD
6158 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6159 buf[MAX_RAID_SERIAL_LEN] = '\000';
6160 strcat(buf, ":0");
86c54047
DW
6161 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6162 shift = len - MAX_RAID_SERIAL_LEN + 1;
6163 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6164
f2f27e63 6165 disk->status |= FAILED_DISK;
0556e1a2 6166 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
6167 /* mark failures in second map if second map exists and this disk
6168 * in this slot.
6169 * This is valid for migration, initialization and rebuild
6170 */
6171 if (dev->vol.migr_state) {
238c0a71 6172 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
6173 int slot2 = get_imsm_disk_slot(map2, idx);
6174
6175 if ((slot2 < map2->num_members) &&
6176 (slot2 >= 0))
6177 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
6178 idx | IMSM_ORD_REBUILD);
6179 }
f21e18ca 6180 if (map->failed_disk_num == 0xff)
0556e1a2
DW
6181 map->failed_disk_num = slot;
6182 return 1;
6183}
6184
6185static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6186{
6187 mark_failure(dev, disk, idx);
6188
6189 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6190 return;
6191
47ee5a45
DW
6192 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6193 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6194}
6195
33414a01
DW
6196static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6197{
33414a01 6198 struct dl *dl;
33414a01
DW
6199
6200 if (!super->missing)
6201 return;
33414a01
DW
6202
6203 dprintf("imsm: mark missing\n");
3d59f0c0
AK
6204 /* end process for initialization and rebuild only
6205 */
6206 if (is_gen_migration(dev) == 0) {
6207 __u8 map_state;
6208 int failed;
6209
6210 failed = imsm_count_failed(super, dev, MAP_0);
6211 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6212
6213 end_migration(dev, super, map_state);
6214 }
33414a01
DW
6215 for (dl = super->missing; dl; dl = dl->next)
6216 mark_missing(dev, &dl->disk, dl->index);
6217 super->updates_pending++;
6218}
6219
70bdf0dc
AK
6220static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6221{
238c0a71 6222 int used_disks = imsm_num_data_members(dev, MAP_0);
70bdf0dc
AK
6223 unsigned long long array_blocks;
6224 struct imsm_map *map;
6225
6226 if (used_disks == 0) {
6227 /* when problems occures
6228 * return current array_blocks value
6229 */
6230 array_blocks = __le32_to_cpu(dev->size_high);
6231 array_blocks = array_blocks << 32;
6232 array_blocks += __le32_to_cpu(dev->size_low);
6233
6234 return array_blocks;
6235 }
6236
6237 /* set array size in metadata
6238 */
238c0a71 6239 map = get_imsm_map(dev, MAP_0);
70bdf0dc
AK
6240 array_blocks = map->blocks_per_member * used_disks;
6241
6242 /* round array size down to closest MB
6243 */
6244 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6245 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6246 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6247
6248 return array_blocks;
6249}
6250
28bce06f
AK
6251static void imsm_set_disk(struct active_array *a, int n, int state);
6252
0e2d1a4e
AK
6253static void imsm_progress_container_reshape(struct intel_super *super)
6254{
6255 /* if no device has a migr_state, but some device has a
6256 * different number of members than the previous device, start
6257 * changing the number of devices in this device to match
6258 * previous.
6259 */
6260 struct imsm_super *mpb = super->anchor;
6261 int prev_disks = -1;
6262 int i;
1dfaa380 6263 int copy_map_size;
0e2d1a4e
AK
6264
6265 for (i = 0; i < mpb->num_raid_devs; i++) {
6266 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 6267 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
6268 struct imsm_map *map2;
6269 int prev_num_members;
0e2d1a4e
AK
6270
6271 if (dev->vol.migr_state)
6272 return;
6273
6274 if (prev_disks == -1)
6275 prev_disks = map->num_members;
6276 if (prev_disks == map->num_members)
6277 continue;
6278
6279 /* OK, this array needs to enter reshape mode.
6280 * i.e it needs a migr_state
6281 */
6282
1dfaa380 6283 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
6284 prev_num_members = map->num_members;
6285 map->num_members = prev_disks;
6286 dev->vol.migr_state = 1;
6287 dev->vol.curr_migr_unit = 0;
ea672ee1 6288 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
6289 for (i = prev_num_members;
6290 i < map->num_members; i++)
6291 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 6292 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 6293 /* Copy the current map */
1dfaa380 6294 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
6295 map2->num_members = prev_num_members;
6296
70bdf0dc 6297 imsm_set_array_size(dev);
0e2d1a4e
AK
6298 super->updates_pending++;
6299 }
6300}
6301
aad6f216 6302/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
6303 * states are handled in imsm_set_disk() with one exception, when a
6304 * resync is stopped due to a new failure this routine will set the
6305 * 'degraded' state for the array.
6306 */
01f157d7 6307static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
6308{
6309 int inst = a->info.container_member;
6310 struct intel_super *super = a->container->sb;
949c47a0 6311 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 6312 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
6313 int failed = imsm_count_failed(super, dev, MAP_0);
6314 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 6315 __u32 blocks_per_unit;
a862209d 6316
1af97990
AK
6317 if (dev->vol.migr_state &&
6318 dev->vol.migr_type == MIGR_GEN_MIGR) {
6319 /* array state change is blocked due to reshape action
aad6f216
N
6320 * We might need to
6321 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6322 * - finish the reshape (if last_checkpoint is big and action != reshape)
6323 * - update curr_migr_unit
1af97990 6324 */
aad6f216
N
6325 if (a->curr_action == reshape) {
6326 /* still reshaping, maybe update curr_migr_unit */
633b5610 6327 goto mark_checkpoint;
aad6f216
N
6328 } else {
6329 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6330 /* for some reason we aborted the reshape.
b66e591b
AK
6331 *
6332 * disable automatic metadata rollback
6333 * user action is required to recover process
aad6f216 6334 */
b66e591b 6335 if (0) {
238c0a71
AK
6336 struct imsm_map *map2 =
6337 get_imsm_map(dev, MAP_1);
6338 dev->vol.migr_state = 0;
6339 set_migr_type(dev, 0);
6340 dev->vol.curr_migr_unit = 0;
6341 memcpy(map, map2,
6342 sizeof_imsm_map(map2));
6343 super->updates_pending++;
b66e591b 6344 }
aad6f216
N
6345 }
6346 if (a->last_checkpoint >= a->info.component_size) {
6347 unsigned long long array_blocks;
6348 int used_disks;
e154ced3 6349 struct mdinfo *mdi;
aad6f216 6350
238c0a71 6351 used_disks = imsm_num_data_members(dev, MAP_0);
d55adef9
AK
6352 if (used_disks > 0) {
6353 array_blocks =
6354 map->blocks_per_member *
6355 used_disks;
6356 /* round array size down to closest MB
6357 */
6358 array_blocks = (array_blocks
6359 >> SECT_PER_MB_SHIFT)
6360 << SECT_PER_MB_SHIFT;
d55adef9
AK
6361 a->info.custom_array_size = array_blocks;
6362 /* encourage manager to update array
6363 * size
6364 */
e154ced3 6365
d55adef9 6366 a->check_reshape = 1;
633b5610 6367 }
e154ced3
AK
6368 /* finalize online capacity expansion/reshape */
6369 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6370 imsm_set_disk(a,
6371 mdi->disk.raid_disk,
6372 mdi->curr_state);
6373
0e2d1a4e 6374 imsm_progress_container_reshape(super);
e154ced3 6375 }
aad6f216 6376 }
1af97990
AK
6377 }
6378
47ee5a45 6379 /* before we activate this array handle any missing disks */
33414a01
DW
6380 if (consistent == 2)
6381 handle_missing(super, dev);
1e5c6983 6382
0c046afd 6383 if (consistent == 2 &&
b7941fd6 6384 (!is_resync_complete(&a->info) ||
0c046afd
DW
6385 map_state != IMSM_T_STATE_NORMAL ||
6386 dev->vol.migr_state))
01f157d7 6387 consistent = 0;
272906ef 6388
b7941fd6 6389 if (is_resync_complete(&a->info)) {
0c046afd 6390 /* complete intialization / resync,
0556e1a2
DW
6391 * recovery and interrupted recovery is completed in
6392 * ->set_disk
0c046afd
DW
6393 */
6394 if (is_resyncing(dev)) {
6395 dprintf("imsm: mark resync done\n");
809da78e 6396 end_migration(dev, super, map_state);
115c3803 6397 super->updates_pending++;
484240d8 6398 a->last_checkpoint = 0;
115c3803 6399 }
b9172665
AK
6400 } else if ((!is_resyncing(dev) && !failed) &&
6401 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 6402 /* mark the start of the init process if nothing is failed */
b7941fd6 6403 dprintf("imsm: mark resync start\n");
1484e727 6404 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 6405 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 6406 else
8e59f3d8 6407 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 6408 super->updates_pending++;
115c3803 6409 }
a862209d 6410
633b5610 6411mark_checkpoint:
5b83bacf
AK
6412 /* skip checkpointing for general migration,
6413 * it is controlled in mdadm
6414 */
6415 if (is_gen_migration(dev))
6416 goto skip_mark_checkpoint;
6417
1e5c6983 6418 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 6419 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 6420 if (blocks_per_unit) {
1e5c6983
DW
6421 __u32 units32;
6422 __u64 units;
6423
4f0a7acc 6424 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
6425 units32 = units;
6426
6427 /* check that we did not overflow 32-bits, and that
6428 * curr_migr_unit needs updating
6429 */
6430 if (units32 == units &&
bfd80a56 6431 units32 != 0 &&
1e5c6983
DW
6432 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6433 dprintf("imsm: mark checkpoint (%u)\n", units32);
6434 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6435 super->updates_pending++;
6436 }
6437 }
f8f603f1 6438
5b83bacf 6439skip_mark_checkpoint:
3393c6af 6440 /* mark dirty / clean */
0c046afd 6441 if (dev->vol.dirty != !consistent) {
b7941fd6 6442 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
6443 if (consistent)
6444 dev->vol.dirty = 0;
6445 else
6446 dev->vol.dirty = 1;
a862209d
DW
6447 super->updates_pending++;
6448 }
28bce06f 6449
01f157d7 6450 return consistent;
a862209d
DW
6451}
6452
8d45d196 6453static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 6454{
8d45d196
DW
6455 int inst = a->info.container_member;
6456 struct intel_super *super = a->container->sb;
949c47a0 6457 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 6458 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 6459 struct imsm_disk *disk;
0c046afd 6460 int failed;
b10b37b8 6461 __u32 ord;
0c046afd 6462 __u8 map_state;
8d45d196
DW
6463
6464 if (n > map->num_members)
6465 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6466 n, map->num_members - 1);
6467
6468 if (n < 0)
6469 return;
6470
4e6e574a 6471 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 6472
238c0a71 6473 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
b10b37b8 6474 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 6475
5802a811 6476 /* check for new failures */
0556e1a2
DW
6477 if (state & DS_FAULTY) {
6478 if (mark_failure(dev, disk, ord_to_idx(ord)))
6479 super->updates_pending++;
8d45d196 6480 }
47ee5a45 6481
19859edc 6482 /* check if in_sync */
0556e1a2 6483 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 6484 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
6485
6486 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6487 super->updates_pending++;
6488 }
8d45d196 6489
3b451610
AK
6490 failed = imsm_count_failed(super, dev, MAP_0);
6491 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 6492
0c046afd 6493 /* check if recovery complete, newly degraded, or failed */
94002678
AK
6494 dprintf("imsm: Detected transition to state ");
6495 switch (map_state) {
6496 case IMSM_T_STATE_NORMAL: /* transition to normal state */
6497 dprintf("normal: ");
6498 if (is_rebuilding(dev)) {
6499 dprintf("while rebuilding");
6500 end_migration(dev, super, map_state);
238c0a71 6501 map = get_imsm_map(dev, MAP_0);
94002678
AK
6502 map->failed_disk_num = ~0;
6503 super->updates_pending++;
6504 a->last_checkpoint = 0;
6505 break;
6506 }
6507 if (is_gen_migration(dev)) {
6508 dprintf("while general migration");
bf2f0071 6509 if (a->last_checkpoint >= a->info.component_size)
809da78e 6510 end_migration(dev, super, map_state);
94002678
AK
6511 else
6512 map->map_state = map_state;
238c0a71 6513 map = get_imsm_map(dev, MAP_0);
28bce06f 6514 map->failed_disk_num = ~0;
94002678 6515 super->updates_pending++;
bf2f0071 6516 break;
94002678
AK
6517 }
6518 break;
6519 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
6520 dprintf("degraded: ");
6521 if ((map->map_state != map_state) &&
6522 !dev->vol.migr_state) {
6523 dprintf("mark degraded");
6524 map->map_state = map_state;
6525 super->updates_pending++;
6526 a->last_checkpoint = 0;
6527 break;
6528 }
6529 if (is_rebuilding(dev)) {
6530 dprintf("while rebuilding.");
6531 if (map->map_state != map_state) {
6532 dprintf(" Map state change");
6533 end_migration(dev, super, map_state);
6534 super->updates_pending++;
6535 }
6536 break;
6537 }
6538 if (is_gen_migration(dev)) {
6539 dprintf("while general migration");
bf2f0071 6540 if (a->last_checkpoint >= a->info.component_size)
809da78e 6541 end_migration(dev, super, map_state);
94002678
AK
6542 else {
6543 map->map_state = map_state;
3b451610 6544 manage_second_map(super, dev);
94002678
AK
6545 }
6546 super->updates_pending++;
bf2f0071 6547 break;
28bce06f 6548 }
6ce1fbf1
AK
6549 if (is_initializing(dev)) {
6550 dprintf("while initialization.");
6551 map->map_state = map_state;
6552 super->updates_pending++;
6553 break;
6554 }
94002678
AK
6555 break;
6556 case IMSM_T_STATE_FAILED: /* transition to failed state */
6557 dprintf("failed: ");
6558 if (is_gen_migration(dev)) {
6559 dprintf("while general migration");
6560 map->map_state = map_state;
6561 super->updates_pending++;
6562 break;
6563 }
6564 if (map->map_state != map_state) {
6565 dprintf("mark failed");
6566 end_migration(dev, super, map_state);
6567 super->updates_pending++;
6568 a->last_checkpoint = 0;
6569 break;
6570 }
6571 break;
6572 default:
6573 dprintf("state %i\n", map_state);
5802a811 6574 }
94002678
AK
6575 dprintf("\n");
6576
845dea95
NB
6577}
6578
f796af5d 6579static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6580{
f796af5d 6581 void *buf = mpb;
c2a1e7da
DW
6582 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6583 unsigned long long dsize;
6584 unsigned long long sectors;
6585
6586 get_dev_size(fd, NULL, &dsize);
6587
272f648f
DW
6588 if (mpb_size > 512) {
6589 /* -1 to account for anchor */
6590 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6591
272f648f
DW
6592 /* write the extended mpb to the sectors preceeding the anchor */
6593 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6594 return 1;
c2a1e7da 6595
f21e18ca
N
6596 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6597 != 512 * sectors)
272f648f
DW
6598 return 1;
6599 }
c2a1e7da 6600
272f648f
DW
6601 /* first block is stored on second to last sector of the disk */
6602 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6603 return 1;
6604
f796af5d 6605 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6606 return 1;
6607
c2a1e7da
DW
6608 return 0;
6609}
6610
2e735d19 6611static void imsm_sync_metadata(struct supertype *container)
845dea95 6612{
2e735d19 6613 struct intel_super *super = container->sb;
c2a1e7da 6614
1a64be56 6615 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6616 if (!super->updates_pending)
6617 return;
6618
36988a3d 6619 write_super_imsm(container, 0);
c2a1e7da
DW
6620
6621 super->updates_pending = 0;
845dea95
NB
6622}
6623
272906ef
DW
6624static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6625{
6626 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 6627 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
6628 struct dl *dl;
6629
6630 for (dl = super->disks; dl; dl = dl->next)
6631 if (dl->index == i)
6632 break;
6633
25ed7e59 6634 if (dl && is_failed(&dl->disk))
272906ef
DW
6635 dl = NULL;
6636
6637 if (dl)
6638 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6639
6640 return dl;
6641}
6642
a20d2ba5 6643static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6644 struct active_array *a, int activate_new,
6645 struct mdinfo *additional_test_list)
272906ef
DW
6646{
6647 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 6648 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
6649 struct imsm_super *mpb = super->anchor;
6650 struct imsm_map *map;
272906ef
DW
6651 unsigned long long pos;
6652 struct mdinfo *d;
6653 struct extent *ex;
a20d2ba5 6654 int i, j;
272906ef 6655 int found;
569cc43f
DW
6656 __u32 array_start = 0;
6657 __u32 array_end = 0;
272906ef 6658 struct dl *dl;
6c932028 6659 struct mdinfo *test_list;
272906ef
DW
6660
6661 for (dl = super->disks; dl; dl = dl->next) {
6662 /* If in this array, skip */
6663 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6664 if (d->state_fd >= 0 &&
6665 d->disk.major == dl->major &&
272906ef 6666 d->disk.minor == dl->minor) {
8ba77d32
AK
6667 dprintf("%x:%x already in array\n",
6668 dl->major, dl->minor);
272906ef
DW
6669 break;
6670 }
6671 if (d)
6672 continue;
6c932028
AK
6673 test_list = additional_test_list;
6674 while (test_list) {
6675 if (test_list->disk.major == dl->major &&
6676 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6677 dprintf("%x:%x already in additional test list\n",
6678 dl->major, dl->minor);
6679 break;
6680 }
6c932028 6681 test_list = test_list->next;
8ba77d32 6682 }
6c932028 6683 if (test_list)
8ba77d32 6684 continue;
272906ef 6685
e553d2a4 6686 /* skip in use or failed drives */
25ed7e59 6687 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6688 dl->index == -2) {
6689 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6690 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6691 continue;
6692 }
6693
a20d2ba5
DW
6694 /* skip pure spares when we are looking for partially
6695 * assimilated drives
6696 */
6697 if (dl->index == -1 && !activate_new)
6698 continue;
6699
272906ef 6700 /* Does this unused device have the requisite free space?
a20d2ba5 6701 * It needs to be able to cover all member volumes
272906ef
DW
6702 */
6703 ex = get_extents(super, dl);
6704 if (!ex) {
6705 dprintf("cannot get extents\n");
6706 continue;
6707 }
a20d2ba5
DW
6708 for (i = 0; i < mpb->num_raid_devs; i++) {
6709 dev = get_imsm_dev(super, i);
238c0a71 6710 map = get_imsm_map(dev, MAP_0);
272906ef 6711
a20d2ba5
DW
6712 /* check if this disk is already a member of
6713 * this array
272906ef 6714 */
620b1713 6715 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6716 continue;
6717
6718 found = 0;
6719 j = 0;
6720 pos = 0;
6721 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6722 array_end = array_start +
6723 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6724
6725 do {
6726 /* check that we can start at pba_of_lba0 with
6727 * blocks_per_member of space
6728 */
329c8278 6729 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6730 found = 1;
6731 break;
6732 }
6733 pos = ex[j].start + ex[j].size;
6734 j++;
6735 } while (ex[j-1].size);
6736
6737 if (!found)
272906ef 6738 break;
a20d2ba5 6739 }
272906ef
DW
6740
6741 free(ex);
a20d2ba5 6742 if (i < mpb->num_raid_devs) {
329c8278
DW
6743 dprintf("%x:%x does not have %u to %u available\n",
6744 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6745 /* No room */
6746 continue;
a20d2ba5
DW
6747 }
6748 return dl;
272906ef
DW
6749 }
6750
6751 return dl;
6752}
6753
95d07a2c
LM
6754
6755static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6756{
6757 struct imsm_dev *dev2;
6758 struct imsm_map *map;
6759 struct dl *idisk;
6760 int slot;
6761 int idx;
6762 __u8 state;
6763
6764 dev2 = get_imsm_dev(cont->sb, dev_idx);
6765 if (dev2) {
238c0a71 6766 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 6767 if (state == IMSM_T_STATE_FAILED) {
238c0a71 6768 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
6769 if (!map)
6770 return 1;
6771 for (slot = 0; slot < map->num_members; slot++) {
6772 /*
6773 * Check if failed disks are deleted from intel
6774 * disk list or are marked to be deleted
6775 */
238c0a71 6776 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
6777 idisk = get_imsm_dl_disk(cont->sb, idx);
6778 /*
6779 * Do not rebuild the array if failed disks
6780 * from failed sub-array are not removed from
6781 * container.
6782 */
6783 if (idisk &&
6784 is_failed(&idisk->disk) &&
6785 (idisk->action != DISK_REMOVE))
6786 return 0;
6787 }
6788 }
6789 }
6790 return 1;
6791}
6792
88758e9d
DW
6793static struct mdinfo *imsm_activate_spare(struct active_array *a,
6794 struct metadata_update **updates)
6795{
6796 /**
d23fe947
DW
6797 * Find a device with unused free space and use it to replace a
6798 * failed/vacant region in an array. We replace failed regions one a
6799 * array at a time. The result is that a new spare disk will be added
6800 * to the first failed array and after the monitor has finished
6801 * propagating failures the remainder will be consumed.
88758e9d 6802 *
d23fe947
DW
6803 * FIXME add a capability for mdmon to request spares from another
6804 * container.
88758e9d
DW
6805 */
6806
6807 struct intel_super *super = a->container->sb;
88758e9d 6808 int inst = a->info.container_member;
949c47a0 6809 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 6810 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
6811 int failed = a->info.array.raid_disks;
6812 struct mdinfo *rv = NULL;
6813 struct mdinfo *d;
6814 struct mdinfo *di;
6815 struct metadata_update *mu;
6816 struct dl *dl;
6817 struct imsm_update_activate_spare *u;
6818 int num_spares = 0;
6819 int i;
95d07a2c 6820 int allowed;
88758e9d
DW
6821
6822 for (d = a->info.devs ; d ; d = d->next) {
6823 if ((d->curr_state & DS_FAULTY) &&
6824 d->state_fd >= 0)
6825 /* wait for Removal to happen */
6826 return NULL;
6827 if (d->state_fd >= 0)
6828 failed--;
6829 }
6830
6831 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6832 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 6833
e2962bfc
AK
6834 if (imsm_reshape_blocks_arrays_changes(super))
6835 return NULL;
1af97990 6836
fc8ca064
AK
6837 /* Cannot activate another spare if rebuild is in progress already
6838 */
6839 if (is_rebuilding(dev)) {
6840 dprintf("imsm: No spare activation allowed. "
6841 "Rebuild in progress already.\n");
6842 return NULL;
6843 }
6844
89c67882
AK
6845 if (a->info.array.level == 4)
6846 /* No repair for takeovered array
6847 * imsm doesn't support raid4
6848 */
6849 return NULL;
6850
3b451610
AK
6851 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
6852 IMSM_T_STATE_DEGRADED)
88758e9d
DW
6853 return NULL;
6854
95d07a2c
LM
6855 /*
6856 * If there are any failed disks check state of the other volume.
6857 * Block rebuild if the another one is failed until failed disks
6858 * are removed from container.
6859 */
6860 if (failed) {
c4acd1e5 6861 dprintf("found failed disks in %.*s, check if there another"
95d07a2c 6862 "failed sub-array.\n",
c4acd1e5 6863 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
6864 /* check if states of the other volumes allow for rebuild */
6865 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6866 if (i != inst) {
6867 allowed = imsm_rebuild_allowed(a->container,
6868 i, failed);
6869 if (!allowed)
6870 return NULL;
6871 }
6872 }
6873 }
6874
88758e9d 6875 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6876 for (i = 0; i < a->info.array.raid_disks; i++) {
6877 for (d = a->info.devs ; d ; d = d->next)
6878 if (d->disk.raid_disk == i)
6879 break;
6880 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6881 if (d && (d->state_fd >= 0))
6882 continue;
6883
272906ef 6884 /*
a20d2ba5
DW
6885 * OK, this device needs recovery. Try to re-add the
6886 * previous occupant of this slot, if this fails see if
6887 * we can continue the assimilation of a spare that was
6888 * partially assimilated, finally try to activate a new
6889 * spare.
272906ef
DW
6890 */
6891 dl = imsm_readd(super, i, a);
6892 if (!dl)
b303fe21 6893 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 6894 if (!dl)
b303fe21 6895 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
6896 if (!dl)
6897 continue;
6898
6899 /* found a usable disk with enough space */
6900 di = malloc(sizeof(*di));
79244939
DW
6901 if (!di)
6902 continue;
272906ef
DW
6903 memset(di, 0, sizeof(*di));
6904
6905 /* dl->index will be -1 in the case we are activating a
6906 * pristine spare. imsm_process_update() will create a
6907 * new index in this case. Once a disk is found to be
6908 * failed in all member arrays it is kicked from the
6909 * metadata
6910 */
6911 di->disk.number = dl->index;
d23fe947 6912
272906ef
DW
6913 /* (ab)use di->devs to store a pointer to the device
6914 * we chose
6915 */
6916 di->devs = (struct mdinfo *) dl;
6917
6918 di->disk.raid_disk = i;
6919 di->disk.major = dl->major;
6920 di->disk.minor = dl->minor;
6921 di->disk.state = 0;
d23534e4 6922 di->recovery_start = 0;
272906ef
DW
6923 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6924 di->component_size = a->info.component_size;
6925 di->container_member = inst;
148acb7b 6926 super->random = random32();
272906ef
DW
6927 di->next = rv;
6928 rv = di;
6929 num_spares++;
6930 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6931 i, di->data_offset);
88758e9d
DW
6932 }
6933
6934 if (!rv)
6935 /* No spares found */
6936 return rv;
6937 /* Now 'rv' has a list of devices to return.
6938 * Create a metadata_update record to update the
6939 * disk_ord_tbl for the array
6940 */
6941 mu = malloc(sizeof(*mu));
79244939
DW
6942 if (mu) {
6943 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6944 if (mu->buf == NULL) {
6945 free(mu);
6946 mu = NULL;
6947 }
6948 }
6949 if (!mu) {
6950 while (rv) {
6951 struct mdinfo *n = rv->next;
6952
6953 free(rv);
6954 rv = n;
6955 }
6956 return NULL;
6957 }
6958
88758e9d 6959 mu->space = NULL;
cb23f1f4 6960 mu->space_list = NULL;
88758e9d
DW
6961 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6962 mu->next = *updates;
6963 u = (struct imsm_update_activate_spare *) mu->buf;
6964
6965 for (di = rv ; di ; di = di->next) {
6966 u->type = update_activate_spare;
d23fe947
DW
6967 u->dl = (struct dl *) di->devs;
6968 di->devs = NULL;
88758e9d
DW
6969 u->slot = di->disk.raid_disk;
6970 u->array = inst;
6971 u->next = u + 1;
6972 u++;
6973 }
6974 (u-1)->next = NULL;
6975 *updates = mu;
6976
6977 return rv;
6978}
6979
54c2c1ea 6980static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6981{
54c2c1ea 6982 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
6983 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6984 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
6985 struct disk_info *inf = get_disk_info(u);
6986 struct imsm_disk *disk;
8273f55e
DW
6987 int i;
6988 int j;
8273f55e 6989
54c2c1ea 6990 for (i = 0; i < map->num_members; i++) {
238c0a71 6991 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
6992 for (j = 0; j < new_map->num_members; j++)
6993 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6994 return 1;
6995 }
6996
6997 return 0;
6998}
6999
1a64be56
LM
7000
7001static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7002{
7003 struct dl *dl = NULL;
7004 for (dl = super->disks; dl; dl = dl->next)
7005 if ((dl->major == major) && (dl->minor == minor))
7006 return dl;
7007 return NULL;
7008}
7009
7010static int remove_disk_super(struct intel_super *super, int major, int minor)
7011{
7012 struct dl *prev = NULL;
7013 struct dl *dl;
7014
7015 prev = NULL;
7016 for (dl = super->disks; dl; dl = dl->next) {
7017 if ((dl->major == major) && (dl->minor == minor)) {
7018 /* remove */
7019 if (prev)
7020 prev->next = dl->next;
7021 else
7022 super->disks = dl->next;
7023 dl->next = NULL;
7024 __free_imsm_disk(dl);
7025 dprintf("%s: removed %x:%x\n",
7026 __func__, major, minor);
7027 break;
7028 }
7029 prev = dl;
7030 }
7031 return 0;
7032}
7033
f21e18ca 7034static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 7035
1a64be56
LM
7036static int add_remove_disk_update(struct intel_super *super)
7037{
7038 int check_degraded = 0;
7039 struct dl *disk = NULL;
7040 /* add/remove some spares to/from the metadata/contrainer */
7041 while (super->disk_mgmt_list) {
7042 struct dl *disk_cfg;
7043
7044 disk_cfg = super->disk_mgmt_list;
7045 super->disk_mgmt_list = disk_cfg->next;
7046 disk_cfg->next = NULL;
7047
7048 if (disk_cfg->action == DISK_ADD) {
7049 disk_cfg->next = super->disks;
7050 super->disks = disk_cfg;
7051 check_degraded = 1;
7052 dprintf("%s: added %x:%x\n",
7053 __func__, disk_cfg->major,
7054 disk_cfg->minor);
7055 } else if (disk_cfg->action == DISK_REMOVE) {
7056 dprintf("Disk remove action processed: %x.%x\n",
7057 disk_cfg->major, disk_cfg->minor);
7058 disk = get_disk_super(super,
7059 disk_cfg->major,
7060 disk_cfg->minor);
7061 if (disk) {
7062 /* store action status */
7063 disk->action = DISK_REMOVE;
7064 /* remove spare disks only */
7065 if (disk->index == -1) {
7066 remove_disk_super(super,
7067 disk_cfg->major,
7068 disk_cfg->minor);
7069 }
7070 }
7071 /* release allocate disk structure */
7072 __free_imsm_disk(disk_cfg);
7073 }
7074 }
7075 return check_degraded;
7076}
7077
a29911da
PC
7078
7079static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7080 struct intel_super *super,
7081 void ***space_list)
7082{
7083 struct intel_dev *id;
7084 void **tofree = NULL;
7085 int ret_val = 0;
7086
7087 dprintf("apply_reshape_migration_update()\n");
7088 if ((u->subdev < 0) ||
7089 (u->subdev > 1)) {
7090 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7091 return ret_val;
7092 }
7093 if ((space_list == NULL) || (*space_list == NULL)) {
7094 dprintf("imsm: Error: Memory is not allocated\n");
7095 return ret_val;
7096 }
7097
7098 for (id = super->devlist ; id; id = id->next) {
7099 if (id->index == (unsigned)u->subdev) {
7100 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7101 struct imsm_map *map;
7102 struct imsm_dev *new_dev =
7103 (struct imsm_dev *)*space_list;
238c0a71 7104 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
7105 int to_state;
7106 struct dl *new_disk;
7107
7108 if (new_dev == NULL)
7109 return ret_val;
7110 *space_list = **space_list;
7111 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 7112 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
7113 if (migr_map) {
7114 dprintf("imsm: Error: migration in progress");
7115 return ret_val;
7116 }
7117
7118 to_state = map->map_state;
7119 if ((u->new_level == 5) && (map->raid_level == 0)) {
7120 map->num_members++;
7121 /* this should not happen */
7122 if (u->new_disks[0] < 0) {
7123 map->failed_disk_num =
7124 map->num_members - 1;
7125 to_state = IMSM_T_STATE_DEGRADED;
7126 } else
7127 to_state = IMSM_T_STATE_NORMAL;
7128 }
8e59f3d8 7129 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
7130 if (u->new_level > -1)
7131 map->raid_level = u->new_level;
238c0a71 7132 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
7133 if ((u->new_level == 5) &&
7134 (migr_map->raid_level == 0)) {
7135 int ord = map->num_members - 1;
7136 migr_map->num_members--;
7137 if (u->new_disks[0] < 0)
7138 ord |= IMSM_ORD_REBUILD;
7139 set_imsm_ord_tbl_ent(map,
7140 map->num_members - 1,
7141 ord);
7142 }
7143 id->dev = new_dev;
7144 tofree = (void **)dev;
7145
4bba0439
PC
7146 /* update chunk size
7147 */
7148 if (u->new_chunksize > 0)
7149 map->blocks_per_strip =
7150 __cpu_to_le16(u->new_chunksize * 2);
7151
a29911da
PC
7152 /* add disk
7153 */
7154 if ((u->new_level != 5) ||
7155 (migr_map->raid_level != 0) ||
7156 (migr_map->raid_level == map->raid_level))
7157 goto skip_disk_add;
7158
7159 if (u->new_disks[0] >= 0) {
7160 /* use passes spare
7161 */
7162 new_disk = get_disk_super(super,
7163 major(u->new_disks[0]),
7164 minor(u->new_disks[0]));
7165 dprintf("imsm: new disk for reshape is: %i:%i "
7166 "(%p, index = %i)\n",
7167 major(u->new_disks[0]),
7168 minor(u->new_disks[0]),
7169 new_disk, new_disk->index);
7170 if (new_disk == NULL)
7171 goto error_disk_add;
7172
7173 new_disk->index = map->num_members - 1;
7174 /* slot to fill in autolayout
7175 */
7176 new_disk->raiddisk = new_disk->index;
7177 new_disk->disk.status |= CONFIGURED_DISK;
7178 new_disk->disk.status &= ~SPARE_DISK;
7179 } else
7180 goto error_disk_add;
7181
7182skip_disk_add:
7183 *tofree = *space_list;
7184 /* calculate new size
7185 */
7186 imsm_set_array_size(new_dev);
7187
7188 ret_val = 1;
7189 }
7190 }
7191
7192 if (tofree)
7193 *space_list = tofree;
7194 return ret_val;
7195
7196error_disk_add:
7197 dprintf("Error: imsm: Cannot find disk.\n");
7198 return ret_val;
7199}
7200
061d7da3
LO
7201static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7202 struct intel_super *super,
7203 struct active_array *active_array)
7204{
7205 struct imsm_super *mpb = super->anchor;
7206 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 7207 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
7208 struct imsm_map *migr_map;
7209 struct active_array *a;
7210 struct imsm_disk *disk;
7211 __u8 to_state;
7212 struct dl *dl;
7213 unsigned int found;
7214 int failed;
5961eeec 7215 int victim;
061d7da3 7216 int i;
5961eeec 7217 int second_map_created = 0;
061d7da3 7218
5961eeec 7219 for (; u; u = u->next) {
238c0a71 7220 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 7221
5961eeec 7222 if (victim < 0)
7223 return 0;
061d7da3 7224
5961eeec 7225 for (dl = super->disks; dl; dl = dl->next)
7226 if (dl == u->dl)
7227 break;
061d7da3 7228
5961eeec 7229 if (!dl) {
7230 fprintf(stderr, "error: imsm_activate_spare passed "
7231 "an unknown disk (index: %d)\n",
7232 u->dl->index);
7233 return 0;
7234 }
061d7da3 7235
5961eeec 7236 /* count failures (excluding rebuilds and the victim)
7237 * to determine map[0] state
7238 */
7239 failed = 0;
7240 for (i = 0; i < map->num_members; i++) {
7241 if (i == u->slot)
7242 continue;
7243 disk = get_imsm_disk(super,
238c0a71 7244 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 7245 if (!disk || is_failed(disk))
7246 failed++;
7247 }
061d7da3 7248
5961eeec 7249 /* adding a pristine spare, assign a new index */
7250 if (dl->index < 0) {
7251 dl->index = super->anchor->num_disks;
7252 super->anchor->num_disks++;
7253 }
7254 disk = &dl->disk;
7255 disk->status |= CONFIGURED_DISK;
7256 disk->status &= ~SPARE_DISK;
7257
7258 /* mark rebuild */
238c0a71 7259 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 7260 if (!second_map_created) {
7261 second_map_created = 1;
7262 map->map_state = IMSM_T_STATE_DEGRADED;
7263 migrate(dev, super, to_state, MIGR_REBUILD);
7264 } else
7265 map->map_state = to_state;
238c0a71 7266 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 7267 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7268 set_imsm_ord_tbl_ent(migr_map, u->slot,
7269 dl->index | IMSM_ORD_REBUILD);
7270
7271 /* update the family_num to mark a new container
7272 * generation, being careful to record the existing
7273 * family_num in orig_family_num to clean up after
7274 * earlier mdadm versions that neglected to set it.
7275 */
7276 if (mpb->orig_family_num == 0)
7277 mpb->orig_family_num = mpb->family_num;
7278 mpb->family_num += super->random;
7279
7280 /* count arrays using the victim in the metadata */
7281 found = 0;
7282 for (a = active_array; a ; a = a->next) {
7283 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 7284 map = get_imsm_map(dev, MAP_0);
061d7da3 7285
5961eeec 7286 if (get_imsm_disk_slot(map, victim) >= 0)
7287 found++;
7288 }
061d7da3 7289
5961eeec 7290 /* delete the victim if it is no longer being
7291 * utilized anywhere
061d7da3 7292 */
5961eeec 7293 if (!found) {
7294 struct dl **dlp;
061d7da3 7295
5961eeec 7296 /* We know that 'manager' isn't touching anything,
7297 * so it is safe to delete
7298 */
7299 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
7300 if ((*dlp)->index == victim)
7301 break;
5961eeec 7302
7303 /* victim may be on the missing list */
7304 if (!*dlp)
7305 for (dlp = &super->missing; *dlp;
7306 dlp = &(*dlp)->next)
7307 if ((*dlp)->index == victim)
7308 break;
7309 imsm_delete(super, dlp, victim);
7310 }
061d7da3
LO
7311 }
7312
7313 return 1;
7314}
a29911da 7315
2e5dc010
N
7316static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7317 struct intel_super *super,
7318 void ***space_list)
7319{
7320 struct dl *new_disk;
7321 struct intel_dev *id;
7322 int i;
7323 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 7324 int disk_count = u->old_raid_disks;
2e5dc010
N
7325 void **tofree = NULL;
7326 int devices_to_reshape = 1;
7327 struct imsm_super *mpb = super->anchor;
7328 int ret_val = 0;
d098291a 7329 unsigned int dev_id;
2e5dc010 7330
ed7333bd 7331 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
7332
7333 /* enable spares to use in array */
7334 for (i = 0; i < delta_disks; i++) {
7335 new_disk = get_disk_super(super,
7336 major(u->new_disks[i]),
7337 minor(u->new_disks[i]));
ed7333bd
AK
7338 dprintf("imsm: new disk for reshape is: %i:%i "
7339 "(%p, index = %i)\n",
2e5dc010
N
7340 major(u->new_disks[i]), minor(u->new_disks[i]),
7341 new_disk, new_disk->index);
7342 if ((new_disk == NULL) ||
7343 ((new_disk->index >= 0) &&
7344 (new_disk->index < u->old_raid_disks)))
7345 goto update_reshape_exit;
ee4beede 7346 new_disk->index = disk_count++;
2e5dc010
N
7347 /* slot to fill in autolayout
7348 */
7349 new_disk->raiddisk = new_disk->index;
7350 new_disk->disk.status |=
7351 CONFIGURED_DISK;
7352 new_disk->disk.status &= ~SPARE_DISK;
7353 }
7354
ed7333bd
AK
7355 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7356 mpb->num_raid_devs);
2e5dc010
N
7357 /* manage changes in volume
7358 */
d098291a 7359 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
7360 void **sp = *space_list;
7361 struct imsm_dev *newdev;
7362 struct imsm_map *newmap, *oldmap;
7363
d098291a
AK
7364 for (id = super->devlist ; id; id = id->next) {
7365 if (id->index == dev_id)
7366 break;
7367 }
7368 if (id == NULL)
7369 break;
2e5dc010
N
7370 if (!sp)
7371 continue;
7372 *space_list = *sp;
7373 newdev = (void*)sp;
7374 /* Copy the dev, but not (all of) the map */
7375 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
7376 oldmap = get_imsm_map(id->dev, MAP_0);
7377 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
7378 /* Copy the current map */
7379 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7380 /* update one device only
7381 */
7382 if (devices_to_reshape) {
ed7333bd
AK
7383 dprintf("imsm: modifying subdev: %i\n",
7384 id->index);
2e5dc010
N
7385 devices_to_reshape--;
7386 newdev->vol.migr_state = 1;
7387 newdev->vol.curr_migr_unit = 0;
ea672ee1 7388 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
7389 newmap->num_members = u->new_raid_disks;
7390 for (i = 0; i < delta_disks; i++) {
7391 set_imsm_ord_tbl_ent(newmap,
7392 u->old_raid_disks + i,
7393 u->old_raid_disks + i);
7394 }
7395 /* New map is correct, now need to save old map
7396 */
238c0a71 7397 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
7398 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7399
70bdf0dc 7400 imsm_set_array_size(newdev);
2e5dc010
N
7401 }
7402
7403 sp = (void **)id->dev;
7404 id->dev = newdev;
7405 *sp = tofree;
7406 tofree = sp;
8e59f3d8
AK
7407
7408 /* Clear migration record */
7409 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 7410 }
819bc634
AK
7411 if (tofree)
7412 *space_list = tofree;
2e5dc010
N
7413 ret_val = 1;
7414
7415update_reshape_exit:
7416
7417 return ret_val;
7418}
7419
bb025c2f 7420static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
7421 struct intel_super *super,
7422 void ***space_list)
bb025c2f
KW
7423{
7424 struct imsm_dev *dev = NULL;
8ca6df95
KW
7425 struct intel_dev *dv;
7426 struct imsm_dev *dev_new;
bb025c2f
KW
7427 struct imsm_map *map;
7428 struct dl *dm, *du;
8ca6df95 7429 int i;
bb025c2f
KW
7430
7431 for (dv = super->devlist; dv; dv = dv->next)
7432 if (dv->index == (unsigned int)u->subarray) {
7433 dev = dv->dev;
7434 break;
7435 }
7436
7437 if (dev == NULL)
7438 return 0;
7439
238c0a71 7440 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
7441
7442 if (u->direction == R10_TO_R0) {
43d5ec18 7443 /* Number of failed disks must be half of initial disk number */
3b451610
AK
7444 if (imsm_count_failed(super, dev, MAP_0) !=
7445 (map->num_members / 2))
43d5ec18
KW
7446 return 0;
7447
bb025c2f
KW
7448 /* iterate through devices to mark removed disks as spare */
7449 for (dm = super->disks; dm; dm = dm->next) {
7450 if (dm->disk.status & FAILED_DISK) {
7451 int idx = dm->index;
7452 /* update indexes on the disk list */
7453/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7454 the index values will end up being correct.... NB */
7455 for (du = super->disks; du; du = du->next)
7456 if (du->index > idx)
7457 du->index--;
7458 /* mark as spare disk */
a8619d23 7459 mark_spare(dm);
bb025c2f
KW
7460 }
7461 }
bb025c2f
KW
7462 /* update map */
7463 map->num_members = map->num_members / 2;
7464 map->map_state = IMSM_T_STATE_NORMAL;
7465 map->num_domains = 1;
7466 map->raid_level = 0;
7467 map->failed_disk_num = -1;
7468 }
7469
8ca6df95
KW
7470 if (u->direction == R0_TO_R10) {
7471 void **space;
7472 /* update slots in current disk list */
7473 for (dm = super->disks; dm; dm = dm->next) {
7474 if (dm->index >= 0)
7475 dm->index *= 2;
7476 }
7477 /* create new *missing* disks */
7478 for (i = 0; i < map->num_members; i++) {
7479 space = *space_list;
7480 if (!space)
7481 continue;
7482 *space_list = *space;
7483 du = (void *)space;
7484 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
7485 du->fd = -1;
7486 du->minor = 0;
7487 du->major = 0;
7488 du->index = (i * 2) + 1;
7489 sprintf((char *)du->disk.serial,
7490 " MISSING_%d", du->index);
7491 sprintf((char *)du->serial,
7492 "MISSING_%d", du->index);
7493 du->next = super->missing;
7494 super->missing = du;
7495 }
7496 /* create new dev and map */
7497 space = *space_list;
7498 if (!space)
7499 return 0;
7500 *space_list = *space;
7501 dev_new = (void *)space;
7502 memcpy(dev_new, dev, sizeof(*dev));
7503 /* update new map */
238c0a71 7504 map = get_imsm_map(dev_new, MAP_0);
8ca6df95 7505 map->num_members = map->num_members * 2;
1a2487c2 7506 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
7507 map->num_domains = 2;
7508 map->raid_level = 1;
7509 /* replace dev<->dev_new */
7510 dv->dev = dev_new;
7511 }
bb025c2f
KW
7512 /* update disk order table */
7513 for (du = super->disks; du; du = du->next)
7514 if (du->index >= 0)
7515 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 7516 for (du = super->missing; du; du = du->next)
1a2487c2
KW
7517 if (du->index >= 0) {
7518 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 7519 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 7520 }
bb025c2f
KW
7521
7522 return 1;
7523}
7524
e8319a19
DW
7525static void imsm_process_update(struct supertype *st,
7526 struct metadata_update *update)
7527{
7528 /**
7529 * crack open the metadata_update envelope to find the update record
7530 * update can be one of:
d195167d
AK
7531 * update_reshape_container_disks - all the arrays in the container
7532 * are being reshaped to have more devices. We need to mark
7533 * the arrays for general migration and convert selected spares
7534 * into active devices.
7535 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
7536 * device in an array, update the disk_ord_tbl. If this disk is
7537 * present in all member arrays then also clear the SPARE_DISK
7538 * flag
d195167d
AK
7539 * update_create_array
7540 * update_kill_array
7541 * update_rename_array
7542 * update_add_remove_disk
e8319a19
DW
7543 */
7544 struct intel_super *super = st->sb;
4d7b1503 7545 struct imsm_super *mpb;
e8319a19
DW
7546 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7547
4d7b1503
DW
7548 /* update requires a larger buf but the allocation failed */
7549 if (super->next_len && !super->next_buf) {
7550 super->next_len = 0;
7551 return;
7552 }
7553
7554 if (super->next_buf) {
7555 memcpy(super->next_buf, super->buf, super->len);
7556 free(super->buf);
7557 super->len = super->next_len;
7558 super->buf = super->next_buf;
7559
7560 super->next_len = 0;
7561 super->next_buf = NULL;
7562 }
7563
7564 mpb = super->anchor;
7565
e8319a19 7566 switch (type) {
0ec5d470
AK
7567 case update_general_migration_checkpoint: {
7568 struct intel_dev *id;
7569 struct imsm_update_general_migration_checkpoint *u =
7570 (void *)update->buf;
7571
7572 dprintf("imsm: process_update() "
7573 "for update_general_migration_checkpoint called\n");
7574
7575 /* find device under general migration */
7576 for (id = super->devlist ; id; id = id->next) {
7577 if (is_gen_migration(id->dev)) {
7578 id->dev->vol.curr_migr_unit =
7579 __cpu_to_le32(u->curr_migr_unit);
7580 super->updates_pending++;
7581 }
7582 }
7583 break;
7584 }
bb025c2f
KW
7585 case update_takeover: {
7586 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
7587 if (apply_takeover_update(u, super, &update->space_list)) {
7588 imsm_update_version_info(super);
bb025c2f 7589 super->updates_pending++;
1a2487c2 7590 }
bb025c2f
KW
7591 break;
7592 }
7593
78b10e66 7594 case update_reshape_container_disks: {
d195167d 7595 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
7596 if (apply_reshape_container_disks_update(
7597 u, super, &update->space_list))
7598 super->updates_pending++;
78b10e66
N
7599 break;
7600 }
48c5303a 7601 case update_reshape_migration: {
a29911da
PC
7602 struct imsm_update_reshape_migration *u = (void *)update->buf;
7603 if (apply_reshape_migration_update(
7604 u, super, &update->space_list))
7605 super->updates_pending++;
48c5303a
PC
7606 break;
7607 }
e8319a19
DW
7608 case update_activate_spare: {
7609 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
7610 if (apply_update_activate_spare(u, super, st->arrays))
7611 super->updates_pending++;
8273f55e
DW
7612 break;
7613 }
7614 case update_create_array: {
7615 /* someone wants to create a new array, we need to be aware of
7616 * a few races/collisions:
7617 * 1/ 'Create' called by two separate instances of mdadm
7618 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7619 * devices that have since been assimilated via
7620 * activate_spare.
7621 * In the event this update can not be carried out mdadm will
7622 * (FIX ME) notice that its update did not take hold.
7623 */
7624 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7625 struct intel_dev *dv;
8273f55e
DW
7626 struct imsm_dev *dev;
7627 struct imsm_map *map, *new_map;
7628 unsigned long long start, end;
7629 unsigned long long new_start, new_end;
7630 int i;
54c2c1ea
DW
7631 struct disk_info *inf;
7632 struct dl *dl;
8273f55e
DW
7633
7634 /* handle racing creates: first come first serve */
7635 if (u->dev_idx < mpb->num_raid_devs) {
7636 dprintf("%s: subarray %d already defined\n",
7637 __func__, u->dev_idx);
ba2de7ba 7638 goto create_error;
8273f55e
DW
7639 }
7640
7641 /* check update is next in sequence */
7642 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7643 dprintf("%s: can not create array %d expected index %d\n",
7644 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7645 goto create_error;
8273f55e
DW
7646 }
7647
238c0a71 7648 new_map = get_imsm_map(&u->dev, MAP_0);
8273f55e
DW
7649 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7650 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7651 inf = get_disk_info(u);
8273f55e
DW
7652
7653 /* handle activate_spare versus create race:
7654 * check to make sure that overlapping arrays do not include
7655 * overalpping disks
7656 */
7657 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7658 dev = get_imsm_dev(super, i);
238c0a71 7659 map = get_imsm_map(dev, MAP_0);
8273f55e
DW
7660 start = __le32_to_cpu(map->pba_of_lba0);
7661 end = start + __le32_to_cpu(map->blocks_per_member);
7662 if ((new_start >= start && new_start <= end) ||
7663 (start >= new_start && start <= new_end))
54c2c1ea
DW
7664 /* overlap */;
7665 else
7666 continue;
7667
7668 if (disks_overlap(super, i, u)) {
8273f55e 7669 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7670 goto create_error;
8273f55e
DW
7671 }
7672 }
8273f55e 7673
949c47a0
DW
7674 /* check that prepare update was successful */
7675 if (!update->space) {
7676 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7677 goto create_error;
949c47a0
DW
7678 }
7679
54c2c1ea
DW
7680 /* check that all disks are still active before committing
7681 * changes. FIXME: could we instead handle this by creating a
7682 * degraded array? That's probably not what the user expects,
7683 * so better to drop this update on the floor.
7684 */
7685 for (i = 0; i < new_map->num_members; i++) {
7686 dl = serial_to_dl(inf[i].serial, super);
7687 if (!dl) {
7688 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7689 goto create_error;
54c2c1ea 7690 }
949c47a0
DW
7691 }
7692
8273f55e 7693 super->updates_pending++;
54c2c1ea
DW
7694
7695 /* convert spares to members and fixup ord_tbl */
7696 for (i = 0; i < new_map->num_members; i++) {
7697 dl = serial_to_dl(inf[i].serial, super);
7698 if (dl->index == -1) {
7699 dl->index = mpb->num_disks;
7700 mpb->num_disks++;
7701 dl->disk.status |= CONFIGURED_DISK;
7702 dl->disk.status &= ~SPARE_DISK;
7703 }
7704 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7705 }
7706
ba2de7ba
DW
7707 dv = update->space;
7708 dev = dv->dev;
949c47a0
DW
7709 update->space = NULL;
7710 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7711 dv->index = u->dev_idx;
7712 dv->next = super->devlist;
7713 super->devlist = dv;
8273f55e 7714 mpb->num_raid_devs++;
8273f55e 7715
4d1313e9 7716 imsm_update_version_info(super);
8273f55e 7717 break;
ba2de7ba
DW
7718 create_error:
7719 /* mdmon knows how to release update->space, but not
7720 * ((struct intel_dev *) update->space)->dev
7721 */
7722 if (update->space) {
7723 dv = update->space;
7724 free(dv->dev);
7725 }
8273f55e 7726 break;
e8319a19 7727 }
33414a01
DW
7728 case update_kill_array: {
7729 struct imsm_update_kill_array *u = (void *) update->buf;
7730 int victim = u->dev_idx;
7731 struct active_array *a;
7732 struct intel_dev **dp;
7733 struct imsm_dev *dev;
7734
7735 /* sanity check that we are not affecting the uuid of
7736 * active arrays, or deleting an active array
7737 *
7738 * FIXME when immutable ids are available, but note that
7739 * we'll also need to fixup the invalidated/active
7740 * subarray indexes in mdstat
7741 */
7742 for (a = st->arrays; a; a = a->next)
7743 if (a->info.container_member >= victim)
7744 break;
7745 /* by definition if mdmon is running at least one array
7746 * is active in the container, so checking
7747 * mpb->num_raid_devs is just extra paranoia
7748 */
7749 dev = get_imsm_dev(super, victim);
7750 if (a || !dev || mpb->num_raid_devs == 1) {
7751 dprintf("failed to delete subarray-%d\n", victim);
7752 break;
7753 }
7754
7755 for (dp = &super->devlist; *dp;)
f21e18ca 7756 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7757 *dp = (*dp)->next;
7758 } else {
f21e18ca 7759 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7760 (*dp)->index--;
7761 dp = &(*dp)->next;
7762 }
7763 mpb->num_raid_devs--;
7764 super->updates_pending++;
7765 break;
7766 }
aa534678
DW
7767 case update_rename_array: {
7768 struct imsm_update_rename_array *u = (void *) update->buf;
7769 char name[MAX_RAID_SERIAL_LEN+1];
7770 int target = u->dev_idx;
7771 struct active_array *a;
7772 struct imsm_dev *dev;
7773
7774 /* sanity check that we are not affecting the uuid of
7775 * an active array
7776 */
7777 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7778 name[MAX_RAID_SERIAL_LEN] = '\0';
7779 for (a = st->arrays; a; a = a->next)
7780 if (a->info.container_member == target)
7781 break;
7782 dev = get_imsm_dev(super, u->dev_idx);
7783 if (a || !dev || !check_name(super, name, 1)) {
7784 dprintf("failed to rename subarray-%d\n", target);
7785 break;
7786 }
7787
cdbe98cd 7788 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7789 super->updates_pending++;
7790 break;
7791 }
1a64be56 7792 case update_add_remove_disk: {
43dad3d6 7793 /* we may be able to repair some arrays if disks are
1a64be56
LM
7794 * being added, check teh status of add_remove_disk
7795 * if discs has been added.
7796 */
7797 if (add_remove_disk_update(super)) {
43dad3d6 7798 struct active_array *a;
072b727f
DW
7799
7800 super->updates_pending++;
1a64be56 7801 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7802 a->check_degraded = 1;
7803 }
43dad3d6 7804 break;
e8319a19 7805 }
1a64be56
LM
7806 default:
7807 fprintf(stderr, "error: unsuported process update type:"
7808 "(type: %d)\n", type);
7809 }
e8319a19 7810}
88758e9d 7811
bc0b9d34
PC
7812static struct mdinfo *get_spares_for_grow(struct supertype *st);
7813
8273f55e
DW
7814static void imsm_prepare_update(struct supertype *st,
7815 struct metadata_update *update)
7816{
949c47a0 7817 /**
4d7b1503
DW
7818 * Allocate space to hold new disk entries, raid-device entries or a new
7819 * mpb if necessary. The manager synchronously waits for updates to
7820 * complete in the monitor, so new mpb buffers allocated here can be
7821 * integrated by the monitor thread without worrying about live pointers
7822 * in the manager thread.
8273f55e 7823 */
949c47a0 7824 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7825 struct intel_super *super = st->sb;
7826 struct imsm_super *mpb = super->anchor;
7827 size_t buf_len;
7828 size_t len = 0;
949c47a0
DW
7829
7830 switch (type) {
0ec5d470
AK
7831 case update_general_migration_checkpoint:
7832 dprintf("imsm: prepare_update() "
7833 "for update_general_migration_checkpoint called\n");
7834 break;
abedf5fc
KW
7835 case update_takeover: {
7836 struct imsm_update_takeover *u = (void *)update->buf;
7837 if (u->direction == R0_TO_R10) {
7838 void **tail = (void **)&update->space_list;
7839 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 7840 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
7841 int num_members = map->num_members;
7842 void *space;
7843 int size, i;
7844 int err = 0;
7845 /* allocate memory for added disks */
7846 for (i = 0; i < num_members; i++) {
7847 size = sizeof(struct dl);
7848 space = malloc(size);
7849 if (!space) {
7850 err++;
7851 break;
7852 }
7853 *tail = space;
7854 tail = space;
7855 *tail = NULL;
7856 }
7857 /* allocate memory for new device */
7858 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7859 (num_members * sizeof(__u32));
7860 space = malloc(size);
7861 if (!space)
7862 err++;
7863 else {
7864 *tail = space;
7865 tail = space;
7866 *tail = NULL;
7867 }
7868 if (!err) {
7869 len = disks_to_mpb_size(num_members * 2);
7870 } else {
7871 /* if allocation didn't success, free buffer */
7872 while (update->space_list) {
7873 void **sp = update->space_list;
7874 update->space_list = *sp;
7875 free(sp);
7876 }
7877 }
7878 }
7879
7880 break;
7881 }
78b10e66 7882 case update_reshape_container_disks: {
d195167d
AK
7883 /* Every raid device in the container is about to
7884 * gain some more devices, and we will enter a
7885 * reconfiguration.
7886 * So each 'imsm_map' will be bigger, and the imsm_vol
7887 * will now hold 2 of them.
7888 * Thus we need new 'struct imsm_dev' allocations sized
7889 * as sizeof_imsm_dev but with more devices in both maps.
7890 */
7891 struct imsm_update_reshape *u = (void *)update->buf;
7892 struct intel_dev *dl;
7893 void **space_tail = (void**)&update->space_list;
7894
7895 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7896
7897 for (dl = super->devlist; dl; dl = dl->next) {
7898 int size = sizeof_imsm_dev(dl->dev, 1);
7899 void *s;
d677e0b8
AK
7900 if (u->new_raid_disks > u->old_raid_disks)
7901 size += sizeof(__u32)*2*
7902 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7903 s = malloc(size);
7904 if (!s)
7905 break;
7906 *space_tail = s;
7907 space_tail = s;
7908 *space_tail = NULL;
7909 }
7910
7911 len = disks_to_mpb_size(u->new_raid_disks);
7912 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7913 break;
7914 }
48c5303a 7915 case update_reshape_migration: {
bc0b9d34
PC
7916 /* for migration level 0->5 we need to add disks
7917 * so the same as for container operation we will copy
7918 * device to the bigger location.
7919 * in memory prepared device and new disk area are prepared
7920 * for usage in process update
7921 */
7922 struct imsm_update_reshape_migration *u = (void *)update->buf;
7923 struct intel_dev *id;
7924 void **space_tail = (void **)&update->space_list;
7925 int size;
7926 void *s;
7927 int current_level = -1;
7928
7929 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7930
7931 /* add space for bigger array in update
7932 */
7933 for (id = super->devlist; id; id = id->next) {
7934 if (id->index == (unsigned)u->subdev) {
7935 size = sizeof_imsm_dev(id->dev, 1);
7936 if (u->new_raid_disks > u->old_raid_disks)
7937 size += sizeof(__u32)*2*
7938 (u->new_raid_disks - u->old_raid_disks);
7939 s = malloc(size);
7940 if (!s)
7941 break;
7942 *space_tail = s;
7943 space_tail = s;
7944 *space_tail = NULL;
7945 break;
7946 }
7947 }
7948 if (update->space_list == NULL)
7949 break;
7950
7951 /* add space for disk in update
7952 */
7953 size = sizeof(struct dl);
7954 s = malloc(size);
7955 if (!s) {
7956 free(update->space_list);
7957 update->space_list = NULL;
7958 break;
7959 }
7960 *space_tail = s;
7961 space_tail = s;
7962 *space_tail = NULL;
7963
7964 /* add spare device to update
7965 */
7966 for (id = super->devlist ; id; id = id->next)
7967 if (id->index == (unsigned)u->subdev) {
7968 struct imsm_dev *dev;
7969 struct imsm_map *map;
7970
7971 dev = get_imsm_dev(super, u->subdev);
238c0a71 7972 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
7973 current_level = map->raid_level;
7974 break;
7975 }
7976 if ((u->new_level == 5) && (u->new_level != current_level)) {
7977 struct mdinfo *spares;
7978
7979 spares = get_spares_for_grow(st);
7980 if (spares) {
7981 struct dl *dl;
7982 struct mdinfo *dev;
7983
7984 dev = spares->devs;
7985 if (dev) {
7986 u->new_disks[0] =
7987 makedev(dev->disk.major,
7988 dev->disk.minor);
7989 dl = get_disk_super(super,
7990 dev->disk.major,
7991 dev->disk.minor);
7992 dl->index = u->old_raid_disks;
7993 dev = dev->next;
7994 }
7995 sysfs_free(spares);
7996 }
7997 }
7998 len = disks_to_mpb_size(u->new_raid_disks);
7999 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
8000 break;
8001 }
949c47a0
DW
8002 case update_create_array: {
8003 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 8004 struct intel_dev *dv;
54c2c1ea 8005 struct imsm_dev *dev = &u->dev;
238c0a71 8006 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
8007 struct dl *dl;
8008 struct disk_info *inf;
8009 int i;
8010 int activate = 0;
949c47a0 8011
54c2c1ea
DW
8012 inf = get_disk_info(u);
8013 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
8014 /* allocate a new super->devlist entry */
8015 dv = malloc(sizeof(*dv));
8016 if (dv) {
8017 dv->dev = malloc(len);
8018 if (dv->dev)
8019 update->space = dv;
8020 else {
8021 free(dv);
8022 update->space = NULL;
8023 }
8024 }
949c47a0 8025
54c2c1ea
DW
8026 /* count how many spares will be converted to members */
8027 for (i = 0; i < map->num_members; i++) {
8028 dl = serial_to_dl(inf[i].serial, super);
8029 if (!dl) {
8030 /* hmm maybe it failed?, nothing we can do about
8031 * it here
8032 */
8033 continue;
8034 }
8035 if (count_memberships(dl, super) == 0)
8036 activate++;
8037 }
8038 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
8039 break;
8040 default:
8041 break;
8042 }
8043 }
8273f55e 8044
4d7b1503
DW
8045 /* check if we need a larger metadata buffer */
8046 if (super->next_buf)
8047 buf_len = super->next_len;
8048 else
8049 buf_len = super->len;
8050
8051 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8052 /* ok we need a larger buf than what is currently allocated
8053 * if this allocation fails process_update will notice that
8054 * ->next_len is set and ->next_buf is NULL
8055 */
8056 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8057 if (super->next_buf)
8058 free(super->next_buf);
8059
8060 super->next_len = buf_len;
1f45a8ad
DW
8061 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8062 memset(super->next_buf, 0, buf_len);
8063 else
4d7b1503
DW
8064 super->next_buf = NULL;
8065 }
8273f55e
DW
8066}
8067
ae6aad82 8068/* must be called while manager is quiesced */
f21e18ca 8069static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
8070{
8071 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
8072 struct dl *iter;
8073 struct imsm_dev *dev;
8074 struct imsm_map *map;
24565c9a
DW
8075 int i, j, num_members;
8076 __u32 ord;
ae6aad82 8077
24565c9a
DW
8078 dprintf("%s: deleting device[%d] from imsm_super\n",
8079 __func__, index);
ae6aad82
DW
8080
8081 /* shift all indexes down one */
8082 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 8083 if (iter->index > (int)index)
ae6aad82 8084 iter->index--;
47ee5a45 8085 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 8086 if (iter->index > (int)index)
47ee5a45 8087 iter->index--;
ae6aad82
DW
8088
8089 for (i = 0; i < mpb->num_raid_devs; i++) {
8090 dev = get_imsm_dev(super, i);
238c0a71 8091 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
8092 num_members = map->num_members;
8093 for (j = 0; j < num_members; j++) {
8094 /* update ord entries being careful not to propagate
8095 * ord-flags to the first map
8096 */
238c0a71 8097 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
ae6aad82 8098
24565c9a
DW
8099 if (ord_to_idx(ord) <= index)
8100 continue;
ae6aad82 8101
238c0a71 8102 map = get_imsm_map(dev, MAP_0);
24565c9a 8103 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
238c0a71 8104 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
8105 if (map)
8106 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
8107 }
8108 }
8109
8110 mpb->num_disks--;
8111 super->updates_pending++;
24565c9a
DW
8112 if (*dlp) {
8113 struct dl *dl = *dlp;
8114
8115 *dlp = (*dlp)->next;
8116 __free_imsm_disk(dl);
8117 }
ae6aad82 8118}
9e2d750d 8119#endif /* MDASSEMBLE */
9a717282
AK
8120
8121static void close_targets(int *targets, int new_disks)
8122{
8123 int i;
8124
8125 if (!targets)
8126 return;
8127
8128 for (i = 0; i < new_disks; i++) {
8129 if (targets[i] >= 0) {
8130 close(targets[i]);
8131 targets[i] = -1;
8132 }
8133 }
8134}
8135
8136static int imsm_get_allowed_degradation(int level, int raid_disks,
8137 struct intel_super *super,
8138 struct imsm_dev *dev)
8139{
8140 switch (level) {
8141 case 10:{
8142 int ret_val = 0;
8143 struct imsm_map *map;
8144 int i;
8145
8146 ret_val = raid_disks/2;
8147 /* check map if all disks pairs not failed
8148 * in both maps
8149 */
238c0a71 8150 map = get_imsm_map(dev, MAP_0);
9a717282
AK
8151 for (i = 0; i < ret_val; i++) {
8152 int degradation = 0;
8153 if (get_imsm_disk(super, i) == NULL)
8154 degradation++;
8155 if (get_imsm_disk(super, i + 1) == NULL)
8156 degradation++;
8157 if (degradation == 2)
8158 return 0;
8159 }
238c0a71 8160 map = get_imsm_map(dev, MAP_1);
9a717282
AK
8161 /* if there is no second map
8162 * result can be returned
8163 */
8164 if (map == NULL)
8165 return ret_val;
8166 /* check degradation in second map
8167 */
8168 for (i = 0; i < ret_val; i++) {
8169 int degradation = 0;
8170 if (get_imsm_disk(super, i) == NULL)
8171 degradation++;
8172 if (get_imsm_disk(super, i + 1) == NULL)
8173 degradation++;
8174 if (degradation == 2)
8175 return 0;
8176 }
8177 return ret_val;
8178 }
8179 case 5:
8180 return 1;
8181 case 6:
8182 return 2;
8183 default:
8184 return 0;
8185 }
8186}
8187
8188
687629c2
AK
8189/*******************************************************************************
8190 * Function: open_backup_targets
8191 * Description: Function opens file descriptors for all devices given in
8192 * info->devs
8193 * Parameters:
8194 * info : general array info
8195 * raid_disks : number of disks
8196 * raid_fds : table of device's file descriptors
9a717282
AK
8197 * super : intel super for raid10 degradation check
8198 * dev : intel device for raid10 degradation check
687629c2
AK
8199 * Returns:
8200 * 0 : success
8201 * -1 : fail
8202 ******************************************************************************/
9a717282
AK
8203int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8204 struct intel_super *super, struct imsm_dev *dev)
687629c2
AK
8205{
8206 struct mdinfo *sd;
f627f5ad 8207 int i;
9a717282 8208 int opened = 0;
f627f5ad
AK
8209
8210 for (i = 0; i < raid_disks; i++)
8211 raid_fds[i] = -1;
687629c2
AK
8212
8213 for (sd = info->devs ; sd ; sd = sd->next) {
8214 char *dn;
8215
8216 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8217 dprintf("disk is faulty!!\n");
8218 continue;
8219 }
8220
8221 if ((sd->disk.raid_disk >= raid_disks) ||
8222 (sd->disk.raid_disk < 0))
8223 continue;
8224
8225 dn = map_dev(sd->disk.major,
8226 sd->disk.minor, 1);
8227 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8228 if (raid_fds[sd->disk.raid_disk] < 0) {
8229 fprintf(stderr, "cannot open component\n");
9a717282 8230 continue;
687629c2 8231 }
9a717282
AK
8232 opened++;
8233 }
8234 /* check if maximum array degradation level is not exceeded
8235 */
8236 if ((raid_disks - opened) >
8237 imsm_get_allowed_degradation(info->new_level,
8238 raid_disks,
8239 super, dev)) {
8240 fprintf(stderr, "Not enough disks can be opened.\n");
8241 close_targets(raid_fds, raid_disks);
8242 return -2;
687629c2
AK
8243 }
8244 return 0;
8245}
8246
9e2d750d 8247#ifndef MDASSEMBLE
687629c2
AK
8248/*******************************************************************************
8249 * Function: init_migr_record_imsm
8250 * Description: Function inits imsm migration record
8251 * Parameters:
8252 * super : imsm internal array info
8253 * dev : device under migration
8254 * info : general array info to find the smallest device
8255 * Returns:
8256 * none
8257 ******************************************************************************/
8258void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8259 struct mdinfo *info)
8260{
8261 struct intel_super *super = st->sb;
8262 struct migr_record *migr_rec = super->migr_rec;
8263 int new_data_disks;
8264 unsigned long long dsize, dev_sectors;
8265 long long unsigned min_dev_sectors = -1LLU;
8266 struct mdinfo *sd;
8267 char nm[30];
8268 int fd;
238c0a71
AK
8269 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
8270 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 8271 unsigned long long num_migr_units;
3ef4403c 8272 unsigned long long array_blocks;
687629c2
AK
8273
8274 memset(migr_rec, 0, sizeof(struct migr_record));
8275 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8276
8277 /* only ascending reshape supported now */
8278 migr_rec->ascending_migr = __cpu_to_le32(1);
8279
8280 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8281 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8282 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
238c0a71 8283 new_data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
8284 migr_rec->blocks_per_unit =
8285 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8286 migr_rec->dest_depth_per_unit =
8287 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 8288 array_blocks = info->component_size * new_data_disks;
687629c2
AK
8289 num_migr_units =
8290 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8291
8292 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8293 num_migr_units++;
8294 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8295
8296 migr_rec->post_migr_vol_cap = dev->size_low;
8297 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8298
8299
8300 /* Find the smallest dev */
8301 for (sd = info->devs ; sd ; sd = sd->next) {
8302 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8303 fd = dev_open(nm, O_RDONLY);
8304 if (fd < 0)
8305 continue;
8306 get_dev_size(fd, NULL, &dsize);
8307 dev_sectors = dsize / 512;
8308 if (dev_sectors < min_dev_sectors)
8309 min_dev_sectors = dev_sectors;
8310 close(fd);
8311 }
8312 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8313 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8314
8315 write_imsm_migr_rec(st);
8316
8317 return;
8318}
8319
8320/*******************************************************************************
8321 * Function: save_backup_imsm
8322 * Description: Function saves critical data stripes to Migration Copy Area
8323 * and updates the current migration unit status.
8324 * Use restore_stripes() to form a destination stripe,
8325 * and to write it to the Copy Area.
8326 * Parameters:
8327 * st : supertype information
aea93171 8328 * dev : imsm device that backup is saved for
687629c2
AK
8329 * info : general array info
8330 * buf : input buffer
687629c2
AK
8331 * length : length of data to backup (blocks_per_unit)
8332 * Returns:
8333 * 0 : success
8334 *, -1 : fail
8335 ******************************************************************************/
8336int save_backup_imsm(struct supertype *st,
8337 struct imsm_dev *dev,
8338 struct mdinfo *info,
8339 void *buf,
687629c2
AK
8340 int length)
8341{
8342 int rv = -1;
8343 struct intel_super *super = st->sb;
8344 unsigned long long *target_offsets = NULL;
8345 int *targets = NULL;
8346 int i;
238c0a71 8347 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 8348 int new_disks = map_dest->num_members;
ab724b98
AK
8349 int dest_layout = 0;
8350 int dest_chunk;
d1877f69 8351 unsigned long long start;
238c0a71 8352 int data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
8353
8354 targets = malloc(new_disks * sizeof(int));
8355 if (!targets)
8356 goto abort;
8357
7e45b550
AK
8358 for (i = 0; i < new_disks; i++)
8359 targets[i] = -1;
8360
687629c2
AK
8361 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8362 if (!target_offsets)
8363 goto abort;
8364
d1877f69 8365 start = info->reshape_progress * 512;
687629c2 8366 for (i = 0; i < new_disks; i++) {
687629c2
AK
8367 target_offsets[i] = (unsigned long long)
8368 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
8369 /* move back copy area adderss, it will be moved forward
8370 * in restore_stripes() using start input variable
8371 */
8372 target_offsets[i] -= start/data_disks;
687629c2
AK
8373 }
8374
9a717282
AK
8375 if (open_backup_targets(info, new_disks, targets,
8376 super, dev))
687629c2
AK
8377 goto abort;
8378
68eb8bc6 8379 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
8380 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8381
687629c2
AK
8382 if (restore_stripes(targets, /* list of dest devices */
8383 target_offsets, /* migration record offsets */
8384 new_disks,
ab724b98
AK
8385 dest_chunk,
8386 map_dest->raid_level,
8387 dest_layout,
8388 -1, /* source backup file descriptor */
8389 0, /* input buf offset
8390 * always 0 buf is already offseted */
d1877f69 8391 start,
687629c2
AK
8392 length,
8393 buf) != 0) {
8394 fprintf(stderr, Name ": Error restoring stripes\n");
8395 goto abort;
8396 }
8397
8398 rv = 0;
8399
8400abort:
8401 if (targets) {
9a717282 8402 close_targets(targets, new_disks);
687629c2
AK
8403 free(targets);
8404 }
8405 free(target_offsets);
8406
8407 return rv;
8408}
8409
8410/*******************************************************************************
8411 * Function: save_checkpoint_imsm
8412 * Description: Function called for current unit status update
8413 * in the migration record. It writes it to disk.
8414 * Parameters:
8415 * super : imsm internal array info
8416 * info : general array info
8417 * Returns:
8418 * 0: success
8419 * 1: failure
0228d92c
AK
8420 * 2: failure, means no valid migration record
8421 * / no general migration in progress /
687629c2
AK
8422 ******************************************************************************/
8423int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8424{
8425 struct intel_super *super = st->sb;
f8b72ef5
AK
8426 unsigned long long blocks_per_unit;
8427 unsigned long long curr_migr_unit;
8428
2e062e82
AK
8429 if (load_imsm_migr_rec(super, info) != 0) {
8430 dprintf("imsm: ERROR: Cannot read migration record "
8431 "for checkpoint save.\n");
8432 return 1;
8433 }
8434
f8b72ef5
AK
8435 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8436 if (blocks_per_unit == 0) {
0228d92c
AK
8437 dprintf("imsm: no migration in progress.\n");
8438 return 2;
687629c2 8439 }
f8b72ef5
AK
8440 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8441 /* check if array is alligned to copy area
8442 * if it is not alligned, add one to current migration unit value
8443 * this can happend on array reshape finish only
8444 */
8445 if (info->reshape_progress % blocks_per_unit)
8446 curr_migr_unit++;
687629c2
AK
8447
8448 super->migr_rec->curr_migr_unit =
f8b72ef5 8449 __cpu_to_le32(curr_migr_unit);
687629c2
AK
8450 super->migr_rec->rec_status = __cpu_to_le32(state);
8451 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
8452 __cpu_to_le32(curr_migr_unit *
8453 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
8454 if (write_imsm_migr_rec(st) < 0) {
8455 dprintf("imsm: Cannot write migration record "
8456 "outside backup area\n");
8457 return 1;
8458 }
8459
8460 return 0;
8461}
8462
276d77db
AK
8463/*******************************************************************************
8464 * Function: recover_backup_imsm
8465 * Description: Function recovers critical data from the Migration Copy Area
8466 * while assembling an array.
8467 * Parameters:
8468 * super : imsm internal array info
8469 * info : general array info
8470 * Returns:
8471 * 0 : success (or there is no data to recover)
8472 * 1 : fail
8473 ******************************************************************************/
8474int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8475{
8476 struct intel_super *super = st->sb;
8477 struct migr_record *migr_rec = super->migr_rec;
8478 struct imsm_map *map_dest = NULL;
8479 struct intel_dev *id = NULL;
8480 unsigned long long read_offset;
8481 unsigned long long write_offset;
8482 unsigned unit_len;
8483 int *targets = NULL;
8484 int new_disks, i, err;
8485 char *buf = NULL;
8486 int retval = 1;
8487 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8488 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 8489 char buffer[20];
6c3560c0 8490 int skipped_disks = 0;
276d77db
AK
8491
8492 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8493 if (err < 1)
8494 return 1;
8495
8496 /* recover data only during assemblation */
8497 if (strncmp(buffer, "inactive", 8) != 0)
8498 return 0;
8499 /* no data to recover */
8500 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8501 return 0;
8502 if (curr_migr_unit >= num_migr_units)
8503 return 1;
8504
8505 /* find device during reshape */
8506 for (id = super->devlist; id; id = id->next)
8507 if (is_gen_migration(id->dev))
8508 break;
8509 if (id == NULL)
8510 return 1;
8511
238c0a71 8512 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
8513 new_disks = map_dest->num_members;
8514
8515 read_offset = (unsigned long long)
8516 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8517
8518 write_offset = ((unsigned long long)
8519 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
75b69ea4 8520 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
276d77db
AK
8521
8522 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8523 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8524 goto abort;
8525 targets = malloc(new_disks * sizeof(int));
8526 if (!targets)
8527 goto abort;
8528
9a717282 8529 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
f627f5ad
AK
8530 fprintf(stderr,
8531 Name ": Cannot open some devices belonging to array.\n");
8532 goto abort;
8533 }
276d77db
AK
8534
8535 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
8536 if (targets[i] < 0) {
8537 skipped_disks++;
8538 continue;
8539 }
276d77db
AK
8540 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8541 fprintf(stderr,
8542 Name ": Cannot seek to block: %s\n",
8543 strerror(errno));
137debce
AK
8544 skipped_disks++;
8545 continue;
276d77db 8546 }
9ec11d1a 8547 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8548 fprintf(stderr,
8549 Name ": Cannot read copy area block: %s\n",
8550 strerror(errno));
137debce
AK
8551 skipped_disks++;
8552 continue;
276d77db
AK
8553 }
8554 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8555 fprintf(stderr,
8556 Name ": Cannot seek to block: %s\n",
8557 strerror(errno));
137debce
AK
8558 skipped_disks++;
8559 continue;
276d77db 8560 }
9ec11d1a 8561 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8562 fprintf(stderr,
8563 Name ": Cannot restore block: %s\n",
8564 strerror(errno));
137debce
AK
8565 skipped_disks++;
8566 continue;
276d77db
AK
8567 }
8568 }
8569
137debce
AK
8570 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
8571 new_disks,
8572 super,
8573 id->dev)) {
6c3560c0
AK
8574 fprintf(stderr,
8575 Name ": Cannot restore data from backup."
8576 " Too many failed disks\n");
8577 goto abort;
8578 }
8579
befb629b
AK
8580 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8581 /* ignore error == 2, this can mean end of reshape here
8582 */
8583 dprintf("imsm: Cannot write checkpoint to "
8584 "migration record (UNIT_SRC_NORMAL) during restart\n");
8585 } else
276d77db 8586 retval = 0;
276d77db
AK
8587
8588abort:
8589 if (targets) {
8590 for (i = 0; i < new_disks; i++)
8591 if (targets[i])
8592 close(targets[i]);
8593 free(targets);
8594 }
8595 free(buf);
8596 return retval;
8597}
8598
2cda7640
ML
8599static char disk_by_path[] = "/dev/disk/by-path/";
8600
8601static const char *imsm_get_disk_controller_domain(const char *path)
8602{
2cda7640 8603 char disk_path[PATH_MAX];
96234762
LM
8604 char *drv=NULL;
8605 struct stat st;
2cda7640 8606
96234762
LM
8607 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8608 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8609 if (stat(disk_path, &st) == 0) {
8610 struct sys_dev* hba;
8611 char *path=NULL;
8612
8613 path = devt_to_devpath(st.st_rdev);
8614 if (path == NULL)
8615 return "unknown";
8616 hba = find_disk_attached_hba(-1, path);
8617 if (hba && hba->type == SYS_DEV_SAS)
8618 drv = "isci";
8619 else if (hba && hba->type == SYS_DEV_SATA)
8620 drv = "ahci";
8621 else
8622 drv = "unknown";
8623 dprintf("path: %s hba: %s attached: %s\n",
8624 path, (hba) ? hba->path : "NULL", drv);
8625 free(path);
8626 if (hba)
8627 free_sys_dev(&hba);
2cda7640 8628 }
96234762 8629 return drv;
2cda7640
ML
8630}
8631
78b10e66
N
8632static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8633{
8634 char subdev_name[20];
8635 struct mdstat_ent *mdstat;
8636
8637 sprintf(subdev_name, "%d", subdev);
8638 mdstat = mdstat_by_subdev(subdev_name, container);
8639 if (!mdstat)
8640 return -1;
8641
8642 *minor = mdstat->devnum;
8643 free_mdstat(mdstat);
8644 return 0;
8645}
8646
8647static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8648 struct geo_params *geo,
8649 int *old_raid_disks)
8650{
694575e7
KW
8651 /* currently we only support increasing the number of devices
8652 * for a container. This increases the number of device for each
8653 * member array. They must all be RAID0 or RAID5.
8654 */
78b10e66
N
8655 int ret_val = 0;
8656 struct mdinfo *info, *member;
8657 int devices_that_can_grow = 0;
8658
8659 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8660 "st->devnum = (%i)\n",
8661 st->devnum);
8662
8663 if (geo->size != -1 ||
8664 geo->level != UnSet ||
8665 geo->layout != UnSet ||
8666 geo->chunksize != 0 ||
8667 geo->raid_disks == UnSet) {
8668 dprintf("imsm: Container operation is allowed for "
8669 "raid disks number change only.\n");
8670 return ret_val;
8671 }
8672
8673 info = container_content_imsm(st, NULL);
8674 for (member = info; member; member = member->next) {
8675 int result;
8676 int minor;
8677
8678 dprintf("imsm: checking device_num: %i\n",
8679 member->container_member);
8680
d7d205bd 8681 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
8682 /* we work on container for Online Capacity Expansion
8683 * only so raid_disks has to grow
8684 */
8685 dprintf("imsm: for container operation raid disks "
8686 "increase is required\n");
8687 break;
8688 }
8689
8690 if ((info->array.level != 0) &&
8691 (info->array.level != 5)) {
8692 /* we cannot use this container with other raid level
8693 */
690aae1a 8694 dprintf("imsm: for container operation wrong"
78b10e66
N
8695 " raid level (%i) detected\n",
8696 info->array.level);
8697 break;
8698 } else {
8699 /* check for platform support
8700 * for this raid level configuration
8701 */
8702 struct intel_super *super = st->sb;
8703 if (!is_raid_level_supported(super->orom,
8704 member->array.level,
8705 geo->raid_disks)) {
690aae1a 8706 dprintf("platform does not support raid%d with"
78b10e66
N
8707 " %d disk%s\n",
8708 info->array.level,
8709 geo->raid_disks,
8710 geo->raid_disks > 1 ? "s" : "");
8711 break;
8712 }
2a4a08e7
AK
8713 /* check if component size is aligned to chunk size
8714 */
8715 if (info->component_size %
8716 (info->array.chunk_size/512)) {
8717 dprintf("Component size is not aligned to "
8718 "chunk size\n");
8719 break;
8720 }
78b10e66
N
8721 }
8722
8723 if (*old_raid_disks &&
8724 info->array.raid_disks != *old_raid_disks)
8725 break;
8726 *old_raid_disks = info->array.raid_disks;
8727
8728 /* All raid5 and raid0 volumes in container
8729 * have to be ready for Online Capacity Expansion
8730 * so they need to be assembled. We have already
8731 * checked that no recovery etc is happening.
8732 */
8733 result = imsm_find_array_minor_by_subdev(member->container_member,
8734 st->container_dev,
8735 &minor);
8736 if (result < 0) {
8737 dprintf("imsm: cannot find array\n");
8738 break;
8739 }
8740 devices_that_can_grow++;
8741 }
8742 sysfs_free(info);
8743 if (!member && devices_that_can_grow)
8744 ret_val = 1;
8745
8746 if (ret_val)
8747 dprintf("\tContainer operation allowed\n");
8748 else
8749 dprintf("\tError: %i\n", ret_val);
8750
8751 return ret_val;
8752}
8753
8754/* Function: get_spares_for_grow
8755 * Description: Allocates memory and creates list of spare devices
8756 * avaliable in container. Checks if spare drive size is acceptable.
8757 * Parameters: Pointer to the supertype structure
8758 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8759 * NULL if fail
8760 */
8761static struct mdinfo *get_spares_for_grow(struct supertype *st)
8762{
78b10e66 8763 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8764 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8765}
8766
8767/******************************************************************************
8768 * function: imsm_create_metadata_update_for_reshape
8769 * Function creates update for whole IMSM container.
8770 *
8771 ******************************************************************************/
8772static int imsm_create_metadata_update_for_reshape(
8773 struct supertype *st,
8774 struct geo_params *geo,
8775 int old_raid_disks,
8776 struct imsm_update_reshape **updatep)
8777{
8778 struct intel_super *super = st->sb;
8779 struct imsm_super *mpb = super->anchor;
8780 int update_memory_size = 0;
8781 struct imsm_update_reshape *u = NULL;
8782 struct mdinfo *spares = NULL;
8783 int i;
8784 int delta_disks = 0;
bbd24d86 8785 struct mdinfo *dev;
78b10e66
N
8786
8787 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8788 geo->raid_disks);
8789
8790 delta_disks = geo->raid_disks - old_raid_disks;
8791
8792 /* size of all update data without anchor */
8793 update_memory_size = sizeof(struct imsm_update_reshape);
8794
8795 /* now add space for spare disks that we need to add. */
8796 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8797
8798 u = calloc(1, update_memory_size);
8799 if (u == NULL) {
8800 dprintf("error: "
8801 "cannot get memory for imsm_update_reshape update\n");
8802 return 0;
8803 }
8804 u->type = update_reshape_container_disks;
8805 u->old_raid_disks = old_raid_disks;
8806 u->new_raid_disks = geo->raid_disks;
8807
8808 /* now get spare disks list
8809 */
8810 spares = get_spares_for_grow(st);
8811
8812 if (spares == NULL
8813 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8814 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8815 "for %s.\n", geo->dev_name);
e4c72d1d 8816 i = -1;
78b10e66
N
8817 goto abort;
8818 }
8819
8820 /* we have got spares
8821 * update disk list in imsm_disk list table in anchor
8822 */
8823 dprintf("imsm: %i spares are available.\n\n",
8824 spares->array.spare_disks);
8825
bbd24d86 8826 dev = spares->devs;
78b10e66 8827 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8828 struct dl *dl;
8829
bbd24d86
AK
8830 if (dev == NULL)
8831 break;
78b10e66
N
8832 u->new_disks[i] = makedev(dev->disk.major,
8833 dev->disk.minor);
8834 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8835 dl->index = mpb->num_disks;
8836 mpb->num_disks++;
bbd24d86 8837 dev = dev->next;
78b10e66 8838 }
78b10e66
N
8839
8840abort:
8841 /* free spares
8842 */
8843 sysfs_free(spares);
8844
d677e0b8 8845 dprintf("imsm: reshape update preparation :");
78b10e66 8846 if (i == delta_disks) {
d677e0b8 8847 dprintf(" OK\n");
78b10e66
N
8848 *updatep = u;
8849 return update_memory_size;
8850 }
8851 free(u);
d677e0b8 8852 dprintf(" Error\n");
78b10e66
N
8853
8854 return 0;
8855}
8856
48c5303a
PC
8857/******************************************************************************
8858 * function: imsm_create_metadata_update_for_migration()
8859 * Creates update for IMSM array.
8860 *
8861 ******************************************************************************/
8862static int imsm_create_metadata_update_for_migration(
8863 struct supertype *st,
8864 struct geo_params *geo,
8865 struct imsm_update_reshape_migration **updatep)
8866{
8867 struct intel_super *super = st->sb;
8868 int update_memory_size = 0;
8869 struct imsm_update_reshape_migration *u = NULL;
8870 struct imsm_dev *dev;
8871 int previous_level = -1;
8872
8873 dprintf("imsm_create_metadata_update_for_migration(enter)"
8874 " New Level = %i\n", geo->level);
8875
8876 /* size of all update data without anchor */
8877 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8878
8879 u = calloc(1, update_memory_size);
8880 if (u == NULL) {
8881 dprintf("error: cannot get memory for "
8882 "imsm_create_metadata_update_for_migration\n");
8883 return 0;
8884 }
8885 u->type = update_reshape_migration;
8886 u->subdev = super->current_vol;
8887 u->new_level = geo->level;
8888 u->new_layout = geo->layout;
8889 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8890 u->new_disks[0] = -1;
4bba0439 8891 u->new_chunksize = -1;
48c5303a
PC
8892
8893 dev = get_imsm_dev(super, u->subdev);
8894 if (dev) {
8895 struct imsm_map *map;
8896
238c0a71 8897 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
8898 if (map) {
8899 int current_chunk_size =
8900 __le16_to_cpu(map->blocks_per_strip) / 2;
8901
8902 if (geo->chunksize != current_chunk_size) {
8903 u->new_chunksize = geo->chunksize / 1024;
8904 dprintf("imsm: "
8905 "chunk size change from %i to %i\n",
8906 current_chunk_size, u->new_chunksize);
8907 }
48c5303a 8908 previous_level = map->raid_level;
4bba0439 8909 }
48c5303a
PC
8910 }
8911 if ((geo->level == 5) && (previous_level == 0)) {
8912 struct mdinfo *spares = NULL;
8913
8914 u->new_raid_disks++;
8915 spares = get_spares_for_grow(st);
8916 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8917 free(u);
8918 sysfs_free(spares);
8919 update_memory_size = 0;
8920 dprintf("error: cannot get spare device "
8921 "for requested migration");
8922 return 0;
8923 }
8924 sysfs_free(spares);
8925 }
8926 dprintf("imsm: reshape update preparation : OK\n");
8927 *updatep = u;
8928
8929 return update_memory_size;
8930}
8931
8dd70bce
AK
8932static void imsm_update_metadata_locally(struct supertype *st,
8933 void *buf, int len)
8934{
8935 struct metadata_update mu;
8936
8937 mu.buf = buf;
8938 mu.len = len;
8939 mu.space = NULL;
8940 mu.space_list = NULL;
8941 mu.next = NULL;
8942 imsm_prepare_update(st, &mu);
8943 imsm_process_update(st, &mu);
8944
8945 while (mu.space_list) {
8946 void **space = mu.space_list;
8947 mu.space_list = *space;
8948 free(space);
8949 }
8950}
78b10e66 8951
471bceb6 8952/***************************************************************************
694575e7 8953* Function: imsm_analyze_change
471bceb6
KW
8954* Description: Function analyze change for single volume
8955* and validate if transition is supported
694575e7
KW
8956* Parameters: Geometry parameters, supertype structure
8957* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8958****************************************************************************/
8959enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8960 struct geo_params *geo)
694575e7 8961{
471bceb6
KW
8962 struct mdinfo info;
8963 int change = -1;
8964 int check_devs = 0;
c21e737b 8965 int chunk;
e91a3bad
LM
8966 int devNumChange=0;
8967 int layout = -1;
471bceb6
KW
8968
8969 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
8970 if ((geo->level != info.array.level) &&
8971 (geo->level >= 0) &&
8972 (geo->level != UnSet)) {
8973 switch (info.array.level) {
8974 case 0:
8975 if (geo->level == 5) {
b5347799 8976 change = CH_MIGRATION;
e13ce846
AK
8977 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8978 fprintf(stderr,
8979 Name " Error. Requested Layout "
8980 "not supported (left-asymmetric layout "
8981 "is supported only)!\n");
8982 change = -1;
8983 goto analyse_change_exit;
8984 }
e91a3bad 8985 layout = geo->layout;
471bceb6 8986 check_devs = 1;
e91a3bad
LM
8987 devNumChange = 1; /* parity disk added */
8988 } else if (geo->level == 10) {
471bceb6
KW
8989 change = CH_TAKEOVER;
8990 check_devs = 1;
e91a3bad
LM
8991 devNumChange = 2; /* two mirrors added */
8992 layout = 0x102; /* imsm supported layout */
471bceb6 8993 }
dfe77a9e
KW
8994 break;
8995 case 1:
471bceb6
KW
8996 case 10:
8997 if (geo->level == 0) {
8998 change = CH_TAKEOVER;
8999 check_devs = 1;
e91a3bad
LM
9000 devNumChange = -(geo->raid_disks/2);
9001 layout = 0; /* imsm raid0 layout */
471bceb6
KW
9002 }
9003 break;
9004 }
9005 if (change == -1) {
9006 fprintf(stderr,
9007 Name " Error. Level Migration from %d to %d "
9008 "not supported!\n",
9009 info.array.level, geo->level);
9010 goto analyse_change_exit;
9011 }
9012 } else
9013 geo->level = info.array.level;
9014
9015 if ((geo->layout != info.array.layout)
9016 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 9017 change = CH_MIGRATION;
471bceb6
KW
9018 if ((info.array.layout == 0)
9019 && (info.array.level == 5)
9020 && (geo->layout == 5)) {
9021 /* reshape 5 -> 4 */
9022 } else if ((info.array.layout == 5)
9023 && (info.array.level == 5)
9024 && (geo->layout == 0)) {
9025 /* reshape 4 -> 5 */
9026 geo->layout = 0;
9027 geo->level = 5;
9028 } else {
9029 fprintf(stderr,
9030 Name " Error. Layout Migration from %d to %d "
9031 "not supported!\n",
9032 info.array.layout, geo->layout);
9033 change = -1;
9034 goto analyse_change_exit;
9035 }
9036 } else
9037 geo->layout = info.array.layout;
9038
9039 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9040 && (geo->chunksize != info.array.chunk_size))
b5347799 9041 change = CH_MIGRATION;
471bceb6
KW
9042 else
9043 geo->chunksize = info.array.chunk_size;
9044
c21e737b 9045 chunk = geo->chunksize / 1024;
471bceb6
KW
9046 if (!validate_geometry_imsm(st,
9047 geo->level,
e91a3bad
LM
9048 layout,
9049 geo->raid_disks + devNumChange,
c21e737b 9050 &chunk,
471bceb6
KW
9051 geo->size,
9052 0, 0, 1))
9053 change = -1;
9054
9055 if (check_devs) {
9056 struct intel_super *super = st->sb;
9057 struct imsm_super *mpb = super->anchor;
9058
9059 if (mpb->num_raid_devs > 1) {
9060 fprintf(stderr,
9061 Name " Error. Cannot perform operation on %s"
9062 "- for this operation it MUST be single "
9063 "array in container\n",
9064 geo->dev_name);
9065 change = -1;
9066 }
9067 }
9068
9069analyse_change_exit:
9070
9071 return change;
694575e7
KW
9072}
9073
bb025c2f
KW
9074int imsm_takeover(struct supertype *st, struct geo_params *geo)
9075{
9076 struct intel_super *super = st->sb;
9077 struct imsm_update_takeover *u;
9078
9079 u = malloc(sizeof(struct imsm_update_takeover));
9080 if (u == NULL)
9081 return 1;
9082
9083 u->type = update_takeover;
9084 u->subarray = super->current_vol;
9085
9086 /* 10->0 transition */
9087 if (geo->level == 0)
9088 u->direction = R10_TO_R0;
9089
0529c688
KW
9090 /* 0->10 transition */
9091 if (geo->level == 10)
9092 u->direction = R0_TO_R10;
9093
bb025c2f
KW
9094 /* update metadata locally */
9095 imsm_update_metadata_locally(st, u,
9096 sizeof(struct imsm_update_takeover));
9097 /* and possibly remotely */
9098 if (st->update_tail)
9099 append_metadata_update(st, u,
9100 sizeof(struct imsm_update_takeover));
9101 else
9102 free(u);
9103
9104 return 0;
9105}
9106
78b10e66
N
9107static int imsm_reshape_super(struct supertype *st, long long size, int level,
9108 int layout, int chunksize, int raid_disks,
41784c88
AK
9109 int delta_disks, char *backup, char *dev,
9110 int verbose)
78b10e66 9111{
78b10e66
N
9112 int ret_val = 1;
9113 struct geo_params geo;
9114
9115 dprintf("imsm: reshape_super called.\n");
9116
71204a50 9117 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
9118
9119 geo.dev_name = dev;
694575e7 9120 geo.dev_id = st->devnum;
78b10e66
N
9121 geo.size = size;
9122 geo.level = level;
9123 geo.layout = layout;
9124 geo.chunksize = chunksize;
9125 geo.raid_disks = raid_disks;
41784c88
AK
9126 if (delta_disks != UnSet)
9127 geo.raid_disks += delta_disks;
78b10e66
N
9128
9129 dprintf("\tfor level : %i\n", geo.level);
9130 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
9131
9132 if (experimental() == 0)
9133 return ret_val;
9134
78b10e66 9135 if (st->container_dev == st->devnum) {
694575e7
KW
9136 /* On container level we can only increase number of devices. */
9137 dprintf("imsm: info: Container operation\n");
78b10e66 9138 int old_raid_disks = 0;
6dc0be30 9139
78b10e66
N
9140 if (imsm_reshape_is_allowed_on_container(
9141 st, &geo, &old_raid_disks)) {
9142 struct imsm_update_reshape *u = NULL;
9143 int len;
9144
9145 len = imsm_create_metadata_update_for_reshape(
9146 st, &geo, old_raid_disks, &u);
9147
ed08d51c
AK
9148 if (len <= 0) {
9149 dprintf("imsm: Cannot prepare update\n");
9150 goto exit_imsm_reshape_super;
9151 }
9152
8dd70bce
AK
9153 ret_val = 0;
9154 /* update metadata locally */
9155 imsm_update_metadata_locally(st, u, len);
9156 /* and possibly remotely */
9157 if (st->update_tail)
9158 append_metadata_update(st, u, len);
9159 else
ed08d51c 9160 free(u);
8dd70bce 9161
694575e7 9162 } else {
e7ff7e40
AK
9163 fprintf(stderr, Name ": (imsm) Operation "
9164 "is not allowed on this container\n");
694575e7
KW
9165 }
9166 } else {
9167 /* On volume level we support following operations
471bceb6
KW
9168 * - takeover: raid10 -> raid0; raid0 -> raid10
9169 * - chunk size migration
9170 * - migration: raid5 -> raid0; raid0 -> raid5
9171 */
9172 struct intel_super *super = st->sb;
9173 struct intel_dev *dev = super->devlist;
9174 int change, devnum;
694575e7 9175 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
9176 /* find requested device */
9177 while (dev) {
19986c72
MB
9178 if (imsm_find_array_minor_by_subdev(
9179 dev->index, st->container_dev, &devnum) == 0
9180 && devnum == geo.dev_id)
471bceb6
KW
9181 break;
9182 dev = dev->next;
9183 }
9184 if (dev == NULL) {
9185 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
9186 geo.dev_name, geo.dev_id);
9187 goto exit_imsm_reshape_super;
9188 }
9189 super->current_vol = dev->index;
694575e7
KW
9190 change = imsm_analyze_change(st, &geo);
9191 switch (change) {
471bceb6 9192 case CH_TAKEOVER:
bb025c2f 9193 ret_val = imsm_takeover(st, &geo);
694575e7 9194 break;
48c5303a
PC
9195 case CH_MIGRATION: {
9196 struct imsm_update_reshape_migration *u = NULL;
9197 int len =
9198 imsm_create_metadata_update_for_migration(
9199 st, &geo, &u);
9200 if (len < 1) {
9201 dprintf("imsm: "
9202 "Cannot prepare update\n");
9203 break;
9204 }
471bceb6 9205 ret_val = 0;
48c5303a
PC
9206 /* update metadata locally */
9207 imsm_update_metadata_locally(st, u, len);
9208 /* and possibly remotely */
9209 if (st->update_tail)
9210 append_metadata_update(st, u, len);
9211 else
9212 free(u);
9213 }
9214 break;
471bceb6
KW
9215 default:
9216 ret_val = 1;
694575e7 9217 }
694575e7 9218 }
78b10e66 9219
ed08d51c 9220exit_imsm_reshape_super:
78b10e66
N
9221 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
9222 return ret_val;
9223}
2cda7640 9224
eee67a47
AK
9225/*******************************************************************************
9226 * Function: wait_for_reshape_imsm
9227 * Description: Function writes new sync_max value and waits until
9228 * reshape process reach new position
9229 * Parameters:
9230 * sra : general array info
eee67a47
AK
9231 * ndata : number of disks in new array's layout
9232 * Returns:
9233 * 0 : success,
9234 * 1 : there is no reshape in progress,
9235 * -1 : fail
9236 ******************************************************************************/
ae9f01f8 9237int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
9238{
9239 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
9240 unsigned long long completed;
ae9f01f8
AK
9241 /* to_complete : new sync_max position */
9242 unsigned long long to_complete = sra->reshape_progress;
9243 unsigned long long position_to_set = to_complete / ndata;
eee67a47 9244
ae9f01f8
AK
9245 if (fd < 0) {
9246 dprintf("imsm: wait_for_reshape_imsm() "
9247 "cannot open reshape_position\n");
eee67a47 9248 return 1;
ae9f01f8 9249 }
eee67a47 9250
ae9f01f8
AK
9251 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9252 dprintf("imsm: wait_for_reshape_imsm() "
9253 "cannot read reshape_position (no reshape in progres)\n");
9254 close(fd);
9255 return 0;
9256 }
eee67a47 9257
ae9f01f8
AK
9258 if (completed > to_complete) {
9259 dprintf("imsm: wait_for_reshape_imsm() "
9260 "wrong next position to set %llu (%llu)\n",
9261 to_complete, completed);
9262 close(fd);
9263 return -1;
9264 }
9265 dprintf("Position set: %llu\n", position_to_set);
9266 if (sysfs_set_num(sra, NULL, "sync_max",
9267 position_to_set) != 0) {
9268 dprintf("imsm: wait_for_reshape_imsm() "
9269 "cannot set reshape position to %llu\n",
9270 position_to_set);
9271 close(fd);
9272 return -1;
eee67a47
AK
9273 }
9274
eee67a47
AK
9275 do {
9276 char action[20];
9277 fd_set rfds;
9278 FD_ZERO(&rfds);
9279 FD_SET(fd, &rfds);
a47e44fb
AK
9280 select(fd+1, &rfds, NULL, NULL, NULL);
9281 if (sysfs_get_str(sra, NULL, "sync_action",
9282 action, 20) > 0 &&
9283 strncmp(action, "reshape", 7) != 0)
9284 break;
eee67a47 9285 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
9286 dprintf("imsm: wait_for_reshape_imsm() "
9287 "cannot read reshape_position (in loop)\n");
eee67a47
AK
9288 close(fd);
9289 return 1;
9290 }
eee67a47
AK
9291 } while (completed < to_complete);
9292 close(fd);
9293 return 0;
9294
9295}
9296
b915c95f
AK
9297/*******************************************************************************
9298 * Function: check_degradation_change
9299 * Description: Check that array hasn't become failed.
9300 * Parameters:
9301 * info : for sysfs access
9302 * sources : source disks descriptors
9303 * degraded: previous degradation level
9304 * Returns:
9305 * degradation level
9306 ******************************************************************************/
9307int check_degradation_change(struct mdinfo *info,
9308 int *sources,
9309 int degraded)
9310{
9311 unsigned long long new_degraded;
9312 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9313 if (new_degraded != (unsigned long long)degraded) {
9314 /* check each device to ensure it is still working */
9315 struct mdinfo *sd;
9316 new_degraded = 0;
9317 for (sd = info->devs ; sd ; sd = sd->next) {
9318 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9319 continue;
9320 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9321 char sbuf[20];
9322 if (sysfs_get_str(info,
9323 sd, "state", sbuf, 20) < 0 ||
9324 strstr(sbuf, "faulty") ||
9325 strstr(sbuf, "in_sync") == NULL) {
9326 /* this device is dead */
9327 sd->disk.state = (1<<MD_DISK_FAULTY);
9328 if (sd->disk.raid_disk >= 0 &&
9329 sources[sd->disk.raid_disk] >= 0) {
9330 close(sources[
9331 sd->disk.raid_disk]);
9332 sources[sd->disk.raid_disk] =
9333 -1;
9334 }
9335 new_degraded++;
9336 }
9337 }
9338 }
9339 }
9340
9341 return new_degraded;
9342}
9343
10f22854
AK
9344/*******************************************************************************
9345 * Function: imsm_manage_reshape
9346 * Description: Function finds array under reshape and it manages reshape
9347 * process. It creates stripes backups (if required) and sets
9348 * checheckpoits.
9349 * Parameters:
9350 * afd : Backup handle (nattive) - not used
9351 * sra : general array info
9352 * reshape : reshape parameters - not used
9353 * st : supertype structure
9354 * blocks : size of critical section [blocks]
9355 * fds : table of source device descriptor
9356 * offsets : start of array (offest per devices)
9357 * dests : not used
9358 * destfd : table of destination device descriptor
9359 * destoffsets : table of destination offsets (per device)
9360 * Returns:
9361 * 1 : success, reshape is done
9362 * 0 : fail
9363 ******************************************************************************/
999b4972
N
9364static int imsm_manage_reshape(
9365 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 9366 struct supertype *st, unsigned long backup_blocks,
999b4972
N
9367 int *fds, unsigned long long *offsets,
9368 int dests, int *destfd, unsigned long long *destoffsets)
9369{
10f22854
AK
9370 int ret_val = 0;
9371 struct intel_super *super = st->sb;
9372 struct intel_dev *dv = NULL;
9373 struct imsm_dev *dev = NULL;
a6b6d984 9374 struct imsm_map *map_src;
10f22854
AK
9375 int migr_vol_qan = 0;
9376 int ndata, odata; /* [bytes] */
9377 int chunk; /* [bytes] */
9378 struct migr_record *migr_rec;
9379 char *buf = NULL;
9380 unsigned int buf_size; /* [bytes] */
9381 unsigned long long max_position; /* array size [bytes] */
9382 unsigned long long next_step; /* [blocks]/[bytes] */
9383 unsigned long long old_data_stripe_length;
10f22854
AK
9384 unsigned long long start_src; /* [bytes] */
9385 unsigned long long start; /* [bytes] */
9386 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 9387 int degraded = 0;
ab724b98 9388 int source_layout = 0;
10f22854 9389
1ab242d8 9390 if (!fds || !offsets || !sra)
10f22854
AK
9391 goto abort;
9392
9393 /* Find volume during the reshape */
9394 for (dv = super->devlist; dv; dv = dv->next) {
9395 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9396 && dv->dev->vol.migr_state == 1) {
9397 dev = dv->dev;
9398 migr_vol_qan++;
9399 }
9400 }
9401 /* Only one volume can migrate at the same time */
9402 if (migr_vol_qan != 1) {
9403 fprintf(stderr, Name " : %s", migr_vol_qan ?
9404 "Number of migrating volumes greater than 1\n" :
9405 "There is no volume during migrationg\n");
9406 goto abort;
9407 }
9408
238c0a71 9409 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
9410 if (map_src == NULL)
9411 goto abort;
10f22854 9412
238c0a71
AK
9413 ndata = imsm_num_data_members(dev, MAP_0);
9414 odata = imsm_num_data_members(dev, MAP_1);
10f22854 9415
7b1ab482 9416 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
9417 old_data_stripe_length = odata * chunk;
9418
9419 migr_rec = super->migr_rec;
9420
10f22854
AK
9421 /* initialize migration record for start condition */
9422 if (sra->reshape_progress == 0)
9423 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
9424 else {
9425 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9426 dprintf("imsm: cannot restart migration when data "
9427 "are present in copy area.\n");
9428 goto abort;
9429 }
9430 }
10f22854
AK
9431
9432 /* size for data */
9433 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9434 /* extend buffer size for parity disk */
9435 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9436 /* add space for stripe aligment */
9437 buf_size += old_data_stripe_length;
9438 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9439 dprintf("imsm: Cannot allocate checpoint buffer\n");
9440 goto abort;
9441 }
9442
3ef4403c 9443 max_position = sra->component_size * ndata;
68eb8bc6 9444 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
9445
9446 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9447 __le32_to_cpu(migr_rec->num_migr_units)) {
9448 /* current reshape position [blocks] */
9449 unsigned long long current_position =
9450 __le32_to_cpu(migr_rec->blocks_per_unit)
9451 * __le32_to_cpu(migr_rec->curr_migr_unit);
9452 unsigned long long border;
9453
b915c95f
AK
9454 /* Check that array hasn't become failed.
9455 */
9456 degraded = check_degradation_change(sra, fds, degraded);
9457 if (degraded > 1) {
9458 dprintf("imsm: Abort reshape due to degradation"
9459 " level (%i)\n", degraded);
9460 goto abort;
9461 }
9462
10f22854
AK
9463 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9464
9465 if ((current_position + next_step) > max_position)
9466 next_step = max_position - current_position;
9467
92144abf 9468 start = current_position * 512;
10f22854
AK
9469
9470 /* allign reading start to old geometry */
9471 start_buf_shift = start % old_data_stripe_length;
9472 start_src = start - start_buf_shift;
9473
9474 border = (start_src / odata) - (start / ndata);
9475 border /= 512;
9476 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9477 /* save critical stripes to buf
9478 * start - start address of current unit
9479 * to backup [bytes]
9480 * start_src - start address of current unit
9481 * to backup alligned to source array
9482 * [bytes]
9483 */
9484 unsigned long long next_step_filler = 0;
9485 unsigned long long copy_length = next_step * 512;
9486
9487 /* allign copy area length to stripe in old geometry */
9488 next_step_filler = ((copy_length + start_buf_shift)
9489 % old_data_stripe_length);
9490 if (next_step_filler)
9491 next_step_filler = (old_data_stripe_length
9492 - next_step_filler);
9493 dprintf("save_stripes() parameters: start = %llu,"
9494 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9495 "\tstart_in_buf_shift = %llu,"
9496 "\tnext_step_filler = %llu\n",
9497 start, start_src, copy_length,
9498 start_buf_shift, next_step_filler);
9499
9500 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
9501 chunk, map_src->raid_level,
9502 source_layout, 0, NULL, start_src,
10f22854
AK
9503 copy_length +
9504 next_step_filler + start_buf_shift,
9505 buf)) {
9506 dprintf("imsm: Cannot save stripes"
9507 " to buffer\n");
9508 goto abort;
9509 }
9510 /* Convert data to destination format and store it
9511 * in backup general migration area
9512 */
9513 if (save_backup_imsm(st, dev, sra,
aea93171 9514 buf + start_buf_shift, copy_length)) {
10f22854
AK
9515 dprintf("imsm: Cannot save stripes to "
9516 "target devices\n");
9517 goto abort;
9518 }
9519 if (save_checkpoint_imsm(st, sra,
9520 UNIT_SRC_IN_CP_AREA)) {
9521 dprintf("imsm: Cannot write checkpoint to "
9522 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9523 goto abort;
9524 }
8016a6d4
AK
9525 } else {
9526 /* set next step to use whole border area */
9527 border /= next_step;
9528 if (border > 1)
9529 next_step *= border;
10f22854
AK
9530 }
9531 /* When data backed up, checkpoint stored,
9532 * kick the kernel to reshape unit of data
9533 */
9534 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
9535 /* limit next step to array max position */
9536 if (next_step > max_position)
9537 next_step = max_position;
10f22854
AK
9538 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9539 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 9540 sra->reshape_progress = next_step;
10f22854
AK
9541
9542 /* wait until reshape finish */
ae9f01f8 9543 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
9544 dprintf("wait_for_reshape_imsm returned error!\n");
9545 goto abort;
9546 }
10f22854 9547
0228d92c
AK
9548 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9549 /* ignore error == 2, this can mean end of reshape here
9550 */
10f22854
AK
9551 dprintf("imsm: Cannot write checkpoint to "
9552 "migration record (UNIT_SRC_NORMAL)\n");
9553 goto abort;
9554 }
9555
9556 }
9557
9558 /* return '1' if done */
9559 ret_val = 1;
9560abort:
9561 free(buf);
9562 abort_reshape(sra);
9563
9564 return ret_val;
999b4972 9565}
71204a50 9566#endif /* MDASSEMBLE */
999b4972 9567
cdddbdbc
DW
9568struct superswitch super_imsm = {
9569#ifndef MDASSEMBLE
9570 .examine_super = examine_super_imsm,
9571 .brief_examine_super = brief_examine_super_imsm,
4737ae25 9572 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 9573 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
9574 .detail_super = detail_super_imsm,
9575 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 9576 .write_init_super = write_init_super_imsm,
0e600426
N
9577 .validate_geometry = validate_geometry_imsm,
9578 .add_to_super = add_to_super_imsm,
1a64be56 9579 .remove_from_super = remove_from_super_imsm,
d665cc31 9580 .detail_platform = detail_platform_imsm,
33414a01 9581 .kill_subarray = kill_subarray_imsm,
aa534678 9582 .update_subarray = update_subarray_imsm,
2b959fbf 9583 .load_container = load_container_imsm,
71204a50
N
9584 .default_geometry = default_geometry_imsm,
9585 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9586 .reshape_super = imsm_reshape_super,
9587 .manage_reshape = imsm_manage_reshape,
9e2d750d 9588 .recover_backup = recover_backup_imsm,
cdddbdbc
DW
9589#endif
9590 .match_home = match_home_imsm,
9591 .uuid_from_super= uuid_from_super_imsm,
9592 .getinfo_super = getinfo_super_imsm,
5c4cd5da 9593 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
9594 .update_super = update_super_imsm,
9595
9596 .avail_size = avail_size_imsm,
80e7f8c3 9597 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
9598
9599 .compare_super = compare_super_imsm,
9600
9601 .load_super = load_super_imsm,
bf5a934a 9602 .init_super = init_super_imsm,
e683ca88 9603 .store_super = store_super_imsm,
cdddbdbc
DW
9604 .free_super = free_super_imsm,
9605 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 9606 .container_content = container_content_imsm,
cdddbdbc 9607
276d77db 9608
cdddbdbc 9609 .external = 1,
4cce4069 9610 .name = "imsm",
845dea95 9611
0e600426 9612#ifndef MDASSEMBLE
845dea95
NB
9613/* for mdmon */
9614 .open_new = imsm_open_new,
ed9d66aa 9615 .set_array_state= imsm_set_array_state,
845dea95
NB
9616 .set_disk = imsm_set_disk,
9617 .sync_metadata = imsm_sync_metadata,
88758e9d 9618 .activate_spare = imsm_activate_spare,
e8319a19 9619 .process_update = imsm_process_update,
8273f55e 9620 .prepare_update = imsm_prepare_update,
0e600426 9621#endif /* MDASSEMBLE */
cdddbdbc 9622};